


--- ------ ----- ---- - ---- -------------·- Systems Network Architecture SNJ0-3562 

Format and Protocol Reference Manual: 
Architecture Logic for LU Type 6.2 



Fourth Edition !December 1985) 

This publication obsoletes document SC30-3269-2. 

Changes are made periodically to this pubiication; these changes will be incorporai:ed ini:o new editions 
of this publication. It is possible that this material may contain references to, or information about, 
IBM products (machines and programs) or services that are not announced in your country. Such references 
or information must not be construed to mean that IBM intends to announce such IBM products or services 
in your country. 

IBM may have patents or pending patent applications covering subject matter described in this document. 
The furnishing of this document does not of itself constitute or imply a grant of Ii) any license under 
any patents, pai:ent applications, trademarks, copyrights, or other similar rights of IBM or of any third 
party; or Iii) any right to refer to IBM in any advertising or other promotional or marketing activities. 
IBM assumes no responsibility for any infringement of patents or other rights that may result from use of 
the subject matter described in this document or for the manufacture, use, lease, or sale of machines or 
programs described herein, outside of the responsibilities assumed via the agreement for purchase of IBM 
machines and the agreement for licensed programs. 

licenses under IBM's utility patents are available on reasonable and nondiscriminatory terms and condi­
tions. IBM does not grant licenses under its appearance design patents. Inquiries relative to licensing 
should be directed in writing to the IBM Director of Commercial Relations, International Business 
Machines Corporation, Armonk, New York, 10504. 

The following sentence does not apply to the United Kingdom or any country where such provisions are 
inconsistent with local law: International Business Machines provides this publication "As Is" without 
warranty of any kind, either express or implied, including, but not limited to, the implied warranties of 
merchantability or fitness for a particular purpose. Hithin the United States, some states do not allow 
disclaimer of express or implied warranties in certain transactions; therefore, this statement may not 
apply to you. 

Publications are not stocked at the address given below; requests for IBM publications should be made to 
your IBM representative or to the IBM branch office serving your locality. 

A form for reader's comments is provided at the back of this publication. If the form has been removed, 
comments may be addressed to IBM Corporation, Networking Architecture, Department E96, P.O. Box 12195, 
Research Triangle Park, North Carolina 27709, U.S.A. IBM may use or distribute any of the information 
you supply in any way it believes appropriate without incurring any obligation whatever. You may, of 
course, continue to use the information you supply. 

Ccl Copyright International Business Machines Corporation 1984, 1985, 1988. All rights reserved. 



PREFACE 

TNL SN30-3562 C30 Sep 1988) to SC30-3269-3 

This is one of two books that describe, at the implementation level, the Systems Netwc-rk Archi­
tecture ( SNA) logical U"li t (LU) type 6. 2 protocols. This book concerns the SSCP-depe;~dent LU 
6. 2 protocols I those protocols involving mediation by a system services control point during 
LU-LU session initiation); the second book, SNA LU 6.2 Reference: Peer Protocols, SC31-6808, 
concerns the SSCP-independent LU 6. 2 protocols. LU-LU protocols not related to 
session-initiation and -termination are common to both SSCP-dependent and -independent LU 6.2; 
these common protocols will be updated in the future only in the SNA LU 6. 2 Reference: Peer 
Protocols, which therefore has precedence over this book for informationCiiitflose protocols.--

Changes from the SC30-3269-l version of this book are indicated by change bars in the left-hand 
margin. These changes include specification of security provisions at the session and trans­
action level; additional details of the logic for resynchronizing logical units of work follow­
ing LU or session failures; and minor enhancements, corrections, and editorial improvements. 
The changes for the security capabilities are extensive, affecting Chapters 2-4, 5.0-5.2, 5.4, 
and 6.1, as well as Appendixes A, E, G, and H. The resynchronization logic is confined to Chap­
ter 5.3. 

This book does not describe any specific machines or programs that may implement SNA, nor does 
it describe any implementation-specific su· ets or deviations from the architectural description 
that may appear within any IBM SNA product. These matters, as well as information on SNA prod­
uct installation and system definition, are described in the appropriate publications for the 
particular IBM SNA machines or programs to le used. 

The following books should be read in conjunction with this one. 

COREQUISITE PUBLICATIONS 

• SNA LU 6.2 Reference: Peer Protocols, SC31-6808--reference information on SSCP-independent 
protocors-for LU 6.2. 

• 

• 

SNA Transaction Programmer's Reference Manual for LU ~ ~, GC30-3084--reference informa­
tion on LU type 6.2 verbs for programmers writii1Q transaction programs to run on SNA. 

SNA Formats, GA27-3136-information on LU 6.2 and other SNA formats . 

PREREQUISITE PUBLICATIONS 

• SNA Concepts and Products, GC30-3072-basic information on SNA> for those readers wanting 
either an overview or a foundation for further study. 

• SNA Technical Overview, GC30-3073-addi tional details on SNA, especially on functions and 
control sequences; bridges the gap between the most elementary overview of SNA and the 
detailed descriptions of the formats and protocols. 

RELATED PUBLICATIONS 

• SAA Common Programming Interface: Communications Reference, SC26-4399--description of Sys­
tems Application Architecture's 1 C0111111U'lications Interface, which provides a high-level pro­
gramming interface to LU 6.2. 

l Systems Application Architecture is a trademark of International Business Machines Corpo­
ration. 

Preface i.11 



TNL SN30-3562 C39 Sep 1988) to SC30-3269-3 

• 

• 

• 

SNA Fomat and Protocol Reference Manual: Architectural Logic, SC30-3112--comprehensive 
lnlormation mthe formats and protocols of SNA type 1, 2.0, 4, and 5 nodes. 

SNA-Sessions Between L~ical Units, GC20-186&-reference information on SNA formats and 
protocols for LU types o her than type 6.2. 

~~!:_!Node Reference, SC30-3422-reference infomation on type 2.1 node protocols • 

iv SNA Format and Protocol Reference Manual for LU Type 6.2 



CONTENTS 

CHAPTER 1. INTRODUCTION 

Use and Organization of This Book 
General Concepts 

Definition of an SNA Network 
Nodes . • • • • • 
NAUs and Node Types 
The Path Control Network 

Other Definitions and Notat1onal Conventions 

CHAPTER 2. OVERVIEW OF THE LU 

Introduction ••••••••• 
Concepts and Terms • • • • • 

Distributed Transaction Processing 
Transaction Programs 
Control Operator 
Resources 
Protocol Boundaries 
Names • • • • • • 

Roles • • • • • 
Transaction Program References 
LU References 
Mode Names ••••••• 
Internal Identifiers 

Conversation Characteristics 
Send/Receive Protocol 
Sender/Receiver Concurrency 
Mapping ••••• 

Session Allocation 
Session Multiplicity 
Session Pool ••••••• 
Session Selection • 
Session Contention Polarity 
Session Limits •••• 

Starting and Ending Sessions 
Phases ••••••••• 

Session Usage Characteristics 
Session Activation Polarity 
Session-Level Pacing 
Profiles 

Security •••• 
Error Handling 

Kinds of Errors 
Application Errors 
Local Resource Failure 
Recoverable System Errors 
Program Failures 
Session Failure 
Conversation Failures 
LU Failure 

Program Error Recovery Support Functions 
Confirmation •••••• 
Program Error Indication •••• 
Sync Point • . • . ••••••• 
Abnormal Conversation Deallocation ••••••• 

LU Error Recovery Functions--Abnormal Session Deactivation 
Base and Optional Function Sets ••••••• 

Application Program Interface Implementations 
Principal Base Functions •••• 

Basic Conversations •••••• 
Mapped Conversations 

Principal Optional Functions 
Mapping •••••• 
Sync Point ••••• 
Program Initialization Parameters CPIPJ 
Security • • • • • • • • • • • • • • • 

Contents 

1-1 

1-1 
1-3 
1-3 
1-3 
1-5 
1-5 
1-5 

2-1 

2-1 
2-1 
2-1 
2-1 
2-3 
2-3 
2-4 
2-4 
2-5 
2-5 
2-6 
2-6 
2-6 
2-6 
2-6 
2-6 
2-7 
2-7 
2-7 
2-7 
2-7 
2-8 
2-8 
2-8 
2-8 
2-8 
2-8 
2-8 
2-9 

2-10 
2-11 
2-11 
2-11 
2-11 
2-11 
2-11 
2-12 
2-12 
2-12 
2-12 
2-12 
2-12 
2-12 
2-12 
2-12 
2-12 
2-13 
2-13 
2-13 
2-13 
2-13 
2-13 
2-13 
2-13 
2-13 

v 



Performance Options 
Message Units and their Transformations 

Mapped-Conversation Message Units 
Basic-Conversation Message Units 

GOS Variables ••••• 
Logical Record 
Buffer Record 

Conversation Message-Unit Sequences 
Conversation Message ••••••••• 
Conversation Exchange ••••• 

Session Message Units 
Function Management Headers 
Basic Information Unit 

Session Message-Unit Sequences 
Mapped-Conversation Message-Unit Transformation 
Basic-Conversation Message-Unit Transformation 
Data Exchange with other NAUs 

LU-CP Message Units 
LU-PU Records 

External Flow Sequences for the Base Function Set 
Notation 

Verbs and Parameters 
Data Transfer Description 

Error-Free Flows 
Allowable Combinations of Sequences 
Exception Flow •••• 
Error Flows •••••• 

LU Structure • • • • • • • • • • • • • 
SNA layers • • • • • • • • • 

Component Overview •••• 
Functional Summary by Function •••••••• 

Example Transaction Program • • • • • • • • • • ••• 
Message-Unit Transfer • • • • • ••• 

Sending Data ••••• 
Receiving Data ••••• 
Internal Buffering • • • • • • • • • • • • • • • • • • • • 

Transaction Program Initiation and Termination ••••• 
Invoking a Remote Transaction Program ••••••• 
Initiating the Initial local Transaction Program ••••••••• 
Terminating a Transaction Program • • • • • • • • • ••••• 

Conversation Allocation and Deallocation • • • • • • • •••• 
Selecting a Session ••••••••••••••••••••••••••• 
Bidding • • • • • • • ••••• • • • • • • • • • • • • 
Newly Active Session • • • • • ••••••• 
Deallocation •••••• 

Session Activation and Deactivation •••• 
Starting a Session 

Initializing Session Limits 
Session Initiation 
Session Activation 

Session Outage 
Ending a Session •••••••••• 

Operator Request • • • • • • • • • • • • 
Session Shutdown: •••••• 
Session Deactivation •••••••• 

Functional Summary by Component ••••• 
Presentation Services •••• 
Half-Session •••••• 
Resources Manager • • • • • • • • • 
LU Network Services •••••••• 

Functions of Service Transaction Programs 
Control-Operator Functions • • • • • 
SNA Distribution Services •••••••• 
Document Interchange Services ••••• 

Optional Functions • • • • • •••••••• 
Mapping Function ••••••••• 
Sync Point Function • • • • • • ••• 

Sync Point Control •••••••••••••• 
Logging • • • • • • ••• 
Resources Manager • • • • • • • • • • • • • • • • 
Protection Managers • • • • • • • • • • • ••••• 
Sync Point Protocol • • • • • • • • • • • • • • • • • • • • ••• 
Commitment and Back-Out •••••••• 
Resynchronization 

vi SNA Format and Protocol Reference Manual for LU Type 6.2 

2-13 
2-13 
2-14 
2-14 
2-14 
2-14 
2-14 
2-15 
2-15 
2-15 
2-15 
2-15 
2-15 
2-16 
2-16 
2-16 
2-16 
2-16 
2-18 
2-19 
2-20 
2-20 
2-20 
2-20 
2-23 
2-25 
2-25 
2-28 
2-28 
2-28 
2-30 
2-31 
2-31 
2-31 
2-32 
2-32 
2-34 
2-34 
2-34 
2-35 
2-35 
2-35 
2-35 
2-35 
2-35 
2-35 
2-35 
2-35 
2-36 
2-36 
2-36 
2-36 
2-36 
2-36 
2-37 
2-37 
2-37 
2-37 
2-37 
2-38 
2-38 
2-38 
2-38 
2-38 
2-38 
2-39 
2-39 
2-40 
2-40 
2-40 
2-40 
2-40 
2-42 
2-42 



Data Structures • • • • • • • • • • • _ • • • • • • 
LU-Accessed Network Resources • • • • • • • • • • 
Processes and Dynamic RE~ources ••••••••• 
Resource P.a~at1onships in a Distributed Transaction 

LI.I ~~clrtup and Shutdown •••••••••••••• 
LU Process Creation and Termination ••••• 
CP-LU Session Activation • • • • • • • • • • • 
Control-Operator Transaction Program Initiation 
Control-Operator Actions 
Running State • • • • • • • •••••• 
Example • • • • • • • • • • • • • • • 

Protocol Boundary Summary • • • • • • • • 
External Protocol Boundary Verbs and Message Units 

PS-TP Protocol Boundary: Transaction Program Verbs 
LNS-PU Protocol Boundary 
HS-PC Protocol Boundary 

Inter-Component Structures 
PS-HS Protocol Boundary 
PS-RM Protocol Boundary 
RM-HS Protocol Boundary 
RM-LNS Protocol Boundary 
LNS-HS Protocol Boundary • • • • 

Component Interactions and Flow Sequences 
Notation •••••••••• 

CHAPTER 3. LU RESOURCES MANAGER 

General Description •.•• 
Resources Manager Functions 
Component Interactions 
Resources Manager Data-Base 

Control Blocks Maintained by the Resources Manager 
Control Blocks Accessed by the Resources Manager 

Establishing a Conversation 
Allocating a New Conversation 
Obtaining a Session 
Immediate Session Processing 

Attaching a Transaction Program 
Races for the Use of a Session 
Terminating a Conversation 
Activating a New Session ••••• 
Changing the Maximum Session Limit 
Session Outage • • • • • • • • • • • • • • 
Creation and Termination of Presentation Services 
High-Level Procedures • • ••••• 

RM: PROCESS . • • • • • • . . • • 
PROCESS_HS_TO_RM_RECORD: PROCEDURE 
PROCESS_LNS_TO_RM_RECORD: PROCEDURE 
PROCESS PS TO RM RECORD: PROCEDURE 

Low-Level-Pr~cedur;s .••••••• 
ACTIVATE_NEEDED_SESSIONS: PROCEDURE 
ACTIVATE_SESSION_RSP_PROC: PROCEDURE 
ALLOCATE_RCB_PROC: PROCEDURE 
ATTACH_CHECK: PROCEDURE 
ATTACH_LENGTH_CHECK: PROCEDURE 
ATTACH_PROC: PROCEDURE • • • • 
ATTACH_SECURITY_CHECK: PROCEDURE 
BID_PROC: PROCEDURE 
BID_RSP_PROC: PROCEDURE 
BIDDER_PROC: PROCEDURE 
BIS_RACE_LOSER: PROCEDURE 
BIS_REPLY_PROC: PROCEDURE 
BIS_RQ_PROC: PROCEDURE 
CHANGE_SESSIONS_PROC: PROCEDURE 
CHECK_FOR_BIS_REPLY: PROCEDURE 
COMPLETE_HS_ATTACH: PROCEDURE 
CONNECT_RCB_AND_SCB: PROCEDURE 
CREATE_RCB: PROCEDURE 
CREATE_SCB: PROCEDURE 
CTERM_OEACTIVATE_SESSION_PROC: PROCEDURE 
DEACTIVATE_FREE_SESSIONS: PROCEDURE 
DEACTIVATE_PENDING_SESSIONS: PROCEDURE 
DEQUEUE_WAITING_REQUEST: PROCEDURE 
FIRST_SPEAKER_PROC: PROCEDURE 

2-42 
2-42 
2-42 
2-·45 
2-4!:> 
2-45 
2-45 
2-46 
2-46 
2-47 
2-48 
2-49 
2-49 
2-49 
2-49 
2-49 
2-49 
2-49 
2-49 
2-50 
2-50 
2-50 
2-50 
2-50 

3-1 

3-1 
3-2 
3-2 
3-3 
3-3 
3-3 
3-4 
3-4 
3-4 
3-8 
3-9 

3-10 
3-12 
3-13 
3-15 
3-17 
3-17 
3-18 
3-18 
3-19 
3-20 
3-21 
3-22 
3-22 
3-23 
3-24 
3-25 
3-26 
3-27 
3-29 
3-30 
3-32 
3-34 
3-35 
3-35 
3-36 
3-37 
3-38 
3-38 
3-39 
3-39 
3-40 
3-40 
3-41 
3-41 
3-42 
3-43 

Contents vi i 



FREE_SESSION_PROC: PROCEDURE 
GET_SESSION_PROC: PROCEDURE 
PS_CREATION_PROC: PROCEDURE 
RM_ACTIVATE_SESSION_PROC: PROCEDURE 
RM_DEACTIVATE_SESSION_PROC: PROCEDURE 
RM_PROTOCOL_ERROR: PROCEDURE 
RTR_RQ....PROC: PROCEDURE • • . •• 
RTR_RSP_PROC: PROCEDURE ••••• 
SECURITY_PROC: PROCEDURE 
SEND_ACTIVATE_SESSION: PROCEDURE 
SEND_BIS: PROCEDURE • • • • • 
SEND_BIS_REPLY: PROCEDURE 
SEND_BIS_RQ: PROCEDURE •••• 
SEND_DEACTIVATE_SESSION: PROCEDURE 
SESSION_ACTIVATED_ALLOCATION: PROCEDUR~ 
SESSION_ACTIVATED_PROC: PROCEDIJ!'I'.: 
SESSION_ACTIVATIO~_~OLA~ITY: PROCEDURE 
SESSION n~~~1iVATED_PROC: PROCEDURE 
SF~SiuN_DEACTIVATION_POLARITY: PROCEDURE 
SET_RCB_AND_SCB_FIELDS: PROCEDURE 
SHOULD_SEND_BIS: PROCEDURE . • . • •• 
SUCCESSFUL_SESSION_ACTIVATION6 .. DROCEDURE 
TEST_FOR_FREE_FSP_SESSION: PR C~DURE • 
UNBIND_PROTOCOL_ERROR_PROC: PROCEDURE 
UNSUCCESSFUL SESSION ACTIVATION: PROCEDURE 

Finite-State M~chines - •.•••.•• 
#FSM_SCB_STATUS • • • • • • • . • • 
FSM_SCB_STATUS_BIDDER: FSM_DEFINITION 
FSM_SCB_STATUS_FSP: FSM_DEFINITION 
#FSM_BIS • • • . • • • • • • 
FSM_BIS_BIDDER: FSM_DEFINITION 
FSM_BIS_FSP: FSM_DEFINITION 
#FSM_RCB_STATUS • . • • • • 
FSM_RCB_STATUS_BIDDER: FSM_DEFINITION 
FSM_RCB_STATUS_FSP: FSM_DEFINITION 

Local Data Structures 
LU_NAME 
MODE_NAME 
HS_ID 
RCB_ID 
TCB_ID 
SENSE_ CODE 

CHAPTER 4. LU NETWORK SERVICES 

General Description •••••• 
Overview of CP-LU Session Activation 
Overview of CP-LU Session Deactivation 
Overview of LU-LU Session Initiation 
Overview of LU-LU Session Termination 
Session Outage and Session Reinitiation • 

Network Context for Session Initiation and Termination 
ILU and TLU 
OLU and DLU 
PLU and SLU 

RU Parameters 
Network Name 
Fully Qualified Network Name 
Uninterpreted Name 
User Request Correlation 
Mode Name . . • • . • • . 
Session Key and Session Key Content 
LU-LU Verification Data •••••• 
Specification of RU Parameters 
Implementation-Dependent Parameters 
Installation-Specified Parameters 

Session-Services RU's 
INITIATE-SELF (INIT-SELFl 
CONTROL INITIATE !CINITl 
RSPCCINITl •.•••.• 
SESSION STARTED CSESSSTl 
BIND FAILURE CBINDFl 
TERMINATE-SELF !TERM-SELFl 
CONTROL TERMINATE CCTERMJ 

viii SNA Format and Protocol Reference Manual for LU Type 6.2 

3-44 
3-45 
3-47 
3-48 
3-49 
3-49 
3-50 
3-51 
3-52 
3-52 
3-53 
3-53 
3-54 
3-55 
3-56 
3-57 
3-57 
3-58 
3-60 
3-61 
3-62 
3-63 
3-65 
3-65 
3-66 
3-67 
3-67 
3-68 
3-69 
3-70 
3-70 
3-71 
3-72 
3-72 
3-73 
3-74 
3-74 
3-74 
3-74 
3-74 
3-74 
3-75 

4-1 

4-1 
4-2 
4-2 
4-3 
4-3 
4-4 
4-4 
4-4 
4-4 
4-4 
4-5 
4-5 
4-5 
4-5 
4-5 
4-5 
4-5 
4-5 
4-6 
4-6 
4-6 
4-7 
4-9 
4-9 

4-10 
4-11 
4-11 
4-11 
4-12 



CLEAN UP SESSION !CLEANUP> 
SESSION ENDED !SESSENDl 
UNBIND FAILURE CUNBINDFl 
NOTIFY • • . • • • • • 

Session-Control RU's 
ACTIVATE LOGICAL UNIT !ACTLUl 
RSP!ACTLUl •••••.••• 
DEACTIVATE LOGICAL UNIT !DACTLUl 
BIND SESSION CBINDl 
RSPC BIND) • • • • • • 
UNBIND SESSION !UNBIND) 

Maintenance-Services RU's 
ECHO TEST tECHOTESTl 
REQUEST ECHO TEST !REQECHOl 

LNS Protocol Boundaries 
LNS Flows • . • • • . . • • 
Flows for a Peripheral LU 
Flows for a Subarea LU • 
Introduction to Formal Description 
High-Level Procedures •.•.• 

LNS: PROCESS . • . • • . • . • 
PROCESS_RECORD_FROM_RM: PROCEDURE 
PROCESS_RECORD_FROM_HS: PROCEDURE 
PROCESS RECORD FROM NNM: PROCEDURE 

Low-Level-Proced~res Tin alphabetical order) 
ACTIVATE_SESSION_ERROR: PROCEDURE 
BIND_RQ_STATE_ERROR: PROCEDURE 
BIND_RSP_STATE_ERROR: PROCEDURE 
BIND_SESSION_LIMIT_EXCEED~D; PROCEDURE 
BUI LD_AND_ S"~!~_.~C T _SESS_RSP _NEG: PROCEDURE 
BUT•_::;_,.ND_SEND_ACT_SESS_RSP _POS: PROCEDURE 
BUILD_AND_SEND_ACTLU_RSP_NEG: PROCEDURE 
BUILD_AND_SEND_ACTLU_RSP_POS: PROCEDURE 
BUILD_AND_SEND_BIND_RQ: PROCEDURE 
BUILD_AND_SEND_BIND_RSP_NEG: PROCEDURE 
BUILD_AND_SEND_BIND_RSP_POS: PROCEDURE 
BUILD_AND_SEND_BINDF _RQ: PROCEDURE 
BUILD_AND_SEND_CINIT_RSP: PROCEDURE 
BUILD_AND_SEND_DACTLU_RSP: PROCEDURE 
BUILD_AND_SEND_DEACTIVATE_SESS: PROCEDURE 
BUILD_AND_SEND_HIER_RESET_RSP: PROCEDURE 
BUILD_AND_SEND_INIT_HS: PROCEDURE 
BUILD_AND_SEND_INIT_RQ: PROCEDURE 
BUILD_AND_SEND_PC_CONNECT: PROCEDURE 
BUILD_AND_SEND_PC_HS_CONNECT: PROCEDURE 
BUILD_AND_SEND_PC_HS_DISCONNECT: PROCEDURE 
BUILD_AND_SEND_RSP_OR_LOG: PROCEDURE 
BUILD_AND_SEND_SESS_ACTIVATED: PROCEDURE 
BUILD_AND_SEND_SESS_DEACTIVATED: PROCEDURE 
BUILD_AND_SEND_SESSENO_RQ: PROCEDURE 
BUILD_AND_SEND_SESSST_RQ: PROCEDURE 
BUILD_AND_SEND_TERM_RQ: PROCEDURE 
BUILD_AND_SEND_UNBIND_RQ: PROCEDURE 
BUILD_AND_SEND_UNBIND_RSP: PROCEDURE 
BUILD_AND_SEND_UNBINDF_RQ: PROCEDURE 
CINIT_RQ_STATE_ERROR: PROCEDURE 
CLEANUP_LU_LU_SESSION: PROCEDURE 
INITIALIZE_LULU_CB_ACT_SESS: PROCEDURE 
INITIALIZE_LULU_CB_BIND: PROCEDURE 
INITIALIZE_LULU_CB_CINIT: PROCEDURE 
LU_MODE_SESSION_LIMIT_EXCEEDED: PROCEDURE 
PROCESS_ABORT_HS: PROCEDURE 
PROCESS_ACTIVATE_SESSION: PROCEDURE 
PROCESS_ACTLU_RQ: PROCEDURE 
PROCESS_BIND_RQ: PROCEDURE 
PROCESS_BIND_RSP: PROCEDURE 
PROCESS_CINIT_RQ: PROCEDURE 
PROCESS_CLEANUP_RQ: PROCEDURE 
PROCESS_CTERM_RQ: PROCEDURE 
PROCESS_DACTLU_RQ: PROCEDURE 
PROCESS_DEACTIVATE_SESSION: PROCEDURE 
PROCESS_ECHOTEST_RQ: PROCEDURE 
PROCESS_HIERARCHICAL_RESET: PROCEDURE 
PROCESS_INIT_HS_RSP: PROCEDURE 

4-12 
4-13 
4-13 
4-14 
4-15 
4-17 
4-17 
4-19 
4-19 
4-25 
4-28 
4-29 
4-31 
4-31 
4-32 
4-34 
4-35 
4-41 
4-46 
4-47 
4-47 
4-48 
4-48 
4-50 
4-51 
4-51 
4-52 
4-53 
4-55 
4-56 
4-!>"' 
4-57 
4-58 
4-59 
4-59 
4-60 
4-60 
4-61 
4-62 
4-62 
4-63 
4-63 
4-64 
4-64 
4-65 
4-65 
4-66 
4-67 
4-67 
4-68 
4-68 
4-69 
4-69 
4-70 
4-70 
4-71 
4-72 
4-73 
4-74 
4-75 
4-76 
4-77 
4-77 
4-78 
4-79 
4-81 
4-82 
4-84 
4-85 
4-86 
4-87 
4-87 
4-87 
4-88 

Contents ix 



PROCESS_INIT_SELF_RSP: PROCEDURE 
PROCESS_NOTIFY_RQ: PROCEDURE 
PROCESS_NOTIFY_RSP: PROCEDURE 
PROCESS_PC_CONNECT_RSP: PROCEDURE 
PROCESS_REQECHO_RSP: PROCEDURE 
PROCESS_SESSION_ROUTE_INOP: PROCEDURE 
PROCESS_TERM_SELF_RSP: PROCEDURE 
PROCESS_UNBIND_RQ: PROCEDURE 
PROCESS_UNBIND_RSP: PROCEDURE · 

Finite-State Machines 
FSM_STATUS: FSM_DEFINITION 

Local Data Structures 
LOCAL 
ERROR_ TYPE 
SESSION_ TYPE 
RESET_NORMAL 
RESET_SON 

CHAPTER S.O. OVERVIEW OF PRESENTATION SERVICES 

General Description 
PS Component Functions 

TP: 
PS. INITIALIZE: 
PS.VERB_ROUTER: 
PS.MC, PS.SPSo ···• PS.COPR: 
PS.CONY: 

Data Base Structure • • • • 
Initialization and Termination <PS.INITIALIZE> 
Verb Processing <PS.VERB_ROUTER) 

WAIT Verb Processing 
GET_TYPE Verb Processing 

High-level Procedures 
PS: PROCESS 
PS_INITIALIZE: PROCEDURE 
RECEIVE_PIP_FIELD_FROM_HS: PROCEDURE 
PS_ATTACH_CHECK: PROCEDURE 
ATTACH_ERROR_PROC: PROCEDURE 
PS_VERB_ROUTER: PROCEDURE 
DEALLOCATION_CLEANUP_PROC: PROCEDURE 
WAIT_PROC: PROCEDURE 

Low-level Procedures 
PS_PROTOCOL_ERROR: PP~~~CURE 
INITIALIZE_ A.T7 AC.HED_RCB: PROCEDURE 
TEST_~ow_RESOURCE_POSTED: PROCEDURE 

1!;,uefined Protocol Machines 
UPM_EXECUTE: PROCEDURE 
UPM_ATTACH_LOG: PROCEDURE 
UPM_RETURN_PROCESSING: PROCEDUR:! 

Local Data Structures 
PS_PROCESS_DATA 
PIP_FIELD 
RETURN_ CODE 
PIP_LIST 
LU_ID 
TCB...;.LIST_PTR 
RCB_LIST_PTR 
LUCB_LIST _PTR 
SENSE_DATA 

CHAPTER S.l. PRESENTATION SERVICES--CONVERSATION VERBS 

General Description •••••• 
PS.CONY Functions •••• 
Component Interactions ••••••••• 
PS.CONY Data-Base Structure 

LU Control Block <LUCB) and Associated Lists 
Transaction Control Block <TCB> 
PS_PROCESS_DATA 
Resource Control Block <RCB) 

Verb Parameters 
PS-RM Records 
PS-HS Records 

. .. 

Tracking Logical Record Length . . . . . . 
x SNA Format and Protocol Reference Manual for LU Type 6.2 

. . 

4-88 
4-89 
4-89 
4-90 
4-90 
4-90 
4-91 
4-91 
4-92 
4-93 
4-94 

4-101 
4-101 
4-101 
4-101 
4-101 
4-101 

5.0-1 

5.0-1 
5.0-1 
5.0-1 
5.0-1 
5.0-1 
5.0-1 
5.0-1 
5.0-1 
5.0-3 
5.0-4 
5.0-4 
5.0-4 
5.0-5 
5.0-5 
5.0-6 
5.0-7 
5.0-8 

5.0-10 
5.0-11 
5.0-13 
5.0-13 
5.0-15 
5.0-15 
5.0-16 
5.0-17 
5.0-17 
5.0-17 
5.0-18 
5.0-18 
5.0-19 
S.0-19 
5.0-19 
5.0-19 
5.0-20 
5.0-20 
5.0-20 
5.0-20 
S.0-20 
5.0-21 

5.1-1 

s.1-1 
5.1-1 
5.1-1 
5.1-1 
5.1-1 
5.1-3 
5.1-3 
5.1-3 
5.1-4 
5.1-4 
5.1-5 
5.1-6 



Ma;nta;ning and Checking the Basic Conversation State 
Verb Processing 

Verb Checking 
ALLOCATE 
POST _ot-l_RECEIPT 
REQUEST_TO_SEND 
SEND_ERROR 

Protocol Errors 
Conversation Failures 

High-Level Procedures 
PS_CONV: PROCEDURE 
ALLOCATE_PROC: PROCEDURE 
CONFIRM_PROC: PROCEDURE 
CONFIRMED_PROC: PROCEDURE 
DEALLOCATE_PROC: PROCEDURE 
FLUSH_PROC: PROCEDURE 
GET_ATTRIBUTES_PROC: PROCEDURE 
POST_ON_RECEIPT_PROC: PROCEDURE 
PREPARE_TO_RECEIVE_PROC: PROCEDURE 
RECEIVE_AND_WAIT_PROC: PROCEDURE 
RECEIVE_IMMEDIATE_PROC: PROCEDURE 
REQUEST_TO_SEND_PROC: PROCEDURE 
SEND_DATA_PROC: PROCEDURE 
SEND_ERROR_PROC: PROCEDURE 
TEST_PROC: PROCEDURE 

Low-Level Procedures • • • • 
COMPLETE_CONFIRM_PROC: PROCEDURE 
COMPLETE_DEALLOCATE_ABEND_PROC: PROCEDURE 
CONVERSATION_FAILURE_PROC: PROCEDURE 
DEALLOCATE_ABEND_PROC: PROCEDURE •••• 
DEALLOCATE_CONFIRM_PROC: PROCEDURE 
DEALLOCATE_FLUSH_PROC: PROCEDURE 
DEQUEUE_FMH7_PROC: PROCEDURE 
GET_END_CHAIN_FROM_HS: PROCEDURE 
OBTAIN_SESSION_PROC: PROCEDURE 
PERFORM_RECEIVE_PROCESSING: PROCEDURE 
POST_AND_WAIT_PROC: PROCEDURE •••••••••• 
PREPARE_TO_RECEIVE_CONFIRM_PROC: PROCEDURE 
PREPARE_TO_RECEIVE_FLUSH_PROC: PROCEDURE 
PROCESS_DATA_PROC: PROCEDURE •••••• 
PROCESS_FMH7_PROC: PROCEDURE •••••• 
PROCESS_RM_OR_HS_TO_PS_RECORDS: PROCEDURE 
RCB_ALLOCATED_PROC: PROCEDURE •••••••••• 
RECEIVE_DATA_PROCESSING: PROCEDURE 
RECEIVE_RM_OR_HS_TO_PS_RECORD: PROCEDURE 
SEND_DATA_BUFFER_MANAGEMENT: PROCEDURE 
SEND_DATA_TO_HS_PROC: PROCEDURE 
SEND_ERROR_DONE_PROC: PROCEDURE 
SEND_ERROR_IN_RECEIVE_STATE: PROCEDURE 
SEND_ERROR_IN_SEND_STATE: PROCEDURE 
SEND_ERROR_TO_HS_PROC: PROCEDURE 
SET_FMH7_RC: PROCEDURE ••••• 
TEST_FOR_POST_SATISFIED: PROCEDURE 
WAIT_FOR_CONFIRMED_PROC: PROCEDUR~ 

WAIT_FOR_RM_REPLY: PROCEDURE 
WAIT_FOR_RSP TO_~~_TO_SEND_PROC: PROCEDURE 
WAIT_~~~-~fND_ERROR_DONE_PROC: PROCEDURE 

~; 111 te-State Machines • • • • • • • 
FSM_CONVERSATION: FSM_DEFINITION 
FSM_ERROR_OR_FAILURE: FSM_DEFINITION 
FSM POST: FSM DEFINITION 

Local-Data Structures . • ••••• 
TEST • • • • • • • • • • • • • 

CHAPTER 5.2. PRESENTATION SERVICES--MAPPED CONVERSATION VERBS 

General Description 
PS.MC Functions 
Component Interactions ••••••••••• 
PS.MC Data Base Structure 

Transaction Control Block CTCB> 
LU Control Block ILUCB> •••• 

Transaction Program Control Block CTPCB> 
Resource Control Block IRCB> ••••••• 

5.1-6 
5.1-6 
5.1-6 
5.1-6 
5.1-7 
5.1-7 
5.1-7 
5.1-9 
5.1-9 

5.1-10 
5.1-10 
5.1-11 
5.1-12 
5.1-14 
5.1-15 
5.1-17 
5.1-16 
5.1-16 
5.1-19 
5.1-20 
5.1-22 
5.1-23 
5.1-24 
5.1-26 
5.1-27 
5.1-29 
5.1-29 
5.1-30 
5.1-31 
5.1-32 
5.1-33 
5.1-35 
5.1-36 
5.1-37 
5.1-36 
5.1-39 
5.1-40 
5.1-41 
5.1-43 
5.1-44 
5.1-46 
5.1-47 
5.1-48 
5.1-50 
5.1-51 
5.1-51 
5.1-52 
5.1-53 
5.1-54 
5.1-55 
5.1-56 
5.1-57 
5.1-56 
5.1-59 
5.1-60 
5.1-61 
5.1-l'> 
5.1-63 
5.1-63 
5.1-65 
5.1-66 
5.1-67 
5.1-67 

5.2-1 

5.2-1 
5.2-1 
5.2-2 
5.2-4 
5.2-4 
5.2-4 
5.2-4 
5.2-4 

Contents xi 



Conversation Data Strea• For•atting •••••• 
Construction of GDS Variables •••••••••• 

GOS Variables with Multiple Logical Records 
FM Header Data • • • • • • • • • • • • • • • • 

Examples of Mapped Conversation Verb Processing 
Establishing a Happed Conversation 
Ter•inating a Mapped Conversation 

Data Mapping and the Mapper •••• 
Block Mapping 
Mapping Example 
Map Names 

Map Hame GDS Variables 
Mapper Invocation 
Mapper Parameters 

Supplied Infor•ation 
Returned Information •••• 

Send Mapping • • • • • • • • • • • • • 
Receive Mapping • • • • • ••• 

MC_TEST_PROC 
Happed Conversation Errors 

Mapper Errors 
Error Data GDS Variables 
Protocol Violations •••• 
Service Errors • • • • • ••• 
Service Errors Detected in Received Data • • • • • ••• 
Processing of a Service Error Detected by Partner LU •••• 

Formil Descriptions • • • • • • • • • 
PS_MC: PROCEDURE 
HC_ALLOCATE_PROC: PROCEDURE 
MC_CONFIRM_PROC: PROCEDURE 
HC_CONFIRMED_PROC: PROCEDURE 
MC_DEALLOCATE_PROC: PROCEDURE 
HC_FLUSH_PROC: PROCEDURE 
HC_GET_ATTRIBUTES_PROC: PROCEDURE 
MC_POST_ON_RECEIPT_PROC: PROCEDURE 
HC_PREPARE_TO_RECEIVE_PROC: PROCEDURE 
HC_RECEIVE_AND_WAIT_PROC: PROCEDURE 
MC_TEST_PROC: PROCEDURE 
RECEIVE_INFO_PROC: PROCEDURE 
PROCESS_ERROR_OR_FAILURE_RC: PROCEDURE 
PROCESS_DATA_COHPLETE: PROCEDURE 
PROCESS_MAPPER_RETURN_CODE: PROCEDURE 
PROCESS_DATA_INCONPLETE: PROCEDURE 
HC_REQUEST_TO_SENIJ_PROC: PROCEDURE 
HC_SEND_DATA_PROC: PROCEDURE 
MC_SEND_ERROR_PROC: PROCEDURE 
RCVD_SVC_ERROR_ TRUNC_NO_ TR.lJHC: PROCEDURE 
RCVD_svc_ERROR_PURGING: PROCEDURE 
PROCESS_ERROR_DATA: PROCEDURE 
GET_SEND_IHDICATOR• PROCEDURE 
SEND_SVC_ERROR_PURGING: PROCEDURE 
UPM_MAPPER: PROCEDURE 
PROTOCOL_ERROR_PROC: PROCEDURE 

Local Data Structures 
ERROR_DATA_STRUCTURE 
SEND_BUFFER 

'• . . 

. . . 

'• . 

CHAPTER 5.3. PRESENTATION SERVICES--SYNC POINT SERVICES VERBS 

Errors, Failures, and Recovery 
Sync Point Concepts 
Processing by PS.SPS 

LUW States 
Flow Optimization 
Sync Point and Other LU Components 
Sync Point Logic 
Classification Phase 
Prepare Phase 
Request Commit Phase 
Committed Phase 
Forget Phase 

Illustrative Sync Point Flows 
Forcing the Log. • ••• 
Errors during Sync Point • • • • 

xii SHA ForMt and Protocol Reference Manual for LU Type 6.2 

. . . . . 

.- . . 

5.2-5 
5.2-5 
5.2-5 
5.2-7 
S.2-7 
5.2-7 
S.2-7 
5.2-8 
5.2-8 
5.2-8 
S.2-8 
5.2-9 
5.2-9 

5.2-10 
5,2-10 
5.2-10 
5,2-10 
5.2-11 
5.2-11 
s.2-12 
5.2-12 
5.2-14 
5.2-14 
S.2-14 
5.2-14 
5.2-17 
5.2-19 
5.2-19 
5.2-20 
5.2-21 
5.2-22 
5.2-23 
5.2-23 
5.2-24 
5.2-25 
5.2-26 
5.2-27 
5.2-28 
5.2-30 
5.2-31 
5.2-33 
5.2-35 
5.2-36 
S.2-37 
5.2-38 
5.2-40 
5.2-41 
5.2-42 
5.2-43 
5.2-44 
5.2-45 
5.2-46 
5.2-47 
5.2-48 
5.2-48 
5.2-48 

5.3-1 

5.3-1 
5.3-2 
5.3-3 
5.3-4 
5.3-5 
5.3-6 
5.3-9 
5.3-9 
5.3-9 
5.3-9 
5.3-9 
5.3-9 

5.3-11 
5.3-15 
5.3-15 



PROG_ERROR_* 
BACKED_OUT 
DEALLOCATE_ABEND_* 
RESOURCE_FAILURE_•, Recovery, and Heuristic Decisions 

Backout Processing 
Heuristic Decisions and Reliable Resources 
Resynchronization Logic 

Validation of Log IDs 
Session Outage during Attach 
Lost Sync Point Messages 
Resynchronization Action 
Resynchronization Operator Messages 
Order of Resynchronization 
Errors and Failures during 
Reset State and Erasing of 

Log Name Processing 
Procedures Used by Sync Point 

PS_SPS: PROCEDURE 
PREPARE 
REQUEST_COMMIT 
COMMITTED 
FORGET 
HEURISTIC_MIXED 

Resynchronization 
Log Records 

Session Flows Created by Sync Point 
Session Flows Created by Errors during Sync Point 
Backout • • • • 

CHAPTER 5.4. PRESENTATION SERVICES--CONTROL-OPERATOR VERBS 

Introduction 
Function Summary 
Structure Summary 

Concepts and Terms 
Operator • • • • • • • 
Scope of Control-Operator Functions 
LU-Accessed Network Resources 
Session Characteristics 

Session Identification •••••••• 
Single- vs. Parallel-Sessions 
Contention Polarity 

Session Limits and Counts 
Session Bringup and Takedown 

Phases •••• 
Control-Operator Functions 

CLU,mode) entry 
Distributed Operator Control 

Local Functions and Services 
LU Definition Verbs ••••• 
Local Session-Control Verbs •••• 

Distributed Functions and Services • • • • • • • ••• 
Change Number of Sessions Verbs • • • • • ••• 
Functional Relationships for Distributed Verb Processing 
Operation Phases • • • • • •••• 
CNOS Transaction • • • • • • • • • ••• 
CNOS External Message-Unit Flows •••• 
The CNOS Process Relationships •••• 

Processes 
Shared Data 
Transaction-Handling Process Relationships 

Single Verb Issuance •••••• 
Simultaneous Verb Issuances at Partner LUs 
Simultaneous Verb Issuances at the Same LU 

CNOS Race Resolution ••••• 
Command Race 
Locking the CLU,model Entry 
Race Flows •••• 

No Race • • • • • • • • • • 
Single-Failure Races 
Double-Failure Race 

Recovery from Conversation Failure 
Base and Optional Support 

Base-Function-Set Support 
CNOS Minimum Support Set 
Parallel-Session Optional Functions 

. . ' . 

Contents 

5.3-15 
5.3-15 
5.3-15 
5.3-15 
5.3-16 
5.3-18 
5.3-18 
5.3-18 
5.3-20 
5.3-22 
5.3-25 
5.3-30 
5.3-31 
5.3-32 
5.3-32 
5.3-32 
5.3-35 
5.3-35 
5.3-35 
5.3-36 
5.3-36 
5.3-36 
5.3-37 
5.3-37 
5.3-41 
5.3-41 

5.4-1 

5.4-1 
5.4-1 
5.4-1 
5.4-1 
5.4-1 
5.4-3 
5.4-3 
5.4-3 
5.4-3 
5.4-3 
5.4-3 
5.4-4 
5.4-4 
5.4-4 
5.4-4 
5.4-5 
5.4-5 
5.4-5 
5.4-5 
5.4-6 
5.4-6 
5.4-6 
5.4-6 
5.4-7 
5.4-9 

5.4-10 
5.4-11 
5.4-11 
5.4-12 
5.4-12 
5.4-12 
5.4-13 
5.4-13 
5.4-14 
5.4-14 
5.4-14 
5.4-15 
5.4-16 
5.4-16 
5.4-19 
5.4-20 
5.4-20 
5.4-20 
5.4-21 
5.4-21 

xi ii 



Component Interrelationships ••••• 
Transaction Programs • • • • •• 

Control-Operator Transaction Program 
CNOS Service Transaction Program 

PS. COPR Components . • • • • • • • • 
CNOS Verb Router • • • • • • • • • 

Local Control-Operator Verb Processing 
LU Definition Verb Processing 
Local Session-Control Verb Processing 

INITIALIZE_SESSION_LIMIT 
RESET_SESSION_LIMIT • • • • 
ACTIVATE_SESSION . • • • • • • 
DEACTIVATE SESSION • • • • • 

Session-Limit Se;vices at the Source LU 
Privilege Checking 
CNOS Conversation Allocation 
GOS Varicible 
CNOS Record Flows 
Errors . • • • • • • • • • 
Updcite CLU,model Entry •• 
Request Changes in Session Count 
Return to the Transaction Progrcim 

Session-Limit Services at the Target LU 
CNOS Reply . • • • • • • • • • • 
Session-Limit Parameter Negotiation 
Errors • • • • • • • • • • • 
Other Interactions .•••• 

Session-Limit Data Lock Manager 
Locking the CLU,model Entry 

Verb-Routing Procedure •••• 
PS COPR: PROCEDURE ..••• 

Session-Control Verb Handlers 
INITIALIZE_SESSION_LIMIT_PROC: PROCEDURE 
RESET_SESSION_LIMIT_PROC: PROCEDURE 
CHANGE_SESSION_LIMIT_PROC: PROCEDURE 
ACTIVATE_SESSION_PROC: PROCEDURE 
DEACTIVATE_SESSION_PROC: PROCEDURE 
DEFINE_PROC: PROCEDURE ••••• 
DISPLAY PROC: PROCEDURE •••• 
DECETE_PROC: PROCEDURE • • . • • 
LOCAL_SESSION_LIMIT_PROC: PROCEDURE 
LOCAL_VERB_PARAMETER_CHECK: PROCEDURE 
SNASVCMG_VERB_PARAMETER_CHECK: PROCEDURE 
CHANGE ACTION: PROCEDURE • • • ••• 

Source-LU CNOS Procedures •••••• 
SOURCE_SESSION_LIMIT_PROC: PROCEDURE 
VERB_PARAMETER_CHECK: PROCEDURE 
SOURCE_CONVERSATION_CONTROL: PROCEDURE 
SOURCE_CONVERSATION: PROCEDURE 
RESULT_CHECK_ALLOCATE: PROCEDURE 
RESULT_CHECK_SEND_COMMAND: PROCEDURE 
RESULT_CHECK_RECEIVE_REPLY: PROCEDURE 
RESULT_CHECK_RECEIVE_DEALLOCATE: PROCEDURE 
CHECK_CNOS_REPLY: PROCEDURE •••• 

Target-LU CNOS Procedures • • • • • • 
X06Fl: PROCEDURE .••.•••••• 
PROCESS_SESSION_LIMIT_PROC: PROCEDURE 
TARGET_COMMAND_CONVERSATION: PROCEDURE 
RESULT_CHECK_RECEIVE_COMMAND: PROCEDURE 
RESULT_CHECK_RECEIVE_SEND: PROCEDURE 
CHECK_CNOS_COMMAND: PROCEDURE 
NEGOTIATE_REPLY: PROCEDURE •••• 
CLOSE_ONE_REPLY: PROCEDURE ••••• 
TARGET_REPLY_CONVERSATION: PROCEDURE 
RESULT_CHECK_SEND_REPLY: PROCEDURE 
SESSION_LIMIT~DATA_LOCK_MANAGER: PROCEDURE 

CHAPTER 6.0. HALF-SESSION 

General Description 
Protocol Boundaries between HS and Other Components 
Formal Description ••••• 

HS: PROCESS ••.••••.•• 
PROCESS_LU_LU_SESSION: PROCEDURE 

xiv SNA Format and Protocol Reference Manual for LU Type 6.2 

5.4-22 
5.4-22 
5.4-22 
5.4-22 
5.4-23 
5.4-24 
5.4-24 
5.4-24 
5.4-24 
5.4-24 
5.4-25 
5.4-25 
5.4-25 
5.4-25 
5.4-27 
5.4-27 
5.4-27 
5.4-27 
5.4-27 
5.4-27 
5.4-28 
5.4-28 
5.4-28 
5.4-28 
5.4-28 
5.4-30 
5.4-30 
5.4-30 
5.4-30 
5.4-32 
5.4-32 
5.4-33 
5.4-33 
5.4-34 
5.4-35 
5.4-36 
5.4-37 
5.4-38 
5.4-39 
5.4-40 
5.4-41 
5.4-42 
5.4-43 
5.4-44 
5.4-46 
5.4-46 
5.4-48 
5.4-49 
5.4-50 
5.4-52 
5.4-53 
5.4-54 
5.4-55 
5.4-56 
5.4-57 
5.4-57 
5.4-58 
5.4-60 
5.4-61 
5.4-62 
5.4-63 
5.4-64 
5.4-65 
5.4-65 
5.4-66 
5.4-67 

6.0-1 

6.0-1 
6.0-2 
6.0-3 
6.0-3 
6.0-4 



PROCESS_CP_LU_SESSION: PROCEDURE 
Data Structures 

LOCAL 
SNF 

CHAPTER 6.1. DATA FLOW CONTROL 

Introduct I o;ir, 
OF~ for LU-LU Half-Sessions 

Overview of DFC Functions 
DFC Structure • • • • • 

Initialization 
Send • • • • 
Receive • • • • • • • • • • • • • • • • • • 
Termination . . • . • . • • . ••••••• 

Protocol Boundaries • • • • • • ••• 
Function Management Profile 19 •••• 
Usage Associated with FM Profile 19 ••••••••••••••••• 

Conditional End Bracket (CEB> ••••••••• 
FM Header Usage • • • • • • • • • • • • • • • • • • 
Usage of DRl • • • • • • • • • • • • • • • • • 
Sending RQE with BB from Contention Loser • • • • • •••• 
Usage of LUSTATC00061 (RQEloCEB) •••• 
Usage of SIGNALCOOOlOOOll •••••••• 
Sequence Numbering of Requests and Responses 
Stray SIGNALs and Responses • • • • • 

Sending SIGNAL and Responses 
RQD required on CEB 
Receiving SIGNAL Requests 
Receiving Responses 

SEND_ERROR Processing 
Detailed Description of DFC F1.mctions 
Request/Response Formatting 
Chaining Protocol ••••• 
Request/Response Correlation 
Request/Response Mode Protocols 
Bracket Protocols 
Send/Receive Mode Protocols 
Queued Response Protocol 
PS Send and Receive Records 
DFC Request and Response Formats 
DFC Request and Response Descriptions 
BIS (BRACKET INITIATION STOPPEDI 
LUSTAT (LOGICAL UNIT STATUS) 
RTR CREADY TO RECEIVE> 
SIG (SIGNAL) 

DFC for CP-LU Half-Sessions ••••••• 
Overview of DFC Functions •••• 

Request/Response Formatting • • • • • • • • 
Immediate Request and Immediate Response Mode Enforcement 

Error Processing • • • • • • • • • • ••• 
High-Level Procedures • • • • • • ••••••• 

DFC_INITIALIZE: PROCEDURE 
DFC_SEND_FROM_PS: PROCEDURE 
DFC_SEND_FROM_RM: PROCEDURE 
DFC_SEND_FROM_LNS: PROCEDURE 
TRY_TO_RCV_SIGNAL: PROCEDURE 
DFC_RCV: PROCEDURE 
DFC_RCV_FSMS: PROCEDURE 
DFC_SENO_FSMS: PROCEDURE 

Low-Level Procedures Cin Alphabetical Order) 
FORMAT_ERROR: PROCEDURE 
FORMAT_ERROR_EXP_RSP: PROCEDURE 
FORMAT_ERROR_NORM_RSP: PROCEDURE 
FORMAT ERROR RQ DFC: PROCEDURE 
FORMAT=ERROR:Rti:FMD: PROCEDURE 
FORMAT ERROR SSCP LU: PROCEDURE 
GENERATE_RM_PS_INPUTS: PROCEDURE 
INVALID_SENSE_CODE: PROCEDURE 
OK_TO_REPLY: PROCEDURE 
PROCESS_RU_DATA: PROCEDURE 
PROCESS_SENO_PARM: PROCEDURE 
RCV_STATE_ERROR: PROCEDURE 
SEND_BIU: PROCEDURE 

. . 

Contents 

6.0-5 
6.0-6 
6.0-6 
6.0-6 

6.1-1 

6.1-1 
6.1-.i. 
6.1-1 
6.1-1 
6.1-1 
6.1-1 
6.1-1 
6.1-2 
6.1-2 
6.1-2 
6.1-4 
6.1-4 
6.1-4 
6.1-4 
6.1-4 
6.1-4 
6.1-4 
6.1-4 
6.1-5 
6.1-6 
6.1-6 
6.1-7 
6.1-7 
6.1-7 
6.1-7 
6.1-7 
6.1-8 
6.1-8 
6.1-8 
6.1-9 

6.1-10 
6.1-10 
6.1-10 
6.1-11 
6.1-14 
6.1-14 
6.1-14 
6.1-15 
6.1-15 
6.1-16 
6.1-16 
6.1-16 
6.1-16 
6.1-16 
6.1-18 
6.1-18 
6.1-19 
6.1-20 
6.1-22 
6.1-22 
6.1-23 
6.1-24 
6.1-25 
6.1-26 
6.1-26 
6.1-27 
6.1-27 
6.1-28 
6.1-29 
6.1-30 
6.1-31 
6.1-32 
6.1-33 
6.1-34 
6.1-35 
6.1-36 
6.1-37 

xv 



SEtlJ_NE6_RSP_OR_LOG: PROCEDURE 
SEND_RSP_BIU: PROCEDURE 
SENO_RSP_TO_RM_OR_PS: PROCEDURE 
STATE_ERROR_SSCP_LU: PROCEDURE 
STRAY_RSP: PROCEDURE 
UPDATE_FSMS: PROCEDURE 

Finite-State Machines •••• 
FSl1_8SM_FNP19: FSN_DEFINITION 
FSM_CHAIN_RCV_FMP19: FSM_DEFINITION 
FSM_CHAIN_SENO_FMP19: FSM_DEFINITION 
FSM_It1MEDIATE_RQ_HODE_SEND: FSM_OEFINITION 
FSl1_It1MEDIATE_RQ_NODE_RCV: FSM_DEFINITION 
FSl1_QRI_CHAIN_RCV_FMP19: FSM_DEFINITION 
FSM_RCV_PURGE_FMP19: FSM_DEFINITION 

CHAPTER 6.2. TRANSMISSION CONTROL 

Introduction •••••••••• 
Initialization Phase ••••••• 

CRYPTOGRAPHY VERIFICATION CCRV) 
Normal Operation •••••••• 

TC Procedures Invoked from Other Components of 
Sequence Numbering of Requests and Responses 
Sessions With Cryptography 
Session-Level Pacing •••• 
ISOLATED PACING RESPONSE CIPR) 
Request and Response Control Hodes 

Trans111ission Control Calling Trees 
Formal Description • • • • • • • 
Session Initialization Procedures 

TC.INITIALIZE: PROCEDURE 
TC.EXCHANGE_CRV: PROCEDURE 
TC.BUILD_CRV: PROCEDURE 
TC.FORMAT_CHECK: PROCEDURE 

TC Send and Receive Procedures 
TC.SEND: PROCEDURE ••••• 
TC.TRY_TO_ENCIPHER: PROCEDURE 
TC.RCV: PROCEDURE 
TC.RCV_CHECKS: PROCEDURE 
TC.RCV_NORM_RQ: PROCEDURE 
TC.DEQUEUE_PAC: PROCEDURE 
TC.TRY_TO_SEND_IPR: PROCEDURE 

TC Finite-State Machines •••• 
FSH_PAC_RQ_SEND: FSH_DEFINITION 
FSH_PAC_RQ_RCV: FSM_DEFINITION 

APPENDIX A. NODE DATA STRUCTURES 

Control Blocks 
CPLU_CB 
LUCB •••• 

CP _ID • • • • 
PARTNER_LU 

HOOE •••• 
TRANSACTION_PROGRAH 

LULU_CB 
RCB • • • • • 

BUFFER_ELEMENT 
RECEIVED_INFO 

SCB 
TCB ••••• 

Interprocess Records 
HS_ TO_UIS_RECORD 

ABORT_HS 
HS_RCV _RECORD 
INIT_HS_RSP 

HS_TO_PC_RECORD 
HS TO PS RECORD 

CoHFIRMED 
RECEIVE_DATA 
RECEIVE_ ERROR 
REQUEST_TO_SEND 
RSP_TO_REQUEST_TO_SEND 

HS_TO_RH_RECORO 

. . . . 

the Half-Session 

.. 

xvi SNA Format and Protocol Reference Ham.1al for l.U Type 6.2 

6.1-37 
6.1-38 
6.1-39 
6.1-40 
6.1-41 
6.1-42 
6.1-43 
6.1-43 
6.1-44 
6.1-46 
6.1-48 
6.1-48 
6.1-49 
6.1-50 

6.2-1 

6.2-1 
6.2-2 
6.2-2 
6.2-4 
6.2-4 
6.2-5 
6.2-5 
6.2-5 
6.2-6 
6.2-6 
6.2-7 
6.2-8 
6.2-8 
6.2-8 

6.2-10 
6.2-11 
6. 2-11 
6.2-13 
6.2-13 
6.2-14 
6.2-15 
6.2-16 
6.2-17 
6.2-18 
6.2-19 
6.2-20 
6.2-20 
6.2-21 

A-1 

A-1 
A-1 
A-1 
A-2 
A-2 
A-3 
A-4 
A-5 
A-7 
A-8 
A-8 
A-9 

A-10 
A-10 
A-10 
A-11 
A-11 
A-11 
A-11 
A-12 
A-12 
A-12 
A-12 
A-13 
A-13 
A-13 



ATTACH_HEADER . . . . . . . . . A-13 
BID A-14 
BID_RSP A-14 
BIS_RQ A-14 
'.HS_REPLY . . . . . A-14 
FREE_ SESSION A-15 
RTR_RQ . . . . . . . . . A-15 
RTR_RSP . . . . . . A-15 
SECURITY_HEADER A-15 

LHS_TO_HS_RECORD A-16 
HS_SEND_RECORD A-16 
IHIT_HS A-16 

LNS_TO_NNM_RECORD . . . . A-16 
ACTLU_RSP_SEND_RECORD A-17 
BIND_RQ_SENO_RECORD . . . . . A-17 
Bnm_RSP _SENO_RECORD A-17 
DACTLU_RSP_SENO_RECORO A-17 
HIERARCHICAL_RESET_RSP A-18 
PC_Cot~ECT . . . A-18 
PC_HS_CONNECT A-18 
PC_HS_DISCONNECT A-19 
UNBIND_RQ_SENO_RECORO A-19 
UNBIIID_RSP _SEND_RECORO . . . . . A-19 

LNS_TO_RM_RECORD A-19 
ACTIVATE_SESSION_RSP . . . . A-20 
CTERM_DEACTIVATE_SESSION A-20 
SESSIOtl_ACTIVATED A-20 
SESSION_DEACTIVATED A-21 

HNl1_ TO_LNS_RECORD A-21 
ACTLU_RQ_RCV_RECORD A-21 
BitlD_RQ_RCV_RECORD A-21 
BIND_RSP_RCV_RECORD . . . . . A-22 
DACTLU_RQ_RCV_RECORO A-22 
HIERARCHICAL_RESET A-22 
PC_CONNECT_RSP A-22 
SESSION_ROUTE_INOP A-23 
UNBIND_RQ_RCV_RECORD A-23 
UNBI~ID_RSP_RCV_RECORO A-23 

PC_TO_HS_RECORD A-23 
PS_TO_HS_RECORD A-24 

COHFIR11ED A-24 
REQUEST_TO_SEtlD A-24 
SEtlD_DATA_RECORD A-24 
SEND_ERROR A-24 

PS_TO_RM_RECORO A-25 
ALLOCATE_RCB A-25 
CHANGE_ SESSIONS A-26 
DEALLOCATE_RCB . . . . . A-26 
GET_SESSION A-26 
RM_ACTIVATE_SESSION A-27 
RM_DEACTIVATE_SESSION A-27 
TERMINATE_PS . . . A-27 
UNBINO_PROTOCOL_ERROR A-28 

RM_TO_tlS_RECORD A-28 
BIO __ RSP . . . A-28 
BI0 _1"1TH_A TT ACH A-28 
BIO_WITHOUT_ATTACH . . . . A-29 
BIS_REPLY . . . . A-29 
BIS_RQ A-29 
HS_PS_CONNECTED A-29 
RTR_RQ A-30 
RTR_RSP . . . . . . . . . A-30 
ENCIPllERED_RD2 A-30 
YIELD_SESSION . . . . A-30 

RM_TO_LNS_RECORD A-31 
ACTIVATE_ SESSION . . . . A-31 
DEACTIVATE_ SESSION A-31 

RM_TO_PS_RECORD A-32 
ATTACH_RECEIVED A-32 
CONVERSATIONJAILURE . A-32 
RCB_ALLOCATED . . . . A-32 
RCB_DEALLOCATED A-33 
RM_SESSIOH_ACTIVATED . . . . . A-33 
SESSION_ALLOCATED A·-33 

Contents xvii 



xviii 

Request RUs • • • • • • • • 
CRV RQ RU • • • • • • • • 

Miscellaneous Structure Types 
ADDRESS • • • • 
BIU • • • • • • • 
PC_ CHARACTERISTICS 
PIU • • • • • • • 
SEND_PARM • • • • 
SESSION_INFORMATION 

Miscellaneous Enumeration Typ<es 

APPENDIX D. RH FORMATS 

APPENDIX E. REQUEST/RESPONSE UNIT cqu) FORMATS 

Summary of Request RU's by Category •••••• 
Index of RU's by NS Headers and Request Codes 
Request RU Formats • • • • • • • • • • • • • • • 

ACTLU; SSCP-->LU, Exp; SC !ACTIVATE LOGICAL UNIT> 
BIND; PLU-->SLU. E><Pl SC CBIMO SESSION) •.•. 
BINDF; PLU-->SSCP, Norm; FHD NSCs) !BIND FAILURE> 
BIS; LU-->LU, Norm; DFC !BRACKET INITIATION STOPPED) 
CINIT; SSCP-->PLU, Norm; FHD NSCsl !CONTROL INITIATE) 
CLEANUP; SSCP-->SLU, Norm; FHD NSCs) !CLEAN UP SESSION> 
CTERM; SSCP-->PLU, Norm; FHD NS(s) (CONTROL TERMINATE! 
CRV; PLU-->SLU, Exp; SC !CRYPTOGRAPHY VERIFICATION) 
DACTLU; SSCP-->LU, Exp; SC !DEACTIVATE LOGICAL UNIT> 
ECHOTEST; SSCP-->LU, Norm; FHD NSC ma) C ECHO TEST> 
INIT-SELF; ILU-->SSCP, Norm; FHD NS(s) (INITIATE-SELF) 
LUSTAT; LU-->LU, Norm; DFC £LOGICAL UNIT STATUS> 
NOTIFY; SSCP<-->LU, Norm; FMO NSCsl CNOTIFY> •••• 

ILU/TLU Notification ••••••••.•••••• 
LU-LU Session Services Capabilities ••••••• 

REQECHO; LU-->SSCP, Norm; FHD NSCmal CREQUEST ECHO TESTI 
RTR; LU-->LU, Norm; DFC !READY TO RECEIVE I ••.••••• 
SESSENO; LU-->SSCP, Norm; FtID NS(s) (SESSION ENDED> 
SESSST; LU-->SSCP, Norm; FMD NSCs) (SESSION STARTED) 
SIG; LU-->LU, Exp; DFC CSIGNAU ••••••••• 
TERM-SELF; TLU-->SSCP, Norm; FtlD NSCs) CTERMINATE-SELFI 
UNBIND; LU-->LU, Exp; SC CUl-IBIND SESSION) ••••• 
Ul-IBINDF; PLU-->SSCP, Norm; FHD NSCs) CUl-IBIND FAILURE> 

User Data Structured Subfield Formats 
Unformatted Data . . ••••• 
Mode Name • . • • • • • • • • 
Session Instance Identifier 
Fully Qualified PLU Network Name 
Fully Quall fi ed SLU Network Name 
Random Data • • • . • • • • • 
Enciphered Data •.••••• 

Summary of Response RU's ••••• 
Positive Response RU's with Extended Formats 

RSPCACTLUJ; LU-->SSCP, Exp; SC 
RSPCBINDl; SLU-->PLU, Exp; SC 
RSPCCINITJ; PLU-->SSCP, Norm; FHD NSCs) 

Common Structured Subfields ••••••••• 
Control Vectors • . . • . • • • • • • 

SSCP-LU Session Capabilities •••• 
LU-LU Session Services Capabilities ••• 
Mode/ Class-of-Service/ Virtual-Route-Identifier-List 
Network-Qua! if i ed Address Pair 
VR-ER Mapping Data .•.•.••• 
Local Form Session Identifier 
Control Vector Keys Not Recognized 

Session Keys • • • • • • • • 
Uninterpreted Name 
Network Name Pair 
Network Address Pair 
URC • • • • • . . • • • 
Network-Qualified Address Pair 

Common Subvectors •••••• 
Product Set ID CX'lO'J 
Product Identifier CX'll') •••• 

Hardware Product Identifier CX'OO') 
Emulated Product Identifier IX'Ol') 

SHA Format and Protocol Reference Manual for LU Type 6.2 

A-33 
A-33 
A-33 
A-34 
A-34 
A-35 
A-35 
A-36 
A-36 
A-36 

D-1 

E-1 

E-3 
E-4 
E-5 
E-5 
E-5 
E-9 
E-9 
E-9 

E-10 
E-10 
E-10 
E-11 
E-11 
E-11 
E-12 
E-12 
E-12 
E-12 
E-13 
E-13 
E-13 
E-13 
E-14 
E-14 
E-15 
E-15 
E-16 
E-16 
E-16 
E-16 
E-16 
E-16 
E-17 
E-17 
E-18 
E-18 
E-18 
E-19 
E-19 
E-20 
E-20 
E-20 
E-21 
E-21 
E-21 
E-22 
E-22 
E-22 
E-23 
E-23 
E-23 
E-23 
E-23 
E-23 
E-24 
E-24 
E-24 
E-24 
E-25 



SoftNare Product Serviceable Component Identifier CX'02') 
Software Product Common level CX'04'l .•••• 
Software Product Common Name CX'06'l •••••• 
Software Product Customization Identifier CX'07'l 
Software Product Program Number CX'08'l 
Software Product Customization Date and Time CX'09'l 

APPENDIX F. PROFILES 

Function Managemen·t CFMl Profiles 
FM Profile 0 
FM Profile 6 •••••••• 
FM Profile 19 •••• 
FM Profile vs. Type of Session 

Transmission Services CTSl Profiles 
TS Profile 1 •••••••• 
TS Profile 7 ••••••.• 
TS Profile vs. Type of Session 

APPENDIX G. SENSE DATA 

Request Reject (Category Code= X'08') 
Request Error !Category Code= X'lO'l 
State Error (Category Code= X'20'l 
RH Usage Error (Category Code= X'40') 
Path Error !Category Code= X'80'l 

APPENDIX H. FM HEADER AtlD LU SERVICES COMMANDS 

Symbol-String length • • • • • • • • 
FM Headers • . • • • • • • • • • • • 

FM header 5: Attach • . . . .••• 
Access Security Information Subfields 
PIP Variable •••••••• 

FM header 7: Error Description 
FM header 12: Security 

Presentation Services CPSJ Headers 
PS header 10: Sync Point Control 

Formats of Records used by LU 6.2 Service Transaction Programs 
Change Humber of Sessions lCNOSl 
Exchange Log Name • • • • • • • • 
Compare States • • • . • . • • • . 

SNA-Defined Transaction Program Names 
GOS Variables •••••••• 

Format of Application Data GOS Variable 
Format of Null Data Variable • • • . • 
Format of User Control Data GOS Variable 
Format of Map Name GOS Variable 
Format of an Error Data GOS variable 
Format of Error log GOS Variable 

APPENDIX I. GENERAL DATA STREAM 

Structured Fields • • • • 
Length llLl Description 
Identifier lIDl Description 

APPENDIX H. FSM NOTATION 

APPENDIX T. TERMINOLOGY: ACRONYMS AND ABBREVIATIONS 

INDEX 

E-25 
E-25 
E-26 
E-26 
E-26 
E-26 

F-1 

F-1 
F-1 
F-2 
F-3 
F-4 
F-5 
F-5 
F-5 
F-6 

G-1 

G-1 
G-5 
G-6 
G-7 
G-8 

H-1 

H-2 
H-4 
H-6 
H-7 
H-7 
H-8 
H-9 

H-10 
H-10 
H-11 
H-12 
H-13 
H-14 
H-15 
H-16 
H-17 
H-17 
H-17 
H-17 
H-18 
H-19 

I-1 

I-1 
I-1 
I-1 

N-1 

T-1 

X-1 

Contents xix 



This page intentionally left blank 

xx SNA Format and Protocol Reference Manual for LU Type 6.2 



LIST OF ILLUSTRATIONS 

CHAPTER 1. INTRODUCTION 

Figure 
Figure 

1-1. Overview of the SNA Network 
1-2. Examples of Nested Nodes 

CHAPTER 2. OVERVIEW OF THE LU 

Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 

Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 

2-1. 
2-2. 
2-3. 
2-4. 
2-5. 
2-6. 
2-7. 
2-8. 
2-9. 

2-10. 
2-11. 
2-12. 
2-13. 
2-14. 
2-15. 
2-16. 
2-17. 
2-18. 
2-19. 
2-20. 
2-21. 
2-22. 
2-23. 
2-24. 
2-25. 
2-26. 
2-27. 
2-28. 
2-29. 
2-30. 
2-31. 
2-32. 

2-33. 
2-34. 
2-35. 
2-36. 
2-37. 
2-38. 
2-39. 
2-40. 
2-41. 
2-42. 
2-43. 
2-44. 
2-45. 
2-46. 
2-47. 
2-48. 
2-49. 
2-50. 
2-51. 
2-52. 
2-53. 
2-54. 
2-55. 
2-56. 
2-57. 
2-58. 

Placement of LUs within the SNA Network CExampleJ 
Peer and Layer Exchanges 
LU-LU Verification • • • • • • • • ••• 
Relationships of Sequences of Message Units CExampleJ 
Relationship of Data Records to Logical Records !Example) 
Relationship of Conversation Message to BIU Chain !Example) 
Start Conversation without Confirmation 
Conversation Turnaround without Confirmation 
Finish Conversation without Confirmation 
Start Conversation with Confirmation 
Continue Conversation: Confirmation without Turnaround 
Conversation Turnaround with Confirmation, using LOCKSCSHORTl 
Conversation Turnaround with Confirmation, using LOCKSCLONGl 
Finish Conversation with Confirmation 
Possible Next Sequence in Error-Free Cases 
One-Way Conversation without Confirmation 
Two-Way Conversation with Confirmation 
Conversation Turnaround following REQUEST_TO_SEND !without Confirmation) 
SEND_ERROR Issued by Sender • • • • • • 
SEND_ERROR Issued by Receiver ••••••• 
SEND_ERROR Issued by both Sender and Receiver CSEND_ERROR Race) 
DEALLOCATE ABEND Issued by Sender 
DEALLOCATE ABEND Issued by Receiver •••• 
Overview of LU 6.2 Components •••• 
Structure of a Presentation Services Process 
Example of Communicating Transaction Programs 
Internal Buffering in LU Send/Receive Data Operations !Example) 
Map Name Usage by Mapped Conversations • • • 
Relationship of LU Components for Sync Point Functions 
LU Static Data Structures (Example l • • • • • • • • 
LU Dynamic Data Structures and Processes CExampleJ 
Data Structure Relationships among LUs for a Distributed Transaction 

CExamplel • • • • • • • ••• 
LU Process Creation and Termination Hierarchy 
Complete Conversation Example--Local LU 
Complete Conversation Example--Remote LU 
Session Deactivation--Local LU 
Session Deactivation--Remote LU 
ALLOCATE (when allocated), CONFIRM Cby First Speaker) --Local LU 
ALLOCATE !when allocated), CONFIRM (by First Speaker) --Remote LU 
ALLOCATE (delayed), CONFIRM Cby First Speaker) --Local LU 
ALLOCATE !delayed), CONFIRM Cby First Speaker! --Remote LU 
ALLOCATE (delayed>, RECEIVE_AND_WAIT Cby First Speaker) --Local LU 
ALLOCATE (delayed), RECEIVE_AND_WAIT Cby First Speaker) --Remote LU 
ALLOCATE Cwhen allocated), RECEIVE_AND_WAIT Cby Bidder) --Local LU 
ALLOCATE (when allocatedJ, RECEIVE_AND_WAIT Cby Bidder) --Remote LU 
ALLOCATE (delayed), CONFIRM Cby Bidder) --Local LU 
ALLOCATE (delayed), CONFIRM Cby Bidder) --Remote LU 
ALLOCATE CdelayedJ, RECEIVE_AND_WAIT (by Bidder) --Local LU 
ALLOCATE !delayed), RECEIVE_AND_WAIT Cby Bidder) --Remote LU 
ALLOCATE CdelayedJ, CONFIRM Cby Bidder), Attach Error --Local LU 
ALLOCATE !delayed), CONFIRM (by Bidder), Attach Error --Remote LU 
ALLOCATE (immediate), Successful --Local LU 
ALLOCATE (immediate), Successful --Remote LU 
ALLOCATE !immediate!, Unsuccessful --Local LU 
ALLOCATE (immediate), Unsuccessful --Remote LU 
ALLOCATE !delayed) Race, Bracket Rejected --Bidder LU 
ALLOCATE (delayed) Race, Bracket Rejected --First Speaker LU 
ALLOCATE Cdelayedl Race, Bracket Accepted --Bidder LU 

1-2 
1-4 

2-2 
2-5 

2-10 
2-17 
2-18 
2-19 
2-21 
2-21 
2-21 
2-21 
2-22 
2-22 
2-22 
2-23 
2-23 
2-24 
2-24 
2-25 
2-26 
2-26 
2-27 
2-27 
2-28 
2-29 
2-30 
2-31 
2-33 
2-40 
2-41 
2-43 
2-44 

2-46 
2-47 
2-52 
2-53 
2-54 
2-55 
2-56 
2-57 
2-58 
2-59 
2-60 
2-61 
2-62 
2-63 
2-64 
2-65 
2-66 
2-67 
2-68 
2-69 
2-70 
2-71 
2-72 
2-73 
2-74 
2-75 
2-76 

List of Illustrations xxi 



Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figur·e 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 

2-59. 
2-60. 
2-61. 
2-62. 
2-63. 
2-64. 
2-65. 
2-66. 
2-67. 
2-68. 
2-69. 
2-70. 
2-71. 
2-72. 
2-73. 
2-74. 
2-75. 
2-76. 
2-77. 
2-78. 
2-79. 
2-80. 
2-81. 
2-82. 
2-83. 
2-84. 
2-85. 
2-86. 

ALLOCATE (delayed) Race, Bracket Accepted --First Speaker LU 
DEALLOCATE FLUSH IRQEl) --Local LU 
DEALLOCATE FLUSH IRQEl) --Remote LU ••••••••• 
DEALLOCATE FLUSH IRQDl) --Local LU • • •••••• 
DEALLOCATE FLUSH IRQOl) --Remote LU • • • • •• 
DEALLOCATE FLUSH (RQEl), SEND_ERROR, -RSP Sent --Local LU 
DEALLOCATE FLUSH IRQEl), SEND_ERROR, -RSP Sent --Remote LU 
DEALLOCATE FLUSH (RQEl>, SEND_ERROR, -RSP not Sent --Local LU •••• 
DEALLOCATE FLUSH IRQEl), SENO_ERROR, -RSP not Sent --Remote LU 
DEALLOCATE CONFIRM IRQD213> --Local LU ••••••••••• 
DEALLOCATE CONFIRM IRQD213J --Remote LU • • • ••••••• 
DEALLOCATE ABEND Issued in SEND, Between-Chain State --local LU 
DEALLOCATE ABEND Issued in SEtlD, Between-Chain State --Remote LU 
DEALLOCATE ABEND Issued in SEND, In-Chain State --Local LU 
DEALLOCATE ABEND Issued in SEND, In-Chain State --Remote LU 
DEALLOCATE ABEND Issued in SEND, -RSP Received State --local LU 
DEALLOCATE ABEND Issued in SEND, -RSP Received State --Remote LU 
DEALLOCATE ABEND Issued in SEND State --local LU • • • • • •• 
DEALLOCATE ABEND Issued in SEND State --Remote LU • • • • •• 
DEALLOCATE ABEND Issued in RCV, Between-Chain State --local LU 
DEALLOCATE ABEND Issued in RCV, Between-Chain State --Remote LU 
DEALLOCATE ABEtID Issued in RCV, In-Chain State --local LU 
DEALLOCATE ABEND Issued in RCV, In-Chain State --Remote LU 
ALLOCATE Cdelayed), DEALLOCATE FLUSH lby First Spe<iker) --Local LU 
ALLOCATE CdelayedJ, DEALLO\:ATE FLUSH Cby First Speaker) --Remote LU 
ALLOCATE !delayed), DEALLOCATE COtlFIRM IBY First Speaker) --Local LU 
ALLOCATE (delayed>. DEALLOCATE CONFIRM !BY First Speaker) --Remote LU 
ALLOCATE !delayed), DEALLOCATE FLUSH lby Bidder) to RECEIVE_AND_WAIT 
--local LU • • • • • • • • • • • 

Figure 2-87. ALLOCATE !delayed>. DEALLOCATE FLUSH lby Bidder> to RECEIVE_AND_W.UT 
- -Remote LU • • • • • • • • • • • • • • • • • • • • • • 

Firyure 2-88. ALLOCATE !delayed), DEALLOCATE FLUSll !by Bidder) to SEHO_ERROR --Local LU 
Fi9l1re 2-89. ALLOCATE !delayed), DEALLOCATE FLUSH Cby Bidder I to SENO_ERROR --Remote 

Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 
Figure 

LU • • • • • • • • • • • • • • • • • • • • 
2-90. ALLOCATE CdelayedJ, DEALLOCATE CONFIRM Cby Bidder) --Local LU 
2-91. ALLOCATE !delayed), DEALLOCATE CONFIRM <by Bidder) --Retnote LU 
2-92. CONFIRM (RQD213> --Local LU 
2-93. CONFIRM ( RQD2 I 3 l --Remote LU • • • 
2-94. CONFIRM !RQE2!3l --Local LU ••••• 
2-95. CONFIRM (RQE213> --Remote LU • 
2-96. CONFIRM CRQE2f3), SEHD_ERROR --Local LU 
2-97. CONFIRM IRQE213J, SEND_ERROR --Remote LU 
2-98. CONFIRM CRQD2 I 3), SEND ERROR --Local LU 
2-99. CONFIRM CRQD2!3J, SEIID=ERROR --Remote LU 
2-100. RECEIVE_AND_WAIT Causing RQE,CD --Local LU 
2-101. RECEIVE_AND_WAIT Coiusing RQE,CD --Remote LU 
2-102. SEND ERROR before SENO DATA --Remote LU 
2-103. SEND-ERROR before SEND-DATA --Local LU 
2-104. SEND=ERROR Crossing SEND_ERROR, Both Issued in Receive State --Remote LU 
2-105. SEtlD_ERROR Crossing SEND_ERROR, Both Issued in Receive State --Local LU 
2-106. SEIID_ERROR before CONFIRM --Remote LU 
2-107. SEh~_ERROR before CONFIRM --Local LU •••• 
2-108. SEND ERROR <it End-of-Chain --Remote LU •••• 
2-109. SEND-ERROR at End-of-Chain --Local LU •••• 
2-110. REQUEST TO SEND, Received in Send State --Remote LU 
2-111. REQUEST-TO-SEND, Received in Send State --Local LU 
2-112. REQUEST-TO-SEtID, Received in Receive State --Remote LU 
2-113. REQUEST:To:sEtID, Received in Receive State --Local LU 

CHAPTER 3. LU RESOURCES MANAGER 

Figure 3-1. Overvie1>1 of Component Interactions Involving the Resources Manager 
Figure 3-2. Allocation of a Resource Control Block (RCBl 
Figure 3-3. Allocation of Session Using BID_WITllOUT_ATTACH 
Figure 3-4. Allocation of Session Using BID_WITH_ATTACH 
Figure 3-5. Responding to a Bid for a Session 
Figure 3-6. Immediate Allocation of a Session 
Figure 3-7. Att<ich Flows ••••••• 
Figure 3-8. Bid Races . • • • • . . • . 
Figure 3-9. READY TO RECEIVE CRTRJ Flows 
Figure 3-10. End of a Conversation 
Figure 3-11. Activation of a New Session 

xxii SNA Format and Protocol Reference Manual for LU Type 6.2 

2-77 
2-78 
2-79 
2-80 
2-81 
2-82 
2-83 
2-84 
2-85 
2-86 
2-87 
2-88 
2-89 
2-90 
2-91 
2-92 
2-93 
2-94 
2-95 
2-96 
2-97 
2-98 
2-99 

2-100 
2-101 
2-102 
2-103 

2-104 

2-105 
2-106 

2-107 
2-108 
2-109 
2-110 
2-111 
2-112 
2-113 
2-114 
2-115 
2-116 
2-117 
2-118 
2-119 
2-120 
2-121 
2-122 
2-123 
2-124 
2-125 
2-126 
2-127 
2-128 
2-129 
2-130 
2-131 

3-1 
3-3 
3-5 
3-6 
3-7 
3-8 
3-9 

3-10 
3-11 
3-12 
3-13 



Figure 3-12. Decreasing the Number of Ses$ions 
Figure 3-13. Session-Outage Actions • . • • 

CHAPTER 4. LU NETWORK SERVICES 

Figure 4-1. 
Figure 4-2. 
Figure 4-3. 
figure 4-4. 
Figure 4-5. 
Figure 4-6. 
Figure 4-7. 
Figure 4-8. 
Figure 4-9. 
Figure 4-10. 
Figure 4-11. 
Figure 4-12. 
Figure 4-13. 
Figure 4-14. 
Figure 4-15. 
Figt1re 4-16. 
Fl •·JUre 4-17. 
Figure 4-18. 
figure 4-19. 
figure 4-20. 
Figure 4-21. 
Figure 4-22. 
Figure 4-23. 
Figure 4-24. 

Protocol Boundaries Between LU Network Services and Other Coinponents 
Session-Services RH Formats 
Session-Control RH Formats 
Format of User Data 
Reinitiation Responsibility 
Maintenance Services RU Formats 
Records Exchanged Between LNS and Other Components 
PNCP-LU Session Activation ••••.• 
PNCP-LU Session Deactivation •••••• 
SSCP-LU Session Activation to an LU in a Peripheral Node 
SSCP-LU Session Deactivation to an LU in a Peripheral Node 
LU-LU Session Initiation by Local PLU in a Peripheral Node 
LU-LU Session Initiation by Local SLU in a Peripheral Node 
LU-LU Session Initiation by Remote LU to Local LU in a Peripheral Node 
LU-LU Session Termination by Local LU in a Peripheral Node 
LU-LU Session Termination by Remote LU to Local LU in a Peripheral Node 
SSCP-LU Session Activation to an LU in a Subarea Node 
SSCP-LU Session Deactivation to an LU in a Subarea Node • • • • • • 
LU-LU Session Initiation by Local PLU in a Subarea Node .••••• 
LU-LU Session Initiation by Local SLU in a Subarea Node •.•••• 
LU-LU Session Initiation by Remote SLU to Local PLU in a Subarea Node 
LU-LU Session Initiation by Remote PLU to Local SLU in a Sul:>area Node 
LU-LU Session Termination by Local LU 
LU-LU Session Termination by Remote LU 

CHAPTER 5.0. OVERVIEW OF PRESENTATION SERVICES 

Figure 5. 0-1. Overview of Presentation Services, Emphasizing PS.INITIALIZE and 
PS.VERB ROUTER . . . . . . . . . . . . . . . . . . . 

Figure 5.0-2. Initialization and Termination of Presentation Services and Transaction 
Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

CHAPTER 5.1. PRESENTATION SERVICES--CONVERSATION VERBS 

Figure 5.1-1. Overview of Presentation Services, Emphasizing Presentation Services for 
Basic Conversations . . . . . . . . . . 

Figure 5.1-2. LU Control Block List and Associated Lists 
Figure 5.1-3. Transaction Control Block (TCB> . . . . 
Figure 5.1-4. Resource Control Block (RCB> . . . . . 
Figure 5.1-5. PS.CONV Requests and Associated RM Responses . . . . 
Figure 5.1-6. SEND_ERROR Race . . . . . . . . 
Figure 5.1-7. SEND_ERROR Race with Deallocation . . . . . 

CHAPTER 5.2. PRESENTATION SERVICES--MAPPED CONVERSATION VERBS 

Figure 5.2-1. 

Figure 5.2-2. 
Figure 5.2-3. 
Figure 5.2-4. 
Figure 5.2-5. 
Figure 5.2-6. 
Figure 5.2-7. 
Figure 5.2-8. 
Figure 5.2-9. 
Figure 5.2-10. 

Overview of Presentation Services, Emphasizing Presentation Services for 
Mapped Conver~ations • • • • • • • • • • • • • • • • • • • • ••• 
PS.HC's Use of the Basic Conversation Protocol Boundary •••• 
GOS Variables and Logical Records •••••••••••• 
Transformation of Data from HC_SEND_DATA to a GOS Variable 
An Example of Napping • • • • • • • • • • • • • • • 
HC_ TEST _PROC • • • • • • • • • • • • • • 
Detecting a Service Error as a Result of tlC_RECEIVE_AND_WAIT Processing 
Detecting a Service Error as a Result of a Call to tte_TEST_PROC 
Receipt by PS.MC of a SVC_ERROR_PURGING Return Code • • • • •• 
Receipt by PS.MC of a SVC_ERROR_TRUNC or SVC_ERROR_NO_TRUNC Return Code 

CHAPTER 5.3. PRESENTATION SERVICES--SYNC POINT SERVICES VERBS 

Figure 5.3-1. Relationships among Failures and Recovery 
Figure 5.3-2. A Typical Sync Point Tree ••••• 
Figure 5.3-3. Basic Sync Point Flows •••••• 
Figure 5.3-4. Optimized Flow: No Resource Changed 
Figure 5.3-5. Opti11ized Flow: Last Resource 

List of Illustrations 

3-15 
3-17 

4-1 
4-8 

4-16 
4-23 
4-27 
4-30 
4-33 
4-35 
4-35 
4-36 
4-36 
4-37 
4-38 
4-39 
4-40 
4-40 
4-41 
4-41 
4-42 
4-43 
4-43 
4-44 
4-45 
4-45 

5.0-2 

5.0-3 

5.1-2 
5.1-3 
5.1-4 
5.1-5 
5.1-5 
5.1-8 
5.1-8 

5.2-2 
5.2-3 
5.2-5 
5.2-6 
5.2-9 

5.2-13 
5.2-15 
5.2-16 
5.2-18 
5.2-19 

5.3-2 
5.3-3 
5.3-4 
5.3-4 
5.3-5 

xxi ii 



Figure 5.3-6. 

Figure 5.3-7. 
Figure 5.3-8. 
Figure 5.3-9. 
Figure 5.3-10. 
Figure 5. 3-11. 
Figure 5.3-12. 
Figure 5. '.;;-13. 
Figure 5.3-14. 
Figure 5.3-15. 
Figure 5.3-16. 
Figure 5.3-17. 
Figure 5.3-18. 
Figure 5.3-19. 
Figure 5.3-20. 
Figure 5.3-21. 

Figure 5.3-22. 

Figure 5.3-23. 

Figure 5.3-24. 

Figure 5.3-25. 
Figure 5.3-26. 

Figure 5.3-27. 
Figure 5.3-28. 
Figure 5.3-29. 
Figure 5.3-30. 
Figure 5.3-31. 
Figure 5.3-32. 

Figure 5.3-33. 
Figure 5.3-34. 
Figure 5.3-35. 
Figure 5.3-36. 
Figure 5.3-37. 

Sync Point Services for Local (Nonconversational) Resources, Such as 
Files . . . . . . . . • . . . . . . . . . . . . . • • 
Sync Point Services for Conversation Resources • • • • • • • • • 
Sync Point Services for Function Shipping ••••• 
Illustrative Sync Point FlON: General Case • • • • • • 
Illustrative Sync Point FlON: last-Resource Optimization 
IllustraHve Sync Point FlON: No Resources Changed 
Back Out Example 1 • • • • • • • • • • • 
Back Out Example 2 • • • • • • • • • • • • • • • • • 
Resync after Conversation Failure •••••••• 
Resync after LU Failure • • • • • • • • • • • • • 
Avoiding Failure Resulting frOlll an Attach-SON Race ••• 
SEND_ERROR and Prepare vs. Prepare Race during Session Outage •• 
SEND_ERROR and Request COlmllit vs. Prepare Race during Session 01.1tage 
lost Sync Point Messages: Initiator's View •••••••••••• 
Lost Messages for Sync Point: Last Agent's View ••••••••• 
Resynchronization Action: At Initiator, When Resynchronizing with the 
last Agent • • • • • • • • • • • • • • • • • • • • • • • • • • • 

Resynchronization Action: At Last Agent, When Resynchronizing with the 
Initiator • • • • • • • •••••••••.•••••••••• 

Resynchronization Action: At Initiator, When Resynchronizing with the 
Not-Last Agent • • • • • • • • • • • • • • • • . • • • • • • • • 

Resynchronization Action: At Not-Last Agent, When Resynchronizing with 
the Initiator • • • • • •••••••••••••••••••• 

Resynchronization Action: Resync from Last Agent •••••• 
The Sequence of LU Control Operator Messages Generated by Sync Point 
Resynchronization ••••••• 

Cascaded Resynchronization Example 
Cold Start of an LU • • • • • • • • 
Log Name Mismatch during Resync •••• 
Sync Point Services Calling Tree 
Heuristic Mixed in Reply to Sync Point Flow • • • • 
Verb Sequences and Sync Point Flows to the Last Agent, Which Has No 
Cascaded Resources • • • • • • • • • • • • • • • • • • • • • 

Sync Point with No Resources Changed ••••••••••••••• 
Sync Point with Changes to Protected Resources, 
Sync Point with Changes to Protected resources, 
Sync Point with Changes to Protected Resources, 
BACKOUT Logic • • • • • • • • • • • • • • 

Request SEND 
Request RECEIVE 
Request DEALLOCATE 

CHAPTER 5.4. PRESENTATION SERVICES--CONTROL-OPERATOR VERBS 

Figure 5.4-1. 
Figure 5.4-2. 
Figure 5.4-3. 
Figure 5.4-4. 
Figure 5.4-5. 
Figure 5.4-6. 
Figure 5.4-7. 
Figure 5.4-8. 
Figure 5.4-9. 
Figure 5.4-10. 
Figure 5.4-11. 
Figure 5.4-12. 
Figure 5.4-13. 
Figure S.4-14. 

Figure 5.4-15. 
Figure 5.4-16. 

Control-Operator Components in Relation to Other Components of the LU 
LU Component Relationships for Distributed Session-Control Verbs 
Sequence of Verbs and Information Exchange in CNOS Transaction Programs 
CNOS External Message-Unit Flows ••••••••• 
CNOS Process Interactions at a Single LU • • • • • 
Transaction Handling' Component Relationships--Case 1 
Transaction Handling Component Relationships--Case 2 
Transaction Handling Component Relationships--Case 3 
No Race •••••••••••••• 
Single-Failure Race Condition--Case 1 ••••••• 
Single-Failure Race Condition--Case 2 ••••••• 
Double-Failure Race Condition •••••••• 
Structure of Presentation Services for the Control Operator 
Single-Session Contention Polarity Determined by 

Minim1.1111-Contention-Winner-Limit Parameters 
Source-LU Component Interactions for CNOS 
Target-LU Component Interactions for CNOS 

CHAPTER 6.0. HALF-SESSION 

Figure 6.0-1. Overview of Half-Session 

CHAPTER 6 .1. DATA FLOW CONTROL 

Figure 
Figure 

Figure 
Figure 

6.1-1. 
6.1-2. 

6.1-3. 
6.1-4. 

Overview of DFC for LU-LU Half-Sessions 
Detailed Structure and Protocol Boundaries of 
Half-Sessions ••••••••• 
Use of Sequence Numbers • • • • 
C;ise 1: "Late" SIGNAL or Response 

xx;v SNA Format and Protocol Reference H;inual for LU Type 6.2 

DFC for LU-LU 

5.3-5 
5.3-7 
5.3-8 

S.3-11 
5.3-13 
5.3-14 
5.3-17 
5.3-17 
5.3-19 
5.3-20 
5.3-21 
5.3-22 
5.3-23 
5.3-24 
5.3-25 

5.3-26 

5.3-27 

S.3-28 

5.3··29 
5.3-30 

5.3-31 
S.3-32 
S.3-33 
5.3-34 
5.3-36 
5.3-38 

5.3-38 
5.3-39 
S.3-39 
5.3-40 
5.3-40 
5.3-41 

5.4-2 
5.4-7 
5.4-9 

5.4-10 
5.4-11 
5.4-12 
5.4-13 
5.4-14 
5.4-16 
5.4-17 
5.4-18 
5.4-19 
5.4-23 

5.4-24 
5.4-26 
5.4-29 

6.0-1 

6.1-2 

6.1-3 
6.1-S 
6.1-6 



F;gure 6.1-5. Case 2: "Early" SIGNAL •••••••• 
F;gure 6.1-6. Case 3: "Early" SIGNAL ••.••• , • 
F;gure 6.1-7. SEND_DATA_RECORD to Request RH Happing 
Figure 6.1-8. Request RH to RECEIVE_DATA Record Happing 
Figure 6.1-9. OFC Request For•ats •••••• 
Figure 6.1-10. DFC Response ForMats • • • • • • • 
Figure 6.1-11. Overview, Structure, and Protocol Boundaries of DFC for CP-LU 

Half-Sessions ••••••••••••••• 

CHAPTER 6.2. TRANSMISSION CONTROL 

Figure 
Figure 
Figure 
Figure 
F;gure 
Figure 

6. 2-1. 
6.2-2. 
6.2-3. 
6.2-4. 
6.2-5. 
6. 2-6. 

Structure of TC and FION of Data 1o1ithin the Half-Session 
Oisfributing the Session Cryptography Key and Session Seed 
Interrelation of TC.SEND and TC.RCV 
TC Initialization Calling Tree 
SEND Calling Tree 
RCV Calling Tree 

APPENDIX A. NOOE DATA STRUCTURES 

APPENDIX D. RH FORMATS 

to the LU 

Figure D-1. RH For•ats • • • . • • • • • • • • • • • • • • • . . • . • . . • 
Figure D-2. FHD Request/Response Combinations for Sessions between Two LU 6.2s 

APPENDIX E. REQUEST/RESPONSE UNIT IRU) FORMATS 

Figure E-1. RU Sizes Corresponding to Values X'ab' in BIND 

APPENDIX F. PROFILES 

APPENDIX G. SENSE DATA 

Figure G~l. Sense Data For•at 

APPENDIX H. FH HEADER AND LU SERVICES COMMANDS 

Figure 
Figure 
Figure 

H-1. Symbol-String Types 
H-2. Symbol-String Lengths 
H-3. Examples of FM Header Placement 

APPEl-l>IX I. GENERAL DATA STREAM 

Figure I-1. GOS Structured Field 

APPENDIX H. FSM NOTATION 

Figure N-1. Syntax of an FSH State-Transition Matrix 

APPENDIX T. TERMINOLOGY: ACRONYMS Atl> ABBREV:rATIOHS 

6 .1-6 
6.1-6 

6.1-11 
6.1-11 
6.1-12 
6.1-13 

6.1-17 

6.2-1 
6.2-3 
6.2-4 
6.2-7 
6.2-7 
6.2-7 

0-2 
D-4 

E-8 

G-1 

H-1 
H-3 
H-4 

I-1 

2 

List of Illustrations xxv 



This page intentionally left blank 

xxvi SNA Format and Protocol Reference Manual for LU Type 6.2 



CHAPTER L. I~ODUCTION 

USE AND ORGANIZATION gf !!:!ll BOOK 

This book, in conjunction Mith the c0111panion 
books listed in the Preface, provides a 
formal definition of Systems Network Archi­
tecture !SNAI. It is intended to complement 
individual SHA product publications, but not 
to describe individual product implementa.­
tions of the architecture. 

SHA logical lrlit type 6.2 (hereafter general­
ly referred to as LU 6. 2, or s hnply LU) is 
defined here in the form of a functionally 
layered system, represented by a formal 
description, that is decomposable into compo­
nents called protocol machines. Protocol 
machines generate output sequences in 
response to input sequences, in accordance 
wi th fixed rules, or protocols, governing 
distinct information transfers into, out of, 
and within the system. 

The protocol Machine definition of SNA uses 
the following basic notions: 

• Finite-state J!!!chinr,1!: A finite-state 
machine IFSN) is an abstract device hav­
ing a finite number of states (memory! 
and a set of rules whereby the machine's 
responses (state transitions and output 
sequences ) to all input sequences are 
well defined. 

• Routing and checkina .!29:is;: Routing and 
checking logic performs a mapping of 
inputs (message units and FSN states) 
into outputs. It is used to verify 
validity of message uni ts and to route 
them to FSNs. 

• Block diagrams: A block diagrani repres­
ents the decomposition of a protocol 
machine into its component submachines 
!which themselves are protocol machines) 
and the signaling paths between them. 
Each block in the diagram can be further 
decomposed into its cons ti tu~nt subma­
chi nes. 

• Protocol boundaries: A protocol boundary 
is a specification of the format and con-

tent requirements i 111posed on the signals 
exchanged between protocol machines. 

The remainder of the book presents details of 
the SNA formats and protocols for LU 6. 2, 
arranged as follows: 

• Chapter 2 provides an overview of the 
functions and structure of the LU, as 
well as the sequences and message lrli ts 
exchanged between two communicating LUs. 

• Chapters 3 and 4 describe LU services 
manager components; these components 
attach transaction programs as requested, 
allocate sessions to transaction pro­
grams, and coordinate the activation and 
deactivation of sessions involving LUs. 

• Chapters 5. 0 through 5. 4 describe the 
general. structure and detailed functions 
of presentation services-in particular 
the execution logic for LU 6.2 verbs. 

• Chapter 6. 0 provides an overvi e111 of the 
half-session, while Chapters 6.1 and 6.2 
describe the data flo111 control and trans­
mission control protocols, respectively, 
within half-sessions. 

• Appendix A describes the data structures 
used in the formal description and the 
relationships among the control blocks. 

• Appendixes D through I provide details of 
the general data stream and various head­
ers, request-response units, profiles, 
and sense data used in SNA. 

• Appendix N describes the basic concept 
of, and notation for, finite-state 
machines. 

• Appendix T Cinclucled as foldout pages at 
the back of the book) provides a compre­
hensive list of abbreviations and acro­
nyms used in the book. 

Chapter 1. Introduction 1-1 



•••••••••••••••••••••••••••••• Other NAUs CPUs and SSCPsJ 
A •••• A 

................................... 

Upper 
End Layers 
User < 1-f-> of the 

LU 

<-> Half-Session < > 

• 
• 
• 

<-> Half-Session < > 

LUnal 

<-> Half-Session < > 

I • • • I 
v. . . v 

r-- - - - -> < > Half-Session <-> 
I 

• 
• 
• 

< > Half-Session <-> 

Upper 
Layers 
of the 

LU 

End 
<-+- > User 

<-+-I> End 
User 

LUnaj 

Upper 
Layers 

< 1-f-> of the 
LU 

• . ............. . 

End 
User 

<I-1-> 

Upper 
Layers 
of the 

LU 

• 
• 
• 

<-> Half-Session < > 

LUna2 

• . . .............. . . . .............. . 
<-> Half-Session < > 

• 
• • 

<-> Half-session < > 

LUnai 

• 
• 

I 
I 

_J < > Half-Session <-> 
MSG=!naj,nai, 
other parameters, Upper 
and datal • Layers <-I- '§J • of the User 

• LU 

< > Half-session <-> 

Path Control 
Network LUnak 

....................................................................................... 
SNA Network 

Figure 1-1. Overview of the SNA Network 

1-2 SNA Format and Protocol Reference Manual for LU Type 6.2 



GENERAL CONCEPTS 

DEFINITION OF AN SNA NETWORK 

An SHA netMOrk: 

• Enables the reliable transfer of data 
between end users (typically, terminal 
operators and application programs>. 

• Provides protocols for controlling the 
resources of any specific network config­
uration. 

An SNA network consists logically of a set of 
network addressable units CNAUs> intercon­
nected by an inner path control network con­
sisting of the path control, data link 
control, and physical layers; Figure 1-1 on 
page 1-2 shows the general relationships. 
SNA networks functionally have a layered 
organization, the outermost layers of 111hich 
form the NAUs, each of which in a general SNA 
network is associated with a network address 
( na). A NAU consists of the upper byers, 
transaction services CTS I and presentation 
services CPS>, and one or 1110re half-session 
protocol 111achines (consisting of the data 
flow control and transmission control layers I 
clependi ng on the number of other NAUs with 
which it can be paired to for• sessions. 

Those NAUs serving end usel"s are called log­
ical uni ts l LUs I. An LU allows an end user 
to gain access to network resources !such as 
links, programs, and directories> and to com­
municate with other end users. An LU may 
also provide a service (such as for a contl"ol 
operator> wholly contained within the LU that 
is accessed from another LU via a session. 
Thus, in some cases, an LU-LU session has an 
end user only at one end. The presence of 
various services within an LU is a function 
of LU type, product design, and installation 
options. 

In general, ther-e need not be a one-to-one 
relationship between end users and LUs. The 
association between end users <ind the set of 
LUs is an implementation design option. 

The LUs provide protocols allowing end users 
to comimmicate with each other and with other 
NAUs in the network. An LU can be associated 
Ni th 111ore than one network address C or with 
multiple, distinct local-for• session identi­
fiers>; this allows two LUs (and therefore 
their encl users> to for• multiple, concur­
rently active sessions with each other. 

Besides LUs, two other network addressable 
units are defined: pbysica,\ units CPUs> and 
svstem services control points C SSCPs). 
These NAUs, in conjunction with one another 
and with LUs, provide a variety of session, 
configuration, management, and 
netNOrk-operator services. 

Message units are transported bet111een NAUs by 
the path control network. n·ese message 
uni ts ar·o.t of the general for111: 

MSG = ( naj,na i , other p'lrameters, and data>. 

where naj is an address of the destination 
NAU, and nai that of the origin NAU. CThe 
pair, naj and nai, together identify a par­
ticular session; their form varies depending 
on the types of nodes involved.> The path 
control network routes and delivers message 
uni ts to naj in the same order as sent from 
nai. 

The message uni ts tr;::nsferred within an SNA 
network generally have two components: 
end-user information and control information. 
The end-user information is poissed by the SNA 
network and does not affect its state. Con­
trol inform&tion may sometimes be passed to 
the end users ( &s in the case of the Change 
Direction indication, which allows one end 
user to transfer the right to tl"ansmi t data 
to the other>; however, its main purpose is 
to change the state of the SNA network, thus 
effecting a nol"mal control ch&nge (such as a 
change to a path control routing table) or a 
recovery from an exception condition. 

NODES 

The SNA network physically consists of nodes 
interconnected via links. An SN~ nodJ! is a 
grouping of SNA-def i ned protocol machines. 
An filM eroduct node may consist of addi­
tional, product-specific protocol machines 
that use one or more SNA nodes. A 
user-aoolication node m&y consist of addi­
tional, installation-defined protocol 
ll&chi nes that use one or more SNA product 
nodes. These relationships are shown in Fig­
ure 1-2 on page 1-4. The abstraction of 
nested nodes is a useful reminder that e&ch 
product exists in an e1wil"onment that con­
tains many design features that are not 
defined by SNA. 

For specific details of nesting of SNA nodes 
and SNA product nodes within user-application 
nodes, see SNA Concepts and Products and filM 
Technical Overview. 

In thl s book, "node" is synonymous Ni th "SNA 
node," and the qualifier will generally be 
omitted. Thus, encl users and protocol 
Machines not defined in SHA are external to 
the node, as that ter111 is used hereafter. 

Various node types are defined in SNA: types 
1, 2.0, 2.1, 4, and S. They al"e distin­
guished by varying capabilities, such as for 
interconnection, and by the presence or 
absence of different NAU types. 

For example, type 2. l nodes can connect to 
the general subarea routing network or to 
other type 2.1 nodes directly. In the former 
case, subarea nodes (discussed below> provide 
general intermediate routing within the path 
control layer, allowing complex network con­
figurations to be fashioned; in the latter 

Chaptel" 1. Introduction 1-3 



••••••••••••••••••••••••••• SHA Product Node 

User-Application Node 

CaJ Typical Case 

:::1 SNA Node 1::::::::::1 SNA Node r:: .......... ...._ ____ __. 

• • • • • • • • • • • • • • • • • • • • • • • • • • • SHA Product Node 

User-Application Node 

lb) TMO SNA Nodes Nithin an SNA Product Node 

:::1 SHA Node I : : : : : : ..._I _suA_Ho_de__.i: : '. 

.•• SNA Product Node ••• SHA Product Node 

User-Application Node 

(c) TNo SNA Product Nodes Nithin a User-Application Node 

Figure 1-2. Examples of Nested Nodes 

case, two type 2.1 nodes can interconnect 
independently of other nodes, in a 
peer-to-peer relationship. 

Type 1 and type 2 ( i . e. , 2 • O or 2 • 1 l nodes 
are also referred to as peripheral nodes, 
because they have limited addressing and 
path-control routing capabilities. They do 
not participate in the general network rout­
ing based on a global network address space. 
Instead, they depend on "boundary function" 
support in types 4 or 5 nodes to transfor11 
between the address forms, local to the 
peripheral nodes, and the network addresses 
used in the general routing portion of the 
path control network. Peripheral nodes are 

thereby insulated from changes in the global 
network address space resulting from reconf­
igurations. 

Types 4 and 5 nodes are ref erred to as sub­
~ nodes. CA subarea represents a parti­
tioning of the network address space. It 
contains a subarea node and all the peripher­
al nodes attached to the subarea node.) Sub­
area nodes, besides also being sources and 
sinks of data, have more general path control 
capabilities. They can perform intermediate 
routing--passing message units received fro• 
one node on to another--and provide adaptive 
control of traffic flow within the subarea 
routing portion of the network. 

1-4 SHA For•at and Protocol Reference Manual for LU Type 6.2 



NAUS AND NODE TYPES 

A node always includes a physical unit CPU), 
which controls the attached links and various 
other resources of the node. A PU has a type 
designation corresponding to the type (1, 
2.0, 2.1, 4, or SJ of node in which it 
resides. 

A node typically also includes logical units 
CLUs), through which end users attach to the 
node, and thus to the SNA network. From the 
vantage of this book, node types 2 .1 and 5 
are of primary interest, as these are the 
only nodes that include LU 6. 2 i mplementa­
t ions. 

A subarea PU or subarea LU resides in a sub­
area node. A peripheral PU or peripheral LU 
resides in a peripheral node. 

Type 5 nodes each contain a system services 
control point CSSCPJ. !Type 4 nodes do 
!lQ!~the primary architectural distinction 
between subarea node types. l An SSCP sup­
ports protocols for management and control of 
a domain. A domain consists of one SSCP and 
the PUs, LUs, links, and link stations that 
the SSCP can activate. Each PU, LU, link, 
and link station in a network belongs to one 
of the domains comprising the network, and 
some can belong to more than one doma i n--a 
feature referred to as "shared control." 
Each SSCP provides network services within 
its domain (basically for converting local 
names to global addresses) through protocols 
supported in conjunction with the PUs or LUs 
in the domain. The multiple SSCPs in a net­
work jointly support network services across 
domains. 

Type 2.1 nodes each contain a peripheral node 
control point CPNCPJ, which provides services 
on a more local scale than an SSCP provides. 
In particular, a PNCP can mediate LU-LU 

OTHER DEFINITIONS AMQ NOTATIONAL CONVENTIONS 

This section describes some notational con­
ventions widely used in both the figures and 
the text. <Additional conventions are 
defined within figure legends throughout the 
book.l 

A naming convention, using qualifiers sepa­
rated by periods to denote more specific com­
ponents of a composite protocol mcichi ne, is 
used throughout the book. Component subma­
chi nes are shown as blocks within a larger 
block that represents the composite machine. 

In many cases, it is desirable to identify a 
qualifier by a phrase of multiple terms, in 
order to better convey the meaning of the 
qualifier. The multiple terms in the phrase 
are connected by underscores to indicate thcit 
they are part of a phrase rather than sepa­
rate qualifiers representing further decom-

session-initiation requests Cby doing local 
address look-up l in the type 2. 1 node 
peer-to-peer context just as an SSCP does in 
the more general network configuration con­
text. 

THE PATH CONTROL NETWORK 

The system consisting of all interconnected 
path control CPCl and data link control IDLCl 
components forms the path control network. 
The input/output streams of the path control 
network consist of streams of control infor­
mation, such as addresses, and associated 
user data. 

Each node has a PC element and NAUs. The 
node and link connections of the network, and 
the PC routing algorithms, combine to provide 
the following behavior for the path control 
network: 

• An input to a PC element in node-i from a 
NAU is transmitted and routed by the path 
control network and emitted as output by 
the PC element in node-j to the destina­
tion NAU. (Since node-i and node-j can 
be the same node li=jl, NAUs within the 
same node can be connected by a session.) 

• Message units with the same session iden­
tifiers are emitted by the path control 
network in the order submitted by the 
origin NAU. 

Just as primary-secondary DLC asymmetries and 
other DLC details are hidden from PC, so the 
routing and other concerns of the path con­
trol network are not visible at the protocol 
boundary with the NAUs; in particular, the 
path control network conceals the node inter­
connections and the NAUs need only consider 
their logical connections (i.e., sessions! 
with other NAUs. 

positions. The underscore convention is also 
used in names of states and data structures. 

Each protocol machine in the book has a 
unique name consisting of a sequence of qual­
ifiers. For example, IMACHINE.PRI.X_SEND, 
MACHINE.SEC.X_RCVl and CMACHINE.SEC.X_SEND, 
MACHINE.PRI.X_RCVl are examples of two basic 
protocol machine pairs. This naming conven­
tion produces protocol machine names that 
carry precise information on the role of the 
protocol machine and its relative position in 
the network structure. 

Two other symbols, "I" and ·"&," are used in 
names and expressions. The 11 I 11 symbol ind i -
cates one of several !or "either ••. or"l. For 
example, MACHINE. C PRI I SEC l me<ins "either 
MACHINE.PR! or MACHINE.SEC." The "&" symbol 
is used to indicate composition. For exam­
ple, MACHINE.CRCV&SENDJ is the composite pro-

Ch;,pter 1. !ntroduc ti <?n 1-5 



tocol machine consisting of HAChINE.RCV and 
MACHINE.SEND. 

Some of the protocol machines defined in the 
book interact directly with undefined compo­
nents. These undefined components, called 
undefined protocol machines CUPMsJ, represent 
implementation and/or installation options 
that are not architecturally prescribed !be­
ing product or user oriented>. 

Within block diagrams, the following con­
ventions indicate the type of interaction 
between components: 

• Solid arrows indicate data flow; between 
processes, this implies send/receive 
(asynchronous) logic. 

• Dotted arrows indicate calling relation­
ships. 

• Dotted lines indicate data structure 
access. 

Message uni ts exchanged between SHA compo­
nents are also denoted by special notation, 
particularly in sequence flow diagrams. A 
message unit is either a request or a 
response, depending on the RH coding !see 
"Appendix D. RH Formats"); these are denoted 
respectively by a request-unit name !here 

designated generically by the term "RQ") and 
by RSP. 

RQCQUAL) denotes a request having the proper­
ty described by QUAL; for example, RQIBegi.n 
Chain>. or simply RQIBC), denotes a request · 
whose RH is coded "Begin Chain." A similar 
convention applies to responses. For exam­
ple, RSPCBIND> denotes a response to the BIND 
request-a response that echoes the request 
code "BIND." 

The asterisk <*> character is used in 
sequence flows, as well as elsewhere, to mean 
"any value" Cor "don't care"). For example, 
"*BC" means "BC or .. BC"-where ...... is the 
standard symbol for "NOT." 

The procedural logic in the formal 
description uses simple English, some 
control-structure elements (e.g., 
if/then/else) common to most high-level lan­
guages, and a few straightforward conven~ions 
that are generally clear in context. For 
example, a call is frequently shown- in the 
form: "Call PROCEDUREIX, Y, Z>"; this 
results in calling PROCEDURE and passing it 
the arguments x, y, and Z. 

Abbreviations commonly used in the text are 
listed at the back of the book on foldout 
pages <Appendix Tl for easy reference. 

1-6 SNA Format and Protocol Reference Manual for LU Type 6.2 



CHAPTER !.., OVERVIEW gf !!:!.f; !:Y 

INTRODUCTION 

This chapter is an overvieN of logical unit 
~ ,L.g (hereafter referred to si11ply as 
LUI. The W provides application programs 

DISTRIBUTED TRANSACTION PROCESSING 

Distributed transaction processing involves 
two or more programs, usually at different 
systems, cooperating to carry out some proc­
essing function. This involves program 
interco111111unication to share each other's 
local resources such as processor cycles, 
data bases, NOrk queues, or human interfaces 
such as keyboards and displays. 

The LU supports distributed transaction proc­
essing by serving as the port bet..ieen the 
programs and the Path Control network. It 
allows a transaction program CTPI to invoke 
remote programs and to exchange data with 
them. 

All cOMmUnication provided by the LU is 
program-to-program. Any end user that is not 
a program is represented to the LU by a pro­
gram. For example, fixed-fl.R'lction terminals 
and their devices Ce.g., keyboards and dis­
plays I present themselves as Hxed programs 
(e.g., microcodel that use the same LU func­
tions as user-written application programs. 
Human users at workstations do not interact 
directly Ni th the LU but rather with local 
1o1orkstation programming support which in turn 
interacts 1o1ith the LU. 

This progra11-to-program communication accom­
inodates a variety of distributed processing 
connections, including peripheral node to 
subarea node, subarea node to subarea node, 
and peripheral node to peripheral node. For 
example, an application program at an 
outlying site Ca terminal or a distributed 
processor) might communicate with a data-base 
management system at a central processor to 
maintain consistency between regional and 
central records. For another example, sys­
tems programs in NC>rkstations might exchange 
files and documents with each other. 

Figure 2-1 on page 2-2 illustrates the role 
of the LU in relation to an SNA network. The 
LU connects transaction programs to the path 
control network. The LUs activate sessions 

Mith support functions for distributed trans­
action processing. 

between themselves. The co111ponent of a ses­
sion in each LU is called a half-session. 
Two or 110re sessions between the same pair of 
LUs are called parallel sessions. Multiple 
sessions can concurrently use the same phys­
ical resources connecting the LUs. 

The logical connection between a pair of 
transaction programs is called a 
conversation. A transaction program initi­
ates a conversation with its partner Mith the 
assistance of the LUs. While a conversation 
is active, it has exclusive use of a session, 
but successive conversations uy use the same 
session. 

An LU may rtn many transaction prograllS suc­
cessively, concurrently, or both. Each 
transaction program 111ay be connected to one 
or more other transaction programs by conver• 
sations. Multiple conversations between dif­
ferent pairs of transaction programs can be 
active concurrently, with each conversation 
using a distinct session. 

Conversations connect TPs in pairs, but any 
TPs directly or indirectly connected to each 
other by conversations are participating in 
the same distribut@!I tr;insaction. For exa11-
ple, if TP A and TP B are connected by a con­
versation. and, concurrently. TP B and TP C 
are connected by a conversation, then TPs A, 
B. and C all are participating in the sa11e 
distributed transaction. 

TRANSACTION PROGRAl1S 

The direct usec of the LU is an application 
transaction program (application TPI. Appli· 
cation TPs are provided by the end user to 
carry out functions of distributed applica­
tions. 

A transaction program is distinguished frOll 
programs in general by two characteristics: 
the way it is invoked, and the communication 
functions it initiates. 

Chapter 2. Overview of the LU 2-1 



::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ..................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
:: ::::::::::::::::::::::G::G:::::::::::::::::::::::::::::::::::::::::: 
: : Appll cation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
• • Tr~ns~ct1· on • • • • • • • • • • • • • • • • • • • • • • TP~ • · TPb • • • • • • • • • • • • • • · • • • • • • • • • • · • • • • • • • · • • · • • • • • • • a a • • • • • • • • • • • • • • • • • • • • • • a • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

: : Programs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
:: :::::::::::::::::::::: . :: . :::::::::::::::::::::::::::::::::::::::::: 
::::::::::::::::::::::::::::::::::::::::: . ......... . . . . . . . . . . ::::::::::::::::::::::::::::::::::::::::::::: ............ . . . . . . . . . . . . ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............ . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............ . . . . . . . . . . . . ............ . . . . . . . . . . . . ............ . . . . . . . . . . . . ............ . . . . . . . . . . . . 

NA Us 
• 

• . . . . . . . . . . . . . • . . . . . . . . . . . . . . . Path . . • . . Control . . • . . Network . . • 

LUw 

. ...... . ...... . ...... . ...... . . . . . . . . ...... . .. . ... . ....... 

• 

• 
• 
• 
• 
• 

. ............. . . ............. . . . . . . . .. . . . . . . . . . . . .. - . . . . . .. . .. . ............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. ............ . . ............ . . ............ . . ............ . . ............ . . ............ . . ............ . . ............ . . ............ . . ............ . . ............ . . ............ . . ............ . . ............ . . ............ . . ............ . . ............ . . ............ . . ............ . . ............. . . ............ . . ............ . . ............ . . ............ . 
::n:: I LUx. ! ~:::::~:::::~1: ::::::: : ::::::::::::::: ' LUy I :::::::::::::: 
;;, T~- ~;~ •••••••• ~ ••••••••••••••••••••• : ::::::: : •• ::::::::::::::: ••••••••••••••• !![]:: 
: · 1 Ti:ic I:: I ..-.------------' : : : : : : : : : TPe : : 

~ ~ r7 .. r .. : I : : : : : : : : : : : : : '. : : : : : : : : : : : : ; : : : : : : : : : : : : : : : : : : I : : : : :· u······· . :: : : :: :: . ............................................................... :::::::::::::: 
:: :: . . :::::::::::::: ............ . . . . . . . . . . . . ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
: : TPd : : 

• 
• 
• 
• • 
• L 

• . ............ . . ............. . 
. ........................................... . . ........................................... . . ........................................... . . ........................................... . . ........................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

,~. : ...... gG=:.::::::::~~ 
: : : : : : : .-------.----- : : TPf : : , I 

.. EJ .. 

. . . . . . . . ••••••••••••••••••••••••••• . . . . . . . . . . . . . . . . ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . 

• 
• 
• 
• 
• 
• • 

. ..... . . ..... . . ..... . . ..... . . . . . . . . . ..... . . ..... . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

,.1---;1------- I : : : : 
::::1:::::::::: :: :: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............. . . ............. . 

. ............ . . ............ . . ............ . . ............. . . ............ . . ............ . . ............ . . ............ . . ............. . . ............. . ............ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~~,_Luz ___ ] 

. ............ . . ............ . . ............. . . ............. . . ............. . . ............ . . ............ . . ............ . . ............ . . . . . . . . . . . . . . . . . . . . . . . . . • 

. ............. .. . ............ . . ............ . 
:::::::::::::::::::::::::::::::::::::::::. . ....................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : G. : : G : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......................................... . 
• • • • • • • • • • • • · • • • • • • • • • • • • • • • • • • • • • • • · TPg · • TPh • • • • • • • • • • · • • • • • • • • • • • • • • • · • · • · • · • • • · • • • • • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................ . 
: : : : : : : : : : : : :·:::::::::::::::::::::::: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ..................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

LEGEND: 

••••••••••••• 

Single Session 
(connecting two LUs> 

Conversation(connecting two TPs> 

Parallel Sessions 
(connecting two LUs> 

Figure 2-1. Placement of LUs within the SNA Network CExamplel 

A transaction program is invoked by another 
transaction program by a mechanism called 
Attach. The invoking transaction program 
i n i ti ates a conversation w i th another named 

program. The invoked program is started run­
ning and is connected to the conversation 
with its invoker. (In the case of the i ni -
Hal program, the LU generates an internal 

2-2 SNA Format and Protocol Reference Manual for LU Type 6.2 



Attach to simulate invocation by another 
transaction progra•. It does this in 
response to so11e external st i 111Ulus • e.g. , 
operator action.) 

A transaction progra• uses the LU to communi­
cate with other transaction programs by issu­
ing transaction program verbs Cwhich are 
described in the publication SNA Transaction 
programmer's Reference Manual for LU ~ 
~). (In some cases. internal LU components 
also issue transaction progra11 verbs on 
behalf of transaction programs.) 

Besides application transaction programs, 
distributed transactions can include trans­
action programs provided by the LU itself. 
called service transaction programs (service 
TPs). These are SNA-defined transaction pro­
grams within the LU that provide utility 
services to application transaction programs 
or that Manage the LUs. They are attached by 
other transaction programs and they issue 
transaction progra11 verbs to communicate with 
other transaction programs. For example, the 
LU includes service transaction programs for 
distributed operator control of the LU, by 
which control operators can deter111frie the 
number of parallel sessions they will share, 
and for ~ point resynchronization, which 
assists distributed transaction recovery fol­
lowing transaction failure in certain circ1.1111-
stances. Other service TPs provide document 
interchange services Cusing Document Inter­
change Architecture IDIAJ >. which allow 
processors and workstations to synchronously 
exchange files and documents. Furthermore, 
~ Distribution Services CSNADS> service TPs 
provide asynchronous distribution of files 
and documents. 

Different execution instances of the same 
transaction progra11 could perform parts of 
the same distributed transaction at different 
LUs or parts of several different trans­
actions at the same LU. 

CONTROL OPERATOR 

The .bY control merator describes and con­
trols the availability of certain resources 
C see "Resources" ) ; for example, it describes 
network resources accessed by the local LU 
and it controls the number of sessions 
between the LU and its partners. 

The LU control operator is represented to the 
LU by a control-operator transaction program 
that interacts with the LU on behalf of, or 
in lieu of, a human operator. The relation­
ship between the control-operator transaction 
program arid the LU control operator is 
iniplementation-defined. 

The control-operator transaction program 
invokes operator functions by issuing 
control-operator ~. These verbs are 
issued by the control-operator transaction 
program to convey operator requests to the 
internal components of the LU. 
Control-operator verbs are described in SNA 

Transaction Programmer's Reference Manual for 
.YI be! 6.2. 

RESOURCES 

The LU provides several kinds of resources to 
support distributed transactions. 

Conversations connect transaction programs 
and are used by the transaction programs to 
transfer 11essages. A conversation is acti­
vated when one transaction progra• attaches 
another. 

Associated with each end of a conversation 
are protocol states that each LU maintains in 
order to coordinate interaction between the 
two TPs. These indicate (for example) which 
TP is sender and which is receiver at a given 
time. 

The LU provides two types of conversations. 

~ped conversations allow the TPs to 
exchange arbitrary data records in any format 
set by the progra111111ers. 

Basic conversations allo1oi1 TPs to exchange 
records containing a two-byte length prefix. 

Application transaction programs typically 
use mapped conversations, and service trans­
action programs typically use only basic con­
versations; however, either conversation type 
might be used by either program type. 

Sessjons provide relatively long-lived con­
nections between LUs; a session can be used 
by a succession of conversations. Sessions 
are activated by LU pairs as a result of 
operator commands and transact i on-progra• 
requests for conversations. They are not 
explicitly visible to transaction programs; 
for example, a transaction program cannot 
explicitly request use of a particular ses­
sion. 

A mode is a set of characteristics that 111ay 
be associated with a session. These charac­
teristics typically correspond to different 
requirements for cost, performance. and so 
forth. Hodes are defined by the control 
operator as a selection of 
path-control-network faci H ti es and LU 
session-processing parameters. 

One characteristic of mode is class of serv­
ice. The path control network can offer dif­
ferent classes of service that correspond to 
particular physical links and routes and par­
ticular transport characteristics such as 
path security. transmission priority, and 
bandwidth. 

Other characteristics of mode include 
operator-selected processing parameters such 
as message-unit sizes and the nuinber of mes­
sage units sent between acknowledgments (pac­
ing window sizes). 

Each mode characterizes a group of sessions 
with a particular partner LU; multiple modes 

Chapter 2. Overview of the LU 2-3 



uy exist for the sa111e partner LU. Modes 
associated Ni th different partner LUs are 
considered distinct, even H they represent 
si•ilar sets of characteristics. 

A cOlllbination of partner LU and llOde is 
called an (LU,11ode) pair. 

LU-accessed neb1ork resources constitute the 
relatively static environment that the LU or 
its containing node establishes as a result 
of installation definition. The principal 
components of this envi roment are the. LU 
itself, the control points that serve the LU, 
the transaction programs that the LU can run, 
the potential partner LUs (remote LUs ) Ni th 
Nhich the LU can communicate, and the modes 
of service available between the LUs. 

Local resources are resources Nhose principal 
functions and operations are not d4tfined by 
SNA, but Nhich LU components use or interact 
Mith for sor e functions. These include local 
files, data bases, recovery and accounting 
logs, queues, and terminal components. For 
example, LU components interact with local 
data-base managers to coordinate distributed 
error recovery of data-base update111. Also. 
SNA distribution services uses queues to 
exchange MeSsages between application trans­
action programs that provide document routing 
and distribution. 

Protected resources are local resources, such 
as data bases, whose state changes are logged 
so that all resources changed by a trans­
action can be restored to a consistent state 
in the event of a transaction failure. The 
LU interacts with protected resources to pro­
vide the sync point function (see "Sync Point 
Function" on page 2-39) for distributed error 
recovery. 

PROTOCOL BOUNDARIES 

In order to acco1111110date LU implementations on 
different processors and transaction programs 
written in different programming languages, 
SNA defines the LU's interface to application 
transaction programs in generic terms only. 
This specification is called the !J:maaction 
progra11 protocol boundary. It consists of 
the set of LU functions that a TP may 
request, and the possible para11ett1r values 
that may be supplied or returned 'for these 
flrlCt ions. 

SNA does not define a particular syntax or 
format for representing these functions and 
parameter values. Nevertheless, for purposes 
of discussion in SNA publications, the fU"lc­
tions and para111eters are represented gener­
ically by transaction progra11 vert!!; these 
are described in fil:!6 Transaction Proarammer's 
Reference Manual ~ !Y lvP.! L,g. 

Each LU implementation has one or 11ore pro­
gra11111ing environments that provide these 
flrlCtions. Each such environment is called 
an applications programming interface (API>. 

The lU actually presents a partitioned proto­
col bour1dary to the transaction progra1u for 
exainple, there are separate subsets of the 
verbs for 11apped conversations, for basic 
conversations, and for SNADS. r..flen a hierar­
chical relationship exists between these sub­
sets, e.g., when verbs frOM one set cause 
internal issuances of verbs from another set, 
this partition introduces sublayers Nithin 
the LU. 

A protocol boundary can be interpreted frOll 
two points of view. 

fr0\11 one point of view, a protocol boundary 
is a boundary between two layers or sublayers 
of the node. For example, TPs exchange data 
11ith LUs across the TP-LU protocol boundary, 
and LUs exchange data Ni th the re1th control 
network across the LU-path-control protocol 
boundary. From this viewpoint, the rules of 
exchange are called l!v!!c protocols. 

But fro• another point of vie11, a protocol 
boundary is a boundary between t1«> peer com­
ponents of the same layer. In other words, 
the transaction progra• protocol bounc:kiry •ay 
be thought of as a direct boundary between 
one TP and another, and similarly, the path 
control protocol boundary •ay be regarded as 
a direct boundary between LUs. Frot1 this 
viewpoint• the rules of exchange are called 
peer protocols. 

Figure 2-2 on page 2-5 shows the principal 
protocol boundaries between the LU and 
external components. The figure illustrates 
hON the protocol boundaries divide the LU 
into layers and sublayers, and how the con­
ceptual flows between peer components are 
accomplished by interlayer exchanges. In 
this example, the application TP has a mapped 
conversation with another application TP and 
a basic conversation Nith a service TP. The 
figure illustrates that the conceptual infor­
•ation flow between peer components at each 
layer is reduced to conceptual information 
flow at the next lower layer by actual infor-
11ation flow between layers and information 
transformation within layers. For example, 
the conceptual mapped conversation connection 
is reduced to a basic conversation; each bas­
ic conversation is reduced to a session; and 
finally, the sessions are reduced to con­
nections in the path control net111ork <which 
itself performs further layer transfor•ations 
that are not shown>. 

NAMES 

The LU allows transaction progralllS to refer 
to i ts resources, such as other TPs and LUs 
and shared communication facilities, by 
installation-selected names. Thus, the pro­
grams need not be concerned with implementa­
tion and configuration details such as the 
actual network addresses or transport charac­
teristics. For example, when one transaction 
program invokes another, the invoking TP 
identifies the partner TP by a transaction 
progra• name, it identifies the partner LU by 

2-4 SNA For•at and Protocol Reference Manual for LU Type 6.2 



Applicati~ TP ... I Mapped Conversation 
Application 

TP 
•< - •. ----------------------------» A 

Happed-Conversation I~ 
Protocol Bo\.a'Klary •••••••••••• •••• 

LU Vl 

I A 

······················································!······ 
I LU v 

•< 
A 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - >• 
A 

Basic-Conversation 

~:~ - - - - _·:·~·-<~:·:·~'":'- - - - - ~;;~ .. 
··!········································ ····!·········· Protocol Boundary •••••• ••••• ••• ••••• 

v 
•< 

v I v 
•< - - - - - - - - - - - - - - - - - - - - - >• 
A I Sessions I A v 

- - - - - - - - - - - - - - - - - - - - - - - - - - >• 

Path-Control •----'J I A 
Protocol BolB'ldary •••••••••••• ••••11• ••••••••••••••••••••••••••••••••••••••••••••• •••••••••• •••••• 

lPath Control Network> 

LEGEND: 
<- - -> conceptual flows between peer components Cpeer exchange> 
<~~->actual flows across interlayer protocol boundaries llayer exchange> 
••••••• protocol boundary between layers or sublayers 

Figure 2-2. Peer and Layer Exchangtis 

an LU name, and it identifies the desired set 
of session characteristics by a mode name. 

~ are character strings that the instal­
lation associates with particular resources. 
They are specified by the control operator 
{on behalf of the installation manageent> 
subject to the SNA-imposed constraints, e.g., 
character set and length restrictions, 
described in "Appendix H. FM Header and LU 
Services Commands". <Within an LU implemen­
tation, the local resource names •ay differ 
from those that conform to SNA; for example, 
a program directory might use names of a dif­
ferent length or character set. In this 
case, the implementation always translates 
between its internal names and the 
SNA-confor•ing names that ar·e used by trans­
action programs or that are transmitted out­
side the LU.> 

The name of a particular resource is known 
Nithin a particular environmemt.. Within this 
environment, the name of each entity of a 
particular class is unique, but the same 
entity might have different names in differ­
ent environments. For example, each LU 
allows local aliases for remote resource 
names, so that local transaction programs can 
be made insensitive to name changes elsewhere 
in the network. Of course, the control oper­
ator 11USt change the LU's relevant 
name-translation tables whenever the remote 
names are changed. 

Hereafter, the follONing ter111S are used to 
distinguish the roles of individual TPs and 
LUs of a pair. With respect to location, the 
term local means residing at the LU frOlll 
whose perspective an ac.tivity is described; 
the term ~ 11eans residing at that LU's 
actual or potential session partner. With 
respect to a conversation, the source TP Cor 
its LU> is the initiator of a conversation 
with the target TP (or its LU>. 

Transaction Program References 

A source TP selects a target transaction pro­
gram by its transaction program name lTPN> as 
defined at the source LU. In the simplest 
case, this is also the name of the TP as 
defined at the target LU. Optionally, howev­
er, the source LU can allON the two names to 
be di fferent, in which case it converts the 
TP-suppl i ed name into the TPN recognized at 
the target LU. 

A TPN alone does not uniquely identify a 
transaction program instance. The target LU 
creates a new transaction progra• instance 
for each Attach it receives. 

Chapter 2. Overview of the LU 2-5 



LU References 

Each LU provides a set of LU names by which 
its TPs may refer to remote LUs: these names 
are called local !Y ~ Ca local LU name 
is a local alias of a remote LU's name, not 
the local LU's 01«1 na111e). Local LU names are 
unique within each local LU, but not neces­
sarily outside an LU. 

The path control network routes information 
to an LU by a network address rather than by 
a name. The correspondence between names and 
addresses is maintained at the control Qoint, 
which is another NAU that assists the LU dur­
ing session initiation. 

The control point identifies each LU by its 
fully gud i fled !Y n;ime (also called 
network-gualified LU name). It consists of a 
network !.!! followed by a network !Y Dfill1!1!• 
The network ID is \.a1ique throughout a set of 
interconnected SNA networks; the network LU 
name is unique Nithin a particular SHA net­
N<>rk, which may contain multiple domains (for 
more infor1Htion on domains, see "Chapter 1. 
Introduction"). 

The control point uses the fully qualified LU 
name of the intended partner LU to determine 
the corresponding network addresses used for 
routing within the path control network. The 
LUs themselves use their fully qualified LU 
names for certain purposes; for example, LUs 
resolve some race conditions by exchanging 
and comparing their fully qualified LU names. 

An LU may provide another set of nan1es by 
which it refers to remote LUs when issuing 
session-initiation requests to its; control 
point: these names are called uninterQreted 
!Y names. Each uninterpreted LU name is 
unique within a particular initiating LU, and 
is known to that LU's control point but is 
not known elsewhere in the network. 

The LU name is converted into thE! network 
address in stages. If the LU uses an unin­
terpreted LU name to identify its pcirtner, 
the control-point translates this into a ful­
ly qualified LU name; otherwise, the LU sup­
plies the fully qualified LU name to the 
control point directly. Then, thti control 
point provides the network address for th;;it 
fully qualified LU name. 

A source TP cannot select a particular ses­
sion for a conversation, but it can specify 
that the session selected have a particular 
set of characteristics, or ~. It does 
this by specifying a corresponding mode ru!!!l!· 

Hode names are unique relative to a partic­
ular p&rtner LU. Hode names for different 
partner LUs &re independent: the same mode 
name can correspond to different sets of ses­
sion characteristics for different partner 
LUs. 

Internal Identifiers 

The LU assigns internal identifiers to con­
versations and sessions once they are acti­
vated. These are called resource lli and 
half-session 1.ID!• respectively. TPs or the 
control operator use these identifiers for 
subsequent references to these entities. 
These identifiers are generated by the LU and 
passed back to the transaction program or to 
the control operator in the form required for 
subsequent verbs; the transaction program or 
operator need not interpret these identifi­
ers. 

COHVERSATIOH CHARACTERISTICS 

Sencl/Recejve Protocol 

The LU normally allows TPs to exchange data 
in only one direction at a time, i.e., one TP 
sends and the other receives until the send­
ing TP surrenders the right to send. This is 
called half-duplex flip-flop protocol. The 
LUs coordinate and enforce the send/receive 
state at each end of the conversation. LUs 
do allow some exceptions to strict alter­
nation of send and receive: the receiving 
TP, at any time, can send an error indi­
cation, putting itself in send state; it can 
send the partner an attention indication, 
e.g., to request the right to send; and it 
can abnormally terminate the conversation. 

Sender/Receiver Concurrency 

Different applications 
degrees of concurrency 
receiver. For example: 

require different 
between sender and 

• 

• 

• 

On-line inquiry applications 
require real-time in·teraction. 

Status-reporting 
require immediate 
response. 

applications 
transmission 

might 
but no 

Document distribution appliclltions 111ight 
allow sending and receiving at the send­
er's and receiver's convenience, respec­
tively, which might be separated by 
arbitrary periods of time. 

For the first two coises, the LUs use direct 
conversations between the TPs. 

For the real-time interactive case, the LU 
keeps the TP-TP connection active unt i 1 the 
transaction is completed; both the source and 
target TPs are concurrently active. This is 
called svnchrgnous iransfer. 

The LU treats the immediate-transmission, 
no-response case as a special case of syn­
chronous communication, using a one-way 1ton­
versation. The source LU allocates 
(initiates) a conversation as in the first 
case, sends the data, and deallocates (re-

2-6 SHA For11at and Protocol Reference Manual for LU Type 6.2 



leases J the conversation. When the message 
reaches the target LU, it initiates the tar­
get TP, which receives the data and likewise 
deallocates the conversation. But since the 
source TP is expecting no reply, it might 
have terminated while the data is still in 
transit through the path control network, 
before the target TP is initiated. Thus, the 
source and target TPs are not necessarily 
active at the same time. 

For the third case, the LU provides SNA Dis­
tribution Services CSNADSl. In this case, 
the sender, called the origin TP, and the 
ultimate receiver, called the destination TP, 
are typically not active at the same time. 
Therefore, the data is stored at one or more 
locations en route between periods of active 
transmission. This mode of communication is 
called asynchronous transfer. 

In SNADS, the origin application TP sends a 
message unit, ultimately intended for the 
destination TP, to a local service TP. The 
service TP at the origin stores the data in 
local permanent storage. When the appropri­
ate time for sending the data arrives, e.g., 
when lower-cost transmission facilities 
become available or after compensating for 
time-zone differences, a service TP at the 
origin allocates a conversation to a service 
TP at the destination and sends the data. 
The receiving service TP at the destination 
LU stores the data in local permanent storage 
for later retrieval. Finally, an application 
TP at the destination retrieves the stored 
message. 

SNADS also allows multiple intermediate serv­
ice TPs between origin and destination. The 
origin service TP can allocate a conversation 
to an intermediate service TP, which would 
receive the data, store it, and later forward 
it to another intermediate service TP or to 
the ultimate destination service TP. 

Each SNADS service TP can also duplicate the 
data and send it to multiple destinations or 
application programs. 

Mapping 

Two communicating TPs might process the same 
information using different internal data 
formats (presentation spaces) e.g., differ­
ently organized data structures or different 
sets of individual structures and variables. 
To <iss is t the TPs in interpreting data in 
formats suited to their internal processing 
algorithms while provi di rig a mutually under­
stood format for the data transmitted over 
the convers<i ti on, some LUs provide an 
optional function of mapped convers<itions, 
called me1pping. CM<ipping concepts are dis­
cussed in 11 Me1pping Function" on p&ge 2-39). 

SESSION ALLOCATION 

A princip&l function of the LU is to provide 
sessions between LUs for use by conversations 

between TPs. 

Session Multiplicity 

Only one transaction-program pair at a time 
can use a particular session. In order to 
allow multiple concurrent transactions, e.g., 
for a multiprogrammed processor or a 
multiple-user workstation, some LUs, called 
parallel-session LUs, allow two or more ses­
sions at the same time, even with the same 
partner LU. Any session between a p<iir of 
LUs that both provide parallel sessions is 
called a parallel session, even if only one 
such session is currently active. 

Some LUs, called single-session LUs, can have 
only one active LU-LU session at a time Cbut 
can have successive sessions with different 
partner LUs l. Any session involving a 
single-session LU is called a single session, 
whether the other partner is a single-session 
LU or a parallel-session LU. 

Thus, all sessions between a pair of LUs are 
of the same type: single or parallel. Some 
LU protocols used on single sessions &re dif­
ferent from those used on parallel sessions, 
but these differences are indistinguishable 
to transaction programs. 

An LU that does not support parallel sessions 
can have only one active LU-LU session at a 
time. A parallel-session LU can have, con­
currently, one or more parallel-sessions with 
each of one or more parallel-session LUs, and 
one single session with each of one or more 
single-session LUs. CNo middle capability 
!multiple-session LU] exists, i.e., any LU 
that supports multiple concurrent single ses­
sions also supports parallel sessions.! 

Session Pool 

To avoid repeating session-activation proc­
essing for each conversation between the same 
pair of LUs, the LU allows successive conver­
sations to use the same session. 

When the LU activ&tes a session or when a 
session previously in use by a conversation 
becomes free, the LU places the session in a 
session pool. When a trans<ict ion progr<im 
initiates a new convers<ition, the LU allo­
cates a session from this pool, if one is 
<ivailable. 

Transaction programs do not select particular 
sessions, but specify only th<it the conversa­
tion be allocated a session with a particular 
partner LU and with <i p<irticular mode n&me. 
The LU partitions the session pool by partner 
LU and mode name; the LU <illocates a session 
from only those sessions for the requested 
( LU, mode I p& i r. 

Ch&pter 2. Overview of the LU 2-7 



Se!sion Contention pqlarity 

Another session-selection criterion concerns 
the relative priority of the LU for use of 
the session. The LUs at each end of a ses­
sion could both try to start a conversation 
at the same time. To resolve this con­
tention, the LU operator specifies, for each 
session, INhich LU's TP will be allowed to use 
the session in such a case; this is called 
the session contention polarib of the ses­
sion. From the viewpoint of the local LU, a 
session for Nhich that LU is designated to 
Nin an allocation race is called a 
contention-Ni nner session (or first-speaker 
1ession). A session that the local LU will 
sur~ender to the partner is called a 
contention-loser session (or the bidder 1es-
1ion--so called because a contention-loser LU 
will !ll!f• i.e., request permission of the 
contention-winner LU to use the session). 

The number of sessions in the session pool is 
constrained by operator-specified criteria, 
including several 1 i mits on the number of 
active sessions. 

The total LU-LU session limi;t is the inaximum 
number of sessions that can be active at one 
time at the LU. 

The (LU,mode) ,!!!SSion limit is the H><im1.m 
number of LU-LU sessions that can be active 
at one time for that particular ( LU,mode) 
pair. 

The aytomatic activation .!i!!i! for a partic­
ular ( LU,mode > pair specifies the 111axi111U11 
number of LU-LU sessions that the LU Nill 
activate independently of requests for con­
versations. Automatically activated sessions 
constitute the initial session pool (addi­
tional sessions. within the other limits, are 
added to the pool on demand from conversation 
requests). 

The local-LU minillll.Jm contention-winner limit 
for a particular ( LU,mode> pair determines 
the minimu111 share of the total n1.nnber of ses­
sions for that ( LU,mode> for which the local 
LU can be contention winner. Similarly, the 
partner-LU minimlllll contention-winner limit 
determines the 11inimu11 share of those ses­
sions for Nhich the partner LU can be con­
tention Minner. 

Session limits are discussed in more detail 
in "Chapter 5.4. Presentation Serv­
foes--Control-Operator Verbs". 

STARTING AND ENDING SESSIONS 

Starting and ending sessions involves four 
phases of activity, although some phases are 
omitted in some circunistances. 

Sessioo-Hmit initialiutign !!ld reset con­
sists of issuing control-operator verbs 
(e.g., INITIALIZE_SESSION_LIMIT, 
RESET_SESSION_LIMITJ to specify the number of 
sessions the LU can have with a given part­
ner, and to specify conditions for their 
activation and deactivation. 

~ession initiatfon ,!ru;I ter11ination consists 
of control-point activity, such as supplying 
the network addresses corresponding to LU 
names, that mediates requests for session 
activation and deactivation. 1 

Session shutdONn consists of the LU activity 
to terminate conversation activity on a ses­
sion prior to deactivating the session.2 

Session activation !!ld deactivation consists 
of creating or destroying the end-to-end log­
ical connection between the lUs. 3 

SESSION USAGE CHARACTERISTICS 

Session Activation Polari.rl 

An LU activates a session with its partner by 
sending a message uii t called BIND. The LU 
that activates a session (sends BIND> is 
called the prjmary !J!; the LU that receives 
BIND is called the secondarv 1Y· These terms 
are relative to a particular session: the 
same LU can be primary LU for one session and 
secondary LU for another. 

The primary LU always has first use of the 
session, i.e., it can initiate the first con­
versation on the session, regardless of the 
session contention polarity. (lollen the first 
conversation completes, the principal right 
to initiate conversations reverts to the 
contention-wil'Vler LU.) 

To prevent an LU from sending data faster 
than the receiving LU can process i t (e.g. • 
empty its receive buffers), the two LUs 
observe a session-level pacing protocol. At 
the time a session is activated, the LUs 
exchange the number (the n!Sing window s j ze) 
and size fthe maximum RU size! of the message 
units they can accept at one time. The send-

1 Session initiation and termination protocols use session services RUs, e.g., INIT_SELF, 
CINIT. 

2 
3 

Session shutdown protocols use data flow control RUs, e.g., BIS. 
Session activation and deactivation protocols use session control RUs, e.g., BIND, UNBIND. 

2-8 SNA Format and Protocol Reference Manual for LU Type 6.2 



ing LU Ni 11 send no 110re 11essage units than 
the receiver will accept (a pacing window) 
until the receiver sends an acknowledgment 
(P!.£.i.nq response) indicating that it can 
receive another pacing Nindow. 

Profiles 

Session traffic is characterized by a partic­
ular set of SNA-defined formats and proto­
cols, identified by a function 111anaaement 
1f!1.! profile and a transmission services (TSI 

profile (see "Appendix F. Profiles"). The 
profile used depends on the kind of session 
and the kind of node: 

• On an LU-LU session, all LUs use FH pro­
file 19 and TS profile 7. 

• On a CP- LU session, an LU in a subarea 
node uses FH profile 6 and TS profile 1. 

• On a CP-LU session, an LU in a peripheral 
node uses FH profile 0 and TS profile 1. 

Chapter 2. Overview of the LU 2-9 



Primary LU Secondary LU 

BIND (RDl> 
[ l] 

RSP<BIND, PWCRDlJ, RD2) 
[2] < 

r UNBIND 
[ 3a J I 

I 
--or--< 

I FMH-12 (PW[RD2]) 
[ 3b] I 

L 

r 
[4a] I 

I 
--or--< 

I 
C4bl I 

I 
L 

LEGEND: 
RDi 

< 

random data ii=ll2> 
LU-LU password 

UNBIND -----o 

PW 
PWCRDi] RDi enciphered using PW as cryptography key 

Figure 2-3. LU-LU Verification 

SECURITY 

The LU provides three functions to assist the 
installation in providing security: partner 
LU verification, partner end-user verifica­
tion, and session cryptography. Partner-LU 
verification is a session-level security pro­
tocol; it involves protocols at the time the 
session is activated. Partner end-user ver­
ification is a conversation-level security 
protocol, taking place at the time a conver­
sation is started. Session cryptography is 
another session-level protocol, the parame­
ters for which are exchanged at session acti­
vation. 

Partner-LU verification is done by a 
three-flow exchange between the two LUs, with 
each LU using an LU-LU password and the Data 
Encryption Standard IDES> algorithm. This 
exchange is called LU-LU verif.icatfon. LU-LU 
passwords (see "Appendix H. FM Header and LU 
Services Commands") are estabHshed by imple­
mentation and installation-defined methods 
outside of SNA. LU-LU passwords are on a 
partner-LU basis: one LU-LU password is 
established between each LU pair. This pass­
word is used for all sessions between the LU 
pair. It is recommended that each LU pair 
have a unique password; however, it is not an 
architectural requirement. 

Figure 2-3 shows the LU-LU verification pro­
tocol exchanges. In the following dis-

cuss ion, the numbers in parentheses 
correspond to the numbers in that figure. 

During session activation, random data <RDl> 
is sent in BIND from the primary LU to the 
secondary LU Cll. The secondary LU enciphers 
this random data using the LU-LU password and 
the random data as input to the DES algo­
rithm. The secondary LU returns (2) the now 
enciphered random data CPW[RDlll to the pri­
mary LU along with its own randomly generated 
data (RD2l in RSPCBIND>. The primary LU com­
pares the received enciphered random data 
with its own copy of the random data that it 
enc i phered using i ts LU-LU password and the 
DES algorithm. If the two versions of the 
enciphered random data do not compare equally 
(3a), LU-LU verification fails, session acti­
vatfon fails, and a security violation is 
logged. If the two versions of the enc i -
phered random data compare equally ( 3b) , the 
primary LU has verified the identity of the 
secondary LU and LU-LU verification contin­
ues. 

Using the LU-LU password alid the DES algo­
rithm, the primary LU enciphers the random 
data received from the secondary LU. The 
primary LU returns this enciphered random 
data (PWCRD2]) in a Security FM header 
<FMH-12) to the secondary LU (3bl. The sec­
ondary LU compares this enciphered random 
data with its own version of the enciphered 
random data. If the two versions of the 
enciphered random data do not compare equally 
C 4a), LU-LU verification fails, the session 

2-10 SNA Format and Protocol Reference Manual for LU Type 6.2 



;s ter11;nated, •nd a security v;olation is 
logged. If the two versions of the enci­
phered rando11 data compare equally C 4b), the 
secondary LU has verified the identity of the 
primary LU, and LU-LU verification is com­
plete. 

When the transmission links and LUs that make 
up the network are phys 1cally secure (as 
deterMined by the installation management), 
LU-LU verification may be omitted. Under 
this circumstance, LU-LU verification would 
not take place, yet the session NOuld st il 1 
be considered secure; therefore, access to 
secure resources would sti 11 be permitted 
following conversation-level security proto­
cols I see belo11d. Permission to use 
conversation-level security to gain access to 
secure resources is installation defined and 
communicated to the partner LU during session 
activation in the BIND/RSPCBINDJ exchange. 

When the network is not considered secure, 
LU-LU verification should be omitted, and 
acc1L.>s to secure resources via 
conversation-level security should not be 
permitted. Denial of peraission to use 
conversation-level security is installation 
defined; an indication of this denial is com­
municated to the sender of the request during 
session activation in the BINDIRSPCBINDJ 
exchange. 

End-user verification (conversation-level 
security! is used to confirm the identity of 
the partner end user (e.g., transaction pro­
gram). When a TP requests access to another 
TP, it 11Ust supply adequate security informa­
tion in the request to satisfy the security 
requirements of the requested TP, or the 
request i.till be rejected. This could include 
a user ID and password (see access security 
information subfields in "Appendix H. FM 
Header and LU Services Commands") supplied by 
the end user that initiated the request. 
When a user ID and password are supplied on 
the request, they are verified by the LU that 
receives them. If the end user has not sUp­
plied the correct user ID and password combi­
nation, the request is rejected. 

An optional additional criterion for access 
to a specific TP is permitted. This criteri­
on 111ould be a check of an authorization llst 
associated 111i th the target transaction pro­
gram. The keys to search the authorization 
list NOuld be combinations of the user ID and 
an optional profile supplied on the request. 
The authorization list could be made up of 
combinations of user ID and profile. After 
the user ID is verified by the LU, the 
authorization list may be searched for access 
rights to the specific transaction program 
named in the request. If the additional cri­
terion is not 111et, the request is rejected. 

An intermediate transaction progra• Cone 
started by another TPl that requires 
conversation-level security may need to 
access an additional TP that requires 
conversation-level security. In this case, 
an Already Verified indicator is set in the 
additional request; the user ID and optional 
profile in the first request, Nhich initiated 

the intermediate transaction progranh are 
supplied in the second request. For security 
reasons, the password that initiates the 
in·termediate TP is never saved, l11..1t the user 
ID and opli onal profile that initiate.cl the 
inter111ediate TP are s<1ved. The Alre;;idy Veri­
fied indicator can be •.JSed only if the sender 
uf the indicator is trusted by the receiver 
of the indicator to have performed the proper 
verification of the user ID and p1ssword that 
initiated the sender. This level of trust is 
instalhtion defined at the receiver of the 
indicator and communicated to the sender of 
the indicator d1.1ring session activation in 
the BINO/RSPCBIHD> exch<inge. 

To help prevent data from being interpreted 
or modified during tr<insi t, the LU provides 
session g..JatloqraJiliY., whereby all user data 
is enciphered at the source LU and deciphered 
at the target LU. The ~!•·1cryption algorith111 
uses a cryptogr;iphi c ~. supplied by the 
control point, and a ~~sio..n ~~· generated 
by one of the LUs when the session is act i -
vated. (See "Ch;ipter 6. 2. Transmission Con­
trol" for a full discussion of session 
cryptography.) 

ERROR HANO LING 

Errors affecting transaction processing are 
classified as follows: 

Application Erro.!:J!: These are errors related 
to the application data and processing, e.g., 
user input error or data-base record missing. 
Detection and recovery are the responsibility 
of the transaction programs. 

local Resource Failure: These are failures 
in non-SNA res~; e.g., a disk read 
error. If the resources are not protected 
resources, recovery is the responsibility of 
the transaction program or of the non-SHA 
support for the failing resource, e.g., a 
disk subsystem. If the resource is a pro­
tected resource, the TPs coin use the LU sync 
point function (see "Sync Point Function" on 
page 2-39) to assist in recovery in conjunc­
tion with non-SHA support. 

Recoverable System Err9rs: These are errors 
or exceptional conditions, e.g., races 
resulting f ro111 cont en ti on for use of a ses­
s i or1, for which an SNA-def ined recovery algo­
rithm exists. The Lll performs the recovery 
algorithm; the transaction programs are 
normally not aware of these errors, except as 
they affect timing. 

Program Failures: These are errors that 
cause abnormal termination of a transaction 
program. The LU recovers from such errors by 
deallocating any active conversations for the 
TP that were not deallocated by the hi led 
transaction program, thus freeing the ses­
sions for use by other transoiction programs. 
Any further recovery depends on transaction 

Chapter 2. Overview of the LU 2-11 



program logic and implementation-defined 
capabilities such as error exits. 

Session Failure: These are failures caused 
by unrecoverable failure of the 
half-sessions, e.g.• invalid session proto­
cols received, or by failure of the underly­
ing network components, e.g., the links. 
This case is reported to the LUs through ~ 
sion ~ notification CSON). 

If a conversation is active on the session at 
the time of failure, the failure is mani­
fested to the transaction program as a con­
versation failure !see below); otherwise, 
these errors do not affect transaction pro­
grams. LUs report the conversation failure 
to the affected transaction programs. 

Conversation Failures: These are failures 
caused by unrecoverable failure of the under­
lying session. The resulting conversation 
failure is reported to each transaction pro­
gram by a return code on the next verb 
issued. The same session and conversation 
cannot be recovered, but the LU can activate 
another session. 

The operator or the transaction programs have 
the responsibility to recover the trans­
action. To recover from an interruption in 
transaction processing, for example, the 
source transaction program can allocate a new 
conversation, using another session, to a new 
instance of the target transaction program or 
to another transaction program. 

LU Failure: This is a failure of an LU from 
such causes as malfunction of the implement­
i ng hardware or software. In many cases, 
such a failure appears to remote 
(non-faiHng> LUs as a session failure, and 
they recover as they would from any other 
session failure. In some cases, recovery is 
performed by the sync point function. 

Program ~ Recovery Sypport Functions 

The LU assists TP recovery from application 
errors and local resource failures by sup­
porting the protocols discussed below to 
exchange error information and to immediately 
end messages or conversations. 

Confirmation: This function Ce.g., COHFIRl1 
verb> allows a TP to solicit positive or neg­
ative acknowledgment of a message unit from 
the partner TP. The interpretation of this 
positive or negative acknowledgment !COH­
FIR11ED or SEND_ERROR verbs, respectively) is 
program dependent: for one application, con­
firmation wiight mean only that the data was 
received; for another, it might mean data was 
safely stored on disk; for a third, it might 
mean that the data represents a valid account 
record update; and so forth. 

Program Error Indication: This function 
CSEHD_ERROR verb) allows a TP to inform the 
partner TP of a program-detected error; this· 
includes sending negative acknowledgment to a 
confirmation request. 

This function also causes program-to-program 
transfer of the current , message unit to 
cease. If a TP detects an error while 
receiving, issuing the SENO_ERROR verb 
directs the receiving LU to ignore ciny addi­
tional data in transit (i.e., to the end of 
the conversation message--see "Conversation 
Message" on page 2-15); this is called~ 
ing. Similarly, if a sending TP detects an 
error, issuing the SEHO_ERROR verb informs 
the partner that the source TP has stopped 
sending. If the TP stops sending before 
reaching a predetermined application-program 
data boundary (i.e., the end of a logical 
record--see "Logical Record" on page 2-14), 
this is ccilled truncation. 

~ Point: Hany transactions require con­
sistent, regular updates of distributed 
resources such cis distributed data bases. 
While a transaction is in progress, however, 
the resources at different LUs can enter 
mutually inconsistent interim states. If one 
of the transaction programs encounters an 
error, some recovery action may be necessary 
to restore the resources to mutually consist­
ent stat es. In order to verify or res tore 
consistency among distributed resources, some 
LUs provide a distributed error-recovery 
function, called svnc point. (Sync point 
concepts are discussed in "Sync Point Func­
tion" on page 2-39.) 

Abnormal Conversation Deallocation: This 
function allows a TP to abnor-;;;afly terminate 
a conversation. A TP might do this, for 
excimple, when an error is detected for which 
it has no recovery prcx:edure cind continuing 
the transaction would be meaningless. When 
this is received, the LU informs the TP that 
the conversation has been abnormally termi­
nated. 

LU Error Recovery Functions--Abnormcil Session 
Deactivation 

For some errors, the LU or opercitor initiates 
recovery. 

If an unrecoverable session-protocol error 
occurs, the LU cibnormally deactivates the 
session. 

If the control operator detects an error, 
e.g., cin apparent deadlock or loop, it can 
force immediate abnormal deactivation of a 
session. 

Either of these cases are normally manifested 
to affected transaction programs cis conversa­
tion failure. 

BASE AND OPTIONAL FUNCTION SEiS 

The LU functions and protocols are orgcinized 
into subsets. The function sets consist of a 
base functjon ill• which provides basic coni­
munication services common to all LU imple­
mentations, cind a small number of optional 
function sets, which may be used by implemen-

2-12 SHA Format and Protocol Reference Manual for LU Type 6.2 



tations 111ith 11ora sophisticated additional 
requirements. These SHA-defined function 
sets are described in §!:IA Transaction Pro­
grammer's Reference Manual for LU ~ 2...,l. 

All LU 6.2 implementations of a given func­
tion set provide that function in a 111ay that 
conforms to the protocol boundary. Further­
more, an LU 6.2 implementation that provides 
one function in an option set provides all 
other functions in that option set as 111ell. 
Thus, all LU 6.2 implementations can communi­
c;ate using the base set, and any two i mple­
mentat ions supporting functions in the same 
option set can communicate using that full 
option set. 

Two kinds of optional functions exist. ~ 
options determine what formats and protocols 
Nill be sent but do not affect Nhat can be 
received; all formats and protocols sent 
using these options can be received by all 
LUs. Receive options determine Nhat can be 
received as well as Nhat can be sent. For 
receive options, the source LU and TP 
requirements are described in the BIND and 
the Attach; the receiving LU rejects the ses­
sion or conversation if it, or the specified 
TP, does not support the required options. 

The principal base and optional f\.l"lctions are 
listed below. The complete sets are defined 
in §HA Transaction Progra111111er's Reference 
Manual for !l:l ~ y. 

Application Program Interface Implementations 

Open-API implementations support arbitrary 
user-written transaction programs, e.g., a 
data-base management syste111 running on a host 
processor. For these implementations, the 
API provides verbs and parameters for all of 
the base function set, and perhaps some 
optional function sets. 

Closed-AP! i11Plementations do not support 
user-written programs but provide only a 
fixed, implementation-determined set of serv­
ice transaction programs, e.g., a DIA service 
transaction program for an office work­
station. For these implementations, the API 
provides only the particular verbs and param­
eters that the transaction progra• set 
requires. 

MESSAGE l!NITS AND THEIR TRANSFORMATIONS 

A message unit 1!1Yl is any bit-string that 
has an SHA-defined format and is transferred 
between SNA components or sublayers. 

Distributed transaction programs exchange Ml.Js 
Nith each other by means of LUs. Transaction 
programs exchange application-oriented units 
of data, e.g., a customer record or a docu­
ment, over a conversation. The LUs, in turn, 
exchange session-oriented MUs via the 
path-control network. But the content and 

Principal §.!u functions 

Basic Conversations: All imple111entations 
provide receive support for all 
basic-conversation formats and protocols. 

Open-API implementations provide basic con­
versation verbs, but not necessarHy in all 
supported programming languages. For exa•­
ple, an implementation might support both 
basic- and mapped-conversation verbs in a 
systems-programming language such as Assem­
bler, but provide only mapped-conversation 
verbs in high-level languages. 

t!!.ee!!d Conversations: All open-API implemen­
tations provide mapped conversations Cprima­
ri ly in high-level languages). 

Principal Optional Functions 

tl!eP.in.g: This is an optional function for 
mapped conversations Csee "Mapping Fuiction" 
on page 2-39). 

~ Point: This is an optional f1mCtion for 
basic and Mapped conversations Csee "Sync 
Point Function" on page 2-39). 

Program InitializatiQD Parameters (PIP): 
This is the means of passing initial parame­
ters or envi ron111ent setup infor•ation to • 
target TP. 

Securitv: This is an optional function for 
verifying the identity of partner LUs and end 
users C see "Security" on page 2-10), and for 
for protection of data in transit. 

Performance Options: Several optional func­
tions exist to maximize performance for spe­
cific transaction requirements. For example, 
an LU can optionally alloN transaction pro­
grams to eli•inate or accelerate certain 
acknowledgments, or to perform processing 
concurrently Nith certain conversation func­
tions. These are send options, so TPs Nrit­
ten for implementations that support these 
options 111i 11 operate correctly 111i th partner 
TPs and LUs that do not support them. 

format of an MU llOSt appropriate for exchange 
between transaction programs is in general 
different from that 1110St appropriate for 
trans•ission on a session. Whereas an appli­
cation program typically uses a record size 
corresponding to logical groupings of the 
data, the LU typically uses t1IJ sizes related 
to internal buffer sizes and efficient flON 
control. Furthermore, the LU may need to add 
encoded protocol information, such as confir-

Chapter 2. Overview of the W 2-13 



2-14 

mation requests or MU sequence numbers, to 
the program-supplied data. 

The LU transforms program-oriented MUs used 
by the TP into network-oriented MUs used by 
the path control network, and vice versa. 
£Throughout this section, message-unit tran­
sformations are described from the sender's 
side, i.e., transaction program to LU to net­
work; the process is inverted at the receiv­
er.) 

The message-unit transformation takes place 
in stages. Each stage transforms some of the 
information from the higher stage into a 
SNA-defined bit string. Typically, a stage 
reblocks (regroups) the MUs from the previous 
stage into differently sized uni ts and con­
verts the protocol information into formatted 
headers (prefixes) to the reblocked data, 
thus creating new MUs. 

MAPPED-CONVERSATION MESSAGE UNITS 

A data record, at the mapped-conversation 
protocol boundary, is a collection of data 
values that correspond to the DATA parameter 
of a single mapped-conversation MC_SEND_DATA 
verb issuance. The format of a data record 
is completely arbitrary within the con­
straints of the implementation and the trans­
action program. For example, it need not 
even be a contiguous byte string, but might 
be a collection of variables and structures. 

A maooed-conversa ti on record CMCR l is the 
elementary unit of i nform;;it ion transferred 
between two TPs on a mapped conversation. A 
MCR contains the values of a data record 
represented as a string of contiguous bytes. 
It may be of arbitrary length. It contains 
no information for use by the LU; i ts 
internal format is significant only to the 
TP. The TP supplies needed protocol informa­
tion, such as the mapped-conversation record 
length, in separate parameters of the verb, 
using representations appropriate to the pro­
gramming language and processor being used. 

CA MCR consists of data from a single verb 
issuance by the sender, but it may be 
received in one or more parts, each with a 
single verb issuance, depending on the 
receiving TP's receive buffer size). 

BASIC-CONVERSATION MESSAGE UNITS 

GOS Variables 

Full connectivity among programs requires 
that all transaction programs interpret the 
records they transfer in the same way. To 
facilitate uniform interpretation of records 
among programs written for different process­
ors , service trans action programs and some 
internal LU components, including 
mapped-conversation support, use the formats 
defined by general data stream architecture 
to represent records (see Appendix Il. 

A general data stream IGOS) variable consists 
of a GOS header CLL!Ol followed by the data. 
The GOS header is a descriptive prefix con­
taining a 2-byte length prefix (LU that 
indicates the length of the variable, includ­
ing prefix, and a format identifier called 
the GOS ID that indicates the GOS-defined 
form<i-t -of the data. The LLs identify the 
bound<iries of variable-length fields within a 
message unit of contiguous fields, and the 
GOS IDs identify the representation of the 
d;:ita. A GOS variable may be of arbitrary 
length. If the variable length exceeds the 
value that can be represented in the length 
prefix c2 15 -I = 32,767 bytes, including the 
prefix!, the record consists of multiple seg­
~ents, each with its own length prefix. Only 
the first segment contains an ID field. The 
length prefix also contains a continuation 
bit that indicates whether the corresponding 
segment is the last (or onlyl segment in the 
GOS variable. 

All data transferred at the 
basic-conversation protocol boundary by serv­
ice TPs and other internal LU components Cbut 
not necessarily data transferred by applica­
tion transaction programs l is represented as 
GOS variables with SNA-defined formats (see 
"Appendix H. FM Header and LU Services Com­
mands"). 

Logical Record 

A logical record is the elementary unit of 
information transferred between users of the 
basic-conversation protocol boundary. A log­
ical record consists of a 2-byte length pre­
fix CLLl followed by data. Its maximum 
length is 32,767 bytes, including the prefix. 

The LL prefix of a logical record has the 
same format as the LL field in a GOS variable 
segment; thus, a GOS variable segment is also 
a logical record.i The basic-conversation 
protocol boundary r'equi res only the LL pre­
fix, not a full GOS LLID. Thus, logical 
records generated by application TPs need not 
use ID fields; if 1 they do, the application 
assigns and interprets the ID fields; the 
basic-conversation !support of the LU treats 
everything followimg the LL prefix of the 
logical record as user data. 

The logical record ls the elementary unit for 
which the LU detects or reports truncation. 

It might be inconvenient for a transaction 
program to issue a single send or receive 
verb for each logical record. For example, 
the sender or the receiver might have limited 
buffer space or might not know ahead of time 
the maximum length of the records being sent. 
Or, the transaction program might prefer to 
send a group of small, related records with ci 

single verb issuance. So, the unit of data 
that a program sends or receives with a sin­
gle basic-conversation v~rb is of 

SNA Format and Protocol Reference M?111~o:<::. tor LU Type 6. 2 



program-determined length. 
called a buffer record. 

This unit is 

No SHA-defined limit exists on the length of 
a buffer record; for example, it could exceed 
32, 76 7 bytes. The buffer-record length can 
be different for each verb issuance. 

No correspondence is necessary between the 
lengths or boundaries of logical records and 
those of buffer records, or between send 
buffer records and receive buffer records. 
Nevertheless, a rece1v1ng program may 
optionally specify that the LU begin a new 
receive buffer record for each new logical 
record received. The relationship between 
logical records and buffer records is illus­
trated in Figure 2-6 on page 2-19. 

CONVERSATION MESSAGE-UNIT SEQUENCES 

Certain sequences of message units are rele­
vant to conversation protocols. 

Conversation Message 

A basic-conversation message consists of the 
sequence of logical records transferred in 
one direction from one TP to another without 
an intervening change of direction or confir­
mation. !The Attach FM header generated from 
the ALLOCATE verb is also considered part of 
the initial basic-conversation message.) 

The end of a conversation message is deter­
mined, when sending, by a conversation state 
change caused by the verbs issued. For exam­
ple, PREPARE_TO_RECEIVE, RECEIVE_AND_WAIT, 
CONFIRM, SYNCPT, and DEALLOCATE end a conver­
sation message. When receiving, the end of a 
conversation message and conversation state 
change is determined from corresponding pro­
tocol information received from the sender. 
The information identifying the end of a con­
versation message and specifying the way it 
was ended is generically called the 
end-of-conversation-message indication. 

A basic-conversation message is the elementa­
ry uni t for which the LU supports conf i rma­
t ion or program-error reporting (e.g. , 
SEND_ERRORl between sender and receiver, and 
for which it performs purging. 

A mapped-conversation message is analogous to 
a basic-conversation message; that is, it 
consists of the sequence of 
mapped-conversation records lor data records) 
transferred in one direction from one TP to 
another without an intervening change of 
direction or confirmation, as understood at 
the mapped-conversation protocol boundary. 

The unqualified term conversation message is 
used when the intended protocol boundary is 
clear from the context, or when both the 
mapped-conversation message and i ts corre­
sponding basic-conversation message are 
designated. 

Conversation Exchange 

A conversation exchange consists of the com­
plete set of mapped- or basic-conversation 
messages transferred between a pair of TPs 
using a particular conversation. 

SESSION MESSAGE UNITS 

Session message units are formatted for LU-LU 
protocols and for effective use of the path 
control network. 

Function Management Headers 

A function management IFMl header is a mes­
sage unit generated by the LU to carry cer­
tain LU control information. The LU uses the 
following FM headers: 

• An Attach FM header IFMH-51 specifies the 
name and required characteristics, e.g., 
option sets required, of the target TP. 

I • An Error-Description .E.!::! header ( FMH-71 
describes a transaction program error or 
Attach failure. 

I • 
I 

A Security .EJj header IFMH-12) carries 
security information for LU-LU verifica­
tion. I 

Basic Information Unit 

A basic information unit IBIUJ is the message 
unit transferred between two LUs. It con­
sists of a regues t header (RH l and a 
request/response unit iR!il· 

The RH is a formatted prefix to the RU. It 
carries protocol information encoded from the 
TP verbs or generated internally by the LU. 
"Appendix D. RH Formats" gives further 
details. 

RUs carry FM headers, TP-supplied data (for­
matted by the TP or the LU into logical 
records), and other protocol information. 
The LU uses the following RUs on an LU-LU 
session: 

• 

• 

• 

Category EMO RUs, for transaction-program 
data 

Category DFC RUs, such as BIS, LUSTAT, 
RTR, SIG 

EXR, 
errors 

for some path-control-detected 

!For details, see "Appendix E. 
Request/Response Unit IRUJ Formats" and "Ap­
pendix H. FM Header and LU Services 
Commands". l 

The LUs also transfer other information 
describing the BIU, such as the length and 

Chapter 2. Overview of the LU 2-15 



sequence number, Nhich is formatted by path 
control. Path control uses this information 
to build a transmission header (TH). 

SESSION MESSAGE-UNIT SEQUENCES 

The follONi ng sequences of BIUs are relevant 
to session protocols: 

A 1.!llY.! chain is a sequence of BIUs that con­
stitute a single unidirectional transfer. 
The chain is the 111ost elementary unit that 
can be independently confirmed or for which 
errors can be reported using SNA-defined LU 
protocols. It corresponds to a TP-TP conver­
sation message. 

A bracket consists of the set of all chains 
transferred on a particular conversation. It 
corresponds to a TP-TP conversation exchange. 
The first data RU in a bracket begins with an 
Attach FH header that identifies the target 
TP. 

The total session traffic comprises a 
sequence of one or 1110re brackets. Prior to 
bracket traffic, the session is activated 
( BINO protocols >. Prior to norR1al session 
deactivation, bracket traffic is shut down 
(BIS protocols). All session traffic stops 
when the session is deactivated (IJNBINO pro­
tocols), whether or not any brackets are in 
transit. 

page 2-17 illustrates the cor-
between the conversation 

sequences and session 

Figure 2-4 on 
respondence 
message-unit 
111essage-unit sequences. In the figure: 

• The colUMn labelled TP-TP shows the con­
versation message-unit sequences. 

(The corresponding conversation 
11essage-uni t sequences for the partner 
TPs at LU Y are not shown; they are the 
reverse of those shown for TP A and TP 
8.) 

• The column labelled LU-LU shows the ses­
sion message-unit sequences. 

• The column 
relationship 
sequences. 

labelled LU 
between the 

X shows the 
two sets of 

MAPPED-CONVERSATION MESSAGE-UNIT TRANSFORMA­
TION 

The Mapped-conversation support in the LU 
converts a data record into a GOS variable. 

First, the LU optionally performs a 
TP-specHied 111apping transformation on the 
data record, producing a R1apped-conversation 
record. If 111apping transformations are not 
supported or if one is not specified, the TP 
supplies the data in HCR format (i.e., a con­
tiguous byte string of TP-determined length). 

The 11apped-conversat ion support in the LU 
then segments the MCR into uni ts of allowed 
logical-record length and adds LLID prefixes, 
thus producing a GOS variable consisting of a 
sequence of logical records. This is illus­
trated in Figure 2-5 on page 2-18. 

BASIC-CONVERSATION MESSAGE-UNIT TRANSFORMA­
TION 

Above the basic-conversation protocol bounda­
ry, a TP, or an internal LU component such as 
the mapped-conversation support, generates a 
sequence of logical records constituting a 
conversation message. It passes this conver­
sation message to the LU ;is a sequence of 
buffer records, by issuing basic-conversation 
verbs. Along with the buffer records, it 
passes unformatted protocol infor•ation such 
as the ALLOCATE verb parameters, from which 
the LU builds FM headers. 

Conceptually, the LU assembles the sequence 
of FM headers and logical records into a com­
plete conversation message. It then converts 
this conversation message into a chain of 
BIUs. Of course, the LU does not necessarily 
store a complete conversation message at one 
time; when it accumulates enough buffer 
records to build one or 111ore BIUs, it builds 
those BIUs and sends them out, saving any 
residual data for the next BIU. 

To build BIUs, the LU reblocks the FM headers 
and logical records into RU-sized units and 
generates the necessary RHs. The LU sets the 
RH indicators to correspond to functions or 
states specified by verb parameters; for 
example, it sets the chaining indicators 
(BCI, ECU to indicate the first and last 
BIUs in the chain, and it sets the bracket 
indicators IBB, CEB) to indicate the first 
and last BIUs in a bracket. When necessary, 
the LU also generates Attach or 
Error-Description FM headers ( FMH-5 and 
FMH-71 from verb parameters and includes 
these in the BIUs. The final result is a BIU 
chain. Along with the BIU, the LU generates 
parameter values for use by path control (to 
build the transmission header). The LU 
transfers the BIUs and the unformatted BIU 
parameters to path control for transmission 
to the partner LU. Figure 2-6 on page 2-19 
illustrates the conversion process. 

DATA EXCHANGE WITH OTHER HAUS 

The LU also exchanges message units with oth­
er NAUs, specifically with the CP, via the 
CP-LU session, and with the PU, directly. 
These message units &re listed in "Chapter 4. 
LU Network Services" and are described brief­
ly below. 

1Y:::.!;;f Message Units 

The LU sends 
CP-LU session. 

session services RUs on the 
These RUs are used in the 

2-16 SNA Format and Protocol Reference Manual for LU Type 6.2 



TP A 

c 
0 
N 
v 
F 

R 
s 
A 
T 
I 
0 
N 

CM 
0 s 
N t::: 
v 

CM 
0 s 
NG 
v 

I 

TP-TP 
via 
LU 

CTP A sending) 
Attach 

===================> 
===================> 

• • • 
loqi cal ru.ords 

• • • 
===================> 

CTP A receiving) 
<=================== • • • 

logical records 
• • • 

<=================== 

LU X 

\\\\\ 
\\\\\\ 
·, \ ... , \ \ \\ \ \\ \> 
\\\\\\\\\\\\> 
\\\\\\\\\\\\> 
\\\\\\\\\\\\> 

\\\\\\> 
\\\\\> 
\\\\> 
\\\> 

LU-LU 
via 

Path Control 

session 
activation 

==================> 
• • • BIUs • • • 

<================== 

! :..u X s:Pndi n;' 
BIU with FMH-5 

==================> 
==================> 

• • • 
BIUs 

• • • 
==================> 
==================> 

CLU X receiving> 
/Ill/I <================== 

/////// ... 
<II/I/I/Ill/I BIUs 
<//////Ill/II • • • 
<I I I I I I I I I I I I <===·=============== 
<////// 
<//Ill 

I I 

E 
x 
c 
H 
A 
N 
G 
E TP A, LU X alternating send/receive ===> 

I I I 

• • • • • • 
Cother TPs> Cother conversations> 

• • • • • • 

TP B Attach 
..-~~~~~~~~~<=================== 

c 
0 
N 
v 

E 
x 
c 

CM 
0 s 
NG 
v 

H • • • • • 
G ••••••••• 

CTP B receiving> 
<=================== 

• • • 
logical records 

• • • 
<=================== 

Ill/ 
<Ill/I/Ill/II 
<I/Ill/Ill/II 
<1111/lllllll 
<II/I/Ill/Ill 
<//////////// 
<Ill///////// 
</////// 
<Ill/II 
<///// 
</Ill 

LEGEND: 
<====> 
\\\\\> 
<//// 

message-unit flows 
conversion of logical 
conversion of BIUs to 
message unit sequence 

records to BIUs 
logical records 
boundaries 

• • • 
Cother brackets> 

• • • 
C LU X receiving) 
BIU with FMH-5 

<================== 
<================== 

• • • 
BIUs 

• • • 
<================== 
<================== 

session 
shutdown 

==================> 
• • • BIUs • • • 

<================== 
session 

deactivation 
==================> 
• • • BIUs • • • 

<================== 

Figure 2-4. Relationships of Sequences of Message Units !Example> 

I 

I 

c 
H 
A 
I 
N 

c 
H 
A 
I 
N 

LUY 

B 
R 
A 
c 
K 
E 
T 

B 
C R 
H A 
A C 
I K 
N E 

T 

s 
E 
s 
s 
I 
0 
N 

T 
R 
A 
F 
F 
I 
c 

Chapter 2. Overview of the LU 2-17 



length 

Data Record 
A 
I 

(optional mapper transformation) 
I 
v 

!<----------- Mapped-Conversation Record --------------->! 

!<-----Logical Record ------->I 

I<---

I 
I • • • 

I 

Logical Records 
--->I 

• • • I 

I<- Logical Record ->I 

L-

LEGEND: 
data record: data supplied by the transaction program MC_SEND_DATA verb (arbitrary format> 
length: length of the mapped-conversation record (after mapper transformation, if any) 
LL: logical-record Length field; the first bit is the continuation field 
ID: GOS ID field 

Figure 2-5. Relationship of Data Records to Logical Records (Example) 

session-initiation protocols for LU-LU ses­
sions, e.g., for translating the partner LU 
name into the network address. In some 
cases, the choice of RUs depends on the type 
of node Csub<irea or peripheral) containing 
the sending LU. 

The LU also uses the CP- LU session to send 
and receive maintenance services RUs. 

!J1:::£Y Records 

The LU has a direct protocol boundary 111i th 
the PU in its node. 

The LU generates and uses session control RUs 
for session activation and deactivation. It 
sends these to the PU for routing to the 
remote LU. 

Another group of LU-PU internal records is 
used to connect the LU to other node compo­
nents or to reset the LU. 

2-18 SNA Format and Protocol Reference Manual for LU Type 6.2 



. 
I< GOS variable I /->I<--- GOS variable >i 

i< LR -->I< LR--/ /->i< LR >I 
Attach 

IL LII ol IL LI 
I I 

IL LII ol values data data I • • • I data 
A I I 

I !<Buffer Record>l<Buffer Record>! • • • !<Buffer Record> I <Buffer Record> I 
v 

IF M H - sl 
. 
i< 

. 
. ~--------------- Conversation Message ~------------->I 

TH 
IR HI val- R U 

ues 
I< 

LEGEND: 

BIU >I 

TH values IR HI R U 

I<--- BIU --->I 

TH values .... IR_H .... I_~,/ • • • 

I<---
BIUs : 

-->I 

···LJ 
TH values IR HI R U 

I<·---

LR: logical record LL: Length field ID: GOS ID field 

EIU ---->I 

TH values IR HI R U 

I<- BIU ->I 

RH: request header RU: request unit BIU: basic information unit 
FMH-5: Attach FM header (occurs only on first conversation-message ~f conversation) 
Attach values: information for the Attach FM header, from the ALLOCATE verb. 
TH values: protocol information generated by the LU; the TH is built by path control. 

Figure 2-6. Relationship of Conversation Message to BIU Chain (Example> 

EXTERNAL FLOW SEQUENCES .EQR THE ~ FUNCTION ~ 

This section illustrates the correspondence 
between some typical basic-function-set 
transaction· program verb sequences and the 
resulting flows of BIUs through the path con­
trol network. CThe verbs are described in 
detail in SNA Transaction Programmer's Refer­
ence Manual .f2.c .bY ~ 6.2). 

The correspondence is illustrated in Fig­
ure 2-7 on page 2-21 through Figure 2-23 on 
page 2-28. In the figures, the left column 
shows verbs issued by the invoking or 
initially-sending TP, and the right column 
shows verbs issued in response by the invoked 
or initially-receiving TP. The center column 
shows the contents of the resulting chain CRH 
indicator settings, RU data and FM headers). 

Chapter 2. Overview of the LU 2-19 



The arrOMS indicate direcUon of BIU flow. A 
group of arrows in the same direction repres­
ents a chain, but no necessary correspondence 
exists between arrows in the figures and BIUs 
in the chain. 

Each figure shows one of the following: 

• The beginning of a chain, for chains that 
begin a bracket 

• The end of one chain and the beginning of 
the next 

• The encl of a chain, for chains that end a 
bracket 

"Allowable Combinations of Sequences" on page 
2-23 shows how these flows can be combined, 
or sequenced, to form complete conversations. 

Finally, "Error Fle>Ns" on page 2-25 shows 
asynchronous response cases. 

NOTATION 

The follONing notation is used in the fig-
ures. 

--> Request RU 

<----- Response RU 

RH indicators: 

The flow is labeled Mith the indicator values 
that are carried in the RH. 

BB Begin bracket 

CEB Conditional encl of bracket 

BC Begin chain 

EC End chain 

RQEl Request exception response 1 

RQE2 Request exception response 2 (in this 
case, DRU = ORl l~DRH i.e., RQE3 is 
equivalent to RQE2>. 

RQOl Request definite response 1 

RQ02 Request definite response 2 (in this 
case, DRU = ORI l~DRl; i.e.• RQ03 is 
equivalent to RQ02). 

CO Change direction 

+OR2 Positive response to RQD2 

-RSPU846) Negative response to chain 

RU contents: 

FMH-5 Attach FM header 

Fttl-7 Error-description FM header 

The sense-data categories shown are: 

0864 Abnormal deallocation 

0889 Progra11-detected error 

data User data in FMO RU 

Verbs !D.!i! Parameters 

The returM!d RETURN_CODE parameter of the 
RECEIVE_AND_WAIT verb is not shown when it is 
set to OK; in that case, the returned 
WHAT_RECEIVEO parameter is shown instead. 

DATA_* represents either setting (DA­
TA_COMPLETE or DATA_INCONPLETE) of this 
parameter. 

Q.iU.! Transfer Description 

Whenever a TP has the right to send, 1t 
issues SEHD_DATA zero or 111ore ti mes. Si mi -
larly, a TP in receive state repeatedly 
issues RECEIVE_AND_WAIT, until it receives 
all of the data and the 
end-of-conversation-message indication. The 
receiver issues at least one receive verb; in 
the absence of errors, zero or more initial 
issuances of SEND_DATA by the source TP 
result in zero or more receive verb issuances 
(with wtlAT_RECEIVEO = DATA_INCOMPLETE> at the 
target. The final issuance receives the 
end-of-conversation-message indicator as 
WHAT_RECEIVED = DATA_CONPLETE. Since the 
buffer record sizes used at the sending TP 
and at the receiving TP may differ, the nun­
ber of receive verb issuances does not neees­
sari ly match the number of send verb 
issuances. 

All of the following figures begin or end 
with the data-transmission sequence just 
described. That sequence is rep1·esented in 
the figures as follows. 

When the f i gure beg i ns w i th (the end of ) the 
data-transmission sequence, it shows (at the 
sending TP) a single SEtID_DATA verb, and a 
corresponding data arrow, followed by verti­
cal (two-dot ) ellipsis marks ( : ) • No 
RECEIVE_AtID_WAIT verb is shown at the 
receiving TP. 

When the figure ends with <the beginning of) 
the data-transmission sequence, it shot.is (at 
the receiving TP> vertical ellipsis marks 
( : ) , followed by a single RECEIVE_ANO_WAIT 
verb with WHAT_RECEIVED = DATA_COHPLETE. 
"Data" is shown on the corresponding arrow, 
along with the end-of-conversation-message RH 
indicators. No SEtID_DATA verb is shown at 
the beginning of the receiving-TP verb 
sequence. 

ERROR-FREE FLOWS 

The error-free flows for the base function 
set flows are described in terms of the verb 

2-20 SHA For111at and Protocol Reference Manual for LU Type 6.2 



sequences shown in Figure 2-7 on page 2-21 
through Figure 2-14 on page 2-23. 

SEQUENCE 1 

ALLOCATE 
SYNC_LEVELCNONEl BC,BB,FMH-5 

----------> ITP started> 
SEND_DATA data 

----------> 
Figure 2-7. Start Conversation without Confirmation 

SEQUENCE 2 

PREPARE_TO_RECEIVE EC,RQEl,CD,data RECEIVE_AND_WAIT 
TYPECFLUSHl ----------> WHAT_RECEIVED=DATA_COMPLETE 

RECEIVE_AND_WAIT 

<----------
WHAT_RECEIVED=SEND 

SEND_DATA 

Figure 2-8. Conversation Turnaround without Confirmation: PREPARE_TO_RECEIVE is optional; when it 
is omitted, and a receive verb is issued from SEND state, the function of 
PREPARE_TO_RECEIVE is performed before any data is actually received. 

SEQUENCE 3 

DEALLOCATE EC,RQEl,CEB,data RECEIVE_AND_WAIT 
TYPE(FLUSHl ----------> WHAT_RECEIVED=DATA_COMPLETE 

!local deallocation) RECEIVE_AND_WAIT 
RETURN_CODE=DEALLOCATE_NORMAL 

DEALLOCATE 
TYPE( LOCAL> 

<local deallocation> 

Figure 2-9. Finish Conversation without Confirmation 

SEQUENCE 4 

ALLOCATE BC,BB,FMH-5 
SYNC_LEVEU CONFIRM l---------> ITP started I 

SEND_DATA data ----------> 
Figure 2-10. Start Conversation with Confirmation 

Chapter 2. Overview of the LU 2-21 



SEQUENCE 5 

CONFIRM RECEIVE_AND_WAIT 
---------> WHAT_RECEIVED=DATA_COMPLETE 

RECEIVE_AND_WAIT 

+DR2 
WHAT_RECEIVED=CONFIRM 

CONFIRMED 
RETURN_CODE=OK 

SEND_DATA <----------BC, data 

Figure 2-11. Continue Conversation: Confirmation without Turnaround 

SEQUENCE 6A 

PREPARE_TO_RECEIVE RECEIVE_AND_WAIT 
TYPECSYNC_LEVEL> EC,RQD2,CD,data 
LOCKSC SHORT) ---------> WHAT_RECEIVED=DATA_COMPLETE 

RECEIVE_AND_WAIT 

+DR2 
WHAT_RECEIVED=CONFIRM_SEND 

CONFIRMED 
RETURN_CODE=OK <----------

BC,data SEND_DATA 

Figure 2-12. Conversation Turnaround with Confirmation, using LOCKSCSHORT>: 

SEQUENCE 6B 

When the receiving TP issues CONFIRMED after the LU has received RQD2--indicating 
CONFIRM LOCKSCSHORT>--the LU immediately sends a CONFIRMED response C+DR2). This 
allows the CONFIRM sender to resume processing immediately, so that, for example, it 
can release locks on its local resources. 

CThe receiving LU processes the RQD2 internally; it does not inform the receiving TP of 
the LOCKS parameter value.) 

PREPARE_TO_RECEIVE RECEIVE_ANO_WAIT 
TYPECSYNC_LEVEL) EC,RQE2,CD,data 
LOCKSC LONG> ---------> WHAT_RECEIVED=DATA_COMPLETE 

RECEIVE_AND_WAIT 
WHAT_RECEIVED=CONFIRM_SEND 

CONFIRMED 

BC,data 
CLU omits sending +DR2> 

SEND_DATA 
RETURN_CODE=OK <.----------

Figure 2-13. Conversation Turnaround with Confirmation, using LOCKSCLONG>: 

When the receiving TP issues CONFIRMED after the LU has received RQE2--indicating 
CONFIRM LOCKSCLONG>--the LU does not send an immediate confirmation response. Instead, 
it continues processing until it has a complete BIU to send. The CONFIRM sender 
interprets receipt of BC without an intervening response as positive confirmation. 

LOCKSCLONG) does not require the +DR2 response BIU that LOCKSCSHORT> requires, but it 
can cause the CONFIRM sender to wait longer before resuming processing. 

2-22 SNA Format and Protocol Reference Manual for LU Type 6.2 



. SEQUENCE 7 

DEALLOCATE 
TYPECSYNC_LEVELJ 

EC,RQD2,CEB,data RECEIVE_AND_WAIT 
---------> WHAT _RECEIVED=DATA_COMPLETE 

RECEIVE_AND_WAIT 

+DR2 
WHAT_RECEIVED=CONFIRM_DEALLOCATE 

CONFIRMED 
RETURN CODE=OK <----------------------

Local Deallocation DEALLOCATE 
TYPEC LOCAL> 

Figure 2-14. Finish Conversation with Confirmation 

0 

0 

1 

2 

3 N 

4 

5 

6A 

68 

7 c 

ALLOWABLE COMBINATIONS OF SEQUENCES 

When a program issues one of the verb 
sequences shown above, that program is limit­
ed in its choice of the next verb sequence it 
can issue. The matrix in Figure 2-15 shows 
which verb sequences can follow a given verb 
sequence in the base function set. The 
matrix has the following meaning: 

• The row numbers Cleft column> and column 
numbers ctop row> in the matrix corre­
spond to the sequence numbers in Fig­
ure 2-7 on page 2-21 through Figure 2-14. 

A row corresponds to the verb sequence 
just issued; a column corresponds to the 
verb sequence issued next. 

In the matrix, row 0 or column 0 repres­
ents the state in which no conversation 
exists, i.e., the state prior to ALLOCATE 
or subsequent to DEALLOCATE. 

• A letter N or C in a cell indicates that 
the sequence corresponding to the column 
number can follow the sequence corre­
sponding to the row number. 

1 2 

N 

N 

N 

c 

c 

c 

c 

N--indicates a next sequence allowed 
for conversations alloca~ed with 

3 4 5 6A 68 7 Next-Sender 

c 

N SAME 

N c c c c SAME 

c c c c c SAME 

c c c c c SAME 

c c c c c OTHER 

c c c c c OTHER 

Figure 2-15. Possible Next Sequence in Error-Free Cases 

either SYNC_LEVELCNONEJ or 
SYNC_LEVELCCONFIRMJ, i.e., conversa­
tions started with sequences 1 or 4 

C--indicates a next sequence allowed 
only for conversations allocated with 
SYNC_LEVELCCONFIRMJ, i.e., conversa­
tions started with sequence 4 

empty--indicates that the correspond­
ing sequence order is invalid 

• The Next-Sender column indicates which TP 
is initial sender Ci.e., issues the verbs 
in the left column of the figure> for the 
next sequence: 

SAME--the initial sender of the next 
sequence is the same as the initial 
sender of the previous sequence. 

OTHER--the initial sender of the next 
sequence is the partner of the i n i -
tial sender of the previous sequence. 

Figure 2-16 on page 2-24 and Figure 2-17 on 
page 2-24 illustrate the application of these 
rules to generate allowable conversation 
sequences •. 

Chapter 2. Overview of the LU 2-23 



ALLOCATE 
SYNC_ LEVE LC NONE l BC,BB,FMH-" 

~-------~> CTP started! 
SEND_DATA data RECEIVE_AND_WAIT [NOTE 1--see text] 

----------> WHAT_RE'-EIVED=DATA_* 
SEND_DATA 
DEALLOCATE EC,RQEl,CEB,data 

RECEIVE_AND_WAIT 
WHAT_RECEIVED=DATA_COMPLETE 

.• I .-E ( FLUSH ) 
Clocal deallocation) 

> RECEIVE_AND_WAIT 
RETURN_CODE=DEALLOCATE_NORMAL 

DEALLOCATE 
TYPEI LOCAL! 

<local deallocation) 

Figure 2-16. One-Way Conversation without Confirmation: Combines Sequences 1 and 3 

The sequence shown in Figure 2-16 is gener­
ated as follows: 

SEND_DATA and one additional issuance of 
RECEIVE_AND_WAIT. 

1. Begin in state 0. 4. Select a column containing an H in row 1. 

2. Select a column containing a lettered In this example, column 3 was chosen. 

3. 

cell in row 0. 

In this example, column 1 was chosen. 
This corresponds to sequence 1. 

Supply an arbitrary number of 
and RECEIVE AND WAIT verbs 
sequence 1, - as- allowed by 
data-transfer convention. 

SEND_DATA 
following 
the the 

In this 
replaced 

example, the ellipsis was 
by one add i ti onal issuance of 

ALLOCATE BC,BB,FMH-5 
SYNC_LEVELICONFIRMl --------->CTP started! 

5. Orient sequence 3 according to the "next 
sender" column for the previous sequence. 

6. 

In this example, the next 
so the left column of 
issued by the same TP as 
of sequence 1. 

sender is SAME, 
sequence 3 is 

the left column 

Select a column containing an N in row 3. 
The only choice is column o, indicating 
the end of the sequence. 

PREPARE_TO_RECEIVE EC,RQE2,CD RECEIVE_AND_WAIT 
TYPE (SYNC_ LEVEL l ----------> WHAT _RECEIVED=CONFIRM_SEND 
LOCKSILONGl CONFIRMED 

BC,data 
RETURN_CODE=OK <---------­

RECEIVE_AND_WAIT 

SEND_DATA 

WHAT_RECEIVED= EC,RQD2,CEB,data 
DATA_COMPLETE <---------­

RECEIVE_AND_WAIT 

DEALLOCATE 
TYPEISYNC_LEVELJ 

WHAT_RECEIVED= 
CONFIRM_DEALLOCATE 

CONFIRMED +DR2 
--------------------> RETURN_ CODE =OK 

DEALLOCATE 
TYPEI LOCAL! 

Figure 2-17. Two-Way Conversation with Confirmation: Combines Sequences 4, 66, and 7. 

The sequence shown in Figure 2-16 is gener­
ated as follows: 

1. Beginning in state o, select sequences 4, 
66, and 7, returning to state O. 

2. Supply some number of SEND DATA and 
RECEIVE_AND_WAIT verbs following sequence 
4. 

In this example, 0 instances of SEND DATA 
were chosen. Thus, following the -data 
transfer convention, the SEND_DATA verb 

2-24 SNA Format and Protocol Reference Manual for LU Type 6.2 



and data arrow in sequence 4 are elimi­
nated, as is the RECEIVE_AND_WAIT 
WHAT_RECEIVED = DATA_COHPLETE and the 
data on the EC arrow in sequence 68. 

3. The next sender following sequence 4 is 
SAHE; therefore, sequence 68 has the same 
orientation as the preceding sequence. 

4. Supply some number of SEND_DATA and 
RECEIVE_AND_WAIT verbs following sequence 
68. 

In this example, only one instance of 
each was chosen, corresponding exactly to 
the number in the sequence figures. 

CThis figure illustrates that the ar;·ows 
do not necessarily corre!;;;vnd to BIUs. 

For example, the CONFIRM, SEND_DATA, and 
DEALLOCATE might generate only one BIU, 
even though two arrows are shown in the 
figure. I 

5. The next sender following sequence 68 is 
OTHER; therefore, sequence 7 is reversed 
to have the opposite orientation from 
that of the preceding sequence Ci .e., 
since the left column of sequence 68 cor­
responds to the left column of the com­
bined sequence, the left column of 
sequence 7 corresponds to the right col­
umn of the combined sequence). 

6. The next row number is O; therefore this 
~nmpl~t~~ the sequence. 

SEND_DATA 

SEND_DATA 

data 
--------------------~----> 

BC,EC,SIGNAL (e)pedited flowl 

RECEIVE_AND_WAIT 
WHAT_RECEIVED=DATA_* 

REQUEST_TO_SEND 
<--------------------------

REQUEST_ TO_ SEND _RECEIVED= YES 
PREPARE_TO_RECEIVE EC,RQEl,CD,data 

TYPE C FLUSH l 

RECEIVE_AND_WAIT BC,data 

RECEIVE_AND_WAIT 

WHAT_RECEIVED=DATA_COHPLETE 
RECEIVE_AND_WAIT 

WHAT_RECEIVED=SEND 
SEND_DATA 

<--------------~~--------
WHAT _RECEIVED= DAT A_* 

Figure 2-18. Conversation Turnaround following REQUEST_TO_SEND !without Confirmation>: 

REQUEST_TO_SEND issued by the receiving TP results in an expedited-flow one-RU chain. 
The TP sending data is notified via the REQUEST_TO_SEND_RECEIVED parameter of a 
subsequent verb. The interpretation of REQUEST_TO_SEND_RECEIVED is determined by the 
TP. In this example, the sending TP stops sending and issues RECEIVE_AND_WAIT. 

EXCEPTION FLOW 

Figure 2-18 illustrates the only non-error 
case for which a TP can send while in receive 
state. This flow represents issuing the 
REQUEST_TO_SEND verb and sending the SIGNAL 
RU. 

This flow can be substituted for sequence 2. 
A similar sequence corresponding to sequence 
6A or 68 exists, but is not illustrated here. 

ERROR FLOWS 

Figure 2-19 on page 2-26 through Figure 2-23 
on page 2-28 illustrate flows resulting from 
transaction-program error recovery for the 
base function set. When the TP detects a 
TP-defined error Ce.g., the received data 

fails an application validity check, or the 
partner sends more logical records than 
expected) it issues SEND_ERROR or DEALLOCATE 
TYPE! ABEND). When the LU detects a trans­
action program error, such as an Attach fail­
ure, it generates similar flows. 
Three cases exist: 

• Verb issued by sender 

• Verb issued by receiver 

• Verb issued by both Ce.g. • a SEND_ERROR 
race has occurred) 

!This case is not illustrated for DEALLO­
CATE. l 

For cases not shown 
Interactions and Flow 
2-50. 

here• see "Component 
Sequences" on page 

Ch~pter 2. Overview of the LU 2-25 



SEtl>_DATA 
(TP detects 
an error) 

SEND_ERROR 
right 4 

SEND_DATA 

RECEIVE~Atl>_WAIT 

data ----------> WHAT_RECEIVED=DATA_INCOMPLETE 
Ft1H-7C0889),data RECEIVE_Atl>.:.,WAIT ----------> WHAT_RECEIVED=PROGRAM_ERROR_ TRUNC 

Figure 2-19. SEN>_ERROR Issued by Sender: 

SEtl>_DATA 

The SEND_ERROR verb forces sending of accUlllUlated data and begins • neM RU with an 
Fttt-7. The issuing TP ret1N11ins in send states it can, for example, send additional 
TP-determined data to further describe the error. 

data 
------------------> 

-RSP(0846) 
r---------

RECEIVE_AND_WAIT 
WHAT_RECEIVED=DATA_* 

CTP detects an error) 
SEND_ERROR 

SEND_DATA data I Purge incoming BIUs 
to end of chain ---------1--------> 

I . 
I 

(LU ends chain) <------' 
EC,RQEl,CD,no data 

------------------> 
BC,Fl'IH-7(0889),data 

<------------------R E~N_CODE= 
PROG_ERROR_PUR6ING 

RECEIVE_AND_WAIT 

II 

.. .. .. 
11 CLU detects end of chain> 
RETURN_COOE=OK 

SEtl>_DATA 

Figure 2-20. SEND_ERROR Issued by Receiver: 

The SEND_ERROR verb causes a negative response to the incot1ing chain; the sending TP 
sends End-of-chain and Change-direction when H receives the response. Meanwhile, the 
receiver purges incoming RUs until the End-of-chain indication is received, then it 
sends Ftlt-7 and leaves the issuing TP in send state so it can, for example, send 
additional TP-determined data describing the error. 

2-26 SHA For11at and Protocol Reference Manual for LU Type 6.2 



SEND_DATA 

CTP detects 
an error) 

SEND_ERROR 

SEND_DATA 

data RECEIVE_AND_WAIT 
----------> WHAT_RECEIVED=DATA_* 

CTP detects an error) 
-RSPC0846) SEND_ERROR 
r-------------data 1 ______ , > 

Ft1H-7C 0889 ),data 
--------I > 

I . 
I 

Purge ;ncom;ng BIUs 
to end of cha;n 

(LU ends cha;n) <----1 
EC,RQEl,CD,no data 

<LU detects end of cha;n) 
RETURN_CODE=OK 

BC,ft1H-7C0889),data SEND_DATA 
<.------------------

RETURN_ CODE= 
PROG_ERROR_PURGING 

RECEIVE_AND_WAIT 

f;gure 2-21. SEND_ERROR Issued by both Sender and Rece;ver CSEND_ERROR Race): 

Each LU beg;ns SEND_ERROR process;ng as in the no-race case, but s;nce the receiver ;s 
purging to end of chain, the SEND_ERROR frOll the sender ;s also purged, so the 
receiver's SEND_ERROR takes precedence. 

SEND_DATA 
DEALLOCATE data 

TYPECABEND_PROG> > 
EC,RQD1,CEB,Ft1H-7C0864) 

-------------------> +DRl 
(response used<----------------------

; nternally) 

f;gure 2-22. DEALLOCATE ABEND Issued by Sender: 

RECEIVE_AND_WAIT 

WHAT_RECEIVED=DATA_* 
RECEIVE_AND_WAIT 

RETURN_ CODE= 
DEALLOCATE_ABEND_PROG 

The flow ;s s;•Har to SEND_ERROR in send state. The +DRl response is required for 
internal process;ng. 

Chapter 2. Overview of the W 2-27 



SEtl>_DATA 
~-----------------> 

RECEIVE_AND_WAIT 
NHAT_RECEIVED=DATA_* 

SEtl>_DATA 

-RSPC0846) 
r---------

datal 
---------1 > 

I 

I 
<----' 

DEALLOCATE 
TYPECABEND_PROG) 
Purging .. .. 
.. .. 

-----------------> "(LU detects end of chain) 
BC,EC,RQDl,CEB,FMH-710864) 
<:~------------

RETURN_ CODE= 
DEALLOCATE_ABEtl>_PROG 

+DRl 
--------------------> (response used internally) 

Figure 2-23. DEALLOCATE ABEND Issued by Receiver: 

The flON is si•ilar to SEtl>_ERROR in receive state. The +DRl response is required for 
internal processing • 

.IJl STRUCTURE 

Figure 2-24 on page 2-29 illustrates the 
structure of the LU. 

The upper protocol boundary of the LU is the 
transaction prograni protocol boundary (de­
scribed in SNA Transaction Programmer's Ref­
erence Manual for LU JJm!! 6. 2) • A 
transaction program processes end user data, 
and requests LU services to comlll\.nicate with 
other transaction programs. 

The lONer protocol boundary of the Ll:J is the 
path control protocol boundary, below which 
is the SNA path control network, which the LU 
uses to communicate with other LUs and with 
its control point CCP). 

The LU also has a protocol boundary Ni th the 
PU Csee "Chapter 4. LU Network Services"). 

SNA LAYERS 

The LU contains instances of the following 
four SNA layers: 

Transaction services 

Presentation services 

Data flow control 

Trans111ission control 

Co!!!pOnent Overview 

The LU has two layers of components, one for 
its upper protocol boundary with transaction 
programs, and one for its lower protocol 
boundary with the path control network. Each 
layer consists of a group of processes con­
taining a pair of SHA layer-instances, and a 
manager component that creates, destroys, and 
otherwise manages these instances. 

The upper layer contains transaction proc­
esses, which contain instances of the follow­
ing SHA layers: 

Transaction services 

Presentation services 

More concretely, each transaction process 
contains an execution instance of a trans­
action progra• and some Presentation Services 
components for processing the verbs issued by 
it. CSee Figure 2-25 on page 2-30.) 

This layer is managed by the resources manaq­
~ component CRH), which creates transaction 
processes C in response to Attaches received 
from remote LUs), destroys them after they 
have finished executing, and connects them 
with sessions Cthus enabling· them to partic­
ipate in distributed transactions). 

2-28 SNA For111at and Protocol Reference Hanual for LU Type 6.2 



< 

Resources 
Manager 

< 

A 
I 
v 

< 
PU < > < 

LU < 
Network 
Services 

Services Manager 

I 
• 

l" Application 
Transaction 

Program 

A 

Control­
Operator 
Transaction 
Program 

A 

v 

<--> Control Operator 

I 

• 
DIA !j 

I SNADS J r RESYNC LJ 1--
s 

1- Service 
Transaction 

Programs 
A 

r: 
,~--------..:J 

>L ______ IJ 
• v 

_ Presentation Services _ 

v 

PNCP-LU 
Half­

Session 

v l, 
SSCP-LU 
Half-

Session 

A 

lv--v 

Data Flow 
Control 

Transmission 
Control 

LU-LU Half-Session 

A A A 

• 
• 

• 

'-------1--1---1--LU__, 

LEGEND: 
<--> SEND/RECEIVE relationship 
<.· ••• > CALL/RETURN relationship 
CNOS: Change Number of Sessions 
SNADS: SNA Distribution Services 

v v v 
PATH-CONTROL NETWORK 

RESYNC: Sync Point Resynchronization 
DIA: Document Interchange Architecture Services 

Figure 2-24. Overview of LU 6.2 Components 

Chapter 2. Overview of the LU 2-29 



Transaction Program 
•••••••••••••••••••••• > 

PS Verb Router 
: A : A 

t--:-: :-: 
v : v : 

PS for PS for 
Mapped Sync Point 

Conversations Services 

any verb issued 
: 
: 
v 

: A 
:-: 
v : 

PS for 
Control 
Operator 

I I 

other 
PS 
verb 
handlers 

v 

PS for 

PS.MC PS.SPS PS.COPR 

Basic 
Conversations 

PS.CONY 
I /-'"---A~~~~ 

• • • 

v 

Resources Manager 

LEGEND: 
••••• > CALL/RETURN relationship (within a process) 
<--> SEND/RECEIVE relationship !between processes) 

I 
v 

Half-Session or 
Resources Manager 

NOTE: PS verb router is called recursively by PS verb handlers. 

Figure 2-25. Structure of a Presentation Services Process 

The lower layer contains half-sessions CHSs), 
which contain instances of the following SNA 
layers: 

Data flow control 

Transmission control 

Half-sassions enforce protocol rules for con­
versation data exchange, and transform mes­
sage units between the format useful to 
conversing programs and the format appropri­
ate for the Path Control network Cthis 
includes implementing session services such 

FUNCTIONAL SUMMARY BY FUNCTION 

This is the first of two sections describing 
the functions and interactions of LU compo­
nents. This section is org<inized by func­
tion; it concentrates on functions that 
involve multiple components. for each func­
tion, it explains in approximate time 
sequence the roles of the various LU compo­
nents. The next section is organized by com­
ponent, and covers functions performed 
principally by one component. A·· full 
description of each component is given in its 
corresponding chapter of this book. 

For illustrations of the component inter­
actions discussed in this section, including 
a variety of cases not discussed elsewhere in 
this chapter, see "Component Interactions and 
flow Sequences" on page 2-50. In particular, 
Figure 2-34 on page 2-52 and figure 2-35 on 
page 2-53 illustrate the interactions, at the 
source and target LUs, respectively, for a 

as pacing and cryptography l . 
these are LU-LU half-sessions 
ing conversation data, one of 
CP-LU half-session connecting 
Control Point. 

While most of 
for transport­
them must be a 
the LU to its 

This layer is managed by the LU network ~ 
ices component CLNSJ, which creates and 
destroys half-sessions and interacts with SNA 
components outside the LU Cthe control point 
and the nodal NAU manager in the PU). 

The resources manager and LU network services 
components are created by the PU when it 
activates the LU; they run continuously 
thereafter. 

typical conversation; Figure 2-36 on page 
2-54 and Figure 2-37 on page 2-55 illustrate 
typical interactions for session deacti­
vation. 

The LU manages the state and configuration of 
its local resources, including transaction 
programs, conversation resources, and 
half-sessions. It cooperates with other LUs, 
using shared sessions and conversations, to 
configure these resources to support distrib­
uted transactions. C An LU implementation 
might also manage other, non-SNA, resources 
such as processor execution cycles, storage, 
and data bases. l 

The principal functions leading to LU trans­
action processing are the following, not nec­
essarily performed in this order: 

• Activating sessions between two LUs 

2-30 SNA Format and Protocol Reference Manual for LU Type 6.2 



• Invoking transaction programs 

• Initiating conversations between the 
transaction programs 

• Transferring message units between the 
transaction programs 

EXAMPLE TRANSACTION PROGRAM 

Figure 2-26 outlines some typical verb issu­
ances for an example pair of transaction pro­
grams. 

SOURCE If 

MC_ALLOCATE 
MC_SEND_DATA 

II 

II 

II 

MC_RECEIVE_ANO_WAIT 

II 

II 

II 

MC_DEALLOCATE 

MC_RECEIVE_ANO_WAIT 
II 

II 

II 

II 

MC_SEND_DATA 
II 

II 

MC_DEALLOCATE 

Figure 2-26. Example of Communicating 
Transaction Programs 

The programs, running at different LUs, issue 
complementary sequences of verbs. The LUs 
convert ~hese executed verbs into 
message-unit flows. 

MESSAGE-UNIT TRANSFER 

First, consider transfer of message units. 
Assume that two transaction programs are run­
ning at their respective LUs and are con­
nected by a mapped conversation. For the 
programs to transfer data, one program must 
issue MC_SEND_DATA verbs while the other 
issues complementary MC_RECEIVE_AND_WAIT 
verbs. 

The TP invokes PS for each 
transaction-program verb it issues. PS per­
forms the function appropriate to the specif­
ic verb. For each verb, PS verifies that the 
verb is valid in the current conversation 
state, converts the verb parameters to an 
intermediate representation, and performs 
verb-specific processing that includes issu­
ing appropriate requests to other LU compo­
nents. 

When sending, PS transforms the 
mapped-conversation record CMCR) into logical 
records, determines message-uni t sequence 
boundaries such as the end of a conversation 
message, and passes the data and control 
information to HS. HS converts the logical 
records into one or more RUs , encodes the 
protocol information into the RH, and passes 

the resulting BIU and TH information to path 
control. 

When receiving, HS checks incoming BIUs for 
format and protocol validity and passes the 
data to PS. When the TP issues a 
RECEIVE_AND_WAIT verb, PS checks the verb for 
validity, waits until HS supplies the 
requested amount of data, and passes the data 
and protocol information back to the TP. 

The following sections discuss these func­
tions in more deta i 1. CF i gure 2-4 on page 
2-17, Figure 2-5 on page 2-18, and Figure 2-6 
on page 2-19 illustrate the message-unit 
relationships discussed.I 

Sending Data 

For MC_SEND_DATA, PS verifies that the con­
versation is in send state. If mapping is 
being performed, PS maps the 
transaction-program data record into a 
mapped-conversation record (see "Mapping 
Function" on page 2-391. It transforms the 
MCR into a sequence of logical records of 
implementation-defined length by segmenting 
the supplied data and prefixing the appropri­
ate GOS LLID fields. It issues SEND_DATA 
verbs as often as necessary !determined by 
the buffer-record size used by the PS. MC 
implementation> to send all the logical 
records. 

PS C in particular, the PS verb router l is 
recursively callable: it is called by a TP 
when the TP issues a verb, and i t is also 
called by verb handlers within PS that them­
selves i ssuP. verbs. For example, the 
mapped-conversation verb handlers in PS typi­
cally issue one or more basic-conversation 
verbs to perform the function requested by a 
mapped-conversation verb. 

When PS has first entered send state, it 
expects an LL at the beginning of the first 
buffer record. From then on, PS compares the 
accumulated length of the data passed on suc­
cessive issuances of SEND_DATA to the 
logical-record lengths specified in the LLs, 
thus verifying that the conversation message 
sent ends at a logical record boundary. 

PS accumulates the data from successive buff­
er records in an internal buffer of 
implementation-defined length. When the 
buffer is full, PS transfers the data to HS 
with an indication of whether it is the last 
of the data for a conversation message. When 
PS detects the end of a conversation message, 
e.g., a PREPARE_TO_RECEIVE, RECEIVE_AND_WAIT, 
CONFIRM, SYNCPT, or DEALLOCATE verb was 
issued, PS transfers its remaining accumu­
lated data with an indication of how the con­
versation message was ended, e.g., 
conf i rma ti on request , conversa ti on turn­
around, or deallocation. It also places the 
conversation in the appropriate state. 

Meanwhile, the HS process, also in send 
state, waits for data from PS.. When PS 
passes the data, HS reblocks it into RU-sized 

Chapter 2. Overview of the LU 2-31 



\.nits Uhe RU size for • session is deter­
•ined by BIND negotiation Mhen the session is 
activated). When HS has received more data 
than necessary to fill an RU, it generates an 
RH, builds the BIU, and generates a sequence 
number and other TH infor11ation. If session 
cryptography is being used, HS enciphers the 
data. 

HS encodes each RH to indicate the beginning 
or end of a bracket (corresponding to a com­
plete conversation exchange) and the begin­
ning or end of a chain tcorre5ponding to a 
conversation message). For all but the last 
BIU in a chain, HS encodes the RH with RQEl. 

For the last BIU for the conversation mes­
sage, HS encodes the RH with EC t the 
end-of-conversation-message indicator) and 
other indicators selected by PS, such as CD 
(e.g., PREPARE_TO_RECEIVE verb issued), RQD2 
te.g., CONFIRM issued>, RQDl (DEALLOCATE 
TYPElABEHDJ) issued), and CEB (DEALLOCATE 
issued) • HS changes the local sess i on state 
accordingly. 

llS passes each completed BIU and the corre­
sponding TH information to path control for 
transmission to the receiving HS in the 
remote LU. 

HS enforces session-level pacing. The send­
ing HS sends at •ost one pacing windo111 of 
BIUs before receiving a pacing response. It 
then requires a pacing response from the 
receiver before sending another window. The 
receiving HS sends a pacing response when it 
can receive another pacing window, e.g., when 
it hH enough free buffers • Depending on i ts 
ability to receive additional data, the 
receiver uy send a pacing response at any 
time after receiving the first BIU of a win­
doN. 

Receiving .l2itll 

The HS process at the receiving LU receives 
BIUs and TH information from path control. 
It sends pacing responses when it is able to 
receive additional BIUs. If session 
cryptography is specified, it deciphers the 
data. It checks for correct session proto­
col. It checks BIU sequence nut!lbers to 
detect lost or duplicate BIUs and to corre­
late responses with the correct bracket. If 
it detects any protocol error, it abnormally 
deactivates the session, i.e., it requests 
lNS to issue UNBIND indicating a format or 
protocol error. 

If the BIU is satisiactory, HS sends the 
Attach FM header, if present, to RH, and 
sends all other RU data to PS. HS also sends 
PS an indication of significant state changes 
that were encoded in the received RH such as 
end of a conversation message (End-of-chain), 
enter send state (Change-direction>, confir­
mation request (Definite-response 213) and 
end of conversation 
(Conditional-end-of-bracket). HS changes its 
own session state accordingly. 

