Systems Network Architecture SC31-6808-0

LU 6.2 Reference:
Peer Protocols

C\/
/
—

O

o llM

Systems Network Architecture

LU 6.2 Reference:
Peer Protocols

SC31-6808-0

First Edition (September 1988)

Changes are made periodically to this publication; these changes will be incorporated into new editions
of this publication. It is possible that this material may contain references to, or information about,
IBM products (machines and programs) or services that are not announced in your country. Such references
or information must not be construed to mean that IBM intends to announce such IBM products or services
in your country. :

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not of itself constitute or imply a grant of (i) any license under
any patents, patent applications, trademarks, copyrights, or other similar rights of IBM or of any third
partys or (ii) any right to refer to IBM in any advertising or other promotional or marketing activities.
IBM assumes no responsibility for any infringement of patents or other rights that may result from use of
the subject matter described in this document or for the manufacture, use, lease, or sale of machines or
programs described herein, outside of any responsibilities assumed via the agreement for the purchase of
IBM machines and the agreement for IBM licensed programs.

Licenses under IBM's utility patents are available on reasonable and nondiscriminatory terms and condi-
tions. IBM does not grant licenses under its appearance design patents. Inquiries relative to licensing
should be directed in writing to the IBM Director of Commercial Relations, International Business
Machines Corporation, Armonk, New York, 10504.

The following sentence does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: International Business Machines provides this publication "As Is" without
warranty of any kind, either express or implied, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. HWithin the United States, some states do not allow
disclaimer of express or implied warranties in certain transactions; therefore, this statement may not
apply to you.

Publications are not stocked at the address given below; requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Networking Architecture, Department E96, P.0. Box 12195,
Research Triangle Park, North Carolina 27709, U.S.A. 1IBM may use or distribute any of the information
you supply in any way it believes appropriate without incurring any obligation whatever. You may; of
course, continue to use the information you supply.

(c) Copyright International Business Machines Corporation 1988. All rights reserved.

)

()

(PREFACE
[—
|

This is one of two books that describe, at the implementation level, the Systems Network Archi-
tecture (SNA) logical unit (LU) type 6.2 protocols. This book concerns the SSCP-independent LU
6.2 protocols (or er protocols, not requiring mediation by a system services control point
during LU-LU session 1initiation); the second book, SNA Format and Protocol Reference Manual:
Architecture Logic for LU Type 6.2, SC30-3269, concerns the SSCP-dependent LU 6.2 protocols
(those protocols involving mediation by a system services control point during LU-LU session
initiation). LU-LU protocols not related to session-initiation and -termination are common to
both SSCP-dependent and -independent LU 6.2 protocols; these common protocols will be updated in
the future only in this book, which therefore has precedence over the other book for information
on these protocols.

This book does not describe any specific machines or programs that may implement SNA, nor does
it describe any implementation-specific subsets or deviations from the architectural description
that may appear within any IBM SNA product. These matters, as well as information on SNA prod-
uct installation and system definition, are described in the appropriate publications for the
particular IBM SNA machines or programs to be used.

The following books should be read in conjunction with this one.

- COREQUISITE PUBLICATIONS

¢ SNA Format and Protocol Reference Manual: Architecture Logic for LU Type 6.2,
SC30-3269—reference information on SSCP-dependent protocols for LU 6.2.

j U SNA Transaction Programmer's Reference Manual for LU Type 6.2, GC30-3084—reference informa-
4 tion on LU type 6.2 verbs for programmers writing transaction programs to run on SNA.

U SNA Formats, GA27-3136—information on LU 6.2 and other SNA formats.

PREREQUISITE PUBLICATIONS

® SNA Concepts and Products, GC30-3072—basic information on SNA for those readers wanting
<:::\ either an overview or a foundation for further study.
)
/

® SNA Technical Overview, GC30-3073—additional details on SNA, especially on functions and
control sequences; bridges the gap between the most elementary overview of SNA and the
detailed descriptions of the formats and protocols.

RELATED PUBLICATIONS

¢ SAA Common __ggrammlng Interface: Communications Reference, SC26-4399—description of Sys-
Tems Applxcatxon Architecture's! Communications Interface, which provides a high-level pro-
gramming interface to LU 6.2.

® SNA Format and Protocol Reference Manual: Architectural Logic, SC30-3112—comprehensive
Information on the formats and protocols of SNA type 1, 2.0, 4, and 5 nodes.

® SNA—Sessions Between Logical Units, GC20-1868—reference information on SNA formats and
protocols for LU types other than type 6.2,

1 systems Application Architecture is a trademark of International Business Machines Corpo-
ration.

-
°n
[0

Preface

® SNA Type 2.1 Node Reference (abbreviated T2.1 Node Reference), SC30-3422—reference informa- .
Tion on type 2.1 node protocols. (/ :
N

® SNA Format and Protocol Reference Manual: Distribution Services, SC30-3098--reference
Information on formals and protocols for SNA Distribution Services.

¢ Document Interchaggg Architecture--Concepts and Structures, SC23-0759--reference information
on Document Interchange Architecture.

)

SNA LU 6.2 Reference: Peer Protocols

" CONTENTS

C

CHAPTER 1. INTRODUCTION & ¢ ¢ v ¢« ¢ o o o o o o &

Use and Organization of This Book e v e e e e e e s se e

General Concepts e e e e e e e e e e e e e e e e e e
Definition of an SNA Network e e e e e e e e e e e e e e
Nodes ... e e e e e e e e e e e e e e e e e e e

NAUs and Node Types e e e e e e e e e e e e e e e e e e
The Path Control Network e e e e et e e e e e e e e e e e
Other Definitions and Notational Conventions e e e e e e e

CHAPTER 2. OVERVIEW OF THE LU e e s e e s e e e e e e e e

Introduction 000 hd e e e e
Concepts and Terms e e e e e e e e e e e e e e e e e e e
b Distributed Transaction Processing
! Transaction Programs C e e e e e e e e e e e e e e e e e

Control Operator e b e e e s e s e e e e e e e e s e e e
Resources O & s e s e a e d s e s e e e e e s e
Protocol Boundaries e e e e e e e e e e e e e e e e e
Names .
Roles e
Transaction Program References e e e e e e e e e e e e
LU References e) e e e e e e e e e e e e e e e e e e

Mode Names e

Internal Identifiers e e e e e e e e e e e e e e e e e

Conversation Characteristics e e e s e e e e e e e e e e

Send/Receive Protocol e e e e e e e e e e e e e e e e

N Sender/Receiver Concurrency e e e e e e e e e e e e
(:::) Mapping e
Session Allocation C e e e e e e e e e e e e e e e e e e

Session Multiplicity

Session Pool C e e e e s e s e e e e e e e e e e e e

Session Selection C e e e e e e e e e e e e e e e e e
Session Contention Polarity C e e e e e e e e e e e e
Session Limits e e e . C e e e e e e e e e e e e e e
Starting and Ending Sessxons e e e e e e e e e e e e e e
Phases . . e
Session Usage Characterlst1cs e e e e e e e e e e e e
Session Activation Polarity e e e e e e e e e e e e e

Session-Level Pacing e e e e e e e e e e e e e e e e e

. Profiles e
<;“/} Security e
Error Handling e

Kinds of Errors C e e e e e e e e e e e e e e e e e e

Application Errors e e e et e e e e e e e e e e e
Local Resource Failure e e e e e e e e e e e e e

Recoverable System Errors e e e e e e e e e e e
Program Failures C e e e e e e e e e e e e e e e e
Session Failure e e e e e e e e e e e e e e e e
Conversation Failures e e e e e e e e e e e e e

LU Failure e e e e e e e e e e e e e e e e e e e
Program Error Recovery Support Functions e e e e e e
Confirmation . e e . C e e e e e e e e e e e e
Program Error Ind1cat1on e e e e e e e e e e e e e

Sync Point e e e e e . c e e e e e e e e e e
Abnormal Conversation Deallocatlon c e e e e .

LU Error Recovery Functions--Abnormal Session Deacilvatlon
Base and Optional Function Sets C e e e e e e e e e e e
Application Program Interface Implementations e e e e
Principal Base Functions ¢« ¢« ¢ ¢« ¢ v o «
Basic Conversations e e e e e e e e e e e e e e e

- Mapped Conversations e e e e e e e e e e e e e e e
Principal Optional Functions
Mapping e e e s e s e s e s e e e e s e e e e e e

Sync Point e e e e e e e e e e e e e e e e e e
Program Initialization Parameters (PIP) e e e e e
Security c e e e s e e e e e s e e e e e e e e

| R A A Y N R TR T U M |

NN N N NN N I I NN NN D NI NN
COVIVRPPIPPRRNNNNNNGCCOCCPUVNAPNWNKEMEM

v

SNA LU 6.2 Reference:

Performance Options . . .

Message Units and their Transformahons C e e e e e
Mapped-Conversation Message Units s e s e e e e e
Basic-Conversation Message Units e o e 6 s o s s e s

GDS Variables e e e e e e e e e e e e e e e e e
Logical Record . . . ¢ ¢ ¢ v ¢ ¢ ¢ 0 s o s 0 0.
Buffer Record e e e e e e . e e e e e e e
Conversation Message-Unit Sequences e o s 0 s s s e
Conversation Message . . .« . « ¢« ¢« ¢ o ¢ ¢ o o o &
Conversation Exchange C e e e e e e e e e e e e
Session Message Units C e e e e e e e e e e e e e
Function Management Headers e s e s s s 4 s s s s
Basic Information Unit e e e . ..
Session Message-Unit Sequences . . . c o s e s e e
Mapped-Conversation Message-Unit Transformation ..
Basic-Conversation Message-Unit Transformation . e .
Data Exchange with the CP e e e e e e e e ..
LU-CP Records . . . e .

External Flow Sequences for the Base Funch.on Set ..

Notation
Verbs and Parameters c e e e e e e e e ...
Data Transfer Descripiion c e e e e e e e

Error-Free Flows . e e e e .

Allowable Combinations of Sequences .o o . e e e

Exception Flow e C e e e e e e

Error Flows C e e e e e e e e c e e e e e e e

LU Structure C ot e e e e e e e e e e e e e e e e .
SNA layers e ¢ s s e o s e e s s s e s .

Component 0verv1ew .. e e e e e e e e e .

Functional Summary by Funchon e P .
Example Transaction Program C e e e e e . .
Message-Unit Transfer C e e e e e e e e . .

Sending Data
Receiving Data . . o .
Transaction Program Im.hahon and Ternunahon . .
Invoking a Remote Transaction Program . .
Initiating the Initial Local Transaction Program .
Terminating a Transaction Program e ..

Conversation Allocation and Deallocation .
Selecting a Session c e e e e e e e .
Bidding . . C e e e e e e e e e . .
Newly Active Sesslon “ o s s s s e s s e . .
Deallocation

Session Activation and Deachvahon . e . .
Starting a Session .. e e e e e .

Initializing Session Limits .. c e e e e .
Session Initiation e e e
Session Activation C e e e e e
Session Outage e e e e e e . . e e e e
Ending a Session . e e e
Operator Request e e e e ..
Session Shutdown: e e e e e e e
Session Deactivation e e e e
Functional Summary by Component e e e e e e e e e
Presentation Services e e e e e e e e e e e e
Half-Session . e C e e e e e e e e e e e e e
Resources Manager . . . e . e e e o o o o o
Session Manager [.« . e
Functions of Components of the Node External to the LU
Buffer Manager: . e e e e
Type 2.1 Node Conirol Pcun'l: lTZ 1 CP) e e e
Node Operator Facility (NOF): . s ..
Initiator Process: C e e e e e e e e e s

Functions of Service Transaction Programs e e e e e
Control-Operator Functions
SNA Distribution Services C e e e e e e e e e e
Document Interchange Services C e e e e e e e e

Optional Functions ¢« . ¢ ¢ ¢ v v o o & &
Mapping Function ¢ . . ¢ ¢ v 0 0 . .
Sync Point Function C e e e e e e e e e e e e e

Sync Point Control ¢« ¢ v 0 4 .
Logging € ¢ s & s 6 s e 0 s s 8 e e s e 0 s e
Resources Manager e e o o o e e e e o e e o e
Protection Managers e o o o s e s s s e s s e

Peer Protocols

® o o e o e @

e e o o e o

e o o o o

e e o o o o o

e o o s e o e .

o o o o e o

« e e o o

e o o o o e o o o e

e o o o o

e e s e

L)

e o o o s

e s e s e e e e

NI}’I},I’}"NNN

|
P bt bt et e e e et e e el e

PANVOVVIVONNNNNUPLPPPLPPLPPLPPWNNWNWNWN

IEOBOBOBOEOEOE)
PN bt e

NNNNNNNNNI})NNNNNNNN

2-26

2-38

®

)

)

O

Sync Point Protocol e e e e e
Commitment and Back-Out c e e .
Resynchronization e e e e e e

Data Structures .. c e e e e e e e
LU-Accessed Network Resources . e e .
Processes and Dynamic Resources . .

Resource Relationships in a sttrlbuted Transactlon

LU Startup and Shutdown e e e e e e e
LU Process Creation and Termination .

Control-Operator Transaction Program Initiation

Control-Operator Actions c e e e e e

Running State C e e e e e e e e e e

Example e . . e e e e e e e e .
Protocol Boundary Summary

.

.

Transaction Program Verbs and Interprocess Signals

PS-TP Protocol Boundary: Transaction Program Verbs

Intercomponent Structures e e e e
SM-CP Protocol Boundary e e e e
SM-HS Protocol Boundary C e e e e
SM-NOF Protocol Boundary e e e e
SM-BM Protocol Boundary e e e e e
HS-PC Protocol Boundary e e e e
HS-BM Protocol Boundary c e e e e
PS-HS Protocol Boundary C e e e e
PS-RM Protocol Boundary e e e e
PS-BM Protocol Boundary e e e e e
RM-HS Protocol Boundary e e e e

RM-SM Protocol Boundary .
RM-Initiator Process Protocol Boundary
RM-BM Protocol Boundary e e e e e

Component Interactions and Sequence Flows
Notation e e e e e e e e e e e e e

CHAPTER 3. LU RESOURCES MANAGER [
General Description .. c e e e e e
Resources Manager Func{1ons e e e s e
LU Component Interactions c e e e e e
Resources Manager Data Base [

Control Blocks Maintained by the Resources

Control Blocks Accessed by the Resources Manager
Creation of Presentation Services and Transaction Programs

Allocating a New Conversation e e e
Obtaining a Session e e e e e e e e
Immediate Session Processing
Attaching a Transaction Program e e e

Races for the Use of a Session e e e e e
Terminating a Conversation c e e e e e
Activating a New Session C e e e e e e
Changing the Maximum Session Limit . e .
Session Outage e e e e e . . .

Creation and Termination of Presentat1on Services

High-Level Procedures e e e e e e e e
RM: PROCESS .
PROCESS_ INITIATOR TO RM RECORD PROCEDURE
PROCESS_HS_TO_RM_RECORD: PROCEDURE ..
PROCESS_PS_TO_RM_RECORD: PROCEDURE . .
PROCESS_SM_TO_RM_RECORD: PROCEDURE .« .

Low-Level Procedures . e
ACTIVATE_NEEDED_SESSIONS: PROCEDURE .
ACTIVATE_SESSION_RSP_PROC: PROCEDURE .
ALLOCATE_RCB_PROC: PROCEDURE e e e e e
ATTACH_CHECK: PROCEDURE « e e e e e s
ATTACH_LENGTH_CHECK: PROCEDURE .« e e
ATTACH_PROC: PROCEDURE e e e e e e e .
ATTACH_SECURITY_CHECK: PROCEDURE .« . .
BID_PROC: PROCEDURE e e e e e e e e
BID_RSP_PROC: PROCEDURE e e e e e e
BIDDER_PROC: PROCEDURE e e e e e e e
BIS_RACE_LOSER: PROCEDURE e e e e e e
CHANGE_SESSIONS_PROC: PROCEDURE . . .
CHECK_FOR_BIS_REPLY: PROCEDURE “ e e e
COMPLETE_LUW_ID: PROCEDURE e e e e e s
CONNECT_RCB_AND_SCB: PROCEDURE

.

.

Manager

.

2-38
2-38
2-38
2-40
2-40
2-40
2-43
2-43
2-63
2-G3
2-43
2-94
2-65
2-6
2-46
2-46
2-46
2-G6
2-G6
2-G6
2-G6
2-G7
2-G7
2-47
2-G7
2-a7
2-G7
2-47
2-a7
2-47

2-G8

3-42

CREATE_RCB: PROCEDURE e s s e 6 o s o
CREATE_SCB: PROCEDURE . e e o s o o &
CREATE_TCB_AND_PS: PROCEDURE e s e e e
DEACTIVATE_FREE_SESSIONS: PROCEDURE . .
DEACTIVATE_PENDING_SESSIONS: PROCEDURE .
DEQUEUE_WAITING_REQUEST: PROCEDURE P
FIRST_SPEAKER_PROC: PROCEDURE e . . .
FREE_SESSION_PROC: PROCEDURE
GET_SESSION_PROC: PROCEDURE e e e e
PS_ABEND_PROC: PROCEDURE . v s = e
PS_CREATION_PROC: PROCEDURE . .
PS_TERMINATION_PROC: PROCEDURE e .
PURGE_QUEUED_REQUESTS: PROCEDURE .« .
QUEUE_ATTACH_PROC: PROCEDURE
RM_ACTIVATE_SESSION_PROC: PROCEDURE
RM_DEACTIVATE_SESSION_PROC: PROCEDURE .
RTR_RQ_PROC: PROCEDURE e s e
RTR_RSP_PROC: PROCEDURE e e e
SECURITY_PROC: PROCEDURE e o s s
SEND_ACTIVATE_SESSION: PROCEDURE .
SEND_ATTACH_TO_PS: PROCEDURE . .
SEND_BIS: PROCEDURE e e e e e e e
SEND_BIS_REPLY: PROCEDURE e e e e
SEND BIS_RQ: PROCEDURE « e .« .
SEND_DEACTIVATE_SESSION: PROCEDURE
SEND_RTR_PROC: PROCEDURE .
SESSION_, ACTIVATED ALLOCATION: PROCEDURE
SESSION_ACTIVATED_PROC: PROCEDURE « .
SESSION_ACTIVATION_POLARITY: PROCEDURE .
SESSION_DEACTIVATED_PROC: PROCEDURE -
SESSION_DEACTIVATION_POLARITY: PROCEDURE
SET_RCB_AND_SCB_FIELDS: PROCEDURE ..
SHOULD_SEND_BIS: PROCEDURE e e e e e e s
START_TP_PROC: PROCEDURE . . « e e e
START_ TP SECURITY_VALID: PROCEDURE P
SUCCESSFUL_SESSION_ACTIVATION: PROCEDURE
TEST_FOR_FREE_FSP_SESSION: PROCEDURE . .
UNSUCCESSFUL_SESSION_ACTIVATION: PROCEDURE
Finite-State Machines e e e e e e e e e
#FSM_SCB_STATUS . . .
FSM_SCB_STATUS | BIDDER FSM DEFINITION
FSM_SCB_STATUS_FSP: 'FSM_DEFINITION .
#FSM_BIS « . s e e e e
FSM_BIS_BIDDER: FSM DEFINITION e e e e e
FSM_BIS_FSP: FSM_DEFINITION e e e e e

e o o e
e s o & o o
.

o« s e e

#FSM_RCB_STATUS . .
FSM_RCB_STATUS_| BIDDER FSM DEFINITION
FSM_RCB_STATUS_FSP: FSM_DEFINITION . .
Local Data Structures e e e e e e e e e
LU_NAME e e e e e e
MODE_NAME e e e e e e
HS_ID e e e
RCB_ID e e e e e e
TCB_ID
SENSE_CODE .

.
.
.

e o e e e e

PREVIOUS_TIME .
RESPONSE_CODE .

.
e e e e
.
o .
.
o o e o e e
e o o e

CHAPTER 4. LU SESSION MANAGER e s e e e

General Description e e e e e e e e e e e
Overview of Session Initiation e e e e s
Overview of Session Termination FE
Session Outage and Session Reinitiation
PLU and SLU e e .

SM Protocol Boundaries
PB with RM e e e e
ACTIVATE_SESSION o«
DEACTIVATE SESSION .
ABEND_NOTIFICATION .
ACTIVATE_SESSION_RSP
SESSION_ACTIVATED .
SESSION_DEACTIVATED P
PBwith HS

e o o & o
.

o o e o o

.
.
.
.
o o
.
.
.

e o o o o o e @

e o o o o o & s &
.

viii SNA LU 6.2 Reference: Peer Protocols

e o e o o o .

e e e s & s o e .

e & & e

© s s s e s s s e s s e s s s e s v s e »

e s s s e e s o e e o

T S Y

e s e e e e

o e ® e o o o

® o s e s o e s o

® e o e e o e e & e o s e e + e+ e e o o & e o

s e o o o 4

* o s & o e o o

« e s s e .

e e o o

e s o e o & o

o e o o

o« e o o

« e o s

e s o s e e e @

e o & o o e o

s e o o @

e o o o s

* e e e e o

3-43

3-44 N,
3-45 ‘
3-46 =

3-47
3-48
32-49
3-50
3-52
3-54
3-55
3-57
3-59
3-60
3-61
3-62
3-63
3-64
3-65
3-65
3-66
3-66
3-67
3-67
3-68
3-69
3-70
3-70
3-71
3-72
3-74
3-75
3-76
3-77
3-79
3-80 /7
3-82 | ‘
3-83 -
3-86

3-84

3-85

3-86

3-87

3-87

3-88

3-89

3-89

3-90

®

)

(

-&‘-ﬁ‘-“-“-“«bff-‘-‘b-&‘-ﬁ#‘-‘-‘ »
N~NoooumunununuPWWNNKH

@

INIT_HS e e e e e e e e e e e e e
INIT_HS_RSP e e e e e e e e e e e e
ABORT_HS . . . C e e e e e e e e e
ABEND NOTIFICATION e e e e e e e e e
PB with NOF e e e e e e e e e e e
RM_CREATED ¢ ¢« ¢ ¢« ¢« v o o
PBwithss
ASSIGN_PCID e e e 6 e e o o o e e o
ASSIGN_PCID_RSP e e s e s e e o o o
INIT_SIGNAL . e e e e e e e e
INIT_SIGNAL_NEG_| RSP e e e e e e e e
CINIT_SIGNAL e o s e e o o o o e o o o
SESSST_SIGNAL e e e e e o e s e o o
SESSEND_SIGNAL e o e o e o o o o o o o
PB with ASM e o e s e e e e 4 o e o o
Message Unit (MU) e e e e e e e e
PC_HS_DISCONNECT . . « v v v o o o o .«
SESSION_ROUTE_INOP e e e e e e e e e
ASSIGN_LFSID e o e e e e o 6 e e o o s
ASSIGN_LFSID_RSP v « v o « . .
FREE_LFSID e e e e e e e e e e e e e

LFSID_IN USE . + + v v v« v v v o v .

LFSID_IN USE_RSP . + v v v v o v v o«
TH and RH Parameters C e e e e e e e e
RU Parameters .. C e e e e e e e e

Network-Qualified Name e e e e e e
Local Name e e e e e e e e e e e e e

Mode Name e e e e e e e e e e
LU-LU Verification Data . e e e
Specification of RU Parameters P
Implementation-Dependent Parameiers
Installation-Specified Parameters .
Session-Control RU's C e e e e e e e e
BIND T
RSP(BIND) e e e e e e e e e e e e e
UNBIND C e e e e e e e e e e e e e e
RSP(UNBIND) P e e e e e e e e
SM and Buffer Managemen{ e e e e e e
SM Flows e e e e e e e e e e e e e e
Flows e e e e C e e e e e e e e
Introduction to Formal Descrlptlon e
SM: PROCESS © . e e e .

PROCESS_RECORD_ FROM RM. PROCEDURE . e
PROCESS_RECORD_FROM_HS: PROCEDURE ..
PROCESS_RECORD_FROM_SS: PROCEDURE . e
PROCESS_RECORD_FROM_ASM: PROCEDURE . .
BIND_RQ_STATE_ERROR: PROCEDURE o e e
BIND_RSP_STATE_ERROR: PROCEDURE PN
BIND_SESSION_LIMIT_EXCEEDED: PROCEDURE

BUILD_AND_SEND_ACT_SESS_RSP_NEG: PROCEDURE
BUILD_AND_SEND_ACT_SESS_RSP_POS: PROCEDURE

BUILD_AND_SEND_BIND_RQ: PROCEDURE ..
BUILD_AND_SEND_BIND_RSP_NEG: PROCEDURE

BUILD_AND_SEND_FREE_LFSID: PROCEDURE .
BUILD_AND_SEND_INIT_HS: PROCEDURE ..
BUILD_AND_SEND_INIT_SIG: PROCEDURE . .

.

BUILD_AND_SEND_PC_HS_DISCONNECT: PROCEDURE

BUILD_AND_SEND_SESS_ACTIVATED: PROCEDURE

BUILD_AND_SEND_SESS_DEACTIVATED: PROCEDURE

BUILD_AND_SEND_SESSEND_SIG: PROCEDURE
BUILD_AND_SEND_SESSST_SIG: PROCEDURE .
BUILD_AND_SEND_UNBIND_RQ: PROCEDURE .
BUILD_AND_SEND_UNBIND_RSP: PROCEDURE .
BUILD_BIND_RSP_POS: PROCEDURE e
CLEANUP_LU_LU_SESSION: PROCEDURE . . .
CORRELATE_BIND_RSP: PROCEDURE C e
CORRELATE_UNBIND_RQ: PROCEDURE
GET_FQPCID: PROCEDURE e .
INITIALIZE_LULU_CB_ACT_SESS: PROCEDURE
INITIALIZE_LULU_CB_BIND: PROCEDURE . .
LU_MODE_SESSION_LIMIT_EXCEEDED: PROCEDURE
PREPARE_TO_SEND_BIND: PROCEDURE R
PROCESS_ABEND_NOTIFICATION: PROCEDURE
PROCESS_ABORT_HS: PROCEDURE e e

.

4-10
4-10
4-10
4-10
G-11
G-11
G-11
4-11
G-12
4-12
4-12
%-12
4-13
4-14
4-18
4-18
4-18
%-18
4-18
%-18
%-18
%-18
4-19
4-19
4-24
4-27
4-28
4-28
4-30
4-31
4-47
4-48
4-49
4-50
4-50
4-51
4-52
4-54%
4-57
4-58
%-58
4-59
%-60
4-60
4-61
4-61
4-62
4-63
4-6%
4-6%
%-65
4-65
4-66
4-67
4-67
%-68
%-69
4-70
%-70
4-71
4-72
4-73
4-74
G4-7%

X

PROCESS_ACTIVATE_SESSION: PROCEDURE

PROCESS_BIND_RQ: PROCEDURE
PROCESS_BIND_RSP: PROCEDURE . . .
PROCESS_CINIT_SIGNAL: PROCEDURE .
PROCESS_DEACTIVATE_SESSION: PROCEDURE
PROCESS_INIT_HS_RSP: PROCEDURE . .

PROCESS_INIT_SIGNAL_NEG_RSP: PROCEDURE

PROCESS_LFSID_IN_USE: PROCEDURE .
PROCESS_MU: PROCEDURE . .
PROCESS_SESSION_ROUTE_INOP: PROCEDURE
PROCESS_UNBIND_RQ: PROCEDURE .
RESERVE_CONSTANT_BUFFERS: PROCEDURE
RESERVE_VARIABLE_BUFFERS: PROCEDURE
UNRESERVE_BUFFERS: PROCEDURE [P
FSM_STATUS: FSM_DEFINITION “ e e e
Local Data Structures e e e e e e
LOCAL e s e e e e e e e e e e e
LULU_CB

e e e e e e e e s o e e e

CHAPTER 5.0. OVERVIEW OF PRESENTATION

General Description e e e e e e e
PS Component Functions e e e e e
TP: . . e e e e s s e e o
PS. INITIALIZE. e e e e e e e
PS.VERB_ROUTER: e s e s e s e
PS.MC, PS.SPS, ..., PS.COPR: .
PS.CONV: e e e e e e e e e e

Data Base Structure ..

Initialization and Termlnailon (PS INITIALIZE)

Processing an FMH-5(Attach) Request
Processing a START_TP request .
Limited-Instance TP processing ..
Verb Processing (PS.VERB_ROUTER) .
WAIT Verb Processing e e e e e
GET_TYPE Verb Processing
GET_TP_PROPERTIES Verb Processing
High-level Procedures c e e e e e
PS: PROCESS .. . = s e s s
PROCESS_FMH5: PROCEDURE SR
PROCESS_START_TP: PROCEDURE .« . e
RECEIVE_PIP_FIELD_FROM_HS: PROCEDURE
PS_ATTACH_CHECK: PROCEDURE
PS_PIP_CHECKS: PROCEDURE o e e s e
ATTACH_ERROR_PROC: PROCEDURE [
PS_VERB_ROUTER: PROCEDURE o o
DEALLOCATION_CLEANUP_PROC: PROCEDURE
GET_TP_PROPERTIES_PROC: PROCEDURE
WAIT_PROC: PROCEDURE « e e e s e
Low-level Procedures C e e e e e e
PS_PROTOCOL_ERROR: PROCEDURE « e
INITIALIZE_ATTACHED_RCB: PROCEDURE
TEST_FOR_RESOURCE_POSTED: PROCEDURE
Undefined Protocol Machines e e
UPM_EXECUTE: PROCEDURE e e s e e
UPM_ATTACH_LOG: PROCEDURE . .« .
UPM_RETURN_PROCESSING: PROCEDURE .
Local Data Structures e e e e e e
PS_PROCESS_DATA « « . . .
TCB_LIST PTR .« + v v v v v v o o .
RCB_LIST PTR « v v v v v v v v o .
LUCB_LIST_PTR e e e e e e e
SENSE_DATA « & v v o v v v v v v

e o e e

CHAPTER 5.1.

General Description e e e e e e e
PS.CONV Functions e e e e e e e
Component Interactions e e e e e
PS.CONV Data Base Structure ..

LU Control Block (LUCB) and Assoclated

Transaction Control Block (TCB)
PS_PROCESS_DATA . . « . e
Resource Control Block (RCB) . .

SNA LU 6.2 Reference: Peer Protocols

.

.

PRESENTATION SERVICES--CONVERSATION VERBS

.
i

.
1

nunuununuunununnounounnnn n
OQOOQQOOO?OOOQOOQO

nunuuuunonununuununununnunuuununn
OOOOOGQOOOO?OOOOQQOOOOOO'
NN NNNRNDNRNN B R e e et b e fd

1
NPAPLPPLPPLPPLPUNNNHOOOOWROA AU WMRNNHROROONNNNOUD P PRNFFH

.
[

n
[
]
-

nuunuuunnm
el T T ol elion
PWWN

)

O

Verb Checking e e e e e e e e e e e

Verb Parameters e e e e e e e e e e e e e s e e e e e e e e e e e e e e e e e e -
PS-RM Records e .. e e e e e e e e 1=
PS-HS Records . et e e e e e e e e e e e e C e e e e e e e e e e .1~
Tracking Logical Record Length c e e e e e e e e e e e e e e e e1-
Maintaining and Checking the Basic Conversafxon State c e e e e e e . . .1~
Verb Processing e e s e s e s s e e s s e e s e e e s e e e e ae e e . . -

e o o o
« e o o
o s s

ALLOCATE « « v v v v e o e e e e e e e s
POST_ON_RECEIPT . & v v o v v v v v o &
REQUEST_TO_SEND e e e e e e e e e
SEND_ERROR . . « . « « « . .

D N Y
.

U‘lU‘l\ﬂUlU‘llﬂ?\?‘lU‘lUlU\U‘lU‘l
el ol e

B b b b b b b b b b b b b b b b b b e b

c e e e e . . « e e
Protocol Errors e e e e e e e e e e e e e P . . -
Conversation Failures e e e e e e e e e . . e e e e e e s . -

High-Level Procedures c e e e e e e e e e e . -

PS_CONV: PROCEDURE e e e e e e e e e e e
ALLOCATE_PROC: PROCEDURE c e e e e e e e
CONFIRM_PROC: PROCEDURE P
CONFIRMED_PROC: PROCEDURE e e e s e e e e
DEALLOCATE_PROC: PROCEDURE e e e e e
FLUSH_PROC: PROCEDURE .. e e e e e
GET_ATTRIBUTES_PROC: PROCEDURE PN
POST_ON_RECEIPT_PROC: PROCEDURE ..
PREPARE_TO_RECEIVE_PROC: PROCEDURE .
RECEIVE_AND_WAIT_PROC: PROCEDURE
RECEIVE_IMMEDIATE_PROC: PROCEDURE . .
REQUEST_TO_SEND_PRQOC: PROCEDURE e e e e e
SEND_DATA_PROC: PROCEDURE e e e e e . .
SEND_ERROR_PROC: PROCEDURE e e e e e e
TEST_PROC: PROCEDURE e e e e e e e e

e e e s e o o o
1

s e s s s e s s s s e
.

e e e o s e s e s s e =

e o 8 e o s o e 8 s e e s o e @

. e e e

« s s e
.

e e s o s s
.

.
.
@ o o e o s e o e o e s o & o e o e o e o
.
.
.
.
.
.
.
.

e o e e o
1

.
.
.
.

« e o o
.
.

Low-Level Procedures .. e e e e e e e P . 1=
COMPLETE_CONFIRM_PROC: PROCEDURE . N . .
COMPLETE_DEALLOCATE_ABEND_PROC : PROCEDURE . . -

e e o o o o o o o
.
.

D
.

CONVERSATION_FAILURE_PROC PROCEDURE
CREATE_AND_INIT_LIMITED_MU: PROCEDURE
DEALLOCATE_ABEND_PROC: PROCEDURE
DEALLOCATE_CONFIRM_PROC: PROCEDURE
DEALLOCATE_FLUSH_PROC: PROCEDURE .
DEQUEUE_FMH7_PROC: PROCEDURE P
END_CONVERSATION_PROC: PROCEDURE . .
GET_DEALLOCATE_FROM_HS: PROCEDURE . .
GET_END_CHAIN_FROM_HS: PROCEDURE e .
OBTAIN_SESSION_PROC: PROCEDURE .
PERFORM_RECEIVE_EC_PROCESSING: PROCEDURE ..
PERFORM_RECEIVE_PROCESSING PROCEDURE o e
PREPARE_TO_RECEIVE_CONFIRM_PROC: PROCEDURE .
PREPARE_TO_RECEIVE_FLUSH_PROC: PROCEDURE ..
PROCESS_DATA_PROC: PROCEDURE e e e e
PROCESS_FMH7_LOG_DATA_PROC: PROCEDURE
PROCESS_FMH7_PROC: PROCEDURE e e e e e
RCB_ALLOCATED_PROC: PROCEDURE “ e e e
RECEIVE_AND_TEST_POSTING: PROCEDURE .
RECEIVE_RM_OR_HS_TO_PS_RECORDS: PROCEDURE

o .

s e & e e
* e e e
.
.
e s e e s e .
.
.
e e o o o s s & o o
e s e o
.« .

e e s e
.
.

.
e e e s e
1

]
ﬁ PEPWWWWWWWNWWHNNRNRNRNRNDND NN b e e b bl el et it

e o o e e s

.
e e o e e .
1

HFOONOCUPPLPUNKFOOVOVOIOIOOUNPWHFOONNOUNPAPNROODODOYNNNNGTGOOLL P

[
ES
3

« e o o o

-46

1
£
[+]

1
n
o

-51

SEND_| CONFIRMED PROC: PROCEDURE . o . .1-53
SEND_DATA BUFFER_MANAGEMENT : PROCEDURE .1-54
SEND_ERROR_DONE_PROC: PROCEDURE e .1-55
SEND_ERROR_IN_RECEIVE_STATE: PROCEDURE .1-56
SEND_ERROR_IN_SEND_STATE: PROCEDURE .1-57
SEND_ERROR_TO_HS_PROC: PROCEDURE .. .1-58

SEND_REQUEST_TO_SEND_PROC: PROCEDURE
SET_FMH7_RC: PROCEDURE e e e e e e
TEST_FOR_POST_SATISFIED: PROCEDURE .
WAIT_FOR_CONFIRMED_PROC: PROCEDURE .
WAIT_ FOR RM_REPLY: PROCEDURE .
NAIT FOR RSP_TO_RQ_TO_SEND_PROC: PROCEDUR
NAIT FOR_SEND_ERROR_DONE_PROC: PROCEDURE
Finite-State Machines . [P
FSM_CONVERSATION: FSM_| DEFINITION v e e
FSM_ERROR_OR_FAILURE: FSM_DEFINITION .
FSM_POST: FSM_DEFINITION

e o o o o o e s e s

e o o o & o o

E

.
]

LB LUOULUBLLOHBHOBEHLEBLL WL

® © o ® e o o o e o & & & & o & 8 e e ° s s s e o & e o =
@ © o © o o o o e o © o ® & & e o ® e o e ° s e & e e e e s s & e o e @

e e & & o o & & s a & & & e ® 8 ® e e s s e s s 8 e 8 e * e s

e @ o o o o o & o & ® ® & 8 & e e e s e & & s e ° e e e s s s »

e ¢ o o o o o s o s e o & o e » e e 8 e o s 8 8 e e & s s e e ° e e e e o s e .
e o & & o o 8 e e o e s o ® e s e ° e e o e e s o e e s & &

o o o o e e e e e e o e & o e e e ® = s s s s s e s & @

e © ® & e o s ®» o o o o ® o ® e e s e e e s & s e+ e @

@ o o o @ © e o e o o o 8 o e e e ® e ® e 8 e e e s s o e e s s e @

e o o s 8 e e ® ® e ° e e ® ° e e s e e s & o e e s s 8

e & e & o o 8 & e o s s 8 8 e e ® e e s e e o e o
e ¢ o o e o o e o o & 8 s & ° & o e e s o s &
e ¢ o o s ® 8 e e e e o ® e e e e e e e o o s o o =
e o e o a & o e ° s e e e e e e e e s s o o o o

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

e © o & o o o o o o o & & s e s e s e e s = e
e o o o o e s o e s e e s 8 ® e e e s = =
e« o o o s e o ® e o ° o s e 8 e ® e e =

e o o o o o o & o & & = = ® ® e s e e =

e o o s o o s & o & ® s @ e o o = e e e

e o o @ & o o o o o @ 8 ® ® o e s ° s e o s @

B b b
o c\c~0\c~o~c\o~01g;
NV PWRDHOO

CHAPTER 5.2. PRESENTATION SERVICES--MAPPED CONVERSATION VERBS s e e e s s e s e e e s 5.2-1
General Description . e e e e e e e C e e e e e e e e e C e e e e e e e 5.2-1
PS.MC Functions e 5.2-1

Contents xi

g

-

Component Interactions e e e e e e e e e e
PS.MC Data Base Structure .. e e e e e
Transaction Control Block (TCB) e e e e .
LU Control Block (LUCB) . . .
Transaction Program Control Block (TPCB)
Resource Control Block (RCB) e e e e e e
Conversation Data Stream Formatting e e .
Construction of GDS Variables . e .
GDS Variables with Multiple Logical Records
FM Header Data e e e e e e e e e e e e e
Examples of Mapped Conversation Verb Processing
Establishing a Mapped Conversation e e e
Terminating a Mapped Conversation e e .
Data Mapping and the Mapper c e e e e e e
Block Mapping e e e e e e e e e e e e
Mapping Example e o o s v e o o s o s o s
Map Names e e s e s s e s e e e s e e e
Map Name GDS Variables e e e e e e e
Mapper Invocation e e e e e e e e e e e
Mapper Parameters e e e e e e e e e e e
Supplied Information e e e e e e e e
Returned Information e e e e e e e e
Send Mapping C e e e e e e e e e e e e e

Receive Mapping e e e e e e e e e e e e
MC_TEST_PROC .+ v v v v & o o v v o e o .
Mapped Conversation Errors e e e e e e e
Mapper Errors « o . « o o e e o o e o
Error Data GDS Var1ab1es e e e e e e e e
Protocol Violations C e e e e e e e e e
Service Errors e e e . .« .

Service Errors Detected in Recelved Data

Processing of a Service Error Detected by Partner LU

Formal Descriptions e e e e e e e e e e e
PS_MC: PROCEDURE . c e e e e e e e
MC_ALLOCATE_PROC: PROCEDURE c e e e e e s
MC_CONFIRM_PROC: PROCEDURE
MC_CONFIRMED_PROC: PROCEDURE e s e o o o .
MC_DEALLOCATE_PROC: PROCEDURE e e e e e

MC_FLUSH_PROC: PROCEDURE e e e e e e e e .
MC_GET_ATTRIBUTES_PROC: PROCEDURE o e . e
MC_POST_ON_RECEIPT_PROC: PROCEDURE [

MC_PREPARE_TO_RECEIVE_PROC: PROCEDURE . .
MC_RECEIVE_AND_NAIT_PROC PROCEDURE .« . .
MC_TEST_PROC: PROCEDURE e e e e e e e e
RECEIVE_INFO_PROC: PROCEDURE e e
PROCESS_ERROR_OR_FAILURE_RC: PROCEDURE . .
PROCESS_DATA_COMPLETE: PROCEDURE o e s e e
PROCESS_MAPPER_RETURN_CODE: PROCEDURE . .
PROCESS_DATA_INCOMPLETE: PROCEDURE . .
MC_REQUEST_TO_SEND_PROC: PROCEDURE e e e e
MC_SEND_DATA_PROC: PROCEDURE e v e e e e e
MC_SEND_ERROR_PROC: PROCEDURE . . .
RCVD_SVC_ERROR_TRUNC_NO_TRUNC: PROCEDURE .
RCVD_SVC_ERROR_PURGING: PROCEDURE e e e e

.

