
APPC Goes Full Duplex 
Until recently, Advanced Program-to-Program Communication (APPC) 
conversation flows have been limited to two-way alternating (half-duplex) protocols. 
With half-duplex protocols, only one program has permission to send at any point in 
the conversation. Permission to send alternates between a program and its partner 
under program controL Recently. APPC has .been enhanced to also allow two-way 
simultaneous (full-duplex) flows on a single conversation. With full-duplex 
protocols. both programs always havepe~ission to send. . 

Half and full are not value terms. however, withfull implying more or better. 
Though some applications will·be inuchbetter served by full-duplex conversations. 
many applications will continue to work better with half-duplex conversations. 
This article will: . . 

• Help you understand this new' full .. duplex feature 
. . 

• Show you how to decide when to ~ethis feature in your application 

• Describe how an application woUld use this feature through enhanced' calls pro
posed for Common Programming Interface for Communications (CPI-C) Level 2. 

(continued on page 2) 

APPN+ Takes Shape: A Preview 
of High Performance Routing 
Advanced Peer-to-Peer Networking (APPN). which first appeared in products in 
1987. has been evolving steadily. In 1991, IBM began publicly referring to a 
significant change in APPN which it infoimally called APPN+. More recently, 
IBM has begun to discuss some details of the protocols that are at the heart of this 
change. Although these protocols will not be seen in products for at least a year, 
understanding APPN's direction is important to network planning today. 

This article introduces these new protocols, which are together called High 
Performance Routing (HPR). We discuss how HPR differs from and relates to 
APPN's current Intermediate Session Routing (ISR). We describe the four leading 
types of routing protocols-virtual/explicit routing, label swapping, destination 
routing, and source routing-'-:"anddiscuss how they relate to ISR and HPR. We also 
note nine concerns about APPN and examine which ones HPR addresses. 

(C01ltillued Oil page 12) 

© 1993 by CSI. Reproduction in whole or in part .... itholll express wrillen permission is prohibited. 

Volume 14, Number 3 
March,1993 
ISSN 0270·7284 

The single source, 
objective monthly 
newsletter covering 
IBM's Systems 
Network Architecture 

In This Issue: 

APPC Goes 
Full Duplex ............... 1 

Finally, APPC conversa·· 
tions Can use full duplex or 
half duplex. We list . 
applications that would 
most benefit from full 
duplex as well as the 
advantages of half duplex. 
No special Configuration is 
needed to add full duplex 
and the same session can 
be used for both types of 
conversation .. 

APPN+ Takes Shape: 
A ·Preview of 

. HigbPerformance 
Routing ..................... 1 

HPR promises higher 
performance and better 
congestion control than 
APPN's current ISR as 
well as rerouting around 
failures. Drop-in 
migration is supported: 
HPR nodes and ISR nodes 
can coexist. HPR is not a 
panacea-we discuss 
several remaining con
cerns about APPN. But its 
benefits are welcome. 

Architect's Corner 
Our architect is on 
vacation. 



OCS[ 

(COllfiIlUfd'/rom pa~e 1) 

From the beginning. APPC was designed to 
reduce and simplify the programming effort 
required to perform effective program-to-program 
communication. 

2 

• Allocate. lristead of requiring the programmer 
to code logic that identifies and separates differ
ent requests from a single stream or logic that 
correlates replies back to their requests. APPC 
provides an Allocate call. Client programs u~e 
Allocate to obtain a conversation with a server 
program and APPC automatically activates the 
necessary network resources. s~ an instance 
of the server program. and connects the server· 
progfam.tQ the· conversation as necessary. To 
identify and separate different requests. each is 
given a different conversation. To correlate 
replies back to their requests. replies are 
returned on the same conversation that carned. 
the request. . 

• Send Error. Instead of requiring the program
mer to code logic to purge inbound records after 
discovering an error that makes it impossible to 
process them. APPC provides a Send_Error call. 

. Send Error informs the partner program of the 
error~d automatically purges any records that 
may have been sent before it found out about 
the error. 

• Confirm. Instead of requiring the programmer 
to code logic that verifies that the partner 
program has received and successfully 
processed all the data sent so far. APPC 
provides a Confirm call. Confirm suspends the 
conversation, informs the partner program that 
confirmation has been requested, and notifies 
the caller of the partner's response to the 
request. The partner either responds with a 
Confirmed call when all data is processed 
successfully or responds with a Send_Error 
when an error is detected while processing the 
data. Just as it does for many other race 
conditions. APPC automatically handles the 
cases where an error is detected before the 
confirmation notification arrives or before 
confirmation is requested. 

SNA Perspective 

• Resource Recovery. Instead of requiring the 
prograrrimer to code logic that keeps audit trails 
and negotiates recovery procedures when the 
network failsin the middle of a database update, 
APPC works together with the Resource 
Recovery system to automatically commit or 
backout the update when the network is restored. 

• Deallocate. Instead of requiring the program
mer to code logic that infonns the partner 
program that the conversation is over, APPC 
provides a Deallocate call that supports both 
conditional and unconditional tennination. 
Conditional termination includes a confinnation 
request and the conversation is terminated only 
if the partner processes the data successfully 
and resporids with a Confinned calL If the 
partner detects an error and responds with 
Send_Error,·the conversation continues so the 
programs can attempt to recover. 

• Buffering. Instead of requiring the programmer 
to code logic that bulldsapplication records to 
utilize the network's transmission frame effec- . 
tively. APPC automatically provides a bufferiilg 
service. APPC minimizes the network overhead 
by packing as much data as possible into a net
work frame and sending the frame only when it 
overflows, whe~ the program uSes the Flush call 
(because a delayb~tween Send_Data calls is . 
expected), or' when the program is done sending 
(makes a Receive call to receive data, requests a 
confirmation. Of lkaltocates the conversation). 

These powerful features are possible only because a 
half-duplex conversation enables APPC to make the 
following assumptions about the relationship of the 
records being sent and received. 

• The next record sent depends on the successful 
processing of the last record sent. 

. • The next record received depends on the suc
. cessfui processing of the last record received. 

• The records to be sent by the server depend on 
the records last sent by the client. 

• The records to be sent by the client depend on 
. the records last sent by the server. 

• From the beginning of the transaction to the 
end, the program uses the conversation for only 
one unit of work. at a time. 

March, 1993 



SNA Perspective 

For many applications. half-duplex conversations 
simplify the application logic and enable the applica
tion to use the many powerful features provided by 
APPC. For example. in a query transaction. the client 
sends a request to the server and then waits for the 

. server to send a reply. Likewise. in a fIle transfer 
transaction, the client repeatedly sends records to 
the server and then waits for the server to confinn 
that the file was received and stored successfully. 

Some more complex application designs require the 
programs to send and receive data simultaneously. 
APPC was enhanced to allowfull-:duplex conversa
tions in order to support these applications that cannot 
tolerate the half -duplex flow restrictions. Even though 
these applications would not use many-features pro
vided by APpc. the full-duplex. enhancement pro
vides a common open application interface that is • -
easily integrated into. existing and future networks. 

To understand which application designs benefit 
frQm full-duplex conversations. co~ider the 
following application models: that need to send· and .
receive data simultaneously. 

Full-Duplex Application M~dels· 

The threefull-duplex application models are: 

• Protocol transport applications 

• Transaction pipeline applications 

• Real-time control applications 

Two Incompatible Networks 

Site 1 
.------------------, . 
, NodeA • , 

. , , 

Distributed 
Applications 

Protocol 
Driver 1 

Node 8 

Distributed 
Applications 

ProtoCol 
Driver 2 

0 · 0 
0 

0 
0 
0 · · · 0 

, 
0 

0 , 
0 · , 0 

0 
0 , 

.:-----------~-----~ 

March,l993 

Protocol 1 

Protocol 2 

Figure 1 

Site 2 
.------------------, . 
• NodeY : · : · , 
0 
0 
0 

· 0 
0 

0 
0 
0 
0 
0 · 0 , 
0 
0 
0 

Distributed 
Applications 

Protocol 
Driver 1 

NodeZ 

Distributed 
Applications 

Protocol 
Driver 2 

0-
o 
o 

· · • 0" 

• 0 1 ______ ------------

OCSI 

These models and their characteristics are described 
below. 

