
--------- - ------- - ---- - - ----------_ .- NetView/PC™

Application Program Interfacel
Communications Services

Version 1.1

~L
•

Trademark International Business Machines Corporation

SC30-3313-1

•

--------- - ------- - ---- - - ----------_.-
®

NetViewlPC™

Application Program Interfacel
Communications Services

Version 1.1

File Number
S370/4300/30XX-50

Program Number
5669-024

Trademark International Business Machines Corporation

SC30-3313-1

Second Edition (October 1987)

This edition is a major revision of SC30-3313-0. It applies to NetViewIPC™, program number 5669-024, and
to all subsequent releases and modifications until otherwise indicated in new editions.

Changes are made periodically to the information herein; before you use this publication in connection with
the operation of IBM systems, consult the latest IBM Systeml370, 30xx, and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current.

Any reference to an IBM licensed program in this document is not intended to state or imply that only IBM's
program may be used. Any functionally equivalent program may be used instead.

It is possible that this material may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or informa­
tion must not be construed to mean that IBM intends to announce such products, programs, or services in
your country.

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM
representative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this publication. If the form has been removed, you
may address comments to IBM Corporation, Department E53, P.O. Box 12195, Research Triangle Park,
North Carolina 27709, U.S.A. IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

NetView/PC is a trademark of International Business Machines Corporation.

© Copyright International Business Machines Corporation 1986, 1987
All Rights Reserved

Contents

Part 1. Application Program Interface/Communications Services Overview 1

Chapter 1. Network Management Overview 3
What is the Environment 3
NetView/PC in Communications Network Management 5

Chapter 2. Application Program Interface/Communications Services (APIICS) . 9
Using the API/CS .. 10
API/CS Scenario ... 13
Programming in the NetView/PC DOS Partition 16
Requi rements and Restrictions 17

Installation .. 18
Using EZ - VU .. 18
Verified PC DOS Applications 19
Applications Not Successfully Executed 19
Relating to Documentation 20

Part 2. Using the APIICS Subroutines 23

Chapter 3. Alert Subroutine Calls 25
Open the Alert APIICS 30

Send an Alert ... 30

Close the Alert API/CS 30

Chapter 4. Operator Communications Subroutine Calls 31
Open the Operator Communications APIICS 32

Write the Icon "OP' to the NetView/PC Icon Window 32

Clear the Icon from the NetView/PC Icon Window 33
Close the Operator Communications API/CS 33

Chapter 5. Service Point Command Facility (SPCF) Subroutine Calls 35
Open the SPCF APIICS 40

Receive a RUNCMD message 40

Send a RUNCMD response 41
Send a Message ... 42
Receive a Command .. 43

Send a Command Response 43

Send Error Sense .. 44

Close the SPCF APIICS 45

Chapter 6. SPCF Build and Parse 47
Parse .. 47
Build .. 51

Chapter 7. Host Data Facility Subroutine Calls 57
Open the Host Data Facility APIICS 60
Send File Data .. 60
Receive File Data .. 61
Check the Status of a Host Data Facility Request 61

Contents iii

Stop File Data Transfer 61
Close the Host Data Facility APIICS 62

Part 3. Reference Information ... 63

Appendix A. API/CS Reference Information 67
Return Code List ... 67
DOS Error Codes .. 71
Translation of NMVT Data Fields 72
Naming Conventions .. 73

Appendix B. Alert Major Vector Formats 77
Non-generic Alert Format ... 77
Tables of Text for X'91' Subvector Support 78
NetView/PC X'9F' Subvector 80
NetView/PC ALERT SV X'9F' Code Point File: DUPALGTF.TXT 83
Generic Alert Format . 87

Appendix C. Service Point Command Data 89
APIICS Supported NetView Commands 89
Service Point Command vectors 94

Appendix D. Suggested Command Formats 107
Suggested Physical Device Management Commands 107
Configuration Data Base Management Commands 108

Appendix E. Panel Development Rules 113
Applicability and Conformance 113
Panel Design .. 113
Panel Dialog Management 137
File Management Techniques Using the List Panel 155

Part 4. Sample Programs .. 163

Appendix F. DOS Sample Program Planning and Installation 167
Prerequisites .. 167
Components .. 167
Installation ... 170
Assembly and Link .. 170

Appendix G. Operation 173
Startup .. 173
General Information ' 173
Main Menu ... 176
Alert Interface Panel 177
Operator Communications Interface 179
Service Point Command Facility Interface 181
SPCF Run Command 182
SPCF Receive Unparsed Command 185
SPCF Parse Host Command 187
SPCF Build Response 189
SPCF Display File ... 190
SPCF Unformatted Display Panel 192
SPCF Display Run Command 194

iv NetView/PCTM APIICS

SPCF Display Link PO Command 195
SPCF Display Link Data Command 197
SPCF Display Link Test Command 198
SPCF Send Unformatted Response 200
SPCF Send Unsolicited Message 202
SPCF Send Error Sense Data 204
SPCF Build Message 207
SPCF Correlator List 208
Host Data Facility Interface 209

Appendix H. API Sample Program Error Messages 213

Appendix I. DOS Sample Program Code
APIMAIN.DSG .. .
APIMAIN.MAC .. .
APIMAIN.EXR
APIMAIN.DEF
APIMAIN.ASM .. .
APIMAIN.UTL
APIUTIL.DSG
APIUTIL.EXR
APIUTIL.ASM
APIDISP.DSG
APIDISP.ASM

223
223
242
245
246
247
292
303
310
311
332
340

Appendix J. NetView Sample Programs 361
NetView Sample Presentation Services Command Processor (PSCP) 361
NetView Sample Data Services Command Processor (DSCP) 371

Glossary ... 389

Index 407

Contents V

vi NetView/PCTM APIICS

=
Figures

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.

Open Network Management Concept 3
Network Management Structure 5
Network Management Products 6
Network Management and Vendor Products 6
API/CS Network Management Scenario. 14
Documentation for the Environment. 21
Alert ARB ... 26
Primary Alert API/CS Return Codes 27
Secondary Alert API/CS Return Codes 27
Operator Communications ARB 31
Operator Communications API/CS Return Codes 32
SPCF ARB ... 37
SPCF API/CS Return Codes 39
Message buffer format when Convert = 'V' 42
SENSETYPE Values, Data and Descriptions 44
Defined LCCSTAT Values 45
Defined Error Detail Values 45
Parse SPCF Command ARB 48
Parse SPCF Command API/CS Return Codes 49
Parse Data fields and ARB Displacements Returned 50
PARSE Sense Data and Description 50
Format for Names List 51
Build SPCF Reply ARB 51
Build SPCF Reply API/CS Return Codes 52
Path Configuration Information CB 54
LlNKPD LCC Description CB 54
LlNKDATA and LlNKTEST LCC Description CB 55
LlNKDATA and LlNKTEST LCC Data CB 55
Format for Probable Cause Data 56
Host Data Facility ARB 57
Host Data Facility API/CS Return Codes 58
List of all API/CS Return Codes 67
ASCII to EBCDIC Translation
EBCDIC to ASCII Translation

. 73
73

NetView/PC Non-generic Alert NMVT Example 78
SV X'91' Alert Type Field, File: DUPALATF.TXT 79
SV X'91' Cause Code Field, File: DUPALGCF.TXT 79
SV X'91' Specific Component Code Field, File: DUPALSCF.TXT 80
NetView/PC Alert 80
NetView/PC X'9F' Subvector fields. 80
NetView/PC X'9F' Subfields. 81
Probable Cause subfield of NetView/PC Alert Data Subvector
User Cause Subfield of the NetView/PC Alert Data Subvector
Install Cause Subfield of the NetView/PC Alert Data Subvector

........ 82

. 82
83

Failure Cause Subfield 83
X'9F' subvector Alert Description records 84
Probable Cause records 84
User Cause records 85
Install Cause records 86
Failure Cause records 86
Recommended Action records 86
NetView/PC Generic Alert NMVT Example 88

Figures vii

53. Max NMVT length possible for the LlNKPD "algorithm" 94
54. Max NMVT length possible for the LlNKDATA "algorithm" 94
55. Max NMVT length possible for the PUT LlNKTEST "algorithm" 95
56. NMVT Header ... 95
57. RUNCMD .. 95
58. Sense Reply to RUNCMD 96
59. Formatted Response message to RUNCMD 96
60. Unformatted Response message to RUNCMD 96
61. Send Message To Operator 96
62. LINKPD ... 97
63. Sense Response to LlNKPD 97
64. Response to LlNKPD 97
65. Link Status Subvector 97
66. Probable Cause Subvector 98
67. LlNKDATA ... 98
68. Sense Response to LlNKDATA 98
69. Response to LlNKDATA 98
70. LCC data subvector 99
71. LlNKTEST ... 99
72. Test Set Up Data Subvector 99
73. Sense Response to LlNKTEST ., .. 100
74. Response to LlNKTEST 100·
75. Link Test Results Subvector 101
76. LCC data subvector 102
77. Hierarchy/Resource List Subvector 102
78. Name List Subvector ;................. 103
79. Qualified Message Subvector 104
80. Text Message Subvector 104
81. Reply Count Subvector 105
82. Sense Data Subvector 105
83. Common Panel Elements 115
84. Common Panel Elements 119
85. Panel Body Elements 120
86. Panel Body Elements 126
87. Panel Body Element Headings 126
88. Single Selection Field Menu Panel - Panel Body 127
89. Single Selection Field Menu Panel - Example 1 128
90. Single Selection Field Menu Panel - Example 2 128
91. Multiple Selection Field Menu Panel - Panel Body 128
92. Multiple Selection Field Menu Panel - Example 1 129
93. Parameter Entry Panel Body Elements 130
94. Parameter Entry Panel - Example 1 131
95. Vertical Data Entry Panel Format " . 132
96. Tabular Data Entry Panel Format .. 132
97. Forms Fill-in Data Entry Panel Format 133
98. List Panel Format c 133
99. List Panel - Example 1 134
100. Information Panel Example 135
101. Mixed Panel Example: Entry and Menu 136
102. Mixed Panel Example: Information, Entry and Menu 136
103. Portion of a Possible Par:tel Hierarchy (4 levels) 142
104. NetView/PC EZ-VU II Level of Emphasis 152
105. Class of Data Versus Level of Emphasis Number 153
106. Level of Emphasis Assignment for Output Data Classes 154
107. Level of Emphasis Assignment for Input Data Classes 155
108. Level of Emphasis Assignment for Message Sub-classes 155

viii NetView/PCTM APIICS

109. Level of Emphasis Assignment for Status Text Sub-classes 155
110. Panel Hierarchy Example 157
111. Main Menu ... 176
112. Alert Interface Panel 177
113. Operator Communications Interface Panel
114. SPCF Main Menu
115. SPCF Run Command Panel
116. SPCF Get No Parse Panel
117. SPCF Parse Command Panel
118. SPCF Build Response Panel
119. SPCF Display File Pop-Up Panel
120. SPCF Display Unformatted Format Panel
121. SPCF Display Formatted Run Command Panel
122. SPCF Display Formatted Link PD Command Panel
123. SPCF Display Formatted Link Data Command Panel
124. SPCF Display Formatted Link Test Command Panel
125. SPCF Put Unformatted Panel
126. SPCF Send Message Par:'el
127. SPCF Send Error Panel
128. SPCF Message Buffer Panel
129. SPCF Correlator Selection Panel
130. Host Data Facility Interface Panel
131. Example of a Language Statement
132. NCP Example
133. VTAM Examples
134. Links and Path Controls

Figures

179
181
182
185
187
189
190
192
194
195
197
198
200
202
204
207
208
209
392
392
393
396

ix

X NetView/PCTM API/CS

About This Book

This book describes how to use the NetView/PC Application Program
Interface/Communications Services (APIICS). The API/CS is the open network man­
agement API in NetView/PC. It describes how to write network management appli­
cation code that will use the APIICS in order to participate with IBM'S centralized
network management environment. It describes how to use the NetView/PC APIICS
to allow non-SNA network management components to be managed from and by
NetView1 through a vendor or user-supplied network management applicatio

It will guide the PC programmer in the use of NetView/PC API/CS calls and provide
the information necessary to build the data structures required to use the API/CS.
Reference material is contained in the appendices.

It will not identify other equipment manufacturers (OEM) network component alert
conditions or define interfaces, protocols, or procedures to be used between the
network management application and the managed components.

This book is organized into four parts:

Part 1, "Application Program Interface/Communications Services Overview," pro­
vides a high-level network management overview and describes what you must do
to use the API/CS.

• Chapter 1, "Network Management Overview," provides a high-level overview
of the network management and explains where your network management
application fits in the network management structure.

• Chapter 2, "Application Program Interface/Communications Services
(APIICS)," describes the APIICS interface and the communications services pro­
vided. It contains a suggested flow of APIICS usage, a scenario describing how
the API/CS might be used by a network management application, and a list of
the requirements and restrictions imposed on you in order for your application
to execute in the DOS partition of NetView/PC.

It describes how the APIICS subroutines are installed, and the steps your appli­
cation should code to use the API/CS. It also contains information about using
the EZ- VU /I Development Facility for the IBM PC (EZ-VU), and documentation
relating to the environment in which you network management application will
execute.

Part 2, "Using the APIICS Subroutines," describes how to build the data structures
necessary to make calls to the API/CS.

• Chapter 3, "Alert Subroutine Calls," describes how to use the alert interface
to send alerts.

• Chapter 4, "Operator Communications Subroutine Calls," describes how the
application can use the API/CS to get the attention of the NetView/PC operator.

• Chapter 5, "Service Point Command Facility (SPCF) Subroutine Calls,"
describes how to receive and respond to commands from NetView. The APIICS

1 NetView is a registered trade mark of IBM Corporation.

About This Book xi

has been enhanced to provide additional Service Point Commands and to send
an unsolicited message to a NetView operator.

• Chapter 6, "SPCF Build and Parse," describes how to use the new build and
parse subroutines to parse a received Network Manage Vector Transport
(NMVT) and to build a response NMVT.

• Chapter 7, "Host Data Facility Subroutine Calls," describes how to control the
transfer of file data to or from the host.

Part 3, "Reference Information," contains reference information.

• Appendix A, "API/CS Reference Information," contains a complete list of the
APIICS return codes, the DOS error codes returned to the application, the trans­
late table used to translate NMVT EBCDIC fields, and naming conventions used by
NetView/PC.

• Appendix B, "Alert Major Vector Formats," contains information about alert
NMVTS that is unique to the NetView/PC environment.

• Appendix C, "Service Point Command Data," describes the supported
NetView commands and the NMVTS used for those commands.

• Appendix 0, "Suggested Command Formats," suggests command formats for
physical device and configuration data base commands.

• Appendix E, "Panel Development Rules," suggests rules for consistent user
display interface.

Part 4, "Sample Programs," contains sample program information.

• Appendix F, "DOS Sample Program Planning and Installation," describes the
DOS sample program planning and installation.

• Appendix G, "Operation," tells you how to operate the DOS sample program
to exercise the APIICS.

• Appendix H, "API Sample Program Error Messages," contains the DOS

sample program messages.

• Appendix I, "DOS Sample Program Code," contains the DOS sample program
source code. The code is also contained on the diskettes included with this
book.

• Appendix J, "NetView Sample Programs," contains the NetView command
processor source code. The code is also contained on the diskettes included
with this book.

Who Should Use This Book
This book is for IBM Personal Computer (pc) programmers responsible for writing
network management applications that will run in the DOS partition of NetView/PC
and will use the APIICS. The PC application programmer should be experienced with
the IBM PC Macro Assembler 2.0, the IBM PC hardware, Disk Operation System (DOS)

3.3, and familiar with NetView/PC.

It is also for system programmers who will write or modify NetView command
processors to handle unformatted RUNCMD response messages. An understanding
of NetView is also required to use the Service Point Command Facility (SPCF) of
NetView/PC.

xii NetView/PCTM API/CS

How to Use this Book
You should be familiar with network management concepts and the IBM network
management products before you try to design and write a network management
application intended to use the NetView/PC API/CS. You should read through
Chapter 1, "Network Management Overview," and Chapter 2, "Application
Program Interface/Communications Services (API/CS)," before turning to the
appropriate section for each function that is to be used.

You should read and understand "Naming Conventions," and Appendix E, "Panel
Development Rules," before you design and develop panels and before you write
any DOS appl ications.

If you have any questions about installation or use of your pc, refer to the version
of the IBM Guide to Operations for your PC, or the IBM Disk Operation System
(DOS) documentation.

What is New and Changed?
New and changed items in this book are:

• Information retrievability has been improved by restructuring the book into four
parts, providing more heading to help find information, and providing page
numbers when referencing figures or subjects in this book.

• A high-level network management overview was added to
Chapter 1, "Network Management Overview," to show where the vendor
written NetView/PC application using the API/CS fit in the network management
structure.

• Chapter 5, "Service Point Command Facility (SPCF) Subroutine Calls," was
changed to reflect support for new commands.

• Chapter 6, "SPCF Build and Parse," is new. This section describes utility rou­
tines that help parse received commands and help build responses (NMVTS) to
those commands.

• Appendix B, "Alert Major Vector Formats," has descriptions of generic alert
and hybrid alert NMVTS, as well as the non-generic alert NMVTS described in the
previous level.

• Appendix F, "DOS Sample Program Planning and Installation,"
"Installation," and Appendix G, "Operation," are new.

• A glossary has been added.

• Sample program diskettes are now provided with this book. The diskettes
contain the assembler language source code for the DOS sample program and
for the NetView™ command processors. Each sample program on the
diskettes, and the listings in this book have the following comments:

API Sample Program - (C) Copyright IBM Corp. 1986, 1987
SAMPLE PROGRAM - NO WARRANTY EXPRESSED OR IMPLIED

You are hereby licensed to use, reproduce, and distribute these
sample programs as your needs require. IBM does not warrant the
suitability or integrity of these sample programs and accepts no
responsibility for their use for your applications. If you choose to copy

About This Book xiii

and redistribute significant portions of these sample programs, you
should preface such copies with this copyright notice.

Where to Find More Information
The following lists contain the names and order numbers of documents relating to
IBM products and architectures relating to NetView/PC and user-supplied applica­
tions executing in the NetView/PC partition in memory. Documents cited in the text
of this manual will not have the order numbers with the citation.

NetView/PC Documentation
Information about NetView/PC is found in the following:

• IBM NetView/PC Planning and Operation Guide, SC30-3408
• IBM NetView/PC Version 1.1 APIICS (API/CS), SC30-3313
• IBM NetView/PC Version 1.1 Installation Guide, SC30-3482

Related NetView Documentation
Information about NetView is found in the following:

• Help facility:

NetView on-line information provides on-line NetView help desk information for
NetView operators. It consists of the following major parts:

Index
Session monitor/hardware monitor glossaries
Commands
Component overviews
VTAM

Help desk
Recommended actions

• Learning About NetView: Network Concepts, SK2T-0292: The pc-based
. NetView tutorial is an on-line teaching tool. It uses graphics, animation, and

NetView screen simulation to introduce new NetView users to network man­
agement using NetView.

• NetView Installation and Administration Guide, SC30-3360

• NetView Administration Reference, SC30-3361

• NetView Command Lists, SC30-3423

• NetView Command Summary, SX27 -3620

• NetView Customization, SC30-3462

• NetView Diagnosis, L Y30-5587

• NetView Hardware Problem Determination Reference, SC30-3366

• NetView Installation and Administration Guide, SC30-3360,

• NetView Licensed Program Specifications, GC30-9589, MVS/VM

• NetView Messages, SC30-3365

• NetView Operation, SC30-3364

• NetView Operation Primer, SC30-3363

xiv NetView/PCTM API/CS

• NetView Operation Scenarios, SC30-3376

• Network Program Products General Information, GC30-3350

• Network Program Products Bibliography and Master Index, SC30-3353

• Network Program Products Planning, SC30-3351

• Network Program Products Samples, SC30-3352

• Network Program Products Storage Estimates, SC30-3403

Other Related Documentation

• IBM Customer Information Control SystemlVS (CICSIVS)IDistributed Data Man­
agement Target Users Guide, SC21-8066

• Network Control Program and System Support Programs Resource Definition
Guide (abbreviated title - Resource Definition Guide), SC30-3349

• Network Control Program and System Support Programs Resource Definition
Reference (abbreviated title - Resource Definition Reference), SC30-3254

• Disk Operating System 3.3, 6280060

• EZ - VU /I Development Facility for the IBM PC, 6410980

• Systems Network Architecture Formats, GA27-3136

• IBM PC Macro Assembler 2.0,6024193

• System Network Architecture Formats, GA27-3136

About This Book XV

xvi NetView/PCTM API/CS

Part 1. Application Program Interface/Communications
Services Overview

Chapter 1. Network Management Overview 3
What is the Envi ronment 3

Network Management Structure 4
NetView/PC in Communications Network Management 5

Where Your Network Management Application Fits 7

Chapter 2. Application Program Interface/Communications Services (API/CS) . 9
Using the API/CS .. 10
API/CS Scenario ... 13
Programming in the NetView/PC DOS Partition 16
Requirements and Restrictions 17
Installation .. 18
Using EZ-VU .. 18

EZ - VU Calls ... 18
Directories ... 19

Verified PC DOS Applications 19
Applications Not Successfully Executed 19
Relating to Documentation 20

Part 1. Application Program Interface/Communications Services Overview 1

2 NetView/PCTM API/CS

Chapter 1. Network Management Overview

The purpose of this chapter is to show you where your network management appli­
cation and the network component being managed fit into IBM'S Open Network Man­
agement.

This chapter describes, at a very high level, the environment in which your
NetView/PC network management application will execute and the concepts of
Open Network Management. It describes IBM'S network management structure,
shows where NetView/PC fits in the Open Network Management Architecture, and
shows where your application fits into the network management structure.

This chapter also describes the network management services available to your
network management application when using the NetView/PC API/CS.

Following chapters describe how to use the API/CS.

What is the Environment

Today's information network is built from diverse technologies. It consists of many
components, both hardware and software, and carries multiple information forms.
IBM has enhanced the openness of its communication and related architectures by
providing new support and new network management capabilities. These architec­
tures are open to enable the attachment of communication products to SNA network
management.

The open architectures define the facilities and processes necessary to efficiently
connect and manage SNA, non-SNA, IBM and OEM information network components.
The concept of three network management product roles, and their relationships to
each other, is illustrated in Figure 1.

Entry
Point

Focal
Point

Figure 1. Open Network Management Concept

Service
Point

Chapter 1. Network Management Overview 3

Introduction to IBM's Open Network Management, SC30-3431 contains the following
definitions for the focal point, entry point, and service point.

Focal Point: A network management focal point is a product or set of products that
provides centralized network management support. The focal point manages all of
the remotely and locally attached network components in its domain for one or
more management disciplines. It, together with its operators (human or pro­
grammed), represents the final level at which network management decisions are
made.

Entry Point: A network management entry point is a product or set of products that
provides network management support for itself and attached products. An entry
point is an SNA physical unit, and performs the network management functions of
the physical unit. It transports both network management and operational data on
a common SNA link. The entry point and the devices it supports must be in the
same domain and network as its focal point. It uses SNA formats and protocols
when communicating with its focal point.

Service Point: A network management service point is a product or set of products
that provides network management support for products for which network man­
agement entry point support does not exist. It transports only network manage­
ment data for these products. The service point must be in the same domain and
network as its focal point. The products it is supporting need not be in the same
domain or network as the service point. A service point provides a connection
through which network management data"can be converted to SNA formats and
transmitted to the focal point for processing. It uses SNA formats and protocols
when communicating with its pocal point.

A given hardware or software product may perform the focal point, entry point, or
service point role, or any combination of these roles.

The relationship between entry point, service point, and focal point is often symbol­
ized by the diagram in Figure 1 on page 3 to illustrate the relationships between
the three product roles. In the Network Management Services area, facilities such
as Network Management Vector Transport (NMVT) and Application Program
Interface/Communications Services (API/CS) are available.

Open Communications Architectures provide documentation for SNA, applications
program interfaces, and support to enable users to integrate non-SNA and/or
non-IBM network components into the SNA network management environment.

Network Management Structure

4 NetView/PCTM APIICS

The products that comprise the customer's information system are divided into
three product roles: focal point, entry point, and service point. These product roles
define the framework for the Network Management strategy. This structure can be
applied to all components of an information network, as shown in Figure 2 on
page 5, including SNA components and non-SNA components handling voice, image,
data or other information.

Figure 2. Network Management Structure

NetView is the primary focal point product.

Some examples of entry point products are IBM 3174, IBM 3274, IBM 3708, IBM

Series/1, IBM 3720/3725, IBM System/36, and IBM System/38.

NetView/PC is an implementation of the service point.

NetView/PC in Communications Network Management
NetView/PC, as shown in Figure 3 on page 6, provides common systems services,
monitoring and problem determination services, and communications channels
used to transfer network management data to focal point applications. It provides
for network management applications to send alerts to NetView, receive com­
mands from NetView and respond to those commands, and to transfer data
between NetView and NetView/PC.

Chapter 1. Network Management Overview 5

6 NetView/PCTM API/CS

Host

... NelView

Commands ~

Responses t
Data t

NelView/PC

Figure 3. Network Management Products

The NetView/PC APIICS enables customers and vendors of telecommunications pro­
ducts to write applications which extend network management to non-IBM commu­
nications devices, as shown in Figure 4.

Host

NelView/PC
Network Management
Application

Figure 4. Network Management and Vendor Products

NetView/PC extends the Network Control Center operating area. Network manage­
ment applications may use NetView/PC as a service point to extend CNM to non-SNA
products.

Where Your Network Management Application Fits
Your network management application (vendor application), as shown in Figure 4
on page 6, executes as a DOS application in NetView/PC.

It will use the Application Program Interface/Communications Services (APIICS) to
centralize the management of the network components managed by your applica­
tion.

Chapter 1. Network Management Overview 7

8 NetView/PCTM APIICS

Chapter 2. Application Program Interface/Communications
Services (API/CS)

The API/CS is provided as a NetView/PC interface to allow your network manage­
ment application to centralize the management of your (vendor) product, as shown
in Figure 4 on page 6.

It provides a means for your DOS Application running in the NetView/PC DOS parti­
tion in memory, to use'the communication services of NetView/PC and the IBM
network management facilities in NetView/PC and NetView to manage non-SNA
components.

The API/CS is a 'call' interface to DOS Assembler Subroutines. The subroutine
names and the function provided by each are:

DCJVAOO: Alerts

DCJVOOO: Operator Communications

DCJVCOO: Service Point Command Facility

DCJVBOO: SPCF Build and Parse

DCJVDOO: Host Data Facility

The API/CS subroutines are linked with user-written DOS applications.

The API/CS supports IBM PC DOS applications written with IBM PC Macro Assembler 2.0
language. Although any program 'that can be linked with the APIICS subroutines
may function correctly, there is no support implied for any other language. Users
who choose to use the interface for languages other than the IBM PC Macro Assem­
bler 2.0 do so at their own risk. Problems must be recreated using the IBM PC
Macro Assembler 2.0 to receive service/support from IBM.

Your network management application uses the API/CS supported NetView/PC func­
tions while running in the NetView/PC DOS partition by calling the API/CS subrou­
tines. You pass parameters to the subroutines in an application request block
(ARB). The API/CS subroutines provide the programming interface for the
NetView/PC environment.

The API/CS Subroutines provide the following four major functions. Each major
function must be opened by the application before the function can be used.

Alerts: Allow an application to send alerts to NetView and/or to NetView/PC.

Operator Communications: Allow an application to turn on an icon in the icon
window on line 25. The icon indicates to the operator that the DOS
Command Session should be selected from the session selection
panel.

Service Point Command Facility: Allow an application to receive messages from a
NetView command processor and send a reply to the NetView
command processor.

Host Data Facility: Allow an application to transfer (send or receive) file data to or
from the Host CICS DDM application.

Chapter 2. Application Program Interface/Communications Services (APIICS) 9

Using the API/CS
An Application Request Block (ARB) is required for all calls to APIICS functions.
Storage for the ARB must be provided by the application program. An ARB should
be dedicated to an APIICS function from the 'Open' to the 'Close' of that function.

External Declarations (such as EXTERN OCJVAOO FAR) for the APIICS library calls must
not be in the application's code segment. All calls to APIICS subroutines are FAR
calls.

To use an APIICS function, code the application to:

1. Provide storage for an ARB for each APIICS function that the API/CS will use. The
storage for the ARB should be dedicated to the ARB from the 'Open' of the APIICS
function to the 'Close' of the API/CS function.

Each Application Request Block (ARB) is identified by an ARBIO, ARBn, where n is
a numeric character that identifies the function for which the ARB will be used.
It is used by the API/CS to verify the start of the ARB and serves as an 'eye
catcher' in a storage dump.

2. Check the address of the ARB in the AX and ox register pair when the APIICS
returns control.

The API/CS checks the ARBIO and if the ARBIO (ARBn) in the ARB is incorrect for the
subroutine called, the ARB address is assumed to be invalid. The API/CS makes
the AX and ox pair zero and returns immediately to the calling application. The
application must check the AX and ox pair for non-zero before they are used.

3. Open each API/CS function that the application will use.

4. Call each API/CS function as required.

5. Close each of the API/CS functions the application has opened.

The functions should be opened as part of the application's initialization process
and all opened functions should be closed by the application's termination process.
The application may call an opened interface as many times as is required by the
application until the application closes the (API/CS) function.

The ARB contains a 1-word (2-byte Intel Word (W)) request code field (in
hexadecimal 2) that the application sets to indicate the function desired. The
request codes and descriptions are:

Request Code

Alerts
0101H
0102H
0104H

Descri ption

Open the Alert API/CS
Send an Alert
Close the Alert API/CS

2 Hexadecimal (hex) representation is described in Macro Assembler 2.0.

10 NetView/PCTM API/CS

Operator Communications
0201 H Open the Operator Communications API/CS
0207H Write the icon "Op' to the NetView/pc icon window
0208H
0204H

Clear the icon from the NetView/pc icon window
Close the Operator Communications API/CS

Service Point Command Facility
0301 H Open the SPCF API/CS
0302H Send a RUNCMO response
0303H Receive a RUNCMO message
0304H Close the SPCF API/CS
0309H
030AH
030BH
030CH

Receive a command
Send a message
Send a command response
Send error sense

Host Data Facility
0401H Open the Host Data Facility API/CS
0402H Send file data
0403H
0405H
0406H
0404H

Receive file data
Check the status of the request
Stop file data transfer
Close the Host Data Facility API/CS

Chapter 2. Application Program Interface/Communications Services (APIICS) 11

The suggested flow of an application using the APIICS follows:

Initialization

(User code)

Provide an ARB (storage) for each API/CS function that may be called.
Store "ARBn" in the ARBIO field.
Set the request code to open each API/CS function
Open each API/CS function that may be called.
Check the AX and ox registers and the return code and take appropriate
action.

(User code)

End Initialization

application Mainline

(User code)

Store required data in the ARB
Set the request code
Call API/CS subroutine
Check the AX and ox registers and the return code and take appropriate
action

(User code)

Store required data in the ARB
Set the request code
Call API/CS subroutine
Check the AX and ox registers and the return code and take appropriate
action.

(User code)

End application mainline

Termination

(User code)

Set the request code to close each APIICS function
Close each APIICS function that is open.
Check the AX and ox registers and the return code and take appropriate
action.

(User code)

End Termination

12 NetView/PCTM API/CS

API/CS Scenario
The following scenario shows how a user-supplied DOS application, executing in
the DOS partition of NetView/PC, could use IBM Open Network Management capabil­
ities to manage a device. The scenario shows the steps relating to the DOS applica­
tion from the detection of an alert condition to the transfer of file data about the
device.

Figure 5 on page 14 uses numbers and arrows to show each step. It is followed
by a description of what happens at each step in the diagram and refers you to the
document that contains information about that particular step.

Chapter 2. Application Program Interface/Communications Services (API/CS) 13

NetView
Operator
Console

Host System

NetView

r- CST - .--DST-

<=,+.... r~·
User CP User Task

. 7

. U DSIZCSMS
DSIMQS 6 - 8 -I--

18 ~I­
~1--~19 DSIMQS

'----I--I---+- 20 DSI PSS

VTAM

NetView/PC

17

.--DST-

Hardware
Monitor
Alert
Manager

3

ir~~I;~ 1S -+----.
I
1

NetView/PC
Operator
Display

Device

11

I

APIICS

User Appl

DCJV AOO 1 - f+­

~ 11 DCJVCOO

~- DCJVCOO

DCJVCOO

DCJVDOO 21--Hl __ +-I.~

+
~~---------12----------~~~ DOS

CICS

DDM

APPL

Host
Data

Ir

---.....
File
Data

Facili1y f -IL--I-+ __ --I-.u.

---...
File
Data

Figure 5. API/CS Network Management Scenario. Vendor network management application gain access to IBM

network management services by using NetViewl API/es. The numbers in this figure correspond to the
numbered items in the scenario.

14 NetView/PCTM API/CS

The number for the steps in Figure 5 on page 14 relate to the numbers in the fol­
lowing list.

An error is detected.

1. A user-supplied network management application, executing in the DOS parti­
tion of NetView/PC, recognizes an alert condition and calls DCJVAOO to send an
alert to the hardware monitor and to NetView/PC.

See Chapter 3, "Alert Subroutine Calls" on page 25 for information about
writing DOS applications using the NetView/PC API/CS and constructing
NetView/PC alert major vectors and subvectors.

Also see Systems Network Architecture Formats about constructing an alert
Network Management Vector Transport (NMVT).

2. NetView/PC logs the local alert and sends the alert NMVT to the host.

See IBM NetView/PC Planning and Operation Guide for information about
defining the host system to NetView/PC.

3. NetView passes the alert NMVT to the Hardware Monitor executing in NetView.
See NetView Customization for information about alert customization.

Reacting to the Alert.

4. The NetView operator enters a network management command with the target
(NetView/PC application) name.

See NetView Operation.

5. The command is recognized by NetView and the Command Processor (cp) is
given control and passed the parsed input.

See NetView Administration Reference for information about defining user
commands. See NetView Customization for information about adding
user-supplied command processors (cp) and customizing panels.

6. The CP checks that valid data is passed and then calls the user supplied
subtask with the DSIMQS macro.

See NetView Customization for information about writing command processors
and user subtasks and using NetView Macros in command processors and
user subtasks.

7. NetView passes control to the DST with the passed data.

8. The subtask checks the input and then builds an NMVT. The subtask then sends
the NMVT to NetView/PC.

9. NetView sends the NMVT to NetView/PC.

See NetView Customization for information about using NetView macros.

See Resource Definition Guide and Resource Definition Reference for informa­
tion about defining NetView/PC to the host.

10. NetView/PC passes the message to the APIICS.

11. The user application calls DCJVCOO (API/CS call to receive a command) and the
APIICS passes the message to the user application.

See Chapter 5, "Service Point Command Facility (SPCF) Subroutine Calls" on
page 35 and Chapter 6, "SPCF Build and Parse" on page 47 for information
about NetView/PC commands and replies.

Chapter 2. Application Program Interface/Communications Services (API/CS) 15

12. The user-supplied application uses DOS to perform required communications
with the device.

For information about using DOS BIOS, see Disk Operating System.

See documentation supplied with the application and/or the device for informa­
tion about how to control the device.

13. The user application processes the command and prepares a reply message
and calls DCJVCOO (API/CS call to send a reply). .

14. The user application calls DCJVOOO if necessary, to notify the operator that the
DOS partition requires operator communications.

15. The API/CS turns on the DP icon on the NetView/PC operator display.

16. The API/CS sends the reply message to NetView/PC.

17. NetView/PC sends the reply NMVT to NetView.

18. NetView passes the reply NMVT to the user-supplied subtask. The subtask proc­
esses the reply and prepares a message to send to the NetView operator.

19. The comma~d processor sends the reply to a presentation services CPo

Note: The reply may be sent to a CLiST or may be displayed directly to the
NetViewoperator.

20. The command processor (cp) displays the. data to to NetView operator.

Transferring file data.

21. The user application calls DCJVDOO to transfer file data.

22. The APIICS passes the request to the Host Data Facility in NetView/PC.

See IBM NetView/PC Planning and Operation Guide for information about the
Host Data Facility. Network Manage Vector Transport (NMVT) and to build a
response NMVT. See Chapter 7, "Host Data Facility Subroutine Calls" on
page 57 for information about how your application can control the transfer of
file data to or from the host.

23. The Host Data Transfer program initiates the transfer with the host CICS DDM

application. The file data is sent to or received from the host.

See IBM Customer Information Control System/VS (CICS/VS)/Distributed Data
Management Target Users Guide for information about sending file data to, or
receiving file data from, the host.

Programming in the NetView/PC DOS Partition
This chapter describes what the single DOS application may do while executing in
the NetView/PC DOS partition in memory.

NetView/PC supports one normal PC DOS application and a large number of cooper­
ating tasks (NetView/PC managers).

The single PC application can modify the memory allocated to it as designated in its
Program Segment Prefix. It must not modify the memory associated with the active
screen buffer. No other memory may be modified. This restriction precludes the
execution of some PC applications in a NetView/PC environment. Some examples
of programs that execute successfully in the DOS partition and programs that

16 NetView/PCTM API/CS

violate these restrictions are listed in "Verified PC DOS Applications" on page 19
and "Applications Not Successfully Executed" on page 19, respectively.

You should tailor interrupt handlers for the NetView/PC environment. The DOS

application may take over the first asynchronous (CH) and timer (8H) hardware
interrupts reliably. However, timer interrupts must be passed on to NetView/PC at
the normal rate. PC DOS and BIOS service interrupt vectors must not be taken over
by predecessors to NetView/PC unless the interrupt handlers are reentrant.

The single PC DOS application may use software interrupts to access the disk, key­
board, and display.

The multi-tasking environment of NetView/PC requires that the handling of DOS crit­
ical errors be modified. In DOS, critical errors are handled by DOS and the return
codes for these particular errors are not normally returned to calling programs.
See "DOS Error Codes" on page 71 for a list of the error codes returned, and their
meaning.

When designing applications intended to execute in the DOS partition of
NetView/PC, give special consideration to the following:

• Control characters are not processed as they are by DOS when ina DOS Com­
patibility session with the session manager.

• If a DOS session is aborted because of a critical error (such as divide overflow)
all other DOS sessions will be locked out.

Requirements and Restrictions
To use the API/CS the following requirements and restrictions must be satisfied.

1. Timer interrupts must be passed on to NetView/PC at the normal rate. See
"You should tailor interrupt handlers ... " on page 17

2. PC DOS and BIOS service interrupt vectors must not be taken over. See "PC DOS
and BIOS service ... " on page 17

3. Application programs must only make calls to the API/CS subroutines while exe­
cuting in the DOS partition of NetView/PC. Calls to the API/CS subroutines in a
native DOS environment will 'lock up' the PC. To recover, the PC must be
powered off and then back on.

4. The DOS partition restrictions in the IBM NetView/PC Planning and Operation
Guide must be followed.

5. Software interrupts X 175 1 and X 178 1 through X '7F 1 are currently used by
NetView/PC and must not be modified.

6. The DOS application must provide 100 bytes of "STACK" space for the API/CS.

7. The DOS application must use DOS or "BIOS" calls for video and keyboard I/O.

8. The DOS application must fit in the DOS partition of the NetView/PC grouping in
which it is intended to run.

9. The appropriate subroutines that provide the desired functions must be linked
with the DOS application. See Macro Assembler 2.0.

10. The application must allocate storage for and construct an Application Request
Blocks (ARB) for each interface used.

Chapter 2. Application Program Interface/Communications Services (API/CS) 17

Installation

Using EZ-VU

EZ-VU Calls

11. The application must pass the address of the start of the Application Request
Block in the AX and OX register pair when the APIICS subroutine is called. The
Segment Address must be in the AX register. The offset address must be in the
OX register~

12. All calls to the API/CS subroutines must be FAR calls.

13. NMVT fields that specify character data must be filled in as ASCII character data
by the application program.

14. The AX and ox register pair must be checked on return from a call to the API/CS.

All registers are saved by the API/CS and restored on return to the application
from the API/CS except AX and OX. The AX and OX are zero if the ARBID is incor­
rect for the call. On return from a call to the API/CS, the application must check
that they are non-zero before they are used.

15. Request codes must be coded in hexadecimal.

16. Message file names must be in the form "cccc.MSG" as required by EZ-VU,

where cccc is a four-character name and MSG is the extension.

17. NetView/PC panels must not be altered with EZ-VU II.

18. The EZ-VU II configuration utility panel 5 variable 'ZDBW' must be "N'.

API/CS modules are shipped with and are part of NetView/PC. Link user-supplied
applications with the NetView/PC library containing the API/CS modules.

The DOS Linker is used to link the user object modules with APICS.LlB.

If you use EZ - VU /I Development Facility for the IBM PC. (EZ-VU), your applica­
tion must not change environment variables ISPPRO, ISPPGM, ISPMSG, and ISPPAN.

Only the BP and os registers are saved by EZ-VU. To call EZ-VU:

1. Save the programs registers on the stack.
2. Save the spregister in BP.

3. Push EZ - vu parameters onto the stack.
4. Call EZ-VU.

On return from EZ-VU:

1. Restore SP from BP.

2. Restore the other saved registers from the stack.

"EZ - VU Calls" shows how the PC DOS sample program saves and restores regis­
ters when calls to EZ - VU are made.

18 NetView/PCTM API/CS

Directories
All EZ-VU files except panels must be in the NETVIEW subdirectory.

All program panel files must be in the NVPCPANL subdirectory. Also copy EZ-VU

panel ISPFMNT1.PAN to the NetView/PC subdirectory NVPCPANL.

Verified PC DOS Applications
To test that existing DOS applications can execute successfully in the NetView/PC
DOS partition in memory, a limited number of DOS applications have been executed
successfully in the DOS partition.

The following PC DOS applications have executed successfully in the DOS partition of
NetView/PC:

• DOS commands

CHKDSK

FORMAT

PC DOS Piping and the MORE command.

SORT requires at least 66K for execution.

TREE

• Personal Productivity applications

EZ-VU II, a dialogue manager for the pc, similar to ISPF

Note: You must not modify NetView/PC panels using EZ-VU II.

IBM File List (if loaded after NetView/PC. File List has no effect if loaded
before NetView/PC).

Visicalc

• Communications packages.

- IBM 3101 Emulator

• Compilers and system tools.

IBM Macro Assembler.

IBM Pascal Compiler.

CI86 'c' Compiler from Computer Innovations.

Applications Not Successfully Executed
Only a limited number of programs have been tested. Of those programs, the fol­
lowing programs did not execute successfully, in the DOS partition of NetView/PC,
as the single DOS application:

• VMPC (does not respect memory regions)
• Time Manager (does not respect memory regions)
• Snipes (does not respect memory regions)
• IBM Professional Editor (intercepts the keyboard interrupt).

Chapter 2. Application Program Interface/Communications Services (API/CS) 19

IBM Personal Editor writes directly to video memory. It may be used with little
impact to NetView/PC because it performs video updates only as a result of key­
board input. Keyboard input only occurs (for this program) while it is the selected
(foreground) task.

Relating to Documentation
Figure 6 on page 21 shows the relationships of an application program executing
in the DOS partition of NetView/PC and using the API/CS, to the elements of Open
Communication Architectures (OGA) in NetView/PC and in the host. The numbers in
the figure correspond to documentation list number for the numbered function or
facility.

20 NetView/PCTM APIICS

Host System

NetView CICS

,--OST- -DST- -DST-
3 3 3 DDM

1

lit 2 User CP ser Task Hardware APPL f- Monitor
Alert ~.

NetView Manager
Operator
Console

./-

3 3 3 5 -
File
Data

VTAM

I

I
6

I I SSCP-PU & LU-6.2
7

NetView/PC

11 8

Alert 8
: .- Manager

NetView/PC
Operator

I
Display

9 Host ,
API/CS Data

~
I Facility d:::::::::b:

User - W
Supplied -
Application File

Data
Device 9 8

......

+
10 +

S

Figure 6. Documentation for the Environment. The numbered list items correspond to the numbers in this figure.

1. For information about operating NetView, see NetView Operation.

2. For information about defining user commands, see NetView Administration
Reference.

Chapter 2. Application Program Interface/Communications Services (API/CS) 21

3. For information about writing and adding user-supplied command processors
(cp) and subtasks, and customizing panels, see NetView Customization.

4. For information about Network Management Vector Transport (NMVT) struc­
tures, see System Network Architecture Formats.

5. For information about the CICS DDM application, see IBM Customer Information
Control SystemlVS (CICSIVS)IDistributed Data Management Target Users
Guide.

6. For information about defining NetView/PC to the host system, see NetView
Instal/ation and Administration Guide, Resource Definition Guide, and
Resource Definition Reference.

7. For information about defining the host to NetView/PC, see IBM NetViewlPC
Planning and Operation Guide.

8. For information about NetView/PC, see IBM NetViewlPC Planning and Opera­
tion Guide. This guide provides information about the Host Data Facility and
the Alert Manager. .

9. For information about writing DOS applications to use the NetView/PC API/CS,

this book describes how to:

a. Send alerts to NetView.
b. Notify the NetView/PC operator that the application executing in the DOS

partition requires operator communications.
c. Receive command messages from a host operator and send reply mes­

sages back to the operator.
d. Parse commands received from NetView and build replies to the com­

mands
e. Transfer data between the NetView/PC and the host CICS DDM application.

10. For information about DOS, see Disk Operating System.

11. For information about using EZ-VU /I for dialog management, see EZ- VU 1/
Development Facility for the IBM PC.

22 NetViewlPC™ API/CS

Part 2. Using the API/CS Subroutines

Chapter 3. Alert Subroutine Calls 25
Alert ARB ... 26
Primary Alert APIICS Return Codes 27
Secondary Alert API/CS Return Codes 27

Open the Alert API/CS 30
Send an Alert ... 30
Close the Alert API/CS 30

Chapter 4. Operator Communications Subroutine Calls 31
Operator Communications ARB 31
Operator Communications API/CS Return Codes 32

Open the Operator Communications API/CS 32
Write the Icon 'DP' to the NetView/PC Icon Window 32
Clear the Icon from the NetView/PC Icon Window 33
Close the Operator Communications API/CS 33

Chapter 5. Service Point Command Facility (SPCF) Subroutine Calls 35
SPCF ARB ... 37
SPCF API/CS Return Codes ' 39

Open the SPCF API/CS 40
Receive a RUNCMD message 40
Send a RUNCMD response 41

RUNCMD Response Message Buffer 42
Send a Message ... 42
Receive a Command .. 43
Send a Command Response 43
Send Error Sense .. 44

Defined SENSETYPE values 44
Defined LCCSTAT Values 45
Defined Error Detail Values 45

Close the SPCF API/CS 45

Chapter 6. SPCF Build and Parse 47
Parse .. 47

Parse SPCF Command ARB 47
Parse SPCF Command API/CS Return Codes 49

Parse Request .. 49
Returned ARB Data Fields 50
Parse Sense Data Definitions 50
Names List Format 50

Build .. 51
Build SPCF Reply ARB 51
Build SPCF Reply API/CS Return Codes 52

Build Request ... 53
Link Status Value Definitions 54
Path Information List Control Blocks 54
LlNKPD LCC Description Control Block 54
LlNKDATA And UNKTEST LCC Description Control Block 55
UNKDATA And UNKTEST LCC Data Control Block 55
LCC Data .. 56
Probable Cause 56

Part 2. Using the APIICS Subroutines 23

Chapter 7. Host Data Facility Subroutine Calls 57
Host Data Faci lity ARB 57
Host Data Facility API/CS Return Codes 58

Open the Host Data Facility API/CS 60
Send File Data .. 60
Receive File Data .. 61
Check the Status of a Host Data Facility Request 61
Stop File Data Transfer 61
Close the Host Data Facility API/CS 62

24 NetView/PCTM APIICS

Chapter 3. Alert Subroutine Calls

NetView/PC™ V1.1 supports non-generic, generic, and hybrid alerts. Generic
alerts can only be sent to NetView™ Release 2 and do not require stored screen
support. Non-generic and hybrid alerts can be sent to the NetView/PC Alert
Manager and/or NetView Release 1 or NetView Release 2. See
Appendix B, "Alert Major Vector Formats" on page 77 for information about how
to build non-generic, generic, and hybrid alert NMVTS. The alert subroutine pro­
vides for the transportation of alert data to the NetView/PC Alert Manager and/or
NetView. The application program using the API/CS is responsible for ensuring that
the alert major vectors and subvectors are correct.

When the NetView/PC Alert Manager has a session with NetView, and the applica­
tion requests it, the alert will be sent to NetView by the NetView/PC Alert Router.
The alert NMVT character data fields will be translated from ASCII to EBCDIC by
NetView/PC before it is sent to NetView. The Alert APIICS request codes and
descriptions are:

0101H
0102H
0104H

Open the Alert API/CS
Send an Alert
Close the Alert API/CS

To use the API/CS to send alert data to the NetVjew/PC Alert Manager, the applica­
tion must provide memory for and create an ARB. The following API/CS calls must
then be coded:

1. Call DCJVAOO with request code 0101 H to open the Alert API/CS.
2. Call DCJVAOO with request code 0102H to send the application alert data to

NetView and/or NetView/PC.
3. Call DCJVAOO with request code 0104H to close the Alert API/CS.

Extensive checking of the alert NMVT is done by NetView/PC to ensure that the alert
NMVT is correct before it is sent. The checks provide return code (RC), error class,
and error type information that can be used for debugging during application devel­
opment. The error indications are provided in the ARB. The ARB contains primary
and secondary Re, error class, and error type fields. When the primary RC, class,
or type is non-zero, the secondary error RC, class, and type fields should be
checked to determine the cause of the error indication. The Alert Router sec­
ondary codes identify problems with the alert NMVT syntax before the alert NMVT is
sent to the host.

Be sure that support for the alerts you plan to send is provided in NetView, either
by IBM-provided support or by user-defined alerts. NetView/PC will not reject alerts
that are not supported by the receiving NetView.

Chapter 3. Alert Subroutine Calls 25

NetView supports non-generic alerts in one of the four following ways:

1. Default support - hexadecimal display of alert subvectors
2. IBM stored screen support - formatted displays shipped with NetView
3. Modified screen support - user-modified formatted displays
4. User-defined - formatted displays defined by the user.

User exits may also be used to display alert data.

Alert ARB
The format of the Alert ARB, and a description of the ARB fields follows:

Disp Lgth Name Description

0 04 ARBID A 4-character constant that is used by the API/CS to verify the start
of the ARB and serves as an 'eye catcher' in a storage dump. The
4-character constant 'ARB1' must be stored in the ARBID field.

4 02 REQUEST CODE A word (2-byte Intel Word (W)) request identifier. Each request
has a unique code that must be stored in the ARB by the Applica-
tion. The first byte identifies the function and the second byte
identifies the request.

6 01 ARB LENGTH The length (44) of the ARB for this API/CS function. The length must
be stored into the ARB by the application.

7 02 Reserved Reserved and must be initialized to binary zeros.

9 02 Return Code An indicator of the degree of success in performing the request.

11 02 Class The error class.

13 02 Type The error-type.

15 04 MVADDR A 4-byte (word offset and word segment) address pointing to a
buffer that contains the Alert major vector that is to be sent to
NetView. See Appendix B, "Alert Major Vector Formats" on
page 77 .

19 01 MVTARG . (BIHIL) Character (1) keyword that indicates whether the Alert is
to be sent to the local (L) network manager (NetView/PC), to the
host (H) network manager (NetView), or to both (B). Defaults to B
if not specified or if an invalid value is specified.

Secondary return code, class, and type are in the following fields.
They are an indicator of the degree of success of the functions
used by the API/CS in performing the users request. They are pro-
vided for problem determination and problem isolation of prob-
lems experienced by the users of the API/CS. When the primary
RC, class, and type are non-zero, check the secondary RCS,

classes, and types, and take appropriate action.

20 02 Alert RC Return code from the NetView/PC Alert Manager.

22 02 Alert Error Class Error class from the NetView/PC Alert Manager.

24 02 Alert Error Type Error type from the NetView/PC Alert Manager.

26 02 Alert Router RC Return code from the Alert Router.

28 02 Alert Router Error class from the Alert Router.
Error Class

30 02 Alert Router Error type from the Alert Router.
Error Type

32 02 Host RC Return code about host communications.

34 02 Host Error Class Error class about host communications.

36 02 Host Error Type Error type about host communications.

38 02 Reserved Reserved

Figure 7 (Part 1 of 2). Alert ARB

26 NetView/PCTM API/CS

Disp Lgth Name Description

40 02 Reserved Reserved

42 02 Reserved Reserved

Figure 7 (Part 2 of 2). Alert ARB

Primary Alert API/CS Return Codes
The meaning of the return code, class, and type combinations is described in the
following table:

Return Class Type Description
Code Field Field

0000 0000 0000 Request processed without error

0008 0001 0047 Invalid request

0008 0002 0009 Storage not available

0008 0008 0008 Unexpected error. See other return codes for furtherexplanation

0008 0008 0096 NetView/PC Alert Manager not available

0008 0012 0096 NetView/PC Alert Manager and host session are not available

0008 0017 0070 The function has already been opened

0008 0065 0070 The function has not been opened

0008 0096 0098 Alert Router is currently not available

0008 0098 0096 Host session not available

0008 0117 0115 Request processed without error for NetView/PC Alert Manager, but
did not process for host

0008 0117 0116 Request processed without error for host, but did not process for, or
received a warning from, the NetView/PC Alert Manager

Figure 8. Primary Alert API/CS Return Codes

Secondary Alert API/CS Return Codes
The meaning of the return code, class, and type combinations is described in the
following table:

Return Class Type Description
Code Field Field

0000 0000 0000 Request processed without error

0008 0001 0019 Invalid NMVT length

0008 0001 0023 Invalid NMVT key field

0008 0001 0024 File write access locked

0008 0001 0026 Invalid record (journal)

0008 0001 0040 Date/Time 5ubvector data invalid

0008 0001 0041 Basic subvector data invalid

0008 0001 0042 PSID subvector data invalid

0008 0001 0043 Hierarchy Names subvector data invalid

0008 0001 0044 NetView/PC Alert subvector data invalid

0008 0001 0045 Text subvector data invalid

0008 0001 0136 Invalid character for ASCII to EBCDIC translation

0008 0001 0144 Detail qualifier subvector data invalid

Figure 9 (Part 1 of 3). Secondary Alert API/CS Return Codes

Chapter 3. Alert Subroutine Calls 27

Return Class Type Description
Code Field Field

0008 0001 0147 LAN subvector data invalid

0008 0002 0040 Date/Time subvector missing

0008 0002 0041 Basic subvector missing

0008 0002 0042 PSIO subvector missing

0008 0002 0043 Hierarchy Names subvector missing

0008 0002 0044 NetView/PC Alert subvector missing

0008 0002 0160 Hierarchy resource list subvector missing

0008 0002 0162 Link station data subvector missing

0008 0002 0163 Generic alert data subvector missing

0008 0002 0164 Probable cause subvector missing

0008 0002 0165 User cause subvector missing

0008 0002 0166 Install cause subvector missing

0008 0002 0167 Failure cause subvector missing

0008 0002 0168 Undetermined cause subvector missing

0008 0002 0169 Detailed data subvector missing

0008 0002 0170 Self-defining text message subvector missing

0008 0003 0040 Duplicate DatelTime subvector

0008 0003 0041 Duplicate Basic subvector

0008 0003 0042 Duplicate PSIO subvector

0008 0003 0043 Duplicate Hierarchy Names subvector

0008 0003 0044 Duplicate NetView/PC Alert subvector

0008 0003 0045 Duplicate Text subvector

0008 0003 0144 Duplicate Detail Qualifier subvector

0008 0003 0147 Duplicate LAN subvector

0008 0003 0160 Duplicate Hierarchy resource list subvector

0008 0003 0162 Duplicate Link station data subvector

0008 0003 0163 Duplicate Generic alert data subvector

0008 0003 0164 Duplicate Probable cause subvector

0008 0003 0165 Duplicate User cause subvector

0008 0003 0166 Duplicate Install cause subvector

0008 0003 0167 Duplicate Failure cause subvector

0008 0003 0168 Duplicate Undetermined cause subvector

0008 0003 0169 Duplicate Detailed data subvector

0008 0003 0170 Duplicate Self-defining text message subvector

0008 0008 0008 Unexpected error. See other return codes for furtherexplanation

0008 0008 0023 Major vector key field format error

0008 0008 0040 DatelTime subvector format error

0008 0008 0041 Basic subvector format error

0008 0008 0042 PSIO subvector format error

0008 0008 0043 Hierarchy Names subvector format error

0008 0008 0044 NetView/PC Alert subvector format error

0008 0008 0045 Text subvector format error

Figure 9 (Part 2 of 3). Secondary Alert APIICS Return Codes

28 NetView/PCTM APIICS

Return Class Type Description
Code Field Field

0008 0008 0096 NetView/PC Alert Manager not available

0008 0008 0144 Detail Qualifier subvector format error

0008 0008 0147 LAN subvector format error

0008 0008 0160 Hierarchy resource list subvector format error

0008 0008 0162 Link station data subvector format error

0008 0008 0163 Generic alert data subvector format error

0008 0008 0164 Probable cause subvector format error

0008 0008 0165 User cause subvector format error

0008 0008 0166 Install cause subvector format error

0008 0008 0167 Failure cause subvector format error

0008 0008 0168 Undetermined cause subvector format error

0008 0008 0169 Detailed data subvector format error

0008 0008 0170 Self-defining text message subvector format error

0008 0012 0068 File I/O error

0008 0065 0078 cp-pu not active; retry

0008 0098 0009 Storage not available

0008 0098 0068 Security file not available

0008 0098 0096 Host session not available

0008 0159 0002 Dependent key missing

0008 0159 0023 Key dependency error

0008 0159 0040 DateiTime subvector key dependency error

0008 0159 0041 Basic subvector key dependency error

0008 0159 0042 PSID subvector key dependency error

0008 0159 0043 Hierarchy Names subvector key dependency error

0008 0159 0044 NetView/PC Alert subvector key dependency error

0008 0159 0045 Text subvector key dependency error

0008 0159 0144 Detail Qualifier subvector key dependency error

0008 0159 0147 LAN subvector key dependency error

0008 0159 0160 Hierarchy resource list subvector key dependency error

0008 0159 0162 Link station data subvector key dependency error

0008 0159 0163 Generic alert data subvector key dependency error

0008 0159 0164 Probable cause subvector key dependency error

0008 0159 0165 User cause subvector key dependency error

0008 0159 0166 Install cause subvector key dependency error

0008 0159 0167 Failure cause subvector key dependency error

0008 0159 0168 Undetermined cause subvector key dependency error

0008 0159 0169 Detailed data subvector key dependency error

0008 0159 0170 Self-defining text message subvector key dependency error

Figure 9 (Part 3 of 3). Secondary Alert APIICS Return Codes

Chapter 3. Alert Subroutine Calls 29

Open the Alert API/CS

Send an Alert

Purpose: To allow an application to use the APIIGS to send alerts to NetView.

Setting Up:

1. Provide memory for an ARB.

2. Store "ARB1" in the ARBID field of the ARB.

3. Store request code 0101H in the request code field of the ARB.

4. Set the segment and offset register pair (AX-DX) to point to the start of the
ARB.

CALL DCJVAOO

On Return: Check AX and ox registers and the RG. Code the application to take
action appropriate for each RG.

Purpose: To send an alert to NetView/PC and/or to NetView.

Setting Up:

1. Check that the API/GS has been opened successfully.
2. Provide memory for a buffer.
3. Format the alert data in the buft.er as an alert major vector. See

Appendix 8, "Alert Major Vector Formats" on page 77 for building
NetView/PC alerts.

4. Store the address of the alert major vector in the MVADOR field of the ARB.

5. Store 8 (both), H (host), or L (local) in the MVTARG field of the ARB.

6. Store request code 0102H in the request code field of the ARB.

7. Set the segment and offset register pair (AX - OX) to point to the start of the
ARB.

CALL DCJVAOO

On Return: Check AX and ox registers and the RG. Code the application to take
action appropriate for each RG.

Close the Alert API/CS
Purpose: To terminate the use of the send alert function of the API/GS.

Setting Up:

1. Store request code 0104H in the request code field of the ARB.

2. Set the segment and offset register pair (AX-OX) to point to the start of the
ARB.

CALL DCJVAOO

On Return: Check AX and ox registers and the RG. Code the application to take
action appropriate for each RG.

30 NetView/PCTM API/CS

Chapter 4. Operator Communications Subroutine Calls

The Operator Communications (oc) API/CS allows an application program to turn on
icon H DP " in the NetView/PC icon window to indicate that the DOS partition should
be selected. The application must turn off the icon when the purpose for turning
the icon 'on' is no longer valid. The icon will stay 'on' until it is turned 'off' by the
application or until the Operator Communications APIICS is closed.

The request codes used for the Operator Communications API/CS and descriptions
are:

0201H
0207H
0208H
0204H

Open the Operator Communications APIICS

Write the icon 'DP' to the NetView/PC icon window
Clear the icon from the NetView/PC icon window
Close the Operator Communications API/CS

To use the API/CS to turn on the DOS Partition icon in the icon window of the operator
display, the following API/CS calls must be coded:

1. Call DCJVOOO with request code 0201 H to open the Operator Communications
API/CS.

2. Call DCJVOOO with request code 0207H to Write the icon 'DP' to the NetView/PC
icon window

3. Call DCJVOOO with request code 0208H to clear the icon.
4. Call DCJVOOO with request code 0204H to close the Operator Communications

API/CS when there is no more need for the H DP " icon on the NetView/PC oper­
ator display to be on.

Operator Communications ARB
The format of the Operator Communications ARB, and a description of the ARB

fields follows:

Disp Lgth Name Description

0 04 ARBID A 4-character constant that is used by the APIICS to verify the start
of the ARB and serves as an 'eye catcher' in a storage dump. The
4-character constant 'ARB2' must be stored in the ARBID field.

4 02 REQUEST CODE A word (2-byte Intel Word (W)) request identifier. Each request
has a unique code that must be stored in the ARB by the Applica-
tion. The first byte identifies the function and the second byte
identifies the request.

6 01 ARB LENGTH The length (15) of the ARB for this API/CS function. The length must
be stored into the ARB by the application.

7 02 Reserved Reserved and must be initialized to binary zeros.

9 02 Return Code An indicator of the degree of success in performing the request.

11 02 Class The error class.

13 02 Type The error type.

Figure 10. Operator Communications ARB

Chapter 4. Operator Communications Subroutine Calls 31

Operator Communications APIICS Return Codes
The meaning of the return code, class, and type combinations is described in the
following table:

Return Class Type Description
Code Field Field

0000 0000 0000 Request processed without error

0008 0001 0047 Invalid request

0008 0002 0009 Storage not available

0008 0017 0070 The function has already been opened

0008 0065 0070 The function has not been opened

Figure 11. Operator Communications API/CS Return Codes

Open the Operator Communications API/CS
Purpose: To allow an application to use the API/CS to control the DOS icon !lop" on

line 25 of the NetView/PC display.

Setting Up:

1. Provide memory for an ARB.

2. Store "ARB2" in the ARBIO field of the ARB.

3. Store request code 0201 H in the request code field of the ARB.

4. Set the segment and offset register pair (AX-OX) to point to the start of the
ARB.

CALL DCJVOOO

On Return: Check AX and ox registers and the RC. Code the application to take
action appropriate for each RC.

Write the Icon 'DP' to the NetView/PC Icon Window
Purpose: To allow the application to turn on the DOS Partition icon "op" in the icon

window on line 25 of the NetView/PC operator display panel.

Setting Up:

1. Check that the API/CS has been opened successfully.
2. Store request code 0207H in the request code field of the ARB.

3. Set the segment and offset register pair (AX-OX) to point to the start of the
ARB.

CALL DCJVOOO

On Return: Check AX and ox registers and the RC. Code the application to take
action appropriate for each RC.

32 NetView/PCTM API/CS

Clear the Icon from the NetView/PC Icon Window
Purpose: To allow the application to turn off the ODS Partition icon "op" in the icon

window on line 25 of the NetView/PC operator display panel.

Setting Up:

1. Check that the API/CS has been opened successfully.
2. Store request code 0208H in the request code field of the ARB.

3. Set the segment and offset register pair (AX-OX) to point to the start of the
ARB.

CALL DCJVOOO

On Return: Check AX and OX registers and the RC. Code the application to take
action appropriate for each RC.

Close the Operator Communications API/CS
Purpose: To terminate the use of the Operator Communications function of the

APIICS.

Setting Up:

1. Store request code 0204H in the request code field of the ARB.

2. Set the segment and offset register pai r (AX - OX) to poi nt to the start of the
ARB.

CALL DCJVOOO

On Return: Check AX and OX registers and the RC. Code the application to take
action appropriate for each RC.

Chapter 4. Operator Communications Subroutine Calls 33

34 NetView/PCTM APIICS

Chapter 5. Service Point Command Facility (SPCF)
Subroutine Calls

NetViewlPC™ API/CS provides the capability for application programs executing in
the DOS partition in NetView/PC, to:

• Receive any unparsed command from NetView and respond to the command

• Send unsolicited messages to a NetView operator

• Receive a RUNCMD message from a NetView operator and respond to the
message

See Chapter 6, "SPCF Build and Parse" on page 47 for a description of the parse
and build facilities provided by API/CS for the following NetView™ Release 2
commands:

• LlNKDATA

• LlNKPD

• LlNKTEST

• RUNCMD

The NetView commands are described in NetView Operation, SC30-3364. The
APIICS supported commands are also described in "API/CS Supported NetView
Commands" on page 89.

When applications use the API/CS to receive a supported NetView command, the
unparsed command NMVT is passed to the application by the SPCF API/CS subroutine.
The application must interpret the meaning of the received command and construct
an NMVT to respond to the command.

The SPCF Subroutine will support applications written for the version 1.0 ARB. It will
use additional request codes and ARB fields to support the new version 1.1 func­
tions.

API/CS has provided Build and Parse requests to help interpret received commands
and to construct response NMVTS. For information about using the Build and Parse
API/CS functions, see Chapter 6, "SPCF Build and Parse."

The API/CS also provides for the transportation of messages from and replies to a
user-supplied Data Services Task (DST) invoked from an Operator Services Task
(OST) running under NetView in the host.

The request codes used by the SPCF API/CS and descriptions are:

0301H
0302H
0303H
0304H
0309H

Open the SPCF API/CS

Send a RUNCMD response
Receive a RUNCMD message
Close the SPCF API/CS

Receive a command. An unparsed command NMVT, if present, is
returned. The application is required to parse the NMVT to determine
the command.

Chapter 5. Service Point Command Facility (SPCF) Subroutine Calls 35

030AH

030BH

030CH

Send a message. An unsolicited message is sent to a NetView oper­
ator from a file or from a buffer.
Send a command response. The response NMVT is sent to NetView as
received from the application. The application is required to format
the NMVT.

Send error sense The application has the option of sending error
sense data provided by NetView/PC or sending user-defined error
sense data.

When each command or message is received, a correlator is returned to the appli­
cation in the Recvcorr field of the ARB. The correlator of the message must be
stored in the SENDCORR field of the ARB when responses are sent. Up to eight (8)
commands may be received before the application must send a response. The
application must save the correlator for each command and ensure that the correct
correlator is used for the response.

The application program using the API/CS is responsible for ensuring that the
response correlator (SENDCORR field in the ARB) matches the command that is being
responded to, and for ensuring that the response data text is correct. See
Resource Definition Guide, Resource Definition Reference, IBM NetView/PC Plan­
ning and Operation Guide, and NetView Administration Reference for a description
of requirements to communicate with NetView.

RUNCMD response messages may be contained in message files which conform to
the file and message format of EZ-VU messages or may be passed from the DOS

application to the API/CS to be sent to NetView.

RUNCMD response messages to be sent from a message file must be in the same
subdirectory with the NetView/PC message file. The file name is in the form
cccc.MSG. See EZ - VU /I Development Facility for the IBM PC.

Message files may be created with most popular IBM PC editors.

A message must begin with the 4-character numeric message identifier terminated
with a blank. The blank may be followed by up to 65 characters of text terminated
by the string X I ODOA I (carriage return, line feed).

RUNCMD response messages from the application are passed to the API/CS in a
buffer. The application specifies whether the message data is to be translated
from ASCII to EBCDIC before it is sent. If translation is not requested, only one
message of up to 478-bytes may be sent. If translation is requested, several mes­
sages may be put in the one 478-byte message buffer. See "Translation of NMVT
Data Fields" on page 72 for a description of the translation performed.

Use the physical unit (pu) name for NetView/PC as the service point name to send
messages or commands to the target NetView/PC.

The applications using the API/CS subroutines must also open the SPCF API/CS with a
name known to programs and/or operators that will be communicating with the
applications.

To send unsolicited messages to an operator, the application must know the opera­
tor's NetView logon name.

36 NetView/PCTM API/CS

SPCF ARB

To use the API/CS to receive commands and messages from a NetView operator and
send messages or respond to commands, code the application to perform the fol­
lowing steps and subroutine calls:

1. Construct an ARB with ARB LENGTH set to 903

2. Call DCJVCOO with request code 0301 H to open the Service Point Command
Facility API/CS.

3. Call DCJVCOO with the appropriate receive request code

• Receive a RUNCMD message
• Receive a command

4. Store the correlator of the received command in the SENDCORR field of the ARB.

5. Call DCJVCOO with the appropriate request code to send a response

• Send a RUNCMD response message
• Send a command response
• Send error sense

6. Call DCJVCOO with request code 0304H to close the SPCF API/CS

Note: If data is required to be sent to the host in a format not supported by the
RUNCMD, an Operator Services Task (OST) and Data Services Task (DST) can
be written and installed on NetView to provide the unique support required.
See the sample programs Appendix J, "NetView Sample Programs" for
guidance on how to provide the unique support. Required resources must
have been defined (see "Where to Find More Information" on page vi)
whether the RUNCMD is used or user-supplied command processors are used.

The format of the SPCF ARB, and a description of the ARB fields follows:

Disp Lgth Name Description

0 04 ARBID A 4-character constant that is used by the API/CS to verify the start
of the ARB and serves as an 'eye catcher' in a storage dump. The
4-character constant 'ARB3' must be stored in the ARBID field.

4 02 REQUEST CODE A word (2-byte Intel Word (W» request identifier. Each request
has a unique code that must be stored in the ARB by the Applica-
tion. The first byte identifies the function and the second byte
identifies the request.

6 01 ARB LENGTH The length (90) of the ARB for this API/CS function. The length must
be stored into the ARB by the application. The length must be 90
if request codes 0309H, 030AH, 030BH, and 030CH will be used.
The length may be 67 if only request codes 0301H, 0302H, 0303H,
and 0304H will be used.

7 01 PARSEID A 1-byte field returned by the API that contains the least signif-
icant byte of the major vector (MV) key of the command NMVT.

8 01 Reserved Reserved and must be initialized to binary zeros.

9 02 Return Code An indicator of the degree of success in performing the request.

11 02 Class The error class.

13 02 Type The error type.

15 08 TARGET NAME A 1 to 8-character application name that the application is known
as.

Figure 12 (Part 1 of 3). SPCF ARB

3 ARB LENGTH may be set to 67 for Receive a RUNCMD call.

Chapter 5. Service Point Command Facility (SPCF) Subroutine Calls 37

Disp Lgth Name Description

23 01 MSGTYPE (BIF) Character (1) keyword that indicates whether the message
data to be sent is in a buffer or is in a message file. When
MSGTYPE = 'B', the message data to be sent is in a buffer. When
MSGTYPE = 'F', the message data to be sent is in a file.

24 04 Msgfile When MSGTYPE = 'F', Msgfile contains the 4-character name of
the message file that contains the message to be sent to
NetView. The 4-character file name must be in the form required
by EZ-VU.

28 04 Msgnum A 4-character numeric message identifier of the reply message in
the file named in the Msgfile field. The 4-character message
identifier must be in the form required by EZ-VU. Leading char-
acter zeros are required for numbers less than 4 characters long.
Message data from the file is translated from ASCII to EBCDIC

before it is sent. Must be zero if no message data is to be sent
from a file or if message data to be sent is contained in a buffer
pointed to by Msgbuff.

32 02 MBlength A word (16-bit integer) length of the data to be sent from the
buffer pointed to by the Msgbuff field. Must be equal to or less
than 473 if Convert is 'N'. Not examined if Convert is 'Y' because
the length is computed from the message list lengths and the
Msgcount. Not examined for Send a Command Response
(030BH) and Send Error Sense (030CH) requests.

34 02 Msgcount A word (16-bit integer) count of the messages to be sent from the
message buffer pointed to by the Msgbuff field. Must be zero if
message data to be sent is contained in a message file. Must be
one if the Convert field is 'N'.

36 01 Convert (NIY) Character (1) keyword that indicates whether RUNCMD

response message data is to be translated from ASCII to EBCDIC

before it is sent, or not (N) translated. The NetView RUNCMD will
not handle unconverted ('N') reply messages. When Convert =
'N', the message data will be sent as is. Anything other than 'Y'
will cause the data NOT to be translated (default to 'N'). This field
is only used for 0303H requests.

37 04 Msgbuff A 4-byte (word offset and word segment) address pointing to a
buffer that contains message data to be sent.

41 01 Cmdlgth A 1-byte length of the received message and pointed to by the
Command field of this ARB. The command length is set to 0 for a
Receive a Command (0309H) request and the application must
parse the NMVT to get the length.

42 04 Command A 4-byte (word offset and word segment) address pointing to a
buffer that contains the received message. The area size is 256
bytes if the command received is a RUNCMD, otherwise the size is
512 bytes.

46 10 Recvcorr A 10-byte hex correlator. The unique correlator of the last
message returned for a receive call. It must be stored in the
SENDCORR field of the ARB when the reply is sent.

56 10 SENDCORR The 10-byte correlator of the message this send reply call is
replying to. The correlator is used to associate the reply
message with the received message (Required for send calls).
This field is ignored with 'Send a Message' (030AH) requests.

66 01 Force (NIY) Character (1) keyword used with CLOSE that indicates
whether messages and commands destined for the application
will be discarded. 'Y' causes queued messages and commands
to be discarded and error sense is sent to the host by the API/CS.

Anything other than 'Y' returns a return code.

Figure 12 (Part 2 of 3). SPCF ARB

38 NetView/PCTM APIICS

Dlsp Lgth Name

67 08 Operator Name

75 02 Put reply length

77 04 Putreply

81 01 SENSETYPE

82 01 LCCSTAT

83 01 Error Detail

84 04 User sense

88 01 SV Key

89 01 SF Key

Description

The following fields are used with request codes 0309H, 030AH,
030BH, and 030CH.

An 8-Character name of the NetView Operator who will receive
the unsolicited message.

A word (16-bit integer) length of the overall NMVT to be sent to the
NetView Host. The size must not exceed 504 bytes.

A 4-byte (word offset and word segment) address pointing to a
buffer that contains the reply NMVT to be sent to the NetView Host.
Used when the application chooses to send a response NMVT to
the Host.

A 1-byte (8-bit integer) value that determines the sense code that
will be sent back to the NetView Host when the Send Error Sense
(X I 030C ') request code is used. This field is required for the
Send error sense request. See Figure 15 on page 44 for values.

A 1-byte (8-bit integer) value of the secondary sense code that
will be sent back to the NetView Host when the Send error sense
(X I 030C ') request code is used. This field is optional for the
Send error sense request and must be set to X I 00 I if not used.
See Figure 16 on page 45 for values.

A 1-byte (8-bit integer) value of the error detail that will be sent
back to the NetView Host when the Send error sense (X I 030C ')
request code is used. This field is optional for the Send error
sense request and must be set to X I 00 I if not used. See
Figure 17 on page 45 for values.

A 4-byte binary user string sense code. The sense code must
conform to SNA sense codes. This field is used if the SENSETYPE is
O.

A 1-byte binary field to put the key of the subvector with the error
in. This field is optional and must be set to 0 if not used.

A 1-byte binary field to put the key of the subfield with the error
in. This field is optional and must be set to 0 if not used.

Figure 12 (Part 3 of 3). SPCF ARB

SPCF API/CS Return Codes
The meaning of the return code, class, and type combinations is described in the
following table:

Return Class Type Description
Code Field Field

0000 0000 0000 Request processed without error

0002 0000 0000 SPCF Request Queue is empty

0008 0001 0019 Invalid NMVT length

0008 0001 0047 Invalid request

0008 0001 0072 Invalid MSGTYPE

0008 0002 0068 File not found

0008 0002 0072 Message not found

0008 0017 0070 The function has already been opened

0008 0023 0001 Invalid Correlator

0008 0023 0065 Correlator has been inactivated due to Host Session Recovery

0008 0047 0146 No received command outstanding

Figure 13 (Part 1 of 2). SPCF API/CS Return Codes

Chapter 5. Service Point Command Facility (SPCF) Subroutine Calls 39

Return Class Type Description
Code Field Field

0008 0049 0009 Storage Not Available

0008 0051 0095 Requests still queued

0008 0065 0070 The function has not been opened

0008 0076 0098 Receive a RUNCMD message (X' 0303') call was issued, however no
RUNCMD is in the Queue. Issue Receive a command (X' 0309') call.

0008 0098 0096 Host session not available

0008 0148 0002 Message or command outstanding

0008 0148 0146 Too many "Receive." calls outstanding

Figure 13 (Part 2 of 2). SPCF API/CS Return Codes

Open the SPCF API/CS
Purpose: To allow an application to use the SPCF functions of the API/CS to communi­

cate with the host.

Setting Up:

1. Provide memory for an ARB.

2. Store "ARB3" in the ARBID field of the ARB.

3. Store 903 in the ARB LENGTH field of the ARB.

4. Store the application name in the TARGET NAME field of the ARB

5. Store 0301 H in the REQUEST CODE field of the ARB

6. Set the segment and offset register pai r (AX - OX) to poi nt to the start of the
ARB.

CALL DCJVCOO

On Return: Check AX and ox registers and the RC. Code the application to take
action appropriate for each RC.

Receive a RUNCMD message
Purpose: To receive a message from an operator or a CLiST.

Setting Up:

1. Check that this API/CS ARB has been opened successfully.
2. Store 0303H in the REQUEST CODE field of the ARB

3. Set the segment and offset register pai r (AX - ox) to point to the start of the
ARB.

CALL DCJVCOO

On Return:

1. Check AX and ox registers and the RC. Code the application to take action
appropriate for each error RC.

2. Perform processing appropriate for the message received.

Data fields and ARB displacements returned:

40 NetView/PCTM API/CS

Cmdlgth (41)
Command (42)
Recvcorr (46)

You must document for the NetView operator, the format and content of RUNCMD

messages received and response messages sent. NetView/PC, APIICS, and
NetView only provide for the transportation of the messages, they do not define
message content.

Send a RUNCMD response
Purpose: To send a response to a RUNCMD message.

Setting Up:

1. Check that this API/CS ARB has been opened successfully.
2. Store 0302H in the REQUEST CODE field of the ARB

3. If a message is to be sent from a message file, then set up the following
ARB fields
a. MSGTYPE to F (file)
b. Msgfile with the 4-character name of the message file that contains

the message to be sent to NetView
c. MSGID with the 4-character number of the message in the message

file
4. If a message is to be sent from a message buffer, and the message is to

be translated then set the following ARB fields:
a. MSGTYPE to B (buffer)
b. Msgbuff to the address of the message buffer
c. Msgcount to the number of messages to be sent from the message

buffer
d. Convert to 'Y'

5. If a message is to be sent from a message buffer, and the message is
NOT to be translated then set the following ARB fields:
a. MSGTYPE to B (buffer)
b. Msgbuff to the address of the message buffer
c. Msgcount to 1
d. MBlength to the message length
e. Convert to 'N'

6. Store the Recvcorr correlator from the received RUNCMD in the SENDCORR

field of the ARB.

7. Set the segment and offset register pair (AX - OX) to point to the start of the
ARB.

CALL DCJVCOO

On Return: Check AX and ox registers and the RC. Code the application to take
action appropriate for each RC.

To send unformatted data to the host, you must provide a NetView command
processor that can handle the unformatted data (X 11309 1) major vector key. See
Appendix J, "NetView Sample Programs" for command processor source code
listings. To use the sample programs to handle unformatted data, add code to
"NetView Sample Data Services Command Processor (DSCP)" on page 371, at
label MV1309 on page 382, to handle your unique requirements.

To send message IDS and replacement text to NetView, your application must build
the NMVT in the form shown in Figure 59 on page 96 and include the X10A 1 sub­
vector, as shown in Figure 79 on page 104. You must then send the RUNCMD

response NMVT as described in "Send a Command Response" on page 43.

Chapter 5. Service Point Command Facility (SPCF) Subroutine Calls 41

RUNCMD Response Message Buffer
The format of the message buffer pointed to by the Msgbuff field of the ARB when
CONVERT is 'Y' and MSGTYPE is '8' is shown in the following table. Several mes­
sages in the buffer may be sent. The application sets the Msgcount field of the ARB

to the number of messages in the message buf!e~ to be sent. Each message is
preceded by a one-byte length field (L) that contains the length of the message.
The length of each message must be equal to or less than 253 bytes.

Message data must be in ASCII upper case.

The sum of all the lengths fields, for the number of messages to be sent as speci­
fied by the Msgcount field of the ARB, must be equal to or less than 478 minus 2
times Msgcount.

L 1 Message Data

L2 Message Data

Ln Message Data

Figure 14. Message buffer format when Convert = 'Y'

Where: Msgcount = n

L 1 + L2 ... + Ln = < 478 - (2 X Msgcount)

Send a Message
Purpose: To send an unsolicited message to a NetView Operator from a file or from

a buffer.

Setting Up:

1. Check that this API/CS ARB has been opened successfully.
2. Store 030AH in the REQUEST CODE field of the ARB

3. If a message is to be sent from a message file then, set up the following
ARB fields
a. MSGTYPE to F (file)
b. Msgfile with the 4-character name of the message file that contains

the message to be sent to NetView
c. MSGID with the 4-character number of the message in the message

file
4. If a message is to be sent from a message buffer then, set the following

ARB fields:
a. MSGTYPE to 8 (buffer)
b. Msgbuff to the address of the message buffer
c. Msgcount to the number of messages to be sent from the message

buffer
d. Convert to 'Y' (yes)

5. Store the NetView operator's name in the Operator Name field of the ARB.

6. Set the segment and offset register pai r (AX - OX) to point to the start of the
ARB.

CALL DCJVCOO

42 NetView/PCTM APIICS

On Return:

1. Check AX and ox registers and the RC. Code the application to take action
appropriate for each error RC.

Note: The "Convert" field is ignored. All unsolicited messages to the Host are
converted.

Receive a Command
Purpose: Receive an unparsed command NMVT. The application is required to

parse the NMVT to determine the command.

Setting Up:

1. Check that this API/CS ARB has been opened successfully.
2. Store 0309H in the REQUEST CODE field of the ARB

3. Set the segment and offset register pair (AX-OX) to point to the start of the
ARB.

CALL DCJVCOO

On Return:

1. Check AX and ox registers and the RC. Code the application to take action
appropriate for each error RC.

2. Perform processing appropriate for the command received.

Data fields and ARB displacements returned:

PARSE 10 (7)
Command (42)
Recvcorr (46)

Send a Command Response
Purpose: Send a response to a command from NetView. The response NMVT is sent

to NetView as received from the application. The application is required to
format the NMVT.

Setting Up:

1. Check that this API/CS ARB has been opened successfully.
2. Store 030BH in the REQUEST CODE field of the ARB

3. Store the Recvcorr correlator from the received command in the
SENOCORR field of the ARB.

4. Store the length of the response NMVT in the Putreply length field of the
ARB.

5. Store the address of the response NMVT in the Putreply field of the ARB.

6. Set the segment and offset register pair (AX-OX) to point to the start of the
ARB.

CALL DCJVCOO

On Return:

1. Check AX and ox registers and the RC. Code the application to take action
appropriate for each error RC.

Chapter 5. Service Point Command Facility (SPCF) Subroutine Calls 43

Send Error Sense
Purpose: Send error sense data to NetView in response to a command. The sense

data may be defined by the application. The X 17D 1 subvector is used.

Setting Up:

1. Check that this API/CS ARB has been opened successfully.
2. Store 030CH in the REQUEST CODE field of the ARB

3. Store the Recvcorr correlator from the received command in the
SENDCORR field of the ARB.

4. Store the appropriate values in the following ARB fields:
SENSETYPE (See Figure 15)
LCCSTAT (See Figure 16 on page 45)
Error Detail (See Figure 17 on page 45)
User sense
sv Key
SF Key

5. Set the segment and offset register pair (AX-DX) to point to the start of the
ARB.

CALL DCJVCOO

On Return:

1. Check AX and OX registers and the RC. Code the application to take action
appropriate for each error RC.

Defined SENSETYPE values

Value Sense
Data

0 User sense

x' 084B 0003'

2 X '10030000'

3 X'081C OnOm'

4 X '086F 0001'

5 X' 0860 0601'

6 X ' 080C 0006'

7 X '086C 3100'

8 X ' 086C 8000 '

9 X' 0806 0001'

10 X' 086A svsf'

11 X' 086B svsf'

12 X '086F sv05'

Description

A user specified sense code is returned to the requestor. The user
sense field in the ARB is used to give the user sense code to the Host
and must conform to SNA sense codes.

The target manager is not available

The request is not accepted or supported by the target.

The request is accepted by the target, but error(s) occurred during exe­
cution. n = lCCSTAT Figure 16 on page 45 and m = Error Detail ARB

fields. See Figure 17 on page 45 for defined values.

Invalid major vector (MV) length.

Required SF (X'01') missing in sv (X'06').

Command subvector not recognized.

Execute command subvector missing ..

Test setup data subvector missing.

Resource unknown.

SF (X'sf') key is invalid for sv (X'sv'). Use ARB fields sv Key and SF Key
to show which subfield in which subvector is in error.

SF (X' sf') value is invalid for sv (X' sv'). Use ARB fields sv Key and SF

Key to show which subfield in which subvector is in error.

Subvector (X' sv') length error. Use ARB field sv Key to show which
subvector is in error.

Figure 15 (Part 1 of 2). SENSETYPE Values, Data and Descriptions

44 NetView/PCTM APIICS

Value

13

Sense
Data

X '086F sf 06 I

Description

Subfield length error. Use ARB field SF key to show which subvector
contains the subfields in error.

Figure 15 (Part 2 of 2). SENSETYPE Values, Data and Descriptions

Defined LCCSTAT Values

Value Description

The link connection component (Lee) and/or the configuration file have recovered from the
error. They are in a state prior to the execution of the command.

2 The LCC and/or configuration file are in an unpredictable state.

Figure 16. Defined LCCSTAT Values

Defined Error Detail Values

Value Description

Memory error.

2 File access error.

3 Leel error.

4 Process error.

Figure 17. Defined Error Detail Values

Close the SPCF API/CS
Purpose: To terminate the use of the SPCF functions of the API/CS. The resources

reserved for the application that 'opened' the interface are freed by the SPCF

communications functions.

The API/CS can be forced closed (Force = 'Y') to cause error sense to be sent
to the host for all outstanding SPCF commands or messages.

Setting Up:

1. Check that this API/CS ARB has been opened successfully.
2. Store 0304H in the REQUEST CODE field of the ARB

3. If you want to force close the SPCF API/CS, store 'Y' in the Force field of the
ARB

4. Set the segment and offset register pai r (AX - ox) to poi nt to the start of the
ARB.

CALL DCJVCOO

On Return: Check AX and ox registers and the RC. Code the application to take
action appropriate for each RC.

Chapter 5. Service Point Command Facility (SPCF) Subroutine Calls 45

46 NetView/PCTM APIICS

Chapter 6. SPCF Build and Parse

Parse

This subroutine is used to parse the NetView™ Release 2 commands:

• LlNKDATA

• LlNKPD

• LlNKTEST

• RUNCMD

and to build responses to the NetView™ Release 2 commands:

• LlNKDATA

• LlNKPD

• LlNKTEST

Note that this subroutine does not build a NMVT for the RUNCMD response message.

The NetView commands are described in NetView Operation, SC30-3364. The
APIICS supported commands are also described in "API/CS Supported NetView
Commands" on page 89. The subroutine performs the functions:

• Parse

Parse a received SPCF NMVT and provide pointers to the NMVT data in the
returned ARB.

• Build

Build a Response to an SPCF Link command using data pointed to by fields
in the ARB or stored in fields in the ARB.

The Link commands supported are LlNKPD(8062 major vector key), LlNKDATA(8063
major vector key) and LlNKTEST(8064 major vector key). The subroutine will function
with the SPCF interface (ARBID = ARB3) open or closed. See "API/CS Supported
NetView Commands" on page 89 for a description of the supported commands.

The Build and Parse subroutine is used to:

1. Parse NMVTS returned by API/CS "Receive a command" (0309H) requests
2. Build a response NMVT that will be sent by a "Send a command response"

(030BH) request.

Parse SPCF Command ARB
The format of the Parse SPCF Command ARB, and a description of the ARB fields
follows:

Chapter 6. SPCF Build and Parse 47

Disp Lgth Name Description

0 04 ARBID A 4-character constant that is used by the API/CS to verify the start
of the ARB and serves as an 'eye catcher' in a storage dump. The
4-character constant 'ARB6' must be stored in the ARBID field.

4 02 REQUEST CODE A word (2-byte Intel Word (W)) request identifier. Must be

X'OOOO' for Build and Parse.

6 01 ARB LENGTH The length (36) of the ARB for this API/CS function. The length must
be stored into the ARB by the application.

7 01 PARSEID A 1-byte field returned by the API that contains the least signif-
icant byte of the major vector (MV) key of the command NMVT. The
Link commands supported by the Build and Parse subroutines

are RUNCMD(X '8061' major vector key) I LlNKPD(X '8062' major

vector key), LlNKDATA(X'8063' major vector key), and
LlNKTEST(X '8064' major vector key). The values returned in this
field are X '61', X '62', X '63' , and X '64' respectively.

8 01 Reserved Reserved and must be initialized to binary zeros.

9 02 Return Code An indicator of the degree of success in performing the request.

11 02 Class The error class.

13 02 Type The error type.

15 04 PARSE NMVT A 4-byte (word offset and word segment) address pointing to a
buffer which contains the request NMVT which the user wants
parsed. The NMVT in this buffer must be in the same format as if

received using Receive a Command (X'0309'). This means the
major vector length is in Host format and all text fields are in
EBCDIC.

19 01 NUMBER OF A 1-byte field containing a count of the number of Resource
NAMES Names which were found in the parsed NMVT. Each of the three

link commands contains a list of resource names destined for the
target application. This field will contain the number of names in
this list. If the parsed NMVT does not contain a names list this
field is set to OOH.

20 04 NAMES A 4-byte (word offset and word segment) address pointing to a
data structure which contains the Resource Names List from the
parsed NMVT. The names list is structured beginning with a
1-byte length field followed by a string of ASCII characters whose
length is equal to the count in the length field. If there is more
than one name in the list the format is repeated with the length
byte of the second name directly following the first name. Note
that the length byte reflects the actual number of characters in
the name and does not account for itself. If the parsed NMVT does
not contain a names list then this pointer is set to zero. A layout
of the names list data structure is shown in Figure 22 on
page 51.

24 02 TEST COUNT A 2-byte Intel Word (W) field containing the Self Test Count which
was obtained in a LlNKTEST Command. This field is in 2-byte Intel
Word (W) format. If the parsed command is not a LlNKTEST
request then this field is set to OOOOH.

26 01 TEST TYPE A 1-byte field containing a codepoint which identifies the type of
test requested in a LlNKTEST Command. Only one codepoint has
been defined in the IBM Host supported SPCF LlNKTEST Command.
This is 01H and indicates a self test has been requested. If the
parsed command is not LlNKTEST then this field is set to OOH.

27 04 PARSE SENSE A 4-byte field containing the SNA Error Sense Data which should
DATA be returned to the Host if a parse error has been found. Sense

codes which can be generated by the parse subroutine are
shown in Figure 21 on page 50. If no parse error is found this
field will be set to OOOOOOOOH.

Figure 18 (Part 1 of 2). Parse SPCF Command ARB

48 NetView/PCTM APIICS

Dlsp Lgth

31 01

32 04

Name

COMMAND
LENGTH

COMMAND

Description

A l-byte field containing the length of the command text resulting
from parsing a RUNCMD. If the parsed command is not RUNCMD

then this field is set to OOH.

A 4-byte (word offset and word segment) address pointing to a
data buffer which contains the parsed command text from a
RUNCMD. The parsed command text will be in ASCII format. If the
parsed command is not a Run then this pointer will be set to
zero.

Figure 18 (Part 2 of 2). Parse SPCF Command ARB

Parse SPCF Command API/CS Return Codes

Parse Request

The meaning of the return code, class, and type combinations is described in the
following table:

Return Class Type Description
Code Field Field

0000 0000 0000 Request processed without error

0004 0000 0000 Parse error, see Parse sense data

0008 0001 0047 Invalid request

0008 0004 0131 Major vector unknown, can not parse

Figure 19. Parse SPCF Command API/CS Return Codes

Purpose: To parse a received SPCF NMVT and provide pointers to the NMVT data in
the returned ARB. The PARSE 10 field of the ARB is the least significant byte of
the NMVT Major Vector (MV) key.

Setting Up:

1. Construct an ARB with ARB LENGTH set to 36
2. Store 'ARB6' in the ARBID field of the ARB
3. Store OOOOH in the REQUEST CODE field of the ARB
4. Store the address of the NMVT to be parsed in the PARSE NMVT field of the

ARB.
5. Set the segment and offset register pair (AX-OX) to point to the start of the

ARB.

CALL DCJVBOO

On Return:

1. Check AX and ox registers and the RC. Code the application to take action

appropriate for each error RC.
2. Check the PARSE SENSE DATA. If non-zero, code the application to take

action appropriate for the sense returned. See Figure 21 on page 50 for
an explanation of possible returned sense.

To return these codes to the host, store the sense data in the 'User
sense' field of the SPCF ARB and call the API/CS with the 'Send Error Sense'

(030CH) request code.

Chapter 6. SPCF Build and Parse 49

Returned ARB Data Fields

ARB field Disp LlNKDATA LlNKPD LlNKTEST RUNCMD OTHER

PARSE ID 7 63H 62H 64H 61H nnH

NUMBER OF NAMES 18 xx xx xx
NAMES 19 xx xx xx
TEST COUNT 23 xx
TEST TYPE 25 xx
PARSE SENSE DATA 27 xx xx xx xx xx
COMMAND LENGTH 30 xx
COMMAND 31 xx
Figure 20. Parse Data fields and ARB Displacements Returned

Parse Sense Data Definitions

Names List Format

The possible parse sense codes that can be returned by the Parse utility are shown
in the following table.

Sense
Data

X ' 086C 3100 '

X ' 086F 3105 '

X' 086D 0601'

X '086F 0606'

X' 0868 0601'

X '086C 8000 '

X '086F 8005'

X ' 080C 0006'

X '086F 8006'

X '1003 OOOD'

Description

A RUN command was parsed however the RUN command subvector is missing.

A RUN command was parsed however the RUN command subvector has an incorrect
length.

For either a LlNKPD, LlNKDATA, OR LlNKTEST command the subfield containing the
resource names list is missing.

For either a LlNKPD, LlNKDATA, OR LlNKTEST command the subfield containing the
resource names list has a length error.

For either a LlNKPD, LlNKDATA, OR LlNKTEST command the subfield containing the
resource names list is invalid.

A LlNKTEST command was parsed however the test set up subvector is missing.

A LlNKTEST command was parsed however the test set up subvector has an invalid
length.