Meanwhile, the 
MC_REt:EIVE_AND_WAIT 
~~~•ation message. 
PS. 

receiving TP issues 
verbs to receive the con­
Each verb issuance calls 

For each HC_RECEIVE_AND_WAIT issuance, PS 
repeatedly (and recursively> ;ssues 
RECEIVE_AND_WAIT verbs until it rece;ves a 
complete HCR fr011 HS. 

For each RECEIVE_AND_WAIT verb issuance <in­
clud;ng the case in which RECEIVE_AND_WAIT is 
issued directly by a transaction progra11. 
i.e., for a basic conversation), PS waits for 
the data frOM HS. As PS receives the data, 
whbh includes LL fields, PS accU111Ulates the 
data in an internal buffer, until it reaches 
the end of a logical record tor buffer 
record>. WhHe accumulating the data, PS 
keeps track of the LL fields, to verify that 
the conversation message ends on • logical 
record boundary. 

When the PS verb handler for RECEIVE_AND_WAIT 
returns (recursively> to the PS verb handler 
for HC_RECEIVE_AND_WAIT, PS checks the length 
and continuation fields in the Lls to ver;fy 
that a complete MCR has been received, strips 
the SOS LL and ID fields, and reblocks the 
data into an t1CR. tlf the TP receive buffer 
cannot conta;n the complete HCR, PS passes it 
to the TP in receive-buffer-s;zed segments, 
i.e., mapped-conversation buffer records.> 

If PS receives an end-of-conversation-message. 
indication, it does not forward this indi­
cation to the TP until after all logical 
records and MCRs have been received. It then 
returns the end-of-conversation-message indi­
cation alone on the next MC_RECEIVE_AND_WAIT 
verb issued, and places the mapped conversa­
tion into the appropriate state. 

Internal Buffering 

Figure 2-27 on page 2-33 illustrates internal 
buffering that the LU may perior11 during send 
and receive operations. The figure has the 
following meaning. 

Column (A) 

If send buffer record is the DATA parameter 
(LL and data) of the SEtl>_DATA verb. 

Column (8) 

fl! u11d !!Y!.f.!!: is a buffer in the sending PS 
of implementation-defined length tin this 
example, 6) for accU11Ulating TP data to 
be sent to HS. 

PS-to-HS~ is the data transfe.rred to 
HS from a full PS send buffer. 

Column tC) 

~ internal buffer is a buffer in the send­
ing HS of RU size (in this example, 4) 
that accumulates data fro111 PS until a 
co111>lete RU can be sent. 

2-32 SHA Format .and Protocol Reference Hanual for LU Type 6.2 



(1) 

( 2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

Source LU JPath Control 

<Al I <Bl l CCI 

TP Send : PS PS-to-HS : HS HS-to-,-HS : 
Buffer : Send Record : Internal via : 
Record : Buffer : Buffer PC : 

: (length 6 l Clength 6l:CRU size 41 CRU size 4): 
: : : 

Data LLl l l 
~ ~ ~ 

gfedcbA 7 : g fedcbA : fe dcbA : 
: : : 

ponmlkjiH 9 : ponm lkjiHg : lkji Hgfe : 
: : : 
: : CHS defers sending RUl : 
: : : 

srQ 3 : s rQponm : rQponm lkji : 
: : : 
: : ;•(if ponm : 
: : : 

vuT 3 : vu Ts : rQ : 
: : : 

zyxW 4 : zy : xWvuTs : xWvu TsrQ : 
: : : : 

# 0 : : #zy : #zy xWvu : 
: : : : 
: : : #zy : 
: : : : 

I : j l 
Direction of Flow 

Target LU 

<Dl I (El 

HS-to-PS ·:· PS TP Receive 
Record : Receive Buffer 

: Buffer Record 
<RU size 4 l: ( inf in i tel (length 81 

: 

j Data ClenJ 

·~ 

dcbA : dcbA 
: 

Hgf e : H gfedbcA 7 
: 
: 
: 

lkji : lkjiH 
: 

po nm : p onmlkjiH 9 
: 
: p 
: 

TsrQ : T srQ 3 
: 

xWvu : xW vuT 3 
: 

#zy : # zyxW 4 
: 

l # 

NOTATION: 

Read data strings right to left to correspond with the order of flow on the session. 

A capital letter represents the start of a logical record 
<i.e., the first byte of the LL field.I 

# represents the encl-of-conversation-message indication. 
!This is actually coded in the RH, which is not shown in this example.I 

Parenthesized numbers and letters identify rows and columns for explanations in the text. 

Figure 2-27. Internal Buffering in LU Send/Receive Data Operations <Example> 

HS-to-HS vi a PC is an RU transmitted over 
the path control network. 

Column CD l 

HS-to-PS record is a received RU sent from 
HS to PS. 

Column CEJ 

.E!§ Receive Buffer is an unbounded buffer for 
accumulating received data from HS. 

If Record is the DATA parameter buffer of 
the RECEIVE verb C of length 8 in this 
example). 

This example assumes that the FILL parameter 
of the receive verb has the value LL. The 
buffer and record sizes were selected to sim­
plify the illustration; typical actual sizes 
would be much larger, e.g., 256 bytes for the 

RU size, end up to 32, 767 bytes for a TP 
record. 

Notes on the figure: 

Row (ll 

CAI The sending TP sends a 7-byte logical 
record CAbcdefgJ to PS • 

CBJ PS sends the first 6 bytes Cits buffer 
length> to HS CAbcdefl and retains the 
7th CgJ, awaiting more data. 

CCI HS at the sender receives the 6 bytes 
from PS and sends 1 RU C4 bytes: Abed) 
to path control and retains the remain­
ing 2 bytes Cef ). 

CDJ HS at the receiver receives the RU (4 
bytes) and sends the data to PS 

Chapter 2. Overview of the LU 2-33 



(El Heaneoihile, the recelY1ng TP issues 
RECEIYE_AND_WAIT. 

PS accumulates the data in its buffer 
untH it has enough to satisfy a TP 
request, i.e., en0ugh to fill the TP 
receive buffer or complete a logical 
record. 

RON (2) 

(Al The sending TP sends • 9-byte logical 
record (H ••• pl. 

(Bl This forces another 6-byte buffer fre111 
PS (g ••• l>; PS retains the remaining 4 
bytes <•· .. pl. 

(Cl HS now has 8 bytesJ it sends 1 RU (4 
bytes: efgHl and retains 4 (ijkll. 

(D,El At the receiving LU, this RU completes 
the logical record (A, •• g) at the 
receiver. PS passes the record to the 
TP and retains the first byte of the 
next record (Hl. 

RON (3) 

(CJ HS at the sender still has exactly 
enough data accumulated for one •ore RU 
( i jkl J, but HS does not send this RU 
uitil forced by arrival of another byte 
or an end-of-conversation-message indi­
cation. HS always 111aits with an exact­
ly full RU so it can incorporate any 
subsequent protocol signals into the 
RH. 

The interpretation of the remaining lines is 
si•ilar. Highlights are given below. 

RON (5) 

(El At the receiver, the second RU received 
conipletes the second logical record 
(H ••• pJ at the receiving PS. But since 
the receiving TP buffer is only 8 
bytes, PS can pass only 8 bytes (H ••• o) 
on the current receive verb. 

RON (6) 

IE> PS at the receiver passas the last byte 
(pl of the second logical record to the 
TP on the next receive verb. 

Rows (8-9) 

U-C) The end-of-conversation-111essage indi­
cation (I) frOll the sending TP forces 
the sending PS and HS to send all resi­
dual data in their buffers. This makes 
one 1110re record available to the 
receiving TP. 

RON (9) 

tD,E) When the recelYmg HS and PS get the 
end-of-conversation-message indication, 
they forward all residual data as soon 
as possible. The TP gets the last log­
foal record. 

RON (10) 

<El The rece1v1ng TP gets the 
end-of-conversation-message indication 
alone on the next receive verb. 

TRANSACTION PROGRAH INITIATION Atl> TERHI­
NATION 

Before the TPs can exchange 1111Ssage uni ts, 
the TPs 111USt be brought into execution. 

Invoking A !.!!!a!s Traosaction Program 

Assl.lllle that a source TP is already fo exe­
cution. It requests invocation of a remote 
TP by issuing the ALLOCATE verb (or 
HC_ALLOCATE, which PS.tit converts into an 
ALLOCATE>. It identifies the progra11 to be 
invoked by specifying the remote transaction 
program name and remote LU name, and selects 
the desired transport characteristics by 
specifying a llOde name. 

Using the parameters frOll ALLOCATE, the 
source PS builds an Attach FH header and 
sends it to HS ( in so11111 cases, vi a RH l for 
trans11ission to the partner LU. When the 
target HS receives the Attach FH header, it 
passes it to its RH. This RH checks sOllle 
parameters in the Attach FH header including 
all security parameters. If a for•at or pro­
tocol error is found, the Attach FM header is 
rejected by ter11inating the session that it 
arrived on. If no for11at or protocol error 
is found, RH creates a PS process and passes 
it the Attach FM header. The new PS analyzes 
the Attach FH header and, if an error is 
detected, rejects i tJ other11eise, PS selects 
and loads the specUied transaction progra• 
code, and calls it, placing it initially in 
receive state for the conversation. 

Once • target TP is invoked, it c•n act in 
turn as a source TP to invoke other TPs. If 
conversation-level security is required by 
the other TPs, the same security user ID that 
initiated the original target TP may be used, 
along Nith an Already VerHied indicator in 
the Attach FH header, or the source TP 111ay 
supply the required security para1111ters. 

Initiating !hi Initial .b9s!.l Traosactioo Pro­
Slt!!I! 

The first TP activated for a distributed 
transaction is initiated in a Nay that 
appears to the TP as though it Nere invoked 
as a target TP by another source TP. To do 
this, the source RH behaves as if it had 
received an Attach: it creates the PS proc­
ess and generates an Attach FH header to pass 
to PS. These RH actions are triggered by 
imple•entation-defined Means such as issuing 
a local control-operator verb. 

PS then loads and calls the TP, which can 
then issue verbs by calling PS. 

2-34 SNA Fornt and Protocol Reference Hanual for W Type 6.2 



Ter1;nat;nq .1 Transact;on Program 

A TP ends by return;ng to PS.INITIALIZE. PS 
then perfor11S any necessary final processing 
(such as deallocating the TP's remaining con­
versations>. and notif;es RH. RH then 
destroys the PS process. 

CONVERSATION ALLOCATION AND DEALLOCATION 

A source TP initiates a conversation 1o1ith a 
target TP by issuing the ALLOCATE (or 
t1C_ALLOCATE> verb. 

The source PS satisfies the TP request in two 
steps. 

First, PS sends RM a request to allocate a 
conversation. RH creates a conversation 
resource and notifies PS. 

Second, PS sends RH a request to assign a 
session to the conversation. When RM has a 
session available for the conversation, RM 
connects the PS process of the issuing TP to 
the HS process of the session and notifies PS 
and HS. PS places the source end of the con­
versation (where the allocation was 
requested> initially in send state. 

If a session is not immediately available, RM 
suspends the issuing process. 

After a session is assigned to the conversa­
tion at the source LU, PS sends the Attach FM 
header to HS for trans111ission to the target 
LU. (In some cases, PS sends the Attach FM 
header to RM rather than directly to HS; RM 
then sends it to HS when bidding for the ses­
sion.) 

When HS at the target LU receives the first 
BIU of the bracket, it notifies RH. RM 
receives the Attach fr011 HS, creates the con­
versation resource. and Makes it accessible 
to HS and PS. It places the target end of 
the conversation initially in receive state. 

The following sections give further details 
of these f'-A'lCtions. 

Selecting .1 Session 

RH -intains a list of allocation requests 
and a lhst of free sessions and their con­
tention polarities. If RH has an allocation 
request and a first-speaker 
(contention-winner) session is free (i.e., in 
between-brackets state J, RM allocates that 
session to the conversation. If a 
first-speaker session is not free but a bid­
der (contention-loser J session is free, RH 
bids for the sess;on. If no sessions are 
free, but the sessfon li11its have not been 
reached, RM requests that LNS activate a new 
session. 

Bjddinq 

RM requests HS to attempt to begin a bracket 
by sending an RU with BB; this ;s called 
bjdding for the session. 

RM always accepts a bid received on a bidder 
session. 

If RH receives a bid on a first-speaker ses­
sion, RM accepts or rejects the bid depending 
on whether any of its own transactions need 
to allocate the session for use by their own 
conversation (if they do, then it sends a 
negative response to the bid; otherwise, it 
sends a positive response to the bid). 

Optionally, a negatively-responding RH Nill 
infor11 the partner when it is again willing 
to accept a bid. 

Newlv Actjve Session 

l<l'len a session becomes newly active, it is 
initially in in-brackets state. If LU-LU 
verification is active, RH at the primary LU 
creates and sends ! vi a HS J a Security FH 
header (FHH-12) to the secondary LU's RH for 
verification. The LU that activated the ses­
sion !the prh1ary LU, or BIND sender) has 
first right to send, regardless of the ses­
sion contention polarity. If RM at the pri-
111ary LU has no unsatisHed conversation 
request when a session becomes active, it 
requests HS to yield the session, i.e., to 
end the bracket. 

Deallocation 

When PS requests deallocation of the conver­
sation, HS ends the current bracket, and RM 
deletes the conversation resource and places 
the session in the free-session list. 

SESSION ACTIVATION AND DEACTIVATION 

If RH has a conversation request for a ses­
sion but no session is free and the session 
li11its have not been exceeded, RH requests 
LNS to activate a new session. RM also 
requests session activation as a result of 
operator co-ands (such as INITIAL­
IZE_SESSION_LIHIT l. 

Startjnq .1.,Session 

Starting a session involves the following 
three activity phases: session limits 
initialization, session initiation, and ses­
sion activation. 

Initializing Sessio11 ii.!ti.b: Prior to any 
transaction activity, the control operator 
sets li•its on the maxilllWll and 11ini111UM nuia-

Chapter 2. Overview of the LU 2-35 



ber, and contention polarity, of active ses­
sions wHh particular partner LUs using 
particular mode names (see "Control-Operator 
Functions" on page 2-38 for details). 

Session Initiation: When LNS receives a ses­
sion activation request frotn RM, LNS sends an 
INITIATE session-services RU, containing the 
partner LU name, to its control point, using 
the CP-LU session. 

When the control point receives the INITIATE, 
it translates the LU name info a network 
address. 

The CP then sends a CINIT RU, which contains 
the network address, the cryptographic key if 
session cryptography is used, and a 
description of other characteristics for the 
ses::;ion, to the LU that is to activate the 
session. !The LU that activates a session is 
called the Qrimarv LU [PLUJ. The PLU is not 
necessarily the LU that requested session 
initiation.> 

Session Activation: LHS for the PLU receives 
the CINIT and retains the address. Using 
information frOlll the CINIT and from the LU's 
mode table for the requested mode, LNS then 
generates a BIND session-control RU contain­
ing the desired session parameters. If secu­
rity is used, the session parameters include 
randomly generated data for LU-LU verifica­
tion and an indication of the amount of 
conversation-level security support that is 
defined for the secondary LU. Random and 
enciphered data are sent/received only when 
LU-LU verification is active. LNS sends the 
BIND to its local PU for routing to the part­
ner LU. 

LNS for the LU receiving the BIND (the :;;ec­
ondarv LU or SLUJ negotiates the proposed 
session parameters to acceptable values; 
enciphers the received random data based upon 
the LU-LU password; saves the indication of 
the primary LU's conversation-level security 
support for the secondary LU; and creates a 
positive response to BIND that includes an 
indication of the secondary LU's 
conversation-level securHy support for the 
primary LU, randomly generated data, and the 
enciphered version of the random data 
received in BIND. LNS sends this positive 
response to BIND via its local PU. 

When the positive response to BIND is sent or 
received, the LNS at each end connects a new 
HS process to the path control network. If 
the session uses cryptography, the HSs 
exchange cryptography-verification RUs. 
Then, each LNS notifies its RM that a new 
session is available. If LU-LU verification 
is active, before the new session is avail­
able for conversations, the primary LU's RM 
enciphers the random data received on the 
response to BIND and returns it to the sec­
ondary LU's RM for verification. 

If the LUs cannot agree on session parame­
ters, or the enciphered random data compar­
ison fails, the session activation fails. 

Session Outage 

If session outage occurs, LNS notif;es RM. 
If a conversation was active on the session, 
RM notifies PS, which notifies the trans­
action program of conversation failure. RM 
requests LNS to activate another session if 
it has unsatisfied conversation requests or 
an ~satisfied auto-activation limit. 

!nsli.!:!g ~ Session 

Ending a session involves the following three 
activity phases: operator request, session 
shutdown, and session deactivation. 

Operator Request: Sessions are not deacti­
vated in the normal course of transaction 
program processing; they are deactivated only 
upon spec i fi c request frora the 
control-operator transaction program. 

When the LU operator at either end of a ses­
sion determines that a session is to be deac­
tivated, the control-operator transaction 
program issues a control-operator verb. The 
control operator can cause sessions to end ;n 
two 111ays. 

The operator can issue a RESET_SESSION_LIMIT 
verb to reset the session li111its to O for 
specified partner LUs and mode names. The LU 
proceeds wi th subsequent phases unt i 1 there 
are no active sessions for the specified 
<LU.mode) pairs. 

The operator can also issue a DEACTI­
VATE SESSION verb to deactivate a specific 
session (this might be done, for example, to 
recover from certain error situations>. This 
does not change the session limits, however, 
so the LU might activate another session to 
replace it. 

When PS.COPR receives the verb, it issues • 
session-limit-change notification or • 
session-deactivation request to RM. 

Session Shutdown: When RM receives • 
sessi on-limit-change notification, RH first 
perfor111s drain processing. If the operator 
has requested RESET_SESSIOH_LIMIT with drain 
indicated, then RM performs no deactivations 
until all requests for allocation of sessions 
with the specified mode name have been satis­
fied. 

When drain is complete, or when RH receives a 
session-deactivation request, and an affected 
session next enters between-brackets state, 
RH initiates a bracket-termination protocol. 
This consists of an exchange of 
bracket-initiation-stopped (BIS) RUs assuring 
that all brackets have completed at both ends 
of the session, i.e., that no other BIUs are 
in transit between the LUs. 

After receiving BIS, the partner LU drains 
its allocation requests and sends BIS in 
return. 

2-36 SNA Format and Protocol Reference Manual for LU Type 6.2 



When the BIS protocol ;s complete, the RM 
that ;nitiated the BIS protocol ;nstructs its 
LNS to deact;vate the session. 

Sess;on Deactivation: When LNS receives a 
sess;on-deactivation request from RM, ;t 
sends UNBIND, v;a the local PU, and awa;ts a 
response. When the partner LNS rece;ves an 
UNBIND, it uncond;tionally sends a posit;ve 

FUNCTIONAL SUMMARY BY COMPONENT 

This section is organ; zed by component; it 
reviews the specific functions of each prin­
cipal component, and describes functions per­
formed primarily in one component. 

Presentation Services 

PS manages transact;on programs and controls 
conversation-level communication between TPs: 

• 
• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Loads and calls the transaction program 

Maintains the conversation protocol 
state, e.g., send/receive state of the TP 

Enforces correct verb parameter usage and 
sequencing constraints 

Coordinates specific processing for each 
verb 

Performs mapping of transaction program 
data into mapped-conversation records 

Converts mapped-conversation records to 
GOS variables, and the reverse: it par­
titions the data into logical records and 
generates LLID prefixes 

Buffers conversation-message data from 
the transaction program into contiguous 
blocks for efficient subdivision by HS 

Reblocks RU data from HS into logical 
records or buffer records as required by 
the TP 

Ver;fies logical-record length and bound­
ar;es 

Truncates or purges data when errors are 
reported or detected by the TP 

Generates and issues FM headers for 
Attaches and Error-descriptions 

Half-Session 

HS controls 
between LUs: 

session-level communication 

• Reblocks data from PS into RU-sized units 

response. When the response to UNBIND is 
sent or received, the correspond;ng LNS dis­
connects the half-session process from the 
path control network, notifies the CP that 
the sess;on is ended, and destroys the 
half-sess;on process. 

• 

• 

• 

• 

• 

• 

• 
• 

• 

Bu;lds RHs and enforces correct RH param­
eter sett;ngs 

Creates cha;ns and enforces cha;n;ng as 
the un;t of LU-to-Lll error recovery 

Correlates responses with the correct 
bracket 

Enforces bracket protocol and purges 
rejected brackets 

Enforces protocols for the relevant FM 
and TS profiles for the sess;on 

Generates and enforces sequence number;ng 
to detect lost or dupl;cate BIUs 

Prov;des session-level pac;ng 

Exchanges cryptography-ver;fication RUs 
when session cryptography ;s being used 

Enciphers and deciphers data when session 
cryptography is be;ng used 

Resources Manager 

RM manages presentation services and conver­
sat;ons. 

• Creates and destroys instances of presen­
tation serv;ces 

• Creates and destroys conversation 
resources and connects them to 
hal f-sess;ons and to presentation serv­
ices 

I • 
I 

Finishes LU-LU verification for 
session-level security by generating and 
processing Security FM headers CFMH-12s) I 

I 
I • 
I 
I 
I 

• 

Performs all conversation-level security 
checks, verifies conversation-level pass­
words, and controls access to protected 
transaction programs 

Maintains the data structures represent­
ing the dynamic relationships among con­
versation resources, half-sessions, 
transaction program instances, and trans­
action program code 

Chapter 2. Overview of the LU 2-37 



• Chooses the session to be used by a con­
versation and controls contention for the 
session 

• Performs drain action: allows session 
traffic to cease before requesting ses­
sion deactivation 

• Requests LNS to activate and deactivate 
sessions 

.bl.! Network Services 

LNS manages sessions: 

• 

• 
• 

• 

I • 
I 

Coordinates session initiation in concert 
with the control point 

Sends and receives BIND 

Supplies and negotiates session parame­
ters during BIND exchange 

Exchanges cryptographic key and session 
seed 

Exchanges random and enciphered data and 
performs initial LU-LU verification 

• Notifies RM of session outage 

• Notifies the control point of LU charac­
teristics and conditions during LU 
initialization CACTLU exchange) 

• Creates and destroys half-session 
instances and connects them to path con­
trol instances 

FUNCTIONS OF SERVICE TRANSACTION PROGRAMS 

Service transaction programs provide func­
tions to the end user that require communi­
cation with another LU using a special 
SHA-defined pattern of verbs. 

Service TPs form part of a distributed trans­
action similarly to other TPs. They have a 
transaction program name and are invoked by 
the Attach mechanism, and they exchange 
information with these other TPs by issuing 
transaction-program verbs. 

Service transaction programs differ from 
user-application transaction programs in that 
they are SHA-defined and are considered part 
of the LU. The names of service transaction 
programs are SHA-defined. The records that 
service TPs send and receive are SHA-defined 
GOS variables. 

Control-Operator Functions 

All LUs have an implementation- or 
installation-defined control operator trans­
action program CCOPR TP> that represents the 
LU control operator's interface to the LU. 

Using a program-selected means such as opera­
tor console input, this TP issues 
control-operator verbs to perform 
control-operator functions. 

Control-operator verb functions include cre­
ation and modification of the data structures 
that describe the LU and the LU-accessed net­
work resources: control points, transaction 
programs, partner LUs, and modes. Other 
control-operator verb functions limit the 
numbers and contention polarities of sessions 
with particular LUs for particular mode 
names, and also determine when sessions will 
be activated and deactivated. 

For an LU that supports parallel sessions, 
there are additional transaction services 
components for the control operator. These 
LUs contain a change-number-of-sessions 
CCNOS) service transaction program. When 
processing CNOS verbs, the COPR TP at one LU 
exchanges GOS variables with the CNOS service 
TP at its partner to reach mutual agreement 
about limits on the number of parallel ses­
sions between them • 

(Control-operator functions are discussed in 
further· detail in "Chapter 5.4. Presentation 
Services--Control-Operator Verbs".) 

SNA Distribution Services 

SNA Distribution Services CSNADS> provides a 
set of verbs that an application TP may issue 
to request asynchronous distribution of data. 

The service is provided by a network' of dis­
tribution service units CDSUs) interconnected 
by conversations and sessions. Each DSU con­
sists of PS verb handlers and a collection of 
service TPs within the LU. The service TPs 
provide data storage, rouUng, and distrib­
ution asynchronously with the origin or des­
tination application programs. 

SHADS is described in the publication fil:!A 
Format and Protocol Reference Manual: Dis­
tributi on Services. 

Document Interchange Services 

Document Interchange Architecture COIA> 
describes formats and protocols for synchro­
nous exchange of documents by using 
basic-conversation verbs in a prescribed way. 
Document interchange services include service 
TPs for synchronous document transfer. 

Document interchange architecture is 
described in the publication Document ~ 
change Architecture--Concepts and Structures. 

OPTIONAL FUNCTIONS 

This section describes the principal optional 
function sets. 

2-38 SNA Format and Protocol Reference Manual for LU Type 6.2 



i"ne mappina function is an optional function 
of mapped conversations CPS.MC) that allows a 
TP to select transformations, called maps, to 
be applied to TP data at the sending and 
receiving TP protocol bo•Jndari es. Maps are 
non-SHA-defined transformation tables or pro­
cedures that can be defined by the installa­
tion at both the source and target LUs. Maps 
can specify, for example, how fields of a 
mapped-conversation record are related to the 
TP variables (data record> referred to in 
protocol-boundary verbs. 

Each LU can support multiple maps. Each map 
is identified by a !!m.P nfil!!!· The maps to be 
applied are selected by the transaction pro­
gram !via verb parameters) and by other maps 
Cin an implementation-defined way), as shown 
in Figure 2-28 on page 2-40. 

Three separate map-name name spaces exist 
!terms in parentheses correspond to those in 
the f i gure ) : 

1. Sender locallv-known !!m.P nfil!!!: This map 
name Cmap-name-1) is known to the TPs at 
the sending LU. It identifies a map 
Cmap-1) at the sending LU that defines 
the transformation performed by the send­
er from the format of the sending-program 
data Cdata-1) to the format of the MCR 
( data-2) that is sent on the conversa­
tion. This map also defines a corre­
spondence between the sender 
locally-known map name Cmap-name-1 l and 
the globally-known map name Cmap-name-2) 
described below. 

2. Globally-known !!m.P name: This map name 
Cmap-name-2l is known at both the sending 
and receiving LUs, and is transferred on 
the conversation between sender and 
receiver. It identifies a map Cmap-2) at 
the receiving LU. This map defines the 
transformation performed by the receiver 
from the format of the MCR received on 
the conversation ( data-2) to the format 
of the data presented to the receiving 
transaction program ( da ta-3 l. This map 
also defines a correspondence between the 
globally-known map name Cmap-name-2) and 
the receiver locally-known map name 
(map-name-3) described below. 

3. Receiver locally-known !!m.P nfil!!!! This 
map name (map-name-3) is known to TPs at 
the receiving LU. This identifies the 
format of the data presented to the pro­
gram Cdata-3), e.g., it allows the pro­
gram to select the correct structure 
definition or format description for the 
data produced by the execution of the 
receiver map Cmap-2). 

Mapping is performed by a PS.MC component 
called the mapper. 

The mapper at the sender selects the send map 
specified by the sender locally-known map 
name, which is supplied as a parameter of the 
MC_SEHO_OATA verb. It performs the send map-

ping on the TP-supplied data, producing a 
mapped-conversation record. Using the sender 
map, the mapper also selects the· 
globally-known map name. 

The LU sends the globally-known map name over 
the conversation in an SHA-defined map-name 
GOS variable (see "Appendix H. FM Header and 
LU Services Commands"), and sends the 
mapped-convers~tion record in a separate GOS 
variable. 

The mapper at the receiver selects the 
receive map specified by the globally-known 
map name received. It performs the receive 
mapping on the mapped-conversation record it 
receives, resulting in data formatted for 
presentation to the TP. Using the receiver 
map, the mapper also selects the receiver 
locally-known map name. PS.MC passes the 
receiver locally-known map name and the 
reformatted data to the TP as returned param­
eter values for the next receive verb issued, 
e.g., MC_RECEIVE_AHD_WAIT. 

The receiving TP uses the receiver 
locally-known map name in a TP-determined way 
to interpret the received data. 

The TPs supply or receive a map name parame­
ter value for each send or receive verb 
issued, respectively. The LU, however, does 
not send another map-name GOS variable if the 
globally-known map name has not changed from 
that of the previous record sent. To accom­
plish this, the mapper at each LU retains the 
most recently sent and most recently received 
values of map-name-2 for the conversation 
!the send and receive map names can be dif­
ferent>. The retained values for each direc­
tion persist until changed or until the end 
of the conversation, regardless of interven­
ing turnarounds. 

The sync point function allows all TPs proc­
essing a distributed transaction to coordi­
nate error recovery and maintain consistency 
among distributed resources such as data 
bases. 

The sync point functions affect orotected 
resources. These include conversation 
resources and implementation- or 
installation-designated resources such as 
data bases. Any changes to a protected 
resource are logged so that they can be 
either backed out C reversed l if the trans­
action detects an error, or committed (made 
permanent> if the transaction is successful. 

The transaction programs divide the distrib­
uted transaction into discrete, synchronized 
logical uni ts of work ( LUWs l, delimited by 
synchronization points (sync points). <Cor­
responding sync points occur at each TP par­
ticipating in the distributed transaction. l 
LUWs are sequences of operations that are 
indivisible units for the app}ication, i.e., 
any failure in an LUW invalidates the entire 
LUW Call LUW processing by all TPs for the 

Ch&pter 2. Overvi etoJ of the LU 2-39 



* * 
* * '* *' I - I Sender map Cmap-1) 

* * -, 
I 
v 

* * 
* * 
'*-*' I I Receiver map Cmap-2) 

* * -, 
I 
v 

source TP sends: I transferred on conversation: I target TP receivi:.s: 
I 

map-name-1, data-1 I 
~~~~~~~~>I 

I 
I !;.,.11d 
I Mapping 
I 

map-name-2, dat~-2 

Figure 2-28. Map Name Usage by Mapped Conversations 

transaction I , so the transaction is backed 
out to the previous sync point. 

The LU components for the sync point function 
are shown in Figure 2-29 on page 2-41. 

Highlights of the sync point function are 
discussed below. CSee "Chapter 5.3. Presen­
tation Services--Sync Point Services Verbs" 
for details • I 

Sync Point Control: The sync point function 
at each LU is coordinated by PS.SPS. 

For each TP process participating in the dis­
tributed logical unit of work, the corre­
sponding PS.SPS tracks the state of that 
logical unit of work. To do this, PS.SPS has 
protocol boundaries with the TP and with the 
protection managers for each conversation and 
for each protected local resource allocated 
to that TP. 

Logaing: When processing a _given logical 
unit of work, whenever a TP 1 ssues a verb 
that makes any changes to a protected 
resource, the corresponding resource pro­
tection manager logs the change so that, if 
necessary, the change can be backed out lat­
er. 

The log manager maintains the log entries for 
each active LUW Ci.e., for each active trans­
action) on non-volatile storage, using 
implementation-defined data-management func­
tions. The same log is used to record all 
log entries for all the LU resources for the 
LUW. 

Resources Manager: When it creates the PS 
process, RM provides PS.SPS with access to 
the log. RM also logs conversation allo­
cations, thereby supplementing the work of 
the conversation protection manager. 

In some cases, a transaction program can ter­
minate normally before its sync point log 
entries are erased. In these cases, RM 
assumes the function of the terminated sync 
point control to complete the protocol and to 
release Cforgetl the log entries. 

I 
I map-name-3, data-3 

>I > 
I 
I Receive 
I Mapping 
I 

Protection Managers: Each protected 
resource, e.g., a conversation or a local 
data base, has a protection manager that logs 
significant state changes during a logical 
unit of work, detects errors affecting the 
integrity of the changes, and commits or 
backs out the changes as determined by the 
sync point protocol. 

The protection manager for a conversation is 
defined by SNA; protection managers for other 
Cnon-SNA> resources are defined by the imple­
mentation, but have a similar protocol bound­
ary to PS.SPS. The protection managers form 
a sublayer between PS verb handlers and the 
resource-control components. 

Sync Point Protocol: At the end of a logical 
unit of work, an application-designated TP 
initiates sync point. The LUs then carry out 
a protocol involving all local protected 
resources and conversations being used by the 
TP, and all partner LUs and TPs directly con­
nected by those conversations, to determine 
whether any TP or protected resource detected 
an error in the LUW, and to propagate this 
result to the other LUs and TPs. 

When a TP issues a verb that invokes the sync 
point function Ce. g. , SYNCPT, BACKOUT> its 
PS. SPS coordinates the sync point protocol. 
PS.SPS exchanges sync point commands, in the 
form of presentatjon services 1ffil headers 
and FM headers, over the TP 's conversations 
with other TPs. Each PS.SPS component for 
the transaction performs similar exchanges, 
in turn, with its TP's conversation partners. 
The PS.SPS components also determine the sta­
tus of local non-SNA resources by exchanging 
appropriate commands across their internal 
protocol boundaries. These exchanges direct 
the protection managers to complete any pend­
ing log entries for the LUW. 

The sync point protocol culminates with a 
mutual decision among all TPs processing the 
LUW either to commit or to back out the LUW. 

Commitment and Back-Out: When the sync point 
protocol is complete at a particular TP, the 
resource control components use the LUW log 

2-40 SNA Format and Protocol Reference Manual for LU Type 6.2 



log < 
manager < 

< 

[:our:•• < 
manager < 

I 
v 

LNS 

NOTES: 

appl;cation RESYNC 
transact;on service 

program transaction 
'----A.----' program 

I i 
.-----~--~v-------------------v-----------. 

PS PS 
sync point local 
services resource 

( PS.SPS l Cnon-SNAI 
A 

PS 
funct;on-
shipping 
resource 

Cnon-SNAI 
A 

[~unct;on-
shipping 
resource 
control 
(non-SNAI 
A.----.. 

• • • 
CNote 2 I 

CNote 1) 

V'------. 

PS.CONY 

A--A-A 
AAAA I 
111 L_ -, ==~, 111 • • ;N:te 3) 

A 

lS 1 1 1 I 1-v 

> 

L 

---
---

v 
log file 

rv---v v---v v---v v v 
protection protection protection protect; on 

manager 

local 
resource 
control 

Cnon-SNAI 
A---A 

---

m<mager 
for 

function­
shipping 
resource 
Cnon-SNAl 

. . ....... 

manager 

conversa­
H on 

resource 

----A 
I 

manager 

conversa­
t; on 

resource 

----A 

• 

PS 

~LU 8 loca 
resou f-
con tr 

:on 

---i~] 
g~ J LU-LU 

·~:::n 
'----A 

I I I 
v v v 

local resource path control 

1. Function-shipping resource control recursively calls PS to communicate with the partner. 
The conversation used for communication w;th the partner has ;ts own protect;on manager. 

2. PS components not relevant to sync point have been om;tted from th;s f;gure. 

3. A d;st;nct protection manager exists for each conversation resource created by PS. 

4. The non-SNA components are undefined protocol machines CUPMsl. 

Figure 2-29. Relationship of LU Components for Sync Point Functions 

Chapter 2. Overview of the LU 2-41 



entr;es to supply the ;nforMation. needed 
(e.g., data base change records> to perforM 
the requ; red co-i tll!lent or back out. They 
then notify PS.SPS to erase the log entries 
for that LUW. 

Resynchronization: An LU failure Might occur 
during the sync point protocol, so that some 
LU never receives an expected LUW status 
report. To recover from this case, the other 
LUs can 1r1ait until the failing LU is reini­
tialized, and then the LUs perform a resyn­
chronization ( resync > p.-otocol to complete 
the sync point processing at each LU. Resync 
uses service transaction programs to exchange 
sync point status among the LUs. 

When the failing LU is reactivated, the LU 
completes the resync transaction before r\.rl­
ning any other transaction programs that 
require sync point. The resync service TP is 
initiated by RH at SOiie LU, typically at the 

DATA STRUCTURE~ 

The LU Maintains data structures representing 
the state and configuration of its resources. 

SOllle syste111-definition data structure ele­
ments represent the LU-accessed network 
resources. These structures describe the 
characteristics of the LU itself, the trans­
action programs that the LU can run, the 
control-points that serve this LU, the part­
ner LUs Nith wMch this LU can communicate, 
and the lllC>des characterizing possible ses­
sions Nith particular partner LUs. 

Other data structure elements represent the 
dynamic environment created by the LU. The 
principal components of this environment are 
the transaction program instances in exe­
cution (represented by transaction-prograM 
processes> the active sessions Nith other LUs 
(represented by half-session processes>, and 
the active conversations (represented by con­
versation resources). This environment also 
includes the relationships of the dynamic 
components to the LU-accessed network 
resources and to each other. 

LU-ACCESSED NETWORK RESOURCES 

Figure 2-30 on page 2-43 illustrates the data 
structures that represent the LU-accessed 
network resources. 

The LUCB structure (and some associated lists 
not shown) describe the local LU. This 
information includes the LU's fully qualified 
name and the set of optional f1.r1ctions (e.g., 
parallel sessions and mapping) that the LU 
supports. The LUCB is also the anchor for 
lists of data structures describing the other 
LU resources. 

A TRANSACTION_PROGRAH structure (and associ­
ated lists not sh<Mi> describe the trans-

sync point initiatorJ this TP attaches the 
resync TP at its partners, Nhich continue 
propagating the resync TP throughout the LUs 
that had been processing the distributed 
transaction. 

The first step of the resync transaction is 
to validate the integrity of the LU logs, 
i.e., to determine that all lUs' logs contain 
consistent entries for the sanie LUW. To do 
this, the resync service TPs exchange 
Exchange Log Name GDS variables on the con­
versation. Next, the service TPs exchange 
Compare States GDS variables to determine the 
status of the sync point protocol at the t;me 
of failure. PS.SPS then uses th;s informa­
tion to complete the sync point protocol. 
(See "Appendix H. FH Header and LU Services 
Commands" for the SHA-defined fon1at of the 
Exchange log Name and Compare States GDS var­
iables.) 

action progra111& at the local LU. This 
information includes the transaction program 
name, its current availability status, and 
the set of optional f\rlctions (e.g., sync 
point and mapping) that it supports. 

An CPLU_CAPABILITY structure descr;bes a con­
trol point. This ;nfor111ation includes the 
allowed f or111ats of addresses and the set of 
session-services RUs used on the LU-CP ses­
sion. 

A PARTNER_LU structure describes a remote W 
(potential partner LU>. This information 
includes the remote LU' s names: local LU 
name, fully-qualified LU name, and unfoter­
preted LU name. It also includes the set of 
the LU's optional capabilities such as paral­
lel sessions. The PARTNER_LU structure also 
contains a list of llOde descriptions. 

A HOOE structure describes a mode. This 
information includes the lllC>de name and the 
set of optional funct;ons that are supported 
by the remote LU on a 110de basis, e.g., sync 
po;nt. It also includes the session parame­
ters that characterize this lllOde, such as 
maximuM allowed RU size, session-pacing Nin­
dON size, and session cryptography parame­
ters. The mode structure also indirectly 
describes link characteristics: the mode name 
;s used by the control-point as the key to 
tables ;dentify;ng the links and routes to be 
used for sessions.for that mode. 

PROCESSES AND DYNAHIC RESOURCES 

Figure 2-31 on page 2-44 illustrates the 
principal data structures and processes, and 
the;r relationships, that represent the 
dynamic env;ronment. The formal description 
represents these relationships in various 
ways such as pointers between control blocks, 

2-42 SHA Format and Protocol Reference Manual for LU Type 6.2 



• • 
• 

TPGt1 

TPGH 

TPGl1 

LUCB 

MOOE 

MODE 

MOOE 

HOOE 

MODE 

MOOE 

MODE 

MOOE 

HOOE 

CPC 

PTf.R 

PTNR 

PTNR 

PTNR 

• 
• • 

• 
• • 

• 
• 
• 

LEGEND: 
Vertical lines represent lists of s\j)ordinate resources 

Abbr. 
LUCB: 
TPGH: 
CPC: 
PTNR: 
t10DE: 

Local LU infor111ation 
Transaction Program Code foformation 
Control Point information 
Partner LU infor•ation 
Mode infor•ation 

Data Structure ~ 
( LUCB) 
(TRANSACTION_PROGRAl1) 
<CPLU_CAPABilITY> 
(PARTNER_ LU) 
(MODE> 

Figure 2-30. LU Static Data Structures <Exa111Ple> 

keys of elements in lists, and interudiate 
dynamic control blocks. 

The processes also contain state information 
used by LU functional components; this is 
described in 110re detail in chapters con-

cerned with the relevant f1.mCtional compo­
nents. 

The TP process represents a transaction pro­
gram instance. It identifies the transaction 
program code that it is using. There 1nay be 

Chapter t. Overview of the LU 2-43 



• 
• • 

LUCB 

.___H_s __ ... I : : : : : : : : : : : ._ ___ c_P_c ___ _. 

TPGM 1 ::::::I TP A 

:11111! RCB E I***************************************: PTNR W 

:1111111111 .. I _H_s_K__.I : : : : : : : : : : : _M_o_D_E _u_:---

... T_P_G_M_2__. : : : : : : ._I _T_P_B__, : MODE 

TPGM 3 

... · I .... . . 

TPGM 4 

: : . · I . ... 

• 
• • 

I I I 
: 11111 RCB F 1111111 

:1111111 RCB 6 111111: 

I 
I 
I 
I 
I 
I 

HS M !::::::::::: 
'------'· . . ..._ __ __, 

MODE Li----' 

..__H_s_N__.l : : : : : : : ; ; PTNR X 

MODE 

PTNR Y 

TP c :1111111111 ... 1 _H_s_P_I : : : : : : : : : : : _M_o_D_E _v_:---

: :111 I RCB H I 1111111111111111 I HS Q I : : : : : : : : : : : _M_o_D_E _.._ _ _. 

:111111EJ11111: PTNR 

TP D :1111111111f..__H_s_R_I::::: ~ ~:::: ..._M_o_D_E_z_:---

:111111 RCB J 11111111111111111~:::::~~ 
• 
• 
• 

• 
• 
• 

LEGEND: 
Vert;cal l;nes represent l;sts of subord;nate resources 
:::: association of process to static data elements 
1111 assoc;ation of processes v1a RCB dynamic data element 
**** association of RCB with MODE in lieu of unavailable HS 

Abbr. 
LUCB: 
TPGM: 
CPC: 
PTNR: 
MODE: 
TP: 
RCB: 
HS: 

Local LU information 
Transact;on Program Code ;nformat;on 
Control Po;nt ;nformat;on 
Partner LU information 
Mode informat;on 
Transact;on program process 
Conversat;on resource ;nformat;on 
Half-session process 

Data Structure Name 
(LUCBl 
!TRANSACTION_PROGRAMl 
(CPLU_CAPABILITYl 
(PARTNER_ LU l 
CMODE l 

!RCBl 

Figure 2-31. LU Dynamic D;:,i.a $'tructures and Processes !Example! 

• 
• 
• 

• 
• 
• 

mul H ple transact; on program processes exe­
cuting the same transaction progr~m code. 

The HS process represents a half-session. It 
identifies the remote LU and mode with which 
it is associated. A mode may be associated 

2-44 SNA Format and Protocol Reference Manual for LU Type 6.2 



Mith nny half-sessfon processes, but each HS 
process is associated with only one 11<>de. 

The RCB structure represents a conversation 
resource. The RCBs are the central elements 
in the dynHic configuration of the LU: they 
represent the connection of a transaction 
program to a half-sessionJ this connection is 
dynamically created and destroyed, and allows 
an asynchronous ISEND/RECEIVE> relationship 
between TP and HS. The RCB i dent i f i es the 
local TP using the conversation and the 
half-session being used, if an'y. Because a 
session might not ba i-ediately available 
Mhen a TP allocates a conversation, the RCB 
also identifies the remote LU IPARTNER_LU> 
and mode name IMOOEJ for the desired session. 
Many conversation resources, hence RCBs, •ay 
be associated Ni th the same local TP, but 
each RCB may be associated with only one 
local TP, one partner LU, one 11<>de, and one 
half-session. 

Figure 2-31 on page 2-44 illustrates several 
of the possible relationships a1110ng these 
structures. In the figure: 

• An active session is associated Mith the 
control-point CCPCJ. 

nhis session is used directly by LU 
internal components, so no relationship 
to a transaction program is shown.) 

• RCB E associates active TP A for trans­
action program code 1 with mode name u, 
a111aiting a free session with mode name U. 

• Active TP 8 for transaction progra• code 
2 ha&;. two active conversations: 

.IJl STARTUP AND SHUTDOWN 

LU startup consists of four phases: creating 
the LU processes, activating the CP-LU ses­
sion, initiating the control operator trans­
action progra11, and setting the LU definition 
and session limits. The LU then initiates 
programs and activates sessions in response 
to further operator, transaction program, or 
partner-LU actions. 

To shut down the LU, the steps are reversed, 
but some can be omitted. The 11ini11U111 steps 
to terminate communications include resetting 
the session li11its and deactivating the CP-LU 
session. 

LU PROCESS CREATION AND TERMINATION 

Figure 2-33 on page 2-47 shows the process 
creation and termination hierarchy for the 
LU. 

First, the PU in the node creates two dyrnlmic 
processes, RH and LHS. These processes con­
tinue rl.IY\ing thereafter. 

RCB F connects it to remote LU W via 
session K with 11<>de name U. 

RCB G connects it to rMK>te LU Y via 
session P Mith MOde name V. 

• LU W has two free sessions, H and N, each 
with llOde na11e L. 

• R-ote LU X has a single mode naH Ni th 
no active sessions. 

• No active TP instances exists for trans­
action program 3. 

• Two active TP instances exist for trans­
action program 4: TPs C and D. 

• Two conversations 6 and H exist Mith 
remote LU y, each using a different mode 
name. 

• Two conversations I and J use separate 
sessions R and T, both with mode name z. 

RESOURCE RELATIONSHIPS IH A DISTRIBUTED 
TRANSACTION 

In contrast to Figure 2-31, Nhich illustrates 
the data structures for several transactions 
from the per·spect i ve of a single LU, Fig­
ure 2-32 on page 2-46 illustrates the 
relationships among data structures at 
several LUs fr0111 the perspective of a single 
distributed transaction. In this case, the 
paired half-sessions connect LUso and the 
paired conversation resources, represented by 
RCBs, connect transaction progra111 instances • 

1he PU creates the CP-LU half-session Nhen it 
receives ACTLU session-control RU from the CP 
(see "CP-LU Session Activation"). 

The TP and HS processes are discussed in 
"Running State" on page 2-47. 

CP-LU SESSION ACTIVATION 

The CP in the network (the PHCP or the SSCP) 
activates the CP-LU session for the LU by 
sending ACTLU, to 1o1hich LNS responds, if 
ready, with +RSP(ACTLUJ. This session acti­
vation is required prior to any LU-LU session 
initiation or terlllination. 

When the CP deter111ines that no further ses­
sion initiation or termination activity is 
required, it deactivates the CP-LU session by 
sending DACTLU to the LU. 

If the CP-LU session is interrupted because 
of session outage, the CP attempts to reacti-

Chapter 2. Overview of the LU 2-45 



TPGM TPGM TPGM 

TP TP 

------~--------------- -------------------------------------------------- ----------------------------

l LU B LUC 

TPGM 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••• RCB 
I I 

======·······!······===····====···=·············=l==······~ 
LU A LU D 

LEGEND: 
Association of a process with its data structures 

•••••• Conversation (connection between transaction program instances [TPs]) 
------ Session (connection between LUsl 
TPGM: Transaction program data structure (represents transaction program code) 
RCB: Resource control block (represents a conversation) 
TP: Transaction program process instance 
1-1'.>: Half-session process instance 

Figure 2-32. Data Structure Relationships among LUs for a Distributed Transaction !Example> 

2-46 

vate it. This need not interrupt normal 
LU-LU session traffic. 

CONTROL-OPERATOR TRANSACTION PROGRAM INITI­
ATION 

RM creates a PS process and initiates the 
control-operator TP. 

CONTROL-OPERATOR ACTIONS 

The control operator specifies the LU defi­
nition describing the LU-accessed network 
resources: the control points, transaction 
programs, partner LUs, and modes. (An imple­
mentation might provide this function without 
requiring explicit operator interaction, 
e.g., the LU definition might be specified at 
system-definition time.) 

The operator initializes session limits with 
the partner lUs by issuing the INITIAL-

SHA Format and Protocol Reference Manual for LU Type 6.2 



I • 
• 

• 
r Transaction 

Program I 

I 
Presentation 
Services 
Process I-r ·------> 

PU•----> l Resources 
Manager 
Process 

!RM) 

·------------------------------. 
PU•'----> • • 

LU 
Network 
Services 
Process 

! LNSl 

• 
• 

r 
LU-CP 

Half-Session I-' 
Process 

'----A------' 

• 
• 

v~ 
LU-LU 

Half-Session 
Process 

PU •---------------------' 

LEGEND: 
•-->process creation !The arrow points from creator to created.) 

Figure 2-33. LU Process Creation and Termination Hierarchy 

IZE_SESSION_LIMIT verb for the relevant mode 
names. For parallel-session mode names, this 
verb activates an LU-LU session using tne 
SHA-defined mode name SNASVCMG (if not 
already active) and establishes. mutually 
agreeable session limits for other mode names 
by exchanging CNOS GOS variables on that ses­
sion. This verb optionally causes activation 
of a predetermined number of sessions for the 
specified mode name. 

When sessions are to be deactivated, the con­
trol operator issues RESET_SESSION_LIMIT for 
the mode name. For a parallel-session con­
nection, this causes another CNOS GOS vari­
able exchange to elicit the partner LU's 
cooperation in the session shutdown. In any 
case, this verb causes the LU to eventually 
cease initiating new transaction programs and 
act iv.at i ng new sass ions (drain l • As sessions 
become unused, RM and LNS deactivate them. 

The LU initiates no further actions to shut 
down the LU. Any further actions are at the 
initiative of the CP or the PU. 

RUNNING STATE 

Once the CP-LU session has been activated and 
the LU-LU session limits have been set, the 
LU is ready to process transactions. 

RM creates a transaction-program process when 
it receives an Attach or an initial TP invo­
cation request; it destroys that process when 
PS indicates that the TP has completed and 
all its conversations have been deallocated. 

Either RM or the partner LU can request ses­
sion activation; in either case, LNS performs 
the relevant processing. LNS creates an HS 
process for an LU-LU session and connects it 
to a path control instance whenever it sends 
or receives BIND. LNS destroys that process 
when i t has sent or received a pos i ti ve 
response to UNBIND, has disconnected the 
half-session from path control (by sending 
PS HS DISCONNECT ), and has not i f i ed the CP 
thit - the session is ended Cby sending 
SESSEND ). 

Chapter 2. Overview of the LU 2-47 



EXAMPLE 

Figure 2-36 on page 2-54 and Figure 2-37 on 
page 2•55 illustrate typical interactions at 

the local and remote LUs, respectively, for 
an LU shutdown sequence. "Chapter 5.4. Pres­
entation Services--Control-Operator Verbs" 
describes LU startup and shutdown in more 
detai 1. 

2-48 SNA Format and Protocol Reference Manual for LU Type 6.2 



PROTOCOL BOUNDARY SUMMARY 

Th;s sect;on lists the external message un;ts 
and internal records exchanged by LU compo­
nents. For full descr;ptions of these struc­
tures. see "Appendix A. Node Data Structures" 
;n Appendix A 

EXTERNAL PROTOCOL BOUNDARY VERBS AND MESSAGE 
UNITS 

PS-TP Protocol Boundarv: Transaction Program 
Verbs 

TRANSACTION_PGH_VERB 

Basic-Conversation Verb Var;ants 

ALLOCATE 
CONFIRM 
CONFIRMED 
DEALLOCATE 
FLUSH 
GET_ATTRIBUTES 
GET_TYPE 
POST_ON_RECEIPT 
PREPARE_Tn_P~~£IVE 

RF~:~vf_AND_WAIT 

REQUEST_TO_SEND 
SENO_DATA 
SEND_ERROR 
TEST 
WAIT 

Mapped-Conversation ~ Variants 

MC_ALLOCATE 
MC_CONFIRM 
MC_CONFIRMED 
MC_DEALLOCATE 
MC_FLUSH 
MC_GET_ATTRIBUTES 
MC_POST_ON_RECEIPT 
MC_PREPARE_TO_RECEIVE 
MC_RECEIVE_AND_WAIT 
HC_REQUEST_TO_SEND 
MC_SEND_DATA 
HC_SEND_ERROR 
MC_ TEST 

Control-Operator Verb Varjants 

ACTIVATE_SESSION 
CHANGE_ SESSION_ LIMIT 
DEACTIVATE_SESSION 
INITIALIZE_ SESSION_ LIMIT 
PROCESS_SESSION_LIMIT 
RESET_SESSION_LIHIT 

LNS-PU Protocol Boundarv 

LNS_TO_NNM_RECORD 
ACTLU_RSP_SEND_RECORD 
BIND_RQ_SEND_RECORD 
BIND_RSP_SEND_RECORD 
DACTLU_RSP_SENO_RECORD 

HIERARCHICAL_RESET_RSP 
PC_ CONNECT 
PC_HS_CONNECT 
PC_HS_DISCONNECT 
SESSION_ROUTE_INOP_RSP 
UNBIND_RQ_SENO_RECORD 
UNBIND_RSP_SENO_RECORD 

NNM_TO_LNS_RECORD 
ACTLU_RQ_RCV_RECORD 
BIND_RQ_RCV_RECORD 
BIND_RSP_RCV_RECORD 
DACTLU_RQ_RCV_RECORD 
HIERARCHICAL_RESET 
PC_CONNECT_RSP 
SESSION_ROUTE_INOP 
UNBINO_RQ_RCV_RECORD 
UNBIND_RSP_RCV_RECORD 

HS-PC Protocol Boundarv 

PC_TO_HS_RECORD 
H$_T0_?1,;_RECORD 

INTER-COMPONENT STRUCTURES 

PS-HS Protocol Boundary 

PS_TO_HS_RECORD 

Variants 
CONFIRMED 
REQUEST_TO_SEND 
SEND_DATA_RECORD 
SEND_ERROR 

HS_TO_PS_RECORD 
CONFIRMED 
RECEIVE_DATA 
RECEIVE_ ERROR 
REQUEST_TO_SEND 
RSP_TO_REQUEST_TO_SEND 

PS-RH Protocol Boundary 

PS_TO_RM_RECORD 
ALLOCATE_RCB 
CHANGE_ SESSIONS 
DEALLOCATE_RCB 
GET_SESSION 
RM_ACTIVATE_SESSION 
RM_DEACTIVATE_SESSION 
TERMINATE_PS 
UNBIND_PROTOCOL_ERROR 

RM_TO_PS_RECORD 
ATTACH_RECEIVED 
CONVERSATION_FAILURE 
RCB_ALLOCATED 
RCB_DEALLOCATED 
RM_SESSION_ACTIVATED 
SESSION_ALLOCATED 

Chapter 2. Overview of the W 2-49 



RH-HS Protocol Boundary 

RH_TO_HS_RECORD 
BID_RSP 
BID_WITH_ATTACH 
BID_WITHOUT_ATTACH 
BIS_REPLY 
BIS_RQ 
HS_ PS_ CONNECTED 
RTR_RQ 
RTR_RSP 
YIELD_SESSION 
ENCIPHERED_RD2 

HS_TO_RH_RECORD 
ATTACH_HEADER 
BID 
BID_RSP 
BIS_RQ 
BIS_REPLY 
FREE_SESSION 
RTR_RQ 
RTR_RSP 
SECURITY_HEADER 

COMPONENT INTERACTIONS A!m ~ SEQUENCES 

The folloMing figures illustrate both the 
internal-protocol-boundary flOM sequences 
a111ong LU components and the external floMS 
between two LUs that result frOll 
basic-conversation ver·b issuances. 

Each sequence is illustrated by a pair of 
figures on facing pages. Each separate fig­
ure represents the complete flott as seen by a 
single LU. The figure labeled local J.Y 
represents the LU that initiates the sequence 
being illustrated; the figure labeled remote 
.bY represents the partner LU. For cases 
illustrating a race between two LUs, the LUs 
are distinguished as .!il:ll speaker and 
bidder. The flows through the path control 
network are shown in the column nearest the 
center margin, and are replicated in each 
figure1 numerals in parentheses correlate 
corresponding flows in the facing figures. 
When flows cross in the path-control network, 
the crossing is illustrated on the sending 
side of the delayed f lott. 

NOTATION 

For the interpretation of 
arrOMS, see the following: 

labels on the 
h1hich, in SOiie 

R!!:.JJ§ Protocol Bounc!ary 

RH_TO_LNS_RECORD 
ACTIVATE_SESSION 
DEACTIVATE_ SESSION 

LNS_TO_RH_RECORD 
ACTIVATE_SESSION_RSP 
CTERH_DEACTIVATE_SESSION 
SESSION_ACTIVATED 
SESSION_DEACTIVATED 

JJ:§::lili Protocol Bola'ldary 

LNS_TO_HS_RECORD 
HS_SEND_RECORD 
IHIT_HS 

HS_TO_LNS_RECORD 
ABORT_HS 
HS_RCV_RECORD 

0 IHIT _HS_RSP 

cases have been abbreviated) 

• For verb and verb-para111eter na111es 
(TP-PS>, ~ Transaction Progra!!!!l!er's 
Ref ereoce tl!!:l!!!.l m !.Y ~ Ll 

• For protocol-boundary records and 111essage 
uni ts HP-PS, PS-RM, RM-LNS >. "Protocol 
Boundary Su.ary" on page 2-49 

• For RU names lLNS-LNS, HS-HSI, "Appendix 
E. Request/Response Unit (RU) Formats" 

• For RH indicators ( LNS-LNS, HS-HS>. "Ap­
pendix D. RH Formats" 

• 

The follONing abbreviations for chaining 
indicators are also used: 

FIC Cfirst in chain) = CBC, ... EC> 

HIC l111iddle in chain> = ( ... Bc, ... EC> 

UC Uast in chain) = ( ... Be, EC> 

OIC (only in chain) = CBC, EC> 

For data ele11ents of RUs ( UIS- LNS , 
HS-HSI, "Appendix H. Fl'I Header •nd LU 
Services C0111111ands" 

2-50 SNA Fornt.and Protocol Reference Manual for LU Type 6.2 



This page intentionally left blank 

Chapter 2. Overview of the LU 2-51 



IP es RM LNS HSCFSP) Cto partner W> 

ALLOCCwhen allocated> ALLOCATE_RCB 
o--------------> >o 

RCB_ALLOCATEDCOK> I 
o<---------------'· 

GET SESSIONCNO_ATTACH> ACTIVATE_SESSION 1 BIND2 

,__------------->·0---------------:>o--------------------------------> Ca> 
+RSPCBIND> 2 

1 o<---------------------- lb>. 
IIHIT_HS 
----->o 

ACTIVATE_ 
SESSION_ 

SESSION_ALLOCATEDCOK> RSPC+) 

INIT_ I CRV3 
HS_ ~------------------------> (c) 
RSPC+) +RSPCCRV> 3 RC=OK 

ENCIPHERED_RD24 BC, .. EC,RQEl, .. BB,FMH-124 

i-----------------------> > (e) 
HS_PS_CONNECTEO 

,__--------------------->o 
SEND_DATA SEND_DATACALLOC,FMH,DATA,NOT_END_OF_DATA> .. 5c,RQEl,FMH-S,DATA 

,__------------->0-------------------------------------->·o-----------------------> (1) 
RC=OK I 

o<--------------~-

SEND_DATA SEND_DATACDATA,NOT_END_OF_DATA> RQEl,DATA 
> > > (2) 

RC=OK I o< 
SEND_DATACDATA, 

RECEIVE_AND_WAIT PREPARE_TO_RCV_FLUSH> EC,RQEl,CD,OATA 
> > > (3) 

RC=OK,DATA_COMPLETE RCVD_DATACDATA,DEALLOCATE_FLUSH> BC,EC,RQEl,CEB,OATA 
o< o<---------------------------------------0<---------------------- (4) l RECEIVE_ AND_ WA IT FREE_SESSION I 
--------------->o o<:---------------------~-

RC=D EA LLOCATE_NORMAL 
o<---------------' 
'DEALLOCATE LOCAL > DEALLOCATE_RCB >o 

RCB_DEALLOCATED I RC=OK 
o<--------------0<--------------'· 
NOTES: 

1 Session-activation flows to PU, CP, and path control have been omitted; 
see "Chapter 4. LU Network Services" for details. 

2 BIND/RSPCBIND> flows through the PU Cnot shown>. 
3 CRV/RSPCCRV> flows only when session-level cryptography is being used. 
4 Flows only when LU-LU verification is being·used. 

Figura 2-34. Complete Conversation Example--lev•~ LU 

2.-52 SHA Format and Protocol Reference tfanual for LU Type 6.2 



Uo partner LU) LNS RM PS TP 

BIND2 1 

<•> >o 
+RSPCBINDl 2 I Cbl < 1 

INIT_HS I o< 
CRV3 

<c> >o 
+RSPCCRVl 3 I INIT_ 

Cdl < HS_ 

I RSPC+l SESSION_ACTIVATED 
> >o 

ec.~ec,RQEl.~BB,FMH-124 SECURITY_HEADER4 
Ce) > >o 

~ec,RQEl,FMH-5,DATA BID 
( 1) > >o 

BID_RSPCPOSl I o< 
ATTACH I ATTACH_HEADER 

> o--------------> >o 
HS_ PS_ CONNECTED I o< 

RQEl,DATA RCVD_DATACDATA,NOT_END_OF_DATAl 

RECEIVE_ANO_WAIT I 
o<----------------

RC=OK, 
WHAT_RCVD=DATA_*COMPLETE 

(2) > o---------------------------------------> >o 

RCVD_DATACDATA, 
EC,RQEl,CD,DATA PREPARE_TO_RCV_FLUSH) 

RECEIVE_AND_WAIT I 
o<----------------

R C =OK, 
WHAT_RCVD=DATA_COMPLETE 

(3) ----------------------~;>&-------------------------------------~> >o 

BC,EC,RQEl,CEB,OATA 

FREE_ SESSION 

NOTES: 
1 Sess;on-activation flows to PU, CP, and path control have been omitted. 
2 BIND/RSPCBIND> flows through the PU Cnot shown). · 
3 CRV/RSPCCRV> flows only when session-level cryptography is being used. 
4 Flows only when LU-LU verification is being used. 

Figure 2-35. Complete Conversation Example--Remote LU 

RECEIVE_AND_WAIT I 
o<----------------

RC=OK, 
WHAT_RCVD=SEND 

SEND_DATA 

Chapter 2. Overview of the LU 2-53 



Cto partner W) 

RESET_SESSION_LIMITl 
o-------~>o 

<H parallel session, CNOS-exchange occurs here) ·o< ·"-·'. >·(•) 

CHANGE_SESSIONS2 
n-------~>o 

r 

Cdrain actionl) 3 BIS_RQ BIS,RQ,BC,EC,RQEl,~BB,~CEB 
Repeat for 0------------> > Cl) 

each session < BIS_REPLY BXS,RQ,BC1EC,RQE3,~BB,~CEB 
for the 
specified 
mode name. 

o<------------~o< (2) 

DEACTIVATE_SESSION 4 UNBIND5 

'--------->n----------------~> <a> 
+RSPCUNBINDl 5 

4 o<---------------~ Cb) 

NOTES: 

1 For specific-session deactivation, substitute DEACTIVATE_SESSION and eliminate the CNOS exchange. 
2 For specific-session deactivation, substitute RM_DEACTIVATE_SESSION and eliminate the drain action 

3 Drain action: wait until no allocation requests allowed by drain state are pending, 
then wait until session is in between-brackets state, i;e., +RSPCCEBl is sent or received. 

4 Session-deactivation flows to PU and CP have been omitted. 
5 UNBIND/RSPCUNBIND) flows through the PU Cnot shown) 

Figure 2-36. Session Deactivation--Local LU 

2-54 SHA Format and Protocol Refe.rence Manual for LU Type 6. 2 



Uo partner LU) !Bjdder)HS LNS RM ps CNQS IP 

Cif parallel session, CNOS exchange occurs here) 

BIS,RQ,BC,EC,RQEl,~BB,~CEB BIS_RQ 1 ----->o 
ldr•in •cHon>3 

Cl) 

BIS,RQ,BC,EC,RQE3,~BB,~CEB BIS_REPLY I repe•t for 
> each session 

UNBIND5 SESSION_DEACIIVAIED 
------------------------------~·> >o 

+RSPCUNBIND> 5 I 
<b> <.---------------------------------' 4 

l ;n-Ca) 

NOTES: 

3 Drain action: wait until no allocation requests •llowed by drain state •re pending, 
then wait until session is in between-brackets state, i.e., +RSPlCEB> is sent or received. 

4 Session-activation flows to PU and CP have been omitted. 
5 UNBIND/RSPCUNBIND> flows through the PU (not shown>. 

Figure 2-37. Session Deactivation--Remote LU 

Chapter 2. Overview of the LU 2-55 



Ip ps RM HS(fSP> Cto partner LU> 

ALLOCCwhen allocated> ALLOCAIE_RCB 
o--------------> >o 

RCB_ALLOCATEDCOK) I 
o<---------------

G ET 1 SESSION< NO_A TT ACH~o-H-S ___ es ___ c_ONN ___ Ec_T_E_D>o 

SESSION_ALLOCATEDCOK>I 
o<------------~,o<---------------

RC=OK 

1 SEND_DATA 
~--------------->o 

RC=OK I 
o<---------------1 CONFIRM SEND_DATACALLOC,FMH,DAIA,CONFIRM> OIC,BB,RQD2f 3,ATTACHtdata 
~--------------->0----------------------------->o----------------------> (1) 

RC=OK CONFIRMED +RSP 
o<------------~10<-----------------------------n<-------........ ------------- (2) 

F;gure 2-38. ALLOCATE Cwhen allocated>, CONFIRM lby F;rat Speaker> --L0cal LU 

t-56 SNA Format and Protocol Reference Manual for LU Type 6.2 



(I) 

Ito nartner W) H§fBiddtrP RH PS IP 

OIC,B8,RQ02l3,ATTACHtd•t• BID 
----------------------;-------------->o 

+RSP 

o< 
BID_RSP(PQS) I 

1. ATTACH_HEADER 
~-------------·>o--------------> >o 

ATTACH 

Hs_es_c~ECTED o<RECEIVE_Atl>_NAIT I 
o<I 0 RC=OK, 

~CVD_DATAfDATA,CONFIRHP NHAT_RCYD=DAIA_*COHPLETE 
------------------------------> >o 

CONFIRHED 

RECEIVE_AHD_WAIT I 
o<:--------'-

RC=OK, 
WHAT_RCVD=CONFIRH ..._ __________ ~>o 

CONFIRMED I 
(2) <:----------------~1><-----------------------------0<-------------' I RC=NONE 

------>o 
Figure 2-39. ALLOCATE fNhan allocatlld), CONFIRH <by Firat Spe•ker) --Re110te LU 

Chapter 2. OYervi• of the LU 2-57 



TP PS HS(FSP> (to partner LU> 

ALLOC(delayed) ALLOCATE_RCB 
> >o 

o<--R_c_=_o_K--------a~CB_ALLOCATEDCOK> I 

I SEND_DATA 
--------------~>o 

RC=OK I 
o<.~-------------'· 

I CONFIRM GET_SESSION(ATTACH) BID_WITH_ATTACH 
~-------------~> >a--------------~1------------------------> (1) 

OIC,BB,RQD2l3,ATTACH,data 

SESSION_ALLOCATED(OK>I 
o<--------------...... I HS_PS_CONNECTED 

~-------------->o 

RC=OK CONFIRMED +RSP 
(2) 

Figure 2-40. ALLOCATE (delayed), CONFIRM (by First Speaker) --Local LU 

2-58 SNA For•at and Protoeol Reference Manual for LU Type 6.2 



<l) 

<to partner W> HS< Bidder> RM PS IP 

OIC,BB,RQD2l3,AIIACH,data BID 
~------------~------~:>o-------------->o 

+RSP 

BID_RSPC POS) I 
o<:--------------'· I ATTACH_HEADER > ATTACH . > >o 

HS_PS_CONNECTED I RECEIVE_AND_WAIT I 
o< · o<.~------------~-

1 
RC=OK, 

RCVD_DAIACDAIA,CONFIRM> WHAT_RCVD=DATA_*COMPLEIE 
~-----------------------------~> >o 

CONFIRMED 

RECEIVE_AND_WAIT I 
o<--------------~-

RC= OK, 
WHAI_RCVD=CONFIRM 

.__------------->o 
CONFIRMED I 

C2> <----------------------~,o<-------------------------------a·<---------------' I RC=NONE 
~-------------~>o 

Figure 2-41. ALLOCATE Cdelayed), CONFIRM Cby First Speaker) --Remote LU 

. Chapter 2. Overview of the LU 2-59 



IP PS Rl1 HS!F:IP> Ito partner LU) 

ALLOCCdelayed> ALLOCATE_RCB 
0-------------~o------------->o RC=OK RCB_ALLOCATEDCOK) J 
o<------------~·o<--------------~-1 SEND_DATA 
--------------->o 

RC=OK I 
o<--------------~-1 RCY_AND_WAIT 6E>T_SESS(ATJACH) BID_WITH_ATTACH 
- 0--------------~o------------->o-----------------------> (1) 

RC=PROO_ERROR_ 
PURGING 

SE~ION_ALLOCATEDCOK>I 

I HS_PS_CONNECTED .. _ ------------>o 

RCVD_ERROR 

RCVD_DATA(FMH,DATA, 
PR£PARE_TO_RCV_FLUSH> 

-RSPC0846) 

OIC1RQEl1CD,FMH7 

Figure 2-42. ALLOCATE <delayed), RECEIVE_AND_WAIT <by First Speaker) --Local W 

2•60 SNA ForlHt and Protocol Reference Hanual for W Type 6.2 



!to partner LU> HSI Bidder> RH PS IP 

OIC.BB,RQEI,CD,ATTACH,data BID 
!l) ------------> >o 

BID_RSP! POS) I 
o<--------'· I ATTACH_HEADER > ATTACH > >o 

Hs_Ps_coNNECTED I RECEIVE_AND_WAIT I 
o<--------'· o<--------'· 

RCVD_DATA!DATA, RC=OK, 
PREPARE_TO_RCV_FLUSH> WHAT_RCVD=DATA_*COMPLETE ...._---------------> >o 

-RSPC0846) SEND_ERROR SEND_ERROR I 
!2) <------------o<----------------0<--------'· 

OIC,RQE1,CD,FMH7 
SEND_DATACFMH,DAJA, 

PREPARE_TO_RCV_FLUSH> 

I RC=OK '------->o 
RECEIVE_AND_WAIT I 

13) <------------o<----------------0<--------'· 

Figure 2-43. ALLOCATE !delayed), RECEIVE_AHD_WAIT Cby First Speaker) --Remote LU 

Chapter 2. Overview of the LU 2-61 



TP PS RH HSCBidder) Cto p•rtner LU) 

ALLOCCwhen allocated) ALLOCATE_RCB 
l> > >o 

RCB_ALLOCATED(OK) I 
o<--------'· 

GET_SESSCHO_ATTACHl BID_WITHOUT_ATTACH LUSTAT,BB,RQDl 
--------> >o------------> (1) 

RC=OK SESSIOH_ALLOCATEDCOKl BID_RSP(POSl +RSP 
o< .-------o< o<-------o<------------ C2 l 

I SEHD_DATA 

RC=OK 
o< 

I RCV_AHD_WAIT 

I HS_PS_COHHECTE~ 

SEHD_DATACFHH,DATA, 
PREPARE_TO_RCV_FLUSHl OIC,RQEl,CD,ATTACH,data 

Figure 2-44. ALLOCATE Cwhen allocated!, RECEIVE_AHD_WAIT Cby Bidder) --Local LU 

2-62 SHA Format and Protocol Reference Hanual for LU Type 6.2 



( ll 

( 2) 

(3) 

(to partner LU l HS!FSPl RM PS TP 

LUSTAT,BB,RQDl BID 

+RSP BID_RSP!POS) 
<~~~~~~~~~~~~o<~~ 

OIC,RQEl,CD,ATTACH,data ATTACH_HEADER ATTACH 
~~--~~--~~~~> >o-~~~~~~~> >o 

HS_PS_CONNECTED I RECEIVE_AND_WAIT I 
o< · o<---------'· 

RCVD_DATA!DATA, RC=OK, 
PREPARE_TO_RCV_FLUSHJ WHAT_RCV~=DATA_*COMPLETE 

.__~~~-~-~~-~~~~~~> >o 
RECEIVE_AND_WAIT I 

o<---------'· 
RC=OK, 
WHAT_RCVD=SEND 

Figure 2-45. ALLOCATE !when allocated), RECEIVE_AND_WAIT !by Bidder) --Remote LU 

Chapter 2. Overview· of the LU 2-63 



IP PS RM 

ALLOCAJE_RCB ALLOCCdelayed) 

RC=OK 
> >o 

RCB_ALLOCATEDCOK> I 
o<------------~,o<------------'-

1 SEND_DAIA 
------------->o 

RC=OK I 
o<----------' 

Hsce;dder> Cto partner W> 

j CONFIRM GEI_SESSIONCAIIACH> BID_WITH_AJIACH OIC,BB,RQD2l3,AIIACH,data 
---------> > > > (1) 

SESSION_ALLOCAIEDCOK> BID_RSPCPOS) +RSP 
o< o<.-------------ci~---------------------- (2) L HS_PS_CONNECTE~0 

CONFIRMED I 
o<--------------~,<----------------------------_.-

RC=OK 

F;gure 2-46. ALLOCATE (delayed), CONFIRM Cby 9;ddar> --Local LU 

2-64 SNA Format and Prot0col Reference Manual for LU Type 6.2 

'i 



ltp HrSmc LU> HS(fSpl RH PS IP 

OIC,BB,RQD2l3,ATTACH,dat• BID 
(1) 

---------------~--------->o BID_RSP( POS) I o<--------'-
1 ATJACH_HEADER 
~-------------~it---------~t------------->o 

ATTACH 

HS_PS_CONNECTEDI o<RECEIYE_AND_WAIT I 

ol< I Rc=ot<, 
RCYD_DAJA(DAJA,CONFIRH) WHAT_RCYD=DATA_*COHPLETE 

~--------------------------~> >o RECEIYE_AND_WAIT I 
o<--------------~-

RC =OK, 
WHAT_RCYD=CONFIRH 

~-----------~>o 
CONFIRMED I 

(2) <--------------------o.c:----------------------------a<:--------------~ 
+RSP CONFIRMED 

. I RC=NOHE 
~-------------->o 

F;gur41 2-47. ALLOCATE (c:lel•y.cf), CONFIRH (by e;ddar., --ReMOte LU 

Chapter 2. Overv;ew of the LU 2-65 



TP P!J R." (to p•rtntr,,LU) 

ALLOC(delayedJ ALLOCATE_RCB 
o--------~o------~>o 

RC=OK RCB_ALLOCATEDIOKJ I o<--------ec;,---------'· I SEND_DATA 
--------->o 

RC=OK I o<-------' I Rcv_AND_WAIT GET_SESSION«AnAcH J BID_WITH_AnACH 01c,:BB,RQEl .co.t'AnACH,data : .. , •·· ---------:-------->n------_..,.,...,....,....,.._ ...... _______ > (1)' , .. 

SESSION_ALLOCATEDI OK) BID_RSP.( POU FIC,data 

o< <-------1<------------ (·2>· . I Hs_Ps_cONNECTED>o 
RC=OK,WHAT_RCVD= · 

o~.-A-TA ___ ._c_oM_P_L_E_T_E _ _,.,< RCVD_DATA( DATA.NOT_END_OF _DATA) I 

Figure 2-48. ALLOCATE ldelayec:IJ, RECEIVE_ANQ_WAIT (by Bidderl .;.-Local W 

;2-66 SNA Format and Protocol Rafal'81Ca 11anual for LU Typa 6. 2 



(1) 

(to partn1r LUl HS«FIPl RH ps IP 

Oic.ae.RqE1.co,AITACH.d•t• BID 
--------------------~i>o-------->o 

o< BID_RSP(POS) I 
I AIIACH_HEADER >,o---AIT_A_c_"--->o-------->o 

o<HS_PS ... COHNECIED I o< RECEIYE_AND_WAIII 

RCYD_DAIA(DAIA, RC=OK, 
PREPARE_IO_RCY_FLUSH WHAI_RCYD=DAIA_*COHPLEIE ..._ _______ .,.... ____________ > >o 

RECEIVE_AND_WAII I 
o<--------------..... 

RC=OK, 
WHAI_RCVD=SENO 

SEND_DAIA 

r;guc1 2-49. ALLOCATE (delayed), RECEIVE_AND_WAII (by Bhfderl --Remot1 LU 

Chapter 2. Overv;ew of the LU 2-67 



TP PS RM HS(B;dder) (to partner LU) 

ALLOCATE_RCB ALLOC(delayed) 

RC=OK 
> >o 

RCB_ALLOCATED!OK) I 
o<-------o<:---------'· 
I SEND_DATA 
.... ------->o 

RC=OK I 
o<-------' I CONFIRM GET_SESSION!ATTACH> BID_WITH_ATTACH OIC,BB,RQD2l3,ATTACH,data 
.... -------> > > > (1) 

SESSION_ALLOCATED!OK) BID_RSP(POS> -RSP!0846> 
o<.-------,o<-------o<-----------~ 

RC=ALLOCATION_ERROR 

I Hs_Ps_coNNECTED 
'-·------->o 

RCVD_ERROR I 
o<:-------------' 

RCVD_DATA(FMH,DATA, 
DEALLOCATE_FLUSH) OIC,CEB,RQEloFMH7 

o< o<.----------------0<----------------~ 

IDEALLOCATE_LOCAL > DEALLOCATE_RCB FREE_SESSION I 
. >o<--------'· 

RCB_DEALLOCATED I 
o<--------o<---------'· 

RC=OK 

F;gure 2-50. ALLOCATE (delayed), CONFIRM (by e;dder), Attach Error --Local LU 

2-68 SNA Format and Protocol Reference Manual fe1r LU Type 6.2 

(2) 

(3) 



(to partner LU) HSCFSP) RM PS 

OIC,BB,RQD2l3,ATTACH,data BID 
( 1) ----------------------~> >o 

BID_RSP( POS) I 
o<·---------------'· I ATTACH< ALLOCATION 

ATTACH_HEADER > ERROR) >o 

RCVD_DATAIDATA,CONFIRM) 

,...RSPIOS46) SEND_ERROR 

o<HS_PS_CONNECTED I ~ 

(2) <----------------------~o<:-------------------

OIC,CEB,RQEl ,Fl'li7 
SEND_DATAIFMH,DATA, 

DEALLOCATE_FLUSH) 

'--------->o 

(3) <------------------------o<-------------------------------1 I FREE_SESSION DEALLOCATE_RCB 
>o<---------------' I RCB_DEALLOCATED 

~-------------->o 

Figure 2-51. ALLOCATE <delayed>, CONFIRM <by BidderJ, Attach Error --Remote LU 

TP 

Chapter 2. Overview of the LU 2-69 



IP PS HSfFSpl 

ALLOCATE<innedi1tel ALLOCATE_RCBf i...ediate) 
0--------------~o-----------~>o FSP session av1il1ble 

RC=OK RCB_ALLOCATEDfOK) I 
o<•~-------------o<--------------'· 

• • • 

I HS_PS_~ECTED 
~-------------->o 

[The flOM continues as in the ALLOCATEflilhen 1llocatecU c•se. J 

Figure 2-52. ALLOCATE ( imnediate>. Successful --Local LU 

"2-70 SNA Fot1111t ind Protocol Reference ttltnutl for LU I~ 6.2 

«to p1rtnat LUl 



Uo P'rtntr W) HS RH PS 

tno •ctivity •t r8110te LUJ 

fr011 hare on just like ALLOCATEh1han elloc•tedJ 

Figure 2-53. ALLOCATE (i1111ecli•teJ, SUccassful --Re1110te LU 

IP 

Chapter 2. OvervieM of the LU 2-71 



IP PS Rl1 

ALLOCATE(immediate> ALLOCATE_RCB(immediate> 
a-~~~~~~-> >o 

(no first-speaker 
session available> 

RCB_ALLOCATED 
RC=UNSUCCESSFUL (unsuccei;sful> 

HS 

Figure 2-54. ALLOCATE (immediate), Unsuccessful --Local LU 

2-72 SNA Format and Protocol Reference Manual for LU Type 6.2 

( ' ' partn9r Lll>'. , ., 



Cto partner LU> HS RM PS IP 

(no activity at remote LU) 

Figure 2-55. ALLOCATE Cimmediatel, Unsuccessful --Remote LU 

Chapter 2. Overview of the LU 2-73 



TPN!A) PS(A) RM HS(Bhkler> (to p!rtner LU> 

ALLOC(delayed> ALLOCATE_RCB 
o--------->o-------~>o 
o<:-R_c_=_o_K ________ -o~CB_ALLOCATED(OK) I 

I SEND_DATA 
'--------------->o 

RC=OK I o<.-------
1 CONFIRM GET_SESSION(ATTACH> BID_WITH_ATTACH OIC,BB,RQD2l3,ATTACH,data 
~----------> >·o--------------~~--------------. BID o<-------n·<--------·---- (1) TPN( B > _______ PS( B) I BID_RSPCPOS> 

RECEIVE_AND_WAIT ,__ ______ >o 

RC=OK,WHAT_RCVD= 
DATA_*COMPLETE 

ATTACH_HEADER 

RCVD_DATA<DATA, 
PREPARE_TO_RCV_FLUSH> 

o<-------------oCK·------------------------------__, 
IRECEIVE_AND_WAIT>o 

RC=OK,WHAT_RCVD= I 
SEND o<:---------1 SEND_DATA SEND_DATA(DATA,NOT_END_OF_DATA> 
~-------------~:>o-----------------------------~>o 

RC=OK enqueued ---> (2) 
o<:--------' 

etc. 

BID_RSP(NEG> -RSPC0813) 
o<-------------o<·----------------------- (3) 

try another session I 
or enqueue dequeue 

I FIC,data 
~----------------------> (4) 

Figura 2-56. ALLOCATE (delayed> Race, Bracket Rejected --Bidder LU 

2-74 SNA For•at.and Protocol Reference Manual for LU Type 6.2 



(to partner LU) HS<FSP) RM PS TP 

ALLOCATE_RCB ALLOCCdelayed) 
o< o<--------------~o 

I RCB_ALLOCATEDCOK~n-R_c_=_o_K ________ ~>o 

SEND_OATA I 
o<----------------'· 
I RC=OK 
~---------------->o 

OIC,BB,RQEl,CD,ATTACH,data BID_WITH_ATTACH GET_SESSCATTACH) RECEIVE_AND_WAIT 
Cl> <.----------------------~o<--------------0< o<----------------' 

( 2) 

(4) 

I SESSION_ALLOCATED<OK) 
~---------------->o 

HS_PS_CONNECTEDI 
o<----------------

OIC,BB,RQD2l3,ATTACH,data BID 
----------------------~>o-------------->o 

-RSPC 0813) 

FIC,data 

BID_RSPC NEG) I 

RC=OK, 
RCVO_OATACDATA,NOT_ENO_OF_DATA> WHAT_RCVD=DATA_*COMPLETE 

Figure 2-57. ALLOCATE Cdelayed) Race, Bracket Rejected --First Speaker LU 

Chapter 2. Overview of the LU 2-75 



TPNCA) PSCA) RM HSCBidder}' (to partner LU) 

ALLOCATE_RCB ALLOCCdelayed) 

RC=OK 
> >o 

RCB_ALLOCATEDCOK) I 
o<~~~~~~-o<.--~~~---....... 
I SEND_DATA 
~-------->o 

RC=OK I 
o<-------....... 
j CONFIRM GET_SESSIONCATTACH) BID_WITH_ATTACH OIC,BB,RQD2l3,ATTACH,data 
--------~>o-~~~~~~->o-~~~~~->o-~~~~~~~~ 

BID OIC, BB ,,CEB; RQE 1 , ATTACH , data 
o< . ·a;c; . .. -·--- ur 
I BID_RSPCPOS> 
~~~~~~~->o 

TPNC B > _____ PSCB) 

ATTACH_HEADER I 
o<.-------~o<.-~~~~~~-·o< · 

ATTACH 

I HS_PS_CONNECTED 
~-------->o 

RECEIVE_AND_WAIT 
-------~>o '-"---> (2) 

RC=OK,WHAT_RCVD= RCVD_DATACDATA, 
DATA_*COHPLETE DEALLOCATE_FLUSH) 
o< o<.-------------------
1 RECEIVE_ AND_ WA IT FREE_SESSION 
~-------->o o<-~~~~~--' 

RC=DEALLOCATE_ 
NORMAL 

o<:--~~~~~--' I DEALLOCATE DEALLOCATE_RCB 
~-------->n-------~>o 

RCB_DEALLOCATED I 
o<~~~~~~-o·<---------

RC=OK 

TPNCA) PSCA) 
SESSION_ALLOCATEDCOK) BID_RSPCPOS) +RSP 
o< o< o< .. (3) 

I HS_ PS_ CONNECTED 
>o 

RC=OK CONFIRMED I o< o< 

Figure 2-58. ALLOCATE (delayed> Race, Bracket Accepted •-Bidder LU 

2-76 SHA Format and Protocol Reference Manual for LU Type 6.2 



Ito partner Wl HSlFSp) Rtt PS TP 

ALLOCATE_RCB ALLOC(delayed) 
o<----------n<·-----------·o 
I RCB_ALLOCATEDC OK ~·a-R_c_=_o_K _____ >o 

SEND_DATA I 
o<----------
1 RC=OK 
~------------>o 

OIC,BB,CEB,RQEl,ATTACH,cklta BID_WITH_ATTACH 6ET_SESSCATTACH> DEALLOCATE_FLUSH 
(1) < < o<---------

(2) 

SESSION_ALLOCATEDCOK> RC=OK 

HS_PS_CONNECTEDI 
o<:---------'· I FREE_SESSION DEALLOCATE_RCB 
~--------->o<-----------' 

I RCB_DEALLOCATED 
~---------:>n--------->o 

RC=OK 

--------------->c:----------->o 

+RSP 

o< BID_RSPCPOS) I 
I ATTACH_HEADER >·a--A_TT_Ac_"-------> >o 

o< HS_PS_CONNECTED I o< RECEIVE_AND_WAIT I 
I RC=OK, 

RCVD_DATACDATA,CONFIRtt) WHAT_RCVD=DATA_•COttPLETE 
~----------------------->o--------->o 

CONFIRMED 

RECEIVE_DATA 
o<-----------' 

o< 

I 

RC=OK,WHAT_RCVD= 
CONFIRM 

>o 

CONFIRMED I 
RC=NONE 

>o 

f;gure 2-59. ALLOCATE (delayed> Race, Bracket Accepted --F;rst Speaker LU 

Chapter 2. Overv;ew of the LU 2-77 



IP ps Rn HS I tp •rttwr LU) 

DEALLOCATE_FLUSH SEtlJ_DAJA(DEALLOCATE_FLUSlf) .UCtCEB,RtlEl o--------->0-....------------------>c,_.---...... --....., __ -------> Cl) I DEALLOCAll!JICll 

FREE_SESSIOH I 
o<:------... 

RC=OK 
>o 

RCB_DEALLOCATED I o<---------4:t<---------'· 
Figur• 2-60. DEALLOCATE FLUSH lRQEl) --Loc•l LU 

2-78 SHA FoMNtlind,Protoeol Ref•r11ne• ttanual for W l'ype 6.2 



cto partner LU> HS R11 PS IP 

RECEIVE_AND_WAIT 
o< 

LIC,CEB,RQEl ReVO_DAJA(DEALLOCATE_FLUSH> RC=DEALLOCATE_NORMAL 
(1) > > >o 

I FREE_ SESSION DEALLOCATE_RCB DEALLOCATE_LOCAL I >o< < 

RCB_DEALLOCATED RC=OK 

Figure 2-61. DEALLOCATE FLUSH IRQEl> --Remote LU 

Chapter 2. OvarvieN o.f the LU 2-79 



IP PS RM HS Uo partntr WI 

DEALLOCATE_FLUSH SEND_DATA(OEALLOCATE_FLUSHl 
(•equenca number wrap) 

UC,CEB,RQD1 1 . 

o-------------->0-----------------------------:>o-----------------------> (1) FREE_ SESSION +RSP 
o<--------------K----------------------- (2) 

DEALLOCATE_RCB 
-------------->o o<-R_c_=_OK __________ -o<R_ca ____ o_EA_L_L_oc __ AT_E_o_· .... 1 

NOTES: 
1 R~Dl i• required ~r cart•in •equenea number wr•p condition•• 

Figura 2-62. DEALLOCATE FLUSH (RQDl) -·Local LU 

2•80 SHA FoCMt and Protocol Reference Manual for LU TyPll 6.2 



~to eartner LUI HS Bl'I PS TP 

RECEIVE_AND_WAIT 
o< 0 

LIC,CEB,RQDl RtVD_DATAIDEALLOCATE_FLUSHl RC=DEALLOCATE_NORMAL 
(1) > > >o 

+RSP I DEALLOCATE_RCB DEALLOCATE_ LOCAL I (2) < o< o< 

I FREE_SESSION 
>o 

I RCB_DEALLOCATED RC=OK 
> >o 

Figure 2-63. DEALLOCATE FLUSH IRQDl> --Remote LU 

Chapter 2. Overvie14 of the LU 2-81 



TP PS. RM HS 
., 

! to partner LU) , 

SEND_DATA SEND_DATA<DATA,NOT_END_OF_DATA) 'FIC,data' 
o--------:>a------__;,-'--'--'-----'--->o------------> ( i> 

RC=OK 
o<----~---' I DEALLOCATE_FLUSH 
~-------->~------------------»'·~----------

o<-FR_E_E ___ s_Es_s_1_o_N ___ ~ ·1 

SEND_DATA!DATA,DEALLOCATE_FLUSHJ LIC,CEB,RQEl 

·DEALLOCATE_RCB -RSP! 0846) 
~------->o o~:-· .. ____________ ----... (2> 

CThis stray 'resp0nse ' "., 
is discarded> > (3) 

RC=OK RCB_DEALLOCATED 
o< o<•----"-----' 

Figure 2-64. DEALLOCATE FLUSH' CRQElh SEND_ERROR, -RSP Sent --Local· LU 

2-82 SNA Format .. and Protocol Reference Manual for W Type 6. 2 



(SO p1rtntr WI HS RM PS IP 

RECEIVE_AND_WAIT o<.--------a 
PJC,cllt1 RCVD_DAIACDAJA,NOT_END_OF_DATA> RC=OK, 

(1) ------------>t--------------->o WHAT_RCVD= I DATA_•COMPLETE 
~-------------------->o 

-RSPC 08't6 >. SEND_ERROR SEND_ERROR 
(2) <•------------a<:----------------------,0<-------... 

l?C,CEB,RqEl RCVD_DATACDATA,DEALLOCATE_FLUSH> RC=DEALLOCATE_NORMAL 
.(]) --------------------->·0---------------------->·o--------->o I FREE_SESSION DEALLOCATE_RCB DEALLOCATE_LOCAL I 

· >o< o<--------.... 
I RCB_DEALLOCATED >a---R_c_=o_K ____ >o 

F;gur• 2-65. DEALLOCATE FLUSH (RqEl), SEND_ERROR, -RSP Sent --Remote LU 

Chapter 2. Overview of the LU 2-83 



IP PS Rt1 HS Ito partner LU J 

SEND_DATA SEND_DATACDATA,NOT_END_OF _DATAJ FIC.,data 
o-------------->0----------------------------->o----------------------> ClJ 

RC=OK I 
o<-------' 
I DEALLOCATE_FLusH> ___ s_E_ND ___ o_A_T_A_co_A_T_A_,o_E_A_L_L_oc_.A_T_E ___ F_Lu_s_H_>_>_L_I_c_,_c_EB_,_R_Q_E_1 _______ ....... 
. ~ ~ . > (2) 

o< FREE_ SESSION 1 .. 
DEALLOCATE_RCB ...__..._ ________ >o 

RC=OK RCB_DEALLOCATED 
o<-----------o<·--------------' 

F;gure 2-66. DEALLOCATE FLUSH CRQEl), SEND_ERRORt -RSP not Sent --Local LU 

2-84 SNA Format and Protocol Reference t1anual for LU Type 6.2 



(to partner LUl HS RM PS TP 

RECEIVE_AND_WAIT 
o<:~~~~~~~o 

FIC,data RCVD_DATA(DATA,NOT_END_OF_DATAl RC•'l'JK, 
(1) ~~~~~~~~~~~~>·~~~~~~~~~~~~~~~->o WHAT RCVD= 

I DATA=*COMPLETE 
>o 

(2) ~~~~~~~~~~~~>·n-~~~~~~~~~~~~~~->o I 
I FREE_SESSION SEND_ERROR 
- >o o<·~~~~~~~-' 

LIC,CEB,RQEl RCVD_DATA(DATA,DEALLOCATE_FLUSHl 

jRC=DEALLOC_NORMAL 
~-~~~~~~~>o 

DEALLOCATE_LOCAL I 
o<.~~~~~---o<:~~-~-~~-'-

DEALLOCATE_RCB 

1 RCB_DEALLOCATED >o--R_c_=o_K ____ >o 

Figure 2-67. DEALLOCATE FLUSH (RQEl), SEND_ERROR, -RSP not Sent --Remote LU 

Chapter.2. Overview of the LU 2-85 



IP PS RM HS tto partner LU) 

DEALLDCATE_CONFIRM SEND_DATACDEALLOCATE_CONFIRM> EC,CEB,RQD2f3 
o-------->0---------------->·o----~-------> Cl~ 

CONFIRMED 4·RSP 
o< ---o<----------- (2) I DEALLOCATE_RCB FP~E-~ESSION I 
.... ----- -->o<.--------'-

RC=OK RCB~DEALLOCATED 
o< <-------------' 
Figure 2-68. DEALLOCATE CONFIRM CRQD213> --Local LU 

2-86; SNA Format and Protocol Reference Manual for LU Type 6.2 



(to partner W> HS RM PS TP 

RECEIVE_AND_WAIT 
o< 0 

RCVD_DATA(DEALLOCATE_CONFIRM> RC=OK,WHAT_RCVD=CONFIRM 
(l) ----------------------->ft---------------------------~> >o 

CONFIRMED CONFIRMED I 
(2> <-----------------------0<.~---------------------------,o<--------------' 

+RSP 

I FREE_SESSION >o ... I __ R_c_=_o_K _______ >o 

o<RECEIVE_AND_WAIT' I 
I RC= 
~EALLOCATE_NORMA~ 

o<DEALLOCATE_RCB c!EALLOCATE_LOCAL I 
I RCB_DEALLOCATED >ft---R_c_=o_K------->o 

F;gure 2-69. DEALLOCATE CONFIRM (RQD213> --Re111ute LU 

Chapter 2. Overv;ew of the LU 2-.87 



TP PS 

DEALLOCATE_ABEND 

Rt1 

SEND_DATA(ft1H,DATA, 
DEALLOCATE_FLUSHI 

HS (to partner WI 

OIC,CEB,RQD1,ft1H7(08641 
o-------------->0-----------------------------:>a-----------------------> (11 I DEALLOCATE_RCB FREE_SESSION 

~-------------->o<------------"'""CI~---------------------- (21 
+RSP 

RCB_DEALLOCATED I 
o<--------------o<--------------'-

RC=OK 

f;gure 2-70. DEALLOCATE ABEND Issued ;n SEND, Between-~afo St~te --Local LU 

2-88 SNA Format and Protocol Reference t1anual for LU Type 6.2 



<to partner WJ RM PS IP 

RECEIVE_AND_WAIT 
RCVD_DATAC FHH1DAIA1 o<--------n 

OIC,CEB,RQD1,FMH7(0864J DEALLOCAIE_FLUSHJ RC=DEALLOC_ABEND 
(1) ~----------->t:...--------------~> >o +RSP o~-EA_L_L_o_c_AT_E ___ e_ce __ -O'~EALLOCATE_LOCAL I 

I RCB_DEALLOCATED 
~---------:>o-------~>o 

RC=OK 

FREE_ SESSION 

f;gure 2-71. DEALLOCATE ABEND Issued ;n SEND, Between-cha;n State --Remote LU 

Chapter 2. OvervieN of the LU 2-89 



TP PS RM HS. (to partmr W> 

SEND_DATA ·sEND_;DATA(DATA,NOT_END_OF_DATA> 
0--------------~it----------------------------:>-----------------...-----> (1) RC=OK 

SEND_DATA<Ft'IH,DATAt 
DEALLOCATE_ABEND DEALLOCATE_FLUSH> LIC,CEB,RQD1,FMH7<0864> 

------------~>0----------------------------->a-----------------------> (2) I DEALLOCATE_RCB FREE_SESSION 
"-· ------------->o<:-----------0<:--------------- ( 3) 

+RSP 

RCB_DEALLOCATED I 
o<---------otK·---------'· 

RC=OK 

Figure 2-72. DEALLOCATE ABEND I&Sued in SEND; In,-Ctuiln State --Local LU 

2-90 SHA Format •nd Protocol Reference Manual for LU Type 6.2 



<to partner W> HS RM PS IP 

RECEIVE_AND_WAIT 
o< o 

FIC,data RCVD_DATACDATA,NOT_END_OF_DATA! RC=OK,WHAT_RCVD= 
( 1) ------------>c:--------------->o DATA_*COMPLETE 

'------------>o 
RECEIVE_AND_WAIT I 

o<---------

RCVD_DATACFMH,DATA, 
LIC,CEB,RQD1,FMH7C0864) DEALLOCATE_FLUSH> RC=DEALLOCATE_ABEND 

(2) -----------·>cr---------------->o-------->o 
DEALLOCATE_RCB DEALLOCATE_LOCAL I 

o< o<--~----------'· 

+RSP 

I RCB_DEALLOCATED >o--R_c_=o_K ____ >o 

FREE_ SESSION 

Figure 2-73. DEALLOCATE ABEND Issued in SEND, In-Chain State --Remote LU 

Chapter 2. Overview of the LU 2-91 



IP ~ RI:! HS !j;o earj;nec !.U! 

SEND_DATA 
)'.o 

RC-OK I o< 
FLUSH SEND_DATACDATA,NOT_END_OF.:.,DATAl FIC,data > > > ( 1) 

o< 
RCVD_ERROR -RSPC0846) 

(2) 

DEALLOCATE_ABEND SEND_DATAC FMH ,DATA,DEALLOC_FLUSH )1 ;> LIC,CEB,RQDl ,FMH7C 0864.) 
-------->&---------------->&------------> (3) I DEALLOCATE_RCB- FREE~SESSION I 

. >o<--------'-
RCB_DEALLOCATEQ .1 

o<------------o<.~--------

RC=OK 

Figure 2-74. DEALLOCATE ABEND Issued in SEND, -RSP Received State --Local LU 

2-92 SNA Format.and,Proto~ol Refe1rence Manual for LU Type 6.2 



Cl) 

Cto partner !.Ill HS RM 

FIC,data RCVO_DATACDATA,NOT_END_OF_DATA> 

PS TP 

RECEIVE_AND_WAIT 
o< o 

RC=OK,WHAT_RCVD= 
DATA_*COHPLETE ------------->0------------------------->...._------------->o 

-RSPC0846l SEND_ERROR .,..,_,..... I 
C2> <------------------o<----------------------------,0<------------' 

(3) 
LIC,CEB,RQD1,FHH7C0864) 

RCVD_DATACFMH,DATA, 
DEALLOCATE_FLUSHl RC=DEALLOCATE_NORHAL ------------->0---------------->o-------------->o I FREE_SESSION DEALLOCATE_RCB DEALLOCATE I 

- >o< o<-------------'-
1 RCB_DEALLOCATED >o--R_c_=o_K _____ >o 

NOTE: This TP gets no indication that the DEALLOCATE is of type ABEND 
because everything Cincluding FM headers> is discarded when purging. 

Figure 2-75. DEALLOCATE ABEND Issued in SEND, -RSP Received State --Remote LU 

Chapter 2. Overview of the LU 2-93 



TP PS RH HS (to P'ttntr Wl 

SEtl>_DATA SEtl>_DATAtDATA,NOT_Etl>_OF_DATA) FIC,data 
.,,_------------>·.,,_--............ ------------------>n------------------...-> Cl) 

RC=OK I 
o<---------------

SEND_DATAtfHHoDATA, 
DEALLOCATE_ABEtt> DEALLOCATE_FLUSH) LIC,CE8,RGD1,Fttl7(0864) 

'------------~>·------------------------>&---------------------> (2) I DEALLOCATE_RCB FREE_SESSION -RSPC08ft6) 
... ------------>o<-------o<:-------------- 13) 

o<-R_c_=_OK _________ -o< RCB_DEALLOCATED I 

Figure 2-76. DEALLOCATE A8Ett> Issued in SEND State --Local W 

2-94 SNA ForHt and Protocol Reference Manual for W Type 6.2 



(1) 

(2) 

(to partner W> HS RH PS IP 

RECEIVE_AND_WAIT 
o< o 

RC=OK,WHAT_RCVD= 
------......,--------------~;~----------------------------~>o DATA_*COMPLETE 
FIC,dah RCVD_DATA(DATA,NOT_END_OF_DATA) 

-RSPC 0846) SEND_ERROR SEND_ERROR >l 
-----------------o<.----------------------------~,o<---------------'· 

LIC,CEB, RQD1,FHH7(0864J 
RCVD_DATAffMH,DATA, 

~EALLOCATE_FLUSHJ RC=DEALLOCATE_NORMAL 
-------+'--------------~:>&-----------------------------~> >o 

FREE_ SESSION DEALLOCATE_RCB 
(3) <---- DEALLOCATE_LOCAL I 

-------------->o< o<--------------~-

1 RCB_DEALLOCATED >,_ __ R_c_=o_K ________ >o 

NOTE: TPN on r;ght gets no ;nc1;cat;on that DEALLOCATE_ABEND occurred 
because everyth;ng (;nclud;ng FMHs> are discarded when in purge state. 

Figure 2-77. DEALLOCATE ABEND Issued ;n SEND State --Remote LU 

Chapter 2. .Overview of the LU 2-95 



TP PS RM HS Cto partner LU> 

in RCV state 

OEALLOCATE_ABEND SEHD_ERROR 
> >o 

RCVD_DATA(DATA,NOT_EHD_OF_DATA> FIC,data 
o< o< ( 1) 

purge 

I -RSPC0846) 
> (2) 

RCVO_DATACPREPARE_TO_RCV_FLUSH> LIC,RQE1,co,no data 
o< < (3) 

SEND_DATACFMH,DATA, 
DEALLOCATE_FLUSH> OIC,CEB,RQD1,FMH7(0864> 

> > (4) 
DEALLOCATE_RCB FREE_ SESSION +RSP 

>o< o< (5) 
RC=OK RCB_DEALLOCATEO I o< o<-------, 

Figure 2-78. DEALLOCATE ABEND Issued in RCV, Between-Chain State --Local LU 

2-96 SHA Format and Protocol Reference Manual for LU Type 6.2 



( 1) 

(2) 

(3) 

(4) 

Cto partner LUI 

FIC,data 
< 

-RSPC0846J 

LIC,RQEl,CD,no data 
< 

OIC,CEB,RQD1,FMH7C0864l 

HS 

< 

> 

< 

RM 

SEND_DATACDATA,NOT_END_OF_DATAJ 

RCVD_ERROR 

SEND_DATACPREPARE_TO_RCV_FLUSHJ 

RCVD_DATACFMH,DATA, 
DEALLOCATE_FLUSHI 

PS TP 

SEND_DATA 
o< 

I RC=OK 
>o 

I >o 
SEND_DATA 

RC=DEALLOCATE_ABEND 
----------------------~>·n------------------------------> >o 
- ________ •_R_s_e ____ __.I DEALLOCATE_RcB DEALLOCATE_LOCAL I 

( S l < · o< o<-------------.....1. 
I RCB_DEALLOCATED >·a---R_c_=o_K _____ >o 

FREE_ SESSION ,__ _______ >o 

Figure 2-79. DEALLOCATE ABEND Issued in RCV, Between-Chain State --Remote LU 

Chapter 2. Overview of the LU 2-97 



TP PS HS (to partner LU) 

RECEIVE_AND_WAIT o-------->o RC=OK,WHAT_RCVD= 
DATA_*COMPLETE RCVD_DATACDATA,NOT_E'ND_oF..:,DA'tA> FIC,data o<:--------o·<--------------------0<:;.;;·---. ___ ....._....._ ....... ..__ ___ _ (1) 

DEALLOCATE_ABEND SEND_ERROR -RSPC0846) 

RCVD_DATA(PREPARE_TO_RCV_,FLUSH) UC,RQEl,CD,no data 
o<-------------------------0<--~'~· -~·~·-·~···-· -------- (3) 

SEND_DATACFMH,DATA, 
DEALLOCATE_FLUSH) OIC,CEB,RQD1,FMH7C0864) ..._ ____________________ .> > ( 4) 

DEALLOCATE_RCB FREE_ SESSION +RSP 
------------->o<~· ---------a<------------------ (5) RC=OK RCB_DEALLOCATED I 

o<---------o<-------......... 

f;gure 2-80. DEALLOCATE ABEND IssU.d fo RC:V, Iri-Chafo State --Lodal LU· 

2-98 SHA Format and Protocol Reference Hanual for LU Type 6.2 



(to partner W) HS RM PS TP 

FIC,data SEND_DATA(DATA,NOT_END_OF_DATA) SEND_DATA 
o< 0 

I RC=OK 
>o 

-RSP(0846) RCVD_ERROR 
(2) >o 

LIC,RQEl,CD,no data SEND_DATA(PREPARE_TO_RCV_FLUSH) SEND_DATA 
(3) <-------------------o<---------------------------, o< I 
(4) 

OIC,CEB,RQDl,fttH7(0864) 
RCVD_DATA(fttH,DATA, 

DEALLOCATE_FLUSH) RC=DEALLOCATE_ABEND --------------·n,_. ___________________________ > >o 
+RSP 

(5) <----------------------~ 
DEALLOCATE_RCB DEALLOCATE_LOCAL I 

o<•--------------o<------------~-

1 RCB_DEALLOCATED > RC=OK 
. ·--------------->o 

FREE_ SESSION ------->o 
F;gure 2-81 •. DEALLOCATE ABEND Issued ;n RCY, In-Cha;n State --Remote LU 

Chapter 2. Overv;ew of the LU 2-99 



TP PS RM HSCFSPJ ftp partner WJ 

ALLOC(delayed> ALLOCATE_RCB 
> >o 

o<-R_c_=_o_K ____ -o~CB_ALLOCATED(OKJ I 
I SEND_DATA 
~------------->o 

RC=OK I 
o<---------
1 DEALLOCATE_ FLUSH GET_SESS<ATTACHJ BID_WITH_ATTACH OICtBBtCEB,RQEl,ATTACH,data . > >o-------·>c>---------------.> (1) 

SESSION_ALLOCATEDIOK>I 
o<-------------'· I HS_PS_CONNECTED 

----------->o 
FREE_SESSION I DEALLOCATE_RCB 

~------>o< 

RC=OK RCB_DEALLOCATED 
o<--------o<----------' 

Figure 2-82. ALLOCATE ldelayedJ, DEALLOCATE FLUSH (by First Speaker) --Local LU 

2-100 SNA Format and Protocol Reference Manual for W Type 6.2 



Uo artner W) 1:1.S(Bidder) · RH PS IP 

OIC,BB,CEB,RQEl,ATTACH,data BID 
(1) ---------------------"'fl~------~>o BID_RSPIPOS) I 

o<--------------
1 ATTACH_HEADER >n---A_TT_A_CH ____ .> >o 

o<HS_PS_CONNECTED I o<RECEIVE_ANO_WAIT I 
RCVD_DATAIDATA, RC=OK, 

DEALLOCATE_FLUSHJ lolfAT_RCVD=DATA_*COHPLETE 
-----------------------------.;oo--------------->o FREE_SESSIOH RECEIVE_AN>_WAIT I .._ ___________ >o o<----------~-

j RC=D EAL LOC_NORHA L >o 

:!:_u_L_L_oc_AT_E ___ R_c_e __ o.~ALLOCATE_LocAL I 
I RCB_DEALLOCATED 
~-----------:>o-------------->o 

RC=OK 

Fig1.1r·e 2-83. ALLOCATE (delayed), DEALLOCATE FLUSH (by Fh·st Speaker) --Ruota LU 

Chapter 2. OverviilM of the LU 2-101 



TP PS RM 

ALLOCATE_RCB ALLOCC delayed> 

RC=OK 
> >o 

RCB_ALLOCATEDCOK) I 
o<-------o<---------'· I SEND_DATA 
--------->o 

RC=OK I 
o<-------~-

( to partner LU) 

1 DE ALLOCATE_ CONFIRM GET_SESSCATTACHJ BID_WITH_ATTACH OIC,BB,CEB,RQD2!3,ATTACH,data 
.... -------> > > > ( 1) 

SESSION_ALLOCATEDCOK>I 
o<---------'· 

I HS_PS_CONNECTEO 
--->o 

CONFIRMED +RSP 
o<----------------0<-----------~ (2) I DEALLOCATE_RCB FREE_SESSION I 
. >o<------~-

RC=OK RCB_DEALLOCATED 
o< o<~--~-------' 

Figure 2-84. ALLOCATE (delayed), DEALLOCATE CONFIRM CBY First Speaker) --Local LU 

2-102 SNA Format and Protocol Reference M~nual for LU Type 6.2 



(1) 

(to partner LU> HS(fSP> RM PS TP 

OIC,BB,CEB,RQD2l3,ATTACH,data BID 
------------~:>o-------->o 

+RSP 

BID_RSP( POS) I 
o<--------'· 
I ATTACH_HEADER >o---ATT_A_c_H ___ > >o 

HS_PS_CONNECTED I RECEIVE_AND_WAIT I 
o< · o<-----------

RCVD _DAT A (DAT A, RC=OK, 
DEALLOCATE_CONFIRM) WHAT_RCVD=DATA_•COMPLETE .._ _____________________ > >o 

CONFIRMED 

RECEIVE_AND_WAIT I 
o<-------------'· 

RC=OK, 
WHAT_RCVD=CONFIRM 

'-------------~>o 

CONFIRMEJ I 
(2) <-------------,o<-------------------n<---------~ I. FREE,."':SSION >o .. I __ R_c=_N_o_N_E ___ >o 

RECEIVE_AND_WAIT I 
o<--------~-

1 Rt= DE AL LOC _NOR MAL 
~---------->o 

DEALLOCATE_RCB DEALLOCATE_LOCAL I 
o< o<--------~-

1 RCB_DEALLOCATED >o--R_c_=o_K ____ >o 

F;gure 2-85. ALLOCATE (delayed), DEALLOCATE CONFIRM CBY F;rst Speaker) --Remote LU 

Chapter 2. Overv;ew of the LU 2-103 



TP PS RM 

ALLOCATE_RCB ALLOCC delayed> 

RC=OK 
> >o 

RCB_ALLOCATED(OK) I 
o<------~o<--------'· I SEND_DATA --------->o 

RC=OK I 
o<-------~-

HS!Bidder) cto partner LU l 

1 DEAL LOCA TE_F LUSH GET_SESSCATTACHJ BID_WITH_ATTACH OIC.BBtCEB.RQDltATTACH.data 
---------.~--------> > > (1) 

SESSION_ALLOCATED(OK> BID_RSP(POS) +RSP 
o< o< o<----------- ( 2 > I HS_PS_CONNECTED .__ ------->o 

DEALLOCATE_RCB FREE_SESSION I 
-------~>o<--------'· 

o<-R_c_=_o_K ____ -o< RCB_DEALLOCATED I 
Figure 2-86. ALLOCATE (delayed>• DEALLOCATE FLUSH (by Bidder) to RECEIVE_AND_WAIT ·-Local LU 

2-104 SNA Format and Protocol Reference Manual for LU Type 6.2 



(to partner LU> HSCFSPJ RM PS TP 

OIC,BB,CEB,RQDl,ATTACH,data BID 
(1) ------------>·o------->o 

BID_RSP( POS) I 
o<--------· 
I ATTACH_HEADER ATTACH 

>o--------> >o 
HS_PS_CONNECTED I RECEIVE_AND_WAIT I 

o< · o<--------'· 
RCVD_DATAIDATA, RC=OK, 

DEALLOCATE_FLUSHJ WHAT_RCVD=DATA_*COMPLETE 
'-----------------> >o 

+RSP RECEIVE_AND_WAIT I 
o<--------'· 
IRC=DEALLOC_NORMAL 
~-------->o 

FREE_ SESSION 
------->o 

DEALLOCATE_LOCAL I 
o<-------o<-------~-

DEALLOCATE_RCB 

1 RCB_DEALLOCATED >o--R_c_=o_K ____ >o 

Figure 2-87. ALLOCATE CdelayedJ, DEALLOCATE FLUSH Cby Bidder) to RECEIVE_AND_WAIT --Remote LU 

Chapter 2. Overview of the LU 2-105 



TP PS RM HS< Bidder) <to partner LU) 

ALLOCATE_RCB ALLOC<delayed> 

RC=OK 
> >o 

RCB_ALLOCATEDCOK) I 
o<-------,o<---------
1 SEND_DATA 
~-------->o 

RC=OK I 
o<--------------'· 

BID_WITH_ATTACH OIC,BB,CEB,RQDl,ATTACH,data I DEALLOC_FLUSH G~T_SESS<ATTACH) 
>·o-------> > ( 1) 

SESSION_ALLOCATED<OK> BID_RSP<POS> +RSP 
o< o< o< (2) 

I HS_ PS_ CONNECTED 
>o 

DEALLOCATE_RCB FREE_ SESSION I >o< 
RC=OK RCB_DEALLOCATED I o< < 

Figure 2-88. ALLOCATE Cdelayedl, DEALLOCATE FLUSH tby Bidder) to SEND_ERROR --Local· LU 

2-106 SNA Format and Protocol Reference Manual for LU Type 6.2 



Cto partner LU) HSCFSP) RM PS TP 

OIC,BB,CEB,RQDl,ATTACH,data BID 
( 1) -----------~>o------~>o 

BID_RSP( POS) I 
o<--------'· 
I ATTACH_HEADER >n---AT_T_A_c_H ___ > >o 

HS_PS_CONNECTED I RECEIVE_AND_WAIT I 
o< · o<-------~-

R CVD _DAT A 1 DAT A, RC=OK, 
DEALLOCATE_FLUSH) WHAT_RCVD=DATA_*COMPLETE 

'-----------------> >o 
FREE_ SESSION 

+RSP 
( 2) <------------"' 

SEND_ERROR I 
o<•-
1 RC=DEALLOCATE_NORM 
~-------~>o 

DEALLOCATE I 
o< o<-------....... 

DEALLOCATE_RCB 

I RCB_DEALLOCATED >o--R_c_=o_K ____ >o 

Figure 2-89. ALLOCATE (delayed), DEALLOCATE FLUSH Cby Bidder) to SEND_ERROR --Remote LU 

Chapter 2. Overview of the LU 2-107 



(to partner LU> 

ALLOC(delayed> ALLOCATE_RCB 
> >o 

o<:-R_c_=_o_K ____ -O'~CB_ALLOCATEDC OK) I 
I SEND_DATA 
~-------->o 

RC=OK I 
o<-------~-

1 DE ALLOCATE_ CONFIRM> GET_SESS<ATTACH > > BID_WITH_ATTACH OIC,BB,CEB,RQD2l 3,ATTACH,data 
. o-------> > '(1) 

SESSION_ALLOCATEDCOK> BID_RSPCPOS> +RSP 
o<-,-------10<-------------10<-------------------- (2) I HS_PS_CONNECTED 

'-·------>o 
CONFIRMED I 

o<----------------------------~ I DEALLOCATE_RCB FREE_SESSION I 
. >o< . 

RC=OK RCB_DEALLOCATED 
o< <--------' 

Figure 2-90. ALLOCATE (delayed), DEALLOCATE CONFIRM Cby Bidder) --1,.ocal LU 

2-108 SHA Format and Protocol Reference Manual for LU Type 6.2 



(1) 

Uo partner W> HS!FSP> RM PS IP 

OIC,BB,CEB,RQD2l3,ATTACH,data BID ------------>tl,__ ______ >o 

+RSP 

BID_RSP! POS) I 
o<---------
1 ATTACH_HEADER >o---A_TI_A_c_H ___ >o-------->o 

o<HS_PS_CONNECTED j o< RECfIVE_AND_WAIT I 
RCVD_DATACDATA, RC=OK, 

DEALLOCATE_CONFIRM) WHAT_RCVD=DATA_*COMPLETE 
'-----------------> >o 

CONFIRMED 

RECEIVE_AND_WAIT I 
o<---------

RC =OK, 
WHAT_RCVD=CONFIRM 

'--------->o 
CONFIRMED I 

C2> <------------o<---------------o<--------
1 FREE_SESSION >o I RC=NONE >o 

RECEIVE_AND_WAIT I 
o<-------------'-
1 RC=D EAL LOC _NOR MAL >o 

DEALLOCATE_RCB DEALLOCATE_LOCAL I 
o<--------a<·--------'-
1 RCB_DEALLOCATED >'O-_R_c_=o_K _____ >o 

Figure 2-91. ALLOCATE Cdelayed>, DEALLOCATE CONFIRM Cby Bidder> --Remote LU 

Ctuipter 2. Overview of the LU 2-109 



IP PS RM HS · I to Rtrtner LU) 

SEND_DATA 
>o 

RC=OK I o< 
CONFIRM SEND_DATAJDATA,CONFIRM) OIC.RQD2l3,DATA 

> > (1) 

RC=OK CONFIRMED +RSP o<-------,o<:---------------><------------ (2) 

Figure 2-92. CONFIRM IRQD213> --Loc1l LU 

2-110 SNA For••t and Protocol Reference tfanu1l for LU Type 6.2 



lto partner W> HS RH 

OIC,RQD2l31DATA RCVD_DATACDATA.CONFIRM> 

PS TP 

RECEIVE_AND_WAIT 
o< o 

RC=OK1 
WHAT_RCVD=DATA_*COMPLETE 

( 1) ----------------------->ci1------------------------------> >o 

+RSP CONFIRMED 

RECEIVE_AND_WAIT I 
o< . 

RC=OK1 
WHAT_RCVD=CONFIRH ..._ ____________ >o 

CONFIRMED I 
(2) <----------------------o<-----------------------------0<--------------~ I RC=NONE 

--------------->o 
Figure 2-93. CONFIRM CRQD213> --Remote LU 

Cf,apter 2. Overview of the LU 2-111 



TP ps RM HS ltp partner WJ 

SEND_DATA 
o-------------->o 

RC=OK I 
o<·------------~-

1 PREPARE_TO_RECEIVE 
--------~----->o 

NO RC I 
o<-------------~-
1 CONFIRMILOCK~LONG> 
---------------->o-----------------------------·>o-------------> (1) 

SEND_DATAIDATA, 
PREPARE_TO_RCV_CONFIRM_LONG> OIC,RQE2l3,CD,DATA 

RC=OK CONFIRMED FIC,data 
o< o< o<---------------- ( 2 J I RECEIVE_AND_WAIT 
--------------->o RC=OK,WHAT_RCVD= 
DATA_*COMPLETE RCVD_DATA!DATA,NOT_END_OF_DATAJ 

F;gura 2-94. CONFIRM IRQE213> --Local LU 

2-112 SNA Format and Pratocol Rafaranca Manual for LU Type 6.2 



(1) 

Ito partner W> HS RM 

RCVD_DATAIDATA, 
PREPARE_TO_RCV_CONFIRM> 

PS TP 

RECEIVE_AND_WAIT 
o< o 

RC=OK, 
WHAT~RCVD=DATA_*COMPLETE 

~---------------------n-------------------------------> >o 

FIC,data 

CONFIRMED 

RECEIVE_AND_WAIT I 
o<.~------~~~--

RC=OK, WHAT _RCVD= 
CONFIRM 

--~--~------->o 
CONFIRMED I 

o<-------------------------------------------o<--------------------' I RC=NONE 
~-------------------->o 

RECEIVE_AND_WAIT I 
o<~~~~~--~--

R C =OK, WHAT_ RCVD = 
SEND 

'------------------->o 
SEND_DATAIDATA,NOT_END_OF_DATA) SEND_DATA I 

(2) <.~------------------------------o< <~~~~~------I RC=OK 
~---------~~~~>o 

F;gure 2-95. CONFIRM IRQE213> --Remote LU 

Chapter 2. Overv;ew.of the LU 2-113 



IP ps 

SEtl)_DATA 
------->o 

RC=OK I p<.-------· I FREPARE_TO_RECEIVE --------->o 
o<NORC I SEtlJ_DATA(DATA, 

FREPARE.TO_RCV_CONFIRM_LON6> 

HS Uo Dlrtnec LU) 

I CONFIRM(LOCK=LON&) 
~------------~''R-----------------..,....---------~1>-------------------> (1) 

RCVD_ERROR -RSP(0846) 

RC='derived 
fr911 Fl1H7' RCVD_DATA(ftlt,DAJA,NOT_EtlJ_OF_DATA) FICtftlt7,DATA 

o<•-------------o<----------------------------c~------------------- (3) 

Figura 2-96. CONFIRM CRQE213J, SEtl)_ERROR --Local W 

2-114 SNA For .. t•nd Protocol Reference ltarull for W Type 6.2 

.·. 



(tp partner WJ 

OIC,RQE2l3,CD,DATA 

HS RM 

RCVD_DA!A(DATA, 
PREPARE_IO_RCV_CONFIRMJ 

PS IP 

RECEIVE_AND_WAIT 
o< 0 

RC=OK, 
WHAI_RCVD=DAIA_*COMPLETE 

(1) ~~~~~~~~~~--->o-~~~~~~~~~~~~~--> >o 

-RSP(0846J 
(2) < 

FIC,FMH7,DATA 
(3) < 

Figure 2-97. CONFIRM (RQE213J, 

. SEND_ERROR 

SEND_DA!A(FMH1DATA1NOT_END_OF_DATAJ 
< 

SEND_ERROR --Remote LU 

RECEIVE_AND_WAIT I 
o<:--~~~~~~~-

o< 

I 
< 

I 

RC= OK, WH A I _RCVD = 
CONFIRM 

SEND_ERROR 

RC=OK 

SEND_DATA 

RC=OK 

>o 

I 
>o 

I 
>o 

Chapter 2. Overview of the LU 2-115 



If! E!:i Bl:! ..fill (to gariner !.U) 

Sl:No_DATA 
>o 

RC=llK I o..: I SEND_DATA 
>o 

RC=OK I o< I CONFIRM SEND_DATACDATA1CONFIRM> OIC,RQD2l3,~CD,DATA 
> > (1) 

RCVD_ERROR -RSPC0846) o<.-------------------,o<--------------- (2) 

RC='der;ved 
from FMH7' RCVD_DATA( FMlitDATA,NOT_END_OF _DATA) FIC,FMH7,DATA 

o< o< o<--------------- ( 3) 

F;gure 2-98. CONFIRM CRQD213>t SEND_ERROR --Local LU 

2-116 SNA Format and Protocol Reference Manual for LU Type 6.2 



(1) 

(2) 

(3) 

( to partner W) HS RM 

RCVD_DATA(OATA,CONFIRM> 

PS IP 

RECEIVE_AHO_WAIT 
o<·~~~~~~~-c 

RC=OK• 
llfAT_RCVD=DATA_*C011PLETE 

~~~~~~~~~~~>·n-~~~~~~~~~~~~~~> >o 

-RSP(0846) SEHO_ERROR 
< < 

FIC.Fl'li7,0ATA SEND_DATA(Fl'li,DATA,NOT_El-l>_OF_DATA> 
< < 

RECEIVE_AND_WAIT I 
o< . 

o< 

I 
o< 

I 

RC=OK,WHAT_RCVD= 
CONFIRH 

SEND_ERROR 

RC=OK 

SEND_DAT.A 

RC=OK 

>o 

I 
>o 

I 
>o 

Figure 2-99. CONFIRM (RQ0213), SEl-l>_ERROR --RallOte LU 

Chapter 2. OvervieM of the LU 2-117 



TP PS RM HS (to eartner LU> 

SEND_DATA 
>o: 

RC=OK I o< 

I SEND_DATA SEND_DATA<DATA,NDT_END_OF_DATA> FIC,data 
> > > ( 1) 

RC=OK I o< SEND_DATA<DATA, I RECEIVE_AND_WAIT PREPARE_TO_RCV_FLUSH) LIC,CD,RQEl 
> > > ( 2) 

Figure 2-100. RECEIVE_AND_WAIT Causing RQE,C~ --Local LU 

2-118 SNA Format and Protocol Reference Manual for LU Type 6.2 



( 1) 

(2) 

I to partner Wl 

FIC,data 

HS RM PS IP 

RECEIVE_AND_WAIT 
o< 0 

RC=OK, 
RCVD_DATAIDATA,NOT_END_OF_DATA) WHAT_RCVD=DATA_INCOMPLETE 

--------------------------------> > >o 

LIC,CD,RQEl 
RCVD_DATAIDATA, 

PREPARE_IO_RCV_FLUSH) 
---------------------------------n,__---------------------------------------->o RECEIVE_AND_WAIT 

o<.---------------------
RC =OK, WHAT_ RCVD = 
DATA_•COMPLETE ,__ ____________ >o 

RECEIVE_AND_WAIT I 
o<--------------------'-
1 

RC=OK, 
WHAT_RCVD=SEND 

~-------------------->o 

f;gure 2-101. RECEIVE_AND_WAIT Caus;ng RQE,CD --Re11ota LU 

Chapter 2. Overv;ew of the LU 2-119 



TP PS RM HS Ito partner LU> 

SEND_DATA 

RC=OK 
o< 

SEND_DATA SEND_DATAIDATA,NOT_END_OF_DATA> FIC,data 
o-------------->o---------------->0----------------------> 11) 

RC=OK 
o< I 

I SEND_DATA SEND_DATAIDATA,NOT_END_OF_DATA> 

RC=OK 
o< 

RCVD_ERROR -RSPI0846) 
o<-----------------------0<------------1-------- 12) 

""-------> 13) 

SEND_DATA SEND_DATAIPREPARE_TO_RCV_FLUSH) LIC,CD,RQEl,no data 
'---------->0------------------------->o--------------------> 14) 

!discard data) 

RC=PROG_ERROR_ 
PURGING 

RCVD_DATAIFMH,DATA, 
NOT_END_OF_DATA> FIC,FMH7,DATA 

o< <--------------------0<---------------o 15) 
IRECEIVE_AND_WAIT ------------>o 
RC=OK, I 
WHAT_RCVD=DATA_*COMPLETE 

o<-------------' 

Figure 2-102. SEND_ERROR before SEND_DATA --Remote LU 

2-120 SNA Format and Protocol Reference Manual for LU Type 6.2 



(1) 

(2) 

(3) 

(4) 

(5) 

<to oartner W J 

FIC,data 

HS RM PS IP 

RECEIVE_AND_WAIT 
o<~------~~--~ 

RC=OK, 
RCVD_DATA(DATA,NOT_END_OF_DATAJ WHAT_RCVD=DAIA_•COMPLETE 

~------~~~~~~~->a.--~~~~~~~~~~~--~-> >o 

-RSPC0846) SEND_ERROR SEND_ERROR 
< o< o< 

MIC,data RCVD_DATA(DATA,NOI_END_OF_DATAJ 
> >o purged 

LIC,CD,RQEl,no data RCVD_DATACPREPARE_TO_RCV_FLUSHJ RC=OK 
> > >o 

FIC,FMH7,DATA SEND_DATACFMH,DATA,NOI_END_OF_DAIA> SEND_DATA I < o< o< 

I RC=OK 
>o 

F;gure 2-103. SEND_ERROR before SEND_DAIA --Local LU 

Chapter 2. Overv;ew of the LU 2-121 



IP PS RM HS lto partner W> 

SEND_DATA -RSPC0846) 
a-------------->o 

RC=OK I 
o<--------------~-
1 PREPARE_ IO _RCV _FLUSH SEND_DATACDATA,PREPARE_IO~RC'l-FLUS>-"-)--1---LI_c_._e_Q_E1_._c_o_,c:1a __ t_• __ __ 
. ... > (2) 

RC=OK I 
o<--------------~-1 SEND_ERROR 
~-------------~•>o---------------------------~>o 

SEND_ERROR 

RCVD_ERROR 
o<•~--------------------------~o< purged 

RCVD_DATACFttH,DATA> 
o<-----------------------------0·<---------------------- (3) 

purged I 
.. __ -_es_e_c_o_Sct_6 __ > __________ __ 
. > (4) 

RCVD_DATACPREPARE_TO_RCV_FWSH) LIC,RQEl,CD,no data 

FIC,FMH7,data 

RC=OK 
o<--------------~ 

f;gure 2-104. SEND_ERROR Cross;ng SEND_ERROR, Both Issued ;n Rece;ve State --Remote LU 

2-122 SNA For11at and Protocol Reference Manual for LU Type 6.2 



C to partner LU> HS RM PS TP 

-RSPC 0846 > SEND_ERROR SEND_ERROR 

LIC,RQEl,CD,data RCVD_DATACDATA,PREPARE_TO_RCV_FLUSH> R".:=OK 
(2) ----------------------~> >n-------------->o 

purged 

FIC,FMH7,data SEND_DATACFMH,DATA,NOT_END_OF_DATA> SEND_DATA 
C3) <-----------------------0< o<---------------' I RC=OK •-------------~>o 

-RSPC0846) RCVD_ERROR 
(4) 

LIC,CD,RQEl,no data SEND_DATACPREPARE_TO_RCV_FLUSH> SEND_DATA 
(5) <-----------------------0<----------------------------~,o<------------~o 

(6) 
FIC,FMH7,data 

discard data 

RC= 
RCVD_DATACFMH,DATA,NOT_END_OF_DATA> PROG_ERROR_PURGING 

o----------------------> > >o 
Figure 2-105. SEND_ERROR Crossing SEND_ERROR, Both Issued in Receive State --Local LU 

Ch&pter 2. Overview of the LU 2-123 



TP ps RM HS (to partner Wl 

SEND_DAn.""'· '1 ~ND~PATA<DATA,NOT_END_OF _DATAJ 
&o~~~---->'R-'---------------->0------------.....-> (lJ 

RC=OK 

RCVD_ERROR -RSP(0846J 

CONFIRM SEND~DATA!PREPARE_TO_RCV~FLUSH> LIC,CD,RQEl,NO_DATA 
...._--------->o· ·-· -· ----------------->o--------------> ( 3) 

purge data 

RC='derived . RCVD_l;>ATAIFMH,DATA, 
from FMH7' PREPARE_TO_RCV_FLUSH> OIC,CD,RQE1,FMH7 

o< o< o<------------ <4> I RECEIVE_AND_WAIT 
~--------->o 
RC=OK, I 
WHAT_RCVD=SEND 
o<-------------~-

Figure 2-106. SEND_ERROR before CONFIRM --Remote LU 

2-124 SNA Form•t .. and Protocol Reference Manual for LU Type 6. 2 



Cto partner LU) HS RM P!$ IP 

RECEIVE_AND_WAIT 
o<------------a 

FIC,data RCVD_DATACDATA,NOT_END_OF_DATA> RC=OK,WHAT_RCVD= 
Cl) >·o-------------->i DATA_*COMPLETE >o 

( 2) < -RSPC 0846) o<------s_e_ND ___ E_R_R_o_R _______ o< •• ..,_ •• ~. J 
LIC,CD,RQEl,NO_DATA RCV'l_DA'iA( PREPARE_ ro_RCV_FLUSH) RC=OK 

(3) --------------------~>0-------------------------->o--------->o 

SEND_DATACFMH,DATA, 
OIC,CD,RQE1,FMH7 PREPARE_IO_RCV_FLUSH) RECEIVE_AND_WAIT 

C4> < o<--------------------------,0<-----------~ 

Figure 2-107. SEND_ERROR before CONFIRM --Local LU 

Chapter 2. Overview of the LU 2-125 



TP PS RM HS Uo partner W> 

SEND_DATA 
o-------->o 

RC=OK I 
o<--------'· SEND_DATACDATA, I RECEIVE_AND_WAIT>---PR_E_P_A_R_E __ r_o ___ Rc_v ___ F_L_us_H_> ____ >o-0_1_c_,R_Q_E_1_,_co_._o_A_r_A ____ _ 
. ~ > (1) 

RCVD_ERROR -RSPC0846l 
(2) 

RC='derived RCVD_DATACFMH,DATA, 
from FMH7' NOT_END_OF_DATA> FIC,FMH7,DATA 

Figure 2-108. SEND_ERROR at End-of-Chain --Remote LU 

2-126 SHA Format and Protocol Reference Manual for LU Type 6.2 



(to partner LU) HS RM PS TP 

RECEIVE_AND_WAIT 
o< o 

RCVD_DATACDATA, RC=OK, 
OIC,RQEl,CD,DATA PREPARE_TO_RCV_FLUSH) WHAT_RCVD=DATA_*COMPLETE 

Cl> >·0----------------> >o 
I -RSPC 0846) SEND_ERROR SEND_ERROR 

o< (2 > < o<---------------· 
I RC=OK 
---------->o 

SEND_DATA 
o< I FIC,FMH7,0ATA SEND_DATACFMH,DATA,NOT_END_OF_DATA> 

(3) <------------0<.---------------
I RC=OK 
'--------->o 

Figure 2-109. SEND_ERROR at End-of-Chain --Local LU 

Chapter 2. Overview of the LU 2-127 



IP PS RH HS ( to partr)!r W) 

SEND_DATA SEND_DATAlDATA,NOT_END_OF_DATA) FIC,data 
> (1) 

RC=OK 
o< 

REQUEST_TO_SEND SIGNAL 
o< < (2) 

I +RSP 
> (3) 

SEND_DATA SEND_DATAlDATA,NOI_END_OF_DATAJ . HIC•data 
> > (4) 

RC=OK, 
RQ_TO_SEND_RCVD=YES 
o< 

I SEND_DATA SEND_DATAlDATA,NOT_END_OF_DATAJ HIC,data 
> > (5) 

RC=OK I o< ., 

SEND_DAJA(DATA, 
RECEIVE_AND_WAIT PREPARE_IO_RCV_FLUSHJ LIC,RQEl,CD 

> > (6) 

Figure 2-110. REQUEST_TO_SEND, Received in Stlnd State --Remote LU 

2-128 SNA Format and Protocol Reference Manual for LU Type 6.2 



lt2 12ar:!;ner LY~ HS Rt! PS TP 

FIC,data RCVD_DATACDATA,NOT_END_OF_DATA> RECEIVE_AND_WAIT 
Cl) > >o< 0 

RC=OK,WHAT_RCVD= 
DATA_*COMPLETE 

>o 

SIGNAL REQUEST_TO_SEND REQUEST_TO_SEND I 
(2) < o< o< 

+RSP RSP_TO_REQUEST_TO_SEND RC=NONE 
( 3) > > >o 

MIC,data RCVD_DATAIDATA,NOT_END_OF_DATA> 
(4) > >o 

RECEIVE_AND_WAIT 
o< 

RC=OK,WHAT_RCVD= 
MIC,data RCVD_DATAIDATA,NOT_END_OF_DATA) DATA_*COMPLETE 

(5) > > >o 

RECEIVE_AND_WAIT 
o< 

RCVD_DATAIDATA, RC=OK,WHAT_RCVD= 
LIC,RQEl,CD PREPARE_TO_RCV_FLUSH) DATA_*COMPLETE 

(6) > > >o 

o< 
RECEIVE_AND_WAIT I 
RC:QK,WHAT_RCVD= 
SEND 

>o 

f;gure 2-111. REQUEST_TO_SEND, Rece;ved ;n Send State --Local LU 

Chapter 2. Overview of the LU 2-129 



TP PS RM HS Cto partner LU) 

SEND_DATA SEND_DATACDATA,NOT_END_OF_DATA) FIC,data 
o-------->0---------------------------->o-----------------------> Cl) 

RC=OK I 
o<----------------· 

SEND_DATACDATA, 
RECEIVE_AND_WAIT PREPARE_TO_RCV-.FLUSH) LIC,RQEl,CD .._ ________ > >0---------------------> (2) 

REQUEST_TO_SEND SIGCsoft> 
o< o<------------------ C 3 > 

I +RSP 
~------------------------> (4) 

RC=OK, 
WHAT_RCVD=DATA_*COMPLETE, 
RQ_TO_SEND_RCVD=YES RCVD_DATACDATA,NOT_END_OF_OATA) FIC,data 
o< o< o<----------------------~ 

Figure 2-112. REQUEST_TO_SEND, Received in Receive State --Remote LU 

2-130 SNA Format and Protocol Reference Manual for LU Type 6.2 

(5) 



Uo partner W) HS RM PS TP 

RECEIVE_AND_WAIT 

FIC,data RCVD_DATACDATA,NOT_END_OF_DATA> 
(1) -----------~;>o---------------~>o RC=OK,WHAT RCVD= I DATA_*COMPLETE 

~-~~~---->o 

REQUEST_TO_SEND I SIGCsoft) REQUEST_TO_SEND ..---------e<·---------------10< 
LIC,RQEl, CD RCVD_DATACDATA,PREPARE_TO_RCV_FLUSH> 

(2) ---- -------> >o 

(3) <----
+RSP RSP_TO_REQUEST_TO_SEND RC=NONE 

(4) -----------~> > >o 
RECEIVE_AND_WAIT I 

o<-------~-
R C =OK, WHAT_RCVD= 
DATA_*COMPLETE 

'-"------->o 
RECEIVE_AND_WAIT I 

o<---------
R C =OK, WHAT_RCVD= 
SEND 
~------->o 

SEND_DATA I 
(5) <:-----------..... ~-----------------o<--------FIC,data SEND_DATACDATA,NOT_END_OF_DATA> 

1 RC=OK 
~-------->o 

F;gura 2-113. REQUEST_TO_SEND, Reca;ved ;n Rece;ve State --Local LU 

Chapter 2. Overview of the LU 2-1:u 



This page intentionlllly left bl•nk 

132 SHA ForRt •nd Protocol Reference tt.nu.l for W T~ 6.2 



CHAPTER 1... .bY RESOURCES MANAGER 

Transact; on 
Program 

Presentatfon 
Services 

CPS> 

LU Network i~----------> Resources 
Manager 

.------> C LU. SVC_MGR .RM) 
<---> Services 

Data Flow 
Control 

<DFC> 

v 

Transmission 
Control 

<TC> 

l 
J 

CLU.SVC_MGR.NS> 

> Half-session 

Figure 3-1. Overview of Component Interactions Involving the Resources Manager 

GENERAL DESCRIPTION 

Any ti me one transact; on program wi shes to 
communicate with another, the LU needs to 
establish, manage, and later deactivate a 
conversation. This chapter describes the 
management of conversation resources Cor sim­
ply "conversations">. 

An LU contains a services manager, which in 
turn contains a resources manager, RM. The 
resources manager stores informaUon about 
active transaction programs, conversations, 
and LU-LU sessions in control blocks, some of 

which are the TCB, RCB, and the SCB Csee "Re­
sources Manager Data-Base" on page 3-3 for 
additional information). 

The resources manager interacts with other 
components within the LU. These components 
are shown in Figure 3-1. They are PS C"Chap­
ter 5.0. Overview of Presentation Services" 
and "Chapter 5.1. Presentation Serv­
ices--Conversation Verbs">. LNS ("Chapter 4. 
LU Network Services"), and HS ("Chapter 6.0. 
Half-Session"). 

' Chapter 3. LU Resources Manager 3-1 



RESQURCES HANA§ER FUNCJIOHS 

The resources Mnager (R") coordinates the 
follONing functions: 

• 

I • 
I 
I 
I 
I • 
I 

• 

Creating new instances, and destroying 
existing instances, of presentation serv­
ices 

Attaching new instances, and destroying 
existing instances, of transaction pro­
grams 

Establishing conversations and deactivat­
ing conversat.ions 

Choosing sessions to be used by a conver­
sation and, if necessary, requesting 
tbiddjna for) use of the session 

• Requesting network services ( LNS> to 

I • Collpleting LU-LU verification (fttf-12 
I processing) 

I 
I 
I 

' I I 

• 

• 

I • 
I 

Replying to requests (bids> for use of a 
session that are received frOll ret10te 
resources aanagers 

Providing services for support of the 
sync point log (the content and use of 
Nhich is described in "Chapter 5.3. Pres­
entation Services--Sync Point Services 
Verbs" >-these services are not foraally 
deflned in this book 

Coordinating and 
conversation-level security 

activate a nett session or to deactivate 0 

an existing session 

J.Y CQt1POHENT INTERACTIQNS 

Other conipo11ents, in the LU, Mith Nhich the 
resources Manager interacts are the presenta­
tion services lPS> component associated with 
Heh transaction progra• instance attached to 
the LU, each half-session (HS) that is avail­
able for use by the resources nnager, and 
netNOrk services llNS). Examples of the type 
of interactions that take place are given 
below. 

When presentation services is requested by 
its transaction prograia (TP) to initiate a 
conversation Mith another TP, it requests the 
resources Manager to ass i at in the request. 
The resources Manager is responsible for such 
tasks as choosing a session on Nhich to ini­
tiate the conversations checking that the 
synchronization level, and security level on 
the request corresponds to that Nhich the 
target LU supports for this LUI and perfora­
ing other f~tfons necessary for acquiring 
the session for use by the requested conver­
sation, such as creating the appropriate con­
trol blocks (see "Resources Manager 
Data-Base" on page 3-3 for 110re on control 
blocks>. After the resources aanager has 
conipleted processing of the request that it 
received from presentation services, it sends 
a reply to PS inforaing it of the outcome of 
the request. 

One type of unsoHcited inforHtion that the 
resources 11anager sends to presentation serv­
ices is an Attach FH header (fttf-5). lrl'len 
the resources .. nager receives an Attach from 
a reaote LU over one of its half-sessions, it 
checks certain fields, including all security 

fields, carried in the Attach; then it cre­
ates a new instance of presentation services . 
end sends the Attach, along w;th other infor­
mation, to the new PS ("Attaching a Trans­
action Progra•" on page 3-9 and "Creation 
and Teraination of Presentation Services" on 
page 3-17 provide additional details>. 

Data that the resources manager Ni shes to 
send to another resources •anager in the net­
NOrk is first sent to the local HS component 
of one of the sessions connecting the two 
LlJs. LikeNise, the resources 11anager 
receives fro• HS all data destined for the 
resources •anager that coiaes in over a ses­
sion. Examples of the kind. of data that 
flo1115 between the resources •anager and HS 
are bids for the use of • session, replies to 
bid requests, and Attach FH headers. 

When the resources aanager receives a request 
from presentation services for a session and 
it finds that there are no free sessions with 
the required characteristics, the resources 
aanager ·sends a request to LNS asking it to 
activate • new session. Siailarly, the 
resources •anager sends to LU network serv­
ices a request that a session be deactivated 
upon notHication by PC.COPR ("Chapter S.4. 
Presentation Services--Control-Operator 
Verbs"> that too •any sessions are acHve. 
LHS replies to the resources Manager after it 
has carried out the requested funcHon. See 
"Activating a New Session" on page 3-13 and 
"Changing the HaxillUll Session Li•it" on page 
3-15 for more details on se.ssion activation 
and deactivation. 

3-2 SHA For .. t and Protocol Reference Manual for LU Type 6.2 



RESQURCES MANAGER DATA-BASE 

The resources 11anager needs infor•ation about 
such things as the transaction progra1115 cur­
rently attached to the LU, the conversations 
associated with each transaction progra•• and 
the sessions available for use by a conversa­
tion between transaction programs. This 
infor•ation is stored in a gr~ of control 
blocks found in the LU ls~e "Appendix A. Node 
Data Structures" for the control block defi­
nitions J. The resources •anager initializes 
entries in some control blocks. while it only 
accesses or updates information in entries 
already existing in other control blocks. 

CONTROL BLOCKS MAINTAINED BY THE RESOURCES 
HANA GER 

Infor•ation about transaction programs is 
contained in the transaction control block 
ITCBJ. One TCB exists for each active TP-PS 
pr-ocess associated with the LU. Each TCB 
contains a TCB identifier- <TCB_ID >. which 
1.niquely identifies the transaction pr-ogr-a11 
being r-epr-esented by the TCB. The TCB_ID is 
also used in all comllllrlication between the 
resources •anager and presentation ser-vices 
servicing the transaction progr-a11. For exam­
ple, 1.shen presentation services sends a 
record to the resour-ces ••nager-, it provides 
its TCB_ID so that the resources •anager will 
know, of ~11 the TP-PS processes it manages, 
which presentation services to send a reply 
to. Presentation services is informed of its 
TCB_ID when the TP-PS process is created by 
the resources 11anager. When the resources 
11anager- receives an Attach header IFtfi-5) 
fr-011 a remote resources 11anager, it creates a 
neN TCB, cr-eates a new instance of presenta­
tion services to be associated with the 
transaction progra• being attached, and sends 
the TCB_ID of the neN TCB to presentation 

Transaction 
Proar-a• 

ALLOCATE 

Pr-esentation 
Seryjces 

services. Thus, attaching a transaction pro­
gram results in creation of a new TP-PS proc­
ess for that transaction progra11, with Nhich 
a presentation ser-vices c0111p<>nent is ah1ays 
associated. 

Associated with each TCB is a group of 
r-esource control blocks ( RCBs ) • One RCB 
exists in the gr-oup for- each conversation 
associated with the transaction progra•. 
Besides the RCB_ID, an RCB contains several 
other pieces of infor-111ation, such as the 
TCB_ID of the TP-PS pr-ocess that is using the 
conversation; the LU na111e, mode naine, and 
half-session identifier CHS_IDJ of the ses­
sion on which a conversation is r-unningl and 
a buffer in which presentation services 
stor-es data that it receives fr-om the trans­
action pr-ogram. 

The final contr-ol block -intained by the 
resources manager is the session control 
block ISCB>. One sea exists for- each active 
session between the LU and a partner LU. 
Information contained in an SCB includes a 
half-session identifier IHS_ID> and the part­
ner LU_NAHE and HOOE_NAl'IE for the session. 
CONTROL BLOCKS ACCESSED BY THE RESOURCES MAN­
AGER 

In addition to those control blocks managed 
by the resources manager, other- control 
blocks exist that are managed by another- com­
ponent but ar-e accessed and updated by the 
resources manager. 

One of these control blocks is l10DE. There 
is one HOOE control block for each 11ode naH 
that is defined for the particular LU. The 
HOOE entry contains information that is fixed 
on a mode name basis such as session counts 
and session limits. 

Resources 
Manager-

ALLOCATE_RCB 
-----------------------------> 

RCB_ALLOCATEDIRCB_IDI 
<-----------------------------

Figur-e 3-2. Allocation of a Resource Control Block <RCBJ 

Chapter 3. LU Resources t1anager 3-3 



ESTABLISHING A CONVERSATIQN 

When the resources manager receives an 
ATTACH_HEADER record (from HS if the Attach 
was received on an LU-LU sessi.on, or from 
UPM_IPL if the Attach was generated locally, 
perhaps as the result of an operator com­
mand), it creates a new TCB (representing the 
new instance of a TP-PS process I and RCB (re­
presenting the transaction program's initial 
conversation). It passes the IDs of the con­
trol blocks to the newly-created presentation 
services process Csee "Attaching a Trans­
action Program" on page 3-9). Once the 
transaction program is attached, it can ini­
tiate conversations with other transaction 
programs. 

ALLOCATING A NEW CONVERSATION 

When the transaction program is ready to 
start a new conversation, it issues an ALLO­
CATE verb to presentation services. In gen­
eral, presentation services separates the 
ALLOCATE request into two distinct functions. 
i.e., allocating an RCB and obtaining a ses­
sion. Presentation services requests the 
resources manager to create a new RCB via an 
ALLOCATE_RCB record. The ALLOCATE_RCB con­
tains information about the type of session 
that will be needed for the conversation. It 
stores the session-related information in the 
new RCB and sends presentation services an 
RCB_ALLOCATED record. which contains the ID 
of the RCB. See Figure 3-2 for the flows 
that take place. 

OBTAINING A SESSION 

Once presentation services CPS) is informed 
of the ID of the new RCB. it creates an 
Attach FM header CFMH-51 and places it in the 
RCB. At some point, it requests that an 
LU-LU session be allocated to the conversa­
tion. PS can choose to return control to the 
transaction program and later obtain the nec­
essary session, or it can obtain the session 
before returning to the transaction program. 
PS makes the decision of when to ask for the 

session based on information the transaction 
program supplied in the ALLOCATE verb (see 
"Chapter 5. 1. Presentation Serv­
i ces--Conversat ion Verbs" for specific 
details I. 

Presentation services asks for a session to 
be allocated by sending a GET_SESSION record 
to the resources manager. The GET_SESSION 
contains the RCB_ID of the conversation that 
is to use the session. It also contains an 
i ndi ca tor that tells the resources manager 
whether PS wants RM to send out the Attach FM 
header as part of the session allocation 
processing, or whether PS is to be responsi­
ble for sending the Attach after the session 
has been allocated by RM. 

The resources manager at either end of a ses­
sion connecting two LUs may attempt to allo­
cate that session to a conversation. If both 
resources managers attempt to allocate the 
same session at the same time, there must be 
some way to resolve the contention for the 
session. For this reason, one of the LUs is 
designated the "first speaker" <or "con­
tention winner") and the other LU is desig­
nated the "bidder" C or "contention loser" I 
for the session. The assignment of 
first-speaker and bidder LUs is established 
during session activation and remains in 
effect for the duration of the session. If 
more than one session exists between a pair 
of LUs, one LU may be the first speaker for 
some sessions and the bidder for the others. 
If an LU is the first speaker for a partic­
ular session, that session is said to be a 
first-speaker session for the LU. 

The resources manager in a bidder LU must 
request the resources manager in the 
first-speaker LU for permission to use a ses­
sion. This is called "bidding" for a ses­
sion. The first-speaker LU may either grant 
or deny the request for the session from the 
bidder LU. On the other hand, if the 
resources manager in a first-speaker LU 
wishes to allocate a free session to a con­
versation, it may do so immediately, without 
requesting permission from the resources man­
ager in the other LU. 

3-4 SNA Format and Protocol Reference Manual for LU Type 6.2 



Presentation Resources 
Services Manager ID! 

GET_SESSION(RCB_ID, NO_ATTACH> 
(1) > 

HS_PS_CONNECTED 

> l (4) First-
Speaker 

Flows SESSION_ALLOCATED 
(5) < 

-OR-

BID_WITHOUT_ATTACH 
(2) > 

• 
• 
• 

Bidder 
Flows +BID_RSP 

(3) < 

HS_PS_CONNECTED· 
(4) > 

SESSION_ALLOCATED 
(5) < 

Figure 3-3. Allocation of Session Using BID_WITHOUT_ATTACH 

The resources manager will always allocate a 
first-speaker session in preference to a bid­
der session, to avoid the bidding procedure. 
Figure 3-3 illustrates the flows that take 
place when the resources manager attempts to 
allocate a session and presentation·services 
has specified that the Attach is not to be 
sent by RM as part of the session allocation. 
The records used in the figure are defined in 
"Appendix A. Node Data Structures" in more 
detail. The following description refers to 
the numbers to the left of each flow in the 
figure. 

(1) Presentation services sends a 
GET_SESSION record to the resources man­
ager. The RCB_ID identifies an RCB that 
was previously allocated by the 
resources manager. The NO_ATTACH param­
eter informs the resources manager that 
it should not send the Attach FM header 
as part of the session allocation proc­
essing 

(2) If no first-speaker session is avail­
able, the resources manager must bid for 
use of a session. It sends 
BID_WITHOUT_ATTACH to the half-session. 
The bid will flow on the session ~o the 
resources manager at t~2 partner LU. 
Between th• time that the bid is sent 

and the bid response is received, the 
resources manager must retain enough 
information to be able to proceed with 
session allocation when the bid response 
arrives. This information includes sav­
ing the HS_ID of the session and th4t 
GET_SESSION record in the RCB. 

(3) The BID_RSP arrives from the remote 
resources manager on the half-session. 
The positive response indicates that the 
bid for use of the session has been 
accepted and the resources manager can 
complete the session allocation. Not 
shown in this figure is the processing 
of a -BID_RSP. In this case, the 
resources manager would attempt allo­
cation of a different session, if possi­
ble. 

141 An HS_PS_CONNECTED record is sent to the 
half-session to inform the half_session 
that it has been connected to a TP-PS 
process. 

15) A SESSION_ALLOCATED record is sent to 
presentation services to inform it that 
.. s:a:;;s.ian h.as been allocated to the con­
versation, satisfying the GET_SESSION 
request. 

Ch&pter 3. LU Resources Man~ger 3-5 



Presentation Resources 
Services Manager ~ 

GET_SESSIONCRCB_ID, ATTACH) 
Cl) > 

BID_WITH_ATTACH 
C2al > 

First- HS_PS_CONNECTED 
(4) Speaker > 

Flows 
SESSION_ALLOCATED 

(5) < 

-OR-

BID_WITH_ATTACH 
(2bl > 

• 
• 
• 

Bidder 
Flows +BID_RSP 

(3) < 

HS_PS_CONNECTED 
(4) > 

SESSION_ALLOCATED 
(5) < 

Figure 3-4. Allocation of Session Using BID_WITH_ATTACH 

Fi gure 3-4 i llus t rates the flows that take 
place when the resources manager attempts to 
allocate a session and presentation services 
has specified that the Attach is to be sent 
by RM as part the the session allocation. 
The records used in the figure are fully 
defined in "Appendix A. Node Data Struc­
tures". The following description refers to 
the numbers to the left of each flow in the 
figure. 

Ill Presentation services sends a 
GET_SESSION record to the resources man­
ager. The RCB_ID identifies an RCB that 
was previously allocated by the 
resources manager. The ATTACH parameter 
informs the resources manager that it 
should send the Attach FM header as part 
of the session allocation processing 

!2al If a first-speaker session is available, 
a BID_WITH_ATTACH to the half-session. 
The BID_WITH_ATTACH contains the Attach 

FM header as a field. Since this is a 
first-speaker session, the 
BID_WITH_ATTACH is not really a bid for 
the session, and RM may immediately pro­
ceed with session allocation without 
wa i ting for a BID_RSP (none wi 11 be 
forthcoming). 

!2bl If no first-speaker sessfon is avail­
able, the resources manager must bid for 
use of a session. It sends 
BID_WITH_ATTACH to the half-session. 
BID_WITH_ATTACH includes the Attach FM 
header as a field. The Attach is sent 
on the half-session along with the bid. 
Otherwise, the processing is the same as 
in Figure 3-3. 

C3l Same as in Figure 3-3 

(4) Same as in Figure 3-3 

(5) Same as in Figure 3-3 

3-6 SNA Form.at and Protocol Reference Manual for LU Type 6. 2 



Resources Presentation 
ID! Manager Services 

BID 
( 1) > 

BID_RSP 
12a) < 

ATTACH_HEADER 
(3) > 

ATTACH_RECEIVED 
141 

-OR-

( 2b) [ < 
-BID_RSP 

Figure 3-5. Responding to a Bid for a Session 

Figure 3-5 illustrates the flows that take 
place when a bid request is received by the 
resources manager. The records used in the 
f;gure are defined in "Appendix A. Node Data 
Structures" in more detail. The following 
description refers to the numbers to the left 
of each flow in the figure. 

Cll A BID record is received from the 
half-session. The half-session sends a 
BID record to RM whenever the partner LU 
sends BB, regardless of whether the 
partner LU is bidder or first speaker. 

( 2a) If RM responds with a +BID_RSP, the 
request by the remote resources manager 
to use the session is accepted and proc-

> 

] 

essing continues with receipt of the 
Attach FM header from the half-session 
( flows 3 and 4 I . 

( 2b) If RM responds with a -BID_RSP, the 
request by the remote resources manager 
to use the session is rejected. 

131 An ATTACH_HEADER record, which includes 
the FMH-5, is sent from the half-session 
to RM. 

( 4) RM creates a new TP-PS and sends 
ATTACH_RECEIVED to PS. See "Attaching a 
Transaction Program" on page 3-9 for 
further details. 