Protocol Transport Applications 
A protocol transport application enables customers 
with incompatible netWorking protocols between 
two sites to share network media by using a pre-

. ferred protocol to transport an incompatible protocol. . 

For example. because the networking protocols in 
Figure I are incompatible. they cannot share a com
mon physical medium. The customer must pay for 
two physical connections between the same two sites_ 

In most cases. additional investment in data commu-
. nication hardware and software can be jUstified if 

the configUration can be -simplified to a single phys-
.. ica:! connection. One such· investment would be a 
protocol transport application, as shown in Figure 2 ... 

Protocol transport is a full-duplex application. As 
far as the transport applications are concerned. the 
records sent are cOmpletely independent of the 
records received. Above the application. a complete 
protocol machine and; optiona:lly.-other protoCol· 
stacks above it coordina,tethe end-to-endprotocols. 

The example m Figure 3 (see page 4) illustrates how 
an APPC full-duplex Coriversation can transport a 
protocol such as X.25 or NetBIOS_ Theptotocol 
transport application adds an envelope to aframe 
and sends it within a converSation record. On the 
receiving side, the application removes the envelope 

Protocol Transport 

Site 1 Site 2 
~---------------------~ ~---------------------~ 

Node A ' , NodeY 0 

0 

Distributed Distributed 0 
0 

Applications 0 Applications 0 , 
Protocol 

0 

ProtoCol , 
Drive! 1 

0 

Drive! 1 0 
0 

NodeS 'protocol 1 j 
: NodeZ 

I Protocol 1 

'Protocol 
0 0 

' 'Protocol 
0 

0 

Driver 1 
0 

Driver 1 Distributed 
, 

: Distributed 0 

Applica-· 
0 0 

Applica-Protocol o. 0 Protocol 
tions 

0 , 
lions Transp<)rt 

0 · Transport 0 ··0 
0 · Appication , 0 AppflCa1ion 
: ProtoCol 2' : 

o , Prqtocol Driver 2 
o· . . 

~---------------------~ 

0 Protocol_ Driver 2 · o • __________ ..... __ • _____ ._._f 

Figure 2 

3 



OCSI 

Protocol Transport Appncation 

Transaction 
P ramA 

Send 

Receive 

,LU 6.2 full-duplex 
Conversation .---------------------, i r--L-U,-6-.2-E-n-ve-lo-,pe--. 

I Protocol X Frame I 

LU 6.2 Envelope 
I Protocol X Frame I 

Transaction 
P ramB 

Receive 

Send 

Protocol X might be NetB10S, Async, X.25, or IP 

Figure 3 

before delivering the frame to the target drivers. 
Although this example shows how data link control 
frames can be transported through an SNA network" 
the same design could be used for higher level pro
tocols. For example, a protocol transport, applica~ , 
tion could transport TCP streams. 

Transaction Pipeline Applications 
Transaction pipeline applications interleave requests 
and replies from'many different application sub
functions onto a single full-duplex conversation. 
The requests ate generally unrelated messages. 

Consider an in-store controller with a transaction 
rate of 25 credit check transactions per second and 
an average transaction response time of one second, • 
On average, then, 25 different transactions are 
active at the same instant. If each transaction runs 
with a half-duplex protocol, the controller needs 25 
simultaneous conversations and 25 copies of the 
network resources (sessions, buffer pools, andso 
on) to support those conversations. This memory 
and execution overhead is a heavy load for a: small 
controller. 

Transaction pipeline applications reduce the net
work load in this type of environment. Rather than 
using a half-duplex conversation to correlate the 
records exchanged to perform a transaction, the 
application implements its own explicit correlation 
function. When a new transaction is started; the 
application assigns a correlation value (often a con
trol block pointer) and places the value into all 
records exchanged to perform that transaction. 
When a record arrives, its target transaction can be 
determined by the correlation value it carries. 

4 

SNA Perspective 

By using the correlation values, the applications can 
place all the traffic onto a single conversation with 
noambiguity. No matter how many transactions run 
simultaneously, all the records to be sent can be fun
neled into a single conversation because the partner 
can use the correlation values to fan them out again. 

For the conversation. the records sent and received 
are completely independent The relationship 
between the records is managed by the correlation 
protocol machines implemented in the application. 
These correlation protocol machines determine all 
the end-to~nd protocols. 

The scenario illustrated in Figure 4 interleaves 
requests and responses from several different sub- , 
functions (named X, Y, and Z) onto a single full
duplex conversation. Both transaction programs 
maintain correlation tables. Theindividu.al . 
requestS are unrelated and considered to be 
different work units. 

It is'possible for a transaction pipeline application to 
be designed using half-duplex conversations. 
(nstead of using a single conversation for all 

, requests and replies, tlie programs would use many 
short conversations, one for each message. Each 
. message sent includes Allocate, Send_Data. and 
. Deallocate type(FLUSH). 

Transaction 
Pr ram A 

Transaction Pipeline 

Full-duplex Transaction 
Pro ram B Conversation 

Subfunction 
·-- .. --- ... ------i 
, , 

X 

. , 
Send : ' Receiv 

Subfunction 

X 

y 

z 

Correlation Table 

Transaction 
Program A ReqlJE!sts 

I ~ ~ ~ . I 
Transaction 
Program A Responses 

1_088 I 
Figure 4 

y 

Send z 

Correlation Table 

Transaction 
Program B Responses 

le4D<t1 

March,1993 



SNA Perspective 

If granular security and accounting are required, the 
half-duplex design has the advantage of a user 10 
automatically associated with each message. If par
allel processing. and horizontal growth is required, 
the half-duplex design has an advantage because 
each message has its own instance. of the server, the 
s.ervers run in parallel and, optionally, the servers 
run on more than one computer. However, if the 
networlc fails and a message is lost, the program will 
not know unless it uses time-outs or some other 
technique f~r sensing lost messages. Furthermore, 
the order in which the messages arrive may be dif
ferent from the order in which they were sent. 

The full-duplex design described above, on the 
other hand, u,ses just one conversation for all trans:
actions and therefore does not have the overhead of'" 
allocating conversations and starting servers for 
each transaction. If the network fails, both pro
grams using the conversation are notified and the 
recovery of lost messages can begin immediately, 
Since th~ same conversation is used for all mes-·" 
sages, messages are always sent and received in the 
same order. 

However, there are disadvantages. APPC's auto
matic security and accounting will be performed 
only when the conversation is started, not for each 
of the transactions carried by the conversation. 
Furthermore, all transactions go through a single ' 
pair of programs. For parallel processing and 
horizontal growth, the logic must be added to the 
application instead of using the serviees provided 
by APPC. 

Real-Time Control Applications' 
A real-time control application simultaneously 
sends command messages and receives feedback 

OCSI 

Imagine a manufacturing plant where a computer is 
directing the actions of automated systems on the 
plant floor. The messages flowing mit of the com- , 
puter control the equipment: turn up the heaton 
oven number 4, start conveyer A. The messages 
flowing back to the computer provide feedback: the 

, oven temperature is now 1000 degrees, conveyer A 
is jammed, sensor Z has tripped. ' 

In some cases, the feedback.has real-time require
ments. If the computer does not respond within the 
required time, a disaster may occur: an oven may 
explode or people may be injured. The feedback 
cannot be delayed while waiting for the partner 
application to grantpemilSSion to send or while 
waiting for a new conversation to be allocated., 

In other cases, the feedback.is loosely related to the 
commands being sent The computer performs real
tiJIle t~nd analysis to determine what aCtion to take 
hext.. There is no 'fix~drelationship between the 
number of feedback messages and the number of 

, , command messages~.in other words, if the applica
tion attempts to use half-duplex protocols, there is 

'no way to determine which program should have 
permission to send. 

An eXample of areal~timecontrolapplication " 
,appears in Figure 5. The furnace sends temperature ' 
readings to the controllin~device. ' In response to ' 
certain temperature thresholds, the trend analysis 
function in the controller sends temperature adjust
ment commands to the furnace. " 

A real-time control application is another application 
that lends itself to full duplex. The conversation is 
unaware of any relationship between the records 

messages. The application uses informa- r------------------------, 
tion from the feedback messages when 
generating new command messages, but 
there is no relationship between the 
number of messages sent and received. 
Applications can combine this model with 
the transaction pipeline application model 
and interleave many commands and feed-
back messages on a single full~duplex . 
conversation. 