A LlNKTEST command was parsed however the test command type is unknown.

A LlNKTEST command was parsed however the test command type subfield has an
invalid length.

The major vector key of the received SPCF command was not recognized by the Parse
subroutine. Function not supported. The least significant byte of the major vector (MV)
key of the command NMVT is returned in the 1-byte PARSE ID field of the ARB by the
API/CS.

Figure 21. PARSE Sense Data and Description

Names List Format:

The parsed Names List Format is shown in the following table.

Note: The Name Length value equals the number of characters in the name field.

50 NetView/PCTM APIICS

1-byte Name 1-byte Name
Length Field Length Field

I Length 11 Name 1 I Length N I Name NI

Length of Name 1 in Length of Next
Name 1 ASCII chars Next Name Name

Figure 22. Format for Names List

Build

Build SPCF Reply ARB
The format of the Build SPCF Reply ARB, and a description of the ARB fields
follows:

Disp Lgth

o 04

4 02

6 01

7 01

8 01

9 02

11 02

13 02

1S 04

19 02

21 04

Name Description

ARBID A 4-character constant that is used by the API/CS to verify the start
of the ARB and serves as an 'eye catcher' in a storage dump. The
4-character constant 'ARBS' must be stored in the ARBID field.

REQUEST CODE A word (2-byte Intel Word (W)) request identifier. Must be
X I 0000 I for Build and Parse.

ARB LENGTH

BUILD 10

Reserved

Return Code

Class

Type

BUILT NMVT

BUILT NMVT
LENGTH

PATH LIST INFO

The length (37) of the ARB for this API/CS function. The length must
be stored into the ARB by the application.

A 1-byte field used to indicate the ID for the type of SPCF response
the Build is being requested to build. Three id's are supported.
These are 62H for building a LlNKPD response, 63H for building a
LlNKDATA response, and 64H for building a LlNKTEST response.

Reserved and must be initialized to binary zeros.

An indicator of the degree of success in performing the request.

The error class.

The error type.

A 4-byte (word offset and word segment) address pOinting to a
buffer which contains the response NMVT which has been built as
a result of this ARB build request. The NMVT in this buffer is in
Host format meaning that any 2-byte Intel Word (W) fields have
their bytes reversed and all text fields are in EBCDIC. This pointer
is returned to the application program after a successful build. If
an error is found while processing data, this field is set to zeroes.

A two-byte field indicating the length of the NMVT which has been
built as a result of this ARB build request. This field is in 2-byte
Intel Word (W) format. This field is returned to the application
program after a successful build. If error is found while proc­
essing data, this field is set to zeroes.

A 4-byte (word offset and word segment) address pointing to a
data structure which defines the Path information that is to be
included in the SPCF response. The format of the path information
varies for the different Build response IDS. See Figure 2S on
page 54.

Figure 23 (Part 1 of 2). Build SPCF Reply ARB

Chapter 6. SPCF Build and Parse 51

Disp Lgth Name Description

25 01 LINK STATUS A 1-byte field containing the codepoint which will be used to
describe the Link Status in building a response for the L1NKPD SPCF

Command (Build ID = 62H). This field is ignored for Build IDS of
63H or 64H. The values supported by the Host for this field are
OOH through 05H. See "Link Status Value Definitions" on
page 54.

26 01 NUMBER OF A 1-byte field containing the number of Probable Cause
PROBABLE codepoints which are to be included in building a response for
CAUSES the L1NKPD SPCF Command (Build 10 = 62H). This field is ignored

for Build IDS other than 62H. The maximum number of Probable
Cause codepoints that can be specified is 124. The meanings of
the Probable Cause codepoints are given in SNA Reference
Summary GA27-3136. The application program provides this
information when requesting the build.

27 04 PROBABLE A 4-byte (word offset and word segment) address pointing to a
CAUSE data area containing the Probable Cause responses to be

included in building a response for the LINK PO SPCF Command
(Build ID = 62H). This field is ignored for Build IDS other than
62H. The format of the Probable Cause data is shown in
Figure 29 on page 56. The application program provides this
pointer when requesting the build. See Figure 29 on page 56.

31 01 LINK TEST A 1-byte field containing a codepoint which describes the results
RESULTS of the L1NKTEST Command. Three codepoints are supported by

the Host. They are ~OH for Passed, 01H for Failed, and 02H for
Indeterminate. It is used to build subfield X' 01' in Figure 75 on
page 101. This field is ignored for Build IDS other than 64H.

32 01 TEST TYPE A 1-byte field containing a codepoint which describes the type of
test performed on the link. Two codepoints are supported by the
Host. They are OOH for Background Self Test executed, and 01H
for Self Test executed when requested. It is used to build sub-
field X' 02' in Figure 75 on page 101. This field is ignored for
Build IDS other than 64H.

33 02 TEST COUNT A 2-byte Intel Word (W) field indicating the Test Count received in
REQUESTED the L1NKTEST request. It is used to build subfield X' 03' in

Figure 75 on page 101. This field is ignored for Build IDS other
than 64H.

35 02 TEST COUNT A 2-byte Intel Word (W) field indicating the number of times the
EXECUTED test was actually executed. It is used to build subfield X' 04' in

Figure 75 on page 101. This field is ignored for Build IDS other
than 64H.

Figure 23 (Part 2 of 2). Build SPCF Reply ARB

Build SPCF Reply API/CS Return Codes
The meaning of the return code, class, and type combinations is described in the
following table:

Return Class Type Description
Code Field Field

0000 0000 0000 Request processed without error

0008 0001 0019 Invalid NMVT length

0008 0001 0047 Invalid request

0008 0001 0076 Invalid Build ID

0008 0001 0085 Invalid number of probable causes

0008 0001 0111 Invalid value for Link Connection Component(Lcc) data

Figure 24 (Part 1 of 2). Build SPCF Reply API/CS Return Codes

52 NetView/PCTM APIICS

Build Request

Return Class Type Description
Code Field Field

0008 0001 0114 Data conversion failed (ASCII to EBCDIC)

0008 0002 0015 Path not found

0008 0019 0057 Length error in resource type or name

0008 0019 0092 Length error in LCC data value or name

Figure 24 (Part 2 of 2). Build SPCF Reply API/CS Return Codes

Purpose: To build a Response NMVT to an SPCF Link command using data pOinted to
by fields in the ARB or stored in fields in the ARB. The NMVT Major Vector (MV)

key and NMVT format is determined by the code store in the BUILD ID field of the
ARB.

Setting Up:

1. Construct an ARB with ARB LENGTH set to 37
2. Store 'ARBS' in the ARBID field of the ARB

3. Store OOOOH in the REQUEST CODE field of the ARB

4. Store the code for the supported build function required in the BUILD ID

field of the ARB

a. 62H for L1NKPO

b. 63H for L1NKDATA

c. 64H for L1NKTEST

5. Store the address of the path information in the PATH LIST INFO field of the
ARB.

6. If BUILD ID is set to 62H, then set the following fields in the ARB:

a. Link status
b. Number of probable causes
c. Probable cause

7. If BUILD ID is set to 64H, then set the following fields in the ARB:

a. Link test results
b. Test type
c. Test count requested
d. Test count executed

8. Set the segment and offset register pair (AX-OX) to point to the start of the
ARB.

CALL DCJVBOO

On Return:

1. Check AX and DX registers and the RC. Code the application to take action
appropriate for each error RC.

Data fields and ARB displacements returned:

BUILT NMVT (15)
BUILT NMVT LENGTH (19)

Chapter 6. SPCF Build and Parse 53

Link Status Value Definitions
The appropriate Link Status value is stored in the LINK STATUS field of the Build SPCF

Reply ARB. It is used by the Build subroutine to build the X '82' subvector. See
Figure 64 on page 97.

OOH No failure detected, resource name and type and probable cause information
parameters are not present

01H Detected failure, failing resource isolated; resource name and type has a
single element identifying the failing LCC, probable cause information is
present

02H Detected failure, failing resource not isolated; resource name and type identi­
fies the segment where the failure might have occurred, probable cause
information is present

03H Detected failure, failing resource is on the link connection, outside the scope
of the Link Connection Subsystem Manager (LCSM), and upstream from the
link segment (Le., toward the Using Node). resource name and type identi­
fies the segment that is downstream of the detected failure, probable cause
information is present

04H Detected failure, failing resource is on the link connection, outside of the
scope of the LCSM, and inside the link segment identified; resource name and
type identifies the segment, probable cause information is present

OSH Detected failure, failing resource is on the link connection, outside of the
scope of the LCSM, and downstream from the link segment identified; resource
name and type identifies the segment that is upstream of the detected failure,
probable cause information is present

Path Information List Control Blocks

Dlsp Lgth Name

o 02 LCC Number

2 04 LCC PTR

Description

The number of LCC resources in the path, in 2-byte Intel
Word (W) format.

A pointer to the first LCC Description data structure. See
Figure 26 for LlNKPD response. See Figure 27 on page 55
for LlNKDATA or LlNKTEST response.

Figure 25. Path Configuration Information CB

LINKPD LCC Description Control Block

Disp Lgth Name

o 01 Resource Type
Length

08 Resource Type

9 01 Resource name
length

10 08 Resource Name

Description

The length of the Hierarchy Resource Type field. Valid
lengths are between 1 and 8.

An 8-character field containing the Hierarchy Resource
Type, in ASCII.

The length of the Hierarchy Resource Name field. Valid
lengths are between 1 and 8.

An 8-character field containing the hierarchy resource
name, in ASCII.

Figure 26. L1NKPD LCC Description CB

This data structure is used by the Build subroutine to construct a X'1307' major
vector and the X'05' subvectors in the X'1307' major vector, as shown in
Figure 64 on page 97.

54 NetView/PCTM APIICS

Lee description data, as shown in Figure 26, must be repeated in sequential
storage for each resource that has information returned. One data structure is
required for each resource in the path, and they must be in downstream order.

LINKDATA And LINKTEST LCC Description Control Block

Dlsp Lgth Name Description

o 01 Resource Type The length of the Hierarchy Resource Type field. Valid
Length lengths are between 1 and 8.

08 Resource Type An 8-character field containing the Hierarchy Resource
Type, in ASCII.

9 01 Resource name The length of the Hierarchy Resource Name field. Valid
length lengths are between 1 and 8.

10 08 Resource Name An 8-character field containing the Hierarchy Resource
Name, in ASCII.

18 02 LCC Data Number A 2-byte Intel Word (W) formatted field containing the
number of data elements related to this resource that will
be returned.

20 04 Lee Data PTR A pointer to the first LCC data element. See Figure 28.

Figure 27. L1NKDATA and L1NKTEST LCC Description CB

This data structure is used by the Build subroutine to construct a X 11307 1 major
vector and the X I 05 1 and X 180 I subvectors in the X 11307 1 major vector, as shown
in Figure 69 on page 98.

Lee description data, as shown in Figure 27, must be repeated in sequential
storage for each resource that has information returned. One data structure is
required for each resource in the path, and they must be in downstream order.

LINKDATA And LINKTEST LCC Data Control Block

Disp Lgth

o 01

01

2 01

3 04

7 01

8

Name

LCC Data Value
Type

LCC Data Value
Length

Reserved

LCC Data Value PTR

LCC Data Name
Length

Lec Data Name

Description

Indicator of how this LCC Data element will be displayed at
the focal point. Valid values are:

02H = HEXADECIMAL VALUE

03H = CHARACTER VALUE

04H = DECIMAL VALUE

05H = BIT STRING VALUE

The length of the LCC data value in bytes. Bit string
lengths should also be in number of bytes. Valid lengths
are 1 to 255.

Reserved

A 4-byte (word offset and word segment) address pointer
to the actual LCC data.

The length of the LCC data name. Valid lengths are 1 to
255.

The LCC Data Name in upper case ASCII.

Figure 28. L1NKDATA and L1NKTEST LCC Data CB

This data structure is used by the Build subroutine to construct a X 180 I subvector.
If the reply is to a LlNKDATA (X 163 1 in the BUILD ID field of the ARB) see Figure 70 on
page 99. If the reply is to a LlNKTEST (X 1641 in the BUILD ID field of the ARB) see
Figure 76 on page 102. The X I 80 1 subvector is included in the X l 1307 1 major
vector, as shown in Figure 69 on page 98 or Figure 74 on page 100.

Chapter 6. SPCF Build and Parse 55

LCC Data

Probable Cause

LCC Data, as shown in Figure 28, must be repeated in sequential storage for each
resource in the path. The data structures must be in downstream order.

If decimal value, the data should be in 4-byte Intel Double Word (OW) format. If
character, the data should be in ASCII format.

2-byte probe cause 2-byte probe cause 2-byte probe cause ...

Figure 29. Format for Probable Cause Data

Probable cause data can be repeated up to 124 times. This data is used to con­
struct the probable cause subvector X 193 1, as shown in Figure 66 on page 98 of
the LlNKPD response NMVT, as shown in Figure 64 on page 97. The probable cause
data is pointed to by the PROBABLE CAUSE field of the Build SPCF Reply ARB.

56 NetView/PCTM API/CS

Chapter 7. Host Data Facility Subroutine Calls

The API/CS provides for the transfer (send or receive) of DOS files with a Host CICS

application4 • The request codes used by the Host Data Facility API/CS and
descri ptions are:

0401H
0402H
0403H
0405H
0406H
0404H

Open the Host Data Facility API/CS

Send file data
Receive file data
Check the status of the request
Stop file data transfer
Close the Host Data Facility API/CS

One file data transfer (send or receive) of a DOS file may be in progress for an
application at any time.

To use the API/CS to send DOS file data to the host or to receive DOS file data from
the host, code the following API/CS calls:

1. Call DCJVDOO with request code 0401 H to open the Host Data Facility API/CS.

2. Call DCJVDOO with request code 0402H to send file data to the host
3. Call DCJVDOO with request code 0403H to start the receipt of file data from the

host CICS application.
4. Call DCJVDOO with request code 0405H to check the status of the request. Calls

to Check the status of the request should be made at 1-minute intervals until
the file has been completely sent or received.

5. Call DCJVDOO with request code 0406H to stop the file data transfer.
6. Call DCJVDOO with request code 0404H to close the Host Data Facility API/CS

when there are no more files to send or receive.

Although only one DOS file data transfer may be in progress for an application at
any time, an application may transfer many DOS files with a single open. Each
transfer must be complete before another may be started.

Host Data Facility ARB
The format of the Host Data Facility ARB, and a description of the ARB fields
follows:

Disp Lgth

a 04

4 02

6 01

Name Description

ARBID A 4-character constant that is used by the API/CS to verify the start
of the ARB and serves as an 'eye catcher' in a storage dump. The
4-character constant 'ARB4' must be stored in the ARBID field.

REQUEST CODE A word (2-byte Intel Word (W)) request identifier. Each request
hasa unique code that must be stored in the ARB by the Applica­
tion. The first byte identifies the function and the second byte
identifies the request.

ARB LENGTH The length (45) of the ARB for this API/CS function. The length must
be stored into the ARB by the application.

Figure 30 (Part 1 of 2). Host Data Facility ARB

4 To transfer NetView/PC files, the Host Data Facility facility should be selected from the
operator service panel.

Chapter 7. Host Data Facility Subroutine Calls 57

Dlsp Lgth

7 02

9 02

11 02

13 02

15 04

19 01

20 04

24 01

25 04

29 01

30 02

32 08

40 04

44 01

Name

Reserved

Return Code

Class

Type

PCFILE

PCFLGTH

HOSTFILE

HFLGTH

Start byte

xpc

blkz

Reserved

Nextbyte

HDFState

Description

Reserved and must be initialized to binary zeros.

An indicator of the degree of success in performing the request.

The error class.

The error type.

A 4-byte (word offset and word segment) address pointing to a
buffer that contains the fully qualified file name (path, filename
and the extension, if used) as defined by DOS, of the file to be sent
to, or received from, the host CICS sub-system. (Mandatory)

A 1-byte field containing the number of characters (1 to 31) of the
file name in the buffer pointed to by "PCFILE"

A 4-byte (word offset and word segment) address pointing to a
buffer containing the 1 to 8 character entry name in the CICS file
name table. (Mandatory)

A 1-byte field containing the number of characters (1 to 8) of the
name in the buffer pointed to by "HOSTFILE"

A 32-bit integer. The offset to the first byte within a file to be
transmitted to the host. (Optional, defaulted to start of file.)

(NIT) Character (1) keyword that indicates whether the file is to
be transmitted in a transparent (T) or a non-transparent (N)
mode. Defaults to 'N' for anything except T.

The length of data blocks to be sent to the host. The range is
from 512 to 3750 bytes. (Defaulted to 3750 bytes)

Reserved

A 32-bit integer. The offset to the next byte to be transmitted
within a file. Returned on STOP requests made while transferring
files from NetView/PC to the host. May be used to restart trans­
fers that are stopped.

A 1-byte field that is returned on STOP requests made while files
are being transferred.
X' 00' = Transfer is in progress (not stopped).
X '40' = Transfer has been stopped abnormally or when STOP is
requested by the application.
X'80' = Transfer has completed.

Figure 30 (Part 2 of 2). Host Data Facility ARB

Host Data Facility API/CS Return Codes
The meaning of the return code, class, and type combinations is described in the
following table:

Return Class Type Description
Code Field Field

0000 0000 0000 Request processed without error

0004 0005 0114 File Transfer Program busy transferring files

0004 0098 0009 Storage reduced - BLKZ reduced

0008 0001 0010 BLKZ invalid

0008 0001 0014 File password invalid

0008 0001 0021 Invalid catalog record

0008 0001 0024 File write access locked

0008 0001 0026 Invalid record (journal)

0008 0001 0047 Invalid request

Figure 31 (Part 1 of 3). Host Data Facility API/CS Return Codes

58 NetView/PCTM APIICS

Return Class Type Description
Code Field Field

0008 0001 0061 OFFSET invalid

0008 0001 0068 Invalid data in file

0008 0001 0075 CICS attributes invalid

0008 0001 0076 Invalid Build ID

0008 0001 0083 Hostname invalid

0008 0001 0085 Invalid number of probable causes

0008 0001 0109 Invalid filespec

0008 0001 0111 Invalid value for Link Connection Component(Lcc) data

0008 0001 0114 Data conversion failed (ASCII to EBCDIC)

0008 0001 0115 Error detected at the host

0008 0001 0142 Invalid stop, not authorized

0008 0002 0015 Path not found

0008 0002 0068 File not found

0008 0002 0085 Status not found

0008 0002 0115 Host file not found

0008 0004 0115 Host file is full

0008 0004 0131 Major vector unknown, can not parse

0008 0005 0115 Host file is in use

0008 0008 0115 File damaged at host

0008 0009 0115 Host file space is unavailable

0008 0013 0004 PC disk is full

0008 0013 0008 Physical disk error

0008 0013 0130 Disk drive not ready

0008 0017 0070 The function has already been opened

0008 0019 0057 Length error in resource type or name

0008 0019 0092 Length error in LCC data value or name

0008 0022 0068 File non-shared and open

0008 0039 0114 Timeout - No reply from host

0008 0050 0068 Too many open files

0008 0053 0008 Unrecoverable DOS error

0008 0053 0015 Invalid disk drive specified

0008 0065 0070 The function has not been opened

0008 0070 0115 Host file not open

0008 0076 0082 Multiple replies requested when link status equals zero

0008 0082 0024 Translation denied for this file

0008 0082 0114 Invalid stop - No transfer in progress

0008 0082 0115 Not authorized to transfer host file

0008 0083 0115 Invalid host file name

0008 0093 0115 Invalid CICS code point received

0008 0094 0113 APpc-Abend

0008 0094 0115 Host aborted file transfer

0008 0098 0009 Storage not available

Figure 31 (Part 2 of 3). Host Data Facility APIICS Return Codes

Chapter 7. Host Data Facility Subroutine Calls 59

Return Class Type Description
Code Field Field

0008 0098 0068 Security file not available

0008 0098 0113 APPC not available

0008 0098 0114 Host data transfer program not available

0008 0098 0115 Host file temporarily not available

0008 0110 0067 Filename reserved to DOS

0008 0118 0069 CICS Security failure

0008 0118 0083 Incorrect partner LU name

0008 0118 0096 CICS allocation failure

0008 0118 0115 CICS session failure - No retry

0008 0123 0096 Invalid response, system

0008 0123 0115 Invalid message from host

Figure 31 (Part 3 of 3). Host Data Facility API/CS Return Codes

Open the Host Data Facility API/CS

Send File Data

Purpose: To allow an application to use the Host Data Facility functions of the
APIICS to transfer DOS file data to the host.

Setting Up:

1. Provide memory for an ARB
2. Store" ARB4" in the ARBID field of the ARB.
3. Store request code 0401 H in the request code field of the ARB.
4. Set the segment and offset register pair (AX - DX) to point to the start of the

ARB.

CALL DCJVDOO

On Return: Check AX and DX registers and the RC. Code the application to take
action appropriate for each RC.

Purpose: To send DOS file data to the host.

Setting Up:

1. Check that the APIICS has been opened successfully.
2. Store the required fields in the Host Data Facility ARB
3. Store request code 0402H in the request code field of the ARB.
4. Set the segment and offset register pair (AX - DX) to point to the start of the

ARB.

CALL DCJVDOO

On Return: Check AX and DX registers and the RC. Code the application to take
action appropriate for each RC.

60 NetView/PCTM API/CS

Receive File Data
Purpose: To receive DOS file data from the host.

Setting Up:

1. Check that the API/CS has been opened successfully.
2. Store the required data fields in the Host Data Facility ARB

3. Store request code 0403H in the request code field of the ARB.

4. Set the segment and offset register pair (AX-OX) to point to the start of the
ARB.

CALL DCJVDOO

On Return: Check AX and ox registers and the RC. Code the application to take
action appropriate for each RC.

Check the Status of a Host Data Facility Request
Purpose: To determine the status of a request to transfer data.

Setting Up:

1. Check that the API/CS has been opened successfully.
2. Store request code 0405H in the request code field of the ARB.

3. Set the segment and offset register pa'ir (AX-OX) to point to the start of the
ARB.

CALL DCJVDOO

On Return: Check AX and ox registers and the RC. Code the application to take
action appropriate for each RC.

Stop File Data Transfer
Purpose: To stop the transfer of file data to or from the host.

Setting Up:

1. Check that the API/CS has been opened successfully.
2. Store request code 0406H in the request code field of the ARB.

3. Set the segment and offset register pair (AX-OX) to point to the start of the
ARB.

CALL DCJVDOO

On Return: Check AX and ox registers and the RC. Code the application to take
action appropriate for each RC.

Chapter 7. Host Data Facility Subroutine Calls 61

Close the Host Data Facility API/CS
Purpose: To terminate the use of the Host Data Facility functions. The resources

reserved for the application that 'opened' the interface are freed.

Setting Up:

1. Store request code 0404H in the request code field of the ARB.

2. Set the segment and offset register pair (AX - OX) to point to the start of the
ARB.

CALL DCJVDOO

On Return: Check AX and ox registers and the RC. Code the application to take
action appropriate for each RC.

62 NetView/PCTM API/CS

Part 3. Reference Information

Appendix A. API/CS Reference Information 67
Return Code List ... 67

List of all API/CS Return Codes 67
DOS Error Codes .. 71
Translation of NMVT Data Fields 72
Naming Conventions .. 73

NetView/PC Prefix .. 73
Panel Name .. 74
Panel Field Name .. 74
NetView/PC Message Format 75

Appendix B. Alert Major Vector Formats 77
Non-generic Alert Format 77
Tables of Text for X'91' Subvector Support 78

Alert Type ... 78
General Cause Table 79
Specific Component Table 79

NetView/PC X'9F' Subvector 80
NetView/PC Cause Subfields 82

NetView/PC ALERT SV X'9F' Code Point File: DUPALGTF.TXT 83
ALERT Description Records 84

Generic Alert Format .. 87

Appendix C. Service Point Command Data 89
API/CS Supported NetView Commands 89

LINKDATA ... 89
LINKPD ... 91
LINKTEST ... 92
RUNCMD ',' 93

Service Point Command vectors 94
NMVT Length Algorithms 94
NMVT Header ... 95
Service Point Command Major Vectors 95

RUNCMD Vectors 95
Unsolicited Operator Message Vectors 96
L1NKPD Vectors 97
L1NKDATA Vectors 98
L1NKTEST Vectors 99

Common Subvectors 102

Appendix D. Suggested Command Formats 107
Suggested Physical Device Management Commands 107

LINK-CHANGE 107
Purpose of Command 107
Actions Taken by Receiver 107
Inputs: ... 107
Outputs: '. .. 107

LINK-DISPLAY ... 108
Purpose of Command 108
Actions Taken by Receiver '..................... 108
Inputs: ... 108
Outputs: .. 108

Part 3. Reference Information 63

Configuration Data Base Management Commands 108
RESOURCE-DISPLAY 108

Purpose of Command 109
Actions Taken by Receiver :................... 109
Inputs: ... 109
Outputs: .. 109

RESOURCE-CHANGE 109
Purpose of Command 109
Actions Taken by Receiver 109
Inputs: ... 110
Outputs: .. 110

PATH-DISPLAY .. 110
Purpose of Command 110
Actions Taken by Receiver 110
Inputs: ... 110
Outputs: .. 110

PATH-CHANGE .. 111
Purpose of Command 111
Actions Taken by Receiver 111
Inputs: ... 111
Outputs: .. 111

Appendix E. Panel Development Rules 113
Applicability and Conformance 113

Requirements 113
Panel Design .. 113

Types of Panel Elements 114
Common Panel Elements 115
Panel Body Elements 120
Panel Types ... 127

Menu Panels .. 127
Entry Panels ... 129
List Panels .. 133
Information Panels 134

Mixing Panel Types 135
Mixed Panel Examples and Guidance 136

Panel Dialog Management 137
Introduction ... 137
Panel Interaction Techniques 137
Dialog Control ... 138

Dialog Control Objects 139
Dialog Control Actions 139
Dialog Control Techniques 142
Advanced Dialog Control Techniques 143

Scrolling ... 143
Function Key Utilization :........... 144

Dedicated Function Keys 145
Programmable Function Keys 145
Required Function Keys '...................... 146

Messages and Prompts 146
Message/Prompt Presentation .. 146
Message/Prompt Format 146
Message Types 147
Message Rules 147
Message and Prompt Text Guidelines 148

Help Facility ... 148

64 NetViewlPC™ APIICS

Displaying Help Panels 149
Common Help Panel Elements 149
Help Interaction Techniques 150
Types of Help .. 150
Content of Help Panels 151

Color and Emphasis 151
Overview ... 151
Classes of Data 152

File Management Techniques Using the List Panel 155
Maintenance Menu Panel 158
List Panel .. 158
Delete Function

List Panel Dialog Control
Change Function .. .

Change Panel Dialog Control
Add Function

Add Panel Dialog Control

Part 3. Reference Information

158
159
159
159
160
160

65

66 NetView/PCTM API/CS

Appendix A. API/CS Reference Information

Return Code List

List of all API/CS Return Codes
The meaning of the return code, class, and type combinations is described in the
following table:

Return Class Type Description
Code Field Field

0000 0000 0000 Request processed without error

0002 0000 0000 SPCF Request Queue is empty

0004 0000 0000 Parse error, see Parse sense data

0004 0005 0114 File Transfer Program busy transferring files

0004 0098 0009 Storage reduced - BLKZ reduced

0008 0001 0010 BLKZ invalid

0008 0001 0014 File password invalid

0008 0001 0019 Invalid NMVT length

0008 0001 0021 Invalid catalog record

0008 0001 0023 Invalid NMVT key field

0008 0001 0024 File write access locked

0008 0001 0026 Invalid record (journal)

0008 0001 0040 Date/Time subvector data invalid

0008 0001 0041 Basic subvector data invalid

0008 0001 0042 PSID subvector data invalid

0008 0001 0043 Hierarchy Names subvector data invalid

0008 0001 0044 NetView/PC Alert subvector data invalid

0008 0001 0045 Text subvector data invalid

0008 0001 0047 Invalid request

0008 0001 0061 OFFSET invalid

0008 0001 0068 Invalid data in file

0008 0001 0072 Invalid MSGTYPE

0008 0001 0075 CICS attributes invalid

0008 0001 0076 Invalid Build ID

0008 0001 0083 Hostname invalid

0008 0001 0085 Invalid number of probable causes

0008 0001 0109 Invalid filespec

0008 0001 0111 Invalid value for Link Connection Component(Lcc) data

0008 0001 0114 Data conversion failed (ASCII to EBCDIC)

0008 0001 0115 Error detected at the host

0008 0001 0136 Invalid character for ASCII to EBCDIC translation

Figure 32 (Part 1 of 5). List of all API/CS Return Codes

Appendix A. API/CS Reference Information 67

Return Class Type Description
Code Field Field

0008 0001 0142 Invalid stop, not authorized

0008 0001 0144 Detail qualifier subvector data invalid

0008 0001 0147 LAN subvector data invalid

0008 0002 0009 Storage not avail,able

0008 0002 0015 Path not found

0008 0002 0040 Date/Time subvector missing

0008 0002 0041 Basic subvector missing

0008 0002 0042 PSID subvector missing

0008 0002 0043 Hierarchy Names subvector missing

0008 0002 0044 NetView/PC Alert subvector missing

0008 0002 0066 The requested function is not available

0008 0002 0068 File not found

0008 0002 0072 Message not found

0008 0002 0085 Status not found

0008 0002 0115 Host file not found

0008 0002 0160 Hierarchy resource list subvector missing

0008 0002 0162 Link station data subvector missing

0008 0002 0163 Generic alert data subvector missing

0008 0002 0164 Probable cause subvector missing

0008 0002 0165 User cause subvector missing

0008 0002 0166 Install cause subvector misSing

0008 0002 0167 Failure cause subvector missing

0008 0002 0168 Undetermined cause subvector missing

0008 0002 0169 Detailed data subvector missing

0008 0002 0170 Self-defining text message subvector missing

0008 0003 0040 Duplicate Date/Time subvector

0008 0003 0041 Duplicate Basic subvector

0008 0003 0042 Duplicate PSID subvector

0008 0003 0043 Duplicate Hierarchy Names subvector

0008 0003 0044 Duplicate NetView/PC Alert subvector

0008 0003 0045 Duplicate Text subvector

0008 0003 0070 The function has already been opened

0008 0003 0144 Duplicate Detail Qualifier subvector

0008 0003 0147 Duplicate LAN subvector

0008 0003 0160 Duplicate Hierarchy resource list subvector

0008 0003 0162 Duplicate Link station data subvector

0008 0003 0163 Duplicate Generic alert data subvector

0008 0003 0164 Duplicate Probable cause subvector

0008 0003 0165 Duplicate User cause subvector

0008 0003 0166 Duplicate Install cause subvector

0008 0003 0167 Duplicate Failure cause subvector

0008 0003 0168 Duplicate Undetermined cause subvector

Figure 32 (Part 2 of 5). List of all APIICS Return Codes

68 NetView/PCTM APIICS

Return Class Type Description
Code Field Field

0008 0003 0169 Duplicate Detailed data subvector

0008 0003 0170 Duplicate Self-defining text message subvector

0008 0004 0115 Host file is full

0008 0004 0131 Major vector unknown. can not parse

0008 0005 0115 Host file is in use

0008 0008 0008 Unexpected error. See other return codes for furtherexplanation

0008 0008 0023 Major vector key field format error

0008 0008 0040 DatelTime subvector format error

0008 0008 0041 Basic subvector format error

0008 0008 0042 PSID subvector format error

0008 0008 0043 Hierarchy Names subvector format error

0008 0008 0044 NetView/PC Alert subvector format error

0008 0008 0045 Text subvector format error

0008 0008 0096 NetView/PC Alert Manager not available

0008 0008 0115 File damaged at host

0008 0008 0144 Detail Qualifier subvector format error

0008 0008 0147 LAN subvector format error

0008 0008 0160 Hierarchy resource list subvector format error

0008 0008 0162 Link station data subvector format error

0008 0008 0163 Generic alert data subvector format error

0008 0008 0164 Probable cause subvector format error

0008 0008 0165 User cause subvector format error

0008 0008 0166 Install cause subvector format error

0008 0008 0167 Failure cause subvector format error

0008 0008 0168 Undetermined cause subvector format error

0008 0008 0169 Detailed data subvector format error

0008 0008 0170 Self-defining text message subvector format error

0008 0009 0115 Host file space is unavailable

0008 0012 0068 File I/O error

0008 0012 0096 NetView/PC Alert Manager and host session are not available

0008 0013 0004 PC disk is full

0008 0013 0008 Physical disk error

0008 0013 0130 Disk drive not ready

0008 0017 0070 The function has already been opened

0008 0019 0057 Length error in resource type or name

0008 0019 0092 Length error in LCC data value or name

0008 0022 0068 File non-shared and open

0008 0023 0001 Invalid Correlator

0008 0023 0065 Correlator has been inactivated due to Host Session Recovery

0008 0027 0079 The ARB is unused or closed

0008 0039 0114 Timeout - No reply from host

0008 0047 0146 No received command outstanding

Figure 32 (Part 3 of 5). List of all API/CS Return Codes

Appendix A. API/CS Reference Information 69

Return Class Type Description
Code Field Field

0008 0049 0009 Storage Not Available

0008 0050 0068 Too many open files

0008 0050 0115 Checkpoint size too large

0008 0051 0095 Requests still queued

0008 0053 0008 Unrecoverable DOS error

0008 0053 0015 Invalid disk drive specified

0008 0057 0115 Host resource limit reached

0008 0065 0070 The function has not been opened

0008 0065 0078 CP - PU not active; retry

0008 0070 0003 Application name is already open

0008 0070 0115 Host file not open

0008 0076 0082 Multiple replies requested when link status equals zero

0008 0076 0098 Receive a RUNCMD message (X' 0303') call was issued. however no
RUNCMD is in the Queue, Issue Receive a command (X' 0309') call,

0008 0082 0024 Translation denied for this file

0008 0082 0114 Invalid stop - No transfer in progress

0008 0082 0115 Not authorized to transfer host file

0008 0083 0115 Invalid host file name

0008 0093 0115 Invalid cles code point received

0008 0094 0113 APpe-Abend

0008 0094 0115 Host aborted file transfer

0008 0096 0098 Alert Router is currently not available

0008 0098 0009 Storage not available

0008 0098 0063 System record not available

0008 0098 0068 Security file not available

0008 0098 0096 Host session not available

0008 0098 0113 APpe not available

0008 0098 0114 Host data transfer program not available

0008 0098 0115 Host file temporarily not available

0008 0110 0067 Filename reserved to DOS

0008 0117 0115 Request processed without error for NetView/PC Alert Manager. but
did not process for host

0008 0117 0116 Request processed without error for host. but did not process for. or
received a warning from. the NetView/PC Alert Manager

0008 0118 0069 eles Security failure

0008 0118 0083 Incorrect partner LU name

0008 0118 0096 eles allocation failure

0008 0118 0115 cles session failure - No retry

0008 0123 0096 Invalid response. system

0008 0123 0115 Invalid message from host

0008 0148 0002 Message or command outstanding

0008 0148 0146 Too many "Receive," calls outstanding

0008 0159 0002 Dependent key missing

Figure 32 (Part 4 of 5), List of all API/CS Return Codes

70 NetView/PCTM API/CS

Return Class Type Description
Code Field Field

0008 0159 0040 DatelTime subvector key dependency error

0008 0159 0041 Basic subvector key dependency error

0008 0159 0042 PSID subvector key dependency error

0008 0159 0043 Hierarchy Names subvector key dependency error

0008 0159 0044 NetView/PC Alert subvector key dependency error

0008 0159 0045 Text subvector key dependency error

0008 0159 0144 Detail Qualifier subvector key dependency error

0008 0159 0147 LAN subvector key dependency error

0008 0159 0160 Hierarchy resource list subvector key dependency error

0008 0159 0162 Link station data subvector key dependency error

0008 0159 0163 Generic alert data subvector key dependency error

0008 0159 0164 Probable cause subvector key dependency error

0008 0159 0165 User cause subvector key dependency error

0008 0159 0166 Install cause subvector key dependency error

0008 0159 0167 Failure cause subvector key dependency error

0008 0159 0168 Undetermined cause subvector key dependency error

0008 0159 0169 Detailed data subvector key dependency error

0008 0159 0170 Self-defining text message subvector key dependency error

Figure 32 (Part 5 of 5). list of all API/CS Return Codes

DOS Error Codes
The multi-tasking environment of NetView/PC required that the handling of DOS crit­
ical errors be modified. In DOS, critical errors are handled by DOS and the return
codes for these particular errors are not normally returned to calling programs.

Under NetView/PC all DOS critical errors are returned to the calling program with
the following indications of the problem. Note that there are other error returns, in
addition to these, that are documented with the DOS descriptions of the calls'.

• The Carry Bit will be set

• The error code will be placed in the AL

The error codes are:

80H or 128 D Attempt to write on write-protected diskette

81 H or 129 D Unknown unit

82H or 130 D Drive not ready

83H or 131 D Unknown command

84H or 132 D Data Error (CRC)

85H or 133 D Bad request structure length

86H or 134 D Seek error

87H or 135 D Unknown media type

88H or 136 D Sector not found

Appendix A. API/CS Reference Information 71

89H or 137 0 Printer out of paper

8AH or 138 0 Write fault

8SH or 139 0 Read fault

8CH or 140 0 General failure

These codes are the Extended Error Codes (given in the DOS Technical reference
manual) in the range 190 to 31 O(DOS critical errors}. The codes are generated by
adding 1280 to the critical error code values that range from 0 to 120, internally in
DOS. The consequences of all of this are as follows:

1. Users of the DOS partition, under NetView/PC must be made aware that on DOS

critical errors, the carry bit will be set on return from a DOS Function call and
the AL register will have a value representing the modified error code.

2. DOS COMMAND.COM may display the wrong message on intervention required but
the operation is the same (see" DOS Error Codes" on page 71 and the README

file on diskettes).

3. The DOS Partition was intended for user programs designed specifically for a
NetView/PC environment. Off-the-shelf programs may not operate correctly.

Translation of NMVT Data Fields
NetView/PC APIICS Programs that build or receive NMVTS should process EBCDIC

fields in ASCII. NetView/PC translates NMVT EBCDIC fields of received NMVTS and
prior to transmission of NMVTS to the host.

The translate table used to translate data from ASCII to EBCDIC is shown in Figure 33
on page 73. The translate table used to translate data from EBCDIC to ASCII is
shown in Figure 34 on page 73. These tables are used to translate all fields of
NMVTS that are designated as EBCDIC only fields by the SNA architecture. The tables
are the same as these listed in the 3278179 Emulation Control Program Users
Guide for the 3278/78 Emulation Control Program, 6024134.

72 NetView/PCTM APIICS

0 1 2 3 4 5 6 7 8 9 A B C 0 E F 0 1 2 3 4 5 6 7 8 9 A B C D E

o 00 01 02 03 37 20 2E 2F 16 05 25 OB OC 00 OE OF o 00 01 02 03 9C 09 86 7F 97 80 8E OB OC OD OE

1 10 11 12 13 3C 3D 32 26 18 19 3F 27 lC 10 IE IF 1 10 11 12 13 9D 85 08 87 18 19 92 8F lC 10 IE

2 40 5A 7F 7B 5B 6C 50 70 40 50 5C 4E 6B 60 4B 61 2 80 81 82 83 84 OA 17 IB 88 89 8A 8B 8C 05 06

3 FO F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F 3 90 91 16 93 94 95 96 04 98 99 9A 9B 14 15 9E

4 7C Cl C2 C3 C4 C5 C6 C7 C8 C9 01 02 03 04 05 06 4 20 AO Al A2 A3 A4 A5 A6 A7 A8 5B 2E 3C 28 2B

5 07 08 D9 E2 E3 E4 E5 E6 E7 E8 E9 4A EO 4F 5F 60 5 26 A9 AA AB AC AD AE AF BO Bl 21 24 2A 29 3B

6 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 6 2D 2F B2 B3 B4 B5 B6 B7 B8 B9 7C 2C 25 5F 3E

7 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 CO 6A DO Al 07 7 BA BB BC BD BE BF CO Cl C2 60 3A 23 40 27 3D

8 20 21 22 23 24 15 06 17 28 29 2A 2B 2C 09 OA IB 8 C3 61 62 63 64 65 66 67 68 69 C4 C5 C6 C7 C8

9 30 31 lA 33 34 35 36 08 38 39 3A 3B 04 14 3E El 9 CA 6A 6B 6C 60 6E 6F 70 71 72 CB CC CD CE CF

A 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 A D1 7E 73 74 75 76 77 78 79 7A 02 D3 04 05 06

B 58 59 62 63 64 65 66 67 68 69 70 71 72 73 74 75 B D8 09 OA DB DC DO DE OF EO E1 E2 E3 E4 E5 E6

C 76 77 78 80 8A 8B 8C 80 8E 8F 90 9A 9B 9C 90 9E C 7B 41 42 43 44 45 46 47 48 49 E8 E9 EA EB EC

D 9F AO AA AB AC AD AE AF BO Bl B2 B3 B4 B5 B6 B7 D 7D 4A 4B 4C 40 4E 4F 50 51 52 EE EF FO F1 F2

E B8 B9 BA BB BC BD BE BF CA CB CC CD CE CF DA DB E 5C 9F 53 54 55 56 57 58 59 5A F4 F5 F6 F7 F8

F DC DD DE DF EA EB EC ED EE EF FA FB FC FD FE FF F 30 31 32 33 34 35 36 37 38 39 FA FB FC FD FE

Figure 33. ASCII to EBCDIC Translation Figure 34. EBCDIC to ASCII Translation

Naming Conventions
The naming conventions used for NetView/PC components, panels, and messages
are included with this document. Users are encouraged to follow them for their
own NetView/PC applications, so that naming conventions will be consistent for all
NetView/PC products and applications.

NetView/PC Prefix
All NetView/PC modules, procedures, panels and messages begin with a unique
prefix. The other four or five characters are descriptive of the function. The name
must be seven (7) characters long if defining the name of a main procedure or if
the code will be link-edited, otherwise the name is eight (8) characters long.

The name format is as follows:

Appendix A. APIICS Reference Information 73

F

OF

IF

07

lA

50

5E

3F

22

C9

DO

D7

E7

ED

F3

F9

FF

Panel Name

dddaaxxy where:

ddd = is the prefix.
The following prefixes are used by NetView/PC.
To avoid confusion they should not be used by
other applications.

DCJ
DUQ

DUS DUP

aa = is the IIfunction identifiers ll
:

For example:
AL is the Alert Manager
AM is the Access Method Services Manager
CS is the CSSA (Alert Router)

VA Is the Vendor API Alert Facility Interface
VB Is the Vendor API Build and Parse subroutines
VC Is the Vendor API Command Facility Interface
VD Is the Vendor API Data Facility Interface
VO Is the Vendor API Operator Communication

xx = is the unique identifier used within the function.
It will always be 100 1 for Outer
Procedures with the range of 00-99.

y = The additional character for eight (8) digit names.
It will be 0 unless needed to additionally qualify
the xx identifier.

To assist in standardizing panels and panel field names the following has been
developed for identifying functions.

Panel names must be eight (8) characters in the following format.

dddaaPXX where:

ddd = Prefix (identified at the start of this section)

aa = Function identifier. See IIModule (Outer Procedures)
/ Macro / Driver Names ll in this section.

P = indicates this is a panel name.

xx = A unique two character panel identifier
(numeric and/or alphabetic).

Panel Field Name
The fields defined in a panel must be identified with an eight (8) character name in
the following format.

74 NetView/PCTM API/CS

aapxxyyy where:

aa = Function identifier

p = indicates this is a panel field name.

xx = The panel identifier where this field resides
For variables common to more than one function
the Ipl and this identifier (xx) will be
'GML'.

yyy = A unique three character field identifier
(numeric and/or alphabetic)

NetView/PC Message Format
All messages to the operator are retrieved from one or more disk files of mes­
sages. There are two types of messages:

1. Messages retrieved from disk by EZ-VU for display on the message line of an
EZ-VU panel, and

2. Messages retrieved from disk by NetView/PC generic system support for
display as dynamic information to the operator (i.e. not on the message line of
a panel).

The DOS file specification for NetView/PC message files will use the following
format:

dddx.MSG

Where:

ddd = is the prefix

x = A for NetView/PC message files, or
B for EZ-VU message files

MSG = the required file extension

The format of messages contained in all message files is:

nnnn msgtxt. dddxnnnnt

Where:

nnnn = the unique message number within the message file
(0001-9999)

msgtxt. = the actual text of a message to the operator

dddx = The DOS filename of the message file containing the
message text (see previous paragraph on names of
message files)

t = Is the message classification, according
to the following:

Information Message. Provides the user with
feedback about the state of the application.

Appendix A. APIICS Reference Information 75

76 NetView/PCTM API/CS

Typically used to tell the user that input has
been accepted and is or has been processed.

W Warning Message. Calls the user's attention to an
to an exception condition that is not necessarily
an error.

A Action Message. Used to notify the user that an
improper action has taken place or attempted,
or that the application has had an exception
condition and requires user action. An audible
alarm must be associated with this message type.

Appendix B. Alert Major Vector Formats

Non-generic alerts use predefined screens at NetView whereas generic Alerts use
code points. A code point is a number that indexes into a table of text strings. The
strings of text are displayed on the NetView screen.

Generic Alert code paints have been defined that provide the ability to describe
error and resource types, causes, and recommended actions.

A Hybrid Alert combines a complete non-generic alert and a complete generic alert
in one Network Management Vector Transport (NMVT). Complete means that the
required subvectors for each alert type (generic or non-generic) must be met within
the NMVT. Date/time and PSID subvectors are required in both Alert types but the
requirement is satisfied by a single appearance.

Management Services Alert Major Vectors and subvectors must be built as
described in System Network Architecture Formats, GA27-3136, (formerly called
System Network Architecture Reference Summary), except use ASCII instead of
EBCDIC for all text fields and use the Intel (pc) format for unsigned 16 bit integer
(2-byte Intel Word (W)) and unsigned 32 bit integer (4-byte Intel Double Word (OW))
fields. NetView/PC will convert ASCII to EBCDIC and prepare fixed(16) and fixed(32)
fields for the host environment as required.

Non-generic Alert Format
See NetView Customization, Chapter 2, Using NMVT Support for User Written Pro­
gramming, for further information.

NetView/PC recognizes a unique (X'9F') subvector that is sent to the local Alert
Manager. The X'9F' subvector is not sent to the host when it is included in an Alert
NMVT. The Alert Router strips the X'9F' subvector from the Alert before it is sent to
the host.

Required subvectors in all Alert Major Vector NMVTS:

• X'01' - Date/Time - only one allowed per NMVT.

• X'03' - Hierarchy Name List - only one allowed per NMVT.

1. The reserved byte, byte two should be X'03'.
When X'03', NetView will only use the resource names and types in
this (HNL) subvector.
When anything else, NetView will concatenate the first two resource
names and types in this (HNL) subvector with three VTAM resource
names and types (pu name, link, and controller).

2. Five Maximum resource names and types are allowed in the HNL sub­
vector.

3. First Hierarchy Names List Entry must contain the resource (NetView/PC or
pu) name with the type identifier: 'SP , (Service Point). The resource
name is located in DOS file 'DCJSFSPN.REC'. The file has a single 11-byte
record in the following format.

resource name - Eight (8) bytes
line control - Three (3) bytes - ODOA 1AH

Appendix B. Alert Major Vector Formats 77

• X'10' - PSIO - two maximum per NMVT.

• X'11' - Multiples allowed in each PSIO subvector.

1. First PIO must have product classification of software (X'04',X'OC', or X'OE')
and the first subfield must be Software Program Product Number (X'OB')
containing the 7 Character Program Product Number (the PIO Number).

2. All product classifications are supported (X'01', X'03', X'04', X'09', X'OC',
and X'OE').

3. Only software subfields X'04', X'06', and X'OB' are supported.
4. Only hardware subfields X'OO' (format type X'11' requi red), and X'OE' are

supported.

• X'91' - Basic Alert - only one allowed per NMVT. See "Tables of Text for X'91'
Subvector Support" for more information Alert type, general cause, and spe­
cific component codes.

Note: Place the Alert description code value in bytes 7-B into bytes 9-10 and 11-12.

Optional subvectors are:

• X'OO' - Text Message - only one allowed per NMVT. All text is translated from
ASCII to EBCOIC by NetView/PC before it is sent to the host. Maximum length
allowed is 160 bytes.

• X' AO' - Detail Qualifier - three maximum per NMVT. Maximum length allowed is
B bytes. Detail Qualifiers are used only by the host. They appear on the Event
Detail panel.

Required subvector for local Alert Manager NMVTS:

• X'9F' - NetView/PC Alert subvector

Any other Subvectors included in the Major Vector will not be processed by
NetView/PC and will not be sent to the host.

An example of a NetView/PC Alert Major Vector showing the required and optional
subvectors is:

Figure 35. NetView/PC Non-generic Alert NMVT Example

Tables of Text for X'91' Subvector Support

Alert Type
The Alert Type indicates the severity of the Alert. Examples are PERMANENT,
TEMPORARY. The Alert type is displayed on the Static Alerts and Selected Alert
Details panels.

This file is indexed by byte 3 of the Basic Alert Subvector.

78 NetView/PCTM API/CS

The records of this key-sequenced data set are 11 bytes long. The first byte is the
key (the index) and the remaining 10 bytes are text description. The text
description is compressed to 10 characters for inclusion on the Static Alerts and
Dynamic Alerts panels.

For readability, blanks are shown between the key and the text. Blanks are not
included in the file.

Key Text Description

01 PERM A loss of availability to the end user that is not recovered from without intervention
ERROR external to the reporting product.

OF DELAYED The sender is reporting a previously detected Alert condition that prevented
reporting when detected.

See System Network Architecture Formats for a list of Alert types.

Figure 36. SV X'91' Alert Type Field, File: DUPALATF.TXT

General Cause Table
The general cause is included on the Dynamic Alerts panel. It is the 4th byte of the
Basic Alert subvector. This text is displayed on the Static Alerts and Selected Alert
Details panels.

Key Text

01 HARDWARE OR MICROCODE (NOT DISTINGUISHED)

18 MICROCODE OR SOFTWARE (NOT DISTINGUISHED)

See System Network Architecture Formats for a complete list of cause codes.

Figure 37. SV X'91' Cause Code Field, File: DUPALGCF.TXT

Specific Component Table
The text for the specific component is displayed on the Dynamic Alerts and Static
Alerts panels. Bytes 5-6 of the Basic Alert subvector index this Table. Examples
from this table are DASD DEVICE, LlNK:COMMON CARRIER, LOCAL MODEM,
REMOTE MODEM.

This file is indexed by bytes 5-6 of the Basic Alert Subvector.

The records of this key-sequenced data set are 64 bytes long. The fi rst 2 bytes are
the key (the index) and the remaining 62 are text. This text is displayed on the
Static Alerts and the Dynamic Alerts panels. It may be truncated on the Dynamic
Alerts, because only 43 characters are allowed for the display of Device data on
that panel, but it will be displayed in full on the Static Alert Panel.

For readability, a blank is shown between the key and the text. This blank is not
included in the file. The truncation point for Dynamic Display panel is shown in this
list.

Appendix B. Alert Major Vector Formats 79

1 2 34567890123456789012345678901234567890123456789012345678901234
Key Text

0001 BASE PROCESSOR

001 F X.21 LINK CONNECTION EXTERNAL TO THIS PRODUCT

See System Network Architecture Formats for a list of the documented component codes.

The following additional component codes are supported.

0080 TOKEN-RING LAN ERROR

0081 CARRIER SENSE MULTIPLE ACCESS (CSMA/CD) LAN ERROR

OOFO COMPUTERIZED BRANCH EXCHANGE (CBX)

OOF1 PROCESSOR

OOF2 TRUNK

OOF3 TERMINAL EQUIPMENT

00F4 ROLM APPLICATION

OOFS T1 RESOURCE MANAGER

OOF6 PRIVATE BRANCH EXCHANGE (PBX)

Figure 38. SV X'91' Specific Component Code Field, File: DUPALSCF.TXT

NetView/PC X'9F' Subvector
The NetView/PC Alert X'9F' subvector m'ust be built as described in this section.
Use ASCII unless hex (X'nn') is specified and use the Intel (pc) format for fixed(16)
fields.

Alert Desc. Prob. Cause sf

Prob. Cause sf User Cause sf Install Cause sf Failure Cause sf

The 'Cause' subfields contain:

1. One or more cause code points (indices into tables of text).

2. One or more recommended action code points.
See Figure 51 on page 86.

Figure 39. NetView/PC Alert. Format of NetView/PC Alert

Field Description

Length One (1) byte - NetView/PC Alert Subvector length.

X'9F' One (1) byte - NetView/PC Alert Subvector key.

Reserved Three (3) bytes - Must be zero.

Desc­
ription

Two (2) bytes - NetView/PC Alert Description Code Point.
NetView/PC uses the Alert Description Code point to get the ALERT DESCRIPTION it displays on
the Dynamic Alerts panel, the Static Alerts panel, the Selected Alert Details panel and the
Alert Recommended Actions panels. See Figure 46 on page 84.

Figure 40 (Part 1 of 2). NetView/PC X'9F' Subvector fields.

80 NetView/PCTM API/CS

Field Description

Subfield One or more subfields as described in Figure 41.

Figure 40 (Part 2 of 2). NetView/PC X'SF' Subvector fields.

The following subfields in the X'9F' subvector may be in any order. Each subfield
is required once. If more are present they are ignored. Multiple code points (10
max) may be placed in a subfield.

Subfield

Length

X'Ol'

code
point

Length

X'02'

count

code
point

Length

X'03'

count

code
point

Length

X'04'

count

code
pOint

Description

One (1) byte - Probable Cause subfield length.

One (1) byte - Probable Cause Subfield Key;

One or more 2 byte Probable Cause code points.

The NetView/PC Probable Cause(s) are displayed on the Selected Alert Details Panel. When
more than one probable cause code point is included in the Alert, it is the responsibility of
the sending product to ensure that they are listed in the sequence of probability. See
Figure 47 on page 84 for code point values.

One (1) byte - User Cause subfield length.

One (1) byte - User Cause Subfield Key.

One (1) byte count of User Cause code points.

One or more 2 byte User Cause code points.

The NetView/PC User Cause text advises the operator of conditions which may have caused
the Alert which he can resolve without contacting any service organization. If there are no
user causes, the cause code of NONE should be included in the Alert. If there are more than
one, it is th.e responsibility of the sending product to include the codes in order of probability.
This data is displayed on the Alert Recommended Actions Panel. See Figure 48 on page 85
for code point values.

One (1) byte - Install Cause subfield length.

One (1) byte - Install Cause Subfield Key.

One (1) byte count of Install Cause code points.

One or more 2 byte Install Cause code points.

The NetView/PC Install Cause text identifies installation errors and provides the NetView/PC
terms to be used for each condition. If no installation caused conditions apply to this Alert,
the code point for NONE should be included. If multiple installation causes are included, the
sending product must include them in the sequence of probability. This data is displayed on
the Alert Recommended Actions Panel. See Figure 49 on page 85 for code pOint values.

One (1) byte - Failure Cause subfield length.

One (1) byte - Failure Cause Subfield Key.

One (1) byte count of Failure Cause code pOints.

One or more 2 byte Failure Cause code pOints.

The NetView/PC Failure Cause text defines failing components. If more than one code point
is provided indicating that more than one component could have caused the Alert condition,
the sending product must insure that the code points are sequenced in the Alert so that the
highest probability component is first and the last code point is the least probable. This data
is displayed on the Alert Recommended Actions Panel. See Figure 50 on page 86 for code
point values.

Note: For User Cause, Install Cause, and Failure Cause, NetView/PC Recommended Action
terms are used to provide the operator with an appropriate list of recommended
actions that should be followed to resolve this alerted condition. This data is dis­
played on the Alert Recommended Actions Panel.

Figure 41. NetView/PC X'SF' Subfields.

Appendix B. Alert Major Vector Formats 81

NetView/PC Cause Subfields
The following figures describe the details of the Probable Cause, User Cause,
Install Cause, and Failure Cause subfields of the X'9F' subvector.

0 1 2&3 .. P

Ip+1 X' 0l 1 Probable Cause code point ... Probable Cause Code pOintl

The fields of this subfield are:
Byte Description

o Length of entire subfield - p+1. Minimum length is 4.

1

The Number of Probable Cause
Code points can be determined by subtracting 2 and dividing by 2.
Key X I 01 1

. 2-p One or more code points to index probable cause table.
Each code point is 2 bytes long. The first byte indexes the default
NetView/PC probable cause. The second byte indexes the
replacement NetView/PC probable cause. Note that NetView/PC
can handle a maximum of 10 code points. If more are
present they will be ignored.

Figure 42. Probable Cause subfield of NetView/PC Alert Data Subvector

0 1 2 3 & 4 ~ (2n+2) (2n)+3 & 4 .. q

Iq+1 X'02 1 #of user causes u.c.#l ... u.c.#n rec.act#l l···lrec.act#x\

The format of this subfield is as follows:
Byte Description

o Length of entire subfield - q+1. Minimum length is 5 bytes.
1 Key - X' 02 1

2 Number (n) of user causes in this subfield.
The minimum for n is 1. Note that NetView/PC can handle a
maximum of 10 code points. If more are present they will be
ignored.

3 thru User Cause Code points (2 bytes each)
(2n+2)

(3+2n) Recommended Action Code Points (2 bytes each)
thru q The number of Recommended Action Code Points can be by

determined by subtracting 2*n from qt2 and dividing by 2.
(NetView/PC will only handle a maximum of 10 code points.)

Figure 43. User Cause Subfield of the NetView/PC Alert Data Subvector

82 NetViewlPC™ API/CS

0 1 2 3 & 4 ~ (2n+2) (2n)+3 & 4 ~ r

I r+l X'03' #of ins t. causes 1. c . #11 ... 1 i . c . #n rec.act#II···lrec.act#xl

The following is a description of the bytes of this subfield:
Byte Description

o Length of entire subfield - r+l. Minimum length is 5 bytes.
1 Key - X'03'
2 Number (n) of install causes in this subfield. If there are no

i nsta 11 causes the code poi nt for "NONE" must be i ncl uded.
(NetView/PC will only handle a maximum of 10 code points.)

3 thru Install Cause Code points (2 bytes each)
(2n+2)

(3+2n) Recommended Action Code Points (two bytes each)
through r The number of Recommended Action Code Points can be

determined by subtracting 2*n from r-2 and dividing by 2.
(NetView/PC will only handle a maximum of 10 code points.)

Figure 44. Install Cause Subfield of the NetView/PC Alert Data Subvector

o 1 2 3 & 4 ~ (2n+2) (2n)+3 & 4 ---.~ s

s+1 X'04' #of fail.causes f.c.#1 ... f.c.#n rec.act#1 ...

The following is a description of the bytes in this subfield:
Byte Description

o Length of entire subfield - s+l. Minimum length is 5 bytes.
1 Key - X'04'
2 Number (n) of failure causes in this subfield. If there are no

failure causes the code point for "NONE" must be included.
(NetView/PC will only handle a maximum of 10 code points.)

3 thru Failure Cause Code points (2 bytes each)
3+(2n-l)

(3+2n) Recommended Action Code Points (2 bytes each)
thru s The number of Recommended Action Code Points can be

determined by subtracting 2*n from s-2 and dividing by 2.
(NetView/PC will only handle a maximum of 10 code points.)

Figure 45. Failure Cause Subfield

NetView/PC ALERT SV X'9F' Code Point File: DUPALGTF.TXT
The following tables have blanks between the fields of the records. The blanks are
added for readability and are not in the file.

The numbers across the page above each list of records indicates byte positions.
The fi rst 5 bytes are hex representations and 6 to the end are ASCII characters.

Appendix B. Alert Major Vector Formats 83

ALERT Description Records

Type Code Seq. Cont-
PoInt no. inue
2-3 4 5 6 through 67 (62 character message)

01 0100 01 FF ABNORMAL TERMINATION

01 0200 01 FF ACCESS ERROR

01 0300 01 FF ACTIVATION ERROR

01 0400 01 FF ADDRESS ERROR

01 0500 01 FF BEACON ERROR

01 0600 01 FF BUFFER ERROR

01 0700 01 FF BUS ERROR

01 0800 01 FF COMMAND REJECTED

01 0900 01 FF CONNECTION ERROR

01 OAOO 01 FF DATA READ ERROR

01 OBOO 01 FF DATA WRITE ERROR

01 OCOO 01 FF EQUIPMENT MALFUNCTION

01 ODOO 01 FF INTERVENTION REQUIRED

01 OEOO 01 FF LOST DATA ERROR

01 OFOO 01 FF NOTIFICATION

01 1000 01 FF OVERRUN ERROR

01 1100 01 FF PERFORMANCE DEGRADED

01 1200 01 FF POWER LOSS

01 1300 01 FF PROCEDURAL ERROR

01 1400 01 FF PROGRAM ABEND

01 1500 01 FF PROGRAM ERROR

01 1600 01 FF PROTOCOL ERROR

01 1700 01 FF SPECIFICATION ERROR

01 1800 01 FF THERMAL ERROR

01 1900 01 FF THRESHOLD EXCEEDED

01 1AOO 01 FF TIMEOUT ERROR

01 1800 01 FF UNDERRUN ERROR

01 1COO 01 FF UNDETERMINED ERROR

Figure 46. X'9F' subvector Alert Description records

Type Code Seq. Cont-
Point no. inue
2-3 4 5 6 through 67 (62 character message)

02 0100 01 FF ADAPTER

02 0200 01 FF APPLICATION PROGRAM

02 0300 01 FF ATTACHMENT

02 0400 01 FF CABLE

02 0500 01 FF CALLED NUMBER

02 0600 01 FF CAPACITY EXCEEDED

02 0700 01 FF CHANNEL

Figure 47 (Part 1 of 2). Probable Cause records

84 NetView/PCTM API/CS

Type Code Seq. Co nt-
Point no. Inue
2-3 4 5 6 through 67 (62 character message)

02 0800 01 FF COMMUNICATIONS

02 0900 01 FF CONGESTION

02 OAOO 01 FF CONTROL PROGRAM

02 OBOO 01 FF CONTROLLER

02 OCOO 01 FF DATA

02 0000 01 FF DEFINITION

02 OEOO 01 FF DEVICE

02 OFOO 01 FF FUNCTION NOT SUPPORTED

02 1000 01 FF LINE

02 1100 01 FF MEDIA

02 1200 01 FF MODEM

02 1300 01 FF NONE

02 1400 01 FF PROCESSOR

02 1500 01 FF STORAGE

02 1600 01 FF UNAUTHORIZED

02 1700 01 FF UNDETERMINED

02 1800 01 FF USER

Figure 47 (Part 2 of 2). Probable Cause records

Type Code Seq. Cont-
Point no. Inue
2-3 4 5 6 through 67 (62 character message)

03 0100 01 FF CABLE NOT CONNECTED

03 0200 01 FF CONNECTION NOT ESTABLISHED

03 0300 01 FF CONTAMINATION

03 0400 01 FF DUMP REQUESTED

03 0500 01 FF FILE FULL

03 0600 01 FF INCORRECT PROCEDURE

03 0700 01 FF INTERVENTION REQUIRED

03 0800 01 FF LINE NOT ENABLED

03 0900 01 FF MEDIA

03 OAOO 01 FF MEDIA JAM

03 OBOO 01 FF MEDIA SUPPLY EXHAUSTED

03 OCOO 01 FF NONE

03 0000 01 FF NORMAL CONDITION

03 OEOO 01 FF OPERATOR GENERATED

03 OFOO 01 FF OFF LINE

03 1000 01 FF POWER OFF

Figure 48. User Cause records

Appendix B. Alert Major Vector Formats 85

Type Code Seq. Cont-
Point no. inue
2-3 4 5 6 through 67 (62 character message)

04 0100 01 FF CABLE CONNECTION INCORRECT

04 0200 01 FF FUNCTION NOT PERMITTED

04 0300 01 FF INCORRECT HARDWARE CONFIGURATION

04 0400 01 FF INCORRECT SOFTWARE GENERATION

04 0500 01 FF MISMATCH BETWEEN HARDWARE AND SOFTWARE

04 0600 01 FF NONE

Figure 49. Install Cause records

Type Code Seq. Cont-
Point no. inue
2-3 4 5 6 through 67 (62 character message)

05 0100 01 FF ADAPTER

05 0200 01 FF APPLICATION PROGRAM

05 0300 01 FF CABLE

05 0400 01 FF CHANNEL

05 0500 01 FF COMMUNICATIONS

05 0600 01 FF CONTROL PROGRAM

05 0700 01 FF CONTROLLER

05 0800 01 FF DATA

05 0900 01 FF DEVICE

05 OAOO 01 FF LINE

05 OBOO 01 FF MEDIA

05 OCOO 01 FF MODEM

05 0000 01 FF NONE

05 OEOO 01 FF PROCESSOR

05 OFOO 01 FF STORAGE

Figure 50. Failure Cause records

Type Code Seq. Cant-
Point no. inue
2-3 4 5 6 through 67 (62 character message)

06 0100 01 FF CONTACT APPROPRIATE SERVICE REPRESENTATIVE

06 0200 01 FF CORRECT INSTALLATION PROBLEM

06 0300 01 FF CORRECT AND RETRY

06 0400 01 FF IF PROBLEM PERSISTS THEN DO THE FOLLOWING

06 0500 01 FF IF PROBLEM RECURS THEN DO THE FOLLOWING

06 0600 01 FF PERFORM PROBLEM DETERMINATION PROCEDURES

06 0700 01 FF PERFORM PROBLEM RECOVERY PROCEDURES

06 0800 01 FF OBTAIN DUMP

06 0900 01 FF REVIEW DETAIL DATA

06 OAOO 01 FF RUN APPROPRIATE TEST

06 OBOO 01 FF RUN APPROPRIATE TRACE

Figure 51. Recommended Action records

86 NetView/PCTM API/CS

Generic Alert Format
Required subvectors in generic alerts5 are:

• X'01' - Date/Time - only one allowed per NMVT. Only local Date/Time subfield
X'10' is supported.

• X'05' - Hierarchy/Resource List - only one allowed per NMVT. Only the Hier­
archy Name List X I10 1 subfield is supported.

1. The Hierarchy complete indicator bit (bit zero) can be set as described
below:

When zero, NetView will only use the resource names and types in this
(HNL) subfield.
When one, NetView will concatenate the first two resource names and
types in this (HNL) subvector with three VTAM resource names and types
(pu name, link, and controller).

2. Five Maximum resource names and types are allowed in the HNL subfield.
3. First Hierarchy Names List Entry must contain the resource (NetView/PC or

pu) name with the type identifier: 'SP , (Service Point). The resource
name is located in DOS file 'DCJSFSPN.REC'. The file has a single 11 byte
record in the following format.

resource name - Eight (8) bytes
line control - Three (3) bytes - ODOA1AH

• X'10' - PSID - two maximum per NMVT.

• X'11' - Multiples allowed in each PSID subvector.

1. All product classifications are supported (X'01', X'03', X'04', X'09', X'OC',
and X'OE').

2. All software subfields are supported (X 1021 ,X 1 04 1 ,X 1 06 1,
X ' 07 1 ,X ' 08 1 ,X ' 09 1).

3. All hardware subfields are supported (X 100 1 ,X 1 01 1 ,X 1 08 1, XI OE I).

• X'92' - Generic alert data - only one allowed per NMVT.

• X'93' - Probable Causes - only one allowed per NMVT.

• Item One (1) or two (2) below:

1. One or more of the following may be present in any combination.

XI 94 1 - User Causes

XI 95 1 - I nstall Causes

X ' 96 1 - Failure Causes

2. When this subvector is present, X 1941 , X 195 1 , and X 196 1 may not be
present.

- XI 97 1 Cause Undetermi ned

5 See System Network Architecture Formats.

Appendix B. Alert Major Vector Formats 87

Optional subvectors are:

• X'31' - Self-Defining Text Message - only one allowed per NMVT. Subfields
X I 01 1, X 111 1, X 121 1, and X 130 I are supported. All text is translated from ASCII

to EBCDIC by NetView/PC before it is sent to the host.

• X'51' - LAN Link Connection Subsystem Data - only one allowed per NMVT. Sub­
fields X ' 02 1 through X'OA I and X ' 23 1, X ' 24 1, X 126 1, and X ' 28 1 are supported.
All text is translated from ASCII to EBCDIC by NetView/PC before it is sent to the
host.

• X'8C' - SDLC Link Station Data - only allowed one per NMVT. Subfields X I 01 1

through X I 08 1 are supported.

• X'98' - Detailed Data - only one allowed per NMVT. All text is translated from
ASCII to EBCDIC by NetView/PC before it is sent to the host.

• Network Alert common subfields.

The following Alert XIOOOOI common subfields can be used in combination with
supported subvectors as documented in the SNA Architecture.

X 1811 - Recommended Actions

X ' 82 1 - Detailed Data

X ' 83 1 - Product Set ID Index

Any other Subvectors included in the Major Vector will not be processed by
NetView/PC and will not be sent to the host.

An example of a NetView/PC generic alert major vector showing the required and
optional subvectors is:

Figure 52. NetView/PC Generic Alert NMVT Example

88 NetView/PCTM APIICS

Appendix C. Service Point Command Data

API/CS Supported NetView Commands

LINKDATA
The LlNKDATA command obtains data from a service point.

The format of the LlNKDATA command is:

L1NKDATA

where:

SP

APPL

LINE

RESOURCE

UN

ENTRYLCC

RD

EXITLCC

SP = service point name,
APPL = application name,
LINE = line namelRESOURCE = resource name
[,UN = using nodel,ENTRYLCC = entry LCC]
[,RD=remote device (node) I. EXITLCC = exit LCC]

specifies the name of the Service Point to execute the
command.

specifies the name of the LCSM to execute the command.

identifies the linename of the link connection.

identifies the name of link connection component within
a link connection.

identifies the name of the primary link station for an
unbalanced mode link or either node that contains the
link station of a balanced mode link.

identifies the name of the first (entry) link connection
component of a link connection.

identifies the name of the secondary (adjacent) link
station for an unbalanced mode link or the other node
containing a link station of a balanced mode link.

identifies the name of the last (exit) link connection
component of a link connection.

Appendix C. Service Point Command Data 89

Usage Notes

ENTRYLCC and EXITLCC can be used to narrow down the data received. This
command can be issued from a CLiST to help automate problem determination and
error recovery. If LlNKDATA is issued from a CLlST, the resulting data is returned to
the CLiST for its use. If LlNKDATA is issued from a command line, the results are dis­
played on your terminal on one or more LlNKDATA REPLY panels.

Example

To send a LlNKDATA command to service point NMWS1 to retrieve data on line LlN3,

enter:

LINKDATA SP=NMWSl,APPL=APPL07,LINE=LIN3

APPLO? is the LCSM that will execute the command.

90 NetView/PCTM APIICS

LINKPD
The LlNKPD command requests a service point to do problem determination anal­
ysis on a given link or link segment.

The format of the LlNKPD command is:

L1NKPD

where:

SP

APPL

LINE

RESOURCE

UN

ENTRYLCC

RD

EXITLCC

Usage Note

SP = service point name,
APPL = application name,
LINE = line namelRESOURCEresource name
[,UN = using nodel,ENTRYLCC=entry LCC]
[,RD = remote device (node)I,EXITLCC=exit LCC]

specifies the name of the Service Point to execute the
command.

specifies the name of the LCSM to execute the command.

identifies the linename of the link connection.

identifies the name of link connection component within
a link connection.

identifies the name of the primary link station for an
unbalanced mode link or either node that contains the
link station of a balanced mode link.

identifies the name of the first (entry) link connection
component of a link connection.

identifies the name of t~e secondary (adjacent) link
station for an unbalanced mode link or the other node
containing a link station of a balanced mode link.

identifies the name of the last (exit) link connection
component of a link connection.

ENTRYLCC and EXITLCC can be used to narrow down the data received. This
command can be issued from a CLiST to help automate problem determination and
error recovery. If LlNKPD is issued from a CLlST, the resulting data is returned to the
CLiST and to your terminal a~ a message or messages.

Example

To send a LlNKPD command to service point (sp) NMWS1 to do a problem analysis on
line LlN3, enter:

LINKPD SP=NMWS1,APPL=APPL07,LINE=LIN3

APPL07 is the link connection subsystem manager that will execute the command.

Appendix C. Service Point Command Data 91

LINKTEST
The LlNKTEST command requests a service point to test a given link or link segment.

The format of the LlNKTEST command is:

LlNKTEST

where:

SP

APPL

LINE

RESOURCE

UN

ENTRYLCC

RD

EXITLCC

SELFCNT

Usage Note

SP = service point name,
APPL = application name,
LINE = line namel RESOURCE = resource name
[,UN=using nodel,ENTRYLCC=entry LCC.]
[,RD = remote device (node)LEXITLCC = exit LCC]
[,SELFCNT = {number of repetitionsl1)]

specifies the name of the Service Point to execute the
command.

specifies the name of the LCSM to execute the command.

identifies the linename of the link connection.

identifies the name of link connection component within
a link connection.

identifies the name of the primary link station for an
unbalanced mode link or either node that contains the
link station of a balanced mode link.

identifies the name of the first (entry) link connection
component of a link connection.

identifies the name of the secondary (adjacent) link
station for an unbalanced mode link or the other node
containing a link station of a balanced mode link.

identifies the name of the last (exit) link connection
component of a link connection.

specifies the number of self test repetitions to be exe­
cuted. The range is 1-255, with default = 1.

ENTRYLCC and EXITLGG can be used to narrow down the data received. This
command can be issued from a GLiST to help automate problem determination and
error recovery. If LlNKTEST is issued from a GLlST, the resulting data is returned to
the GLiST for its use. If LlNKTEST is used from a command line, the results are dis­
played at your terminal on one or more LlNKTEST REPLY panels.

Example

To send a LlNKTEST command to service point NMWS1 to perform a test on line LlN3,

enter:

LINKTEST SP=NMWSl,APPL=APPL07,LINE=LIN3

APPL07 is the application that will execute the command.

92 NetView/PCTM API/CS

RUNCMD
The RUNCMO routes commands to service points for execution by one of the service
point applications.

The format of the RUNCMO is:

RUNCMD

where:

SP

APPL

command string

SP = service point name,
APPL= application name,
com m and_stri ng

is the network name of the service point which is to
receive the given command.

is the name of the application that is to execute the
given command.

is the command to be executed.

Note: The limit on the length of the RUNCMO is 240 characters.

Usage Note

The parameters on the RUNCMO are positional. The given command (command
string) must be the last parameter and may be any format.

Example:

RUNCMD SP=SP01, APPL=APPL02, DISPLAY LINES

Response:

The normal response to RUNCMO will either be message(s) from the service point
application or message OSl2601 RUNCMO COMPLETE when no messages are returned
from the service point application. The messages returned may be command
facility or service point application messages.

Appendix C. Service Point Command Data 93

Service Point Command vectors
This chapter shows the major vectors and the subvectors used for Service Point
commands and responses. Subvectors unique to a major vector are shown with
the major vector they are used with. Common subvectors are described in
"Common Subvectors" on page 102.

You must be familiar with the SNA formats as described in book listed in on
page vii, to understand the vectors described in this chapter.

NMVT Length Algorithms
The maximum length of an NMVT supported by NetView/PC is 512 bytes. The fol­
lowing figures describe how to determine the size of an NMVT by figuring the size of
overhead and each kind of information contained in the NMVT.

Max NMVT length = 512
- 43
- 2*(# of Prob eause variables)

For each element of this response (LeC NUMBER):
10
Resource Type Length (max = 8)
Resource Name Length (max = 8)

Figure 53. Max NMVT length possible for the lINKPD "algorithm"

Max NMVT length = 512
- 38

For each element of this response (Lee NUMBER):
- 10
- Resource Type Length (max = 8)
- Resource Name Length (max=8)

For each Lee data of this element (LeC DATA NUM):
6
LCe Data Value Length
LCe Data Name Length

Figure 54. Max NMVT length possible for the lINKDATA "algorithm"

94 NetView/PCTM APIICS

NMVT Header

Max NMVT length = 512
- 54

For each element of this response (Lee NUMBER):
10

- Resource Type Length (max = 8)
- Resource Name Length (max = 8)

For each Lee data of this element (Lee DATA NUM):
6
Lee Data V~lue Length
Lee Data Name Length

Figure 55. Max NMVT length possible for the PUT LlNKTEST "algorithm"

The format of the NMVT header is shown in Figure 56. The header precedes the
first major vector of every NMVT.

3 2 2 1

(NMVT Header is described in
System Network Architecture Formats

I XI 41038D I Ret PRID FLAGS

Figure 56. NMVT Header

Service Point Command Major Vectors

RUNCMD Vectors

The command and response major vectors supported by the APIICS, and their
unique subvectors are shown in the following sections. The major vectors and sub­
vectors for each command are shown and are followed by the corresponding
response major vectors and unique subvectors.

1 2 3 4 --------.. - m

m + 1 8061 Subvectors
06 -Name 1; st
31 -Self defining text

Figure 57. RUNCMD

Appendix C. Service Point Command Data 95

o 1 2 3 4

m + 1 0061 Subvectors
44 -Reply count
70 -Sense data

Figure 58. Sense Reply to RUNCMD

o 1 2 3 4

m + 1 0061 Subvectors
44 -Reply count

m + 1 1300 Subvectors
0A -Qualified message

or
31 -Self defining text

Multiple X'31 1 and X' 0A ' subvectors are allowed

Figure 59. Formatted Response message to RUNCMD

o 1 2 3 4

m + 1 0061 Subvectors
44 -Reply count

m + 1 1309 Unformatted data

Figure 60. Unformatted Response message to RUNCMD

Unsolicited Operator Message Vectors

o 1 2 3 4

m + 1 006F Subvectors
06 - Name list

m + 1 1300 Subvectors
0A -Qualified message

or
31 -Self defining text

Multiple X'31 1 and X' 0A ' subvectors are allowed

Figure 61. Send Message To Operator

96 NetView/PCTM API/CS

m

m

m

m

LINKPD Vectors

o 1 2 3 4 m

m + 1 8062 Subvectors
06 -Name list

Figure 62. LlNKPD

o 1 2 3 4 m

m + 1 0062 Subvectors
44 -Reply count
7D -Sense data

Figure 63. Sense Response to LlNKPD

o 1 2 3 4 m

m + 1 0062 Subvectors
44 -Reply count

m + 1 BOA .Subvectors
82 -Link Segment Status
93 -Probable Cause

m + 1 1307 Subvectors
05 -Hierarchy/Resource

List

m + 1 BOB

Code one 1307 MV per resource
Begin Link Connection Component Descriptors Major Vector X'130A'
Link Connection Component Descriptor Major Vector X'1307'
End Link Connection Component Descriptors Major Vector X'130B'

Figure 64. Response to LlNKPD

o

p+l

1 2

82 Code

Status Codes:
00 -No failure detected
01 -Detected failure with failing resource isolated
02 -Detected failure with location not isolated
03 -Detected failure upstream from managed segment
04 -Detected failure within the managed segment
05 -Detected failure downstream from managed segment

Figure 65. Link Status Subvector

Appendix C. Service Point Command Data 97

LINKDATA Vectors

1 2 3 ----------------+~ p

p+l 93 Code Point I. Code Point

One or more two byte probable cause code point allowed

Figure 66. Probable Cause Subvector

1 2 3 4

m + 1 8063 Subvectors
06 -Name list

Code one or more 80 SV per resource (1307 MV)

Figure 67. LlNKDATA

1 2 3 4

m + 1 0063 Subvectors
44 -Reply count
70 -Sense data

Figure 68. Sense Response to LlNKDATA

1 2 3 4

m + 1 0063 Subvectors
44 -Reply count

m + 1 130A

m + 1 1307 Subvectors

m

m

m

05 -Hierarchy/Resource
List

80 -Link Connection
Component Data

m + 1 130B

Begin Link Connection Component Descriptors Major Vector X' 130A '
Link Connection Component Descriptor Major Vector X' 1307 1

End Link Connection Component Descriptors Major Vector X' 130B '

Code one 1307 MV per resource
Code one or more 80 SV per resource (1307 MV)

Figure 69. Response to L1NKDATA

98 NetView/PCTM APIICS

LINKTEST Vectors

o 1 2 3 -----... ~ P

p+1 80 Subfields
01 -LCC Name
02 -LCC Hex Value
03 -LCC Character Value

NOTE: Only one of subfields
2 through S is allowed

04 -LCC Decimal Value
0S -LCC Bit string

SPCI Parameter LCC Data Subfields X' 01 1
- X' 0S '

o 1 2 -------... ~ q

q+1 01 Data to be displayed
to (Decimal data is
0S from 1 to 4 bytes)

Figure 70. LCC data subvector

o 1 2 3 4 m

m + 1 8064 Subvectors
06 -Name list
80 -Test set up data

Figure 71. L1NKTEST

o 1 2 ----.~ p

p+1 80 Subfields
01 - Test Count

SPCI Self Test Count Subfield X'01 1

1 2 3

04 01 Test Count

Figure 72. Test Set Up Data Subvector

Appendix C. Service Point Command Data 99

1 2 3 4 m

m + 1 0064 Subvectors
44 -Reply count
7D -Sense data

Figure 73. Sense Response to LlNKTEST

Begin Link Connection Component Descriptors Major Vector X' 130A '
Link Connection Component Descriptor Major Vector X' 1307 1

End Link Connection Component Descriptors Major Vector X' 130B '
o 1 2 34m

m + 1 0064 Subvectors
44 -Reply count
81 -Link Test Results

m + 1 130A

m + 1 1307 Subvectors
05 -Hierarchy/Resource

List
80 -Link Connection

Component Data

m + 1 130B

Code one 1307 MV per resource
Code one or more 80 SV per resource (1307 MV)

Figure 74. Response to LlNKTEST

100 NetView/PCTM API/CS

o 1 2 3-----..... P

p+1 81 Subfields
01 -Execution Indicator
02 -Test Type
03 -Count Requested
04 -Count Executed

SPCI Parameter Link Test Execution Indicator Subfield Xl 01 1

0 1 2

03 01 Code

00 - Passed
01 - Failed
02 - Indeterminate

SPCI Parameter Link Test Test Type Subfield XI 02 1

o 1

03 02

2

Code

00 - Background self test
01 - Immediate self test

SPCI Parameter Link Test Count Requested Subfield XI 03 1

o 1 2 3

04 03 Count

SPCI Parameter Link Test Count Executed Subfield XI 04 1

o 1 2 3

04 04 Count

Figure 75. Link Test Results Subvector

Appendix C. Service Point Command Data 101

1

p+1 80

2 3 ---,----.. ~ p

Subfields
01 -LCC Name
02 -LCC Hex Value
03 -LCC Character Value
04 -LCC Decimal Value
05 -LCC Bit string

NOTE: Only one of subfields
2 through 5 is allowed

SPCI Parameter LCC Data Subfields X'01 1
- X' 05 1

1 2 ----------.~ q

q+1 01 Data to be d~splayed
to (Decimal data is
05 from 1 to 4 bytes)

Figure 76. LCC data subvector

Common Subvectors
The subvectors in this section have the same (common) meaning and use wher­
ever they appear in NMVTs.

1 2 3 -----.~ p

p+1 05 Subfields
01 -LCC Identification

SPCI Parameter LCC Identification Subfield X'01 1

1 2 ----------.~ q

q+1 01 LCC Type ~ LCC Name

SPCI Parameter LCC Type or LCC Name Entry

1 ----------..~ r

r+1 Name «= 8 chars)

LCC Type should be standard nomenclature

Figure 77. Hierarchy/Resource List Subvector

102 NetView/PCTM APIICS

1 2 3

p+1 06 Subfields
01 - Link Segment List
50 - Application Name

SPCI Link Segment List Subfield X'01'

0 1 2 3 q

INote
:

Not used with
q+1 01 List Entry 006F or 8061

Major Vectors

SPCI Link Segment List Entry

1 2 3 4 5 6 78

I r LCC name (length of r (r= 1 to <= 8)

Multiple List Entries Allowed

SPCI Application Name Subfield X'50'

1 2 ~ q

q+1 50 Name «=8 chars)

Figure 78. Name List Subvector

Appendix C. Service Point Command Data 103

1 2 3 -----+~ p

p+1 0A Subfields
01 -Message ID
02 -Replacement Data

SPCI Parameter Message ID Subfield Xl 01 1

1 2 3 4 5 6 7 8

09 01 Formatted Message ID

format: aaannnn where a=alpha n=numeric
it will be used to access the host message table

SPCI Parameter Replacement Text Subfield XI 02 1

q+1

1 2 -------+~ q

02 Text

02 subfields must equal the expected number defined
in the host message

Figure 79. Qualified Message Subvector

1 2 -------------------+~ P

p+1 31 Message text (240 bytes max)

Figure 80. Text Message Subvector

104 NetView/PCTM APIICS

o 1 2 3 ------+ .. p

p+1 44 Subfields
01 -Reply Count
10 -Buffer count
11 -Max RU size

Reply Count Subfield X'01 1

o 1 2 3

I 04 I 01 I 00 01 I
Buffer Count Subfield X'10 '

o 1 2 3 4 5

I 06 I 10 I 00 00 00 01

Max RU size Subfield X'11 1

o 1 2 3 4 5

I 06 I 10 I 00 00 02 oe

Figure 81. Reply Count Subvector

o 1 2 3 4 5

06 70 Code 1 Ja Code 2

Figure 82. Sense Data Subvector

Appendix C. Service Point Command Data 105

106 NetView/PCTM API/CS

Appendix D. Suggested Command Formats

Suggested Physical Device Management Commands

LINK-CHANGE

The following descriptions provide a suggested set of commands for common func­
tions needed in telecommunications device management. They fall into verbs for
the management of physical devices and verbs for the management of the data
bases used to track the configuration of the physical devices. There is also a verb
for encapsulating those commands not covered in the other two categories.

Following the verb descriptions is a section suggesting the encoding of the verbs in
a language free manner.

Note: NetView CLiSTs will only accept eight character names.

LINK - CHANGE changes the connection between two resources where such a con­
nection can be changed. It is used in environments such as a matrix switch to
establish or disconnect a connection or in a multiplexer to connect a port to a slice
of the available band width or reset that connection. LlNKCHNG is the primary
command for effecting the physical network changes which are needed in recovery
actions. LlNKCHNG SP = service point name
FROM = resource 1 name
TO = resource 2 name
ACTION ={CONNECTIDISCONN}

Purpose of Command
This command is used to change the connectivity relationships between existing
physical resources.

Actions Taken by Receiver

Inputs:

Outputs:

The named connection is to be made or broken according to the action requested.

ACTION

FROM

TO

Return code

CONNECT establishes a connection between the FROM and TO

resources. DISCONN disconnects the FROM and TO resources. This
parameter is required.

resource 1 name - the name of the first resource in the pair whose
connectivity is to be changed.

resource 2 name - the name of the second resource in the pair whose
connectivity is to be changed.

Indication of whether the command was successful or not.

Appendix D. Suggested Command Formats 107

LINK-DISPLAY
LINK-DISPLAY would cause the transmission of stored or actively collected data to
be forwarded as a reply. The application requesting this data would have to be
intimately familiar with the device for which the data is reported, but such an appli­
cation would consequently be able to make the most detailed decisions regarding
the actions to take for that device.

The data collected could be error data, response time data, accounting data, etc.
LlNKDISP SP = service name point
LlNE=(line name) nknm1

Purpose of Command
This command provides a means of collecting device control, statistics, and error
data for a particular resource. This capability allows detailed problem determi­
nation of a resource to be performed by an operator or GLiST. The GLiST usefulness
is reduced, due to the nature and amount of data being returned, so that only the
success or failure of the command is available to the GLiST.

Actions Taken by Receiver

Inputs:

Outputs:

Upon receipt of this command, the receiver will gather the requested data for the
resources within its scope of control, returning the data gathered in a self-defining
format.

nknm2

Source information

self-defining data

information indicating the name of the Service Point and
the resource to which the data pertains.

data in the form of doublets containing the name of the
field being returned and the value of the field being
returned. An attribute type and a length will be associ­
ated with each of these items to allow the sender to inter­
pret the information received on the reply.

Configuration Data Base Management Commands

RESOURCE-DISPLAY
RESOURGE- DISPLAY requests the return of data from the data base that a product
uses to track the physical status of a link component. Like its counterpart LlNKDISP,

RESDISP returns device dependent data. Unlike LlNKDISP, RESDISP returns the state
remembered rather than the state which is interrogated.

This is effective in identifying those cases where the program and the device get
out of synchronization. It is also effective in recovering information the device
does not allow to be queried or which the application uses but does not actually
provide to the device interface.
RESDISP SP = service point name
RESOURCE = resource name
NAME = field name

108 NetView/PCTM API/CS

Purpose of Command
This command provides the capability to retrieve information stored by the
receiver for a particular resource.

Actions Taken by Receiver

Inputs:

Outputs:

The receiver locates the detail information for the specified resource, formats the
information into a self-defining format, and replies to the sender with the self­
defining data.

RESOURCE the name of the resource for which the field names are to be dis­
played.

NAME the name of the field in the database record to be displayed. If no
NAME parameter is specified, the entire detail information available
for the specified resource will be returned.

Source information information indicating the name of the Service Point and
the resource to which the data pertains.

self-defining data data in the form of doublets containing the name of the
field being returned and the value of the field being
returned. An attribute type and a length will be associ­
ated with each to allow the sender to interpret the infor­
mation received on the reply. An indication that the
requested field's value was not retrieved will be sent in
the value portion of the doublet if the field name is not
known by the receiver.

RESOURCE-CHANGE
RESOURCE - CHANGE provides for the case where the data base provided for manage­
ment of a device needs to be updated. In the previous case where the device and
the data base were out of synchronization, this command can restore the data
base. (L1NKCHNG can be used where the device is to be reset to match the data
base.)

The use in recovery is to reconfigure a network to bypass errors.
RESCHNG SP = service point name
RESOURCE = (resource name)
NAME = (field name)
VALUE=(field value)

Purpose of Command
This command will change parameters regarding a resource. Any parameter that
is known by the receiver for the particular resource may be changed, even if the
parameter was not previously initialized.

Actions Taken by Receiver
The receiver will locate the detail information using the specified resource name
and convert the value specified into a format defined for the field by structures
stored in the receiver.

Appendix D. Suggested Command Formats 109

Inputs:

Outputs:

PATH-DISPLAY

RESOURCE the name of the resource for which the field names are to be
changed.

NAME

VALUE

Return code

the name of the field in the database record to be changed.

the value to assign to the field specified by NAME.

Indication of whether the command was successful or not.

PATH-DISPLAY is useful where the application is maintaining the names of multiple
link components and the connections among them. The meaning of the PATH is
derived from the SNA line model. The one end of the SNA line model is the USING

NODE, ordinarily an NCP, and the other end is known as the ADJACENT LINK STATION,

usually the cluster controller or terminal end of the line. The PATH concept
describes the components which can be identified on the link between the SNA end
points. (In some cases multiple paths can be identified between these points.)

PATHDISP is intended to allow a recovery process to identify' the applications known
to be managing components on a link and to use the link management commands
to effect recovery.
PATHDISP SP=service name point nknm1

Purpose of Command
This command displays the path information related to the names provided on the
invocation.

Actions Taken by Receiver

Inputs:

Outputs:

The receiver of this command will retrieve configuration path information such as
component names, their status and connectivity, their type and machine identifica­
tion, and their managing applications. This information will be formatted for trans­
mission to the requestor. The information returned should be put into NCCF

variables if requested from a CLIST.

nknm2

Resource name name of a link connection component

Manager name fully-qualified name of the Service Point application responsible
for the resource.

Class generic type of device: modem, statmux, matrix switch, etc.

Machine type model number of the device: 3728, 3710, etc.

Status current status of the device: active, inactive, spare, defective,
etc.

110 NetView/PCTM API/CS

PATH-CHANGE
PATH-CHANGE provides for the restructuring of the connections in a data base which
is keeping track of the components on a link. It is used in conjunction with the
LlNKCHNG command. LlNKCHNG alters the physical connections and PATHCHNG alters
the data base tracking those connections.

The use in recovery is to reconfigure a network to bypass errors.
PATHCHNG SP=service point name
FROM = (resource 1 name)
TO = (resource 2 name)
[ACTION = {CONNECTI DISCONN}]
[FROMDISP = disposition]
[TODISP = disposition]

Purpose of Command
This command is used to change the connectivity relationships between existing
resource definitions.

Actions Taken by Receiver

Inputs:

Outputs:

The receiver will accept the command and take the action requested by altering
the data base connections.

ACTION CONNECT establishes a connection between the FROM and TO

resources. DISCONN disconnects the FROM and TO resources. This
parameter is required.

FROM resource 1 name - the name of the first resource in the pair whose
connectivity is to be changed. This parameter is required.

FROMOISP the status to assign to the resource after its connectivity has been
changed. This parameter is optional and defaults to no change in the
resource's status.

TO the name of the second resource in the pair whose connectivity is to
be changed. This parameter is required.

TOOISP the status to assign to the resource after its connectivity has been
changed. This parameter is optional and defaults to no change in the
resource's status.

Return code Indication of whether the command was successful or not.

Appendix D. Suggested Command Formats 111

112 NetView/PCTM APIICS

Appendix E. Panel Development Rules

Applicability and Conformance

Requirements

Panel Design

The rules in this chapter were used by the NetView/PC developers to design the
NetView/PC panels. They provide instructions for the development of a consistent
NetView/PC user interface. The NetView/PC panels were developed with the
EZ-VU Screen Definition Facility (SDF), and it is recommeneded for your dialog
management panel development. Whether or not you use EZ-VU, following these
rules will help achieve a NetView/PC consistent user interface.

The panel developer is encouraged to observe the following principles when
designing NetView/PC panels:

1. Locate panel elements consistently and in a standard format that is familiar to
the user.

2. Reduce the number of user keystrokes and the need for memorization when­
ever possible.

3. Prompt for an explicit confirmation from the user if information will be lost or
destroyed with a requested action (for example, requesting QUIT during update
of a record).

4. Insure that all panel input (mixed case or upper case) is "folded" to upper case
before acted upon by an application; a simple panel field definition option will
perform this function automatically.

On the typical IBM PC display screen of 25 lines by 80 characters, only the first 24
lines can be defined to EZ-VU; the 25th line is managed by NetView/PC as a "work­
station status line". Therefore in the following discussion of panel development
rules, references to any of the first 24 lines implies the use of EZ-VU for definition;
references to line 25 are requirements on NetView/PC for display purposes.

A panel is a particular arrangement of data used to display information to the user,
or receive information from the user. The set of generic panel formats presented
in this section provides users with a consistent method for making choices or
entering data regardless of the particular task being performed.

"Panel Design" includes the following SUb-sections:

• "Types of Panel Elements" on page 114-

The components (Entry Fields, Selection Fields, Protected Fields and White
Space) defined in this sub-section are basic to all panel design.

Appendix E. Panel Development Rules 113

• "Common Panel Elements" on page 115-

The elements (Panel 10, Panel Title, Location Information, Data Set Name Sep­
arator, Top and Bottom Environment Areas, Message Line,
Command/Selection Line, and Workstation Status Line) defined in this sub­
section apply across all panel formats.

• "Panel Body Elements" on page 120-

The components (Top and Bottom Instruction Areas, Headings, Key Phrase and
Key Phrase 10, Selection Fields, Entry Fields and Explanatory Text) defined in
this sub-section apply to the individual panel types.

• "Panel Types" on page 127-

Four panel types are defined in this- sub-section. Their type is based on the
functions to be performed and the body elements they contain.