PROCESS_ERROR_DATA: PROCEDURE e e e e e e
GET_SEND_INDICATOR: PROCEDURE « e e e e
SEND_SVC_ERROR_PURGING: PROCEDURE . e e e

UPM_MAPPER: PROCEDURE s o o s o o e o e o
PROTOCOL_ERROR_PROC: PROCEDURE e e e e e e
Local Data Structures e e e e e e e e e e
ERROR_DATA_STRUCTURE e e e e e e e e e e
SEND_BUFFER e e e s s e e s e e e e e e

CHAPTER 5.3. PRESENTATION SERVICES--SYNC POINT SERVICES

Errors, Failures, and Recovery e e e e e e
Sync Point Concepts C e e e e e e e e e e
Processing by PS.SPS e e e e e e e e e e e
LUK States e e e e e e e e e e e e e e e
Flow Optimization .. C e e e

Sync Point and Other LU Components e e e
Sync Point Logic
Classification Phase
Prepare Phase e e e e e e e e e e e e

SNA LU 6.2 Reference: Peer Protocols

] 11
ONNNNUTLOULPLPPLPPLAR

.
|

.

| 11
(RN

mmmmmmmmmynmmmmmmmmm
NNNNNNNNNI})NNNNNNNNN

NNNNNNNNNNNNNNNNNNI}?NNNNNNNNNNNNNNNNNNN

..
| r
WWWWWWHERNRNRNRRNNRN RN R R b b e bt e e

.

.
[}

ONOUWHOONGCNPUWWNNHFHFHOOUNPLPPPLPPANNMNHFNOOOO

.
)

!
£ HH
[~

.

1
£
W

1
ES
P

nrnununununuunuuunnunnunnunLuuuuouuunnunnuonnnnonnun

-45
5.2-46
5.2-47
5.2-48
5.2-48
5.2-48

.

W
1
o]

nmununununnunn n
WWNWI{IWWW\N
VOV OVOUNPLWNKM

a

)

‘)

C "
J

@

O

Request Commit Phase

Committed Phase e e e e e e e e e e e e e e e e
Forget Phase e e e e e e e e e e e e e
Illustrative Sync Point Flows e e s e e e e s e e e e
Forcing the Log e e e e e e s e s e s e s e e e e e
Errors during Sync Point 0 0 0 0 0.
PROG_ERROR % . & 2 & o v o v o o o v e o e e o e o un
BACKED_OUT e s o o s e o o s s 6 s s s s s e s s s o
DEALLOCATE_ABEND_3 e o » PP e e o s o
RESOURCE_ FAILURE _%, Recovery, and Heur;stxc Decisions
Backout Processing . e e e e e e e
Heuristic Decisions and Relxable Resources c e s e e e
Resynchronization Logic e e e e e et e e e e e e e e
vValidation of Log IDs . C e e e e e e e e e e e e
Session Outage during Attach e e s e e e e s e e e e
Lost Sync Point Messages e e e c e e e e e e e e
Resynchronization Action .. c e e e e e e e e
Resynchronization Operator Messages e e e e e e e e
Order of Resynchronization
Errors and Failures during Resynchronization e e e e .
Reset State and Erasing of Log Records . P .
Log Name Processing e e e e e e o e e e e e
Procedures Used by Sync Polnt C e e e . e e e e e
PS_SPS: PROCEDURE 4 2 2 = s s 4 e 4 s o= s e e e e e
PREPARE T T T
REQUEST_COMMIT S s s « e e e s e e e
COMMITTED . e e e . « o . e e e e e
FORGET . .. e s s s s e s s s s e e . .
HEURISTIC_| MIXED . e e e . .
Session Flows Created by Sync Poxnt c e . ..
Session Flows Created by Errors during Sync P01nt .

Backout e e e e e e e e e
CHAPTER 5.4.

Introduction PO
Function Summary e
Structure Summary

Concepts and Terms
Operator
Scope of Control—Operator Functlons .
LU-Accessed Network Resources .. .
Session Characteristics e e e e e

Session Identification e e e e .

Single vs. Parallel Sessions e e e .
Contention Polarity

Session Limits and Counts . ..
Session Bringup and Takedown . e .
Phases .. . e e e
Control- Operator Functlons . - .
(LU,mode) entry
Distributed Operator Control
Local Functions and Services
LU Definition Verbs e e e e e e e
Local Session-Control Verbs c e e e
Distributed Functions and Services . e .
Change Number of Sessions Verbs ..

Functional Relationships for st{r1buted
Operation Phases C e e e e e e e e e
CNOS Transaction .. e e
CNOS External Message—Unxt Flows c e
The CNOS Process Relationships ..
Processes o o s o s 6 o o s o s e s
Shared Data c e e e e e .

Transaction-Handling Process Relatlonsths .

Single Verb Issuance

Simultaneous Verb Issuances at the

CNOS Race Resolution e e e e e e e e
Command Race . . e e e e
Locking the lLU,mode) Entry e e e
Race Flows ... e e e e e e e e
No Race e e e e e e e e e e e
Single-Failure Races e e e e e

Simultaneous Verb Issuances at Partner LUs ..

e o o s s s

PRESENTATION SERVICES--CONTROL-OPERATOR VERBS

. e e e e
- .. c e e
. c e e e
.. e e
. c e e
. e c e e .
. e e e
. . e e e
. e e e e e
. . e e e .
“ .. c e e
e e

e e e e e e e
e e e e e
Verb Processing
e e e e e .
e e e e e e e
e e e e e e
. e e e e e
. .. e e
. c e e e e
.. .

e e e e e .
.

Same LU . .
e e e e e .
e e e e e e
C e e e e e e
e e e e e e
e e e e e

C e e e e e e

D

e o & & & e e e e s e e o

e e o e o o o o e o & o & & & ¢ s & 8 e e e s e s e e s

e e e e o s e e @

@ o 4 & e 4 ¢ & & s & e e s s e e s e s s e e a2 e e o =

e e e

e e s s e

® s e e s e s e e s o

e o o o s

e e s o o o

e e o s e o e+ s o

e o o o s 8 o 2 & ® e e e e e o e o o o

o 8 o & 8 8 e o 0 @ s 0 0 0+ 2 e e s s e e e &

L I I R R)

e & & & & s 8 8 8 s 0 s s e & 6 o 0 s s s

e e e o s 8 s e e s+ e s o ® e e

e o o e o s o e o o & e e 8 ° e & & & o

“ s e e e o & o & & o s s o o

e e s o e e e .

e o & & o o s e .

« e v e e e o o

P

e o o e o s o o

D R T N R S)

¢« o o
e o o
e o e .
e o o e
o o e o
o e o
e o o .
e o o
e o o o
e e o
e o o
e o e e
o e o .
e s s e
o« s s e
o s e
s e s .
o s s .
s s e
e s o o
o s s .
o« s e .
e s s
e e e .
o e e e
« s e
.« . .
« o s e
e e s e
e e s e
« s e
DY

o .
e o s .
« e e .
« o s .
e e e
e o o .
e o s
« o .
e e o
o e o e
« e s e
. .
« e .
¢« e s
e e s .
o e s
DRI
L Y
DRI
¢« o o o
o e o .
. . .
e e o .
e o o
o e e o
¢« o o o
* e e
e e e e
e e o
e o o e
« o o s
« e o e
e e o
e o e e
« e e e
s s e .
¢« e o
e e o e
e o o
e o o e

Contents

WHNNHN N AN NN RN NN T
! UNUR

1 1
P et ped ped ped b
nnunnune=ooY

"

e o o o o
LR

1O RO 1O M
NNOoOOO®

W

11
W W
- O

3-32

tononnunnunnnnhnonnnnnnnnnn

o« e
[I |

1

.
1

.

.
1

UiUlUiUlUiulPlU1U1U1U1y1?1?IUlU!UIUIU1lﬂ nmunounn
PHPrPPPPPPPLPPPLD f PPPLPPIPPPREP

? i ? v ? ununununnuunn
S PHH f S PpPrPP
b e b o (e ek fd et ek et et et et

[]

1
COUNNPPPUWUNKFHEOONGCTOTUUNUNUNNPAPLPPLPPLPUWWWWWWEHHMHRH

.
1

I T I |

.
]

.
1

X

[*n
%
19D

Xiv

Source~-LU CNOS Procedures e e .

CHAPTER 6.0.

SNA LU 6.2 Reference:

Double-Failure Race e e e e e
Recovery from Conversation Failure

Base and Optional Support e e

Base-Function-Set Support e e e e e
CNOS Minimum Support Set .. . e
Parallel-Session Optional Funct1ons

Component Interrelationships e e e e e .

Transaction Programs .. [P
Control-Operator Transact1on Program
CNOS Service Transaction Program

PS.COPR Components e e e e e
CNOS Verb Router . .

Local Control-Operator Verb Processlng

LU Definition Verb Processing [

Local Session-Control Verb Processing

INITIALIZE_SESSION_LIMIT « ¢« & =
RESET_SESSION_LIMIT . . .
ACTIVATE_SESSION P
DEACTIVATE_SESSION . e . . N

Session-Limit Services at the Source LU
Privilege Checking e e e . P
CNOS Conversation Allocation . e .
GDS Variable e e e e e e e e e
CNOS Record Flows e e .

Errors . e e e e e e e
Update (LU,mode] Entry .. e .
Request Changes in Session Count

Return to the Transaction Program .

Session-Limit Services at the Target LU
CNOS Reply .

Session-Limit Parame{er Negot1atlon
Errors o« . « e e e . .
Other Interact1ons .o e e e .

Session-Limit Data Lock Manager

Locking the (LU,mode) Entry

Verb-Routing Procedure c b e e e e e e

PS_COPR: PROCEDURE e e e e e e e

Verb Handlers .

INITIALIZE SESSION LIMIT PROC PROCEDURE

RESET_SESSION_LIMIT_PROC: PROCEDURE .
CHANGE_SESSION_LIMIT_PROC: PROCEDURE
ACTIVATE_SESSION_PROC: PROCEDURE ..
DEACTIVATE_SESSION_PROC: PROCEDURE
DEFINE_PROC: PROCEDURE e e e e e
DISPLAY_PROC: PROCEDURE e e e e
DELETE_PROC: PROCEDURE . .
LOCAL _ SESSION LIMIT_PROC: PROCEDURE
LOCAL_VERB_PARAMETER_CHECK: PROCEDURE
SVYCMG_VERB_PARAMETER_CHECK: PROCEDURE
CHANGE_ACTION: PROCEDURE e e e e

SOURCE_SESSION_LIMIT_PROC: PROCEDURE
VERB_PARAMETER_CHECK: PROCEDURE .
SOURCE _CONVERSATION_CONTROL: PROCEDURE
SOURCE_CONVERSATION. PROCEDURE e
RESULT_CHECK_ALLOCATE: PROCEDURE e
RESULT_CHECK_SEND_COMMAND: PROCEDURE .
RESULT_CHECK_RECEIVE_REPLY: PROCEDURE
RESULT_CHECK_RECEIVE_DEALLOCATE: PROCEDUR
CHECK_CNOS_REPLY: PROCEDURE e e e e e

Target-LU CNOS Procedures C e e e e s

%X06F1: PROCEDURE . .
PROCESS_SESSION_LIMIT_PROC: PROCEDURE
TARGET_COMMAND_CONVERSATION: PROCEDURE
RESULT_CHECK_RECEIVE_COMMAND: PROCEDURE
RESULT_CHECK_RECEIVE_SEND: PROCEDURE .
CHECK_CNOS_COMMAND: PROCEDURE e
NEGOTIATE_REPLY: PROCEDURE
CLOSE_ONE_REPLY: PROCEDURE
TARGET_REPLY_CONVERSATION: PROCEDURE .
RESULT_CHECK_SEND_REPLY: PROCEDURE . .
SESSION_LIMIT_DATA_LOCK_MANAGER: PROCEDUR

HALF-SESSION e e e e e e

Peer Protocols

E

« e o o o & o

e o o s s e 8 & & o e e

e & s o o e s o

e e o 8 @ @ @ @ e @ e e e s @ ® ® ® o e e * o e o

e o e e o

@ e o e e e o e e & e s e s e o s

e o o ® o @ ® ® s 8 & & & & 8 s e e e ° e e = ° e @

e o o s e @ ® 8 & @ » & & a8 & & e & o e e e e © ® e

® e o s o ® o 8 e & s & ® @ ® & e s o e s e e o

e« © o o o ® e © @ e e ® @ e e e s ® e e s e e e e & & ® e o o

DR Y

o e o o

¢« e e

e e & e o e e e 0 s e 0

e ¢ o o e o

e o o o o ® ®» e o o ® & & o = a 8 8 e e a2 e e ° e = e

« e e e

e o o @ s e o 8 s s & @ ® @ ® 8 e @ o e e ® e e e ® ® 8 e e s & & e e e s e o & s e .

e ® o o o @ o ® ® e s e 8 s e = e = s ° e ° e e ® ® ® e o s e @

¢« s e e

e e o 8 & ® ® e ® & e e e e ® s s e e e e e v s e e * °

« e e s s .

e e e o o o

e o & @ e o o & & o ® & & 8 & & & o e e e e e e o o v o e »

e 8 e o o e o ® s e 8 » @ ® ® e e 8 o e e e e s s ® e w e e e e ® e e s e e s . »

o e e

e o o o e © o ® @ & @ o & 8 ® & e e e e e e e © s a e e T s e s .+ e e .

e s e e

e o & e o s 8 ® e o o 8 8 & ® a 8 8 e @ e o e & e & o o e e o

@ o e o o @ e o & e e e e @ ® ® s e = e e e s e e s o & @

* s e

« s e e e

« s s s s s .

e ® & o & o o ° e e ® ® ® s ® s e s ® s w = e = e & = & e o

s s e s .

e o o o

e © o . e s o ®» e s ® s ® ® = e s @ ° ® e e e = ® v v e .

5.4-19
5.4-20
5.4-20
.4-20

1
N

1

J
NARNNNNDN
N n

%%%b%baaa
RREUNVAN

.
1

.
1

.
!

1
PLPWUWHUHUWWUWNKNWNWNWWHWNWNRDRONNONNDNNONNRPPRONPDPRNRONRRPNRNNDNRNDNDRN

-&‘4‘-“-&‘#‘#‘-&\&‘4\4\94‘4\-&‘-&‘-“-&‘-&‘-C‘Gbn&l‘bbbbbbb#\bbb#‘b&#\-&‘&&-&‘bb

HFOWRONGCTUPWWNNNOOOORPRIIMIANNSNNNNLOLOLS PP

1
£ PP
WWMN

4-52

NN NN

)

@

General Description . e e e e e e e e e
Protocol Boundaries between HS and Other Components
Formal Description ¢« ¢ ¢« ¢ ¢« v o o .

HS: PROCESS . e e e e e e e e s
PROCESS_LU_LU SESSION PROCEDURE e e e e e e e
Data Structures e e e e e e e e e e e e e e e e

LOCAL e
CcT e e e s e s e e e e e e s s e s e e e e e

COMMON_CB e e e e e e e e e e e e e e e e e e
CHAPTER 6.1. DATA FLOW CONTROL e e e e e e e e

Introduction C ot e e e e e e e e e e e e e e e e
Overview of DFC Functions C e e e e e e e e e e
DFC Structure e e e e e e e e e e e e e e e e
Initialization e e e e e e e e e e e e e e e
Send e
Receive e e e e e e e e e e e e e e e e e e e
Termination e e e e e e e e e e e e e e e e e
Protocol Boundaries . c e e e e e e e e e e e
Function Management Proflle 19 e e e e e e e e
Usage Associated with FM Profile 19 e e e e e e
Conditional End Bracket (CEB) e e e e e e e e
FM Header Usage e e e e e e e e e e e e e e
Usage of DR1 P .. . e e e e
Sending RQE with BB from Content1on Loser e .
Usage of RQE1l, CEB, LUSTAT(0006) e e e e e e e
Usage of SIGNAL(X'00010001"') © e e e e e e e e
Sequence Numbering of Requests and Responses . .

Stray SIGNALs and Responses C e e e e e e e e
Sending SIGNAL and Responses e e e e e e e e
RQD required on CEB e e e e e e e e e e e e

Receiving SIGNAL Requests C e e e e e e e e

Receiving Responses e e e e e e e e e e e

SEND_ERROR Processing e e e e e e e e e e e

Detailed Description of DFC Functions c e e e e

Request/Response Formatting e e e e e e e e e

Chaining Protocol e e e e e e e e e e e e e e e
Request/Response Correlation e e e e e e e e e

Request/Response Mode Protocols C e e e e e e e

Bracket Protocols e e e e e e e e e e e e e e e

Bracket Rules P e e e e e e e e e e e e
Send/Receive Mode Proiocols C e e e e e e e e e
Queued Response Protocol e e e e e e e e e e e

PS Send and Receive Records C e e e e e e e e e
DFC Request and Response Formats c e e e e e e

DFC Request and Response Descrlptlons e e e e e

BIS (BRACKET INITIATION STOPPED) e e e e e e e

LUSTAT (LOGICAL UNIT STATUS) e e e e e e e e e

RTR (READY TO RECEIVE) e e e e e e e e e e e s
SIG (SIGNAL) s e e e e e e e s s s e e e e e e

High-Level Procedures e e e e e e e e e e e e

DFC_INITIALIZE: PROCEDURE e e e e e e e e e

DFC_SEND_FROM_PS: PROCEDURE e e e e e e e e e

DFC_SEND_FROM_RM: PROCEDURE e e e e e e e
TRY_TO_RCV_SIGNAL: PROCEDURE

DFC_RCV: PROCEDURE e e e e e e e e e e e e e
DFC_RCV_FSMS: PROCEDURE e 4 e e e e e e e e e
DFC_SEND_FSMS: PROCEDURE . . .« e e e

Low-Level Procedures (in Alphabet1cal Order) ...
BUILD_HS_TO_PS_HEADER: PROCEDURE

CT_UPDATE: PROCEDURE et e 4 e e e e e e e e e
DFC_SEND_TO_PS: PROCEDURE e e e e e e e e e
FORMAT_ERROR: PROCEDURE . e e e e e e e e

FORMAT_ERROR_EXP_RSP: PROCEDURE e e e e e e

FORMAT_ERROR_NORM_RSP: PROCEDURE
FORMAT_ERROR_RQ DFC: PROCEDURE
FORMAT_ERROR_RQ_FMD: PROCEDURE
GENERATE_RM_PS_INPUTS: PROCEDURE

INITIALIZE_TH_RH: PROCEDURE c e e e e e e e e

INVALID_SENSE_CODE: PROCEDURE
OK_TO_REPLY: PROCEDURE . . . « + « « « « « + . .

PROCESS_RU_DATA: PROCEDURE e e e e e e e e e e
RCV_STATE_ERROR: PROCEDURE e e e s e e e e e e

.
]

1

.
1

[l AN N~ AN N N A)
OOOO?QOOO
OONNUWWN -

.
1

o
[
1
-

[N N - N - - N - N N N N N N - . N N N - N N N NI N
P b b b b b b e
VOV VWVOOOPENNUTNUUNUVUPRPPLPPLPPLPUNPNDN

.
P b b b b e et b e et e et e e e R b b b e
WUWWWWWNWWHNRNRN RN R RN RN e
OCOCPWNNHOOVOONNPAWNHOOVOINNOGOCORCOPNNKHEKHOO

1
W
0

« o e
U

.
1

o e
[

.
1

o o o
[}

.
]

.
1

.

ccccrCrCrCrCCCFOTFOFOOONCTTOTOTCTTOTOTOTOTOTOTOTOTTTOOTOTOOTONS
.

.1
6.1-41

1
S
o

XV

XV1

REPLY_TO_BID: PROCEDURE e e e

SEND_BID_POS_RSP: PROCEDURE e e e s e e e s
SEND_FMD_MU: PROCEDURE . . e e e s e e e s
SEND_RSP_IF_REQUIRED: PROCEDURE s s e e e s
SEND RSP_MU: PROCEDURE . e e e e e e .
SEND_RSP_TO_RM_OR_PS: PROCEDURE « e e e .
SIGNAL_STATUS: PROCEDURE e e e s e e e e
STRAY_RSP: PROCEDURE e e e e e s s e e e e
TRANSLATE: PROCEDURE e e e e e e e e e e e
Finite-State Machines .. PO ..
FSM_BSM_FMP19: FSM_| DEFINITION e e e e e
FSM_CHAIN_RCV_FMP19: FSM_DEFINITION .« e

FSM_CHAIN_SEND_FMP19: FSM_DEFINITION . e
FSM_QRI_CHAIN_RCV_FMP19: FSM_| DEFINITION .
FSM_RCV_PURGE_FMP19: FSM_DEFINITION .« ..
CHAPTER 6.2. TRANSMISSION CONTROL c e e e e
INTRODUCTION e e s e s e e e e e e e s e e e e
Initialization Phase .. c e e e e e
CRYPTOGRAPHY VERIFICATION (CRV) « e e .
Normal Operation .
TC Procedures Invoked from O{her Components of
Sequence Numbering of Requests and Responses
Sessions With Cryptography .. e e e e e

Request and Response Control Modes e

Buffer Management e e e e e e e e e e e
Session-Level Pacing . c e e e e e
Session-Level Pacing Algorxthms . ..

Session-Level Adaptive Pacing Algorlthm .
OPERATION OF THE SENDER
OPERATION OF THE RECEIVER . e I
Session-Level Fixed Pacing Algorlthm

Segment Reassembly Function e e e e e e

Formal Description .. c e e e e e e

TC.INITIALIZE: PROCEDURE s e s e e s
TC.EXCHANGE_CRV: PROCEDURE .« .
TC.BUILD_CRV: PROCEDURE « e e e e e
TC.CRV_FORMAT_CHECK: PROCEDURE “ e e
SEND_MU: PROCEDURE = s s s e
SEND_PACING: PROCEDURE c e e e e e e
SEND_TO_PC: PROCEDURE e e e e e e e
TC.RCV: PROCEDURE . ..
TC.SEGMENT_RCV_CHECKS: PROCEDURE . . .
TC.BIU_RCV_CHECKS: PROCEDURE e s e e e e
MU_PACING_CHECKS: PROCEDURE ..
RECEIVE_PACING: PROCEDURE e e e e .
SEGMENT_REASSEMBLY: PROCEDURE « e e .
RCV_PACING_RSP: PROCEDURE .. « e .
BUFFERS_RESERVED_PROCESSING: PROCEDURE . .
TC.DECIPHER_RU: PROCEDURE C e e e e e e
IPM_RU . v i v e e e e e e e e e e e e
APPENDIX A. NODE DATA STRUCTURES c e e e e
Control Blocks C e e e e e e e e e e e e e e
Lucs s s e s e 8 s s e e 6 o s s e o o

PARTNER_LU e e e e e . e e e e e
MODE . .. e e e s e e e e s
TRANSACTION PROGRAM . .« .. . [
RCB . . C e e e e e e e s e e s
RECEIVED_ INFO e e e e e e e e s e e e
scB e e e e e e e e s e e e e e s e e e
TCB e e e e e e e e e e e e e

Interprocess S1gnals e e e e e e e e e e e e
ABORT_HS
INIT_HS_RSP v v v v v v v e e e .
CONFIRMED .
RECEIVE_ERROR e e e
REQUEST_TO_SEND
RSP_TO_REQUEST_TO_SEND e e e e e e e e e e
BID e e e e e e e e e e e e e e e e e
BID_RSP « v v v v v e e e e e e e e e
BISRA v « v v v o o e e e e e e e e e

SNA LU 6.2 Reference: Peer Protocols

o s s e

e e o e o

e e e o e

o« e s e

e e e e e e
. e . ..
e e e e e e s
e e e e e e
e e e e e
e e e e e e
. . e e e e
e e e e e e
e e e e e
e e e e e e e
e e e e e e
e e e e e e
c e e e e e
c e e e e e

e e e e
e e e . .
e e e e e e
e e e e

e e e e .

.
Half-Sesslon
e e e

. P
.. .. .
e e e e

e e . .
P
. .
. e e e
.. .. .
. e e e
e . . .
.. ..
e e e .
.. e
e . ..
.. e .
.. . .
.. . ..
.. ..
. . ..
.. . .
.. ..
.. .
e e e e .
. . e e
. e e
. . ..
.. . .
e e e e .
e e e e e
. e e e e
e e e e e e
. e e e e
e e e e e e
e e e e e e
e e e e e e
c e e e e e
e e e e e e
e e e e e
e e e e e e
e e e e e
. . e e e
e e e e e e
e e e e e e
e e e e e e
e e e . . .
e e e . .
e e e e e e
e e e e e e

« s s e e e o o 2 o & o e o o o o o o

e e o e o o o

e e e e e e

e o s e e e

e o o e s e o e

e 8 e & s e & e s o e s+ e s s o &

e o e o o e 8 o o

s e o o & o

e & o o e e o v e e e e & @

e o e o e o & e e o o e e o

e o o o e o

e o & e

e o o o o e o

T Y

e e s e o o o s o

« e s e e

e e e s e e

e e o e e ® o s o e 0 o o

L)

o« o s e

e o ¢ e o o @

e e e e o e

e e+ e e s o o o

(- 0 S N N N N N - N . N . . N

.1-42
.1-42
.1-43
.1-64
.1-45
.1-46

1-47

.1-48

1-49

.1-50

1-50

.1-51
.1-53
.1-55
.1-56

o
.
N
1
[

.

.

[N (- N N N - N N - S N S N S N)

[~ 20 SO AN N« N O« R N - S N N -)

« e e
| A R |

.
)

|
VTWWNMNOYORONNNOGOTOOWWH

)
e

1l I>T>>>?>>>>>
NHEHMHMRNOOOOQUOUOUVWREINGOUINWNKMK

>>>?>>>>
[T =l ol

®

BIS_REPLY
FREE_SESSION
RTRRA v v v v v v v o v
RTR_RSP
INIT_HS
ACTIVATE_SESSION_RSP
SESSION_ACTIVATED e e
SESSION_DEACTIVATED e
SEND_ERROR . « « « « « .+ . .
ALLOCATE_RCB . . . «
CHANGE_SESSIONS e e e
DEALLOCATE_RCB
GET_SESSION e e e e e
RM_ACTIVATE_SESSION e
RM_DEACTIVATE_SESSION C ..
TERMINATE_PS « . . .
UNBIND_PROTOCOL_ERROR C.
BID_WITHOUT_ATTACH
BRACKET_FREED e e e e
ENCIPHERED_RDZ
HS_PS_CONNECTED T

RM_HS_CONNECTED e e e
YIELD_SESSION e e e .
START_TP « v v v v v v e v
START_TP_REPLY
SEND_RTR . + « « « v o & .

ACTIVATE_SESSION e e e e e
DEACTIVATE_SESSION e e e
CONVERSATION_FAILURE e e e
RCB_ALLOCATED e e e e e e
RCB_DEALLOCATED . « e e e

RM_SESSION_ACTIVATED “ e e
SESSION_ALLOCATED e e e e

ASSIGN_PCID e e e e e
ASSIGN_PCID_RSP e e e
INIT_SIGNAL_NEG_RSP C e e
CINIT_SIGNAL
INIT_SIGNAL e e e e e

SESSST_SIGNAL e e e e
SESSEND_SIGNAL
PC_HS_DISCONNECT
SESSION_ROUTE_INOP
ABEND_NOTIFICATION

ASSIGN_LFSID
FREE_LFSID . . « . « « « . .
LFSID_IN USE_RSP
ASSIGN_LFSID_RSP
LFSID_IN_USE

Process Creation Parameters .
HS_CREATE_PARMS e e e e

PS_CREATE_PARMS e s e e e
RM_CREATE_PARMS e e e e e
SM_CREATE_PARMS e e e
RM_CREATED e s e e e e e e s
Request RUs e e e e e e e e
CRV_RQ_RU
Miscellaneous Structure Types
LFSID e e e e e e e e e e
L
PC_CHARACTERISTICS e e e e .
SEND_PARM s s e e e e e e e
SESSION_INFORMATION e e e .
SNF c e e e e e e e e e e

Miscellaneous Enumeration Types
APPENDIX B. BUFFER MANAGER .

Introduction
Types of Buffers C e e e e e
Buffer Manager Protocol Boundary
LU to BM .« e e s e s e e e
ADJUST_BUF_POOL e e .
CREATE_BUF_POOL e e
DESTROY_BUF_POOL e e e e e

Contents

[
O NG U U

?WWW?WW @

2

I~

s

"

FREE_BUFFER . .
GET_BUFFER . . .
BMtolU
BUFFERS_RESERVED
APPENDIX N.
APPENDIX T.

INDEX

SNA LU 6.2 Reference:

TERMINOLOGY :

.

.
* e o

FSM NOTATION .

Peer Protocols

e s e o

.

ACRONYMS AND ABBREVIATIONS

¢ e o o

()
_.

LIST OF ILLUSTRATIONS

CHAPTER 1

. INTRODUCTION

Figure 1-1. Overview of the SNA Network00
Figure 1-2. Examples of Nested Nodes = ¢« ¢ ¢ o o o o v v o

CHAPTER 2. OVERVIEW OF THE LU
Figure 2-1. Placement of LUs within the SNA Network (Example)
Figure 2-2. Exchanges between Paired Distributed Components and between Ad]acent Layers
Figure 2-3. LU-LU Verification .. e e e e e e e e e e e e
Figure 2-6. Relationships of Sequences of Message Unlts (Example) e e e e e e e
Figure 2-5. Relationship of Data Records to Logical Records (Example) C e e e e e
Figure 2-6. Relationship of Conversation Message to BIU Chain (Example) . .
Figure 2-~7. Start Conversation with Synchronization Level of NONE e e e . .
Figure 2-8. Conversation Turnaround witheut Confirmation e e e e e e e e e e e
‘Figure 2-9. Finish Conversation without Confirmation .. C e e e e
Figure 2-10. Start Conversation with Synchronization Level of CONFIRM e .
Figure 2-11. Continue Conversation: Confirmation without Turnaround . .
Figure 2-12. Conversation Turnaround with SYNC_LEVEL = CONFIRM, us1ng LOCKS(SHORT)
Figure 2-13. Conversation Turnaround with SYNC_LEVEL = CONFIRM, using LOCKS(LONG)
Figure 2-14. Finish Conversation, SYNC_LEVEL = CONFIRM C e e e e e e . .
Figure 2-15. Possible Next Sequence in Error-Free Cases e e e e e e e e e
Figure 2-16. One-Way Conversation without Confirmation
Figure 2-17. Two-HWay Conversation with Confirmation . .
Figure 2-18. Conversation Turnaround following REQUEST_TO_ SEND (wlthout Conf1rmat1on)
Figure 2-19. SEND_ERROR Issued by Sender C e e e e e e e e e e e e e e e
Figure 2-20. SEND_ERROR Issued by Receiver . c e e .
Figure 2-21. SEND_ERROR Issued by both Sender and Recexver (SEND ERROR Race) e e
Figure 2-22. DEALLOCATE ABEND Issued by Sender . . « « « v ¢ v o v v v o v o 0 o 0
Figure 2-23. DEALLOCATE ABEND Issued by Receiver . . . e e e .. .
Figure 2-24. Overview of LU 6.2 Components e e e
Figure 2-25. Structure of a Presentation Services Process
Figure 2-26. Example of Communicating Transaction Programs e e e e [
Figure 2-27. Map Name Usage by Mapped Conversations e e e e e e e . e e
Figure 2-28. Relationship of LU Components for Sync Point Functxons C e e e e .
Figure 2-29. LU Static Data Structures (Example) e e e e e e e e e .
Figure 2-30. LU Dynamic Data Structures and Processes (Example) e e e e .. .
Figure 2-31. Data Structure Relationships among LUs for a Distributed Transact1on
(Example) e
Figure 2-32. LU Process Creation and Termination Hierarchy
Figure 2-33. Complete Conversation Example--Local LU e e e e
Figure 2-34., Complete Conversation Example--Remote LU e e e e e e e e e e e e e
Figure 2-35. Session Deactivation--Local LU C et e e e e s e e e e e e e e
Figure 2-36. Session Deactivation--Remote LU e e
Figure 2-37. ALLOCATE(RETURN_CONTROL=WHEN_SESSION ALLOCATED), CONFIRM (by Flrst
Speaker)--Local w .. e . . e
Figure 2-38. ALLOCATE(RETURN_ CONTROL'NHEN SESSION ALLOCATEDJ, CONFIRM (by Flrst
Speakerl--Remote LU . . .
Figure 2-39. ALLOCATE(RETURN_ CONTROL-NHEN SESSION ALLOCATED], RECEIVE AND NAIT (by
Bidder)--Local LU . . « e e . .
Figure 2-40. ALLOCATE(RETURN_ CONTROL-NHEN SESSION ALLOCATED], RECEIVE AND NAIT (by
Bidder)--Remote LU
Figure 2-41. ALLOCATE(RETURN_ CONTROL-NHEN SESSION ALLOCATEDJ, CONFIRM (by B1dderl:
Attach Error --Local LU . . .
Figure 2-42. ALLOCATE(RETURN_CONTROL=WHEN_ SESSION ALLOCATED), CONFIRM (by B;dderl,
Attach Error--Remote LU e e e e e e e e e e e e
Figure 2-43. ALLOCATE(RETURN_CONTROL=IMMEDIATE), Successful--Local LU . e e e
Figure 2-44., ALLOCATE(RETURN_CONTROL=IMMEDIATE), Successful--Remote LU
Figure 2-45, ALLOCATE(RETURN_CONTROL=IMMEDIATE), Unsuccessful--Local LU e e e e e
Figure 2-46. ALLOCATE(RETURN_CONTROL=IMMEDIATE), Unsuccessful--Remote LU « e e s e s
Figure 2-47. DEALLOCATE(TYPE=FLUSH) (RQEl)--Local LU s e s e e e e e s e e e s e e
Figure 2-48. DEALLOCATE(TYPE=FLUSH) (RQE1l)--Remote LU [N e s s e e s
Figure 2-49. DEALLOCATE(TYPE=FLUSH) (RQDl)--Local LU ¢« v ¢« v o ¢ « «
Figure 2-50. DEALLOCATE(TYPE=FLUSH) (RQD1)--Remote LU e e e e e e o s e s o e e o s
Figure 2-51. DEALLOCATE(TYPE=FLUSH) (RQE1), SEND_ERROR, -RSP Sent--Local LU e e o e
Figure 2-52. DEALLOCATE(TYPE=FLUSH) (RQE1), SEND_ERROR, -RSP Sent--Remote LU [

List of Illustrations

e e o o o

2
2~
2

Xix

XX

Figure
Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

CHAPTER 3.

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

SNA LU 6.2 Reference:

2-53.
2-5¢.
2-55.
2-56.
2-57.

2-58.

2-59.
2-60.
2-61.

2-62.

2-63.

2-64G.

2-65.

2-66.

2-67.
2-68.
2-69.
2-70.
2-71.
2-72.
2-73.
2-76.
2-75.
2-76.

2-77.
2-78.
2-79.
2-80.
2-81.
2-82.
2-83.
2-84.
2-85.
2-86.
2-87.
2-88.
2-89.
2-90.
2-91.
2-92.
2-93.
2-96.
2-95.
2-96.

LU

DEALLOCATE(TYPE=FLUSH) (RQE1), SEND_ERROR, -RSP
DEALLOCATE(TYPE=FLUSH) (RQE1), SEND_ERROR, -RSP
DEALLOCATE(TYPE=CONFIRM) (RQD2[3)--Local LU .
DEALLOCATE(TYPE=CONFIRM) (RQD2[3)--Remote LU
DEALLOCATE(TYPE=ABEND_PROG) Issued in SEND_STATE
State--Local LU P
DEALLOCATE(TYPE=ABEND_| PROG) Issued in SEND_STATE
State--Remote LU e e e e e e e e e e e e e

not Sent--Local LU .« ..
not Sent--Remote LU . . .

> Between-chaln

> Between-chain

DEALLOCATE(TYPE=ABEND_PROG)
DEALLOCATE(TYPE=ABEND_PROG)
DEALLOCATE(TYPE=ABEND_PROG)
State--Local LU ...
DEALLOCATE(TYPE=ABEND_| PROG)
State--Remote LU P
DEALLOCATE(TYPE=ABEND_PROG)
LU .
DEALLOCATE(TYPE ABEND PROG]
SEND_ERROR--Remote LU .
DEALLOCATE(TYPE=ABEND_PROG)
LU e e e e e e e e e
DEALLOCATE(TYPE=ABEND_| PROG)
State--Remote LU P
DEALLOCATE(TYPE=ABEND_| PROG)
DEALLOCATE(TYPE=ABEND_PROG)

Issued in SEND_STATE, In-Chain State--Local LU

Issued in SEND_STATE,
Issued in SEND_STATE,

Issued in SEND_STATE,

In-Chain State--Remote LU
-RSP Received

-RSP Received

Issued in SEND_STATE Crossing SEND_ERROR--Local
Issued in SEND_STATE Crossing
Issued in RCV_STATE, Between-Chain State--Local

Issued in RCV_STATE, Between-Chain

s o e & s o e s e e s e e s e o e o s s e e e

Issued in
Issued in

RCV_STATE, In-Chain
RCV_STATE, In-Chain

State--Local LU

State--Remote

LU

CONFIRM
CONFIRM
CONFIRM
CONFIRM
CONFIRM
CONFIRM
CONFIRM
CONFIRM

DEALLOCATE (TYPE=CONFIRM), SEND_ ERROR—-Local

(RQD2Z23)--Local LU e e e e
(RQD2|3)--Remote LU e e e e e
(RQEZ2|3)--Local LU e e e e e
(RRE2I3)--Remote LU
(RQEZ2|3), SEND_ERROR--Local LU
(RREZ2|3), SEND_ERROR--Remote LU
(RQD2{3), SEND_ERROR--Local LU
(RQD213), SEND_ERROR--Remote LU

LU C e e e e e e e e e e e

DEALLOCATE(TYPE=CONFIRM]}, SEND_| _ERROR--Remote LU e e e e e e e e e e

DEALLOCATE(TYPE=CONFIRM) Crossing SEND_| ERROR--Local

LU e e e e e e e e e

DEALLOCATE(TYPE=CONFIRM) Crossing SEND_ERROR-—Remote LU e e e e e e e e

RECEIVE_AND_WAIT Causing RQE,CD--Local LU
RECEIVE_AND_WAIT Causing RQE,CD--Remote LU
SEND_ERROR
SEND_ERROR

before SEND_DATA--Remote LU
before SEND_DATA--Local LU .

@ o e o s e & e e e e e e s .

e o o o . e e o e o e e s @

SEND_ERROR
SEND_ERROR
SEND_ERROR
SEND_ERROR
SEND_ERROR
SEND_ERROR

Crossing SEND_ERROR, Both Issued in RCV_ STATE—
Crossing SEND_ERROR, Both Issued in RCV_STATE-
before CONFIRM--Remote LU e e e e e e e e
before CONFIRM--Local LU C e e e e e . ..
Before DEALLOCATE(TYPE=CONFIRM)--Remote LU .
Before DEALLOCATE(TYPE=CONFIRM)--Local LU .

-Remote LU ..

-Local

LU

SEND_ERROR
SEND_ERROR

at End-of-Chain--Remote LU .
at End-of-Chain--Local LU .

e e e e o & e s e 4 s e e e e

« e e e s s s e s s s e e e =

REQUEST_TO_!

SEND,

REQUEST_TO_SEND»
REQUEST_TO_SEND,
REQUEST_TO_SEND,

Received
Received
Received
Received

in SEND_STATE--Remote LU ..

in SEND_STATE——Local LU
in RCV_STATE--Remote LU
in RCV_STATE--Local LU

e e s s s e s e e e =

RESOURCES MANAGER

Overview of Component Interactions Involving the
Buffer Management for FMH-5 MU c e e e e e
Buffer Management for FMH-12 MU
Allocation of a Resource Control Block (RCB)
Allocation of a Session Using BID_WITHOUT_ATTACH
Responding to a Bid for a Session e e e e e
Immediate Allocation of a Session e e e e
Attach Flow ¢ ¢ ¢ ¢ o o v v o
Bid Races e e e e e e e e e e
READY TO RECEIVE (RTR) Flow e e e e e e e e e
End of a Conversation e e e e e e e e e e
Activation of a Session . . . e e e e e e .
Decreasing the Number of Sess1ons e e e e e
Session-Outage Flow e e e e e e e e e e e

Peer Protocols

Resources Manager .
e e e e e e e e e e e e e

e e o o s e e s e e s s e e

2-70
2-71
2-72
2-73

2-74

2-75
2-76
2-77

2-79
2-80
2-81
2-82

2-83
2-86 {
2-85
2-86
2-87
2-88
2-89
2-90
2-91
2-92
2-93
2-94
2-95
2-96
2-97
2-98
2-99

2-100

2-101

2-102

2-103

2-104

2-105

2-106

2-107

2-108

2-109

2-110

2-111

2-112

2-113

3-10
3-11
3-12
3-13
3-14
3-16

3-18 <::\

™
\//

o

CHAPTER 4. LU SESSION MANAGER

Figure 4&-1. Protocol Boundaries between LU Session Manager and Other Node
Figure 6-2. Records Exchanged between SM and Other Components [
Figure 4-3. TH Parmeters for MUs That SM Sends. c e e e e e e e e e e
Figure 4-4. TH Parameters for MUs That SM Receives C e e e e e e e e
Figure 4-5. RH Parameters for MUs That SM Sends c e e e e e e e e e e
Figure 4-6. RH Parameters for MUs That SM Receives C e e e e e e e e
Figure 6-7. Format of User Data e e et e e e e e e e e e e e e e e
Figure 4-8. Reinitiation Responsibility
Figure 6-9. SM Initialization e e e e e e e e e e e e e e e e e e e
Figure 4-10. Session Initiation by Local LU c e e e e e e e e e e e e
Figure 4-11. Session Initiation by Local LU: PCID Collision Detected .
Figure 4-12. Session Activation by Partner LU: BIND(FQPCID) Is Received

Figure 4-13. Session Activation by Partner LU: BIND Is Received e e
Figure 4-14. Session Deactivation by Local LU C e e e e e e e e e e e
Figure 4-15. Session Deactivation by Partner LU e e e e e e e e e e e

Figure 4-16. SM receives SESSION_ROUTE_INOP While a Session Is Active .

Figure 4-17. SM Receives SESSION_ROUTE_INOP While a Session Is Waiting Activation

Figure 4-18. SM Receives SESSION_ROUTE_INOP While a Session Is e e e e .
Figure 4-19. SM Receives SESSION_ROUTE_INOP While a Session Is e e e e
Figure 4-20. Session Activation by Local LU: LFSID Assignment Failed .
Figure 4-21. Session Activation by Local LU: BIND Is Rejected with UNBIND
Figure 4-22. Session Activation by Local LU: BIND Is Rejected with ..
Figure 4-23. Session Initiation by Local LU: INIT_SIGNAL Is Rejected .

Figure 4-24. ASM Checks Whether

Components

a Specific (PATH_CONTROL_ID, LFSID) Pair Is in

Use

by SM

Figure 4-25. Termination of a Pending LU-LU Session before CINIT_SIGNAL Is Received .