March, /993 

Trend Analysis 
Function 

Real-Time Control 

Full·duplex 
Conversation .--.-----------------------, , . , , 

'Send • : Receive 
~:"::';';';'-+-'-I . ... . T3 T4 

,!:jVA 
T1 

Time 

, . 
Receive: Send 

Figure 5 

Furnace 

5 



OCSI 

How can CPI-C Level 2 support full-duplex 
¢onversatlons on APPC platfonns that do 
not Implement the full-duplex conversation 
option set? .. . 

When APPC supported only half-duplex conver
sations. programmers invented clever ways to 
implement full-duplex applications using two 
half-duplex conversations. Wrth this technique. 
the client program allocates a conversation to 
the server program and then the serv~r allo
cates a conversation back to the client. The 
client's conversation is only used to send data 
from the client to the server and the server's 
conversation is only used to send data from the. 
server to the client. CPI-C level 2 will use this 
technique to emulate full-duplex conversations 
on APPC platforms. that do not Implement the 
·option set'for full-duplex conversat.ions. 

exchanged. Instead, the application contains a feed
back protocol machine that understands the relation
ship between the records. 

A similar real-time control application is designed 
with half-duplex conversations using one of the two 
APPC features that·can interrupt a program that is 
sending: Send_Error and RequesCTo_Send. But if 
a program uses Send_Error to interrupt its partner, 
obtain permission to send, and send a feedback mes
sage, the side effects may be unacceptable. First, 
Send Error will suspend the caller until the partner 
program makes a call that reports the condition~ 
Second, any data sent by the partner but not 
received will be purged and must be resent by the 
partner after the feedback message is received. 

Instead, if a program uses RequescTo_Send to ask 
the partner for permission to send, no data will be 
purged. However, the program is unable to send the 
feedback message until three conditions are met
the program has received the data that has already 
been sent by the partner, the partner makes a call 
that returns the RequysCTo_Send indicator, and the 
partner grants permission to send. 

Using full-duplex design allows the program to send 
a feedback message without delay and without 

6 

SNA Perspective 

purging valid data, assuming that the partner pro
gram maintains an active Receive~ This is a definite 

. advantage when it is critical that the feedback 
message be processed as quickly as possible~ 

Contrasts: Full-Duplex and 
Half-Duplex Applications 

Related Records 
Full Duplex. With full-duplex applications, only 
the application knows how exchanged records are 
related. 

- Records from different application subfunctions 
are interleaved on the same conversation; 

- Some subfunctions receive records while other 
subfunctions send records . 

.. - If the conversation calls are used to synchronize 
operations or purge records made obsolete by an 
error detected by the application, it will 
inadvertently suspend subfunctions that don't 
need to be suspended or purge records that are 
still valid. 

- Every full-duplex application has some type of 
protocol machine to manage the relationship 
between records. Examples include a 
communication protocol'stack for protocol 
transport applications. a request correlator for 
transaction pipeline applications. and a feedback 
analyzer for real-time control applications. 

Half Duplex. With half-duplex applications, the 
application and the conversation understand how 
exchanged records are related. 

- The application exchanges a set of related 
records and uses a conversation for only one 
unit of work at a time. 

- The application never sends and receives data at 
the same time. 

-Since the records are all related, a conversation 
call c.an safely suspend the caller when 
synchronizing programs and can easily identify 
and purge records made obsolete by an error 
detected by the application. 

March. 1993 



SNA Perspective 

• Every half-duplex application uses the 
conversation to manage the records for a given 
unit of work. It does not need the extra logic of 
a protocol machine to perform its task. 

Given that full-duplex applications require extra 
logic where half-duplex applications simply utilize 
services provided by the conversation, why would a 
programmer choose to implement a full-duplex 
application and take on this extra programming 
burden? From the above models, you Can see the 
primary trade-off: network resource utilization 
versus application complexity. 

Fundamental Primitives· 
Whether you use half.,duplex or full-duplex . 
protocols, program -to:-program communication haS 
several fundamental primitives: 

• Identifying a transaction service 

• . Starting a .conversation between a client a.hda . 
server, automatically starting the server if 
necessary . 

• Stopping a conversation 

~ Sending data related to the transaction 

• Receiving data related to the transaction 

~ Forcing data to be transmitted 

• Reporting errors and purging data that is 
invalidated by the error 

• Requ~sting'confirmation that the data sent has 
been successfully processed (in other words, 
synchronizing the programs) 

• Granting or rejecting confirmation requests 

Half Duplex. With half-duplex protocols, the 
APPC communication subsystem can easily provide 
the formats and protocols needed to implement 
these primitives on behalf of the application. The 
communication subsystem encodes the necessary 
information, manages the protocol state, and 
resolves the race conditions. The application 
manages the application protocols by invoking the 
appropriate verb. . . 

March. 1993 

©CSI 

Given that a full-duplex conversation can be 
emulated with two half-duplex conversa
tions, why should APPC platforms be 
enhanced to suppOrt the option set for 
full-duplex conversations? 

The full-duplex conversation option set should 
be used instead of the half-duplex accommoda
tion provided by CPI-C because network 
resources are used more. effectively. To support 
two conversations, the network must activate· 
two sessions. Each session requires memory 
for control blocks, memory for buffer pools, 
administration overhead (activation,list search
ing, process switching, network management 
session awareness),and a session address~ 
By using the full-d\1plexconversation option set, 
this overhead is cutin half. 

Furthermore, some APPCplatforms,suchas 
IBM's Customer Information Control. System 
(CICS); cannot attach the server's conversation 
back to the onginatingclient program. These 

. platforms always activate a new program 
process when any new conversation attach· 
request arrives. By using the full-duplex conver
sation option set, the client creates both the send .. 
and receive paths by allocating a single conver
sation to the .serveL In this case, even these 
platforms can support full-duplex applications. 

Half duplex has two primary disadvantages. First,· 
each simultaneous transaction requires a duplicate 
set of network resources. Second, while the 
application is actively processing the transaction, 
the network resources for that transaction are·idle. 

Full Duplex. Withfull-duplex protocols, the appli
cation takes on an additional burden to implement 
the primitives. If the primitive is used by the appli
cation, the application must format special records 
to implement the necessary protocols. Subfunction 
identification, race resolution, synchronization, 
coordination, and correlation must be handled by 
the application. The communication subsystem is 

. unable. to help because it does not understand the 
relationship between the records. It cannot tell 

7 



OCSI 

Will full-duplex conversations be used to 
implement Multiprotocol Transport 
Networking? 

IBM's networking blueprint proposes a world 
where you no longer need to buy a network 
based on the application interface used by your 
favorite programs. For example, if your favorite 
program uses TCP sockets, it can use an SNA 
network as easily as a TCP/IP network; if your 
favorite program uses APPC, it can use a 
TCP/IP network as easily as an SNA network. 

For the networking blueprint, this capability is 
based on Multiprotocol Transport Networking 
(MPTN), which IBM has proposed to XlOpen to 
become a standard .. The core of this MPTN 
technology is a set of carefully crafted compen-: . 
sators-network programs that compensate for 
network differences and then envelop protocols 
for transport through the target network. 
A compensator is a protocol transport applica
tion. A compensator that transports a protocol 
through an SNA network uses full-duplex APPC 
conversations. 

This is good news for software vendors who 
want to make a profit from developing compen
sators. These vendors will be able to utilize an 
open application interface for full-duplex APPC 
conversations. They will not need to use an 
undocumented interface hidden in the middle of 
the SNA protocol stack. 

which application subfunction detected an error, 
which incoming record to purge, which application . 
subfunction is waiting for confinuation, or which 
application subfunction should be allowed to 
continue sending while waiting for a confinuation. 

The primary advantage of a full-duplex conversa
tion is that the application can bundle independent 
pieces of work onto a single set of network 
resources. Even if one subfunction is idle, other 
subfunctions can continue to use the resources. 

8 

SNA Perspective. 

Choosing: Half Duplex 
or Full Duplex .. 