• "Mixing Panel Types" on page 135-

A mixed panel is one that contains the panel body elements of two or more
panel types. Rules and guidance for mixing panel bodies are given.

Types of Panel Elements
All panels are constructed from some combin~tion of four basic elements:

1. Protected Fields,

2. Entry Fields,

3. Selection Fields, and

4. White Space.

Protected Fields provide readtonly information to the user for status, instructions,
definitions, etc. Entry Fields and Selection Fields are provided for user input and
choices in the dialog. White Space is "blank" space that does not fall into one of
the defined field categories.

Protected Fields: A Protected Field is a field that cannot be changed by the user.
For example, the Panel Title element is a protected field.

Entry Fields: An Entry Field is a field into which the user may enter information via
a keyboard.

Entry Fields may be fixed or variable in length. The length is defined by the appli­
cation. Entry Fields are governed by attributes that are further described in "Panel
Body Elements" on page 120.

Selection Fields: A Selection Field consists of one or more choices. A choice,
itself, is either a Protected Field or an Entry Field.

White Space: White Space makes up the remainder of the panel. It is the panel
area that is not occupied by a Protected Field, Entry Field or Selection Field.

White Space is typically used to cause visual separation of information that is pre­
sented so that it is readable.

114 NetView/PCTM API/CS

Common Panel Elements
Panels of all types contain common panel elements. The Panel Body contains
additional elements that are arranged in various formats (see "Panel Body
Elements" on page 120 for details). The following is an example of the placement
of the panel elements. The Common Elements include all that are shown in
Figure 83. The Panel Body Elements are described within each panel type.

PANEL 10
Data Set Name

Top Environment Area

PANEL TITLE
PANEL SUB-TITLE

Panel Body Elements

are

located

between

Top and Bottom Environment Areas

Bottom Environment Area
Message Line
Command/Selection Line
Workstation Status Line

Figure 83. Common Panel Elements

Location
Infonnation

The lines around the panel figures in this section represent the boundaries of the
panels or the panel bodies and are not part of the panel being described.
However, line 3 is part of the panel and represents the "Separator" common
element.

As you review each panel type sub-section, remember the placement of these ele­
ments.

The Common Panel Elements are described below:

1. Panel Identifier (10)

• Purpose - Used for the referencing of a specific panel for diagnostic pur­
poses.

• Attributes - An alphanumeric, protected field normally eight or fewer char­
acters in length. The Panel ID is located on line 1 of the panel, left justified
in upper case.

• Guidelines for use - A required element. The first three positions of Panel
10 must be the unique component prefix assigned to the NetView/PC appli­
cation; the component prefix is identified in the Product Definition File con­
tained in the application's Distribution Diskette.

Appendix E. Panel Development Rules 115

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

2. Panel Title

• Purpose - It is the name of the panel. The Panel Title may also contain a
sub-title to describe the context or current function being performed (for
example, EDIT RESOURCE NAME).

• Attributes - An alphanumeric, protected field centered horizontally on lines
1 and 2 of the panel, in upper case. It must be visibly separated from the
other elements on lines 1 and 2.

• Guidelines for use - A required element. Panel titles and context informa­
tion should be presented using full words, where possible. Abbreviations
may be used only after the abbreviated word was used in an un­
abbreviated form on a previous panel.

3. Location Information

• Purpose - If the user is allowed to scroll the data being presented (e.g.
resource names in a configuration), the panel must indicate to the user the
location or position being viewed relative to the total data available for
viewing (for example, "Page 4 of 15").

• Attributes - An alphanumeric field that contains one or more entry fields or
protected fields. It occupies the upper right corner of the panel and is right
justified.

• Guidelines for use - Mandatory when a panel contains data that can be
scrolled.

The phrase "of nnn" is optional; when data from large datasets is dis­
played, there could be a delay if the number of lines, positions, items, etc.,
"of nnn" were always calculated and displayed. Panel designers should
format location information to be readable and of pleasing appearance.
Some common-sense practices are recommended to achieve this, such as
suppressing leading zeros on numbers, then aligning corresponding
labels, hyphens, instances of "of", and numbers. The following types of
Location Information are examples:

More Information: Used when additional data is available to be dis­
played. Based on the application, the textual information ("Item",
"Row", "Page", etc) may change. Some examples:

Item x of n -or- Path x of n -or- Row x of n

Panel Number: Used in a multiple-panel dialog. An example:

Panel x of n

Page Number: Used when text data is presented as in help panels,
document processing, or tutorial presentation. An example:

Page x of n

4. Data Set Name

116 NetView/PCTM API/CS

• Purpose - Identifies an object in use.

• Attributes - An alphanumeric, protected field presented in mixed case and
left-justified on line 2 of the panel (immediately below the Panel 10).

• Guidelines for use - An optional element; the data set name must be self­
describing information that references the object currently being manipu­
lated within the dialog. An example of self-describing information would

be the use of "Configuration xxx" as opposed to just "xxx". User termi­
nology must be presented within this area, not system designations.

5. Separator

• Purpose - Separates the Panel 10, Panel Title, Location Information, and
Data Set Name from the Top Environment Area. This allows for easy iden­
tification of these elements by the user.

• Attributes - A protected field. Separation will be achieved with a solid line
on line 3 of the panel. If the panel elements normally appearing on line 2
(Data Set Name, Location Information, and Panel Sub-title) are not present,
then the solid separator line can appear on line 2.

• Guidelines for use - A mandatory element when other Common Elements
precede it.

6. Top Environment Area

• Purpose - Used by a task to display information such as the following
items:

Tutorial information.

Task status information (for example, Time of Day).

Information that pertains to the data cur~ently being presented (e.g.,
"Status of Alert Options by Application").

Other types of "continuity data", i.e., information regarding the objects
that the user has been acting upon in this application and is carried
forward from previous panels.

• Attributes - An alphanumeric area that consists of protected fields and
white space. It begins immediately below the Separator Line, that is, typi­
cally on line 4 of the panel.

• Guidelines for use - An optional area. If it is not used, this area becomes
"null" to save space on the panel.

7. Bottom Environment Area

• Purpose - Used by a task to present information to assist the user in pro­
ceeding in the dialog.

• Attributes - An alphanumeric area that consists of protected fields and
white space. Presented in the bottom-most area of the panel, just above
the Message Line.

• Guidelines for use - A mandatory element containing, at a minimum, the
currently active function keys (see "Function Key Utilization" on page 144).
The following rules for display will provide a consistent method for pre­
senting the active keys for a given panel.

display only the active keys for the panel

display the "hard" keys to the left of the "soft" keys

when "scrolling" keys are active, it is not required to display them

display the "soft" keys in numerical order, left to right

use the" key = action" format only for "soft" keys

when possible, avoid abbreviations of key actions

Appendix E. Panel Development Rules 117

for the F4 (Return), use "Main Menu" for the action description except
on help panels use F4= Help Main Menu

use one or more lines to display the keys

when multiple rows are used, maintain a column format

The following examples will serve to illustrate the above guidelines:

Example 1:

Enter F1=Help F3=End

Example 2:

Enter
F4=Main Menu

F1=Help
F5=Redisplay

F2=Quit
F6=Add

F3=End
F7=L i st

8. Message Line

• Purpose - Used for the presentation of "immediate" messages and
prompts that are necessary for the user to interact with one task.

• Attributes - An alphanumeric, protected field displayed in mixed case on
line 23.

• Guidelines for use - A mandatory element, beginning in column 5 of line 23
and extending thru column 80. ~or details on message structure, see
"Messages and Prompts" 'on page 146.

Note: When tasks have a need to present a confirmation request prompt to
the user, then the prompt is displayed on the message line and the
required response is received from the Command/Selection field on
line 24. The default response must be displayed in the
Command/Selection field so that the user may simply press Enter to
accept the default response. For an example, see "QUIT" in "Dialog
Control Actions" on page 139.

9. Command/Selection Line

118 NetView/PCTM APIICS

• Purpose - Used for the entry of commands and selections by the user as
well as user responses to message prompts.

• Attributes - An alphanumeric field displayed in mixed text and left-justified
on line 24.

• Guidelines for use - A mandatory element only when selections, com­
mands or responses to prompts may be entered by the user.

When this element is presented, it must be identified by the Entry Prompt
symbol = = = >. Prompt text to the left of the Entry Prompt is required to
further identify the type of entry expected. The entry field definition begins
in the second position to the right of the arrowhead and may extend to the
end of the line. Some examples are:

Selection ===> (Entry prompt with 1-character input
-- field; typically a menu panel)

Command ===> __________ (Entry prompt with multi-char input)

Itextl ===> __________ (Entry prompt with multi-char input;

10. Workstation Status Line

Itext ' , if any, supplied by
application)

• Purpose - Used to display information pertaining to the operation of the
workstation.

• Attributes - An alphanumeric, protected field displayed in mixed case on
line 25 of the screen.

• Guidelines for use - A mandatory element in the NetView/PC environment;
this element is NOT managed by the application but by NetView/PC base
services. The Vendor API function Operator Communication provides the
interface to this base service.

As a design/development aid, the preceding descriptions of Common Panel Ele­
ments have been summarized into a "Reference Chart" as presented in Figure 84.
The user of this chart will need to be knowledgeable of the tutorial information
before using the chart.

ELEMENT

PanellD

Panel Title

Location Informa­
tion

Data Set Name

Separator

Top Environment

ATTRIBUTES

alphanumeric, protected field
left justified on line 1
uppercase
mandatory element

alphanumeric, protected field
centered horizontally, lines 1 and 2
uppercase
mandatory element

alphanumeric field
one or more entry or protected fields
right justified on line 1 or 2
mixed case
mandatory when panel can be scrolled

alphanumeric, protected field
left justified on line 2
mixed case
optional element

solid line, protected field
line 2 or line 3
mandatory element

alphanumeric, protected field
begins immediately below Separator
mixed case
optional element

LEVEL OF EMPHASIS

Level 2

Level 4

Level 3

Level 3

Level 3

LevelS

Figure 84 (Part 1 of 2). Common Panel Elements

Appendix E. Panel Development Rules 119

ELEMENT

Bottom Environ­
ment

Message Line

Command!
Selection Line

Workstation Status
Line

ATTRIBUTES

alphanumeric, protected field
occupies space immediately above Message Line
contains active F-key assignments
mixed case
mandatory element

alphanumeric, protected field
limited to columns 5-80 on line 23
mixed case
mandatory element

alphanumeric, protected and entry fields
left justified on line 24
mixed case
mandatory when commands, selections or
responses may be entered by user

alphanumeric, protected field
line 25
mixed case
mandatory element

Figure 84 (Part 2 of 2). Common Panel Elements

Panel Body Elements

LEVEL OF EMPHASIS

LevelS

Information: Level 7

Warning:

Error:

Level 4

Normal:

Level 8

Level 9

LevelS

Information: Level 7

Warning: Level 8

Error: Level 9

Figure 85 shows Panel Body Elements which are located between the Top and
Bottom Environment Areas.

Top Environment Area
Top Instruction Area

ID KEY PHRASE Entry Field Explanatory text
ID KEY PHRASE Entry Field Explanatory text
ID KEY PHRASE Entry Field Explanatory text
ID KEY PHRASE Entry Field Explanatory text

Bottom Instruction Area

Bottom Environment Area

Figure 85. Panel Body Elements

Each type of panel will utilize these components in a slightly different format. Each
panel type is discussed .in "Panel Design" on page 113.

The Panel Body Elements are:

1. Top Instruction Area

120 NetView/PCTM APIICS

• Purpose - Presents instructions to the user on how to make selections or
entries within the panel.

• Attributes - An alphanumeric, protected, field that is located below the
Common Elements displaying at the top of the panel. One or more lines
presented in mixed-case characters and left-justified to the left margin of
the panel; upper case may be used to emphasize a key word or words.
Separation of this area from elements above and below is via white space,
when space is available.

• Guidelines for use - An optional element, but recommended when multiple
interaction techniques are supported within a panel. The instructions must
indicate how the user is supposed to interact with the panel. This should
be a concise statement, such as: "Select one of these activities:".

2. Headings

• Purpose - Provide a description of item(s) for readability and clarity of the
panel information.

• Attributes - Protected fields that are visually distinct from the Top Instruc­
tion Area and the items to which they refer. White space may be used for
this purpose.

Headings are classified into two categories, major and minor, and are
defined as follows:

Minor Headings (column, row or field)

Column heading example:

Row heading example:

HEADING
field 1
field 2
field 3

HEADING field 1 field 2 field 3

Field heading (also called "KEY PHRASE") example:

(example of entry (input) field):

KEY PHRASE .. field

(example of display (output) field):

KEY PHRASE: field

- Major Heading (also called a "Super Heading"):

Appendix E. Panel Development Rules 121

(example of data/parameter entry (input)):

MAJOR HEADING
Minor Heading 1. . field 1
Minor Heading 2 •. field 2
Minor Heading 3 .. field 3

(example of data display (output)):

MAJOR HEADING
Minor Heading 1: field 1
Minor Heading 2: field 2
Minor Heading 3: field 3

(example of multiple sel~ction fields):

MAJOR HEADING 1 ID KEY PHRASE
ID KEY PHRASE
ID KEY PHRASE
ID KEY PHRASE

MAJOR HEADING 2 ID KEY PHRASE
ID KEY PHRASE
ID KEY PHRASE

All headings must be upper-case except Field Headings (Key Phrases) may
be mixed-case on panel types other than Menu and when the number of
Field Headings on the panel would cause a readability problem.

• Guidelines for use - An optional element except for "entry fields" and mul­
tiple "selection fields", where headings are required. Headings are
recommended to enhance clarity and understanding and may be applica­
tion specific (for example, List Panels and Tabular Data Entry Panels).

3. Key Phrase 10

122 NetView/PCTM APIICS

• Purpose - Presented to allow the user to select an option by number.

• Attributes - An alphanumeric, protected, field. When the technique of
"selecting items by Key Phrase 10" is used, then the Key Phrase 10 must
be presented .two spaces to the left of the Key Phrase, which is defined
below. If a "Single Selection Field Format" on page 127 is used, then Key
Phrase IDs may be whole numbers (e.g., 1, 2, 3, etc.) or single alphabetic
characters. If a "Multiple Selection Field Format" on page 128 is used,
then Key Phrase IDs must be whole numbers prefixed with a single alpha­
betic character (e.g., A 1, A2, A3, 81, C1, etc.). In either case, the IDs must
be presented in alphanumeric order followed by any alphabetic IDs in
order; the order does not have to remain consecutive. The number zero is
not a valid Key Phrase 10. An application should ensure that commonly
used choices retain their number; for example, the SHUTDOWN option
available from application main menus should always be the 10 "S".

• Guidelines for use - A mandatory element when "selection by Key Phrase
10" is used; indented three spaces from the left margin of the Top Instruc­
tion Area.

4. Key Phrase (Minor Field Heading)

• Purpose - A brief descriptor of a selection choice or a descriptor of an
input/output field.

• Attributes - An alphanumeric, protected, field. This field can be upper case
or mixed case, depending on panel usage. For example, on a Menu Panel,
the Key Phrases must be upper case; on other panel types, the quantity of
Key Phrases should direct the use. For example, when there are many
Key Phrases, then mixed case is allowed in order to increase readability;
otherwise a single or few Key Phrases must be presented in upper case.

When preceded by the Key Phrase 10, this field should be presented two
spaces to the right of the Key Phrase 10. When the Key Phrase 10 is not
used, then this field is indented three spaces from the left margin of the
Top Instruction Area.

• Guidelines for use - A mandatory element for Menu Panels and Parameter
Entry Panels. The Key Phrase must be meaningful enough so that an
experienced user can make a choice without having to refer to any Explan­
atory Text to the right of the Key Phrase. If the application supports com­
mands, the command name and parameter names should be used as Key
Phrases to reinforce learning of the command form of the function.

5. Selection Field

• Purpose - Used to make a selection from a list of choices.

• Attributes - Selection Fields contain protected Key Phrase IDs and Key
Phrases. Refer to above definitions of these Panel Body Elements. For
examples of Selection Fields see Menu Panel under "Panel Types" on
page 127.

• Guidelines for use - The application determines the need for Selection
Fields.

6. Entry Field

• Purpose - An Entry Field is a field within a panel into which the user may
enter information via a string input device (for example, a keyboard).

• Attributes - Entry Fields are "fixed" in length; that is, they have a pre­
determined length. Input to the field should be left-aligned and the cursor
should be positioned at the beginning of the field, ready for entry.

When panels containing Entry Fields are presented to the user, it is gener­
ally helpful to present an indication of how long the field is, and where it is
located. NetView/PC panels will be designed to use a Field Length Delim­
iter for short entry fields and a Field Location Indicator for long entry fields
and multi-line entry fields.

Field Length Delimiter

A Field Length Delimiter is required for all 'short entry fields.

The Field Length Delimiter to be used with NetView/PC panels is the
"reverse video" attribute; this attribute can be specified to EZ-VU by
aSSigning the ZATR variable equal to the character string "EW". With the
ZATR variable so defined, EZ-VU will apply the reverse video attribute to
the field where the cursor is located; when the cursor leaves a field, that
field returns to its originally defined attribute and the field receiving the
cursor then changes to reverse video.

Appendix E. Panel Development Rules 123

Field Location Indicator

A Field Location Indicator is required when the Field Length Delimiter is
not used; for example, on long entry fields and multi-line entry fields.

The Field Location Indicator to be used with NetView/PC panels is lozenge
symbol (_) (ASCII code 254). The lozenge symbol will be placed at the first
entry position within an Entry Field.

Information Field versus Entry Field

A user should be able to visually distinguish protected fields (information)
and modifiable fields (entry). Any protected field that could appear to be
an entry field must be presented to the user with a colon (:) delimiter
between the description (e.g., the field heading or key phrase) and the
information it presents.

Information fields simply present information. For example, the following
might appear in an Information Panel:

STATUS: Running

This convention may also be utilized with entry fields that were previously
completed by the user, and are now presented as information within
another panel.

On the other hand, entry fields are input fields; the user is allowed and
sometimes required to enter data (default values are almost always pre­
sented to the user).

Dot Leadering is to be used to visually connect the Entry Field Heading
with the single entry field which it describes. This panel element is prima­
rily found on Parameter and Data Entry panel types (see "Entry Panels" on
page 129).

An example of dot leadering for parameter entry:

RESOURCE NAME. . ___ up to 8 characters

An example of dot leadering for data entry:

COMPANY
State ... ZIP.

In all cases where used, there should be a maximum of two dots between
the longest heading and the entry field.

When information and entry fields are delimited in the above manner, the
user can easily determine what fields are information and what fields may
be modified.

• Guidelines for use - Mandatory or optional depending on the panel type;
explained as part of each panel type.

7. Explanatory Text

124 NetView/PCTM API/CS

• Purpose - To explain allowable choices and entries for Selection and Entry
Fields.

• Attributes - An alphanumeric, protected, field arranged in a column exactly
three spaces to the right of the longest Selection/Entry field. The text is left
justified to that column, and must be self-describing and is presented in
mixed case.

• Guidelines for use - An optional element. Should be presented in one of
the following ways:

A brief description of a menu selection, e.g.,

Display most recent entries in Problem Directory

As a description of the entry field, e.g.,

Enter up to 8 characters for Resource Name

As a range of entry data, e.g.,

1 to 66 lines

As a list of choices, e.g.,

R = Remote, L = Local

As an example of the options, e.g.,

(show an example character string, as appropriate)

8. Bottom Instruction Area

• Purpose - Presents instructions to the user concerning what action is nec­
essary after completing the dialog with the panel.

• Attributes - An alphanumeric, protected, area. Can be floated within the
panel, and is placed after the last Selection/Entry Field of the panel, and
ahead of the Bottom Environment Area. Presented in mixed case, left­
justified and aligned with the Top Instruction Area or left margin of the
panel, as appropriate. Multiple lines may be used. Visual separation from
other panel elements is achieved with white space.

• Guidelines for use - An optional element. The instructions must indicate
how the user is supposed to continue or end the dialog with the applica­
tion. This should be a concise statement. This area may also be used to
address exceptional or unique action available to the user.

An example:

To update record, press Enter.

As a design/development aid, the preceding descriptions of Panel Body Elements
have been summarized into a "Reference Chart" as presented in Figure 86 on
page 126 and Figure 87 on page 126.

Appendix E. Panel Development Rules 125

The user of this chart will need to be knowledgeable of the tutorial information
before using the chart.

ELEMENT

Top Instruction
Area

Bottom Instruction
Area

Key Phrase 10

Explanatory Text

Dot Leader to Entry
Field

ATTRIBUTES

alph"anumeric, protected field

one or more lines of text left justified to left margin
of panel

mixed case
optional element

alphanumeric, protected field

one or more lines of text left justified to left margin
of panel

mixed case
optional element

alphanumeric, protected field
indented three space (column 4) from left panel
margin
always associated with a Key Phrase

a two-char column with alphanumeric characters
right-justified in the column, no leading zeros
mandatory only when using the selection technique
"Selection by Key Phrase 10"

alphanumeric, protected field
left justified and aligned to a margin three spaces
to the right of the longest Selection/Entry field

mixed case
optional element

alphanumeric, protect~d field
single periods (dots) with no intervening spaces
connecting the Key Phrase (Field Heading) to the
associated entry field
required element for parameter or data entry fields
preceded by a Key Phrase

LEVEL OF EMPHASIS

LevelS

LevelS

Level 4

Level 3

Level 3

Figure 86. Panel Body Elements

ELEMENT

Minor Heading -
Column and Row

Minor Heading -
Field (Key Phrase)

Major (Super)
Heading

ATTRIBUTES LEVEL OF EMPHASIS

alphanumeric, protected fields Level 36

located above (column) or to the left (row) of two or
more input/output fields

uppercase
optional element

alphanumeric, protected field Level 36

located two spaces to the right of an associated
Key Phrase 10, if present; otherwise indented three
spaces from:

1. left panel margin, or
2. left margin of its major heading, or
3. right margin of longest entry field located to

left of this heading
upper or mixed case, depending on panel usage
(other headings on panel)
mandatory for Menu and Parameter Entry panels

alphanumeric, protected field

location is dependent on panel type and applica­
tion usage
uppercase
optional element

Level 36

Figure 87. Panel Body Element Headings

126 NetView/PCTM APIICS

Panel Types

Menu Panels

Menu Panel

Entry Panel

List Panel

Information Panel

Allows the user to choose from a list of related items.
("Menu Panels").

Allows the user to enter parameters, data, or text. ("Entry
Panels" on page 129).

Allows the user to manipulate items in a list. ("List Panels"
on page 133).

Presents read-only data to the user. ("Information Panels"
on page 134).

Menu Panels provide the user with a set of choices from which the user makes one
or more selections. Two Menu Panel types are allowed.

Single Selection Field Format

Multiple Selection Field Format

This format consists of a Single selection
field. The application can limit the user to a
single choice from this panel or may allow
the user to make multiple choices from the
Single selection field.

This format consists of two or more selection
fields. The application can limit the user to a
single choice from the entire panel, may
allow single choices from any or all selection
fields, or may allow multiple choices from any
or all selection fields.

Single Selection Field Format: Figure 88 presents the Panel Body Elements for
Single Selection Field Menu Panels; see Figure 83 on page 115 for location of the
Common Panel Elements.

Top Instruction Area

ID KEY PHRASE
ID KEY PHRASE
ID KEY PHRASE

Explanatory Text
Explanatory Text
Explanatory Text

Bottom Instruction Area

Figure 88. Single Selection Field Menu Panel - Panel Body

The Key Phrases (and Key Phrase IDs) utilized within this panel type make up the
one and only Selection Field. The Selection Field must be organized with the
default choice as the first item. The remaining choices should be arranged in pri­
ority order (Le., most frequently used) if possible, or in logical order (Le., in alpha­
betic order) when the priority is not known.

6 When this heading refers to a required input field or when the application needs to
emphasize a heading, then Level 4 will be used.

Appendix E. Panel Development Rules 127

Required Panel Body Elements

1. Selection Field - two or more pairs of Key Phrase 10 and

Use of the other Panel Body Elements shown is optional.

The Interaction Technique for this panel type is "Selection Field Interaction" on
page 137.

The following are examples of Single Selection Field Menu Panels.

Select ONE of the following:

1 ADD
2 UPDATE
3 DELETE

Create a new database record.
Modify an existing database record.
Remove an existing record from the database.

Type your selection and press Enter; otherwise press F2 (Quit).

Figure 89. Single Selection Field Menu Panel - Example 1

Select ONE of the following:

1 ADD Create a new database record.
2 MODIFY Change or delete an existing database record.

Type your selection and press Enter; otherwise press F2 (Quit).

Figure 90. Single Selection Field Menu Panel - Example 2

Multiple Selection Field Format: Figure 91 presents the Panel Body Elements for
Multiple Selection Field Menu Panels; see Figure 83 on page 115 for location of
the Common Panel Elements.

Top Instruction Area

MAJOR HEADING 1

MAJOR HEADING 2

ID Key Phrase
ID Key Phrase
ID Key Phrase
ID Key Phrase

ID Key Phrase
ID Key Phrase
ID Key Phrase

Bottom Instruction Area

Explanatory Text
Explanatory Text
Explanatory Text
Explanatory Text

Explanatory Text
Explanatory Text
Explanatory Text

Figure 91. Multiple Selection Field Menu Panel - Panel Body

Selection Fields are organized with the default Key Phrase as the first item in each
selection field (major group). The remaining choices should be arranged in pri­
ority order (i.e., most frequently used) if possible, or in logical order (i.e., in alpha­
betic order) when the priority is not known.

128 NetView/PCTM API/CS

Entry Panels

Required Panel Body Elements

1. Selection Field - two or more, each with two or more pairs of Key Phrase ID
and Key Phrase.

2. Major Heading - one for each selection field on the panel.

Each selection field is prefixed with a letter, then numbered (see example panel in
Figure 92).

Two major headings are shown with multiple choices for each; the application may
allow one or more selections from major heading.

Use of the other Panel Body Elements shown is optional.

The Interaction Technique for this panel type is "Selection Field Interaction" on
page 137.

The following are examples of Multiple Selection Field Menu Panels.

Select ONE option from EACH group below:

ID OPTION

TYPE OF RECORD Al Resource
A2 Location
A3 Vendor

ACTION DESIRED 81 Display
82 Add
83 Change
84 Delete

Type each selection ID (separated by a blank), then press Enter;
otherwise press F2 (Quit).

Figure 92. Multiple Selection Field Menu Panel - Example 1

Entry Panels require the user to input information into the dialog instead of
allowing him to simply select from a list of choices. Two panel types are defined,
based on the functions they perform as viewed by the user:

Parameter Entry Panels

Data Entry Panels

Entering parameter data by keying the data into prede­
fined fields ("Parameter Entry Panels").

Entering data in a "fixed length field" ("Data Entry
Panels" on page 131).

Parameter Entry Panels: This panel type gives the user a capability to input
parameter information that the system requires to perform some action. If this
panel type is used in conjunction with commands, then the Panel Title should be
the command name and the Key Phrases should correspond to the command
parameters. Only Entry Fields may be presented in this panel type.

Figure 93 on page 130 presents the Panel Body Elements for Parameter Entry
Panels; see Figure 83 on page 119 for location of the Common Panel Elements.

Appendix E. Panel Development Rules 129

Top Instruction Area

ITEM CHOICE DESCRIPTION

Key phrase .. Entry Field Explanatory Text

Key phrase. Entry Field Explanatory Text
Explanatory Text cont'd

Key phrase .. Entry Field Explanatory Text

Bottom Instruction Area

Figure 93. Parameter Entry Panel Body Elements

Entry Fields on Parameter Entry Panels must contain a default value, unless there
is no logical way to provide one. Providing defaults allows the user to accept them
without typing; the user simply executes the ENTER action.

If an Entry Field on this panel type does not contain a default value and the entry is
necessary to continue the dialog, the Entry Field becomes a Required Entry Field.
Required Entry Fields must be placed as one of the first fields of a panel, or one of
the first fields of a logically related group of items within a panel. This minimizes
cursor movement necessary within the panel.

Required Panel Body Elements

1. Key Phrase - used to describe the parameter that the user is to specify; it
should be the parameter (or command) name.

2. Entry Field - used to receive the user's input. "Dot leadering" is required
between the Key Phrase and the Entry Field (see "Dot Leadering" under Entry
Field in "Panel Body Elements" on page 120).

The other panel body elements shown are optional.

The Interaction Technique for this panel type is "Entry Field Interaction" on
page 137.

Figure 94 on page 131 is an example of a Parameter Entry Panel.

130 NetView/PCTM API/CS

Type the desired Test Options below:

WAIT (0-60)
REPEAT (0-10000) ...
ALTERNATE (Y or N).
SAVE (Y or N) . . .

Minutes to wait before repeating test.
Number of times to repeat test.
Alternate between local/remote status tests?
Save these Test Options?

Type the desired Problem Determination (PO) Options (Y=yes, N=no):
(Note that Self Test and Channelized Tests are Disruptive.)

MULTIPOINT (Y or N) .
SELF TEST (Y or N) ..
CHANNELIZED (Y or N).
SAVE (Y or N) ..

Test related tributary modems, if needed?
Perform local/remote self test, if needed?
Test channelized modems, if needed?
Save these PO Options?

When finished, press Enter to continue; otherwise press F2 (Quit).

Figure 94. Parameter Entry Panel - Example 1

Data Entry Panels: This panel type allows the user to enter data in structured field
and free-key field formats.

Three panel formats are defined, based on functions they perform as viewed by the
user:

Vertical

Tabular

Forms Fill-In

Fields are arranged one below the other in a column (Figure 95
on page 132).

Fields are arranged one after the other on a line (Figure 96 on
page 132).

Allows entry into a "Forms" representation (Figure 97 on
page 133).

The above panel formats may be combined as desired.

Required Panel Body Elements: The Entry Field is the only required element for
Data Entry Panels. The other panel body elements shown in the following exam­
ples are optional, however Headings and Top Instruction Areas are strongly
recommended.

The Interaction Technique for Data Entry Panels is "Entry Field Interaction" on
page 137.

Vertical Data Entry Format: Figure 95 on page 132 presents the Panel Body Ele­
ments for Vertical Data Entry Panels; see Figure 83 on page 115 for location of the
Common Panel Elements. Note that row headings are used instead of column
headings.

Appendix E. Panel Development Rules 131

Top Instruction Area

MAJOR HEADING
Minor Heading. Entry Field
Minor Heading. Entry Field
Minor Heading .. Entry Field

MAJOR HEADING
Minor Heading .. Entry Field
Minor Heading. Entry Field

Bottom Instruction Area

Figure 95. Vertical Data Entry Panel Format

This panel type is normally used for keying a single "record" at a time; the user
types the data for each field, then executes the ENTER action.

Entry Fields may be grouped by having one Key Phrase act as a "major heading"
for a group of Entry Fields. The Key Phrase for each Entry Field then represents a
"minor heading". Major headings are set off from minor headings by indenting.
Both structured and free-form Entry Fields are allowed in this panel type.

Tabular Data Entry Format: Figure 96 presents the Panel Body Elements for
Tabular Data Entry Panels; see Figure 83 on page 115 for location of the Common
Panel Elements.

Top Instruction Area

COLUMN HEADING

Entry Field
Entry Field
Entry Field

COLUMN HEADING

Entry Field
Entry Field
Entry Field

Bottom Instruction Area

Figure 96. Tabular Data Entry Panel Format

COLUMN HEADING

Entry Field
Entry Field
Entry Fi el d

This panel type may be used for keying multiple groups of fields (e.g., multiple
records at a time, one per line). The user types all the data for each record and
then requests the ENTER action to present all of the fields to the application.

Multiple Entry Fields per row are allowed. Both structured and free-form Entry
Fields are allowed in this panel type.

Forms Fill-in Data Entry Format: Figure 97 on page 133 presents the Panel Body
Elements for Forms Fill-in Data Entry Panels; see Figure 83 on page 115 for
location of the Common Panel Elements.

This panel type allows fields to be formatted in a "free-form" manner. Headings
are added above each individual group to distinguish the types of information
requested. A variable number of entry fields may be included on a single line.

132 NetView/PC™ APIICS

List Panels

Top Instruction Area

MAJOR HEADING
Key Phrase Entry Field

Key Phrase
Key Phrase

MAJOR HEADING

Entry Field
Entry Field

Key Phrase Entry Field

Key Phrase Entry Field

Bottom Instruction Area

Key Phrase
Key Phrase

Key Phrase
Key Phrase
Key Phrase

Figure 97. Forms Fill-in Data Entry Panel Format

Entry Field
Entry Field

Entry Field
Entry Field
Entry Field

List Panels present a list of objects to the user and allow the user to perform
actions on the objects listed. This panel type consists of a list of similar data
objects and an Option field for specification of the action. The Option number is a
number that is associated with an action that is currently displayed on the panel;
this number-is typed in the command field adjacent to the object upon which the
action is desired. The Option number may also be used to select an object from
the displayed list for actions that are presented on a separate sequence of Menu
panels. Examples of supported List Panels are located in this section.

Figure 98 presents the Panel Body Elements for List Panels; see Figure 83 on
page 115 for location of the Common Panel Elements.

Top Instruction Area

OPTION HEADING HEADING HEADING

Option Information Information Information
Option Information Information Information
Option Information Informati on . Information
Option Information Information Information

Bottom Instruction Area

Figure 98. List Panel Format

Typically this panel type is used to show multiple data objects. The user can ~hen
perform one action on each object in the list. The actions may be the same or dif­
ferent for each object.

Required Panel Body Elements

1. Option Field - an Entry Field formatted according to the following rules:

• The Entry Field is one character in length.

• The Entry Field must use the standard Field Length Delimiter and other
attributes of entry fields as defined in "Panel Body Elements" on page 120.

Appendix E. Panel Development Rules 133

Information Panels

• To insure consistency across panels, the following "number=action"
relationships must be used; actions not listed may be assigned other
numbers.

1 = Add-like, 2 = Change, 3 = Delete, 4 = Display

The other panel body elements shown are optional. Headings within List Panels
are recommended for clarity and understanding of what is contained in each
column.

The Interaction Technique for this panel type is "Entry Field Interaction" on
page 137. Refer also to "File Management Techniques Using the List Panel" on
page 155.

Figure 99 is an example of a List Panel.

Use Tab key to select an alert; type the number of one of the following actions:

3=Delete alert 5=Problem record 6=Recommended action 7=Alert detail

ACTION APPL RESOURCE ERROR TYPE TIME DATE ALERT# PROBLEM#
MODEM22 RAL001 PERM ERROR 12:00 12/01 23470 1770

EQUIPMENT MALFUNCTION:
DASD DEVICE

IBMLAN PRT22 INTER. REQ 14:59 12/01 23471 1770
INTERVENTION REQUIRED:
PRINTER

MODEM01 RALDIS7 TEMP ERROR 17:06 12/01 23473 NONE
THRESHOLD EXCEEDED:
MAIN STORAGE

To perform requested action(s), press Enter; otherwise press F2 (Quit).

Figure 99. List Panel - Example 1

Information Panels are used for conveying information to the user. They utilize the
"Common Panel Elements" on page 115 and only contain output ("read only")
data.

Figure 100 on page 135 is an example of an Information Panel.

134 NetView/PCTM API/CS

Remote modem resource name: QTX123RM Test results: PASSED

Additional modem/test information follows:

Machine type:
Model number:
Line type:
Line mode:
Configuration:

3864
01
LEASED
PT TO PT
PRIMARY

Suspected card: ___ _

Features installed: ___ _

Microcode level: 1
Clear to send delay: SHORT
Receive line signal detect: NORMAL

When finished viewing. press F3 (End).

Figure 100. Information Panel Example

Only Common Panel Elements are necessary in this panel type ("Common Panel
Elements" on page 115); the application may use Headings, Top and Bottom
Instruction Areas.

Mixing Panel Types
A mixed panel is one that contains the panel bodies of two or more of the panel
types discussed previously ("Panel Types" on page 127). The panel can contain
only one set of "Common Panel Elements" on page 115.

Since it is difficult to anticipate all situations where mixed panels would be neces­
sary, there are only a few rules to follow. They are:

1. The body elements of each panel type must remain distinct. This is accom­
plished thru the use of White Space. For example, if a Menu Panel is mixed
with a Parameter Entry Panel, the body elements of each must be visibly sepa­
rate groups and they must follow the rules for their respective types (see
Figure 101 on page 136).

2. Consistency of presentation must be maintained. For example, if the Top
Instruction for one panel body is mixed case, the Top Instruction for the next
group must also be mixed case.

3. The Menu portion of mixed panels must be presented as the bottomtmost
portion of the mixed panel; this allows association of the Menu panel choices
with the command entry field (on line 24) into which the user types the menu
choice.

Good judgement must be used when developing mixed panels. The following cau­
tions are examples of good judgement and should be observed:

1. Utilizing more than two different panel types may become confusing to the
user. Figure 102 on page 136, for example, could confuse some users.
Always consider the audience being addressed. An "expert" user may prefer
this complicated panel type while a novice user may be intimidated by it.

2. Top Instruction statements are highly recommended for each panel body. This
technique is especially useful for the casual and novice user.

3. When mixing Information Panels with other panel types, it is appropriate to
place the Informatiori Panel above the Top Instruction for the other panel type.

Appendix E. Panel Development Rules 135

This allows the user to read the information and then complete the dialog
panel that follows.

Mixed Panel Examples and Guidance
Figure 101 shows an example of a Parameter Entry Panel mixed with a Menu
Panel.

Type the name of a configuration, if known. Press F7 to see a list of names.

CONFIGURATION NAME. . ---------

Select ONE of the following:

1 DISPLAY
2 DELETE
3 LIST

Display paths in the named configuration.
Delete the named configuration.
Display names of all configurations.

Type your selection and press Enter; otherwise press F2 (Quit).

Figure 101. Mixed Panel Example: Entry and Menu

Figure 102 is an example of a mixture of Information, Entry and Menu.

Available applications are:

Type a record code, if necessary.

RECORD CODE. . - R = resource
L = location
V = vendor

Select ONE of the following:

1 DISPLAY
2 CHANGE/DELETE
3 ADD

Display a record.
Change or delete a record.
Add a record.

Type your selection and press Enter; otherwise press F2 (Quit).

Figure 102. Mixed Panel Example: Information, Entry and Menu

136 NetView/PCTM APIICS

Panel Dialog Management

Introduction

NetView/PC Dialog Management is performed by the EZ-VU Run Time Facility (IBM
Program Product 6316969) as modified for the multi-tasking environment.

Users may use the EZ-VU II Run Time Facility (IBM Program Product 6410980) for
dialogue management with applications executing in the NetView/PC DOS parti­
tion.

This section describes the facilities available to the user to carryon a dialog and
includes the following sub-sections:

• "Panel Interaction Techniques,"

• "Dialog Control" on page 138,

• "Scrolling" on page 143,

• "Function Key Utilization" on page 144,

• "Messages and Prompts" on page 146,

• "Help Facility" on page 148, and

• "Color and Emphasis" on page 151.

Panel Interaction Techniques
Users interact with panels by either selecting or entering information. The tech­
niques listed in this subtsection are divided into the categories of Selection Field
Interaction and Entry Field Interaction.

Selection Field Interaction

The technique to be used for interacting with a selection field is:

• Typing a Key Phrase ID which represents the selection.

This technique allows the user to pick choices by typing the Key Phrase ID into the
command entry field on the Command/Selection Line (see "Common Panel
Elements" on page 115). One or more Key Phrase IDs can be entered, depending
on how many selection fields are displayed and how many choices the application
allows the user to pick from each field. Multiple Key Phrase IDs must be separated
by one or more blanks.

When the panel is initially displayed, the command entry field contains the Key
Phrase ID of the default choice(s) for the selection field(s). Multiple choices mayor
may not be supported by the application.

The user may elect to accept the default(s) by immediately requesting the ENTER
action or the user may change the default(s) by over-typing prior to requesting the
ENTER action. To simplify over-typing of defaults by the user, the application will
cause the cursor to be positioned at the beginning of the field.

Entry Field Interaction

Entry fields must contain a default value unless there is no logical way to provide a
meaningful one. Providing defaults allows the user to accept them by performing

Appendix E. Panel Development Rules 137

Dialog Control

the ENTER action. To simplify over-typing of defaults by the user, the application
will cause the cursor to be positioned at the beginning of the field.: A Required
Entry Field is an Entry Field into which the application requires a value in order to
continue the dialog and a default value is not already presented in the Entry Field.

Key Phrases of Required Entry Fields must be emphasized (see "Color and
Emphasis" on page 151) to indicate to the user that an entry is required.

Dialog control actions are components of the protocol that control the flow of infor­
mation between a user and an application. This dialog can be viewed as sequen­
tial steps:

1. The application presents objects to the user.

2. The user requests one or mor:e actions.

3. The application performs the action(s).

4. Repeat the above steps.

This section defines the objects and actions that are common to dialogs inde­
pendent of the application being performed.

Users request dialog control actions by using techniques such as menu selections,
commands, function keys, etc.

An application can provide any subset of these dialog control actions. When they
are provided, they must use the terms and operate according to the rules specified
in this document.

The following sub-sections will present the details of Dialog Control:

1. Dialog Control Objects

The objects affected (characters, fields, panels, etc) by dialog control actions
depend on the dialog state at a particular point in the dialog. (See "Dialog
Control Objects" on page 139.)

2. Dialog Control Actions

The fundamental dialog control actions are:

• "ENTER" on page 139.

• " REDISPLAY" on page 140.

• "END" on page 141.

• "QUIT" on page 140.

• "MAIN MENU" on page 141.

3. Basic Dialog Control Techniques

This section discusses Dialog Control Techniques as they relate to:

• Function keys

• Command Line

See "Dialog Control Techniques" on page 142.

138 NetView/PCTM APIICS

4. Advanced Dialog Control Techniques

This section discusses Advanced Dialog Control Techniques such as:

• Selection chaining

• Typing over the Location information

See "Advanced Dialog Control Techniques" on page 143.

Dialog Control Objects
The object affected by an action depends on the dialog state at that particular point
in the dialog.

UIA (User Interface Architecture) defines Dialog State as the condition of the
system at a particular point in the dialog as perceived by the user in terms of the
objects affected (for example, characters, fields, panels, etc.).

A way to understand the change in "the object affected" that is caused by a dialog
state change might be to understand the "scope" of the effect of an action.

For example, in a particular panel the user "enters" information into each field.
Having completed that activity, the user "enters" the entire panel, which is the col­
lection of all the fields. The same concept applies for panels within tasks and other
hierarchical designs.

In summary, the dialog state changes when the "scope" of an action changes.

Dialog Control Actions
ENTER: All NetView/PC applications supporting an operator interface (Le., the
Dialog Manager functions) through which the user can provide input (Le., data),
must provide the ENTER action.

The ENTER action is defined as a method by which a user provides information to
the application.

In other words, ENTER says to the application, "It's your turn. Now process."

The ENTER actions may be either explicit or implicit.

1. Explicit ENTER technique

The user specifically requests the ENTER action (for example, the user presses
an "enter" key). When the explicit ENTER is requested, the application checks
for user input in all required entry fields. If any required entry fields are
missing data, a warning message must be presented to the user and the
ENTER action must not be allowed.

2. Implicit (automatic) ENTER technique

The ENTER action can be performed automatically. For example, in many
data-entry applications, a Field Advance action (Tab key) does two things:

• causes the current field to be acted upon with respect to some kinds of
validity checking, and

Appendix E. Panel Development Rules 139

• causes the cursor to advance to the next field.

This automatic ENTER function is implemented through the EZ-VU field defi­
nition attribute of "panel exit".

The application's response to the ENTER action may be one or more of the fol­
lowing:

• Validity checking (for example, of a character in a field)

• Storing entered data as a record in a database

• Interpreting an entered number as a choice from a menu

• Presenting the next panel in the dialog

The ENTER action itself does not id.entify the next specific dialog state. The appli­
cation must determine the next dialog state, which mayor may not be based on
information supplied with the ENTER action.

REDISPLAY: The REDISPLAY action discards user input within the currently dis­
played object (for example, a field or panel), and re-displays the object as it was
when the user first saw it during the current dialog state.

We have not architected what constitutes a data commitment (SAVE). Therefore,
when REDISPLAY is selected, the data that will be presented is controlled by the
application.

Redisplay techniques

• If data has been placed in a panel by the user, the REDISPLAY action will
discard the input that has been supplied for the current panel and the panel
will be presented with its initial values.

• If the REDISPLAY action is requested while initial values are already pre­
sented, no action need take place.

QUIT: The QUIT action allows a user to make a transition ("back out") to a previ­
ously encountered dialog state without saving data.

For example, when the QUIT action is requested, the application checks for user
input within the dialog. When "significant" data, as determined by the application,
will be lost as a result of the QUIT action, prompting is mandatory (that is, a confir­
mation prompt must be presented to the user). The following example is the
recommended message/prompt combination to display on the Message Line (see
"Common Panel Elements" on page 115).

Message/prompt example:

Do you want to save the data just entered? (Y or N)

The default value for the above prompt is 'N' for no, and must be displayed in the
Command/Selection field (see "Common Panel Elements" on page 115) so that the
user can simply press Enter for the default value.

If the application wants to offer users a "fast path" for "QUIT and save the data",
the END action can be used. See "END" on page 141.

140 NetView/PCTM APIICS

Quit techniques

• Panel Dialog: - the QUIT action causes a transition to the prior panel presented
to the user or to the previously presented panel in a higher level of panel hier­
archy.

In cases where the dialog loops (Le., two or more panels involved in a dialog
state), the application must present Bottom Instruction statements explaining
how to exit the loop using the QUIT action.

• Prompt Dialog: - the QUIT action removes the prompt and the application
resumes at the point in the dialog where the action was requested that caused
the prompt to display.

END: The END action saves the data (if any) and takes the user to a previously
encountered, application defined dialog state. This previous dialog state will be
that panel from which the current dialog state was requested and entered.

When the END action is requested, the application checks for user input in all
required entry fields. If data is not present for any required entry field, a warning
message must be presented to the user and the END action must not be allowed.

End techniques

• Panel Dialog: - the END action causes a transition to a previously encountered,
application defined dialog state. This previous dialog state will be that panel
from which the current dialog state was requested and entered.

In cases where the dialog loops (Le., two or more panels involved in a dialog
state), the application must present Bottom Instruction statements explaining
how to exit the loop using the END action.

MAIN MENU: The MAIN MENU action provides a "fast path" that has the same
effect as one or more END actions executed in sequence. Like the END action, the
MAIN MENU action saves the data, if any, from the current pane\. When a dialog is
structured as a panel hierarchy, the MAIN MENU action provides a faster path out
of that dialog to some previous dialog state. In the NetView/PC environment the
MAIN MENU action should always take the user to the Main Menu of the applica­
tion.

When the MAIN MENU action is requested, the application checks for user input in
all required entry fields. If data is not present for any required entry field, a
warning message must be presented to the user and the MAIN MENU action must
not be allowed.

Dialog Control Action Summary: The QUIT, END and MAIN MENU are actions that
cause a transition out of a portion of a dialog. Only the application (through initial
program design) can determine what that dialog portion is, but an example would
be a level of a panel hierarchy. Figure 103 on page 142 is presented as a visual
aid in understanding "panel hierarchy" and the possible implementations of dialog
control using the previously defined dialog control actions.

Appendix E. Panel Development Rules 141

Level 1 = = = >

Level 2 = = = >

Level 3 = = = >

Level 4 = = = >

END,
QUIT

I Session Selection

Appl1 Appl2

Appl 1 Main Menu

Another Menu Panel

r---.L..--, REDISPLAY I
Panel

A

ENTER

Panel
B

Figure 103. Portion of a Possible Panel Hierarchy (4 levels)

I
Appl3

END

END, QUIT

MAIN MENU

ENTER

The boxes under "Appl 1" represent panels in which a user can enter into a dialog
with NetView/PC applications. The QUIT, END and MAIN MENU actions defined
previously, can be used to take the user to a particular point in a panel hierarchy.
However, these actions are not allowed to take the user to a panel that he has not
previously seen. Therefore the transition must always be to a panel that the user
has seen earlier in the current dialog.

Dialog Control Techniques
Dialog Control Actions can be requested via function keys or via the command line.
In NetView/PC dialog management, dialog control actions must be assigned to
function keys (see "Function Key Utilization" on page 144). However, in addition
to function keys, applications may elect to support dialog control actions via com­
mands on the Command/Selection line.

142 NetView/PCTM APIICS

Advanced Dialog Control Techniques

Scrolling

NetView/PC applications are allowed but not required to implement either or both
of the following advanced techniques to support dialog control:

• "Selection Chaining."

• "Typing Over the Location Information."

Selection Chaining: Users can bypass one or more menus via this technique. The
user specifies not only a selection from the menu currently presented, but also a
selection from the next menu which would result from the first selection, and so on.

Users can make selections by specifying either Key Phrases or Key Phrase IDs or
a mixture of both. In either case, when the user enters information, the "items"
(Key Phrase, Key Phrase 10) must be separated by semicolons; this is to distin­
guish them from multiple choices on the Multiple Selection menus, where the
choices are separated by blanks.

Example 1 - Selection Chaining by Key Phrase 10:

===> 3;2;5

In Example 1 above,

• option 3 is to be selected from the Menu Panel currently displayed, then

• option 2 is to be selected from the Menu Panel which would normally be pre­
sented next. Finally,

• option 5 is to be selected from the next Menu Panel and then the user will be
presented with the panel that supports option 5 from the last Menu Panel.

Typing Over the Location Information: Another technique to cause a dialog to
make a transition is to allow the Location Information element (see "Common
Panel Elements" on page 115) of a panel to contain an Entry Field (see "Panel
Body Elements" on page 120). The application can allow the user to type over the
unprotected Entry Field in the Location Information element with the desired
location information; for example, the new "page" number or the new "record"
number. Suppose the Location Information element was presented as:

Record 19 of 213

If the user typed over the record number, changing it from "19" to "37", and then
pressed Enter, the application would present record number 37.

Scrolling actions allow the user to see different portions of the information being
managed by an application when there is not enough screen area to see all of it at
once. When the cursor is in a scrollable information area of a panel, scrolling
occurs when the cursor is moved "against" a boundary of the area. Scrolling is in
the direction of cursor movement.

Techniques for two types of application scrolling are defined in this document; they
are "relative" scrolling and "absolute" scrolling.

The relative scrolling functions are:

Appendix E. Panel Development Rules 143

Function

Left

Right

Backward (up)

Forward (down)

Previous

Next

Key Assignment and Definition

For each depression of the "left arrow" key when the cursor
is at the left boundary of the displayed data, the user sees
the next character column to the left of the currently dis­
played data unless there is no more data to the left.

For each depression of the "right arrow" key when the
cursor is at the right boundary of the displayed data, the
user sees the next character column to the right of the cur­
rently displayed data unless there is no more data to the
right.

For each depression of the "up arrow" key when the cursor
is at the top boundary of the displayed data, the user sees
the next character line above (preceding) the currently dis­
played data unless there is no more data above.

For each depression of the "down arrow" key when the
cursor is at the bottom boundary of the displayed data, the
user sees the next character line below (following) the cur­
rently displayed data unless there is no more data below.

For each depression of the" PgUp" key, the user sees the
"n" character lines above (preceding) the currently dis­
played "n" character lines.

For each depression of the "PgDn" key, the user sees the
"n" character lines below (following) the currently displayed
"n" character lines.

The absolute scrolling functions are:

Function

Top

Bottom

Beginning of line

End of line

Function Key Utilization

Key Assignment and Definition

When the "Home" key is depressed, the user sees the first
(top) "n" character lines of information.

When the "End" key is depressed, the user sees the last
(bottom) "n" character lines of information.

When the two-key combination of "Ctrl" and "left arrow" is
depressed, the user sees information starting at the left­
most boundary of the information.

When the two-key combination of "Ctrl" and "right arrow" is
depressed, the user sees information starting at the right­
most boundary of the information.

The term "function key" refers to a key that performs a specific function; there are
two kinds:

1. dedicated (hard-boded) keys, and

2. programmable (soft) keys.

Some of the dedicated keys are "Esc", "PrtSc", "PgDn", "PgUp", the directional
(arrow) keys, etc. The "Enter" key is considered to be dedicated to the ENTER
action.

144 NetView/PCTM API/CS

The programmable keys, also called softkeys, are printed with "generic" labels
like" F1", "F2", etc. and they may be assigned various action requests that the
application allows the user to make.

In the NetView/PC environment, function keys will have a consistent assignment;
the following sections describe those assignments for "hard" keys and "soft"
keys.

Dedicated Function Keys
The following dedicated function keys are defined for NetView/PC:

Key

Enter

PgUp

PgDn

Up Arrow

Down Arrow

Left Arrow

Right Arrow

Home

End

Programmable Function Keys

Function Definition

User request to continue and/or process input; see "ENTER" on
page 139.

User request to display previous page of information; see
"Scrolling" on page 143.

User request to display next page of information; see "Scrolling"
on page 143.

User request to display previous line of information; see
"Scrolling" on page 143.

User request to display next line of information; see "Scrolling"
on page 143.

User request to display next character column of information to
left of currently displayed data; see "Scrolling" on page 143.

User request to display next character column of information to
right of currently displayed data; see "Scrolling" on page 143.

User request to display the top "n" character lines of informa­
tion; see "Scrolling" on page 143.

User request to display the bottom "n" character lines of infor­
mation.

The following programmable function keys are defined for NetView/PC:

Key Function Definition

F1 User request for "Help" in current dialog; see "Help Facility" on page 148.

F2 User request to "Quit" (back out) of the current dialog without saving any
entered data; see "QUIT" on page 140.

F3 User request to "End" the current dialog after saving any entered data; see
"END" on page 141.

F4 User request to "Return" to the application's main menu after saving any
entered data; see "MAIN MENU" on page 141.

F5 User request to "Redisplay" initial values for current dialog after discarding
any entered data; see "REDISPLAY" on page 140.

F6 User request to "add" an item, record, etc to a list or file; used from a List
Panel.

F7 User request to see a "list" of choices for a particular input field.

Appendix E. Panel Development Rules 145

Programmable function keys other than those listed above may be defined and
used by NetView/PC applications.

Required Function Keys
The following function keys must be active (supported) on every NetView/PC
product panel (Le., non-help panel):

• Enter

• F1 (Help)

• Either F2 (Quit) or F3 (End)

Use of the remaining functions keys (hard or soft) is application dependent. When
a key is active for a given panel, the Bottom Environment area of that panel must
include the key name, and if necessary, the action assigned to that key.

Messages and Prompts
Messages and prompts are a means through which NetView/PC applications
provide "feedback" to the user, and assists the user in completing a dialog with the
application.

This section addresses messages that are issued to the user in the form of:

• Feedback that notifies the user of an error situation or incorrect action.

• Positive feedback that notifies the.user that their input has been accepted and
is currently being processed.

• Notification of completion of work by the application. This notification allows
the user to request or initiate further actions when they must be done serially.

This section also addresses prompts that are used to guide the user through a
dialog with an application.

• Prompts are issued as a result of an action request by the user.

• A prompt may request specific input, such as requesting the user to key some
response character(s).

• A prompt may request a specific action, such as inserting a diskette necessary
for continuing the application.

This section applies only to "immediate" messages and prompts that are neces­
sary for the user to interact with the current application. Messages that are
queued to a user or the workstation are displayed on the Workstation Status Line
(line 25); the NetView/PC base services will manage the display of this line.

Message/Prompt Presentation
Messages and prompts are to be displayed on the Message Line (panel line 23) as
described in "Common Panel.Elements" on page 115.

Message/Prompt Format
Messages and prompts are displayed in mixed case in positions 5 thru 80 of line 23
of the panel. National Language requirements will necessarily limit the length of
the message/prompt.

146 NetView/PCTM API/CS

Message Types

Message Rules

The following usages of messages are allowed:

1. Information Messages -

This type of message provides the user with feedback about the state of the
application; typically used to tell the user that input has been accepted and is
currently being or has been processed.

Information messages that indicate a process is currently underway (for
example, "Modem test running.") will be automatically removed from the
display when processing is completed. Information messages may also indi­
cate to the user that the application is busy and cannot process action
requests. As a rule of thumb, anytime a process will run longer than 3
seconds, an information message must be displayed.

Other information messages indicate that processing is complete; for example,
"Record update completed."

2. Warning Messages -

This type of message calls the user's attention to an exception condition that is
not necessarily an error. For example, when large amounts of data would be
lost as a result of a QUIT action, the user must be warned. For an example
message, see "QUIT" on page 140. An audible alarm must be associated with
this message type.

3. Action Messages -

This type of message is used to notify the user that an improper action has
been requested or that the application has had an exception condition and
requires user action before the dialog can continue. An audible alarm must be
associated with this message type.

The following rules must be observed:

1. When a dialog transaction is completed by the application and no visible result
is displayed, an Information Message must be displayed that indicates com­
pletion (for example, "Record added to data base.").

2. When the application response to a user request is "delayed" due to proc­
essing, an Information Message to that effect must be issued. A "delay" is a
response outside the guideline for "normal" or "average" response times for
the given action request. As a general rule, anytime a process will run longer
than two (2) seconds without providing some other displayed indication, then
an information message must be displayed. A typical message in this situation
might be "Searching, please waiL.".

3. If a user request cannot be performed due to user error, each error occurrence
must receive an error message. Errors should be detected as soon as con­
straints allow (for example, on keystroke, field, or panel level).

4. If a user requested action is partially completed by the application, an Informa­
tion Message must be issued identifying what portion was completed. Addi­
tionally, the user must be instructed as to actions required for full completion
of the request.

Appendix E. Panel Development Rules 147

Message and Prompt Text Guidelines

Help Facility

The following guidelines should be used for constructing messages and prompts
that are presented to the user:

1. Error messages must tell the user:

• what is wrong, and

• what to do to get out of the problem.

2. Messages and prompts should:

• be complete sentences,

• be concise but still convey a complete thought,

• not be cryptic (avoid meaningless abbreviations/acronyms),

• use same terminology as utilized in other parts of the application.

3. Variables inserted into messages should be enclosed in quotes; commands or
actions should be in upper case for emphasis.

The purpose of the Help Facility is to provide operational assistance to aid the user
in completing a dialog. The assistance is provided at two levels:

1. "F1" help.

2. "General" or reference help.

The Help Facility is not meant to teach; teaching is left to a Training Facility. A
Training Facility is not provided with the NetView/PC product.

The following usability objectives must be observed in the Help Facility:

1. The Help Facility must enhance productivity of the user by giving the imme-
diate information needed at a given point in the dialog.

2. The Help Facility must be available at all times.

3. The Help Facility can always be invoked with the F1 key.

4. Interaction with the Help Facility must be consistent with the interaction tech­
niques used in interacting with any other panel within the application.

5. Help must be presented in the language of the user and should be sensitive to
language issues.

The following sub-sections will further describe the Help Facility.

1. "Displaying Help Panels" on page 149

2. "Common Help Panel Elements" on page 149.

3. "Help Interaction Techniques" on page 150.

4. "Types of Help" on page 150.

5. "Content of Help Panels" on page 151.

148 NetView/PCTM APIICS

Displaying Help Panels
In NetView/PC the F1 key is always Help; the user can press F1 at any time to
request Help. The location of the cursor at the time help is requested will dictate
the detail of the help information. For example, the application may support help
on a "field" basis, on a "panel" basis, or both. When the cursor is in a particular
field at the time help is requested and the application does not support help for that
field, then help will always be presented on a "panel" basis. Somewhere within
the help on a "panel" basis, the particular field help information will be given.

Utilizing multiple help panels to form a help hierarchy is to be discouraged in a
Help Facility.

Common Help Panel Elements
The following are the Common Panel Elements required for all Help panels:

1. Panel Identifier (lD)

• Purpose - Used for the referencing of a specific help panel.

• Attributes - An alphanumeric, protected field normally eight or fewer char­
acters in length. The Panel ID is located on line 1 of the panel, left justified
in upper case.

• Guidelines for use - A required element. The first three positions of Panel
ID must be the unique component prefix aSSigned to the NetView/PC appli­
cation; the component prefix is identified in the Product Definition File con­
tained in the application's Distribution Diskette.

2. Help Title/Context

• Purpose - This panel element informs the user that the information being
presented is "help information" (the Title) and "to what specific subject the
information refers" (the Context). For example, if help was requested from
the NetView/PC Configuration Manager's Main Menu panel, the help panel
might be titled:

"CONFIGURATION HELP: MAIN MENU".

• Attributes - An alphanumeric, protected field centered horizontally on line
1 of the panel, in upper case. The word HELP must be a portion of the title
and the context must be indicated.

• Guidelines for use - A required element.

3. Location Information

• Purpose - If the help information requires more than one panel (page), this
element is used to indicate to the user which page is currently being
viewed. For example, "Page 1 of 2".

• Attributes - An alphanumeric, protected field presented right justified on
line 1 or line 2 of the help panel. Line 1 is used unless the Help
Title/Context wording would extend into the Location Information.

• Guidelines for use - Required only when multiple panels are to be pre­
sented for this particular request for help.

4. Separator

• Purpose - Separates the Panel ID, Panel Title and Location Information
from the Hel p Panel Body.

Appendix E. Panel Development Rules 149

• Attributes - A protected field. Separation will be achieved with a solid line
on line 2 of the panel. If Location Information is present and displayed on
line 2, then the solid separator line will be displayed on line 3.

• Guidelines for use - A required element.

5. Help Panel Body

• Purpose - Used for presentation of information that is dependent on the
type of assistance being provided.

• Attributes - The information in a Help panel body should be as brief as pos­
sible giving the user only what is needed to describe and/or continue a
dialog with a specific object.

• Guidelines for use - See "Types of Help" and "Content of Help Panels" on
page 151.

6. Bottom Envi ronment Area

• Purpose - Used to inform the user on how to continue in the help dialog,
including how to return to the panel from which help was initially
requested. For example, the following may be presented in this area:

F3=End F4=Return F6=Help Main Menu

• Attributes - Presented in the bottom-most area of the panel, just above the
Message Line.

• Guidelines for use - A required element.

Help Interaction Techniques

Types of Help

Help is available to the user by pressing the F1 key from any NetView/PC product
panel; help is NOT available from a "help" panel. The NetView/PC application sup­
porting the particular help panel will use the same set of dialog control actions
(see "Dialog Control" on page 138) that are used with the primary panel (that is,
the panel to which the help information refers).

When help panels are displayed or removed, the Help Facility must not interfere
with the current user dialog. Previously entered user data must not be destroyed
and the cursor must be restored to the field it was on when help was requested.
The dialog must continue as if the Help Facility was never invoked.

Help panels are designed to either give the user information, or to allow user inter­
action within the Help panel. There are two types of help panels:

Passive Help Panels: Passive Help provides information to the user. The user is
allowed to read the information while continuing the dialog. If help is being pro­
vided for an "entry field", then the information should address the purpose of the
field and what the user is required to enter. If help is being provided for a "pro­
tected field" such as the Data Set Name element, then the information should
present a description of that field and its "value" to the user.

Interactive Help Panels: Interactive Help allows the user to carryon a dialog with
the Help Facility. Such help is useful for providing Help on Help, Help on Function
Keys, or Help on the Training Facility. The goal of Interactive Help is to allow the
user to get information with as little disruption as pOSSible, and then continue with
the task at hand. The NetView/PC product will only provide passive help panels.

150 NetView/PCTM API/CS

Content of Help Panels
Writers of Help Panels should keep the following in mind:

• Sentences should be complete, and concisely written.

• Help panels are meant to assist the user in progressing from one step to the
next in their dialog with the application. Sentences must be action-oriented as
opposed to concept-oriented. Specific steps should be used, rather than an
explanation of the concept involved. Limit detail to only what is needed for the
current dialog.

• When the Help Facility cannot tell what kind of information is requested, a Help
Menu panel can be used to offer choices to the user.

I n these situations:

the first help menu panel should offer a choice of topic areas from which to
choose,

a second help menu panel may be used to present choices for the topic
area selected in the first menu, then

the next panel would provide the passive help information for the user.

Color and Emphasis

Overview

This section on Color and Emphasis is a required complement to the other sections
of Panel Development. That is to say, NetView/PC panel definition and dialog man­
agement includes adherence to the color and emphasis requirements of this
section.

Panels defined according to the rules of this section can be displayed by the
NetView/PC Dialog Manager on either a color monitor or a monochrome monitor;
that is to say, only one copy of the panel need be defined and the NetView/PC
Dialog Manager will access an appropriate "profile" for the monitor currently in
use by NetView/PC. To accomplish this, the NetView/PC Dialog Manager requires
that the display attributes of panel fields be specified using the technique of
"Levels of Emphasis", as defined by the EZ-VU Screen Definition Facility. Simply
described, this technique is a "logical to physical" relationship. For example, if a
given portion of the panel is specified to have "level 3" emphasis, then "level 3" is
defined in a dynamically accessible "profile" to have two meanings: one each for
color and monochrome. At "display time" the NetView/PC Dialog Manager already
knows the monitor type, therefore the proper physical display attribute can be
accessed from the profile and applied to the monitor for display of the current
panel.

The following "special considerations" are noteworthy:

• This "Level of Emphasis" technique is applicable only to display of panels on a
dark (black) background; that is, the physical definition of the levels will only
affect the foreground display attributes of the monitor.

• Furthermore, certain fields on a given panel may require different display attri­
butes during the course of dialog with the panel. For example, there are three
types of messages. that can be displayed (see "Message Types" on page 147),
and the display attribute of the Message Line (see "Common Panel Elements"
on page 115) must b.e different for each type. The NetView/PC Dialog Manager
provides a macro interface such that a given field's display attributes can be
dynamically modified for a given instance.

Appendix E. Panel Development Rules 151

Classes of Data

The remainder of this section will present various figures and charts to assist the
panel designer/developer in properly assigning "level numbers" to every portion
of panels being designed for the NetView/PC environment.

Figure 104 presents the IBM default display attributes for NetView/PC panels to be
displayed by EZ - VU II.

LEVEL

2

3

4

5

6

7

8

9

10

11

PLACES USED

Any field except Panel 10

Panel 10 only

Data Set Name
Location Information
Separator Line
Dot Leader
Major Heading
Minor Headings
Explanatory Text
Information Field
Normal Text on Help Panels

Panel Title and Sub-title
Key Phrase 10
Heading of Required Field
Required Input Field
Command/Selection Line
(text, prompt and input field)
Emphasized Text on Help
Panels

Top Environment Area
Top Instruction Area
Bottom Instruction Area
Bottom Environment Area
Normal Text for Status Line

Normal Input Field

Information Text for
Messages/Prompts/Status

Warning Text for
Messages/Prompts/Status

Action (error) text for
Messages/Prompts/Status
Input field in error

Reserved

Reserved

COLOR MONITOR

Non-display

Blue

Intensified Cyan

Intensified White

Intensified Cyan

Intensified Green

Intensified White

Intensified Yellow

Red

Yellow

Magenta

Figure 104. NetView/PC EZ-VU II Level of Emphasis

MONOCHROME

Non-display

Normal

Normal

Intensified

Normal

Normal

Intensified

Intensified

Intensified

Normal

Normal

Four classes of data will be used to achieve varying degrees of color and
emphasis:

1. Output - the application's presentation to the user.

2. Input - user requests to the application and user responses to the application's
output.

3. Message - the application's communication to the user.

4. Status - the NetView/PC communication to the user.

152 NetView/PCTM API/CS

Figure 105 on page 153 shows the relationship between a data class and the level
of emphasis attribute. The attribute assigned to each level number is shown in
Figure 104.

DATA SUB-CLASS

OUTPUT
2
3

INPUT 1
2
3

MESSAGE 1
2
3

STATUS
2
3
4

MEANING

De-emphasized
Normal
Emphasized

Normal
Emphasized
Echoed Error

Information
Warning
Action Error

Normal
Information . Warning
Action Error

LEVEL OF EMPHASIS

Level 5
Level 3
Level 4

Level 6
Level 4
Level 910

Level 77
Level 87 ,8

Level 97,8

Level 59
Level 79
Level 89
Level 99

Figure 105. Class of Data Versus Level of Emphasis Number

Output Sub-classes

1. De-em phasized Output

This is information which one would wish to provide with less than normal
emphasis.

2. Normal Output

Normal output is used for most information "text" utilized within panels.

3. Emphasized Output

Emphasized output is used for information that is to be "eye catching".

Figure 1 06 presents the Level of Emphasis assignments for the various sub­
classes of output data.

7 When more than one Level of Emphasis is required for the same field, the application
program must dynamically tell EZ-VU the field attributes prior to displaying data in the
field. Certain Dialog Manager macros can be used to accomplish this by specifying the
panel field name and an appropriate indication of the data sub-class; subsequently the
panel can be re-displayed so that the Message Line and any related input field will be
displayed with the new (and appropriate) attributes.

8 Certain data sub-classes require an audible alarm to accompany the data presentation.
The Dialog Manager macros mentioned in footnote7 can be used to accomplish this at
the same time that the field attribute is changed. See also footnote1o•

9 Status presentation (Workstation Status line 25) is managed by NetView/PC base ser­
vices.

10 In the case of Echoed Error input fields, the application must restore the field's original
attributes after the input error has been resolved.

Appendix E. Panel Development Rules 153

OUTPUT SUB-CLASS PANEL ELEMENT LEVEL OF EMPHASIS

DE-EMPHASIZED • Top Environment Area
Bottom Environment Area

5

• Top Instruction Area
Bottom Instruction Area

NORMAL Data Set Name
Location Information

3

• Separator Line
Major Heading
Minor Headings

Column Heading
Row Heading
Field Heading (Key Phrase)

• Explanatory Text
Dot Leader
Information Field

• Normal Text o.n Help Panels

EMPHASIZED Panel Title and Sub-title
Key Phrase ID

4

• Headings of Required Fields
• Command/Selection Line (text and prompt)
• Emphasized Text on Help Panels

SPECIAL PanellD 2

Figure 106. Level of Emphasis Assignment for Output Data Classes

Input Sub-classes

1. Normal Input

Normal input is for information that the user keys in dialog with the application
and for information presented by the application that is modifiable by the user.
It includes all entries that are not considered Emphasized Input (see next item).
Examples of normal input are:

• Optional entry fields within a panel.

• Option column fields in a List Panel.

• Default entries presented by the application, but are modifiable by the
user.

For more details see "Entry Field" in "Panel Body Elements" on page 120.

2. Emphasized Input

Emphasized input is used to make a clear distinction from other panel ele­
ments. It should be used sparingly and consistently. When used for "Required
Input Fields", it may become overpowering. "Required Input Fields" can fall in
this sub-class or the Normal Input sub-class at the application's discretion as
long as the majority of input fields on a given panel are not emphasized.
Examples of emphasized input are:

• Required entry fields.

• Command/Selection entry field (does not include Option field on List
Panels).

For more details see "Entry Field" in "Panel Body Elements" on page 120.

3. Echoed Error

154 NetView/PCTM API/CS

This is used to signal invalid input from the user. The entry field in error
should be re-displayed with the "Echoed Error" attribute (see Figure 105 on

page 153), the cursor placed in the field and a message presented. Note that
the Message Line would also need the "Action Error" attribute before dis­
playing the message associated with the input field in error.

Figure 107 presents the Level of Emphasis assignments for the various sub­
classes of input data.

INPUT SUB-CLASS PANEL ELEMENT

NORMAL • Entry Field (displayable)
Entry Field (non-displayable)

EMPHASIZED Required Input Field

• Command/Selection Line (input field)

ECHOED ERROR Input Field in Error

Figure 107. Level of Emphasis Assignment for Input Data Classes

LEVEL OF EMPHASIS

6

6

9

Messages and Prompts Sub-classes: This sub-class is discussed in "Message
Types" on page 147; please refer to that section for details on the following:

1. Information Messages
2. Warning Messages
3. Action Error Messages

Figure 108 presents the Level of Emphasis assignments for the various sub­
classes of messages.

MESSAGE SUB-CLASS MESSAGE TEXT

INFORMATION
MESSAGE

WARNING
MESSAGE

ACTION ERROR
MESSAGE

Information Text

Warning Text

Error Text

Figure 108. Level of Emphasis Assignment for Message Sub-classes

LEVEL OF EMPHASIS

7

8

9

Status Sub-classes: Status sub-class presentation details for Workstation Status
Line (line 25) is managed by NetView/PC base services. Figure 109 presents the
Level of Emphasis assignments for the various sub-classes of status text.

STATUS SUB-CLASS STATUS TEXT LEVEL OF EMPHASIS

NORMAL STATUS Normal Status Text 5

INFORMATION Information Status Text 7
STATUS

WARNING STATUS Warning Status Text 8

ACTION STATUS Action Status Text 9

Figure 109. Level of Emphasis Assignment for Status Text Sub-classes

File Management Techniques Using the List Panel
This section describes the approved dialog management techniques when using
List Panels (see "List Panels" on page 133) to provide file maintenance support of
data files. An assumed scenario is used for the purpose of providing an overview
of following sections which present the information in a more detailed manner.

Appendix E. Panel Development Rules 155

To begin the scenario, assume a panel hierarchy as presented in Figure 110 on
page 157. The Maintenance Menu Panel provides access to two basic functions:
add items to a list and modify items in a list. When the "MODIFY" option is
selected from the Menu Panel, the application determines if the List Panel would
be empty and if so, presents a message on the Menu Panel. At this point the oper­
ator would select the "ADD" option to create new records for the list.

On the List Panel the operator is allowed to specify one of several action codes for
each item in the list (the example in this scenario is limited to three action codes).
The application's sequence of processing the action codes should be deletes, then
changes and any other actions and finally add-likes. If the list is scrollable (Le.,
more items in the list than can be presented on one display), the application must
handle the action codes entered over the entire range of items, i.e. multiple pages.
For example, the operator may enter actions codes on a certain page, then instead
of pressing Enter to perform those actions, the operator can press PgUp or PgDn to
see other pages of items and enter action codes on those items before finally
pressing Enter to process all of the action codes entered throughout the file of
data.

For delete actions, the application must determine if significant data loss would
occur by deleting anyone of the indicated items. If deemed not significant, the
delete(s) can occur immediately. If deemed significant or indeterminable, the
application must issue a request for confirmation of the delete request(s). Only
one confirmation is required for all items to be deleted. Items are deleted from the
primary storage location (presumed to be a disk file). The deleted item's position
on the List Panel is NOT to be removed; use a notation at the item location to indi­
cate that the item has been deleted.

For change actions, the indicated item is fully presented on the Change Panel. The
operator has the option to change certain data (as determined by the application)
or not to change any data. Changed items are immediately updated in the primary
storage location of the items (presumed to be a disk file). The changed portion of
the item is NOT to be reflected on the List Panel; use a notation at the item location
to indicate that the item has been changed.

For add-like actions, the application will present the Add panel initialized with the
values of the item indicated. This is in effect an add action with a specified
"prototype" and is useful when the new record is to be similar to an existing
record. The operator can Quit (return to the invoking panel) at any time or can
continue creating new records by alternately pressing Enter to add a new record,
then change necessary fields and press Enter again to add another record. Newly
created records are NOT to be reflected on the currently displayed List Panel.

If the application supports a function to add items to the list (most applications
will), then the primary invocation of the add function will be from a Maintenance
Menu Panel directly to the Add panel. The application's List Panel should support
a fast-path to the Add panel via a function key (F6=Add), in addition to the recom­
mended "add-like" action code which is a "prototype add".

It is recommended that the List Panel be "time-stamped", i.e. place the current
time on line 1 right-justified (above any location information). If location informa­
tion requires this space, then the time stamp can be placed right-justified below the
separator line (below the location information). This time-stamp reflects the chron­
ological status of the items currently being displayed on the List Panel. The oper­
ator should be free to choose when the displayed list is to be "refreshed". The
Redisplay function (F5= Redisplay) is used to accomplish the list refreshing. The

156 NetView/PCTM APIICS

"refreshed" List Panel will have a new timestamp, deleted records are no longer
remembered, new values of changed records are displayed along with all newly
added records. The application must decide which page of the new list is to be
initially presented (i.e., default to page 1 or some calculation based on items pre­
sented at time of Redisplay request).

Application's
Main Menu

Maintenance
Menu Panel

1 ADD
(add)--------------------,

2 MODIFY
(modify)

mes
Lyes

no

List Panel
1 = add-like 2=change 3=delete

Action

2
3
1

3

Hdg1 Hdg2

(item one)
(item two)
(item three)

(item n)
F6=Add

Add-like action code

(item three is used as default
values for new add item)

Fast-path to Add Panel

(from command line or function key 6)

Delete action code ADD PANEL

If confirmation required,
get one confirmation for
entire stack of deletes

Change action code

CHANGE PANEL

Perform ALL data base requirements
before accepting changed record

Figure 110. Panel Hierarchy Example

Perform ALL data base
requirements before
accepting a new record

When thru adding records,
return to place of invocation
(Maintenance Menu or List Panel)

Appendix E. Panel Development Rules 157

Maintenance Menu Panel

List Panel

Delete Function

This type of panel would be displayed to give the operator the following options:

1. add items to a new or existing file, or

2. modify items within an existing file.

For the situations which require only the addition of items to a file, the "add" option
allows the operator to bypass the potential performance overhead associated with
the "modify" option. When the "add" option is requested, the application displays
the Add Panel and allows the actions described in the section titled "Add Panel
Dialog Control" on page 160.

The "modify" option is provided so that the operator can selectively apply a wide
range of actions to the items contained within the file. Those actions will tradi­
tionally include the ability to change and delete items within the file as well as the
ability to add new items to the file. Additionally the application may allow other
actions on items within the file or associated with the file.

When the "modify" option is requested and the related data file does not exist, an
information message is presented on the Maintenance Menu panel indicating that
the file is empty. When the data file does exist the application will display the List
Panel and allow certain pre-determined actions to be specified on the items in the
file. Action codes generally allowed will include "change", "delete" and possibly
"add-like". Also a "fast path" to the Add Panel may optionally be supported using
function key 6 (Add). Section "List Panel" will discuss these action codes.

The application accesses the data file associated with the List Panel and displays
the file items on the List Panel in a pre-determined order. The operator is allowed
to type one action code (request) per item; all items not currently displayed may be
viewed thru scrolling actions and those items may also be assigned action codes.

When the operator presses Enter, the application reviews all items in the list for
action codes; the sum total of action codes becoming what is called the "stack" of
action requests. When the "stack" becomes "empty" or when the "stack" is termi­
nated prematurely by the operator, the application will display a "summary
message" of the action(s) completed (e.g., nnn of nnn deletes; nnn of nnn changes;
nnn adds processed"). This message will appear on either the List Panel, the
Maintenance Menu Panel or the application's Main Menu panel depending upon
how the stack is completed or terminated.

The "delete function" to delete an existing item from a primary data file is invoked
by typing the "delete" code next to any item on the List Panel and then pressing
the Enter key. This procedure will cause the application to delete each indicated
item from the primary data file. The application has the responsibility to have pre­
determined if the deletion(s) will cause significant loss of data; if so the application
will present an "Are you sure?" message on the List Panel and a prompt "(YIN)"
for operator response. If a "N" is entered, the delete request(s) are canceled. If a
"Y" is entered, the delete function will delete from the primary data file all records
that are currently noted with the del ete action code.

158 NetView/PCTM APIICS

List Panel Dialog Control

Change Function

From the List Panel the foltowing actions are altowed:

• Help

- help information is presented

• Enter

create a stack of requests from the action code(s) typed on items in the list,

perform the requests in the order of:

1. delete requests (see "Delete Function" on page 158),

2. change requests (see "Change Function"),

3. add-like requests (see "Add Function" on page 160).

present a summary message on the List Panel,
e.g., "nnn of nnn deletes, nnn of nnn changes, nnn adds processed."

• Quit

alt action codes are ignored; the primary data file is NOT modified in any
way,

the previous panel is displayed (Le., the Maintenance Menu Panel).

• Main Menu

- the same action as "Quit" except that the next panel to be displayed is
always the application's Main Menu panel.

• Redisplay

all action codes are ignored,

the List Panel is "re-freshed" with the current data on the primary data file,

the current time is reflected on the List Panel.

• Add-

- a "fast-path" to the Add Panel (see "Add Function" on page 160).

The "change function" to change an existing item on a primary data file is invoked
by typing the "change" code next to any item on the List Panel and then pressing
the Enter key. This procedure will cause the application to display the Change
Panel; see the section titled "Change Panel Dialog Control."

Change Panel Dialog Control
The application displays the Change Panel with the values of the first change item
on the stack of requests.

From the Change Panel the foltowing actions are allowed:

o Help

- help information is presented

• Enter

the item on the primary file is updated (unless no data was changed),

"trace notation" for .the List Panel is generated for this changed item,

Appendix E. Panel Development Rules 159

Add Function

if there is another change request in the stack:

display the Change Panel with the val ues of the next item that was
marked with the change action code,

present on the Change Panel, a "change status" message about the
previous change action (e.g., "Previous change completed").

if there are no more change requests in the stack, return to the application
for further processing of the stack (Le. add-like requests).

• Quit

• End

the current change request is not processed,

aI/ remaining requests in the stack are flushed (ignored),

"trace notation" for the List Panel is generated only for change requests
processed prior to this Quit action,

return to the application to display the List Panel with a summary message
of actions completed.

- same as "Quit" except that current change request is processed (primary
file updated).

• Main Menu

same as "End" except that next panel to be displayed is the application's
Main Menu.

The "add function" to add items to a primary data file can be invoked in any of the
following ways:

1. by selecting "Add" from the Maintenance Menu Panel, or

2. by pressing function key 6 on the List Panel, or

3. by typing the "add-like" code next to any item on the List Panel and then
pressing the Enter key.

Either of the above steps will cause the application to display the Add Panel; see
the section titled" Add Panel Dialog Control."

Add Panel Dialog Control
The application displays the Add Panel and the default values displayed are as
follows:

• application-determined values when the add request is from the Maintenance
Menu panel or the "F6=Add" action from the List Panel,

• actual values from another list item are used when the add request is from an
"add-like" action code of the List Panel.

From the Add Panel the following actions are allowed:

• Help

- help information is presented

160 NetView/PCTM APIICS

• Enter

new data is saved in the primary data file,

if the stack is empty, display the Add Panel using the values of the most
recently added item as default values; the panel will contain a confirmation
message about the new add.

if the stack is not empty, display the Add Panel using the values of the indi­
cated item as default values; the panel will contain a confirmation message
about the previous add.

• Quit

• End

the current add request is not processed,

all remaining requests in the stack are flushed (ignored),

return to the application to display the next panel with a summary message
of actions completed; the next panel will be the panel from which the Add
function was requested (Maintenance Menu panel or List Panel).

- same as "Quit" except that any new data on the panel is saved before dis­
playing the next panel.

• Main Menu

same as "End" except panel to be displayed is the application's Main
Menu panel.

Appendix E. Panel Development Rules 161

162 NetView/PCTM API/CS

Part 4. Sample Programs

Appendix F. DOS Sample Program Planning and Installation 167
Prerequisites .. 167
Components .. 167

Code .. 167
Panels ... 168
Sample NMVTs ... 168
Sample SPCF Build ARBs 169
Sample NetView Command Processors 169
Other ... 169

Installation ... 170
Assembly and Link .. 170

Assembling the Sample Program 171
Linking the Sample Program 171

Appendix G. Operation 173
Startup .. 173
Generallnformation 173

Function Keys ... 174
File Formats ... 174

ARB File Format 174
NMVT File .. 175

Other Information 175
Output Fields .. 175
Error Messages 175

Main Menu ... 176
Function Keys ... 176
Parameters ... 176
Output Fields .. 177
Shutdown .. 177

Alert Interface Panel 177
Function Keys .. .
Parameters .. .
Output Fields

Operator Communications Interface
Function Keys .. .
Parameters .. .
Output Fields

Service Point Command Facility Interface
Function Keys .. .
Parameters .. .
Output Fields

SPCF Run Command
Function Keys .. .
Parameters .. .
Output Fields

SPCF Receive Unparsed Command
Function Keys .. .
Parameters .. .
Output Fields

SPCF Parse Host Command
Function Keys
Parameters

Part 4. Sample Programs

178
178
179
179
180
180
180
181
181
181
182
182
183
183
185
185
186
186
187
187
188
188

163

Output Fields .. 188
SPCF Build Response 189

Function Keys ... 189
Parameters ... 189
Output Fields .. 190

SPCF Display File ... 190
Function Keys ... 191
Parameters ... 191
Output Fields .. 192

SPCF Unformatted Display Panel 192
Function Keys ... 192
Parameters ... 193
Output Fields .. 193

SPCF Display Run Command 194
Function Keys ... 194
Parameters ... 195
Output Fields .. 195

SPCF Display Link PD Command 195
Function Keys ... 196
Parameters ... 196
Output Fields .. 196

SPCF Display Link Data Command 197
Function Keys ... 197
Parameters ... 198
Output Fields .. 198

SPCF Display Link Test Command 198
Function Keys ... 199
Parameters ... 199
Output Fields .. 199

SPCF Send Unformatted Response 200
Function Keys ... 200
Parameters ... 201
Output Fields .. 202

SPCF Send Unsolicited Message 202
Function Keys ... 203
Parameters ... 203
Output Fields .. 204

SPCF Send Error Sense Data 204
Function Keys ... 205
Parameters ... 205
Output Fields .. 206

SPCF Build Message 207
Function Keys ... 207
Parameters ... 207
Output Fields .. 207

SPCF Correlator List 208
Function Keys ... 209
Parameters ... 209
Output Fields .. 209

Host Data Facility Interface 209
Function Keys ... 210
Parameters ... 210
Output Fields .. 211

Appendix H. API Sample Program Error Messages 213

164 NetView/PCTM APIICS

Appendix I. DOS Sample Program Code
APIMAIN.DSG .. .
APIMAIN.MAC .. .
APIMAIN.EXR
APIMAIN.DEF
APIMAIN.ASM .. .
APIMAIN.UTL
APIUTIL.DSG
APIUTIL.EXR
APIUTIL.ASM
APIDISP.DSG
APIDISP.ASM

223
223
242
245
246
247
292
303
310
311
332
340

Appendix J. NelView Sample Programs 361
NetView Sample Presentation Services Command Processor (PSCP) 361
NetView Sample Data Services Command Processor (DSCP) 371

Part 4. Sample Programs 165

166 NetView/PCTM API/CS

Appendix F. DOS Sample Program Planning and Installation

Prerequisites

Components

Code

The API Sample Program requires the following software in order to run:

1. NetView/PC 1.1.

2. EZ-VU II Runtime Facility.

In addition, if a new executable file is to be generated from the provided source
code or object files, the following additional software is required:

1. IBM Macro Assembler Version 2.0.

The API Sample Program consists of the following files:

Filename

APIMAIN.EXE

APIPANEL.L1B

APIMAIN.ASM

APIMAIN.DSG

APIMAIN.DEF

APIMAIN.MAC

APIMAIN.UTL

APIMAIN.EXR

APIUTIL.ASM

APIUTIL.DSG

APIUTIL.EXR

APIDISP.ASM

APIDISP.DSG

Contents

Executable code file.

Library file containing panels.

Source code for major portion of Sample Program.

Declarations of variables used in APIMAIN.ASM.

Defi nitions of constants.

Macro definitions.

Special purpose utility procedures used in APIMAIN.ASM.

File containing "extern" statements for public entities in
APIMAIN.

General purpose utility routines.

Declarations of variables used in APIUTIL.ASM.

File containing "extern" statements for public entities in
APIUTIL.

Display procedures.

Declarations of variables used in APIDISP.ASM.

Appendix F. DOS Sample Program Planning and Installation 167

Panels

Sample NMVTs

The API Sample Program uses the panel library APIPANEL.LlB. This library con­
tains the following panels:

Filename

DCJVAPOO.PAN

DCJVBP01.PAN

DCJVBP02.PAN

DCJVBP03.PAN

DCJVBP04.PAN

DCJVCPOO.PAN

DCJVCP01.PAN

DCJVCP02.PAN

DCJVCP03.PAN

DCJVCP04.PAN

DCJVCP05.PAN

DCJVCP06.PAN

DCJVCP07.PAN

DCJVCXOO.PAN

DCJVDPOO.PAN

DCJVMPOO.PAN

DCJVOPOO.PAN

ISPFMNT1.PAN

Filename

GOODNMVT.NMV

GENERIC.NMV

HYBRID.NMV

Panel Description

Alert API Panel.

SPCF Parse Host Command Panel.

SPCF Build Response Panel.

SPCF Unformatted Display Panel.

SPCF Formatted Display Panel.

SPCF API Panel.

SPCF Run Command Panel.

SPCF Receive Unparsed Command Panel.

SPCF Send Unformatted Response Panel.

SPCF Send Message Panel.

SPCF Send Error Panel.

SPCF Build Message Panel.

SPCF Correlator Selection Panel.

Display File Pop-up Panel.

Host Data Facility API Panel.

API Sample Program Main Menu Panel.

Operator Communications API Panel.

EZ-VU II Runtime Facility panel.

Contents

Contains the binary image of a sample non-generic
alert.

Contains the binary image of a sample generic alert.

Contains the binary image of a sample hybrid alert.

168 NetView/PCTM APIICS

Sample SPCF Build ARBs
Filename

RUNCMD.RSP

LlNKPD.RSP

LlNKTEST.RSP

Contents

Contains the binary image of a sample SPCF Build ARB

and its associated data. Enter this filename as the
'ARB Input Filename' on panel DCJBP02 in
Figure 118 on page 189 in order to build a response
to a RUNCMD command.

Contains the binary image of a sample SPCF Build ARB

and its associated data. Enter this filename as the
'ARB Input Filename' on panel DCJBP02 in
Figure 118 on page 189 in order to build a response
to a L1NKPD command.

Contains the binary image of a sample SPCF Build ARB

and its associated data. Enter this filename as the
'ARB Input Filename' on panel DCJBP02 in
Figure 118 on page 189 in order to build a response
to a L1NKTEST command.

Sample NetView Command Processors

Other

Filename Contents

NVPCDSCP .BAL

NVPCPSCP .BAL

Contains 370 assembler language source for a
sample NetView Data Services Command Processor
(DSCP).

Contains 370 assembler language source for a
sample NetView Presentation Services Command
Processor (PSCP).

In addition to the above, various other files are also included:

Filename

README.API

INSTALL.BAT

SAMPLE.BAT

MASMSAMP.BAT

LlNKSAMP.BAT

VAPI.MSG

Contents

Contains information regarding the API Sample
Program.

Installs the API Sample Program onto a fixed disk.

Executes the API Sample Program.

Assembles the API Sample Program source code
modules.

Links the API Sample Program object files.

Messages (error and otherwise) displayed by the API
Sample Program.

Appendix F. DOS Sample Program Planning and Installation 169

Installation
The following steps should be taken in order to install the API Sample Program
onto a fixed disk.

Note: NetView/PC must be installed onto a fixed disk before the API Sample
Program is installed.

1. Insert the diskette containing the API Sample Program into the desired floppy
drive.

2. Type:

a: install c:

where a and c are the drive letters of the source and destination drives,
respectively.

This will copy the panels into the \NVPCPANL directory, and other files into the
\NETVIEW directory.

Note: There must be at least 700K of free space on the fixed disk for the installa­
tion to complete successfully.

The installation file will indicate whether the installation was completed success­
fully or not.

Assembly and Link
In order to assemble and link the API Sample Program, the following conditions
must be satisfied:

Note: The following steps need not be performed to obtain a runable copy of the
API Sample Program; an executflble file is distributed with the sample
program.

1. NetView/PC and the API Sample Program must be installed on a fixed disk.

2. The current directory must be \NETVIEW.

3. ISPASM.OBJ (from the EZ-VU runtime facility) must be present in the current
directory.

4. MASM V2.0 must be present in the search path.

5. LINK (the DOS linker) must be present in the search path.

6. Enough space must be present on the fixed disk for the output files.

7. NetView/PC should not be running.

Warning: Attempting to assemble or link API Sample Program while NetView/PC is
running may lead to system failure. Assemble and link only under DOS.

170 NetView/PCTM APIICS

Assembling the Sample Program
In order to assemble the components of the API Sample Program:

1. Type MASMSAMP on the command line.

This will run the macro assembler, and produce the object and listing files for
APIMAIN, APIDISP, and APIUTIL. If no listing file is desired, the batch file
MASMSAMP.BAT may be edited in order to remove the listing filename from the
MASM invocation line.

Linking the Sample Program
In order to link the components of the API Sample Program:

1. Type LINKSAMP on the command line.

This will run the DOS linker and produce the APIMAIN.EXE file, as well as a link
map in APIMAIN.MAP.

Appendix F. DOS Sample Program Planning and Installation 171

172 NetView/PCTM API/CS

Appendix G. Operation

Startup
The following steps should be taken in order to run the sample program.

Note: The instructions below assume that NetView/PC and the API Sample
Program have been installed on the c: drive.

1. Set the default drive to c: by typing c: on at the DOS command prompt.

2. Type cd \NETVIEW to set the default directory to \NETVIEW.

3. Start NetView/PC with a configuration including Alerts, Host Data Facility,
SPCF, and a DOS partition with a size of at least 240K (e.g. netview
group!i lename) where groupfilename is a grouping file created using the
NetView/PC operator services grouping function.

Note: Only the facilities which are to be tested need be placed in a group; i.e.
if only the SPCF portion of the API Sample Program is to be exercised,
only SPCF needs to be included in the grouping file. This sample
program will not execute with the grouping STARTDP.

4. Select the DOS partition from the NetView/PC Session Selection Menu.

5. Start the sample program by typing sample.

General Information
The operation of the API Sample Program is described in detail, panel by panel, in
the following sections:

• "Main Menu" on page 176.
• "Alert Interface Panel" on page 177.
• "Operator Communications Interface" on page 179.
• "Host Data Facility Interface" on page 209.
• "Service Point Command Facility Interface" on page 181.
• "SPCF Parse Host Command" on page 187.
• "SPCF Build Response" on page 189.
• "SPCF Run Command" on page 182.
• "SPCF Receive Unparsed Command" on page 185.
• "SPCF Send Unformatted Response" on page 200.
• "SPCF Send Unsolicited Message" on page 202.
• "SPCF Send Error Sense Data" on page 204.
• "SPCF Build Message" on page 207.
• "SPCF Correlator List" on page 208.
• "SPCF Display File" on page 190.
• "SPCF Unformatted Display Panel" on page 192.
• "SPCF Display Link Data Command" on page 197.
• "SPCF Display Link PD Command" on page 195.

Appendix G. Operation 173

Function Keys

File Formats

ARB File Format

• "SPCF Display Run Command" on page 194.
• "SPCF Display Link Test Command" on page 198.

General features of the API Sample Program are described in these sections:

• "Function Keys" describes the functions keys common to all the API Sample
Program panels.

• "File Formats" describes the format of the files used by the API Sample
Program.

• "Other Information" on page 175 provides other general information.

While the active function keys vary from panel to panel in the API Sample Program,
some are constant across panels. The most common keys are listed below (note
that not all appear on all panels):

Key Description

F1 Displays a help message.

F3 Returns to the previous panel, or to the DOS partition if pressed on the
main menu. Note that any changes made to the input fields on the
panel wi II be saved.

F6 Invokes a secondary copy of the DOS command processor.

F9 Displays a file.

F10 Call the NetView/PC API.

The ARB begins the file, stored bit for bit as it would be in memory with one excep­
tion: pointers represent byte displacements from the start of the file rather than
being addresses of data in memory. The sample program only accepts files less
than 64K in length, so for all 32 bit pointers (Intel DD format), the segment portion
will be zero, and the offset word will be the offset into the file.