Figure 4-26. Termination of a Session Pending Activation After BIND Is Sent

Figure 4-27. SM Receives ABORT_HS While a Session Is Active .. e .

Figure 4-28. A Request to Get a Buffer Is Rejected during Session Actlvatxon

CHAPTER 5.0. OVERVIEW OF PRESENTATION SERVICES

Figure 5.0-1.
Figure 5.0-2.
Figure 5.0-3.

Figure 5.0-4.

Overview of Presentation Services, Emphasizing PS.INITIALIZE and

PS.VERB_ROUTER e o s s e e e 4 e e e e . e e

Attach Initialization and Termination of Presen{aflon Services and

Transaction Program et e e e e e e e e e e e e e s e

« o .

START_TP Initialization and Termination of Presentat1on Services and

Transaction Program e e e e e e e e e e e e e P

Limited-Instance Transaction Program Processing in Resources Manager

CHAPTER 5.1. PRESENTATION SERVICES--CONVERSATION VERBS

Figure 5.1-1.

Figure 5
Figure 5
Figure 5
Figure 5.
Figure 5
Figure 5

Overview of Presentation Services, Emphasizing Presentation

Basic Conversations . . . e e e e e e e
LU Control Block List and Assoc1ated Lxsts e e e e e e
Transaction Control Block (TCB) e e e e e e e e e e e e
Resource Control Block (RCB) .. e e e e e e e
PS.CONV Requests and Associated RM Rep11es e e e e e e
SEND_ERROR Race .. e e e e e e e e e e e e
SEND_ERROR Race with Deallocatlon e e e e e e e e e e e

CHAPTER 5.2. PRESENTATION SERVICES--MAPPED CONVERSATION VERBS

Figure 5.2-1.

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure 5.

nhnnnnn
N N N N N N N N
o m m N m m b w N

N‘

Overview of Presentation Services, Emphasizing Presentation
Mapped Conversations e e e e e e e e e e e e e ..
PS.MC's Use of the Basic Conversation Protocol Boundary .
GDS Variables and Logical Records .

Transformation of Data from MC_SEND_ DATA to a GDS Var1ab1e

An Example of Mapping +« ¢ ¢ ¢ v ¢ ¢« o . .
MC_TEST_PROC e e e e . . e e e

Services for

Deiectlng a Service Error as a Result of MC RECEIVE AND HAIT Processlng

. Detecting a Service Error as a Result of a Call to MC_TEST_PROC

. Receipt by PS.MC of a SVC_ERROR_PURGING Return Code -
. Receipt by PS.MC of a SVC_ERROR_TRUNC or e e s e e e e .

CHAPTER 5.3. PRESENTATION SERVICES--SYNC POINT SERVICES VERBS

Figure 5.3-1.
Figure 5.3-2.

Relationships among Failures and Recovery
A Typical Sync Point Tree e e e e e e e e e e e e e e e

List of Illustrations

G-1

-
4-14
4-15
4-16
4-17
6-22
4-26
4-31
4-32
4-33
6-36
4-35
4-36
4-36
4-37
4-37
4-38
4-39
4-60
4-61
4-61
6-42
6-62
4-63
4-64
6-45
4-66

5.0-2

5.0-3

5.0-5
5.0-6

.

nuonuunuuownm
R T b
VoOUNnpPUURN

.
1

.

.

ool woaonwN

nunununn
IR
e

Figure b5.3-3. Basic Sync Point Flows . e e e e s e e s e s s e s e e .. B.3-4
Figure 5.3-4. Optimized Flow: No Resource Changed e et e s e s e e s e e e e s . B34 '
Figure 5.3-5. Optimized Flow: Last Resource B5.3-5 (::?f
Figure 5.3-6. Sync Point Services for Local (Nonconversaixonal] Resources, Such as

Files .. . e e e e e e e e e e e e e e e e 5.3-5
Figure b5.3-7. Sync Point Servzces for Conversation Resources e e e e e e e e e e 5.3-7
Figure b5.3-8. Sync Point Services for Function Shipping C e e e e e .« .. . 5.3-8
Figure 5.3-9. Illustrative Sync Point Flow: General Case 5.3-11
Figure 5.3-10. Illustrative Sync Point Flow: Last-Resource Optzmxzaflon . . 5.3-13
Figure 5.3-11. Illustrative Sync Point Flow: No Resources Changed . « v e 5.3-14
Figure 5.3-12. Back Out Example 1 e 5.3-17
Figure 5.3-13. Back Out Example 2 .. C e e e e e e e e e e e e e e 5.3-17
Figure 5.3-14. Resync after Conversation Fallure e e e e e e e e e e e e e e 5.3-19
Figure 5.3-15. Resync after LU Failure .. e e e e e 5.3-20
Figure 5.3-16. Avoiding Failure Resulting from an Attach—SON Race . .- . 5.3-21
Figure 5.3-17. SEND_ERROR and Prepare vs. Prepare Race during Session Ou{age . e . 5.3-22
Figure 5.3-18. SEND_ERROR and Request Commit vs. Prepare Race during Session Outage 5.3-23
Figure 5.3-19. Lost Sync Point Messages: Initiator's View C e e e e e e ... 5.3-24%
Figure 5.3-20. Lost Messages for Sync Point: Last Agent's View e+« . 5.3-25
Figure 5.3-21. Resynchronization Action: At Initiator, When Resynchronlzlng with the

Last Agent C e e e e 5.3-26
Figure 5.3-22. Resynchronization Action: At Last Agent, Nhen Resynchronizing with the N

Initiator - S 1 4
Figure 5.3-23. Resynchronization Action: At Initiator, When Resynchronizing with the _//

Not-Last Agent C e e e 5.3-28
Figure 5.3-24. Resynchronization Action: At Not Last Agent, Nhen Resynchronlzxng w1th

the Initiator e . 5.3-29
Figure 5.3-25. Resynchronization Act1on: Resync from Last Agent 5.3-30
Figure 5.3-26. The Sequence of LU Control Operator Messages Generated by Sync Po1nt

Resynchronization . . e e 5.3-31
Figure 5.3-27. Cascaded Resynchron1zatlon Example e e e e e e e e e e . 5.3-32
Figure 5.3-28. Cold Start of an LU e e e e e e e e e e e e e e e e e . 5.3-33
Figure 5.3-29. Log Name Mismatch during Resync . . . 5.3-34
Figure 5.3-30. Sync Point Services Calling Tree . . 5.3-36
Figure 5.3-31. Heuristic Mixed in Reply to Sync Poxnt Flow .. . 5.3-38
Figure 5.3-32. Verb Sequences and Sync Point Flows to the Last Agent, Nh1ch Has No ~

Cascaded Resources e e e 5.3-38K
Figure 5.3-33. Sync Point with No Resources Changed 5.3-39 ~__~
Figure 5.3-34. Sync Point with Changes to Protected Resources, Request SEND 5.3-39
Figure 5.3-35. Sync Point with Changes to Protected resources, Request RECEIVE . 5.3-40
Figure 5.3-36. Sync Point with Changes to Protected Resources, Request DEALLOCATE . 5.3-40
Figure 5.3-37. BACKOUT Logic .. c e e e e e e e e e e - T L3

CHAPTER 5.4. PRESENTATION SERVICES--CONTROL-OPERATOR VERBS
Figure b5.4-1. Control-Operator Components in Relation to Other Components of the LU 5.4-2
Figure 5.4-2. LU Component Relationships for Distributed Session-Control Verbs . 5.4~7
Figure b5.4-3, Sequence of Verbs and Information Exchange in CNOS Transaction Programs 5.4-9 (/_\
Figure b5.4-4. CNOS External Message-Unit Flows - M52 U
Figure b5.4-5. CNOS Process Interactions at a Single LU . e e . e e e e e e . Bl T
Figure b5.4-6. Transaction Handling Component Relatlonsths--Case 1 e e s s e s . B.G-12
Figure b5.4-7. Transaction Handling Component Relationships--Case 2 e ¢« e s e s e . 5.64-13
Figure b5.4-8. Transaction Handling Component Relationships--Case 3 e s e s s s . . B.4=14
Figure b5.4-9. No Race - Y 1 ()
Figure 5.4-10. Single-Failure Race Condition--Case 1 s s s e e s s s s s e s s e e . b.G-17
Figure 5.4-11. Single-Failure Race Condition--Case 2 vt 4 et e s e e s s e e e s . B.4-18
Figure 5.4-12. Double-Failure Race Condition s v e s e s s e s e s . B.G-19
Figure 5.4-13. Structure of Presentation Services for the Control Operator v v s s . B.,4-23
Figure 5.4-14. Single-Session Contention Polarity Determined by
. Minimum-Contention-Winner-Limit Parameters 5.6-2¢
Figure 5.4-15, Source-LU Component Interactions for CNOS b5.6-26
Figure 5.4-16. Target-LU Component Interactions for CNOS+ .+« .+ . . B5.4-29
CHAPTER 6.0. HALF-SESSION

Figure 6.0-1. Overview of Half-Session . s e e s e s . 6.0-1
Figure 6.0-2. Message Units Exchanged Between HS And Other Componenis. c e e e e 6.0-2

xXXii SNA LU 6.2 Reference: Peer Protocols

O

O

CHAPTER 6.

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure 6.

CHAPTER 6.

Figure
Figure
Figure
Figure
Figure

1. D

s ono
H il ﬁ H H

1 10.

-1
-2
-3.
-4,
~5. Case 2: “Early" SIGNAL e e e e e e e e e e
-6
7
8
-9
0

ATA FLOW CONTROL

Overview of DFC e e e e e e et e e e e e e e e e e e e e e e e
Detailed Structure and Protocol Boundaries of DFC e e e e e e e e
Use of Sequence Numbers e
Case 1: "Late" SIGNAL or Response N

. Case 3: "Early" SIGNAL e .. .

. Mapping from SEND_DATA_RECORD to request RH

. Mapping from request RH to MU (sent to PS) .
. DFC Request Formats c e e e e e e e e e e e

e e e e o
e e e o e o
.
.
.
.

DFC Response Formats e e e e e e e e e

2. TRANSMISSION CONTROL

[
NN ? NN
NP WP

APPENDIX A. NO

APPENDIX B.

Figure
Figure
Figure
Figure
Figure

APPENDIX N.

Figure

APPENDIX T.

BU

B~
B-
B-
B
B

anPwNH

N-1.

TE

. Structure of TC and Flow of Data within the Half-Session e e e
. Distributing the Session Cryptography Key and Session Seed to the LU
. SEND_MU and TC.RCV Request/Response Flow e e e e e e e e e e e e
. Session-Level Pacing with Solicited IPMs PR ce .
. Session-Level Pacing with Unsolicited IPMs e e e e e e e

DE DATA STRUCTURES

FFER MANAGER

Send/Receive Buffer Usage (for Session Data) e e e e e e

LU Interactions with BM Rhen Sending Data e e e e e e e e

LU Interactions with BM When Receiving Data e e e e e e e .

Receiving a Solicited IPM + « ¢ v v v v v v v v v v .
Sending a Solicited IPM e

FSM NOTATION

Syntax of an FSM State-Transition Matrix C e e e e e e e

RMINOLOGY: ACRONYMS AND ABBREVIATIONS

List of Illustrations

- xx11

-0 AN - N N)
)
mPpUuwUNNLOIOOWN

[N N)

[Iy
et et e

B-4
B-12
B-13
B-16
B-17

"D

XX1iv

SNA LU 6.2 Reference:

This page intentionally left blank

Peer Protocols

®

N

CHAPTER 1. INTRODUCTION,

USE AND ORGANIZATION OF THIS BOOK

This book, in conjunction with the companion
books listed in the Preface, provides a
formal definition of Systems Network Archi-
tecture (SNA). It is intended to complement
individual SNA product publications, but not
to describe individual product implementa-
tions of the architecture.

SNA logical unit type 6.2 (hereafter general-
ly referred to as LU 6.2, or simply LU) is
defined here in the form of a functionally
layered system, represented by a formal
description, that is decomposable into compo-
nents called protocol machines. Protocol
machines generate output sequences in
response to 1input sequences, in accordance
with fixed rules, or protocols, governing
distinct information transfers into, out of,
and within the system.

The protocol machine definition of SNA uses
the following basic notions:

U Finite-state machines: A finite-state
machine (FSM) 1s an abstract device hav-
ing a finite number of states (memory)
and a set of rules whereby the machine's
responses ‘(state transitions and output
sequences) to all input sequences are
well defined.

® Routing and checking logic: Routing and
checking logic performs a mapping of
inputs (message units and FSM states)
into outputs. It 1is used to verify
validity of message units and to route
them to FSMs.

® Block diagrams: A block diagram repres-
ents the decomposition of a protocol
machine into its component submachines
(which themselves are protocol machines)
and the signaling paths between them.
Each block in the diagram can be further
decomposed into 1its constituent subma-
chines.

¢ Protocol boundaries: A protocol boundary
1s a specification of the format and con-

tent requirements imposed on the signals
exchanged between protocol machines with-
in the same node.

The remainder of the book presents details of
the SNA formats and protocols for LU 6.2,
arranged as follows:

® Chapter 2 provides an overview of the
functions and structure of the LU, as
well as the sequences and message units
exchanged between two communicating LUs.

® Chapters 3 and 4 describe LU services
manager components; these components
attach transaction programs as requested,
allocate sessions to transaction pro-
grams, and coordinate the activation and
deactivation of sessions involving LUs.

® Chapters 5.0 through 5.4 describe the
general structure and detailed functions
of presentation services—in particular
the execution logic for LU 6.2 verbs.

¢ Chapter 6.0 provides an overview of the
half-session, while Chapters 6.1 and 6.2
describe the data flow control and trans-
mission control protocols, respectively,
within half-sessions.

® Appendix A describes the data structures
used in the formal description and the
relationships among the control blocks.

® Appendix B describes the basic functions
of the buffer manager and its protocol
boundary with the LU.

¢ Appendix N describes the basic concept
of, and notation for, finite-state
machines.

e Appendix T provides a comprehensive list

of abbreviations and acronyms used in the
book .

Chapter 1. Introduction 1-1

e e s e e v s essesse et e s s ses s

D I R A R R I I A R A A A T A A A S A A A Y

D I R R A I I I I S R IR A A}

eeceesssssesssssassssesssses.Other NAUs (PUs and SSCPs)

A. . . .A
|] o 00|

V. . .V

eeecesrrsscsseseccsssnc s

I I I I R R N R R R R

D R I I e R R R

End .
User | <

v

Upper
Layers

of the
LU

Half-Session

<+>

Upper
Layers
of the

Half-Session

Half-Session

LUz

. <—>|Half-Session|<t+>
. LUl .

<>

End .
User B

scecses s e

R R

R R N I

D R

ssceesscesesans

L R I I I N I I I I I S AP AT AT

seeceescecss e

D N R N

eessesccsss s

ssesesccsscsenne

R I I I I A

Upper

Half-Session

<+>

|
-

MSG=
(session routing

Half-Session

Half-Session

<=> <

Upper
Layers

of the
LU

<=> <

LUj

End
>|User

\

End
User

R R I I R I I A I I I I AT A AP AP

R R R I R A N I I I NI

DI R R e I I I I N I A A R SR A AP I

L R R I I I A R R

DR I I I R e A N I

I I R I R R IS IR AP Y

eseessscectcnse

eeeeccosesse

eeesscccos e

secececscocsss s

eeecscs v

esecscsscocsss

ce s oo

e e

D R A I I

sececocsscocos

cececes st

eessseses s secne

D I I R R I I R N R

D R R R I I I N N A S AP

e eeses s s s e s s eesensssscscssane e

D R I I I I I R R R

D R I I S N A I ST I A PSR Sy

D I R R R R R I I I N AR AP I

I I I I R R I AT N A T A Y

D R I I I I T T A P P P P R

DR R I I R R U I I I AT A S AP I

L R I R I R I I I I N N

<{1>|Half-Session

<—=>

Upper

.

. Layers] . |information, . L Layers |[<
< >|of the L . |other parameters,|. . of the

. LU ° . land data) . L LU

. <—>|Half-session|<t> <t>|Half-session|<—>

. . Path Control .

. LUL . Network . LUK

D I I R N R I I A I R

SNA Network

® © 0 0 5 0 00 0 0 0 000 8008060000 E000e000E0000000000000000s00000000c00c0c0cs0cs00CLIOCIIONIOEOCENNTOEIOGEOITOTS

LI R I R I I R N A R R

Figure 1-1.

1-2

Overview of the SNA Network

SNA LU 6.2 Reference:

Peer Protocols

>|End
User

(

GENERAL CONCEPTS

Q
N

DEFINITION OF AN SNA NETWORK

An SNA network:

® Enables the reliable transfer of data
between end users (typically, terminal
operators and application programs).

® Provides protocols for controlling the
resources of any specific network config-
uration.

An SNA network consists logically of a set of
network addressable units (NAUs) intercon-
nected by an inner path control network con-
sisting of the path control, data link
control, and physical layers; Figure 1-1 on
page 1-2 shows the general relationships.
SNA networks functionally have a layered
organization, the outermost layers of which
form the NAUs, A NAU consists of the upper
layers, transaction services (TS) and presen-_
tation services (PS), and one or more
half-session protocol machines (consisting of
the data flow control and transmission con-
trol layers), depending on the number of oth-
er NAUs with which it can be paired to form
sessions.

Those NAUs serving end users are called log-
ical units (LUs). An LU allows an end user
to gain access to network resources (such as
links, programs, and directories) and to com-
municate with other end users. An LU may
also provide a service (such as for a control
operator) wholly contained within the LU that
is accessed from another LU via a session.
Thus, in some cases, an LU-LU session has an
end user only at one end. The presence of
various services within an LU is a function
of LU type, product design, and installation
options.

In general, there need not be a one-to-one
relationship between end users and LUs. The
association between end users and the set of
LUs is an implementation design option.

The LUs provide protocols allowing end users
to communicate with each other and with other
NAUs in the network. An LU can be associated
with more than one network address (or with
multiple, distinct local-form session identi-
fiers)s; this allows two LUs (and therefore
their end users) to form multiple, concur-
rently active sessions with each other.

Besides LUs, two other network addressable
units are defined: hysical units (PUs) and
system services contro points (SSCPs).
These NAUs, 1n conjunction with one another,
with control points (CPs) in T2.1 nodes, and
with LTUs, provide a variety of session, con-
figuration, management, and network-operator
services.

Message units are transported between NAUs by
the path control network. These message
units are of the general form:

MSG = (session routing information ,other
parameters, and data) The path control net-
work routes and delivers message units to naj
in the same order as sent from nai.

The message units transferred within an SNA
network generally have +two components:
end-user information and control information.
The end-user information is passed by the SNA
network and does not affect its state. Con-
trol information may sometimes be passed to
the end users (as in the case of the Change
Direction 1indication, which allows one end
user to transfer the right to transmit data
to the other); however, its main purpose is
to change the state of the SNA network, thus
effecting a normal control change (such as a
change to a path control routing table) or a
recovery from an exception condition.

NODES

The SNA network physically consists of nodes
interconnected via links. An SNA node is a
grouping of SNA-defined protocoel machines.
An SNA product node may consist of addi-
tional, product-specific protocol machines

that use one or more SNA nodes. A
user-application node may consist of addi-
tional, installation-defined protocol

machines that use one or more SNA product
nodes. These relationships are shown in Fig-
ure 1-2 on page 1l-4. The abstraction of
nested nodes is a useful reminder that each
product exists in an environment that con-
tains many design features that are not
defined by SNA.

For specific details of nesting of SNA nodes
and SNA product nodes within user-application
nodes, see SNA Concepts and Products and SNA
Technical Overview. -

In this book, "node" is synonymous with "SNA
node," and the qualifier will generally be
omitted. Thus, end users and protocol
machines not defined in SNA are external to
the node, as that term is used hereafter.

Various node types are defined in SNA: types
1, 2.0, 2-1) G, and 5. They are distin-
guished by varying capabilities, such as for
interconnection, and by the presence or
absence of different NAU types.

For example, type 2.1 nodes can connect to
the general subarea routing network or +to
other type 2.1 nodes directly. In the former
case, subarea nodes (discussed below) provide
general intermediate routing within the path
control layer, allowing complex network con-
figurations to be fashioned; in the latter
case, two type 2.1 nodes can interconnect
independently of other nodes, in a
peer-to-peer relationship.

Type 1 and type 2 (i.e., 2.0 or 2.1) nodes
are also referred to as peripheral nodes,

Chapter 1. Introduction 1-3

.............. vesesasssacees SNA Product Node

User-Application Node

(a) Typical Case

e e s e s et s e s s ssrses st secesssers st esen s e

..........

User-Application Node

(b) Two SNA Nodes within an SNA Product Node

27N
S
SNA Node . .. SNA Node
. SNA Product Node . SNA Product Node
User-Application Node TN
{
(c) Two SNA Product Nodes within a User-Application Node \\-_/

Figure 1-2. Examples of Nested Nodes

because they have limited addressing and
path-control routing capabilities. They do

al nodes attached to the subarea node.) Sub-
area nodes, besides also being sources and

1-4

SNA LU 6.2 Reference:

not participate in the general network rout-
ing based on a global network address space.
Instead, they depend on "boundary function"
support in types 4 or 5 nodes to transform
between the address forms, local to the
peripheral nodes, and the network addresses
used in the general routing portion of the
path control network. Peripheral nodes are
thereby insulated from changes in the global
network address space resulting from reconf-
igurations.

Types 4 and 5 nodes are referred to as sub-
area nodes. (A subarea represents a parti-
tioning of the network address space. It
contains a subarea node and all the peripher-

Peer Protocols

sinks of data, have more general path control
capabilities. They can perform intermediate
routing—passing message units received from
one node on to another—and provide adaptive
control of traffic flow within the subarea
routing portion of the network.

NAUS AND NODE TYPES

Except for a T2.1 node, a node always
includes a physical unit (PU), which controls
the attached 1links and various other
resources of the node. A PU has a type des-
ignation corresponding to the type (1, 2.0,

C

@

4, or 5) of node in which it resides. A T2.1
node includes the PU functions within its
local control point (CP), described further
below.

A node typically also includes logical units
(LUs), through which end users attach to the
node, and thus to the SNA network. From the
vantage of this and the companion LU 6.2
book, node types 2.1 and 5 are of primary
interest, as these are the only nodes that
include LU 6.2 implementations. This book
focuses on the SSCP-independent LU 6.2 proto-
cols, and emphasizes interactions within the
T2.1 node to support these peer protocols.

A subarea PU or subarea LU resides in a sub-
area node. A peripheral PU or peripheral LU

resides in a peripheral node.

Type 5 nodes each contain a system services
control point (SSCP). (Type & nodes do
not—the primary architectural distinction
between subarea node types.) An SSCP sup-
ports protocols for management and control of
a domain. A domain consists of one SSCP and
the PUs, LUs, links, and link stations that
the SSCP can activate. Each PU, LU, link,
and link station in a network belongs to one
of the domains comprising the network, and
some can belong to more than one domain—a
feature referred to as ‘'shared control."
Each SSCP provides network services within
its domain (basically for converting local
names to global addresses) through protocols
supported in conjunction with the PUs or LUs
in the domain. The multiple SSCPs in a net-
work jointly support network services across
domains.

Type 2.1 (T2.1) nodes each contain a control
point (CP), which provides services on a more
local scale than an SSCP provides. In par-
ticular, a T2.1 CP can mediate LU-LU
session-initiation requests (by doing

<:iﬂ}0THER DEFINITIONS AND NOTATIONAL CONVENTIONS
s

C

This section describes some notational con-
ventions widely used in both the figures and
the text. (Additional conventions are
defined within figure legends throughout the
book.)

A naming convention, using qualifiers sepa-
rated by periods to denote more specific com-
ponents of a composite protocol machine, is
used throughout the book. Component subma-
chines are shown as blocks within a larger
block that represents the composite machine.

In many cases, it is desirable to identify a
qualifier by a phrase of multiple terms, in
order to better convey the meaning of the
qualifier. The multiple terms in the phrase
are connected by underscores to indicate that
they are part of a phrase rather than sepa-
rate qualifiers representing further decom-
positions. The underscore convention is also
used in names of states and data structures.

partner-LU address look-up in its local data
base) in the SSCP-independent LU 6.2 context
just as an SSCP does in the SSCP-dependent LU
6.2 context.

THE PATH CONTROL NETHWORK

The system consisting of all interconnected
path control (PC) and data link control (DLC)
components forms the path control network.
The input/output streams of the path control
network consist of streams of control infor-
mation, such as addresses, and associated
user data.

Each node has a PC element and NAUs. The
node and link connections of the network, and
the PC routing algorithms, combine to provide
the following behavior for the path control
network:

® An input to a PC element in node-i from a
NAU is transmitted and routed by the path
control network and emitted as output by
the PC element in node-j to the destina-
tion NAU. (Since node-i and node-j can
be the same node (i=j), NAUs within the
same node can be connected by a session.)

® Message units with the same session iden-
tifiers are emitted by the path control
network in the order submitted by the
origin NAU.

Just as primary-secondary DLC asymmetries and
other DLC details are hidden from PC, so the
routing and other concerns of the path con-
trol network are not visible at the protocol
boundary with the NAUs; in particular, the
path control network conceals the node inter-
connections and the NAUs need only consider
their logical connections (i.e., sessions)
with other NAUs.

Each protocol machine in the book has a
unique name consisting of a sequence of qual-
ifiers. For example, (MACHINE.PRI.X_SEND,
MACHINE.SEC.X_RCV) and (MACHINE.SEC.X_SEND,
MACHINE.PRI.X RCV) are examples of two basic
protocol machine pairs. This naming conven-
tion produces protocol machine names that
carry precise information on the role of the
protocol machine and its relative position in
the network structure.

Two other symbols, "|" and "&," are used in
names and expressions. The "|" symbol indi-
cates one of several (or "either...or"). For
example, MACHINE.(PRI|SEC) means "“either
MACHINE.PRI or MACHINE.SEC." The "&" symbol
is used to indicate composition. For exam-
ple, MACHINE.(RCV&SEND) is the composite pro-
tocol machine consisting of MACHINE.RCV and
MACHINE.SEND.

Chapter 1. Introduction 1-5

1-6

SNA LU 6.2 Reference:

Some of the protocol machines defined in the
book interact directly with undefined compo-
nents. These undefined components, called
undefined protocol machines (UPMs), represent
implementation and/or 1nstallation options
that are not architecturally prescribed (be-
ing product or user oriented).

Within block diagrams, the following con-
ventions indicate the type of interaction
between components:

® Solid arrows indicate data flow; between
processes, this implies send/receive
{asynchronous) logic.

o Dotted arrows indicate calling relation- .

ships.

] Dotted indicate data structure

access.

lines

Message units exchanged between SNA compo-
nents are also denoted by special notation,
particularly in sequence flow diagrams. A
message unit is either a request or a
response, depending on the RH coding (see SNA
Formats); these are denoted respectively by a
request-unit name (here designated gener-
ically by the term "RQ") and by RSP.

RQ(QUAL) denotes a request having the proper-

ty described by QUAL; for example, RQ(Begin
Chain), or simply RQ(BC), denotes a request

Peer Protocols

whose RH is coded "Begin Chain." A similar
convention applies to responses. For exam-
ple, RSP(BIND) denotes a response to the BIND
request—a response that echoes the request
code "BIND.")

The asterisk (%) character is used in
sequence flows, as well as elsewhere, to mean
"any value" (or "don't care"). For example,
"%XBC" means "BC or -BC"—where "-~" is the
standard symbol for "NOT."

"Chapter 2. Overview of the LU" describes
additional conventions used in sequence flow
diagrams.

logic in the formal
description uses simple English, some
control-structure elements (e.g.>»
if/then/else) common to most high-level lan-
guages, and a few straightforward conventions
that are generally clear in context. For
example, a call is frequently shown in the
form: "Call PROCEDURE(X, Y, 2)"; this
results in calling PROCEDURE and passing it
the arguments X, Y, and Z. Perhaps, the only
control-structure needing additional explana-
tion is the select/when group: at most, one
when-clause is executed in a given pass.

The procedural

Abbreviations commonly used in the text are
listed at the back of the book (Appendix T)
for easy reference.

O

CHAPTER 2.

OVERVIEW OF THE LU

C

INTRODUCTION

CONCEPTS

This chapter is an overview of logical unit

type 6.2 (hereafter referred to simply as
LU). "The LU provides application programs
AND TERMS

C

DISTRIBUTED TRANSACTION PROCESSING

Distributed transaction processing involves
two or more programs, usually at different
systems, cooperating to carry out some proc-

essing function. This 1involves program
intercommunication to share each other's
local resources such as processor cycles,

data bases, work queues, or human interfaces
such as keyboards and displays.

The LU supports distributed transaction proc-
essing by serving as the port between the
programs and the path control network. It
allows a transaction program (TP) to invoke
remote programs and to exchange data with
them.) :

All communication provided by the LU is
program-to-program. Any end user that is not
a program is represented to the LU by a pro-
gram. For example, fixed-function terminals
and their devices (e.g., Keyboards and dis-
plays) present themselves as fixed programs
(e.g., microcode) that use the same LU func-
tions as user-written application programs.
Human users at workstations do not interact
directly with the LU but rather with local
workstation programming support, which in
turn interacts with the LU.

This program-to-program communication accom-
modates a variety of distributed processing
connections, including peripheral node to
subarea node, subarea node to subarea node,
peripheral node to peripheral node through
the subarea network, and direct T2.1 node to
T2.1 node. For example, an application pro-
gram at an outlying site (a terminal or a
distributed processor) might communicate with
a data-base management system at a central
processor to maintain consistency between
regional and central records. For another
example, systems programs in workstations
might exchange files and documents with each
other.

Figure 2-1 on page 2-2 illustrates the role
of the LU in relation to an SNA network. The

with support functions for distributed trans-
action processing.

LU connects transaction programs to the path
control network. The LUs activate sessions
between themselves. The component of a ses-
sion in each LU is called a half-session.
Two or more sessions between the same pair of
LUs are called parallel sessions. Multiple
sessions can concurrently use the same phys-
ical resources connecting the LUs.

The logical connection between a pair of
transaction programs is called a
conversation. A transaction program initi-
ates a conversation with its partner with the
assistance of the LUs. While a conversation
is active, it has exclusive use of a session,
but successive conversations may use the same
session.

An LU may run many transaction programs suc-
cessively, concurrently, or both. Each
transaction program may be connected to one
or more other transaction programs by conver-
sations. Multiple conversations between dif-
ferent pairs of transaction programs can be
active concurrently, with each conversation
using a distinct session.

Conversations connect TPs in pairs, but any
TPs directly or indirectly connected to each
other by conversations are participating in
the same distributed transaction. For exam-
ple, if TP A and TP B are connected by a con-
versation, and, concurrently, TP B and TP C
are connected by a conversation, then TPs A,
B, and C all are participating in the same
distributed transaction.

TRANSACTION PROGRAMS

The direct user of the LU is an application
transaction program (application TP). Appli-

cation TPs are provided by the end user to

carry out functions of distributed applica-
tions.

A transaction program is distinguished from
programs in general by two characteristics:

Chapter 2. Overview of the LU 2-1

oo eo so es se se ee
e ee so s s oo oo

TPe

oo o s oo
e ss oo e

.
.

e eo oo es ee ee
ee oo e s oo e

TPf

o0 oo so es o
o oo oo ee o

e ee ee
LU
oo ee ee
o es oo
s es ee
s oo ee

Transaction

Application
Programs

I
L
¥ NSNS N RN NN NI NN EN NN NN

s ee se se ee e

e e
oo oo

Parallel Sessions
(connecting two LUs)

N

.

e ss es s s es

TPd

I

TPg

Single Session
(connecting two LUs)

.
.

LEGEND

two TPs)

ing

ion(connect

ion

Conversat

the SNA Network (Example)

ithin

Placement of LUs w

2-1

igure

F

R
eL_/

4
|

11

ism ca
transaction program

oked py anothe
th another named

10N W1

is 1
by a mechan

ing

tiates a conversat

K

invol

ion program

transaction program
The
in1

A transact
Attach.

ion

t

1ca

oked, and the commun

tiates.

is 1nv
ini

it
it

ions

the way
funct

Peer Protocols

SNA LU 6.2 Reference

2-2

o,

&/‘

O

program. The invoked program is started run-
ning and 1is connected to the conversation
with its invoker. (In the case of the ini-
tial program of a distributed transaction,
the LU receives a START_TP record sent by a
process external to the LU, e.g., the node
operator facility [NOF1, which prompts the LU
to invoke a transaction program. For more
information about NOF, refer to "Functions of
Components of the Node External to the LU" on
page 2-35.)

A transaction program uses the LU to communi-
cate with other transaction programs by issu-
ing transaction program verbs (which are
described in SNA Transaction Programmer's
Reference Manual 1 for LU Type 6.2). (In some
cases, internal LU components also issue
transaction program verbs on behalf of trans-
action programs.)

Besides application transaction programs,
distributed transactions can include trans-
action programs provided by the LU itself,
called service transaction programs (service
TPs). These are SNA-defined transaction pro-
grams within the LU that provide utility
services to application transaction programs
or that manage the LUs. They are attached by
other transaction programs and they issue
transaction program verbs to communicate with
other transaction programs. For example, the
LU includes service transaction programs for
distributed operator control of the LU, by
which control operators can determine the
number of parallel sessions they will share,
and for sync point resynchronization, which
assists distributed transaction recovery fol-
lowing transaction failure in certain circum-
stances. Other service TPs provide document
interchange services (using Document Inter-
change Architecture [DIAl), which allow
processors and workstations to synchronously
exchange files and documents. Furthermore,
SNA Distribution Services (SNA/DS) service
TPs provide asynchronous distribution of
files and documents.

Different execution instances of the same
transaction program could perform parts of
the same distributed transaction at different
LUs or parts of several different trans-
actions at the same LU.

CONTROL OPERATOR

The LU control operator describes and con-
trols the availability of certain resources
(see "Resources"); for example, it describes
network resources accessed by the local LU
and it controls the number of sessions
between the LU and its partners.

The LU control operator is represented to the
LU by a control-operator transaction program
that interacts with the LU on behalf of, or
in lieu of, a human operator. The relation-
ship between the control-operator transaction
program and the LU control operator is
implementation-defined.

The control-operator transaction program
invokes operator functions by issuing
control-operator verbs. These verbs are
1ssued by the control-operator transaction
program to convey operator requests to the
internal components of the LU.
Control-operator verbs are described in SNA
Transaction Programmer's Reference Manual for
LU Type 6.2. -

RESOURCES

The LU provides several kinds of resources to
support distributed transactions.

Conversations connect transaction programs
and are used by the transaction programs to
transfer messages. A conversation is acti-
vated when one transaction program attaches
another.

Associated with each end of a conversation
are protocol states that each LU maintains in
order to coordinate interaction between the
two TPs. These indicate (for example) which
TP is sender and which is receiver at a given
time.

The LU provides two types of conversations.
Mapped conversations allow the TPs +to

exchange arbitrary data records in any format
set by the programmers.

Basic conversations allow TPs to exchange
records containing a two-byte Length prefix.

Application transaction programs typically
use mapped conversations, and service trans-
action programs typically use only basic con-
versations; however, either conversation type
might be used by either program type.

Sessions provide relatively long-lived con-
nections between LUs; a session can be used
by a succession of conversations. Sessions
are activated by LU pairs as a result of
operator commands and transaction-program
requests for conversations. Session aware-
ness by the transaction program is unneces-
sary for successful communication. Most
transaction programs need be concerned only
with conversations, leaving the LU to manage
sessions.

A mode is a set of characteristics that may
be associated with a session. These charac-
teristics typically correspond to different
requirements for cost, performance, and so
forth. Modes are defined by the control
operator as a selection of
path-control-network facilities and LU
session-processing parameters.

One characteristic of mode is class of serv-
ice. The path control network can offer dif-
ferent classes of service that correspond to
particular physical links and routes and par-
ticular transport characteristics such as
path security, transmission priority, and
bandwidth

Chapter 2. Overview of the LU 2-3

2-6

SNA LU 6.2 Reference:

Other characteristics of mode include
operator-selected processing parameters such
as message-unit sizes and the number of mes-
sage units sent between acknowledgments (pac-
ing window sizes).

Each mode characterizes a group of sessions
with a particular partner LU; multiple modes
may exist for the same partner LU. Modes
associated with different partner LUs are
considered distinct, even if they represent
similar sets of characteristic

A combination of partner LU and mode is
called an (LU,mode) pair.

LU-accessed network resources constitute the
relatively static environment that the LU or
its containing node establishes as a result
of installation definition. The principal
components of this environment are the LU
itself, the control point that serves the LU,
the transaction programs that the LU can run,
the potential partner LUs (remote LUs) with
which the LU can communicate, and the modes
of service available between the LUs.

Local resources are resources whose principal
functions and operations are not defined by
SNA, but which LU components use or interact
with for some functions. These include local
files, data bases, recovery and accounting
logs, queues, and terminal components. For
example, LU components interact with local
data-base managers to coordinate distributed
error recovery of data-base updates. Also,
SNA distribution services uses queues to
exchange messages between application trans-
action programs that provide document routing
and distribution.

Protected resources are local resources, such
as data bases, whose state changes are logged
so that all resources changed by a trans-
action can be restored to a consistent state
in the event of a transaction failure. The
LU interacts with protected resources to pro-
vide the sync point function (see "Sync Point
Function" on page 2-37) for distributed error
recovery.

PROTOCOL BOUNDARIES

In order to accommodate LU implementations on
different processors and transaction programs
written in different programming languages,
SNA defines the LU's interface to application
transaction programs in generic terms only.
This specification is called the transaction
rogram protocol boundary. It consists of
EE? set of LU functions that a TP may
request, and the possible parameter values
that may be supplied or returned for these
functions.

SNA does not define a particular syntax or
format for representing these functions and
parameter values. Nevertheless, for purposes
of discussion in SNA publications, the func-
tions and parameters are represented gener-
ically by transaction program verbs; these

Peer Protocols

are described in SNA Transaction Programmer's
Reference Manual for LU Type 6.2.

Each LU implementation has one or more pro-
gramming environments that provide these
functions. Each such environment is called
an applications programming interface (API).

The LU actually presents a partitioned proto-
col boundary to the transaction program; for
example, there are separate subsets of the
verbs for mapped conversations, for basic
conversations, and for SNA/DS. When a
hierarchical relationship exists between
these subsets, e.g., when verbs from one set
cause internal issuances of verbs from anoth-
er set, this partition introduces sublayers
within the LU.

A protocol boundary can be interpreted from
two points of view.

From one point of view, a protocol boundary
is a boundary between two layers or sublayers
of the node. For example, TPs exchange data
with LUs across the TP-LU protocol boundary,
and LUs exchange data with the path control
network across the LU-path-control protocol
boundary. From this viewpoint, the rules of
exchange define protocols between adjacent
layers.

But from another point of view, a protocol
boundary is a boundary between two paired (or
peer), but distributed, components of the
same layer. In other words, the transaction
program protocol boundary may be thought of
as a direct boundary between one TP and
another, and similarly, the path control pro-
tocol boundary may be regarded as a direct
boundary between LUs.

Figure 2-2 on page 2-5 shows the principal
protocol boundaries between the LU and
external components. The figure 1illustrates
how the protocol boundaries divide the LU
into layers and sublayers, and how the con-
ceptual flows between peer components are
accomplished by successive adjacent-layer
exchanges. In this example, the application
TP has a mapped conversation with another
application TP and a basic conversation with
a service TP. The figure illustrates that
the conceptual information flow between peer
components at each layer is reduced to con-
ceptual information flow at the next lower
layer by actual information flow between lay-
ers and information transformation within
layers. For example, the conceptual mapped
conversation connection is reduced to a basic
conversation; each basic conversation 1is
reduced to a session; and finally, the ses-
sions are reduced to connections in the path
control network (which itself performs fur-
ther layer transformations that are not
shown).

NAMES

N\

/'\
k/’

The LU allows transaction programs to referC/

to its resources, such as other TPs and LUs

)

O

Application Application
TP Mapped Conversation TP
0C = = e e - = ——— — - >e
A A
Mapped-Conversation |————
Protocol Boundary Sssmssssssus|wsss NN ERE AN AN NN AN AN NN NN SN | AR
v v | A
OC = e . e = ——— >e
A A
Basic Conversations Service
(YU PR
A
Basic—Conversation —~
Protocol Boundary SESERE|SuEEE|NSE SN SNSRI AN E NN AN NSNS | A EN | suEn NS n | RAAn |
v I
0C m e e e - e — - -
v A | Sessions v
0 = = | = e e e - - - .- [Y]
| I 4
Path—Control

Protocol Boundary ANNANENNENES [SEEEEN NN NN AN NN NN NSRS AN AN NN | ARANEN

(Path Control Network)

LEGEND:
<— — => conceptual flows between paired components

<

mmmmnsn protocol boundary between layers or sublayers

Figure 2-2.

> actual flows between adjacent layers

Exchanges between Paired Distributed Components and between Adjacent Layers

and shared communication facilities, by
installation-selected names. Thus, the pro-
grams need not be concerned with implementa-
tion and configuration details such as the
actual network locations or transport charac-
teristics. For example, when one transaction
program invokes another, the invoking TP
identifies the partner TP by a transaction
program name, it identifies the partner LU by
an LU name, and it identifies the desired set
of session characteristics by a mode name.

Names are character strings that the instal-
lation associates with particular resources.
They are specified by the control operator
(on behalf of the installation management)
subject to the SNA-imposed constraints, e.g.»
character set and length restrictions,
described in SNA Transaction Programmer's
Reference Manual for LU Type 6.2 (Within an
LU implementation, the Jlocal Tesource names
may differ from those that conform to SNAj;
for example, a program directory might use
names of a different length or character set.
In this case, the implementation always
translates between its internal names and the
SNA-conforming names that are used by trans-
action programs or that are transmitted out-
side the LU.)

The name of a particular resource is known
within a particular environment. HWithin this
environment, the name of each entity of a
particular class 1is unique, but the same
entity might have different names in differ-
ent environments. For example, each LU

allows local aliases for remote resource
names, so that local transaction programs can
be made insensitive to name changes elsewhere
in the network. Of course, the control oper-
ator must change the LU's relevant
name-translation tables whenever the remote
names are changed.

Roles

Hereafter, the following terms are used to
distinguish the roles of individual TPs and
LUs of a pair. HWith respect to location, the
term local means residing at the LU from
whose perspective an activity is described;
the term remote means residing at that LU's
actual or potential session partner. HKith
respect to a conversation, the source TP (or
its LU) is the initiator of a conversation
with the target TP (or its LU).