• How would you, as·an application designer, decide· 
between a half-duple" and full-duplex APPC 
conversations? There are three simple guidelines: 

1. If your application is similar to one of the full- . 
duplex application models discussed above. use 
full-duplex conversations. 

,2. If you have an existing application that uses a 
full-duplex service, like TCP sockets or 
NetBIOS sessions, and you want to enhance that 
application to use APPC, use full-duplex 

, conversations. If the appllcatiol1 is really a half
duplex application, you p'ave clIready coded the 
logic required toperfonn the functionS built into ' 
APPC. , It will be 'easier to'use that same logic 
with full-duplex conversatioilSthan to remove 
the logic and use the fe~llres built into APPC 
half-duplex conversations instead., ' 

3. Otherwise; use half-duplex·conversations and 
use the powerful APPC features your 
application requires. 

'Programming Considerations 

CPI-C provides a consistent application program
ming interface for applications that require pro
gram-to-program communication. CPI-C Level i 
currently in the proposal stage, contairtS enhance- ' 
ments for full-duplex conversations. This discus
sion of programming considerations uses calls and ' 
tenns taken from that proposal. 

Availability of Full-Duplex Support 
Full-duplex conversations ate not possible unless 
the APPC platforms on both the client's computer 
and the server's computer support full~duplex con
versations. Before you start developing anapplica
tion that uses full-duplex APPC conversations; 
make sure that full-duplex support is available on all 
the platforms where your application will run. 

March.J993 



SNA Perspective 

Full-duplex SUpport will become available in stages. 
In the first stage, CPI-C Level 2 uses two half
duplex conversations to provide the appearance of a 
full-duplex conversation interface to applications. 
(See the sidebar on page 6 for more information.) 
In the second stage, APPC protocols will be 
enhanced (APPC option set i 12) so a single 
conversation supports the full-duplex conversation 
interface. 

SNA Perspective expects the first stage to appear in 
workstation products in the second half of 1993 and 
the second stjige to appear in workstations, 
midrange, and mainframe systems QY the end of . 
1994. If you intend to implement full-duplex appli
cations, now is the time to inform your APPC plat
form vendors of your requirements and to encourage 
them to implement the APPC full-duplex option set 
ofCPI-C Level 2. 

Configuration Considerations 
AnAPPC platform that supports full-duplex conver
sations requires no specialcontiguration, to use 
them., There are no new configurationparameters .. 
on mode definitions,logicalunit (LU) definitioris, 
or partner LU definitions. 

Furthermore, on such a platform,a~ygiven APPC 
session can serially support full-duplex and half
duplex conversations. A free session cail be 
assigned to either type of conversation. 

Full-duplex applications can thus be smoothly inte
grated into existing networks. The only configura
tion consideration is whether or not the session lim
its must be increased to support the new application: 
The following example describes this capability. 

1. A client allocates a half-duplex conversation to 
a particular target with a particular mode and 
APPC assigns the conversation to a particular 
session. 

2. When that half-duplex conversation terminates, 
that session is returned to the free pool. 

3. A client (the same or a different client) .allocates 
a full-duplex conversation to the same target 
with the same mode. The conversation is 
assigned to the san1e session. 

March. 1993 

OCSI 

Will full-duplex conversations allow APPC 
programs to communicate directly with TCP 
socket programs? 

You may be tempted to believe that full-duplex 
. APPC programs can communicate directly with 
TCP socket programs. Not only is this not true, 
it is also a questionable goal. , 

Programs in a distributed application must coop
erate at every level. A client and server must 
agree on the content of the data, the organiza
tion of the data, the order of the data flows, and 

, the state information exchanged. If the client 
and server attempted to communicate using dif
ferent interfaces (interfaces with different . 
semantics),cooperation would be Impossible. 

.·If an APPC program attempts to' communicate 
with a TCP socket program, either theTCP 

. socket program needs to include a compensator 
to giveiUhe semantic equivalent of APPC Con-

, versations,' or the APPCprogram needs a com-
pensatorto give .it,thesemantic equivalent of 
TCP sockets. In eittler case, the end result is 
like-to-like communication. 

A better strategy is to let the programs. . 
, communicate using a standard application inter
face for conversations, remote procedure calls, 
message queues, or some other program-to
program communication facility. Then, when 
necessary, place the compensators inside the 
network so that the programs are network 
independent. 

4. When the full-duplex conversation terminates, 
the session is again returned to the free pool. 
The session can be used over andover, with 
either type of conversation using it. 

Multiple Threads Versus Nonblocking Calls 
A full-duplex conversation would do little good if a 
program is unable to send and receive at the same 
time. But if a program is suspended while waiting 
for a receive operation to complete, it is unable to ' 
send. Likewise, if the progran1 is suspended while 

9 



OCSI 

waiting for a send operation to complete, it cannot 
receive. To allow multiple operations to be out~ 
standing at the same time. full-duplex conversations 
must support programs with multiple threads and 
provide nonblocking calls. 

Some systems permit a program to have multiple 
threads. Each thread executes instructions indepen
dently and communicates with other threads using 
shared memory, semaphores, queues, or other 
shared objectS. A thread may be suspended while 
waiting for a call to return, but other threads 
continue to work. 

Some systems permit a program to associate a wait 
object with a call. Whenthe call cannot be complet
ed immediately, the call is not blocked. Instead, 
control is returned to the program with an indicator 
that the 9peration is incomplete; The program con
timies with other work and occasionally checks the 
wait object to see whether the operation has 
finished. When the operation is complete, the 
program continues with the required processing. 

One common design for full-duplex applications 
creates two threads: one thread performs send 
operations and the other thread performs receive 
operations. When the receive thread is blocked 
because the partner program has not yet sent data, 
the send thread can continue to send data. When the 
send thread is blocked because the partner program 
has not received enough data to free the required .. 
network buffers, the receIve thread can continue to 
receive data. 

Another common design for full-duplex applications 
uses nonblocking calls-each call is issued with a 
wait object. When a call returns with an incomplete 
indicator, the program places its wait object in a list 
containing wait objects for all incomplete calls. 
When there is no work to do, the program waits on 
the list. When a wait object is posted, the program 
performs the required processing, issues another 
nonblocking call if necessary, and continues the loop. 

Allocating and Accepting a Conversation 
When allocating a full-duplex conversation, the 
client program must specify that a full-duplex 

to 

SNA Perspective 

conversation is required during the Allocate call. 
Full-duplex conversations do not support confirma
tionrequests, so a full-duplex conversation is 
always allocated with a synchronization level of 
NONE. 

Likewise, the server program must be defined 
with matching capabilities and use an 
AccepC Conversation call to accept a full-duplex 
conversation with a synchronization level of NONE. 

Deallocating a Conversation 
For normal termination, the conversation is not 
deallocated until both programs make a Deallocate 
call. When a program finishes sending data, it must 
make a Deallocate call to flush the final record and 
inform the partner. Then, if the program hasn't 
already received a retu~ code indicating that the 
partner has deallocated, it must continue to receive 
until it does. 

Either program can make the Deallocate call first 
. ~d the programs can make the Deallocate calls one 
. after the other or at the same time. Also, there is no 
limit to the amount of <lata a program can send after 
being informed that the partner has deallocated. In 
these situations, you are free to make your own 
rules when you design your application. 

For abnormal termination, a single Deallocate call 
with a deallocate type of ABEND is enough to 
deallocate the conversation. After this call, neither 
program is permitted to send, a return code informs 
the partner program that it cannot send, and both· 
programs must continue to receive until a return 
code informs tbem that the conversation has been 
abnormally terminated. 

Sending and Receiving Data 
After allocating a full-duplex conversation, the 
client program can make Send_Data calls and 
Receive calls at any time. Likewise after accepting 
a full-duplex conversation, the server program can 
make Send_Data calls and Receive calls at any time. 

As for half-duplex conversations, a Send_Data call . 
does not cause the data to be transmitted to the part
ner immediately. To reduce overhead, the data will 

March,1993 



SNA Perspective 

be buffered until the buffer overflows or the 
program forces the data to be transmitted. Unlike 

. half-duplex conversations. a Receive call does not 
force the data to be transmitted. Furthermore. full
duplex conversations do not support synchroniza
tion calls that force the data to be transmitted. 