Chapter 3. LU Resources Manager 3-7 



Presentation 
Services 

Resources 
Manager 

ALLOCATE_RCBCIMMEDIATE_SESSION = YES> 
~~~~~~~~~~~~~~~~> 

r First-Speaker 
Sessio,.. 

J..vai !able l RCB_ALLOCATEDCRCB_ID) 
<---

-OR-

RCB_ALLOCATED 
CRETURN_CODE = UNSUCCESSFUL) 

First-Speaker [ 
Session 

Not Available <~~~~~~~~~~~~~~~~ 

Figure 3-6. Immediate Allocation of a Session 

IMMEDIATE SESSION PROCESSING 

Presentation services can request the 
resources manager to allocate both an RCB and 
a session with one record. ALLO­
CATE_RCBCIMMEDIATE_SESSION=YESl embodies the 
function of both ALLOCATE_RCB and GET_SESSION 
in that when the processing completes sue-

HS_PS_CONNECTED 

l 
cessfully, both an RCB and an SCB are allo­
cated. ALLOCATE RCBCIMMEDIATE SESSION=YESl 
instructs the res~urces manager to allocate 
an RCB only if a first-speaker half-session 
is currently available. If such a 
half-session is not available, no allocation 
is to be performed. See Figure 3-6 for the 
specific flows involved. 

3-8 SHA Format and Protocol Reference Manual for LU Type 6.2 



ATTACH_HEADER 

Resources 
Manager 

-------------------------------> 
HS_PS_CONNECTED 

<-------------------------------

Presentation 
Services 

ATTACH_RECEIVED (TCB_ID, RCB_ID, 
SENSE_CODE) 

~--------------------------~> 

Figure 3-7. Attach Flows 

One transaction program requests via an 
Attach FM header (Fttf-5) that another trans­
action program be attachec. to a conversation. 
The resources manager handles the receipt of 
the Attach. Only one Attach is sent per con­
versation. RM processes the Attach and later 
sends it to PS_INITIALIZE in the newly cre­
ated TP-PS process for further processing. 

RM is responsible for checking certain fields 
of the Attach, such as the transaction pro­
gram name field. RM performs all security 
checks of the Attach. ( PS_INITIALIZE later 
checks the remaining fields ) • It not i fies 
presentation services of the result of the 
checking through a field in the ATTACH record 
that RM sends to PS. 

If the Attach violates established protocol 
(e.g., by sending an Already Verified·indi­
cation to a partner LU that does not accept 
it, sending multiple passwords on a single 
Attach, indicating a synchronization level of 
syncpoint when the level for the session is 

confirm-only), RM causes an UNBIND to be gen­
erated and does not create a new instance of 
the TP-PS process. For all other errors 
found in the Attach (e.g., invalid user ID, 
invalid parameter length), PS is responsible 
for creating an FMH-7 or for causing an 
UNBIND to be generated, to notify the trans­
action program that initiated the Attach of 
the error. 

If after checking the Attach no protocol 
error is found, the resources manager creates 
a new instance of the TP-PS process; it cre­
ates a new TCB and RCB; and it connects the 
TP-PS process to the half-session. It then 
sends an ATTACH record to the new instance of 
the TP-PS process. The ATTACH record con­
tains the Attach FM header, the FMH-7 sense 
data field, and the IDs of the new TCB and 
RCB. Finally, it notifies the half-session 
that it has been connected to a TP-PS process 
via a HS_PS_CONNECTED record. Figure 3-7 
depicts the flows involved in Attach process­
ing. 

Chapter 3. LU Resources Manager 3-9 



Resources 
Manager 

First-Speaker 

BID_WITH_ATTACH 
------------------------· 

Create RCB 
RCB.HS_ID = HS_ID 
SCB.RCB_ID = RCB_ID 
STATE(FSM_RCB_STATUS) = IN_USE 
STATE<FSM_SCB_STATUS) = IN_USE 

BID 
<-----------------------· 

STATECFSM_SCB_STATUSJ = IN_USE, so: 

Ii§ ... Ii§ 

' ' ' ' / x 
/ ' 

/ 

/ ' 

/ 
/ 

/ ' 
/ ' 

B1dder 

Resources 
Manager 

BID_WITH_ATTACH or 
BID_WITHOUT_ATTACH 

··-----------------------
Create RCBl 
RCBl.HS_ID = HS_ID 
SCB.RCB_ID = NULL 
STATECFSM_RCBl_STATUSJ = PENDING_ATTACH 
STATECFSM_SCB_STATUS) = FREE 

BID 
-----------------------> 

Create RCB2 
RCB2.HS_ID = HS_ID 
SCB.RCB_ID = RCB_ID 
STATE<FSM_RCB2_STATUS) = IN_USE 
STATECFSM_SCB_STATUSJ = IN_USE 
ATTACH is sent to PS 

-BID_RSPISENSE_CODE = 0813 or 0814) 

----------------------------------------------------------------> 

Figure 3-8. Bid Races 

RACES fQR I!:m ~ .Q.E A SESSION 

It is possible for the resources manager on 
each end of a session to simultaneously 
choose that session to service separate 
GET_SESSION records, causing a bid race. The 
resources manager on the f i rs t-speaker side 
of the session always wins such a bid race. 
When it receives the bid from the bidder RM, 
it recognizes that the session is already in 
use and generates a negative BID_RSP. When 
the bidder RM receives the negative BID_RSP 
record, i t checks the free session pool to 
see if there is another session available and 
retries the GET_SESSION processing on that 
session. Figure 3-8 illustrates an example 
of a bid race and shows the RCB and SCB set­
tings that allow a race condition to be 
detected. · 

RCBl.HS_ID = NULL 
STATEC FSM_RCBl .. ST"-TU!H = !"r::tE 
Retry on another session 

The negative BID_RSP that is generated for a 
bid rejection can have a sense code of either 
0813 (Bracket Bid Reject--No RTR Forthcoming> 
or 0814 !Bracket Bid Reject--RTR Forthcom­
ing). Either -BID_RSPC0813J or 
-BID_RSPC0814) may be sent, the decision 
being an implementation-dependent choice. 
An implementation may permit a transaction 
program to reserve a session before a conver­
sation is started on that session. A bid for 
a reserved session is always rejected with a 
-BID_RSPC0814J since the transaction program 
might never begin a conversation on the 
reserved session Cif, for example, the trans­
action program terminated abnormally J. The 
resources manager informs the partne.r LU that 
it can bid on the session again by sending an 
RTR_RQ. 

3-10 SNA.Format and Protocol Reference Manual for LU Type 6.2 



Resources 
Manaaer 

First-Speaker Bidder 

WI ••• HI 
Ruourcu 

HtDICl'C 

BID_WITH_ATTACH 
BID_WITH_ATTACH or 
BID_WITHOUT_ATTACH 

• 
\ / 

l( 

BID / ' BID 
• 

-BID_RSP(SENSE_COOE = 08141 

• 
• • 

RTR_RQ 

+RTR_RSP 

BID 
<-.. ---------------------------- l 

-OR-

-RTR_RSP(SENSE_CODE = 08191 [<.------ ] 
Figura 3-9. READY TO RECEIVE lRTR) Flows 

Figura 3-9 depicts possible RTR flOMS. In 
the situation where there is a bid race and 
-BID_RSPC0814) is sent, the resources &nager 
at the bidder side of the session camot bid 
again for that session until it has received 
an RTR_RQ frOll the first-speaker RM. Upon 
receipt of a -BID_RSPC0814), the bidder 
resources 11anager updates a field in the SCB 
to remember that -RSPl08141 NH received and 
retries the bid on another session. Front 
this point until the RTR_RQ is received, 
Nhenever a conversation ends and the session 
becomes free, the session· is nstl returned to 
the free session pool (as is the nonaal 
caseJ, thereby preventing the session from 
beh'9 chosen for bidding. 

lflen the current converaatien ends, the 
first-speaker RM returns the session to the 
free session pool and checks to see if any 
Malting requests can be satisfied by that 
session. The resources •anager •ay use the 
session to service wltiple GET_SESSIOH 
requests before sending the pr0111ised RTR_RQ. 

At some point, the resources 11anager at the 
first-speaker side sends an RTR_RQ to the 

resources .. nager at the bidder side. This 
is a notification to the bidder RM that it 
can no11t use the session. .,_, the 
first-speaker RH sends the RTR_RQ, it ret110Ves 
the session frOll the free session pool to 
prevent that session fro• being chosen to 
service a request before the bidder RM has 
had a chance to respond to the RTR_RQ. 

lflen the bidder RH receives the RTR_RQ, it 
places the session in the free session pool 
Cfor the first ti .. since receiving the 
-BID_RSPC0814) ). It then checks to see if a 
6ET_SESSION record is ... iting to be serviced, 
i f so RH then sends a pos i ti va RTR_RSP (i ndi -
eating that it intends to use the session) 
and a BID_WITHOUT_ATTACH or BID_NITH_ATTACH 
to the first-speaker resources Mnager. If 
no 6ET_SESSION records are Naiting, the bid­
der sends a negative RTR_RSP Mith a sense 
coda of 0819. This indicates to the 
first-speaker Rtl that the bidder does not 
need the session. At this tin, the 
first-speaker places the session back into 
the free session pool and checks for any 
waiting requests. 

Chapter 3. LU Resources Hanager 3-11 



Presentation 
Services 

DEALLDCATE_RCBCRCB_ID> 

Resources 
Manager 

------------------------------~> 
RCB_DEALLDCATED 

<------------------------------~ 

• • 
• 

FREE_ SESSION 
<;----...... --------------------~ 

-OR-

FREE_ SESSION 
<:--------------------------~ 

DEALLDCATE_RCBCRCB_ID> 

• 
• 
• 

------------------------------~> 
RCB_DEALLOCATED 

<--------------------------------

Note: DEALLOCATE_RCB and FREE_SESSION are independent records and can be sent to the resources 
manager in any erder. 

Figure 3-10. End of a Conversation 

TERMINATING A CONVERSATION 

After the resources manager has established a 
conversation between two transaction pro­
grams, it is not called upon to do any other 
processing for that conversation until the 
transaction programs are ready to end the 
conversation Csee Figure 3-lOl. The 
resources manager is informed of the end of 
the conversation via two independent records. 
One record is DEALLOCATE_RCB, sent from pres-

entation services. The other is 
FREE_SESSION, sent from HS to inforil the 
resources manager that the session is now 
available for use by another conversation. 
The arrival of the two records is 
order-independent. Whichever record is 
received first triggers the resources manager 
to disconnect PS and HS. 

3-12 SNA Format and Protocol Reference Manual for LU Type 6.2 



Presentation 
Services 

--PRIMARY--

Resources 
Manager 

GET_SESSION 
> 

Network 
Services 

. ACTIVATE_SESSION 
> 

WI ... WI 

• 

--SECONDARY--

Network 
Seryicg 

Resources 
Manager 

PresentaH on 
Seryjces 

Nor11al BIND protocols 
• 

ACTIVATE_SESSION_RSP 
< 

r 
[lJl ~ESSION_ALLOCATED 

-OR-

r 

ENCIPHERED_RD2 
> 

FMH-12 

[ 2]< 

SESSION_ALLOCATED 
< 

-OR-

I ENCIPHERED_RD2 
> 

FMH-12 
[3]< 

l 
-OR-

r 
YIELD_SESSION 

> 
[4]< LUST AT 

l 
Figure 3-11. Activation of a New Session 

ACTIVATING A NEW SESSION 

The resources manager allocates sessions to 
be used by conversations. Presentation serv-

> 

> 

> 

SESSION_ACTIVATED 
> 

l 
SECURITY_HEADER 

> 

SECURITY_HEADER 
> 

FREE_ SESSION 
> 

FREE_ SESSION 
> 

ices requests the session be allocated with a 
GET_SESSION record. RM cho.,!'lllS sessions from 

Chapter 3. LU Resources Manager 3-13 



the free sessfon pool to satisfy the 
GET_SESSION request. If the pool is empty 
and the session limits allow the activation 
of a new session, the resources manager sends 
an ACTIVATE_SESSION record, containing the LU 
name and mode name of the desired session, to 
LU network services (LNS, "Chapter 4. LU Net­
work Services"). Figure 3-11 on page 3-13 
illustrates the flows involved in activating 
a new session. 

Although RM w i ll not request sess i on act i -
vation if it would cause the session limits 
to be exceeded, LNS is ultimately responsible 
for checking to see that the number of active 
sessions is not greater than the maximum num­
ber of sessions allowed for that (LU name, 
mode name) pair. Some conditions (e.g., a 
BIND race> will cause RM to request a session 
activation that would exceed the session lim­
its. In this case, the activation request 
from RM is rejected with a negative ACTI­
VATE_SESSION_RSP record. 

If the session can be activated, normal BIND 
protocols take place. When the session has 
been successfully activated, the LNS compo­
nent sends the resources manager a positive 
ACTIVATE_SESSION_RSP record informing RM of 
the SCB_ID of the new session. 

Figure 3-11 shows the RM flows involved in 
activating a new session. In the following 
discussion, the numbers in parentheses corre­
spond to the numbers in that figure. 

When a new session is activated, it comes up 
in-brackets with the resources manager on the 
primary side of the session having control of 
the session. This is true even if the 
resources manager on the secondary side of 
the session was the one that issued the ACTI­
VATE_SESSION record that caused the session 
to be activated. Upon receipt of a positive 

ACTIVATE_SESSION_RSP Cor SESSION_ACTIVATED in 
the case of activation by the partner LU), RM 
creates and initializes an SCB bHed on the 
information carried in the ' ACTI­
VATE_SESSION_RSP Cor SESSION_ACTIVATED); 

If the newly activated session is a primary 
half-session, RM determines if any requests 
are waiting to be serviced. If LU-LU verifi­
cation is not active and a request is 'waiting 
( l l, RM uses the new session to service the 
request and sends a SESSION_ALLOCATED record 
to presentation services. If LU-LU verifica­
tion is active and a request is waiting (2), 
RM will generate and send to the, half-session 
an ENCIPHERED_RD2 record containing an 
FMH-12. Parameters within the ENCIPHERED~RD2 
record inform HS not to end the bracket nor 
yield control of the session. RM then uses 
the new session to service the request and 
sends a SESSION_ALLOCATED record to presenta­
tion services. If no requests are waiting 
and LU-LU verification is active (3), RM will 
generate and send to the half-session an 
ENCIPHERED_RD2 record containing an FMH-12 
and parameters that inform the half-session 
to relinquish control of the session and end 
the bracket. If no requests are waiting and 
LU-LU verification is not active (4), RM 
sends a YIELD_SESSION record to HS, thus 
yielding its right to use the session and 
ending the bracket. 

The resources manager at the partner LU (sec­
ondary half-session> is notified of the ses­
sion activation by a SESSION_ACTIVATED record 
from its LNS component. If LU-LU verifica­
tion is active, the secondary LU's resources 
manager will await receipt of a SECURI­
TY_HEADER record that contains the FMH-12. 
When the SECURITY_HEADER record is received 
and verified by the secondary LU, normal 
processing continues. 

3-14 SNA Format and Protocol Reference Manual for LU Type 6.2 



CNOS 
Transac_"ei etn 

r-rogram 
Resources 

Manager 

CHANGE_ SESSIONS 
<Decrease) 

Network 
Services ~•• HS 

CH~NGE_NUMBER_OF_SESSIONS 

CHANGE_NUMBER_OF_SESSIONS 

BIS_RQ 

Resources 
Manager 

CNOS 
Transaction 

Program 

CHANGE_SESSIONS 
(Decrease I 

BIS_RQ 
••• -----> 

BIS_REPLY 

• 
• 
• 

BIS_REPLY <----------- ••• <-----
DEACTIVATE_ SESSION 
------> 

Normal 
UNBIND 

Protocols 

Figure 3-12. Decreasing the Number of Sessions 

CHANGING .!HI;; MAXIMUM SESSION .!.!!::!!! 

The MODE control block (see page A-3 I con­
tains several session 1 i mit fields. These 
fields limit the number and polarity 
(first-speaker or bidder) of sessions that 
this LU can have with the partner LU and mode 
name represented by the MODE control block. 
The limit fields include: 

• SESSION_LIMIT--limit on the total number 
of sessions 

• MIN_CONWINNERS_LIMIT--limit on the number 
of bidder sessions. The SESSION_LIMIT 
less the number of bidder sessions must 
be greater than or equal to 
MIN_CONWINNERS_LIMIT. 

• MIN_CONLOSERS_LIMIT-limit on the number 
of first-speaker sessions. The SES­
SION_LIMIT less the number of 
first-speaker sessions must be greater 
than or equal to MIN_CONLOSERS_LIMIT. 

• AUTO_ACTIVATIONS_LIMIT--the number of 
session that are activated independent of 
demand. All such sessions wi 11 be 
first-speaker sessions. 

The change number of sessions ( CNOS I trans­
action program ("Chapter 5. 4. Presentation 
Servi ces--Control-Operator Verbs" I can cause 
the session limits to change. The CNOS 
transaction programs at the two LUs come to 
an agreement on what the new session limits 
are to be via an exchange of Change Number of 
Sessions GOS variables (see "Appendix H. FM 
Header and LU Services Commands"). After an 
agreement on the new session limits is 
reached, the CNOS transaction program sends a 
CHANGE_SESSIONS record to its resources man­
ager. The CHANGE_SESSIONS notifies the 
resources manager that a change in the ses­
sion limits has occurred. 

If the new session limits imply that new ses­
sions may be activated, RM determines if 
there are any waiting requests. If so, it 
creates multiple ACTIVATE_SESSION records, 
one for each waiting request, and sends them 
to LU network services (see "Activating a New 
Session" on page 3-13 for more on session 
activation). The resources manager does not, 
however, request that more sessions be acti­
vated than can be accommodated by the new 

Chapter 3. LU Resources Manager 3-15 



•asion li•its. The excess requests •re 
retained for later processing. 

The resources unager iiiakes cert•in that at 
least • l'tUllber of sessions equ.l to the 
AUTO_ACTIVATIOHS_LIHIT are •ctive. After 
this nulllbeir of sessions is active, RH Nill 
request session •ctiv•tion only to Htisfy 
11taiting requests. For exa111ple, U 
AUTO_ACTIVATIONS_LIHIT = 2 and five requests 
are N•iting, but the neN session li•its imply 
th•t seven sessions could be concurrwitly 
•ctive, the resources Manager send5 to LU 
network services only five ACTIVATE_SESSION 
records. 

Nhen the session li•its •re decreased, one of 
the LUs is designated •s being "responsible" 
for deactivating sessions, H necessary to 
Htisfy the .,... session U•its. 
CHANGE_SESSIOH.RESPOHSIBLE is set to YES if 
the resources ••nager is responsible to da•c­
tivate sessions. 

The resources ••nager co.iputes • TERHI­
NATION_COUHT, Nhich is the number of sessions 
that this LU is responsible to de•ctiv•te. 
RH chooses Hssions to deactiv•t• frOll the 
pool of free sass ions Ni th that LU •nd lllOCle 
na•• sending • BIS_RQ record on each of the 
seHion& that it has chosen and ruoving the 
entry for that snsion fra11 the free session 
pool. The BIS_RQ is sent to infor• the 
receiving resources HMger th•t the sending 
RH Mill not initiate any subsequent brackets, 
and is sent only NhHe the sending 
half-susion is betNeen brackets. When RH 
receives a BIS_REPLY record in response to 
its BIS_RQ, it decrements the TERt1I­
NATION_COUHT and sends to W network services 
• DEACTIVATE_SESSION record for that session. 

then perfonns the nor .. l LU natNOrk services 
l.IEIND protocols. 
exch.nge precedes a 
types x•o1•, x•o2•, 
ure 3·12 on page 3-15 

A BIS_RQ-BIS_REPLY 
nor111t1l l.IEIND (i.e., 
or X'03'). sH.Fig­

for the flONS involved. 

If not enough free sessions can be de•cti­
vated to bring the TERHINATION_COONT to o, RH 
N•its for sessions that •r• currently in use 
to becOll8 free before it sends any more 
B!S_R._. 

The v•lue of the DRAIN_SELF field in the HOOE 
control block determines lllhether RH Mill send 
BIS_RQ inaediately Nhen a session becomes 
free. If DRAIN_SELF =NO (i.e., Maiting ses­
sion •lloc•tion requests •r• not to be s•tis­
fied before session de•ct;vation), RH wi 11 
send BIS_RQ as soon as • seas ion beco•es 
fru. If DRAIN_SELF = YES (i.e., Naiting 
session •llocation requests are to be satis­
fied before session •ctiv•tion), RH Nill send 
BIS_RQ only if there •re no w.iting requests 
......., the sass ion beco•es free. In the Hiiie 
May, DRAIN_SELF deter•ines ..tien BIS_REPLY is 
sent in reply to a BIS_RQ from the partner 
LUI i.e., if DRAIN_SELF = NO, BIS_REPLY is 
sent i11111ediately1 otherwise, BIS_REPLY is 
sent only Mhen there •re no 11aiting requests. 

The LU control operator may also expltcitly 
request that • session be •ctiv•ted or de•c-
tivated. RH is notified of these 
control-oper•tor requests Ni th an 
Rtt.ACTIVATE_SESSION or Rtt.DEACTIVATE_SESSION 
record. The resources manager is responsible 
for sending ACTIVATE_SESSION or DEACTI­
VATE_SESSIOH records (preceded by the usual 
BIS_RQ-BIS_REPLY exchange for norm•l deacti­
vation) to LU network services to satisfy 
these control-oper•tor requests. 

J-16 SNA Fo,...t and Protocol Reference Hanual for W Type 6.2 



Present.ti on 
§eryjcg 

Resources 
Manager 

NetNOrk 
Seryjces 

SESSION_DEACTIVATED(SQN) 

CONVERSATIOH_FAILUREtRCB_ID) 
< 

• • • 
DEALLOCATE_RCB(RCB_ID) 

> 

RCB_DEALLOCATED 
< 

Figure 3-13. Session-Outage Actions 

§ESSIQN ~ 

An active session between two LUs saetillH 
fails. The session outage could be caused by 
a failure of one or both of the LUs, or by a 
failure in the path between the LUs. In the 
event of a session outage, the resources •an­
ager receives a SESSION_DEACTIVATED(REASOH : 
SON) fre>11 LU network services. If the ses­
sion is being used by • conversation, RH 

C!EAJIQN Atll TERHINATIQN SlE fRESEHJATIQH §ERVICES 

The resources Meager is responsible for cre­
ating and ter•inating instances of presenta­
tion services. (Presentation services, in 
turn. is responsible for starting up and tak­
ing doNn the transaction progra• MUh lilhich 
it is to be associated.) The resources •an­
ager creates a DeM instance of presentation 
services on receipt of an ATTACH_HEADER 
record. Along 1111th creating a ne111 PS proc­
ess, RH at this ti•e also creates a neM TCB 
and RCB, and infora PS of the HS_ID of the 

sends a CONVERSATION_FAILURE record to pres­
entation services to infor• it of the outage, 
and receives frOll PS a DEALLDCATE_RCB at sou 
point. RegardleH of lilhether the session is 
in use, Rtl destroys the associated SCB. Fig­
ure 3-13 illustrates the session-outage 
flONS. 

half-session over llhich the initial conversa­
tion is flowing. Finally, U sends to pres­
entation services the FHH-5 contained in the 
ATTACH_HEADER record, and the IDs of the neN 
!CB and RCB. 

When a transaction progra• finishes its proc­
essing, presentation services notUies the 
resources .. cager via a TERMIH.t.TE_PS record. 
Rtl destroys the PS process and the associated 
!CB. 

Chapter 3. W Resources Manager 3-17 



HIGH-LEVEL PBQCEPURES 

RM 

FUNCTION: This process initializes RM_PROCESS_DATA and receives all input to the 
resources manager and routes the input to the appropriate procedure for proc­
essing. 

INPUT: RM_RECORD is received asynchronously from network services <LNS>, half-session 
CHS>. presentation services <PS), and the undefined protocol machine. UPM_IPL. 

OUTPUT: Refer to the procedures that are called from this process for the outputs 
resulting from records received from other processes. 

NOTE: UPM_IPL is an implementation-defined process. It sends an Attach to RM when a 
transaction program is to be started locally. 

Referenced procedures. FSMs. and data structures: 

Do forever: 

PROCESS_LNS_TO_RM_RECORD 
PROCESS_HS_TO_RM_RECORD 
ATTACH_PROC 
PROCESS_PS_TO_RM_RECORD 

Receive a record. 
Select based on the sender of the record: 

When LNS 
Call PROCESS_LNS_TO_RM_RECORDCrecord received> Cpage 3-20). 

When HS 
~ Call PROCESS_HS_TO_RM_RECORD<record ree•ived) Cpage 3-19). 

When UPM_IPL 
Call ATTACH_PROC(record ~~~eived. UPMl (page 3-27). 

When PS 
r.~!~ ~ROCESS_PS_TO_RM_RECORD<record received> (page 3-21>. 

3-18 SNA Format and Protocol Reference Manual for LU Type 6.2 

page 3-20 
page 3-19 
page 3-27 
page 3-21 



PROCESS_HS_TO_RM_RECORD 

PROCESS_HS_TO_RM_RECORD 

FUNCTION: Th;s procedure routes records rece;ved from HS to the appropr;ate procedure 
for processing. 

INPUT: 

OUTPUT: 

The current record from a half-sess;on 

Refer to the procedures that are called from this process for the spec;fic 
outputs. 

NOTES: 1. If an SCB ;s not found with an HS_ID matching HS_TO_PS_RECORD.HS_ID, the 
record is discarded. This could occur, for example, if session outage 
occurred before RM had processed all the records from that half-session. 

2. If #FSM_BIS ;nd;cates that the session is closed, the record is discarded. 
This could occur, if the resources manager in the partner LU sends a -RTR_RSP 
after having sent BIS_REPLY. 

Referenced procedures, FSMs, and data structures: 
BID_PROC 
BID_RSP_PROC 
ATTACH_PROC 
FREE_SESSION_PROC 
RTR_RQ_PROC 
RTR_RSP_PROC 
BIS_RQ_PROC 
SECURITY_PROC 
BIS_REPLY_PROC 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
HS_TO_RM_RECORD 
SCB 

If no SCB has SCB.HS_ID = HS_TO_PS_RECORD.HS_ID then 
Discard the HS_TO_RM_RECORD (see Note 1). 

Else 
If the state of #FSM_BIS ~ CLOSED Cpage 3-70) then 

Select based on HS_TO_RM_RECORD type: 

Else 

When BID 
Call BID_PROC<HS_TO_RM_RECORDl Cpage 3-30). 

When BID RSP 
Call BID_RSP_PROC<HS_TO_RM_RECORDl (page 3-32). 

When ATTACH_HEADER 
Call ATTACH_PROCCHS_TO_RM_RECORD, HSl (page 3-271. 

When FREE_SESSION 
Call FREE_SESSION_PROCCHS_TO_RM_RECORD) (page 3-44). 

When RTR_RQ 
Call RTR_RQ_PROC<HS_TO_RM_RECORDl Cpage 3-501. 

When RTR_RSP 
Call RTR_RSP_PROCCHS_TO_RM_RECORDl lpage 3-51). 

When BIS RQ 
Call BIS_PQ_?RJCCHS_TO_RM_RECORDl (page 3-36). 

•·!hen 6IS REPLY 
Call BIS_REPLY_PROCCHS_TO_RM_RECORDl (page 3-35). 

When SECURITY_HEADER 
Call SECURITY_PROCCHS_TO_RM_RECORDl (page 3-521. 

Do nothing (see Note 2l. 

page 3-30 
page 3-32 
page 3-27 
page 3-44 
page 3-50 
page 3-51 
page 3-36 
page 3-52 
page 3-35 
page 3-70 
page 3-71 
page A-13 
page A-9 

Chapter 3. LU Resources Manager 3-19 



PROCESS_LNS_TO_RM_RECORD 

PROCESS_LNS_TO_RM_RECORD 

FUNCTION: Th;s procedure routes records rece;ved from NS to the appropr;ate procedure 
for process;ng. 

INPUT: LNS_TO_RM_RECORD, the current record from LNS 

OUTPUT: Refer to the procedures that are called from th;s procedure for the spec;f;c 
outputs. 

Referenced procedures, FSMs, and data structures: 
ACTIVATE_SESSION_RSP_PROC 
SESSION_ACTIVATED_PROC 
SESSION_DEACTIVATED_PROC 
CTERM_DEACTIVATE_SESSION_PROC 
LNS_TO_RM_RECORD 

Select based on LNS_TO_RM_RECORD type: 
When ACTIVATE_SESSION_RSP 

Call ACTIVATE_SESSION_RSP_PROCCLNS_TO_RM_RECORDl Cpage 3-23). 
When SESSION_ACTIVATED 

Call SESSION_ACTIVATED_PROCCLNS_TO_RM_RECORDl Cpage 3-571. 
When SESSION_DEACTIVATED 

Call SESSION_DEACTIVATED_PROCCLNS_TO_RM_RECORDl Cpage 3-58l. 
When CTERM_DEACTIVATE_SESSION 

Call CTERM_DEACTIVATE_SESSION_PROCCLNS_TO_RM_RECORDl Cpage 3-40l. 

3-20 SNA Format and Protocol Reference Manual for LU Type 6.2 

page 3-23 
page 3-57 
page 3-58 
page 3-40 
page A-19 



PROCESS_PS_TO_RM_RECORD 

PROCESS_PS_TO_RM_RECORD 

FUNCTION: 

INPUT: 

This procedure routes records received from presentation services to the 
appropriate procedure for processing. 

The current record from presentation services 

OUTPUT: Refer to the procedures that are called from this procedure for the specific 
outputs. 

Referenced procedures, FSMs, and data structures: 
ALLOCATE_RCB_PROC 
GET_SESSION_PROC 
CHANGE_SESSIONS_PROC 
RH_ACTIVATE_SESSION_PROC 
RM_DEACTIVATE_SESSION_PROC 
UNBIND_PROTOCOL_ERROR_PROC 
PS 
RCB 
TCB 
PS_TO_RM_RECORD 
DEALLOCATE_RCB 
RCB_DEALLOCATED 

Select based on PS_TO_RM_RECORD type: 
When ALLOCATE_RCB 

Call ALLOCATE_RCB_PROCCPS_TO_RM_RECORD> Cpage 3-24). 
When GET_SESSION 

Call GET_SESSION_PROCCPS_TO_RM_RECORO) Cpage 3-45). 
When DEALLOCATE RCB 

Discard the RCB with RCB.ID equal to DEALLOCATE_RCB.RCB_ID. 
Build and send an RCB_DEALLOCATED record to PS CChapter 5.0). 

When TERMINATE_PS 
Discard the TCB and PS corresponding to TERMINATE_PS.TCB_ID. 

When CHANGE SESSIONS 
Call CHANGE_SESSIONS_PROCCPS_TO_RM_RECORD> Cpage 3-37). 

When RH ACTIVATE SESSION 
Call-RH_ACTIVATE_SESSION_PROCCPS_TO_RM_RECORD) Cpage 3-48). 

When RM DEACTIVATE SESSION 
Call-RH_DEACTIVATE_SESSION_PROCCPS_TO_RH_RECORO) Cpage 3-49). 

When UNBIND PROTOCOL ERROR 
Call UNBIND_PROTOCOL_ERROR_PROCCPS_TO_RM_RECORD> Cpage 3-65). 

page 3-24 
page 3-45 
page 3-37 
page 3-48 
page 3-49 
page 3-65 
page 5.0-5 
page A-7 
page A-10 
page A-25 
page A-26 
page A-33 

Chapter 3. LU Resources Manager 3-21 



LOW-LEVEL PROCEDVRES 

ACTIYATE_NEEDED_SESSIONS 

FUNCTION: This procedure activates sessions as required by change-number-of-sessions 
(CNOSl processing. 

Sessions are activated so as to. satisfy the waiting requests, but not to 
exceed the (LU, model session limit. If all waiting requests are satisfied, 
additional sessions are activated to bring the number of sessions up to the 
minimum of the MODE.AUTO_ACTIVATIONS_LIMIT and MODE.MIN_CONWINNERS_LIMIT. 

INPUT: LU_NAHE and MODE_NAME, the LU name and mode name, respectively, of the partner 
LU 

OUTPUT: Zero or more ACTIVATE_SESSION records to LNS 

Referenced procedures, FSMs, and data structures: 
SESSION_ACTIYATION_POLARITY 
SEND_ACTIVATE_SESSION 
LU_NAME 
MODE_NAME 
ACTIVATE_ SESSION 
MODE 

Get addressability to the MODE control block associated with LU_NAME and 
MODE_NAME. 

page 3-57 
page 3-52 
page 3-74 
page 3-74 
page A-31 
page A-3 

Do while the number of waiting requests for sessions to (LU_NAME, MODE_NAMEl 
is less than MODE.PENDING_SESSION_COUNT, and the polarity returned by 
SESSION_ACTIVATION_POLARITYILU_NAME, MODE_NAMEl (page 3-57) ~NONE. 

If polarity = FIRST_SPEAKER then 
Call SEND_ACTIVATE_SESSIONILU_NAME, MODE_NAHE, FIRST_SPEAKERl (page 3-52) 
to send an ACTIYATE_SESSION record to LNS. 

Else I BIDDER) 
Call SEND_ACTIVATE_SESSIONILU_NAME, MODE_NAHE, BIDDER) lpage 3-52). 

Do while the minimum of IMODE.AUTO_ACTIVATIONS_LIMIT, MODE.MIN_CONWINNERS_LIMITl < 
(MODE.ACTIVE_CONWINNERS_COUNT + MODE.PENDING_CONWINNERS_COUNT), and the polarity 
returned by SESSION_ACTIVATION_POLARITYILU_NAME, MODE_NAMEl (page 3-57) = FIRST_SPEAKER. 

Call SEND_ACTIVATE_SESSIONILU_NAME, MODE_NAME, FIRST_SPEAKERl lpage 3-52). 

3-22 SNA Format and Protocol Reference Manual for LU Type 6.2 



ACTIYATE_SESSION_RSP_PROC 

ACTIVATE_SESSION_RSP_PROC 

FUNCTION: This procedure handles the processing of the response to • previ°'8ly issued 
ACTIVATE_SESSION request. 

INPUT: 

OUTPUT: 

The sess;on COU'\ts in the appropri•t• MODE entry ere ~ted end further proc­
esshig is invoked depend;ng on the response type. 

ACTIVATE_SESSION_RSP from LNS 

SESSION_ALLOCATED to PS, or no output 

NOTE: The pend;ng activ11tion Nill not be fouid ;f RH had previously requested de•c­
tiv11tion of the pend;ng session 11s • result of change-number-of-•••sions proc­
essing. In this case, no processing of the ACTIYATE_SESSION_RSP is perforllltld, 
since the session is being deactiv11ted. 

Referenced procedures, fSHs, and dat11 structures: 
SUCCESSFUL_SESSION_ACTIVATION 
UNSUCCESSFUL_SESSION_ACTIVATION 
ACTIVATE_SESSION_RSP 
HOOE 
HODE_NAHE 

If there exists a pending activation Mith a correlator equ11l to 
ACTIVATE_SESSION_RSP.CORRELATOR then 

Get 11ddressability to the HOOE control block 11&soci•ted Nith the W and 
llOde name of the pending-active session. 

page 3-63 
page 3-66 
page A-20 
page A-3 
page 3-74 

Decrement t10DE.PENDING_CONWil*fERS_COUNT or tlOOE.PENDIN&_CONLOSERS_COUNT by 1, 
as appropriate to the session polarity. 

Decrement tlODE.PENDING_SESSION_COUNT by l. 
If ACTIVATE_SESSION_RSP.TYPE = POS Then 

Increment HODE.ACTIVE_CONWINNERS_COUNT or l'IODE.ACTIYE_CONLOSERS_COUf'I' by 1, 
as appropriate to the session polarity. 

Increment HODE.ACTIVE_SESSION_COUNT by l. 
Call SUCCESSFUL_SESSION_ACTIVATION(LU na .. of pending activation, 

t100E_HAHE of pending activation, 
ACTIVATE_SESSION_RSP.SESSION_INFORHATION) (page 3-63). 

Elsa (negative response) 

Else 

C11ll UNSUCCESSFUL_SESSION_ACTIVATION<LU name of pending ectivation, 
tlODE_HAHE of pending act;yationt 
ACTIVATE_SESSIOH_RSP.ERROR_TYPE) (page 3-66). 

Do nothing (see Note). 

Chapter 3. LU Resout"c• Hanager :S-H 



ALLOCAT!_RC8_PROC 

ALLOCATE_RC8_PROC 

FUNCTION:< Thia ~e handles the allocation of rnource control blclcks CRCBs>. 

INPUTs 

OUTPUT: 

NOTE: 

This procedure first creates the RCB_ALLOCATED record, Nhich is sent to 
PS.CONY to infor11 it of the outca11e of the ALLOCATE_RCB request, and foitial­
izes the fields of the record. It then calla the appropriate procedure, 
depending upon the ALLOCATE_RC8 P41ra•ter settings. The procedure that this 
procedure calb changes the setting of so.. of the RC8_ALLOCATED fields before 
the RC8_ALLOCATED is finally sent to PS.CONY (Chapter S.U 

ALLOCATE_RC8 

RC8_ALLOCATED to PS 

lih!n ALLOCATE_RCB.Itt1EDIATE_SESSION is set to YES, RH is to check to see if a 
th-st-speaker half-session is currm"tly available for use. If such a session 
is available, the RCB_ID is P41ssed to PS.CONY and the request C011Pletn suc­
cessfully. (If Itt1EDIATE_SESSION is Ht to NO, PS.CONY sands a •81M1rate 
&ET_SESSION request to RH to request that a half-session be allocated to • 
P41rticular conversation resource.) 

Referenced procedures, FSH&, and data atructurn: 
TEST_FOR_FREE_FSP_SESSION 
CREATE_RCB 
PS 
ALLOCATE...;RC8 
RCB_ALLDCATED 

Initialize an RCB_ALLOCATED record Mith RETlRN_CODE set to OK and 
RCB_Ib set to a null value. 

If ALLOCATE_RCB.Itt1EDIATE_SESSION is set to YES then 
Call TEST_FOR_FREE_FSP_SESSION<ALLDCATE_Rca, RC8_ALLOCATED> (page 3-65). 

Else 
Call CREATE_RCB<ALLOCATE_RcB, RCB_ALLOCATED) (page 3-39). 

Send the RCB_ALLDCATED record to PS.CONY lCNpter 5.U. 

3-2lt SNA Forut and Protocol Reference Hanual for W Type 6.2 

page 3-65 
page 3-39 
page s.o-s 
page A-25 
IMISl9 A-32 



ATTACH_ CHECK 

ATTACH_ CHECK 

FlKTION: This procedure checks particular fields of the passed ATTACH_HEADER for valid­
ity. (PS is responsible for checking the reMaining fields.) 

INPlTT: 

OUTPlTT: 

ATTACH_HEADER 

x•oooooooo•, if no errors or sense data returned by ATTACH_LENGTH_CHECKI or 
data returned by ATTACH_SEC~ITY_CHECKI or one of the follONing sense data: 

X' Cl80F605 l ' 
X' 08466031' 
X'084COOOO' 
X'l008600B' 
X' 10086021' 
X'l0086040' 
X' 10086041' 

Security Not Valid 
TP Not Available--Retry AllONed 
TP Not Available--No Retry 
Unrecognized FMH co ... and 
TP Name Not Recognized 
Invalid Attach Parameter 
Sync Level Not SUpported 

Referenced procedures, FSNs1 and data structures: 
ATTACH_LENGTH_CHECK 
ATTACH_SEC~ITY_CHECK 

ATTACH_HEADER 

page 3-26 
page 3-29 
page A-13 

Call ATTACH_LENGTH_CHECK<ATTACH_HEADER.HEAOER> (page 3-261 to deter•ine Nhether any 
FMH-5 fields have an invalid length. 

If ATTACH_LENGTH_CHECK indicates that a field length is invalid then 
Return with the sense data provided by ATTACH_LEHGTH_CHECK. 

Select based on the Command field of the FMH-5: 
When Attach 

If the transaction program specified in the Attach exists at this LU then 
Select based on the sync level specified in the Attach: 

(Optional receive check--the sync level support specified 
in the FMH-5 must be compatible with the sync level 
supported by the partner LU). 

When None or Confir111 
Do nothing. (All LUs support sync level Confir•.> 

When Confir111, Sync Point, and Backout 
If the sessions to the remote LU do not support Confir•• Sync Point, 
and Backout then 

Return with sense data X'l0086040' <Invalid Attach Paraaeterl. 
If the sync level specified in the Attach is not supported by 
the transaction progra111 then 

Return with sense data X'l0086041' !Sync Level Not SUpported). 
If the transaction program is temporarily disabled then 

Return with sense data X'08486031' CTP Not Available--Retry AllONedl. 
If the transaction program is permanently disabled then 

Return with sense data X'084COOOO' (TP Not Available--No Retry I. 
If the transaction program requires security parameters in the Attach and 
the sending LU is not permuted by this LU to send them then 

Return with sense data X'080F6051' (Security Not Valid>. 
Call ATTACH_SECURITY_CHECK<ATTACH_HEADERI (page 3-291 to check that all security 

requirements are •et. 
If ATTACH_SECURITY_CHECK indicates a security violation then 
Return with the data provided by ATTACH_SECURITY_CHECK. 

Else 
Return with sense data X'l0086021' (TP Name Not Recognized). 

Otherwise 
Return with sense data X'l008600B' (Unrecognized Ftti Commandl. 

Return with sense data x•oooooooo• indicating no error. 

Chapter 3. LU Resources Manager 3-25 



ATTACH_LENGllf_CHECK 

ATTACH_LENGllf_CHECK 

FlN:TIOH: TMs procedure checks the length fields in the pasaed AU.ah for valfdity. 

INPUT: An FMH-5 Attach headar (Sff "~he H. FH H .. der and W SllrYices eo..nds" 

OUTPUT: Sense data reflecting the ruult of the length checks. OM of the follOMi;,g 
sense dat• is returned: 

NOTE: 

x•oooooooo• 
x' 10086000' 
X'10086005' 
X'10086009' 
X' 10086011' 

No error 
FMH Length Not Correct 
Access Security Infor••tian Length Inval;d 
Inv•lid Parameter Length 
Invalid Logical ~it of Work 

'The total length of the Attach can be greater than the SUI of the lengths of 
the currently defined fields, to allON for the additfon of new Attach fields. 

Set OFFSET to 5 (offset of Fixed Length Para .. ters field in Attach). 
If the Atuch length S OFFSET then 

Return Mith X'l0086000' <FMH Length Not Correct). 
If the value of the Fixed Length ParaMeters f;eld < 3 then 

Return Mith X'l0086009' <Invalid Parameter Length>. 
Set OFFSET to OFFSET + the value of the Fixed Length Para•eters field + I 

(offset of TP name Length field>. 
If the Attach length S OFFSET then 

Return Mith X'l0086000' tFMH Length Not Correct). 
Set OFFSET to OFFSET + the value of the TP name Length field + 1 

<offset of Access Security Information Length field>. 
Select based on the following comparisons: 

""8n the Attach length < OFFSET 
Return Mith X'l0086000' tFMH Length Not Correct). 

""8n the Attach length = OFFSET 
Return with x•oooooooo• (Access Security Infor .. tion and follONing fields not preaentl. 

When the Attach length > OFFSET «Access Security Inforntion present) 
Do nothlng. 

If the value of the Access Security Infor .. tion Length field > 0 then 
<Access Security infor•ation is present> 

If the Access Security subfield length > the allowed length UU or 
11e>re than three Access Security subfields are present or 
the SUll of the lengths of the Access Security s\.bf;elds does not equal 
the total length of the Access Security Information field then 

Return with X'10086005' (Access Security Infor•ation Length Invalid). 
Set OFFSET to OFFSET + the value of the Access Security Infor•ation Length field + l 

Coffset of LUN Identifier Length field>. 
Select based on the following comparisons: 

lilien the Attach length < OFFSET 
Return Mith X'10086000' CFHH Length Not Correct>. 

When the Attach length = OFFSET 
Return with x•oooooooo• <LUM Identifier and follONing fields not present>. 

When the Attach length >OFFSET CLUN Identifier present> 
Do nothing. 

If the value of the LUW Identifier Length field > 0 then <LUN Identifier pr•enU 
If the value of the LUW Identifier Length field < 10 or > 26 then 

Return Mith X'10086011' «Invalid Logical ~it of Work>. 
If the value of the UM Identifier Length field I( the value of the Ull Identifier 

LU name Length field + 9 then 
Return Mith X'l0086011' <Invalid Logical ~it of Work>. 

Set OFFSET to OFFSET + the value of the LUW Identifier Length field + I 
(offset of byte following ATTACH>. 

If the Attach length < OFFSET then 
Return Mith X'l0086000' CFMH Length Not Correct). 

Else 
Return Mith x•oooooooo• <All length fields in Attach are valid>. 

3-26 SNA Format and Protocol Reference Hanu;il for LU Type 6.2 



ATTACH_PROC 

ATTACH_PROC 

FUNCTION: This procedure performs Attach processing. 

INPUT: 

If the Attach FM header was sent by HS, this procedure checks to see if the 
session is already in use. If the session is not in use, the appropriate sub­
routines are called to check certain fields in the Attach FM header for valid­
ity. If a partner-LU protocol error is found, the appropriate procedure is 
called to deactivate the session; otherwise, a new conversatiqn with a new PS 
process is started. 

ATTACH_HEADER and an indicator stating whether the Attach was sent by HS or 
UPM_IPL 

OUTPUT: None 

NOTES: 1. RM does 
however; 
Attach. 

not generate a +RSP(Attachl. HS does generates a 
so the RM that sent the Attach gets a positive 

positive BID_RSP, 
response to the 

2. If the state of #FSM SCB STATUS is PENDING ATTACH, the half-session is 
first-speaker and a prio; BID was received, or the half-session is a secondary 
first-speaker or bidder and has just been activated. Although RM can bid with 
an Attach, HS on the receive side of the half-session converts the 
BID_WITH_ATTACH record into separate BID and ATTACH_HEADER records. When RH 
receives the BID, if the half-session is not in use, it changes the status of 
the half-session to PENDING_ATTACH. 

3. This protocol error occurs, for example, when the first-speaker half-session 
sends an Attach FM header after having positively responded to a Bid from the 
bidder half-session, or when an Attach FM header is received for which there 
was no prior Bid. 

Referenced procedures, FSMs, and data structures: 
RM_PROTOCOL_ERROR 
ATTACH_ CHECK 
PS_CREATION_PROC 
COMPLETE_HS_ATTACH 
PS 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
ATTACH_HEADER 
ATTACH_RECEIVED 
TCB_ID 
RCB_ID 
SCB 

Set TCB ID and RCB ID to null. 
Select based on th; process that sent the Attach: 

When HS 
Find the SCB corresponding to the HS process that sent the Attach. 
If the state of #FSM_SCB_STATUS ~ PENOING_ATTACH (page 3-67) then 

page 3-49 
page 3-25 
page 3-47 
page 3-38 
page 5.0-5 
page 3-68 
page 3-69 
page A-13 
page A-32 
page 3-74 
page 3-74 
page A-9 

Call RM_PROTOCOL_ERROR!SCB.HS_ID, X'?':!'.:30000') (~•£:!:. 3-t~'i and see Note 3). 
Else 

Call ATTACH_CHECKC AT"ff,;:,1_HEAOER l C page 3-25 J to determi nil! if the 
Attach contai1\& any errors. 

!·~ Al'fACH_CHECK indicates an LU security protocol error then 
Call RM_PROTOCOL_ERRORISCB.HS_IO, X'080F6051' l !page 3-49) 

Else 
Select based on the Command field of the Attach: 

When Attach (start a new conversation) 
Call PS_CREATION_PROCCATTACH_HEADER, ATTACH_SENDER, TCB_Io. RCB_ID) 

C pag~ 3-47 l. 
Call COMPLETE_HS_ATTACHCATTACH_HEAOER.HS_Io, RCB_Io, TCB_IOl (page 3-38). 
Create an ATTACH_RECEIVED record with ATTACH_REtcIVED.TCB_ID and 

ATTACH_RECEIVED.RCB_ID initialized to TCB_IO and RCB_IO, respectively; 
the SENSE_COOE field initialized to the sense data Cif anyl set 
by ATTACH_CHECK; and the FMH_5 field initialized to the 
Attach FM header. 

Send the ATTACH_RECEIVEO record to PS !Chapter 5.0l. 

Chapter 3. LU Resources Manager 3-27 



ATTACH_PROC 

When UPH 
Call PS_CREATION_PROC(ATTACH_HEADER, ATTACH_SENDER, TCB_ID, RCB_ID) (page 3-47). 
Create an ATTACHED_RECEIVED record Mith ATTACH_~ECEIVED.TCB_ID and 

ATTACH_RECEIVED.RCB_ID initialized to TCB_ID and RCB_ID, respectivelyJ 
the SENSE_CODE field initialized to X'OOOOOOOO'J 
and the FMH_S field initialized to the Attach FM header. 

Send the ATTACH_RECEIVED record to PS (Chapter 5.0). 

3-28 SNA Forut and Protocol Rafe.-.nce t'lanual for W Type 6.2 



ATTACH_SECURITY_CHECK 

ATTACH_SECURITY_CHECK 

FUNCTION: This procedure performs all security checks on an incoming Attach. 

INPUT: The received ATTACH HEADER that contains the FMH-5 !Attach) (see "Appendix H. 
FM Header and LU Se;vices Commands") 

OUTPUT: A code or sense data indicating the result of the security check: 

FFFFFFFF 
10086040 

080F6051 
00000000 

local indication of a partner-LU security protocol error 
an Attach parameter is present that is not authorized by 
security indicators 
a remote TP security error is found 
the Attach passes all security checks 

the BIND 

NOTES: 1. All checks within this procedure are required receive checks for implementa­
tions that support the conversation-level security option. 

2. If the use of profiles is not supported and one is received, it is ignored. 
If the use of profiles is supported, the option of requiring profiles on every 
Attach verses only requiring profiles on Attach to specific resources is 
installation-defined. If a profile 1s required on every attach, connectivity 
problems with LUs that can not send profile may result. 

An unauthorized combination of user ID and profile means that the user that 
provides the profile is not permitted to supply that profile. Profiles are 
installation defined at the receiver of the Attach. Profiles assigned to spe­
cific user IDs are installation defined at the receiver of the Attach. The 
use and interpretation of profiles is not limited to access to secure trans­
action programs. Profiles may be used to restrict access to resources in 
implementation and installation defined ways (e.g., as group IDs). 

If the Attach indicates End User Already Verified and 
this LU does not accept an Already Verified indication in an Attach from the partner LU then 

Return with sense data X'l0086040' (Invalid Attach Parameter). 
If the Attach contains security parameters and 
this LU does not accept security parameters in an Attach from the partner LU then 

Return with sense data X'l0086040' (Invalid Attach Parameter). 
If the target transaction program requires security parameters in an Attach and 
the Attach does not contain security parameters then 

Return with sense data X'080F6051' (Security Not Valid>. 
If the Attach contains no security parameters then 

Return with code X'OOOOOOOO' Cno security protocol violation). 
If there are multiple security subfields of the same type in the Attach then 

Return with code X'FFFFFFFF' (partner-LU security protocol error). 
If there is a security subfield of an unrecognized type then 

Return with code X'FFFFFFFF' (partner-LU security protocol error). 
If the Attach contains a profile and does not contain a user ID then 

Return with sense data X'080F6051' (Security Not Valid>. 
If the Attach contains a password and does not contain a user ID then 

Return with sense data X'080F6051' (Security Not Valid>. 
If the Attach indicates end user not already verified and 
the Attach contains a user ID and does not contain a password then 

Return with sense data X'080F605l' (Security Not Valid>. 
If the Attach indicates end user not already verified and 
the Attach contains an unauthorized combination of user ID and profile or (see note 2l 
the Attach contains an invalid combination of user ID and password then 
Return with sense data X'080F6051' (Security Not Valid). 

If the Attach indicates end user is already verified and 
the Attach does not contain a user ID or the Attach does contain a password then 

Return with code X'FFFFFFFF' (partner-LU security protocol error). 
If there is limited access to the target transaction program, which is based upon the Attach's 
user ID and/or profile of the Attach sender then 

If the user ID and/or profile is not permitted access 
to this transaction program then 

Return with sense data X'080F6051' (Security Not Valid!. 
Return with code X'OOOOOOOO' !Attach passes all security checks). 

Chapter 3. LU Resources Manager 3-29 



BID_PROC 

BID_PROC 

FUNCTION: This procedure handles bids for the use of sessions. 

This procedure first checks whether the bid should be rejected because the 
local operator has reset the session limit to O with no draining of the part­
ner LU's requests, and this LU does not support parallel sessions to the part­
ner LU. In this case, a -BID_RSPI088BI ;is sent to HS. The -BID_RSPC088BI can 
be sent even if the partner LU is the first speaker. 

If -BID_RSPC088BI is not sent, the procedure checks to see if the requested 
session is free. If so, it removes the session from the free-session pool. 
and sends a positive BID RSP to HS. If the session is not free, it sends a 
negative BID_RSP to HS. 

An implementation may allow a transaction program to reserve a session for its 
own use before the conversation begins. If a session has been reserved, a 
negative BID_RSP is sent to HS even though a conversation has not been started 
on the session. Since the transaction program might never use the reserved 
session (e.g., the transaction program terminates abnormally before the con­
versation is started), the negative response carries an 0814 sense code 
(Bracket Bid Reject--RTR Forthcoming)' to allow the session to be freed, in 
case the reserved session is not needed by a conversation. Reserving a ses­
sion is implementation dependent and is not shown here. 

INPUT: BID 

OUTPUT: BID_RSP to HS. The RTI field of the BID_RSP is set to either POS or NEG. 

NOTES: 1. RM can bid with an Attach. However, when HS on the receive side of the con­
versation gets the BID_WITH_ATTACH record, it splits it into two records: a 
BID and a separate ATTACH_HEADER. Therefore, when RM receives a bid for a 
session, it will always be via a BID record. When RM receives the 
ATTACH_HEADER, the state of #FSM_SCB_STATUS is always PENDING_ATTACH. 

2. If RM has issued an RTR to the partner LU and has received a positive response 
to the RTR, the HS_ID of the session over which the RTR flowed will not be 
free when the BID is received. When RM issued the RTR, it removed that ses­
sion from the free-session pool. 

Referenced procedures, FSMs, and data structures: 
RM_PROTOCOL_ERROR 
HS 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
BID 
MODE 
BID_RSP 

page 3-49 
page 6.0-3 
page 3-68 
page 3-69 
page 3-70 
page 3-71 
page A-14 
page A-3 
page A-28 

3-30 SNA Format and Protocol Reference Manual for LU Type 6.2 



If the state of IFSH_BIS ;s BIS_RCVD (page 3-70) then 
Call RM_PROTOCOL_ERROR(BID.HS_ID, X'20080000') (page 3-49) 

(opt1onal receive check, No Beg1n Bracket). 
Else 

Get addressability to the MODE control block assoc1ated with the LU and 
mode name for th1s session. 

If parallel sessions are not supported to the partner LU and 
MODE.SESSION_LIHIT = 0 and MODE.DRAIN_PARTNER = NO ~nd the state of 
IFSM_BIS (page 3-70) is BIS_SENT then 

Create a BID_RSP record w1th RTI set to NEG and SENSE_CODE set to 
X'088BOOOO' and send it to HS (Chapter 6.0). 

Else 
If the state of IFSH_SCB_STATUS 1s FREE !page 3-67) then 

Call IFSH_sce_STATUS(R, BID, UNDEFINED) (page 3-67) 
(State of IFSH_SCB_STATUS 1s PENDING_ATTACH). 

Remove the session from the free-session pool. 
Create a BID_RSP record with RTI set to POS and SENSE_CODE set to 

X'OOOOOOOO' and send it to HS (Chapter 6.0). 
Else 

If this ;s a first-speaker session then 
Create a BID_RSP record with RTI set to NEG and SENSE_CODE set to 

X'08130000' or X'08140000' (implementation-dependent choice) 
and send ;t to HS <Chapter 6.0). 

If SENSE_CODE was X'08140000' then 

Else 

Remember that this LU owes RTR to its partner (RTR must be sent to the 
partner LU before it can bid again for this session). 

Call RH_PROTOCOL_ERRORlBID.HS_ID, X'20030000') (page 3-49) 
(optional receive check, Bracket Error). 

BID_PROC 

Chapter 3. LU Resources Manager 3-31 



BID_RSP_PROC 

BID_RSP_PROC 

FUNCTION: This procedure handles the processing of responses to bids for the use of 
half-sessions. 

INPUT: 

OUTPUT: 

A bid response is usually sent to the resources manager in response to a pre­
vious bid for a bidder half-session. In this case, when the input is a posi­
tive BID_RSP, this procedure calls the appropriate subroutines to cause the 
RCB and SCB to point to each other and to establish the PS and HS connection. 
It then informs PS.CONV that a session has been successfully allocated via a 
SESSION_ALLOCATED record. 

When the input is a negative BID_RSP, this procedure changes the RCB so that 
it no longer points to the SCB that sent the BID_RSP, and retries the 
GET_SESSION request, which was stored in the RCS when the BID_RQ was issued, 
on another half-session. 

A negative bid response with sense data of X'088BOOOO' is handled specially. 
This bid response is sent by an LU to indicate that the session limit has been 
reset to 0 for a single-session connection and draining of the partner is not 
allowed. Sending of -BID_RSPC088B) is permitted only in the single-session 
case. 

A -BIO_RSPC088B) record may arrive from either a bidder or first-speaker ses­
sion. If from a bidder session, it is in response to a previous bid. If from 
a first-speaker session, no previous bid was sent. A -BID_RSP(088B) record is 
the only bid response that can arrive from a first-speaker session. 

A positive or negative BID_RSP record 

SESSION_ALLOCATED to PS, or GET_SESSION to GET_SESSION_PROC (page 3-451 

NOTES: 1. When a BID_RQ record is sent to HS, the RCB is set to point to the SCB for 
which the bid is being sent; the SCB, however, does not point to the RCB until 
a positive BID_RSP record is received. 

2. A -BIO_RSP(088Bl record indicates that the partner LU has reset the session 
limit to O and is not permitting draining of the local LU's requests. The 
session is deactivated with UNBINOCCleanup). 

3. PS.CONV stores in the RCB information that helps HS to set the fields in the 
request/response header (RH). Part of the information states whether the data 
being sent to HS is the beginning of a conversation (in which case HS will set 
BBil or is part of an existing conversation <in which case the BBI is set to 
~BB). When RM chooses a bidder half-session to allocate to PS.CONY, the 
BID_WITH_ATTACH or BID_WITHOUT_ATTACH record that RM sends to HS also triggers 
HS to set BBI to BB. Since PS.CONY is unaware of whether RM allocated a bid­
der or first-speaker half-session Cand thus does not know whether the Begin 
Bracket, which is sent only once during a conversation, has already been 
sent), RM changes the information in the RCB to indicate to HS that the next 
record it receives from PS.CONY is not the start of a conversation. 

Referenced procedures, FSMs, and data structures: 
SEND_DEACTIYATE_SESSION 
SET_RCB_AND_SCB_FIELDS 
CONNECT_RCB_AND_SCB 
GET_SESSION_PROC 
PS 
FSM_RCB_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
BID_RSP 
GET_SESSION 
RCB 
SESSION_ALLOCATED 

3-32 SHA Format and Protocol Reference Manual for LU Type 6.2 

page 3-55 
page 3-61 
page 3-39 
page 3-45 
page 5.0-5 
page 3-73 
page 3-72 
page A-14 
page A-26 
page A-7 
page A-33 



If BID_RSP.RTI = NEG and BID_RSP.SENSE_CODE = X'088BOOOO' then Csee Note 2) 
Reset sess;on l;m;ts for th;s mode to 0 and ;nform LU control operator. 
Call SEND_DEACTIVATE_~ESSIONCACTIVE, BID_RSP.HS_ID, CLEANUP, X'OOOOOOOO') 

(page 3-55). 
Else 

F;nd the RCS assoc;ated w;th the conversat;on where 
state of #FSM_RCB_STATUS = PENDING_SCB Cpage 3-72) and 
RCB.HS_ID = BID_RSP.HS_ID. 

If BID_RSP.RTI = POS then 
Call SET_RCB_AND_SCB_FIELDSCRCB.RCB_ID, BID_RSP.HS_ID> Cpage 3-61). 
Call CONNECT_RCB_AND_SCBCRCB.RCB_ID, BID_RSP.HS_ID, REPLY) (page 3-39). 
Set RCB.PS_TO_HS_RECORD.ALLOCATE to NO (see Note 3). 
Create a SESSION_ALLOCATED record w;th RETURN_CODE set to OK. 
Send the SESSION_ALLOCATED to PS !Chapter 5.1). 

Else l-RSPIB;d)--retry request on another sess;onl 
Set RCB.HS_ID to a null value. 
Call #FSM_RCB_STATUSCR, NEG_BID_RSP, UNDEFINED> Cpage 3-72). 

(State of #FSM_RCB_STATUS = FREE). 
If BID_RSP.SENSE_CODE = X'08140000' then 

Remember that the partner LU owes an RTR on th;s session. 
(Bidder cannot bid again for this sess;on until RTR received>. 

BID_RSP_PROC 

Create a GET_SESSION record ;n;t;alized with the ;nformat;on from the original 
GET_SESSION record, saved ;n the RCS when the BID record was sent. 

Call GET_SESSION_PROCCGET_SESSION) (page 3-45). 

Chapter 3. LU Resources Manager 3-33 



BIDDER_PROC 

BIDDER_PROC 

FlKTIOH: This procec:llre Nindles the allocation processing for a bidder Nilf-session. 

INPUT: 

OUTPUT: 

NOTE: 

The HS_ID of the bidder half-session is placed in the RCB of the conversation 
for which the session NH requested. The state of IFSH_RCB_STATUS is set to 
fodicate thet the conversation is pending confirHtion that it can use the 
SCB. This procedure then creates a BID_WITHOUT_ATTACH or a BID_WI'Tlt_ATTACH 
record, depending on an indicator in the GET_SESSIOH record, and sends it to 
HS. If PS.CONY instructed RM to bid with an Attach, the Attach and any acce>111-
panying data has already been stored in the RCB by PS.CONY before it issued 
the GET_SESSION request. 

GET_SESSIOH and HS_ID, the ID of the bidder half-session that was chosen by 
GET_SESSION_PROC (page 3-45) 

BID_WITHOUT_ATTACH or BID_WITH_ATTACH to HS. Ho SESSIOH_ALLOCATEO record is 
sent to PS.CONV until confir.ation that the bidder •ay use the session is 
received frot11 the first-speaker <i.e., until a positive BID_RSP is received>. 

A copy of the GET_SESSION record is created so that, if the bid for the ses­
sion fails, the request can be retried on a different session. 

Referenced procedures, FSHs, and data structures: 
HS 
FSM_RCB_STATUS_FSP 
FSH_RCB_STATUS_BIDDER 
GET_SESSION 
HS_ID 
BID_WITH_ATTACH 
BID_WITHOUT_ATTACH 
RCB 

page 6.0-3 
page 3-73 
page 3-72 
page A-26 
page 3-74 
page A-28 
page A-29 
page A-7 

Find the RCB associated Mith the conversation identified by GET_SESSION.RCB_ID. 
Set RCB.HS_ID to HS_ID. 
Initialize IFSM_RCB_STATUS to FSM_RCB_STATUS_BIDDER (page 3-72). 
Call IFSH_RCB_STATUSIS, GET_SESSIOH, Utl>EFINED) (page 3-72>. 
Save the contents of the GET_SESSION record in the RCB <see Hotel. 
If GET_SESSIOH.BID_INDICATOR : ATTACH then 

If the security level of RCB.SECURITY_SELECT has been downgraded to NONE and 
the Attach was previously built then 

Rebuild the Attach omitting the obsolete security infor•ation. 
Build a BID_WITH_ATTACH record where the BID_WITH_ATTACH.SEND_PARM fields 
are initialized with the corresponding RCB.PS_TD_Hs_RECORD fields. 

Send the BID_WITH_ATTACH record to HS <Chapter 6.0>. 
Else <GET_SESSION.BID_INDICATOR ;e ATTACH> 

Build and &end a BID_WITHOUT .. ATTACH record to HS (Chapter 6.0). 

3-34 SHA For•at and Protocol Reference Hanual for LU Type 6.2 



BIS_RACE_LOSER 

BIS_RACE_LOSER 

FUNCTION: This procedure performs the processing necessary when a BIS race occurs and 
this side of the session is the race loser. 

This procedure first decrements the PENDING_TERMINATION_COUNT and issues a 
BIS_REPLY. It then attempts to find another session from the free-session 
pool on which to send a BIS_RQ. 

INPUT: 

OUTPUT: 

HS_ID, the ID of the session over which the BIS race occurred 

BIS_REPLY and, if there is a free session, BIS_RQ to HS 

NOTE: When the SESSION_DEACTIVATION_POLARITY is EITHER, free first-speaker sessions 
are deactivated in preference to free bidder sessions. 

Referenced procedures, FSMs, and data structures; 
SEND_BIS_RQ 
SESSION_DEACTIV~TION_POLARITY 

HS 
HS_ID 
LU_NAME 
MODE_NAME 
BIS_REPLY 
MODE 

page 3-54 
page 3-60 
page 6.0-3 
page 3-74 
page 3-74 
page 3-74 
page A-29 
page A-3 

Let LU_NAME and MODE_NAME be the LU and mode names of the session identified 
by HS_ID. 

Get addressability to the MODE control block associated with lLU_NAME, MODE_NAME>. 
Decrement MODE.PENDING_TERMINATION_CONWINNERS or MODE.PENDING_TERMINATION_CONLOSERS by 1, 
as appropriate to the session polarity. 

Create a BIS_REPLY record and send it to HS lChapter 6.0). 
Call SESSION_DEACTIVATION_POLARITYCLU_NAME, MODE_NAME> !page 3-60). 
to determine the polarity of an additional session to deactivate Cif any>. 

If there is a free session of the appropriate type then !see Note) 
Call SEND_BIS_RQCHS_ID> Cpage 3-54). 
Remove the session from the free-session pool. 

BIS_REPLY_PROC 

FUNCTION: This procedure processes BIS replies. 

The procedure invokes IFSM_BIS associated with the half-session over which the 
BIS_REPLY was received. 

INPUT: BIS_REPLY 

OUTPUT: IFSM_BIS is invoked 

Referenced procedures, FSMs, and data structures: 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
BIS_REPLY 

Call IFSM_BISCR, BIS_REPLY, HS_ID> (page 3-70) 

page 3-70 
page 3-71 
page A-14 

for the half-session over which the BIS_REPLY was received. 

Chapter 3. LU Resources Manager 3-35 



BIS_RQ_PROC 

BIS_RQ_PROC 

FUNCTION: This procedure processes BIS requests. 

This procedure invokes IFSM_BIS associated with the half-session over which 
the BIS_RQ was received. 

INPUT: BIS_RQ 

OUTPUT: IFSM_BIS is invoked 

Referenced procedures, FSMs, and data structures: 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
BIS_RQ 

Call IFSM_BISCR, BIS_RQ, HS_IDl !page 3-70) 
associated with the half-session over which the BIS_RQ was received. 

3-36 SNA Format and Protocol Reference Manual for LU Type 6.2 

page 3-70 
page 3-71 
page A-14 



CHANGE_SESSIONS_PROC 

CHANGE_SESSIONS_PROC 

FUNCTION: This procedure performs the processing that is required when two LU service 
transaction programs exchange CHANGE_NUMBER_OF_SESSIONS requests and a new 
session limit is agreed upon. PS.COPR (Chapter 5.4) sends CHANGE_SESSIONS to 
RM after CHANGE_NUMBER_OF_SESSIONS requests have been successfully exchanged. 

INPUT: 

OUTPUT: 

NOTE: 

A new TERMINATION_COUNT is computed based on the information in the 
CHANGE_SESSIONS record. If the new TERMINATION_COUNT is greater than O, ses­
sions have to be deactivated. Pending active sessions are deactivated first 
followed by free sessions. If the TERMINATION_COUNT is still greater than o, 
sessions will be deactivated later when they become free. 

After pending and free sessions have been deactivated as required, additional 
sessions may be activated if the current session count Cby polarity, i.e., 
CONWINNER or CONLOSERl is less than the minimum limits. This procedure may 
have to request both deactivation and activation of sessions if, for example, 
the total session limit remains constant, but the mix of first speakers and 
bidders changes. · 

CHANGE_ SESSIONS 

ACTIVATE_SESSION to LNS, BIS_RQ to HS, or none 

An implementation may choose not to deactivate pending active sessions. If, 
however, the TERMINATION_COUNT is nonzero when the session becomes active, the 
session has to then be deactivated. 

Referenced procedures, FSMs, and data structures: 
CHANGE_ SESSIONS 
MODE 
SESSION_ALLOCATED 
DEACTIVATE_PENDING_SESSIONS 
DEACTIVATE_FREE_SESSIONS 
ACTIVATE_NEEDED_SESSIONS 

If CHANGE_SESSIONS.RESPONSIBLE is YES then 

page A-26 
page A-3 
page A-33 
page 3-41 
page 3-41 
page 3-22 

Get addressability to the MODE control block associated with CHANGE_SESSIONS.LU_NAME 
and CHANGE_SESSIONS.MODE_NAME. 

Set CONWINNER_COUNT to MODE.ACTIVE_CONWINNERS_COUNT + MODE~PENDING_CONWINNERS_COUNT. 
Set CONLOSER_COUNT to MODE.ACTIVE_CONLOSERS_COUNT + MODE.PENDING_CONLOSERS_COUNT. 
Set OLD_SESSION_LIMIT to MODE.SESSION_LIMIT - CHANGE_SESSIONS.DELTA. 
Set PLATEAU to 

minCMODE.ACTIVE_SESSION_COUNT + MODF..rENDING_SESSION_COUNT, OLD_SESSION_LIMITl. 
Set CONWINNER_INCREMENT to ~~;<\O, MODE.MIN_CONWINNERS_LIMIT - CONWINNER_COUNTl. 
Set SESSION_DECR~MENT to maxCO, PLATEAU - MODE.SESSION_LIMITl. 
Set CQ~LC~tR_INCREMENT to maxCO, MODE.MIN_CONLOSERS_LIMIT - CONLOSER_COUNTl. 
~et NEED_TO_ACTIVATE to CONWINNER_INCREMENT + CONLOSER_INCREMENT. 
Set ROOM_FOR_ACTIVATION to maxCO, MOC~.SESSION_LIMIT - PLATEAU!. 
Set DECREMENT_FOR_POLARITY to maxCO, NEED_TO_ACTIVATE - ROOM_FOR_ACTIVATIONl. 
Set MODE.TERMINATION_COUNT to MODE.TERMINATION_COUNT + SESSION_DECREMENT + 

DECREMENT_FOR_POLARITY. 
If MODE.TERMINATION COUNT > 0 then 

Call DEACTIVATE=PENDING_SESSIONSCCHANGE_SESSIONS.LU_NAME, r.H~,NGE_SESSIONS.MODE_NAMEl 
Cpage 3-41, see Notel. 

If MODE.TERMINATION_COUNT > 0 then 
Call DEACTIVATE_FREE_SESSIONSCCHANGE_SESSIONS.LU_NAME, CHANGE_SESSIONS.MODE_NAMEl 

(page 3-411. 
If MODE.SESSION LIMIT = O, and 

MODE.DRAIN_SELF = NO or MODE.ACTIVE_SESSION_COUNT = 0 then 
Do for each waiting request for a session with CCHANGE_SESSIONS.LU_NAME, 

CHANGE_SESSIONS.MODE_NAMEl: 
Create a SESSION_ALLOCATED record with RETURN_CODE set to UNSUCCESSFUL_NO_RETRY 
and send it to the PS that made the request. 

Discard the waiting request. 
Call ACTIVATE_NEEDED_SESSIONSCCHANGE_SESSIONS.LU_NAME, CHANGE_SESSIONS.MODE_NAMEl to 
activate new sessions if possible and if needed (page 3-22). 

Chapter 3. LU Resources Manager 3-37 



CHECK_FOR_BIS_REPLY 

CHECK_FOR_BIS_REPLY 

FlN:TION: This procedure checks to see if a BIS_REPLY should be sent at the present ti111e 
to respond to a received BIS_RQ. 

INPIJT: HS_ID, the ID of the half-session that sent the BIS_RQ 

OUTPIJT: BIS_REPLY to HS, or no output 

Referenced procedures, Fstls, and data structures: 
SEND_BIS_REPLY 
HS_ID 
HOOE 

page 3-53 
page 3-74 
page A-3 

Set addressability to the HOOE control block associated Nith the LU and llOde 
name of the session i dent i f; ed by HS_ID • 

If MODE.DRAIN_SELF = NO or 
<HODE.DRAIN_SELF = YES and there are no Naiting requests for the LU and llOde na .. ) then 

If the session identified by HS_ID is free then 
Call SEND_BIS_REPLY(HS_IDJ lpage 3-53J. 
Remove the session frOll the free-session pool. 

COHPLETE_HS_ATTACH 

FlN:TION: This procedure perfor11S processing that is required only if the Attach ca• to 
RM frOll HS las opposed to UPtt_IPLJ, 

The SCB corresponding to the session over which the Attach NH received is 
changed to point to the appropriate RCB, and the status of the SCB is set to 
IN_USE. 

INPIJT: HS_ID, the ID of the session frOll which the Attach was received, RCB_ID, the 
ID of the conversation resource that is to use the session, and TCB_Io, the IO 
of the PS that NH created as a result of the Attach 

OUTPIJT: None 

Referenced procedures, FSMs, and data structures: 
CONNECT_RCB_AND_SCB 
FSM_SCB_STATUS_BIDOER 
FSM_sce_STATUS_FSP 
HS_IO 
RCB_ID 
TCB_ID 
see 

Call IFSH_SCB_STATUSIR, ATTACH, l.tlDEFINEDJ (page 3-67J 
associated with the half-session identified by HS_ID. 
(State of IFSM_SCB_STATUS = IN_USEJ. 

Set SCB.RCB_IO to RCB_IO. 
Call CONNECT_RCB_AND_SCBIRCB_IO, HS_ID, REPLY) (page 3-39). 

3-38 SHA Format and Protocol Reference Hanual for LU Type 6.2 

page 3-39 
page 3-68 
page 3-69 
page 3-74 
page 3-74 
page 3-74 
page A-9 



CONHECT_RCB_At-IJ_SCB 

CONllECT_RCB_Att'.>_SCB 

FUNCTION: This procedure connects a PS and HS process, and infor11S HS Nhen the con-

INPUT: 

OUTPUT: 

nection is co111Plete. 

RCB_ID and HS_ID, the IDs oi the RCB representing the conversaHon resource 
and the SCB representing the half-session 

HS_PS_CONNECTED record is sent to HS. 

Referenced procedures, FSMs, and data structures: 
HS 
PS 
RCB_ID 
HS_ID 
HS_PS_CONNECTED 

page 6.0-3 
page 5.0-5 
page 3-74 
page 3-7lt 
page A-29 

Connect the PS process that is using the c~onversation iden-tified by RCB_ID to 
the half-session identified by HS_ID. 

Create an HS_PS_CONNECTED record and send it to HS (Chapter 6.0). 

CREATE_RCB 

FUNCTION: This procedure handles the creation of new RCBs. It places the RCB_ID of the 
newly created entry into the passed RCB_ALLOCATED record. 

INPUT: 

OUTPUT: 

NOTE: 

ALLOCATE_RCB and RCS_ALLOCATED. The RCB_ALLOCATED was created by ALLO­
CATE_RCB_PROC (page 3-2lt). 

RCB_ALLOCATED with the RCB_ID field set to the ID of the nete RCB 

IFSH_RCS_STATUS is a generic FSM that can be either FSH_RCB_STATUS_FSP or 
FSM_RCB_STATUS_BIDDER, depending on whether the conversation resource is using 
a first-speaker or a bidder half-session. When a new RCB is created, it is 
not usually known Nhich type of half-session will be available (except for 
ALLOCATE_RCBII1111EDIATE), which must use a first-speaker half-session in order 
to be successful>. Therefore, when the RCS is created, the FSt1 is initialized 
to FSM_RCB_STATUS_FSP, and is changed later if the conversation will be run­
ning on a bidder half-session. 

Referenced procedures, FSMs, and data structures: 
ALLOCATE_RCB 
RCB_ALLOCATED 
RCB 

page A-25 
page A-32 
page A-7 

Create RCS, set RCB.RCB_ID to a unique value and RCB.HS_ID to a null value. 
Move TCB_ID, LU_NAME, and MODE_NAHE from the ALLOCATE_RCB record to the RCB. 
Place the RCB_IO in the RCB_ALLOCATED record. 
Set IFSM_RCB_STATUS : FSM_RCB_STATUS_FSP Cpage 3-73; see Note). 
Call IFSM_RCB_STATUSCS, ALLOCATE_RCB, UN>EFINED> (state of the FSff is set to FREE, 
page 3-72). 

Set RCB.CONVERSATION_CORRELATOR to a unique value. 
Set RCB.SYNC_LEVEL to ALLOCATE_RCB.SYNC_LEVEL. 
Set RCB.SECURITY_SELECT to ALLOCATE_RCB.SECURITY_SELECT. 
Set RCB.PS_TO_HS_RECORD type to SEND_DATA_RECORD and RCB.PS_TO_HS_RECORD data to a null value. 

Chapter 3. LU Resources Manager 3-39 



CREATE_SCB 

CREATE_SCB 

FUNCTION: This procedure creates a new SCB based on the LU_NAME, MODE_NAME and SES­
SION_INFORMATION arguments. 

INPUT: LU_NAME and MODE_NAME of the partner LUI and SESSION_INFORMATION, which 
describes the session attributes 

OUTPUT: A new SCB is created. 

Referenced procedures, FSMs, and data structures: 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
LU_NAME 
MODE_NAME 
SESSION_INFORMATION 
SCB 

Create an sea, set SCB.HS_ID to SESSION_INFORMATION.HS_ID. SCB.LU_NAME to 
LU_NAME, SCB.MODE_NAME to MODE_NAME, SCB.RCB_ID to a null value, and 
SCB.RANDOM_DATA to SESSION_INFORMATION.RANDOM_DATA. 

Select based on SESSION_INFORMATION.BRACKET_TYPE: 
If the half-session is a first-speaker then 

Assign finite-state machines to be used by setting 
#FSM_BIS to FSM_BIS_FSP (page 3-71) 
and #FSM_SCB_STATUS to FSM_SCB_STATUS_FSP (page 3-69). 

Else !bidder session) 
Assign finite-state machines to be used by setting 

#FSM_BIS to FSM_BIS_BIDDER (page 3-70) 
and #FSM_SCB_STATUS to FSM_SCB_STATUS_BIDDER (page 3-68). 

CTERM_DEACTIVATE_SESSION_PROC 

FUNCTION: This procedure handles the processing that 
CTERM_DEACTIVATE_SESSION record is received from LNS. 

page 3-68 
page 3-69 
page 3-70 
page 3-71 
page 3-74 
page 3-74 
page A-36 
page A-9 

occurs when 

The session identified by CTERM_DEACTIVATE_SESSION.HS_ID is deactivated with a 
BIS_RQ-BIS_REPLY exchange followed by UNBINDCNORMALl. The processing of this 
record is identical to that of an operator verb DEACTIVATE_SESSIONCNORMALJ. 

INPUT: CTERM_DEACTIVATE_SESSION 

OUTPUT: Session deactivation processing is initiated. 

Referenced procedures, FSMs, and data structures: 
RM_DEACTIVATE_SESSION_PROC 
CTERM_DEACTIVATE_SESSION 
RM_DEACTIVATE_SESSION 

page 3-49 
page A-20 
page A-27 

Create an RM_DEACTIVATE_SESSION record with TCB_ID set to a null value, SESSION_ID set to 
CTERM_DEACTIVATE_SESSION.HS_ID, and TYPE set to NORMAL. 

Call RM_DEACTIVATE_SESSION_PROCCRM_DEACTIVATE_SESSION) lpage 3-49). 

3-40 SNA Format and Protocol Reference Manual for LU Type 6.2 



OEACTIVATE_FREE_SESSIOHS 

DEACTIYATE_FREE_SESSIONS 

FUNCTION: This procedure requests deactivatfon of free •••ions betl>lffn this LU and the 
partner LU identified by (LU_NAHE, HODE_NAHEL Deactivations •re requested 
uitU either all free sessions hilve had deactivation requested, or this LU is 
not responsible for any 110re deactivations. 

INPUT: The LU_NAHE of the partner LU and the ttOOE_twtE of the sessions to be deacti­
vated 

OUTPUT: Zero or 110re DEACTIVATE_SESSION records to LNS 

NOTE: First-speaker sessions are deactivated before bidder ••sions. 

Referenced procedures, FSHs1 and data &tructures: 
SESSION_DEACTIVATION_POLARITY 
SEND_BIS 
LU_NAHE 
HODE_NAtlE 
HS_ID 

Do Mhile there e1dsts a free session of a polarity .. tching thilt returned by 
SESSION_DEACTIYATIOt4_POLARITYC LU_HA11E • ttOOE_NAHE > (page 3-60 >: 
(If SESSIOH_DEACTIVATION_POLARITY returns EITHER. a first-speaker session is 
deactivated in preference to a bidder session.) 

let HS_ID be the identifier of the session to be deactivated. 
Call SEtlJ_BISCHS_IDJ lpage 3•53). 
R8110ve the session frOll the free-session pool. 

DEACTIVATE_PEllJING_SESSIONS 

FUNCTION: This procedure requests deactivation of pending-active sessions betNeen this 
LU and the partner LU identified by llU_twtE. ttOOE_NAHEJ. Deactivations are 
requested uitil either all pending-active sessions hilve had deactivation 
requested, or this LU is not responsible for any 110re deactivations. 

INPUT: LU_NAHE of the partner LU and the HCIDE_NAHE of the s•sions to be deactivated 

OUTPUT: Zero or 110re DEACTIVATE_SESSION records to lHS 

Referenced procedures, FSMs. and data structures: 
SESSIDH_DEACTIVATIOH_POLARITY 
SEllJ_DEACTIVATE_SESSIOH 
LU_HAHE 
HODE_NAHE 
HOOE 

page 3-60 
page 3-55 
page 3-74 
page 3-74 
page A-3 

Get addressability to the MODE control block associated with CLU_NA11E, ttOOE_HAHEJ. 
Do Mhile there ar.e pending-active first-speaker sessions for CLU_NAl1E, HODE_NAl1Eh and 

SESSION_DEACTIYATION_POLARITYCLU_HAHE, 110DE_HAl1EJ (page 3-60) 
indicates FIRST_SPEAKER or EITHER: 

Call SEND_DEACTIVATE_SESSIDHCPENDINGt PENDING_ACTIVATION.CORRELATOA1 tl>RHAL, X'OOOOOOOO'J 
(page 3-55) • 

Decrement l10DE.TERH1NATION_COIMT by 1. 
Do Mhile there are pending-active bidder Hssions for CLU_HAl1E1 HODE_NAHE>. and 

SESSION_DEACTIVATION_POLARITYCLU_NAHE1 HODE_NAl1EJ Cpage 3-60) 
indicates BIDDER or EITHER. 

Call SEtl>_DEACTIVATE_SESSION(PEHDING. PEHDING_ACTIYATION.CORRELATOA. tlJRHALt x•oooooooo•> 
(page 3-55) • 

Decr....,t MODE.TERMINATIOH_ccurr by 1. 

Chapter :s. W Resources ttanaa-r 3-41 



FIMCTION: Thia procecllre checka to ... if the ... •re •"Y GET_SESSION .....-ta ... tting to 
be Hrviced. If ao, thi• procedu,.. clequauH the firat l"eqUMt Md invakH 
GET_SESSION_PROC (page 3-45) to proceaa the raqueat. 

INPUT: HS_ID, the ID of • tuilf-s•sion. 

OUTPUT: GET_SESSION_PROC ia invaked to proceas the N•iting raquest 

Referenced proceduras, FStlth •nd dat• structures: 
8ET_SESSION_PROC 
8ET_SESSICIH 
HS_ID 
LU_NAHE 
HODE_NAHE 

page J-45 
page A-26 
page J-74 
pawe J-74 
page J-74 

Let w_NAHE •nd MODE_NAHE be the LU NM •nd llOde M• of the •••ion id.ntified by HS_ID. 
If there is• ... iting raql.ffltlt for• session on cw_HAHE1 HODE_HAttl!) then 

Initi•lize • SET_SESSICIH record Mith the infor••tion fr-Oii the •iting request. 
Cdl 6ET_SESSION_PROC:l6ET_SESSIONJ (page 3-45) to service the request. 
ReMOve the ... iting request fl"Oll the queua. 

3•42 SHA For•t •nd Protocol R•ference Mllnu11l for LU Type 6.2 



FIRST_SPEAKER_PROC 

FIRST_SPEAKER_PROC 

FUNCTION: This procecklre handles the allocation processing for a first-speaker 
half-session. 

INPUT: 

OllTPUT: 

NOTE: 

This procedure causes the SCB associated Mith the first-speaker half-session 
and the RCB of the conversation for which the session was requested to be con­
nected to each other. If PS.CONY indicated that RH is to be responsible for 
sending the Attach, it creates a BID_WITH_ATTACH record frOll infor•ation that 
PS.CONV s~ored in the RCB and sends it to HS. It then creates • SES­
SIOtCALLOCATEO 'record, which it sends to PS.CONY to infor• PS.CONY that a ses­
sion has been successfully allocated. 

6ET_SESSIOH and HS_ID, the ID of the first-speaker half-session that w.s cho­
sen by 6ET_SESSIOH_PROC (page 3-45) 

SESSIOH_ALLOCATED to PSS and, if PS.COHV has indicated that RH is to send the 
Attach for the conversation, BID_WITH_ATTACH to HS 

Since 6ET_SESSIOH_PROC was able to obtain a first-speaker half-session, the 
Attach that RH sends to HS is not really a bid for the use of the session. 
After RH sends the Attach it does not have to wait for a response frOll HS but 
can report immediately to PS.COHV. 

Referenced procedures, FSMs, and data structures: 
SET_RCB_ANO_SCB_FIELDS 
COHNECT_RCB_Atll_SCB 
HS 
PS 
6ET_SESSIOH 
BID_lolITH_A TT ACH 
RCB 
SESSION_ALLOCATED 
HS_ID 

Call SET_RCB_AND_SCB_FIELDSIGET_SESSIOH.RCB_Io, HS_ID> (page 3-61). 
it 6ET_SESSION.8ID_Itl>ICATOR is ATTACH then 

page 3-61 
page 3-39 
page 6.0-3 
page S.0-5 
page A-26 
page A-28 
page A-7 
page A-33 
P•ge 3-74 

If the security level of RCB.SECURITY_SELECT has been downgraded to NONE and 
the Attach was previously built then 

Rebuild the Attach omitting the obsolete security infor•ation. 
Create BID_WITH_ATTACH (see Hotel with the SEHD_PARH subfields initialized 
to the corresponding RCB.PS_TO_HS_RECORD subfields. 

Send the BID_WITH_ATTACH to HS !Chapter 6.0). 
Call CONHECT_RCB_AHD_SCB(GET_SESSIOH.RCB_ID, HS_Io, HORHAL) (page 3-39). 
Create a SESSION_ALLOCATED record, set REl\JRN_CODE to OK, and send record to PS 

(Chapter 5.1>. 

Chapter 3. LU Resources Manager 3-43 



FREE_SESSION_PROC 

FREE_SESSIOH_PROC 

FlKTIOH: This procacklre handl• the proc•sing that occurs "*" • HHion becoHs fr•. 

This procedure first check• to see if • bid ia autst•nding on this •••ion. 
If ao, the session ia not returned to the fru-s•aion pool. If not, the pro­
cect.ire check• to see if •n RTR_RQ or a BIS request or reply ia to be sent. If 
either RTR_H or BIS is sent, the session is not returMd to the fr•-•••ion 

. pool. If neither BIS nor. RTR is sent, tha free-session i• returned to the 
free-session pool, and a 11111iting session allocation request (if any) b serv­
iced. 

INPUT: FREE_SESSIOH 

OOTPUT: BIS_RQ, BIS_REPLY, or RTR_RQ to HSS or GET_SESSIOH to GET_SESSIOH_PROC Cpage 
3-45 > ; or no output 

NOTE: If an RTR is ONed on this session CeUher the partner LU owes RTR to the local 
W or the local LU ONes RTR to the partner». the bidder has to ... it for •n RTR 
frOll the first-speaker before it can again bid for the ses•ion. Therefore, 
the dollocated bidder session is not .... turned to the free-session pool •nd • 
Naiting request is not serviced. 0 

Referenced procedures, FSt111t and data structures: 
DEQUEUE_WAITIHS_REQUEST 
SHOULD_SEfol>_BIS 
SEND_BIS 
RH_PROTOCOL_ERROR 
HS 
FSH_SCB_STATUS_BIDDER 
FSH_SCB_STATUS_FSP 
FSH_BIS_BIDDER 
FSH_BIS_FSP 
FREE_ SESSION 
SCB 
RCB 
RTR_RQ 

Find the SCB associated Nith the session identified by FREE_SESSIOH.HS_ID. 
Set SCB.RCB_ID to a null value. 
If the state of IFSH_sce_STATUS is PENJIN6_Ftli12 then (page 3-67). 

Call RH_PROTOCOL_ERROR (page 3-49). 
Call IFSH_SCB_STATUS<R, FREE_SESSION, ltlDEFINED) (page 3-67>. 
If there is an RCB for which the state of IFSH_RCB_STATUS is PEfol>IN&_SCB, 
and RCB.HS_ID = SCB.HS_ID then 

Take no action and return to the calling routine <• BID is pending). 
Else if RTR is owed on this session then 

If this is• first-speaker session Ci.e •• this LU OMflS RTRl then 
If there are no Naiting requests for sessions, and 

RTR is to be sent noN c h1pluentation-defined choice> then 
Send RTR_RQ to HS <Chapter 6.0). 
Reset RTR owed indication for this session. 

Else <bidder session; i.e., other LU ONes RTR> then 
Take no action and return to the calling routine CsH Note). 

Else 
Call SHOULD_SEND_BIS(SCB.HS_ID> (page 3-62) to detar•ine 
whether BIS should be sent no11t. 

If BIS should be sent no111 then 
Call SEfol>_BISfSCB.HS_ID> Cpage 3-53). 

If the state of IFSH_BIS <page 3-70) is BIS_SENT or CLOSED then 

page 3-42 
page 3-62 
page 3-53 
page 3"."49 
page 6.0-3 
page 3-68 
page 3-69 
page 3-70 
page 3-71 
page A-15 
page A-9 
page A-7 
page A-30 

Take no action and return to the calling routine (BIS has been sent>. 
Else <tha session is available for reuse) 

Return the session to tha free-session pool. 
Call DEql!EUE_WAITING_REQUEST(SCB.HS_ID> (page 3-42>. 

3-44 SHA For1111t and Protocol Reference Manual for LU Type 6.2 



SET_SESSION_PROC 

SET_SESSION_PROC 

FUNCTION: This procedure handles the allocation of half-sessions to be used by conversa­
tion resources. 

INPUT: 

OUTPUT: 

The procedure checks for an available half-session and calls the appropriate 
procedure, depending upon whether the half-session found was a first-speaker 
or a bidder half-session. If there are no half-sessions available and the 
current session limit has not been reached, SEND_ACTIVATE_SESSION is called, 
which requests that LNS activate a new session. 

SET_SESSION 

5£e called procedures for output. 

NOTES: 1. When PS.CONV requests a session from the resources manager, RM does the fol­
lowing: attempts to service the request with a first-speaker half-session; if 
none 1s available, RM attempts to service the request with a bidder 
half-session; failing that, RM requests LU network services to activate a new 
session if the current session limit has not been raached. If a first-speaker 
half-session is available, that session is used to service the session 
request. If no first-speaker half-sessions are available, an implementation 
can choose to service the request with a free bidder half-session, activate a 
new first-speaker half-session, or both of the above. An implementation 
could, for example, choose to implement the following order: choose a free 
first-speaker half-session; request a new first-speaker half-session be acti­
vated; and, finally, choose a free bidder half-session. <Another possibility 
is that an implementation could service the session request with a bidder 
half-session, if no first-speaker half-sessions are available, but at the same 
time ask that a new first-speaker-half-session be activated.) However, if 
there are no free first-speaker half-sessions and the session limit for the 
desired <LU name, mode name) pair has been reached, the session request is 
serviced with a bidder half-session, if available. If a bidder half-session 
is available, an implementation does not wait for a first-speaker half-session 
to become free before servicing the session request. 

2. A mode is closed if there are no sessions active for the mode name and a ses­
sion cannot be activated without operator intervention <e.g., the operator 
must increase the session limit above 0). In this case, the SET_SESSION 
request is rejected with a return code of UNSUCCESSFUL_NO_RETRY. 

Referenced procedures, FSMs, and data structures: 
FIRST_SPEAKER_PROC 
BIDDER_PROC 
SESSION_ACTIVATION_POLARITY 
SEND_ACTIVATE_SESSION 
PS 
SET_SESSION 
RCB 
SESSION_,LLOCAlEO 

page 3-43 
page 3-34 
page 3-57 
pa~P. 3-52 
page 5.0-5 
page A-26 
page A-7 
page A-33 

Chapter 3. LU Resources Manager 3-45 



GET-SESSION_PROC 

If the mode is closed then (see Note 2l 
Send SESSION_ALLOCATED record with a return code of UNSUCCESSFUL_ND_RETRY to 

PS (Chapter 5.ll. 
Else 

If the CGET_SESSION.LU_NAME, GET_SESSION.MODE_NAME> sessions do not support the 
requested sync level then 

Send SESSION_ALLOCATED record with a return code of SYNC_LEVEL_NOT_SUPPORT~D. 
Else 

If the CGET_SESSION.LU_NAME, GET_SESSION.MODE_NAMEl sessions do not support the 
requested security level then 

LiJw11g1'C1C:i:! ·l:h;o SECURITY_SELECT field of the RCB by setting it to NONE. 
If a free session exists then 

If first-speaker half-session then 
Call FIRST_SPEAKER_PROCCGET_SESSION, HS_IDl (page 3-43). 

Else (bidder half-session) 
Call BIDDER_PROCCGET_SESSION, HS_IDl (page 3-34). 

Remove the session from the free-session pool. 
Else Cno free session exists> 

If there are more waiting requests for sessions than there are 
pending session requests then 

Call SESSION_ACTIVATION_POLARITYCGET_SESSION.LU_NAME, GET_SESSlON.MODE_NAMEl 
Cpage 3-57) 
to determine the polarity of the next activated session Cif an)fl• 

Select based on session activation polarity: 
When NONE Cno new sessions can be activated) 

Do nothing. 
When FIRST_SPEAKER . 

Call SEND_ACTIVATE_SESSIONCGET_SESSION.LU_NAME, GET_SESSION.MODE_NAME, 
FIRST_SPEAKERl (page 3-52). 

When BIDDER 
Call SEND_ACTIVATE_SESSIONCGET_SESSION.LU_NAME, GET_SESSION •. MODE_NAME, 

BIDDER> (page 3-52). 
Queue the waiting request for a session. 

3-46 SNA Format and Protocol Reference Manual for LU Type 6.2 



PS_CREATION_PROC 

PS_CREATION_PROC 

FUNCTION: This procedure creates a new instance of the PS process. 

This procedure is called upon receipt of an Attach from HS or UPM_IPL. Along 
with creating the PS process, it also creates a new TCB and RCB. It returns 
to the calling procedure the IDs of the newly created TCB and RCB, which the 
calling procedure will send to PS along with the Attach that it received. 

INPUT: ATTACH_HEADER, an indicator stating whether the Attach sender was HS or 
UPM_IPL, and variables in which the TCB_ID and RCB_ID will be returned 

OUTPUT: The IDs of the newly created TCB and RCB 

NOTE: If the Attach sender is UPM IPL, the status of the FSM associated with the RCB 
is set to INITIAL. This indicates that the ATTACH that caused this RCB to be 
created came from UPM IPL and that there is no half-session associated with 
this conversation. -

Referenced procedures, FSMs, and data structures: 
PS 
FSM_RCB_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
ATTACH_HEADER 
TCB 
RCB 

Create a TCB with a unique TCB_ID, initializing TRANSACTION_PROGRAM_NAME, 
INITIATING_SECURITY.USERID, and INITIATING_SECURITY.PROFILE to null 
and CONTROLLING_COMPONENT to TP. 

Create an RCB with a unique RCB_ID, initializing RCB.TCB_ID to TCB_ID, 

page 5.0-5 
page 3-73 
page 3-72 
page A-13 
page A-10 
page A-7 

RCB.PS TO HS RECORD.VARIANT NAME to SEND DATA RECORD, RCB.PS TO HS RECORD.DATA 
to null, ind-RCB.HS_TO_PS_BUFFER_LIST to-empty. - - -

If there is a conversation correlator present in the Attach 
Set the RCB.CONVERSATION_CORRELATOR to the conversation correlator in the Attach. 

Select based on Attach sender: 
When HS 

If the session is a first speaker then 
Set #FSM_RCB_STATUS to FSM_RCB_STATUS_FSP (page 3-73). 

Else 
Set #FSM_RCB_STATUS to FSM_RCB_STATUS_BIDDER (page 3-72). 

Call #FSM_RCB_STATUS(R, ATTACH, HS> (page 3-72> 
(State of #FSM_RCB_STATUS = IN_USE). 

Set RCB.HS ID to ATTACH HEADER.HS ID. 
When UPM IPL - - -

Set #FSM_RCB_STATUS to FSM_RCB_STATUS_FSP (page 3-73). 
Call #FSM_RCB_STATUSCR, ATTACH, UPM> (page 3-72) 

(State of #FSM_RCB_STATUS = INITIAL>. 
RCB.HS_ID = ATTACH_HEADER.HS_ID; 

Create a new PS process (page 5.0-5). 

Chapter 3. LU Resources Manager 3-47 



RM_ACTIVATE_SESSION_PROC 

RM_ACTIVATE_SESSION_PROC 

FUNCTION: This procedure performs the processing of the RM_ACTIVATE_SESSION record. 

An RM_ACTIVATE_SESSION record is sent to RM by PS.COPR <Chapter 5.4J when the 
control operator issues an ACTIVATE_SESSION command. The command directs RM 
to activate a new session to the partner LU identified by LU_NAME with the 
mode specified by MODE_NAME. 

RM replies to the RM_ACTIVATE_SESSION record with an RM_SESSION_ACTIVATED 
record. The RETURN_CODE field of RM_SESSION_ACTIVATED indicates the success 
or failure of the session activation. 

INPUT: RM_ACTIVATE_SESSION 

OUTPUT: ACTIVATE_SESSION to LNS, or RM_SESSION ACTIVATED with RETURN_COOE = 
LU_MOOE_SESSION_LIMIT_EXCEEOED to PS 

Referenced procedures, FSMs, and data structures: 
SESSION_ACTIVATION_POLARITY 
SEND_ACTIVATE_SESSION 
PS 
RM_ACTIVATE_SESSION 
RM_SESSION_ACTIVATEO 

Create an RM_SESSION_ACTIVATEO record. 
Call SESSION_ACTIVATION_POLARITYCRM_ACTIVATE_SESSION.LU_NAME, 

RM_ACTIVATE_SESSION.MODE_NAMEJ (page 3-57) 
to determine the polarity of the next activated session <if any). 

Select based on the activation polarity: 
When NONE <session limit exceeded) 

page 3-57 
page 3-52 
page 5.0-5 
page A-27 
page A-33 

Set RM_SESSION_ACTIVATED.RETURN_CODE to LU_MODE_SESSION_LIMIT_EXCEEOED. 
Send the RM_SESSION_ACTIVATED record to PS <Chapter 5.4). 

When FIRST_SPEAKER 
Call SEND_ACTIVATE_SESSION<RM_ACTIVATE_SESSION.LU_NAME, 

RM_ACTIVATE_SESSION.MOOE_NAME, FIRST_SPEAKERJ !page 3-52). 
~ Save the RM_SESSION_ACTIVATED record as a pending CNOS operator activation request. 

When BIDDER 
Call SEND_ACTIVATE_SESSION<RM_ACTIVATE_SESSION.LU_NAME, 

RM_ACTIVATE_SESSION.MODE_NAME, BIDDER) !page 3-52). 
Save the RM_SESSION_ACTIVATED record as a pending CNOS operator activation request. 

3-48 SNA Format and Protocol Reference Manual for LU Type 6.2 



Al'\..DEACTIVATE_SESSION_PROC 

RH_DEACTIVATE_SESSION_PROC 

FUNCTION: Th;s procedure perforllS the processing of the RH_DEACTIVATE_SESSION record. 

INPUT: 

OUTPUT: 

An Rl1_DEACTIVATE_SESSION record is sent to Rl1 by PS.COPR I Chapter 5.fO when 
the control operator issues a DEACTIVATE_SESSION c011111and. The COlllllland directs 
RH to deactivate the session identified by SESSION_ID. An 
Rl'\..DEACTIVATE_SESSION record is •lso generated internally in RM during the 
processing of a CTERl'\..DEACTIVATE_SESSIOH record frOll LU netNOrk services. 

RM_DEACTIVATE_SESSIOH 

DEACTIYATE_SESSIOH to LNS, BIS_RQ to HS, or no output 

Referenced procedures, FSl1s, and data structures: 
SEND_DEACTIVATE_SESSION 
SEND_BIS_RQ 
FSH_BIS_BIDDER 
FSM_BIS_FSP 
RH_DEACTIVATE_SESSION 

page 3-55 
page 3-54 
page 3-70 
page 3-71 
page A-27 

Select based on RH_DEACTIVATE_SESSIOH.TYPE: 
liflen CLEANUP 

Call SEND_DEACTIVATE_SESSIONIACTIVE, RH_DEACTIVATE_SESSIOH.SESSION_ID, 
CLEAt«JP, X'OOOOOOOO'l lpage 3-55). 

lbm NORMAL 
If session exists then 

If the session is in use then 
If state of IFSH_BIS lpage 3-70) ~ BIS_SENT then IBIS not already sent> 

Queue the deactivation request. 
Else !session not ;n use) 

Call SEND_BIS_RQCHS_ID> Cpage 3-54). 
Re11ove the session frOll the free-session pool. 

RH_PROTOCOL_ERROR 

FUNCTION: This procedure processes receive error conditions. 
the other half-session violates the architecture. 
follow;ng act;ons: 

These errors occur when 
This procedure takes the 

INPUT: 

OUTPUT: 

• Ends the session by requesting LU network services to send UleUI>. llhe 
other half-session has com11itted a serious violation of the architecture.> 
The ut-eIND is type X'FE', indicating invalid session protocol, and carries 
ser1se data indicating the nature of the receive check error. 

• Notifies the appropriate operator associated with the NAU Cthe ter•inal or 
subsyste• operator>. Some i111ple•entations uy not have an appropriate 
operator to report to. 

• logs the error. 

HS_ID, the ID of the half-session and SENSE_COOE, the sense data to be placed 
in the UNBIND 

See FUNCTION. 

Referenced procedures, FSHs, and data structures: 
SEHD_DEACTIVATE_SESSION 
HS_ID 
SENSE_COOE 

page 3-55 
page 3-74 
page 3-75 

Call SEND_DEACTIVATE_SESSIONCACTIVEt HS_IDt ABNORHAlt SENSE_CCJOE) Cpage 3-55). 
Log the protocol error. 

Chapter 3. LU Resources Manager 3-49 



RTR_RQ_PROC 

RTR_RQ_PROC 

FUNCTION: This procedure handles the receipt of RTR requests from a f;rst-speaker 
half-session. 

The session is returned to the free-session pool, and if there 
request, the request is processed and a +RSPCRTR) is sent to 
manager of the first-speaker half-se!:>:oion. Ii no't, a -RSP(RTR, 
to the resources manager tr:- L1dicate that the resources manager 
half-session has no""~~ng to send. 

is a waiting 
th!! :-cs;:,urces 
0819) is sent 
of the bidder 

INPUT: ;:.iR_RQ from HS 

OUTPUT: Positive RTR_RSP, or negative RTR_RSPCSENSE_CODE = X'08190000') to HS 

Referenced procedures, FSMs, an.:f data structures: 
GET_SESSION_PROC 
RM_PROTOCOL_ERROR 
SHOULD_SEND_BIS 
SEND_BIS 
HS 
RTR_RQ 
GET_SESSION 
RTR_RSP 

If the partner LU owes an RTR then 

page 3-45 
page 3-49 
page 3-62 
page 3-53 
page 6.0-3 
page A-15 
page A-26 
page A-30 

If there are any waiting requests for sessions with the partner LU and mode name then 
Create an RTR_RSP record with RTI set to POS and SENSE_CODE set to x•oooooooo•. 
Send the RTR_RSP record to HS (Chapter 6.01. 
Create a GET_SESSION record from the information saved in the waiting request. 
Call GET_SESSION_PROC(GET_SESSIONI Cpage 3-451 to process the request. 

Else Cno waiting requests) 
Create an RTR_RSP record with RTI set to NEG and SENSE_CODE set to X'08190000'. 
Send the RTR_RSP record to HS !Chapter 6.0). 
Call SHOULD_SEND_BISCRTR_RQ.HS_IDl !page 3-62) to determine whether 

BIS should be sent on this session. 
If BIS should be sent then 

Call SEND_BISCRTR_RQ.HS_IDI (page 3-531. 
Else 

Return the session to the free-session pool. 
Remember that the partner LU no longer owes an RTR. 

Else CRTR not expected) 
Call RM_PROTOCOL_ERRORCRTR_RQ.HS_IO, X'20030000'1 Cpage 3-49J. 

3-50 SHA Format and Protocol Reference Manual for LU Type 6.2 



RTR_RSP _PROC 

RTR_RSP_PROC 

FUNCTION: Th;s procedure handles the rece;pt of RTR responses from a b;dder 
half-sess;on. 

INPUT: 

OUTPUT: 

NOTE: 

If the ;nput ;s a pos;t;ve RTR_RSP, no processing ;s performed. If the ;nput 
is a negat;ve RTR_RSPCSENSE_CODE = 0819), the sess;on ;s returned to the 
free-sess;on pool, and the sess;on ;s used to serv;ce a wa;ting request Cif 
any>. 

Posit;ve or negat;ve RTR_RSP from HS 

None 

If IFSM_BIS is not ;n the RESET state when RTR_RSP ;s rece;ved, th;s procedure 
does not return the session to the free-sess;on pool, since the session ;s ;n 
the process of be;ng shut down. Th;s can occur, for example, when the first 
speaker has sent a BIS and the bidder responds negat;vely to a previous RTR 
before send;ng ;ts own BIS. 

Referenced procedures, FSMs, and data structures: 
DEQUEUE_WAITING_REQUEST 
SHOULD_SEND_BIS 
SEND_BIS 
FSM_BIS_BIDDER 
FSM_BIS_FSP 
RTR_RSP 

If ~T~_KSP.RTI =NEG and the state of IFSM_BIS =RESET (page 3-70) then· 
!see Note> 

Call SHOULD_SEND_BISCRTR_RSP.HS_ID> (page 3-62) 
to determine whether BIS should be sent on this sess;on .. 

If SHOULD_SEND_BIS ind;cates that BIS should be sent then 
Call SEND_BISI RTR •. RSP. HS_ID) I page 3-53). 

Else 
Return the sess;on to the free-sess;on pool. 

page 3-42 
page 3-62 
~ag'1 3-53 
page 3-70 
page 3-71 
page A-15 

Call DEQUEUE_WAITING_REQUESTCRTR_RSP.HS_ID) (page 3-42) to process any wait;ng requests. 

Chapter 3. LU Resources Manager 3-51 



I 

SECUfITY_PROC 

SECUfITY_PROC 

FUNCTION: Thi• proceck.lre checks the Fttt-12, checks that the •••ion ;s ;n the proper 
state to receive an Ftlf-12, and verifi• the enciphered data fOl.l'ld in the 
Fttt-12. 

INPUT: SEC~ITY_HEADER that contains tha Fttt-12 (He "Appendhc H. FM Header and W 
Services Couands" > 

OUTPUT: lMIND processing if in error, state change of FSl1_SC8_STATUS if OK 

Referenced procedures, FSHs, and data structuru: 
RH_PROTOCOL_ERROR 
FSl1_SC8_STATUS_8IDDER 
FSl1_SC8_STATUS_FSP 
SEC~ITY_HEADER 
SCB 
LUC8 

Find the SCB corresponding to tha HS process that sent the SECUfITY_HEADER. 
Raove the randOll data sent in the RSPlBIND) (found in SCB.RANDott_DATA> 

frOll tha LUCB.PENDING_RANDott_DATA_LIST. 
If the state of IFSM_sce_STATUS ;e PENDING_Fttt12 (page 3•67> or 

page 3-49 
page 3-68 
page 3-69 
page A-15 
page A-9 
page A-1 

the F11H_12 length ;e 10 or the enciphered randOll data received in the Fttt-12 ;e 
this LU's enciphered version of the sa .. rando• data then 

Call RH_PROTOCOL_ERRDRlSC8.HS_ID, X'080F6051') (page 3-49). 
ElH 

Call IFSM_SCB_STATUSlR, ftlf_l2, UNDEFINED> (page 3-67>. 

SEND_ACTIYATE_SESSION 

Fll«:TION: This procedure sends an ACTIVATE_SESSION record to LU netNOrk services to 
request activation of a MN half-session. The appropriate pending session 
cOWtts are incr...,,ted. 

INPUT: LU_NAHE, the naM of the partner LUJ MODE_NAHE, the na•e of the llOdes and the 
session polarity lFIRST_SPEAKER or BIDDER> 

OUTPUT: ACTIVATE_SESSICIN to LNS 

Referenced procedures, FSHs, and data structures: 
ACTIVATE_ SESSION 
MODE 
LNS 
LU_NA11E 
tlODE_NAHE 

Find the MODE control block associated 111ith W_NA11E and t10DE_NAl1E. 
cr .. te an ACTIYATE_SESSIOH record and set the subfields as follows: 

CORRELATOR to a unique value, LU_NAHE and tlODE_NAHE to the LU_NA11E 
and l10DE_NAl1E inputs, and SESSION_TYPE to the session polarity input. 

Incret1ent HODE.PENDING_SESSION_COUHT by 1. 

page A-31 
page A-3 
page 4-47 
page 3-74 
page 3-74 

Incre11ttnt l10DE.PENDING_CON4ItliERS_COlln' or tlODE.PENDING_CONLOSERS_COUHT by 1, 
as appropriate to the session polarity. 

Send ACTIVATE_SESSION to LNS (Chapter 4). 

3-52 SHA ForRt and Protocol Reference Manual for W Type 6.2 



SEND_BIS 

FUNCTION: This procedure c•uses e;ther BIS_RQ or BIS_REPLY to be sent on the session 
identUied by HS_ID. The choice of BIS_RQ or BIS_REPLY is dependent on the 
state of IFSH_BIS. 

INPUT: HS_ID, the ID of the session 

OUTPUT: BIS_RQ or BIS_REPLY to HS 

Referenced procedures, FSH&, and data structuresu 
SEND_BIS_RQ 
SEND_BIS_REPLY 
FSH_BIS_BIDDER 
FSH_BlS_FSP 
HS_ID 

Select based on the state of IFSH_BIS (page 3·70): 
""8n RESET 

Call SEND_BIS_RQ(HS_ID) (page 3-s<t>. 
loh!n BlS_RCW 

Call SEND_BIS_REPLY(HS_ID~ (page 3-53>. 
Otherao1ise 

Do nothing. 

SEtl>_BIS_REPLY 

FUNCTION: This procedure creates a BIS_REPLY and ... it to HS. 

page 3-S• 
page 3-SJ 
page 3-70 
page 3-71 
page 3-7• 

INPUT: HS_lDt the ID of the half-session over Nhich the BIS_REPLY Nill flON 

OUTPUT: BIS_REPLY to HS 

Referenced procedures, FSHs, •nd chlta structurn: 
HS 
FSH_BIS_BIDDER 
FSH_BIS_FSP 
BIS_REPLY 
HOOE 
HS_ID 

Create • BIS_REPLY record end send it to HS (Chapter 6.0>. 
Call IFSH_BIS(S, BIS_REPLY, HS_ID> (page 3-70) for the session 
;dentified by HS_ID. 

page 6.0-3 
page 3-70 
page 3-71 
page A..:29 
page A-3 
page 3·7lt 

Get acldressabUity to the tlODE control block associated Mith the W and llOde 
name of the session identified by HS_ID. 

Incre111ent HODE.PENDING_TERMINATION_CONWINNERS or HODE.PEtl>ING_TERMINATIQtl.CONLDSERS by lt 
as appropriate to the session.polarity. 

Chapter 3. W Resources 11anager 3-53 



SEtll.,,BIS_RQ. 

SEtll_BIS_Rt 

FlKTION: This .proc:ecb-e crntu • BIS_Rt •nd sMds it to HS • 

. Aft•r thtt BIS_Rt is •Mt to thtt h•lf·•••ion, thtt ..,propri•t• pending t•r11i· 
mition cCMit is incr...-nted. 

INPUT: 

Olll'PUT: 

Hs_10, thtt ID.of thtt helf-Hssion over Nhich the BIS_RQ Mill flOM 

BIS_RQ to HS 

NOTE: The TERHINATION_COUNT is not clec......,ted if the BIS_RQ .... sent •• • r•ult of 
•control op9r•tor DEACTIYATE_SESSION raquut. 

R•far.nctad proceduru, Fitts, •nd dat• structurua 
HS 
FSlt_BIS_BIDDER 
FSlt_BIS_FSP 
BIS_RQ 
tQ>E 
HS_ID 

CrHt• • BIS_RQ record •nd send it to HS (Chepter 6.0>. 

page 6.0-3 
pagtt '3-70 
page 1 .. 71 
page A•29 
IMSJe A-'3 
page '3-74 

C•ll IFSlt_BISlSt BIS_RQ, HS_ID> (page 3·70> for thtt •••ion identified by HS_ID. 
ht •ddr•Hbility to thtt tlODE control block •HOCi•ted Mith the w •nd llOde 
mt• of the •••ion identHied by HS_ID. 

Inc,.....,t tlODE.PEtl>IH6_TERHINATION_CONWil+IERS or t10DE.PENDIH6_TERHINATION_CONLOSERS by lt 
•• •ppropri•t• to the session pol•rity. 
If there is • pending CNOS QP9r•tor •••ion deactiv•tion request for the session 

identified by HS_ID than 
Diso•rd •ll pending CNOS op9rator •••ion ct.activation rllql.MtSt for the session 

identified by HS_ID. El•• .... Not•> 
Decr....,t tlODE.TERHINATION_cturr by 1. 

'3-54 SHA ForMt •nd Protocol Reference tt.nu.l for W Type 6.2 



SEND_DEACTIVATE_SESSIOH 

SEND_DEACTIVATE_SESSION 

FUNCTION: This procedure sends a DEACTIVATE_SESSION record to LNS. 

INPUT: 

OUTPUT: 

If the STATUS is PENDING, the appropriate pending-session counts are decre­
mented. If STATUS is ACTIVE, a SESSION DEACTIVATED record is created and SES­
SION_DEACTIVATED_PROC is called to- continue processing the session 
deactivation. LNS does not send SESSION_DEACTIVATED in reply to DEACTI­
VATE_SESSION. Thus, the DEACTIVATE_SESSION is created in this procedure and 
SESSION_DEACTIVATED_PROC is called to perform common processing. 

STATUS !ACTIVE or PENDING), CORRELATOR CHS ID if STATUS = ACTIVE, else 
correlator used on ACTIVATE_SESSION request), TYPE CNORMAL, CLEANUP, ABNOR­
MAL>, and SENSE_CODE CX'OOOOOOOO' if TYPE ~ ABNORMAL) 

DEACTIVATE_SESSION to LNS 

Referenced procedures, FSMs, and data stru~tures: 
SESSION_DEACTIVATED_PROC 
PS 
LNS 
SENSE_ CODE 
MODE 
DEACTIVATE_ SESSION 
SCB 
SESSION_DEACTIVATED 
SESSION_ALLOCATED 

Select based on the value of session status: 
When PENDING 

page 3-58 
page 5.0-5 
page 4-47 
page 3-75 
page A-3 
page A-31 
page A-9 
page A-21 
page A-33 

If there is a pending session activation with a matching CORRELATOR then 
Cthe pending activation is known to RM> 

Create a DEACTIVATE_SESSION record with DEACTIVATE_SESSION.STATUS set to PENDING, 
DEACTIVATE_SESSION.CORRELATOR set to CORRELATOR, and 
DEACTIVATE_SESSION.TYPE set to TYPE. 

If TYPE = ABNORMAL then 
Set DEACTIVATE_SESSION.SENSE_CODE to SENSE_CODE. 

Else 
Set DEACTIVATE_SESSION.SENSE_CODE to x·oooooooo•. 

Send the DEACTIVATE_SESSION to LNS (Chapter 4). 
Get addressability to the MODE control block associated with the LU 

and mode name of the pending active session. 
Decrement MODE.PENDING_CONWINNERS_COUNT or MODE.PENDING_CONLOSERS_COUNT by 1, 

as appropriate to the session polarity. 
Decrement MODE.PENDING_SESSION_COUNT by 1. 
Discard the pending activation. 
If MODE.ACTIVE_SESSION_COUNT + MODE.PENDING_SESSION_COUNT = 0 then 

Do for each waiting request for a session to this LU name for this 
mode name: 

Create a SESSION_ALLOCATED record with RETURN_CODE set to 
UNSUCCESSFUL_NO_RETRY and send it to the PS !Chapter 5.lJ 
that initiated the session request. 

Discard the waiting request. 
When ACTIVE 

If there exists an SCB where SCB.HS_ID = CORRELATOR then (session is known to RMJ 
Create a DEACTIVATE_SESSION record with DEACTIVATE_SESSION.STATUS set to ACTIVE, 

DEACTIVATE_SESSION.HS_ID set to CORRELATOR, and 
DEACTIVATE_SESSION.TYPE set to TYPE. 

If TYPE = ABNORMAL then 
Set DEACTIVATE_SESSION.SENSE_CODE to SENSE_CODE. 

Else 
Set DEACTIVATE_SESSION.SENSE_CODE to x•oooooooo•. 

Send the DEACTIVATE_SESSION to LNS !Chapter 4J. 
Create a SESSION_DEACTIVATED record with HS_ID set to CORRELATOR. 
If TYPE = NORMAL then 

Set SESSION_DEACTIVATED.REASON to NORMAL. 
Else 

Set SESSION_DEACTIVATED.REASON to ABNORMAL_NO_RETRY. 
Call SESSION_DEACTIVATED_PROCCSESSION_DEACTIVATEDJ (page 3-58). 

Chapter 3. LU Resources Manager 3-55 



SESSION_ACTIVATED;..ALLOCATION 

SESSION_ACTIVATED_ALLOCATION 

FUNCTION: This procedure handles the allocation processing for a newly activated 
first-speaker or bidder half-session. 

INPUT: 

OUTPUT: 

NOTE: 

This procedure causes the SCB associated with the half-session and the RCB of 
a conversation for which a session was requested to point to each other. If 
PS.CONY indicated that RM is to be responsible for sending the Attach, it cre­
ates a BID_WITH_ATTACH record from information that PS.CONV stored in the RCB 
and sends it to HS. It then creates a SESSION_ALLOCATED record, which it 
sends to PS.CONV to inform it that the session has been allocated. 

GET_SESSION and HS_ID, the ID of the new half-session 

SESSION_ALLOCATED to PS; and, if PS.CONV has indicated that RM is to send tha 
Attach for the conversation, BID_WITH_ATTACH to HS 

Since a new session is in the in-brackets state when it is activated, the 
Attach that RM sends to HS is not really a bid for the use of the session. 
After RM sends the Attach, it does not have to wait for a response from HS, 
but can report immediately to PS.CONV. Also, if PS.CONV does not request RM 
to send the Attach, RM does not send a BID_WITHOUT_ATTACH record to HS even if 
the half-session is a bidder, since the new session is already in the 
in-brackets state and no bidding is necessary. 

Referenced procedures, FSMs, and data structures: 
SET_RCB_AND_SCB_FIELDS 
CONNECT_RCB_AND_SCB 
HS 
PS 
FSM_RCB_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
GET_SESSION 
HS_ID 
BID_WITH_ATTACH 
SESSION_ALLOCATED 
RCB 

If the session identified by HS_ID is a bidder session then 
For the conversation identified by GET_SESSION.RCB_ID, 
Call IFSM_RCB_STATUS(S, GET_SESSION, UNDEFINED) (page 3-72). 
!State of #FSM_RCB_STATUS = PENDING_SCB.l 

Call SET_RCB_AND_SCB_FIELDSCGET_SESSION.RCB_ID, HS_ID) Cpage 3-61). 
If GET_SESSION.BID_INDICATOR = ATTACH then 

page 3-61 
page 3-39 
page 6.0-3 
page 5.0-5 
page 3-73 
page 3-72 
page A-26 
page 3-74 
page A-28 
page A-33 
page A-7 

Find the RCB associated with the conversation identified by GET_SESSION.RCB_ID. 
If the security level of RCB.SECURITY_SELECT has been downgraded to NONE and 
the Attach was previously built then 

Rebuild the Attach omitting the obsolete security information. 
Create a BID~WITH_ATTACH record with the SEND_PARM fields initialized from 

the corresponding RCB.PS_TO_HS_RECORD fields. 
Send the BID_WITH_ATTACH record to HS (Chapter 6.0; see Note). 

Call CONNECT_RCB_AND~SCB(GET_SESSION.RCB_ID, HS_ID, NORMAL> (page 3-39). 
Create a SESSION_ALLOCATED record with RETURN_CODE 'set to OK, and send the 

record to PS !Chapter S.1). 

3·56 SNA Format and' Protocol Reference Manual for LU Type 6.2 



SESSION_ACTIYATED_PROC 

SESSION_ACTIYATED_PROC 

FUNCTION: This procedure perfor .. the processing of • SESSION...ACTIYATED record frOll LNS. 
SESSION_ACTIVATEO is received fr011 LNS as • result of session •ctiv.tion ini­
ti•ted by the partner LU. 

INPUT: SESSION_ACTIYATED frOll LNS 

Referenced procedures, FSHs, and c:k\t• structures: 
SUCCESSFUL_SESSION_ACTIVATION 
SESSION_ACTIVATED 
tlODE 

ht addressability to the t100E control block associated Mith the W •nd 
110de na .. of the newly activated session. 

lncrellel"lt t100E.ACTIVE_Ct!No1INNERS_COUNT or t100E.ACTIVE_CONLOSERS_COli'IT by 1, 
•s appropriate to the session polarity. 

Incre11ent t'IODE.ACTIVE_SESSION_COUNT by 1. 

pagta 3-63 
page A-20 
page A-3 

Call SUCCESSFUL_SESSION_ACTIVATION(SESSION_ACTIVATED.LU_HAHE, 
SESSION_ACTIVATED.t100E_NAHE, SESSION_ACTIVATED.SESSION_INFORHATION) fpage 3-63). 

SESSION_ACTIYATION_POLARITY 

FUNCTION: This procedure deter•ines the polarity for a session •ctivation request. 

If no session can be •ctivated now (because LUCB.LU_SESSION_LIHIT or 
t10DE. SESSION_LlttIT NOUld be exceedecn, NONE is returned. If either • 
first-speaker or bidder session could be activated, FIRST_SPEAKER is returned. 
Thus, first-speaker sessions will be activated in preference to bidder ses­
sions. 

INPUT: LU_HAME, the name of the LU to INhich a session is to be activatedl •nd 
HODE_HAHE, the naMe of the llOde 

OUTPUT: NONE, if no session can be activateda FIRST_SPEAKER, if a first-speaker ses­
sion can be activatedJ BIDDER, otherNise 

ReferW\Ced procedures, FSH&, and data structures: 
LU_NAME 
HODE_NAHE 
HOOE 

page 3-74 
page 3-74 
page A-3 

ht addressability to the HOOE control block associ•ted Mith LU_NAHE and t100E_NAHE. 
If the number of sessions to the partner LU identified by LU_NAHE and 
an mode naM identified by ttODE_NAftE is i ttOOE.SESSION_LIHIT then 

Return with an indication that no •dditional sessions can be •ctiv•ted. 
If the total number of sessions to the partner LU identified by LU_HAHE 
is greater than 0 and parallel sessions are not supported to the 
partner LU i dent i fi eel by LU_HAHE then 

Return with an indication that no additional sessions can be activ•ted. 
If HODE.SESSION_LiftIT - tlOOE.HIH_CONLOSERS_LIHIT > 

HODE.ACTIVE_CONWINNERS_COUNT + HODE.PEtllING_CONWINNERS_COUNT then 
Return with •n indication that • first-speaker session can be activ•ted. 

Else 
Return Mith an indication that • bidder session c•n be •ctivated. 

Chapter 3. LU Resources M•nager 3-57 



SESSION_DEACTIYATED.PROC 

SESSION_DEACTIYATED_PROC 

FlH:TION: lhis proc.Wre handl• the processing that occurs when • •••ian is clucti­
v•ted. 

When SESSION_DEACTIYATED.REASON = NORttAL, no processing (except destruction of 
the SCB) takes pl•c• since the decision to close dowl • •••ion NH .,tually 
reached by the resources .. magers of the half-s .. sians vi• BIS protocols 9ncl 
•11 necess•ry processing hes •1..-..dy b..., perforlled. 

ltien SESSION_DEACTIVATED.REASON = SON or PROTOCOL_VIOLATION •nd the session 
NH being lmed by • conversation, this procedure sends • COHVERSATIOH_FAILURE 
record to PS.CONY. If the session NH not in use; the Hssion is re110ved frOll 
the frn-session pool. Regardless of tothether the session WH in '8•• this 
procedure deletes the SCB entry for that half-session. 

INPUT: SESSION_DEACTIVATED 

OUTPUT: CONVERSATION_FAILURE to PS, o~ no output 

NOTES: l. When PS.CONY receives a CONVERSATIONJAILURE, it ganer•tes a OEALLOCATE_RC8 
and sends it to RH, which performs thtl usual RCB deallocation processing. 

2. It is possible for two RCBs to be associated with the Hae SC8 llilhlln SON 
occurs. lhis happens Nher'I RH has issued a bid for the use of a bidder 
half-session •nd• prior to receiving the response to the bid, s~equently 
receives an Attach fro• the first-speaker side of the session. lrlien RH 
receives the session outage notification, it notifies the PS that Mlis created 
as a result of the incOt1ing Attach that a conversation failure has occurred. 
The PS associated with the RCB that is pending • response to the bid, however, 
never learns of the session outage. RH treats the SON •• • -BID_RSP and 
•ttempts to satisfy the session request with •nother session. 

Referenced procedures, FStts, •nd data structures: 
&ET_SESSION_PROC 
ACTIVATE_NEEDED_SESSIONS 
PS 
FSH_SCB_STATUS_BIDDER 
FSH_SCB_STATUS_FSP 
Fstt_RCB_STATUS_FSP 
FSH_RCB_STATUS_BIDDER 
SESSION_ALLOCATED 
SESSION_DEACTIVATED 
CONVERSATION_FAILURE 
&ET_SESSION 
RH_SESSION_ACTIVATED 
SCB 
RCB 
tlODE 

3-58 SNA For••t •nd Protocol Raferwice Hanual for LU Type 6.2 

page J-45 
page J-22 
page s.o-5 
page J-68 
page J-69 
page J-73 
page J-72 
page A-33 
page A-21 
page A-32 
page A-26 
page A-33 
page A-9 
page A-7 
pege A-3 



If •n SC8 associated Mith the half-session identified by 
SESSION_DEACTIYATED.HS_ID exists then 

SESSION_DEACTIYATED_PROC 

ht addressability to the HODE control block associated Mith the W and 
llOde n .. e of the deactivated session. 

If the state of IFS11_SCB_STATUS (page 3-671 :: IN,..USE then 
If the RCB identUied by the SCB.RCB_ID exists then 

Disconnect the PS and HS processes that are using the deactivated session. 
Create a CONVERSATIOH_FAILURE record Mith RCB_ID set to SCB.RCB_ID. 
Select based on SESSION_DEACTIYATED.REASON: 

lillen NORHAL 
Set CONVERSATION_FAILURE.REASON to NORHAL. 

lillen ABNORHAL_RETRY 
Set CONVERSATION_FAILURE.REASON to SON • 

.... .., ABNORHAL_HO_RETRY 
Set CONVERSATION_FAILURE.REASON to PRDTOCOL_YIDLATION. 

Send the CONVERSATION_FAILURE record to the PS process that NH 
using the deactivated session. 

Else (session not in use by a conversation> 
· RellOve the session frOll the free-session pool. 
If there is an RCB l!lhere RCB.HS_ID = SESSION_DEACTIVATED.HS_ID and 
the state of IFSH_RCB_STATUS = PENDING_SCB lpage 3·72> then 
(A bid for the deactivated session is in progress• see Note 2>. 

Set RCB.HS_ID to a null value. 
Call IFSH_RCB_STATUSlRt NE6_8ID_RSP1 Utl>EFINEDJ lpage 3-72>. 
Create a 6ET_SESSION record fr011 infor .. tion saved in the RCB. 
Call GET_SESSION_PROC(GET_SESSION> lpage 3-45) 
to retry the bid on another session. 

Decr111111nt tlOOE.ACTIYE_COHWINNERS_tOUn' or ttODE.ACTIYE_CONLOSERS_COUNT by 11 
as appropriate to the session polarity. 

Decreaent t10DE.ACTIVE_SESSION_COUNT by 1. 
If there is a pending deactivation for the failed session then 

Decre11ent t10DE.PENDING_TERHINATION_CONWINNERS or HODE.PENDING_TERHINATIOH_CONLOSERS 
by 1, as appropriate to the session polarity. 

If SESSION_DEACTIVATED.REASON - ABNORHAL_HO_RETRY then 
Call ACTIVATE_NEEDED_SESSIONSlSCB.LU_NAME, SCB.tlDDE_NAME> lpage 3-22J. 

If l10DE.ACTIVE_SESSION_COUNT + ttODE.PENDING_SESSION_CDUNT = 0 then 
Do for each 1A1iting request for a session to (W_NAHE, l10DE_NAHE>: 

Create a SESSION_ALLOCATED record with RETURN,_CDDE set to IA'lSUCCESSFUL_NO_RETRY 
and send it to the PS (Chapter S.l> that initiated the session request. 

Discard the Maiting request. 
Do for each pending CNOS operator session activation request for a session 
to lLU_NAHE1 tlDDE_NAHEJ: 

Create RH_SESSION_ACTIVATED with RETURN,_CODE set to ACTIVATION_FAILURE_HO_RETRY 
and send tt to the PS (Chapter s.u that initiated the activ•tion request. 

Discard the activation request. 
Discard the see. 

Chapter 3. LU Resources Hanager 3-59 



SESSION_DEACTIVATION_POLARITY 

SESSION_DEACTIVATION_POLARITY 

FUNCTION: This procedure determines the polarity of a session to partner LU (LU_NAME, 
MODE_NAME> that this LU is responsible for deactivating. 

INPUT: LU_NAME, the name of the partner LU; and MODE_NAME, the name of the mode 

OUTPUT: NONE, if this LU is not responsible for any deactivations; BIDDER, if this LU 
is responsible to deactivate a bidder session only; FIRST_SPEAKER, if this LU 
is responsible to deactivate a first speaker session only; EITHER, if this LU 
is responsible to deactivate either a first speaker or bidder session. The 
TERMINATION_COUNT is reset to 0 if it was positive and this LU is not respon­
sible for any deactivations. 

Referenced procedures, FSMs, and data structures: 
LU_NAME 
MODE_NAME 
MODE 

page 3-74 
page 3-74 
page A-3 

Get addressability to the MODE control block associated with LU_NAME and MODE_NAME. 
If MODE.TERMINATION_COUNT = 0 then 

Return with an indication that no sessions need to be deactivated. 
Let CONWINNER_COUNT be MODE.ACTIVE_CONWINNERS_COUNT + MODE.PENDING_CONWINNERS_COUNT -

MODE.PENDING_TERMINATION_CONWINNERS. 
Let CONLOSER_COUNT be MODE.ACTIVE_CONLOSERS_COUNT + MODE.PENDING_CONLOSERS_COUNT -

MODE.PENDING_TERMINATION_CONLOSERS. 
Select based on the following conditions: 

When CONWINNER_COUNT <= MODE.MIN_CONWINNERS_LIMIT, and 
CONLOSER_COUNT <= MODE.MIN_CONLOSERS_LIMIT 

Set MODE.TERMINATION_COUNT to O. 
Return with an indication that no sessions need to be deactivated. 

When CONWINNER_COUNT <= MODE.MIN_CONWINNERS_LIMIT, and 
CONLOSER_COUNT > MODE.MIN_CONLOSERS_LIMIT 

Return with an indication that a bidder session needs to be deactivated. 
When CONWINNER_COUNT > MODE.MIN_CONWINNERS_LIMIT, and 

CONLOSER_COUNT <= MODE.MIN_CONLOSERS_LIMIT 
Return with an indication that a first-speaker session needs to be deactivated. 

When CONWINNER_COUNT > MODE.MIN_CONWINNERS_LIMIT, and 
CONLOSER_COUNT > MODE.MIN_CONLOSERS_LIMIT 

Return with an indication that a session of either polarity needs to be deactivated. 

3-60 SNA Format and Protocol Reference Manual for LU Type 6.2 



SET_RCB_AND_SCB_FIELDS 

SET_RCB_AND_SCB_FIELDS 

FUNCTION: Th;s procedure ;n;t;a1;zes f;elds ;n the RCB and SCB entr;es having the passed 
RCB and HS IDs. 

The RCB is set to point to the associated SCB (by placing the HS_ID in the 
RCB>t and the SCB to po;nt to the RCB (by placing the RCB_ID ;n the SCB>. The 
FSMs that ma;ntain the status of the RCB and SCB are set to the IN_USE state. 

INPUT: RCB_ID and HS_IDt the IDs of the RCB and SCB, respectively, for wh;ch f;elds 
are to be set 

OUTPUT: Fields in the RCB and SCB are initial;zed. 

NOTE: When th;s procedure is called from BID_RSP_PROC, RCB.HS_ID has already been 
;n;t;a1;zed. (It was ;nitialized when the BID for the sess;on was generated.> 
Rather than test for th;s condition, the f;eld is reset to the same value. 

Referenced procedures. FSMst and data structures: 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
FSM_RCB_STATUS_FSP 
FSM_RCB_STATUS_BIDDER 
RCB_ID 
HS_ID 
SCB 
RCB 

F;nd the SCB associated with the half-session identified by HS_ID. 
Set SCB.RCB_ID to RCB_ID. 
Find the RCB associated with the conversat;on identified by RCB_ID. 
Set RCB.HS_ID to HS_ID Csee Note). 
If the session identified by HS_ID ;s a f;rst-speaker sess;on then 

Call IFSM_SCB_STATUS!St GET_SESSIONt UNDEFINED> Cpage 3-67). 
!State of IFSM_SCB_STATUS = IN_USE.> 

Call IFSM_RCB_STATUS!S, GET_SESSIONt UNDEFINED> (page 3-72). 
!State of IFSM_RCB_STATUS = IN_USE.) 

Else <bidder sess;on) 
Call IFSM_SCB_STATUS!R, POS_BID_RSPt UNDEFINED> (page 3-67). 
(State of IFSM_SCB_STATUS = IN_USE.> 

Call IFSM_RCB_STATUSCR, POS_BID_RSPt UNDEFINED> (page 3-72). 
CState of IFSM_RCB_STATUS = IN_USE.> 

page 3-68 
page 3-69 
page 3-73 
page 3-72 
page 3-74 
page 3-74 
page A-9 
page A-7 

Chapter 3. LU Resources Manager 3-61 



SHOULD_SEND_BIS 

SHOULD_SEND_BIS 

FUNCTION: lhis procedure deter11ines tolhether • BIS (either BIS_RQ or BIS_REPLY) should be 
sent on the session identified by HS_ID. 

INPUT: HS_ID, containing the ID of the session 

OUTPUT: TRUE, ;f BIS (8IS_RQ or BIS_REPLYJ should be sent now; else FALSE 

Referenced procedures, FSHs, and data structures: 
SESSIOH_DEACTIVATION_POLARITY 
FSH_BIS_BIDDER 
FSH_BIS_FSP 
HS_ID 
LU_NAHE 
tlODE_NAHE 
MODE 

page 3-60 
page 3-70 
page 3-71 
page 3-74 
page 3-74 
page 3-74 
page A-3 

Get addressability to the tlODE control block HsociatedMith the half-session 
identified by HS_ID. 

SELECT based on the state of IFSH_BIS (page 3-70): 
When RESET 

Call SESSIOH_DEACTIVATION_POLARITY(LU_NAHE, HODE_NAHE) <page J-60> 
to deter•ine the type of session (if any) to deactivate. 

If the deactivation polarity = EITHER, or 
the deactivation polarity 11atches the session polarity then 

If HODE.DRAIN_SELF = NO, or 
HODE.DRAIN_SELF = YES and there are no Naiting requests for 
sessions to this LU and llOde na .. then 

Re~urn Mith an indication that BIS should be sent on this session. 
If there is a pending CNOS operator session deacUv•tion for this session then 

Return Mith an indication that BIS should be sent on this session. 
Else 

Return Mith •n indication that BIS should not be sent on this session. 
When BIS_RCVD 

If l10DE.DRAIN_SELF = NO, or 
HODE.DRAIN_SELF = YES and there are no Naiting requests for sessions 
to this LU and mode name then 

Return with an indication that BIS should be sent on this session. 
Else 

Return with an indication that BIS should not be sent on this session. 
When BIS_SENT (BIS alre•dy senU 

Return Mith an indication th.t BIS should not be sent on this ses&ion. 

3-62 SNA Forut end Protocol Reference ttanual for W Type 6.2 



SUCCESSFUL_SESSION_ACTIVATION 

SUCCESSFUL_SESSION_ACTIVATION 

FUNCTION: This procedure handles the processing that occurs when a new session is suc­
cessfully activated. 

INPUT: 

OUTPUT: 

NOTE: 

When a new session is successfully activated, it comes up "in-conversation" 
with the primary side of the session in control of the conversation. This 
procedure checks to see whether the new half-session is primary or secondary. 
If the half-session is a primary and a request is waiting, the support levels 
Ci.e., sync level and conversation-level security) specified i.n the request 
are checked against the support levels of the session. If the support levels 
are compatible, and LU-LU verification !session-level security) is active, the 
FMH-12 to complete LU-LU verification is built and sent to the partner-LU 
resources manager; then the request is sent to SESSION_ACTIVATED_ALLOCATION 
Cpage 3-56) to be processed. If the support levels are not compatible, the 
request is rejected with an ALLOCATION_ERROR return code. If no requests are 
waiting, the session is returned to the free-session pool. If no request is 
waiting and LU-LU verification (session-level security> is active, the FMH-12 
is built and sent to the partner-LU resources manager, and this FMH-12 relin­
quishes control of the session; otherwise, a YIELD_SESSION record is created 
and sent to HS to inform the secondary side of the half-session that the pri­
mary side is relinquishing control of the conversation. The YIELD_SESSION 
record is translated into a FREE_SESSION record by the secondary half-session 
and sent to its RM. 

If the new half-session is a secondary half-session and LU-LU verification is 
active, the FSM that maintains the status of the SCB is set to indicate that 
the next record it expects to receive is an FMH-12 !Security). If the new 
half-session is a secondary half-session and LU-LU verification is not active, 
the FSM that maintains the status of the SCB is set to indicate that the next 
record it expects to receive is either an Attach or a FREE_SESSION. Cit will 
receive an Attach if the primary half-session decides to use the session; it 
will receive a FREE_SESSION if the primary has no GET_SESSION requests waiting 
to be serviced). 

LU_NAME and MODE_NAME, the LU name and mode name of the newly activated ses­
sion; and SESSION_INFORMATION Cpage A-36), which describes the attributes of 
the activated session 

GET_SESSION to SESSION_ACTIVATED_ALLOCATION Cpage 3-56), YIELD_SESSION to HS, 
SESSION_ALLOCATED to PS, or no output 

PS.CONY stores in the RCB information that tells HS what bit settings to use 
when HS sends data out over a link. Part of the information states whether 
the data being sent to HS is the beginning of a conversation or part of an 
existing conversation. Since a new session comes up in-conversation Ca fact 
that is unknown by PS.CONVJ, RM changes the information in the RCB to indicate 
to HS that the next record it will receive from PS.CONY will not be the start 
of a conversation. 

Referenced procedures, FSMs, and data structures: 
CREATE_SCB 
SESSION_ACTIVATED_ALLOCATION 
PS 
HS 
FSM_SCB_STATUS_BIDDER 
FSM_SCB_STATUS_FSP 
LU_NAME 
MODE_NAME 
SESSION_INFORMATION 
SCB 
RM_ACTIVATE_SESSION 
RM_SESSION_ACTIVATED 
GET_SESSION 
YIELD_ SESSION 
SESSION_ALLOCATED 
ENCIPHERED_RD2 

page 3-40 
page 3-56 
page 5.0-5 
page 6.0-3 
page 3-68 
page 3-69 
page 3-74 
page 3-74 
page A-36 
page A-9 
page A-27 
page A-33 
page A-26 
page A-30 
page A-33 
page A-30 

Chapter 3. LU Resources Manager 3-63 



SUCCESSFUL_SESSION_ACTIVATION 

C•ll CREATE_SCB<LU_NAME, HODE_NAttE, SESSION_INFORHATION) (pag11 3-40). 
If this is a pri•••·y half-session then 

Call IFSH_sce_STATUS(R, SESSIOH_ACTIVATED. PRI) (pagll 3-67). 
(State of IFStt_SCB_STATUS = SESSION_ACTIYATION>. 

Do uitil the activated session is used to service a Naith'9 NKtUMt• or 
the session is yielded. 

If a request is •iting for this LU and 110de naH then 
If the session does not •~rt the security level specified ~ the 
Naiting request then 

DONngrade the specified security level to NONE. 
If the session does not •~rt the sync level specified by the 
111aiting request then 

Create a SESSION_ALLOCATED record Nith RETURN_CODE set to 
SYNC_LEVEL_NOT_SUPPORTED and send it to the PS (Chapter s~u associated 
Mith the Maiting request. 

Disc•rd the N11iting request. 
Else (session support is OK) 

If W-LU verification is active f randoll data is present in the SC8) tlw\ 
Create an ENCIPHERED_RD2 cont•ining an Fttf-12 (refer to Appendix H) 

initialized Nith the enciphered version of the randoll data pN1Smt in the sea. 
Set ENCIPHERED_RD2.SEND_PARH.ALLOCATE to NO. 
Set ENCIPHERED_RD2.SEND_PARH.Fttf to YES. 
Set ENCIPHERED_RD2.SEHD_PARH.TYPE to FLUSH. 
Send the tNCIPHERED_RD2 to the HS (Chapter 6.0> repres-.ting 
the neMly activated session. 

Crnte a 6ET_SESSION record initialized Nith infor•tion fl'Oll 
the waiting request. 

Call SESSION~ACTIVATED_ALLOCATIOH(6ET_SESSION, SCB.HS_ID> lpag11 3-56J. 
Disc•rd the Naiting request. 

Else fno Naiting requests) 
Call IFSH_SCB_STATUS<S, YIELD_SESSIOH, lll>EFINED> (page 3-67). 

If LU-LU verification is active (rando• data is present in the SCBJ tlw\ 
Create an ENCIPHERED_RD2 containing an Fttf-12 initialized Mith the enciphered 
version of the random data present in the SCB. 

Set ENCIPHERED_RD2.SEND_PARH.ALLOCATE to NO. 
Set ENCIPHERED_RD2.SEND_PARH.Fttf to YES. 
Set ENCIPHERED_RD2.SEND_PARH.TYPE to DEALLOCATE_FLUSH (yields the session). 
Send the ENCIPHERED_RD2 to the HS (Chapter 6.0) representing 
the neNly activated session. 

Else 
Create a YIELD_SESSION record and send it to the HS fChapter 6.0) 
representing the newly activated session. 

Else <secondary half-session) 
If LU-LU verification is active (randOll data is present in the SCBJ tlw\ 

Call IFSH_SCB_STATUS(R, SESSION_ACTIVATED, SECURE) (page 3-67J. 
(State of IFSH_SCB_STATUS = PEtl>IN6_Fttfl2). 

Else 
Call IFSH_SCB_STATUs(R, SESSION_ACTIVATED, SEC> <page 3-67). 

(State of IFSH_SCB_STATUS = PEtl>ING_ATTACHJ. 
If a CN05 operator session-activation request is pending then 

Create an RH_SESSION,_ACTIVATED record Mith RETURN_CODE set to OK and send 
it to the PS (Chapter 5.4) that originally issued 
the RH_ACTIVATE_SESSION record to RH. 

3-64 SNA FoMAt and Protocol Reference ttanual for W Type 6.2 



TEST_FOR_FREE_FSP_SESSION 

TEST_FOR_FREE_FSP_SESSION 

FUNCTION: This procedure tests for a free first-speaker-half-session. If one is found, 
a new RCB is created and the support levels (conversation-level security and 
sync level> provided by the session are checked to see if they are compatible 
with those requested in the ALLOCATE_RCB. If they are not compatible, the 
RETURN_CODE on the RCB_ALLOCATED record is ;e+ ~n ~r.di~ate an unsuccessful 
allocation, or, in the cas~ ot a secur1ty incompatibility, the security level 
is downgraded to ~ compatible level. If the support levels are compatible, 
the half-~es~ion is allocated to the RCB, the ID of the RCB is placed in the 
passed RCB_ALLOCATED record. 

If a free first-speaker half-session is not found, the RETURN_CODE in the 
passed RCB_ALLOCATED record is changed to indicate an unsuccessful allocation. 

INPUT: ALLOCATE_RCB and RCB_ALLOCATED. 
CATE_RCB_PROC. 

RCB_ALLOCATED was created by ALLO-

OUTPUT: RCB_ALLOCATED with the RCB_ID field set to the ID ~f the allocated RCB, or 
with the RETURN_CODE set to UNSUCCESSFUL 

Referenced procedures, FSMs, and data structures: 
CREATE_RCB 
SET_RCB_AND_SCB_FIELDS 
CONNECT_RCB_AND_SCB 
ALLOCATE_RCB 
RCB_ALLOCATED 
RCB 

If a free first-speaker session exists for ALLOCATE_RCB.LU_NAME and 
ALLOCATE RCS.MODE NAME then 

Call CREATE_RCBCALLOCATE_RCB, RCB_ALLOCATED> Cpage 3-39i. 
If the security level requested in the RCB.SECURITY_SELECT 
is not supported by the partner LU then 

Downgrade the requested level of security to NONE. 

page 3-39 
page 3-61 
page 3-39 
page A-25 
page A-32 
page A-7 

If the sync level requested in ALLOCATE_RCB is not supported by the partner LU then 
Set RCB_ALLOCATED.RETURN_CODE to SYNC_LEVEL_NOT_SUPPORTED. 

Else 
Call SET_RCB_AND_SCB_FIELDSCRCB_ID, HS_ID> Cpage 3-61>. 
Call CONNECT_RCB_AND_SCBCRCB_ID, HS_ID> Cpage 3-39). 
Remove the session from the free-session pool. 

Else Cno free first-speaker sessions). 
set RCB_ALLOCATED.RETURN_CODE to UNSUCCESSFUL. 

UNBIND_PROTOCOL_ERROR_PROC 

FUNCTION: This procedure processes an UNBIND_PROTOCOL_ERROR record from a presentation 
services component. Presentation services sends an UNBIND_PROTOCOL_ERROR to 
the resources manager when it discovers that the other side of the 
half-session has committed a protocol violation. 

INPUT: 

OUTPUT: 

UNBIND_PROTOCOL_ERROR 

The session identified by UNBIND_PROTOCOL_ERROR.HS_ID is deactivated with an 
UNBINDCX'FE') and sense data specified by UNBIND_PROTOCOL_ERROR.SENSE_CODE. 
The resources manager sends a CONVERSATION_FAILURECPROTOCOL_VIOLATIQN) to 
presentation services. 

Referenced procedures, FSMs, and data structures: 
RM_PROTOCOL_ERROR 
UNBIND_PROTOCOL_ERROR 

page 3-49 
page A-28 

Call RM_PROTOCOL_ERRORCUNBIND_PROTOCOL_ERROR.HS_IDt UNBIND_PROTOCOL_ERROR.SENSE_CODE) 
Cpage 3-491. 

Chapter 3. LU Resources Manager 3-65 



UNSUccESSFUL_SESSION,..ACTIVATION 

1.14SUCCESSFUL_SESSION_ACTIVATION 

FIMCTION: This procedure handles the processing that occurs Nhan • MN session ~ld not 
be •ctivated by LU network servic ... 

INPUT: 

OUTPUT: 

Thie procedure checks to see if any susion has been activated for this 
<W_NAHEt HODE_NAHEJ pair. If so, no action is taken by this proc..,.re. The 
previously allocated ausion(s) Mill eventually be available for use by the 
transaction progr .. (s) that requested a session. Si•ibrly, if no sessions 
have been activated for this CLU_NAHE, HOOE_NAHEJ pair, but there are out­
standing (pending> session activation requests that network services ha• not 
yet responded to, no action is taken. ~· of the pending requests •Y suc­
ceed in activating sessions, and these sessions can eventually be used by oth­
er transaction progra ... 

If, on the other hand, no session has been successfully activated for this 
w_HAHE and HOOE_NAHE and there are no other pending activation requests for 
this LU_NAHE and HODE_NAHE ( i ·•·, all session activation requests have been 
responded to by network services), the procedure Nill send a SESSION,..ALLOCATED 
record to all instances of presentation services that have requested sessions 
for this LU_NAHE and HODE_NAHE. 

The RETURN_CODE field of the SESSIOH_ALLOCATED record is set to UHSUCCESS­
FUL_RETRY or UHSUCCESSFUL_NO_RETRY depending on the ERROR_TYPE para•ter. 

w_NAHE and HOOE_NAHE of the LU to W.ich session activation NH unsuccessful1 
and ERROR_TYPE, indicating RETRY or NO_RETRY 

SESSION_ALLOCATED to PS, or no output 

Referenced procedures, Fstts, and data structures: 
PS 
LU_HAHE 
HOOE_NAHE 
HOOE 
RH_SESSION_ACTIVATED 
SESSIOH_ALLOCATED 

page s.o-s 
page J-74 
page J-74 
page A-3 
page A-33 
page A-33 

&et addressabHity to the HOOE control block associated Mith.LU_NAHE and HOOE_NAHE. 
If HODE.ACTIVE_SESSION_COUNT = 0 and HODE.PEtl>lNG_SESSION_COUNT = 0 then 

Do for each Mai ting request for a sass ion to < W_NAHE, HODE_NAHE >: 
Create a SESSION_ALLOCATED record Nith RETURN_CODE set to 

UNSUCCESSFUL_RETRY or UNSUCCESSFUL_NO_RETRY according to 
ERROR_ TYPE. 

send the S!SSION_ALLOCATED record to the PS <Chapter 5.1> 
that issued the original request. 

Discard the Naiting request. 
Do for each pending CNOS operator session activation request for a 
session to (W_NAHE, HODE_NAHEJ: 

Cre•te an RH_SESSION_ACTIVATED record Mith RETURN_CODE set to 
ACTIVATION_FAIUIRE_RETRY or ACTIVATION_FAILURE_HO_RETRY 
according to ERROR_TYPE. 

Send the Rt\_SESSION_ACTIVATED record to the PS <Chapter 5.U 
that issued the original request. 

Discard the pending session activation request. 

J-66 SNA Fort111t and Protocol Reference Manual for LU Type 6.2 



FINITE-STATE MACHINES 

IFSM_SCB_STATUS 

IFSM_SCB_STATUS is a generic FSM that main­
tains the state of a half-session. There is 
one IFSM_SCB_STATUS for each session known to 
the resources manager. IFSM_SCB_STATUS is 
initialized to either FSM_SCB_STATUS_BIDDER 
or FSM_SCB_STATUS_FSP, depending on the ses­
s i on polar i ty, when the resources manager 
becomes aware of the existence of a-newses­
sion. This initialization occurs in CRE­
ATE_SCB Cpage 3-40). 

The states of FSM_SCB_STATUS_BIDDER and 
FSM_SCB_STATUS_FSP are: 

• SESSION ACTIVATION--the initial state, 
following activation of the session 

• FREE--the session is free for use by a 
conversation 

• PENDING ATTACH--the session is in the 
in-brackets state and the local LU is 
waiting for an Attach FM header from the 
remote LU 

• IN USE--the session is in use by a con-
versation 

I • PENDING FMH12--the session is waiting for 
I the Security FM header from the remote LU 
I before beginning normal Attach processing 

The first input denotes whether a record has 
been sent CS) or received CR> by RM, and the 
second input denotes the particular record 
type. PRI Cprimary), SEC (secondary), and 
SECURE (session-level security> are 
half-session attributes. 

Chapter 3. LU Resources Manager 3-67 



FSM_SCB_STATUS_BIDDER 

FSM_SCB_STATUS_BIDDER 

FUNCTION: To remember the status of a bidder half-session 

NOTES: 1. The initial state of this FSM is SESSION_ACTIVATION. 

2. When HS on the bidder side of a half-session receives an.Attach, it converts 
the Attach into separate BID and ATTACH_HEADER records. RM Cbidder side) 
always sends a positive BID_RSP to HS (unless a protocol error has occurred>. 
HS (bidder side) discards the BID_RSP and then sends the ATTACH_HEADER to RM. 
RM on the first-speaker side does not generate the separate BID and 
ATTACH_HEADER records, and furthermore does not expect a BID_RSP since a 
first-speaker half-session always gains access to the session. 

3. A YIELD_SESSION will move the FSM from SESSION_ACTIVATION state to the IN_USE 
state. A FREE_SESSION is expected from the half-session to then change the 
state to FREE. 

STATE NAMES----> SESSION FREE PENDING IN PENDING 
ACTIVATION ATTACH USE FMH12 

INPUTS STATE NUMBERS--> 01 02 03 04 05 

R, POS_BID_RSP 4 4 / / / 

R, BID / 3 / / / 
R, ATTACH / / 4 / / 
R, FMH_12 / / / / 3 

R, FREE_ SESSION I I 2 2 I 

s. YIELD_SESSION 4 I I I I 

R, SESSION_ACTIVATED, PRI - / I I I 
R, SESSION_ACTIVATED, SEC 3 I I I I 
R, SESSION_ACTIVATED, SECURE 5 I I I I 

3-68 SNA Format and Protocol Reference Manual for LU Type 6.2 



FSM_SCB_STATUS_FSP 

FSM_SCB_STATUS_FSP 

FUNCTION: To remember the status of a first-speaker half-session 

NOTES: 1. The initial state of this FSM is SESSION_ACTIVATION. 

2. A YIELD SESSION w;ll move the FSM from SESSION_ACTIVATION state to the IN_USE 
state. -A FREE_SESSION is expected from the half-session to then change the 
state to FREE. 

STATE NAMES----> SESSION FREE PENDING IN PENDING 
ACTIVATION ATTACH USE FMH12 

INPUTS STATE NUMBERS--> 01 02 03 04 05 

s, GET_SESSION 4 4 I I I 

R, BID I 3 I I I 
R, ATTACH I I 4 I I 
R, FMH_l2 I I I I 3 

R, FREE_SESSION I I 2 2 I 

s, YIELD_SESSION 4 I I I I 

R, SESSION_ACTIVATED, PRI - I I I I 
R, SESSION_ACTIVATED, SEC 3 I I I I 
R, SESSION_ACTIVATED, SECURE 5 I I I I 

Chapter 3. LU Resources Manager 3-69 



IFSH_BIS 

IFSH_BIS is • generic FSH that Mint•ins tha 
stat• of tha BIS protocol for a half-•••ion. 
Thar• i a on. IFSH_BIS for ••ch sass ion knowi 
to tha resources •anager. IFSH_BIS is ini­
tialized to •ithar FSH_BIS_BIDDER or 
FSH_BIS_FSP, deptlnding on tha session pol•ri­
ty, Nhen the ruourcu ••nager becolleS •11N1r• 
of the •><istence of a new session. This 
initialization occurs in CREATE_SCB (page 
3-40). 

FStl_BIS_BIDDER 

The stat.. of FSlt_BIS_BIDDER and FSH_BIS_FSP 
•r•z 
• RESET--tha initi•l stateJ BIS has been 

neithar sent nor r909ivad 
• BIS SENT--tha local W has sent BIS 
• BIS RCVD--tha local LU has racaivtld BIS 
• CLOSED--the local W has both Hnt and 

rseived BIS 

The first input denotu lllhether • record has 
been sent CS> or receivtld (R) by RH, and the 
second input denotes tha particular record 
type. 

FUNCTION: To r ... tllber tha status of • bidder half-session with respect to BIS_RQ and 
BIS_REPLY 

NOTES: I. The initial stat• of this FSH is RESET. 

2. After BIS_RQ and BIS_REPLY Nive been exchanged over a session, this FSH will 
be ;n tha CLOSED state, indicating that tha session is being deactivated. The 
CLOSED state is • terminating state, in that the FSM will not l•ave this stat• 
U'\til it (along with its corresponding SCBJ is destroyed. 

R•f•renced procedures, FSM11t and data structures: 

INPUTS 

SEND_DEACTIYATE_SESSION 
CHECK_FOR_BIS_REPLY 
BIS_RACE_LOSER 
RM_PROTOCOL_ERROR 
HS_ID 

STATE NAHES----> 

STATE NlttBERS--> 

s, BIS_RQ 
Rt BIS_REPLY 

R, BIS_RQ 
s, BIS_REPLY 

OUTPUT FUNCTION 
CODE 

RESET 

01 

2 
>(ERROR> 

3(8) 
I 

BIS 
SENT 
02 

I 
4(A) 

ltCC) 
I 

A Call SEND_DEACTIYATE_SESSIONlACTIVE, HS_ID, NORMAL, 

B Call CHECK_FOR_BIS_REPLYCHS_IDJ (page 3-38). 

c Call BIS_RACE_LOSERlHS_ID> fpage 3-35). 

BIS 
RCVD 
03 

I 
>(ERROR> 

>(ERROR) 

" 

page 3-55 
page 3-38 
page 3-35 
page 3-49 
page 3-74 

CLOSED 

04 

I 
I 

I 
I 

X'OOOOOOOO') (page 3-SSJ. 

ERROR Call RM_PROTOCOL_ERRORlHS_ID, X'20100000') ( paga 3-49) • 

3-70 SHA ForRt and Protocol Reference Manual for W Type 6.2 



FSM_BIS_FSP 

FSM_BIS_FSP 

FUNCTION: To remember the status of a first-speaker half-session with respect to BIS_RQ 
and BIS_REPLY 

NOTES: 1. The initial state of this FSM is RESET. 

2. After BIS_RQ and BIS_REPLY have been exchanged over a session, this FSM will 
be in the CLOSED state, indicating that the session is being deactivated. The 
CLOSED state is a terminating state, in that the FSM will not leave this state 
until it Calong with its corresponding SCBl is destroyed. 

Referenced procedures, FSMs, and data structures: 
SEND_DEACTIVATE_SESSION 
CHECK_FOR_BIS_REPLY 
RM_PROTOCOL_ERROR 
HS_ID 

STATE NAMES----> 

INPUTS STATE NUMBERS--> 

s. BIS_RQ 
R, BIS_REPLY 

R, BIS_RQ 
s, BIS_REPLY 

OUTPUT FUNCTION 
CODE 

RESET 

01 

2 
>CERRORl 

3(8) 
/ 

BIS BIS 
SENT RCVD 
02 03 

/ / 
4CAl >C ERROR I 

- >CERROR l 
/ 4 

page 3-55 
page 3-38 
page 3-49 
page 3-74 

CLOSED 

04 

/ 
/ 

/ 
/ 

A Call SEND_DEACTIVATE_SESSIONIACTIVE, HS_ID, NORMAL, X'OOOOOOOO'l Cpage 3-551. 

B Call CHECK_FOR_BIS_REPLYIHS_IDl (page 3-381. 

ERROR Call RM_PROTOCOL_ERRORIHS_ID, X'20100000'l (page 3-491. 

Chapter 3. LU Resources Manager 3-71 



IFSM_RCB_STATUS 

IFSM_RCB_STATUS •s a generfo FSM that main­
tains ti,~ !State of a conversation resource. 
Th~;~ is one #FSM_RCB_STATUS for each conver­
sation known to the resources manager. 
#FSM_RCB_STATUS is initialized to either 
FSM_RCB_STATUS_BIDDER or FSM_RCB .• STATUS_FSP, 
depending on the polarity of the underlying 
session, resources manager creates the con­
versation resource. This initialization 
occurs in BIDDER_PROC Cpage 3-34), CREATE_RCB 
(page 3-39), and PS_CREATION_PROC Cpage 
3-47>. 

The states of FSM_RCB_STATUS_BIDDER and 
FSM_RCB_STATUS_FSP are: 

FSM_RCB_STATUS_BIDDER 

• FREE--the initial state; the conversation 
is inactive 

• IN USE--the conversation is in progress 
• PENDING SCB · C BIDDER only >--the conversa­

tion is awaiting allocati·.on. of a session, 
pending receipt of RSPIBid> 

• INITIAL CFSP only>--the conversation is 
the initial conversation established by 
UPM_IPL 

The first input denot•s whether a record has 
been sent IS) or received CRl by RM, and the 
second input denotes the particular record 
type. HS Chalf-session) and UPM (undefined 
protocol machine) represent the sender of the 
Attach. 

FUNCTION: To remember the status of a conversation resource associated with a bidder 
half-session 

NOTES: 1. The initial state of this FSM is FREE. 

2. The RCB may be in the FREE state when a DEALLOCATE_RCB is issued if RM discov­
ers that an ALLOCATION_ERROR exists before it attempts to get a session for 
the transaction program. The ALLOCATION_ERRORs that can occur in this situ­
ation are ALLOCATION_FAILURE_* and SYNC_LEVEL_NOT_SUPPORTED_BY_LU. 

STATE NAMES----> FREE IN PENDING 
USE SCB 

INPUTS STATE NUMBERS--> 01 02 03 

s, GET_SESSION 3 / / 

R, POS_BID_RSP I / 2 
R, NEG_BID_RSP / / 1 

R, ATTACH, HS 2 / / 

s. DEALLOCATE_RCB - 1 / 

3-72 SHA Format and Protocol Reference Manual for LU Type 6.2 



FSH_RCB_STATUS_FSP 

FUNCTION: To r8llellber the stat'8 of a conversation resource associated 11111th a 
first-speaker half-session 

NOTES: I. The initial state of this Fstt is FREE. 

2. Tha RCB .. y be in tha FREE state Nhen a DEALLOCATE_RCB is iHued if RH discov­
ers that an ALLOCATION_ERROR e>eists before it att1111Pt• to get a session for 
the transaction prograa. The ALLOCATION_ERRORs that can occur in this situ­
ation are ALLOCATION_FAIL!JlE_* and SYNC_LEVEL_NOT_SUPPORTED_BY_LU. 

STATE NAMES----> FREE IN INITIAL 
USE 

INPUTS STATE HUHBERS--> 01 02 01 

s. ALLOCATE_RCB - I I 
s. 6ET_SESSION 2 I I 

R, ATTACH, HS 2 I I 
Rt ATTACH, UPl1 3 I I 

s. DEALLOCATE_RCB - l I 

Chapter J. W Resourcu Han11ger J-73 



.l.QW l!ill STRUCTlJRES 

LU_NAME 

LU_NAME: LU name 

MODE_NAME 

MODE_NAME: mode name 

HS_ID 

HS_ID: half-session identifier 

RCB_ID 

RCB_ID: conversation resource identifier 

TCB_ID 

TCB_ID: TP-PS process identifier 

3-74 SNA Format and Protocol Reference 11anual for LU Type 6.2 



SENSE_ CODE 

SENSE_ CODE 

SENSE_CODE: 4-byte sense data 

Chapter 3. LU Resources Manager 3-75 



Thi• page intentionally left bl•nk 

76 SNl Forat and Protocol Refertiiic41 ttanual for W T1'JMI 6.2 



C11APJER !a. JJl NEJHORK SERVICEJ 

Raourcn 
ttan11ger 

A 
I 
y 

< 

rl < 

I < I > NetNOrk : 
S.rvicn y y .- y 

~J 
PNCP-LU SSCP-W w-w j Half-Sus ion Half-S.ssion Half-Session 

S.rvicn Hanager 

PU <-

A ... ... LU 
I I I 
y y v 

Path Control 

.tRmJ. 
• Only the LU components having a protocol ~ry Nith LU netNOrk s•rvices are shotin. 
• The PNCP-W half-session is pr•sent only in periphlral nodea. 

FiD'J,.. 4-l. Protocol eou,daroies Betwewi LU NetNOrok Services and Other Caiiponents 

6EHEBAL DESCBIPJigf 

This chapter describes the netNOrk services 
component Nithin an LU. Fi9'-1re 4-1 sham the 
LU netNOrok s•rvices co.ponent and its 
relation to other co111pone11ts Nithin the node. 
The arrONS joining the cmiponents reproesent 
the protocol bowldaries that exist beb.1een 
the LU network Hrvi ces cOllpOnel"lt and the 
other COllpOl'lents. 

The W netNOrk servi cu caponent ( abbrevi -
ated UIS) initiates and ter•in11tes LU-W ses­
sions in response to requests fr011 the 
resources •anager and fro11 the N1110te w. 
UIS also activates and deactiv•t• CP-W ses­
sions. 

The initiation •nd termination of LU-LU ses­
sions involves exchanging session-services 
RU& betWHn the W and • cp, and exchanging 
session-control RUs bet....,, the LU and a 
partner LU. The exchange of session-control 
RUs perfo,... the actual activation and deac­
tivation of the W-W sessions. The exchange 
of session-services RUs prececkes and follONS 
th• activation and deactivation of thtt W-LU 
••••ions. 

Session-control r~s ts and responses a,.. 
s.-t on the expedited flON Nith thtt RU cate­
gory indicating session control (SC). 
Sellsion-control RUii are sent field-fo,...tted. 

Chapter 4. LU NetNOrk Services 4-1 



Full details of the formats for 
field-formatted RUs are given in "Appendix E. 
Request/Response Unit <RU> Formats". 

Session-services requests and responses 
belong to the network-services <NSl format of 
RUs. All session-services requests and 
responses are sent on the normal flow with 
the RU category indicating FM data (FMDl. 

Session-services requests flowing between an 
LU and a CP may be field-formatted <RH Format 
i ndi ca tor set to 0 l or character-coded (RH 
Format indicator set toll. Character-coded 
requests contain RUs consisting of character 
strings that can be translated into equiv­
alent field-formatted RUs. A translation 
protocol is provided by the CP. The format 
of character-coded requests and the trans­
lation rules that apply to them are 
implementation-dependent and are not defined 
in this book. 

All nodes contain a CP. The CP in a type-5 
Csubareal node is called a system services 
control point (SSCPl. The CP in a peripheral 
node is called a peripheral node control 
point CPNCPl. When initiating or terminating 
an LU-LU session, the LU exchanges session 
services RUs with one CP--the one configured 
to mediate the initiation or termination of 
the particular LU-LU session. 

When the LU-LU session is between subarea 
nodes or between a subarea node and a periph­
eral node, an SSCP mediates the session ini­
tiation or termination. In this case, the 
LU-LU session uses a route in a subarea 
path-control network. When the LU-LU session 
is between peripheral nodes, the PNCP in one 
of the two nodes mediates the session i nit i -
ation or termination. In this case, the 
LU-LU session does not use subarea 
path-control, but instead uses a direct route 
between the two peripheral nodes. 

When initiating and terminating SSCP-mediated 
sessions, the session-services RUs are 
exchanged between the LU and the SSCP over an 
SSCP-LU session. Similarly, for 
PNCP-mediated sessions, the RUs are exchanged 
between the LU and the PNCP over a PNCP-LU 
session within the peripheral node, and no 
session-services RUs flow outside the node. 

Activation and deactivation of a CP-LU ses­
sion is accomplished by exchanging 
session-control RUs between the CP and LNS. 
The CP-LU session is activated prior to ini­
tiating any LU-LU sessions for which that CP 
is the mediator. 

LNS informs the CP--ei ther an external SSCP 
or the internal CP--about the characteristics 
and current status of the LU during the acti­
vation of the CP-LU session. LNS negotiates 
session parameters with the LNS component in 
the partner LU during LU-LU session acti -
vat ion. 

The LU resources manager C abbreviated RM) in 
one of the two LUs directs the activation or 
deactivation of an LU-LU session. Upon com­
pletion of the activation or deactivation, 

LNS in each of the two LUs informs its local 
RM that the LU-LU session has been activated 
or deactivated. 

LNS is aware of the type of node (peripheral 
or subareal in which the LU resides and of 
the identity of the CP-mediator (PNCP or 
SSCP l for eac;h LU-LU session. LNS absorbs 
differences in protocols that result from the 
type of node in which it resides. This per­
mits other components of the LU to be inde­
pendent of the node type. LNS also isolates 
the other components from the CP-mediator for 
the LU-LU sessions, and thus the rout­
ing--subarea path-control or direct--used for 
the sessions. 

OVERVIEW OF CP-LU SESSION ACTIVATION 

The CP directs the LU to activate a CP-LU 
session by sending it an ACTLU request. The 
PU in the node receives the ACTLU request, 
determines which LU is to receive the 
request, and passes the request to the LNS 
component in the LU. LNS processes the ACTLU 
request and activates a CP-LU half-session. 
LNS's processing of the ACTLU request 
includes the following: 

• Check for error conditions associated 
with the request, and for conditions that 
prevent activation of the session. 

• Notify path control within the node that 
a new session is being activated. 

• Send an ACTLU response to the CP. 

• Create and initialize the half-session 
process for the LU's side of the CP-LU 
session. 

After the CP-LU session is activated, the LU 
can initiate LU-LU sessions for which that CP 
is the mediator. 

OVERVIEW OF CP-LU SESSION DEACTIVATION 

The CP directs the LU to deactivate a CP-LU 
session by sending it a DACTLUCNormall 
request (in contrast to a DACTLU<SONl result­
ing from session outage). The PU in the node 
receives the DACTLU request, determines which 
LU is to receive the request, and passes the 
request to the LNS component in the LU. LNS 
processes the DACTLU request and deactivates 
the CP-LU half-session. LNS's processing of 
the DACTLU request includes the following: 

• Check for error conditions associated 
with the request. 

• Send a DACTLU response to the CP. 

• Notify path control within the node that 
the session has been deactivated. 

• Reset all LU-LU half-sessions for which 
this CP was the session-initiation 
mediator. 

4-2 SNA Format and Protocol Reference Manual for LU Type 6.2 



• Destroy the half-session process for the 
LU's side of the CP-LU session. 

When. the LU receives a DACTLUISON> request, 
LNS performs similar processing except that 
it does not reset any LU-LU half-sessions. 

After the CP-LU session is deactivated, the 
LU cannot initiate LU-LU sessions for which 
that CP is the mediator. 

OVERVIEW OF LU-LU SESSION INITIATION 

RM di rec ts the LU to activate an LU-LU ses­
sion by sending LNS an ACTIVATE_SESSION 
record across an protocol boundary. LNS 
processes the ACTIVATE_SESSION record and 
initiates an LU-LU half-session. The LNS 
components in the two LUs activate the LU-LU 
session by exchanging a BIND request and 
response. LNS's processing of the ACTI­
VATE SESSION record, which constitutes its 
part- of the LU-LU session initiation, 
includes the following: 

• 

• 

• 

• 

• 

Check for cond i ti ons that prevent act i -
vation of the session. 

Obtain the identification of the CP that 
will mediate the LU-LU session initi­
ation. 

Send an INIT-SELF request to the CP. The 
request directs the CP to mediate the 
initiation of the LU-LU session. 

Obtain the session parameters and acti­
vate the LU-LU session, as follows: 

If the LU is to be the primary for 
the session, then receive a CINIT 
request from the CP, bu i ld a BIND 
request that specifies the desired 
parameters for the LU-LU session, 
send the BIND request to the partner 
!secondary) LU, and receive the BIND 
response. 

If the LU is to be the secondary for 
the session, then receive the BIND 
request, build a negotiated BIND 
response that specifies the agreed-to 
parameters for the LU-LU session, and 
send the BIND response to the partner 
!primary) LU. 

Notify path control within the node that 
a new session is being activated. 

• Create and initialize the half-session 
process for this LU's side of the LU-LU 
session. 

• Notify the CP that a new LU-LU session is 
activated. 

• Notify RM that the requested LU-LU ses­
sion is active. 

The partner LU to the one initiating the 
LU-LU session is directed to activate the 
LU-LU session by means of receiving either 

the CINIT request when it is the primary LU, 
or the BIND rl!qt.:est 11hen it is the secondary 
LU. Its processing following receipt of the 
CINIT or BIND request is similar to the proc­
essing just outlined. However, instead of 
replying to RM with a notification that a 
requested session is activated, LNS informs 
RM that an LU-LU session has been activated 
at the direction of the remote LU. After the 
LU-LU session is activated, the two LUs can 
allocate the session for conversations 
between transaction programs. 

The parameters used for the LU-LU session and 
carried in the BIND request and response have 
the following sources: 

• Fixed parameters: These have fixed val­
ues for all BIND requests and responses 
for LU 6.2 sessions. 

• Implementation-dependent parameters: 
These have values that are determined 
during the design of the implementation 
of the node. 

• User installation-specified parameters: 
These have values that are determined by 
the user at the node's installation. 

• CINIT parameters: These have values tak­
en from the CINIT request and sent in the 
BIND request. 

OVERVIEW OF LU-LU SESSION TERMINATION 

RM directs the LU to deactivate an LU-LU ses­
sion by sending LNS a DEACTIVATE_SESSION 
record across an internal protocol boundary. 
LNS processes the DEACTIVATE_SESSION record 
and terminates the LU-LU half-session. The 
two LUs deactivate the LU-LU session by 
exchanging an UNBIND request and response. 
LNS's processing of the DEACTIVATE_SESSION 
record, which constitutes its part of the 
LU-LU session termination, includes the fol­
lowing: 

• Send an UNBIND request to the partner LU 
and receive the UNBIND response. 

• Notify path control within the node that 
the session has been deactivated. 

• Notify the CP that the LU-LU session has 
been deactivated. 

• Destroy the half-session process for this 
LU's side of the LU-LU session. 

The partner LU to the one terminating the 
LU-LU session is directed to deactivate the 
LU-LU session by means of rece1v1ng the 
UNBIND request. Its processing following 
receipt of the UNBIND request is similar to 
the processing just outlined. However, after 
the session has been deactivated, LNS informs 
RM that an LU-LU session has been deactivated 
at the direction of the remote LU. 

RM may request deactivation of an LU-LU ses­
sion that is pending activation, that is, a 

Chapter 4. LU Network Services 4-3 



session for which LNS 11.s sent an INIT-SELF 
request to the CP and has not yet received 
the CINIT or BIND request for the session. 
LNS terminates a pending-active session by 
sending the CP a TERM-SELF request. The 
TERM-SELF request directs the CP to terminate 
the pending-active session without completing 
the initiation. LNS terminates the 
pending-active session when it send& 
TERM-SELF. without waiting for the response. 

SESSION OUTAGE AND SESSION REIHITIATION 

An active session between two LUs may be 
interr...,ted by a failure of one or both of 
the LUs • by a reset of one or both of their 
half-sessions. or by a faHure of the path 

NEn!ORK glHTEXT fil! SESHotl ItfIJIATION Mil URHINATigH 

Certain ter• are used that relate to LU-LU 
session initiation and ter•ination. The 
terms are used to identify the roles of the 
LUs in the context of initiating and termi­
rnating LU-LU sessions. The tel"llS are: 

• Initiating LU (ILU) 
• Terminating LU CTLU> 
• Origin LU (OLU> 
• Destination LU CDLU> 
• Primary LU (PLU> 
• Secondary LU CSLU> 

The abbreviations in parentheses follONing 
the teru appear in the format descriptions 
of the session-services and session-control 
RUs given in "Appendix E. Request/Respanse 
\kli t (RU) fornts" and are also used through­
out this chapter. 

ILU AND TLU 

ILU and TLU refer to the role of an LU in 
initiating and terminating a particular LU-LU 
session. The LU that initiates an LU-LU ses­
sion is the ILU, and the LU that terminates 
an LU-LU session is the TLU. The ILU or TLU 
RY be one of the sus ion partners, in which 
case the LU the CP an INIT-SELF or TERM-SELF 
request, respectively. The ·nu or TLU •ay, 
instead, be a third-party LU that is not one 
of the session partners. Session initiation 
or termination by a third-party LU applies 
only to SSCP-•ediated sessions. Details of 
the formats and protocols for third-party LUs 
are not described. 

The ILU or TLU ny reside in either a s~rea 
node or peripheral node for SSCP-mediated 
sessionth except that a third-party ILU or 

that connects the LUs. This interruption 
causu a se51ion 2!.lii.9t• and notification to 
the LU of the session outage is referred to 
as HHion md.!.9.1 Mtj fjc1tion• or SON. When 
LNS receives a session outage notification. 
it notifies RM for each LU-LU session 
affected by the session outage. 

When aession outage occurs. RH ••Y direct LNS 
to re;nitiate the sessions. for ex11111ple, R" 
requests session reinitiation when thtt ses• 
sion outage causes the l'IUlllber of active ses­
sions for which the LU is the contention 
winner to decrease belOM a mini11um nulllber. 
See "Chapter 3. LU Resources "•n•ger" •nd 
"Chapter 5.4. Presentation Serv-
ices--Control-Operator Verbs" for more 
detaHs. 

TLU always resides in a aubarea node. The 
ILU or TLU resides in a peripheral node for 
PNCP-llediated sessions. 

OLU AND DLU 

OLU and OLU refer to the role of an LU and 
its CP during session initiation or ter•i­
nation. An ILU or TLU that is one of the 
session partners is also the OLU. An LU 
Nhose SSCP receives an inithltion or ter•i­
nation request frOll • tMrd-party LU is the 
OLU. The OLU's session partner is the DLU. 
The INIT-SELF includes the na111t1 of the OLU. 

The OLU or DLU ny reside in either a subarea 
node or peripheral node for SSCP-Hdiated 
sessions. The OLU or OLU reside in a periph­
eral node for PNCP-mediated sessions. 

PLU Atl> SLU 

PLU and SLU refer to the role of an LU fn 
providing, respectively, primary or secondary 
half-session control for an LU-LU session of 
Nhich it is a partner. The PLU send$ the 
Billl> request and receives the Bltl> response. 
Correspondingly, the SLU receives the Billl> 
request and sends the 8Ilt> response. 

The PLU resides in a swarea node for 
SSCP-•ediated sessions, and a peripheral node 
for PNCP-mediated sessions. The SLU My 
reside fo either a subarea node or peripherd 
node for SSCP-11ediated sessionsJ it resides 
in a peripheral node for PNCP-Hdiated ses­
sions. 

4-4 SNA For11at and Protocol Reference "•nual for LU Type 6.2 



RU PARAMETERS 

The following sections define some parameters 
that are common to many session-services and 
session-control field-formatted RUs. 

NETWORK NAME 

A network ~ is the name by which an LU is 
known throughout an i ndi vi dual SNA network. 
Network names are unique within an individual 
network. 

FULLY QUALIFIED NETWORK NAME 

$ ~~i!y qualified network~ is the name by 
which an LU is known throughout an i nt1:1·con­
nected SNA network. An interconnected net­
work comprises one or more individual 
networks. A fully qualified network name 
consists of a network identifier and a net­
work LU name. Fully qualified network names 
are unique throughout an interconnected net­
work. 

UNINTERPRETED NAME 

An uninterpreted ~ is any name by which an 
LU and its CP know another LU for the purpose 
of initiating an LU-LU session. It can be 
used by an ILU to identify a DLU. An unin­
terpreted name requ i res interpretation C or 
transformation) by the CP in order to yield 
the network name. An uninterpreted name may 
be the same as a network name. 

USER REQUEST CORRELATION 

A ~ request correlation WRCJ field 
denotes a variable-length byte string con­
sisting of a Length field and the URC itself. 
It is assigned by the end user for placement 
in an INIT-SELF or TERM-SELF request. Its 
usage allows subsequent requests involving 
the ILU or TLU to be associated with the 
INIT-SELF or TERM-SELF request. The associ­
ated requests either contain a field specif­
ically defined for this purpose or use a 
session key (discussed under "Session Key and 
Session Key Content"J. 

MODE NAME 

The CP has information about the LU that aids 
in the construction of the BIND image (car­
ried in CINITJ. The CP derives the BIND 
image contents from the mode ~. The LU 
supplies the mode name in INIT-SELF requests. 

In addi ti on to the BIND image, the CP uses 
the mode name to select a class of service 
for the LU-LU session. As an example, some 

sessions may require service with a fast 
response time Cimplying, for example, 
high-speed links, shortest distance, and high 
transmission priority), while others may 
require large bandwidth or more secure paths. 
Different mode names can be defined in order 
to select the different classes of service. 

Using the mode name, a transaction program is 
able to select for a conversation the session 
characteristics it desires. Then, when allo­
cating the conversation to a session, LRM 
supr 1 ; es ·:h.:. .. ,uJ~ name for the session in its 
session-activation request to LNS. 

The derivation of the BIND 
class of service from the 
implementation-dependent 
installation-specified. 

image and the 
mode name is 

and 

SESSION KEY AND SESSION KEY CONTENT 

There are various ways of denoting which 
LU-LU session a request is referring to; this 
may be, for example, by name pa i r, address 
pair, or by the URC. The session ~ and 
session ~ content permit requests that 
refer to sessions to do so in one or more 
ways. The session key content contains the 
particular fields denoted by the session key. 
The format description, in "Appendix E. 
Request/Response Unit CRUJ Formats", of a 
request specifying a session key and session 
key content also specifies the keys permitted 
(or required) with that request. 

When the session key content contains a name 
pa i r or an address pa i r, i t is an ordered 
pair. The order is tPLU,SLUJ unless other­
wise specified by the session key definition. 
Exceptions exist for requests whose formats 
use the LU designations, OLU and DLU. For 
these formats the session key content order 
is COLU,DLUJ and other related fields specify 
which is PLU and which is SLU. 

LU-LU VERIFICATION DATA 

Random data and enciphered data are used for 
LU-LU verification. Random data is randomly 
generated data of symbol-string type G. 
Enciphered data is the enciphered version of 
the random data. 

If LU-LU verification is active, BIND and 
RSPCBINDJ will contain 8 bytes of random data 
generated by the sender for LU-LU veri fi Ca­
ti on. RSPCBINDJ will also contain 8 bytes of 
enciphered data for the same purpose. The 
secondary LU submits the random data received 
in the BIND request along with the LU-LU 
password to the Data Encryption Standard 
CDESl algorithm to obtain enciphered data. 
This enciphered data is inserted in the 
RSPC BIND J along with new random data. When 
the primary LU receives the RSPCBINDJ, it 

Chapter 4. LU Network Services 4-5 



compares the received enciphered data with a 
copy of the same random data that it has also 
enciphered using its copy of the LU-LU pass­
word and the DES algorithm. If they are 
identical, the primary LU has verified that 
the SLU has the correct LU-LU password. 

Up to this point, processing has been done by 
the LU network services component of each LU. 
LNS components in the primary and secondary 
LUs send to their respective resources manag­
er components a record that contains the ran­
dom data from the RSP< BIND). The primary 
LU's RM enciphers the random data using the 
LU-LU password and the DES algorithm, inserts 
it in a Security FM header, and sends it to 
the secondary's RM component The received 
enciphered data is compared with the second­
ary LU's version of the enciphered data. If 
they are identical, the secondary LU has ver­
ified that the primary LU has the correct 
LU-LU password. 

SPECIFICATION OF RU PARAMETERS 

Throughout the descripHons of the RUs in 
this chapter, reference is made to the spec­
j fication of a parameter. Specification 
refers to a specific value that is supplied 
for the parameter when the RU is being b~;~t. 
prior to its being sent. 

IMPLEMENTATION-DEPENDENT PARAMETERS 

Throughout the descriptions of the RUs in 
this chapter, reference is made to 
implementation-dependent parameters. 
Implementation-dependent means that the par­
ticular value, or values, that a parameter of 
an RU can take on is determined by implemen­
tation design. 

INSTALLATION-SPECIFIED PARAMETERS 

Throughout the descriptions of the RUs in 
this chapter, reference is made to 
installation-specified parameters. 
Installation-specified means that the partic­
ular value, or values, that a parameter of an 
RU can take on is determined by the user at 
the node installation. 
Installation-specified values can be estab­
lished during system configuration of a node, 
or later during its operation. The method 
for establishing values of 
installation-specified parameters is 
implementation-dependent. 

4-6 SNA Format and Protocol Reference Manual for LU Type 6.2 



SESSION-SERVICES BY.:J! 

TMs section describes the session-services 
requests and extended responses that LNS 
sends and receives. These RUs belong to the 
FM-data category of network-services RUs. 

Preceding the individual descriptions is a 
list of the RUs, grouped according to their 
use. Listed w i th each RU is the number of 
the page on which the description of the RU 
begins. In addition, Figure 4-2 on page 4-8 
shows the RH formats for the session-services 
requests and responses that LNS sends and 
receives. 

Each RU description includes the RU flow and 
a discussion of the function and use of the 
RU. Refer to "Appendix E. Request/Response 
Unit lRUl Formats" for specifications of the 
RU formats. 

Session-services RUs pertaining to LU-LU ses­
sion initiation are: 

RU Page 

INITIATE-SELF lINIT-SELFl 4-9 
CONTROL INITIATE CCINIT) 4-9 
RSPCCINIT) 4-10 
SESSION STARTED lSESSSTl 4-11 
BIND FAILURE lBINDFl 4-11 

RUs pertaining to session termination are: 

RU Page 

TERMINATE-SELF CTERM-SELF) 4-11 
CONTROL TERMINATE CCTERM) 4-12 
CLEAN UP SESSION (CLEANUP) 4-12 
SESSION ENDED lSESSENDl 4-13 
UNBIND FAILURE CUNBINDFl 4-13 

The following RU pertains to reporting the 
status of the session inHiation or termi­
nation, or of the LU: 

RU Page 

NOTIFY 4-14 

Chapter 4. LU Network Services 4-7 



Session-Services RU ----> INIT-SELF SESSST 
CINIT SE SS ENO 
TERH-SELF BINOF 
CTERH ltBINOF 
CLEAN.JP 
NOTIFY 

Header Indicators 

TH EFI NorHl Nor••l A 

RH Byte 0 Bit 0 RRI RQ RQ 
Bits 1-2 RU_CTGY Ftl> Ftt> 
Bit 3 reserved 0 0 
Bit 4 FI 1 l 
Bit 5 SDI •SD •SD 
Bit 6 BCI BC BC 
Bit 7 ECI EC EC 

RH Byte 1 Bit 0 DRU DRl .. DRl 
Bit 1 reserved 0 0 
Bit 2 DR2I .. DR2 .. DR2 
Bit 3 ERI .. ER .. ER R~t 
Bits 4-5 reserved 00 00 
Bit 6 QRI .. QR .. QR 

Bit 7 PI .. PAC .. PAC 

RH Byte 2 Bit 0 eat .. ea .. ea 
Bit 1 EBI .. EB .. ea 
Bit 2 CDI .. co .. co 
Bit 3 reserved 0 0 
Bit 4 CSI Code 0 Code 0 
Bit 5 EOI .. eo .. eo 
Bit 6 POI .. PD .. PD 
Bit 7 CEBI .. CEB .. CEB y 

TH EFI Norol A 

RH Byte 0 Bit 0 RRI RSP 
Bits 1-2 RU_CTGY FHD 
Bit 3 reserved 0 
Bit 4 FI l 
Bit 5 SDI *SD 
Bit 6 BCI BC 
Bit 7 ECI EC 

Res e 
RH Byte 1 Bit 0 DRU .ORI 

Bit l reserved 0 
Bit 2 DR2I .. DR2 
Bit 3 RTI tRSP 
Bits 4-5 reserved 00 
Bit 6 QRI .. QR 
Bit 7 PI .. PAC 

RH Byte 2 Bits 0-7 reserved 00000000 

H2i.aJ. 
1. *XX nans either XX or .. xx. 
2. See "Appendix D. RH For1Hts11 for complete RH descriptions. 
J. The TH for•ats are not described in this book. 

y 

4. SESSST, SESSENO, BINOF, and lHSINOF are sent with no-response indicated. 

Figure 4-2. Sesafon-Servicea RH Fornts 

4-8 SNA For11at and Protocol Reference Hanual for LU Type 6.2 



( 

INITIATE-SELF fINIT-SELFJ 

FlON: FrOll ILU to CP CNorMU 

INIT-SELF requests ttwlt the CP •Hist in the 
initiation of • session bet...., the LU send­
ing the request (the ILUt which •lao beco•s 
the OLU) and the LU nallled in the request <the 
DLU). The INIT-SELF indicates 
definite-response requested. 

For SSCP-Mdiated sessionst the ILU •ay be 
located in either • subarQ node or peripher­
al node. For PNCP-•ediated sessions. the ILU 
is located in • peripheral node. 

The INIT-SELF request contains, among other 
parameters, the uninterpreted na .. of the DLU 
Nith which the session is to be initiated. 
the lllOde name for the session t •nd • \RC for 
the initiation request. 

The DLU 11ay be U\available for activation of 
an LU-LU session. This occurs when the DLU 
is not currently able to comply Ni th the 
PLUISLU specification. or Nhen it is •t its 
session H•it. At CP-LU session •ctivation 
time, the LU informs the CP of its availabil­
ity by llftns of control vector X'OC' carried 
in its positive response to ACTLU. Subse­
quently, during the active CP-LU sessiont the 
LU reports changes in its availability (such 
•• changes in its PLUISLU capability or its 

CONTROL INITIATE (CINITJ 

FlON: FN>ll CP to PLU (Normal> 

CINIT r11CfJ85ts that the LU receiving the 
request attempt to activate an LU-LU session 
Nith the LU named in the request. The LU 
receiving CINIT is the PLU for the session. 
The LU na•d in the request is the SLU for 
the session. The CINIT indicates 
definite-response requested. 

For SSCP-llediated sessions, the PLU is 
located in • subarea node. For PNCP-llediated 
sessions, the PLU is located in a peripheral 
node. 

The parameters in CINIT include the suggested 
para111eters for the BitlJ, Nhi ch represent the 
l!tll .i.m1.99. The BIND ilnage parameters are 
selected by the CP. Selection is based on 
optional i111Plementation-depenclent and 
installation-specified parameters for the PLU 
or SLU to which the respective parameters 
applyt and on the mode-naM parameter in the 
INIT-SELF associated with the CINIT. 

The PLU inspects the ForMt and \RC fields in 
the Bitl> i 11age for errors. If Fornt 0 is 
not specified, or if the PLU initiated the 

•••ion li•iU by sending HDTIFY(Yector Key 
X'OC') to the CP. 

The CP ~· the initiation requast if the 
lNIT-SELF indicates that qum.iing is per•it­
ted, the CP supports queufog, and the DLU is 
currently ""8vailable. The CP queues the 
INIT-SELF request until the DLU becomes 
available. 

The IJRC that the ILU sends ;n INIT-SELF ;. 
returned in the CINIT. lfien the PLU sends 
the INIT-SELF, the URC received ;n CINIT 
allONS the PLU to correlate the CINIT Ni th 
the INIT-SELF. ~ the SLU sands the 
INIT-SELF, the PLU copies the \RC frOll CINIT 
into Bitll to allON the SLU to correlate the 
Bitll with the INIT-SELF. 

The CP returna a positive response to the 
INIT-SELF request after it verif;es the 
resource availability and mode name, and, if 
appl;cable, it queues the initiation request. 
If an initiation failure occurs after a posi­
tive response has been returned, the CP noti­
fies the ILU by Mans of HOTifY(Yector Key 
X'03'). The NOTIFY includes the URC fro11 the 
INIT-SELF ;n order to allow the ILU to corre­
late the NOTIFY Nith the INIT-SELF. 

session and the \RC is oatHted from the CINIT 
request or the URC included on the CINIT 
request dou not Htch the URC that the PLU 
sent on a previous IHIT-SELF, then the PLU 
rejects the CINIT by returning a negative 
response to CINIT. 

The PLU also inspects the mode na• carried 
in a control vector on CINIT. If the llOde 
naM does not utch the one on the corre­
spond;ng INIT-SELF that the PLU sent, the PLU 
rejects the CINIT. Si11;1arly, if the SLU or 
a third-party W foitiated the session and 
the 110de • naH dou not match ane that is 
syst•-defined for the SLU, the PLU rejects 
the ClNIT. 

If the PLU finds no errors 111ith the ClNIT, it 
sends back a positive CINIT response. 

The PLU copies sowie CINIT p•raMeters into the 
Bitll w;thout 111ocHf;cation. These are the 
Stag;ng indicators, the PLU Na11a field, and 
the SLU N&H field. The URC field is cop;ed 
;nto Bitll tilhen the SLU sends the INIT-SELF, 
and the Cryptography Options field is copied 

Chapter 4. LU Neb1ork Services 4-9 



into BIND when both LUs support session-level 
mandatory cryptography. The mode name from 
the control vector on CINIT is copied into 
the Mode Name Structured Data Subfield of the 
User Data field of BIND. 

CINIT may include a User Data field in the 
BIND image of CINIT. If i t does, the PLU 
discards the user data and does not copy the 
field into the BIND. 

When the SLU sends an INIT-SELF, the PLU Name 
field in the associated CINIT carries the 
uninterpreted name of the PLU sent in the 
INIT-SELF; otherwise, it carries the network 
name of the PLU. 

If the INIT-SELF designated the PLU as the 
DLU, the PLU copies the URC from the BIND 
image of CINIT into the BIND. Otherwise, the 
PLU omits the URC from BINO. 

If both the PLU and SLU support session-level 
mandatory cryptography and it is specified 
for the mode name sent in INIT-SE LF, the 
associated CINIT carries the session 
cryptography key enciphered twice--once under 
the PLU master cryptography key and once 
under the SLU master cryptography key; the 
former is used at the PLU, while the latter 
!carried in the BIND image) is passed by the 
PLU in BIND for use at the SLU. The session 
cryptography key is a pseudo-random number. 
See "Chapter 6.2. Transmission Control" for 
details on cryptography. 

The PLU may modify other parameters supplied 
in the CINIT before sending them in the BIND. 
Specifically, the PLU may change the primary 
and secondary TCs' pacing window sizes and 

RSP!CINIT> 

Flow: From PLU to CP !Normal> 

A positive response to CINIT informs the CP 
that the PLU accepts the CINIT request and 
will attempt to activate the requested LU-LU 
session with the LU named in the CINIT 
request. 

For SSCP-mediated sessions, the PLU is 
located in a subarea node. For PNCP-mediated 
sessions, the PLU is located in a peripheral 
node. 

The CINIT request includes a BIND image that 
the PLU uses in building the BIND request for 
the LU-LU session. The PLU inspects the For­
mat and URC fields in the BIND image for 
errors. If Format 0 is not specified, or if 
the PLU initiated the session !PLU = ILU> and 
the URC is omitted from the CINIT request or 
the URC included on the CINIT request does 

the maximum RU sizes specified in CINIT. 
More details are given in the description of 
BIND in this chapter. 

The changing of any of the pacing parameters 
and maximum RU sizes on one session may 
affect the performance characteristics of 
that session and of concurrently active ses­
sions that share network resources with it. 

See the description of BIND in this chapter 
for additional rules on TS Profile and TS 
Usage modifications that are allowed. 

The route to be used for the LU-LU session is 
identified in the CINIT. For SSCP-mediated 
LU-LU sessions, CINIT carries a control vec­
tor that contains the mode name, class of 
service, and virtual route list associated 
with the subarea path-control route to be 
used for the session. The PLU and SLU 
addresses to be used for the session flows 
are network addresses, carried in either a 
session key field or a control vector. 

For PNCP-mediated sessions, CINIT carries a 
control vector that contains the mode name 
for the LU-LU session. PNCP-mediated ses­
sions use a direct route between peripheral 
nodes and do not use network addresses for 
the session flows. Therefore, in place of 
network addresses, CINIT carries an identifi­
er of the adjacent link station associated 
with the node in which the SLU resides. 
CINIT can result from an INIT-SE LF from one 
of the session partners C the PLU or SLU >. 
Alternatively, CINIT can result from an ini­
tiation request from a third-party LU. The 
formats and protocols for session initiation 
by a third-party LU are not described. 

not match the URC that the PLU sent on a pre­
vious INIT-SELF, then the PLU rejects the 
CINIT by returning a negative response to 
CINIT. Otherwise, the PLU accepts the CINIT 
by returning a positive CINIT response. 

The CINIT response has an extended format 
that di ffers from the CINIT request. The 
CINIT response specifies control vector X'FE' 
as the only parameter of the response. 

Control vector X'FE' contains a list of con­
trol vector keys, received on the CINIT 
request, that the PLU does not recognize. If 
the SLU receives on the CINIT request a con­
trol vector it does not recognize, the SLU 
includes control vector X' FE' on the CINIT 
response. Otherwise, the SLU omits control 
vector X'FE' from the CINIT response. 

4-10 SNA Format and Protocol Reference Manual for LU Type 6.2 



SESSION STARTED CSESSST) 

Flow: From LU to CP (Normal) 

SESSST notifies the CP that an LU-LU session 
has been success fully act; vated. Both the 
PLU and SLU send SESSST to their CP. The 
SESSST indicates no-response requested. 

For SSCP-mediated sessions, the PLU is 
located in a subarea node and sends SESSST to 
its SSCP. The SLU is located in either a 
subarea node or peripheral node and sends 
SESSST to either its SSCP or PNCP, respec­
tively. 

For PNCP-mediated sessions, the PLU and SLU 
are located in peripheral nodes. Each LU 
sends SESSST to its PNCP. 

BIND FAILURE CBINDF) 

Flow: from PLU to CP CNormall 

BINDF informs the CP that an attempt to acti­
vate an LU-LU session has failed, for the 
reason indicated in the BINDF. The BINDF 
indicates no-response requested. 

For SSCP-medi ated sessions, the PLU is 
located in a subarea node and sends BINDF to 
its SSCP. The BINOF identifies the LU-LU 
session that failed to be activated. A ses-

TERMINATE-SELF CTERM-SELF) 

Flow: From TLU to CP <Normal> 

TERM-SELF requests that the CP assist in the 
termination of a session between the sender 
of the request (the TLU J and LU named in the 
request Cthe DLUJ. The TERM-SELF indicates 
definite-response requested. 

For SSCP-medi ated sessions, the TLU may be 
located in either a subarea node or peripher­
al node. For PNCP-mediated sessions, the TLU 
is located in a peripheral node. 

The session to be terminated can be either 
queued or pending-active, from the TLU's per­
spective. Therefore, only the ILU can send 

SESSST sent to the SSCP identifies the LU-LU 
session that is started. A session key· con­
taining the network addresses of the PLU and 
SLU is used for this purpose. 

The SESSST sent to the SSCP may carry addi -
tional information by means of control vec­
tors. Further details are not defined. 

SESSST sent to the PNCP identifies the adja­
cent link station for the node in which the 
partner LU is located. This SESSST has an 
internal format different from the SESSST 
sent to the SSCP. 

sion key containing the network addresses of 
the PLU and SLU is used for tM s purpose. 
Sense data identifying the error and a reason 
code for the error are included in the BINDF. 

For PNCP-medi ated sessions, 
located in a peripheral node. 
not send BINDF to its PNCP. 

the PLU is 
The PLU does 

TERM-SELF, because only the ILU is aware of 
sessions that are queued or pending-active. 
Note that from the SSCP's perspective, the 
session may be active, as well as 
pending-active or queued. 

The LU does not send TERM-SELF to terminate 
an active LU-LU session. Instead, the LU 
sends UNBIND to the partner LU. 

The TERM-SELF request i dent i fies the session 
to be terminated by means of tne URC session 
key. The URC session key is the same as the 
one sent in the !NIT-SELF that initiated the 

Chapter t+. LU Nebiork Services 4-11 



session. The URC field (distinct from the 
URC session keyl can be specified in 
TERM-SELF to correlate a TERM-SELF with a 
subsequent NOTIFY. 

The TERM-SELF request designates the type of 
termination to be performed, which is always 
Forced. TERM-SELF(Forcedl requests the CP to 
cissist in terminating the pending-active O" 

queued session immediately and u11condi­
tionally. 

The CP . eturns a positive response once it 
":;:.., validated the TERM-SELF request. For 

CONTROL TERMINATE CCTERMJ 

Flow: From CP to PLU (Normal) 

CTERM requests that the PLU attempt to deac­
tivate an LU-LU session. The CTERM indicates 
definite-response requested. 

CTERM is used to terminate an SSCP-mediated 
LU- LU session. The SSCP sends CT ERM to the 
PLU, located in a subarea node, as a result 
of receiving a terminate request from an LU. 
The LU that sent the terminate request to the 
SSCP can be the PLU or SLU for the session, 
or a third-party LU. See the description of 
TERM-SELF for more details about when the PLU 
or SLU sends a termination request to the 
SSCP. Details of session termination result­
ing from a request sent by a third-party LU 
are not defined. 

The CTERM identifies the session to be termi­
nated by means of a session key containing 
the network addresses of the PLU and SLU. 
The CTERM also specifies the type of termi­
nation requested and the reason for termi­
nation. 

CLEAN UP SESSION <CLEANUP! 

Flow: CP to LU <Normal! 

CLEANUP informs the LU that it is to deacti­
vate the LU-LU session immediately, even if a 
conversation is using the session. The 
CLEANUP indicates definite response 
requested. 

CLEANUP is used to deactivate an 
SSCP-mediated LU-LU session. The SSCP sends 
CLEANUP to the LU, located in subarea node, 
as a result of receiving a terminate request 
from an LU. The LU that sent the terminate 
request to the SSCP can be the PLU or SLU for 

SSCP-medi ated sessions, if an error occurs 
after a positive response has been sent, the 
SSCP notifies the TLU by means of NOTI­
FY< Vector Key X' 03' l. The NOTIFY includes 
the URC from the TERM-SELF so that the TLU 
can correlate the NOTIFY with the TERM-SELF. 

Fer ~SCP·-m~..!h1l.ed sessions, if the SSCP's 
perspective of the session is that it is 
active, the SSCP sends CTERMC Forced l to the 
PLU. See the description of CTERM in this 
chapter for more information. 

The type of termination specified in CTERM is 
e i ther Orderly or Forced. CTERM( Orderly) 
allows the PLU to delay deactivating the ses­
sion. In particular, the PLU does not deac­
tivate the session while a conversation is 
using the session. CTERMCForcedl requires an 
unconditional attempt to deactivate theses­
sion, even if a conversation is using the 
session. 

CTERM<Forcedl is the only type of termination 
that can result from a TERM-SELF sent to the 
SSCP by the PLU or SLU. Both CTERM(Orderlyl 
and CTERM< Forced l can result from a termi -
nation request sent by a third-party LU. 

CTERM is not used for PNCP-mediated sessions. 
When a PNCP-mediated session is to be termi­
nated, the LU sends UNBIND to the partner LU. 
The PNCP does not send a terminate request to 
the LU. 

the session, or a third-party LU. See the 
description of TERM-SELF for more details 
about when the PLU or SLU sends a termination 
request to the SSCP. Details of session ter­
mination resulting from a request sent by a 
third-party LU are not defined. 

CLEANUP can result from a TERM-SELFCForcedl. 
This occurs when the SSCP is unable to proc­
ess the TERM-SELF<Forcedl and therefore must 
promote the forced termination to a cleanup 
termination. 

4-12 SHA Format and Protocol Reference Manual for LU Type 6.2 



The CLEAKJP identifies the HHi~ to be t•r­
•inated by nans of a session k•y containirig 
the net11110rk addresses of thll PLU and SW. 
The CLEANUP also specifi .. the th9 reason for 
ter•inaUon. · 

In respons• to receivh'9 CLEAllJP, thll W 
s.- lleIND 111ith the Typ. set to Cleanup. 
UNBIND(Cleanup> chaactivatn the sender's 
half-session, 111ithout ... iting for a respons• 
to the UleIND. 

SESSION ENDED (SESSEND> 

Flow: frOll LU to CP (Hor .. u 

SESSEND notifies the CP that an LU-LU s .. sion 
has been successfully chaactivated. Both the 
PLU and SLU send SESSEHD to their CP. The 
SESSEND indicates no-respons• requested. 

For SSCP-mediated sessions, the PLU is 
located in a subarea node and sends SESSEND 
to its SSCP. The SLU is located in either a 
subarea node or peripheral node and sends 
SESSEND to either its SSCP or PNCP, respec­
tively. 

For PNCP-Mdiated sessions, the PLU and SLU 
ar• located in peripheral nodes. Each LU 
sends SESSEND to its PNCP. 

UHBitt> FAIUAU (IJNBINDF> 

FlON: FrOll PLU to CP (Horul l 

UHBINDF inforM the CP that an atte111Pt of 
chaactivate a session has failed, for the rea­
son h~icated in the lleINDF. The UtlUNDF 
indicates no-response requested. 

For SSCP-ndiated sessions, the PLU is 
located in a subarea node and sends tReINDF 
to its SSCP. The UNBINDF identifies the 
W-W session that faUed to be chaactivated. 

CLEAllJP is rectiived only by an LU in a aub­
nea node. thin the SLU of an S.flCP-ndiated 
aeasfon is located in a peripheral nocha, the 
SW receives a DACTW followed by ACTLU in 
place of CLEANUP. 

CLEANUP i• not used for PNCP-llediated ses­
sions. thin a PNCP-ndiated session is to be 
ter11inated, the W sends lleIND to the part­
ner LU. The PHCP does not send a ter•inate 
request to tha LU. 

SESSEND sent to the SSCP identifies the LU-LU 
aession that is ended. A session key con­
taining the natNOrk addresses of the PLU and 
SLU is used for this pUrpose. SESSEND also 
indicates the cause of the chaactivation. 

JSESSEND sent to the PNCP identifies thll adja­
cent link station for the node in lolhich the 
partner LU is located. This SESSEND has an 
foiernal for11ai different frOll ihll SESSEND 
sent to thll SSCP. 

A session key containing the netNOrk 
addreasu of thll PLU and SLU is used for this 
purpose. Sense data identifying the error 
and a re11Son code for the error •r• included 
;n the lleINDF. 

For PHCP-Hdi atad sess; ons, the PLU i a 
located in a peripheral node. The PLU does 
not send UNBUIJF to its PHCP. 

Chapter 4. LU Net1110rk S.rvicu 4-13 



NOTIFY 

FlON: Fro11 CP to LU and fre111 LU to CP (Nor•l> 

NOTIFY is used to send i nforHt ion fro11 • CP 
to •n LU, or frOll an LU to • CP. The NOTIFY 
indicates definite-response requested. 

NOTIFY is 
only. An 
peripheral 
pertaining 
NOTIFY is 
sions. 

used for SSCP-udiated sessions, 
LU in either a subarea node or 

node ~n send or receive NOTIFY 
to •n SSCP-118dh1ted session. 

not used for PNCP-udi ated ses-

NOTIFY c•rries inforHtion in the for• of a 
(vector key, vector data> pair: 

• Vector key X'03'-ILUITLU notification: 
Sent in NOTIFY from the SSCP to the ILU 
or TLU in order to notify the LU of a 
session-initi•tion or -terafnation fail­
UNI after a positive response tuls been 
returned to the INIT-SELF or TERH-SELF. 
For a session-initiation failure, the 
NOTIFY incHcates a setup procedure error; 
for a session-ter•ination failure. it 
indicates • takedown procedure error. 
The NOTIFY also includes the reason for 
the error ar.:;j the sense data identifying 
the error. 

The URC frOll the INIT-SELF or TERl1-SELF 
is carried in the NOTIFY to allON the ILU 
or TLU to correhte the NOTIFY Ni th the 
INIT-SELF or TER11-SELF. 

• Vector key X'OC'-LU-LU session-services 
capabilities: Sent in NOTIFY from an LU 
to an SSCP to convey changes in the LU• s 
current LU-LU session-services capabili­
ties. 

The paraHters of the LU-LU 
session-services capabilities include the 
LU's session cOU'lt and li•it, its capa­
bUity to act a& a PLU or SLU, and its 
capability to support parallel sessions. 
Its capability to act as a PLU or SLU is 
indicated as: 

Enabled--sessions can be started 

Disabled-sessions can be queued but 
not started 

Inhibited--sessions can be neither 
queued nor started 

lf\enever an event occurs during an active 
CP-LU session causing a change in an LU's 
session-services capabilities. the LU 
Hnds NOTIFY to the SSCP to convey its 
new session-services capabUities. (At 
CP-LU session •ctivation ti111e, the LU 
conveys its session-services capabilities 
to the SSCP by Hans of control vector 
x•oc• c•rried in the LU's response to 
ACTLU.) 

The session•servicea-c•pabilities p•r•Me­
ters determine Nhether • OLU is av•ilable 
for initiation of •n LU-LU session. In 
tern of these paraMeters, • DLU is 
available for session initiation when all 
of the following conditions are Mt: 

The OLU's session count is less than 
its session li•it. 

It is enabled for PLU or SLU capabil­
ity, as requested in the ?NIT-SELF 
request. 

It supports parallel sessions Mith 
the OLU (this condition applies Nhen 
one session between the OLU and DLU 
is already active). 

Otherwise, the DLU is unavailable for 
session initiation. 

The paraMtera spaci fying the LU's ses­
sion cOU'lt and li•it, and its PLU or SLU 
capability, are used to deter•ine Nhether 
to queue an INIT-SELF request, as fol­
lows: 

When an INIT-SELF designates a DLU 
that is currently unavai 1-
•ble--because its session COlnt 
equals its session limit or because 
its PLU or SLU c•p•bility as 
requested in the INIT-SELF is disa­
bled-and the INIT-SELF specifies 
initiate/queue and the SSCP s~orts 
queuing of !NIT-SELF, the INIT-SELF 
is queued. 

ltllen an INIT-SELF designates • DLU 
that is currently unav•il•ble and 
either (1 > the INIT-SELF specifies 
initiate only, (2) the SSCP does not 
support queuing of INIT-SELF, (3) the 
DLU's PLU or SLU c.pabiHty as 
requested in the INIT-SELF is inhib­
ited, or (4) the OLU does not s1.4>port 
parallel sessfons and • session 
between the OLU and DLU is already 
active, the INIT-SELF request is 
rejected fa negative response is 
returned). 

When the DLU sends a NOTIFY indi eat­
ing it has become available, the SSCP 
dequeues !HIT-SELF requests (up to 
the session li•it> for that DLU, 
res ... ing the session-inithtion proc­
ess. 

ltllen INIT-SELF designates a DLU that 
is available <and other necessary 
conditions are met), the session is 
initiated. 

The defined Cvector key, vector data) pairs 
are specified in Appendix E. 

4-14 SNA Format and Protocol Reference Manual for LU Type 6.2 



SESSION-CONTROL RU'S 

This section describes the session-control 
requests and extended responses that LNS 
sends and receives. Preceding the individual 
descr i ptl ons is a 11 st of the RUs, grouped 
according to their use. Listed with each RU 
is the number of the page on which the 
description of the RU begins. In addition, 
Figure 4-3 on page 4-16 shows the RH formats 
for the session-control requests and 
responses that LNS sends and receives. 

Each RU description includes the RU flow and 
a discussion of the function and use of the 
RU. Refer to "Appendix E. Request/Response 
Unit !RU) Formats" for specifications of the 
RU formats. 

Session control RUs pertaining to CP-LU ses­
sion activation and deactivation are: 

RU Page 

ACTIVATE LOGICAL UNIT CACTLUJ 4-17 
RSPC ACTLU J 4-17 
DEACTIVATE LOGICAL UNIT CDACTLU) 4-19 

Session-control RUs pertaining to LU-LU ses­
sion activation and deactivation are: 

RU 

BIND SESSION !BIND) 
RSPCBIND> 
UNBIND SESSION !UNBIND> 

Page 

4-19 
4-25 
4-28 

Chapter 4. LU Network Services 4-15 



Session Control RU -> ACTLU 
DACTLU 
BIND 
UNBIND 

Header Indicators 

TH EFI Expedited A 

RH Byte 0 Bit 0 RRI RQ 
Bits 1-2 RU_CTGY SC 
Bit 3 reserved 0 
Bit 4 FI 1 
Bit 5 SDI *SD 
Bit 6 BCI BC 
Bit 7 ECI EC 

RH Byte 1 Bit 0 DRU DRl Request 
Bit 1 reserved 0 
Bit 2 DR2I .,DR2 
Bit 3 ERI .,ER 
Bits 4-5 reserved 00 
Bit 6 QRI .,QR 
Bit 7 PI .,PAC 

RH Byte 2 Bit 0 BBI .,BB 
Bit 1 EBI .,EB 
Bit 2 CDI .. co 
Bits 3-6 reserved 0000 
Bit 7 CEB .,CEB v 

TH EFI Expedited A 

RH Byte 0 Bit 0 RRI RSP 
Bits 1-2 RU_CTGY SC 
Bit 3 reserved 0 
Bit 4 FI 1 
Bit 5 SDI *SD 
Bit 6 BCI BC 
Bit 7 ECI EC 

Response 
RH Byte 1 Bit 0 DRU DRl 

Bit 1 reserved 0 
Bit 2 DR2I .,DR2 
Bit 3 RTI ±RSP 
Bi ts 4-5 reserved 00 
Bit 6 QRI .,QR 
Bit 7 PI *PAC 

RH Byte 2 Bits 0-7 reserved 00000000 v 

Notes: 
1. *XX means either XX or .. xx. 
2. See Appendix D for complete RH descriptions. 
3. The TH formats are not described in this book. 

Figure 4-3. Session-Control RH Formats 

4-16 SNA Format and Protocol Reference Manual for LU Type 6.2 



ACTIVATE LOGICAL UNIT <ACTLUJ 

Flow: From CP to LU <Expedited) 

ACTLU requests that the LU activate a CP-LU 
session between itself and the CP that sent 
the ACTLU request. The CP assumes the role 
of primary NAU, while the LU assumes the role 
of secondary. The ACTLU indicates 
definite-response requested. 

The LU sends back either a positive or nega­
tive response, depending on the parameters of 
the ACTLU request. In addition, if the for­
mat of the ACTLU request is in error, or the 
LU already has a CP-LU session with the CP 
that sent the request, it sends back a nega­
tive response. 

A description of the parameters in the ACTLU 
request follows. 

Type: This specifies the type of CP-LU ses­
sion activation requested. Type ERP (error 
recovery procedure) is always specified; no 
other type is defined for the ACTLU request. 
The LU sends back a negative response if the 
ACTLU request spec i fies a type other than 
ERP. 

Type ERP is used to activate the CP-LU ses­
sion without affecting any active LU-LU ses­
sions. The type of session activation that 
the LU actually performs is indicated on the 

RSP(ACTLUJ 

Flow: From LU to CP CExpeditedJ 

A positive response to ACTLU completes acti­
vation of a CP-LU session between the LU and 
the CP that sent the ACTLU request. The 
ACTLU response also informs the CP of the 
CP-LU session capabilities and the LU-LU ses­
sion services capabilities of the LU. 

The positive ACT LU response has an extended 
format. If the ACTLU request is acceptable 
to the LU, it sends back a positive ACTLU 
response that specifies the parameters for 
the CP-LU session and for the LU's session 
services capabilities. 

A description of the parameters in the ACTLU 
response follows. 

Type: This specifies the type of CP-LU ses­
sion activation that the LU is performing. 
The type of session activation may be either 
Cold or ERP (error recovery procedure). 

The LU specifies type Cold when it has no 
active or pending-active LU-LU sessions. 
Otherwise, the LU specifies type ERP. 

response. The LU may perform either ERP or 
Cold session activation. 

fl:! Profile: This specifies the FM profile to 
be used for the CP-LU session. The FM pro­
file indicated in the ACTLU request can be 0 
or 6. The FM profile actually used for the 
CP-LU session is indicated on the response. 

For LUs located in subarea nodes, FM profile 
6 is always used. If the ACTLU request indi­
cates FM profile 0, the LU negotiates it to 
6. 

For LUs located in peripheral nodes, either 
FM profile 0 or 6 may be used. If the LU 
implementation supports FM Profile 6, then 6 
is used; if the ACTLU request indicates o, 
the LU negotiates it to 6. If the LU i mple­
mentati on does not support FM profile 6, then 
FM profile 0 is used; if the ACTLU request 
indicates 6, the LU rejects the request and 
sends back a negative response. 

TS Profile: This specifies the TS profile to 
be used for the CP-LU session. TS profile 1 
is the only one defined. The LU sends back a 
negative response if the ACTLU request speci­
fies a TS profile other than 1. 

fl:! Profile: This specifies the FM profile to 
be used for the CP-LU session. The FM pro­
file may be 0 or 6. For LUs located in sub­
area nodes, FM profile 6 is always used and 
indicated in the ACTLU response. 

For LUs located in peripheral nodes, either 
FM profile 0 or 6 may be used. If the LU 
implementation supports FM Profile 6, then 6 
is used and indicated in the response. If 
the LU implementation does not support FM 
profile 6 and FM profile 0 is indicated in 
the ACTLU request, then FM profile 0 is used 
and indicated in the response. 

TS Profile: This specifies the TS profile to 
be used for the CP-LU session. TS profile 1 
is the only one defined. 

Control~ X'OO'--CP-LU Session Capabili­
ties: This specifies the LU' s capabilities 
for the CP-LU session with the CP that sent 
the ACTLU request. The CP-LU session capa­
bilities ')rP •n!' ... >ill<>tior.-,..pecified for each 

Chapter 4. LU Network Services 4-17 



CP, and may be different for sessions with 
different CPs. The LU specifies the CP-LU 
session capabilities by means of parameters 
on the control vector. Details of the param­
eters follow. 

• Key: This specifies the control vector 
key, x•oo•. 

• Maximum RU Size: This specifies the max­
imum RU size that either half-session may 
send. This parameter may specify a spe­
cific maximum RU size or no maximum RU 
size. 

• Character-Coded Capability: This speci­
fies whether the CP is permitted to send 
unsolicited character-coded requests to 
the LU. The capability to receive unso-
1 i cited character-coded requests on the 
CP-LU session is 
implementation-dependent. 

• Field-Formatted Capability: This speci­
fies whether the CP is permitted to send 
unsolicited field-formatted requests to 
the LU. The capability to receive unso­
licited field-formatted requests on the 
CP-LU session is 
implementation-dependent. 

Control Vector X'OC'-LU-LU Session-Services 
Capabilities: This specifies the LU' s capa­
bilities for LU-LU sessions for which the CP 
that sent the ACTLU request will be the 
mediator. The LU session-services capabili­
ties are installation-specified for each CP, 
and may be different for sessions with di f­
ferent CPs. The LU specifies the LU session 
services capabilities by means of parameters 
on the control vector. Details of the param­
eters follow. 

• ~ This specifies the control vector 
key, X'OC'. 

• Length of Vector .12.i!!l. This specifies 
the length of the remainder of the con­
trol vector. 

• Primary ll! Capability: This specifies 
whether the LU is currently available as 
a PLU for LU-LU session initiation. The 
LU's current PLU capability is specified 
as enabled, disabled, or inhibited. 

Enabled: This LU can activate ses­
sions for which it is the PLU, pro­
vided its LU-LU session count is less 
then its LU-LU session limit. 

Disabled: This LU cannot activate 
sessions for which it is the PLU, but 
the CP may queue session-initiation 
requests that specify Cl> this LU is 
the PLU for the session and C2l queue 
if this LU is currently unable to 
comply with the PLU/SLU specifi ca­
tion. 

Inhibited: This LU cannot activate 
sessions for which it is the PLU, and 
the CP cannot queue 
session-initiation requests that 

specify this LU is the PLU for the 
session. 

LUs located in peripheral .nodes are able 
to activate SSCP-mediated sessions only 
as SLUs. Therefore, these LUs always 
specify their PLU capability as inhibited 
when the CP is an SSCP. 

• Secondary LU Capability: This specifies 
whether the LU is currently available as 
an SLU for LU-LU session initiation. The 
LU's current SLU capability is specified 
as enabled, disabled, or inhibited. 

Enabled: This LU can activate ses­
sions for which it is the SLU, pro­
vided its LU-LU session count is less 
then its LU-LU session limit. 

Disabled: This LU cannot activate 
sessions for which it is the SLU, but 
the CP may queue session-initiation 
requests that specify Cll this LU is 
the SLU for the session and C2l queue 
if this LU is currently unable to 
comply with the PLU/SLU specifica­
tion. 

Inhibited: This LU cannot activate 
sessions for which it is the SLU, and 
the CP cannot queue 
session-initiation requests that 
specify this LU is the SLU for the 
session. 

• LU-LU Session Limit: This specifies the 
LU's current session limit for initiating 
sessions for which the CP is the 
mediator. Initiation of sessions for 
which the CP is not the mediator are not 
constrained by this session limit. A 
specification of O means the LU has no 
session limit. 

• 

If the LU is in a peripheral node and the 
CP is an SSCP, the LU always specifies 
its session limit as 1. 

LU-LU Session Count: This specifies the 
LU's current session count of active ses­
sions for which the CP is the mediator. 
Active sessions for which the CP is not 
the mediator are not included in this 
session count. 

If the session limit is not O and it is 
greater than the session count, the LU is 
available for LU-LU session initiation. 
If the session l.imit is not 0 and it 
equals the session count, the LU is una­
vailable for LU-LU session initiation and 
the CP may queue session-initiation 
requests that specify queue if the ses­
sion limit is exceeded. 

• Parallel-Session Capability: This speci­
f i es the LU' s capability to support 
parallel-session protocols for sessions 
for.which the CP is the mediator. If the 
LU is i n a peripheral node and the CP is 
an SSCP, the LU always specifies pJrallel 
sessions are not supported. 

4-18 SNA Format and Protocol Reference Manual for LU Type 6.2 



• ~ Capabiljty; This specifies "'9th­
er the LU, as an SLU, wi 11 send a SESSST 
request to an SSCP. If the LU is in • 
peripheral node, the LU always specifies 

DEACTIVATE LOGICAL UNIT (DACTLU> 

Flow: FrOll CP to LU (Expedited) 

DACTLU requests the LU to deactivate the 
CP-LU session beb1een itself and the CP that 
sent the DACTLU request. The DACTLU indi­
cates definite-response requested. 

The LU sends back either • positive or nega­
tive response, depenc:Ung on the parameters of 
the DACTLU request. If the for•at of the 
DACTLU request is in error, or the type 
paranter specifies a type other than nornl 
or SOth the LU sends back a neg<11 ti ve 
response. Other111i se, the LU sends back a 
positive response, even if it has no CP-LU 
half-session to lllhich it can correbte the 
DACTLU request. 

A description of the para ... ters in the DACTLU 
request follows. 

.J¥a.:. This specifies the type of CP-LU ses­
ston deactivation requested. The type of 
deactivation is either normal or session out­
age notification (SOtO. 

Bitll SESSION (BIND ) 

Flow: FrOll PLU to SLU (Expedited) 

Bii-ii is sent frOll a PLU to an SLU to activate 
a session between the LUs. The BIND indi­
cates definite-response requested. 

The BIND request carries the PLU's suggested 
pariu1eters for the session. The specifica­
tions of the BIND parameters are based on the 
PLU's h1plementation-dependent support, on 
the installation-specified values currently 
in effect for the parameters. or on the CINIT 
request for the session, depending on the 
particular parameter. 

The SLU uses the Bii-ii para .. ters to help 
deter•ine "'9ther it 111ill send back a posi­
tive or negative response to Bii-ii. In addi­
tion, if the for•at of the Bitl> request is in 
error1 the SLU sends back a negative 
response. Control infor•ation in either LU 
is updated only lllhen a positive response is 
returned. A successful Bltl> causes a 
half-session to be created at both PW and 
SLU. 

it Nill not send SESSST. If the LU is in 
a subarea node, the LU always specifies 
it Nill send SESSST. 

• H!:trmal: This specifies that the LU is to 
deactivate the CP-LU session and reset 
ita half-s115sions for all of the LU-LU 
seHions for Nhich the CP is the 
•ediator. 

• Sessign-Qytage Ngtjfjcati90; This speci­
fies that the LU is to deactivate the 
CP-LU session but not reset its LU-LU 
half-sessions. The DACTLU request 
includes a specification of the cause of 
the SON deactivation. See "Session Out­
age and Session Reinitiation" on page 4-4 
for •ore infor11aHon on SON. See the 
definition of the DACTLU request in 
Appendix E for a list of the cause codes 
and a description of the causes. 

Receipt of DACTLU does not cause the LU to 
ter•inate any LU-LU sessions • 

If the LU receives a Bitl> request after send­
ing a Bltl> request, 11nd either ( 1) parallel 
sessions between the two LUs are not sup­
ported, or (2) the current nullber of active 