Following the ARB are 10 bytes for the Correlator, Send or Receive. These may be
set to zero to indicate absence of a valid correlator, but the Correlator field is
required even if it is all zeros. Following the correlator field are any additional
data required by the ARB.

For example consider the file format for a parsed RUN command:

• ARB -- length 35 -- displacement 0

In the ARB is a pointer to the command; in this case the value is 45, in Intel
Format: 2DOOOOOOH.
The bytes are reversed as are the displacement and segment. In other
words, the leftmost byte is least significant and the bytes to the right are
more significant.

• Receive Correlator -- length 10 -- displacement 35

174 NetView/PCTM A"PI/CS

NMVT File

• Command text -- length variable up to 255 -- displacement 45. The length is in
the ARB.

The NMVT begins the file, stored bit for bit as it would be in memory.

Following the NMVT are 10 bytes for the Correlator, Send or Receive. These may
be set to zero to indicate absence of a valid correlator. The Correlator field is
requi red even if it is all zeros.

Other Information

Output Fields

Error Messages

One of the sections included in the description of each panel is the "Output Fields"
section. This describes the fields on the panel which display data returned by the
sample program when an action is taken.

Some of these output fields are present on more than one panel, and so are
described only once, below. These include:

Field

ARB ID Found

Return Code

Error Class

Error Type

Description

This field is present on all panels where a call to the
API may be made. Its value indicates whether the
NetView/PC API routine found a valid ARB ID in the
ARB which it received.

This field is present on panels which allow calls to the
API subroutines. It corresponds to the return code field
in the ARB.

This field is present on panels which allow calls to the
API subroutines. It corresponds to the Error Class field
in the ARB.

This field is present on panels which allow calls to the
API subroutines. It corresponds to the Error Type field
in the ARB.

Note: The values of the Return Code, Error Class, and Error Type are dependent
on the ARB in which they are found. Refer to the main body of this docu­
ment for information regarding the meanings of returned values.

When errors are detected by the API Sample Program, an error message is placed
on the display. These error messages are documented in Appendix H, "API
Sample Program Error Messages" on page 213. Note that errors returned by the
API Sample Program are distinct from errors returned by the NetView/PC API sub­
routines which the sample program calls.

Appendix G. Operation 175

Main Menu

Function Keys

Parameters

DCJVMPaa VENDOR API SAMPLE PROGRAM MAIN MENU

Select ONE of the following:

1 ALERTS
2 OPCOMM
3 SPCF
4 HDF

Exercise the Alert Interface
Exercise the Operator Communications Interface
Exercise the Service Point Command Interface
Exercise the Host Data Facility Interface

Type your selection and press Enter; otherwise press F3 (End).

Enter Fl=Help F3=End

Selection ===>

Figure 111. Main Menu

The API Sample Program main menu is the first panel displayed when the API
Sample Program is started. It is used to select the API which is to be exercised.

There are no additional active function keys, aside from those described in "Func­
tion Keys" on page 174.

The only entry parameter on this panel is:

Selection = n
n is a number from one to four corresponding to the number of the desired
function on the main menu (Figure 111). The functions presently available are:

ALERTS

OPCOMM

SPCF

HDF

Alert API (see "Alert Interface Panel" on page 177).

Operator Communications API (see "Operator Communi­
cations Interface" on page 179).

Service Point Command Facility API (see "Service Point
Command Facility Interface" on page 181).

Host Data Facility API (see "Host Data Facility Interface" on
page 209).

176 NetView/PCTM API/CS

Output Fields

Shutdown

There are no output fields on this panel.

In order to exit the API Sample Program, press F3 while on the main menu. This
will cause the API Sample Program to relinquish control back to the DOS partition.

Warning:

1. The API Sample Program will allow you to exit back to the DOS partition
without performing the required shutdown of any API interfaces you may have
opened.

2. Terminating the program without closing all open interfaces results in a loss of
resources that cannot be reclaimed without shutting down NetView/PC and
bringing it back up.

3. You should therefore be certain that you have closed all the interfaces you
opened before you shut down the API Sample Program, (unless you wish to
create a loss of resources for test purposes).

Alert Interface Panel

DCJVAP00 VENDOR API ALERT INTERFACE

Fill in the requested ARB values and press FI0 to call the Alert API .

.--------------ARB-VALuES-------------,
Request Code .. O=Open Alert API s S=Send Alerts C=Close Alert API

NMVT Filename

Alert NMVT Target .. L=Loca 1 (NetVi ew/PCL H=Host (NetVi ewL B=Both

Delay (in seconds) .. 0-999
~-----------------------4~IUTPUT---------------------~

ARB 10 Found:
Primary Alert CSSA Host

Return Code:
Error Class:
Error Type

FI=Help F3=End FI0=API

Figure 112. Alert Interface Panel

The Alert Interface panel is used to exercise the functions provided by the alert
API. These functions are:

Appendix G. Operation 177

Function Keys

Parameters

Function

Open

Send

Close

Description

Open the alert API. This function must be executed before any other
function.

Send an alert NMVT through the alert API to a selected destination.

Close the alert API.

There are no additional active function keys on this panel, aside from those
described in "Function Keys" on page 174.

The parameters which must be entered on this panel are:

Request Code = OISIC
Determines the type of request to place in the ARB.

o Issues an ARB with an Open request to the API when F10 is
pressed.

S Issues an ARB with a Send request to the API when F10 is pressed.
This should result in an NMVT being sent to the selected destina­
tion.

C Issues an ARB with a Close request to the API when F10 is pressed.

NMVT Filename = filename.ext
filename. ext is the DOS name of the file (in the current directory) containing
the NMVT which is to be sent through the API.

Send Alert To = LIHIB
Determines the destination(s) to which an alert is sent.

L (Local)

H (Host)

B (Both)

Delay = delay

If Local is selected, the alert is sent only to the local alert
facility.

If Host is selected, the alert is sent only to the host system to
which NetView/PC is connected.

If Both is selected, the alert is sent to both the local and host
systems.

The sample program waits delay seconds before issuing the ARB to send the
alert. This is a function of the sample program; delay is not a field in the ARB.

178 NetView/PCTM APIICS

Output Fields
The column under Primary on the panel corresponds to the standard output fields
described in "Other Information" on page 175 Additionally, the alert panel output
includes displays of the alert (Alert), router (CSSA), and host (Host) error codes.
Values and explanations of these return codes may be found in the main body of
this document.

Operator Communications Interface

DCJVOPOO VENDOR API OPERATOR COMMUNICATIONS INTERFACE

Fill in the requested ARB values and press FlO to call the Operator
Communications API .

.....-------------ARB-VALUES---------------.

Request Code.

Delay (in seconds) ..

O=Open Op Comm, W=Write DP Icon,
L=Clear DP Icon, C=Close Op Comm

0-999

~---------------IOUTPUT--------------------~

ARB ID Found:
Return Code
Error Class
Error Type

FI=Help F3=End FIO=API

Figure 113. Operator Communications Interface Panel

The Operator Communications panel is used to exercise the functions provided by
the operator communications API. These functions are:

Function

Open

Write

Clear

Close

Description

Open the API. This function must be executed before any other func­
tion.

Write a DP icon to the screen.

Clear the DP icon from the screen.

Close the API.

Appendix G. Operation 179

Function Keys

Parameters

Output Fields

There are no additional active function keys on this panel, aside from those
described in "Function Keys" on page 174.

The parameters which must be entered on this panel are:

Request Code = 0IWILIC
Determines the type of request to place in the ARB.

o Issues an ARB with an Open request to the API when F10 is
pressed.

W Issues an ARB with a Write request to the API when F10 is pressed.
This should result in the DP icon being displayed on the screen.

L Issues an ARB with a Clear request to the API when F10 is pressed.
This should result in the DP icon being cleared from the screen.

C Issues an ARB with a Close request to the API when F10 is pressed.

Delay = delay
The amount of time to wait before displaying the DP icon is determined by
delay. This is actually the amount of time the API Sample Program waits
before issuing the ARB; it is not a field in the ARB itself.

There are no output fields on this panel, aside from the fields described in "Other
Information" on page 175.

180 NetView/PCTM API/CS

Service Point Command Facility Interface

Function Keys

Parameters

DCJVCPOO VENDOR API SPCF MENU

Select ONE of the following:

1 RUN COMMAND
2 RECEIVE UNPARSED
3 PARSE COMMAND

Receive and Send Run Commands
Receive an Unparsed Command
Parse a Host Command

4 BUILD RESPONSE
5 DISPLAY FILE

Build a Response to a Host Link Command
Display an SPCF File

6 SEND UNFORMATTED
7 SEND MESSAGE

Send an Unformatted Response
Send an Unsolicited Message
Send Error Sense Data 8 SEND ERROR

Type your selection and press ENTER; otherwise press F3 (End)

Enter Fl=Help F3=End F6=DOS

Selection ===>

Figure 114. SPCF Main Menu

The Service Point Command Facility Main Menu is used to access the SPCF ser­
vices in the NetView/PC API Sample Program.

There are no additional active function keys, aside from those described in "Func­
tion Keys" on page 174.

The only entry parameter on this panel is:

Selection = n
n is a number from one to eight corresponding to the number of the desired
function on the SPCF menu (Figure 114). The functions presently available
are:

RUN

RECEIVE

PARSE

Receive and send Run commands ("SPCF Run Command"
on page 182).

Receive an unparsed command ("SPCF Receive Unparsed
Command" on page 185).

Parse a host command ("SPCF Parse Host Command" on
page 187).

Appendix G. Operation 181

Output Fields

BUILD

DISPLAY

RESPONSE

MESSAGE

ERROR

Build a response to host Link commands ("SPCF Build
Response" on page 189).

Display an SPCF file ("SPCF Display File" on page 190).

Send an unformatted response to the host ("SPCF Send
Unformatted Response" on page 200).

Send an unsolicited message to the host ("SPCF Send Unso­
licited Message" on page 202).

Send error sense data to the host ("SPCF Send Error Sense
Data" on page 204).

There are no output fields on this panel.

SPCF Run Command

DCJVCP0I VENDOR API SPCF RUN COMMAND

Fill in the requested ARB values and press FI0 to call the SPCF API.

Request Code . - O=Open SPCF,S=Send Rsp,R=Receive Cmd,C=Close SPCF
Reply Source . - B=Buffer. F=File
If reply source is file:

Message Filename. -- Convert to EBCDIC. - Y=Yes, N=No
Message Number . -- Delay (in seconds) - 0-999

If reply source is buffer: Target for Open.
Message Buffer Length. --- Force Close Request. - Y=Yes. N=No
Num of msgs in buffer. --- Send Correlator. H

OUTPUT
ARB ID Found. . Return Code: --
Receive Correlator: H Error Class: --
Command Length. Error Type : --
Command. ..

FI=Help F3=End F6=DOS F7=List Corr F8=Build Msg FI0=API

Figure 115. SPCF Run Command Panel

The Run Command panel is used to receive Run commands from the host or to
send replies to previously received commands. The functions available from this
panel are:

182 NetView/PCTM API/CS

Function Keys

Parameters

function Description

Open Open the API. This function must be executed before any other func­
tion.

Send

Receive

Close

Send a reply to a Run command.

Receive a Run command.

Close the API.

In addition to the function keys described in "Function Keys" on page 174, the fol­
lowi ng keys are also active:

Key Description

F7 Lists the correlators received, and allows selection of one of these
active correlators (refer to "SPCF Correlator List" on page 208 for more
information).

F8 Brings up a panel to allow the user to build a reply message. This
panel is described in "SPCF Build Message" on page 207.

The parameters which must be entered on this panel are:

Request Code = OISIRIC
Determines the type of request to place in the ARB.

o Issues an ARB with an Open request to the API when F10 is
pressed.

S Issues an ARB with a Send request to the API when F10 is pressed.
This should result in reply being sent to the host, with the reply
being taken from the source selected by Reply Source.

R Issues an ARB with a Receive request to the API when F10 is
pressed. This function receives a Run command from the host.

C Issues an ARB with a Close request to the API when F10 is pressed.

Reply Source = BIF
Determines the source from which a reply will be obtained.

B If B is selected, the reply will be sent from the buffer. (Key F8
should be pressed in order to build the message). Fields Message
Buffer Length and Message Buffer Count must also be set if this
option is selected.

F Indicates that the reply will be sent from a file. If this option is
selected, fields Message Filename and Message Number must be
entered.

Message Filename = filename
filename is the name of the file from which replies are to be read.

Appendix G. Operation 183

Note: The message filename follows EZVU naming conventions, i.e. it is of the
format cccc.MSG, where cccc is a four character name; as an example,
if the message file was VAPI.MSG, filename would be set to VAPI. This
field is required if the Reply Source is set to F.

Message Number = nnnn
The message in the file numbered nnnn is the one that will be sent to the host.
This field is required if the Reply Source is set to F.

Message Buffer Length = length
length is the length of the message buffer. This field is required if the Reply
Source is set to B and Convert is set to N.

Message Buffer Count = count
count specifies the number of messages to be sent from the buffer. This field
is required if the Reply Source is set to B. If Convert is set to N then count
must be set to 1.

Convert = YIN
Determines whether messages in a buffer are converted from ASCII to EBCDIC
before being transmitted to the host.

Y Indicates that ASCII to EBCDIC translation occurs.

N Indicates that no translation occurs.

Note: The Convert field is applicable only when messages are being sent from
a buffer (i.e. when Reply Source is set to B). Replies being sent from a
file are always converted to EBCDIC.

Delay = delay
The amount of time to wait before issuing the ARB to the NetView/PC API is
determined by delay.

Target For Open = name
name specifies to the SPCF Router the name by which this application will be
known to the NetView host.

Force Close Request = YIN
This field is meaningful only on a close request (i.e. when Request Code is set
to C).

Y Indicates that the API should close even if there are outstanding
Receive or Send requests.

N Indicates that the API should complete the close successfully only if
no Receive requests were outstanding.

Send Correlator = hexnum

184 NetView/PCTM APIICS

Each command received and each reply sent must have a correlator. hexnum
is a 10-byte hexadecimal number specifying the correlator which is to be sent
to the host. This Send Correlator must match an already received Receive
Correlator. A list of active correlators may be displayed by pressing F7. Refer

Output Fields

to "SPCF Correlator List" on page 208 for information regarding the correlator
display panel.

In addition to the standard output fields described in "Other Information" on
page 175, the following information is also provided on this panel:

Receive Correlator The correlator is returned when a command is received
from the Host. A reply to this command requires that the
Send correlator in the ARB Values section match this
correlator.

Command Length

Command

Set to the length of the command received from the host.
The SPCF Router supplies this length on a GET RUN
request.

The command field contains the actual text of the command
received.

SPCF Receive Unparsed Command

DCJVCP02 VENDOR API SPCF RECEIVE UNPARSED COMMAND

Fill in the requested ARB values and press FI0 to call the SPCF API.

r--------------ARB-VALUES---------------,

Request Code . . O=Open SPCF, R=Receive unparsed, C=Close SPCF

NMVT Fi 1 ename .. ____ _ Delay (in seconds).
Target for Open . .
Force Close Request ..

0-999

Y=Yes,N=No

~------------~UTPUT-------------------~

Receive Correlator: ______________ H
Parse ID. __ H

ARB ID Found:
Return Code
Error Class
Error Type

FI=Help F3=End F4=ParsejDisplay F6=DOS F9=Display FI0=API

Figure 116. SPCF Get No Parse Panel

Appendix G. Operation 185

Function Keys

Parameters

The Receive Unparsed command panel is used to receive SPCF NMVTs from the
host. The functions available from this panel are:

Function

Open

Receive Unparsed

Close

Description

Open the API. This function must be executed before any
other function.

Receive an unparsed command from the host. (In order to
parse the received NMVT, see "SPCF Parse Host
Command" on page 187).

Close the API.

In addition to the function keys described in "Function Keys" on page 174, the fol­
lowing keys are also active:

Key Description

F4 Calls the parse API to parse the received NMVT, and displays the
results of the parse.

The parameters which must be entered on this panel are:

Request Code = OIRIC
Determines the type of request to place in the ARB.

o Issues an ARB with an Open request to the API when F10 is
pressed.

R Issues an ARB with a Receive Unparsed request to the API when
F10 is pressed.

C Issues an ARB with a Close request to the API when F10 is pressed.

NMVT Filename = filename.ext
The SPCF NMVT received from the host will be placed in file filename. ext in
the current directory. Warning: Any file with the same name will be over­
written, and its data lost.

Care should therefore be taken not to set filename.ext to an existing file; addi­
tionally, the F10 key should not be pressed more than once without changing
filename.ext.

Delay = delay
The amount of time to wait before issuing the ARB to the NetView/PC API is
determined by delay.

Target For Open = name
name specifies to the SPCF Router the name by which this application will be
known to the NetView host.

186 NetView/PCTM APIICS

Output Fields

Force Close Request = YIN
This field is meaningful only on a close request (Le. when Request Code is set
to C).

Y Indicates that the API should close even if there are outstanding
Receive requests.

N Indicates that the API should complete the close successfully only if
no Receive requests were outstanding.

In addition to the standard output fields described in "Other Information" on
page 175, the following information is also provided on this panel:

Receive Correlator The correlator is returned when a command is received
from the Host. A reply to this command requires that the
Send correlator in the ARB Values section match this
correlator.

Parse 10 The actual PARSE 10 as returned by the API subroutine.
This hexadecimal number will match the last byte of the
major vector key field in the received NMVT.

SPCF Parse Host Command

DCJVBPOl VENDOR API SPCF PARSE HOST COMMAND

Fill in the requested ARB values and press FlO to call the SPCF API .

.--------------ARB-VALuES,---------------.

NMVT Input Filename .. ____ _ filename.ext, from current directory

ARB Output Filename .. ____ _ filename.ext, from current directory

~-----------------------,OUTPUT----------------------~

Receive Correlator: ________ H ARB ID Found:
Parse ID. __ H

Fl=Help F3=End F6=DOS F9=Display File FIO=API

Figure 117. SPCF Parse Command Panel

Return Code
Error Class
Error Type

The SPCF Parse Host Command panel is used to parse an unformatted NMVT
received from the host into a parse ARB.

Appendix G. Operation 187

Function Keys

Parameters

Output Fields

There are no active function keys on this panel, aside from those described in
"Function Keys" on page 174.

The parameters which must be entered on this panel are:

NMVT Input Filename = nmvtfile.ext
The SPCF NMVT in nmvtfile.ext will be read into a buffer in the API Sample
Program, and will be passed to the API as a parameter in the parse request
ARB.

ARB Output Filename = arbfname.ext
If the NMVT in the selected file was parsed successfully, the resulting parse
ARB is written to arbfname.ext in the current directory. Warning: Any file with
the same name will be overwritten, and its data lost.

Note: Refer to "File Formats" on page 174 for information on the format of the
NMVT and ARB files.

In addition to the standard output fields described in "Other Information" on
page 175, the following information is also provided on this panel:

Receive Correlator The correlator associated with the NMVT in the selected file.

Parse ID The actual PARSE 10 as returned by the API subroutine.

188 NetView/PCTM APIICS

SPCF Build Response

Function Keys

Parameters

DCJVBPe2 VENDOR API SPCF BUILD RESPONSE

Fill in the requested ARB values and press FIe to call the SPCF API.

~------------ARB-VALUES,----------------'

ARB Input Filename ... ____ _ filename.ext. from current directory

NMVT Output Fi 1 ename. . ____ _ filename.ext. from current directory

~------------,~)UTPUT------------------~

ARB ID Found:
Return Code
Error Class
Error Type

FI=Help F3=End F6=DOS F9=Display File FIe=API

Figure 118. SPCF Build Response Panel

The SPCF Build Response Panel is used to build a response NMVT from data con­
tained in a build ARB, which is read in from a disk file.

In addition to the function keys described in "Function Keys" on page 174, the fol­
lowing keys are also active:

Key Description

F9 Displays a file. Refer to "SPCF Display File" on page 190 for more
information.

The parameters which must be entered on this panel are:

ARB Input Filename = arbfname.ext
The file arbfname.ext is assumed to contain a build ARB. The ARB is read into
a buffer and placed in a format acceptable to the API.

NMVT Output Filename = nmvtfile.ext
If the call to the build API is successful, the NMVT created will be placed in
nmvtfile.ext in the current directory. Warning: If the file nmvtfile.ext already
exists, it will be overwritten and any data it contains will be lost.

Note: Refer to "File Formats" on page 174 for information on the format of the
NMVT and ARB files.

Appendix G. Operation 189

Output Fields
There are no output fields on this panel, aside from the general output information
documented in "Other Information" on page 175.

SPCF Display File

00

00

00

00

00

00

00

00

@---------------------------------~--#
@--#
Specify the name of the file to be displayed and the type of display that
is required.

NMVT or ARB filename .• ____ _
Type of Display

filename.ext, in current directory
A=ASCII dump, E=EBCDIC dump,
F=Formatted display'

To display the file press F9; otherwise press F3 (End).
II ______ ----------------------------~------------------ _____________________ !
IFl=Help F3=End F9=Display File I
$--~-----------------------------%

$--~-------------------------------%
00

, 00

00

Figure 119. SPCF Display File Pop-Up Panel

The API Sample Program includes a facility for displaying SPCF files. 'This facility
may be invoked either from the SPCF main menu or from many of the other SPCF
panels. When invoked, the pop-up panel shown in Figure 119 is displayed (the "0"

characters in the figure represent the background panel).

The types of displays provided by this pop-up are described in:

Type

Dump

Run

Link PD

190 NetView/PCTM APIICS

Description

(Unformatted) Displays hexadecimal and character dump; see
"SPCF Unformatted Display Panel" on page 192.

(Formatted) Displays the parse ARB when the parse ID indicates
that the parsed NMVT contained a Run command; see "SPCF
Display Run Command" on page 194.

(Formatted) Displays the parse ARB when the parse ID indicates
that the parsed NMVT contained a Link PD command; see "SPCF
Display Link PD Command" on page 195.

Function Keys

Parameters

Link Test

Link Data

(Formatted) Displays the parse ARB when the parse ID indicates
that the parsed NMVT contained a Link Test command; see
"SPCF Display Link Test Command" on page 198.

(Formatted) Displays the parse ARB when the parse ID indicates
that the parsed NMVT contained a Link Data command; see
"SPCF Display Link Data Command" on page 197.

In addition to the function keys described in "Function Keys" on page 174, the fol­
lowing keys are also active:

Key Description

F9 Displays the selected file in the desired format.

The parameters which must be entered on this panel are:

NMVT or ARB Filename = filename. ext
The file filename.ext is assumed to contain either an NMVT or a parse ARB
written by the Parse Host Command portion of the API Sample Program.

Display Type = AIEIF
Determines the type of display desired.

A Indicates that the file is to be displayed in unformatted form, with
text assumed to be encoded in ASCII.

E Indicates that the file is to be displayed in unformatted form, with
text assumed to be encoded in EBCDIC.

F Indicates that a formatted display is to be provided.

Note: This selection is valid only if filename. ext contains a parse
output ARB, as written by the Parse Host Command portion
of the API Sample Program. If an attempt is made to view a
file containing data which is not recognized as a parse ARB,
an unformatted display will be provided instead, and an
explanatory message placed on the screen.

Appendix G. Operation 191

Output Fields
There are no output fields in this panel.

SPCF UnformaHed Display Panel

Function Keys

DCJVBPG3 VENDOR API SPCF DISPLAY FILE Display Type: ASCII

NMVT or ARB fil e to be di spl ayed . . ___ _ Length of Dump = xxxxH

... OOGO HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC CCCCCCCC*
GOIO HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC CCCCCCCC*
OG20 HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC CCCCCCCC*
GG3G HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC CCCCCCCC*
G040 HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC CCCCCCCC*
0050 HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC CCCCCCCC*
0060 HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC CCCCCCCC*
GG70 HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC CCCCCCCC*
G080 HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC CCCCCCCC*
GG90 HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC CCCCCCCC*
GGAO HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC'CCCCCCCC*
GGBO HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC CCCCCCCC*
OGCO HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC CCCCCCCC*
GO DO HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC CCCCCCCC*
GGEO HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC CCCCCCCC*
GGFO HHHH HHHH HHHH HHHH HHHH HHHH HHHH HHHH *CCCCCCCC CCCCCCCC*

Fl=Help F3=End F6=DOS F9=Display File Shift-Fl=EBCDIC
Shift-F2=Format PgUp PgDn

Figure 120. SPCF Display Unformatted Format Panel

This panel provides a dump of a selected SPCF NMVT or ARB file.

In addition to the function keys described in "Function Keys" on page 174, the fol­
lowing keys are also active:

Key Description

F9 Causes the specified file to be read into memory and displayed begin­
ning at the specified offset.

Shift-F11 Switches the character translation between ASCII and EBCDIC.

Shift-F12 Attempts to provide a formatted display of the data in the buffer.

Note: Changing the filename on the panel and pressing Shift-F12 will
not cause a display of the new file. Only the F9 key will cause
new data to be read in for display.

192 NetView/PCTM API/CS

Parameters

Output Fields

PgUp Displays data one page closer to the start of the buffer in which the file
has been placed, i.e. the offset into the buffer is decreased by 240
decimal (FO hex) bytes.

PgDn Displays data one page closer to the end·of the buffer in which the file
has been placed, i.e. the offset into the buffer is increased by 240
decimal (FO hex) bytes.

The input fields on this panel are:

NMVT or ARB Filename to be displayed = filename.ext
The name of a file in the current directory which is to be displayed.

{Offset} = xxxx
If the first offset field (see description of output fields below) is overtyped, the
next time F9 is pressed the offset into the selected file at which the dump
display begins will be set to the hexadecimal number xxxx.

Note: The F9 key must be pressed in order for changes to either the filename or
the offset to be processed. When filename. ext or xxxx are changed and a
function key other than F9 is pressed, the changes are undone before any
processing takes place.

The items displayed by this panel are:

Field

Offset

Hex Dump

Character Dump

Length of Dump

Description

This is the first column in the display. Each row in this
column contains the offset into the buffer (and thus the
file) of the first byte of the data in the columns to the
right.

Hexadecimal representation of the data in the selected
file. (These are the columns marked with an H).

Character representation of the data in the selected file.
These are the columns in the display marked with a C.
The data may be interpreted as either ASCII or EBCDIC;
this may be switched back and forth using the Shift-F11
key. Non-displayable characters, as well as the PC box
graphics characters, are represented by a period (". ").

Set to the length of the data in the selected file.

Appendix G. Operation 193

SPCF Display Run Command

Function Keys

DCJVBP04 VENDOR API SPCF DISPLAY RUN COMMAND Display Type: Formatted

Fill in the name of an ARB or NMVT file and press F9 for a formatted display
or press Shift-F2 for a hex display. NMVT files may only be displayed in hex.
NMVT or ARB file to be displayed •. ____ _
@--#

ARBID • . . . : ARB6 Return Code
Request Code. •. : OOOOH Error Class .. :
ARB Length. . .. : 35 Error Type ... : ____ __
Parse ID. 61H Parse Sense Data: H
Receive Correlator : __________ H

Command Length. . : __

•.•• + ••.. 1 + •••. 2 ..•• + ••.• 3 •... + ..•• 4 .•.. + •••• 5 + 6 +
Command: ___________________________ _

$--%
F1=Help F3=End F6=DOS F9=Display File Shift-F2=Display Dump

Figure 121. SPCF Display Formatted Run Command Panel

This is one of the four types of formatted display panels. It is displayed when a
formatted display is requested of a parse ARB used to parse a Run command
NMVT.

In addition to the function keys described in "Function Keys" on page 174, the fol­
lowing keys are also active on this panels:

Key Description

F9 Causes the specified file to be read into memory and an attempt made
to provide a formatted display of the data in the file.

Shift-F12 Provides an unformatted display of the data in the buffer.

Note: Changing the filename on the panel and pressing Shift-F12 will
not cause a display of the new file. Only the F9 key will cause
new data to be read in for display.

194 NetView/PCTM APIICS

Parameters

Output Fields

The input fields on this panel are:

NMVT or ARB Filename to be displayed = filename.ext
The name of a file in the current directory which is to be displayed.

The following information is displayed on the panel:

Field

Receive Correlator

Parse Sense Data

Command Length

Command

Description

A 20-character hexadecimal representation of the
10-byte correlator found in the selected file.

An eight-character hexadecimal representation of the
four-byte field parse sense field in the parse ARB.

The decimal length of the parsed Run command is
returned in this field.

The actual Run command is displayed here.

SPCF Display Link PD Command

DCJVBP04 VENDOR API SPCF DISPLAY LINK PO COMMAND Display Type: Formatted

Fill in the name of an ARB or NMVT file and press F9 for a formatted display
or press Shift-F2 for a hex display. NMVT files may only be displayed in hex.
NMVT or ARB file to be displayed .. ____ _
@--#

ARBID ARB6 Return·Code
Request Code. .. 0000H Error Cl ass . • :
ARB Length. . .. 35 Error Type. . . : __
Parse 10. 62H Parse Sense Data: H
Receive Correlator : ________ H

Number of Resources:

Resources: ____________________ _

$--%
Fl=Help F3=End F6=DOS F9=Display File Shift-F2=Display Dump

Figure 122. SPCF Display Formatted Link PO Command Panel

Appendix G. Operation 195

Function Keys

Parameters

Output Fields

This is one of the four types of formatted display panels. It is displayed when a
formatted display is requested of a parse ARB which has been used to parse a Link
PO NMVT.

In addition to the function keys described in "Function Keys" on page 174, the fol­
lowing keys are also active on this panels:

Key Description

F9 Causes the specified file to be read into memory and an attempt made
to provide a formatted display of the data in the file.

Shift-F12 Provides an unformatted display of the data in the buffer.

Note: Changing the filename on the panel and pressing Shift-F12 will
not cause a display of the new file. Only the F9 key will cause
new data to be read in for display.

The input fields on this panel are:

NMVT or ARB Filename to be displayed = filename.ext
The name of a file in the current directory which is to be displayed.

The following information is displayed on the panel:

Field

Receive Cortelator

Parse Sense Data

Number of Resources

Resources

Description

A 20-character hexadecimal representation of the
10-byte correlator found in the selected file.

An eight-character hexadecimal representation of the
four-byte field parse sense field in the parse ARB.

The number of resource names in the parsed NMVT.

A list of the resource names that were present in the
parsed NMVT.

196 NetView/PCTM API/CS

SPCF Display Link Data Command

Function Keys

DCJVBP84 VENDOR API SPCF DISPLAY LINK DATA COMMAND Display Type: Formatted

Fill in the name of an ARB or NMVT file and press F9 for a formatted display
or press Shift-F2 for a hex display. NMVT files may only be displayed in hex.
NMVT or ARB file to be displayed .. ------------
@--#

ARBID ARB6 Return Code . . .
Request Code. .. 8888H Error Class .• :
ARB Length. . .. 35 Error Type ..• :
Parse 10. 63H Parse Sense Data: -------- H
Receive Correlator --------------------H

Number of Resources:

Resources: ____________________ _

$--%
Fl=Help F3=End F6=DOS F9=Display File Shift-F2=Display Dump

Figure 123. SPCF Display Formatted Link Data Command Panel

This is one of the four types of formatted display panels. It is displayed when a
formatted display is requested of a parse ARB which has been used to parse a Link
Data NMVT.

In addition to the function keys described in "Function Keys" on page 174, the fol­
lowing keys are also active on this panels:

Key Description

F9 Causes the specified file to be read into memory and an attempt made
to provide a formatted display of the data in the file.

ShiH-F12 Provides an unformatted display of the data in the buffer.

Note: Changing the filename on the panel and pressing Shift-F12 will
not cause a display of the new file. Only the F9 key will cause
new data to be read in for display.

Appendix G. Operation 197

Parameters

Output Fields

The input fields on this panel are:

NMVT or ARB Filename to be displayed = filename.ext
The name of a file in the current directory which is to be displayed.

The following information is displayed on the panel:

Field

Receive Correlator

Parse Sense Data

Number of Resources

Resources

Description

A 20-character hexadecimal representation of the
10-byte correlator found in the selected file.

An eight-character hexadecimal representation of the
four-byte field parse sense field in the parse ARB.

The number of resource names in the parsed NMVT.

A list of the resource names that were present in the
parsed NMVT.

SPCF Display Link Test Command

DCJVBP04 VENDOR API SPCF DISPLAY LINK tEST COMMAND Display Type: Formatted

Fill in the name of an ARB or NMVT file and press F9 for a formatted display
or press Shift-F2 for a hex display. NMVT files may only be displayed in hex.
NMVT or ARB file to be displayed •. ____ _
@--#

ARBID . . • . : ARB6 Return Code • . .
Request Code. .. OOOOH Error Class •. :
ARB Length. . .. 35 Error Type .•. : __
Parse ID. • . .. 63H Parse Sense Data: H
Receive Correlator ________________H

Number of Resources: Test Count: Test Type: ___ _

Resources: ______________________________ _

$--%
Fl=Help F3=End F6=DOS F9=Display File Shift-F2=Display Dump

Figure 124. SPCF Display Formatted Link Test Command Panel

198 NetView/PCTM API/CS

Function Keys

Parameters

Output Fields

This is one ,of the four types of formatted display panels. It is displayed when a
formatted display is requested of a parse ARB which has been used to parse a Link
Test NMVT.

In addition to the function keys described in "Function Keys" on page 174, the fol­
lowing keys are also active on this panels:

Key Description

F9 Causes the specified file to be read into memory and an attempt made
to provide a formatted display of the data in the file.

Shift-F12 Provides an unformatted display of the data in the buffer.

Note: Changing the filename on the panel and pressing Shift-F12 will
not cause a display of the new file. Only the F9 key will cause
new data to be read in for display.

The input fields on this panel are:

NMVT or ARB Filename to be displayed = filename.ext
The name of a file in the current directory which is to be displayed.

The following information is displayed on the panel:

Field

Receive Correlator

Parse Sense Data

Number of Resources

Test Count

Test Type

Resources

Description

A 20-character hexadecimal representation of the
10-byte correlator found in the selected file.

An eight-character hexadecimal representation of the
four-byte field parse sense field in the parse ARB.

The number of resource names in the parsed NMVT.

The test count specified in the parsed NMVT.

The type of test specified in the parsed NMVT.

A list of the resource names that were present in the
parsed N MVT.

Appendix G. Operation 199

SPCF Send Unformatted Response

Function Keys

DCJVCP03 VENDOR API SPCF SEND UNFORMATTED RESPONSE

Fill in the requested ARB values and press FlO to call the SPCF API.

@--------------------------------- ARB VALUES ---------------------------------#
Request Code . . . O=Open SPCF, S=Send Unformatted. C=Close SPCF

NMVT Fil ename. Delay (in seconds) ...
Target for Open . •
Force Close Request

Send Correlator .. ________ H

0-999

Y=Yes,N=No

~-----------------------IOUTPUT---------------------~

ARB ID Found:
Return Code
Error Class
Error Type

Fl=Help F3=End F6=DOS F7=List Corr FlO=API

Figure 125. SPCF Put Unformatted Panel

The Send Unformatted Response panel is used to put unformatted responses to the
host. The functions available from this panel are:

Function

Open

Send

Close

Description .

Open the API. This function must be executed before any other func­
tion.

Send a response NMVT to the host.

Close the API.

The functions keys that are active on this panel, aside from the ones described in
"Function Keys" on page 174, are:

Key Description

F7 Lists the correlators received, and allows selection of one of these
active correlators (refer to "SPCF Correlator List" on page 208 for more
information).

200 NetView/PCTM API/CS

Parameters
The parameters which must be entered on this panel are:

Request Code = OISIC
Determines the type of request to place in the ARB.

o Issues an ARB with an Open request to the API when F10 is
pressed.

S Issues an ARB with a Send request to the API when F10 is pressed.
This should result in the NMVT being sent to the host.

C Issues an ARB with a Close request to the API when F10 is pressed.

NMVT Filename = nmvtfile.ext
The SPCF NMVT found in nmvtfile.ext in the current directory will be sent to the
host.

Send Correlator = hexnum
Each command received and each reply sent must have a correlator. hexnum
is a 10-byte hexadecimal number specifying the correlator which is to be sent
to the host. This Send Correlator must match an already received Receive
Correlator. A list of active correlators may be displayed by pressing F7. Refer
to "SPCF Correlator List" on page 208 for information regarding the correlator
display panel.

Delay = delay
The amount of time to wait before issuing the ARB to the NetView/PC API is
determined by delay.

Target For Open = name
name specifies to the SPCF Router the name by which this application will be
known to the NetView host.

Force Close Request = YIN
This field is meaningful only on a close request (i.e. when Request Code is set
to C).

Y Indicates that the API should close even if there are outstanding
Receive requests.

N Indicates that the API should complete the close successfully only if
no Receive requests were outstanding.

Appendix G. Operation 201

Output Fields
There are no output fields on this panel, aside from the general output information
documented in "Other Information" on page 175.

SPCF Send Unsolicited Message

DCJVCP04 VENDOR API SPCF SEND MESSAGE

Fill in the requested ARB values and press F10 to call the SPCF API.

@-------------------------------- ARB VALUES ----------------------------------#
Request Code .
Operator Name.

O=Open SPFC, M=send Message, C=Close SPCF

Reply Source ... - B=Buffer F=File

If reply source is File:
Message Filename
Message Number •

If reply source is Buffer:
Num of msgs in buffer ..

Delay (in seconds) .
Target for Open. . .
Force Close Request. Y=Yes,N=No

I--------------,OUTPUT---------------I
ARB ID Found:
Return Code
Error Class
Error Type

Figure 126. SPCF Send Message Panel

This panel is used to send an unsolicited message to a NetView host. The func­
tions available from this panel are:

Function

Open

Send

Close

202 Netview/PCTM API/CS

Description

Open the API. This function must be executed before any other func­
tion.

Send a message.

Close the API.

Function Keys

Parameters

The functions keys that are active on this panel, aside from the ones described in
"Function Keys" on page 174, are:

Key Description

F8 Brings up a panel to allow the user to build a message. This panel is
described in "SPCF Build Message" on page 207.

The parameters which must be entered on this panel are:

Request Code = OIMIC
Determines the type of request to place in the ARB.

o Issues an ARB with an Open request to the API when F10 is
pressed.

M Issues an ARB with a send request to the API when F10 is pressed.
This should result in a Message being sent to the host.

C Issues an ARB with a Close request to the API when F10 is pressed.

Operator Name = opername
opername is the one to eight character operator name matching the Netview
session.

Reply Source = BIF
Determines the source from which a reply will be obtained.

B If B is selected, the reply will be sent from the buffer. Field
Message Buffer Count must also be set if this option is selected.

F Indicates that the reply will be sent from a file. If this option is
selected, fields Message Filename and Message Number must be
entered.

Message Filename = msgf
msgf is the four character name of the file (in the current directory) from which
replies are to be read. This file must be in the same format as EZVU message
files, and an extension of .MSG is assumed. This field is required if the Reply
Source is set to F.

Message Number = nnnn
Message number nnnn in the file specified by Message Filename is the one
that will be sent to the host. This field is required if the Reply Source is set to
F.

Num of Msgs in Buffer = count
count specifies the number of messages to be sent from the buffer. This field
is required if the Reply Source is set to B.

Appendix G. Operation 203

Output Fields

Delay = delay
The amount of time to wait before issuing the ARB to the NetView/PC API is
determined by delay.

Target For Open = name
name specifies to the SPCF Router the name by which this application will be
known to the NetView host.

Force Close Request = YIN
This field is meaningful only on a close request (Le. when Request Code is set
to C).

Y Indicates that the API should close even if there are outstanding
Receive requests.

N Indicates that the API should complete the close successfully only if
no Receive requests were outstanding.

There are no output fields on this panel, aside from the general output information
documented in "Other Information" on page 175.

SPCF Send Error Sense Data

DCJVCpes VENDOR API SPCF SEND ERROR

Fill in the requested ARB values and press FIe to call the SPCF API .

.--------------ARB-VALUES--------------,
Request Code .
Sense Type ..
LCC Status .
Error Detail
User Sense .
SubVector Key.
SubField Key.
Send Correlator.

O=Open SPCF, E=Send Error, C=Close SPCF
e-13
1-2
1-4 Delay (in seconds) . .. 0-999

____ H Target for Open ...
H Force Close Request. Y=Yes,N=No
H

_______ H
~------------------,OUTPUT-------------------~

ARB ID Founa:
Return Code
Error Class
Error Type

Figure 127. SPCF Send Error Panel

This panel is used to send error sense data back to the host. The functions avail­
able are:

204 NetView/PCTM API/CS

Function Keys

Parameters

Function Description

Open Open the API. This function must be executed before any other func­
tion.

Error Send error sense data.

Close Close the API.

The functions keys that are active on this panel, aside from the ones described in
"Function Keys" on page 174, are:

Key Description

F7 Lists the correlators received, and allows selection of one of these
active correlators (refer to "SPCF Correlator List" on page 208 for more
information).

The parameters which must be entered on this panel are:

Request Code = OlEIC
Determines the type of request to place in the ARB.

o Issues an ARB with an Open request to the API when F10 is
pressed.

E Issues an ARB with a send request to the API when F10 is pressed.
This should result in the error sense data being sent to the host.

C Issues an ARB with a Close request to the API when F10 is pressed.

Sense Type = sense_type
sense_type is a number from 0-13 to be sent to the host. Refer to Figure 15 on
page 44 for the meanings of these values.

LCC Status = 112
This field is needed if sense_type is equal to 3. It contains the status of the
Link Connection Component. Refer to "Defined SENSETYPE values" on
page 44 for the meanings of these values.

Error Detail = 1121314
This field is needed if sense_type is equal to 3. Refer to "Defined SENSETYPE
values" on page 44 for the meanings of these values.

User Sense = sense_data
This field is needed if sense_type is equal to O. The user may supply any
sense data to NetView,so long as the data conforms to SNA rules.

Appendix G. Operation 205

Output Fields

SubVector key = sv _key
sv _key is the hexadecimal key of the subvector which was detected to be in
error during a parse.

SubField key = sf_key
sf_key is the hexadecimal key of the subfield which was detected to be in error
during a parse.

Send Correlator = hexnum
Each command received and each reply sent must have a correlator. hexnum
is a 10-byte hexadecimal number specifying the correlator which is to be sent
to the host. This Send Correlator must match an already received Receive
Correlator. A list of active correlators may be displayed by pressing F7. Refer
to "SPCF Correlator List" on page 208 for information regarding the correlator
display panel.

Delay = delay
The amount of time to wait before issuing the ARB to the NetView/PC API is
determined by delay.

Target For Open = name
name specifies to the SPCF Router the name by which this application will be
known to the NetView host.

Force Close Request = YIN
This field is meaningful only on a close request (Le. when Request Code is set
to C).

Y Indicates that the API should close even if there are outstanding
Receive requests.

N Indicates that the API should complete the close successfully only if
no Receive requests were outstanding.

There are no output fields on this panel, aside from the general output information
documented in "Other Information" on page 175.

206 NetView/PCTM API/CS

SPCF Build Message

Function Keys

Parameters

Output Fields

DCJVCP06 VENDOR API SPCF BUILD MESSAGE

Use the Message Buffer below to build the message(s) to be sent to the host.

If sending a RUN command response which will be converted to EBCDIC or sending
a message, the message format is as follows: BNNNBTTTT ... , where B=blank,
NNN=message length, and T=message text (up to 253 characters). Otherwise, the
message may be free form and may not exceed 478 characters.
Press F3 to return when message entry is completed .

• • • • + .•.• 1 •..• + ••.. 2 .•.. + •.•• 3 ..•• + ..•• 4 •••• + ••.• 5 •..• + .•.. 6 .•.• + .•.. 7 .•

F1=Help F3=End

Figure 128. SPCF Message Buffer Panel

This panel is used to enter message data for the reply to a RUN command and the
SEND MESSAGE unsolicited response panels. Data is entered in the box supplied
and will be passed to the API subroutine in a buffer.

There are no active function keys on this panel, aside from those described in
"Function Keys" on page 174.

The input on this panel is typed in the single input area. It must conform to the
instructions given in Figure 128.

There are no output fields on this panel.

Appendix G. Operation 207

SPCF Correlator List

DCJVCP07 VENDOR API SPFC SEND CORRELATATOR SELECTION MENU

If there are any outstanding correlators you may Select ONE of the following
correlators (they are listed in order of receipt, oldest to newest):

An empty list indicates that there are no outstanding correlators.

1. _______________ H
2. H
3. H
4. H
5. H
6. H
7. H
8. H

Type your selection and press ENTER; otherwise press F3 (End).

Enter F1=Help F3=End

Selection ===>

Figure 129. SPCF Correlator Selection Panel

This panel is used to select a Send Correlator to send a RUN command reply, an
unformatted reply, or error sense data to the Host.

A selection of 0 will return to the previous panel without making a selection. When
a selection is made the user is returned to the previous pa,nel and the Send
Correlator field is filled in with the selected Correlator.

When the reply is sent and the return codes are 0 or 8,23,65 (inactivated correlator)
the correlator is removed from the list. The ranking of the correlators is last one
received, the higher the number selection. Only 8 outstanding GETs are allowed
by the SPCF Router.

\208 NetView/PCTM API/CS

Function Keys

Parameters

Output Fields

There are no active function keys on this panel, aside from those described in
"Function Keys" on page 174.

Selection = n
n is a number between 0 and 8 corresponding to the number of the correlator
desired. A value of 0 indicates that no correlator is to be selected.

Correlators A column of 20-character hexadecimal displays of eight
10-byte correlators.

Host Data Facility Interface

DCJVDPOO VENDOR API HOST DATA FACILITY INTERFACE

Fill in the requested ARB values and press FlO to call the Host Data Facility
API.

.-------------A,RB-VALUES-------------,
Request Code.

PC file name ...
Host fil e name.

O=Open HDF, S=Send file to Host,
R=Receive file from Host, T=Statu5 Check,
P=Stop transfer in progress, C=Close HDF

___ H Hex offset at which to begin transmission
Y=Yes,N=No
512 to 3750

Start Byte
Text Translation.
Transmission Length.
Del ay 0-999

r-----------------IOUTPUT-----------------~

ARB ID Found:
Return Code
Error Class
Error Type

F1=Help F3=End F10=API

Figure 130. Host Data Facility Interface Panel

Completion Status: __ H
Next byte. . . . : ___ H

The Host Data Facility panel is used to exercise the functions provided by the host
data facility API. These functions are:

Function

Open

Description

Open the API. This function must be executed before any other func­
tion.

Appendix G. Operation 209

Function Keys

Parameters

Send

Receive

Status

Stop

Close

Initiate a file transfer to the host from the PC. The application
program is then free to perform other tasks while the file transfer is
being performed by NetView/PC. The application program may
perform a status check at any time after initiating the send to check
on the progress of the transfer. Only one file may be sent at a time
and a file send and a file receive cannot be performed simultane­
ously.

Initiate a file transfer to the PC from the host. The application
program is then free to perform other tasks while the file transfer is
being performed by NetView/PC. The application program may
perform a status check at any time after initiating the receive to check
on the progress of the transfer. Only one file may be received at a
time and a file receive and a file send cannot be performed simul­
taneously.

Obtain the status of the file transfer currently in progress or the most
recently completed file transfer. Each time a status request is made
the Next Byte and Completion Status fields are returned. See
"Output Fields" on page 211 for information on the values of these
fields. The status request function does not automatically poll the
host data facility. It is the user's responsibility to perform the polling.
This is done by periodically pressing the F10 key with T in the
Request Code field. Polling too frequently will slow down or even
stop the tranfer of data. For this reason it is recommended that you
do a status request no more frequently than every two seconds.
Also, be careful not to poll too many times as the completion code of
80 hex will only be returned once. Status requests made after the 80
hex has been returned but before another file transfer is initiated will
result in return codes that will indicate that status is not available.
(Refer to "Output Fields" on page 211 for more information on the
completion codes).

Stop the transfer in progress.

Close the API.

There are no active function keys on this panel, aside from those described in
"Function Keys" on page 174.

The parameters which must be entered on this panel are:

Request Code = OISIRITIPIC
Determines the type of request to place in the ARB.

o Issues an ARB with an Open request to the API when F10 is
pressed.

S Issues an ARB with a Send request to the API when F10 is pressed.
This should result in the selected file being transferred to the host.

R Issues an ARB with a Receive request to the API when F10 is
pressed. This should result in a file being received from the host.

210 NetView/PCTM API/CS

Output Fields

T Issues an ARB with a Status request to the API when F10 is
pressed. The status of the present file transfer is updated on the
screen.

P Issues an ARB with a Stop request to the API when F10 is pressed.
The file transfer in progress is halted.

C Issues an ARB with a Close request to the API when F10 is pressed.

PC Filename = filename. ext
filename. ext is the name (and extension) of a DOS file which is to be trans­
ferred to the host (if the request code is S), or the name of a file on the PC into
which a host file will be received (if the request code is R).

Host Filename = filename
filename is the eight character name of a file which is to be transferred from
the host (if the request code i's R), or the name of a file on the host into which a
PC file will be sent (if the request code is S).

Start Byte = hex_number
hex_number is the hexadecimal number indicating the offset (in bytes) into a
file at which file transfer is to begin. An offset of 0 will begin transferring from
the first byte of a file.

Text Translation = YIN
Determines whether translation is to occur.

Y If a PC file is being sent to the host (request code S), it is translated
from ASCII to EBCDIC. If a host file is being received onto the PC
(request code R), it is translated from EBCDIC to ASCII. This option
should be selected for readable text files.

N If this option is selected, no character translation takes place. This
option should be used for exchange of files containing binary data.

Transmission Length = length.
length is a decimal number indicating the size of the blocks of data transferred
between the host and PC.

Delay = delay
delay is the amount of time to wait before beginning the file transfer. This is
actually the amount of time to wait before issuing the ARB, and is not a field in
the ARB itself.

In addition to the standard output fields described in "Other Information" on
page 175, the host data facility panel provides the following addition information:

Field

Completion Status

Description

Indicates whether or not the file transfer is currently in
progress. This field will contain one of three possible,
values. A value of 0 indicates that the file transfer is still in
progress. A value of 40 hex indicates that the file transfer
has been aborted, either due to a Stop request by the user
or an error condition that terminated the file transfer. A
value of 80 hex indicates that the file tranfer has been suc­
cessfully completed.

Appendix G. Operation 211

Next Byte

212 NetView/PCTM APIICS

The Next Byte field is an unsigned 32 bit hex number that is
one greater than the number of bytes that have been trans­
ferred. On completion of the file transfer the Next Byte will
return a value one greater than the size of the file being
transferred.

Appendix H. API Sample Program Error Messages

DCJV0001 E Non Hex character in Request Code. Only 0-9, A-F allowed.

Explanation: An attempt was made to enter a non-hexadecimal value in a
hexadecimal input field.

User Response: Correct the input to contain only valid hexadecimal characters, as
stated in the message.

DCJV0002E Error Opening Test Case file.

Explanation: The specified test case file did not exist, or an I/O error occurred
while attempting to open the file.

User Response: Check to make sure you have entered the correct name, and that
the file exists.

DCJV0003E Error Reading Test Case file.

Explanation: An error occurred while the program was trying to obtain data from
the test case file.

User Response: Repeat the operation. If it fails again, create a new test case file
and repeat again.

DCJV0004E Error Closing Test Case file.

Explanation: An error occurred while closing a test case file. This error should not
occur; its presence indicates an operating system or hardware malfunction.

User Response: Repeat the operation. If the operation fails, re-IPL the system.

DCJV0005E Error Opening requested file. Return Code = &IORETCOD.

Explanation: The specified test case file did not exist, or an I/O error occurred
while attempting to open the file.

User Response: Check to make sure you have entered the correct name, and that
the file exists.

DCJV0006E Error Reading requested file. Return Code = &IORETCOD.

Explanation: An error -occurred while the program was trying to obtain data from
the file.

User Response: Repeat the operation. If it fails again, create a new file and repeat
again.

Appendix H. API Sample Program Error Messages 213

DCJV0007E Error Closing requested file. Return Code = &IORETCOD.

Explanation: An error occurred while closing a file. This error should not occur;
its presence indicates an operating system or hardware malfunction.

User Response: Repeat the operation. If the operation fails, re-IPL the system.

DCJV0008E Invalid choice. Enter 1 - 4 or press F3 to quit.

Explanation: Only four functions are available in the API Sample Program; these
functions are numbered from 1 to 4, and only 1 - 4 may be entered in the Selection
field.

User Response: Change the selection value to a valid choice between 1 and 4.

DCJV0009E Non Hex character in Start Byte. Only 0-9, A-F allowed.

Explanation: The start byte contains a non-hexadecimal character. Only the char­
acters 0-9 and A-F may be placed in the field.

User Response: Change the start byte to include only valid hex numbers.

DCJV0010E Length of message(s) is invalid. Valid length is 1 - 253.

Explanation: The message buffer contained a message with a length which was
not a decimal number between 1 and 253.

User Response: Correct the length.

DCJV0011 E Non-numeric character in length field of Message Buffer.

Explanation: A length field in the Message Buffer contained a character which was
not a decimal number.

User Response: Correct the length.

DCJV0012E Non Hex character in Send Correlator. Only 0-9, A-F allowed.

Explanation: The send correlator contains a non-hexadecimal character. Only the
characters 0-9 and A-F may be placed in the field.

User Response: Change the start byte to include only valid hex numbers.

DCJV0013E Invalid choice. Enter 1 - 8 or Press F3 for main

Explanation: Only eight functions are available from the SPCF main menu; these
functions are numbered from 1 to 8, and only 1 - 8 may be entered in the Selection
field. Refer to "Service Point Command Facility Interface" on page 181 for more
information.

User Response: Change the selection value to a valid choice between 1 and 8.

214 NetView/PCTM API/CS

DCJV0014E Major Subvector Key is not 8061 - 8064. Unable to parse.

Explanation: An attempt was made to parse an NMVT with a major vector key not
in the range of 8061-8064 (hexadecimal).

User Response: Correct the present NMVT or read in a valid NMVT.

DCJV0015E Unable to parse APPL NAME from subvector.

Explanation: The application name could not be derived from the NMVT being
parsed.

User Response: Correct the present NMVT or read in a valid NMVT.

DCJV0016E Unable to parse Run Command.

Explanation: An error was found in a Run command NMVT.

User Response: Correct the present NMVT or read in a valid NMVT.

DCJV0017E Unable to parse Link Segment List.

Explanation: An error was found in the link segment list portion of an NMVT.

User Response: Correct the present NMVT or read in a valid NMVT.

DCJV0018E Zero length in Link Segment List.

Explanation: A zero length was found in a link segment list.

User Response: Correct the present NMVT or read in a valid NMVT.

DCJV0019E Unable to parse Test Count.

Explanation: The test count could not be derived from the NMVT.

User Response: Correct the present NMVT or read in a valid NMVT.

DCJV0020E More Link Segment List Names than this program allows.

Explanation: The NMVT being parsed contained more names than this program
allows.

User Response: Correct the present NMVT or read in a valid NMVT, or fix this
program.

DCJV0021 E Link Segment List Name longer length than this program allows.

Explanation: The NMVT being parsed contained a name longer than this program
allows.

User Response: Correct the present NMVT or read in a valid NMVT, or fix this
program.

Appendix H. API Sample Program Error Messages 215

DCJV0022E Insufficient storage to store current Receive Correlator.

Explanation: There was not enough memory to store the present receive
correlator.

User Response: Reduce the number of active receive correlators by sending
responses.

DCJV00231 There are no outstanding Receive correlators.

Explanation: No correlators are active.

DCJV0024E Invalid entry - Enter a number 0 - &UNRSPCNT or press F3.

Explanation: The number selected did not correspond to an active correlator.

User Response: Change the selection to a number from 0 - n, where n is the
number of active correlators.

DCJV0025E Unable to delete current Send Correlator from table.

Explanation: An error occurred while attempting to delete the current Send
Correlator from the Correlator table. This error should not occur.

DCJV0026E Parsed Target Name length is zero or greater than allowed.

Explanation: The length of a target name was either zero or of a size greater than
allowed by the sample program.

User Response: Correct the Target Name.

DCJV0027E Non Hex character in SV Key field. Only 0-9, A-F allowed.

Explanation: An attempt was made to enter a non-hexadecimal character in a
hexadecimal input field.

User Response: Correct the input to contain only hexadecimal characters.

DCJV0028E Non Hex character in SF Key field. Only 0-9, A-F allowed.

Explanation: An attempt was made to enter a non-hexadecimal character in a
hexadecimal input field.

User Response: Correct the input to contain only hexadecimal characters.

DCJV0029E Non Hex character in User Sense field. Only 0-9, A-F allowed.

Explanation: An attempt was made to enter a non-hexadecimal character in a
hexadecimal input field.

User Response: Correct the input to contain only hexadecimal characters.

216 NetView/PCTM APIICS

DCJV0030E Data in file is larger than the buffer in this program.

Explanation: The file specified contains more data than can be placed in the space
allocated for it in the sample program.

Programmer Response: Modify the sample program, and increase the buffer sizes.

User Response: Check to make sure the file contains a valid NMVT, and does not
contain any extraneous data.

DCJV0031 E The Request Code letter entered is unknown.

Explanation: The request code letter specified is not recognized by the sample
program as corresponding to a hexadecimal request number in the API.

User Response: Change the request code to one of the valid letters.

DCJV0032E Move file pointer error reading file. Return Code = &IORETCOD.

Explanation: An error occurred while executing a DOS call to move the file pointer
to the NMVT file.

User Response: Check to be certain the NMVT file still exists and has not been
modified.

DCJV00331 Send correlator &SENDCORR is inactive and has been deleted.

Explanation: The correlator SENDCORR has been deactivated.

DCJV0200E Non Hex character in offset field. Only 0-9, A-F are allowed.

Explanation: An attempt was made to type a non-hexadecimal character in the
offset field of the unformatted (dump) display.

User Response: Correct the input to contain only hexadecimal characters.

DCJV02011 Now displaying beginning of dump.

Explanation: The unformatted display is now showing data beginning at the first
byte in the specified file.

DCJV02021 Now displaying end of dump.

Explanation: The unformatted displ~y is now showing the last data byte in the
specified file.

DCJV0203E Offset desired is past the end of the dala.

Explanation: An attempt was made to view an offset greater than the length of the
data in the file being displayed.

User Response: Use only hexadecimal offsets less than that specified by the
length of dump field.

Appendix H. API Sample Program Error Messages 217

OCJV0204E Formatted dump display not yet available.

Explanation: An attempt was made to display in formatted form an ARB for which
formatted display has not been implemented.

User Response: Select a different file.

OCJV0205E Unable to give formatted display; unknown request code in ARB.

Explanation: The request code in the ARB in a file was not recognized as being
one of those for which a formatted display is available.

User Response: Select a different file to view or correct the request code.

OCJV0206E Unable to give formatted display; unknown ARB 10 in ARB.

Explanation: The ARB 10 field in the ARB in a file was not recognized as being one
of those for which a formatted display is available.

User Response: Select a different file to view or correct the ARB 10.

OCJV0207E Unable to give formatted display; ARB length was incorrect.

Explanation: The length field ARB in a file was not recognized as being one of
those for which a formatted display is available.

User Response: Select a different file to view.

OCJV0208E Unable to give formatted display; parse 10 was not recognized.

Explanation: The parse 10 field ARB in a file was not recognized as being one of
those for which a formatted display is available.

User Response: Select a different file to view.

OCJV0209E Error creating file for output. Return Code = &IORETCOO.

Explanation: The sample program encountered an error while attempting to create
to a file.

User Response: Make certain the current directory has enough room for another
file to be created. Also, make sure the filename is a valid DOS filename.

OCJV0210E Error writing requested file. Return Code = &IORETCOO.

Explanation: The sample program encountered an error while attempting to write
out to a file.

User Response: Select a different filename, check to make sure the current direc­
tory is not full, and check to make certain the disk is not full.

OCJV0211I There are no correlators outstanding.

Explanation: No correlators are active, so none are available to be displayed.

218 NetView/PCTM API/CS

OCJV0300E The name of a file containing an NMVT Is required.

Explanation: The filename of an NMVT was left blank, or the file specified did not
contain an NMVT.

User Response: Enter the name of a file (including extension) containing an NMVT.

OCJV0301 E Parse of nmvtfile.ext failed. ARB file was not written to disk.

Explanation: An error was detected while attempting to parse the NMVT in
nmvtfile.ext; therefore the parse output ARB was not written to the ARB file.

User Response: Change the NMVT filename to one containing a valid NMVT.

OCJV0302E Parse routine was unable to read the NMVT file from disk.

Explanation: An error was detected while attempting to read the selected NMVT
file from disk.

User Response: Check the filename to be certain it is the name of an existing file
in the current directory containing an NMVT.

OCJV0303E Parse routine was unable to write the ARB file to disk.

Explanation: An error was detected wlJile attempting to save a parse output ARB
to the selected disk file.

User Response: Make sure the ARB output filename is valid, and that there is suf­
ficient storage in the current directory for the output file.

OCJV0304E Build API not called: ARB 10 in file not equal ARBS.

Explanation: The ARB 10 field in the ARB in the selected field was not ARBS.
Therefore no call was made to the build API.

User Response: Change the filename or correct the ARB in the file so that the ARB
10 is ARBS.

OCJV0409E Build API not called: unknown ARB 10 in ARB.

Explanation: The sample program could not create a build request in memory
because the ARB 10 in the ARB read in from the specified file was not recognized
as being valid.

User Response: Select a different file or correct the data in the file.

OCJV0410E Build API not called: unknown request code in ARB.

Explanation: The sample program could not create a build request in memory
because the request code in the ARB read in from the specified file was not recog­
nized as being valid.

User Response: Select a different file or correct the data in the file.

Appendix H. API Sample Program Error Messages 219

DCJV0411 E Build API not called: ARB length was incorrect.

Explanation: The sample program could not create a build request in memory
because the length field in the ARB read in from the specified file was not recog­
nized as being valid.

User Response: Select a different file or correct the data in the file.

OCJV0412E Build API not called: build 10 was not recognized.

Explanation: The sample program could not create a build request in memory
because the build 10 field in the ARB read in from the specified file was not recog­
nized as being valid.

User Response: Select a different file or correct the data in the file.

OCJV0413E Build API not called: error In the probable cause pOinter.

Explanation: The sample program could not create a build request in memory
because the pointer to the probable cause code points was not valid (it pointed
beyond the data read in from the file).

User Response: Select a different file or correct the data in the file.

DCJV0414E Build API not called: error In the path list Info pointer.

Explanation: The sample program could not create a build request in memory
because the pointer to the path list information was not valid (it pointed beyond the
data read in from the file).

User Response: Select a different file or correct the data in the file.

DCJV0415E Build API not called: error in the path list blocks pointer.

Explanation: The sample program could not create a build request in memory
because the pointer to the path list block array was not valid (it pointed beyond the
data read in from the file).

User Response: Select a different file or correct the data in the file.

DCJV0416E Build API not called: er.ror in LCC description block pointer.

Explanation: The sample program could not create a build request in memory
because the pointer to the Lee description block was not valid (it pointed beyond
the data read in from the file).

User Response: Select a different file or correct the data in the file.

DCJV0417E Build API not called: error in LCC data block pointer.

Explanation: The sample program could not create a build request in memory
because the pointer to the Lee data block was not valid (it pointed beyond the data
read in from the file).

User Response: Select a different file or correct the data in the file.

220 NetView/PCTM APIICS

DCJV0418E An error was detected by the build API.

Explanation: An unspecified error was detected by the build API.

Programmer Response: Debug the sample program to find the cause of the error.

User Response: Select a different file or correct the data in the file.

DCJV0419E There are No LCC's In the ARB file specified.

Explanation: The specified file contained no LeC blocks; there must be at least
one.

User Response: Correct the data file.

Appendix H. API Sample Program Error Messages 221

222 NetView/PCTM API/CS

Appendix I. DOS Sample Program Code

APIMAIN.DSG
API Sample Program - (C) Copyright IBM Corp. 1986, 1987
SAMPLE PROGRAM - NO WARRANTY EXPRESSED OR IMPLIED

You are hereby licensed to use, reproduce, and distribute
these sample programs as your needs require. IBM does not
warrant the suitability or integrity of these sample programs
and accepts no responsibility for their use for your
applications. If you choose to copy and redistribute
significant portions of these sample programs, you should
preface such copies with this copyright notice .

• ** ,
.* , *
;* Program Name APISAMPL *
.* ,
;* Description
.* ,
.* ,
.* ,
.* ,
;* Date
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,

Input

;* Output
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
;* Program Type
.* ,
.* ,
.* ,

Processor type

*
Sample program to allow the interactive creation *
of ARB's using EZ-VU II panels for user input *
and the submission of those ARB's to the API/CS *
for execution.

July, 1986; May 1987

By entering ARB data into EZ-VU II panels the
user may define and execute any of the
functions available through the API/CS.

*
*
*
*
*
*
*
*

The only external data used by this program are *
the NMVT files used by the API/CS Alert *
function and the ARB Build data files used as *
input to the Build routines for SPCF. These
files were created by standalone programs
written in MASM 2.0.

*
*
*
*

For each test case resulting return code(s), *
error class(es) and error type(s) and other *
output from the API, such as file offset and *
completion byte for the Host Data Facility and *
host command and receive correlator for the *
Service Point Command Facility are displayed on *
the panels. *

*
IBM Macro Assembler version 2.0 *

*
Intel 8088/80286 *

*
.* , External references: Entry points for: *
.* ,
.* ,
.* ,
.* ,

DCJVAOO - ALERTS
DCJVOOO - OPERATOR COMMUNICATIONS
DCJVCOO - SERVICE POINT COMMAND FACILITY
DCJVBOO - BUILD AND PARSE ROUTINES

*
*
*
*

Appendix I. DOS Sample Program Code 223

.* ,

.* ,

.* ,

.* ,

DCJVDee - HOST DATA FACILTY

ISPASMV - EZ-VU II Variable Definitions
ISPASM - EZ-VU II Display Functions

*
*
*
*

.** ,
PAGE

DGROUP GROUP DATA,STACK

STACK SEGMENT BYTE STACK 'STACK'
DB 256 DUP('STACK ')

STKTOP DW 1
STACK ENDS

DATA SEGMENT PARA PUBLIC 'DATA'
ASSUME DS:DGROUP

CR_LF EQU WORD PTR eAeDH
CR EQU BYTE PTR eDH
LF EQU BYTE PTR eAH
ESC EQU BYTE PTR 27D
F1 EQU BYTE PTR 59D
F2 EQU BYTE PTR 6eD
F3 EQU BYTE PTR 61D
F4 EQU BYTE PTR 62D
F5 EQU BYTE PTR 63D
F6 EQU BYTE PTR 64D
F7 EQU BYTE PTR 65D
F8 EQU BYTE PTR 66D
F9 EQU BYTE PTR 67D
FIe EQU BYTE PTR 68D

PAGEUP EQU BYTE PTR 73d
PAGEDN EQU BYTE PTR 81d

ioretcod DW e

EXITFLAG DW e

AX REG DW e
DX REG DW e

, ,

PAGE

224 NetView/PCTM API/CS

2K STACK AREA

ASCII Code for Carriage Return/Line Feed
ASCII Code for Carriage Return
ASCII Code for Line Feed
ASCII Code for Escape Code
Scan Code for Fl key
Scan Code for F2 key
Scan Code for F3 key
Scan Code for F4 key
Scan Code for F5 key
Scan Code for F6 key
Scan Code for F7 key
Scan Code for F8 key
Scan Code for F9 key
Scan Code for FIe key

;Page up scan code
;Page down scan code

;File I/O return code for error messages.

FLAG, ON INDICATES A PANEL WAS
EXITED USING THE F2-QUIT KEY

Save area for AX:DX regs for use
in checking to assure that the
that the API/CS actually found
the ARB passed to it. Used by
subrout CHECK_ARB

Set to Y if ARB was found
by call to any API/CS function.
Set to N if not. Used by
subrout CHECK_ARB.

.* ,
;* ALERT VARIABLES
.* ,

ALERT_RC_TBL EQU $
DB 10 1

DW 010lH
DB lSI
DW 0102H
DB ICI
DW 0104H
DB 1*1

DISPTYPE DB I

DELAYI DW 0

ALERT_VISITED DB 0

ARB FOUNDI DB I I

REQCODEI_ASC DB 10
1

PAGE
.* ,
;* ALERT ARB
.* ,
ARB_IDI DB IARBII
REQ_CODEI DW 010lH
ARB_LNGI DB 44D

RESRVI_I DW 0H
PRIME_RCI DW 0FFFFH
PRIME_ECI DW 0FFFFH
PRIME_ETI DW 0FFFFH
NMVTADDR DD NMVTBUFF

NMVTTARG DB ILl

ALERT_RCI DW 0FFFFH
ALERT_ECI DW 0FFFFH
ALERT_ETI DW 0FFFFH
CSSA_RCI DW 0FFFFH
CSSA_ECI DW 0FFFFH
CSSA_ETI DW 0FFFFH

I

Alert Request Code Lookup Table
Open Alerts

Send an Alert

Close Alerts

End of Table Marker

Type of display required:
A = ASCII
E = EBCDIC
F = Formatted

Number of seconds to wait before
calling the Alert API/CS to
execute the Alert ARB

o indicates Alert Panel has
never been visited. I indicates
that it has been visited.

Set to Y if ARB was found
by call to Alert API/CS.
Set to N if not.

Input buffer for ASCII form
of Alert Request Code. Is
converted to HEX and stored
in REQ_CODEI by subrout
GET_REQCODE

Al ert ARB ID
Alert request code
Length of the Alert ARB

reserved word
Alert primary Return Code
Alert primary Error Class
Alert primary Error Type
Address of the buffer containing
the Alert NMVT to be sent.
Alert NMVT target L, H or B
Local, Host or Both. Defaults
to B if not L, H or B
Alert manager Return Code
Alert manager Error Class
Alert manager Error type
CSSA Return Code
CSSA Error Class
CSSA Error Type

Appendix I. DOS Sample Program Code 225

HOST_RC1 OW 8FFFFH
HOST_EC1 OW 8FFFFH
HOST ET1 OW 8FFFFH
RESERV2_1 OW 3 DUP(8H)

.* ,
;* END OF ALERT ARB
.* ,

PAGE
.* ,
;* OPERATOR COMMUNICATIONS VARIABLES
.* ,

OPCOMM_RC_TBL EQU $
DB 10 1

DELAY2

OW 8281H
DB IW I
OW 8287H
DB I L I
OW 8288H
DB IC I
OW 8284H
DB 1*1

OW 8

OPCOMM VISITED DB 8

PAGE
.* ,

I I

DB 10 1

;* OPERATOR COMMUNICATIONS ARB
.* ,
ARB 102 DB IARB21
REQ_CODE2 OW 8281H
ARB LNG2 DB 150

RESRV1 2 OW 8H
PRIME_RC2 OW 8FFFFH
PRIME_EC2 OW 8FFFFH
PRIME ET2 OW 8FFFFH
.* ,
;* END OF OPERATOR COMMUNICATIONS ARB
.* ,

226 NetView/PCTM API/CS

Host Return Code
Host Error Class
Host Error Type
3 reserved words

Operator Communications Request Code Lookup Table
Open Operator Communications

Write the icon DP

Clear the icon DP

Close Operator Communications

End of Table Marker

Number of seconds to wait before
calling the Op Comm API/CS to
execute the Op Comm ARB

8 indicates Op Comm Panel has
never been visited. 1 indicates
that it has been visited.

Set to Y if ARB was found
by call to Op Comm API/CS.
Set to N if not.

Input buffer for ASCII form
of Oper Comm Request Code. Is
converted to HEX and stored
in REQ_CODE2 by subrout GET_REQCODE

PAGE
.* ,
;* SERVICE POINT COMMAND FACILITY VARIABLES
.* ,

SPCF_RC_TBL EQU $
DB 10 1

OW 0301H
DB lSI
OW 0302H
DB IRI
OW 0303H
DB ICI
OW 0304H
DB IG I

OW 0309H
DB IMI
OW 030AH
DB Ip i

OW 030BH
DB lEI
OW 030CH
DB 1*1

DELAY3 OW 0

SPCF_VISITED DB 0

ARB_FOUND3 DB

MSGBUFFRI

MSGBUFFR2

PAGE

COMMAND

I I

DB 10 1

DB 630 DUP (' I)

DB 630 DUP (I I)

DB 512 DUP (I I)

ASC_CORR_LENGTH EQU 20
MAX_CORR_CNT EQU 8

SPCF Request Code Lookup Table
Open SPCF

Send a response to a command from NetView

Receive a command from NetView

Close SPCF

Get No Parse

Send Message Unsolicited

Put Message Unformatted

Send Error Sense Codes

End of Table Marker

Number of seconds to wait before
calling the SPCF APi/CS to
execute the SPCF ARB

o indicates SPCF Panel has
never been visited. 1 indicates
that it has been visited.

Set to Y if ARB was found
by call to SPCF API/CS.
Set to N if not.

Input buffer for ASCII form
of SPCF Request Code. Is
converted to HEX and stored
in REQ_CODE3 by subrout GET_REQCODE

Input buffer for message(s) to
to be sent to the host.
Buffer used to build multiple
message block for passing
multiple messages to the host.

Output buffer for displaying
command received from the host.

CORR_ASC_TBL_LENGTH EQU ASC_CORR_LENGTH * MAX_CORR_CNT
BY_ASC_CORR_LENGTH OW ASC_CORR_LENGTH

DB 0 Save area for DEL_SENDCORR

Appendix I. DOS Sample Program Code 227

CORR_ASC_TBL DB
CORR_RANK_TBL DB

MAX CORR CNT DUP(ASC CORR LENGTH DUP(' I»~
MAX=CORR=CNT DUp(eFFH) -

RECVCORR_HEXASC DB ASC_CORR_LENGTH DUP ('e') Output buffer for HEX/ASCII
form of SPCF receive
correlator.

SENDCORR_HEXASC DB ASC_CORR_LENGTH DUP ('e') Input buffer for HEX/ASCII
form of SPCF send correlator

TEMPCORR_HEXASC DB ASC_CORR_LENGTH DUP ('e') Temp buffer for HEX/ASCII
correlator while sorting

CORROPT DB e

UNRESPONDED_CNT DB e

SORTFLAG DB 1

SENDCORR_STAT DB e

INACT_CORR DB e

SENDCORR_CNT DB e

LOADSTAT DB e

CURRMSG_NUM ow e

PUTREPLY_BUFF_SIZE EQU 512
PUTREPLY LNG EQU $
PUTREPLY=KEY EQU $ + 2

Correlator chosen in LOAD_SENDCORR

Number of outstanding replies

Sort termination flag used when
sorting correlator table in
LOAD_SENDCORR.

FF hex indicates conversion of
SENDCORR_ASC to SENDCORR by
subrout CNV_SENDCORR was
unsuccessful. e indicates
successful conversion.

Flag on indicates correlator
has been inactivated.

Used as count variable from
5 to 1 for converting each
of the 5 hex words in SENDCORR

FF hex indicates that Loading of
the Message Buffer by
subrout LOAD_MSGBUFF was
unsuccessful. e indicates
successful conversion.

Contains the number of the
; message in the multi-message

buffer currently being loaded.

Length field of SPCF NMVT read from file
Key field of SPCF NMVT read from file

; Buffer area for SPCF NMVT
PUTREPLY DB PUTREPLY_BUFF_SIZE/8 DUP ('SPCFPUT ')

USERSENSE_ASC DB 'eeeeeeee'

SVKEY_ASC DB 'eel

DB 'eel

228 Netview/PCTM API/CS

; ASCII Input buffer for USERSENSE

; Leading ASCII zeroes because the subrout
; ASC2HEX expects a 4 byte string.
; ASCII Input buffer for SVKEY

; Leading ASCII zeroes because the subrout
; ASC2HEX expects a 4 byte string.
; ASCII'Input buffer for SFKEY

SPCFOPT DB 1

NMVTNAME DB INMVTFILE.BIN I

RECIO ASC

PAGE
.* ,
;* SERVICE POINT COMMAND FACILITY ARB
.* ,
ARB_I03 DB IARB3 1
REQ_CODE3 DW 8381H
ARB_LNG3 DB 98D

RECID DB 8H
RESRV1_3 DB 8H

PRIME_RC3 DW 8FFFFH
PRIME_EC3 DW 8FFFFH
PRIME ET3 DW 8FFFFH

TARGNAME DB ITS1SPCI I
MSGTYPE DB IFI
MSGFILE DB ISPCF I
MSGNUM DB 188811
MBLENGTH DW 8
MSGCOUNT DW 8
CONVERT DB lyl
MSGBUFF_PTR DD MSGBUFFR1
CMDLGTH DB 8
COMMAND_PTR DD COMMAND
RECVCORR DB 18 DUP (8)
SENDCORR DB 18 DUP (8)
FORCE DB lyl
OPERNAME DB 10PERATOR I
PUTRPLY_LEN DW ?
PUTRPLY_PTR DD PUTREPLY
SENSETYP DB 1
LCCSTAT DB 8
ERRDETAL DB 8
USERSENSE DB 4 DUP(8)
SVKEY DB 8
SFKEY DB 8
.* ,

; Option variable for SPCF Menu

File name of binary image file
for Put Unformatted SPCF

Hex ASCII form of RECID

;* END OF SERVICE POINT COMMAND FACILITY ARB
.* ,

PAGE
.* ,
;* HOST DATA TRANSFER FACILITY VARIABLES
.* ,

HDF_RC_TBL EQU $
DB 10 1
DW 8481H
DB lSI

DW 8482H
DB IRI

; HDF Request Code Lookup Table
Open HDF

Send a file from PC to CICS

Recieve a file from CICS

Appendix I. DOS.Sample Program Code 229

DW 0403H
DB ITI
DW 0405H
DB I pi

DW 0406H
DB ICI
DW 0404H
DB 1*1

DELAY4 DW 0

I I

DB 10 1

STARTBYTE ASC DB 100000000 1

NEXTBYTE_ASC DB 100000000 1

XFERCOMP ASC DB 100

PAGE

PCFILENM

HOSTFILENM

PAGE
.* ,

DB 32 DUP(' I)

DB 9 DUP(I I)

;* HOST DATA TRANSFER FACILITY ARB
.* ,

230 NetView/PCTM API/CS

Check status of HDF transfer request

Stop a file tranfer request

Close HDF

End of Table Marker

Number of seconds to wait before
calling the HDF API/CS to
execute the HDF ARB

o indicates HDF Panel has
never been visited. 1 indicates
that it has been visited.

Set to Y if ARB was found
by call to HDF API/CS.
Set to N if not.

Input buffer for ASCII form
of HDF Request Code. Is

~ converted to HEX and stored
in REQ_CODE4 by subrout GET_REQCODE

Input buffer for HEX/ASCII form
STARTBYTE

Output buffer for HEX/ASCII form
of NEXTBYTE

Output buffer for HEX/ASCII form
of XFERCOMP. Only leftmost 2
bytes are used, but buffer is
4 bytes long because subrout
HEX2ASC expects a 4 byte output
buffer.

Name of the PC file to be sent
or received. Variable is one byte
longer than max filename length
so that you can always find the
end of the filename by searching
for a blank

Name of the Host file to be sent
or received. Variable is one byte
longer than max filename length
so that you can always find the
end of the filename by searching
for a blank

ARB ID4 DB 'ARB41
REQ_CODE4 DW 8481H
ARB_LNG4 DB 45D

RESRV1_4 DW 8H
PRIME_RC4 DW 8FFFFH
PRIME_EC4 DW 8FFFFH
PRIME_ET4 DW 8FFFFH
PCFILE DD PCFILENM
PCFLGTH DB 8H
HOSTFILE DD HOSTFILENM
HFLGTH DB 8H
STARTBYTE DD 8H
XPC DB 'N'
BLKZ DW 3758D
RESERV2_4 DB 8 DUP(8H)
NEXTBYTE DD 8H
XFERCOMP DB 8H

.* ,
;* END OF HOST DATA TRANSFER FACILITY ARB
.* ,

PAGE
ARB_FOUND5 DB

. * ,

I I ; Set to Y if ARB was found
; by call to Op Comm API/CS.
; Set to N if not .

;* SERVICE POINT COMMAND FACILITY BUILD ARB
.* ,
ARB_ID5
REQ_CODE5
ARB LNG5

DB 'ARB5 1
DW 8888H
DB 37D

BUILD_ID DB 8H
BLD RESERVE DB 8H

PRIME_RC5
PRIME_EC5
PRIME_ET5

DW 8FFFFH
DW 8FFFFH
DW 8FFFFH

BUILD_NMVT_PTR DD 8 ;;;BUILD_NMVT
BUILD_NMVT_LEN DW 8
PATH_LIST_PTR DD 8 ;;;PATH_LIST
LINK_STATUS DB 8
NO_PROB_CAUSES DB 8
PROB_CAUSES_PTR DD 8 ;;;PROB_CAUSES
LINK_TEST_RESULTS DB 8
TEST_TYPE DB 8
TEST_COUNT_REQ DW 8
TEST_COUNT_EX DW 8
.* ,
;* END OF SERVICE POINT COMMAND FACILITY ARB
.* ,

PAGE
ARB_FOUND6 DB I I Set to Y if ARB was found

Appendix I. DOS Sample Program Code 231

by call to Op Comm API/CS.
Set to N if not.

PAGE

.* ,
;* SERVICE POINT COMMAND FACILITY PARSE ARB
.* ,

ARB_ID6
REQ_CODE6
ARB_LNG6

PARSE ID
PARSE_RESERVED

DB 'ARB6 1

DW 0000H
DB 36D

DB 0H
DB 0H

PRIME_RC6 DW 0FFFFH
PRIME_EC6 DW 0FFFFH
PRIME_ET6 DW 0FFFFH

PARSE_NMVT_PTR EQU $
PARS E_NMVT_OFFS ET DW 0
PARSE_NMVT_SEGMENT DW 0

NO_NAMES DB 0
NAMES_PTR DD 0
TEST_COUNT DW 0
TEST_TYPE6 DB 0

PARSE_SENSE_DATA_LEN EQU 4
PARSE_SENSE_ASCII_LEN EQU PARSE_SENSE_DATA_LEN * 2

PARS E_S ENS E_DATA DB PARSE_SENSE_DATA_LEN DUP(0)
PARSE_COMMAND_LEN DB 0
PARSE_COMMAND_PTR DD 0

.* ,
;* END OF SERVICE POINT COMMAND FACILITY PARSE ARB
.* ,
PARSE_CORRELATOR DB 10 dup(0)
PARSE_DATA DB 512 DUP (0H)
PARSE_DATA_OFFSET EQU PARSE_DATA-ARB_ID6 ;Offset to parse data
DO_PARSE_RC DB 0

.* ,
;* The following are for the build panel
.* ,
bd rx
bd bufsize

dw
equ

o
NMVTBUFF_SIZE

;Return code for do_parse proc

;Return code
;Buffer size

Display buffer for
ASCII representation
of PARSE_SENSE_DATA

.*** ,
; Build ARB Structure definition
.*** ,

build_arb
bd_arbid

struc
db 'ARB5 1

232 NetView/PCTM API/CS

bd_reqcode dw Oh
bd_arblen db 37
bd_buildid db 0
bd_reserved db 0
bd_retcode dw 0
bd_errclass dw 0
bd_errtype dw 0
bd_builtnmvt dd 0
bd_builtnmvtlen dw 0
bd_pathlist dd 0
bd_linkstat db 0
bd_numprobcause db 0
bd_probcause dd 0
bd_testresults db 0
bd_testtype db 0
bd_testcountreq dw 0
bd_testcountex dw 0
bd_correlator db 10 dUp(?) ;Correlator
bd_builddata db 0 ;Start of data
build_arb ends

bd_buf equ Arbbuff ;Buffer for input

bd_refarb build_arb <> ;Reference ARB

.*** ,
; Now the various path information structures
.*** ,

;Path Information List Control Block
bd_pinfo struc
bdlcc_num dw 0
bdlcc_ptr dd 0
bd_pinfo ends

;LCC description control blocks
bd_lccdesc struc
bdlcc_typelen db 0
bdlcc_type db 8 dUp(?)
bdlcc_namelen db 0
bdlcc_name db 8 dup(?)
bdlcc_number dw 0
bdlcc_dataptr dd 0
bdlcc_end db 0
bd_lccdesc ends

;LCC data control block structure
bdlccdat struc
bdlcc_dvtype db 0
bdl cc_dvl en db 0
bdlcc_reserved db 0
bdlcc_dvptr dd 0
bdlcc_dnlen db 0
bdlcc_dn db 0
bdlcc_dvend db 0
bdlccdat ends

;Number of LCC resources
;Pointer to first LCC block

;Length of resource type
;Resource type
;Length of resource name
;Resource name
;Number of LCC data things
;Pointer to LCC data

;Data value type
;Data value length
;Reserved
;Pointer to data value
;Data name length
;Data name
;Data name

Appendix I. DOS Sample Program Code 233

.*** ,
;Error numbers
.*** ,
BD_NOERR EQU 8 ;No error
BD READ ERR EQU 8ffffh ;Error reading file
BD ARBIDERR EQU 489d ;Error in ARB ID
BD_REQCDERR EQU 418d ;Error in ARB request code
BD_ARBLENERR EQU 411d ;Error in ARB length
BD ARBBLDIDERR EQU 412d ;Error in build ID

BD PCAUSERR EQU 413d ;Error in Probable cause pointer
BD PLISTERR EQU 414d ;Error in Path List Info pointer
BD_PLCBERR EQU 415d ;Error in Path List Blocks pointer
BD LCCDCERR EQU 416d ;Error in LCC description block
BD LCCDBERR EQU 417d ;Error in LCC data block
BD BLDERR EQU 418d ;Error after calling build API
BD NOLCC EQU 419d ;No LCC's in ARB

.*** ,
;Other constants
.*** ,
BD ARBIDLEN EQU 4 ; Length of ARB ID
BD FI LENAMELEN EQU 13 ;Length of file name

BD ID LPD EQU 62h ;Buil d ID for LINK PD
BD ID LD EQU 63h ;Build ID for LINK DATA
BD ID LT EQU 64h ;Build ID for LINK TEST

BD TYPE8 EQU 8 ; LINK PD type
BD TYPEI EQU 1 ;LINKDATA or LINKTEST type

BD LCCDCLEN8 EQU bdlcc_number-bdlcc_typelen ;Length of type 8
BD_LCCDCLENI EQU bdlcc_end-bdlcc_typelen ;Length of type 1
BD_LCCDBLEN EQU bdlcc_dn-bdlcc_dvtype ;Length of data

.*** ,
; Working variables

bd_type db

bd_lccdclen dw

bd datsize dw

PAGE

CHOICE DW 1

ZRSPI DB ?
ZRSP2 DB ?

8

e

e

;Type of build: 8 = LINK PD
Nonzero indicates DATA or TEST

;Used to store size of lcc dc

;Amount of data in buffer

State variable for SELMENU

Scan code of key that caused Panel Exit
ASCII code of key that caused Panel Exit

.** ,
;If number of places below changes, must also change LNGTH9V
.** , .

ZENTI
ZENT2
ZENTla
ZENT2a

DB 8
DB 8
DB 8
DB 8

234 NetView/PCTM APIICS

Scan code of key to be used as Enter key
ASCII code of key to be used as Enter key
Scan code of key to be used as Enter key
ASCII code of key to be used as Enter key

ZENTlb DB 8 Scan code of key to be used as Enter key
ZENT2b DB 8 ASCII code of key to be used as Enter key
ZENTlc DB 8 ; Scan code of key to be used as Enter key
ZENT2c DB 8 ; ASCII code of key to be used as Enter key
ZENTld DB 8 ; Scan code of key to be used as Enter key
ZENT2d DB 8 ; ASCII code of key to be used as Enter key

ZENTIE DB 10 ; Scan code of ESC key
ZENT2E DB 270 ; ASCII code of ESC key

ZENTIPUP DB 73d ; Scan code of PgUp key
ZENT2PUP DB 8 ; ASCII code of PgUp key

ZENTIPDN DB 81d Scan code of PgUp key
ZENT2PDN DB 8 ASCII code of PgUp key

ZENTIF DB 680 F18 key - scan code
ZENT2F DB 8 Fl8 key - ASCII code

ZENTIN DB lCH Return key - scan code
ZENT2N DB 130 Return key - ASCII code

ZATR DB lEW EW ' Color used when input field is highlighted
Ebony foreground, white background

PARM999 OW 7541H
OW 6874H
OW 726FH
OW 283AH
OW 694AH
OW 2860H
OW 6F46H
OW 6C77H
OW 7265H
OW 3328H
OW 322FH
OW 8038H
OW lA8AH

PAGE
.* ,
;* Alert Variable Definitions
.* ,
PARM2 OB 'REQCODEI CI

LNGTH2P OW LNGTH2P - PARM2
LNGTH2V OW 1

PARM4 OB 'NMVTFILE CI

LNGTH4P OW LNGTH4P - PARM4
LNGTH4V OW 13

PARM5 OB 'NMVTTARG CI

LNGTH5P OW LNGTH5P - PARM5
LNGTH5V OW 1

PARM6 OB I (PRIMRCl,PRIMECl,PRIMETl) I I
LNGTH6P OW LNGTH6P - PARM6
LNGTH6V OW 2

Appendix I. DOS Sample Program Code 235

PARM7 DB
LNGTH7P OW
LNGTH7V OW

PARM8 DB
LNGTH8P OW
LNGTH8V OW

PARM9 DB
LNGTH9P OW
LNGTH9V OW

PAGE

PARMIO DB
LNGTHIOP OW
LNGTHIOV OW

PARM46 DB
LNGTH46P OW
LNGTH46V OW

PARM50 DB
LNGTH50P OW
LNGTH50V OW

PAGE
.* ,

'(ALRTRCl,ALRTECl,ALRTETl,CSSARCl,CSSAECl,CSSAETl,HOSTRCl,HOSTECl,HOSTETl) I'
LNGTH7P- PARM7
2

'ZRSP C'
LNGTH8P - PARM8
2

'ZENT C'
LNGTH9P - PARM9
lOd

'CHOICE II
LNGTHIOP - PARMI0
2

'ARBFNOI CI

;Must be set to number of places for
;Other keys being used as enter key

LNGTH46P - PARM46
1

'OELAYI II
LNGTH50P - PARM50
2

;* Operator Communications Variable Definitions
.* ,
PARM12 DB 'REQCOOE2 CI
LNGTH12P OW LNGTH12P - PARM12
LNGTHI2V OW 1

PARMI4 DB I (PRIMRC2,PRIMEC2,PRIMET2) I I
LNGTH14P OW LNGTH14P - PARM14
LNGTHI4V OW 2

PARMI5 DB 'ZATR CI
LNGTH15P OW LNGTH15P - PARM15
LNGTH15V OW 5

PARMI6 DB 'ZFLO CI
LNGTHI6P OW LNGTH16P - PARM16
LNGTH16V OW 8

PARMI7 DB 'ZCRS CI
LNGTH17P OW LNGTH17P - PARMI7
LNGTH17V OW 2

PARM47 DB 'ARBFN02 CI
LNGTH47P OW LNGTH47P - PARM47
LNGTH47V OW 1

PARM51 DB 'OELAY2 II
LNGTH5IP OW LNGTH51P - PARM5I
LNGTH5lV OW 2

236 NetView/PCTM APIICS

PAGE
.* ,
;* Service Point Command Facility Variable Definitions
.* ,
PARM31 DB
LNGTH31P OW
LNGTH31V OW

PARM33 DB
LNGTH33P OW
LNGTH33V OW

PARM34 DB
LNGTH34P OW
LNGTH34V OW

PARM27 DB
LNGTH27P OW
LNGTH27V OW

PARM35 DB
LNGTH35P OW
LNGTH35V OW

PARM36 DB
LNGTH36P OW
LNGTH36V OW

PARM37 DB
LNGTH37P OW
LNGTH37V OW

PARM38 DB
LNGTH38P OW
LNGTH38V OW

PARM39 DB
LNGTH39P OW
LNGTH39V OW

PAGE

PARM40 DB
LNGTH40P OW
LNGTH40V OW

PARM41 DB
LNGTH41P OW
LNGTH41V OW

PARM42 DB
LNGTH42P OW
LNGTH42V OW

PARM43 DB
LNGTH43P OW
LNGTH43V OW

'REQCODE3 CI
LNGTH31P - PARM31
1

'(PRIMRC3,PRIMEC3,PRIMET3) II
LNGTH33P - PARM33
2

'TARGNAME CI
LNGTH34P - PARM34
8

'MSGTYPE CI
LNGTH27P - PARM27
1

'MSGFILE CI
LNGTH35P - PARM35
4

'MSGNUM CI
LNGTH36P - PARM36
4

I MBLENGTH I I
LNGTH37P - PARM37
2

I MSGCOUNT I I
LNGTH38P - PARM38
2

'CONVERT CI
LNGTH39P - PARM39
1

I (MSGBUFRA,MSGBUFRB,MSGBUFRC,MSGBUFRD,MSGBUFRE,MSGBUFRF,MSGBUFRG,MSGBUFRH,MSGBUFRI) CI
LNGTH40P - PARM48
70

'CMDLGTH I I
LNGTH41P - PARM41
1

'(COMMANDA,COMMANDB,COMMANDC,COMMANDD) CI
LNGTH42P - PARM42
64

'RECVCORR CI
LNGTH43P - PARM43
20

Appendix I. DOS Sample Program Code 237

PARM44 DB 'SENDCORR CI
LNGTH44P DW LNGTH44P - PARM44
LNGTH44V DW 20

PARM45 DB 'FORCE CI
LNGTH45P DW LNGTH45P - PARM45
LNGTH45V DW 1

PAGE

PARM48 DB 'ARBFND3 CI
LNGTH48P DW LNGTH48P - PARM48
LNGTH48V DW 1

PARM52 DB I DELAY3 I I
LNGTH52P DW LNGTH52P - PARM52
LNGTH52V DW 2

PARM57 DB I SPCFOPT I I
LNGTH57P DW LNGTH57P - PARM57
LNGTH57V DW 1

PARM58 DB 'OPERNAME CI
LNGTH58P DW LNGTH58P - PARM58
LNGTH58V DW 8

PARM60 DB 'NMVTNAME CI
LNGTH60P DW LNGTH60P - PARM60
LNGTH60V DW 12

PARM61 DB 'SENSETYP II
LNGTH61P DW LNGTH61P - PARM61
LNGTH61V DW 1

PARM62 DB 'LCCSTAT II
LNGTH62P DW LNGTH62P - PARM62
LNGTH62V DW 1

PARM63 DB 'ERRDETAL II
LNGTH63P DW LNGTH63P - PARM63
LNGTH63V DW 1

PARM64 DB 'USERSENS CI
LNGTH64P DW LNGTH64P - PARM64
LNGTH64V DW 8

PARM65 DB 'SVKEY CI
LNGTH65P DW LNGTH65P - PARM65
LNGTH65V DW 2

PARM66 DB 'SFKEY CI
LNGTH66P DW LNGTH66P - PARM66
LNGTH66V DW 2

PARM67 DB 'IORETCOD II
LNGTH67P DW LNGTH67P - PARM67
LNGTH67V DW 2

238 NetView/PCTM API/CS

PARM73 DB '(CORR1,CORR2,CORR3,CORR4,CORR5,CORR6,CORR7,CORR8) C'
LNGTH73P DW LNGTH73P - PARM73
LNGTH73V DW ASC_CORR_LENGTH

PARM74 DB '(CORROPT,UNRSPCNT) I'
LNGTH74P DW LNGTH74P - PARM74
LNGTH74V DW 1

PARM75 DB 'RECIO C'
LNGTH75P DW LNGTH75P - PARM75
LNGTH75V DW 2

PARM76 DB 'DISPTYPE C'
LNGTH76P DW LNGTH76P - PARM76
LNGTH76V DW 1

PARM77 DB 'ARBFILE C'
LNGTH77P DW LNGTH77P - PARM77
LNGTH77V DW 13

PARM78 DB 'PARSENSE C'
LNGTH78P DW LNGTH78P - PARM78
LNGTH78V DW PARSE_SENSE_ASCII_LEN

PAGE
.* ,
;* Host Data Transfer Facility Variable Definitions
.* ,
PARM19 DB 'REQCODE4 C'
LNGTH19P DW LNGTH19P - PARM19
LNGTH19V DW 1

PARM21 DB '(PRIMRC4,PRIMEC4,PRIMET4) I'
LNGTH21P DW LNGTH21P - PARM21
LNGTH21V DW 2

PARM22 DB 'PCFILENM C'
LNGTH22P DW LNGTH22P - PARM22
LNGTH22V OW 31

PARM23 DB 'HOSTFILE C'
LNGTH23P DW LNGTH23P - PARM23
LNGTH23V DW 8

PARM24 DB 'STRTBYTE C'
LNGTH24P DW LNGTH24P - PARM24
LNGTH24V DW 8

PARM25 OB 'XPC C'
LNGTH25P DW LNGTH25P - PARM25
LNGTH25V DW 1

PARM26 DB 'BLKZ I'
LNGTH26P DW LNGTH26P - PARM26
LNGTH26V DW 2

PARM28 DB 'NEXTBYTE C'
LNGTH28P DW LNGTH28P - PARM28
LNGTH28V OW 8

Appendix I. DOS Sample Program Code 239

PARM49 DB IARBFND4 CI
LNGTH49P DW LNGTH49P - PARM49
LNGTH49V DW 1

PARM55 DB IDELAY4 I I
LNGTH55P DW LNGTH55P - PARM55
LNGTH55V DW 2

PARM56 DB IXFERCOMP CI
LNGTH56P DW LNGTH56P - PARM56
LNGTH56V DW 2

PAGE
.* ,
;* EZ-VU DISPLAY STRINGS
.* ,

PARMID_KEYS
PARMID DB
LNGTHIPD DW

PARM2D DB
LNGTH2PD DW

PARM4D_KEYS
PARM4D DB
LNGTH4PD DW

PARM5D KEYS
PARM5D DB
LNGTH5PD DW

PARM6D DB
MSGNUM6 DB
LNGTH6PD DW

PARM8D DB
LNGTH8PD DW

PARM9D DB
MSGNUM9 DB
LNGTH9PD DW

PARMIOD DB
ZFLD DB
ZCRS DB
LNGTHIOPD DW

PARMllD_KEYS
PARMllD DB
LNGTHIIPD DW

PAGE

PARM12D DB
LNGTH12PD DW

EQU F3_0K+FIO_OK+Esc_OK
IDISPLAY DCJVAPOO I
LNGTHIPD - PARMID

IPANDEL I
LNGTH2PD - PARM2D

EQU F3_0K+ENTER_OK+Esc_OK
IDISPLAY DCJVMPOO I
LNGTH4PD - PARM4D

EQU F3_0K+FIO_OK+Esc_OK
IDISPLAY DCJVOPOO I
LNGTH5PD - PARM5D

ISETMSG VAPI I
10000 NMVTFI LE I
LNGTH6PD - PARM6D

IDISPLAY I
LNGTH8PD - PARM8D

ISETMSG VAPI I
10000 1
LNGTH9PD - PARM9D

ICONTROL CURSOR I

LNGTHIOPD - PARMIOD

EQU F3_0K+FIO_OK+Esc_OK
IDISPLAY DCJVDPOO I
LNGTHIIPD - PARMIID

ISETMSG VAPI0009 STRTBYTE I
LNGTH12PD - PARM12D

240 NetView/PCTM API/CS

PARM13D_KEYS
PARM13D DB
LNGTH13PD DW

PARM14D_KEYS
PARM14D DB
LNGTH14PD DW

PARM15D DB
LNGTH15PD DW

PARM16D DB
LNGTH16PD DW

PARM17D DB
LNGTH17PD DW

PARM18D DB
LNGTH18PD DW

PARM19D_KEYS
PARM19D DB
LNGTH19PD DW

PARM20D_KEYS
PARM20D DB
LNGTH20PD DW

PARM21D_KEYS
PARM21D DB
LNGTH21PD DW

PARM22D_KEYS
PARM22D DB
LNGTH22PD DW

PARM23D_KEYS
PARM23D DB
LNGTH23PD DW

PARM24D_KEYS
PARM24D DB
LNGTH24PD DW

PARM25D_KEYS
PARM25D DB
LNGTH25PD DW

PARM26D_KEYS
PARM26D DB
LNGTH26PD DW

DATA ENDS

EQU F3_0K+F6_0K+F7_0K+F8_0K+FIO_OK+Esc_OK
'DISPLAY DCJVCPOl '
LNGTH13PD - PARM13D

EQU F3_0K+Esc_OK
'DISPLAY DCJVCP06 1

LNGTH14PD - PARM14D

'SETMSG VAPIOOIO '
LNGTH15PD - PARM15D

'SETMSG VAPIOOll MSGBUFFR '
LNGTH16PD - PARM16D

'SETMSG VAPI0012 SENDCORR '
LNGTH17PD - PARM17D

'SETMSG VAPI0013 1

LNGTH18PD - PARM18D

EQU F3_0K+F6_0K+ENTER_OK+Esc_OK
'DISPLAY DCJVCPOO '
LNGTH19PD - PARM19D

EQU F3_0K+F4_0K+F6_0K+F9_0K+FIO_OK+Esc_OK
'DISPLAY DCJVCP02 1

LNGTH20PD - PARM20D

EQU F3_0K+F6_0K+F7_0K+FIO_OK+Esc_OK
'DISPLAY DCJVCP03 1

LNGTH21PD - PARM21D

EQU F3_0K+F6_0K+F8_0K+FIO_OK+Esc_OK
'DISPLAY DCJVCP04 1

LNGTH22PD - PARM22D

EQU F3_0K+F6_0K+F7_0K+FIO_OK+Esc_OK
'DISPLAY DCJVCP05 1

LNGTH23PD - PARM23D

EQU ENTER_OK+F3_0K+Esc_OK
'DISPLAY DCJVCP07 1

LNGTH24PD - PARM24D

EQU F3_0K+F6_0K+F9_0K+FIO_OK+Esc_OK
'DISPLAY DCJVBPOl '
LNGTH25PD - PARM25D

EQU F3_0K+F6_0K+F9_0K+FIO_OK+Esc_OK
'DISPLAY DCJVBP02 1

LNGTH26PD - PARM26D

Appendix I. DOS Sample Program Code 241

APIMAIN.MAC
PAGE

API Sample Program - (C) Copyright IBM Corp. 1986, 1987
SAMPLE PROGRAM - NO WARRANTY EXPRESSED OR IMPLIED

You are hereby licensed to use, reproduce, and distribute
these sample programs as your needs require. IBM does not
warrant the suitability or integrity of these sample programs
and accepts no responsibility for their use for your
applications. If you choose to copy and redistribute
significant portions of these sample programs, you should
preface such copies with this copyright notice .