Transaction Program References

A source TP selects a target transaction pro-
gram by its transaction program name (TPN) as
defined at the source LU. In the simplest
case, this is also the name of the TP as
defined at the target LU. Optionally, howev-
er, the source LU can allow the two names to
be different, in which case it converts the
TP-supplied name into the TPN recognized at
the target LU.

Chapter 2. Overview of the LU 2-5

2-6

SNA LU 6.2 Reference:

A TPN alone does not uniquely identify a
transaction program instance. If the number
of target transaction program instances does
not exceed its instance limit, the target LU
creates a new transaction program instance
for each Attach it receives; otherwise, the
target LU queues the Attach to await the
freeing of a target transaction program
instance.

LU References

Each LU provides a set of LU names by which
its TPs may refer to remote LUs: these names
are called local LU names (a local LU name
is a local alias of a remote LU's name, not
the local LU's own name). Local LU names are
unique within each LU, but not necessarily
outside an LU.

The control points involved in session initi-
ation identify each Lu by its
network-qualified LU name This name consists
of a network ID followed by a network LU
name. The network ID is unique throughout a
set of interconnected SNA networks; the net-
work LU name is unique within a particular
SNA network.

The path control network routes information
to an LU by a routing identifier rather than
by a name.

During session initiation, the LU supplies
the network-qualified LU name to the control
point. The control point provides a routing
identifier for that network-qualified LU
name. The correspondence between names and
routing identifiers is established by the
control point during session initiation. For
more information on the relationship of LU
names to routing identifiers (local-form ses-
sion identifiers, or LFSIDs), refer to SNA
Type 2.1 Node Reference.

The LUs themselves use their
network-qualified LU names for certain pur-
poses; for example, LUs resolve some race
conditions by exchanging and comparing their
network-qualified LU names.

Mode Names

A source TP can specify that the session
selected for a conversation have a particular
set of characteristics, or mode. It does
this by specifying a corresponding mode name.

Mode names are shared between a given pair of
LUs and are unique at an LU relative to a
particular partner LU. Mode names for dif-
ferent partner LUs are independent: the same
mode name can correspond to different sets of
session characteristics for different partner
LUs.

Peer Protocols

Internal Identifiers

The LU assigns internal identifiers to con-
versations and sessions once they are acti-~
vated.
half-session IDs, respectively. TPs or the
control operator use these identifiers for
subsequent references to these entities.
These identifiers are generated by the LU and
passed back to the transaction program or to
the control operator in the form required for
subsequent verbs; the transaction program or
operator need not interpret these identifi-
ers.

CONVERSATION CHARACTERISTICS

Send/Receive Protocol

The LU normally allows TPs to exchange data
in only one direction at a time, i.e., one TP
sends and the other receives until the send-
ing TP surrenders the right to send. This is
called half-duplex flip-flop protocol. The
LUs coordinate and enforce the send/receive
state at each end of the conversation. LUs
do allow some exceptions to strict alter-
nation of send and receive: the receiving
TP, at any time, can send an error indi-
cation, putting itself in send state; it can
send the partner an attention indication,
e.g., to request the right to send; and it
can abnormally terminate the conversation.

Sender/Receiver Concurrency

Different
degrees
receiver.

applications require different
of concurrency between sender and
For example:
®¢ On-line inquiry applications might
require real-time interaction.

¢ Status-reporting
require
response.

applications might
immediate transmission but no

® Document distribution applications might
allow sending and receiving at the send-
er's and receiver's convenience, respec-
tively, which might be separated by
arbitrary periods of time.

For the first two cases, the LUs use direct
conversations between the TPs.

For the real-time interactive case, the LU
keeps the TP-TP connection active until the
transaction is completed; both the source and
target TPs are concurrently active. This is
called synchronous transfer.

The LU treats the immediate-transmission,
no-response case as a special case of syn-
chronous communication, using a one-way con-
versation. The source L allocates
(initiates) a conversation as in the first
case, sends the data, and deallocates (re-

These are called resource IDs and

leases) the conversation. MWhen the message
reaches the target LU, it initiates the tar-
get TP, which receives the data and likewise
deallocates the conversation. But since the
source TP is expecting no reply, it might
have terminated while the data is still in
transit through the path control network,
before the target TP is initiated. Thus, the
source and target TPs are not necessarily
active at the same time.

For the third case, the LU provides SNA Dis-

between TPs.

Session Multiplicity

Only one transaction-program pair at a time
can use a particular session. In order to
allow multiple concurrent transactions, e.g.,
for a multiprogrammed processor or a
multiple-user workstation, some LUs, called
parallel-session LUs, allow two or more ses-

tribution Services (SNA/DS). In this case,
the sender, called the origin TP, and the
ultimate receiver, called the destination TP,
are typically not active at the same time.
Therefore, the data is stored at one or more
locations en route between periods of active
transmission. This mode of communication is
called asynchronous transfer.

In SNA/DS, the origin application TP sends a
message unit, ultimately intended for the
destination TP, to a local service TP. The
service TP at the origin stores the data in
local permanent storage. When the appropri-
ate time for sending the data arrives, e.g.,
when lower-cost transmission facilities
become available or after compensating for
time-zone differences, a service TP at the
origin allocates a conversation to a service
TP at the destination and sends the data.
The receiving service TP at the destination
LU stores the data in local permanent storage
for later retrieval. Finally, an application
TP at the destination retrieves the stored
message.

SNA/DS also allows multiple intermediate
service TPs between origin and destination.
The origin service TP can allocate a conver-
sation to an intermediate service TP, which
would receive the data, store it, and later
forward it to another intermediate service TP
or to the ultimate destination service TP.

Each SNA/DS service TP can also duplicate the
data and send it to multiple destinations or
application programs.

Mapping

Two communicating TPs might process the same
information using different internal data
formats (presentation spaces), e.g., differ-
ently organized data structures or different
sets of individual structures and variables.
To assist the TPs in interpreting data in
formats suited to their internal processing
algorithms while providing a mutually under-
stood format for the data transmitted over
the conversation, some LUs provide an
optional function of mapped conversations,
called mapping. (Mapping concepts are dis-
cussed i1n "Mapping Function" on page 2-36.)

SESSION ALLOCATION

A principal function of the LU is to provide
sessions between LUs for use by conversations

sions with a given partner LU. Any session
between a pair of LUs that both provide par-
allel sessions is called a parallel session,
even if only one such session 1s currently
active.

Some LUs, called single-session LUs, allow
only one active LU-LU session with a given
partner LU. A single-session LU may have
more than one session concurrently, but each
concurrent session is with a different part-
ner. Any session involving a single-session
LU is called a single session, whether the
other partner is a single-session LU or a
parallel-session LU.

Thus, all sessions between a pair of LUs are
of the same type: single or parallel. Some
LU protocols used on single sessions are dif-
ferent from those used on parallel sessions,
but these differences are indistinguishable
to transaction programs.

Session Pool

To avoid repeating session-activation proc-
essing for each conversation between the same
pair of LUs, the LU allows successive conver-
sations to use the same session.

When the LU activates a session or when a
session previously in use by a conversation
becomes free, the LU places the session in a
session pool. When a transaction program
initiates a new conversation, the LU allo-
cates a session from this pool, if one is
available.

Session Selection

Transaction programs do not select particular
sessions, but specify only that the conversa-
tion be allocated a session with a particular
partner LU and with a particular mode name.
The LU partitions the session pool by partner
LU and mode name; the LU allocates a session
from only those sessions for the requested
(LU,mode) pair.

Session Contention Polarity

Another session-selection criterion concerns
the relative priority of the LU for use of
the session. The LUs at each end of a ses-
sion could both try to start a conversation
at the same time. To resolve this con-

Chapter 2. Overview of the LU 2-7

SNA LU 6.2 Reference:

tention, the LU operator specifies, for each
session, which LU's TP will be allowed to use
the session in such a case; this is called
the session contention polarity. From the
viewpoint of the local LU, a session for
which that LU is designated to win an allo-
cation race 1is called a contention-winner
session (also referred to as a conwinner or a
first-speaker session). A session that the
local LU will surrender to the partner is
called a contention-loser session (also
referred to as a conloser or a bidder
session--so called because a contention-loser
LU will bid, i.e., request permission of the
contention-winner LU to use the session).

Session Limits

The number of sessions in the session pool is
constrained by operator-specified criteria,
including several 1limits on the number of
active sessions.

The total LU-LU session limit is the maximum
number of sessions that can be active at one
time at the LU.

The (LU,mode) session limit is the maximum
number of LU-LU sessions that can be active
at one time at an LU for that particular
(partner LU,mode) pair.

The automatic activation limit for a partic-
ular (LU,mode) pair specifies the maximum
number of LU-LU sessions that the LU will
activate independently of requests for con-
versations. Automatically activated sessions
constitute the initial session pool (addi-
tional sessions, within the other limits, are
added to the pool on demand from conversation
requests).

The local-LU minimum contention-winner limit
for a particular (LU,mode) pair determines
the minimum share of the total number of ses-
sions for that (LU,mode) for which the local
LU can be contention winner. Similarly, the
partner-LU minimum contention-winner limit
determines the minimum share of those ses-
sions for which the partner LU can be con-
tention winner.

Session limits are discussed in "Chapter 5.4.
Presentation Services--Control-Operator
Verbs" in more detail.

STARTING AND ENDING SESSIONS

Phases

Starting and ending sessions involves four
phases of activity, although some phases are
omitted in some circumstances.

" Session-limit initialization and reset con-

sists of 1ssuing control-operator verbs
(e.g.> INITIALIZE_SESSION_LIMIT,
RESET_SESSION LIMIT) to specify the number of
sessions the LU can have with a given part-
ner, and to specify conditions for their

activation and deactivation.

Session initiation and termination consists
of control-point activity, such as supplying
the network addresses corresponding to LU
names, that mediates requests for session
activation and deactivation.

Session shutdown consists of the LU activity
to terminate conversation activity on a ses-
sion prior to deactivating the session.

Session activation and deactivation consists
of creating or destroying the end-to-end log-
ical connection between the LUs.?

SESSION USAGE CHARACTERISTICS

Session Activation Polarity

An LU activates a session with its partner by
sending a message unit called BIND. The LU
that activates a session (sends BIND) is
called the primary LU (PLU); the LU that
receives BIND 1is called the secondary LU
(SLU}. These terms are relative to a partic-
ular session: the same LU can be primary LU
for one session and secondary LU for another.

The primary LU always has first use of the
session, i.e., it can initiate the first con-
versation on the session, regardless of the
session contention polarity. (KWhen the first
conversation completes, the principal right
to initiate conversations reverts to the
contention-winner LU.)

Session-Level Pacing

To prevent an LU from sending data faster
than the receiving LU can process it (e.g.,
empty 1its receive buffers), the two LUs
observe a session-level pacing protocol. At
the time a session 1s activated, the LUs
exchange the number (the pacing window size)
and size (the maximum RU size) of the message
units they can accept at one time. The send-
ing LU will send no more message units than
the receiver will accept (a pacing window)
until the receiver sends an acknowledgment
(pacing response) indicating that it can
receive another pacing window. The pacing
window size may be fixed for the duration of
the session or varied adaptively in accord-
ance with load and path congestion condi-
tions. (For more information on pacing refer
to "Chapter 6.2. Transmission Control")

1 session shutdown protocols use data flow control RUs, e.g., BIS.
Session activation and deactivation protocols use session control RUs, e.g., BIND, UNBIND.

Peer Protocols

C

N

(\\.

“ .

Profiles

Session traffic is characterized by a partic-
ular set of SNA-defined formats and proto-
cols, identified by a function management
(FM) profile and a transmission services (TS)

profile (see SNA Formats). The profile used
depends on the kind of session and the kind
of node: FM profile 19 and TS profile 7 are
used by LU 6.2 for LU-LU sessions.

Primary LU Secondary LU
BIND (RD1)
1 o >
RSP(BIND, PWIRD1], RD2)
2 < Lo}
r UNBIND
3a | o >
i
--or--<
| FMH-12 (PWIRD21)
3b | o >
L
r UNBIND
%a | < o
|
-=-or--<
|
4b |
|
L
LEGEND :
RDi random data (i=1]2)
PH LU-LU password

PHIRDi]l RDi enciphered using PH as cryptography key

2-3. LU-LU Verification
SECURITY

The LU provides three functions to assist the
installation in providing security: partner
LU verification, partner end-user verifica-
tion, and session cryptography. Partner-LU
verification is a session-level security pro-
tocol; it involves protocols at the time the
session is activated. Partner end-user ver-
ification 1is a conversation-level security
protocol, taking place at the time a conver-
sation is started. Session cryptography is
another session-level protocol, the parame-
ters for which are exchanged at session acti-
vation.

Partner-LU verification 1is done by a
three-flow exchange between the two LUs, with
each LU using an LU-LU password and the Data
Encryption Standard (DES) algorithm. This
exchange is called LU-LU verification. LU-LU
passwords (see SNA Transaction Programmer's
Reference Manual for LU Type 6.2) are estab-
Tished by ~ implementation and
installation-defined methods outside of SNA.
LU-LU passwords are on a partner-LU basis:
one LU-LU password is established between
each LU pair. This password is used for all

sessions between the LU pair. It is recom-
mended that each LU pair have a unique pass-
word; however, it is not an architectural
requirement.

Figure 2-3 shows the LU-LU verification pro-
tocol exchanges. In the following dis-
cussion, the numbers in parentheses
correspond to the numbers in that figure.

During session activation, random data (RD1l)
is sent in BIND from the primary LU to the
secondary LU (1). The secondary LU enciphers
this random data using the LU-LU password and
the random data as input to the DES algo-
rithm. The secondary LU returns (2) the now
enciphered random data (PWIRD11) to the pri-
mary LU along with its own randomly generated
data (RD2) in RSP(BIND). The primary LU com-
pares the received enciphered random data
with its own copy of the random data that it
enciphered using its LU-LU password and the
DES algorithm. If the two versions of the
enciphered random data do not compare equally
(3a), LU-LU verification fails, session acti-
vation fails, and a security violation is
logged. If the two versions of the enci-
phered random data compare equally (3b), the
primary LU has verified the identity of the

Chapter 2. Overview of the LU 2-9

2-10

secondary LU and LU-LU verification contin-
ues.

Using the LU-LU password and the DES algo-
rithm, the primary LU enciphers the random
data received from the secondary LU. The
primary LU returns this enciphered random
data (PWIRD2]) 1in a Security FM header
(FMH-12) to the secondary LU (3b). The sec-
ondary LU compares this enciphered random
data with its own version of the enciphered
random data. If the two versions of the
enciphered random data do not compare equally
(4a), LU-LU verification fails, the session
is terminated, and a security violation is
logged. If the two versions of the enci-
phered random data compare equally (4b), the
secondary LU has verified the identity of the
primary LU, and LU-LU verification is com-
plete.

When the transmission links and LUs that make
up the network are physically secure (as
determined by the installation management),
LU-LU verification may be omitted. Under
this circumstance, LU-LU verification would
not take place, yet the session would still
be considered secure; therefore, access to
secure resources would still be permitted
following conversation-level security proto-
cols (see below). Permission to use
conversation-level security to gain access to
secure resources is installation defined and
communicated to the partner LU during session
activation in the BIND/RSP(BIND) exchange.

When the network 1is not considered secure,
LU-LU verification should be omitted, and
access to secure resources via
conversation-level security should not be
permitted. Denial of permission +to use
conversation-level security is installation
defined; an indication of this denial is com-
municated to the sender of the request during

session activation in the BIND/RSP(BIND)
exchange.
End-user verification (conversation-level

security) 1s used to confirm the identity of
the partner end user (e.g., transaction pro-
gram). MWhen a TP requests access to another
TP, it must supply adequate security informa-
tion in the request to satisfy the security
requirements of the requested TP, or the
request will be rejected. This could include
a user ID and password (see access security
information subfields in SNA Formats) sup-
plied by the end user that initiated the
request. When a user ID and password are
supplied on the request, they are verified by
the LU that receives them. If the end user

has not supplied the correct user ID and
password combination, the request is
rejected.

An optional additional criterion for access
to a specific TP is permitted. This criteri-
on would be a check of an authorization list
associated with the target transaction pro-
gram. The keys to search the authorization
list would be combinations of the user ID and
an optional profile supplied on the request,
along with the name of the partner LU from

SNA LU 6.2 Reference: Peer Protocols

which the request originated. The authori-
zation list could be made up of combinations
of user ID, profile, and partner LU name.
After the user ID 1is verified by the LU, the
authorization list may be searched for access
rights to the specific transaction program
named in the request. If the additional cri-
terion is not met, the request is rejected.

An intermediate transaction program (one
started by another TP) that requires
conversation-level security may need to
access an additional TP that requires

conversation-level security. In this case,
an Already Verified indicator is set in the
additional request; the user ID and optional
profile in the first request, which initiated

the intermediate transaction program, are
supplied in the second request. For security
reasons, the password that initiates the

intermediate TP is never saved, but the user
ID and optional profile that initiated the
intermediate TP are-saved. The Already Veri-
fied indicator can be used only if the sender
of the indicator is trusted by the receiver
of the indicator to have performed the proper
verification of the user ID and password that
initiated the sender. This level of trust is
installation defined at the receiver of the
indicator and communicated to the sender of
the indicator during session activation in
the BIND/RSP(BIND) exchange.

To help prevent data from being interpreted
or modified during transit, the LU provides
session cryptography, whereby all user data
1s enciphered at the source LU and deciphered
at the target LU. The encryption algorithm
uses a cryptographic Kkey, supplied by the
control point, and a session seed, generated
by one of the LUs when the session is acti-
vated. (See "Chapter 6.2. Transmission Con-
trol" for a full discussion of session
cryptography.)

ERROR HANDLING
Kinds of Errors

Errors affecting transaction processing are
classified as follows:

Application Errors: These are errors related
to the application data and processing, e.g.,
user input error or data-base record missing.
Detection and recovery are the responsibility
of the transaction programs.

Local Resource Failure: These are failures
in non-SNA resources, e.g., a disk read
error. If the resources are not protected
resources, recovery is the responsibility of
the transaction program or of the non-SNA
support for the failing resource, e.g., a
disk subsystem. If the resource 1is a pro-
tected resource, the TPs can use the LU sync
point function (see "Sync Point Function" on
page 2-37) to assist in recovery in conjunc-
tion with non-SNA support.

N

N

o

O

Recoverable System Errors: These are errors
or exceptional conditions, e.g., races
resulting from contention for use of a ses-
sion, for which an SNA-defined recovery algo-
rithm exists. The LU performs the recovery
algorithm; the transaction programs are
normally not aware of these errors, except as
they affect timing.

Program Faillures: These are errors that
cause abnormal termination of a transaction
program. The LU recovers from such errors by
deallocating any active conversations for the
TP that were not deallocated by the failed
transaction program, thus freeing the ses-
sions for use by other transaction programs.
Any further recovery depends on transaction
program logic and 1implementation-defined
capabilities such as error exits.

Session Failure: These are failures caused
by unrecoverable failure of the
half-sessions, e.g., 1invalid session proto-
cols received, or by failure of the underly-
ing network components, e.g., the links.
This case is reported to the LUs through ses-
sion outage notification (SON).

If a conversation is active on the session at
the +time of failure, the failure is mani-
fested to the transaction program as a con-
versation failure (see below); otherwise,
these errors do not affect transaction pro-
grams. LUs report the conversation failure
to the affected transaction programs.

Conversation Failures: These are failures
caused by unrecoverable failure of the under-
lying session. The resulting conversation
failure is reported to each transaction pro-
gram by a return code on a subsequent verb.
The same session and conversation cannot be
recovered, but the LU can activate another
session.

The operator or the transaction programs have
the responsibility to recover the trans-
action. To recover from an interruption in
transaction processing, for example, the
source transaction program can allocate a new
conversation, using another session, to a new
instance of the target transaction program or
to another transaction program.

LU Failure: This 1s a failure of an LU from
such causes as malfunction of the implement-
ing hardware or software. In many cases,
such a failure appears to remote
(non-failing) LUs as a session failure, and
they recover as they would from any other
session failure. In some cases, recovery is
performed by the sync point function.

Program Error Recovery Support Functions

The LU assists TP recovery from application
errors and local resource failures by sup-
porting the protocols discussed below to
exchange error information and to immediately
end messages or conversations.

Confirmation: This function (e.g., CONFIRM
verb) allows a TP to solicit positive or neg-
ative acknowledgment of a message unit from
the partner TP. The interpretation of this
positive or negative acknowledgment (CON-
FIRMED or SEND_ERROR verbs, respectively) is
program dependent: for one application, con-
firmation might mean only that the data was
received; for another, it might mean data was
safely stored on disk; for a third, it might
mean that the data represents a valid account
record update; and so forth.

Program Error Indication: This function
(SEND_ERROR verb) allows a TP to inform the
partner TP of a program-detected error; this
includes sending negative acknowledgment to a
confirmation request.

This function also causes program-to-program
transfer of the current message unit +to
cease. If a TP detects an error while
receiving, 1issuing the SEND_ERROR verb
directs the receiving LU to ignore any addi-
tional data in transit (i.e., to the end of
the conversation message--see "Conversation
Message" on page 2-14); this is called purg-
ing. Similarly, if a sending TP detects an
error, issuing the SEND_ERROR verb informs
the partner that the source TP has stopped
sending. If the TP stops sending before
reaching a predetermined application-program
data boundary (i.e., the end of a logical
record--see '"Logical Record" on page 2-13),
this is called truncation.

Sync Point: Many transactions require con-
sistent, regular updates of distributed
resources such as distributed data bases.
While a transaction is in progress, however,
the resources at different LUs can enter
mutually inconsistent interim states. If one
of the transaction programs encounters an
error, some recovery action may be necessary
to restore the resources to mutually consist-
ent states. In order to verify or restore
consistency among distributed resources, some
LUs provide a distributed error-recovery
function, called sync point. (Sync point
concepts are discussed in "Sync Point Func-
tion" on page 2-37.)

Abnormal Conversation Deallocation: This
function allows a TP to abnormally terminate
a conversation. A TP might do this, for
example, when an error is detected for which
it has no recovery procedure and continuing
the transaction would be meaningless. When
this 1is received, the LU informs the TP that
the conversation has been abnormally termi-
nated.

When a component of the LU (e.g., an LU serv-
ice TP) abnormally terminates a conversation
that is being used by a TP, the LU uses DEAL-
LOCATE TYPE(ABEND_SVC) to terminate the con-
versation. This allows the TP and 1its
partner TP to distinguish between
application-generated and LU-generated abnor-
mal terminations.

Chapter 2. Overview of the LU 2-11

2-12

LU Error Recovery Functions--Abnormal Session
Deactivation

For some errors, the LU or operator initiates
recovery.

If an unrecoverable session-protocol error
occurs, the LU abnormally deactivates the
session.

If the control operator detects an error,
e.g., an apparent deadlock or loop, it can
force immediate abnormal deactivation of a
session.

Either of these cases are normally manifested
to affected transaction programs as conversa-
tion failure.

BASE AND OPTIONAL FUNCTION SETS

The LU functions and protocols are organized
into subsets. The function sets consist of a
base function set, which provides basic com-
munication services common to all LU imple-
mentations, and a small number of tional
function sets, which may be used by implemen-
tations with more sophisticated additional
requirements. These SNA-defined function
sets are described in SNA Transaction Pro-
grammer's Reference ManuETig: LU Type 6.2.

All LU 6.2 implementations of a given func-
tion set provide that function in a way that
conforms to the protocol boundary. Further-
more, an LU 6.2 implementation that provides
one function in an option set provides all
other functions in that option set as well.
Thus, all LU 6.2 implementations can communi-
cate using the base set, and any two imple-
mentations supporting functions in the same
option set can communicate using that full
option set.

Two kinds of optional functions exist. Send
options determine what formats and protocols
will be sent but do not affect what can be
received; all formats and protocols sent
using these options can be received by all
LUs. Receive options determine what can be
received as well as what can be sent. For
receive options, the source LU and TP
requirements are described in the BIND and
the Attach; the receiving LU rejects the ses-
sion or conversation if it, or the specified
TP, does not support the required options.

All implementations of LU 6.2 include the
functions described in this book in their
entirety except were options are specifically
defined. For additional definition of
options see SNA Transaction Programmer's Ref-
erence Manual for LU Type 6.2. The principal
base and optional functions are listed below.

Application Program Interface Implementations

Open-API 1implementations support arbitrary
user-written transaction programs, e.g., a

SNA LU 6.2 Reference: Peer Protocols

data-base management system rumning on a host
processor. For these implementations, the
API provides verbs and parameters for all of
the base function set, and perhaps some
optional function sets.

Closed-API implementations do not support
user-written programs but provide only a
fixed, implementation-determined set of serv-
ice transaction programs, e.g., a DIA service
transaction program for an office work-
station. For these implementations, the API
provides only the particular verbs and param-
eters that the transaction program set
requires.

Principal Base Functions

Basic Conversations: All implementations
provide receive support for all
basic-conversation formats and protocols.

Open-API implementations provide basic con-
versation verbs, but not necessarily in all
supported programming languages. For exam-
ple, an implementation might support both
basic- and mapped-conversation verbs in a
systems-programming language such as Assem-
bler, but provide only mapped-conversation
verbs in high-level languages.

Mapped Conversations: All open-API implemen-
tations provide mapped conversations (prima-
rily in high-level languages).

Principal Optional Functions

Mapping: This 1is an optional function for
mapped conversations (see "Mapping Function"
on page 2-36).

Sync Point: This is an optional function for
basic and mapped conversations (see "Sync
Point Function" on page 2-37).

Program Initialization Parameters (PIP):
This 1is the means of passing initial parame-
ters or environment setup information to a
target TP.

Security: This is an optional function for
verifying the identity of partner LUs and end
users (see "Security" on page 2-9), and for
protection of data in transit.

Performance Options: Several optional func-
tions exist to maximize performance for spe-
cific transaction requirements. For example,
an LU can optionally allow transaction pro-
grams to eliminate or accelerate certain
acknowledgments, or to perform processing
concurrently with certain conversation func-
tions. These are send options, so TPs writ-
ten for implementations that support these
options will operate correctly with partner
TPs and LUs that do not support them.

(\
Y
4

e

-

MESSAGE UNITS AND THEIR TRANSFORMATIONS

A message unit (MU) 1is any bit-string that
has an SNA-defined format and is transferred
between SNA components or sublayers.

Distributed transaction programs exchange MUs
with each other by means of LUs. Transaction
programs exchange application-oriented units
of data, e.g., a customer record or a docu-
ment, over a conversation. The LUs, in turn,
exchange session-oriented MUs via the
path-control network. But the content and
format of an MU most appropriate for exchange
between transaction programs is in general
different from that most appropriate for
transmission on a session. MWhereas an appli-
cation program typically uses a record size
corresponding to logical groupings of the
data, the LU typically uses MU sizes related
to internal buffer sizes and efficient flow
control. Furthermore, the LU may need to add
encoded protocol information, such as confir-
mation requests or MU sequence numbers, to
the program-supplied data.

The LU transforms program-oriented MUs used
by the TP into network-oriented MUs used by
the path control network, and vice versa.
(Throughout this section, message-unit tran-
sformations are described from the sender's
side, 1.e., transaction program to LU to net-
work; the process is inverted at the receiv-
er.)

The message-unit transformation takes place
in stages. Each stage transforms some of the
information from the higher stage into a
SNA-defined bit string. Typically, a stage
reblocks (regroups) the MUs from the previous
stage 1into differently sized units and con-
verts the protocol information into formatted
headers (prefixes) to the reblocked data,
thus creating new MUs.

MAPPED-CONVERSATION MESSAGE UNITS

A data record, at the mapped-conversation
protocol boundary, is a collection of data
values that correspond to the DATA parameter
of a single mapped-conversation MC_SEND_DATA
verb issuance. The format of a data record
is completely arbitrary within the con-
straints of the implementation and the trans-
action program. For example, it need not
even be a contiguous byte string, but might
be a collection of variables and structures.

A mapped-conversation record (MCR) is the
elementary unit of information transferred
between two TPs on a mapped conversation. A
MCR contains the values of a data record
represented as a string of contiguous bytes.
It may be of arbitrary length. It contains
no information for use by the LU; its
internal format is significant only to the
TP. The TP supplies needed protocol informa-
tion, such as the mapped-conversation record
length, 1in separate parameters of the verb,

using representations appropriate to the pro-
gramming language and processor being used.

(A MCR consists of data from a single verb
issuance by the sender, but it may be
received in one or more parts, each with a
single verb 1issuance, depending on the
receiving TP's receive buffer size).

BASIC~CONVERSATION MESSAGE UNITS
GDS Variables

Full connectivity among programs requires
that all transaction programs interpret the
records they transfer in the same way. To
facilitate uniform interpretation of records
among programs written for different process-
ors, service transaction programs and some
internal LU components, including
mapped-conversation support, use the formats
defined by general data stream architecture
to represent records (see SNA Formats)

A general data stream (GDS) variable consists
of a GDS header (LLID) followed by the data.
The GDS header is a descriptive prefix con-
taining a 2-byte length prefix (LL) that
indicates the length of the variable, includ-
ing prefix, and a format identifier called
the GDS ID that indicates the GDS-defined
format of the data. The LLs identify the
boundaries of variable-length fields within a
message unit of contiguous fields, and the
GDS IDs identify the representation of the
data. A GDS variable may be of arbitrary
length. If the variable length exceeds the
value that can be represented in the length
prefix (215-1 = 32,767 bytes, including the
prefix), the record consists of multiple seg-
ments, each with its own length prefix. Only
the first segment contains an ID field. The
length prefix also contains a continuation
bit that indicates whether the corresponding
segment is the last (or only) segment in the
GDS variable.

All data transferred at the
basic-conversation protocol boundary by serv-
ice TPs and other internal LU components (but
not necessarily data transferred by applica-
tion transaction programs) is represented as
GDS variables with SNA-defined formats (see
SNA Formats).

Logical Record

A logical record is the elementary unit of
information transferred between users of the
basic-conversation protocol boundary. A log-
ical record consists of a 2-byte length pre-
fix (LL) followed by data. Its maximum
length 1s 32,767 bytes, including the prefix.

Chapter 2. Overview of the LU 2-13

2-14¢

The LL prefix of a logical record has the
same format as the LL field in a GDS variable
segment; thus, a GDS variable segment is also
a logical record. The basic-conversation
protocol boundary requires only the LL pre-
fix, not a full GDS LLID. Thus, logical
records generated by application TPs need not
use ID fields; if they do, the application
assigns and interprets the ID fields; the
basic-conversation support of the LU treats
everything following the LL prefix of the
logical record as user data.

The logical record is the elementary unit for
which the LU detects or reports truncation.

Buffer Record

It might be inconvenient for a transaction
program to issue a single send or receive
verb for each logical record. For example,
the sender or the receiver might have limited
buffer space or might not know ahead of time
the maximum length of the records being sent.
Or, the transaction program might prefer to
send a group of small, related records with a
single verb issuance. So, the unit of data
that a program sends or receives with a sin-
gle basic-conversation verb is of
program-determined length. This unit is
called a buffer record.

No SNA-defined limit exists on the length of
a buffer record; for example, it could exceed
32,767 bytes. The buffer-record length can
be different for each verb issuance.

No correspondence is necessary between the
lengths or boundaries of logical records and
those of buffer records, or between send
buffer records and receive buffer records.
Nevertheless, a receiving program may
optionally specify that the LU begin a new
receive buffer record for each new logical
record received. The relationship between
logical records and buffer records is illus-
trated in Figure 2-6 on page 2-18.

CONVERSATION MESSAGE-UNIT SEQUENCES

Certain sequences of message units are rele-
vant to conversation protocols.

Conversation Message

A basic-conversation message consists of the
sequence of logical records transferred in
one direction from one TP to another without
an intervening change of direction or confir-
mation. (The Attach FM header generated from
the ALLOCATE verb is also considered part of
the initial basic-conversation message.)

The end of a conversation message is deter-
mined, when sending, by a conversation state

SNA LU 6.2 Reference: Peer Protocols

change caused by the verbs issued. For exam-
ple, PREPARE_TO_RECEIVE, RECEIVE_AND_WAIT,
CONFIRM, SYNCPT, and DEALLOCATE end a conver-
sation message. When receiving, the end of a
conversation message and conversation state
change is determined from corresponding pro-
tocol information received from the sender.
The information identifying the end of a con-
versation message and specifying the way it
was ended is generically called the
end-of-conversation-message indication.

A basic-conversation message is the elementa-
ry unit for which the LU supports confirma-
tion or program-error reporting (e.g.»,
SEND_ERROR) between sender and receiver, and
for which it performs purging.

A mapped-conversation message is analogous to
a basic-conversation message; that is, it
consists of the sequence of
mapped-conversation records (or data records)

transferred in one direction from one TP to |

another without an intervening change of
direction or confirmation, as understood at
the mapped-conversation protocol boundary.

The unqualified term, conversation message,
is used when the intended protocol boundary
is clear from the context, or when both the
mapped-conversation message and its corre-
sponding basic-conversation message are
designated.

Conversation Exchange

A conversation exchange consists of the com-
plete set of mapped- or basic-conversation
messages transferred between a pair of TPs
using a particular conversation.

SESSION MESSAGE UNITS

Session message units are formatted for LU-LU
protocols and for effective use of the path
control network.

Function Management Headers

A function management (FM) header is a mes-
sage unit generated by the LU to carry cer-
tain LU control information. The LU uses the
following FM headers:

¢ An Attach FM header (FMH-5) specifies the
name and required characteristics, e.g.»
option sets required, of the target TP.

¢ An Error-Description FM header (FMH-7)
- describes a transaction program error or
Attach failure.

¢ A Security FM header (FMH-12) carries

security 1information for LU-LU verifica-
tion.

TN

N

7N

Basic Information Unit

A basic information unit (BIU) is the message
unit transferred between two LUs. It con-
sists of a request/response header (RH) and a
request/response unit (RU).

The RH is a formatted prefix to the RU. It
carries protocol information encoded from the
TP verbs or generated internally by the LU.
It may also appear without an RU in an IPR or
IPM. SNA Formats gives further details.

Request RUs carry FM headers, TP-supplied
data (formatted into logical records by the
TP in basic conversations or by the LU in
mapped conversations), and other protocol
information. Response RUs carry limited
information, such as the echoed request code
or (in negative responses) sense data, but no
TP-supplied data.

The LU uses the following RUs on an LU-LU
session:

® Category FMD RUs, for transaction-program
data

U Category DFC RUs, i.e., BIS, LUSTAT, RTR,
SIG, and their responses

. Category SC RUs, i.e., BIND, UNBIND, CRV,
and their responses

(For additional details, see SNA Formats.)

EXR also flows for some path-control-detected
errors.

The LUs also transfer other information
describing the BIU, such as the length and
sequence number, which is formatted by path
control in a transmission header (TH).

SESSION MESSAGE-UNIT SEQUENCES

The following sequences of BIUs are relevant
to session protocols:

A (BIU) chain is a sequence of BIUs that con-
stitute a single unidirectional transfer.
The chain is the most elementary unit that
can be independently confirmed or for which
errors can be reported using SNA-defined LU
protocols. It corresponds to a TP-TP conver-
sation message.

A bracket consists of the set of all chains
transferred on a particular conversation. It
corresponds to a TP-TP conversation exchange.
The first data RU in a bracket begins with an
Attach FM header that identifies the target
TP.

The total session traffic comprises a
sequence of one or more brackets. Prior to
bracket traffic, the session is activated
(BIND protocols). Prior to normal session
deactivation, bracket traffic is shut down
(BIS protocols). All session traffic stops

when the session is deactivated (UNBIND pro-
tocols), whether or not any brackets are in
transit.

Figure 2-4 on page 2-16 illustrates the cor-
respondence between the conversation
message-unit sequences and session
message-unit sequences. In the figure:

¢ The column labelled TP-TP shows the con-
versation message-unit sequences.

(The corresponding conversation
message-unit sequences for the partner
TPs at LU Y are not shown; they are the
reverse of those shown for TP A and TP
B.)

®* The column labelled LU-LU shows the ses-
sion message-unit sequences.

® The column labelled LU X shows the
relationship between the two sets of
sequences.

MAPPED-CONVERSATION MESSAGE-UNIT TRANSFORMA-
TION

The mapped-conversation support in the LU
converts a data record into a GDS variable.

First, the LU optionally performs a
TP-specified mapping transformation on the
data record, producing a mapped-conversation
record. If mapping transformations are not
supported or if one is not specified, the TP
supplies the data in MCR format (i.e., a con-
tiguous byte string of TP-determined length).

The mapped-conversation support in the LU
then segments the MCR into units of allowed
logical-record length and adds LLID prefixes,
thus producing a GDS variable consisting of a
sequence of logical records. This is illus-
trated in Figure 2-5 on page 2-17.

BASIC-CONVERSATION MESSAGE-UNIT TRANSFORMA-
TION

Above the basic-conversation protocol bounda-
ry, a TP, or an internal LU component such as
the mapped-conversation support, generates a
sequence of logical records constituting a
conversation message. It passes this conver-
sation message to the LU as a sequence of
buffer records, by issuing basic-conversation
verbs. Along with the buffer records, it
passes unformatted protocol information such
as the ALLOCATE verb parameters, from which

-the LU builds FM headers.

Conceptually, the LU assembles the sequence
of FM headers and logical records into a com-
plete conversation message. It then converts
this conversation message into a chain of
BIUs. Of course, the LU does not necessarily
store a complete conversation message at one
time; when 1t accumulates enough buffer
records to build one or more BIUs, it builds

Chapter 2. Overview of the LU 2-15

TP—TP LU X LU—LU
via via
LU Path Control
session
activation
TP A ==================
e o e BIUs © ¢ o
: (TP A sending)
: ee...| Attach
: : ANANNY (LU X sending)
Cc : ANSSNNY BIU with FMH-5
0 CM L ANSNNNNNN NN B2
N 0s logical records ANSNNRNNNNNN S
\' N G LI) ANSNNNNRNNNN B2 L A
E \") sz=================> \LLLLLNANNNLD BIUs
R HS ANSNNN o2 L
S AN\ S
A N\\\N\>
T \\\>
I
o]
N V24444
veeeo] (TP A receiving) 1177777
E s <===================\{<// /77777777
X CM o 00 (999944944
c 0os logical records |</////7/77777
H N G e 0o 0 (999994
A v <===================|</////
N HISN
G / /
E <=== TP A, LU X alternating send/receive ===>
H / 7/ /
e 0o 0 o o0 LI)
(other TPs) (other conversations) (other brackets)
o e 0 o e 0 o e 0
(LU X receiving)
BIU with FMH-5
TP B Attach /777
<========s===========|/// /0 /0777
cessennaae L1717 777777
C (VI8 44 BIUs
o ceeen (V00900049444
N : (TP B receiving) 2L 242220444
\" CM <===================|<///////// /77
0s LI 999994 session
E NG logical records |<////77 shutdown
X \" o o 0 </l777 messSS=sSE==s=sna=ss
C H <===================|<//// ® o BIJUs © o o
H e ces S=S=ZSSSS===S====S====
Givieernne
session
deactivation
® e BIUs © o o
LEGEND:

<====> message—unit flows
\\\\\> conversion of logical records to BIUs
<///7/ conversion of BIUs to logical records
...... message unit sequence boundaries

Figure 2-4. Relationships of Sequences of Message Units (Example)

LUy

ceeesssccsacs

C : :
H : :
A : :
I B H
N R :
: A :
eet C :
ceen K :
C E :
H T
A : S
I : E
N : S
ceel : S
: I
: 0
: N
ceecsest T
R
A
F
F
I
cesseees Cc
: B :
c R :
H A :
A C :
I K :
N E :
: T :

2-16 SNA LU 6.2 Reference:

Peer Protocols

)

N

N4

Data Record
A

(optional mapper transformation)

v
|< Mapped-Conversation Record - >|
1 r
length l/ L] 'l/
| : :
LL|IID : :
| < Logical Record —————— > : :
1 : :
L L / & &0 : :
1 . :
|< : :
Logical Records : :
>| :
} :
e 0 0 / :
L :
: LL
: |<— Logical Record —>|
L GDS Variable 1
LEGEND:
data record: data supplied by the transaction program MC_SEND_DATA verb (arbitrary format)
length: length of the mapped-conversation record (after mapper transformation, if any)
LL: logical-record Length field; the first bit is the continuation field
ID: GDS ID field -
Figure 2-5. Relationship of Data Records to Logical Records (Example)

those BIUs and sends them out, saving any DATA EXCHANGE WITH THE CP

residual data for the next BIU.

To build BIUs, the LU reblocks the FM headers The LU also exchanges message units with the
and logical records into RU-sized units and CP. These message units are listed in "Chap-
generates the necessary RHs. The LU sets the ter 4. LU Session Manager" and are described
RH indicators to correspond to functions or briefly below.

states specified by verb parameters; for
example, it sets the chaining indicators
(BCI, ECI) to indicate the first and last LU-CP Records
BIUs in the chain, and it sets the bracket
indicators (BB, CEB) to indicate the first

and last BIUs in a bracket. When necessary, In the model described in this book, the LU
the LU also generates Attach or has a direct protocol boundary with the CP in
Error-Description FM headers (FMH-5 and its node.

FMH-7) from verb parameters and includes

these in the BIUs. The final result is a BIU The LU generates and uses session control RUs
chain. Along with the BIU, the LU generates for session activation and deactivation. It
parameter values for use by path control (to sends these to the CP for routing to the
build the transmission header). The LU remote LU.

transfers the BIUs and the unformatted BIU
parameters to path control for transmission
to the partner LU. Figure 2-6 on page 2-18
illustrates the conversion process.