In a full-duplex conversation. the program can force 
the data to be transmitted by using a F1ush call when 
there is more data to send or by deallocating the 
conversation when the program has finished sending. 
Of course. to reduce overhead, the flush function 
can be combined with the send function by using a 
Send_Data call with a send data type of F1ush. 

Sending and Receiving Expedlfed Data 
Some full-duplex applications need to send . 

. expedited data-urgent data that must pass all the 
normal data previously sent. For example. a record 
that cancels aprevious request. sometifIleS called a 
forward abort, would use this feature. Full-duplex 
conv~rsations support special caIls.for this purpose: 
Send_Expedited_Data and . 
Receive_Expedited_Data. 

As long as the conversation has not :been 
deallocated, a program may send from 1 to 86 bytes 
·of expedited data at any time. After sending . . 

. expedited data. the program may send more 
expedited data, but the Send_Expedited_Datacall 
may be suspended if the partner program has not 
received the previous expedited data. 

When the partner progranl sends expedited data to 
the program, status indicators on every Receive, 
Send_Data, and Send_Expedited_Data call will 
inform the program to receive expedited data until 
the expedited data has been received. If your 
program is not making one of these calls, it 
cannot be informed. So if the program is designed 
to use expedited data and expedited data may 
arrive while the program is not making calls, a 
Receive_Expedited_Data call should be kept active 

March. 1993 

©CSI 

at all times. To keep the Receive_Expedited_Data 
call from interfering with normal data processing. 
either it should be placed in its own thread Or a non
blocking verb should be used and the wait object 
should be checked frequently. 

Conclusions 

Although half-duplex APPC conversations are suit
able for most distributed applications, full-duplex 
conversations are a welcome enhancement. Full
duplex applications can easily be implemented with 
full-duplex conversations and your programs can 
still benefit from the reliability and built·in services 
provided by APPC-conversations. CPI-C Level 2 
will provide a consistent interface for full-duplex 

. con~ersations on APPC platforms. . . . 

.References 

, Bader. L. D. and Walker II. J. Q;, "Cassie dient
Server Transactions Using APPC." IBM Personal 
Systems Developer. Spring 1991. 

. .' .. 

Sysiems Application Architecture Common 
PriJgrammikglnte!face Communications Reference; 
. IBM Document NumberSC26-4399,June 1992. 

Gray. J. P .• Hansen, P.. Homan, P. Lerner,.M. and 
Pozefsky, M., "Advanced Program-to-Program 
Communication in SNA." IBM Systems Journal, 
Vol. 22. No, 4, 1983. 

Systems Network Architecture LU 6.2 Reference: 
Peer Protocols. IBM Document NumberSC31-6808. 
September 1990. 

Systems Network Architecture Transaction 
Programmer's Reference Malllwifor LU Type 6.2. 
IBM Document Number GC30-3084, September 
1991. • 

II 



©CSI 

(colllilllleci.t1'01I/ page J) 

HPR Components 
HPR corisiSts essentially of two parts-a transport 
protocol called Rapid Transport Protocol (RTP)and 
a routing protocol called Automatic Networlc 
Routing (ANR). 

APPN now has two routing mod~s--:-HPR and ISR 
An illustration of the difference between HPR and 
ISR is shown in Figure 6: (Technically, II:lM archi
tects might represent RIP and ANR as operating at an 
enhanced layer 2 rather than at layers 3 and 4.) Both 
HPR and ISR use the same APPN control poiht"(CP), 
the same topology protocols, andthe s~e directory 
services. HPR can coexist with APPN's current ISR 
in APPN nodes and in APPN networks. The mode 
being used is transparent to the upper layers. 

ISR and HPR APPN Routing 

End point Intermediate node . End point 

7 7 7 

6 6 6 

5· 5' 5 

4 .~ '4 

3 3 3 

2 2 2 
, 

1 , . . 
: Datalink : ._-------- ... - : Datalink :. ._------_ ... _-
.SR transport .SR transport 

~ 
. lU-LU Session j 
:,~""'JV'.·".·"J'J''''''''''''''''''h'''.·",· •• ",,·J''''''.·.''·.·.:.·.·J''''''''·.V.'' ... .,... .................. v.-...... y.NV'~ ..... ....,.. ....... " •• ""'.,.. ....... ... 

Endpoint Intermediate node End point 

7 7 7 

6 6 6 

5 5 5 

4 4 4 

3 ;,L 3 

2 '2 .. 2 

U~~~!i~~_j LP-~~!i~~_j i' 
ANR routing ANR routing. I 

RTP transport .' 

l . .w .• , .•...•. "u ••.•••.•. w .•. w •..•.•..•••.•••.•• v .... ~.Y,;~.y. .. ,~.~.~.i.~!) .... M' ••••••••••••• w .•.•• , ..•. w.wu.w .•......•. J 
ANR and RTP are components of HPR 

Figure 6 

12 

SNA Perspective 

. Before discussing HPR in more detail, we briefly 
examine four basic routing teChniques and then. 
review ISR. 

FQur Routing Techniques 

Four basic routing techniques are widely used
virtual/explicit routes, label swapping, destination 
routing, and source routing. They are of interest 
here because they are used, respectively, by subarea 
SNA, ISR, TCP/IP, and HPR. 

Virtual Routes and Explicit Routes . 
Subarea SNA is often referred to as a "nonroutable" . 
protocol. This' is because the paths are preconfig
ured and the primary routing decisions for each ses-

. sion are made at a centralized host rather thaIl at any 
node in the network. Furthermore,.the traffic 
between a peripheral node and a subarea node does 
not include a full network address but includes 
instead a name or local address that can oriIy be 
understood by subarea npdes. 

Explicit routes and virtual routes, which areprepro
grammed into VTAM, define the possible combina
tions of links between any two subarea nodes in the 
network. For each session, VTAM assigns an 
explicit route and virtual route based on the session . 
characteristics and requirements. The explicit route 
nuinber is used by each subarea node (VTAM or 
NCP) to select the next hop from its preprogrammed 
table. Virtual/explicit routing uses some qualities 
of source routing at the host node and some·qualites 
of destination routing at the intermediate nodes. 

Label Swapping 
Several protocols, such as Asynchronous Transfer 
Mode (ATM) and APPN's lSR, use label swapping. 
In this discussion, we will use ISR as an example. 
The routing is done hop by hop across a path set up 
at the beginning of the session. Each session has a 
unique fully qualified procedure correlation identifier 
(FQPCID). The initial connecting message (BIND) 
informs each intermediate node of where next to 
send each packet coming in on that session. 

March,l993 



SNA Perspective 

Between each set of two nodes, the traffic for a par
ticular session uses a local fonn session identifier 
(LFSID) to distinguish it froqi other traffic using the 
same link. Each pair of intenne~iate nodes assigns 
an LFSID to each session using that hop along its ' 
path. These LFSIDs are stored in each node·with 
the associated FQPCID in a table. For the duration 
of the session, each packet that comes in from either 
direction has its LFSID stripped off and the appro
priate· LFSID for that session is added on for the 
next hop. 

Destination Routing 
Destination routing is used by several protocols" 
including the Internet Protocol (IP). In this discus
sion, we will use IP as an.example. In destination 
routing, the destination address is carried inthe 
front of the packet and is used for making fOuting 
decisions. Each routing node that sees the packet' 
has one of several ways, such as a cache,prepro.;. 

'. grammed· table, or filter, to tell it whether to leave 
the :packet on its current network or forward it over 
one of the outbound links: 

If thepacketis ,to be forwarded and more than one 
link could Jead to the destination,the routing node 
uses ~me of several procedures, such as Open 
Shortest Path First (OSPF), to select the next hop. , 
OSPF and other routing topology protocols , 
excnange routing table updates frequently across the 
network. Destination routing is connectionless so 
each packet could arrive at the destination by a 
different path and in a different order, depending on 
link availability and congestion. 

Source Routing 
Source routing is used by- token ring bridging at 
layer 2, by APPN's HPR/ANR at layer 3, and in 
some high-speed trials such as the Aurora test bed. 
In source routing, the source node makes the routing 
decisions. In this discussion, we will use HPRas an 
example. 