. * ,
;* MACRO DEFINITIONS
.* ,

PUSHREGS MACRO
PUSH BP
PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH SI
PUSH DI
PUSH ES
PUSH DS
ENDM

POPREGS MACRO
POP DS
POP ES
POP DI
POP SI
POP DX
POP CX
POP BX
POP AX
POP BP
ENDM

" SAVE REGISTERS

" RESTORE REGISTERS

.** ,
;* This macro is used for calls to EZVU II. *
.** ,

DMPC MACRO TYPE,PARMS
PUSHREGS
MOV EZVU_RC,0
MOV BP,SP
IRP X,<PARMS>
MOV AX,OFFSET X
PUSH AX
ENDM

EZVU_ADDR = $
CALL TYPE
MOV SP,BP
POPREGS

242 NetView/PCTM APIICS

; ;
; ;
; ;
; ;
; ;
; ;
; ;
, ,
, ,
; ;
; ;

Save all regs
Zero EZ-VU Return Code
Save stack pointer
Push parameters onto stack

Call appropriate EZ-VU II rtn
Restore stack pointer
Restore all regs

PUSH AX ; ; Save AX
LEA AX, EZVU_AOOR , , Store address of EZ-VU II call in
MOV EZVU_CALL_AOOR,AX , , EZVU....;CALL_AOOR (pann for CHECK_EZVU_RC)
POP AX ; ; Restore AX
CALL CHECK_EZVU_RC ; ; Ensure that EZ-VU II Return code is zero
ENOM

.** ,
;* This macro is used for calls to EZVU II. *
;* and is identical to OMPC except that it does *
;* not save and restore all the registers. *
.** ,

OMPC_NS MACRO TYPE,PARMS
MOV EZVU_RC,O , , Zero EZVU Return Code
MOV BP,SP ; ; Save stack pointer
IRP X,<PARMS> , , Push parameters onto stack
MOV AX,OFFSET X , ,
PUSH AX , ,
ENOM , ,

EZVU_AOOR = $, ,
CALL TYPE , , Call appropriate EZVU II rtn
MOV SP,BP ; ; Restore stack pointer
PUSH AX ; ; Save AX
LEA AX,EZVU_AOOR ; ; Store address of EZVU II call in
MOV EZVU_CALL_AOOR,AX , , EZVU_CALL_AOOR (parm for CHECK_EZVU_RC)
POP AX , , Restore AX
CALL CHECK EZVU RC , , Ensure that EZVU II Return code is zero
ENOM

.** ,
;* This macro is used for calls to EZVU II. *
;* and is identical to OMPC_NS except that it
;* does not check the return code from EZVU.

*
*

.** ,

OMPC_NC MACRO TYPE,PARMS
MOV EZVU_RC,O
MOV BP,SP
IRP X,<PARMS>
MOV AX,OFFSET X
PUSH AX
ENOM

EZVU_AOOR = $
CALL TYPE
MOV SP,BP
PUSH AX
LEA AX, EZVU_AOOR
MOV EZVU_CALL_AOOR,AX
POP AX
CALL CHECK_EZVU_RC
ENOM

SHOW ERR MSG MACRO MESSAGE_NUM
MOV AX,MESSAGE_NUM
CALL SHOW_ERRMSG
ENOM

; ;
, ,
; ;
; ;
, ,
; ;
; ;
; ;
, ,
, ,
, ,
, ,
, ,
, ,

Zero EZVU Return Code
Save stack pointer
Push parameters onto stack

Call appropriate EZVU II rtn
Restore stack pointer
Save AX
Store address of EZVU II call in
EZVU_CALL_AOOR (parm for CHECK_EZVU_RC)
Restore AX
Ensure that EZVU II Return code is zero

Appendix I. DOS Sample Program Code 243

MOVE_STRING MACRO SOURCE_STRING,TARGET_STRING, BYTE_COUNT
PUSH ES
PUSH SI
PUSH 01
PUSH CX

PUSH OS
POP ES
LEA SI,SOURCE_STRING
LEA OI,TARGET_STRING
MOV CX,BYTE_COUNT
CLO

REP MOVSB

POP CX
POP 01
POP SI
POP ES
ENOM

COMPARE_STRINGS MACRO SOURCE_STRING ,TARGET_STRING ,BYTE_COUNT
PUSH ES
PUSH SI
PUSH 01
PUSH CX

PUSH OS
POP ES
LEA SI,SOURCE_STRING
LEA OI,TARGET_STRING
MOV CX,BYTE_COUNT
CLO

REPE CMPSB

POP CX
POP 01
POP SI
POP ES
ENOM

FILL_CHAR MACRO TARGET_AREA,FILLCHAR,BYTE_COUNT
PUSH ES
PUSH 01
PUSH CX
PUSH AX

MOV AX,OS
MOV ES,AX
MOV AL, FI LLCHAR
LEA OI,TARGET_AREA
MOV CX,BYTE_COUNT
CLO

REP STOSB

POP AX
POP CX
POP OI
POP ES
ENOM

244 NetView/PCTM APIICS

APIMAIN.EXR

API Sample Program - (C) Copyright IBM Corp. 1986, 1987
SAMPLE PROGRAM - NO WARRANTY EXPRESSED OR IMPLIED

You are hereby licensed to use, reproduce, and distribute
these sample programs as your needs require. IBM does not
warrant the suitability or integrity of these sample programs
and accepts no responsibility for their use for your
applications. If you choose to copy and redistribute
significant portions of these sample programs, you should
preface such copies with this copyright notice •

• ** ,

APIMAIN.EXR

Include this file in any procedures using the variables below, which
are found in APIMAIN.DSG

;
.** ,

extrn CHOICE:word

extrn ZRSP1:byte
extrn ZRSP2:byte

extrn ZENT1:byte
extrn ZENT2:byte
extrn ZENT1a:byte
extrn ZENT2a:byte
extrn ZENT1b:byte
extrn ZENT2b:byte
extrn ZENT1c:byte
extrn ZENT2c:byte
extrn ZENT1E:byte
extrn ZENT2E:byte

extrn ZENT1F:byte
extrn ZENT2 F: byte

extrn ZENT1PUP:byte
extrn ZENT2PUP:byte
extrn ZENT1PDN:byte
extrn ZENT2PDN:byte

extrn ZENT1N:byte
extrn ZENT2N:byte

extrn LNGTH9V:word
extrn ZATR:byte

extrn 10retcod:word

;State variable for SELMENU

;Scan code of key that caused Panel Exit
;ASCII code of key that caused Panel Exit

;Scan code of key to be used as Enter key
;ASCII code of key to be used as Enter key
;Scan code of key to be used as Enter key
;Scan code of key to be used as Enter key
;Scan code of key to be used as Enter key
;Scan code of key to be used as Enter key
;Scan code of key to be used as Enter key
;Scan code of key to be used as Enter key
;Scan code of ESC key
;ASCII code of ESC key

;F4 key - scan code
;F4 key - ASCII code

;PgUp scan code
;PgUp ASCII
;PgDn scan code
; PgDn ASCII

;Return key - scan code
;Return key - ASCII code

;Color used when input field is highlighted
;Ebony foreground, white background

;File I/O return code for error messages.

Appendix I. DOS Sample Program Code 245

APIMAIN.DEF

API Sample Program - (C) Copyright IBM Corp. 1986, 1987
SAMPLE PROGRAM - NO WARRANTY EXPRESSED OR IMPLIED

You are hereby licensed to use, reproduce, and distribute
these sample programs as your needs require. IBM does not
warrant the suitability or integrity of these sample programs
and accepts no responsibility for their use for your
applications. If you choose to copy and redistribute
significant portions of these sample programs, you should
preface such copies with this copyright notice .

• ** ,
APIMAIN.DEF

Includes definitions of various constants which may be shared
between the main API routine and the routines which are linked
to it. ,

.** ,

.** ,
Key Flags: When defining keys for a panel, add up all flags of keys

to be made valid (set to END), and place it in the word which
; is passed to SET_KEYS
.** ,
Fl OK EQU
F2 OK EQU
F3 OK EQU
F4_0K EQU
F5_0K EQU
F6 OK EQU
F7 OK EQU
F8 OK EQU
F9_0K EQU
flO_OK EQU
Fl1_0K EQU
Fl2_0K EQU

PGUP OK EQU
PGDN OK EQU
ESC_OK EQU

ENTER_OK EQU

0100h
0200h
0400h
080(:)h
1000h
2000h
4000h
8000h
0001h
0002h
0004h
0008h

0010h
0020h
0040h

0080h

;For F keys, if set valid, then
key beeps if invalid

;Beeps if invalid
;Beeps if invalid
;Beeps if invalid

;Acts as Tab if invalid

.** ,
; Buffer size for file I/O
.** ,
NMVTBUFF SIZE EQU 2048

246 NetView/PCTM API/CS

APIMAIN.ASM
(CTRL-OH) IBM PC PRINTER CONDENSED MODE

PAGE ,132
TITLE API Sample Program - (C) Copyright IBM Corp. 1986,1987
SAMPLE PROGRAM - NO WARRANTY EXPRESSED OR IMPLIED

You are hereby licensed to use, reproduce, and distribute
these sample programs as your needs require. IBM does not
warrant the suitability or integrity of these sample programs
and accepts no responsibility for their use for your
applications. If you choose to copy and redistribute
significant portions of these sample programs, you should
preface such copies with this copyright notice •

PAGE

• SALL

INCLUDE APIMAIN.DEF
INCLUDE APIMAIN.DSG
INCLUDE APIUTIL.EXR
IF1

INCLUDE APIMAIN.MAC
ELSE

%OUT Starting second pass
ENDIF

extrn Dcjva88:far
extrn Dcjv088:far
extrn Dcjvb88:far
extrn Dcjvc88:far
extrn Dcjvd88:far

extrn spcf_display_init:near
extrn spcf_display_pan:near

;Suppress macro expansion

;Include shared constant definitions
;Data Segment
;Include shared procedure definitions

;Macros

;Alert Manager
;Operator Communications
;Build and Parse routines
;Service Point Command Facility
;Host Data Transfer

;Display variables initialization
;Display main panel routine

.** ,
; Define the utility routines and variables available in APIDISP.ASM
.** ,

extrn PJFILENC:byte

extrn pj_translate_fg:word

extrn ebcdic_fg:abs

extrn spcf_display_unformatted:near
extrn spcf_display_formatted:near

PGROUP GROUP CSEG

PUBLIC APITEST

CSEG SEGMENT PARA PUBLIC 'CODE '

file name parameter for
spcf_display_unformatted &
spcf_display_formatted
dump mode parameter for
spcf_display_unformatted
constant for spcf_display_unformatted

displays hex dumps of files
displays formatted ARB's

ASSUME CS:PGROUP,DS:DGROUP,ES:DGROUP,SS:NOTHING

Appendix I. DOS Sample Program Code 247

EXTRN ISPASM:FAR
EXTRN ISPASMV:FAR

;EZ-VU II Display functions
;EZ-VU II Variable definitions

.** ,

.* , *
;* Procedure Name: APITEST *
.* ,
;* Description
.* ,
.* ,

*
Main line procedure which runs the main menu of *
the manual tester. *

*
;* Input: Choice from the EZVU II panel. *
.* , *
;* Output: Displays requested panel or error message if invalid *
;* choice was selected.
.* ,

*
*

.** ,

apitest proc far ;Entry point from dos

start:
.*** ,
;* The ASSUME statement shown above and the register *

*
*

;* initialization code shown here is done for the sake of
;* compatibility with EZVU II. For more information see the
.* , EZVU II Development Facility User's Guide pages 28-29 *
.*** ,

DB I(C) Copyright IBM Corp. 1986,1987 ',CR,LF
DB Iyou are hereby licensed to use, reproduce, and distribute',CR,LF
DB 'these sample programs as your needs require. IBM does not',CR,LF
DB Iwarrant the suitability or integrity of these sample programs',CR,LF
DB land accepts no responsibility for their use for your',CR,LF
DB 'applications. If you choose to copy and redistribute',CR,LF
DB 'significant portions of these sample programs, you should ' ,CR,LF
DB 'preface such copies with this copyright notice.',CR,LF
DB 26

reg_setup:

.* ,

push ds
mov
mov
mov
lea

aX,dgroup
ds,ax
bX,ax
aX,stktop

;Init Data Seg ptr
;Save DGROUP ptr in BX

;* Disable interrupts and swap from EZ-VU II stack to application stack
.* ,

page

.* ,

cli
mov
mov
sti

ss,bx
sp,ax

;Disable interrupts
;Set Stack Seg ptr
;Set Stack Offset Ptr
;Re-enable interrupts

;* Define all common vars and main menu vars
.* ,

DMPC_NS ISPASMV,<LNGTH8P,PARM8,EZVU_RC,Zrsp1,LNGTH8V>

248 NetView/PCTM API/CS

.* ,

DMPC_NS ISPASMV,<LNGTH9P,PARM9,EZVU_RC,Zentl,LNGTH9V>
DMPC_~S ISPASMV,<LNGTHIOP,PARMIO,EZVU_RC,CHOICE,LNGTHIOV>
DMPC_NS ISPASMV,<LNGTH15P,PARM15,EZVU_RC,Zatr,LNGTH15V>
DMPC_NS ISPASMV,<LNGTH16P,PARM16,EZVU_RC,ZFLD,LNGTH16V>
DMPC_NS ISPASMV,<LNGTH17P,PARM17,EZVU_RC,ZCRS,LNGTH17V>

DMPC_NS ISPASMV,<LNGTH67P,PARM67,EZVU_RC,IORETCOD,LNGTH67V>

;* Define vars necessary for Alert Panel
.* ,

.* ,

DMPC_NS ISPASMV,<LNGTH2P,PARM2,EZVU_RC,REQCODE1_ASC,LNGTH2V>
DMPC_NS ISPASMV,<LNGTH4P,PARM4,EZVU_RC,NMVTFILE,LNGTH4V>
DMPC_NS ISPASMV,<LNGTH5P,PARM5,EZVU_RC,NMVTTARG,LNGTH5V>
DMPC_NS ISPASMV,<LNGTH6P,PARM6,EZVU_RC,PRIME_RC1,LNGTH6V>
DMPC_NS ISPASMV,<LNGTH7P,PARM7,EZVU_RC,ALERT_RC1,LNGTH7V>
DMPC_NS ISPASMV,<LNGTH46P,PARM46,EZVU_RC,ARB_FOUND1,LNGTH46V>
DMPC_NS ISPASMV,<LNGTH50P,PARM50,EZVU_RC,DELAY1,LNGTH50V>

;* Define vars necessary for Operator Communications Panel
.* ,

.* ,

DMPC_NS ISPASMV,<LNGTH12P,PARM12,EZVU_RC,REQCODE2_ASC,LNGTH12V>
DMPC_NS ISPASMV,<LNGTH14P,PARM14,EZVU_RC,PRIME_RC2,LNGTH14V>
DMPC_NS ISPASMV,<LNGTH47P,PARM47,EZVU_RC,ARB_FOUND2,LNGTH47V>
DMPC_NS ISPASMV,<LNGTH51P,PARM51,EZVU_RC,DELAY2,LNGTH51V>

;* Define vars necessary for SPCF Panel
.* ,

DMPC_NS ISPASMV,<LNGTH31P,PARM31, EZVU_RC,REQCODE3_ASC, LNGTH31V >
DMPC_NS ISPASMV,<LNGTH33P,PARM33,EZVU_RC,PRIME_RC3,LNGTH33V>
DMPC_NS ISPASMV,<LNGTH34P,PARM34,EZVU_RC,TARGNAME,LNGTH34V>
DMPC_NS ISPASMV,<LNGTH27P,PARM27,EZVU_RC,MSGTYPE,LNGTH27V>
DMPC_NS ISPASMV,<LNGTH35P,PARM35,EZVU_RC,MSGFILE,LNGTH35V>
DMPC_NS ISPASMV,<LNGTH36P,PARM36,EZVU_RC,MSGNUM,LNGTH36V>
DMPC_NS ISPASMV,<LNGTH37P,PARM37,EZVU_RC,MBLENGTH,LNGTH37V>
DMPC_NS ISPASMV,<LNGTH38P,PARM38,EZVU_RC,MSGCOUNT,LNGTH38V>
DMPC_NS ISPASMV,<LNGTH39P,PARM39,EZVU_RC,CONVERT,LNGTH39V>
DMPC_NS ISPASMV,<LNGTH40P,PARM40,EZVU_RC,MSGBUFFR1,LNGTH40V>
DMPC_NS ISPASMV,<LNGTH41P,PARM41,EZVU_RC,CMDLGTH,LNGTH41V>
DMPC_NS ISPASMV,<LNGTH42P,PARM42,EZVU_RC,COMMAND,LNGTH42V>
DMPC_NS ISPASMV,<LNGTH43P,PARM43,EZVU_RC,RECVCORR_HEXASC,LNGTH43V>
DMPC_NS ISPASMV,<LNGTH44P,PARM44,EZVU_RC,SENDCORR_HEXASC,LNGTH44V>
DMPC_NS ISPASMV,<LNGTH45P,PARM45,EZVU_RC,FORCE,LNGTH45V>
DMPC_NS ISPASMV,<LNGTH48P,PARM48,EZVU~RC,ARB_FOUND3,LNGTH48V>

DMPC_NS ISPASMV,<LNGTH52P,PARM52,EZVU_RC,DELAY3,LNGTH52V>

DMPC_NS ISPASMV,<LNGTH57P,PARM57,EZVU_RC,SPCFOPT,LNGTH57V>

DMPC_NS ISPASMV,<LNGTH58P,PARM58,EZVU_RC,OPERNAME,LNGTH58V>

DMPC_NS ISPASMV,<LNGTH60P,PARM60,EZVU_RC,NMVTNAME,LNGTH60V>

DMPC_NS ISPASMV,<LNGTH61P,PARM61,EZVU_RC,SENSETYP,LNGTH61V>
DMPC_NS ISPASMV,<LNGTH62P,PARM62,EZVU_RC,LCCSTAT,LNGTH62V>
DMPC_NS ISPASMV,<LNGTH63P,PARM63,EZVU_RC,ERRDETAL,LNGTH63V>

Appendix I. DOS Sample Program Code 249

.* ,

DMPC_NS ISPASMV,<LNGTH64P,PARM64, EZVU_RC,USERSENSE_ASC, LNGTH64 V>
DMPC_NS ISPASMV,<LNGTH65P,PARM65,EZVU_RC,SVKEY_ASC,LNGTH65V>
DMPC_NS ISPASMV,<LNGTH66P,PARM66,EZVU_RC,SFKEY_ASC,LNGTH66V>

DMPC_NS ISPASMV,<LNGTH73P,PARM73,EZVU_RC,CORR_ASC_TBL,LNGTH73V>
DMPC_NS ISPASMV,<LNGTH74P,PARM74,EZVU_RC,CORROPT,LNGTH74V>
DMPC_NS ISPASMV,<LNGTH75P,PARM75,EZVU_RC,RECID_ASC,LNGTH75V>
DMPC_NS ISPASMV,<LNGTH76P,PARM76,EZVU_RC,DISPTYPE,LNGTH76V>
DMPC_NS ISPASMV,<LNGTH77P,PARM77,EZVU_RC,ARBFILE,LNGTH77V>
DMPC_NS ISPASMV,<LNGTH78P,PARM78,EZVU_RC,PARSE_SENSE_ASCII,LNGTH78V>

;* Define vars necessary for HDF Panel
.* ,

DMPC_NS ISPASMV,<LNGTH19P,PARM19,EZVU_RC,REQCODE4_ASC,LNGTH19V>
DMPC_NS ISPASMV,<LNGTH21P,PARM21,EZVU_RC,PRIME_RC4,LNGTH21V>
DMPC_NS ISPASMV,<LNGTH22P,PARM22,EZVU_RC,PCFILENM,LNGTH22V>
DMPC_NS ISPASMV,<LNGTH23P,PARM23,EZVU_RC,HOSTFILENM,LNGTH23V>
DMPC_NS ISPASMV,<LNGTH24P,PARM24,EZVU_RC,STARTBYTE_ASC,LNGTH24V>
DMPC_NS ISPASMV,<LNGTH25P,PARM25,EZVU_RC,XPC,LNGTH25V>
DMPC_NS ISPASMV,<LNGTH26P,PARM26,EZVU_RC,BLKZ,LNGTH26V>
DMPC_NS ISPASMV,<LNGTH28P,PARM28,EZVU_RC,NEXTBYTE_ASC,LNGTH28V>
DMPC_NS ISPASMV,<LNGTH49P,PARM49,EZVU_RC,ARB_FOUND4,LNGTH49V>
DMPC_NS ISPASMV,<LNGTH55P,PARM55,EZVU_RC,DELAY4,LNGTH55V>
DMPC_NS ISPASMV,<LNGTH56P,PARM56,EZVU_RC,XFERCOMP_ASC,LNGTH56V>

disp_main_menu:
cmp
jne
jmp

d~nt_exit:

exitflag,l
dont_exit
pgm_exit

;Initialize display variables for new
stuff

;Time to quit, YIN?
;No
;Yes exit program

mov Active_Keys, PARM4D_KEYS
call set_active_keys
DMPC ISPASM,<LNGTH4PD,PARM4D,EZVU_RC> ;Display main menu

cmp
jne
jmp

not_f3_m:
cmp
je
jmp

choice_alert:
cmp
jne
call
jmp

choice_opcomm:
cmp
jne

Zrsp1, F3
not_f3_m
pgm_exit

Zrsp2,cr
choice_alert
unknown_choice

choice,!
choice_opcomm
alertpan
disp_main_menu

choice,2
choice_spcf

250 NetView/PCTM API/CS

;Was F3 the exit key?
;No, check next key
;Yes, end the pgm.

;Was Return the exit key?
;Yes, process selection

;Was it choice I?
;No, check next choice
;Yes, run Alert Panel

;Loop back to main menu

;Was it choice 2?
;No, check next choice

page

call
jmp

choice_spcf:
cmp
jne
call
jmp

choice_hdf:
cmp
jne
call
jmp

opcommpan
disp_main_menu

choice,3
choice_hdf
spcf_men_pan
disp_main_menu

choice,4
unknown_choice
hdfpan
disp_main_menu

unknown_choice:
mov ax,l

.* ,

mov choice,ax
showerr_msg 8

;* RETURN TO DOS
.* ,

pgm_exit:

;Yes, run Op Comm Panel
;Loop back to main menu

;Was it choice 31
;No, check next choice
;Yes, run SPCF menu panel
;Loop back to main menu

;Was it choice 41
;No, must be invalid choice
;Yes run HDF Panel
;Loop back to main menu

;Set default choice to 1

;Turn on error msg
;indicating invalid choice
;Loop back to main menu

DMPC ISPASM,<LNGTH2PD,PARM2D,EZVU_RC> ;Delete menu panel

ret_cd equ o ;errorlevel return code value
ret fn equ 4ch ; I return to dos ' function call

mov

int

ax,ret_fn*256 + ret_cd ;return to dos function call, and
;value to be passed to errorlevel

2lh ; return to dos
;(version 2.00 or later)

apitest endp

PAGE
.** ,
.* * ,
;* Procedure Name: ALERTPAN
.* ,
;* Description : Runs the Alert panel.
.* ,

*
*
*
*

.* , Input : Variables defined for the EZVU II Alert panel NEWALERT *

.* ,

.* ,

.* ,

. * ,

.* ,

Output: Return Codes, Error Classes and Error Types as well
as the turning on of the Alert icon (AL) and error
messages for invalid input •

*
*
*
*
*

.** ,
alertpan proc near

mov ;set active keys

Appendix I. DOS Sample-Program Code 251

call set_active_keys
dmpc ispasm,<lngthlpd,parmld,ezvu_rc> ;display alert panel

cmp Zrspl,F18 ;was fI8 the exit key?
je do_alert_test ;yes, execute the arb

cmp Zrspl,F3 ;was f3 the exit key?
jne not_f3_1
jmp exit_alert_pan ;yes, return to

;main menu
not_f3_1:

jmp alert_test_done ;invalid exit key, redisplay
page

do_alert_test:
call do_alert ;perform the current

;test case
dmpc ispasm,<lngth18pd,parm18d,ezvu_rc>;reposit cursor

alert_test_done:

DMPC ISPASM,<lNGTH8PD,PARM8D,EZVU_RC> ;Redisplay panel
jmp display_alert_panel

ret
alertpan endp

PAGE
.** ,
.* ,
;* Procedure Name: DOAlERT
.* ,
;* Description Performs all the preparation for execution of

a call for the Alert API/CS as well as the call
and the necessary housekeeping following the
call to the API/CS.

.* ,

.* ,

.* ,

.* ,
;* Input: Variables for the EZVU II Alert panel.
.* ,
.* ,
.* ,
.* ,
.* ,

Output: Return Codes, Error Classes and Error Type~ as well
as the turning on of the Alert icon (Al) and error
messages for invalid input.

*
*
*
*
*
*
*
*
*
*
*
*
*
*

.** ,

do_alert proc near
PUSHREGS

mov ax,delayl
call delay

mov ax,8ffffh

mov prime_rcl,ax
mov prime_ecl,ax
mov prime_etl,ax

252 NetView/PCTM APIICS

;Save all regs

;Delay requested amount
;of time.

;RESET All RETURN CODES TO FFFF

mov alert_rcl,ax
mov alert_ecl,ax
mov alert_etl,ax
mov cssa_rcl,ax
mov cssa_ecl,ax
mov cssa_etl,ax
mov host_rcl,ax
mov host_ecl,ax
mov host_etl,ax

mov al,reqcodel_asc
lea si,alert_rc_tbl
call get_reqcode
mov req_codel,ax

cmp ax,0102h
je yes_is_send
jmp not_a_send_request

PAGE

yes_is_send:
lea di,nmvtfile
mov filename_ptr,di
lea di,nmvtbuft"

;CONVERT ASCII CHAR INPUT BY
;USER TO BINARY REQUEST CODE

;Is this a send request?
;Yes, set up NMVT for send
;No, branch around NMVT setup

;Point 01 at the NMVT file name.
;Store addr in parm for READ_NMVT
;Point 01 at buffer into which to
; read the Alert NMVT.

mov
mov

readbuff_ptr,di ;Store addr in parm for READ_NMVT
readbuff_size,nmvtbuff_size ;Store read buffer size parm

call read_nmvt
cmp read_nmvt_stat,0
je alert_nmvt_read_ok
jmp alert_done

alert_nmvt_read_ok:
not_a_send_request:

alert_done:

PAGE

mov
lea

mov
mov

call

ax,ds
dx,arb_idl

ax_reg,ax
dx_reg,dx

Dcjva00

call check_arb
mov arb_foundl,al

jmp alert_done

POPREGS
ret

; for READ_NMVT.
;Read the Alert NMVT from disk
;Was the Read successful ?
;Yes, continue
;No, Branch to subrout exit

;PUT SEGMENT OF ARB IN AX
;PUT OFFSET OF ARB IN OX

;Save AX and DX for examination
;by CHECK_ARB on return

;Call Alert APIjCS

;Ensure that APljCS found ARB
;Put results of CHECK_ARB
;in EZVU display variable
;Branch to subrout exit

;Restore all regs

Appendix I. DOS Sample Program Code 253

.** ,

.* ,
;* Procedure Name: OPCOMMPAN
.* ,
;* Description : Runs the Operator Communications panel.
.* ,
.* , Input : Variables defined for the EZVU II Operator
. * ,
.* ,
;* Output
.* ,
.* ,
. * ,

Communications panel NEWOPCOM .

Return Code, Error Class and Error Type as well
as the turning on or clearing of the Operator
Communications (DP) icon and error messages for
invalid input .

*
*
*
*
*
*
*
*
*
*
*
*

.* * ,

.** ,
opcommpan proc near

mov Active_Keys, PARM5D_KEYS
call set_active_keys

DMPC ISPASM,<LNGTH5PD,PARM5D,EZVU_RC> ;Display Op Comm panel
display_opcomm_panel:

cmp Zrspl,F10 ;Was F10 the exit key?
je do_opcomm_test ;Yes, Execute the ARB

cmp Zrspl,F3 ;Was F3 the exit key?
jne not_f3_2 ;No, check next key
jmp exit_opcomm_pan ;Yes, Return to

;Main Menu
not_f3_2:

jmp opcomm_test_done ;invalid exit key, redisplay

do_opcomm_test:
ca 11 do _ opcomm ; Perform the current

;Test Case
DMPC ISPASM,<LNGTH10PD,PARM10D,EZVU_RC>;Reposit cursor

opcomm_test_done:
DMPC ISPASM,<LNGTH8PD,PARM8D,EZVU_RC> ;Redisplay screen
jmp display_opcomm_panel

ret
opcommpan endp

PAGE
.** ,
.* * ,
.* , Procedure Name: DO_OPCOMM *
.* ,
;* Description
.* ,
.* ,
.* ,
.* ,

*
Performs all the preparation for execution of *
a call to the Operator Communications API/CS *
well as the call and the necessary housekeeping *
following the call to the API/CS. *

*

254 NetView/PCTM APIICS

;* Input
. * ,
.* ,
;* Output
.* ,
.* ,
. * ,
.* ,

Variables from the EZVU II Operator Communications
panel .

Return Code, Error Class and Error Type as well
as the turning on or clearing of the Operator
Communications (DP) icon and error messages for
invalid input .

*
*
*
*
*
*
*
*

.** ,
do_opcomm proc near

PUSHREGS

mov ax,delay2
call delay

mov ax,0ffffh

mov prime_rc2,ax
mov prime_ec2,ax
mov prime_et2,ax

mov al,reqcode2_asc
lea si,opcomm_rc_tbl
call get_reqcode
mov req_code2,ax

mov ax,ds
lea dx,arb_id2

mov ax_reg,ax
mov dx_reg,dx

call Dcjvo00

ca 11 check arb
mov arb_found2,al
jmp opcomm_done

;save all regs

;delay requested amount
;of time.

;Reset all return codes to ffff

;Convert ascii char input by
;User to binary request code

;Put segment of arb in ax
;Put offset of arb in dx

;Save AX and OX for examination
;by CHECK_ARB on return

;Call the Op Comm APIjCS

;Ensure that APIjCS found ARB
;Move result to EZVU display var
;Branch to subrout exit

opcomm_done:
POPREGS
ret

do_opcomm endp
PAGE

;Save all regs

.** ,

.* ,
;* Procedure Name: SPCF_RUN_PAN
.* ,
;* Description Runs the Service Point Command Facility

RUN command panel DCJVCP01 . . * ,
.* ,
;* Input
.* ,
.* ,
;* Output
.* ,
.* ,
. * ,
.* ,

Variables defined for the EZVU II SPCF RUN command
panel DCJVCP01.

Return Code, Error Class and Error Type as well
as the Command and Receive Correlator received from
the host on a receive request as well as error
messages for invalid input .

*
*
*
*
*
*
*
*
*
*
*
*
*
*

Appendix I. DOS Sample Program Code 255

.** ,
SPCF_RUN_PAN PROC NEAR

tot_disp_spcf_run:
rnov Active_Keys, PARMI3D_KEYS ;Set up recognized keys
call set_active_keys
DMPC ISPASM,<LNGTHI3PD,PARMI3D,EZVU_RC> ;Display SPCF panel

display_spcf_panel:
crnp Zrspl,F8
je is_msgbuff_input

jrnp

is_rnsgbuff_input:
call msgbuff_pan
jmp tot_disp_spcf_run

not_msgbuff_input:
crnp Zrspl,F3
jne spcf_run_was_it_f7
jmp exit_spcf_run_pan

spcf_run_was_it_f7:
cmp Zrspl,F7
jne spcf_run_was_it_fI0
call load_sendcorr

;Was F8 the exit key?
;Yes, call MSGBUFF
;panel routine.

;No, Check other keys

;Was F3 the exit key?
;No, check next key
;Yes, Return to
;Main Menu

;Was F7 the exit key?
;No, check next key
;Yes, Run the' correlator
;selection menu.

DMPC
jmp

ISPASM,<LNGTH10PD,PARMI0D,EZVU_RC>;Reposit cursor
tot_disp_spcf_run ;total redisplay panel

spcf_run_was_it_fI0:
cmp Zrspl,Fl0
je do_spcf_run_test

cmp
je

jmp

call

Zrspl,F6
do_second_dos

execpgm

;Was FI0 the exit key?
;Yes, Execute the ARB

;Was F6 the exit key?
;Yes, exit to 2nd DOS

;No, redisplay panel

;Shell out to a
;secondary command
;processor.

DMPC ISPASM,<LNGTH10PD,PARMI0D,EZVU_RC>;Reposit cursor
jrnp tot_disp_spcf_run ;Total redisplay panel

do_spcf_run_test:
cmp byte ptr reqcode3_asc,'S'
jne no_need_to_load_msgbuff

cmp
jne

call
cmp
je

byte ptr msgtype,'B'
no_need_to_load_msgbuff

load_msgbuff
loadstat,0
no_need_to_load_msgbuff

256 NetView/PCTM APIICS

;ls it a send request?
;No, branch around.

;ls it from a buffer?
;No, branch around.

;Load the message buffer
;Was load successful?
;Yes load was successful

jmp ;No, redisplay message input panel

no_need_to_load_msgbuff:

PAGE

call do_spcf_run ;Perform the current
;Test Case

DMPC ISPASM,<LNGTH18PD,PARM18D,EZVU_RC>;Reposit cursor

spcf_run_test_done:
DMPC ISPASM,<LNGTH8PD,PARM8D,EZVU_RC> ;Redisplay panel
jmp display_spcf_panel

ret
spcf_run_pan endp

PAGE
.** ,
.* ,
;* Procedure Name: MSGBUFF_PAN
.* ,
;* Description Runs the Message Buffer Input panel for the

Service Point Command Facility NEWSPMSB .* ,
.* ,
.* ,
.* ,
.* ,
.* ,
. * ,

Input

Output

Variables from the EZVU II Message Buffer Input
panel.

Message(s) inputted by the user as well as
error messages for invalid input •

*
*
*
*
*
*
*
*
*
*
*

.* * ,

.** ,
MSGBUFF_PAN PROC NEAR

.* ,
;* Display the message buffer input panel
.* ,

mov Active_Keys, PARM14D_KEYS
call set_active_keys

DMPC ISPASM,<LNGTH14PD,PARM14D,EZVU_RC>
display_msgbuff_panel:

PAGE

cmp
jne
jmp

do_loadmsg:
jmp

Zrspl,F3
not_f3_3m
do_loadmsg

;Was F3 the exit key?
;No, check next key
;Yes,return to
;SPCFomain panel.

;No, all valid exit
;keys checked so
;Redisplay panel.

Appendix I. DOS Sample Program Code 257

DMPC ISPASM,<LNGTH10PD,PARM10D,EZVU_RC>
DMPC ISPASM,<LNGTH8PD,PARM8D,EZVU_RC>
jmp display_msgbuff_panel

exit_msgbuff_pan:
ret

PAGE

;Reposit cursor
;Redisplay panel

.** ,

.* , *
;* Procedure Name: LOAD MSGBUFF *
.* , *
;* Description Sets up a message buffer in one of the two

formats expected by the SPCF API/CS •
*

. * ,

.* ,
*
*

;* Input Variables from the EZVU II Message Buffer Input *
;* panel and the SPCF Run Command panel and the SPCF *
;* Send Message Unsolicited panel. *
.* ,
;* Output
.* ,
.* ,
.* ,
.* ,
.* ,

*
Message(s) buffer ready to be sent to the SPCF *
API/CS as well as error messages for invalid input. *
On return from this routine the variable LOADSTAT will *
contain zero if the load was successful and will *
contain hex FF if the load failed. *

*
.** ,
load_msgbuff proc near

PUSHREGS

.* ,

mov loadstat,0
cmp convert,·Y·
je load_multi_msg

;Init load status to good
;Is this one message or multi?
;Multi

;* For single messages sent unconverted it is only necessary to point
;* the ARB Message Buffer Pointer at the input field for the Message
;* Buffer Input panel .
. * ,

mov word ptr msgbuff_ptr, offset msgbuffrl
jmp load_msgbuff_exit_good

.* ,
;* For messages to be sent converted, it is necessary to build
;* a separate buffer from the user input buffer. In the user input buffer
;* each message is begun with a 5 character header with a format as follows:
;* Char 1 blank
;* Chars 2 - 4 : 3 ASCII/Numeric chars indicating the length of the message
;* Char 5 : blank
;* The messages must be moved one at a time from the user input buffer
;* to a new buffer where these 5 char headers will be replaced by a
;* one byte binary field .
. * ,

mov ax,ds
mov es,ax
lea si,msgbuffrl

258 NetView/PCTM APIICS

;Set ES = DS as both
;buffers are in the DATA segment
;Put offset of User input

lea di,msgbuffr2

PAGE

mov word ptr msgbuff_ptr, di

mov currmsg_num,0

msg_load_loop:
mov aX,currmsg_num
cmp aX,msgcount
jne load_next_msg
jmp 1 oad_msgbuff_exit_good

load_next_msg:
inc si
ca 11 decasc2bi n

cmp
je

cmp
je

cmp
ja

mov
inc
add

cld
rep movsb

cX,-l
1 oad_msgbuff_exi t_bad

cx,0
1 oad_msgbuff_exit_bad

cx,255
load_msgbuff_exit_bad

[di] , cl
di
si,4

inc currmsg_num
jmp msg_load_loop

load_msgbuff_exit_bad:
mov loadstat,0ffh

POPREGS
ret

load_msgbuff endp

PAGE

;message buffer in SI
;Put offset of build
;buffer in DI

;Point message buffer pointer
;in ARB at the build buffer
;Init current message number to zero

;ARE WE THRU, YIN?
;NO, DO THE NEXT MSG
;YES ,EXIT RTN

;BUMP PAST LEADING BLANK
;CONVERT LENGTH CHARS
;TO BINARY
;CONVERTED OK, YIN?
;NO, EXIT RTN

;Is msg length = 0?
;Yes, exit rtn

;Is msg length> 255?
;Yes, exit rtn

;YES, LOAD MSG
;BUMP PAST LENGTH BYTE
;BUMP PAST LENGTH CHARS
;AND TRAILING BLANK

;ENABLE AUTO-INCREMENT
;MOVE THE MESSAGE
;INC CURRENT MSG NUM
;Process next message

;Indicate unsuccessful
;conversion.

;Restore all regs

.** ,

.* ,
;* Procedure Name: DO_SPCF_RUN
.* ,
;* Description Performs all the preparation for execution of

a call to the Service Point Command Facility
API/CS as well as the call and the necessary
housekeeping following the call to the API/CS.

.* ,

.* ,

.* ,

.* ,
;* Input
.* ,

Variables from the EZVU II SPCF Run Command panel.

*

*
*
*
*
*
*
*
*
*

Appendix I. DOS Sample Program Code 259

;* Output Return Code, Error Cl ass and Error Type as well *
.* ,
.* ,
. * ,

as the Command and Receive Correlator received from
the host on a receive request as well as error
messages for invalid input •

*
*
*

.* * ,

.** , ,

do_spcf_run proc near
PUSHREGS

PAGE

.* ,

mov
call

mov

mov
mov
mov

mov

mov
lea
call
mov

cmp
je
jmp

ax,delay3
delay

aX,Offffh

prime_rc3,ax
prime_ec3,ax
prime_et3,ax

cmdlgth,O

al,reqcode3_asc
si ,spcf_rc_tbl
get_reqcode
req_code3,ax

reqcode3_asc,'S'
send_req
not_send_req

;Save all regs

;Delay requested amount
;of time.

;RESET ALL RETURN CODES TO FFFF

;Zero command length for
;display purposes.

;CONVERT ASCII CHAR INPUT BY
;USER TO BINARY REQUEST CODE

;Is it a send request?

;* Convert the Send Correlator input by the user from the 20 Hex/ASCII
;* digits input to 10 Hex/Binary digits in the appropriate slot in
;* the ARB .
. * ,

call cnv_sendcorr
cmp sendcorr_stat,O
je sendcorr_cnv_good_run
jmp spcf_run_done_exit

sendcorr_cnv_good_run:
not_send_req:

mov ax,ds
lea dx,arb_id3

mov ax_reg,ax
mov dx_reg,dx

call DcjvcOe

call check_arb
mov arb_found3,al
jmp spcf_done_good

spcf_done_good:
FILL_CHAR command,' ',256

260 NetView/PCTM APIICS

;Do the conversion.
;Was conversion successful?
;Yes
;No, exit routine

;put segment of arb in ax
;put offset of arb in dx

;Save AX and DX for examination
;by CHECK_ARB on return

;CALL THE SPCF APIjCS

;Ensure that API/CS found ARB
;Move result to EZVU display var
;Process results of call

;clear the command display buffer

;clear recvcorr display buffer
FILL_CHAR recvcorr_hexasc,' ',asc_corr_length

cmp reqcode3_asc,'S'
je del_send_run

cmp prime_rc3,O
je spcf_run_goodrc
jmp spcf_run_done_exit

del_send_run:
call del_sendcorr

spcf_run_goodrc:
cmp reqcode3_asc,'R'
je load_command

cmp reqcode3_asc,'C '
je del_all_corr_run

del_all_corr_run:
call clear_corr_tbl
jmp spcf_run_done_exit

PAGE

load_command:
xor cx,cx
mov cl,cmdlgth
mov ax,ds
mov es,ax
lea di,command
lds si,command_ptr
cld

rep movsb
mov ax,es
mov ds,ax

call cnv_recvcorr

call save_recvcorr

spcf_run_done_exit:
POPREGS
ret

;if request was send
;command then

;Was call successful ?
;Yes
;No, exit subrout

;Oelete send correlator from
;table of outstanding correlators.
;Exit subrout

;IF REQUEST WAS RECEIVE
;COMMANO THEN

;IF REQUEST WAS CLOSE
;COMMANO THEN

;Good close
;Clear correlator table
;and zero count.

;load the command display
;buffer from the real
;command buffer pointed at
;by command_ptr

;Restore OS

;Convert the Receive correlator
;to Hex/ASCII form so that it
;can be displayed.

;Save Receive correlator in
;outstanding correlator table.

;Restore all regs

Appendix I. DOS Sample Program Code 261

PAGE
.** ,
.* , *
;* Procedure Name: SPCF_GNP_PAN *
.* , *
;* Description Runs the Service Point Command Facility

Get No Parse panel OCJVCP02.
*

.* ,

.* ,
;* Input
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,

Output

Variables defined for the EZVU II SPCF GNP
panel OCJVCP02.

Return Code, Error Class and Error Type and Receive
Correlator as well as the data parsed from the NMVT
received. The parsed data includes the target
application name, the Major vector key and length,
the command received and command length, the list
of link segment names and their lengths and the
test count. Which of these data items is parsed
depends on the key of the major vector received.

*
*
*
*
*
*
*
*
*
*
*
*
*
*

.** ,

tot_disp_gnp:
mov Active_Keys, PARM200_KEYS
call set_active_keys
OMPC ISPASM,<lNGTH20PO,PARM200,EZVU_RC> ;Oisplay SPCF GNP panel

display_spgnp_panel:
cmp Zrspl, F4
jne not_f4_spgnp
jmp parse_disp_spcf_gnp

not_f4_spgnp:
cmp Zrspl,F9
jne not_f9_spgnp
jmp hex_disp_spcf_9np

not_f9_spgnp:
cmp Zrspl,Fl0
jne not_fI0_spgnp
jmp do_spcf_gnp_test

not_fI0_spgnp:
cmp Zrspl,F3
jne not_f3_spgnp
jmp exit_spcf_gnp_pan

not_f3_spgnp:
cmp Zrspl,F6
je do_2nd_dos_gnp
jmp spgnp_test_done

do_2nd_dos_gnp:
call execpgm

;Was F4 the exit key?
;No, check next key
;Yes, parse & display the NMVT

;Was F9 the exit key?
;No, check next key
;Yes, Display the NMVT in hex

;Was FI0 the exit key?
;No, check next key
;Yes, Execute the ARB

;Was F3 the exit key?
;No, check next key
;Yes, Return to
;SPCF Menu

;Was F6 the exit key?
;Yes
;No, redisplay
;the panel.
;She 11 out to a
;secondary command
;processor.

OMPC ISPASM,<lNGTH10PO,PARM100,EZVU_RC>;Reposit cursor

262 NetView/PCTM APIICS

jmp ;Total redisplay panel

do_spcf_gnp_test:
call do_spcf_gnp ;Perform the current

;Test Case
DMPC ISPASM,<LNGTHIOPD,PARMIOD,EZVU_RC>;Reposit Cursor

spgnp_test_done:
DMPC
jmp

ISPASM,<LNGTH8PD,PARM8D,EZVU_RC> ;Redisplay panel
display_spgnp_panel

hex_disp_spcf_gnp:
cmp byte ptr nmvtname,' •
jne cont_hex_disp
SHOWERR_MSG 300
jmp spgnp_test_done

cont_hex_disp:
MOVE_STRING NMVTNAME,PJFILENC,12
mov pj_translate_fg,ebcdic_fg
call spcf_display_unformatted
jmp tot_disp_gnp

parse_disp_spcf_gnp:
cmp byte ptr nmvtname,' •
jne cont_parse_displ
SHOWERR_MSG 300
jmp spgnp_test_done

cont_parse_displ:
MOVE_STRING NMVTname,NMVTfile,12
MOVE_STRING ARB_temp,ARBfile,12
call do_parse

cmp
je
jmp

do_parse_rc,O
cont_parse_disp2
spgnp_test_done

cont_parse_disp2:
MOVE_STRING ARB_temp,PJFILENC,12
call spcf_display_formatted
jmp tot_disp_gnp

exit_spcf_gnp_pan:
ret

spcf_gnp_pan endp

PAGE

;Is file name blank?
;no, continue
;yes, show error msg and

redisplay panel

;Set up input file name for display
;indicate EBCDIC dump
;display the hex dump
;Total redisplay panel

;Is file name blank?
;no, continue
;yes, show error msg and

redisplay panel

;set up input file for do_parse
;set up output file for do_parse
;parse the NMVT to a file

;Was file parsed successfully?
;yes, continue
;no, redisplay panel

;set up input file for display
;display the formatted ARB
;Total redisplay panel

.** ,

.* ,
;* Procedure Name: DO_SPCF_GNP
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,

Description Performs all the preparation for execution of
a call to the Service Point Command Facility
API/CS as well as the call and the necessary
housekeeping following the call to the API/CS.

;* Input Variables from the EZVU II SPCF Get No Parse panel.
.* ,

*

*
*
*
*
*
*
*
*
*

Appendix I. DOS Sample Program Code 263

;* Output
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
. * ,
.* ,

Return Code, Error Class and Error Type and Receive
Correlator as well as the data parsed from the NMVT
received. The parsed data includes the target
application name, the Major vector key and length,
the command recei ved and command '1 ength, the 1 i st
of link segment names and their lengths and the
test count. Which of these data items is parsed
depends on the key of the major vector received .

*
*
*
*
*
*
*
*
*

.** ,
do_spGf_gnp proc near

PUSHREGS

PAGE

mov
call

mov

mov
mov
mov

mov
lea
call
mov

mov
lea

mov
mov
call

ax,delay3
delay

ax,0ffffh

prime_rc3,ax
prime_ec3,ax
prime_et3,ax

al,reqcode3_asc
si,spcf_rc_tbl
get_reqcode
req_code3,ax

ax,ds
dx,arb_id3

ax_reg, ax
dx_reg,dx
Dcjvc00

call check_arb
mov arb_found3,al

;Save all regs

;Delay requested amount
;of time.

;reset ~ll return codes to ffff

;convert ascii char input by
;user to binary request code

;put segment of arb in ax
;put offset of arb in dx

;save ax and dx for examination
;by check_arb on return
;call the spcf api/cs

;ensure that api/cs found arb
;move result to ezvu display var

mov cmdlgth,0 ;clear command length field

gnp_goodrc:

;clear recvcorr display buffer
FILL_CHAR recvcorr_hexasc,' ',asc_corr_length

mov word ptr recid_asc,'

cmp prime_rc3,0
je gnp_goodrc
jmp spcf_gnp_done_exit

cmp reqcode3_asc,'G '
je got_no_parse

cmp reqcode3_asc,'C '
je del_all_corr_gnp

;clear record id

;was request successful ?
;yes
;no, exit subrout

;if request was get no parse
;command then

;if request was close
;command then

;Exit subrout

;Good close

264 NetViewlPC™ API/CS

call clear_corr_tbl ;Clear correlator table
jmp spcf_gnp_done_exit ;and zero count.

got_no_parse:
call cnv recvcorr ;Convert the Receive correlator

;to Hex/ASCII form so that it
;can be displayed.

call save_recvcorr ;Save Receive correlator in table

mov al,recid
lea di,recid_asc ;Convert Record ID from ARB to
call hexb2asc ; ASCII for display

mov filename_ptr, offset NMVTname
les di, command_ptr ;Get NMVT address in ES:DI
mov word ptr Writebuff_Ptr_Tbl,di ;Save the offset
mov word ptr Writebuff_Ptr_Tbl+2,es ;And the segment

mov ah,byte ptr es:[di]
mov al,byte ptr es:[di+1]
mov word ptr Writebuff_Ptr_Tbl+4,ax

lea bx,recvcorr
mov word ptr Wrftebuff_Ptr_Tbl+6,bx
mov word ptr Writebuff_Ptr_Tbl+8,ds
mov word ptr Writebuff_Ptr_Tbl+1G,1G

mov word ptr Writebuff_Ptr_Tbl+16,G

;Get NMVT length
;from 1st 2 bytes of NMVT.
;Set up NMVT length

JOF 6-2-87
Save offset of correlator
Save segment of correlator
Save length of correlator

Mark end of
Writebuff_Ptr_Tbl

;All OK, so save NMVT

spcf_gnp_done_exit:

PAGE

POPREGS
ret

;Restore all regs

.** ,

.* ,
;* Procedure Name: SPCF_PUF_PAN
.* ,
;* Description
. * ,
.* ,

Runs the Service Point Command Facility
Put Unformatted panel DCJVCPG3 .

;* Input Variables defined for the EZVU II SPCF PUF
;* panel DCJVCPG2.
.* ,
;* Output: Return Code, Error Class and Error Type.
.* ,

*
*
*
*
*
*
*
*
*
*
*

.** ,

tot_disp_puf:
mov Active_Keys, PARM21D_KEYS
call set_active_keys

Appendix I. DOS Sample Program Code 265

DMPC ISPASM,<LNGTH21PD,PARM21D,EZVU_RC> ;Display SPCF PUF panel
display_sppuf_panel:

cmp
jne
jmp

not_flO_sppuf:
cmp
jne
jmp

page

not_f3_sppuf:
cmp
jne

call

Zrspl,FlO
not_flO_sppuf
do_spcf_puf_test

Zrspl,F3
not_f3_sppuf
exit_spcf_puf_pan

Zrspl,F6
not_f6_sppuf

execpgm

;Was FlO the exit key?
;No, check next key
;Yes, Execute the ARB

;Was F3 the exit key?
;No, check next key
;Yes, Return to
;SPCF Menu

;Was F6 the exit key?
;No, check next key
;Yes, Shell out to a
;secondary command
;processor.

DMPC ISPASM,<LNGTHIOPD,PARMIOD,EZVU_RC>;Reposit cursor
jmp tot_disp_puf ;Total redisplay panel

not_f6_sppuf:
cmp
je
jmp

Zrspl,F7
corr_menu_puf
sppuf_test_done

;Was F7 the exit key?
;Yes

corr_menu_puf:
call load_sendcorr

;No, redisplay
;the panel.

;Run the correlator
; selection menu.

DMPC ISPASM,<LNGTHIOPD,PARMIOD,EZVU_RC>;
jmp tot_disp_puf ;Total redisplay panel

do_spcf_puf_test:
call do_spcf_puf ;Perform the current

;Test Case
dmpc ispasm,<lngthlOpd,parmlOd,ezvu_rc>;Reposit Cursor

sppuf_test_done:
dmpc
jmp

ret
spcf_puf_pan endp

PAGE

ispasm,<lngth8pd,parm8d,ezvu_rc> ;Redisplay panel
display_sppuf_panel

.** ,

.* ,
;* Procedure Name: DO_SPCF_PUF
.* ,
;* Description
.* ,
.* ,
. * ,
.* ,

Performs all the preparation for execution of
a call to the Service Point Command Facility
API/CS as well as the call and the necessary
housekeeping following the call to the APIjCS •

*
*
*
*
*
*
*
*

;* Input: Variables from the EZVU II SPCF Put Unformatted panel. *

266 NetView/PCTM APIICS

.* , *
;* Output : Return Code, Error Class and Error Type. *
.* * ,
.** ,
do_spcf_puf proc near

PUSH REGS

PAGE

YES_IS_PUF:
.* ,

mov
call

mov

mov
mov
mov

mov
lea
call
mov

ax,delay3
delay

aX,0ffffh

prime_rc3,ax
prime_ec3,ax
prime_et3,ax

al,reqcode3_asc
si,spcf_rc_tbl
get_reqcode
req_code3,ax

cmp reqcode3_asc,'P'
je yes_ i s_puf
jmp not_a_puf_request

; save all regs

;delay requested amount
;of time.

;reset all return codes to ffff

;convert ascii char input by
;user to binary request code

;Is this a Put unformatted request?
;Yes, set up NMVT for Put
;No, branch around NMVT setup

;* Convert the Send Correlator input by the user from the 20 Hex/ASCII
;* digits input to 10 Hex/Binary digits in the appropriate slot in
;* the ARB •
. * ,

call cnv_sendcorr
cmp sendcorr_stat,0
je sendcorr_cnv_good_puf
jmp spcf_puf_done

;00 the conversion.
;Was conversion successful?
;Yes
;No, exit routine

sendcorr_cnv_good_puf:
lea di,nmvtname
mov filename_ptr,di
lea di,putreply

mov word ptr putrply_ptr,di
mov word ptr putrply_ptr+2,ds

;Point 01 at the NMVT file name.
;Store addr
;Point 01 at buffer into which to

read the SPCF NMVT.

mov readbuff_ptr,di ;Store addr

;Store read buffer size parm for REAO_NMVT.
mov readbuff_size,putreply_buff_s;ze

call read_nmvt
mov ax,files;ze

sub ax,10

mov putrply_len,ax

;Read the SPCF NMVT from disk
;Get length of NMVT which
;was returned by REAO_NMVT

;Subtract length of correlator
;which was tacked on to the end
;of the file.

;Store the NMVT length in

Appendix I. DOS Sample Program Code 267

cmp read_nmvt_stat,0
je spcf_puf_nmvt_read_ok
jmp spcf_puf_done

spcf~uf_nmvt_read_ok:

not_a_puf_request:

mov ax,ds
lea dx,arb_id3

mov ax_reg,ax
mov dx_reg,dx

call Dcjvc00

call check_arb
mov arb_found3,al

cmp
jne
call

jmp

spcf_puf_not_put:
cmp
jne

cmp
jne
call

spcf_puf_done:

PAGE

POPREGS
ret

reqcode3_asc,'P'
spcf_puf_not_put
del_sendcorr

prime_rc3,0
spcf_puf_done

reqcode3_asc,'C'
spcf_puf_done
clear_corr_tbl

;the PUTRPLY_LEN of ARB

;Was the Read successful ?
;Yes, continue
;No, Branch to subrout exit

;PUT SEGMENT OF ARB IN AX
;PUT OFFSET OF ARB IN OX

;Save AX and OX for examination
;by CHECK_ARB on return

;Call SPCF API/CS

;Ensure that API/CS found ARB
;Put results of CHECK_ARB
;in EZVU display variable

;Is this a Put unformatted request?

;Delete send correlator from
;table of outstanding correlators.
;Branch to subrout exit

;Was request successful ?
;No

;Is this a Close request?
;No, exit subrout
;Yes clear the correlator table
;and count.

;Restore all regs

.**~************************* ,

.* ,
;* Procedure Name: SPCF_SUN_PAN
.* ,
;* Description : Runs the SPCF Send Message Unsolicited panel.
.* ,
;* Input: Variables defined for the EZVU II NEWSPSUN panel
.*
" ;* Output: Return Code, Error Class and Error Type.
.* ,

*
*
*
*
*
*
*
*
*

.** ,

tot_disp_spcf_sun:
mov Active_Keys, PARM22D_KEYS
call set_active_keys

268 NetView/PCTM APIICS

DMPC ISPASM,<LNGTH22PD,PARM22D,EZVU_RC> ;Display SPCF panel
display_spcf_sun_panel:

cmp
je

jmp

Zrspl,F8
is_msgbuff_input_sun

is_msgbuff_input_sun:
call msgbuff_pan
jmp tot_disp_spcf_sun

not_msgbuff_input_sun:
cmp Zrspl,F3
jne spcf_sun_was_it_f10
jmp exit_spcf_sun_pan

spcf_sun_was_it_f10:
cmp Zrspl,F10
je do_spcf_sun_test

cmp
je

jmp

call

Zrspl,F6
do_second_dos_sun

execpgm

;Was F8 the exit key?
;Yes, call MSGBUFF
;panel routine.

;No, Check other keys

;display main
;SPCF panel.

;Was F3 the exit key?
;No, check next key
;Yes, Return to
;Main Menu

;Was FlO the exit key?
;Yes, Execute the ARB

;Was F6 the exit key?
;Yes, exit to 2nd DOS

;No, redisplay panel

;Shell out to a
;secondary command
;processor.

DMPC ISPASM,<LNGTHI0PD,PARMI0D,EZVU_RC>;Reposit cursor
jmp tot_disp_spcf_sun ;total redisplay panel

do_spcf_sun_test:
cmp byte ptr reqcode3_asc,'M'
jne no_need_to_load_msgbuff_sun

mov
cmp
jne

call
cmp
je
jmp

convert, I Y I
byte ptr msgtype,'B'
no_need_to_load_msgbuff_sun

load_msgbuff
loadstat,0
no_need_to_load_msgbuff_sun
is_msgbuff_input_sun

;Is it a send msg request?
;No, branch around.

;Is it from a buffer?
;No, branch around.

;Load the message buffer
;Was load successful?
;Yes load was successful

;No, redisplay message input panel

no_need_to_load_msgbuff_sun:

PAGE

call do_spcf_sun ;Perform the current
;Test Case

DMPC ISPASM,<LNGTHI0PD,PARMI0D,EZVU_RC>;Reposit cursor

spcf_sun_test_done:
DMPC ISPASM,<LNGTH8PD,PARM8D,EZVU_RC> ;Redisplay panel
jmp display_spcf_sun_panel

Appendix I. DOS Sample Program Code 269

ret
spcf_sun_pan endp

PAGE
.** ,
.* * ,
.* ,
.* ,

*
*

;* Description Performs all the preparation for execution of
a call to the Service Point Command Facility
API/CS as well as the call and the necessary
housekeeping following the call to the API/CS.

*
.* ,
.* ,
.* ,
.* ,

*
*
*
*

.* ,

.* ,
Input Variables from the EZVU II Service Point Command

for the panel NEWSPSUN.
*
*

.* * ,

. * , Output: Return Code, Error Class and Error Type . *

.* * ,

.** ,
do_spcf_sun proc near

PUSH REGS

PAGE

mov
call

mov

mov
mov
mov

mov
lea
call
mov

mov
lea

mov
mov
call

ax,delay3
delay

ax,8ffffh

prime_rc3,ax
prime_ec3,ax
prime_et3,ax

al,reqcode3_asc
si ,spcf_rc_tbl
get_reqcode
req_code3,ax

ax,ds
dx,arb_id3

ax_reg, ax
dx_reg,dx
Dcjvc88

ca 11 check_arb
mov arb_found3,al

cmp prime_rc3,8
jne do_spcf_sun_exit
cmp reqcode3_asc,'C'
jne do_spcf_sun_exit
call clear_corr_tbl

do_spcf_sun_exit:
POPREGS
ret

270 NetView/PCTM APIICS

;Save all regs

;Delay requested amount
;of time.

;Reset all return codes to ffff

;Convert ascii char input by
;User to binary request code

;Put segment of arb in ax
;Put offset of arb in dx

;Save AX and OX for examination
;by CHECK_ARB on return
;CALL THE SPCF API/CS

;Ensure that API/CS found ARB
;Move result to EZVU display var

;If it was a successful close
;request then clear the
;correlator table and
;zero the outstanding correlator
;count.

;Restore all regs

PAGE
.** ,
.* ,
;* Procedure Name: SPCF_SER_PAN
.* ,

*
*
*

;* Description : Runs the SPCF Send Error panel. *
.* ,
.* ,
.* ,

*
Input : Variables defined for the EZVU II NEWSPSER panel *

*
;* Output: Return Code, Error Class and Error Type. *
.* * ,
.** ,

tot_disp_ser:
mov Active_Keys, PARM23D_KEYS
call set_active_keys

DMPC ISPASM,<LNGTH23PD,PARM23D,EZVU_RC> ;Display SPCF SER panel

display_spser_panel:
cmp Zrspl,Fl0
jne not_fI0_spser
jmp do_spcf_ser_test

not_fI0_spser:
cmp
jne
jmp

PAGE

not_f3_spser:
cmp
jne

call

Zrspl,F3
not_f3_spser
exit_spcf_ser_pan

Zrspl,F6
not_f6_spser

execpgm

;Was FI0 the exit key?
;No, check next key
;Yes, Execute the ARB

;Was F3 the exit key?
;No, check next key
;Yes, Return to
;SPCF Menu

;Was F6 the exit key?
;No, check next key
;Yes, Shell out to a
;secondary command
;processor.

DMPC ISPASM,<LNGTHI0PD,PARMI0D,EZVU_RC>;Reposit cursor
jmp tot_disp_ser ;Total redisplay panel

not_f6_spser:
cmp
je
jmp

corr_menu_ser:

Zrspl,F7
corr_menu_ser
spser_test_done

;Was F7 the exit key?
;Yes
;No, redisplay
;the panel.

call load sendcorr ;Yes, Run the correlator
;selection menu.

DMPC ISPASM,<LNGTHIOPD,PARMI0D,EZVU_RC>;Reposit cursor
jmp tot_disp_ser ;Total redisplay panel

do_spcf_ser_test:
call do_spcf_ser ;Perform the current

;Test Case

Appendix I. DOS Sample Program Code 271

DMPC ISPASM,<LNGTH10PD,PARM10D,EZVU_RC>;Reposit Cursor

spser_test_done:
DMPC
jmp

ret
spcf_ser_pan endp

PAGE

ISPASM,<LNGTH8PD,PARM8D,EZVU_RC> ;Redisplay panel
display_spser_panel

.** ,

.* ,
;* Procedure Name: DO_SPCF_SER
.* ,
;* Description
.* ,
.* ,
.* ,
.* ,

Performs all the preparation for execution of
a call to the Service Point Command Facility
API/CS as well as the call and the necessary
housekeeping following the call to the API/CS.

*
*
*
*
*
*
*
*

;* Input Variables from the EZVU II Service Point Command *
.* ,
.* ,

Facility SER Panel. *
*

;* Output: Return Code, Error Class and Error Type. *
.* * ,
.** ,
do_spcf_ser proc near

PUSHREGS

PAGE

mov
call

mov

mov
mov
mov

mov
lea
call
mov

cmp
je
jmp

SER_REQUEST:
.* ,

ax,delay3
delay

ax,0ffffh

prime_rc3,ax
prime_ec3,ax
prime_et3,ax

al,reqcode3_asc
si,spcf_rc_tbl
get_reqcode
req_code3,ax

reqcode3_asc,'E'
ser_request
not_ser_request

;Save all regs

;Delay requested amount
;of time.

;reset all return codes to ffff

;Convert ascii char input by
;User to binary request code

;Is it a Send Error request?
;Yes
;No, branch around conversions

;* Convert the Send Correlator input by the user from the 20 Hex/ASCII
;* digits input to 10 Hex/Binary digits in the appropriate slot in
;* the ARB .
. * ,

call cnv sendcorr
cmp sendcorr_stat,O

272 NetView/PCTM API/CS

;00 the conversion.
;Was conversion successful?

je sendcorr_cnv_90od_ser
jmp spcf_ser_done_exit

sendcorr_cnv_90od_ser:
mov cx,2
lea di,svkey_asc
call asc2hex

cmp cX,-l
jne svkey~converted_90od

showerr_ms9 27
jmp spcf_ser_done_exit

svkey_converted_90od :
mov svkey, a 1

mov cx,2
lea di,sfkey_asc
call asc2hex

cmp cX,-l
jne sfkey_converted_90od

showerr_ms9 28
jmp spcf_ser_done_exit

sfkey_converted_90od :
mov sfkey,al

mov cx,4

lea di,usersense_asc

call asc2hex
cmp cX,-l
jne user_cnv_90od1

showerr_ms9 29
jmp spcf_ser_done_exit

user_cnv_90od1 :

;Yes
;No, exit routine

;Put length of SVKEY_ASC in CX
;Point 01 at SVKEY_ASC
;Convert ASCII to binary
;Value is returned in AX.
;Was conversion successful ?
;Yes

;Show error msg nonhex chars in fld
;No, exit routine

;Store binary subvector key in ARB

;Put length of SFKEY_ASC in CX
;Point 01 at SFKEY_ASC
;Convert ASCII to binary
;Value is returned in AX.
;Was conversion successful ?
;Yes

;Show error msg nonhex chars in fld
;No, exit routine

;Store binary subfield key in ARB

;Put len9th of first 4 bytes of
;USERSENSE_ASC in CX.
;Point 01 at first 4 bytes of
;USERSENSE_ASC.
;Convert ASCII to BINARY
;Was conversion successful ?
;Yes

;Show error msg nonhex chars in fld
;No, exit routine

mov byte ptr usersense ,ah ;Store binary user sense data in ARB
mov byte ptr usersense+l,al

mov cx,4

lea di,usersense_asc+4

call asc2hex

cmp cX,-l
jne user_cnv_90od2

showerr_ms9 29
jmp spcf_ser_done_exit

;Put len9th of second 4 bytes of
;USERSENSE_ASC in CX.
;Point 01 at second 4 bytes of
;USERSENSE_ASC.
;Convert ASCII to BINARY

;Was conversion successful ?
;Yes

;Show error msg nonhex chars in fld
;No, exit routine

Appendix I. DOS Sample Program Code 273

user_cnv_good2:
mov byte ptr usersense+2,ah ;Store binary user sense data in ARB
mov byte ptr usersense+3,al

not_ser_request:
mov
lea

ax,ds
dx,arb_id3

mov
mov
call

call
mov

cmp
je

cmp
je
jmp

ax_reg, ax
dx_reg,dx
Dcjvc00

check_arb
arb_found3,al

reqcode3_asc,'E'
del_send_ser

prime_rc3,0
spcf_ser_goodrc
spcf_ser_done_exit

spcf_ser_goodrc:
cmp reqcode3_asc,'C '
jne spcf_ser_done_exit
call clear_corr_tbl
jmp spcf_ser_done_exit

del_send_ser:
call del sendcorr

spcf_ser_done_exit:

PAGE

POPREGS
ret

;put segment of arb in ax
;put offset of arb in dx

;Save AX and DX for examination
;by CHECK_ARB on return
;CALL THE SPCF API/CS

;Ensure that API/CS found ARB
;Move result to EZVU display var

;Is it a Send Error request?
;Yes

;Was call successful?
;Yes
;No, exit subrout

;Is it a Close request?
;No
;Yes, clear the correlator table.

;Delete send correlator from
;table of outstanding correlators.

;Restore all regs

.** ,

.* ,

.* ,

.* ,
Procedure Name: HDFPAN

;* Description : Runs the Host Data Facility panel.
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,

Input : Variables defined below from the EZVU II HDF panel

Output: Return Code, Error Class and Error Type as well
as the Offset into the file and the completion byte
on a status request as well as error messages for
invalid input.

*
*
*
*
*
*
*
*
*
*
*
*

.** ,
hdfpan proc near

mov Active_Keys, PARMIID_KEYS
call set_active_keys

274 NetView/PCTM API/CS

DMPC ISPASM,<LNGTHIIPD,PARMIID,EZVU_RC>
display_hdf_panel:

cmp
je

cmp
jne
jmp

PAGE

not_f3_4:
cmp
jne

jmp

do_hdf_test:

Zrspl,FIO
do_hdf_test

Zrspl,F3
not_f3_4
exit_hdf_pan

Zrsp2,F3
hdf_test_done

call do_hdf

;Was FlO the exit key?
;Yes, Execute the ARB

;Was F3 the exit key?

;Yes, Return to
;Main Menu

;Was F3 the exit key?
;No, redisplay
;the panel.
;Yes, Return to
;Main Menu

;Perform the current
;Test Case

;Restore cursor to
;field that was left

DMPC ISPASM,<LNGTHIOPD,PARMIOD,EZVU_RC>
hdf_test_done:

;Re-display HDF panel
DMPC ISPASM,<LNGTHBPD, PARMBD, EZVU_RC>
jmp display_hdf_panel

ret
hdfpan endp

PAGE
.** ,
.* ,
;* Procedure Name: DO_HDF
.* ,
.* ,
.* ,
.* ,
. * ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,

Description Performs all the preparation for execution of
a call to the Host Data Facility API/CS as well
as the call and the necessary housekeeping
following the call to the API/CS .

Input

Output

Variables from the EZVU II Host Data Facility
panel defined in the procedure HDFPAN.

Return Code, Error Class and Error Type as well
as the Offset into the file and the completion byte
on a status request as well as error messages for
invalid input.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.* * ,

.** ,
do_hdf proc near

PUSHREGS ;Save all regs

Appendix I. DOS Sample Program Code 275

mov ax,delay4
call delay

mov aX,0ffffh

mov prime_rc4,ax
mov prime_ec4,ax
mov prime_et4,ax

mov al,reqcode4_asc
lea si,hdf_rc_tbl
call get_reqcode
mov req_code4,ax

.* ,
;* CONVERT START BYTE
.* ,

lea di,startbyte_asc
mov cx,4

call asc2hex

jcxz good_startbyte_l
jmp bad_startbyte

PAGE

good_startbyte_l:

;Oelay requested amount of
;time

;Reset all return codes to ffff

;Convert ascii char input by
;User to binary request code

;Convert ascii string input by
;User to binary start byte

;Cx = 0 indicates good start byte

mov word ptr startbyte+2,ax

.* ,

lea
mov

di,startbyte_asc+4
cx,4

call asc2hex

jcxz
jmp

good_startbyte_2
bad_startbyte

mov word ptr startbyte,ax

;* CALC LENGTH OF PC FILE NAME
.* ,

xor cx,cx
lea di ,pcfilenm

pcfname_loop:

.* ,

inc di
inc cl
mov al,[di]
cmp al,20h
jne pcfname~loop
mov pcflgth,cl

;* calc length of host file name
.* ,

xor cx,cx
lea di,hostfilenm

276 NetView/PCTM API/CS

;Convert ascii string input by
;User to binary start byte

;CX = 0 indicates good START BYTE

;Point 01 at the
;PC file name.

;Search for blank to
;determine length of file
;name.

;Store length in ARB

;Set CX = 0
;Point 01 at the

hostfname_loop:
inc di
inc cl
mov al,[di]
cmp al,20h
jne hostfname_loop
mov hflgth,cl

.* ,
;* point ax:dx at arb for hdf
.* ,

mov ax,ds
lea dx,arb_id4

PAGE

mov ax_reg ,ax
mov dx_reg,dx
call Dcjvd00

call check_arb
mov arb_found4,al
jmp hdf_done

bad_startbyte:

;HOST file name.

;Search for blank to
;determine length of file
;name.

;Store length in ARB

;Put segment of arb in ax
;Put offset of arb in dx

;Save AX and DX for examination
;by CHECK_ARB on return
;Call HDF API/CS

;Ensure that API/CS found ARB
;Move result to EZVU display var
;Process results and exit

DMPC ISPASM,<LNGTH12PD,PARM12D,EZVU_RC> ;Start byte contains

hdf_done:
.* ,

jmp hdf_done ;non-hex chars

;* Conve~t NEXTBYTE to HEX/ASCII string for display
.* ,

.* ,

mov aX,word ptr nextbyte
lea di,nextbyte_asc+4
call hex2asc

mov aX,word ptr nextbyte+2
lea di,nextbyte_asc
call hex2asc

;Convert first word

;Convert second word

;* Convert XFERCOMP to HEX/ASCII string for display
.* ,

PAGE

mov ah,xfercomp
lea di,xfercomp_asc
call hex2asc

POPREGS
ret

;Restore all regs

Appendix I. DOS Sample Program Code 277

.** ,

.* ,
;* Procedure Name: SPCF_MEN_PAN
.* ,
;* Description
.* ,
.* ,
.* ,

Displays a menu of the five different SPCF
functions available through the SPCF API/CS
interface.

.* , Input: The EZVU II variable SPCFOPT from the DCJVCPOO panel.

.* ,

*
*
*
*
*
*
*
*
*

;* Output: Loads the panel necessary to execute the selected *
. * ,
.* ,

function • *
*

.** ,
spcf_men_pan proc near

PUSHREGS

disp_spcf_menu:
mov Active_Keys, PARM19D_KEYS
call Set_Active_Keys
DMPC ISPASM,<LNGTH19PD,PARM19D,EZVU_RC> ;Display SPCF menu

cmp
jne
jmp

not_f3_spmen:
cmp
jne

call

Zrsp1,F3
not_f3_spmen
spcf_men_exit

Zrsp1,F6
not_f6_spmen

execpgm

;Was F3 the exit key?
;No, check next key
;Yes, return to main menu

;Was F6 the exit key?
;No, check next key
;Shell out to a
;secondary command
;processor.

dmpc ispasm,<lngth10pd,parm10d,ezvu_rc> ;Reposition cursor upon return
jmp disp_spcf_menu ;Total redisplay panel

not_f6_spmen:
cmp Zrsp2,CR
je choice_run
jmp unknown_spcf_choice

choice_run:
mov reqcode3_asc,'O'
cmp spcfopt,1
jne choice_gnp
call spcf_run_pan
jmp disp_spcf_menu

choice_gnp:
cmp spcfopt,2
jne choice_parse
call spcf_gnp_pan
jmp disp_spcf_menu

choice_parse:
cmp spcfopt,3
jne choi ce_buil d
call spcf_parse_pan
jmp disp_spcf_menu

278 NetView/PCTM API/CS

;Was Return the exit key?
;Yes, process selection

;Set request code for display
;Was it choice 1?
;No, check next choice
;Yes, run SPCF RUN Panel
;Loop back to SPCF menu

;Was it choice 2?
;No, check next choice
;Yes, run SPCF GNP Panel
;Loop back to SPCF menu

;Was it choice 31
;No, check next choice
;Yes, run SPCF PARSE Panel
;Loop back to SPCF menu

choice_build:
cmp
jne
call
jmp

choice_display:
cmp
jne
call
jmp

choice_puf:
cmp
jne
call
jmp

choice_sun:
cmp
jne
call
jmp

choice_ser:
cmp
jne
call
jmp

spcfopt,4
choice_display
spcf_build_pan
disp_spcf_menu

spcfopt,5
choice_puf
spcf_display_pan
disp_spcf_menu

spcfopt,6
choice_sun
spcf_puf_pan
disp_spcf_menu

spcfopt,7
choice_ser
spcf_sun_pan
disp_spcf_menu

spcfopt,8
unknown_spcf_choice
spcf_ser_pan
disp_spcf_menu

unknown_spcf_choice:
mov spcfopt,1
showerr_msg 13

spcf_men_exit:
POPREGS
ret

spcf_men_pan endp

PAGE

;Was it choice 41
;No, check next choice
;Yes, run SPCF BUILD Panel
;Loop back to SPCF menu

;Was it choice 51
;No, check next choice
;Yes, run SPCF DISPLAY Panel
;Loop back to SPCF menu

;Was it choice 61
;No, check next choice
;Yes, run SPCF PUF panel
;Loop back to SPCF menu

;Was it choice 71
;No, check next choice
;Yes, run SPCF SUN panel
;Loop back to SPCF menu

;Was it choice 81
;No, must be invalid choice
;Yes run SPCF SER panel
;Loop back to SPCF menu

;Set default choice to 1
;Turn on error msg
;indicating invalid choice
;Loop back to SPCF menu

.** ,

.* ,
;* Procedure Name: PARSE
.* ,
;* Description Displays the PARSE panel, DCJVCPG1, and calls

SPCF PARSE routine. .* ,
.* ,
.* ,
.* ,

Input: Variables defined for the EZVU II panel.

;* Output: Return Code, Error Class and Error Type as well
;* as the Command and Receive Correlator received from
;* the host on a receive request as well as error
;* messages for invalid input.
.* ,

*
*
*
*
*
*
*
*
*
*
*
*
*

Appendix I. DOS Sample Program Code 279

.** ,
spcf_parse_pan proc near

PUSHREGS
mov do_parse_rc,B
mov word ptr recid_asc,'

;Init return code for do_parse
;Clear Parse ID display

;Clear Parse Corr display
FILL_CHAR recvcorr_hexasc,'B',asc_corr_length

;Clear Parse Sense Data display
FILL_CHAR parse_sense_ascii,'B',parse_sense_ascii_len

tot_disp_parse:
mov Active_Keys, PARM25D_KEYS
call Set_Active_Keys
DMPC ISPASM,<LNGTH25PD,PARM25D,EZVU_RC> ;Display SPCF PARSE panel

display_parse_panel:
cmp Zrspl,FIB
jne not_fIB_parse
jmp do_parse_test

not_fIB_parse:
cmp Zrspl,F3
jne not_f3_parse
jmp exit_parse

not_f3_parse:
cmp Zrspl,F5
jne not_f5_parse
jmp tot_disp_parse

not_f5_parse:
cmp Zrspl,F6
jne not_f6_parse
jmp do_2nd_dos_parse

not_f6_parse:
cmp Zrspl, F9
jne not_any_parse
call spcf_display_pan
jmp tot_disp_parse

not_any_parse:
jmp parse_test_done

do_2nd_dos_parse:
call execpgm

;Was FIB the exit key?
;No, check next key

;Was F3 the exit key?
;No, check next key
;Yes, Return to SPCF Menu

;Was F5 the exit key?
;No, check next key
;Yes, Return to SPCF Menu

;Was F6 the exit key?
;No
;Yes

;Was it display file?

;Yes, display it
;Then redo panel

;No, redisplay

;Shell out to a
;secondary command
;processor.

DMPC ISPASM,<LNGTHIBPD,PARMIBD,EZVU_RC> ;Reposit cursor
jmp tot_disp_parse ;Total redisplay panel

do_parse_test:
call do_parse ;Perform the current

;Test Case
DMPC ISPASM,<LNGTHIBPD,PARMIBD,EZVU~RC> ;Reposit Cursor

parse_test_done:
DMPC ISPASM,<LNGTH8PD,PARM8D,EZVU_RC> ;Redisplay panel

280 NetView/PCTM APIICS

ex it _pa rse :
POPREGS
ret

spcf_parse_pan endp

PAGE

.** ,

.* , *
;* Procedure Name: DO_PARSE *
.* , *
;* Description Performs all the preparation for execution of

a call to the Service Point Command Facility
API/CS as well as the call and the necessary
housekeeping following the call to the API/CS .

*
.* ,
.* ,
. * ,
.* ,

*
*
*
*

;* Input: Variables from the EZVU II SPCF Parse panel. *
.* , *
;* Output: Return Code, Error Class and Error Type and Receive *

Correlator as well as the data parsed from the NMVT * .* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,

The parsed data is placed in an ARB *
which is the stored in the specified file. *
following the file is the Receive Correlator for later *
use. The parse ARB may be displayed by the Display *
routine. *

*
*

.** ,
do_parse proc near

PUSHREGS

mov aX,0ffffh

mov prime_rc6,ax
mov prime_ec6,ax
mov prime_et6,ax
mov prime_rc3,ax
mov prime_ec3,ax
mov prime_et3,ax

lea di,Nmvtfile
mov Filename_Ptr,di
lea di,Nmvtbuff

mov Readbuff_Ptr,di

;Save all regs

;Init return code for do_parse

;Reset all return codes to ffff

;Point DI at the NMVT file name.
;Store addr in parm for READ_NMVT
;Point DI at buffer into which to

read the Alert NMVT.

mov Readbuff_Size,NMVTBUFF_SIZE
;Store addr in parm for READ_NMVT

;Store read buffer size parm
;for READ_NMVT.

ca 11 Read_Nmvt
cmp Read_Nmvt_Stat,0
je good_parse_read
jmp do_parse_bad_read

;read in the file
;was read successful?
;yes, continue
;no, exit

Appendix I. DOS Sample Program Code 281

mov ah, byte pt r NiviVTbuff
mov al,byte ptr NMVTbuff+1
lea si,NMVTbuff
add si,ax

push ds
pop es

lea di,parse_correlator
mov cx,10
cld

rep movsb

mov ax,Readbuff_Ptr
mov parse_nmvt_offset,ax
mov parse_nmvt_segment,ds

mov ax,ds
lea dx,arb_id6

mov ax_reg, ax
mov dx_reg,dx

call Ocjvb00

call check_arb
mov arb_found3,al
mov ax, prime_rc6
mov prime_rc3, ax
mov ax, prime_ec6
mov prime_ec3, ax
mov ax, prime_et6
mov prime_et3, ax

Get length of NMVT in ax

Add length of NMVT to beginning
buffer address to get address
of correlator read from NMVT file.
now ds:[si] points at correlator
from NMVT file.

Set es = ds as source and dest
are in data segment.

Point es:[di] at target
move 10 bytes
forward
move them

;Put segment of arb in ax
;Put offset of arb in dx

;Save AX and OX for examination
;by CHECK_ARB on return

;CALL THE SPCF API/CS

;Ensure that API/CS found ARB
;Move result to EZVU display var
;Get return codes into display

;Get return codes into display

;Get return codes into display

MOVE_STRING PARSE_CORRELATOR,RECVCORR,10
call Cnv_Recvcorr

Convert Parse correlator
to displayable form.

mov di,offset parse_sense_ascii
lea bx,parse_sense_data
mov cx,parse_sense_data_len

cnv_sense_loop:
mov al, byte ptr [bxJ
call Hexb2asc
add di, 2
inc bx
loop cnv_sense_loop

mov al,parse_id
lea di,recid_asc
call hexb2asc

cmp prime_rc6,0
je check_parse_id

282 NetView/PCTM API/CS

Now do parse sense -
requires conversion to ASCII

;Convert the parse sense data
;to displayable form.

;Convert Parse 10 from ARB to
; ASCII for display

;Was parse successful ?
;yes, continue

check_parse_id:
cmp parse_id,061h
jne not_run_command

xor cx,cx
mov cl,parse_command_len

mov di,offset parse_data
jcxz prs_command_len_zero

push ds
pop es

lds si,parse_command_ptr
cld

rep movsb

push es
pop ds

prs_command_len_zero:

;no, exit

;Is this a RUN command?
;No, try others

;Move the command from the API
;buffer to our own buffer

;Set es:di to parse_data
;If command length = 0, jump around

;Set es = ds

;Set ds~si to source buffer

;Restore ds from es

mov ax, PARSE_DATA_OFFSET ;Reset the pointer for file
mov word ptr parse_command_ptr, ax ;Offset is offset to data
sub ax, ax ;Segment is 0
mov word ptr parse_command_ptr+2, ax
mov word ptr names_ptr, ax ;Zero out resource names
mov word ptr names_ptr+2, ax ;Pointer
jmp do_parse_save ;Go save the arb

not_run_command:
cmp parse_id,062h
je link command
cmp parse_id,063h
je link_command
cmp parse_id,064h
je link_command
jmp do_parse_bad_end

link_command:

xor cx,cx
mov bh,no_names

lea di,parse_data

or bh,bh

push ds
pop es

lds si,names_ptr
cld

;Is this a LINK PD command?
;Yes, jump around
;Is this a LINK DATA command?
;Yes, jump around
;Is this a LINK TEST command?
;Yes, jump around
;No, must be invalid

;Move names into data area
;Clear count
;How many names

;Target offset

;Is number of names = 0 ?
This should never occur, but
is check for just in case.

;Yes, jump around

;Set target
segment

;Source segment and offset ds:si
; Foward

Appendix I. DOS Sample Program Code 283

yet_another_name:
lodsb
stosb
mov cl,al
jcxz zero_len_name

rep movsb

zero_len_name:
dec bh
jnz yet_another_name

push es
pop ds

no_names_zero:

;Length of name
; into data area
;Count of characters
;If name length = 0, jump around.
; This should never occur, but

is check for just in case.
;Move the name.

;another name moved

;restore ds

mov ax, PARSE_DATA_OFFSET
mov word ptr names_ptr, ax
sub ax, ax

;Reset the pointer for file
;Offset is offset to data
;Segment is °

mov word ptr names_ptr+2, ax ;Zero out command name
mov word ptr parse_command_ptr, ax
mov word ptr parse_command_ptr+2, ax;Pointer
jmp do_parse_save ;Go save the arb

do_parse_save:
mov ax, di
sub ax, offset arb_id6

;Get present output pointer
;Calculate length of output

mov word ptr Writebuff_Ptr_Tbl,offset arb_id6
mov word ptr Writebuff_Ptr_Tbl+2,ds

;Set buffer offset
;And buffer segment
;And write size mov word ptr Writebuff_Ptr_Tbl+4,ax

mov word ptr Writebuff_Ptr_Tbl+10,0 ;And mark end of tbl

mov Filename_Ptr, offset Arbfile
call Write_File

;And output name
;And save the output
;Was write successful ?
;no, show error msg
;yes exit

cmp write_file_stat,O
jne do_parse_bad_write
jmp do_parse_end

do_parse_bad_write:
SHOWERR MSG 303
mov do_parse_rc,3
jmp do_parse_end

do_parse_bad_read:
SHOWERR_MSG 302
mov do_parse_rc,2
jmp do_parse_end

do_parse_bad_end:
SHOWERR_MSG 301
mov do_parse_rc,l
jmp do_parse_end

284, NetView/PCTM APIICS

;Show error msg indicating write failed.
;Set return code to indicate do_parse failed.

;Show error msg indicating read failed.
;Set return code to indicate do_parse failed.

;Show error msg indicating parse failed.
;Set return code to indicate do_parse failed.

POPREGS
ret

do_parse endp

PAGE

.** ,

.* ,
;* Procedure Name: spcf_build_pan
.* ,
;* Description
.* ,
.* ,

Displays the BUILD panel, DCJVCP02, and calls
SPCF BUILD routine.

*
*
*
*
*
*

;* Input: Variables defined for the EZVU II panel. *
.* ,
.* ,
.* ,
.* ,
. * ,
.* ,

Output: Return Code, Error Class and Error Type as well
as the Command and Receive Correlator received from
the host on a receive request as well as error
messages for invalid input •

*
*
*
*
*
*

.** ,
spcf_build_pan proc near

PUSHREGS
mov aX,0ffffh
mov prime_rc3,ax
mov prime_ec3,ax
mov prime_et3,ax

tot_disp_build:
mov Active_Keys, PARM26D_KEYS
call Set_Active_Keys

;RESET ALL RETURN CODES TO FFFF

DMPC ISPASM,<LNGTH26PD,PARM26D,EZVU_RC> ;Display SPCF BUILD panel

display_build_panel:
cmp Zrspl,Fl0
jne not_fI0_build
jmp do_build_test

not_fI0_build:
cmp
jne
jmp

not_f3_build:
cmp
jne
jmp

not_f5_build:
cmp
jne
jmp

not_f6_build:
cmp
jne
call
jmp

Zrspl, F3
not_f3_buil d
exit_build

Zrspl,F5
not_f5_build
tot_disp_build

Zrspl,F6
not_f6_build
do_2nd_dos_build

Zrspl, F9
not_any_build
spcf_display_pan
tot_disp_build

;Was FlO the exit key?
;No, check next key

;Was F3 the exit key?
;No, check next key
;Yes, Return to SPCF Menu

;Was F5 the exit key?
;No, check next key
;Yes, Return to SPCF Menu

;Was F6 the exit key?
;No, check next
;Yes
;the panel.

;Was it display file?

;Yes, display it
;Then Return to SPCF Menu

Appendix I. DOS Sample Program Code 285

not_any _buil d:
jmp build_test_done ;No, redisplay

do_2nd_dos_build: ;Shell out to a
;secondary command
;processor.

call execpgm

;Total redisplay panel

do_build_test:
call do_build ;Perform the current

;Test Case
OMPC ISPASM,<LNGTH10PD,PARM10D,EZVU_RC> ;Reposit Cursor

bUild_test_done:
OM PC
jmp

POPREGS

ISPASM,<LNGTH8PD,PARM8D,EZVU_RC>
display_build_panel

;Redisplay panel

ret
spcf_build_pan endp

PAGE

.** ,

.* , *
;* Procedure Name: DO_BUILD *
.* , *
;* Description Performs all the preparation for execution of

a call to the Service Point Command Facility
API/CS as well as the call and the necessary
housekeeping following the call to the API/CS.