sessions within the 1110de-nalll4t group is 1 less 
than the session li11it for that group, then a 
BIND race has occurred. The BIND race is 
resolved in one of the following Nays, Nith 
one LU being the winner of the race (its Bltl> 
is accepted> and the other being the loser 
(its BIND is rejected>: 

• If the Fully Qualified PLU Network Nae 
subfield of the user data is 011itted frOll 
both BINDs, the 111inner of the race is the 
LU that sent BIND with the OAF' -OAF' 
Assignor indicator <ODAI> set to 1. The 
ODAI is carried in byte o, bit 6 of the 
trans11ission header (THJ of BIND. The 
ODAI and TH are not further described in 
this book. 

Chapter 4. LU NetNOrk Services 4-19 



• If the Fully Qualified PLU NetNOrk Hit .. 
s.J>fi eld i • pru.,,t in only one of the 
BIND&, the Ninnar is the LU that sent the 
BIND containing the a.J>field. 

• If the Fully Qual i fi eel PW Network Htl­
a.J>f i eld ia pruent in both BINDa, the 
Nhinar is deter•ined by co.p;aring the 
fully qualified PLU netNOrk MMS in the 
BIND&. Fully qualified PLU network na•• 
are unique throughout a netNOrkl there­
fore. one Nill ab1ays compare greater 
than the other in the EBCDIC collating 
sequence of the tMO names. The LU that 
stint the BIND containing the greater of 
the tMO fully qualified PLU netNOrk ,,. ... 
is the Minner. 

The COlllP•rison is ••de by C0111Paring the 
tNO na•es as EBCDIC character strings, 
left-justified, and filled on the right 
Mith space characters. if necessary. 
Fully q:.~l;fied LU natMOrk namea contain 
no leading or 4llllbtidded space characters. 

The LU that is the Ninner of the BIND race 
sends back a negative response to the BIND it 
received. The other LU sends back • posUive 
response, uiless the BIND is not acceptable 
for other reasons, such as invalid format. 

The Bltl> request and Us response do not have 
an ERP type, in contrast to other 
session-activation requests and their 
responses, such as ACTLU. The distinction 
betNaen si11ple acUvation and resynchronizing 
reactivation follONing a failure is •ade 
after the session has been activated. In 
sOMe cases , change-nulllber-of-sess ions proto­
cols are usedl in others, end-user protocols 
are invoked. 

The SLU does not reject the BIND because of 
any inc011Patibility it ••Y have Mith the BIND 
para .. tera. Rather, if the Bii-i> request is 
otherwise acceptable (for example, the,.. are 
no for11at errors and the session li•it is not 
exceeded>, the SLU returns • positive 
response Mith an extended format that carries 
the C0111Plete aet of sass ion parameters. The 
specifications for the parauters can .. tch 
those sent in the BIND request, or they can 
differ, Nhere the SLU chooses different 
opUons. The parHetera for llltich the SLU 
Ry choose different options are referred to 
as negotiable paraMeters. 

The PLU receives the positive BIND response 
and checks the parameter specifications. If 
they are acceptable, then these specifica­
tions are used for the activated session. 
OtherNise, the PLU ssds lteIND. 

A description of the para•ters in the BIND 
request fol!ONB. 

Foe1at: This specifies the for .. t of the 
BIND request. Only one forut is defined: 
FoMNt O. 

Ilmt.i. Thie specifies the type of BIND 
request. The type is alNays specif i ad •• 
negotiable. The positive response to BIND 
has the HH Qener•l forAt as the BitG 

recp111t. The negotiable type of BIND requast 
PeNits the SLU to return • positive resPMS• 
in llltich the negotiable par••t•rs •Y differ 
from those in the request. 

ftl prgfilt: This specifiu the FH profile to 
be used for the w-w Hsaion. FH profile 19 
is the only one defined for LU 6.2. The FH 
profile is auppl...,tad by the FH uHge 
paraHters of the BIND rtiqUUt. 

D Profilt: This spacifies the TS profile to 
be used for the LU-LU session. TS profile 7 
is the only one defined for LU 6.2. The TS 
profile is auppleunted by the TS .. age 
paraHters of the BltG request. 

ftl Yusm lPWl=Ch•inioa Yll.&. This specifies 
the PLU's use of chains that it Aends to the 
SLU. ttultiple-RU chains Is the only use 
defined for LU 6.2. Chains •Y consist of 
one or 110r• RU&. The Rxi-..-sin RU tt.t 
the PLU sends ind the wrbs that the trans­
action progra• issues to the PW det.,..ine 
the nulllber of RU. that .. ka up the chain. 

ftl Yum «PW>=B•CIUlfS CootrpJ !tsl.dl.l This 
spacifiu the PW's protocol' for sending 
chains. l•ediate-raqunt llOde is the only 
protocol defined for W 6.2. The PW waits 
for • response to a dtfini ta-response chain 
before it sands another chain. · 

ftl Yuml lPLUl=Chain Rnponse Protocol: 
This specifiu the PLU's protocol for 
requesting responses to chains.. Definite- or 
exception-response requested is,the only pro-
tocol dtfinad. A chain indicating 
defini ta-response requested requires • 
r•pons• frOll the SLUJ the responH RY be 
positive or negative. A chain Indicating 
exception-response requested requires • 
response from the SLU only Nhen the l"Uporwe 
fs na9ative1 • positive response ta not 
returned. 

' 
ftl Mu.al 1pw1-Sanc1 ind Br•clset: Thia spec-
ifies that the PLU does not send E8 chains. 

ftl Uu.91 fSW>=Ch•ininq Mu!. This specifies 
the SLU's use of chains that it sends to the 
PW. ttultipla-RU chains is the only use 
defined for LU 6.2. Chains ay consist of 
one or 110r• RU.. The uxi•~-sin RU that 
the SW sends and the verbs thllt the tr•ns­
acti on progrH issues to the SW dttar•ine 
the nullber of RU. that Rke up the chain. 

ftl Yuma (SWJ=B•CIUSIS Contro& ·t!Rslti This 
specifies the SW'• protocol for sending 
chains. l-.diata-requast llOde ts the mly 
protocol defined for W 6.2. The SW Naits 
for a response fo a clefinite-ruponse ntn 
before it sends enother chain. 

ftt UU9I l§Wl=Cbtin Rupan!t Prptocolg 
This specifies the SLU's protocol for 
requesting responses to chains. Definite- or 
exception-ruponse requested i• the only pro-
tocol dtlfined. A chain Indicating 
definite-ruponsa requested requiru • 
response from the PLUJ the reiaponse •Y be 
positive or negative. A chain indicating 
1xoeption-ruponse requuted r4M1Uires • 

lt-20 SNA FoMAt and Protocol Rafer9'Ce ttanual for W Type 6.2 



response fre111 the PLU only when the response 
is negatives • positive response is not 
returned. 

fH YllSl! ( SlU I-Sine# lDSI Bracket i This spec­
ifies that the SLU doe& not send EB chains. 

fH Uuz (Co!!!!!orq-Session Segunting: This 
specifies whether the PLU supports receiving 
seg•ented BIUs on the session. Support for 
session-level segmenting of BIU& is 
i11Plet11ent•tion-dependent. When both the PLU 
1nd SLU specify in the BIND request and BUil 
response. respectively. that they support 
session segmenting, then RU& can be segmented 
on the sessions otherwise. segmenting of RUs 
Nill not occur. Session segmenting affects 
the specifications of the •axi--size RUs 
sent by the PLU and SLU. For llOre details, 
see the descriptions of the TS usage parame­
ters. t1axillK.ll!-Size RU Sent by PLU and 
Haxill\m-Size RU Sent by SLU. 

fH Yl!sm (Col!!!!ODl-FM l:!!w!.!!: ~ This 
specifies that FH headers are used on the 
session. 

fH !.1.1.!sm ( CO!l!!OD >-Bracket Yl.!9.I !!lSI bu! 
.l:t!..bu, This specifies that brackets are used 
on the session and that the bracket reset 
state for the &ession is in-bracket UNB>I 
that is, the session is in the in-bracket 
state following successful activation. 

fl! YllSl! (Common !:§racket Ier1i ntt j on fhWu. 
This specifies that rule 1. conditional ter­
•ination. Mill be used on the session. The 
sender of the end-bracket (CEB> chain deter­
•i nes Mhether the bracket is to encl condi -
tionally or unconditionally. If conditional. 
the receiver is allowed to reject the 
end-br•cket chain and thereby keep the ses­
sion in the in-bracket state. 

fl! Yuml ((;opon >-Bllt) 13esp90se 9\Jf!u i ng: 
This specifies Nhether the SLU is per11itted 
to queue (hold) the BIND response for an 
indefinite period. tflether the PLU per•its 
the SLU to queue the Biii> response is 
implementation-dependent. If the PLU does, 
then the per11ission is installation-specified 
for each p•rtner SLU. All sessions Nith the 
same SLU have the same specification for this 
parameters however. the spec:ific•tion •ay 
differ for different SLUs. 

fH Yu.a IC0!1!1!10Q !-Normal-Flow Send(Receive 
U9sl!J, This specifies that the send/receive 
protocol for Ftt> requests on the nor•d flow 
is half-duplex flip-flop. 

fl! Yu.alt ICommon>=Becoypry RtsP9115jbiljjy; 
This specifies the responsibility for recov­
ery frOI! an error within the session. Sym­
•tric recovery is the only value defined for 
LU 6.2. The sender of a negaUve response is 
responsible for recovery. regardless of 
lilhether the sender is the PLU or SLU. 

fH 1J.um! J.G2!!'f!2nl=:Co0tentjon Himer/lgser: 
This specifies Nhether the PLU or SLU will be 
the contention winner for the se&&ion. The 
contention winner is the brackets first 
speaker, and the contention loser is the bid-

der. The specification of cont11ntion Ninner 
or loser depends on Nhether the session is a 
p01rallel or single session, as indicated by 
the PS us•ge paraaeter, Parallel Session Sup­
port, in the Biii> request. 

For a parallel session, the PlU specifies 
that it is the contention winner if. for the 
110de na••• the number of •ctiva sessions for 
Wiich the PLU is the contention Ninnar is 
less than its ••>< i llll•U otherwise, the PLU 
specifies the SW as the contention winner. 
The PLU's •axillUlll nuniber of contention-Minner 
sessions is deterained fro• the last 
change-nUlllber-of-se.ssions protocol executed 
by the two LUs. 

For a single session, the PLU specifies that 
H is the contention Minner if, for the Mode 
na111e, the SLU is to be the contention losers 
otherwise, the PLU specifies the SLU as the 
contention winner. For each llOde na11e •sso­
ciated with a single-session, the contention 
winner (PLU or SLU! for the session is 
installation-specified. 

fH Yl.!99 CCo!!!!!!on!--Htlf-pyplex Flip-FlQR 
bu! States; This specifies the h•lf-cluplex 
flip-flop reset st.tes for the PLU and SLU 
following successful activ•tion of the ses­
sion. The reset states are .lmSf for the PLU 
and res:ejve for the SLU1 that is, the PLU 
sends first. 

!:! Vsaaa==Sttaing !2t seeond•rv IG 19 Primary 
l£l This specifies whether pacing of 
normal-flON requests frOI! the SLU to the PLU 
occurs in one stage or MOre than one stage. 
The specification is taken from the CINIT 
request for the session. See "Chapter 6.2. 
Transmission Control" for details on 
session-level pacing. 

ll Usaqe=Seeondtrv I£.!..i &rut Himf2!!! !ll.4!.i. 
This specifies whether pacing of nor•al-flON 
requests sent by the SLU will occur. If 
one-stage pacing frOll the SLU to the PLU is 
specified for the session, this specification 
is the same as that for the primary TC's 
receive window size. Otherwise, this spec­
ification is taken fro• the CINIT request for 
the session. 

U Vsage=Secondary .K.'...! Receju ~ 1liD.i. 
This specifies whether pacing of nor•al-flON 
requests received by the SLU will occur. The 
specific•tion is taken frOll the CINIT request 
for the session. 

!:! VSage-M!xjmum-Size BY §mJ.:t ~ ~ This 
specifies the 111axh1um-size RU that the SLU 
Hy send to the PLU on the nor•al flow. The 
PLU sets this value to the •axilll\.8 size it 
allows for received RU&. All i111Plementations 
per•it the specification of a •a><i•U11-size RU 
of 256. 

The specification of the 111&><i--size RU is 
between • lower bound and an upper bound, 
Nhich are installation-specified. The lower 
and upper bOU'lds ctn range between 8 and 
491420, with the lower. b°'-W\d less than or 
equal to the upper bound. The particular 
values allo1o1ed for the lOMtr bound •nd upper 

Chapter 4. LU NetNOrk Services 4-21 



botn:I ia ;llf)launtation-ctep_.\Clent, except 
that •ini- lower bouid is less thiln or 
equal to 256 and the ••><i ... upper ~ is 
greater than or equal to 256. 

If session seg11enting can occur for the ses­
sion, the upper bound· used ;. the 
installation-specified value. Otherwise. the 
upper bound used is the •ini .. of ( ll path 
control'• M><h11.11-size RU for the PLU node 
and C2 J the installation-specified value. 
The lower bound used is a!Nays the 
installation-specified value. 

Based on the lONer and upper bounds and on 
the CINIT for the session, the PLU sets the 
value: for· the •><i111.a-size RU sent by SLU aa 
follows : 

• If the value speci f;ed in CINIT is 
bet1111een the loNer and upper bCMlds, the 
PW copies the value frOll CINIT into 
BIND. 

• If the v•lue spec if i ed in CINIT is less 
thliln the lower bound, the PLU set& the 
vdue in Bit«> to the lotiier bound. 

• If the value specified in CINIT is great• 
er than the upper bouid, or the value in 
CINIT is not specified, the PLU sets the 
value in Bit«> to the upper bound. 

D Ustqe=Hai<il!U!!!-Sju !Y .boi ~ fJJlJ. This 
specifies the ••><i--size RU that the PW 
HY sand to the SLU on the nornl flOM. The 
PLU sets this value to the •a><i11U11-size RU it 
can send. The algorithm used for deter•ining 
the .. xi--size RU sent by the PLU is the 
same as thlilt used for deter•ining the 
!A><i-·size RU sent by the SLU. 

D Usaca=Uaging !m: Priury 1' !Q facondary 
JJ:.i. This specifies whether pacing of 
nornl-flow requests frOll the PLU to the SLU 
occurs in one stage or 110re than one stage. 
The specification is taken from the CINIT 
request for the session. 

D Usaca=Priury Ik!.I ~ ~ .l.i.D.i. 
This specifies Nhether pacing of nor•al-flOM 
requests sent by the PLU wUl occur. If 
one-stage pacing from the PLU to the SLU is 
specified for the session, this specification 
is the HH as that for the secondilry TC's 
receive NindoN size. Other1'tise, tMs spec­
ification is taken fro11 the CINIT request for 
the session. 

D \,Jnge=Pripry IG..!.l R9cejve lti.!:lslsm liiu.l 
This specifies Nhether pacing of nor•al-flow 
requests received by the PLU will occur. The 
specification is baaed on the CINIT request 
for the session and an installation-specified 
value, as follONS: 

• If the CINIT for the sess;on specifies a 
primary TC's receive NindOM size of o, 
this specification is taken from the 
installation-specified value. 

• If CINIT specifies a N;ndow size other 
than 0 and the hwtallation-specified 

value is o, this specification is taken 
f.-- CINIT. 

• If CINIT specifies a wh~ size other 
than 0 and the installation-specified 
value is also other than o, this specifi­
cation is t•ken from the •inilllUm of the 
value in CINIT and the 
installation-specified value. 

A NindoN size of 0 •ans the PW Nill receive 
RU. uipaced. 

fl Prqfilt=PS Yusi! for11t: This specifi• 
the PS usage for•at. The Basic for•t is the 
only PS usage for•at defined. 

fl Profilt=LU :D.l.al This specifies type-6 
as the LU type. 

fl llsage=LU ~ ~ This specifies 
the level of LU type-6. Level 2 is the W 
type-6 level defined for LU 6.2. 

I fl Uuge=S9curity Managtr Rtceiye fWICtiODt 
I This specifies lllhether the PLU supports a 
I security •anager for receiving a user-ID, 
I password or already-verified indication, and 
I profile-ID on FtlH-5 Attach coaands frOll the 
I SW. 
I 
I fl Vsaca=Already Verifjt!J Inclic1tqr Ac;cept-
1 .!!l£Bl This specifies Nhether the PLU Nill 
I accept the User-ID Already Verified indi-
1 cation on FHH-5 Attach cOllllands frOll the SW. 

fl Usaca=Synchr90jzation YDl.l This speci­
fies the level of synchronbation support for 
the session. One of two levels of support 
•ay be specified: 

1. Confi r• 
2. Confir•, Sync point. and Backout 

The level of support specified for the ses­
sion deter•ines the synchronbation levels 
that can be specified for a conversation 
allocated to the session. The synchroniz1-
tion level. "None" (not listed,, can be spec­
ified for a conversation allocated to any 
sessions therefore. "None" is not explicitly 
specified for the t.ession. 

All LU implaentations support the Confir• 
leveh support for Sync point and Backout is 
impluentation-dependent. If the PLU imple­
mentation supports Sync point and Backout, 
the speci ffoation of support-level 1 versus 
support-level 2 is installation-specified for 
each llOde na11e. All sessions with the H• 
•ode na•• have the sue specification for 
this parameter I however, the specification 
.. Y differ for different llOcle nalleS. See 
"Chapter s. 3. Presentation Services--Sync 
Point Services Verbs" for details about Sync 
point and Backout. 

fl lJ&age=-Resp005jbilitv i9.t Sission Rejniti-
11ian;. This specifies the responsibility for 
reinitiation of a session follONing a session 
outage. This paranter applies only to su­
sions for '°"ich parallel sessions and change 

4-22 SHA For .. t and Protocol Reference Manual for LU Type 6.2 



number of sess1cns <CNOS> aire not supported. 
Four levels of responsibility are defined: 

1. Operator controlled. 
2. Pri11ary half-sess;on will reinitiate. 
3. Secondary half-session will reinitiate. 
4. Either half-session may reinitiate. 

Operator controlled reinitiation meana nei­
ther LU will automatically attempt to reini­
tiate the session. The particubr level of 
responsibility for rei ni ti at ion of the ses­
s i o.-operator controlled or otherwis~an 
be i 111Plementat ion-dependent or 
installation-specified. 

Other events •ay cause a session to be acti -
vated, independent of the reinitiation 
responsibility. For exalll!ple, if the 
resources ••Mger has queued a request for 
<allocation of a conversatior'lt the resources 
unager 111ill request activation of a session 
when LNS informs the resources •anager that 
the current session has been deactivated. 

~ .!J:!.!9!t=-Ptrpllel-Session Supportj This 
specifies whether parallel sessions are sup­
ported betNeen the PLU and SLU. Support for 
parallel sessions is 
i 111plenrenta ti on-dependent. If the PLU i niple­
nntat ion supports it. the indication of sup­
port versus no support is 
installation-specified for each partner SLU. 
All sessions with the HM SLU have the sa•e 
specification for this parameter; however, 
the specification .ay differ for different 
SLUs. 

~ U!5•ae==Change-Nymber-Qf-Session1 Support; 
This specifies Nhether the PLU and SLU sup­
port the change-number-of-sass ions ( CNOS I 
protocols, Nhich hicludes exchange of the 
Change NuMber Of SeHiON GDS varhble. Sup­
port for CHOS is hiplementation-depenclentJ 
hoti!ever, if parallel sessions are supported, 
CHOS is also supported. If the PLU implemen­
tation supports CNOS, then the indication of 
support versus no support is 
installation-spec;fied for each partner SLU. 
All sessions with the same SLU have the sa•e 
specification for this par~111eteri however, 
the !"pecification uy differ for different 
SLUs. 

Cryptography Pption1; This specifies Nhether 
session-level •andatory cryptography is sup­
ported for the session. and, if so, the 
cryptography options to be used. Support for 
session-level mandatory cryptography is 
i111ple•entat1on-dependent. If the PLU ,i111ple-
1H11htion supports it. Ult! indication of sup­
port versus no support is 
installation-specified for each llode na111e for 
the session, and also depends on lllhether the 
CIHlT for the session specified session-level 
mandatory cryptography. If both the mode 
rni•e and the C!NIT for the session indicate 
support for session-level 111andatory 
cryptography, then the PLU specifietlli in BIND 
that it 'is supportedi otherwise. the PLU 
specifies it is not 5upported. All sessions 
with the same Mode name have the same spec­
ification for this paraMtter; however, the 
specification 111ay differ for differll!nt SLUs. 

The cryptogr•phy options include • length 
parameter. The PLU incHcates that 
session-level cryptography is not to be used 
for the session by specifying O for the 
length of the cryptography options. 
Session-level mandatory cryptogr;aphy is the 
only session-level cryptogr•phy defined. See 
"Sessions Ni th Cryptography" in "Chapter 6.2. 
Transmission Control" for additional infor•a­
tion. 

Prh1ary .LY t!!msu This specifies the naMe of 
the PLU for the session. The PLU name is 
always specified for an SSCP-medi •ted ses­
sion. Whether it is specified for • 
PNCP-mediated session is 
implementation-dependent. The PLU omits the 
PLU Mme by specifying 0 for the length of 
the PLU na•• «applicable only to 
PNCP-medi;ated sass ions>. 

The PLU na11e is taken frot1 the CIHIT for the 
session. '11\en the SW initiates the session. 
the PLU na•e is the uninterpreted n<11111e fro• 
the !NIT-SELF. ~ the PLU or a third-party 
LU initiates the session, the PLU na .. is the 
netNOrk PLU name c:leri'Yed by the CP. 

This para11eter is not used by UIS. Instead, 
LNS uses the fully-qua Ii fi ed Pl..U network na111e 
carried in the user data to identify the PLU 
to the SLU. 

YiJtt n!.i!U This specifies, in a structured 
for.at, further para11eters for the session. 
LNS makes use of the user data in the Bitl> 
request and response• only J UIS does not 
supply or examine the user data in the 
session-services RUs. 

Figure 4-4 shows the for.at o'f the user dat;a 
and the preceding length. The user-data Key 
is always specified ilS X'00't which indicates 
structured subfields follow. 

User Data ----->1 
..----...-----....---------....--1-r--------. 

.. L_eng--th--~-~-~_o_• ... Sub __ f_i_e_1d_1_,__·:• tswf i eld n I 
I 

I 

I 
I ' ' 

Value 

' ' 

Figure 4-4. For111at of User Data 

Each subfield 'includes • length and is iden­
tified by 11 subfield nunber folloNing the 
length. '11\en 110re than one subfield are 
included. they ;appear in ascending order by 

Chapter 4. LU Network Services 4-23 



al.bfield f'IUIP/DCH'. 

The structured subfh11lds that the PLU sends 
in Bltf> are: 

x•oo• 
X'02' 
X'03' 
X'04' 
X'll' 

lklfor..atted Data 
Hode Name 
Session-Instance ID 
Fully Qualified PLU Network NaBe 
Randoll Data 

A T2.1-node ;mpleinntation that contains a 
single LU and a single link connectiofh that 
2>es not support parallel sessions and CMOS, 
doe'5 not support the synchronization level 
for Sync point and Backout, and does not sup­
port LU-LU verification, ny o•it all 
user-data sl.bfields. The PLU Olllits all User 
Data subfields either by specifying 0 for the 
length of the user cklta, or by specifying 1 
for the length and specifying user data con­
sisting only of the user-data Keyt the choice 
is h1pluentat ion-dependent. 

In ger1411ral, the PLU ny 011it one or 11are sl.b­
fields; see description of individual al-b­
fields for iaore infor•ation. If it does, the 
entire s\bfield, including its length, is 
Ollitted. 

Details of each subfield follow. 

• SybfjeJd X'QQ'=::Ynfpr!!f!Uesf D.i!il This 
subfield carries installation-specified 
data. Support for this subfield is 
i-.plementation-dependent. 

• !M>fjtJd X'oC'=JjocJe li!m.tu Hode nau 
specifies the type of service required 
for the session. Hode naus are 
installation-specified. The sallMI aode 
names are configured at both the PLU and 
SLU for all sessions betNeen the two LUs. 
The instdlation-specifh1d configuration 
for each Mede name associate that mode 
na11e .. ith the set of session properties 
to be used for all sessions for that llOde 
name. For a given session, the PLU uses 
the mode nalN fro• CINIT for the Mode 
nan in the Mode Name subfield. The par­
ticular set of session properties associ­
ated .. ; th a llOde nau is 
illlf)lementation-dependent. 

A llOde nae Hy be null I thitt is, a null 
llOCle nan is • valid •ode nan. When 
specifying • null mode n••• the PLU 111ay 
Olllit the Mode Nae subfield entirely. 
Alternatively, the PLU ••Y specify only 
the length and number for the null 110de 
name, in Nhich case the length is 1, or 
it .. Y specify a llOde naaie of all space 
lX'40') chitracters, Hhich is equivalent 
to a null MOde nan. The particular for• 
thitt the PLU uses to represent a null 
llOde nan 'is f11plenntation-dependent. 

A T2.l-node i11ple111entation that contains 
a single LU and • single link connection, 
and that does not support parallel ses-

•ions and coos. ..Y C11111i t the Mode Na• 
subfield entirely. 

• iWfield x•n•-sessjon-Inshns;e Iclenti­
lli.tl The ses11don-instance IO is used to 
uniquely identifl;I' the session frOll •monsi 
.ultiple sessions between the PW •nd 
SLU. Using the session-instance ID, con­
trol operators at the PLU and SLU c•n 
coordinate the diagnostics ctraces, for 
ex111111ple) or clean-I.fl procedures for a 
specific session. lhe session-instance 
ID is used also during resynchronization 
of a conversation after session outage. 

The LU that is the priaary LU for a given 
session generates the session-instance 
ID. The first byte of the 
session-instance ID is used to differen­
tiate the IDs generated by one LU fro• 
those generated by the other LUJ this 
ensures uniqueness of all the IDs used 

o bcetween two LU&. The value of the first 
byte is either X'FO' or x•oo•, depending 
on which LU has the greater fully quali­
fied LU network na1ae. The IDs generated 
by the LU Ni th the greater fully qual i -
fied LU network nan have a first byte of 
X'FO'. The appropriate value (X'FO' or 
X'00') of the first byte is deter•ined by 
the SLU and sent in the Bltt> response. 

The PLU specifies the session-instance ID 
when parallel sessions and CNOS are sup­
ported, when the synchronization level 
for the session per11i ts Sync point and 
Backout, or when the session-instance ID 
is used as part of an 
i11ple111entation-dependent function. Oth­
erwise, the PLU omits the 
Session-Instance Identifier subfield. 

• Sybfitlsl X'Q4'-Fy1Jy Qualifies! f.lJI 1:11.1: 
tm!:A .t:lu!u The fully qualified PLU net­
work nae allows the PLU to identify 
itself to the SLU. The fully qualified 
PLU network name is 
installation-specified at both the PLU 
and SLU. 

An LU resolves BIND-race conditions by 
co11paring the fully qualified PLU network 
name it sent in the BIND request Mi th the 
fully qualified PLU neti«>rk Mme it 
received in a BIND request sent by the 
partner LU. BIND race conditions are 
discussed in •ore detaH in the first 
part of this description of the BIN> 
request. · 

A U.1-node implementation that contains 
a single LU and a single link connection, 
that does not support parallel aess ions 

I and CNOS, thitt does not support the syn-
1 chroniz:ation level for Sync point and 
I Backout • and thitt does not Sl.flport LU-LU 
I verification, ••Y have no fully qualified 
I PLU network name. In this case, the PLU 

011its the Fully Qualified PLU Network 
Name subfield fro• the BIND request. 

I • Sybfidsl >$' 11 '-Btodom ~.!U This sub-
1 field is used when LU-LU verification is 
I active. See "LU-LU Verification Data" on 



page 4-5 for Mare ;nforution on the 
fU'\Ction of rando• data. 

Yu.t RtaUUS «;orrelation: Th;s specifies the 
user request correlatfon CURC> value for the 
session llllwn the SLU ;nitiates the sess;on 
C SLU = ILU >. The SLU uses the URC to corre­
late the BUI> Nith the INIT-SELF it sent. 
When the SLU does not ;nitiate the session, 
the PLU o•i ts the URC frOll BIND. The PLU 
aits the URC by specifying 0 for the length 
of the URC. 

&ecormarv J.Y tl!m!u This specifies the SLU 
na.. used to route the Bitl> to the intended 
SLU for the session. For PNCP-..ct;ated sas-

ASPC Bii-ii > 

FlON: fro. SLU to PLU CExpedited) 

A positive response to Bii-ii is sent fra11 an 
SLU to e PLU to complete activation of a ses­
sion between the LUs. The positive Bii-ii 
response has an extended forut that is the 
saMe as the Bii-ii request. 

""en the SLU receives a 811-11 request that is 
acceptable (for example, there are no for•at 
errors and the SLU's session li•it is not 
exceedec:I>, the SLU sends back a positive Bitl> 
response containing the complete set of ses­
sion paraHters. The specifications for the 
parameters can ••tch those received in the 
Bii-ii request, or they can differ, Nhere the 
SLU chooses different options. The parame­
ters for Nhi ch the SLU may choose different 
options are referred to as negotiable para .. -
ter11. 

The specifications for the 11atching para•­
ters are taken directly from the BIND 
request. The specifications for the negoti­
able para•ters are deter•foed by the sw. 
based on its implementation-dependent sup­
port, on the installation-specified values 
currently in effect for the para111eters, or on 
the BIND NtqUeSt, depending on the particular 
paranter. 

The follONing descr;pt;on of the 
Bii-ii-response paraHters indicatas the spec­
ifications that are used for the session and, 
Nhere applicable, hON they are deter•ined. 
See the cle11cription of the corresponding 
parameters in the BIND request for details of 
the fUlCti on and use of the parameters. 

forut; The SLU specifies fornt o. 
lltli!Sll The SLU specifies negotiable. 

ft! Profilti The SW spec;fies FH profile 19. 

II Profilti The SLU spec;fies TS profile 7. 

sions, the PU uses the SLU MMe to route the 
Bii-ii to the approprhte LU in its node. For 
SSCP-mediated sess;ons, the PU \mes the des­
tination address in the Tlh instead of the 
SLU name, to route the BIND request to the 
appropriate LU in its node. 

A T2. 1-node i mplementaU on that conta hw a 
single LU and a single link connection, that 
does not sypport parallel sessions and CHOS, 
and that is connected over the aingl• Hnk to 
another T2.l-node iinpleuntation containing a 
singl• LU and single link connection, •ay 
Olli t the SLU name. The PLU omits the SW 
naM by specifying O for the length of tha 
SLU na•e. 

ft! Y!.iSH! f PLUl=Cbainina Yul The SLU apeci­
fies 11Ultiple-AU chains. 

fl! Yum « PLU >=Rawest Cgntcol ttesf9l The 
SLU specifies i .... diate-requeat llOde. 

f.tl Yli9I CPLU>=Cbtjn RMp9011 protqcql: The 
SLU specifies definite- or exception-response 
requested. 

f.tl Yll9I ( PLU >-Sencl fnsl Bracllet: 
specifies EB is not sent. 

The SW 

ft! .uu.mt (:ilUl-Chainiog Yul The SLU speci­
fies .ultipl•-AU chains. 

f.tl Yusm fSLU>-Reauut 'ootroJ ~ The 
SLU specifies ;1111ediate-request llOde. 

fl! Ull9I (SLU>-thain Respgns1 Prqtqcql; The 
SLU specifies definite- or exception-response 
re"°'ested. 

fl! Yli9I fSLUl-Send !Dsl Bracket: 
specifies EB i• not sent. 

The SLU 

ftl YwlSI c COl!!l!!OO >-Sess i,OQ lacmnti na: The 
SLU specifies whether it supports receiving 
segmented RUs on the session. 

ftl YJ.i9!1 ( Com11on )..:._FM lfDskI: J.1.umu The SLU 
apecifies FH headers are used. 

f.t1 UU99 { CQ!l!l!!OO )=8r§!Cket UUSll !Dd bui 
l1l1su The SLU specifies br11ckets are used 
and the brack•t reset state ia in-bracket 
CINB>. 

ftl Uu.99 CCommoo>-Br1cl!.eS Jcrmjntjion BYW 
The SLU specifies rule 1, conditional ter•i­
naUon. 

I fl! Mum f'21J!!!QOl-BIND R11pon19 !utuina: 
I AlNays set to o. 

Chapter 4. LU Nebaork Services lt-25 



f.!:! Usage (Common I-Normal-Flow Send/Receive 
Mode: The SLU specifies half-duplex 
flip-flop. 

FM Usage !Commonl-Recovery Responsibility: 
The SLU specifies symmetric responsibility. 

FM Usage !Commonl-Contention Winner/Loser: 
This specification depends on whether the 
session is a parallel or single session, as 
indicated by the PS usage parameter, Parallel 
Session Support, in the BIND response. For a 
parallel session, the specification is taken 
from the BIND request-the SLU accepts, and 
does not change, the specification of the LU 
that is to be the contention winner for a 
parallel session. 

For a single session, the SLU specifies that 
it is the contention winner if, for the mode 
name, the SLU is to be the 
installation-specified contention winner; 
otherwise, the specification is taken from 
the BIND request. 

FM Usage (Common J-Hal f-Duplex Flip-Flop 
Reset States: The SLU specifies send for the 
PLU and receive for the SLU. 

TS Usage-Staging for Secondary TC to Primary 
~ Taken from the BIND request. 

TS Usage-Secondary TC's Send Window Size: 
Taken from the BIND request, as follows: If 
the BIND request specifies one-stage pacing 
from the SLU to the PLU, this specification 
is taken from the primary TC's receive window 
size; otherwise, this specification is taken 
directly from the secondary TC's send window 
size. ~ 

TS Usage-Secondary ~ Receive Window Size: 
This specification is based on the BIND 
request for the session and an 
installation-specified value associated with 
the mode name, as follows: 

• If the BIND request for the session spec­
ifies a secondary TC's receive window 
size of 0, this specif i ca ti on is taken 
from the installation-specified value. 

• If BIND specifies a window size other 
than 0 and the installation-specified 
value is o, this specification is taken 
directly from BIND. 

• If BIND specifies a window size other 
than 0 and the installation-specified 
value is also other than o, this specifi­
cation is taken from the minimum of the 
value in BIND and the 
installation-specified value. 

TS Usage-Maximum-Size RU Sent h.'il SLU: The 
SLU specifies a value between a lower bound 
and an upper bound, as follows: 

• If the value specified in the BIND 
request is between the lower &nd upper 
bounds, the value in the BIND response is 
taken from the BIND request. 

• If the value specified in BIND is less 
than the lower bound, the SLU sets the 
value in the BIND response to the lower 
bound. 

• If the value specified in BIND is greater 
th;m the upper bound, tlv SLU sets th'' 
value in the BIND response to the upper 
bound. 

TS Usage-Maximum-Size RU Sent h.'il PLU: The 
SLU specifies a value between a lower bound 
and an upper bound, as described above for 
the maximum-size RU sent by the SLU. 

TI! Usage-Staging for Primary CPMGR !Q ~ 
ondary CPMGR: Taken from the BIND request. 

TI! Usage-Primary TC's Send Window Size: 
Taken from the BIND request, as follows: If 
the BIND request specifies one-stage pacing 
from the PLU to the SLU, this specification 
is taken from the secondary TC's receive win­
dow size; otherwise, this specif i ca ti on is 
taken directly from the secondary TC' s send 
window size. 

TS Usage-Primary TC's Receive Window Size: 
Taken from the BIND request. 

PS Profile-PS Usage Format: The SLU speci­
fies basic format. 

PS Profile-LU IvR!il 
type-6. 

The SLU spec i fies LU 

PS Usage-LU Type-6 bevel: The SLU specifies 
level 2. 

PS Usage-Security Manager Receive Function: 
The SLU specifies whether it supports a secu­
rity manager for receiving a user-ID, pass­
word or already-verified indication, and 
profile-ID on FMH-5 Attach commands from the 
PLU. 

PS Usage-Already Verified Indicator Accept­
~ The SLU specifies whether it will 
accept the User-ID Already Verified indi­
cation on FMH-5 Attach commands from the PLU. 

PS Usage-Synchronization Level: The SLU 
specifies the synchronizaHon level for the 
session, as follows: 

• If a session between the SLU and PLU is 
already active for the mode name, the SLU 
spec i fies the same level of support as 
specified for the active session. 

• If no sessions between the SLU and PLU 
are active for the mode name and the BIND 
request specifies Confirm, Sync point, 
and Backout, the SLU specifies the 
installation-specified value associated 
with the mode name for the session. 

• If no sessions between the SLU and PLU 
are active for the mode name and the BIND 
request specifies Confirm, the SLU speci­
fies Confirm. 

PS Usage--Responsibilitv for Session Reiniti­
ation: The SlU specifies the responsibility 

4-26 SNA Format and Protocol Reference Manual for LU Type 6.2 



for reinitiation based on the 
hwtallation-specified responsibility and on 
the specification in the BIND request for the 
session. This does not apply Nhen parallel 
sessions are supported. 

The ntrhc in Figure 4-5 shoNs how the SLU 
derives the specification for the BIND 
response. The rONS of the •atri>< give the 
installation-specified responsibility and the 
columns give the responsibility specified in 
the BIND request. The cells of the ••tri>< 
give the resporn;ibHity that the SLU speci­
fiu for the Bitl> response. 

RONS indicate installation-specified 
responsibility. 

Col\llllnll indicate responsibility 
received in Bltl> request. 

'---> 

y 

Operator 

Priury 

Secondary 

Either 

• Cells indicate responsibility 
sent in Bitl> response. 

Oper- Pri- Sec- Either 
a tor 11ary ondary 

Oper- Oper- Oper- Oper-
a tor a tor a tor a tor 

Oper- Pri- Either Pri-
a tor 11ary ury 

Oper- Either Sec- Sec-
a tor ondary ondary 

Oper- Pri- Sec- Either 
a tor •ary ondary 

Figure 4-S. Reinitiation Responsibility 

fl Y19qp=Parallel-Session Sypport: The SLU 
specifies parallel-session support for the 
session, H follONS: 

• If a session betNeen the SLU and PLY is 
already active, the SLU specifies the 
saine support as specified for the active 
session. 

• If no sessions bet ... en the SLY and PLU 
are active and the BIND request specifies 
parallel sessions are supported, the SLY 
specifies the installation-specified val­
ue associated Mith the PLU. 

• If no sessions betMQn the SLU and PLU 
are active and the 8Itl> request specifies 
parallel sessions are not supported, the 
SW specifies parallel sessions are not 
S\4)PC)rted. 

fl lls•qe=-Cbange-Nymber-of-Jessioos Support; 
The SLU specifiu support for the i.ae of 
change-l'\l.lllber-of-sessions tCNDSJ protocols, 
as follows: 

• If • session bet11teen the SW and PLU is 
tlre.ady active, the SLU specifiu the 
sa11e support as specified for the active 
session. 

• lf no sessions between the SLU and PW 
are active tnd the 8Itl> request specifies 
CNOS is supported, the SLU speciflu the 
installation-specified value associated 
Mith the PLU. 

• If no sessions betti1een the SLU and PLU 
are active and the Bitl> request specifies 
CNDS is not •upported, the SLU specifies 
CNOS is not supported. 

Ccvetoaraptw Optj ons; Taken fro• the BIN> 
request. 

Primary .LU~ Al111ays otnitted. 

J.1u.t J2!.1tl The SLU specifies further par•-­
ters for the session, by 11eans of the User 
Data structured slbfields. If the SW 
receives a Bitl> request containing a subfield 
it does not recognize, it ignores the s~ 
field and clces not send i t in the BitG 
response. 

The User Data slbfields that the SLU sends in 
the BIND response are: 

Number Name 

x•oo• 
X'02' 
X'03' 
X'05' 
X'll' 
X'12' 

Unforlliltted Data 
Hode Na• 
Session-Instance ID 
Fully-Qualified SLU Network Na .. 
Randoll Data 
Enciphered Oata 

A T2.1-node impluentaUon that contains a 
single LU and a single link connection, that 
does not support parallel sessions and CNOSt 
does not support the synchronization level 
for Sync point and Backout, and does not.sup­
port LU-W verification, uy oiait all User 
Data slbfields. ' 

In general, the PLU 11ay 011it one or more sU:>­
fields1 He description of indivicl.ial • .....,. 
fields for 1110re infor1ation. If it does, the 
entire s...,field, including its length, is 
ot1itted. 

Details of each slbfield follON, 

I • SWfield X'OO'=Ynfor•1t:11sl 111.W This 
I s...,field carries installation-specified 
I data. ~rt for this swfield is 
I htpl....,tation-dependent. 

• §!Ji>field x•02 1=119$h tJ1m!u Taken frOll 
the Bitl> request. 

• SWfield K'OJ'-§essim Inshoc• Jcfentj­
ii.Ju:J. Taken frowt the BitlJ request. 
except that the SLU changes the value of 
the first byte, if necessary, to take the 
session-instance ID unique. The SLU sets 
the first byte to X'fO' if. the PLU's ful­
ly quali fiad LU netNOrk naM is greater 
than its OWi. DtherNise, it sets the 
first byte to x•oo•. 

Chapter 4. LU Hettcork Services 4-27 



• lubfitld x•os•~Fully !i!utlifi•d 11J1 lit!: 
~ !:t1!mJ. Tht fully Cl\Nllified SLU net­
NOrk na111 dlONS the SLU to conf i ra its 
ic:IMtify to the PW. Tht fully qualified 
SW netMO.-k naH is 
installetion-speclfied •t both tht SLU 
•nd PLU. 

All T2.1-noclt products c•n receive • BIN> 
request Nith the fully q\Nllified PLU net­
NOrk Niii subfield otaittad. If tht SW 
receives such • BIN> request, it uses a 
W'lique cfefeult fully qualified PLU net­
NOrk MIMI fr' order to locally identify 
the PLU. 

A T2.1-nodt i11PlHtnb1tion that contains 
• single LU •nd • single link connection, 
thtt does not support p•r•llel sessions 
Ind CNQS, that dots not support the syn­
chronization level for Sync point and 
Backout, and that does not support LU-LU 
verificetion, ••Y have no fully Cl\Nlli fled 
SLU netNOrk na•. In thi a case, tht SLU 

lRitl) SESSION «laltl)J 

FlON: Fro11 LU to LU (Expedited> 

lleltlJ requests the partner LU to deactivete 
the LU-LU session. Tht U.111> indic•tes 
definite-response requested. 

Tht LU can send en U'eltl> request as • result 
of en action et the LU lone that its CP does 
not initiate>, or as a result of receiving a 
CTERH or CLEANUP request frOll its CP. Send­
ing UNUtl> •• a result of local ection is the 
normal cese for ter•inating SSCP-.ediated 
sessions •ncf the only case for ter•inating 
PNCP-mecliated sessions. 

Sending UNBIN> as • result of receiving • 
CTERH or CLEANUP request occurs when an LU 
othtr than one of the session partners 
requests ter•inttion of the LU-LU session, or 
NW\ one of the session partners sends its 
SSCP • TERH-SELF recp.iest to terminate • 
pancfing-•ctive or queued HHion and the SSCP 
for tht PLU has already sent CINIT to the 
PLU. 

Tht LU receiving the U.Itl> request can send 
bltck • pos i U ve or negat i Vt response to the 
UN8It-ll. If the response is positive 1 both 
Ws send their respective CPs • SESSEN> 
NtqUest. If the response is negative, the 
session •s SSCP-Hdi•ted, end the PLU sent 
the lleIND request, the PW sends the SSCP en 
UN8ItlJF request. 

The W s.m back • negative response if tht 
forNt of the lRitl> request is in error. 

•its the Fully Qualified SLU NatMOrk 
NaH subfield from the Bitl> response. 

• fiubfjelsj X' 11 '=Banclom ll!ial Thi• •ub• 
field is Lmed Mhtn W-LU vvffication is 
•ctive. Set "LU-LU Verification Data" on 
page 4•5 for more infor .. tion on the 
f1M1Ction of random data. 

• Subfield x•u•-enctphererJ b.1U When 
the pri•ary W receives the RSPlBitl>J, it 
COllP•tes the received enciphered data 
Mith its copy of the enciphered data that 
it has enciphered using the HM randotl 
data, its copy of the W-LU passMOrd, •nd 
the DES algorithll. If they are identi· 
c•l, the pri .. ry LU h•s verified that tht 
SLU has the correct LU-LU passNOrd. 

Ullc ReguesS Correlation fills!.i. Taken fr011 
tht Bitl> request. 

I ltcgndary JJI um.;. AlllHlys 011itted. 

Otherwise, the LU sends back a positive 
response, even if it has no LU-LU 
half-session to Nhich it can correlate the 
UNBitl> request. 
A description of the para•ter in the lMBill> 
request follONS. 

bal This specifies the type of LU-LU ses­
sion doctiv•tion requested. The LU speci­
fies nor11al deactivation NW\ it is 
deactiveting the session nor11aUy, that is, 
not as a result of an error condUion. In 
this case, the two LU& stop all •ctivity on 
the session prior to deactivating it. Activ­
ity is stopped by exchanging BIS requests. 
s .. "Chapter 6.1. Date FlON Control" for • 
description of tht BIS request, •nd "Chapter 
3. LU Resources Hanager" for details of it• 
Lat. 

The other types of session de•ctivation are 
associated Mith error conditions. Solle of 
these types of session deactivation •re 
c•used by session outege notification (SON). 
Ste "Session Outage and Session Reinitiation" 
on page 4·4 for 110re infor•ation •bout SON. 

One of the other types indicates a foreat or 
protocol error. When tMs type is specified, 
sense dat• is also included in the lllBitl> 
request. The sense data identifies the ru­
son for the forut or protocol error. 

4-28 SHA For .. t •nd Protocol Reference Henual for LU TYP9 6.2 



MAINTENANCE-SERVICES RU'S 

This section describes the 
maintenance-services requests that LNS sends 
and receives. These RUs belong to the 
FM-data category of network-services RUs. 

Preceding the individual descriptions is a 
list of the RUs. listed with each RU is the 
number of the page on whlch the description 
of the RU begins. In addition, Figure 4-6 on 
page 4-30 shows the RH formats for the 
maintenance-services requests and responses 
that LNS sends and receives. 

Each RU description includes the RU flow and 
a discussion of the function and use of the 

RU. Refer to Appendix E for specifications 
of the RU formats. 

The maintenance-services RUs listed below 
permit an LU to send test data on a CP-LU 
session and receive a copy of the data from 
the CP. 

RU Page 

ECHO TEST CECHOTEST) 4-31 
REQUEST ECHO TEST CREQECHOl 4-31 

Chapter 4. LU Network Services 4-29 



MS RU-> REQECHO 
ECHOTEST 

Header Indicators 

TH EFI NORMAL A 

RH Byte 0 BIT 0 RRI RQ 
BITS 1-2 RU CTGY FMD 
BIT 3 re~erved 0 
BIT 4 FI 1 
BIT 5 SDI *SD 
BIT 6 BCI BC 
BIT 7 ECI EC 

RH Byte 1 BIT 0 DRU DRl Request 
BIT 1 reserved 0 
BIT 2 DR2I ~DR2 

BIT 3 ERI ~ER 

BITS 4-5 reserved 00 
BIT 6 QRI ~QR 

BIT 7 PI *PAC 

RH Byte 2 BIT 0 BBI ~BB 

BIT 1 EBI ~EB 

BIT 2 CDI ~co 

BITS 3-6 reserved 0000 
BIT 7 CEB ~CEB v 

TH EFI NORMAL A 

RH Byte 0 BIT 0 RRI RSP 
BITS 1-2 RU_CTGY FMD 
BIT 3 reserved 0 
BIT 4 FI 1 
BIT 5 SDI *SD 
BIT 6 BCI BC 
BIT 7 ECI EC 

Response 
RH Byte 1 BIT 0 DRU DRl 

BIT 1 reserved 0 
BIT 2 DR2I ~DR2 

BIT 3 RTI ±RSP 
BITS 4-5 reserved 00 
BIT 6 QRI ~QR 

BIT 7 ~= *PAC 

RH By+-::. ~ BITS 0-7 reserved 00000000 v 

~ 
1. *XX means either XX or ~xx. 
2. See Appendix D for complete RH descriptions. 
3. The TH formats are not described in this book. 

Figure 4-6. Maintenance Services RU Formats 

4-30 SNA Format and Protocol Reference Manual for LU Type 6.2 



ECHO TEST <ECHOTEST> 

Flow: From CP to LU !Expedited) 

ECHOTEST carries test data to the LU; the 
test data is the same as that carried in the 
corresponding REQECHO request that the LU 
sent. The ECHOTEST indicates 
definite-response requested. 

The number of ECHOTESTs that the CP sends 
back to the LU is specified by the repetition 

REQUEST ECHO TEST <REQECHO> 

Flow: From LU to CP <Expedited) 

REQECHO requests that the CP return in an 
ECHOTEST request the spec if i ed test data. 
The REQECHO indicates definite-response 
requested. 

The repetition factor in the REQECHO request 
specifies the number of times the CP is to 

factor in the REQECHO 
prematurely terminate 
ECHOTESTs by returning 

request • The LU can 
the CP's sending of 
a negative response. 

Support for ECHOTEST is 
implementation-dependent. 

send back ECHOTEST requests, 
the same test data as carried 
request. Support for 
implementation-dependent. 

each carrying 
in the REQECHO 
REQECHO is 

Chapter 4. LU Network Services 4-31 



JJ§ PftOTOCQL 80UNDA!UES 

This section shows the protocol ~r;es 
that lHS has Ni th other coq:xments of the LU 
•nd t1ith the PU. lNS interacts with other W 
COftlPOMints and the PU by sending and receiv­
ing records at ;ts protocol bouic:Aries. Fig­
ure 4-7 on page <t-33 shows the protocol 
~ar;es and lists the record n.11185 associ-

ated with these protocol bou'ldaries. h 
FAPL procedures •nd f;nite-st•te .. chines 
lFSl1sl of thia chapter describe lHS's proto­
cols for sending and receiving these records. 
See "Appendix A. Node Data Structures" for • 
definition of the for•ats of these records. 

4-32 SNA For•at and Protocol Reference Hanual for LU Type 6.2 



> 
Resources Manager 

< (8) 

'I PU 
(D) < 

LU Network 
Services 

< 

lGl-----------> 

< --------<H>----

Records that LNS sends; 
CA) ACTIVATE_SESSION_RSP 

SESSION_ACTIVATED 
SESSION_DEACTIVATED 
CTERH_DEACTIVATE_SESSION 

CC) BIND_RQ_SEND_RECORD 
BIND_RSP_SEND_RECORD 
UNBIND_RQ_SEND_RECORD 
UNBIND_RSP_SEND_RECORD 
ACTLU_RSP_SEND_RECORD 
DACTLU_RSP_SEND_RECORD 
PC_ CONNECT 
HIERARCHICAL_RESET_RSP 
PC_HS_CONNECT 
PC_HS_DISCONNECT 

(E) INIT_HS 
HS_SEND_RECORD (contains following RUs) 

RQCPID 1 
INIT_SELF2 
TERM SELF2 
NOTIFY oc3 
REQECH03 
±RSPl CINIT) 2 
±RSPCCTERMJ 3 
±RSPCCLEANUP)3 
±RSPCNOTIFY 03)3 
±RSPCECHOTESTJ 3 
SESSST3 
SESSSTI4 
SESSEND3 
SESSENDI4 
BINDF 3 
UNBINOF3 

(G) INIT_HS 

Notes: 

CP-LU Half-Session in LU 

LU-LU Half-Session 

Records that ~ receives: 
CBJ ACTIVATE_SESSION 

DEACTIVATE_ SESSION 

CO) BIND_RQ_RCV_RECORD 
BIND_RSP_RCV_RECORD 
UNBINO_RQ_RCV_RECORD 
UNBIND_RSP_RCV_RECORD 
ACTLU_RQ_RCV_RECORO 
DACTLU_RQ_RCV_RECORD 
PC_CONNECT_RSP 
HIERARCHICAL_RESET 
SESSION_ROUTE_INOP 

lF ) INIT _HS_RSP 
HS_RCV_RECORD (contains following RUsl 

±RSPCRQCPIDJl 
±RSPCINIT SELFJ2 
±RSPCTERM=SELF)2 
±RSPCNOTIFY 0Cl 3 
±RSPCREQECHOJ 3 
CINIT2 
CTERM3 
CLEANUP3 
NOTIFY 033 
ECHOTEST3 

CHl INIT_HS_RSP 
ABORT_HS 

~t to or received from the PNCP-LU half-session. 
2 Applies to both SSCP- and PNCP-mediated sessions. 
3 Applies only to SSCP-mediated sessions. 
4 Internal form of SESSST and SESSEND, sent to the PNCP-LU half-session. 

Figure 4-7. Records Exchanged Between LNS and Other Components 

Chapter 4. LU Network Services 4-33 



This section shows examples of sequence flows 
that can occur between LNS and other compo­
nents of the LU and other nodes. These 
flows, which are shown in the following 
pages, illustrate some examples of CP-LU ses- -­
sion activation and deactivation, and LU-LU 
session initiation and termination. 

Flows for an LU in a peripheral node are 
shown in Figure 4-8 on page 4-35 through Fig­
ure 4-16 on page 4-40. Flows for an LU in a 
subarea node are shown in Figure 4-17 on page 
4-41 through Figure 4-24 on page 4-45. The 
names shown on the flows represent the 
records 1 i s ted in 11 LNS Protocol Boundaries 11 

on page 4-32. 

The subject LU in the illustrations is 
referred to as the local LU. Components of 
the local LU, with which LNS interacts, are 
shown. Except for the PNCP-LU half-session, 

the components of the PNCP are not shown in 
detail. The PNCP-LU half-session is shown 
simply for clarity of the PNCP-LU sass.ion 
flows within the peripheral node. 

The following legend applies to these fig­
ures: 

,.._--->o 
o--o-->o 

LNS 
LU 
LU-LU HS 
PC 
PNCP 
PNCP-LUHS 
PU 
RM 
SSCP 
SSCP-LU HS 

intercomponent flow 
intercomponent flow with 
intermediate-component processing 
LU network services 
logical unit 
LU-LU half-session 
path control 
peripheral node control point 
PNCP-LU half-session 
physical unit 
resources manager 
system services control point 
SSCP-LU half-session 

4-34 SNA Format and Protocol Reference Manual for LU Type 6.2 



FLOWS ,ESIB ~ PERIPHERAL .bY 

LU PNCP PU PC SSCP UJ 

LNS LU-LU HS SSCP-LU HS PNC~-LU HS PNCP PNCP-LU HS 

0--0 

ACTLU ;,_J 
PC_HS_CONNECT 

0--0 

+RSP 
0--0 

l----------~~~~~~~~----:----------->~ o< ;,_J 
I INIT_HS 
------------------------------~>o 
O<-

____________________________ __.I' IHIT_HS_RSPC +) _ 

Figure 4-8. PHCP-LU Session Activation 

Per1 pheral Node 

LU PNCP PU PC SSCP LU 

RM LNS LU-LU HS SSCP-LU HS PNCP-LU HS PNCP PNCP-LU HS 

n----------------0--0 
o<.~------------------D_A_CT __ Lu _________________________________ ;,_J 
I +RSP 

l----------~~~~~~~~~---:----------->~ I PC_HS_DISCONHECT 
~-----------------------------------------------------------0--->o 

Figure 4-9. PNCP-LU Session Deactivation 

Chapter 4. LU Network Services 4-35 



Peripheral Node 

LU PNCP PU PC SSCP LU 

RM LNS LU-LU HS SSCP-LU HS PNCP-LU HS PNCP PNCP-LU HS 

ACT LU 
o< 0 

I PC_HS_CONNECT 
o--->o 

I +RSP 
0 0 >o 

l----~~~~~~~~--~------>~ I INIT_HS 
~-------------------------->o 

INIT_HS_RSPC+) I 
o<------------------

Figure 4-10. SSCP-LU Sess;on Activat;on to •n LU ;n a Per;pheral Node 

SSCP LU 

l----~~~~~~~~~--------~ I PC_HS_DISCONNECT 
o >o 

f;gure 4-11. SSCP-LU Sess;on Deact;vat;on to •n LU ;n • Peripheral Node 

4-36 SNA Form•t •nd Protocol Reference Hanual for LU type 6.2 



Per;pheral Node 

LU PNCP PU PC 

RM LNS LU-LU HS SSCP-LU HS PNCP-LU HS PNCP PNCP-LU HS 

ACTIVATE_ • 
SESSION RQCPID 
o-------->o------------------------------a...----------------------------0 

0 I 

0 

o<------------------------------c>-----------------------------' 
'--------·------------0 

o<------------------------------c:.------------------------------' 
I 0 

0 I 
o--->o 

o<-------------------------------------------------------;,__J. 
1 o--->o 

.0----

SSCP LU 

>o 
0 I o<-------------------------------------------------------0----a.---------------' 

ACTIVATE_ 
SESSION_ 
RSPC+ l 

I 0 
I I · o< o 

~>~: _____________________ c_R_v __ c_;f __ u_s_i_n_g_c_r_yp __ t_o_> ___________ a.--------------

• INIT_HS_ • 
• RSPC+l +RSP 

>o 

0 I o<-------n<--------·o<--------------------------------------------------c>---------------' 

Note: This figure applies only to PNCP-mediated sessions. 

Figure 4-12. LU-LU Session Initiation by Local PLU in a Peripheral Node 

Chapter 4. LU Network Services 4-37 



Ped pheral Node 

LU PNCP PU PC SSCP LU 

RM LNS LU-LU HS SSCP-LU HS PNCP-LU HS PNCP PNCP-LU HS 

ACTIVATE_ 
SESSION RQCPID 

> 

o< 0 

I 0 

+RSP (SSCP ID) 
o< 

INIT-SELF 
>o 

+RSP 
o< 0 

BIND 
o< 0-

L~~~~~~~~>~ 
PC_HS_CONNECT 

o-->o 
+RSP 

0- >o 
SESSST 

0 

INIT_HS I >o o< 0 

CRV (if using crypto> 
o< 0 

ACTIVATE_ I +RSP 
SESSION_ IHIT_HS_ >o 
RSPC+l RSP(+) I o< o< 

Note: This figure applies only to SSCP-mediated sessions. 

Figure 4-13. LU-LU Session Initiation by Local SLU in a Peripheral Node 

4-38 SHA Format and Protocol Reference Manual for LU Type 6.2 



RM LNS 

SESSION_ 
ACTIVATED 
o< o< 

Per;pheral Node 

LU PNCP PU PC 

LU-LU HS SSCP-LU HS PNCP-LU HS PNCP PNCP-LU HS 

INIT_HS 
>o 

o< 

INIT_HS_ I 
RSPC +) I 

BIND 

PC_HS_CONNECT 

+RSP 

SESSST 

0 >o 

• o<------&o------------' 
CRY c;f us;ng crypto) 

+RSP 

t!srl!U. This figure applies to both PNCP- and SSCP-mediated sessions. 

Figure 4-14. LU-LU Session Initiation by Remote LU to Local LU in a Peripheral Node 

SSCP LU 

Chapter 4. LU Network Services 4-39 



Peript,er•l Node 

w PNCP PU PC SSCP w 
RM LNS LU·W HS sSCP•W HS PHCP-W HS PHCP PNCP-W HS 

. 
DEACTIVATE_ 
SE SS I OH \llBitl> 

>o 
+RSP I o< 0 0 

I PC_HS_DISCCltllECT 
0 >o 

I SESSEtl> 
0 0 

L~~~~~!o o< 0 I 
Figure 4-15. W-W Session Ter11inatron by Local W in • Pertpheral Node 

Peri~r•l Node 

LU PNCP PU PC SSCP LU 
I 

I 
I 

RM I.NS W-W HS SSCP-LU HS PHCP-LU HS PHCP PNCP-LU HS 

SESSION_ . 
DEACTIVATED UNSitl> 
o< o< 

I +RSP 
0 0 >o 

I PC_HS_DISCotf.IECT 
0 >o 

I SESSEtl> 
0 0 

L~~~~!!o o< 0 I 
Figure 4-16. LU-LU Session Ter•ination by R8110te LU to Local LU in • Peripheral Node 

4-40 SHA For11at and Protocol Reference "•....,.l for W Type 6.2 



FLOWS FOR A SUBAREA .!J.! 

Subarea Node 

LU PU PC SSCP LU 

RM LNS LU-LU HS SSCP-LU HS 

ACTLU 
o< 0 0 

I PC_HS_CONNECT 
0 

I +RSP 
>o 

l---~=~~=~~~---------->~ 
I INIT_HS 

>o 
INIT_HS_RSPC+l I o< 

Figure 4-17. SSCP-LU Session Activation to an LU in a Subarea Node 

SSCP LU 

Figure 4-18. SSCP-LU Session Deactivation to an LU in a Subarea Node 

Chapter 4. LU Network Services 4-41 



Subarea Node 

LU PU PC SSCP LU 
.-
RH LNS LU-LU HS SSCP-LU HS 

ACTIVATE_ 
SESSION INIT-SELF 

> >o 
+RSP 

o< 0 0 

CINIT 
o< 0 

I +RSP 
>o 

L~~~~~~~~>~ 
I PC_CONNECT 

o--->o 
PC_CONNECT_RSP(+) 

o< 

I PC_HS_CONNECT 
o--->o 

I BIND 
>o 

+RSP I o< a 0 

I SESSST 
>o 

I INIT_HS CRV ( ;f using crypto) 
> >o 

ACTIVATE_ 

I SESSION_ INIT_Hs_ 
RSP(+) • RSP(+) +RSP 
o< o< o< 0 

Figure 4-19. LU-LU Session Initiation by Local PLU in a Subarea Node 

4-42 SHA Format and Protocol Reference Hanual for LU Type 6.2 



Subarea Node 

LU PU PC SSCP LU 

Rl1 LNS LU-LU HS SSCP-LU HS 

ACTIVATE -SESSION INIT-SELF 
>o 

+RSP 
o< 0 

BIND 
o< 0 0 

L:~:~~~~~>~ 
PC_HS_CONNECT 

>o 
+RSP 

0 >o 
SESSST 

>o 
INIT_HS 

>o 
CRV Cif using crypto) 

o< 0 

ACTIVATE_ I RSP 
SESSION_ INIT_HS_ >o 
RSPC+> RSP(+) I 
o< o< 

Figure 4-20. LU-LU Session Initiation by Local SLU in a Subarea Node 

Subarea Node 

LU PU PC SSCP LU 

RM LNS LU-LU HS SSCP-LU HS 

CI NIT 
o< 0 

I +RSP 
0 0 >o 

L:~:~~~~~>~ 
I PC_ CONNECT 

o--->o 
PC_CONNECT_RSPC+l 

o< 0 

I PC_HS_CONNECT 
o--->o 

I BIND 
>o 

+RSP I o< 0 0 

I SESSST 
>o 

I INIT_HS CRV Ci f using crypto) 
> >o 

SESSION_ • INIT_HS_ I ACTIVATED • RSPC+) +RSP 
o< o< o< 0 

Figure 4-21. LU-LU Session Initiation by Remote SLU to Local PLU in a Subarea Node 

Chapter 4. LU Network Services 4-43 



Subarea Node 

LU PU PC SSCP LU 

RM LNS LU-LU HS SSCP-LU HS 

BIND 
o< 0 

L~~~~~~~~>~ 
I PC_HS_CONNECT 

o--->o 

I +RSP 
>o 

I SESSST 
>o 

I INIT_HS 
>o 

CRV C ;f using cryptol 
o< 0 

I RSP 
SESSION_ INIT_HS_ >o 
ACTIVATED RSPl+) I o< o< 

Figure 4-22. LU-!.U :.ession Initiation by Remote PLU to Local SLU in a Subarea Node 

4-44 SHA Format and Protocol Reference Manual for LU Type 6.2 



Subarea Node 

LU PU PC SSCP LU 

RM LNS LU-LU HS SSCP-LU HS 

DEACTIVATE_ 
SESSION UNBIND 

> >o 
+RSP I o< 0 0 

I PC_HS_DISCONNECT 
0 >o 

I SE SS END 
>o 

L~~~~~~~~!o 
f;gure 4-23. LU-LU Sess;on Term;nat;on by Local LU 

Subarea Node 

LU PU PC SSCP LU 

RM LNS LU-LU HS SSCP-LU HS 

SESSION_ 
DEACTIVATED UNBIND 
o< < 0 0 

I ... K.,.,. 
>o 

I PC_HS_DISCONNECT 
o--->o 

I SESSEND 
---0 0 >o 

L~~~~~~~~!o 
F;gure 4-24. LU-LU Sess;on Term;nation by Remote LU 

~pter 4. LU Network Serv;ces 4-45 



INTRODUCTION IQ .E.QBJ:!A.b DESCRIPTION 

The .-emaining pages of this chapte.- contain 
the fo.-mal desc.-iption of LNS. This 
desc.-iption consists of p.-ocedu.-es, 
finite-state machines CFSMs), and data st.-uc­
tu.-es used only by LNS. The p.-ocedu.-es a.-e 
divided into two sections: High-level and 
low-level. The high-level p.-ocedu.-es a.-e 
o.-ganized hie.-a.-chically. The highest level 
is the .-oot p.-ocedure of the calling t.-ee, 
named LNS C same as the ove.-all component). 
The LNS .-oot p.-ocedure calls the othe.­
high-level p.-ocedu.-es. 

The low-level p.-ocedu.-es a.-e a.-.-anged alpha­
bi!t kally by name. Some a.-e called by the 

high-level p.-ocedu.-esJ the othe.-s a.-e called 
by the low-level p.-ocedu.-es. 

Th.-oughout this fo.-mal desc:-iption, ce..tain 
e.-.-o.- checks a.-e desc.-ibed. The e.-.-o.- checks 
that all implementations make a.-e identified 
as being .-equi.-ed. The othe.- e.-.-o.- checks 
desc.-ibed he.-ein a.-e optionals implementa­
tions may make some, none, o.- all of these 
checks. These .-equi .-ed and optional e.-.-or 
checks a.-e the only e.-.-o.- checks that imple­
mentations make. 

4-46 SNA Fo.-mat and P.-otocol Refe.-ence Manual fo.- LU Type 6.2 



HIGH-LEVEL PROCEDURES 

LNS 

FUNCTION: 

INPUT: 

OUTPUT: 

LU network services CLNSl is responsible for activating and deactivating ses­
sions between this LU and another LU or a control point CCPl. There is one 
LNS process per LU in the node, and it is created Cdestroyedl when the LU is 
created Cdestroyed). LNS receives records from the resources manager CRMl, 
half-session CHS), and nodal NAU manager CNNM) processes. When the records 
are received, they are routed to the appropriate procedures where they are 
processed. LNS uses process data (called LOCAL> that can be accessed by any 
procedure in the LNS process. 

Records from RM, HS, and NNM 

Received records routed to appropriate procedures in LNS 

Referenced procedures, FSMs, and data structures: 
PROCESS_RECORD_FROM_RM 
PROCESS_RECORD_FROM_HS 
PROCESS_RECORD_FROM_NNM 
RM_TO_LNS_RECORD 
NNM_TO_LNS_RECORD 
HS_TO_LNS_RECORD 
LOCAL 
LUCB 

Set up addressability to the control blocks used by LNS. The LNS 

page 4-48 
page 4-48 
page 4-50 
page A-31 
page A-21 
page A-10 
page 4-101 
page A-1 

process data (LOCAL) is a data area that may be referenced by any procedure 
or FSM in LNS. LOCAL is referenced only within LNS. 
The LU control block CLUCBJ, partner-LU control block CPARTNER_LU in 
LUCB.PARTNER_LU_LISTJ, and mode control block CMODE in PARTNER_LU.MODE_LISTl 
are used but not created by LNS. The CP-LU control block CCPLU_CB in 
LOCAL.CPLU_LISTl and LU-LU control block CLULU_CB in LOCAL.LULU_CB_LISTl are 
created and used only by LNS. 

Do until LNS process is destroyed. 
Select based on one of the following conditions: 

When record is received from RM 
Call PROCESS_RECORD_FROM_RMCRM_TO_LNS_RECORDl Cpage 4-48). 

When record is received from HS 
Call PROCESS_RECORD_FROM_HSCHS_TO_LNS_RECORDl Cpage 4-48). 

When record is received from NNM 
Call PROCESS_RECORD_FROM_NNMCNNM_TO_LNS_RECORDl (page 4-50). 

Chapter 4. LU Network Services 4-47 



PROCESS_RECORD_FRott_RM 

PROCESS_RECORD_FRott_RM 

FlltcTION: Route recorda received froa '" to •ppropri•te procedur•. 

lHPUT; R"-TO_LNS_RECORD Ccont•irw • r~t to •ctiv•te or de•ctiv•t• • .... ;on) 

Referenced procedures. FSl"lsa, and data atructu.-..: 
PROCESS_ACTIVATE_SESSIOH 
PROCESS_DEACTIVATE_SESSION 
RM_TO_LNS_RECORD 
ACTIVATE_SESSIOH 
DEACTIYATE_SESSIOH 

Select based on R"-TO_LNS_RECORD type: 
lot'9n type is ACTIVATE.SESSION 

C•ll PROCESS_ACTIVATE_SESSIONCACTIVATE_SESSIOH> Cpage 4-77> • 
..,_, type is OEACTIYATE_SESSIOH 

C•ll PROCESS_DEACTIYATE_SESSIONCDEACTIYATE_SESSION> Cpage 4-87). 

FROCESS_RECORD_FRott_HS 

p•ge 4-77 
page 4-87 
page A-31 
p•ge A-31 
page A-31 

FlKTION: Route records received frOll the h•lf-session CHS) procus to the •ppropriate 
procedures. The HS process represents either •n W-W or •n LU-CP session. 
If the record cannot be routed. • MSPtive ruponse is sent or the error is 
logged. 

INPUT: HS_TO_LNS_RECORD (usually cont•h• • netNOrk services BIU> 

Refer9n0ed procedures. FSttst •nd data structuru: 
PROCESS_INIT_HS_RSP 
PROCESS_ABORT_HS 
PROCESS_CINIT_RQ 
PROCESS_HOTIFY_RQ 
PROCESS_ECHOTEST_RQ 
PROCESS_ClEAt«JP_Rt 
PROCESS_CTERM_RQ 
PROCESS_INIT_SELF_RSP 
PROCESS_TERH_SELF_RSP 
PROCESS_REtECHO_RSP 
PROCESS_NOTIFY_RSP 
8UilD_AN>_SEN>_RSP_OR_lo& 
LOCAL 
HS_TO_LNS_RECORD 
IHIT_HS_RSP 
ABORT_HS 
HS_RCV_RECORD 

4-48 SNA FOl"At •nd Protocol ReferW'ICe Ma..,..l for W Type 6.2 

page 4-88 
page 4·77 
page 4-82 
page 4-89 
page 4-87 
page 4-84 
page 4-85 
page 4-88 
p•ge 4-91 
page 4-90 
page 4-89 
page 4-66 
page 4-101 
page A-10 
page A-11 
page A-11 
page A-11 



In;t;.1;ze LOCAL.SENSE_CODE to X'OOOOOOOO'. 

Select based on HS_TO_LNS_RECORD type: 

PROCESS_RECORD_FROM_HS 

When type is INIT_HS_RSP <This record is received only from LU-LU half-sessions. 
INIT_HS_RSP from CP-LU half-session is explicitly received elsewhere.) 

Call PROCESS_INIT_HS_RSPCINIT_HS_RSPl Cpage 4-88). 

When type is ABORT_HS (received only from LU-LU half-sessions) 
Call PROCESS_ABORT_HS!ABORT_HSl (page 4-77). 

When type is HS_RCV_RECORD (received only from CP-LU half-sessions) 
CHS_RCV_RECORD always contains an NS header) 

Optionally check the format of the RH (see Figure 4-2 on page 4-8 for correct 
RH formats). 

If there is an RH format error then 
Call BUILD_AND_SEND_RSP_OR_LOG!HS_RCV_RECORDl !page 4-66) 

to send a negative response or log the error. 

Else 
If HS_RCV_RECORD contains a request CRH.RRI=RQl then 

Select based on the NS header !first 3 bytes) in HS_RCV_RECORD.RU: 
When CINIT 

Call PROCESS_CINIT_RQCHS_RCV_RECORD> Cpage 4-82). 
When NOTIFY 

Call PROCESS_NOTIFY_RQCHS_RCV_RECORDl Cpage 4-89). 
When ECHOTEST 

Call PROCESS_ECHOTEST_RQ!HS_RCV_RECORDl Cpage 4-87). 
When CLEANUP and this node is a subarea node 

Call PROCESS_CLEANUP_RQCHS_RCV_RECORDl !page 4-84). 
When CTERM and this node is a subarea node 

Call PROCESS_CTERM_RQCHS_RCV_RECORDl Cpage 4-85l. 
Otherwise · 

Set LOCAL.SENSE_CODE to X'l0030000' (function not supported). 
Call BUILD_AND_SEND_RSP_OR_LOGCHS_RCV_RECORDl (page 4-66) 
to send a negative response or log the error. 

Else CHS_RCV_RECORD contains a response) 
Select based on the NS header (first 3 bytes for positive response; 3 bytes 

following sense data for negative response) in HS_RCV_RECORD.RU: 
When INIT_SELF 

Call PROCESS_INIT_SELF_RSPCHS_RCV_RECORDl (page 4-88). 
When TERM_SELF 

Call PROCESS_TERM_SELF_RSPCHS_RCV_RECORDl !page 4-91). 
When REQECHO 

Call PROCESS_REQECHO_RSP!HS_RCV_RECORD> Cpage 4-90). 
When NOTIFY 

Call PROCESS_NOTIFY_RSP!HS_RCV_RECORD) Cpage 4-89). 
Otherwise 

Optionally log the error with sense code 1003 (function not supported). 

Chapter 4. LU Network Services 4-49 



PROCess_RECORD_FROlt.Jff'I 

PROCESS_RECORD_FROtt_tN1 

FlH:TION: Route record& received frc111 the nodal NAU Rnager Ctff1l to the •pproprl•t• 
procedura. 

INPUT: ""'-.TO_LNS_RECORD h1&U11lly cont•ins • HHion •ctiv•tian or •••ion c1 .. cti­
vation BIUl 

Refe.-.,ced procedur .. , FStlth •nd dat• atructuru: 
PROCESS_BIND_RQ 
PROCESS_BIND_RSP 
PROCESS_lHHND_RQ 
PROCESS_UNBIND_RSP 
PROCESS_ACTLU_RCi 
PROCESS_DACTLU_RQ 
PROCESS_PC_COt*IECT_RSP 
PROCESS_SESSIOH_ROUTE_IHOP 
PROCESS_HIERARCHICAL_RESET 
""'-.TO_LNS_RECORD 
BIND_RQ_,RCV_RECCIRD 
Bitl>_RSP_RCV_RECCIRD 
UNBIND_RQ..RCV_RECCIRD 
UNBIND_RSP_RCV_RECORD 
ACTLU_RQ..RCV_RECCIRD 
DACTLU_RQ..RCV_RECCJRD 
PC_CCHIECT_RSP 
SESSIOH_ROUTE_IHOP 
HIERARCHICAL_RESET 
LOCAL 

Set LOCAL.SENSE_CODE to x•oooooooo•. 
Select ased on ""'-.TO_LNS_RECCJRD type: 

llhen type i• BIND_RQ..RCV_RECORD 
Call PROCESS_BIND_RQ<BIND_RQ..RCV_RECORD> CPllge 4-79). 

llhen type ia BIND_RSP_RCV_RECORD 
Cdl PROCESS_BIND_RSPCBIND_RSP_Rcv_RECORDl (P11ge 4-au. 

llhen type is UNBIND_RQ..RCV_RECORD 
Cdl·PROCESS_UNBIND_RQllHlIND_RQ..RCV_RECORD> CP11ge 4-91). 

llhen type i• UNBIND_RSP_RCV_RECORD 
C•ll PROCESS_UNUND_RSPCUNBIND_RSP_RCV_RECCIRD) Cpage 4-92>. 

lhln type is ACTW_RQ..RCV_RECORD 
Call PROCESS_ACTLU_RQUCTLU_RQ_,RCY_RECORDl CP11ge 4•78). 

llhen type is DACTW_RQ_,RCV_RECORD 
C•ll PROCESS_DACTLU_RQlDACTLU_RQ..RCV_RECORD> (page 4-861. 

llhen type is PC_COt*IECT_RSP 
C•ll PROCESS_PC_CCHIECT_RSPlPC_COt*IECT_RSP) (page 4-90>. 

llhen type i• SESSIOH_ROUTE_IHOP 
C•ll PROCESS_SESSIOH_ROUTE_INOPCSESSION_ROUTE_Dl>P) CPllge 4-90t. 

llhen type is HIERARCHICAL_RESET 
C•ll PROCESS_HIERARCHICAL_RESET I HIERARCHJCAL_RESET) (page 4-87 l. 

4-50 SHA FOl'llat end Protocol Reference tt.nual for LU ~ 6.2 

Pll98 4-79 
Pllg8 4-81 
P11ge 4-91 
Pll98 4-92 
page 4,..71 
Pllg8 4-86 
PllP 4-90 
PllSJe 4-90 
PllSJe 4-87 
page A-21 
PllP A-21 
P11ge A-22 
page A-n 
page A-n 
page A-21 
page A-22 
P11Sf8 A-22 
P11ge A-23 
page A-22 
PllliJ8 4-101 



LOH-LEVEL PBQCEDYREI 11U ALflHAftEIICAL ~ 

ACTIVATE_ SESSION_ ERROR 

FUNCTION: Perfor• error checking upon receipt of an activate-session request frOll RH. 
These error checks are required. 

OUTPUT: TRUE if errorJ otherwise, FALSE. Whan TRUE, ERROR_IYPE is set. loll8n FALSE, 
CP_ID is set. 

Referenced procedures, FSl1s, and data structures: 
LU_HODE_SESSIOH_LIHIT_EXCEEDED 
ACTIVATE_ SESSION 
PARTNER_ LU 
HOOE 
CP_ID 
ERROR_ TYPE 

If there is not sufficient storage available to start a neM session than 
Return with a value of TRUE (ERROR_IYPE--RETRYl. 

page 4-76 
page A-31 
SN198 A-2 
SN!ge A-3 
page A-2 
INl98 ct-101 

Deter•ine the control point identifier <CP_ID> to be associated with the neN 
LU-LU session. For LUs in a subaret1 node, the CP_ID is obtained frOll the 
control block associated with the active SSCP-LU session. If the SSCP-LU 
session is not active, the CP_ID cannot be obtained. For LUs in a peripheral 
node, a "request CP identifier lRQCPIDJ" record is sent to the local control 
point <PNCPJ. The PNCP attempts to deter•ine the control point to be used 
based on the <partner LU, llOClenameJ pair. If deter.ined successfully and an 
active session exists betNeen this LU and that CP, a RQCPID response record 
is returned containing the correct CP_ID. Otherwise, a negative RqtPIO 
response is returned containing no CP_ID. 

If the tP_ID cannot be obtained then 
Return with a value of TRUE <ERROR_TYPE--NO_RETRYl. 

Locate the PARTNER_LU and HOOE control blocks using the SN1rtner LU end llOde na11t111 
frot1 the passed ACTIVATE_SESSION record. 

Call LU_l'IODE_SESSION_LIHIT_EXCEEDEDIPARTNER_LU.FULLY_QUALIFIED_LU_NAHE, t10DE, 
ACTIVATE_SESSION.SESSION_TYPEt ACTIVE_Atll_PENDING_ACTIVEJ <page 4-76). 

If the LU-LU session li•it for the !partner LU, 11e>denaMe) pair will be 
exceeded than 

Return with a value of TRUE IERROR_TYPE--RETRYl. 

If the LU-LU session li•it associated with the control point will be exc4"!ded then 
IThe control point has a session li•it for every LU it is mediating sessions for. 
This li•it indicates the 11axi-.. number of sessions this LU aay have with other 
LU&. J 

Return with a value of TRUE <ERROR_IYPE--REIRYl. 

If the new LU-LU session is to be PNCP-udiated and this LU is unable to act as 
a PLU then 

Return with a value of TRUE IERROR_IYPE--ND_RETRY>. 

If this LU is unable to act as a PLU or SLU then 
Return with a value of TRUE IERROR_TYPE--HO_REIRYl. 

Return with a value of FALSE (no •rror fOU'ld). 

Chapter ct. LU NetMOrk Services ct-51 



.,, 
I 
I 

I 
I 
I 
I 
I 

8ItD_Rtt.STATE_ERROR 

Bitl>_RCt.,STATE_ERROR 

lt-52 

FlH:TION: Deter11fne if there ia • at.te error on receipt of • Bitl> requeat. R..,tred 
checka •re explicitly indic.tecl. 

INPUr: Bitl>_Rtt.RCV_RECORD 

OUTPUT: TRUE if errorJ otherwise, FALSE. If TRUE, LOCAL.SENSE_CODE is set to •ppro­
pri•te sense d9t•. 

Refer11neecl procedures, FSl11h and d9ta atructuru: 
Bitl>_SESSION_LIHIT_EXCEEDED 
LOCAL 
Bitl>_Rll_RCV_RECORD 
PARTNER_W 
HDDE 
SESSION_ TYPE 

Note: The follONing checka are optiONl exctipt ..._. specific.Uy indic.tecl 
•• re"'irecl. 

If there ia insufficient storage avail•ble to est•lllish • neN s .. sion then 
Set LOCAL.SENSE_CODE to X'08120000' (insufficient resources). 
Ret\.lrn Mith • value of TRUE (error). 

If this W is currently uiable to act as .., SLU then 
Set LOCAL.SENSE_CODE to X'083AOOOO' ILU not enableclJ. 
Return Mith• value of TRUE (error). 

page 4-SS 
page 4-101 
page A-21 
page A-2 
page A-3 
page 4-101 

Loc•te the PARTNER_LU control block using the user dab PLU M• field in Bltl> • 
If the levels of session security bet......, LU. do not .. tch thwl (r..,irecl checkJ 

Set LOCAL.SENSE_CODE to X'080F6051' (Security Viol•tionJ. 
Return Mith a value of TRUE (error). 

Locate the HODE control block using the user d9ta llode NIM field in Bitl>. 
If either control block camot be located then 

Set LOCAL.SENSE_CODE to X'083Sxx>ex' lxX><X ia offset to PW na• or llOde na•). 
Return Mith • value of TRUE CerrorJ. 

The follONfng deter•ines the aession type for this W so that the check for 
Mhether ~he session li•it Nill be exceeded •ay be .... 

If parallel sessions. are not supported Mith the partner LU and 
HODE.HIN_Cot-lfil'l'IERS_LIHIT = l then . 

Set SESSION_TYPE to FIRST_SPEAKER. 

El•• (UH value in BIN> r8"'8$U 0 

lf BIN> specifies the secondary as content;on Minner then 
Set SESSION_TYPE to FIRST_SPEAKER. 

ElH 
Set SESSION_TYPE to BIDDER. 

Call Bltt>_SESSION_LIHIT_EXCEEDED<PARTNER_LU.FULLY_QUALIFIED_W_NAltE, HODEt 
SESSION_TYPEt Bltt>_Rll.RCV_RECORD.ADDRESSJ lpage 4-55). 

If the session li•it Mill be exceeded then 
Return Mith• value of TRUE (LOCAL.SENSE_CODE is Ht by.Bitl>_SESSION_LIHIT_EXCEEDEDJ. 

Do consistency checks Ion PS usage fields) for p•r•ll•l sessions .._;ng either the 
.... partner-LU or the .... lpartner,..w, mode NI•·) pair (see BIN> r8"'8St tn Appendix E). 

If there is a consistency error then 
Set LOCAL.SENSE_CODE to X'083Sxx>ex' Cxxxx ;s offset to inconsiatent fieldJ. 
Return Mith • v•lue of TRUE CerrorJ. 

If this LU'• cryptography support capability dou not utch that specified in BIN> then 
<this check is r8"'ired) · 

Set LOCAL.SENSE_CODE to X'083Sxxxx' Cxxxx ia offset to cryptography fieldJ. 
Return Mith • v•lue of TRUE <error). 

Do consistency checks on conversation-level security indie9tora 
for P•rallel sessions using the .... partner_w. 

If there is • consistency error then 
Set LOCAL.SENSE_CODE to X'080F6051' (Security Viol•tionJ. 
Return Mith • value of TRUE CerrorJ. 

SHA For11at •nd Protocol Reference Hanu11l for LU Type 6.2 



8Itl>_Rq_STATE_ERROR 

If cryptography is supported wHh the partner LU, but the cryptography 
CC>lllponent (that enciphers and deciphers) is not active then Uhis check is required) 

Set LOCAL.SENSE_CODE to X'08480000' (cryptography f\.Slction inoperative). 
Return with a value of TRUE (error). 

If a duplicate user data session instarce identifier exists then <another active session 
is using the sa•e identifier--use SESSION_ID field in LULU_CB) 

Set LOCAL.SENSE_CODE to X'08520001' (duplicate session-activation request). 
Return with a value of TRUE (error). 

If the SLU supports sending segments, the PLU does not support receiving 
seginents, and the lower bOU'\CI of the •axillllm RU size (see the discussion 
in BIND [page 4-19J) sent for this (partner-LU, l90de name) pair 
is greater than the •axi11U111 RU size for the link then 

Set LOCAL.SENSE_CODE to X'0835xxxx' lxxxx is offset to segmenting field). 
Return with a value of TRUE (error). 

Bitl>_RSP_STATE_ERROR 

FlH:TION: Perfor• state error checking on a received BIND response. Required checks are 
explicitly indicated. 

INPUT: BIND_RSP_RCV_RECORD, LULU_CB 

OUTPUT: TRUE if error; otherwise, FALSE 

Referenced procedures, FSMs, and data structures: 
BIND_RSP_RCV_RECORD 
LULU_CB 

Note: TI'f following checks are done only on positive response to Bitm and 
are optional except where explicitly indicated as required. 

page A-22 
page A-5 

If the BIND request specified that an alternate code set will not be used and 
the BIND response specifies that an alternate code set •ay be \aed then 

Return with a value of TRUE (error). 

Pacing and •axillUll RU size checks 

If the pacing staging indicators in the Bltm response are not the sa .. as 
those specified in the Bitm request then 

Return with a value of TRUE (error). 

If secondary-to-pri•ary pacing is one-stage and the secondary send window size 
in the BIND response is not the sa11e as that specified in the Bltm request then 

Return with a value of TRUE (error). 

If the secondary receive window size in the BIND response is gruter than that 
specified in the BIND request or the pri•ary send window size is greater than 
that specified in the BIND request then (a window size of 0 is treated as 
inf;n;tely large for these comparisons> 

Return with a value of TRUE (error). 

If the primary receive window size ;n the BIND response is not the sa.e as 
that specified in the BIND request ·then 

Return with a value of TRUE (error). 

Deter•ine if the secondary or primary send •axilllUlll RU sizes are with;n installation­
def;ned bO\Wlds. If path control for the PLU does not support segment;ng, then the 
secondary send Maximum RU size 11USt not exceed the •axi•um size allowed on the link. 

If the secondary or pd••iry send maxi11Um RU sizes are not within the installation­
defined bounds then 

Chapter 4. LU Network Services 4-53 



BIND_RSP_STATE_ERROR 

Return with a value of TRUE terror). 

PS usage checks 

If there are other active sessions to this partner-LU and 
the levels of conversation security between sessions to this partner-LU 
do not •atch then (required check> 

Return with a value of TRUE (error). 
If there are other active sessions for this (partner-LU, llOde na .. > pair and 
the values of the BIN:> response fields for synchronization level and session 
reinitiation do not equal those of the other active sessions then 

Return with a value of TilUE (consisten.cy error>. 

Else Cno other sessions active for this [partner-LU, llOde naMeJ pair> 
If the Bitl> response specifies a synchronization level of Confir•• Sync Point, 
and Backout and the BUI> request specified only Confir• then 

Return with a value of TRUE (error). 

If the BIND response specifies parallel·sessions not supported then 
If the BIND response specifies session reinitiation responsibility as not 
operator controlled and the BIND request specified operator controlled then 

Return with a value of TRUE (error). 

If the BIND response specifies sessi~ reinitiation responsibility as 
secondary will reinitiate and the BIND request specified pri•ary will 
reinitiate then 

Return with a value of TRUE terror>. 

If the BIND response specifies session reinitiation responsibility as 
primary will reinitiate and the BIND request specified secondary will 
reinitiate then 

Return with a value of TRUE (error), 

If the values of the BIND response fields for parallel sessions support and 
change number of sessions support are not the aa•e as specified in the BIND 
request then 

Return with a value of TRUE (error). 

Contention winner checks 

If the BIND response specifies parallel sessions supported then 
If the value of the BIND response contention winner field is not the 

sa11e as that specified in the BIND request then 
Return with a value of TRUE (error). 

Else (parallel sessions not supported> 
If the BIND response contention winner is specified as the pri•ary and the 

BIND request was specified as the secondary then 
Return with a value of TRUE (error>. 

Cryptography checks (these checks are required). 

If the BIND response cryptography field values are not the HH as those specified 
in the BUI> request then 

Return with a value of TRUE (error). 

PLU name Cnot in user data) is ignored 

The primary LU na•e Cthe one not in the User Data field> in the Bitl> 
response is ignored. 

4-54 SHA For11at and Protocol Reference Manual for LU Type 6.2 



User data subfield checks 

If LU-LU verification is active lLULU_CB.RAtl>OH is non-e11Ptyl then 
If enciphered data is absent or incorrect (see page 4-2S) then 

Return Nith a value of TRUE (error). 
If the user-data •ode na•e in the Bitl> response is not the sa• as that 
specified in the Bitl> request then 

Return Mith a value of TRUE (error). 

If the user-data session-instance htentifier in the Biii> response is not 
specified correctly (see page E-16) then 

Return Mith a value of TRUE (error). 

I URC checks 

If the URC in the BIHO response is not the .... as that specified 
in the BIND request then 

Return Mith a value of TRUE (error). 

Re~urn Nith a value of FALSE lno error). 

8IND_SESSION_LIHIT_EXCEEDED 

8Itl>_RSP_STATE_ERROR 

FlKTION: Deter11ine lrlhether or not session li•Hs are exceeded for a received Biii> 
request. 

INPUT: PARTNER_LU.FULLY_QUALIFIED_Ll.J.IAHE, tlODE, SESSIOH_TYPE IFIRST_SPEAKER or BID­
DER>, ADDRESS CTH address fields fro• the received Bitll request). 

OUTPUT: TRUE if li•its exceeded; otherwise, FALSE. If TRUE, LOCAL.SENSE_CCIDE is set 
to appropriate sense data. 

Referenced procedures, FSHs, and data structures: 
LU_MOOE_SESSIOH_LIMIT_EXCEEDED 
ADDRESS 
LOCAL 
HOOE 
PARTNER_ LU 

If session limit is being negotiated and the proposed 
session limit is > than the current session li•it 
ltlODE.CNOS_NEGOTIATION_IN_PROGRESS = TRUE) then 

If active session count is ~ the proposed li11it then 
Set LOCAL.SENSE_CODE to X'08050000'. 
Set RC to TRUE • 

Else 
If the SUll of active session count and pending session 
count is >= the proposed session limit then 

Set LOCAL.SENSE_CODE to x•oaosoooo•. 
Set CHECK_WINNER_FLAG to TRUE. 

Else lse5sion li•its not being negotiated> 

pilge 4-76 
page A-34 
page 4-101 
pilge A-3 
pilge A-2 

Call LU_tlODE_SESSION_LIHIT_EXCEEDEDlPARTNER_LU.FULLY_QUALIFIED_LU_NAHE1 tlODE1 SESSION_TYPE1 
ACTIVE> (page 4-76>. 

If the session limit is exceeded then 
Set RC to TRUE ILOCAL.SENSE_CODE is set by LU_HODE_SESSIOtLLIHIT_EXCEEDED>. 

Else 
Call LU_HODE_SESSIOH_LIHIT_EXCEEDED«PARTHER_LU.FUlLY_QUALIFIED_LU_NA11E,tlODE,SESSIOH_TYPE1 

ACTIVE_ANO_PENDING_ACTIVE) Cpage 4-76>. 
If the session lh11t is exceeded then 

Chapter 4. LU NetNC>rk Servicu it-SS 



BIND_SESSION_LIMIT_EXCEEDED 

CHECK_WINNER_FLAG is set to TRUE. 

CHECK FOR BIND RACE CONDITION 

If CHECK_WINNER_FLAG then 
Determine which LU is the BIND race winner. A comparison is made between the 

SLU name and PLU name (PARTNER LU.FULLY QUALIFIED LU NAME) 
using the EBCDIC collating seq~ence. - - -
The "greater" one is the winner. Before the comparison is made, the shorter 
name is padded with space CX'40') characters so that the lengths are equal. 
If neither LU name is known, the result is equivalent to name equality in the 
comparison Cthis can occur only for LUs in peripheral nodes that do not know 
their names). When this occurs, the winner is determined by using the ODAI 
field in the ADDRESS of the BIND request. If the ODAI value is o, then this 
LU is the winner; otherwise, the other LU is the winner. 

If this LU is the winner then 
Set RC to TRUE. 

Else 
Reset LOCAL.SENSE_CODE to X'OOOOOOOO'. 
Set RC to FALSE. 

Return with the value of RC. 

BUILD_AND_SEND_ACT_SESS_RSP_NEG 

FUNCTION: Build and send ACTIVATE_SESSION_RSP (negative) to RM. 

INPUT: Correlator Cin LULU CB or ACTIVATE_SESSIONl to activate-session request and 
ERROR_TYPE (indicate; retry or no retry>. 

OUTPIJT: ACTIVATE_SESSION_RSP sent to RM 

Referenced procedures, FSMs, and data structures: 
ACTIVATE_SESSION_RSP 
ACTIVATE_ SESSION 
LULU_CB 
ERROR_ TYPE 

Create ACTIVATE_SESSION_RSP record. 
Set ACTIVATE_SESSION_RSP.CORRELATOR to passed correlator. 
Set ACTIVATE_SESSION_RSP.TYPE to NEG. 
Set ACTIVATE_SESSION_RSP.ERROR_TYPE to passed ERROR_TYPE. 

Send ACTIVATE_SESSION_RSP to RM. 

4-56 SNA Format and Protocol Reference Manual for LU Type 6.2 

page A-20 
page A-31 
page A-5 
page 4-101 



BUILD_AND_SEND_ACT_SESS_RSP_POS 

BUILD_AND_SEND_ACT_SESS_RSP_POS 

FUNCTION: Build and send ACTIVATE_SESSION_RSP Cpositive> to RM. 

INPUT: LULU_ CB 

OUTPUT: ACTIVATE_SESSION_RSP sent to RM 

Referenced procedures, FSMs, and data structures: 
LULU_CB 
ACTIVATE_SESSION_RSP 

Create ACTIVATE_SESSION_RSP record. 

page A-5 
page A-20 

Set ACTIVATE_SESSION_RSP.CORRELATOR to LULU_CB.CORRELATOR (enables RM to correlate 
this response with the original ACTIVATE_SESSION request>. 

Set ACTIVATE_SESSION_RSP.TYPE to POS Cpositivel. 
Set ACTIVATE_SESSION_RSP.HS_ID to LULU_CB.LU_LU.HS_ID Cthe identifier of the 
half-session just activated); 

Set ACTIVATE_SESSION_RSP.SESSION_INFORMATION.HALF_SESSION_TYPE to 
LULU_CB.HALF_SESSION_TYPE (primary or secondary). 

Set ACTIVATE_SESSION_RSP.SESSION_INFORMATION.BRACKET_TYPE to LULU_CB.SESSION_TYPE 
(first speaker or bidder>. 

Set ACTIVATE_SESSION_RSP.SESSION_INFORMATION.RANDOM_DATA to 
LULU_CB.RANDOM CRM uses this value for LU-LU verification). 

Send ACTIVATE_SESSION_RSP to RM. 

BUILD_AND_SEND_ACTLU_RSP_NEG 

FUNCTION: Build and send a negative ACTLU response. 

INPUT: ACTLU_RQ_RCV_RECORD 

OUTPUT: ACTLU_RSP_SEND_RECORD sent to NNM 

Referenced procedures, FSMs, and data structures: 
LOCAL 
ACTLU_RQ_RCV_RECORD 
ACTLU_RSP_SEND_RECORD 

Create ACTLU_RSP_SEND_RECORD. 
Set ACTLU_RSP_SEND_RECORD.LU_ID to this LU's identifier. 
Copy the PC_ID, ADDRESS, EFI, SNF, and RH from the ACTLU_RQ_RCV_RECORD to 

the ACTLU_RSP_SEND_RECORD. 
Set ACTLU_RSP_SEND_RECORD.DCF to the appropriate value. 
Set ACTLU_RSP_SEND_RECORD.RH to indicate negative response (SD, NEG, and 
byte 2 of RH set to all O's>. 

page 4-101 
page A-21 
page A-17 

Set ACTLU_RSP_SEND_RECORD.RU to the sense data (from LOCAL.SENSE_CODE> followed 
by the ACTLU request code. 

Send the ACTLU_RSP_SEND_RECORD to the CP via the nodal NAU manager. 

Chapter 4. LU Network Services 4-57 



BUILD_Atl>_SEN>_ACTLU_RSP_POS 

BUILD_Atl>_SEND_ACTLU_RSP_POS 

FU«:TION: Build •nd send • positive ACTLU response. Also, initi•ltze the CP-LU 
half-ussion. 

INPUT: ACTLU_RQ,_RCV_RECORD, INIT_HS_RSP 

OUTPUT: CP-LU half-session initi•lizec:I and ACTW_RSP_SEND_RECORD sent to Ifft 

Referenced procedures, FSHs, •nd dat• structures: 
FSH_STATUS 
LULU_CB 
ACTLU_RQ,_RCV_RECORD 
ACTLU_RSP_SEHD_RECORD 
INIT_HS 
IHIT_HS_RSP 

Create ACTLU_RSP_SEHD_RECORD. 
Set ACTLU_RsP_SEND_RECORD.LU_ID to this LU'• identifier. 

page 4-9ft 
page A-5 
page A-21 
page A-17 
page A-16 
page A-11 

Copy the PC_Io, ADDRESS. EFI, SNF, and RH fields fro11 the ACTW_RQ,_RCY_RECORD 
into the ACTLU_RSP_SEND_RECORD. 

Set ACTLU_RSP_SEHD_RECORD.RH to indicate positive response (RSP, .. 90, POSt 
and RH byte 2 set to all O's). 

The follOMing builds the ACTLU response RU--see Appendix E description for 
field settings not explicitly shown here. 

Find all LU-LU sessions (represented by LULU_CBs> being 
llediated by this CP lthe CP_ID in ACTLU ••tches that in the WLU_CIU. 

If there are no active or pending active LU-LU sessions being Mdiated by thb 
CP then 

Set ACTLU response type of activation to cold. 
Reset all LU-LU sessions being llediated by this CP by calling FSH_STA11JS 
Mith a RESET_HCIRHAL input (page 4-94). 

Else 
Set ACTLU response type of activation to ERP. 

If FH profile 6 is supported by this LU then 
Set the FH profile field in the ACTLU response to 6. 

Build control vector x•oo• (Appendix El. 
Build control vector X'OC' (Appe\dix E>. Peripheral nodes alMays suppress 
sencHng the SESSST RUI st.bare• nodes •bH1ys send SESSST. The LU-LU session 
count is deter•ined by counting all the LULU_CBs associated with (being 
11ettiated by) this CP. For peripheral node sessions with •n SSCP (as opposed 
to a PHCP) the pri•ary LU capability is inhibited (not able ever to be a primary), 
the LU-LU session li•it is 1, and parallel session capability is not supported. 

Put the control vectors in the ACTW response RU. 
(End of buildh'9 ACTLU response RU. ) 

Create the new CP-LU half-session process. 
Create an IHIT_HS record to be sent to the CP-LU half-aession. 
Set INIT_Hs.PC_Io to ACTLU_RCl.RCY_RECORD.PC_ID. 
Set INIT_HS. TYPE to secondary CLU is always secondary with respect to CP). 
Set IHIT_HS.DATA_TYPE to ;ndicate th;s record contains an ACTW_IHA6E. 
Set INIT_HS.ACTLU_IHAGE.FH_PROFILE and TS_PROFILE to the corresponding field val'*! 

frOll the ACTLU response RU. . 
Set INIT_HS.ACTW_IHAGE.HAX_RU_SIZE to tha 11axi11U11 RU aize allowed on thh session 

( h1pluentation-defined). 

Send the ACTLU_RSP_SEND_RECDRD to the CP via the nodal NAU Hnager "otl'I). 
Send the INIT_Hs record to the CP-W half-aesaion. 
Receive the INIT_Hs_RSP from the CP-LU half-session <this response is •!ways positive>. 
This response is used just so CP-W and LU-W half-sessions operate in the sa• 
Rnner. 

4-58 SHA ForMt and Protocol Refer9'Ce Hanual for W Type 6.2 



BUILD_Att>_SEtl>_Bitl>_R. 

BUILD_Atl>_SEtl>_BIND_RQ 

FlKTIOH: Build and send a BUil request. 

INPUT: LULU_CB 

OUTPUT: BUl>_RQ_SEND_RECORD sent to tH1 

Referenced procedures, FSHs, and data structures: 
LULU_ CB 
BIND_RQ....SEND_RECORD 
LUCB 

Create BIND_RQ....SEND_RECORD to conta;n the BIND request. 
Set BIND_RQ....SEND_RECORD.LU_ID to th;s LU's identifier. 

page A-S 
page A-17 
page A-1 

Set BIND_RQ....SEND_RECORD.PC_ID to LULU_CB.LU_LU.PC_ID (identifi8S the path control 
that the BIND Mi 11 floM through). 

Set BIND_RQ....SEND_RECORD.ADDRESS to LULU_CB.LU_LU.ADDRESS (TH addresses). 
Set BIND_RQ....SEND_RECORD.EFI to EXP (expedited>. 
Set BIND_RQ....SEND_RECORO.SNF to a 111;que identifier. This identifier is 
also saved in LULU_CB.SENT_BIND_RQ.SNF for correlating the BIND response later. 

Set BIND_RQ....SEND_RECORD.RH to the appropriafe values (figure 4-3 on page 4-16). 
Set BIND_RQ....SEND_RECORD.RU to the appropriate values hee page 4-19>. 
Insert the rando!a data found ;n the BIND_RQ....SEND_RECORD.RU into the 

LUCB.PENDING_RANDOM_DATA_LIST. 
Set BIND_RQ....SEND_RECORO.DCF to the appropr;ate value. 
Save the BIND request in the LULU_CB for later uses (e.g., checkhlg the BIND response>. 

Send BIND_RQ....SEtll_RECORD to the other LU via the nodal NAU .anager. 

BUILO_Atll_SEtl>_Bitll_RSP_NE& 

FlKTIOH: Build and send a negative BIND response. 

INPUT: BIND_RQ....RCV_RECORD 

OUTPUT: BIND_RSP_SEND_RECORD sent to tH1 

Referenced procedures, FSl'ls, and data structures: 
LOCAL 
BIND_RQ....RCV_RECORD 
BIND_RSP_SEND_RECORO 

Create the BIHD_RSP_SEtl>_RECORD to contain the negative Bltll response. 
Set BIND_RSP_SEND_RECORD.LU_ID to this LU's identifier. 
Copy the PC_ID, ADDRESS, EFI, SNFt and RH frOll the Bitll_RQ....RCV_RECORD into 

the BIND_RSP_SEl-l>_RECORD. 
Indicate negative response in BIND_RSP_SEND_RECORD.RH (RSP, SD, NEG, and 
byte 2 of RH set to all O's). 

page tt-101 
page A-21 
page A-17 

Set Bitll_RSP_SEtl>_RECORD.RU to LOCAL.SENSE_COOE followed by Bltll request code. 
Set BIND_RSP_SEND_RECORD.DCf field to appropriate value. 

Send BINO_RSP_SENO_RECORD to the LU via the nodal HAU •anager. 

Chapter tt. LU Network Services 4-S9 



8UILD_AM>_SEND_BIND_RSP_POS 

BUILD_AM>_SEND_BIND_RSP_POS 

FUNCTION: Build and send a positive BIND response. 

INPUT: BIND_RQ_RCY_RECORD, LULU_CB 

OUTPUT: BIND_RSP_SEND_RECORD sent to tff1 and BIND i•age returned (i.e. BIND i11age frOll 
BIND 1"8SPonH just sent) 

Refermiced procedures, FSHs, and data structures: 
LUCB 
LULU_ CB 
BIND_RQ_RCY_RECORD 
BIND_RSP_SEl'l>_RECORD 
PARTNER_ LU 
tlODE 

Create BIND_RSP_SEND_RECORD to contain the positive BIND response. 
Set BIND_RSP_SEND_RECORD.LU_ID to this LU's identifier~ 
Copy the PC_ID, ADDRESS, EFI, SNF, •nd RH frOll the BIND_RQ_RCY_RECORD into 

the BIND_RSP_SEHD_RECORD. 

page A-1 
page A-5 
page A-21 
page A-17 
page A-2 
page A-3 

Set BIND_RSP_SEND_RECORD.RH to indicate positive response (RSP, .. 50, POS, and 
byte 2 of RH set to all O's>. 

Set BIND_RSP_SEND_RECORD.RU to the appropriate values (see page 4-25>. 
Insert the random data fouid in the BIND_RSP_SEND_RECORD.RU 
into the LUCB.PENDING_RANDOM_DATA_LIST. . 
The PARTHER_LU, MODE, and LULU_CB are used in construction of the BIND RU. 

Set BIND_RSP_SEND_RECORD.DCF to appropriate value. 
Send BIND_RSP_SEND_RECORD to the other LU via the nodal NAU•anager. 
Return a copy of BIND i11age fre11 the BIND response RU. 

BUILD_AND_SEND_Bitt>F_RQ 

FlKTION: Build and send BINDF CBINO hilure) request to SSCP Cvia SSCP-LU 
half-session>. This procedure is used only totithin sl.barH nodes. 

INPUT: Reason code (type of BINDF to send>. LULU_CB, sense data 

OUTPUT: HS_SEtt>_RECORD (containing BINDF request> sent to SSCP-LU half-session 

Referenced procedures. FSHs, and data structures: 
LULU_ CB 
HS_SEND_RECORD 

page A-5 
page A-16 

If this node is a subarea node then Uhe BINOF request is sent only blf subarea nodes> 
Create HS_SEND_RECORD to contain the BINDF request. 
Set HS_SEND_RECORD.EFI to NORMAL. 
Set HS_SEtl>_RECORD.SNF to a unique identifier. 
Set HS_SEND_RECORD.DCF to appropriate value. 
Set HS_SEND_RECORD.RH to appropriate values (figure 4-2 on page 4-8). 
Set HS_SEtl>_RECORD.RU Csee BINDF request in Appendi>« E>. Set the BINDF reason 

f.ield in accordance totith the passed reason code and the BINOF sense data to the 
passed sense data parameter. The passed LULU_CB contains infor•ation !e.g., addresses) 
used in building the RU. 

Send HS_SEl'l>_RECORD to the CP via the CP-LU half-session. 

4-60 SHA For .. t and Protocol Reference Hilnuail for LU Type 6.2 



BUILD_AND_SEND_CINIT_RSP 

BUILD_AND_SEND_CINIT_RSP 

FUNCTION: eu;1d and send a pos;tive or negat;ve CINIT response. 

INPUT: HS_RCV_RECORD conta;n;ng CINIT request. LOCAL.SENSE_CODE ;ndicates what type 
of response (pos;tive or negative> to bu;ld. 

OUTPUT: HS_SEND_RECORD (contain;ng CINIT response> sent to CP via CP-LU half-session 

Referenced procedures, FSMs, and data structures: 
LOCAL 
HS_RCV_RECORD 
HS_SEND_RECORD 

Create HS_SEND_RECORD to contain CINIT response. 
Copy the EFI, SNFo and RH from the HS_RCV_RECORD to the HS_SEND_RECORD. 

If LOCAL.SENSE_CODE = x•oooooooo• then (bu;ld a pos;tive response> 
Set HS_SEND_RECORD.RH to ;ndicate posit;ve response (RSP, ~so, POS, and 
byte 2 of RH set to all O's>. 

Set HS_SEND_RECORD.RU to the CINIT request code. 

page 4-101 
page A-11 
page A-16 

If there are any unknown control vectors ;n the CINIT request RU then 
Append control vector X'FE' to the CINIT response RU (see control vectors 

in Appendix E>. 

Elsa (build a negative response> 
Set HS_SEND_RECORD.RH to indicate negative response (RSP, SD, NEG, and 
byte 2 of RH set to all O's>. 

Set HS_SEND_RECORD.RU to the sense data (LOCAL.SENSE_CODE) followed by 
the CINIT request code. 

Sat the HS_SEND_RECORD.DCF to the appropriate value. 
Send the HS_SEND_RECORD (containing the CINIT response) to the CP via the 

CP-LU half-session. 

CHapter 4. LU Network Services 4-61 



BUILD_Atl>_SEtl>_DACTLU_RSP 

BUILD_Atl>_SEtl>_DACTLU_RSP 

FU«:TION: eu;ld and sand a positive or negative DACTLU response. 

INPUT: DACTLU_R~RCY_RECORD 

OUTPUT: DACTLU_RSP_SENl_RECORD swit to CP via nodal HAU .. nager 

Referancec:I procedures, FSH&, and data structu,...: 
LOCAL 
DACTLU_RSP_SEND_RECORD 
DACTLU_R~RCV_RECORD 

DECLARE TEHP_DCF INTE6ERI 

Create the DACTLU_RSP_SEtl>_RECORD to contain the DACTLU response. 
Set DACTLU_RSP_SEtl>_RECORD.LU_ID to this LU's identifier. 
Copy the PC_ID, ADDRESS, EFI, SNF, and RH frOll the DACTLU_R~RCV_RECORD 

the DACTLU_RSP_SEtl>_RECORD. 

If LOCAL.SENSE_CODE = x•oooooooo• then (build a positive response) 

page 4-101 
page A-17 
page A-22 

Set DACTLU_RSP_SEND_RECORD.RH to indicate positive response IRSP, .. 50, POS, 
and byte 2 of RH set to all O's). 

Set DACTLU_RSP_SEND_RECORD.RU to DACTLU request code. 
Set DACTLU_RSP_SEND_RECORD.DCF to appropriate value. 

Else (build a negative response) 
Set DACTLU_RSP_SEND_RECORD.RH to indicate negat;ve response IRSP, SD, NE&, 
and byte 2 of RH set to all O's). 

Set DACTLU_RSP_SEtl>_RECORD.RU to lOCAL.SEHSE_CODE follONed by the DACTLU 
request code. 

Set DACTLU_RSP _SEtl>_RECORD. DCF to approprh1te value. 

Send DACTLU_RSP_SEND_RECORD to the CP via the nodal HAU unager. 

BUILD_AND_SEND_DEACTIVATE_SESS 

FlH:TIOH: Build and send CTERH_DEACTIVATE_SESSION to RH. This is sent to RH Mhen a 
CTERH-ORDERLY is received for an active LU-LU session. LHS cannot deactivate 
a session in an orderly unner because it does not knON ...,.., to send BIS. 
Therefore, it llUSt tell RH to do it. 

INPUT: HS identifier of the half-session to be deactivated 

OUTPUT: CTERH_DEACTIVATE_SESSION sent to RH 

Referenced procedures, FSHs, and data structures: 
CTERH_DEACTIYATE_SESSION 

Create CTERH_DEACTIVATE_SESSION record. 
Set CTERM_DEACTIVATE_SESSION.HS_ID to passed HS hJentifier (identifies the 
half-session to be deactivated>. 

Send CTERH_OEACTIVATE_SESSION to RH. 

4-62 SHA Fornt and Protocol Reference Hanual for W Type 6.2 

page A-20 



BUILD_AND_SEND_HIER_RESET_RSP 

BUILD_AND_SEND_HIER_RESET_RSP 

FUNCTION: Build and send a HIERARCHICAL_RESET response to the nodal NAU manager. 

INPUT:· HIERARCHICAL_RESET 

OUTPUT: HIERARCHICAL_RESET_RSP sent to nodal NAU manager 

Referenced procedures, Fstls, and data structures: 
HIERARCHICAL_RESET_RSP 
HIERARCHICAL_RESET 

Create HIERARCHICAL_RESET_RSP record. 
Set HIERARCHICAL_RESET_RSP.LU_ID to this LU's identifier. 

page A-18 
page A-22 

Copy the PC_ID and CP_ID fields from HIERARCHICAL_RESET into HIERARCHICAL_RESET_RSP. 

Send HIERARCHICAL_RESET_RSP to the nodal NAU manager. 

BUILD_AND_SEND_INIT_HS 

FUNCTION: Build an INIT_HS (initialize half-session) record and send it to the 
half-session designated by the passed LULU_CB. 

INPUT: 

OUTPUT: 

LULU_CB, BIND image, and half-session type (PRI or SEC) 

INIT_HS sent to HS (LU-LU half-session> 

Referenced procedures, FSMs, and data structures: 
LULU_ CB 
INIT_HS 

Create INIT_HS record. 

page A-5 
page A-16 

Set INIT_HS.PC_ID to LULU_CB.LU_LU.PC_ID (path control the LU-LU half-session will 
send to and receive from>. 

Set INIT_HS.TYPE to passed half-session type parameter (primary or secondary>. 
Set INIT_HS.DATA_TYPE to BIND image type (indicates data is a BIND image>. 
Set INIT_HS.DATA.BIND_IMASE to the passed BIND image (half-session protocols aNI based on 
fields in the BIND image>. 

Send INIT_HS record to HS (the LU-LU half-session identified by LULU_CB.LU_LU.HS_ID>. 

Chapter 4. LU Network Services 4-63 



BUILD_AND_SEND_INIT_RQ 

BUILD_AND_SEND_INIT_RQ 

FUNCTION: 

INPUT: 

Build and send an INIT-SELF request to the control point CSSCP or PNCP>. 

LULU_CB, DLU role CPLU or SLU) 

OUTPUT: HS_SEND_RECORD (containing INIT-SELF request) sent to CP-LU half-session 

Referenced procedures, FSMs, and data structures: 
LULU_CB 
HS_SEND_RECORD 

Create HS_SEND_RECORD to contain INIT-SELF request. 
Set HS_SEND_RECORD.EFI to NORMAL. 
Set HS_SEND_RECORD.SNF to a unique identifier. 
Set HS_SEND_RECORD.RH to appropriate values (figure 4-2 on page 4-8>. 

page A-5 
page A-16 

Set HS_SEND_RECORD.RU to appropriate values Csee INIT-SELF request in Appendix E>. 
The choice of initiate type CI or I/Q) is installation defined. The PLU/SLU 
specification is set according to the passed DLU role parameter. 

Set HS_SEND_RECORD.DCF to the appropriate value. 

(Save information from the INIT-SELF request. This information is used to correlate 
with the INIT-SELF response [SNFJ and with the CINIT or BIND request [URCJ.> 

Set LULU_CB.SENT_INITIATE_RQ.SNF to HS_SEND_RECORD.SNF. 
Set LULU_CB.SENT_INITIATE_RQ.URC to the URC field of the INIT-SELF RU. 

Send HS_SEND_RECORD to the CP via the CP-LU half-session. 

BUILD_AND_SEND_PC_CONNECT 

FUNCTION: Build and send a path control connect record. The purpose of this record is 
to obtain Cvia a response> the process ID CPC_ID> of the path control to which 
BIND will be sent and get path control characteristics necessary to build a 
BIND request. Also, for peripheral nodes only, this procedure obtains the 
address that will represent the LU-LU session being activated. For subarea 
nodes, this record may cause a virtual route to be activated. 

INPUT: LULU_ CB 

OUTPUT: PC_CONNECT sent to nodal NAU manager 

Referenced procedures, FSMs, and data structurC!S: 
LULU_ CB 
PC_CONNECT 

Create PC_CONNECT record. 
Set PC_CONNECT.LU_ID to this LU's identifier. 

page A-5 
page A-18 

Set PC_CONNECT.HS_ID to LULU_CB.LU_LU.HS_ID Chalf-session process identifier). 

If this node is a peripheral node then 
Set PC_CONNECT.TYPE to PERIPHERAL. 
Set PC_CONNECT.ALS to LULU_CB.LU_LU.ALS Cidentifies adjacent link station 
to be used for this LU-LU session>. 

Else Csubarea node> 
Set PC_CONNECT.TYPE to SUBAREA. 
Set PC_CONNECT.PATH_INFORMATION to the class-of-service and virtual-route-identifier­
list from the control vector X'OD' of the CINIT request. This informa~ion is used to 
select the virtual route. 

Set PC_CONNECT.SUBAREA_ADDRESS to the subarea portion of the address of the target LU. 

Send PC_CONNECT to path control via the nodal NAU manager. 

4-64 SNA Format and Protocol Reference Manual for LU Type 6.2 



BUILD_AND_SEND_PC~HS_CONNF.CT 

BUILD_AND_SEND_PC_HS_CONNECT 

FUNCTION: Build and send a path control half-session connect record. The purpose of 
this record is to tell path control a new half-session process has been 
started that uses the specified address. Path control needs this 
HS_ID/ADDRESS relationship in order to route incoming PIUs and build THs for 
outgoing PIUs. 

INPUT: 

OUTPUT: 

Process identifier CPC ID> of the path control to which 
record is to be sent, process identifier CHS ID> of the 
activated, ADDRESS (address for the half-session) 

PC_HS_CONNECT sent to path control via nodal NAU manager 

Referenced procedures, FSMs, and data structures: 
LNS 
ADDRESS 
PC_HS_CONNECT 

Create PC_HS_CONNECT record. 
Set PC_HS_CONNECT.LU_ID to this LU's identifier. 
Set PC_HS_CONNECT.PC_ID to passed path control identifier. 
Set PC_HS_CONNECT.HS_ID to passed half-session identifier. 
Set PC_HS_CONNECT.ADDRESS to passed ADDRESS CTH addresses). 

Send PC_HS_CONNECT to path control via the nodal NAU manager. 

BUILD_AND_SEND_PC_HS_DISCONNECT 

the PC_HS_CONNECT 
half-session just 

page 4-47 
page A-34 
page A-18 

FUNCTION: Build and send a path control half-session disconnect record. This is to 
notify path control that a half-session is deactivated. 

INPUT: Half-session process identifier CHS ID> 

OUTPUT: PC_HS_DISCONNECT sent to path control via nodal NAU manager 

Referenced procedures, FSMs, and data structures: 
PC_HS_DISCONNECT page A-19 

Create PC_HS_DISCONNECT record. 
Set PC_HS_DISCONNECT.LU_ID to this LU's identifier. 
Set PC_HS_DISCONNECT.HS_ID to passed half-session identifier. 

Send PC_HS_DISCONNECT to path control via nodal NAU manager. 

Chapter 4. LU Network Services 4-65 



BUILD_Atl>.:,.SEtl>_RSP_OR_LOG 

BUILD_Att>_SEHD_RSP_OR_l.08 

FU«:TION: Build •ncl •end • positive or neptive r•ponae to pllHed HS...;RCV_RECCllD if pas• 
s;ble. , If •n error has occurred •nd • N19'1tfve .... ponae oennot be ••t, the 
... ror is logged. · 

INPUT: HS_RCV_RECORD <to be raspancled to>. LOCAL.SENSE_CODE ChH nonzero velue if 
error occurred J 

OUTPUT: HS_SEtl>_RECORD Cconteining r•ponael sent to HS CCP-W helf-... aianh or wrof' 
ia logged 

Referenced procedurH, FSl111t •nd dat• structur•: 
LOCAL 
HS_SEtl>_RECORD 
HS_RCV_RECORD 

pllSJe 4-101 
page A-l(t 
pege A-U 

If HS_RCV_RECORD cont.ins • response or • request Hking for' no rHponae tlw\ 
If LOCAL.SENSE_CODE is nonzero then 

Opti OMlly log the error. 

Else lrequest that requires • r•ponseJ 
Cre•te HS_SEN>_RECORD to contain response. 
Set HS_SEND_RECORD.PIU to HS_RCV_RECORD.PIU Ccopy request PIU into ruponae>. 
Set HS_SEN>_RECORD.RH to indic•te response CRSP, BC, EC, .. PAC, •nd byte 2 
of RH set to all O's>. 

Set HS_SEND_RECORD.RU 111ith data other th•n sense data. For fo.-..tted Ftl>, 
requests UH the 3-byte NS headers for any nQn-ftl> request use the 1-byte 
request codeJ otherwise, use no dat•. 

If LOCAL.SEHSE_CODE = x•oooooooo• then cbuild positive r•pons•> 
Set HS_SEN>_RECORD.RH to indicate a positive r•ponse C•SD, POS>. 

Else CbuUd negative response> 
Set HS_SEN>_RECORD.RH to indicate • negative response CSD1 NEEB. 
Insert LOCAL.SEHSE_CODE in HS_SEN>_RECORD.RU lfirst 4 byt• of RU>. 

Set HS_SEtl>_RECORD.DCF to appropri•te value. 

Send HS_SEN>_RECORD to the control point via the cp .. w half-s .. sian. 

4-66 SNA Fo,...t •ncl Protocol Refe.--ce HllN.Hll for W Type 6.2 



BUILD_AN>_SEN>_SESS_ACTIVATED 

BUILD_Atl>_SEN>_SESS_ACTIYATED 

FlKTION: Build •nd aend SESSION_ACTIVATED to RH to ind;c•te that a half-aession hlis 
become •ctive. It •bo indicates infor .. tian about the half-susfon. 

INPUT: LULU_ca 

OUTPUT: SESSIOH_ACTIVATED aent to RH 

R•ferenced procedur•• FSl1s, •nd data structures: 
LUW_CB 
SESSIOH_ACTIVATED 

Create SESSIOH_ACTIYATED record. 

page A-5 
page A-20 

Sat SESSIOH_ACTIVATED.HS_ID to LUW_CB.LU_W.HS_ID Udantifies hlilf-susfon that 
ha• been •ctiv•ted). 

S.t SESSIOH_ACTIYATED.SESSION_INFORKATION.HALF_SESSIOH_TYPE to 
WLU_CB.HALF_SESSION_TYPE (indicates primary or aecondary). 

Set SESSIOH_ACTIVATED.SESSIOH_INFORKATION.BRACKET_TYPE to LUW_CB.SESSIOH_TYPE 
(indic•t .. bidder or first speaker). 

S.t SESSIOH_ACTIYATED.LU_NAHE to LULU_CB.WNAHE.LOCAL Uocally knolll'I Nu .. of the 
target Wl. 

S.t SESSIOH_ACTIVATED.tlODE_NAHE to LULU_CB.HODENAl1E. 
S.t SESSION_ACTIVATED.SESSION_INFORKATION.RAtl>OH,..DATA to LULU_CB.RAtl>OH Crandoll 
dat• Hnt laecondaryJ or r-eceived lpri .. ryJ>. 

Sn SESSION_ACTIVATED TO RH lnot'ify RH that •n LU-LU session has been activded). 

BUILD_AN>_SElt>_SESS_DEACTIVATED 

FlKTION: Build •nd aend SESSION_DEACTIVATED to Rtt to indicate that • aession hlia been 
de•ctiv•ted. 

INPUT: Procesa identifier CHS ID> of hdf-aesaion dHctivated, re.son code Cruson 
for cte.ctivation> 

OUTPUT: SESSION_DEACTIYATED sent to RH 

R•ferenced procedur-u, FSl1s, and data str-uctures: 
SESSIOH_DEACTIYATED page A-21 

Create SESSIOH_DEACTIVATED record. 
Sat SESSIOH_DEACTIYATED.HS_ID to passed HS ID t;c:i.,tifi .. half·s .. sion that NH 
deactivated>. 

S.t SESSION_DEACTIVATED.REASOH to passed r-Hson code <indicates the ruson the 
half-session Mas ductivated). 

Send SESSIOH_DEACTIYATED to RH (notify RH that an LU-LU aesaion has been deactivated>. 

Chapt•r It. LU Ntltwork S.rvicu 't-67 



BUILD_AND_SEND_SESSEND_RQ 

BUILD_AND_SEND_SESSEND_RQ 

FUNCTION: Build and send SESSEND request to the control point (SSCP or PNCP> to indicate 
that a session has ended. 

INPUT: LULU_CB 

OUTPUT: HS_SEND_RECORD (containing SESSEND request> sent to CP-LU half-session 

Referenced procedures, FSMs, and data structures: 
LULU_ CB 
HS_SEND_RECORD 

Create HS_SEND_RECORD to contain SESSEND request. 
Set HS_SEND_RECORD.EFI to NORMAL. 
Set HS_SEND_RECORD.SNF to a unique identifier. 
Set HS_SEND_RECORD.RH to appropriate values (figure 4-2 on page 4-8>. 
Set HS_SEND_RECORD.RU as specified in Appendix E. Fields from the LULU_CB 
(e.g., addresses) are used in building this RU. 

Send HS_SEND_RECORD to the control point via the CP-LU half-session. 

BUILD_AND_SEND_SESSST_RQ 

page A-5 
page A-16 

FUNCTION: Build and send SESSST request to the control point (SSCP or PNCP> ~o ;ndicate 
that a session has been activated. 

INPUT: LULU_ CB 

OUTPUT: ::~~SEND_RECORD (containing SESSST request) sent to CP-LU half-session 

Referenced procedures, FSMs, and data structures: 
LULU_CB 
HS_SEND_RECORD 

Create HS_SEND_RECORD to contain SESSST request. 
Set HS_SEND_RECORD.EFI to NORMAL. 
Set HS_SEND_RECORD.SNF to a unique identifier. 
Set HS_SEND_RECORD.RH to appropriate values (figure 4-2 on page 4-8). 
Set HS_SEND_RECORD.RU as specified in Appendix E. Fields from the LULU_CB 
!e.g., addresses> are used in building this RU. 

Send HS_SEND_RECORD to the control point via the CP-LU half-session. 

4-68 SNA Format and Protocol Reference Manual for LU Type 6.2 

page A-S 
page A-16 



BUILD_AM>_SEtfl_TERM_RQ 

BUILD_Atf)_SEtll_TERM_RQ 

FUNCTION: Build and send TERM-SELF roquest to the control point fSSCP or PHCP). 

INPUT: LULU_ce, DEACTIVATE_SESSION.TYPE (type of TERH-SELF to send) 

OUTPUT: HS_SEND_RECORD (containing TERM-SELF request> sent to HS ICP-LU half-session) 

Referenced procedures. FSHs, and data structures: 
HS_SEtll_RECORD 
LULU_CB 
DEACTIVATE_ SESSION 

Create HS_SEND_RECORD to contain the TERM-SELF request. 
Set HS_SEND_RECORD.EFI to NORMAL. 
Set HS_SEtl>_RECORD.SNF to a unique ident;fier. 
Set HS_SEtl>_RECORD.RH to appropriate values (figure 4-2 on poige 4-8). 

page A-16 
p~ge A-5 
page A-31 

Set HS_SEtll_RECORD.RU to appropriate values lsee TERM-SELF request in Appendix E). 
The ter•ination reason field is set according to the passed DEACTIVATE_SESSION.TYPE. 
Fields from the LULU_CB (e.g., URC fro~ the IHIT-SELF request) are used in building 
this RU. 

Set HS_SEND_RECORD.DCF to the appropriate value. 

Send HS_SEND_RECORD to the CP via the CP-LU half-session. 

FUNCTION: Build and send an UteIND request. 

INPUT: LULU_CB Cindicates the LU-LU session to UNBitf)), UNBIND type code, sense ct.ta 
(used for foraiat-or-protocol-error type UNBitlls only> 

OUTPUT: UNBitfl_RQ_SEND_RECORD sent to nodal HAU Nnager 

Referenced procedures, FSMs, and data structures: 
LULU_ CB 
UNBINO_RQ_SEtf)_RECORD 

Create UNBitl>_RQ_SENO_RECORD to contain UNBIND request. 
Set UNBitl>_RQ_SEND_RECORD.LU_ID to this LU'& identifier. 

page A-5 
page A-19 

Set UNBIND_RQ_SEtfl_RECORD.PC_ID to LULU_CB.LU_LU.PC_ID (identifies path control 
through which the UNBitl> will flD1o1). 

Set UNBIND_RQ_SEtl>_RECORD.ADDRESS to LULU_CB.LU_LU.ADDRESS cto be used in the TH 
address field). 

Set UNBitl>_RQ_SEtl>_RECORD.EFI to EXP (expedited-flow>. 
Set UNBIND_RQ_SEND_RECORD.SNF to a unique identifier. Also, save this identifier 

in LULU_CB.SENT_UNSIND_RQ.SNF (used to correlate UNBitl> response>. 
Set UNBIND_RQ_SEND_RECORD.DCF to the approprhte value. 
Set UNUND_RQ_SEND_RECORO.RH to the appropriate values I Figure 4-3 on page 4-16>. 
Set lleltl>_RQ_SEND_RECORO.RU to the appropriate values lsee UNBitf) request in Appendix E>. 

The UNBIND Type field is set according to the passed UNBitfl type code. If the type is 
X'FE' lfor•at or protocol error) then the passed sense data is included in the UNBitl> RU. 

Send ~IND_RQ_SEND_RECORD to the other LU via the nodal NAU 11anager. 

Chapter 4. LU Network Services 4-69 



BUILD_AND_SEND_UNBIND_RSP 

BUILD_AND_SEND_UNBIND_RSP 

FUNCTION: Build and send an UNBIND response. 

INPUT: UNBIND_RQ_RCV_RECORD, LOCAL.SENSE_CODE <indicates Nhat type of response [posi­
tive or negativeJ to build> 

OUTPUT: UNBIND_RSP_SEND_RECORD sent to nodal NAU manager 

Referenced procedures, fSMs, and data structures: 
LOCAL 
UNBIND_RQ_RCV_RECORD 
UNBIND_RSP_SEND_RECORD 

Create an UNBIND_RSP_SEND_RECORD. 
Set UNBIND_RSP_SEND_RECORD.LU_ID to this LU's identifier. 
Set UNBIND_RSP_SEND_RECORD.PC_ID to UNBIND_RQ_RCY_RECORD.PC_ID. 
Set UNBIND_RSP_SEND_RECORD.ADDRESS to UNBIND_RQ_RCV_RECORD.ADDRESS. 
Set UNBIND_RSP_SEND_RECORD.EFI to EXP. 
Set UNBIND_RSP_SEND_RECORD.SNF to UNBIND_RQ_RCV_RECORD.SNF. 
Initialize UNBIND_RSP_SEND_RECORD.RH to UNBIND_RQ_RCV_RECORD.RH. 
Indicate response RH lRSP and byte 2 of RH set to all O's>. 

If LOCAL.SENSE_CODE = x·oooooooo• then 

page 4-101 
page A-23 
page A-19 

Set UNBIND_RSP_SEND_RECORD.RH to indicate a positive response <~so, POS). 

Else 
Set UNBIND_RSP_SEND_RECORD.RH to indicate a negative response (SD, NEG>. 

Build the UNBIND RU, including the sense data if necessary. 
Set UNBIND_RSP_SEND_RECORD.DCF to appropriate value. 

Send UNBIND_RSP_SEND_RECORD to the other LU via the nodal NAU •anager. 

BUILD_AND_SEND_UNBINDF_RQ 

FUNCTION: Build and send UNBINDF request to the SSCP (for subarea nodes only>. 

INPUT: Sense data (from UNBIND negative response), LULU_CB 

OUTPUT: HS_SEND_RECORD (containing UNBIND request> sent to HS CSSCP-W half-session) 

Referenced procedures, FSMs, and data structures: 
LULU_ CB 
HS_SEND_RECORD 

page A-5 
page A-16 

If this node is a subarea node and this LU is primary then CUNBINDF is sent only by 
primary LUs in subarea nodes) 

Create HS_SEND_RECORD to contain UNBINDF request. 
Set HS_SEND_RECORD.EFI to NORMAL. 
Set HS_SEND_RECORD.SNF to a unique value. 
Set HS_SEND_RECORD.RH to the appropriate val..ies (figure 4-2 on page 4-8). 
Set HS_SEND_RECORD.RU to the apprcpr1ate values (see UNBINDF request in Appendix E>. 
Set sense data in the RU to the passed sense data. Indicate UNBIND error in 
reaching ~LU as the reason. Fields from the passed LULU_CB (e.g., addresses) 
•~c wsed in building this RU. 

Send HS_SEND_RECORD to the CP via the CP-LU half-session. 

4-70 SNA Format and Protocol Reference Manual for LU Type 6.2 



CINIT_R~STATE_ERROR 

CINIT_R~STATE_ERROR 

FUNCTION: Perform state error checking on received CINIT request. 
optional. 

These checks are 

INPUT: HS_RCV_RECORD (containing CINIT request), LULU_CB pointer (if null, indicates 
unsolicited CINITI otherwise, indicates solicited CINIT> 

OUTPUT: TRUE if errorl otherwise, FALSE. If TRUE, LOCAL.SENSE_CODE is set to appro­
priate sense code. 

Referenced procedures, FSMs, and data structures: 
LU_MODE_SESSION_LIMIT_EXCEEDED 
LOCAL 
HS_RCV_RECORD 
PARTNER_ LU 
MODE 
LULU_CB 
SESSION_ TYPE 

page 4-76 
page 4-101 
page A-11 
page A-2 
page A-3 
page A-5 
page 4-101 

If the passed LULU_CB pointer contains a null value (indicating unsolicited CINIT> then 
If there are insufficient resources (e.g., storage) to start a new LU-LU session then 

Set LOCAL.SENSE_CODE to X'08120000' I insufficient resources>. 
Return with a value of TRUE (error). 

If this LU cannot currently act as a primary LU then 
Set LOCAL.SENSE_CODE to X'083AOOOO' (LU not enabled>. 
Return with a value of TRUE (error>. 

Locate the PARTNER_LU control block in which the 
PARTNER_LU.FULLY_QUALIFIED_LU_NAME matches the 
SLU name in the CINIT request. 

If unable to locate the PARTNER_LU control block then 
Set LOCAL.SENSE_CODE to X'0835xxxx' (xxxx is the offset to SLU name>. 
Return with a value of TRUE (error>. 

Locate the MODE control block in which MODE.NAME matches the 
mode name in the X'OD' control vector of the CINIT request. 

If unable to locate the MODE then 
Set LOCAL.SENSE_CODE to X'0835xxxx' lxxxx is the offset to mode name 

in CINIT control vector X'OD'>. 
Return with a value of TRUE (error). 

!':!2.!!u Unsolicited CINIT requests occur only when not using parallel sessions. 
The following determines whether the local LU will be the bidder or first 
speaker for the session so that the proper session limit checks can be made. 

If MODE.MIN_CONLOSERS_LIMIT = 1 then 
Set SESSION_TYPE to BIDDER. 

Else 
Set SESSION_TYPE to FIRST_SPEAKER. 

Call LU_MODE_SESSION_LIMIT_EXCEEDED(PARTNER_LU.FULLY_QUALIFIED_LU_NAME, MODE, 
SESSION_TYPE, ACTIVE_AND_PENDING_ACTIVE> Cpage 4-76). 

If the session limit will be exceeded then 
LOCAL.SENSE_CODE was set to the correct sense code by LU_MODE_SESSION_LIMIT_EXCEEDED. 
Return with a value of TRUE (error). 

Else 
Return with a value of FALSE (no error>. 

Chapter 4. LU Network Services 4-71 



CINIT_RQ_STATE_ERROR 

Else (solicited CINIT request) 
If LULU_CB.MODENAME ~ the mode name in control vector X'OD' of the CINIT request 

then CThe mode name must be the same as was sent in the INIT-SELF request.) 
Set LOCAL.SENSE_CODE to X'0835xxxx' Cxxxx is the offset to mode name in CINIT 
control vector X'OD'>. 

Return with a value of TRUE (error>. 

Locate the PARTNER_LU and MODE control blocks using the partner-LU name and 
mode name from the LULU_CB. These control blocks will always be found for 
solicited CIN~T requests. 

Call LU_MODE_SESSION_LIMIT_EXCEEDEDCPARTNER_LU.FULLY_QUALIFIED_LU_NAME, MODE, 
LULU_CB.SESSION_TYPE, ACTIVE_AND_PENDING_ACTIVE) Cpage 4-76). 

If the session limit will be exceeded then 
LOCAL.SENSE_CODE was set to the correct sense data by LU_MODE_SESSION_LIMIT_EXCEEDED. 
Return with a value of TRUE (error). 

Else 
Return with a value of FALSE (no error). 

CLEANUP_LU_LU_SESSION 

FUNCTION: Clean up LU-LU session. This may include sending a SESSEND request to the CP 
and a PC_HS_DISCONNECT record to path control. 

INPUT: LULU_CB of session to be cleaned up 

OUTPUT: LU-LU session cleaned up 

Referenced procedures, FSMs, and data structures: 
BUILD_AND_SEND_SESSEND_RQ 
BUILD_AND_SEND_Pc_Hs_DISCONNECT 
LULU_ CB 

If SESSST has been sent to the control point then 
Call BUILD_AND~SEND_SESSEND_RQCLULU_CB) (page 4-68). 

If PC_Hs_CONNECT has been sent to path control then 
Call BUILD_AND_SEND_PC_HS_DISCONNECTCLULU_CB.LU_LU.HS_ID> Cpage 4-65). 

Release any resources (e.g., buffers) held by this LU-LU session. 

4-72 SNA Format and Protocol Reference Manual for LU Type 6.2 

page 4-68 
page 4-65 
page A-5 



INITIALIZE_LULU_CB_ACT_SESS 

INITIALIZE_LULU_CB_ACT_SESS 

.---------------------------------------------------------------------------------~--, 

FUNCTION: Initialize an LULU_CB for an LU-LU session being activated as a result of an 
ACTIVATE_SESSION received from RM. 

INPUT: ACTIVATE_SfSSION, LULU_CB (to be initialized), CP_ID (control point identifier 
associated with this session> 

OUTPUT: LULU_CB (initialized> 

Referenced procedures, FSHs, and data structures: 
CP_ID 
ACTIVATE_ SESSION 
LULU_ CB 
PARTNER_ LU 

Set LULU_CB.CP_ID to passed control point identifier (CP_ID>. 

page A-2 
page A-31 
page A-5 
page A-2 

Determine whether the local LU is to indicate the primary or secondary role for 
itself in INIT-SELF. An LU in a peripheral node indicates primary for 
PNCP-mediated sessions; otherwise, it indicates secondary. An LU in a subarea 
node indicates primary whenever it is capable of acting as a primary; 
otherwise, it indicates secondary. 

Set LULU_CB.HALF_SESSION_TYPE to PRI or SEC as determined above. 
Set LULU_CB.CP_LU.HS_ID to the identifier of the .CP-LU half-session. 
Set LULU_CB.CORRELATOR to ACTIVATE_SESSION.CORRELATOR. 

locate the PARTNER_LU control block using ACTIVATE_SESSION.LU_NAHE. 

Set LULU_CB.LUNAHE.FQ to PARTNER_LU.FULLY_QUALIFIED_LU_NAHE. 
Set LULU_CB.LUNAHE.LOCAL to ACTIVATE_SESSION.LU_NAHE. 
Set LULU_CB.MODENAME to ACTIVATE_SESSION.MODE_NAHE. 
Set LULU_CB.SESSION_TYPE to ACTIVATE_SESSION.SESSIDN_TYPE. 
Set LULU_CB.RANDOM to null. 

Chapter 4. LU Network Services 4-73 



INITIALizE~LULU_CB_BIN> 

INITIALIZE_LULU_CB_BIN> 

FlN:TION: lnit;•lin •n l.ULU_ee for •n W-W •••ion. btiirig activ•ted •• • result of 
rticeiving M wwolicited BIN> r...-t. · 

INPUT: BlN>_"-.RCV_RECORD, LUW_ca Ito bti initi•lincU 

OUTPUT: LUW_CB ( infti•lized> 

Referenced procecllreth FSHlh •nd cat• structures: 
Bitt>_Rll.RCY_RECORD 
PARTNER_W 
HCIDE 
LULU_C8 

page A-21 
page A-2 
page A-J 
page A-S 

Set the identifier (LULU_C8.CP_lD> of the control point -.cli•ting this W-LU 
Hssion. The •<li•ting control point for peiripher•l nodes is identified by 
either the •djacent link st•tion CALS> for an SSCP or • speicial identifier 
for the PNCP. The control point for sul:Nirea nodes is idaintified by its 
•ddrus. 

Set the CP-LU half-session identifier (LULU_CB.CP_LU.HS_ID> 
CHt to a null value if control point dou not hllve •n active sftsion Mith 
thfs W>. 

Locate the partner-LU control block (PARTNER_LU) using thil user-cfllt• PW MM 
in BIN>. 

Set LULU_C8.LllWtE.LOCAL to PARTNER_LU.LOCAL_W_tW1E. 
Set LULU_CB~LUHAHE.FQ to user-ckit• PLU n11• inllttJ. 
Set LUW_CB.HCIDEHAl1E to user-dat• llOde n11• in BIN>. 
Set ww_ca.HALF_SESSION_TYPE to SEC CBIN> receiver is secondary). 

Sat LUW_CB.Rltt>ott to null. 

If parallel sessions •r• supported Mith the partner W then 
If IIN> speicifift seconchary •• content;on MiN'l8r then 

SetWW_CB.SESSIOH_TYPE to FIRST_SPEAKER. 
ElH 

Set WLU_C8.SESSIOH_TYPE to BIDDER. 

ElH (parallel Hssions not supported Mith the partner W) 
If ttODE.HlN_CONWlttiERS_LIHIT = 1 then 

Set WLU_CB.SESSIOH_TYPE to FIRST_SPEAKER. 
u .. 

Set LULU_CB.SESSIOH_TYPE to BIDDER. 

4-74 SHA FortMt and Protocol hf....,_ tt.nual for W Typei 6.2 



lNITIALIZE_LULU_CB_CINIT 

INITIALIZE_LULU_ce_clNIT 

FlllCTION: Initialize an LULU_C8 for an LU-LU HHion being activated H a result of 
receiving an ...,.olicited CINIT r...-t. 

INPUT: HS_RcY_RECORD (containing CINIT requatlt LULU_ce (to be initialized) 

OUTPUT: LULU_C8 linitialiud> 

Refer.need procedur•• FSHs, and data structures: 
LULU_C8 
PARTNER_LU 
CPLU_C8 
HOOE 
HS_RCV_RECDRD 

Locate thlt CP-LU control block (CPLU_C8) using thlt hlllf-•••ion identifier 
CHS_ID) fra11 HS_RCV_RECORD. It Nill al..ays be fOlnl. 

Set LULU_CB.CP_ID to CPW_CB.CP_ID Ccontrol point identifier>. 
Set LULU_CB.CP_LU.HS_ID to CPLU_CB.HS_ID lCP-LU hlllf-seasion idm\tifierl. 
Set LULU_CB.HALF_SESSION_TYPE to PRI lCINIT receiver is al..ays priRry). 

page A-5 
page A-2 
pag. A-1 
pag. A-3 
JNIU- A-U 

Locate thlt PARTNER_LU control block using the SLU MM in the CINIT request 
as a search ar~t. It Nill al111ays be fouid. 

Set lULU_CB.LlMAHE.lOCAL to PARTNER_W.LOCAL_W_NAHE. 
Set LULU_CB.LlMAHE.FQ to the SLU MM frOll CINIT. 
Set LULU_CB.tlODENAttE to the llOde M• in control vector x•oo• of CINIT. 
Set WLU_CB.RAl«)Qtt to null. 

tll21.l1 The CIHIT request can be received only if parallel sessions are not supported. 
Locate thlt HOOE control block ~ing LULU_CB.HODENAHE 
as a search ar~t. It Nill al111ays be fOU'ld. 

If ttODE.HIN_COHLOSERS_LIHIT • l then 
Set LULU_CB.SESSION_TYPE to BIDDER lthe local LU is bidder>. 

El•• Set WLU_CB.SESSION_TYPE to FIRST_SPEAKER lthe local LU is first speaker>. 

Chapter It. LU NetNOrk Servicn lt-75 



LU_ttODE_SESSION_LIHIT_EXCEEDED 

LU_ttODE_SESSION_LIHIT_EXCEEDED 

FlKTION: Deter•ine Nhether or not session li•its associated with • given (LU, llOde 
na") pair are exceeded for the given state conditions. 

NOTE: If p•r•ll•l sessions are not supported 1111ith the partner W end the total ••­
sion li111it Nill not be exceeded, then a session-activation rlKJ,IHt specHying 
this LU as first speaker is accepted. For ex•i.ple, • Bit«> request is received 
specifying the SEC as first speaker (contention winner). The SEC W does not 
support parallel sessions with the Bitl> sender and SESSION_LIHIT=l, 
HIN_CONWINNERS_LIHIT=O, and HIN_CDHLOSERS_LIHIT=l tthese values are associated 
Mith the l!Odena..e specified in the Bitl>>. Even thoud1 the 
HIN_CONWINNERS_Lil1IT of 0 lllill be exceeded, the Bit«> is accepted. 

INPUT: PARTNER_LU.FULLY_QUALIFIED_LU_NAtlEt HOOE, session type (in SESSION_TYPE, ACTI­
YATE_SESSION.SESSIOH_TYPE, or LULU_CB.SESSIOH_TYPE--FIRST_SPEAKER or BIDDER), 
state (ACTIVE or ACTIVE_Atl>_PENDING_ACTIVE) 

OUTPUT: TRUE if session li11its exceededJ other1111ise, FALSE. If TRUEt LOCAL.SEHSE_CODE 
is set to appropriate sense data. 

Referenced procedures, FSHa, and data structures: 
LOCAL 
HOOE 

If STATE_CONDITION = ACTIVE then 
Set BIDDER_SESSION_COUNT to the number of active bidder sessions. 
Set FSP_SESSION_COUNT to the number of active first spe•ker sessions. 

Else 
Set BIDDER~SESSION_COIJfr to the l'K.lllber of active and pending active 
bidder sessions. 

Set FSP_SESSION_COUNT to the l'\Ulllberof active and pending •ctive first 
speaker sessions. 

Set TOTAL_LIHIT to l10DE.SESSION_Lil1IT. 
Set FSP_LIHIT to HODE.HIN_CONWINNERS_LIHIT. 
Set"BIDDER_LIHIT to l10DE.HIN_CONLOSERS_LIHIT. 

Select based on one of the following conditions: 
When FSP_SESSION_COUNT + BIDDER_SESSION_CQIJfT ~ TOTAL_LIHIT 

Set LOCAL.SEHSE_COOE to X'08050000' Ctotal session li•it will be exceeded>. 
When FSP_SESSIOH_COUNT ~ TOTAL_LIHIT - BIDDER_Lil1IT •nd 

SESSION_TYPE = FIRST_SPEAl<ER •nd p•r•llel sessions are supported with 
the partner LU (see NOte in prologue') 

Set LOCAL.SENSE_CODE to X'08050001' (first speaker session li111it will be 
exceeded> • 

When BIDDER_SESSION..;COUNT ~ TOTAL_LIHIT - FSP_LIHIT and SESSION_TYPE = BIDDER 
Set LOCAL.SENSE_COOE to X'08050001' (bidder session H•it will be exceeded>. 

Otherwise 
Set LOCAL. SENSE_ CODE to X' 00000000' C sass ion l; •H wi 11 not be exceedec:I>. 

If LOCAL.SENSE_COOE = x•oooooooo• then 
Return Mith • value of FALSE (session li•it will not be exceeded), 

Else 
Return with a valu. of TRUE (session li•it w;11 be exceeded>. 

4-76 SHA Format and Protocol Reference Manual for LU Type 6.2 



PROCESS_ABORT_HS 

Fll«:TION: Process an ABORT_HS record received frOll LU-LU half-session. 

INPUT: ABORT _HS record 

Referenced procedures, FSHs, and data structures: 
FSH_STATUS 
LOCAL 
ABORT_HS 
LULU_ CB 

PROCESS_ABORT_HS 

page 4-94 
page 4-101 
page A-11 
p•ge A-5 

Deter•ine llolhich LU-LU session is being aborted by searching through the LU-LU 
control block list lLOCAL.LULU_CB_LIST) for an LULU_CB with a half-session 
identifier (HS_IDl ..atching that of the half-session that sent the ABORT_HS 
record (ABORT_HS.HS_IDJ. 

If the LULU_CB is located then 
Call FSH_STATUSU.BORT_Hs. LULU_CB> _(page 4-94). 

PROCESS_ACTIVATE_SESSION 

FUNCTION: Process an ACTIVATE_SESSION record received frOll RH. 

INPUT: ACTIVATE_SESSIOH record 

Referenced procedures, FSHs, and data structures: 
ACTIVATE_ SESSION_ ERROR 
BUILD_AND_SEND_ACT_SESS_RSP_NE6 
INITIALIZE_LULU_CB_ACT_SESS 
FSH_STATUS 
ACTIVATE_SESSIOH 
LULU_CB 
CP_ID 
ERROR_ TYPE 

page 4-51 
page 4-56 
page 4-73 
page 4-94 
page A-31 
page A-5 
page A-2 
page 4·101 

Call ACTIVATE_SESSION_ERRORIACTIVATE_SESSION, ERROR_TYPE, CP_ID> (page 4-51). 
If there is an error then (ERROR_TYPE is returned if error) 

Call BUILD_AND_SEND_ACT_SESS_RSP_NE6(ACTIVATE_SESSION.CORRELATOR, ERROR_TYPE) 
(page 4-56). 

Else (control point identifier lCP_IDJ is returned if no error) 
Create an LU-LU control block lLULU_tB> and initialize its fields. 
Call INITIALIZE_LULU_CB_ACT_SESSlACTIVATE_SESSION, LULU_ce. CP_ID> (page 4-73). 
Call FSH_STATUSIACTIVATE_SESSION record, LULU_CB> (page 4-941. 

Chapter 4. LU NetMOrk Services 4-77 



PROCESS_ACTLU_RQ 

PROCESS_ACTLU_RQ 

FUNCTION: Process a received ACTLU request. 

INPUT: ACTLU_RQ_RCV_RECORD 

Referenced procedures, FSMs, and data structures: 
BUILD_AND_SEND_PC_HS_CONNECT 
BUILD_AND_SEND_ACTLU_RSP_NEG 
BUILD_AND_SEND_ACTLU_RSP_POS 
LOCAL 
ACTLU_RQ_RCV_RECORD 
CPLU_CB 

page 4-65 
page 4-57 
page 4-58 
page 4-101 
page A-21 
page A-1 

Optionally check the ACTLU request for format errors. This includes checking the 
RH <see Figure 4-3 on page 4-16 for correct format of RH> and RU (Appendix E> for 
syntax errors. Also, if the FM profile of ACTLU is specified as 6, and this LU 
does not support 6, then it is an error. 

If there is a format error then 
Set LOCAL.SENSE_CODE to the appropriate value CAppendix G). 
Call BUILD_AND_SEND_ACTLU_RSP_NEG<ACTLU_RQ_RCV_RECORD) (page 4-57) to 
send a negative response to ACTLU. 

Else Cno format error> 
Determine if a CP-LU session already exists (search for a CP-LU half-session 
control block CCPLU_CBl with a CP_ID the same as ACTLU_RQ_RCV_RECORD.CP_ID>. 

If a CP-LU session already exists then 
Set LOCAL.SENSE_CODE to X'08150000' (function already active). 
Call BUILD_AND_SEND_ACTLU_RSP_NEGCACTLU_RQ_RCV_RECORD) <page 4-57) to 

send a negative response to ACTLU. 

Else <CP-LU session does not already exist> 
If resources (e.g., storage) are not available to create a new CP-LU 
session then 

Set LOCAL.SENSE_CODE to X'08120000' (insufficient resources). 
Call BUILD_AND_SEND_ACTLU_RSP_NEGCACTLU_RQ_RCV_RECORD> Cpage 4-57). 

Else (resources are available) 
Create a CPLU_CB to represent a new CP-LU session and insert it 

in LOCAL.CPLU_CB_LIST. 
Copy the CP_ID and PC_ID fields into the CPLU_CB from the ACTLU_RQ_RCV_RECORD. 
Set CPLU_CB.HS_ID to a unique value for the CP-LU half-session process. 
Call BUILD_AND_SEND_PC_HS_CONNECTCCPLU_CB.PC_IDt CPLU_CB.HS_Io, 

ACTLU_RQ_RCV_RECORD.ADDRESSl (page 4-651 to indicate to path 
control that a new half-session has been activated. 

Call BUILD_AND_SEND_ACTLU_RSP_POSCACTLU_RQ_RCV_RECORDl (page 4-58) 
to send a positive response to ACTLU and cref ;e the CP-LU half-session. 

4-78 SNA Format and Protocol Reference Manual for LU Type 6.2 



PROCESS_BIND_RQ 

PROCESS_BIND_RQ 

FUNCTION: Process a received BIND request. 

INPUT: 

NOTE: 

BIND_RQ_RCV_RECORD 

It is possible for a BIND containing a URC to be received with no matching 
LULU_CB. This can occur when session outage CDACTLU-SONl occurs on the CP-LU 
session after the INIT has been sent but before the BIND is received. In this 
case, the BIND is accepted even though there is currently no active CP-LU ses­
sion. 

Referenced procedures, FSMs, and data structures: 
BUILD_AND_SEND_BIND_RSP_NEG 
BIND_RQ_STATE_ERROR 
INITIALIZE_LULU_CB_BIND 
FSM_STATUS 
LOCAL 
BIND_RQ_RCV_RECORD 
LULU_CB 
LUCB 

page 4-59 
page 4-52 
page 4-74 
page 4-94 
page 4-101 
page A-21 
page A-5 
page A-1 

Chapter 4. LU Network ~ervices 4-79 



PR~~cs~_BIND_RQ 

Check BIND request for basic syntax errors that would inhibit further processing 
of the BIND, including errors in the RH, the TH DCF and the BIND length fields 
<see Appendix E and Figure 4-3 on page 4-16). 
Syntax errors are format errors and, as such, are state-independent. When a syntax 
error is found, LOCAL.SENSE_CODE is set to the appropriate sense data <X'l002' for 
overall length errors and X'0835' with offset for individual length field errors>. 
Syntax error checking is required. Unrecognized control vectors must be ignored. 

If the random data received in the BIND request is 
in LUCB.PENDING_RANDOM_DATA_LIST then (required check) 

Set LOCAL.SENSE_CODE to X'080F6051'. 
Call BUILD_AND_SEND_BIND_RSP_NEGIBIND_RQ_RCV_RECORD) (page 4-59). 

Else 

If a syntax error exists then 
Call BUILD_AND_SEND_BIND_RSP_NEGIBIND_RQ_RCV_RECORDJ (page 4-59). 
Optionally log the error. 

Else (no syntax error) 
Determine if a BIND request is solicited. 

A solicited BIND is one that the local LU solicited by having previously sent 
an INIT-SELF. The LULU_CBs are searched for a match on either the ADDRESS 
field in BIND_RQ_RCV_RECORD !or ADDRESS and PC_ID for peripheral nodes) 
or the URC field of the BIND RU. If a match is found on either field, the 
BIND is considered solicited. 

If the BIND is solicited then 
Optionally check BIND for semantic errors (Appendix E) and if an error exists, 
set LOCAL.SENSE CODE with sense data reflecting error. Semantic errors are 
field content e~rors (e.g., a field does not contain an allowable value). Lik• 
syntax errors, these errors are format errors and are state-independent. · 
If a semantic error is found, LOCAL.SENSE CODE is set to the sense data X'0835' 
with the offset to the field in error. -

Call BIND_RQ_STATE_ERRORIBIND_RQ_RCV_RECORD> !page 4-52) 
to check for state errors. If an error is found, LOCAL.SENSE_CODE contains 
the sense data indicating the type of error. 

Call FSM_STATUSIBIND_RQ_RCV_RECORD, LULU_CB) (page 4-94). 

·Else <BIND is unsolicited--session was not initiated by this LU (see Note in prologue)) 
Check the BIND for semantic and state errors as described above. 
If an error exists then 

Call BUILD_AND_SEND_BIND_RSP_NEGIBIND_RQ_RCV_RECORDJ (page 4-59). 

Else 
Create an LU-LU half-session control block (LULU_CBJ and initialize its fiel~. 
Call INITIALIZE_LULU_CB_BINDIBIND_RQ_RCV_RECORD, LULU_CB) (page 4-74). 
Call FSM_STATUS(BIND_RQ_RCV_RECORD, LULU_CBJ !page 4-941. 

4-80 SNA Format and Protocol Reference Manual for LU Type 6.2 



PROCESS_Bitl>_RSP 

PROCESS_Bitl>_RSP 

FlllCTION: Process • rec•ived BIN> response. 

INPUT: Bitll_RsP_Rcv_RECCIRD 

NOTE1 The LOCAL.SENSE_CODE is not ab1ays set by the Bitll response error checking 
procedures. FStt._STATUS deter•ines ather or not an •rror has occurred by 
checking for • nonzero value in the LOCAL.SENSE_CODE field. Therefore. the 
LOCAL.SENSE_CODE is set to a m...y nonzero value X'FfFFFFfF'. 

Referenced procedures. FStls, and cklta structures: 
Bitl>_RSP_STATE_ERRCIR 
FSH_STATUS 
LOCAL 
Bitll_RSP_RtY_RECCIRD 
LULU_CB 
LUCB 

Attapt to correlate the BIN> response with a previCK.mly sent Bitll "*"'est. 

p;ige 4-53 
p;ige 4-94 
page 4-101 
page A-22 
p;ige A-& 
page A-1 

A search is 11ade for an LULU_ca in tihich WLU_CB.PC_ID = 
Bitll_RSP_Rcv_RECORD.PC_ID and WLU_CB.SENT_Bltl>_~.SNF = Bltl>_RsP_Rtv_RECORD.SNF. 

If the correlation is successful then (an LULU_CB has been fouid> 
If LU-W verification is active <LULU_CB.RANDOt'I is non-uiptyl then 

Rnove the randoll cklta sent on the Bltll request 
fr049 LUCB.PENDING_RANDott_DATA_LIST. 

Check the Bltll response for basic synt•>< errors that would inhibit further 
processing. including errors in the RH, the TH DCF and the Bltl> length 
fields Csee Appendix E and Figure 4-3 on p;ige 4-16>. Syntax errors are for••t 
errors and, as such. are state-independent. These error checks are required. 

Optionally check the BUI> response for &auntie errors (Appendix El. S-.ntic 
errors are field content errors (e.g •• •field does not contain en allONable 
value>. Like syntax errors, these errors are for••t errors and are state-
; nc:lependent. 

Optionally call Bltl>_RsP_STATE_ERROR(Bltl>_RSP_RCY_RECORD. LULU_CB) (page 4-53) 
to check for state errors. 

If either a syntax, seMantic. or state error is detected than 
Set LOCAL.SENSE_CODE to the value X'FFFFFFfF' Csee Note in prologue>. 

If the randOM data received in the Bltll response is fCK.nd in the 
LUCB.PEtlllNG_RANDOt'l_DATA_LIST than 

Set LOCAL.SENSE_CODE to the value X'FFfffFff'. 
Call fstt._STATUS<Bitll_RSP_RCV_RECORD, WLU_CBl fp;ige 4-94>. 

Else (unable to correlate the BIND response) 
Set LOCAL.SENSE_CODE to X'200E0000' (response correlation error>. 
Optionally log the error. 

Chapter It. LU Network Services 4-81 



PROCESS_CINIT_RQ 

PROCESS_CINIT_RQ 

FUNCTION: Process a received CINIT request. 

INPUT: HS_RCV_RECORD containing CINIT request 

Referenced procedures, FSMs, and data structures: 
BUILD_AND_SEND_CINIT_RSP 
CINIT_RQ_STATE_ERROR 
INITIALIZE_LULU_CB_CINIT 
FSN_STATUS 
LOCAL 
HS_RCV_RECORD 
LULU_ CB 

4-82 SNA Format and Protocol Reference tlanual for LU Type 6.2 

page 4-61 
page 4-71 
page 4-75 
page 4-94 
page 4-101 
page A-11 
page A-5 



PROCESS_ClNlT_Rq 

t:12i1J. Peripheral nodes raceive ClNIT frOll the PNCP only Nher'I initi•ting • session 
Nith •peer T2.1 LU (i.e., the a .. sion is PNCP-..ctiated). 

If the local node is • peripher•l node anc:I d'le ClNIT request has been received frott 
an SSCP (as opposed to a PNCP) then 

Set LOCAL.SEHSE_CODE to X'l0030000' Cf'-"'Ction not supported). 
Call BUILD_Atl>_SEND_CINIT_RSPCHS_RCV_RECORD) fpage 4-61) 
to send a negative response to CINIT. 

Optionally log the error. 

Else 
Optionally check the CINIT request for syntax errors. This includes checking 

the TH DCF field and length fields Nithin the CINIT RU. If the DCF is 
incorrect, sense data X'10020000' is used; otherwise, X'0835xxxx• is used 
(xxxx is the offset to the field in error). An additional check is made to 
deter•ine whether the URC field h1Hhin the 8Itl> i•age in CIHin is present 
if required. See CINIT request in Appenclix E for correct forut. 

If there is a syntax error then 
Set LOCAL.SENSE_COOE to appropriate value. 
Call BUILD_AND_SEN>_CINIT_RSPlHS_RCV_RECORDJ lpage 4-61) 

to send a negative response to CINIT. 
Optionally log the error. 

Else (no syntax error) 
If the CINIT request indicates either third-party-initiated (INITIATE origin 
specifies ILU is not OLU> or secondary-LU-initiated fSLU is OLU) then 
(\l'lllolicited CINIT processing> 

Optionally check the CINIT request for ••antic errors. This include• checking 
that the proper session keys and control vectors are included. The sense 
data X'0835xxxx• is used to indicate fields in error Cxxxx is the offset to the 
field in error). See CINIT request in Appendix E for correct RU values. 
Optionally 1>9rfor• CINIT state checks by calling CINIT_RQ,_STATE_ERROR 
IHS_RCV_RECORD, LULU_ce pointer) (page 4-711. If any errors are 
found LOCAL.SENSE_COOE is set to the appropriate sense data. 

If there is a ... antic or state error then 
Call BUILD_AND_SEN>_CINIT_RSPlHS_RCV_RECORDl lpage 4-61) 
to send a negative response to CINIT. 

Else lno errors) 
Create and initialize an LU-LU half-session control block lLULU_CB>. 
Call INITIALIZE_LULU_C8_CINITlHS_RCV_RECORD1 LULU_C8) (page 4-75). 
Call FSl1_STATUSCHS_RCV_RECORD1 LULU_CB) <page 4-94). 

Else (not l.S'\Solicited CINIT) 
Atte11Pt to correlate this CINIT request to a previously sent INIT-SELF 

request to the same CP. Search for an LU-LU half-session control 
block lLULU_CB) are LULU_CB.SENT_INITIATE_RQ.URC = the URC field in 
the BIND image of the CINIT request. 

If the CINIT request is correlated successfully then <solicited CINIT 
processing) 

Check for CINIT request sa11antic and state errors as described above. 
If an error is found, LOCAL.SENSE_COOE is set. 

Call FSl1_STATUS<HS_RCV_RECORD, LULU_CB) (page 4-94). 

Elsa (unable to correlate CINIT> 
Set LOCAL.SEHSE_CODE to X'081EOOOO' (session reference error), 
Call 8UILD_AND_SEN>_CINIT_RSP<HS_RCV_RECORD) (page 4-61) 

to send a negative response to CINIT. 
Optionally log the error. 



PROCESS_CLEANUP_RQ 

PROCESS_CLEANUP_RQ 

FUNCTION: Process a CLEANUP request received by a subarea LU. 

INPUT: HS_RCV_RECORD containing CLEANUP request 

Referenced procedures, FSMs, and data structures: 
BUILD_ANO_SEND_RSP_OR_LOG 
FSM_STATUS 
LOCAL 
LULU_CB 
HS_RCV_RECORO 

page 4-66 
page 4-94 
page 4-101 
page A-S 
page A-11 

Optionally check the CLEANUP request for format errors. This includes 
checking the TH OCF field for RU length errors IX'l0020000'), checking for 
format 0 CX'l0030000'), and checking for valid session keys (X'083Sx><><><' ). 
See CLEANUP request in Appendix E for correct format. 

If there is a format error then 
Set LOCAL.SENSE_COOE to the appropriate value. 
Call BUILD_ANO_SENO_RSP_OR_LOGCHS_RCV_RECORDJ (page 4-66) 
to send a negative response to CLEANUP. 

Else Cno format error) 
Determine the LU-LU session (mediated by the CP that sent the CLEANUP> 
to be cleaned up by searching for an LU-LU half-session control 
block ILULU_CB) that has an address pair CLULU_CB.ADDRESSJ 
matching the address pair specified in the CLEANUP RU. (The addresses 
of the address pair in CLEANUP may be specified in any order.) 

If an LULU_CB is found then 
Call BUILD_ANO_SEND_RSP_OR_LOGIHS_RCV_RECORDJ (page 4-66) 
to send a positive response to CLEANUP. 

Call FSM_STATUSIHS_RCV_RECORO, LULU_CB> (page 4-94). 

Else !unable to determine which LU-LU session to clean up) 
Set LOCAL.SENSE_COOE to X'081E0000' (session reference error>. 
Call BUILD_AND_SENO_RSP_OR_LOGIHS_RCV_RECORDJ (page 4-66) 
to send a negative response to CLEANUP. 

4-84 SNA Format and Protocol Reference Manual for LU Type 6.2 



PROCESS_CTERM_RQ 

FUNCTION: Process a CTERM request received by a subarea LU. 

INPUT: HS_RCV_RECORD containing CTERM request 

Referenced procedures, FSHs, and data structures: 
BUILD_AND_SEND_RSP_OR_LOG 
FSM_STATUS 
LOCAL 
LULU_CB 
HS_RCV_RECORD 

Optionally check the CTERM for format errors. This includes checking 
the TH DCF field (X'l0020000'), the Format and Type fields (X'l0030000'), 
and the Session Key field CX'0835xxxx'). See CTERM request in Appendix E 
for correct format. 

If there is a format error then 
Call BUILD_AND_SEND_RSP_OR_LOGCHS_RCV_RECORD) (page 4-66) 
to send a negative response to CTERM. 

Else (no format error) 
Determine the LU-LU session (mediated by the CP that sent the CTERM) 
to be cleaned up by searching for an LU-LU half-session control 
block CLULU_CB) that has an address pair CLULU_CB.ADDRESS) 
matching the address pair specified in the CTERM RU. CThe addresses 
of the address pair in CTERM may be specified in any order.) 

If ~~l~u~~i~~-~D~~~~-:~;:OR_LOGCHS_RCV_RECORD) (page 4-66) 
to send a positive response to CTERM. 

Call FSM_STATUSCHS_RCV_RECORD, LULU_CB) (page 4-94). 

Else (unable to determine which LU-LU session to clean up) 
Set LOCAL.SENSE_CODE to X'081E0000' (session reference error). 
Call BUILD_AND_SEND_RSP_OR_LOGCHS_RCV_RECORD) Cpage 4-66) 
to send a negative response to CTERM. 

PROCESS_CTERM_RQ 

page 4-66 
page 4-94 
page 4-101 
page A-5 
page A-11 

Chapter 4. LU Network Services 4-85 



PROCESS_DACTLU_RQ 

PROCESS_DACTLU_RQ 

FUNCTION: Process a received DACTLU request. 

INPUT: DACTLU_RQ_RCV_RECORD 

Referenced procedures, FSMs, and data structures: 
BUILD_AND_SENO_DACTLU_RSP 
BUILD_AND_SENO_PC_HS_DISCONNECT 
FSM_STATUS 
LOCAL 
DACTLU_RQ_RCV_RECORD 
CPLU_CB 

page 4-62 
page 4-65 
page 4-94 
page 4-101 
page A-22 
page A-1 

Optionally check the DACTLU request for RH format errors (see Figure 4-3 on page 4-16 for 
correct RH format). 

If an error is found then 
Set LOCAL.SENSE_CODE to the appropriate value (Appendix Gl. 
Call BUILD_AND_SEND_DACTLU_RSPCDACTLU_RQ_RCV_RECORDl (page 4-62) 
to send a negative response to the DACTLU request. 

Else (no error found) 
Call BUILD AND SEND DACTLU RSPCDACTLU RQ RCV RECORD) Cpage 4-62) 
to send a-positive-response to the DACTLU request. 

Determine if a CP-LU session is active by searching for a CPLU_CB Cin 
LOCAL.CPLU_CB_LISTJ to determine whether DACTLU_RQ_RCV_RECORD and CPLU_CB have 
matching control point identifiers. 

If a CP-LU session is active then 
If the DACTLU RU length is less than 3 or the DACTLU deactivation type is 
normal then 

Reset all active and pending active LU-LU sessions mediated by this 
CP by calling FSM_STATUS !page 4-94) with a 
RESET_NORMAL input for each LU-LU session. 

Else Cmust be DACTLU with type SON) 
Reset all LU-LU sessions that have not become active or pending active by 
calling FSM_STATUS (page 4-94) with a RESET_SON 
input for each LU-LU session. 

Destroy the CP-LU half-session process. 
Call BUILD_AND_SEND_PC_HS_DISCOMNECTICPLU_CB.HS_IDl Cpage 4-65) 

to notify path control that a half-session has been deactivated. 

4-86 SNA Format and Protocol Reference Manual for LU Type 6.2 



PROCESS_DEACTIVATE_SESSION 

PROCESS_DEACTIVATE_SESSION 

FUNCTION: Process a DEACTIVATE_SESSION record received from RM. 

INPUT: DEACTIVATE_SESSION record 

Referenced procedures, FSMs, and data structures: 
FSM_STATUS 
DEACTIVATE_ SESSION 
LULU_CB 

If RM is deactivating a pending-active session CDEACTIVATE_SESSION.STATUS = 
PENDING) then 

page 4-94 
page A-31 
page A-5 

Attempt to locate the LU-LU half-session control block CLULU_CB> using the 
DEACTIVATE_SESSION.CORRELATOR field. 

Else CRM is deactivating an actjve session--from its perspective) 
Attempt to locate the LU-LU half-session control block CLULU_CB> using the 

DEACTIVATE_SESSION.HS_ID field. 

If an LULU_CB has been located then 
Call FSM_STATUSCDEACTIVATE_SESSION, LULU_CB> Cpage 4-94). 

PROCESS_ECHOTEST_R~ 

FUNCTION: Process a received ECHOTEST request in an implementation-defined way. 

INPUT: HS_RCV_RECORD containing ECHOTEST request 

Referenced procedures, FSMs, and data structures: 
HS_RCV_RECORD page A-11 

See page 4-31. 

PROCESS_HIERARCHICAL_RESET 

FUNCTION: Process a HIERARCHICAL_RESET record received from the nodal NAU manager. This 
record is generated as a result of a DACTPU. 

INPUT: HIERARCHICAL_RESET record 

Referenced procedures, FSMs, and data structures: 
BUILD_AND_SEND_HIER_RESET_RSP 
FSM_STATUS 
HIERARCHICAL_RESET 
CPLU_CB 

page 4-63 
page 4-94 
page A-22 
page A-1 

Attempt to locate the CP-LU session control block by searching for a CPLU CB 
with a control point identifier matching that in the HIERARCHICAL_RESET ~ecord. 

If a CPLU_CB is located then 
Reset all LU-LU sessions mediated by this CP by calling FSM_STATUS 

!page 4-94) with a RESET_NORMAL input for each LU-LU session. 
Destroy the CP-LU half-session. 

Call BUILD_AND_SEND_HIER_RESET_RSPCHIERARCHICAL_RESETl !page 4-63). 

Chapter 4. LU Network Services 4-87 



PROCESS_INIT_HS_RSP 

PROCESS_INIT_HS_RSP 

FlKTION: Process an INIT_HS_RSP record received frOll an LU-LU half-aessian. 

INPUT: INIT_HS_RSP record 

Referenced procedures, FSH1h and data structura: 
FSH_STATUS 
IHIT_HS_RSP 
LULU_CB 

page 4-M 
page A-II 
page A-5 

AttlllllPt to locate the LU-LU half-session control block <WW_CBJ Hsociated 
111ith the half-session that sent the IHIT_HS_RSP. Search thll list of lUW_CBs 
for one with a half-session hlentifier <HS_IDJ .. tching that of thll half-session 
the INIT_HS_RSP NaS received f.rm. 

If an LULU_CB is located then 
Call FSH_STATUS<INIT_HS_RSP, LULU_CB) <page •-t•J. 

PROCESS_INIT_SELF_RSP 

FlKTION: Process a received INIT-SELF response. 

INPUT: HS_RCY_RECORD containing INIT-SELF response 

Refere10ed procedures, Fstts, and data structures: 
FSH_STATUS 
HS_RCY_RECORD 
LULU_CB 

Att11111pt to correlate the INIT-SELF response with a sent INIT-SELF request. 
Search for an LU-LU control block (LUW_CBJ nre WLU_CB.CP_LU.HS_ID • 
HS_RcY_RECORD.HS_ID and LULU_CB.SENT_INITIATE_R~.SNF • HS_RCY_RECORO.SHF. 
If the response is correlated successfully then 

Call FSH_STATUS<HS_RCV_RECORD, LULU_CBJ (page •-MJ. 

Else 
Optionally log the error using • ..,.e data X'200EOOOO'. 

4-ee SNA For11at and Protocol Reference Manual for LU Type 6.2 

page 4-M 
page A-11 
page A-S 



PROCESS_NOTIFY_RQ 

FUNCTION: Process a received NOTIFY request. 

INPUT: HS_RCV_RECORD containing NOTIFY 1·equest 

Referenced proc~•k·~as, FSMs, and data structures: 
bUILD_AND_SEND_RSP_OR_LOG 
FSM_STATUS 
LOCAL 
HS_RCV_RECORD 
LULU_CB 

Optionally check the NOTIFY request for format errors. This includes 
checking the TH DCF and length fields CX'l0020000' ), the vecto•· type 
I '0835xxxx'J, and the session keys CX'0835xxxx'l (where xxxx is an offset 
in each easel. See NOTIFY request in Appendix E for correct format. 

If there is a format error then 
Set LOCAL.SENSE_CODE to the appropriate value. 
Call BUILD_AND_SEND_RSP_OR_LOGCHS_RCV_RECORDl !page 4-661 

to send a negative response to NOTIFY. 

Else !no format error) 

PROCESS_NOTIFY_Rr 

page 4-66 
page 4-94 
page 4-101 
page A-11 
page A-5 

Attempt to correlate this NOTIFY request with a previously sent !NIT-SELF 
request (for the same CPJ. Search for an LU-LU half-session control block 
CLULU_CBl where LULU_CB.SENT_INITIATE_RQ.URC matches the URC field in the 
NOTIFY request RU. 

If an LULU_CB is found then 
Call FSM_STATUSCHS_RCV_RECORD, LULU_CBJ !page 4-941. 

Else !unable to correlate the NOTIFY request) 
Set LOCAL.SENSE CODE to X'081EOOOO' (session reference error). 
Call BUILD_AND_SEND_RSP_OR_LOGCHS_RCV_RECORDl !page 4-661 
to send a negative response to NOTIFY. 

PROCESS_NOTIFY_RSP 

FUNCTION: Process a received NOTIFY response. 

INPUT: HS_RCV_RECORD containing received NOTIFY response. 

Referenced procedures, FSMs, and data structures: 
HS_RCV_RECORD 

See page 4-13 for a general discussion; details are not formally defined. 

page A-11 

Chapter 4. LU Network Services 4-89 



PROCESS_PC_aHIECT_RSP 

PROCESS_PC_Cotf\IECT_RSP 

FIMCTION: Proc•• • SMth control cannect rupona• IPC_Cotf\IECT_RSPJ rac9;ved fNMI Ifft. 

INPUT: PC_COtffECT_RSP 

Ref•r.-,ced proceclur•• FSHs1 and cate structur•: 
Fstt_STATUS. 
LULU_CB 
PC_CatflECT_RSP 

page 4-94 
page A-S . 
SMge A-22 

Att4111Pt to locete the W-W h•lf-session control block lWLU_CB> in Mhioh the 
half-session identifi•r lHS_ID) .. toha that in the PC_Cotf\IECT_RSP record. 

If an WLU_ce is loceted then 
Call FStl_STATUSlPC_COtffECT_RSP, LULU_CB) Cpasi- 4-94). 

PROCESS_REQfCHO_RSP 

FLtlCTION: Proc .. s • received REQECHO response in en h1pl•ent•tion-defined llAly. 

INPUT: HS_RCV_RECCIRD containing received REQECltO response 

Referenced procedureth FSH11t and cat• structur .. : 
. HS_RCY_RECORD 

See page 4-31. 

PROCESS_SESSION_ROUTE_INOP 

FltlCTION: Process a SESSION_ROUTE_INOP record received fro11 tHI. 

INPUT: SESSIOtl_ROUTE_INOP 

Ref•raiced procedur•• fSHs1 end cat. structures: 
Fstt_STATUS 
SESSlotl_ROUTE_INOP 
LULU_CB 
CPLU_CB 

SMge A-11 

page 4-94 
page A-H 
page A-5 
page A-1 

Ruet all CP-LU susions that •r• using the path control process that f•iled. 
This is don• by loc•ting all the CP-LU s•sion control blocks (CPLU_CBs) 
that have • path control hlentifier CPC_IDJ Rtching that of the path 
control procus that failed. Each CPLU_CB located is then destroyed. 

R .. et -11 LU-LU sessions that ar• wing the 1H1th control process that feiled. 
This is done by locating all the W-LU session control blocks (WLU_CBs) 
that have • path control identifier CPC_IDJ .. tching that of the path 
control process that failed. For uch LULU_CB located, 
fstt_STAT\JS Cpage 4-94) is celled with a RESET_NORHAL i~t 
to ruet that •-•ion. 

4-90 SHA Fol"Rt end Protocol Reference t1anual for W Type 6.2 



PROCESS_TERM_SELF_RSP 

PROCESS_TERM_SELF_RSP 

FUNCTION: Process a received TERM-SELF response. Nothing is done for a TERM-SELF 
response because the LU-LU session awareness is cleaned up when the TERM-SELF 
request is sent. The TERM-SELF response is simply discarded. 

INPUT: HS_RCV_RECORD containing TERM-SELF response 

Referenced procedures, FSMs, and data structures: 
HS_RCV_RECORD 

No processing is done for a TERM-SELF response. 

PROCESS_UNBIND_RQ 

FUNCTION: Process a received UNBIND request. 

INPUT: UNBIND_RQ_RCV_RECORD 

Referenced procedures, FSMs, and data structures: 
BUILD_AND_SEND_UNBIND_RSP 
FSM_STATUS 
LOCAL 
UNBIND_RQ_RCV_RECORD 
LULU_CB 
LUCB 

page A-11 

page 4-70 
paqe 4-94 
page 4-101 
page A-23 
page A-5 
page A-1 

~p~1onally check the UNBIND request for syntax errors. Syntax errors include checking 
the RH (see Figure 4-3 on page 4-16 fJr correct format) and checking the length 
CDCF> for being too short (see UNBIND request in Appendix E>. 

If there is a syntax error then 
Set LOCAL.SENSE_CODE to appropriate value. 
Call BUILD_AND_SEND_UNBIND_RSPIUNBIND_RQ_RCV_RECORD) 

!page 4-70) to send a negative response to UNBIND. 
Optionally log the error. 

Else Cno syntax error) 
Attempt to correlate the UNBIND with an existing LU-LU session by locating an LULU_CB 
where LULU_CB.LU_LU.PC_ID = UNBIND_RQ_RCV_RECORD.PC_ID and 
LULU_CB.LU_LU.ADDRESS = UNBIND_RQ_RCV_RECORD.ADDRESS. 

If the UNBIND correlates to an existing session Ian LULU_CB is found) then 
Call FSM_STATUSIUNBIND_RQ_RCV_RECORD, LULU_CB) !page 4-94). 

Else <UNBIND does not correlate to an existing session> 
Call BUILD_AND_SEND_UNBIND_RSPIUNBIND_RQ_RCV_RECORD> 

(page 4-70) to send positive response to UNBIND. 
If LU-LU verification is active ILULU_CB.RANDOM is non-empty) then 

Remove the random data found in LULU_CB.RANDOM 
from LUCB.PENDING_RANDOM_DATA_LIST. 

Chapter 4. LU Network Services 4-91 



PROCESS_UNBIND_RSP 

PROCESS_UNBIND_RSP 

FUNCTION: Process a received UNBIND response. 

INPUT: UNBIND_RSP_RCV_RECORD 

Referenced procedures, FSMs, and data structures: 
FSM_STATUS 
LULU_CB 
UNBIND_RSP_RCV_RECORD 

Optionally check the UNBIND response RH for format errors 
(see Figure 4-3 on page 4-16 for correct format of RHl. 

If there is an RH error then 
Optionally log the error. 

Else (no RH error) 

page 4-94 
page A-5 
page A-23 

Correlate this UNBIND response with a sent UNBIND request. Search for an 
LU-LU half-session control block ILULU_CBl where LULU_CB.LU_LU.PC_ID = 
UNBIND_RSP_RCV_RECORD.PC_ID and LULU_CB.SENT_UNBIND_RQ.SNF = 
UNBIND_RSP_RCV_RECORD.SNF. 

If the UNBIND response is correlated successfully then 
Call FSM_STATUS(UNBIND_RSP_RCV_RECORD, LULU_CBl <page 4-94). 

Else (unable to correlate UNBIND response) 
Optionally log the error with sense data X'200EOOOO' (response correlation error). 

4-92 SNA Format.and .Protocol Reference Manual for LU Type 6.2 



FINITE-STATE MACHINES 

This page intentionally left blank 

Chapter 4. LU Network Serv;ces 4-93 



FSH_STATUS 

FSH_STATUS 

FUNCTION: lhis FSH nintains the state of an LU-LU session frOll initiation through ter­
•ination. State naH abbreviations are H follota1: 

NOTE: 

INPUT: 

• RES = reset 
• F'tl> INI RSP PLU = pending receipt of INIT-SELF response llrlhere INIT-SELF 

Nas sent specifying this LU as PLU 
• F'tl> INI RSP SLU = pending receipt of INIT-SELF response llrlhere INIT-SELF 

NllS sent specifying this LU as SLU 
• F'tl> CIN = penc:l;ng receipt of CINIT request 
• F'tl> BIN ~ pending receipt of BIN> request 
• Pt-I> PC RSP THI = pending receipt of PC_CONNECT_RSP for a session this LU 

initiated (sent INIT-SELF for) 
• PtlJ BIN RSP THI = pending receipt of a BUI> response for • session this LU 

initiated (sent INIT-SELF for> 
• F'tl> INI HS RSP THI = pending receipt of INIT_HS_RSP for a session this LU 

initiated lsent INIT-SELF for> 
• F'tl> PC RSP OTH = pending receipt of PC_CONNECT_RSP for a session the other 

LU initiated (sent INIT-SELF for> 
• Pl'I> BIN RSP OTH = pending receipt of a Bitll response for a session the 

other LU initiated (sent INIT-SELF0 for) 
• PK> INI HS RSP OTH : pending receipt of INIT_HS_RSP for a session the oth­

er LU initiated (sent INIT-SELF for> 
• ACT = active 
• Pl'I> UN8 RSP = pending UNBitlJ response 

The state of the LU-LU session may be considered "active" or "pending active." 
States 8, u, 12, and 13 are considered "active." States 6, 7, 9, and 10 are' 
considered "pending active." All other states are considered neither "active" 
nor "pending active." 

Error type is "retry" if LOCAL.SENSE_COOE hols one of the foll01111ing values lan 
asterisk •ay stand for any hexadecimal digit>: 

• 0801**** 
• 0805**** 
• 0812**** 
• 0837**** 
• 0839**** 
• 0842**** 
• 0845**** 
• 0848**** 
• 0856**** 
• 0857**** 
• 8001**** 
• 8002**** 
• 8003**** 
• 8013**00 
• 8013**03 
• 8013**04 
• 8013**05 
• 8013**06 

For any other value of LOCAL.SENSE_COOE err~ type is "no retry". 

The record to be processed and the LU-LU half-session control block (LULU_C8>. 
The input record is used as an input to this FSH. These inputs denote RU. 
(Appendix E), interprocess records (i.e., frOll HS, RH, or tHi Uppendi>< Al J, 
results of earlier sense data settings (OK, if LOCAL.SENSE_COOE Nas set to 
OOOOOOOOJ NG, otherwise>, and aession roles fPLU or SLU> of the local LU (as 
ILU>. 

4-94 SNA For•at and Protocol Reference Manual for LU Type 6.2 



Referenced procedures, FSMs, and data structures: 
BUILD_AND_SEND_DEACTIVATE_SESS 
BUILD AND SEND UNBINDF RQ 
BUILD=AND=SEND=BIND_RSP_NEG 
BUILD_AND_SEND_BIND_RSP_POS 
BUILD_AND_SEND_UNBIND_RQ 
BUILD_AND_SEND_INIT_HS 
BUILD_AND_SENO_ACT_SESS_RSP_POS 
BUILD_AND_SEND_SESS_ACTIVATED 
CLEANUP_LU_LU_SESSION 
BUILD_AND_SEND_BINDF_RQ 
BUILD_AND_SEND_TERM_RQ 
BUILD_AND_SEND_UNBIND_RSP 
BUILD_AND_SEND_INIT_RQ 
BUILD_ANO_SEND_ACT_SESS_RSP_NEG 
BUILD_AND_SENO_PC_HS_CONNECT 
BUILD_AND_SEND_PC_CONNECT 
BUI LD_Atm _SEND_PC_HS_DISCONNECT 
BUILD_AND_SEND_RSP_OR_LOG 
BUILD_ANO_SEND_SESSST_RQ 
BUILD_AND_SEND_BIND_RQ 
BUILD_AND_SEND_CINIT_RSP 
BUILD_ANO_SEND_SESS_DEACTIVATEO 
DEACTIVATE_SESSION 
BIND_RQ_RCV_RECORO 
UNBIND_RQ_RCV_RECORO 
UNBIND_RSP_RCV_RECORD 
PC_CONNECT_RSP 
INIT_HS_RSP 
ABORT_HS 
~IS_RCV_RECORD 

LULU_CB 
LOCAL 

FSM_STATUS 

page 4-62 
page 4-70 
page 4-59 
page 4-60 
page 4-69 
page 4-63 
page 4-57 
page 4-67 
page 4-72 
page 4-60 
page 4-69 
page 4-70 
page 4-64 
page 4-56 
page 4-65 
page 4-64 
page 4-65 
page 4-66 
page 4-68 
page 4-59 
page 4-61 
page 4-67 
page A-31 
page A-21 
page A-23 
page A-23 
page A-22 
page A-11 
page A-11 
page A-11 
page A-5 
page 4-101 

Chapter 4. Lll Network Services 4-95 



FSM_STATUS 

I STATE NAMES----> RES PND PND PND PND PND PND PND PND PND PND ACT PND 
INI rNI CIN BIN PC BIN INI PC BIN INI UNB 
RSP RSP RSP RSP HS RSP RSP HS RSP 
PLU SLU THI THI RSP OTH OTH RSP 

THI OTH 
INPUTS STATE NUMBE~S--> 01 02 03 04 05 06 07 OS 09 010 011 012 013 

ACT_SESS,ILU=PLU 2U I I I I I I I I I I I I 
ACT_SESS,ILU=SLU 3V I I I I I I I I I I I I 
+RSPC INIT_SELF) I 4 5 I I I I - I I I - -
-RSPCINIT_SELF> I IAA IAA I I I I I I I I I I 

NOTIFY_03 I IW lW IW IW -R -R -R -R -R -R -R -R 
CINIT ,QK 9BB 6BB -Y 6BB -Y -Y -Y -Y -Y -Y -Y -Y -Y 
CINIT,NG I lJJ -Y IJJ -Y -Y -Y -Y -Y -Y -Y -Y -Y 

+PC_CONNECT_RSP I I I I I 7F I I lOF I I I I 
-PC_CONNECT_RSP I I I I I ILL I I IMM I I I I 

+RSPC BIND l, OK I I I I I I SC I I llC I I -
+RSPC BIND ) , NG I I I I I I 13X I I 13Q I I -
-RSPC BIND), OK I I I I I I IFF I I lUU I I II 
-RSPC BIND l, NG I I I I I I INN I I IN I I IN 

+INIT_HS_RSP I I I I I I I 12D I I 12G I -
-INIT _HS_RSP I I I I I I I 13J I I 13H I -
BIND,OK llE -EE SE -EE SE -EE -EE -EE I I I -EE -EE 
BIND.NG I -EE ITT -EE ITT -EE -EE -EE I I I -EE -EE 

DEACT_SESS_PEND I IK lK lK IK IA 13B 13B I I I 13B -
DEACT_SESS_ACT I I I I I I I I I I I 138 -
DEACT_SESS_ACT_CU I I I I I I I I I I I IT IT 
ABORT_HS I I I I I I I I I I I 13M -
+RSPC UNBIND> I I I I I I I I I I I I II 
-RSPC UNBIND> I I I I I I I I I I I I IZ 
UNBIND I I I I I I lHH lHH I IP lP IS lP 

CLEANUP I I I I I ICC IDD lDD IA IT IT IKK IT 
CTERM_ORDERLY I I I / I ICC 13PP l3PP lA 13QQ 13QQ -RR -
CTERM_FORCED I I I I I ICC 13PP 13PP IA 13QQ 13QQ 13SS -

RESET_SON - lL IL IL - - - - - - - - -
RESET_NORMAL - lL lL lL lL lCC lL lL II II II lGG II 

4-96 SNA Format and Protocol Reference Manual for LU Type 6.2 



OlJTPUT FlH:TIOH 
CODE 

A C•ll BUILD_Atl>_SEND_PC_HS_DISCONNECT(LULU_C8.LU_LU.HS_ID> ( SM9• 4-65 ) • 
C•ll CLEAtlJP_LU_LU_SESSIONCLULU_CB) (page 4-72). 

B If DEACTIVATE_SESSIOH.TYPE = NORHAL then 
C•ll BUILD_Atl>_SEtl>_UHBIND_RQ( LULU_ce. NORMAL. X'OOOOOOOO') (page 4-69). 

Else 
Call BUILD_Atl>_SEtl>_uteIND_RQ(LULU_ce. FORl1AT_OR_PROTOCOL_ERROR, 

DEACTIVATE_SESSIOH.SENSE_CODE) (page 4-69). 

c If either node's path control does not support segmenting and the pri••ry send 
uxi- RU size in the BIND response is greater thllin the link segment size then 

Set the ••xi•Ulll RU size to the link •axillllllll RU seg111ent size. 

If the BIND response specifies the pri•ary as contention wi!Yler then 
Set LULU_CB.SESSION_TYPE to FIRST_SPEAKER. 

Else 
Set LULU_~B.SESSION_TYPE to BIDDER. 

c.11 BUILD_Atl>_SEtl>_SESSST_RQ(LULU_CB) (page 4-68). 
Call BUILD_Atl>_SEND_INIT_HS(LULU_CBt Bltl> i11&ge frOll BIND response RU, PRU 

(page 4-63). 

D Call BUILD_Atl>_SEND_ACT_SESS_RSP_POS<LULU_CB) (page 4-57). 

E Set fields in LULU_CB fro• BIND request record <ADDRESS, ALS [peripheral nodes 
only], PC_ID, and user-data session-instance identifier). 

Create LU-LU half-session with l.a'lique identifier (save idet-itifier in 
LULU_CB.LU_LU.Hs_ID>. 

Call BUILD_AND_SEtl>_PC_HS_C~ECTCLULU_CB.LU_LU.PC_ID1 LULU_CB.LU_LU.HS_ID, 
LULU_CB.LU_LU.ADDRESSl (page 4-65l. 

Call BUILD_AND_SEND_Bitl>_RSP_PDSIBitl>_RQ..RCV_RECORO, LULU_CB> <negotiated 
BIND image returned, page 4-60). 

Call BUILD_AND_SEtl>_SESSST_RQCLULU_CB> (page 4-68). 
Call BUILD_AND_SEND_INIT_HSCLULU_CB, negotiated BIND i•age, SEC) 

(page 4-63). 

F If this node is a peripheral node then 
Set LULU_CB.LU_LU.ADDRESS to PC_COHNECT_RSP.ADDRESS to save the assigned 
address for later use. Subarea nodes obtain the address fro• the CINIT request. 

Call BUILD_AND_SEND_PC_HS_CONNECT<LULU_CB.LU_LU.PC_ID. LULU_C8.LU_LU.HS_Io, 
LULU_CB.LU_LU.ADDRESS> (page 4-65). 

tall BUILD_AND_SEND_BINO_RQ<LULU_CB> (page 4-59). 

6 Call BUILD_Atl>_SEtl>_SESS_ACTIVATEDCLULU_CB> (page 4-67). 

H 
Call BUILD_Atl>_SEND_l.J.IBIND_RQCLULU_ce. FORHAT_OR_PROTOCOL_ERROR, 

INIT_HS_RSP.SENSE_CODE) (page 4-69). 

I Call CLEANUP_LU_LU_SESSIONCLULU_CB> (page 4-72). 

J Call BUILD_Atl>_SEHD_ACT_SESS_RSP_NE6CLULU_CB.CORRELATOR, NO_RETRY)I 
(page 4-56). 

tall BUILD_AND_SEND_UHBIND_RQ(LULU_ce. FORHAT_OR_PROTOCOL_ERRORt 
INIT_HS_RSP.SENSE_CODE> <page 4-69). 

K Call BUILD_AND_SEND_TERl1_RQ(LULU_ce, DEACTIVATE_SESSIOH.TYPE) (page 4-69). 
Call CLEANUP_LU_LU_SESSIONILULU_CB) (page 4-72 ) • 

L 
Call BUILD_AND_SEND_ACT_SESS_RSP _HE6( LULU_CB.CORRELATOR, RETRY) 

(page 4-56). 
Call CLEANUP_LU_LU_SESSIOHCLULU_CB) (page 4-72). 

" tall BUILD_AND_SEND_UHBIND_RQ(LULU_ce. FORHAT_OR_PROTOCOl_ERRORt 
ABORT_HS.SENSE_CODE> ( page 4-6 9 >. 

Call BUILD_AND_SEND_SESS_DEACTlVATEDCLULU_CB.LU_LU.HS_Io. ABNMHAL_HO_RETRY) 
(page 4-67). 

Chapter 4. LU Network Services 4-97 



Fstt_STATUS 

N Call BUILO_Atl>_SEND_BINDF_RQ<SETUP_REJEcT_AT_SLU, LULU_ce. LOCAL.SEHSE_CODE) 
(page 4-6.0 >. 

Call CLEAt«JP_LU_LU_SESSIONtLULU_CB> Cpage 4-72>. 

p Call BUILD_AND_SEND_utasIND_RSPtuteIND_RQ...RCV_RECORD,LULU_ce_PTR) 
f page 4-70 >. 

Call CLEANUP_LU_LU_SESSIONCLULU_C8) <page 4- 72 > • 

Q Call BUILO_Atl>_SEND_uteIND_RQ(LULU_ce. INVALID_PARHS. X'00000000') 
(page 4-69). 

R If LOCAL.SENSE_CODE = X'OOOOOOOO' then 
Set LOCAL.SENSE_cooe = X'08090000' (lllOde inconsistency). 

Call BUILO_AND_SEND_RSP_OR_LOGCHS_RCV_RECORD> 
(send -RSPCNOTIFYl, page 4-66). 

s Call BUILO_AND_SEtl>_uteIND_RSPCuteIND_RQ...RCV_RECORO.LULU_ce_PTR) 
fpage 4-70). 

Deter11ine the reason for the sess;on deactivation. If the UNBIND type is nor•al or 
BIND forthcon1ing. the reason is NORHAL. If the lff3IND type is invalid sM1sion 
JN1ra111eters, or LU failure unrecoverable, or for•at or protocol error, 
the reason ; s ABNORHAL_NO_RETRY. 
For all other UNBIND types, the reason is ABNORHAL_RETRY. 

Call BUILO_ANO_SEND_SESS_DEACTIVATEOCLULU_CB.LU_LU.HS_IO, reason) 
<page 4-67). 

Call CLEAta.IP_LU_LU_SESSION(LULU_CB> <page 4-72 >. 

T Call BUILO_AND_SEND_UNBIND_RQ(LULU_ce. CLEANUP, X'OOOOOOOO') (JHlge 4-69). 
CSend UNBINDCCLEANUP>, page 4-69). 

Call CLEAta.IP_LU_LU_SESSION(LULU_C8> (page 4-72 > • 

u Call BUILO_AND_SEND_INIT_RQCLULU_ce. SLU) (page 4-64 l • 
.. 

v Call BUILD_AND_SEND_INIT_RQ(LULU_ce, PLUl ( page 4-64 > • 

w Call BUILD_AND_SEND_RSP_OR_LOG(HS_RCV_RECORDl <send tRSP(NOTIFYl, page 4-66>. 
Determine the error type by examining the sense data in the NOTIFY request 

(see Note in prologue>. 
Call BUILO_AND_SEND_ACT_sess_RSP_NEGCLULU_ce.cORRELATOR, error typel 

(page 4-56 >. 
Call CLEANUP_LU_LU_SESSIOtULULU_CB> (page 4-72l. 

x Call BUILO_AND_SEND_lH3Itt>_RQ(LULU_ce, INVALID_PARHS. X'OOOOOOOO'I 
fpage 4-69). 

Call BUILO_Atl>_SEND_ACT_SESS_RSP_NEG(LULU_CB.CORRELATOR. NO_RETRY) 
(page 4-56). 

y If LOCAL.SENSE_CODE = x•oooooooo• then 
Set LOCAL.SENSE_CODE to X'08150000' (function already active> .• 

Call BUILD_ANO_SEND_CINIT_RSPCHS_RCY_RECORDl (page 4-61). 

z Call BUILO_Att>_SENO_UNBINDF_RQ(sense data f~ UNBIND_RSP_RCV_RECORD, WLU_CBJ 
<page 4-70). 

Call CLEAtl.IP_LU_LU_SESSION(LULU_CBJ <page 4-72). 

AA Deter•ine the error type by exa•ining the sense data in the INIT-SELF response 
(see Note ;n prologue). 

Call 8UILO_ANO_SENO_AcT_SESS_RSP_NEG(LULU_ce.CORRELATOR, error type> 
<page 4-56). 

Call CLEANUP_LU_LU_SESSIONCLULU_CB) (JHlge 4-72). 

88 Call BUILO_AND_SEND_CINIT_RSP<HS_RCV_RECORD> <page 4-611 to send +RSP<CINIT>. 
Create a new half-session (HSJ process. 
Call BUILO_ANO_SEND_PC_CONNECT(LULU_CB> (page 4-64). 
Save the CINIT request in the LULU_CB for later use in building the BIND request. 

cc 
Call BUILO_AND_SEND_ACT_SESS_RSP_NEG<LULU_CB.CORRELATOR, RETRY> 

(page 4-56 >. 
Call BUILO_AND_SEND_PC_Hs_DISCONNECT<LULU_ce.LU_LU.HS_ID> ( page 4-65 ) • 
tall CLEANUP_LU_LU_SESSION(LULU_CB> (page 4-72), 

4-98 SHA For .. t and Protocol Reference Hanual for LU Type 6.2 



FSM_STATUS 

DD Call BUILD_AND_SEND_UNBIND_RQCLULU_CB, CLEANUP, X'OOOOOOOO'> Cpage 4-69) 
Call BUILD_AND_SEND_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, RETRY> 

Cpage 4-56). 
Call CLEANUP_LU_LU_SESSIONCLULU_CB) (page 4-72). 

EE If LOCAL.SENSE_CODE = X'OOOOOOOO' then 
Set LOCAL.SENSE_CODE = X'08150000' !function already active>. 

Call BUILD_AND_SEND_BIND_RSP_NEGCBIND_RQ_RCV_RECORD) Cpage 4-59). 

FF Call BUILD_AND_SEND_BINDF_RQCSETUP_REJECT_AT_SLU, LULU_CB, sense data from 
the BIND response) Cpage 4-60). 

Determine the error type by examining the sense code in the BIND response 
Csee Note in prologue). 

Call BUILD_AND_SEND_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, error type> 
(page 4-56). 

Call CLEANUP_LU_LU_SESSIONCLULU_CB> (page 4-72). 

GG 
Call BUILD_AND_SEND_SESS_DEACTIVATEDCLULU_CB.LU_LU.HS_ID, ABNORMAL_RETRY> 

(page 4-67). 
Call CLEANUP_LU_LU_SESSIONCLULU_CB) Cpage 4-72). 

HH Call BUILD_AND_SEND_UNBIND_RSPCUNBIND_RQ_RCV_RECORD) (page 4-70>. 
Determine the error type by examining the Type field in the UNBIND request. 
If it is invalid session parameters, or LU failure unrecoverable, 
or format or protocol error, the error type is NO_RETRY. 
For all other UNBIND types, the error type is RETRY. 

Call BUILD_AND_SEND_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, error type) 
(page 4-56). 

Call CLEANUP_LU_LU_SESSIONCLULU_CB) (page 4-72). 

JJ 
Call BUILD_AND_SEND_CINIT_RSPCHS_RCV_RECDRD> !page 4-61> to send -RSPCCINIT>. 
Determine the error type by examining LOCAL.SENSE_CODE (see Note in prologue). 
Call BUILD_AND_SEND_ACT_SESS_RSP_NEGCLULIJ_CB.CORRELATOR, error ty~e1 

(page 4-56). 
Call CLEANUP_LU_LU_SESSIOMCLULU_CB> (page 4-72>. 

KK 
Call BUILD_AND_SEND_SESS_DEACTIVATEDCLULU_CB.LU_LU.HS_ID, ABNORMAL_RETRY) 

(page 4-67). 
Call BUILD_AND_SEND_UNBIND_R~iLULU_ce, CLEANUP, x•oooooooo•) Cpage 4-69). 
Call CLEANUP_LU_LU_SESSIONCLULU_CB> Cpage 4-72). 

LL If LOCAL.SENSE_CODE = X'OOOOOOOO' then 
Set LOCAL.SENSE_CODE to PC_CONNECT_RSP.SENSE_CODE. 

Call BUILD_AND_SEND_BINDF_RQCSETUP_REJECT_AT_PLU, LULU_CB, LOCAL.SENSE_CODE> 
(page 4-60). 

Determine the error type by examining LOCAL.SENSE_CODE Csee Note in prologue). 
Call BUILD_AND_SEND_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, error type) 

(page 4-56). 
Call CLEANUP_LU_LU_SESSIONCLULU_CB) !~age 4-72>. 

MM If LOCAL.SENSE_CODE = x•oooooooo· then 
Set LOCAL.SENSE_CODE to PC_CONNECT_RSP.SENSE_CODE. 

Call BUILD_AND_SEND_BINDF_RQCSETUP_REJECT_AT_PLU, LULU_CB, LOCAL.SENSE_CODE> 
!page 4-60>. 

Call CLEANUP_LU_LU_SESSIONCLULU_CB> !page 4-72). 

NN Determine the error type by examining LOCAL.SENSE_CODE Csee Note in prologue). 
Call BUILD_AND_SEND_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, error type) 

(page 4-56). 
Call BUILD_AND_SEND_BINDF_RQCSETUP_REJECT_AT_SLU, LULU_ CB, LOCAL.SENSE_CODE> 

Cpage 4-60). 
Call CLEANUP_LU_LU_SESSIONCLULU_CB> Cpage 4-72). 

Chapter 4. LU Network Services 4-99 



FSM_STATUS 

pp 
Call BUILD_AND_SEND_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, RETRY> 

Cpage 4-56). 
Call BUILD_AND_SEND_UNBIND_RQCLULU_CB, NORMAL, X'00000000') (page 4-69). 

QQ Call BUILD_AND_SEND_UNBIND_RQCLULU_CB, NORMAL, X'OOOOOOOO') C page 4-69). 

RR Call BUILD_AND_SEND_DEACTIVATE_SESSCLULU_CB.LU_LU.HS_ID) Cpage 4-62). 

SS Call BUILD_AND_SEND_UNBIND_RQCLULU_CB, NORMAL, X'OOOOOOOO'l Cpage 4-69). 
Call BUILD_AND_SEND_SESS_DEACTIVATEDCLULU_CB.LU_LU.HS_ID, ABNORMAL_RETRY) 

(page 4-67). 

TT Call BUILD_AND_SEND_BIND_RSP_NEGCBIND_RQ_RCV_RECORD> (page 4-59). 
Call BUILO_AND_SEND_ACT_SESS_RSP_NEGCLULU_CB.CORRELATOR, error type (see Note in 
prologue)) (page 4-56). 

Call CLEANUP_LU_LU_SESSIONCLULU_CB> (page 4-72>. 

uu Call BUILD_AND_SEND_BINDF_RQCSETUP_REJECT_AT_SLU, LULU_CB, sense data 
from the BIND response) (page 4-60). 

Call CLEANUP_LU_LU_SESSIONCLULU_CBJ (page 4-72). 

4-100 SNA Format and Protocol Reference Manual for LU Type 6.2 



LOCAL DATA STRUCTURES 

LOCAL 

LOCAL Cthis control block is accessible by any procedure in LNSl 
CPLU_CB_LIST list of CP-LU half-session control blocks !page A-1) 
LULU_CB_LIST list of LU-LU half-session control blocks !page A-5) 
SENSE_CODE !this field is set with a sense data value whenever an error is found) 

ERROR_ TYPE 

ERROR_TYPE: possible values: RETRY, NO_RETRY 

SESSION_ TYPE 

SESSION_TYPE: possible values: FIRST_SPEAKER, BIDDER 

DEFTYPE 1 RESET_NORMAL STRUCTURE, 
2 * CHARC*ll 

DEFTYPE 1 RESET_SON STRUCTURE, 
2 * CHAR(*); 

Chapter 4. LU Network Services 4-101 



102 SHA For .. t •nd Protocol R•i•renctt ......._l for LU TYP9 6.2 

.. 



CHAPTER ~ OVERVIEW OF PRESENTATION SERVICES 

GENERAL DESCRIPTION 

Presentation services (PS) is the component 
of the LU with which transaction programs 
interact directly. Each execution instance 
of a transaction program at the LU is served 
by its own PS process. This PS process is 
responsible for processing the transaction 
program's requests for LU services. The 
transaction program requests these services 
by issuing verbs. 

The verbs, along with their supplied and 
returned parameters, are fully described in 
fil:!A Transaction Programmer's Reference Manual 
for LU~ ~. which defines both the serv­
ices that the LU provides and a syntax for 
transaction program requests for those serv­
ices. The basic services are SHA-defined and 
are provided by all LU implementations, but 
the syntax of requests for the services may 
be implementation-defined. 

The servic.es requested by verbs usually 
involve communication over a conversation 
with a transaction program at a remote LU. 
The supplied parameters of a verb therefore 
usually include an identifier of the conver­
sation on which the verb is being issued. 
The data exchanged by conversing transaction 
programs is carried on a session assigned to 
the conversation. 

PS interacts wi th various other LU compo­
nents. The LU resources manager (RM> creates 
and destroys the PS process, and assigns 
half-sessions to it for conversation traffic. 
PS exchanges data with these half-sessions in 
carrying out transaction program verb 
requests. PS also interacts with the trans­
action program; or, more precisely, the PS 
process contains, and is driven by, a trans­
action program execution instance <TP>. 

PS COMPONENT FUNCTIONS 

Figure 5.0-1 on page 5.0-2 shows the compo­
nents of PS. PS.INITIALIZE loads and calls 
the TP. The TP then issues verbs, which are 
processed by the other PS components. The TP 
ends by returning to PS.INITIALIZE. The 
functions and interactions of the PS compo­
nents are further described below. 

TP: 

• Interacts directly with local end users 
and resources. 

• Requests LU services (for interaction 
with remote resources) by issuing verbs. 

PS. INITIALIZE: 

• Receives program initialization parame­
ters <PIP data). 

• Loads and calls the TP. 
• Instructs RM (after the TP completes and 

returns) to destroy this PS process. 

PS.VERB_ROUTER: 

• Checks every verb for compatibility with 
the type of the conversation on which it 
was issued. 

• Routes valid verb-issuances to the appro­
priate· verb-processing component. 

PS.MC, PS.SPS, ••• , PS.COPR: 

• Process non-basic verbs that request 
optional special services !these compo­
nents and their associated services are 
described in separate chapters of this 
book>. 

• Translate non-basic verbs into basic 
verbs. 

PS.CONV: 

• Processes basic conversation verbs. 
• Checks each basic conversation verb for 

compatibility with the state of the con­
versation on which it was issued. 

• Performs Cin co-operation with or at the 
request of other verb-processing compo­
nents> all basic conversation services. 

All the components of the PS process (includ­
ing the transaction program execution 
instance! interact synchronously !using 
call/return logic). PS may exchange informa­
tion w i th other LU components by means of 
asynchronous inter-process communication (us­
ing send/receive logic>. 

DATA BASE STRUCTURE 

PS uses several data structures to record 
information needed to provide services to the 
transaction program. Thes~ data structures 
include PS PROCESS DATA, the transaction con­
trol block- ( TCB J, - and the resource control 
block list <RCB_LISTl. This chapter 
describes the use of these data structures 
by the PS.INITIALIZE and PS.VERB_ROUTER com­
ponents- Use of data structures by other PS 

Chapter 5.0. Overview of Presentation Services 5.0-1 



I 
.............................................. : ................................................... · 1 
. • • • • • • • • • • • • • . • • • . • • • • . • • • • • • • • • • • Transact 1 on Program ••••••••••••••••••••••••••••••••••••••• . . . . . . . . . . . . . . . . .................................................................................. . 

- •~~------~-------~--~-~----~--' 
A I 

: : : : : : : : : : : : I : : : : : : : : : : : : : : : : : : : : : : : : : : : : I : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ~ . .: . .: . .:. :: .: . .: . .: . .: . .: . ~ : : : : 

: : : : : : : : : : : : I::::::::::::::::::::::::::: :v::::::::::::::::::::::::::::::: :v::::::::::::::::::: I:::: . . ... l J ...... . • • • • • •• 1 •••• 
PS.VERB_ROUTER 

: : : : : : : I : : : : . . . . . . . . . ..... . 

PS.INITIALIZE 

...... 1 ................. 1 .................. 1 ................... 1 ......... 1 ... . 
::::::1:::::::::::::::::1::::::::::::::::::1:::::::::::::::::::1:::::::::1:::: 
::::::1:::::::::::::::::v::::::::::::::::::v:::::::::::::::::::v:::::::::1:::: 
::: ::: I::::::::::: 
::::::1::::::::::: 
::::::1::::::::::: 
::::::1::::::::::: 

............. 
PS.MC2 

....-------. ...... . 
••• 1 •••• 

·········· .. ············ PS.SPS3 • • • PS.COPR 4 

.. .. .. .. 
••• 1 •••• . . . . ... 
••• 1 •••• 

: : : I : : : : . . . . . . . . . . . . . . . . . ·--- ..... ..___. . . . . . ·--- ...... . ...... 1 .................. 1 ................. 1 ................... 1 ......... 1 ... . 
::::::1::::::::::::::::::L·.:·.:·.:·.:·.:·.:·.:·.:·i·.:·.:·.:·.:·.:·.:·.:·.:·.:·i·.:·.:·.:·.:·J:::: 
..•... v •.••••.•...•.•••••••.•••..•.•.••.•..••••.•••.••....•.•.•.........•....• 

. • • . • • • • • • • • • • • . • • • • • • • • • • • • PS.CONV 1 • • • • • • • • • • • • • • • • • • • • • • • • • • • ••••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . .. . . . . . . . . . . . . . . .. . . . .. . . . .. . . . . . . . ....... . 
::::1································································1:::::::: 

.__ ______ _. ....... . 
• • • • • • • • • • • • A •••.••••••••••• A •.•••••••••••••• A ••••••.••••••••• A •••••••••••••••••••••••••••••.•••••• 

: : :::::::::: ::::::::: r ::::~::::::::::: ::: :: :::::::::::::::: :::::::~~~'.~'.'.~:~'.~'.~~: '.~~::: 
• • • 

l 
2 
J 
4 

v v v v 
Resources Manager Half- Half-

Session Session 

See "Chapter 5.1. Presentation Services--Conversation Verbs" 
See "Chapter 5.2. Presentation Services--Mapped Conversation Verbs" 
See "Chapter 5.3. Presentation Services--Sync Point Services Verbs" 
See "Chapter 5.4. Presentation Services--Control-Operator Verbs" 

Note: A dashed line denotes a synchronous Ci.e., a CALL) protocol boundary between components, 
while a solid line denotes an asynchronous (i.e., a SEND> protocol boundary. 

Figure 5.0-1. Overview of Presentation Services, Emphasizing PS.INITIALIZE and PS.VERB_ROUTER 

5.0-2 

components is described in detail in the cor­
responding chapters. 

PS_PROCESS_DATA on page 5.0-19 contains data 
that is accessible by all components of the 
PS process. This data includes pointers to 

lists of shared control blocks, and to single 
control blocks describing the local LU and 
this PS process. These pointers are initial­
ized with data passed from RM when it creates 
the PS process, and they remain unchanged 
thereafter. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Resources 
Manaaer PS.INITIALIZE 

create PS process 
- - - - - - - - - - -> 

ATTACH_RECEIVED 
--------------------> 

Transaction 
Program 

RECEIVE_DATA } 
--------------------------------------~> only if PIP data present 

C.6.LL f P( RCE5_ID, PI Pl , ••• , PIPn J 
- - - - - - - - - - - -> 

TP executes 

return 
<------------

DEALLOCATE_RCB } 
<:------------------~ 

--------------------> zero or more times RCB_DEALLOCATED 

TERMINATE_PS 
<--------------------

destroy PS process 
- - - - - - - - - - -> 

Figure 5.0-2. Initialization and Termination of Presentation Services and Transaction Program 

The transaction control block f TCB, page 
A-10) contains information specific to the 
transaction program instance, such as the 
list of resources allocated to it, the secu­
rity user ID ("Appendix H. FM Header and LU 
Services Commands") carried in the Attach, 
and the security profile ("Appendix H. FM 
Header and LU Services Commands") optionally 
carried in the Attach. The TCB also contains 
the CONTROLLING_COMPONENT field, which is 
maintained by PS.VERB_ROUTER, and records 
whether the verb was issued by the TP or by a 
verb-processing component (on behalf of the 
TP). The TCB is created by RM when the PS 
process is created and destroyed by RM when 
the PS process is destroyed. 

The resource control block (RCS, page A-7) 
contains information specific to a particular 
resource, such as the state of a conversation 
or the conversation type. One RCB exists for 
each active resource !e.g., for each active 
conversation>. The RCB is created and 
destroyed by RM at the request of PS as part 
of the processing of the ALLOCATE and DEALLO­
CATE verbs. Certain fields of the RCB are 
shared between PS and RM, while other fields 
are used exclusively by PS. 

INITIALIZATION AND TERMINATION 
CPS.INITIALIZE) 

The PS.INITIALIZE component performs initial­
ization and termination of PS and the TP. 

Figure 5.0-2 shows the protocol boundary 
flows that are used by PS.INITIALIZE for 
initialization and termination of the PS 
process. The steps below correspond to the 
numbers in the figure. 

1. The PS process is created by RM, which 
passes it several parameters, including 
the LUCB_LIST_PTR, the TCB_LIST_PTR and 
the RCB_LIST_PTR. These parameters are 
used to initialize the PS_PROCESS_DATA 
structure. 

2. PS next receives from RM an FMH-5 (At­
tach), accompanied by the TCB ID of this 
instance of PS, the RCB ID of the initial 
conversation (the conversation on which 
the Attach flowed), and sense data con­
taining the result of RM's checking of 
the Attach. If the sense data is 0 (in­
dicating no error was found by RM>, 
PS.INITIALIZE performs additional check­
ing of the Attach. This includes a check 
of the transaction program's support of 
the conversation type and program 

Chapter 5.0. Overview of Presentation Services 5.0-3 



s.o-4 

;n;t;a1;zat;on parameters CPIP data). If 
the Attach ;s in error Cas determined by 
RM or PS.INITIALIZE> the conversatfon is 
term;nated. Depending on the error 
detected, the session may be deactivated, 
or the conversation ended with DEALLOCATE 
TYPECABEND_PROG>. 

3. The Attach indicates whether PIP data 
follows. If the Attach is correct, the 
PIP data (if any> is received as a single 
GDS variable, and ;s then separated into 
a list of ind;v;dual PIP subf;elds. 

4. An execution instance of the transaction 
program named in the Attach ;s then cre­
ated. This TP ;s called with arguments 
of'·the RCB ID of the initial conversation 
and the list of PIP subfields Cif pres­
ent>. 

5. When the TP completes processing 
C normally or abnormally>, ; t returns to 
PS.INITIALIZE. PS.INITIALIZE terminates 
and deallocates C in an 
implementation-dependent way> the TP's 
remaining active conversations Ci f any; 
the list of conversations that are still 
ac'HVe is found in the RESOURCES_LIST of 
the TCB). 

6. Finallv· ~~.INITIALIZE sends a TERMI­
NA";c_PS record to the resources manager 
and waits to be terminated. On receipt 
of . the TERMINATE_PS record, RM destroys 
the PS process. 

VERB PROCESSING ' f PS. VERB_ROl,ITER > 

PS.VERB_ROUTER routes verbs to the appropr;­
ate PS verb-processing component. It also 
processes type-;ndependent conversation verbs 
such as WAIT and GET_ TYPE. The supplied 

RESOURCE parameter of most verbs identifies 
the conversation on wMch the verb is being 
;ssued. The value ;n the RESOURCE parameter 
must match one in TCB.RESOURCES_LIST, the 
list of resources allocated to the TP; if it 
does not, the TP is terminated abnormally. 

PS. VERB_ROUTER also maintains the CONTROL­
LING_COMPONENT field of the TCB. The value 
of CONTROLLING_COMPONENT ; s TP if the verb 
has been issued directly by the TP. The val­
ue is SERVICE_COMPONENT if the verb has been 
;ssued by another PS component as part of its 
verb processing. 

WAIT Verb Processing 

The WAIT verb is not processed by PS.CONY, 
because C unlike most verbs > it is not issued 
over a conversation. Instead, it allows a TP 
to wait until specified conditions are satis­
f.i ed I "posted'.') for any of several conversa­
tions. WAIT processing includes: 

• Checking tha": all theo resu1.:1:;.e. IDs are 
valid &nd that at least one resource is 
activated for posting 

• Determining whether a resource is already 
posted Cand, if one is, returning imme­
diately) 

• Awaiting, if no· posting condition has 
been satisfied, the arrival of data that 
will cause a resource to be posted 

GET TYPE Verb Processing 

GET_TYPE pr9cessing . ;s. handled locally fo 
PS. VERB_ROUTER by copying the conversation 
type from the appropriate RCB into a returned 
parameter of the verb. 

SNA Format andProti>col Reference tlanual for LU Type 6.2 



HIGH-LEVEL PROCEDURES 

PS 

FUNCTION: Presentation services CPS) provides verb-processing services to a transaction 
program execution instance CTP>. PS invokes, terminates, contains, and is 
driven by the TP. 

INPUT: LUCB_LIST_PTR, TCB_LIST_PTR, and RCB_LIST_PTR, pointers to 
TCB_LIST, and RCB_LIST, respectively; LU_ID, the ID of this LU; 
the ID of this PS process 

LUCB_LIST, 
and TCB_ID, 

OUTPUT: Process data is initialized and PS.INITIALIZE is invoked. 

Referenced procedures, FSMs, and data structures: 
PS_INITIALIZE 

PS_PROCESS_DATA 
TCB 
LUCB 

LUCB_LIST_PTR 
RCB_LIST_PTR 
TCB_LIST_PTR 
LU_ID 
TCB_ID 

Copy the input p<irameters into the fields of PS_PROCESS_DATA (page 5.0-19). 
Set PS_PROCESS_DATA.LUCB_PTR to point to the LUCB for this LU Cidentified by 
Set PS_PROCESS_DATA.TCB_PTR to point to the TCB for this tr<insaction proee~s 

Cidentified by TCB_ID>. ' 

Call PS.INITIALIZE Cpage 5.n-5). 

page 5.0-6 

page 5.0-19 
page A-10 
page A-1 

page 5.0-20 
page 5.0-20 
p<ige 5.0-20 
page 5.0-20 
page 3-74 

LU_ID>. 

Chapter 5.0. Overview of Presentation Services 5.0-5 



PS_INITIALIZE 

PS_INITIALIZE 

5.0-6 

FUNCTION: This procedure creates and invokes an instance of the transaction program 
named in a received FMH-5 CAttach>. 

After PS is created by RM, PS.INITIALIZE receives the Attach and other infor­
mation from RM. As shown in "FM header 5: Attach " on page H-6, the Attach 
contains the name of the transaction program to be invoked, and an indicator 
of whether program initialization parameters CPIP data> will accompany the 
Attach. PS.INITIALIZE receives the PIP data Cif any) from the half-session, 
and validates fields of the Attach. 

If the Attach is valid, PS invokes the transaction program named in the 
Attach. When the TP returns to PS.INITIALIZE, the PS process is destroyed Cby 
calling DEALLOCATION_CLEANUP_PROCJ. 

If the Attach contains an error, ATTACH_ERROR_PROC is called and the PS proc­
ess is destroyed; no transaction program is invoked. 

INPUT: Attach information (from RMJ 

OUTPUT: An execution instance of a transaction program is loaded and called. The TP 
is passed the RCB_ID representing the conversation between the attached pro­
gram and the attaching program, and PIP data, if there is any. 

NOTE: Rather than invoking the transaction program immediately upon receipt of the 
Attach, PS may await the receipt of data indicating end-of-chain before dis­
patching the transaction program. 

Referenced procedures, FSMs, and data structures: 
INITIALIZE_ATTACHED_RCB 
RECEIVE_PIP_FIELD_FROM_HS 
PS_ATTACH_CHECK 
UPM_EXECUTE 
ATTACH_ERROR_PROC 
DEALLOCATION_CLEANUP_PROC 

PS_PROCESS_DATA 
TCB 
RCB 
PIP_FIELD 
PIP_LIST 
CODE, see SENSE_DATA 

Receive Attach information from RM. 
Find the RCB for the conversation identified by RCB_ID. 
Call INITIALIZE_ATTACHED_RCBCATTACH_RECEIVEDJ (page 5.0-16). 
Call RCB.FSM_CONVERSATIONCR, ATTACH, RCBJ Cpage 5.1-63). 
Copy into the TCB the transaction program name, profile, and user 
of the Attach with trailing blanks removed. 

Set TCB.CONTROLLING_COMPONENT to TP. 

If Attach check CODE frn~ r-M ind1cates Attach is valid then 
If the Attar'-. ~see page H-6 for format) indicates 
th~~ riP data is present, then 

Call RECEIVE_PIP_FIELD_FROM_HSCRCB,PIP_FI~LDJ (page 5.0-7). 
Else 

Set PIP_FIELD to null. 
Call PS_ATTACH_CHECK Cpage 5.0-8), . 
and pass it PIP_FIELD and relevant Attach information. 

Store the resulting sense data in CODE. 
If the Attach is valid CCODE=OJ then 

ID fields 

Call UPM_EXECUTECTCB.TRANSACTION_PROGRAM_NAME, RCB.RCB_ID, PIP_LISTJ 
(page 5.0-17) Csee Note). 

Else (Attach is not valid> 
Call ATTACH_ERROR_PROCCRCB, CODE> Cpage 5.0-10). 

Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-13). 

SNA Format and Protocol Reference Manual for LU Type 6.2 

page 5.0-16 
page 5.0-7 
page 5.0-8 
page 5.0-17 
page 5.0-10 
page 5.0-13 

page 5.0-19 
page A-10 
page A-7 
page 5.0-19 
page 5.0-20 
page 5.0-21 



RECEIVE_PIP_FIELD_FROM_HS 

RECEIVE_PIP_FIELD_FROM_HS 

FUNCTION: During invocation of the transaction program, this procedure receives a pro­
gram initialization parameter CPIP> field by issuing a RECEIVE_AND_WAIT verb. 
If this verb-issuance succeeds in receiving a complete logical record contain­
ing a PIP Data GDS variable, then the received PIP field is returned to 
PS.INITIALIZE. If it fails, a protocol violation has been committed by the 
partner LU; the session is deactivated and the transaction program is not 
invoked. 

INPUT: The RCB for the TP's initial conversation; a PIP Data GDS variable from the 
half-session 

OUTPUT: A RECEIVE_AND_WAIT verb is issued in order to retrieve the expected PIP data, 
which is returned to PS.INITIALIZE via PIP_FIELD. 

NOTES: 1. The RECEIVE_AND_WAIT structure that is created in this procedure cannot be 
destroyed at only the end of the procedure. The reason for this is that if a 
protocol violation is detected and DEALLOCATION_CLEANUP_PROC is invoked, this 
process ends without ever returning to this procedure. Cin this case, the 
RECEIVE_AND_WAIT would never be destroyed.> 

2. This error occurs if the partner indicates in the Attach that PIP data fol­
lows, but either no data follows or the data that follows is not PIP data. 

Referenced procedures, FSMs, and data structures: 
PS_PROTOCOL_ERROR 
DEALLOCATION_CLEANUP_PROC 

PS_PROCESS_DATA 
RCB 
PIP_FIELD 

Issue a RECEIVE_AND_WAIT verb on this conversation, with 
a MAX_LENGTH of X'7FFF', a FILL of LL, and a DATA parameter of PIP_FIELD. 

If PIP_FIELD does not now contain 
a complete PIP Data GOS variable Csee page H-7 for format), 
then (optional receive check--see Note 2) 

Call PS_PROTOCOL_ERRORCRCB.HS_ID, RCB·.RCB_ID, X'l008201D') Cpage 5.0-15>. 
Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-13) 

page 5.0-15 
page 5.0-13 

page 5.0-19 
page A-7 
page 5.0-19 

Chapter 5.0. OvervieN of Presentation Services 5.0-7 



PS_ATTACH_CHECK 

PS_ATTACH_CHECK 

5.0-8 

FUNCTION: This procedure validates some fields of the received Attach (RM validates the 
other fields ) • 

INPUT: 

OUTPUT: 

NOTE: 

Attach information (from RM> and program initialization parameter (PIP) data 
from HS. 

o, if no invalid fields are found; the appropriate sense data. otherwise 

If RM finds the Attach invalid. it is accompanied by sense data <in 
SENSE_CODEl with one of the following values: 

X'080F6051' 
X'l0086000' 
X'l0086005' 
X' 10086009' 
X'1008600B' 
X' 10086011' 
x• 10086021 • 
X'l0086040' 
X'084B6031' 
X'084C0000' 
X'l0086040' 
X' 10086041' 

Security not valid 
FMH length not correct 
Access Security Information field length invalid 
Invalid parameter length 
Unrecognized FMH command 
LUW length invalid 
TPN not recognized 
Invalid Attach parameter 
Transaction program not available--retry 
Transaction program not available--no retry 
Sync level not supported by LU 
Sync level not supported by TP 

otherwise. SENSE_CODE = x•oooooooo•. 

Referenced procedures, FSMst and data structures: 
PS_PROCESS_DATA 
TCB 
LUCB 
TRANSACTION_PROGRAM 
PIP_FIELD 
"SENSE_CODE, see SENSE_DATA 

SNA Format and Protocol Reference Manual for LU Type 6.2 

page 5.0-19 
page A-10 
page A-1 
page A-4 
page 5.0-19 
page 5.0-21 



If SENSE_CODE > o, then 
Return sense data set by RM. 

Else (continue seeking Attach errors) 
Set TRANSACTION_PROGRAM to the LUCB.TRANSACTION_PROGRAM_LIST-element 

named in Attach. 

Select, in order, based on 
the contents of the Attach (for format, see page H-6): 

Errors that cause the session to be deactivated 

When the Logical Unit of Work Identifier fields are incorrectly formatted 
Return X'l0086011'. 

Errors that cause an FMH-7 to be generated 

When TRANSACTION_PROGRAM.NUMBER_OF_PIP_SUBFIELDS=O, 
but the Attach indicates that PIP data is present 

Return X'l0086031' !PIP not allowed!. 

When TRANSACTION_PROGRAM.NUMBER_OF_PIP_SUBFIELDS is positive, but 
the actual number of PIP subfields Cin PIP_FIELD> differs from it, 
or PIP data is not indicated as present 

Return X'l0086032' (PIP not specified correctly>. 

When the Resource type is not supported by the transaction program 
Ci.e., is not on the TRANSACTION_PROGRAM.RESOURCES_SUPPORTED_LIST) 

Return X' 10086034' !conversatlon type mismatch>. 

Otherwise (ATTACH is valid> 
Return x•oooooooo•. 

PS_ATTACH_CHECK 

Chapter 5.0. Overview of Presentation Services 5.0-9 



ATTACH_ERROR_PROC 

ATTACH_ERROR_PROC 

5.0-10 

FlH:TION: This procedure handles the processing requirlld Nt'8n an invalid Ftti-5 (Attach) 
is received. 

Depending upon the type of Attach error hs reflected in the passed SENSE_CODE 
parameter>. PS either generates an (ftfi-7,CEB) or causu the session over 
Mhich the Attach fl0111ed to be deactivated. 

When the Attach contains an error that violates defined protocols, PS requests 
that the session be deactivated. 

For all other Attach errors, PS first issues a SEtl>_ERROR record to the 
half-session. PS then creates an Ftti-7 error Hssage that contains • ....,.. 
data identifying the type of Attach error encOU"ltered. PS also sends OEALLO­
CATE_RCB to Rl't, •nd then instructs RM to ter•imite the PS process. 

INPUT: The RCB corresponding to the conversation over lllhich the invalid Attach Mas 
received, and sense data specifying the type of Attach error •re received H 
par.iuneters. 

OUTPUT: The session is deactivated or an Ftti-7 error .. ssage is sent to the 
half-session and the converHtion is ended. (Error data is option11lly logged 
and sent with the Ftlt-7.) 

Referenced procedures, FSMs, and data structures: 
PS_PROTOCOL_ERROR 
DEALLOCATION_CLEANUP_PROC 
6ET_END_CHAIH_FROM_HS 
SEND_ERROR_TO_HS_PROC 
UPH_A':T ACH_ LOG 
SEND_DATA_BUFFER_HANAGEMENT 
SEND_DATA.TO_HS_PROC 

PS_PROCESS_DATA 
RCB 
BUFFER_ELEHENT 
SENSE_COOE, see SENSE_DATA 

If SENSE_COOE is 

page 5.0-15 
page 5.0-11 
page 5.1-37 
p•ge 5.1-56 
page 5.0-18 
page 5.1-51 
Pflge 5.1-52 

page 5.0-19 
page A-7 
P"98 A-& 
P"liJ8 5.0-21 

X'l008200E', X'l0086000', X'l008(1005', X'10086009', X'1008(1011', or X'10086040', 
then Cdeactivate the session) 

Call PS_PROTOCOL_ERRORCRCB.HS_IO, RCB.RCB_ID, SENSE_CODE) (page S.0-15). 
Call DEALLOCATION_CLEANUP_PROC !page S.0-13). 

Else lgener•te an Ftlt-71 
Call SEHD_ERROR_TO_HS_PROClRCBl lpage 5.1-56). 
Call GET_EHD_CHAIN_FROM_HSIRCB> (page 5.1-37). 
Set BUFFER_ELENENT to the last entry in RCB.HS_TO_PS_BUFFER_LIST. 
If the BUFFER_ELEHENT type is 

OEALLOCATE_CONFIRl'tt CONFIRM. PREPARE_TO_RCV_CONFIRH, or PREPARE_To_RCY_fLUSH 
then 

Call UPH_ATTACH_LOG (page 5.0-18) to 
generate log data describing this Attach error. 

If this log data is non-null, then 
Log it in the local system error log. 
Put into the conversation's send buffer IRCB.PS_TO_HS_RECORD.DATA> 
an Ftlt-7 (page H-8> indicating that 
log data follows and sense data (fre>11 SENSE_CODEl is includlld. 

Append to the conversation's send buffer an 
Error log GOS variable (page H-19> cont.ining the log dat•. 

Else 
Put into the conversation's send buffer IRCB.PS_TO_HS_RECORD.DATA) 
an FMH-7 Cpage H-8) indicating that 
no log data follows and sense data (frCM SENSE_CODE) is included. 

Call SEHD_DATA_BUFFER_HANAGEl'tENTI null string, RCB ) lpage 5.1-51). 
Set RCB.PS_TO_HS_RECORD.TYPE to DEALLOCATE_FLUSH. 
Call SEHD_DATA_TO_HS_PROCIRCB> lpage 5.1-52>. 

Send a DEALLOCATE_RCB record (page A-26), derived frOll this RCB, to RH. 

SNA ForHt and Protocol Reference Manual for LU Type 6.2 



PS_VERB_ROUTER 

PS_VERB_ROUTER 

FUNCTION: This procedure receives all verbs issued by the TP and routes them to the 
appropriate PS component (e.g., basic conversation verbs to PS.CONV, and 
control-operator verbs to PS.COPRI for processing. 

INPUT: The current transaction program verb. 

OUTPUT: Refer to the PS components that are called from this process for the specific 
outputs. 

NOTES: 1. As a general rule, basic verbs mu~t be issued on basic conversations. This 
check enforces th&t rule; however, there are some exceptions. Non-basic 
verb-processing components reside above PS.CONV, and may issue basic conversa­
t1on verbs in carrying out the functions of non-basic verbs. When the TP 
issues a mapped conversation verb, PS.VERB_ROUTER routes the verb to PS.MC. 
PS.MC begins processing ·lhe verb, and then, in general, issues one or more 
basic conversation verbs, which are processed by PS.CONV. Thus, PS.MC may 
issue a basic conversation verb on a mapped conversation. PS.MC is allowed to 
do this because it is a "servfoe" component that is part of PS; the trans­
action program is not. PS.VERB_ROUTER maintains knowledge, via the CONTROL­
LING_COMPONENT field in the TCB, of whether the verb currently being processed 
was issued by the transaction program or by a service component such as PS.MC. 

2. If the TP issues a verb that is incompatible with the specified resource, such 
as a mapped conversation verb specifying a basic conversation, then the TP has 
committed a protocol violation and is terminated abnormally. 

Referenced procedures, FSMs, and data structures: 
PS_CONV 
DEALLOCATION_CLEANUP_PROC 
WAIT_PROC 
PS_MC 
PS_COPR 
PS_SPS 

PS_PROCESS_DATA 
TCB 
RCB 

Select based on TRANSACTION_PGM_VERB contents 

page 
page 
page 
page 
page 
page 

page 
page 
page 

Verbs Processed by Presentat;on Services for Conversations 

When ALLOCATE 
Call PS_CONVCverb,parametersl (page 5.1-101. 

When CONFIRM, CONFIRMED, DEALLOCATE, FLUSH, GET_ATTRIBUTES, POST_ON_RECEIPT, 
PREPARE_TO_RECEIVE, RECEIVE_AND_WAIT, RECEIVE_IMMEDIATE, REQUEST_TO_SEND, 
SEND_DATA, SEND_ERROR, or TEST 

If the supplied RESOURCE parameter of the verb 
fails to identify a conversation assigned to this transaction 
(i.e., does not occur on on TCB.RESOURCES_LISTl, then 

Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-131. 

5.1-10 
5.0-13 
5.0-13 
5.2-19 
5.4-32 
5.3-35 

5.0-19 
A-10 
A-7 

Find the RCB for the conversation identified by the supplied RESOURCE parameter. 
If RCB.CONVERSATION_TYPE~BASIC_CONVERSATION and 

TCB.CONTROLLING COMPONENT~SERVICE COMPONENT 
then (see Note ll -

Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-131. 
Call PS_CONVCverb,parametersl Cpage 5.1-101. 

'~Qpter 5.0. Overview of Presentation Services 5.0-11 



s.0-12 

Verbs Processed by Presentation Services for Happed Convers•tions 

Nhen tte_ALLOCATE 
C•ll PS_tte(Verb tMr•-ters) (page 5.2-191. 

Nhen tte_CONFIRH1 tte_CONFIRHED1 tte_DEALLOCATE1 tte_FLUSH1 tte_6ET_ATTRIBUTES1 
tte_POST_ON_RECEIPTt tte_PREPARE_TO_RECEIVE1 tte_RECEIVE_AND_WAIT1 
HC_REGUEST_TO_SEN>. tte_seND_DATAt tte_SEND_ERRORt or tte_TEST 

If the verb's supplied RESOURCE p•rameter 
f•ils to identify • conversetion essigned to this tr•na•ction 
Ct.e., fails to occur on TCB.RESOURCES_LISTlt then 

Call DEALLOCATION_CLEAl-IJP_PRoc (page 5.0-13). 
Find the RCB for the conversation identified by RESOURCE. 
If RC8.CONYERSATION_TYPE is not HAPPED_CONYERSATIONt 

then Cit should be, because this verb is ••pped) 
Call DEALLOCATION_CLEAl-IJP_PROC <page S.0-13). 

Set TCB.CONTROLLING_COHPONENT to SERYICE_eottPOHENT. 
C•ll PS_tte(verb,par•-ters) (page 5.2-19J. 
Set TCB.CONTROLLING_eottPONENT back to TP. 

Verbs Processed by Presentation Services for the Control Oper•tor 

When IHITIALIZE_SESSION_LIHIT, CHANGE_SESSION_LIHIT, RESET_SESSION_LIHITt 
SET_WCB, SET_PARTNER_LU, SET_t10DE1 . . 
SET_t'IODE_OPTION, SET_TRANSACTIOH_PROGRAH1 SET_PRlYILESED_FUHCTION, 
SET_RESOURCE_SUPPORTEDt SET_SYNC_LEVEL_SUPPORTl!:Dt 
SET_tte_FUHCTIOH_SUPPORTED_TP, SET_CPLU_CAPABILITY1 
GET_LUCB, GET_PARTNER_LU, 6ET_tt00E1 GET_LU_OPTION1 6ET_t10DE_OPTION1 
6ET_ TRANSACTIOl-CPROGRAH, 6ET _PRIVILEGED_FUNCTION, SET _RESOURCE_ SUPPORTED 1 
GET_SYNC_LEVEL_SUPPORTED, GET_tte_FUHCTION_SUPPORTED_LU, 
GET_tte.FUHCTION_SUPPORTED_TP, GET_CPLU_CAPABILITY1 
LIST_PARTNER_LU, LIST_tlODE, LIST_LU_OPTION, LIST_t10DE_OPTION, 
LIST_TRANSACTION_PROGRAH1 LIST_PRIVILEGED_FIJ.ICTION, LIST_RESOURCE_SUPPORTEDt 
LIST_SYNC_LEVEL_SUPPORTED, LIST_HC_FUNCTION_SUPPORTED_LU, 
LIST_tte_FUNCTION_SUPPORTED_TP, LIST_CPLU_CAPABILITY1 
PROCESS_SESSIOH_LIHIT, ACTIVATE_SESSION1 or DEACTIVATE_SESSION 

Set TC8.CONTROLLIN6_COHPONENT to SERVICE_COtlPONENTt 
C•ll PS_COPR(verb par•Hters) (page 5.4-32), •nc:I 
Set TCB.COHTROLLING_COHPONENT back to TP. 

Type-Independent Conversation Verbs 

Nhen SYNCPT or BACKOUT 
Set TCB.CONTROLLING_COHPONENT to SERVICE_COHPONENT, 
C•ll PS_SPS (page 5.3-35), 
Set TCB.CONTROLLIHG_COttPONENT back to TP. 

Ihm GET_TYPE 
If the verb's suppl;ed RESOURCE parameter 
fa;ls to identify • conversation assigned to this transaction, then 

Call DEALLOCATION_CLEAl-IJP_PROC (page 5.0-13). 
Find the RCB for the conversation identified by RESOURCE. 
Copy RC8.CONYERSATION_TYPE into the verb's returnec;I TYPE par••ter. 

Ihm WAIT 
Set TCB.CONTROLLING_COHPONENT to SERVICE_COHPOHENT • 
. Call NAIT_PROCCverb,para•ters) (page S,O;.l3lt 
Set TCB.CONTROLLIN6_COHPONENT back to TP. 

RETURHJ 

9NA For .. t and Protocol Refera'\Ce Hanual for LU Type 6.2 



DEALLOCATION_CLEANUP_PROC 

DEALLOCATION_CLEANUP_PROC 

FIMCTICIH: TMs proceck.lre, 911hfoh nnages the destruction of this process, is invoked 
after the TP has ended (normally or abnor•allyl by returning to PS_INITIALIZE 
on page 5.0-6. It calls UPH_RETURN_PROCESSIN6 on page 5.0-18 to deallocate 
the process's r .. aining conversations, and sends DEALLOCATE_RCB to RH to get 
rid of RCBs end any other resources allocated to the process. Finally, it 
instructs RM (by sending • TERMINATE_PS record> to destroy the process. 

INPlfT: TCB.RESOURCES_LIST 

OUTPUT: DEALLOCATE_RCB and TERMINATE_PS to RM. 

Referenced proceck.lres, FSHs, and data structures: 
UPH_RETURN_PROCESSING 

PS_PROCESS_DATA 
TCB 
RCB 
TERMINATE_PS 
RCB_ID 

For each RCB_ID on TCB.RESOURCES_LIST, do the following: 
Find the RCB for the conversation identified by RCB_ID. 
If the conversation is not already in RESET or END_CONV state, then 

Call UPH_RETURN_PROCESSING<RESOURCE.RCB_IDl (page 5.0-18l. 
Send a DEALLOCATE_RCB record (page A-26), derived frOll this RCB, to RM. 

Send a TERMINATE_PS record to RM. 
Wait to be destroyed by RH. 

page 5.0-18 

page 5.0-19 
page A-10 
page A-7 
page A-27 
page 3-74 

FIMCTIOH: This proceck.lre processes WAIT verbs. First, it validates the resources speci­
fied in the verb's RESOURCE_LIST para11eter. While checking this list, this 
procedure creates• sublist of it called TEHPORARY_RESOURCE_LIST. This sub­
list contains only those resources fro• RESOURCE_LIST that are currently acti­
vated for posting. Uf none of the resources specified in the s~lied 
RESOURCE_LIST parameter is activated for posting, this procedure sets the 
RETURN_CODE field of the WAIT to POSTING_NOT_ACTIVE.l 

INPlfT: 

OUTPUT: 

After creating the TEMPORARY_RESOURCE_LIST. this proceck.lre next checks to see 
if any of the resources in the list have alre&dy been posted. If none of the 
resources has been posted, this procedure waits for one of the resources to 
become posted. 

WAIT verb para11eters; inc011ing conversation data 

The verb's returned parameters are set as follows. RETURN_CODE indicates 
whether the WAIT completed successfully. <Any return code other than POST­
ING_NOT_ACTIVE indicates that a resource was posted and the WAIT co111Pleted 
successfully.) If the verb completed successfully. then RESOURCE_POSTED indi­
cates which resource has been posted. 

Referenced procedures, FSMs, and data structures: 
TEST_FOR_RESOURCE_POSTED 
DEALLOCATION_CLEANUP_PROC 

PS_PROCESS_DATA 
TCB 
RCB 
RC, see RETURN_CODE 

page 5.0-17 
page 5.0-13 

page S.0-19 
page A-10 
page A-7 
page 5.0-19 

Chapter 5.0. Overview of Presentation Services S.0-13 



WAIT_PROC 

5.0-14 

Check that all resources in the supplied RESOURCE_LIST parameter 
are validly allocated to this transaction Ci.e., occur in TCB.RESOURCES_LIST), 
and that at least one of them has posting active. 

If any resource is invalid, then 
Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-13). 

If no resource has been posted, then 
Set the verb's primary RETURN_CODE to POSTING_NOT_ACTIVE, and return. 

At this point (since all resources are valid and some have "posting 
active"), it is safe to wait for a resource to become posted. If some 
resource is already posted, though, then there is no need to wait. 

For each resource that has posting active, 
Call TEST_FOR_RESOURCE_POSTED (page 5.0-17) 
on its RCB, and save the result in RC. 

If RC is not UNSUCCESSFUL, then 
Set the verb's RETURN_CODE to RC, and return. 

Since no active resource is posted yet, wait until one is. 

Initialize RC to UNSUCCESSFUL. 
Do While RC remains UNSUCCESSFUL 

Suspend this process until an HS for a posting-active resource forwards received 
data to that resource. 

Set RCB to the RCB for the conversation on which the data has arrived. 
Call TEST_FOR_RESOURCE_POSTEDCRCB) Cpage 5.0-17--see Note 41, 

and save the result in RC. 
Set the returned RESOURCE_POSTED parameter to RCB.RCB_ID. 
Set the verb's RETURN_CODE to RC. 

SNA Format and Protocol Refarence Manual for Lll Type 6.2 



LOW-LEVEL PROCEDURES 

PS_PROTOCOL_ERROR 

FUNCTION: This procedure processes receive error conditions that require the session to 
be deactivated. 

INPUT: 

OUTPUT: 

An UNBIND_PROTOCOL_ERROR record is sent to the resources manager to request 
deactivation of the session that committed the protocol violation. Then the 