Chapter 2. Overview of the LU 2-17

|<———— 6DS variable / r—>|< GDS variable >|
l< LR >]< LR / 7=>|< LR >|
Attach 1 r
values LLIID data LL data l/ L ‘|/ LLIID data
A
| |<Buffer Record>|<Buffer Record>| ® o0 |<Buffer Record>|<Buffer Record>|
\4 : : : : : H
FMH-5 : : : : :
|< Conversation Message >|
TH H : : :
val- |R H RU : : : :
ues : : : :
|< BIU >| : : : :
: TH values |R H RU : : :
: |< . BIU >| : : :
: 1 : : :
: TH values |R H / o e : : :
; |< ; : ;
: BIUs H : :
: >| : :
: — 3 :
: ¢ o0/ : :
: D — : :
: TH values |R H R U :
: |< BIU >| :
: TH values |R H R U
: |]<— BIU —>|
L BIU Chain !
-LEGEND:
LR: logical record LL: Length field GDS ID field
RH: request header RU: request unit basic information unit
FMH-5: Attach FM header (occurs only on first conversatiommessage of conversation)
Attach values: information for the Attach FM header, from the ALLOCATE verb.
TH values: protocol information generated by the LU; the TH is built by path control.
Figure 2-6. Relationship of Conversation Message to BIU Chain (Example)
EXTERNAL FLOW SEQUENCES FOR THE BASE FUNCTION SET

2-18

This section illustrates the correspondence
between some typical basic-function-set
transaction program verb sequences and the
resulting flows of BIUs through the path con-
trol network. (The verbs are described in
detail in SNA Transaction Programmer's Refer-

SNA LU 6.2 Reference: Peer Protocols

The correspondence 1is illustrated in Fig-
ure 2-7 on page 2-20 through Figure 2-23 on
page 2-27. In the figures, the left column
shows verbs issued by the invoking or
initially-sending TP, and the right column
shows verbs issued in response by the invoked
or initially-receiving TP. The center column
shows the contents of the resulting chain (RH
indicator settings, RU data and FM headers).

e

)

The arrows indicate direction of BIU flow. A
group of arrows in the same direction repres-
ents a chain, but no necessary correspondence
exists between arrows in the figures and BIUs
in the chain.

Each figure shows one of the following:

¢ The beginning of a chain, for chains that
begin a bracket

® The end of one chain and the beginning of
the next

o The end of a chain, for chains that end a
bracket

"Allowable Combinations of Sequences" on page
2-22 shows how these flows can be combined,
or sequenced, to form complete conversations.
Finally, "Error Flows" on page 2-24 shows
asynchronous response cases.

NOTATION

The following notation is used in the fig-

ures. RH indicators:

The flow is labeled with the indicator values
that are carried in the RH.

BB Begin bracket

CEB Conditional end of bracket

BC Begin chain

EC End chain

RQE1 Request exception response 1

RQE2 Request exception response 2 (in this
case, DR1I = DR1|-DR1l; i.e., RQE3 is
equivalent to RQE2).

RQD1 Request definite response 1

RQD2 Request definite response 2 (in this
case, DR1I = DR1|-DR1; 1i.e., RQD3 is
equivalent to RQD2).

cbh Change direction

+DR2 Positive response to RQD2

-RSP(0846) Negative response to chain

RU contents:

FMH-5 Attach FM header

FMH-7 Error-description FM header
The sense-data categories shown are:

0864 Abnormal deallocation

0889 Program-detected error

data User data in FMD RU

Verbs and Parameters

The returned RETURN_CODE parameter of the
RECEIVE_AND_WAIT verb is not shown when it is
set to OK; in that case, the returned
WHAT_RECEIVED parameter is shown instead.

DATA_* represents either setting (DA-

TA_COMPLETE or DATA_INCOMPLETE) of this
parameter.

Data Transfer Description

Whenever a TP has the right to send, it
issues SEND_DATA =zero or more times. Simi-
larly, a TP in receive state repeatedly
issues RECEIVE_AND_WAIT, until it receives
all of the data and the
end-of-conversation-message indication. The
receiver issues at least one receive verb; in
the absence of errors, zero or more initial
issuances of SEND_DATA by the source TP
result in zero or more receive verb issuances
(with WHAT_RECEIVED = DATA_INCOMPLETE) at the

target. The final issuance receives the
end-of-conversation-message indicator as
WHAT_RECEIVED = DATA_COMPLETE. Since the

buffer record sizes used at the sending TP
and at the receiving TP may differ, the num-
ber of receive verb issuances does not neces-
sarily match the number of send verb
issuances.

All of the following figures begin or end
with the data-transmission sequence just
described. That sequence is represented in
the figures as follows.

When the figure begins with (the end of) the
data-transmission sequence, it shows (at the
sending TP) a single SEND_DATA verb, and a
corresponding data arrow, followed by verti-
cal (two-dot) ellipsis marks (:). No
RECEIVE_AND_WAIT verb is shown at the
receiving TP.

When the figure ends with (the beginning of)
the data-transmission sequence, it shows (at
the receiving TP) vertical ellipsis marks
(:), followed by a single RECEIVE_AND_WAIT
verb with WHAT_RECEIVED = DATA_COMPLETE.
"Data" is shown on the corresponding arrow,
along with the end-of-conversation-message RH
indicators. No SEND_DATA verb is shown at
the beginning of the receiving-TP verb
sequence.

ERROR-FREE FLOWS

The error-free flows for the base function
set flows are described in terms of the verb
sequences shown in Figure 2-7 on page 2-20
through Figure 2-14 on page 2-22.

Chapter 2. Overview of the LU 2-19

SEQUENCE 1

ALLOCATE
SYNC_LEVEL(NONE) BC,BB,FMH-5
> (TP started)

SEND_DATA data
>

. .
. .

Figure 2-7. Start Conversation with Synchronization Level of NONE

SEQUENCE 2
PREPARE_TO_RECEIVE EC,RQE1,CD,data RECEIVE_AND_WAIT
TYPE(FLUSH) > WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT
WHAT_RECEIVED=SEND
BC,data SEND_DATA

Figure 2-8. Conversation Turnaround without Confirmation: PREPARE_TO_RECEIVE is optional; when it

is omitted, and a receive verb 1s issued from SEND state,
PREPARE_TO_RECEIVE is performed before any data is actually received.

the function of

SEQUENCE 3
DEALLOCATE EC,RQE1,CEB,data RECEIVE_AND_WAIT
TYPE(FLUSH) > WHAT_RECEIVED=DATA_COMPLETE
(local deallocation) RECEIVE_AND_WAIT
RETURN_CODE=DEALLOCATE_NORMAL
DEALLOCATE
TYPE(LOCAL)

(local deallocation)

Figure 2-9. Finish Conversation without Confirmation

SEQUENCE 4
ALLOCATE BC,BB,FMH-5
SYNC_LEVEL(CONFIRM) > (TP started)
SEND_DATA data

>

. . .
. . B

Figure 2-10. Start Conversation with Synchronization Level of CONFIRM: The SYNC_LEVEL parameter on

ALLOCATE establishes the synchronization level for the entire conversation.

References

to SYNC_LEVEL on subsequent conversation verbs refer to the SYNC_LEVEL value
established at the start of the conversation. In this sequence, that value is CONFIRM.

2-20 SNA LU 6.2 Reference: Peer Protocols

N

r/\~
k/’

C

— SEQUENCE 5
| : : :
<;_,/ CONFIRM EC,RQD2,~CD,data RECEIVE_AND_WAIT
> WHAT_RECEIVED=DATA_COMPLETE
RECEIVE_AND_WAIT
WHAT_RECEIVED=CONFIRM
+DR2 CONFIRMED

RETURN_CODE=0K <
SEND_DATA BC,data

. . .
H . .

Figure 2-11. Continue Conversation: Confirmation without Turnaround

. SEQUENCE 6A
<::/) PREPARE_TO_RECEIVE RECEIVE_AND_WAIT
TYPE(SYNC_LEVEL) EC,RQD2Z,CD,data
LOCKS(SHORT) > WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT
WHAT_RECEIVED=CONFIRM_SEND
+DR2 CONFIRMED

RETURN_CODE=0K <
BC,data SEND_DATA
<

Figure 2-12. Conversation Turnaround with SYNC_LEVEL = CONFIRM, using LOCKS(SHORT): When the

receiving TP 1issues CONFIRMED after the LU has received RQD2--indicating CONFIRM

<:i\\ LOCKS(SHORT)--the LU immediately sends a CONFIRMED response (+DR2). This allows the

9z CONFIRM sender to resume processing immediately, so that, for example, it can release
locks on its local resources.

(The receiving LU processes the RQD2 internally; it does not inform the receiving TP of
the LOCKS parameter value.)

<::j SEQUENCE 6B

g PREPARE_TO_RECEIVE : RECEIVE_AND_WAIT
TYPE(SYNC_LEVEL) EC,RQE2,CD,data
LOCKS(LONG) > WHAT_RECEIVED=DATA_COMPLETE

RECEIVE_AND_WAIT
WHAT_RECEIVED=CONFIRM_SEND

CONFIRMED
(LU omits sending +DR2)
BC,data SEND_DATA
RETURN_CODE =0K <
Figure 2-13. Conversation Turnaround with SYNC_LEVEL = CONFIRM, using LOCKS(LONG): When the

receiving TP 1issues CONFIRMED after the LU has received RQE2--indicating CONFIRM
LOCKS(LONG)}--the LU does not send an immediate confirmation response. Instead, 1it
continues processing until it has a complete BIU to send. The CONFIRM sender
interprets receipt of BC without an intervening response as positive confirmation.

LOCKS(LONG) does not require the #+DR2 response BIU that LOCKS(SHORT) requires, but it
can cause the CONFIRM sender to wait longer before resuming processing.

Chapter 2. Overview of the LU 2-21

SEQUENCE 7

DEALLOCATE

RECEIVE_AND_WAIT
WHAT_RECEIVED=DATA_COMPLETE

WHAT_RECEIVED=CONFIRM_DEALLOCATE

EC,RQD2,CEB,data
TYPE(SYNC_LEVEL) >
RECEIVE_AND_WAIT
+DR2 CONFIRMED
RETURN_CODE=0K <
Local Deallocation DEALLOCATE
TYPE(LOCAL)

Figure 2-14.

Finish Conversation, SYNC_LEVEL = CONFIRM

ALLOWABLE COMBINATIONS OF SEQUENCES

When a program 1issues one of the verb
sequences shown above, that program is limit-
ed in its choice of the next verb sequence it
can issue. The matrix in Figure 2-15 shows
which verb sequences can follow a given verb
sequence in the base function set. The
matrix has the following meaning:

° The row numbers (left column) and column
numbers (top row) in the matrix corre-
spond to the sequence numbers in Fig-
ure 2-7 on page 2-20 through Figure 2-14.

A row corresponds to the verb sequence
just issued; a column corresponds to the
verb sequence 1issued next.

In the matrix, row 0 or column 0 repres-
ents the state in which no conversation
exists, i.e., the state prior to ALLOCATE
or subsequent to DEALLOCATE.

° A letter N or C ih a cell indicates that
the sequence corresponding to the column
number can follow the sequence corre-
sponding to the row number.

-~ N--indicates a next sequence allowed
for conversations allocated with

either SYNC_LEVEL(NONE) or
SYNC_LEVEL(CONFIRM), i.e., conversa-
tions started with sequences 1 or &

— C-~-indicates a next sequence allowed
only for conversations allocated with
SYNC_LEVEL(CONFIRM), i.e., conversa-
tions started with sequence 4

- empty--indicates that the correspond-
ing sequence order is invalid

® The Next-Sender column indicates which TP
is initial sender (i.e., issues the verbs
in the left column of the figure) for the
next sequence:

— SAME--the initial sender of the next
sequence is the same as the initial
sender of the previous sequence.

— OTHER--the initial sender of the next
sequence is the partner of the ini-
tial sender of the previous sequence.

Figure 2-16 on page 2-23 and Figure 2-17 on
page 2-23 illustrate the application of these
rules to generate allowable conversation
sequences.

1 2 3|14 | 5| 6A| 6B 7 | Next—Sender

0 N Cc

1 N N SAME

2 N N C C Cc Cc SAME

3 N

G c C Cc Cc [Cc SAME

5 C C c Cc Cc Cc SAME

6A o Cc c C c Cc OTHER

6B C C [Cc C Cc OTHER

7

Figure 2-15. Possible Next Sequence in Error-Free Cases
2-22 SNA LU 6.2 Reference: Peer Protocols

> (TP started)
RECEIVE_AND_WAIT

ALLOCATE
SYNC_LEVEL(NONE) BC,BB,FMH-5
SEND_DATA data
SEND_DATA
DEALLOCATE EC,RQE1,CEB,data
TYPE(FLUSH)

> WHAT_RECEIVED=DATA_x
RECEIVE_AND_WAIT
WHAT_RECEIVED=DATA_COMPLETE

(local deallocation)

Figure 2-16.

One-HWay Conversation without Confirmation:

> RECEIVE_AND_WAIT
RETURN_CODE=DEALLOCATE_NORMAL
DEALLOCATE
TYPE(LOCAL)
(local deallocation)

Combines Sequences 1 and 3

The sequence shown in Figure 2-16 is gener-

ated as follows:

RECEIVE_AND_WAIT.

SEND_DATA and one additional issuance of

1. Begin in state 0.

4. Select a column containing an N in row 1.

2. Select a column containing a lettered In this example, column 3 was chosen.
cell in row 0.
5. Orient sequence 3 according to the "next
In this example, column 1 was chosen. sender" column for the previous sequence.
This corresponds to sequence 1.
In this example, the next sender is SAME,
3. Supply an arbitrary number of SEND_DATA so the left column of sequence 3 is
and RECEIVE_AND_WAIT verbs following issued by the same TP as the left column
sequence 1, as allowed by the the of sequence 1.
data-transfer convention.
6. Select a column containing an N in row 3.
In this example, the ellipsis: was The only choice is column 0, indicating
replaced by one additional issuance of the end of the sequence.
ALLOCATE BC,BB,FMH-5

SYNC_LEVEL(CONFIRM)

PREPARE_TO_RECEIVE EC,RQE2,CD
TYPE(SYNC_LEVEL)
LOCKS(LONG)
BC,data

RETURN_CODE=0K <

>(TP started)
RECEIVE_AND_WAIT

> WHAT_RECEIVED=CONFIRM_SEND
CONFIRMED
SEND_DATA

RECEIVE_AND_WAIT
WHAT_RECEIVED=
DATA_COMPLETE <

EC)RQDZ }CEB ,da‘ta

RECEIVE_AND_WAIT
WHAT_RECEIVED=
CONFIRM_DEALLOCATE

DEALLOCATE
TYPE(SYNC_LEVEL)

CONFIRMED +DR2
> RETURN_CODE=0K
DEALLOCATE
TYPE(LOCAL)
Figure 2-17. Two-Way Conversation with Confirmation: Combines Sequences 4, 6B, and 7.
The sequence shown in Figure 2-16 is gener- 2. Supply some number of SEND_DATA and

ated as follows:

RECEIVE_AND_HWAIT verbs following sequence

G.

1. Beginning in state 0, select sequences &,

6B, and 7, returning to state 0.

In this example, 0 instances of SEND_DATA
following the data
the SEND_DATA verb

were chosen. Thus,
transfer convention,

Chapter 2.

Overview of the LU

and data arrow in sequence 4 are elimi-
nated, as is the RECEIVE_AND_WAIT
WHAT_RECEIVED = DATA_COMPLETE and the
data on the EC arrow in sequence 6B.

3. The next sender following sequence 4 is
SAME; therefore, sequence 6B has the same
orientation as the preceding sequence.

4. Supply some number of SEND_DATA and
RECEIVE_AND_HWAIT verbs following sequence
6B.

In this example, only one instance of
each was chosen, corresponding exactly to
the number in the sequence figures.

(This figure illustrates that the arrows
do not necessarily correspond to BIUs.

For example, the CONFIRM, SEND_DATA, and
DEALLOCATE might generate only one BIU,
even though two arrows are shown in the
figure.)

5. The next sender following sequence 6B is
OTHER; therefore, sequence 7 is reversed
to have the opposite orientation from
that of the preceding sequence (i.e.,
since the left column of sequence 6B cor-
responds to the left column of the com-
bined sequence, the left column of
sequence 7 corresponds to the right col-
umn of the combined sequence).

6. The next row number is 0; therefore this
completes the sequence.

SEND_DATA
SEND_DATA

REQUEST_TO_SEND_RECEIVED=YES

data

BC,EC,SIGNAL (expedited flow)
<

parameter of a subsequent verb.
determined by the TP.
RECEIVE_AND_WAIT.

In this example,

RECEIVE_AND_WAIT
> WHAT_RECEIVED=DATA_%
REQUEST_TO_SEND

RECEIVE_AND_WAIT

PREPARE_TO_RECEIVE EC,RQE1,CD,data
TYPE(FLUSH) > WHAT_RECEIVED=DATA_COMPLETE
RECEIVE_AND_WAIT
WHAT_RECEIVED=SEND
RECEIVE_AND_WAIT BC,data SEND_DATA
<
WHAT_RECEIVED=DATA_
Figure 2-18. Conversation Turnaround following REQUEST_TO_SEND (without
Confirmation): REQUEST_TO_SEND issued by the receiving TP results in an expedited-flow
one-RU chain. The TP sending data is notified via the REQUEST_TO_SEND_RECEIVED

The interpretation of REQUEST_TO_SEND_RECEIVED 1is

the sending TP stops sending and issues

2-26

EXCEPTION FLOW

Figure 2-18 illustrates the only non-error
case for which a TP can send while in receive
state. This flow represents issuing the
REQUEST_TO_SEND verb and sending the SIGNAL
RU.

This flow can be substituted for sequence 2.
A similar sequence corresponding to sequence
6A or 6B exists, but is not illustrated here.

ERROR FLOWS

Figure 2-19 on page 2-25 through Figure 2-23
on page 2-27 illustrate flows resulting from
transaction-program error recovery for the
base function set. When the TP detects a
TP-defined error (e.g.> the received data

SNA LU 6.2 Reference: Peer Protocols

fails an application validity check, or the
partner sends more logical records than
expected) it issues SEND_ERROR or DEALLOCATE
TYPE(ABEND). When the LU detects a trans-
action program error, such as an Attach fail-
ure, it generates similar flows.

Three cases exist:

® Verb issued by sender
¢ Verb issued by receiver

¢ Verb issued by both (e.g., a SEND_ERROR
race has occurred)

(This case is not illustrated for DEALLO-

CATE.)
For cases not shown here, see "Component
Interactions and Sequence Flows" on page

2-68.

e

W

N

_//

)

C

SEND_DATA
(TP detects RECEIVE_AND_WAIT
an error)

SEND_ERROR data

> WHAT_RECEIVED=DATA_INCOMPLETE
SEND_DATA FMH-7(0889),data RECEIVE_AND_WAIT
> KWHAT_RECEIVED=PROGRAM_ERROR_TRUNC

.
H . .

Figure 2-19. SEND_ERROR Issued by Sender: The SEND_ERROR verb forces sending of accumulated data
and begins a new RU with an FMH-7. The issuing TP remains in send state; it can, for
example, send additional TP-determined data to further describe the error.

SEND_DATA data RECEIVE_AND_WAIT
> WHAT_RECEIVED=DATA_
(TP detects an error)
-RSP(0846) SEND_ERROR
SEND_DATA data Purge incoming BIUs
> to end of chain

"
(LU ends chain) <——————J "

EC,RQE1,CD,no data "

> " (LU detects end of chain)
RETURN_CODE=0K

BC,FMH-7(0889),data SEND_DATA

<

RETURN_CODE=

PROG_ERROR_PURGING
RECEIVE_AND_WAIT

Figure 2-20. SEND_ERROR Issued by Receiver: The SEND_ERROR verb causes a negative response to the
incoming chain; the sending LU sends End-of-Chain and Change-Direction when it receives
the response. Mearwhile, the receiver purges incoming RUs until the End-of-Chain
indication is received, then it sends FMH-7 and leaves the issuing TP in send state so
it can, for example, send additional TP-determined data describing the error.

Chapter 2. Overview of the LU 2-25

: . . <
SEND_DATA data RECEIVE_AND_HWAIT <:N :
> WHAT_RECEIVED=DATA_

(TP detects an error)

.

\

(TP detects -RSP(0846) SEND_ERROR

an error)

SEND_ERROR data Purge incoming BIUs
> to end of chain

SEND_DATA FMH-7(0889),data "

> "

L

(LU ends chain) <
EC,RQE1,CD,no data "
> " (LU detects end of chain)
RETURN_CODE=0K
BC,FMH-7(0889),data SEND_DATA

<

RETURN_CODE=
PROG_ERROR_PURGING

RECEIVE_AND_WAIT (/\\'

: : : N

Figure 2-21. SEND_ERROR Issued by both Sender and Receiver (SEND_ERROR Race): Each LU begins
SEND_ERROR processing as in the no-race case, but since the receiver is purging to end
of chain, the SEND_ERROR from the sender is also purged, so the receiver's SEND_ERROR
takes precedence.

: p : : ™~
SEND_DATA RECEIVE_AND_HWAIT (/F
DEALLOCATE data A

TYPE (ABEND_PROG) > WHAT_RECEIVED=DATA_*

EC,RQD1,CEB,FMH-7(0864%) RECEIVE_AND_WAIT
> RETURN_CODE=
+DR1 DEALLOCATE_ABEND_PROG

(response used <
internally)

Figure 2-22. DEALLOCATE ABEND Issued by Sender: The flow is similar to SEND_ERROR in send state.
The +DR1 response is required for internal processing.

N

2-26 SNA LU 6.2 Reference: Peer Protocols

) H
<::;/ SEND_DATA data

RECEIVE_AND_WAIT

> WHAT_RECEIVED=DATA_%
-RSP(0846) DEALLOCATE
TYPE(ABEND_PROG)
SEND_DATA data Purging
> n
"
(LU ends chain) <————J "
EC,RQE1,CD,no data "
> "(LU detects end of chain)
BC,EC,RQD1,CEB,FMH-7(0864%)
<
RETURN_CODE=
DEALLOCATE_ABEND_PROG
+DR1
> (response used internally)

.
B

s

N\
<::;) Figure 2-23. DEALLOCATE ABEND Issued by Receiver:

The flow is similar to SEND_ERROR in receive

state. The +DR1 response is required for internal processing.

LU STRUCTURE

@

Figure 2-26 on page 2-28 illustrates the
structure of the LU.

The upper protocol boundary of the LU is the
transaction program protocol boundary (de-
scribed in SNA Transaction Programmer's Ref-
erence Manual for LU Type 6.2). A
transaction program processes end user data,
and requests LU services to communicate with
other transaction programs.

The lower protocol boundary of the LU is to
the SNA path control network, which the LU
uses to communicate with other LUs.

The LU also has protocol boundaries with the

CP, buffer manager, NOF, and with initiator
processes in the same node.

SNA LAYERS
The LU contains instances of the following
four SNA layers:

Transaction services

Presentation services

Data flow control

Transmission control

Component Overview

The LU has two groups of components, one for
its upper protocol boundary with transaction

programs, and one for its lower protocol
boundary with the path control network. Each
group consists of a set of processes contain-
ing a pair of SNA layer-instances, and a man-
ager component that creates, destroys, and
otherwise manages these instances.

The upper group of components contains trans-
action processes, which contain instances of
the following SNA layers:

Transaction services
Presentation services

More concretely, each transaction process
contains an execution instance of a trans-
action program and some presentation services
components for processing the verbs issued by
it. (See Figure 2-25 on page 2-29.)

This group of components is managed by the
resources manager component (RM), which cre-
ates transaction processes (in response to
Attaches received from remote LUs), destroys
them after they have finished executing, and
connects them with sessions (thus enabling
them to participate in distributed trans-
actions).

The lower group of components contains
half-sessions (HSs), which contain instances

of the following SNA layers:
Data flow control
Transmission control
Half-sessions enforce protocol rules for con-

versation data exchange, and transform mes-

Chapter 2. Overview of the LU 2-27

l——l TN
H /
. K/
® Application Control- < > Control Operator
Transaction Operator
Program Transaction
Program
A A
| |
I I
| | 1
[]
l | .
DIA b4
l I :
| | [smos“
RESYNC
N
| | é
BM <— — — — — — — T~—== T-1 CNOS __
| | Service
| | 11 Transaction
I l Programs
I Il A
I | |
I I 11 | v |
1
| N v .
v | 1
I R .
s J
I l Presentation Services (/F\\
IP <————>| Resources |< > N
Manager
A
<
I
A
I I
’ |
Sy
CP <——> |
Session 1 '
Manager | I v v b \\
. —
1
NOF ¢——v> l .
———————————————— > Data Flow
Control
< >
Transmission
Control
Services Manager LU-LU Half-Session
A
LU
v
LEGEND: PATH-CONTROL NETWORK
< > Send/Receive relationship CP: Control Point IP: Initiator process
<—= = => Call/Return relationship NOF: Node Operator Facility BM: Buffer Manager
CNOS: Change Number of Sessions RESYNC: Sync Point Resynchronization
SNADS: SNA Distribution Services DIA: Document Interchange Architecture Services

Figure 2-24.

Overview of LU 6.2 Components

2-28

SNA LU 6.2 Reference:

Peer Protocols

N

K*/) I Transaction Program
F————= === - _
any verb issued
PS_INITIALIZE PS Verb Router \
A | A | A |
— — — —_ / Ve
A v | v | v] v
other
PS for PS for PS for PS PS for
Mapped Sync Point Control verb Basic
Conversations| Services Operator handlers |Conversations
PS.MC PS.SPS PS.COPR LA PS.CONV
/ /

"

Resources Manager

' LEGEND:
/ — — —=> Call/Return relationship (within a process)
< > Send/Receive relationship (between processes)

<

Half-Session or
Resources Manager

Note: PS verb router is called recursively by PS verb handlers.

Figure 2-25. Structure of a Presentation Services Process

sage units between the format useful +to
conversing programs and the format appropri-
ate for the path control network (this
includes implementing session services such
‘\\ as pacing and cryptography].
<:;// This group of components is managed by the
session manager component (SM), which creates
and destroys half-sessions and interacts with

components outside the LU (e.g., the control
point).

FUNCTIONAL SUMMARY BY FUNCTION

P
(\'/)‘ This 1s the first of two sections describing
the functions and interactions of LU compo-
nents. This section is organized by func-
tion; it concentrates on functions that
involve multiple components. For each func-

tion, it explains 1in approximate time
sequence the roles of the various LU compo-
nents. The next section is organized by com-
ponent, and covers functions performed
principally by one component. A full
description of each component is given in its
corresponding chapter of this book.

For illustrations of the component inter-
actions discussed in this section, including
a variety of cases not discussed elsewhere in
this chapter, see "Component Interactions and
Sequence Flows" on page 2-48. In particular,
Figure 2-33 on page 2-50 and Figure 2-3%¢ on
page 2-51 illustrate the interactions, at the
source and target LUs, respectively, for a
typical conversation; Figure 2-35 on page
2-52 and Figure 2-36 on page 2-53 illustrate
typical interactions for session deacti-
vation.

//-
O

The session manager component is created by
the node operator facility (NOF) when it
activates the LU. The session manager compo-
nent then creates the resources manager com-
ponent. They run continuously thereafter.
(For more information see SNA Type 2.1 Node
Reference and “Chapter 4. TU Session Manag-
er".)

The LU manages the state and configuration of
its local resources, including transaction
programs conversation resources, and
half-sessions. It cooperates with other LUs,
using shared sessions and conversations, to
configure these resources to support distrib-
uted transactions. (An LU implementation
might also manage other, non-SNA, resources
such as processor execution cycles, storage,
and data bases.)

The principal functions leading to LU trans-
action processing are the following, not nec-
essarily performed in this order:

® Activating sessions between two LUs

® Invoking transaction programs

® Initiating conversations between the
transaction programs

¢ Transferring message units between the
transaction programs

Chapter 2. Overview of the LU 2-29

2-30

EXAMPLE TRANSACTION PROGRAM

Figure 2-26 on page 2-30 outlines some typi-
cal verb issuances for an example pair of
transaction programs.

SOURCE TP TARGET TP
MC_ALLOCATE

MC_SEND_DATA MC_RECEIVE_AND_WAIT

MC_RECEIVE_AND_WAIT "
MC_SEND_DATA
L 1]

" MC_DEALLOCATE
MC_DEALLOCATE

Example of Communicating
Transaction Programs

Figure 2-26.

The programs, running at different LUs, issue
complementary sequences of verbs. The LUs
convert these executed verbs into
message-unit flows.

MESSAGE-UNIT TRANSFER

First, consider transfer of message units.
Assume that two transaction programs are run-
ning at their respective LUs and are con-
nected by a mapped conversation. For the
programs to transfer data, one program must
issue MC_SEND_DATA verbs while the other

issues complementary MC_RECEIVE_AND_WAIT
verbs.

The TP invokes PS for each
- transaction-program verb it issues. PS per-

forms the function appropriate to the specif-
ic verb. For each verb, PS verifies that the
verb is valid in the current conversation
state, converts the verb parameters to an
intermediate representation, and performs
verb-specific processing that includes issu-
ing appropriate requests to other LU compo-
nents. :

When sending, the data specified on the
MC_SEND_DATA verb along with the chaining
indicators is put into MUs by PS and sent to
HS. HS encodes the protocol information into
RHs and passes the resulting BIUs (with TH
information) to path control.

When receiving, HS checks incoming BIUs for
format and protocol validity and passes MUs
containing data to PS. HKWhen the TP issues a
MC_RECEIVE_AND_WAIT verb, PS checks the verb
for validity and passes the requested amount
of data and protocol information back to the
TP.

The following sections discuss these func-

tions in more detail. (Figure 2-4¢ on page

SNA LU 6.2 Reference: Peer Protocols

2-16, Figure 2-5 on page 2-17, and Figure 2-6
on page 2-18 illustrate the message-unit
relationships discussed.)

Sending Data

For MC_SEND_DATA, PS verifies that the con-
versation is in send state. If mapping is

being performed, PS . maps the
transaction-program data record into a
mapped-conversation record (see "Mapping

Function" on page 2-36). It transforms the
MCR into a sequence of logical records of
implementation-defined length by segmenting
the supplied data and prefixing the appropri-
ate GDS LLID fields. It calls the basic con-
versation SEND_DATA procedure as often as
necessary (determined by the buffer-record
size used by the PS.MC implementation) to
send all the logical records. The
mapped-conversation verb handlers in PS typi-
cally call one or more basic-conversation
procedures to perform the function requested
by a mapped-conversation verb.

When PS has first entered send state, it
expects an LL at the beginning of the first
buffer record. From then on, PS compares the
accumulated length of the data passed on suc-
cessive 1issuances of MC_SEND_DATA to the
logical-record lengths specified in the LLs,
thus verifying that the conversation message
sent ends at a logical record boundary.

PS accumulates the data from successive buff-
er records in RU-sized units (the RU size for
a session is determined by BIND negotiation
when the session is activated). HWhen the
RU-size buffer is full, PS transfers the data
to HS with an indication of whether it is the
last of the data for a conversation message.
When PS detects the end of a conversation
message, e.g.» a PREPARE_TO_RECEIVE,
MC_RECEIVE_AND_WAIT, CONFIRM, SYNCPT, or
MC_DEALLOCATE verb was issued, PS transfers
its remaining accumulated data with an indi-
cation of how the conversation message was
ended, e.g.> confirmation request, conversa-
tion turnaround, or deallocation. It also

places the conversation in the appropriate
state.

Mearwhile, the HS process, also in send
state, waits for data from PS. MWhen PS
passes the data, HS fills in the RH, a

sequence number, and other TH information.
If session cryptography is being used, HS
enciphers the data.

HS encodes each RH to indicate the beginning
or end of a bracket (corresponding to a com-
plete conversation exchange) and the begin-
ning or end of a chain (corresponding to a
conversation message). For all but the last
BIU in a chain, HS encodes the RH with RQE1l.

For the last BIU for the conversation mes-
sagey, HS encodes the RH with EC (the
end-of-conversation-message indicator) and
other indicators selected by PS, such as CD
(e.g.» MC_PREPARE_TO_RECEIVE verb issued),
RQD2 (e.g.>» MC_CONFIRM issued), RRD1

ﬁ N
_

e

(MC_DEALLOCATE TYPE[ABEND]) issued), and CEB
(MC_DEALLOCATE issued). HS changes the local
session state accordingly.

HS passes each completed BIU and the corre-
sponding TH information to path control for
transmission to the receiving HS in the
remote LU.

HS enforces both fixed and adaptive
session-level pacing. The type of pacing for
a given session 1is determined during session
initiation and 1is communicated to HS when
initialized by SM.

In fixed pacing, the sending HS sends at most
one fixed-sized pacing window of BIUs before
receiving a pacing response. It then
requires a pacing response from the receiver
before sending another window. The receiving
HS sends a pacing response when it can
receive another pacing window, e.g., when it
has enough free buffers.

In adaptive pacing, the pacing window size
varies depending upon the availability of
buffers at the receiving node and the demand
for buffers at the sending node. The avail-
ability of buffers is determined and con-
trolled by the buffer manager (BM) at the
receiving node.

The sending HS asks the receiving HS for the
next-window size by setting the Pacing indi-
cator to 1 (PAC) in the RH of the first mes-
sage in a window. Also in the same RH, the
sending HS may ask for a larger window size
by setting the Request Larger Window indica-
tor to 1 (RLK).

The receiving HS calculates the next-window
size based upon the number of buffers given
to it by the buffer manager and the demand
for buffers by the sending HS. The receiving
HS sends the next-window size to the sending
HS in a pacing message (IPM), which corre-
sponds to the pacing response (IPR) in fixed
pacing. When additional buffers are avail-
able and the Request Larger Window indicator
is RLW, the window size is increased. HKhen
additional buffers are not available, the
window size remains the same. When fewer
buffers are available, the window size is
decreased. When buffers become critically
scarce, the buffer manager prompts the
receiving HS to send an unsolicited pacing
message to the sending HS, which causes the
sending HS to set its current-window size and
next-window size to 0, thus stopping the
sending HS from sending BIUs. HKhen buffers
again become available, the buffer manager
prompts the receiving HS to send another pac-
ing message with a next-window size greater
than 0 to the sending HS. This allows the
sending HS to resume sending BIUs. For more
information on session-level pacing see
"Chapter 6.2. Transmission Control".

Receiving Data

The HS process at the receiving LU receives
BIUs and TH information from path control.

It sends IPRs or IPMs when it has sufficient
buffers to receive additional BIUs. If ses-
sion cryptography is specified, it deciphers
the data. It checks for correct session pro-
tocol. It checks BIU sequence numbers to
detect lost or duplicate BIUs and to corre-
late responses with the correct bracket. If
it detects any protocol error, it abnormally
deactivates the session, i.e., it requests SM
to issue UNBIND indicating a format or proto-
col error.

If the BIU is satisfactory, HS sends the Mus
containing the Security FM header or the
Attach FM header, if present, to RM, and
sends all other MUs to PS. HS also sends PS
an 1indication of significant state changes
that were encoded in the received RH such as
end of a. conversation message (End-of-Chain),
enter send state (Change-Direction), confir-
mation request (Definite-Response 213) and
end of conversation
(Conditional-End-of-Bracket). HS changes its
own session state accordingly.

Mearmhile, the receiving TP issues
MC_RECEIVE_AND_WAIT verbs to receive the con-
versation message. Each verb issuance calls
PS.

For each MC_RECEIVE_AND_WAIT issuance, PS
calls the basic conversation RECEIVE_AND_WAIT
procedure until it receives enough data (in
the form of logical records) to satisfy the
data length requested on the
MC_RECEIVE_AND_WAIT verb.

For each RECEIVE_AND_WAIT verb issuance (in-
cluding the case in which RECEIVE_AND_WAIT is
issued directly by a transaction program,
i.e., for a basic conversation), PS waits for
the data from HS. PS receives data from HS
in the form of MUs. If more MUs are received
than are currently necessary to satisfy a
RECEIVE_AND_MWAIT, PS queues the MUs.

While parsing the MUs to satisfy the
RECEIVE_AND_WAIT, PS keeps track of the LL
fields, to verify that the conversation mes-
sage ends on a logical record boundary.

When the RECEIVE_AND_WAIT procedure returns
to the MC_RECEIVE_AND_WAIT procedure, PS
checks the length and continuation fields in
the LLs to verify that a complete
mapped-conversation record (MCR) has been
received, strips the GDS LL and ID fields,
and reblocks the data into an MCR. (If the
TP receive buffer cannot contain the complete
MCR, PS passes it to the TP in
receive-buffer-sized segments, i.e.,
mapped-conversation buffer records.)

If PS receives an end-of-conversation-message
indication, it does not forward this indi-
cation to the TP until after all logical
records and MCRs have been received. It then
returns the end-of-conversation-message indi-
cation alone on the next MC_RECEIVE_AND_WAIT
verb issued, and places the mapped conversa-
tion into the appropriate state.

Chapter 2. Overview of the LU 2-31

2-32

TRANSACTION PROGRAM INITIATION AND TERMI-
NATION

Before the TPs can exchange message units,
the TPs must be brought into execution.

Invoking a Remote Transaction Program

Assume that a source TP is already in exe-
cution. It requests invocation of a remote
TP by issuing the ALLOCATE verb (or
MC_ALLOCATE, which PS.MC converts into an
ALLOCATE). It identifies the program to be
invoked by specifying the remote transaction
program name and remote LU name, and selects
the desired +transport characteristics by
specifying a mode name.

Using the parameters from ALLOCATE, the
source PS builds an Attach FM header and
sends it to HS for transmission to the part-
ner LU. When the target HS receives the
Attach FM header, it passes it to its RM.
This RM checks some parameters in the Attach
FM header, including any security parameters
in the Attach. If a format or protocol error
is found, the Attach FM header is rejected by
terminating the session that it arrived on.
If no format or protocol error is found but
the Attach contained invalid or inadequate
information, RM sets a sense data field, cre-
ates a PS process and passes it the Attach FM
header with the sense data. Upon finding the
sense data, the new PS builds and sends an FM
Header 7 containing the sense data, thus
rejecting the Attach. If RM finds no errors,
it creates a PS process and passes it the
Attach FM header with no sense data. The new
PS analyzes the Attach FM header further and,
if an error is detected, rejects it; other-
wise, PS selects and loads the specified
transaction program code, and calls it, plac-
ing 1t initially in receive state for the
conversation.

Once a target TP is invoked, it can act in
turn as a source TP to invoke other TPs. If
conversation-level security 1is required by
the other TPs, the same security user ID that
initiated the original target TP may be used,
along with an Already Verified indicator in
the Attach FM header, or the source TP may
supply the required security parameters.

Initiating the Initial Local Transaction Pro-
gram

The first TP activated for a distributed
transaction is initiated by a START_TP record
received by RM from an initiator process on
the same system. Examples of an initiator
process are an application, the node operator
facility (NOF), a TP-PS process, a
control-point process, or RM itself. The
START_TP record contains information such as
the name of the TP to be started; security
tokens of the requester, e.g., user ID, pass-
word, profile; an indication as to whether a

SNA LU 6.2 Reference: Peer Protocols

reply to the START_TP request is desired, and
the initiating process's name and ID.

RM treats the START_TP much like an Attach:
the requested TP-PS process is created and
initialized; however, no conversation is
associated with a START_TP request.

Terminating a Transaction Program

A TP ends by returning to PS.INITIALIZE. PS
then performs any necessary final processing
(such as deallocating the TP's remaining con-
versations), and notifies RM. If no queued
START_TP or Attach requests exist for the TP,
RM destroys the PS process.

CONVERSATION ALLOCATION AND DEALLOCATION

A source TP initiates a conversation with a
target TP by 1issuing the ALLOCATE (or
MC_ALLOCATE) verb.

The source PS satisfies the TP request in two
steps.

First, PS sends RM a request to allocate a
conversation. RM creates a conversation
resource and notifies PS.

Second,
session to the conversation.

PS sends RM a request to assign a
When RM has a

session available for the conversation, RM:

connects the PS process of the issuing TP to
the HS process of the session and notifies PS
and HS. PS places the source end of the con-
versation (where the allocation was
requested) initially in send state.

If a session is not immediately available, RM
suspends the issuing process.

After a session is assigned to the conversa-
tion at the source LU, PS sends the Attach FM
header to HS for transmission to the target
LU.

When HS at the target LU receives the first
BIU of the bracket, it notifies RM. RM
receives the Attach from HS, creates the con-
versation resource, and makes it accessible
to HS and PS. It places the target end of
the conversation initially in receive state.

The following sections give further details
of these functions.

Selecting a Session

RM maintains a list of allocation requests
and a list of free sessions and their con-
tention polarities. If RM has an allocation
request (i.e., from an ALLO-
CATE (RETURN_CONTROL =
WHEN_SESSION_ALLOCATED)) and a first-speaker
(contention-winner) session is free (i.e., in
between-brackets state), RM allocates that
session to the conversation. If a

C

first-speaker session is not free but a bid-
der (contention-loser) session is free, RM
bids for the session. If no sessions are
free, but the session limits have not been
reached, RM requests that SM activate a new
session. If no sessions are free and the
session limits are reached, RM queues the
allocation request to await the freeing of a
session.

Bidding

RM requests HS to attempt to begin a bracket
by sending an RU with BB; this is called
bidding for the session.

RM always accepts a bid received on a bidder
session.

If RM receives a bid on a first-speaker ses-
sion, RM accepts or rejects the bid depending
on whether any of its own transactions need
to allocate the session for use by their own
conversation (if they do, then it sends a
negative response to the bid; otherwise, it
sends a positive response to the bid).

Optionally, a negatively-responding RM will

inform the partner when it is again willing
to accept a bid.

Newly Active Session

When a session becomes newly active, it is
initially in in-brackets state. If LU-LU
verification is active, RM at the primary LU
creates and sends (via HS) a Security FM
header (FMH-12) to the secondary LU's RM for
verification. The LU that activated the ses-
sion (the primary LU, or BIND sender) has
first right to send, regardless of the ses-
sion contention polarity. If RM at the pri-
mary LU has no unsatisfied conversation
request when a session becomes active, it
requests HS to yield the session, i.e., to
end the bracket.

Deallocation

When PS requests deallocation of the conver-
sation, HS ends the current bracket, and RM
deletes the conversation resource and places
the session in the free-session list.

SESSION ACTIVATION AND DEACTIVATION

If RM has a conversation request for a ses-
sion but no session is free and the session
limits have not been exceeded, RM requests SM
to activate a new session. RM also requests
session activation as a result of operator
commands (such as INITIALIZE_SESSION_LIMIT).

Starting a Session

Starting a session involves the following
three activity phases: session limits
initialization, session initiation, and ses-
sion activation.

Initializing Session Limits: Prior to any
transaction activity, the control operator
sets limits on the maximum and minimum num-
ber, and contention polarity, of active ses-
sions with particular partner LUs using
particular mode names (see '"Control-Operator
Functions" on page 2-36 for details).