*
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,

Input: Variables from the EZVU II SPCF Parse panel.

*
*
*
*
*
*

;* Output: Return Code, Error Class and Error Type and Receive *
Correlator as well as the data parsed from the NMVT * .* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

The parsed data is placed in an ARB *
which is the stored in the specified file. *
following the file is the Receive Correlator for later *
use. The parse ARB may be displayed by the Display *
routine. *

*
*

.** ,

.** ,

Input:
segptr - An Intel DO type
buffer Buffer where the data is (offset added to offset in

buffer)
badexit - Place to jump to if address out of range of buffer

286 NetView/PCTM API/CS

Output:
segptr - segment portion fixed up

; Also uses bd_datsize in checking things
.** ,

local
local

mov
cmp
jle
jmp

macro segptr,
check_segment
all_ok

buffer, badexit

ax, word ptr segptr
ax, bd_datsize
check_segment
badexit

;Bad exit
;Good exit

;Get offset
;Make sure it is in range
;If not, exit
;Else go to bad exit

check_segment:
add
mov
cmp
je
jmp

all_ok:
push
pop
endm

PAGE

ax, offset buffer
word ptr segptr, ax
word ptr segptr+2, 0
all_ok
badexit

ds
word ptr segptr+2

;Add buffer offset
;And.store it back
;Make sure segment was 0

.** ,

;

Reads a build ARB from a file and converts it into an NMVT

Input:

Arbfile
Nmvtfile

- Name of file to be read in
- Name of file to write NMVT to

Output:

Arbbuff
bd_rx

- Contains ARB read in
- Set to 0 if no error, nonzero otherwise

(set when errors in ARB in file found)

The following are set to the build API return codes, if the ARB
was not found invalid prior to the call to the API

PRIME_RC3 - Set to 0 if no error, nonzero otherwise
PRIME EC3 - Set to 0 if no error, nonzero otherwise
PRIME_EC3 - Set to 0 if no error, nonzero otherwise

.** ,
do_build proc near

PUSHREGS
nop
nop
mov
mov
mov
mov
mov

arb_found3, I I

ax, BD_NOERR
bd_rx, ax
ax, 0ffffh
Arbbuff. bd_retcode ,ax

;save registers

;Clear ARB found variable

;Clear internal return code
;Initialize external return codes

Appendix I. DOS Sample Program Code 287

mov Arbbuff.bd_errclass,ax
mov Arbbuff.bd_errtype,ax

.** ,
; Read the file in, checking for errors
.** ,

mov
mov
mov
call
cmp
je
mov
mov
jmp

filename_ptr, offset arbfile
readbuff_ptr, offset Arbbuff
readbuff_size, bd_bufsize
read_nmvt
read_nmvt_stat, 0
bd_read_ok
ax,read_nmvt_stat
bd_rx, ax
exit_do_build

;Set up file name
;Set up buffer address
;And the buffer size
;Read stuff in
;Check for success
;If ok, continue
;Get error code
;And use that as our rc
;and leave

.** ,
; File read in OK, check to make sure we recognize it as an ARB
.** ,
bd_read_ok:

mov
mov
mov
mov
mov
mov

ax, 0ffffh
Arbbuff.bd_retcode,ax
Arbbuff.bd_errclass,ax
Arbbuff.bd_errtype,ax
ax, filesize
bd_datsize, ax

;Now, check the ARB ID

;Initialize external return codes

;Get the file size
;And store it

COMPARE_STRINGS Arbbuff.bd_arbid,bd_refarb.bd_arbid, BD_ARBIDLEN
je bdcheck_reqcode ;If ok, check request code
mov bd_rx, BD_ARBIDERR ;Else set error code
jmp build_error_exit

;Check request code
bdcheck_reqcode:

mov ax, bd_refarb.bd_reqcode;Get reference request code
cmp Arbbuff.bd_reqcode, ax ;Compare it to one read in
je bdcheck_arblen ;If ok, check length
mov bd_rx, BD_REQCDERR ;Else set up error code
jmp bUild_error_exit

;Check the ARB length
bdcheck_arblen:

mov
cmp
je
mov
jmp

al, Arbbuff.bd_arblen
al, bd_refarb.bd_arblen
bdcheck_buil did
bd_rx, BD_ARBLENERR
build_error_exit

;Get arb length
;And check it
;OK, check the build ID
;No good, set up error code

;Check to make the the build ID is 62 through 64
bdcheck_buil di d:

mov al, Arbbuff.bd_buildid ;Get build id
cmp al, BD_ID_LPD ;Was it LINK PD?
jne bdcheck_linkdata ;No, check for link data
mov bd_type, BD_TYPE0 ;Set type to LINK PD?
mov bd_lccdclen, BD_LCCDCLEN0
jmp bd start ;Start real work

288 NetView/PCTM API/CS

;Was not LINKPD - make sure it is LINKDATA or LINKTEST
bdcheck_linkdata:

cmp
je
cmp
je
jmp

bdcheck_linkok:

ax, BD_ID_LD
bdcheck_linkok
ax, BD_ID_LT
bdcheck_linkok
passthrough

;Was it LINKDATA?
;If so, is ok
;Else check for LINKTEST
;If so, is ok
;Else just pass the ARB through

mov bd_type, BD_TYPEl ;Was LINKDATA or LINKTEST
mov bd_lccdclen, BD_LCCDCLENl

.** ,
; Now we are reasonable sure the stuff we read in was a build ARB,
, so we can start doing the fixup
.** ,
bd_start:
;First, fix up the segment of the probable cause pointer

mov bd_rx,BD_PCAUSERR ;Set up error condition
FIX_SEG Arbbuff.bd_probcause, Arbbuff, address_error

;Now, fix put the path list info pointer
mov bd_rx,BD_PLISTERR ;Set up error condition
FIX_SEG Arbbuff.bd_pathlist, Arbbuff, address_error

;Make bx point to path information list control block
mov bx, word ptr Arbbuff.bd_pathlist
mov bd_rx,BD_PLCBERR ;Set up error condition
FIX_SEG bdlcc_ptr[bx], Arbbuff, address_error ;Fix up segment

mov
cmp
jne
jmp

checkcount:
mov
cmp
jne
jmp

bd_rx, BD_NOERR
bd_type, BD_TYPE0
checkcount
passthrough

cx, bdlcc_num[bx]
cx, 0
lccdcstart
pass through

;Reset error code
;See if it is LINKPD
;If not, do some more
;********* JHC

;Set cx to number of LCC things
;Was it zero?
;If not, do processing
;******** JHC

.** ,
; Now go through the lcc description control blocks
.** ,
lccdcstart:

mov bx, word ptr bdlcc_ptr[bx] ;Set bx to start of array

lccdcbloop:
push cx ; Save our loop counter
push bx ;And our poi nter
mov bd_rx, BD_LCCDCERR ;Set return code
FIX_SEG bdlcc_dataptr[bx], Arbbuff, baddc ;Fix up segment

mov
cmp
jne
jmp

cx,bdlcc_number[bx]
cx,0
lccdbstart
gooddc

;Get number of data elements
;See if its more than one
;If so, do processing
;Else continue with dc blocks

.** ,
; Loop for data elements in a single control block

Appendix I. DOS Sample Program Code 289

.** ,
lccdbstart:

mov bx, word ptr bdlcc_dataptr[bx] ;Bx now points to data array
lccdbloop:

mov bd_rx, BD_LCCDBERR ;Set return code
FIX_SEG bdlcc_dvptr[bx], Arbbuff, baddc ;Fix up segment
mov al, bdlcc_dnlen[bx] ;Get name length
sub ah, ah ;Zero out high byte
add ax, BD_LCCDBLEN ;And overhead length to get to next
add bx, ax ;Then add it all to offset
loop lccdbloop ;And loop until done
jmp gooddc ;Don't want to think we broke

.** ,
; End of loop for array of control blocks
.** ,
baddc: pop bx

pop cx
jmp address_error

gooddc: pop bx
pop cx
add bx, bd_lccdclen ;Go to next array element
loop lccdcbloop

.** ,
; Call the build API
.** ,
passthrough:

push
pop

ds ;Set AX:DX to point to ARB
ax

mov dx, offset Arbbuff
PUSHREGS
mov ax_reg ,ax
mov dx_reg,dx

;Save AX and DX for examination
;by CHECK_ARB on return

call Dcj vb88
call check_arb
mov arb_found3,al

;Call the build procedure
;Ensure that API/CS found ARB
;Move result to EZVU display var

POPREGS
cmp Arbbuff.bd_retcode, 8 ;Check the return code
jne bd_builderr
mov
cmp
jne
jmp

ax, Arbbuff.bd_builtnmvtlen
aX,8
do_write_nmvt
bd_builderr

;Was created NMVT length 81
;If not, write it out
; El se exit

.** ,
; Write the NMVT out to the file
.** ,
do_write_nmvt:

mov filename_ptr, offset Nmvtfile

les bx, Arbbuff.bd_builtnmvt ;Get NMVT address in ES:BX
mov word ptr Writebuff_Ptr_Tbl,bx ;Save the offset
mov word ptr Writebuff_Ptr_Tbl+2,es ;And the segment
mov word ptr Writebuff_Ptr_Tbl+4,ax ;And the NMVT length

lea bx,Arbbuff.bd_correlator
mov word ptr Writebuff_Ptr_Tbl+6,bx Save the offset
mov word ptr Writebuff_Ptr_Tbl+8,ds And the segment

290 NetView/PCTM API/CS

mov And the correlator length

mov Mark end of table

call
jmp

Write_File
exit_do_build

;All OK, so save NMVT

bd_builderr:
mov
jmp

bd_rx, BD_BLDERR
build_error_exit

;Set up our return code

build_error_exit:
address_error:

SHOWERR_MSG bd_rx

exit_do_build:
push
pop
push
pop
push
pop
POPREGS

Arbbuff.bd_retcode
PRIME_RC3
Arbbuff.bd_errclass
PRIME_EC3
Arbbuff.bd_errtype
PRIME_ET3

;Set up standard return codes

ret
do_build endp

PAGE

INCLUDE APIMAIN.UTL ;Utility subroutines

;* Make all utility routines public
.* ,

PUBLIC CNV_RECVCORR
PUBLIC CNV_SENDCORR
PUBLIC LOAD_SENDCORR
PUBLIC SAVE RECVCORR
PUBLIC DEL_SENDCORR
PUBLIC CLEAR_CORR_TBL
PUBLIC GET_REQCODE
PUBLIC CHECK ARB

PAGE

PUBLIC CHOICE
PUBLIC Zrspl
PUBLIC Zrsp2
PUBLIC Zentl
PUBLIC Zent2
PUBLIC Zentla
PUBLIC Zent2a
PUBLIC Zentlb
PUBLI C Zent2b
PUBLIC Zentlc
PUBLI C Zent2c
PUBLIC Zentle
PUBLI C Zent2e
PUBLIC Zentl f
PUBLIC Zent2f

;State variable for SELMENU
;Scan code of key that caused Panel Exit
;ASCII code of key that caused Panel Exit
;Scan code of key to be used as Enter key
;ASCII code of key to be used as Enter key
;Scan code of key to be used as Enter key
;Scan code of key to be used as Enter key
;Scan code of key to be used as Enter key
;Scan code of key to be used as Enter key
;Scan code of key to be used as Enter key
;Scan code of key to be used as Enter key
;Scan code of ESC key
;ASCII code of ESC key
;F4 key - scan code
;F4 key - ASCII code

Appendix I. DOS Sample Program Code 291

;Return key - scan code
;Return key - ASCII code

PUBLIC Zentin
PUBLIC Zent2n
PUBLIC Zatr ;Color used when input field is highlighted

;Ebony foreground, white background

PUBLIC ZentlPUP
PUBLIC Zent2PUP

;Scan code of PgUp key
;ASCII code of PgUpkey

PUBLIC ZentlPDN
PUBLIC Zent2PDN

;Scan code of PgUp key
;ASCII code of PgUp key

PUBLIC LNGTH9V
PUBLIC i oretcod

;Number of places for extra enter keys
;File I/O return code for error messages.

CSEG ENDS

END START

APIMAIN.UTL
PAGE

API Sample Program - (C) Copyright IBM Corp. 1986, 1987
SAMPLE PROGRAM - NO WARRANTY EXPRESSED OR IMPLIED

You are hereby licensed to use, reproduce, and distribute
these sample programs as your needs require. IBM does not
warrant the suitability or integrity of these sample programs
and accepts no responsibility for their use for your
applications. If you choose to copy and redistribute
significant portions of these sample programs, you should
preface such copies with this copyright notice •

• ** ,
.* * ,
;* Procedure Name: CNV_RECVCORR *
.* , *
.* ,
.* ,
.* ,
.* ,

Description Converts the 18 byte binary receive corre1ator *
sent by the SPCF API/CS in response to a receive *
request to a 28 char Hex/ASCII string so that it *
may be displayed in a human readable form. *

.* ,
;* Input: The 18 byte binary receive corre1ator - RECVCORR
.* ,
;* Output : The 28 char Hex/ASCII string to be displayed on
;* the SPCF panel - RECVCORR_HEXASC
.* ,

*
*
*
*
*
*

.** ,
PUBLIC Cnv_Recvcorr
Cnv_Recvcorr proc near

pushregs
.* ,

;Save all regs

;* Receive corre1ator is 18 bytes long and since HEX2ASC can convert
;* two bytes at a time init loop count to 5
.* ,

mov cx,asc_corr_length/4
lea di,recvcorr_hexasc

292 NetView/PCTM API/CS

;ASC_CORR_LENGTH = 28
;Point DI at Hex/ASCII string buffer

.* ,

lea si,recvcorr ;Point SI at binary Receive correlator

;* Must load bytes one at a time to avoid the byte swapping
;* that would be caused by loading them as a word .
. * ,

mov
mov
call
add
add
dec
jcxz
jmp

ah, byte ptr
al, byte ptr
hex2asc
si,2
di,4
cx
cnv_recv_done
cnv_recv_loop

[si]
[si + 1]

;Load left most byte
;Load right byte
;Convert 2 bytes
;Bump string pointer
;Bump binary pointer
;Decrement loop count
;Is conversion complete?
;No, convert next 2 bytes.

cnv_recv_done:
pop regs
ret

;Restore all regs

Cnv_Recvcorr endp

PAGE
.** ,
.* , *
;* Procedure Name: Cnv_Sendcorr *
.* , *
;* Description Converts the 20 char Hex/ASCII string inputted

by the user to a 10 binary byte string in the
form expected by the SPCF API/CS •

*
.* ,
. * ,
.* ,
;* Input
.* ,
.* ,
;* Output
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,

The 20 char Hex/ASCII string inputted by the user -
SENDCORR_ASC

*
*
*
*
*
*

The 10 binary byte string to be passed to the SPCF *
API/CS for a Send request. *
If the string inputted by the user contained any chars *
other than 10-9 1 or IA-FI the conversion will fail. *
On return from this routine the variable SENDCORR_STAT *
will be set to zero if the conversion was successful *
and set to hex FF if the conversion failed. *

*
.** ,
PUBLIC Cnv_Sendcorr
Cnv_Sendcorr proc near

pushregs

.* ,

mov sendcorr_stat,O

;Save all regs

;Init conversion status to good

;* Send correlator in Hex/ASCII format is 20 bytes long and since
;* ASC2HEX can convert up to four bytes at a time init loop count to 5
.* ,

mov sendcorr_cnt,asc_corr_length/4
lea di,sendcorr_hexasc ;Point DI at Hex/ASCII input string
lea si,sendcorr ;Point SI at Binary output buffer

cnv_send_loop:
mov cx,4 ;Length of string to be converted = 4

Appendix I. DOS Sample Program Code 293

call asc2hex
cmp cX,-l

;Do the conversion
;Did the conversion fail?
;No, converted good jne good_sendcorr_cnv

jmp bad_sendcorr_cnv ;Yes, conversion failed, exit

good_sendcorr_cnv:

PAGE

mov byte pt r [5 i] , ah
mov byte ptr [si+l],al
add si,2
add di,4
dec sendcorr_cnt
cmp sendcorr_cnt,O
je cnv_send_done
jmp cnv_send_loop

bad_sendcorr_cnv:

;Put converted bytes in
;binary buffer
;Bump binary pointer
;Bump string pOinter
;Decrement loop counter
;Conversion complete, YIN?
;Yes
;No, convert next 4 chars

mov sendcorr_stat,0ffh ;Indicate bad conversion
DMPC ISPASM,<LNGTH17PD,PARM17D,EZVU_RC> ;Display error msg

;indicating non-hex
;chars in input fld

cnv_send_done:
pop regs
ret

Cnv_Sendcorr endp

;Restore all regs

.** ,

.* ,
;* Procedure Name: load_sendcorr
.* ,
;* Description
.* ,
.* ,
.* ,
. * ,
.* ,

Displays a panel showing a list of all
of the correlators to which no response has
been sent. The user may select any correlator
or press Esc to return without making a
selection •

*
*
*
*
*
*
*
*
*

;* Table structure: The correlator table actually consists of *
;* two related tables. The first is a table of *
;* MAX_CORR_CNT one byte entries that indicate *
;* whether the corresponding record in the ASCII *
;* table is in use. FF hex means the corresponding*
;* record in the ASCII table is empty. Any other *
;* value indicates the corresponding correlator's *
;* place in the list with a number 1 - *
;* MAX_CORR_CNT,where the largest number is the *
;* most recently received correlator. The ASCII *
.* , table is a series of MAX_CORR_CNT ASCII *
.* , records each ASC_CORR_LENGTH long, each of *
.* ,
.* ,

which is a correlator. *
*

.** ,
load_sendcorr proc near

pushregs

294 NetView/PCTM API/CS

cmp

jne
mov
call
jmp

unresponded_cnt,O

outstanding_exist
ax,211
show_errmsg
load_sendcorr_exit

outstanding_exist:

.* ,

Are there any outstanding
correlators ?
yes, continue
no, show informational msg
and
exit subrout

;* The following High level code describes the sorting algorithm used to
;* sort the correlator table in the order received .
. * ,
;* SORTFLAG = 1
;* DO WHILE SORTFLAG = 1
;* SORTFLAG = °
.* , DO I = 1 TO MAX_CORR_CNT-1
.* , IF CORR_RANK_TBL(I) > CORR_RANK_TBL{I+1) THEN
.* , DO;
.* ,
.* ,
.* ,

SWAP CORR_RANK_TBL(I) WITH CORR_RANK_TBL(I+1)
SWAP CORR_ASC_TBL (I) WITH CORR_ASC_TBL (1+1)
SORTFLAG = 1

.* , END;
;* END;
;* END;
.* ,

mov sortflag,l

while_sortflag_1:
cmp sortflag,l
je continue_sort
jmp sort_done

continue_sort:
mov sortflag,O
mov cx,max_corr_cnt-1
xor di,di
xor bx,bx

for_i_1_to_max_corr_cnt_ls1:
mov ax, word ptr corr_rank_tbl[di]

cmp al,ah
ja swap_entries
jmp d~nt_swap

swap_entries:

.* ,

;sortflag = 1

;do while sortflag = 1

; SORTFLAG = °
;Zero index into CORR_RANK_TBL
;Zero index into CORR ASC TBL

;(I)th Entry in AL
;{I+1)th Entry in AH

;Are Entries in order?
;No, swap them
;Yes, bump to next entries

;* Swap the (I)th and {I+1)th entries in the Rank table
.* ,

mov dh ,al
mov dl,ah
mov word ptr corr_rank_tbl[di],dx

Appendix I. DOS Sample Program Code 295

.* ,
;* Swap the (I)th and (I+1)th entries in the ASCII table
.* ,

MOVE STRING CORR ASC TBL[BX]TEMPCORR HEXASC,ASC CORR LENGTH
MOVE-STRING CORR-ASC-TBL[BX+ASC CORR-LENGTH],CORR ASC TBL[BX],ASC CORR LENGTH
MOVE=STR1NG TEMPCORR=HEXASC,CORR_ASC=TBL[BX+ASC_CORR_LENGTH],ASC_CORR_LENGTH

.* ,
;* Indicate a swap occured to force another
;* pass through the WHILE_SORTFLAG_1 Loop •
. * ,

sort_done:

mov sortflag,1

inc di
add bx,asc_corr_length

;Point at next entry in CORR_RANK_TBL
;Point at next entry in CORR_ASC_TBL

;End of FOR I = 1 to MAX_CORR_CNT -1

;End of WHILE SORTFLAG = 1

mov Active_Keys, PARM240_KEYS
call Set_Active_Keys ;Set allowed keys
OMPC ISPASM,<LNGTH24PO,PARM240,EZVU_RC> ;Oisplay CORR menu

check_corr_option:
cmp zrsp1,f3
jne not_f3_key
jmp load_sendcorr_exit

not_f3_key:
cmp
jne
jmp

not_esc_corrmen:

zrsp2,esc
not_esc_corrmen
load_sendcorr_exit

cmp zrsp2,cr
je
jmp

corr_selected:
cmp
je

not_0_corropt:
mov
cmp
ja
jmp

corr_selected

corropt,0
invalid_corropt

al,unresponded_cnt
corropt,al
invalid_corropt
valid_corropt

invalid_corropt:
showerr_msg 24
jmp unknown_corr choice

unknown_corr_choice:

;Was F3 the exit key?
;No check the next key
;Yes, exit subrout

;Was ESC the exit key?
;No, check next key
;Yes, exit subrout

;Was Return the exit key?
;Yes, process selection

; JOF 7-24-87
;Is correlator selected ° ?
;Yes, show error & redisplay

;1s correlator selected valid?
;No, show error & redisplay
;Yes

;1nvalid entry error msg

OM PC ISPASM,<LNGTH8PO,PARM80,EZVU_RC> ;Oisplay CORR menu again
jmp check_corr_option

296 NetView/PCTM API/CS

valid_corropt:
xor ah,ah
moval,corropt
dec ax
mul by_asc_corr_length
mov bX,ax

;Calculate displacement into CORR_ASC_TBL
;of selected correlator.
;Disp = (Selected Num - 1) * ASC_CORR_LENGTH

;Put displacement in BX

Move selected correlator into Send correlator buffer
MOVE_STRING CORR_ASC_TBL[BX],SENDCORR_HEXASC,ASC_CORR_LENGTH

1 oad_sendcorr_exit:
mov aX,word ptr zent1f

word ptr zent1,ax
;Restore F4 as enter key

mov
popregs
ret

;Restore regs

load_sendcorr endp

PAGE

PUBLIC save recvcorr
save_recvcorr proc near
.** ,
.* , *
;* Procedure Name: save_recvcorr *
.* , *
;* Description Searches the correlator table for an *
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
. * ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,

empty record amd stores the current number of
receive correlators to which no reply has been
sent in CORR_RANK_TBL and the ASCII

*
*
*

representation of the receive correlator being *
saved in the corresponding entry of CORR_ASC_TBL.*

Input: RECVCORR_HEXASC - ASCII representation of Receive
correlator received from host .

Output: - Current Receive correlator along with its sequence
number is stored in CORR_TBL.

UNRESPONDED CNT - Number of receive correlators to
which no response has been sent
is incremented.

*
*
*
*
*
*
*
*
*
*

Table structure: The correlator table actually consists of *
two related tables. The first is a table of *
MAX_CORR_CNT one byte entries that indicate *
whether the corresponding record in the ASCII *
table is in use. FF hex means the corresponding*
record in the ASCII table is empty. Any other *
value indicates the corresponding correlator's *
place in the list with a number 1 - *
MAX_CORR_CNT,where the largest number is the *
most recently received correlator. The ASCII *
table is a series of MAX_CORR_CNT ASCII *
records each ASC_CORR_LENGTH long, each of *
which is a correlator. *

*
.** ,

pushregs

Appendix I. DOS Sample Program Code 297

• * ,

xor bx,bx

xor di,di

cmp corr_rank_tbl[di],Offh
je slot found

inc di
add bx,asc_corr_length
loop srch4_slot

showerr_msg 22
jmp save_recvcorr_exit

inc unresponded_cnt

;Set loop count to max
;number of records.

;Set displacement into
;ASCII table to first record.

;Set displacement into
;rank table to first record.

;Is current record empty?
;Yes

;No, Bump 01 to next rank record
Point BX at next ASCII rec

;Any more records ?

;Error msg - table full
;exit subrout

;Increment count of number of
;receive correlators to which
;no response has been sent .

;* Put number of receive correlators to which no response has been sent
;* in the first byte of the record. This is also this correlator's
;* sequential rank in the table •
. * ,

.* ,

mov al,unresponded_cnt
mov corr_rank_tbl[di],al

;* Put ASCII version of correlator from host in record •
. * ,

save_recvcorr_exit:
pop regs
ret

save_recvcorr endp

PAGE

PUBLIC del_sendcorr
del_sendcorr proc near
.** ,
.* ,
;* Procedure Name: del_sendcorr
.* ,
;* Description Searches the correlator table for the
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,

current send correlator and deletes it from
CORR_RANK_TBL and CORR_ASC_TBL.

Input: SENOCORR_HEXASC - ASCII representation of Receive
correlator to be deleted from the

;* Output: - Current Send correlator along with its sequence

298 NetView/PCTM API/CS

*
*
*
*
*
*
*
*
*
*
*

.* ,

.* ,

.* ,

.* ,

.* ,

. * ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

number is deleted from CORR_ASC_TBL and
CORR_RANK_TBL.

UNRESPONDED_CNT - Number of receive correlators to
which no response has been sent
is decremented .

*
*
*
*
*
*
*

Table structure: The correlator table actually consists of *
two related tables. The first is a table of *
MAX_CORR_CNT one byte entries that indicate *
whether the corresponding record in the ASCII *
table is in use. FF hex means the corresponding*
record in the ASCII table is empty. Any other *
value indicates the corresponding correlator's *
place in the list with a number 1 - *
MAX_CORR_CNT,where the largest number is the *
most recently received correlator. The ASCII *
table is a series of MAX_CORR_CNT ASCII *
records each ASC_CORR_LENGTH long, each of *
which is a correlator. *

*
.** ,

pushregs
mov inact_corr,0

cmp prime_rc3,0
je yes_del_corr

cmp prime_rc3,a
je check_ec3
jmp no_dont_del_corr

cmp prime_ec3,23
je check_et3
jmp no_dont_del_corr

cmp prime_et3,65
jne no_dont_del_corr
mov inact_corr,l
jmp yes_del_corr

no_dont_del_corr:

yes del corr:

.* ,

jmp del_sendcorr_exit

xor bX,bx

xor di,di

jne compare_corrs
jmp empty_corr

;Set loop count to max
;number of records.

;Set displacement into
;ASCII table to first record.

;Set displacement into
;rank table to first record.

;Is current record empty?
;No
;Yes

Appendix I. DOS Sample Program Code 299

;* No, compare SENOCORR_HEXASC to current table entry •
. * ,

compare_corrs:
COMPARE_STRINGS SENOCORR_HEXASC,CORR_ASC_TBL[BX],ASC_CORR_LENGTH
je corrs_match

. * ,

jmp corrs_dont_match

dec unresponded_cnt

;* Mark current rank record empty •
. * ,

. * ,

mov al,corr_rank_tbl[di]
mov corr_deleted,al
mov corr_rank_tbl[di],0ffh

;* Blank out current ASCII record •
. * ,

cmp inact_corr,0
je no_inact_msg
showerr_msg 33

xor di,di

rank_adjust_loop:
cmp corr_rank_tbl[di],0ffh
je no_adjust_rank_entry
mov al,corr_deleted
cmp corr_rank_tbl[di],al

jb no_adjust_rank_entry
dec corr_rank_tbl[di]

no_adjust_rank_entry:
inc di
loop rank_adjust_loop

inc di
add bx,asc_corr_length
dec cx
jcxz corr_not_found

300 NetView/PCTM API/CS

;

;Oecrement count of number of
;receive correlators to which
;no response has been sent •

;Save rank of deleted corr

;Mark deleted correlators
;rank entry as empty •

;Set loop count to max
;number of records.
;Set displacement into
;rank table to first record.

;Is current record empty?
;Yes
;No
;Is current record rank> deleted
;records rank?

;Exit subrout

;Bump 01 to next rank record
;Point BX at next ASCII rec

;Any more records ?

;Yes, check next record.

corr_not_found:
showerr_msg 25
jmp del_sendcorr_exit

;Error msg - Match not found
;exit subrout

del_sendcorr_exit:
popregs
ret

del_sendcorr endp

.* ,
;* Description
. * ,

After a successful close of SPCF this subrout is called
to clear the correlator table •

.* ,
;* Input : None
.* ,
.* , Output : Clears CORR_RANK_TBL and CORR_ASC_TBL and zeroes UNRESPONDED_CNT
.* ,

PUBLIC clear_corr_tbl
clear_corr_tbl proc near
.* ,
;* Set all rank entries to empty value FFH
.* ,

.* ,
;* Blank out all ASCII correlator entries .
. * ,

.* ,
;* Good close clears all outstanding correlators, so zero count •
. * ,

mov unresponded_cnt,0
ret

clear_corr_tbl endp

.** ,

.* * ,
;* Procedure Name: GET_REQCODE
.* ,
.* , Description Converts the single character Request Codes

input by the user to the hexadecimal code
that must be placed in the ARB to perform the
selected request •

.* ,

.* ,

. * ,

.* ,
;* Input
.* ,
.* ,
. * ,
.* ,
;* Output
.* ,
.* ,
. * ,
.* ,

Register AL contains the single char inputted by the
user.
Register SI points at the table to be used to perform
the conversion •

The AX register is used to return the Hex word that
is the request code. If the char passed to this
routine in AL is not found in the conversion table
AX will be set to zero •

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

;* Table structure: The table used to perform consists of a series *
;* of records of length 3 terminated by a record *

Appendix I. DOS Sample Program Code 301

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

whose first byte is 1*1. The first byte of *
each record is a possible ASCII value enter *
by the user on an EZ-VU II panel. The next two *
bytes contain the one word hex value that *
corresponds to that ASCII value. *

*
.** ,
get_reqcode proc near
reqcode_loop:

mov ah,byte ptr [si]
cmp ah,al
je reqcode_found
cmp ah, I * I
je reqcode_not_found
add si,3
jmp reqcode_loop

;Put ASCII value from table in AH
;Is this char inputted by user?
;Yes
;Have we reached the end of the table?
;Yes, and we havenlt found the req code
;Point SI at next record in table
;Check next record

reqcode_found:
mov ax,word ptr [si+1]
jmp reqcode_exit

reqcode_not_found:
showerr_msg 31
xor ax,ax

;Unable to find request code error msg

jmp reqcode_exit

reqcode_exit:
ret

get_reqcode endp

PAGE

.** ,

.* * ,
;* Procedure Name: CHECK_ARB *
.* ,
.* , Description Checks to ensure that the ARB was found after

*
*

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

Input

;* Output
.* ,
.* ,
.* ,
.* ,

doing a call to one of the four modules in
the API/CS. The MACRO POPREGS saves the values
of the AX and DX registers in the variables
AX_REG and DX_REG so that these values are not

*
*
*
*

destroyed when the registers are restored. If *
API/CS did not find the appropriate ARB ID in *
the first four bytes of the ARB, due to its *
having been passed either an invalid ARB address *
or an ARB which does not begin with a valid *
ARB ID then the API/CS will set the AX and DX *
registers to zero. If a valid ARB ID was passed *
the API/CS will return the AX:DX register pair *
still pointing at the ARB that was passed. *

Registers AX and DX
Variables AX_REG and DX_REG

*
*
*
*

The AL register is used to return the one character *
result. It will contain a lyl if the ARB was found, *
an INI if the ARB was not found or a lUI if the *
AX and DX regs contain neither zeroes nor the address *
of the ARB passed. The lUI case should NEVER occur *

302 NetView/PCTM API/CS

.* ,

.* ,

.* ,

under any circumstances and the INI case should NEVER *
occur in this sample program. *

*
.** ,
check_arb proc near

movarb_found,IY I

cmp ax_reg,O
je check_dx
jmp check_ax_good

cmp dx_reg,O
je arb_not_found

check_ax_good:
cmp aX,ax_reg
je check_dx_good
jmp axdx_not_restored

page

check_dx_good:
cmp dx,dx_reg
jne axdx_not_restored
jmp check_done

axdx_not_restored:
movarb_found,IU I
jmp check_done

arb_not_found:
movarb_found,IN I
jmp check_done

moval,arb_found
ret

check_arb endp

APIUTIL.DSG

;Assume ARB was found.

;Does AX = ° ?
;Yes check OX
;No, then check to see
;if OX still points at ARB

;Is OX = ° ?
;Yes, API/CS could not find
;ARB.
;No, then check to see if AX
;still points at ARB

;Does AX point at ARB?
;Yes, check OX
;No, AX:DX do not point at ARB

;Does OX point at ARB?
;No, it does not
;Yes, AX:DX points at ARB

;Indicate that whether or
;not ARB was found is
;unknown. This should
;NEVER occur.

;Indicate ARB was not found

;Put returned var in AL

API Sample Program - (C) Copyright IBM Corp. 1986, 1987
SAMPLE PROGRAM - NO WARRANTY EXPRESSED OR IMPLIED

You are hereby licensed to use, reproduce, and distribute
these sample programs as your needs require. IBM does not
warrant the suitability or integrity of these sample programs
and accepts no responsibility for their use for your
applications. If you choose to copy and redistribute
significant portions of these sample programs, you should

Appendix I. DOS Sample Program Code 303

preface such copies with this copyright notice.
DGROUP GROUP DATA,STACK

STACK SEGMENT BYTE STACK 'STACK '
DB 256 DUP('STACK I)

STKTOP DW 1
STACK ENDS

DATA SEGMENT PARA PUBLIC 'DATA'
ASSUME DS:DGROUP

CR_LF EQU WORD PTR 0A0DH
CR EQU BYTE PTR 13D
ESC EQU BYTE PTR 27D
Fl EQU BYTE PTR 59D
F2 EQU BYTE PTR 60D
F3 EQU BYTE PTR 61D
F4 EQU BYTE PTR 62D
F5 EQU BYTE PTR 63D
F6 EQU BYTE PTR 64D
F7 EQU BYTE PTR 65D
F8 EQU BYTE PTR 66D
F9 EQU BYTE PTR 67D
F10 EQU BYTE PTR 68D
Fll EQU BYTE PTR 84D
F12 EQU BYTE PTR 85D

PAGEUP EQU BYTE PTR 73d
PAGEDN EQU BYTE PTR 81d

;2K STACK AREA

;ASCII Code for Carriage Return/Line
;ASCII Code for Carriage Return
;ASCII Code for Escape Code
;Scan Code for Fl key
;Scan Code for F2 key
;Scan Code for F3 key
;Scan Code for F4 key
;Scan Code for F5 key
;Scan Code for F6 key
;Scan Code for F7 key
;Scan Code for F8 key
;Scan Code for F9 key
;Scan Code for F10 key
;Scan code for Fll key
;Scan code for F12 key

;Page up scan code
;Page down scan code

.** ,
; File names for I/O
.** ,
ARBfil e DB 'ARBFILE.BIN

ARB_temp DB 'ARBFILE.TMP

Nmvtfile DB 'NMVTFILE.BIN I

;Name of file containing binary
;image of ARB for SPCF

;File name used by Get No Parse proc
;to temporarily store an ARB from
;the parse of the received NMVT.

;Name of file containing binary
;image of Alert NMVT to be sent
;to API/CS

.** ,
; Variables used by Read_Nmvt
.** ,

;File handle for NMVTFILE

Feed

nmvthandle
Read_Nmvt_Stat
Fil ename Ptr
Readbuff Ptr
Readbuff_Size
Filesize

DW 0H
DW 0
DW 0
DW 0
DW 0
DW 0

;Status indicator for READ_NMVT subrout
;Parameter for READ_NMVT

304 NetView/PCTM API/CS

;Parameter for READ_NMVT
;Parameter for READ_NMVT
;Size of File returned by subrout
;READ_NMVT

.** ,
; Variables used by Write_File
.** ,
filehandle OW 0
Write_file_Stat OW 0
Writebuff_entry_cnt equ 5

Writebuff_Index OW 0

;File handle for FILE
;Status indicator for WRITE_FILE
;Number of entries in
;Writebuff_Ptr_Tbl
;Index for Writebuff_Ptr_Tbl

DB (Writebuff_entry_cnt)*6 DUP (0)

• ********************************** ,
;* buffer used by Hexb2asc
.********************************** ,
hexb2asc_buff db '0000'

;Table of entries for WRITE FILE
;Each entry consists of a doubleword
;buffer address followed by a
;one word buffer size •

.** ,
; EZ-VU Variables used by utility routines
.** ,
PARM6D DB 'SETMSG VAPI'
MSGNUM6 DB '0000 NMVTFILE'
LNGTH6PD OW LNGTH6PD - PARM6D

PARM9D DB 'SETMSG VAPI'
MSGNUM9 DB '0000'
LNGTH9PD OW LNGTH9PD - PARM9D

PARM15D DB 'SETMSG VAPIOOIO'
LNGTH15PD OW LNGTH15PD - PARM15D

PARM16D DB 'SETMSG VAPIOOll MSGBUFFR'
LNGTH16PD OW LNGTH16PD - PARM16D

PAGE

.** ,
; Storage used in DELAY
.** ,
delay_time
old_sec

dw 0
db 0

;used in delay subrout
;used in delay subrout

.** ,
; Word used to pass active keyset to Set_Active_Keys
.** ,
Active_Keys OW o ;Active key word - argument to

set_active_keys

.** ,
; Function Keys
.** ,
ZFOl_PARM
ZFOILP
ZFOI
ZFOILV

DB
OW
DB
OW

'ZFOI C'
$-ZFOl_PARM
'Xxxx'
$-ZFOI

Appendix I. DOS Sample Program Code 305

ZF82 PARM DB 'ZF82 C1

ZF82LP DW $-ZF82_PARM
ZF82 DB IXXXXI

ZF82LV DW $-ZF82

ZF83 PARM DB 'ZF83 C1

ZF83LP DW $-ZF83_PARM
ZF83 DB IXXXXI

ZF83LV DW $-ZF83

ZF84 PARM DB 'ZF84 C1

ZF84LP DW $-ZF84_PARM
ZF84 DB IXXXXI

ZF84LV DW $-ZF84

ZF85_PARM DB 'ZF85 C1

ZF85LP DW $-ZF85_PARM
ZF85 DB IXXXXI

ZF85LV DW $-ZF85

ZF86_PARM DB 'ZF86 C1

ZF86LP DW $-ZF86_PARM
ZF86 DB IXXXXI

ZF86LV DW $-ZF86

ZF87_PARM DB 'ZF87 C1

ZF87LP DW $-ZF87_PARM
ZF87 DB I Xxxx I

ZF87LV DW $-ZF87

ZF88_PARM DB 'ZF88 C1

ZF88LP DW $-ZF88_PARM
ZF88 DB I Xxxx I

ZF88LV DW $-ZF88

ZF89 PARM DB 'ZF89 C1

ZF89LP DW $-ZF89_PARM
ZF89 DB IXXXXI

ZF89LV DW $-ZF89

ZF18_PARM DB 'ZF18 C1

ZF18LP DW $-ZF18_PARM
ZF18 DB I Xxxx I

ZF18LV DW $-ZF18

ZFll PARM DB I ZFll C1

ZFllLP DW $-ZFll_PARM
ZFll DB IXXXXI

ZFllLV DW $-ZFll

ZF12_PARM DB 'ZF12 C1

ZF12LP DW $-ZF12_PARM
ZF12 DB I Xxxx I

ZF12LV DW $-ZF12

306 NetView/PCTM API/CS

ZFKEY_DELETE DB IVDELETE ZF I
ZFKEY_TO_DELETE ow 118 1 ;Move key to be deleted here
ZFKEY_DEL_END DB I AI
ZFKEY DELETEL OW $-ZFKEY_DELETE

ZF81_A EQU 118 1 ;Note byte reversal
ZF82_A EQU 128 1 ;Note byte reversal
ZF83_A EQU 138 1 ;Note byte reversal
ZF84_A EQU 148 1 ;Note byte reversal
ZF85_A EQU 158 1 ;Note byte reversal
ZF85_A EQU 158 1 ;Note byte reversal
ZF87_A EQU 178 1 ;Note byte reversal
ZF8S_A EQU IS8 1 ;Note byte reversal
ZF89_A EQU 198 1 ;Note byte reversal
ZF18_A EQU 1811 ;Note byte reversal
ZFll_A EQU 1111 ;Note byte reversal
ZF12 A EQU 1211 ;Note byte reversal

.** ,
; Following are used for dynamically altering text on panels associated
, with non-F action keys
.** ,
Keyline_Parm DB I KEYLINE CI
Keylinelp OW $-Keyline_Parm
Keyline DB 4S DUP (I I)
Keylinelv OW $-Keyline

keylineoff OW 8

Enter_Text DB I Enter
ENTER TLEN EQU $-Enter_Text

Escape_Text DB 'Esc
ESCAPE_TLEN EQU $-Escape_Text

PgUp_Text DB IPgUp
PGUP_TLEN EQU $-pgUp_Text

PgOn_Text DB IPgOn
PGON TLEN EQU $-pgOn_Text

.** ,
; EXECPGM and EZVU variables
.** ,

Ezvu_rc OW ? ;EZ-VU Return Code
Ezvu_Call Addr OW 8
Ezvu_Rc_Msg OW CR_LF

DB 'EZ-VU II Return Code = I
Ezvu Rc Asc DB IXXXXX (decimal) at hex offset I
Ezvu_Addr_Asc DB IXXXX into your Code Segment I

OW CR_LF
OW CR_LF
DB IPress Any Key to Continue or Esc to End Program
OW CR_LF
OW CR_LF
DB 1$1

Appendix I. DOS Sample Program Code 307

not_enough_mem_msg dw cr_lf
db I Inadequate memory available to run subprogram. I
dw cr_lf
dw cr_l f
db Ipress any key to continue ••. I
dw cr_lf
dw cr If
db 1$1

PAGE

cant_run_pgm_msg dw cr_lf
db 'unable to run subprogram. I
dw cr If
db lexec function return code = 1

db IXXXXX (decimal).'
dw cr_lf
dw cr_lf
db Ipress any key to continue •.. '
dw cr_lf
dw cr_lf
db 1$1

ret2tester dw cr_lf
db liTo return to the sample program enter the dos command lexitl."
dw cr_lf
dw cr_lf
db 1$1

curs_top db 0
curs_bot db 0

execpgml db 'c:\command.com '
db 0

cmdline db I
cmdbegi n db 1 1

cmdend db 13d

execblk equ $
envaddr dw 0
cmdaddr dd cmdline
fcbladdr dd 0
fcb2addr dd 0

page

by_10 dw
by_100 dw

10d
100d

16d

308 NetView/PCTM API/CS

;cursor top line value and
;cursor bottom line value
;used to set cursor size when
;exiting to a secondary command
;processor in subrout execpgm

;program name parameter used by
;subrout execpgm to invoke a
;second command processor.

;used by subrout execpgm
;blank command line
;carriage return

;exec control block used
;by subrout execpgm

;used by subrout hex2dec and
;subrout hex2decz to convert
;hex value to decimal/ascii

;used by subrout hex2asc and
;subrout asc2hex

.** ,
; Buffer definitions
.** ,
Nmvtbuff EQU $;Buffer for NMVT storage
Nmvtlngth DW 0
Nmvtblock DB NMVTBUFF_SIZE/8 DUP('NMVT 1)

Arbbuff EQU $;Buffer for Arb storage
Arbblock DB NMVTBUFF_SIZE/8 DUP('ARB ARB I)

.** ,
; Make public symbols public
.** ,

PUBLIC Nmvtbuff
PUBLIC Nmvtlngth
PUBLIC Nmvtblock

PUBLIC Arbbuff
PUBLIC Arbblock

PUBLIC Nmvtfil e
PUBLIC ARBfile
PUBLIC ARB_temp

PUBLIC Read_Nmvt_Stat
PUBLIC Filename_Ptr
PUBLIC Readbuff_Ptr
PUBLIC Readbuff_Size
PUBLIC Filesize
PUBLIC Write_File_Stat
PUBLIC Writebuff_Ptr_Tbl
PUBLIC Ezvu_rc
PUBLIC Ezvu_Call_Addr
PUBLIC Ezvu_Rc_Msg
PUBLIC Active_Keys

PUBLIC Ezvu_Rc_Asc
PUBLIC Ezvu_Addr_Asc

;PUBLIC Asc2ebc_Tbl
;PUBLIC Ebc2asc_Tbl

PUBLIC Keyline_parm
PUBLIC Keylinelp
PUBLIC Keyl i ne
PUBLIC Keylinelv

DATA ENDS

Appendix I. DOS Sample Program Code 309

APIUTIL.EXR
API Sample Program - (C) Copyright IBM Corp. 1986, 1987
SAMPLE PROGRAM - NO WARRANTY EXPRESSED OR IMPLIED

You are hereby licensed to use, reproduce, and distribute
these sample programs as your needs require. IBM does not
warrant the suitability or integrity of these sample programs
and accepts no responsibility for their use for your
applications. If you choose to copy and redistribute
significant portions of these sample programs, you should
preface such copies with this copyright notice.

,
.** ,

APIUTIL. EXR

Include this file in any procedures using subroutines in APIUTIL.ASM
,
.** ,

.** ,
; Statements below allow other programs to access utility variables
.** ,
extrn Nmvtfile:byte
extrn ARBfil e: byte
extrn ARB_temp: byte

extrn Nmvtbuff:byte
extrn Nmvtlngth:word
extrn Nmvtblock:byte

extrn Arbbuff:byte
extrn Arbblock:byte

extrn Read_Nmvt_Stat:word
extrn Filename_Ptr:word
extrn Readbuff_Ptr:word
extrn Readbuff_Size:word
extrn Filesize:word
extrn Write_File_Stat:word
extrn Writebuff_Ptr_Tbl:byte
extrn Ezvu_rc:word
extrn Ezvu_Call_Addr:word
extrn Ezvu_Rc_Msg:word
extrn Active_Keys:word

extrn Ezvu_Rc_Asc:byte
extrn Ezvu_Addr_Asc:byte

extrn Keyline_parm:byte
extrn Keylinelp:word
extrn Keyline:byte
extrn Keylinelv:word

.** ,
; Define the utility routines available in APIUTIL.ASM
.** ,

310 NetView/PCTM APIICS

extrn Check_Ezvu_Rc:near
extrn Execpgm:near
extrn Delay:near
extrn Clrscr:near
extrn Decasc2bin:near
extrn Hex2decz:near
extrn Hex2dec:near
extrn Hex2asc:near
extrn Asc2hex:near
extrn show_errmsg:near
extrn Read_Nmvt:near
extrn Write_File:near
extrn Hexb2asc:near
extrn Set_Active_Keys:near

APIUTIL.ASM
; (CTRL-OH) IBM PC PRINTER CONDENSED MODE
PAGE ,132
TITLE API Sample Program Utility Routines (C) Copyright IBM Corp. 1986,1987

SAMPLE PROGRAM - NO WARRANTY EXPRESSED OR IMPLIED

PAGE

You are hereby licensed to use, reproduce, and distribute
these sample programs as your needs require. IBM does n0t
warrant the suitability or integrity of these sample programs
and accepts no responsibility for their use for your
applications. If you choose to copy and redistribute
significant portions of these sample programs, you should
preface such copies with this copyright notice.

INCLUDE APIMAIN.DEF
INCLUDE APIUTIL.DSG
INCLUDE APIMAIN.EXR
IFl

INCLUDE APIMAIN.MAC
ELSE

%OUT Starting second pass
ENDIF

;Shared constants
;Data Segment and references
;Shared variables & procedures

;Macros

PGROUP GROUP CSEG

CSEG SEGMENT PARA PUBLIC 'CODE'
ASSUME CS:PGROUP,DS:DGROUP,ES:DGROUP,SS:NOTHING

EXTRN ISPASM:FAR
EXTRN ISPASMV:FAR
EXTRN ISPASMVA:FAR

;EZ-VU II Display functions
;EZ-VU II Variable definitions
;EZ-VU II Variable definitions

.** ,
This code is linked in rather than being included with the main API

program, so some things need to be shared
PUBLIC declarations for procedures immediately precede the

; procedure names
.** ,

Appendix I. DOS Sample Program Code 311

PAGE
.** ,
.* ,
;* Description: Writes one or more buffers to a specified file
.* ,
;* Input
. * ,
.* ,
.* ,
.* ,
.* ,
.* ,
.* ,
. * ,
.* ,
;* Output
.* ,
.* ,
.* ,

Filename_Ptr will contain the address of the file name
to which to write •
Writebuff_Ptr_Tbl will contain the address(es) and size(s)
of the buffer(s) to write to the file. Each entry in this
table is 6 bytes long, consisting of a double word buffer
address followed by a one word buffer size. The end of the
table is marked by an entry whose size entry is zero or by
physical end of the table which is Writebuff_entry_cnt
entries long .

The buffer will be written to the designated file from the
designated buffer. Write_File_Stat will be set to zero if the
WRITE is performed successfully, otherwise it will be set to FFH

.** ,
PUBLIC Write_File
Write_File proc near

PUSHREGS
mov Writebuff_Index,G

mov Write_File_Stat,G
mov di,Filename_Ptr

call del imit_fn

mov dX,di

xor cx,cx
mov ah,3ch
int 21h

mov Filehandle,ax

jnc good_fi1 e_open
jmp file_open_error

good_file_open:
mov bX,Filehandle

mov' di,Writebuff_Index

;Init Index to beg of
; Writebuff_Ptr_Tbl
;Init status flag to successful
;Point 01 at filename

; Zero delimit filename

;Point OX at filename

;Create the file
File attribute - normal
Open output file function code
Call DOS

;Save File Handle

;Test for Open Error

;Put File Handle in BX

;Point di at current entry
;in Writebuff_Ptr_Tbl

cmp Writebuff_Index,Writebuff_entry_cnt*6
;If physical end of tbl has been

ja close_the_wrt_file ;reached, exit this loop.
;Set up bytes to write

mov cX,word ptr Writebuff_Ptr_Tbl[di+4]
jcxz close_the_wrt_file ;If zero end of tbl has been

;reached so exit loop.
push ds ;save ds

312 NetView/PCTM API/CS

;Point ds:dx at write buffer
lds dx,dword ptr Writebuff_Ptr_Tbl[diJ

rnov ah,40h
int 21h
pop ds

add Writebuff_Index,6

jrnp good file write

good_file_write:
crnp ax,cx
je good_file_open
jrnp file_write_error

cl os e_the_wrt_fi 1 e:
rnov bx,Filehandle
rnov ah,3eh
int 21h
jnc good_file_close_w
jrnp file_close_error

good_file_close_w:
jrnp write_file_exit

file_open_error:
rnov ioretcod,ax
rnov ax,209d
jrnp write_file_error_exit

file_write_error:
rnov ioretcod,ax
rnov ax,210d
jrnp write_file_error_exit

file_close_error:
rnov ioretcod,ax
rnov ax,7
jrnp write_file_error_exit

write_file_error_exit:
rnov Write_Fil.e_Stat,0ffh
lea di,rnsgnurn6
call Hex2decz

;Write file function code
;Call DOS
;restore ds

;Was there an error ?

;Burnp Writebuff_Index to
;point at next entry in tbl
;Test for Write Error

;Test for End of File
;If not EOF, process next tbl entry
;Else, show error rnsg and exit

;Put file handle to Close in BX
;Function Code for Close File
;Call DOS
;Test for Close Error

;Exit subrout

;set error rnsg ret code variable
;rnsg VAPI0209 - file create error

;set error rnsg ret code variable
;rnsg VAPI0210 - FILE WRITE error

;set error rnsg ret code variable
;rnsg VAPI0007 - FILE close error

;Indicate failure to caller
;Build SETMSG string

DMPC ISPASM,<LNGTH6PD,PARM6D,EZVU_RC> ;Display error rnsg
jrnp write_file_exit ;Branch to subrout exit

write_file_exit:
POPREGS
ret

Write_File endp

delirnit_fn proc near

;Restore all regs

Appendix I. DOS Sample Program Code 313

.*** ,

.* ,
;* Description : Puts a binary zero char at the end of the
;* of the filename pointed at di •
. * ,
;* Input: di points at file name to be zero delimited •
. * ,
;* Output: Filename is delimited with a binary zero terminator .
. * ,
.*** ,

push di
push ax

fname_loop:
inc di
mov al,[di]
cmp al , I

I

je eofn_fnd
cmp al,e
jne fname_loop

eofn_fnd:
xor a 1 ,a 1
mov [di],al

pop ax
pop di

ret
delimit_fn endp

PAGE

;Search for the end of the file
;name so you can put a zero
;delimiter after it.
;Is char a blank?
;Yes, End of name found
;Is char a binary zero?
;No, look at next char

;Put Zero delimiter at end
;of file name.

.** ,

.* ,
;* Description: Reads a binary NMVT or ARB image from a specified file into
;* a specified buffer •
. * ,
;* Input
. * ,
.* ,
. * ,
.* ,
. * ,
.* ,
;* Output
.* ,
.* ,
.* ,
.* ,

Filename_Ptr will contain the address of the file name
from which to read the NMVT or ARB .
Readbuff_Ptr will contain the address of the buffer into
which to read the NMVT or ARB •
Readbuff_Size will contain the size in bytes of the buffer
into which to read the NMVT or ARB •

The NMVT or ARB will be read from the designated file into the
designated buffer. Read_Nmvt_Stat will be set to zero if the
read is performed successfully, otherwise it will be set to FFH

.** ,
PUBLIC Read_Nmvt
Read_Nmvt proc near

PUSHREGS
mov Read_Nmvt_Stat,e
mov di,Filename_Ptr

mov dX,di

314 NetView/PCTM API/CS

;Init status flag to successful
;Point DI at filename

; Zero delimit filename

;Point DX at filename

xor al,al
mov ah,3dh
int 21h

jnc good_nmvt_open
jmp nmvt_open_error

good_nmvt_open:
mov nmvthandle,ax

mov bx,nmvthandle
xor cx,cx
xor dx,dx
mov al,2
mov ah,42h
int 21h

jnc move_ptr_goodl
jmp move_ptr_error

move_ptr_goodl:
mov Filesize,ax

cmp dx,8
je filesize_lt_64k
jmp nmvt_too_big

filesize_lt_64k:
mov bx,nmvthandle
xor cx,cx
xor dx,dx
mov al,8
mov ah,42h
int 21h

jnc move_ptr_good2
jmp move_ptr_error

move_ptr_good2:
mov cx,Filesize
cmp cx,Readbuff_Size
jbe nmvt_will_fit
jmp nmvt_too_big

nmvt_wi ll_fit:
mov bX,nmvthandle
mov dx,Readbuff_Ptr
mov ah,3fh
int 21h
jnc good_nmvt_read
jmp nmvt_read_error

good_nmvt_read:
cmp ax,cx
je not_past_eof
jmp nmvt_read_error

;Open the NMVT file
Access code 8 - read only,in AL
Open file function code
Call DOS

Test for Open Error

;Save File Handle

;Put file handle in BX
;Determine size of
;file by moving zero
;bytes past the EOF.
;Move file pointer function
; Call DOS

;Test for Error

;Save file size which was
;returned in DX:AX.
;15 file size> 64K error
;No
;Yes, error

;Put file handle in BX
;Reposit file ptr to
;beginning of file.

;Move file pointer function
; Call DOS

;Test for Error

;Set CX to size of file
;Will NMVT fit in the target buffer?
;Yes
;No

;Put file handle in BX
;Point DX at read buffer
;Read file function code
;Call DOS
;Test for Read Error

;Test for End of File

Appendix I. DOS Sample Program Code 315

PAGE

not_past_eof:
mov bx,nmvthandle
mov ah,3eh
int 21h
jnc good nmvt close
jmp nmvt_close_error

good_nmvt_close:
jmp read_nmvt exit

nmvt_too_big:
mov ax,30
jmp read_nmvt_error exit

nmvt_open_error:
mov ioretcod,ax
mov ax,5
jmp read_nmvt_error_exit

nmvt_read_error:
mov ioretcod,ax
mov ax,6
jmp read_nmvt_error_exit

nmvt_close_error:
mov ioretcod,ax
mov ax,7
jmp read_nmvt_error_exit

move_ptr_error:
mov ioretcod,ax
mov ax,32
jmp read_nmvt_error_exit

mov Read_Nmvt_Stat,0ffh
lea di,msgnum6
call Hex2decz

;Put file handle to Close in BX
;Function Code for Close File
;Ca 11 DOS
;Test for Close Error

;Exit subrout

;msg VAPI0030 - NMVT too big

;set error msg ret code variable
;msg VAPI0005 - NMVT open error

;set error msg ret code variable
;msg VAPI0006 - NMVT read error

;set error msg ret code variable
;msg VAPI00e7 - NMVT close error

;set error msg ret code variable
;msg VAPIe032 - Move ptr error

;Indicate failure to caller
;Build SETMSG string

DMPC ISPASM,<LNGTH6PD,PARM6D,EZVU_RC> ;Display error msg
jmp read_nmvt_exit ;Branch to subrout exit

read_nmvt_exit:
POPREGS
ret

Read_Nmvt endp

PAGE

;Restore all regs

.** ,

.* * ,
;* Procedure Name: SHOW_ERRMSG
.* ,
.* ,
.* ,
.* ,

Description Inserts the message number contained in AX
into a SETMSG string and uses it to call
EZVU II to display the message.

316 NetView/PCTM APIICS

*
*
*
*
*

.* ,
;* Input: AX contains the message number.
.* ,
;* Output: The requested message is displayed if it exists.
.* ,

*
*
*
*
*

.** ,
PUBLIC show_errmsg
show_errmsg proc near

push di ;Save 01
lea di,msgnum9
call Hex2decz

;Insert message number into string

pop di ;Restore 01
OMPC ISPASM,<LNGTH9PD,PARM90,EZVU_RC>
ret

;Oisplay error msg

show_errmsg endp

PAGE
.** ,
.* * ,
;* Procedure Name: Asc2hex
.* ,
;* Description Converts the Hex/ASCII string pointed at by 01

and whose length is contained in CX to a Hex
value that is returned in AX. If non-Hex chars
are found in the string CX is set to -1 on

.* ,

.* ,

.* ,

.* ,

.* ,
;* Input
. * ,
. * ,
.* ,
;* Output
.* ,
.* ,
. * ,
.* ,

return.

Register 01 points at the Hex/ASCII string to be
converted •
Register CX contains the length of the string (max 4) •

Register AX is used to return the result of the
conversion. If non-Hex chars were found in the input
string CX will be set to -1 on return, otherwise
CX will be set to zero •

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.** ,
PUBLIC Asc2hex
Asc2hex proc near

push dx
push di

xor ax,ax

asc2hex_loop:
mul by_16
xor dX,dx
mov dl , [di]

cmp dl, I I

jne not_a_blank_in_rc

mov dl,10 1
mov [di],dl

not_a_blank_in - rc:
sub dl,48d

;Save regs

;Clear AX

;Shift AX left one Hex digit
;Clear OX
;Put next char of ASCII/HEX string
; in OL

;Is this char a blank?

;Yes, change it to a 10 1

;Subtract ASCII code for 10 1 from
;OL to convert to number 0 - 22

Appendix I. DOS Sample Program Code 317

cmp
jle
sub

PAGE

not_athruf:
cmp

ja

add

inc

loop

jmp

badcode_done:
mov
jmp

asc2hex_done:
pop
pop
ret

Asc2hex endp

PAGE

dl,9
not_athruf
dl,7

dx,15

badcode_done

ax,dx

di

asc2hex_loop

asc2hex_done

cX,-l
asc2hex_done

di
dx

;If number> 9 then subtract 7
;from number to bridge gap from
;ASCII 19 1 to ASCII IAI
;Number should now be converted to range of 0-15

;Number should now be converted to
;range of 0-15.
;Is number in range?

;Yes number is in range.
;Add number to AX

;Bump 01 to char in string

;Loop until all chars processed.

;Exit subrout

;Number is out of range.

;Restore regs

.** ,

.* ,
;* Procedure Name: Hex2asc
.* ,
;* Description Converts the value contained in AX to a four

character Hex/ASCII string pointed at by 01 • . * ,
.* ,
;* Input
. * ,
. * ,
.* ,
;* Output
.* ,
. * ,
.* ,

Register 01 points at a 4 char string buffer to be
used as the target buffer for the conversion .
Register AX contains value to be converted .

The target buffer pointed at by 01 will contain
a four char Hex-ASCII string that is the
representation of the value passed in AX .

*
*
*
*
*
*
*
*
*
*
*
*
*
*

.** ,

PUBLIC Hex2asc
Hex2asc proc near

push ax
push dx
push di

mov byte ptr [di] ,10 1

318 NetView/PCTM API/CS

;save regs

;init output string to

hexloop:

not_a_f:

page

hexdone:

Hex2asc

PAGE

mov
mov
mov
add

xor
div

add

cmp
jle
add

mov
dec

cmp
jz
jmp

pop
pop
pop

ret

endp

byte ptr
byte ptr
byte ptr
di,3

dx,dx
by_16

dX,3eh

dx,39h
not a f
dx,7

[di+1], lei
[di+2], lei
[di+3],le l

byte ptr [di] ,dl
di

aX,e
hexdone
hexloop

di
dx
ax

;all zeroes

;divide ax by 16
;quotient in ax
;remainder in dx

;add ascii zero to remainder
;to convert char to ascii

;if char is > ascii 19 1

;add 7 to bridge gap between
;ascii 19 1 and ascii IAI

;store ascii char in string

;are we through, yin ?
;yes
;no, convert next char

;restore regs

.** ,

.* ,
;* Procedure Name: Hex2dec
.* ,
;* Description Converts the value contained in AX to a five

character Decimal/ASCII string padded with
leading blanks pointed at by 01 .

.* ,

. * ,

.* ,
;* Input Register 01 points at a 5 char string buffer to be
;* used as the target buffer for the conversion.
;* Register AX contains value to be converted.
.* ,
;* Output
.* ,
. * ,
.* ,

The target buffer pointed at by 01 will contain
a five char Dec-ASCII string with leading blanks
that is the representation of the value passed in AX •

;* Restriction: This routine cannot convert negative numbers.
;* If a negative number is passed to it it will

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Appendix I. DOS Sample Program Code 319

. * , set the target string to 'NEGTV' and return • *

.* , *

.** ,

PUBLIC Hex2dec
Hex2dec proc near

push ax
push dx
push di

mov
mov
mov
mov
mov

mov
and
cmp
jne
jmp

num_is_neg:
mov
mov
mov
mov
mov
jmp

num_is_pos:
add

page

decloop:

decdone:

Hex2dec

PAGE

xor
div

add
mov
dec

cmp
jz
jmp

pop
pop
pop

ret

endp

byte ptr [di] " ,
byte ptr [di+1],' ,
byte ptr [di+2],' ,
byte ptr [di+3],' ,
byte ptr [di+4],' ,

dx,ax
dX,8000h
dx,O
num_is_neg
num_is_pos

byte ptr [di] , 'n'
byte ptr [di+1],'e'
byte ptr [di+2],'g'
byte ptr [di+3],'t'
byte ptr [di+4],'v'
decdone

di,4

dX,30h
byte ptr [di],dl
di

ax,O
decdone
decloop

di
dx
ax

;save regs

;init output string to
;all blanks

;check to see if number
;is negative

;yes, it is negative
;no, it is positive

;set output string equal
;to 'negtv' and exit

;point di at last char in
;output string

;clear dx
;divide ax by 10
;quotient in ax
;remainder in dx

;add ascii zero to remainder
;store ascii char in string

;are we through yet, yin?
;yes
;no, convert next char

;restore regs

.** ,

320 NetView/PCTM API/CS

.* ,
;* Procedure Name: Hex2decz
.* ,
;* Description Converts the value contained in AX to a four

character Decimal/ASCII string padded with
leading zeroes pointed at by DI .

.* ,

. * ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

. * ,

.* ,

. * ,

.* ,

.* ,

Input

Output

Register DI points at a 4 char string buffer to be
used as the target buffer for the conversion.
Register AX contains value to be converted.

The target buffer pointed at by DI will contain
a four char Dec-ASCII string with leading zeroes
that is the representation of the value passed in AX •

Restriction: This routine cannot convert negative numbers .
If a negative number is passed to it it will
set the target string to 'NEGT ' and return.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.* * ,

.** ,

PUBLI C Hex2decz
Hex2decz proc near

push ax
push dx
push di

mov
mov
mov
mov

mov
and
cmp
jne
jmp

num_is_negz:
mov
mov
mov
mov
jmp

num_is_posz:
add

page

decloopz:
xor
div

add
mov
dec

byte ptr [di] ,10 1
byte ptr [di+1],'0'
byte ptr [di+2],'0'
byte ptr [di+3],'0'

dx,ax
dx,BOOOh
dx,O
num_is_negz
num_is_posz

byte ptr [di] ,Inl
byte ptr [di+1],'e '
byte ptr [di+2],'g'
byte ptr [di+3],'t'
decdonez

di,3

dX,30h
byte ptr [di],dl
di

;Save regs

;Init output string
;to all zeroes

;Is number negative?
;Yes
;No

;Set target string equal to
;'NEGT ' ~nd return

;Point DI at last char in string

;DIVIDE AX BY 10
;QUOTIENT IN AX
;REMAINDER IN DX

;ADD ASCII ZERO TO REMAINDER
;STORE ASCII CHAR IN STRING

Appendix I. DOS Sample Program Code 321

cmp
jz
jmp

decdonez:
pop
pop
pop

ret

Hex2decz endp

PAGE

ax,0
decdonez
decloopz

di
dx
ax

;Are we through yet ?
;Yes
;No

;Restore regs

.** ,

.* ,
;* Procedure Name: Decasc2bin
.* ,
;* Description Converts the Dec/ASCII string of length 3

pointed at by SI to a binary value which is
returned.in CX .

.* ,

. * ,

.* ,

.* ,

.* ,

If non-decimal numeric chars are found in the
string CX is set to -1 on return.

;* Input Register SI points at the Dec/ASCII string to be
;* converted.
.* ,
;* Output
.* ,
. * ,
.* ,

Register CX is used to return the result of the
conversion. If non-Dec chars were found in the input
string CX will be set to -1 on return .

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.** ,

PUBLIC Decasc2bin
Decasc2bin proc near

push ax
.* ,

;Save AX

;* This loop will verify that the chars in the string are valid chars
.* ,

mov cx,3

cmp byte ptr [si],1 I
jne not a blank in num
mov byte ptr [Si],'OI

not_a_blank_in_num:
cmp byte ptr [si],IOI
jae char_not_too_low
jmp bad_dec_char

char_not_too_low:
cmp byte ptr [si],19 1
jbe char_not_too_high
jmp bad_dec_char

322 NetView/PCTM API/CS

;Set CX to length of string
;for use as loop counter

;Replace blanks with zeroes

;Is char < 10 1 ?
;Yes, invalid char
;Exit routine

;Is char> 19 1 ?
;Yes, invalid char
;Exit routine

char_not_too_high:
dec cx
inc si

page

jcxz convert_num
jmp check_num

convert_num:
sub si,3

xor

mov
sub

xor
mov
sub
mul
add

xor
mov
sub
mul
add

cmp
ja
cmp
je
jmp

bad_msg_length:
.* ,

cx,cx

cl , [s i +2]
cX,48d

aX,ax
a 1, [s i +1]
aX,48d
by_l 0
cX,ax

aX,ax
al ,[si]
aX,48d
by_lOO
cX,ax

cx,253
bad_msg_length
cx,O
bad_msg_length
decasc2bin_exit

;Decrement loop counter
;Bump ptr to next char in string
;Finished checking?
;No

;Point SI at leftmost char in
;input string
;Clear CX

;Put One's char in CL
;Convert from ASCII to 0-9

;Clear AX
;Put Ten's char in AL
;Convert from ASCII to 0-9
;Mult by 10
;Add Ten's to One's

;Clear AX
;Put Hundred's char in AL
;Convert from ASCII to 0-9
;Mult by 100
;Add Hundred's to Ten's & One's

;Result > 253 ?
;Yes, exceeds max msg length
;Result <= 0
;Yes, result less than min msg length
;No, valid value

;* Display error message indicating that length is not within acceptable bounds
.* ,

DMPC ISPASM,<LNGTH15PD,PARM15D,EZVU_RC>
jmp decasc2bin_exit

bad_dec_char:
.* ,
;* Display error message indicating that non-numeric chars were found in string
.* ,

DMPC ISPASM,<LNGTH16PD,PARM16D,EZVU_RC>
mov cx,-1 ;Indicate error in conversion
jmp decasc2bin_exit ;Exit routine

decasc2bin_exit:
pop ax
ret

Decasc2bin endp

PAGE

;Restore AX

.** ,

.* ,
;* Procedure Name: Clrscr

*
*

Appendix I. DOS Sample Program Code 323

.* ,
;* Description Clears the screen and sets the variables used

for setting cursor size. .* ,
.* ,
;* Input: None
.* ,
.* ,
.* ,
.* ,
.* ,

Output : CURS_TOP and CURS_BOT are set to the appropriate
values for the type of monitor on which the program
is being run.

*
*
*
*
*
*
*
*
*
*

.** ,

PUBLIC Cl rscr
Clrscr proc

push
mov
int

mov
mov
cmp
jne
mov
mov

not_monochrome:
mov
int

pop
ret

Clrscr endp

PAGE

near
ax
ah,Ofh
lOh

curs_top,6
curs_bot,7
al,7
not_monochrome
curs_top, 12
curs_bot, 13

ah,O
lOh

ax

;SAVE AX
;GET CURRENT VIDEO MODE
;MODE IS RETURNED IN AL

;Assume color monitor and
;set vals for cursor top/bot
;Is it mono?
;No leave top/bot as they are.

;RESET CURRENT VIDEO MODE
;TO WHAT IT ALREADY IS WHICH
;WILL CLEAR THE SCREEN

;RESTORE AX

.** ,

.* ,
;* Procedure Name: Delay
.* ,
;* Description
. * ,
.* ,

Does a processor independent delay for the
number of seconds passed in AX •

. * , Input: AX contains the number of seconds to delay •

.* ,
;* Output: None
.* ,

*
*
*
*
*
*
*
*
*
*

.** ,
PUBLIC Del ay
Delay proc near

PUSHREGS
mov delay_time,ax

mov ah,2ch
int 21h

delay_loop:
mov old_sec,dh

324 NetView/PCTM API/CS

;Save regs
;Save delay time

;Get Time delay begun

cmp delay_time,0
je end_del ay_l oop

get_time_loop:
mov ah,2ch
int 21h
cmp old_sec,dh
je get_time_loop

dec delay_time
jmp delay_loop

end_delay_loop:
POPREGS
ret

Delay endp

PAGE

;Enough time elapsed yet?
;Yes

;Get Time

;Have seconds changed ?
;No, keep looping

;Another second has passed.

;Restore regs

.** ,

.* ,
;* Procedure Name: Execpgm
.* ,

*
*
*

;* Description
. * ,

Uses the DOS EXEC function to invoke a second
copy of the command processor .

*
*

.* ,
;* Input: None
.* ,

*
*
*

;* Output: Error messages if the EXEC fails. *
.* * ,
.** ,
PUBLI C Execpgm
Execpgm proc near

jmp past_regsave_area

ss_save dw?
sp_save dw?

past_regsave_area:
PUSHREGS
call Clrscr

;Save area for stack pointers for restoration
;after an EXEC (4BH) function call to DOS

;Save all registers
;Clear the screen

lea dX,ret2tester ;Display the Return to Tester message.
mov ah,9
int 21h

mov ah,l
mov ch,curs_top
mov cl,curs_bot
int 10h

mov ah,62h
int 21h

mov es,bx
mov bx,4096d
mov ah,4ah
int 21h

mov ax,es:2ch

;Set cursor size for
;exit to secondary DOS

;Get Addr of beginning of pgm

;Request that pgm size be
;limited to 4096 paragraphs
;which is 64K

;Set up environment ptr

Appendix I. DOS Sample Program Code 325

mov envaddr,ax
lea dX,Execpgm1
1 ea bX,execblk
mov aX,ds
mov eS,ax

page

push ds

mov ax,ss
mov ss_save,ax
mov ax,sp
mov sp_save,ax

mov al,0
mov ah,4bh
int 21h
mov cX,ax

mov aX,sp_save
mov bx,ss_save

cli
mov sp,ax
mov ss,bx
sti

pop ds

cmp cx,8
jne enough_mem
lea dx,not_enough_mem_msg
mov ah,9
int 21h

mov ah,0
i nt 16h
jmp pgm_ran_good

enough_mem:
cmp cx,1
je exec_failed
cmp cx,2
je exec_failed
cmp cx,5
je exec_failed
cmp cx,10
je exec_failed
cmp cx,11
jne pgm_ran_good

page

exec_failed:
mov ax,cx

326 NetView/PCTM API/CS

;for subprogram load.

;Save Data Seg

;On return from EXEC function
;all regs may be clobbered
;including SS and SP. One
;place to save these pointers
;is in the Code Segment.

;Indicate subpgm to be executed
;Exec function code
;Run sub program
;Save return code in CX

;Put saved stack pointer values in
;AX and BX in order to minimize number
;of instruction to be performed with
;interrupts disabled.

;Disable interrupts while switching stacks
;Restore stack offset ptr
;Restore stack segment ptr
;Re-enable interuppts

;Restore Data Seg

;Did it have enough memory?
;Yes
;No, Display the message

;Wait for a keystroke
;Call the BIOS

;Invalid function number

;File not found

;Access denied

;Invalid environment

;Invalid format

;Insert Return code into

lea di,exec_rc_asc
call Hex2dec
lea dx,cant_run_pgm_msg
mov ah,9
int 21h

mov ah,8
int 16h

;message.

;Display the message

;Wait for a keystroke
;Call the BIOS

pgm_ran_good:
call Clrscr ;Clear the screen

POPREGS
ret

Execpgm endp

;Restore all regs

PAGE
.** ,
.* , *
;* Procedure Name: Check_Ezvu_Rc *
.* , *
;* Description This procedure is called after all EZVU function *

calls made using the DMPC MACRO. If the EZVU *
return code EZVU_RC is zero, no action is taken. *
If EZVU_RC is non-zero, the screen is cleared *
and a message is displayed showing the return *
code returned by EZVU and the offset tnto the *

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

.* ,

. * ,

.* ,

. * ,

.* ,

.* ,

.* ,

Input

Output

;* Note
.* ,
.* ,
.* ,
.* ,
.* ,

code segment of the call that received the *
non-zero return code. *

*
EZVU_RC contains the return code from the last call to *
EZVU . *
EZVU_CALL_ADDR contains the offset into the code *
of the last call to EZ-VU • *

*
: Error messages whenever EZVU_RC is non-zero. *

*
There are instances in which a non-zero return code from *
EZ-VU does not necessarily signal an error condition.
For such instances, the action taken by this procedure
may not be appopriate. There are , however no such
instances in this sample program.

*
*
*
*
*

.** ,
PUBLIC Check_Ezvu_Rc
Check_Ezvu_Rc proc near

PUSHREGS

cmp ezvu_rc,8
jne show_ezvu_rc_errmsg
jmp check_ezvu_rc_exit

show_ezvu_rc_errmsg:
mov aX,ezvu_rc
lea di,ezvu_rc_asc
call Hex2dec
mov ax,ezvu_call_addr
lea di,ezvu_addr_asc
call Hex2asc

;Store regs

;Is return code zero?
;No, error has occurred
;Yes, call was successful

;Insert Return Code into
;message

;Insert Call Address into
;message

Appendix I. DOS Sample Program Code 327

call
lea
mov
int

mov
int
cmp
jne

Clrscr
dx,ezvu_rc_msg
ah,9
21h

ah,0
16h
al,esc
check_ezvu_rc_exit

;Clear the screen
;Display the message

;Wait for a keystroke
;Call the BIOS
;Was it the ESC key?

mov ax,ezvu_rc ;Set ErrorLevel for exit
mov
int

ah,4ch
21h

; 1 RETURN TO DOS ' FUNCTION CALL
;RETURN TO DOS

POPREGS
ret

Check_Ezvu_Rc endp

;Restore regs

.** ,

.* * ,
;* Set_Active_Keys
.* ,
;* Input:

*
*
*

;* Active_Keys - word with flags set indicating which keys *
.* , are valid *
.* ,
;* Output:

*
*

; * ZFxx - Set to END if valid, 0h ' ND ' if invalid *
.* , ZENTxx - Set to scan codes of alternate enter keys *
.* , *
.** ,
PUBLIC Set_Active_Keys
Set_Active_Keys proc near

PUSH REGS

;First, set all F keys active so we can just turn them off later

.** ,
;Define the function keys
.** ,

DMPC_NC ISPASMV,<ZF01LP,ZF01_PARM,EZVU_RC,ZF01,ZF01LV>
DMPC_NC ISPASMV,<ZF02LP,ZF02_PARM,EZVU_RC,ZF02,ZF02LV>
DMPC_NC ISPASMV,<ZF03LP,ZF03_PARM,EZVU_RC,ZF03,ZF03LV>
DMPC_NC ISPASMV,<ZF04LP,ZF04_PARM,EZVU_RC,ZF04,ZF04LV>
DMPC_NC ISPASMV,<ZF05LP,ZF05_PARM,EZVU_RC,ZF05,ZF05LV>
DMPC_NC ISPASMV,<ZF06LP,ZF06_PARM,EZVU_RC,ZF06,ZF06LV>
DMPC_NC ISPASMV,<ZF07LP,ZF07_PARM,EZVU_RC,ZF07,ZF07LV>
DMPC_NC ISPASMV,<ZF08LP,ZF08_PARM,EZVU_RC,ZF08,ZF08LV>
DMPC_NC ISPASMV,<ZF09LP,ZF09_PARM,EZVU_RC,ZF09,ZF09LV>
DMPC_NC ISPASMV,<ZF10LP,ZF10_PARM,EZVU_RC,ZF10,ZF10LV>
DMPC_NC ISPASMV,<ZFIILP,ZFll_PARM,EZVU_RC,ZFll,ZFllLV>
DMPC_NC ISPASMV,<ZF12LP,ZF12_PARM,EZVU_RC,ZF12,ZF12LV>
test Active_Keys, Fl_OK ;Is Fl an invalid key?
jne chk_f2_ok ;If not, go check next key
mov ZFKEY_TO_DELETE,ZF01_A ;Set key inactive
call delete_zfkey

chk_f2_ok:
test Active_Keys, F2 OK ;Is this an invalid key?

328 NetView/PCTM APIICS

jne
mov
call

chk_f3_ok:
test
jne
mov
call

chk_f4_ok:
test
jne
mov
call

chk_f5_ok:
test
jne
mov
call

chk_f6_ok:

chk_f3_ok
ZFKEY_TO_DELETE, ZF02_A
delete_zfkey

;If not, go check next key
;Set key to be deactivated
;And VDELETE it

Active_Keys, F3_0K ;ls this an invalid key?
chk_f4_ok ;If not, go check next key
ZFKEY_TO_DELETE,ZF03_A ;Set key to be deactivated
delete_zfkey ;And VDELETE it

Active_Keys, F4_0K ;ls this an invalid key?
chk_f5_ok ;If not, go check next key
ZFKEY_TO_DELETE, ZF04_A ;Set key to be deactivated
delete_zfkey ;And VDELETE it

Active_Keys, F5_0K
chk_f6_ok
ZFKEY_TO_DELETE,ZF05_A
delete_zfkey

;ls this an invalid key?
;If not, go check next key
;Set key to be deactivated
;And VDELETE it

test Active_Keys, F6_0K ;ls this an invalid key?
jne chk_f7_ok ;If not, go check next key
mov ZFKEY_TO_DELETE, ZF06_A ;Set key to be deactivated
call delete_zfkey ;And VDELETE it

test
jne
mov
call

chk_f8_ok:
test
jne
mov
call

chk_f9_ok:
test
jne
mov
call

chk_fU)_ok:
test
jne
mov
call

chk_fll_ok:
test
jne
mov
call

chk_fI2_ok:
test
jne
mov
call

Active_Keys, F7_0K ;ls this an invalid key?
chk_f8_ok ;If not, go check next key
ZFKEY_TO_DELETE,ZF07_A ;Set key to be deactivated
delete_zfkey ;And VDELETE it

Active_Keys, F8_0K ;ls this an invalid key?
chk_f9_ok ;If not, go check next key
ZFKEY_TO_DELETE,ZF08_A ;Set key to be deactivated
delete_zfkey ;And VDELETE it

Active_Keys, F9_0K
chk_fIO_ok
ZFKEY_TO_DELETE,ZF09_A
delete_zfkey

;ls this an invalid key?
;If not, go check next key
;Set key to be deactivated
;And VDELETE it

Active_Keys, FlO_OK ;ls this an invalid key?
chk_fll_ok ;If not, go check next key
ZFKEY_TO_DELETE,ZFIO_A ;Set key to be deactivated
delete_zfkey ;And VDELETE it

Active_Keys, FII_OK ;ls this an invalid key?
chk_fI2_ok ;If not, go check next key
ZFKEY_TO_DELETE,ZFII_A ;Set key to be deactivated
delete_zfkey ;And VDELETE it

Active_Keys, F12_0K ;ls this an invalid key?
chk_other_keys ;If not, go check other keys
ZFKEY_TO_DELETE,ZFI2_A ;Set key to be deactivated
delete_zfkey ;And VDELETE it

.** ,
;After this point, we are looking at keys that need to have their
; scan codes placed in the ZENT variable to be recognized .
• ****~***
~hk_other_keys:

Appendix I. DOS Sample Program Code 329

FILL_CHAR KEYLINE,I I,Keylinelv ;Clear out text for non-F keys
FILL_CHAR ZENTl,0,LNGTH9V ;Clear out list of valid Enter keys

mov
push
pop
xor

test
je
mov
mov
add
mov
mov
rep

test
je
mov
mov
add

mov
mov
rep

test
je
mov
mov
add
mov
mov
rep

test
je
mov
mov
add
mov
mov
rep

di, offset KEYLINE
ds
es
bX,bx

Active_Keys, ENTER_OK
chk_next_l
ax, word ptr ZENTln
word ptr ZENTl[bx], ax
bx, 2
si, offset Enter_Text
ex, ENTER_TLEN
movsb

Active_Keys, ESC_OK
chk_next_2
ax, word ptr ZENTIE
word ptr ZENTl[bx], ax
bx, 2

si, offset Escape_Text
ex, E5CAPE_TLEN
movsb

Active_Keys, PGUP_OK
chk_next_3
ax, word ptr ZENTIPUP
word ptr ZENTl[bx], ax
bx, 2
si, offset PgUp_Text
cx, PGUP_TLEN
movsb

Active_Keys, PGDN_OK
chk_keys_ok_exit
ax, word ptr ZENTlPDN
word ptr ZENTl[bx], ax
bx, 2
si, offset PgDn_Text
cx, PGDN_TLEN
movsb

chk_keys_ok_exit:
POPREGS
ret

Set_Active_Keys endp

;Reset output pointer

; Used for offset into ZENT array

;Do we want this key?
;If not, check next key
;If so, get its scan code
;And put it in the EZVU array

;Move text of key in

;Do we want this key?
;If not, check next key
;If so, get its scan code
;And put it in the EZVU array

;Move text of Esc key in

;Do we want this key?
;If not, check next key
;If so, get its scan code
;And put it in the EZVU array

;Move text of PgUp key in

;Do we want this key?
;If not, check next key
;If so, get its scan code
;And put it in the EZVU array

;Move text of PgDn key in

.*** ,
delete_zfkey

Input:
ZFKEY_TO_DELETE - Set to ASCII Fkey to delete (e.g. 101 1, 1121)

330 NetView/PCTM API/CS

; Output:
, Appropriate F key deleted from EZVU pools
.*** ,
delete_zfkey proc near

DMPC_NC ISPASM,<ZFKEY_DELETEL, ZFKEY_DELETE, EZVU RC>
ret

delete_zfkey endp

.** ,

.* ,
;* Procedure Name: Hexb2asc
.* ,
;* Description Converts the value contained in AL to a two

character Hex/ASCII string pointed at by DI . . * ,
.* ,
;* Input
. * ,
.* ,
.* ,

Register DI points at a 2 char string buffer to be
used as the target buffer for the conversion .
Register AL contains value to be converted.

*
*
*
*
*
*
*
*
*
*

;* Output The target buffer pointed at by DI will contain *
;* a two char Hex-ASCII string that is the *
;* representation of the value passed in AX. *
.* * ,
.** ,

PUBLIC Hexb2asc
Hexb2asc proc near

push ax

sub
push
lea

call
pop
mov

mov

pop

ret

Hexb2asc ENDP

CSEG ENDS

end

ah, ah
di
di,hexb2asc_buff

Hex2asc
di
ax,word ptr hexb2asc_buff+2

word ptr [di],ax

ax

;save ax

;zero out high byte
;save di
;point di at target buffer
;for Hex2asc
;convert to a four byte string
;restore di
;put last 2 of 4 converted chars
;chars in ax
;store 2 chars in caller's buffer

;restore ax

Appendix I. DOS Sample Program Code 331

APIDISP.DSG

API Sample Program - (C) Copyright IBM Corp. 1986, 1987
SAMPLE PROGRAM - NO WARRANTY EXPRESSED OR IMPLIED

You are hereby licensed to use, reproduce, and distribute
these sample programs as your needs require. IBM does not
warrant the suitability or integrity of these sample programs
and accepts no responsibility for their use for your
applications. If you choose to copy and redistribute
significant portions of these sample programs, you should
preface such copies with this copyright notice.

DGROUP GROUP DATA ,STACK

STACK SEGMENT BYTE STACK 'STACK'
DB 256 DUP('STACK ')

STKTOP OW 1
STACK ENDS

DATA SEGMENT PARA PUBLIC 'DATA'
ASSUME DS:DGROUP

CR_LF EQU WORD PTR 0A0DH
CR EQU BYTE PTR 130
ESC EQU BYTE PTR 270
Fl EQU BYTE PTR 590
F2 EQU BYTE PTR 600
F3 EQU BYTE PTR 610
F4 EQU BYTE PTR 620
F5 EQU BYTE PTR 630
F6 EQU BYTE PTR 640
F7 EQU BYTE PTR 650
F8 EQU BYTE PTR 660
F9 EQU BYTE PTR 670
F10 EQU BYTE PTR 680
Fll EQU BYTE PTR 840
F12 EQU BYTE PTR 850
PAGEUP EQU BYTE PTR 73d
PAGEDN EQU BYTE PTR 8Id

2K STACK AREA

; ASCII Code for Carriage Return/Line Feed
; ASCII Code for Carriage Return

ASCII Code for Escape Code
Scan Code for Fl key
Scan Code for F2 key
Scan Code for F3 key
Scan Code for F4 key
Scan Code for F5 key
Scan Code for F6 key
Scan Code for F7 key
Scan Code for F8 key
Scan Code for F9 key
Scan Code for F10 key
Scan Code for Fll key
Scan Code for F12 key
Scan Code for Page up key
Scan Code for Page down key

ZENTF9n DB F9
ZENTF9nb DB 0

F9 key - scan code
F9 key - ASCII code

ZENTFlln DB Fll
ZENTFllb DB 0

Fll key - scan code
Fll key - ASCII code

PARM10D DB 'CONTROL CURSOR'
ZFLD DB
ZCRS DB
LNGTH10PD OW LNGTH10PD - PARM10D

332 NetView/PC™ APIICS

PARM8D DB
LNGTH8PD DW

'DISPLAY '
LNGTH8PD - PARM8D

.** ,
; Key definitions for some panels
.** ,

EQU F3_0K+F9_0K+ESC_OK DCJVCX88_KEYS
DCJVBP83_KEYS
DCJVBP84_KEYS

EQU F3_0K+F6_0K+F9_0K+Fll_0K+F12_0K+PGUP_OK+PGDN_OK+ESC_OK
EQU F3_0K+F6_0K+F9_0K+ESC_OK+F12_0K

.** ,
; Panel names
.** ,
DCJVBP83 DB 'DISPLAY DCJVBP83I ;EZVU command
DCJVBP83L DW DCJVBP83L - DCJVBP83

DCJVBP84 DB 'DISPLAY DCJVBP84I ;EZVU command
DCJVBP84L DW DCJVBP84L - DCJVBP84

DCJVCX88 DB 'DISPLAY DCJVCX88I ;EZVU command
DCJVCX88L DW DCJVCX88L - DCJVCX88

DCJVBPPD DB 'PANDEL ' ;Delete panels
DCJVBPPDL DW DCJVBPPDL - DCJVBPPD

PJTITLE_LENGTH EQU 78
;Title field on panel
PJTITLEC_PARM DB

;Length of title field

PJTITLELP DW
PJTITLEC DB
PJTITLELV DW

I PJTITLEC C I
PJTITLELP-PJTITLEC_PARM
PJTITLE_LENGTH DUP(' I)
PJTITLELV-PJTITLEC

;Display type: Note that 8=unformatted l=ASCII, 2=EBCDIC
If this

PJDSPTYP_PARM
PJDSPTYPLP
PJDSPTYP
PJDSPTYPLV

is changed, must change translation on the panel
DB 'PJDSPTYP CI
DW PJDSPTYPLP-PJDSPTYP_PARM
DB 111

DW PJDSPTYPLV-PJDSPTYP

.*** ,
;* Dump (Unformatted) panel variables
.*** ,

PJTITLE_A
PJTITLE_E

DB
DB

;File name
PJFILENC_PARM DB
PJFILENLP DW
PJFILENC DB
PJFILENLV DW

PUBLIC PJFILENC

VENDOR API SPCF DISPLAY FILE
VENDOR API SPCF DISPLAY FILE

I PJFILENC C I
PJFILENLP-PJFILENC_PARM
I NMVTFI LE. BIN
PJFILENLV-PJFILENC-2

Display Type: Dump (ASCII)
Display Type: Dump (EBCDIC)

Appendix I. DOS Sample Program Code 333

;Other type of character conversion (goes next to F key)
PJOTYPEC_PARM DB 'PJOTYPEC CI

PJOTYPELP DW PJOTYPELP-PJOTYPEC_PARM
PJOTYPEC DB 'EBCDIC '
PJOTYPELV DW PJOTYPELV-PJOTYPEC

PJOTYPE A
PJOTYPE E

DB
DB

;length of dump field
PJDMPLNC_PARM DB
PJDMPLNLP DW
PJDMPLNC DB
PJDMPLNLV DW

I ASCII I

'EBCDIC '

'PJDMPLNC CI

PJDMPLNLP-PJDMPLNC_PARM
10000 1
PJDMPLNLV-PJDMPLNC

;Starting offset input field
PJOFFSEC PARM DB 'PJOFFSEC CI

PJOFFSELP DW PJOFFSELP-PJOFFSEC_PARM
PJOFFSECX DB 10000 1 ;*** Look Below for real value
PJOFFSELV DW PJOFFSELV-PJOFFSECX

NUNES
COLUMNS
PAGESIZE

EQU
EQU
EQU

16 ;# of lines on display
16 ;Bytes displayed per line
NLINES * COLUMNS ;Bytes displayed per page

;Rest of offset input field
PJOFFSTC_PARM DB
PJOFFSTLP DW
PJOFFSEC DB
PJOFFSTC DB
PJOFFST_BYTES DW
PJOFFST_SIZE DW
PJOFFST VI DW
PJOFFST_HI DW

;Hexadecimal dump area
PJDMPHXC_PARM DB
PJDMPHXLP DW
PJDMPHXC DB
PJDMPHX_BYTES DW
PJDMPHX_SIZE DW
PJDMPHX_VI DW
PJDMPHX HI DW

;Character dump area
PJDMPCHC_PARM DB
PJDMPCHLP DW
PJDMPCHC DB
PJDMPCH_BYTES DW
PJDMPCH SIZE DW
PJDMPCH VI DW
PJDMPCH HI DW

'PJOFFSTC CI

PJOFFSTLP-PJOFFSTC_PARM
10000 1 ;So we treat offsets the same
NLINES-1 DUP('0000 1)
4 ;bytes in an offset field thingy
NLINES-1 ;Number of elements
o ;Vertical index
o ;Horizontal index

'PJDMPHXC CI

PJDMPHXLP-PJDMPHXC_PARM
NLINES DUP('0000 0000 0000 0000 0000 0000 0000 000(1)
40 ;bytes in an hex dump line
NLINES ;Number of elements
o ;Vertical index
o ;Horizontal index

'PJDMPCHC CI

PJDMPCHLP-PJDMPCHC_PARM
NLINES DUP(' ..•••.•..•..•••. 1)
17 ;bytes in an character dump line
NLINES ;Number of elements
o ;Vertical index
o ;Horizontal index

334 NetView/PCTM API/CS

.*** ,
;* Dump (Formatted) panel variables
.*** ,

PJTITLE_RUN DB
PJTITLE_LPD DB
PJTITLE_LT DB
PJTITLE_LD DB
PJTITLE_NULL DB

;ARB ID
P04ARBID PARM DB
P04ARBIDLP DW
P04ARBID DB
P04ARBIDLV DW

;Request code
P04RQCOD_PARM DB
P04RQCODLP DW
P04RQCOD DB
P04RQCODLV DW

;ARB Length
P04ARBLN PARM DB
P04ARBLNLP DW
P04ARBLN DB
P04ARBLNLV DW

;Parse ID
P04PRS ID _PARM DB
P04PRS IDLP DW
P04PRSID DB
P04PRSIDLV DW

;Receive correlator
P04RCVCR_PARM DB
P04RCVCRLP DW
P04RCVCR DB
P04RCVCRLV DW

;Return code
P04RETCD PARM DB
P04RETCDLP DW
P04RETCD DW
P04RETCDLV DW

;Error Class
P04ERCLS_PARM DB
P04ERCLSLP DW
P04ERCLS DW
P04ERCLSLV DW

;Error Type
P04ERTYP PARM DB
P04ERTYPLP DW
P04ERTYP DW
P04ERTYPLV DW

VENDOR API SPCF DISPLAY RUN COMMAND Display Type: Formatted I
I VENDOR API SPCF DISPLAY LINK PD COMMAND Display Type: Formatted I
'VENDOR API SPCF DISPLAY LINK TEST COMMAND Display Type: Formatted I
'VENDOR API SPCF DISPLAY LINK DATA COMMAND Display Type: Formatted I

VENDOR API SPCF FORMATTED DISPLAY - No Display Active

'P04ARBID CI
P04ARBIDLP-P04ARBID_PARM
'ARB6 1
P04ARBIDLV-P04ARBID

'P04RQCOD CI
P04RQCODLP-P04RQCOD_PARM
10000 1
P04RQCODLV-P04RQCOD

I P04ARBLN I I
P04ARBLNLP-P04ARBLN_PARM
36
P04ARBLNLV-P04ARBLN

'P04PRSID CI
P04PRSIDLP-P04PRSID_PARM
1611
P04PRSIDLV-P04PRSID

'P04RCVCR CI
P04RCVCRLP-P04RCVCR_PARM
'0123456789abcdef0123 I
P04RCVCRLV-P04RCVCR

I P04RETCD I I
P04RETCDLP-P04RETCD_PARM
-1
P04RETCDLV-P04RETCD

I P04ERCLS I I
P04ERCLSLP-P04ERCLS_PARM
-1
P04ERCLSLV-P04ERCLS

I P04ERTYP I I
P04ERTYPLP-P04ERTYP_PARM
-1
P04ERTYPLV-P04ERTYP

Appendix I. DOS Sample Program Code 335

;Parse Sense Data
P04PRSNS_PARM DB
P04PRSNSLP DW
P04PRSNS DB
P04PRSNSLV DW

'P04PRSNS C'
P04PRSNSLP-P04PRSNS_PARM
'01234567' ;Parse sense data
P04PRSNSLV-P04PRSNS

;Command length and Number of resources field
P04CMDLN_PARM DB
P04CMDLNLP DW
P04CMDLN DB
P04CMDLNLV DW

;Command length Text
P04CMDTX PARM DB
P04CMDTXLP DW
P04CMDTX DB
P04CMDTXLV DW

P04CMDTX_Command
P04CMDTX_Resources
P04CMDTX_Null

, P04CMD LN I'
P04CMDLNLP-P04CMDLN_PARM
o
P04CMDLNLV-P04CMDLN

(Command Length: or Number of Resources:)
'P04CMDTX C'
P04CMDTXLP-P04CMDTX_PARM
'Command Length ... :'
P04CMDTXLV-P04CMDTX

DB 'Command Length •.• :'
DB 'Number of Resources:'
DB 'Length of Data •.. :'

;Command Text for command
P04CMDLI_PARM DB 'P04CMDLI C'
P04CMDLILP DW P04CMDLILP-P04CMDLI_PARM
P04CMDLI DB 'Command:'
P04CMDLILV DW P04CMDLILV-P04CMDLI

;Resources list
P04RESRC PARM DB 'P04RESRC C'
P04RESRCLP DW P04RESRCLP-P04RESRC PARM
P04RESRC DB ' Resources: '
P04RESRCLV DW P04RESRCLV-P04RESRC

;Test Count text
P04TSCNX_PARM DB 'P04TSCNX C'
P04TSCNXLP DW P04TSCNXLP-P04TSCNX_PARM
P04TSCNX DB 'Test Count: '
P04TSCNXLV DW P04TSCNXLV-P04TSCNX

;Test Count data
P04TSCNT_PARM DB 'P04TSCNT I'
P04TSCNTLP DW P04TSCNTLP-P04TSCNT_PARM
P04TSCNT DW 0
P04TSCNTLV DW P04TSCNTLV-P04TSCNT

;Test Type text
P04TSTYX PARM DB 'P04TSTYX C'
P04TSTYXLP DW P04TSTYXLP-P04TSTYX_PARM
P04TSTYX DB 'Test Type: I

P04TSTYXLV DW P04TSTYXLV-P04TSTYX

;Test Type data
P04TSTYP PARM DB 'P04TSTYP I'
P04TSTYPLP DW P04TSTYPLP-P04TSTYP_PARM
P04TSTYP DB 0
P04TSTYPLV DW P04TSTYPLV-P04TSTYP

336 NetView/PCTM API/CS

P04_NLINES
P04_COLUMNS

EQU
EQU

5
64

P04_SENSE_LEN EQU 4 ;Number of bytes in sense length

;The big data field
P04RDATA_PARM
P04RDATALP
P04RDATA
P04RDATA2
P04RDATALV

DB
DW
DB
DB
DW

'P04RDATA CI
P04RDATALP-P04RDATA_PARM
P04_COLUMNS dup (I I)
(P04_NLINES-1)*P04_COLUMNS dup (I I)
P04RDATALV-P04RDATA

P04RDATA_BYTES DW P04_COLUMNS ;Number of characters in a line
P04RDATA_SIZE DW P04_NLINES ;Number of lines
P04RDATA_VI DW o ;Vertical index
P04RDATA_HI DW o ;Horizontal index

P04_COLLINE DB I •••• + ..•• 1 •••• + •.•• 2 •••• + •••• 3 •••• + •••• 4 •••• + •••• 5 •••. + •••• 6 •••• I

.*** ,
;The following are the commands used to VDELETE some of the above in
, order to customize the panel for the various parse IDS
.*** ,
P04TSCNX_DELETE DB
P04TSCNT_DELETE DB
P04TSTYX DELETE DB
P04TSTYP_DELETE DB
P04CMDLI_DELETE DB
P04RESRC DELETE DB
P04_DELETE_LEN DW

'VDELETE.P04TSCNX AI
'VDELETE P04TSCNT AI
'VDELETE P04TSTYX AI
'VDELETE P04TSTYP AI
'VDELETE P04CMDLI AI
'VDELETE P04RESRC AI
P04_DELETE_LEN - P04RESRC_DELETE

.*** ,
;* Display tables for unformatted dump
.*** ,
ASCII_DISPLAY_TABLE EQU BYTE PTR $

0123456789abcdef
DB I................ ; 00
DB I................ ;10
DB I !"#$%&',27h,'O*+',2ch,'-.j' ;20
DB '0123456789:;<=>?' ;30

0123456789abcdef
DB '@ABCDEFGHIJKLMNO ' ;40
DB 'PQRSTUVWXYZ[\]._' ;50
DB '.abcdefghijklmno' ;60
DB Ipqrstuvwxyz{I}.·1 ;70

0123456789abcdef
DB I ;80 ·
DB I ;90 ·
DB I ;A0 ·
DB I ;BO ·

0123456789abcdef
DB I ;CO ·
DB I ;DO ·
DB I ;EO ·
DB I ;FO ·

Appendix I. DOS Sample Program Code 337

EBCDIC_DISPLAY_TABLE EQU BYTE PTR $
0123456789abcdef

DB ' ••••..•••.••••••
DB ' ••••.•••.••••.••
DB ' ••••.••••..•.•••
DB ' .•••..••..••••.•

0123456789abcdef

;00
;10
;20
;30

DB ' •••.••.•• ¢. < (+ I' ; 40
DB '& ••••••••• !$*);.' ;50
DB '-/ ••.•••••• ,%_>1' ;60
DB ' ••••..•... :#@',2ch,'=',22h ;70

0123456789abcdef
DB '.abcdefghi.{ .•.• ' ;80
DB '.jklmnopqr.} .••• ' ;90
DB ' .• stuvwxyz ••.•. "' ;A0
DB '............... ; B0

0123456789abcdef
DB '.ABCDEFGHI •...•. ' ;C0
DB '.JKLMNOPQR •..••• ' ;D0
DB '.\STUVWXYZ• ' ;E0
DB '0123456789 ..•••• ' ;F0

.*** ,
; Work variables for unformatted dump display
.*** ,

pj_bufsize equ 4096d
;Buffer is defined below, overlaying of the parse arb structure

pj_datsize dw
pj_nlines dw
pj_remainder dw
pj_offset dw
pj_offset_save dw
pj_translate_fg dw

pj_offset_ptr dw
pj_dumphx_ptr dw
pj_dumpch_ptr dw

PUBLIC ASCII_FG
PUBLIC EBCDIC_FG

ASCII_FG EQU 0
EBCDIC_FG EQU 1

EMPTY EQU 60909

EMPTYC EQU 237

0
16
0
0
0
ASCII_FG

o
o
o

338 NetView/PCTM API/CS

;Amount of data in buffer
;Number of lines

;Offset into buffer
;Offset saved
;Translation (ASCII or EBCDIC)

;Present offset array location
;Present hex dump array location
;Present character dump location

;pointer to xlate table

;Used to indicate past end of data
= '66'

;Same for character display

SPACEC EQU I I ;For formatted displays, filler char.