procedure creates a CONVERSATION_FAILURE CPROTOCOL_VIOLATIONl record and con­
tinues the conversation failure processing. 

The HS ID for the half-session that committed the protocol violation, the RCB 
ID for the conversation that is using the session, and the sense data to be 
sent on the UNBIND 

UNBIND_PROTOCOL_ERROR Cto RM), with the TCB ID for this PS process, and the 
input HS ID and sense data 

Referenced procedures, FSMs, and data structures: 
CONVERSATION_FAILURE_PROC 

PS_PROCESS_DATA 
UNBIND_PROTOCOL_ERROR 
CONVERSATION_FAILURE 
HS_ID 
RCB_ID 
SENSE_CODE, see SENSE_DATA 

Create an UNBIND_PROTOCOL_ERROR record Cpage A-28) 
with this TCB_ID, HS_ID, and SENSE_CODE. 

Send UNBIND_PROTOCOL_ERROR to RM. 

Create a CONVERSATION FAILURE record with RCB ID for this conversation. 
Set its REASON to PROTOCOL_VIOLATION. -
Call CONVERSATION_FAILURE_PROCCCONVERSATION_FAILUREl (page 5.1-31). 

page 5.1-31 

page 5.0-19 
page A-28 
page A-32 
page 3-74 
page 3-74 
page 5.0-21 

Chapter 5.0. Overview of Presentation Services 5.0-15 



INITIALIZE_ATTACHED_RCB 

INITIALIZE_ATTACHED_RCB 

5.0-16 

FUNCTION: This procedure initializes fields in tha RCB for tha resource specified in tha 
received Attach. 

This procedure is invoked by PS.INITIALIZE when RM forwards Attach information 
to PS. 

INPUT: Attach information (from RM> (see "FM header 5: Attach" on page H-6 for for­
mat I 

OUTPUT: Fields in tha specified RCB are initialized. 

Referenced procedures, FSMs, and data structures: 
PS 

PS_PROCESS_DATA 
RCB 

Find the RCB identified in the received Attach. 
Initialize this RCB's fields as follows: 

PS_TO_HS_RECORD.ALLOCATE to NO 
PS_TO_HS_RECORD.FMH to NO 
PS_TO_HS_RECORD.TYPE to NOT_END_OF_DATA 
PS_TO_HS_RECORD.DATA to null string 

SEND_LL_REMAINDER to 0 
RECEIVE_LL_REMAINDER to 0 
MAX_BUFFER_LENGTH to an implementation-defined maximum 
RQ_TO_SEND_RCVD to NO 
LOCKS to SHORT 
POST_CONDITIONS.FILL to LL 
POST_CONDITIONS.MAX_LENGTH to 0 
SEND_LL_BYTE to NOT_PRESENT 

SYNC_LEVEL to the synchronization level specified in tha Attach 
CONVERSATION_TYPE to the Resource type specified in the Attach 

If RCB.CONVERSATION_TYPE = MAPPED_CONVERSATION then 
Initialize additional RCB fields as follows: 

MC_RQ_TO_SEND_RCVD to NO 
MC_POST to RESET 
MC_MAX_SEND_SIZE to an implementation-defined value 
MAPPER_SAVE_AREA according to an implementation-defined algorithm. 

SHA Format and Protocol Reference Manual for LU Type 6.2 

P.ga 5.0-5 

page 5.0-19 
page A-7 



TEST_FCIR_RESOURCE_POSTED 

Fl.KTIQN: This procedure deter•ines if the resource corresponding to the SNl••ed RC8 ha• 
been posted. · Dapend;ng on the type of converHt;on incHc•ted by the RCB, thi• 
procedure cdls either TEST_PROC on JN198 5.1-27 or tte_TEST_PROC on page S.2-28 
to test Mhether the resource has been po 

INPUT: The RCB for the resource Nhose po11ting st•tw is to be deter•ined 

OUTPUT: The return code returned from the TEST_PROC or tte_TEST_PROC call. 

Referenced procecllres, Fstts, •nd data structures: 
TEST_PROC 
tte_TEST_PROC 

PS_PROCESS_DATA 
RCB 
RETURN_ CODE 

Select based an RCB.COHVERSATIOH_TYPE: 
lillen basic 

Call TEST_PROClRCB,POSTED) (page 5.1-27). 
lillen •apped 

Call tte_TEST_PROClRCB,POSTED> lp•ge 5.2-28). 
Return the verb's RETURH_CODE. 

lll)EFINED PROJQCOL HACUIN£S 

UPH_EXECUTE 

Fll'ICTIQN: This UPH loads •nd executes a transaction progr••· 

SNISl9 S.1-27 
page s.2-21 

page S.0-19 
page A-7 
page S.0-19 

INPUT: The na... of the transaction progra•• the resource ID Ito be pHaed to the 
transaction progra•>• and a list of PIP dat• (to be paHed to the transaction 
progra•>. 

OUTPUT: Hone. 

Not defined by SHA 

S.0-17 



s.o-1a 

FUCTICIN: Thi• UPtt i• invoked l4'0l"I di•covery of an error in an Ftlt-S CAttachJ. It 
Nturrw log data describing the error. ThW. data im logged In the loc•l •)111-
t• error log and i• Hnt back to the conversation partner in an Error-Log IDS 
variable a~nying an Fttt-7. 

INPUr: Attach error • .,.e data 

OUTPUr: Log data <•Y be null> 

·I Not defined by SHA 

FlllCTICIN: Thia UPtt ia invoked "'1lwn a TP _. and returrw to PS MHhout having deallo-

INPUT: 

CIUTPUr: 

cated all its r•wrc•. It ter•imitea and dedlocates a r ... ining active 
rawrce in an i11Pleantation-apecific ... y. TMO of the Mny ... ys in lllhich an 
i11Pl....,tation cwld do thia are to: 

• lHue DEALLOCATE TYPE<ABEtlJ_PROG) for the atill•allocated reaource. 

• lHue DEALLOCATE TYPE<SYNC_LEYEL> if the resource ia in SEtlJ atate and 
data in PS'• Hnd buffer ia an a logical record bcu1dary. If the •tt1111Pt 
to aynchronize fails, or the data NH not an a logical record ~ry, 
t._, iaaUll DEALLOCATE TYPECABEND_PROG>. 

Regardl .. a of lllhat other actions are takerh thia UPl'I causes FStt_CONVERSATICIN 
(page 5.1-6JJ to ..,ter the reset state. 

The RCB_ID of the still-allocated resaurce 

See above. 

Not defined by SHA 

SHA Forut and Protocol Refer9'Ce ttanual for W Type 6.2 



~ .12W SJRUCTUBES 

PS_PROCESS_DATA 

PS_PROCESS_DATA ;s ava;lable to all procedures ;n the presentat;on serv;ces process. The 
structure ;s ;n;tialized by the PS process (page 5.0-5) and remains unchanged for the 
l;fetime of the PS process. 

PS_ PROCESS_ DATA 
LUCB_LIST _PTR: 
LU_ID: 
LUCB_PTR: 
TCB_LIST_PTR: 
TCB_ID: 
TCB .. PT~: 
rtCB_LIST_PTR: 

Pointer to the LUCB_LIST 
ID of this PS's LU 
Pointer to the LUCB fo•· this PS's LU 
Pointer to t~~ rCB_LIST 
'ID of th'is PS 
Pointer to the TCB for this PS 
Pointer to the RCB_LIST of this PS 

PIP_FIELD 

Program Initialization Parameter CPIP> data is sent as a GOS variable immediately follow­
ing the FMH-5 if the FMH-5 indicated that PIP data follows. 

NOTES: 1. The value in the .LL field includes the length of the LL field itself. 

2. PIP subfields are type G symbol strings. Minimum send and receive support for 
PIP_SUBFIELD.DATA is 64 characters. 

PIP_FIELD: 
LL: Length of this log;cal reco~d !See Note 1.l. 
ID: GDS ID for PIP Data GDS Variable CX'l2F5'). 
DATA: Character string containing PIP data. 

RETURN_ CODE 

The primary and secondary return codes that may be returned on transact;on program verbs 
are described in ID:!A Transaction Programmer's Reference Manual .fSll: .bY ~ 6.2 

RETURN_ CODE 
PRIMARY_CODE: 

SECONDARY_CODE: 

possible values: 
see SHA Transaction 
possible values: 
see ID:!A Transaction 

Programmer's Reference t!!nY.!J. .fSll: .bY ~ 6.s1 

Programmer's Reference Manual .fSll: LU ~ ~ 

Chapter 5.0. Overview of Presentation Serv;ces 5.0-19 



PIP_LIST 

PIP_LIST .. ~ 

PIP_LIST: list of PIP data subfields. 

LU_ID 

LU_ID: ID of this LU. 

TCB_LIST_PTR 

TCB_LIST_PTR: Pointer to the list of TCBs for TP/PS processes at this LU. 

RCB_UST_PTR 

RCB_LIST_PTR: Pointer to the RCB_LIST for this TP/PS process. 

LUCB_LIST _PTR 

LUCB_LIST_PTR: Pointer to the list of LUCBs for lUs knotr.n to this LU. 

5.0-20 SNA For1Nt and Protocol Reference Hanual for LU Type 6.2 



SENSE_DATA 

SENSE_DATA 

SENSE_DATA: 4-byte sense data 

Chapter 5.0. Overview of Presentation Services s.0-21 



This.,...,. intentionally left blank 

22 SHA ForNt •nd Protocol Reference tlaN.1111 for W Type 6.2 



CHAPTER ~ PRESENTATION SERVICES--CONVERSATION VERBS 

GENERAL DESCRIPTION 

A PS process handles requests for LU serv­
ices. A transaction program ( TP l execution 
instance makes these requests by issuing 
verbs. The verbs are divided into catego­
ries, and PS is divided into components. 
Each verb-processing component of PS proc­
esses the verbs of one specific category. 
Presentation services for basic conversations 
CPS.CONVJ is the component of PS that proc­
esses verbs of the basic conversation catego­
ry. Figure 5.1-1 on page 5.1-2 provides an 
overview of PS, showing the relationship of 
PS.CONV to the other PS components. 

The basic conversation verbs correspond to 
the most basic services provided by the LU. 
Other PS components, such as PS. MC ("Chapter 
5.2. Presentation Services--Mapped Conversa­
tion Verbs" l and PS.COPR C "Chapter 5.4. Pres­
entation Services--Control-Operator Verbs") 
use basic conversation verbs in providing 
their higher-level functions. Open-API 
implementations may choose to expose only the 
mapped conversation protocol boundary to 
user-application transaction programming, 
while leaving the lower-level basic conversa­
tion protocol boundary "closed". 

See Chapter 5.0 for an overview of PS and its 
components, and of the relationship of PS to 
the other components of the LU. Refer to SNA 
Transaction Programmer's Reference Manual for 
LU ~ ~ for a complete description of the 
basic conversation verbs. 

PS.CONV FUNCTIONS 

The functions of PS.CONV include: 

• Requesting the allocation and deallo­
cation of conversation resources. 

• Maintaining and checking the basic con­
versation state. 

• 

• 

Transferring conversation data between 
the half-session and transaction program 
variables. 

Tracking logical record lengths • 

COMPONENT INTERACTIONS 

PS.CONV interacts with PS.VERB_ROUTER ("Chap­
ter 5.0. Overview of Presentation Services"), 

the resources manager ( "Chapter 3. LU 
Resources Manager" l , and one or more 
half-session components ("Chapter 6.0. 
Half-Session"). 

All verb service requests are routed through 
PS.VERB ROUTER, which forwards basic conver­
sation -verbs to PS.CONV. After PS.CONV has 
performed the requested service, control is 
returned to the caller, with updated values 
in those variables that are the verb's 
returned parameters, or in which it requested 
a result to be returned. 

PS.CONV interacts with the resources manager 
CRMJ to request allocation and deallocation 
of LU resources, such as conversations and 
associated control blocks, and to report pro­
tocol errors. Since PS.Cot-IV and RM may be in 
different processes, this interaction may 
occur by means of asynchronous inter-process 
communication (send/receive logic). RM also 
informs PS.CONV if a conversation being used 
by PS.CONV fails for some reason. 

PS.CONV interacts with one half-session proc­
ess for each active conversation used by 
PS.CONV. Each half-session serves a single 
conversation. Since the TP may have active 
conversations with several partners simul­
taneously, PS.CONV may be interacting with a 
number of different half-session processes. 

PS.CONV DATA-BASE STRUCTURE 

PS.CONV uses a number of control blocks and 
data structures. The most important ones are 
described here. See "Appendix A. Node Data 
Structures" for full details. 

LU Control Block 1.!J!gU and Associated Lists 

The LU control block CLUCB--see Figure 5.1-2 
on page 5.1-3) is used by PS.CONV. One LUCB 
exists for each LU in the node. The LUCB is 
identified by the LU ID, which is a unique 
identifier for each LU in the node. Each 
LUCB contains information such as the fully 
qualified LU name. 

Associated with each LUCB is a TRANS­
ACTION_PROGRAM_LIST. The TRANS­
ACTION_PROGRAM_LIST for an LU contains an 
entry for each transaction program known by 
the LU. The information in a TRANS-
J..CTION_PROGRAM ___ LIST e~t.·.Y ; il1;iudes the trans-

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-1 



I 
.............................................. : ................................................... · 1 
• • • • • • . • • • • • • • • • • • • • • . • • • • • • • • . • • • • Transact l on Program ••••••••••••••••••••••••••••••••••••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
'-~~~~~~~~~~~~~~~~~~~~•·~~~~~,...-~~~~~~~~~~~~~~,......~~~~~~~-' 

A I 
r-~,......~,......,...... ~,......,......,......,......,......,......,......,......,......,......,......_I,......,......,......,......,......,.....,......,......,......,......~,......,......~,......,......~,......,......~,......~,......~,......,...... ........ 

: : : : : : : : : : : : I : : : : : : : : : : : : : : : : : : : : : : : : : : : : I : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ~ . .: . .: . .: . .: .. :: .: . .: . .: . .: . ~ : : : : 

: : : : : : : : : : : : I::::::::::::::::::::::::::: :v::::::::::::::::::::::::::::::: :v::::::::::::::::::: I:::: 
~ ....... :-.. ....... ::::l ......................................................... :jj···· :::1:::: 
. • • • • . . • • • • . • • • • • . • • • • . • • • • • • • • • • • • • • • • • PS. VERB_ROUTER • • • • • • • • • • • • • • • • • • • • • • • • • • • ••• 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. I ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 

PS.INITIALIZE 

..•.•• 1 .•.•••••••••••••• 1 •••••••••••••••••• 1 ••••••••••••••••••• 1 ••••••••• 1 •••• 

::::::1:::::::::::::::::1::::::::::::::::::1:::::::::::::::::::1:::::::::1:::: 
::::::1:::::::::::::::::v::::::::::::::::::v:::::::::::::::::::v:::::::::1:::: 
::::::1::::::::::: 
::::::1::::::::::: 
::::::1::::::::::: 
::::::1::::::::::: 

. . . . . . . . . . . . . .......... . 
PS.SPS2 • • • PS.COPR 3 

. . . . . . . . . . . . . . . . . ·-..... ....___. . . . . . ·-...... . ...... 1 .................. 1 ................. 1 ................... 1 ......... 1 ... . 
::::::1::::::::::::::::::l·.:·.:·.:·.:·.:·.:·.:·.:·i·.:·.:·.:·.:·.:·.:·.:·.:·.:·i·.:·.:·.:·.:·J:::: 

••••.• v •••.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

.__~ ~-~ ~ ~-~ ~ ~-~ ~-~ ~ ~___.:: : : : : l.__ _____ Ps._coN_v _____ __.H H ~ 

: : : : : : : : : : : :·::::::::: l:::: :!: : : : : : : : : : : : : : : t::::::::::::::: :·::::::: ~;.~;~~~~: ~~~~~~: ~~~::: 
• • • 

1 
2 
J 

v v v 
Resources Manager Half-

Session 

v 
Half-

Session 

See "Chapter 5.2. Presentation Services--Mapped Conversation Verbs" 
See "Chapter 5.3. Presentation Services--Sync Point Services Verbs" 
See "Chapter 5.4. Presentation Services--Control-Operator Verbs" 

Note: A dashed line denotes a synchronous (call/return) protocol boundary between components, 
while a solid line denotes an asynchronous (send/receive) protocol boundary. 

Figure 5.1-1. Overview of Presentation Services, Emphasizing Presentation Services for Basic 
Conversations 

5.1-2 

action program name and whether it supports 
various optional features Ce.g., sync point, 
mapped conversations). 

Another list associated with each LUCB is the 
PARTNER_LU_LIST (see Figure 5.1-2 on page 
5.1-3). The PARTNER_LU_LIST contains one 
entry for each partner LU of the LU repres­
ented by the LUCB. The PARTNER_LU entry con­
tains information that is fixed for the 

specific partner LU, such as the local and 
fully qualified names of the partner LU. 

Associated wlth each PARTNER_LU entry is a 
MODE_LIST Csee Figure 5.1-2 on page 5.1-3), 
which has one entry for each mode name that 
is defined for the particular partner LU 
name. The MODE entry contains information 
that is fixed on a mode basis, such as the 
mode name. 

SHA Format and Protocol Reference Manual for LU Type 6.2 



LUCB_LIST 

LUCBl :..\J_ID 

LUCBn LU_ID 

TRANSACTION_PROGRAM_LIST PARTNER_ LU_ LIST 
.------.....---.------..----.<----~ 

..._ ___ > 

TPN LU_NAME ... 
. . . 
. . . 

TPN LU_NAME . . . • 

I 
v MODE_ LIST 

MODE_NAME ... 
. . . 
. . . 

MODE_NAME 

f;gure 5.1-2. LU Control Block L;st and Associated Lists 

Transact;on Control Block ~ 

The transaction control block CTCB--see f;g­
ure 5.1-3 on page 5.1-4) contains information 
associated with the TP-PS process. One TCB 
exists for each TP-PS process. Each TCB con­
tains a TCB ID, which is a unique identifier 
of the TP-PS process being represented by the 
TCB. The TCB ID is used in all communication 
between the resources manager and the PS 
servicing the transaction program. For exam­
ple, when PS sends a record to the resources 
manager, it provides its TCB ID so that the 
res~urces manager will know, of all the 
transaction programs it manages, which PS 
process to send a reply to. 

Associated with each TCB is the 
RESOURCES_LIST, a list of the resources used 
by the TP-PS process. The RESOURCES_LIST has 
one entry for each resource (e.g., for each 
conversation) associated with the transaction 
program. 

PS PROCESS DATA 

PS_PROCESS_DATA (page 5.0-19) contains data 
that is available to all procedures in the PS 
process. It contains information about this 
particular TP-PS process, such as the LU ID 
and the pointer to the RCB_LIST. It is ini­
tialized by the root procedure 
CPS.INITIALIZE) of the PS process Cpage 
5.0-5) from parameters received from RM when 
the PS process is created. 

Resource Control Block CRCB) 

One resource control block CRCB--see Fig­
ure 5.1-4 on page 5.1-51 represents each 
active conversation allocated to a trans­
action program. The RCBs for all active con­
versations in an LU are kept in the RCB_LIST. 
RCBs are added to or removed from the 
RCB_LIST by the LU resources manager, at the 
request of PS.CONV. RCBs are also linked to 
the RESOURCES_LIST for the particular TP-PS 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-3 



RESOlllCES_LIST 
TCB_LIST > 

TCll TCB_ID 
RCB_ID 

. . . 
TCln TCB_ID 

RCB_ID 

Ffgur• S.1-3. Tr•na•ction Control Block (TCB> 

process to Nhich thtty •r• •lloc•ttld. The TC8 
for the procus cont.ins, in its 
RESOURCES_LISTt the list of RCBs for 
rnources (such •s convers11t ions> alloe11t9d 
to the process. 

An RCB for • conv.rsation cont11ina inforR­
tion pert•ining to • particul•r convers•tion, 
such •s its ruource ID, st•t•• •nd charac­
teristics (ntablishtld Mhen the converHtion 
is allOC41tecl>. C011po11ents of PS NHl '4>dat• 
c•rt•in fi•lds of the RCB as the converHtion 
is ustld. 

TM RCB is identifitld by a wiique RCB ID. 
This ID acc~nies MOSt tr•nsaction progra• 
v•rb iHuances (•s the RESOURCE P•ra•eter) to 
identify the converHtion to Nhich the verb 
is to be applitld. The RCB also cont•ins the 
TCB ID of its ONning TP-PS procns, and the 
HS ID of the local half-susion that c•rriu 
the converHtion's data. Other fields Hso­
ch1ted Mith the RCB are dh1cussed in 110r• 
det•i 1 belON. 

Fstt_CONVERSATION (page 5.1-63> is • 
finite-st•te .. chi.,. that tracks the 
state of the convers•tion •ssociattld Mith 
the RCB. The st•te of fstt_CONVERSATION 
is the state of the conversation.f.t2m 1b9 
yitwoint af .1b.t 12aJ, I!· for example, 
the conversation changes frot1 receive to 
send shte Nhen the tr•ns•ction progr•• 
is not if i 9d by • llftAT _RECEIVED = SEtl> 
frota a rac•ive v.rb. The •t•te of the 
conversation does not chenge witil 
PS.CONY has •ctually notifitld the tr•ns­
•ction progra•• even though the send 
indication .. y have •rrhed frota the 
half-susion s011eti .... rlier. 

PS_TO_HS_RECORD (page A-21J) is used as • 
buffer to contain dat• that has been gen­
erated by verb processing but that has 
not yet been sent to thet half-susion. 
The record is sent to the half-session 
Nhen either a Rxi- size is exceeded or 
as the result of SCMM transaction progra• 
verb (e.g., FLUSH, CONFIRtt). 

Fstt_ERROR_OR_FAIUME (page 5.1-65) is a 
finite-state .. chine that stores error or 
failure records (Nhich .. y arrive from RH 
or the half-susiont U"ltil they can be 
returned to the TP in verb para•ters. 

HS_To_PS_BUFFER_LIST cont•ins • list of 
records that have been receivtld from the 
half-session but not yet passtld to thet 
transaction progr••· 

SEClllITY_SELECT initially contains thet type 
of end-user verific•tion: NONE, SAHE, or' 
PGtt. This value •ight be dow'9r•ded frClll 
PGtt to HONE or SAHE to NONE Csu "Chapter' 
3. LU Resources Manager" for detaUs of 
lllhen RH dowlgradea_ end-uHr verifica­
tion>. The Attach is built using the 
SECURITY_SELECT value. 

VERB PARAHETERS 

The TP requests LU services by issuing verbs. 
A verb and its parameters are passed as 
par'a•ters to PS_CONV (page 5.1-10>. The 
service requested is identified by the verb 
.,... and the suppl i 9d paraaeter fields, •nd 
some results of the service <along Mith •DY 
other pertinent incoming dab> •r• returned 
to the TP in the returned paraMete,. fields. 
E•ch verb issuance has: 

• An indicator of Nhich verb is being 
issued (e.g., ALLOCATE, ctlHFIRH> 

• SOINt suppHed para .. ters, inclucUng (typ­
ically> an identifier of the conversation 
on Nhich the verb is being issued 

• Some returned p•ra .. ters, including (typ­
ically> a return code telling Nhether the 
requested service Mas perfor•ed success• 
fully 

SOINt ex11mples of exceptions to these para•­
ter rules are thet follCMing. ALLOCATE does 
not supply a conversation ID (although it 
does return one), while WAIT supplies a Nhole 
list of conversation IDs. CONFIRHED and 
FLUSH do not need any returned par•Hters. 
The basic conversation verbs and their para•­
eters •re fully described in Jlf6 Trtn11ctjqn 
Prograner 's ReferlOCI l1ilDY!1 .f.Qc .LY bet W· .. 

PS-RH·RECORDS 

PS.CONY sands PS_TO_RH_RECORDs Cpaga A-25> to 
RH and receives RH_TO_PS_RECORDs <page A-32) 

I.I-It SHA ForHt and Protocol Refer.,c:e Manual for LU Type 6.2 



HS_TO_PS_BUFFER_LIST 
RCB_LIST > 

RCB_ID 
RCBl RCB_ID 

. . . 
RCBn RCB_ID 

RCB_ID 

FSH_CONVERSATION v HS_TO_PS_RECORD 

L r 
v 

FSH_ERROR_OR_FAILURE 

Figure S.1-4. Resource Control Block IRCB> 

fro• RM. There are several types of PS_TO_RM 
records. Each contains a TCB ID identifying 
the PS process that sent the record, and pos­
sibly additional fields. RM_TO_PS_RECORDs 
are usually sent in reply to a 
PS_ TO_RH_RECORD request, as shown in Fig­
ure s.1-s. 

PS.CONY Regyest 

ALLOCATE_RCB 
6ET_SESSIOH 
DEALLOCATE_BCB 

BH Respopse 

RCB_ALLOCATED 
SESSION_ALLOCATED 
RCB_DEALLOCATED 

Figure 5.1-S. PS.CONV Requests and 
Associated RN Responses 

The only exception is CONVERSATION_FAILURE, 
Mhich is sent. unsolicited, to PS.CONV when a 
conversation being used by PS.CONY fails. 

PS-HS RECORDS 

PS.CONY sends PS_ TO_HS_RECORDs I page A-24) 
to a half-session and receives 
HS_TO_PS_RECORDs I page A-12) froi1 a 
half-session. 

A PS_TO_HS_RECORD contains a VARIANT_NAME 
field, identifying the particular variant; 
and additional fields, in the c;ise of 
SEt-l>_DATA_RECORD. SEND_DATA_RECORD is used 
to send data and RH information to the 

half-session Nhen the local transaction pro­
gram is in send state for the conversation. 
Included in the SHll DATA RECORD is the 
transaction progra• data to -be sent and an 
encoding of the RH bi ts I see "Appendix D. RH 
Fortaats" I that are to be set by the 
half-session when the data is sent to the 
remote LU. Data to be sent to a half-session 
with a SEND_DATA_RECORD is buffered by 
PS.COHV until either a 11axiw11.111 data length 
(given by RCB.HAX_BUFFER_LENGTH) is exceeded, 
or the transaction progra• issues a verb that 
forces the data to be passed on for trans­
•i ssion !e.g., CONFIRM, RECEIVE_AND_WAIT, or 
DEALLOCATE I. 

The other PS_ TO_HS_RECORD variants are sent 
to the half-session only when the local 
transaction program is in receive state. 
These include CONFIRMED, used to reply posi­
tively to a previous CONFIRM record1 
REQUEST_To_snio, used to request the send 
indicator fro• the partl\er transaction pro­
gram; and SEND_ERROR, used to send -RSPl0846) 
to the partner LU. 

The HS_TO_PS_RECORD contains a VARIANT_NAME 
field and an HS ID field. The HS ID is used 
to identify which half-session sent the 
record to PS.COHV. The HS_TO_PS_RECORD is 
sy111metri c to the PS_ TO_HS_RECORD. That is, 
RECEIVE_DATA corresponds to a SEND_DATA 
issued by the remote PS.CotN, CONFIRMED cor­
responds to CONFIRMED, RECEIVE_ERROR to 
SEND_ERROR, and REQUEST_TO_SEND to 
REQUEST_ TO_SEHD. RSP _ TO_REQUEST_ TO_SEND has 
no equivalent in the PS_TO_HS_RECORD, since 
RSP_TO_REQUEST_TO_SEt-1> is generated by the 
remote half-session. 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1""'5 



S.1-6 

.. TRACKING LOGICAL RECORD LENGTH 

Transact; on progra111S using a basic conversa­
t fon 11USt ensure that the data they exchange 
is formatted into logical records. The 
length of a logical record is given by the 
low-order 15 bits of the first two bytes of 
the record. The high-order bit is the "con­
tinuation bit"• which is used for GOS vari­
ables by PS. t1C <see "Chapter 5. 2. 
Presentation Servi ces--M&pped Conversation 
Verbs" I. The value in the Length field 
includes the length of the field itself; thus 
the length value is normally in the range 
2-32767. Length values of 0 and 1 a're used 
to indicate a PS header. <See "Chapter 5.3. 
Presentation Services--Sync Point Services 
Verbs" for •ore details.) 

'When sending data. the transaction progra• is 
responsible for correctly setting the Length 
bytes of each logical record. The amount of 
data sent by a SEND_DATA verb need have no 
relation to a logical record. 

PS.CONV performs some checking of the logical 
record Length field supplied by the trans­
action progra•. The value of the Length 
field must be greater than 1, lrlless 
TCB.CONTROLLING_COMPONENT = SERV­
ICE COMPONENT, that is. unless some PS serv­
ice- component <e.g.• PS.MC or PS.SPSI is 
sending a PS header in the record on behalf 
of a transaction program. 

Certain verbs (e.g., CONFIRHI 11ay be validly 
issued only at logical record boundaries. 
PS.CONY enforces this rule by remembering how 
11any bytes are remaining to be sent in the 
current logical record, and terminating the 
transaction program abnormally if this 
remainder ~s not 0 when the verb is issued. 
SEHO_ERROR and DEALLOCATE TYPE!ABENOI are the 
only verbs that can prematurely truncate a 
logical record. 

PS. COHV also tracks the vdue of the Length 
field on logical records received frOll the 
partner transaction program. Logical records 
with a Length of 1 are passed to PS_SPS. 
PS.COHV maintains a col.l'\t of the number of 
bytes remaimng in the current logical 
record. PS.CONY performs an optional receive 
check. to determine if the partner LU has vio­
lated PS protocols by allowing the partner 
transaction progra• to invalidly tr\.l'lCate the 
logical record. Only an Fttf-7 can validly 
trtnCate a logical record. 

Finally, when a receive verb is issued with 
FILL(LLl, PS uses the receive count remainder 
to deter•ine how 11any bytes of received data 
to pass to the transaction program. 

MAINTAINING AND CHECKING THE BASIC CONVERSA­
TION STATE 

PS.CONV maintains the current state of each 
conversation in FSH_CONVERSATIOH Cpage 
5.1-631. As noted earlier, the state of 
FSH_CONVERSATION is the state of the conver-

sation as viewed by the local transaction 
progra•. 

The state of the conversation 1ny change as a 
result of verbs issued by the transaction 
program; e.g., PREPARE_TO_RECEIVE changes the 
state fro• send to receive. These ;nputs 
have DIRECTION=S in FSM_CONVERS.ATION. The 
state •ay also change as a result of data or 
indicators received frOlll th11 half-sessions 
e.g., receiving the send indicator changes 
the state of the conversation fr<>111 receive to 
send. These inputs have OIRECTION=R ;n 
FSM_CONVERSATION. 

The current state of the conversation deter­
•huis the verbs that can be validly issuedJ 
e.g.• a SEND_DATA verb cannot be issued in 
receive state. 

VERB PROCESSING 

Details of PS.CONV's process;ng of so•e verbs 
are described here. See also "Chapter 2. 
Overvh1w of the LU" for more flow diagrams 
corresponding to the processing of these and 
other verbs. 

Verb Checking 

PS.CONY perfor11& a llUllber of checks on verb 
requests received from the trans action pro­
gram. These include: 

• Parameter checks, such as checking that: 

The parameters specified on the ALLO­
CATE are supported by the LU. 
The verb conforllS to the. SYNC_LEVEL 
of the conversation tas specified on 
ALLOCATE I. 
The DATA parameter on SEl'l>_DATA con­
tains a valid Length field (see 
"Tncking Logical Record Length"!. 

• State checks. such as checking that: 

The verb can be issued in the current 
conversation state (see "Haintairiing 
and Checking the Basic Conversation 
State"). 

ALLOCATE 

The transaction program has COlllpleted 
the current logical record, if neces·· 
sary (see "Tracking logical Record 
Length" I. 

Process;ng of the ALLOCATE verb by PS.CONY 
includes: 

• Requesting that RH allocate a resource 
control block. (RCBI. 

• Requesting that RH allocate a session for 
the conversat;on. 

• Creat;ng an Attach F~-S. 

SHA Format and Protocol Reference Manual for LU Type 6.2 



The order of perfor•ing the last tNO it-s 
depends on the supplied RETURN_CONTROL para•­
eter of the ALLOCATE verb, as described 
below. 

A conversation resource is represented by a 
resource control block IRCB--see "PS.CONV 
Data-Base Structure" on page 5.1-ll. PS.CONV 
requests the creation of an RCB by sending an 
ALLOCATE_RCB record to the resources manager 
IRHJ and waiting for an RCB_ALLOCATED record 
in reply. If RETURN_CONTROLI It111EDIATE) is 
specified, the ALLOCATE_RCB record is a co•­
posite request for the creation of an RCB and 
the allocation of a first-speaker session. 
This situation is indicated to RH by setting 
ALLOCATE_RCB.Itl1EDIATE_SESSION = YES. 

After the RCB has been created, PS.CONV 
requests the resources •anager to allocate a 
session for use by the conversation I if a 
session has not already been allocated as a 
result of IMMEDIATE_SESSION = YESl. PS.CONV 
does this by sending a GET_SESSION record to 
RM and waiting for a SESSION_ALLOCATED record 
in reply. 

If DELAYED_ALLOCATION_PERMITTED is specified 
on the ALLOCATE, the session allocation 
request is delayed until either the PS.CONV 
send buffer is exceeded or the transaction 
prograN issues a verb that causes the data to 
be passed on for transNission. Furthermore, 
PS.CONV instructs RH lvia the GET SESSION 
record) whether to bid for (request -use of l 
the session with or without sending the buf­
fered data. The bid is to be sent without 
data if the data buffered thus far would not 
require a definite response from the partner 
LU. Otherwise, the bid is to be sent with 
data. 

The type of end-user verification is 
requested in the ALLOCATE as NONE, SAHE, or 
PGM. See SH.4 Transaction Programmer'§ Refer­
~ ~ for LU !.'Le! Ll for a more com­
plete description of the security parameter 
relating to end-user verification. 

PS.CONV creates an Attach FNH-5 based on the 
parameter settings in the ALLOCATE verb and 
in the RCB. The Attach is inserted in 
RCB.PS_TO_HS_RECORD.DATA, to be sent later. 
When processing an ALLOCATE verb, the Attach 
could be created prior to assignment of the 
session, thus causing the previously built 
Attach to differ frOlll the SECURITY SELECT 
field of the RCB H a result of a s;cur i ty 
downgrade. In these cases, it is necessary 
for PS to rebuild the Attach to 111atch the 
updated value in the SECURITY_SELECT field. 

POST OH RECEIPT 

The POST _ON_RECEIPT verb establishes the 
posting conditions for the conversation. The 
post conditions CFILL : BUFFER or LL, and 
LENGTH> are retained in the RCB associated 
with the conversation. The posting status 
(reset, pending post, or posted) of a conver­
sation is maintained by FSM_POST, also in the 
RCB. Whenever PS.CONV receives ;nfor11ation 

frOlll the half-session, the posting conditions 
are checked, and the state of FSH_POST is 
updated if necessary. If POST_ON_RECEIPT has 
been issued, the state of FStl_POST may be 
checked by calling TEST_PROC on page S.1-27 • 
This procedure is used by the WAIT verb to 
deter• i ne whether the post condi ti ons have 
been satisfied for any of several conversa­
tions. 

REQUEST TO SEtl) 

When the transaction progra11 issues a 
REQUEST_TO_SENO verb, PS.CONY checks the con­
versation state to see if the verb can be 
validly issued now, and checks that the con­
versation is still active. If so, PS.CONV 
sends a REQUEST_TO_SEND record to the appro­
priate half-session process and then waits 
for a RSP_TO_REQUEST_TO_SEtt> record from the 
half-session. By waiting for a response frOlll 
the half-session before returning to the 
transaction program, PS.CONV prevents the 
transaction program from flooding the network 
with expedited-flow Fl10 RUs. 

On receipt of a REQUEST_TO_SEtl> record fr0111 a 
half-session, PS.CONV sets 
RCB.RQ_TO_SEND_RCVD to YES, and notifies the 
transaction program at the earliest opportu­
nity. 

SEND ERROR 

Processing of the SENO_ERROR verb by PS.CONV 
includes: 

• If the TP issuing the verb is in receive 
state: 

Sending a SEND_ERROR record to the 
half-session. This causes a 
-RSPI0846l to be sent to the partner 
LU. 
Waiting \.l'ltil EC is received frOlll the 
partner LU. The half-session purges 
all data until EC is received. 

Note: If the TP issuing the verb is in send 
state, the above two steps are not performed. 

• Creating an FMH-7 with the sense data 
based on the SEND_ERROR type and the cur­
rent state of the conversation. 

• Creating a log data variable, if log data 
is present. 

In the case of both sides of a conversation 
issuing SEND_ERROR, the side that Nas in 
receive state always wins the SEND_ERROR 
race. Figure 5. 1-6 on page S .1-8 shows a 
flow diagra• for a si111ple SENO_ERROR race. 

Figure 5.1-7 on page 5.1-8 shows a SEttD_ERROR 
race with deallocation. In this case, nei­
ther error getli reported to the other side. 
This problem could be avoided by following 
the SEND_ERROR with a PREPARE_TO_RECEIYE, as 
shown in the previous figure. 

Ch;ipter 5.1. Presentation Services--Conversation Verbs 5.1-7 



On receipt of • RECEIVE_ERRDR record frOll the 
half-session <H • result of the partner W 
sending • -RSP[0846J), PS.CONY sends 
and-of-chain to the half-session, if it has 

PS·CONY 
SEtf>_DATA -------> 

< - - RC=OK - - -

not already done so. It then receives the 
·~euted Fl'll-7 and notifies the transaction 
progra•, at the earliest opportl.a'\ity, Mith • 
return code based on the Fl'll-7 sanse data. 

PS·CONY 

SEN>_ERRDR 
<' 

If 

SEN>_ERRDR -RSPCOS46J SEN>_ERROR 
-------> <:------
< - - RC=OK - - -

PREPARE_TO_RECEIVE I 
SEND_DATA_RECORD 

purge 

I 
-------> 
< - - RC=OK - - -

------> v 
Fttt7,RQE1,EC,CD RECEIVE_DATA 
------> ------> 

- - RC=OK -> 
RECEIVE_ERRDR <:------

RECEIVE_AN>_NAIT 
-------> 

RC=PROG_ERROR_PUR6ING 
<----------

Figure 5.1-6. SEN>_ERRDR Race 

PS·CONV If 

SEND_DATA SEN>_ERROR 
-----------> <.----
< - - RC=OK - - -

SEN>_ERRDR •RSP(0846) SEt«>_ERRDR -------> <-------
< - - RC=OK - - -

DEALLOCATE TYPElFLUSHJ I ---------> purge 

SEND_DATA_RECDRD I < - - RC=OK - - -

----------> v 

RECEIVE_ERRDR 
<------

lRECEIVE_ERROR 
ignored by PS_.COHV> 

Fttt7,RQE1,EC,CEB RECEIVE_DATA 
------> > 

RC=DEALLOCATE_NORHAL 
- - - - - - - - - -> 

Figure 5.1-7. SEN>_ERROR R•ce Mith Deallocation 

5.1-8 SHA For•at •nd Protocol Reference ttanu11l for LU Type 6.2 



PROTOCOL ERRORS 

PS.CONY conta;ns a number of opt;onal rece;ve 
checks to deter111; ne ; f the partner LU has 
v;olated SNA-def;ned protocols. Examples of 
protocol violations checked by PS.CONY 
include: 

• Sending data when in receive state 
• Invalidly truncating a logical record 

Csee "Tracking Logical Record Length" on 
page 5.1-6 ) 

• Sending an incorrectly formatted FHH-7 

When PS.CONY detects a protocol error, it 
requests that RH deactivate the session and 
sets FSH_ERROR_OR_FAILURE to indicate that a 
conversation failure C protocol error) 
occurred. 

CONVERSATION FAILURES 

PS.CONY is notified of a conversation failure 
by the CONVERSATION_FAILURE record, sent by 
RH. The conversation failure may result from 
either session outage or a protocol vi o­
lat ion. 

On receipt of a CONVERSATION_FAILURE record, 
PS.CONY sets RCB.FSH_ERROR_OR_FAILURE to 
indicate either CONV_FAILURE_SON or 
CONV_FAILURE_PROTOCOL_ERROR. PS.CONV noti­
fies the transaction program of the conversa­
tion failure by returning a RESOURCE_FAILURE 
return code on the next verb that allows one. 

Chapter 5.1. Presentation Services ... -Conversation Verbs 5.1-9 



HIGH-LEVEL PROCEDURES 

5.1-10 

PS_CONV 

FUNCTION: Receives conversation verbs issued by the TP or by other PS components, and 
calls appropriate procedures to process them. 

INPUT: Transaction program verb and parameters 

OUTPUT: Refer to the procedures that are called from this process for the specific 
outputs. 

Referenced procedures, FSMs, and data structures: 
ALLOCATE_PROC 
CONFIRM_PROC 
CONFIRMED_PROC 
DEALLOCATE_PROC 
FLUSH_PROC 
GET_ATTRIBUTES_PROC 
POST_ON_RECEIPT_PROC 
PREPARE_TO_RECEIVE_PROC 
RECEIVE_AND_WAIT_PROC 
RECEIVE_IMMEDIATE_PROC 
REQUEST_TO_SEND_PROC 
SEND_DATA_PROC 
SEND_ERROR_PROC 
TEST_PROC 

Select based on the transaction program verb: 
When ALLOCATE 

Call ALLOCATE_PROC(verb parameters) (page 5.1-lll. 
When CONFIRM 

Call CONFIRM_PROC(verb parameters) (page 5.1-12). 
When CONFIRMED 

Call CONFIRMED_PROC(verb parameters) (page 5.1-14). 
When DEALLOCATE 

Call DEALLOCATE_PROC(verb parameters) (page 5.1-15). 
When FLUSH 

Call FLUSH_PROC(verb parameters) (page 5.1-17). 
When GET ATTRIBUTES 

Call GET_ATTRIBUTES_PROC(verb parameters) (page 5.1-181. 
When POST ON RECEIPT 

Call POST=ON_RECEIPT_PROC(verb parametarsl (page 5.1-18). 
When PREPARE TO RECEIVE 

Call PREPARE=TO_RECEIVE_PROCCverb parameters) (page 5.1-19). 
When RECEIVE_AND_WAIT 

Call RECEIVE_AND_WAIT_PROC(verb parameters) Cpage 5.1-201. 
When RECEIVE_IMMEDIATE 

Call RECEIVE_IMMEDIATE_PROC( verb parameters l (page 5.1-22 l. 
When REQUEST TO SEND 

Call REQUEST=TO_SEND_PROC(verb parameters) (page 5.1-231. 
When SEND DATA 

Call SEND_DATA_PROC(verb parameters) (page 5.1-24). 
When SEND_ERROR 

Call SEND_ERROR_PROC(verb parameters) Cpage 5.1-26). 
When TEST 

Call TEST_PROC(verb parameters) Cpage 5.1-271. 

SNA Format and Protocol Reference Manual for LU Type 6.2 

page 5.1-11 
page 5.1-12 
page 5.1-14 
page 5.1-15 
page 5.1-17 
page 5.1-18 
page 5.1-18 
page 5.1-19 
page 5.1-20 
page 5.1-22 
page 5.1-23 
page 5.1-24 
page 5.1-26 
page 5.1-27 



ALLOCATE_PROC 

ALLOCATE_PROC 

FltlCTIOH: Handles allocation of new resources to the transaction progr••· 

If the A~~OCATE parameters are valid1 this procedure requests that RH create a 
neM resource control block lRCB>. If the supplied RETURN_COHTROL parameter 
specifies ItttEDIATE. PS at this ti .. also requests RH to acquire a session for 
use by the conversation resource. If the RETURN_CONTROL is set to 
DELAYED_ALLOCATION_PER11ITTED or WHEN_SESSION_ALLOCATED, PS sends a separate 
session request to RH at a later ti••· 

INPUT: ALLOCATE verb Mith para .. ters; RCB_ALLOCATED record received frOll RH 

OUTPUT: ALLOCATE_RCB to RH 

Referenced procedures, FSHs, and data structures: 
PS 
RH 
RCB_ALLOCATED_PROC 
WAIT_FOR_RM_REPLY 
DEALLOCATION_CLEAtfJP_PROC 
ALLOCATE_RCB 
RCB_ALLOCATED 
t10DE 

Check ALLOCATE for ABEND conditions (see ALLOCATE verb in 
il:!6 Transactioa Prpqrp!l!!!!er's Referens;e tl!DY!.l fat JJl ~ i.:.&>. 

If ABEND conditions found then 
Call DEALLOCATION_CLE.At«JP_PROC (page 5.0-13). 

Else 

page 5.0-5 
page 3·18 
page 5.1-48 
page 5.1-60 
page 5.0-13 
page A-25 
page A-32 
page A-3 

If a HOOE control block exists for the LU_NAHE and HOOE_NAHE parameters specified in the 
ALLOCATE then 

Create and initialize ALLOCATE_RCB request record Mith the 
para11eters of the ALLOCATE. 

Send ALLOCATE_RCB request to RH. 
Call WAIT_FOR_Rtt_REPLY to receive RCB_ALLOCATED frOll RH lpage S.1-60). 
Call RCB_ALLOCATED_PROC(RCB_ALLOCATED, ALLOCATE parameters), 

to build an FHH-5 Attach header, and to set the RETURN_CODE 
para11eter to ttw appropriate value (page 5.1-48). 

Else 
Set RETURN_CODE of the ALLOCATE verb to PARAHETER_ERROR. 

Chipter 5.1. PruW\tation Servic•-.;Conversation Verbs 5.1-11 



CONFIRH_PROC 

CONFIRH_PROC 

5.1-12 

FUNCTION: Handles the CONFIRH verb processing. 

INPUT: 

OUTPUT: 

If it is appropriate for the transaction progra• to issu. a CONFIRH for the 
specified conversation (i.e., the SYNC_LEVEL of the conversation for Nhich the 
CONFIRM Na& issued is CONFIRH or SYNCPT and any data issued by the transaction 
progra11 is on a logical record bo\.ndary>. this procedure first retrieves any 
records frOll HS and Rtl. Appropriate action is taken depending upon Nhich, if 
any, record was received las reflected by the state of FSH_ERROR_OR_FAILUREI. 

CONFIRH verb para .. ters 

See below. 

NOTES: 1. If a CONVERSATIOH_FAILURE has been received frOll the resources nnager, PS 
returns to the transaction progra• after setting the RETlRN_CODE para11eter of 
the CONFIRM to RESOURCE_FAILURE. 

2. If the local LU has detected an error Nhile attempting to allocate • session 
to this conversation, but PS has not yet had the opportunity to relay that 
information to the transaction progra.,. it does so at this time by setting the 
RETURN_COOE parameter of the CONFIRH to reflect the type of allocation error. 

3. If a RECEIVE_ERROR has been received frOll HS, PS sends a SEND_DATA record Nith 
the TYPE field set to PREPARE_TO_RCV_FLUSH to HS. Uny data in the RC8 send 
buffer ~as purged when the RECEIVE_ERROR record 111as received.) PS then ... tts 
for the expected Fttf-7 error llH&age to arrive. The RETURN_CODE. paraMter of 
the CONFIRH is set based on the sense data carried in the Fttf-7. 

ft. If there are no erro.r or failure conditions, COMPLETE_CONFIRtl_PROC (page 
5.1-29) is called to complete the processing of the CONFIRH. 

Referenced procedures, FSHs, and data structures: 
DEALLOCATIOH_CLEANUP_PROC 
PROCESS_RM_OR_HS_TO_PS_RECORDS 
SEND_DATA_TO_HS_PROC 
POST_AND_WAIT_PROC 
DEQUEUE_Fttf7_PROC 
COMPLETE_CONFIRtt_PROC 
FSH_CONVERSATION 
Fstt_ERROR_OR_FAILURE 
RCB 

SNA For .. t and Protocol Reference Hanual for LU Type 6.2 

page 5.0-13 
page 5.1-47 
page 5.1-52 
page 5.1-40 
page 5.1-36 
page 5.1-29 
page 5.1-63 
page 5.1-65 
page A-7 



CONFIRt1_PROC 

Find the RCB for the conversation ident;f ied in the RESOURCE para .. t•r. 

If RCB.SYNC_LEVEL = NOHE and the send data is not at a logical record bouidary th11n 
Call DEALLOCATION_CLEAl«JP_PROC (page 5.0-13). 

Els• 
If e>eecuting FS11_COHVERSATIONCS, CONFIRM, RCB) 

(page 5.1-63) NOUld cause a stat•-check (>) condition then 
E><ecute the corresponding output code in the FSl1. 

Else 
Call PROCESS_Rt1_0R_HS_TO_PS_RECORDSlRCB.RCB_ID, NO_SUSPENDl (page 5.1-47), 

Select based on the state of FSt1_ERROR_OR_FAILURE: 
When CONV_FAILURE_PROTOCOL_ERROR 

Set RET\JRN_CODE to RESOURCE_FAILURE_NO_RETRY. 
Call FSt1_CONVERSATIONIR. RESOURCE_FAILURE_Rc. RCB) (page 5.1-63). 

When CONV_FAILURE_SON 
Set RETURN_CODE to RESOURCE_FAILURE_RETRY. 
Call FSl1_CONVERSATIONIR, RESOURCE_FAILURE_RC, RCB> (page 5.1-631. 

When ALLOCATE_FAILURE_RE~Y. ALLOCATE_FAILURE_NO_RETRY, 
or SYNCLEVEL_NOT_SUPPORTED 

Set REruRN_CODE to ALLOCATION_ERROR 111ith a subcode of 
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RE~Yt or 
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate. 

Call FSH_CONVERSATIONIR, ALLOCATION_ERROR_RC, RCB> (page 5.1-63). 
When RCW_ERROR 

Set RCB.PS_TO_HS_RECORD to PREPARE_TO_RCV_FLUSH. 
Call SEND_DATA_TO_HS_PROClRCB> !page 5.1-52>. 
Call POST_AtlJ_WAIT_PROClRCB, LL, X'7FFF'> to post the 

resource Nhen the lllhole FHH-7 is received Cpage 5.1-40). 
If state of Fstt_ERROR_OR_FAILURE lpage 5.1-65) is COHV_FAILURE_SON or 

CONV_FAILURE_PROTOCOL_ERROR then 
If state of FSH_ERROR_OR_FAILURE lpage 5.1-65> is CONV_FAILURE_SON then 

Set RETURN_CODE to RESOURCE_FAILURE_RE~Y• 
Else 

Set RETURN_CODE to RESOURCE_FAILURE_NO_RETRY. 
Call FSl1_CONVERSATION1Rt RESOURCE_FAILURE_Rc, RCB) (page 5.1-63>. 

Else 
Call DEEIUEUE_Ft1H7_PROCICONFIRt1 verb para•eters, RCB) (page S.1-36). 

When NO_RQS 
Call COHPLETE_CONFIRt1_PROCCCONFIRt1 verb parameters, RCB) lpage 5.1-29). 

If REqtJEST_TO_SEND has been received but not reported to TP then 
Set returned REQUEST_TO_SEND_RECEIVED parameter to YES. 

CNpter 5.1. Presm"\tation Servicu--ConverHtion Verbs 5.1-13 



COHF.IRHED_PROC 

CONFIRHED_PROC 

5.1-14 

FUNCTION: Handlllll CONFIRHED verb processing. 

PS first retrieves any records frOll HS and RH.. Appropriate action fs taken 
depencUng ~ Nhich, if any, record 111a.s received. 

INPUT: CONFIRMED verb para .. ters 

OUTPUT: See belON. 

NOTES: 1. If a CONVERSATIOl{_FAILURE record has bean received frOll the resources unager, 
PS returns to the transaction program Nithout HncUng any ct.ta to HS. Since 
CONFIRHED verb does not have a RETURN_CODE para .. ter, the conversation failure 
cannot be reported to the transaction progra• at this tiH. PS rHHbers the 
failure (via FSH_ERROR_OR_FAILUREJ and reports it to the transaction progra• 
at a later ti- (i.e., llllhen the t.-.nsaction progra• issues a verb with a 
RETURN_CODE para•eter). 

2. If a CONVERSATION_FAILURE record has not bean received PS sends a COHFIRHED 
record (page A-24> to HS. 

Referenced procedures, FSHs, and data structures: 
PS 
HS 
PROCESS_RH_OR_HS_TO_PS_RECORDS 
FSH_CONVERSATION 
FSH_ERROR_OR_FAILURE 
RCB 
CONFIRHED 

Find the RCB for the conversation identified by the RESOURCE paraMter. 
If executing FSM_CONVERSATION(S, CONFIRHED, RCB) (page 5.1-63) 

NOUld cause a state-check (>) condition than 
Execute the corresponding output code in the FSH. 

Else 
Call PROCESS_RH_OR_HS_TO_PS_RECORD(RCB.RCB_ID, NO_SUSPEND> 

(page 5.1-47). 
If state of FSH_ERROR_OR_FAILURE is NO_RQS (see Note 2) than 

Call FSH_CONVERSATIONCS, CONFIRMED, RCB) (page 5.1-63>. 
Create a CONFIRMED record, initialize it, and send it to HS. 

Else terrors reported> 
Do nothing (see Note 1>. 

SHA Forut and Protocol Reference ttanual for W Type 6.2 

page 5.0-5 
page 6.0-3 
page 5.1-47 
page 5.1-63 
page S.1-65 
page A-7 
page A-24 



DEALLOCATE_PROC 

DEALLOCATE_PROC 

FUNCTION: 

INPUT: 

Handles the deallocation of resources. 

If the resource specified in the DEALLOCATE is a valid resource and the con­
versation is in a pert;nent state, PS calls the appropriate deallocation pro­
cedure to cont;nue processing the DEALLOCATE. 

DEALLOCATE verb parameters 

OUTPUT: The pert;nent deallocation procedure ;s called. When appropr;ate, PS sends 
DEALLOCATE_RCB to RM. 

Referenced procedures, FSMs, and data structures: 
DEALLOCATION_CLEANUP_PROC 
DEALLOCATE_FLUSH_PROC 
DEALLOCATE_CONFIRM_PROC 
DEALLOCATE_ABEND_PROC 
FSM_CONVERSATION 
DEALLOCATE_RCB 
RCB 

Find the RCB for the conversation identified in the supplied RESOURCE 
parameter of the DEALLOCATE. 

Select based on the following criteria: 

page 5.0-13 
page 5.1-35 
page 5.1-33 
page 5.1-32 
page 5.1-63 
page A-26 
page A-7 

When TYPE parameter of DEALLOCATE ;s FLUSH, or TYPE parameter is SYNC_LEVEL 
and RCB.SYNC LEVEL is NONE 

If executi~g FSM_COHVERSATION!S, DEALLOCATE_FLUSH, RCB) Cpage 5.1-63) would 
cause a state-check (>) condition then 

Execute the correspond;ng output code in the FSM. 
Else 

Call DEALLOCATE_FLUSH_PROC(DEALLOCATE verb parameters, RCB) (page 5.1-35). 
Purge all records from HS to PS process. 
Create DEALLOCATE_RCB, initialize it, and send it to RM. 

When TYPE parameter is CONFIRM 
If executing FSM_CONVERSATION<S, DEALLOCATE_CONFIRM, RCB) (page 5.1-63) would 
cause a state-check (>) condition then 

Execute the corresponding output code in the FSM. 
Else 

If RCB.SYNC_LEVEL ;s CONFIRM or SYNCPT then 
Call DEALLOCATE_CONFIRM_PROCIDEALLOCATE verb parameters, RCB) (page 5.1-33). 

Else 
Call DEALLOCATIOH_CLEANUP_PROC !page 5.0-13). 

When TYPE parameter is SYHC_LEYEL and RCB.SYNC_LEVEL = CONFIRM 
If executing FSM_CONVERSATION(S, DEALLOCATE_CONFIRM, RCB) <page 5.1-63) would 
cause a state-check (>) condition then 

Execute the correspond;ng output code in the FSM. 
Else 

Call DEALLOCATE_COHFIRM_PROC<DEALLOCATE, RCB) (page 5.1-33). 
When TYPE parameter ;s SYHC_LEVEL and RCB.SYHC_LEVEL = SYNCPT 

If executing FSM_CONVERSATIONIS, DEALLOCATE_DEFER, RCB) (page 5.1-63) would 
cause a state-check (>) condit;on then 

Execute the corresponding output cocle 1n thL f-SM. 
Else 

If the data sent by TP is on a logical record boundary then 
CP11 ~SM_CONVERSATIONCS, DEALLOCATE_DEFER, RCBl (page 5.1-63). 
Set RETURN_CODE to OK. 

Else 
Call DEALLOCATIOH_CLEANUP_~ROC (page 5.0-13). 

When TYPE parameter is ABEHD_PROG, ABEHD_SVC, or ABEHD_TIMER 
If executing FSM_CONVERSATIONCS, DEALLOCATE_ABEHD, RCBl Cpage 5.1-63) would 
cause a state-chEck (>) condition then 

Execute the corresponding output code ;n the FSM. 
Else 

Call DEALLOCATE_ABEHD_PROCCDEALLOCATE verb parameters, RCB) (page 5.1-32). 
Purge all records from HS to PS process. 
Create DEALLOCATE_RCB, ;nitialize it, and send it to RM. 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-15 



DEALLOCATE_PROC 

5.1-16 

When TYPE parameter is LOCAL 
If executing FSM_CONVERSATIONCS, DEALLOCATE_LOCAL, RCBJ (page 5.1-63) would 
cause a state-check (>) condition then 

Execute the corresponding output code in the FSM. 
Else 

Call FSM_CONVERSATION(S, DEALLOCATE_LOCAL, RCBl (page 5.1-63). 
Set RETURN_CODE to OK. 
Purge all records from HS to PS process. 
Create DEALLOCATE_RCB record, initialize it, and send it to RM. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



FLUSH_PROC 

FLUSH_PROC 

FUNCTION: Handles the FLUSH verb processing. 

INPUT: 

OUTPUT: 

The procedure first receives records from RM and HS. Appropriate action is 
taken depending upon the type of the received record as indicated by the 
FSM_CONVERSATION and FSM_ERROR_OR_FAILURE states. 

FLUSH verb parameters, records from RM and HS 

See below. 

NOTES: 1. If PS has received a RECEIVE_ERROR from HS, or no error records have been 
received, PS sends any data remaining in the RCB send buffer to HS with the 
TYPE field of the SEND DATA set to FLUSH, PREPARE TO RCV FLUSH, or DEALLO­
CATE_FLUSH, depending on- the state of the conversation: lif a RECEIVE_ERROR 
was received, any data in PS's send buffer has already been purged.I 

2. If FSM_ERROR_OR_FAILURE indicates that a conversation failure or allocation 
error has occurred, PS returns to the transaction program without sending any 
data to HS. Since FLUSH does not have a RETURN_CODE parameter, the error can­
not be reported to the transaction program at this time. PS remembers the 
error (via FSM_ERROR_OR_FAILURE> and reports it to the transaction program at 
a later time (i.e., when PS receives a record from the transaction program 
that has a RETURN_CODE field>. 

Referenced procedures, FSMs, and data structures: 
PS 
HS 
RM 
PROCESS_RM_OR_HS_TO_PS_RECORDS 
SEND_DATA_TO_HS_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 
DEALLOCATE_RCB 

Find RCB for the conversation identified by the RESOURCE parameter. 
If executing FSM_CONVERSATION<S, FLUSH, RCB> <page 5.1-63) would 
cause a state-check(>) condition then 

Execute the corresponding output code in the FSM. 

Else 

page 5.0-5 
page 6.0-3 
page 3-18 
page 5.1-47 
page 5.1-52 
page 5.1-63 
page 5.1-65 
page A-7 
page A-26 

Call PROCESS_RM_OR_HS_TO_PS_RECORDS<RCB.RCB_ID, NO_SUSPEND> (page 5.1-47). 

If the state of FSM_ERROR_OR_FAILURE Cpage 5.1-65) 
is RCVD_ERROR or NO_RQS then 

Select based on state of FSM_CONVERSAT~~N (page 5.1-63): 
When SEND 

Set RCB.PS_TO_HS_RECORD.TYPE to FLUSH. 
When PREP_TO_RCV_DEFER 

Set RCB.PS_TO_Hs_RECORD.TYPE to PREPARE_TO_RCV_FLUSH. 
When DEALL_DEFER 

Set RCB.PS_TO_HS_RECORD.TYPE to DEALLOCATE_FLUSH. 
Call SEND_DATA_TO_HS_PROC<RCB> (page 5.1-52>. 
If state of FSM_CONVERSATION is DEALL_DEFER then 

Send a DEALLOCATE FLUSH record to HS. 
Purge all records-from HS to this PS. 
Create DEALLOCATE_RCB, initialize it, and send it to RM. 

Call FSM_CONVERSATION(S, FLUSH, RCBJ (page 5.1-63). 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-17 



GET_ATTTlIBUTES_PROC 

GET_ATTRIBUTES_PROC 

5.1-18 

FUNCTION: Handles requests for infor•ation about a conversation. 

Infor111atlon about the conversation resource is retrieved from the pertinent 
control blocks, and placed in the returned para-ters of the &ET_ATTTlIBUTES 
verb. 

INPUT: GET_ATTTlIBUTES verb paranieters 

OUTPUT: GET_ATTTlIBUTES verb returned para111eters containing infor11ation about the con­
versaU on 

Referenced procedures, FSMs, and data structures: 
FSH_CONVERSATIOH 
LUCB 
TCB 
PARTNER_ LU 
RCB 

page S.1-63 
page A-1 
page A-10 
page A-2 
page A-7 

Find the RCB for the conversation identified in the supplied RE~CE para•eter. 

Set the GET_ATTIBUTES returned parameters as follows: 
OWN_FULLY_QUALIFIED_LU_NAHE to LUCB.FULLY_GIUALIFIED_LU_NAHE, 
PARTNER_LU_NAHE to RCB.LU_NAHE, 
PARTNER_FULLY_QUALIFIED_LU_NAHE to PARTNER_LU.FULLY_QUALIFIED_LU_NAHE, 
l10DE_HAME to RCB.l'IOOE_NAME, 
SYNC_LEVEL to RCB.SYHC_LEVEL, 
SECURITY_PROFILE to TCB.INITIATING_SECURITY.PROFILE1 
SECURITY_USER_ID to TCB.INITIATING_SECURITY.USERID. 

Call FSH_CONVERSATION!S, GET_ATTRIBUTES, RCB) Cpage 5.1-631. 

POST_ON_RECEIPT_PROC 

FUNCTION: Perfor1115 the processing of the POST_ON_RECEIPT verb. 

The procedure 1.4>dates FSM_CONVERSATION and FSH_POST, saves the post conditions 
in the RCB, and retrieves any records originated in RH and HS. The data just 
received frOlll RM or HS •ay cause the resource to be posted. 

INPUT: POST_ON_RECEIPT verb parameters 

OUTPUT: Updated FSH_CONVERSATION, FSM_POST, and post conc:Utions in the RCB 

Referenced procedures, FSMs, and data structures: 
PROCESS_RM_OR_HS_TO_PS_RECORDS 
FSM_CONVERSATIOH 
FSH_POST 
RCB 

Find the RCB for the conversation identified by the RE~CE para11eter. 
If executing FSH_CONVERSATION!S, POST_ON_RECEIPT, RCBI !page 5.1-63). 
would cause a state-check (>) condition then • 

Execute the corresponding output code in the FSM. 

Else 
Call FSM_CONVERSATION!S, POST_ON_RECEIPT, RCBI (page 5.1-63). 
Call FSM_POST!POST_ON_RECEIPTJ (page S.1-661. 

page 5.1-47 
page 5.1-63 
page 5.1-66 
page A-7 

Copy FILL and LENGTH para•eters of the POST_ON_RECEIPT verb into RCB.POST_CONDITIONS. 
Call PROCESS_RM_OR_HS_TO_PS_RECORDS!RCB.RCB_ID, NO_SUSPEtl>I (page 5.1-47), 

SNA forMat and Protocol Reference Manual for LU Type 6.2 



PREPARE_TO_RECEIVE_PROC 

PREPARE_TO_RECEIVE_PROC 

FUNCTION: H;mdles the PREPARE TO RECEIVE verb. Depending on the TYPE of the PRE­
~ARE_TO_RECEIVE (FLUSH, CONFIRM or SYNC_LEVELl and the SYNC_LEVEL of the con­
versation <NONE, CONFIRM, or SYNCPTl, the processing of the PREPARE_TO_RECEIVE 
i s cont i nued by other pre .:edures • 

INPUT: PREPARE_TO_RECEIVE verb parameters 

OUTPUT: If the PREPARE_TO_RECEIVE specifies TYPE = SYNC_LEVEL and the SYNC_LEVEL of 
the conversation is SYNCPT, the RETURN_CODE is set to OK and FSM_CONVERSATION 
(page 5.1-63) is updated to indicate that completion of the PREPARE_TO_RECEIVE 
processing is deferred until a FLUSH, CONFIRM, or SYNCPT verb is issued. Oth­
erwise, processing is continued by other procedures. 

Referenced procedures, FSMs, and data structures: 
PREPARE_TO_RECEIVE_FLUSH_PROC 
PREPARE_TO_RECEIVE_CONFIRM_PROC 
DEALLOCATION_CLEANUP_PROC 
FSM_CONVERSATION 
RCB 

Find the RCB for the conversation identified by the RESOURCE parameter. 
If data sent by TP is on a logical record boundary then 

Select based on one of the following conditions: 
When TYPE parameter = FLUSH or !TYPE parameter = SYNC_LEVEL and the 
conversation sync level of the conversation is = NONE) 

page 5.1-43 
page 5.1-41 
page 5.0-13 
page 5.1-63 
page A-7 

If executing FSM_CONVERSATION(S, PREPARE_TO_RECEIVE_FLUSH, RCBl (page 5.1-63). 
would cause a state-check (>) condition then 

Execute the corresponding output code in the FSM. 
Else 

Call PREPARE_TO_RECEIVE_FLUSH_PROC(PREPARE_TO_RECEIVE parameters, RCBl 
(page 5.1-43 l. 

When TYPE parameter = CONFIRM 
If executing FSM_CONVERSATIONCS, PREPARE_TO_RECEIVE_CONFIRM, RCBl (page 5.1-63). 
would cause a state-check (>l condition then 

Execute the corresponding output code in the FSM. 
Else 

If sync level of the conversation is CONFIRM or SYNCPT then 
Call PREPARE TO RECEIVE_CONFIRM_PROCCPREPARE TO_RECEIVE parameters, RCBl 

Cpage 5.1-41). 
Else 

Call DEALLOCATION_CLEANUP_PROC (page 5.0-13). 
When TYPE parameter = SYNC_LEVEL 

Else 

If executing FSM_CONVERSATION(S, PREPARE_TO_RECEIVE_DEFER, RCBl Cpage 5.1-63). 
would cause a state-check (>) condition then 

Execute the corresponding output code in the FSM. 
Else 

If sync level of the conversation is SYNCPT then 
Call FSM_CONVERSATIONCS, PREPARE_TO_RECEIVE_DEFER, RCBl Cpage 5.1-63). 
Copy LOCKS parameter into RCB. 
Set RETURN_CODE parameter to OK. 

Else 
Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-13). 

Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-13). 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-19 



RECEIVE_AND_WAIT_PROC 

RECEIVE_AND_WAIT_PROC 

5.1-20 

FltlCTIOH: Handles the RECEIVE_Atl>_WAIT verb. 

If the resource specified in the RECEIVE_Atl>_WAIT is valid and the conversa­
tion is in an appropriate state (i.e., RECEIVE_AND_WAIT can be issued "'1en the 
conversation is in the send or receive state), processing of the record con­
tinues. PS first receives any records fro• RM and HS. Appropriate action is 
taken depending upon which, if any, record was received (as reflected by the 
state of FSM_ERROR_OR_FAILUREl. 

INPUT: RECEIVE_AND_WAIT verb parameters 

OUTPUT: See below. 

NOTES: 1. If a CONVERSATIOH_FAILURE has been received frOll the resources unager, PS 
returns to the transaction progra• after setting the RETURH_COOE para111eter to 
RESOURCE_FAILURE. 

2. If the local LU has detected an error while atte11pting to allocate a session 
to this conversation, but PS has not yet had the opportunity to relay that 
information to the transaction program, it does so at this ti•e by setting the 
RETIJRN_COOE parameter to reflect the type of allocation error. 

3. If a RECEIVE_ERROR record has been received from HS, PS sends a 
SEtl>_DATA_RECORD with the TYPE field set to PREPARE_TO_RCV_FLUSH to HS. (Any 
data in the RCB data buffer was purged when the RECEIVE_ERROR record was 
received.) PS then waits for the expected FMH-7 error message to arrive. The 
RETIJRN_COOE para•eter is set based on the sense data carried in the FMH-7. 

4. If the conversation is in the SEtl> state, PS sends a SEND_DATA_RECORD with the 
TYPE field set to PREPARE_TO_RCV_FLUSH to HS. All data in the RCB send buffer 
is placed in the SEND_DATA_RECORD. Regardless of the state of the conversa­
tion, PS initializes the post conditions, waits for infor•ation to arrive to 
cause the conversation to become posted, and returns to the transaction pro­
gra• with the received infor•ation. 

Referenced procedures, FSMs, and data structures: 
PROCESS_RH_OR_HS_TO_PS_RECORDS 
SEND_DATA_TO_HS_PROC 
POST_Atll_WAIT_PROC 
DEQUEUE_FMH7_PROC 
PERFORM_RECEIVE_PROCESSING 
FSM_CONVERSATION 
FSH_ERROR_OR_FAILURE 
RECEIVE_ERROR 
SEND_DATA_RECORD 
RCB 

Find RCB for the resource identified in the RESOURCE parameter. 
If executing FSH_CONVERSATIOHIS,RECEIVE_Atl>_WAIT, RCB> would 
cause a state-check (>) condition then 

Execute the corresponding output code in the FSl1. 

Else 

page 5.1-47 
page 5.1-52 
page 5.1-40 
page S.1-36 
page 5.1-39 
page S.1-63 
page 5.1-65 
page A-12 
page A-24 
page A-7 

Call PROCESS_RM_OR_HS_TO_PS_RECORDSIRCB.RCB_ID, HO_SUSPEtl>> (page 5.1-47). 

Select based on the state of FSH_ERROR_OR_FAILURE lpage 5.1-65l: 
When CONV_FAILURE_PROTOCOL_ERROR 

Set RETURN_CODE to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_COHVERSATIONCR, RESOURCE_FAILURE_RC, RCBl <page 5.1-63). 

lilien CONV_FAILURE_SON 
Set RETURH_CODE to RESOURCE_FAILURE_RETRY. 
Call FSM_CONVERSATION<R. RESOURCE_FAILURE_Rc, RCB) (page 5.1-63). 

When ALLOCATE_FAILURE_RETRY I ALLOCATE_FAILURE_HO_RETRY I SYNCLEVEL_NOT_SUPPORTED 
Set RETIJRN_COOE to ALLOCATION_ERROR with a subeode of 

ALLOCATION_FAILURE_RETRY, ALLOCATIOH_FAILURE_NO_RETRY, or 
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate. 

Call FSM_CONVERSATIOH<R. ALLOCATIOH_ERROR_Rc. RCBl (page 5.1-63). 

SHA For.at and Protocol Reference Manual for LU Type 6.2 



RECEIVE_AND_WAIT_PROC 

When RCVD_ERROR 
If state of FSH_CONVERSATION = SEND then 

Set RCB.PS_TO_HS_RECORD type to PREPARE_TO_RCV_FLUSH. 
Call SEND_DATA_TO_HS_PROCCRCB> Cpage 5.1-52). 

Call POST_AND_WAIT_PROCIRCB, LL, X'7FFF') lpage 5.1-40). 
If state of FSH_ERROR_OR_FAILURE lpaga 5.1-65) ;s CONV_FAILURE_SON or 

CONV_FAILURE_PROTOCOL_ERROR then 
If state of FSH_ERROR_OR_FAILURE (page S.1-65) ;s CONV_FAILURE_SON then 

Set RETURN_CODE to RESOURCE_FAILURE_RETRY. 
Else 

Set RETURN_CODE to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_RC, RCB> (page 5.1-63). 

Else 
Call DEQUEUE_Fttt7_PROCIRECEIVE_AND_WAIT, RCB> !page S.l-36). 

When NO_RQS 
Call FSH_CONVERSATIONIS, RECEIVE_ANO_WAIT, RCB> (page 5.1-63). 
If state of FSH_ERROR_OR_FAILURE ;s ALLOCATE_FAILURE_RETRY, 

ALLOCATE_FAILURE_NO_RETRY, OR SYNCLEVEL_NOT_SUPPORTED then 
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or 
to SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropr;ate. 

Set RETURN_CODE to ALLOCATION_ERROR with a subcode of 
Call FSM_CONVERSATION(R, ALLOCATION_ERROR_Rc. RCB> (page 5.1-63). 

Else 
Call POST_AND_WAIT_PROC with RCB, FILL an~ LENGTH parameters (page 5.1-40>. 
Call PERFORM_RECEIVE_PROCESSINGIRCB, RECEIVE_AND_WAIT parameters> (page 5.1-39>. 

If REQUEST_TD_SEND has been received but not reported to TP then 
Set REQUEST_TO_SEND_RECEIVED parameter to YES. 

Chapter S.l. Presentat;on Services--Conversation Verbs S.1-21 



RECEIVE_It111EDIATE_PROC 

RECEIVE_It111EDIATE_PROC 

5.1-22 

FUNCTION: This procedure performs the processing of the RECEIVE_It111EDIATE record. It 
receives any infor•ation available fro• the specified conversation. but does 
not wait for infor•ation to arrive. 

The procedure first receives any records fro• the RH_TO_PS and HS_TO_PS 
queues. Appropriate action is taken depending upon which, if any, record 1ou1s 
received las reflected by the state of FSH_ERROR_OR_FAILURE). 

INPUT: RECEIVE_I1"11EDIATE 

OUTPUT: The RETURN_COOE and REQUEST_TO_SEND_RECEIVEO fields of the RECEIVE_IHMEDIATE 
record are set to incHcate the result of the verb. See below for additional 
output. 

NOTES: 1. If a CONVERSATION_FAILURE has been received from the resources Manager, PS 
returns to the transaction program after setting the RETURH_CODE field in the 
RECEIVE_I1"11EDIATE to RESou:lCE_FAILURE. 

2. If the local LU has detected an error while attempting to allocate a session 
to this conversation, but PS has not yet had the opportunity to relay that 
information to the transaction program, it does so at this tiaie by setting the 
RETURN_CODE field of the RECEIVE_It11'1EDIATE to reflect the type of allocation 
error. 

3. If a RECEIVE_ERROR has been received fro. HS, PS waits for the expected Ftti-7 
error Message to arrive. The RETURN_CODE field in the RECEIVE_IHNEDIATE is 
set based on the sense data carried in the FMH-7. 

4. If no error or failure condition has occurred, PS calls PER­
FORH_RECEIVE_PROCESSING (page S.1-39), which checks to see if any infor•ation 
has arrived on the specified conversation and passes the received inforiMtion 
Cif anyl to the transaction program. 

Referenced procedures. FSMs, and data structures: 
PROCESS_RM_OR_HS_TO_PS_RECORDS 
POST_AND_WAIT_PROC 
DEQUEUE_Ft1H7_PROC 
PERFORH_RECEIVE_PROCESSING 
FSH_COHVERSATION 
FSH_ERROR_OR_FAILURE 
RECEIVE_ERROR 
RCB 

Find RCB for the resource identified in the RESOURCE parameter .• 
If executing FSH_COHVERSATIONCS, RECEIVE_IMMEDIATE, RCB) would 
cause a state-check ( » condition then 

Execute the corresponding output code in the Fstt. 

Else 

page 5.1-47 
page 5.1-40 
page 5.1-36 
page 5.1-39 
page 5.1-63 
page 5.1-65 
page A-12 
page A-7 

Call PROCESS_RN_OR_HS_TO_PS_RECORDSIRCB.RCB_IO, NO_SUSPEND> (page 5.1-47). 

Select based on the state of FSH_ERROR_OR_FAILURE lpage 5.1-65): 
When CONV_FAILURE_PROTOCOL_ERROR 

Set RETURN_COOE to RESOURCE_FAILURE_NO_RETRY. 
Call FSH_CONVERSATION<R. RESou:lCE_FAILURE_Rc. RCB) (page 5.1-631. 

When CONV_FAILURE_SON 
Set RETURN_CODE to RESOURCE_FAILURE_RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, R·CB) (page 5.1-63). 

When ALLOCATE_FAILURE_RETRY I ALLOCATE_FAILURE_NO_RETRY I SYNCLEVEL_NOT_SUPPORTEO 
Set RETURN_COOE to ALLOCATION_ERROR with a subcode of 

ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or 
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate. 

Call FS11._CONVERSATIONCR. ALLOCATION_ERROR_Rc, RCBI (page 5.1-631. 

SHA For•at and Protocol Reference Manual for LU Type 6.2 



RECEIVE_ItttEDIATE_PROC 

When RCVD_ERROR 
Call POST_AND_WAIT_PROC(RCB, LL, X'7Fff') (page 5.l-40). 
If state of FS11_ERROR_OR_FAILURE Cpoige 5.1-65) is COHV_FAILURE_SON or 

CONV_FAILURE_PROTOCOL_ERROR then 
If state of FSM_ERROR_OR_FAILURE Cpage 5.1-65) is CONV_FAILURE_SON then 

Set RETIJRN_COOE to RESOURCE_FAILURE_RETRY. 
Else 

Set RETURN_COOE to RESOURCE_FAILURE_NO_RETRY. 
Call FSl1_COHVERSATIONCR, RESOURCE_FAILURE_Rc, RCBJ (page 5.1-63). 

El•• 
Call DEQUEUE_Fttf7_PROCCRECEIVE_AND_WAIT1 RCB> Cpage 5.1-36). 

When NO_RQS 
Call FSH_CONVERSATIONCS, RECEIVE_ItttEDIATE1 RCB) Cpage 5.1-63). 
Set RCB.POST_CONDITIONS.HAX_LENGTH to RECEIVE_ItttEDIATE.HAX_LENGTH. 
Set RCB.POST_CONDITIONS.FILL to RECEIVE_Itl1EDIATE.FILL. 
Call PERFORM_RECEIVE_PROCESSINGCRCB1 RECEIVE_ItttEDIATE para .. tersl (page 5.1-39). 

If REQUEST_TO_SEND has been received but not reported to TP then 
Set REQUEST_TO_SEND_RECEIVED parameter to YES. 

REQUEST_TO_SEND_PROC 

Fu-H:TION: Handles REQUEST_TO_SEND verb processing. 

If the conversation is in the RECEIVE state, PS ce>11pletes the processing of 
the REQUEST_TO_SEND record, as described belON. 

INPUT: 

OUTPUT: 

REQUEST_TO_SEND verb parameters 

See bel0111. 

NOTES: 1. Since REQUEST_TO_SEND does not hoave a RETIJRN_COOE para111eter1 error conditions 
c•l'VM>t be rebyed to the tr•nsaction progra• •t this th1e. PS r8Mlllbers the 
error Cvia FSl1_ERROR_OR_FAILURE> and reports it to the transaction progra• at 
a later time Ci.a., when a verb is issued by the transaction progra• that has 
a RETIJRN_CODE parameter). 

2. A REQUEST_TO_SEND record is not sent to HS if the poirtner transaction progra• 
has already issued a DEALLOCATE for the specified conversation. 

3. A REQUEST_TO_SEND record is not sent to HS if the partner transaction progra• 
has already issued a PREPARE_TO_RECEIVE for the specified conversation. 

4. If no records have been received fro• HS, or records have been received but do 
not indicate DEALLOCATE or PREPARE_TO_RCV, this procedure sends 
REQUEST_TO_SEND to HS and llJofflits for the expected RSP_TO_REQUEST_TO_SEND before 
returning to the transaction progra•. 

Referenced procedures, FSl15, and data structures: 
HS 
PROCESS_RM_OR_HS_TO_PS_RECORDS 
WAIT_FOR_RSP_TO_Rll.,TO_SEND_PROC 
FSH_CONVERSATION 
RCB 
REQUEST_TO_SEND 

Find RCB for the resource identifier in REQUEST_ro_SEND. 
If executing FSH_CONVERSATIONCS, REQUEST_TO_SEHD1 RCBJ Cpage 5.1-63) NOU!d 
cause a state-check (>) condition then 

Execute the corresponding output code in the FSH. 
Else 

poige 6.0-3 
poige 5.1-47 
page 5.1-61 
page 5.1-63 
page A-7 
page A-24 

Call PROCESS_RH_OR_Hs_ro_PS_RECORDSCRCB.RCB_ID1 NO_SUSPEND) (page 5.1-47). 
If Change Direction fCDI indication has not been received from HS then 

Send a REQUEST_TO_SEfllJ record to the HS, 
Call WAIT_FOR_RSP _ ro_Rll., TD_SEND_PROCC RCB) (page 5 .1-61>. 

Chapter 5.1. Presentation Servicu--Conversation Verbs 5.1-23 



SEND_DATA_PROC 

S.1-24 

SEND_DATA_PROC 

FUNCTION: Handles the rece;pt of data from the transact;on program. 

INPUT: 

OUTPUT: 

If the resource spec;fied ;n the SEND_DATA ;s val;d and the conversat;on is in 
the SEND state, processing of the record continues. PS first retrieves any 
records from RM and HS. Appropriate action is taken depending upon which, if 
any, record was received. 

SEND_DATA verb parameters 

See below. 

NOTES: 1. If a CONVERSATION_FAILURE record has been received from the resources manager, 
PS returns to the transaction program after setting the RETURN_CODE parameter 
of the SEND_DATA to RESOURCE_FAILURE. 

2. If the local LU has detected an error while attempting to allocate a session 
to this conversat;on, but PS has not yet had the opportunity to relay that 
;nformation to the transact;on program, it does so at this time by setting the 
RETURN_CODE parameter of the SEND_DATA to reflect the type of allocation 
error. 

3. 

4. 

5. 

If a RECEIVE_ERROR has been rece;ved from HS, PS sends a SEND DATA w;th the 
TYPE field set to PREPARE_TO_RCV_FLUSH to HS. !Any data in the RCB data buff­
er was purged when the RECEIVE_ERROR record was rece;ved.l PS then waits for 
the expected FMH-7 error message to arrive. The RETURN_CODE of the SEND_DATA 
;s set based on the sense data carr;ed ;n the FMH-7. 

If no error or failure cond;tion has occurred, PS scans the data in the passed 
SEND_DATA for logical record boundaries. CPS maintains ;n the RCB a count of 
the number of bytes of data rema;ning to be sent from the transact;on program 
to finish the current logical record.) If there ;s enough data to send to HS, 
PS sends ;t. 

If no session has been allocated to this conversat;on 1;.e., the ALLOCATE that 
allocated the conversation specified RETURN_CONTROL = 
DELAYED_ALLOCATION_PERMITTEDl, PS now requests a sess;on from the resources 
manager. If, while attempting to allocate a session, the local LU detects an 
error, PS sets the RETURN_CODE field in the SEND_DATA to reflect the type of 
allocation error and returns control to the transaction program. 

Referenced procedures, FSMs, and data structures: 
PROCESS_RM_OR_HS_TO_PS_RECORDS 
SEND_DATA_TO_HS_PROC 
POST_AND_WAIT_PROC 
DEQUEUE_FMH7_PROC 
SEND_DATA_BUFFER_MANAGEMENT 
DEALLOCATION_CLEANUP_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 
CONVERSATION_FAILURE 
RECEIVE_ ERROR 

F;nd the RCB for the resource ident;fied ;n the RESOURCE parameter. 
If execut;ng FSM_CONVERSATIONIS, SEND_DATA, RCB) (page 5.1-63) 
would cause a state-check (>) condit;on then 

Execute the corresponding output code in the FSM. 
Else 

page 5.1-47 
page 5.1-52 
page 5.1-40 
page 5.1-36 
page 5.1-51 
page 5.0-13 
page 5.1-63 
page 5.1-65 
page A-7 
page A-32 
page A-12 

Call PROCESS_RM_OR_HS_TO_PS_RECORDSIRCB.RCB_ID, NO_SUSPEND> !page S.1-47). 

SNA Format a,.... ~r·otocol Reference Manual for LU Type 6.2 



SEND_DATA_PROC 

Select based on state of FSM_ERROR_OR_FAILURE (page 5.1-65): 
When CONV_FAILURE_SON (see Note 11 

Set RETURN_CODE to RESOURCE_FAILURE_RETRY. 
Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_Rc, RCB) (page 5.1-63). 

When CONV_FAILURE_PROTOCOL_ERROR (see Note 11 
Set RETURN_CODE to RESOURCE_FAILURE_No_RETRY. 
Call FSM_CONVERSATIONIR, RESOURCE_FAILURE_Rc. RCB) (page 5.1-63). 

When ALLOCATE_FAILURE_RETRY, ALLOCATE_FAILURE_NO_RETRY, or 
SYNCLEVEL_NOT_SUPPORTED (see Note 2) 

Set RETURN_CODE to ALLOCATION_ERROR with a subcode of 
ALLOCATION FAILURE RETRY, ALLOCATION FAILURE NO RETRY, or 
SYNC_LEVEL:NoT_SUPPORTED_BY_LU, as appropriate.-

Call FSM_CONVERSATIONIR, ALLOCATION_ERROR_Rc. RCB) (page 5.1-63). 
When RCVD_ERROR lsee Note 31 

Set RCB.PS_TO_HS_RECORD type to PREPARE_TO_RCV_FLUSH. 
Call SEND_DATA_TO_HS_PROCIRCB1 (page 5.1-521. 
Call POST_AND_WAIT_PROCIRCB, LL, X'7FFF') (page 5.l-40J. 
If state of FSM_ERROR_OR_FAILURE lpage 5.1-65) is CONV_FAILURE_SON or 

CONV_FAILURE_PROTOCOL_ERROR then 
If state of FSM_ERROR_OR_FAILURE lpage 5.1-65) is CONV_FAILURE_SON then 

Set RETURN_CODE to RESOURCE_FAILURE_RETRY. 
Else 

Set RETURN_CODE to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONIR. RESOURCE_FAILURE_Rc. RCBJ Cpage 5.1-63). 

Else 
Call DEQUEUE_FMH7_PROCISEND_DATA, RCB) (page 5.1-36). 

When NO RQS 
Perf~rm the LL processing lsee N~te 4). 
If LL is not valid li.e., values x•oooo•, x•sooo•, and X'8001' are not valid; 
X'OOOl' is valid only for PS headers--see Appendix HJ then 

Call DEALLOCATION_CLEANUP_PROC (page 5.0-13). 
Call SEND_DATA_BUFFER_MANAGEMENT lpage 5.1-511 
with the first LENGTH bytes of the DATA lsee SEND_DATA verb parameters> and RCB. 

If the state of FSM_ERROR_DR_FAILURE lpage 5.1-65) 
is ALLOCATE_FAILURE_RETRY, ALLOCATE_FAILURE_NO_RETRY, or 
SYNCLEVEL_NOT_SUPPORTED (see Note 5) then 

Set RETURN_CODE to ALLOCATION_ERROR with a subcode of 
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or 
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate. 

Call FSM_CONVERSATIONIR, ALLOCATION_ERROR_Rc, RCBJ (page 5.1-63). 
Else 

Set RETURN_CODE to OK. 

If REQUEST_TO_SEND has been received but not reported to TP then 
Set REQUEST_TO_SEND_RECEIVED return parameter to YES. 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-25 



SEND_ERROR_PROC 

SEND_ERROR_PROC 

5.1-26 

FUNCTION: Handles the SEND_ERROR verb processing. 

If the resource sprici fied in the SEND_ERROR is valid and the conversation is 
in an appropriate state, processing of the SEND_ERROR continues. PS first 
retrieves any records from RM and HS. Appropriate action is taken depending 
upon which, if any, record was received (as reflected by the state of 
FSM_ERROR_OR_FAILURE>. 

INPUT: SEND_ERROR verb parameters 

OUTPUT: See belo111. 

NOTES: 1. If a CONVERSATION_FAILURE has been received from the resources manager, PS 
returns to the transaction program after setting the RETURN_CODE parameter of 
the SEND_ERROR to RESOURCE_FAILURE. 

2. If the local LU has detected an error 111hile attempting to allocate a session 
to this conversation, but PS has not yet had the opportunity to relay that 
information to the transaction program, it does so at this time by setting the 
RETURN_CODE parameter of the SEND_ERROR to reflect the type of allocation 
error. 

3. If RECEIVE_ERROR has been received from HS or no error records have been 
received, further processing of the SEND_ERROR is performed, depending upon 
the state of the conversation. 

Referenced procedures, FSMs, and data structures: 
PS 
HS 
PROCESS_RM_OR_HS_TO_PS_RECORDS 
SEND_ERROR_IN_SEND_STATE 
SEND_ERROR_DONE_PROC 
SEND_ERROR_IN_RECEIVE_STATE 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 
BUFFER_ ELEMENT 
SEND_ERROR 

Find the RCB for the resource identifier for SEND_ERROR. 

If executing FSM_CONVERSATIONCS, SEND_ERROR, RCB) Cpage 5.1-63> 
111ould cause a state-check (>) condition then 

Execute the corresponding output code in the FSM. 
Else 

page 5.0-5 
page 6.0-3 
page 5.1-47 
page 5.1-55 
page 5.1-53 
page 5.1-54 
page 5.1-63 
page 5.1-65 
page A-7 
page A-8 
page A-24 

Call PROCESS_RM_OR_Hs_TO_PS_RECORDSCRCB.RCB_ID, NO_SUSPEND) (page 5.1-47). 

Select based on state of FSM_ERROR_OR_FAILURE: 
When CONV_FAILURE_SON Csee Note 1) 

Set RETURN_CODE of SEND_ERROR verb to RESOURCE_FAILURE_RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCB> (page 5.1-63). 

When CONV_FAILURE_PROTOCOL_ERROR (see Note 1> 
Set RETURN_CODE of SEND_ERROR verb to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_Rc, RCB) (page 5.1-63). 

When ALLOCATE_FAILURE_RETRY, ALLOCATE_FAILURE_NO_RETRY, or 
SYNCLEVEL_NOT_SUPPORTED Csee Note 2) 

Set RETURN_CODE of SEND_ERROR verb to ALLOCATION_ERROR 111ith a subcode of 
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or 
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate. 

Call FSM_CONVERSATIONCR, ALLOCATION_ERROR_RC, RCB> (page 5.1-63). 

SNA Format and Protocol Reference Manual for LU Type 6.2 



SEND_ERROR_PROC 

"'1en NO_RQS or RCVD_ERROR (see Note 3) 

Select based on the state of FSH_CONVERSATION (page 5.1-63): 
When SEND 

Call SEND_ERROR_IN_SEHO_STATE(SENO_ERROR para .. ters, RCBl (page 5.1-55). 
When RCVD_CONFIRH, RCVD_CONFIRH_SEND, or RCVD_CONFIRH_DEALL 

Send SEND ERROR record to HS. 
Call FSH_CONVERSATIONCS, SEND_ERROR, RCB> lpage 5.1-631. 
Call SEND_ERROR_DONE_PROCCSEND_ERROR, RCB> Cpage 5.1-53). 

lil'len RCV 
Call SEND_ERROR_IN_RECEIVE_STATECSEND_ERROR parameters, RCBI C~ge 5.1-54). 
Re•ove all entries in the RCB.HS_TO_PS_BUFFER_LIST. 

If REQUEST_TO_SEND has been received but not reported to TP then 
Set REQUEST_TO_SEND_RECEIVED parameter of SEND_ERROR verb to YES. 

TEST_PROC 

FUNCTION: Perfor- the processing of a TEST record. 

The procedure first receives any records frOM RH and HS. It then tests lolheth­
er the conversation has been posted or whether REQUEST_TO_SEND notification 
has been received from the remote transaction. The RETURH_CODE field of TEST 
records the result of the test. 

INPUT: TEST record 

OUTPUT: The RETURN_CODE field of TEST records the result of the test. 

Referenced procedures, FSMs, and data structures: 
PROCESS_RM_OR_HS_TO_PS_RECORDS 
POST_AND_WAIT_PROC 
DEQUEUE_Ftti7_PROC 
FSH_CONVERSATION 
FSM_ERROR_OR_FAILURE 
FSM_POST 
TEST 
RCB 
BUFFER_ELEMENT 

page 5.1-47 
page 5.1-40 
page 5.1-36 
page 5.1-63 
page 5.1-65 
page 5.1-66 
page 5.1-67 
page A-7 
page A-8 

Find the RCB for the resource identified in the RESOURCE field of the TEST record. 
If executing FSM_CONVERSATIONCS,,TEST, RCB) Cpage 5.1-63) 
would cause a state-check ( >) condi t; on then 

Execute the corresponding output code in the FSH. 
Else 

Call PROCESS_RM_OR_HS_TO_PS_RECORDSCRCB.RCB_ID, NO_SUSPENDI (page 5.1-47J. 
Select based on test type (recorded in TEST.TEST): 

lolhen POSTED 
If state of FSM_POST : RESET then 

Set RETURN_CODE of TEST to POSTIHG_NOT_ACTIVE. 
Else 

Select based on the state of FSH_ERROR_OR_FAILURE: 
When CONV_FAILURE_,SON 

Set RETURN_CODE of TEST to RESOURCE_FAILURE_RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCB) (page 5.1-63). 

When CONV_FAILURE_PROTOCOL_ERROR 
Set RETURN_CODE of TEST to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCB) (page 5.1-63). 

lolhen ALLOCATE_FAILURE .. RETRY, ALLOCATE_FAILURE_NO_RETRY, or 
SYNCLEVEL_NOT_SUPPORTED 

Set RETURN_CODE of TEST to ALLOCATION_ERROR with a subcode of 
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or, 

SYNC_LEVEL_NOT_SUPPORTED_BY_LU respectively. 
Call FSM_CONVERSATIONCR, ALLOCATION_ERROR_RC, RCB) (page 5.1-631. 

Chapter 5.1. Presentation Services--Converaation Verbs 5.1-27 



TEST_PROC 

5.1-28 

When RCVD_ERROR 
Call POST_AND_WAIT_PROCCRCB, LL, X'77FF') Cpage S.1-40). 
If state of FSM_ERROR_OR_FAILURE (page 5.1-65) ;s CONV_FAILURE_SON or 

CONV_FAILURE_PROTOCOL_ERROR then 
If state of FSM_ERROR_OR_FAILURE (page S.1-65) ;s CONV_FAILURE_SON t~ 

Set RETURN_CODE of TEST to RESOURCE_FAILURE_RETRY. 
Else 

Set RETURN_COOE of TEST to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCB> (page S.1-63). 

Else 
Call DEQUEUE_FMH7_PROCCTEST, RCB> Cpage S.1-36). 

When NO_RQS 
Select on state of FSM_POST: 

When PEND_POSTED. 
Set RETURN_CODE of TEST to UNSUCCESSFUL. 

When POSTED · 
Set RETURN_CODE of TEST to OK with a subcode of NOT_DATA 
or DATA as the RCB.HS_TO_PS_BUFFER_LIST is or is not empty. 

Call FSM_CONVERSATIONCS, TEST, RCB) (page S.l-63). 
Call FSM_POSTCTEST> Cpage 5.1-66J. 

When REQUEST_TO_SEND_RECEIVED 
If REQUEST_TO_SEND has been received but not reported to TP then 

Set RETURN_CODE of TEST to OK. 
Record as reported to TP the REQUEST_TO_SEND. 

Else 
Set RETURN.CO.DE to UNSUCCESSFUL. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



LOW-LEVEL PROCEDURES 

COMPLETE_CONFIRM_PROC 

FUNCTION: Completes the processing of a CONFIRM verb. 

It is called by CONFIRM_PROC Cpage 5.1-12> when there are no error or failure 
conditions indicated by FSM_ERROR_OR_FAILURE Cpage 5.1-65). The action of 
this procedure is dependent on the state of the conversation, as described 
below. 

INPUT: CONFIRM parameters and the RCB corresponding to the resource specified in the 
CONFIRM verb 

OUTPUT: See below. 

NOTES: 1. If FSM_CONVERSATION is in the SEND state, a SEND_DATA_RECORD with TYPE field 
set to CONFIRM is sent to HS. 

2. If FSM CONVERSATION is in the PREPARE_TO_RECEIVE_DEFER state, a 
SEND_DATA_RECORD with TYPE field set to PREPARE_TO_RCV_CONFIRM is sent to HS. 

3. If FSM_CONVERSATION is in the DEALLOCATE_DEFER state, a SENO_DATA_RECORD with 
TYPE field set to DEALLOCATE_CONFIRM is sent to HS. 

4. If no session has been allocated to this conversation (i.e., the ALLOCATE verb 
issued to allocate the conversation specified RETURN_CONTROL = 
DELAYED_ALLOCATION_PERMITTEDlt P~ now rPque~•~ ~ ~e~sion from the resources 
manager. If, while atteMp~ing to allocate a session, the local LU detects an 
error, PS sets t~~ ~ETURN_CODE parameter of the CONFIRM to reflect the type of 
allocatio~ error and returns control to the transaction program. 

Referenced procedures, FSMs, and data 3tructures: 
SEND_DATA_TO_HS_PROC 
WAIT_FOR_CONFIRMED_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 
SEND_DATA_RECORD 

Select based on the state of FSM_CONVERSATION Cpage 5.1-63): 
When SEND (see Note 1.) 

Set RCS.PS TO HS RECORD.TYPE to CONFIRM. 
When PREP TO RCV-DEFER (see Note 21 

Set RCB.PS_To:Hs_RECORD.TYPE to PREPARE_TO_RCV_CONFIRM_SHORT or 
PREPARE_TO_RCV_CONFIRM_LONG as indicated by RCS.LOCKS. 

When DEALL_DEFER Csee Note 31 
Set RCB.PS_TO_HS_RECORD.TYPE to DEALLOCATE_CONFIRM. 

Call FSH_CONVERSATIONCS, CONFIRM, RCBl (page 5.1-63). 
Call SEND_DATA_TO_HS_PROCIRCBl Cpage 5.1-521. 

If state of FSM ERROR OR FAILURE is ALLOCATE FAILURE RETRY, 
ALLOCATE_FAILURE_NO_RETRY, OR SYNCLEVEL_NoT:suPPORTED (see Note 4) then 

Set RETURN_CODE to ALLOCATION_ERROR with a subcode of 
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or 
to SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate. 

Call FSM_CONVERSATIONCR, ALLOCATION_ERROR_RC, RCBl Cpage 5.1-63). 

Else 
Call WAIT_FOR_CONFIRMED_PROCICONFIRM parameters, RCB> (page 5.1-59). 

page 5.1-52 
page 5.1-59 
page S.1-63 
page 5.1-65 
page A-7 
page A-24 

Chapter S.l. Presentation Services--Conversation Verbs 5.1-29 



COHPLETE_DEALLOCATE_ABEND_PROC 

5.1-30 

COHPLETE_DEALLOCATE_ABEND_PROC 

FUNCTION: Completes the processing of a DEALLOCATE verb that specifies TYPE = ABEND. 

PS creates an FHH-7 and places it in the RCB send buffer. The FHH-7 carries 
sense data indicating DEALLOCATE_ABEND. If there is any log data associated 
Mith the DEALLOCATE. PS creates an Error log GDS variable (see "Appendix H. FH 
Header and LU Services C0111111ands") and places it in the RCB buffer to be sent 
to the partner LU. PS also places the GDS variable (Minus the LL and GDS ID 
fields> in the local LU's syste• error log. PS then sends a SEND_DATA_RECORD, 
containing the FHH-7 and cptional Error log GDS variable, to HS. 

INPUT: DEALLOCATE verb parameters and the RCB corresponding to the resource specified 
in the DEALLOCATE 

OUTPUT: SEND_DATA to HS. Any log data supplied 111ith the DEALLOCATE is logged. 

NOTE: If no session has been allocated to this conversation (i.e •• the ALLOCATE that 
allocated the conversation specified RETURN_CONTROL = 
DELAYED_ALLOCATION_PERMITTED>. PS now requests a session frOll the resources 
•anager. If, lolhile attempting to allocate a session, the local LU detects an 
error, PS sets the RETURN_CODE parameter in the DEALLOCATE to reflect the type 
of allocation error and returns control to the transaction progra•. 

Referenced procedures, FSHs, and data structures: 
SEND_bATA_TO_HS_PROC 
SEND_DATA_BUFFER_MANAGEMENT 
FSl1_CONVERSATION 
FSH_ERROR_OR_FAILURE 
RCB 
SEND_DATA_RECORD 

Set SENSE_DATA based on the DEALLOCATE type as follows: 
set to X'08640000' if ABEND_PROG, to X'08640001' if ABEND_svc, or 
to X'8640002'if ABEND_TIMER. 

Set CONTINUE to true. 

If state of FSM_CONVERSATION Cpage 5.1-63) 
is SEND, PREP_TO_RCV_DEFER, or DEALL_DEFER 
and RCB.PS_TO_HS_RECORD.SEND_PARM.DATA is not null then 

Sat RCB.PS_TO_HS_RECORD.TYPE to FLUSH._ 
Call SEND_DATA_TO_HS_PROCCRCB> Cpage 5.1-52). 
If state of FSM_ERROR_OR_FAILURE (page 5.1-65) 

page S.1-52 
page 5.1-51 
page 5.1-63 
page 5.1-65 
page A-7 
page A-24 

is ALLOCATE_FAILURE_RETRY, ALLOCATE_FAILURE_NO_RETRYt or SYNCLEVEL_NOT_SUPPORTED then 
Set CONTINUE to false. 

If CONTINUE then 
If LOG_DATA para•eter has been supplied then 

Create FHH-7 with log data indicator and SENSE_DATA. 
Set RCB.HS_TO_PS_RECORD.DATA to this Fttf-7. 
Create Error Log GDS variable and concatenate it to 

RCB.PS_TO_HS_RECORD.DATA. 
log it in the syste• error log. 

Else 
Create FMH-7 with SENSE_DATA but no log data. 
Set RCB.HS_TO_PS_RECORD.DATA to this FHH-7. 

Call SEND_DATA_BUFFER_MANAGEMENTCnull data, RCB) Cpage 5.1-51). 
Set RCB_Ps_ro_Hs record type to DEALLOCATE_FLUSH. 
Call SEND_DATA_TO_HS_PROC(RCB) (page 5.1-52). 

SNA Foraat and Protocol Reference Manual for LU Type 6.2 



CONVERSATION_FAILURE_PROC 

CONVERSATION_FAILURE_PROC 

FUNCTION: Processes CONVERSATION_FAILURE records. 

INPUT: A CONVERSATION_FAILURE record 

OUTPUT: FSM_ERROR_OR_FAILURE ;s set to the appropr;ate state. PS remembers the con­
versat;on fa;lure until that ;nformat;on can be relayed to the transaction 
program. 

Referenced procedures, FSMs, and data structures: 
FSM_ERROR_OR_FAILURE 
FSM_POST 
CONVERSATION_FAILURE 
RCB 

If the RCB for the CONVERSATION_FAILURE record ;s found, then 

If CONVERSATION FAILURE.REASON = PROTOCOL VIOLATION then 
Call FSM_ERROR_OR_FAILURE Cpage 5.1-65) and 

pass it a CONV_FAIL_PROTOCOL signal. 
Else 

Call FSM_ERROR_OR_FAILURE Cpage 5.1-65) 
and pass it a CONV_FAIL_SON s;gnal. 

If state of FSM_POST is PENO_POSTEO then 
Call FSM_POSTCPOST) (page 5.1-66). 

page 5.1-65 
page 5.1-66 
page A-32 
page A-7 

Chapter 5.1. Presentat;on Serv;ces--Conversat;on Verbs 5.1-31 



DEALLOCATE_ABEND_PROC 

DEALLOCATE_ABEND_PROC 

S.1•32 

FUNCTION: Invoked when the TYPE parameter of DEALLOCATE verb ;s ABEND_PROGo ABEND_SVCo 
or ABEND_TIMER. 

INPUT: 

OUTPUT: 

PS f;rst receives any records from RM and HS. Appropriate act;on is taken 
depending upon wh;ch, ;f any, record was rece;ved and upon the state of the 
conversat;on. The state of the conversation and the information ;n the 
HS_TO_PS_BUFFER_LIST determine whether or not a SEND_ERROR record ;s sent to 
HS prior to sending the FMH-7 that is created as a result of the DEALLOCATE 
lTYPE =ABEND_•>. Receipt of certain types of information (e.g., notification 
that the conversation has been deallocated by the partner transaction program> 
causes PS to return to the transaction program without taking any action. 

DEALLOCATE verb parameters and the RCB corresponding to the resource specified 
in the DEALLOCATE 

Depending upon the state·of the conversation and the information contained in 
the HS_TO_PS_BUFFER_LIST, an FMH-7 (possibly preceded by a SEND_ERROR record) 
is created and sent to HS, or no output ;s created. All elements are purged 
from the HS_TO_PS_BUFFER_LIST before returning to the transaction program. 

Referenced procedures, FSMs, and data structures: 
PS 
HS 
PROCESS_RM_OR_HS_TO_PS_RECORDS 
WAIT_FOR_SEND_ERROR_DONE_PROC 
COMPLETE_DEALLQCATE_ABEND_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 
SEND_ERROR 

Call PROCESS_RM_OR_HS_TO_PS_RECORDSlRCB.RCB_ID, NO_SUSPEND) lpage 5.1-47). 

If the state of FSM_ERROR_OR_FAILURE lpage 5.1-65) is 
NO_RQS or RCVD_ERROR then 

Select based on the state of FSM_CONVERSATION lpage 5.1-63): 
When RCV 

page S.0-S 
page 6.0-3 
page S.1-47 
page S.1-62 
page 5.1-30 
page 5.1-63 
page 5.1-65 
page A-7 
page A-24 

If the first entry of RCB.HS_TO_PS_BUFFER_LIST is not DEALLOCATE_FLUSH then 
Send SEND_ERROR record to HS. 
Call WAIT_FOR_SEND_ERROR_DONE_PROClDEALLOCATE parameter$., RCB> 

l page 5.1-62). 
When RCVD_CONFIRM I RCVD_CONFIRM_SEND I RCVD_CONFIRM_DEALL 

Send SEND_ERROR record to HS. 
Call COMPLETE_DEALLOCATE_ABEND_PROClDEALLOCATE parameters, RCB) 

lpage 5.1-30>. 
When SEND I PREP_TO_RCV_DEFER I DEALL_DEFER 

Call COMPLETE_DEALLOCATE_ABEND_PROClDEALLOCATE parameters, RCB> 
l page 5.1-30). 

Purge all buffers in HS_TO_PS_BUFFER_LIST. 
Set RETURN_CODE to OK. 
Call FSM_CONVERSATIONCS, DEALLOCATE_ABEND) lpage 5.1-63>. 

SNA Format and Protocol Reference Manual for LU T~'P« 6.2 



DEALLOCATE_CONFIRM_PROC 

DEALLOCATE_CONFIRM_PROC 

FUNCTION: Invoked when DEALLOCATE TYPECSYNC_LEVEL> is i_ssued for a conversation whose 
SYNC_LEVEL is CONFIRM. 

PS first retrieves any records from HS. Appropriate action is taken depending 
upon which, if any, record was received. 

INPUT: DEALLOCATE verb parameters and the RCB corresponding to the resource specified 
in the DEALLOCATE 

OUTPUT: See below. 

NOTES: 1. If a CONVERSATION_FAILURE has been received from the resources manager, PS 
returns to the transaction program after setting the RETURN_CODE parameter of 
the DEALLOCATE to RESOURCE_FAILURE. 

2. If the local LU has detected an error while attempting to allocate a session 
to this conversation, but PS has not yet had the opportunity to relay that 
information to the transaction program, it does so at this time by setting the 
RETURN_CODE parameter of the DEALLOCATE to reflect the type of allocation 
error. 

3. If a RECEIVE_ERROR has been received from HS, PS sends a SEND_DATA_RECORD with 
the TYPE field set to PREPARE_TO_RCV_FLUSH to HS. CAny data in the RCB send 
buffer was purged when the RECEIVE_ERROR_RECORD was received.> PS then waits 
for the expected FMH-7 error message to arrive. The RETURN_CODE parameter of 
the DEALLOCATE is set based on the sense data carried in the FMH-7. 

4. If no error or failure condition has occurred, PS sends a SEND_DATA_RECORD 
with the TYPE field set to DEALLOCATE_CONFIRM to HS. 

5. If no session has been allocated to this conver~ation Ci.e., the ALLOCATE that 
allocated the conversation specified RETURN_CONTROL = 
DELAYED_ALLOCATION_PERMITTED>, PS now requests a session from the resources 
manager. If, while attempting to allocate a session, the local LU detects an 
error, PS sets the RETURN_CODE parameter of the DEALLOCATE to reflect the type 
of allocation error and returns control to the transaction program. 

Referenced procedures, FSMs, and data structures: 
PROCESS_RM_OR_HS_TO_PS_RECORDS 
SEND_DATA_TO_HS_PROC 
POST_AND_WAIT_PROC 
DEQUEUE_FMH7_PROC 
WAIT_FOR_CONFIRMED_PROC 
OEALLOCATION_CLEANUP_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 
SEND_DATA_RECORO 

If data sent by TP is not at a logical record boundary then 
Call DEALLOCATION_CLEANUP_PROC !page 5.0-13). 

Else 
Call FSM_CONVERSATIONCS, DEALLOCATE_CONFIRM, RCB> Cpage 5.1-63). 

page 5.1-47 
page 5.1-52 
page 5.1-40 
page 5.1-36 
page 5.1-59 
page 5.0-13 
page 5.1-63 
page 5.1-65 
page A-7 
page A-24 

Call PROCESS_RM_OR_HS_TO_PS_RECORDSCRCB.RCB_ID, NO_SUSPEND> Cpage 5.1-47). 

Select based on the state of FSM_ERROR_OR_FAILURE (see Note 11: 
When CONV_FAILURE_PROTOCOL_ERROR 

Set RETURN_CODE of DEALLOCATE to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCB> (page 5.1-63). 

When CONV_FAILURE_SON 
Set RETURN_CODE of DEALLOCATE to RESOURCE_FAILURE_RETRY. 
Call FSM_CONVERSATION(R, RESOURCE_FAILURE_RC, RCBI Cpage 5.1-631. 

When ALLOCATE_FAILURE_RETRY, ALLOCATE_FAILURE_NO_RETRY, or 
SYNCLEVEL_NOT_SUPPORTED Csee Note 21 

Set RETURN_CODE of DEALLOCATE to ALLOCATION_ERROR with a subcode of 
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or 
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate. 

Call FSM_CONVERSATIONCR, ALLOCATION_ERROR_Rc, RCB) (page 5.1-63). 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-33 



DEALLOCATE_CONFIRH_PROC 

5.1-34 

When RCW_ERROR lsae Note 31 
Set RCB.PS_TO_HS_RECORD type to PREPARE_TO_RCV_FLUSH. 
Call SEND_DATA_TO_HS_PROCIRC8) (page 5.1-52). 
Call POST_AND_WAIT_PROCIRCB, LL, X'7FFF'1 to post the resource 

Mhan the Nhola Fl1H7 ; s rece; vad I page 5 .1-40). 
If state of FSM_ERROR_OR_FAILURE (page 5.1-651 ;s COHY_FAILURE_SOH or 

CONV_FAILURE_PROTOCOL_ERROR than 
If state of FSM_ERROR_OR_FAILURE (page 5.1-65) is CONV_FAILURE_SON then 

Set RETURN_CODE of DEALLOCATE to RESOURCE_FAILURE_RETRY. 
Elsa 

Set RETURN_CODE of DEALLOCATE to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONIR. RESOURCE_FAILURE_Rc, RCB1 (page 5.1-63). 

Else 
Call DEQUEUE_Fl1H7_PROCCRECEIVE_AND_WAITt RCB> (page 5.1-361. 

When NO_RQS Csee Note 4) 
Set RCB.PS_TO_HS_RECORD type to PREPARE_TO_RCV_FLUSH. 
Call SEND_DATA_TO_HS_PROCCRCB) (page 5.1-52). 

If state of FSM_ERROR_OR_FAILURE is ALLOCATE_FAILURE_RETRY, 
ALLOCATE_FAILURE_NO_RETRY, or SYNCLEVEL_NOT_SUPPORTED than 

Set RETURN_CODE of.DEALLOCATE to ALLOCATION_ERROR Nith a subcode of 
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or 
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate. 

Call FSM_CONVERSATIONIR, ALLOCATION_ERROR_RC, RCB) (page 5.1-631. 
Call WAIT_FOR_CONFIRMED_PROCIDEALLOCATE para•eters, RC81 !page 5.1-591. 

SHA Format and Protocol Reference Hanu.l for W Type 6.2 



DEALLOCATE_FLUSH_PROC 

DEALLOCATE_FLUSH_PROC 

FUNCTION: Invoked Nhen a DEALLOCATE is received that specifies TYPE = FLUSH, or TYPE = 
SYNC_LEVEL and the SYNC_LEVEL of the conversation is NONE. 

After checking that the data for the conversation is on a logical record 
boundary, the procedure accepts any records fro• Rl1 and HS. Appropriate 
action is taken, depending upon which, if any, record Mas received (as 
reflected by the state of FSM_ERROR_OR_FAILURE). 

INPUT: DEALLOCATE verb paraueters and the RCB corresponding to the resource specified 
in the DEALLOCATE 

OUTPUT: See beloN. 

NOTES: 1. If a RECEIVE_ERROR was received from HS, or no error records have been 
received, PS sends any data remaining in the RCB send buffer to HS Mith the 
TYPE field of the SEND_OATA_RECORD set to DEALLOCATE_FLUSH. <If a 
RECEIVE_ERROR was received, any data in PS's buffer has already been purged.) 

2. If CONVERSATIOH_FAILURE record has been received fr0111 RN, or if an allocation 
error has been detected by the local LU, no further records are sent to HS. 

Referenced procedures, FSNs, and data structures: 
PROCESS_RM_OR_HS_TO_PS_RECOROS 
SEHD_DATA_TO_HS_PROC 
DEALLOCATION_CLEANUP_PROC 
FSl1_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 
SEHD_DATA_RECORO 
RECEIVE_ERROR 

If the data sent by TP is not at a logical record boundary then 
Call DEALLOCATION_CLEANUP_PROC (page 5.0-13). 

Else 

poige 5.1-47 
page S.1-52 
page 5.0-13 
page 5.1-63 
page 5.1-65 
page A-7 
page A-24 
page A-12 

Call PROCESS_RM_OR_HS_TO_PS_RECORDSCRCB.RCB_ID, NO_SUSPENDl !page 5.1-47). 
If state of FSM_ERROR_OR_FAILURE is RCVD_ERROR or NO_RQS lsee Note 11 then 

Set RCB.PS_TO_HS record type to DEALLOCATE_FLUSH. 
Call SEHD_DATA_TO_HS_PROC<RCB) (page 5.1-521. 

Else lsee Note 2) 
Do nothing. 

Set RETURN_CODE of DEALLOCATE to OK. 
Call FSl1_CONVERSATIOt-HS, DEALLOCATE_FLUSH, RCBI <page 5.1-631. 

Chapter S.l. Presentation Services--Conversation Verbs 5.1-35 



DEQUEUE_FttH7_PROC 

DEQUEUE_FttH7_PROC 

5.l-36 

FUNCTION: Invoked i.lpOn receipt of a RECEIYE_ERROR frOll HS. The next elaent e>epectecl in 
the HS_to_PS_BUFFER_LIST is en Fttt-7 buffer el-ent. If the next elellent in 
the buffer is an Fttt-7, it is re110ved from the buffer end proces•ed Uhll 
RETURN-CODE pera•eter of the passed verb para•eters is set based up0n the 
sense data oarried in the FttH-7 buffer eleaentJ. If the next ele.ent ts Mt 
an Fttt-7 buffer element, the partner LU haa violated the protocol and, •• 11n 
h1plementation-dependent option, the Hssion over which the protocol Yiol•tton 
occurred is deactivated. 

INPUT: The transaction progra• verb para .. ters currently being processed and the RC8 
corresponding to the resource specified in p•r••ters of the Yerb 

OUTPUT: The RETURN_CODE pai"aMter is set to reflect the sense data carried in thta 
FttH-7 buffer ele-.nt. 

Referenced procedures, FSHs, and data structures: 
PROCESS_Fttt7_PROC 
PS_ PROTOCOL_ ERROR 
tStt_POST 
RCB 
BUFFER~ELEMENT 

Call FSt1_POSTtRECEIYE_Itt1EDIATEJ (page S.1-66>. 
If first entry in RCB.HS_TO_PS-BUFFER_LIST is FMH-7 then 

Remove the first entry of RCB.HS_TO_PS_BUFFER_LIST. 
Call PROCESS_FHH7_PROCtRC8, BUFFER.ELEMENT.DATA, TP verb para•etersJ 

(page 5.1-46 J. 
Set RCB.RECEIVE_LL_REHAINDER to O. 

Else tas an i111plementation-dependent option> 
Call PS_PROTOCOL_ERROR Nith X'1008201D' for Request Error, 

FttH-7, and Associated Data His••tch (page S.O-lSJ. 

SHA For•at and Protocol Reference Manual for WType 6.2 

page s.1 .. 46 
page 5.0-15 
page 5.1-66 
page A-7 
page A-8 



GET_END_CHAIN_FROM_HS 

GET_END_CHAIN_FROM_HS 

FUNCTION: Invoked after PS sends a SEND_ERROR record to HS Cas a result of a SEND_ERROR 
or DEALLOCATE CTYPE = ABEND_PROG, ABEND_SVC, ABEND TIMER) issued for the con­
versation while it is in the receive state). This procedure waits for a 
RECEIVE_DATA whose TYPE field indicates EC to arrive from HS. TYPE values 
that indicate EC are CONFIRM, PREPARE_TO_RCV_CONFIRM, PREPARE_TO_RCV_FLUSH, 
DEALLOCATE_CONFIRM, and DEALLOCATE_FLUSH. 

INPUT: The RCB corresponding to the conversation for which the EC is desired 

OUTPUT: See below. 

NOTES: 1. If a REQUEST TO SEND record is received, PS stores that information in the RCB 
to be relay;d to the transaction program at a later time, and continues to 
wait for the EC. 

2. If a RECEIVE_ERROR record is received, no action is taken. PS continues to 
wait for the EC to arrive. This situation occurs if, immediately prior to 
issuing the SEND_ERROR or DEALLOCATE CTYPE = ABEND_*>• the transaction program 
issued a PREPARE_TO_RECEIVE (TYPE = FLUSHJ or PREPARE_TO_RECEIVE <TYPE = 
SYNC LEVEL) and the SYNC LEVEL of the conversation is NONE, and the partner 
tran;action program !while still in RECEIVE state> issues a SEND_ERRDR or 
DEALLOCATE !TYPE = ABEND_*). 

3. When PS sends SEND ERROR to HS, it begins to purge any data it receives from 
HS until a record indicating EC is received. 

Referenced procedures, FSMs, and data structures: 
RECEIVE_RM_OR_HS_TO_PS_RECORD 
CONVERSATION_FAILURE_PROC 
RCB 
BUFFER_ ELEMENT 
RECEIVE_DATA 

If the type of BUFFER_ELEMENT in the RCB.HS_TO_PS_BUFFER_LIST is 
CONFIRM, PREPARE_TO_RCV_CONFIRM, PREPARE_TO_RCV_FLUSH, 
DEALLOCATE_CONFIRM, or DEALLOCATE_FLUSH tn~m 

Set EC_HAS_ARRIVED to true. 
Else 

Set EC_HAS AR~IVED to false. 

~et NOT_CONVERSATION_FAILURE to true. 
Do while EC_HAS_ARRIVED not true and ·HOT_CONVERSATION_FAILURE is true: 

Call RECEIVE_RM_OR_HS_TO_PS_RECORDCRCB.RCB_IS, SUSPEND> to receive 
record Cpage 5.1-51) to receive RECORD. 

If RECORD arrived frcm RM then 
Call CONVERSATION_FAILURE_PROC with RECORD (page 5.1-31). 
Set NOT CONVERSATION FAILURE to false. 

If RECORD ~rrived from HS then 
Select based on the RECORD type received: 

When REQUEST_TO_SEND !see Note ll 
Set RCB.RQ TO SEND RCVD to YES. 

When RECEIVE ERROR cs;e Note 2) 
Do nothing. 

When RECEIVE DATA (see Note 3) 

page 5.1-51 
page 5.1-31 
page A-7 
page A-8 
page A-12 

If RECEIVE_DATA type is CONFIRM, PREPARE_TO_RCV_CONFIRM, 
PREPARE_TO_RCV_FLUSH, DEALLOCATE_CONFIRM, or DEALLOCATE_FLUSH then 

Enqueue RECORD to RCB.HS_TO_PS_BUFFER_LIST. 
Set EC_HAS_ARRIVED to false. 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-37 



OBTAIN_SESSION_PROC 

OBTAIN_SESSION_PROC 

5.1-38 

FUNCTION: Handles the acquisition of a session for use by a conversation resource. 

INPUT: 

This procedure sends a GET_SESSION record to the resources manager and waits 
for a SESSION_ALLOCATED reply. 

PS can instruct RM to send the RCB send buffer containing the FMH-5 CAttach> 
for this conversation to HS when both of the following conditions hold: 

• The transaction program has issued DEALLOCATE, PREPARE_TO_RECEIVE, and/or 
CONFIRM. 

• No data has as yet been sent to HS Ci.e., the data sent by the transaction 
program to PS has not been of sufficient quantity to cause PS's send buff­
er to overflow>. 

This situation can occur only if the ALLOCATE that caused this conversation to 
be initiated specified RETURN_CONTROL = DELAYED_ALLOCATION_PERMITTED. 

If the allocation of 
FSM_ERROR_OR_FAILURE. PS 
opportunity of the failure 
priate kind. 

a session fails, the reason is saved in 
informs the transaction program at the earliest 
with an allocation error return code of the appro-

The RCB corresponding to the conversation that is to use the obtained session, 
and an ATTACH/NO ATTACH indicator (specifying whether RM is to send the send 
buffer containing the Attach to HS as it acquires the session) are passed as 
parameters to this procedure. SESSION_ALLOCATED is received from RM. 

OUTPUT: GET_SESSION is sent to RM 

Referenced procedures, FSMs, and data structures: 
WAIT_FOR_RM_REPLY 
FSM_ERROR_OR_FAILURE 
RCB 
GET_SESSION 
SESSION_ALLOCATED 

Copy TCB_ID and RCB_ID from RCB into GET_SESSION record. 

page 5.1-60 
page 5 •. 1-65 
page A-7 
page A-26 
page A-33 

Set GET_SESSION.BID_INDICATOR to ATTACH or NO_ATTACH to agree with the input indicator. 
Send GET_SESSION request to RM. 
Call WAIT_FOR_RM_REPLY Cpage 5.1-601 to receive SESSION_ALLOCATED. 
Select based on SESSION_ALLOCATED.RETURN_CODE: 

When OK 
If the security level of RCB.SECURITY_SELECT has been downgraded to NONE then 

Rebuild the Attach omitting the obsolete security information. 
When UNSUCCESSFUL_NO_RETRY 

Call FSM_ERROR_OR_FAILURE Cpage 5.1-65) 
and pass it an ALLOCATE_FAIL_NO_RETRY signal. 

When SYNC_LEVEL_NOT_SUPPORTED 
Call FSM_ERROR_OR_FAILURE (page 5.1-65) 

and pass it a SYNCLEVEL_NOT_SUPPTD signal. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



PERFORH_RECEIVE_PROCESSIN6 

PERFORM_RECEIVE_PROCESSIN6 

FUNCTION: Checks the appropr;ate HS_TO_PS_BUFFER_LIST reca;ve buffer to see ;f any 
;nforaat;on has arr;ved for the conversation specif;ed in the passed RECEIVE 
verb parameters and, if so, '-'>ckates the verb para111eters to reflect that infor­
mation. Examples of the type of infor111ation that can be received include a 
request for confir111at;on, notification that the partner transact;on progra• 

- has deallocated the conversation, and conversation ckata. 

If no ;nformation has been received for the specified conversat;on, the 
RETURN_COOE parameter is set to IJllSUCCESSFUL and control is returned to the 
calling procedure. 

INPUT: The entry in the RCB_LIST corresponding to the resource specified in the verb 
paraaeters, and RECEIVE verb parameters 

OUTPUT: Var;ous para111eters are '-'>dated, depending on the type of ;nformation contained 
in the rece;ve buffer. The infor•ation is re1110ved fro• the 
HS_TO_PS_BUFFER_LIST after being placed in RECEIVE_VERB. 

NOTES: 1. PS perforllUS an opUonal receive check to deter•ine if the partner LU has vio­
lated PS protocols by allowing the partner transaction progra• to inval;dly 
truncate the logical record the program was in the process of sending (i.e., 
the partner transaction progra• ;ssued a verb, such as CONFIRH, before COll­

pleting the current logical record>. Only an FMH-7 can validly be received 
before the current logical record ;s completed, ;n Nhich case the FMH-7 con­
ta;ns sense data indicating data truncation. 

z. PS perfor11S an optional receive check to deter•ine if the partner LU has vio­
lated the protocols by allONing the partner transaction progra• to issue a 
request for confir•ation on a conversation whose SYNC_LEVEL is NONE. 

3. Logical record processing begins anew following receipt of an FMH-7. 

Referenced procedures, FSHs, and ckata structures: 
PS_PROTOCOL_ERROR 
PROCESS_FNH7_PROC 
PROCESS_DATA_PROC 
FSH_CONVERSATION 
FSH_ERROR_OR_FAILURE 
FSH_POST 
RCB 
BUFFER_ELEMENT 

Call FSH_POST<RECEIVE_It11EDIATE) (page 5.1-65), 
to reset posting, if activated. 

If RCB.HS_TO_PS_BUFFER_LIST is not empty then 
Set BUFFER_ELEHENT to first entry of the list. 

If partner sent CONFIRM, DEALLOCATE_CONFIRH, OEALLOCATE_FLUSH, 
PREPARE_TO_RCV_CONFIRM, or PREPARE_TO_RCV_FWSH 
before completing sending of the logical record, or 
partner sent CONFIRM, PREPARE_TO_RCV_CONFIRM, or DEALLOCATE on a 

page 5.0-15 
page 5.1-46 
page 5.1-44 
page 5.1-63 
page 5.1-65 
page 5.1-66 
page A-7 
page A-8 

conversation with SYNC_LEVEL = NONE then (as an iaplaenhtion-dapendent option) 
Call PS_PROTOCOL_ERROR (page S.0-15) 
with X'l0010000' for RU Data Error. 

Else 
Rell!Ove BUFFER_ELEMENT frota the list. 

Select based on BUFFER_ELEHENT type: 
lllen CONFIRM 

Set RETURN_CODE parameter to OK. 
Set WHAT_RECEIVED parameter CONFIRH. 
Call FSH_CONVERSATION(R, CONFIRH_INDICATOR, RCB> (page 5.1-63). 

When PREPARE_TO_RCV_CONFIRM 
Set RETURN_CODE paraaeter to OK. 
Set WHAT_RECEIVEO parameter to CONFIRH_SEND. 
Call FSM_COHVERSATlCIN(R, CONFIRH_SEND_INDICATOR, RCB) (page 5.1-631. 

Chapter 5.1. Presentation Servicea--Convers•tion Verbs S.1-39 



PERFORM~RECEIVE_PROCESSING 

5.1-40 

When PREPARE_TO_RCV_FLUSH 
Set RETURN_CODE parameter to OK. 
Set WHAT_RECEIVED parameter to SEND. 
Call FSM_CONVERSATIONCR, SEND_INDICATOR, RCB> (page 5.1-63). 

When DEALLOCATE_CONFIRM 
Set RETURN_CODE parameter to OK. 
Set WHAT_RECEIVED parameter to CONFIRM_DEALLOCATE. 
Call FSM_CONVERSATIONCR, CONFIRM_DEALLOCATE_INOICATOR, RCB> (page 5.1-63>. 

When DEALLOCATE_FLUSH 
Set RETURN_CODE parameter to DEALLOCATE_NORMAL. 
Call FSM_CONVERSATIONCR, CONFIRM_DEALLOCATE_NORMAL_Rc, RCB) (page 5.1-63). 

When FMH7 
Call PROCESS.FMH7_PROCCRCB, BUFFER_ELEMENT.DATA, RECEIVE verb parameters> 

C page 5.1-46 >. 
When DATA 

Call PROCESS_DATA_PROCCRCB, BUFFER_ELEMENT.DATA, RECEIVE verb parameters) 
Cpage 5.1-44). 

If length of BUFFER_ELEMENT.DATA > 0 then 
Insert BUFFER_ELEMENT at the beginning of the RCB.HS_TO_PS_BUFFER_LIST. 

POST_ANO_WAIT_PROC 

FUNCTION: Establishes post conditions for a resource and waits for information to arrive 
from HS to cause those post conditions to be satisfied. 

INPUT: The RCB corresponding to the resource to be posted, a FILL indicator specify­
ing whether data is to be received independent of its logical record format 
CFILL = BUFFER versus LL), and the length of the maximum amount of data that 
is to be received 

OUTPUT: The post conditions are satisfied on return to the calling procedure. 

Refereoced procedures, FSMs, and data structures: 
TEST_FOR_POST_SATISFIED 
PROCESS_RM_OR_HS_TO_PS_RECORDS 
FSM_POST 
RCB 

Call FSM_POSTCPOST_ON_RECEIPT> (page 5.1-66). 
Set RCB.POST_CONDITIONS.FILL to supplied FILL parameter. 
Set RCB.POST_CONDITIONS.MAX_LENGTH to the supplied LENGTH 
Call TEST_FOR_POST_SATISFIEDCRCB) (page 5.1-58). 

Do while state of FSM POST ~ POSTED: 

parameter. 

Call PROCESS_RM_oR:Hs_TO_PS_RECORDSCRCB.RCB_IDt SUSPEND) (page 5.1-47). 

SNA Format and Protocol Reference Manual for LU Type 6.2 

page 5.1-58 
page 5.1-47 
page 5.1-66 
page A-7 



PREPARE_TO_RECEIVE_CONFIRM_PROC 

PREPARE_TO_RECEIVE_CONFIR~_PROC 

FUNCTION: Cont;nues the process;ng of a PREPARE_TO_RECEIVE when TYPE = SYNC_LEVEL and 
the SYNC_LEVEL of the conversat;on is CONFIRM. 

INPUT: PREPARE_TO_RECEIVE verb parameters and the RCB correspond;ng to the resource 
specified ;n the PREPARE_TO_RECEIVE 

OUTPUT: See below. 

NOTES:· 1. If a CONVERSATION FAILURE has been rece;ved from the resources manager, PS 
returns to the tra~saction program after sett;ng the RETURN_CODE parameter of 
the PREPARE_TO_RECEIVE verb to RESOURCE_FAILURE. 

2. If a RECEIVE_ERROR has been rece;ved from HS, PS sends a SEND_DATA_RECORD with 
the TYPE field set to PREPARE_TO_RCV_FLUSH to HS. CAny data in the RCB send 
buffer was purged when the RECEIVE_ERROR record was received.> PS then wa;ts 
for the expected FMH-7 error message to arrive. The RETURN_CODE parameter of 
the PREPARE_TO_RECEIVE verb is set based on the sense data carried ;n the 
FMH-7. 

3. If no error or failure cond;t;on has occurred, PS sends a SEND_DATA record 
with the TYPE f;eld set to PREPARE_TO_RCV_CONFIRM to HS and waits for a CON­
FIRMED reply. 

4. If no sess;on has been allocated to th;s conversation Ci.e •• the ALLOCATE that 
allocated the conversation spec;fied RETURN_CONTROL = 
DELAYED_ALLOCATION_PERMITTED>. PS now requests a session from the resources 
manager. If, while attempting to allocate a session, the local LU detects an 
error, PS sets the RETURN_CODE f;eld ;n the PREPARE_TO_RECEIVE to reflect the 
type of allocation error and returns control to the transaction program. 

5. If the local LU has detected an error while attempt;ng to allocate a sess;on 
to this conversat;on, but PS has not yet had the opportun;ty to relay that 
information to the transaction program, it does so at this time by setting the 
RETURN_CODE parameter of the PREPARE_TO_RECEIVE to reflect the type of allo­
cation error. 

Referenced procedures, FSMs, and data structures: 
PROCESS_RM_OR_HS_TO_PS_RECORDS 
SEND_DATA_TO_HS_PROC 
POST_AND_WAIT_PROC 
DEQUEUE_FMH7_PROC 
WAIT_FOR_CONFIRMED_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 
SEND_DATA_RECORD 
RECEIVE_ERROR 

Call FSM_CONVERSATIONCS, PREPARE_TO_RECEIVE_CONFIRM, RCB> (page 5.1-63). 
Call PROCESS_RM_OR_HS_TO_PS_RECORDSCRCB.RCB_ID, NO_SUSPEND> Cpage 5.1-47). 

Select based on state of FSM_ERROR_OR_FAILURE Cpage 5.1-65): 
When CONV_FAILURE_PROTOCOL_ERROR Csee Note 1> 

Set RETURN_CODE of PREPARE_TO_RECEIVE to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_Rc, RCB) (page 5.1-63). 

When CONV_FAILURE_SON (see Note 1> 
Set RETURN_CODE of PREPARE_To_RECEIVE to RESOURCE_FAILURE_RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_RC, RCB> (page 5.1-63). 

page 5.1-47 
page 5.1-52 
page 5.1-40 
page 5.1-36 
page 5.1-59 
page 5.1-63 
page 5.1-65 
page A-7 
page A-24 
page A-12 

Ch~pter 5.1. Presentat;on Servic~s--Conversat;on Verbs 5.1-41 



PREPARE_TO_RECEIVE_CONFIRM_PROC 

5.1-42 

...,_, RCVO_ERROR (see Note 2) 
Set PS_TO_HS_RECORO.TYPE to PREPARE_TO_RCV_FLUSH. 
C•ll SEND_OATA_TO_HS_PROC<RCB) <page 5.1-52). 
Call POST_AND_WAIT_PROClRCBt Llt X'7FFF') to receive the Nhole 

Ft1H7 lpage 5.1-40). 
If state of FStt_ERROR_OR_FAILURE (page 5.1-65) is CONV_FAILURE_SON or 

CONV_FAILURE_PROTOCOL_ERROR then 
If state of FSM_ERROR_OR_FAILURE (page 5.1-65) is CONV_FAILURE_SON then 

Set RETURN_CODE of PREPARE_TO_RECEIVE to RESOURCE_FAILURE_RETRY. 
Else 

Set RETURN~CODE of PREPARE_TO_RECEIVE to RESOURCE_FAILURE_NO_RETRY. 
Call FSl1_CONVERSATIONlRt RES~CE_FAILURE_Rc. RCB) (page 5.1-63). 

Else 
Call DEQUEUE_F11H7_PROC(PREPARE_TO_RECEIVE parameters. RCB> (page 5.1-36). 

~en NO_RQS (see Note 31: 
If LOCKS supplied parameter is SHORT then 

Set RCB.PS_TO_HS.TYPE to PREPARE_TO_RCV_CONFIRM_SHORT. 

Else 
Set RCB.PS_TO_HS.TYPE to PREPARE_TO_RCV_CONFIRH_LONG. 

C•ll SEND_OATA_TO_HS_PROC(RCB> <page 5.1-521. 
If state of FSH_ERROR_OR_FAILURE (page 5.1-651 is 

ALLOCATE_FAILURE_RETRY I ALLOCATE_FAILURE_NO_RETRY I SYNCLEVEL_NOT_SUPPORTED 
Csee Note 41 then 
Set RETURN_COOE of PREPARE_TO_P.ECEIVE to ALLOCATION_ERROR with a subcode 

of ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, 
or SYNC_LEVEL_NOT_SUPPORTED_BY_LUo as appropriate. 

Call FSH_CONVERSATION(R, ALLOCATION_ERROR_RC, RCB> (page 5.1-63>. 

Else 
Call WAIT_FOR_CONFIRHED_PROC<PREPARE_TO_RECEIVE parameters, RCBI (page 5.1-59) • 

...,_, ALLOCATE_FAILURE_RETRY I ALLOCATE_FAILURE_NO_RETRY I SYNCLEVEL_NOT_SUPPCIRTED 
Set RETURN_CODE of PREPARE_TO_RECEIVE to ALLOCATION_ERROR with a sulx:ode 
of ALLOCATION_FAILURE_RETRYt ALLOCATION_FAILURE_NO_RETRY, 
or SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate. 

Call FSM_CONVERSATIONCR, ALLOCATION_ERROR_Rc, RCB) <page 5.1-63>. 

SHA For•at and Protocol Reference Hanual for LU Type 6.2 



PREPARE_TO_RECEIVE_FLUSH_PROC 

PREPARE_TO_RECEIVE_FLUSH_PROC 

FUNCTION: Continues the processing of a PREPARE_TO_RECEIVE when TYPE = FLUSH, or TYPE = 
SYNC_LEVEL and the SYNC_LEVEL of the conversation is NONE. 

INPUT: PREPARE_TO_RECEIVE verb parameters and the RCB corresponding to the resource 
specified in the PREPARE_TO_RECEIVE 

OUTPUT: The RETURN_CODE is set to OK. See below for additional output. 

NOTES: 1. If a RECEIVE ERROR record has been received from HS, or no error records have 
been received, PS sends any data remaining in the RCB send buffer to HS with 
the TYPE indicator set to PREPARE_TO_RCV_FLUSH. Cif a RECEIVE_ERROR was 
received, any data in PS's send buffer has already been purged.> 

2. If a locally detected allocation errur Ci.e., an ~llocation ~rrur detected by 
the local LU> or a conversation failure nas occurred, no action is taken. PS 
reports the error +~ the transaction program at a later time. 

RP.S::;··enced procedures, FSMs, and data structures: 
PROCESS_RM_OR_HS_TO_PS_RECORD$ 
SEND_DATA_TO_HS_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 
RECEIVE_ ERROR 
PS_TO_HS_RECORD 

Call PROCESS_RM_OR_HS_TO_PS_RECORDSCRCB.RCB_ID, NO_SUSPEND> Cpage 5.1-47). 

page 5.1-47 
page 5.1-52 
page 5.1-63 
page 5.1-65 
page A-7 
page A-12 
page A-24 

If the state of FSM_ERROR_OR_FAILURE (page 5.1-65) is RCVD_ERROR or NO_RQS then 
Set RCB.PS_TO_HS_RECORD.TYPE to PREPARE_TO_RECEIVE_FLUSH. 
Call SEND_DATA_TO_HS_PROC with RCB Cpage 5.1-52) 

Set RETURN_CODE of PREPARE_TO_RECEIVE to OK. 
Call FSM_CONVERSATIONCS, PREPARE_TO_RECEIVE_FLUSH, RCB> (page 5.1-63). 

Chapter 5.1. Presentation Services--Conversation Verbs S.1-43 



PROCESS_DATA_PROC 

PROCESS_DATA_PROC 

5.1-44 

FUNCTION: H•ndles the processfog of• DATA buffer eluent fl"Oll the HS_TO_PS_BUFFER_LIST. 

INPIJT: 

OllTP\11': 

The procedure first checks to see if the data •t the beginning of the buffer 
is • PS header or a logical record having an inv•lid LL v•lue, in order to 
take appropriate action. 

If the data at the beginning of the buffer is not • PS header or •n invdid 
LL, further processing of the DATA buffer element occurs, as described belON. 

The RCB corresponding to the resource specified in the passed RECEIVE verb 
para111eters, the DATA buffer el....-.t frOll the HS_TO_PS_BUFFER_LIST, and RECEIVE 
verb parameters. 

The RE~N_CODE and WHAT_RECEIVED para•eters of the RECEIVE verb are updated. 

NOTES: 1. If the data in the passed BUFFER_DATA begins on a logical record bolaidary 
(i.e., the last data passed to the transaction program was a C0111Plete conver­
saUon record or the last ruaining portion of a logical record, or no data 
has bean passed to the transaction program since it last entered the receive 
state) and both bytes of the next logical record's LL field are present in 
BUFFER_DATA, data is llOVed fro• the BUFFER_DATA para111eter to the DATA parame­
ter of the passed RECEIVE verb. 

2. If the data in the passed BUFFER_DATA begins on a logical record boundary, but 
only the first byte of the next 2-byte LL field is present in BUFFER_DATA, 
this procedure checks to see if any other information has been received fol­
lONing the first byte of the LL. If the LL has been truicated by receipt of 
an FMH-7, the LL byte is placed in the DATA para .. ter of the passed RECEIVE 
verb and control is returned to the transaction progra•. (The FHH-7 is proc­
essed when the transaction program issues another record.) If the LL has been 
trlileated invalidly by receipt of information other than an FMH-7, the partner 
LU has connaitted a protocol violation and the session over which the conversa­
tion is occur.-ing is deactivated. If no inforution follows the fh·st byte of 
the LL, it is saved in the buffer and control is returned to the transaction 
program. CThe first byte of the LL is not passed to the transaction program. 
Until the second byte of the 2-byte LL field arrives, PS does not knON if the 
LL is •ssociated with• logical record or with a PS header.) 

3. If the data fo the passed BUFFER_DATA does not begin on a conversation record 
boundary l i.e., part, but not all, of a logical record has already been passed 
to the transaction progra•)• data is aoved fro• the BUFFER_DATA to the DATA 
parameter of the passed RECEIVE verb. 

Referenced procedures, FSMs, •nd data structures: 
PS_SPS 
PS_PROTOCOL_ERROR 
RECEIVE_DATA_PROCESSING 
RCB 

Select based on the follow;ng conditions: 
Wl8n BUFFER_DATA hi the beg;nning of a log;cal 

record and is a PS header 
If RCB.SYNC_LEVEL = SYNCPT then 

Call PS_SPS (page 5.3-35). 
Else (as an implementation-dependent option) 

Call PS_PROTOCOL_ERROR (page 5.0-15) 
N;th X'l0010000' for RU Data Error 

i.t.en BUFFER_DATA ;s the beginning of a logical record and 
has an invalid LL (as an i11plementation-depenclent option) 

Call PS_PROTOCOL_ERROR (page 5.0-15) 
Nith X'lOOlOOOO' for RU Data Error. 

OtherN;se 
Select based on the following conditions: 

""8n BUFFER_DATA is the beginning of a logical 
record and its length is greater than 1 

page S.3-35 
page 5.0-15 
page 5.1-50 
page A-7 

Call RECEIVE_DATA_PROCESSIN6 (RCB, BUFFER_DATA, RECEIVE verb parameters) 
(page 5.1-50). 

SHA For•at and Protocol Reference Hanual for LU Type 6.2 



PROCESS_DATA_PROC 

When BUFFER_DATA ;s the beg;nn;ng of a log;cal record and 
its length ;s 1 c;.e., LL f;eld poss;bly spl;t at buffer boundaries>: 

If HS_TO_PS_BUFFER_LIST ;s not empty then 
If buffer in the HS_TO_PS_BUFFER_LIST ;s of FMH-7 type then 

Set RETURN_CODE of the RECEIVE verb to OK. 
If RCB.POST_CONDITIONS.MAX_LENGTH > 0 then 

Set DATA of RECEIVE verb to BUFFER_DATA. 
Set BUFFER_DATA to null value. 
Set LENGTH of RECEIVE verb to 1. 

If RCB.POST_CONDITIONS.FILL = BUFFER then 
Set WHAT_RECEIVED of receive verb to DATA. 

Else 
Set WHAT_RECEIVED of RECEIVE verb to DATA_INCOMPLETE. 

Else Copt;onal ;nstallation check> 
Call PS_PROTOCOL_ERROR lpage 5.0-15) 

with X'l0010000' for RU Data Error. 
Else c;.e., buffer list is empty> 

Set RETURN_CODE of RECEIVE verb to UNSUCCESSFUL. 
When BUFFER_DATA is the cont;nuation of a logical record partially 
already received: 

Call RECEIVE_DATA_PROCESSINGCRCB.BUFFER_DATA, RECEIVE verb parameters> 
(page 5.1-50). 

Chapter 5.1. Presentat;on Services--Conversat;on Verbs 5.1-45 



PROC£SS_Fttt7_PROC 

PROCESS_Fttt7_PROC 

S.1-46 

FUNCTION: Invoked upon encO\l'\tering •n Fttt-7 buffer ellllllll"lt in the HS_TO_PS_BUFFER_LIST. 

The RETURN_COOE p•r•-t•r of the passed tr•n&•ction progra• verb is set .b••ed 
upon the sense data carried in the Fttt-7. If the Ftlt-7 indic•t• that log 
dat• follONSt this procedure si11Ulates a RECEIVE_ANl_WAIT verb •nd c•uses 
receive processing to take place. The RECEIVE_AND_WAIT processing Naits for • 
logical record, which consists of the log data, to arrive fro• HS. If the 
sense data carried in the Fttt-7 indicates • type of DEALLOCATE_ABEtll_* this 
procedure retrieves the deallocaUon notification fro• the receive buffer 
before returning to the transaction progra•. 

INPUT: The RCB corresponding to the resource to which the Fttt-7 applies, the received 
Fttt-7, and the transaction progra• verb currently being processed 

OUTPUT: The RETURN_COOE para-ter of the verb is set, basad . ...,on the sense data car­
ried in the passed Fttt-7J if log data follONS the Fttt-7, PS retrieves the log­
ical record containing the Error Log GOS variable and places it l•inus the LL 
and GOS ID fields) in the syst• error log of the local LU. 

NOTE: This error occurs when the Fttt-7 specifies that log data follows, but no log 
data is present. 

Referenced procedures, FSMs, and dat• structures: 
PS_ PROTOCOL_ ERROR 
POST_AND_WAIT_PROC 
PERFORH_RECEIVE_PROCESSING 
SET_Fttt7_RC 
FSM_COHVERSATIOH 
RCB 

As an implementation-dependent option perfor• receive check of the Fttt-7. 
If error fouid then 

Call PS_PROTOCOL_ERROR (page 5.0-15) 
Nith X'l0086000' (Request Error--Ftlt Length Incorrect) or Mith 
X'1008200E' (Request Error--Invalid Concatenation Bit). 

Set RCB.RECEIVE_LL_REl1AINDER to O. 
If Error Log GOS variable follows then 

Call POST_Atm_WAIT_PROCIRCB, LLt X'7FFF') lpage 5.l-40) 
to get the Nhole GOS variable. 

Create and inUialize RECEIVE_Atll_WAIT verb para•ters. Set the 
RESOlJ:lCE parameter to RCB.RCB_ID, FILL to Llt and LENGTH to X'7FFF'. 

page 5.0-15 
page 5.1-40 
page S.1-39 
page 5.1-57 
page S.1-63 
page A-7 

Call PERFORH_RECEIVE_PROCESSING(RCBt RECEIVE_AND_WAIT p•ra .. ters> (page 5.1-39). 
If RETURN_CODE of RECEIVE_AND_WAIT is OK and lltAT_RECEIVED 
is DATA_COMPLETE then 

Insert error data into system error log. 
Else (as an h1ple•entation-dependent opt;on) 

Call PS_PROTOCOL_ERROR (page 5.0-15) 
Mith X'1008201D' (log data is expected but absent>. 

If sense data is DEALLOCATE_ABEtll then 
Call PROCESS,;..RH_OR_HS_ TO_PS_RECORDS (page 5. 1-lt 7) 

1111ith RCB_ID and SUSPEND, and remove DEALLOCATE bUffer frOll RCB.HS_TO_PS_BUFFER_LIST. 
If no DEALLOCATE_FLUSH or DEALLOCATE_CONFIRH is fo\h:t then 

Call PS_PROTOCOL_ERROR (page 5.0-15> Mith X'1008201D'. 
If the state of FSM_COHVERSATION Cpage 5.1-63) = SEtll then 

Set RCB.SEND_lL_REMAINDER to O. 
Set RCB.SEND_LL_BYTE of RCB to NOT_PRESENT, 

Call SET_Ftti7_RCtRCB, Fttt-7, transaction progra• verb parameters> ~page 5.1-57>. 

SHA For .. t.and Protocol Reference Hanual for LU Type 6.2 



PROCESS_RM_DR_HS_TO_PS_RECORDS 

PROCESS_RM_OR_HS_TO_PS_RECORDS 

FUNCTION: Processes records rece;ved from RM and HS for.the conversat;on ;dent;fied by 
RCB_ID. If posting has been activated for the conversation, the 
TEST_FOR_POST_SATISFIED procedure is called to determine whether the post con­
ditions have been satisfied by the newly received information. 

INPUT: RCB_ID, the ID of the conversation and SUSPEND_FLAG. If SUSPEND_FLAG : SUS­
PEND, this procedure waits for at least one record to be received from RM or 
HS. 

OUTPUT: The RCB associated with each received record is updated to record the receipt 
of the record. 

NOTES: 1. The only records that PS can receive from RM here are CONVERSATION_FAILURE 
records. 

2. RECEIVE_DATA is enque~ed in the appropriate RCB.HS_TO_PS_BUFFER_LIST. For 
other HS_TO_PS_RECORDs, an indication that the record was received is stored 
in the appropriate RCB. 

Referenced procedures, FSMs, and data structures: 
PS 
HS 
RM 
RECEIVE_RM_OR_HS_TO_PS_RECORD 
CONVERSATION_FAILURE_PROC 
PS_PROTOCOL_ERROR 
TEST_FOR_POST_SATISFIED 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
FSM_POST 
RCB 
RM_TO_PS_RECORD 
HS_TO_PS_RECORD 

Call RECEIVE_RM_OR_HS_TO_PS_RECORDCRCB_ID, SUSPEND_FLAG) Cpage 5.1-51) 
to receive RECORD. 

Do while RECORD is not null: 

Select based on the origin of the record: 
When origin is RM 

Call CONVERSATION_FAILURE_PROC Cpage 5.1-31) 
with RECORD. 

When origin is HS 

Select based on RECORD type: 
When REQUEST_TO_SEND 

Record that a request to send was received 
on this conversation. 

When RECEIVED ERROR 

page 5.0-5 
page 6.0-3 
page 3-18 
page 5.1-51 
page 5.1-31 
page 5.0-15 
page 5.1-58 
page 5.1-63 
page 5.1-65 
page 5.1-66 
page A-7 
page A-32 
page A-12 

Call FSM_ERROR_OR_FAILURECRECEIVE_ERROR, RCB) Cpage 5.1-65). 
When RECEIVE_DATA 

If state of FSM_CONVERSATION is RCV or 
state of FSM_ERROR_OR_FAILURE Cpage 5.1-65) is RCVD_ERROR then 

Insert the record into RCB.HS_TO_PS_LIST. 

Else Cas an implementation-dependent option) 
Call PS_PROTOCOL_ERROR Cpage 5.0-15) 

with X'20040000' for State Error--Direction. 

Call RECEIVE_RM_OR_HS_TO_PS_RECORDCRCB_ID, SUSPEND_FLAG> Cpage 5.1-51) 
and receive RECORD. 

If state of FSM_POST Cpage 5.1-66) is PEND_POSTED then 
Call TEST_FOR_POST_SATISFIEDCRCB> Cpage 5.1-58). 

Chapter S.1. Presentation Services--Conversation Verbs 5.1-47 



RCB_ALLOCATED_PROC 

RCB_ALLOCATED_PROC 

5.1-48 

FUNCTION: Performs further processing of an ALLOCATE request. It is invoked when PS 
receives an RCB_ALLOCATED record from the resources manager. 

INPUT: 

OUTPUT: 

The RETURN_CODE parameter of the ALLOCATE verb is set based upon the return 
code field of the RCB_ALLOCATED record. If the return code is OK, PS finishes 
initializing the new RCB Ci.e., those fields not already initialized by RMl. 
In addition, if the RETURN_CONTROL parameter of ALLOCATE is 
WHEN_SESSION_ALLOCATEO, PS requests that a session be obtained for this con­
versation. 

If the return code in RCB ALLOCATED is not OK, PS sets the RETURN_CODE parame­
ter of the ALLOCATE appropriately. 

RCB_ALLOCATED record and ALLOCATE verb parameters 

PS creates an FMH-5 Attach header and stores it in the send buffer in the RCB. 

NOTES: 1. If RETURN_CONTROL = IMMEDIATE, RM has allocated both an RCB and a session as a 
result of receiving ALLOCATE_RCB from PS. If RETURN_CONTROL = 
DELAYED_ALLOCATION_PERMITTED, PS defers sending a session request to RM until 
it has accumulated enough data <via SEND_DATAs from the transaction program) 
to fill its send buffer. 

2. A return code of UNSUCCESSFUL in reply to an ALLOCATE !RETURN CONTROL = IMME­
DIATE) indicates that no first-speaker half-sessions are curre~tly available. 

3. The resources manager returns to PS an ALLOCATE_FAILURE return code to a ses­
sion allocation request when no sessions having the specified CLU name, mode 
name) pair are active and a condition (either temporary or permanent, as 
reflected in the return code) exists such that no sessions can currently be 
activated. 

4. The resources manager returns to PS a SYNC_LEVEL_NOT_SUPPORTED return code to 
a session allocation request when a session having the specified CLU name, 
mode name) pair is active, but the synchronization level specified by the 
transaction program on ALLOCATE is not supported by the partner LU. 

Referenced procedures, FSMs, and data structures: 
OBTAIN_SESSION_PROC 
SEND_DATA_TO_HS_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB_ALLOCATED 
ATTACH_RECEIVED 
RCB 
TCB 

SNA Format and Protocol Reference Manual for LU Type 6.2 

page 5.1-38 
page 5.1-52 
page 5.1-63 
page 5.1-65 
page A-32 
page A-32 
page A-7 
page A-10 



RC8_ALLOCATED_PROC 

Select bHed on RCB_ALLOCATED.REl\JULCOOE (see Notes lo 2, and 3J: 
When OK 

Set RETURN_CODE of l\LLOCATE verb to OK. 
Call FSH_CONVERSATIDN(S, ALLOCATE, RCB) (page 5.1-63). 
Set RESOURCE para111eter of ALLOCATE to RCB hlentUier. 

Initialize allocated RCB: set RCB.PS_TO_HS_RECORD fields to 
ALLOCATE, FNHt NOT_END_OF_DATAt and null data. 
Set SEND_LL_REt1AlNDER to O, RECEIVE_LL_REHAINDER to Ot 
HAX_BUFFER_LENGTH to •ax;llUM buffer length allowed 
(implementation dependent>. Rll.,TO_SEND_RCVO to NOo 
LOCKS to SHORT, POST_CCJN)ITIDNS.FILL to LL, 
POST_CONDITIONS.HAX_LENGTH to Ot SEND_LL_BYTE to 
NOT_PRESEHTt COHVERSATION_TYPE to TYPE parameter value of ALLOCATE verb, 
and SYNC_LEVEL to ALLOCATE.SYNC_LEVEL. 

Build FNH-5 Attach header (see Appendix H> with data in ALLOCATE. 

If RC8.SECURITY_SELECT parameter is HONE then 
Set the security indicator field of the Attach to user ID is not already verified. 

If RCB.SECURITY_SELECT parameter is SAHE then 
If the security user ID is present in the TCB then 

Set the security indicator field of the Attach to user ID is already verified. 
Else 

Set the security indicator f;eld of the Attach to user ID is not already verified. 
Set RCB.SECURITY_SELECT to NONE (represents downgrade 

fro• previous value of SAHE>. 

Select based on RCB.SECURITY_SELECT: 
When HONE 

Attach password, profile, and user ID are omitted. 
When SAHE 

Attach profile and user ID fields are set using data fr011 the TCB. 
When P6H 

Attach passNOrd1 profile, and user ID fields are set as specified 
on the ALLOCATE verb. 

Complete building FHH-5 Attach header with re•aining data in ALLOCATE (see Appendix Hl, 
and place it in the RCB.PS_TO_HS_RECORD.DATA. 

If RETURN_COHTROL para•eter is loltEN_SESSION_ALLOCATED 
(see Note 1 for the other cases> then 

Call OBTAIN_SESSION_PROC(RCB, HO_ATTACH) (page 5.1-3&>. 

If state of FSM_ERROR_OR_FAILURE (page 5.1-65) is 
(ALLOCATE_FAILURE_RETRY I SYNCLEVEL_HOT_SUPPORTED I ALLOCATE_FAILURE_NO_RETRY> then 

Set RETURN_CODE of ALLOCATE to ALLOCATIOH_ERROR with a subcode of 
ALLOCATION_FAILURE_RETRY, ALLOCATION_FAILURE_NO_RETRY, or 
SYNC_LEVEL_NOT_SUPPORTED_BY_LU, as appropriate. 

Call FSH_CONVERSATION(R, ALLOCATIOH_ERROR_Rc, RCB) (page 5.1-63). 

Else 
If the FHH-5 is to be flushed (as an implementation-dependent option) then 

Set the RCB.PS_TO_HS_RECORD.TYPE to FLUSH. 
Call SEND_DATA_TO_HS_PROC tRCB> (page S.1-52). 

~ UNSUCCESSFUL 
Set RETURN_CODE of ALLOCATE to UNSUCCESSFUL. 

"'1en SYNC_LEVEL_NOT_SUPPORTED 
Call FSM_CONVERSATIONlS, ALLOCATE. RCB) (page 5.1-63). 
Initialize allocated RCB (for details see above). 
Call FSH_CONVERSATION(R, ALLOCATION_ERROR_RC, RCB> (page 5.1-63). 
Set RETURN_COOE to ALLOCATION_ERROR_SYNC_LEVEL_NOT_SUPPORTED_BY_LU (see Note 4). 

Chapter 5.1. Presentation Servicea--Converaation Verbs 5.1-49 



RECEIVE_DATA_PROCESSIN6 

RECEIVE_DATA_PROCESSIN6 

S.1-50 

FIMCfION: '' Hoves data fra the passed BUFFER_DATA pare11eter to the .-.turned DATA paraH­
ter of the passed RECEIVE verb. 

If the transaction progra• has specified that it is to receive data in ta.-.. 
of the logfoal record format of the data Ci.a., RCB.POST_COHDITIONS.FILL = 
LL>. data is 110ved fra. BUFFER_DATA to the DATA parameter of the passed 
RECEIVE verb.· 

If the transaction program has specified that it is to receive data independ­
ent of the logical record format of the data Ci.e., RC8.POST_COHDITIONS.FILL: 
BUFFER), data is llOved fro• BUFFER_DATl to the DATA paraMter of .the passed 
receive verb one or more times, depending upon the aMOUnt of dilta requested by 
the transaction program and the number of logical records in the buffer. For 
exa111ple, if the transaction program has requested 20 bytes of data and 25 
bytes of data (comprising 3 logical records of lengths 7 bytes, 9 bytes, and 9 
bytes, respectively) are in BUFFER_DATA, RECEIVE_DATA_BUFFER_MANAGENENT is 
invoked once to receive the first logical record lyielding 7 bytes of data in 
the DATA field). It is invoked a second ti11e to receive the second logical 
record (yielding 16 bytes of data in the DATA field). And finally it is 
invoked again to receive the first four bytes of the third logical record 
(yielding 20 bytes of data in the DATA field, which is the amount the trans­
action progra• requested). 

INPUT: The entry in the RCB_LIST corresponding to the resource specified in 
RECEIVE_VERB, a data buffer element CDATA_BUFFER) frOlt the 
RCB.HS_TO_PS_BUFFER_LIST, and RECEIVE verb parameters 

OUTPUT: The DATA_BUFFER, and lrl-IAT_RECEIVED and DATA parameters of the passed RECEIVE 
verb are updated. 

NOTE: When FILL = LL is specified, the lrl-IAT_RECEIVED parameter of the RECEIVE verb 
is set to DATA_COMPLETE lllhen a complete logical record or the last rewiaining 
portion of a logical record, is passed to the transaction progr••· OtherNise, 
the WHAT_RECEIVED is set to DATA_IHCOMPLETE when FILL = LL is specified. 

Referenced procedures, FSHs, and data structures: 
RCB 

Select based on RCB.POST_COHDITIONS.FILL: 
When LL 

If already received a complete logical record 
Ci.e., RCB.POST_CONDITIONS.tlAX_LENGTH: 0) then 

Set WHAT_RECEIVED of receive verb to DATA_INCotlPLETE. 
Else 

Set DATA of receive verb to the first LEN bytes 
(LEN is the smaller of RECEIVE_Ll_REMAINDER and 
RCB.POST_CONDITIONS.MAX_lENGTH> of the DATA_BUFFER and 
subtract LEN f rOll RECEIVE_LL_REMAitl>ER and 
RCB.POST_CONDITIONS.MAX_LENGTH. Remove the first LEN bytes 
frOll the DATA_BUFFER. 

If RECEIVE_LL_REMAitl>ER : 0 then 
Set WHAT_RECEIVED of RECEIVE verb to DATA_CotlPLETE. 

Else 
Set WHAT_RECEIVED of RECEIVE verb to DATA_INCOHPLETE. 

When BUFFER 
Set WHAT_RECEIVED of RECEIVE verb to DATA. 
Do while RCB.POST_CONDITIONS.MAX_LENGTH > 0 and 
Nhile the of length BUFFER_DATA > 0 

If RECEIVE_LL_REMAitl>ER = 0 and length of BUFFER_DATA = 1 then 
Set RCB.POST_Cotl>ITIONS.MAX_LENGTH to O. 

Else 
Set DATA of RECEIVE verb to OATA_BUFFER as described above. 

Set RETURN_CODE of RECEIVE verb to OK. 
Set LENGTH parameter of RECEIVE verb to length of DATA of RECEIVE verb. 

SHA ForHt and Protocol Reference Manual for LU Type 6.2 

page A-7 



RECEIVE_RM_OR_HS_TO_PS_RECORD 

RECEIVE_RM_OR_HS_TO_PS_RECORD 

FUNCTION: Returns a record sent by RM (or HS) to the conversation identified by RCB_ID. 

INPUT: RCB_ID (the ID of the conversation), and SUSPEND_FLAG 

OUTPUT: A record received from RM or HS. This record may be null if no record is 
available and SUSPEND_FLAG = NO_SUSPEND. 

NOTE: CONVERSATION_FAILURE is the only possible record that can arrive from RM. 

Referenced procedures, FSMs, and data structures: 
PS 
HS 
RM 
CONVERSATION_FAILURE 
HS_TO_PS_RECORD 
RCB 

If SUSPEND_FLAG = SUSPEND then 
Wait until a record has arr•ved from RM or HS for 
conversation RCB_IO. 

Else (i.e., wnen SUSPEND_FLAG=NO_SUSPEND) 
uet the record arrived from RM or HS 

(Record may be null if no record ~~s arrived yet.) 
Return record. 

SEND_DATA_BUFFER_MANAGEMENT 

FUNCTION: Determines if there is enough data to be sent to HS. 

page S.0-S 
page 6.0-3 
page 3-18 
page A-32 
page A-12 
page A-7 

PS continues to send data to HS until the amowit of data rema1n1ng to be sent 
is less than or equal to the maximum buffer size, in which case PS stores the 
data in the RCB until more data is issued by the transaction program or the 
buffer is flushed. If the data in the buffer is exactly equal to the maximum 
buffer size, PS stores the data to be sent later. 

INPUT: Data to be sent to HS and the RCB corresponding to the resource specified in 
the current TRANSACJION_PGM_VERB 

OUTPUT: If enough data has been accumulated in the RCB buffer, one or more 
SEND_DATARECORDs are sent to HS. Otherwise, the data is stored in the RCB to 
be sent at a later time. 

Referenced procedures, FSMs, and data structures: 
SEND_DATA_TO_HS_PROC 
FSM_ERROR_OR_FAILURE 
RCB 

Set TEMP_BUFFER to RCB.PS_TO_HS_RECORO_DATA concatenated to DATA. 
Set NO_ERROR_OR_FAILURE to true. 
Do while length of TEMP_BUFFER > RCB.MAX_BUFFER_LENGTH 
~nd NO_ERROR_OR_FAILURE is true: 

Set RCB.PS_TO_HS_RECORD.DATA to first RCB.MAX_BUFFER_LENGTH bytes 
of the TEMP_BUFFER, remove these bytes from TEMP_BUFFER. 

Call SEND_DATA_TO_HS_PROCCRCB) Cpage S.1-52). 
If state of FSM_ERROR_OR_FAILURE (page S.1-65) 

page S.l-52 
page S.l-6S 
page A-7 

is ALLOCATE_FAILURE_RETRY I ALLOCATE_FAILURE_NO_RETRY SYNCLEVEL_NOT_SUPPORTED then 
Set NO_ERROR_OR_FAILURE to false. 

Move TEMP_BUFFER into RCB.PS_TO_HS_RECORD.DATA. 

Chapter S.l. Presentation Services--Conversation Verbs 5.1-Sl 



SEND_DATA_TO_HS_PROC 

S.1-52 

SEND_DATA_TO_HS_PROC 

FUNCTION: Handles the sendh'9 of data to HS to be sent to the partner transaction pro­
gram. 

If no session has as yet been allocated to the conversation associated Mith 
the passed RCB, PS noM requests a session frOll the ruourcas uneger. If the 
transaction progrH has stopped sanding data and has issued DEALLOCATE, PRE­
PARE_TO_RECEIVE, and/or CONFIRH, PS requests RH to send the data, Mhich con­
tains an Attach header, Mhen RH allocates the session. OtherMise, PS sends 
the data itself Wien RH has allocated a session. 

INPUT: The RCB associated with the conversation 

OlITPUT: SEND_DATA_RECORD to HS 

Referenced procedures, FSHs, and data structures: 
PS 
HS 
OBTAIN_SESSION_PROC 
RCB 
SEND_DATA_RECORD 

If no session has been allocated to this conversation then 
If RCB.PS_TO_HS_RECORD.TYPE = FLUSH I NOT_END_OF_DATA then 

Call OBTAIN_SESSION_PROCCRCB, NO_ATTACH) (page 5.1-38). 
Create a SEND_DATA_RECORD, copy RCB.PS_TO_HS_RECORD into it, and 

send it to HS. 
Else 

Call OBTAIN_SESSION_PROCCRCB, ATTACH) Cpage S.1-38). 
Else (session previously allocated> · 

Create a SEND_DATA_RECORD, copy RCB.PS_TO_HS_RECORD into itt and 
send it to HS. 

Set RCB.PS_TO_HS_RECORD fields .. lls .. ,folloNS: 
ALLOCATE to NQ, Ftlt to NO, TYPE to NOT_END_OF_DATAt and DATA to null. 

SNA Forut and Protocol Reference Hanual for LU Type 6.2 

page s.o-s 
page 6.0•3 
page S.1-38 
page A-7 
page A-24 



SEl-l>_ERROR_OONE_PROC 

SEND_ERROR_DONE_PROC 

FUNCTION: TMs proceck.Jre pedonns further processing of the SEtl>_ERROR verb. 

It creates an Ftlt-7 record, and selects the sense data to be inserted in the 
Ftlt-7 based upon the type of SEND_ERROR, the state of the conversation, and 
whether the outgoing logical record is complete. If the transaction progra• 
is in send state and has completed the current logical record, sense data 
indicating that no tr~ation of data has taken place is inserted into the 
Ftlt-7. If the transaction progra• is in send state and has not completed the 
current logical record, sense data indicating data trl.alCation has occurred in 
inserted into the Ftlt-7. Finally, if the transaction progra• is in receive 
state, sense data indicating that data sent by the partner transaction program 
is being purged by the half-session is inserted into the Ft1H-7. 

Sense data X'08890000' and X'08890100' have either of two 11eanings, depending 
upon l>lhether the transaction progra• is in send or receive state. 

INPUT: SEND_ERROR verb paraMeters and the RCB corresponding to the resource specified 
in the SEND_ERROR 

OUTPUT: An FMH-7 is created and stored in the RCB send buffer. If any log data is 
associated Ni th the SEND_ERROR, PS creates an Error Log GDS variable (see "Ap­
pendix H. FH Header and LU Services C~ands") and stores the GOS variable in 
the RCB send buffer following the FHH-7. PS also places the GOS variable !mi­
nus the LL and GOS ID fields I in the systu error log at the local LU. PS 
returns to the transaction progra• with the RETURN_COOE parameter in the 
SEND_ERROR set to OK. 

Referenced procedures, FSHs, and data structures: 
SEND_OATA_TO_HS_PROC 
SENO_OATA_BUFFER_MANAGEHENT 
FSM_CONVERSATION 
RCB 

Select based on the following conditions: 
lfien TYPE parameter of SEND_ERROR verb is PROG and state 
of FSH_CONVERSATION !page 5.1-63) is SEND 

If data sent by the TP is at a logical record boundary then 
Set SENSE_DATA to X'08890000'. 

Else 
Set SENSE_DATA to X'08890001'. 

lfien TYPE parameter of SENO_ERROR verb is PROG 
and state of FSM_CONVERSATIOH Cpage 5.1-63) is RCV, 
RCVO_CONFIRM, RCVO_COHFIRl1_SEtl), RCVO_COHFIRH_DEALL 

Set SENSE_DATA to X'08890000'. , 
When type of SEND_ERROR is SVC 

and state of FSM_CONVERSATION (page 5.1-63) is SEND 
If data sent by the TP is at a logical record boundary then 

Set SENSE_DATA to X'08890100'. 
Else 

Set SENSE_DATA to X'08890101'. 
When TYPE para•eter of SEND_ERROR is SVC 
and state of FSM_COHVERSATION (page 5.1-63) is 
RCV I RCVD_CONFIRH I RCVO_CONFIRl1_SEND I RCVD_CONFIRH_DEALL 

Set SENSE_OATA to X'08890100'. 
If LOG_DATA parameter of SEtl>_ERROR is not null then 

Move SENSE_OATA into RCB.PS_TO_HS_RECORD.DATA as an Ftlt-7 record. 
Create Error log GOS variable with the LOG_DATA and con~tenate 
it, to RCB.PS_TO_HS_RECORD.DATA. 

Insert Error Log GOS variable into a system error log. 
Else 

Hove SENSE_DATA into RCB.PS_TO_HS_RECORD.DATA as an FHH-7 record. 
If FLUSH verb is not i111Plemented or the FMH-7 is 
to be flushed i111111ediately then (as an i111plemenhtion-dependent option> 

Set type of RCB.PS_TO_HS_RECORD to FLUSH. 
Call SEND_DATA_TO_HS_PROCIRCB) (page 5.1-52). 

Else 
Call SENO_OATA_BUFFER_MANAGEHENT !null data, RCB> !page 5.1-51). 

Set RETURN_CODE of SEND_ERROR to OK. 

page 5.1-52 
page 5.1-51 
page 5.1-63 
page A-7 

Chapter S.1. Presentation Services--Conversation Verbs 5.1-53 



SEND_ERROR_IN_RECEIVE_STATE 

5.1-54 

SEND_ERROR_IN_RECEIVE_STATE 

FUNCTION: Invoked when the transaction program issues a SEND_ERROR for a conversation 
that is in the RECEIVE state. Further processing of the SEND_ERROR is depend­
ent upon what information, if any, has been received from HS and stored in the 
HS_TO_PS_BUFFER_LIST, as described below. 

INPUT: 

OUTPUT: 

SEND_ERROR verb parameters and the RCB corresponding to the resource specified 
in the SEND_ERROR record 

See below. 

NOTES: 1. If a RECEIVE_DATA record with TYPE parameter set to DEALLOCATE has been 
received from HS, PS returns to the transaction program after setting the 
RETURN_CODE parameter of the SEND_ERROR to DEALLOCATE_NORMAL. 

2. If the first element in the RCB.HS_TO_PS_BUFFER_LIST is not a DEALLOCATE buff­
er element, or if the RCB.HS_TO_PS_BUFFER_LIST is empty, PS sends a SEND_ERROR 
record to HS. PS then creates an FMH-7 and stores it in the RCB send buffer. 

Referenced procedures, FSMs, and data structures: 
PS page 5.0-5 
HS page 6.0-3 
WAIT_FOR_SEND_ERROR_DONE_PROC page 5.1-62 
FSM_CONVERSATION page 5.1-63 
RCB page A-7 
SEND_ERROR page A-24 

If first entry on RCB.HS_TO_PS_BUFFER_LIST is DEALLOCATE_FLUSH (see Note 1) then 
Set RETURN_CODE parameter of the SEND_ERROR verb to DEALLOCATE_NORMAL. 
Call FSM_CONVERSATION<R, DEALLOCATE_NORMAL_Rc, RCBl (page 5.1-63). 

Else <see Note 2) 
Send SEND_ERROR record to HS. 
Call WAIT_FOR_SEND_ERROR_DONE_PROCCSEND_ERROR verb parameters, RCB> (page 5.1-62). 

SNA Format and Protocol Reference Manual for LU Type 6.2 



SEND_ERROR_IN_SEND_STATE 

SEND_ERROR_IN_SEND_STATE 

FUNCTION: Invoked when the transaction program issues a SEND_ERROR verb for a conversa­
tion that is in the SEND state. 

If the state of FSM ERROR OR FAILURE indicates that no RECEIVE_ERROR record 
has been received from HS,- a~y data in PS's send buffer is sent to HS and an 
FMH-7 is created and stored in the buffer. 

If the state of FSM ERROR OR FAILURE indicates that a RECEIVE ERROR record has 
been received from HS, PS sends a SEND DATA record with the TYPE field set to 
PREPARE_TO_RCV_FLUSH to HS. <Any data-in the RCB send buffer was purged when 
the RECEIVE_ERROR record was received.) PS then waits for the expected FMH-7 
to arrive. The RETURN_CODE parameter of the SEND_ERROR is set based upon the 
sense data carried in the FMH-7. 

INPUT: SEND_ERROR verb parameters and the RCB corresponding to the resource specified 
in the SEND_ERROR. 

OUTPUT: Any data in PS's buffer is sent to HS and an FMH-7 is created and stored in 
the RCB. 

NOTE: If no session has been allocated to this conversation (i.e., the ALLOCATE verb 
issued to allocate the conversation specified 
DELAYED_ALLOCATION_PERMITTEOJ, PS now requests a session 
manager. If, while attempting to allocate a session, the 
error, PS sets the RETURN_CODE parameter in the SEND_ERROR 
of allocation error and returns control to the transaction 

RETURN CONTROL = 
from the resources 
local LU detects an 
to reflect the type 
program. 

Referenced procedures, FSMs, and data structures: 
SENO_OATA_TO_HS_PROC 
SEND_ERROR_DONE_PROC 
POST_AND_WAIT_PROC 
DEQUEUE_FMH7_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 

If state of FSM_ERROR_OR_FAILURE = NO_RQS then 
Set CONTINUE to true. 

If RCB.PS_TO_HS_RECORD.TYPE is not null then 
Set RCB.PS TO HS RECORD.TYPE to FLUSH. 
Call SEND_DATA_TO_HS_PROC<RCBJ <page 5.1-52!. 

page 5.1-52 
page 5.1-53 
page 5.1-40 
pcige 5.1-36 
pcige 5.1-63 
pcige 5.1-65 
page A-7 

If state of FSM_ERROR_OR_FAILURE (page 5.1-65) is 
ALLOCATE FAILURE RETRY I ALLOCATE FAILURE NO RETRY 
I SYNCLEVEL NOT SUPPORTED then Cs;e Note)- -

Set RETURN_CODE parameter of SEND_ERROR verb to ALLOCATION_ERROR with a subcode of 
ALLOCATION FAILURE RETRY, ALLOCATION FAILURE NO RETRY, or 
SYNC_LEVEL=NOT_SUPPORTED_BY_LU, as appropriate.-

Call FSM_CONVERSATION<R, ALLOCATION_ERROR_RC, RCBJ <page 5.1-63!. 
Set CONTINUE to false. 

If CONTINUE then 
Call FSM_CONVERSATION(S, SEND_ERROR, RCBJ (page 5.1-52!. 
Call SEND_ERROR_DONE_PROCCSEND_ERROR verb parcimeters, RCBJ (page 5.1-53!. 
Set RCB.SEND_LL_REMAINDER to 0 and set RCB.SEND_LL_BYTE to NOT_PRESENT to 

indicate that the data sent by TP is at a logical boundary. 

~hapter 5.1. Presentation Services--Conversation Verbs 5.1-55 



SEND_ERROR_IN_SEND_STATE 

5.1-56 

Else <i.e., RCVD_ERROR) 
Set RCB.PS_TO_HS_RECORD type to PREPARE_TO_RCV_FLUSH. 
Call SEND_DATA~TO_HS_PROCIRCB) (page 5.1-52>. 
Call POST_ANO_WAIT_PROCCRCB, LL, X'7Fff') (page 5.1-40) to post 

when the whole FHH7 is received. 
If state of FSM_ERROR_OR_FAILURE (page 5.1-65) is CONV_FAILURE_SON or 

CONV_FAILURE_PROTOCOL_ERROR then 
If state of FSM_ERROR_OR_FAILURE (page 5.1-65) is CONV_FAILURE_SON then 

Set RETURN_COOE to RESOURCE_FAILURE_RETRY. 
Else 

Set RETURN_COOE to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_Rc. RCB> <page 5.1-63). 

Else 
Call OEQUEUE_FMH7_PROCISEND_ERROR verb parameters, RCB) Cpage 5.1-36). 

SENO_ERROR_TO_HS_PROC 

FUNCTION: This procedure creates a SEND_ERROR and sends it to HS. 

INPUT: The RCB associated with the HS to which the SEND_ERROR is to be sent 

OUTPUT: SEND_ERROR Ca variant of PS_TO_HS_RECORD> to PS 

Referenced procedures, FSMs, and data structures: 
PS 

RCB 
SEND_ERROR 

Create a SENO_ERROR record Cpage A-24> with RCB.RCB_ID. 

Send this SENO_ERROR record to HS. 

SNA Format and Protocol Reference Manual for LU Type 6.2 

page 5.0-5 

page A-7 
page A-24 



SET_FMH7_RC 

SET_FMH7_RC 

FUNCTION: 

INPUT: 

Sets the RETURN_CODE parameter of the passed transaction program verb based 
upon the sense data carried in the passed FMH-7. 

The RCB corresponding to the resource to which the FMH-7 applies, the received 
FMH-7, and the transaction program verb parameters currently being processed 

OUTPUT: The RETURN_CODE parameter of the verb is set, bas~d upon the sense data car­
ried in the FMH-7. 

Referenced procedures, FSMs, and data structures: 
PROCESS_RM_OR_HS_TO_PS_RECORDS 
PS_PROTOCOL_ERROR 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 

Select based on the Sense Data in FMH-7: 
When ALLOCATION ERROR code 

page 5.1-47 
page 5.0-15 
page 5.1-63 
page 5.1-65 
page A-7 

Call PROCESS=RM_OR_HS_TO_PS_RECORDS with RCB_ID and SUSPEND (page 5.1-47), 
and remove DEALLOCATE buffer from RCB.HS_TO_PS_BUFFER_LIST. 
If neither DEALLOCATE_FLUSH nor DEALLOCATE_CONFIRM are found then 

Call PS_PROTOCOL_ERROR (page 5.0-151 with X'l008201D'. 
Set RETURN_CODE parameter of the verb to the corresponding value <see Appendix H to 

find the value corresponding to a given Sense Data). 
Call FSM_CONVERSATIONIR, ALLOCATION_ERROR, RCBl (page 5.1-63). 

When RESOURCE FAILURE NO RETRY 
Set RETURN=CODE parameter of the TP verb to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATION<R. RESOURCE_FAILURE_Rc, RCBl (page 5.1-63). 

When PROG_ERROR_NO_TRUNC or PROG_ERROR_PURGING 
If state of FSM_ERROR_OR_FAILURE Cpage 5.1-65) is RCVD_ERROR then 

Set RETURN_CODE parameter of the verb to PROG_ERROR_PURGING. 

Else 
Set RETURN_CODE parameter of the verb to PROG_ERROR_NO_TRUNC. 

Call FSM_CONVERSATION(R, PROGRAM_ERROR_Rc, RCB) (page 5.1-63). 
When PROG_ERROR_TRUNC 

Set RETURN_CODE parameter of the verb to PROG_ERROR_TRUNC. 
Call FSM_CONVERSATION(R, PROGRAM_ERROR_RC, RCB> Cpage 5.1-63). 

When SVC_ERROR_NO_TRUNC or SVC_ERROR_PURGING 
If state of FSM_ERROR_OR_FAILURE !page 5.1-651 is RCVD_ERROR then 

Set RETURN_CODE parameter of the verb to SVC_ERROR_PURGING. 

Else 
Set RETURN_CODE parameter of the verb to SVC_ERROR_NO_TRUNC. 

Call FSM_CONVERSATIONIR, SERVICE_ERROR_RCl (page 5.1-63). 
When SVC ERROR TRUNC 

Set RETURN_CODE parameter of the verb to svc_ERROR_TRUNC. 
Call FSM_CONVERSATIONIR, SERVICE_ERROR_Rc, RCB) (page 5.1-63). 

When DEALLOCATE ABEND 
Set RETURN_CODE parameter of the verb to DEALLOCATE_ABEND_PROG, DEALLOCATE_ABEND_SVC, 

DEALLOCATE_ABEHD_TIMER, or to DEALLOCATE_ABEHD_RC 
as shown in Appendix G under X'0864' Sense Code. 

Call FSM_CONVERSATION(R, DEALLOCATE_ABEND_Rc, RCBl. 
Otherwise (as an implementation-dependent option): 

Call PS_PROTOCOL_ERROR Cpage 5.0-151 with FMH-7 Sense Data. 

Chapter 5.1; Presentation Services--Conversation Verbs 5.1-57 



TEST_FCJR_POST_SATISFIED 

TEST_FDR_POST_SATISFIED 

5.1-58 

FlH:TION: Testa Nhether the post conditions specified in the RCB have been satisfied. 

INPUT: The entry in the RCB_LIST corresponding to the resource to be tested. 

OUTPUT: The state of FSH_POST is set to POSTED if the post conditions ere satisfied. 

NOTES: 1. If there are no entries on the HS_TO_PS_BUFFER_LIST, the resource cannot be 
posted. 

2. Receipt of a CONFIRM, PREPARE_TO_RCV, or DEALLOCATE indicator causes the con­
versation to be posted. A later (optional> receive check determh'9s if the 
received indicator invalidly truncates a logical record end, if so, appropri­
ate action is taken at that ti••· Si•ilarly, receipt of • logical record with 
associated LL field containing an invalid value or indicating a PS header 
causes posting to occur. Processing of the invalid LL or PS header tak .. 
place at a later time. 

3. The high-order bit of the LL field is a Continuation bit, llolhich is on U'\less 
this logical record is the final one in the current 6DS variable. (Continued 
6DS variables and the information in this bit are specific to "Chapter 5.2. 
Presentation Services--Happed Conversation Verbs" in Chapter 5.2). 

4. If •~re than one entry is on the RCB.HS_TO_PS_BUFFER_LIST, one of the entries 
llUSt be a CONFIRM, PREPARE_TO_RCV, or DEALLOCATE indicator, Nhich causes the 
conversation to be posted. 

Referenced procedures, FSHs, and data structures: 
FSH_PfJST 
RCB 
BUFFER_ELEt1ENT 

Select based on nunber of entries in the RCB.HS_TO_PS_BUFFER_LIST: 
tllel'l 0 

Do nothing <see Note 1>. 
tllel'l 1 

Select based on the type of the first buffer in the list: 
lol\en CONFIRM I PREPARE_TO_RCV_CONFIRt1 I PREPARE_TO_RCV_FLUSH 

DEALLOCATE_COHFIRH I DEALLDCATE_FLUSH I FHH7 

page 5.1-66 
page A-7 
page A-8 

Call FSH_POST (page 5.1-66) and pass it a POST signal (see Note 2). 
When DATA 

Select based on RCB.POST_CONDITIONS.FILL: 
When BUFFER 

If length of buffer data ~ maximum length in POST_CONDITIONS, 
or if PS header or invalid length present (see Appendix H) then 

Call FSH_POST (page 5.1-66) and pass it a POST signal. 
When LL 

If RCB.RECEIVE_LL_REHAil-l>ER = 0 and length of buffer data ~ 2 then 
If PS header or invalid LL (see Appendix H and Note 3) then 

Call FSH_POST <page 5.1-661 and pass it a POST si~al. 

Else 

Else 

Calculate RCB.RECEIVE_Ll_REHAil-l>ER fro• LL in the buffer 
and high order bit forced to O. 

If length of buffer 2 RCB.RECEIVE_LL_REHAIHDER 
or ~ RCB.POST_CONDITIONS.t1AX_LENGTH then 

Call FSH_POST <page 5.1-66> and pass it a POST signal. 
Else 

Do nothing. 

If length of buffer data ~ RCB_RECEIVE_LL_REHAINDER 
or 2 RCB.POST_CONDITIOHS.MAX_LENGTH then 

Call FSH_POST (page 5.1-661 and pass it a POST si~al. 
Otherwise (number of entries ;s ~ 2, see Note 41 
Call FSH_POST (page 5.1-66> and pass ;t a POST signal. 

SNA Format and Protocol Reference Hanual for LU Type 6.2 



WAIT_FOR_CONFIRMED_PROC 

WAIT_FOR_CONFIRMED_PROC 

FUNCTION: Invoked after a SEND_DATA record ;ndicating CONFIRM has been sent to HS and a 
CONFIRMED record ;s expected in reply. 

INPUT: 

OUTPUT: 

HS can send other records to PS wh;le PS ;s wa;ting for the expected CONFIRMED 
record. Appropr;ate action ;s taken, depending upon the record rece;ved Csee 
below). 

The transact;on program verb that caused the CONFIRM ;nd;cator to be sent to 
HS, and the RCB corresponding to the resource specified in the transaction 
program verb 

See below. 

NOTES: 1. If a REQUEST_TO_SEND record ;s received, PS stores that ;nformat;on in the RCB 
to be relayed to the transaction program at a later time, and continues to 
wait for the expected.CONFIRMED record. 

2. If a RECEIVE_ERROR record ;s received, PS waits for the FMH-7 record corre­
sponding to the RECEIVE_ERROR to arr;ve from HS. The RETURN_CODE of the 
passed transaction program verb ;s set based upon the sense data carr;ed ;n 
the FMH-7. Control is then returned to the transaction program. 

3. If the expected CONFIRMED ;s received, PS returns control to the transact;on 
program. 

4. If the transaction program has ;ssued a DEALLOCATE CTYPE = SYNC_LEVELl and the 
SYNC_LEVEL of the conversation ;s CONFIRM, FSM_CONVERSATION w;11 be ;n the 
PEND_DEALL state when tne CONFIRMED record arr;ves. The CONFIRMED record 
causes the requested deallocation to be completed. 

Referenced procedures, fSMs, and data structures: 
PS 
HS 
RM 
RECEIVE_RM_OR_HS_TO_PS_RECORD 
CONVERSATION_FAILURE_PROC 
POST_AND_WAIT_PROC 
DEQUEUE_FMH7_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 
HS_TO_PS_RECORD 
RM_TO_PS_RECORD 

Set CONTINUE to true. 
Do while CONTINUE is true: 

Wait for record to arrive. 
If record arrived from RM then 

Call CONVERSATION_FAILURE_PROC w;th record Csee page 5.1-31). 

page 5.0-5 
page 6.0-3 
page 3-18 
page 5.1-51 
page 5.1-31 
page 5.1-40 
page 5.1-36 
page 5.1-63 
page 5.1-65 
page A-7 
page A-12 
page A-32 

If state of FSM_ERROR_OR_FAILURE Cpage 5.1-651 ;s CONV_FAILURE_SON then 
Set RETURN_CODE parameter of the verb to RESOURCE_FAILURE_RETRY. 

Else 
Set RETURN_CODE parameter of the verb to RESOURCE_FAILURE_NO_RETRY. 

Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_Rc, RCBl Cpage 5.1-63). 
Set CONTINUE to false. 

Chapter 5.1. Presentat;on Serv;ces--Conversat;on Verbs 5.1-59 



WAIT_FOR_CONFIRMED_PROC 

5.1-60 

Else Ci.e., record arrived from HS> 
Select based on record type: 

When REQUEST_TO_SEND 
Record in the RCB that request to send was received on the conversation. 

When RECEIVE_ERROR 
Call FSM_ERROR_OR_F AILUREC RECEIVE_ERROR, RCB) (page 5 .1-65). 
Call POST_AND_WAIT_PROCCRCB, LL, X'7FFF') Cpage 5.1-40). 
If state of FSM_ERROR_OR_FAILURE (page 5.1-65) is CONV_FAILURE_SON or 

CONV_FAILURE_PROTOCOL_ERROR then 
If state of FSM_ERROR_OR_FAILURE Cpage 5.1-65) is CONV_FAILURE_SON then 

Set RETURN_CODE parameter of the verb to RESOURCE_FAILURE_RETRY. 
Else 

Set RETURN_CODE parameter of the verb to RESOURCE_FAILURE_NO_RETRY. 
Call FSM_CONVERSATIONCR, RESOURCE_FAILURE_Rc. RCB> (page 5.1-63). 

Else 
Call DEQUEUE_FMH7_PROCCCONFIRM verb parameters, RCB> Cpage 5.1-36). 

Set CONTINUE to false. 
When CONFIRMED 

Set RETURN_CODE parameter of the verb to OK. 
If state of FSM_CONVERSATION is PEND_DEALL then 

Call FSM CONVERSATIONCR, DEALLOCATION INDICATOR, RCB) Cpage 5.1-63). 
Purge all records from HS to PS proce;s. 
Create DEALLOCATE_RCB, initialize it, and send it to RM. 

Set CONTINUE to FALSE. 

WAIT_FOR_RM_REPLY 

FUNCTION: Waits for an expected reply from the LU resources manager. 

INPUT: None 

OUTPUT: A record received from the resources manager 

NOTES: 1. CONVERSATION_FAILURE is the only racord that can arrive unexpectedly from the 
resources manager. 

2. Anv r~cord from the resources manager, other than CONVERSATION_FAILURE must be 
the expected reply. No more than one reply from the resources manager is out~ 
standing at any time. 

Referenced procedures, FSMs, and data structures: 
PS 
RM 
CONVERSATION_FAILURE_PROC 
RM_TO_PS_RECORD 

Set CONTINUE to true. 
Do while CONTINUE is true: 

Wait until RM_TO_Ps_RECORD has arrived from RM. 
If RM_TO_PS_RECORD type is CONVERSATION_FAILURE then 

Call CONVERSATION_FAILURE_PROCCRM_TO_PS_RECORD> Cpage 

Else 
Set CONTINUE to false. 
Return with RM_TO_PS_RECORD. 

SNA Format and Protocol Reference Manual for LU Type 6.2 

5.1-31). 

page 5.0-5 
page 3-18 
page 5.1-31 
page A-32 



WAIT_FOR_RSP_TO_RQ_TO_SEND_PROC 

WAIT_FOR_RSP_TO_RQ_TO_SEND_PROC 

FUNCTION: Invoked after PS has issued a REQUEST_TO_SEND to HS. The next record that is 
expected from HS is RSP_TO_REQUEST_TO_SEND. 

INPUT: 

OUTPUT: 

HS can send records to PS 
RSP_TO_REQUEST_TO_SEND record. 
the record received <see below). 

while PS is waiting for 
Appropriate action is taken, 

the expected 
depending upon 

The RCB corresponding to the conversation for which the REQUEST_TO_SEND was 
issued is passed as a parameter to this procedure; HS_TO_PS_RECORDs are 
received from HS. 

See below. 

NOTES: 1. If a REQUEST_TO_SEND is received, PS stores that information in the RCB and 
continues to wait for the RSP_TO_REQUEST_TO_SEND. 

2. Since REQUEST TO SEND has no RETURN CODE parameter, if a RECEIVE_ERROR is 
received, the-information is stored in FSM ERROR OR FAILURE to be presented to 
the transaction program when it issues a record-th~t does have a RETURN_CODE 
field. 

3. When RSP_TO_REQUEST TO SEND is received, control is returned to the trans­
action program. 

4. Any data received from HS before the RSP TO REQUEST TO SEND arrives is stored 
in the HS_TO_PS_BUFFER_LIST. PS - c~ntinues- to wait for the 
RSP_TO_REQUEST_TO_SEND. However, if a RECEIVE DATA record with TYPE field set 
to DEALLOCATE FLUSH is received, the RSP TO REQUEST TO SEND will not be 
received by Ps: so PS returns control to the-tr~nsaction program. 

Referenced procedures, FSMs, and data structures: 
RECEIVE_RM_OR_HS_TO_PS_RECORD 
CONVERSATION_FAILURE_PROC 
FSM_ERROR_OR_FAILURE 
RCB 
BUFFER_ELEMENT 

Set CONTINUE to true. 
Do while CONTINUE is true: 

Call RECEIVE RM OR HS TO PS RECORDIRCB.RCB ID, SUSPENDJ 
and receive-re~ord <pag; 5:1-51). -

If record arrived from RM then 
Call CONVERSATION_FAILURE_PROC with record Cpage 5.1-31). 
Set CONTINUE to false. 

If record arrived from HS then 

Select based on the type of the record: 
When REQUEST_ TO_SEND C see Note 1. l 

Set RCB.RQ TO SEND P':iJ to YES. 
When RECEIVE_f PRC,, <see Note 2 l 

~~ii FSM ERROR OR FAILURECRECEIVE ERROR, RCBJ (see page 5.1-65) 
When RSP_TO=REQUEST_TO_SEND !see Not; 3l 

Set CONTINUE to false. 
When RECEIVE_DATA (see Note 4l 

Enqueue record to RCB.HS_TO_PS_BUFFER_LIST. 
Set BUFFER_ELEMENT to the last entry of HS_TO_PS_RECORD_LIST. 
If BUFFER_ELE.l1ENT type = DEALLOCATE_FLUSH then 

Set CONTINUE to false. 

page 5.1-51 
page 5.1-31 
page 5.1-65 
page A-7 
page A-8 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-61 



NAIT_FDR_SEND_ERROR_DOHE_PROC 

NAIT_FDR_SEtl>_ERROR_DDHE_PROC 

5.1-62 

FUNCTION: Invoked after a SEND_ERROR record hH been sent to HS. The SEtl>_ERRDR ..as 
sent to HS as a result of the ·transaction program issuing a SEtC>_ERROR or 
DEALLOCATE nYPE = ABEND_PROG, ABEND_svc, or ABEtl>_TIMERJ for a conversation 
that is in receive state. 

INPUT: 

OUTPUT: 

The procedure calls 6ET_END_CHAIN_FROH_HS (page 5.1-371 to aN11it the arrival 
fr011 HS of a record indicating EC. Appropriate action is taken depending on 
the type of record received. · 

Transaction program verb parameters and the RCB corresponding to the resource 
specified in the verb 

See balow. 

NOTES: 1. If the record received frOM HS is a RECEIYE_DATA with TYPE field set to DEAL­
LOC:ATE_FLUSH, the conversation is deallocated and the return code of the verb 
is set to indicate the deallocation. 

2. If the record received frOll HS is a RECEIVE_DATA with TYPE field set to DEAL­
LOCATE_CONFIRH, CONFIRM, PREPARE_TO_RCV_COHFIRH. or PREPARE_To_RtV_FLUSH. the 
processing of the verb is continued. 

3. FSM_ERROR_OR_FAILURE is reset to NO_RQS because, in certain SENO_ERROR race 
cases, a RCYD_ERROR condition is not reported to the transacUon program. 
Nor11ally, FSM_ERROR_OR_FAILURE is reset to NO_RQS by SET_FttH7_RC (page 5.1-57) 
Nhen the error is reported to the TP. 

Referenced procedures, FSMs, and data structures: 
6ET_END_CHAIN_FRotl_HS 
SEND_ERROR_DONE_PROC 
COMPLETE_DEALLOCATE_ABEtl>_PROC 
FSM_CONVERSATION 
FSM_ERROR_OR_FAILURE 
RCB 
BUFFER_ELEMENT 

Call 6ET_Etl>_CHAIN_FROl1_HS<RCBl (page 5.1-371. 

Select based on the state of FSM_ERROR_DR_FAILURE (page 5.1-65): 
i.tlen CONV_FAILURE_SON 

Set RETURN_CODE of the verb to RESOURCE_FAILURE_RETRY. 
Call FSH_CONVERSATION(R, RESOURCE_FAILURE_Rc. RCB) (page 5.1-63). 

tllen CONV_FAILURE_PROTOCOL_ERROR 
Set RETURN_CODE of the verb to RESOURCE_FAILURE_NO_RETRY. 
Call FSH_CONVERSATION(R, RESOURCE_FAILURE_Rc. RCB) (page S.1-63). 

Otherwise 
Get BUFFER_ELEMENT fro• HS_TO_PS_BUFFER_LIST. 

Select based on the following conditions: 

page 5.1-37 
page 5.1-53 
page 5.1-30 
page s.1-63 
page S.1-65 
page A-7 
page A-8 

When BUFFER_ELEHENT type is DEALLOCATE_FLUSH tsee Note 1) and the verb is SEtl>_ERROR 
Set RETURN_CODE of verb· to DEALLOCATE_NORHAL. 
Call FSM_CONVERSATION(R, DEALLOCATE_NORHAL_Rc, RCB) (page S.1-63). 

When BUFFER_ELEHENT type is DEALLOCATE_FLUSH and the verb is DEALLOCATE 
Set RETURN_CODE of the verb to OK. 

When BUFFER_ELEHENT type is DEALLOCATE_CONFIRH, CONFIRM, PREPARE_TO_RCV_CONFIRMt 
or PREPARE_TO_RCV_:FLUSH fsee Note 2) and the verb is SEtl>_ERROR 

Call SEND_ERROR_DONE_PROCftransaction progra• varb parameters, RCB> 
(page 5.1-53 >. 

Call FSM_CONVERSATIONIS, SEND_ERROR, RCB> (page 5.1-63). 
When BUFFER_ELEHENT type is DEALLOCATE_CONFIRM, CONFIRM, PREPARE_TO_RCV_CONFIRMt 
or PREPARE_TO_RCV_FLUSH, and the verb is DEALLOCATE 

Call COHPLETE_DEALLOCATE_ABEND_PROCltransaction progra• verb parameters, RCB) 
(page S.1-30). 

Call FSM_ERROR_OR_FAILURE (page 5.1-65) and pass it a RESET signal (sae Note3). 

SHA For11at and Protocol Reference Manual for LU Type 6.2 



FINITE-STATE MACHINES 

FSM_CONVERSATION 

FUNCTION: This finite-state machine maintains the status of a conversation resource. 
The states have the following meanings: 

INPUT: 

NOTE: 

• RESET = conversation initial state, the program can allocate it 

• SEND = the program can send data, request confirmation, or request sync 
point 

• RCV = receive, the program can receive information from the remote program 

• RCVD CONFIRM = received confirm, PS received the confirm indicator from 
the HS 

• RCVD_CONFIRM_SEND = received confirm send, PS received the confirm send 
indicator from HS 

• RCVD_CONFIRM_DEALL = received confirm deallocate, PS received the confirm 
deallocate from HS 

• PREP_TO_RCV_DEFER = prepare to receive defer, the program issued a PRE­
PARE_TO_RECEIVE verb with SYNCPT 

• DEALL_DEFER = deallocate defer, the program issued DEALLOCATE verb with 
SYNC PT 

• PEND_DEALL = pending deallocate, the program issued DEALLOCATE verb with 
CONFIRM 

The inputs are marked with S if they result from an action of the local trans­
action program and with R if they result from a record sent to PS by HS. The 
RCB is passed to provide the information needed to perform the state transi­
tion of the FSM_CONVERSATION and its output function. 

PEND DEALL is an intermediate state. PS does not return control to the trans­
acti~n program when the conversation is in this state. 

Referenced procedures, FSMs, and data structures: 
HS 
SEND_DATA_TO_HS_PROC 
DEALLOCATION_CLEANUP_PROC 
FSM_ERROR_OR_FAILURE 
RCB 

page 6.0-3 
page 5.1-52 
page 5.0-13 
page 5.1-65 
page A-7 

Chapter 5.1. Presentation Services--Conversation Verbs 5.1-63 



FSH_CONVERSATION 

STATE NAHES----> RESET SEtt> RCV RCi/C RCVD RCVD PREP DE All PE~ID EHD 
CONFIRH CONFIRH CONFIRM TO DEFER DEA LL com 

SEND DEA LL RCV 
DEFER 

INPUTS STATE NUl1BERS--> 01 02 03 Oft OS 06 07 08 09 010 

s, AlLOCAT.E 2 / / / / / / / / / 
R, ATTACH 3 / / / / I / I I I 

s. SEND_DATA I - >I A) >I A> >I A> >(A> >IA) >(A) I >IA) 
s. PREP_TO_RCV_FLUSH / 3 >I A> >I A) >(A) >IA> >U.> >(Al / >(A) 
s. PREP_TO_RCV_CONFIRH I 3 >I A> >(.0 >IA) >IA) >IA> >(Al / >CA) 
s. PREP_TO_RCV_DEFER / 7 >(A) >CO >I A> >(A) >IA) >!Al / >IA) 
s. FLUSH / - >IA) >(A) >I A) .>IA) 3 1 I >(A) 
s. CONFIRM / - >I A) >(A> >I A> >IA) 3 9 I >(A) 

s. SEND_ERROR / - 2 2 2 2 >IA) >(Al I >(A) 
s. RECEIVE_AND_WAIT / 318) - >IA) >IAI >(Al >IA) >C Al I >(Al 

s. POST_ON_RECEIPT / >IA> - >(A) >I A> >(A) >(A) >(A) I >(A> 
s. WAIT / >IA) - >(A) >IA) >I A) >(A) >CA> I >IA) 
s. TEST I >IA) - >(A) >IA} >I A> >(A) >IA) I >(A) 
s. RECEIVE_IHMEDIATE / >(A) - >(A) >(A> >CA> >IA) >CA) I >(A> 
s. REQUEST_TO_SENO I >IA) - - >IA) >(A> >IA) >CA) I >I A) 

R, SEND_Il-l>ICATOR / / 2 I I / / I / / 
R, CONFIRM_ INDICATOR / I 4 I I I / I / I 
Rt CONFIRH_SEND_IND I / 5 / / I I I I I 
R. CONFIRH_DEALLOC_IND I I 6 / / I I I I I 

s. CONFIRMED I >IA> >(A) 3 2 10 >IA> >CAJ I >(A> 

R, PROGRAH_ERROR_RC I 31C> -IC> I I I 3(Cl 31C > 3(C) I 
R, SERVICE_ERROR_RC I 31C) -(Cl I I I 31C) 3( c) 31C) I 

R, DEALLOC_NORMAL_RC I 10 10 I I I I I I I 
R, DEALLOC_ABEND_RC I IOI Cl lOC.C) I I I lOCC) lOCC) lOCCJ I 
R, RESOURCE_FAIUJRE_RC I lOICl lOCCJ I I I lOICJ lOIC) lOIC) I 
R, ALLOCATION_ERROR_RC I lOICJ lOIC> I I I lOIC> lOIC) lOCCl I 

s. DEALLOCATE_FLUSH I 1 >IA) >(.0 >IA> >IA) >(A) >CA) I >(Al 
s, DEALLOCATE_CC»fFIRH / 9 >IA) >IA) >(Al >IA) >(A) >(A) I >(Al 
s. DEALLOCATE_DEFER I 8 >I AJ >(.0 >I Al >(A) >IA> >(AJ I >(A> 
s. DEALLOCATE_ABEND I 1 1 1 1 1 1 1 I >IA) 
s, DEALLOCATE_ LOCAL I >I A.J >I A) >l·A > >IA) >(A) >!Al >IA) I 1 

R, DEALLOCATED_It«> / I I I I I I I 1 / 

s, 6ET_ATTRIBUTES / - - - - - - - / -
OUTPUT Fl.KTION 

CODE 

A 
Call DEALLOCATION_CLEANUP_PROC !page 5.0-13>. 

B 
If data sent by TP is on a logical record boundary then 

Set RCB.PS_TO_HS_RECORD.TYPE to PREPARE_TO_RCV_FLUSH. 
Call SEND_DATA_TO_HS_PROCIRCBJ lpage 5.1-52). 

Else 
Call DEALLOCATION_CLEAHUP_PROC Cpage 5.0-13). 

c 
Call FSH_ERROR_OR_FAILURE Nith RESET lpage 5.1-65). 

5.1-64 SNA ForRt and Protocol Reference.Manual for LU Type 6.2 



FS11_ERROR_OR_FAILURE 

FSH_ERROR_OR_FAILURE 

FUNCTION: This finite-state ••chine remembers if any error or failure records <either 
HS_TO_PS_RECORDs or Rn_TO_PS_RECORDsl have been received by PS. This know­
ledge is .. intained l.S\til the infor•ation reflected by the records can be 
passed to the transaction progra•. The Meanings of the states are as follONS: 

NOTE: 

• NO_RQS = the initid state of the FSH 

• RCVD_ERROR = a RECEIYE_ERROR Mes received 

• CONV_FAILURE_PROTOCOL_ERROR = a conversation protocol error record Mas 
received 

• CONV_FAILURE_SON = a session outage notification for the conversation llNIS 
received 

• ALLOCATE_FAILURE_RETRY = an allocation failure Mith retry Mas received 

• ALLOCATE_FAILURE_ND_RETRY = an allocation failure Mith no retry allowed 
Mas received 

• SYNCLEYEL_NDT_SUPPORTED = sync level not B141POrted for the conversation is 
signaled 

The i...,uts are the error and failure records from the HS and Rt1. 

Referenced procedures, fstta, and data structura: 

INPUTS 

HS 
Rt1 
RCB 

STATE HAHES----> 

STATE NUl1BERS--> 

SI6NAL(CONY_FAIL_PROTOCOL) 
SI6NAL(CCINY_FAIL_SONl 

RECEIYE_ERROR 

SIGNAL(ALLOC_FAIL_RETRYl 
SIGNAL(ALLOC_FAIL_NO_RETRY> 

SI6NAL(SYNCLEVEL_NOT_SUPPTDJ 

SIGNAL( RESET> 

OUTPUT FUNCTION 
CODE 

A 

ND RCW 
RQS ERROR 

01 02 

3 3 
4 4 

2(Al I 

5 I 
6 I 

7 I 

- 1 

CONY CONV ALLOCATE 
FAILURE FAILURE FAILURE 
PROTOCOL SON RETRY 
ERROR 
03 04 05 

I I I 
I I I 

- - I 

I I I 
I I I 

I I / 

1 1 1 

Set RCB.PS_TO_HS_RECORD.DATA to null lpurge send buffer>. 

page 6.0-3 
page 3-18 
page A-7 

ALLOCATE SYNCLEVEL 
FAILURE NOT 
NO_RETRY SUPPORTED 

06 07 

I I 
I I 

I I 

I I 
I I 

I I 

1 1 

Chapter S.1. Presentation Services--Converaation Verbs s .. 1-6s 



FSH_POST 

S.1-66 

FSH_POST 

FUNCTION: This finite-state machine Hintains the posting status of a conversation. The 
11aanings of the states are as follONS: 

• RESET : the initial state of the FSH 

• PEND_POSTED : state after the FSH received a POST_ON_RECEIPT input 

• POSTED = state to shoN that post conditions ...... satisfied 

NOTES: 1. If POST_ON_RECEIPT is iHued after posting has already been activated (i.e., a 
prior POST_ON_RECEIPT has been issued), the post conditions used to test for 
post satisfied are reinitialized to those carried in the llOllt recent 
POST_ON_RECEIPT. 

2. RECEIVE_IMl'IEDIATE resets posting. If posting is activated and the conversa­
tion has been posted, this FSH is reset. If posting is activated and the con­
versation has not been posted. posting is canceled and this FSH is reset. 

3. The initial state of this FSH is RESET. 

STATE NAMES----> RESET PEND POSTED 
POSTED 

INPUTS STATE NUMBERS--> 01 02 03 

POST_ON_RECEIPT 2 - [Note 1J 2 (Note 1J 
TEST - - l 
WAIT - - l 
RECEIVE_It11EDIATE - 1 [Not• 2J 1 INote 2) 

SIGNAL( POST) I 3 -

SHA For•t and Protocol Reference Manual for LU Type 6.2 



LOCAL DATA STRUCTURES 

TEST 

TEST conta;ns ;nformat;on that descr;bes the test to be performed on the conversat;on and 
the result of the test. 

TEST 
RESOURCE: resource ;dentifier 
TEST: possible values: POSTED, REQUEST_TO_SEND_RECEIVED 
RETURN_CODE: possible values: OK, UNSUCESSFUL, POSTING_NOT_ACTIVE 

RESOURCE_FAILURE_RETRY, RESOURCE_FAILURE_NO_RETRY, ALLOCATION_ERROR 

Chapter 5.1. Presentation Serv;ces--Conversation Verbs S.1-67 



This page intentionally left blank 

68 SNA For•at and Protocol Reference Hanual for LU Type 6.2 



CHAPTER £...t.. PRESENJATIQN SERVICES--MAPPED GONVERSATJJli ~ 

GENERAL DESCRIPTiotj 

A Transaction Progra• <TPI requests LU serv­
ices by issuing verbs. The verbs request 
several different kinds of services, and are 
therefore divided into several different cat­
egories (see ~ Transaction Programmer's 
Reference Manual for .!.Y ~ Ll for a co111-
plete description of the verbs). Each 
verb-processing component of PS processes the 
verbs of one specific category. Presentation 
Services for Mapped Conversations CPS.MCI is 
the PS component that processes the verbs of 
the mapped conversation category !basic con­
versation verbs are processed by "Chapter 
5.1. Presentation Services--Conversation 
Verbs" in Chapter 5. l). 

~ F!JHC:TJONS 

The prh1ary flfl<:tion of PS.He is reformatting 
the data contained in the DATA parameters of 
the HC_SEtlD_OATA and MC_RECEIVE_AHD_WAIT 
verbs. Its sli>sidiary functions include the 
processing of errors related to this refor-
111atting, and the translation of Mapped con­
versation verbs into basic conversation verbs 
in support of services unrelated to for11at­
ting. 

When the TP issues a 11apped conversation 
verb, PS.MC processes the verb and perfornis 
the services that it requests. PS.MC does 
not, however, perform all of the services 
requested by every Mapped conversation verb. 
PS.MC performs only those services related to 
data formatting. If the verb requests addi­
tional conversation services that are not 
related to data formatting, then PS.MC, by 
issuing one or more basic conversation verbs, 
causes PS.COHV to perform those services. 

In general, the TP is faced with two for111at­
ti ng problems. The data format that it pre­
fers for computational processing differs 
from the formats in which data is presented 
to Cor byl: 

• 
• 

local end users and resources 

Half-sessions; !for communication ~iih 
remote end users and resourcesl. 

PS.MC solves the formatting problem for local 
end users and resources by routing all data 
presented to Cor byl them through a component 
called "the Mapper" ( UPM_MAPPER on page 

The -pped canversati on verbs are issued on 
mapped conversations, and basic conversation 
verbs are issued on basic conversations. 
Both the basic and the m<ipped conversation 
verbs request cownunication services for 
transaction progra111s. A 1118pped conversation, 
however, is easier for the communicating 
transaction progra11S to use because it also 
provides data for111atting services that the 
programs would h<lve to perform for the111Selves 
if they were using a basic conversation. 

5.2-461, which transforms data into !when 
receiving) or out of !i.ihen sending> formats 
preferred by end users. For communication 
with conversation partners, TP data must be 
made to confor• to the format that SHA 
defines for the conversation data stream. On 
basic conversations, the conversing TPs 111ust 
perfor11 this formatting for theJ11selves, but 
on mapped conversations, PS.MC adds (when 
sending! and strips (when receiving) the 
data-strea• details required by the format. 

The functions that PS.NC performs for the 
transaction program are summarized below: 

• Adding and stripping c'nversation 
data-stream formatting details (see "Con­
versation Data Strea11 Formatting" on page 
5.2-51 

• Data mapping (see "Data Napping and the 
Happer" on page S.2-8> 

• 

• 

• 

Allowing function 111anage11ent headers 
IFMHsl to flow on the Mapped conversation 
lsee "FH Header Data" on page 5.2-71 

Detecting service errors CO!Mli tted by 
the partner tr1;1nsaet ion program I see 
"Servi c:~ i::rrori;; O""tli!ct!!!d in Received 
O;;ita" co pa~ !L 

Processing service li!:rrors collll1!li tted by 
the local transaction program and 
detected by the partner LU (see "Process­
ing of a Service Error Detected by Part­
ner LU" on page S.2-171. 

Chapter 5.2. Presentation Services--Napped Conversation Verbs 5.2-1 



................................................................................................... 
Transaction Progra• ................................................................................................... ..... ~~~~~~~~~~~~~~~~~~~~~~--•,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .... 

A I 

----------------------!~-----------------------------------------------... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................................................... . 
.••••••.••.• 1 .....••.••••.••..•.•••.•••.• 1 .••.•.••..••.••••••••..••••••••• r---------, ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 
.•.•••••••.• 1 ..•.••••••••.•.•.•••.•.••••. v ................................ v ................... 1 •••• 

1 
2 
3 

~--

PS.INITIALIZE 

.... E· ...... . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .. • • • • • • •• 1 •••• 
• • • • • ••.•••••••••.• ,. • • • • • PS. VERB_ROUTER • • • • • • • .. • • • • • • • • • .. • .. • • • • ••• 
••••••••••••••••••• 1 •.••••••••••••••••••••••••••••••••••••••••••••••••••• 1 •••• . . . . . -•- _... -- . . . . ... 
•••.•• 1 ••••••••••••••••• 1 •••••••••••••••••• 1 ••••••••••••••••••• 1 ••••••••• 1 •••• . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... " . . . ... 
.••••• 1 .••.•.•••••...••. 1 •..•.••.••••••..•• 1 ••.•.•••••••••••••• 1 ••••••••. 1 •••• 

::::::1:::::::::::::~:::v::::::::::::::::::v:::::::::::::::::::v:::::::::1:::: 

::::::,::::::::::: 
::::::1::::::::::: 
::::::1::::::::::: PS.HC • • • 

:::,:::: . . . . .. . 
. . . I ... . 
: : : r: : : : 

::::::,::::::::::: :::::::::::: :::::::::::: :::,:::: 
. . . . . . . . . . . . . . . . . . .... - - -• . . . . . ·- . . . . ... 
•••••• 1 •..••.•••.•••.•••• 1 .••.•••••••••..•• 1 ••••.•••.••..•••••• 1 ••••••••• 1 •••• 

. . . . . . . . .. . . . . . . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
• • • . . • v ..•..••.•••••.•••..•••••••••••••.•••••••••••••••••••••••••.•••••••••••• 

• • • • . • • . . . • . • . • • • • . • • • . • • • • • PS.COtN 1 .................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... . 
::::1································································1:::::::: 

._ ________ __, . . . . . ...... . 

v v 
Resources Hanager 

v 
Data Flow 

Control 

v 
Data Flow 

Control 

See "Chapter 5.1. Presentation Services--Conversation Verbs" 
See "Chapter 5.3. Presentation Services--Sync Point Services Verbs" 
See "Chapter 5.4. Presentation Services--Control-Operator Verbs" 

Note: A dashed line denotes a sync:lironous Cor call/return) protocol boundary between PS ca.ponents, 
while a solid line denotes an asynchronous C or sencl/recei ve) protocol boundary. 

Figure 5.2-1. Overview of Pres.entation Services. Emphasizing Presentation Services for Happed 
Conversations 

COMPONENT INTERACTIQHS 

5.2-2 

In terms of layering, non-basic-conversation 
verb-processing components C such as PS. MC) 
reside belON the TP but above the PS.CONV 

sublayer of presentation services. PS.Ht 
collllllUlicatas primarily with the TP and 
PS.CONV. Figure S.2-2 on page S.2-3 illia-

SN.A For•at and Protocol Reference Hanual for LU Type 6.2 



A 

Transaction Program 

1 
1 ...------ ------------~!.-----------------------------, . . . . . . . . . . . . . ........................ . 

. . . . . . . . . . . . I ......................... . . . . . . . . . . . . . . ........................ . 

. . . . . . . . . . . . I ......................... . 

1 
1 
1 
v 

•••••••••••••••••••••••••••• 333333333333333333333 
• • . • • • • • • • • • • • • • • • • • • . • • • • • • 3 3 
. . • • • • . • • . • • . • . . . . . . . . • • . • . . v . . . . • . • • . • . . . . . 3 ,..:_:_:_: .-: :-: : : : : : : : : : : l PS. YERB_ROUTER J ~ 

. . . . . . . . . . . . . . . . . . . •1--------·---------•1---------· . 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

PS.INITIALIZE 

2 
2 
2 
2 
v 

PS.MC 

. . . . . . . . . . . . . . . . I ................... I ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . 

. . . . . . . . . . . . . . . . I ................... I ...... . 

................ v .................•. v ...... . 

• • • • • • • • • • • • • • • • • • • • • • • • 3 
• • • • • • • • • • • • • • • • • • • • • • • • 3 
• • • • • • • • • • • • . • • • • • • • • • • • 3 

PS.SPS • • • PS.COPR 3 
• • • • • • • . • • • • • • • • • • • • • • • • 3 
• • • • • • • • • • • • • • • • • • • • • • • • 3 
• . • . • • • . • • • • • • • • • • • • • • • • 3 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
v 

••••••••• '----·- ••••• L..--• • • • • • ·- • 3 

3 ···············'···················'······· 3 3 v v 3 
3333333333333333333333333333333333333333333333333 

: : : : : : : : : : : :': : : : : : : : : i : : : : : ! : : : : : : : : : : : : : : : :': : : : : : : : : : : : : : : :': : : : : : : ~~~~;~; ~ ~: ~~;~~ ~~;: ~ ~~ ~: : : 
• • • 

v v v 
Resources Manager Data Flow 

Control 

v 
Data Flow 
Control 

Note: See "Component Interactions" on page 5.2-2 for an explanation of the flows 
shown in this figure. 

Figure 5.2-2. PS.MC's Use of the Basic Conversation Protocol Boundary 

trates the flow of processing. PS.MC accepts 
issuances of mapped conversation verbs from 
the TP, but issues basic conversation verbs 
to PS. CONV. In both cases, the interaction 
actually occurs indirectly through 
PS.VERB_ROUTER CChapter 5.0l. Whenever a 
verb is issued by any component (for exam­
ple, the TPJ, PS.VERB_ROUTER gains control 
and is responsible for routing the verb to 
the appropriate PS component for processing. 

When the TP issues a mapped conversation verb 
Cflow 1 in Figure 5.2-2), the verb is 
inspected by PS. VERB_ROUTER. PS. VERB_ROUTER 
determines that the verb is a mapped conver-

sation verb and calls PS.MC, passing to it 
the received verb C flow 2). PS. MC may issue 
a basic conversation verb during its process­
ing of the mapped conversation verb. If it 
does, then PS. VERB_ROUTER once again gains 
control, receiving the verb issued by PS.MC 
Cflow 3l. This time, PS.VERB ROUTER discov­
ers that the verb is a basrc conversation 
verb, so it calls PS.CONV and passes the verb 
to it (flow 4). PS.CONV processes the basic 
conversation verb, after which control 
returns along the same path to PS.MC. 

A transaction program may support only mapped 
conversations or only basic conversations. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-3 



Alternatively, it may support both types of 
conversation. In the latter case, the trans­
action program may have mapped conversations 
and basic conversations allocated concurrent­
ly. The PS. VERB_ROUTER requires the TP to 

PS.MC DATA BASE STRUCTURE 

In order to perform its functions, PS 
requires information about the transaction 
program that it is serving and about the 
resources currently allocated to that trans­
action program. This information, which is 
described in "PS.CONV Data-Base Structure" on 
page 5.1-1 , is stored in lists of control 
blocks in the LU (see Appendix A for complete 
definitions of the lists and of the entities 
that may be found in the lists). Some of the 
fields in these control blocks are especially 
important to PS.MC. Those fields are 
described below. 

TRANSACTION CONTROL BLOCK CTCB> 

Each transaction control block CTCBJ contains 
information about one execution instance of a 
transaction program. PS.MC identifies the 
TCB describing the particular transaction 
program instance that it is serving by means 
of the TCB_ID that RM passed to PS when the 
transaction program instance was created. 
The TCB fields used by PS.MC contain such 
information as the name of the transaction 
program that PS is serving and the LU_ID of 
the LU in which the PS resides. 

LU CONTROL BLOCK CLUCB) 

PS.MC accesses the appropriate LUCB using a 
unique LU_ID, which is stored in the TCB to 
which PS.MC has access. The LUCB fields in 
which PS.MC is particularly interested con­
tain information about whether the LU sup­
ports various mapped conversation options, 
such as handling of FM header data. 

Transaction Program Control Block CTPCBl 

Each LUCB also contains a pointer to a list 
of transaction program control blocks 
CTPCBs>. For a given LU, the list contains a 
TPCB for each transaction program that is 
capable of running at the LU. The informa­
tion contained in a TPCB includes the name of 
the transaction program and whether it sup­
ports various optional features. PS.MC, in 
particular, is interested in whether or not 
the TP supports mapped conversations. 

issue only mapped conversation verbs on 
mapped conversations and only basic conversa­
tion verbs on basic conversations. However, 
PS. VERB ROUTER allows PS. MC to issue basic 
conversition verbs on a mapped conversation. 

RESOURCE CONTROL BLOCK CRCB> 

PS.MC also requires information about all the 
mapped conversations allocated to the trans­
action program. This information is found in 
the resource control block ( RCB), one for 
each resource associated with any transaction 
programs running at an LU. As in the case of 
the TCB, PS.MC is interested in only those 
RCBs containing information about mapped con­
versation resources allocated to its own 
transaction program. It does not need infor­
mation about resources that are not mapped 
conversations or are allocated to other 
transaction programs. 

PS.MC accesses an RCB by means of the RCB_ID. 
The transaction program supplies an RCB_ID in 
the RESOURCE parameter of a verb in order to 
indicate the particular conversation resource 
on which the verb is being issued. Whenever 
a new resource is allocated, the resources 
manager ("Chapter 3. LU Resources Manager" in 
Chapter 3 l creates a new RCB_ID and returns 
it to the transaction program in the RESOURCE 
parameter of the MC_ALLOCATE verb. The RCB 
also contains the TCB_ID of the transaction 
program instance that has allocated the 
resource. RCB information is initialized 
when the conversation is allocated. 

The following RCB fields are especially 
important to PS.MC. 

MC_MAX_SEND_SIZE contains the length of the 
longest logical record that can be 
sent on the conversation, and is 
used to segment outgoing data (see 
"Construction of GOS Variables" on 
page 5.2-5). 

MAPPER_SAVE AREA contains information used in 
dita mapping, such as the currently 
effective map names (see "Map 
Names" on page 5.2-8). The mapper 
may also, however, use data stored 
in this area to perform 
implementation-defined (as opposed 
to SNA-map-name-definedl data map­
ping. The mapper also uses this 
area to save any error data or 
indicators of events that occurred 
during data mapping. 

MC_RECEIVE BUFFER contains information that 
has arrived from a conversation 
partner but that has not yet been 
received by the transaction pro­
gram. 

5.2-4 SNA Format and Protocol Reference Manual for LU Type 6.2 



CONVERSATION D!li mliH FORMATTING 

When a transaction program sends data on • 
basic conversation, H 111.JSt ensure that that 
data confor11111 to the for•at of the conversa­
tion data stream. A transaction progra• that 
allocates a mapped conversation, however, 
does not need to perfor• this task, because 
PS.tie assumes responsibility for ediUng the 
data to 11ake it confor• to the format of the 
conversation data strea•. Transaction pro­
grau coimnuiicating over a •apped conversa­
tion •ay supply their data in any for•at. 

All data flONing on any conversation is for­
•atted into logical records. A logical 
record consists of a 2-byte logical record 
length field (LL> followed by a data field. 
A transaction program sending data over • 
basic conversation 111USt take care to include 
the LL fields in its data, and to complete 
the logical record that 'it is sending before 
leaving SEND state. 

A TP sending data over a aapped conversation 
has ne i ther of these concerns, because PS. tie 
co111pUtes and inserts the Lls for it. The TP 
simply suppHes the data in the DATA para111e­
ter of tle_SEND_DATA. PS.MC then .aps the 
data and for111ats the •apped data into one or 
more C0111Plete logical records. 

CONSTIUJCTION OF 6DS VARIABLES 

PS.tie formats all data floNing on a 111apped 
conversation into general data strea• (605) 
variables (see Figure 5.2-3). A 605 variable 
consists of one or More complete logical 
records. The data field of the first logical 
record in a 6DS variable begins 11tith a 2-byte 
605 ID that identifies the type of informa­
tion contained in the variable. The infor•a­
tion itself begins in the third byte of the 
data field of the first logical record, and 
continues throughout the data fields of the 
variable's re111aining logical records, Nhich 
do not contain the 6DS ID. 

605 Vari able 
(Consisting of 1 Logical Record> 

LL 605 ID data 

Logical Record 

LL data 

Figura 5.2-3. 605 Variables and Logical 
Records 

The follONing types of 605 variables flON on 
mapped conversations: 

• Hap Na•e 
• Application Data 
• User Control Data 
• Error Data 
• Error Log 

I • Null Data 

cs- Appendix H for descriptions of all the 
valid types of 605 variables and their GOS ID 
values.) 

Hap Name GOS variables are generated from the 
HAP _NAME para11eter of tle_SEND_DATA f see "Hap 
Names" on page 5.2-8 for details). Applica­
tion Data and User Control Data GOS variables 
(collectively called data 605 variables) are 
generated fro• data supplied via the DATA 
parameter of tle_SENO_DATA. If this verb is 
issued 11tith FHH_OATAIYES), the data is put 
into a User Control Data 6DS variable; other­
wise, it is put into an Application Data 6DS 
variable. Error Data GOS variables are gen­
erated Nhen the TP issues HC_SENO_ERROR or 
when PS detects an error (see "Happed Conver­
sation Errors" on page 5.2-12 for details>. 

Null Data 605 variables are optionally gener­
ated Nhen the TP, after entering SEND state, 
leaves SEND state without sencilng any data. 
I Instead of issuing HC_SENO_OATA, the TP 
issues HC_CONFIRM, HC_PREPARE_TO_RECEIVE, or 
some other verb that removes the TP from SEtl> 
state.) The partner 111USt be notified of 
this change in state. The RH that conveys 
this state-change notification (CO for 
HC_PREPARE_TO_RECEIVE, or RQD2 for 
HC_CONFIRH) can flow to the partner by 11eans 
of a null-data Ftl) request, a LUSTAT request, 
or a Null Data GOS variable created by PS.MC. 
An Application Data GOS variable 1111ith a null 
data field cannot be used for this purpose, 
because that NOUld erroneously indicate that 
the TP had issued HC_SEtlJ_DATA with 
LENGTH( 0), when the TP has not issued 
HC_SEtlJ_DATA at all. 

~ Variables !d!b ~!.ie!!: Loqic1l Recorc!s 

Only data 6DS variables •ay consist of lllllti­
ple logical records; Error and Map Name GOS 
variables each consist of a single logical 
record. l>hether a data GOS variable 1111ill 
have more than one logical record is deter­
•ined by the value of HC_HAX_SEND_SIZE, which 
is the length of the longest logical record 
that •ay be sent on the 111apped conversation. 
HC_HA)(_SEND_SIZE may vary fro• Mapped conver­
Hti on to mapped conversation, or it 111ay be 
the sae for all upped conversations. 
HC_HAX_SElf>_SIZE is stored in the resource 
control block associated tiii th the conversa­
tion (see "PS.Cot-IV Data-S..se Structure" on 
page 5.1-1 and "PS.MC Data Bue Structure" 
on page 5.2-4 for further details>. 

If the length of the data returned fro• the 
11apper does not exceed tle_HAX_SEND_SIZE. 
PS.MC creo1tes a 605 variable containing a 

Chapter 5.2. Presentation Services--Happed Conversation Verbs 5.2-5 



I 
v 

data* 

v 

mapping 

I 
I 
v 

mapped data 

-- OR --

I I I 
v v v 

LL GOS ID data LL GOS ID data LL data LL data 

'------v------' '----v-----' '----v----' 
logical record logical record logical record logical record 

GOS variable containing 
one logical record 

GOS variable containing multiple logical records 

* This data is supplied by the transaction program in an MC_SEND_DATA verb. 

Note: The DATA field of the first, or only, logical record in a GOS variable begins with a 2-byte 
GOS ID. Subsequent logical records in the same GOS variable do not carry a GOS ID value. 

Figure 5.2-4. Transformation of Data from MC_SEND_DATA to a GOS Variable 

5.2-6 

single logical record. MC_MAX_SEND_SIZE is 
used only to determine how many logical 
records to create from the data; it is not 
used to determine whether enough data exists 
to be sent to the partner LU. <See Fig­
ure 5.2-4.> 

If PS.MC determines that multiple logical 
records are required, the LL fields of all 
but the last logical record have the 
high-order bit turned sm to indicate that 
the data is continued in the next logical 
record. PS.MC continues. to create logical 
records containing data returned from the 
mapper until the end of the data is reached. 
The high-order bit of the LL field of the 
last logical record in the outgoing GOS vari-

able is turned .e.f.f by the mapper. Fig­
ure 5.2-4 illustrates the transfer of 
outgoing data from its beginning in the DATA 
parameter of MC_SEND_OATA to its final posi­
tion in a logical record in a GOS variable. 

l.lhen the TP is receivfog data, this process 
is reversed. PS.MC continues to receive data 
from PS.CONY until it receives a logical 
record in which the high-order bit of the LL 
field is off. At this point, PS.MC has a 
complete data GOS variable. Next, PS.MC 
strips the GOS ID and LLs from the received 
data, and maps the data according to the cur­
rently effective map name. The mapped data 
goes into application transaction program 
variables. 

SNA Format and Protocol Reference Manual for LU Type 6.2 · 



In either case, exactly one data GDS variable 
is created as a result of each issuance of 
MC_SENO_DATA, and exactly one GOS variable is 
received as a result of each issuance of 
ttc_RECEIVE_ANO_WAIT. 

FM HEADER DATA 

In LU 6.2, FM header data is nor.ally proc­
essed by PS rather than by the transaction 
program. All FHHs except FMH-5 Cto initiate 
a conversation> and FMH-7 Cto report a PS or 
transaction program error J are trapped as 
errors. In LU 6.1, however, an FMH-5 could 
be used for transaction progra• functions 
(for example, transaction progra• parameters 
were somet i 11es encoded in an FMH-5), and 
could flow at any time during a conversation. 
Therefore, in order to allow transaction pro­
grams that were wr i t ten for LU 6 .1 to run on 
LU 6.2, PS.MC provides a way for transaction 

EXAMPLES OF MAPPED COHVERSATIQN VERB PRQCESSIH§ 

As discussed in "PS.MC Functions" on page 
5.2-1, one function of PS.MC is to translate 
mapped conversation verbs and their parame­
ters into basic conversation verbs and param­
eters Cthe other functions relate 
specifically to the mapping of data). The 
functions of PS.MC that relate to verb trans­
lation are illustrated and described below. 
CThe data-mapping-related functions are 
described in detail in "Data Mapping and the 
Mapper" on page 5.2-8.J 

ESTABLISHING A MAPPED CONVERSATION 

A mapped conversation is established when the 
transaction program issues MC_ALLOCATE. 
PS.MC, upon receipt of MC_ALLOCATE from the 
transaction program, performs some initial 
processing. If the processing succeeds, then 
PS.MC issues the basic conversation verb 
ALLOCATE, with TYPE!MAPPED_CONVERSATION), to 
PS.CONV. PS.CONV copies the supplied TYPE 
value into the Resource Type field in the 
FMH-5 that it creates as a result of the 
ALLOCATE. Then, after completing its normal 
ALLOCATE processing, returns control to 
PS.MC. 

When the FtlH-5 ardves at the target LU, it 
causes the conversation partner transaction 
prograia to be attached Cor invoked). When 
the partner program is attached, it is only 
for the •apped conversation with the trans­
action program that has just invoked it. It 
may, however, request additional mapped con­
versations by issuing MC_ALLOCATE verbs of 
its own. 

Once PS.MC returns control to the transaction 
progra11 after processing of the tte_ALLOCATE 

progra111& to prevent PS fro11 intercepting the 
FM header data that they are trying to 
exchange. 

If the TP Nants to send application data con­
taining FM headers to its partner, the TP 
issues MC_SEND_DATA with FMH_DATA(YES>. This 
causes PS.MC to create a User Control Data 
GDS va1·iable to contain the data. When Ftt 
header dah is contained in • User Control 
Data GOS variable, the sending PS and the 
receiving PS do not process it; they allow it 
to flow directly to the receiving TP. PS.MC 
notifies the receiving TP of the presence of 
FM headers in the received data on the 
MC_RECEIVE_AND_WAIT verb !see SHA Jransactjon 
programmer' 1 Referern:e !:1i!JY!ll iru: .!JI ~ 
Ll> that the receiving TP issues to receive 
the data. 

Currently, the sole use of User Control Data 
GOS variables on Mapped conversations is this 
processing of FM header data. 

is complete, the transaction program •ay 
issue •apped conversation verbs on the con­
versation whose IO was returned in the 
RESOURCE_ID para111eter of the MC_ALLOCATE. 

PS.VERB_ROUTER prohibits the transaction pro­
gra• fro• issuing b;isic conversation verbs 
specifying the resource ID of this 111apped 
conversation. When the transaction progra11 
issues a mapped conversation verb, however, 
PS.VERB_ROUTER allows PS.MC, as part of its 
processing of that verb, to issue a basic 
conversation verb on the same 11apped conver­
sation. See Chapter 5.0 for a further dis­
cussion of this topic. 

TERMINATING A MAPPED CONVERSATION 

When the transaction progra11 determines that 
its processing related to a mapped conversa­
tion has completed, or that the 11apped con­
versation should be ended for other reasons, 
it causes the conversation to be terminated 
by issuing MC_DEALLOCATE. PS.MC processes 
this by issuing DEALLOCATE to PS.CONY. HON­
ever, if the MC_DEALLOCATE specified a deal­
location type of ABEND (see .fil!A Transaction 
programer 1 1 ~eference Manual iru: 1Y ~ 
Ll» PS.MC first transhtes the ABEND value 
to ABEtl>_PROG before setting the type of 
deallocation. This reflects the fact that it 
is the transaction program, rather than 
PS.MC, that caused the DEALLOCATE to be 
issued. For all other types of deallocation, 
PS.MC sets the TYPE field of the DEALLOCATE 
to the value specified in that field of the 
MC_DEALLOCATE. 

Chapter 5.2. Present11tion Services--ttapped Conversation Verbs 5.2-7 



DATA MAPPING AND THE MAPPER 

The transaction program sends data to its 
partner by issuing MC_SEND_DATA. The partner 
transaction program receives this data by 
issuing MC_RECEIVE_ANO_WAIT. Whenever PS.MC 
processes either of these verbs, it passes 
the data through a component called the 
mapper C page 5. 2-46 l. All mapped conversa­
tion data is thus mapped twice: once when 
sent, and once when received. PS.MC's proc­
essing of MC SEND DATA is cdled send 
mapping; fts - processing ~ 
MC RECEIVE AND WAIT is called receive 
m.ippinq. -The- particuhr mappings that the 
mappers perform are determined by the map 
name supplied by the sending transaction pro­
gram. 

BLOCK MAPPING 

PS.MC performs block mapping, where a block 
is the .imount of data contained in one data 
GOS variable (see "Construction of GOS Vari­
ables" on page 5.2-5 for definitions and 
descriptions of GOS variables). Typically, a 
data GOS variable Cor block) resides in a 
transaction program buffer variable dedicated 
to network communication. The ultimate 
source or destination of the data, however, 
is usually one or more other transaction pro­
gram variables that are si gni fi cant to the 
transaction program application. A map pro­
vides an algorithm for transferring data 
between trans.iction program application vari­
ables &Md the tr.insaction program buffer var­
iable, and for performing any changes in the 
format or representation of the data that 
this transfer may require. Thus, in receive 
mapping, the received data is m<ipped out of a 
block and into application variables, while 
in send mapping, the data is mapped out of 
application variables and into a block before 
being sent to the conversation partner. 

MAPPING EXAMPLF 

Figure 5.2-5 on page 5.2-9 shows a high-level 
overview of the transformations that map name 
and data undergo during mapping by the send­
ing and receiving transaction programs. Map­
ping is symmetric, in that receive mapping is 
basically the inverse of send mapping. 

The transaction program sending data on a 
mapped conversation supplies a map name with 
each issuance of MC_SEND_DATA. The map name 
supplied by the sending transaction program 
determines the kind of mapping that occurs. 
In the figure, transaction program A issues 
MC_SEND_DATA, supplying MAP_NAMECmap-name-ll 
and DATACdata-ll. PS.MC, as part of its 
processing of this verb, then invokes the 
mapper. PS.MC passes to the mapper 
map-name-1 and data-1. 

The output from the mapper is map-name-2 and 
data-2. Data-2 may be a different size from 

data-1 and may be in an entirely different 
format. After reformatting data-2 into a GOS 
variable Cby breaking it into logical records 
according to MC_MAX_SEND_SIZE, and prefixing 
a GOS !OJ, PS.MC sends map-name-2 and data-2 
to the partner LU. 

When the data arrives, the PS.MC component at 
the partner LU processes the 
MC_RECEIVE_AND_WAIT by repeatedly issuing 
RECEIVE AND WAIT with a fill value of LL. 
PS.MC Qccu~ulates the data, one logical 
record at a time, until it receives a logical 
record whose LL field indicates that it is 
the final logical record of the incoming data 
GOS variable. At this point, PS.MC has one 
complete data GOS variable. It then strips 
the GOS ID and LLs, a11d invokes the mapper, 
passing it map-name-2 and data-2. Here, at 
the receiving LU, the map name and data once 
again go through a transformation. The 
receiving mapper transforms map-name-2 and 
data-2 into map-name-3 and data-3, and 
returns these to the receiving transaction 
program in the MAP_NAME and DATA parameters 
of MC_RECEIVE_AND_WAIT Conly the amount of 
data requested by the transaction program is 
passed to it; any remaining data that is not 
requested and returned is discarded). Data-3 
may again differ in size and format from 
data-2, or from data-1. Map-name-3, similar­
ly, may be different from map-name-2 and 
map-name-1. In the simplest case, the three 
map names are identical. 

"Send Mapping" on page 5.2-10 "Receive Map­
ping" on page 5.2-11 show more details of the 
processing of MC_SEND_DATA and 
MC_RECEIVE_AND_WAIT. 

MAP NAMES 

With every issuance of MC_SEND_DATA, the 
transaction program supplies a map name to 
PS.MC and the mapper. Similarly, on every 
issuance of MC_RECEIVE_AND_WAIT, the mapper 
returns a map ncime to the transaction pro­
gram. The sending transaction program may 
supply the scime map name repeatedly, and the 
same map name may be received repeatedly by 
the receiving transaction program, but the 
sending PS.MC does not send consecutive 
duplicate map names. Instead, the locally 
known map name supplied by the transaction 
program is translated into a globally known 
map ncime cind stored in the MAPPER_SAVE_AREA 
as the currently effective map name. This 
map name is similarly stored by the receiving 
PS. MC. The sending PS. MC sends (and the 
receiving PS.MC receives) a new map name only 
when the currently effective map name 
changes. The currently effective map name 
changes when the map name supplied by the 
sending transaction program is translated 
into a globally known map name that differs 
from the currently effective one stored in 
the MAPPER_SAVE_AREA. When the mapper dis­
covers this difference, it updates the cur-

5.2-8 SNA Format and Protocol Reference Manual for LU Type 6.2 



TPCA> 

1nap-name-l, data-1 

(Sending LU> 
PS.MC 

( UPH_HAPPER > 

•ap-na•e-2, data-2 

CReceiving LU> 
PS.MC 

I UPtU1APPER > 