Session Initiation: When SM receives a ses-
sion activation request from RM, SM sends an
ASSIGN_PCID record to the session services
(SS) component of the CP. SS responds by
sending to SM an ASSIGN_PCID_RSP record con-
taining the fully-qualified procedure
correlator ID that uniquely identifies the
potential session and the procedures related
to that session.

SM then sends an INIT_SIGNAL record to SS,
which directs the control point to mediate
the 1initiation of the session. SS sends to
SM a CINIT_SIGNAL record containing session
characteristics and information to be
included in the BIND.

SM then sends an ASSIGN_LFSID record to the
address space manager (ASM) component of the
CP. ASM responds with an ASSIGN_LFSID_RSP,
which contains the local-form session identi-
fier (LFSID) for the potential session.
Refer to "Chapter 4. LU Session Manager" for
more details of session initiation.

Session Activation SM then generates a BIND
RU containing the desired session parameters.
If security is used, the session parameters
include randomly generated data for LU-LU
verification and an indication of the amount
of conversation-level security support that
is defined for the secondary LU. Random and
enciphered data are sent/received only when
LU-LU verification is active. SM sends the
BIND to its local CP for routing to the part-
ner LU.

SM for the LU receiving the BIND (the second-
ary LU or SLU) negotiates the proposed ses-
sion parameters to acceptable values;
enciphers the received random data based upon
the LU-LU password; saves the indication of
the primary LU's conversation-level security
support for the secondary LU; and creates a
positive response to BIND. The positive
response to BIND includes an indication of
the secondary LU's conversation-level securi-
ty support for the primary LU, randomly gen-
erated data, and the enciphered version of
the random data received in BIND. SM sends
this positive response to BIND via its local
CP.

When the positive response to BIND is sent or
received, the session manager at each end
connects a new HS process to the path control
network. If the session uses cryptography,
the HSs exchange -cryptography-verification

Chapter 2. Overview of the LU 2-33

RUs. Then, each SM notifies its RM that a
new session is available. If LU-LU verifica-
tion 1is active, before the new session is
available for conversations, the primary LU's
RM enciphers the random data received on the
response to BIND and returns it to the sec-
ondary LU's RM for verification.

If the LUs cannot agree on session parame-
ters, or the enciphered random data compar-
ison fails, the session activation fails.

Session Outage

If session outage occurs, SM notifies RM. If
a conversation was active on the session, RM
notifies PS, which notifies the transaction
program of conversation failure. RM requests
SM to activate another session if it has
unsatisfied conversation requests or an
unsatisfied auto-activation limit.

Ending a Session

Ending a session involves the following three
activity phases: operator request, session
shutdown, and session deactivation.

Operator Request: Sessions are not deacti-
vated 1n the normal course of transaction
program processing; they are deactivated
normally only upon specific request from the
control-operator transaction program. (Ses-
sions are deactivated abnormally because of
protocol violations and physical connectivity
problems.)

When the LU operator 'at either end of a ses-
sion determines that a session is to be deac-
tivated, the control-operator transaction
program issues a control-operator verb. The
control operator can cause sessions to end in
two ways.

The operator can issue a RESET_SESSION_LIMIT
verb to reset the session limits to 0 for
specified partner LUs and mode names. The LU
proceeds with subsequent phases until there
are no active sessions for the specified
(LU,mode) pairs.

FUNCTIONAL SUMMARY BY COMPONENT

2-34

This section is organized by component; it
reviews the specific functions of each prin-
cipal component, and describes functions per-
formed primarily in one component.

Presentation Services

PS manages transaction programs and controls
conversation-level communication between TPs:

SNA LU 6.2 Reference: Peer Protocols

The operator can also 1issue a DEACTI-
VATE_SESSION verb to deactivate a specific \
session (this might be done, for example, to (/N\
recover from certain error situations). This 7
does not change the session limits, however,

so the LU might activate another session to
replace it.

When PS.COPR receives the verb, it issues a
session-limit-change notification or a
session-deactivation request to RM.

Session Shutdown: When RM receives a
session-limit-change notification, RM first
performs drain processing. If the operator
has requested RESET_SESSION_LIMIT with drain
indicated, then RM performs no deactivations
until all requests for allocation of sessions
with the specified mode name have been satis-
fied.

When drain is complete, or when RM receives a
session-deactivation request, and an affected |
session next enters between-brackets state, “._.-
RM initiates a bracket-termination protocol.

This consists of an exchange of
bracket-initiation-stopped (BIS) RUs assuring

that all brackets have completed at both ends

of the session, i.e., that no other BIUs are

in transit between the LUs.

After receiving BIS, the partner LU drains
its allocation requests and sends BIS in
return.

When the BIS protocol is complete, the RM/”
that initiated the BIS protocol instructs its\\~
SM to deactivate the session. -

Session Deactivation: MWhen SM receives a
session-deactivation request from RM, it
sends UNBIND, via the local CP, and awaits a
response. When the partner SM receives an
UNBIND, it unconditionally sends a positive
response. When the response to UNBIND is
sent or received, the corresponding SM dis-
connects the half-session process from the
path control network, notifies the CP that
the session 1is ended, and destroys the
half-session process. &\ B

® Loads and calls the transaction program
Maintains the conversation protocol
state, e.g., send/receive state of the TP

¢ Enforces correct verb parameter usage and
sequencing constraints .

® Coordinates specific processing for each

verb <::?
¢ Performs mapping of transaction program
data into mapped-conversation records

C\
\
)
;

® Converts mapped-conversation records to
GDS variables, and the reverse: it par-
titions the data into logical records and
generates LLID prefixes

® Blocks data into RU-sized message units
(MUs)

® Reblocks MU data from HS into logical
records or buffer records as required by
the TP

® Verifies logical-record length and bound-
aries

® Truncates or purges data when errors are
reported or detected by the TP

¢ Generates and issues FM headers for
Attaches and Error-descriptions

Half-Session

HS controls session-level communication
between LUs:

® Builds RHs and enforces correct RH param-
eter settings

® Creates chains and enforces chaining as
the unit of LU-to-LU error recovery

® Correlates responses with the correct
bracket ’

¢ Enforces bracket protocol and purges
rejected brackets

. Enforces protocols for the relevant FM
and TS profiles for the session (FM pro-
file 19 and TS profile 7)

® Generates and enforces sequence numbering
to detect lost or duplicate BIUs

® Provides session-level pacing (none,
fixed, or adaptive)

° Exchanges cryptography-verification RUs
when session cryptography is being used

® Enciphers and deciphers data when session
cryptography is being used

Resources Manager

RM manages presentation services and conver-

sations

® Creates and destroys instances of presen-
tation services

® Creates and destroys conversation

resources and connects them to
half-sessions and to presentation serv-
ices

® Finishes LU-LU verification for
session-level security by generating and
processing Security FM headers (FMH-12s)

¢ Performs all conversation-level security
checks, verifies conversation-level pass-
words, and controls access to protected
transaction programs

® Maintains the data structures represent-
ing the dynamic relationships among con-
versation resources, half-sessions,
transaction program instances, and trans-
action program code

® Chooses the session to be used by a con-
versation and controls contention for the
session

¢ Performs drain action: allows session
traffic to cease before requesting ses-
sion deactivation

® Requests SM to activate and deactivate
sessions

Session Manager

SM manages sessions:

[Coordinates session initiation in concert
with the control point

® Sends and receives BIND

® Supplies and negotiates session parame-
ters during BIND exchange

® Exchanges cryptographic key and session
seed

® Exchanges random and enciphered data and
performs initial LU-LU verification

® Notifies RM of session outage

® Creates and destroys half-session
instances and connects them to path con-
trol instances

FUNCTIONS OF COMPONENTS OF THE NODE EXTERNAL
TO THE LU

Buffer Manager: The primary objective of the
node buffer manager 1is to manage buffer
pools. The LU uses these facilities for
session-level pacing. The facilities pro-
vided by the node buffer manager are:

¢ A mechanism to increase and decrease
buffer resources used by a process based
on fair sharing of limited storage

® A mechanism that notifies buffer users
when buffer resources are in critically
short supply

® A mechanism that allows processes to wait
for buffer resources to become available

Type 2.1 Node Control Point (T2.1 CP): The
T2.1 node control point allows peer-to-peer
connection of distributed processors by
assisting in the activation of links and ses-
sions, e.g., it locates partner LUs, sets the
path, assigns LFSIDs. For more information

Chapter 2. Overview of the LU 2-35

2-36

on T2.1 node control points refer to SNA Type
2.1 Node Reference.

Node Operator Facility (NOF): NOF manages the
activation and deactivation of the LU.

Initiator Process: An initiator process is
any process 1n the LU's local system that has
addressability to the RM component of the LU.
The initiator process is considered privi-
leged in that it may use this addressability
to send records to the LU that cause the LU
to perform specific functions, e.g., to cre-
ate a transaction program that initiates a
distributed transaction.

FUNCTIONS OF SERVICE TRANSACTION PROGRAMS

Service transaction programs provide func-
tions to the end user tﬁai require communi-
cation with another LU using a special
SNA-defined pattern of verbs.

Service TPs form part of a distributed trans-
action similarly to other TPs. They have a
transaction program name and are invoked by
the Attach mechanism, and they exchange
information with these other TPs by issuing
transaction-program verbs.

Service transaction programs differ from
user-application transaction programs in that
they are SNA-defined and are considered part
of the LU. The names of service transaction
programs are SNA-defined. The records that
service TPs send and receive are SNA-defined
GDS variables.

Control-Operator Functions

All LUs bhave an implementation- or
installation-defined control operator trans-
action ram (COPR TP) that represents the
LU con‘lro% operator's interface to the LU.
Using a program-selected means such as opera-
tor console input, this TP issues
control-operator verbs to perform
control-operator functions.

Control-operator verb functions include cre-
ation and modification of the data structures
that describe the LU and the LU-accessed net-
work resources: control points, transaction
programs, partner LUs, and modes. Other
control-operator verb functions 1limit the
numbers and contention polarities of sessions
with particular LUs for particular mode
names, and also determine when sessions will
be activated and deactivated.

For an LU that supports parallel sessions,
there are additional transaction services
components for the control operator. These
LUs contain a change-number-of-sessions
(CNOS) service transaction program. When
processing CNOS verbs, the COPR TP at one LU
exchanges GDS variables with the CNOS service
TP at its partner to reach mutual agreement
about limits on the number of parallel ses-
sions between them.

SNA LU 6.2 Reference: Peer Protocols

(Control-operator functions are discussed in
further detail in “"Chapter 5.4. Presentation
Services--Control-Operator Verbs" .)

SNA Distribution Services

SNA Distribution Services (SNA/DS) provides a
set of verbs that an application TP may issue
to request asynchronous distribution of data.

The service is provided by a network of dis-
tribution service units (DSUs) interconnected
by conversations and sessions. Each DSU con-
sists of PS verb handlers and a collection of
service TPs within the LU. The service TPs
provide data storage, routing, and distrib-
ution asynchronously with the origin or des-
tination application programs.

SNA/DS is described in the publication SNA
Format and Protocol Reference Manual: Dis-
tribution Services.

Document Interchange Services

Document . Interchange Architecture (DIA)
describes formats and protocols for synchro-
nous exchange of documents by using
basic-conversation verbs in a prescribed way.
Document interchange services include service
TPs for synchronous document transfer.

/

Document interchange architecture is!

7N

a

described in the publication Document Inter- NN

change Architecture--Concepts and Structures.

OPTIONAL FUNCTIONS

This section describes the principal optional
function sets.

Mapping Function

The mappi function is an optional function
of mappe’a conversations (PS.MC) that allows a
TP to select transformations, called maps, to
be applied to TP data at the sending and
receiving TP protocol boundaries. Maps are
non-SNA-defined transformation tables or pro-
cedures that can be defined by the installa-
tion at both the source and target LUs. Maps
can specify, for example, how fields of a
mapped-conversation record are related to the
TP variables (data record) referred to in
protocol-boundary verbs.

Each LU can support multiple maps. Each map
is identified by a map name. The maps to be
applied are selected by the transaction pro-
gram (via verb parameters) and by other maps
(in an implementation-defined way), as shown
in Figure 2-27 on page 2-37.

Three separate map-name name spaces existC

(terms in parentheses correspond to those in
the figure):

Figure 2-27. Map Name Usage by Mapped Conversations

* % * %
%* * * *
] %] 1___ x|
| | sender map (map-1) | | Receiver map (map-2)
*®__ % x___ %
| |
| |
\' \'
1 | |
source TP sends: | | transferred on conversation: | | target TP receives:
| | , | |
map-name-1, data-1 | | map-name-2, data-2 | | map-name-3, data-3
>| | >] | >
| | | |
| Send | | Receive |
| Mapping | | Mapping |

1. Sender locally-known map name: This map
name (map-name-1) is Known to the TPs at
the sending LU. It identifies a map
(map-1) at the sending LU that defines
the transformation performed by the send-
er from the format of the sending-program
data (data-1) to the format of the MCR
(data-2) that is sent on the conversa-
tion. This map also defines a corre-
spondence between the sender
locally-known map name (map-name-1) and
the globally-known map name (map-name-2)
described below.

2. Globally-known map name: This map name
(map-name-2) is Known at both the sending
and receiving LUs, and is transferred on
the conversation between sender and
receiver. ‘It identifies a map (map-2) at
the receiving LU. This map defines the
transformation performed by the receiver
from the format of the MCR received on
the conversation (data-2) to the format
of the data presented to the receiving
transaction program (data-3). This map
also defines a correspondence between the
globally-known map name (map-name-2) and
the receiver locally-known map name
(map-name-3) described below.

3. Receiver locally-known map name: This
map name (map-name-3) is Known to TPs at
the receiving LU. This identifies the
format of the data presented to the pro-
gram (data-3), e.g., it allows the pro-
gram to select the correct structure
definition or format description for the
data produced by the execution of the
receiver map (map-2).

Mapping is performed by a PS.MC component
called the mapper.

The mapper at the sender selects the send map
specified by the sender locally-known map
name, which is supplied as a parameter of the
MC_SEND_DATA verb. It performs the send map-
ping on the TP-supplied data, producing a
mapped-conversation record. Using the sender
map > the mapper. also selects the
globally-known map name.

The LU sends the globally-known map name over
the conversation in an SNA-defined map-name
GDS variable (see SNA Formats), and sends the
mapped-conversation record 1n a separate GDS
variable.

The mapper at the receiver selects the
receive map specified by the globally-known
map name received. It performs the receive
mapping on the mapped-conversation record it
receives, resulting in data formatted for
presentation to the TP. Using the receiver
map, the mapper also selects the receiver
locally-known map name. PS.MC passes the
receiver locally-known map name and the
reformatted data to the TP as returned param-
eter values for the next receive verb issued,
e.g.» MC_RECEIVE_AND_WAIT.

The receiving TP uses the receiver
locally-known map name in a TP-determined way
to interpret the received data.

The TPs supply or receive a map name parame-
ter wvalue for each send or receive verb
issued, respectively. The LU, however, does
not send another map-name GDS variable if the
globally-known map name has not changed from
that of the previous record sent. To accom-
plish this, the mapper at each LU retains the
most recently sent and most recently received
values of map-name-2 for the conversation
(the send and receive map names can be dif-
ferent). The retained values for each direc-
tion persist until changed or until the end
of the conversation, regardless of interven-
ing turnarounds.

Sync Point Function

The sync point function allows all TPs proc-
essing a distributed transaction to coordi-
nate error recovery and maintain consistency
among distributed resources such as data
bases.

The sync point functions affect protected

resources. These include conversation
resources and implementation- or

Chapter 2. Overview of the LU 2-37

2-38

installation-designated resources such as
data bases. Any changes to a protected
resource are logged so that they can be
either backed ggi (reversed) if the trans-
action detects an error, or committed (made
permanent) if the transaction 1s successful.

The transaction programs divide the distrib-
uted transaction into discrete, synchronized
logical units of work (LUWs), delimited by
synchronization points (sync points). (Cor-
responding sync points occur at each TP par-
ticipating in the distributed transaction.)
LUWs are sequences of operations that are
indivisible units for the application, 1i.e.,
any failure in an LUW invalidates the entire
LUM (all LUW processing by all TPs for the
transaction), so the transaction is backed
out to the previous sync point.

The LU components for the sync point function
are shown in Figure 2-28 on page 2-39.

Highlights of the sync point function are
discussed below. (See "Chapter 5.3. Presen-
tation Services--Sync Point Services Verbs"
for details.)

Sync Point Control: The sync point function
at each LU 1s coordinated by PS.SPS.

For each TP process participating in the dis-
tributed logical unit of work, the corre-
sponding PS.SPS tracks the state of that
logical unit of work. To do this, PS.SPS has
protocol boundaries with the TP and with the
protection managers for each conversation and
for each protected local resource allocated
to that TP.

Logging: When processing a given logical
unx% of work, whenever a TP issues a verb
that makes any changes to a protected
resource, the corresponding resource pro-
tection manager logs the change so that, if
necessary, the change can be backed out lat-
er.

The log manager maintains the log entries for
each active LUN (i.e., for each active trans-
action) on non-volatile storage, wusing
implementation-defined data-management func-
tions. The same log is used to record all
log entries for all the LU resources for the
LUK,

Resources Manager: MWhen it creates the PS
process, RM provides PS.SPS with access to
the log.

In some cases, a transaction program can ter-
minate normally before its sync point log
entries are erased. In these cases, RM
assumes the function of the terminated sync
point control to complete the protocol and to
release (forget) the log entries.

Protection Managers: Each protected
resource, e.g., a conversation or a local

data base, has a protection manager that logs
significant state changes ring a logical
unit of work, detects errors affecting the
integrity of the changes, and commits or

SNA LU 6.2 Reference: Peer Protocols

backs out the changes as determined by the
sync point protocol.

The protection manager for a conversation is
defined by SNA; protection managers for other
(non-SNA) resources are defined by the imple-
mentation, but have a similar protocol bound-
ary to PS.SPS. The protection managers form
a sublayer between PS verb handlers and the
resource-control components.

Sync Point Protocol: At the end of a logical
unit of work, an application-designated TP
initiates sync point. The LUs then carry out
a protocol involving all local protected
resources and conversations being used by the
TP, and all partner LUs and TPs directly con-
nected by those conversations, to determine
whether any TP or protected resource detected
an error in the LUW, and to propagate this
result to the other LUs and TPs.

When a TP issues a verb that invokes the sync(
point function (e.g., SYNCPT, BACKOUT) 1its
PS.SPS coordinates the sync point protocol.
PS.SPS exchanges sync point commands, in the
form of presentation services (PS) headers
and FM headers, over the TP's conversations
with other TPs. Each PS.SPS component for
the transaction performs similar exchanges,
in turn, with its TP's conversation partners.
The PS.SPS components also determine the sta-
tus of local non-SNA resources by exchanging
appropriate commands across their internal
protocol boundaries.

the protection managers to complete any pendi

ing log entries for the LUW. N

The sync point protocol culminates with a
mutual decision among all TPs processing the
LUA either to commit or to back out the LUW.

Commitment and Back-Out: MWhen the sync point
protocol 1s complete at a particular TP, the
resource control components use the LUM log
entries to supply the information needed
(e.g.» data base change records) to perform
the required commitment or back out.
then notify PS.SPS to erase the log entriesi
for that LUW.

Resynchronization: An LU failure might occur
during the sync point protocol, so that some
LU never receives an expected LUN status
report. To recover from this case, the other
LUs can wait until the failing LU is reini-
tialized, and then the LUs perform a resyn-
chronization (resync) protocol to complete
the sync point processing at each LU. Resync
uses service transaction programs to exchange
sync point status among the LUs.

When the failing LU is reactivated, the LU
completes the resync transaction before run-
ning any other transaction programs that
require sync point. The resync service TP is
initiated by RM at some LU, typically at the
sync point initiator; this TP attaches the
resync TP at its partners, which continue
propagating the resync TP throughout the LUs
that had been processing the distributed
transaction.

They /~

<

/7N

~

These exchanges direct/,\\

S

7N
N

<::i) application RESYNC
/s

transaction service
program transaction
A program
l'l l!l
r—-——=—=-=--=-- — (Note 1)
I Ly)
o 0 o
PS PS PS | ————— (Note 2)
sync point local function— function— PS.CONV
services resource shipping shipping
resource resource
control
(PS.SPS) (non—SNA) (non—SNA) (non—SNA)
A A A A A—A:
A AAAA |
. |I .
) , .
7 * (Note 3)
I | =
v V- V. V- V- Vv V V-
protection| |protection | protection protection
manager manager manager manager
————— — for | t----44 }t----—
local function— conversa— conversa—
resource shipping | tion tion
control resource resource resource
{non—SNA) (non—SNA) | -
A A — A A
. > — - d
PS
C -
log <
manager |<
<
I
|'l I'I ®
< .
resources manager |[< .
A I r\ \/.
TN A V: V- V- V- V
{ I
N v local LU-LU LU-LU
session resource half- half-
manager control session session
I | I
\4 Vv v \
log file local resource path control

NOTES:

1. Function-shipping resource control recursively calls PS to communicate with the partner.
The conversation used for communication with the partner has its own protection manager.

2. PS components not relevant to sync point have been omitted from this figure.
3. A distinct protection manager exists for each conversation resource created by PS.

4. The non-SNA components are undefined protocol machines (UPMs).

<:::;} Figure 2-28. Relationship of LU Components for Sync Point Functions

Chapter 2. Overview of the LU 2-39

The first step of the resync transaction is
to validate the integrity of the LU logs,
i.e., to determine that all LUs' logs contain
consistent entries for the same LUW. To do
this, the resync service TPs exchange
Exchange Log Name GDS variables on the con-
versation. Next, the service TPs exchange

DATA STRUCTURES

2-40

The LU maintains data structures representing
the state and configuration of its resources.

Some system-definition data structure ele-
ments represent the LU-accessed network
resources. These structures describe the
characteristics of the LU itself, the trans-
action programs that the LU can run, the
partner LUs with which the LU can communi-
cate, and the modes characterizing possible
sessions with particular partner LUs.

Other data structure elements represent the
dynamic environment created by the LU. The
principal components of this environment are
the transaction program instances in exe-
cution (represented by transaction-program
processes) the active sessions with other LUs
(represented by half-session processes), and
the active conversations (represented by con-
versation resources). This environment also
includes the relationships of the dynamic
components to the LU-accessed network
resources and to each other.

LU-ACCESSED NETWORK RESOURCES

Figure 2-29 on page 2-41 illustrates the data
structures that represent the LU-accessed
network resources.

The LUCB structure (and some associated lists
not shown) describe the local LU. This
information includes the LU's fully qualified
name and the set of optional functions (e.g.,
parallel sessions and mapping) that the LU
supports. The LUCB is also the anchor for
lists of data structures describing the other
LU resources.

A TRANSACTION_PROGRAM structure (and associ-
ated lists not shown) describe the trans-
action programs at the local LU. This
information includes the transaction program
name, 1its current availability status, and
the set of optional functions (e.g., sync
point, mapping, and access control) that it

supports.

A PARTNER_LU structure describes a remote LU
(potential partner LU). This information
includes the remote LU's names: local LU
name, fully-qualified LU name, and uninter-
preted LU name. It also includes the set of
the LU's optional capabilities, such as par-
allel sessions and security. The PARTNER_LU
structure also contains a list of mode
descriptions.

SNA LU 6.2 Reference: Peer Protocols

Compare States GDS variables to determine the
status of the sync point protocol at the time
of failure. PS.SPS then uses this informa-
tion to complete the sync point protocol.
(See SNA Formats for the SNA-defined format
of the Exchange Log Name and Compare States
GDS variables.)

A MODE structure describes a set of session
characteristics that a group of sessions
share. These characteristics include the
name of the mode and the set of optional
functions that are supported by the remote LU
on a mode basis, e.g., sync point. It also
includes the session parameters that charac-
terize this mode, such as maximum allowed RU
size, session-pacing window size, and session
cryptography parameters. The MODE structure
also indirectly describes 1link character-
istics: the mode name is used by the control
point as the key to tables identifying the
links and routes to be used for sessions for
that mode. Distinct partner LUs have dis-
tinct modes. The characteristics for ses-
sions to different partner LUs may be
different even if the sessions have the same
mode name.

PROCESSES AND DYNAMIC RESOURCES

Figure 2-30 on page 2-42 1illustrates the
principal data structures and processes, and
their relationships, that represent the
dynamic environment. The formal description
represents these relationships in various
ways such as pointers between control blocks,
keys of elements in lists, and intermediate
dynamic control blocks.

The processes also contain state information
used by LU functional components; this is
described in more detail in chapters con-
cerned with the relevant functional compo-
nents.

The TP process represents a transaction pro-
gram instance. It identifies the transaction
program code that it is using. There may be
multiple transaction program processes exe-
cuting the same transaction program code.

The HS process represents a half-session. It
identifies the remote LU and mode with which
it is associated. A mode may be associated
with many half ion proc > but each HS
process is associated with only one mode.

The RCB structure represents a conversation
resource. The RCBs are the central elements
in the dynamic configuration of the LU: they
represent the connection of a transaction
program to a half-session; this connection is
dynamically created and destroyed, and allows
an asynchronous (Send/Receive) relationship
between TP and HS. The RCB identifies the
local TP using the conversation and the

-

—

N

—

)

C

O

c

Local LU information (LUCB)

Transaction
Pt Program
Code (TPGM)

Transaction
—— Program
Code (TPGM)

Transaction
P Program
Code (TPGM)

LEGEND:
Vertical lines represent lists of subordinate resources

Associated Data Structure Name

LUCB: LUCB PTNR: PARTNER_LU
MODE: MODE TPGM: TRANSACTION_PROGRAM
Figure 2-29. LU Static Data Structures (Example)

Partner LU
Information
(PTNR)
MODE
Info
MODE
Info
MODE
Info
Partner LU
Information
(PTNR)
MODE
Info
MODE
Info
Partner LU
Information
(PTNR)
MODE
Info
MODE
Info

Chapter 2.

Overview of the LU

2-41

N
Lucs <:::/

F—TPGM 1 |:::::: TP A
#
BERRAE | RCB E | 363636363636 3636363636 369636 3636 69663 3 36 6 3 I IIEIEIIII I NN PTNR W
%
fi222222 222 HS K [:zesecc2:::| MODE U
#
#
——TPGM 2 |:::::: TP B ¥ MODE
#
& % #
#uN%| RCB F |H#niss HS M J::ssss2es::| MODE L //N\
HH] \\ p
+ - s
R#URABAE| RCB G | HHHUHH HS N [:eezzzee: PTNR X
#
#
—TPGM 3 # MODE
#
#
PTNR Y
#
#
A TP C p.2i222 2222202 HS P |J:ecsececece:| MODE V
i TN
HH * %)
HH # #HXE| RCB H |HEHHHHRBHRAR(ARSY HS Q J:::::::::::) MODE (.
HY # ~
HH #
—TPGM & |:::: BERERAE| RCB I |[HHBHHE PTNR
HY] #
HH # —
. EEEE TP D BARBRRARRRRAE HS R Jeceicc:cc:::| MODE Z
° | S— :: °
] #* 13 [} [}
* RRAURE| RCB J |[HHHHBRRVARRR{RUY HS T J:eecezee . .
[] T L]
[L] \.\
L] -
LEGEND:

Vertical lines represent lists of subordinate resources
:::: association of process to static data elements

association of processes via RCB dynamic data element
%%%% association of RCB with MODE in lieu of unavailable HS

Abbr. Data Structure Name
LUCB: Local LU information LuUcB

TPGM: Transaction Program Code information TRANSACTION_PROGRAM
PTNR: Partner LU information PARTNER_LU

MODE: Mode information MODE

TP: Transaction program process

RCB: Conversation resource information RCB

HS: Half-session process

Figure 2-30. LU Dynamic Data Structures and Processes (Example)

.
half-session being used, if any. Because a and mode name (MODE) for the desired session. R
session might not be immediately available Many conversation resources, hence RCBs, may
when a TP allocates a conversation, the RCB be associated with the same local TP, but
also identifies the remote LU (PARTNER_LU) each RCB may be associated with only one

2-62 SNA LU 6.2 Reference: Peer Protocols

local TP, one partner LU, one mode, and one

<::’ half-session.

/ Figure 2-30 on page 2-42 1illustrates several
of the possible relationships among these
structures. In the figure:

¢ Active TP B for transaction program code
2 has two active conversations:

— RCB F connects it to remote LU H via
session K with mode name U.

— RCB G connects it to remote LU Y via
session P with mode name V.

] LU W has two free sessions, M and N, each
with mode name L.

¢ Remote LU X has a single mode name with
no active sessions.

<) ® No active TP instances exists for trans-
~ action program 3.

¢ Two active TP instances exist for trans-
action program 4: TPs C and D.

LU STARTUP AND SHUTDOWN

~ LU startup consists of three phases: creat-
7N ing the LU processes, initiating the control
> operator transaction program, and setting the
LU definition and session limits. The LU
then 1initiates programs and activates ses-
sions in response to further operator, trans-

action program, or partner-LU actions.

To shut down the LU, the steps are reversed,
but some can be omitted. The minimum
required to terminate communication is to
reset the session limits.

(/A ’ LU PROCESS CREATION AND TERMINATION

(

Figure 2-32 on page 2-45 shows the process
creation and termination hierarchy for the
LU. The node operator facility (NOF) creates
the SM process. As part of SM's initial
processing, 1t creates the RM process and
then informs NOF of RM's successful creation.
These processes continue running thereafter.

The TP and HS processes are discussed in
"Running State" on page 2-44.

CONTROL-OPERATOR TRANSACTION PROGRAM INITI-
ATION

As a result of receiving a START_TP record
- from NOF, RM creates a PS process and initi-
(1-/\ ates the control-operator TP.
e

® Two conversations G and H exist with
remote LU Y, each using a different mode
name.

® Two conversations I and J use separate
sessions R and T, both with mode name Z.

RESOURCE RELATIONSHIPS IN A DISTRIBUTED
TRANSACTION

In contrast to Figure 2-30, which illustrates
the data structures for several transactions
from the perspective of a single LU, Fig-
ure 2-31 on page 2-44 1llustrates the
relationships among data structures at
several LUs from the perspective of a single
distributed transaction. In this case, the
paired half-sessions connect LUs, and the
paired conversation resources, represented by
RCBs, connect transaction program instances.

CONTROL-OPERATOR ACTIONS

The control operator specifies the LU defi-
nition describing the LU-accessed network
resources: the transaction programs, partner
LUs, and modes. (An implementation might
provide this function without requiring
explicit operator interaction, e.g., the LU
definition might be specified at
system-definition time.)

The operator initializes session limits with
the partner LUs by 1issuing the INITIAL-
IZE_SESSION_LIMIT verb for the relevant mode
names. For parallel-session mode names, this
verb activates an LU-LU session using the
SNA-defined mode name SNASVCMG (if not
already active) and establishes mutually
agreeable session limits for other mode names
by exchanging CNOS GDS variables on that ses-
sion. This verb optionally causes activation
of a predetermined number of sessions for the
specified mode name.

When sessions are to be deactivated, the con-
trol operator issues RESET_SESSION_LIMIT for
the mode name. For a parallel-session con-
nection, this causes another CNOS GDS vari-
able exchange to elicit the partner LU's
cooperation in the session shutdown. In any
case, this verb causes the LU to eventually
cease initiating new transaction programs and
activating new sessions (drain). As sessions
become unused, RM and SM deactivate them.

The LU initiates no further actions to shut

down the LU. Any further actions are at the
initiative of NOF.

Chapter 2. Overview of the LU 2-43

a
\\J/‘
TPGM TPGM TPGM
™ ™ ™
RCB | snnmm uman RCB RCB|uman ummmsansssn|RCB
HS HS HS HS
LUB wec
(o
N~
TPGM
TP
-~
RCB |nEnm LLLULLL L)L] LLL L RCB (
N
HS HS
LU A wo
LEGEND: ™
Association of a process with its data structures (
smmam® Conversation (connection between transaction program instances [TPs1) N
====== Session (connection between LUs)
TPGM: Transaction program data structure (represents transaction program code)
RCB: Resource control block (represents a conversation)
TP: Transaction program process instance
HS: Half-session process instance

Figure 2-31. Data Structure Relationships among LUs for a Distributed Transaction (Example)

RUNNING STATE Either RM or the partner LU can request ses-
sion activation; in either case, SM performs

the relevant processing. SM creates an HS

2-6%

Once the LU-LU session limits have been set,
the LU is ready to process transactions.

RM creates a transaction-program process when
it receives an Attach or an initial TP invo-
cation request (START_TP); it destroys that
process when PS indicates that the TP has
completed and all its conversations have been
deallocated.

SNA LU 6.2 Reference: Peer Protocols

process for an LU-LU session and connects it
to a path control instance whenever it sends
or receives BIND. SM destroys that process
when it has sent or received a positive
response to UNBIND, has disconnected the
half-session from path control (by sending
PC_HS_DISCONNECT, RSP(UNBIND), or UNBIND to
the CP), and has notified the CP that the
session is ended (by sending SESSEND_SIGNAL).

C

O

(

/_- .\‘a
N

O

NOF e

LEGEND:
.

Figure 2-32.

Resources
Manager
Process

(RM)

[] .

Transaction
Program /
Presentation

Services
Process

Session
Manager
Process

(SM)

-
~

<

r

LU-LU
Half-Session
Process

> process creation (The arrow points from creator to created.)
NOF: Node operator facility

LU Process Creation and Termination Hierarchy

EXAMPLE

Figure 2-35 on page 2-52 and Figure 2-36 on
page 2-53 illustrate typical interactions at

the local and remote LUs, respectively, for
an LU shutdown sequence. "Chapter 5.4. Pres-
entation Services--Control-Operator Verbs"
describes LU startup and shutdown in more
detail.

Chapter 2. Overview of the LU 2-45

PROTOCOL BOUNDARY SUMMARY

This section lists the external message units

INTERCOMPONENT STRUCTURES

and internal records exchanged by LU compo-
nents. See "Appendix A. Node Data Struc-
tures” for full descriptions of these
structures.

SM-CP Protocol Boundary

SM to CP Interprocess Signals
TRANSACTION PROGRAM VERBS AND INTERPROCESS

SIGNALS ASSIGN_LFSID
ASSIGN_PCID
FREE_LFSID
PS-TP Protocol Boundary: Transaction Program INIT_SIGNAL
Verbs LFSID_IN USE_RSP
MU (contains the following RUs)
BIND
Basic-Conversation Verbs UNBIND
RSP(BIND)
ALLOCATE RSP(UNBIND)
CONFIRM PC_HS_DISCONNECT
CONFIRMED SESSEND_SIGNAL
DEALLOCATE SESSST_SIGNAL

FLUSH
GET_ATTRIBUTES
POST_ON_RECEIPT
PREPARE_TO_RECEIVE
RECEIVE_AND_WAIT
RECEIVE_IMMEDIATE
REQUEST_TO_SEND

CP to SM Interprocess Signals

ASSIGN_LFSID_RSP
ASSIGN_PCID_RSP
CINIT_SIGNAL
INIT_SIGNAL_NEG_RSP

SEND_DATA LFSID_IN_USE
SEND_ERROR MU (contains the following RUs)
TEST BIND
UNBIND
Mapped-Conversation Verbs RSP(BIND)

SESSION_ROUTE_INOP
MC_ALLOCATE
MC_CONFIRM
MC_CONFIRMED
MC_DEALLOCATE
MC_FLUSH
MC_GET_ATTRIBUTES
MC_POST_ON_RECEIPT
MC_PREPARE_TO_RECEIVE INIT_HS
MC_RECEIVE_AND_WAIT
MC_RECEIVE_IMMEDIATE
MC_REQUEST_TO_SEND
MC_SEND_DATA ABEND_NOTIFICATION
MC_SEND_ERROR ABORT_HS

MC_TEST INIT_HS_RSP

SM-HS Protocol Boundary

SM to HS Interprocess Signals

HS to SM Interprocess Signals

Type-Independent Verbs

SM-NOF Protocol Boundary

BACKOUT

GET_TP_PROPERTIES

GET_TYPE SM to NOF Interprocess Signal
SYNCPT

WAIT RM_CREATED

Control-Operator Verbs

SM-BM Protocol Boundary

ACTIVATE_SESSION
CHANGE_SESSION_LIMIT
DEACTIVATE_SESSION
INITIALIZE_SESSION_LIMIT
PROCESS_SESSION_LIMIT
RESET_SESSION_LIMIT

SM-BM Calls3

Each buffer manager protocol boundary (here and following) is a synchronous (calling) invo-
cation of the buffer manager by the components of the LU; the names in the list refer to
request identifiers modeled as parameters in the Call.

2-46 SNA LU 6.2 Reference: Peer Protocols

- ADJUST_POOL
- FREE_BUFFER
) GET_BUFFER

RESERVE_BUFFER

HS-PC Protocol Boundary

HS to PC Interprocess Signal
MU(outgoing data)
PC to HS Interprocess Signal

MU(incoming data)

HS-BM Protocol Boundary

<:j\) HS-BM Calls

e ADJUST_POOL
FREE_BUFFER
GET_BUFFER

TRANSFER_BUFFER

PS-HS Protocol Boundary

PS to HS Interprocess Signals

CONFIRMED
<::f\ REQUEST_TO_SEND
; MU(SEND_DATA_RECORD)
S SEND_ERROR

HS to PS Interprocess Signals

CONFIRMED

MU(incoming data)
RECEIVE_ERROR
REQUEST_TO_SEND
RSP_TO_REQUEST_TO_SEND

<:;;} PS-RM Protocol Boundary

PS to RM Interprocess Signals

S

ABEND_NOTIFICATION
ALLOCATE_RCB
CHANGE_SESSIONS
DEALLOCATE_RCB
GET_SESSION
RM_ACTIVATE_SESSION
RM_DEACTIVATE_SESSION
TERMINATE_PS
UNBIND_PROTOCOL_ERROR

RM to PS Interprocess Signals

MU(FMH-5)
CONVERSATION_FAILURE
RCB_ALLOCATED
RCB_DEALLOCATED
7N RM_SESSION_ACTIVATED
1 SESSION_ALLOCATED
START_TP

PS-BM Protocol Boundary

PS-BM Calls

FREE_BUFFER
GET_BUFFER

RM-HS Protocol Boundary

RM to HS Interprocess Signals

BID_RSP
BID_WITHOUT_ATTACH
BIS_REPLY
BIS_RQ
BRACKET_FREED
ENCIPHERED_RD2
HS_PS_CONNECTED
RM_HS_CONNECTED
RTR_RQ

RTR_RSP
YIELD_SESSION

_ HS to RM Interprocess Signals

BID

BID RSP

BIS_RQ

BIS_REPLY
FREE_SESSION
MU(FMH-5 or FMH-12)
RTR_RQ

RTR_RSP

RM-SM Protocol Boundary

RM to SM Interprocess Signals
ABEND_NOTIFICATION

ACTIVATE_SESSION
DEACTIVATE_SESSION

SM to RM Interprocess Signals
ACTIVATE_SESSION_RSP

SESSION_ACTIVATED
SESSION_DEACTIVATED

RM-Initiator Process Protocol Boundary

RM to Initiator Process Interprocess Signal
START_TP_REPLY

Initiator Process to RM Interprocess
Signals

SEND_RTR
START_TP

RM-BM Protocol Boundary

RM-BM Calls

FREE_BUFFER

Chapter 2. Overview of the LU 2-47

COMPONENT INTERACTIONS AND SEQUENCE FLOWS

2-48

The following figures illustrate both the
internal protocol-boundary sequence flows
among LU components and the external flows
between two LUs that result from
basic-conversation verb issuances.

Each flow is illustrated by a pair of figures
on facing pages. Each separate figure

represents the complete flow as seen by a
single LU. The figure labeled local LU

represents the LU that initiates the sequence
being illustrated; the figure labeled remote
LU represents the partner LU. For cases
illustrating a race between two LUs, the LUs
are distinguished as first speaker (FSP) and
bidder. The flows through the path control
network are shown in the column nearest the
center margin, and are replicated in each
figure; numerals in parentheses in the mar-
gins between facing parts of the same flow
correlate corresponding steps in the facing
figures. When flows cross in the
path-control network, the crossing is illus-
trated on the sending side of the delayed
flow.

NOTATION

For the interpretation of labels on the

arrows, see the following (which, in some

cases have been abbreviated):

. For verb and verb-parameter names
(TP-PS), SNA Transaction Programmer's

Reference Manual for LU Type 6.2

. For protocol-boundary records and message
units (TP-PS, PS-RM, RM-SM), "Protocol
Boundary Summary" on page 2-46

[For RU names (SM-SM, HS-HS)}, SNA Formats

[For RH indicators (SM-SM,

HS-HS), S_Né
Formats

The following abbreviations for chaining
indicators are also used:

- FIC (first

in chain) = (BC,-EC)

SNA LU 6.2 Reference: Peer Protocols

— MIC (middle in chain) = (-BC,-~EC)

- LIC (last in chain) = (-BC, EC)

— O0IC (only in chain) (BC, EC)
] For data elements of RUs (SM-SM, HS-HS),

SNA Formats

In cases where a component returns parameters
in a verb, the parameters (e.g., RC), but not
the verb, are named on the flow arrow.

The following conventions and abbreviations
apply to all sequence flows in the book.

asynchronous (send/receive logic)
intercomponent flow

asynchronous (send/receive logic)
intercomponent flow with
intermediate-component processing
creation or destruction of a
process (action shown in
parenthesis) or synchronous
(call) invocation of another
component (e.g., the buffer
manager)

o———>0

o—o—>0

o— - - —0o

{ } Braces surrounding alternatives
indicate inclusion required.

[1 Brackets surrounding alternatives
indicate inclusion optional.

.. or Ellipses indicate possible
repetitions or unshown
: continuations.

ASM CP address space manager

BM buffer manager

cpP control point

HS half session

P initiator process

LU logical unit

NOF node operator facility

PC path control

RM LU resources manager

SM LU session manager

SS CP session services

Numbers to the left of the flows correspond
to enumerated annotations in the text outside
(usually following) the figures. Footnotes
appear in some figures to relate minor points
such as signal omissions or simplification.

C

C,

C

.

c

This page intentionally left blank

Chapter 2.