.*** ,
; Parse ARB Structure definition
.*** ,

parse_arb struc
pj_arbid db 'ARB6 1

pj_reqcode dw eh
pj_arblen db 36
pj_parseid db e
pj_reserved db e
pj_retcode dw e
pj_errclass dw e
pj_errtype dw e
pj_parsenmvt dd e
pj_numnames db e
pj_names dd e
pj_testcount dw e
pj_testtype db e
pj_sensedata db pe4_SENSE_LEN dup(e)
pj_commandlen db e
pj_command dd e
pj_recvcorr db 18 dup (8)
pj_parsedata db pj_bufsize dupe?)
parse_arb ends

pj_arb equ Arbbuff ;Allocate storage

P84_request_code equ 8 ;Parse request code

.*** ,
; Define dispatch tables for the formatted display
.*** ,
p84_vdef_dispatch

dw
dw
dw
dw
dw

p84_vdel_dispatch
dw

equ $
8

;Dispatch table for VDEFINES

define_run ;Vdefines for run command display
define_link_pd ;Vdefines for link pd display
define_link_data;Vdefines for link data display
define_link_test;Vdefines for link test display

equ $
8

;Dispatch table for VDELETES

dw delete_run ;Vdeletes for run command display
dw delete_link_pd ;Vdeletes for link pd display
dw delete_link_data;Vdeletes for link data display
dw delete_link_test;Vdeletes for link test display

p84_form_dispatch
dw
dw
dw
dw
dw

p84 titles
dw

equ $
8
format_run
format_link
format_link
format_link

equ $
PJTITLE NULL

;Dispatch table for format procedures

;Format data for run command display
;Format data for link pd display
;Format data for link data display
;Format data for link test display

;Pointers to titles for ARBs
;Put up when error reading file

Appendix I. DOS Sample Program Code 339

dw PJTITLE_RUN ;Title line for run command display
dw PJTITLE_LPD ;Title 1 ine for link pd display
dw PJTITLE_LD ;Title line for link data display
dw PJTITLE_LT ;Title 1 ine for link test display

P04_MIN_PID db 61h ;Minimum parse ID recognized
P04_NUM_PID db 4h ;Maximum number of parse IDs recognized
P04_jump_offset dw 0 ;Used to save calculated offset

.*** ,
;Error message numbers

PJ_NON_HEX EQU
PJ_BEGINNING EQU
PJ_ENDING EQU
PJ_BAD_OFFSET EQU
PJ_FORMAT_NA EQU
P04_BAD_REQCODE EQU
P04_BAD_ARBID EQU
P04_BAD_ARBLEN EQU
P04_BAD_PARSEID EQU

200D
201D
202D
203D
204D
205d
206d
207d
208d

;Non-hex in offset field
;Now at beginning of dump
;Now at end of dump
;Offset past end of buffer
;Formatted dump not available
;Bad request code
;Bad ARB ID code
;Bad length
;Bad parse ID

.*** ,
;SCAN CODES

ENTER EQU BYTE PTR 1ch ; Scan Code for Enter

.*** ,
;MISCELLANEOUS

pj_fieldnamel equ

db

DATA ENDS

APIDISP.ASM

8 ;Lengths of field names

INMVTFILE.BIN I;Place to save old file name

o ;Set if going from formatted to
unformatted display or
vice versa

(CTRL-OH) IBM PC PRINTER CONDENSED MODE
PAGE ,132
TITLE API Sample Program - (C) Copyright IBM Corp. 1986,1987
SAMPLE PROGRAM - NO WARRANTY EXPRESSED OR IMPLIED

You are hereby licensed to use, reproduce, and distribute
these sample programs as your needs require. IBM does not
warrant the suitability or integrity of these sample programs
and accepts no responsibility for their use for your
applications. If you choose to copy and redistribute
significant portions of these sample programs, you should
preface such copies with this copyright notice.

.SALL ;Suppress macro expansion

340 NetView/PCTM APIICS

PAGE

INCLUDE APIMAIN.DEF
INCLUDE APIDISP.DSG
INCLUDE APIUTIL.EXR
INCLUDE APIMAIN.EXR

IF!
INCLUDE APIMAIN.MAC

ELSE
%OUT Starting second pass

ENDIF

;Constant definitions
;Data Segment and references
; External References from APIUTIL
;External References from APIMAIN

;Macros

PGROUP GROUP CSEG

PUBLIC SPCF_DISPLAY_INIT
PUBLIC SPCF_DISPLAY_PAN

CSEG SEGMENT PARA PUBLIC ICODE 1

;Routine to define things to EZ-VU
;Main display procedure

ASSUME CS:PGROUP,DS:DGROUP,ES:DGROUP,SS:NOTHING

EXTRN ISPASM:FAR
EXTRN ISPASMV:FAR
EXTRN ISPASMVA:FAR

;EZ-VU II Display functions
;EZ-VU II Variable definitions
;EZ-VU II Variable definitions

.** ,
; spcf_display_init - VDEFINE display variables to EZ-VU
,
.** ,
spcf_display_init

pushregs
proc near

.** ,
;Define variables needed for selection
.** ,

DMPC_NS ISPASMV,<PJDSPTYPLP,PJDSPTYP_PARM,EZVU_RC,PJDSPTYP,PJDSPTYPLV>

.** ,
;Define variables needed for unformatted dump panel panel
.** ,

DMPC_NS ISPASMV,<PJTITLELP,PJTITLEC_PARM,EZVU_RC,PJTITLEC,PJTITLELV>
DMPC_NS ISPASMV,<PJFILENLP,PJFILENC_PARM,EZVU_RC,PJFILENC,PJFILENLV>
DMPC_NS ISPASMV,<PJDMPLNLP,PJDMPLNC_PARM,EZVU_RC,PJDMPLNC,PJDMPLNLV>
DMPC_NS ISPASMV,<PJOFFSELP,PJOFFSEC_PARM,EZVU_RC,PJOFFSEC,PJOFFSELV>

DMPC_NS
ISPASMVA,<PJOFFSTLP,PJOFFSTC_PARM,EZVU_RC,PJOFFSTC,PJOFFST_BYTES,PJOFFST_SIZE,PJOFFST_VI,PJOFFST_HI>

DMPC_NS
ISPASMVA,<PJDMPHXLP,PJDMPHXC_PARM,EZVU_RC,PJDMPHXC,PJDMPHX_BYTES,PJDMPHX_SIZE,PJDMPHX_VI,PJDMPHX_HI>

DMPC_NS
ISPASMVA,<PJDMPCHLP,PJDMPCHC_PARM,EZVU_RC,PJDMPCHC,PJDMPCH_BYTES,PJDMPCH_SIZE,PJDMPCH_VI,PJDMPCH_HI>

DMPC_NS ISPASMV,<PJOTYPELP,PJOTYPEC_PARM,EZVU_RC,PJOTYPEC,PJOTYPELV>

Appendix I. DOS Sample Program Code 341

.** ,
;Now those for the formatted dumps
.** ,

DMPC_NS ISPASMV,<P04ARBIDLP, P04ARBID_PARM, EZVU_RC, P04ARBID, P04 ARBIDLV>
DMPC_NS ISPASMV,<P04RQCODLP,P04RQCOD_PARM,EZVU_RC,P04RQCOD,P04RQCODLV>
DMPC_NS ISPASMV,<P04ARBLNLP,P04ARBLN_PARM,EZVU_RC,P04ARBLN,P04ARBLNLV>
DMPC_NS ISPASMV,<P04PRSIDLP,P04PRSID_PARM,EZVU_RC,P04PRSID,P04PRSIDLV>
DMPC_NS ISPASMV,<P04RCVCRLP,P04RCVCR_PARM,EZVU_RC,P04RCVCR,P04RCVCRLV>
DMPC_NS ISPASMV,<P04RETCDLP,P04RETCD_PARM,EZVU_RC,P04RETCD,P04RETCDLV>
DMPC_NS ISPASMV,<P04ERCLSLP,P04ERCLS_PARM,EZVU_RC,P04ERCLS,P04ERCLSLV>
DMPC_NS ISPASMV,<P04ERTYPLP,P04ERTYP_PARM,EZVU_RC,P04ERTYP,P04ERTYPLV>
DMPC_NS ISPASMV,<P04PRSNSLP,P04PRSNS_PARM,EZVU_RC,P04PRSNS,P04PRSNSLV>
DMPC_NS ISPASMV,<P04CMDLNLP,P04CMDLN_PARM,EZVU_RC,P04CMDLN,P04CMDLNLV>
DMPC_NS ISPASMV,<P04CMDTXLP,P04CMDTX_PARM,EZVU_RC,P04CMDTX,P04CMDTXLV>
DMPC_NS

ISPASMVA,<P04RDATALP,P04RDATA_PARM,EZVU_RC,P04RDATA,PO 4RDATA_BYTES,P04RDATA_SIZE,P04RDATA_VI,P04RDATA_HI>

.** ,
; Key display
.** ,

DMPC_NS ISPASMV,<Keylinelp,Keyline_Parm,EZVU_RC,Keyline,Keylinely>

pop regs
ret

spcf_display_init endp

.** ,
; spcf_display_pan - Pop up requesting filename to display
,
.** ,
spcf_display_pan proc near

pushregs
;Use the ARB file name as the default, if next line uncommented

MOVE_STRING Arbfile, PJFILENC, PJFILENLV
display_fn_req:

mov Active_Keys, DCJVCXOO_KEYS ;Set active keys
call Set_Active_Keys
DMPC ISPASM,<DCJVCXOOL,DCJVCXOO,EZVU_RC>

display_fn_req_loop:
cmp Zrspl,F3
jne not_f3_dsp
jmp exit_display_fn_req

not_f3_dsp:
cmp
jne
jmp

do_spcf_display:
mov
sub
sub
je

dec
mov

Zrspl,F9
display_fn_req_refresh
do_spcf_display

al, PJDSPTYP
ah, ah
al, 10 1

spcf_formatted

ax
pj_translate_fg, ax

342 NetView/PCTM APIICS

;Was F3 the exit key?

;Yes, Exit this rtn

;Was it display request
;If not, refresh panel
;If so, display it

;Get field value
;Clear high byte
;Turn it into a number
;If 0, was formatted
; 1 = ASCII
; 2 = EBCDIC
;ax now has either 0 or 1
;And store it

call
jmp

spcf_fonnatted:
call
jmp

spcf_display_unformatted
exit_display_fn_req

spcf_display_formatted
exit_display_fn_req

display_fn_req_refresh:

;Else do unformatted display
;Then exit

;Else do formatted display
;Then exit

DMPC ISPASM,<LNGTH8PD,PARM8D,EZVU_RC> ;Else redisplay panel
jmp display_fn_req_loop

exit_display_fn_req:
popregs
ret

spcf_display_pan endp

.** ,
spcf_display_unformatted - Unformatted file display

This is the panel handler for the unformatted display.

Input:
PJFILENC - file to be displayed
pj_translate_fg - Translation type (ASCII/EBCDIC) (O/l)

Output:
PJFILENC - may be modified by user

;
.** ,
PUBLIC spcf_display_unformatted
spcf_display_unformatted proc near

pushregs
do_panel_read:

call read_in_file
do_panel_format:

mov pj_offset, 0

tot_display_do_panel:
call format_data
call set_un formatted_keys

;Set initial offset to 0

DMPC ISPASM,<DCJVBP03L,DCJVBP03,EZVU_RC>

display_do_panel:
cmp Zrspl,F3
jne not_f3_3m
call restore_filenm
mov pj_cross, 0
jmp exit_do_panel

not_f3_3m:
cmp
jne
call
call

call

Zrspl,F6
not_f6_3m
restore_fil enm
execpgm

;Was F3 the exit key?

;Restore old file name
;Clear out crossing flag
;Yes, Exit this rtn

;Was it DOS request?

;Restore old file name
;Invoke second command

processor

;On exit, re-read file
; and redisplay

Appendix I. DOS Sample Program Code 343

cmp
je

mov
jmp

read_nmvt_stat, e
file_readok_dosexit_3m

pj_offset,e
tot_display_do_panel

file_readok_dosexit_3m:
call setup_offset
jmp tot_display_do_panel

not_f6_3m:
cmp
jne
call
cmp
jne
mov
call

cmp

jne
jmp

Zrspl, F12
not_f12_3m
restore filenm
pj_cross, e
unformatted_cross
pj_cross, 1
spcf_display_formatted

Zrspl,F3

back_to_unformatted
exit_do_panel

unformatted_cross:
mov pj_cross, e
jmp exit_do_panel

not_f12_3m:
cmp Zrspl, Fll
jne not fll 3m
call restore_filenm
xor pj_translate_fg, ebcdic_fg
jmp refresh_do_panel

not_fll_3m:
cmp Zrspl,FB
jne not fB 3m
call restore_fil enm
jmp exit_do_panel

not_fB_3m:
cmp Zrspl,F9
jne not_F9_3m

call read_in_file
cmp read_nmvt_stat, e
je file_readok_3m

mov pj_offset,e
jmp refresh_do_panel

file_readok_3m:
call setup_offset

344 NetView/PCTM API/CS

;Check for success
;Was successful, branch around

;Set initial offset to e
;Then redisplay

;Go check offset
;Then redisplay

;Was it format display?
;If not, check next
;Restore old file name
;Did we come from formatted?
;If non-zero, we did
;Otherwise, we didn't, so set
;Else format display

;Was F3 the exit key from
;the formatted display panel?
;No, returned to this panel.
;Yes, wanted to quit so exit

;redisplay unformatted panel

;We came from formatted, so
clear the flag and
exit this panel

;Was it change translation?
;If not, check next
;Restore old file name
;Toggle flag
;And loop

;Was FB the exit key?
;No
;Restore old file name
;Yes, do whatever
;SPCF main panel.

;Was it F9?
;If not, go check next key

;Check for success

;Set initial offset to e
;Then redisplay

;Go check offset

jmp refresh_do_panel

not_F9_3m:
cmp Zrspl, pageup
jne not_pup_3m
call restore_fil enm
call do_pgup
jmp refresh_do_panel

not_pup_3m:
cmp Zrspl, pagedn
jne redisplay_do_panel
call restore_filenm
call do_pgdn
jmp refresh_do_panel

refresh_do_panel:
call format_data

redisplay_do_panel:
call set_unformatted_keys

;Then redisplay

;Was it page up?
;No
;Restore old file name
;Do a page up
;And redisplay

;Was it page up?
;No, redisplay panel
;Restore old file name
;Do a page up
;And redisplay

;Do new data

DMPC ISPASM,<LNGTH8PD,PARM8D,EZVU_RC> ;Else redisplay
jmp display_do_panel

PAGE

exit_do_panel
popregs
ret

spcf_display_unformatted endp

;And redisplay panel

.** ,
Set active keys for the dump display; mainly used to fancily

turn PgUp and PgDn on and off

Code below assumes the buffer size (and thus offsets) will never
approach the 64K limit ,

.** ,
set_un formatted_keys proc near

push bx
push ax
mov ax, DCJVBP03_KEYS
cmp
jne
xor

chk_setu_l:
mov
add
cmp
jb
xor

chk_setu_2:
mov
call
pop
pop
ret

pj_offset, 0
chk_setu_l
ax, PGUP_OK

bx, pj_offset
bx, PAGESIZE
bx, pj_datsize
chk_setu_2
ax, PGDN_OK

Active_Keys, ax
Set_Active_Keys
ax
bx

set_un formatted_keys endp

;Get active keys
;Are we at top of file?
;If not, PgUp is OK
;Else turn off that key

;Get present offset
;Add page size
;Check against data size
;If less, allow page down
;Else turn off that key

Appendix I. DOS Sample Program Code 345

.** ,

Reads in file, sets up various parameters
,
.** ,
read_in_file

mov
mov
mov
call

proc near
filename_ptr, offset PJFILENC
readbuff_ptr, offset Arbbuff
readbuff_size, pj_bufsize
read_nmvt

cmp read_nmvt_stat, 0
jne dopan_read_notok

;Read was good, so save old file name

;Set up file name
;Set up buffer
;And the buffer size
;Read stuff in
;Check for success

MOVE_STRING PJFILENC,pj_filename_old,PJFILENLV
jmp dopan_read_ok

dopan_read_notok:
mov pj_datsize, 0
jmp read_in_exit

dopan_read_ok:
mov
mov
mov
call

read_in_exit:
ret

aX,filesize
pj_datsize, ax
di, offset PJDMPLNC
Hex2asc

read_in_file endp

restore_filenm proc near

;Not good, no data read in
;Go do the panel

;Get the file size
;And save the data size
;Get ready to do conversion
;Convert it

MOVE_STRING pj_filename_old,PJFILENC,PJFILENLV
ret

restore_filenm endp

PAGE

.** ,
format_data takes the data in the buffer and formats it for display

Inputs:
Arbbuff Data buffer
pj_offset Offset into buffer of data to be displayed
pj_translate_fg Translation type (ASCII/EBCDIC) (0/1)
pj_datsize Amount of data actually in buffer

Outputs:
set to correct title line
set to hex dump
set to character dump

PJTITLEC
PJDMPHXC
PJDMPCHC
PJOFFSEC
PJOFFSTC

set to offset display (field allows entry)
set to offset display ,

.** ,
format_data proc near
;first, calculate the number of lines to be converted, plus the

leftovers
;Then, set up title and F key to indicate type of dump (ASCII or EBCDIC)

cmp pj_translate_fg, ASCII_FG ;ASCII translation?
jne setup_ebcdic ;If not, EBCDIC display

346 NetView/PCTM API/CS

MOVE_STRING PJTITLE_A,PJTITLEC,PJTITLE_LENGTH ;show ASCII dump
MOVE_STRING PJOTYPE_E,PJOTYPEC,PJOTYPELV ;Other type is EBCDIC

;Set up translation
mov pj_translate_ptr, offset ASCII_DISPLAY_TABLE
jmp format_nexte

setup_ebcdic:
MOVE_STRING PJTITLE_E,PJTITLEC,PJTITLE_LENGTH ;show EBCDIC dump
MOVE_STRING PJOTYPE_A,PJOTYPEC,PJOTYPELV ;Other type is ASCII

;Set up translation
mov pj_translate_ptr, offset EBCDIC_DISPLAY_TABLE
jmp format_nexte

;Now, do some work
format_nexte:

mov pj_offset_ptr, offset PJOFFSEC
pj_dumphx_ptr, offset PJDMPHXC
pj_dumpch_ptr, offset PJDMPCHC
ax,pj_offset

;Set up offset array pointer
;Set.up hex dump array pointer
;Set up char dump array pointer
;Remember the starting

mov
mov
mov
mov
mov
cmp
jle

pj_offset_save,ax offset
cx,pj_nlines ;Use cx as # of lines counter
cX,e
format_exit ;If so, just do the rest of the stuff

lineloop:
push
call
pop
loop

cx
display_line
cx
lineloop

;save it

;Loop until done

;************ Now go home
format_exit:

mov
mov
ret

ax,pj_offset_save
pj offset, ax

;Restore original offset

format_data endp

PAGE

.** ,

Takes 16 bytes, calculates offset, ASCII representation of a HEX
dump, and an ASCII or EBCDIC character display, placing
these in the proper buffers

Input:
pj_offset
pj_offset_ptr
pj_dumphx_ptr
pj_dumpch_ptr

Output:
PJOFFSEC
PJOFFSTC
PJDMPHXC
PJDMPCHC
pj_offset
pj_offset_ptr
pj_dumphx_ptr

- offset into buffer to start display at
- pointer into offset output buffer
- pointer into hex dump output buffer
- pointer into character dump output buffer

- Set to starting offset value (ASCII hex)
- Set to appropriate offset values (ASCII hex)
- Set to dump values (ASCII hex)
- Set to dump values (ASCII or EBCDIC)
- offset into buffer to start display at
- pointer into offset output buffer
- pointer into hex dump output buffer

Appendix I. DOS Sample Program Code 347

pj_dumpch_ptr - pointer into character dump output buffer
;
.** , .

display_line proc near
;********* Convert the offset
mov ax,pj_offset
mov di,pj_offset_ptr
call Hex2asc
add di,4
mov pj_offset_ptr,di

;********* Convert the buffer values:
mov cX,COLUMNS
mov bx,ax
mov di,pj_dumphx_ptr

dump_hx_loop:
cmp
jl
mov
add
jmp

still_in:
mov
call
add

do_next_hex:

bx,pj_datsize
still_in
word ptr [di],EMPTY
di,2
do_next_hex

a1,offset Arbbuff[bx]
hexb2asc
di, 2

test cx,l
je do_midd1e_check
mov byte ptr [di],' •
add di,l

do_midd1e_check:
cmp cx,9
jne dumphx_cont
mov byte ptr [di],' •

add di,l
dumphx_cont:

add bx, 1
loop dump_hx_100p
dec di
mov pj_dumphx_ptr, di

;********* Convert the buffer values:
push bp
mov cX,COLUMNS
mov bp,pj_offset
mov di,pj_dumpch_ptr
mov si,pj_trans1ate_ptr

dump_ch_100p:
cmp
jl
mov
jmp

dump_ch_ok:
mov
xor
mov
mov

dump_ch_cont:
inc
inc

bp, pj_datsize
dump_ch_ok
byte ptr [di], EMPTYC
dump_ch_cont

b1,offset Arbbuff[bp]
bh,bh
dh, byte ptr [bx][si]
byte ptr [di],dh

di
bp

348 NetView/PCTM APIICS

for the offset array **********
;Get offset value
;Set up offset pointer
;Change offset to hex
;bump the pointer
;And save the bumped pointer

do hex dump **********
;Set up loop values
;Set bx up to present offset
;Set up output pointer for hex dump

;Past data size?
;No, do standard stuff
;E1se put characters indicating
;Update pointer
;And go do the next stuff

;Get present value
;Convert and output it
;Bump the pointer

;Are we on an odd count
;Check for middle
;Put out a space every two bytes
;Update the output pointer

;We want two spaces in the middle
;If not, keep going
;E1se get a second space
;And bump the pointer

;Increment offset into buffer
;Loop until done
;Get rid of space at end of line
;Save the output pointer

do character dump **********

;Set up loop values
;Set bx up to present offset
;Set up output pointer for char dump
;Set up translation table pointer

;Are we still looking at data?
;If so, do real stuff
;E1se indicate empty

;Get present value
;Zero out high byte
;Get translate value for byte 1
;And move it to the output

;Update the output pointer
;Set bp to next datum

cmp
jne
mov
add

dumpch_cont:
loop
mov
mov
pop

cx,9
dumpch_cont
byte ptr [di], I I

di,l

dump_ch_loop
pj_dumpch_ptr, di
pj_offset, bp
bp

;********* Clean up and go home
ret

display_line endp

PAGE

;We want two spaces in the middle
;If not at middle, keep going
;Else output a space
;And bump the pointer

;Loop until done
;Save the output pointer
;And save the new offset
;Restore base pointer

.** ,

Looks at offset field on display and uses it to set pj_offset if it
is within bounds (bounds checking not in place yet)

Input:
PJOFFSEC - 4 byte ASCII representation of a hexadecimal number

(used in panel display)
pj_datsize - Integer representing length of dump (used only for

bounds checking).
Output:

pj_offset - set to desired value (value in PJOFFSEC), if
conversion successful

EZ-VU message put up if error found during conversion;
also, cursor moved to field ,

.** ,
setup_offset

push
push
mov
mov
call

proc near
di
ax
di, offset PJOFFSEC
cx, PJOFFSELV
asc2hex

cmp cx, 0
jne bad_setup_offset_cnv
cmp ax, pj_datsize
jb setup_offset_ok
mov ax, PJ_BAO_OFFSET
jmp bad_setup_exit

setup_offset_ok:
mov pj_offset, ax
jmp exit_setup_offset

bad_setup_offset_cnv:
mov ax, PJ_NON_HEX

bad_setup_exit:
call show_errmsg
;Set up field name

;Set pointer to characters
;Length of PJOFFSEC
;00 the conversion
;Was it successful?
;If no, put up error
;Was it less than data size?
;If so, continue
;Else put up an error message

;Else set up pj_offset
;And exit

;Set error message

;Make EZ-VU display it

MOVE_STRING PJOFFSEC_PARM, ZFLO, pj_f~eldnamel

OMPC ISPASM,<LNGTHl0PO,PARMl00,EZVU_RC> ; Reposit cursor
mov cx,l ;Make sure cx is nonzero

exit_setup_offset:
pop ax
pop di

Appendix I. DOS Sample Program Code 349

ret
setup_offset endp

.*** ,

Do a page up on dump (unformatted) panel

Input:
pj_offset - present offset into buffer

Output:
pj_offset - new offset into buffer

Modifies ax, also may output error message
,
.*** ,
do_pgup proc

mov
cmp
jle
mov
call
mov

pg_up_setup:
sub
ret

do_pgup endp

near
ax, PAGESIZE
ax, pj_offset
pg_up_setup
ax, PJ_BEGINNING
show_errmsg
ax, pj_offset

;Get display page
;Is it bigger than page size?
;No, so set it up
;Set up error code
;And show error message
;Amount to subtract is any

non-zero offset amount

;00 the actual subtraction

.*** ,

Do a page down on dump (unformatted) panel

Input:
pj_offset
pj_datsize

- present offset into buffer

Output:
pj_offset

- length of data

- new offset into buffer

Modifies ax, also may output error message

.*** ,
do_pgdn proc

mov
sub
add
cmp
jl
mov
call
mov

sub
mov

near
ax, PAGESIZE
ax, COLUMNS
ax, pj_offset
ax, pj_datsize
pg_dn_setup
ax, PJ_ENOING
show_errmsg
ax, pj_datsize

aX,PAGESIZE
ax,pj_offset

350 NetView/PCTM API/CS

;Get PAGE SIZE
;Page down NLINES-l lines
;Get the new offset
;Is it bigger than page size?
;No, so go set it up
;Else set up error code
;And show error message
;Amount to subtract is any

non-zero offset amount
;Oisplay last page
;If we would go off end of

data, don't move

mov
ret

do_pgdn endp

;Set up new offset

.** ,

This is the panel handler for the formatted display.

Input:
PJFILENC - file to be displayed

Output:
PJFILENC - may be modified by user

;
.** ,
PUBLIC spcf_display_formatted
spcf_display_formatted proc near

pushregs
dofpanel_read:

mov filename_ptr, offset PJFILENC
mov readbuff_ptr, offset Arbbuff
mov readbuff_size, pj_bufsize
call read nmvt
cmp read_nmvt_stat, e
MOVE_STRING PJFILENC, pj_filename_old,
jne dofpan_read_notok
jmp dofpan_read_ok

dofpan_read_notok:
mov pj_datsize, e
call format_nothing
jmp dofpanel_ok

dofpan_read_ok:
mov
mov

dofpanel_format:

ax, filesize
pj_datsize, ax

mov pj_offset, e
call format_formatted_data
cmp aX,e
je dofpanel_ok

cmp
jne
call

cmp

jne
jmp

pj_cross, e
formatted_crossl
spcf_display_unformatted

Zrspl, F3

back_to_formatted
exit_dofpanel

back_to_formatted:
jmp dofpanel_read

formatted_crossl:
mov pj_cross, e

;Set up file name
;Set up buffer
;And the buffer size
;Read stuff in
;Check for success

PJFI LENLV

;Not good, no data read in
;Clear out data areas
;And display blanks

;Get the file size
;And save the data size

;Set initial offset to e
;Format the data
;If not OK, display unf.
;Else display panel

;Did we come from unformatted?
;If non-zero, we did
;Else go do unformatted dump,

;Was F3 the exit key from
;the unformatted display panel?
;No, returned to this panel.
;Yes, wanted to quit so exit

;redisplay unformatted panel

;We came from unformatted, so
clear the flag and

Appendix I. DOS Sample Program Code 351

jmp exit_dofpanel exit this panel

dofpanel_ok:
mov Active_Keys, DCJVBP04_KEYS ;Set active keys
call Set_Active_Keys
DMPC ISPASM,<DCJVBP04L,DCJVBP04,EZVU_RC>

display_dofpanel:
cmp Zrspl,F3
jne not_f3_3f
call restore_filenm
mov pj_cross, 0
jmp exit_dofpanel

not_f3_3f:
cmp
jne
call
call

jmp

not_f6_3f:
CMP
jne
call
cmp
jne
mov
call

cmp

je
jmp

Zrspl,F6
not_f6_3f
restore_fil enm

execpgm

dofpanel_read

Zrspl, F12
not_f12_3f
restore_filenm
pj_cross, 0
formatted_cross
pj_cross, 1
spcf_display_unformatted

Zrspl,F3

jmp_to_exit_dofpanel
dofpanel_read

jmp_to_exit_dofpanel:
jmp exit_dofpanel

formatted cross:
mov pj_cross, 0
jmp exit_dofpanel

not f12 3f:
cmp
jne
jmp

no_fn_change:
jmp

Zrspl,F9
redisplay_dofpanel
dofpanel_read

redisplay_dofpanel

refresh_dofpanel:
call format_formatted_data

redisplay_dofpanel:
DMPC ISPASM,<LNGTH8PD,PARM8D,EZVU_RC>
jrnp display_dofpanel

352 NetView/PCTM APIICS

;was f3 the exit key?

;Restore old file name
;Clear out crossing flag
;yes, exit this rtn

;was it dos request?

;Restore old file name
;Invoke second command

processor
;On exit, re-read file
; and redisplay

;Was it display unformatted?
;If not, check next
;Restore old file name
;Did we come from unformatted?
;If non-zero, we did
;Otherwise, we didn't, so set

the flag and call

;Was F3 the exit key from
;the unformatted display panel?

;Yes exit proc
;No, switch to formatted

redisplaying on return

;We came from unformatted, so
clear the flag and
exit this panel

; Was it an F9?
;If not, redisplay panel
;Read in new data

;Then redisplay

;Do new data

;Else redisplay
;And redisplay panel

exit_dofpanel:
pop regs
ret

spcf_display_formatted endp

.*** ,
;format_formatted_data:

Takes the data in the input file, checks it to make sure it is a
recognized NMVT. If so, it formats all data for display.
If not, returns error in AX and sets up an EZ-VU error message.

- contains data read in from file

Output:

ax - Zero if no error, error number if error
; * - All data for panel DCJVBP84 set up
.*** ,

format_formatted_data proc near
;First, check the ARB ID

COMPARE_STRINGS pj_arb.pj_arbid, P84ARBID, P84ARBIDLV
je fcheck_reqcode ;If ok, check request code
mov ax, P84_BAD_ARBID ;Else set error message
jmp ffd_bad

fcheck_reqcode:
cmp
je
mov
jmp

fcheck_arblen:
mov

. cmp
je
mov
jmp

fcheck_parseid:
mov
sub
sub
jl
cmp

jge
inc

rol
push
cmp
je
mov
call

offset_ok:
pop
mov

pj_arb.pj_reqcode, P84_request_code ;Check request
fcheck_arblen ;If ok, check length
ax, P84_BAD_REQCODE ;Else set up error message
ffd_bad

al, pj_arb.pj_arblen
al, P84ARBLN
fcheck_parseid
ax, P84_BAD_ARBLEN
ffd_bad

al,pj_arb.pj_parseid
ah, ah
al, P84_MIN_PID
fbad_parseid
al, P84_NUM_PID

ax

;Get arb length
;And check it
;OK, check the parse ID
;No good, set up error message

;Get parse id
;Clear out top half
;Make sure it is in bounds

;Was over max, make sure it is under
;maximum number of procs
;If over or equal, was no good
;Add one to put us past dummy in the

dispatch table
ax,! ;Multiply by 2 to get indexes
ax ;Save it
p84_jump_offset, 8 ;Is the offset presently 81
offset_ok ;If_so, continue
bx, p84_jump_offset ;Else delete leftover variables
word ptr p84_vdel_dispatch[bx]

ax ;Restore offset
p84_j ump_offset ,ax ;And store the offset

Appendix I. DOS Sample Program Code 353

call
jmp

fbad_parseid:
mov

call
jmp

ffd_good:
mov
jmp

ffd_exit:

do_real_format
ffd_good ;Return A-OK sign

ax, P04_BAD_PARSEID
ffd_bad

;Indicate bad parse ID

show_errmsg
ffd exit

aX,0
ffd exit

;Display error message

;Indicate no error

ret
format_formatted_data endp

.*** ,
; The following is the code that does setup of common variables as well
, as dispatching for vdefines and the resource/command fields
.*** ,
do_real_format

mov
mov
mov
mov
mov
mov
mov
mov
mov

p4_sen_loop:
push
mov
call
add
inc
pop
loop

proc near
ax, pj_arb.pj_retcode ;Get return code
P04RETCD, ax ;Store it in EZ-VU variable
ax, pj_arb.pj_errclass ;Get error class
P04ERCLS, ax
ax, pj_arb.pj_errtype ;Get error type
P04ERTYP, ax
di, offset P04PRSNS ;Now do parse sense - requires
bx, offset pj_arb.pj_sensedata ;conversion to hex
cx, P04_SENSE_LEN

cx
al, byte ptr [bxJ
Hexb2asc
di, 2
bx
cx
p4_sen_loop

;Convert the parse sense stuff

mov al, pj_arb.pj_parseid ;Set up parse ID
mov di, offset P04PRSID ;It is hex, so set up conversion output
ca 11 Hexb2asc

;Set up the receive correlator
mov cX,P04RCVCRLV Set CX to 10 bytes
ror cx,1
mov di,offset P04RCVCR Point DI at Hex/ASCII string buffer
mov si,offset pj_arb.pj_recvcorr Point SI at Receive correlator

setup_rcv_loop:
mov
call
inc
add
loop

mov
push

al, byte ptr [siJ
hexb2asc
si
di, 2
setup_rcv_loop

bx, p04_jump_offset
bx

;********* Do Vdefines for this ARB type

354 NetView/PCTM APIICS

;Convert the bytes
;Bump binary pointer
;Bump output pointer
;And loop until done

;Get ready to do vdefines
;Save the offset

call word ptr p04_vdef_dispatch[bx]
pop bx ;Restore offset
push bx
FILL_CHAR P04RDATA,' ',P04RDATALV ;Erase data area

;********* Set up the title line
pop bx
mov cx, PJTITLE_LENGTH
mov si, word ptr p04_titles[bx]
mov di, offset PJTITLEC
push ds
pop es
cld
rep movsb

;********* Call formatting procedure for this ARB type
call word ptr p04_form_dispatch[bx]
ret

.*** ,
; The following is the code that clears things in the event an attempt

is made to read an unknown file ,
.*** ,
format_nothing proc near

pushregs
mov bx, p04_jump_offset ;Get jump offset
cmp bx, 0 ;Is the offset presently 01
je offset_ok_null ;If so, continue
call word ptr p04_vdel_dispatch[bx]

offset_ok_null:
mov
mov
mov

p04_jump_offset,0
ax, -1
P04RETCD, ax

mov ax, -1
mov P04ERCLS, ax
mov ax, -1
mov P04ERTYP, ax
mov al, 0
mov P04PRSID, al
mov P04CMDLN, al
mov di, offset P04PRSNS
mov al, SPACEC
mov cx, P04PRSNSLV
push ds
pop es

delete_prsns_loop:
mov byte ptr [di], al
inc di
loop delete_prsns_loop

;Set up the receive correlator
mov di,offset P04RCVCR
mov cx, P04RCVCRLV
mov a 1, SPACEC
push ds

;And zero it out

;Store it in EZ-VU variable

;Set up parse 10

;Also zero out command count
;Now blank out parse sense

;Length

;Bump output pointer
;And loop until done

; Point 01 at Hex/ASCII string buffer
;Length

Appendix I. DOS Sample Program Code 355

pop es
delete_rcv_loop:

mov byte ptr [di], al
inc di ;Bump output pointer
loop del ete_rcv_l oop ;And loop until done
FILL_CHAR P04RDATA,SPACEC,P04RDATALV ;Erase data area
MOVE_STRING P04CMDTX_Null,P04CMDTX,P04CMDTXLV

;********* Set up the title line
mov bx, 0 ;Index 0 is empty stuff
mov cx, PJTITLE_LENGTH
mov si, word ptr p04_titles[bx]
mov di, offset PJTITLEC
push ds
pop es
cld
rep movsb
pop regs
ret

format_nothing endp

.** ,

; Set up data fields to display the RUN command
.** ,
format_run proc near

pushregs
push ds
pop es
mov al, pj_arb.pj_commandlen ;Save command length
sub ah, ah
mov P04CMDLN, al
push ax
MOVE_STRING P04_COLLINE, P04RDATA, P04_COLUMNS
MOVE_STRING P04CMDTX_Command,P04CMDTX,P04CMDTXLV
pop ax
mov cx, ax

;Line below assumes command immediately follows data
mov si, offset pj_arb.pj_parsedata

;But we want to be good, and use the offset portion of the command pointer
; in the ARB

mov
add
mov
push
pop
cld

si, word ptr pj_arb.pj_command
si, offset pj_arb
di, offset P04RDATA2
ds
es

rep movsb
popregs
ret

format_run endp

;Get offset into si
;add buffer offset value

.** ,

356 NetView/PCTM API/CS

; Set up data fields to display the various link commands
.** ,
format_link proc near

pushregs
;Set up Number of resources field
MOVE_STRING P04CMDTX_Resources, P04CMDTX, P04CMDTXLV
mov ax, pj_arb.pj_testcount ;Store test count
mov P04TSCNT, ax
mov al, pj_arb.pj_testtype
mov P04TSTYP, al
mov al, pj_arb.pj_numnames
mov P04CMDLN, al
cmp ax, 0
jne
jmp

move_names:
mov
mov

mov
mov
add
push
pop

rnames_loop:
push
push
mov
sub
inc
cld
rep
pop
add
pop
loop

move_names
format_link_exit

cx, ax
di, offset P04RDATA
si, offset pj_arb.pj_parsedata

si, word ptr pj_arb.pj_names
si, offset pj_arb
ds
es

cx
di
cl, byte ptr [si]
ch,ch
si

movsb
di
di, 9
cx
rnames_loop

format_link_exit:
popregs
ret

format_link endp

;And test type

;And number of names

;More than zero names?
;If so, move them in
; El se exit

;Now let1s put it in RDATA
;Set output address

;Get offset of names into si
;add buffer offset value

;Save loop counter
;And present output address
;Get length of name

;Point to name itself

;Move the name
;Restore old output
;Move to next slot
;Get back loop counter

;And loop until done

.*** ,
;define_link_test performs a VDEFINE on the five fields needed for the
, LINK TEST display
.*** ,
define_link_test proc near

DMPC_NS ISPASMV,<P04RESRCLP,P04RESRC_PARM,EZVU_RC,P04RESRC,P04RESRCLV>
DMPC_NS ISPASMV,<P04TSCNXLP,P04TSCNX_PARM,EZVU_RC,P04TSCNX,P04TSCNXLV>
DMPC_NS ISPASMV,<P04TSCNTLP, P04TSCNT_PARM, EZVU_RC, P04TSCNT, P04 TSCNTLV>
DMPC_NS ISPASMV ,<P04TSTYXLP, P04TSTYX_PARM, EZVU_RC,P04TSTYX, P04 TSTYXLV>
DMPC_NS ISPASMV,<P04TSTYPLP,P04TSTYP_PARM, EZVU_RC,P04TSTYP, P04 TSTYPLV>

ret
define_link_test endp

.*** ,
;delete_link_test performs a VDELETE on the five fields needed for the
; LINK TEST display
.*** ,

proc near

Appendix I. DOS Sample Program Code 357

DMPC_NS ISPASM,<P04_DELETE_LEN, P04RESRC_DELETE, EZVU RC>
DMPC_NS ISPASM,<P04_DELETE_LEN, P04TSCNX_DELETE, EZVU RC>
DMPC_NS ISPASM,<P04_DELETE_LEN, P04TSCNT_DELETE, EZVU RC>
DMPC_NS ISPASM,<P04_DELETE_LEN, P04TSTYX_DELETE, EZVU RC>
DMPC_NS ISPASM,<P04_DELETE_LEN, P04TSTYP_DELETE, EZVU RC>

ret
delete_link_test endp

.*** ,
;define_link_data performs a VDEFINE on the fields needed for the
; LINK DATA display
.*** ,
define_link_data proc near

DMPC_NS ISPASMV,<P04RESRCLP,P04RESRC_PARM,EZVU_RC,P04RESRC,P04RESRCLV>
ret

define_link_data endp

.*** ,
;delete_link_data performs a VDELETE on the fields needed for the
, LINK DATA display
.*** ,
delete_link_data proc near

DMPC_NS ISPASM,<P04_DELETE_LEN, P04RESRC_DELETE, EZVU RC>
ret

delete_link_data endp

.*** ,
;define_link_pd performs a VDEFINE on the fields needed for the
, LINK PD display
.*** ,
define_link_pd proc near

DMPC_NS ISPASMV,<P04RESRCLP,P04RESRC_PARM,EZVU_RC,P04RESRC,P04RESRCLV>
ret

define_link_pd endp

.*** ,
;delete_link_pd performs a VDELETE on the fields needed for the
, LINK DATA display
.*** ,
delete_link_pd proc near

DMPC_NS ISPASM,<P04_DELETE_LEN, P04RESRC_DELETE, EZVU RC>
ret

delete_link_pd endp

.*** ,
;define_run performs a VDEFINE on the fields needed for the
; LINK DATA display
.*** ,
define_run proc near

DMPC_NS ISPASMV,<P04CMDLILP,P04CMDLI_PARM,EZVU_RC,P04CMDLI,P04CMDLILV>
ret

define_run endp

.*** ,
;delete_run performs a VDELETE on the fields needed for the
, RUN display
.*** ,

proc near

358 NetView/PCTM API/CS

DMPC_NS ISPASM,<P04_DELETE_LEN, P04CMDLI_DELETE, EZVU~RC>

ret
delete_run endp

CSEG ENDS

end

Appendix I. DOS Sample Program Code 359

360 NetView/PCTM API/CS

Appendix J. NetView Sample Programs

NetView Sample Presentation Services Command Processor (PSCP)
TITLE 'COPYRIGHT INTERNATIONAL BUSINESS MACHINES CORPORATION 1

* ***
*
*

API Sample Program - (C) Copyright IBM Corp. 1986, 1987
SAMPLE PROGRAM - NO WARRANTY EXPRESSED OR IMPLIED

* You are hereby licensed to use, reproduce, and distribute these sample
* programs as your needs require. IBM does not warrant the suitability
* or integrity of these sample programs and accepts no responsibility for
* their use for your applications. If you choose to copy and redistribute
* significant portions of these sample programs, you should preface such
* copies with this copyright notice.
* ***
*

PRINT NOGEN
DSICBS DSICBH,DSIPDB,DSISWB,DSITIB,DSITVB,DSIMVT,DSISVL,DSIIFR,DSICWB

DSINVPCP CSECT
USING *,RI5
B SAVEREGS

CSECTNAM DC CLI0 ' DSINVPCP '
DC CL42 1 COPYRIGHT INTERNATIONAL BUSINESS MACHINES '
DC CL18 1 CORPORATION, 1986,1987 1

DC C'&SYSDATE '
PRINT GEN

* ***
*
* INPUT INTO THIS COMMAND PROCESSOR IS A BUFFER CONTAINING THE TEXT
* OF A MESSAGE FROM THE NETVIEW OPERATOR.
* NORMAL OUTPUT IS AN IFR SENT TO DSCP NAMED DSISPCFD.
* SEVERAL MESSAGES ARE PRINTED TO THE OPERATOR IF THE INPUT TEXT
* IS NOT IN THE REQUIRED ORDER, HAS IN UNACCEPTABLE LENGTH, OR IF
* KEYWORDS ARE MISSING OR ARE SPELLED INCORRECTLY.
*
* ***
R15 EQU 15
R14 EQU 14
R13 EQU 13
R12 EQU 12
Rll EQU 11
RIO EQU 10
R9 EQU 9
R8 EQU 8
R7 EQU 7
R6 EQU 6
R5 EQU 5
R4 EQU 4
R3 EQU 3
R2 EQU 2
Rl EQU 1
R0 EQU 0
*
SAVEREGS EQU *
* ***
* REGISTER SAVE CONVENTIONS START HERE

Appendix J. NetView Sample Programs 361

*

*
*

DROP RI5
STM RI4,RI2,12(RI3)
LR R12,R15
USING DSINVPCP,RI2
LR R9,RI
USING DSICWB,R9
LA R2,CWBSAVEA
ST R13,4 (R2)
ST R2,8 (R13)
LR R13,R2
XC 8(4,RI3),8(RI3)
L RI0,CWBTIB
USING DSITIB,RI0
L R6, nBTVB

SAVE CONVENTIONS COMPLETE

MODULE ADDRESSABILITY
BASE FOR CWB

GET MY SAVERAREA ADDR
BACKWARD CHAIN
FORWARD POINTER
THIS SAVEA IN RI3
ZERO FORWARD POINTER
GET TIB ADDRESS

GET TVB ADDRESS

L R3,CWBPDB PDB ADDRESS
USING DSIPDB,R3 BASE FOR PDB
LA R8,CWBADATD POINT TO THE CWB BUFFER
USING AUTOWORK,R8 BASE FOR CWB WORK BUFFER
MVI AUTOWORK,X ' 00 1 ZERO FIRST BYTE
MVC AUTOWORK+I(255),AUTOWORK ZERO THE REMAINDER

* ***
* REGISTERS CURRENTLY SET UP
*
* R3 IS PDB BASE
*
*
*

USING
USING
USING
USING
USING

R8 IS BASE FOR CWBADATD BUFFER
R9 IS CWB ADDRESS

*
RI0 IS TIB ADDRESS
RI2 IS MODULE BASE

* ***

*

MVI ERRINDC,X '00 1

MVC RETCODE,=F '01

BAL RI4,SETUPI
BAL RI4,INVOKER
BAL RI4,TERMINPT
LH R6,IFRBLENG
STH R6,GETBLENG
BAL RI4,GETDBUF
L R6,GOTNBADR
ST R6,BLDIFRAD
BAL RI4,BLDIFR
BAL RI4,MOVDMSG
BAL RI4,SENDSCP
LTR R15,R15
BZ RESTOR
STC RI5,MQSERRC
L RII,GOTNBADR
ST RII,FREMADDR
BAL RI4,FREDBUF
B MQSERR

INITIALIZE CWB ERROR INDICATOR
SET THE RETURN CODE TO ZERO
GO SET UP THE OPER OUT MSG BUF
CK INVOKER IS OPER OR C-LIST
OK - NOW CHECK THE INPUT MSG
OK - SET UP THE BUFFER SIZE

FOR THE IFR BUFFER
OK - GET THE DSCP MSG BUF
GET ADDRESS OF BUFFER
ADDR OF BUFFER TO BLD IFR
OK - BUILD IFR HDR, MOVE TEMPLET
OK - MOVE THE MSG TO DSCP BUF
OK - SEND OP MSG TO THE DSCP
CHECK THE RETURN CODE
OK - THE MESSAGE IS ON ITS WAY
NO - SAVE DSIMQS ERROR RC
GET ADDR OF BUFFER TO FREE
ADDR OF DSIFRE TO FREE
OK - FREE THE DSCP MSG BUFFER
DISPLAY ERROR MSG AND EXIT

* **
*
INVOKER EQU *

ST RI4,RI4SAVE SAVE THE RETURN REGISTER
* WHY WAS THIS CP INVOKED

362 NetView/PCTM API/CS

L R6,CWBBUF
USING BUFHDR,R6
CLI HDRMTYPE,HDRTYPEC
BE INPUTOK
CLI HDRMTYPE,HDRTYPET
BNE NOTOPER
DROP R6

INPUTOK EQU *
L R14,R14SAVE
BR 14

*

R6 POINTS TO THE INPUT BUFFER

IS INPUT FROM A CLIST ?
NOT THE OPERATOR
IS INPUT FROM A TERMINAL ?
NOT THE OPERATOR

INPUT IS FROM CLIST OR OPERATOR
RESTORE THE RETURN REGISTER

OP OUT MSG BUF SET UP NOW

* **
*
* SET UP THE OPERATOR OUTPUT MESSAGE BUFFER
SETUP1 EQU *

ST R14,R14SAVE SAVE THE RETURN REGISTER
* COpy THE HEADER FROM THE COMMAND BUFFER TO THE OPERATOR MSG BUFFER

*

LR R4,R8
L R5,CWBBUF
LA R2,BUFHDRND-BUFHDR
LR R6,R8
USING BUFHDR,R6
BCTR R2,8
EX R2,MOVE
MVI HDRMTYPE,HDRTYPEU
MVI HDRIND,X '88 1

XC HDRTSTMP(4),HDRTSTMP
MVI HDRTSTMP+3,X ' 8C '
LA R2,BUFHDRND-BUFHDR
STH R2,HDRTDISP
DROP R6
L R14,R14SAVE
BR 14

POINT TO WHERE IT GOES
POINT TO WHERE IT IS
HOW LONG IT IS

-1 FOR THE MOVE
MOVE THE HEADER

HOW LONG IT IS

RESTORE THE RETURN REGISTER
OP OUT MSG BUF SET UP NOW

* **
*

* TERMINPT EQU
ST
SR
LH
LTR
BZ

R14,R14SAVE
R2,R2
R2,PDBNOENT
R2,R2
CMDERR

SAVE THE RETURN REGISTER
ZERO R2

* FIND THE ISP = 000 ,I

OF ENTRIES
HOW MANY ARE THERE
NOT ENOUGH ENTRIES

LA R7,PDBTABLE ADDR OF PDB TABLE ENTRY 1
BCTR R2,8 DECREMENT BY 1
LTR R2,R2 HOW MANY ARE THERE
BZ CMDERR NOT ENOUGH ENTRIES

* R7 POINTS TO THE COMMAND NAME ENTRY
USING PDBENTRY,R7 BASE FOR PDBENTRY
LA R7,PDBENTND-PDBENTRY(,R7) ADDR OF PDB ENTRY 2
BCTR R2,8 DECREMENT BY 1
LTR R2,R2 HOW MANY ARE THERE
BZ CMDERR NOT ENOUGH ENTRI ES

* R7 POINTS TO WHERE THE ISpl ENTRY SHOULD BE
L R6,CWBBUF

* R6 POINTS TO THE INPUT BUFFER
AH R6,PDBDISP
CLC 8(2,R6),SP
BNE CMDSPERR

DISPLACEMENT TO ISpl
IS IT SP?
SP NOT CORRECT

Appendix J. NetView Sample Programs 363

* NOW CHECK FOR THE 1=1

ClI PDBTYPE,X ' 7E ' IS THERE AN =
BE SPEQOK2
lA R7,PDBENTND-PDBENTRY(,R7) ADDR OF NEXT PDBENTRY
BCTR R2,0 DECREMENT BY 1
lTR R2,R2 HOW MANY ARE THERE
BZ CMDERR NOT ENOUGH ENTRIES
ClI PDBlENG,X ' 00 1 ZERO lENGTH ENTRY?
BNE CMDSPERR SP NOT CORRECT
ClI PDBTYPE,X ' 7E ' IS THERE AN =
BE SPEQOK2
B CMDSPERR SP NOT CORRECT

SPEQOK2 lA R7,PDBENTND-PDBENTRY(,R7) ADDR OF NEXT PDBENTRY
BCTR R2,0 DECREMENT BY 1
lTR R2,R2 HOW MANY ARE THERE
BZ CMDERR NOT ENOUGH ENTRI ES

* R7 POINTS TO WHERE THE SPNAME SHOULD BE
* CHECK THAT THE SP NAME IS 8 CHARACTERS OR lESS IN lENGTH

ClI PDBlENG,X '08 1 SP NAME 8 OR lESS?
BH SPNAMER NAME IS TOO lONG
SR R4, R4 ZERO R4
IC R4,PDBlENG GET lENGTH OF SP NAME
lTR R4,R4 IF IT IS ZERO
BZ SPNAMER NAME IS TOO SHORT
STC R4,SPNlENG SAVE THE lENGTH
l R6,CWBBUF R6 POINTS TO THE INPUT BUFFER
AH R6,PDBDISP DISPLACEMENT TO 'SPNAME '
ST R6,SPNPTR SAVE THE POINTER TO SP NAME
ClI PDBTYPE,X ' 6B ' IS THERE A ,
BE NOWAPPl OK - CHECK THE APPl
ClI PDBTYPE,X ' 40 1 IS THERE A BLANK
BNE CMDSPERR NO - SP NOT CORRECT
lA R7,PDBENTND-PDBENTRY(,R7) ADDR OF NEXT PDB ENTRY
BCTR R2,0 DECREMENT BY 1
lTR R2,R2 HOW MANY ARE THERE
BZ CMDERR NOT ENOUGH ENTRIES
ClI PDBTYPE,X ' 6B ' IS THERE A ,
BNE CMDSPERR NO - SP NOT CORRECT

*
NOWAPPl lA R7,PDBENTND-PDBENTRY(,R7) ADDR OF NEXT PDB ENTRY
* R7 POINTS TO WHERE THE 'APPl ' ENTRY SHOULD BE

BCTR R2,0 DECREMENT BY 1
lTR R2,R2 HOW MANY ARE THERE
BZ CMDERR NOT ENOUGH ENTRIES

* R7 POINTS TO WHERE THE 'APPl ' ENTRY SHOULD BE
l R6,CWBBUF R6 POINTS TO THE INPUT BUFFER
AH R6,PDBDISP DISPLACEMENT TO 'APPl '
ClC 0(4,R6),AP IS IT APPl?
BNE CMDAPERR APPl NOT CORRECT

* NOW CHECK FOR THE 1=1

ClI PDBTYPE,X ' 7E ' IS THERE AN =
BE APEQOK2
lA R7,PDBENTND-PDBENTRY(,R7) ADDR OF NEXT PDBENTRY
BCTR R2,0 DECREMENT BY 1
lTR R2,R2 HOW MANY ARE THERE
BZ CMDERR NOT ENOUGH ENTRIES
ClI PDBlENG,X '00 1 ZERO lENGTH ENTRY?
BNE CMDSPERR SP NOT CORRECT
ClI PDBTYPE,X ' 7E ' IS THERE AN =

364 NetView/PCTM API/CS

BE APEQOK2
B CMDSPERR SP NOT CORRECT

APEQOK2 lA R7,PDBENTND-PDBENTRY(,R7) ADDR OF NEXT PDBENTRY
BCTR R2,0 DECREMENT BY 1
lTR R2,R2 HOW MANY ARE THERE
BZ CMDERR NOT ENOUGH ENTRI ES

* R7 POINTS TO WHERE THE APPlNAME SHOULD BE
* CHECK THAT THE AP NAME IS 8 CHARACTERS OR lESS IN lENGTH

ClI PDBlENG,X '08 1 AP NAME 8 OR lESS?
BH APNAMER NAME IS TOO lONG
SR R4, R4 ZERO R4
IC R4,PDBlENG GET lENGTH OF SP NAME
LTR R4,R4 IF IT IS ZERO
BZ APNAMER NAME IS TOO SHORT
STC R4,APNlENG SAVE THE lENGTH
l R6,CWBBUF R6 POINTS TO THE INPUT BUFFER
AH R6,PDBDISP DISPLACEMENT TO 'APNAME '
ST R6,APNPTR SAVE THE POINTER TO AP NAME
ClI PDBTYPE,X ' 6B ' IS THERE A ,
BE NOWTEXT OK - CHECK THE TEXT
ClI PDBTYPE,X ' 40 1 IS THERE A BLANK
BNE CMDAPERR NO - APPl NOT CORRECT
lA R7,PDBENTND-PDBENTRY(,R7) ADDR OF NEXT PDB ENTRY
BCTR R2,0 DECREMENT BY 1
lTR R2,R2 HOW MANY ARE THERE
BZ CMDERR NOT ENOUGH ENTRIES
ClI PDBTYPE,X '6B ' IS THERE A ,
BNE CMDAPERR NO - APPl NOT CORRECT
ClI PDBlENG,X '00 1 ZERO lENGTH?
BNE CMDSPERR NO - APPl NOT CORRECT

*
NOWTEXT lA R7,PDBENTND-PDBENTRY(,R7) ADDR OF NEXT PDB ENTRY
* SAVE THE TEXT MESSAGE POINTER

lTR R2,R2
BZ NOCMD
l R6,CWBBUF
AH R6,PDBDISP
ST R6,TXTPTR

* SAVE THE TEXT MESSAGE LENGTH
L R6,CWBBUF
USING BUFHDR,R6
SR R2,R2
SR R4,R4
LH R4,HDRMLENG
LH R2,PDBDISP
STC R2,TXTDISP
SH R2,HDRTDISP
SR R4,R2
STC R4,TXTlENG
SR R2,R2
lA R2,80

HOW MANY ARE THERE
NOT ENOUGH ENTRIES
R6 POINTS TO THE INPUT BUFFER
DISPLACEMENT TO TEXT
SAVE THE POINTER TO TEXT START

R6 POINTS TO THE INPUT BUFFER

ZERO R2
ZERO R4
GET THE MESSAGE LENGTH
GET THE OFFSET TO TEXT START
SAVE THE OFFSET TO THE TEXT
SUBTRACT OFFSET TO lRST CHARAC.
lENGTH OF TEXT IN R4
SAVE THE lENGTH
ZERO R2

CLR R4,R2 CHECK lENGTH OF TEXT
BH NOCMD CMD TEXT IS TOO lONG
LA R4,(BUFHDRND-BUFHDR)(R4) ADD THE LENGTH OF A BUFHDR
LA R4,(TEXT-IFRBUFR) (R4) ADD lGTH UP TO THE TEXT
STH R4,IFRBlENG SAVE THE lENGTH TO GET
DROP R3
DROP R6
l R14,R14SAVE RESTORE THE RETURN REGISTER

Appendix J. NetView Sample Programs 365

BR R14 DSCP MESSAGE IS IN THE BUFFER
*
* **
*
MOVDMSG EQU *

ST R14,R14SAVE SAVE THE RETURN REGISTER
L R11,BLDIFRAD
USING BUFHDR,R11 BASE THE GOTTEN IFR BUFFER

* NOW FILL IN THE SP NAME, APPL NAME, AND MESSAGE TEXT

*

LA R6,BUFHDRND POINT TO THE IFR MESSAGE AREA
DROP R11
USING IFRBUFR,R6
LA R4,SPNAME
L R5,SPNPTR
SR R2,R2
IC R2,SPNLENG
BCTR R2,8
EX R2,MOVE
LA R4,APNAME
L R5,APNPTR
SR R2,R2
IC R2,APNLENG
BCTR R2,8
EX R2,MOVE
LA R4, TEXT
L R5,TXTPTR
SR R2,R2
IC R2,TXTLENG
BCTR R2,8
EX R2,MOVE
LA R2 , 2 (, R2)
STC R2,TXTLNGTH
L R14,R14SAVE
BR R14
DROP R6

R4 POINTS TO WHERE IT GOES
R5 POINTS TO WHERE IT IS
ZERO R2
R2 HAS LENGTH TO MOVE

MOVE THE SP NAME
R4 POINTS TO WHERE IT GOES
R5 POINTS TO WHERE IT IS
ZERO R2
R2 HAS LENGTH TO MOVE

MOVE THE APPL NAME
R4 POINTS TO WHERE IT GOES
R5 POINTS TO WHERE IT IS
ZERO R2
R2 HAS THE LENGTH TO MOVE

MOVE THE TEXT
ADD TWO FOR LENGTH
STORE TEXT LENGTH IN IFR BFR
RESTORE THE RETURN REGISTER
THE DSCPMSG BUFFER IS SET UP

* ***
* BUILD A BUFHDR AND MOVE THE IFR TEMPLET INTO THE BUFFER AT BLDIFRAD
BLDIFR ST R14,R14SAVE SAVE THE RETURN REGISTER

L R11,BLDIFRAD
USING BUFHDR,R11

* COpy THE HEADER FROM THE COMMAND BUFFER TO THE DSCP MSG BUFFER
LR R4,R11 POINT TO WHERE IT GOES
L R5,CWBBUF POINT TO WHERE IT IS
LA R2,BUFHDRND-BUFHDR HOW LONG IT IS
BCTR R2,8 -1 FOR THE MOVE
EX R2,MOVE MOVE THE HEADER

* ***
* REGISTERS CURRENTLY SET UP
* USING R8 IS BASE FOR DSRBUSER
* USING R9 IS CWB ADDRESS
* USING R18 IS TIB ADDRESS
* USING R11 IS BUFHDR AT GOTTEN BUFFER ADDRESS
* USING R12 IS MODULE BASE
* ***
* BUILD THE IFR BUFFER HEADER IN THE NEW BUFFER

LA R2,BUFHDRND-BUFHDR LENGTH OF BUF HEADER
STH R2,HDRTDISP STORE OFFSET TO MSG
LH R6,IFRBLENG GET BUFFER LENGTH

366 NetView/PCTM APIICS

*

*

STH R6,HDRBLENG
SLR R6,R2
STH R6,HDRMLENG
MVI HDRMTYPE,HDRTYPEI

L R7,TIBTVB
USING DSITVB,R7
L R4,TVBMVT
USING DSIMVT,R4

MVC HDRDOMID,MVTCURAN
DROP R4
DROP R7

BUF LENGTH IN HEADER

MESSAGE LENGTH
INTERNAL FUNCTION

ADDR OF TVB
BASE FOR TVB
GET MY MVT ADDR
BASE FOR MVT

* FILL IN THE IFR BUFFER TEMPLET
LA R4,BUFHDRND
LA RS,IFRBUFR
LA R2,TEXT-IFRBUFR
BCTR R2,0
EX R2,MOVE
L R14,R14SAVE
BR R14
DROP Rll

*

POINT TO IFR MESSAGE AREA
POINT TO THE TEMPLET
LENGTH OF TEMPLET
-1 FOR THE MOVE

MOVE TEMPLET TO OUTPUT BUFFER
RESTORE THE RETURN REGISTER
THE DSCP MSG BUFFER IS SET UP

* ***
*
FREMERR EQU *

MVI ERRINDC,X ' 011 ERROR ENCOUNTERED
MVC COMMAND(L 'DCJSP002),DCJSP002
LA R2,L ' DCJSP002 FOR CORRECT HDRMLENG
B OPERMSG

*
GETERR EQU *

MVI ERRINDC,X ' 011 ERROR ENCOUNTERED
MVC COMMAND(L ' DCJSP012),DCJSP012
LA R2,L ' DCJSP012 FOR CORRECT HDRMLENG
B OPERMSG

*
CMDERR EQU

*

MVI
MVC
LA
B

CMDSPERR EQU
MVI
MVC
LA
B

*
CMDAPERR EQU

MVI
MVC
LA
B

*

* THERE ARE NOT ENOUGH ENTRIES IN THE PDB
ERRINDC,X ' 011 ERROR ENCOUNTERED
COMMAND(L ' DCJSP010),DCJSP010
R2,L ' DCJSP010 FOR CORRECT HDRMLENG
OPERMSG

* THE FORMAT OF ISP = ••• ,1 WAS NOT CORRECT
ERRINDC,X ' 011 ERROR ENCOUNTERED
COMMAND(L 'DCJSP011),DCJSP011
R2,L ' DCJSP011 FOR CORRECT HDRMLENG
OPERMSG

* THE FORMAT OF lAP = ••• ,1 WAS NOT CORRECT
ERRINDC,X ' 011 ERROR ENCOUNTERED
COMMAND(L ' DCJSP004),DCJSP004
R2,L ' DCJSP004 FOR CORRECT HDRMLENG
OPERMSG

NOCMD EQU * THERE IS NO COMMAND
MVI ERRINDC,X ' 011 ERROR ENCOUNTERED
MVC COMMAND(L ' DCJSP00S),DCJSP00S
LA R2,L ' DCJSP00S FOR CORRECT HDRMLENG

Appendix J. NetView Sample Programs 367

B OPERMSG
*
MQSERR EQU * THE RETURN CODE FROM DSIMQS WAS NOT ZERO

MVI ERRINDC,X I (n I ERROR ENCOUNTERED
MVC COMMAND(L 'DCJSPBB6),DCJSPBB6
LA R2,L ' DCJSPBB6 FOR CORRECT HDRMLENG
IC R15,MQSERRC GET DSIMQS ERROR RC
STC R15,COMMAND+33 STORE RC IN MSG
SRL R15,4
STC R15,COMMAND+32 STORE RC IN MSG
NI COMMAND+32,X I BF I
NI COMMAND+33,X'BF'
TR COMMAND+32(2),TRANSTBL
B OPERMSG

*
SPNAMER EQU * THE SPNAME IS B OR > B

MVI ERRINDC,X'Bl' ERROR ENCOUNTERED
MVC COMMAND(L 'DCJSPBB7),DCJSPBB7
LA R2,L 'DCJSPBB7 FOR CORRECT HDRMLENG
B OPERMSG

*
APNAMER EQU * THE APPLNAME IS B OR > B

MVI ERRINDC,X'Bl' ERROR ENCOUNTERED
MVC COMMAND(L'DCJSPOBB),DCJSPBBB
LA R2,L ' DCJSPBBB FOR CORRECT HDRMLENG
B OPERMSG

*
NOTOPER EQU * THE INPUT IS NOT FROM A TERMINAL

MVI ERRINDC,X'Bl' ERROR ENCOUNTERED
MVC COMMAND(L 'DCJSPOB9),DCJSPBB9
LA R2,L ' DCJSPBB9 FOR CORRECT HDRMLENG
B OPERMSG

* ***
* SEND A MESSAGE TO THE TERMINAL IMMED AREA
* ***
*
OPERMSG EQU *

CLI ERRINDC,X'Bl'
BNE PUTGOOD
B CONTIMMD

WAS ERROR ENCOUNTERED ?
NO - PSCP FINISHED OK

PUTGOOD MVC COMMAND(L'DCJSPOBl),DCJSPBBl MSG OF GOOD ENDING PSCP
LA R2,L ' DCJSPBBl FOR CORRECT HDRMLENG

CONTIMMD LA R4,BUFFER R4 POINTS TO OUT BUF

*

USING BUFHDR,R4
STH R2,HDRMLENG PUT LENGTH IN HDRMLENG

DSIPSS SWB=CWBSWB,BFR=(R4),TYPE=OUTPUT
*

*
RESTOR EQU *

SR R15,R15 ZERO R15
L R13,4(R13)
ST R15,16(R13) SET RC TO ZERO
LM R14,R12,12(R13)
BR R14

* ***
* ***
*

368 NetView/PCTM APIICS

SENDSCP EQU *
ST R14,R14SAVE

* NOW SEND THE MESSAGE TO THE DSCP
*

*

L R7,TIBTVB
USING DSITVB,R7
L R4,TVBMVT
USING DSIMVT,R4

SAVE THE RETURN REGISTER

ADDR OF TVB
BASE FOR TVB
GET MY MVT ADDR
BASE FOR MVT

SENDDST DSIMQS SWB=CWBSWB,BFR=(Rll),TASKID=TARGDST
DROP R4
DROP R7
L R14,R14SAVE RESTORE THE RETURN REGISTER
BR R14 THE MESSAGE IS ON ITS WAY

* ***

*
*
GETDBUF EQU

ST
*
R14,R14SAVE SAVE THE RETURN REGISTER

* **
* EVERYTHING SEEMS TO CHECK OUT OK
* NOW GET A BUFFER FOR THE IFR
* ***

*

L R7,TIBTVB
USING DSITVB,R7
L R4,TVBMVT
USING DSIMVT,R4

ADDR OF TVB
BASE FOR TVB
GET MY MVT ADDR
BASE FOR MVT

* GET STORAGE FOR IFR

*

DSIGET LV=(R6),A=GOTNBADR,Q=NO,SP=8
LTR R15,R15
BNZ GETERR
DROP R4
DROP R7
L R14,R14SAVE
BR R14

RESTORE THE RETURN REGISTER
THE DSCP MSG BUFFER IS SET UP

* ***
FREDBUF EQU *

ST R14,R14SAVE SAVE THE RETURN REGISTER
SR R6,R6
LH R6,IFRBLENG LENGTH OF BUFFER
L R7,TIBTVB ADDR OF TVB
USING DSITVB, R7 BASE FOR TVB
L R4,TVBMVT GET MY MVT ADDR
USING DSIMVT,R4 BASE FOR MVT

*
* FREE THE IFR BUFFER

DSIFRE LV=(R6),A=FREMADDR,Q=NO,SP=8
LTR R15,R15
BNZ FREMERR
DROP R4
DROP R7
L R14,R14SAVE
BR R14

RESTORE THE RETURN REGISTER
THE BUFFER HAS BEEN FREED

* ***
* ***

*
MOVE MVC 8(,R4),8(R5) FROM R5 TO R4

Appendix J. NetView Sample Programs 369

*
* ***
* DECLARES

LTORG
*TARGDST DC CL8 1NVPCTASK I
TARGDST DC CL8 1DSIGDS I
IFRBUFR EQU *
INTRNLRQ DC Y(IFRCODCR)
*TARGDSCP DC CL9 1NVPCDSPC I
TARGDSCP DC CL9 1DSISPCFD I
SPNLNGTH DC XLI I09 1
SPNAME DC CL8 1
APNLNGTH DC XLI I09 1
APNAME DC CL8 1
TXTLNGTH DC XLl 1240 1
TEXT DC CL240 1 I

DST TASK ID TO EXECUTE COMMAND
DST TASK ID TO EXECUTE COMMAND

IFR CODE FOR CROSS TASK QUEUE
MODULE NAME TO EXECUTE CMD

MODULE NAME TO EXECUTE CMD

TXTEND EQU * ** END OF MESSAGE TO DSCP **
TRANSTBL DC CI0123456789ABCDEF I
SP DC CL2 1Sp i

AP DC CL4 1APPL I
* MESSAGES

*
DCJSPOOI DC ClpSCP FINISHED SUCCESSFULLY I
DCJSP002 DC ClpSCP CANNOT OBTAIN STORAGE - EXECUTION STOPPED I
DCJSP003 DC CIUNKNOWN SOURCE INVOKED PSCP - EXECUTION STOPPED I
DCJSP004 DC CIFORMAT OF AP = ••• , IS NOT CORRECT I
DCJSP005 DC CITEXT MESSAGE MUST BE I TO 80 CHARACTERS I
DCJSP006 DC CIEXECUTION STOPPED - DSIMQS RC =1 I I I I
DCJSP007 DC CISP NAME MUST BE I TO 8 CHARACTERS I
DCJSP008 DC CIAPPL NAME MUST BE I TO 8 CHARACTERS I
DCJSP009 DC CINVPC INVOKED FROM AN UNKNOWN SOURCE I
DCJSPOIO DC CICMD FORMAT IS: NVPC SP=(SPNAME) ,APPL=(APPLNAME) ,TEXT I
DCJSPOII DC CIFORMAT OF SP = ..• , IS NOT CORRECT I
DCJSPOl2 DC CIRETURN CODE FROM DSIFREE NOT ZERO I
AUTOWORK DSECT POINTED TO BY CWBADATD
BUFFER EQU *

ORG *+(BUFHDRND-BUFHDR)
COMMAND EQU *
CMDMSG DS CL80 1 I
BUFEND EQU *
SPNPTR DS F
APNPTR DS F
TXTPTR DS F
TXTLENG DS XLI
TXTDISP DS XLI
Rl4SAVE DS F
GOTNBADR DS F
BLDIFRAD DS F
FREMADDR DS F
RETCODE DS F
IFRBLENG DS XL2
GETBLENG DS XL2
SPNLENG DS XLI
APNLENG DS XLI
ERRINDC DS CLI
MQSERRC DS XLI
AUTO END EQU *

END

370 NetView/PCTM APIICS

POINTER TO SP NAME
POINTER TO APPL NAME
POINTER TO THE MSG TEXT
LENGTH OF MSG TEXT
DISPLACEMENT TO THE TEXT
Rl4 SAVE AREA
ADDRESS RETURNED FROM DSIGET
ADDRESS TO BUILD IFR BUFHDR
ADDR OF DSIFRE TO FREE
RETURN CODE
CALCULATED LGTH OF IFR BUFFER
LENGTH OF BUFFER FOR DSIGET
LENGTH OF SP NAME
LENGTH OF APPL NAME
ERROR INDICATOR
DSIMQS ERROR RC SAVE AREA

NetView Sample Data Services Command Processor (DSCP)
TITLE 'COPYRIGHT INTERNATIONAL BUSINESS MACHINES CORPORATION 1

* ***
* API Sample Program - (C) Copyright IBM Corp. 1986, 1987
* SAMPLE PROGRAM - NO WARRANTY EXPRESSED OR IMPLIED
* You are hereby licensed to use, reproduce, and distribute these sample
* programs as your needs require. IBM does not warrant the suitability
* or integrity of these sample programs and accepts no responsibility for
* their use for your applications. If you choose to copy and redistribute
* significant portions of these sample programs, you should preface such
* copies with this copyright notice.
* ***
*

PRINT NOGEN
DSICBS DSICBH,DSICWB,DSIDSRB,DSIDSB,DSIPDB,DSISWB,DSITIB,DSITVB
DSICBS DSIMVT,DSISVL,DSIIFR

DSISPCFD CSECT
USING *,R15
B SAVEREGS
DC CL10 I DSISPCFD '
DC CL42 1 COPYRIGHT INTERNATIONAL BUSINESS MACHINES 1

DC CL18 I CORPORATION, 1986,1987 1

DC C'&SYSDATE'
*
* ***
*
* THIS DATA SERVICE COMMAND PROCESSOR IS DIVIDED INTO TWO SECTIONS.
* NORMAL INPUT INTO THE FIRST SECTION IS AN IFR.
* THE IFR CONTAINS A SERVICE POINT NAME, AN APPLICATION NAME AND
* MESSAGE TEXT.
*
* OUTPUT OF THE FIRST SECTION IS A NETWORK MANAGEMENT VECTOR TRANSPORT
* (NMVT) THAT IS SENT TO THE SERVICE POINT AND APPLICATION NAMED IN
* THE INPUT IFR.
* WHEN THE NMVT IS SENT, THE OPERATOR IS NOTIFIED.
*
* NORMAL INPUT INTO THE SECOND SECTION IS A REPLY NMVT.
* THE NMVT CONTAINS ONE OR MORE REPLY MESSAGES FROM THE APPLICATION
* TO WHICH THE MESSAGE TEXT WAS SENT BY THE FIRST SECTION.
*
* NORMAL OUTPUT OF THE SECOND SECTION IS A DISPLAY OF THE REPLY
* MESSAGES RECEIVED FROM THE APPLICATION.
* SEVERAL MESSAGES ARE DISPLAYED TO THE OPERATOR ON UNEXPECTED
* CONDITIONS.
*
* ***

PRINT GEN
R15 EQU 15
R14 EQU 14
R13 EQU 13
R12 EQU 12
Rll EQU 11
R10 EQU 10
R9 EQU 9
R8 EQU 8
R7 EQU 7
R6 EQU 6

Appendix J. NetView Sample Programs 371

R5 EQU 5
R4 EQU 4
R3 EQU 3
R2 EQU 2
Rl EQU 1
R0 EQU 0
*
SAVEREGS EQU *

*

STM R14,R12,12(R13)
DROP R15
LR R12,R15
USING DSISPCFD,R12
LR R3,Rl
USING DSICWB,R3
LA R2,CWBSAVEA
ST R13,4(R2)
ST R2,8(R13)
LR R13,R2
XC 8(4,R13),8(R13)
L R4,CWBTIB
USING DSITIB,R4
L R6,TIBTVB
USING DSITVB, R6

MODULE ADDRESSABILITY
BASE FOR CWB

GET MY SAVEAREA ADDR
BACKWARD CHAIN
FORWARD POINTER
THIS SAVEA IN R13
ZERO FORWARD POINTER
GET TIB ADDR

GET TVB ADDR

* IF THIS IS THE INITIAL INVOCATION,GETMAIN AN AREA FOR THE CNMI
* BUFFER AND VERIFY THE OPERANDS. IF EVERYTHING IS OK,
* ISSUE DSIZCSMS TO SEND THE REQUEST.
*

L R5,CWBDSRB GET MY DSRB ADDR
USING DSIDSRB,R5 BASE THE DSRB
L R7,TVBMVT GET MY MVT ADDR
USING DSIMVT,R7 BASE FOR MVT
L Rll , DSRBUS ER CHECK FOR GOTTEN STORAGE
CLI DSRBFNCD,DSRBFNRM INITIAL INVOCATION ?
BNE CNMIRPLY NO, GO HANDLE REPLY
LTR Rll,Rll ALREADY GOTTEN?
BNZ USEBUFR THEN USE IT

*
* GET A WORK BUFFER

SR R9,R9 ZERO R9
LA R9,WORKBUF PUT LENGTH IN R9
BAL R14,GETMAIN GET WORK BUFFER
LTR R15,R15 TEST RETURN CODE
BNZ GETMER01 NOT ZERO GETMAIN ERROR
L Rll, DSRBUSER GET POINTER TO WORK BUFFER
USING WORKING,Rll BASE

*
LA R8,MSGBUFH POINT TO OPER BUFFER TO SETUP
BAL R14,SETUPl SET UP THE MSG OP MSG BUFFER

* BAL R14,OK256 TELL OPER WORK BFR GOTTEN
BAL R14,GETNMVTB GET NMVT IN / OUT BUFFER

* BAL R14,OK1024 TELL OPER NMVT BFR GOTTEN
USEBUFR BAL R14,SETUP2 SET UP THE OUTNMVT BUFHDR

BAL R14,BUILDRU SET UP THE OUTNMVT TEMPLET
BAL R14, FI NDNAMS MOVE NAMES TO NMVT AND

* MOVE THE CMD TEXT TO NMVT
* BAL R14,NMVTBILT TELL OPER NMVT READY TO SEND

BAL R14,SENDRU SEND THE NMVT TO THE SP
LTR R15,R15 CK RETURN CODE

372 NetView/PCTM API/CS

*

*
*
*
*
*
*
*
*
*
*

BZ SENDOK NO, SKIP PRINTING RETURN CODES
BAL R14,ZCRCMSG TELL OPER ZCSMS RETURN CODE
B RESTEXIT AND THEN GET OUT

SENDOK EQU *
BAL R14,ZCOKMSG TELL OPER CMD SENT

*
* RU SCHEDULED OK, MOVE OK MESS TO OUT BUF

LA R9,STARTDT WORKAREA DATETIME SAVE
DSIDATIM AREA=(R9),FORMAT=EBCDIC

*
B RESTEXIT RESTORE REGS AND EXIT

*
* ***
* REGISTERS CURRENTLY SET UP
* USING R3 IS CWB ADDRESS
* USING R4 IS TIB ADDRESS
* USING R5 IS DSRB ADDRESS
* USING R6 IS TVB ADDRESS
* USING R7 IS MVT ADDRESS
* USING R11 IS WORKING BUFFER ADDRESS
* USING R12 IS MODULE BASE
*
* ***
* COPY THE HEADER FROM THE COMMAND BUFFER TO THE OPERATOR MSG BUFFER
*
SETUP1

*

ST
L
LA
BCTR
EX

R14,R14SAVE
R10,CWBBUF
R9,BUFHDRND-BUFHDR
R9,0
R9,MOVE

SAVE THE BAL REGISTER
POINT TO WHERE IT IS
HOW LONG IT IS
-1 FOR THE MOVE
MOVE THE HEADER

* INITIALIZE THE OUTPUT BUFFER HEADER FOR MESSAGES TO THE OST
*

*

USING BUFHDR,R8
LA R10,BUFHDRND-BUFHDR LENGTH OF BUFFER HEADER
STH R10,HDRTDISP STORE OFFSET TO MSG IN HEADER
LA R10,256 LENGTH OF BUFFER
STH R10,HDRBLENG BUF LENGTH IN HEADER
MVI HDRMTYPE,HDRTYPEU INIT MESSAGE TYPE TO USER
MVI HDRIND,X '00 1 ZERO INDICATORS IN HEADER
MVC HDRDOMID(8),MVTCURAN DOMAIN ID IN HEADER
XC HDRPOI(L'HDRPOI),HDRPOI ZERO POI INFO IN HEADER
XC HDRTSTMP(4),HDRTSTMP PUT A PACKED ZERO
MVI HDRTSTMP+3,X ' 0C ' INTO THE TIME STAMP
DROP R8
L R14,R14SAVE
BR R14

RESTORE THE RETURN ADDR
GO BACK IN LINE

* END SETUP1
*
* ***
* PUT OUT OKMSG003
*
NMVTBILT ST R14,R14SAVE SAVE THE BAL REGISTER

POINT TO THE BUFFER HEADER LA R8,MSGBUFH
USING BUFHDR,R8
LA R9,L ' OKMSG005 GET LENGTH OF MESSAGE
STH R9,HDRMLENG IN OUTBUF
MVC BUFHDRND(L 'OKMSG005),OKMSG005 MSG IN OUT BUF

*

Appendix J. NetView Sample Programs 373

· BAL R14,TYPEMSG PRINT MSG IN R8 TO OPERATOR
L R14,R14SAVE RESTORE THE RETURN ADDR
BR R14 GO BACK IN LINE

*
* END NMVTBILT
*
* ***
* PUT OUT OKMSGOO3
*
OK256 ST R14,R14SAVE SAVE THE BAL REGISTER

LA R8,MSGBUFH POINT TO THE BUFFER HEADER
USING BUFHDR,R8
LA R9,L ' OKMSGOO3 GET LENGTH OF MESSAGE
STH R9,HDRMLENG IN OUTBUF
MVC BUFHDRND(L ' OKMSGOO3),OKMSGOO3 MSG IN OUT BUF
BAL R14,TYPEMSG PRINT MSG IN R8 TO OPERATOR
L R14,R14SAVE RESTORE THE RETURN ADDR
BR R14 GO BACK IN LINE

*
* END OK256
*
* ***
* TELL OPERATOR DSIZCSMS MAJOR AND MINOR RETURN CODE
*
ZCRCMSG ST R14,R14SAVE SAVE THE BAL REGISTER

LA R8,MSGBUFH POINT TO THE BUFFER HEADER
USING BUFHDR,R8
LA R9,L ' ZCRCOOl GET LENGTH OF MESSAGE
STH R9,HDRMLENG IN OUTBUF
MVC BUFHDRND(L'ZCRCOO1),ZCRCOOl MSG IN OUT BUF
STC R15,BUFHDRND+17 STORE MAJOR RC IN MSG
SRL R15,4
STC R15,BUFHDRND+16 STORE MAJOR RC IN MSG
NI BUFHDRND+16,X ' OF '
NI BUFHDRND+17,X ' OF'
TR BUFHDRND+16(2),TRANSTBL
STC RO,BUFHDRND+22 STORE MINOR RC IN MSG
SRL RO,4
STC RO,BUFHDRND+21 STORE MINOR RC IN MSG
NI BUFHDRND+21,X 'OF'
NI BUFHDRND+22,X 'OF'
TR BUFHDRND+21(2),TRANSTBL
BAL R14,TYPEMSG PRINT MSG IN R8 TO OPERATOR
L R14,R14SAVE RESTORE THE RETURN ADDR
BR R14 GO BACK IN LINE

*
* END ZCRCMSG
*
* ***
* TELL OPERATOR DSIMQS MAJOR AND MINOR RETURN CODE
*
MQSRCMSG ST R14,R14SAVE SAVE THE BAL REGISTER

POINT TO THE BUFFER HEADER LA R8,MSGBUFH
USING BUFHDR,R8
LA R9,L ' MQSRCOOl GET LENGTH OF MESSAGE
STH R9,HDRMLENG IN OUTBUF
MVC BUFHDRND(L'MQSRC001),MQSRCOOl MSG IN OUT BUF
STC R15,BUFHDRND+17 STORE MAJOR RC IN MSG
SRL R15,4

374 NetView/PCTM APIICS

*

*

*

*
*
*

STC
NI
NI
TR
BAl
B

R15,BUFHDRND+16 STORE MAJOR RC IN MSG
BUFHDRND+16,X I0FI
BUFHDRND+17,X I0FI
BUFHDRND+16(2),TRANSTBL
R14,TYPEMSG PRINT MSG IN R8 TO OPERATOR
RESTEXIT TIME TO LEAVE FOR GOOD

END MQSRCMSG

* ***
* PUT OUT OKMSG003
*
OK1024

*

ST R14,R14SAVE
LA R8,MSGBUFH
USING BUFHDR,R8

SAVE THE BAL REGISTER
POINT TO THE BUFFER HEADER

LA R9,L 1 0KMSG004 GET LENGTH OF MESSAGE
STH R9,HDRMLENG IN OUTBUF
MVC BUFHDRND(L 1 0KMSG004),OKMSG004 MSG ·IN OUT BUF
BAL R14,TYPEMSG PRINT MSG IN R8 TO OPERATOR
L R14,R14SAVE RESTORE THE RETURN ADDR
BR R14 GO BACK IN LINE

* END OK1024
*
* ***
* FIRST TIME IN, BETTER GET SOME STORAGE FOR THE NMVT BUFFER
*
GETNMVTB ST R14,R14SAVE SAVE THE BAL REGISTER

SR R9, R9 ZERO R9
LA R9,1024 PUT LENGTH IN R9
BAL R14,GETMAIN GET 1024 BYTE BUFFER
LTR R15,R15 TEST RETURN CODE
BNZ GETMER02 NOT ZERO GETMAIN ERROR

* COPY THE HEADER FROM THE COMMAND BUFFER TO THE NMVT BUFFER

*

L R8,DSRBUSER GET ADDR OF GOTTEN BUFFER
ST R11,DSRBUSER RESTORE ADDR OF WORK BFR
ST R8,RUBADDR STORE BUFFER ADDRESS
USING RUBUFFER,R8
LA R10,REPLYRU
ST R10,ZINPUT
DROP R8
USING BUFHDR,R8
L R10,CWBBUF
SR R9,R9
LA R9,BUFHDRND-BUFHDR
BCTR R9,0
EX R9,MOVE
SR R9,R9
LA R9,BUFHDRND-BUFHDR
STH R9,HDRTDISP
DROP R8
DROP R6
L R14,R14SAVE
BR R14

FIND REPLY BUFFER ADDRESS
SAVE IT FOR THE DSIZCSMS

POINT TO WHERE IT IS

HOW LONG IT IS
-1 FOR THE MOVE
MOVE THE HEADER

HOW LONG IT IS
OFFSET TO TEXT

RESTORE THE RETURN ADDR
GO BACK IN LINE

* END GETNMVTB
*
* ***
*

*

*

*

Appendix J. NetView Sample Programs 375

SETUP2 ST R14,R14SAVE SAVE THE BAL REGISTER
L R2,CWBBUF ADDR OF INPUT COMMAND BUFFER
USING BUFHDR,R2
AH R2,HDRTDISP GET DISPLACEMENT TO TEXT
DROP R2
USING INBUFFER,R2
L R6,RUBADDR POINT TO RU BUFFER AREA
USING BUFHDR,R6

* CALCULATE THE LENGTH OF THE BUFFER TO BE SENT TO THE SP
L R8,RULENGTH LENGTH OF THE INPUT BUFFER
ST R8,ZLENGTH FOR ZCSMS
SR R9,R9
IC R9,TARGCMDL LENGTH OF COMMAND TEXT
BCTR R9,0 -1 FOR THE LENGTH
AH R9,CMDNMVTL CALCULATE THE RU LENGTH
STH R9,HDRMLENG MSG LENGTH IN THE BUFFER
LA R9,(BUFHDRND-BUFHDR)(R9) CALCULATED LENGTH OF BUFFER
STH R9,HDRBLENG BUF LENGTH IN THE BUFFER
ST R9,WKBFLGTH BUF LENGTH IN THE BUFFER
DROP R6
L R14,R14SAVE RESTORE THE RETURN ADDR
BR R14 GO BACK IN LINE

*
* END SETUP2
*
* ***
* BUILD THE FOREWARD RU
*
BUILDRU ST R14,R14SAVE SAVE THE BAL REGISTER

L R6,RUBADDR POINT TO RU BUFFER AREA
USING RUBUFFER,R6
LA R10,NMVT POINT TO THE TEMPLET NMVT
USING NMVT,R10
SR R9,R9
LH R9,CMDNMVTL GET LENGTH TO MOVE
BCTR R9,0 LESS ONE
LA R8,RUOUT ADDR OF START OF NMVT RU
ST R8,ZRU STORE ADDRESS FOR ZCSMS

* MOVE R9 CHARACTERS FROM WHERE R10 POINTS TO WHERE R8 POINTS
EX R9,MOVE MOVE THE NMVT UP TO SV 31
DROP R6
DROP R10
L R14,R14SAVE RESTORE THE RETURN ADDR
BR R14 GO BACK IN LINE

*
* END BUILDRU
*
* ***
* ***
* FIND AND MOVE THE SP AND APPL NAMES INTO THE RU
* AND FIND AND MOVE THE COMMAND TEXT INTO THE RU
*
FINDNAMS ST

SR
LA
LA
LA
ST
ST

R14,R14SAVE
R9,R9
R9,7(0,O)
R10,TARGSPN
R8,SPDEST
R8,ZDEST
R8,ZTARGET

376 NetView/PCTM API/CS

SAVE THE BAL REGISTER

IT IS ALWAYS 8 LONG
POINT TO WHERE THE NAME IS
ADDR OF SP NAME
ADDR OF SP NAME FOR ZCSMS
POINT TO DSIZCSMS TARGET FIELD

* MOVE 8 CHARACTERS FROM WHERE R10 POINTS TO WHERE R8 POINTS
EX R9,MOVE MOVE SP DEST NAME

* SAVE THE TARGET APPLICATION/MANAGER NAME
FINDAP SR R9,R9

LA R9,7(0,0) IT IS ALWAYS 8 LONG
LA R10,TARGAPN POINT TO WHERE THE NAME IS

*
* R6 IS BASED ON THE RUBUFFER DSECT AND POINTS TO THE OUTPUT BUFFER
* R2 IS BASED ON THE INBUFFER DSECT AND POINTS TO THE INPUT DATA
*
* PUT THE TARGET APPL/MGR NAME IN THE 50 SV
* R10 ALREADY POINTS TO THE APPL NAME

L R6,RUBADDR POINT TO RU BUFFER AREA
USING NMVT,R6
LA R8,SV50DATA POINT TO THE SV 50 DATA FIELD
LA R9,7(0,0) IT IS ALWAYS 8 LONG

* MOVE R9 CHARACTERS FROM WHERE R10 POINTS TO WHERE R8 POINTS
EX R9,MOVE MOVE TARGETNAME

* PUT THE TARGET APPL/MGR NAME IN THE ZCSMS TARGET AREA
* R10 ALREADY POINTS TO THE APPL NAME

LA R8,APPLDEST POINT TO TARGET NAME
LA R9,7(0,0) IT IS ALWAYS 8 LONG

* MOVE R9 CHARACTERS FROM WHERE R10 POINTS TO WHERE R8 POINTS
EX R9,MOVE MOVE TARGETNAME

*
* ***
*,***
* BUILD THE COMMAND MESSAGE SUBVECTOR

SR R9,R9
IC R9,TARGCMDL
BCTR R9,0
AH R9,CMDNMVTL
ST R9,ZRULENG
SR R9,R9

LENGTH OF PARAMETER
-1 FOR THE LENGTH
CALCULATE THE NEW LENGTH
STORE IT IN THE BUFFER

IC R9,TARGCMDL LENGTH OF PARAMETER
AH R9,LL8061 CALCULATE THE NEW LENGTH
STH R9,LL8061 STORE IT IN THE MV-LL
LA R8,SV31DATA POINT TO SV31 LOCATION
LA R10,TARGCMD ADDRESS OF START OF CMD TEXT
SR R9, R9 ZERO R9
IC R9,TARGCMDL LENGTH OF PARAMETER
BCTR R9,0 -1 FOR THE LENGTH
LA R9,2(,R9) ADD 2 TO LENGTH
STC R9,LSV31 STORE THE LENGTH OF THE SV
SR R9, R9 ZERO R9
IC R9,TARGCMDL LENGTH OF PARAMETER
BCTR R9,0 -1 FOR THE MOVE

* MOVE R9 CHARACTERS FROM WHERE R10 POINTS TO WHERE R8 POINTS
EX R9,MOVE MOVE PARAMETER
L R14,R14SAVE RESTORE THE RETURN ADDR
DROP R6
BR R14 GO BACK IN LINE

*
* END FINDNAMS
*
* ***
* SEND THE NMVT
*
SENDRU ST R14,R14SAVE SAVE THE BAL REGISTER

Appendix J. NetView Sample Programs 377

L R6,RUBADDR POINT TO RU BUFFER AREA
USING RUBUFFER,R6

* ISSUE DSIZCSMS TO SEND FORWARD RU
ISSUECNM DSIZCSMS SWB=CWBSWB,DSRB=(R5),INPUT=ZINPUT,

LENGTH=ZLENGTH,RU=ZRU,RULENG=ZRULENG,
DEST=ZDEST,TARGET=ZTARGET

L R14,R14SAVE RESTORE THE RETURN ADDR
BR R14 GO BACK IN LINE
DROP R6

*
* END SENDRU
*
* ***
* DSIZSMS EXECUTED OK
* PREPARE MESSAGE
*
ZCOKMSG ST R14,R14SAVE SAVE THE BAL REGISTER

LA R8,MSGBUFH POINT TO THE BUFFER HEADER
USING BUFHDR,R8
LA R9,L ' OKMSGOOl GET LENGTH OF MESSAGE
STH R9,HDRMLENG IN OUTBUF
MVC BUFHDRND(L'OKMSGOOl),OKMSGOOl MSG IN OUT BUF
BAL R14,TYPEMSG PRINT MSG IN R8 TO OPERATOR
DROP R2
DROP R8
L R14,R14SAVE RESTORE THE RETURN ADDR
BR R14 GO BACK IN LINE

*
* END ZCOKMSG
*
* ***
*

*
*

*

EJECT

DROP R4

CNMIRPLY EQU *
*
* REGISTERS CURRENTLY SET UP
* USING R3 IS CWB ADDRESS
* USING R5 IS DSRB ADDRESS
* USING R7 IS MVT ADDRESS
* USING Rll IS WORKING BUFFER ADDRESS
* USING R12 IS MODULE BASE
*
*
*
* IF THE REQUESTED FUNCTION WAS SUCCESSFULLY COMPLETED, BUILD THE
* APPROPRIATE COMMAND TO NOTIFY THE OPERATOR
*

BAL R14,CKINPUT CHECK FOR VALID CNMI INPUT
BAL R14,CHKDATA CHECK THE RECEIVED DATA
BAL R14,BLDRMSG BUILD THE OPERATOR MSG
LA R8,MSGBUFH POINT TO THE BUFFER HEADER
USING BUFHDR,R8
BAL R14,TYPEMSG PRINT MSG IN R8 TO OPERATOR
DROP R8
BAL R14,MULTIPLE CK FOR AND PRINT ADDITIONAL

378 NetView/PCTM API/CS

*
*

*

*
*
*

*

*

*
B RESTEXIT

*
* END CNMIRPLY
*

MESSAGES IF ANY
LEAVE FOR GOOD

* ***
* IF UNSOLICITED THEN DISPLAY ERROR MESSAGE
*
CHKDATA ST RI4,RI4SAVE

L RI0,DSRBINPT
USING BUFHDR,RI0
AH RI0,HDRTDISP
DROP R10
USING DELIVRRU,RI0
LA R2,LLMV0061
ST R2,ADDR0061
DROP R10
USING LLMV0061,R2

* IF IT IS NOT A NETVIEW/PC (X 100611)
* THEN DISPLAY ERROR MESSAGE

CLC IDMV0061,NVPCREPL
BNE NOTREPLY

*

SAVE THE BAL REGISTER
GET ADDR OF CNMI BUF

FIND START OF TEXT

POINT TO THE MV
SAVE POINTER TO 0061 MV

BASE FOR MV
REPLY

NVPC REPLY?
NO, TELL OPERATOR

* ---------> IF IT IS NOT XI 1300 1 THEN DISPLAY ERROR MESSAGE
RPLYKEY LA R8,LENG0061

*

LA R10,LLMV0061
ST R10,ADDR0061
DROP R2
SR R9,R9
LA R9,1
EX R9,MOVE
AH R10,LENG0061
ST R10,ADDR1300
USING LLMVI300,RI0
CLC IDMVI300,UNFORMMV
BE MV1309
CLC IDMVI300,FORMREPL
DROP R10
BNE NOTFMT
LA R8,LENGI300
SR R9,R9
LA R9,1
EX R9,MOVE
L R14,RI4SAVE
BR R14

NOTFMT EQU *
L R10,ADDR0061
USING LLMV,RI0
LA RI0,LSV
DROP R10
USING LSV,RI0
DROP R2
SR R2,R2
IC R2,LSV
AR R10,R2
CLI IDSV,X I 7D I

BNE NOTFTMSG
LA R8,SVDATA

POINT TO MV 0061 LEN WORK AREA
POINT TO THE 0061 ADDRESS
SAVE 0061 ADDRESS

TO MOVE 2 BYTES
MOVE THE LENGTH TO WORK AREA
ADD THE LENGTH OF THE MV
SAVE ADDR OF MV 1300
BASE THE MESSAGE MV
UNFORMATTED REPLY?
YES, TELL OPERATOR
FORMATTED REPLY?