~~~~~~~~~~~~~~> 

TPIB > 

.ap-name-3, data-3 

Hap-nae·-! and data-1 &re suppHed by the sending transaction program on MC_SENl_DATA. l1ap-na111e-2 
and data-2 flow frOt1 sending PS.He to receiving PS.MC as 6DS variables. Map-name-3 and data-3 are 
passed to the receiving transaction program via HC_RECEIVE_Atl>_W,UT • 

See "Happing Example" foi- an explanation of the flows shoNn in this figure. 

Figure S.2-5. An Exainple of Happing 

rently effective HP name in i ts 
HAPPER_SAVE_AREA, and infor115 PS.NC of this 
change by returning an indicator and the new 
up name. 

The mapper can ti-anslate map names in 11any 
different ways. It may, for example, trans­
late the supplied 11<1p name to null, thereby 
preventing the data from being transfoi-med. 
The 111apper may also translate two di ffei-ent 
locally kno1'lt1 111ap names to the sa111e globally 
known map name. For instance, if the trans­
action pi-ogram issues HC_SEHD_DATA with map 
name A followed by another HC_SEND_DATA with 
map name e, the mapper •ay map both map names 
to 11ap name C. Moi-eover, the 11apper •ay 
translate the same locally known map na•e 
differently on di fferent occasions. If the 
transaction progi-am issues MC_SEND_DATA with 
map name A and the 111apper translates it to 
map name e, then when the ti-ansaction program 
again issues MC_SENO_DATA with 11ap name A, 
the mapper may, because of infor•ation known 
only to itself, translate this map na111e to 
•ap name C. Nevertheless, the translation of 
map names by the mapper is subject to some 
constraints. For example, the mapper never 
·ti-anslates a null map name to a nornull map 
name. 

To complete its processing of & change in the 
effective 11ap name, the sending PS.MC 111ust 
notify the receiving PS.MC of the change. It 
does this by sending to the receiving PS.He a 
Hap Name GOS variable containing the new 
effective map name. In this situation, a 
single MC_SEND_OATA causes two 6DS variables 

to be ci-eated: a Hap Ha111e 6DS variable and & 
data 6DS varioible. 

Si•ilarly, the receiving 111apper saves, in its 
HAPPER_SAVE_AREA, the lllilp name received in a 
Hap Name GOS variable. When subsequent data 
GOS vai-iables are received with no interven­
ing Hap Name GOS variables, the 11apper uses 
the saved map name in mapping the new data. 
Once a Hap NaMe 6DS variable is received, 
that ••P name remains in effect l.Wltil another 
map name is received or the mapped conversa­
tion ends. 

When the effective •ap na111e is null <with a 
length of zei-01, moipping is said to be "off"J 
that is, any data passed to the m&pper is 
returned unchanged. At the beginning of all 
mapped conversations, the eff•ctive map names 
&re initialized to null. This happens pi-ior 
to &ny flow of Map Name GOS voiriables. A Hap 
Name GOS variable containing • null map naae 
is sent to the partnei- only to change the 
effective Map na11e back to null &fter it has 
not previously been null. If the transaction 
program always supplies a null map nante, no 
Hap Name 605 variable is ever sent to the 
partner LU. 

HAPPER INVOCATION 

PS.MC invokes the mapper Nhenever any of the 
following occurs: 

• The transaction program sends or receives 
data lthat is. issues tlC_SEttJ_DATA or 
MC_RECEIVE_ANJ_WAIT). The data My be 
application data or FH header dataJ both 
of these types of data 111ay be mapped. 

Chaptei- 5.2. Presentation Services--Happed Conversation Verbs S.2-9 



5.2-10 

• PS.MC receives, fr.om PS.CONV, information 
indicating that the partner transaction 
program has received and processed all 
the recently sent map names. This 
includes information such as a positive 
reply to CONFIRM or to SYNCPT, or any 
information that the partner transaction 
program issued from SEND state (see 
explanation below!. 

The mapper is also invoked during the error 
processing triggered by the events listed 
below. This processing is more thoroughly 
described in "Mapper Errors" on page 5.2-12. 

• 

• 

• 

• 

• 

The transaction program issues 
MC_SEND_ERROR. 

PS.MC issues SEND_ERROR with a type value 
of SVC (see SNA Transaction Programmer's 
Reference Manual for LU ~ Lll. 

The transaction program or the sync point 
manager ("Chapter 5.3. Presentation Serv­
ices--Sync Point Services Verbs") issues 
BACKOUT. 

A return code of SVC_ERROR_* is received 
from PS.CONV. 

A return code of PROG_ERROR_* is received 
from PS.CONV. 

A positive reply to CONFIRM or to SYNC PT 
informs the mapper that any map names it has 
caused to be sent to the partner have been 
received and processed by it. For example, 
if the mapper causes a Map Name GOS variable 
to be sent to the partner LU, and is informed 
that a positive reply to CONFIRM has been 
received, and is next invoked because the 
partner LU detected an error while in RECEIVE 
state, the mapper knows, because of the 
intervening conflrmation, that the error 
processing at the partner did not cause the 
map name to be purged. The mapper does not 
cause a duplicate map name to be sent in this 
case. 

In addition, receipt of data from the partner 
also indicates that all the recently sent map 
names have been processed, because the part­
ner cannot have sent data unless it has 
entered SEND state, and it cannot have 
entered SEND state !from RECEIVE state, which 
is the state it was in when it was receiving 
and processing the data sent by the trans­
action program) unless. it has finished 
receiving and mapping all the data that the 
transaction program was sending. Moreover, 
not only receipt of data, but receipt of any 
information whatsoever that the partner 
issued from SEND state !such as a SEND indi­
cator, CONFIRM, or even an error notifica­
tion) indicates to the mapper that the 
partner has received and processed the most 
recently sent map names. 

MAPPER PARAMETERS 

Each time PS.MC invokes the mapper, it sup­
plies required information to the mapper. 

This information includes, in addition to the 
map name and the data to be mapped, such 
information as whether send or receive map­
ping is to be performed. Also, based upon 
the reason for the mapper invocation, infor­
mation may be returned by the mapper to 
PS.MC. The mapper also uses other data 
structures in the RCB to store currently 
effective map names and incoming data. The 
information used and returned by the mapper 
is listed below. For a further description 
of mapper input and output, see the forma 1 
description of the UPM_MAPPER on page 5.2-46. 

Supplied Information 

• Reason for the mapper invocation 

Data mapping 

Errors 

Positive confirmation 

• Data polarity 

Send 

Receive 

• FMH data indicator 

• Input map name 

• Input data 

• Error code 

Returned Information 

• Output map name 

• Output data !mapped data! 

• Mapper return code 

SEND MAPPING 

When the transaction program is sending data 
Ci .e., when PS.MC is processing 
MC_SEND_DATAJ, the mapper is responsible for: 

• Mapping the data supplied by the trans­
action program Cin the verb's DATA param­
eter l in accordance with the MAP _NAME 
parameter supplied by the transaction 
program 

• Mapping the locally known map name sup­
plied by the transaction program to a 
globally known map name corresponding to 
the format of the mapped data 

• Determining whether to send a Map Name 
GOS variable to the partner LU, and pre­
venting duplicate Map Name GOS variables 
fr.>m flri•~ing <:::·::r.:o<=cu·,;vely to the partner 
LU 

SNA Format and Protocol Reference Manual for LU Type 6.2 



• Determining whether to resend a Map Name 
GOS variable to the partner LU, in the 
event of an error 

PS.MC's processing of MC_SEND_DATA is 
described below. For example, the trans­
action program issues MC_SEND_DATA with 
MAP_NAMECA> and DATACdata-1). PS.MC invokes 
the mapper, informing it that send mapping is 
to be performed. PS.MC also passes to the 
mapper the supplied map name and data. 

The mapper translates map name A to map name 
B and maps d;ita-1 to d;ita-2, to be sent to 
the partner LU. The translated m;ip n;ime, 
since it differs from the currently effective 
m;ip n;ime (which is stored in the 
MAPPER_SAVE_AREA and is i ni ti ally null) is 
returned to PS.MC. The translated data is 
also returned. 

When control is returned to PS.MC from the 
m;ipper call, PS.MC first determines whether 
the mapper succeeded in m;ipping the supplied 
data Cit could have failed if the trans­
action program had provided a map name 
unknown to the mapper). Since the mapping 
was successful, PS.MC next determines whether 
a new map n;ime h;is been returned. In this 
case, the mapper has returned the output m;ip 
name, because the translated map name B di f­
fers from the currently effective m;ip n;ime. 
Therefore, PS.MC updates the currently effec­
tive map name to B and creates a Map Name GOS 
vari;ible Cto be sent to the partner) contain­
ing map name B. PS.MC next formats the data 
returned by the mapper as a an Application 
Data or User Control Data GOS variable, by 
segmenting it into logical records and pre­
fixing the GOS ID. PS.MC uses the 
MC_MAX_SEND_SIZE field in the RCB to deter­
mine the size of the logical records. 

Finally, PS.MC issues SEND_DATA, with a DATA 
par;imeter containing the Map Name and data 
GOS variables. When the SEND_DATA completes 
successfully, PS.MC returns control to the 
transaction program, indicating that the 
MC_SEND_DATA was also successful. 

When the transaction program again issues 
MC_SEND_DATA, again specifying a map name of 
A, PS.MC again invokes the mapper. As in the 
previous invocation, the mapper translates 
m;ip name A to map name B. Si nee i t has 
already caused PS.NC to send map name B to 
the partner LU, it does not return an output 
map name to PS.MC. 

Si nee no map name was returned from the 
mapper, PS.MC does not create a Nap Name GOS 
variable. It processes the output data as 
above, creating an Application Data or User 
Control Data GOS variable containing the 
data. Finally, it issues SEND_DATA with a 
DATA parameter containing only the data GOS 
variable. An OK return code is returned on 
the SEND DATA, and PS.MC returns a return 
code of OK on the MC_SEND_DATA. 

RECEIVE MAPPING 

When the transaction program is receiving 
data Ci.e., when PS.NC is processing 
MC_RECEIVE_AND_WAIT>, the mapper is responsi­
ble for 

• Mapping the data received from the part­
ner LU in accordance with the currently 
effective map name, 

• Mapping the currently effective map name 
to a locally known map name corresponding 
to the format of the mapped data, and 
returning this map name and the mcipped 
data to the trcinsaction program, and 

• Optionally, checking incoming Nap Name 
GOS variables from the partner LU for 
dupl i ca ti on and symbol-string consi sten­
cy. 

An example of PS.NC's processing of 
MC_RECEIVE_AND_WAIT is described below. 

First, PS.MC issues the basic conversation 
verb RECEIVE_AND_WAIT to PS.CONY, specifying 
a fill value of LL (see SNA Transaction Pro­
grcimmer 's Reference Manual for LU ~ 6. 2) 
to request that PS.CONV return one logical 
record. After the RECEIVE_AND_WAIT completes 
successfully, PS.NC finds that the data 
received consists of a Map Ncime GOS variable. 
Knowing that a data GOS variable is to follow 
the map name, PS.MC again issues 
RECEIVE_AND_WAIT to PS.CONV, again retriev­
ing one logical record. The data received in 
the second RECEIVE_AND_WAIT is application or 
FM header data, but the high-order bit of the 
LL field in the logical record indicates that 
more data follows that is to be associated 
with the dcita just received; that is, the 
data GOS varicible consists of multiple log­
ical records (see "Construction of GOS Vari­
ables" on page 5.2-5J. PS.NC continues to 
request data from PS.CONV until the 
high-order bit of the LL field of the 
received logical record is off, indicating 
that the entire data GOS variable has been 
received. In the example, this occurs on the 
third RECEIVE_AND_WAIT. 

PS.NC has now received a map name and data to 
be mcipped. It invokes the mapper and 
receives from the mapper the map name and 
m<ipped data to be passed to the transaction 
program. PS.MC passes to the transaction 
program the amount of data that the trans­
action program has requested, <ind discards 
any remaining data. 

MC TEST PROC 

An implementation of the mapped conversation 
verbs includes an entry point, NC_TEST_PROC, 
which can be used to determine whether a com­
plete data GOS variable has been received 
from the remote TP without causing the call­
ing program to wait if data is not available 
immediately. This entry point is called by 
the implementation of the WAIT verb, which 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-11 



enables a TP to wait for arriv&l of data on 
any of a list of c~s1c and mapped conversa­
tions. 

An MC POST ON RECEIPT verb must be issued 
before- a call- to MC_PROC_TEST is effective. 
Thus, MC POST ON RECEIPT must be issued 
before a -WAIT- verb that includes a mapped 
conversation in its list. Then a sequence of 
calls can be made to MC TEST PROC, which 
returns the code OK when a -complete data GOS 
variable is available. 

In order to determine whether a complete data 
GOS variable has been received from the 
remote TP, MC_TEST_PROC has to issue a 
RECEIVE_AND_WAIT verb, so that it can examine 
the data. Several RECEIVE_AND_WAIT. verbs may 
be required before a complete data GOS vari­
able is received. As the pieces of the data 
GOS variable are received, they are placed in 
an RCB field, MC_RECEIVE_BUFFER, where they 
are held until the local TP issues an 
MC_RECEIVE_AND_WAIT verb. 

To make sure that the RECEIVE AND WAIT verbs 
that it issues do not cause waits for data to 
be received from the remote TP, MC TEST PROC 
calls a similar entry point of- PS.CONV, 
TEST_PROC, to determine whether a logical 
record has already been received. Only when 
such a record is available does it issue a 
RECEIVE_AND_WAIT verb. 

An example of the use of MC_ TEST _PROC is 
illustrated in Figure 5.2-6 on page 5.2-13 
and described below. This figure begins with 
the TP issuing an MC_POST_ON_RECEIPT verb for 
a specified mapped conversation. It then 
issues a WAIT verb, which causes the 
PS. VERB ROUTER to call MC TEST PROC for the 
spec i f i ;d conversation, a;; well as others. 
NC_TEST_PROC first checks the 
MC RECEIVE BUFFER in the RCB associated with 
th; conversation to see if it holds a com­
plete data GOS variable. In this example, 
PS.MC does not have a data GOS variable 
ready. Therefore, MC_ TEST _PROC calls 
TEST_PROC to determine whether PS.CONV has 
any data ready to be received. PS.CONV 
returns to PS.MC with a code indicating that 
data is available, WHAT RECEIVED = 
DATA_COMPLETE. PS.MC issues RECEIVE_AND_WAIT 
to retrieve the waiting data. After inspect­
ing the data, PS.MC discovers that it is not 

MAPPED CONVERSATION ERRORS 

MAPPER ERRORS 

In send mapping, the supplied map name is not 
checked for symbol-string consistency; its 
symbol-string restrictions, if any, are 
implementation-defined. The mapper trans­
lates the supplied map mime to a globally 
known map name that conforms to the 
symbol-string definitions in the fil!A Trans­
action Programmer's Reference Manual for LU 
~ ~· PS.MC, therefore, also performs no 

sufficient to complete the current data GOS 
variable. PS.MC stores the received data in 
MC_RECEIVE_BUFFER, issues POST_ON_RECEIPT to 
request that PS.CONV reinitiate posting, and 
returns the code UNSUCCESSFUL to 
PS.VERB_ROUTER. PS.VERB_ROUTER resumes test­
ing this resource and all others specified in 
the WAIT verb for receipt of a complete data 
GOS vari <ible. 

In this example, had the call to TEST_PROC 
returned any code other than OK--DATA, PS.MC 
would not issue RECEIVE_AND_WAIT but would 
return to PS. VERB_ROUTER the same code that 
it received from TEST_PROC. On the other 
hand, had the data returned by 
RECEIVE_AND_WAIT completed a data GOS vari­
able, MC_TEST_PROC would not have issued 
POST ON RECEIPT but would have returned the 
code-oK=-oATA to PS.VERB_ROUTER. 

When MC_TEST_PROC is called, 
MC_RECEIVE_BUFFER is in one of the following 
states: 

• It is empty. 
• It contains the initial logical records 

of a data GOS variable (perhaps preceded 
by an associated map name GOS variable), 
but does not yet contain the remaining 
logical records of the data GOS variable, 
which must be received before the data 
can be passed to the transaction program. 

• It contains a complete data GOS variable 
that is ready to be mapped and passed to 
the transaction program. 

Once a complete data GOS variable has been 
received, PS.MC requests no more information 
from PS.CONV until it passes to the trans­
action program the data already in 
MC_RECEIVE_BUFFER. 

MC_RECEIVE_BUFFER may contain many different 
types of information. It may contain tran­
sient information, such as a return code or a 
SEND i ndi ca tor, which is returned to the 
transaction program as soon as processing of 
the current verb is completed. It may con­
tain part or all of a data GOS variable. 
These logical records remain in the list 
until the incoming data GOS variable is com­
plete and is retrieved by RECEIVE_ANO_WAIT. 

checking of the globally known map name 
returned by the mapper; the mapper is respon­
sible for supplying map names that conform to 
SNA-defined formats. In receive mapping, 
however, the mapper does check the map name 
received in a Map Name GOS variable for 
symbol-string consistency. The mapper 
informs PS.MC via a return code of 
MAP_NOT_FOUND when the map name violates 
SHA-defined symbol-string types, or when the 
map name conforms to defined symbol-string 
types but is unknown to the mapper C see 

5.2-12 SNA Format and Protocol Reference Manual for LU Type 6.2 



TP PS.VERB_ROUTER PS.MC PS.CONY 

MC_POST_ON_RECEIPT POST_ON_RECEIPT CFILL = LL) 
---------------------------------------------------~> '----------> 
~--------------·--------------- <- - - - - - - - - - - - - -

ioiAlT Call MC_TEST_PROC 
~--------------------~> ------------------------~> 

MC_RECEIVE_BUFFER does not hold 
a complete data GOS variable 

Call TEST_PROC 
----------------------> 

return code = OK--DATA 
<- - - - - - - - - - - - - -

PS.CONY has data 

RECEIVE_AND_WAIT CFILL = LL) 
----------------------> 
WHAT_RECEIVED = DATA_COMPLETE 
<- - - - - - - - - - - - - -

More Data to be Received. 

POST_ON_RECEIPT CFILL = LL) 
--------------------------> 

return code = UNSUCCESSFUL 
<- - - - - - - - - - - - - - <- - - - - - - - - - - - - -

Continue testing for posting by 
any resource specified in the verb 

See "MC_TEST_PROC" on page 5.2-11 for an explanation of the flows shoilln in this figure. 

Note: Only those parameters pertinent to the example are shown. 

Figure 5.2-6. MC_TEST_PROC 

Appendix H for definitions of the valid 
symbol-string types). 

The mapper also performs an optional receive 
check to determine if it has received a map 
name that is the duplicate of the map name 
last received. If i t has , then the mapper 
informs PS.MC, which ends the mapped conver­
sation. See "Protocol Violations" on page 
5.2-14 for details. 

If notification of an error is received, 
PS.MC passes the error notification to the 
transaction program as a return code. In 
addition, PS.MC invokes the mapper to inform 
it of the error. The mapper then determines 
whether a map name needs to be re-sent, since 
the MC_SEND_ERROR issued by the partner 
transaction program or PS.MC might have 
caused the map name to be purged on receipt. 

If notification of an error is received and 
the mapper has previously caused PS.MC to 
send a map name to the partner LU, the mapper 
checks to see if any information has been 
received that would indicate that the partner 
LU has received and processed the map name. 
Examples of the type of information that 
would indicate this are an affirmative reply 
to CONFIRM or to SYNCPT, received data, or a 
SEND indicator. If none of the above has 
been received, the mapper causes a map name 
to be re-sent to the partner LU. The map 
name that is sent is based upon the map name 
supplied by the transaction program on the 
next MC_SEND_DATA. 

The mapper needs to be informed of any errors 
that occur on a mapped conversation, and of 
any issuances of BACKOUT that occur on a 
mapped conversation whose s ynchron i za ti on 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-13 



5.2-14 

1 eve! is SYNC PT, because these events may 
require the mapper to re-send the currently 
effective map name. In the case of an error 
detected by the partner LU, a map name that 
the mapper has sent to the partner may have 
been purged by the partner as a result of its 
error process;ng. Therefore, the mapper has 
to determine whether it needs to re-send the 
map name that may have been purged. In the 
case of BACKOUT, the ent;re mapped conversa­
tion is required to revert to the status it 
had at the last issuance of SYNCPT. If the 
currently effective map name has changed 
s i nee then, the mapper needs to resend the 
map name that was in effect at the last issu­
ance of SYNCPT. 

ERROR DATA GOS VARIABLES 

A GOS variable that is not created as a 
d; rect result of action taken by the trans­
action program is the Error Data GOS vari­
able. When PS.MC detects an error in the 
data being rece;ved from the partner Lll· H 
issues a SEND_ERROR TYPECSVC> fo!!o..ied by a 
SEND_DATA. The OA~A parameter of the 
SEND_DATA r .. :-.tains the Error Data GOS vari­
able. ;..inch describes the exact nature of the 
c:r·ror encountered. The transaction program 
serviced by the PS.MC that received the data 
and detected the error is not informed of the 
error. The transaction program that issued 
the data ;n which an error was found is told 
of the error via a return code derived from 
the information contained in the Error Data 
GOS variable Csee "Processing of a Service 
Error Detected by Partner LU" on page 
5.2-17>.~ An example of the type of error 
that PS.MC might encounter in received data 
is receipt of a User Control Data GOS vari­
able when FM header data is not supported by 
the transaction program or the LU. 

PROTOCOL VIOLATIONS 

PS.MC performs optional receive checks to 
determine if the partner LU has committed a 
protocol violation. An example of a protocol 
violat;on PS.MC can detect is the receipt of 
a Map Name GOS variable followed by something 
other than a data GOS variable C map names 
have to be followed by data). 

When PS.MC detects a protocol violation such 
as the one above, it issues DEALLOCATE with 
TYPECABEND_SVC) and returns a return code of 
RESOURCE_FAILURE_NO_RETRY to the transaction 
program. Correspondingly, when PS.MC 
receives a return code of DEALLO­
CATE_ABEND_SVC or DEALLOCATE_ABEND_TIMER from 
PS.COIN, it translates the return code to 
RESOURCE_FAILURE_NO_RETRY, and passes it to 
the transaction program. 

If, however, the protocol violation occurred 
because the mapped" conversation ended prema­
turely at the partner LU (i.e., the partner 
LU has issued a deallocation notification 
that indicates a protocol error), then PS.MC 
simply logs the error and passes the 

RESOURCE_FAILURE_NO_RETRY return code to the 
transaction program. Since the mapped con­
versation has already been deallocated at the 
partner LU, PS.MC cannot issue the DEALLOCATE 
CTYPE=ABEND_SVCJ that it normally issues when 
it detects a protocol violation. 

SERVICE ERRORS 

The TP, upon detecting an error on a mapped 
conversation, issues MC_SEND_ERROR with 
TYPECPROG). This indicates that the type of 
error detected was a program error Ci.e., was 
an error discovered by a TPJ. Another cate­
gory of errors may be detected by the LU 
rather than the TP. These errors are called 
service errors because they are detected by a 
presentation services component within the 
LU. 

As a service component, PS.MC checks for cer­
tain types of servir.P e~rors. !f "' partner 
T~ requests a function, such as handling of 
function management header ( FMH) data, that 
is not supported by the local LU or trans­
action program, PS.MC performs service error 
processing and advises the partner LU of the 
lack of support for that function. 

Another service error that PS.MC may detect 
is receipt of a map name from the partner LU 
that is not known by the mapper. Similarly, 
the mapper may find that the data and the map 
name it has received fr~m tha partner LU are 
incompatible, i.e., that the data cannot be 
mapped using the received map name. 

PS.MC also handles receipt of a service error 
notification from a partner LU when it is the 
partner that discovered the service error. 

The following sections describe the process­
ing that PS.MC performs when it detects a 
service error, and the processing that 
results when PS.MC learns that the partner 
detected an error. 

SERVICE ERRORS DETECTED IN RECEIVED DATA 

As mentioned earlier, one type of error that 
PS.MC may detect is receipt of an invalid map 
name. F;gure 5.2-7 on page 5.2-15 illus­
trates this serv;ce error. In the f;gure, 
PS.MC has issued a RECEIVE_AND_WAIT to 
PS.CONY as a result of the 
MC_RECEIVE_AND_WAIT issued by the TP. The 
data returned in the RECEIVE_AND_WAIT is a 
Map Name GOS variable. PS.MC stores the map 
name and issues another RECEIVE_AND_WAIT in 
order to receive the data that follows the 
map name. In this example, PS.MC receives a 
complete data GOS variable in the 
RECEIVE AND WAIT land therefore does not 
~etrieve any more data from PS.CONY>. 

PS. MC invokes the mapper, passing i t the 
received map name and data. Instead of map­
p1ng the data, however, the mapper returns to 
PS.MC a return code indicating that the map 
name received is invalid. The mapper has 

SHA Format and Protocol Reference Manual for LU Type 6.2 



TP PS.MC MAPPER PS.CONV 

MC_RECEIVE_AND_WAIT RECEIVE_AND_WAIT CFILL = LL> 
--------------------------> ----------------------------------------------------------> 

WHAT_RECEIVED = DATA_COMPLETE 
~------------------------------

Data is a Map Name GOS variable. 
RECEIVE_AND WAIT CFILL = LL> 

----------------------------------------------------------> 
WHAT_RECEIVED = DATA_COMPLETE 

~------------------------------
Data is a complete data GOS variable. 

INPUT_DATA=data-1 
INPUT_MAP_NAME=map-name-1 

-------------------------> 
RETURN_CODE=MAP_NOT_FOUND 

<- - - - - - - - - - - - -

SEND_ERROR CTYPE = SVC) 
----------------------------------------------------------> 

RETURN_CODE = OK <-------------------------------
SEND_DATA CDATA = Error Data GDS variable> 

----------------------------------------------------------> 
RETURN_CODE = OK 

~------------------------------

PREPARE_TO_RECEIVE CTYPE = FLUSH> 
----------------------------------------------------------> 

RETURN_CODE = OK 
~------------------------------

RECEIVE_AND_WAIT 
----------------------------------------------------------> 

WHAT_RECEIVED = DATA_COMPLETE 
~------------------------------

• 
• 
• 

See "Service Errors Detected in Received Data" for an explanation of the flows shown in this figure. 

Figure 5.2-9 on page 5.2-18 is the complement of this figure, showing the processing that occurs 
when an LU is informed of an error committed at that LU. Note: Only those parameters pertinent to 
the example are shown. 

Figure 5.2-7. Detecting a Service Error as a Result of MC_RECEIVE_AND_WAIT Processing 

detected a service error and informed PS.MC 
of the error. 

PS.MC now has to inform the partner that a 
service error occurred and to return SEND 
control of the mapped conversation to the 
partner TP. PS.MC first issues SEND_ERROR 

with TYPE C SVC l. This tells the partner LU 
only that an error occurred; it does not 
indicate to the partner the exact nature of 
the error. In order to convey this important 
information to the partner, PS.MC creates an 
Error Data GOS variable. The GOS variable 
carries an indication that the received map 

Ch~pter 5.2. Presentation Servicas--Mapped Conversation Verbs 5.2-15 



PS.VERB_ROUTER PS.NC PS.CONV 

Call MC_TEST_PROC 

RETURN_CODE = UNSUCCESSFUL 

TEST 

RETURN_CODE = OK 
~---------------------

RECEIVE_AND_WAIT (FILL = LL) 

WHAT_RECEIVED = DATA_CONPLETE 
~---------------------

PS.MC examines the data 
and detects an error. 

SEND_ERROR (TYPE = SVC) 

RETURN_CODE = OK 
~---------------------

SEND_DATA <DATA = Error Data GOS variable! ---------------------> 
RETURN_CODE = OK 

~---------------------

PREPARE_TO_RECEIVE <TYPE = FLUSHJ 
---------------------> 

RETURN_CODE = OK 
~---------------------

POST_ON_RECEIPT <FILL = LL) 
---------------------> 

~--------------------- ~------------------

See "Service Errors Detected in Received Data" for an explanation of the flows shown in this figure. 

Note: Only those parameters pertinent to the example are shown. 

Figure 5.2-8. Detecting a Service Error as a Result of a Call to MC_TEST_PROC .._ _________________________________ ···----------------' 

.5.2-16 

name was not found i I" ti.,e ruapper' s 1 i brary of 
map names; i:'":<i invalid map name is also 
returl"~~ to the partner LU in the Error Data 
~:~ variable so that the partner LU will know 
exactly which map name was unknown. PS.MC 
then issues a SEND_DATA carrying the Error 
Data GOS variable to PS.CONV. 

PS. NC completes i ts processing of the 
received service error by issuing PRE­
PARE_TO_RECEIVE with TYPECFLUSH), which 
returns SEND control of the mapped conversa­
tion to the partner TP. 

PS.MC does not inform its local TP of the 
service error committed by the partner LU. 
It instead returns SEND control of the mapped 
conversation to the partner TP, which is 
informed of the error, and waits for the 
partner TP to recover from the error. The 
transaction program that committed the error 

is responsible for determining what error 
recovery is to take place. When the service 
error is detected as a result of an 
MC_RECEIVE_AND_WAIT, PS.MC immediately issues 
another RECEIVE_AND_WAIT to wait for informa­
tion from the partner. 

Figure 5.2-8 illustrates a slightly different 
situation in which a ser·vice error is 
detected. This time, the error is detected 
in data that was received as a result of a 
call to MC_ TEST _PROC by the PS. VERB_ROUTER 
while it is processing a WAIT verb. Another 
difference is that instead of the mapper 
detecting the error, PS.MC discovers it. One 
cause of this type of error would be incoming 
data requesting a function that the receiving 
PS.MC did not support (for example, the func­
tion of hand! i ng FM header data when User 
Control Data GOS variables are not supported 
by the receiving PS.MC). 

SNA Format and Protocol Reference Manual for LU Type 6.2 



In hand! i ng this error during a call to 
MC_TEST_PROC, PS.MC, as in the 
MC_RECEIVE_AND_WAIT example, issues 
SEND_ERROR, followed by SEND_DATA with an 
Error Data GOS variable, followed by PRE­
PARE_TO_RECEIVE with TYPECFLUSHl. PS.MC thP.n 
continues, however, in a manner different 
from the MC_RECEIVE_AND_WAIT example: 
MC_ TEST _PROC returns to the PS. VERB_ROUTER, 
after passing SEND control of the mapped con­
versation to the partner (and after causing 
posting to be re-activated). The 
PS. VERB_ROUTER is informed that its MC_ TEST 
was unsuccessful, but not of the specific 
error. 

PROCESSING OF A SERVICE ERROR DETECTED BY 
PARTNER LU 

PS.MC also handles service errors that are 
detected by the partner LU. The error could 
have been detected in data sent to the part­
ner LU by the local TP. Alternatively, the 
partner LU may have detected an error while 
sending data to PS.MC. Figure 5.2-9 on page 
5.2-18 and Figure 5.2-10 on page 5.2-19 
illustrate these two cases of error notifica­
tion. 

In Figure 5.2-9 on page 5.2-18, the trans­
action program is in the midst of sending 
data to the partner transaction program. 
However, a return code of SVC_ERROR_PURGING 
is returned on one of the SEND DATAs that 
PS. MC issues to PS. CONV. The 
SVC_ERROR_PURGING return code indicates that 
the partner LU has detected an error in the 
data it has received. PS.MC, upon receipt of 
the SVC ERROR PURGING return code, issues a 
RECEIVE_AND_WAIT to learn the type of service 
error the partner LU encountered. The data 
returned in the RECEIVE AND WAIT consists of 
an Error Data GOS variable specifying the 
type of service error. The return code that 
PS.MC returns to the transaction program is 
derived from the information carried in the 
Error Data GOS variable. Before returni11g to 
the transaction program, PS.MC issues another 
RECEIVE AND WAIT to retrieve the SEND indica­
tor. As discussed in the previous section, 
the transaction program that caused a service 
error to be committed is responsible for 
determining what error recovery is to occur. 
PS.MC returns to the transaction program with 

a return code, in this example, of 
MAP_NOT_FOUNO. The transaction program still 
has SEND control of the mapped conversation 
(the transaction program is placed in SEND 
state as a result of a remotely detected 
error, even if the transaction program was in 
RECEIVE state when it issued the verb on 
which the error is reported). 

The example shown in Figure 5.2-7 on page 
5.2-15 and described 1n "Processing of a 
Service Error Detected by Partner LU". is the 
complement of the example just discussed and 
shown in Figure 5.2-9 on p<lge 5.2-18. The 
first figure mentioned shoNs a transaction 
program requesting to receive data on a 
mapped conversation and the LU detecting an 
error in the data received. The second fig­
ure shows a trans<lction program sending data 
on a mapped conversation and being not i f i ed 
that a problem with the data was encountered 
at the partner LU. 

As was pointed out in "Block Mapping" on page 
5.2-8, PS.MC never sends a service-error 
notification to its partner from SEND state. 
An LU providing implementation-defined map­
ping, however, could issue such an error. 
For example, the LU may have mapped some, but 
not all, of the data issued by the trans­
action program in an MC_SEND_DATA. The part 
of the data that has been mapped is sent on 
the mapped conversation. While mapping the 
remainder of the data, however, the mapper 
discovers a problem. It informs its PS. MC 
component, which then issues a service-error 
notification indicating that data truncation 
has occurred at the sending LU. An LU with 
implementation-defined mapping may also, at 
some point, need to notify its partner that 
an error was detected but no data truncation 
has occurred. 

While PS.MC does not issue service errors 
from SEND state, it does handle receipt of 
notifications that the partner LU detected a 
service error while it was in SEND state. 
Figure 5.2-10 on page 5.2-19 illustrates the 
processing that PS.MC performs as a result of 
this error. If i t has received any i ncom­
plete data prior to receiving the 
service-error notification, PS.MC purges the 
data and immediately begins to wait for new 
data to arrive. Again, the transaction pro­
gram is not informed of the error. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-17 



TP PS.MC PS.CONY 

MC_SEND_DATA 
----------------------------------------> 

RETURN_CODE = OK 
~---------------------

MC_SEND_DATA 
----------------------------------------> 

• 
• 
• 

SEND_DATA ______________________________ _._ __ _,.----> 

RETURN_CODE = OK 
~---------------------

SEND_DATA 
----------------------------------------> 

RETURN_CODE = SVC_ERROR_PURGING 
~---------------------

RECEIVE_AND_WAIT 
----------------------------------------> 

WHAT_RECEIVED =DATA_COMPLETE 
~----~----------------

Data is an Error Data GOS variable. 

RECEIVE_AND_WAIT 
----------------------------------------> 

RETURN_CODE = MAP_NOT_FOUND WHAT_RECEIVED = SEND 
~--------------------- ~---------------------

See "Processing of a Service Error Detected by Partner LU" for an explanation of the flows that are 
shown in this figure. 

Figure 5.2-7 on page 5.2-15 is the complement of this figure, showing the processing that occurs at 
the LU that detects an error in received data. The SVC_ERROR_PURGING return code can be returned on 
several verbs. SEND_DATA is used here as an example of one of the verbs possible. 

Note: Only those parameters pertinent to the example are shown. 

Fig\Jre 5.2-9. Receipt by PS.MC of a SVC_ERROR_PURGING Return Cod~ 

5.2-18 SNA Format and Protocol Reference Manual for LU TypP. !.'.i:. 



TP PS.MC PS.CONY 

MC_RECEIVE_ANO_WAIT RECEIVE_ANO_WAIT CFILL = LL> 
------------------------------------------> ------------------------------------------> 

RETURN_CODE = SVC_ERROR_TRUNC/SVC_ERROR_NO_TRUNC 
~---------------------

PS.MC purges any data that it has received 
prior to the service error notification. 

RECEIVE_AND_WAIT 
~----------------------------------------> 

• • • 
See "Processing of a Service Error Detected by Partner LU" for an explanation of the flows that are 
shown in this figure. 

The processing that occurs when a SVC_ERROR_TRUNC or SVC_ERROR_NO_TRUNC return code is received by 
PS.MC while processing a call to MC_TEST_PROC differs from this figure only in that PS.NC does not 
issue a RECEIVE_AND_WAIT after receiving the return code. PS.NC returns a code of UNSUCCESSFUL to 
the PS.VERB_ROUTER. 

Note: Only those parameters pertinent to the example are shown. 

Figure 5.2-10. Receipt by PS.MC of a SVC_ERROR TRUNC or SVC_ERROR_NO_TRUNC Return Code 

PS_MC 

FUNCTION: This procedure receives mapped conversation verbs issued by the transaction 
program, and routes each verb to the appropriate procedure for processing. 

OUTPUT: 

PS.MC is called by PS.VERB_ROUTER (Chapter 5.0) as a result of the transaction 
program's issuing a mapped conversation verb. 

The current transaction prog.am verb 
PS_PROCESS_DATA is provided by the resources 
be accessed by all the procedures within PS. 

is passed with parameters; 
manager at creation time and may 

Refer to the procedures that are called from this procedure for the specific 
outputs. 

Referenced procedures, FSMs, and data structures: 
MC_ALLOCATE_PROC 
MC_CONFIRM_PROC 
NC_CONFIRNED_PROC 
NC_OEALLOCATE_PROC 
NC_FLUSH_PROC 
MC_GET_ATTRIBUTES_PROC 
MC_POST_ON_RECEIPT_PROC 
MC_PREPARE_TO_RECEIVE_PROC 
MC_RECEIVE_AND_WAIT_PROC 
MC_REQUEST_TO_SEND_PROC 
MC_SENO_DATA_PROC 
MC_SEND_ERROR_PROC 
MC_TEST_PROC 

page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 
page 

5.2-20 
5.2-21 
5.2-22 
5.2-23 
5.2-23 
5.2-24 
5.2-25 
5.2-26 
5.2-27 
5.2-37 
5.2-38 
5.2-40 
5.2-28 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-19 



PS_MC 

5.2-20 

Select based on the mapped conversation verb (issued by the TP): 
When MC_ALLOCATE 

Call MC_ALLOCATE_PROC Cpage 5.2-20). 
When MC_CONFIRM 

Call MC_CONFIRM_PROC Cpage S.2-21). 
When MC_CONFT~MEO 

C'" 1.! 11C_CONFIRMED_PROC C p&ge 5. 2-22). 
~nen MC_DEALLOCATE 

Call MC_DEALLOCATE_PROC Cpcige 5.2-23). 
When MC_FLUSH 

CALL MC_FLUSH_PROC Cpage 5 •. ~-23). 
When MC_GET_ATTRIBUTES 
Call MC_GET_ATTRIBUTES_PROC Cpage S.2-24>. 

When MC_POST_ON_RECEIPT 
Call MC_POST_ON_RECEIPT_PROC Cp&ge 5.2-25>. 

When MC_PREPARE_TO_RECEIVE 
Call MC_PREPARE_TO_RECEIVE_PROC Cp&ge 5.2-26). 

When MC_RECEIVE_AND_~lAIT 
Call MC_RECEIVE_AND_WAIT_PROC (page S.2-27). 

When MC_REQUEST_TO_SEND 
Call MC_REQUEST_TO_SEND_PROC Cp&ge 5.2-37). 

When MC_SEND_DATA 
Call MC_SEND_DATA_PROC Cpage 5.2-38>. 

When MC_SEND_ERROR 
Call MC_SENO_ERROR_PROC Cpage 5.2-40). 

When MC TEST 
Call MC_TEST_PROC (page 5.2-28). 

MC_ALLOCATE_PROC 

FUNCTION: This procedure handles the allocation of mapped convers&tions. 

INPUT: MC_ALLOCATE verb parameters (See SNA Transaction Programmer's Reference Manual 
for LU~ Ll·> 

OUTPUT: A return code as described in ~ Transaction Programmer's Reference Manual 
for LU~ Ll· Also, if the allocation is successful, PS.MC initializes the 
mapped conversation fields in the RCB that is created by the ALLOCATE verb and 
returns the ID of this RCB. 

NOTES: 1. The SNASVCMG mode name is not allowed at the mapped conversation protocol 
boundary. 

2. A return code on ALLOCATE of PARAMETER_ERROR or UNSUCCESSFUL indicates that no 
resource has been allocated (and, therefore, no RCB has been created). When 
the ALLOCATE returns a RETURN_CODE value of OK or ALLOCATION_ERROR, an RCB has 
been created. 

Referenced procedures, FSMs, and data structures: 
PS_VERB_ROUTER 
OEALLOCATION_CLEANUP_PROC 

RCB 

SNA Format.and· Protocol Reference Manual for LU Type 6.2 

page 5.0-11 
page 5.0-13 

page A-7 



If the transaction program supports mapped conversations and 
the mode name is not SNASVCMG Csee Note ll then 

Call PS_VERB_ROUTER !Chapter 5.0l to issue an ALLOCATE 
verb using the parameters given with the MC_ALLOCATE verb and 
specifying that the conversation type is mapped. 

Set the return code to the value returned by the ALLOCATE verb. 
If the return code from ALLOCATE was OK or ALLOCATION_ERROR then 

Prepare to return the ID of the RCB created by the ALLOCATE verb. 
Initialize RCB.MAPPER_SAVE_AREA as required by the implementation. 
Set RCB.MC_MAX_SEND_SIZE to the implementation limit on the 
length of RUs that can be sent to the partner LU. 

Else (allocation of a conversation is not allowed> 
Call DEALLOCATION_CLEANUP_PROC !Chapter 5.0). 

MC_CONFIRM_PROC 

FUNCTION: This proce~ure processes MC_CONFIRM verbs. 

MC_ALLOCATE_PROC 

INPUT: MC_CONFIRM verb parameters !See SNA Transaction Prog~ammer's Reference Manual 
for LU~ 2...,£.l 

OUTPUT: A return code as described in SNA Transaction Programmer's Reference Manual 
for LU ~ Ll· If a request to send is received from the remote transaction 
program while processing a CONFIRM verb, this request is also indicated to the 
local TP. 

NOTES: 1. PS.MC performs no check to determine H the conversation is in an appropriate 
state to receive an MC CONFIRM verb. A state check is performed by PS.CONV 
!Chapter 5.1) during it; processing of the CONFIRM verb. 

2. The processing that PS.MC performs as a result of receiving a return code of 
SVC ERROR PURGING involves issuing the necessary RECEIVE_AND_WAIT verbs. A 
req~est to send by the remote TP may be indicated by one of these 
RECEIVE_AND_WAIT verbs, as well as by the CONFIR11 verb. In either case, the 
indication is passed to the local TP. 

Referenced procedures, FSMs, and data structures: 
RCVD_SVC_ERROR_PURGING 
PS_SPS 
UPM_MAPPER 
PS_VERB_ROUTER 

RCB 

page 5.2-42 
page 5.3-35 
page 5.2-46 
page 5.0-11 

page A-7 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-21 



MC_CONFIRM_PROC 

5.2-22 

Find the RCB for the specified conversation (resource). 
Call PS_VERB_ROUTER !Chapter 5.0) to issue a CONFIRM verb 
for the current conversation. 

Select based on the code returned by CONFIRM: 
When OK 

Set the return code to the value returned by the CONFIRM verb. 
Call UPM_MAPPER (page 5.2-46) to record a positive confirmation. 

When PROG_ERROR_PURGING 
Set the return code to the value returned by the CONFIRM verb. 
Call UPM_MAPPER (page 5.2-46) to record a remotely detected 
error of the type indicated by the return code from CONFIRM. 

When ALLOCATION_ERROR, RESOURCE_FAILURE_RETRY, or RESOURCE_FAILURE_NO_RETRY 
Set the return code to the value returned by CONFIRM. 

When DEALLOCATE ABEND PROG 
Set the retu;n cod; to DEALLOCATE_ABEND. 

When DEALLOCATE_ABEND_SVC or DEALLOCATE_ABEND_TIMER 
Set the return code to RESOURCE FAILURE NO RETRY. 

When BACKED OUT - - -
Call PS_SPS (sync point manager, Chapter 5.3). 
Set the return code to the value returned by CONFIRM. 

When SVC ERROR PURGING 
Call RCVD_SVC_ERROR_PURGING Cpage 5.2-42) to 
get and process error data from the remote TP. 

Set the return code to the value returned by RCVD_SVC_ERROR_PURGING. 
If a request to send has been received from the remote TP and not 

indicated on a prior MC_CONFIRM, MC_RECEIVE_AND_WAIT, MC_SEND_DATA, or 
MC_SEND_ERROR verb then 

Return a request to send received indication t~ the local TP. 

MC_CONFIRMED_PROC 

FUNCTION: This procedure processes MC_CONFIRMED verbs. 

INPUT: MC_CONFIRMED verb parameters (See SNA Transaction Programmer's Reference Manu­
al for LU IYrul Ll· l 

NOTE: PS.MC performs no check to determine if the conversation is in an appropriate 
state to receive an MC_CONFIRMED. A state check is performed by PS.CONV 
!Chapter 5.1) during its processing of the CONFIRMED verb. 

Referenced procedures, FSMs, and data structures: 
PS_VERB_ROUTER 

Call PS_VERB_ROUTER !Chapter 5.0l to issue a CONFIRMED 
verb for the current conversation. 

SNA Format and Protocol Reference Manual for LU Type 6.2 

page 5.0-11 



HC_DEALLOCATE_PROC 

11C_DEALLOCATE_PROC 

FUNCTION: This procec:kAre handles the deallocation of 11apped conversation resources. 

INPUT: HC_DEALLOCATE verb paraaeters <See l!MA Tra05actj90 Programmer's Reference Han­
YJ!.l !9.!: .bY ~ L..t. ) 

OUTPUT: A return code as described in filiA Transaction programmer's Reference Manual 
!9.!: .bY ms y. 

NOTE: PS.11C performs no check to deteraine if the conversation is in an appropriate 
state to receive an HC_DEALLOCATE. A state check is performed by PS.CONY 
<Chapter 5.ll during its processing of the DEALLOCATE verb. 

Referenced procec:kAres, FSNs, and data structures: 
RCVD_SVC_ERROR_PURGING 
PS_VERB_ROUTER 
UPH_MAPPER 

page 5.2-42 
page 5.0-11 
page 5.2-46 

RCB page A-7 

Find the RCB for the specified conversation (resource). 
If the deallocation type is ABEND then 

Clear RCB.tlC_RECEIVE_BUFFER. 
Call PS_VERB_ROUTER <Chapter 5.0l to issue a DEALLOCATE 

Else 

verb for the current conversation Nith no error data and indicating 
that the type of deallocation is ABEND_PROG. 

Call PS_VERB_ROUTER !Chapter 5.0l to issue a DEALLOCATE 
verb for the current conversation Nith no error data and the 
specified deallocation type. 

Select based on the return code fre11 DEALLOCATE: 
When OK, ALLOCATION_ERROR, RESOURCE_FAILURE_RETRY, or RESOURCE_FAILlllE NO RETRY 

Set the return code to the code returned by DEALLOCATE. 
lifien PROG_ERROR_PURGING 

Set the return code to the code returned by DEALLOCATE. 
Call UPH_MAPPER (page 5.2-46) to record a 

remotely detected error of the type indicated by the return code 
frOll the DEALLOCATE verb. 

lifien DEALLOCATE_ABEND_PROG 
Set the return code to DEALLOCATE_ABEND. 

lollen DEALLOCATE_ABEND_SVC or DEALLOCATE_ABEND_TIMER 
Set the return code to RESOURCE_FAILURE_NO_RETRY. 

lollen SVC_ERROR_PURGING 
Call RCVD_svc_ERROR_l>URGING (page 5.2-42). 

tte_FLUSH_PROC 

FUNCTION: This procedure processes HC_FLUSH verbs. 

INPUT: MC_FLUSH verb parameters <See §!:!! Transpction programmer's Reference Manual 
f2r LU ms Ll· l 

NOTE: PS.MC performs no check to determine if the conversation is in an appropriate 
state to receive an tte_FLUSH. A state check is performed by PS.CONV !Chapter 
5.1) during its processing of the FLUSH verb. 

Referenced procedures. FSHs, and data structures: 
PS_VERB_ROUTER 

Call PS_VERB_ROUTER !Chapter 5.0) to issue a FLUSH 
verb for the current conversation. 

page 5.0-11 

Chapter 5.2. Presentation Services--Happed Conversation Verbs 5.2-23 



MC_GET_ATTRIBUTES_PROC 

5.2-24 

MC_GET_ATTRIBUTES_PROC 

FUNCTION: 

INPUT: 

OUTPUT: 

This procedure handles requests from the transaction program for information 
about a mapped conversation. 

MC_GET_ATTRIBUTES verb parameters CSee §t!A Transaction Programmer's Reference 
Manual for LU ~ 2-,g.) 

PS.MC issues a GET_ATTRIBUTES (See SNA Transaction Programmer's Reference Man­
ual for LU~ Ll> verb for the resource specified in MC_GET_ATTRIBUTES. 
PS.MC places the information returned in the GET_ATTRIBUTES verb into the 
appropriate fields in the MC_GET_ATTRIBUTES and returns control to the trans­
action program. 

Issue a basic GET_ATTRIBUTES verb on the current conversation. 

Return the attributes of the mapped conversation, returned 
from the GET_ATTRIBUTES verb, to the TP, such as the fully 
qualified LU names of both LUs of the conversation, the 
mode name, synchronization level, security profile, and 
security user ID. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



MC_POST_ON_RECEIPT_PROC 

tte_POST_ON_RECEIPT_PROC 

FUNCTION: This procedure processes MC_POST_ON_RECEIPT verbs. 

INPUT: 

OUTPUT: 

MC_POST_ON_RECEIPT verb parameters !See ~ Transaction Programmer's Reference 
Manual for LU~ 6.2.) 

If the MC_RECEIVE_BUFFER is ~mpty when the MC_POST_ON_RECEIPT is issued, PS.MC 
issues a POST_ON_RECEIPT verb Otherwise, no POST_ON_RECEIPT is necessary Csee 
below>. 

NOTES: 1. If the MC RECEIVE_BUFFER is not empty, the transaction program has, prior to 
issuing the current MC_POST_ON_RECEIPT, issued one or more MC_POST_ON_RECEIPTs 
followed by one or more MC_TESTs. The MC_TEST processing caused PS.MC to 
receive data Cvia a RECEIVE_ANO_WAITl from PS.CONV !Chapter 5.ll and PS.MC has 
stored that data in the MC_RECEIVE_BUFFER. See "MC_TEST_PROC" on page S.2-11 
for a discussion of MC_TEST. 

2. If the information stored in the MC_RECEIVE_BUFFER indicates that a complete 
Application Data or User Control Data GOS variable has been received land that 
the data in that variable has been mapped), then PS.MC has already informed 
the transaction program via the RETURN_CODE on a previous MC_TEST that posting 
has been satisfied. The transaction program, however, has issued another 
MC_POST_ON_RECEIPT (after having issued an MC_TEST on which was returned a 
return code of OK--DATAl. PS.MC remembers the fact that an MC_POST_ON_RECEIPT 
has been issued, in case the transaction program issues another MC_TEST, but 
does not issue a POST_ON_RECEIPT to PS.CONV. 

3. If the data stored in the MC_RECEIVE_BUFFER i~ not complete Ci.e •• a Map Name 
GOS variable, but no data, has been received; or part, but not all, of the 
data in an Application or FMH Data GOS variable has been received>, posting is 
still activated. PS.MC, therefore, does not issue a POST_ON_RECEIPT to 
PS.CONV. In this situation, the transaction program has issued one or more 
prior MC_TESTs, all of which have been unsuccessful. 

4. PS.MC performs no check to determine if the conversation is in an appropriate 
state to receive an MC_POST_ON_RECEIPT. This state check is performed by 
PS.CONV !Chapter 5.ll during its processing of the POST_ON_RECEIPT verb, if 
PS.MC issues one. As described above, there are certain situations in which 
PS.MC receives an MC_POST_ON_RECEIPT from the transaction program but does not 
issue a POST ON RECEIPT to PS.CONV. In these situations, however, the 
MC_RECEIVE_BUFFER-in the RCB is not empty. This indicates that the conversa­
tion is in RECEIVE state and therefore the MC_POST_ON_RECEIPT is valid at the 
present time. 

Referenced procedures, FSMs, and data structures: 
RCB page A-7 

If the RCB.MC_RECEIVE_BUFFER for the current conversation is empty then 
Issue a basic POST_ON_RECEIPT verb on this conversation, specifying the maximum 
length of the data to be received before posting, and that posting should 
be done after receiving a complete logical record. 

Ct-.apter S.2. Presentation Services--Mapped Conversation Verbs 5.2-25 



MC_PREPARE_TO_RECEIVE_PROC 

MC_PREPARE_TO_RECEIVE_PROC 

5.2-26 

FUNCTION: Th;s procedure processes MC_PREPARE_TO_RECEIVE verbs. 

PS.MC ;ssues a PREPARE_TO_RECEIVE verb aga;nst the resource spec;f;ed in the 
MC_PREPARE_TO_RECEIVE. It sets the return code field in the 
MC_PREPARE_TO_RECEIVE based upon the value returned in the PREPARE_TO_RECEIVE. 
Some return codes, such as OK, are placed ;n the MC_PREPARE_TO_RECEIVE 
unchanged. Others, such as DEALLOCATE_ABEND_PROG, are transformed to another 
value before be;ng placed in the MC_PREPARE_TO_RECEIVE. In addit;on, some 
return codes cause PS.MC to perform further process;ng. For example, when 
PS.MC receives a return code of PROG_ERROR_PURGING to its PREPARE_TO_RECEIVE, 
it ;nvokes the mapper to inform that procedure that an error was detected by 
the partner transciction progrcim. (See "Mcipper Invoc;;it;on" on page 5.2-9.) 
When a return code of SVC_ERROR_PURGING ;s received, PS.MC performs the proc­
ess;ng necessary to determine what type of service error the PS.MC component 
at the partner LU encountered. A return code reflecting the type of error ;s 
returned to the loccil transciction program in the MC_PREPARE_TO_RECEIVE. (See 
"Processing of a Service Error Detected by Partner LU" on pcige 5.2-17.) 

INPUT: MC_PREPARE_TO_RECEIVE verb parameter:; (See fil!A Trcinsaction Programmer's Refer­
ence Manual for LU TuE!!! Ll. ) 

OUTPUT: PS.MC issues a PREPARE_TO_RECEIVE verb and sets the return code field ;n the 
MC_PREPARE_TO_RECEIVE based upon the corresponding field in the PRE­
PARE_TO_RECEIVE. 

NOTE: PS.MC performs no check to determ;ne if the conversation is in an appropr;ate 
state to receive an MC_PREPARE_TO_RECEIVE. Th;s stcite check ;s performed by 
PS.CONY !Chapter 5.1) dur;ng ;ts processing of the PREPARE_TO_RECEIVE verb. 

Referenced procedures, FSMs, and data structures: 
UPM_MAPPER 
RCVD_SVC_ERROR_PURGING 
PS_VERB_ROUTER 

RCB 

F;nd the RCB for the current conversation. 
Call the PS_VERB_ROUTER lChcipter 5.0l to issue ci 

PREPARE_TO_RECEIVE verb, specify;ng a LOCKS value and verb type, 
for the current RCB. 

Select based on the returned PREPARE_TO_RECEIVE return code: 

page 5.2-46 
page 5.2-42 
page 5.0-11 

page A-7 

When (OK, ALLOCATION_ERROR, RESOURCE_FAILURE_RETRY, RESOURCE_FAILURE_NO_RETRY) 
Set the MC_PREPARE_TO_RECEIVE return code to the PREPARE_TO_RECEIVE return code. 

When lPROG_ERROR_PURGING) 
Call the UPM_MAPPER (page 5.2-46) to record 

the return code for the remotely detected error. 
When lDEALLOCATE_ABEND_PROG) 

Set the MC_PREPARE_TO_RECEIVE return code to DEALLOCATE_ABEND. 
When lDEALLOCATE_ABEND_svc, DEALLOCATE_ABEND_TIMER) 

Set the MC_PREPARE_TO_RECEIVE return code to RESOURCE_FAILURE_NO_RETRY. 
When CSVC_ERROR_PURGINGJ 

Ceil! RCVD_SVC_ERROR_PURGING (page 5.2-42) to 
do service error process;ng, specify;ng the return code and current RCB. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



MC_RECEIVE_AND_WAIT_PROC 

MC_RECEIVE_AND_WAIT_PROC 

FUNCTION: This procedure processes MC_RECEIVE_AND_WAIT verbs. 

INPUT: 

OUTPUT: 

PS.MC first determines the status of the MC_RECEIVE_BUFFER. Processing of the 
MC_RECEIVE_AND_WAIT continues based upon the status of the buffer. 

The MC_RECEIVE_BUFFER contains any information that has been received from 
PS.CONY CChapter 5.1) but has not yet been passed to the transaction program. 
It is in one of the following states: Cl> the buffer is empty, C2> the buffer 
contains information, but the information is incomplete and more has to be 
received before it can be passed to the transaction program, or C3) the buffer 
contains information that is complete and ready to be passed to the trans­
action program. 

If the MC_RECEIVE_BUFFER is not empty, the transaction program has issued one 
or more prior MC_TEST verbs. The processing that PS.MC performed as a result 
of the MC_TEST(s) involve~ receiving data from PS.CONY. It is the data that 
resulted from the MC_TESTCs) that is stored in the MC_RECEIVE_BUFFER. 

MC_RECEIVE_AND_WAIT verb parameters CSee SNA Transaction Programmer's Refer­
~ Manual for LU ~ Ll·) 

Fields in the MC_RECEIVE_AND_WAIT are set based upon the type of information 
being returned to the transaction program. 

If the MC_RECEIVE_BUFFER is empty or contains incomplete data, this procedure 
causes one or more RECEIVE_AND_WAIT verbs to be issued to PS.CONY. PS.MC con­
tinues to issue RECEIVE_AND_WAITs until it has a complete piece of informa­
tion. 

NOTES: l. PS.MC performs no check to determine if the conversation is in an appropriate 
state to receive an MC_RECEIVE_AND_WAIT. This state check is performed by 
PS.CONV !Chapter 5.1) during its processing of the RECEIVE_AND_WAIT verb, if 
PS.MC issues one. If the MC_RECEIVE_BUFFER already contains complete informa­
tion ready to be passed to the transaction program, PS.MC does not issue a 
RECEIVE_AND_WAIT. However, the fact that the MC_RECEIVE_BUFFER is not empty 
indicates that the mapped conversation is in RECEIVE state and that the 
MC_RECEIVE_AND_WAIT is valid at the present time. 

2. RECEIVE_INFO_PROC C page 5.2-30 ) issues a RECEIVE_AND_WAIT to PS.CONY and 
causes processing of the information returned in the RECEIVE_AND_WAIT to 
occur. It is possible that when control is returned from this procedure, the 
MC_RECEIVE_BUFFER is empty, even though data was returned in the 
RECEIVE_AND_WAIT. This is the case when PS.MC detects an error in the data 
(e.g., the data specified a function not supported). Nothing is placed in the 
buffer during this invocation of RECEIVE_INFO_PROC. For more details, see 
"Service Errors Detected in Received Data" on page 5.2-14. 

Referenced procedures, FSMs, and data structures: 
RECEIVE_INFO_PROC 

RCB 

page 5.2-30 

page A-7 

If the RCB.MC_RECEIVE_BUFFER contains a null entry, map name, data-continued 
indicator, or map name and data-continued indicator then 

Call RECEIVE_INFO_PROCCRCB) (page 5.2-30) 
to issue a RECEIVE_AND_WAIT verb. 

If the RCB.MC_RECEIVE_BUFFER does not contain a null entry, or contains 
mapped data or a return code entry then 

Select based on the contents of the RCB.MC_RECEIVE_BUFFER: 
When the buffer element contains a WHAT_RECEIVED indicator 

Put the WHAT_RECEIVED indicator in the MC_RECEIVE_AND_WAIT verb. 
Set the MC_RECEIVE_AND_WAIT 1·eturn code to OK. 

When the buffer element contains a return code 
Set the MC_RECEIVE_AND_WAIT return code to the buffer return code. 

When the buffer element contains mapped data 
Retrieve the mapped data from the MC_RECEIVE_BUFFER and place the 
amount of data requested by the transaction program into the DATA 
field of the MC_RECEIVE_AND_WAIT. Indicate whether data was complete 
or truncated, and indicate that FMH data, if present, was complete. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-27 



MC_RECEIVE_AND_WAIT_PROC 

S.2-28 

Clear the MC_RECEIVE_BUFFER for the currentRCB; 
If a request to send has been rece;ved from the remote TP and not returned on 
a pr;or MC_CONFIRM, MC_RECEIVE_AND_WAIT, MC_SEND_DATA, or MC_SEND_ERROR verb then 

Return a request-to-send-rece;ved .;ndfoaUon to the local TP on the verb. 

MC_TEST_PROC 

FUNCTION: This procedure processes MC_TEST verbs. 

INPUT: MC_ TEST 

OUTPUT: PS.MC sets the RETURN_CODE field in the MC_TEST based upon the outcome of the 
specif;ed test. Depending upon the type of test specified and the information 
contained in the RCB, PS.MC may issue basic conversation verbs that are proc­
essed by PS.CONY. RCB.MC_RECEIVE_BUFFER, or a return code obtained by calling 
TEST_PROC Cpage 5.l-27l. 

NOTES: 1. If RCB.MC_RECEIVE_BUFFER ;s not empty when a return code of OK--NOT_DATA is 
received, the partner LU has comm;tted a protocol violation. For example, the 
partner LU has sent data w;th an indication that the data is cont;nued in the 
next logical record, but ;nstead of send;ng the remaining data, the partner LU 
allowed a SEND indicator to flow. 

2. RCB.MC_RECEIVE_BUFFER may be empty at this point. This occurs when the TEST 
verb just ;ssued returns OK--DATA but an error is detected ;n the data by 
RECEIVE_INFO_PROC (page 5.2-30). For more details, see "Service Errors 
Detected in Received Data" on page 5.2-14. 

3. An INDICATOR element cannot appear in RCB.MC_RECEIVE_BUFFER here. If the TEST 
verb just issued returns OK--NOT_DATA, the conversation ;ndicator that caused 
this return code remains in PS.CONV's buffer. PS.MC does not issue a 
RECEIVE_AND_WAIT to PS.CONY to get the indicator until the transaction program 
;ssues an MC_RECEIVE_AND_WAIT. 

4. The RCB.MC_RECEIVE_BUFFER contains data ready to be returned to the trans­
act; on program as a result of one or more prior calls to MC_TEST 
CTEST=POSTEDl. 

Referenced procedures, FSMs, and data structures: 
TEST_PROC 
RECEIVE_INFO_PROC 
PROTOCOL_ERROR_PROC· 
PROCESS_ERROR_OR_FAILURE_RC 
PS_VERB_ROUTER 
RCB 

SNA Format and Protocol Reference Manual for· LU Type 6.2 

page 5.1-27 
page 5.2-30 
page 5.2-47 
page 5,2-31 
page 5.0-11 
page A-7 



Select based on the spectf;ed type of tut: 
When POSTED 

If RCB.HC_RECEIVE_BUFFER ;s 1111PtY 
or contains a •ap NIM or unmapped data than 

Call TEST_PROC lp.ge 5.1-27> to deter•ine Nhether the current 
conversation has been posted indicating that data, status, or a 
request for conf;r11ation has been received frOll the re110te TP. 

Select based on the return code frOlll TEST_PROC: 
When OK--DATA 

Call RECEIVE_INFO_PROC (page 5.2-30) to receive 
the data and place ;t ;n RCB.HC_RECEIVE_BUFFER. 

When OK--NOT_DATA 
If RCB.HC_RECEIVE_BUFFER is empty then 

Put the return code frOll TEST_PROC in RCB.HC_RECEIVE_BUFFER. 
Else (optional check when receiving dataJ see Note 1> 

Call PROTOCOL_ERROR_PROC (page 5.2-47) 
to deallocate the current conversation. 

Replace the contents of RCB.HC_RECEIVE_BUFFER Nith the 
return code RESOURCE_FAILURE_HO_RETRY. 

When POSTING_HOT_ACTIVE or UNSUCCESSFUL 
Put the return code frOll TEST_PROC in RCB.HC_RECEIVE_BUFFER. 

Otherwise 
Call PROCESS_ERROR_OR_FAILURE_RC (page 5.2-31) 

to process the return code frOll TEST_PROC. 
If RCB.HC_RECEIVE_BUFFER is &111PtY or contains a map name or 
umaapped data (see Note 2) then 

Set the code to be returned by this rout;ne to UNSUCCESSFUL. 
Call PS_VERB_ROUTER (Chapter 5.0) to issue a POST_ON_RECEIPT 
verb specifying posting Nhen a CQllPlete or truicated logical 
record is received. 

Else 

Else 

Select based on the type of inforution in RCB.HC_RECEIVED_BUFFER 
(see Note 3): 

"'1en it is 11apped data 
Set code returned by this routine to OK--DATA. 

When it is a return code 
Set the code returned by this routine to the return 
code found in RCB.HC_RECEIVE_BUFFER. 

Clear RCB.tlC_RECEIVE_BUFFER. 

• If there is mapped data in RCB.HC_RECEIVE_BUFFER and the local 
TP has issued a HC_POST_ON_RECEIPT verb since this data was 
upped then (see Note It) 

Set the code to be returned by this routine to OK--DATA. 
Else 

Set the coda to be returned to POSTING_NOT_ACTIVE. 

When REQUEST_TO_SEND_RECEIVED 
If a request to send has been received frOll the remote TP and not 
yet returned to the local TP then 

Return a request-to-send-rece;ved indication to the local TP. 
Else 

Call TEST_PROC (page 5.1-27) to determine whether 
a request to send has been received fre111 the remote TP and is 
being held by PS.CONY. 

If a request to send 1o1as held by PS.CONY then 
Return a request-to-send-received indication to the local TP. 

tlC_TEST_PROC 

Chapter 5.2. Prnentation Servicu--ltapped Conversation Verbs 5.2-29 



RECEIVE_INFO_PROC 

RECEIVE_INFO_PROC 

5.2-30 

FUNCTION: The purpose of this procedure is to receive information from PS.CONV (Chapter 
5.1) and to place that information in the MC_RECEIVE_BUFFER. 

This procedure issues a RECEIVE_AND_WAIT for the mapped 
sponding to the passed RCB. PS.MC continues the 
RECEIVE_AND_WAIT in other procedures, depending upon the 
in the RECEIVE_AND_WAIT. 

conversation corre­
processi ng of the 
return code carried 

INPUT: The RCB corresponding to the mapped conversation specified in the TRANS­
ACTION_PGH_VERB currently being processed 

OUTPUT: See the procedures called for the specific outputs. 

Referenced procedures, FSHs, and data structures: 
PROCESS_ERROR_OR_FAILURE_RC 
PROTOCOL_ERROR_PROC 
PROCESS_DATA_COMPLETE 
PROCESS_DATA_INCOMPLETE 
UPM_HAPPER 

RCB 

Issue a basic RECEIVE_AND_WAIT verb for a complete logical record 
specifying the maximum length of the data. 

If a request to send data was received from the remote TP then 
Save an indication of the request to be returned later. 

If the RECEIVE_AND_WAIT was successful then 
Select based on the WHAT_RECEIVED field on tne RECEIVE_AND_WAIT verb: 

When the data received is comrl~te 
Call PROCESS_DATA_COMPLETE!RCB, RECEIVE_ANO_WAIT> (page 5.2-33). 

When th~ ~ata received is incomplete 
~all PROCESS_DATA_INCOMPLETE!RCB> Cpage 5.2-36). 

When the RCB.MC_RECEIVE_BUFFER is empty 
Put the WHAT_RECEIVED indicator in the MC_RECEIVE_BUFFER 

of the current RCB. 
Call the UPN_MAPPER Cp<ige 5.2-46) to save an 

indication that the end of the logical message was received. 

page 5.2-31 
page 5.2-47 
page 5.2-33 
page 5.2-36 
page 5.2-46 

page A-7 

When the RCB.MC_RECEIVE_BUFFER is not empty, but does not contain d•ta, 
Clear the HC_RECEIVE_BUFFER in the current RCB. 

Else 

Call PROTOCOL_ERROR_PROC !page 5.2-47) 
to deallocate the current conversation. 

Put the RESOURCE_FAILURE_NO_RETRY return code in the 
MC_RECEIVE_BUFFER of the current RCB. 

Call PROCESS_ERROR_OR_FAILURE_RC Cpage 5.2-31) 

SNA Format and Protocol Reference Manual for LU Type 6.2 



PROCESS_ERROR_OR_FAILURE_RC 

PROCESS_ERROR_OR_FAILURE_RC 

FUNCTION: This procedure is invoked after PS.MC has issued a RECEIVE_AND_WAIT to which 
has been returned a RETURN_CODE value other than OK. Processing of the return 
code continues in other procedures, depending upon the return code. 

INPUT: The RCB corresponding to the conversation specified in the verb being proc­
essed, and the RECEIVE_AND_WAIT return code to be processed 

OUTPUT: A return code value is placed in RCB.MC_RECEIVE_BUFFER. 

NOTES: 1. Certain return codes are invalid if RCB.MC_RECEIVE_BUFFER is not empty, and, 
if received at such a time, indicate that the partner LU has committed a pro­
tocol violation. Depending upon the return code, PS.MC may end the mapped 
conversation. 

2. A return code on RECEIVE_AND_WAIT of ALLOCATION_ERROR cannot occur if prior 
information has been received on the specified mapped conversation. 

3. A return code on RECEIVE_ANO_WAIT of PROG_ERROR_PURGING or SVC_ERROR_PURGING 
cannot occur if MC_RECEIVE_BUFFER is not empty. It can occur only if the 
RECEIVE_AND_WAIT was issued by PS.MC while the mapped conversation was in SEND 
state. CThe partner transaction program or LU that issued the *_ERROR_PURGING 
information was in RECEIVE state.I Since the mapped conversation was in the 
SEND state locally, no information can be in RCB.MC_RECEIVE_BUFFER. 

4. The return codes that reference this note can be received at any time and are 
valid regardless of the status of RCB.MC_RECEIVE_BUFFER. 

5. A return code of *_ERROR_TRUNC cannot be received on the RECEIVE_AND_WAIT 
issued by this procedure because it can only be received following a 
RECEIVE_AND_WAIT in which a WHAT_RECEIVED value of DATA_INCOMPLETE is 
returned. CThis procedure is not invoked after a DATA_INCOMPLETE indicator 
has been received.> 

Referenced procedures, FSMs, and data structures: 
PS_SPS 
RCVD_svc_ERROR_TRUNC_NO_TRUNC 
RCVD_SVC_ERROR_PURGING 
UPM_MAPPER 
PROTOCOL_ERROR_PROC 

RCB 

Select based on the RECEIV~_AND_WAIT return code being processed: 
When •LLO~ATION_ERROR Csee Note 2) 

Put the return code in RCB.MC_RECEIVE_BUFFER. 
When DEALLOCATE_NORMAL 

If RCB.MC_RECEIVE_BUFFER is empty then 
Put the return code in RCB.MC_RECEIVE_BUFFER. 

Else (optional check when receiving data; see Note 1) 
Replace the contents of RCB.MC_RECEIVE_BUFFER by the return 
code value RESOURCE_FAILURE_NO_RETRY. 

Optionally log implementation-dependent error data. 
When DEALLOCATE_ABEND_PROG 

If RCB.MC_RECEIVE_BUFFER is empty then 
Put the return code DEALLOCATE_ABEND in RCB.MC_RECEIVE_BUFFER. 

Else (optional check when receiving data; see Note 1 J 
Replace the contents of RCB.MC_RECEIVE_BUFFER by the return 
code RESOURCE_FAILURE_NO_RETRY. 

Optionally log implementation-dependent error data. 
When PROG_ERROR_PURGING (see Note 31 

Put the return code parameter in RCB.MC_RECEIVE_BUFFER. 
Call UPM_MAPPER Cpage 5.2-46) to record a remotely detected 
error of the type indicated by the return code parameter. 

page 5.3-35 
page 5.2-41 
page 5.2-42 
page 5.2-46 
pa~I! 5.2-47 

page A-7 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-31 



PROCESS_ERROR_OR_FAILURE_RC 

5.2-32 

When PROG_ERROR_NO_TRUNC 
If RCB.MC_RECEIVE_BUFFER is empty then 

Put the return code in RCS.MC RECEIVE BUFFER. 
Call UPM_MAPPER (page 5.2-46)-to reco;d a remotely detected 
error of the type indicated by the return code. 

Else (optional check when receiving data; see Note 1) 
Call PROTOCOL_ERROR_PROC (page 5.2-47! 

to deallocate the current conversation. 
Replace the contents of RCB.MC_RECEIVE_BUFFER by the return 
code RESOURCE_FAILURE_NO_RETRY. 

When OEALLOCATE_ABEND_SVC, OEALLOCATE_ABEND_TIMER (see Note 4) 
Replace the contents of RCB.MC_RECEIVE_BUFFER by the return 
code RESOURCE_FAILURE_NO_RETRY. 

When RESOURCE_FAILURE_RETRY, RESOURCE_FAILURE_NO_RETRY (see Note 4l 
Replace the contents of RCB.MC_RECEIVE_BUFFER by the return code. 

When BACKED_OUT 
If RCB.MC_RECEIVE_BUFFER is empty then 

Call PS_SPS (sync point manager, Chapter 5.3). 
Put the return code in RCB.MC RECEIVE BUFFER. 

Else (optional check when receiving datai see Note ll 
Call PROTOCOL_ERROR_PROC Cpage 5.2-47) 

to deallocate the current conversation. 
Replace the contents of RCB.MC_RECEIVE_BUFFER by the return 
code RESOURCE_FAILURE_NO_RETRY. 

When SVC_ERROR_NO_TRUNC (see Note 4l 
Clear the RCB.MC RECEIVE BUFFER. 
Call RCVD_SVC_ERROR_TRUNC_NO_TRUNC Cpage 5.2-41! 

to process the return code. 
When SVC_ERROR_PURGING (see Note 3) 

Call RCVD_SVC_ERROR_PURGING (page 5.2-42! to get 
and process error data from the partner LU. 

Put the code it returns in RCB.MC_RECEIVE_BUFFER. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



PROCESS_DATA_COMPLETE 

PROCESS_DATA_COMPLETE 

FUNCTION: Th;s procedure ;s ;nvoked when PS.MC ;ssues a RECEIVE_AND_WAIT and a value of 
DATA_COMPLETE ;s returned in the WHAT_RECEIVED f;eld of the RECEIVE_AND_WAIT. 
The purpose of th;s procedure is to process the received data. 

INPUT: 

The data rece;ved in the RECEIVE_AND_WAIT is a log;cal record. It may be the 
f;rst or only logical record in a GOS variable. Alternat;vely, it may be a 
subsequent log;cal record ;n a GOS variable containing multiple log;cal 
records. A subsequent logical record does not carry a GOS ID field. 

If the MC_RECEIVE_BUFFER is empty, the data in the RECEIVE_AND_WAIT is the 
initial or only logical record in a GOS variable. This procedure checks the 
GOS ID in the logical record and calls the appropriate procedure to process 
the data carried in the DATA field of the logical record. 

If the MC_RECEIVE_BUFFER contains a map name but no data, the data in the 
RECEIVE_AND_WAIT is again the initial er only logical record in a GOS vari­
able. The GOS variable fellowing a Map Name GOS variable has to contain 
application or user control data. 

If the MC_RECEIVE_BUFFER contains incomplete data or a map name and incomplete 
data Ci.e., the last logical record in a GOS variable that contains multiple 
logical records has net been received), the appropriate procedure is called to 
add the data carried in the DATA field of the subsequent logical record to the 
data already contained in the MC_RECEIVE_BUFFER If the subsequent logical 
record is the last logical record in the GOS variable, additional processing 
is performed. 

The RCB associated with the mapped conversation specified in the current verb 
issued by the transaction program and the RECEIVE_AND_WAIT Cissued by PS.MC> 
that contains the data to be processed 

OUTPUT: Depending upon the data received, the MC_RECEIVE_BUFFER may be updated. See 
the procedures called for specific outputs. 

Referenced procedures, FSMs, and data structures: 
SEND_SVC_ERROR_PURGING 
PROTOCOL_ERROR_PROC 
PROCESS_MAPPER_RETURN_CODE 
UPM_MAPPER 

RCB 

page 5.2-45 
page 5.2-47 
page 5.2-35 
page 5.2-46 

page A-7 

If the MC_RECEIVE_BUFFER for the current conversation is empty Cno map name) then 
Select based en the type of GOS variable in the passed data Cfirst record>: 

When a Map Name GOS variable 
If the LU receiving the map name supports mapping and the TP for this 
conversation supports mapping then 

Put the unmapped map name in the MC_RECEIVE_BUFFER Cdata incomplete). 
Else Cthe LU or TP doesn't support mapping) 

Call SENO_svc_ERROR_PURGING (page 5.2-45) to 
handle the invalid map name and mapping request. 

When an Application Data GOS variable 
Put the passed unmapped data and an indication that FM headers are 
not included in the data in the MC_RECEIVE_BUFFER. 

If data is not continued in the next logical record Conly one record) then 
Call the UPM_MAPPERCRCB.MAPPER_SAVE_AREAl Cpage 5.2-46) 
to map the received data, specifying that FMH data is not included. 
CNo mapping will occur if no map name is found.) 

Call PROCESS_MAPPER_RETURN_CODE Cpage 5.2-35). 

Chapter 5.2. Pr~sentation Services--Mapped Conversation Verbs 5.2-33 



PROCESS_DATA_COMPLETE 

s.2-34 

When a User Control Data GOS variable 
If the LU for the current conversation supports FMH data and 
the TP for the current conversation supports FMH data then 

Put the passed unmapped data and an indication that FM headers are 
included in the data in the MC_RECEIVE_BUFFER. 

If the data is not continued in the next record Cone logical record) ther 
Call the UPM_MAPPER!RCB.MAPPER_SAVE_AREAl (page 5.2-46) 
to get the map name and to map the received d;,ta, specifying that FMH 
data is included. <No mapping wHl occur if no map name is found.) 

Call PROCESS_MAPPER_RETURN_CODECRCBJ (page 5.2-351. 
FJ.se (the LU or TP doesn'' Support FMH-data J 

Call SEND_SVC_ERROR_PURGING (page 5.2-451 
to perform service error purging, and to notify the partner LU. 

When a Null Structured Data GOS variable 
Do nothing. 

When an Error Data GOS variable, optionally 
Call PROTOCOL_ERROR_PROC (page 5.2-47) 
to deallocate the current conversation. 

Put the return code in the MC_RECEIVE_BUFFER of the current RCB. 
When the GOS ID is invalid 

Call SEND_SVC_ERROR_PURGING (page 5.2-45) to 
handle the invalid GOS ID (no such variable type). 

Else Cthe MC_RECEIVE_BUFFER is not empty! 
If the buffer element in the MC_RECEIVE_BUFFER is a map name then 

Select based on the contents of the passed RECEIVE_AND_WAIT data: 
When the GOS ID indicates an Application Data variable 

Add the passed data and an indication that FM headers are 
not included in the data to the unmapped map name in the 
MC_RECEIVE_BUFFER. 

If the data is not continued in the next record Cone record) then 
Call the UPM_MAPPERCRCB.MAPPER_SAVE_AREAJ Cpage 5.2-461 

to map the received data in the MC_RECEIVE_BUFFER. 
Call PROCESS_MAPPER_RETURN_CODE (page 5.2-35). 

When the GOS ID indicates a User Control Data GOS variable 
If the LU for the current conversation supports FMH data and 
the TP for the current conversation supports FMH data then 

Add the passed data and an indication that FM headers are included 
in the data to the unmapped map name in the MC_RECEIVE_BUFFER. 

If the data is not continued in the next record (only one record! then 
Call the UPM_MAPPER!RCB.MAPPER_SAVE_AREAJ (page 5.2-461 
to map the received data in the MC_RECEIVE_BUFFER. 

Call PROCESS_MAPPER_RETURN_CODE (page 5.2-35). 
Else (the LU or TP doesn't support FMH data) 

Call SEND_SVC_ERROR_PURGING !page 5.2-45) 
to perform service error purging, and to notify the partner LU. 

When the GOS ID is invalid for a map name buffer element, optionally 
Purge the MC_RECEIVE_BUFFER for the current RCB. 
CALL PROTOCOL_ERROR_PROC !page 5.2-47) to 
deallocate the conversation. 

Put the return code in the MC_RECEIVE_BUFFER of the current RCB. 
Else Cthe buffer element indicates continued data, with or without a map name) 

Add the passed data to the data contained in the MC_RECEIVE_BUFFER. 
If the data is not continued in the next logical record then 

Call the UPM_MAPPER (page 5.2-461 to map the contents 
of the MC_RECEIVE_BUFFER Ca complete variable), specifying the map 
name, if any, and that FM header data is included. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



PROCESS_tu.PPER_RETURN_COOE 

PROCESS_MAPPER_RETURN_COOE 

FUNCTION: This procedure deter•ines whether the Mapper Nas successful in mapping data. 
It is invoked after the .. pper has been called to process data received frOlll 
the partner transaction progra•. 

INPUT: The RCB corresponding to the mapped conversation over Nhich the data to be 
mapped flowed1 and a structure containing inforAtion that is both supplied 
to, and returned fro•• the •apper 

OUTPUT: If the •apper was able to successfully •ap the received data, the mapped data, 
along with a locally known map name provided by the mapper and an indication 
of the format of the mapped data, is placed in the MC_RECEIVE_BUFFER. If 11&p­
ping Nas 1i1successful, PS.He perfor•s service error purging processing to 
notify the partner LU that the received data could not be mapped. <See "Serv­
ice Errors Detected in Received Data" on page S.2-14.t 

NOTES: 1. If the mapper Mas successful in Mapping the received data, it always provides 
to PS.He a protocol bo1i1dary map name known to the local transaction program. 
The map name is supplied by the Mapper even when it was invoked Nithout a map 
name (in which case, the •appa~ uses a previously received M<llp nainet. If •ap­
ping is off, the Mapper supplies a null ••P na_, which is passed to the 
transaction progra•. 

2. If the mapper enco1.r1tered an error in •apping the data, it provides to PS.MC 
the •ap na1M1, known to the remote LU, that 1111as in effect when the •apper 1111as 
invoked. PS.MC places the map name in an Error Data 6DS variable, which is 
sent to the partner LU to notify it of the 11apping failure. 

3. A return code of HAP_NOT_FOUND cannot be returned frOtl the Apper if the 
mapper is invoked Nithout a map na•e. If the •apper is invoked Nithout a 111&p 
name, it determines that it is to use a previously received •ap name. If the 
map name had been 1.riknown to the mapper, this fact NOuld have been discovered 
as a result of the earlier mapper invocation. 

Referenced procedures, FSHs, and data structures: 
SENl_SVC_ERROR_PURGING 
PROTOCOL_ERROR_PROC 

RCB 

Select based on the return code from the mapper: 
i.tien •apping Mas successful 

Put the •apped 118p name, an indication that FH headers are ;ncluded 
in the data, and the •apped data in the MC_RECEIVE_BUFFER. 

i.tien mapping failed to execute successfully 
Call SENO_svc_ERROR_PURGING (page S.2-45) 
specifying the current RCB and the error type • 

..,en the provided map name was not found 
Call SENO_svc_ERROR_PURGING (page s. 2-45) 
specifying the current RCB and the error type • 

..,_, the 11ap name NH a duplicate (optional processing for receive onlyt 
Call PROTOCOL_ERROR_PROC <page S.2-471 to 
deallocate the current conversation. 

page 5.2-45 
page 5.2-47 

page A-7 

Put a duplicate map name return code in the current tte_RECEIYE_BUFFER. 

Chapter 5.2. Presentation Services--Happed Conversation Verbs 5.2-35 



PROCESS_DATA_INCOtlPLETE 

PROCESS_OATA_INCOtlPLETE 

s. 2-36 

FUNCTION: This procedure is invoked when PS.MC issues a RECEIVE_AND_WAIT as a result of 
a •apped conversation verb issued by the transaction progra•. PS.MC has exa•­
ined the value returned in the WHAT_RECEIVED field of the RECEIVE_Atl>_WAIT, 
determined that the value received is DATA_INCOtlPLETE. and has discarded the 
inco111plete logical record returned in the RECEIVE_AND_WAIT. 

This procedure purges the MC_RECEIVE_BUFFER of any data that has been received 
via one or Mere prior RECEIVE_AND_WAITs. It then issues a RECEIVE_AND_WAIT to 
determine the reason for the logical record being truncated. Processing con­
tinues based upon the RETURN_COOE value received in the RECEIVE_AND_WAIT. 

INPUT: The RCB corresponding to the resource specified in the RECEIVE_AND_WAIT in 
which DATA_INCOHPLETE was returned. 

OUTPUT: This procedure issues• RECEIVE_AND_WAIT. Depending upon the RETURN_COOE val­
ue returned on the RECEIVE_AND_WAIT, • return code buffer elelN!nt •ay be 
inserted into the MC_RECEIVE_BUFFER. 

NOTE: RETURN_COOE values of DEALLOCATE_ABEND_PROG, PROG_ERROR_TRUNC, and BACKED_OUT 
following• DATA_INCOHPLETE notification indicate that the partner LU has com­
•itted a protocol violation by allowing the transaction program to truncate 
data. This should never occur at the Mapped conversation protocol bOl.A'ldary. 
The PS.He at the partner LU is allowed to truncate a logical record Nith 
SVC_ERROR_TRUNC, for instanc:el the transaction progra• is not. 

Referenced procedures, FS11st and data structures: 
RCVD_SVC_ERROR_TRUNC_NO_TRUNC 
PROTOCOL_ERROR_PROC 
PS_VERB_ROUTER 

RCB 

Clear the RCB.MC_RECEIVE_BUFFER. 
Call the PS_VERB_ROUTER (Chapter 5.0) to issue a 

RECEIVE_AND_WAIT verb to get the return code that explains why the 
data lllHIS incC>111plete. 

If a request to send data was received from the reMOte TP then 
Save an indication of the request to be returned later. 

Select based on the RECEIVE_AHD_WAIT return code: 
When the return code is SVC_ERROR_TRUNC 

Call RCVD_SVC_ERROR_TRUNC_NO_TRUNC to do service error processing 
(page 5.2-41). 

l.flen the return code is DEALLOCATE_ABEtl>_SVC or DEALLOCATE_ABEtl>_TIHER 
Put the return code RESOURCE_FAILURE_NO_RETRY in the 

11C_RECEIVE_BUFFER of the current RCS. 

page 5.2-41 
page S.2-47 
p&ge s.0-11 

page A-7 

When the return code is RESOURCE_FAILURE_RETRY or RESOURCE_FAILURE_NO_RETRY 
Put the return code in the MC_RECEIVE_BUFFER of the current RCB. 

When the return code is DEALLOCATE_ABEND_PROG, optionally do the following: 
Put the return code RESOURCE_FAILURE_NO_RETRY in the 

MC_RECEIVE_BUFFER of the current RCB. 
Log implementation-dependent error data in the syste111 error log. 

When the return code is PROG_ERROR_TRUNC or BACKED_OUT, optionally do the follONing: 
Call PROTOCOL_ERROR_PROC (page 5.2-47) to deallocate the 
current conversation. 

Put the return code in the tte_RECEIVE_BUFFER of the current RCB. 

SNA For11at and Protocol Reference Hanual for LU Type 6.2 



MC_REQUEST_TO_SEND_PROC 

MC_REQUEST_TO_SEND_PROC 

FUNCTION: 

INPUT: 

NOTE: 

This procedure processes MC_REQUEST_TO_SEND verbs. 

PS.MC issues a REQUEST_TO_SEND verb against the resource specified in the 
MC_REQUEST_TO_SEND and returns control to the transaction program. 

MC_REQUEST_TO_SEND verb parameters. 

PS.MC performs no check to determine if the conversation is in an appropriate 
state to receive an MC_REQUEST_TO_SEND verb. A state check is performed by 
PS.CONV !Chapter 5.ll during its processing of the REQUEST_TO_SEND verb. 

Referenced procedures, FSMs, and data structures: 
PS_VERB_ROUTER 

Call PS_VERB_ROUTER !Chapter 5.0l to issue a 
REQUEST_TO_SEND verb for the current conversation. 

page 5.0-11 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-37 



HC_SEl'l>_DATA_PROC 

HC_SEl'l>_DATA_PROC 

5.2-38 

FUNCTION: This procedure processes HC_SEtl>_DATA verbs. 

INPUT: 

OUTPUT: 

This procedure causes the aapper to be invoked. If the aapper is successful 
in •apping the data contained in the HC_SEHO_DATA, or if the •apper deter•ines 
that iaapping is not being performed, the output data frot11 the mapper is placed 
in an Application Data or User Control Data GOS variable (the variable may 
contain one or 110re logical records>. The mapper may also return to PS.l'IC a 
map name that is to be sent to the partner LU, in lllhich case PS.He also cre­
ates a Hap N11me GOS variable that precedes the data GOS variable. This proce­
clire then issues a SEND_DATA containing the GOS variable<sJ. 

PS.He sets the return code field in the HC_SEND_DATA based upon the value 
returned in the SEHD_DATA. Solle return codes, such as OK, are placed in the 
HC_SEND_OATA l.a'lehanged. Others, such as DEALLOCATE_ABENO_PROG, ar-e trans­
formed to another value before being placed in the HC_SENO_OATA. In addition, 
some return codes cause PS.He to perfor-• further processing. For example, 
Nhen PS.He receives a return code of PROG_ERROR_PURGIHG to its SEND_DATA, it 
invokes the mapper to inform that procedure that the partner transaction pro­
gram detected an error. !See "Mapper Invocation" on page 5.2-9.) When• 
return code of SVC_ERROR_PURGING is received, PS.HC perfor111S the processing 
necessary to deter-mine what type of service error the PS.HC cot11ponent at the 
partner LU encountered. A return code reflecting the t~-pe of error is 
returned to the local transaction program in the HC_SENO_DATA. CSee "Process­
ing of a Service Error Detected by Partner LU" on page 5.2-17.) 

HC_SEtll_DATA verb parameters CSee .fil!A Transaction Progra11mer'1 Refertpee !j!n;:; 
Yi! for J.Y ~ Ll. J 

PS.MC issues a SEND_OATA verb. It sets fields in the HC_Sft.l>_DATA based upon 
the corresponding values returned in the SEHD_DATA. 

NOTES: 1. PS.MC performs a check to determine if the conversation is in an appropriate 
state to receive an HC_SEND_DATA. This is unlike its processing of 1110st 
•apped conversation verbs, in that PS.HC generally does not perform this state 
check, but instead allows it to be performed by PS.COHV lChapter 5.1). PS.MC 
perforn'the state check, rather than deferring it, for the following reasons: 
unlike other verbs, the HC_SEHD_DATA causes PS.HC to perform some alllOUnt of 
processing before issuing a basic conversation verb. By PS.MC performing the 
state check, any state errors are detected before the processing is performed. 
In addition, if the data provided in the HC_SEND_DATA could not be mapped by 
the Mapper procedure, no basic conversation verb is issued! in order to catch 
any state errors, PS.MC has to perfor• the state check. 

2. The processing that PS.MC perfor~s as a result 
SVC_ERROR_PIJRGIHG involves issuing one or 
REQUEST_TO_SEHD_RECEIVED information may 
RECEIVE_AHD_WAIT!s), and, if this is the case, 
reflect this infor•ation. 

Referenced procedures, FSMs, and data structures: 
Rcvo_svc_ERROR_PURGING 
PS_SPS 
PS_VERB_ROUTER 
UPH_MAPPER 
SEtll_BUFFER 
RCB 

SHA For•at and Protocol Reference Manual for LU Type 6.2 

of receiving a return code of 
more RECEIVE_ANO_WAIT verbs. 

be returned on the 
the MC_SEND_DATA is updated to 

page 5.2-42 
page 5.3-35 
page 5.0-11 
page 5.2-46 
page S.2-48 
page A-7 



MC_SEND_DATA_PROC 

Find the RCB for the resource specified in the MC_SEND_DATA verb. 
If the resource is in a state to receive data CChapter 5.1) then 

Call the UPM_MAPPERCRCB.MAPPER_SAVE_AREA> (page 5.2-46) 
to map the data to be sent, specifying the map name and whether or not the data 
contains FM header data Call from the verb). 

Select based on the return code from the mapper: 
When the mapper return code is MAP_NOT_FOUND 

Set the MC_SEND_DATA return code to MAP_NOT_FOUND. 
When the mapper return code is MAP_EXECUTION_FAILURE 

Set the MC_SEND_DATA return code to MAP_EXECUTION_FAILURE. 
Optionally, log implementation-dependent error data in system error log. 

When the mapping was successful 
If a map name was returned from the mapper then 

Create a Map Name GOS variable for the map name and put it in the SEND_BUFFER. 
Create a GOS variable that contains the data passed with the verb, 

which has been successfully mapped. The GOS variable, depending on the 
amount of data, may consist of one logical record or of multiple continued 
logical records. Only the first logical record will carry the GOS ID 
indicating either a User Control Data or an Application Data GOS variable type. 

Put, or add, the data GOS variable in, or to, the SEND_BUFFER. 
Call the PS_VERB_ROUTER CChapter 5.0) to issue a 

SEND_DATA verb, specifying the SEND_BUFFER and the length of the data 
to send, for the current RCB. 

If the SENO_DATA verb processing resulted in a saved request in the 
current RCB, from the remote TP, to send data then 

Save this request to be returned to the local TP on the MC_SEND_DATA verb. 
Select based on the SEND DATA return code: 

When OK do nothing. -
When ALLOCATION_ERROR, RESOURCE_FAILURE_RETRY, or RESOURCE_FAILURE_NO_RETRY 

Set the MC SEND DATA return code to the SEND DATA return code. 
When DEALLOCATE_ABEND_PROG -

Set the HC_SEND_OATA return code to DEALLOCATE_ABEND. 
When DEALLOCATE_ABEND_svc or DEALLOCATE_ABEND_TIMER 

Set the MC_SEND_OATA reurn code to RESOURCE_FAILURE_NO_RETRY. 
When PROG_ERROR_PURGING 

Set the HC_SEND_DATA return code to the SEND_DATA return code. 
Call UPM_MAPPERCRCB.MAPPER_SAVE_AREAl (page 5.2-46) 

to notify the mapper of the remotely detected error. 
When BACKED_OUT 

Call PS_SPS !Chapter 5.3). 
Set the HC_SEND_DATA return code to the SEND_DATA return code. 

When SVC ERROR PURGING 
Call RCVO_svc_ERROR_PURGING passing the current RCB and the 

SENO_OATA return code (page 5.2-42). 
If a request to send has been received from the remote TP and not 

returned on a prior MC_CONFIRM, MC_RECEIVE_AND_WAIT, MC_SEND_DATA, 
or MC_SEND_ERROR verb then 

Return a request-to-send-received indir.ation to the local TP ?n 
the MC_SEND_DATA verb. 

Chapter 5.2. Presentation Services--Mapped Conversation Verbs 5.2-39 



HC_SEl-l>_ERROR_PROC 

HC_SEtl>_ERROR_PROC 

5.2-40 

FUNCTION: This procedure processes HC_SEtl>_ERROR verbs. 

INPUT: HC_SEl-l>_ERROR verb par• .. ters (See ~ IraD15•ctj90 proqra..,r•s Refertnct 
l!!oY!1 .1!2.c .bU Iiam L1. ) 

OUTPUT: A return code indicating the result of the verb execution. An indication that 
a request to send has been received frOll the rHott IP uy also be returned. 

NOTES: 1. PS.He perfor• no check to deter•int if the conversation is in •n approprfatt 
state to receive an HC_SEtt>_ERROR. A state check is perforMtd by PS.CONY 
(Chapter 5.1> during its processing of the SEND_ERROR verb. 

2. The processing that PS.He perforn as a result of receiving a return codt of 
SVC_ERROR_PURGING involves issuing one or •ore RECEIVE_At«>_WAIT verbs. A 
request to send fro• the re110te IP •ay be returned on a RECEIVE_Att>_WAIT and, 
if this is the case, an indication of the request is passed to the local TP. 

Referenced procedures, Fstls, and data structures: 
RCVD_svc_ERROR_PURGING 
PS_SPS 
PS_VERB_ROUTER 
UPtt,J1APPER 

RCB 

Find the RCB for the specified conversation. 
Clear RCB.HC_RECEIVE_BUFFER. 
Call PS_VERB_ROUTER (Chapter S.O> to issut a SEND_ERROR 

verb for the current conversation Mithout data for the syste• error log 
and indicating that the request origin;ated frOll the transaction progra•. 

Select based on the return coda frOlll SEN>_ERROR: 
When OK 

Set the return code to the code returned by SEND_ERROR. 
If the conversation is in send state (Chapter 5.ll then 

Call UPtt_ttAPPER (page 5.2-46) to record a locally detected 
error of the type PROG_ERROR_NO_TRUC. 

Else 
Call UPtt_ttAPPER Cpage 5.2-46) to record a locally detected 
error of the type PROG_ERROR_PURGING. 

When PROG_ERROR_PURGING 
Set the return code to the code returned by SEtt>_ERROR. 
Call UPtt_MAPPER (page S.2-46) to record a remotely detected 
error of the type indicated by the return code fro• SEtt>_ERROR. 

When ALLOCATION_ERROR, DEALLOCATE_NORttALt RESOURCE_FAILURE_RETRY, or 
RESOURCE_FAILURE_NO_REIRY 

Set the return code to the code returned by SEl-l>_ERROR. 
tlien DEALLOCATE_ABEN>_PROG 

Set the return code to DEALLOCATE_ABEtl>. 
When DEALLOCATE_ABENJ_svc or DEALLOCATE_ABEND_TIMER 

Set the return code to RESOURCE_FAILURE_NO_RETRY. 
lfien BACKED_OUT 

Call PS_SPS (Chapter 5.31. 
Set the return code to the code returned by SEt«>_ERROR. 

When svc_ERROR_PURGING 
Call RCVD_svc_ERROR_PURGING (page 5.2-42). 
Set the return code to the code returned by RCVD_SVC_ERROR_PURGING. 

If a request to send has been received frOll the remote TP and not 
indicated to the local TP on a prior HC_CONFIRH, HC_RECEIVE_Att>_WAIT, 
HC_SEN>_DATA, .or HC_SEtl>_ERROR verb then 

Return a request-to-send-received indication to the local TP 
( •- .§U! TranHct i on Proqrawer '1 Refereoce lW'.lYl.l f!2.c .W llGHI Li ) . 

SNA For•at and Protocol Reference Manual for W Type 6.2 

page 5.2-42 
page 5.3-35 
page s.0-11 
page 5.2-46 

page A-7 



RCVD_SVC_ERROR_TRUNC_NO_TRUNC 

RCVD_SVC_ERROR_TRUNC_NO_TRUNC 

FUNCTION: This procedure is invoked when a return code of SVC_ERROR_TRUNC or 
SVC_ERROR_NO_TRUNC is returned by a RECEIVE_AND_WAIT verb. This return code 
indicates that the partner LU detected a aap execution failure while sending 
data. All or only part of the date •ay have been sent. Any data that was 
received prior to the error is purged. Error information is optionally placed 
in the syste• error log, but the local transaction progra• is not inforined of 
the error. 

INPUT: The RCB associated with the •apped conversation on Nhich the service error Nas 
detected and the SVC_ERROR_TRUNC or SVC_ERROR_NO_TRUNC return code 

NOTES: 1. If the expected Error Data GOS variable is not received, or is received but 
indicates an error condition that is invalid in the present situation, the 
partner LU has co•mitted a protocol violation. If the protocol violation 
occurred as a result of the partner LU allowing the Mapped conversation to be 
pra.aturely ended without having sent the error data, PS.MC simply logs the 
error. Otherwise, PS.MC ends the 11apped conversation. In either case, PS.MC 
inserts a return code of RESOURCE_FAIL~E_NO_RETRY in RCB.MC_RECEIVE_BUFFER. 

2. A return code of RESOURCE_FAILURE_RETRY or _NO_RETRY can occur at any time and 
does not indicate that the partner LU committed a protocol violation. 

Referenced procedures, FSHs, and data structures: 
UPH_MAPPER 
PS_VERB_ROUTER 
PROTOCOL_ERROR_PROC 

RCB 
ERROR_DATA_STRUCT~E 

Call UPH_HAPPER lpage 5.2-46) to record a remotely 
detected error of the type SVC_ERROR_TRtMC or SVC_ERROR_NO_TRUNC 
as indicated by the input parameter. 

Call PS_VERB_ROUTER !Chapter 5.0) to issue a RECEIVE_ANO_WAIT 
verb for the current conversation, specifying a wait for 
the receipt of a complete logical record. 

Select based on the return code fro• RECEIVE_AND_WAIT: 
When OK 

Interpret the data returned by the RECEIVE_ANO_WAIT verb as 
an ERROR_DATA_STRUCTURE. 

If RECEIVE_AND_WAIT returns DATA_COMPLETE, the GOS_ID in 
ERROR_DATA_STRUCTURE indicates that the structure contains 
error data Csee Appendix H), and ERROR_DATA_STRUCTURE.ERROR_CODE 
indicates a map execution faHure Csee Appendix H> then 

Optionally log implementation-dependent error data. 
Else (optional check when receiving data; see Note 1 I 

Call PROTOCOL_ERROR_PROC (page S.2-471 
to deallocate the current conversation. 

Put the return code RESOURCE_FAILURE_NO_RETRY in the 
HC_RECEIVE_BUFFER of the current RCB. 

When RESOURCE_FAILURE_RETRY or RESOURCE_FAILURE_HO_RETRY (see Note 2> 
Put the return code frOll the RECEIVE_All>_WAIT verb in the 

MC_RECEIVE_BUFFER of the current RCB. 
When PROG_ERROR_NO_TRl.K, SVC_ERROR_NO_TRUNC, or BACKED_OlJT 

(optional check Nhen receiving data; see Note 1) 
Call PROTOCOL_ERROR_PROC lpage S.2-471 

to deallocate the current conversation. 
Put the return code RESOURCE_FAILURE_NO_RETRY in the 

HC_RECEIVE_BUFFER of the current RCB. 
When DEALLOCATE_NORMAL, DEALLOCATE_ABEND_PROG, DEALLOCATE_ABENO_svc. or 

DEALLOCATE_ABEND_TIHER (optional check when receiving data; see Note 1) 
Put the return code RESOURCE_FAILURE_NO_RETRY in the 

HC_RECEIVE_BUFFER of the current RCB. 
Optionally log iniplementation-depenclent error dab. 

page S.2-46 
page S.0-11 
page 5.2-47 

page A-7 
page 5.2-48 

Chapter 5.2. Presentation Services--Happed Conversation Verbs 5.2-41 



RCVD_svc_ERROR_PURGING 

RCVD_svc_ERROR_PURGING 

5.2-42 

FUNCTION: This procedure is invoked when PS.MC issues a basic conversation verb in which 
a return code of SVC_ERROR_PURGING is returned. Unlike SVC_ERROR_TRUNC and 
SVC_ERROR_NO_TRUNC, the SVC_ERROR_PURGING return code can be returned on a 
verb issued while the mapped conversation is in either send or receive state. 

INPUT: The RCB corresponding to the specified conversation. 

OUTPUT: A return code reflecting the outcome of the service error processing. 

NOTES: 1. If the expected Error Data GOS variable is not received, the partner LU has 
committed a protocol violation. The checks for these violations given below 
are optional. If the protocol violation occurred as a result of the partner 
LU allowing the mapped conversation to be prematurely ended without having 
sent the error data, PS.MC simply logs the error. Otherwise, PS.MC ends the 
mapped conversation. In either case, PS.MC returns the code 
RESOURCE_FAILURE_NO_RETRY. 

2. A return code of RESOURCE_FAILURE_RETRY or RESOURCE_FAILURE_NO_RETRY can occur 
at any time and does not indicate that the partner LU committed a protocol 
violation. 

Referenced procedures, FSMs, and data structures: 
UPM_MAPPER 
PS_VERB_ROUTER 
PROCESS_ERROR_DATA 
GET_SEND_INDICATOR 
PROTOCOL_ERROR_PROC 
RCB 
ERROR_DATA_STRUCTURE 

Call UPM_MAPPER Cpage 5.2-46) to record a remotely 
detected error of the type SVC_ERROR_PURGING as indicated by the 
return code from the last verb issued. 

Call PS_VERB_ROUTER CChapter 5.0l to issue a RECEIVE_AND_WAIT 
verb for the current conversation, specifying a wait for 
the receipt of a complete logical record. 

Select based on the return code from RECEIVE_AND_WAIT: 
When OK 

Interpret the data returned by the RECEIVE_AND_WAIT verb as 
an ERROR_DATA_STRUCTURE. 

If RECEIVE_AND_WAIT returns DATA_COMPLETE and the GDS_ID of 
ERROR_DATA_STRUCTURE indicates that the structure contains 
error data then 

Call PROCESS_ERROR_DATA (page 5.2-43) and 
pass it the ERROR_DATA_STRUCTURE. 

Set the return code to the code returned by PROCESS_ERROR_DATA. 
If the return code is not RESOURCE_FAILURE_NO_RETRY then 

Call GET_SEND_INDICATOR Cpage 5.2-44). 
Else (Note l> 

Call PROTOCOL_ERROR_PROC Cpage 5.2-47) 
to deallocate the current conversation. 

Set the return code to RESOURCE_FAILURE_NO_RETRY. 
When RESOURCE_FAILURE_RETRY or RESOURCE_FAILURE_NO_RETRY (Note 2) 

Set the return code to the code returned by RECEIVE_AND_WAIT. 
When PROG_ERROR_NO_TRUNC, SVC_ERROR_NO_TRUNC, or BACKED_OUT CNote 1) 

Call PROTOCOL_ERROR_PROC Cpage 5.2-47) 
to deallocate the current conversation. 

Set return code to RESOURCE_FAILURE_NO_RETRY. 
When DEALLOCATE_NORMAL, DEALLOCATE_ABEND_PROG; 

DEALLOCATE_ABEND_svc or DEALLOCATE_ABEND_TIMER CNote 1) 
Optionally log implementation-dependent error data. 
Set the return code to RESOURCE_FAILURE_NO_RETRY. 

SNA Format and Protocol Reference Manual for LU Type 6.2 

page 5.2-46 
page 5.0-11 
page 5.2-43 
page 5.2-44 
page 5.2-47 
page A-7 
page 5.2-48 



PROCESS_ERROR_OATA 

PROCESS_ERROR_DATA 

FUNCTION: This procedure is invoked during the processing that PS.He performs as • 
result of receiving a return code of SVC_ERROR_PURGIHG. It is called after 
receiving the Error Data GDS variable that follows the service error notifica­
tion. The purpose of this procedure is to process the inforMation carried in 
the Error Data GOS variable. 

INPUT: 

OUTPUT: 

The Error Data GOS variable received fro• the re•ote TP 

If the Error Data GOS.variable contains no invalid values, 
returns a code that reflects the information carried in the 
logs the error information in the system error log. If the 
tains an invalid value, PS.He ends the mapped conversation. 

this procedure 
error data and 
error data con-

NOTE: When the Error Data GOS variable indicates l'IAP_NOT_FOUtl> or 
MAP_EXECUTION_FAILURE, the map name that caused the error is carried in the 
ERROR_PARM field of the Error Data GOS variable. When the Error Data GOS var­
iable indicates INVALID_GOS_ID, the GOS_ID that specifies • function not sup­
ported by the partner LU or transaction progra• is carried in the ERROR_PARH 
field. 

Referenced procedures, fSMs, and data structures: 
PROTOCOL_ERROR_PROC 

ERROR_DATA_STRUCTURE 

Select based on ERROR_DATA_STRUCTURE.ERROR_CODE: 
When it indicates an invalid GDS_ID (see Appendix H> 

Select based on the GDS_ID in ERROR_DATA_STRUCTURE.ERROR_PARH: 
When it indicates user control data (see Appendix HI 

Set the return code to Ft!H_OATA_NOT_SUPPORTED. 
Optionally log implementation-dependent error data. 

When it indicates map name (see Appendix H) 
Set the return code to HAPPING_NOT_SUPPORTED. 
Optionally log implementation-dependent error data. 

Other~ise (optional check when receiving data> 
Call PROTOCOL_ERROR_PROC Cpage 5.2-471 
to deallocate the current conversation. 

Put the return code RESOURCE_FAILURE_NO_RETRY in the 
MC_RECEIVE_BUFFER of the current RCB. 

When it indicates map not found (see Appendix H) 
Set the return code to HAP_NOT_FOUND. 
Optionally log implementation-dependent error data. 

When it indicates map execution failure Csee Appendix HI 
Set the return code to MAP_EXECUTION_FAILURE. 
Optionally log implementation-dependent error data. 

OtherNise !optional check Nhen receiving data) 
Call PROTOCOL_ERROR_PROC Cpage 5.2-47) 

to deallocate the current conversation. 
Put the return code RESOURCE_FAILURE_NO_RETRY in the 
HC_RECEIVE_BUFFER of the current RCB. 

page 5.2-47 

page 5.2-48 

Chapter 5.2. Presentation Services--Happed ConveN&ation Verbs 5.2-43 



GET_SEtll_INOICATOR 

GET_SEND_It«>ICATOR 

5.2-44 

FUNCTION: This procedure is invoked dul"ing the processing that PS.He perfora as a 
result of receiving a r~turn code of SVC_ERROR_PURGING. This procedure is 
called after the Error Data GOS variable that follows the service error 
notification has been received and processed. The purpose of this procedure 
is to receive the SEND indication that follows the Error Data 605 variable. 

INPUT: The RCB that corresponds to the specified conversation 

OUTPUT: A return code reflecting the results of the processing 

Referenced procedures, FSHs, and data structures: 
PS_VERB_ROUTER 
PROTOCOL_ERROR_PROC 

RCB 

Call PS_VERB_ROUTER <Chapter 5.0) to issue a RECEIVE_At«>_WAIT 
verb for the current conversation, specifying a wait for 
the receipt of a complete logical record. 

Select based oti the return code from RECEiVE_ANO_WAIT: 
When OK (optional check when receiving data) 

If RECEIVE_AND_WAIT returns WHAT_RECEIVED other than SEtll then 
Call PROTOCOL_ERROR_PROC (page S.2-47) 

to deallocate the current conversation. 
Set the return code to RESOURCE_FAILURE_NO_RETRY • 

.... en RESOURCE_FAILURE_RETRY or RESOURCE_FAILURE_NO_RETRY 
Set the return code to the code returned by RECEIVE_ANO_WAIT. 

Wnen DEALLOCATE_NORHAL1 DEALLOCATE_ABEtll_PROG, 
DEALLOCATE_ABENO_SVC, or DEALLOCATE_ABEl-l>_TIMER 
!optional check when receiving data J 

Set the return code to RESOURCE_FAILURE_NO_RETRY. 
Optionally log implementation-dependent error data. 

When PROG_ERROR_NO_TRUNC, Svt_ERROR_HO_TRUNC, or BACKED_OUT 
Coptional check when receiving data J 

Call PROTOCOL_ERROR_PROC !page S.2-47) 
to deallocate the current conversation. 

Set the return code to RESOURCE_FAILURE_HO_RETRY. 

SHA For•at and Protocol Reference Hanual for LU Type 6.2 

page 5.0-11 
page 5.2-47 

page A-7 



SEND_SVC_ERROR_PURSIN& 

SEND_SVC_ERROR_PURSINS 

FUNCTION: This procedure perforll!I service error purging processing. It is invoked Nhen 
PS.He receives a SOS variable specifying • fU'"ICtion not supported by either 
the LU or the transaction progra• associated with the Mapped conversation over 
which the GOS variable flowed, or when PS.He receives a GOS variable contain­
ing an unrecognized SOS IO, or when data .apping is being perforHd and the 
mapper procedure has encountered an error in •apping the received data. 

INPUT: The RCB for the conversation on which the service error occurrech an error 
code specifying the type of error encountered; and an error parameter that 
provides .ore infor•ation about the error 

OUTPUT: If any of the verbs issued by this procedure do not co111plete successfully, the 
procedure inserts into the RCB.HC_RECEIVE_BUFFER an appropriate return code. 

NOTE: If •apping is supported and the .apper does not already know about the error, 
the mapper is notified of the type of error encOW1tered. The .apper is not 
invoked when the error encountered is a 11AP_NOT_FOUtf.l or l"IAP_EXECUTION_FAILURE 
condition--the Hpper is already aware of the error. !The upper discovered 
the error.) If the error encountered indicates 11APPIN6_NOT_SUPPORTEDt no 
mapper e>d s ts. 

Referenced procedures, FSHs, and data structures: 
UPl"l_HAPPER 
PS_VERB_ROUTER 
PROTOCOL_ERRDR_PROC 
RCB 
ERROR_DATA_STRUCTURE 

If the input error code indicates an invalid 60S_ID !see Appendbc H> 
and the 6DS_ID in the input error paradter does not indicate a •ap 
na•e !see Appendix HJ then 

Call UPH_HAPPER !page 5.2-46) to record a re110tely detected error 
of the type SVC_ERRDR_PUR6IN6t as indicated by the return code frOll 
the last verb issued. 

Call PS_VERB_ROUTER IChapter 5.0) to issue a SEND_ERROR 
verb for the current conversation, specifying error type SVC 
and impleMentation-dependent error log data. 

Select based on the return code from SEND_ERROR: ...,.n OK 
Create an ERROR_DATA_STRUCTURE la single logical record) using the 
data in the parameters ERROR_CODE and ERROR_PARH. 

Call PS_VERB_ROUTER !Chapter 5.0) to issue a SENO_DATA 
verb to send the ERROR_DATA_STRUCTURE to the remote TP. 

Select based on the return code from SENO_DATA: 
Nhen OK 

Call PS_VERB_ROUTER (Chapter 5.0> to issue a 
PREPARE_TO_RECEIVE verb for the current conversation Nith 
the type parameter set to FLUSH and locks set to SHORT. 

When RESOURCE_FAILURE_RETRY or RESOURCE_FAILURE_NO_RETRY 
Put the return code from SENO_DATA in the HC_RECEIVE_BUFFER 
of the current RCB. 

Nhen PROG_ERROR_PURGINGt SVC_ERROR_PURGING, or BACKEO_OUT 
I this check is optional Nhen receiving data> 
Call PROTOCOL_ERROR_PROC (page 5.2-47) 

to deallocate the current conversation. 
Put the return code RESOURCE_FAILURE_NO_RETRY in the 

HC_RECEIVE_BUFFER of the current RCB. 
Nhen DEALLOCATE_ABENO_svc, DEALLOCATE_ABEND_TIMERt 
or DEALLOCATE_ABEND_PROG loptional check when receiving data) 

Optionally log implementation-dependent error data. 
Put the return code RESOURCE_FAILURE_NO_RETRY in the 

HC_RECEIVE_BUFFER of the current RCB. 

page 5.2-46 
page 5.0-11 
page 5.2-47 
page A-7 
page 5.2-48 

When DEALLOCATE_NORHAlt RESOURCE_FAILURE_RETRY, or RESOURCE_FAILURE_NO_RETRY 
Put the return code frOll SEND_DATA in the HC_RECEIVE_BUFFER 
of the current RCB. 

Chapter 5.2. Presentation Services--Happed Conversation Verbs 5.2-45 



UPH_MAPPER 

UPH_ttAPPER 

FUNCTION: 

INPUT: 

OUTPUT: 

This procedure, referred to elsewhere in this chapter as "the •apper", per­
forllS •apping of data in an h1plementaHon-deffoed way. The HAPPER_SAVE_AREA 
in the RCB for the current conversation contains infor•ation used in data Map­
ping, such as the currently effective up names (see "Hap Nallle!I" on JMl9• 
S.2-8>. 

Refer to "Data Mapping and the Mapper" on page 5.2-8 for a detailed 
description of the processing that occurs when data is Mapped. 

1. Reason why the 111apper was invoked: 

• Data is to be sent to, or NH received fr011, the partner LU. The map naae 
supplied by the sending transaction progra. deter•ines the kind of upping 
that occurs. 

• An error occurred and was detected either reMOtely or locally. 

• A positive reply to CONFIRM or to SYNCPT was received. This positive con­
firmation infor115 the Mapper that any map na-s sent to the partner have 
been received and processed by it, and Nere not purged during error proc­
essing. 

2. The polarity indicates whether send Mapping or receive Mapping is to be 
performed. This para11eter is used when the •apper invocation is for data Map­
ping. 

3. Ftlf data indicator indicates whether the passed data includes function 
Management (FHl headers. The mapper requires this inforuHon in the event 
that the sa- 111ap na111e could cause a different upping to take place depending 
~ Nhether the data being mapped includes FH headers. This parameter is 
used 1'lhen the upper invocation is for data Mapping. 

4. Input 111ap name contains the locally known 111ap name supplied by the trans­
action progra• on an t1C_SEND_DATA, if send Mapping is to be perfor11ed, or the 
111ap na111e trnat flows in a Hap Na111e GDS variable between LUs, if receive •apphig 
is to be performed. This parameter is only used if the •apper invocation is 
for data mapping. 

S. Input data contains the data supplied by the transaction prograM on the 
t1C_SEtl>_DATA verb for SEtl> Mapping, or data that flows in a data GOS variable 
for RECEIVE Mapping. Again, this parameter is used only in data mapping. 

6. Error code inforlllS the Mapper of the type of error encOU'\tered (for exa•­
ple, SVC_ERROR_~GING or PROG_ERROR_NO_TRUNCl. This is needed when the 
Mapper invocation is for an error occurrence. 

1. Output •ap na•e contains the "•apped" (global l 111ap naMe that is sent to 
the partner LU if send mapping is perforiaed, or the locally kno..-. 11ap na111e 
that is passed to the transaction progra• if receive Mapping was performed. 
This output is returned when the •apper invocation Nas for data Mapping, and 
always after receive 111apping. 

2. Output data contains the data that is sent to the partner LU for send 11ap­
ping, or the data that is passed to the transaction prograM for receive map­
ping. Again, this data is returned if the the Mapper was called for data 
upping. 

3. Happer return code indicates whether the mapper successfully performed the 
mapping or encountered problelllS• and is returned after data mapping inv­
ocations. 

S.2-46 SHA forMt and Protocol Reference Hanual for LU Type 6.2 



PROTOCOL_ERROR_PROC 

PROTOCOL_ERROR_PROC 

FUNCTION: 

INPUT: 

Th;s procedure handles protocol error processing. It is ;nvoked when PS.MC 
detects an arch;tectural protocol error committed at the partner LU. 

The RCB corresponding to the mapped conversation over which the protocol vio­
lation occurred. 

NOTE: Error log data ;s entered ;nto the system log by PS.CONV (Chapter 5.1) dur;ng 
its processing of the DEALLOCATE ;ssued by this procedure. 

Referenced procedures, FSMs, and data structures: 
PS_VERB_ROUTER 

RCB 

Call PS_VERB_ROUTER (Chapter 5.0) to issue a DEALLOCATE verb for the 
current conversation, spec;fy;ng a deallocation type of ABEND_SVC and 
indicating that the resource ID is to be discarded. 

Optionally, implementation-dependent error data may be recorded in the 
system error log. 

page 5.0-11 

page A-7 

Chapter 5.2. Presentation Serv;ces--Mapped Conversat;on Verbs 5.2-47 



LOCAL DATA STRUCTURES 

5.2-48 

ERROR_DAIA_SIRUCTURE 

ERROR_DAIA_SIRUCIURE: an ;nstance of a GOS var;able 
LL_LENGTH: the h;gh-order b;t ;s set to 0 ;nd;cat;ng a single-segment 
GDS_ID Csee format of an Error Data GOS variable in Appendix H) 
DATA 

ERROR_CODE Csee Appendix H> 
ERROR_PARM Csee Appendix H> 

SEND_BUFFER 

SEND_BUFFER: a buffer conta;ning the mapped data to be sent. 

SNA Format and Protocol Reference Manual for LU Type 6.2 

I 
record 



CHAPJER ~ PRESENTATION SERVICES--SYNC POINT SERVICES VERBS 

Recovery from errors and failures ;s a cen­
tral cons;deration in the design of trans­
act i on programs • LU 6 • 2 provides opt i ona 1 
services to aid transact;on programs in 
recovery from errors. A synchronization 

service is selected by the SYNC_LEVEL parame­
ter in the ALLOCATE verb. This chapter is 
primarily concerned 1r1ith the sync point syn­
chronization services.I 

ERRORS, FAILURES, AND RECOVERY 

I 

Errors and failures can be classified as: 

• Application errors--these errors may 
occur frequently; recovery is part of the 
application design. In data entry, for 
instance, field validation and requests 
for repeated input are normal portions of 
the application logic. 

• Recoverable system errors--these errors 
occur frequently; recovery is part of the 
system logic. Bracket race errors are an 
example !see "Chapter 6.1. Data Flo1r1 Con­
trol">; link-level retransmission is 
another. 

• LU failures--LUs will sometimes fail by 
themselves or as a result of the failure 
of underlying hardware or software. Much 
of the recovery from LU failures, as seen 
by other LUs, is handled by the recovery 
of sessions that have failed. Other 
aspects of this recovery are the concern 
of sync point services. 

-. Local resource fa i lures--local resources 
(e.g., files) will sometimes fail. If 
the loc~l resource that fails is not pro­
tected by the sync point service, recov­
ery is an application-level 
respons_ibility. 

I • 
I 

Transaction program failures--transaction 
programs sometimes end abnormally. In a 
well-tested system, this will not occur 
frequently. Application-level recovery 
varies by application. See "Chapter 5.1. 
Presentation Services--Conversation 
Verbs" for details of abnormal termi­
nation processing. 

Applications are often designed as a sequence 
of logical units of work, each unit consist­
; ng of some changes to the resources under 
the control of the transaction program. Each 
logical unit of work llUWl is recoverable by 
itself. The simplest case occurs when there 
is one LUW for a transaction program; recov­
ery can often then consist of running the 
transaction again from the beginning. LUWs 
are delimited by the !<>tart-up of a trar1s­
action program and by execution of each 
SYNCPT verb. The SYNC_LEVELISYNCPTl service 
simplifies the design of transaction programs 
that use protected resources, s i nee changes 
to those resources will be seen by the appli­
cation transaction program as having occurred 
only after one LUW completes and before the 
next LUW begins. 2 

• 

1 

2 

Conversation failures--conversations will 
sometimes fail as a result of failure of 
the underlying sessions caused by the 
physical components over which the ses­
sions are carried. The reactivation of 
failed sessions is handled by system log­
ic; see "Chapter 4. LU Network Services" 
for details. Application-level recovery 
from conversation failure is discussed in 
more deta i 1 in SNA Transaction Program­
mer's Reference Manual .:f.2!: !!! ~ L_g. Figure 5.3-1 on page 5.3-2 illustrates the 

relationships among failures and recovery. 

Full support of sync point services in actual implementaHcms includes prov1s1ons for syn­
chronizing local resources as well as d;stributed resources accessed through conversations. 
For completeness, this section sketches fully general sync point services. Details of sync 
point services for local resources are not specified by SNA, but are implement'2ltion defined. 
The sync point service is not always able to provide a consistent ~tate for the protected 
resources. When this occurs, a heuristic decision h; made. This sometimes danmges the lUW 
by making the states of its protected resources inconsistent. Mor1<> deh'il!!t ;;,bo;,~ vh~fii are 
provided in "RESOURCE_FAILURE_*• Recovery, and Heuristic 'Decisions" on page !:>.?;<it>. 

Chapter 5.3. Presentation Services--Sync Point Servi~es V~rb~ 5.3-l 



(various external causes) 

v v 

LU 
FAILURE 

Causes 

May cause or •• 

SESSION 
FAILURE 

c 
a 
u 
s 
e 
s 
~ --~.:.:~~ :c:i~~ SESSION 

RESTART 
v v v 

PROGRAM 
FAILURE 

LU 
RECOVERY 

For SYNC LEVEL 
of SYNCPT in 
ALLOCATE, 

v causes 

Leads to 

v 

LUW 
BACK OUT 

When required, leads to LUW 
RE SYNC 

Allows 1 
v 

PROGRAM 
RESTART 

v 

v 

Network 
may allow 

May be needed 
prior to 

Figure 5.3-1. Relationships among Failures and Recovery 

SYNC POINT CONCEPTS 

I The following are some terms that are used in 
I this chapter: 
I 
I • 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I • 
I 
I 
I 
I 
I 
I • 
I 
I 

SYNCPT-A verb used by a transaction pro­
gram CTPJ to invoke sync point services. 
Sync point services coordinate the 
updates of distributed resources. Coor­
dination is performed by the sending and 
receiving of presentation services (PSJ 
headers by the sync point services compo­
nent. The protocol allows recovery i f 
messages are lost because of transaction 
program, conversation, or LU failures. 

INITIATOR-The role of the local sync 
point services component when the TP 
issues the SYNCPT verb that begins the 
coordinated update of distributed 
resources. 

AGENT-The role of the sync point serv­
ices component that receives sync point 
requests from an initiator. 

I • 
I 
I 
I 
I 

• 

• 

CASCADED AGENT-An agent of an initiator 
that is itself an agent of another initi­
ator; in other words, an agent may allo­
cate other protected conversations. In 
this role an agent is responsible for 
propagating sync point requests to its 
cascaded agents. 

RESYNC-Recovery processing that is per­
formed by sync point services after a 
failure of a session, transaction pro­
gram, or LU. The resync exchange 
includes exchanging log names and compar­
ing LUW states. 

PRESENTATION SERVICES CPSJ 
requests and replies that 
services components exchange 
SYNCPT verb processing. 

HEADER-The 
sync point 
to perform 

5.3-2 SHA Format and Protocol Reference Manual for LU Type 6.2 



PROCESSING Bl ~ 

The component of LU pi-esentation se1·v1ces 
that pi-ovides the sync poin·c sei-vice is 
called PS.SPS. ;.bo ca.Lled the sync point 
manager :.!hen all the i-esoui-ces used by a TP 
'2:-• at one LU. only one copy of PS.SPS is 
executed. Usually the situation is moi-e com­
plicated since evei-y convei-sation allocated 
with the SYNC_LEVEL<SYNCPT> option connects 
two separate TPs. which coopei-ate to pei-foi-m 
one or moi-e disti-ibuted units of woi-k. In 
the disti-ibuted cases. one TP is the fii-st to 
issue the SYNCPT verb, and its local sync 
point manage.- becomes the sync point initi­
atoi- foi- the cui-rent sync point. with i-espect 
to the sync point managei-s on the othei- ends 
of any convei-sation. These othei- sync point 
managei-s become agents with i-espect to the 
initiato.-. but may in tui-n become initiatoi-s 
with i-espect to additional. cascaded, sync 
point managers. 

The sync point managei-s maintain consistency 
of the changes to pi-otected i-esoui-ces by the 
propagation thi-oughout the netwoi-k of these 
sync point commands: 

• 

TP 1 

Pi-epai-e--Soli cits Request Commit. This 
command tells the agent to place its pi-o­
tected i-esoui-ces in a state that allows 
them to be fully committed to the changes 
that have been accumulated dui-ing this 

w TP 3 

TP 2 

'l TP 4 

1--
TP 5 

t---

TP 6 TP 7 

Figui-e 5.3-2. A Typical Sync Point Ti-ee 

LUW, but that also allows these changes 
to be i-evei-sed • oi- backed out • The 
choice to commit oi- back out is made by 
the initiatoi- aftei- intei-action with aH 
agents. 

• Request Commit--Solicits Committed. This 
command says that the i ssuei- has suc­
ceeded in pi-epai-ing all of its pi-otected 
i-esources. 

• Committed--Infoi-ms the soliciting sync 
point manage.- that all i-esoui-ces attached 
thi-ough this convei-sation ai-e committed. 

• Foi-get--Infoi-ms the sync point manage.­
that sent Committed that its log i-ecoi-d 
foi- this LUW can be ei-ased. 3 Foi-get also 
tells the initiating sync point manage.­
that the sync point is complete and that 
control can be returned to the TP. 

• Backed Out--Infoi-ms the i-eceiving sync 
point manager that the sending sync point 
manager has backed out the LUW. 

The SNA encoding foi- transmission of these 
commands ai-e described in "Appendix H. FM 
Header and LU Services Commands" under pres­
entation services CPS) headers for the fii-st 
foui-. and FMH-7 sense data for Backed Out. 

The sync point managei-s keep i-ecoi-ds about LUWs on logs, held on nonvolatile storage by the 
log manage.-. so that LUWs can be kept consistent across failures of LUs. The logical unit 
of work ID CLUWIDJ is compi-ised of three components: the fully qualified LU network name; 
the instance number. which is unique at the LU that creates it; and the sequence numbe.-. 
which is inci-emented by 1 following a successful sync point. In addition. a convei-sation 
correlatoi- is used to fui-thei- qualify LUWIDs. The LUWID is created by RM foi- a convei-sation 
whenever a conversation is allocated by a TP that does not already have an LUWID associated 
with it. A TP already has an LUWID associated with it, if it was the subject of an Attach 
by a TP that ali-eady has an LUWID. The LUWID and convei-sation correlator are cai-i-ied in the 
FMH-5 (see "Appendix E. Request/Response Unit <RUJ Foi-mats" in Appendix E). 

Chaptei- 5.3. Pi-esentation Sei-vices--Sync Point Sei-vices Yei-bs 5.3-3 



LUW STATES 

A d;str;buted transact;on progra• ;s a tree, 
w;th ;nd;v;dual TPs as nodes on the tree, and 
conversations as branches. o;str;buted TPs 
support distributed LUWs, consist;ng of local 
LUWs at the individual TPs. The distr;buted 
LUW has a state made up of all the local LUW 
states. For the d;stributed transact;on pro­
gram shown in Figure 5.3-2 on page 5.3-3, the 
distributed LUW state is a vector w;th seven 
components: 

LUW = [LUW1,LUW2, ••• LUW7J 

where LUWi is the local LUW state fer 1P;. 
The first TP to issue SY~r.PT becomes the root 
of the tree for the global LUW that is ended 

0 
PS.SPS 
Initiator 

PS.SPS 
Agent 

SYNC PT 
---> Prepare --------> TAKE_SYNCPT * 

-> 
SYNCPT 
<--

Request Commit 

Committed 

Forget 

OK 
<---

by that verb. In the figure, the root, or 
in;t;ator, is TP 1. 

The sync point managers at each node of the 
tree cooperate to place all the LUW compo­
nents ;nto the same consistent state. They 
do this with four waves of sync point com-
11ands. 

The Prepare wave starts at the root and 
spreads down the tree. The Request Commit 
wave starts at the leaves (nodes without sub­
ordinate nodes > and spreads up the tree to 
the root. The Comm; tted wave returns down 
the frt1e, lll:1~ the rorgei: wave flows up the 
tree to the root. Figure 5.3-3 shows these 
waves as they occur between the root and one 
of the nodes adjacent to the root. 

NOTE: TAKE_SYNCPT ;s returned in the WHAT_RECEIVED field of verbs that can receive data. 

F;gure 5.3-3. Basic Sync Point Flows 

PS.SPS PS.SPS 

0 
Initiator Agent 

0 
SYNC PT 
-> Prepare 

> TAKE_SYNCPT 
--> 
SYNC PT 
<-

Forget 
< 

OK 
<---

F;gure 5.3-4. Optimized Flow: No Resource Changed 

S.3-4 SHA Forut and Protocol Ref.erence Manual for LU Type 6.2 



0 
PS.SPS 
Initi•tor 

r;;:;;;-, 
~ 

SYNC PT 
---> --------> TAKE_SYNCPT 

--> 
SYNC PT 
<-

C011111itted 

OK 
<---

i111plied Forget 

Figura 5.3-5. Opti•ized Flow: Last Resource 

FLOW OPTIMIZATION 

Since 11eSsage flows are costly, the sync 
point -nagers atte111pt to reduce the number 
of flows. Figure 5.3-4 on page 5.3-4 illus­
trates one such case: when • sync point •an­
ager agent determines that the state of the 
local L~ is reset, that is, no protected 
resources have been changed, it answers For­
get to Prepare. Inter•ediate agents can 
reply Forget only if •ll the local LIJWs in 
their entire subtree are reset. 

Figure 5.3-5 shows the other flow reduction 
that can be used. The initiator can pick one 
adjacent agent to receive Request Commit 
rather than Prepare. The Request Com11it can 
be sent only after all the prepared agents 

Transaction Progra• 

--------------A,----------------' I u >.(3> 
.--------------v·--------------..... 

PS Router 
._ ____ A A------~ 

I n> 

have sent Request Commit up their subtree to 
the initiator, •king the selected agent the 
.li!l.1 agent. This last agent is then free to 
select one of its cascaded •gents also to be 
last, and so on. 

Hnsage flows •re further reduced bec•us• the 
PS header that starts the sync point exchange 
indicates that one of three things should 
occur after the sync point Hssage exchange 
is complete: the initiator is to be in send 
state, the initiator is to be in receive 
state, or the conversation is to be deallo­
cated. This is shown in Figure 5.3-32 on 
page S.3-38 to Figure S.3-36 on P•ge S.3-40. 
The first PS he.der sent has a 110difier field 
that indicates the settfog of the CD and CEB 
indicators of the RH that completes the sync 
point exchange. 

[];-r.;: >~ >L::_j 
n> I c4> (2) 

.-----v v------~ 
Protection Manager .._ ___________ . ______________ __, 

I cu 
.-------------v--------------~ 

Figure 5.3-6. Sync Point Services for Local CNonconversational> Resources, SUch H FUu 

Chapter·S.3. Presentation Services--Sync Point Services Verba S.3-5 



S.3-6 

SYNC POINT AND OTHER LU COMPONENTS 

The relationships among the transaction pro­
gram, its resources, and the sync point man­
ager are illustrated in Figure 5.3-6 through 
Figure 5.3-8. 

The following notes correspond to the numbers 
in Figure 5.3-6 on page 5.3-5. 

1. The transaction program issues a resource 
verb, which is passed, by the PS router, 
to the proper procedure to handle the 
local resource. See "Chapter 5.1. Pres­
entation Services--Conversation Verbs" 
for details. 

2. The local resource is protected, and so 
it has a protection manager, which exam­
ines the resource verb. If the resource 
is changed by the verb (e.g., it is a 
Write of some kind), the protection man­
ager wr i tes a log record cont a i n i ng the 
before-change data. 4 

3. Eventually the transaction program issues 
SYNCPT or BACKOUT. The PS router invokes 

the sync point manager, which coordinates 
the action of all sync point managers 
involved in the distributed LUW. 

4. The sync point manager interacts with the 
protection manager for each protected 
resource, exchanging PS headers indicat­
ing Prepare, Request Commit, Committed, 
and Forget to coordinate commitment, or 
an FMH-7 indicating Backed Out to coordi­
nate backout of changes, either as 
requested by the TP, or as required by a 
resource failure. 

S. When all resources are prepared, the LUW 
is committed when the sync point manager 
writes Committed on the log, and forces 
the log. 5 The single force of the log is 
suff i c i ent to comm i t the ent i re LUW 
because all local resources used by a 
single TP share a single log, which is 
also the log used by the TP's sync point 
manager. 

Recovery that uses the log records is 
discussed later in "Resynchronization 
Logic" on page S.3-18. 

4 

5 

Logging before-change data is the technique suggested in the formal description. Other 
equ1valent techniques are possible and permissible. 
Some writes to the log can be made to volatile log buffers. If these are lost because of a 
failure of the LU, no damage results. Other writes (called forced writes) to the log must 
be made to the nonvolatile log itself before the sync point protocol can proceed, if the LUW 
is to be kept synchronized even across LU failures. This use of the nonvolatile log is 
called forcing ~ !gg. 

SNA Format and Protocol Reference Manual for W Type 6.2 



Transaction Progra• 

'----~-~A,..--~-~-~--1 ( 1),(3) 

.---~~~~v--~~---~--. 
PS Router 

.._~~.A A~~~• 

I (3) 

VPoint 
nager 
S.SPS) 
A---• 

(5)~ > Log 
Hanager 

u, I (4) 

r-~ Protection 11anage~---i 
l__,. (PS.CRPH) _j 

(1) 

Half­
Session 

(U 

Figur• S.3-7. Sync Point Services for Conversation Resources 

The follONing notes correspond to the numbers 
in Figure 5.3-7. 

1. The transaction progra• uses a conversa­
tion. The conversation resource (CR> 
protection •anager is not sensitive to 
any of th. conversation verbs. 

2. The CR protection 11anager does not 1111rite 
any log records. RH does write log 
records as part of ALLOCATE processing in 
order to be able to re-create the 
resource control blocks (RCBs) and their 
relationship to transaction control 
blocks ncas > following an LU failure. 
See RCB on page A-7 for details of the 
RCB and TCB. 

3. Evwitually th. transaction progra• issues 
SYNCPT or BACKOUT. The PS router invokes 
the sync point unager to do the coordi­
nation. 

4. The sync point .anager interacts Nith the 
protection •anager for each protected 
conversation, exchanging Prepare, Request 
c-it, Ca.mitted, and Forget PS headers 
to coordinate co•itl1ent, or Backed Out 
to coordinate backout of changes, either 
as requested by the TP, or as required by 
a resource failure. 

Protected conversations are treated so111e­
Nhat differently frOll protected local 
resources; this difference is driven by a 
local/nonlocal6 indicator in the RCB. A 
Backed Out Ftli-7 can be received fro• 
nonlocal resources. Compare States GDS 
variables (also referred to as Compare 
States command or reply) can be exchanged 
Nith the• to resynchronize follONing con­
versation failures. 

The local protection Hnager for the con­
versation cOllllllU'licates Nith its remote 
partner by exchanging PS headers and the 
Backed Out FMH-7 sense data. The 
half-session has no knowledge that a pro­
tected conversation is assigned to it. 

5. The sync point •anager has to do addi­
tional writes to the log Nhenever nonlo­
cal resources are pointed to by a TCB. 
Also, additional forces of the log are 
required. Finally, the sync point manag­
er attempts resynchronization by an 
exchange of Co111pare States GOS variables 
with i'ts partner sync point unager after 
resource failures. 

6 Local resources are those that share the sync point Hnager's log. 

Chapter 5.3. Presentation-Services--Sync Point Services Verbs 5.3-7 



Transaction Progra• 

,_~~~~~~A.~~~~~~~--' 

I u l,(3> 
.-~~~~~~v~~~~~~~--. 

PS Router 
'-~~A.~~~~~~~~A·~~~...i 

I t 3> 

YPoint 
nager 
:·SPSl 

u > I t4> c: Protection Hanage~~ 
I < u 

C:-:=J (4) 

I tu 
r- PS Router v---, 
L__A•----A___J 

tcu lt4> 

C R Protection Hanage~ 
( PS.CRPHJ 

A A 
I < u 
~rsation 

ource (CRJ 
A-----' 
I cu 

] 

(2) 

(2) 

> Log 
Manager 

Figure 5.3-8. Sync Point Services for Function Shipping 

5.3-6 

The follONing notes correspond to the nuabers 
in Figure 5.3-8. 

1. The transaction program allocates a 
resource that is located remotely. The 
local resource •anager uses a conversa­
tion to c~icate to the re110te 
resource. 

2. Neither the local-resource protection 
11anager nor the CR protection 11an&ger 
writes log records. The only logging is 
done by RH in order to be able to 
re-create the resource RCBs and their 
relationship to TCBs. The ALLOCATE 
issued by the local resource 11an&ger is 
understood to be for a function shipping 
situation, so the conversation's RCB is 
chained Ulder the local resource's RCB 
rather than being chained directly to the 
TCB. At the nme ti••• the local 
resource's RCB h1 •arked nonlocal. 

3. Eventu~lly the transaction progra• issues 
SYNCPT or BACKOUT. The PS router invokes 

the sync point manager to do the coordi -
nation. 

I\. The sync point manager interacts Nith the 
protection manager for each protected 
resource, exchanging Prepare, Request 
Coaait, C01111itted, and Forget PS headers 
to coordinate com•itment, and Backed Out 
to coordinate backout of changes, either 
as requested by the TP, or as required by 
a resource failure. 

The nonlocal resources are treated the 
sa- as protected conversations: Backed 
Out can be received; Compare States GOS 
variables can be exchanged. 

The protection •anager for the local 
resource, after dealing with local states 
Ce. g. , on a Prepare it ••Y need to flush 
a local buffer), passes the PS header& 
that it receives fre11 the sync point Mn­
ager to the CR protection manager. 

SHA Foraat and Protocol Reference Manual for LU Type 6.2 



5. The sync point manager has to do addi -
tional writes to the log whenever nonlo­
cal resources are pointed to by a TCB. 
Also. additional forces of the log are 
required to handle the extra error states 
introduced by the existence of remote 
logs. Finally, the sync point manager 
attempts resynchronization via exchange 
of Compare States GOS variables with 
partner sync point managers after 
resource failures. 

SYNC POINT LOGIC 

A transaction program can issue a SYNCPT verb 
as an initiator, or in reply to a 
WHAT_RECEIVED value of TAKE_SYNCPT • 
TAKE_SYNCPT_SEND, or TAKE_SYNCPT_D~ALLOCATE 

on RECEIVE. After giving the TAKE_SYNCPT 
indication. the conversation resource rejects 
most verbs until SYNCPT, BACKOUT, or 
SEND_ERROR is issued. See SNA Transaction 
Programmer's Reference Manual for LU ~ ,i..l 
for details. 

PS.SPS processes the SYNCPT verb in the 
phases described below. 

CLASSIFICATION PHASE 

Since SYNCPT can be issued under many circum­
stances. PS.SPS begins by scanning the 
resources allocated to the transaction pro­
gram in order to determine their states. 
Further PS.SPS processing varies according to 
the states of the local resources and TP: 

l. PREPARE RECEIVED state--Prepare was 
received from an initiating sync point 
manager. The local TP did not initiate 
sync pointing. PS.SPS prepares its local 
and down-tree protected resources and 
replies up-tree with Request Commit if 
preparation succeeds. If it fails• it 
replies Backed Out. 

2. REQUEST COMMIT RECEIVED state--Request 
Commit was received from an initiating 
sync point manager. The local TP did not 
initiate sync pointing. Since the initi­
ating PS.SPS has used an optimized flow. 
which it can do only for the last 
resource that it is attempting to coordi­
nate. the local PS.SPS coordinates the 
commitment of its local and down-tree 
resources and replies Comm i t ted i f com­
mitment succeeds. If it fails• it 
replies Backed Out. 

3. SEND state--All protected conversations 
are verified to be in SEND state. Before 
issuing the SYNCPT verb, the transaction 
program puts all its protected resources 
into SEND st&te. If required, this can 
be done by issuing REQUEST_TO_SEND and 
waiting for the right to send. 

4. Unprotected resource--Resource was allo­
cated with SYNC_ LEVE LC NONE I CONFIRM l. 

The resource is not affected by the 
SYNCPT verb. 

At the end of the scan. PS.SPS knows if a 
resource Ci.e., the one in PREPARE RECEIVED 
state) must be sent Request Commit during its 
local coordination. Request Commit must be 
sent last. after all other resources have 
been prepared. If no last resource is iden­
tified, a UPM is used to select one. The UPM 
can consider things like minimizing session 
flows (which le&ds to making a remote conver­
sation last whenever possibiel. It can also 
choose to prepare all resources. which allows 
all coordination to proceed in parallel, 
since Prepares can be sent simultaneously to 
several resources. 

If any protected resources are in Receive 
state or more than one last resource is iden­
tified, the sync point manager recognizes a 
state error and abnormally terminates the TP. 
Since any TP may be sync point initiator. the 
design of the distributed TPs must be such 
that only one TP at a time is the initiator. 
For example. TPa is in conversation with TPb 
and TPb has a cascaded conversation with TPc. 
If TPa and TPc both initiate sync point with 
TPb at the same time. it is an error in the 
design of the transaction program. The sync 
point service at TPb recognizes this error 
and returns BACKED_OUT to TPb. TPb then 
issues the BACKOUT verb. Otherwise, PS.SPS 
advances to the Prepare phase. 

PREPARE PHASE 

PS.SPS now issues Prepare to all not-last 
resources. When Request Commit has been 
received from all of them. the next phase is 
entered. Other replies to Prepare are dis­
cussed in "Errors during Sync Point" on page 
5.3-15. If no not-last resources exist. this 
phase is skipped and PS.SPS proceeds directly 
to the Request Commit phase. 

REQUEST COMMIT PHASE 

After receiving Request Commit from all 
not-last resources. PS.SPS issues Request 
Commit to the last resource, and waits for a 
reply, thus entering the Committed phase. 

COMMITTED PHASE 

PS.SPS completes sync point processing after 
receiving Committed from the last resource by 
sending Committed to all not-last resources, 
thus entering the Forget phase. 

FORGET PHASE 

In the Forget phase, PS.SPS waits for Forgets 
from all the not-last resourc.~s. When all 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-9 



S.3-10 

Forgets have been received, PS.SPS giv• the 
SYNCPT verb that was issued by the loclill TP 41 
return code of OK. 

SHA Fol'INlt and Protocol Reference ttanual for LU Type 6.2 



ILLUSTRATIVE SYNC POINT FLOWS 

The following figures and comments illustrate 
the preceding discussion. 

TP 

IPS.SPS I >!i; tiatorl 0 RESET RESET 
v v 

---> ( 1) <---
A A 
I I 

PGM PENDING PGM PENDING 
I 

SYNC PT v 
---> (2) Prepare* 

A >(3) TAKE_SYNCPT 
> 

SYNC PT 
< 

v 
SPM PENDING (4) Prepare* 

A 
I 

SPM PENDING 
I 
v 

(5) Request Commit* 
v Request Commit* A < 

(6) < 
A Request Commit 

I > 

IN DOUBT IN DOUBT 

I Committed 
< 

v 
(7) 

implied Forget (8) 
A > 

Committed* v 
>(9) 

A Committed* 
I 

COMMITTED COMMITTED 

I Forget* 
< 

Forget* v RETURN_ CODE 
v < {10) > 

( 11) 
RETURN_ CODE 
<---

Cascaded 
Agent 

> 

> 

NOTE: The * indicates sending to, or receiving from, multiple agents. 

Figure 5.3-9. Illustrative Sync Point Flow: General Case 

The following notes correspond to the numbers 
in Figure 5.3-9. 

1. The distributed LUW begins in RESET 
state. Any change to a local protected 
resource or receipt by PS of any message 
unit Cincluding the initial Attach> over 

a protected conversation drives a local 
LUW from RESET to PGM PENDING. 

2. The initiating TP issues SYNCPT. PS.SPS 
logs all affected conversations except 
the last as [INITIATOR, SPM PENDING] 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-11 



ti\ile the last one ;s not logged yet. 1 
1he log ; s forced once. PS. SPS sends 
Prepare to all but the last agent hahere 
tha * at the end of Prepare nans all the 
agents, except poss;bly the last). 

J. Each agent PS.SPS returns to its trans­
action p.-ogr••• a i.lfAT_RECEIVED value of 
TAKE_SYNCPT. All TPs agree by issuing 
SYHCPT. 

4. 1he agent PS.SPS logs U.GENT, SPH PEND­
ING J for the conversaU on over wM ch the 
Prepare is received. It logs UNITI­
ATOR-CASCADE1 SPH PENDING) for all the 
cascaded conversations, if any exist 
(there ai ght only be local resources). 
Tha log is forced once if and only if any 
cascaded conversations ex;st. 

5. All cascaded agents agree to c011111it. 
PS. SPS places [AGENT, IN DOUBT J on the 
log and forces the log. 

6. All agents agree to c01111;t. [INITIATOR, 
IN DOUBT) is placed on the log if and 
only if the last resource is being opti­
•ized Mith the last-resource sequence. 
If IN DOUBT is placed on the log, the log 
;s forced and then Request Co•it is sent 
to the last agent. 

7. The last agent replies Co•itted (if the 
optiaized flON is being used for the last 
agent). [IHlTIATOR, COl't'IITTEDJ is logged 
and the log is forced. Ce>11111itted is sent 
to all agents (except the opt;m;zed 
last). 

8. An implied Forget is sent to the last 
agent Mith the aid of RH and the session 
process. The i1111>lied Forget is the next 
norul-flow RU of any kind that flONS 
frOll the initiator to the last agent. 
For instance. if the agent sent Co111111itted 
as CEEh then the next RU •ight be a (881 
AttachH or it •ight be a (B8, LUSTAT)I 
or BISJ or a data reply to a BB that came 
frOll the agent's half-session. Since the 
Committed can get lost, the agent retains 
the state of the LUW across session out­
age. Since the i1111>lied Forget can get 
lost, and since the initiator llllly have 
erased its log, the. agent a.rries a 
resync responsibility for itHlf. Only 
in this way can it erase its log. "Re­
synchronization logic" on page 5.3-18 
describes resync in 110re detail. 

9. PS.SPS logs Unitiator-Cascade, Commit­
ted l for all cascade agents and forces 
the log. It then sends COlllli tted to the 
cascaded agents. 

10. All cascaded agents return Forget. 
PS.SPS resets the LUW by erasing the logl 
then PS.SPS sends Forget to the initiator 
and returns control to the agent TP. 

U. All agents return Forget. PS.SPS erases 
the log and returns control to the initi­
ating TP. The log does not have to be 
forced before PS.SPS sends Forget, since 
any Forgets lost during a failure can be 
reconstructed by resynchron;zing Nith 
c11&caded agents. 

1 1he log records •re (st•t• of local PS.SPSrelaUve to ruote PS.sPS. state of local LUWJ. 

S.3-12 SHA For .. t and Protocol Refer9'C• Hanual for W Type 6.2 



PS.SPS 
Initiator 

---> (1) 

RESET 
y 

A 
I 

P6l1 PENDING 
I 

SYHCPT Y 

PS.SPS 
Agent 

RESET 
y 

A 
I 

P6l1 PENDING 

<-

---> (2) Request co .. it 
A >(3) TAKE_SYHCPT 

----> 
SYNC PT 
<----

y 
IN DOUBT (4) Prepare* 

Cascaded 
Agent 

A ----------> I 
SPH PENDING 

I 
y 

U > Request C011111it• <----------( 6) A Co11Mittec:I* 
I > 

INITIATOR-CASCADE, Cott1ITTED 
I Forget• 
y <---------( 7) A 

Y Com111itted RETURN_ CODE 
(8) <.----- ----> 

A 
I 

COtltlITTED 
RETURN_ CODE I 

Cotl1ITTED 

<--- y 
RESET 

implied Forget (9) 
-----> y 

tlJTE: The * incHcates sending to, or receiving fre111, 11Ultiple agents. 

Figure 5.3-10. Illustrative Sync Point Flow: Last-Resource Opti•ization 

The following notes correspond to the h\.mlbers 
in Figure 5.3-10. 

1. The distributed LlM begins in RESET 
state. Any change to a local prot11eted 
resource or receipt by PS of any Hssage 
unit (including the ini~ial Attach) over 
a protected conversat;on drives a local 
LlM frOll RESET to PGH PENDING. 

2. The initiating TP isaues SYHCPT. PS.SPS 
logs the last conversation as IINITIATOR, 
IN DOUBT J. It forces the log and sends 
Request COllllll it. 

3. The agent PS.SPS presents TAKE_SYHCPT to 
the agent transaction progra•. The TP 
•grees by issuing SYHCPT. 

It. The agent PS.SPS logs IA.GENT, SPH PEND­
ING! for the conversat;on over which the 
Request C011111it is received. It logs 
IIHITIATOR-CASCADEt SPH PENDINGI for all 

the cascaded conversations, if any exist 
(there •i ght be only local resources>. 
It forces the log if and only if any cas­
caded conversations exist. 

5. All cascaded agents agree to cot11111it. The 
agent PS. SPS logs I IHITU TOR-CASCADE, 
COHHITTED I and forces the log again (in 
the example, the agent is not using the 
last-resource opti•ization on cascaded 
resources J. Then it sends Caimi tted to 
all cascaded agents. 

6. The •gent PS.SPS 111N1its for all cascaded 
agents to return Forget. This is done so 
that, in case of failures and resynchro­
nization, it can return to the initiator 
an accurate report of any damage that •ay 
occur fre111 heuristic decisions (discussed 
in "DEALLOCATE_ABEND_*" on page 5.3-151. 

7. All Forgets are returned. The subtree 
for which this PS.SPS is responsible is 

Chapter 5.3.- Presentation Services--Sync Point Services Verbs 5.3-13 



COMHITTED. The agent PS.SPS returns COll­
Mitted to the initiator, even if no 
down-tree resources 111ere changed, and 
then returns control to its TP. 

8. The initiator sees the C0111111itted. If 
there are no other particip&nts, the ini­
tiator erases the log for the LIM and 
returns OK to the initiating transaction 
program. If there are other agents, [IN­
ITIATOR, COtt1ITTED J is placed on the log 

PS.SPS 
Initiator 

---> (1) 

RESET 
v 

A 
I 

PEit1 PEtl>ING 
I 

SYNCPT V 
---> (2) Prepare* 

RESET 
v 

A 
I 

PGH PEtl>ING 

<---

A ----->13) TAKE_SYNCPT 
----> 
SYNCPT 

v <----
SPH PEtl>ING i 

.... ("'""" 
Forget V RETI.mN_COOE 

v <-----( 4) > 
(5) 

Nhile the Forgets fre111 the not-last 
agents are collected. See Figure S.3-9 
on p&ge S.3-11 for this type of sequence. 

9. I•plied Forget is sent to t~ last agent 
Ni th the aid of the sass 1 on process. 
That is, any conversation data that flOlllS 
on the half-session is treated as an 
implied Forget. This includes a BB that 
begins a new conversation Wien Co11111itted 
was sent Mith CEB. 

Cascaded 
Agent 

NOTE: The * indicates sending to, or receiving frot1, 11Ultiple agents. 

Figure 5.3-11. Illustrative Sync Point Flow: No Resources Changed 

5.3-14 

The following notes correspond to the nunbers 
in Figure S.3-11. The situation that the 
figure illustrates arises Nhen a sync point 
is requested, but no remote resources have 
been altered during the LUW. In this case, 
the Request Commit and Committed flows are 
not necessary and are Olllitted. 

1. The distributed LUW ·begins in RESET 
state. Any change to a local protected 
resource or receipt by PS of any MeSSage 
unit (including the initial Attach) over 
a protected conversation drives a local 
LIM from RESET to PGH PENDING. 

2. The initiating TP issues SYNCPT. PS.SPS 
logs all affected conversations but the 
last as IINITIATOR, SPH PENDING J, not 
logging the last one yet. It forces the 
log once, then sends Prepare to all but 
the last agent I represented by the* fol­
lowing Prepare>. 

3. The agent PS.SPS presents TAKE_SYNCPT to 
the agent TP, Nhich agrees to commit. 
The rest of this flow illustrates the 
processing perforMd by a single agent 
where no resources have been changed. 
The generalization to cascaded LUWs is 
straightforward. 

4. The agent PS.SPS sees lby rece1Ymg For­
gets frOll the local resources> that no 
resources have been changed. It resets 
the LUM by erasing the log, sends Forget 
to the initiator, and returns control to 
the agent TP. • 

5. The agent returns Forget. The Request 
Conait and Committed flOlolS were not 
needed; the initiator PS.SPS still proc­
esses the flONS frOll other conversations 
that may or •ay not require the addi­
tional flows. 

SHA Foriut and Protocol Reference Hanual for LU Type 6.2 



FORCING !Hf .bQ§ 

PS.SPS needs to force the log only once when 
all resources are local, while it uses at 
least two forces of the log as the initiator 
CSPM PENDING and COMMITTED states) and may 
use an additional force C IN DOUBT state) if 
the last resource is flow optimized. 

PS.SPS uses at least one log force as the 
agent CIN DOUBT state), but if any cascaded 

The preceding discussion assUlned that sync 
point processing completed normally, without 
incident. This section shows how consistency 
can be maintained even when errors occur. 

The errors addressed are those caused by many 
transaction programs operating independently 
of each other, communicating only when 
required. With this independence, unexpected 
return codes can occur after any verb. As 
the issuer of internal verbs to the conversa­
tion resource protection manager CPS.CRPMl in 
order to exchange sync point commands with 
partner sync point managers, PS.SPS has logic 
to deal with these return codes: 

• PROG_ERROR_*• including SVC_ERROR_* 
• BACKED_OUT 
• DEALLOCATE_ABEND_* 
• RESOURCE_FAILURE_* 

Because recovery from conversation failure 
can require that a session be reactivated, 
PS.SPS gives special consideration to the 
case where this cannot be accomplished in a 
timely manner. 

PROG_ERROR_* 

PS.SPS treats PROG_ERROR_* as BACKED_OUT. It 
is the using transaction program's responsi­
bility to avoid this by correct transaction 
design. 

BACKED_OUT 

BACKED_OUT is the return code given when the 
remote transaction program issuo.:. a BACKOUT 
verb. Unlike the case of ~ROG_ERROR_•, where 
the TP th'l~ 1ssued SEND_ERROR gives the TP 
ti-::.·~ receives the PROG_ERROR_* an option, on 
BACKOUT the issuing TP expects the e..ltire 
distributed LUW to be backed out. The TP 
that receives BACKED_OUT therefore propagates 
the backout to all other resources by also 
issuing the BACKOUT verb. 

conversations exist for this LUW, the agent 
PS.SPS has to appear to the cascaded agents 
as if it were the initiator. Therefore, the 
middle agent has to force the log CSPM PEND­
ING state) in order to reliably assume the 
resync responsibility if it should terminate 
abnormally. The middle agents do not need to 
force the log to COMMITTED state since resync 
will re-establish this state if it is lost. 

DEALLOCATE_ABEND_* 

PS.SPS may receive DEALLOCATE_ABEND_*. Since 
PS.SPS for the abnormally terminating TP will 
back out all of the TP's local resources, the 
local PS.SPS treats these return codes as 
BACKED_OUT. 

RESOURCE_FAILURE_*, RECOVERY, AND HEURISTIC 
DECISIONS 

Recovery t'rom conversation failure depends 
upon the state of the conversation at the 
time of the outage: 

1. If the conversation is under the control 
of the sync point manager, it attempts to 
recover from the failure by exchanging 
Compare States GOS variables with the 
remote sync point manager as part of 
resync processing. PS.SPS does this by 
issuing ALLOCATE specifying the LU resync 
service TP X'06F2' as the transaction 
program. See "Resynchronization Logic" 
on page 5.3-18 for the logic that is exe­
cuted during this resynchronization 
effort. 

If resynchronization succeeds, PS.SPS 
absorbs the RESOURCE_FAILURE_* return 
code and returns from the SYNCPT or BACK­
OUT verb with the appropriate SYNCPT or 
BACKOUT return code. PS gives the 
RESOURCE_FAILURE_* return code to the TP 
on the next verb ( other than SYNCPT and 
BACKOUT8 ) i ssued aga i ns t the failing 
conv'!t·sat·ion, thus making the sync point 
verb and the resource failure appear to 
have occurred in the reverse order. This 
is done for the convenience of the TP 
writer. A TP that is using protect•d 
resources can take advantage of this by 
issuing SYNCPT or BACKOUT whenever a con­
versation failure return code is recog­
nized. This gets the TP to a known 

8 If SYNCPT and BACKOUT returned RESOURCE_FAILURE_* there would be no way to resynchronize 
short of an IPL to drive the resync logic. 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-15 



state: backed out to the last successful 
sync point call. Backed out state is 
arrived at when BACKOUT or SYNCPT is 
issued, after a resource failure, because 
a resync occurs. In this case, resync 
can only lead to backed out. The TP can 
then perform its own recovery logic from 
a known state, greatly simplifying the 
TP's recovery logic. 

Because a new session may not be i mme­
di ately available, the sync point manager 
and the. lock manager have a protocol 
boundary that provides a capability to 
free locks on resources that may be 
needed by other TPs. When the lock man­
ager needs to release locks, PS.SPS uses 
the guidance provided by the TP's entry 
in the transaction program list in RM, 
the LU control operator, or a programmed 
operator. The choices are either to hold 
the locks or to choose to do a partial 
commit or a partial backout of those 
resources with which communication has 
been maintained. The guidance lnot shown 
in this bookl indicates whether commit­
ting, backing out, or holding the locks 
is to be performed when the TP fails and 
the lock manager needs to release locks. 
As PS.SPS makes this decision with only 
partial information, it is called a 
heuristic decision. 

BACKOU! PROCESSING 

When processing the BACKOUT verb, PS.SPS 
causes all protected resources in the LUW to 
be restored to their condition at the start 
of the LUW. The exception is that protected 
conversations are not deallocated, and the 
remote TPs that they started are not termi­
nated by backout processing. 

like SYNCPT, BACKOUT is propagated to all TPs 
associated with the LUW. Also like SYHCPT, 
BACKOUT propagation requires all transaction 
programs that share a distributed unit of 
work to participate by issuing verbs, i.e., 
BACKOUT. 

When a transaction program is notified of a 
BACKOUT initiated by another transaction pro­
gram, the remote BACKOUT is complete. That 

PS.SPS reports the resource state (which­
ever is chosen, HEURISTIC COMMIT or 
HEURISTIC RESET) to the LU control opera­
tor (since the heuristic decision may 
result in a loss of synchronization among 
the distributed resources that has to be 
repaired by operator action) and saves 
the state for comparisc-n during resyn­
chronization. The PS.SPS that is respon­
sible for resync continues resync 
attempts until resync completes. At this 
time, PS.SPS writes another message to 
the LU control operator and erases the 
LUW's log entries. 

2. If the conversation is not under the con­
trol of the sync point manager, the 
responsibility for recovery is the trans­
action program's. However, if sync point 
is in use, the TP can typically turn the 
recovery processing over to the sync 
point manager by using the SYNCPT or 
BACKOUT verb as soon as any desired proc­
essing has been completed. Resources 
that are not protected are cleaned up 
according to application program logic. 
A failure by one TP or the other to 
return control to the sync point manager 
can lead to an extended holding of locks 
on shared resources. It may also lead to 
heuristic decisions if the locks have to 
be broken. 

; s, the conversation resource that reports 
BACKED_OUT has already done so. The return 
code indicating this, BACKED_OUT, may be 
returned on several of the verbs. No backout 
of other resources in the local unit of work 
has been done. The TP must issue BACKOUT 
before it issues any other verb against pro­
tected resources. 

Of particular interest is the case where 
BACKOUT is issued in the midst of SYNCPT 
processing. The locally issued BACKOUT takes 
precedence over the SYNCPT requested by the 
remote TP i f the LUW stays intact. See Fig­
ure 5. 3-12 and Figure 5. 3-13 for examples 
that illustrate how this is accomplished. 
For brevity, the Forget commands are not 
shown. 

5.3-16 SNA format and Prc~~co! R~f~rence Manual for LU Type 6.2 



A B 

Committed Sequence Backed Out Sequence Backed Out Sequence 2 

1. A-> B - Prepare 1. A-> B - Prepare 1. A-> B - Prepare 
2. B -> C - Prepare 2. B -> C - Prepare 2. B -> c - Prepare 
3. B -> D - Prepare 3. B -> D - Prepare 3. B -> D - Prepare 
4. c -> B - Request Commit 4. C -> B - Request Commit 4. c -> B- Request Commit 
5. D -> B - Request Commit 5. D -> B - Backed Out 5. D -> B- Request Commit 
6. B -> A - Request Commit 6. B -> C - Backed Out 6. B ->A - Request Commit 
7. A-> B - Committed 7. B ->A - Backed Out 7. A-> B - Backed Out 
8. B -> C - Committed 8. B -> C - Backed Out 
9. B -> D - Committed 9. B -> D - Backed Out 

STATUS = Committed STATUS = Backed Out STATUS = Backed Out 

Figure 5.3-12. Back Out Example 1 

B 

c 

D 

Committed Sequence Backed Out Sequence 1 Backed Out Sequence 2 

1. A -> B - Prepare 1. A-> B- Prepare 1. A -> B - Prepare 
2. A -> C - Prepare 2. A-> c - Prepare 2. A -> C - Prepare 
3. B -> A - Request Commit 3. B -> A - Request Commit 3. B -> A - Request Commit 
4. c -> A - Request Commit 4. c -> A - Backed Out 4. c -> A - Request Commit 
5. A-> D - Request Commit 5. A-> B - Backed Out 5. A -> D - Request Commit 
6. D -> A - Committed 6. A-> D - Backed Out 6. D -> A - Backed Out 
7. A-> B - Committed 7. A-> B - Backed Out 
8. A -> C - Committed 8. A -> C - Backed Out 

STATUS = Committed STATUS = Backed Out STATUS = Backed Out 

Figure 5.3-13. Back Out Example 2 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-17 



HEURISTIC DECISIONS ~ RELIABLE ~OURCES 

each implementation of the sync point option 
set makes available to transaction programs 
at least one protected resource that is fully 
reliable in that it is not subject to 
heuristic decisions. This can be done in a 
variety of ways; the simplest is to allow 
application designers to designate certain 

RESYNCHRONIZATION LOGIC 

Resynchronization logic involves these steps: 

• If an IPL has occurred, RM retrieves log 
records from the log manager and recon­
structs the protected TCBs and RCBs that 
were active at the time of the failure. 
It then causes PS.SPS to gain control on 
the reconstructed TCB. PS.SPS uses the 
log to restore its relevant states. For 
instance, it restores the initiator/agent 
state for each resource. PS.SPS also 
supplies log records to the protection 
managers for each resource so that they 
can back out their resources if this is 
required. 

I • When PS.SPS finishes resynchronizing, RM 
deallocates the TCB. 

• If the resync is occurring without an 
IPL, PS.SPS will return control to the TP 
or to the abnormal termination process­
or, depending on the caller. The abnor­
mal termination processor, of course, 
will deallocate all resources as needed. 

• Since it can happen that multiple conver­
sations connect TCBs with the same LUWIDs 
in two separate LUs, resynchronization 
uses the the value in the Conversation 
Correlator field carried in Attach (see 
"Appendix H. FM Header and LU Services 
Commands") to uniquely identify the LUW 
whose states are to be compared. For 
example, this case occurs when TPa at LUa 
allocates a conversation with TPb at LUb. 
Then, as part of the same LUW, TPb allo­
cates a conversation with TPc at LUa. 
The conversation correlator provides a 
way for PS.SPS at LUa to distinguish the 

resources as not subject to heuristic deci­
sions. However the reliable resource is pro­
vided, application designers can use data 
kept in the rel i able resource to aid in 
recovery from any heuristic mismatches that 
may occur. 

part of the LUW that LUa initiated from 
the part that LUb initiated. The conver­
sation correlator is unique in a network. 
To provide uniqueness, the fully qual i -
fied LU name of the LU that created the 
conversation correlator is concatenated 
to the conversation correlator when com­
parisons are made. The fully qualified 
LU name of the partner LU is known from 
the system definition of the PARTNER_LU 
data structure. 

The decision to initiate resync by either end 
is depends upon the state of the unit of 
work. The following table reflects the 
action PS.SPS takes after a conversation 
failure or an IPL of the LU. 

UNIT-OF-WORK STATE ACTION BY PS.SPS 
(in local log) 

Not Found •••••••••• No Action 
Agent, not last ••• Wait for resync 
Agent, last ••••••• Resync after time-out 
Initiator ••••••••• Initiate resync 

VALIDATION OF LOG IDS 

The first level of resynchronization is the 
validation of the log IDs. PS.SPS accom­
plishes this by exchanging Log ID GDS vari­
ables. When this exchange validates the 
integrity of the LU pair's logs, PS.SPS 
exchanges Compare States. The following fig­
ures illustrate this resync logic. 

5.3-18 SNA Format and Protocol Reference Manual for LU Type 6.2 



(11 SYNCPT 

r;;;:-i 
~ 

----> 

r;;;:-i 
~ 

<----Session Outage Notification 

ALLOCATE 

SEND_DATA 

SEND_DATA 

RECEIVE_AND_WAIT 
(2) 

RECEIVE_AND_WAIT 

DEALLOCATE 

[ 

TYPEC SYNC_LEVELl 

( 31 

same LUWID as the l'H that is being resynchronized 
SYNC_LEVE LC cc:;FrRM I • 
"rrHiX'06F2' I ... I 

BIND 
] Coptionall ---------------------------> 

Attach -------------------------------------> Exchange Log Name, log status Cwarml, log name Clog name) 
> RECEIVE_AND_WAIT 

Compare States command, CD C2l 
----------------------------------------------------> RECEIVE_AND_WAIT 

Exchange Log Name, log status Cwarm), log name Clog name) SEND_DATA 
<-----------------------------------------------------

Compare States reply, CD SEND_DATA 
<----------------------------------------------------

LUSTATCX'0006' l, RQD2, CEB -----------------------------------------> RECEIVE_AND_WAIT 
(3) 

+DR2 CONFIRMED 
<-----------------------------------------------

Figure 5.3-14. Resync after Conversation Failure 

The following notes correspond to the numbers 
in Figure 5.3-14. 

LUWID carried in this Attach from the 
TCB. 

1. The TP issues SYNCPT or BACKOUT, giving 
PS.SPS control. Conversation failure 
results from the session ou~age. PS.SPS 
detects this and begins resynchronization 
by issuing ALLOCATE specifying the resync 
transaction program, X'06F2', as the TPN. 
The optional BIND may flow between LUs as 
a result of RM logic; RM will send BIND 
to activate a new session if an existing 
session is not available; PS.SPS does not 
know if it flows. PS. SPS retrieves the 

2. PS.SPS validates the log name and then 
executes resync logic. Each conversation 
to be resynchronized is processed in a 
separate resync conversation using a sep­
arate copy of the resync TP. 

3. PS.SPS tells the log manager to erase the 
LUW's log records. The half-session 
sends an LUSTAT because there is no data 
to send. The LUSTAT carries the RH. 
PS.SPS is not aware of this detail. 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-19 



~ 
~ 

~ 
~ 

( l) LU fails 

ALLOCATE 

SEND_DATA 

SEND_DATA 

same LUWID as the LUW that is being resynchronized 
SYNC_LEVELICONFIRMl, 
TPN(X'06F2') ••• , 

BIND 

Attach -----------------------------> 
Exchange Log Name, log status <warm), log name <log name) 

> RECEIVE_AND_WAIT 
Compare States command, CD (2) 
-----------------------------> PECF.JVE_AMD_~lAII 

Exchange Log Name, log status (warm), log name (log name) SEND_DATA 
RECEIVE_AND_WAIT <.-------------~ 

(2) 
RECEIVE_AND_WAIT 

DEALLOCATF, 
TYPI.: ( ~ nlC_ LEVEL l 

Compare States reply, CO SEND_DATA 
<----

LUSTATCX'0006'l, RQD2, CEB 
-~~~~~~~~~~~~~~~~~~~~~~~> RECEIVE_AND_WAIT 

(3) 
(3) +DR2 CONFIRMED 

<----------------------------
Figure 5.3-15. Resync after LU Failure 

5.3-20 

The following notes correspond to the numbers 
in Figure 5.3-15. 

1. The LU fails. After the LU is IPLed, RM 
reads the sync point records from the 
log, rebuilds the TCB and RCBs, and gives 
PS.SPS control. After re-establishing 
the states of the local protected 
resources in cooperation with their pro­
tection managers, PS.SPS proceeds to 
resync each LUW in a separate conversa­
tion, s i nee the reply can be de1ayed 
while cascaded resync occurs. If all the 
resync conversations are processed in 
parallel, multiple sessions wi 11 be 
used--up to one per LUW to be resynchro­
nized. This can cause as many BINDs as 
LUWs that are in resynchronization. A 
UPM determines the degree of parallelism. 
The more parallelism, the more session 
resources will be used, but the resync 
may complete faster. 

2. PS.SPS validates the log name and then 
executes resync logic. 

3. PS.SPS erases the log. If a conversation 
or LU failure occurs during resynchroni­
zation, PS.SPS repeats resynchronization 
until both logs are erased. 

SESSIC"I OUTAGE DURING ATTACH 

If session outage occurs, the Compare States 
command that is part of resync can arrive 
ahead of the session outage notification. 
When this occurs and the last-resource opti­
mization is being used, and if no special 
steps were taken, the result could be that 
one partner backs out and the other partner 
commits. The resolution of this race condi­
tion is depicted in Figure 5.3-16 on page 
5. 3-21. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



ALLOCATE 
SENO_DATA 
SYNC PT 

PS.SPS( l) I 
*BB• Attach, data, Request Ca11mit, CD 

SON SON 
< x 
ee. Compare States( Session ID> 

lleINlH cleanup l 
< 

Not Found 

PS.SPSl21 

(1) 

121 

131 

> (4) 
DEACTIVATE SESSION -TYPE I CLE ANUP> 

D<Session ID> SESSION_ I 

> ( purged ) ( 5 ) 
> (purged> 

16) 

This shows how the failure is prevented by deactivating the session prior to 
processing the C0111pare States cOlllllland. 

PS.SPSlll is the PS.SPS instance that is rla'll'ling on behalf of the application TP. 
PS.SPSl2l is the PS.SPS instance that is processing the Compare States co11111and. It is 
using a different session frOll that used by the application TP. 

Internal flows are not shown. 

Figure 5.3-16. Avoiding Failure Resulting frota an Attach-SON Race 

The comments below correspond to the numbers 
in Figure 5.3-16. 

1. A transaction is allocated with a sync 
level of sync point. 

2. Data is sent and a sync point I in this 
case, for an optimized last resource) is 
requested. 

3. After the data and Request Co111Mit are 
sent, a session outage occurs. Both 
sides of the conversation are infor•ed of 
the outage. 

4. When. the sync point •anager receives the 
outage indication, it sends a C0111Pare 
States command (Exchange Log Name al5o 
flows but it is not shown in the dia­
gra•>. This flows on a different session 
fro• the transaction progra• data. This 
session can use any 11ode. However, the 
performance characteristics of tha: 1110de 
should be good enough to avoid undue 
delays in resynchronization. As a result 
of using a different session, the Compare 
States c0111111and can arrive ahead of the TP 
data. 

To resolve this race condition, the 
receiving sync point manager, PS.SPS<2>, 
issues a DEACTIVATE_SESSION TYPEICLEANUPl 
whenever Compare States is received. The 
Session Instance Identifier field of the 
C0111Pare States co-and has the session 
identifier, to allow the sync point •an-

ager to deactivate the affected session. 
When the session deactivation is com­
plete, any Attaches that are in transit 
are discarded and RM purges any records 
received from that hdf-session. Then 
the Compare States processing can pro­
ceed. If the Attach has been processed 
and the attached TP executed before the 
deactivation is co!llplete, a log entry for 
the LUW will be found. If the Attach is 
discarded, no log entry wi 11 be found. 
In either case, both data bases wi 11 
remain synchronized. 

5. Depending upon when the Attach and SON 
arrive, either path control, RM or LNS 
purges them because the session has been 
deactivated. 

6. The receiving sync point 111&nager, 
PS. SPSI 2 l, checks the log for a1111areness 
of the LUW for which the Compare States 
was sent. Since the Attach has not 
arrived yet, or it was purged, no log 
entry exists. The reply to Compare 
States" is therefore Not Found. 

It is possible that the inc0111ing Attach has 
been processed and the PS process for the 
application TP 1111as created, but the TP has 
never been dispatched when the Compare States 
arrives. In this case, the Attach arrives 
ahead of the C0111pare States, but as a result 
of ti•ing conditions in the node, the Compare 
States TP (shown above as PS.SPS(2)) executes 
before the atbched application TP. Then, 

Chapter 5.3. Presentation Services--Sync Point Services V~rbs 5.3-21 



before the appllcation TP rla'UI and the LUW is 
logged, the half-session is deactivated 
because of the Compare States processing. 
When the DEACTIVATE_SESSION processing is 
completed, PS. SPS( 2 I checks the . log to find 
the state of the LUW. The LUW is not logged 
yet, so the reply to the Comp;, re States is 
. Not Found. In order to avoid having the 
application TP execute later and co_ it the 
UM, the sync point manager that is running 
on behalf of an application TP checks th;, t 
the LUW was not previously backed out, 
because of a session deac~iv;,tion, before it 
commits. This is accomplh1hed by having RM 
infor• the sync point manager th;,t the 
half-session it is using was deactivated. 
The sync point man;,ger cannot perform a Com­
•i t if it is informed of a session deacti­
vation. 

LOST SYNC POINT MESSAGES 

The logic for resync is sUllmarized in Fig­
ure 5.3-21 on page 5.3-26 through Fig­
ure 5.3-25 on page 5.3-30. This logic is 
derived from Figure 5.3-19 on page S.3-24, 

Prepare 

Sot I SON 
< x 

(purgedJ<-----------­
Prepare 

SEND_ERROR 

J purged)<------+--------
> 

which shows the sync point messages that can 
be lost because of session outilge, as viewed 
by the initiator. For exaq>le, when a Pre­
pare is lost because of SON, the state of the 
LUW at the sender of the Prepare <the initi­
ator I, is either SPM PENDING or HEURISTIC 
RESET; the state of the LUW at the receiver . 
<the agent) is either RESET or PGH PENDING. 
In the case when SENO_ERROR and Prepare are 
lost from one TP and Prepare is lost frOll the 
partner, the state of LUM on either side of 
the conversation is SPM PENDING or HEURISTIC 
RESET. Given this, it is possible to con­
struct the tables that guide the resynchroni­
zation actions that the sync point 111anagers 
must take. 

Prepare v5. Prepare race5 <when both sides 
i55Ue Prepare, and the flows cross), Prepare 
vs. Reque5t Co111111it races, ;ind Request Co11111it 
vs. Request Co11111it race5 al5o can occur a5 a 
result of races between session ouhge 
notification and SEND_ERRORs. 

An example is shown in Figure 5.3-17. 

Figure 5.3-17. SEND_ERROR and Prepare vs. Prepare Race during Session Outage 

5.3-22 

When one TP issues SEND_ERROR followed by 
SYNCPT and messages are lost because of ses­
sion outage, it is possible that both part­
ners are the sync point initiator. In this 
case, each reports its state on the Compare 
States reply as if it were an agent. 

The one exception to this rule is in the case 
shown in Figure 5.3-18 on page S.3-23. In 
this case, when resynchronizing, the original 
sender of Prepare (sync point services[ 1] I 

recognizes that the partner is resynchroniz­
ing (following SON, the partner (sync point 
services[ 2 I) sent a Compare States command 
with a state indicator of IN DOUBO. The 
sender of Prepare then replies with a RESET 
state indicator on the Compare States reply. 

The details of resync, based on the state of 
the LUW is shown in the 111atrix in Fig­
ure 5.3-19 on page 5.3-24 and the logic 
depicted in Figure 5.3-23 and Figure S.3-24. 

SNA For•at and Protocol Reference Manual for LU Type 6.2 



SYNC PT 

sync point 
services 

Cl) 

Prepare 
------------+-> (purged) 

SON SON 
< x------~ 

(purged)<--------1--' 
Request Commit 

(purged><--------1----------~ 

---------> 
New conversation Compare States request 

(state indicator = RESET) 

Compare States request 
(state indicator = IN DOUBT> <--------+------------

--------------~.> Compare States reply 
(state indicator = RESET> 
-------------~----------> Compare States reply 
(state indicator = RESET> <-------------------

sync point 
services 

(2) 

SEND_ERRllR 

SYNC PT 

Figure 5.3-18. SEND_ERROR and Request Commit vs. Prepare Race during Session Outage 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-23 



Sync Point Message Lost Initiator's State When Agent's State 
By Session Outage It Initiates Resync When Resync Occurs 

Prepare UJ SPM PENDING I RESET I 
HEURISTIC RESET (1 J P6l1 PEtllING [ 2 J 

Prepare vs. SEND_ERROR SPl1 PEtllING I SPl1 PEtllING I 
and Prepare (SJ HEURISTIC RESET Ill HEURISTIC RESET [IJ 

Prepare vs. SEND_ERROR SPM PENDING I IN DOUBT I 
and Request HEURISTIC RESET [IJ HEURISTIC RESET [4J I 
Conni tc last > [SJ HEURISTIC COHHITTED [4J 

SPH PENDING I IN DOUBT I 
Request Co-it HEURISTIC RESET [lJ HEURISTIC RESET l4J I 

HEURISTIC COHHITTED [4J 

IN DOUBT I 
Committed COMHITTED HEURISTIC RESET [4J 

HEURISTIC COl1t1ITTED [4J 

Forget COtl1ITTED RESET 

Request Conait<last) IN DOUBT I RESET I 
[3J HEURISTIC RESET [4) I P6l1 PEtllING [2J 

HEURISTIC COHl'IITTED [4J 

Request COllNit<last) IN DOUBT I SPM PENDING I 
vs. SEND_ERROR and HEURISTIC RESET [4J I HEURISTIC RESET [IJ 
Prepare [5) HEURISTIC Cott1ITTED [4J 

"' 

Request C011111it<lastl IH DOUBT I IN DOUBT I 
vs. SEND_ERROR and HEURISTIC RESET [4J I HEURISTIC RESET l4J I 
Request COMmitClast) HEURISTIC CotlHITTED [4J HEURISTIC COHMITTED [4J 

IN DOUBT I 
co-itted<last) HEURISTIC RESET [4J I COtt1ITTED 

HEURISTIC COHl1ITTED [4J 

~ 
1. The LUW has been backed out as a result of a heuristic request from 

the lock manager. The initiator still owes resync to the agents. 
2. The PGM PENDING state is never visible during resync, since it 

is converted to RESET. 
3. These rows asusune that no Prepare vs. Prepare type races have occurred. 
4. Either HEURISTIC RESET or HEURISTIC COtt1ITTED can occur from IN DOUBT. 
5. The agent h1sues SEND_ERROR and a sync point MeSsage, making the 

agent also an initiator for this race. 

Figure 5.3-19. Lost Sync Point Messages: Initiator's VieN 

5.3-24 SHA For11at and Protocol Reference Hanual for LU Type 6.2 



Lost Message Last Agent's State when State of receiver of 
it sends Compare States Compare States 
command command 

Implied Forget COMMITTED [Note] RESET I COMMITTED I 
HEURISTIC COMMITTED 

t!2!!u The last agent does not have to send this Compare States command unless it needs to erase its 
log. The last agent does have to remember the COMMITTED state if it does not receive Forget, either 
implied or as part of the initiator's resync or following its own resync. !See Figure 5.3-25 on page 
5.3-30 for further details.> It is not possible to eliminate entirely this responsibility of the 
last agent without coupling the sync point resync to a single session instance. If the sync point 
resync were restricted to a single session instance, session data on that session could be treated as 
an Implied Forget. 

Figure 5.3-20. Lost Messages for Sync Point: Last Agent's View 

RESYNCHRONIZATION ACTION 

Figure 5. 3-21 on page 5. 3-26 through Fig­
ure 5.3-25 on page 5.3-30 show the indicated 
states that the sync point manager is either 
sending or receiving in the Compare States 
command, in relation to the action taken. 
The logic depicted in these diagrams is the 
logic needed to implement resynchronization 
when an IPL has taken place or after an LU or 
a session fails. 

The top left-hand corner of the tables indi­
cates the role the sync point manager has in 
the sync point exchange. In Figure 5.3-21 on 
page 5.3-26, Figure 5.3-23 on page 5.3-28, 
and Figure 5.3-25 on page 5.3-30 the 
left-hand column shows the state i ndi cation 
that is sent on the Compare States command. 
The top row shows the state that is indicated 
in the Compare States reply. In Fig­
ure 5.3-22 on page 5.3-27 and Figure 5.3-24 
on page 5.3-29, the left-hand column shows 
the state that is indicated in the Compare 
States command. The top row indicates the 
state of the LUW at the receiver; this state 
is indicated in the returned Compare States 
reply. 

The matrix entry for the column-row pair 
indicates the action to be taken based on the 
pair of state indications exchanged. The 
action to be taken includes changing the 
state of the LUW at the LU and/or sending a 
message to the control operator. !See "Re-

synchronization Operator Messages" on page 
5.3-30 for a description of the messages sent 
to the LU control operator.) For example, in 
Figure 5. 3-21 on page 5. 3-26, if the i ni ti­
ator finds the state of an LUW to be IN DOUBT 
on its log, it sends a Compare States command 
to the last agent, with the state indicator 
in the command set to IN DOUBT. If the ini­
tiator receives a Compare States reply with 
the state indicator set to RESET, it backs 
out the LUW. If the Compare States reply 
indicates COMMITTED, it commits the LUW. If 
the Compare States reply indicates HEURISTIC 
MIXED, .it either commits or resets the LUW, 
based on a heuristic decision. The heuristic 
decision taken depends on the transaction 
program's defined characteristics. When the 
heuristic decision is taken, the LU control 
operator receives message 3. 

Figure 5.3-21 on page 5.3-26 and Fig­
ure 5.3-22 on page 5.3-27 show the actions 
when resynchronizing with the last agent. 
The last agent must be resynchronized before 
any not-last agents are resynchronized 
because the state indication the last agent 
returns on the Compare States command con­
trols the state indication sent to any 
not-last agents. When a Request Commii: is 
sent to the last agent, the state of the LUW 
at the initiator with respect to the last 
agent is IN DOUBT. Ho other resynchroni za­
t ion is possible until it is known whether 
the state of the LUW at the last agent is 
RESET or COMMITTED. 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-25 



' INITIATOR 
' RECEIVES RESET I SPM IN COt'.i1ITTED HEURISTIC HEURISTIC HEURISTIC 

' LOG ENTRY PEND INS DOUB'!' &.SJ RESET [3] COMMITTED MIXED 

' NOT FOUND 13] [3] 
INITIATOR' 
SENDS ' ' 1 2 3 4 5 6 .... ,7 

RESET [3] 1 •••••• [ 1 J ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 
t---·· 
SP'1 PENDING . . . . . . . . . . . . . . . . . . ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ 

[3] 2 

HR or HC [2] 
IN DOUBT BACK OUT . . . . . . . . . . . . . . . . . . COMMIT ......... . ........ and 

3 MSG 3 

COMMITTED . . . . . . "' .. . . . . . . . . . . . . . . . . . . ......... . . . . . . . . . . . . . . . . . . . ........ 
[3] 4 

HEURISTIC 
RESET MSG 2 . . . . . . . . . . . . . . . . . . MSG 3 . . . . . . . . . ......... MSG 3 

5 

HEURISTIC 
COMMITTED MSG 3 . . . . . . . . . . . . . . . . . . MSG 2 . ........ ......... MSG 3 

6 

HEURISTIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ ......... 
MIXED [3] 7 

1. All ; ntersect; ons w'ith dots should not occur. States 1, 2, 4, and 7 are not. poH i ble at the 
init;ator. Message 4 is generated for the control operator if indications of states 2, 3, s, or 
6 are returned by the last agent on the Compare States reply. 

2. The heur;stic direction is taken from the TP definition table. The TP definition table is 
created when the TP is defined to the LU. The HR (HEURISTIC RESET) or HC (HEURISTIC COMMITTED> 
action applies to local resources and cascaded resources. HEURISTIC MIXED (HM> state is reported 
to the resync initiator on the Compare States reply. In the case where the resync initiator was 
a cascaded agent, HM is reported to the sync point ini.tiator in a PS header (Heuristic Mixed> 

3. These state indications should never occur. 

Figure 5.3-21. Resynchronization Action: At Initiator, When Resynchronizing with the Last Agent 

5.3-26 SNA For-t and Protocol Reference Manual for LU.Type 6.2 



\ LAST 
\ AGENT RESET I SPM IN DOUBT COMMITTED HEURISTIC HEURISTIC HEURISTIC 

LAST \SENDS LOG ENTRY PENDING [2J [2J RESET [SJ COMMITTED MIXED 
AGE HT \ HOT FOUND [SJ 
RECEIVES \ 1 2 3 4 s 6 7 

RESET [SJ 1 ••••.• [ 1 J . . . . . . . . . ......... ......... . . . . . . . . . . . . . . . . . . . ........ 
SPM 
PENDING . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... . ........ ......... . ........ 

[SJ 2 

IN DOUBT - (3J ......... . . . . . . . . . - !3] . .... . .. ......... MSG 3 
3 

-
COMMITTED ......... . .... .. .. . . . . . . . . . . . . . . . . . . ......... ········· . ........ 

[SJ 4 
., 

liCufHSTIC 
RESET - (3] . . . . . . . . . . . . . . . . . . MSG 3 (4J . . . . . . . . . ......... MSG 3 

s 

HEURISTIC 
COMMITTED MSG 3 [4] . . . . . . . . . . . . . . . . . . - (3) . . . . . . . . . ......... MSG 3 

6 

HEURISTIC . . . . . . . . . ... ... ... ......... . . . . . . . . . . ........ . . . . . . . . . ......... 
MIXED ISi 7 

1. All intersections with dots should not occur. States 1, 2, 4, and 7 are not possible at the 
initiator. Message 4 is generated if indications of states 2, 3, s, or 6 are returned by the 
last agent. 

2. If resync occurs while the last agent is still in SPM PENDING or IH DOUBT state, the agent defers 
sending the reply until it completes its cascaded protocol, which may include resynchronization 
with cascaded agents. Eventually the last agent's state will resolve to RESET, COMMITTED, or 
HEURISTIC MIXED. The HEURISTIC MIXED state is reported when SOH occurs on sessions with at least 
two cascaded agents and the control operator at one of the LUs causes the LUW to be put into a 
HEURISTIC RESET state, while the operator at the other LU causes the LUW to be put into a 
HEURISTIC COMMIT state. If there are no cascaded resources, the last agent changes the state of 
the LUW to reflect the state reported on the Compare States request. 

3. In these cases, the agent takes no action, except to erase its log Cif the log entry was found> 
upon the completion of the resync flows. The end of the resync flows is defined by receipt of 
LUSTATCX'0006'), RQD2, CEB from the initiator, or receipt of +RSPCLUSTAT> from the agent. See 
Figure S.3-14 on page 5.3-19-and Figure S.3-15 on page 5.3-20 for more details. 

4. A HEURISTIC MIXED situation !described in Note 2> has been detected and is reported to the resync 
initiator on the Compare States reply. The HEURISTIC MIXED state indicator is not propagated to 
the cascaded agents. See Figure S.3-23 on page S.3-28 for this case. 

S. These state indications should never occur. 

Figure S.3-22. Resynchronization Action: At Last Agent, When Resynchronizing with the Initiator 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-27 



' INITIATOR 
' RECEIVES RESET I SPM IN-DOUBT COMMITTED HEURISTIC HEURISTIC HEURISTIC 

\ LOG ENTRY PENDING [2] RESET COMMITTED MIXED [4] 

' NOT FOUND [2] 
\ 

INITIATOR ' 
SENDS \ l 2 3 4 5 6 7 

RESET - [3] . . . . . . . . . . . . . . . . . . ........ - [3] MSG 3 MSG 3 
l 

SPM . . . . . [ l l . ........ . . . . . . . . . . ....... . . . . . . . . . ......... . ........ 
PENDING [5] 2 

IN DOUBT [6] 3 . . . . . . . . . . ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ ......... 

COMMITTED . . . . . . . . . . . . . . . . . . ......... - [3) MSG 3 - [3] MSG 3 
4 

HEURISTIC 
RESET MSG 2 . . . . . . . . . . . . . . . . . . ........ MSG 2 MSG 3 MSG 3 

5 

HEURISTIC 
COMMITTED MSG 3 . . . . . . . . . ......... MSG 2 MSG 3 l"!'\t; 2 MS~ 3 

6 
~,-:. 

HEURISTIC . . . . . . . . . . ........ 
1 

. . . . . . . . . . ....... . . . . . . . . . . . . . . . . . . ......... 
MIXED [6) 7 

l 

1. All intersecHons with dots should not occur. States 2, 3, and 7 are not possible at the 
;nitiator. Message 4 is generated if an indication of state 2 or 3 is returned by the agent. 

2. If resync occurs while the not-last agent is still in SPM PENDING or IN DOUBT state, the agent 
defers sending the reply until it completes its cascaded protocol, ;,;hi ch may include 
resynchronization with cascaded agents. Eventually the not-last agent's state will resolve to 
RESET, COMMITTED, or HEURISTIC MIXED. The HEURISTIC MIXED state is reported when SON occurs on 
sessions with at least two cascaded agents and the control operator at one of the LUs causes the 
LUW to be put into a HEURISTIC RESET state, while the operator at the other LU causes the LUW to 
be put into a HEURISTIC COMMIT state. If there are no cascaded resources, the last agent changes 
the state of the LUW to reflect the state reported on the Compare States request. 

3. In these cases, the agent takes no action, except to erase its log Cif the log entry was found) 
upon the completion of the resync flows. 

4. In all the HEURISTIC MIXED (HM) cases displayed in this matrix, while HEURISTIC MIXED is reported 
as a return code on the SYNCPT verb, HM is not propagated to agents. Rather, they are told the 
initial state of the initiator so that Message 3 is not issued for those agents that are 
synchronized with the initiator. This is illustrated by the following case: the initiator of 
resynchronization reports COMMITTED on the Compare States command, the agent has three protected 
cascaded conversations. The agent finds SPM PENDING on its log, so it initiates 
resynchronization with its cascaded agents. One of the cascaded agents reports HEURISTIC 
COMMITTED and the other reports HEURISTIC RESET on the Compare States reply. Rather than send a 
Compare States command indicating HEURISTIC MIXED to the third protected conversation, COMMITTED 
is reported. 

5. When the initiator is in SPM PENDING state, it has resync responsibility. However, it reports 
its state as RESET on the Compare States command. The SPM PENDING state indicates that a resync 
is expected. If the state is actually RESET, no resync is needed. 

6. These state indications should never occur. 

Figure 5.3-23. Resynchronization Action: At Initiator, When Resynchronizing with the Not-last Agent 

5.3-28 SNA Format and Protocol Reference Manual for LU Type 6.2 



' .. LAST 
' AGENT RESET SPH IN DOUBT CottlITTED HEURISTIC HEURISTIC HEURISTIC 

.. LAsnSEtl>S CNOT FOl.H>> PENDING 121 RESET COMHITTED 11IXED 
AGENT ' 121 
RECEIVES ' 1 2 3 4 s 6 7 

RESET - 13] . . . . . . . . . . . . . . . . . . ......... HS6 2 1156 3 HSG 3 
1 

SPH 
PE"l>IN6 l4J •••••• [ 1 J . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ . . . . . . . . . ......... 

2 

IN DOUBT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ ......... . ........ 
14] 3 

C.Ol'tlITTED . . . . . . . . . . . . . . . . . . ......... - l3J HS6 3 HS6 2 HSG 3 
4 

HEURISTIC 
RESET - [3] . . . . . . . . . ......... . ........ HSG 2 HSG 3 MSG 3 

5 0 

HEURISTIC 
COHHITTED . . . . . . . . . . . . . . . . . . ......... - [3] HSG 3 1156 2 HSG 3 

6 

HEURISTIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ . . . . . . . . . ......... 
HIXED 14] 7 

1 • All intersection& a.t1th dots should not occur. St•tes 2 • 3 • and 7 ;;ire not possible at the 
initiator. Hessage 4 is generated if they are received. 

2. If resync occurs while the agent is still in SPH PENDING or IN DOUBT state, the agent defers 
sending the reply until it completes Us cascaded protocol, Nhich •ay include resynchronization 
a.ti th cascaded agents. Eventually the not-last agent's state Ni 11 resolve fre>11 SPtl PENDING to 
RESET or HEURISTIC HIXEDJ or IN DOUBT a.till resolve to RESET, CotlttITTED, or HEURISTIC MIXED. If 
there are no cascaded resources, the last agent changes the state of the LlM to reflect the state 
reported on the Compare States request. 

3. In these cases, the agent takes no action, except to erase its log upon the completion of the 
resync flows. 

4. lhese state ;ndications should never occur. 

Figure S.3-24. Resynchronization Action: At Not-Last Agent. When Resynchronizing a.tith the Initiator 

Chapter 5.3. Presentation Servicu--Sync Point Services Verbs 5.3-29 



' LAST 
' AGENT RESET I SP11 IN DOUBT COl1HITTED HEUUSTIC HEURISTIC HEURISTIC 

LAST \ RCVS LOG ENTRY PENDIN6[2J [2J [21 RESETl2J Cotlt1ITTED "IXED [21 
AGENT \ NOT FOUND [2) 
SENDS ' 1 2 3 4 5 6 7 

RESET [3] ERASE LOG NO ACTION NO ACTION NO ACTION NO ACTION NO ACTION NO ACTION 
(11 

l 

1. The last agent erases its log upon receipt of the initiator's state indication. 

2. If the initiator is in any state other than RESET, both the last agent and the initiator ignore 
the state exchange that started frOll the last agent. It ..as started, at the last agent, by the 
sending of a Compare States co111111and. The state indication exchange started by the initiator Nill 
perfor• the actual resynchronization. 

3. The last agent actually finds COHMITTED on its log. In this case, it is possible that the 
initiator has already sent the implied Forget, but the implied Forget was lost. As a result, the 
initiator has no log record that indicates that the initiator is responsible for the resync. 
After a period of time, if the initiator has not attempted to resync, the last agent takes 
responsibility. It sends RESET. If the initiator replies with any state indication other than 
RESET, it means there has been a resync race. The initiator has resync re&ponsibiHty and the 
resync is forthco•ing. 

Figure S.3-25. Resynchronization Action: Resync fro• Last Agent 

5.3-30 

RESYNCHRONIZATION OPERATOR "ESSAGES 

The sync point manager issues several mes­
sages to the LU control operator. Messages 
can be sent to the operator at the following 
times: following session outage, during the 
log name exchange, and during the resync 
exchange. The parameters shown in parenthe­
sis (such as TPN, for transaction progr;am 
name> are passed in the 11eSsage. In the mes­
sages that follow, reference is made to a 
'waiting unit of work'. A waiting unit of 
work is an LUW for Nhich resynchronization is 
necessary. Until the resynchronization is 
complete, resources may be locked and una­
vailable for other computations. The order 
that the messages may occur in are shown in 
Figure 5.3-26 on page 5.3-31. 

• HSG 1: A heuristic decision has been 
made for transaction program name ( TPN >. 
process ID ( PIO ), at ti me ( TIME ) , and 
logical unit of 1«>rk ID ( LUWID). As a 
result, resources in LUs ( LU name-1, LU 
name-2, ••• , LU name-X) may be in incon­
sistent states with respect to the local 
resource states. 

Operator Action: Take user-defined 
action, if any, to protect data integrity 
unt i 1 the local and re1110te data can be 
synchronized. 

• HSG 2 : Resources in LUs ( LU name-1 , ••• 
, LU name-X >, previously reported to be 
exposed to state inconsistency with 
respect to local resources for trans­
action program name CTPN>. process IO 
<PIO>, at time <TIME), logical unit of 
work ID ( LUWIO >, have been found to be 
synchronized. 

Operator Action: Reverse the 
user-defined action taken when HSG 1 NaS 
acted upon. 

• HSG 3: Resources in LUs <LU n<1Mel, ••• , 
LU nameX), previously reported to be 
exposed to i neons i a tency •d th respect to 
local resources for tranH1ction progra• 
na- CTPN>. process IO <PIO>, at ti11e 
C TIME ), logical uni t of work IO C LUWIO ), 
have been found to be out of synchroniza­
tion. 

Operator Action: Take user-defined 
action to resynchronize the local and 
remote resources. 

• MS6 4: Protocol failure in resynchroni­
zation logic during attempted resynchro­
nization of transaction progra• name 
tTPN), process ID (PIO>. at ti me (TIME>, 
logical unit of work IO ( UMID), conver­
sation correlator <CID>. The local state 
was state !state namel, the remote state 
was state (state name>. 

Operator Action: Hake inquiries to 
determine the state of the resources. 
Take user-defined action to resynchronize 
the resources. Submit APAR report. 

• MSG 5: Session failure (Mith LU n;,me-i, 
llOde name-j) at time CTIHe>. has resulted 
in a waiting unit of work for transaction 
program name ( TPN) , process ID ( PID ) , 
with logical unit of work ID ( LUWID> and 
conversation correlator <CID>. This LUN 
is coupled to other LUs ( LU na111e-m, ••• , 
LU name-n). 

Operator Action: Reactivate the session 
as soon as possible. 

SHA Fornt and Protocol Reference Hanual for W Type 6.2 



Session failure 

I 
v 

1-' -Hes-sa_ge_s __ 1 
v 

IHessages 6,1,ej 
A 

v v 

ttessage 4 

A 

1-....... : •. 11 ... 1------------'I 
Figure S.3-26. The Sequence of LU Control Operator Hessages Generated by Sync Point 

Resynchronization 

• HSG 6: The waiting unit of NOrk identi­
fied by transaction program name (TPN), 
process ID ( PID I, and logical unit of 
work ID CLUWIDJ, reported at time CTIME), 
is being committed. 

Operator Action: none. 

• l1SG 7: The waiting unit of work identi­
fied by transaction program name ( TPN), 
process ID (PIO), and logical unit of 
NOrk ID (LlJWIDl, reported at time CTIHEI, 
is being backed out. 

Operator Action: none. 

• HSG 8: Resources in LUs (LU nanie-1, ···• 
LU name-XI, previously reported to be 
waiting for resynchronization with 
respect to local resources for trans­
action progra11 name ( TPN I , process ID 
lPIDJ, at time CTIMEJ, logical unit of 
work ID C LUWID I, have been found to be 
out of synchronization. 

Operator Action: Take \.mer-defined 
action to resynchronize the local and 
remote resources. 

• l1SG 9: The logical unit of work identi­
fied by transaction program name nPN >. 
process ID lPIDI, at time CTIHE), logical 
unit of NOrk ID CLUWIDI, has been waiting 
for HHH hours and l'1t1H minutes. Locks 
held by this resynchronization are 
enqueued by NH transactions. 

Operator Action: If desired, abnormally 
ter•inate the PID specified process. 
This will release locks and ••Y result in 
heudstic mismatches tilhen resynchroniza­
tion does complete. 

• MSG 10: LU ( LU nan) has returned an 
abnormal reply to the Exchange Log Na111e 
co11111and. This LU has detected a 
warm/cold •is•atch, or a log na111e •is­
match. 

Operator Action: Coordinate activation 
with the operator at the other LU. It 
may be necessary to abnor•ally ter11inate 
processes for some Naiting units of work. 

• t1SG 11: A cold start has been atte111Pted 
by LU I LU name), but the local LU has 
logical unit& of work that are awaiting 
resynchronization frOll the previous acti­
vation. 

Operetor Action: Coordinate activation 
with the operator at the other LU. It 
•ay be necessary to abnormally ter•inate 
processes for the waiting \rlits of work. 

• HSG 12: LU C LU n .. eJ does not have the 
same 11e11<>ry as does the local LU of the 
previous activation between the11. 

Operator Action: Coordinate activation 
Ni th the operator at the other LU. It 
may be necessary to abnor111ally terminate 
processes for the waiting units of work. 

ORDER OF RESYNCHRONIZATION 

litien a distributed unit of work fails 
because of a session or LU failure, 11ere than 
one resynchronization exchange ••Y be needed 
before resynchronizdion is complete. Fig­
ure S.3-27 on page 5.3-32 illustrates Nhat 
can happen. 

Chapter 5.3,. Presentation Servicu--Sync Point Services Verbs 5.3-31 



Prepare 

Request Commit Request Commit 

CB Fails) 
Resync flows 

Resync flows 
< > 

Figure S.3-27. Cascaded Resynchronization Example 

The rule illustrated in the figure is the 
following: The initiator resolves in-doubt 
resources before it resynchronizes with the 
other resources involved in the logical unit 
of work. One result can be that some partic­
ipants in the distributed LUW will make 
heuristic decisions. 

ERRORS AND FAILURES DURING RESYNCHRONIZATION 

Errors and additional failures can occur dur­
ing attempted resynchronizeition. Repeeited 
conversation failures are handled by the 
resynchronization logic, since log records 
are not ereised until after the state indi­
ceitians heive been excheinged; see Fig­
ure S.3-14 on page S.3-19 eind Figure S.3-lS 
on peige 5. 3-20 for examples. Errors theit 
occur while the sync point meinager heis con­
trol, such eis completion of the receive timer 
theit is steirted when resynchronization 
begins, are mapped into conversation feiil­
ures, creeited by UNBIND, thereby feilling back 
into an error recovery loop C described 
below>. 

The conversation feiilures, creeited by UNBIND, 
to recover from errors detected while the 
sync point meinager heis control are 
UNBINDCX'FE08640002' I X'FE08640001' l depend­
ing on the error--timer or logic error, 
respectively-rather thein DEALLOCATE C ABEND), 
since the latter is not gueiranteed to work 
under double failures Cthe receiver of DEAL­
LOCATE heis to continue to issue RECEIVE in 
order for it to workl. 

The error recovery process is described as a 
loop beceiuse it iterates unti 1 one of the 
loop exit conditions is seitisfied. The error 
recovery loop heis two exits: Either C 1 l the 
resync completes, or C 2) the control opera­
tor, after being informed theit the resync 
attempt has been going on for a long time 
Cthe resync timer completes), decides to 
abnormally termineite processes theit eire hold­
; ng locks for this LUW rather thein continue 
with the sync point maneiger resync attempts. 
The cleanup treinseict ion wi 11 erase the log 
record eifter writing suiteible messeiges to the 
error log. It meiy add it i oneilly force 
Cunileiterally cheinge, without agreement eimong 
peirtnersl the steites of any pending 
resources, to HEURISTIC RESET or HEURISTIC 
COMMITTED, in the seime weiy theit heuristic 
decisions meiy force steites. 

RESET STATE AND ERASING OF LOG RECORDS 

Reset steite of the LUW Cequiveilent to unit of 
work beicked outl is denoted by the eibsence of 
a log record. 

The initieitor's side can ereise its log when 
eill Forget flows heive been completed, 
beceiuse, eit this point, it is known theit 
resync will never be required. Therefore the 
question of ambiguity of no record found nev­
er arises. 9 

The slaves ereise their logs before sending 
Forget, so theit ;;i subsequent feiilure theit 
results in the loss of the Forget will result 
in a resync theit finds no log record. 

LOG NAME PROCESSING 

5.3-32 

The following 
processing of 

two figures illustreite the 
log names so theit log mis-

matches do not occur. A log mismatch occurs 
if the LU control operator mounts the wrong 

9 The ambiguity is theit not finding a log record could meein that the LUW heis either not been 
logged yet Cnot steirtedl, or is committed (completely finished). 

SNA Format ;;ind Protocol Reference Manueil for LU Type 6.2 



sync-point-log tape or instructs the LU to 
use the wrong log-dataset, or the LU IPLs and 
no log exists (this is referred to as a cold 
start). When this happens. the sync-point 

r;;.-i 
~ 

(1) LU IPLs Cold 

( 2) 

(3) 

(4) 

ALLOCATE 

BIND 

Attach 

new LUWID, 
SYNC_LEVEL(CONFIRM>o 
TPN(X'06F2'> : •• 

Exchange Log Name. log status ( cold>. 

Exchange Log Name, log status( cold>. 
< 
+DR2 

CD 

RQD2o 

Figure 5.3-28. Cold Start of an LU 

The following notes correspond to the numbers 
in Figure 5.3-28. 

1. The LU IPLs cold. that is, with a new log 
tape or new log dataset. No resync 
attempt occurs• s i nee the log is empty. 
If the name of the LU's log is changed, a 
cold IPL is required. 

PS.SPS is given control before any con­
versations with SYNC LEVEL(SYNCPT> are 
allocated in order to-exchange log names 
with PS.SPS in the partner LU. The sync 
point manager needs to know the partner's 
log name so log mismatches can be 
detected during resynchronization. 

log is not available for resync processing. 
The Exchange Log Name command is sent before 
the Compare States command, to detect a log 
mismatch. 

CEB 

r;;.-i 
~ 

> 

> 

> 

> 

2. The resync TP. X'06F2'• accepts the cold 
log name and returns its own LU' s log 
name. Message 11 might also be returned 
on an error reply. as shown in Fig­
ure 5.3-29 on page 5.3-34. 

3. Upon logging the log name of the partner 
PS.SPSo PS.SPS tells RM that 
SYNC_LEVEL(SYNCPT> conversations can now 
be allocated to the partner LU. 

4. The partner PS.SPS similarly informs its 
RM. Race conditions can cause this 
transaction to be executed twice, once in 
each direction. 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-33 



~ 
~ 

~ 
~ 

Cl) LU IPLs Warm, w;th wrong log Clog can be a disk ciataset or tape volume) 

( 2) 

(3) 

~LLOCATE 

BIND 

Attach 

same LUWID as the LUW that ;s being resynchronized, 
SYNC_LEVELCCONFIRM), 
TPNCX'06F2' l •.. 

Exchange Log Name, log status (warm), log name Clog name) 

Compare States, CD 

Exchange Log NameCerror reply>, RQEl, CEB 
<~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

F;gure 5.3-29. Log Name Mismatch during Resync 

5.3-34 

The follow;ng notes correspond to the numbers 
;n Figure 5.3-29. 

1. The LU IPLs warm, but the wrong log vol­
ume is active. However, RM and PS.SPS do 
not know this at first, and proceed with 
resync processing. 

2. The partner PS.SPS detects the m;smatch 
of log names, notifies its control opera­
tor with Message 12, and returns an error 
reply. 

3. PS.SPS sees the error reply and notif;es 
its control operator of the mismatch with 
Message 10. Conversations w;th 
SYNC_LEVELCSYNCPTl cannot be allocated 
between these LUs unt;l the m;smatch has 
been fixed. Perhaps the correct volume 
can be activated; or the operator can use 
a cold IPL, although th;s may damage the 
consistency of protected resources. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



PROCEDURES ~ JU SYNC POINT 

PS_SPS 

FUNCTION: To coordi.,.te sync point processing, as described in this chapter. Details 
are not for.ally specified. 