The source node, such as an APPN network node 
server, uses one of several means, such as a cache or 
a locate request, to determine the location of the tar
get application. From its topology database, it then 
calculates the optimal route to the target node for 
the desired class of service. Each packet header 

March. /993 

OCSI 

includes infonnation for every hop along the route 
in the ,header. Each intennediate node examines the 
header, removes its own label, notices the next link 
indicated in the header, and forwards the packet on 
that link. The 1-2 byte label for each hop has local 
Significance only-a table at the intennediate node 
indicates'how to interpret the label. 

If a link or node on the selected route. goes down, 
the source node obtains another route without dis
rupting the session and sends packets with the new 
route hops listed in the header. 

ISR Review 

ISR is a component of APPN, as shown in Figure 7, ' 
and is itself a set of components. ISR's, functions 
include error recovery" adaptive pacing, and seg
mentation and reassembly:' ISR incJudesthe session 
connector in an intennediate node and the LU ha1t~ " , 
session in an endpoint node, which arefull(~tionally 
analogous. ISR's labelswapping,FQPCIDs, and ' 
LFSIDs are discussed above under "Label 

, Swapping." Aithough architectimilly APPN 1.S 
located above the SNA path control layer, as. " 
illustrated inFigure 7, readers sh9u1d note that some . ' 

APPN, Node Components 

session' 
routing 

Path control 

Figure 7 

NNCPor ENCP 

13 



OCSI 

discussions of APPN today, particularly in internet
working circles, include path control functions 
under the term APPN. 

In internetworking terminology. ISR serves approxi
mately the same functions as TCP and IP. Many 
users think. of APPN as a whole being comparable 
to TCP/IP. However, in addition to ISR, the APPN 
architecture includes a topology protocol, which 
serves a .similarfunction as OSPF or ClseO'S IGRP~ 
It also includes a distributed directory services com
ponent, which serves a function similar to the -
domain name server in TCP/IP. 

Both subarea SNA and APPN with ISR are 
connection-oriented at layer 2 (data link) and every 
layer above it They also perform error recovery at 
layer 2, layer 4 (transport), and layer 5 (flow con
trol). ISR also performs transport-level processing 
at each intermediate node, including segmenting! 
reassembly, pacing, and priority queuing. This level 
of robustness is appropriate for environments with 
slow or unreliable physical networks. 

However, ISR ensures a level of reliability beyond 
the neoos of many environments today, given the 
increasing reliability of underlying physical net
works such as LANs and Tllinks. HPR was devel
oped to address some of these concerns. As dis
cussed below, HPR will allow intermediate APPN
nodes to operate at level 3 using aconnectionless 
network layer protocol, which will decrease pro
cessing overhead and storage requirements and 
increase performance. 

Connection Networks 
As a complement to ISR, IBM offers a 
capability called connection networks or 
the virtual routing node. This allows 
nodes to connect to each other over a 
LAN or an internetwork. -The connection 
netw-ork feature is another way, besides 
HPR, to get around ISR hop-by-hop 
routing. See the sidebar on page 16; 
"Meanwhile ... Connection Networks." 

14 

ISR 

SNA Perspective 

High-Performance Routing 

HPR is a set of new transport/routing protocols that 
can 00 used instead of or in conjunction with ISR 
IBM indicates that products implementing HPR 
should be available in twelve to eighteen months: 

Because of the ISR/HPR boundary function pro
vided with HPR, a session can have some ISR seg
ments and someHPR segments. SNA Perspective 
expects that, for many years, all APPN implementa
tions with-HPR will still include ISR. 

As shown in the left of Figure 8 where two adjacent 
links of an APPN session are HPR-capable, HPR -
can be used for that segment While ISR is used for -
the other links. If only one link is HPR-capable, as 
shown in the right of the figure, APPN could still 
use HPR but it would offer no additional benefit. A 
node indicates its capability.for HPR in its topology 
database update· (TDU). 

- -

Architecturally, HPR could be added in software to 
an existing APPN/ISR node with no. hardware 
chimges, although.performance will increase signifi
cantly more if the hardware is also adapted~ 

Automatic Network Routing 
The network layer of HPR is ANR. Where HPR is 
used, ANR functions are-performed at every node. 
ANR provides connectionless, stateless source rout
ing. It services the outbound link based on priority 
and may discard incoming packets in the event of 
congestion. 

HPR Drop-In Migration with ISR 

EN2 

HPR ISR ISR ISR ISR 
orHPR 

Figure 8 

March. 1993 



SNA Perspective 

Readers may see ANR described elsewhere as a 
connection-oriented network. protocol with several 
connectionless services. Although ANR has quali
ties of both connectionlessand connection-oriented 
routing, we believe it is most appropriately charac-
terized as cpnnectionless. . .. . 

Architecturally, ANR could nm on top of a variety 
of connectionless data links,such as IEEE 802.2 
type I, HDLC Point-to-Point protocol(PPP), and , 
frame relay, as well as over connection-oriented data 
links, such as SDLe or IEEE 802.2 type 2. SNA 
Perspective expects IBMto first implement HPR on 
token ring and frame relay. 

Rapid Transport Protocol 
The connection-oriented transport layer of HPR is 
,RTP. It performs the following functions: connec
tion awareness, reliable delivery. reordering. packet 
sizing; flow controVcongestioncontrol, nondisrup
tive route switching, and session multiplexing. RTP· 
.is only ,used at the endpoints of an HPR session. . 

Adaptive Rate-Based Flow Control 
IBM has also added a new technique for flow con-

. trol and congestion control for HPR. This 'technique 
is called adaptive rate-based (ARB) congestion con
. trol.· ARB is part of RTP and is onI y used at the, 
endpoints of an RTP connection. APPN;s existing 
adaptive session-Ievei pacing is still used with any 
ISR links in the route. 

HPR Benefits 

Drop-In Migration. HPR can coexist with ISR 
through drop-in migration. HPR-capable nodes can 
exist in a route alongside ISR-onIynodes. This may 
be possible with a' software-only upgrade, though 
performance improvements would be limited. SNA 
Perspective expects that all network nodes will 
continue to include ISR and they will, in addition, 
include HPR over time. 

Connection less Routing. HPR/ ANR is not 
connection-oriented for each hop as ISR is and the 

March, 1993 

OCSI 

, intermediate nodes only process packets up to layer 
3, so less processing and storage is required at each 
intermediate node. This also allows nondisruptive 
adaptive rerouting in case of failed nodes or links. 

Improved Performance. IBM claims that HPR 
can offer significant improvements over ISR with a 
software-only upgrade and major improvements in 
combination with hardware optimization. , 

Reduced Storage. Since HPR does not need to 
process each packet up to the transport level at each 
intermediate node using its session connector tables 
or maintain control blocks to store pacing and error
recovery data,Jess storage is required <;\t each node. 
In addition, if the end node has HPR, its network 
node server does not need to store as much informa-:
tion to support that end node. 

Congestion (:ontrol. HPR (jffet$'congestion 
avoidance ami flow control through adaptive 
.rate-based congestion controL 

Still Missing 
Multimedia. Some IBM sources and analysts are 
portraying HPR, to some degree, as a transport for 
multimedia applications. However;HPR does not' 
allocate bandwidth. Therefore, while it is suited .for 
several client-server multimedia appliq,tions, it 
does not have support for the isochronous traffic 
typical of desktop videoconferencing and the real
time video portion of some multimedia applications. 
SNA Perspective expects that gigabit APPN, 
expected in 1995, will offer this support. 

Multiprotocol. IBM has also not indicated if other 
protocols will be able to run directly over either 
HPRas a whole or over ANR separately. IBM~s 
Muitiprotocol Transport Networking (MPTN), 
which will be addressed in a future SNA Perspective 
article,presents a standard way to have applications 
expecting one transport type to be fUnover another 
transport type. These mixed transport types include 
TCP/lP, SNA/APPN, NetBIOS, and OSI. IBM has 
not discussed how HPR fits into the MPTN picture. 
SNA Perspective believes that HPR could replace 
ISR in any MPTN configuration. 