NO, CK IF SENSE
POINT TO MV 1300 LEN WORK AREA

TO MOVE 2 BYTES
MOVE THE LENGTH TO WORK AREA
RESTORE THE RETURN ADDR
GO BACK IN LINE

POINT TO THE 0061 MV
BASE THE MESSAGE MV
POINT TO NEXT SV

BASE THE SV

ZERO R2
GET NEXT SV LENGTH
POINT R10 TO NEXT SV
IS THERE SENSE DATA
NO, TELL NOT FORMATTED
POINT TO THE DATA

Appendix J. NetView Sample Programs 379

DROP RIB
B SENSEMSG TELL SENSE

*
* END CHKDATA
*
* ***
*
CKINPUT ST R14,R14SAVE SAVE THE BAL REGISTER

*

TM DSRBFLG,DSRBTYPE UNSOLICITED FUNCTION CODE?
BO UNSOL YES, TELL OPERATOR
LA R6,MSGBUFH POINT TO OPER MSG BUFFER
USING BUFHDR,R6
MVI OUTDATE,X'4B'
MVC OUTDATE+l(OUTLEN-l),OUTDATE BLANK BUFFER
DSIDATIM AREA=OUTDATE,FORMAT=EBCDIC
UNPK OUTPRID(3),DSRBPRID(2) UNPACK PRID
MVC OUTPRID+3(1),DSRBPRID+1 MOVE LAST BYTE
01 OUTPRID+2,X'FB' MAKE ZONE CORRECT
01 OUTPRID+3,X'FB' MAKE ZONE CORRECT
TR OUTPRID(4),TRANSTBl-24B MAKE ALL CHARS PRINTABLE
UNPK OUTRMAJ(2),DSRBRCMA+3
MVC OUTRMAJ+l(1),DSRBRCMA+3
01 OUTRMAJ,X'FB'
01 OUTRMAJ+l,X'FB'
TR OUTRMAJ(2),TRANSTBL-24B
UNPK OUTRMIN(2),DSRBRCMI+3
MVC OUTRMIN+l(1),DSRBRCMI+3
01 OUTRMIN,X'FB'
01 OUTRMIN+l,X'FB'
TR OUTRMIN(2),TRANSTBL-24B
LA R8,OUTLEN LENGTH OF BUFFER
STH R8,HDRBLENG TO BUF HDR
LA R8,OUTRU-MESSAGE LENGTH OF MESSAGE
STH R8,HDRMLENG TO BUF HDR
LA R8,BUFHDRND-BUFHDR GET LENGTH OF BUFHDR
STH R8,HDRTDISP DISPLACEMENT TO TEXT
CLC DSRBRCMI(4),RSPGOOD GOOD MINOR RC
BNE AMERROR NO, PREPARE MESSAGES
L R14,R14SAVE RESTORE THE RETURN ADDR
BR R14 GO BACK IN LINE

AMERROR L
AH

SENSEMSG lA

R8,DSRBINPT
R8,HDRTDISP-BUFHDR(R8)
R6,MSGBUFH

GET ADDR OF CNMI BUF
POINT 8 TO START OF RESP
MAKE SURE R6 IS CORRECT

* ***
* THE SENSE DATA IS DISPLAYED TO THE OPERATOR.
* THE FOllOWING SENSE DATA IS UNIQUE TO SPCF
* 8B18 BBBI TARGET MANAGER NOT RECOGNIZED
* B84B BBB3 THE RECEIVER IS NOT AVAilABLE
* lBB3 BBBD THE FUNCTION IS NOT SUPPORTED OR -
* A CHARACTER COULD NOT BE TRANSLATED
* ***

UNPK
MVC
01
01
TR
LA
AH

OUTRU(7),B(4,R8)
OUTRU+7(1),3(R8)
OUTRU+6,X'FB'
OUTRU+7,X'FB'
OUTRU(8),TRANSTBL-24B
R8,8
R8,HDRMlENG

380 NetView/PCTM APIICS

MAKE FIRST 4 BYTES READABLE

LENGTH OF SENSE
ADD TO PREFIX lENGTH

STH R8,HDRMLENG
LA R8,MSGBUFH
BAL RI4,TYPEMSG
SR R15,R15
B RESTEXIT
DROP R6

*
* END CKINPUT
*

IN BUFHDR
POINT TO OPER MSG BUFFER
PUT OUT AN ERROR MESSAGE
ZERO R15
TIME TO LEAVE

* ***
* PREPARE A REPLY MESSAGE FROM THE CNMI MESSAGE
*
BLDRMSG ST RI4,RI4SAVE

*

LA R6,MSGBUFH
USING BUFHDR,R6
L R2,ADDR0061
USING LLMV0061,R2
CLI IDSV,X 131 1
BNE NOTSV31
LA R8,OUTRMAJ
LA RIO, LSV
ST RI0,ADDRSV31
LA RI0,SVDATA
LA R9,WKBUFEND-MSGBUFH
STH R9,HDRBLENG
LA R9,OUTRMAJ-MESSAGE
STH R9,HDRMLENG
SR R9,R9
IC R9,LSV
BCTR R9,0
BCTR R9,0
AH R9,HDRMLENG
STH R9,HDRMLENG
SR R9,R9
IC R9,LSV
BCTR R9,0
BCTR R9,0
BCTR R9,0
EX R9,MOVE
SR R9,R9
L RI4,RI4SAVE
DROP R2
DROP R6
BR R14

* END BLDRMSG
*

SAVE THE BAL REGISTER
POINT TO OPER MSG BUFFER

POINT TO MV ID 0061
BASE FOR MV
MESSAGE SC ID?
NO, PUT OUT ERROR MSG
START OF REPLY
ADDRESS OF FIRST 31 SV
SAVE ADDR OF CURRENT SV 31
START OF MESSAGE SV
GET LENG OF MSG BUFFER
STORE THE BUFFER LENGTH
GET LENGTH MSG PREFIX
STORE PREFIX LENGTH

GET THE LENGTH
MINUS 1 FOR THE LENGTH FIELD
MINUS 1 FOR THE SV ID FIELD
ADD THE TEXT LENGTH
STORE THE MESSAGE LENGTH

GET THE LENGTH
MINUS 1 FOR THE LENGTH FIELD
MINUS 1 FOR THE SV ID FIELD
MINUS 1 FOR THE MOVE
t40VE IT

RESTORE THE RETURN ADDR

GO BACK IN LINE

* ***
* IF THERE IS MORE THAN ONE SV, PRINT A ONE LINE MESSAGE
* FOR EACH SV 31 AFTER THE FIRST ONE.
*
MULTIPLE ST RI4,RI4SAVE
CHKMORE L R2,ADDRSV31

USING LSV,R2
SR R9,R9
IC R9,LSV
ALR R2,R9
ST R2,ADDRSV31
CLI IDSV,X '311

SAVE THE BAL REGISTER
POINT TO SV ID 31

GET THE SV LENGTH
ADD TO THE ADDRESS
POINT TO NEXT SV ID 31
MESSAGE SC ID?

*

Appendix J. NetView Sample Programs 381

BNE NOMORESV NO, GET OUT
LA R8,MSGBUFH ADDR OF MESSAGE OUTPUT BUFHDR
USING BUFHDR,R8
LA R9,OUTRMAJ-MESSAGE MESSAGE PREFIX LENGTH
STH R9,HDRMLENG TO BUFHDR MESSAGE LENGTH
SR R9,R9
IC R9,LSV GET THE SV LENGTH
BCTR R9,0 -1 FOR SV LENGTH FIELD
BCTR R9,0 -1 FOR SV ID FIELD
AH R9,HDRMLENG ADD SV 31 LENGTH AND
STH R9,HDRMLENG STORE MESSAGE LENGTH
SR R9,R9
IC R9, LSV GET LENGTH OF SV
BCTR R9,0 -1 FOR SV ID
BCTR R9,0 -1 FOR SV LENGTH FIELD
BCTR R9,0 -1 FOR THE MOVE
DROP R8
LA R10,SVDATA POINT TO THE DATA
LA R8,OUTRMAJ POINT TO WHERE IT GOES
EX R9,MOVE MOVE TEXT TO OUTPUT MSG BUFFER
LA R8,MSGBUFH POINT TO THE BUFFER HEADER
BAL R14,TYPEMSG PRINT THE MESSAGE
B CHKMORE CK FOR MORE SV31-S
DROP R2

NOMORESV L R14,R14SAVE RESTORE THE RETURN ADDR
BR R14 GO BACK IN LINE

*
* END MULTIPLE
*
* ***
* IT IS NOT A REPLY FROM NETVIEW/PC
*
NOTREPLY LA R8,MSGBUFH POINT TO OPER MSG BUFFER

*

USING BUFHDR,R8
LA R9,L ' NOT0061
STH R9,HDRMLENG
MVC BUFHDRND(L ' NOT0G61),NOT0061
MVC BUFHDRND+31(1),DSRBFNCD
DROP R8
BAL R14,TYPEMSG
SR R15,R15
LA R15,8
B RESTEXIT

PUT OUT AN ERROR MESSAGE
ZERO R15
PUT RC IN R15

LEAVE FOR GOOD

* END NOTREPLY
*
* ***
MV1309 EQU *
* THE MAJOR VECTOR IS FOR UNFORMATTED DATA
* REGISTER 10 AND ADDR1300 POINT TO THE 1309 MV
* ADD CODE HERE TO HANDLE UNFORMATTED DATA IF REQUIRED
*

LA R8,MSGBUFH POINT TO OPER MSG BUFFER
USING BUFHDR,R8
LA R9,L ' NOTFM002
STH R9,HDRMLENG
MVC BUFHDRND(L ' NOTFM002),NOTFM002
DROP R8
LA R8,MSGBUFH POINT TO OPER MSG BUFFER

382 NetView/PCTM API/CS

*

*

BAL R14,TVPEMSG
SR R15,R15
B RESTEXIT

*

PUT OUT AN ERROR MESSAGE
ZERO R15
TIME TO LEAVE

* END NOTFTMSG
*
* ***

*
NOTFTMSG LA R8,MSGBUFH POINT TO OPER MSG BUFFER

*

USING BUFHDR,R8
LA R9,L ' NOTFMOOI
STH R9,HDRMLENG
MVC BUFHDRND(L'NOTFMOOl),NOTFMOOl
DROP R8
LA R8,MSGBUFH
BAL R14,TVPEMSG
SR R15,R15
B RESTEXIT

POINT TO OPER MSG BUFFER
PUT OUT AN ERROR MESSAGE
ZERO R15
TIME TO LEAVE

* END NOTFTMSG
*
* ***
*
UNSOL LA R8,MSGBUFH POINT TO OPER MSG BUFFER

USING BUFHDR,R8
LA R9,L ' NOTSOL
STH R9,HDRMLENG
MVC BUFHDRND(L'NOTSOL),NOTSOL
DROP R8
BAL R14,TVPEMSG PUT OUT AN ERROR MESSAGE
SR R15,R15 ZERO R15
L R8,DSRBINPT GET ADDR OF INPUT BUFFER
ST R8,FREMADDR STORE ADDRESS TO FREE
USING BUFHDR,R8
LH R9,HDRBLENG GET LENGTH TO FREE
DROP R8
BAL R14,FREEBUF GO BACK IN LINE
B RESTEXIT TIME TO LEAVE

*
* END UNSOL
*
* ***

*
NOTSV31 LA R8,MSGBUFH POINT TO OPER MSG BUFFER

*

USING BUFHDR,R8
LA R9,L ' NOTSV031
STH R9,HDRMLENG
MVC BUFHDRND(L ' NOTSV031),NOTSV031
DROP R8
BAL R14,TVPEMSG PUT OUT AN ERROR MESSAGE
SR R15, R15 ZERO R15
B RESTEXIT TIME TO LEAVE

* END NOTSV31
*
* ***

*
* GET STORAGE FOR THE LENGTH IN R9 AND RETURN THE ADDRESS IN R8
GETMAIN LR RIO,R14 SAVE THE BAL ADDRESS

*

*

*

*

*

Appendix J. NetView Sample Programs 383

L Rll,DSRBUSER
DSIGET LV=(R9),A=DSRBUSER,Q=YES,TASKA=(R6)
LR R14,R10 RESTORE THE RETURN ADDR
BR R14 GO BACK IN LINE

*
* END GETMAIN
*
* ***
* FREE THE BUFFER ADDRESS IN REGISTER 8 FOR THE LENGTH IN REGISTER 9
FREEBUF ST R14,R14SAVE SAVE THE BAL REGISTER

L R6,CWBTIB
USING DSITIB,R6
L R6,TIBTVB TVB ADDR
DROP R6

DSIFRE LV=(R9),A=FREMADDR,TASKA=(R6)
L R14,R14SAVE RESTORE THE RETURN ADDR
BR R14 GO BACK IN LINE

*
* END FREEBUF
*
* ***
* PRINT A MESSAGE, IN THE BUFFER POINTED TO BY R8, TO THE OPERATOR
TYPEMSG LR R10,R14 SAVE THE BAL REGISTER

L R6,CWBTIB GET TIB ADDR
USING DSITIB,R6
L R6, TIBTVB
DROP R6
USING DSITVB,R6

* PUT OUT A MESSAGE

GET TVB ADDR

DSIMQS SWB=CWBSWB,BFR=(R8),TASKID=DSRBOID
DROP R6
LTR R15,R15
BZ TYPEOUT
B MQSRCMSG

TYPEOUT EQU *
LR R14,R10
BR R14

*
* END TYPEMSG
*

CK RETURN CODE
OK, THEN BLANK MSG AREA
TELL OPERATOR MQS RC

RESTORE THE RETURN ADDR
GO BACK IN LINE

* ***

*
* STANDARD EXIT
RESTEXIT EQU *

L
LM
BR

*

R13,4(R13)
R14,R12,12(R13)
R14

* END RESTEXIT
*
* ***

*
FREMERR EQU *
* DSIFRE FAILED

LA R8,MSGBUFH POINT TO THE BUFFER HEADER
USING BUFHDR,R8
LA R9,L ' FMERR001 GET LENGTH OF MESSAGE
STH R9,HDRMLENG IN OUTBUF
MVC BUFHDRND(L ' FMERR001),FMERR001 MSG IN OUT BUF

384 NetView/PCTM APIICS

BAL RI4,TYPEMSG
B RESTEXIT

PRINT MSG IN R8 TO OPERATOR *
RESTORE REGS AND EXIT

DROP R8
*
* END FREMERR
*
* ***
*
GETMER01 EQU *
* DSIGET FAILED, MUST USE THE CWB AUTOWORK AREA FOR OPER MSG

LA R8,CWBADATD POINT TO OPER MESSAGE AREA
BAL RI4,SETUPI SET UP THE OPER MSG BUFHDR
USING BUFHDR,R8
LA R9,L ' GMERR002 GET LENGTH OF MESSAGE
STH R9,HDRMLENG IN OUTBUF
MVC BUFHDRND(L ' GMERR002),GMERR002 MSG IN OUT BUF
BAL RI4,TYPEMSG PRINT MSG IN R8 TO OPERATOR
B RESTEXIT RESTORE REGS AND EXIT
DROP R8

*
* END GETMER01
*
* ***

*
GETMER02 EQU *
* DSIGET FAILED

LA R8,MSGBUFH POINT TO THE BUFFER HEADER
USING BUFHDR,R8
LA R9,L 'GMERR002 GET LENGTH OF MESSAGE
STH R9,HDRMLENG IN OUTBUF
MVC BUFHDRND(L 'GMERR002),GMERR002 MSG IN OUT BUF
BAL RI4,TYPEMSG PRINT MSG IN R8 TO OPERATOR
B REST EXIT RESTORE REGS AND EXIT

*
* END GETMER02
*
* ***
* ***
* DECLARES

LTORG
RSPGOOD DC A(DSRCGOOD)
RSPNGR DC A(DSRCNGRP)
RULENGTH DC AL4(RUBEND-REPLYRU) REPLY BUFFER LENGTH
*
* REGISTER 8 MUST POINT TO THE ADDRESS THAT DATA WILL BE MOVED TO
* REGISTER 9 MUST CONTAIN THE COUNT (-1) OF DATA TO BE MOVED
* REGISTER 10 MUST POINT TO THE PARM THAT WILL BE MOVED
*
MOVE MVC 0(0,R8),0(RI0) MOVE FROM RIO TO R8
*
* ***
OKMSG001 DC
OKMSG002 DC
OKMSG003 DC
OKMSG004 DC
OKMSG005 DC
GMERR001 DC
GMERR002 DC
FMERR001 DC

C'MESSAGE QUEUED TO THE SERVICE POINT '
C'INPUT COMMAND BUFFER FREED OK '
C'256 BYTE WORK BUFFER GOTTEN OK '
C' 1024 BYTE NMVT BUFFER GOTTEN OK '
C'DSIZCSMS WILL BE ISSUED NEXT '
C'DSIGET FOR WORK BUFFER FAILED'
C'DSIGET FOR CNMI BUFFER FAILED'
C'DSIFRE FOR INPUT BUFFER FAILED'

*

*

Appendix J. NetView Sample Programs 385

FMERR002 DC
ZCRC001 DC
MQSRC001 DC
NOT0061 DC
NOTSOL DC
NOTFM001 DC
NOTFM002 DC
NOTSV031 DC
ENDMSG DC
TRANSTBL DC
INTRNLRQ DC
OUTFWRD DC
OUTGETM DC
OUTFAlL DC
NPCREPLY DC
NVPCREPL DC
FORMREPL DC
UNFORMMV DC
*
NVPCCMD DS
CMDNMVTL DC
NMVT DC
RETIRED DC
NMVTPRID DC
NMVTFLAG DC
*
*
LL8061 DC
ID8061 DC
*
LSV06 DC
SVID06 DC
ENDSV06 EQU
*
LSV50 DC
SVID50 DC
SV50DATA DC
ENDSV50 EQU
*
LSV31 DC
SVID31 DC
SV31DATA DS
ENDSV31 EQU
END8061 EQU
*

C'DSIFRE FOR CNMI BUFFER FAILED'
C'DSIZCSMS RC = X" "" '"
C'DSIMQS RC = X" '"
C'MV IS NOT 0061'
C'NMVT IS NOT A SOLICITED REPLY'
C'NMVT IS NOT RECOGNIZED'
C'NMVT MV ID IS 1309'
C'MV 1300 SV IS NOT ID 31'
C'NVPC DSCP ENDING '
C' 0123456789ABCDEF '
Y(IFRCODCR) IFR CODE FORCROSS TASK CMD QUEUE
CL8 I FORWARD'
CL8 I GETMAIN'
CL8'FAILED'
XL3'41038D' NETVIEW/PC REPLY
XL2'0061'
XL2'1300 1

XL2'1309'

0H
AL2(ENDSV31-NMVT)
XL3'41038D'
XL2'0000 1

XL2 1 0000 1

XL1'00 1

ALIGNMENT
LENGTH OF THE NMVT
NMVT RU

MAJOR VECTOR 8061
AL2(END8061-LL8061) MVID 8061 LENGTH
XL2'8061'

AL1(ENDSV50-LSV06) SVID 06 LENGTH
XLl'06'
* END OF SVID 06

AL1(ENDSV50-LSV50) SVID 50 LENGTH
XLl'50'
CL8'SAMPAPPL' TARGET APPL/MGR NAME
* END OF SVID 50

AL1(ENDSV31-LSV31) SVID 31 LENGTH
XLl'31'
0H COMMAND TEXT
* END OF SVID 31
* END OF MVID 8061

* ***
*
INBUFFER DSECT
DSCPNAME DS CL9
*INCMDNAM DS CL9
TARGSPL DS XL1
TARGSPN DS CL8
TARGAPL DS XL1
TARGAPN DS CL8
TARGCMDL DS XL1
TARGCMD DS CL240
*

DSCP NAME AND A BLANK
OPERATOR ENTERED CMD AND BLANK
LENGTH OF TARGET SP NAME
TARGET SP NAME - INIT TO BLANKS
LENGTH OF TARGET APPL NAME
TARGET APPL NAME-INIT TO BLANKS
LENGTH OF COMMAND
COMMAND TEXT UP TO 240 BYTES

* ***
*

386 NetView/PCTM API/CS

RUBUFFER DSECT 1024 BYTES OF GOTTEN STORAGE POINTED TO BY RUBADDR
* HERE STARTS THE OUTPUT NMVT
RUOUT EQU *
*
* HERE STARTS THE INPUT RU AREA IN THE 1024 BYTE GOTTEN STORAGE

ORG RUOUT+400 START OF REPLY AREA
REPlYRU EQU * START OF BUFFER HEADER

ORG *+(BUFHDRND-BUFHDR) END OF BUFHDR
RUIN EQU *
RUBEND EQU RUOUT+1024 END OF RU BUFFER
*
* ***
*

DSECT
WORKING EQU * 256 BYTES OF GOTTEN STORAGE POINTED TO BY DSRBUSER
RUBADDR DS F ADDRESS OF RUBUFFER
ZINPUT DS F ADDRESS OF REPLY BUFFER
ZlENGTH DS F lENGTH OF THE INPUT RU BUFFER
ZRU DS F ADRESS OF AREA WITH OUTPUT RU
ZRUlENG DS F lENGTH OF IMBEDED RU BUFFER
ZDEST DS F ADRESS OF SP DEST NAME
ZTARGET DS F ADRESS OF TARGET APPl
R14SAVE DS F R14 SAVEAREA
WKBFlGTH DS F WORK BUFFER lENGTH
FREMADDR DS F ADDRESS FOR DSIFRE TO FREE
ADDR0061 DS F ADDRESS OF THE MV ID X'0061 1

lENG0061 DS H lENGTH OF MV ID X'0061
ADDRSV31 DS F ADDRESS OF THE SV ID X' 31 1

ADDR1300 DS F ADDRESS OF THE MV ID X' 1300 1

lENG1300 DS H lENG REMAINING IN MV ID X' 1300
DS 0F ALIGN

SPDEST DS Cl8 SERVICE POINT NAME
APPlDEST DS Cl8 TARGET APPLICATION NAME
STARTDT DS CLl7 DATE AND TIME MESSAGE SENT

DS 0F ALIGN ON A WORD
MSGBUFH EQU * START OF BUFFER HEADER

ORG *+(BUFHDRND-BUFHDR) START OF TEXT
MESSAGE EQU * HERE STARTS THE OST MSG
OUTHDR EQU *
OUTDATE DS Cl8 MESSAGE DATE

DS CLl
OUTTIME DS Cl8 MESSAGE TIME

DS CLl
OUTPRID DS Cl4 CORRELATION REQUEST ID

DS CLl
OUTRMAJ DS Cl2 MAJOR RETURN CODE

DS CLl
OUTRMIN DS Cl2 MINOR RETURN CODE

DS CLl
OUTRU DS Cl8 SENSE BYTES IF NEGATIVE RESPONSE

DS CLl
OUTMSG DS Cl80 MESSAGE TEXT GOES HERE
OUT END EQU *
OUT lEN EQU OUTEND-OUTHDR

ORG OUTMSG+256
WORKBUF EQU *-WORKING
WKBUFEND EQU *
*
* ***

Appendix J. NetView Sample Programs 387

*
RPLYNMVT OSECT

ORG *+(BUFHORNO-BUFHOR) START OF TEXT
OELIVRRU OS XL8
NSHOR OS XL3
RESV OS XL2
PRIO OS XL2
FLAGS OS XLI
* SPCF REPLY MAJOR VECTOR AND SUBVECTOR OSECT
LLMV0061 OS XL2 MV LENGTH
IOMV0061 OS XL2 MV 10

OS XL4 SV 44
LLMVI300 OS XL2 MV LENGTH
IOMVI300 OS XL2 MV 10

LLMV
IOMV
LSV
IOSV
SVOATA
*
SV70
LSV70
IOSV70

ORG LLMVI300 ANY MV-SV FOLLOWS
OS XL2 MV LENGTH
OS XL2 MV ID
OS XLl SV LENGTH
OS XLl SV 10
EQU * SV DATA

ORG LLMVI300
OS XLl
OS XLl

IF NOT MV 1300 THEN MAY BE SV70
LENGTH OF SV
10 OF SV

* ***
END

388 NetView/PCTM APIICS

Glc;>ssary

This glossary defines important NCP, NetView,
NetView/PC, SSP, and VTAM abbreviations and terms.
It includes information from the IBM Vocabulary for
Data Processing, Telecommunications, and Office
Systems, GC20-1699. Definitions from the American
National Dictionary for Information Processing are
identified by an asterisk (*). Definitions from draft pro­
posals and working papers under development by the
International Standards Organization, Technical Com­
mittee 97, Subcommittee 1 are identified by the symbol
(TC97). Definitions from the CCIT Sixth Plenary
Assembly Orange Book, Terms and Definitions and
working documents published by the Consultative Com­
mittee on International Telegraph and Telephone of the
International Telecommunication Union, Geneva, 1980
are preceded by the symbol (CCITT/ITU). Definitions
from published sections of the ISO Vocabulary of Data
Processing, developed by the International Standards
Organization, Technical Committee 97, Subcommittee 1
and from published sections of the ISO Vocabulary of
Office Machines, developed by subcommittees of ISO
Technical Committee 95, are preceded by the symbol
(ISO).

For abbreviations, the definition usually consists only of
the words represented by the letters; for complete defi­
nitions, see the entries for the words.

Reference Words Used in the Entries

The following reference words are used in this
glossary:

Deprecated term for. Indicates that the term
should not be used. It refers to a preferred term,
which is defined.

Synonymous with. Appears in the commentary of
a preferred term and identifies less desirable or
less specific terms that have the same meaning.

Synonym for. Appears in the commentary of a less
desirable or less specific term and identifies the
preferred term that has the same meaning.

Contrast with. Refers to a term that has an
opposed or substantively different meaning.

See. Refers to multiple-word terms that have the
same last word.

See also. Refers to related terms that have similar
(but not synonymous) meanings.

ABEND. Abnormal end of task.

abnormal end of task (ABEND). Termination of a task
before its completion because of an error condition that

cannot be resolved by recovery facilities while the task
is executing.

ACB name. (1) The name of an ACB macroinstruction.
(2) A name specified in the ACBNAME parameter of a
VTAM APPL statement. Contrast with network name.

accept. For a VTAM application program, to establish a
session with a logical unit (LU) in response to a CINIT
request from a system services control point (SSCP).
The session-initiation request may begin when a ter­
minal user logs on, a VTAM application program issues
a macroinstruction, or a VTAM operator issues a
command. See also acquire (1).

access method. A technique for moving data between
main storage and input/output devices.

accounting exit routine. In VTAM, an optional installa­
tion exit routine that collects statistics about session
initiation and termination.

ACF/NCP. Advanced Communications Function for the
Network Control Program. Synonym for NCP.

acquire. (1) For a VTAM application program, to ini­
tiate and establish a session with another logical unit
(LU). The acquire process begins when the application
program issues a macroinstruction. See also accept.
(2) To take over resources that were formerly con­
trolled by an access method in another domain, or to
resume control of resources that were controlled by
this domain but released. Contrast with release. See
also resource takeover.

active. (1) The state a resource is in when it has been
activated and is operational. Contrast with inactive,
pending, and inoperative. (2) Pertaining to a major or
minor node that has been activated by VTAM. Most
resources are activated as part of VTAM start proc­
essing or as the result of a VARY ACT command.

adapter. Hardware card that allows a device, such as a
PC, to communicate with another device, such as a
monitor, a printer, or other I/O device.

alert. (1) In SNA, a record sent to a system problem
management focal point to communicate the existence
of an alert condition. (2) In the NetView program, a
high priority event that warrants immediate attention.
This data base record is generated for certain event
types that are defined by user-constructed filters.

alert condition. A problem or impending problem for
which some or all of the process of problem determi­
nation, diagnosis, and resolution is expected to require
action at a control point.

Glossary 389

allocate. A logical unit {LU} 6.2 application program
interface {API} verb used to assign a session to a con­
versation for the conversation's use. Contrast with
deal/ocate.

API. Application program interface.

application program. {1} A program written for or by a
user that applies to the user's work. {2} A program
used to connect and communicate with stations in a
network, enabling users to perform application-oriented
activities.

application program interface (API). {1} The formally
defined programming language interface between an
IBM system control program or licensed program and
its user. (2) The interface through which an application
program interacts with an access method. In VTAM, it
is the language structure used in control blocks so that
application programs can reference them and be identi­
fied to VTAM.

ASCII. American National Standard Code for Informa­
tion Interchange.

authorization exit routine. In VTAM, an optional instal­
lation exit routine that approves or disapproves
requests for session initiation.

automatic logon. {1} A process by which VTAM auto­
matically creates a session-initiation request to estab­
lish a session between two logical units (LUs). The
session will be between a designated primary logical
unit (PLU) and a secondary logical unit (SLU) that is
neither queued for nor in session with another PLU.
See also controlling application program and control­
ling logical unit. {2} In VM, a process by which a
virtual machine is initiated by other than the user of
that virtual machine. For example, the primary VM
operator's virtual machine is activated automatically
during VM initialization.

available. In VTAM, pertaining to a logical unit that is
active, connected, enabled, and not at its session limit.

bidder. In SNA, the LU-LU half-session defined at
session activation as having to request and receive
permission from the other LU-LU half-session to begin
a bracket. Contrast with first speaker. See also
bracket protocol and contention.

boundary function. {1} A capability of a subarea node
to provide protocol support for attached peripheral
nodes, such as: (a) interconnecting subarea path
control and peripheral path control elements, {b} per­
forming session sequence numbering for low-function
peripheral nodes, and (c) providing session-level
pacing support. {2} The component that provides these
capabilities. See also boundary node, network
addressable unit (NAU) , peripheral path control,
subarea node, and subarea path control.

390 NetView/PCTM APIICS

boundary node. {1} A subarea node with boundary
function. See subarea node {including illustration}.
See also boundary function. (2) The programming
component that performs FID2 {format identification
type 2} conversion, channel data link control, pacing,
and channel or device error recovery procedures for a
locally attached station. These functions are similar to
those performed by a network control program for an
NCP-attached station.

bracket protocol. In SNA, a data flow control protocol
in which exchanges between the two LU-LU half­
sessions are achieved through the use of brackets, with
one LU deSignated at session activation as the first
speaker and the other as the bidder. The bracket pro­
tocol involves bracket initiation and termination rules.
See also bidder and first speaker.

branch exchange. A switching system that provides
telephone communication between branch stations and
external networks.

buffer. A portion of storage for temporarily holding
input or output data.

CBX. Computerized branch exchange.

chain. See RU chain.

channel. * A path along which signals can be sent, for
example, data channel, output channel. See data
channel and input/output channel. See also link.

character-coded. Synonym for unformatted.

CICS. Customer Information Control System.

CLiST. Command list.

cluster controller. A device that can control the
input/output operations of more than one device con­
nected to it. A cluster controller may be controlled by a
program stored and executed in the unit; for example,
the IBM 3601 Finance Communication Controller. Or it
may be controlled entirely by hardware; for example,
the IBM 3272 Control Unit.

CNM. Communication network management.

command. {1} A request from a terminal for the per­
formance of an operation or the execution of a partic­
ular program. (2) In SNA, any field set in the
transmission header {TH}, request header {RH}, and
sometimes portions of a request unit {RU}, that initiates
an action or that begins a protocol; for example: (a)
Bind Session (session-control request unit), a
command that activates an LU-LU session, (b) the
change-direction indicator in the RH of the last RU of a
chain, (c) the virtual route reset window indicator in a
FID4 transmission header. See also VTAM operator
command.

command facility. The component of the NetView
program that is a base for command processors that
can monitor, control, automate, and improve the opera­
tion of a network.

command list (CLlST). In the NetView program, a
sequential list of commands and control statements
that is assigned a name. When the name is invoked (as
a command) the commands in the list are executed.

command processor. A program that performs an
operation specified by a command.

communication line. Deprecated term for telecommu­
nication line and transmission line.

communication management configuration host node.
The type 5 host processor in a communication manage­
ment configuration that does all network-control func­
tions in the network except for the control of devices
channel-attached to data hosts. Synonymous with com­
munication management host. Contrast with data host
node.

communication management host. Synonym for com­
munication management configuration host node.

communication network management (CNM). The
process of designing, installing, operating, and man­
aging the distribution of information and controls
among end users of communication systems.

communication network management (CNM) applica­
tion program. A VTAM application program that issues
and receives formatted management services request
units for physical units. For example, NetView.

communication network management (CNM) interface.
The interface that the access method provides to an
application program for handling data and commands
associated with communication system management.
CNM data and commands are handled across this inter­
face.

communication network management (CNM) processor.
A program that manages one of the functions of a com­

munications system. A CNM processor is executed
under control of NetView.

composite end node (CEN). A group of nodes made up
of a single type 5 node and its subordinate type 4 nodes
that together support type 2.1 protocols. To a type 2.1
node, a CEN appears as one end node.

computerized branch exchange (CBX). An exchange in
which a central node acts as a high-speed switch to
establish direct connections between pairs of attached
nodes.

configuration. (1) (TC97) The arrangement of a com­
puter system or network as defined by the nature,
number, and the chief characteristics of its functional

units. The term may refer to a hardware or a software
configuration. (2) The devices and programs that
make up a system, subsystem, or network. (3) In CCP,
the arrangement of controllers, lines, and terminals
attached to an IBM 3710 Network Controller. Also, the
collective set of item definitions that describe such a
configuration.

configuration services. In SNA, one of the types of
network services in the control point (CP) and in the
physical unit (PU); configuration services activate,
deactivate, and maintain the status of physical units,
links, and link stations. Configuration services also
shut down and restart network elements and modify
path control routing tables and address-translation
tables. See also maintenance services, management
services, network services, and session services.

connected. In VTAM, pertaining to a physical unit (PU)
or logical unit (LU) that has an active physical path to
the host processor containing the system services
control point (SSCP) that controls the PU or LU.

connection. Synonym for physical connection.

contention. A situation in which two logical units (LUs)
that are connected by an LU 6.2 session both attempt to
allocate the session for a conversation at the same
time. Ihe control operator assigns "winner" and
"loser" status to the LUs so that processing may con­
tinue on an orderly basis. The contention loser
requests permission from the contention winner to allo­
cate a conversation on the session, and the contention
winner either grants or rejects the request. See also
bidder.

control block. (ISO) A storage area used by a computer
program to hold control information.

control point (CP). (1) A system services control point
(SSCP) that provides hierarchical control of a group of
nodes in a network. (2) A control pOint (CP) local to a
specific node that provides control of that node, either
in the absence of SSCP control (for type 2.1 nodes
engaged in peer to peer communication) or to supple­
ment SSCP control.

control program (CP). The VM operating system that
manages the real processor's resources and is respon­
sible for simulating System/370s for individual users.

contrOlling application program. In VTAM, an applica­
tion program with which a secondary logical unit (other
than an application program) is automatically put in
session whenever the secondary logical unit is avail­
able. See also automatic logon and controlling logical
unit.

controlling logical unit. In VTAM, a logical unit with
which a secondary logical unit (other than an applica­
tion program) is automatically put in session whenever
the secondary logical unit is available. A controlling

Glossary 391

logical unit can be either an application program or a
device-type logical unit. See also automatic logon and
controlling application program.

CPo (1) Control program. (2) Control pOint.

Customer Information Control System (CICS). A
licensed program that enables transactions entered at
remote terminals to be processed concurrently by user­
written application programs. It also includes facilities
for building, using, and maintaining data bases.

DASD. Direct access storage device.

data channel. Synonym for input/output channel. See
channel.

data flow control (DFC) layer. In SNA, the layer within
a half-session that (1) controls whether the half-session
can send, receive, or concurrently send and receive
request units (RUs); (2) groups related RUs into RU
chains; (3) delimits transactions via the bracket pro­
tocol; (4) controls the interlocking of requests and
responses in accordance with control modes specified
at session activation; (5) generates sequence numbers;
and (6) correlates requests and responses.

data host. Synonym for data host node.

data host node. In a communication management con­
figuration, a type 5 host node that is dedicated to proc­
essing applications and does not control network
resources, except for its channel-attached or communi­
cation adapter-attached devices. Synonymous with
data host. Contrast with communication management
configuration host node.

data link. In SNA, synonym for link.

data link control protocol. In SNA, a set of rules used
by two nodes on a data link to accomplish an orderly
exchange of information. Synonymous with line
control.

data services command processor (DSCP). A compo­
nent that structures a request for recording and
retrieving data in the application program's data base
and for soliciting data from a device in the network.

data services task (DST). The NetView subtask that
gathers, records, and manages data in a VSAM file
and/or a network device that contains network manage­
ment information.

392 NetView/PCTM APIICS

data types. In the NetView program, a concept to
describe the organization of panels. Data types are
defined as alerts, events, and statistics. Data types are
combined with resource types and display types to
describe NetView's display organization. See also
display types and resource types.

deallocate. A logical unit (LU) 6.2 application program
interface (API) verb that terminates a conversation,
thereby freeing the session for a future conversation.
Contrast with allocate.

definite response (DR). In SNA, a value in the form-of­
response-requested field of the request header. The
value directs the receiver of the request to return a
response unconditionally, whether positive or negative,
to that request. Contrast with exception response and
no response.

definition statement. (1) In VTAM, the statement that
describes an element of the network. (2) In NCP, a
type of instruction that defines a resource to the NCP.
See Figure 131, Figure 132, and Figure 133 on
page 393. See also macroinstruction.

operands

r~----------------~-----------------~
suboperands suboperands

~ ~
START A, (B,C), KEYWORDl=D, KEYWORD2=(E,F)
l--y-l L-.r---J , /

'V

statement positional keyword
identifier operands operands

'----------------------~---------------------/
statement

Figure 131. Example of a Language Statement

definition statement

r----------------~----------------~

BUILD
Ly-J

definition
statement
identifier

suboperands r A __________ ,

CA=(caO[,cal][,ca2][,ca3])
,-------------~ /

keyword operand

Figure 132. NCP Example

keyword operand
definition r_-----A

..... ----_

statement "'\
identifier suboperands
h r A __ ---..."

PU DISCNT=([YESINO][,FINF])
~ --------~-------~/

definition statement

VARY NET,ACT,ID=name,RNAME=(namel, ... ,name13)
Ly-J~ \. v)

operator positional suboperands
command operands
operator \.... ________ ~_-------_/

operands

'-..... ---/
operator command

Figure 133. VTAM Examples

detailed data. Short strings of product-specific textual
data transported in a network management vector
transport (NMVT) and displayed, without any interpreta­
tion or translation, by a problem management focal­
point product.

direct access storage device (DASD). A device in
which the access time is effectively independent of the
location of the data. For example, a disk.

directory. In VM, a control program (CP) disk that
defines each virtual machine's normal configuration.

disabled. In VTAM, pertaining to a logical unit (LU) that
has indicated to its system services control point
(SSCP) that it is temporarily not ready to establish
LU-LU sessions. An initiate request for a session with
a disabled logical unit (LU) can specify that the session
be queued by the SSCP until the LU becomes enabled.
The LU can separately indicate whether this applies to
its ability to act as a primary logical unit (PLU) or a sec­
ondary logical unit (SLU). See also enabled and inhib­
ited.

Disk Operating System (DOS). Software for the PC that
controls the execution of programs. Its full name is the
IBM Personal Computer Disk Operating System.

display. (1) To present information for viewing, usually
on a terminal screen or a hard-copy device. (2) A
device or medium on which information is presented,
such as a terminal screen. (3) Deprecated term for
panel.

display levels. Synonym for display types.

display types. In NetView, a concept to describe the
organization of panels. Display types are defined as
total, most recent, user action, and detail. Display
types are combined with resource types and data types
to describe NetView's panel organization. See data

types and resource types. Synonymous with display
levels.

domain. (1) An access method, its application pro­
grams, communication controllers, connecting lines,
modems, and attached terminals. (2) In SNA, a system
services control point (SSCP) and the physical units
(PUs), logical units (LUs), links, link stations, and all the
associated resources that the SSCP has the ability to
control by means of activation requests and deacti­
vation requests. See also single-domain network and
multiple-domain network.

domain operator. In a multiple-domain network, the
person or program that controls the operation of the
resources controlled by one system services control
point. Contrast with network operator (2).

DOS. Disk Operating System.

DOS partition. In the NetView/PC program, a separate
area of memory in which NetView/PC programs and
other DOS programs can be serially executed.

downstream. In the direction of data flow from the host
to the end user. Contrast with upstream.

DSCP. Data services command processor.

DS1. Data services task.

dump. (1) Computer printout of storage. (2) To write
the contents of all or part of storage to an external
medium as a safeguard against errors or in connection
with debugging. (3) (ISO) Data that have been dumped.

EBCDIC. * Extended binary-coded decimal interchange
code. A coded character set consisting of 8-bit coded
characters.

element. (1) A field in the network address. (2) The
particular resource within a subarea identified by the
element address. See also subarea.

enabled. In VTAM, pertaining to a logical unit (LU) that
has indicated to its system services control point
(SSCP) that it is now ready to establish LU-LU sessions.
The LU can separately indicate whether this prevents it
from acting as a primary logical unit (PLU) or as a sec­
ondary logical unit (SLU). See also disabled and inhib­
ited.

end node. A type 2.1 node that does not provide any
intermediate routing or session services to any other
node. See composite end node, node, and type 2.1
node.

end user. In SNA, the ultimate source or destination of
application data flowing through an SNA network. An
end user may be an application program or a terminal
operator.

Glossary 393

ER. (1) Explicit route. (2) Exception response.

error-to-traffic (E/T). The number of temporary errors
compared to the traffic associated with a resource.

E/T. Error-to-traffic.

event. (1) In the NetView program, a record indicating
irregularities of operation in physical elements of a
network. (2) An occurrence of significance to a task;
typically, the completion of an asynchronous operation,
such as an input/output operation.

exception request (EXR). In SNA, a request that
replaces another message unit in which an error has
been detected.

exception response (ER). In SNA, a value in the form­
of-response-requested field of a request header (RH).
An exception response is sent only if a request is unac­
ceptable as received or cannot be processed. Contrast
with definite response and no response. See also neg­
ative response.

EXEC. In a VM operating system, a user-written
command file that contains CMS commands, other
user-written commands, and execution control state­
ments, such as branches.

exit routine. Any of several types of special-purpose
user-written routines. See accounting exit routine,
authorization exit routine, logon-interpret routine,
virtual route selection exit routine, EXLST exit routine,
and RPL exit routine.

EXLST exit routine. In VTAM, a routine whose address
has been placed in an exit list (EXLST) control block.
The addresses are placed there with the EXLST macro­
instruction, and the routines are named according to
their corresponding operand; hence OFASY exit
routine, TPENO exit routine, RELREQ exit routine, and
so forth. All exit list routines are coded by the VTAM
application programmer. Contrast with RPL exit
routine.

explicit route (ER). In SNA, the path control network
elements, including a specific set of one or more trans­
mission groups, that connect two subarea nodes. An
explicit route is identified by an origin subarea
address, a destination subarea address, an explicit
route number, and a reverse explicit route number.
Contrast with virtual route (VR). See also path and
route extension.

EXR. Exception request.

field-formatted. Pertaining to a request or response
that is encoded into fields, each having a specified
format such as binary codes, bit-significant flags, and
symbolic names. Contrast with character-coded.

394 Netview/PCTM APIICS

first speaker. In SNA, the LU-LU half-session defined at
session activation as: (1) able to begin a bracket
without requesting permission from the other LU-LU
half-session to do so, and (2) winning contention if both
half-sessions attempt to begin a bracket simultane­
ously. Contrast with bidder. See also bracket protocol.

focal point. The control point for any management ser­
vices element containing control of the functions
responsible for network management data. See also
management services.

frame. (1) The unit of transmission in some local area
networks, including the IBM Token-Ring Network. It
includes delimiters, control characters, information,
and checking characters. (2) In SOLC, the vehicle for
every command, every response, and all information
that is transmitted using SOLC procedures.

full-screen mode. A form of panel presentation in
NetView where the contents of an entire terminal
screen can be displayed at once. Fu"-screen mode can
be used for fill-in-the-blanks prompting. Contrast with
line mode.

generation. The process of assembling and link editing
definition statements so that resources can be identi­
fied to a" the necessary programs in a network.

generiC alert. A product-independent method of
encoding alert data by means of textual data or code
points that index short units of stored text.

group. In the NetView/PC program, to identify a set of
application programs that are to run concurrently.

half-session. In SNA, a component that provides func­
tion management data (FMO) services, data flow
control, and transmission control for one of the ses­
sions of a network addressable unit (NAU). See also
primary half-session and secondary half-session.

hardware monitor. The component of the NetView
program that helps identify network problems, such as
hardware, sotware, and microcode, from a central
control point using interactive display techniques.

help desk. In the NetView program, an online informa­
tion facility that guides the help desk operator through
problem management procedures.

help panel. An online display that tells you how to use
a command or another aspect of a product. See task
panel.

hierarchy. In the NetView program, the resource types,
display types, and data ty pes that make up the organ­
ization, or levels, in a network.

host node. A node providing an application program
interface (API) and a common application interface.
See boundary node, network node, node, peripheral

node, subarea host node, and subarea node. See also
boundary function and node type.

Inactive. Describes the state of a resource that has not
been activated or for which the VARY INACT command
has been issued. Contrast with active. See also inop­
erative.

Information/System. An interactive retrieval program
with related utilities designed to provide systems pro­
grammers with keyword access to selected technical
information contained in either of its companion pro­
ducts, Information/MVS or Information/VM-VSE.

inhibited. In VTAM, pertaining to a logical unit (LU) that
has indicated to its system services control point
(SSCP) that it is not ready to establish LU-LU sessions.
An initiate request for a session with an inhibited LU
will be rejected by the SSCP. The LU can separately
indicate whether this applies to its ability to act as a
primary logical unit (PLU) or as a secondary logical
unit (SLU). See also enabled and disabled.

initiate. A network services request sent from a logical
unit (LU) to a system services control point (SSCP)
requesting that an LU-LU session be established.

inoperative. The condition of a resource that has been
active, but is not. The resource may have failed,
received an INOP request, or is suspended while a
reactivate command is being processed. See also
inactive.

Interactive System Productivity Facility (ISPF). An IBM
licensed program that serves as a full screen editor
and dialogue manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogues between the
application programmer and terminal user.

interface. * A shared boundary. An interface might be
a hardware component to link two devices or it might
be a portion of storage or registers accessed by two or
more computer programs.

ISPF. Interactive System Productivity Facility.

item. In CCP, any of the components, such as commu­
nication controllers, lines, cluster controllers, and ter­
minals, that comprise an IBM 3710 Network Controller
configuration.

keyword. (1) (TC97) A lexical unit that, in certain con­
texts, characterizes some language construction. (2) *
One of the predefined words of an artificial language.
(3) One of the significant and informative words in a
title or document that describes the content of that doc­
ument. (4) A name or symbol that identifies a param­
eter. (5) A part of a command operand that consists of
a specific character string (such as DSNAME =). See
also definition statement and keyword operand. Con­
trast with positional operand.

keyword operand. An operand that consists of a
keyword followed by one or more values (such as
DSNAME = HELLO). See also definition statement.
Contrast with positional operand.

keyword parameter. (1) A parameter that consists of a
keyword followed by one or more values.

LCC. Link connection component.

LCSM. Link connection subsystem manager.

line. See communication line.

line mode. A form of screen presentation in which the
information is presented a line at a time in the message
area of the terminal screen. Contrast with full-screen
mode.

line control. Synonym for data link control protocol.

link. In SNA, the combination of the link connection and
the link stations joining network nodes; for example:
(1) a System/370 channel and its associated protocols,
(2) a serial-by-bit connection under the control of Syn­
chronous Data Link Control (SDLC). A link connection
is the physical medium of transmission. A link,
howev~r, is both logical and physical. Synonymous
with data link. See Figure 134 on page 396.

link connection. In SNA, the physical equipment pro­
viding two-way communication between one link station
and one or more other link stations; for example, a tele­
communication line and data circuit terminating equip­
ment (DCE).

link connection component (LCC). Components of the
link that perform functions for the physical layer of the
link.

link connection component manager (LCCM). The
transaction program that manages the configuration of
the link connection.

link connection segment. A portion of the configuration
that is located between two resources listed consec­
utively in the service point command service (SPGS)
query link configuration request list.

link connection subsystem (LCS). The sequence of link
connection components (LCGs) that belong to a link
connection and are managed by one LCSM.

link connection subsystem manager (LCSM). The
transaction program that manages the sequence of link
connection components (LCGs) that belong to a link
connection.

link station. (1) In SNA, the combination of hardware
and software that allows a node to attach to and
provide control for a link. (2) In VTAM, a named

Glossary 395

Subarea Host Node
Another
Subarea Node

SOLC

Channel Subarea Link

Peripheral Host Node

Subarea Path Control

Boundary
Function

Channel Peripheral Link

Figure 134. Links and Path Controls

resource within a subarea node that represents
another subarea node that is attached by a subarea
link. In the resource hierarchy, the link station is sub­
ordinate to the subarea link.

link status (LS). Information maintained by local and
remote modems.

396 NetView/PCTM API/CS

Peripheral Path Control

link test. In SNA, a test in which one link station
returns data received from another link station without
changing the data in order to test the operation of the
link. Three tests can be made; they differ in the
resources that are dedicated during the test.

local address. In SNA, an address used in a peripheral
node in place of an SNA network address and trans-

formed to or from an SNA network address by the
boundary function in a subarea node.

logon. In VTAM, an unformatted session initiation
request for a session between two logical units. See
automatic logon and simulated logon. See also
session-initiation request.

logon-interpret routine. In VTAM, an installation exit
routine, associated with an interpret table entry, that
translates logon information. It may also verify the
logon.

low-entry networking. In SNA, a capability in type 2.1
nodes allowing them to be directly attached to one
another (not involving the subarea network) using peer­
to-peer protocols and allowing them to support multiple
and parallel sessions between logical units (LUs).

LU type. In SNA, the classification of an LU-LU session
in terms of the specific subset of SNA protocols and
options supported by the logical units (LUs) for that
session, namely:

The mandatory and optional values allowed in the
session activation request.

The usage of data stream controls, function man­
agement headers (FMHs), request unit (RU) param­
eters, and sense codes.

Presentation services protocols such as those
associated with FMH usage.

LU types 0, 1, 2, 3, 4, 6.1, 6.2, and 7 are defined.

LU-LU session. In SNA, a session between two logical
units (LUs) in an SNA network. It provides communi­
cation between two end users, or between an end user
and an LU services component.

LU-LU session type. A deprecated term for LU type.

macroinstruction. (1) An instruction that when exe­
cuted causes the execution of a predefined sequence of
instructions in the same source language. (2) In
assembler programming, an assembler language state­
ment that causes the assembler to process a prede­
fined set of statements called a macro definition. The
statements normally produced from the macro defi­
nition replace the macroinstruction in the program.
See also definition statement.

maintenance services. In SNA, one of the types of
network services in system services control points
(SSCPs) and physical units (PUs). Maintenance ser­
vices provide facilities for testing links and nodes and
for collecting and recording error information. Se-e
also configuration services, management services,
network services, and session services.

major node. In VTAM, a set of resources that can be
activated and deactivated as a group. See node and
minor node.

management services. In SNA, one of the types of
network services in control points (CPs) and physical
units (PUs). Management services are the services
provided to assist in the management of SNA networks,
such as problem management, performance and
accounting management, and charge management.
See also configuration services, maintenance services,
network services, and session services.

message. (1) (TC97) A group of characters and
control bit sequences transferred as an entity. (2) In
VTAM, the amount of function management data (FMD)
transferred to VTAM by the application program with
one SEND request.

minor node. In VTAM, a uniquely-defined resource
within a major node. See node and major node.

modem. A device that modulates and demodulates
signals transmitted over data communication facilities.
The term is a contraction for modulator-demodulator.

multiple-domain network. In SNA, a network with more
than one system services control point (SSCP). Con­
trast with single-domain network.

Multiple Virtual Storage (MVS). An IBM licensed
program whose full name is the Operating
SystemlVirtual Storage (OS/VS) with Multiple Virtual
Storage/System Product for System/370. It is a soft­
ware operating system controlling the execution of pro­
grams.

MVS. Multiple Virtual Storage operating system.

NAU. Network addressable unit.

NC. Network control.

NCCF. Network Communications Control Facility.

NCP. (1) Network Control Program (IBM licensed
program). Its full name is Advanced Communications
Function for the Network Control Program. Synony­
mous with ACF/NCP. (2) Network control program
(general term).

negative response (NR). In SNA, a response indicating
that a request did not arrive successfully or was not
processed successfully by the receiver. Contrast with
positive response. See exception response.

NetView. A system 370-based IBM licensed program
used to monitor a network, manage it, and diagnose its
problems.

NetView-NetView task (NNT). The task under which a
cross-domain NetView operator session runs. See
operator station tast.

Glossary 397

NetView/PC. A PC-based IBM licensed program
through which application programs can be used to
monitor, manage, and diagnose problems in IBM
Token-Ring networks, non-SNA communication
devices, and voice networks.

network. (1) (TC9?) An interconnected group of nodes.
(2) In data processing, a user application network. See
path control network, public network, SNA network,
subarea network, type 2.1 network, and user­
application network.

network address. In SNA, an address, consisting of
subarea and element fields, that identifies a link, a link
station, or a network addressable unit. Subarea nodes
use network addresses; peripheral nodes use local
addresses. The boundary function in the subarea node
to which a peripheral node is attached transforms local
addresses to network addresses and vice versa. See
local address. See also network name.

network addressable unit (NAU). In SNA, a logical unit,
a physical unit, or a system services control point. It is
the origin or the destination of information transmitted
by the path control network. Each NAU has a network
address that represents it to the path control network.
See also network name, network address, and path
control network.

Network Communications Control Facility (NCCF).
(1) An IBM licensed program that is a base for
command processors that can monitor, control, auto­
mate, and improve the operations of a network. Its
function is included and enhanced in NetView's
command facility. (2) A traditional, alternative name
for the command facility of NetView.

network control (NC). In SNA, an RU category used for
requests and responses exchanged for such purposes
as activating and deactivating explicit and virtual
routes and sending load modules to adjacent periph­
eral nodes. See also data flow control layer and
session control.

Network Control Program (NCP). An IBM licensed
program that provides communication controller
support for single-domain, multiple-domain, and inter­
connected network capability. Its full name is
Advanced Communications Function for the Network
Control Program.

network control program. A program, generated by the
user from a library of IBM-supplied modules, that con­
trols the operation of a communication controller.

network management vector transport (NMVT). A
record that contains solicited or unsolicited data about
alerts, line statistics, and error records and that is
issued by certain SNA resources to the host system. It
can also be used to send requests on Link Problem

398 NetView/PCTM API/CS

Determination Aid (LPDA) lines for certain actions such
as configuration changes.

network name. (1) In SNA, the symbolic identifier by
which end users refer to a network addressable unit
(NAU), a link, or a link station. See also network
address. (2) In a multiple-domain network, the name
of the APPL statement defining a VTAM application
program is its network name and it must be unique
across domains. Contrast with ACB name. See unin­
terpreted name.

network node. (1) Synonym for type 2.1 node. Con­
trast with end node. (2) Synonym for node.

network operator. (1) A person or program respon­
sible for controlling the operation of all or part of a
network. (2) The person or program that controls all
the domains in a multiple-domain network. Contrast
with domain operator.

network services (NS). In SNA, the services within
network addressable units (NAUs) that control network
operation through SSCP-SSCP, SSCP-PU, and SSCP-LU
sessions. See configuration services, maintenance
services, management services, and session services.

network services (NS) header. In SNA, a 3-byte field in
a function management data (FMD) request/response
unit (RU) flowing in an SSCP-LU, SSCP-PU, or
SSCP-SSCP session. The network services header is
used primarily to identify the network services category
of the request unit (RU) (for example, configuration ser­
vices, session services) and the particular request
code within a category.

NMVT. Network management vector transport.

node. (1) In SNA, an endpoint of a link or junction
common to two or more links in a network. Nodes can
be distributed to host processors, communication con­
trollers, cluster controllers, or terminals. Nodes can
vary in routing and other functional capabilities. Syn­
onymous with network node. See boundary node, host
node, peripheral node, and subarea node (including
illustration). (2) In VTAM, a point in a network defined
by a symbolic name. See major node and minor node.

node type. In SNA, a designation of a node according
to the protocols it supports and the network address­
able units (NAUs) that it can contain. Five types are
defined: 1, 2.0, 2.1,4, and 5. Type 1, type 2.0, and type
2.1 nodes are peripheral nodes; type 4 and type 5
nodes are subarea nodes. See phYSical unit type. See
also type 2.1 node.

no response. In SNA, a value in the form-of-response­
requested field of the request header (RH) indicating
that no response is to be returned to the request,
whether or not the request is received and processed
successfully. Contrast with definite response and
exception response.

notify. A network services request that is sent by an
SSCP to a logical unit (LU) to inform the LU of the status
of a procedure requested by the LU.

NS. Network services.

online. Stored in a computer and accessible from a ter­
minal.

operand. (1) (ISO) An entity on which an operation is
performed. (2) * That which is operated upon. An
operand is usually identified by an address part of an
instruction. (3) Information entered with a command
name to define the data on which a command
processor operates and to control the execution of the
command processor. (4) An expression to whose
value an operator is applied. See also definition state­
ment, keyword, keyword parameter, and parameter.

operator. (1) In a language statement, the lexical
entity that indicates the action to be performed on oper­
ands. (2) A person who operates a machine. See
network operator. See also definition statement.

operator profile. In the NetView program, the
resources and activities a network operator has control
over. The statements defining these resources and
activities are stored in a file that is activated when the
operator logs on.

operator station task (OST). The NetView task that
establishes and maintains the online session with the
network operator. There is one operator station task
for each network operator who logs on to NetView. See
NetView-NetView task.

OST. Operator station task.

pacing group. In SNA, (1) The path information units
(PIUs) that can be transmitted on a virtual route before
a virtual-route pacing response is received, indicating
that the virtual route receiver is ready to receive more
PIUs on the route. Synonymous with window. (2) The
requests that can be transmitted on the normal flow in
one direction on a session before a session-level
pacing response is received, indicating that the
receiver is ready to accept the next group of requests.

page. (1) The portion of a panel that is shown on a
display surface at one time. (2) To move back and
forth among the pages of a multiple-page panel. See
also scroll. (3) (ISO) In a virtual storage system, a
fixed-length block that has a virtual address and that
can be transferred between real storage and auxiliary
storage. (4) To transfer instructions, data, or both
between real storage and external page or auxiliary
storage.

panel. (1) A formatted display of information that
appears on a terminal screen. See also help panel and
task panel. Contrast with screen. (2) In computer

graphics, a display image that defines the locations and
characteristics of display fields on a display surface.

parameter. (1) (ISO) A variable that is given a constant
value for a specified application and that may denote
the application. (2) An item in a menu for which the
user specifies a value or for which the system provides
a value when the menu is interpreted. (3) Data passed
to a program or procedure by a user or another
program, namely as an operand in a language state­
ment, as an item in a menu, or as a shared data struc­
ture. See also keyword, keyword parameter, and
operand.

path. (1) In SNA, the series of path control network
components (path control and data link control) that are
traversed by the information exchanged between two
network addressable units (NAUs). See also explicit
route (ER), route extension, and virtual route (VR).
(2) In VTAM when defining a switched major node, a
potential dial-out port that can be used to reach that
node. (3) In the NetView/PC program, a complete line
in a configuration that contains all of the resources in
the service point command service (SPCS) query link
configuration request list.

path control (PC). The function that routes message
units b~tween network addressable units (NAUs) in the
network and provides the paths between them. It con­
verts the SIUs from transmission control (possibly seg­
menting them) into path information units (PIUs) and
exchanges basic transmission units (STUs) and one or
more PIUs with data link control. Path control differs
for peripheral nodes, which use local addresses for
routing, and subarea nodes, which use network
addresses for routing. See peripheral path control and
subarea path control. See also link, peripheral node,
and subarea node.

path control (PC) layer. In SNA, the layer that manages
the sharing of link resources of the SNA network and
routes basic information units (SIUs) through it. See
also BIU segment, blocking of PIUs, data link control
layer, and transmission control layer.

path control (PC) network. In SNA, the part of the SNA
network that includes the data link control and path
control layers. See SNA network and user application
network. See also boundary function.

PBX. Private branch exchange.

PC. (1) Path control. (2) Personal Computer. Its full
name is the ISM Personal Computer.

peripheral host node. A node that provides an applica­
tion program interface (API) for running application
programs but does not provide SSCP functions and is
not aware of the network configuration. The peripheral
host node does not provide subarea node services. It
has boundary function provided by its adjacent
subarea. See boundary node, host node, network

Glossary 399

node, node, peripheral node, subarea host node, and
subarea node. See also boundary function and node
type.

peripheral node. In SNA, a node that uses local
addresses for routing and therefore is not affected by
changes in network addresses. A peripheral node
requires boundary-function assistance from an adja­
cent subarea node. A peripheral node is a physical
unit (PU) type 1, 2.0, or 2.1 node connected to a
subarea node with boundary function within a subarea.
See boundary node, host node, network node, node,
peripheral host node, subarea host node, and subarea
node. See also boundary function and node type.

peripheral path control. The function in a peripheral
node that routes message units between units with
local addresses and provides the paths between them.
See path control and subarea path control. See also
boundary function, peripheral node, and subarea node.

peripheral PU. In SNA, a physical unit representing a
peripheral node.

Personal Computer (PC). The IBM Personal Computer
line of products including the 5150 and subsequent
models.

physical connection. In VTAM, a point-to-point con­
nection or multipoint connection. Synonymous with
connection.

physical unit (PU). In SNA, a type of network address­
able unit (NAU). A physical unit (PU) manages and
monitors the resources (such as attached links) of a
node, as requested by a system services control point
(SSCP) through an SSCP-PU session. An SSCP acti­
vates a session with the physical unit in order to indi­
rectly manage, through the PU, resources of the node
such as attached links. See also peripheral PU and
subarea PU.

physical unit (PU) services. In SNA, the components
within a physical unit (PU) that provide configuration
services and maintenance services for SSCP-PU ses­
sions. See also logical unit (LU) services.

PLU. Primary logical unit.

POI. Programmed operator interface.

polling. (1) * Interrogation of devices for purposes
such as to avoid contention, to determine operational
status, or to determine readiness to send or receive
data. (2) (TC9?) The process whereby stations are
invited, one at a time, to transmit.

positional operand. An operand in a language state­
ment that has a fixed position. See also definition
statement. Contrast with keyword operand.

400 NetView/PCTM API/CS

positive response. A response indicating that a request
was received and processed. Contrast with negative
response.

presentation services command processor (PSCP). In
NetView, a facility that processes requests from a user
terminal and formats displays to be presented at the
user terminal.

primary half-session. In SNA, the half-session that
sends the session activation request. See also primary
logical unit. Contrast with secondary half-session.

primary logical unit (PLU). In SNA, the logical unit (LU)
that contains the primary half-session for a particular
LU-LU session. Each session must have a PLU and
secondary logical unit (SLU). The PLU is the unit
responsible for the bind and is the controlling LU for
the session. A particular LU may contain both primary
and secondary half-sessions for different active LU-LU
sessions. Contrast with secondary logical unit (SLU).

private branch exchange. A switching system that pro­
vides internal telephone communication between
private branch stations and external networks.

problem determination. The process of identifying the
source of a problem; for example, a program compo­
nent, a machine failure, telecommunication facil ities,
user or contractor-installed programs or equipment, an
environment failure such as a power loss, or a user
error.

product-set identification (PSID). (1) In SNA, a tech­
nique for identifying the hardware and software pro­
ducts that implement a network component. (2) A
management services common subvector that trans­
ports the information described in definition (1).

profile. In the Conversational Monitor System (CMS) or
the group control system (GCS), the characteristics
defined by a PROFILE EXEC file that executes automat­
ically after the system is loaded into a virtual machine.
See also operator profile.

programmed operator interface (POI). A VTAM function
that allows programs to perform VTAM operator func­
tions.

protocol. (1) (CCITTIITU) A specification for the format
and relative timing of information exchanged between
communicating parties. (2) (TC9?) The set of rules
governing the operation of functional units of a commu­
nication system that must be followed if communication
is to be achieved. (3) In SNA, the meanings of, and the
sequencing rules for, requests and responses used for
managing the network, transferring data, and synchro­
nizing the states of network components. See also
bracket protocol. Synonymous with line control disci­
pline and line discipline. See also link protocol.

PSCP. Presentation services command processor.

PSID. Product-set identification.

PU. Physical unit.

public network. A network established and operated by
communication common carriers or telecommunication
Administrations for the specific purpose of providing
circuit-switched, packet-switched, and leased-circuit
services to the public. Contrast with user-application
network.

PU-PU flow. In SNA, the exchange between physical
units (PUs) of network control requests and responses.

RECFMS. Record formatted maintenance statistics.

Recommendation X.21 (Geneva 1980). A Consultative
Committee on International Telegraph and Telephone
(CCITT) recommendation for a general purpose inter­
face between data terminal equipment and data circuit
eqUipment for synchronous operations on a public data
network.

Recommendation X.25 (Geneva 1980). A Consultative
Committee on International Telegraph and Telephone
(CCITT) recommendation for the interface between data
terminal eqUipment and packet-switched data net­
works. See also packet switching.

recommended action. Procedures suggested by
NetView that can be used to determine the causes of
network problems.

record formatted maintenance statistics (RECFMS). A
statistical record built by an SNA controller and usually
solicited by the host.

reentrant. The attribute of a program or routine that
allows the same copy of the program or routine to be
used concurrently by two or more tasks. For example,
the 3710 Network Controller routines may be reentrant.

release. For VTAM, to relinquish control of resources
(communication controllers or physical units). See also
resource takeover. Contrast with acquire (2).

remote. Concerning the peripheral parts of a network
not centrally linked to the host processor and generally
using telecommunication lines with public right-of-way.

REQMS. Request for maintenance statistics.

request for maintenance statistics (REQMS). A host
solicitation to an SNA controller for a statistical data
record.

request unit (RU). In SNA, a message unit that contains
control information, end-user data, or both.

request/response unit (RU). In SNA, a generic term for
a request unit or a response unit. See also request unit
(RU) and response unit.

resource. (1) Any facility of the computing system or
operating system required by a job or task, and
including main storage, input/output devices, the proc­
essing unit, data sets, and control or processing pro­
grams. (2) In the NetView program, any hardware or
software that provides function to the network.

resource takeover. In VTAM, action initiated by a
network operator to transfer control of resources from
one domain to another. See also acquire (2) and
release. See takeover.

resource types. In the NetView program, a concept to
describe the organization of panels. Resource types
are defined as central processing unit, channel, control
unit, and I/O device for one category; and communi­
cation controller, adapter, link, cluster controller, and
terminal for another category. Resource types are
combined with data types and display types to describe
display organization. See also data types and display
types.

response time. (1) The amount of time it takes after a
user presses the enter key at the terminal until the
reply appears at the terminal. (2) For response time
monitoring, the time from the activation of a transaction
until a response is received, according to the response
time definition coded in the performance class.

response unit (RU). In SNA, a message unit that
acknowledges a request unit; it may contain prefix
information received in a request unit. If positive, the
response unit may contain additional information (such
as session parameters in response to Bind Session), or
if negative, contains sense data defining the exception
condition.

return code. * A code [returned from a program] used
to influence the execution of succeeding instructions.

ring. A network configuration where a series of
attaching devices are connected by unidirectional
transmission links to form a closed path.

route extension (REX). In SNA, the path control
network components, including a peripheral link, that
make up the portion of a path between a subarea node
and a network addressable unit (NAU) in an adjacent
peripheral node. See also path, explicit route (ER), and
virtual route (VR).

RPL exit routine. In VTAM, an application program exit
routine whose address has been placed in the EXIT
field of a request parameter list (RPL). VTAM invokes
the routine to indicate that an asynchronous request
has been completed. See EXLST exit routine.

RU. Request/response unit.

RU chain. In SNA, a set of related request/response
units (RUs) that are consecutively transmitted on a par-

Glossary 401

ticular normal or expedited data flow. The request RU
chain is the unit of recovery: if one of the RUs in the
chain cannot be processed, the entire chain is dis­
carded. Each RU belongs to only one chain, which has
a beginning and an end indicated by means of control
bits in request/response headers within the RU chain.
Each RU can be designated as first-in-chain (FIC), last­
in-chain (L1C), middle-in-chain (MIC), or only-in-chain
(OIC). Response units and expedited-flow request units
are always sent as only-in-chain.

SC. Session control.

screen. An illuminated display surface; for example,
the display surface of a CRT or plasma panel. Contrast
with panel.

scroll. To move all or part of the display image verti­
cally to display data that cannot be observed within a
single display image. See also page (2).

SOLC. Synchronous Data Link Control.

secondary half-session. In SNA, the half-session that
receives the session-activation request. See also sec­
ondary logical unit (SLU). Contrast with primary half­
session.

secondary logical unit (SLU). In SNA, the logical unit
(LU) that contains the secondary half-session for a par­
ticular LU-LU session. An LU may contain secondary
and primary half-sessions for different active LU-LU
sessions. Contrast with primary logical unit (PLU).

secondary logical unit (SLU) key. A key-encrypting key
used to protect a session cryptography key during its
transmission to the secondary half-session.

segment. See link connection segment.

Service Level Reporter (SLR). A licensed program that
generates management reports from data sets such as
System Management Facility (SMF) files.

service point (SP). A control point that provides
network management to non-SNA devices.

service point command facility (SPCF). A program or
function that exchanges data and control between the
network operator, the link connection component
manager (LCCM), and the link connection subsystem
manager (LCSM).

service reminder (SR). In the NetView/PC program, a
notification set by the operator that is displayed on a
panel and logs a specified message.

session. In SNA, a logical connection between two
network addressable units (NAUs) that can be acti­
vated, tailored to provide various protocols, and deacti­
vated, as requested. Each session is uniquely
identified in a transmission header (TH) by a pair of

402 NetView/PCTM API/CS

network addresses, identifying the origin and destina­
tion NAUs of any transmissions exchanged during the
session. See half-session, LU-LU session, SSCP-LU
session, SSCP-PU session, and SSCP-SSCP session.
See also LU-LU session type and PU-PU flow.

session awareness (SAW) data. Data collected by
NetView about a session that includes the session type,
the names of session partners, and information about
the session activation status. It is collected for LU-LU,
SSCP-LU, SSCP-PU, and SSCI;'-SSCP sessions and for
non-SNA terminals not supported by NTO. It can be
displayed in various forms, such as most recent ses­
sions lists.

session control (SC). In SNA, (1) One of the compo­
nents of transmission control. Session control is used
to purge data flowing in a session after an unrecover­
able error occurs, to resynchronize the data flow after
such an error, and to perform cryptographic verifica­
tion. (2) A request unit (RU) category used for requests
and responses excha·nged between the session control
components of a session and for session activation and
deactivation requests and responses.

session-initiation request. In SNA, an Initiate or logon
request from a logical unit (LU) to a control point (CP)
that an LU-LU session be activated.

session monitor. The component of NetView that col­
lects and correlates session-related data and provides
online access to this information.

session services. In SNA, one of the types of network
services in the control point (CP) and in the logical unit
(LU). These services provide facilities for an LU or a
network operator to request that the SSCP initiate or
terminate sessions between logical units. See config­
uration services, maintenance services, and manage­
ment services.

shared. Pertaining to the availability of a resource to
more than one use at the same time.

shutdown. To stop or quiesce a NetView/PC or a
NetView/PC application program.

simulated logon. A session-initiation request gener­
ated when a VTAM application program issues a
SIMLOGON macroinstruction. The request specifies a
logical unit (LU) with which the application program
wants a session in which the requesting application
program will act as the primary logical unit (PLU).

single-domain network. In SNA, a network with one
system services control pOint (SSCP). Contrast with
multiple-domain network.

SLR. Service Level Reporter.

SLU. Secondary logical unit.

SNA. Systems Network Architecture.

SNA network. The part of a user-application network
that conforms to the formats and protocols of Systems
Network Architecture. It enables reliable transfer of
data among end users and provides protocols for con­
trolling the resources of various network configura­
tions. The SNA network consists of network
addressable units (NAUs), boundary function compo­
nents, and the path control network.

solicited message. A response from VTAM to a
command entered by a program operator. Contrast
with unsolicited message.

SP. Service point.

SPCF. Service pOint command facility.

SR. Service reminder.

SS. Start-stop.

SSCP. System services control pOint.

SSCP-LU session. In SNA, a session between a system
services control point (SSCP) and a logical unit (LU);
the session enables the LU to request the SSCP to help
initiate LU-LU sessions.

SSCP-PU session. In SNA, a session between a system
services control point (SSCP) and a physical unit (PU);
SSCP-PU sessions allow SSCPs to send requests to
and receive status information from individual nodes in
order to control the network configuration.

SSCP-SSCP session. In SNA, a session between the
system services control point (SSCP) in one domain
and the SSCP in another domain. An SSCP-SSCP
session is used to initiate and terminate cross-domain
LU-LU sessions.

ST. Session configuration screen abbreviation.

statement. A language syntactic unit consisting of an
operator, or other statement identifier, followed by one
or more operands. See definition statement.

station. (1) One of the input or output pOints of a
network that uses communication facilities; for
example, the telephone set in the telephone system or
the point where the business machine interfaces with
the channel on a leased private line. (2) One or more
computers, terminals, or devices at a particular
location.

subarea. A portion of the SNA network consisting of a
subarea node, any attached peripheral nodes, and their
associated resources. Within a subarea node, all
network addressable units, links, and adjacent link
stations (in attached peripheral or subarea nodes) that

are addressable within the subarea share a common
subarea address and have distinct element addresses.

subarea host node. A host node that provides both
subarea function and an application program interface
(API) for running application programs. It provides
system services control point (SSCP) functions,
subarea node services, and is aware of the network
configuration. See boundary node, communication
management configuration host node, data host node,
host node, network node, node, peripheral node, and
subarea node. See also boundary function and node
type.

subarea node. In SNA, a node that uses network
addresses for routing and whose routing tables are
.therefore affected by changes in the configuration of
the network. Subarea nodes can provide gateway func­
tion, and boundary function support for peripheral
nodes. Type 4 and type 5 nodes are subarea nodes.
See boundary node, host node, network node, node,
peripheral node, and subarea host node. See also
boundary function and node type.

subarea path control. The function in a subarea node
that routes message units between network address­
able units (NAUs) and provides the paths between
them. 'See path control and peripheral path control.
See also boundary function, peripheral node, and
subarea node.

subarea PU. In SNA, a physical unit (PU) in a subarea
node.

subsystem. A secondary or subordinate system,
usually capable of operating independent of, or asyn­
chronously with, a controlling system.

Synchronous Data Link Control (SOLC). A discipline for
managing synchronous, code-transparent, serial-by-bit
information transfer over a link connection. Trans­
mission exchanges may be duplex or half-duplex over
switched or nonswitched links. The configuration of the
link connection may be point-to-point, multipoint, or
loop. SDLC conforms to subsets of the Advanced Data
Communication Control Procedures (ADCCP) of the·
American National Standards Institute and High-Level
Data Link Control (HDLC) of the International Standards
Organization.

system services control point (SSCP). In SNA, a central
location point within an SNA network for managing the
configuration, coordinating network operator and
problem determination requests, and providing direc­
tory support and other session services for end users
of the network. Multiple SSCPs, cooperating as peers,
can divide the network into domains of control, with
each SSCP having a hierarchical control relationship to
the physical units and logical units within its domain.

Systems Network Architecture (SNA). The description
of the logical structure, formats, protocols, and opera-

Glossary 403

tional sequences for transmitting information units
through and controlling the configuration and operation
of networks.

System Support Programs (SSP). An IBM licensed
program, made up of a collection of utilities and small
programs, that supports the operation of the NCP.

takeover. The process by which the failing active sub­
system is released from its extended recovery facility
(XRF) sessions with terminal users and replaced by an
alternate subsystem. See resource takeover.

task. A basic unit of work to be accomplished by a
computer. The task is usually specified to a control
program in a multiprogramming or multiprocessing
environment.

task panel. Online display from which you communi­
cate with the program in order to accomplish the pro­
gram's function, either by selecting an option provided
on the panel or by entering an explicit command. See
help panel.

telecommunication line. Any phYSical medium such as
a wire or microwave beam, that is used to transmit
data. Synonymous with transmission line.

terminal. A device that is capable of sending and
receiving information over a link; it is usually equipped
with a keyboard and some kind of display, such as a
screen or a printer.

TERMINATE. In SNA, a request unit that is sent by a
logical unit (LU) to its system services control point
(SSCP) to cause the SSCP to start a procedure to end
one or more designated LU-LU sessions.

TH. Transmission header.

threshold. In the NetView program, refers to a per­
centage value set for a resource and compared to a
calculated error-to-traffic ratio.

token. A sequence of bits passed from one device to
another along the token ring. When the token has data
appended to it, it becomes a frame.

token ring. A network with a ring topology that passes
tokens from one attaching device to another. For
example, the IBM Token-Ring Network.

transmission header (TH). In SNA, control information,
optionally followed by a basic information unit (BIU) or
a BIU segment, that is created and used by path control
to route message units and to control their flow within
the network. See also path information unit.

transmission line. Synonym for telecommunication
line.

404 NetView/PCTM APIICS

tutorial. Online information presented in a teaching
format.

type 2.1 node (T2.1 node). A node that can attach to an
SNA network as a peripheral node using the same pro­
tocols as type 2.0 nodes. Type 2.1 nodes can be
directly attached to one another using low-entry net­
working. Synonymous with network node. See end
node, node, and subarea node. See also node type and
low-entry networking.

unformatted. In VTAM, pertaining to commands (such
as LOGON or LOGOFF) entered by an end user and
sent by a logical unit in character form. The character­
coded command must be in the syntax defined in the
user's unformatted system services definition table.
Synonymous with character-coded. Contrast with field­
formatted.

uninterpreted name. In SNA, a character string that a
system services control point (SSCP) is able to convert
into the network name of a logical unit (LU). Typically,
an uninterpreted name is used in a logon or Initiate
request from a secondary logical unit (SLU) to identify
the primary logical unit (PLU) with which the session is
requested.

unsolicited message. A message, from VTAM to a
program operator, that is unrelated to any command
entered by the program operator. Contrast with solic­
ited message.

upstream. In the direction of data flow from the end
user to the host. Contrast with downstream.

user. Anyone who requires the services of a com­
puting system.

user-application network. A configuration of data proc­
essing products, such as processors, controllers, and
terminals, established and operated by users-for the
purpose of data proceSSing or information exchange,
which may use services offered by communication
common carriers or telecommunication Adminis­
trations. Contrast with public network.

using node. (1) In NCP, the NCP in the hosts's domain
that reports a link error condition. (2) For the
command facility of NetView and for NCCF, the 10
parameter of certain network control commands~

value. (1) (TC97) A specific occurence of an attribute,
for example, "blue" for the attribute "color." (2) A
quantity assigned to a constant, a variable, a param­
eter, or a symbol.

variable. In the NetView program, a character string
beginning with & that is coded in a command list and is
assigned a value during execution of the command list.

verb. (1) In SNA, the general name for a transaction
program's request for communication services. (2) In

VTAM, a programming language element in the logical
unit (LU) 6.2 application program interface (API) that
causes an LU 6.2 function to be performed.

Virtual Machine (VM). A licensed program whose full
name is the Virtual Machine/System Product (VM/SP).
It is a software operating system that manages the
resources of a real processor to provide virtual
machines to end users. As a time-sharing system
control program, it consists of the virtual machine
control program (CP), the conversational monitor
system (CMS), the group control system (GCS), and the
interactive problem control system (IPCS).

virtual route (VR). In SNA, a logical connection (1)
between two subarea nodes that is physically realized
as a particular explicit route, or (2) that is contained
wholly within a subarea node for intranode sessions. A
virtual route between distinct subarea nodes imposes a
transmission priority on the underlying explicit route,
provides flow control through virtual-route pacing, and
provides data integrity through sequence numbering of
path information units (PIUs). See also explicit route
(ER), path, and route extension.

virtual route (VR) pacing. In SNA, a flow control tech­
nique used by the virtual route control component of
path control at each end of a virtual route to control the
rate at which path information units (PIUs) flow over the
virtual route. VR pacing can be adjusted according to
traffic congestion in any of the nodes along the route.
See also pacing and session-level pacing.

virtual route selection exit routine. In VTAM, an
optional installation exit routine that modifies the list of
virtual routes associated with a particular class of
service before a route is selected for a requested
LU-LU session.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability.

VM. Virtual Machine operating system. Its full name is
Virtual Machine/System Product. Synonymous with
VM/SP.

YR. Virtual route.

VTAM. Virtual Telecommunications Access Method
(IBM licensed program). Its full name is Advanced
Communications Function for the Virtual Telecommuni­
cations Access Method. Synonymous with ACF/VTAM.

VTAM operator command. A command used to monitor
or control a VTAM domain. See also definition state­
ment.

window. (1) In SNA, synonym for pacing group. (2) On
a visual display terminal, a small amount of information
in a framed-in area on a panel that overlays part of the
panel.

X.21. See Recommendation X.21 (Geneva 1980).

Glossary 405

406 Netview/PCTM APJ/CS

Index

A
Alert calls 25
ALERT Description records 84
Alert Router 25
ALERT SV X'9F' Code Point File: DUPALGTF.TXT 83
Alert Type 78
Alert Type records 84
Alerts 9
Application Request Block address in the AX and DX
. register pair 18

ARBID 10
ASCII 18, 36, 72
ASCII upper case. 42
AX 18
AX register 18

IB
BIOS 17
blkz 58

c
cause code 79
cause code pOint 80
Cause subfield 80
Check the status of a Host Data Facility request 61
Clear the icon from the NetView/PC icon window 33
close 10
Close the Alert API/CS 30
Close the Host Data Facility API/CS 62
Close the Operator Communications API/CS 33
Close the SPCF API/CS 45
code design (application mainline) 12
Code Point File: DUPALGTF.TXT 83
code segment 10
common fields 79
Communications Network Management 20
correlator 36

D
Data Services Task 35
DDM 22
declarations 10
DELAYED 79
DOS Applications 21
DP 31
DUPALGCF.TXT 79, 80, 83
DX 18
DX register 18

E
EBCDIC 36,72
editor 36
EXTERN 10
external declarations 10
eye catcher 10
EZ-VU 18,36

F
Failure Cause Subfield 81
Failure Cause type records 86
FAR call 18
flow (application) 12
Functions 9

H
HDFState 58
hexadecimal 10
HFLGTH 58
Host Data Facility 9, 11
HOSTFILE 58
hybrid alert 77

icon 31
initialization 10,12
Install Cause Subfield 81
Install Cause type records 86
interrupt vectors 17

l
language 9
library 10, 18
link 17,18
LINK-CHANGE 107
LINK-DISPLAY 108
L1NKCHNG 107
L1NKDATA command

description 89
syntax 89

L1NKDISP 108
L1NKPD command

description 91
syntax 91

L1NKTEST command
description . 92
syntax 92

Index 407

M
Message Data 42
message files 36
Msgcount 42
MVADDR 26
MVTARG 26

N
NetView 25, 35, 36
NetView/PC Alert Description Code Point. 80
NetView/PC Alert Major Vector 80
NetView/PC ALERT SV X'9F' Code Point File:

DUPALGTF.TXT 83
NetView/PC generic alert example 88
NetView/PC Non-generic Alert example 78
Nextbyte 58
NMVT 18,25
Non-generic Alerts 77

o
Object Modules 18
offset address 18
open 10
Open Communication Architectures 20
Open the alert API/CS 30
Open the Operator Communications API/CS 32
Open the SPCF API/CS 40
Operator Communications 9, 11, 31
Operator Services Task 35

P
PATH-CHANGE 111
PATH-DISPLAY 110
PATHCHNG 111
PATHDISP 110
PCFILE 58
PCFLGTH 58
PERM ERROR 79
Probable Cause Subfield 81
Probable Cause Type records 84
Problems 9

R
Receive a RUNCMD message 40
Receive file data 61
recommended action code point 80
Recommended Action type records 86
Recvcorr 36
request code 10
Requirements 17
RESCHNG 109
RESDISP 108
RESOURCE-CHANGE 109

408 NetView/PCTM API/CS

RESOURCE-DISPLAY 108
Restrictions 17
RUNCMD command

description 93
syntax 93

RUNCMD response message 36
RUNCMD Response Message Buffer 42

s
segment address 18
Send a Command Response 43
Send a RUNCMD response 41
Send an Alert 30
Send file data 60
SENDCORR 36
Service Point Command Facility 9, 11, 35
SPCF Build and Parse 9
SPCF NMVT Header 95
specific component 80
STACK 17
Start byte 58
Stop file data transfer 61
storage 10
subdirectory 36

T
termination 10, 12
transfer 57
translate 25, 36
translate (table) 72
transparent 58

u
User Cause Subfield 81
User Cause type records 85

v
vectors (interrupt) 17

w
Write the icon 'DP' to the NetView/PC icon window 32

)(
xpc 58

Numerics
9F 80

Index 409 \

Reader's Comment Form

NetView IPC™
Application Program Interface!
Communication Services
Version 1.1

Publication No. SC30-3313-1

This manual is part of a library that serves as a reference source for systems
analysts, programmers, and operators of IBM systems. You may use this form to
communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM Publications are not stocked at the location to which this form
is addressed. Please direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or to the IBM
branch office serving your locality.

Possible topics for comment are: clarity, accuracy, completeness, organization,
coding, retrieval, and legibility.

If you wish a reply, give your name, company, mailing address, and date:

Comments:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the
U.S.A. (Elsewhere, an IBM office representative will be happy to forward your
comments or you may mail directly to the address in the Edition Notice on the back
of the title page.)

SC30-3313-1

Reader's Comment Form

Fold and tape Please Do Not Staple

o 0101

BUSINESS REPLY MAIL

Fold and tape

--------- -------- - ---- - - -----------,-
®

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Dept. E53
P.O. Box 12195
Research Triangle Park, N.C. 27709-9990

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

Reader's Comment Form

NetVlew IPe™
Application Program Interface/
Communication Services
Version 1.1

Publication No. SC30-3313-1

This manual is part of a library that serves as a reference source for systems
analysts, programmers, and operators of IBM systems. You may use this form to
communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to
you.

Note: Copies of IBM Publications are not stocked at the location to which this form
is addressed. Please direct any requests for copies of publications, or for
assistance in using your IBM system, to your IBM representative or to the IBM
branch office serving your locality.

Possible topics for comment are: clarity, accuracy, completeness, organization,
coding, retrieval, and legibility.

If you wish a reply, give your name, company, mailing address, and date:

Comments:

What Is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the
U.S.A. (Elsewhere, an IBM office representative will be happy to forward your
comments or you may mail directly to the address in the Edition Notice on the back
of the title page.)

SC30-3313-1

Reader's Comment Form

Fold and tape Please Do Not Staple

, "'" '

BUSINESS REPLY MAIL

Fold and tape

--------- - ------- - ---- - - -----------,-
®

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Dept. E53
P.O. Box 12195
Research Triangle Park, N.C. 27709-9990

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

--------- - ------- - ---- - - ----------_ . -
Publication Number
SC30-3313-1

File Number
S370/4300/30XX-50

Program Number
5669-024

Printed in USA

SC30-3313-01