The sync point service is •ade up of a con­
trolUng subcomponent <PS.SPS> that deter­
•ines when presentation services headers 
should be sent, and a subcomponent (in con­
versation resources protection manager 
[PS.CRPHJ> that builds and sends the sync 
point headers. The subcomponents that build 
and send sync point headers are: 

1. PREPARE 

2. REQUEST_Cott1IT 

3. COMHITTED 

4. FORGET 

5. HEURISTIC_MIXED 

The calling tree to show the relation of the 
components of sync point services is shoNn in 
Figure 5.3-30 on page 5.3-36. 

A high-level overview of these subco11ponents 
is described below. 

PREPARE 

The presentation services header contains a 
field (i.e., Sync Point Control Modifier> by 
which the receiver is requested to take a 
specific action upon cOMpletion of the sync 
point flows. This is done because the initi­
ator issues SYNCPT Nhen it is in either Seti> 
state or DEFER state lsee FSM_CONVERSATION on 
page 5.1-63>. DEFER state is re&ched two 
ways: by issuing PREPARE_TO_RECEIVE or DEAL­
LOCATE with TYPE< SYNC_LEVEU when the sync 
level is SYNCPT. At the completion ~f the 
sync point flON, the sender of the last sync 
point co..and has send controlJ however, the 
TP •ay not need send control. Therefore, on 
the first command of the sequence, the Sync 
Point Control Modifier field of the PS header 
indicates the side of the conversation that 
h5 to have send control. or dedlocation 
responsibility, after the last sync point 
command is sent. The Sync Point Control Mod­
ifier can be set to the following values: 

Request RECEIVE: The sync point initi­
ator requests to be in RECEIVE state upon 
completion of the sync point flow. 

Request DEALLOCATE: The sync point ini­
tiator requests that a DEALLOCATE be 
issued upon completion of the sync point 
flow. 

Request SEND: The sync point initiator 
requests to be in SHI) state upon co•­
pletion of the sync point flow. 

When PREPARE is issued, the CD and CEB indi­
cators in PS's send buffer lsee Chapter 5.1) 
may be in one of three colllbinations of set­
tings: 

1. ~co and ~cE&-nei ther- PREPARE_ TO_RECEIVE 
nor DEALLOCATE has been issued. 

2. CD and ~CES-PREPARE_TO_RECEIVE has been 
issued. 

3. ~co and CEB~OEALLOCATE has been issued. 

If in state 1 c ~co and ~cEB I, a PS header 
CPrepare) with 111odifier Request SEND is 
placed in the send buffer. The RQEl, co, and 
EC indicators are turned 2!J and the send 
buffer is sent to DFC. The Prepar-e then 
requires a reply. The reply will be either a 
PS header !Request C0111111it I Forget> or a 
-RSP. If a PS header is received, PREPARE 
subcomponent retur-ns Nith a REQUEST_COMHIT or 
FORGET return code. It can also return 
RESOURCE_FAILURE lit is not a 
resource-spec i f i c verb>. If a PS header, 
-RSPI0846), or resource failure is not pres­
ent, a fatal err-or has occurred and the ses­
sion is deactivated (using X'FE' reason code 
and appropriate UNBIHD sense code>. If a 
-RSP<0846J. is received, the next data to 
arrive on the session is an FMH-7 and the 
return code is set according to the FMH-7 
sense data. 

If in state 2 ICD and ~tEB>, a PS header 
!Prepare) wHh 1110difier Request RECEIVE is 
placed in the send buffer. The RQEl, co, and 
EC indicators ar-e tur-ned 21 and the send 
buffer contents are transmitted to DFC. The 
PREPARE subcomponent then requires a reply. 
A PS header indicates a successful Prepare; 

Chapter 5.3. Presentation Services--Sync Point Services Verbs 5.3-35 



SYNC POINT 11ANAGER 
I PS.SPSJ 

CONVERSATION RESOURCE 
PROTECTION MANAGER 

IPS.CRPMI 

PREPARE REQUEST 
COMMIT 

COMMITIED FORGET HEURISTIC 
HIX ED 

RESOURCES MANAGER 
IRHl 

RESYNC RESYNC TP 
----------> IX'D6F2') 

Note:. All relationships are via Call and Return except for the RESYNC TP, 
..r.;~h is invoked as a remote service transaction progra•. 

Figure S.l-30. Sync Point Services Calling Tree 

the return code is set accordingly. If a 
-RSPID8461 is received, the next data to 
arrive on the session is an Fl1H-7 and the 
return code is set accordingly. 

If in state l ( .. co and CEB >. a PS header 
!Prepare) with modifier Request DEALLOCATE is 
placed in the send buffer. The RQEl, co, and 
EC indicators are turned .2!l and the send 
buffer contents are transmitted to DFC. The 
PREPARE subcomponent then requires a reply. 
A PS header indicates a successful Prepare> 
the return code ; s set. If a -RSPI0846) is 
received, the next data to arrive on the ses­
sion is an FHH-7 and the return code is set 

·accordingly. 

REQUEST_COtl1IT 

As for Prepare, PS's send buffer 111ay be in 
the same three states when Request Commit is 
sent. Additional information is also known. 
PS.SPS and PS.CRPH know whether or not the 
current Request Commit is being sent in reply 
to a Prepare. PS.CRPM uses the information 
to build the PS header. PS.SPS knows whether 
or not changes have occurred in other 
resources for this LUW. 

When Prepare has not been received, these 
cases apply: 

1. When in state 1 I ... co and .. CEB), the 
REQUEST_COtl1IT subcomponent causes PS 
header !Request Cotnmit, Request SE!-1>) to 
be transmitted and waits for the reply. 
If Committed is received, REQUEST_COMMIT 
completes normally; however, if a 
-RSPI0846) is rece;ved, REQUEST_COHMIT 
processing waits for the FMH-7 and com­
pletes with the appropriate return code. 
Session outage is indicated in the return 
code for REQUEST_COtt1IT as resource fail­
ure. 

2. When in state 2 CCD and .. CEBJ, the 
REQUEST_CONHIT sl.J>collPOflent causes a PS 

header !Request C1>1111it, Request RECEIVE) 
to be sent. The reply wi 11 be either 
C0111111itted, SON, or a -RSPI08461 and 
FHH-7. The appropriate return code is 
set. 

3. lilien in state 3 ( .. CD and CEBI, the 
REQUEST_COHHIT subcomponent causes a PS 
header I Request C0111111it, Req\aest DEALLO­
CATE> to be sent. The CotflITTED, SON, or 
-RSPC08461 and Ftll-7 reply sets the 
return code. 

When Prepare has been received, one of these 
cases applies IPS.SPS chooses I: 

1. Changes have occurred in local or cas­
caded resources. PS header <Request COlll­
mit, Request SEND> is sent and the return 
code set according to the reply. 

2. No changes have occurred in either local 
or cascaded resources. The sync point 
manager does not send Request Co111111i t S 
Forget is sent next. 

COHHITTED 

co-i tted is sent by PS.SPS as a reply to 
Request Co111111it. Committed is sent with RQEl, 
CD. No·sync Point Control Hodifier is sent. 
If COA11itted is sent frOll the last resource, 
CD and CEB are set by PS.CRPM as specified in 
Sync Point Control Modifier frOll the previous 
Request Commit. 

FORGET 

Unlike the case for the PREPARE and 
REQUEST_COt111IT subcomponents, the send buffer 
is in a known state when Committed and Forget 
are sent. The FORGET subcomponent uses the 
infor11ation passed on the Sync Point Control 
Modifier field of Prepare to leave the con-

S.3-36 SNA For•at and Protocol Reference Manual for LU Type 6.2 



versation in the state desired by the trans­
action that initiated SYNCPT. 

HEURISTIC_MIXED 

As in the case for FORGET, the send buffer is 
in a known state when Heuristic Mixed is 
sent. The HEURISTIC_MIXED subcomponent 
builds and sends the PS header(Heuristic 
Mixed> using the information passed on the 
Sync Point Control Modifier field of the Pre­
pare to leave the conversation in the state 
desired by the transaction that initiated 
SYNCPT. 

The Heuristic Mixed PS header is sent when a 
sync point agent discovers that two or more 

SESSION FLOWS CREATED §::! ~ fQ!tl! 

The following illustrates the flows that can 
be generated by SYNCPT: 

cascaded agents have gotten out of sync after 
a failure and resync. This is illustrated in 
Figure 5.3-31 on page 5.3-38. In this dia­
gram, conversation or session failures at TPb 
with TPc and TPd can lead to a heuristic 
decision at TPc that conflicts with the 
heuristic decision that is made at TPd. This 
can be avoided with properly defined failure 
recovery procedures for the LU control opera­
tor. However, if heuristic damage occurs, it 
is discovered when TPb resyncs with TPc and 
TPd. Because no failure has occurred between 
TPb and TPa, no resync occurs on that conver­
sation. The Heuristic Mixed PS header is 
used to inform the sync point initiator, TPa, 
that a heuristic decision has caused damage 
in the distributed LUW. 

Chapter 5.3. Pre$entation Servic~s--Sync Point Services Verbs 5.3-37 



SYNCPT flow TPc 
< > (cascaded agent) 

SON followed by resync 
< > 

TPa SYNCPT flow TPb 
(sync point 

agent> 
(sync point < > 
initiator) SYNCPT flow 

SON followed by resync 

PS Header!Heuristic Mixed) 

Figure 5.3-31. Heuristic Mixed in Reply to Sync Point Fle&<1 

B 
SEHD_DATA 
PREPARE_TO_RECEIVE 
SYNC PT 

-or-

SEHD_DATA 
SYNC PT 

-or-

SEHD_DATA 
DEALLOCATE 
SYNC PT 

data, Request Co11111it!Request RECEIVE), RQEl, CD 
--------------------------------------------------> 

Committed, BC, ~Ee, ~co 

<--------------------------------------------------

data, Request Cot111Wit(Request SEHDl, RQEl, CD 
--------------------------------------------------> 

Committed, RQEl, CD 
<--------------------------------------------------

TPd 
(cascaded agent) 

RECEIVE_ANO_WAIT 
WHAT_RECEIVED=DATA 

WHAT_RECEI~~O::.DATA 
RECEIVE_ANO_WAIT 

WHAT_RECEIVED=TAKE_SYNCPT 
SYNC PT 

RC=OK 
ILUW STATE is Cotl1ITTED) 

RECEIVE_AND_WAIT 
WHAT_RECEIVED=DATA 

RECEIVE_AHD_WAIT 
WHAT_RECEIVED=TAKE_SYNCPT 

SYNC PT 
RC=OK 
lLUN STATE is Cotl1ITTED> 

RECEIVE_ANO_WAIT 
data, Request Co111111i tlRequest DEALLOCATE), RQEl. CD WHAT_RECEIVED=DATA 

---------------------------------------------------> 
Committed, RQEl, CEB 

<-------------------------------------------------

RECEIVE_AHD_WAIT 
WHAT_RECEIVED=TAKE_SYNCPT 

SYNC PT 
RC=OK 
ILUW STATE is COHMITTEDl 

Figur·e 5.3-32. Verb Sequences and Sync Point Flows to the last Agent, Which Has No Cascaded 
Resources 

S.3-38 SNA Forut and Protocol Reference Manual for LU Type 6.2 



SEND_DATA 

SEND_DATA 
SYNC PT 

--------------------------------~> 

data, Prepare(Request SEND>, RQEl, CD 
--------------------------------~> 

Forget, RQEl, CD 
<---------------------------------RC=OK (LUW STATE is COMMITTED> 

RECEIVE 
RC=OK WHAT_RECEIVED=DATA 

RECEIVE 
RC=OK WHAT_RECEIVED=DATA 

RECEIVE 
RC=OK WHAT_RECEIVED=TAKE_SYNCPT 

SYNC PT 

RC=OK (LUW STATE ;s COMMITTED> 

F;gure 5.3-33. Sync Po;nt wUh No. Resources Changed: The Request SEND on the Prepare ;s a command 
to send CD on the return flow. The transact;on program ;s not g;ven a chance to send 
any data or to ;nfluence the conversation states (other than to terminate 
abnormally>. Th;s Request SEND ;s not the RH CD ;ndicator but ;. ;n the PS header. 

SEND_DATA 

SYNC PT 

RECEIVE 
---------------------------------> RC=OK WHAT_RECEIVED=DATA 

RECEIVE 
RC=OK WHAT_RECEIVED=DATA 

data, Prepare(Request SEND>, RQEl, CD RECEIVE 
----------------------------------> RC=OK WHAT_RECEIVED=TAKE_SYNCPT 

Request Comm;t, RQEl, CD SYNCPT 
<-----------------------------------Comm;tted, RQEl, CD 
-----------------------------------> Forget, ~QEl, CD 
<----------------------------------- RC=OK (LUW STATE ;s COMMITTED> 

RC= OK (LUW STATE ;s COMMITTED> 
SEND_DATA 

Data 

-----------------------------------> RECEIVE 

F;gure 5.3-34. Sync Po;nt 11tUh Changes to Protected Resources, Request SEND: In tMs flow, the 
Prepare requests that the CD be returned (Request SEND> on the Forget. 

Chapter 5.3. Pr'ISentat;on Serv;ces--Sync Po;nt Serv;ces Verbs 5.3-39 



SEND_DATA 

PREPARE_TO_RECEIVE 
SYNC PT 

RECEIVE 
------~--------~~~~--------------------> RC=OK WHAT_RECEIVED=DATA 

Data, PrepareCRequest RECEIVE>, RQEl, CD 

RECEIVE 
RC=OK WHAT_RECEIVED=DATA 

RECEIVE 
-----------------------------------------------> RC=OK 

WHAT_RECEIVED=TAKE_SYNCPT 
Request Commit, RQEl, CD 

<---------------------------------------------- SYNC PT 
Committed, RQEl, CD 

----------------------------------------------> 

Forget, BC, .. EC 
<--------------------------------------------- RC=OK 

RC=OK CLUW STATE is COMMITTED> CLUW STATE is COMMITTED> 
RECEIVE 

data RC=SEND 
<------------------------------------------- SEND_DATA 

Figure 5.3-35. Sync Point with Changes to Protected resources, Request RECEIVE: The Request RECEIVE 
in Prepare indicates that the flow is to be reversed. The Forget is flushed to let 
locks be released. It is not necessary to flush the Forget if the TP is sure to 
generate application data right away. 

RECEIVE 
SEND_DATA -------------------------------------> RC=OK WHAT_RECEIVED=DATA 

DEALLOCATE 
SYNC PT 

data, PrepareCRequest DEALLOCATE>, RQEl, CD 
-----------------------------------------> 

Request Commit, RQEl, CD 
<-----------------------------------------

Committed, RQEl, CD 

RECEIVE 
RC=OK WHAT_RECEIVED=DATA 

RECEIVE 
RC=OK WHAT_RECEIVED=TAKE_SYNCPT 

SYNC PT 

---------------------------------------> RC=OK CLUW STATE is COMMITTED) 
RECEIVE 

RC=DEALLOCATE_NORMAL 
Forget, CEB, RQEl 

<.----------------------------------------- DEALLOCATE 
local deallocation 

local deallocation 
RC=OK CLUW STATE is COMMITTED) 

Figure 5.3-36. Sync Point with Changes to Protected Resources, Request DEALLOCATE: The Request 
DEALLOCATE in the PS header (Prepare) is a command to send CEB on the return flow. 
The transaction program is not given a chance to send any data or to influence the 
conversation state if the sync point completes normally. If BACKOUT or a negative 
response is received, the transaction program is not deallocated and the TP may issue 
BACKOUT. 

5.3-40 SNA Format and Protocol Reference Manual for LU Type 6.2 



SESSION FLOWS CREATED BY ERRORS DURING SYNC 
POINT 

All base error flows may occur. These 
include 11pplication errors, local resource 
failures, program failures, session failures, 
conversation failures, and LU failures. See 
Chapter 2 for an explanation of the types of 
errors. AckHtionally, BACKOUT c&n be issued. 
This verb causes flows the same as SEND_ERROR 
Ci • a., -RSPC 0846) followed by FHH-7) except 

the Fl'lt-7 is li•ited to carrying a sense code 
of X'0824' CSync Point Hanager Abort). BACK­
OUT may be issued whenever a SEtll_ERROR can 
be issued l i.e., it is independent of the 
send/receive state>. 

BACK OUT 

The BACKOUT verb results in the sequence 
shown in Figure 5.3-37. 

Do until RC=OKIRESOURCE_FAILURE_*IBACKEO_OUTIDEALLOCATE_* 
Issue SEND_ERROR with a sense code of X'0824'. 
Issue a CONFIRM verb lBackout flows RQD2l3>. 

If send control was at the other end at the last sync point 
Issue PREPARE_TO_RECEIVE CFLUSH). 

Figure 5.3-37. BACKOUT Logic 

This has the advantage of prop&gating the 
backout even if the partner transaction has 
issued SEND_ERROR. It also handles send •nd 
receive state variations. 

The expansion shown above places responsibil­
ities on the transaction programs: for 
instance, ;f entered while the partner has 
the CD bi t and before the first RU of the 
chain arrives, it can hang in the SEND_ERROR 
for a long time. This is because the 
SEtl>_ERROR doesn't cause a -RSP to flow until 
a chain &rrives. Transaction progra11s that 
issue BACKOUT must take the potential delay 
into account. It is the transaction pro­
gram's responsibility to make sure that the 
delay has no undesirable results. If the 
BACKOUT process takes too long to complete, 
the session can be abnormally terminated. 
The LUW state will be repaired by resync 
processing. 

Abnormal termination after • BACKOUT verb 
results in several flows, but this is accept­
able, since it is an error case. 

Transaction prograMS that are cooperating 
with each other need to obey a discipline in 
issuing SYNCPT. A TP 1111USt be coded to issue 
SYNCPT when its partner TP expects a sync 
point request. However, because the CD bit 
is, in effect, a protected variable (i.e., it 
flows in the Sync Point Control Modifier 
field of the PS header and the sync point 
•anager is responsible for •aintain;ng the 
conversation in the proper state with respect 
to the CD bit> the TPs do not need to obey a 
convention for BACKOUT. BACKOUT may be 
issued in SEND, DEFER, RECEIVE, CONFIRH, SYNC 
POINT, or BACKED-OUT state. The SEND state 
is restored to the transaction that owned it 
at the co111pletion of the last successful 
SYNCPT. For BACKOUT prior to the first 
SYNCPT call, the CD bit is restored to the 
Attach sender. 

Chapter 5.3. Presentation Services--Sync Point Services Verbs S.3-41 



This page intentionally left blank 

42 SNA Format and Protocol Reference Manual for LU Type 6.2 



CHAPTER ~ PRESENTATIQN SERVICES--CQNTRQL-OPERATQR ~ 

INTRODUCTION 

This chapter presents an overview of LU serv­
ices for the LU control operator, and in par­
ticular describes those services contained in 
the presentation services components of the 
LU and in LU service transaction programs. 

Fl.KTION SUMMARY 

The control operator is represented to the LU 
by a control-operator transaction progra• 
which invokes operator functions by issuing 
LU-defined control-operator verbs. The 
relationship between the control-operator 
transaction prograN and the control operator 
is illlf)lementation-defined and is not deter­
•ined by SNA. Throughout this chapter, the 
terms control-operator and control-operator 
transaction program are used synony1110USly. 

The control-operator transaction progra• dif­
fers frOll application transaction programs in 
its focus on control-operator concerns and 
its privileged access to the control-operator 
verbs. 

The f1.a1etions available to the control oper­
ator and the control-operator verbs that 
invoke then! are described in .§!:IA Transaction 
Programmer's Reference ~ !ru: JJ! ~ 
Ll· That book is a prerequisite to this 
chapter. 

The control operator describes and controls 
the availability of certain resources. The 
particular functions and corresponding 
control-operator verbs are: 

To describe the network resources 
accessed by the local LU, such as trans­
action progra1115, partner LUs, and llOde 
names. The relevant verbs are: 

CONCEPTS !l:!Q TERMS 

This section discribes &Ollle of the concepts 
and ter•s used throughout this ch•pter. 

DEFINE 
DISPLAY 

• To control the ~r of sessions between 
the LU and i ts partners. The relevant 
verbs are: 

INITIALIZE_SESSION_LIHIT 
RESET_SESSION_LIMIT 
CHANGE_SESSION_LIHIT 
ACTIVATE_SESSION 
DEACTIVATE_SESSION 

• To invoke local processing on behalf of a 
control-operator verb issued at • re1110te 
LU. The relevant verb is: 

PROCESS_SESSION_LIMIT Clhis verb is 
not available to the local operator, 
but is issued fr011 within the LU.> 

STRUC~E SUMMARY 

This chapter describes two LU components for 
control-operator fi.ictions: eresentation 
services !ru: !hfl control operator CPS.COPR>, 
a component of presentation services, and the 
~ service tranoction progralJ CCNOS serv­
ice TPl. It also describes the f1.11ctional 
relationship of these co111Ponents to the 
installation- or i111Ple•entation-defined 
control-operator transaction program, to the 
LU resources Manager ( RN--see Chapter 3), to 
presentation services for conversations 
CPS.CONV--see Chapter 5.0 and Chapter 5.1), 
and to half-sessions CHS--see "Chapter 6.0. 
Half-Session"). 

Figure 5.4-1 on page 5.4-2 shows the struc­
tural relationship of these components (see 
Chapter 2 for the complete structure of the 
LUJ. 

OPERATOR 

The control-o0er1tor transactjon proara• is 
an imple•entation-defined transaction progra• 
that interacts with presentation services on 
behalf of, or in lieu of, a hualan operator. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-1 



l::c~~t;~i.:::::: 
..------> .. Operator ••••• 

• • Transaction •• 
• • Program •••••• 

::::::::1 
----> 

CNOS 
Service 
Transaction 
Program 

................................ ....----

• Presentation 
••• Services •• 
• • Initi&li- •• 
• • • zation •••• 

• [ v v J". : ::Presentation Services Verb Router:: :: 

::::::::::::::::::::···············!1····:: 
• • • • • • • • • • • • • • • • • • • • Presentation •• 
• • • • • • • • • • • • • • • • • • • • Services •• 
• • • • • • • • • • • • • • • • • • • • for the •• 
•••• > Control •• . . . . . ............. • l Operator •• 

: : : : : : : : : : : : : : : : : : : - ( PS. COPR > I : : 

............................... I ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E ............. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . ... 
• • • • • • • • • •: • • • • • • • •• • •• • • • • • • • • • A •••• . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . ......... . 
:::::::::::::::::::::::::::::::: ................... . 

.. l ~·· •••• Presentation Services for •••••• 
• • • • Conversations ( PS. CONV). • • • • • • • 
• • A •• 
. . . . . . . . . . . . . . . . . . . . . . . . I ........... . 
••••••••• Presentation Services CPS> •• 

....--------.,_ .l:::::::::::::: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 
•••• Resource •••• <-------~ .......... . 
• • • • Manager ••••• < ••••••••••••••••••••••••••••••••••••••••••• 
• • • • • • • • • • • IRMJ ·J ....................................................................... . 

••••••••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••• LU-LU ••••••••••••••••• 
: ................... : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : CS§• ......... ~~· ........ : : : : : : : : 

• • • • • • • LU Services Manager • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •••• Half-Session. • • • • • ••••••• 
"" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... . 
: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : i: : : : : L~~; ~~;: ~i;: : 

v 
Path Control Network 

Note: Unshaded components are described in this chapter. 

Figure 5.4-1. Control-Operator Components in Relation to Other Components of the LU 

5.4-2 

The control-operator transaction program 
interacts with presentation services by issu­
ing control-operator verbs to control the LU 
or to control the interactions of the LU with 
a partner LU. 

A control-operator verb is a privileged verb 
that m<iy be issued by the control-operator 
transaction program to convey the operator's 
request to the internal components of ·the LU. 
Control-operator verbs are described in fil!A 

SNA Format and Protocol ~eference Manual for LU Type 6.2 



Traosaction Proqra!!!!!er's Refarance !!iDY1J. fRc 
.LY 1:m9 i.z.l. 

SCOPE Of CONTROL-OPERATOR fll«:TIOHS 

LU control-operator-verb fuictions vary in 
scope. 

Control-operator l9sal f\aietions affect only 
that LU whose control operator issues the 
control-operator verb, or they affect a ses­
sion Mith another LU but take effet;t Nlthout 
the concurrent particip;ition of a 
control-operator transaction progra• at the 
other LU. These fWtCtions include describing 
LU-accessed resources, regulating the number 
of sessions Nlth single-session LUs, and 
activating and deactivating specific ses­
sions. 

Control-operator distribytec;I fWtCtions affect 
the relationsMp between the LU at which the 
control-operator verb is issued (called the 
IS!Y.tSI LU> and another LU wHh which it 
shares one or more sessions Ccalled the !iJ:.= 
Sl!li LU>. The functions take effect only with 
the cooperation of transaction programs 
representing the control operators at the two 
LUs. These fuictions involve pri11arily regu­
lating the number of parallel sessions wHh 
other LUs, including orderly increase frOll no 
sessions and decrease to no sessions ; they 
are called chaoae-DU!!!ber-of-11ssions CCNOS> 
functions. 

A control-operator verb for distributed func­
tions may be issued at either LU. Thus, the 
roles of source LU and target LU are relative 
to a particular verb issuance: a p;irticular 
LU ••Y be source LU for one issuance and tar­
get LU for another. 

LU-ACCESSED NETWORK RES~CES 

The control operator describes to the local 
LU those network resources accessed fro• the 
local LU C W-accessecl network resources ) • 
The follONing resources are described. 

• The local .W itself 

• A control Q2i.n1 e.g., an SSCP, that pro­
vides session services during session 
initiation 

• Traosactioo proaran available for e><e­
cution at this LU 

• Partner .I.YI: The reMOte LUs with which 
this LU can have sessions 

• Hs!sf.n: deflned sets of characteristics 
for sessfons with particular p;irtner LUs 
C One or more modes are defined for each 
potential partner LU.> 

The control operator also controls the nullber 
and availability of the following resources: 

• Sessions with p;irticular p;irtner lUs • 

Each LU resource is identified to the opera­
tor either implicitly or by a resource key 
such as a transaction progra• na•e• a partner 
LU na-, a 112de na111e, or a session i denti f; -
er. 

Each LU resource is described by the W slefi­
Di.iiJm that characterizes the way the LU can 
use it. for example, these include trans­
action program characteristics such as avail­
ability status and optional functions 
supported; LU capabilities such as parallel 
sessions; mode name attributes such as ses­
sion limits, RU size bou'ldsh and 
cryptography; and control point capabil;ties 
such as INIT Clogot') formats S\4)ported. 

SESSION CHARACTERISTICS 

Sessjon Iclentjfjcation 

Most control-operator verbs do not spec; fy a 
specific session, but specify only the part­
ner LU and 11ode 1u1111e for the session; the 
i11ple11entation selects the particular ses­
sion. SOllle verbs, however, can reference • 
specific session by specifying an 
i11ple111entation-supplied unique session 112· 

Sjnale- xa.., Parallel-Sessions 

An LU can be characterized by the nUlllber of 
sessions 1t allows with other LUs. A 
single-session .bl.! can have only one LU-LU 
session at a ti-; Cit can hnve successive 
sass ions with different partner LUs selected 
frOll a group of LUs known to it ) • A 
parallel-session !.!J can have one or 1110re con­
currently active sessions with each of one or 
110re LUs, subject to session li11its discussed 
below. Ho •iddle capability exists, i.e., no 
LU supports concurrent sessions to 11Ultiple 
single-session LUs 111i thout also supporting 
multiple concurrent sessions (or parallel 
sessjpns) with any other parallel-session LU. 

The ter• parallel session denotes any session 
between a pair of parallel-session LUs, even 
if only one such session is currently active. 
This contrasts with the term Ii.mil!! session, 
which denotes a session bet111een • pa;r of 
single-session LUs or between a 
single-session LU and a parallel-session LU. 
A parallel session--evan a solitary parallel 
session--uses protocols different fro• those 
used on a single session. 

Contentjon Polarity 

Sessions are also characterized by their con­
tention polarity. This determines wh;ch of 
the two LUs has the right to control use of 
the sess;on. If two LUs attempt to initiate 
a conversation on the sa111e session simultane­
ously, the LU that is ;onteotion Wn!:lm: for 

Chapter S.4. Presentation Services--Contr-ol-Operator Verbs S.4-3 



5.4-4 

that session will succeed and the other, the 
contention loser, will fail. 

When used in reference to sessions, these 
terms are relative to the perspective of one 
of the LUs: a session for which an LU is the 
contention winner is called a 
contention-winner session from its perspec­
tive, but it is a contention-loser session 
from the perspective of the partner LU. 
Unless otherwise specified, the perspective 
used in this chapter is that of the LU at 
which a relevant control-operator verb is 
issued. 

SESSION LIMITS AND COUNTS 

The number of active sessions between two LUs 
fluctuates as a result of transaction program 
demand and explicit operator action. The 
number of sessions active at any given time 
is called the session count. 

The maximum number of sessions allowed 
between LUs is set dynamically by the LU 
operators. This number is called a session 
limit. Several session limits may be speci­
fied by the operator. 

The total LU-LU session limit is the maximum 
number of LU-LU sessions allowed by the local 
LU. If this limit is 1, the LU is a 
single-session LU; if it is greater than 1, 
the LU is a parallel-session LU. This limit 
regulates the total LU-LU session ~· 

The operator can regulate the number of ses­
sions between the LU and a particular partner 
LU, and hence the number of transactions that 
can be active concurrently using that pair of 
LUs. 

The ( LU,mode) session 1 i mi t specifies the 
currently allowed maximum number of sessions 
with a specific partner LU using a specific 
mode name. This limits the corresponding 
ILU,mode) session~· i.e., the number of 
currently active sessions with that partner 
LU using that mode name. One such limit and 
count exist for each mode name that is 
defined for each potential partner LU. 

In this chapter, unless otherwise specified, 
the unqualified terms "session limit" and 
"session count" refer to the ( LU,mode) ses­
sion limit and count, respectively. 

For parallel-session connections, other lim­
its regulate the ILU,mode> session count 
within the ILU,mode) session limit. 

The operator can assure that each '-~ can 
allocate a minimum share of tt-.e concurrent 
conversations by St!tt1ng limits on session 
contentiQn ~o!arities. 

The local-LU minimum contention-winner limit 
is the minimum number of sessions with a par­
ticular ( LU,mode) pair for which ·':he local LU 
is allowed to be the contention winner; the 
partner-LU minimum contention-winner limit is 

the minimum number of sessions with that 
C LU, mode) pair for which the partner LU is 
allowed to be the contention-winner. When 
activating a session, each LU selects a 
contention-polarity for the session that is 
consistent with these limits, i.e., it does 
not encroach on the partner's allowed con­
tention winner sessions. 

The operator can specify that a certain num­
ber of sessions be activated whenever the 
relevant limits allow, without waiting for 
explicit requests for each session. 

The automatic-activation limit is the maximum 
number of sessions that the local LU may 
activate in the absence of explicit requests 
from transaction programs or the operator. 

SESSION BRINGUP AND TAKEDOWN 

The following four phases of session bringup 
and takedown activities exist, although some 
phases are omitted in some circumstances. 

Session-Ii mi t i ni ti al i zati on and reset con­
sists of issuing control-operator verbs to 
specify the number of sessions the LU can 
have with a given partner, and to specify 
conditions for their activation and deacti­
vation. 

Session i ni ti ati on and termination consists 
of control-point activity that mediates 
requests for session activation and deacti­
vation, such as issuing INITEATE CINIT_SELF) 
and CONTROL INITIATE C CINIT) or TERMINATE 
ITERM_SELF) RUs. 

Session shutdown consists of the LU activity 
to terminate conversation activity !brackets> 
on the session by issuing BRACKET INITIATION 
STOPPED IBIS> RUs. 

Session activation and deactivation consists 
of exchanging the BIND or UNBIND request and 
response RUs between the LUs. 

Control-Operator Functions 

The operator can cause an orderly deacti­
vation of sessions between a pair of LUs by 
specifying that the CLU,mode) session limits 
be reset to 0. 

The operator can also specify whether to 
drain (i.e., satisfy> pending allocation 
requests before deactivating sessions. It 
can specify drain separately for each of the 
source and target LUs. If drain is specified 
for an LU, that LU continues using sessions 
until there are no further 
transaction-program allocation requests for a 
session. If drain is not specified, the LU 
shuts down and deactivates the sessions as 
soon as the current transactions finish. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



The operator can specify session-deactivation 
responsibility, i.e., it can request that 
either the source LU or the target LU take 
responsibility for any session deactivations 
required as a consequence of a particular 
verb issuance. Session limit decreases might 
leave the current session count in excess of 
the new limits. In this case, the LU with 
sessi on-deactivation respons i bi 1 i ty computes 
a termination count, which is the mimber of 
sessions it must deactivate to reach the new 
1 i mi ts. Each LU has its own termination 
count, i.e., one LU could be responsible for 
deactivating sessions to one limit, but 
before it had done so, a subsequent verb 
could make the partner LU responsible for 
deactivating sessions from that limit to a 
newer limit. 

(LU,MODEl ENTRY 

The LU maintains an CLU,modeJ entry for each 
defined combination of partner LU and mode 
name. This describes the dynamic relative 
state of the local and partner LU for that 
mode name. This includes the session limits, 
session counts, drain state, and termination 
count. 

DISTRIBUTED OPERATOR CONTROL 

Change number of sessions ( CNOS) is a 
control-operator distributed function to reg­
ulate the number of parallel sessions between 
a pair of LUs and to determine when sessions 
wi 11 be activated or deactivated. A CNOS 
verb issuance causes the source LU to negoti­
ate with the target LU to establish a mutual­
ly acceptable number of parallel sessions. 

LOCAL FUNCTIONS ANO SERVICES 

local control-operator verbs update 
definitional and operational parameters at 
the local LU without the participation of the 
operator at the remote LU. 

LU DEFINITION VERBS 

LU definition verbs are local 
;;;ntrol-operator verbs that define or display 
the locally-known characteristics of the 
local LU and of network resources it 
accesses. These resources and the principal 
characteristics that can be defined or dis­
played are: 

• 

• 

loca 1 LU: the fully-qua 1 i f i ed LU name 
and the optional capabilities the LU sup­
ports such as parallel sessions and map 
names 

Partner LUs: the various names of poten­
tial partner LUs: local LU name, 

To do this, the control-operator transaction 
program at the source LU initiates a distrib­
uted transaction, using a conversation, with 
the target LU. It uses the conversation to 
send a copy of the operator command to the 
partner LU and to receive a reply from the 
pa.-tner. 

At the target LU, the transaction program 
that constitutes the partner for this trans­
action is the CNOS service tr<:msaction pro­
gram ( CNOS service TP), which issues 
complementary control-operator verbs to 
receive the command and send a negotiated 
reply. The negotiation uses an 
implementation-defined algorithm that does 
not depend on interaction with a human opera­
tor, i.e. 1 it can run unattended, but it may 
use values supplied by that operator by ear­
lier verb issuances, e.g., from LU definition 
verbs. The CNOS service TP may, however, use 
non-interactive implementation-defined means 
to inform the operator of any changes. 

Each program then changes its session limits 
and performs its local responsibility for 
deactivating sessions. 

The CNOS transaction requires use of a ses­
sion. In order to allow operator commands to 
be exchanged regardless of the state of ses­
sion traffic between the LUs, an SNA-defined 
mode name, SNASVCMG, is dedicated to sessions 
for the control-operator transactions. Each 
LU supports one session of each contention 
polarity for this mode name with each active 
partner LU. Thus, an LU can ah1ays obtain a 
contention-winner session to send a CNOS com­
mand to its partner. 

• 

• 

fully-qualified LU name, and uninterpret­
ed LU name; the optional capabilities of 
the partner LU such as parallel sessions; 
and the 1 i st of mode descriptions for 
that LU. 

Modes: the mode name and optional func­
tions that are supported by a partner LU 
on a mode basis, such as sync point; and 
session parameters that characterize this 
mode, such as maxi mum RU size, pacing 
counts, and cryptography. 

Transaction programs: the transaction 
program name, its ava i la bi 1 i ty, and the 
optional functions that it supports such 
as map names and sync point. 

The LU definition verbs consist of four 
DEFINE verbs !DEFINE LOCAL LU, 
DEFINE_REMOTE_LU, DEFINE_MODE; -and 
DEFINE_ TP J, four DISPLAY verbs <DIS­
PLAY_LOCAL_LU, DISPLAY_REMOTE_LU, DIS­
PLAY_MODE, and DISPLAY_TP), and one DELETE 

Cha~';_,.- 5.4. Presentation Services--Control-Operator Verbs 5.4-5 



verb. See §!:!A Transaction Programmer's Ref­
~ Manual for .bY Ille!! Ll for detailed 
descr;ptions of these verbs. 

LOCAL SESSION-CONTROL VERBS 

Local session-control verbs are local 
control-operator verbs that set the session 
limits, contention polarity, and drain spec­
; f i cation for single-session mode names and 
for mode name SNASVCMG, or that activate and 
deactivate single or parallel sessions for 
any mode name. 

The local session-control verbs are the fol­
lowing. 

• INITIALIZE_SESSION_LIMIT sets the 
CLU,model session limit to allow one ses­
sion, for a single-sessions mode name, or 
to allow one session of each contention 
polarity, for the parallel-session mode 
name SNASVCMG. This allows a session to 
be activated when requested by a trans-

DISTRIBUTED FUNCTIONS !t!Q SERVICES 

CHANGE NUMBER OF SESSIONS VERBS 

Change number of sessions CCNOSl 
control-operator verbs specify the maximum 
number of parallel sessions between two LUs, 
and, by ;mplication, allow or require ses­
sions to be act;vated or deact;vated. The 
verbs also specify the minimum number of ses­
sions allowed with each contention polarity. 
The verbs further specify whether the ses­
sions are to be activated or deactivated 
immediately or according to the needs of 
transaction programs, and which LU is respon­
sible for activating or deactivating sessions 
to attain or maintain the number of sessions 
within the agreed limits. 

CNOS verbs are distributed-function 
control-operator verbs; they take effect only 
with the mutual participation of both the 
control operator at the source LU and the 
CNOS service transaction program at the tar­
get LU, which enforces constraints previously 
spec;fied by the control operator at that LU. 

The CNOS verbs are: 

• INITIALIZE_SESSION_LIMIT 

• RESET_SESSION_LIMIT 

• CHANGE_SESSION_LIMIT 

• PROCESS_SESSION_LIMIT 

action program, or to be activated ;mme­
diately (automatic activation) if so 
specified by a previously issued LU defi­
nition verb. It also specif;es the con­
tention polarity to be selected when a 
session is activated by the local LU and 
the contention-polarity negotiation rule 
to be used when a session is activated by 
a remote LU. 

• RESET_SESSION_LIMIT sets the CLU,model 
session limits to O to cause deactivation 
of any currently active sessions and to 
disallow any further session activations. 
It also specifies the drain mode, indi­
cating whether sessions are to be deacti­
vated immediately or only when there are 
no remaining requests for their use. 

• ACTIVATE_SESSION requests immediate acti­
vation of a session. 

• DEACTIVATE_SESSION requests deactivation 
of a specific session. !This is the only 
control-operator verb that explicitly 
identifies a specific session.) 

CThe INITIALIZE_SESSION_LIMIT and 
RESET SESSION LIMIT verbs are included in 
both -the loc;l verbs and CNOS verbs. They 
are distinguished by the characteristics of 
their specified mode name.) 
CNOS verbs control the number of parallel 
sessions by setting the C LU,mode) session 
limit; this Hmits the corresponding 
CLU,model session count. 

A CNOS verb identifies the particular 
CLU,mode) entry that it affects, or it indi­
cates that it affects all C LU,model entries 
for a given partner LU name. In the latter 
case, it affects all the C LU,mode) entries 
for the specified LU in the same way, e.g., 
it applies the same drain specification and 
sessir 1-deactivation responsibility to all 
sessions. 

FUNCTIONAL RELATIONSHIPS FOR DISTRIBUTED VERB 
PROCESSING 

The complete processing function for a CNOS 
verb issuance is distributed among several 
components at both the source and the target 
LUs. Figure 5.4-2 on page 5.4-7 illustrates 
the relationships among the major LU compo­
nents involved in processing a CNOS verb. 
Different components are active at the source 
and target LUs; only the components active 
for the LU's role are shown for that LU. 

5.4-6 SNA Format and Protocol Reference Manual for LU Type 6.2 



Source LU Target LU 

Control Opera tr,,· 
;:.. 

I 
.-----v------. 

Control Operator 
Transaction 

Program 

....-----v----~ 

Control Operator 
A 

l 
CNOS Service 
Transaction 

Program 
X'06Fl I .._ __________ _, 

v 

l 
> Transaction 

J Program 

PS.COPR 
(Source-LU 

Session-Limit 

.............. PS.COPR l 
!Target-LU > PS.COPR 

Session-Limit 

Services) <l 
....-----v----~, 

PS.CONV 
"-----A.------' 

nu, 
model 

entries I' nu, 
model 

entries 

I 

Services) J 
v , Presentation 

PS.CONV > Services for 
A J Conversations 

v 

1 
Resources 

Manager 
IRMl 

A LU 
I > Services 
v Manager 

LU Network j Services 
( LNS l 

v 
DFC I ~, Half-

Session 
TC Services 
A 

..-----v·~-----. 
DFC 

TC 
"-----A------' 
Source Half-Session Target Half-Session 

• • 
······································~························ LEGEND: 

••••• > Call/return relationship !within a process) 
<--> Send/receive relationship <between processes) 

Access to shared data !within the LU> 
<••••> Transaction program interaction !between LUsl 

Figure 5.4-2. LU Component Relationships for Distributed Session-Control Verbs 

OPERATION PHASES 

When the LU control operator invokes a CNOS 
function, the source and target LUs perform 
the following functions, in four phases. 

1. Operator Phase--Control-Operator Trans­
action Program 

At the source-LU, the control-operator 
transaction program receives a CNOS 
request from the LU control operator Cin 
an implementation-defined w<iy l and, on 
behalf of the LU control operator, issues 
a CNOS verb. The appropriate CNOS verb 
invokes PS.COPR; tMs begins the next 
phase. 

Further details appear in 
"Control-Operator Transaction Program" on 
page 5.4-22. 

2. Negotiation Phase--PS.COPR 

PS.COPR at the source LU initiates a con­
versation with PS.COPR at the target LU, 
via the CNOS service transaction program 
at the target LU. Using the conversa­
tion, the source LU sends a change number 
of sessions GDS variable !CNOS command) 
carrying an encoding of the parameters 
that were specified in the CNOS 
control-operator verb. The target LU 
receives the CNOS command, negotiates 
acceptable session limits, drain specifi­
cation, and session-deactivation respon­
sibility, and sends the acceptable values 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-7 



5.4-8 

of the parameters back to the source LU 
in another change number of sessions GOS 
variable C~ ~). 

The two LUs then terminate their conver­
sation and make the agreed-upon changes 
to their respective CLU,model entries. 
Each LU then determines whether it is 
responsible for changing the session 
count, and if so, notifies its resources 
manager that the 1 i mi ts have been 
changed. 

This phase is performed synchronously 
with the transaction program issuin~ ~ha 
CNOS verb, i.e., it complete.- prior to 
return of contro~ ~~ (he control-operator 
transac+' :i•, program. Further details 
"':::iJear in "Session-Limit Services at the 
Source LU" on page 5.4-25 , "CNOS Service 
Transaction Program" on page 5. 4-22, and 
"Session-Limit Services at th~ Target LU" 
on page 5.4-28. 

3. Action Phase--Resources Manager 

The resources manager C RM) at each LU 
receives the session-limits-change 
notification CCHANGE SESSIONS) from 
PS.COPR. RM determines- whether any ses­
sion activations or additional deacti­
vations are required to bring the session 
count within the new session limits. If 
so, it performs the necessary session 
shutdown and issues requests for session 
deactivation to LU network services. For 
example: 

• 

• 

• 

• 

If the current session count is less 
than the minimum contention-winner 
limit and is also less than the 
automatic-activation limit, RM 
requests activations to reach the 
lower of these limits. 

If the CLU,mode) session limit is 
decreased and the current session 
count is between the previous 1 i mi t 
and the new limit, RM shuts down and 
requests deactivation of the number 
of sessions necessary to reduce the 
session count from the present value 
to the new limit. 

If the C LU,modeJ session limit was 
decreased but the current session 
count is above the previous limit, RM 
requests the additional deactivations 
necessary to reduce the session count 
from the previous 1 i mi t to the new 
1 i mi t C the RM with 
session-deactivation responsibility 
for the previous 1 i mi t continues to 
request the deactivations that are 
necessary to reach that limit). 

If the session count for either con­
tention polarity encroaches on the 
minimum contention-winner limit for 
the opposite polarity, RM requests 
deactivations sufficient to allow the 

minimum of each polarity, even ;f 
this would reduce the !LU,mode) ses­
sion count below the ILU,model limit. 

When RM determines that some sessions 
must be deactivated, it might be that a 
sufficient number of sessions are not 
immediately free. So, each RM maintains 
a count, the termination count, of the 
number of sessions for which it has 
sess i on-deactivation respons i bi! ity. It 
increments this count whenever a 1 i mi ts 
change requires th~ LV ~c ci~activate 
addi tlonal sessions. It decrements this 
count when it requests a session deacti­
vation. 

If the termination count is not o, and 
the mutually-accepted drain specification 
so indicates, RM performs drain action, 
i.e., it continues to initiate conversa­
tions until no requests for new conversa­
tions for the specified LU name and mode 
name are pending from any transaction 
program. 

When drain action is completed, or if it 
was not requested, RM selects sessions of 
appropriate contention-polarity to be 
deactivated. It then shuts down all 
traffic on each selected session: after 
each partner LU ends its last bracket, it 
sends the BIS RU; when the partner 
receives this, .it knows that there are no 
more brackets in trans i t from its part­
ner. RM then issues requests to LU net­
work services to deactivate the selected 
sessions. 

This phase is performed asynchronously 
with the transaction program issuing the 
CNOS verb. (Details of these functions 
are discussed in Chapter 3.) 

4. Enforcement Phase--LU Network Services 

Whenever LU network services receives a 
request to activate a session from RM or 
from the remote LU C vi a the PU), it 
checks the current session counts and 
session limits to determine whether 
another session of that contention polar­
ity is allowed. C The resources manager 
also assists in 1 i mi ts enforcement by 
checking the current counts and 1 i mi ts 
before issuing session activation 
requests.) If another session is 
allowed, LNS issues the appropriate BIND 
or response to BIND; otherwise, it 
rejects the request. 

Whenever LU network services receives a 
request to deactivate a session, it 
issues UNBIND or response to UNBIND. 

This 
with 
CNOS 
I For 
4.) 

phase is performed asynchronously 
the transaction program issuing the 
verb and after the action phase. 
details of this phase, see Chapter 

SNA Format and Protocol Reference Manual for LU Type 6.2 



Control­
Opera tor 
TransacH on 
Program 

PS.COPR 
Source LU 

InformaH on 
Exchanged 

PS.COPR 
Target LU 

CNOS 
Service 
Transaction 
Progra111 

o-----o 

(1) o *_SESSION_LIMIT 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

( 11) 

112) 

o ALLOCATE 
TPNCX'06Fl') >- - attach - - - - - - - T - - - - - - > o X'06Fl': PROCEDURE 

o PROCESS_SESSION_LIMIT 

• - > o GET_TYPE 

l - > o GET_ATTRIBUTES 

o SEND DATA o RECEIVE_AIID_WUT 
DATAlco111mand> >- - co111111and - - - - - - - - > DATA=command 

o RECEIVE_ANO_WAIT 
o RECEIVE_AND_WAIT >- - change direction - - - -> WHAT_RECEIVEO=SEND 

0 srno DATA 
DATA=reply <- - - - - - - - - - - reply - -< DATAlreplyl 

o RECEIVE_AND_WAIT 
RETURN_COOE= <­

DEALLOCATE_NORMAL 

o DEALLOCATE 
TYPE! LOCAL! 

o !update Limits; 

o DEALLOCATE 
deallocate normal - -< TYPEINORMAL> 

o (update li111its1 
inform resources manager) inform resources manager) 

113) o !inforM operator) linfor• operator) 

~ 
• The figure shows the verbs issued and their most significant parameters. 
• Numbers in the left column refer to the explanation in the text. 
• Arrows represent information exchange resulting fr<>lll verbs issued by the two transaction 

programs. CFor an explanation of the actual message units exchanged, see Figure 5.4-4 on page 
5.4-10.) 

Figure 5.4-3. Sequence of Verbs and InformaHon Exchange in CNDS Transaction Programs 

CNOS TRANSACTION 

The control-operator transaction progra• and 
the CNOS service transaction program, togeth­
er with their corresponding PS.COPR compo­
nents, process a distributed tr;msaction to 
exchange the CNOS command and re.ply. The 
sequence of basic conversation verbs issued 
by PS.COPR at the source and target LUs is 
shown in Figure 5.4-3. The following com­
ments correspond to the numbered 1 i nes in 
that figure. 

1. The control-operator transaction program 
at the source LU issues one of the 
control-operator verbs INITIAL­
IZE_SESSION_LIMIT, CHANGE SESSION LIMIT, 
or RESET_SESSION_LIMIT. -This activates 
PS.COPR at the source LU (source-LU 
session-limit services, abbreviated 

SSLSl. SSLS builds the CNOS :0111111and and 
issues a sequence of conversation verbs. 

2. The source LU issues ALLOCATE to initiate 
a conversation with the target LU and to 
build an Attach FM header to invoke the 
CNOS service transaction program. 

3. When the tuget LU receives the Attach, 
it initiates the CNOS service transaction 
progra•. This progra11 issues the PROC­
ESS_SESSION._l.IHIT verb. This activates 
PS.COPR at the target LU (target-LU 
session-limit services, abbreviated 
TSLSl, which issues a sequence of conver­
sation verbs complementary to those being 
issued at the source LU. 

4. TSLS issues the GET_TYPE verb to verify 
that this is a basic conversation. 

Chapter 5.4. Presentation Services--Confrol-Operator Verbs 5.4-9 



Notes: 

5. TSLS issues the 6ET_ATTRIBUTES verb to 
verify th<ilt the attributes of the conver­
sation are those expected, and to get the 
partner LU name. The latter ls used to 
resolve races between concurrent CNOS 
c0111mands. 

6. SSLS issues SEHD_OATA to send the CNOS 
command to TSLS. 

7. 

Meanwhile, TSLS issues RECEIVE_AND_WAIT 
to receive the co111111and. 

SSLS issues RECEIVE_AND_l•AIT to receive 
the reply frOll SSLS. This verb has the 
added effect of sending a 
change-direction indication to TSLS, giv­
ing TSLS per•ission to send. 

Meanwhile, 
to receive 
cation. 

TSLS issues RECEIVE_At-n_WAIT 
the ch<ilnge-direction indi~ 

8. TSLS negotiates the proposed session li•­
it parameters and builds the CNOS reply. 

9. TSLS issues SEt-l>_DATA to send the reply 
to SSLS. 

lrllen the reply arrives at the source LU, 
the RECEIVE_AND_WAIT verb previously 
issued by SSLS completes, and SSLS 
receives the reply. 

10. TSLS issues DEALLOCATE to end the conver­
sation. This sends an indication to the 
source LU that the conversation is ended. 

Source LU 
Half-Session 
0 

Meanwhile, SSLS issues RECEIVE_Atl>_WAIT 
to receive the deallocation notification. 

11. SSLS issues DEALLOCATE to C0111Plete its 
processing of the conversation. 

12. Now both SSLS and TSLS have a copy of the 
negotiated reply record containing the 
agreed-upon li•its, drain specification, 
and deactivation responsibiHty. They 
each update the sass.ion li•its in their 
local data structures and infor• the 
resources manager. 

13. lrllen SSLS and TSLS have finished process­
ing the CNOS reply, they return to their 
respective callers, the transaction pro­
grams that issued the CNOS verbs. These 
transaction programs then perform any 
further implementation-defined actions, 
such as notifying the LU operators of the 
change. 

If, during the conversaH on, either LU 
detects a message unit or return code that 
does not conform to this protocol, it ter•i­
nates the conversation by issuing DEALLOCATE 
TYPElABENDl lnot shown in Figure 5.4-3), and 
the partner responds with DEALLOCATE 
TYPE I LOCAL l. 

lfor further information on verb usage, see 
~ Transaction Programmer's Referenc;:~ ~ 
!2J: .bY bru! Ll· 

Target LU 
Half-Session 

0 

.*BB, RQEl, CD, Fl1H-5CAttach TPN=X'06Fl'), 60SID=X'l210', command data 

RQEl, CEB, 60SID=X'1210', reply data 

• Each arrow represents a chain, which comprises one or 111ore request units. 
• Fl1H-5lAttach TPN=X'06fl'l is the encoding of the Attach from the ALLOCATE verbs. 
• Request-header indication CD is the encoding of change-direction. 
• 60S ID=X'l210' distinguishes the CNOS command or reply record from other 605 variables. 
• Request-header indication CEB is the encoding of deallocate-normal. 
• These flows are generated by the CNOS transacHon as illustrated in Figure 5.4-3 on page 5.4-9. 

Unless errors occur, the CNOS transaction always generates the same flow. 

figure 5.4-4. CNOS External Message-Unit.Flows 

CHOS EXTERNAL MESSAGE-UNIT FLOWS 

The CNOS transaction presented in "CNOS 
Transaction" on ~ge 5. 4-9 causes other LU 
components to generate the request chains 
shown in Figure 5.4-4. This is the external 
representation of the information exch<!lnged 
by the verbs. 

Exactly one bracket is initiated for each 
CHOS verb issued at the source LU. The 
bracket consists of exactly two ch<ilins, each 
containing exactly one Change Humber Of Ses­
sions 60S variable ( CNOS cOlllftland or CHOS 
reply>. 

A single CHOS verb generates only one ch<ilin 
in each direction, even if l100E_NA11ECALL> is 
specified. In that case, the verb affects 
all 110de names the same, e.g., there is • 

5.4-10 SHA For•at and Protocol Reference Hanu<il for LU Type 6.2 



single 
session 

negotiated response, 
deactivations have 

•••••••••••••••••••••••• 
PS. INITIALIZE 

CNOS 
Service 

Transaction 
Program 
X'06Fl' 

Target-LU 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

and all Cnew) 
the same drain 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

Session- [sLDLMj . . . . . . . . . . . . . . . . . . . . C LU, 
model 

entries 
Limit • • I 
Services . 

PS.COPR < 
_J • • 

• • PS.CONV 
• • A 
• CNOS Target • 
• Transaction Program • 
• Process • 
••••••••••• • ••••••••••• 

status and session-deactivation responsibil­
ity • 

• ••••••••••••••••••••••• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

I • e e •• e. •. e • • e e e • e • 

I • 

PS.INITIALIZE 

Control-Operator 
Transaction 

Program 

Source-LU 
i_SLDLMJ Session-

Limit r . Services 
> PS.COPR 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

L • • 
• • PS.CONV 
• • A 
• CNOS Source • 
• Transaction Program • 
• Process • 
••••••••••••••••••••••• 

• •••••••••••••••••••••••••••••••••••• . Iv : Resources Manager (RMJ 

••••••••••••••••••••••••••••••••••••••• 
••••••••••• • ••••••••••• 

• Target Half-Session • 
•••••••••••••••••••••••• 

• 
• 

<••············ 
Cto source LUJ 

LEGEND: 

• •••••••••••••••••••••• 

~ I 
v 

I ~ 
DFC 

TC 
A 

• Source Half-Session • 
•••••••••••••••••••••••• 

• 
• 
··············••> C to target LU J 

juxtaposed boxes: Call/return relationship Cwithin a process) 
<~~> Send/receive relationship Cbetween processes) 

Access to shared data 
•••••• Process boundaries 
<••••> Transaction program interaction Cwith transaction programs at other LUsl 
SLDLM SESSION LIMIT DATA LOCK MANAGER 
~ Verb routers have been omitted. 

Figure 5.4-5. CNOS Process Interact~:),lS at a Single LU 

THE CNOS PROCESS RELATIONSHIPS 

Processes 

The LU components that support the CNOS func­
tion are distributed among several processes, 
as illustrated in Figure 5.4-5. 

The source transaction-program process con­
tains the control-operator transaction pro­
gram; this program interacts with the 
internal LU components by issuing 
control-operator verbs, specifically, INI-

TIALIZE_SESSION_LIMIT, CHANGE_SESSION_LIMIT, 
and RESET_SESSION_LIMIT. 

The target transaction-program process con­
tains the CNOS service transaction program. 
This program :nterac .. s with the internal LU 
components by issuing the PROC­
ESS_ SESSION_ LIMIT verb. 

CThe transaction programs also interact with 
the LU control operators in an 
implementation-defined way.l 

Each transaction-program process also con­
tains within PS.COPR a session-limit services 
component C.source or target J, which processes 

Chapter 5.4. Presentation Services--Control-Op.erator Verbs 5.4-11 



the control-operator verbs. In processing a 
CNOS control-operator verb, session-li•it 
services foteracts Mith other LU components 
and, indirectly, Mith its peer in the partner 
LU, by issuing basic conversation verbs, 
e.g., ALLOCATE, SEND_DATA, RECEIVE_AND_WAITt 
and DEALLOCATE. Session-limit services also 
accesses the <LU,llOde) entries Nithin the 
internal envirOl'lllent of the LU. 

ttultiple CNOS transaction-progra• processes, 
and corresponding half-session processes, can 
be active concurrently at any LU. For e><a•­
ple, both the local control operator and a 
remote control operator •ight issue a CNOS 
verb at about the san time. Or two rUtOte 
operators •ight both issue CNOS to the HIM 
LU. The local LU implementation Might even 
allOM two control-operator transaction pro­
gra• to be active at the sante time. 

An <Wr!Odel S!Jia is a shared data structure 
olll"led by the W process (not shown). An 
( LU,mode> entry exists for each ccmbination 
of mode name and potential partner LU. Each 
<LU,lllOde> entry contains the session H•its 
and other CNOS parameters affected by the 
CHOS verbs, such as the drain status. (It 
also contains other fields not used by CHOS.) 

(Only one instance of the resources-•anager 
process exists per LU.) 

Each (LU,mode> entry also is associated Mith 
a 11ssj90-li1it-data ~ field, that serves 
as • lock on that entry to prevent simultane­
ous changes to the entry by different 
control-operator verb issuances. The state 
of the session-limit-data lock is maintained 
by the sessi90-ljmit-c#ata-lpck manager 
(SLDLM), a PS.COPR component that each 
tr•nsaction-program process invokes to obtain 
or release exclusive use of an ( LU,llOde> 
entry. 

TARGET 

••••••••••• 
• CNOS • 
• Target • 
• Trans- • 
• action • 
• Progra• • 
• Process • 
• (not • 
• active>• 
••••••••••• 

LU A 

(LU, 
llOdeJ 

entires 

SOURCE TARGET 
111111111111111 111111111111111 
I ••••••••••• I I ••••••••••• I 
I • CNOS • I I • CNOS • I 
I • Source • I I • Target • I 
I • Trans- • I I • Trans- • I 

11ction •I I• action •••••• 
I • Progra• • I I • Progra• • I 
I • Process • I I • Process • I 

LU 8 

(LU, 
•ode) 

entries 

r-;-: . : : : ~-;---, 
I i ••••• ,...... I • •••••A••••• i I 

••••••v···.· • I 1 1 I 1 •••V••••••• 
• RM • I I I I • RM • 
••••••••••• I . I I I ••••••••••• 

I •••••V••••• I I •••••V••••• I 
I • Source • I I • Target • I 
I • Half- • I I • Half- • I 
I • Session • I I • Session • I 
I •••••A••••• I I •••••A••••• I 
I • 111111111 • I 
I • • I 
I ••••••••••••••••••••••• I 
I I 
1111111111111111111111111111111111111 

SOl.RCE 

••••••••••• 
• CNOS • 
• Source • 
• Trans- • 
• action • 
• Progra11 • 
• Process • 
• (not • 
• active)• 
••••••••••• 

LE6Etl>: 
<--> Send/receive relationship <betNeen processes) 

Access to shared data (Nithin the LU> 
111111 Transaction-handling ~aries 
•••••• Process boundaries 
<HH> Transaction progra• interaction <between LUs> 

Figure S.4-6. Transaction Handling Component Relationships--Case 1: Single Verb Issuance 

S.4-12 

Trtosactjon-Han,s:lljnq ecocess Relationships 

li.mWI ~ J11uaoce: A single issuance of • 
CNOS verb uses unique instances of a 
control-operttor transaction progra• process 

tnd half-session process at the source LU tnd 
of a CNOS service-transaction progra• proc­
esses tnd half-session process at the target 
LU. These processes have shared access to 
the single instances of the resources 11anager 
process and the set of CLU,llOdel entries tt 
their respective LUs. These components, Mith 

SNA For .. t and Protocol Reference Manual for LU Type 6.2 



the conversat;on between them, process a s;n­
gle CNOS transaction, as illustrated in Fig­
ure 5.4-6. 

Several different cases of process and trans­
act;on relat;onsh;ps can occur when two CNOS 
verbs are issued concurrently at a local LU, 
at two partner LUs, or at both a local and a 
partner LU. If the two verb issuances are 
not contending for the same (LU.mode> entry, 
both verb issuances complete concurrently !if 
no errors occur). But if the two verb issu-

LU A 

ances are contend; ng for the same I LU, mode> 
entry, one of the issuances will fail. 

To determine whether two transact;ons are 
contending for the same <LU,mode) entry, and 
i f so, wh i ch one w i ns the contention, each 
transaction-program process invokes its 
sess;on-limi t-data-lock manager. Details of 
this contention detection and resolution are 
described in "CNOS Race Resolution" on page 
5.4-14. 

LU B 

TARGET SOURCE TARGET SOURCE 
111111111111111 111111111111111 111111111111111 111111#11111111 
I ••••••••••• I I ••••••••••• I I ••••••••••• I I ••••••••••• I 
I • CNOS • I I • CNOS • I I • CNOS • I I • CNOS • I 
I• Target •I (LU, I• Source •I I• Target •I !LU, I• Source •I 
I • Trans- • I mode> I • Trans- • I I • Trans- • I mode> I • Trans- • I 
I • action entries action • I I • action entries action • I 
I • Program • I I • Program • I I • Program • I I • Program • I 
I • Process • I I • Process • I I • Process • I I • Process • I 
I• < > <I I• < > •I 
I •••••A••••• I I •••••A••••• I I •••••A••••• I I •••••A••••• I 

: I : ::::;~::::: : I : : I : ::::;~::::: : I : 
I ·····v····· I I •••••V••••• I I ·····v····· I I ·····v····· I 
I • Target • I I • Source • I I • Target • I I • Source • I 
I • Half- • I I • Half- • I I • Half- • I I • Half- • I 
I • Session • I I • Session • I I • Session • I I • Session • I 
I •••••A••••• I I •••••A••••• I I •••••A••••• I I •••••A••••• I 
I • I I • 111111111 • I I • I 
I • I I • • I I • I 
I • I I ••••••••••••••••••••••• I I • I 
I • I I I I • I 
I • I 1111111111111111111111111111111111111 I • I 
I • I I • I 
I • I I • I 
I • I I • I 
I • 111111111111111111111111111111111111111111111111111111111111111111111 • I 
I • • I 
I ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• I 
I I 
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 

LEGEND: 
<--> Send/receive relationship !between pr•ocesses > 

Access to shared data !within the LU) 
111111 Transaction-handling boundaries 
•••••• Process boundaries 
<••••> Transaction program interaction !between LUs> 

Figure 5.4-7. Transaction Handling Component Relationships--Case 2: Simultaneous Verb Issuances at 
Partner LUs 

Simultaneous Verb Issuances .!.1; Partner LUs: 
When the LU is concurrently processing a CNOS 
verb from both the local LU and from the 
partner LU, for either the same or different 
I LU.mode> entries, both the source and the 
target processes are active at each LU, as 
illustrated in Figure 5.4-7. 

Simultaneous Verb Issuances !! !J:m Same LU: 
If the local LU allows two control-operator 
transaction programs to be concurrently 

active, then H two CNOS verbs are issued 
concurrently at that LU, two source-LU 
transaction-program processes become active 
at that LU, as illustrated in Figure 5.4-8 
on page 5.4-14. If contention results, the 
process handling the later·verb issuance will 
terminate without initiating a conversation 
with its partner. If no contention results, 
two source processes and transactions are 
active at the local LU. Th;s case is not 
illustrated, but is similar to Figure 5.4-7, 

Chapter 5.4. Presentatfon Serv;ces--Control-Operator Verbs 5.4-1.3 



with the roles of source-LU and target-LU 
appropriately reversed. 

SOURCE 

••••••••••• 
• CNOS • 
• Source • 
• Trans- • 
• action 
• Program • 
• Process • 
• 
• 

• 
• 

••••••••••• 
CNote 1 l 

LU A 

C LU, 
model 

entries 

SOURCE 
############### 

TARGET 
############### 

# ••••••••••• # # ••••••••••• # 

# • CNOS • # # • CNOS • # 
# • Source • # I • Target • # 
# • Trans- • # # • Trans- • # 

action • # # • action 
# • Program • # # • Program • # 
# • Process • # I • Process • # 

LU B 

CLU, 
model 

entries 

~=••••A••••= : : =••••A••••=~ ••••••v•••• # I # # I # •••v••••••• 
• RM • # # # # • RM • 
••••••••••• # # # # ••••••••••• 

1 •••••v••••• # # •••••v••••• # 
I • Source • # # • Target • # 
# • Half- • # # • Half- • # 
# • Session • I I • Session • # 
# •••••A••••• # I •••••A••••• # 
# • ######### • # 
# • • # 
# ••••••••••••••••••••••• # 
# # 
##################################### 

TARGET 

••••••••••• 
• CNOS • 
• Target • 
• Trans- • 
• action • 
• Program • 
• Process • 
• !not • 
• active)• 
• •••••••••• 

CNote 2 l 

LEGEND: 
<~~> Send/receive relationship !between processes) 

Access to shared data !within the LUl 
###### Transaction-handling boundaries 
•••••• Process boundaries 
<••••> Transaction program interaction !between LUsl 

Notes: 
~e CNOS source transaction-program process attempts to lock an CLU,model entry in the 

LU_MODE_LIST after another source transaction-program had locked it but had not yet unlocked it. 
The later process is denied the lock and recognizes the contention; it goes away. 

2. A target transaction-program process corresponding to the failing source.process is never 
activated. 

Figure 5.4-8. Transaction Handling Component Relationships--Case 3: Simultaneous Verb Issuances at 
the Same LU 

5.4-14 

CNOS RACE RESOLUTION 

Command ~ 

Two LU control operators might simultaneously 
issue a CNOS verb affecting the same LU name 
and mode name. If such a verb is issued 
while another such verb at either the source 
or the target LU is in the negotiation 
phase, i.e., a prior instance of PS.COPR is 
active on either LU for the same CLU,model 
entry or entries, a command ~ has 
occurred, and one Cbut not bothl of the verbs 
fails. 

If a verb is issued when a previous verb is 
in the action phase, i.e., PS.COPR has 
already updated the CLU,model entry, but the 
resources manager and LU network services 
have not yet completed adjustments to the 

session count, an acHon race has occurred 
and neither verb fai~For details, see .fil!A 
Transaction Programmer's Reference Manual for 
LU !:i.ruil ~ and Chapter 3 of this volume. 

Locking the CLU,modeJ Entry 

When a command race occurs, PS. COPR assures 
that exactly one of the commands completes 
successfully by observing a locking protocol 
for the C LU,model entry. The session-limit 
services routines invoke a shared component, 
SESSION LIMIT DATA LOCK MANAGER !abbreviated 
SLDLM hereafter),- to -prevent simultaneous 
access to an CLU,mode) entry, to detect 
races, and to resolve double-failure race 
conditions. 

Source- LU sess i on-li mi t services ( SSLS l of 
PS.COPR tests and simultaneously sets the 

SNA Format and Protocol Reference Manual for LU Type 6.2 



CNOS lock ;n the ILU,lllOdel entry by issuing 
LOCK to its SLDLH before allocat;ng a conver­
sation to the target LU. If another instance 
of sess;on-lim;t services has already locked 
the I LU1110de) entry, SSLS returns an error 
code. It does not send the CNOS command to 
the target LU or 111odify the sessi011-li•it 
parameters in the ILU,model entry. 

If SSLS succeeds, target-LU session-li•it 
services ITSLS) at the partner LU issues LOCK 
to its SLOLH after receiving the CHOS command 
from the source LU. If TSLS finds the lock 
at its LU already set I for example, because a 
control-operator transaction progra• at its 
LU, acting as source LU, had simultaneously 
issued a CNOS verb I, then TSLS sends the 
partner LU a CNOS reply with a reply-Modifier 
value indicating that a command race was 
detected. It does not •odi fy the 
session-l;•it para•eters in the ILU,•odel 
entry. 

In some cases, two c011tmands issued s;multane­
ously from each LU could both be rejected." 
For example, each LU 111ight issue its co111111and 
before the other arrived. Each target 
session-li•it services NOuld then reject the 
com11and fr0111 the partner because its source 
session-H•it services had a command out­
standing. This is called a d01.!ble-failure 
race cOf!dition. To detect this case, SLDLH 
•aintains another indicator, LOCK_DENIEO. 
This is set by TSLS when it sends a 
CO!llllland-race-detected reply •odifier. 

loflen SSLS receives the reply fr<>111 TSLS, it 
checks the reply to deter11;ne whether the 
partner LU rejected the co11mand because it 
detected a race. If so, it also tests the 
session-l;mit-data lock to determine if, 
111eanwhile, its LU, acting as a target LU for 
another CHOS command, has rejected a command 
fro11 the partner LU. SLDLH determines this 
from the LOCK_OENIED ind;cator. 
ILOCK_DENIED, together with the receipt of a 
command-race-detected reply 111<>di f i er, i ndi­
cates a double-failure race condition; 
either LOCK_DEHIED or command-race-detected 
alone does not represent a double failure.) 

Exaniple flows for the types of command races 
that can occur are shown in Figure S.4-10 on 

page 5.4-17, Figure S.4-11 on page 5.4-18, 
and Figure 5.4-12 011 page S.4-19. The flows 
for the no-race case are shown in Fig­
ure S.4-9 on page 5.4-16 for comparison. 

In the figures: 

• The change nutllber of sessions cot11111ands 
sent fro• each of the two LUs are on dif­
ferent conversations. 

• The colu1nns labeled "Transaction-x" shoM 
the actions performed by the CHOS 
transaction-progra~ processes in process­
ing a CNOS verb issued by the control 
operator at LUa. 

• The columns labeled "Transact i on-y" shON 
the actions perfor111ed in processing a 
CNOS verb issued by the control operator 
at LUb. 

• The colLlllln labeled "I LU, 11ode) entry 
ILUb, 111 ) " &hows the changes made by the 
two transactions to the I LU,110del entry 
for Ll.b, mode name • at LUa. 

• The column labeled "ILU,mode) entry 
( LUa,11)" shows the changes in the corre­
sponding I LU, 1uode ) entry for LUa, mode 
name 11 at LUb. 

• HAX_SESS represents the session liniit for 
111ode na•e •in the ILU,11ode) entry. 

• SLD_LOCK represents the state I LOCKED, 
UNLOCKED, DENIED) of the 
session-li11it-data lock. 

The flows shown are: 

• A CHAHGE_SESSIOH_Lil1IT verb I abbreviated 
CHANGE_SESSLIMl 

• The CNOS co111111ands and replies exchanged 
by the CNOS transaction-progra111 proc­
esses, 

• The internal requests (LOCK, TEST, 
UNLOCK) and their replies (OK, REJECT, 
DENIED> 

• Update actions on 
session-li11it field of 
entry 

the 
the 

I LU,111ode) 
I LU,mode) 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-15 



LUa LUb 

Transaction-x 
source process 

( LU,mode) 
entry 

Transaction-y 
target process 

Transaction-y 
source process 

( Lt,1,mode> 
entry 

(LUa,m> 

Transaction-x 
target process 

(1) 

(2) 

(3) 

(4) 

(5) 

(~) 

(7) 

(8) 

( LUb,m) 

MAX_SESS is n 
SDL_LOCK is UNLOCKED 

MAX_SESS is n 
SDL_LOCK is UNLOCKED 

CHANGE_SESSLIM(LUCaJ MODECm) MAX_SESSCj)J 
'LOCK' 

••••••••••••••• > 
SDL_LOCK is LOCKED 
'OK' 

< ••••••••••••••• 

• Cl•i'.1$ command CMODECmJ MAX_SESSCj)). 

<-------------------'LOCK' 
< ••••••••••••••• 

SDL_LOCK is LOCKED 
'OK' 

••••••••••••••• > 
.CNOS reply CMODECml OK> 
-------------------> 

.update CMAX_SESSCj)J 
< ••••••••••••••• 

MAX_SESS is j 
'UNLOCK' 

< ••••••••••••••• 
SDL_LOCK is UNLOCKED 

.update CMAX_SESSCj)J 
• •••••••••••••• > 

MAX_SESS is j 
'UNLOCK' 

• •••••••••••••• > 
SDL_LOCK is UNLOCKED 

HsU.!u Numbers in the left column refer to explanations in the text. 

Figure 5.4-9. No Race: Only One LU Issues a CNOS Verb 

s·.4-16 

t!g Race: If only one LU issues a CNOS com­
mand, no race occurs, and the transaction is 
successful. 

Figure 5.4-9 shows the no-race case. In this 
example: 

1. Before sending the CNOS 
source LU (LUbJ attempts 
affected CLU,mode) entry. 

command, the 
to lock the 

2. Since no other CNOS transaction at LUb 
has the CLU,mode> entry locked, the 
attempt is successful. 

3. LUb now issues the CNOS command. 

4. When the target LU C LUa > receives the 
CNOS command, it attempts to lock the 
CLU,mode> entry. 

5. Since no other CNOS transaction at LUa 
has the ( LU,mode> entry locked, the 
attempt is successful. 

6. LUa then negotiates and sends the CNOS 
reply. 

7. LUa then updates tha (LU.mode entry). 

Similarly, when LUb receives the reply, 
it also updates its (LU,mode> entry. 

8. Both LUs unlock the ( LU,mode> entries. 
The ( LU,mode> entries are now available 
for updating by subsequent CNOS verbs. 

Single-Failure ~: In the single-failure 
cases !Figure 5.4-10 on page 5.4-17 and Fig­
ure 5.4-11 on page 5.4-18), one transaction 
fails; it does not modify the session-limit 
parameters in the CLU,mode> entry. The other 
transaction .succeeds and changes the 
session-limit parameters. 

Figure 5.4-10 on page 5.4-17 shows a 
single-failure race condition in which one 
transaction's command and reply both cross 
the reply of the transaction for a verb 
issued at the other LU. In this example, 

1. LUa 's command succeeds because LUb was 
not busy when the command arrived. 

2. LUb's command fails because LUa's verb 
has not completed at LUa when LUb's com­
mand arrives, even though LUa's verb 
processing has completed at LUb. 

3. When LUb receives the REJECT reply, it 
tests for LOCK_DENIED, which is not set, 
and so determines that no comma11d from 
LUa C for mode name m) has been rejected 

SNA Format and Protocol Reference M11nual for LU Type 6.2 



LU a LUb 

Transaction-x 
source process 

C LU,model 
entry 

Transaction-y 
target process 

Transaction-y 
source process 

( LU,model 
entry 

CLUa,ml 

Transaction-x 
target process 

( ll 

(2) 

( 31 

C LUb,ml 

MAX_SESS is n 
SDL_LOCK is UNLOCKED 

CHANGE_SESSLIMCLUCLUbl MODECml MAX_SESSCill 
'LOCK' 

••••••••••••••• > 
SDL_LOCK is LOCKED 
'OK' 

< ••••••••••••••• 
• CNOS command CMODECml MAX_SESSCill 

MAX_SESS is n 
SDL_LOCK is UNLOCKED 

'LOCK' 
< ••••••••••••••• 

SDL_LOCK is LOCKED 
'OK' 

••••••••••••••• > 
CNOS reply CMODECml OKI. 

.update CMAX_SESSCi ll 
< •••••••••••••• • 

MAX_SESS is i 
1 UNLOCi\:• 

< ••••••••••••••• 
SDL_LOCK is UNLOCKED 

CHANGE_SESSLIMCLUCLUal MODECml MAX_SESSCjll 
'LOCK' 

••••••••••••••• > 
SOL_LOCK is LOCKED 
'OK' 

< .•••••••••••••• • 
.CNOS command CMODECMl MAX_SESSCjll. 
<~~~~~~~~~-

'LOCK' 
< ••••••••••••••• 

SDL_LOCK is DENIED 
'REJECT' 

• •••••••••••••• > 
MAX_SESS is n Cno change! 

.CNOS reply CMODECMl RACE_REJECTl 

MAX_SESS is 
'TEST' 

••••••••••••••• > 
'OK' 

<~~~~~~~~~~~~~~~~---' < ••••••••••••••• 
.update CMAX_SESSCill 'UNLOCK' 
••••••••••••••• > ••••••••••••••• > 

Cno change> 

MAX_SESS is 
'UNLOCK' 

SDL_LOCK is UNLOCKED 

••••••••••••••• > 
SDL_LOCK is UNLOCKED 

Note: Numbers in the left column refer to explanations in the text. 

Figure 5.4-10. Single-Failure Race Condition--Case 1: Command.Crosses Reply 

and therefore does not attempt to retry 
the command. 

Figure 5.4-11 on page 5.4-18 shows another 
single-failure race condition, in which one 
transaction's command and reply cross the 

command of the transacUon .for a verb issued 
at the other LU. In this example, 

1. LUb's command fails because LUa's command 
has not completed when LUb's command 
arrives. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-17 



LUa LI.I> 

Transaction-x 
source process 

C LU,llOda) 
entry 

lllJ>.•) 

Transaction-y 
target process 

Transaction-y 
source process 

I LU,llOCfa) 
entry 

CLUa.•) 

Transaction-x 
target process 

(1) 

(2) 

(3) 

. 
HAX_SESS is n 
SOL_LOCK is UNLOCKED . . 

CHANGE_SESSLIHCLU<LIJ>) tlODEI•) tlAX_SESS<iJ) 
'LOCK' 

••••••••••••••• > 
SDL_LOCK is LOCKED 
'OK' 

< .............. • 
.CNOS co-and CHODEC11> HAX_SESSCi)) 

. 
HAX_SESS is n 
SDL_LOCK is u.ILOCKED 

. . . 
CHAN6E_SESSLIHILUILUa) HOOE<•> HAX_SESS<j>> 

'LOCK' 
••••••••••••••• > 

SDL_LOCK is LOCKED 
'DK' 

< ••••••••••••••• 
• CNOS cONMancl C HOOE ( •) HAX_SESSl j )) • <-----------'LOCK' 

< ••••••••••••••• 
SDL_LOCK is DENIED 

'REJECT' 
••••••••••••••• > 

HAX_SESS is n lno change) 
.CNOS reply CHODE <•> RACE_REJECT> . . 

HAX_SESS is n lno change) 
'TEST' 

••••••••••••••• > 
'OK' 

< ••••••••••••••• 
'UNLOCK' 

••••••••••••••• > 
SDL_LOCK is UNLOCKED 

'LOCK' 
< ••••••••••••••• 

SDL_LOCK ia LOCKED 
'OK' 

••••••••••••••• > 
CNOS reply <HOOE<•> OKJ. <-----------------------------------------------·~date lttAX_SESSliJJ .UPDATE lHAX_SESSliJJ 

••••••••••••••• > 
HAX_SESS is i 

'UNLOCK' 
••••••••••••••• > 

SDL_LOCK is UNLOCKED 

<-------
HAX_SESS is i 

'UNLOCK' 
< •••••••••••••• • 

SDL_LOCK is UNLOCKED 

NOTE: .unbars in left colt.mi refer to the explanations in the text. 

Figure 5.4-11. Single-Failure Race Condition--Case 2: C011111ancl and Reply Cross C01111ancl 

5.4-18 

2. ""9n LUb receives the REJECT reply, it 
tests LOCK_DENIED and deter•inas that no 
command frOll LUa ( for 110de na11e • ) has 
bean rejected and therefore it does not 
atte11pt to retry the c0111Mancl. 

3. LUa 's coMand succeeds because Ll.i)' s 
unsuccessful co•and has already COii• 
plated at LI.I>, and has released the lock, 
before LUa's cOt1•and arrives at lllb. 

SNA Format and Protocol Reference Hanual for W Type 6.2 



LU a LUb 

Transaction-x 
source process 

( LU,mode> 
entry 

Transaction-y 
target process 

Transaction-y 
source process 

( LU,mode > 
entry 

Transaction-x 
target process 

C LUb,m> 

. 
MAX_SESS is n 
SDL_LOCK is UNLOCKED . 

( LUa,m> 

MAX_SESS is n 
SDL_LOCK is UNLOCKED . 

Cl) CHANGE_SESSLIMCLUCLUb) MODECmJ MAX_SESSliJ) CHANGE_SESSLIMCLUCLUa) MODECm> MAX_SESSCjJ) 

( 2) 

(3) 

(4) 

(5) 

(6) 

'LOCK' 
••••••••••••••• > 

SDL_LOCK is LOCKED 
'OK' 

< ••••••••••••••• 
.CNOS command CMODECmJ MAX_SESSCi)) 

<----.. 
'LOCK' 

< ••••••••••••••• 
SDL_LOCK is DENIED 

'REJECT' 
••••••••••••••• > 

MAX_SESS is n Cno change) 

'LOCK' 
••••••••••••••• > 

SDL_LOCK is LOCKED 
'OK' 

< ••••••••••••••• 
CNOS command CMODElm) MAX_SESSCjJJ 

'LOCK' 
< ••••••••••••••• 

SDL_LOCK is DENIED 
'REJECT' 

••••••••••••••• > 

.CNOS reply 
MAX_SESS is n Cno change) 

CMODECmJ RACE_REJECTJ 
.CNOS reply CMODECm) RACE_REJECT) 

<--------------------' '-----> 
'TEST' 'TEST' 

••••••••••••••• > ••••••••••••••• > 
'DENIED' 'DENIED' 

< ••••••••••••••• < ••••••••••••••• 

C7J C'LUa' < 'LUb'; C'LUb' > 'LUa'; 

(8) 

(9) 

this LU will not retry) this LU will retry>. 

'UNLOCK' 
••••••••••••••• > 

SDL_LOCK is UNLOCKED . 
• CNOS command CMODECm) MAX_SESSCjJJ. <------------

'LOCK' 
< ••••••••••••••• 

SDL_LOCK is LOCKED 
'OK' 

••••••••••••••• > 
.CNOS reply CMODECm) OK> . -------------> 

.update CMAX_SES~'jl) 
< ......... -;. ~ ••••• 

MAX_,S"S~ : .s j 
'UNLOCK' 

< ••••••••••••••• 
SDL_LOCK is UNLOCKED 

.update CMAX_SESSCjJ) 
••••••••••••••• > 

MAX_SESS is j 
'UNLOCK' 

••••••••••••••• > 
SDL_LOCK is UNLOCKED 

No~e: Numbers in left column refer to explanations in the text. 

Figure S.4-12. Double-Failure Race Condition: Command Crosses Command, R~~ly Crosses Reply 

Double-Failure Race: In the double-failure 
case !Figure 5.4-12), both transactions ini­
tially fail. The SSLS components at each LU 

discover the double failure and compare their 
fullY.-qualifitd LU names to resolve it. !For 
the comparison, the fully-qualified LU names 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-19 



I 
I 
I 

are left-justified and padded to the right 
with space [ X' 40' J characters to make the 
lengths equal.> The LU with LU name lower 
in EBCDIC collating sequence loses; the verb 
fails as in a single-failure race condition. 
The LU with LU n;;iiwe higher in EBCDIC collat­
ing sequence retries the CNOS com•and, i.e., 
it allocates a new conversation and sends the 
same CNOS command again. If no further 
errors occur, the verb eventually succeeds. 

Figure 5.4-12 on 
double-failure case. 

page 5.4-19 shows 
In this example: 

1. Operators at both LUs si111Ultaneously 
issue CNOS verbs. 

2. The source processes success fully lock 
the (LU,110de) entries at their respective 
LUs, and issue CNOS commands. 

3. The c0111111ands cross in transit. 

4. When the commands arrive, the target 
processes attempt to lock the (LU,model 
entries but fall because they are already 
locked by the source processes of the 
other transaction, each of which has not 
yet received the reply to its own co111-
11and. The hi ling attempt to lock also 
sets the LOCK_DENIED state of the lock. 
HAX_SESSIONS remains temporarily at D· 

5. Each target process sends a reply i ndi -
eating a race reject. These replies also 
cross in transit. 

6. When the REJECT replies arrive, each 
source transaction program tests 
LOCK_DENIED and finds it set, indicating 
that a target transaction program at the 
same LU had attempted to set the lock but 

I BAS~ !!:12 OPTIONAL SUPPORT 
I 
I 
I 

The basic and optional functions available at 
the control-operator protocol boundary are 
clef i ned in .§t!! Transaction Programmer's Ref­
™ Manual .fru: !!! ~ Ll· This section 
relates those f1.a1Ctions to the capabilities 
of the COlllpOl"lents in the for111<1l description. 

BASE-FUNCTION-SET SUPPORT 

All implementations support an 
iinplementation-defined control-operator 
transaction program that is able to issue any 
of the required (base flrlet ion set l 
control-operator verbs and all option;il 
control-operator verbs and parameters th;it 
the LU supports. 

The base f1..11Ction set, supported by all 
implementations, includes the functions cor­
responding to the LU definition verbs, i.e., 
the ability to specify the values of certain 
LU para111eters that are chosen by the instal­
lation. An i111ple111entation ll&Y support issu-

had been refused. This is a double fail­
ure: the local LU's ONn c0111mand has 
failed, and meanwhile the local LU has 
rejected a command fro• the partner LU. 

7. Each source process co•pares LU names to 
deter•ine whether it should retry. 

8. The LU Ni th low LU na.e l LUa ) releases 
the lock and terminates its CNOS verb to 
avoid another race. 

9. The LU with the high LU name (LlJ>) 
re-issues the co1111and. Processing con­
tinues as in the no-race case (fig­
ure 5.4-9 on page 5.4-16). 

RECOVERY FROM CONVERSATION FAIL~E 

If conversation failure, e.g.• session out­
age, ..ere to occur during CHOS· processing, 
the CNOS command would not cOMplete success­
fully at the source LU. Nevertheless, it 
•ight complete at the target LU, for example, 
because the reply was lost after the target 
LU had already deallocated the conversation. 
In this case, the session limits could become 
different at the two LUs. 

To prevent this discrepancy, SSLS retries any 
com11and that fails bec;iuse of conversation 
failure. Since the original session has been 
lost, SSLS attempts to obtain a new session 
on the same or another mode name. It first 
tries to obtain a session with the lllOde name 
that failed, then with •ode naate SNASVCMG (if 
different), then with each mode name affected 
by the co111111and, until either the cOM111and suc­
ceeds or the LU deter•ines that no session 
can be allocated with any affected mode name. 

ing these verbs fro• the control-operator 
transaction program. Alternatively, instead 
of exposing these verbs at the 
control-operator protocol boundary, the 
implementation 11ay provide other support in 
the form of installation-tilne, IPL-time, or 
r1.n-time processing of the system-definition 
values, as long as the values are initialized 
prior to first use. 

The base function set dso includes local 
support of the functions of INITIAL­
IZE_SESSION_LIMIT and RESET_SESSION_LIMIT 
that apply to single-session mode names, and 
includes receive support for remotely-issued 
ACTIVATE_SESSION and DEACTIVATE_SESSION 
verbs. 

All LUs providing an "open" protocol bounda­
ry, i.e., one to which application trans­
action programs tuwe access, ;ilso support 
parallel sessions, ineluding the CNOS 11inimu111 
support (see "CNOS 111nilllUlll Support Set" on 
page 5.4-21). 

5.4-20 SNA For•at and Protocol Reference Manual for LU Type 6.2 



Parallel-session LUs optionally support 
optional function set parameters of the CNOS 
verbs (see "Parallel-Session Optional Func­
tions"· on page 5.4-21 J. 

LUs with a "closed" protocol boundary, i . e. , 
one to which application transaction programs 
do not have access, may optionally support 
parallel sessions and the corresponding CNOS 
minimum support. 

CNOS MINIMUM SUPPORT SET 

The CNOS minimum-support functions are: 

• 

• 

• 

Send (source J support for INITIAL­
IZE_SESSION_LIMIT 

This increases the session limit from O. 

Send support for 
RESPONSIBLE<SOURCEJ 
DRAIN_TARGETCYESJ 

RESET_SESSION_LIMIT 
DRAIN_SOURCECNOJ 

DRAIN_SOURCECYESI 

This resets the session limit to O. This 
does not allow the local LU to initiate 
new conversations after the verb com­
pletes, but it allows the LU to accept 
new conversations initiated by a partner 
LU. 

Receive (target J support for all CNOS 
verbs, except that: 

The target LU may unconditionally 
change RESPONSIBLECTARGETJ to RESPON­
SIBLE( SOURCE J. 

The target LU may unconditionally 
change DRAIN_TARGETCYESJ to 
DRAIN_TARGETCNOJ. 

The minimum-support CNOS components are: 

• 

• 

• 

• 

An implementation-supplied 
control-operator transaction program that 
can issue the CNOS minimum-support verbs 

The CNOS service transaction program 
<TPN=X I 06F l ' ) 

Presentation services for the control 
operator CPS.COPRJ, except for the 
optional functions listed in 
"Parallel-Session Optional Functions" 

Support for a sufficient number of 
reserved sessions using the SNA-def i ned 
mode name SNASVCMG 

The LU provides the capabi H ty for two 
such sessions for each LU with which the 
LU can have concurrently-active parallel 
sessions; these mode-name-SNASVCMG ses­
sions are in addition to the sessions 

provided for user transactions. For each 
potential parallel-session partner LU, 
the operator specifies an (LU,mode) entry 
with mode name SNASVCMG and with limits 
allowing one contention-winner and one 
contention-loser session. 

<The SHA-defined mode name is provided so 
that PS.COPR will always be able to acti­
vate a session to send the CNOS command, 
even when all other session limits are 
o, as in the initial state, or when all 
other active sessions are in in-brackets 
state or are bidder sessions on which a 
bid request is being refused.) 

An LU that provides only the CNOS 
minimum-support does not expose 
MIN_CONWINNERS_TARGET, RESPONSIBLE, or 
DRAIN_TARGET at the control-operator protocol 
boundary. In that case, the source LU sends 
MIN_CONWINNERS_TARGETCimplementation choice), 
RESPONSIBLEC SOURCE J, and DRAIN TARGET< YES J 
for those parameters that it does-not expose. 

PARALLEL-SESSION OPTIONAL FUNCTIONS 

The optional parallel-session CNOS functions 
&re: 

• Receive support for DRAIN_TARGETCYESJ 

• 

• 

• 

This means that the LU supports local 
dr&in, i.e., it is able to start new con­
vers&tions after the session limit is 
reset to O and to defer deactivating ses­
sions until there are no more local 
requests for new conversations. 

Send support for any or all of the fol­
lowing: 

MIN_CONWINNERS_TARGET 

RESPONSIBLECTARGETJ 

ORAIN_ TARGETC NO) 

This means that the LU exposes these 
parameters at the control-operator proto­
col boundary. 

Receive support for RESPONSIBLECTARGET> 

This means the LU can be responsible for 
decreasing the session count to a nonzero 
value, i.e., it maintains an exact count 
of sessions to be terminated. 

Send support for CHANGE_SESSION_LIMIT 

This means that the LU can increase or 
decrease the session 1 i mi t to a nonzero 
value when it is currently nonzero. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-21 



CQHeQHENT INTERRELATIONSHIPS 

This section describes the functions and 
interrelationships of the components for 
control-operator functions. 

The principal COlllP()nents are: 

• Presentation services for the control 
opera tor ( PS. COPR ) 

• Control-operator transaction progra• 

• CHOS service transaction progra• 

To perform its fi..nctions, PS.COPR •ay invoke 
the follONing other LU components: 

• Resources 11anager C RIO, which perforlllS 
session shutdown and invokes LU network 
services for session initi-
ationlter•ination and acti-
vation/deactivation 

• Presentation services for conversations, 
which uses an LU-LU half-session for the 
conversation with the partner LU. 

Figure S.4-1 on PQge S.4-2 illustrates the 
relationships a111<>n9 these components. 

TRANSACTION PROGRAMS 

Control-Qperator Transaction Program 

l;he control-operator transaction progr<u11 is 
an implementation-defined transaction pro­
gram at the source LU that represents the LU 
control operator. It forms part of the 
local-L.U (source-LU> transact i on-progra• 
process. It is invoked by presentation 
serv1 ces CPS. INITIALIZE) as a result of an 
implementation-defined progra•-initiation 
request. 

The control-operator transaction program •ay 
interact with a human operator, at the imple­
.antation- and/or installation-option, to 
obtain input parameters or to present 
results. It issues any of the supported 
control-operator verbs exposed at the 
control-operator protocol boundary. 

The tr1msaction program passes to PS.COPR a 
transaction-program-verb structure specifying 
the verb type and verb parameters. l>tien 
PS.COPR processing is complete, the trans­
action program is returned the same structure 
containing the returned parameter values, 
e.g., a return code indicating success or a 
failure reason. 

~ $ervice Transaction Program 

The CNOS service transaction program is that 
SHA-defined transaction program with 

transaction-program na111e (JPN) X' 06 Fl • • It 
represents the control operator at the target 
LU. It is invoked by presentation services 
(PS. INITIALIZE) when the target LU receives 
the Attach FH header that resulted fro111 the 
ALLOCATE verb issued by PS.COPR at the source 
LU. 

The CNOS service transaction progra• perforlllS 
the following functions • 

• It is the target for the ALLOCATE verb 
issued by the source-LU control-operator 
transaction progra11t. By being invoked, 
H completes the activation of the con­
versation for the CNOS trans&ction. 
<The characteristics of the conversation 
&re discussed in section "CNOS Conversa­
tion Allocation" on page 5.4-27. The 

0 conversation parameters fron1 the Attach 
FH heoider are verified by the resources 
manager and presentation services for 
conversations before this progra11t is 
invoked.> 

• It issues the PROCESS_SESSION_LIMII verb 
before any other proee5s i ng. Thus, the 
CNOS service transaction program does not 
induce any undue delay, e.g., it does 
not wait on operator input. It also does 
not affect the values of the negotiable 
parameters; these values are determined 
by an algorithll within PS.COPR. 

The CNOS service transaction progra• 
passes to PS. COPR a 
transaction-progra111-verb data structure 
specifying the verb type and identifying 
the return parameters for the CNOS verb. 
When PS.COPR processing is complete, the 
CNOS service transaction progra• is 
returned the saR1e structure containing a 
return code indicating success or a fail­
ure reason and other paran1eters identify­
i ng the CLU,model entry or entries 
affected by the CNOS command. The PROC­
ESS_SESSION_LIMII verb does not provide 
the values of the session-li11it parame­
ters to the CNOS service trans;;ictior1 pro­
gram; these values are available by 
issuing the DISPLAY verb. 

When control returns from the PROC­
ESS_.SESSIOH_LIMII verb, the conversation 
with the source LU has already been deal­
located and the session-limit parameters 
have been updated at the target LU. 

• It performs an implementation-defined 
action to notify its control operator of 
the activity. For example, it could 
trigger an interrupt to the LU's 
control-operator transaction progra111 (see 
section "Control-Operator Transaction 
Progra111") to allow that progra• to exam­
ine the new session-limit parameters and 
display theta for the operator. 

5.4-22 SNA Format and Protocol Reference Manual for LU Type 6.2 



PS Verb Router 

l,j 
!DEACTIVATE I I DEFI~;--i 

RESE~=---i 
CHAN~U -r--V I DISP~AY I ----v 

PROC~[]S_ ACTIVATE_ 
SESSION_ 

PROC 

A-

Local Ve 

v 
CAL 
SION_ 
MIT_ 
ROC 

.--A 

I 
rb Services 
:--

INITIALIZE_ 
SESSION_ 

LIMIT 
PRoc"I 

.-

sou~~E SESSION_ 
LIMIT_ 

Services 

SESSION_ I 

SESSION_ 
LIMIT_ 

PROC 
.-. A 

LIMIT_ < •••••• : 
DATA_ 
LOCK_ 

MANAGER =~~~r.· .. r-' 
:-- '----~ 

Target-LU 
Session-Limit 
Services I 

-
Presentation Services for the 

Control Operator lPS.COPR) 
:-- --------:--•-------------- I 

v 
Resources 
Manager 

v 
PS 
Verb 
Router 

v 
Resources 

Manager 

v 
PS 
Verb 
Router 

v 
Resources 

Manager 

v 
PS 
Verb 
Router 

v 
Resources 

Manager 

1 These routines are verb handlers for both local- and distributed-function session-limit verbs. 

LEGEND: 
••••• > Call/return relationship (within a process) 
<~-> Send/receive relationship Cbetween processes) 

Figure 5.4-13. Structure of Presentation Services for the Control Operator 

PS.COPR COMPONENTS 

Figure 5.4-13 shows the structure of PS.COPR. 
Its main components are: 

• 

• 

• 

The control-operator-verb router (repres­
ented in the figure by the connecting 
arrows from the PS verb router to the 
various verb-handler routines) 

A verb handler for each verb (e.g., ACTI­
VATE_SESSION_PROC, DEFINE_PROC, DIS­
PLAY_PROC, INITIALIZE_SESSION_LIMIT_PROC, 
PROCESS_SESSION_LIMIT_PROCl 

Common verb-processing routines for 
groups of verbs: 

Local session-limit services 
single-session mode names and 
mode name SNASVCMG 
CAL_SESSION_LIMIT_PROC) 

for 
for 

CLO-

Source-LU CNOS session-limit services 
CSOURCE_SESSION_LIMIT_PROC) 

Target-LU CNOS session-limit services 
!combined with PROC­
ESS_SESSION_LIMIT_PROCl 

• The session-limit-data lock manager that 
controls contention between source-LU 
session-limit services (running on behalf 
of a locally-issued verb> and target-LU 
session-limit services (running on behalf 
of a remotely-issued verbl. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-23 



The control-operator verb router component is 
the root procedure of PS.COPR. It is invoked 
by the PS verb router Csee Chapter 5.0l when 
a transaction program issues a 
control-operator verb. It forms part of the 
transaction-program process. It is passed 
the transaction-program-verb structure 
C TRANSACTION_PGM_ VERB l from the PS verb 
router, and passes this structure on to the 
corresponding verb handler. Upon rega1nmg 
control from the verb handler, it returns to 
the PS verb router. 

LOCAL CONTROL-OPERATOR VERB PROCESSING 

Local-verb services comprises the verb han­
dlers for two groups of local-function verbs: 
LU definition verbs and local session-control 
verbs. 

LI' CcFINITION VERB PROCESSING 

The LU definition verbs include DEFINE and 
DISPLAY Csee Figure 5.4-13). These verbs 

allow an implementation to define and display 
the parameters that are configuration depend­
ent <i.e., the maximum number of session&> 
and optional capabilities that are supported 
by the LU, the partner LUs, the MODES, and 
the transaction programs. 

The verb handler checks privilege to deter­
mine that the requesting control-operator 
transaction program has DEFINE or DISPLAY 
privilege, as appropriate to the verb. It 
locates the relevant data structure and its 
containing structures using the keys provided 
as verb parameters. It provides a return 
code indicating whether the operation was 
performed successfully. 

The verb handler copies values from 
control-operator transaction program vari­
ables into the LU data structures, or vice 
vers;,; the trc;r.s;;,c: ti on program never has 
direct access or addressabi 1 i ty to the LU 
data structures. 

Verb Parameter Values Contention Polarity to be Used 

LU_MODE_ MINIMUM_ MINIMUM_ 
SESSION_ CONWINNERS_ CONWINNERS_ 
LIMIT SOURCE TARGET 

0 * * 
1 0 0 
1 1 0 

1 0 1 
1 1 1 

2 or more * * 

Polarity for 
Locally Activated 
Sessions 

Polarity Negotiation 
for Remotely Activated 
Sessions 

parameter combination not allowed 

contention winner accept partner choice 
contention winner contention winner 

contention loser accept partner choice 
parameter combination not allowed 

parameter combination not allowed 

LEGEND: 

* any value 

Figure 5.4-14. Single-Session Contention Polarity Determined by Minimum-Contention-Winner-Limit 
Parameters 

5.4-24 

LOCAL SESSION-CONTROL VERB PROCESSING 

The session-activation verb handlers (e.g., 
ACTIVATE_SESSION_PROCl have an inter-process 
(send/receive) relationship with the 
resources manager for exchanging the 
session-activation and -deactivation records. 

The local session-limit services component 
CLOCAL_SESSION_LIMIT_PROCl provides the func­
tions of the session-limit verbs for both 
single-session mode names and for the 
parallel-session mode name SNASVCMG, i.e., 
the SHA-defined mode name for used by CNOS. 
CEven though SNASVCMG-mode-name sessions are 

parallel sessions, local verbs are used to 
initialize--to fixed session limits--and to 
reset the SNASVCMG mode name, because a ses­
sion with this mode name must be activated 
before the first CNOS command and reply can 
be sent. l This component has an 
inter-process (send/receive) relationship 
with the resources manager to notify RM of 
li mi ts changes. 

INITIALIZE SESSION LIMIT: When this verb is 
issued for a single-session mode name or for 
mode name SNASVCMG, local session~limit serv­
ices checks session-limit constraints and 
sets the CLU,model session limit at the local 
LU. The partner LU does not participate in 

SNA Format and Protocol Reference Manual for LU Type 6.2 



setting the limits. Local session-limit 
services sends a change-sessions notification 
to the resources manager so that the 
resources manager may request activation of 
the allowed sessions according to its 
session-activation algorithm. 

For single-session mode names, local 
sessfon-limit services also determines the 
contention polarity to be used when a session 
is activated by the local LU and determines 
the contention-polarity negotiation rule to 
be used when a session is activated by a 
partner LU. It determines these settings 
from the minimum-contention-winner limit 
parameters of the verb, as specified in Fig­
ure 5.4-14 on page 5.4-24. 

In the figure, the first three columns list 
possible combinations of verb parameter val­
ues. The next column (locally activated ses­
sions) specifies the corresponding 
contention-polarity choice that will be sent 
in a BIND RU issued by the local LU; the 
partner LU may negotiate contention-winner to 
contention-loser (i.e., make the partner LU 
the contention winner), but not the reverse. 
The next column (remotely activated sessions) 
specifies the contention-polarity that wi 11 
be sent in the response issued by the local 
LU to a BIND from a partner LU. The local LU 
may change a received contention-loser into a 
contention-winner, but not the reverse. The 
last two columns also indicate those combina­
tions of verb parameter values tha~ are 
invalid with single-session mod'? 11<1mes. 

For the p~rdiiel-session mode name SNASVCMG, 
th::; verb parameters have their usual inter­
pretation, but the only accepted values are: 
ILU,model session limit = 2, minimum 
contention-winner limit (source) = 1, minimum 
contention-winner limit Ctargetl = 1. 

RESET SESSION LIMIT: When this verb is 
issued for a single-session mode name or for 
mode name SNASVCMG, local session-limit serv­
ices checks session-limit constraints and 
sets the CLU,model session limit to 0 at the 
local LU. It also sets the drain specifica­
tion for the local and remote LUs. The part­
ner LU does not participate in setting these 
limits. Local session limit services sends a 
change-sessions notification to the resources 
manager so that the resoul"ces manager wi 11 
deactivate the specified sessions according 
to its drain and sess i on-deactivation algo­
rithms. 

For mode name SNASVCMG, local session-Ii mi t 
services also verifies that all other mode 
names for the specified partner LU al"e fully 
reset, 'i.e., have CLU,model session limit= 0 
and drain state NO. If so, it sets theses­
sion limits for mode name SNASVCMG to 0 and 
notifies RM to deactivate the 
SNASVCMG-mode-name sessions; otherwise, it 
does not change the limits but sets the 
appropriate return code. 

ACTIVATE SESSION: For this verb, if the TP 
has session control privilege, the verb han­
dler sends a session-activation request to 

the resources manager, and receives a reply 
record indicating whether the session was 
successfully activated. 

DEACTIVATE SESSION: For this verb, if the TP 
has session control privilege, PS.COPR sends 
a session-deactivation request to the 
resources manage!"; the resources manager 
sends no reply, as session deactivation is 
assured. 

SESSION-LIMIT SERVICES AT THE SOURCE LU 

Source-LU session-limit services CSSLSJ proc­
esses CNOS verbs issued at the source LU. It 
forms a pal"t of the source-LU 
transaction-pl"ogram process that includes the 
control-operator transaction program. It is 
invoked via the presentation services CPS) 
verb router and PS.COPR when the 
control-opel"ator transaction program issues a 
CNOS verb, and retul"ns to the 
control-operator transaction program via the 
routers upon completing processing. 

SSLS interacts with other LU components as 
follows Csee Figure 5.4-15 on page 5.4-26). 

A verb-handling routine corresponding to the 
specific verb CINITIALIZE_SESSION_LIMIT_PROC, 
CHANGE SESSION LIMIT PROC, or 
RESFT,_'SE5':3!Ctl_::::r~IIT _PROC J, receives the verb 
parameters from the PS.COPR router. It then 
invokes the common session-limit services 
routine SOURCE SESSION LIMIT PROC. It is 
retul"ned the s~me str;:;cture - with a re turn 
code, which it passes back to the PS.COPR 
router. 

SOURCE_SESSION_LIMIT_PROC is passed the CNOS 
verb parameters which it returns updated with 
a return code when its processing is com­
plete. It pP.rforms the remainder of SSLS 
processing, as follows. 

• It verifies that the program issuing the 
verb is privileged to issue CNOS verbs. 

• It allocates a conversation with the tar­
get. 

• Using that conversation, it sends a CNOS 
command record and receives a CNOS reply 
record 

• 

• 

• 

It invokes the session-limit-data-lock 
manager (see "Session-Limit Data Lock 
Manager" on page 5.4-30) to prevent 
simultaneous updating of the same 
( LU,mode l entry, or entries, and to 
resolve races. 

It updates the CLU,model entry with the 
accepted session-limit parameters. 

If necessary, it notifies the resources 
manager to increase or decrease the cur­
rent number of sessions. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-25 



LU Control Operator 
A 
I 

.------v-------~ 
> Control-operator ············1 Transaction Progra• 

Uocal initiation> 1 -----A-----' 
JR~NSACTIOH_P6H_VERB 

' .-------------------v-----------------. Control-Operator Verb Router (PS.COPR> 

INITIALIZE_ 
SESSIOH_LIHIT 

CHANGE_ 
SESSION_llt1IT 

RESET_ 
SESSIOH_LIHIT 

INITIA~~ZE SESSION_LIHIT_ 
PROC ---- "8 CHANGE 

SESSIOH_llt1IT_ 
PROC "8 RESET 

SESSIOH_LIHIT_ 
PROC 

. . . . . . . . . . . . . . . . . . . . . ................ . 
: : : CNOS verb . . . . . . 