Overview of the LU

2-49

™ PS RM SM HS(FSP) (to partner LU)
ALLOCATE (WHEN_ . . N . .
SESSION_ALLOCATED). ALLOCATE_RCB . . .
O - - - - - - - = >0 >0 . .
. .RCB_ALLOCATED(OK) J . .
. o< o .
. GET_SESSION .ACTIVATE_SESSION 1 . BIND2 }
. >0 o > (a)
1 . +RSP(BIND)?
. . o< (b)
. . |INIT_HS .
. . >0
. ACTIVATE_ . INIT_ | CRV3
. . . SESSION_ . HS_ > (e)
RC= SESSION_ALLOCATED(OK) RSP(+) . RSP(+) . +RSP(CRV)3
0~ — — = = = — = —0<: o< o< o (d)
RM_HS_CONNECTED .
. >0
ENCIPHERED_RD2% . . BC,-EC,RQE1,-BB,FMH-12%
>o > (e)
HS_PS_CONNECTED . .
>0
SEND_DATA . MU(FMH-5,data ,NOT_END_OF_DATA). -BC,RQE1,FMH-5,data
- - - = - - - - - >o >o > (1)
RC=
SN N
SEND_DATA . MU(data,NOT_END_OF_DATA) - . RQE1l,data
b = = — — - - - >o >0 > (2)
. RC= . .
e i) .
RECEIVE_AND_WAIT . MU(data,PREPARE_TO_RCV_FLUSH) . . EC,RQE1,CD,data
—— = - — = — - - >0 O > (3)
.RC=0K, . .
.WHAT_RECEIVED= . . .
. DATA_COMPLETE . MU(data,DEALLOCATE_FLUSH) . BC,EC,RQE1,CEB,data
OC= = = = = = = = — o< o< (4)
RECEIVE_AND_WAIT . FREE_SESSION . |
———————— >0 o<
.RC=DEALLOCATE_NORMAL . .
OC— = = = = = — =~ - .
DEALLOCATE(LOCAL) . DEALLOCATE_RCB .
-------- (e, >0 A . .
. RC=0K . RCB_DEALLOCATED BRACKET_FREED
0= — = — = — = — — o< >0
Notes:

T Session—activation flows to CP and path control have been omitted;

see "Chapter 4. LU Session Manager" for details.
2 BIND/RSP(BIND) flows through the CP (not shown).

Buffer manager calls have been omitted.

3 CRV/RSP(CRV) flows only when session—level cryptography is being used.

4 Flows only when LU-LU verification is being used.

Figure 2-33. Complete Conversation Example--Local LU

2-50 SNA LU 6.2 Reference: Peer Protocols

)

-

g

(to partner LU) (Bidder)JHS SM RM PS TP
BIND2 1 . . .
(a) >0 . . .
+RSP(BIND)2 . | . . .
(b) < 1 . . .
JINIT_HS . . .
o<———J . . .
CRY3
(c) >0
+RSP(CRV)3 INIT_
(d) < HS_
l RSP(+) .SESSION_ACTIVATED . . .
>0— >0 . .
RM_HS_CONNECTED J . .
N o< . .
C) BC,~EC,RQE1,-~BB,FMH-12% . MU(FMH-12)% . . .
- (e) o - >0 . .
~BC,RQE1,FMH-5,data . BID . . .
(1) o >0 . .
. BID_RSP(+) | . .
o< . .
[MU(FMH-5) . MU(FMH-5) . linitiate) .
O 20~ = = = = = = - - >0
. HS_PS_CONNECTED l . RECEIVE_AND_WAIT
o< 0~ = — — = = = =
C\ . . . RC=0K ,WHAT_RECEIVED=
- RQE1l,data . MU(data,NOT_END_OF_DATA) . DATA_INCOMPLETE
(2) o >0 = = = - —— - - >0
. . RECEIVE_AND_WAIT
. . 0= = = = = = = =
. . . RC=0K ,WHAT_RECEIVED=
EC,RQE1,CD,data . MU(data,PREPARE_TO_RCV_FLUSH) . DATA_COMPLETE.
(3) o >0 = = - = - >0
. . RECEIVE_AND_WAIT
0= — = = = = = =~
RC=0K , .
—., . WHAT_RECEIVED=SEND.
; . . ke == >0
C/’ . MU(data,NOT_END_OF_DATA) . SEND_DATA J
o< QS — = = = - - -
. RC= .
. . P i e >0
BC,EC,RQE1,CEB,data . MU(data,DEALLOCATE_FLUSH) .DEALLOCATE (FLUSH)
(4) < o - o<~ — — — — — —- —
. . DEALLOCATE_RCB | .
. o< .
| RCB_DEALLOCATED . RC=0K .
. 20~ = = = = = - - - >0
FREE_SESSION . . .
>0 . o
BRACKET_FREED | . .
o< o .
Notes:

T Session-activation flows to CP and path control have been omitted.

2 BIND/RSP(BIND) flows through the CP (not shown).

3 CRV/RSP(CRV) flows only when session—level cryptography is being used.
4 Flows only when LU-LU verification is being used.

Figure 2-34.

Complete Conversation Example--Remote LU

Chapter 2.

Overview of the LU

2-51

COPR TP PS RM SM HS(FSP) (to partner LU)
RESET_SESSION_LIMIT! . .
O ———— - - >0 . .
. (if parallel session, CNOS exchange occurs here)
o< > (%)
. CHANGE_SESSIONSZ . .
o >0 .
(drain action)3 . .
. BIS_RQ BIS,RQ,BC,EC,RQE1l,~BB,~CEB
[>0 > (1)
Repeat for . .
each session < . BIS_REPLY BIS,RQ,BC,EC,RQE3,-BB,~CEB
for the o< o< (2)
specified .
mode name. DEACTIVATE_SESSION 4 UNBINDS
>0 > (a)
. . +RSP(UNBIND)5
. 4 o< (b)
Notes:

“Wn

Drain action:

For specific-session deactivation, substitute DEACTIVATE_SESSION and eliminate the CNOS exchange.
For specific—-session deactivation, substitute RM_DEACTIVATE_SESSION and eliminate the drain action
wait until no allocation requests, allowed by drain state, are pending,

then wait until session is in between—brackets state, i.e., +RSP(CEB) is sent or received.

Session—-deactivation flows to CP have been omitted.
UNBIND/RSP(UNBIND) flows through the CP (not shown)

L)

Figure 2-35. Session Deactivation--Local LU

2-52 SNA LU 6.2 Reference: Peer Protocols

(
N

I/-\
_

~

C

(:_//ﬂ (to partner LU) (Bidder)HS SM RM PS CNOS TP
(if parallel session, CNOS exchange occurs here) . . .
(%) < >0
. . . -1
BIS,RQ,BC,EC,RQE1l,-BB,~CEB. BIS_RQ .
(1) >0- >0
. . (drain action)3
BIS,RQ,BC,EC,RQE3,-~BB,-~CEB. BIS_REPLY . Repeat for
(2) < o<) > each session
. . . in the mode.
UNBINDS . .SESSION_DEACTIVATED
(a) O >0
. +RSP(UNBIND)® |
(TS 4
S -
Notes:

3 Drain action: wait until no allocation requests allowed by drain state are pending,

then wait until session is in between-brackets state, i.e., +RSP(CEB) is sent or received.
4 session—activation flows to PU and CP have been omitted.
5 UNBIND/RSP(UNBIND) flows through the CP (not shownl.

Figure 2-36. Session Deactivation--Remote LU

O

Chapter 2.

Overview of the LU

2-53

(to partner LU)

TP PS RM HS(FSP)
. ALLOCATE . ALLOCATE_RCB . .
O = == == == - O >0 .
. .RCB_ALLOCATED(OK) .
. o< .
. | GET_SESSION . HS_PS_CONNECTED .
. >0~ >0
. RC=0K SESSION_ALLOCATED(OK) .
O = = = = = = = —o< .
SEND_DATA . . .
———————— >0 . .
. RC=0K . .
(T | . . |
CONFIRM . MU(Attach,data,CONFIRM) .OIC,BB,RQDZIS;FMH—S,data
———————— O 1°4 > (1)
RC=0K . CONFIRMED . +RSP
OC— = = = — = - — — o< O (2)

Figure 2-37. ALLOCATE(RETURN_CONTROL=WHEN_SESSION_ALLOCATED), CONFIRM (by First Speaker)--Local LU

2-54¢

SNA LU 6.2 Reference:

Peer Protocols

®

<) (to partner LU) HS(Bidder) RM PS TP
0IC,BB,RQD2|3,FMH-51,data . BID . . .
(1) o >0 . .
. BID_RSP(+) | . .
o< . .
I MU(Attachl,data). MU(Attach,data) . (initiate) .
o O 20 = = = = = = = — >0
() . HS_PS_CONNECTED | . RECEIVE_AND_WAIT
. o< 0= = = = = = = =
. RC=0K ,WHAT_RECEIVED=
MU(data,CONFIRM) . DATA_%COMPLETE
20— = = = = - = = - >0
. RECEIVE_AND_WAIT
. . 0= = = = = = = =
. RC=0K ,WHAT_RECEIVED=
. . CONFIRM
. « . - emecocos == -- >0
+RSP . CONFIRMED . CONFIRMED _l
(2) < o< Q€= = = = = - - -

<1 1) Note:
g

1 The FMH-5 contains the Attach

Figure 2-38. ALLOCATE(RETURN_CONTROL=WHEN_SESSION_ALLOCATED), CONFIRM (by First Speaker)--Remote LU

®

Chapter 2.

Overview of the LU

TP PS RM HS(Bidder) (to partner LU)

. ALLOCATE . ALLOCATE_RCB . .

O === - - - >o >0 .

. RCB_ALLOCATED(OK) J .

. o< .

. | GET_SESSION BID_WITHOUT_ATTACH. LUSTAT,BB,RQD1

. >o >o ' > (1)

. RC= SESSION_ALLOCATED(OK) BID_RSP(+) . +RSP

O~ = = = = = = = -0< o< o< (2)
SEND_DATA . HS_PS_CONNECTED . ‘
———————— >0 >0

. RC= . .

S N i . .

RECEIVE_AND_WAIT .MU(Attach,data,PREPARE_TO_RCV_FLUSH). OIC,RQE1,CD,FMH-5,data
———————— o >o > (3)

Figure 2-39. ALLOCATE(RETURN_CONTROL=WHEN_SESSION_ALLOCATED), RECEIVE_AND_WAIT (by Bidder)--Local LU

2-56 SNA LU 6.2 Reference: Peer Protocols

C

@

L

Chapter 2.

(to Eartner LU) HS(FSP) RM PS TP
LUSTAT ,BB,RQD1 . BID . .
(1) O >0 . .
+RSP . BID_RSP(+) . .
(2) < o] . .
0IC,RQE1l,CD,FMH-5,data . MU(Attach,data) . MU(Attach,data) . (initiate) .
(3) >0 >0 20~ = = = = - - - - >0
. HS_PS_CONNECTED . RECEIVE_AND_KWAIT
o< Y
. RC=0K ,WHAT_RECEIVED=
MU(data ,PREPARE_TO_RCV_FLUSH) . DATA_COMPLETE
>0~ — - = = = == - >0
. B . RECEIVE_AND_WAIT
. . O~ = = = = = = —
. . RC=0K,
. . WHAT_RECEIVED=SEND
[e >0
Figure 2-40. ALLOCATE(RETURN_CONTROL=WHEN_SESSION_ALLOCATED), RECEIVE_AND_WAIT

Overview of the LU

(by Bidder)--Remote

2-57

N
TP PS RM HS(Bidder) (to partner LU) } <:;/'

. ALLOCATE . ALLOCATE_RCB . .
O~ = = = = = = = ~ (e} >0 o
. RCB_ALLOCATED(OK) | .
. o< .
. I GET_SESSION BID_WITHOUT_ATTACH. LUSTAT,BB,RQD1
. >o- >0 > (1)
. RC= SESSION_ALLOCATED(OK) BID_RSP(+) . +RSP
OC— — = = = = = = —-0< o< o< (2)
SEND_DATA . l HS_PS_CONNECTED .
———————— >0 >0
. RC= . .
P T i L .
CONFIRM . MU(Attach,data,CONFIRM) . OIC,RQD2|3,FMH-5,data
———————— o >0 ' > (3)
. . . . TN
. . RECEIVED_ERROR . —RSP(0846) K\
o< o (4) e
RC=ALLOCATION_ERROR. MU(FMH-7,datal,DEALLOCATE_FLUSH) . 0IC,CEB,RQEL,FMH-7,datal
0S¢~ — = — = = - = —o< o (5)
DEALLOCATE(LOCAL) DEALLOCATE_RCB FREE_SESSION]
———————— O >0<
RC=0K . RCB_DEALLOCATED I BRACKET_FREED .
Ok= = = = = - - - —0<
Note: //—\\
T Optional log data \)

N~
Figure 2-41. ALLOCATE(RETURN_CONTROL=WHEN_SESSION_ALLOCATED), CONFIRM (by Bidder), Attach Error
~-Local LU

2-58 SNA LU 6.2 Reference: Peer Protocols

Q)/ (to partner LU) HS(FSP) RM pPS TP

LUSTAT,BB,RQD1 . BID . . .
(1) >o >0 .
+RSP . BID_RSP(+) | . .
(2) < o . .
. . MUtAttach,data, .
0IC,RQD2|3,FMH~5,data . MU(Attach,data) . error sense code).
(3) O >0r >0 .
. HS_PS_CONNECTED |
o<
(| MU(data,CONFIRM).
,’))
__ RSP(0846) . SEND_ERROR .
(4) < o< .
. . I .
OIC,CEB,RQEL,FMH-7,datal. MU(FMH-7,datal,DEALLOCATE_FLUSH) .
(5) < o< N
| FREE_SESSION . DEALLOCATE_RCB | .
>0< o
. BRACKET_FREED | RCB_DEALLOCATED . .
o< >0

Note:
o/ T Optional log data

Figure 2-42. ALLOCATE(RETURN_CONTROL=WHEN_SESSION_ALLOCATED), CONFIRM (by Bidder), Attach
Error--Remote LU

o

Chapter 2. Overview of the LU 2-59

TP PS RM HS(FSP) (to partner LU) <:::‘

. ALLOCATE ALLOCATE_RCB(immediate) .
o= = = = = = = - - >0 >0 .
. . FSP session available .
. RC= .RCB_ALLOCATED(OK) J .
0< = =~ = = = = = —o< .
. . | HS_PS_CONNECTED .
. . >0

[The flow continues as in the ALLOCATE(RETURN_CONTROL=WHEN_SESSION_ALLOCATED) case.]

Figure 2-43. ALLOCATE(RETURN_CONTROL=IMMEDIATE), Successful--Local LU

~__~

)

2-60 SNA LU 6.2 Reference: Peer Protocols

@/‘ (%o partner LU) HS RM PS

TP

Figure 2-44.

(no activity at remote LU)

from here on just like ALLOCATE(RETURN_CONTROL=WHEN_SESSION_ALLOCATED)

ALLOCATE (RETURN_CONTROL=IMMEDIATE), Successful--Remote LU

Chapter 2.

Overview of the LU

2-61

TP PS RM HS (to partner LU)
. ALLOCATE . ALLOCATE_RCB(immediate) .
O= = = = = = = = = O >0 .
. . (no first—-speaker .
. . session available) .
. .RCB_ALLOCATED .
. RC=UNSUCCESSFUL . (unsuccessful) .
OC= = = = = = = — — o< .

Figure 2-45.

ALLOCATE (RETURN_CONTROL=IMMEDIATE), Unsuccessful--Local LU

2-62 SNA LU 6.2 Reference: Peer Protocols

)

C

<:;) (to partner LU) HS RM PS TP

(no activity at remote LU)

Figure 2-66. ALLOCATE(RETURN_CONTROL=IMMEDIATE), Unsuccessful--Remote LU

@

O

Chapter 2. Overview of the LU 2-63

(.
TP PS RM HS (to partner LU) -
.DEALLOCATE(FLUSH) . MU(DEALLOCATE_FLUSH) . LIC,CEB,RQE1
o -—=-=-=-==--- o o > (1)
. . FREE_SESSION J
. o<
. DEALLOCATE_RCB . .
. >0 .
. RC=0K . RCB_DEALLOCATED BRACKET_FREED .
OC— = = = = = = - -o< >0

Figure 2-47. DEALLOCATE(TYPE=FLUSH) (RQE1l)--Local LU

2-64

SNA LU 6.2 Reference: Peer Protocols

7N

TN

N__

)

C/‘, (to partner LU) HS RM PS ™

. . . RECEIVE_AND_WAIT .

. . OC— = = = = = = =~ -0

LIC,CEB,RQE1 . RCVD_DATA(DEALLOCATE_FLUSH) RC=DEALLOCATE_NORMAL

(1) >0 20~ = = = = - - - - >0
| FREE_SESSION . DEALLOCATE_RCB DEALLOCATE_LOCAL
>0< OC— = = = = - - -

. BRACKET_FREED RCB_DEALLOCATED . RC= .

o< DO~ = = = = - - - - >0

Figure 2-48. DEALLOCATE(TYPE=FLUSH) (RQEl)--Remote LU

S

Chapter 2. Overview of the LU 2-65

“
TP PS RM HS (to partner LU) <;
. N _

(sequence number wrap)

.DEALLOCATE(FLUSH) . MU(DEALLOCATE_FLUSH) . LIC,CEB,RQD1}
O~ = = = = - - - - O o~ > (1)
. . FREE_SESSION . +RSP
. o< 0 (2)
. DEALLOCATE_RCB
. >0
. RC= . RCB_DEALLOCATED AJ BRACKET_FREED.
OC— —= = = = = = = -0< >0
NOTES:

1 RQD1 is required under certain sequence number wrap conditions.

Figure 2-49. DEALLOCATE(TYPE=FLUSH) (RQD1l)--Local LU

2-66 SNA LU 6.2 Reference: Peer Protocols

C

o

(to partner LU) HS RM PS TP
. . . RECEIVE_AND_WAIT .
. . OC— = = = = = ~ — -0
LIC,CEB,RQD1 . MU(DEALLOCATE_FLUSH) RC=DEALLOCATE_NORMAL .
(1) O >0 = — = = — - — = >0
+RSP I . DEALLOCATE_RCB DEALLOCATE_LOCAL
(2) < o< 0C— — = = = — — —
| FREE_SESSION . .
>0 . .
. BRACKET_FREED | RCB_DEALLOCATED . RC=0K .
o< 20— = - = = - = - = >0
Figure 2-50. DEALLOCATE(TYPE=FLUSH) (RQD1)--Remote LU

Chapter 2. Overview of the LU

2-67

TP PS RM HS (to partner LU)
. SEND_DATA . MU(data,NOT_END_OF_DATA) . FIC,data
O = o= = = = - e - >0 O > (1)
. RC= . .
e § . .
DEALLOCATE(FLUSH). MU(data,DEALLOCATE_FLUSH) . LIC,CEB,RQE]l,data
-------- >0 O
. . FREE_SESSION |
. o<
. DEALLOCATE_RCB . . —RSP(0846)
. >0 o< (2)
. (This stray response
. is discarded) > (3)

RCB_DEALLOCATED

BRACKET_FREED .

>0

Figure 2-51. DEALLOCATE(TYPE=FLUSH) (RQE1l), SEND_ERROR, -RSP Sent--Local LU

2-68 SNA LU 6.2 Reference:

Peer Protocols

C

C

-
/ ™

N

7N
)
/

C,/I (to partner LU)

HS RM PS T>P
. . . RECEIVE_AND_WAIT .
. . 0C = = = = = = = -0
FIC,data . MU(data,NOT_END_OF_DATA) . RC=0K, .
(1) o >0 WHAT_RECEIVED= .
. . DATA_INCOMPLETE .
. e >0
—RSP(0846) . SEND_ERROR . SEND_ERROR
(2) < o< OC= = = - - = - - -
LIC,CEB,RQELl,data . MU(data,DEALLOCATE_FLUSH) RC=DEALLOCATE_NORMAL
(3) >o 0 = = — - ——— - >0
(purge data)
FREE_SESSION . DEALLOCATE_RCB . DEALLOCATE(LOCAL)
P ‘ >0< o~ = — = - — - - -
. . BRACKET_FREED | RCB_DEALLOCATED . RC= .
&//z o< 20— = = = = - - - - >0

Figure 2-52. DEALLOCATE(TYPE=FLUSH) (RQE1), SEND_ERROR, -RSP Sent--Remote LU

O

Chapter 2. Overview of the LU 2-69

TP PS RM HS (to partner LU)

. . . .
. . . .
. . .
. . .

SEND_DATA MU(data,NOT_END_OF_DATA) FIC,data
O~ = = = = = - - - >0 >0 > (1)
. RC= . .
S N i . .
DEALLOCATE(FLUSH). MU(data,DEALLOCATE_FLUSH) . LIC,CEB,RQEl,data
———————— >o >0 > (2)
. . FREE_SESSION |
. o<
. DEALLOCATE_RCB . .
R L >0 .
. RC= . RCB_DEALLOCATED BRACKET_FREED .
OC= = = = = - - - -—0< >0

Figure 2-53. DEALLOCATE(TYPE=FLUSH) (RQE1l), SEND_ERROR, -RSP not Sent--Local LU

2-70

SNA LU 6.2 Reference:

Peer Protocols

@
[

C, /’ (to partner LU)

HS RM PS TP
. . . RECEIVE_AND_WAIT .
. . 0= = = = = = = = -o
FIC,data . MU(data,NOT_END_OF_DATA) . RC=0K, .
(1) >o >0 WHAT_RCVD= .
. . DATA_»COMPLETE .
o s Eemec e s = >0
LIC,CEB,RQE]l,data . MU(data,DEALLOCATE_FLUSH) .
(2) >0 >0
I FREE_SESSION . . SEND_ERROR
>0 OC— = = = = = - -
. . (purge data) .
. . RC=DEALLOCATE_NORMA
. . e e m e - - —-- >0
. . DEALLOCATE_RCB .DEALLOCATE(LOCAL)
. o< QC~ = — = = = = —

BRACKET_FREED IRCB_DEALLOCATED . RC= : .
o< >0 = = - = - — - = >0

<::;/ Figure 2-5¢. DEALLOCATE(TYPE=FLUSH) (RQE1), SEND_ERROR, -RSP not Sent--Remote LU

Chapter 2. Overview of the LU 2-71

TP PS RM HS (to partner LU)
DEALLOCATE(CONFIRM). MU(DEALLOCATE_CONFIRM) . EC,CEB,RQD2 | 3
O = = = = = = = = >0 >o > (1)
. . CONFIRMED . +RSP
. o< o< (2)
. DEALLOCATE_RCB . FREE_SESSION I
. >0<:
. RC= . RCB_DEALLOCATED BRACKET_FREED .
OC— = = = = = = = -o< >0

Figure 2-55. DEALLOCATE(TYPE=CONFIRM) (RQD2|3)--Local LU

2-72

SNA LU 6.2 Reference:

Peer Protocols

9

)

®

o

(to partner LU) HS RM PS TP
. . . RECEIVE_AND_WAIT
. . 0<= = = = = = = = -0
. . RC=0K ,WHAT_RECEIVED=
EC,CEB:RQDZIS . MU(DEALLOCATE_CONFIRM) . CONFIRM_DEALLOCATE
(1 >o 0 - —————— >0
+RSP . CONFIRMED . CONFIRMED _J
(2) < o< OC— = = = = = = =
LFREE_SESSION . RC=!
>0 0 e e e e e e - >0
. . DEALLOCATE_RCB .DEALLOCATE(LOCAL)
. o< OC—= = = = = - - -
. BRACKET_FREED l RCB_DEALLOCATED . RC=
o< >- —— = - === - >0
Figure 2-56. DEALLOCATE(TYPE=CONFIRM) (RQD2|3)-~Remote LU
Chapter 2. Overview of the LU

2-73

P PS RM HS (to partner LU) C

. DEALLOCATE

. (ABEND_PROG) . MU(FMH-7,datal »>DEALLOCATE_FLUSH) 0IC,CEB,RQD1,FMH-7(0864),datal
o= = = = = = = = = O O > (1)
. DEALLOCATE_RCB . FREE_SESSION . ' +RSP
. >0<: o< (2)
RC=l . RCB_DEALLOCATED BRACKET_FREED .
OC— = = = = = = = —o< >0
Note:

T Optional log data -

Figure 2-57. DEALLOCATE(TYPE=ABEND_PROG) Issued in SEND_STATE, Between-Chain State--Local LU

2-76 SNA LU 6.2 Reference: Peer Protocols

<;‘/) (to partner LU) HS RM PS P

. . RECEIVE_AND_WAIT .
. . 0= = = = = = = = -0
. . . RC=DEALLOCATE_
OIC,CEB,RQD1,FMH7(0864),datal. MU(FMH-7,data’,DEALLOCATE_FLUSH) . ABEND_PROG
(1) >o >0- m—m - - - - - - >0
+RSP .DEALLOCATE_RCB . DEALLOCATE(LOCAL)
(2) < o< o<~ — — — — = — —
l RCB_DEALLOCATED . RC=
20~ = = = = = - - - >0

FREE_SESSION . . .
>0 . .

BRACKET_FREED | . .
. < .

Note:
T Optional log data

(:::x Figure 2-58. DEALLOCATE(TYPE=ABEND_PROG) Issued in SEND_STATE, Between-Chain State--Remote LU

O

Chapter 2. Overview of the LU 2-75

TP PS RM HS (to partner LU)
. SEND_DATA . MU(data,NOT_END_OF_DATA) . FIC,data :
O m—— — === = >o >0 > (1)
. RC= . .
SO S i . .

DEALLOCATE . . .

(ABEND_PROG) . MU(data, FLUSH) . RQEl,data

-------- >0 >0~ > (2)

. MU(FMH-7 ,DEALLOCATE_FLUSH) . LIC,CEB,RQD1,FMH-7(086%)
: o— > (3)
. DEALLOCATE_RCB . FREE_SESSION . +RSP
R >0< o< (4)
. RC= . RCB_DEALLOCATED I BRACKET_FREED .
0~ = — = = - -~ —o< >0

Figure 2-59. DEALLOCA

TE(TYPE=ABEND_PROG) Issued in SEND_STATE, In-Chain State--Local LU

2-76 SNA LU 6.2 Reference: Peer Protocols

ﬁ\

N

N

S

~—

C

(to partner LU)

FIC,data

HS RM

PS

TP -

. MU(data,NOT_END_OF_DATA)
o

(1)

RQE1,data

.

. MU(data,NOT_END_OF_DATA)

(2)

LIC,CEB,RQD1,FMH-7(0864)

. .

MU(FMH-7,DEALLOCATE_FLUSH)

(3)

+RSP

g .

. DEALLOCATE_RCB

. RECEIVE_AND_KAIT .
OS— — = = = = — = -0
RC=0K,HWHAT_RECEIVED=
>?_ DATA_INCOMPLETE

RC=0K,WHAT_RECEIVED=
. DATA_INCOMPLETE
20— = = = - - - - - >0

. RC=DEALLOCATE_ .
. ABEND_PROG .
20~ — = - — ——— - >0

(4) <

o<

I RCB_DEALLOCATED

FREE_SESSION .
>0
. BRACKET_FREED |
o<

Figure 2-60. DEALLOCATE(TYPE=ABEND_PROG) Issued in SEND_STATE, In-Chain State--Remote LU

Chapter 2.

Overview of the LU

2-77

TP PS RM HS (to partner LU)
. SEND_DATA . . .
i >0 . .
. RC= . .
0C— = = = = — = = -J . .
. FLUSH . MU(data,NOT_END_OF_DATA) . FIC,data
O= = = m = - - - >0 >0 > (1)
S o i : ;
. MU(RECEIVE_ERROR) . —RSP(0846)
o< 0<: (2)
DEALLOCATE . . .
(ABEND_PROG) . MU(FMH-7,datal »DEALLOCATE_FLUSH) .LIC,CEB,RQD1,FMH-7(086%),data 1
———————— >o >0 > (3)
. DEALLOCATE_RCB . FREE_SESSION I
. >0<:
. RC= . RCB_DEALLOCATED | BRACKET_FREED .
OC— = = = = = - =~ —o< >0
Note:

T Optional log data

Figure 2-61. DEALLOCATE(TYPE=ABEND_PROG) Issued in SEND_STATE, -RSP Received State--Local LU

2-78 SNA LU 6.2 Reference: Peer Protocols

/
\

C/ (to partner LU) HS RM PS TP
/

. . . RECEIVE_AND_WAIT .
. . OC~ =~ = = = = = — —0

. . RC=0K ,WHAT_RECEIVED=

FIC,data . MU(data,NOT_END_OF_DATA) . DATA_INCOMPLETE .
(1) >0 20 - == - = - = >0

—RSP(0846) . SEND_ERROR . SEND_ERROR
(2) < o< 0¢— = — — — = = = -
LIC,CEB,RQD1,FMH-7(0864) . MU(FMH-7,datal,DEALLOCATE_FLUSH) RC=DEALLOCATE_NORMAL
(3) >o 20~ = = = = = = = = >0
. (purge)
FREE_SESSION . DEALLOCATE_RCB . DEALLOCATE
L >0< OC— = = == - — - - -
. BRACKET_FREED RCB_DEALLOCATED . RC=! .

-~ o< 20~ = — = = = - - = >0
(::/' Notes:

1 optional log data

This TP gets no indication that the DEALLOCATE is of type ABEND
because everything (including FM headers) is discarded when purging.

Figure 2-62. DEALLOCATE(TYPE=ABEND_PROG) Issued in SEND_STATE, -RSP Received State--Remote LU

Chapter 2. Overview of the LU 2-79

TP PS RM HS (to partner LU)
. SEND_DATA . MU(data,NOT_END_OF_DATA) . FIC,data
O = = = = = - — - >o >0 > (1)
. RC= . .
e I L | . .

DEALLOCATE . . .

(ABEND_PROG) . MU(data, FLUSH) . RQEl, data)

———————— >0 >0 > (2)

. MU(FMH-7 ,DEALLOCATE_FLUSH) . LIC,CEB,RQD1,FMH-7(086%)
. >0 > (3)
. _DEALLOCATE_RCB . FREE_SESSION . —RSP(0846)
. >0< o< (4)
. RC= . RCB_DEALLOCATED | BRACKET_FREED .
OC— = = = = = - - -0< >0

Figure 2-63. DEALLOCATE(TYPE=ABEND_PROG) Issued in SEND_STATE Crossing SEND_ERROR--Local LU

2-80 SNA LU 6.2 Reference: Peer Protocols

;
< !
—

C

(1)

(2)

(3)

(4)

NOTE: TPN on right gets no indication that DEALLOCATE_ABEND occurred

Figure 2-6G. DEALLOCATE(TYPE=ABEND_PROG) Issued in SEND_STATE Crossing SEND_ERROR--Remote LU

(to partner LU) HS RM PS TP
. . . RECEIVE_AND_WAIT .
. . 0¢— = — - = -~ ~ -o
FIC,data . MU(data,NOT_END_OF_DATA) RC=0K ,WHAT_RECEIVED=
>0 >0 DATA_INCOMPLETE
. . b e m - - = >0
—-RSP(0846). SEND_ERROR . SEND_ERROR _l

- o< Q€= = = = = = = -
RQE1l,| data . MU(data,NOT_END_OF_DATA) . .
>0 >0 .
. (purge data) .
LIC,CEB,| RQD1,FMH-7(086%) . MU(FMH—-7 ,DEALLOCATE_FLUSH) RC=DEALLOCATE_NORMAL
>0 0= = — - - - >0

. (purge

| FREE_SESSION

. DEALLOCATE_RCB

rge FMH-7)
. DEALLOCATE(LOCAL)

. BRACKET_FREED
o<

>0<

OC— = = = - - - -

I RCB_DEALLOCATED . RC=0K .

>0 —mmm - - >0

because everything (including FMHs) are discarded when in purge state.

Chapter 2.

Overview of the LU

2-81

TP PS RM HS (to partner LU)
. in RCV state . .

.DEALLOCATE . . .

. (ABEND_PROG) . SEND_ERROR . .

(o e (o >0

. . MU(data,NOT_END_OF_DATA) . FIC,data

. o< o<— (1)
. (purge data)

. . —RSP(0846) :

. . . > (2)
. . MU(PREPARE_TO_RCV_FLUSH) . LIC,RQE1l,CD,no data

. o< o< _ (3)
. MU(FMH-7 ,DEALLOCATE_FLUSH) . OIC,CEB,RQD1,FMH-7(0864)

. >o > (&)
. l DEALLOCATE_RCB . FREE_SESSION . +RSP

. >0< o< (5)
. RC=0K . RCB_DEALLOCATED BRACKET_FREED .

OC= = = = = = = = — o< >0

Figure 2-65. DEALLOCATE(TYPE=ABEND_PROG) Issued in RCV_STATE, Between-Chain State--Local LU

2-82 SNA LU 6.2 Reference: Peer Protocols

)

-

™~

-
\

(, (to partner LU) HS RM PS TP
FIC,data . MU(data,NOT_END_OF_DATA) . SEND_DATA .
(1) < o< Q€= = = = = - - - -0
. . L RC= .
. « ke e e e = - >0
—RSP(0846) . MU(RECEIVE_ERROR) .
(2) >0 >0
LIC,RQE1,CD,no data . MU(PREPARE_TO_RCV_FLUSH) . SEND_DATA
(3) < o< 0C— = = — = = = =
OIC,CEB,RQD1,FMH-7(0864%) . MU(FMH-7 ,DEALLOCATE_FLUSH) .RC=DEALLOCATE_ABEND
(4) O 20~ = = - - - - = - >0
+RSP l . DEALLOCATE_RCB .DEALLOCATE(LOCAL)
. (5) < o< OCm = = = = — = =
C p | RCB_DEALLOCATED . RC= .
S —DJ0= = = = = - - - - >0

FREE_SESSION . . .
20 . .
. BRACKET_FREED | . .
<

Figure 2-66. DEALLOCATE(TYPE=ABEND_PROG) Issued in RCV_STATE, Between-Chain State--Remote LU

Chapter 2. Overview of the LU 2-83

T PS RM HS (to_partner LU)
.RECEIVE_AND_WAIT . . .
o= = = = = = = = = >0 . .
RC=0K ,WHAT_RECEIVED= . .
. DATA_INCOMPLETE MU(data,NOT_END_OF_DATA) . FIC,data
OC~ = = = — = = ~ —-o< o< (1)
DEALLOCATE . . .
(ABEND_PROG) . SEND_ERROR . . —RSP(0846)
———————— >0 >0 > (2)
. . MU(PREPARE_TO_RCV_FLUSH) . LIC,RQE1,CD,no data
. o< o< (3)
. MU(FMH-7,DEALLOCATE_FLUSH) . OIC,CEB,RQD1,FMH-7(0866)
. o > (4)
. L DEALLOCATE_RCB . FREE_SESSION +RSP
. >0< - O (5)
. RC= . RCB_DEALLOCATED BRACKET_FREED
O€— = = = = = = — —o< >0

Figure 2-67. DEALLOCATE(TYPE=ABEND_PROG) Issued in RCV_STATE, In-Chain State--Local LU

2-84 SNA LU 6.2 Reference:

Peer Protocols

<T’ ” (to partner LU) HS RM PS P
4 . .

« e e o e

FIC,data . MU(data,NOT_END_OF_DATA) . SEND_DATA
(1) < o< OC— = = = = = = — — o
. . [_ RC= .
. P et e B) >0
—RSP(0846) . MU(RECEIVE_ERROR) .
(2) >0— >0
LIC,RQE1,CD,no data . MU(PREPARE_TO_RCV_FLUSH) . SEND_DATA
(3) < o< QK= = = = = - - -

. RC=DEALLOCATE_ .

0IC,CEB,RQD1,FMH7(0864) . MU(CFMH-7,DEALLOCATE_FLUSH) . ABEND_PROG .

(4) o e e >0
+RSP . DEALLOCATE_RCB .DEALLOCATE(LOCAL)
(5) < o< 0<— = = - — - — -

<:::\ | Res_bEALLocaTED . Re=OK

FREE_SESSION .
>0
. BRACKET_FREED |
o<

Figure 2-68. DEALLOCATE(TYPE=ABEND_PROG) Issued in RCV_STATE, In-Chain State--Remote LU

—

C

Chapter 2. Overview of the LU 2-85

TP PS RM HS (to partner LU)
SEND_DATA

o ———— - - - >0
RC=

oe X i |
CONFIRM MU(data,CONFIRM) OIC,RQDZIS,data

o= = = = = = = = = >0 >0 > (1)
RC= CONFIRMED +RSP

OC— = = = = = — - - o< o< (2)

Figure 2-69. CONFIRM (RQD2|3)--Local LU

2-86

SNA LU 6.2 Reference:

Peer Protocols

(:J“ (to partner LU) HS

PS TP

0IC,RQD2|3,data

(1)

MU(data,CONFIRM)

RECEIVE_AND_WAIT

OC— = = = = = = = — o
RC=0K ,WHAT_RECEIVED=
DATA_%COMPLETE

(2) <

+RSP

CONFIRMED

>0 = = === — - =~ >0
RECEIVE_AND_WAIT
0= = = = = — — =

RC=0K
WHAT_RECEIVED=CONFIRM

Figure

C

2-70.

CONFIRM (RQD2[3)--Remote LU

Chapter 2. Overview of the LU

2-87

S
(to partner LU) k

TP PS RM HS
X : . . N
. SEND_DATA . . .
0= = = === - - - >0 . .
. RC= . .
G TR i . .
PREPARE_TO_RECEIVE.))
(TYPE=CONFIRM, . . .
LOCKS=LONG) MU(data,PREPARE_TO_RCV_CONFIRM_LONG) . OIC,RQE2 I 3,CD,data
———————— >0 >0 > (1)
. RC=0K . CONFIRMED . FIC,data TN
OC— — = = = = = = — o< o] (2) [
RECEIVE_AND_WAIT . N k}
———————— >0
.RC=0K ,WHAT_RECEIVED= R
N DATA_INCOMPLETE MU(data,NOT_END_OF_DATA)
0~ = = — - — — — —o<
Figure 2-71. CONFIRM (RQE2|3)--Local LU

2-88

SNA LU 6.2 Reference:

Peer Protocols

C

(to partner LU) HS RM

PS TP

e o o o o

0IC,RQE2|3,CD,data . MU(data,PREPARE_TO_RCV_CONFIRM)

(1)

e o o o G

. CONFIRMED

. RECEIVE_AND_KWAIT .

RC=0K,WHAT_RECEIVED=
DATA_COMPLETE
20~ = = = = = = - - >0

RC=0K ,WHAT_RECEIVED=
CONFIRM_SEND .

FIC;data . MU(data,NOT_END_OF_DATA)

(2) <]

Figure 2-72. CONFIRM (RQE2]|3)--Remote LU

Chapter 2. Overview of the LU

2-89

TP PS RM HS (to partner LU)
. SEND_DATA . . .
O = = = = = = = = >0 . .
. RC=i . .
S S i . :
PREPARE_TO_RECEIVE . .
(TYPE=CONFIRM . . .
LOCKS=LONG) .MU(data,PREPARE_TO_RCV_CONFIRM_LONG). OIC,RQEZ|3,CD>data
———————— >0 >0 > (1)
. . MU(RECEIVE_ERROR) . —RSP(0846)
. o< o< (2)
. RC='derived . . .
. from FMH~7' . MU(FMH-7,data,NOT_END_OF_DATA) . FIC,FMH-7,data
OC— = = = = = = = —o< o< (3)

Figure 2-73. CONFIRM (RQE2|3), SEND_ERROR--Local LU

2-90

SNA LU 6.2 Reference: Peer Protocols

@

o

(to partner LU) HS RM PS TP
. . . RECEIVE_AND_WAIT .
. . OC— = = = = — — — -o
. . RC=0K ,HHAT_RECEIVED=
0IC,RQEZ|3,CD,data . MU(data,PREPARE_TO_RCV_CONFIRM) . DATA_COMPLETE
(1) o >0~ — — — - — — - — >0
. . . RECEIVE_AND_WAIT
. . OC— = = = = — = =
. . RC=0K ,WHAT_RECEIVED=
. . [_ CONFIRM_SEND
. it T >0
—~RSP(0846) . SEND_ERROR . SEND_ERROR —J
(2) < o< QC— — = = —- — - -
. L_ RC= .
. . e, e .= >0
FIC,FMH-7,datal . MU(FMH-7,datal,NOT_END_OF_DATA) . SEND_DATA _J
(3) < o< 0= — — = = — — =
. L- RC= .
. . e e - >0
Note:

T The data consists of optional

log data from the SEND_ERROR verb and the TP

data from the SEND_DATA verb or the data from the SEND_DATA verb alone.

Figure 2-74.