15 



OCS[ SNA Perspective 

In the Meanwhile ... ·Connection Networks 
Connection networks were developed forAPPN in 
the late 1980s for two reasons. First, it became 
clear that, over high-speed reliable LAN links, 
ISR's hop-by-hop robustness was unnecessary. 
Second, ISR did not deal as efficiently with LAN 
and internetwork topologies where a node couid 
be logically adjacent to a large number of other 
nodes. ISR required a large number of topOlogy 
definitions in such an environment. 

The connection networks feature allows an .A.PPN 
user to define a· LAN or internetwork of any size or 
complexity asa single connection network. This 
connection network allows an APPN network node 
to treat this connection network as a single virtual 
routing node, appearing as a single APPN/ISR 
hop with zero intermediqte nodes. Two APPN end 
nodes which are both on the same connection net
work are treated by APPN as if they were adjacent 
nodes. The actual LAN or internetwork connection 
between them is transparent to APPN. 

An example Of a connection network is shown in 
Figure 9. Because IBM has only implemented 
connection networks on token ring LANs and over 
data link switching, the example uses token ring 
LANs. However, connection networks could be 
implemented over Ethernet, X.2S, frame relay, 
SMDS, ATM, and other environments. 

1. The user in this example has defined the 
internetwork which consists of LAN Ai LAN B, 
. and LAN C as Connection Network 1. Any. 
end node can be defined for one or more 
connection networks. 

2. The two network node servers in this example 
are not connected over the internetwork but 
through a separate SNA network. However, 
they could be connected over the internetwork 
using APPN over Data Link Switching or . 
APPN over sockets-both these features are 
available on the IBM 6611. router and will be 
available for use with the licensed network 
node code. Either way, the network nodes 
serving the end nodes for Connnection .. 
Network 1· must be able to communicate with 
each other using APPN without connection 
networks. 

3. The user configures each APPN end node on 
. LAN A, LAN B, and LAN C to be adjacent to 
Connection Network 1. The user does not 
configure each APPN end node to be adjacent 
to every other APPN end node available on 
this internetwork. (Without connecti9n 
networks, this second method is the usual 
APPN procedure.) 

Connection Networks 

16 

Note: Bridges and routers 
do not need APPN support 

One or more.T2. 1 links 
across any network type 

(could include several intermediate APPN nodes) 

Figure 9 

March. 1993 



SNA Perspective OCSI 

In the Meanwhile.~.Connection Networks (continued) 
4. When it is powered on, each APPN network . 

. node finds every adjacent network node; 
registers its topology to it, and receives infor
mation from it. The APPN network node then 
establishes a control point-control point 
(CP-CP) session with one or more adjacent 
network nodes. These are normal procedures 
for all APPN network nodes regardless of 
whether they will use connection networks. 

5. When it is powered on, each APPN end node 
finds its network node server and may also 
register its resources. . . 

6. End node A on Connection Network 1 requests 
a session with a certain application, not know
ing where that application is located. Assume 
the target applicationi~ in end node C. 

7. At end node A's request, its network node 
server, network. node A, searches for the appli-
cation with the other network node servers . 
using the standard APPN locate procedures. . .. 

8. Network node C responds with end node' C's 
tail vectors-a list of its links includirig 
Connection Network 1, and includes its 
medium access control (MAC) and service 
access point (SAP) address. 

9. Network node A sees that both end nodes are 
on Connection Network 1 and, weighing aU 
other possible links, selects the route with only 
one hop-Connection Network 1. 

10. Network node A tells end node A to set up its 
own session through its apparently adjacent link 
to Connection Network 1. Without connection 
networks, the usual APPN procedure would be 
for the data to go from end node A to network 
node A, then across an optimal APPN path to 
network node C, and then to end node C. 

March. /993 

11. End node A uses the usual token ring source 
route bridging discovery procedure to find the 
node with the given MAC address. In .this 
example, the search would be broadcast 
across the LAN internet and perhaps some of 
the SNA network. This step would not be nec
essary in an APPN process without connec
tion networks. 

12. End node A then sets up an APPN link with 
end nodeC through the usual XID process 
and BIND. Without connection· 
networks, network node A would only need to 
send a BIND to start the session. The APPN 

. end nodes believe the link is adjacent Any 
actual bridges or routers in Connection 
Network 1 are transparent to APPN, The 
APPN traffic is equally transparent to the 
bridges and routers; it can be sent as any 
other token ring traffic. 

This process seems cumbersome at 1irst-
and It is-:-but as caches are developed it becomes 
increasingly simplified. Also, the session setup 
effort is more than offset by the reduced predefini
tions (especially if nodes are frequently added or 
moved) and the subsequent efficiency. One bene
fit of connection networks is that an intervening IP 
router or router internetwork can be used 
efficiently that could not be used by APPN. The 
internetwork can, alternatively, be used by APPN if 
all the intermediate routers have APPN installed or 
if the routers at each end have support for APPN 

. over DLS or APPN over sockets. 

A caveat: it is recommended that an internetwork 
defined as a connectiofl network should have 
rela:tively high and consistent performance charac
teristics. Otherwise, for example, if two LANs with 
a satellite link were included in a single connection 
network, an APPN network node would treat the 
connection network as one APPN hop .and would 

. choose that route, blindto the significant satellite 
delay, even if a faster multihop terrestrial APPN 
route were available. _ 

17 



OCSI 

Current Concerns about APPN 

Nine concerns abOut APPN are listed in Table 1. 
The first three are .directly addressed by HPR •. IBM 
has stated that several others will be addressed in· 
future releases of APPN that have features unrelated . 
. to HPR and/or future releases of VfAM or 
NetView. 

High Network Node Storage Requirement 
With ISR, each intennediate network node must 
maintain a session connector control block for each 
active session as well as the network·topology. 
HPR will include the full routing infonnation "in 
each packet so these session routing tables do not 
need to be stored on each intennediate node. 

High Network Node Processing Overh~d 
. With ISR, each packet that enters a network node is 
stripped of its local fonn session identifier (LFSID) 
and given another LFSID for the next hop on the 
path. This involves protocol processing and a head
er change on every packet. HPR will include the 
full routing information in each packet, eliminating 
some processing overhead at the intermediate nodes. 
Also, intennediate nodes USing HPR are not per
fonning error recovery, pacing, or segmentation/ 
:reassembly, which also decreases overhead. 

No Dynamic Rerouting Upon Failure 

SNA Perspective 

reinitiation from the end user, but it can cause 
significant delays. 

HPR is able to discover a pathfailure and switch to 
. a new path without losing the Session. Also, sOme 
data links like X.25 and frame relay can nondisrup-
tively rerou~ around failures without APPN's . 
awareness. 

No Adaptive Rerouting Upon Congestion 
With both ISR and HPR, the path is fixed for the 
duration of the session urness that path is lost 
because of a link failure at some point. If a link 
becomes congested, neither ISR nor HPR selects 
another route. (However, if a link becomes 
extremely congested, an HPR node may interpret a 
significant delay as a failed link or node and 
reroute.) 

Some protocols like TCP/IP. theoretically allow each 
packet to proceed by the best available path; routing 
around congestion, although in practice this capabil
ity is not implemented by any TCP/IP vendor. 

On the other hand, ISR and HPRbOth focus 6n con
gestion and flow control, although in different ",ays. 
Rather than routing around congestion, the APPN 
approach for both modes is to· prevent congestion by 
controlling the traffic pace or rate. . 

SNA Perspective considers the debate about rerout
ing around congestion versus preventive congestion 
control to be a philosophical issue. Each side has its 
advantages, but the difference has minimal impact 
on users in real-world situations. 

ISR fixes a path for each session, using the topology 
database and required class of service to calculate 
the optimal route at session initiation. All traffic for 
that session runs over that path. If any link in the . 
path fails, the session is lost and must be restarted.·. 
The network software may be written to hide this 
~ ___________ --:-_---,-________ ---, .. Multiple APPN 

Networks Current Concerns about APPN 

Concern· 

High network node storage requirement 
High network node processing overhead 
No dynamic rerouting upon failure 
No adaptive rerouting upon congestion 
Limited multiple APPN networks (border node) 
No multilink APPN transmission groups 
limited dependent LU support 
Little network management by NetView 
Proprietary to IBM 

18 

Table 1 

IBM Plans to Address 

HPR 
HPR 
HPR 
No 
Future-VT AM, network node 
Expected, but no tormal IBM statement 
Current-via VTAM, tuture-any NN 
Current-SNMP, future-more NetView 
Much more open in '92, 

even more expected in '93 

. APPN networks can 
be separated into 
subnetworks through. 
the use of different 
NETIDs. An APPN 
node that allows 
traffic to pass 
between two or more 
subnetworks is called 
a border node. An 
interchange node,on 

March,l993 



SNA Perspective 

the other hand, is a node that allows traffic to pass 
between an SNA subarea and an APPN network. 
Both border node and interchange node capabilities 
can be added to a network node. HPR is completely 
independent of either border node or interchange 
node features. 