CONFIRM (RQE2[3), SEND_ERROR--Remote LU

Chapter 2. Overview of the LU

2-91

—
(to partner LU) (:__,

TP PS RM HS
SEND_DATA . . .
o--=—-=—==-==-- >0 . .
RC= . .
OC— = = = = = = - —J . .
SEND_DATA . . .
———————— >0 . .
RC=0K . .
O = = = = = = — —J . .
CONFIRM o MU(data,CONFIRM) . OIC,RQDZ|3,~CD,da{a
———————— >0 >0 > (1)
. . MU(RECEIVE_ERROR) . —RSP(0846)
. o< o< (2)
. ' . . . /-\\
. RC='derived . . . &\
from FMH-7' . MU(FMH-7 ,data,NOT_END_OF_DATA) . FIC,FMH-7,data —
O = = = = = = - - o< o< (3)

Figure 2-75. CONFIRM (RQD213), SEND_ERROR--Local LU

2-92 SNA LU 6.2 Reference: Peer Protocols

@

(to partner LU) HS RM PS TP
. . . RECEIVE_AND_WAIT .
. . OC~ = = = = = = = = o
. . RC=0K , WHAT_RECEIVED=
0IC,RQD2|3,~CD,data . MU(data,CONFIRM) . DATA_INCOMPLETE
(1) O - 20~ = = = = = = - - >0
. . RECEIVE_AND_WAIT
0C~ = — = - = - =~
RC=0K ,WHAT_RECEIVED=
CONFIRM
. . Emmmm === >0
—RSP(0846) . SEND_ERROR . SEND_ERROR _J
(2) < O OC— = ~ = = = = =
. L RC=0K
. - === >o
FIC,FMH-7,data . MU(FMH-7,data,NOT_END_OF_DATA) . SEND_DATA _]
(3) < o< 0C~ — = — — = — =
. . L RC=0K .
. . b >0

Figure 2-76. CONFIRM (RQD213), SEND_ERROR--Remote LU

Chapter 2. Overview of the LU

2-93

2-9%%

TP PS RM HS (to partner LU)
. SEND_DATA . . .
o —————— - >0 . .
. RC= . .
s 4 . .
I_D-EALLOCATE(CONFIRM) MU(data,DEALLOCATE_CONFIRM) . EC,RQD2 |3:CEB sdata
———————— O o - > (1)
. . MU(RECEIVE_ERROR) . —RSP(0846)
o< 0<: (2)
. RC=‘derived . . .
. from FMH-7' MU(FMH-7 ,data,NOT_END_OF_DATA) . FIC,FMH-7,data
O — = - = o< o< (3)
Figure 2-77. DEALLOCATE(TYPE=CONFIRM), SEND_ERROR--Local LU

SNA LU 6.2 Reference:

Peer Protocols

(to partner LU) HS RM PS TP

. RECEIVE_AND_WAIT .
OC= = = = = = — — —]
. RC=0K ,WHAT_RECEIVED=
EC,RQD2|3,CEB,data MU(data,DEALLOCATE_CONFIRM) . DATA_COMPLETE
(1) >o 0= = = = ——— — >0

* e e

RC=0K ,WHAT_RECEIVED=
CONFIRM_DEALLOCATE

.
o o o o o

B i i >0
—RSP(0846) . SEND_ERROR . SEND_ERROR _J

(2) < o< 0= — = = = = — -
. . L RC=0K .
. ettt >0
FIC,FMH~7,data . MU(FMH-7,data,NOT_END_OF_DATA) . SEND_DATA _I

(3) < o< 0<— — = = = — — -

(: : I B

Figure 2-78. DEALLOCATE(TYPE=CONFIRM), SEND_ERROR--Remote LU

Chapter 2. Overview of the LU 2-95

2-96

TP PS RM HS (to partner LU)
. SEND_DATA . .
O - = = = = = = = >0 . .
. RC= . .
i i . ;
SEND_DATA . MU(data,NOT_END_OF_DATA) . data

———————— o o > (1)
. RC= . .
e S N . .
BEALLOCATE(CONFIRM) MU(data,DEALLOCATE_CONFIRM) .EC,RQD2 | 3,CEB,data

-------- O >0
. o MU(RECEIVE_ERROR) . —RSP(0846)
. o< o< (2)
. . . . > (3)
. RC='derived . . .

from FMH-7". MU(FMH-7 ,data,NOT_END_OF_DATA) . FIC,FMH-7,data

o<m mm = o< o (4)

Figure 2-79. DEALLOCATE(TYPE=CONFIRM) Crossing SEND_ERROR--Local LU

SNA LU 6.2 Reference: Peer Protocols

C

®

®

C / (to_partner LU) HS RM PS TP

. . . RECEIVE_AND_WAIT .

. . L -0

. . RC=0K , WHAT_RECEIVED=

data . MU(data,NOT_END_OF_DATA) . DATA_INCOMPLETE

(1) >0 20~ = = = = = — - - >0

—RSP(0846) . SEND_ERROR . SEND_ERROR .

(2) < o< QL= = = = = = = = -0

EC’RQDZ|3;CEB,data . MU(data,DEALLOCATE_CONFIRM) . o

(3) O >0 .

. (data purged) .

" . RC=0K .

e . S - o

N~ FIC,FMH-7,data . MU(FMH-7,data,NOT_END_OF_DATA) . SEND_DATA _J
(4) < o< O = m = -

L RC=0K .

. . I >0

Figure 2-80. DEALLOCATE(TYPE=CONFIRM) Crossing SEND_ERROR--Remote LU

o

_Chapter 2. Overview of the LU

2-97

TP PS RM HS (to partner LU)
. SEND_DATA . . .
O == == == == >0 . .
. RC=! . .
e XX J : .
L SEND_DATA . MU(data,NOT_END_OF_DATA) . FIC,data
________ >o- >0 > (1)
. RC=! . .
e 2 J B .
RECEIVE_AND_WAIT . MU(data,PREPARE_TO_RCV_FLUSH) . LIC,CD,RQEl,data
________ >0 >o > (2)

Figure 2-81.

2-98

SNA LU 6.2 Reference:

RECEIVE_AND_WAIT Causing RQE,CD--Local LU

Peer Protocols

C

)

C/', (to partner LU) HS RM PS TP
. . . RECEIVE_AND_WAIT .
. . OC— = = = = = = = -0
. . RC=0K ,NHAT_RECEIVED=
FIC,data . MU(data,NOT_END_OF_DATA) . DATA_INCOMPLETE
(1) >0 DO~ = = = = - - - - 20
LIC,CD,RQEL,data MU(data,PREPARE_TO_RCV_FLUSH) .
(2) >0
. RECEIVE_AND_WAIT
OC— = = = = = = =

RC=0K ,WHAT_RECEIVED=
L DATA_COMPLETE

Y -

RC=0K , .
CJ) WHAT_RECEIVED=SEND

Figure 2-82. RECEIVE_AND_WAIT Causing RQE,CD--Remote LU

(

Chapter 2. Overview of the LU 2-99

TP PS RM HS (to partner LU)
. SEND_DATA . . . '
O —mm————— >0 . .
. RC=0K . .
S S J . :
. SEND_DATA . MU(data,NOT_END_OF_DATA) .FIC,data
O~ = = = = - = - - >0— >0 > (1)
. RC=) .
oo RO i .)
SEND_DATA . MU(data ,NOT_END_OF_DATA) .MIC,data
— e == - 70 -
. RC= .
fee EX i . :
. MU(RECEIVE_ERROR) . —RSP(0866)
o< 0 (2)
) . . > (3)
SEND_DATA . MU(PREPARE_TO_RCV_FLUSH) . LIC,CD,RGEL,no data
e o o > (4)
. (discard data) .
. RC=PROG_ERROR_ .))
. PURGING . MU(FMH-7,data,NOT_END_OF_DATA) . FIC,FMH-7,data
O~ = = = = - - -y o< (o] O (5)
RECEIVE_AND_WAIT . .
———————— >0 . .
RC=0K ,WHAT_RECEIVED= .
. DATA_INCOMPLETE .

OC— = = = = = = = .

Figure 2-83. SEND_ERROR before SEND_DATA--Remote LU

2-100 SNA LU 6.2 Reference: Peer Protocols

"~

—~
N

e

S

(,// (to partner LU) HS RM PS TP

. .

. RECEIVE_AND_WAIT .

0¢— = = = = = = — -0
. RC=0K ,WHAT_RECEIVED=
FIC,data MU(data,NOT_END_OF_DATA) . DATA_*COMPLETE
(1) >0 0= = = = ———— - >0
—RSP(0846) . SEND_ERROR . SEND_ERROR
(2) < o] 0C— — — — = — — - -
MIC,data . MU(data,NOT_END_OF_DATA) .
C\ (3) >o >0 purged .
LIC,CD,RQEL1,no data . MU(PREPARE_TO_RCV_FLUSH) . RC= .
(4) >0 - mm - - - - >0
FIC,FMH~7,data . MU(FMH-7 ,data,NOT_END_OF_DATA) . SEND_DATA
(5) < o O = = — o — — —

. . RC= .

e >0

()
S

Figure 2-84. SEND_ERROR before SEND_DATA--Local LU

O

Chapter 2. Overview of the LU 2-101

TP PS RM HS (to partner LU)
. SEND_DATA . . . —RSP(0846)
O == - —— - >0 . . (1)
. RC=l . .
fe X . . .
PREPARE_TO_RECEIVE . .
(TYPE=FLUSH) MU(data,PREPARE_TO_RCV_FLUSH) . LIC,RQE1,CD,data
———————— >0 o > (2)
. RC= . .
fe I | . .
SEND_ERROR . SEND_ERROR .
———————— >0 >0
o . MU(RECEIVE_ERROR) .
. o< 0 <—
. (purged) . .
N . MU(FMH-7,data) . FIC,FMH-7,data
. o< o< (3)
. (purged) .
. . N —RSP(0846)
. . . : > (4)
. RC= . MU(PREPARE_TO_RCY_FLUSH) . LIC,RQE1,CD,no data
0~ — = = = = = — —o< O (5)
SEND_DATA . MU(FMH-7 ,data,NOT_END_OF_DATA) . FIC,FMH-7,data
———————— O O > (6)

s e | '

Figure 2-85. SEND_ERROR Crossing SEND_ERROR, Both Issued in RCV_STATE--Remote LU

2-102 SNA LU 6.2 Reference: Peer Protocols

7
\\

®

e

e

~

(to partner LU) HS RM PS TP
—~RSP(0846) . SEND_ERROR . SEND_ERROR .
(1) < o< OC— — = = — = = =~ -0
LIC,RQE1,CD,data . MU(data,PREPARE_TO_RCV_FLUSH) . RC= .
(2) o 20— - = = - - = - = >0
. . (purge)
FIC,FMH~7,data . MU(FMH-7,data,NOT_END_OF_DATA) . SEND_DATA

(3) < o< OC~ = = = = = = ~ ~
. . L RC=0K .
. b - >0

—RSP(0846) . MU(RECEIVE_ERROR) . " .

(4) O >0 .
LIC,CD,RQE1l;,no data . MU(PREPARE_TO_RCV_FLUSH) . SEND_DATA .
(5) < o< OC— — = = = = = — -0
. . (discard data) .

. . .RC= .

FIC,FMH-7,data . MU(FMH~7,data,NOT_END_OF_DATA) .PROG_ERROR_PURGING.
(6) o >o 20— - - — - - —- - = >0

Figure 2-86. SEND_ERROR Crossing SEND_ERROR, Both Issued in RCV_STATE--Local LU

Chapter 2.

Overview of the LU

2-103

TP PS RM HS (to partner LU)
. SEND_DATA . MU(data,NOT_END_OF_DATA) . FIC,data
O= = = = = = = = ~ >0 >0— > (1)
. RC=! . .
e I i . .
. MU(RECEIVE_ERROR) . —RSP(0846)
o< 0< (2)
CONFIRM . MU(PREPARE_TO_RCV_FLUSH) . LIC,CD,RQE1l,no data
-------- >or - >0- > (3)
. (purge data) . .
. RC='derived . . .
. from FMH-7' . MU(FMH-7,data,PREPARE_TO_RCV_FLUSH). 0IC,CD,RQE1l,FMH-7
O = = = = = = = —o< o< (%)
RECEIVE_AND_WAIT .
-------- >0

« s e e
e o s o

RC=0K ,
WHAT_RECEIVED=SEND

Figure 2-87. SEND_ERROR before CONFIRM--Remote LU

2-104 SNA LU 6.2 Reference: Peer Protocols

&

N

Q// (to partner LU) HS RM PS TP

. RECEIVE_AND_WAIT .

. . OC= = = = = = = = = 0
FIC,data . MU(data,NOT_END_OF_DATA) RC=0K ,WHAT_RECEIVED=
(1) >0 >~L DATA_INCOMPLETE
- e e, - >0
~RSP(0846) . SEND_ERROR . SEND_ERROR

(2) < o< OC— = = = = = - — I
LIC,CD,RQE1l,no data . MU(PREPARE_TO_RCV_FLUSH) . RC=0K .
(3) o 20— = = - = ——— - >o

OIC,CD,RQE1,FMH-7 . MU(FMH-7,data,PREPARE_TO_RCV_FLUSH). RECEIVE_AND_WAIT

C/ (4) < o< O = = = — - — -]

Figure 2-88. SEND_ERROR before CONFIRM--Local LU

Chapter 2. Overview of the LU 2-105

TP PS) RM HS (to partner LU)

. SEND_DATA . MU(data,NOT_END_OF_DATA) . FIC,data
O= = = = = = - - - >0 O > (1)
. RC=0K . .
e N | . .
. MU(RECEIVE_ERROR) . —RSP(0846)
o< 0 (2)
DEALLOCATE (CONFIRM) MU(PREPARE_TO_RCV_FLUSH) . LIC,CD,RQE1l,no data
———————— o o > (3)
. (purge data) .
. RC='derived . . .
from FMH-7' . MU(FMH-7,PREPARE_TO_RCV_FLUSH) . 0IC,CD,RQE1,FMH-7
OC— = = = = = = = —0<: o (4)
RECEIVE_AND_WAIT . .

RC=0K, . .
WHAT_RECEIVED=SEND . . .
0= = = = = = = = . .

Figure 2-89. SEND_ERROR Before DEALLOCATE(TYPE=CONFIRM)--Remote LU

2-106 SNA LU 6.2 Reference: Peer Protocols

()

N

C

)

N

o

(1)

(to partner LU)

FIC,data

HS RM

PS TP

MU(data,NOT_END_OF_DATA)

. RECEIVE_AND_WAIT .

RC=0K ,HHAT_RECEIVED=
DATA_INCOMPLETE

s - - - - >0
—RSP(0846) SEND_ERROR . SEND_ERROR
(2) 0<: OC—~ = — = = = — — -
LIC,CD,RQE1l,no data . MU(PREPARE_TO_RCV_FLUSH) . RC=
(3) o 2 = - = === == >0
OIC,CD,RQEL,FMH-7 . MU(FMH~7 ,PREPARE_TO_RCV_FLUSH) . RECEIVE_AND_WAIT

(4) o< 0C— — = = = = = — -
Figure 2-90. SEND_ERROR Before DEALLOCATE(TYPE=CONFIRM)--Local LU

Chapter 2.

Overview of the LU

2-107

TP PS RM HS

. SEND_DATA .

s Rex i

.
.
.
.

(to_partner LU) C \

RECEIVE_AND_WAIT . Mu(data,PREPARE_TO_RCV_FLUSH) OIC,RQE1l,CD,data N
———————— >0 >0— > (1)
. . MU(RECEIVE_ERROR) . —RSP(0846)
. o< o< (2)
.RC='derived . . .
. from FMH-7' . MU(FMH-7 ,data,NOT_END_OF_DATA) . FIC,FMH~7,data
OC= = = = = = = = — o< 0< (3)

Figure 2-91. SEND_ERROR at End-of-Chain--Remote LU

2-108 SNA LU 6.2 Reference: Peer Protocols

C

)

C

(to partner LU) HS RM PS TP
. . . RECEIVE_AND_WAIT .
. . OC— = = = = = = = -0
. . RC=0K ,WHAT_RECEIVED=
OIC,RQE1,CD,data . MU(data,PREPARE_TO_RCV_FLUSH) . DATA_COMPLETE
(1) >0 20- = = - = = =~ = — >0
—~RSP(0846) N SEND_ERROR . SEND_ERROR _J
(2) < o< Q€= = = = = - - -
. N RC=l o
. ———— == >0
FIC,FMH~7,data . MU(FMH-7,data,NOT_END_OF_DATA) . SEND_DATA _l
(3) < o< OC= = = = = — = =
. . RC= .
. e T >0

Figure 2-92.

SEND_ERROR at End-of-Chain--Local LU

Chapter 2. Overview of the LU

2-109

TP PS RM HS (to partner LU)
. SEND_DATA . MU(data,NOT_END_OF_DATA) . FIC,data
o= = = = = = = = = >0 (°4 (1)
. RC= . .
S B i . .
. REQUEST_TO_SEND . SIGNAL
o< O (2)
. . +RSP
. . (3)
SEND_DATA . MU(data,NOT_END_OF_DATA) . MIC,data
—— - - - - o >0 (4)
RC=0K, REQUEST_TO_ . .
SEND_RECEIVED=YES . o
0¢— = = = — — — - . .
SEND_DATA : MU(data,NOT_END_OF_DATA) . MIC,data
i o o (5)
. RcC= . .
P S i . .
RECEIVE_AND_WAIT . MU(data,PREPARE_TO_RCV_FLUSH) . LIC,RQE1,CD
R o >o 6)

Figure 2-93.

2-110

SNA LU 6.2 Reference:

Peer Protocols

REQUEST_TO_SEND, Received in SEND_STATE--Remote LU

—~

C

@

(to partner LU)

HS RM

PS TP

FIC,data . MU(data,NOT_END_OF_DATA) RECEIVE_AND_WAIT .
(1) >0 >0~ = — = — - — — -0
. RC=0K ,WHAT_RCVD= .
. . DATA_INCOMPLETE .
. e >0
SIGNAL . REQUEST_TO_SEND . REQUEST_TO_SEND
(2) < O< Q<= = = = = = = = -
+RSP . RSP_TO_REQUEST_TO_SEND . RC= .
(3) >o >0 = — - - - - - - >0
MIC,data . MU(data,NOT_END_OF_DATA) .
(%) >0 >0
. . . RECEIVE_AND_WAIT
. O~ = = = = = = = —
. . RC=0K ,WHAT_RECEIVED=
MIC,data . MU(data,NOT_END_OF_DATA) . DATA_INCOMPLETE
(5) (= >0 - - - == = == >0
. RECEIVE_AND_WAIT
o~ — = — = — — —
. RC=0K ,WHAT_RECEIVED=
LIC,RQE1,CD . MuU(data,PREPARE_TO_RCV_FLUSH) DATA_COMPLETE
(6) >o >- — - —— - = - = >0
. . RECEIVE_AND_WAIT
. 0— — — - — - — —
. RC=0K, .
. WHAT_RECEIVED=SEND
________ >0
Figure 2-94. REQUEST_TO_SEND, Received in SEND_STATE--Local LU

Chapter 2.

Overview of the LU

2-111

2-112

SNA LU 6.2 Reference: Peer Protocols

TP PS RM HS (to partner LU) C
. SEND_DATA . MU(data,NOT_END_OF_DATA) . FIC,data
O~ = = = = = = = = O >0 > (1)
. RC= . .
oo X i . .
RECEIVE_AND_WAIT . MU(data,PREPARE_TO_RCV_FLUSH) . LIC,RQE1,CD
———————— O O > (2)
. . REQUEST_TO_SEND . SIGNAL
. o< o< (3)
. . . [+RSP
. . . > (4)
RC=0K ,WHAT_RECEIVED= . .
DATA_INCOMPLETE , . .
REQUEST_TO_SEND_ . . .
RECEIVED=YES MU(data,NOT_END_OF_DATA) . FIC,data
0~ = = = = = = — —o<: O (5)
Figure 2-95. REQUEST_TO_SEND, Received in RCV_STATE--Remote LU

)

C/ :
/
/

N

(1)

(2)

(3)

(4)

(to partner LU)

FIC,data

-3
w

RM PS

TP

. RECE

MU(data,NOT_END_OF_DATA) .

SIGNAL

IVE_AND_WAIT .

OC— = = = = = - - -0

>oRC=0K ,HHAT_RECEIVED=

ATA_INCOMPLETE

. LD
________ >0

REQUEST_TO_SEND . REQUEST_TO_SEND

LIC,RQE1l,| CD

MU(data,PREPARE_TO_RCV_FLUSH) .

+RSP

Y - é « e e e

>0

o .
.
. .
.
.

RSP_TO_REQUEST_TO_SEND

FIC ,da‘ta

- —— - = - =~ =~ >0

ATA_INCOMPLETE

I:zc=0K,NHAT_RECEIVED=

. RECE

IVE_AND_WAIT

O = = — = — = ~

WHAT_RECEIVED=SEND

I_RC=0K, .
________ >0

MU(data,NOT_END_OF_DATA) .. SE

. RC

_ J Figure 2-96. REQUEST_TO_SEND, Received in RCV_STATE--Local LU

e

Chapter 2.

Overview of the LU

2-113

2-114

SNA LU 6.2 Reference:

This page intentionally left blank

Peer Protocols

)

CHAPTER 3. LU RESOURCES MANAGER

C

A 1 1
Transaction | . r]
Program — _‘_l — “_I
Local-TP e RTR L4
Initiator I Initiator I
Presentation A
Services |
(PS)
k A
./ v
> Resources Session
| Manager <> Manager
>| (LU.SVC_MGR.RM) (LU.SVC_MGR.SM)
| LU.SVC_MGR
|
\
/ Data Flow |
Control
(DFC) |
Buffer
> Half-session L e - = > Manager
Transmission
Control
(TC)
C/ Figure 3-1. Overview of Component Interactions Involving the Resources Manager

GENERAL DESCRIPTION

When one transaction program wishes to commu- sources Manager Data Base" on page 3-4¢ for

nicate with another, the LU may activate, additional information).

manage, and later deactivate a conversation.

This chapter describes the management of con- The resources manager interacts with other
versation resources (or simply ‘"conversa- components in the node. These components are
tions"). shown in Figure 3-1. They are PS ("Chapter
5.0. Overview of Presentation Services" and
An LU contains a services manager, which in "Chapter 5.1. Presentation Serv-
turn contains a resources manager, RM. The ices--Conversation Verbs"), SM ("Chapter 4.
N\ resources manager stores information about LU Session Manager"), HS ("Chapter 6.0.
Q active transaction programs, conversations, Half-Session"), BM ("Appendix B. Buffer Man-
and LU-LU sessions in control blocks, some of ager"), transaction-program-initiating proc-
which are the TCB, RCB, and SCB (see "Re- ess and Ready-to-Receive initiating process.

Chapter 3. LU Resources Manager 3-1

RESOURCES MANAGER FUNCTIONS

The resources manager (RM) coordinates the
following functions:

® Creating new instances, and destroying
existing instances, of presentation serv-
ices

o Attaching new instances, and destroying
existing instances, of transaction pro-
grams

® Activating and deactivating conversations

® Choosing sessions to be used by a conver-
sation and, if necessary, requesting
(bidding for) use of the session

® Requesting the session manager (SM) to
activate a new session or to deactivate
an existing session

® Coordinating normal cessation of conver-
sation assignments to a particular ses-

LU COMPONENT INTERACTIONS

3-2

SNA LU 6.2 Reference:

Other components in the LU with which the
resources manager interacts are the presenta-
tion services (PS) component associated with
each transaction program instance attached to
the LU, each half-session (HS) that is avail-
able for use by the resources manager, and
the session manager (SM). Examples of the
type of interactions that take place are giv-
en below.

When presentation services is requested by
its transaction program (TP) to initiate a
conversation with another TP, it requests the
resources manager to assist in the request.
The resources manager 1is responsible for such
tasks as choosing a session on which to ini-
tiate the conversation; checking that the
synchronization level and security level on
the request correspond to what the target LU
supports for this LU; and performing other
functions necessary for acquiring a session
for use by the requested conversation, such
as creating the appropriate control blocks
(see '"Resources Manager Data Base" on page
3-¢ for more on control blocks). After the
resources manager has completed processing of
the request that it received from presenta-
tion services, it sends a reply to PS inform-
ing it of the outcome of the request.

One type of unsolicited information that the
resources manager sends to presentation serv-
ices is an Attach FM header (FMH-5). HKhen
the resources manager receives an Attach from
a remote LU via one of its half-sessions, it
checks certain fields, including all security
fields, carried in the Attach. Depending
upon the installation-defined limit on the
number of TP instances for the target trans-
action program (instance limit, see TRANS-

Peer Protocols

sion targeted for deactivation (using
BRACKET INITIATION STOPPED--BIS proto-
cols)

(FMH-12

¢ Completing LU-LU verification

processing)

® Replying to requests (bids) for use of a
session that are received from remote
resources managers

® Providing services for support of the
sync point log (the content and use of
which is described in "Chapter 5.3. Pres-
entation Services~-Sync Point Services
Verbs")--these services are not formally
defined in this book

® Coordinating and managing

conversation-level security

ACTION_PROGRAM on page A-5), RM does one of
two things: If the number of instances of
the target transaction program has not yet
reached its limit, RM creates a new instance
of presentation services and sends the
Attach, along with other information, to the
new PS ("Attaching a Transaction Program" on
page 3-10 and “Creation and Termination of
Presentation Services" on page 3-18 provide
additional details). If the instance limit
has been reached, RM queues the Attach
request. The Attach remains queued until a
target TP-PS instance sends RM notification,
via a TERMINATE_PS record, of its readiness
to accept another Attach request (or, if none
is queued, to be destroyed).

Data that the resources manager wishes to
send to another resources manager in the net-
work is first sent to the local HS component
of one of the sessions connecting the two
LUs. Likewise, the resources manager
receives from HS all data destined for the
resources manager that comes in over a ses-
sion. Examples of the kind of data that
flows between the resources manager and HS
are bids for the use of a session, replies to
bid requests, and Attach FM headers.

When the resources manager receives a request
from presentation services for a session and
finds that no free sessions have the required
characteristics, the resources manager sends
a request to SM asking it to activate a new
session. Similarly, the resources manager
sends to the session manager a request that a
session be deactivated upon notification by
PC.COPR ("Chapter 5.4. Presentation Serv-
ices--Control-Operator Verbs") that too many
sessions are active. SM replies to the

//\,

\

e’

/'\\

resources manager after it has carried out
the requested function. See "Activating a
New Session" on page 3-15 and "Changing the
Maximum Session Limit" on page 3-16 for more
details on session activation and deacti-
vation.

Other components in the node, outside of the
LU, with which the resources manager inter-
acts are the buffer manager, local-TP initi-
ator, and RTR initiator.

The primary objective of node buffer manage-
ment is to provide storage, allocation, and
management for session-level pacing and to
avoid unnecessary data movement from one
buffer to another.

For most of its work, RM uses transient stor-
age, not managed by the node buffer manager,

that is used for records that are local to
the node and not sent outside the node. This
transient storage is short-lived storage that
is implicitly allocated by the creation of
local records and freed when the records are
destroyed. Node buffer management does not
manage such transient storage.

Incoming message units that may be queued for
extended periods of time before being proc-
essed use storage managed by the buffer man-
ager. FMH-5 records may be queued for an
instance-limited TP for an indefinite period
of time. (For more information on
instance-limited TPs refer to "Attaching a
Transaction Program" on page 3-10.) FMH-7
records may be queued for a TP that is not
receiving. Storage for FMH records is man-
aged by the buffer manager.

Resources
Manager

MU(FMH-5) .
>0

(Format or protocol
error detected)

Buffer
Manager

FREE_BUFFER(MU(FMH-5))

\//) Figure 3-2. Buffer Management for FMH-5 MU
Resources Buffer

HS Manager Manager

. MU(FMH-12) .

o— >0

(Process FMH-12.)

. . FREE_BUFFER(MU(FMH-12)}) .

. O —————mmm—— - - = >0
Figure 3-3. Buffer Management for FMH-12 MU

When RM receives an FMH-5 record, it is con-
tained in an MU. Normally, RM sends the
FMH-5 MU to PS for further processing, but if
RM detects a format or protocol error in the
FMH-5 record, it discards the record by spec-
ifying the FMH-5 MU in a FREE_BUFFER call to
the buffer manager (see Figure 3-2). The
FREE_BUFFER call informs the buffer manager
that the storage for the discarded FMH MU is
available. In the same way, when RM finishes
processing FMH-12 MUs, it informs the buffer
manager using FREE_BUFFER (see Figure 3-3).

Certain independent processes, called initi-
ating processes, interact with RM for the
purpose of starting an initial transaction
program, i.e., the originator of a distrib-
uted transaction, or sending an RTR request
to a partner LU, which allows the partner LU
to initiate a conversation via a bid. These
initiating processes include examples such as
an application, a combined TP-PS process, a
control-point process, the node operator
facility (NOF), and RM itself. An initiating
process is normally a privileged process.

Chapter 3. LU Resources Manager 3-3

RESOURCES MANAGER DATA BASE

The resources manager needs information about
such things as the transaction programs cur-
rently attached to the LU, the conversations
associated with each transaction program, and
the sessions available for use by a conversa-
tion between transaction programs. This
information is stored in a group of control
blocks found in the LU (see "Appendix A. Node
Data Structures" for the control block defi-
nitions). The resources manager initializes
entries in some control blocks, while it only
accesses or updates information -in entries
already existing in other control blocks.

CONTROL BLOCKS MAINTAINED BY THE RESOURCES
MANAGER

Information about transaction programs is
contained in the transaction control block
(TCB). One TCB exists for each active TP-PS
process associated with the LU. Each TCB
contains a TCB identifier (TCB_ID), which
uniquely identifies the transaction program
being represented by the TCB. The TCB_ID is
also used in all communication between the
resources manager and presentation services
servicing the transaction program. For exam-
ple, when presentation services sends a
record to the resources manager, it provides
its TCB_ID so that the resources manager will
Kknow, of all the TP-PS processes it manages,
which presentation services to send a reply
to. Presentation services is informed of its
TCB_ID when the TP-PS process is created by
the resources manager. MWhen the resources
manager receives an Attach header (FMH-5)
from a remote resources manager, it creates a
new TCB, creates a new instance of presenta-
tion services to be associated with the
transaction program being attached, and sends
the TCB_ID of the new TCB to presentation
services. Thus, attaching a transaction pro-
gram results in creation of a new TP-PS proc-

ess for that transaction program, with which
a presentation services component is always
associated.

Associated with each TCB 1is a group of
resource control blocks (RCBs). One RCB
exists 1in the group for each conversation
associated with the transaction program.
Besides the RCB_ID, an RCB contains several
other pieces of information, such as the
TCB_ID of the TP-PS process that is using the
conversation; the LU name, mode name, and
half-session identifier (HS_ID) of the ses-
sion on which a conversation is runmning; and
a field in which presentation services stores
data that it receives from the transaction

program.

The final control block maintained by the
resources manager 1s the session control
block (SCB). One SCB exists for each active
session between the LU and a partner LU.
Information contained in an SCB includes a
half-session identifier (HS_ID)} and the part-
ner LU name (LU_NAME) and mode name
(MODE_NAME) for the session.

CONTROL BLOCKS ACCESSED BY THE RESOURCES MAN-
AGER

In addition to those control blocks managed
by the resources manager, other control
blocks exist that are managed by another com-
ponent but are accessed and updated by the
resources manager.

One of these control blocks is MODE. There
is one MODE control block for each mode name
that is defined for the particular LU. The
MODE entry contains information that is fixed
on a mode name basis such as session counts
and session limits.

Transaction Presentation Resources
Program Services Manager
ALLOCATE .
>0
. ALLOCATE_RCB .
o >0
. RCB_ALLOCATED(RCB_ID) .
o< o

Figure 3-6.

Allocation of a Resource Control Block (RCB)

3-¢

SNA LU 6.2 Reference: Peer Protocols

)

C

C

CREATION OF PRESENTATION SERVICES AND TRANSACTION PROGRAMS

When the resources manager receives a message
unit (MU) containing an Attach from HS for a
TP that has not reached its instance limit,
it creates a new TCB (representing the new
instance of a TP-PS process) and RCB (repres-
enting the transaction program's initial con-
versation). It passes the IDs of the control
blocks to the newly-created presentation
services process (see "Attaching a Trans-
action Program" on page 3-10). Once the
transaction program is attached, it can ini-
tiate conversations with other transaction
programs.

A TP-PS process can also be created as the
result of a local request generated by a
independent, initiating process running on
the same system as RM. To start a trans-
action program locally, the initiating proc-
ess creates a START_TP record (refer to page
A-19). The START_TP record contains informa-
tion such as the name of the TP to be
started; security tokens, e.g., user ID,
password, and profile; and, if a reply to the
START_TP request 1is desired, the identifica-
tion of the initiating process. The START_TP
record is sent to RM via a queue also used to
receive SEND_RTR records. RM treats a
START_TP much like an Attach (i.e., it cre-
ates the PS process and sends it the START_TP
record), except that no conversation or RCB
is associated with the request, and a reply
(see START_TP_REPLY on page A-20) is
optionally permitted.

ALLOCATING A NEW CONVERSATION

When the transaction program 1is ready to
start a new conversation, it issues an ALLO-
CATE verb to presentation services. In gen-
eral, presentation services separates the
ALLOCATE request into two distinct functions,
i.e., allocating an RCB and obtaining a ses-
sion. Presentation services requests the
resources manager to create a new RCB via an
ALLOCATE_RCB record. The ALLOCATE_RCB con-
tains information about the type of session
that will be needed for the conversation. RM
stores the session-related information in the
new RCB and sends presentation services an
RCB_ALLOCATED record, which contains the ID
of the RCB. See Figure 3-¢ for the flows
that take place.

OBTAINING A SESSION

Once presentation services (PS) is informed
of the ID of the new RCB, it requests that an
LU-LU session be allocated to the conversa-
tion. After RM has allocated an LU-LU ses-
sion to satisfy the request from PS, PS
creates an Attach FM header (FMH-5) (in a
buffer obtained from the buffer manager) and
places its address in the RCB. PS then
returns to the transaction program. (see
"Chapter 5.1. Presentation Serv-

ices-~Conversation Verbs" for specific
details).

Presentation services asks for a session to
be allocated by sending a GET_SESSION record
to the resources manager. The GET_SESSION
contains the RCB_ID of the conversation that
is to use the session.

An LU attempts to allocate a session that it
considers available. A session that is
available is between brackets, is not cur-
rently in conversation, and is not in the
process of being terminated. A session that
is available is referred to as being free.
The set of free sessions at an LU is referred
to as the free-session pool. The LU removes
free sessions from the free-session pool when
they are needed for conversations and returns
them to the free-session pool when they are
available.

The resources manager at either end of a ses-
sion connecting two LUs may attempt to allo-
cate that session to a conversation. If both
resources managers attempt to allocate the
same session at the same time, there must be
some way to resolve the contention for the
session. For this reason, one of the LUs is
designated the "first speaker" (or ‘'con-
tention winner") and the other LU 1is desig-
nated the "bidder" (or "contention loser")
for the session. The assignment of
first-speaker and bidder status is estab-
lished during session activation and remains
in effect for the duration of the session.
If more than one session exists between a
pair of LUs, one LU may be the first speaker
for some sessions and the bidder for the oth-
ers. If an LU 1is the first speaker for a
particular session, that session is said to
be a first-speaker session for the LU.

The resources manager in a bidder LU must
request the resources manager in the
first-speaker LU for permission to use a ses-
sion. This 1is called "bidding" for a ses-
sion. The first-speaker LU may either grant
or deny the request for the session from the
bidder LU by sending a positive or negative
bid response.

There are two forms of negative bid response
associated with a parallel session. They are
distinguished by the sense code in the nega-
tive bid response. The first form (sense
code X'0813') is the rejection of a bid with
no restriction on bidding for the same ses-
sion again. The second form (sense code
X'0814') is the rejection of a bid with the
restriction that no further bids on the ses-
sion are permitted until the first-speaker LU
sends a Ready-to-Receive (RTR) record. This
second form of bid rejection reserves the
session for the first-speaker LU's use until
it is ready to receive bids again for the
session. The first-speaker LU may send RTR
on the reserved session whenever the session
is between brackets. When the RTR 1is sent is
implementation or installation defined. This

Chapter 3. LU Resources Manager 3-5

book models an initiator interface to RM that
may be used to prompt RM to send the RTR.
This prompt is modeled as a SEND_RTR record
that is created and sent to RM by an RTR ini-~
tiating process.

When a bid is rejected, the bidding LU may
try to bid on the same session (depending
upon the sense code in the negative bid
response) or another session that is between

brackets; if no sessions are between brack-
ets, RM will queue the session allocation
request to await the freeing of a session.

If the resources manager in a first-speaker
LU wishes to allocate a free session to a
conversation, it may do so immediately, with-
out requesting permission from the resources
manager in the other LU.

Presentation Resources
Services Manager HS

. GET_SESSION(RCB_ID) .

.

1 o >0
. HS_PS_CONNECTED .
G First- o >0
Speaker . .
Flows SESSION_ALLOCATED . .
5 o< o] .
-0OR-
. BID_WITHOUT_ATTACH .
2 o >0
. .
. [
. L4 .
Bidder . .
Flows . +BID_RSP .
3 o< o
. . HS_PS_CONNECTED .
4 . o >0
SESSION_ALLOCATED .
5 o< o
Figure 3-5. Allocation of a Session Using BID_WITHOUT_ATTACH
The resources manager will always allocate a on the session to the resources manager
first-speaker session in preference to a bid- at the partner LU. Between the time that
der session, to avoid the bidding procedure. the bid is sent and the bid response is
Figure 3-5 1illustrates the flows that take received, the resources manager retains
place when the resources manager attempts to enough information to be able to proceed
allocate a session. The records used in the with session allocation when the bid
figure are defined in "Appendix A. Node Data response arrives. This information
Structures" 1in more detail. The following includes saving the HS_ID of the session
description refers to the numbers in the fig- and the GET_SESSION record in the RCB.
ure.
3. The BID_RSP arrives from the remote
1. Presentation services sends a GET_SESSION resources manager via the half-session.
record to the resources manager. The The positive response indicates that the
RCB_ID identifies an RCB that was previ- bid for use of the session has been
ously allocated by the resources manager. accepted and the resources manager can
complete the session allocation. Not
2. If no first-speaker session is available, shown in this figure is the processing of
the resources manager must bid for use of a -BID_RSP. 1In this case, the resources
a session. It sends BID_WITHOUT_ATTACH manager would attempt allocation of a
to the half-session. The bid will flow different session, if possible.
3-6 SNA LU 6.2 Reference: Peer Protocols

_/’FJ

~

An HS_PS_CONNECTED record is sent by RM 5.
to the half-session to inform the
half_session that it has been connected

to a TP-PS process.

A SESSION_ALLOCATED record is sent by RM
to presentation services to inform it
that a session has been allocated to the
conversation, satisfying the GET_SESSION
request.

Chapter 3. LU Resources Manager 3-7

Resources Presentation
HS Manager Services
BID . .
1 [>0
. BID_RSP . .
2a o< o
. MU(Attach) . .
3 o >0 .
. MU(Attach) .
4 o >0
. . o
-OR- . (
. -BID_RSP .
2b o< 0 .
Figure 3-6. Responding to a Bid for a Session
Figure 3-6 1illustrates the flows that take essing continues with receipt of the
place when a Bid request 1is received by the Attach FM header from the half-session/~
resources manager. The records used in the (3 and 4). Y
figure are defined in "Appendix A. Node Data ~—
Structures" in more detail. The following 2b. If RM responds with a -BID_RSP, the
description refers to the numbers in the fig- request by the remote resources manager
ure. to use the session is rejected.
1. A BID record 1is received from the 3. A message unit (MU) that includes
half-session. The half-session sends a FMH-5(Attach) is sent from the
BID record to RM whenever the partner LU half-session to RM.
sends BB, regardless of whether the
partner LU is bidder or first speaker. G, RM creates a new TP-PS and sends the MU
to PS. See "Attaching a Transaction —_
2a. If RM responds with a +BID_RSP, the Program” on page 3-10 for further (
request by the remote resources manager details. N
to use the session is accepted and proc-
3-8 SNA LU 6.2 Reference: Peer Protocols

Presentation Resources
Services Manager HS
. ALLOCATE_RCB . .
. (IMMEDIATE_SESSION=YES) . .
o >0 .
. . HS_PS_CONNECTED .
First-Speaker . o >0
Session . . .
Available . RCB_ALLOCATED(RCB_ID) . .
o< o .
. ~OR- .
First-Speaker . RCB_ALLOCATED . .
Session . (RETURN_CODE = UNSUCCESSFUL) . .
Not Available o< o .

Figure 3-7.

Immediate Allocation of a Session

IMMEDIATE SESSION PROCESSING

Presentation

services can request the

resources manager to allocate both an RCB and
a session with one record. ALLO-
CATE_RCB(IMMEDIATE_SESSION=YES) embodies the
function of both ALLOCATE_RCB and GET_SESSION
in that when the processing completes suc-

cessfully, both an RCB and an SCB are allo-
cated. ALLOCATE_RCB(IMMEDIATE_SESSION=YES)
instructs the resources manager to allocate
an RCB only if a first-speaker half-session
available. If such a
half-session is not available, no allocation
is performed. See Figure 3-7 for the specif-
ic steps involved.

is currently

Chapter 3. LU Resources Manager 3-9

Resources Presentation
HS Manager Services
. MU (Attach) .
o >0
. HS_PS_CONNECTED
o< 0
. . MU (Attach, TCB_ID, RCB_ID, .
. . SENSE_DATA). .
. o ?O
Figure 3-8. Attach Flow
"
ATTACHING A TRANSACTION PROGRAM
One transaction program requests via an less than its instance limit (as defined in

3-10

Attach FM header (FMH-5) that another trans-
action program be attached to a conversation.
The resources manager handles the receipt of
the message unit (MU) that contains the
Attach. Only one Attach is sent per conver-
sation. RM processes the Attach and later
sends it to PS_INITIALIZE in the TP-PS proc-
ess for further processing.

RM is responsible for checking certain fields
of the Attach, such as the transaction pro-
gram name field. RM' performs all security
checks of the Attach. (PS_INITIALIZE later
checks the remaining fields). It notifies
presentation services of the result of the
checking through a field in the MU that RM
sends to PS.

If the Attach violates established protocol
(e.g.» by sending an Already Verified indi-
cation to a partner LU that does not accept
it, by sending multiple passwords on a single
Attach, or by indicating a synchronization
level of syncpoint when the level for the
session is confirm-only), RM instructs SM to
generate and return an UNBIND and RM does not
create a new instance of the TP-PS process.
For all other errors found in the Attach
(e.g.> 1invalid user ID, invalid parameter
length), PS is responsible for returning an
FMH-7 or for instructing SM, via RM, to
return an UNBIND. These actions notify the
transaction program that initiated the Attach
of the error.

If, after checking the Attach, no protocol
error 1is found and the requested TP's
instance count (number of TP-PS instances) is

SNA LU 6.2 Reference: Peer Protocols

the TRANSACTION_PROGRAM control block), the
resources manager creates a new instance of

the TP-PS process; it creates a new TCB and
RCB; and it connects the TP-PS process to the
half-session. RM notifies the half-session, —
via an HS_PS_CONNECTED record, that it has// ‘
been connected to a TP-PS process. Finally,

RM sends the MU containing the Attach to the

new instance of the TP-PS process. The MU
contains the Attach FM header, the FMH-7
sense data field (if applicable), and the IDs

of the new TCB and RCB. Figure 3-8 depicts

the steps -involved in Attach processing.

If, after checking the Attach, no protocol
error is found and the TP's instance count
equals or exceeds the TP's instance limit,

the resources manager creates a new RCB, con- .
nects the RCB with the half-session, informs(\
the half-session of the RCB connection, and -
queues the MU containing the Attach to await

an instance of the requested TP to become
free.

TP instances are free when all processing and

- conversations have been completed and the TP

and its associated PS are ready to accept a
new Attach or, if no Attach is queued for
this TP, are ready to be destroyed. PS
informs RM that it is free via the TERMI-
NATE_PS record.

Upon receipt of the TERMINATE_PS record, RM
checks for a request queued for the trans-
action program. If it finds a queued
request, RM updates the associated TCB and
sends the request to the TP-PS