Currently, border node is only implemented on the 
AS/400. The AS/400 border node only allows traf
fic to pass between two adjacent subnetworks. 
Today, traffic cannot passJrom one APPN subnet
work through an intermediate APPN subnetwork to 
a third APPN subnetwork. 

IBM made a statement of direction in March 1992 
that a future release of VTAM will include border 
node. The VT AM border node will be enhanced to 
allow ,any number of APPN subnetworks to be tra
versed. SNA Perspective expects that border node, 
will appear in VTAM 4;2, which we believe will be 
announced sometime later in 199Jafter VTAM 4.1 
begins shipping in June, and 'could start shipping 
early in 1994. 

IBM has also indicated that borderpode may be 
offered as an option with a future release of the 
licensed APPN network node code. SNA . 
Perspective does not expect this to be availableuntil 

. after it is provided on VTAM, though it could be 
available sometime in 1994. 

Multilink Transmission Groups 
Transmission groups in subarea SNA allow users to . 
combine several parallel links between two nodes in 
a way that allows them to appear as one link and 
adjust traffic between them in cases of congestion or 
link failure. 

Currently, an APPN transmission "group" can only' 
consist of one link. Until VTAM 4.1. subarea SNA 
links over token ring and frame relay were similarly 
limited. to one link per group; only SDLC links 
could be combined. IBM has indicated, though not 
formally, that it intends to support multilink trans
mission groups for APPN in a future release of 
VTAM. SNA Perspective expects thatmultilink 
APPN transmission groups will also be included in 
a future release of the licensed network node code 
but probably not until 1995. 

March,1993 

OCSI 

Because of certain efficiencies of subarea SNA 
!ransmission groups combined with user frustration 
with the current limitations of APPN transmission 
groups, IBM made a statement of direction in 
September 1992 that a future release of VTAM will 
support APPN sessions running over subarea SNA 

. links using subarea virtual routes and explicit 
routes. 

HPR does not directly address the transmission 
group issue. However, HPR allows adaptive rerout
ing on link failure, which is an alternate way of pro
viding one of the benefits of multilink. transmission 
groups-switching to an alternate link. On the other 

, . 

hand, as discussed above, .initial HPR products are 
.not expected to provide adaptive rerouting for con
gestion control. Multilink APPN transmission 
groups will benefit users who would like this feature 
because it will allow them to balance the load acros~ 
multiple links and permit addition of incremental 
bandwidth. 

Dependent LU Support 
'. support for existing dependent LU devices and 

applications is essential for subarea SNA users 
migrating to APPN. The November 1992 issue of 
SNAPerspective discussed in depth several current 
and' forthcoming capabilities from .IBM and other 
vendors that address this issue including the 
Dependent LU Server!Requester and various encap
sulation techniques. Dependent LU support is not 
directly affected by HPR.. APPN nodes with either 
HPR or ISR will tie equally able to support depen- . 
dent LU traffic. This support can be either as access 
nodes (at the periphery of the APPN network) with 
one of these capabilities or as intern1ediate nodes 
without any additional capability. 

Little Network Management by NetView 
The APPN management services architecture, based 
on the OSI Common Management Information 
Protocol (CMIP), is quite impressive. But few of 
these architected APPN support features have been 
implemented in NetView. APPN network manage
ment issues were discussed in the February and 
April 1992 issues of SNA Perspective. Because of 
both this limitation and the popularity of the Simple 
Network Management Protocol (SNMP) in'the 
internetworking community, IBM is including an 

19 



©CSI 

SNMP agent in the first release of the licensed 
APPN network. node. The SNMP support is 
provided along with the SNA Management Services, 
(SNA/MS) capabilities present in all currentlBM 
APPN offerings, which allow some management by 
NetView. APPN network management is not 

'directly affected by the presence or absence ofHPR. 
However, NetView will need some additional code 
to manage HPR. 

Proprietary to IBM , 
,IBM made several meaningful moves to open APPN 
during 1992, including licensing the network node 
source code and agreeing, to publish the network 
node specifications, both of which should be avail
able in March 1993. IBM is also moving to involve 
other vendors in APPN implementer workshops 
which will also serve as forums for feedback on 
future APPN developments. 

However, even with this significant openness, 
APPN'isstill in several ways a proprietary proto- , 
col-IBM owns it, defends its patents, controls its 
development, and licenses its use. This is not to say 
that proprietary is by definition "bad'~ or that a pro
prietary product cannot succeed in the market. 
Novell'$ very succesSful NetWare is proprietary, as 
is Cisco's very success·ful IGRP. A significant 
difference between these two and APPN is that 
NetWare and IGRP were early entnintsin their 
respective markets when there was no formal and 
formidable competition. 

APPN, on the other hand, is breaking onto the inter
networking scene (six years after its first implemen
tation) in the face of TCP/IP, which has a major 
market share and is significantly standardized, very 
inexpensive, and widely implemented. A large per
centage of the networking workforce, and students 
too, ate experienced in using TCP/IP, while subarea 
SNA experience is less common and APPN 
expertise is almost nonexistent. 

SNA Perspective 

These are signi,ficant obstacles for APPN to over
come even with its many t~chnical advantages. 'All 
these topics will be addressed ina future issue of 
SNA Perspective which will compare APPN and 
'TCP/lPas alternative migration paths for current ' 
subarea SNA users. 

Conclusions 

APPN continues to evolve and HPR is one piece of 
that evolution. HPR appears to provide several 
advantages over ISR, particularly in intermediate 
node performance and storage. It also seems more 
interoperable with other architectures such as , 
TCP/IP. ' , 

The advantages of HPR are probably a least a year 
to eighteen months away for product implementa
tions, although beta tests might start be fore the end ' 
of 1993.' All current APPN implementations, 
including LEN nodes, are based on the ISR technOl
ogy. ISR is part'ofthe network node licensed code' 
and is documented in the network node specifica-

. tion, both of which are scheduled to be available in 
March. SNAPerspective expects thatthe next 
release o'f the APPN licensed network node code 
will include HPR arid will probably ship by the first 
quarter df 1994. 

Until HPR is available, APPN/ISR users with LANs 
and internetwbrks can take advantage of the capabil
ities of connection networks to improve perfor
mance and aliow a degree of alternate routing. 

HPR is not the final word in APPN routing. IBM 
has also been discussing gigabit APPN, a forn1 of 
APPN that is being optimized for the emerging very 
high-speed cell networks. It is expected to be com
patible with ATM. Gigabit APPN is expected to be 
fom1ally announced in 1994 and available in 1995 .• 

Copyright © 1993 CSI • Communication Solutions, Incorporated, aU rights reserved, Reproduction .is ~rohibi~ed, • S~bscription rates: 
US .• one ear $350, two years $520, International- one year $385, two years $590 • SNA Perspective IS pubi~shed n?onthly ~Y 
cSl. 2071 ~amiltonAvenue, San Jose, CA 95125· Telephone (408) 371-5790· ,Fax (408) 371-~779. ~anaglng, Edlt~r: loUise Herndon Wells 

. Ed' . V' t B Bas·,1 Trepp' a· MarlcetinglDeveiopment: Ahsson Walsh· Cu-cuiallon Coordlflator. Cheryl Roberts • ASSOCIate ItOrs: meen usam, , " L dSIGN 
C 'bu' La D B d Lauren L Bader Marcia Peters IBM Corporation· Typesetting and Illustration: Aaron yon at • entn tors: nee . a er. • , d 

• The infonnation and opinions within are based on the best infomtation available. but completeness and accuracy cannot be guamntee , 

20 March. 1993 