~
v-v-, LOCK/\l'ILOCK SESSIOH_LIHIT_DATA_ 

OURCE ••••••••••••••••••••••••••• > LOCK HANA&ER 

~~~= ! .................... ! .............. - : 
oc < • • 
; .-. I SESSION_LIMIT_SERVICES (LU, _SOURCE 

'------------------------ 110de> 

ATE ALLOC 
SEN>_ 

CHO 
RECEI 

CNO 
DEA LL 

1,2 

DATA 
S co-and 

VE_Atll_WAIT 
S reply 

OCATE 

..--------~v·-----
ces 
s 

Presen tat ion Servi 
for Conversation 

<PS.C ONV> 
----------A,----

' 1 .-------v-----~ 
LU-LU Half-Session 

{ 'SNASVCM&' or 
other mode na111e> 

'-------A-----' 

CHANG 

Resources 
Manager 

<RH> 

• ->ATTACH TPN(X'06Fl'l CFl'ft-5) 
• -> CNOS c011111and C&DS ID=X'1210') 
• <- CNOS reply (6DS ID=X'1210'> 
• 

entry 

E_SESSIONS 

••••••••••••••••••••••••••••••••••••>to target LU 

LEGEND: 
••••• > Call/return relationship <within a process> 
<--> Send/receive relationship I between processes) 

Access to shared data (within the LU> 
<••••> Transaction prograa interaction <between LUs) 

1 See Chapter 5.1 for these interactions. 
2 PS router detail has been oi1itted. 

Figure 5.4-15. Source-LU C0111Ponent Interactions for CNOS 

5.4-26 SHA Foraat and Protocol Reference Hanual f.or LU Type 6.2 



Prjv;leqe Cbeckjnq 

SSLS exa•ines the source-LU's transact;on 
progra• list to deter11;ne lolhether the 
control-operator transact;on progra• ;s 
author;zed to issue CNOS verbs, i.e., whether 
it has change-number-of-sessions pr;vilege. 
If not, SSLS causes the verb to fa;1. 

(Si nee the target transact; on progra• has a 
privileged transact;on-progra• na11e, ;.e., 
TPN less than X'40', presentation services 
for conversations also verifies, by check;ng 
the transaction-program list at the source 
LU, that the transaction progra• issuing the 
ALLOCATE is allowed to invoke privileged pro­
grau. > 

Gtlm eonversatjon Allpeat;on 

SSLS allocates a conversation with the target 
LU to exchange the CNOS c0111111and and reply. 
The conversation requires only conversation 
verbs in the base set, but an i111pluentation 
•ay use verbs and parameters from the 
locally-supported "performance" option sets 
that do not require remote support (see m:IA 
Tr~osaction Progra!!!!er's Reference H!nY!! .f.2C 
.bY b2! L.l). 

The following subsections discuss the allo­
cation parameters for the conversation. 

JJ.! Q!!!l!ll SSLS uses the target LU name sup­
plied by the CNOS verb. 

~ D.l!!!ml SSLS uses an 
i11ple11entation-defined algori thll to select a 
mode name for the CNOS conversation; for 
exa111Ple, the dgorithtw can select a 11ode nall8 
for which a sess;on ;s currently active and 
available. If no session is available on any 
other implementation-selected 11ode name, SLSS 
usu the SHA-defined mode na11e SNASVCHG. It 
also uses SNASVCHG for the f i rs t CNOS verb 
issued by the LU, i.e., when no sessions are 
active for other mode nallleS and the session 
li•its for all llOde names (except SNASVCHG> 
are all O. 

(The operator previously initializes the ses­
sion li•its for 110de naine SNASVCHG to 
HAX_SESSIOHSC2), HIN_CONWitf'IERS_~CECl), 
and HIN_CONWitf'IERS_ TARGETf U, so that the 
source LU may always succeed in activat;ng 
one contention w;nner session to send the 
CNOS command and reply.) 

~ Basic ConverHtion 

Transaction Proara• Name: SSLS establishes 
the conversat;on with the CNOS service 
transaction progra•• whose SNA-defined trans­
action progra• name CTPN) is X'06Fl'o at the 
target LU. 

5ecurity: The CNOS conversation uses SECURI­
TYCNONE>. 

Svnchroniution .l.tllll The CNOS converntion 
usu SYNC_LEVELC NONE>. 

Recovery ~ The CNDS conversation UHS 
RECOVERY_LEVEL<HONE>. 

Proqra• Initjalization Para!!leters: The CNOS 
conversation does not use progra• initializa­
tion parameter data, i.e., it uses PIPCNO>. 

.fiU} variable 

SSLS builds a CNOS command containing the 
verb and parameter infor11ation passed frOll 
the CNOS service transaction progra• and 
sends it to the target transaction progra11. 
The Change NuMber of Sessions GOS vad able 
and the CNOS c01111and and reply are described 
in "Appendix H. FH Header and LU Services 
CoMmands". It receives from the target 
transaction progra11 • si•ilar CNOS reply con­
taining a reply code that indicates either 
that the coM11and was accepted or the reason 
for its rejection. 

SSLS generates a conversation between the 
source-LU and the target-LU transact;on pro­
gra11&. The sequence of conversation verbs 
issued by SSLS, and the complementary verbs 
issued by the partner progra• SES­
SION_LIHIT_SERVICES_TARGET, are shown in Fig­
ure 5.4-3 on page 5.4-9. 

SSLS analyzes the CNOS verb para111eters for 
transaction program errors, checks the return 
codes frOll conversation verbs for conversa­
tion errors such as session failure or proto­
col violation, and analyzes the CNOS reply 
for target-detected errors or changes to 
negotiable paraHters, and determines the 
proper return code for the CNOS verb. 

If conversation failure (session outage) 
occurs, the source LU retries the CNOS COll­

aand as described in "Recovery frOM Conversa­
tion Failure" on page 5.4-20. 

~ (LU,lllOde) I.!l.io! 

If the co111111and and reply exchange ;s com­
pleted without error, SSLS ""dates the 
session-limit parameters for the specified 
CLU;11ode> entry using the new values of 
LU_MODE_SESSION_LIHIT, HIN_CONWINNERS_SOURCE, 
HIN_CONWINNERS_TARSET, RESPONSIBLE, and 
DRAIN_ TARGET fro• the reply record. If the 
command specifies tlODE_NAHECALL), the li•its 
for all llOde na11e& defined for the specif;ed 
LU naMo except the SHA-defined mode name 
SNASVCNG, are updated. SSLS then invokes the 
session-limit-data lock •anager to wilock the 
entries it locked (see "Session-Li•it Data 
Lock Manager" on page 5.4-30). 

Chapter 5.4. PresW1tation Services--Control-Operator Verbs 5.4-27 



S.4-28 

The new liaits are enforced by the resources 
aanager (see "Chapter 3. LU Resources ttanag­
er") and by LU netwodt services C see "Chapter 
4. LU Network Services">. 

Request Changes .in Session &S!Y!l1 

If the CNOS co .. and action is Set, or if it 
designates the source LU as responsible for 
session deactivation, SSLS issues a 
CHANGE_SESSIONS request, identifying the 
affected LU na111e and aode names, to the 
resources Manager CRM>. If t10DE_NAHECALL) is 
specified, SLSS sends a separate 
CHANGE_SESSIONS request for each llOde nan 
except llOde name SNASVCHG. 

The CHANGE_SESSIONS request notifies RH that 
the session liait parameters have changed and 
that, as a consequence, RH aay aake changes 
to the nunber of sessions. RH deteraines the 
actud changes to be made to the session 
count and issues appropriate requests to LU 
network services to activate or deactivate 
sessions. 

.B.!l!Yr:o jg !bl Traosactioo Proqraa 

lflen the above fU'\ctions are completed, SSLS 
returns to the control-operator transaction 
program, passing back the appropriate return 
code in the transaction-prograa-verb struc­
ture. 

SESSION-LIMIT SERVICES AT THE TARGET LU 

Target-LU session-liait services lTSLS> proc­
esses the CNOS verbs issued at the target LU. 
It functions in a aanner complementary to 
SSLS (see "Session-Limit Services at the 
Source LU" on page S. 4-25). It foru a part 
of the target-LU transaction-program process 
that includes the CNOS service transaction 
prog~aa. It is invoked via the presentation 
serv1 ces (PS) verb router and the PS.COPR 
router when the CNOS service transaction pro­
graa issues the PROCESS_SESSION_LIHIT verb; 
it returns to the CNOS service transaction 
program upon completion of processing. 

TSLS interacts Ni th other LU components as 
follows (see Figure S.4-16 on page S.4-29). 

• It receives the transaction-prograa-verb 
structure representing the PROC-
ESS_SESSION_LIHIT verb 

lillen its process i ng is complete, It 
returns to the CNOS service transaction 
program, passing back the 
transaction-program-verb structure 
1.4>dated with a return code and the iden­
U ty of the affected CLU,11ode) entries. 
CThe latter aay be used by the implemen­
tation to infora the control operator of 
the changes. > 

• It deteraines whether the issuing trans­
action prograa is the CNOS service trans­
action progra• CTPN=X'06Fl'> and has the 
change-number-of-sessions privilege. If 
not, TSLS abnor11ally ter11inates the 
transaction progra11, which causes the LU 
issue DEALLOCATE TYPEUBEtl)) on the con­
versation. 

• It coll'llllUl"licates with SSLS at the source 
LU, using the conversation Mith which the 
CNOS service transaction progra• was 
attached, by i&&uing conversation verbs 
to presentation services for conversa­
tions. 

• It receives a CNOS con111and fro• the 
source LU, clliilnges the source LU's 
requested session-limit paralll8ters to 
values acceptable to the target LU, if 
necessary, and sends a CNOS reply, with 
the same for•at, back to the source LU. 

• It invokes the session-li•it-data-lock 
manager Cs- "Sess i on-U •it Data Lock 
Hanager" on page S.4-30) to prevent 
si11ultaneous updating of any f LU,llOde) 
entry • 

• It updates the affected f LU,llOde> 
entries. 

• If necessary, it notifies the resources 
unager to increase or decrease the cur­
rent number of sessions. 

TSLS receives from the source-LU transaction 
program a CNOS co .. and record containing the 
verb and para•eter infor•ation passed from 
the control-operator transaction progra•. It 
builds a si•ilar CNOS reply record containing 
the acceptable values of the negotiable 
session-! i11i t par•meters--see "Session-Li•i t 
Para•eter Negotiation"--and a reply code, 
which either indicates that the c0111mand was 
accepted or gives the reason for its 
rejection, and sends it to the source LU. 

Session-Limit Parameter Negotiation 

TSLS executes an implementation-deter•ined 
algorithm to accept or 11edi fy the negotiable 
session-li11it parameters received fr011 the 
source LU, subject to the negotiation rules 
given below. It sets the Reply Hodifier 
field in the CNOS reply to indicate whether 
the all parametera were accepted as received 
or whether any were negotiated to new values, 
and sends it with the received or 11odified 
values to the source LU in the CNOS reply. 
lThe source LU accepts any aodified values 
that satisfy the negotiation rules.) 

The negotiation rules are as follows. Cln 
the formulas, variables prefixed with c_ 
refer to values of verb parameters specified 
by the source LU in the CNOS c0111111and records 
variables prefixed with R_ refer to values of 

SNA For11at and Protocol Reference ttanual for LU Type 6.2 



CNOS L~Service 
•••••• > Transaction Program 

TPN=X I 06F l ' 

: TRANSACTION PROGRAM VERB 
Cinvoked via ATTACH :1,2 - -

from source LU> 1 

---------·v·-------~ 
Control Operator Verb Router 

C PS.COPR) 

PROCESS_SESSION_LIMIT 

----v·----. LOCK/UNLOCK SESSION_LIMIT_DATA_ 
PROCESS_ 
SESSION_ 

LIMIT_ 
PROC 

••••••••••••••••••••••••••• > LOCK_MANAGER 
I I 

<-----------..... 
SESSION_LIMIT_SERVICES_TARGET 

GET_ATTRIBUTES 
RECEIVE_AND_WAIT 

CNOS command 
SEND_DATA 

CNOS reply 
DEALLOCATE 

1,2 

.-------v·-----~ 
Presentation Services 

for Conversations 
CPS.CONV) 

'-------A.~------' l 

..-----v---...... 
L~LU Half-Session 

C'SNASVCMG' or 
other mode name) 

._____A-----' 

.-
(LU, 
model 
entry 

CHANGE_ SESSIONS 

Resources 
Manager 

<RM) 

• ->ATTACH TPNCX'06Fll CFMH-5> 
• -> CNOS command CGDSID=X'l210'l 
• <- CNOS reply CGDSID=X'l210') 

LEGEND: 

• 
from source LU • 

<••················ 

••••• > Call/return relationship Cwithin a process) 
<--> Send/receive relationship <between processes l 

Access to shared data <within the LU) 
<••••> Transaction program interaction !between LUs) 

1 See Chapter 5.1 for these interactions. 
2 PS router detail has been omitted. · 

Figure 5.4-16. Target-LU Component Interactions for CNOS 

these parameters as modified by the target LU 
and returned in the CNOS reply record. 

If the command action is Set !INITIALIZE_ or 
CHANGE_SESSION_LIMIT verb issued): 

• If the current CLU,model session count is 
o, then, based on an 
i mplementa ti on-defined dee is ion, the LU 
may refuse to accept the command by 
returning an abnormal reply with 
reply-modi fl er value abnormal--( LU,mode l 
session limit is O. Both LUs then ignore 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-29 



5.4-30 

• 

the sess i on-li 111i t parameters of the 
reply; they do not change the current 
session-li11it parameters in the 
(lU,mode> entry. 

The target LU 
LU_HODE_SESSION_LIHIT 
of sessions, but not 
value satisfies: 

may decrease 
to a lower number 
too, i.e., the ne.. 

0 < R_LU_HOOE_SESSIOH_LIMIT S 

C_LU_HODE_SESSIOH_LIHIT. 

• If the proposed source contention 111inners 
( C_MIN_COtlWIHNERS_SOURCE) exceeds 
R_LU_HOOE_SESSICN_LINIT/2, the target LU 
11ay change HIN_CONWINNERS_SOURCE to any 
lower value not less than 
R_LU_NODE_SESSION_LINIT/2 rounded down-
111ard, i.e., the new value satisfies: 

C_HIN_CONWIHNERS_SOURCE i 

R_NIH_CONWINNERS_SOURCE i 

HIHCC_NIN_CONWIHHERS_SOIJRCE, 
R_LU_MODE_SESSIOH_LINIT/2). 

• The target LU may change its own 11ini11Um 
contention-111inner limit 
CR_NIH_CONWIHNERS_TARGET> to any value 
not exceeding the difference beb1een the 
total session limit and 
HIH_CONWIHHERS_SOURCE, i.e., the new val­
ue satisfies: 

0 S R_NIN_CONWINNERS_TARGET ~ 

CR_LU_HOOE_SESSIOH_LINIT -
R_HIH_COHWIHNERS_SOURCEI. 

• The target LU 11ay change RESPONSIBLE to 
SOURCE. 

If the command action is Close for only one 
mode name CRESET_SESSIOH_LIHIT 
CHODE_NAHEIONE, ••• ) issued): 

• If the ( LU. mode) session count is 0 and 
the current drain state is NO, then, 
based on an i111Plementation-defined deci­
sion, the target LU may refuse to accept 
the com111and by returning an abnormal 
reply with reply modifier abnor­
mal--CLU,mode> session limit is o. Both 
LUs then ignore the session-limit parame­
ters of the reply; they do not change the 
current session-limit parameters in the 
I LU,mode) entry. 

• The target LU 11ay change RESPONSIBLE to 
SotmCE. 

• The target LU 11ay change its own drain 
action CDRAIH_TARGET> fre11 YES to NO. 

• The target LU does not change 
DRAIN_ SOURCE. 

If the command action is Close for all mode 
names ( RESET_SESSIOH_LIMIT U10DE_NAHEC ALL> 
issued): 

• If the (LU.model session count is 0 and 
the current drain state is NO for all 
mode names with the partner LU, then, 
based on an implementation-defined deci­
sion, the target LU may refuse to accept 
the command by returning an •bnormal 
reply 111ith reply 1110difier abnor­
mal--ILU,11ode) session limit is o. Both 
LUs then ignore the session-limit para111e­
ters of the reply; they do not change the 
current session-limit par•meters in the 
(LU.model entry. 

• The target LU 11ay chilnge RESPONSIBLE to 
SOURCE. If so, it changes all mode nallt!S 
not already at SESSION_LIHIT = 0 to the 
same CSOURCEl responsibility. 

• The target LU does not send a changed 
value for DRAIN_TARGET in the reply, but 
echoes the value received. Nevertheless, 
if the c0111111and spec i fies 
DRAIH_ TARGETCYES l, and the current ses­
sion limit is not zero, the target LU 11ay 
set its local drain state for any mode 
names to either YES or NO, regardless of 
the previous drain state. If the current 
session limit is already zero and the 
drain state is no, the drain state for 
that mode is left unchanged. 

• The target 
DRAIN_SOURCE. 

LU does not change 

If TSLS detects a condition that precludes 
performing the nominal action (e.g., a race 
condition or unrecognized mode name), but 
that does not violate architectural rules, it 
sends an abnor•al reply Nith the appropriate 
reply modifier (see "Appendi>< H. FM Header 
and LU Services co-ands" for reply-modifier 
codes l. 

If it detects an invalid co .. and frOll the 
source LU, e.g., undefined or disallowed 
parameter values, it treats this as a proto­
col violation. TSLS does not change the CNOS 
parameters or send a reply, but instead 
issues DEALLOCATE TYPECABEND). TSLS also 
reports any errors detected to the CNOS serv­
ice transaction program via the 
transaction-program-verb structure. 

pther Interactions 

Other TSLS interactions are similar to the 
corresponding interactions of SSLS. 

SESSION-LIMIT DATA LOCK MANAGER 

locking !b!l ILU,modf!J fDia 

The session-limit services routines invoke a 
shared component, SES-

SNA format and Protocol Reference Manual for LU Type 6.2 



SION_LIHIT_DATA_LOCK_HANA6ER (SlDLH), to pre­
vent si111.1ltaneous access to an !LU111<>de) 
entry, to detect races, and to resolve 
double-failure race conditions, as described 
in "CNOS Race Resolution" on page S.4-14. 

SLDLH is • shared routine, invoked from both 
SSLS and TSLS, that maintains the 
session-li•it data lock. A session-limit 
data lock e><ists for each ( LU1110de) entry. 
It is in one of the follONing states: 

UNLOCKED: Ho CNOS component is currently 
using the (LU.mode) entry. The 
lock is reset to this state Nhenev­
er the process that locked it com­
pletes processing. 

LOCKED_BY_SOl.IRCE: SSLS has locked the 
tLU,111e>de> entry to process a CNOS 

co.wand issued at the local LU. 
The lock had previously been in 
UNLOCKED state. 

LOCKED_BY_TARGET: TSLS has locked the 
!LU,•ode) entry to process a CNOS 
c011111and issued at a remote LU. The 
lock had previously been in 
UNLOCKED state. 

LOCK_DENIED: While the lock NaS in 
LOCKED_BY_SOURCE state, TSLS 
attempted to lock it on behoilf of a 
reniotely-issued verb. TSLS was 
refused. 

This state allows SSLS to determine 
Nhether a double-failure race 
occurred. 

Chapter S.4. Presentation Services--Control-Operator Verbs 5.t+-31 



VERB-ROUIING PftQCED!.Sf E 

5.4-32 

PS_COPR 

FIJllCTION: This procedure receives· all control-operator verbs issued by the transaction 
program and routes the input to the appropriate procedure for processing. It 
is invoked by and returns to the prese..~tation-services verb router and forllS 
part of the transaction-progra• process. 

INPUT: CNOS verb paraMeters, received fr011 caller, updated by called procedures 

OUTPUT: Updated return code and verb-specific returned parameters 

Referenced rrocedures, Fstfs, and data structures: 
INITIALIZE_SESSIOH_LIMIT_PROC 
CHANGE_SESSION_LIMIT_PROC 
RESET_SESSION_LIHIT_PROC 
PROCESS_SESSION_LIMIT_PROC 
ACTIVATE_SESSION_PROC 
DEACTIVATE_SESSION_PROC 
DEFINE_PROC 
DISPLAY_PROC 
DELETE_PROC 

Select based on type of verb parameters: 
llien INITIALIZE_SESSIOH_LIHIT 

page 5.4-33 
page 5.4-35 
page 5.4-34 
page 5.4-58 
page 5.4-36 
page 5.4-37 
page S.4-38 
page S.4-39 
page 5.4-40 

Call INITIALIZE_SESSION_LIHIT_PROC Nith the verb para11eters (page 5.4-331. 
"'1en CHANGE_SESSION_LIMIT 

Call CHANGE_SESSION_LIMIT_PROC Nith the verb para111eters (page 5.4-35). 
llien RESET_SESSION_LIMIT 

Ca~l RESET_SESSION_LIMIT_PROC Ni th the verb para•eters lpage 5.4-34). 
litien PROCESS_SESSION_LIMIT 

Call PROCESS_SESSION_LIHIT_PROC Mith the verb parameters (page 5.4-58). 
liflen DEACTIVATE_SESSION 

Call DEACTIVATE_SESSION_PROC Nith the verb parameters lpage 5.4-37). 
alien ACTIVATE_SESSION 

Call ACTIVATE_SESSIOH_PROC with the verb parameters lpage 5.4-361. 
When DEFINE_LOCAL_LU, DEFINE_REMOTE_Lu, DEFINE_HODE, or DEFINE_TP 

Call DEFINE_PROC with the verb para111eters (page S.4-38). 
When DISPLAY_LOCAL_LU, DISPLAY_REMOTE_LU, DISPLAY_HODE, or DISPLAY_TP 

Call DISPLAY_PROC Nith the verb parameters (page 5.4-39). 
llien DELETE 

Call DELETE_PROC with the verb parameters (page 5.4-401. 

SHA Format and Protocol Reference Hanu.l for LU Type 6.2 



SESSIQN-CQNTROL VERB HAtl>LERS 

INITIALIZE_SESSION_LIMIT_PROC 

FUNCTION: Th;s procedure is called by PS_COPR, the control-operator-verb router, Nhen a 
transaction progra• issues an INITIALIZE_SESSION_LIHIT verb. It deter•ines 
the connect;on type (s;ngle or parallel). If the connection is single-session 
or the mode name is SNASVCHG, it passes the CNOS verb paraHters to 
LOCAL_SESSION_LIMIT_PROCI if the connection is parallel-session, it passes the 
CNOS verb parameters to SOURCE_SESSION_LIHIT_PROC. It passes the return code 
to the original caller. If an ABEND condition occurs, it calls PS to abnor­
mally terminate the transaction-progra• process. 

INPUT: INITIALIZE_SESSION_LIMIT verb parameters frOll callers CNOS RETURN_CODE frOll 
LOCAL_ or SOURCE_SESSION_LIMIT_PROC 

OUTPUT: RETURN_CODE of INITIALIZE_SESSION_LIMIT to caller 

Referenced procedures, FSMs, and data structures: 
SOURCE_SESSION_LIMIT_PROC 
LOCAL_SESSION_LIMIT_PROC 
DEALLOCATION_CLEANUP_PROC 
LUC:B 

page 5.4-46 
page 5.4-41 
page 5.0-13 
page A-1 

If this transaction program is not authorized to issue the CNOS verb then 
Call DEALLOCATION_CLEANUP_PROC (page 5.0-13) 

Else 

to abnormally terminate this instance of the transaction program 
!control is not returned). 

Using the LUC:B, determine the type of sessions possible with 
the partner LU, either single or parallel. 

For parallel session connections, an LU may elect not to expose the 
MIN_CONWINNERS_TARGET para•eter at the control-operator protocol 
boundary. In th;s case, the implementation •ay choose any value that 
satisfies the description of this parameter in ~ Transaction fat: 
gr&mmer's Reference ~ !ru: .!J,! Iiam .L,!. 

If the specified LU is not defined as a partner LU for this LU then 
Set the CHOS RETURN_CODE to PARAMETER_ERROR. 

Else 
If the type of connection is parallel sessions 
and the mode n&me is not SNASVCHG then 

Call S~CE_SESSION_LIMIT_PROC Cpage 5.4-46), 
titith the verb para .. ters, to begin the negotiation phase of the CNOS 
process. 

Else <local control-operator verb) 
Call LOCAL_SESSION_LIMIT_PROC Cpage 5.4-41), 

with the verb parameters, to perform the CNOS action solely at the 
local LU. 

Chapter 5.4. Presentation Services--Control-Operator Verbs S.4-33 



RESET_SESSION_LIHIT_PROC 

RESET_SESSION_LIHIT_PROC 

FUNCTION: This procedure is called by PS_COPR, the control-operator-verb router, Nhan a 
transaction progra• issues a RESET_SESSION_LIHIT verb. It deter•ines tlie con­
nection type (single or parallel>. If the connection is single-session or the 
•ocla nan is SNASVCHG, it passes the CNOS ·verb parameters to 
LOCAL_SESSIOH_LIHIT_PROC; if the connection is parallel-session, it passes the 
CNOS verb paraMeters to SOURCE_SESSIOH_LIHIT_PROC. It passes the return coda 
to the original caller. If an ABEtl> condition occurs, it calls PS to abnor­
.. 1ly ter•inate the transaction-progra• process. 

INPUT: RESET_SESSION_LIHIT verb parameters frOll callerl CNOS RETURN_CODE frOll LOCAL_ 
or SOURCE_SESSION_LIHIT_PROC 

OUTPUT: RETURN_CODE of RESET_SESSION_LIHIT verb to caller 

Referenced procedures, FSHs, and data structures: 
SOURCE_SESSION_LIMIT_PROC 
LOCAL_SESSION_LIMIT_PROC 
CHANGE_ ACTION 
DEALLOCATIOH_CLEANUP_PROC 
LUCB 

page 5.4-46 
page 5.4-41 
page 5.4-44 
page 5.o-13 
page A-1 

If this transaction progra• is not authorized to issue the CNOS verb then 
Call DEALLOCATION_CLEANUP_PROC (page 5.0-13>. 

Else 

to abnor•ally ter•inate this instance of the transaction progra• 
(control is not returned> • 

Using the LUCB, deter•ine the type of sessions possible Mith 
the partner LU, either single or parallel. 

For parallel-session connections, an LU 111ay elect not to expose the 
DRAIN_TARGET, and RESPONSIBLE parameters at the control-operator pro­
tocol boundary. In this case, the i11Ple111entation provides default 
values for these parameters consistent with the description on page 
5.4-21. 

For single-session connections, the RESPONSIBLE parameter on the verb 
is not used. It is forced to SOURCE. 

For the SNA-defined mode name, SNASVCMG, the DRAIN_SOURCEt 
DRAIN_TARGET, and RESPONSIBLE parameters 'on the verb are not used. 
They are forced to NO, NO, SOURCE, respectively. 

If the specified LU is not defined as a partner LU for this LU then 
Set the CNOS RETURN_COOE to PARAHETER_ERROR. 

Else 
If the type of connection is parallel sessions 
and the MOda name is not SNASVCMG then 

Call SOURCE_SESSION_LIHIT_PROC (page 5.4-46), 
with the verb parameters, to begin the negotiation phase of the CNOS process. 

If FORCE = YES is specified on the RESET_SESSION_LIHIT verb than 
If the CNOS return code indicates ALLOCATION_ERROR-ALLOCATION_FAILURE_NO_RETRY, 

LU_tlODE_SESSION_LIHIT_CLOSEDt RESOURCE_FAILURE_NO_RETRY or 
UNRECOGNIZED_MODE_NAHE then 

Change RESPONSIBLE to SOURCE. 
Call CHANGE_ACTION (page 5.4-44> with the CNOS request to 
update the li•its in the tlODE structure(&) for the source LU and notify RH. 

Set the CNOS return code to OK-FORCED. 

Else (local control-operator verb) 
Call LOCAL_SESSION_LIHIT_PROC (page 5.4-4Ut 

with the verb parameters, to perfor• the CNOS action solely at the local LU. 

SNA For11at and Protocol Reference Hanual for LU Type 6.2 



CHANGE_SESSION_LIMIT_PROC 

CHANGE_SESSION_LIMIT_PROC 

FUNCTION: This procedure is called by PS_COPR, the control-operator-verb router, when a 
transaction program issues a CHANGE_SESSION_LIMIT verb. It passes the CNOS 
verb parameters to SOURCE_SESSION_LIMIT_PROC and passes the return code to 
the original caller. If an ABEND condition occurs, it calls PS to abnormally 
terminate the transaction-program process. 

INPUT: CHANGE_SESSION_LIMIT parameters from caller; CNOS RETURN_CODE 
SOURCE_SESSION_LIMIT_PROC 

OUTPUT: RETURN_CODE of CHANGE SESSION_LIMIT to caller 

Referenced procedures, FSMs, and data structures: 
SOURCE_SESSION_LIMIT_PROC 
DEALLOCATION_CLEANUP_PROC 
LUCB 

If the control-operator transaction program, at the source LU, 
is not authorized to issue the CNOS verb then 

Call DEALLOCATION_CLEANUP_PROC (page 5.0-13) 

Else 

to abnormally terminate this instance of the transaction program 
(control is not returned!. 

Using the LUCB, determine the type of sessions possible with 
the partner LU, either single or parallel. 

page 5.4-46 
page 5.0-13 
page A-1 

An LU might elect not to expose the RESPONSIBLE and 
MIN_CONWINNERS_TARGET parameters at the control-operator protocol 
boundary. In this case, the implementation provides default values 
for these parameters consistent with the description on page 5.4-21 
and the parameter specification in SNA Transaction Programmer's Refer­
~ Manual for LU ~ g_,_g. 

If the specified LU is not defined as a partner for this LU then 
Set the CNOS RETURN_CODE to PARAMETER_ERROR. 

Else 

from 

If the type of connection is parallel sessions and the mode name is not SNASCVMG the 
Call SOURCE_SESSION_LIMIT_PROC (page 5.4-46J, 
with the verb parameters, to begin the negotiation phase of the CNOS process. 

Else 
Call DEALLOCATION_CLEANUP_PROC (page 5.0-13l 

to abnormally terminate this instance of the transaction program 
(control is not returned). 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-35 



ACTIVATE_SESSION_PROC 

ACTIVATE_SESSION_PROC 

5.4-36 

FUNCTION: This procedure is called by PS_COPR, the control-operator-verb router, when a 
transaction program issues an ACTIVATE_SESSION verb. It sends an 
RM_ACTIVATE_SESSION request to RM to activate a session, and receives the 
reply indicating whether the session was activated. 

INPUT: The CNOS verb CACTIVATE_SESSION), the reply from RM CRM_ACTIVATE_SESSIONJ 

OUTPUT: The request to RM CRM_ACTIVATE_SESSIONJ, RETURN_CODE of ACTIVATE_SESSION verb 

NOTE: This procedure has addressability to RM via PS_PROCESS_DATA.LU_ID. 

Referenced procedures, FSMs, and data structures: 
RM 
DEALLOCATION_CLEANUP_PRDC 
PS_PROCESS_DATA 
RM_ACTIVATE_SESSION 
RM_SESSION_ACTIVATED 

Verify that the verb parameters specified satisfy the 
parameter values for the ACTIVATE_SESSION verb described in 
SNA Transaction Programmer's Reference Manual for LU~~. 

Select based on result of parameter verification: 
When an ABEND condition is identified 

Call DEALLOCATION_CLEANUP_PROC (page 5.0-131 to abnormally 

page 3-18 
page 5.0-13 
page 5.0-19 
page A-27 
page A-33 

terminate this instance of the transaction program (control is not returned). 
When a parameter error is identified 

Set the CNOS RETURN_CODE to PARAMETER_ERROR. 
When all parameters are correct 

Create an ACTIVATE_SESSION request record. 
Set RM_ACTIVATE_SESSION.TCB_ID to PS_PROCESS_DATA.TCB_ID to identify 

the transaction control block describing this instance of PS. 
Set RM_ACTIVATE_SESSION.LU_NAME to the LU name specified in the CNOS verb. 
Set RM_ACTIVATE_SESSION.HODE_NAME to the mode name specified in the CNOS verb. 
Send ACTIVATE_SESSION request to RM. 
Receive SESSION_ACTIVATED reply from RM. 
Set CNOS RETURN_CODE according to the return code in the 

SESSION_ACTIVATED reply received from RM. 

SNA Format and Protocol Reference Manual for LU Type 6-~ 



DEACTIVATE_SESSION_PROC 

DEACTIVATE_SESSION_PROC 

FUNCTION: 

INPUT: 

This procedure is called by PS_COPR, the control-operator-verb router, when a 
transaction program issues a DEACTIVATE_SESSION verb. It sends an 
RM_DEACTIVATE_SESSION request to RM to activate a session. 

The CNOS DEACTIVATE_SESSION verb 

OUTPUT: Request to RM <RM_DEACTIVATE_SESSIONl, RETURN_CODE of DEACTIVATE_SESSION verb 

NOTE: This procedure has addressability to RM via PS_PROCESS_DATA.LU_ID. 

Referenced procedures, FSMs, and data structures: 
RM 
DEALLOCATION_CLEANUP_PROC 
PS_PROCESS_DATA 
RM_DEACTIVATE_SESSION 

Verify that the verb parameters specified satisfy the 
parameter values for the ACTIVATE_SESSION verb described in 
SNA Transaction Programmer's Reference Manual for LU~~· 

If an ABEND condition is identified then 
Call DEALLOCATION_CLEANUP_PROC (page 5.0-131 

Else 

to abnormally terminate this instance of the transaction program 
(control is not returned). 

Set the CNOS RETURN_CODE to OK. 
Create a DEACTIVATE_SESSION request record. 
Set RM_DEACTIVATE_SESSION.TCB_ID to PS_PROCESS_DATA.TCB_ID to identify 

the transaction control block describing this instance of PS. 

page 3-18 
page 5.0-13 
page 5.0-19 
page A-27 

Set RM_DEACTIVATE_SESSION.SESSION_ID to the SESSION_ID specified in the CNOS verb. 
Set RM_DEACTIVATE_SESSION.TYPE to the TYPE specified in the CNOS verb. 
Send DEACTIVATE_SESSION request to RM. 

5.4-37 



DEFINE_PROC 

DEFINE_PROC 

5.4-38 

FIMCTION: TMs procedure is called by PS_COPR, the control-operator-verb router, Nhen a 
transaction progra• issues any of the DEFINE verbs lDEFINE_LOCAL_LU, 
DEFINE_REMOTE_LU, DEFIHE_MODE, or DEFINE_TP). It is used to initialize or 
llOdi fy attributes of the LUCB, PARTNER_ LU, HOOE, and TRANSACTION_PROGRAH data 
structures. 

INPUT: The DEFINE verb para .. ters 

OUTPUT: The attributes of the data structure are defined with the specified values 

NOTE: This verb •ay be used to define any other attributes of the LU that are Mean­
ingful for a given implementation. 

Referenced procedures, FSHs, and data structures: 
LUCB 
PARTNER_ LU 
MODE 
TRANSACTIDN_PROGRAH 

Verify that the verb parameters specified satisfy the 
paramete.- values for the DEFINE verb i11 
~ Traosaction Proqra!l!!!!er's Reference H!DY!J. .far .LY~ i.r,l. 

If an ABEND condition is identified then 
Call DEALLOCATION_CLEANUP_PROC (page 5.0-13> to abnor•ally 

page A-1 
page A-2 
page A-3 
page A-4 

ter•inate this instance of the transaction progra• (control is not returned). 

Else 

The parameters specified are all valid attributes of the LUCB, PART­
NER_LU, MODE, or TRANSACTION_PROGRAH data structure. 

Assign values to the attributes of the data structure according to those 
specified on the DEFINE verb. 

SNA For .. t and Protocol Reference Hanual for LU Type6.2 



DISPLAY_PROC 

DISPLAY_PROC 

FUNCTION: This procedure is called by PS_COPR, the control-operator-verb router, Nhen a 
transaction program issues any of the DISPLAY verbs IDISPLAY_LOCAL_LU, DIS­
PLAY_REMOTE_LU, DISPLAY_ttOOE, or DISPLAY_TP>. It is used to display attri­
butes of the LUCB, PARTNER_LU, HOOE, and TRANSACTION_PROGRAM data structures. 

INPUT: The DISPLAY verb parameters 

OUTPUT: The specified attributes of the data structure are displayed for the user. 

NOTE: This verb •ay be used to display any other attributes of the LU that are 111ean­
ingful for a given implementation. 

Referenced procedures, FSHs, and data structures: 
LUCB 
PARTNER_LU 
MODE 
TRANSACTION_PROGRAM 

Ve•·ify that the verb parameters specified satisfy the 
parameter values for the DISPLAY verb in 
SHA Transaction programmer's Reference Manual 12!: .1JJ lll.e9 2....1· 

If an ABEND condition is identified then 
Call DEALLOCATION_CLEANUP_PROC (page 5.0-13) to abnor•ally 

page A-1 
page A-2 
page A-3 
page A-4 

ter•inate this instance of the transaction progra• (control is not returned>. 

Else 

The parameters specified are all valid attributes of the LUC:B, PART­
NER_LU, MODE MODE, or TRANSACTION_PROGRAM data structure. 

Display the requested LUCB, PARTNER_LU, HOOE, or TRANSACTION_PROGRAM 
attributes as they are currently defined. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-39 



DELETE_PROC 

DELETE_PROC 

5.4-40 

FUNCTION: This procedure is called by PS_COPR, the control-operator-verb router, when a 
transaction program issues a DELETE verb. It is used to delete attributes of 
the LUCB, PARTNER_LU, MODE, and TRANSACTION_PROGRAM data structures. 

INPUT: The DELETE verb parameters 

OUTPUT: The dat~ structure ~ttributes are deleted 

NOTE: This verb may be used to delete any other attributes that are meaningful for a 
given implementation. 

Referenced procedures, FSMs, and data structures: 
LUCB 
PARTNER_ LU 
MODE 
TRANSACTION_PROGRAM 

Verify that the verb parameters specified satisfy the 
parameter values for the DELETE verb in 
SNA Transaction Programmer's Reference Manual for LU~~. 

If an ABEND condition is identified then 
Call DEALLOCATION_CLEANUP_PROC (page 5.0-13) to abnormally 

page A-1 
page A-2 
page A-3 
page A-4 

terminate this instance of the transaction orogram (cont~ol ;s not returned), 

Else 

r---.. -----------------------------------. 
The parameters specified are all valid attributes of the LUCB, PART­
NER_LU, MODE, or TRANSACTION_PROGRAH data structure. 

Delete the LUCB, PARTNER_LU, MODE, or TRANSACTION_PROGRAM attributes 
as specified on the DELETE verb. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



LOCAL_SESSION_LIMIT_PROC 

LOCAL_SESSION_LIMIT_PROC 

FUNCTION: This procedure is invoked by either of the following verb-specific CNOS proce­
dures: INITIALIZE_SESSION_LIMIT, RESET_SESSION_LIMIT. It processes CNOS 
control-operator verbs that affect only the local LU: INITIALIZE_ and 
RESET_SESSION_LIMIT for single-session connections and for mode name SNASVCNG. 

INPUT: The CNOS source LU verb parameters from the calling procedure 

OUTPUT: Return code for the CNOS verb CCNOS RETURN_CODEJ 

NOTE: This procedure read-locks the MODE for the entire procedure. 

Referenced procedures, FSMs, and data structures: 
LOCAL_VERB_PARAMETER_CHECK 
SNASVCNG_VERB_PARAMETER_CHECK 
CHANGE_ACTION 
LUCB 

Using the LUCB, determine the type of session possible 
with the partner LU, either single or parallel. 

If the type of connection is single session then 
Call LOCAL_VERB_PARAMETER_CHECK !page 5.4-42>, 
with the CNOS verb parameters, to verify the verb parameters. 

Else 
Call SNASVCMG_VERB_PARAMETER_CHECK !page 5.4-43), with the CNOS verb 
parameters, to perform the appropriate parameter checks. 

If the check found no errors then 
Call CHANGE_ACTION !page 5.4-441, with the CNOS verb parameters, 

page 5.4-42 
page 5.4-43 
page 5.4-44 
page A-1 

to change the session limits at the source LU according to the parameters specified. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-41 



LOCAL_VERB_PARAMETER_CHECK 

LOCAL_VERB_PARAMETER_CHECK 

5.4-42 

FUNCTION: This procedure performs validity checks on a CNOS verb for single-session con­
nections, and it returns the CNOS-verb RETURN_CODE for-any error detected. 

INPUT: 

OUTPUT: 

Th~_~N~~_source LU verb parameters, PARTNER_LU_LIST, and MODE_LIST 

CNOS verb RETURN_CODE value 

Referenced procedures, FSMs, and data structures: 
DEALLOCATION_CLEANUP_PROC 
LUCB 
PARTNER_ LU 
MODE 

Verify that the specified verb parameters satisfy the single-session 
parameter values as described for this verb in 
SNA Transaction Programmer's Reference Manual for .!.!! ~ ~-

page 5.0-13 
page A-1 
page A-2 
page A-3 

Attributes of the mode are verified against fields in the appropriate 
MOOE structure for the specified PARTNER_LU. 

Select based on result of parameter verification: 
When all parameters are correct 

Set the CNOS RETURN_CODE to OK--AS_SPECIFIED. 
When an ABEND condition is identified 

Call DEALLOCATION_CLEANUP_PROC (page 5.0-13l 
to abnormally terminate this instance of the transaction program 
(control is not returned). 

A mode name value of ALL constitutes an ABEND condition when the CNOS 
verb is RESET_SESSION_LIMIT. 

When a parameter error is identified 
Set the CNOS RETURN_COOE for this verb to PARAMETER_ERROR. 

When the MODE.SESSION_LIMIT is not 0 
Set the CNOS RETURN_CODE to LU_MODE_SESSION_LIMIT_NOT_ZERO. 

When all !LU,MODEl session limits to this single session partner LU are currently 0 
and the sum of all CLU,MODEl session limits to other partner LUs = the total 
session limit Cin the LUCBl 

Set the CNOS RETURN CODE for this verb to LU_SESSION_LIMIT_EXCEEDED. 
When the session limit-specified exceeds the LOCAL_MAX_SESSION_LIMIT in the MODE 

Set the CNOS RETURN_COOE for this verb to REQUEST_EXCEEDS_MAX_ALLOWED. 

SHA Format and Protocol Reference Manual for LU Type 6.2 



SNASVCMG_VERB_PARAMETER_CHECK 

SNASVCMG_VERB_PARAMETER_CHECK 

FUNCTION: 

INPUT: 

This procedure performs validity checks on a CNOS verb for mode name 
SNASVCMG, and it returns the CNOS-verb RETURN_CODE for any error detected. 

Transaction program verb parameters, PARTNER_LU_LIST, and MODE_LIST 

OUTPUT: CNOS verb RETURN_CODE value if any errors are detected, otherwise OK is 
returned 

Referenced procedures. FSMs, and data structures: 
DEALLOCATION_CLEANUP_PROC 
LUCB 
PARTNER_ LU 
MODE 

page 5.0-13 
page A-1 
page A-2 
page A-3 

Verify that the verb parameters specified satisfy the parameter values appropriate 
for parallel-session connections, as described in 
.fil:!A Transaction Programmer's Reference Manual for LU~ ~. 

Attributes of the mode are verified against fields in the appropriate 
MODE structure for the specified PARTNER_LU. 

Select, in order, based on result of parameter verification: 
When an ABEND condition is identified 

Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-13) 
to abnormally terminate this instance of the transaction program 
(control is returned>. 

When a parameter error is identified 
Set the CNOS RETURN_CODE to PARAMETER_ERROR. 

When the MODE.SESSION_LIMIT is not 0 
Set the CNOS RETURN_CODE to LU_MODE_SESSION_LIMIT_NOT_ZERO. 

When the session limit specified could not be added without exceeding 
the session limit in the LUCB for the LU (page 5.4-4> 

Set the CNOS RETURN_CODE to LU_SESSION_LIMIT_EXCEEDED. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-43 



CHANGE_ACTION 

CHANGE_ACTION 

5.4-44 

FUNCTION: This procedure is called when the LU accepts a valid Cand negotiated, if nec­
essary) CNOS command. This procedure updates the CLU,model entries for 
affected mode names with the new session limit parameters. It decides wheth­
er this LU is responsible for taking any action to change the session count, 
and if so, sends a CHANGE_SESSIONS request to RM. 

INPUT: 

OUTPUT: 

NOTE: 

The CNOS verb parameters specified, 
the new session limit parameters in 
is distributed; the role of the LU 
NER_LU_LIST and MODE_LIST 

if the CNOS verb is local to this LU only; 
the CNOS reply record, if the CNOS action 
to be modified (source or target), PART-

Session limits and drain state are updated in the MODE; CHANGE_SESSIONS to RM 

This procedure locks the MODE for the entire procedure. 

See SNA Transaction Programmer's Reference Manual for LU !:llJ2!! ~ for the 
session-limit parameters affected by each CNOS verb. 

This procedure has addressability to RM via PS_PROCESS_DATA.LU_ID. 

Referenced procedures, FSMs, and data structures: 
RM 
CHANGE_ SESSIONS 
PARTNER_ LU 
MODE 

SNA Format and Protocol Reference Manual for LU Type 6.2 

page 3-18 
page A-26 
page A-2 
page A-3 



CHANGE_ ACTION 

Select based on whether one MODE or all MODEs with the PARTNER_LU are affected 
(see the MODE_LIST associated with the PARTNER_LU): 

When only one MODE is affected 
Update the session-limit parameters for the specified !LU, mode) entry 

IMODE.SESSION_LIMIT, MODE.MIN_CONWINNERS_LIMIT, MODE.MIN_CONLOSERS_LIMIT, 
MODE.DRAIN_SELF, MODE.DRAIN_PARTNERo MODE.RESPONSIBLE) as they are applicable: 

For single-session mode names and for mode name SNASVCMG, the session limit 
parameters affected are those specified on the particular CNOS verb and the 
changes are reflected in the source LU only. 

MODE.MINCONWINNERS_LIMIT is set from MINCONWINNERS_SOURCE specified in 
the CNOS command. MODE.MINCONLOSERS_LIMIT is set from 
MINCONWINNERS_TARGET specified in the CNOS command. 

For parallel-session connections defined with the partner LU, the session limit 
parameters affected are those specified on the CNOS reply and the changes are 
reflected as appropriate in both the source and the target LU !when this 
procedure is called from SOURCE_SESSION_LIMIT !or LOCAL_SESSION_LIMIT> and 
PROCESS_SESSION_LIMIT, respectively>. 

At the source LU, MODE.MIN_CONWINNERS_LIMIT is set from 
MIN_CONWINNERS_SOURCE specified in the CNOS reply and 
MODE.MIN_CONLOSERS_LIMIT is set from MIN_CONWINNERS_TARGET specified 
in the CNOS reply. The reverse is true at the target LU. 

If the verb issued at the source LU is INITIALIZE_SESSION_LIMIT or CHANGE_SESSION_LIMIT, 
or, according to the responsible field of the CNOS reply (applicable only when the 
CNOS function is distributed), this LU is responsible for session deactivation then 

Create a CHANGE_SESSIONS request record. 
Set CHANGE_SESSIONS.TCB_ID to PS_PROCESS_DATA.TCB_ID to identify the transaction 
control block describing this instance of PS. 

Set CHANGE_SESSIONS.LU_NAME to PARTNER_LU.LOCAL_LU_NAME. 
Set CHANGE_SESSIONS.MODE_NAME to the affected mode name as specified on the 

CNOS verb. 
Set CHANGE_SESSIONS.DELTA to the difference between the LU_MODE_SESSION_LIMIT 
specified on the CNOS command or reply and the current MODE.SESSION_LIMIT. 

If the verb issued by the source LU is CHANGE_SESSION_LIMIT and the limit in the 
reply is less than the current session limit, or the verb issued by the source LU 
is the distributed function RESET_SESSION_LIMIT verb I MODE.DRAIN_SELF = NO then 

If the responsible field value in the CNOS reply specifies the current LU Cwhich 
could be source or target) then 

Set CHANGE_SESSIONS.RESPONSIBLE to YES. 
Else 

Set CHANGE_SESSIONS.RESPONSIBLE to NO. 
Else <RESPONSIBLE value will not be significant to RM) 

Set CHANGE_SESSIONS.RESPONSIBLE to NO. 
Send the CHANGE_SESSIONS request to RM. 

When all MODEs are affected Cin which case the verb issued by the source LU is 
RESET_SESSION_LIMIT) 

Do the following for each MODE (except SNASVCMG> with the PARTNER_LU 
Set MODE.DRAIN SELF and MOOE.DRAIN PARTNER based on the current 
session limit-and the drain param;ters of the CNOS reply. 

Set SESSION_LIMIT, MIN_CONWINNERS_LIMIT and MIN_CONLOSERS_LIMIT to O. 
If this LU is responsible for session deactivation I MODE.DRAIN_SELF = NO then 

Create a CHANGE_SESSIONS request record as described in detail above. 
Send the CHANGE_SESSIONS request to RM. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-45 



SQURCE-LU ~ PRQCEDURES 

5.4-46 

SOURCE_SESSION. lIMIT_PROC 

,..-.-----------------------------------------~---------------------------------------------. 

FUNCTION: This procedure is invoked by any of the following verb-specific CNOS proce­
dures: INITIALIZE_SESSION_LIMIT, CHANGE_SESSION_LIMIT, RESET_SESSION_LIMIT. 
It provides common overall processing of a parallel-session CNOS 
control-operator verb issued by a source LU control operato~ transaction pro­
gram. It invokes other procedures to check the verb parameters for validity, 
detect and resolve race conditions with any other CNOS transaction, build a 
command record, allocate a conversation with the target LU, exchange command 
and reply records with the target LU, update the PARTNER_LU_LIST and MODE_LIST 
with the new session limit parameters, and, if necessary, request the 
resources manager to activate or deactivate sessions. If errors are detected 
at any point, it skips subsequent steps and cleans up from previous steps. 
It passes a RETURN_CODE to the calling procedure indicating success or a 
failure reason. 

INPUT: 

OUTPUT: 

CNOS source LU verb parameters, from the calling procedure; the CNOS reply 
from the target LU, via SOURCE_CONVERSATION_CONTROL; the CLU,mode> entries 
with the session limits in the MODE, PARTNER_LU_LIST and MODE_LIST, and other 
CNOS parameters; the lock to control contention for the PARTNER_LU_LIST and 
MODE_LIST by CNOS transaction processes, and to resolve CNOS races (maintained 
by SESSION_LIMIT_DATA_LOCK_MANAGER> 

Return code for the CNOS verb, CNOS RETURN_CODE; procedure SOURCE_CONVERSATION 
allocates and deallocates a conversation with the target LU and issues con­
versation verbs; specified CLU,mode) entries updated via CHANGE_ACTION in the 
MODE; CHANGE_SESSIONS issued to RM--via CHANGE_ACTION 

Referenced procedures, FSMs, and data structures: 
SESSION_LIMIT_DATA_LOCK_MANAGER 
VERB_PARAMETER_CHECK 
SOURCE_CONVERSATION_CONTROL 
CHECK_CNOS_REPLY 
CHANGE_ACTION 
PARTNER_ LU 
MODE 

SNA Format and Protocol Reference Manual for LU Type 6.2 

page 5.4-67 
page 5.4-48 
page 5.4-49 
page 5.4-56 
page 5.4-44 
page A-2 
page A-3 



SOURCE_SESSION_LIMIT_PROC 

Call VERB_PARAMETER_CHECK Cpage 5.4-48), 
with the verb parameters, to verify the syntax of the parameters. 

If all parameters are determined to be correct then 

Call SESSION_LIMIT_DATA_LOCK_MANAGER Cpage 5.4-67) 
to perform a source-LU lock on the affected CLU,mode> entry or entries 
and prevent simultaneous access by other CNOS transactions. 

Select based on one of the following conditions: 
When the state of the lock is changed from UNLOCKED to 

LOCKED_BY_SOURCE for each affected CLU,mode) entry 

MODE is now locked against any other CNOS transaction. 

Build a CNOS command record with the p;;i~;.meter'!l S!'e'd f ~ z.J :m the veri> 
and consistent with the chang~-number-of-sessions record 
CAppendix H>. 

If ·~iie command is change or initialize session limits then 
If the MODE.SESSION_LIMIT < the new limit that is being proposed then 

Set MODE.CNOS_NEGOTIATION_IN_PROGRESS = TRUE. 
Set MODE.LIMIT_BEING_NEGOTIATED = LU_MODE_SESSION_LIMIT from verb. 
This is done so BINDs that arrive prior to the CNOS reply are not rejected. 

Do until the CHECK_CNOS_REPLY procedure does not return RETRY 

The verb completes or a permanent error occurs. 

Call SOURCE_CONVERSATION_CONTROL Cpage 5.4-49), 
with the CNOS command, to send on the conversation and to receive the CNOS reply. 

If the SOURCE_CONVERSATION_CONTROL returns OK Ca CNOS reply was 
successfully received) then 

Optionally, perform syntax checking on the CNOS reply record 
according to the description in Appendix H. 

If the CNOS reply is syntactically correct, or the syntax 
check was not performed then 

Call CHECK_CNOS_REPLY with the CNOS reply record and the 
fully-qualified LU names for the source and target LUs 
to determine the result of the negotiation (page 5.4-56). 

Else 
Set the CNOS RETURN_CODE to RESOURCE_FAILURE_NO_RETRY. 

If the session limits were successfully accepted or negotiated then 
Call CHANGE_ACTION Cpage 5.4-44), with the CNOS reply, 

to update the limits in the MODE structure for the source LU and notify RM. 

If the command is change or initialize session limits then 
Set MODE.CNOS_NEGOTIATION_IN_PROGRESS = FALSE. 

Call SESSION_LIMIT_DATA_LOCK_MANAGER Cpage 5.4-67) 
to perform the unlock operation on the affected CLU,mode) entry or entries. 

When the lock operation performed on any of the affected CLU,mode> entries 
was other than a state change from UNLOCKED to LOCKED_BY_SOURCE 
(because of a previous lock operation performed for a different CNOS command) 

Set the CNOS RETURN_CODE to COMMAND_RACE_REJECT. 

When the mode name is not found for the PARTNER LU 
Set the CNOS RETURN_CODE to PARAMETER_ERROR.-

Chapter 5.4. Presentation Services-~Control-Operator Verbs 5.4-47 



YERB~PARAHETER_CHE,CK 

YERB_PARAHETER_CHECK 

S.4-48 

FUNCTION: This procedure perforu validity checks on the CNOS verb issued by the 
control-operator tr•nsaction program at the source LU, and it returns thtl 

'.'.' · "Ct«>S-verb RETURN_ CODE for any error datected~ . 

INPUT: P•rameters fr09 transaction progra• verb, PARTNER_LU_LIST and HODE_LIST 

OUTPUT: CNOS verb RETURN_CODE value if any errors are detected; other .. ise, OK is 
returned · 

NOTE: This procedure locks the HOOE for the entire procedure. 

Referenced procedures. FSHs, and data structures: 
DEALLOCATION_CLEAt«JP_PROC 
LUCB 
PARTNER_ LU 
MODE 

Verify that the specified verb parameters satisfy the parameter v•lues as 

page S.0-13 
page A-1 
p•ge A-2 
page A-3 

described for this verb in~ Trans1ction proqral!!ler's Reference HirlYi11.21: .bY'l3am !a.&· 

Attributes of the mode name are verified against fields in the appro­
priate HOOE structure for the specified PARTNER_LU. 

Select based on result of parameter verification: 
When all parameters are correct 

Set the CNOS RETURN_CODE for this verb to Ol<·-AS_SPECIFIED. 
Nhen an ABEtt> error condition is identified 

Call DEALLCCATION_CLEANUP_PROC (page S.0-13) 
to abnormtlly ter•inate this instance of the transaction progra• 
(control is not returned). 

When a par;uweter error is identified 
Set the CNOS RETURN_CODE to PARAHETER_ERROR. 

When the verb issued is INITIALIZE_SESSION_LIHIT and the HODE.SESSION_LIHIT 
is not 0 for the affected HOOE at the PARTNER_LU 

Set the CNOS RETURN_CODE to lU_HODE_SESSION_lIHIT_NOT_ZERO. 
When the verb issued is CHANGE_SESSION_lit1IT and the t10DE.SESSION_Llt1IT 
is 0 for the aHected tlODE at the PARTNER_LU 

Set the CNOS RETURN_CODE to lU_tlODE_SESSION_Lit1IT_ZERO. 
When the specified session li•it could not be added Nithout exceeding 
the session li•it in the UJCB for the LU (page 5.4-4). 

Set the CNOS RETURH_CODE to LU_SESSION_LIHIT_EXCEEDED. 
When the specified session li•it could not be •dded Nithout exceeding 
the LOCAL_HA)(_SESSIOH_LIHlT in the HOOE 

Set the CNOS RETURN_CODE to REQUEST_EXCEEDS_HAX_ALLOWED. 

SNA ForRt and Protoco.l Reference Manual for, .LU Type 6. 2 



SOURCE_CONVERSATION_CONTROL 

SOURCE_ CONVERSATION_ CONTROL 

FUNCTION: Th;s procedure controls a conversat;on w;th the target LU to send the CNOS 
command and rece;ve the CNOS reply. It controls the select;on of mode name 
for the conversation. In the event of session outage, it retries the conver­
sation eHher until it succeeds or until no sessions are active for any mode 
name affected by the CNOS verb. 

INPUT: CNOS verb parameters includ;ng the name of the target LU; CNOS command; Summa­
ry of the success or fa;lure of the CNOS exchange across the conversat;on 
(provided by the SOURCE_CONVERSATION procedure> so this routine can make a 
retry decision: 

• OK: conversation completed successfully 
• SON: sess;on outage occurred; retry for the same mode name might succeed 
• NO_SESSION: no session is available for th;s mode name; retry for another 

mode name might succeed 
• FAILED: conversation or transaction failure; retry is not likely to suc­

ceed 

OUTPUT: CNOS reply; summary of outcome of conversation for caller 

Referenced procedures, FSMs, and data structures: 
SOURCE_ CONVERSATION 
LUCB 
PARTNER_ LU 
MODE 

Do until the SOURCE_CONVERSATION procedure returns a value 
OK or FAILED, or ;f all possible modes are tried but no sessions 
are available on any of these 

Choose a mode name with which to allocate a conversat;on. The mode 
name is optionally selected from an implementation-defined list 
Cif any of these sessions is immediately available> or the SNA­
defined mode name SNASVCMG. 

Choose the RETURN_CONTROL value for the ALLOCATE verb 
(see~ Transaction Programmer's Reference~ .f2!: .bY ~ !..,!). 

page 5.4-50 
page A-1 
page A-2 
page A-3 

Initially, choose mode names from the implementation defined list and 
use a RETURN_CONTROL value of IMMEDIATE. Once t~~~e havG been 
exhausted, try the SNA-defined mode (SNASVCMGJ with a RETURN_CONTROL 
value of WHEN_SESSIO~_ALLOCATED. If this is not· successful, choose a 
mode name fro~ chose that will be affected by this CNOS command and 
~s~ d RETURN_CONTROL value of WHEN_SESSION_ALLOCATED. 

Call SOURCE_CONVERSATION Cpage 5.4-50) with the parameters 
chosen above and the CNOS command record. SOURCE_CONVERSATION will issue 
the basic conversa.tion verbs to send the CNOS command, receive the CNOS 
reply over the conversation and obtain the fully-qualified LU names for th;s and the 
partner LU for later comparison. 

If SON (session outage notification> is returned, the conversation is 
retried on another session for the same mode name. 

Set the return value for this routine to the value returned from 
SOURCE_CONVERSATION. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-49 



SOURCE_ CONVERSATION 

SOURCE_CONVERSATION 

5.4-50 

FUNCTION: This procedure conducts a conversation with the target LU to send the CNOS 
command and receive the CNOS reply. It issues the tonversation verbs. It 
invokes other routines to analyze the return codes to determine when and how 
to deallocate the conversation and whether retry is necessary. 

INPUT: 

OUTPUT: 

NOTE: 

LU name of the partner, mode name for the conversation on which the 
CHANGE_NUMBER_OF_SESSIONS command and reply records are exchanged; the 
RETURN_CONTROL parameter for the ALLOCATE verb; CNOS command 

CNOS reply; summary of the success or failure of a particular basic conversa­
tion verb, according to the particular RESULT_CHECK_* procedure called: 

• OK: conversation completed successfully 
• SON: session outage occurred; retry for the same mode name might succeed 
• NO_SESSION: no session is available for ·this mode name; retry for another 

mode name might succeed 
• FAILED: conversation or transaction failure; retry is not likely to suc­

ceed 

The SOURCE_CONVERSATION_CONTROL procedure will make a retry decision based on 
this information. 

See SNA Transaction Programmer's Reference Manual for !.Y ~ i....& for conver­
sation verbs. 

Referenced procedures, FSMs, and data structures: 
RESULT_CHECK_ALLOCATE 
RESULT_CHECK_SEND_COMMAND 
RESULT_CHECK_RECEIVE_REPLY 
RESULT_CHECK_RECEIVE_DEALLOCATE 
LUCB 
PARTNER.-LU 

Conduct a conversation with the partner. 

Issue the ALLOCATE verb according to the mode name and RETURN_CONTROL values 
passed to this procedure and default values as described on page 5.4-27. 

page 5.4-52 
page 5.4-53 
page 5.4-54 
page 5.4-55 
page A-1 
page A-2 

Call RESULT_CHECK_ALLOCATE to examine the RETURN_CODE value from the ALLOCATE 
(according to the RETURN_CONTROL value specified on the verb) and DEALLOCATE the 
conversation if appropriate Cpage 5.4-52>. 

SNA Format'and Protocol Reference Manual for LU Type 6.2 



SOURCE_ CONVERSATION 

If the ALLOCATE verb returned OK then 
Issue a GET_ATTRIBUTES verb, w;th the RESOURCE parameter returned 

from the ALLOCATE, to obta;n the fully qual;fied LU names for 
this LU and the partner LU. 

These LU names are requ;red for compar;son ;n the CHECK_CNOS_REPLY to 
determ;ne the winner for a double-fa;lure race. 

Issue a SEND_DATA verb to send the CNOS command. 
Call RESULT_CHECK_SEND_COMMAND (page 5.4-53) to exam;ne 

the parameters returned from the SEND_DATA verb and perform the DEALLOCATE 
;f appropriate. 

If the SEND_DATA verb returned OK then 
Issue a RECEIVE_AND_WAIT verb to rece;ve the CNOS reply. 
Call RESULT_CHECK_RECEIVE_REPLY Cpage 5.4-54) to examine 
the parameters returned from the RECEIVE_AND_WAIT verb and perform the DEALLOCATE 
if appropriate. 

If the RECEIVE_AND_WAIT verb returned OK then 
Issue the RECEIVE_AND_WAIT verb to receive the DEALLOCATE from the 
partner LU. 

Call RESULT_CHECK_RECEIVE_DEALLOCATE (page 5.4-55) to examine 
the parameters returned from the RECEIVE_AND_WAIT verb and perform the DEALLOCATE 
if appropriate. 

Set the return code for this procedure from the value returned by the last 
RESULT_CHECK_* procedure called. 

Chapter 5.4. Presentation Se.rviees--Control-Operator Verbs 5.4-51 



RESULT_CHECK_ALLOCATE 

RESULT_CHECK_ALLOCATE 

S.4-52 

FUNCTION: This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the ALLOCATE verb that allocates the CNOS conversation, and it clas­
sifies the outcome for use in later decisions, specifically whether to retry, 
quit, or continue. For some error conditions, ~he conversation will need to 
be deallocated. 

INPUT: 

OUTPUT: 

NOTE: 

RETURN_CODE, RETURN_CONTROL 

Summary of the success or failure of the ALLOCATE verb: 

• OK: conversation completed successfully 
• SON: session outage occurred; retry for the same mode name might succeed 
• NO_SESSIOH: no session is available for this mode name; retry for another 

mode name might succeed 
• FAILED: conversation or transaction failure; retry is not likely to suc­

ceed 

This information will be used by SOURCE_CONVERSATION_COHTROL to make a retry 
decision. 

Checks are required unless designated optional. 

Select based on the RETURH_COHTROL value specified on the ALLOCATE verb: 
When IMMEDIATE I implementation-selected mode name) 

Select based on the RETURN_CODE value from the ALLOCATE verb: 
When OK 

Return OK to the SOURCE CONVERSATION procedure. 
When ALLOCATIOH_ERROR (optional checkl 

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate 
the conversation locally. 

Return FAILED to the SOURCE_COHVERSATIOH procedure. 
When UNSUCCESSFUL (no session is immediately available) 

Return HO_SESSIOH to the SOURCE_COHVERSATIOH procedure. 
Otherwise (optional check> 

Return FAILED to the SOURCE_CONVERSATIOH procedure. 

When WHEN_SESSIOH_ALLOCATED 

Select based on the RETURN_CODE value from the ALLOCATE verb: 
When OK 

Return OK to the SOURCE_COHVERSATIOH procedure. 
When ALLOCATIOH_ERROR--ALLOCATIOH_FAILURE_RETRY . 

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the 
conversation locally. 

Return HO_SESSIOH to the SOURCE_COHVERSATIOH procedure. 
Otherwise (optional check> 

Return FAILED to the SOURCE_COHVERSATION procedure. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



RESULT_CHECK_SEND_COtttAND 

RESULT_CHECl<_SEND_COtf1AN> 

FUNCTION: This proce<k.tre aruilyzes the RETURN_CODE and other significant returned para11e­
ters from the SEtll_DATA verb that sends the CNOS c011111and, and it classi fl es 
the outco111e for use in later decisions, specifically whether to retry, quit, 
or continue. For SOIH! error conditions, the conversation ay need to be deal­
located. 

INPUT: 

ClUTPUT: 

NOTE: 

RETURN_CODE, REQIJEST_TO_SEND_RECEIVED 

S1.111111ary of the success or failure of the SEND_DATA verb: 

• OK: conversation completed successfully 
• SON: session outage occurr1.-dJ retry for the same 110de name might succeed 
• NO_SESSION: no session is available for this mode nameJ retry for another 

•ode mime might succeed 
• FAILED: conversation or transaction failure1 retry is not likely to suc­

ceed 

This information Nill later be used by SOURCE_CONVERSATION_CONTROL to make a 
retry decision. 

Checks are required 111less designated optional. 

If the REQUEST_TO_SEN>_RECEIVED parameter returned from the SEND_DATA verb is NO then 

Select, in order, based on the RETIJRN_CODE para11eter frOll the SEND_DATA verb: 
lrllen OK 

Else 

Return OK to the SOURCE_CONVERSATION procedure. 
When RESOURCE_FAILURE_RETRY 

Issue a DEALLOCATE verb Nith TYPE=LOCAL to deallocate the conversation 
locally. 

Return SON (session outage notification) to the SOURCE_CONVERSATION procedure. 

lrllen ALLOCATION_ERROR--SECURITY_NOT_VALID, 
ALLOCATION_ERROR--TP_NOT_AVAILABLE_NO_RETRY, 
or ALLOCATION_ERROR--TP_NOT_AVAILABLE_RETRY 

Issue a DEALLOCATE verb Mith TYPE=LOCAL to deallocate the 
conversation locally. 

Return FAILED to the SOURCE_CONVERSATION procedure. 
When ALLOCATION_ERROR--* Coptionally check for any other variety of ALLOCATICIN_ERRORI 

Issue a DEALLOCATE verb Nith TYPE=LOCAL to deallocate the 
conversation locally. 

Return FAILED to the SOURCE_CONVERSATION procedure. 

lollen DEALLOCATE_ABEND_PROG 
Issue a DEALLOCATE verb Nith TYPE=LOCAL to deallocate the conversation 
locally. 

Return FAILED to the SOURCE_CONVERSATION procedure. 
Otherwise 

Issue a DEALLOCATE verb Nith TYPE=ABEND_PROG to deallocate the 
conversation. 

Return FAILED to the SOURCE_CONVERSATION proce<k.tre. 

Issue a DEALLOCATE verb Nith TYPE=ABEND_PROG to deallocate the conversation. 
Return FAILED to the SOURCE_CONVERSATION proce<k.tre. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-53 



RESULT_CHECK_RECEIVE_REPLY 

RESULT_CHECK_RECEIVE_REPLY 

S.4-54 

FUNCTION: This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the RECEIVE_AND_WAIT verb that receives the CNOS reply, and it clas­
sifies the outcome for use in later decisions, specifically whether to retry, 
quit, or continue. For some error conditions, the conversation may need to be 
deallocated. 

INPUT: RETURN_CODE, REQUEST_TO_SENT_QECEIVED, WHAT_RECEIVED 

OUTPUT: Summarv ~f the success or failure of the RECEIVE_AND_WAIT verb: 

NOTE: 

• OK: conversation completed successfully 
• SON: session outage occurrea; retry for the same mode name might succeed 
• NO_SESSION: no session is available for this mode name; retry for another 

mode name might succeed 
• FAILED: conve~sation or transaction failure; retry is not likely to suc-

ceed · 

This information will later be used by SOURCE_CONVERSATION_CONTROL to make a 
retry decision. 

Checks are required unless designated optional. 

If the REQUEST_TO_SEND_RECEIVED parameter from the RECEIVE_AND_WAIT verb is NO then 

Select based on the RETURN CODE value returned from the 
RECEIVE_AND_WAIT verb: -

Else 

When OK 
If the WHAT_RECEIVED parameter returned is DATA_COMPLETE then 

Return OK to the SOURCE_CONVERSATION procedure. 

Else 
Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the 
conversation. 

Return FAILED to the SOURCE_CONVERSATION procedure. 

When RESOURCE FAILURE RETRY 
Issue a DEALLOCATE-verb with TYPE=LOCAL to deallocate the 
conversation locally. 

Return SON (session outage notification! to the SOURCE_CONVERSATION procedure. 

When ALLOCATION_ERROR--SECURITY_NOT_VALID, 
ALLOCATION_ERROR--TP_NOT_AVAILABLE_NO_RETRY, 
or ALLOCATION_ERROR--TP_NOT_AVAILABLE_RETRY 

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the 
conversation locally. 

Return FAILED to the SOURCE_CONVERSATION procedure. 
When ALLOCATION_ERROR--* 

(optionally check for any other variety of ALLOCATION_ERRORJ 
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the 
conversation locally. 

Return FAILED to the SOURCE_CONVERSATION procedure. 

When DEALLOCATE_NORMAL or DEALLOCATE_ABEND_PROG (optional check) 
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the 
conversation locally. 

Return FAILED to the SOURCE_CONVERSATION procedure. 
Otherwise 

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the 
conversation. 

Return FAILED to the SOURCE_CONVERSATION procedure. 

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the 
conversation. 

Return FAILED to the SOURCE_CONVERSATION procedure. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



RESULT_CHECK_RECEIVE_DEALLOCATE 

RESULT_CHECK_RECEIVE_DEALLOCATE 

FUNCTION: Th;s procedure analyzes the RETURN_CODE and other s;gn;f;cant returned parame­
ters from the RECEIVE_AND_WAIT verb that rece;ves DEALLOCATE from the target 
LU, and ;t class;f;es the outcome for use ;n later dec;s;ons, spec;f;cally 
whether to retry, qu;t, or cont;nue. For some error cond;t;ons, the conversa­
t;on may need to be deallocated. 

INPUT: 

OUTPUT: 

RETURN_CODE, REQUEST_TO_SEND_RECEIVED, WHAT_RECEIVED Cused only for error log) 

Summary of the success or fa;lure of the RECEIVE_IMMEDIATE verb: 

• OK: conversation completed successfully 
• SON: session outage occurred; retry on the same mode name might succeed 
• NO_SESSION: no sess;on is available for th;s mode name; retry on another 

mode name might succeed 
• FAILED: conversation or transaction failure; retry is not likely to suc­

ceed 

If the REQUEST_TO_SEND_RECEIVED parameter returned from the DEALLOCATE verb is NO then 

Select based on t~e RETURN_CODE value returned from the.DEALLOCATE verb: 

Else 

When DEALLOCATE_NORMAL 
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the r.onversation locally. 
Return OK to the SOURCE_CONVERSATION procedure. 

When RESOURCE_FAILURE_RETRY 
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the conversation 
locally. 

Return SON (session outage notification) to the SOURCE_CONVERSATION procedure. 
When DEALLOCATE_ABEND_PROG 

Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the conversat;on locally. 
Return FAILED to the SOURCE_CONVERSATION procedure. 

Otherw;se 
Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the conversat;on. 
Return FAILED to the SOURCE_CONVERSATION procedure. 

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the conversation. 
Return FAILED to the SOURCE_CONVERSATION procedure. 

Chapter 5.4. Presentat;on Serv;ces--Control-Operator Verbs 5.4-55 



CHECK_CNOS_REPLY 

CHECK_CNOS_REPLY 

5~4-56 

FUNCTION: Th;s procedure is called Nlwn the conversation Mith the target LU C0111Pletes. 
It deter•ines Nhett-er the convers;it;on ... t be retried due to a double-failure 
race condit;on, Nhether the verb .. t be ter•;nated due to error. or Mhether 
to continue with the action phase of CNOS processing. 

It performs opt;onal rece;ve checks on the validity of the reply. It sets the 
return code for the CNOS verb. 

INPln': Fields of the CNOS reply record, PARTNER_LU_LIST and HODE_LIST for current 
session li•it OUTPUT.CNOS RETURN_COOE, if any errors are f~I RETRY, l.med by 
caller to select subsequent processing 

NOTE: Checks are required "'less designated. optional. 

Referenced procedures, FSHs, and data structures: 
LUCB 
PARTNER_ LU 
HOOE 

Select based on the reply 1110dif;er f;eld of the CNOS reply record: 
When the reply modifier ;s MOOE_NAHE_NOT_RECOGHIZED 

Set the CNOS RETURN_COOE to lMRECOGNIZED_HOOE_NAHE •. 
~n the reply •odif;er indicates an lLU,iaode) session li•it of 0 

page A-1 
page A-2 
page A-3 

Verify that, for the PARTNER_LU tlODEs specified on the original CNOS verb1 
that the SESSION_LIHIT=o. and DRAIN_SELF=NO. 

If these HOOE attributes are correctly verif;ed then 
Set the CNOS RETURN_COOE to LU_HODE_SESSION_LIHIT_CLOSED. 

Else 
Set the CNOS RETURN_CODE to RESOURCE_FAILURE_NO_RETRY. 

When the reply Modifier is COtlMAND_RACE_DETECTED 
Check the state of the lock to deter•ine whether the race is a single- or 
double-failure race (page 5.4-30). 

COlllpare the fully-qualified LU names for the source and target LU. 
(returned fro• the GET_ATTRIBUTES verb in the SOURCE_COHVERSATION 
procedure) with respect to the EBCDIC collating sequence (page 5.4-14>. 

If the race detected is a single-failure race or the LU name of the target 
LU is greater by the above comparison then 

Set the CNOS RETURN_CODE to COHHAtl>_RACE_REJECT. 

Else ldouble-failure race cond;t;on and source LU na .. is greater) 
Return RETRY to SOURCE_SESSION_LIHIT_PROC. 

When the reply 1110difier is ACCEPTED 
Set the CNOS RETURN_CODE to Ol<--AS_SPECIFIED. 

~n the reply 11ed;fier ;s NEGOTIATED 
Optionally verify that the parameters ;n the CNOS reply were correctly 
negot;ated. according to page 5.4-28. 

If the reply para111eters were successfully verified or the optional 
checks were not ;mplemented then 

Set the CNOS RETURN_CODE to OK--AS_NEGOTIATED. 

Else 
Set the CNOS RET\JRN_CODE to RESOURCE_FAILURE_NO_RETRY. 

SNA ForRt and Protocol Reference Hanual for LU Type 6.2 



TARGET-LU CNOS PROCEDURES 

X06Fl 

FUNCTION: 

OUTPUT: 

NOTE: 

This procedure is the CNOS service transaction program at the target LU. It 
is invoked by PS_INITIALIZE as a result of an FMH-5 Attach header being 
received from the source LU. It issues the PROCESS_SESSION_LIMIT control 
operator verb to activate CNOS processing at the target LU. It informs the 
target-LU operator of the CNOS action. 

Issues control-op~rator verb PROCESS_SESSION_LIMIT 

See SNA Transaction Programmer's Reference Manual for !!! ~ .2.:,£ for 
control-operator verbs. 

Issue the PRDCESS_SESSION_LIMIT verb to be processed by PS_COPR 
(page 5.4-32) and inform the target-LU operator of the 
resulting CNOS RETURN_CODE. 

The algorithm to inform the operator is implementation dependent. 
This algorithm may make use of DEFINE or DISPLAY control-operator 
verbs to determine the current session limits, in the MODE, and then 
display them on the operator console. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-57 



PROCESS_SESSION_LIHIT_PROC 

PROCESS_SESSION_LIHIT_PROC 

5.4-58 

FUNCTION: Th;s procedure ;s ;nvoked by PS_COPA, the control-operator-verb router, when 
the CNOS service transact;on program at the target LU ;ssues a PROC­
ESS_SESSION_LIMIT control-operator verb. This procedure directs overall proc­
essing of CHANGE_NUMBER_OF_SESSIONS at the target LU. This procedure receives 
the CNOS command from the source LU and sends the CNOS reply. It invokes TAR­
GET_CONVERSATION to ;ssue the conversation verbs and process the return codes. 

INPUT: 

OUTPUT: 

It ;nvokes other procedures to check· the verb and the conversat;on attr;butes 
for val;d;ty, detect and resolve race cond;t;ons with any other CNOS trans­
act;on, negot;ate CNOS parameters, update the affected HODEs w;th the new ses­
s;on limit parameters, and, if necessary, request the resources manager to 
activate or deactivate sessions. If errors are detected at any point, ;t 
skips subsequent steps and cleans up from previous steps. It passes a 
RETURN_CODE to the calling procedure ;n the PROCESS_SESSION_LIMIT record indi­
cating success or a fa;lure reason. If an ABEND condition occurs, it calls PS 
to abnormally terminate the transaction-progra• process. 

PROCESS_SESSION_LIMIT verb, CNOS command from the source LU via the conversa­
t;on; PARTNER_LU_LIST and MODE_LIST 

Outcome of the operation to the caller in PROCESS_SESSION_LIHIT (RETURN_CODE>; 
CNOS reply sent to the source LU via the conversation; updated MODE entries 
via CHANGE_ACTION; CHANGE_SESSIONS record to RM, via CHANGE_ACTION; SES­
SION_LIMIT_DATA lock tested, set, and reset via SES­
SION_LIMIT_DATA_LOCK_MANAGER 

Referenced procedures, FSMs, and data structures: 
CHECK_CNOS_COMMAND 
CHANGE_ACTION 
TARGET_COMMAND_CONVERSATION 
TARGET_REPLY_CONVERSATION 
SESSION_LIMIT_DATA_LOCK_MANAGER 
DEALLOCATION_CLEANUP_PROC 
LUCB 
PARTNER_ LU 
MODE 

SHA Format and Protocol Reference Manual for LU Type 6~2 

page 5.4-63 
page 5.4-44 
page 5.4-60 
page 5.4-65 
page 5.4-67 
page 5.0-13 
page A-1 
page A-2 
page A-3 



PROCESS_SESSION_LIMIT_PROC 

Check the verb parameters to detect ABEND conditions as described in 
~ Transaction Programmer's Reference Manual for LU ~ 2...,_g for this verb. 

If either of the ABEND conditions exists then 
Call DEALLOCATION_CLEANUP_PROC Cpage 5.0-13) to abnormally 

terminate this instance of the transaction program !control is not returned). 

Else 
Call TARGET_COHHAND_CONVERSATION (page 5.4-60) 

with the resource ID of the conversation with the partner LU to receive 
the CNOS command from the source LU. 

If an error occurs before the CNOS command can be successfully received then 
Set the CNOS RETURN_CODE to RESOURCE_FAILURE_NO_RETRY. 

Else 
Call SESSION_LIHIT_DATA_LOCK_HANAGER to perform a target-LU lock 

on the appropriate (LU,model entry or entries to prevent 
simultaneous access by other CNOS transactions (page 5.4-67). 

Optionally, perform syntax checking on the CNOS command record according 
to the description in Appendix H. 

Select, in order, based on the values of fields in the CNOS command: 
When syntax errors are identified 

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate the 
conversation. 

When the HODEs specified on the CNOS command cannot be found 
in the list of MODEs for the PARTNER_LU 

Set the reply modifier field for the CNOS reply to HODE_NAHE_NOT_RECOGNIZED. 
When the HODEs specified on the CNOS command have SESSION_LIHIT=O, and 

DRAIN_SELF=NO then 
The LU may refuse to accept the command by returning an abnormal reply 
modifier field specifying an CLU,modeJ session limit of 0 
<this is implementation defined!. 

Otherwise 

Select based on result of SESSION_LIMIT_DATA_LOCK_MANAGER: 
When the state of the LOCKs have changed from UNLOCKED 
to LOCKED BY TARGET 

Call CHECK=CNOS_COHHAND (page 5.4-63), with the CNOS command, 
to perform optional receive checks (if errors are found, 
the conversation is deallocated!. 

If the checks were not performed or no errors were detected then 
Call NEGOTIATE_REPLY Cpage 5.4-64), with the CNOS command 

record, in order to generate the negotiated values of the 
CNOS parameters. 

Otherwise !if any LOCK has been rejected) 
Set the reply modifier field for the CNOS reply to COMHAND_RACE_DETECTED. 

[f the conversation has not been deallocated then 
Build the CNOS reply record consistent with the original CNOS command, the reply modifier 
field reflecting the identified errors, and the negotiated CNOS limits, as 
appropriate (see Appendix HJ. 

Call TARGET_REPLY_CONVERSATION (page 5.4-65) 
with the CNOS reply record to be sent to the source LU. 

If the CNOS reply is successfully sent across the conversation then 
Set the CNOS RETURN_CODE for the PROCESS_SESSION_LIMIT verb according 
to the modifier field of the CNOS reply. 

If the reply modifier field indicates that the CNOS limits were either ACCEPTED 
or NEGOTIATED then 

Else 

Call CHANGE_ACTION Cpage 5.4-44) with the CNOS reply record 
to change the session limits at the target LU. 

Set the CNOS RETURN CODE to RESOURCE FAILURE NO RETRY. 
Call SESSION_LIMIT_DATA_LOCK MANAGER !page-5.4-67) to UNLOCK the affected 

!LU,mode) entry or entries. 

Chapt-- J.4. Presentation Services--Control-Operator Verbs 5.4-59 



TARGET_COMMAND_CONVERSATION 

TARGET_COMMAND_CONVERSATION 

5.4-60 

FUNCTION: This procedure checks the attaching conversation for validity and returns the 
partner LU name to the caller. If the conversation is valid, this procedure 
receives the CNOS command from the source LU. If an error is detected, it 
terminates the conversation with DEALLOCATE TYPE!ABEND_PROG). 

INPUT: Resource ID of the conversation with the partner (source) LU, conversation 
attributes via GET_ATTRIBUTES 

OUTPUT: Partner LU name, from conversation via GET_ATTRIBUTES; CNOS command, from the 
source LU via the conversation; 

NOTE: See SNA Transaction Programmer's Reference Manual 
sati~ verbs. 

for LU ~ Ll for conver-

Referenced procedures, FSMs, and data structures: 
RESULT_CHECK_RECEIVE_COMMAND 
RESULT_CHECK_RECEIVE_SEND 
RESULT_CHECK_SEND_REPLY 

page 5.4-61 
page 5.4-62 
page 5.4-66 

Issue a GET_TYPE verb (according to the input parameters provided) to verify that the 
type of conversation is BASIC. 

Issue a GET_ATTRIBUTES verb (according to the input parameters provided) to verify 
that the connection type is parallel sessions and that the SYNC_LEVEL 
is NONE (optional receive check). 

The GET_ATTRIBUTES verb returns the name of the source LU. The target then uses 
this information to determine the type of sessions possible with the source LU as 
a conversation partner. 

If the above conversation attributes are not verified to be correct then 
(optional check) 

Issue a DEALLOCATE verb w;th TYPE=ABEND_PROG and return from this procedure. 

Else 

The LOG_DATA parameter of the DEALLOCATE verb, if used, is supplied by the 
implementation. For its format, see ERROR LOG GOS VARIABLE in 
"Appendix H. FM Header and LU Services Commands". 

Issue a RECEIVE_AND_WAIT verb to receive the CNOS command. 
Call RESULT CHECK RECEIVE COMMAND to examine the parameters returned and perform 

the DEALLOCATE, lf appropriate (page 5.4-611. 

If RESULT CHECK RECEIVE COMMAND returns OK then 
Issue ~ RECEIVE_AND_WAIT verb to receive the SEND indicator. 
Call RESULT_CHECK_RECEIVE_SEND to examine the parameters returned and perform 

the DEALLOCATE, if appropriate Cpage 5.4-62). If RESULT_CHECK_RECEIVE_SEND 
returns OK, the CNOS command was successfully received. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



RESULT_CHECK_RECEIVE_COtf"IAN> 

RESULT_CHECK_RECEIVE_C01111AN> 

FUNCTION: Th;s proce6.lre analyzes the RETURN_COOE and other s;gn;ficant returned paraiae­
ters fro. the RECEIVE_AN>_WAIT verb that receives the CNOS c0111111and; ;t deter­
•;nes Nhether to issue DEALLOCATE, and what TYPE to specify. 

INPUT: RETURN_COOE, REQUEST_TO_SENO_RECEIVED, i.liAT_RECEIVED 

NOTE: Checks are required \a"lless des;gnated opt;onal. 

If the REQUEST_TO_SEl-l>_RECEIVED parameter returned frOll the 
RECEIYE_AND_WAIT verb ;s NO then 

Select based on the RETURN_COOE para•eter returned fro• 
RECEIVE_AND_WAIT: 

When OK 
If WHAT_RECEIVED : DATA_COMPLETE then 

Return OK to TAR6ET_Cot11A1'1>_CONVERSATION. 

Else (opHonal check> 
Issue a DEALLOCATE verb w;th TYPE=ABEND_PR06 to 
deallocate the conversat;on. 

'*'en RESOURCE_FAILURE_RETRY, DEALLOCATE_NORMAL or 
DEALLOCATE_ABEND_PROG Copt;onal check) 

Issue a DEALLOCATE verb w;th TYPE=LOCAL to deallocate 
the conversat;on locally. 

When RESOURCE_FAILURE_NO_RETRY 
Issue a DEALLOCATE verb with TYPE=ABEl-l>_PROG to 
deallocate the conversat;on. 

C>-ther111; se ( opH onal check I 
Issue a DEALLOCATE verb with TYPE=ABEtl>_PROG to 
deallocate the conversaUon. 

Else lREQUEST_TO_SEND_RECEIVED=YES--an optional checkl 
Issue a DEALLOCATE verb w;th TYPE=ABENO_PROG to 
deallocate the conversation. 

Chapter 5.4. Presentation Services--Cantrol-Operator Verbs 5.4-61 



RESULT~CHECK_RECEIVE_SEND 

RESULT_CHECK_RECEIVE_SEND 

5.4-62 

Fll«:TION: Th;s procedure •n•lyzes the RE~N_CODE •nd other s;gnificant returned p•r• .. -
ters from the RECEIVE_Att>_WAIT verb th•t receives SEND; it deter11ines tiMtther 
to issue DEALLOCATE, and Nhat TYPE to specify. 

INPUT: RETIJRN_CODE, REQUEST_TO_SEND_RECEIVED, WHAT_RECEIVED 

NOTE: Checks •re required U'\less des;;gnated optional. 

If the REQUEST_TO_SEND_RECEIVED para .. ter returned fro• the RECEIVE_Att>_WAIT 
is NO then 

Select based on the RETIJRN_CODE para .. ter returned fro. the RECEIVE_AND_WAIT: 
lhln OK 

If WHAT_RECEIVED = SEND then 
Return OK to TAR6ET_eott1Atl>_CONVERSATION. 

Else 
Issue a DEALLOCATE verb Nith TYPE=ABEND_PR06 to deallocate 

the conversation. 
lhln RESOURCE_FAIURE_RETRY, DEALLOCATE_NORttAL, or 

DEALLOCATE_ABEtm_PROG (optional check> 
Issue a DEALLOCATE verb Nith TYPE=LOCAL to deallocate the 
conversation locally. 

OtherNise 

Else 

Issue a DEALLOCATE verb Nith TYPE=ABEND_PR06 to de•llocate 
the conversation. 

Issue a DEALLOCATE verb Nith TYPE=ABEtm_PROG to deallocate 
the conversation. 

SHA Format and Protocol Reference ttanual for W T~ 6.2 



CHECK,_CNOS_Cot1ttANJ 

CHECK_CNOS_COtl1Atl> 

FUNCTION: This procedur• perfor• receive checks et the terget LU on the CNOS co.end 
rec•ived fro• the source LU. If errors ere dat•ct•d• DEALLOCATE ABE.., 
replaces a CNOS reply. 

INPUT: CNOS c011•and para•eters 

NOTE: Checks are r•quired l.alless designated optiom1l. 

Referenced procedures. FStls, and data structures: 
LUCB 
PARTNER_ LU 
HOOE 

Optionally check the verb para•ters1 encoded as fi•lds in the 
CNOS command. for ABEND condHions as described in 
Jit1A Transaction Proqra11111er'1 Reference l!i!lYi.1 .f2C .bY llflm 6..s.&· 

pag• A-1 
page A-2 
page A-3 

Since the session li•its of the SHA-defined mode na_, SNASYCH&1 Ry 
not be changed, a mode na.• of SNASVCH& in the CNOS cOMRnd cons t; -
tutes another ABEND condition. 

Some parameter checks .. Y requir• knowledge of mode attributes that 
currently exist. For these. s•e the appropriat• HOOE structure for 
the specified PARTNER_LU. 

If any ABEND condition is identified then 
Issue a OEALLOCATE verb Nith TYPE=ABEND_PROG 
to deallocate the conversation. 

Chapt•r 5.4. Pr8Bentation S.rvice11--Control-Operator Y•rbs S.4•63 



HE60TIATE_REPLY 

NE60TIATE_REPLY 

5.4-64 

FlH:TION: Th;s procedure generates the negot;ated values of the CMOS li•its for the CMOS 
reply, including the reply llOd;f;er field. 

This procedure essu.es that the session li•it pera-ters in the COlllHnd are 
valid. 

INPUT: 

OUTPUT: 

Source-LU specified CMOS verb peraMeters, PARTNER_LU_LIST, and ttODE_LIST 

Session H•it FNlrameters for reply 

NOTE: This procedure does not change the CMOS li•its in the HOOE. 

qeferenced procedures, FSH1h and data structures: 
CLOSE_DNE_REPLY 
PARTNER_ LU 
l'IOOE 

If the CMOS verb issued at the source LU is INITIALIZE_SESSION_LI"IT 

page S.4-65 
page A-2 
page A-3 

or CHANGE_SESSION_LI"IT (tilen the action field of 4he CMOS command is SET> then 
Negotiate the LU_ttOOE_SESSION_LI"IT, HIN_CONWINNERS_SOURCE, 
and "IN_CONWINNERS_TARGET parameters (as described in 
B Transaction Proara!!!!l!!r 11 Reference HiDY!l i2t JJ.! IY.S9 i.:.l • according to 
an imple11entation-dependent algorittw. 
If any of the session liinits are going to be lass than the current 
li•its, RESPONSIBLE may also be negotiated from TARGET to SOURCE. 

Else (RESET_SESSION_LI"IT verbJ 
If the cOlllland affects only one HOOE at the PARTNER_LU then 

Call CLOSE_DNE_REPLY Cpage 5.4-65) 
Mith the CMOS co111and record to build the CMOS reply record. 

Else (all mode na•es affected) 
For MODE_NAHE(ALLJ, only RESPONSIBLE .. y be negotiated. 
Negotiate the RESPONSIBLE parameter from TARGET to 

SOURCE. 

If any of these paraaeters is negotiated then 
Set the reply mod;f;er field of the CMOS reply to NEGOTIATED. 

Else 
Set the reply llOCIHier field of the CMOS reply to ACCEPTED. 

SN.A Fotlllit and Protocol Reference Hanual for LU Type 6.2 



CLOSE_ONE_REPLY 

CLOSE_ONE_REPLY 

FUNCTION: TMs procedure builds the target-LU'• reply whenever the verb issued at the 
source LU is RESET_SESSIOH_LIHIT (action field of the CNOS cOlllllland is CLOSE> 
and only one 11<>de name is affected. It optionally sets the reply-modifier 
field of the CNOS reply to HODE_NA11E_CLOSED if there is an error in 
DRAIH_SOURCE. 

INPUT: LU_NAME of partner LUs HOOE, for current state of CNOS parametersf CNOS cota­
•and parameters, 

OlTTPUT: Updated reply llOdifier and negotiated parameters 

Referenced procedures, FSl1s, and data structures: 
PARTNER_ LU 
HOOE 

Create the CNOS reply according to the negotiation rules described on 
page 5.4-28 (when the action field in the CNOS cot11111and 
is CLOSE and only one lllOde name is affected> and the descriptfon of 
the DRAIN and RESPONSIBLE parameters of the RESET_SESSION_LIHITS verb in 
.lit:!A Transaction Proara111111er's Reference !!!DYi! !21: 1U l.la!9 ~· 

p&ge A-2 
p&ge A-3 

If the current session limit is o, the drain for the source LU 
(HODE.DRAIN_PARTNER) is set to NO and the co.aand specifies 
DRAIN_SOURCEIYES>, the target LU •ay either issue a DEALLOCATE with 
TYPE=ABEND or send a CNOS reply Nith the HODIFIER field specifying an 
(LU.mode> session li•it of O. 

This condition occurs only when there is a design error in the source 
LU such that this ABEND condition is not recognized and the cOllllland is 
forwarded to the target LU, 

TAR6ET_REPLY_CONVERSATIOH 

FUNCTION: This procedure sends the CNOS reply. 

INPUT: Resource ID of the conversatif)fl with the partner (source) 
change-number-of-sessions record, in this case, a CNOS reply1 

LU, the 

OlTTPUT: Outcome of conversation (reply and DEALLOCATE NORMAL sent; DEALLOCA"rE ABEND 
sent or DEALLOCATE received> 

NOTE: See ~ Traosactioo Progra!!!p!er's Reference t1!o.l.!!l .:fa.t J.Y ~ ~ for conver­
sation verbs. 

Referenced procedures, FSHs, and data structures: 
RESULT_CHECK_SEND_REPLY 

Issue a SEHD_DATA verb (Nith the resource ID of the attaching conversation> 
to send the CNOS reply to the source LU. 

Call RESULT_CHECK_SEND_REPLY (page 5.4-66) to examine 

p&ge 5.4-66 

the parameters returned on the verb and perfor• a DEALLOCATE of the conversation, 
if appropriate. 

Chapter 5.4. Presentation Services--Control-Operator Verbs S.4-65 



RESULT_CHECK_SEND_REPLY 

5.4-66 

RESULT_CHECK_SEND_REPLY 

FUNCTION: This procedure analyzes the RETURN_CODE and other significant returned parame­
ters from the SEND_DATA verb that sends the CNOS reply, and it determines 
whether to issue DEALLOCATE, and what TYPE to specify. 

INPUT: RETURN_CODE, REQUEST_TO_SEND_RECEIVED 

If the REQUEST_TO_SEND_RECEIVED parameter returned from the SEND_DATA 
verb is NO then 

Select based on the RETURN_CODE parameter returned from the SEND_DATA verb: 

Else 

When OK 
Issue a DEALLOCATE verb with TYPE=SYNC_LEVEL to 'deallocate 
the conversation normally. 

When RESOURCE_FAILURE_RETRY or DEALLOCATE_ABEND_PROG 
Issue a DEALLOCATE verb with TYPE=LOCAL to deallocate the 
conversation locally. 

When RESOURCE_FAILURE_NO_RETRY 
Issue a DEALLOCATE verb with TYPE=ABEND_PROG to dealloc•te 
the conversation. 

Otherwise 
Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate 
the conversation. 

Issue a DEALLOCATE verb with TYPE=ABEND_PROG to deallocate 
the conversation. 

SHA Format and Protocol Reference Manual fo.r LU Type 6·.2 



SESSION_LIMIT_DATA_LOCK_HANAGER 

SESSION_LIMIT_DATA_LOCK_MANAGER 

FUNCTION: This procedure determines whether the spec;f;ed MODEs exist, and if so, sets 
or resets the sess;on-l;mit-data lock ;n the MODE entry to prevent s;multane­
ous access by another CNOS transaction initiated at this or the partner LU. 

INPUT: The operation to be performed, identification of whether source or target LU 
issued the request, partner LU name and mode name, PARTNER_LU_LIST, and 
MODE_ LIST 

OUTPUT: The state of the lock in affected MODE entries is updated 

NOTE: This procedure locks the MODE. 

Referenced procedures, FSMs, and data structures: 
LUCB 
PARTNER_ LU 
MODE 

Select based on the requested locking operat;on: 

When LOCK 
Change the state of the lock (or locks> as described on page 5.4-30. 

The four resulting lock states depend upon their previous lock 

page A-1 
page A-2 
page A-3 

state Cif applicable> and the input that caused the transition to that state. 
For any input operation and current lock state combination not explicitly 
described, the state of the lock does not change. 

If the CNOS command affects all MODEs for the PARTNER_LU 
then the lock is to be placed on all affected (LU.mode) entr;es. 
If any of the affected CLU,mode> entries has been previously 
LOCKED_BY_SOURCE, LOCK_DENIED is set for that mode name, 
but the others are left unlocked. 

When UNLOCK 
The state of the (LU,mode>-entry lock can be changed to the UNLOCK state 
only when the UNLOCK is attempted by the transaction program at the LU 
that currently has the entry locked. 

Note that, in the LOCK_DENIED state, the transaction program at the 
source LU has the lock on the (LU.mode> entry. 

If the CNOS command affects ALL MODEs, the UNLOCK is performed for all 
affected (LU.mode) entr~es. 

Chapter 5.4. Presentation Services--Control-Operator Verbs 5.4-67 



This page int9'tionally left bl•nk 

68 SNA For•at and Protocol Reference Hanual for W Type 6.2 



CHAPTER 6.0. HALF-SESSION 

G~NERAL DESCRIPTION 

LU Network Services CLNSJ 

A A 
Resources Manager IRMJ 

A 
Presentation Services CPS) 

v v v v 

Initializer <--> 

Router 

<--> 

A 

Path Control CPC> 

Figure 6.0-1. Overview of Half-Session 

The half-session component (see Figure 6.0-1) 
resides in the LU and represents a session 
with another LU or with a control point 
(e.g., an SSCP). The half-session's primary 
function is to control the data traffic flow 
for a session. It also performs initializa­
tion when activated and, when necessary, 
causes itself to be deactivated. 

The components of the half-session are an 
initializer, a router, data flow control 
!DFC--see "Chapter 6 .1. Data Flow Control" l, 
and trcinsmi ss ion control C TC--see "Chcipter 
6.2. Trcinsmission Control"). The initicilizer 
records information from the session act i -
vcition request (e.g., BINDJ for lciter use by 

A 

Data Flow Control CDFCJ 

A 
I 
v 

Transmission Control CTCJ 

Half-session CHSJ 

v 

DFC cind TC. The router distributes message 
units to DFC and TC. Messcige units received 
from LU network services ( LNS--see "Chcipter 
4. LU Network Services"), resources manager 
( RM--see "Chapter 3. LU Resources Manciger"), 
and pres en tat ion services C PS--see "Chapter 
5. 0. Overview of Presentciti on Services") cire 
routed to DFC. Message uni ts received from 
path control CPCJ cire routed to TC. The pri­
mary functions of DFC cire to trcinslate 
between BIUs and records produced from trans­
action program verbs and to control the flow 
of data between the hcilf-session cind PS, RM, 
and LNS. The primary function of TC is to 
control the flow of dcita between the 
half-session and path control. 

Ch<ipter 6~0. Half-Session 6.0-1 



The LU half-session is cre•ted by LNS Nhen • 
session-activ•tion request <BIND or ACTWJ 
has been successfully processed. The 
half-session is destroyed by lNS Nflen ( U • 
session-deactivation request (lJllBitlJ or 
DACTWJ has been procassed, (2) a session 
route outage has occurred, or C 3 J a control 
point session has been deactiv•ted and 
requires a hei rarchi cal reset of all related 
sessions (e.g. , the PU-CP session has been 
deactivated). 

The half-session, RH, PS1 LNS1 •nd PC •re all 
separate processes. ttessage wii ts •re sent 

PBOJOCOL BQUtl)ARIEI BETWEEN till Mil mt1.fl COMPONENTS 

to HS by RH, PS, LNS, and .PC. tfwtn· a 118sage 
uiit urives, HS MY receive and process it. 
Another •essage uiit cannot be received by HS 
uitil the current one is c0111pletely proc­
essed. 

HS can selectively receive fr011 these proc­
essesJ e.g., Nhen HS is waiting for a 
required reply or response from the p•rtner 
HS, HS MY elect to ignore ... sages fr011 PS 
and process Mssages fro• only RH, LNS • •nd 
PC. 

ttessage wiits that flOM frOll HS to RH: ttessaga wiits that flOM frOll RH to HS: 
ATTACH_HEADER 
BID 
BID_RSP 
fRt;E_SESSIQN 
BIS_Rlil 
BIS_REPLY 
RTR_Rlil 
RTR_RSP 
SECl.RITY_HEADER 

ttessage uiits that flOM frOll HS to PS: 
RECEIYE_DATA 
CQNFIRHED 
RECEIVE_ ERROR 
REQUEST_TO_SEtlJ 
RSP_TO_REQUEST_TO_SEtlJ 

Massage uiits that flow fro. HS to LNS: 
INIT_HS_RSP 
NetNOrk services BIUs 

(carried in HS_RCY_RECORDJ 
ABORT_HS 

ttessaga \rlits that flow fro• HS to PC: 
PIU inforRtion containing a request 
or response BIU 

BID_NITHOUT_ATTACH 
BID_NITH_ATTACH 
BID_RSP 
YIE LD_SESSIQN 
BIS_Rlil 
BIS_REPLY 
RTR_Rlil 
RTR_RSP 
HS_PS_CCH4ECTED 
ENCIPHERED_RD2 

ttessage units that flOM frOll PS to HS: 
SEND_DATA_RECORD 
CONFIRMED 
SEND_ERROR 
REGIUEST_TO_SEt-1> 

ttessaga units that flON frOll LNS to HS: 
INIT_HS 
NetNOrk services BIUs 

(carried in HS_SEtt>_RECORDJ 

ttessaga units that flow fr011 PC to HS: 
PIU information cont•ining • request 
or response BIU 

6.0-2 SHA forMt and Protocol Reference Hanual for LU Type 6.2 



~ DESCRIPTION 

HS 

FUNCTION: This procedure causes the half-session to be initialized and invokes the 
appropriate router according to the type of half-session CLU-CP or LU-LU). 

INPUT: 

OUTPUT: 

At creation time, HS_ID (half-session identifier) and LU_ID ILU identifier); 
at run tima, INIT_HS received from LNS 

INIT_HS_RSP sent to LNS, HS_ID and LU_ID recorded for other procedures in the 
half-session. The following are recorded for use by other procedures in the 
half-session: LOCAL.SENSE_CODE is initialized to O; the PC_ID of the path 
control that the half-session uses; the half-session role CPRI or SEC); and 
the FM and TS profile types. 

Referenced procedures, FSMs, and data structures: 
TC.INITIALIZE 
DFC_INITIALIZE 
PROCESS_LU_LU_SESSION 
PROCESS_CP_LU_SESSION 
INIT_HS 
INIT_HS_RSP 
LOCA:.. 

page 6.2-8 
page 6.1-18 
;:;c1~e 6.0-4 
page 6.0-5 
page A-16 
page A-11 
page 6.0-6 

Before the half-session can begin processing, it must be initialized. 
Therefore, the first thing HS does after creation is to receive an 
initialization record CINIT_HS) from LNS. The initialization record 
specifies the rules and parameters that this session will use Cthis 
information comes from BIND or ACTLU>. 

Record the HS_ID and LU_ID to make the information available to all 
half-session procedures. 

Set LOCAL.SENSE_CODE to 0 C the no error state). 
From INIT_HS.TYPE, record an indication that this half-session is 
primary CPRI) or secondary CSECl. 

Depending on whether the INIT_HS.DATA_TYPE = ACTLU_IMAGE or BIND_IMAGE, 
record the FM profile and TS profile types from the ACTLU or BIND image. 

Initialize the half-session by calling 
TC.INITIALIZECINIT_HS record) (page 6.2-8) and 
DFC_INITIALIZECINIT_HS record) (page 6.1-18), passing them 
the INIT_HS record. 

If TC and DFC initialization is successful then 
Send a positive INIT_HS_RSP to LNS Cuse 0 for the SENSE_CODE; POS for TYPE, 

and HS_ID to identify this HSl. 
If FM profile is 0 or 6 CCP-LU session) then 

Call PROCESS_CP_LU_SESSION !page 6.0-5). 
Else CFM profile is 19, for an LU-LU session) 

Call PROCESS_LU_LU_SESSION (page 6.0-4). 

Else Cinitialization unsuccessful--LOCAL.SENSE_CODE 
Send a negative INIT_HS_RSP to LNS for this LU. 

LOCAL.SENSE_CODE as the INIT_HS_RSP sense code, 
and HS_ID to identify this HS. 

Wait to be destroyed. 

indicates the type of error) 
Use 
NEG for TYPE, 

Chapter 6.0. Half-Session 6.0-3 



PROCESS~LU_LU_SESSION 

6.0-4 

PROCESS_LU_LU_SESSION 

FUNCTION: Does processing for LU-LU half-session <FM profile 19). Message units 
received frOM RM and PS are routed to DFC. Message units received fre11 PC are 
routed to TC. The LU-LU h<Alf-session continues to operate 1.r1til an error con­
dition occurs or the h<Alf-session process is destroyed. If an error condition 
occurs, LOCAL.SENSE_CODE is set (by OFC or TCl with the sense data indicating 
lidhat kind of error occurred. i.1-ien this field is set, the half-session sends 
an ABORT 111essage to LNS. This causes LNS to send an UNBitll!protocol error) 
for this LU-LU session. 

INPUT: Message units received fr<* PS, RM, and PC; LOCAL.SENSE_CODE 

OUTPUT: ABORT_HS sent to LNS if error 

Referenced procedures, FSl'ls, and data structures: 
OFC_SEtm_FRotl_RM 
DFC_SEND_FROH_PS 
TRY_TO_RCV_SIGNAL 
TC.RCV 
TC.TRY_TO_SEND_IPR 
FSH_BStt_FMP19 
FStt_CHAIN_SEND_FMP19 
ABORT_HS 
LOCAL 

Do Nhile LOCAL.SENSE_CODE = O. (Do Nhile no errors.) 
Select based on the source of the record: 

When the record is from PS 
Call DFC_SEND_FROM_PS (page 6.1-19) to route the record to DFC. 

!When the session is between brackets 
[state of FSM_Bstt_FMP19 = BETBJ or PS is sending data and the 
half-session is expecting either a response or • reply 
[state of FSM_CHAIN_SEND_FMP19 = PEND_RSP or PEND_RCV_REPLYJ, 
processing of request records fr<>M PS is deferred 1.r1til 
this condition is resolved.> 

lollen the record is fro• RM 
Call DFC_SEND_FROH_RM (page 6.1-20) to route the record to DFC. 

tohtn the record is from PC 
Call TC.RCV !page 6.2-15) to route the record to TC. 

The input to those procedures is the received recorc:I. 

SHA ForMt and Protocol Reference Manual for LU Type 6.2 

page 6.1-20 
page 6.1-19 
page 6.1-22 
page 6.2-15 
page 6.2-19 
page 6.1-43 
page 6.1-46 
page A-11 
page 6.0-6 



PROCESS_ LU_ LU_ SESSION 

If LOCAL.SENSE_CODE ~ 0 lerror fOU'ld> then 
Send an ABORT_HS record to LNS. The ABORT_HS.SENSE_CODE COiia frOll 

LOCAL.SENSE_CODEJ ABORT_HS.HS_ID is the HS_ID saved during HS initialization. 
I LNS sends an UNBitl>. ) 

Else lno error found--continue processing) 
Call TRY_TO_RCV_SIGNAL lpage 6.1-22) to 
try to process a queued SIGNAL request. ~ther or not a ~ SIGNAL 
request is processed depends on the state of the half-session. 
The state of the half-session •ay change each ti•e a record is 
received and processed; therefore, the TRY_TO_RCV_SI6NAL 
procedure is called after each record so that it can check 
the current half-session s~ate and process a SIGNAL request if necessary. 

Call TC.TRY_TO_SEtt'.J_IPR (page 6.2-19l to 
see if an ISOLATED PACING RESPONSE UPRl 11ay be sent, depending 
on the pacing state of the half-session. The TC.TRY_TO_SEtt'.J_IPR 
procedure is called so that it can check the current half-session 
pacing state and send an IPR if necessary. 
CThe formal description sends IPRs even if a response 
Nill be the next RU sent. Implementations may opti•ize flows 
by setting the Pacing indicator to PAC on the response, rather than 
sending an IPR followed by a response that has the pacing 
indicator set to ~PAC.l 

PROCESS_CP_LU_SESSIOH 

FUNCTION: Does processing for CP-LU half-session IFH profiles 0 and 6). Hessage "'1its 
received fro. LNS are routed to DFC. Hessage l.S'\its received frOll PC are 
routed to TC. The CP-LU half-session continues to operate "'1til the 
half-session process is destroyed Ce.g., because of a DACTLU request). 

If an error condition occurs, LOCAL.SENSE_CODE is set with the sense data 
indicating the kind of error, the half-session component detecting the error 
sends a -RSP or logs the error. The CP-LU half-session continues to operate. 

INPUT: Message W'lit& received frOM LNS and PC; FH profUa type 

OUTPUT: LOCAL.SENSE_CODE 

Referenced procedures, FSHs, and data structures: 
DFC_SEtt'.J_FROH_LNS 
TC.RCV 
FSH_IMMEDIATE_RQ_tlODE_SEtl> 
LOCAL 

Do until HS process is destroyed. 
Set LOCAL.SENSE_CODE to 0. 
Select based on the source of the record: 

lrllen the record is frOll LNS 

page 6.1-22 
page 6.2-15 
page 6.1-48 
page 6.0-6 

Call DFC_SEND_FROH_LNS (page 6.1-22) to route the record to DFC. 
!When the session is using immediate request 110de [FH profile = OJ 
and a request is already outstanding [FSl1_1HHEDIATE_RQ_HOOE_SEND 
Cpage 6.1-48) is in the PEND_RSP stateJ, processing of 
request records from LNS is deferred untH a response to the outstanding 
request is received.) 

When the record is fre>11 PC 
Call TC.RCV lpage 6.2-15) to route the record to TC. 

Chapter 6.0. Half-Session 6.0-5 



DATA STRUCTURES 

6.0-6 

LOCAL 

This is the definition of the process data used by the half-session. This data may be 
accessed by any procedure in the half-session process. 

LOCAL 
COMMON: fields shared by all HS components 

SENSE_ CODE 

DFC: fields used only by DFC 
LU_LU: fields used for LU-LU sessions (FM profile 19> 

SQN_SEND_CNT: contains SNF (see page 6.0-6) 
PHS_BB_REGISTER: contains SNF (see page 6.0-6) 
SHS_BB_REGISTER: contains SNF !see page 6.0-6) 
CURRENT_BRACKET_SQN: contains SNF !see page 6.0-6l 
SEND_ERROR_RSP_STATE: possible values: RESET, NEG_OWED (negative 

response owed) 
SIG_RECEIVED: possible values: YES, NO 
SEND_BUFFER: buffer area for collecting transaction program data until 

the maximum RU size is reached or DFC is instructed to send the data. 
TC: fields used only by TC 

TCCB 
Q_PAC: the outbound pacing queue for send pacing. Holds BIUs 
that were not sent earlier because the send pacing count 
was 0. They are now waiting for a pacing response to 
let the next pacing group !window) be sent. 

SENO_PACING_COUNT: the number of requests that the local 
half-session can send before having to wait for a 
pacing response (varies between 2n-l and o, where n is the 
send window size) 

RCV_PACING_COUNT: the number of requests that the local 
half-session can yet receive from the partner half-session 
in the currently allowed windows (varies between 2n-l and o, 
where n is the receive window sizel. 
If a request is received when this count is o, 
the request is refused with a negative response. 

SQN_RCV_CNT: the last received sequence number on the normal flow. 
Wraps to zero after 65535. 

SNF 

Defines sequence number field. 

SNF: a 16-bit sequence number field. 
SQN: a 16-bit sequence number whose value wraps to 0 after 65535. 

BRACKET_STARTEO_BY: possible values are PRI Cll or SEC (0). 
The high-order bit of the sequence number field is set when the bracket is started 
by the primary half-session and reset when the bracket is started by the secondary 
half-session. This is done so that sequence numbers on BB requests are ~·ninve. 

NUMBER: a 15-bi t sequence number whose valu<? .... raps to : ;.·l"ter 3276 7. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



CHAPTER ~ DATA FLOW CONTROL 

INTRODUCTION 

The basic function of data flow control CDFCl 
component is to control the flow of data 
between half-sessions. DFC and FMD RUs flow 
through the data flow control component; net­
work control and session control RUs do not. 
An LU may have a session with another LU or a 
control point (CPl. The protocol rules 
(e.g., FM profile) to be used on the session 
are established when the session is activated 
and di f fer based on the type of session. 

DFC FOR LU-LU HALF-SESSIONS 

OVERVIEW OF DFC FUNCTIONS 

The following functions are done by DFC for 
LU-LU sessions: 

• 

• 

• 

• 

• 

• 

• 

Request/Response Formatting: DFC 
enforces correct RH parameter settings 
for FMD and DFC requests and responses. 

Chaining Protocol: Chaining is a means 
of sending or receiving a group of RUs 
for which there will be at most one 
response. DFC enforces the chaining pro­
tocol. 

Request/Response Correlation: DFC corre­
lates responses with their associated 
requests. 

Request/Response Mode Protocols: Immedi­
ate request and immediate response modes 
are enforced by DFC. 

Send/Receive Mode Protocols: The 
normal-flow send/receive mode 
!half-duplex flip-flop) specifies a par­
ticular form of coordination between 
sending and receiving of normal-flow 
requests and responses. 

Bracket Protocols: Bracket protocols 
provide a means of sending or receiving a 
sequence of chains as a delimited trans­
action entity. 

Purging: When a bracket error negative 
response is sent for an incoming begin 
bracket (88) chain, the remainder of that 
chain is purged. 

LU-LU sessions use FM profile 19; CP-LU ses­
sions use FM profile 0 or 6. Data flow con­
trol protocols differ significantly based on 
the FM profile. Protocols associated with FM 
profile 19 contain many more functions and 
capabi 1 i ti es then those associated with FM 
profile 0 or 6. The following describes the 
data flow control protocols for LU-LU and 
CP- LU sessions. 

DFC STRUCTURE 

The DFC structure is shown in Figure 6.1-1 on 
page 6.1-2. 

Initialization 

The DFC initialization procedure is called by 
the half-session router (see "Chapter 6.0. 
Half-Session") at the activation of each ses­
sion. It initializes FSMs and other protocol 
related parameters to be used during the ses­
sion. 

The DFC send procedures receive records from 
presentation services CPS) and from the 
resources manager (RM l. They also receive 
records from the DFC receive procedure. The 
send procedures process the records and send 
them on to transmission control CTCl. The 
send processing consists of creating corre­
sponding BIU records and updating the states 
of DFC send FSMs. 

Receive 

The DFC receive procedure CDFC_RCVl receives 
BIU records from TC, processes them, and 
sends them on to PS or RM. It also generates 
BIU records that it sends to the DFC send 
procedures. DFC_RCV optionally checks the 
BIU records for receive error conditions. 
These are conditions that occur only when the 
other half-session has violated the architec-

Chapter 6.1. Data Flow Control 6.1-1 



Presentation Services <PS> 

A 

I Resources Manager <RM> I 
I A 

I v v 

DFC_ DFC_SEND <--> DFC_RCV 
INITIALIZATION (Note) 
<Note) 

A 
DFC 

v 

Transmission Control <TC> 

Note: Called by half-session router ("Chapter 6.0. Half-Session") 

Figure 6.1-1. Overview of DFC for LU-LU Half-Sessions 

ture. When DFC_RCV detects an error condi­
tion, it sets the sense code (in global 
process data) and returns to the half-session 
router. The router will then cause the 
half-session to be deactivated. If no 
receive errors are detected, the processing 
consists mainly of updating the states of DFC 
receive FSMs and creating corresponding 
records to be sent on to PS or RM. 

Termination 

DFC and other half-session components stay 
active until a deactivation request <UNBIND 
or DACTLU) flows. On LU-LU sessions, DFC 
causes an UNBIND to be sent when an error is 
detected. See Chapter 6.0. 

PROTOCOL BOUNDARIES 

DFC sends, receives, and processes records. 
The records DFC sends to and receives from RM 
and PS represent commands and replies unique 
to DFC's protocol boundaries with RM and PS. 
DFC maps the commands and replies it receives 
from RM and PS into BIU records suitable for 
its processing; similarly, it maps BIU 
records into commands and rep! i es suitable 
for processing by RM and PS. The records DFC 
sends to, and receives from, TC are BIU 
records that represent RU chains. 

The protocol boundary information (records 
exchanged> is summarized in Figure 6.1-2 on 
page 6.1-3. The detailed specifications of 
the protocol boundaries with PS, RM, and TC 
appear in the individual DFC procedures. 

Throughout tM s chapter, references to 
request units I requests> and response units 
(responses ) pertain to the BIU records that 
represent the requests and responses. Refer­
ences to the sending or receiving of requests 
and responses pertain to the protocol bounda­
ry with TC, unless stated otherwise. 

FUNCTION MANAGEMENT PROFILE 19 

FM profiles are used to convey information 
about the protocols used on a session. FM 
profile 19 is used for LU-LU half-sessions. 
The DFC requests for this profile are BIS, 
LUSTAT, RTR, and SIG. These requests are 
used to control the flow of data between the 
half-!!'"'\ssions and are described in "DFC 
Request and Response Descriptions" on page 
6.1-14. 

The FM usage settings in BIND are as follows: 

• 

• 

• 

• 

• 

Chaining use lpr1mary and secondary): 
multiple RU chains. 

Request control mode selection (primary 
and secondary): immediate. 

Form of response requested (primary and 
secondary>: RQE or RQD. 

Compression indicator (primary and sec­
ondary>: no compression. 

Send CEB indicator (primary and second­
ary>: either end may send CEB. 

6.1-2 SNA Format and Protocol Reference Manual for LU Type 6.2 



r--

PS 

A 

CONFIRMED RM 
SEND_DATA_RECORDI 

SEND_ERROR --~~~~~~~~~~~~~~~~~~~~~~~-' 
IRECEIVE_DATA 

CONFIRMED 
RECEIVE __ ERROR 
REQUEST_TO_SEND REQUEST_TO_SEND 

v 

DFC_SEND -FROM_ PS 
(Note) 

LUST AT 
FMD 
SIG 
+RSPCRQD2l3l 
-RSPC0846l 

BID_WITHOUT_ATTACH 
BID_WITH_ATTACH 
Hs_cs_CONNl:CTED 
BIS_RQ 

v 

BIS_REPLY 
YIELD_SESSION 
RTR_RQ 
ENCIPHERED_RD2 

DFC_SEND_ 
FROM_RM 
(Note) 

LUSTAT,BB,RQDl 
LUSTAT,CEB,RQEl 
FMD,ATTACH,BB 
BIS "REQUEST" 
BIS "REPLY" 
RTR 
FMD,SECURITY 

I 

BID_i:<SP 
RTR_RSP 
HS_PS_CONNECTED 

v 

,. 
AHACH_HEADER 
FREE_ SESSION 
BID 
BID_RSP 
RTR_RQ 
RTR_RSP 
BIS_RQ 
BIS_REPLY 
SECURITY_HEADER 

RSP_TO_REQUEST_TO_SEND 

DFC_RCV_FSMS I 
A A 

+RSPILUSTAT,BBl NORM_RQ I 
-RSPCBB> NORM_RSP 
±RSPCRTR) RSPCSIGl ~ TRY TO RCV j 
-RSPC 0846) SIGNAL !Note) 
+RSPCCEB,RQDll 

El I I LOG 
A 

A 
v v v 'SIG 

ISTRAY_RSP 

I I< 
+RSPCSIG> 

I I DFC_SEND_FSMS DFC_RCV 

A 
DFC 

RQ RQ 
RSP RSP 

v 

TC 

Note: Called by half-session router !"Chapter 6.0. Half-Session") 

Figure 6.1-2. Detailed Structure and Protocol Boundaries of DFC for LU-LU Half-Sessions 

I • FM header usage: FM headers Conly FMH-5 
I [Attach], FMH-7 !Error Description] and 
I FMH-12 [Security]) are used. 

• Brackets: brackets are used and the 
reset state is in-brackets. 

• Bracket termination rule: conditional 
termination. 

• Alternate Code Set Allowed indicator: 
may or may not be used. 

• Normal-flow send/receive mode: 
half-duplex flip-flop. 

• Recovery responsibility: symmetric. 
• Contention winner/loser: primary 

half-session !BIND sender) or secondary 
half-session !BIND .receiver). The state 
is negotiated at BIND time. This deter­
mines who is bidder (contention loser) 
and who is first speaker (contention win­
ner>. 

• Half-duplex flip-flop reset states: BIND 
sender is in send state after RSPCBINDl. 

More detail of FM usage settings, and the 
formats and protocols implied by them, may be 
found in the following pages. 

Chapter 6.1. Data Flow Control 6.1-3 



6.1-'t 

USAGE ASSOCIATED WITH FH PROFILE 19 

Conditional fnsl Bracket !kW 

The Conditional End Bracket <CEB> is used to 
indicate bracket ter•ination. It is allowed 
only on an RH with EC. The bracket is ter•i­
nated in all cases except that a -RSP to a 
<CEB,RQ02j3) c™iin leaves the session 
in-bracket <INB>. The bracket ter•inates in 
all other circumstances. (See "Bracket Pro­
tocols" on page 6.1-9 for more details on 
bracket ter11ination.> 

The ForHt indicator <FU in the RH is used 
to indicate the presence of an FH header as 
the first byte of FM data following this RH. 
The FH headers that are indicated by the FI 
are either FMH-SlAttach), FMH-7lError 
Description>. or FMH-12<Security)J see "Ap­
pendix H. FM Header and LU Services Commands" 
for dehils. 

The Fttf-5( Attach) may be carri eel in an RU 
with the Begin Chain indicator <BCI> set to 
BC. It May also be sent with BCI set to .. BC 
when it is sent in an RU immediately follow­
ing an FMH-12 that was ( .. Ec, .. CEB>. 

The FMH-7( Error Description) uy appear in 
any RU in a chain at any time during the life 
of a bracket; it 11ay be followed by data 
(i.e •• it does not ter•inate the chain) or it 
11ay ter•inate a chain. The FHH-7 is not 
related to or bound by the chain state; it 
11ay be sent in a (BC, .. EC>. ( .. BC, .. EC), 
( .. BC,EC), or <BC.EC> request. 

The FMH-12(Security> may flow only as the 
first RU after the session is initiated. If 
cryptography is in effect, the FHH-12 flows 
after the CRV exchange is complete. , FMH-12 
is always sent in a (BC,RQEl) request. The 
request 11ay indicate either <EC,CEB> or 
( .. Ec, .. CEB>; the latter is used when the next 
request carries an FMH-5 with .. BC. 

DRl is sent in a positive response to an RQDl 
request in order to indicate that the 
requested fwiction has been performed. The 
following are the only uses of DRl in +RSP. 

1. When the sender of Attach elects to bid 
for the session titithout sending an 
Attach, it HY do so with an (RQDl,BB> 
LUST AT( 0006 J. The receiver sends the 
+DR 1 Nhen the session has been "allo­
cated" to the sender. The only request 
that •ay follON this sequence is an 
FHH-5(Attach> to attach a transaction 
progra• or LUSTAT with (RQEl,CEB> to can­
cel the bid. <See "Chapter 3. LU 
Resources H.anager" for more details on 
bidding.) 

2. lihen RTR flows. ( RTR is always sent 
RQDl.> 

3. lihen (RQDl,BB,CEB,Attach,data ••• ) 
received, i.e., a Bid with data. 

is 

4. When CRQOl,CEB> is received as a result 
of the remote transaction progra• issuing 
the DEALLOCATE verb Ni th the ABEtl> 
option. 

s. When <RQOl,CEB> is received at sequence 
numbering wrap points, as part of the 
stray SIGNAL and stray response logic 
I see "Stray SIGNALS and Responses" on 
page 6. 1-S >. 

SWldinq B,gg !!!i1b U .:f.tS?I! Contention 12.u.t 

The contention loser is allowed to send 
<AqE*,BB,CO,FHH-5,data) as a Bid. 

UJ.i.9il .2.f LUSTATC0006J IRQEl1CEBl 

LU-LU sessions are activated in the 
in-brackets CINBI state. If, for some rea­
son, RM decides a newly activated session is 
not needed, it sends YIELO_SESSION to DFC. 
This results in an I RQEl ,CEB l LUST AT< 0006) 
being sent to terminate the unused bracket. 

.Lii.ism .2.f SI6HALC0001Q001> 

PS issues the REQUEST_TO_SEND command to DFC 
Nhen the conversation is in receive state, 
requesting that the conversation be placed in 
send state (see "Send/Receive Mode Protocols" 
on p;age 6.1-10). SIGNAL always uses the code 
Request to Send IX'00010001'). DFC then 
sends SIGNAL to the other half-session. When 
+RSP(SIG> is received, DFC passes the 
RSP_TO_REQUEST_TO_SEMD reply up to PS. The 
conversation enters the send state when an RU 
carrying CD is received. 

Segyeocs t!umberjng 2i Bggyests .!DSf Responses 

DFC assigns sequence nullllbers to DFC and FHD 
requests and responses, as follows: 

• For normal-flow requests, the send 
sequence nl.lllber count is incre111ented by 1 
and then assigned to the request. 

• A normal-fl°"' BB response is nsigned the 
sequence number of the corresponding 88 
request. The high-order bit is 0 if the 
bracket Na& started by. the secondary 
half-session, or l if the bracket N!S 

started by the primary half-session. 

• SIGNAL (the only expedited-flow DFC 
request! and all responses are assigned 

SNA Format and Protocol Reference Manual for LU Type 6.2 



SencHng Receiving 
Sequence Sequence 
Number Number LUa LUb 

CNote 1) 

(Note 2) 

(Note 1) 

!Note 2) 

1 !Note 3) 
!Note 4) 

2 
!Note 4) 

3 
!Note 4) 

< 

< 

< 

< 

< 

BIND 
RSPI BIN> )1-----

-RV 
-RSP(CRV)------

or11al-fl ON RU > 
RSPIN or11al-flow RU)--­

N RU > 
Nor11al-fl011o1 RU)--­
ON RU > 
ornl-flCM RU)---

Nor•al-flo 
RSPI 

Normal-fl 
RSP(N 

(Note 4) < SIGNAL 
!Note 4) RSPISIGNAL) > 

4 Normal-fl ON RU > 
!Note 4) < RSPIN or11al-fl011o1 RU>---

(Note 1) UNBIND ---------------> I Note 2) < RSP( UN8It1>)1-------------
CNote 1) BIND 

!Note 2) < 
1 

!Note 4) < 
2 

(Note 4) < 
3 

!Note 4) < 

RSPIBitl> >-----
Norul-fl ON RU > 

RSP(N orul-flow RU>---­
ON RU > 
Normal-flow RU>---­
ON RU > 

Hor11al-fl 
RSP( 

Nor11al-fl 
~SPIN 

• • • 

or11al-flOto1 RU>---

Notes 

1. The sequence number in this case is an identifier, Nhich can have any value 0-65535. 

2. The sequence number in this case is an identifier, Nhich has the .... value as the request. 

3. The first normal-flow RU following the BIN> begins the first bracket. The session comes up it1 
bracket for efficiency. The bracket sequence number is o, the sequence number of the first RU is 
1. After the first bracket is ended, subsequent brackets begin with a BB request. The bracket 
sequence number is the sequence nu.her that flowed on the BB request. 

4. The sequence number in this case is an identifier, wMch has the following properties; 

• The lOM-order 15 bi ts are the same as the low-order 15 bi ts of the sequence m.ber that 
started the bracket. 

• The high-order bit is 0 if the bracket Mas started by the secondary half-session, or 1 if the 
bracket was started by the pri11ary half-session. 

Figure 6 .1-3. Use of Sequence Nlabers 

the sequence number of the current brack­
et. 

• A normal-flON RTR response is assigned 
the sequence number of the corresponding 
RTR request. 

Figure 6 • 1-3 i llus t rates an example of the 
use of sequence numbers. In this figure, 
some sass ion control RUs (BIN>, UNBitl>, and 
CRV) are also illustrated. 

.l1t!Y SIGNALS Jlosl Respooses 

..,_., a request is sent ( RQE 1 , CEB > or 
IRQD*,CEB) a stray SIGNAL or response can 

occur. This is a SIGNAL or response that is 
received outside the bracket it is intended 
for, and which could be disruptive if not 
eli11inatecl or not recognized as a stray. 
SIGNALS received outside the intended (cur­
rent) bracket 11ay be "early" or "late." 
"Early" SIGNAL& are those received in a 
bracket that l!HIS started prior to the current 
bracket. "Late" SI6NALs are those received 
in a bracket that was started after the cur­
rent bracket. Responses received outside the 
current bracket are always "late." Examples 
are shONn in the following figures • 

Chapter 6.1. Data Flow Control 6.1-5 



6.1-6 

SIGNAL or -RSP 

RQEl,CEB 

BB 

<------

Br•cket B gets the SIGNAL ;ntended for A. 

Figure 6.1-4. Cue 1: "L•te" SIGNAL or 
Response 

RQEl,CEB I 
.---------------- A 

..--------B 
SIGNAL 

<---------+---+------------~ 

A<------" 

r 
Bracket A gets the SIGNAL ;ntended for B. 

F;gure 6.1-5. Case 2: "Early" SIGNAL 

-----------------------------> +RSP,QR 
..-----------------~ A 

..---------------- B 
SIG:HAL 

<-----+-~1-------------~ 

A<----' 

B <--------

' Br•cket A gets SIGNAL ;ntended for B. 

Figure 6.1-6. Case 3: "hrly" SIGNAL 

The followhig subsect;orw discuss hoN prob-
1 ... with strays are •voided. 

SElflING SIGNAL Alf> RESPONSES: Eech LU eU•i­
nates proble• 111i th str'ay SIGNAL& and atr•y 
responses by keeping three 16-bit "bracket 
ID" registers, • 1-bit switch, end • 15-bit 
norllNll-flON request counter: 

• PHS_BB_RE6ISTER 

Bit O: l 
Bits 1-15: Low-order 15 bits of TH 

sequence l'll.lllber of last BB 
request sent by lor received 
fr011) pri•ary helf-seas;on 
IPHS) 

• SHS_BB_RE6ISTER 

Bit O: 0 
Bits 1-15: Low-order 15 bits of TH 

sequence nuaber of last BB 
request sent by (or rece;ved 
fr011) secondary helf-sess;on 
ISHS) 

• CURRENT_BRACKET_SQN 

Bit O: 1 = Bracket started by PHS 
0 = Bracket started by SHS 

Bits 1-15: low-order 15 bits of TH 
sequence number of current 
bracket 

• An ind;cat;on that a definite response ;s 
required on the next CEB 

Bit O; 0 = No RQD required on next 
CEB sent 
1 = RQO requi red on next CEB 
sent 

• A count of nor .. 1-flow requests 

Bits 0-14: A CO\.rlt of the number of 
nor•al-flow requests sent •nd 
received since the last-sent 
IRQD,CEB) 

""8n a norol-flON response (except for 
RSPIRTR)) or a SIGNAL ;s sent, DFC places the 
contents of the CURRENT_BRACKET_SQN register 
; n the sequence nuiaber field I SNF J of the 
response or SIGNAL. The current bracket 
sequence is not used for RSPIRTR> because it 
does not flow within a bracket • 

RQD REQUIRED ON CEB: RQD is required on SOlll8 
CEB requests to enable proper recogni Uon of 
stray SI6NALs and stray responses. Since the 
CURRENT_BRACKET_5qN field is 15 bits, an 
identical value can occur after 2••15 RUs 
flow, causing the field to wrap. Thb can 
lead to confusion when recognizing stray 
SI6NALs and stray responses. In order to 
avoid this confusion, the norRl flow is 
cleaned out periodically by the \Be of •n 
IRQD,CEB> request and its response. TMs 
results in the following: 

1. Whenever the count of nor11al-flON 
requests reaches 2**14, the indication 

SHA for•at and Protocol Reference tlanual for LU Type 6.2 



that a definite response is required on 
the next CEB is set to YES. 

2. Whenever the indication that a definite 
response is required on the next CEB is 
set to YES, the next CEB request is sent 
using RQDI, RQD2, or RQD3. The indi­
cation that a definite response is 
required on the next CEB is reset to NO 
and the count of normal-flow requests is 
reset to 0. If DFC receives the CEB with 
an indication to send it RQEl (e.g., the 
transaction program issued DEALLOCATE 
with the FLUSH option), DFC will change 
it to RQDl in order to comply with this 
rule. When a response is received to an 
CRQDl,CEBl request, no information is 
forwarded to PS because the transaction 
program is no longer communicating with 
the half-session. 

RECEIVING SIGNAL REQUESTS: When SIGNAL is 
received, the DFC component of the 
half-session does the following: 

1. 

2. 

Validates the SIGNAL code--if it is other 
than Request to Send IX'00010001' ), an 
UNBIND indicating protocol error 
CX'FE,10050000' J is sent. The SIGNAL 
response is sent immediately. This cre­
ates the potential for receiving further 
SIGNALs before this one is processed. A 
I-deep queue for SIGNAL is defined, so 
later SIGNALs overlay earlier ones. If 
overlaying occurs, the receiving trans­
action program only gets a single indi­
cation that a SIGNAL has been received, 
even though more than one SIGNAL has been 
sent. This is sufficient since all 
SIGNALs indicate Request to Send. 

Places the SIGNAL in the correct brack­
et--the TH identifier field CSNF) is com­
pared against the CURRENT_BRACKET_SQN 
register. 

• If they are equal, the SIGNAL is 
accepted and processed. 

• 

• 

If the SIGNAL is early (see Fig-
ure 6.1-5 on page 6.1-6 and Fig-
ure 6.1-6 on page 6 .1-6), it is 
pushed into the correct bracket by 
saving the SIGNAL value until the 
correct BB arrives, which can be 
several brackets in the future. 

If the SIGNAL is late (see Fig-
ure 6.1-4 on page 6.1-6), it is dis-
carded because the transaction 
program is no longer communica+i;-i!J 
with the half-session Ii.~., the con­
versation has enclec;. 

3. "-~1-1orts receipt of the SIGNAL, via a 
REQUEST_TO_SEND record, to the PS c~mpo­
nent of the transaction's process. See 
"Chapter 5 .1. Presentation Serv­
i ces--Conversat ion v.~rbs" for further 
discussion of the PS logic. 

RECEIVING RESPONSES: When a response is 
received, the DFC component: 

1. Identifies failures--path errors and 
invalid sense code values are detected 
and a conversation failure is reported to 
PS and RM. An UNBINDIX'FE •.•• ') with 
sense code from the negative response is 
sent to terminate the session itself. 

2. Detects stray negative responses--the TH 
identifier field CSNFJ of the response is 
compared against the CURRENT_BRACKET_SQN 
register. If they are equal, the -RSP is 
intended for the current chain. If the 
-RSP is late (see Figure 6 .1-4 on page 
6.1-6), it is discarded because the 
transaction program the response is 
intended for is no longer communicating 
with the half-session. (If a positive 
response, other than +RSPCSIGJ, is not in 
the correct bracket, an UNBIND protocol 
error CX'FE,200EOOOO') is sent; +RSPISIGJ 
is discarded.) 

3. Reports RTR responses--responses to RTR 
are reported to RM without regard for the 
bracket boundaries. 

4. Reports responses to RQDl requests--in 
general, responses to RQDl requests, such 
as a Bid request CLUSTAT with IRQDl,BBJJ, 
are reported to RM; an exception is 
RSPCSIGJ, which is reported to PS. 

5. Reports responses to RQD2 
requests--responses to RQD2 
requests are reported to PS. 

SEND ERROR Processing 

and 
and 

RQD3 
RQD3 

PS issues the SEND ERROR command to DFC when 
PS is in HDX re~eive state, in order to 
change to send state so that it IPSJ can send 
FHH-7(Error Description). (If already in 
send state, PS sends the FMH-7 without issu­
ing the SEND_ERROR command; see "Chapter 5.0. 
Overview of Presentation Services" for more 
details. l 

Issuing SEND_ERROR in receive state causes 
DFC to send -RSPC ERP message forthcom­
i ng--0846 l if some data has been received. 
If no data has been received, DFC waits until 
a chain is received and then responds with 
-RSPC 0846 J. 

After the EC request is received, PS can send 
the FMH-7CError Description); the FMH-7 
includes sense data for PS' s use-it is not 
processed b~1 IJFC. If th<:! t.C request ended 
the bracket, PS does not send the FMH-7. 

DETAILED DESCRIPTION OF DFC FUNCTIONS 

REQUEST/RESPONSE FORMATTING 

DFC optionally checks that the requests and 
responses it receives are formatted correct-

Chapter 6.1. Data Flow Control 6.1-7 



6.1-8 

ly. The forMatting checks involve: 

• Enforcing that invalid RH bit collbina­
tions are not used, e.g., BBI=BB and 
BCI=~BC, or CDI=CD and ECI=~EC. 

• Enforcing that the Fl1 profile 19 rules 
are not violated, e.g., the receiving of 
an expedited-fl<>tt DFC request other than 
SIGNAL, or the receiving of a request 
Nith 68 that is neither LUSTAT nor Fl'lt-S 
(Attach>. 

For•at checks occur before the use of 
finite-state machines (FSl1sl. estate checks 
are checks that involve FSHs.l Fstls require 
the BIU record to be for11atted correctly 
before processing it. 

CHAINING PROTOCOL 

Chaining provides a uans to send Cand 
receive) a sequence of requests as one entity 
in the context of error recovery. At aost 
one response is sent per chain. 

A chain consists of a single response RU or 
one or 11<>re request RUs Ni th the follONing 
properties: 

• The requests belong to the sa•e flow Cex­
pedited or nc;;rMal). 

• The requests flow in the salll8 direction. 

• The first request is marked BC l8egin 
Chain> in the RH. 

• The last request is Marked EC (End Chain> 
in the RH. 

• All requests that are neither first nor 
last are 11arked (~BC, ~ECl in the RH. 

The checkh'9 of received requests for proper 
chaining is provided for each half-session. 

Each response and each expedited-flow request 
is a single-RU chain, i.e., the RH indic;ates 
CBC1EC>. 

Only chains of the following types are sent: 

• Exception-response CRQEl chain: Each 
request in the chain is 11arked 
exception-response. 

• Definite-response ( RQD) chain: The last 
request in the chain is marked 
definite-response; all other requests in 
the chain are marked exception-response. 

See "Appendix D. RH For11ats" for details of 
the possible variations Nithin each type. 

The sender of the chain sets the For• of 
Response Requested bits properly in each 
request of the chain. Thus, the receiver of 
a chain need examint1 the Form of Response 
Requested bits only in the last request in a 
chain, or in a request in error. 

NorRl-flON DFC requests ;are not sent while 
sending • normal-flow Fl'ID 11Ultiple-request 
chain. 

If a chain sender receives a negative 
response to a chain being sent, the chain uy 
be ended prematurely by sending the 
end-of-ch•in <EC> request. 

REQUEST/RESPONSE CORRELATION 

In order to remember the i nforma ti on on 
normal-flON chains that DFC sends or 
receives, DFC 11aintains two correlation 
entries: one for sent chains and one for 
received chiilins. There c&n never be more 
than one sent or received chain outstanding 
•t any point in time (fH profile 19 protocol 
rules do not allow it), hence the need for 
only two entries. A correlation entry is 
established when the first RU in • chain is 
sent or received. The entry is reset when 
the chain has been completely processed, that 
is, when the end-of-chain request and its 
response, if any, have been processed. A 
correlation entry includes such infor-tion 
as selected RH parameters needed by DFC 
(e.g., RU category, BBI, and CEBil, and the 
DFC request code. 

Some e><a111Ples of how the correlation entry is 
used are: 

• When receiving a response, the entry for 
the sent chain is checked to verify that 
the RU category in the response is the 
same H the RU category of the sent 
chain. 

• ..,.,en sending • response, the entry for 
the received chain is examined to deter­
mine lllhether • bracket has begun (i.e., 
the f i rs t RU in the chain WH Fl1D with 
BBI=BB1 or the single-RU chain was LUSTAT 
with BBI=BB). 

REQUEST/RESPONSE 110DE PROTOCOLS 

Every half-session issues requests and 
responses iilCcording to the imeediate request 
mode ;and the immediate response 110de. Imme­
diate request mode means that all request 
chains are sent under the constraint that no 
request may be sent by a given half-session 
when a previously sent request is still 
awaiting a response or reply. CA reply is a 
request sent in reaction to a received RQE 
request unit.) Request chains are replied or 
responded to in order of receipt. DFC 
enforces immediate request •nd response mode 
in the chaining FSHs. 

There are only two expedited RUs used (SIG 
and CRV> and both use the inediate request 
mode. The two RUs flow at different times 
<when in use, the CRV exchange is complete 
before SIG is ever sent ) , and therefore the 
protocol can be enforced by the initiating 
cOlllpOnents--DFC enforces the protocol for 
SIG, and TC enforces it for CRV. 

SHA Format and Protocol Reference Manual for LU Type 6.2 



The immediate response mode requires that 
responses be sent in the order the requests 
are received !i.e., requests are processed 
and responses issued first-in, first-out>. 
When a response to a particular request is 
received, it means that all requests in the 
same flow sent before the responded-to 
request have been processed by the receiver, 
and that their responses, if any, have been 
sent. 

BRACKET PROTOCOLS 

A bracket is a sequence of normal-flow 
request chains and their responses, exchanged 
in either or both directions between two 
half-sessions. Bracket protocols allow con­
tention for session resources and assist in 
resolving the race condition that can result 
from that contention. 

The primary use of brackets is to carry con­
versations between transaction programs. A 
transaction program requests a conversation 
with another transaction program by issuing 
the ALLOCATE verb. ALLOCATE causes the 
resources manager CRMl to select a 
half-session (based on ALLOCATE parameters l 
and attempt to initiate a bracket on it. If 
the bracket is successful, that half-session 
is used to carry the conversation. (See 
"Chapter 3. LU Resources Manager" for more 
details.) A transaction program ends a con­
versation by issuing a DEALLOCATE verb. This 
causes the half-session to terminate the 
bracket carrying the conversation. When the 
bracket terminates, the half-session becomes 
available again for selection by RM. 

The bracket rules regulate the initiation and 
termination of a bracket. 

A bracket is delimited by setting BBI to 
Begin Bracket CBBl in the first request of 
the first chain, and CEBI to Conditional End 
Bracket CCEBl in the last request of the last 
chain in the bracket. 

BIND parameters specify one of the 
half-sessions as first speaker and the other 
as bidder. The first speaker has the freedom 
to begin a bracket without requesting permis­
sion from the other half-session to do so. 
Any request carrying BB sent by the first 
speaker wi 11 begin a bracket. The bidder 
must request and receive permission from the 
first speaker to begin a bracket. The brack­
et protocols are verified by the bracket 
state manager in the receiving half-session. 

The bidder may attempt to initiate a bracket 
(i.e., Bid> by sending an FMD request chain 
with CRQD,BB,QRl or with CRQE,BB,CD,QRl. 
(See "Queued Response Protocol" on page 
6.1-10 for description of QR usage. l The 
first speaker grants the attempt via a reply 
to an CRQE,CDl !see "Send/Receive Mode Proto­
cols" on page 6.!-10 for definition of reply) 
or a positive or negative response (other 
than 0813, 0814, or 088BI or refuses the 
attempt via negative response (0813, 0814, or 
088B). 

A negative response with sense code 0813, 
0814, or 088B indicates that the first speak­
er has denied permission for the bidder to 
begin a bracket. A READY TO RECEIVE C RTR l 
request may be sent later by the first 
speaker when permission to start a bracket is 
granted. (The first speaker may or may not 
have the capability to subsequently send RTR. 
The 0814 sense code is used only when the 
first speaker has the capability to send 
RTR. l If the first speaker wi 11 send RTR 
later, the sense code with the negative 
response is 0814 C Bracket Bid Reject--RTR 
Forthcoming). In this case, the bidder waits 
for the RTR before sending another BB. If 
the RTR wi 11 not be sent, the sense code is 
either 0813 !Bracket Bid Reject--No RTR 
Forthcoming l or 088B C BB Not Accepted--BIS 
Reply Requested). In the 0813 case, the bid­
der will send BB again, if it still wants to 
begin a bracket. In the 088B case, the BB is 
not sent again because no more conversations 
will be allowed to start. A BIS request will 
be received shortly and a BIS reply will be 
sent. 

Expedited requests and responses are not 
affected by bracket indicators on normal-flow 
requests, nor by the states of the bracket 
FSMs. 

The following rules apply to the bracket 
indicators: 

• BB may be indicated only on the first (or 
only> request of a chain. 

• CEB may be indicated only on the last (or 
only> request of a chain. It indicates 
the last chain in the bracket. Cif CEB 
is set, CD must not be indicated because 
CEB overrides CD.l 

• 

• 

BB and CEB may both be indicated within 
the same chain. 

BB or CEB may be indicated by either 
half-session. 

• BB or CEB may be indicated on FMD 
requests. 

• Neither BB nor CEB may be indicated on 
any normal-flow DFC request except 
LUSTAT. 

• Neither BB nor CEB may be indicated on 
responses or on expedited requests. 

The following bracket termination rule is 
used: 

• Bracket Termination Rule: Bracket termi­
nation is influenced by whether the RU 
carrying CEB is an RQE, RQDl, or RQD2j3, 
request. If the request is RQD2l3 the 
bracket terminates only upon receipt of a 
positive response; a negative response to 
the chain causes the session to remain in 
bracket. If the RU is sent as RQE, the 
bracket terminates unconditionally upon 
the sending of that RU. A negative 
response to an (RQE,CEBl request will not 
find an entry in the receive correlation 

Chapter 6.1. Data Flow Control 6.1-9 



6 .1-10 

entity, and therefore is logged and dis­
carded. If the RU is specified as RQDl, 
the bracket ter•inates unconditionally 
upon receipt of a response to the chain, 
Nhether the response is positive or nega­
tive. RQOl is generated by DFC for the 
sequence l'IUllber Nrap case I unless the 
request is already RQD2l3> and for the 
DEALLOCATE TYPEIABEt.ft>_*l verb. When DFC 
uses RQIH, PS and the transaction progra• 
consider the conversation to be ter111i­
nated when the DEALLOCATE TYPEI ABEHD_* l 
or DEALLOCATE TYPECFLUSHI verb is issued: 
PS and the TP don't expect a response. 
DFC Naits for a response before infor•ing 
Rtt th<ilt the session is available for a 
nett conversation. 

Ho 110re than one BB can be outstanding fro11 a 
NIH-session. 

The normal-floN DFC requests, RTR and BIS, 
ny be sent only beb1een brackets and do not 
carry bracket bits. Fttl requests always car­
ry BB Nhen flowing between brackets. LUSTAT 
is treated exactly like an FMD request con­
taining CBC,EC), and 111ay be used Mith BB to 
bid for, or with CEB to end, a bracket. 

The follONing types of error conditions are 
detected in the unagei.ent of brackets: 

• Bracket protocol errors detected at the 
receiver and caused by sender error. 

• Errors detected at the receiver and 
caused by race conditions. The appropri­
ate action is for the receiver to send a 
Bracket Bid Reject sense code (0813, 
0814, or 0888 l on a negative response to 
the other half-session. A retry of the 
operation 111ay be necessary. 

SEND/RECEIVE HOOE PROTOCOLS 

Once a bracket has started, the nornl-flow 
send/receive mode protocol is half-duplex 
flip-flop IHDX-FFl. One half-session is des­
ignated HDX-FF bidder, and the other, HDX-FF 
first speaker. Parameters in BIND specify 
Nhich h<illf-session is first speaker and Nhich 
is bidder. The bidder 11ay send a request 
containing BB, but its bid for the bracket is 
pending until it receives a response. 

Once a bracket is beg\rl, a half-duplex 
flip-flop state is established, and the send­
er issues nor .. 1-flow requests and the 
receiver issues responses. When the sender 
C0111Pletes its transmission of normal-flow 
requests, it transfers control of sending to 
the other half-session by setting the Change 
Direction indicator to CD on the last request 
sent. See "Bracket Protocols" on page 6.1-9 
for additional details. 

The Ch<ilnge Direction indicator tCDil is used 
in the HDX-FF protocols. Only a request on 

the noraal flow th<ilt is aarked End Ch<ilin uy 
carry CDI=CD. When the sending h<illf-session 
includes CD in a request, it indicates th<ilt 
it is prepared to receive and that its paired 
half-session 111ay send. CD is not conveyed in 
a response or on a request that carries CEB. 

An exception-response (RQE) ch<ilin always has 
CD indicated on the last RU of the chain, 
unless that RU carries CEB, in tlhich case it 
does not indicate CO. 

A "reply" is the request sent by a 
half-session h1111ediately after receiving an 
CRQE,CD) ch<ilin. A reply is treated as 
i11PUcitly containing a positive response. 
That is, once an CRQE,CD) chain is replied 
to, a negative response to that chain is not 
permitted. A BIS. RTR, or an RU carrying BB 
is not treated as a reply. 

QUEUED RESPONSE PROTOCOL 

DFC enforces the setting of the Queued 
Response indicator lQRil bit on requests. 
The setting of the QRI bit is the same for 
all RUs in a chain. See "Appendix o. RH For­
••ts" for a discussion of this RH indicator. 

QR is always indicated on a ch<ilin carrying BB 
that is sent by the bidder. When QR is indi­
cated in a response. th<ilt response will not 
pass any other RUs flowing through the net­
work on the same session. It is used so th<ilt 
a positive response to the bidder's BB chain 
will not interfere with a bracket sent earli­
er by the first speaker. The positive 
response wi 11 be received after the first 
speaker's bracket ends. QR is not indicated 
on any other chain. 

PS SEHD AHD RECEIVE RECORDS 

This section describes how the 
SEHD_DATA_RECORD (sent frOll PS to HS> and the 
RECEIVE DATA record (sent frOll HS to PS> are 
•apped -to and fre11 the RH portion of a BIU 
containing a request. The SEtl>_DATA_RECORD 
is used by PS to send data in accordance with 
the verbs issued by a transaction program. 
This record (defined using transaction pro­
gra• verb terminologyl is mapped into a 
request BIU by DFC before being sent. The 
RECEIVE_DATA record is used to infor• PS 
about data received on the h<illf-session. 
This record (defined using transaction pro­
gram verb terminology) is mapped from a 
received BIU containing a request. Fig­
ure 6.1-7 on page 6.1-11 s~arizes the 
SEtl>_DATA_RECORD to RH 11apping and Fig­
ure 6.1-& on page 6.1-11 sU11111N1rizes the RH to 
RECEIVE_DATA record •apping. 

SHA ForRt and Protocol Reference Hanual for LU Type 6.2 



Parameters in SEHD_DATA_RECORD Request RH indicators 

ALLOCATE=YES (see Note 1) BB 
FHH=YES (see Note 1) Ftll 

NOT_Et-1'.J_OF_DATA .. EC,RtilEl 
FLUSH .. EC,Rt'ilEl 

CONFIRM EC,RQ03 
PREPARE_TO_RECEIVE_CONFIRM_SHORT EC ,co, Rtil03 
PREPARE_TO_RECEIVE_CONFIRl'l_LONG EC,CD,Rti1E3 

PREPARE_TO_RECEIYE_FLUSH EC,CD,Rt'ilEl 
DEALLOCATE_CONFIRM EC,CEB,RQD3 
DEALLOCATE_FLUSH with EC,CEB, RtilOl 

~ALLOCATE_ABElll_• '" ......,, 
see Note 3> 
ALLOCATE_FLUSH without EC,CEB, RtilEl 
EALLOCATE_ABEHD_* FM header 
•- Note 3> 

1. This para11eter is used in conjunction with the rest of the para .. ters (e.g., if ALLOCATE is YES and 
Ftll is YES, specified with DEALLOCATE_CONFIRM, the request RH indicators are BB,FttH,EC,CE8,RQD3), 

2. RH indicators not shown (e.g., tilRI) are set independently from the SEHD_DATA_RECORD para .. ters. 

3. To indicate a DEALLOCATE_ABEHD_* action, FttH is set to YES and DATA (offset 2 through 4) is set to 
X'070864'. 

Figure 6.1-7. SEND_DATA_RECORD to Request RH Mapping 

Request RH indicators Para•eters set in RECEIVE_DATA Record 

FHH FttH=YES (see Note l) 

.. EC NOT_Et-1'.J_OF_DATA 

EC,RQ02l3 CONFIRM 
EC1CD,Rt'i1*2l3 PREPARE_TO_RECEIVE_CONFIRtt 
EC,CD,RtilEl PREPARE_TO_RECEIVE_FLUSH 

. EC,CEB,Rtil02l3 DEALLOCATE_CONFIRM 
EC,CEB,RtilEl or RtilOl DEALLOCATE_FLUSH 

~ 

1. This parameter is set in conjunction with the rest of the para .. ters le.9., U FttH,EC,CEBoRtil02l3 
are indicated in the RH, FHH is YES and DEALLOCATE_CONFIRH is indicated in the RECEIYE_DATA 
record). 

2. Other RH indicators (e.g., tilRI> have no effect on the RECEIVE_DATA record para11eter settings. 

Figure 6.1-8. Request RH to RECEIVE_DATA Record Mapping 

DFC REQUEST AHD RESPONSE FORMATS 

This section describes the DFC request and 
response for1tatss the RH forlllltts are shOW'I in 

this sections the RU fo,...ts are shoNn in 
"Appendix E. Request/Response lklit lRUJ For­
uts". Figure 6.1-9 on page 6.1-12 and Fig­
ure 6.1-10 on page 6.1-13 show the foraat of 
DFC requests and responses, respectively. 
The Expedited Flow indicator tEFI in the TH> 

Chapter 6.1. Data Flow Control 6.1-U 



l 

shows 111hi ch flo111, expedited or normal, the 
DFC request or response f lo111s on. 

DFC Request -----> BIS RTR 
Header Indicators 

TH EFI Normal Norma,! 

RH Byte 0 Bit 0 RRI RQ RQ 
Bi ts 1-2 RU category DFC DFC 
Bit 3 reserved 0 0 
Bit 4 FI 1 1 
Bit 5 SDI *SD *SD 
Bit 6 BCI BC BC 
Bit 7 ECI EC EC 

RH Byte 1 Bit 0 DRlI DRl DRl 
Bit 1 reserved 0 0 
Bit 2 DR2I *DR2 ~DR2 

Bit 3 ERI ER ~ER 

Bit 4 reserved 0 0 
Bit 5 reserved 0 0 
Bit 6 QIU ~QR ~QR 

Bit 7 PI *PAC *PAC 

RH Byte 2 Bit 0 BBI ~B~ ~BB 

Bit 1 E:"r,• 
·'-'• ~EB ~EB 

Bi i: A CDI ~co ~co -
dit 3 reserved 0 0 
Bit 4 reserved 0 0 
Bit 5 reserved 0 0 
Bit 6 reserved 0 0 
Bit 7 CEBI ~CEB ~CEB 

1. *XX means -either XX or ~xx. 

LUST AT 

Normal 

RQ 
DFC 
0 
1 
*SD 
BC 
EC 

*DRl 
0 
*DR2 
*ER 
0 
0 
tfQR 
•PAC 

*BB 
~EB 

*CD 
0 
0 
0 
0 
*CEB 

2. See "Appendix D. RH Formats" for complete RH description. 

3. If CEBI is set to CEBt CDI is set to ~co. 

4. for LUSTAT: CDR1I,DR2I> = co,ll I (1,0) I (1,1). 

5. For LUSTAT: QRI is set to QR 111hen BBI is set to BB. 

6. The SNf and DCF TH fields are also set by DFC. 

7. The TH formats are not described in this volume. 

Figure 6.1-9. DfC Request formats 

SIGNAL 

Exp 

RQ 
DFC 
0 
1 
*SD 
BC 
EC 

DRl 
0 
~DR2 

~ER 

0 
0 
-.QR 
~PAC 

~BB 

~EB 

~co 

0 
0 
0 
0 
~CEB 

6.1-12 SNA format and Protocol Ref<?rence Manual for Lll Type 6.2 



DFC Response-----> BIS RTR LUST AT SIGNAL 
Header Indkators 

TH EFI Normal Normal Normal Exp 

RH Byte 0 Bit 0 RRI RSP RSP RSP RSP 
Bi ts 1-2 RU category DFC DFC DFC DFC 
Bit 3 reserved 0 0 0 0 
Bit 4 FI 1 1 1 1 
Bit 5 SDI *SD *SD *SD ~so 

Bit 6 BCI BC BC BC BC 
Bit 7 ECI EC EC EC EC 

RH Byte 1 Bit 0 DRlI DRl DRl *DRl DRl 
Bit 1 reserved 0 0 0 0 
Bit 2 DR2I *DR2 ~DR2 *DR2 ~DR2 

Bit 3 RTI :!: :!: :!: + 
Bit 4 reserved 0 0 0 0 
Bit 5 reserved 0 0 0 0 
Bit 6 QRI ~QR ~QR *QR ~QR 

Bit 7 PI *PAC *PAC *PAC ~PAC 

RH Byte 2 Bit 0-7 reserved o ••• o o ••. o 0 .•• o o ••• o 

l. *XX means either XX or ~xx. 

2. See "Appendix D. RH Formats" for complete RH description. 

3. For LUSTAT: DRlI, DR2I, and QRI are set the same as they were 
on the request. 

4. The SNF and DCF TH fields are also set by DFC. 

5. The TH formats are not described in this volume. 

Figure 6.1-10. DFC Response Formats 

Chapter 6.1. Data Flow Control 6.1-13 



.6.1-14 

DFC REQUEST AND RESPC»ISE DESCRIPTIONS 

The DFC requests for FH profile 19 are 
described belON. 

BIS (BRACKET INITIATION STOPPED> 

FlON: Pri11ary to secondary and second&ry to priur.y <Horul) 

Prfocipal FSH: 
None in DFC 

BIS is sent by a half-session to indicate 
that H will not attempt to begin any 110re 
brackets (i .e., send any 110re BB requests). 

LUSTAT (LOGICAL UNIT STATUS) 

The use of BIS and it's principle FSHs are 
described in 110re detail in "Chapter J. LU 
Resourcu ftilnager". 

Flow: Prinry to secondary.and secondary to pri•ary (NorHl> 

Principal FSH: 
Uses sa11e FSHs as nornl-flON data 

LUSTAT is used to accompany RH bits. The sta­
tus value is set to X'0006'. Specifically, 
LUSTAT is used in place of a null RUI that 
is, lllhen it is ti• to send an RU to DFC, and 
the RU is marked (BC 1 EC> and has RU length = 
o, an LUSTAT<0006> is sent instead. This 
results in the follONing RH encoding with 
LUSTAT< 0006 >: 

1. (RQDl,BB>: Sending half-session bids 
without data. 

2. <RQE21CD>: Sending half-snsion trans­
fers send control to the other 
half-session, specifies that a Confirm be 
taken, and that co11pletion of the Confir• 
be indicated by receipt of the next 
request fro• the other half-session. 
Confirm--llHns that the transaction pro-

gra• connected to the other half-session 
has received and processed the RU data 
successfully. 

3. ( RQD 2 , CD > : Sa•• as 2, except that eo11-
plet ion of the Confir• will be indicated 
by receipt of +RSP. 

4. (RQEl ,co>: Sending half-session transfer 
send control to the other half-aassion 
specifying no Confir•. 

s. (RQD2,CEB>: Same as 3, plus the bracket 
wi 11 be ter•i na ted lilhen a +RSP is 
received. 

6. (RQEl,CEB>: Sa•e as 4, plus the bracket 
is ter•inated U1COl\ditionally. 

SHA For•t and Protocol Reference Hanual for LU Type 6.2 



RTR !READY TO RECEIVE> 

Flow: First speaker to bidder !Normal) 

Principal FSM: 
None in DFC 

RTR indicates to the bidder that it is now 
allowed to initiate a bracket. An RTR 
request is sent only by the first speaker 
(see "Bracket Protocols" on page 6. 1-9 > • The 

SIG !SIGNAL> 

use of RTR and it's principal FSMs are 
described in more detail in "Chapte.r 3. LU 
Resources Manager". 

Flow: Primary to secondary and secondary to primary !Expedited) 

Principal FSM: 
None 

SIG is an expedited request that can be sent 
between half-sessions, regardless of the sta­
tus of the normal flows. It is the only 
expedited DFC request defined for FM profile 
19. It carries a four-byte value, of which 
the first two bytes are the Signal code and 
the last two bytes are the Signal extension 
value. 

The only Signal code defined for use with FM 
profile 19 is X'OOOlOOOl'. This signal code 
is used in conjunction wi th the PS command 
REQUEST_TO_SEND. See "Chapter 5.1. Presenta­
tion Services--Conversation Verbs" for more 
details. 

Chapter 6.1. Data Flow Control 6.1-15 



~ .EQR ~ HALF-SESSIONS 

The overview, structure, and protocol bounda­
ries for DFC for CP-LU half-sessions is shown 
in Figure 6.1-11 on page 6.1-17. 

The CP-LU session uses FM profile 0 or 6. 
Immediate request and immediate response 
modes are used for FM profile o. Delayed 
request and delayed response modes are used 
for FM profile 6. Chain 
form-of-response-requested indications for FM 
profile 0 are restricted to RQD, while FM 
profile 6 allows any CRQD, RQE, or RQN). FM 
profiles 0 and 6 share the following proper­
ties: 

• Only single-RU chains are allowed. 
• Compression is not used. 
• Brackets are not used. 
• FM headers are not used. 
• Alternate code is not allowed. 
• Send/Receive mode is full duplex CFDX>. 

DFC is initialized at half-session activation 
time to the FM profile being used. 

OVERVIEW OF DFC FUNCTIONS 

The functions of DFC for CP-LU half-sessions 
are: 

• 

• 

Enforce correct request and response for­
mats Ce.g., RH parameter settings>. 

Enforce immediate request and immediate 
response mode for sending and receiving 
normal-flow data. No enforcement is nec­
essary for the delayed request or delayed 
response mode. 

Request/Response Formatting 

DFC optionally checks that received requests 
and responses are formatted correctly. For 
example, all RHs must have BCI=BC and ECI=EC. 
Formats may vary depending upon the FM pro­
file used on the session. For instance, FM 
profile 0 allows chains asking only for defi­
nite response CRQDJ. 

Immediate Request and Immediate Response Mode 
Enforcement 

DFC optionally checks that received requests 
do not violate immediate request mode proto­
cols for sessions using FM profile O. Once a 
request asking for a definite response has 
been received, it must be responded to before 
another request is received. Immediate 
response mode is also enforced for those ses­
sions using FM profile 0. Any response 
received must be to an outstanding RQD 
request. 

ERROR PROCESSING 

If a format error or immediate request or 
immediate response mode violation occurs, a 
negative response is sent if possible; other­
wise, the error is logged. The half-session 
then continues. to run until it is destroyed 
Ce.g., via DACTLU>. 

6.1-16 SNA Format and Protocol Reference Manual for LU Type 6.' 



v 

INIT_HS 

DFC_INITIALIZE 
(see note) 

LU Network Services lLNS) 

HS_SEND_RECORD 

v 

DFC_SEND_FROM_LNS 
(see note> 

BIU 
v 

Transmission Control (TC> 

A 
HS_RCV_RECORD 

B 
A 

DFC 

BIU 

~ Called by half-session router ("Chapter 6.0. Half-Session"> 

Figure 6.1-11. Overview, Structure, and Protocol Boundaries of DFC for CP-LU Half-Sessions 

Chapter 6.1. Data Flow Control 6.1-17 



HIGH-LEVEL PROCEDURES 

6.1-18 

DFC_INITIALIZE 

FUNCTION: Initialize fields in the half-session's local storage (for t:rocess data) that 
are used by DFC. This procedure is called by the heilf-session router ("Chap­
ter 6.0. Half-Session") when the half-session is created. 

INPUT: INIT_HS record containing either ACTLU or BIND image; the following informa­
tion is made available to DFC by the heilf-session router: FM profile type, 
indication that half-session is primary or secondary, LU_ID that identifies 
the LNS and RH associated with this half-session, HS_ID used to indicate to 
PS, RH, and LNS the half-session associated with a particular request. 

OUTPUT: SUCCESSFUL return code and half-session initialized 

NOTES: 1. When a half-session is activated, it comes up in-brackets. The first BIU sent 
on the session uses a value of X'OOOl' in the TH sequence number field and 
does not carry BB. The BB, in effect, was carried on the session activation 
request (BIND). Therefore, the current bracket sequence number (LO­
CAL.CURRENT BRACKET SQNJ associated with the first bracket on a session is 
initialized-to 0. -

2. The TS and FM profile type are checked for validity prior to calling this pro­
cedure. 

Referenced procedures, FSHs, and data structures: 
FSH_BSH_FMP19 
FSH_RCV_PURGE_FHP19 
FSH_QRI_CHAIN_RCV_FHP19 
FSH_CHAIN_RCV_FHP19 
FSH_CHAIN_SEND_FHP19 
FSH_IHHEDIATE_RQ_HODE_SEND 
FSH_IHt1EDIATE_RQ_MODE_RCV 
LOCAL 
INIT_HS 

Set all of the FSMs in this chapter to the reset state (state number ll. 
If the INIT_HS record is for an LU-LU session (contains a BIND image) then 

page 6.1-43 
page 6.1-50 
page 6 .1-49 
page 6.1-44 
page 6 .1-46 
page 6 .1-48 
page 6 .1-48 
page 6.0-6 
page A-16 

Record information from BIND image in the INIT_HS record that will be used by DFC 
throughout the life of this session: 

• First speaker or bidder (contention winner or loser) 
• Maximum send RU size 
• Alternate code set allowed 

Set LOCAL.SQN SEND CNT to O. 
Set LOCAL.PHS=BB_REGISTER.BRACKET_STARTED BY to PRI. 
Set LOCAL.PHS_BB_REGISTER.NUMBER to O. 
Set LOCAL.SHS_BB_REGISTER.BRACKET_STARTED_BY to SEC. 
Set LOCAL.SHS_BB_REGISTER.NUt1BER to O. 
Set LOCAL.CURRENT_BRACKET_SQN.BRACKET_STARTED_BY to PRI. 
Set LOCAL.CURRENT_BRACKET_SQN.NUMBER to 0. !See Note ll 

Set LOCAL.SEND_ERROR_RSP_STATE to RESET. 
Set LOCAL.SIG_RECEIVED to NO. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



DFC_SEND_FROM_PS 

DFC_SEND_FROM_PS 

FUNCTION: Process records received from presentation services CPS). This procedure is 
called by the half-session router ("Chapter 6.0. Half-Session"). 

INPUT: PS_TO_HS_RECORD and the form of response requested for the last chain received 

OUTPUT: Indication may be set that a negative response is to be sent to the next chain 
received I LOCAL.SEND ERROR RSP STATE>; a SIGNAL may be sent to the partner 
half-session. - - -

Referenced procedures, FSMs, and data structures: 
PROCESS_SEND_PARM 
SEND_RSP _BIU 
DFC_SEND_FSHS 
F~~~_:;;,.\IN_RCV _FMPl 9 
PS_TO_HS_RECORD 
SEND_DATA_RECORD 
SEND_ERROR 
REQUEST_TO_SEND 
CONFIRMED 
LOCAL 

Select based on PS_TO_HS_RECORD type: 
When SEND DATA RECORD 

Call PROCESS=SEND_PARMISEND_PARM from input record> (page 6.1-35). 

When CONFIRMED 
If last request received was RQD2 or RQD3 then 

Call SEND_RSP_BIU (page 6.1-381 to send normal-flow, 
positive response. BIU_PTR passed to procedure has null value. 

When SEND_ERROR 
If state of FSM CHAIN RCV FMP19 = BETC !between chains) then 

page 6.1-35 
page 6 .1-38 
page 6 .1-25 
page 6.1-44 
page A-24 
page A-24 
page A-24 
page A-24 
page A-24 
p<ige 6.0-6 

Set LOCAL.SEND ERROR RSP STATE to NEG OWED to indicate that a negative 
response should be ;ent-to the next RU received. 

Else (send -RSP to chain currently being processed) 
Call SEND_RSP_BIU (page 6.1-381 to send normal-flow, -RSP with 
sense data X'08460000'. BIU_PTR passed to the procedure has null value. 

When REQUEST TO SEND 
Create a-BIU and initialize it to all O's. See Appendix D. 
Set EFI to indicate expedited. 
Set RH as described in Figure 6.1-9 on page 6.1-12. 
Set RU as described under SIG request in Appendix E. 
Call DFC_SEND_FSHSCBIUJ !page 6.l-25l. 

Chapter 6.l. Data Flow Control 6.1-19 



DFC_SEND_FROM_RM 

DFC_SEND_FROM_RM 

6.1-20 

FUNCTION: Process records received from the resources manager (RMl. This procedure is 
called by the half-session router ("Chapter 6.0. Half-Session"). 

INPUT: 

OUTPUT: 

NOTE: 

RM_TO_HS_RECORD, indication that session just started, first speaker indica­
tor, primary or secondary half-session indicator, and 
LOCAL.SQN_SEND_CNT.NUMBER 

In addition an HS_PS_CONNECTED record may be received from RM 

The following RUs may be sent: Bid with Attach Can Attach carrying BBl, Bid 
LUSTAT CA LUSTAT carrying BB> BIS, RTR, or a YIELD SESSION LUSTAT CLUSTAT car­
rying CEBl. 

The following fields may be altered: LOCAL.CURRENT_BRACKET_SQN.NUMBER, 
LOCAL.CURRENT_BRACKET_SQN.BRACKET_STARTED_BY, LOCAL.PHS_BB_REGISTER.NUMBER, 
LOCAL. SHS_BB_REGISTER. NUMBER~ 

In addition, the ID of the PS that is connected to this HS is saved to identi­
fy the PS that is using this HS, indication that session just started. 

This procedure uses the BIU Csee Appendix D ). In addition, the EFI field of 
the TH may be set. 

Referenced procedures, FSMs, and data structures: 
PROCESS_SEND_PARM 
DFC_SEND_FSMS 
FSM_BSM_F~P!? 

Pr-t_;o_rts_RECORD 
BID_WITHOUT_ATTACH 
BID_WITH_ATTACH 
HS_ PS_ CONNECTED 
ENCIPHERED_RD2 
LOCAL 

Select based on RM_TO_HS_RECORD type: 
When BID WITH ATTACH 

page 6.1-35 
page 6.1-25 
page 6.1-43 
page A-28 
page A-29 
page A-28 
page A-29 
page A-30 
page 6.0-6 

If th; ses;ion just started Cthis is the first conversation on this session) then 
Cno need to set current bracket sequence number because it has already 
been properly initialized) 

Receive the HS_PS_CONNECTED record that RM sends immediately after it sends the 
BID WITH ATTACH record. Save the PS identifier CHS PS CONNECTED.PS IDl. 

Call-FSM_BSM_FMP19 Cpage 6.1-43) with an INB signal to indicate that­
this half-session is connected to a PS. 

Record that the session did not just start. 

Else Cthe session did not just start) 
If this half-session is the first speaker then 

Receive the HS PS CONNECTED record that RM sends immediately following the 
BID WITH ATTACH ~ecord. Save the PS identifier CHS PS CONNECTED.PS IDl. 

Call-FSM_BSM_FMP19 with an INB signal to indicate th~t this half-ses;ion is 
connected to a PS Cpage 6.1-43). 

The following sets the current bracket sequence number and LOCAL.*_BB_REGISTER 
before the BB request is sent: 

Set LOCAL.CURRENT_BRACKET_SQN.NUMBER to LOCAL.SQN_SEND_CNT.NUMBER + 1 Ctaking 
the wrap case into account>. 

If the half-session is primary then 
Set LOCAL.CURRENT_BRACKET_SQN.BRACKET_STARTED_BY to PRI. 
Set LOCAL.PHS BB REGISTER.NUMBER to LOCAL.CURRENT BRACKET SQN.NUMBER. 

Else - - - -
Set LOCAL.CURRENT_BRACKET_SQN.BRACKET_STARTED_BY to SEC. 
Set LOCAL.SHS_BB_REGISTER.NUMBER to LOCAL.CURRENT_BRACKET_SQN.NUMBER. 

Call PROCESS_SEND_PARMCBID_WITH_ATTACH.SEND_PARMJ (page 6.1-35). 

SNA Format and Protocol Reference Manual for LU Type 6.2 



DFC_SEND_FROH_R" 

When BID_WITHOUT_ATTACH 
Create and send a llUSTAT, BB, RQDl) rl"l<iuest to bid for a conversation on 
this session as follows: 

Create a BIU and initialize it to all O's. Set EFI to indicate nornid-flow. 
Set the RH to indicate OFC, FMH, BC, EC, RQDl, QR, and BB. Set the RU to an 
LUSTAT as described in Appendix E. 

Call DFC_SEtt>_FSMSlBIUl (page 6.1-25). 

When BIS_REPLY 
Create a BIU and initialize it to all O's. Set EFI to indicate nor•al-flow. 
Set the RH to indicate DFC, ftlH, BC, EC, RQE3, QR, and BB. Set the RU to 
BIS as described in ~ppendix E. 

Call DFC_SEtt>_FSMSlBIUl lpage 6.1-25). 

When BIS RQ 
Same as processing for BIS_REPLY labovel except RH indicates RQEl instead of RQE3. 

""en HS_PS_COl*IECTED 
Save the ID of the PS lHS_PS_CONNECTED.PS_IDI that is connected to this HS. 
Call FSM_BSM_FHP19 (page 6.1-43) Ni th an INB signal to indicate that 
this half-session is connected to a PS. 

If the session did not just start !i.e., this is not the first conversation 
on this session> then 

The following calculates the value for the current bracket sequence number and 
the BB_REGISTER before the BB request lto be sent) is received by DFC. 

Set LOCAL.CURRENT_BRACKET_SQN.Nl.Jt1BER to LOCAL.SQH_SENO_CN'T.NUHBER + 1 !taking 
the wrap case into account). 

If the half-session is primary then 
Set LOCAL.CURREN'T_BRACKET_SQH.BRACKET_STARTED_BY to PRI. 
Set LOCAL.PHS_BB_REGISTER.HUHBER to LOCAL.CURREHT_BRACKET_SQH.HUl"IBER. 

Else 
Set LOCAL.CURREHT_BRACKET_SQH.BRACKET_STARTED_BY to SEC. 
Set LOCAL.SHS_BB_REGISTER.HU11BER to LOCAL.CURREHT_BRACKET_SqN.HIJl1EIER. 

Else (session just started! 
Record that the session did not just start. 

When RTR_RQ 
Create a BIU and initialize it to all O's. Set EFI to indicate nor111al-flON. 
Set the RH to indicate DFC, FMH, BC, EC, and RQDl. Set the RU to RTR as 
described in Appendix E. 

Call DFC_SEHD_FSHSCBIUl Cpage 6.1-25). 

'°"en YIELD_SESSION 
If the session just started then 

Record that the session did not just start. 
The following sends an CLUSTAT. RQEl, CEBl to end the current conversation on 
this session. 

Create a BIU and initialize it to all O's. Set EFI to indicate normal-flON. 
Set the RH to indicate DFC, FMH, BC, EC, RQEl, and CEB. Set the RU to LUSTAT as 
descr;bed in Appendix E. 

Call DFC_SEl'll_FSMS<BIUl (page 6.1-25). 

~ EHCIPHERED_RD2 
Call PROCESS_SEtt>_PARHCEHCIPHERED_RD2.SEHD_PARH) Cpage 6.1-35). 

Chapter 6.1. Data Flow Control 6.1-U 



DFC_SEHD_FRotf_LNS 

DFC_SEND_FROM_LNS 

6.1-22 

FUNCTION: Process record received froa LU netNOrk services (lHSJ. This procedure is 
called by the half-session router ("Chapter 6.0. Half-Session"> and is used 
for SSCP-LU half-sessions only. 

INPUT: HS_SEND_RECORD variant of LNS_TO_HS_RECORD 

OUTPUT: TC.SEl'll procedure is called to send the data that is included in the input 
record to the partner half-session. 

Referenced procedures, FSHs, and data structures: 
TC.SEND 
FSH_IHHEDIATE_RQ_MODE_SEND 
FSH_IHHEDIATE_RQ_MODE_RCV 
LOCAL 
LNS_TO_HS_RECORD 
HS_SEND_RECORD 

If FH profile= 0 (FH profile 0 uses illllllediate request llOde.) then 

page 6.2-13 
page 6 .1-48 
page 6.1-48 
page 6.0-6 
page A-16 
page A-16 

Call FSH_IHHEDIATE_RQ_ttODE_SEl'll<the BIU frot1 the HS_SEND_RECORD.PIU> Cpiige 6.1-48). 
Call FSH_IHHEDIATE_RQ_HODE_RCV<the BIU from the HS_SEtfl_RECORD.PIUJ (page 6.1-48). 

Call TC.SENDCthe BIU frOM the HS_SEtfl_RECORD.PIU along with the EFI and SNF) (page 6.2-13). 

TRY_TO_RCY_SIGNAL 

FUNCTION: Determine if a REQ\JEST_TO_SEND record should be sent to PS to indicate a SIG­
NAL has been received. This procedure is called by the half-session router 
("Chapter 6.0. Half-Session"). 

INPUT: Indication that a SIGNAL has been received CLOCAL.SIG_RECEIVEDJ, the sequence 
nl.llllber of the signal, LOCAL.CURRENT_BRACKET_SQN, LOCAL.PHS_BB_REGISTER, 
LOCAL.SHS_BB_REGISTER 

OUTPUT: REQ\JEST_TO_SEl-I> sent to PS if required, indication that a SIGNAL has been 
received ILOCAL.SIG_RECEIVEDI altered if stray SIGNAL detected. 

Referenced procedures, FSHs, and data structures: 
FSH_BSH_FHP19 
REQUEST_TO_SEtfl 
LOCAL 

If the state of FSH_BSN_FHP19 is If.13 and LOCAL.SIG_RECEIYEO = YES then 

page 6.1-43 
page A-13 
page 6.0-6 

If the sequence number of the received SIGNAL request = LOCAL.CURRENT_BRACKET_SQN then 
Ca SIGNAL request has been received for the current bracket). 
Create and send a REQUEST_TO_SEND record to PS. 
Set LOCAL.SIG_RECEIYED to NO. 

Else <the SIGNAL is either stray or future) 
Set BB_REGISTER tsee below> to the low-order lS bits of either LOCAL.PHS_BB_REGISTER or 

LOCAL.SHS_BB_REGISTER according to the value of the high order bit of the SIGNAL 
sequence number <e.g., if it indicates primary (1) use PHS_BB_REGISTER). 

Set SIG_Nl.t1BER <see below> to the low-order IS bits of the SIGNAL sequence l'\Ulllber. 

Calculate CSIG_Nlll1BER - BB_REGISTER) modulo 2**15. 
If the result is 0 or > 2**14 then 

The SIGNAL is a stray that was intended for a previous conversation. 
Optionally log the condition and set LOCAL.SIG_RECEIYED to NO. 

Else 
The SIGNAL is for a future conversation. Save it until the bracket in 
mich it Mas sent sent becomes the current bracket. 

SNA ForMat and Protocol Reference tf&nual for LU Type 6.2 



DFC_RCV 

DFC_RCV 

FUNCTION: Process BIUs received fro• TC. This procedure is called by TC ("Chapter 6.2. 
Trans•ission Control"). 

INPUT: BIU, FH profile type, LU_ID, and HS_ID 

OUTPUT: LOCAL.SIG_RECEIVED is set if SIGNAL is received and the SNF of the SIGNAL is 
saved. 

l«ITE: This procedure and the procedures it calls use the BIU see Appendix D and 
AppencHx E In addition, the EFI and SNF fields of the TH are used. 

Referenced procedures, FSMs, and data structures: 
DFC_RCV_FSMS 
FORMAT_ERROR 
SEtl>_RSP_BIU 
STRAY_RSP 
SEtt>_NEG_RSP_OR_LOG 
FORMAT_ERROR_SSCP_LU 
STATE_ERROR_SSCP_LU 
FSM_IMMEDIATE_RQ_tlODE_SEtll 
FSM_IMMEDIATE_RQ_tlODE_RCV 
LOCAL 
HS_RCV_RECORD 

page 6.1-24 
page 6.1-26 
page 6.1-38 
page 6.1-41 
page 6.1-37 
page 6.1-30 
page 6.1-40 
page 6.1-48 
page 6.1-4& 
page 6.0-6 
page A-11 

If FM profile for this session is 19 IX'l3'), indicating LU-LU session, then 
If the BIU indicates RQ, Ftt>, .. 50, CODEl, and the RU length > 0 then 

Translate the data in the RU from ASCII to EBCDIC. 

Call FORMAT_ERRORIBIU> to perfor• optional format error checks Cpage 6.1-26), 
If a for•at error was f~ in the BIU then 

Return to the HS router ("Chapter 6.0. Half-Session") Nith LOCAL.SEHSE_CODE set 
to a nonzero value. This will cause the session to be deactivated and the 
half-session to be destroyed. 

Else lno for.at error> 
If RQ then 

If EFI = normal-flow then 
Call DFC_RCV_FSMSCBIUl (page 6.1-24). 

Else (expedited-flow SIGHAL request) 
Save only the latest SIGHAL request received. Set LOCAL.SIG_RECEIVED = YES and 
save the sequence number. The sequence nl.llber is used in determining the 
bracket the SIGNAL was intended for. 

Call SE~D_RSP_BIU (page 6.1-38) to send an expedited positive 
response to the SIGNAL request illlllediately. 

Else CRSP> 
Call STRAY_RSPCBIU> to determine if response is stray (page 6.1-411. 
If response h not stray then 

Call DFC_RCV_FSNSCBIUJ tpage 6.1-24>. 

Else ICP-LU half-session, FH profile O or 6.) 
Call FORHAT_ERROR_SSCP_LUlBIU) (page 6.1-30). 
Call STATE_ERROR_SSCP_LUCBIU) (page 6.1-40). 
If there is either a for•at or state error then 

Call SEtl>_HE6_RSP_OR_LOGIBIUl lpage 6.1-37). 
Else l no errors ) 

If FM profile= 0 then (FM profile 0 uses i11111ediate request mode.> 
Call FSN_Itt1EDIATE_RQ_MODE_SENDl8IU) (page 6.1-48). 
Call FSN_IMMEDIATE_RQ_MODE_RCVCBIU> (page 6.1-48). 

Incorporate the BIU in an HS_RCV_RECORD and send it to the I.NS associated with this HS. 
The HS_RCV_RECORD includes the HS_ID to identify this half-session. 

Chapter 6.1. Data FlOM Control 6.1-23 



DFC_RCV_FSMS 

6.1,-24 

DFC_RCV_FSMS 

FUNCTION; Enforce data flow control protocols for received requests and responses. 

INPUT: 

OUTPUT: 

BIU containing request or response, LOCAL.SEND_ERROR_RSP_STATE 

LOCAL.PHS_BB_REGISTER or LOCAL.SHS_BB_REGISTERI LOCAL.SEND_ERROR_RSP_STATE; 
RSP_TO_REQUEST_TO_SEND record may be sent to PS 

Referenced procedures, FSMs, and data structures: 
RCV_STATE_ERROR 
GENERATE_RM_PS_INPUTS 
SEND_RSP_TO_RM_OR_PS 
UPDATE_FSMS 
SEND_RSP_BIU 
FSM_RCV_PURGE_FMP19 
FSM_CHAIN_RCV_FMP19 
FSM_CHAIN_SEND_FMP19 
RSP_TO_REQUEST_TO_SEND 
LOCAL 

Call RCV_STATE_ERRORIBIUl !page 6.1-36). These checks are optional. 
If a state error is found then 

page 6 .1-36 
page 6.1-31 
page 6.1-39 
page 6.1-42 
page 6.1-38 
page 6.1-50 
page 6 .1-44 
page 6 .1-46 
page A-13 
page 6.0-6 

An error has occurred that will cause this session to be deactivated and the 
half-session process to be destroyed. LOCAL.SENSE_CODE contains sense data 
indicating the type of error. The HS router ("Chapter 6.0. Half-Session"! will 
cause the abnormal termination of the half-session as a result of LOCAL.SENSE_CODE 
being set. 

Else (no state error) 
S-lect based on RRI and EFI: 

When normal-flow request 
If BBI = BB then 

Set LOCAL.PHS_BB_REGISTER.NUMBER (if this half-session is primary! or 
LOCAL.SHS_BB_REGISTER.NUMBER (if secondary! to the low-order 15 bits 
of request SNF. 

If the state of FSM_RCV_PURGE_FMP19 ~ PURGE then 
Call GENERATE_RM_PS_INPUTS<BIUJ (page 6.1-31). 

Else 
Call UPDATE_FSMSCBIU) (page 6.1-42). 

If LOCAL.SEND_ERROR_RSP_STATE = NEG_OWED. BCI = BC, BBI = ~es, and 
(RU category is FMD or this request is an LUSTATl then 

Call SEND_RSP_BIUCBIU, NORMAL, NEG, X'08460000' .J (page 6.1-381 to send 
negative response to the chain. 

Set LOCAL.SEND_ERROR_RSP_STATE to RESET. 

If the state of FSM_CHAIN_RCV_FMP19 = PEND_RSP (a response is owedJ, CEBI = CEB, 
and form of response requested is RQDl then 

Call SEND_RSP_BIU<BIU, NORMAL, POS, X'OOOOOOOO' J !page 6.1-381 to send 
a positive response. 

When normal-flow response 
Call SEND_RSP_TO_RM_OR_PSIBIUl (page 6.1-391. 
Call FSM_CHAIN_SEND_FMP19(BIU) (page 6.1-46). 

When expedited-flow response (i.e., a positive response to SIGNAL> 
Create and send a RSP_TO_REQUEST_TO_SEND record to PS. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



DFC_SEND_FSMS 

DFC_SEND_FSMS 

FUNCTION: 

INPUT: 

OUTPUT: 

Maintain states while sending requests and responses. 

BIU containing request or response 

TC.SEND is called with the BIU to send. In addition, the following fields may 
be set: sequence number for request or response, LOCAL.SQN_SEND_CNT, 
LOCAL.PHS_BB_REGISTER, LOCAL_SHS_BB_REGISTER, and RH fields. 

NOTE: This procedure and the procedures it calls use the BIU see Appendix D and 
Appendix E. In addition, the EFI and SNF fields of the TH are used. 

Referenced procedures, FSMs, and data structures: 
TC.SEND 
FSM_CHAIN_RCV_FMP19 
FSM_CHAIN_SEND_FMP19 
LOCAL 

Select based on BIU.RRI and BIU.EFI: 
When normal-flow request 

page 6.2-13 
page 6.1-44 
page 6 .1-46 
page 6.0-6 

Increment LOCAL.SQN_SEND_CNT.SQN by 1 !taking the wrap case into account) 
and assign it to the SNF for this request. 

If CEBI = CEB then 
Indicate RQDl on this CEB request if necessary. A count is kept of all the 
normal-flow requests sent and received. When this count exceeds 16384 (2**14) 
the next CEB request sent indicates RQDl so that any SIGNAL requests or responses 
are flushed (received by this half-session) before the response to the RQDl request. 
This allows stray SIGNALS and responses to be accurately recognized. 

If the state of FSM CHAIN RCV FMPl 9 = PEND SEND REPLY .then 
Call FSM_CHAIN_RCV_FMPl9CBIUl !page 6.1:44>;-this request is an implicit response. 

If BBI = BB then 
Set LOCAL.PHS_BB_REGISTER.NUMBER lif this half-session is primary) or 

LOCAL.SHS_BB_REGISTER.NUMBER lif secondary) to the low-order 15 bits 
of request SNF. 

If BCI = BC then 
Call FSM_CHAIN_SEND_FMP191BIU, BEGIN_CHAINJ !page 6.1-46). 

If ECI = EC then 
Call FSM_CHAIN_SEND_FMP19CBIU, END_CHAINI. 

If it is specified to send the data as ASCII I implementation-defined) then 
Translate the data in the RU from EBCDIC to ASCII. Set CSI to CODEl. 

When normal-flow response 
If this is an RTR response then 

Set the SNF to the SNF value received on the RTR request. 
Else (response to FttD or LUSTATJ 

If this is a response to a BB chain then 
Set the high-order bit of the response SNF to indicate the half-session 

that sent the BB chain Cif primary sent the BB, then the bit is l; 
otherwise, it's OJ. Set the low-order 15 bits of the response SNF to 
the low-order 15 bits of the BB request. 

Else 
Set the SNF to LOCAL.CURRENT BRACKET SQN. 

Call FSM_CHAIN_RCV_FMP191BIUl Cpag; 6.1-44). 

When expedited-flow request !i.e., a SIGNAL request) 
Set the SNF to LOCAL.CURRENT_BRACKET_SQN. 

When expedited-flow response !i.e., a SIGNAL response> 
Set the SNF to the SNF value received on the SIGNAL request. 

Call TC.SENDCBIU along with the EFI and SNF of the THJ Cpage 6.2-13). 

Chapter 6.1. Data Flow Control 6.1-25 



LOW-LEVEL PROCEDURES !.!H ALPHABETICAL ORDER> 

6.1-26 

FORMAT_ERROR 

FUNCTION: Perform format checks on all requests and responses for LU-LU sess;on. These 
checks are optional. None, some, or all of these checks may be done. 

INPUT: BIU 

OUTPUT: TRUE if format error; otherwise, FALSE. If TRUE, LOCAL.SENSE_CODE is set to 
appropriate sense data. 

Referenced procedures, FSMs, and data structures: 
FORMAT_ERROR_RQ_FMD 
FORMAT_ERROR_RQ_DFC 
FORMAT_ERROR_NORM_RSP 
FORMAT_ERROR_EXP_RSP 
LOCAL 

Select based on one of the following conditions: 
When request with RU category of FMD 

Call FORMAT_ERROR_RQ_FMD<BIU> (page 6.1-29). 

When request with RU category of DFC 
Call FORMAT_ERROR_RQ_DFC<BIU> (page 6.1-28), 

When normal-flow response 
Call FORMAT_ERROR_NORM_RSP<BIU> (page 6.1-27). 

When expedited-flow response 
Call FORMAT_ERROR_EXP_RSP<BIU) <page 6.1-27>. 

CLOCAL.SENSE_CODE is set with the sense data indicating the type of error 
if an error is found by any of the above called procedures.) 

If LOCAL.SENSE_CODE ~ 0 then 
Return with a value of TRUE (format error found>. 

Else 
Return with a value of FALSE <no format error found). 

SNA Format and Protocol Reference Manual for LU Type 6.2 

page 6.1-29 
page 6.1-28 
page 6.1-27 
page 6.1-27 
page 6.0-6 



FORMAT_ERROR_EXP_RSP 

FORMAT_ERROR_EXP_RSP 

FUNCTION: Perform format checks on expedited-flow responses. These checks are optional. 

INPUT: BIU containing expedited-flow response 

OUTPUT: If error, LOCAL.SENSE_CODE is set to appropriate sense data. 

Referenced procedures, FSNs, and data structures: 
LOCAL page 6.0-6 

Select, in order, based on fields in the BIU: 
When RU category is not DFC 

Set LOCAL.SENSE_CODE to X'40ll0000'. 
When FI = ~FNH 

Set LOCAL.SENSE_CODE to X'400FOOOO'. 
When !SDI = SD and RTI = POSJ or (SOT. = ~so and RTI = NEGJ 

Set LOCAL.SENSE_CODE to x·~~l30000'. 
When BCI = ~BC or ECI - ~EC 

Set ~v~AL.SENSE_CODE to X'400BOOOO'. 
~hen QRI = QR 

Set LOCAL.SENSE_CODE to X'40150010'. 
When request code ~ SIGNAL 

Set LOCAL.SENSE CODE to X'40120000'. 
When RTI = NEG (-RSP to expedited request) 

Set LOCAL.SENSE_CGDE to BIU.SENSE_CODE. 

FORMAT_ERROR_NORM_RSP 

FUNCTION: Perform format checks on normal-flow responses. These checks are optional. 

INPUT: BIU containing normal-flow response 

OUTPUT: If error, LOCAL.SENSE_CODE is set to appropriate sense data. 

Referenced procedures, FSMs, and data structures: 
LOCAL 

Select, in order, based on BIU fields: 
When BCI = ~BC or ECI = ~EC 

Set LOCAL.SENSE_CODE to X'400BOOOO'. 
When (SDI = SD and RTI = POSJ or CSDI = ~so and RTI = NEG) 

Set LOCAL.SENSE CODE to X'40130000'. 
When RU category i; DFC and FI = ~FMH 

Set LOCAL.SENSE CODE to X'400FOOOO'. 
When RU category i; FMD, RTI = POS, and FI = FMH 

Set LOCAL.SENSE CODE to X'400FOOOO'. 

page 6.0-6 

When RTI = NEG (negative response) and the sense data is not X'08130000', 
X'08140000', X'08190000', X'08460000', or X'088BOOOO' 

Set LOCAL.SENSE_COOE to the response sense data. 

Chapter 6.1. Data Flow Control 6.1-27 



FeRHAT_ERROR_RQ_,DFC 

FORHAT_ERROR_RQ...DFC 

6.1-28 

FUNCTION: Perfor• format checks for data flON control (DFCJ requests. Theae checks are 
optional. 

INPUT: BIU containing DFC request 

OUTPUT: If error, LOCAL.SENSE_CODE is set to appropriate sense data. 

Referenced proce<l.ires, FSHs, and data structures: 
FORMAT_ERROR_RQ_,Fl1D 
LOCAL 

Select, in order, based on one of the following conditions: 
lol1en normal-flOM and the request code is not BIS, LUSTAT, or RTR 

Set LOCAL.SENSE_CODE to X'10030000'. 
When expedited-flow and request code is not SIGNAL 

Set LOCAL.SENSE_CODE to X'10030000'. 

page 6.1-29 
page 6.0-6 

When expedited-flON and request code is SIGNAL but the SIGNAL Extension field is not 
set to "soft" 

Set ~!ICAL.SENSE_CODE to X'IOOSOOOO'. 
lollen FI ~ FHH 

Set LOCAL.SENSE_CODE to X'400F0000'. 
lol1en BCI = .. BC or ECI : .. EC 

Set LOCAL.SENSE_CODE to X'400B0000'. 
When CSI = CODEI 

Set LOCAL.SENSE_CODE to X'40100000'. 
When EDI = ED 

Set LOCAL.SENSE_CODE to X'40160000'. 
When PDI = PD 

Set LOCAL.SENSE_CODE to X'40170000'. 
Otherwise 

If request code is LUSTAT then 
If LUSTAT Status Value field is "no-op" Conly valid LUSTAT type) then 

Call FORHAT_ERROR_RQ_,FHD(BIU>, since LUSTAT is like FH data (page 6.1-29). 
<LOCAL.SENSE_CODE set by called procedure if error.) 

Else 
Set LOCAL.SENSE_CODE to x•1oosoooo•. 

Else lnot LUSTAT DFC request) 
Select, in order, based on one of the follOMing: 

When (request code is BIS and for• of response requested is not RQEl or RQE3> or 
(request code is not BIS and for• of response requested is not RQDl) 

Set LOCAL.SENSE_CODE to X'48140000'. 
When QRI : QR 

Set LOCAL.SENSE_CODE to X'40150000'. 
lollen BBI = BB or EBI = EB or CEBI : CEB 

Set LOCAL.SENSE_CODE to X'400C0000'. 
When CDI : CD 

Set LOCAL.SENSE_CODE to X'40090000'. 

SHA For•t and Protocol Reference Hanual for LU Type 6.2 



FORMAT_ERROR_RQ_FMD 

FORMAT_ERROR_RQ_FMD 

FUNCTION: Perform format checks on FM data (FMDJ requests. These checks are optional. 

INPUT: BIU containing FMD request, indication that alternate code will or will not be 
used 

OUTPUT: If error, LOCAL.SENSE_CODE is set to appropriate sense data. 

Referenced procedures, FSMs, and data structures: 
LOCAL 

Select, in order, based on one of the following conditions: 
When expedited-flow 

Set LOCAL.SENSE_CODE to X'40110000'. 
When the form of response requested is not RQE or RQD 

Set LOCAL.SENSE_CODE to X'40140000'. 

When the form of response requested is RQD and ECI = ~EC 
Set LOCAL.SENSE_CODE to X'40070000'. 

When BBI = BB and BCI = ~ec 
Set LOCAL.SENSE_CODE to X'40030000'. 

page 6.0-6 

When BBI = BB and RU category is FMD and ~<FI = FMH and FM header type = 5) 
Set LOCAL.SENSE_CODE to X'40030000'. 

When CSI = CODEl and alternate code will not be used 
Set LOCAL.SENSE_CODE to X'40100000'. 

When EBI =EB <EB not used with FM profile 19.J 
Set LOCAL.SENSE_CODE to X'40040000'. 

When CDI = CD and ECI = ~EC (CD allowed only on ECJ 
Set LOCAL.SENSE_CODE to X'40090000'. 

When CDI =CD and form of response requested is RQDl (CD may not be sent RQDlJ 
Set LOCAL.SENSE CODE to X'40090000'. 

When CEBI = CEB and ECI = ~EC 
Set LOCAL.SENSE_CODE to X'40040000'. 

When (BB, ~QRI request is received from the bidder or 
(BB, QRI request is received from the first speaker 

Set LOCAL.SENSE CODE to X'40180000'. 
When CEBI = CEB and CDI =CD !Transaction pr~gram verbs caf'\l'>ot ~e~erate !h;s combination.) 

Set LOCAL.SENSE_CODE to X'40090000'. 

When CEBI = CEB and fo;·m of response requested is RQE2 or RQE3 
<DEALLO:ATE-CONFIRM CCEB,RQD2(31 and DEALLOCATE-FLUSH CCEB,RQEll are validl 

Set LOCAL.SENSE_CODE to X'40040000'. 
When CEBI = ~cEB, CDI = ~co, ECI = ~c, and form of response requested is RQE 

Set LOCAL.SENSE_CODE to X'40190000'. 

When RU category is FMD, CEBI = ~CEB, and form of response requested is RQDl 
Set LOCAL.SENSE CODE to X'40190000'. 

When BBI = BB, CEBI = CEB, form of response requested is RQEl, and this 
half-session is the first speaker <BB, CEB, RQE not allowed from b·idderl 

Set LOCAL.SENSE_CODE to X'40040000'. 

When FI = FMH, RU category is FMD, and FM header type is not 5 or 7 
If FM header type is 12 then 

If EC & ~CEB then 
Set LOCAL.SENSE_CODE to X'080F6051'. 

Else (not FMH 5, 7 or 121 
Set LOCAL.SENSE_CODE to X'l0084001'. 

Chapter 6.1. Data Flow Control 6.1-29 



FORMAT_ERROR_SSCP_LU 

FORMAT_ERROR_SSCP_LU 

6. l-30 

FUNCTION: Perform format error checks on RUs received on the SSCP-LU secondary 
half-session (for FM profiles 0 and 6). These checks are optional; none, 
some, or all of the checks may be done. 

INPUT: BIU, indication of FM profile type 

OUTPUT: TRUE if error; otherwise, FALSE. If TRUE, LOCAL.SENSE_CODE is set to appro­
priate sense data. 

Referenced procedures, FSMs, and data structures: 
LOCAL 

If expedited-flow then 
Set LOCAL.SENSE CODE to X'40110000'. 

Else Cnormal-flow)-
If request <RRI = RQl then 

Select, in order, based on one of the following conditions: 
When the RU length is < 3 

Set LOCAL.SENSE CODE to X'l0020000'. 
When RU category i~ not FMD 

Set LOCAL.SENSE CODE to X'40110000'. 
When FI ~ FMH -

Set LOCAL.SENSE CODE to X'400FOOOO'. 
When SDI = SO -

Set LOCAL.SENSE CODE to the first 4 bytes of the RU data. 
When BCI = ~BC or ECI = ~EC 

Set LOCAL.SENSE CODE to X'400BOOOO'. 
When FM profile is-0 and the form of response requested is not RQO 

Set LOCAL.SENSE_CODE to X'40140000'. 

page 6.0-6 

When FM profile is 6 and the form of response requested is not RQE, RQO, or RQN 
Set LOCAL.SENSE CODE to X'40140000'. 

When QRI = QR -
Set LOCAL.SENSE CODE to X'40150000'. 

When PI = PAC -
Set LOCAL.SENSE_CODE to X'40080000'. 

When BBI = BB, EBI = EB, or CEBI = CEB 
Set LOCAL.SENSE_CODE to X'400COOOO'. 

When CDI = CD 
Set LOCAL.SENSE CODE to X'400DOOOO'. 

When CSI = CODEl -
Set LOCAL.SENSE_CODE to X'40100000'. 

When EDI = ED 
Set LOCAL.SENSE CODE to X'40160000'. 

When POI = PD -
Set LOCAL.SENSE_CODE to X'40170000'. 

Else (response) 
Select, in order, based on one of the following ~onditions: 

When CRTI = POS and RU length < 3J or CRTI = NEG and RU length < 7) 
Set LOCAL.SENSE_CODE to X'l0020000'. 

When RU category is not FMD 
Set LOCAL.SENSE CODE to X'40110000'. 

When FI ~ FHH -
Set LOCAL.SENSE_CODE to X'400FOOOO'. 

When BCI = ~BC or ECI = ~EC 
Set LOCAL.SENSE_CODE to x·~cosoooo·. 

When CRTI = POS and SOT ~ 50) or CRTI = NEG and SDI = ~soi 
Set LC'lC'.".!...!:;ENSE_CODE to X'40130000'. 

!Jh. :;;c, \ilR I = QR 
Set LOCAL.SENSE_CODE to X'40150000'. 

When PI = PAC 
Set LOCAL.SENSE_COOE to X'40080000'. 

If LOCAL.SENSE CODE = 0 then 
Return with-a value of FALSE Cno format error found). 

Else 
Return with a value of TRUE (format error foundl. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



GENERATE_RM_PS_INPUTS 

GENERATE_RM_PS_INPUTS 

FUNCTION: Generate the appropriate records for RM and PS based on the passed BIU's con­
tent. 

INPUT: BIU containing normal-flow request, information about the last request sent 

In addition, a BID_RSP or an RTR_RSP record may be received from RM. 

OUTPUT: Appropriate records sent to RM and PS. LOCAL.CURRENT_BRACKET_SQN, ID of the 
PS connected to this HS 

Referenced procedures, FSMs, and data structures: 
PROCESS_RU_DATA 
OK_TO_REPLY 
SEND_RSP _BIU 
UPDATE_FSMS 
FSM_BSM_FMP19 
FSM_RCV_PURGE_FMP19 
HS_TO_RM_RECORD 
ATTACH_HEADER 
BID 
BID_RSP 
FREE_SESSION 
BIS_RQ 
BIS_REPLY 
RTR_RQ 
RTR_RSP 
BID_RSP 
RTR_RSP 
LOCAL 

Select, in order, based on one of the following conditions: 
When BB request 

Create and send a BID record to RM. 
Receive the BID RSP from RM. 
If a positive Bid response is received !BID RSP.RTI = POS) then 

Call UPDATE_FSMSCBIUl (page 6.l-4Zl. 
If RU category is FMD then 

Call PROCESS_RU_DATA!BIUJ (page 6.1-341. 
Else 

page 6.1-34 
page 6.1-33 
page 6.1-38 
page 6. l-4Z 
page 6.1-43 
page 6.1-50 
page A-13 
page A-13 
page A-14 
page A-14 
page A-15 
page A-14 
page A-14 
page A-15 
page A-15 
page A-ZS 
page A-30 
page 6.0-6 

Call SEND RSP BIU<BIU, NORMAL, POS, X'OOOOOOOO' l (page 6.1-381 to send 
a positi~e r;sponse to the BB request. 

Else (negative response to bidl 
Call FSM_RCV_PURGE_FMP19 SIGNALCPURGEl (page 6.1-50) to cause the 

remainder of this BB chain to be purged. 
Call UPDATE_FSMSCBIUJ !page 6.l-4Zl. 
Call SEND_RSP_BIUCBIU, NORMAL, NEG, BID_RSP.SENSE_CODEJ (page 6.1-381 to send 

a negative response to the BB request. 

When BIS request 
Call UPDATE_FSMSCBIUl (page 6.l-4ZJ. 
If the form of response requested = RQEl then 

Create and send a BIS RQ record to RM. 
Else (RQE3l -

Create and send a BIS_REPLY record to RM. 

Chapter 6.1. Data Flow Control 6.1-31 



GENERATE_RM_PS_INPUTS 

6.1-32 

When RTR request 
Create and send an RTR RQ record to RM. 
Call UPDATE_FSMS<BIU> Cpage 6.1-42). 
Receive RTR_RSP from RM. 
If RTR RSP.RTI : POS then 

Call SEND_RSP_BIUlBIU, NORMAL, POS, BID_RSP.SENSE_CODE) (page 6.1-38) to send 
a positive response to the RTR request. 

Else <negative response to RTR> 
Call SEND_RSP_BIU<BIU, NORMAL, NEG, RTR_RSP.SENSE_CODE) (page 6.1-38) to send 

a negative response to the RTR request. 

Otherwise 
Call OK_TO_REPLY<BIU) (page 6.1-33) to determine if BIU is a reply. 
If BIU is a reply then 

If FSM BSM FMP19 is in BETB state, and the last sent chain carried BB 
Cthis-BIU-is a reply to BB> then 

Create and send a BID_RSP (positive) record to RM. 
Receive the HS_Ps_CONNECTED record from RM <this is a reply to the BID_RSP record>. 
Record the ID of the PS connected to this HS. 
Set LOCAL.CURRENT_BRACKET_SQN to the sequence number of the sent BB request. 
Call FSM_BSM_FMP19 <page 6.1-43) with an INB signal to indicate 
that this HS is now connected to a PS. 

If the last chain sent was RQE2 or RQE3 then 
Create and send a CONFIRMED record to PS. 

Call PROCESS_RU_DATAlBIU> (page 6.1-34). 
Call UPDATE_FSMSCBIU> Cpage 6.1-42). 

INVALID_SENSE_CODE 

FUNCTION: Determine if sense data on negative response is valid. 

INPUT: 

OUTPUT: 

BIU containing negative response, information about the last chain sent, first 
speaker indicator 

TRUE if invalid sense data; otherwise, FALSE 

If this is a response to a BB chain then 
If this half-session is first speaker then 

If the response sense data is not X'08460000' or X'088BOOOO' then 
Return with a value of TRUE <invalid sense data). 

Else (bidder) 
If response to LUSTAT then (i.e., RSPCLUSTAT,BB>> 

If the response sense data is not X'08130000', X'08140000', 
or X'088B0000' then 

Return with a value of TRUE <invalid sense data). 
Else (response to BB not LUSTAT) 

If the response sense data is not X'08130000', X'08140000', 
X'088BOOOO', X'08460000' then 

Return with a value of TRUE <invalid sense data>. 

Else (response to ~BB chain> 
If response to RTR then 

If the response sense data is not X'08190000' then 
Return with a value of TRUE <invalid sense data). 

Else (not response to RTR> 
If response to BIS then (negative response to BIS not allowed> 

Return with a value of TRUE (invalid sense data). 
Else 

If the sense data is not X'08460000' then 
Return with a value of TRUE <invalid sense data>. 

Return with a value of FALSE Cvalid sense data). 

SNA Format and Protocol Reference Manual for LU Type 6.2 



OK_TO_REPLY 

OK_TO_REPLY 

FUNCTION: Determine whether or not a request is a valid reply. A reply is a request 
sent (or received) after receiving Cor sending! an CRQE,CDJ request. 

INPUT: BIU containing a normal-flow request, LOCAL.CURRENT_BRACKET_SEQUENCE_NUMBER, 
information about the last chain sent 

OUTPUT: TRUE if valid reply; otherwise, FALSE 

Referenced procedures, FSMs, and data structures: 
FSM_BSM_FHP19 
FSM_CHAIN_RCV_FMP19 
FSM_CHAIN_SEND_FMP19 
LOCAL 

Select, in order, based on one of the following conditions: 
When the request is BIS or RTR 

Return with a value of FALSE Cnot a valid reply!. 

When the request indicates BB or ~BC 
Return with a value of FALSE (not a valid reply). 

page 6.1-43 
page 6.1-44 
page 6 .1-46 
page 6.0-6 

When !sending and the state of FSM_CHAIN_RCV_FMP19 is not PEND_SEND_REPLYJ or 
!receiving and the state of FSM_CHAIN_SEND_FMP19 is not PEND_RCV_REPLYJ 
(page 6.1-44 and page 6.1-46) 

Return with a value of FALSE (not valid reply>. 

When receiving and state of FSM_BSM_FMP19 !page 6.1-431 is INB and the 
last chain sent carried BB and LOCAL.CURRENT BRACKET SQN ~ the SNF of that chain 

Return with a value of FALSE (not a valid reply). -

Return with a value of TRUE Ca valid reply). 

Chapter 6 .1. O;ita Flo~i Control 6.1-33 



PROCESS_RU_DATA 

PROCESS_RU_DATA 

6.1-34 

FUNCTION: Process an RU and, based on the content of the RU, send the •ppropr;•te 
records to RH •nd PS. 

INPUT: 

OUTPUT: 

NOTE: 

BIU cont•ining • normal-flOlil request, LOCAL.SHS_B8_RE6ISTERt 
LOCAL.PHS_BB_RE6ISTER1 HS_ID1 DCF frOll TH of request, indic•tion that 
half-session is pri•ary or secondary 

In addition, an HS_PS_Cotl-IECTED record llilY be received frOll RH. 

Appropriate records sent to Rl1 and PS; if an FHH-5 is present, 
LOCAL.CURRENT_BRACKET_SQN is set and ID of PS th41t is connected to this HS is 
saved. 

PS and RH require th41t any FHH data is sent in a separate record frOll other RU 
data. 

Referenced procedures, FSl1s, and data structures: 
FSH_BSH_Ft1Pl9 
RECEIVE_DATA 
HS_TO_RH_RECORD 
ATTACH_HEADER 
HS_PS_COtflECTED 
SECURITY_HEADER 
LOCAL 

page 6 .1-ltl 
page A-12 
page A-13 
page A-13 
page A-29 
page A-15 
page 6.0-6 

Deter•ine if a complete FH header is present. FH headers •ay fit into • single RU 
(along Mith other data) or span several RUs Mithin a chain. FH header data is treated 
se,·arately front other data. Ihm FH headers span RUs (this can be deter•ined by ex .. ining 
the data count field and the FHH length fields> the data is acc1.11Ulated 
1.a1til the entire header has been received. The RH of the first (or onlyJ RU containing 
an FH header indicates Ftlf and an RU category of FMD. FHH is indicated only in the first 
RU; successive RUs containing FH header data indicate .. ftli. 

If a complete FH header is present then 
Select based on the FH header type: 

tl1en type 5 (Attach> 
Create and send an ATTACH_HEADER record <contains the FH header 5 data) to RH. 
Receive the HS_PS_CONNECTED record frOtl RH (this is a reply to ATTACH_HEADERJ. 

Save the ID of the PS that is COl'Vlected to this HS. 
Call FSl1_BSH_FHP19 (page 6.1-43) Mith an INB signal to 

indicate that this HS is now connected to a PS. 

Update the current bracket sequence number using the sequence nc.nber of the 
last received BB request as follONS: 

If this half-session is pri•ary then 
Set LOCAL.CURRENT_BRACKET_SQN to LOCAL.SHS_BB_RE&ISTER. 

Else 
Set LOCAL.CURRENT_BRACKET_SQN to LOCAL.PHS_BB_REGISTER. 

tl1en type 7 (Error data) 
Create a RECEIVE_DATA record and send it to PS (fttl=YES, TYPE=NOT_END_OF_DATAt 

DATA=FH header 7 data frOll BIU>. 

tl1en type 12 (Security header) 
Create and send a SECURITY_HEADER record (contains the FH header 12 data) to RH. 

If EC or data other than FH header data is present then 
Create and send • RECEIVE_DATA record to PS CFHH=NOt DAfA=non-FHH data fro. BIU, 

TYPE = see Figure 6.l-8 on page 6.1-lll. 

SNA ForNt and Protocol Reference Manual for LU Type 6.2 



PROCESS_SEHD_PARH 

PROCESS_SEHD_PARH 

FUNCTION: Create and send Ftt> requests. The •ppropriate RH indicators are set for Heh 
RU of • chain based on the input parameters. Each RU size will not exceed the 
••xi..- RU size specified at session activation. 

INPUT: SEHD_PARH record 

OUTPUT: One or 11e>re BIU records sent representing each RU, LOCAL.SEND_BUFFER 

Referenced procedures, FSHs, and data structures: 
SEt-l>_BIU 
SEt-E_PARl1 
LOCAL 

If SEHD_PARl1.FHH = YES and LOCAL.SEND_BUFFER contains data then 
Call SEND_BIUldata in LOCAL.SENJ_BUFFER, FLUSHI (page 6.l-371 to flush 
out data so tMs FH header •ay begin in 11 MW RU. 

page 6.1-37 
page A-36 
page 6.0-6 

Concatenate data to be sent lSENJ_PARl1.DATAJ with the data in LOCAL.SEND_BUFFER. 

Divide LOCAL.SEHD_BUFFER into pieces of the .a~i- size and send all but the 
last one by calling SEND_BIU and passing it the data fro• the send buffer and 
indicating that it needs to be fltahed. The last piece is saved to 
•ini•ize sending null RUs lRUs that contain no data). Otherwise, if the .last 
piece is sent and the next SEND from PS indicate• EC but no data, a null EC 
would Nive to be sent. 

If SEND_PAR11.TYPE = NOT_END_OF_DATA or 
tSEND_PARH.TYPE : FWSH and the LOCAL.SEtl>_BUFFER is empty> than 

Don't send out a BIU now. 

Else (send out a BIUJ 
Call SEND_BIUCLOCAl.SEHD_BUFFERt SEHD_PARl1.TYPEI lpage 6.l-371. 

Chapter 6.1. Data Flow Control 6.1-35 



RCV_STATE_ERROR 

RCV_STATE_ERROR 

I 

6. l-36 

FUNCTION: Perfor• st•te error checking on received requests and responses. The types of 
errors fc>\nd here are protocol violations by the sander of the request or 
response. These checks are optional. None, some. or all of the checks uy be 
••de. 

INPUT: BIU containing request or response, indicator that a response to • SI&NAL is 
expected 

OUTPUT: TRUE if a state error .... enc~tereds otherNiae. FALSE. If TRUE, 
LOCAL.SENSE_CODE is set to appropri•te sense code. 

Referenced proceclires. Fstls, and data structures: 
INVALID_SENSE_CODE . 
FSH_BSH_FttP19 
Fstt_QRI_CHAIN_RCV_FttP19 
FStt_CHAIN_RCV_FHP19 
FStt_CHAIN_SENO_FHP19 
LOCAL 

Select based on EFI and RRI: 
Mhen normal-flow request 

Select base-don the follONing conditions: 
lohen a fRQE,BBtCEB> chain is received from the bidder 

page 6.1-32 
page 6.1-43 
page 6 • 1-49 
page 6 .1-ltlt 
page 6.1-46 
page 6.0-6 

Set LOCAL.SENSE_CODE to X'40040000' <fRQE,BB,CEB) not allONed from bidder>. 

""8n executing Fstt_BStt_FttP19CBIU> <page 6.l-43), 
Fstt_CHAIN_RCV_FttP19CBIU) (p•ge 6.1-44), or 
FSH_QRI_CHAIN_RCV_FHP19(BIU> (page 6.1-49) NOUld cause a state 
check (>) condition 

Execute the corresponding output code in the first FStt that enc~tered 
a state-check condition (to set LOCAL.SENSE_CODE>. 

Mhen normal-f lON response 
Select based on the follONing conditions: 

lohen RU category of the response - RU category of the request 
Set LOCAL.SENSE_CODE to X'40110000'. 

""en RU category of the response = DFC and the request code of the response 
- the request code of the request 

Set LOCAL.SENSE_CODE to X'40120000'. 
lflen the QRI field of the response - the QRI of the request 

Set LOCAL.SENSE_CODE to X'402l0000'. 
When response is negative •nd contains an invalid sense data 

<call INVALID_SENSE_CODE<BIU> [page 6.l-32)) 
Set LOCAL.SENSE_CODE to X'20120000' • 

..... en executing FSM_CHAIN_SEtl>_FHPl9CBIU> Cpage 6.1-46). 
NOuld cause a state-check (>) condition 

Execute the corresponding output code <to set LOCAL.SENSE_CODE>. 

Mhen expedited-flow response <Le,. • positive response to SI&NAU 
If a SIGNAL request is not outstanding <not Naiting for response to SIGNAL) then 

Set LOCAL.SENSE_CODE to X'200E0000' (response correlation error). 

SNA Format •nd Protocol Reference Manual for LU Type 6.2 



SEtt>_BIU 

SEND_BIU 

FUNCTION: 

INPUT: 

OUTPUT: 

Create and send a BIU lllccording to passed instructions. 

DATA, SEtt>_PARM.TYPE, information from SEND_DATA_RECORD 

Appropriate BIU sent 

Referenced procedures, FSMs, and data structures: 
DFC_SEtt>_FSMS page 6.1-25 

Create a BIU and initialize it to all O's. 
If starting a new chain I the last RU sent was EC) then 

Set BCI to BC. 
Set other RH indicators as described in Figure 6.1-7 on page 6.1-11. 
If sending a BB chain and this half-session is the bidder then 

Set QRI to QR for every RU in this chain. 
Set the RU to the passed input data. 
If this BIU indicates <BC, EC> and there is no data in the RU then 

Convert the RU to an LUSTAT <RH indicates FHH and DFC; RU contains an LUSTAT 
(see Appendix E>. 

Call DFC_SEt«>_FSMSIBIU> lpage 6.1-25). 

SEND_NEG_RSP_OR_LOG 

FUNCTION: Convert the BIU to a negative response or log the error-. 

INPUT: BIU and LOCAL.SENSE_CODE 

OUTPUT: Response BIU sent if possible; otherwise, error logged 

Referenced procedures, FSMs, and data structures: 
TC.SEND 
LOCAL 

page 6.2-13 
page 6.0-6 

If BIU is a response or a request Ni th a form of response requested of RQN then 
Unable to send a negative response; optionally log the error. 

Else lthis is a request to Nhich a negative response may be sent> 
BuHd and send a negative response. This is clone by copying the RH, EFI, 

and SNF from the request to the response and setting the following RH 
fields: RSP, so, BC. EC, NEG. ~PAC, ~BB. ~co, CODEO, ~eo, ~PD. ~CEB 

Set the response BIU RU to LOCAL.SENSE_CODE followed by the 
request code of the request BIU. For CP-LU sessions the BIU 
indicates FMH, the RU ~ategory is FMD, and the request code is 3 bytes long. 
For request with an RU category of DFC the request code is 1 byte long. 

Call TC.SENDCresponse BIU along Nith the SNF and EFI> Cpage 6.2-13). 

Chapter 6.1. Data Flow Control 6.1-37 



SEND_RSP_BIU 

SEND_RSP_BIU 

6.1-38 

FUNCTION: Create and send a response. The response is based on the request BIU Cif 
passed by the caller) or on information about the last received chain Cwhen a 
null BIU is passed). 

INPUT: Request BIU Cmay be null value), flow (expedited or normal), response type 
Cpositive or negative), sense data (Information about the last received chain 
will be used when the input request BIU has a null value.) 

OUTPUT: BIU containing response sent if possible 

Referenced procedures, FSMs, and data structures: 
DFC_SEND_FSMS 
FSM_CHAIN_RCV_FMP19 

Create a response BIU and initialize it to all O's. 
Set the RH fields of the response BIU to CRSP, BC, EC). 
If the input response type is negative CNEGl then 

page 6.1-25 
page 6.1-44 

Set the RH to cso, NEG> and copy the input sense data into the response BIU data. 

If input flow is normal then 
If input request BIU has null value then 

Copy the RU category; FI; DRII; DR2I; QRI; and if the RU category = DFC, the request 
code; from the last received normal-flow request into the response BIU. 

Else Ca request BIU was passed as inputl 
Copy the RU category; FI; DRII; DR2I; QRI; and if the RU category = DFC, the request 

code; from the input request BIU to the response BIU. 

Else (expedited, the only expedited-flow response is for SIGNAL> 
Set EFI to expedited, RU category to DFC, ORI, and request code to SIGNAL 

in the response BIU. 

CNote: the DFC request code always immediately follows the sense data in the RU> 

If executing FSM_CHAIN_RCV_FMP19Cresponse BIUl Cpage 6.1-441 
would cause a state-check C>l condition then 

Execute the corresponding output code in the FSM. 
Else 

Call DFC_SEND_FSMSCresponse BIUl (page 6.1-251 to send the response. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



SEND_RSP_TO_RM_OR_PS 

SEND_RSP_TO_RM_OR_PS 

FUNCTION: Build and send records to RM or PS based on the passed response BIU. 

INPUT: BIU containing a response, indicator that session is first speaker, informa­
tion about the last sent request. 

In addition, an HS_PS_CONNECTED record may be received from RM. 

OUTPUT: The appropriate "response" record is sent to RM or 
hst sent LOCAL.CURRENT_BRACKET_SQN set to the sequence number of the 

request. The ID of the PS connected to this HS may be saved. 

Referenced procedures, FSMs, and data structures: 
FSN_BSM_FMP19 
CONFIRMED 
RECEIVE_ERROR 
BID_RSP 
RTR_RSP 
HS_PS_CONNECTED 
LOCAL 

page 6.1-43 
page A-12 
page A-12 
page A-14 
page A-15 
page A-29 
page 6.0-6 

If the response is RTR then 
Create and send an RTR_RSP record to RM. 

Else 
If the response is positive CRT! = POSl then 

If last chain sent was a BB chain and the state of FSM_BSM_FMP19 
(page 6.1-43) is BETB then 

Create and send a BID_RSP (positive) record to RM. 
Receive the HS PS CONNECTED record from RM (this is a reply to BID_RSP record l. 
Save the ID of-th; PS connected to this HS. 
Set LOCAL.CURRENT_BRACKET_SQN to the sequence number of the sent BB request. 
Call FSM_BSM_FNP19 (page 6.1-43) with an !NB sign<ll to 

indicate that this HS is now connected to a PS. 

If the form of response requested of the last chain sent was RQD2 or RQD3 then 
Create and send a CONFIRMED record to PS. 

Else (response is negative! 
If the response sense data is X'08460000' then 

If this half-session is not the first speaker and the last chain sent 
carried BB Cthis is a response to a bidder's BB with datal then 

Create and send a BID_RSP !positive) record to RN. 

PS. 
BB 

Receive the HS_PS_CONNECTED record from RN Cthis is a reply to BID_RSP record). 
Save the ID of the PS connected to this HS. 
Set LOCAL.CURRENT_BRACKET_SQN to the sequence number of the sent BB request. 
Call FSN_BSN_FNP19 (page 6.1-43l with an !NB signal to 

indicate that this HS is now connected to a PS. 

Create and send a RECEIVE_ERROR record to PS. 

Else (bracket reject, i.e., X'08130000', X'08140000', or X'088BOOOO') 
Create and send a BID_RSP record (indicates negative response and 
contains the sense data from the response) to RN. 

Chapter 6.1. Data Flow Control 6.1-39 



STATE_ERROR_SSCP_LU 

STATE_ERROR_SSCP_LU 

6.1-40 

FUNCTION: Perform state error checks on RUs received on the CP-LU secondary half-session 
CFM profiles O and 6). These checks are optional; none, some, or all of the 
checks may be done. 

INPUT: BIU, FM profile type, sequence number of the last sent request 

OUTPUT: TRUE if error; otherwise, FALSE. If TRUE, LOCAL.SENSE_CODE is set to appro­
priate sense data. 

Referenced procedures, FSMs, and data structures: 
FSM_IMMEDIATE_RQ_MODE_SEND 
FSM_IMMEDIATE_RQ_MODE_RCV 
LOCAL 

If this session is using FM profile 0 (using immediate request mode> then 
If RRI = RQ then 

If executing FSM_IMMEDIATE_RQ_MODE_RCVCBIU) Cpage 6.1-48) 
would cause a state-check (>) condition then 

page 6.1•48 
page 6.1-48 
page 6.0-6 

Execute the corresponding output code in that FSM to set LOCAL.SENSE_CODE. 

Else <response> 
If the state of FSM_IMMEDIATE_RQ_MODE_SEND (page 6•1-48) is PEND_RSP 
(Half-session is awaiting a response to a sent RQD request.> then 

If the response SNF ~ the SNF of the last sent request then 
Set LOCAL.SENSE_CODE to X'200EOOOO' (response correlation error>. 

Else (not waiting for a response) 
Set LOCAL.SENSE_CODE to X'200E0000' (response correlation error). 

If LOCAL.SENSE_CODE = 0 then 
Return with a value of FALSE (no state error>. 

Else 
Return with a value of TRUE estate error!. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



STRAY_RSP 

STRAY_RSP 

FUNCTION: Deter•ine if a response is stray. A stray response is one that was sent in a 
bracket (conversation) but received in a different <later) bracket. 

INPUT: BIU containing a response, infor•ation about the last request sent, 
LOCAL.C~RENT_BRACKET_SQN 

OUTPUT: TRUE if stray response; otherwise, FALSE. If stray response represents • 
response correlation error, LOCAL.SENSE_CODE is set. 

NOTE: An outstanding request is a request that has not been responded to nor replied 
to. 

Referenced procedures, FSMs, and data structures: 
FSH_BS11_FMP19 
LOCAL 

page 6.1-43 
page 6.0-6 

If the response is RTR, there is an outstanding request chain, and the response SHF ;t the 
sequence number of the outstanding (awaiting a responsel request then 

Set LOCAL.SENSE_CODE to X'200EOOOO' <response correlation errorl. 
Indicate that the responsP. is stray. 

If the response is SIGNAL and it& SNF ;t LOCAL.CURRENT_BRACKET_SQN then 
Indicate that the response is stray. 

If the response is LUSTAT or the RU category is Fl'I> then 
If there is an outstanding reque&t chain then 

If the outstanding chain carded BB and the BB SHF does not match 
that in the response then 

Indicate that the response is stray. 
Else 

If the response SNF ;t LOCAL.CURRENT_BRACKET_SQN or the state of 
FSM_BSM_FMP19 is BETB then 

Indicate that the response is stray. 
Else lno outstanding request chain> 

Indicate that the response is stray. 

If the response is stray then 
If the response is positive (RTI = POSI and it is not a SIGNAL 

(no positive response other than SIGNAL can be stray> then 
Set LOCAL.SENSE_CODE to X'200EOOOO' Cresponse correlation error>. 

Else 
Optionally log the stray response. 

Return with a value of TRUE <stray response). 
Else 

Return with a value of FALSE (not stray response). 

Chapter 6.1. Data Flote Control 



UPDATE_FSHS 

UPDATE_FSHS 

6.1-42 

FUNCTION: Update the appropriate Fstl5 for received requests. 

INPUT: BIU containing request 

OUTPUT: FSMs updated 

Referenced procedures, FSl1&1 and data structures: 
FS11_RCV_PURGE_FMP19 
FSM_QRI_CHAIN_RCV_FHP19 
FSM_CHAIH_RCV_FMP19 
FSM_CHAIH_SENO_FMP19 

Call FSM_RCV_PURGE_FMP19(BIU> (paga 6.1-50). 
If the state of FS11_CHAIH_SEND_FHP19 = PEHD_RCV_REPLY then 

Call FStt_CHAIH_SEttl_FHP19!BIU> (page 6.1-46). 

If BCI = BC then 
Call FS11_CHAIH_RCV_FHP19(BIU, BEGIH_CHAIH) (page 6.1-4/t). 

If ECI = EC then 
Call FSM_CHAIH_RCV_FHP19(BIU, EHD_CHAIN> !Pflge 6.1-44). 

Call FSM_QRI_CHAIH_RCV_FMP19!BIU> <page 6.1-49). 

SNA For•at and Protocol Reference Manual for LU Type 6.2 

Pflga 6.1-SO 
page 6.1-49 
page 6.1-44 
j)flge 6.1-46 



FINITE-STATE MACHINES 

These are the FSM input definitions used for 
all the FSMs in this chapter: 

• R or S: BIU that is being processed is 
being received or sent, respectively. 

• RQ, RSP, BC, EC, CD, CEB, FMD, QR: Refer 
to the RH of the BIU. 

• BEGIN_CHAIN or END_CHAIN: Refer to values 
of CHAIN_INDICATOR. CHAIN_INDICATOR does 
not have to be specified. In that case, 
it is neither BEGIN_CHAIN nor END_CHAIN. 

• RQD: BIU = RQDl, RQD2, or RQD3. 

• RQE: BIU = RQEl, RQE2, or RQE3. 

• REPLY: A call to OK_TO_REPLYCBIU> Cpage 
6.1-33) returns TRUE. 

• BIS: BIU is a BIS RU. 

~5M_BSM_FMP19 

• RTR: BIU is an RTR RU. 

• FMHS: BIU contains an FMHS. 

I • FMH12: BIU contains an FMH12. 

• LUSTAT: BIU is a LUSTAT request or 
response. 

• NOT_BID_REPLY: BIU = BC, ~BB and either 
the last sent chain did not carry BB or a 
call to OK_TO_REPLY Cpage 6.1-33) returns 
a value of FALSE. 

• CEB_UNCOND: BIU = CEB and response cate-
gory= CRQDlfRQEl). 

NOTE: FSM_IMMEDIATE_RQ_MODE_SEND and 
FSM_IMMEDIATE_RQ_MODE_RCV are used for CP-LU 
sessions. All others are used for LU-LU ses­
sions. 

FUNCTION: Enforce th~ bracket protocol. State transitions are made via the signals INB 
(go in brackets) and BETB Cgo between brackets). The inputs R,RQ, ••• are 
used for error checking only. INB state means DFC Cthe half-session) is con­
nected to a PS; BETB state means DFC is not connected to a PS. 

INPUT: 

OUTPUT: 

BIU or a signal that the FSM should be set to the specified state 

If an error is discovered, LOCAL.SENSE_CODE is set. 

NOTE: The state names mean the following: 

• BETB: between brackets 

• INB: in bracket 

Referenced procedures, FSMs, and data structures: 
LOCAL page 6.0-6 

STATE NAMES----> BETB 
INPUTS STATE NUMBERS--> 01 

SIGNALCINB) 2 
SIGNALCBETB> -
R,RQ,CFMDILUSTAT>,NOT_BID_REPLY,~FMH5,~FMH12,~CEB_UNCOND >CR> 

OUTPUT FUNCTION 
CODE 

R Set LOCAL.SENSE_CODE to X'20030000' (bracket error). 

Chapter 6.1. Data Flow Control 

INB 
02 

-
1 

-

6.1-43 



FSM_CHAIN_RCV_FMP19 

FSM_CHAIN_RCV_FMP19 

6.1-44 

FUNCTION: Enforce the cha;ning protocol for received chains. A chain is "complete" when 
the end-of-cha;n CEC> request has been received and any required associated 
response or reply has been sent. A reply is a request sent after receiving an 
CRQE,CD> chain that has not been negatively responded to. A reply implies a 
positive response to the CRQE,CD> chain. 

INPUT: 

OUTPUT: 

NOTE: 

BIU, CHAIN_INDICATOR <possible values are BEGIN_CHAIN, 
NOT_SPECIFIEDl, information about the last received request 

END_CHAIN and 

If the bracket was ended by the request, 
information recorded about the last 
LOCAL.SENSE_CODE may be set. 

The state names mean the following: 

• BETC: between chains 

• INC: in the middle of a chain 

the HS will be disconnected from PS; 
received request may be erased; 

• NEG RSP SENT: in the middle of a cha;n and a negative response has been 
sent 

• PENO RSP: 
sent 

has received CEC,RQDl and is waiting for the response to be 

• PEND SEND REPLY: has received CEC,RQE,CDl and is waiting for the reply or 
negative response to be sent 

Referenced procedures, FSMs, and data structures: 
OK_TO_REPLY 
FREE_ SESSION 
LOCAL 

SNA Format and Protocol ffefarence Manual for LU Type 6.2 

page 6.1-33 
page A-15 
page 6.0-6 



FSM_CHAIN_RCV_FMP19 

STATE NAMES----> BETC INC NEG PEND PEND 
RSP RSP SEND 
SENT REPLY 

INPUTS STATE NUMBERS--> 01 02 03 04 05 

R,RQ,BEGIN_CHAIN 2 I I I I 
R,RQ,END_CHAIN,RQD I 4 lCA> I I 
R,RQ,END_CHAIN,RQE,CEB I lCA) lCA > I I 
R,RQ,END_CHAIN,RQE,CD I 5 lC A> I I 
R,RQ,END_CHAIN,BIS I 1 I / / 

S,-RSP,CFMDILUSTAT> > 3 > lCA> HA> 
s,+RSP,CFMDILUSTAT> > I > HA> / 
S,:!RSP,RTR I I I 1 / 

S,RQ,REPLY / I I / 1 

R,RQ,BC - >CRl) >CRl> >CR2 > >CR3> 
R,RQ, .. BC >CRl > - - >CR2) >!Rl > 

SIGNAL! RESET> - 1 1 1 1 

OUTPUT FUNCTION 
CODE 

A If the last chain received did not carry BB or 
Cit carried BB and it was accepted, i.e., there was no negative response to the 
BB chain with sense data X'08130000', X'08140000', or X'088B0000') then 

If the bracket has ended !the last received chain carried CEB and either [l] 
the form of response requested was RQE or RQDl, or [2] no negative response 
was sent to the chain> then 

Stop communication between PS and HS. This involves purging records currently 
in transit from PS and disabling PS's capability to send to this HS. 

Create and send a FREE SESSION record to RM. 
Call FSM_BSM_FMP19 with a BETB signal !page 6.1-43). 

Rl Set LOCAL.SENSE_CODE to X'20020000' Cchaining error). 

R2 Set LOCAL.SENSE_CODE to X'200AOOOO' (immediate request mode error). 

R3 Set LOCAL.SENSE_CODE to X'20040000' !half-duplex error> . 

Chapter 6.1. Data Flow Control 6.1-45 



FSM_CHAIN_SEND_FMP19 

FSM_CHAIN_SEND_FMP19 

6.1-46 

FUNCTION: Enforce the chaining protocol for sending chains. A chain is "complete" when 
the end-of-chain (EC> request has been sent and any required associated 
response or reply has been received. A reply is a request received after 
sending an (RQE,CD> chain that has not received a negative response. A reply 
implies a positive response to the (RQE,CD> chain. 

INPUT: 

OUTPUT: 

NOTE: 

BIU, CHAIN_INDICATOR (possible values are BEGIN_CHAIN, 
NOT_SPECIFIED>, information about the last received request 

END_CHAIN and 

If the bracket was ended by the request, 
information recorded about the last 
LOCAL.SENSE_CODE may be set. 

The state names mean the following: 

• BETC: between chains 

• INC: in the middle of a chain 

the HS will be disconnected from PS; 
received request may be. erased; 

• NEG RSP RCVD: in the middle of a chain and a negaUve response has been 
received 

• PEND RSP: has sent (EC,RQD) and is waiting for the response to be 
received 

• PEND RCV REPLY: has sent CEC,RQE,CD) and is waiting for the reply or neg­
ative response to be received 

Referenced procedures, FSMs, and data structures: 
OK_TO_REPLY 
FSM_BSM_FMP19 
FREE_ SESSION 
LOCAL 

SNA Format and Protocol Reference Manual for LU Type 6.2 

page 6.1-33 
page 6.1-43 
page A-15 
page 6.0-6 



FSM_CHAIN_SEND_FMP19 

STATE NAMES----> BETC INC NEG PEND PEND 
RSP RSP RCV 
RCVD REPLY 

INPUTS STATE NUMBERS--> 01 02 03 04 05 

S,RQ,BEGIN_CHAIN 2 I I I I 
S,RQ,END_CHAIN,RQD I 4 lC Al I I 
S,RQ,END_CHAIN,RQE,CEB I lC Al lC Al I I 
S,RQ,END_CHAIN,RQE,CD I 5 lC Al I I 
S,RQ,END_CHAIN,BIS I 1 I I I 

R,-RSP,IFMD(LUSTATl >( R l 3 >IR l lC Al 11 Al 
R,+RSP,IFMD(LUSTATl >IR l >IR l >IR l lCAl >IR l 
R.:!:RSP,RTR >( R l >IR J >( R J 1 >( R J 

R,RQ,REPLY I I I I 1 

SIGNAL( RESET> - 1 1 1 1 

OUTPUT FUNCTION 
CODE 

A If the last chain sent did not carry BB or 
lit carried BB and it was accepted, i.e., there was no negative response to the 
BB chain with sense data X'08130000', X'08140000', or X'088BOOOO' J then 

If the bracket has ended lthe last sent chain carried CEB and either Ill 
the form of response requested was RQE or RQDl, or 121 no negative response 
was received for the chain> then 

Stop communication between PS and HS. This involves purging records currently 
in transit from PS and disabling PS's capability to send to this HS. 

Create and send a FREE_SESSION record to RM. 
Call FSM_BSM_FMP19 with a BETB signal (page 6.1-43). 

R Set LOCAL.SENSE_CODE to X'200FOOOO' (response protocol error). 

Ch:;ipter 6. 1. O?ta Flo1>1 Control 6.1-t~t 



FSM_IMMEDIATE_RQ_MODE_SEND 

FSM_IMMEDIATE_RQ_MODE_SEND 

6.1-48 

FUNCTION: Enforce the immediate request mode send protocol. 
half-sessions using FM profile O. 

It is used only on CP-LU 

INPUT: BIU 

OUTPUT: LOCAL.SENT_RQD_SNF may be set. 

NOTE: The state names mean the following: 

• RESET: no request is awaiting a response. 

• PEND_RSP: a response is expected to the last sent request. 

STATE NAMES----> RESET PEND 
RSP 

INPUTS STATE NUMBERS--> 01 02 

S,RQ,RQD 2 / 
R,:!:RSP - 1 

SIGNAL( RESET) - 1 

FSM_IMMEDIATE_RQ_MODE_RCV 

FUNCTION: Enforce the immediate request mode receive protocol. It is used only on CP-LU 
half-sessions using FM profile O. 

INPUT: BIU 

OUTPUT: LOCAL.SENSE_CODE is set if an error is found. 

NOTE: The state names mean the following: 

• RESET: a response is not owed to a chain. 

• PEND RSP: a chain was received to which a response is owed. 

Referenced procedures, FSMs, and data structures: 
LOCAL page 6.0-6 

STATE NAMES----> RESET PEND 
RSP 

INPUTS STATE NUMBERS--> 01 02 

R,RQ,RQD 2 >CE> 
S,:!:RSP - 1 

SIGNALCRESETJ - 1 

OUTPUT FUNCTION 
CODE 

E Set LOCAL.SENSE_CODE to X'200AOOOO' (immediate request mode violation). 

SNA Format and Protocol Reference Manual for LU Type 6.2 



FSt1_QRI_CHAIN_RCV_FMP19 

FSM_QRI_CHAIN_RCV_FHP19 

FUNCTION: 

INPUT: 

OUTPUT: 

NOTE: 

Enforce the setting of the QRI indicator in the RH. This indicator is set the 
same for all BIUs in a chain; i.e., all BIUs in• chain have QRI=QR or have 
QRI= .. QR. 

BIU 

If a QRI state error is detected, LOCAL.SENSE_COOE is set. 

1) The state names mean the following: 

• RESET: no chain is currentl.y being received. 

• INC QR: the chain that is being received is a QR chain. 

• INC NOT QR: the chain that is being received is not a QR chain. 

2l The implementation of this FSH is optional because it is used only to 
detect receive error conditions. 

Referenced procedures, FSMs, and data structures: 
LOCAL page 6.0-6 

STATE NAMES----> RESET INC INC 
QR NOT 

QR 
INPUTS STATE NUMBERS--> 01 02 03 

R,RQ, QR, EC - 1 >lR > 
R,RQ, QR, .. Ec 2 - >IR) 

R ,RQ, .. QR, EC - >CR> 1 
R,RQ, .. QR, .. EC 3 >lR I -
SIGNAU RESET) - 1 1 

OUTPUT FUNCTION 
CODE 

R Set LOCAL.SEHSE_CODE to X'200BOOOO' (QRI state error I. 

Chapter 6.1. Date flOM Control 6.1-49 



Fst1_RCV_PURGE_FHP19 

Fst1_RCV_PURGE_FHP19 

6.1-50 

FUNCTION: Maintain a purging state for received BB chains that have been negatively 
responded to indicating a bracket error C0813. 0814, 0888). It is called with 
a PURGE signal when the negative response is sent and reset when the 
end-of-chain CEC> RU is received. When in the purging state, no records are 
generated for PS or RH as a result of receiving a request RU in the B8 chain 
Ci.a., the re~inder of the BB chain is purged). 

INPUT: BIU 

OUTPUT: None 

STATE NAHES----> RESET PURGE 
INPUTS STATE HlltlBERS--> 01 02 

R, EC - 1 
SIGNAL( PURGE l 2 -
SIGHALC RESET> - 1 

SNA For111at and Protocol Reference Hanual for LU Type 6.2 



CHAPTER 6.2. JRANSMISSION CONTROL 

INTRODUCTION 

A distinct transmission control (TC> element 
is provided for each half-session supported 
in a node. 

Each TC element participates in two activ­
ities: 

Variable initialization 
Cryptography initialization 

• Normal operation: 

Sending data from data flow control 
CDFC> to path control CPC> 
Receiving data from PC and givi~ it 
to DFC 

The protocol machine for session initializa­
tion, TC.INITIALIZE (page 6.2-8>, is invoked 
after LU network services ( LNS> processes a 
BIND or ACTLU. TC.INITIALIZE, provides 
session-specific support for starting data 
flows in the session. When session-level 
cryptography is used, TC.INITIALIZE checks 
that the enciphering and deciphering func­
tions are operative before any user data is 
permitted to flow. 

The TC.SEND and TC.RCV components control 
sequence number checking, pacing, enciphering 
and deciphering, and manage expedited and 
normal flows. 

The relationship of transmission control to 
the other elements of the half-session, after 
initialization, is shown in Figure 6.2-1. 

l 
Presentation Services (See Chapter 5.0.l 

1 
i l 
. . ....... > .. Data Flow Control ** . . . 

A 

Half-Session 
Router * Transmission Control 

v 

~ : TC.SEND J ~·~ 
1 ... . 

A 
Half-Session 

received data sent data 
v 

Path Control 

* See "Chapter 6.0. Half-Session" for details. 
** See "Chapter 6.1. Data Flow Control" for details. 

Figure 6.2-1. Structure of TC and Flow of Data within the Half-Session 

Chapter 6.2. Transmissio~ Control 6.2-1 



INITIALIZATIQN f!:!!§g 

6.2-2 

TC.INITIALIZE lpage 6.2-8) is called by 
half-session initialization ("Chapter 6.0. 
Half-Session") during initialization when a 
half-session is being activated. The 
initialization procedure sets up pacing, 
CRYPTOGRAPHY VERIFICATION lCRV), and sequence 
number usage variables according to the TS 
profile in use. 

CRYPTOGRAPHY VERIFICATION (CRV) 

For sessions that support cryptography, the 
initialization procadure calls 
TC.EXCHAHGE_CRV (page 6.2-10) to perfor• the 
message-un; t exchanges necessary to enable 
data enciphering and deciphering. 

FlON: FrOlll pri 1tary LU to secondary LU ( ExpeditecU 

When session-level cryptography is specified 
in the BIND, CRV is sent by the primary LU TC 
to the secondary LU TC to enable sending and 
receiving of enciphered Fl1D requests by both 
half-sessions. CRV is a valid request only 
when session-level cryptography is selected 
in BIND. CRV carries an 8-byte field (see 
"Appendix E. Request/Response Unit IRU) For­
•ats") that contains a transform of the deci­
phered test value (enciphered under the 
session cryptography keyl. The test value is 
received by the primary LU in the +RSPIBil-I>>; 
the transform in CRV is the test value with 
each bit of its first four bytes inverted 
(i.e., a 1 becot11es a 0 and a 0 bec0111es a 1 ). 
(The test value is also used as the session 
seed, or initial chaining value, when enci­
phering and deciphering Fl1D RUs Nhile the 
session is active.) The secondary TC element 
obtains the retur1-.ed test value by decipher­
; ng the afore111ent1 oned 8-byte field in CRV 
and inverting the first four bytesJ it then 
co11pares it with the test value sent I enci­
phered I in +RSPIBIND>. Failure to compare 
resets the session cryptography key and the 
session seed. Failure to compare also causes 
the session to be deactivated. 

Valid cryptography options are defined under 
the BIND format in "Appendix E. 
Request/Response Unit (RU) For111ats"J "Appen­
dix D. RH Formats" describes the RH bits used 
for cryptography. 

Where session cryptography is used, session 
key distribution is •anaged by the CP of the 
primary LU; session keys are conveyed (enci­
phered under LU master cryptography keys I to 
the PLU in a CINIT RU and then to the second­
ary LU in a Bii-i> request (see "Appendix E. 
Request/Response Unit IRUJ Form;its" and Fig­
ure 6.2-2 on page 6.2-3l. The flows involved 
in distributing the session seed to the LU 
are shown in Figure 6.2-2 on page 6.2-3. 

The comments below correspond to the llUlllbers 
in Figure 6.2-2 on page 6,2-3. 

1. In the CIHIT RU, the session cryptography 
key is distributed to the pri11ary LU in 

tNO enciphered foraats: it is enciphered 
using the master cryptography key of the 
pr i nry LU and in another field it is 
enciphered using the master cryptography 
key of the secondary LU. The initial 
chaining value is O for both cases. 

2. In the SINO RU, the primary LU sends the 
session cryptography key to the secondary 
LU as it was received in the CIHIT RU: 
enc;phered using the aaster cryptography 
key of the secondary LU as the 
cryptography key and 0 as the initial 
chaining value. 

3. The sacondary LU deciphers the session 
cryptography key using its master 
cryptography key as the cryptography key 
and 0 as the initial chaining value. The 
secondary LU then generates a 
pseudo-randOlll value, retains it for use 
as the aession seed, and enciphers it 
using the session cryptography key as the 
cryptography key and 0 as the initial 
chaining value. This enciphered value is 
returned on the response to BIND. The 
value serves two purposes: it is used as 
a test value li.e., when returned in CRV 
discussed below J. and is subsequently 
used as the session seed, or initial 
chaining value, in enciphering and deci­
phering FMD requests within the session. 

4. The primary LU deciphers the test value 
received in the RSPlBIHOl using theses­
sion cryptography key as the deciphering 
key and O as the initial chaining value. 
The resulting_ value is retained for use 
as the session seed and then transformed 
by exclusive-ORing it with 
X'FFFFFFFFOOOOOOOO'. This inverts the 
bit settings in the first four bytes. 
The transfor111ed value is then enciphered 
using the session cryptography key as the 
key and O as the initial chaining value. 
This transfor111ed, enciphered value is 
sent on the CRV request. 

S. The secondary LU deciphers the enci­
phered, transfor111ed test value using the 

SNA For11at and Protocol Reference Manual for LU Type 6.2 



CP PRIMARY LU SECONlARY LU 

CINIT <l'l<p [ SK J O , Ml<s [SK J 0) (1 J 
> 
BIND Clt<s ISl<J Ol (2] 

> 
RSPIBUI), SK lSSl 01 (3] 
< 
CRVISK ltransfor•ed SS] 0) [4] 

> 
RSPICRVI 151 
< 
FMO request I SK IRU data] SSI [61 

> 

Ftl> request< SK [RU data] SSI 161 
< 

LEGEND: 

111<.p •aster cryptography key for primary LU <obtained froa 
installation- and implementation-dependent &ystu definition>. 

111<.s master cryptography key for secondary LU !obtained froa 
installation- and implementation-dependent systu definition>. 

SK session cryptography key 
SS session seed 

NOTE: Enciphered data is represented in the diagram as follows: 

cryptography key [ data J initial chaining value 

For e><ample. to show an RU that 111as enciphered using the session key 
as the cryptography key and 0 as the initial chaining value, 
the following string is used: 

SK [RU data] O. 

Figure 6.2-2. Distributing the Session Cryptography Key and Session Seed to the LU 

session cryptography key as the key and 0 
as the initial chaining value. The 
result is then exclusive-ORed with 
X'FFFFFFFFOOOOOOOO' to recreate the ori­
ginal pseudo-rando111 value sent by the 
secondary LU in RSPIBINDl. The recreated 
value is compared 111i th the actual value 
that was created by the secondary LU. If 
the recreated value ~atches the original 
value, a positive response is sent to 
CRV. The test value can then be used as 
the session seed. 

6. From then on, all Ftl> requests are enci­
phered using the session cryptography key 
as the key and the session seed as the 
initial chaining value. 

Cryptography verification is the only session 
control !SC) request handled by TC. SC 

requests for session activation and deacti­
vation C for exa111ple, BIND and uteitlJ l are 
routed fro• PC to LNS C see "Chapter 4. LU 
Network Services") without passing throu~ 
TC. Session control requests and responses 
have the header bit-settings described belON. 

All SC requests are issued by TC or by LNS. 
The following fields of the TH and RH are set 
for session control RUs. 

ll:ll All SC requests and responses are 
sent expedited Cthe EFI bit is sm in the 
TH). 

!llii. The RH settings for SC requests are 
defined in TC.BUILO_CRV on page 6.2-11 • 

Chapter 6. 2. Triilns•i ss ion Control 6.2-3 



DFC 

RQ&RSP 

v 

-RSP 
TC.SEND <--------------------~ 
(page 6.2-13) 

I v 

DFC 
A 

RQ&RSP 

~ 
TC.RCV 
(page 6.2-15) 

v 

Q_PAC 

I 
v 

TC.DEQUEUE_ 
PAC 

(page 6.2-18J 

RQ & RSP 

v 

A A 

TC.TRY_TO_ 
SEND_IPR 

(page 6.2-19) 

IPR 

v 

A 

TC 

RQ&RSP 

Path Control (PCJ Half-Session Router (HSJ 

Figure 6.2-3. Interrelation of TC.SEND and TC.RCV 

NORMAL OPERATION 

The TC.SEND and TC.RCV protocol machines are 
related as shown in Figure 6.2-3. DetaHed 
definitions for TC.SEND and TC.Rev, the major 
TC procedures, are shown on page 6.2-13 and 
page 6.2-15, respectively. 

The protocols supported by TC include: 

• Checking of sequence numbers on received 
normal-flow requests (Sequence numbers 
are assigned to normal-flow requests by 
DFC, see "Chapter 6.1. Data Flow Con­
trol") 

• Proper separation of the normal flows 
from the expedited flows with respect to 
sequencing and pacing. 

• Sending of normal-flow requests using 
pacing; this involves a queue (LO­
CAL.Q_PACJ for temporarily holding outgo­
ing requests, and a set of coupled FSMs 
and procedures that manage the sending 
and receiving of pacing requests an~ 
responses IFSM_PAC_RQ_SEND [paoe ~-~-20] 
and FSM_PAC~RQ_RCV r~~~e 6.2-21]) 

• Proper routing of requests and responses 
to PC and DFC 

• Enciphering and deciphering control for 
all LU-LU FMD request RUs on sessions 
using session-level mandatory 
cryptography C see TC. TRY_ TO_ENCIPHER 
[page 6.2-14] and TC.RCV_NORM_RQ [page 
6.2-17]) 

TC PROCEDURES INVOKED FROM OTHER COMPONENTS 
OF THE HALF-SESSION 

Procedures TC.RCV (page 6.2-15) and 
TC.TRY_TO_SEND_IPR !page 6.2-19) are invoked 
by the half-session router (see "Chapter 6.0. 
Half-Session" for details l. 

When the half-session router receives a mes­
sage unit from path control, it. calls TC.RCV 
tt' itliti<lt.;; TC processmg of the message 
unit. 

TC.TRY_TO_SEND_IPR, which is called period­
ically from the half-session router, is 

SNA Format and Protocol Refel"enee Manual for LU Type 6.2 



responsible for generating an ISOLATED PACING 
RESPONSE C IPR, see "Pacing") when both the 
architectural and resource requirements are 
satisfied. 

TC.SEND !page 6.2-13> is called by DFC when 
DFC has a full buffer to send or when DFC is 
flushing a partially filled buffer. The 
buffer is considered full when i t contains 
more than the maximum RU size as specified in 
BIND. 

SEQUENCE NUMBERING OF REQUESTS AND RESPONSES 

For TS profile 7 !used in LU-LU· sessions, see 
"Appendix F. Profiles") each request that is 
sent on the normal flow is assigned a 
sequence number. The sequence number is ini­
tialized to 0 when a half-session is acti­
vated CBIND is sent or received); it is 
incremented by 1 before sending each request. 
Thus, the sequence number for the first 
request is 1. After reaching 65,535, the 
sequence number wraps to 0. CA sequence num­
ber of 0 is sent in the wrap situation only.) 
Sequence numbers are assigned in the sending 
half-session by DFC and are checked in the 
receiving half-session by TC. 

For the expedited flow, an identifier is 
assigned to each request sent. The identifi­
er is not necessarily managed as a sequence 
number, but is used to uniquely identify each 
outstanding expedited-flow request sent. The 
expedited-flow DFC RU SIGNAL is assigned an 
identifier by DFC; the expedited-flow request 
CRV is assigned an identifier by TC; 
expedited-flow session-activation !BIND> and 
session-deactivation !UNBIND) requests are 
assigned i dent i f i ers by LNS C see "Chapter 4. 
LU Network Services"). 

For TS profile 1 !used in CP-LU and CP-PU 
sessions>, identifiers are used on the normal 
flows as well as on the expedited flows. 

The sequence number or the identifier, as 
appropriate, is given to path control with 
the associated BIU, to be carried in the TH. 

The sequence number or identifier generated 
by the sending component is retained for use 
in correlating responses to requests Ca 
response carries the sequence number or iden­
tifier of the corresponding request). 

For further information on sequence number­
ing, see "Sequence Numbering of Requests and 
Responses" in "Chapter 6.1. Data Flow Con­
trol". 

SESSIONS WITH CRYPTOGRAPHY 

If session-level mandatory cryptography is 
selected when the session is activated, TC 
enciphers all FMD request RUs being sent and 
deciphers all those being received. The 
process of enciphering involves the following 
actions: 

• The RU is padded, when necessary, to an 
integral multiple of eight bytes. The 
padding bytes are added at the end and 
contain unpredictable values, except for 
the last pad byte, which contains an 
unsigned 8-bit binary count of the pad 
bytes. If only one byte of pad is 
required, that byte is the pad byte and 
it contains a 1. If padding is per­
formed, the Padded Data i ndi ca tor C POI> 
in the RH is set to PD. 

• Prior to enciphering, the first eight 
bytes of an RU are exclusive-ORed with 
the session seed Ci.e., the initial 
chaining value); the result is then enci­
phered. Each subsequent 8-byte block 
within the same RU is exclusive-ORed with 
the output of the previously enciphered 
block. This technique is referred to as 
"block chaining with cipher text feed­
back." When an enciphered RU is sent, 
the Enciphered Data indicator CEDil in 
the RH is set to ED. 

• Enciphering employs an 8-byte block chain 
algorithm and an 8-byte key, the session 
cryptography ls.fill, and is in accordance 
with the Data Encryption Standard !DES l 
algorithm described in Federal Informa­
tion Processing Standards Publication~' 
dated January 15, 1977. 

The deciphering process is simply the inverse 
of enciphering. 

SESSION-LEVEL PACING 

Session-level pacing allows TC to control the 
rate at which it receives requests on the 
normal flow. If pacing is selected when the 
session is activated, all normal-flow 
requests are paced. Send pacing controls the 
outbound flow of data. Receive pacing con­
trols the inbound flow of data. A TC.SEND 
performing send pacing has a session partner 
TC.RCV that is doing receive pacing. 
Requests and responses on the expedited flow 
are not paced and are unaffected by pacing on 
the normal flow. Pacing is generally used 
when the sending TC is capable of sending 
requests faster than the receiving TC can 
process them. 

The pacing environment assumes that the 
receiving TC is Gble to accept no more than a 
certain number of requests CNl at a time. 
This number, called the window size, is 
defined when the session is being activated. 
Pacing operates according to the following 
cycle. The sending TC initially may send up 
to N requests. On the first request, it 
turns on the Pacing Request indicator. After 
the receiving TC receives the request that 
contains the Pacing Request indication, it 
can signal the sending TC Cby using the Pac­
ing Response indication) when it is ready to 
receive another group of requests. 

The sending TC keeps a count of the number of 
requests that it can send before receiving a 
pacing response; this number is kept in the 

Chapter 6.2. Transmission Control 6.2-5 



6.2-6 

pacing count field (SEND_PACING_COUN'n. This 
field and all others related to 
session-level pacing or the •axi1111.1111 RU size 
are nintained in the transmission control 
control block (TCCB l. The TCCB is a sub­
structure of the control block na•ed LOCAL. 
When a pacing response is received, the send­
ing TC can send N 110re requests and therefore 
increases the pacing count by N. This •akes 
the pacing cO\.rlt equal to the Nindow size CNl 
plus the residual pacing count (the remaining 
requests not yet sent front the previous win­
dow). If the pacing COU"lt drops to 0, the 
sender Naits 1.r1tH a pacing response is 
received before sending any MOre requests. 
The value of the pacing count can range frOlll 
0 to 2N-1. 

Only one pacing response is generated for 
each pacing request. There are two 11ethods 
by which the pacing response •ay be returned: 
on a normal-flow response header or on an 
ISOLATED fAC"<l!:!§ RESPONSE il..!?fU. The IPR •ay 
be used at •ny time; however, it is especial­
ly useful when no other response to a request 
'• available in which to send the pacing 
response or when the available response is 
blocked on the pacing queue. IPR can be sent 
on the normal or expedited flON. 

TC.TRY_TO_SEtfl_IPR, which includes all the 
checks to deter•ine if a pacing response 
should be sent, is invoked by the 
half-session router (see "Chapter 6.0. 
Half-Session">. The decision on whether 
there are sufficient resources for sending a 
pacing response is i 111Plementat ion-dependent. 

Normal-flow responses that have the Queued 
Response indicator (QRI> set to QR are placed 
on the pacing queue, but do not cause the 
pacing count to be decremented when they are 
sent. tllen normal-flON responses indicate 
.. QR, they can pass requests and responses 
•arked QR at the queuing point in TC. If a 
request is held up by pacing, all responses 
marked QR and queued behind the request are 
also held up. 

A Pacing Response indication is never added 
to a response held in Q_PAC; it is added only 
to a response Ni th QRI=QR as it is dequeued 
from Q_PAC or to a response with QRI=.,QR. If 
FSM_PAC_RQ_SEHD (page 6.2-20) is preventing 
the only available responses from flowing 
fro• the queue, an IPR can be generated and 
sent directly to PCJ this prevents session 
deadlock, which could occur Nhen both TCs • 
pacing queues contain • request that cannot 
flow and that blocks the flow of the only 
available responses that might be used to 
carry the Pacing Response indication. 

In the BIND RU, four fields exist that define 
values for the send and receive window sizes 
of each stage of pacing. BIND also contains 
the staging indicators that specify one or 
two stages of pacing in the PLU-to-SLU direc­
tion and in the SLU-to-PLU direction. 

If pa~ing on a session stage in a particular 
-di:-ection is not to be perfo.-ad, the values 
for the window size on that stage are set to 
O. For example, if there is to be no pacing 
in the SLU-to-PLU direction, the PLU-receive 
and the SLU-senc:I windoN sizes are both set to 
o. 
When a T2 .1 node is sending a BIHO to .iicti­
vate • session with an LU in an adjacent T2.l 
node, the PLU sets the staging indicators to 
specify one-stage in both directions, and 
sets the pacing window sizes to 
implementation-dependent values. When a sliJ­
aru node is sending a CP-IM<liated BIHO, the 
values. for the staging indicators and pacing 
windows are contained in the BIND image sent 
to the LU in CIHIT, which the PLU •ay or may 
not place in the BIND RU. 

ISOLATED PACING RESPONSE !IPR> 

An IPR is sent by TC. TRY_TO_SEHD_IPR (page 
6.2-19) to return a Pacing indication as dis­
cussed in the preceding section. 

The foll<>Ning fields of the TH and RH are set 
for an IPR: 

I!ll The normal or expedited flow is 
indicated. The sequence number is 1.rtde­
fined lit 11ay be set to any value, and it 
is not checked by the receiver). 

RH: IPRs are coded all 0 's except for 
the Response indication, the Pacing 
Response indication, and the chaining 
bits; thus, the IPR RH is coded 
X'830100', and the test for an IPR is: 
RRI=RSP, .. QRl, .. QR2, and PI=PAC. IPR is 
the only response that indicates both 
.. DRl and .. DR2 • 

There is no RU acc0111panying the TH and RH. 

REQUEST AHO RESPONSE CONTROL MOOES 

TC enforces the immediate request lllOde dudng 
CRYPTOGRAPHY VERIFICATION (CllV) exchange as 
part of TC initialization. The last thing 
that the QrjHry !!; does dudng inltialiZ&­
tion is to send a CRV request and receive the 
CRV response. The last thing that the ~ 
.2!l!W:.v E does during initialization is to 
receive the CRV request and send the CRV 
response. TC accepts no other records frOll 
HS components, and nothing from Path Control 
except CRV, during this ti ... 

TC is not involved in enforcing immediate 
request •ode at any other ti111e. 

TC is not involved in inforcing h1lllediate 
response mode at any ti••· 

SNA For•at and Protocol Reference Manual for LU Type 6.2 



TRANSMISSION CONTROL CALLING TREES 

Figure 6.2-4 through Figure 6.2-6 show the 
calling trees for transmission control 
initialization and CRV exchange (fig­
ure 6.2-4), sending data (Figure 6.2-5), and 
receiving data (Figure 6. 2-6 l. In adrli ·~ion 

TC.INITIALIZE 

to the procedures in these calling trees, TC 
also contains TC.TRY_TO_SEND_IPR, a procedure 
that is called only by the half-session 
rou+.-.-. 

TC.EXCHANGE_ 
CRV 

FSM_PAC_RQ_SEND FSM_PAC_RQ_RCV 

TC.BUILD_CRV TC.FORMAT_ 
CHECK 

Figure 6.2-4. TC Initialization Calling Tree 

TC.TRY_TO_ 
ENCIPHER 

TC.SEND 

FSH_PAC_RQ_SEND 

Figure 6.2-5. SEND Calling Tree 

TC.Rev_ 
CHECKS 

TC.RCV 

SEND_NEG_ 
RSP_OR_LOG* 

FSH_PAC_ 
RQ_SEND 

FSH_PAC_RQ_ 
RCV 

TC.Rev_ DFC_RCV TC.DEQUEUE_ 
NORH_RQ * PAC 

*See "Chapter 6.1. Data Flow Control" for details. 

Figure 6.2-6. RCV Calling Tree 

Chapter 6.2. Transmission Control 6.2-7 



f.t1!1W. DESCRIPTION 

SESSIQN INITIALIZAJIQN fRO!;EDVRES 

6.2-8 

TC.INITIALIZE 

FUNCTION: Sets up session parauters needed by TC. Thia procedure is called by 
half-susion initialization (see Chapter 6.0 > when the seaaion is being acH­
vated. The TCCB (a substructure of LOCAL> ia initialized according to Nhether 
this is a pri•ary or secondary LU-LU half-session or a CP-LU half-session. 
The maxillUll receive RU size is initialized. 

INPUT: INII_HS is a structure that indicates lllhether the type of session to initial­
ize is an LU-LU session or a CP-LU session. For LU-LU sessions, the INIT_HS 
record contains BIHD inforaation. For CP-LU sessions, the INIT_HS record con­
tahw ACTLU inforntion. The BIHD or ACTLU inforaation contains the values to 
Nhich the fields of the TCCB Mill be initialized. The TS and FH profiles, the 
identifier of the path control Mith Nhich this half-session is associated, the 
role·Cpriaary or secondaryl of the half-session, and LOCAL.SENSE_COOE are ini­
tialized prior to calling this procedure. Caller checks that the TS profile 
is 1 or 7. 

OUTPUT: The correct initialization procedure is executed. A variable indicating that 
initialization 1in1s SUCCESSFUL or UNSUCCESSFUL is set. 

Referenced procedures, FSHs, and data structures: 
TC.EXCHANGE_CRV page 6.2-10 
FSH_PAC_RQ,_SEHD page 6.2-20 
FSM_PAC_RQ,_RCV page 6.2-21 
LOCAL page 6.0-6 
INIT_HS page A-16 

InHialize the half-session according to the TS profile (see Appendix Fl and the session 
activation RU Csee Appendix E>. The procedure has access to the INIT_HS record 
and the LOCAL control block. 

SHA Forut and Protocol Reference Manual for LU Type 6.2 



TC.INITIALIZE 

If CP-LU half-sess;on then 
see TS ?rofile 1 and the ACTLU RU. Record tha follONing infor .. tion: 
• Maxi- RU s;ze that can be received (obtained frOll the INIT_HS.ACTLU_It1AGE), 

converted frOll exponent/•antissa for• to binary for• (see Bllll ;n Appendix E 
for the conversion table>. The .. xi-.. RU size para .. ter is not part of 
the ACTLU RU, but ;s initialized by LNS and passed in the ACTLU_IMAGE 

• That iclenti fiers are used 
• That neither send nor rece;ve pacing is active 
• That cryptography ;s not active 

Else (LU-LU sessions--see TS profile 7 and the BIND RU> 
Record the following information: 
• Maxi .. RU size sent by the partner half-sess;on on the normal flON, 

(obtained frOll .the INIT_HS.BIND_IMAGE), converted fre>11 exponent/mantissa 
for• to b;nary for• 

• That sequence numbers are used 
• For a pr;inary half-session, 

• Whether send pacing is active, and, if so, the primary sand 1111indow size 
• Mhether receive pacing is act;ve, and , if so, the pri .. ry receive window size 

• For a secondary half-sess;on, 
• Whether send pacing is active, and, if so, the secondary send windoN s;ze 
• Whether receive pacing is acUve, and, if so, the secondary receive NindoM size 

• Whether cryptography ;s act;ve 

If the BIND_IMAGE indicates that cryptography is active then 
Call TC.EXCHANGE_CRVCINIT_HS.BIND_IHAGE> (page 6.2-10) to participate in 
cryptography verification. <The BIND i•age and the CRV forHt are found in 
Appendix E.> 

If cryptography verification ;s l.rlsucceS&ful (LOC,U.SENSE_COOE - 0) than 
Return w;th a value of UNSUCCESSFUL. 

Call FSM_PAC_RQ_SEND (page 6.2-20) and FSM_PAC_RQ_RCV (page 6.2-21), passing 
thetl RESET signals. 

Purge the pac;ng queue < LOCAL.Q_PAC), set the send and rece;ve pachig COW\ts 
CLOCAL.SENO_PACING_COUNT and LOCAL.RCV_PACING_COUNT> to the values of the 
corresponding window s;zes, and init;a1;ze the rece;ve sequence nuniber 
(LOCAL.SQN_RCV_CNT> to O. 

Return Mith a value of SUCCESSFUL. 

Chapter 6.2. Trans•;ssion Control 6.2•9 



TC.EXCHANSE_CRY 

TC.EXCHAN6E_CRY 

6.2-10 

FUNCTION: C•lled frOll • priH.-y half-session to initi•te tha exchange of CRV with • sec­
ondary and to receive RSP(CRV>. Called fr-Oii • secondary half-session to 
receive CRY •nd return RSP(CRY> to the pri••ry. 

INPUT: Bit-1> i••ge (received in RSPIBit-IJJ> cont•ins the enciphered pseudo-random value 
to be used as a tut value (and later H .the session seed>. Thia value is 
enciphered using the session key as the cryptography key and 0 as the initial 
chaining value. 

OUTPUT: 

The initialization of a secondary TC i.nstance involves rece1Ytng a 
PC_TO_HS_RECORD containing a CRV request, and the initialization of a priaary 
TC instance involves receiving a PC_TO_HS_RECORD containing a CRY response. 

CRY exchange cot11pleted. If successful, LOCAL.SENSE_CODE = O. 

The initialization of a secondary TC instance involves sending an 
HS_TO_PC_RECORD containing a CRV response. and the initiali211tion of a priaary 
TC instance involves sending an HS_TD_PC_RECORD containing a CRY request. 

Referenced procedures, fSHs, and data structures: 
TC.FORMAT_CHECK 
TC.BUILD_CRY 

page 6.2-11 
page 6.2-11 

PC 
LOCAL 
PC_TO_HS_RECORD 
HS_TO_PC_RECORD 

Not shoNn in thi s book 
page 6.0-6 
page A-23 
page A-11 

If pri•ary half-session then 
Call TC.BUILO_CRVlBit-m_IHAGE,BIU> (page 6.2-11) to build a CRY request BIU, 

including the appropriate PIU fields. 
Incorporate the BIU into the PIU field of.the HS_TO_PC_RECORD (see page 6.2-13>. 
Send the HS_TO_PC_RECORD to the path control (PC) that the half-session uses. 
Receive a PC_TO_HS_RECORD fr-OM path control. This implies a possible wait. 
Extract the BIU frOll the PIU field of the PC_TO_HS_RECORD. 
If not a CRY response then 

Set LOCAL.SENSE_CODE to X'20090000' lSC protocol error). 
Else (CRY response> 

Optionally, call TC.FORMAT_CHECKCBIU> (page 6.2-11> to verify the RH. 
If the for-Ht checked out OK the-. 

If RTI = NEG then 
Set LOCAL.SENSE_CODE to the sense data value in the BIU. 

Else Csecondary half-session> 
Receive a PC_TO_HS_RECORD fr-OM path control. This implies a possible wait. 
Extract the BIU fr-Oii the PIU field of the PC_TO_HS_RECORD. 
If that received record i• a CRV request then 

Optionally call TC.FORMAT_CHECK(BIU) (page 6.2-11> to verify the RH. 
If the for11at checked out OK then 

Check that the CRV test value was correctly encoded by the session partner by: 
deciphering the test value lbytes 2-9 of the RU data> using the session key 
and 0 as the initial chaining value. inverting the bits 
in the first 4 bytes, and cOMparing the results Nith the value that was 
generated by LNS for the +RSP(Blt-IJ), 

If the values are equal then 
Incorporate a positive response into the PIU field of the HS_TO_PC_RECORD. 
See page 6.2-13 for details on constructing the HS_TO_PC;..RECORD. 
Send the HS_TO_PC_RECORD to the path control that the half-session uses. 

Else (values not equal) 
Set LOCAL.SENSE_CODE to X'08350001' (Invalid Parameter>. • 

(LOCAL.SENSE_CODE now has a value of nonzero, so the half-sess1on router 
will cause Uteilfl to be sent.> 

Else (RH not valid> 
lLOCAL.SENSE_CODE already has a value of nonzero, so the half-session 
router will cause UNBIND to be sent.> 

Else Cnot CRV request> 
Set LOCAL.SENSE_CODE to X'20090000' (SC protocol error>. (LOCAL.SENSE_CODE 

now has a value of nonzero, so the half-session router will cause UNBit-1> 
to be sent.> 

SHA For-Rt and Protocol Reference Hanual for LU Type 6.2 



TC.BUILD_CRV 

TC.BUILD_CRV 

FUNCTION: This procedure builds a CRV BIU by appropriately assigning the RH and RU 
fields. 

INPUT: BIND information and BIU to be initialized. The test value sent in CRV is 
derived from the BIND image. 

OUTPUT: The CRV PIU, including the TH settings for EFI and SNf. 
cryptography seed is retained. 

The session 

NOTE: For the actual TH and RH bit settings see Appendix D • 

Set EFI to EXP. 
Set SNF to some value I implementation-dependent>. CRV is on the TC-TC flow, 

not the half-session to half-session flow, so is not related to the half-session 
send sequence number I LOCAL. SQN_SEND_CNT l. 

Set the RH to the following values: 
(RQ, sc, FMH, ~so, BC, EC, RQDI, ~QR, ~PAC, ~BB, ~co, CODEO, ~ED, ~Po, ~cEBl. 

Set the RU data to CRV request code (see page A-331. 
Prepare the cryptography test value: 
Decipher the test value in the BIND image, which is in the INIT_HS record. 
Use the session cryptography key that was received from the CP in the CINIT 
request as the cryptography key, and O as the initial chaining value. 
See the Data Encryption Standard for details. Retain the resulting value 
for use as the session seed. Transform the result by inverting each bit 
of the first four bytes and enciphering the transformed value (use the session 
key as the cryptography key and 0 as the initial chaining value>. 

Append this transformed test value to the RU data. 

TC.FORMAT_CHECK 

FUNCTION: Checks the RH bits of the request or response. All of these checks 
optional. An implementation may choose to do all, some, or none of them. 

INPUT: A request or response BIU. 

OUTPUT: OK if all bits are properly set; otherwise, NG. If NG, LOCAL.SENSE_CODE 
set to a nonzero value. 

Referenced procedures, FSMs, and data structures: 
LOCAL page 6.0-6 

Chapter 6.2. Transmission Control 

are 

is 

6.2-11 



TC.FORMAT_CHECK 

6.2-12 

If EFI ~ EXP then 
Set LOCAL.SENSE CODE to X'40110000'. 

Else (expedited BIUl 
If RRI = RQ then 

Select in the following order, based on the RH bits: 
When !SDI~ SD and RU_LENGTH < ll or 

!SDI = SD and RU_LENGTH < 5l 
Set LOCAL.SENSE CODE to X'10020000'. 

When FI ~ FMH -
Set LOCAL.SENSE_CODE to X'400FOOOO'. 

When SDI = SD 
Set LOCAL.SENSE CODE to the sense data in the BIU. 

When BCI ~ BC -
Set LOCAL.SENSE CODE to X'400BOOOO'. 

When ECI ~ EC -
Set LOCAL.SENSE CODE to X'400BOOOO'. 

When response category ~ RQDl 
Set LOCAL.SENSE_CODE to X'40140000'. 

When QRI = QR 
Set LOCAL.SENSE CODE to X'40150000'. 

When PI = PAC -
Set LOCAL.SENSE CODE to X'40080000'. 

When BBI = BB -
Set LOCAL.SENSE CODE to X'400COOOO'. 

When EBI = EB -
Set LOCAL.SENSE CODE to X'400COOOO'. 

When CDI = CD -
Set LOCAL.SENSE CODE to X'400DOOOO'. 

When CSI = CODEl -
Set LOCAL.SENSE_CODE to X'40100000'. 

When EDI = ED 
Set LOCAL.SENSE_CODE to X'40160000'. 

When POI = PD 
Set LOCAL.SENSE CODE to X'40170000'. 

When CEBI = CEB -
Set LOCAL.SENSE_CODE to X'400C0000'. 

Else !response) 
Select in the following order, based on RH bits: 

When IRTI = POS and RU LENGTH< ll or 
IRTI = NEG and RU_LENGTH < 5l 
Set LOCAL.SENSE CODE to X'l0020000'. 

When FI ~ FMH -
Set LOCAL.SENSE CODE to X'400FOOOO'. 

When BCI ~ BC -
Set LOCAL.SENSE_CODE to X'400BOOOO'. 

When ECI ~ EC 
Set LOCAL.SENSE CODE to X'400BOOOO'. 

When DRlI ~ ORI -
Set LOCAL.SENSE CODE to X'40140000'. 

When DR2I = DR2 -
Set LOCAL.SENSE CODE to X'40140000'. 

When IRTI = POS and SDI = SDl or 
tRTI = NEG and SDI = NOT_SDJ 
Set LOCAL.SENSE CODE to X'40130000'. 

When QRI = QR -
Set LOCAL.SENSE_CODE to X'40150000'. 

When PI = PAC 
Set LOCAL.SENSE CODE to X'40080000'. 

If LOCAL.SENSE CODE = 0 !no-error) then 
Return with-a value of OK. 

Else !format error) 
Return with a value of NG. 

SNA Format and Protr~~! ~eference Manual for LU Type 6.2 



~ SEND AND RECEIVE PROCEDURES 

TC.SEND 

FUNCTION: Send the input BIU to path control. If required, the message unit is enci­
phered. If pacing is supported, the message unit may be placed on Q_PAC rath­
er than sent directly to path control. 

INPUT: 

OUTPUT: 

BIU along with the EFI and SNF. !The RH, and the RU were set up by the proce­
dure that passed this record to TCJ; whether send pacing is active; whether 
receive pacing is active; and the send pacing count CLOCAL.SEND_PACING_COUNTJ 
if send pacing is active. 

If no errors, BIU is sent to PC or placed on Q_PAC. The Pacing indicator is 
set to specify whether or not the BIU is a pacing request or response. If 
send pacing is active, LOCAL.SEND_PACING_COUNT is decremented. 
LOCAL.SENSE_CODE = 0. 

If any errors are detected, a nonzero sense code is returned to the caller in 
LOCAL.SENSE_CODE. 

Referenced procedures, FSMs, and data structures: 
page 6.2-14 TC.TRY_TO_ENCIPHER 

PC 
FSM_PAC_RQ_SEND 
FSM_PAC_RQ_RCV 
LOCAL 
HS_TO_PC_RECORD 

Not shown in this book 
page 6.2-20 
page 6.2-21 
page 6.0-6 
page A-11 

Initialize PI to ~PAC. 
Select in the following order, based on RRI and EFI RH bits: 

When EFI = EXP 
Indicate that the pacing queue does not need to be checked. 

When RRI = RQ 
If send pacing is active then 

Indicate that the pacing queue needs to be checked. 
Else (send pacing not active) 

Indicate that the pacing queue does not need to be checked. 
Call TC.TRY_TO_ENCIPHERIBIUl (page 6.2-141 to encipher the BIU. 

LOCAL.SENSE_CODE will be nonzero if enciphering failed. 

When RRI = RSP 
If send pacing is active and QRI =QR and the pacing queue (LOCAL.Q_PACJ 
is not empty then 

Indicate that the pacing queue needs to be checked. 
Else 

Indicate that the pacing queue does not need to be checked. 
If receive pacing is active and FSM_PAC_RQ_RCV (page 6.2-21) 
is in the PEND state and there are sufficient Cimplementation-dependentl 
resources then 

Call FSM_PAC_RQ_RCV(BIUJ !page 6.2-21) to manipulate the Pacing 
indicator in this response. 

Chapter 6.2. Transmission Control 6.2-13 



TC.SEND 

6.2-14 

If LOCAL.SENSE_CODE = 0 then 
Select, based on whether the pac;ng queue should be checked (as ind;cated 
•bove): 

111191'1 YES 
If RRI = RQ and LOCAL.SEND_PACING_COlMT > 0 then 

Cdl FSl'l_PAC_RQ_SEND(BIU) (page 6.2-20),. to- record the •bilUy 
to send a session-level pacing request for send pacing. 

Decrement LOCAL,_sEND_PACINS_COltlT by 1. 
Incorporate the BIU into the PIU field of the HS_TO_PC_RECORD: 
Set the HS_ID to the identif;er of the half-session that 

is sendi~g this record. 
(EFI, SNF, the RH, and the RU were set ..., by the procedure that 
passed this record to TC.) 

Set DCF to the length of the RH plus the length of the RU. 
Send the HS_TO_PC_RECORD to the path control (PC) that the half-session 

U!l!8S. 
Else I not norlll!lll floN or send pacing count :S 0) 

Enqueue the BIU to the end of the pacing send queue (LOCAL.ct.PAC). 

111191'1 HO 
Incorporate the BIU into the PIU field of the HS_TO_PC_RECORD 
(see above ) : 

Send the HS_TO_PC_RECORD to the path control that the half-session uses. 

Else (cryptography error) 
<The half-session router will cause the session to be terminated because 

LOCAL.SENSE_CODE is nonzero.) 

TC.TRY_TO_ENCIPHER 

FUNCTION: Encipher a normal-flow request if necessary • 

• INPUT: A BIU that includes a normal-flow request fl"'Oll TC.SEND; ;nc1;cator of whether 
cryptography is •ctive for the session• the cryptography session key and ses­
sion seed (the technique for providing the cryptography sess;on key and ses­
sion seed is defined by the iinplenentation>. 

OUTPUT: If necessary, BIU is enciphered and padded, and EDI and PDI are set according­
ly. 

Referenced procedures, FSHs, and data structures: 
LOCAL 

If the RU category is Fl'I> and the RU data length > 0 
and cryptography is active then 

If the RU length is not an even multiple of 8 then 

page 6.0-6 

Pad the RU to an integral nulllber of eight bytes. The padding bytes are 
added to the end and contain unpredictable values, except for the last 
pad byte, which contahw an unsigned 8-bit binary count of the pad bytes 
preceding it. If only one byte of pad is required, it is the c°'-Wlt byte 
itself and contains 1. 

Set PDI to PD. 
Else 

Set PDI to .. PD. 

Encipher the RU data: 
Execute the Data Encryption Standard (DES> algorUhll, using the session key 
as the cryptography key and the session seed as the initial chaining value. 
The •anner in lllhich the session key and the session seed are made available 
to this procedure is i111Plementation-defined. Details of the DES algorithll 
are not for•ally specified in thia book. 

If enciphering fails then 
Set LOCAL.SENSE_CODE to X'08480000' (cryptography function inoperative). 

Else 
Set EDI to ED. 

SNA Format and Protocol Reference Hanual for LU Type 6.2 



TC.RCV 

TC.RCV 

FUNCTION: Receive 111essage 
checks are 111ade. 
essed. Requests 
Sequence numbers 

units sent to the half-session by PC. The usage and state 
If the 111essage l.l'lit contains a pacing response, it is proc­

and responses are routed and pacing requests are processed. 
are processed. 

INPUT: A request or response BIU fro• the half-session router (see Chapter 6.0). 

OlTTPIJT: If no errors, DFC.RCV is called to process the BIU. If an error is encount­
ered for CP-LU sessions, a negative response is generated. If an error is 
encountered for LU-LU sessions, LOCAL.SENSE_CODE is set to a nonzero value and 
the half-session router causes an UNBIND to be generated. 

If the BIU is an Isolated Pacing Response !IPR) it is discarded. 

Referenced procedures, FSMs, and data structures: 
TC.RCV_CHECKS 
TC.RCV_NORM_RQ 
DFC_RCV 
SEtlJ_NEG_RSP_OR_LOG 
LOCAL 
PC_TO_HS_RECORD 

page 6.2-16 
page 6.2-17 
page 6.1-23 
page 6.1-37 
page 6.0-6 
page A-23 

This procedure has access to the PC_TO_HS_RECORD and to the LOCAL control block. 
Extract the BIU from the PIU field of the PC_TO_HS_RECORO. 

Call TC.RCV_CHECKSIBIU> !page 6.2-16> to check for 
errors in the received BIU. 

If there is a receive check error ILOCAL.SENSE_CODE ~ 0) then 
If this is an LU-LU session then 

!The nonzero setting of LOCAL.SENSE_COOE causes an UNBitll to ter111inate 
the session.> 

Else ICP_LU session> 
Call SEND_NEG_RSP_OR_LOGIBIU) (page 6.1-37) to send a negative 

response or to log the error. 

Else lno receive-check errors) 
If send pacing is active then 

If RRI=RSP and PI=PAC then 
Call FSM_PAC_RQ_SENDIBIUJ !page 6.2-20> to record the ability to send 

a pacing request for send p;acing. 
Call TC.DEQUEUE_PAC lp;age 6.2-18) to re110va BIUs fro• the 

send pacing queue I LOCAL.Q_PAC>. 

If RRI=RSP and PI=PAC and DRlI~DRl and DR2l~DR2 lit is ;an IPR> then 
Discard the IPR. 

Else (not IPR> 
If EFI = NORMAL and RRI = RQ then 

Call TC.RCV_NORM_RQCBIU> (page 6.2-17) to decipher the RU data <if necessary>, 
update the receive pacing FS11, and increment the last received sequence 
number ( LOCAL.SQH_RCV_CNT). 

If LOCAL.SENSE_COOE = 0 then 
Call DFC_RCVIBIUJ !page 6.1-23> to pass the record to DFC. 

Else 
<The nonzero setting of LOCAL.SENSE_CODE causes an UNBIND to ter111inate 
an LU-LU session.> 

Chapter 6.2. Trans111ission Control 6.2-15 



TC.RCV_CHECKS 

TC.RCV_CHECKS 

6.2-16 

FIMCTIOH: Usage checks are Made for valid RU length and valid sequence nunber on a 
nor•al-flow reqwast. If cryptography is to be used, an optional check is ude 
that EDI is Ht when enciphering is Mandatory, and the length of the RU is 
checked for being a multiple of 8. An optional check is aade that the pacing 
protocol was not violated by the sender. The procedure verifies that all FSMs 
are in the proper state. 

INPUT: A request or response SIU frot1 TC.RCVi indication whether ..-a><illlUI receive RU 
size is being enforced, and the 111a><i- receive RU size (LO­
CAL.HAX_RCV_RU_SIZE> if so; indication whether sequence nunbers are being 
used, and the last receive sequence nl.llllber if so; indication whether receive 
pacing is active, and the receive pacing count (LOCAL.RCV_PACING_COUNT) if soJ 
indicaHon whether cryptography is active. 

OUTPUT: If a problem is found, LOCAL.SEHSE_CODE is set to nonzero. 

Referenced procedures, FSHs, and data structures: 
LOCAL 

If RRI = RQ and SDI = SD then 
Return with LOCAL.SENSE_CODE set to the sense code of the BIU. 

If EFI = HORttAL then 
If a 1ta><iMU11 receive RU size was specified at session activation and 
the length of the received RU > •a><imu. receive RU size then 

Return with LOCAL.SENSE_COOE set to X'l0020000' IRU length error). 
If RRI = RQ then 

If sequence numbers are being used then 
If SNF t. ne><t e><pected sequence nuinber (LOCAL.SQH_RCV_CNT + 1) 

I including consideration of the wrap case) then 

page 6.0-6 

Return with LOCAL.SENSE_CODE set to X'20010000' (sequence nullber error). 
If PI = PAC but receive pacing is not active then 

Return with LOCAL.SENSE_COOE set to X'40080000' !pacing not supported>. 

If cryptography is active and the RU category is 
Fii> and the length of the RU > 0 then 

If EDI = ~ED then 
Return with LOCAL.SENSE_COOE set to X'08090000' (llOde inconsistency). 

Else (enciphered> 
If the RU data length is not an even multiple of 8 bytes then 

Return with LOCAL.SENSE_COOE set to X'l0010000' <RU data error>. 

(The following is an optional check for pacing protocol violation) 
If receive pacing is active and the receive pacing cO\.l"lt (LOCAL.RCV_PACIN6_COUNTJ 
= 0 then 

Return with LOCAL.SENSE_COOE set to X'20110000' !pacing error). 

If the RU category is netNOrk control or session control then 
Return with LOCAL.SENSE_CODE set to X'l0070000' (category not supported). 

Return with LOCAL.SENSE_COOE set to O lno errors). 

SNA Forut and Protocol Reference Kanual for LU Type 6.2 



TC.RCV_NORt1_RQ 

TC.RCY_NOR"_RQ 

FUNCTION: Decipher a nor•al-flON request if necessary, update receive pacing FStt, and 
incre•ent sequence mmber. 

INPUT: Nor•al-flON request BIU; indicati.on whether cryptography is active; indication 
whether sequence numbers are '8ed, and, if so, the last received sequence nun­
ber (LOCAL.SQN_RCY_CNT)J indication whether receive pacing is active, and. if 
so, the receive pacing count ( LOCAL.RCV_PACING_COUNT )J the session 
cryptography key and seed. 

OUTPUT: Nor•al-floN request deciphered if input was enciphered. If sequence nullbers 
are used, the sequence number is updated. If receive pacing is active, the 
receive pacing col.l"lt is decremented. 

Referenced procedures, FSt1s, and data structures: 
FSH_PAC_RGL_RCY 
LOCAL 

If cryptography is active and the RU catego~y is Ftl> and the RU data 
length > 0 then 

page 6.2-21 
page 6.0-6 

Execute the DES decipher algorithll. Use the session key as the cryptography key. 
Use the session seed as the initial chaining value. The •anner in which 
the session key and the session seed are •ade available to this procedure 
is hnplementation-defined. Details of the DES algorithm are not for•ally 
specified in this book. 

If deciphering is not successful then 
Set LOCAL.SENSE_CODE to X'084&0000' Ccryptography function inoperative). 
Log the error. 

Else (deciphering 111as successful> 
If PI = PAD then ' 

If the pad cOl.l"lt is less than 1 or greater than 7 then 
Set LOCAL.SENSE_CODE to X'lOOlOOOO', RU data error. 
Log the error. 

Else 
Eli•inate the padding. Set PI to ~PAD. 

If sequence numbers are being '8ed then 
Increment the last received H""8"Ce number CLOCAL.SQN..RCV_CNT> by 1, including 
handling the Nrap condition. 

If receive pacing is active then 
Call FSH_PAC_RGL_RCV(BIU> Cpage 6.2-21) to record the ability to send a session 
pacing response for receive pacing. 

Decruent the receive pacing cOl.l"lt (LOCAL.RCV_PACING_COlJ.ITJ by 1. 

Chapter 6.2. Trans•ission Control 6.2-17 



TC.DEQUEUE_PAC 

TC.DEQUEUE_PAC 

6.2-18 

FUNCTION: A pacing response has been received so Q_PAC is now unlocked. Determine if it 
is valid to remove a BIU. from Q_PAC. It is valid to remove a BIU from Q_PAC 
if it is a response or if it is a request and the pacing count is nonzero. 

INPUT: 

OUTPUT: 

NOTE: 

If valid, removes BIU from Q_PAC and sends it to path control. lhis procedure 
may cause the Pacing indicator in the BIU to be set to PAC. 

LOCAL.Q_PAC has BIUs that were not sent earlier because a pacing response was 
outstanding; state of FSM_PAC_RQ_RCV; the send pacing count CLO­
CAL.SEND_PACING_COUNT>. 

HS_TO_PC_RECORD is sent to path control. 

Procedure called only if LOCAL.SEND_PACING = YES. 

Referenced procedures, FSMs, and data structures: 
FSM_PAC_RQ_SEND 
FSM_PAC_RQ_RCV 
PC 
LOCAL 
HS_TO_PC_RECORD 

page 6.2-20 
page 6.2-21 

Not shown in this book 
page 6.0-6 
page A-11 

Do while LOCAL.Q_PAC is not empty and (send pacing count (LOCAL.SEND_PACING_COUNTJ > 0 
or the top entry on Q_PAC is a response) 

Remove the first enqueued BIU from Q_PAC. 
Select, based on the RRI of the removed BIU: 

When RRI = RQ 
CALL FSM_PAC_RQ_SENDCremoved BIU> (page 6.2-20> to manipulate the PI 

in the BIU being sent and to manage send pacing states. 
Decrement the send pacing count CLOCAL.SEND_PACING_COUNT> by 1. 

When RRI = RSP 
If sufficient <implementation-dependent> resources exist and FSM_PAC_RQ_RCV 

Cpage 6.2-211 is in the PEND state and receive pacing is active then 
CALL FSM_PAC_RQ_RCVCremoved BIU> Cpage 6.2-21> to manipulate 
the PI in the BIU being sent and to manage receive pacing states. 

Incorporate the BIU into the PIU field of the HS_TO_PC_RECORD Csee page 6.2-13 
for details>. 

CEFI, SNF, the RH, and the RU data were set up by the process that originally 
passed this record to TC.) 

Send the HS_TO_PC_RECORD to the path control (PC) that the half-session uses. 

SNA Format and Protocol Reference Manual for LU Type 6.2 



TC.TRY_TO_SEND_IPR 

TC.TRY_TO_SEND_IPR 

FUNCTION: Determines if an ISOLATED PACING RESPONSE !IPR> may be sent, based on the 
state of FSM_PAC_RQ_RCV !page 6.2-21> and the availability of resources. If 
an IPR may be sent, the procedure generates an ISOLATED PACING RESPONSE 
IRH=X'830100'> and sends it to path control. 

INPUT: An indication whether receive pacing is active for the session; state of the 
FSM PAC_RQ_RCV. 

OUTPUT: If an IPR is allowed, an ISOLATED PACING RESPONSE is sent to path control. 

NOTE: 1) An IPR is unique because it is the only response that can be sent with DRlI 
and DR2I off (response category = RQN). 

2) When an implementation sets the return code to NG, a method must be pro­
vided to insure that the half-session router will execute again when resources 
become available. Otherwise, the session could deadlock. 

IPRs are needed to prevent deadlocks when no responses are being sent that can 
carry the pacing response or when the only available responses are blocked on 
the pacing queue. IPRs cannot be blocked on the pacing queue. 

This routine is called periodically by the half-session router (see Chapter 
6 .o). 

Referenced procedures, FSMs, and data structures: 
FSM_PAC_RQ_RCV 
PC 
LOCAL 

page 6.2-21 
Not shown in this book 

page 6.0-6 

If receive pacing is active and the state of FSM_PAC_RQ_RCVIBIU) !page 6.2-21) 
is PEND then 

If sufficient !implementation-dependent) resources exist then 
Create a BIU to contain the IPR. 

Set EFI to NORMAL or EXP !either normal or expedited flow is valid). 

Set SNF to some value I implementation dependent). IPR is on the TC-TC flow, 
not the half-session to half-session flow, so is not related to the half­
session send sequence number ILOCAL.SQN_SENO_CNTl. 

Set OCF to the length of the RH plus the length of the RU. 

Set the RH to X'830100': 
IRSP, FMO. ~FMH, ~so. BC, EC, RQN, POS, ~ORl, ~0R2. ~QR, PAC, 
~BB, ~co, CODEO, ~Eo, ~po, ~CEBl. 

Set the RU to the null value. 
Call FSM_PAC_RQ_RCVIBIU> (page 6.2-211 to manage receive pacing. 
Incorporate the BIU into the PIU field of the HS_TO_PC_RECORO. 
Send the HS_TO_PC_RECORO to the path control IPCl that the half-session uses. 

Else 
NOTE: When the implementation does not have sufficient resources at this 
time, a method must be provided to insure that the half-session router 
will execute again when resources become available. Otherwise, the session 
could deadlock. 

Chapter 6.2. Transmission Control 6.2-19 



TC FINITE-STATE MACHINES 

6.2-20 

FSM_PAC_RQ_SEND 

FUNCTION: Records the ability to send a session-level pacing request for send pacing. 
RESET state indicates that a pacing request can be sent. AWAITING indicates 
that a pacing request has been sent but no pacing response has been received. 

INPUT: BIU; send pacing count CLOCAL.SEND_PACING_COUNT>. 

S, RQ, FIRST_IN_WINDOW means sending a BIU with RRI=RQ when the send pacing 
count equals the send window size. 

s, RQ, .. FIRST_IN_WINDOW means sending a BIU with RRI=RQ, when the send pacing 
count does not equal the send window size. 

R, RSP, PAC means receiving a BIU with RRI=RSP and PI=PAC. 

OUTPUT: PI, LOCAL.SEND_PACING_COUNT. 

NOTE: FIRST_IN_WINDOW is TRUE when the pacing count equals the window size. This is 
never true when the FSM is in the AWAITING state because when the FSM enters 
the AWAITING state, the pacing count is set to 1 less than the window size. 
The pacing count is increased only when a pacing response is received, at 
which time the FSM returns to the RESET state. 

Referenced procedures, FSMs, and data structures: 
LOCAL page 6.0-6 

STATE NAMES----> RESET AWAITING 
INPUTS STATE NUMBERS--> 01 02 

s, RQ, FIRST_IN_WINDOW 2CPACRQ> /NOTE 
s. RQ, .. FIRST_IN_WINDOW -INOPAC) -CNOPAC) 

R, RSP, PAC -IPACERR> l!PACRSP) 

SIGNAL( RESET) - 1 

OUTPUT FUNCTION 
CODE 

PACRQ Set PI to PAC. 

NOP AC Set PI to .. PAC. 

PAC ERR Set PI to .. PAC. 
Log the unexpected pacing response that was received. 

PACRSP Increase the send pacing count CLOCAL.SEND_PACING_COUNT> 
by the value of one send window (specified at session activation). 

SNA Format and Protocol Reference Manual for LU Type 6.~ 



FSM_PAC_RQ_RCV 

FSM_PAC_RQ_RCV 

FUNCTION: 

INPUT: 

OUTPUT: 

Records the ability to send a session pacing response for receive pacing. In 
RESET state, no pacing response is sent; in PEND state, it is. 

In PEND state this half-session has resources to receive another window of 
BIUs but there has not been a response flowing on which to indicate the condi­
tion. The half-session is looking for a response to be sent. 

Whea a pacing response is sent, the receive-pacing count is incremented by the 
receive-pacing window size. The receive-pacing count field is required only 
for an optional receive check. 

Receive pacing count CLOCAL.RCV_PACING_COUNT). 

R, RQ, PAC means receiving a BIU with RRI=RQ and PI=PAC. 

S, RSP means sending a BIU with RRI=RSP. PI must be ~PAC. 

PI may be set to PAC or ~PAC; LOCAL.RCV_PACING_COUNT may have been incremented 
by window size. 

Referenced procedures, FSMs, and data structures: 
LOCAL 

INPUTS 

R, RQ, PAC 

s, RSP 

SIGNAL( RESET) 

OUTPUT 
CODE 

PAC 

FUNCTION 

Set PI to PAC. 

STATE NAMES----> RESET 
STATE NUMBERS--> 01 

2 

Increase the receive pacing count CLOCAL.RCV_PACING_COUNT) 

page 6.0-6 

PEND 
02 

-CPACERR) 

lC PAC) 

1 

by the value of one receive window (specified at session activation). 

PAC ERR Set PI to ~PAC. 
Log the unexpected pacing request that was received. 

Chapter 6.2. Transmission Control 6.2-21 



This page intWltionally left blank 

22 SHA Forut and Protocol Reference ttanual for LU Type 6.2 



APPENDIX L. UQ!ll .l2!li SJRUCJWES 

Th;s appendix contains the shared data struc­
tures for LU 6.2. 

CPLU_CB 

The CP-LU control block represents an active session bet....., this LU and a control point 
CSSCP or PNCPl. 

CPLU_CB 
CP_ID: 
PC_ID: 
HS_ID: 

control point identifier (see page A-21 
identifier of path control being used by this CP-LU session 
identifier of the CP-LU half-session 

LUCB 

The LUCB_LIST contains information about LUs. There is one LUCB_LIST per node and one 
LUCB per LU. 

The LUCB_LIST is created at system-definition time. The initial values of the fields in 
each LUCB entry are h1pl81Hntation-specific. 

NOTES: 1. fully-qualified LU names consist of type-A syiubol strings. Transaction pro­
gra• names consist of type-AE up through type-GR symbol strings. depending on 
the i111Plementation. See "Appendix E. Request/Response Unit CRUl for-ts" for 
symbol-string definitions. 

LUCB 

2. If the LU name is not present, the fULLY_QUALIFIED_LU_NAME field is null. 
Subarea LUs, LUs doing sync point. and LUs using parallel sessions have to 
kl'lOlll their own n•nies. 

3. The fULLY_QUALifIED_LU_NAHE contains no trailing blanks. 

Shared Data 

LU_ID: identifier of the local LU 
fULLY_QUALIFIED_LU_NAHE Csee Notes) 
PARTNER_LU_LIST <see page A-21 
TRANSACTION_PROGRAH_LIST: (see page A-41 
PENDING_RANDOH_DATA_LIST: list of rando11 data that has been sent on a 

BIND to a partner 

Data Unique to PS.COPR 

LU_SESSION_LIMIT: maxillUll nulllber of LU-LU Hssions; the local LU can have 

Appendix A. Node Data Structures A-1 



CP_ID 

CP_ID 

The CP_ID structure is the unique control point (e.g., SSCP, PHCP) identifier. 

CP_ID 
Subarea node contents: 

CP_NETWORK_AODRESS: full network address of control point 
Peripheral node contents: 

ALS: adjacent link station that control point is using for CP-LU and CP-PU sessions 

PARTNER_ LU 

The PARTNER_LU_LIST is a list contained within each LUCB entry. There is one PART­
NER_LU_LIST per LU and one PARTNER_LU entry for each LU name known by a given LU. Each 
PARTNER_LU entry contains information that is LU name specific li.e., information that is 
constant across all mode names for 111 given LU name). 

The PARTNER_LU_LIST is created at system-definition time. 
fields in each PARTNER_LU entry are implementation specific. 

The initial values of the 

NOTES: 1. The !partner) LOCAL_LU_NAHE is the name that a transaction progra• specifies 
in conjunction with the HODE_NAHE when requesting the allocation of a conver­
sation. It is a local name by which one LU knows another LU and is not sent 
outside the LU. The maxillUlll length of the LU_NAME is implementation-defined. 

There may be an entry in the PARTNER_LU_LIST whose LOCAL_LU_NAHE is the same 
as the LU name of this LU. This allows for cases when the re11ote transaction 
program is located in the same LU as the local program. 

2. Local LU names consist of type-6 symbol strings. Fully-qualified LU names con­
sist of type-A symbol strings. See "Appendix E. Request/Response Unit IRUJ 
Formats" for symbol-string definHions. 

3. The (partner) FULLY_QUALIFIED_LU_NAME is the LU name that is sent on external 
flows, e.g., BIND. 

4. The LOCAL_LU_NAME, FULLY_QUALIFIEO_LU_NAME, and UNINTERPRETED_LU_NAME fields 
contain no trailing blanks. 

PARTNER_ LU 

Shared Data 

LOCAL LU NAME !see Notes 1, 2, and 4) 
FULLY_QUALIFIED_LU_NAME !see Notes 2t 3, and 4) 
UNIHTERPRETED_LU_NAME !see Note 4l 
tlODE_LIST !see page A-3> 

A-2 SNA For11111t and Protocol Reference Manual for LU Type 6.2 



HOOE 

HOOE 

The HODE_LIST is a Hst ccntainecl Nithin each PARTNER_LU entry. There is one ttODE entry 
in the HODE_LIST for e111ch lllOde na111tc that is associated .. ith PARTNER_LU.LOCAL_LU_NAl"IE. 
Each HOOE entry contains llOde-nalM specific infor11ation. 

The HODE_LIST is created at system-definition ti••· The initial values of the fields in 
each HOOE entry are i111Plementation specific. 

NOTES: 1. The WAITING_REQUEST_LIST contains requests for sessions sent by PS.CONY 
("Chapter 5.1. Presentation Services--Conversation Verbs") that the resources 
11aru1ger cannot presently fulfill because no free sessions are available. 
Entries are re110ved fro• the list when an existing session becomes free or 
when a ne1111 session is activated. 

HOOE 

2. The FREE_SCB_LIST is a list of sessions that are currently not in use by any 
conversation. The list is an ordered list in that all first-speaker 
half-sessions are grouped at the front of the list with all bidder 
half-sessions follD1111ing. A neN first-speaker entry is inserted at the begin­
ning of the list, while a new bidder entry is inserted at the end. 

The FREE_SCB_LIST and the WAITING_REQUEST_LIST are MUtually eKclusive. An 
entry in the FREE_SCB_LIST precludes there being an entry in the WAIT­
IN6_REQUEST_LIST, and vice versa. 

3. Hoda names consist of type-A symbol strings. See "AppendiK E. 
Request/Response l,k,it (RU) Formats" for symbol-string definitions. 

4. TERHINATION_COll-IT is the cO\rlt of the runber of sessions that this LU is 
responsible for deactivating. PENDING_TERHINATION....* counts sessions that are 
pending ter•ination. A session is pending ter•ination front the ti• that RH 
("Chapter 3. LU Resources Manager") sends BISIRQElJ or BIS!RQE3) to the ti11e 
that the LU resources manager sends DEACTIVATE_SESSION or receives SES­
SION_DEACTIVATED. 

5. ACTIVE_*_COUNT cOl.l"lts active sessions. These cOl.l"lts are maintained by RH 
("Chapter 3. LU Resources Manager"). A session is active from the time that 
the resources manager receives SESSION_ACTIVATED or +ACTIVATE_SESSION_RSP to 
the time that the resources manager sends DEACTIVATE_SESSION or receives SES­
SION_DEACTIVATED. ACTIVE_*_COUNT includes sessions that are pending ter•i­
nation (see below). ACTIVE_SESSION_COUNT is the SUll of 
ACTIVE_CONWINNERS_COUNT and ACTIVE_CONLOSERS_COUNT. 

6. PEHDING_*_COUNT cOl.l"lts pending-active sessions. These counts are •aintained 
by RM C "Chapter 3. LU Resourc- Manager">. A session is pending active from 
the time that the resources manager sends ACTIVATE_SESSION to the time that 
the resources 111anager receives ACTIVATE_SESSION....RSP. PENDIN6_SESSION...COUNT is 
the s1.1111 of PENDING_CONWINNERS_COUNT and PENDING_COHLOSERS_COUNT. 

Shared Data 

NAME: lllOde na111e (see Note 3 J 
SESSION_LIHIT: maxi111U1a number of sessions allowed for this partner (LU, model pair 
HIN_Cot&IINNERS_LIHIT: •inimum nuniber of contention winner sessions 
HIN_CONLOSERS_LIMIT: •inillUll number of contention loser sessions 
CNOS_NE60TIATION_IN_PROGRESS: possible values: TRUE, FALSE 
Lil'1IT_BEING_NE60TIATED: when CMOS negotiation is in progress, this is the tentative 

ne1o1 session limit 

ACTIVE_SESSION_COUNT !see Note 5) 
ACTIYE_CONWil+IERS_COUNT 
ACTIVE_COHLOSERS_CCIUNT 

PEHDING_SESSION_COUHT (see Note 6) 
PENDING_CONNINNERS_COUNT 
PENDING_CONLOSERS_COUNT 

Appendix A. Node Data Structures A-3 



MODE 

DRAIN_SELF: possible values: YES, NO 
DRAIN_PARTNER: possible values: YES, NO 
AUTO_ACTIVATIONS_LIMIT 

Data Unique to LU Resources Manager 

TERMINATION_COUNT (see Note 41 
PEND ING_ TERMINATION_ CONWINNERS 
PENDING TERMINATION CONLOSERS 
SINGLE_SESSION_POLARITY: possible values: FIRST_SPEAKER, BIDDER 

TRANSACTION_PROGRAM 

Each LUCB contains a TRANSACTION_PROGRAM_LIST. This list contains one entry for each 
transaction program known at the LU. Each TRANSACTION_PROGRAM entry in the TRANS­
ACTION_PROGRAM_LIST contains information describing one transaction program. 

The TRANSACTION_PROGRAM_LIST is created at system-definition time • The initial values of 
the fields in each TRANSACTION_PROGRAM entry are implementation-defined. 

NOTE: Transaction program names consist of type-AE up through type-GR symbol 
strings, depending upon the implementation. See "Appendix E. Request/Response 
Unit CRUl Formats" for symbol-string definitions. 

TRANSACTION_PROGRAM 

Shared Data 

TRANSACTION_PROGRAM_NAME Cup to 64 bytes longl 
PRIVILEGED_FUNCTIONS_LIST: possible values: ATTACH_SERVICE_TP, CHANGE_NUMBER_OF_SESSIONS, 

DEFINE LU PARAMETERS, DISPLAY LU PARAMETERS, SESSION CONTROL 
RESOURCES_SUPPORTED_LIST: pos;ible values: BASIC_CONVERSATION, MAPPED_CONVERSATIN 

Data Unique to PS.INITIALIZE 

NUMBER_OF_PIP_SUBFIELDS 

Data Unique to RM 

SYNC_LEVELS_SUPPORTED_LIST: possible values: MONE, CONFIRM, SYNCPT 

Data Unique to PS.MC 

MC_FUNCTIONS_SUPPORTED_LIST: possible values: MAPPING, FMH_DATA 

A-4 SNA Format and Protocol Reference Manual for LU Type 6.2 



LULU_CB 

LULU_CB 

The LU-LU session control 
about an LU-LU session. 

block is used by LU network services CLNSJ to keep information 
There is one LULU_CB for each LU-LU session. 

LULU_ CB 

The following fields are always set to the correct value when the 
LULU_CB is created and initialized (independent of what caused it to 
be created). 

CP_LU: contains information pertaining to CP_LU session 
CP_ID: control point identifier (see page A-21 
HS_ID: identifier for CP-LU half-session 

LUNAME: contains local and fully qualified target LU names 
MODENAME: mode name for this LU-LU session 
SESSION_ID: session instance identifier 
SESSION INFORMATION 

HALF=SESSION_TYPE: possible values: PRI, SEC 
SESSION_TYPE: possible values: FIRST_SPEAKER, BIDDER 

CORRELATOR field is set when an ACTIVATE_SESSION (from RMI causes the 
creation of the LULU_CB. It is used by RM to correlate ACTI­
VATE_SESSION_RSP to ACTIVATE_SESSION. 

CORRELATOR 
LU_LU: information pertaining to the LU-LU session 

PC_ID 

ALS 

PC_ID--path control identifier representing the path control process 
being used by this LU-LU session. This field is set when a BIND 
request or PC_CONNECT_RSP is received. 

ALS--adjacent link station identifier representing the link this LU-LU 
session is using. This field is set when a BIND request is received 
or a PC_CONNECT is sent. It is used only in peripheral nodes. 

ADDRESS--the addresses of the LUs for this LU-LU session. For subarea 
nodes this field is set when a CINIT or BIND request is received. For 
peripheral nodes it is set when a BIND request or PC_CONNECT_RSP is 
received. 

ADDRESS (see page A-341 

Appendix A. Node Data Structures A-5 



1.ULU_CB 

HS_ID 

HS_ID--this field contains the process identifier for the LU-LU 
half-session process CHS). When the half-session process does not 
exist, this fleld is set to, a null value. 

SENT_INITIATE_RQ fields are set when an INIT-SELF request is sent. 

SENT INITIATE RQ 
URC: used-to correlate future CINIT or BIND request. 
SNF: TH sequence number of sent INIT-SELF request (used to correlate 

INIT-SELF response). 

SENT_BIND_RQ fields are set when a BIND request is sent. 
the sent BIND request RU is saved because it is needed 
error checking on the received BIND response. 

A copy of 
to perform 

SENT_BINO_RQ 
SNF: TH sequence number of sent BIND request Cused to correlate BIND resonseJ 
BIND_RQ_RU: saved BIND request RU 

SEHT_UNBIND_RQ fields are set when an UNBIND request is sent. 

SENT_UNBIND_RQ 
SNF: TH sequence number of sent UNBIND request (used to correlate UNBIND response) 

RANDOM 

RANDOM holds the random data sent to a partner LU in BIND or BIND 
response, and the random data received in a BIND response. 

A-6 SNA Format and Protocol Reference Manual for LU Type 6.2 



RCB 

RCB 

The RCB LIST contains information about resources. There is one RCB_LIST per LU and one 
RCB per resource known by that LU. The RCB_LIST is m<maged by RH C "Chapter 3. LU 
Resources Mamiger" J. Entries are added to, and deleted from, the RCB_LIST by the 
resources manager. The RCB_LIST is also referenced by presentation services, e.g., 
PS.CONV ("Chapter 5.1. Presentation Services--Conversation Verbs"). The RCB_LIST contains 
entries for all the resources associated with all the transaction program instances active 
at a particular LU. 

NOTES: I. The (partner) LU_NAHE is the name that a transaction program specifies in con­
junction with the MODE_NAHE when requesting the allocation of a conversation. 
It is a local name by which one LU knows another LU and is not sent outside 
the LU. The maximum length of the LU_NAHE is implementation-defined, but is 
shown here as having a maximum length of 17 characters. 

RCB 

2. LU names consist of type-G symbol strings. Mode names consist of type A symbol 
strings. Conversation correlators consist of type-G symbol strings. See "Ap­
pendix E. Request/Response Unit CRUJ Formats" for symbol string definitions. 

3. When the resources manager receives a GET_SESSION (page A-26) from PS.CONV and 
determines that only a bidder half-session is available (i.e., all first 
speaker half-sessions are in use), it has to request permission to use the 
half-session. Because permission may be denied, SESSION_PARHS_PTR points to 
the GET_SESSION record while the request for permission to use the session is 
outstanding. If permission is denied, the GET_SESSION record is used to issue 
a new request for a session. After permission has been granted, or if a first 
speaker session can be allocated, SESSION_PARHS_PTR has a value of NULL. 

RCB_ID: ID of this RCB 

Shared Data 

that owns this RCB 
associated with this RCB 
Notes 1 and 2l 

TCB_ID: ID of the transaction 
HS_ID: ID of the half-session 
LU_NAHE: Partner LU name (see 
MODE_NAME (see Note 2J 
CONVERSATION_CORRELATOR (see Note 2J 
CONVERSATION_TYPE: possible values: BASIC_CONVERSATION, HAPPED_CONVERSATION 

FSH_CONVERSATION page 5.1-63 

Data Unique to RH 

SESSION_PARHS_PTR (see Note 3) 

Appendix A. Node Data Structures A-7 



RCB 

Data lklique to PS.CONY 

PS_TO_HS_RECORD, see SEND_DATA_RECORD page A-24 
SEtm_LL_REHAINDER: ~r of bytes ren;ning to be sent in the outgoing 
logical record 

RECEIVE_LL_REMAINDER: ni.ber of bytes ruaining to be received in the incoming 
logical record 

POST_CONDITIONS 
FILL: possible values: BUFFER, LL 
HAX_LENGTH: uxillUlll number of bytes ;n inco•ing log;cal record or buffer 
LOCl<S: possible values: SHORT, LONG 

SEND_LL_BYTE: possible values: PRESENT, NOT_PRESENT 
SAVED_BYTE: retains SEND_LL_BYTE (reserved when SEND_LL_BYTE=NOT_PRESENT> 
HAX_BUFFER_LEHGTH: 11axi•um number of bytes in outgoing log;cal record or buffer 
SYNC_LEVEL: possible values: NONE, CONFIRM, SYNCPT 
SECURITY_SELECT: possible valuea: NONE, SAME, P6l1 
R<l..TO_SEND_RCW: poss;ble values: YES, NO 

FSH_ERROR_OR_FAILURE 
FSM_POST 

HS_TO_PS_BUFFER_LIST: List of BUFFER_ELEHENT (see page A-8) 

Data lklique to PS.He 

HC_RECEIVE_BUFFER: Contains RECEIVED_INFO (aee page A-8) 
HAPPER_SAVE_AREA 

page 5.1-65 
page 5.1-66 

HC_HAX_SEND_SIZE: R><illUll l"IUlber of bytes in a •appeci-conversation logical record 

BUFFER_ ELEMENT 

BUFFER_ELEHENT ;s the structure that is inserted into the HS_TO_PS_BUFFER_LIST. The 
HS_TO_PS_BUFFER_LIST is contained within an RCB and consiats of infor•ation received by 
PS.CONY ("Chapter 5.1. Pres111ntation Services--Conversation Verba") frOll the half-session 
but not yet passed to the transaction progra•. 

BUFFER_ELEMENT: 
TYPE: possible values: DATA, Ftff71 CONFIRM, PREPARE_TO_RCV_FLUSH, 

PREPARE_TO_RCV_CONFIRM, DEALLOCATE_FLUSH, DEALLOCATE_CONFIRH 
DATA (reserved when TYPE~DATA, FMH7) 

RECEIVEO_INFO 

RECEIVED_INFO is the structure that is inserted into the HC_RECEIVE_BUFFER_LIST. The 
HC_RECEIVE_BUFFER_LIST is contained within an RCB and consists of infor .. tion received by 
PS.MC ("Chapter 5.2. Presentation Services--Mapped Conversation \!erbs") but not yet passed 
to the transaction progra•. 

RECEIVED_INFO 
TYPE: possible values: MAP_NAME, MAP_NAME_AND_DATA_CONTINUED, 

DATA_CONTINUED1 HAPPED_DATA, INDICATOR, RC 

A-.8 SHA For1Ht and Protocol Reference Manual for LU Type 6.2 



see 

see 

There is one see per half-session. seas are 11aintained by the resources •anager. 

NOTES: l. The (partner) LU_NAHE is the name that a transaction program specifies in con­
junction with the HODE_NAME when requesting the allocation of a conversation. 
It is a local name by which one LU knows another LU and is not sent outside 
the LU. The .axilllUlll length of the LU_NAME is implementation-defined, but is 
shown here as having a maxillUlll length of 17 characters. 

sea 

2. LU names consist of type-6 symbol strings. Fully-qualified LU names and lllOde 
names consist of type-A symbol strings. See "Appendix E. Request/Response 
Unit IRUI Formats" for symbol-string definitions. 

HS_ID: lnique sea identifier 
LU_NAHE: partner LU name (see Notes I 
MOOE_NAME: iaode name (see Note 21 

Shared Data 

RCB_ID: ID of Rea representing the conversation that is using this session! 
null if no conversation is using this session 

FULLY_QUALIFIED_LU_NAHE: Partner LU name (see Note 21 

RANDOH_DATA: used to validate FMH-12 

Appendix A. Node Data Structures A-9 



TC8 

TCB 

The TC8_LIST contains ;nfor•ation about active transaction program ;nstances. There is 
one TC8_LIST per LU and one TC8 per active transaction progra• instance r~ing at that 
LU. The TCB_LIST is •anaged by RH ("Chapter J. LU Resources ttanager"I. Entries are added 
to and deleted fro• the TCB_LIST by the resources •anager. The TCB_LIST is also refer­
enced by presentation services, e.g., PS.CONY ("Chapter S.1. Presentation Serv­
icu--Conversation Verbs">. 

Each TCB contains an etlbeddec:I RESOURCES_LIST1 Nhich contains one (pointer> entry for each 
resource associated wHh a part;culer transact;on progra• instance. 

NOTES: 1. Transaction progra• nalleS and Access Security InforuUon sl.Cfleld consist of 
type-AE up through type-GR symbol strings, depending upon the implementation. 

TCB 

2. Each entry in the RE~CES_LIST has a corresponding entry in the RCB_LIST. 
The RCB_LIST conta;ns entries for all the resources associated wUh all the 
transact;on progra• instances r\lining at the LU. In contrast. the 
RESOURCES_LlST contains entr;es for only those resources associated Mith a 
particular transaction progra• instance. 

Shared Data 

TCB_ID: i dent Hi es the PS process 
TRANSACTION_PROGRAH_tw1E (See Note 1) 

~-LU_ID 
LUW_IDENTIFIER 

FULLY_QUALIFIED_LU_NAHE 
LlJW_INSTANCE 
LlJW_SEQUEHCE_NUHBER 

RESOURCES_LIST Csee Note 2) 
CONTROLLING_COHPONENT: poss;ble values: TP1 SERVICE_COl1PONENT 
INITIATING_SEC~ITY: in;tiat;ng security information is rece;ved 

PROFILE 
USER ID 

on the Attach that started th;s TP; (see Note 1) 

HS_TO_LNS_RECORD 

HS_TO_LNS_RECORD is a record sent by the half-sess;on lHS> to LU network aervices (lNS). 

HS_TO_LHS_RECORO: contains INIT_HS_RSP, HS_RCV_RECORDt or ABORT_HS record lsee below> 

A-10 SHA For11at and Protocol ReferW'lCe tt.nual for LU Type 6.2 



ABORT_HS 

ABORT_HS 

ABORT_HS indicates to LU netNOrk services that the half-session has found • severe error 
•nd cannot continue processing. This Nill cause an lMBIND r~t to be sent for the 
aborted half-session. 

NOTE: This record is sent only by LU-LU half-sessions. 

ABORT_HS 
HS_ID: identifies the half-session sending this record 
SENSE_CODE: indicates the reason the half-session aborted 

HS_RCV_RECORD 

This record contains PIU inforntion pertaining to ft'ID NS RUs that flON frOlll the control 
point to the LU on the LU-CP session (e.g., CINIT, NOTIFY>. 

NOTE: This record is sent only by LU-CP half-sessions. 

HS_RCV_RECORD 
HS_ID: identifies the half-session sending this record 
PIU (see page A-35) 

INIT_HS_RSP 

This record is a response to the INIT_HS record that was sent from LU network services 
(lNS) to the half-session (HS) to initialize the half-session. The response indicates 
Nhether or not the initialization was successful CPOS> or not (NEG>. if'len NEG, the reason 
is indicated by the sense data in SENSE_CODE. 

IHIT_HS_RSP 
TYPE: possible values: POS, NEG 
SENSE_COOE: indicating the type of error (reserved when TYPE=POS) 
HS_ID: identifies the half-session sending the record 

HS_TO_PC_RECORD 

HS_TO_PC_RECORD is a record sent by the half-session CHS) to path control (PC). It con­
tains the sending half-session's process identifier lmany half-sessions 11ay send to the 
sa•e path control> and PIU information from which path control will build and send a PIU. 

HS_TO_PC_RECORD 
HS_ID: identifier of the half-session sending this record. 
PIU: contains path information unit Csee page A-351 

Appendix A. Node D•ta Structures A-11 



HS_TO_PS_RECORD 

HS_TO_PS_RECORD 

The HS_TO_PS_RECORD ;s the record that HS ("Chapter 6.0. Half-Sess;on") sends to PS_CONV 
("Chapter 5.1. Presentation Services--Conversation Verbs"). 

HS_TO_PS_RECORD: contains a RECEIVE_DATA, REQUEST_TO_SEND., 
RSP_TO_REQUEST_TO_SEND, RECEIVE_ERROR, or CONFIRMED record (see below) 

CONFIRMED 

CONFIRMED ;s sent by the half-sess;on to PS_CONV to inform PS_CONV that a pos;t;ve 
response to the previous request for confirmation has been received. Conf;rmation ;s 
requested when SEND_PARM.TYPE !page A-36) = CONFIRM, DEALLOCATE_CONFIRM, PRE­
PARE_TO_RCV_CONFIRM_SHORT, or PREPARE_TO_RCV_CONFIRM_LONG. 

CONFIRMED 
HS_ID: ;dent;f;es the half-sess;on send;ng th;s record 

RECEIVE_DATA 

RECEIVE_DATA is sent by the half-sess;on to PS CONV to ;nform PS CONV of rece;pt of con­
versation data. The data is passed to PS_CONV in · the DATA field: If FMH = YES, the DATA 
contains an FMH-7. 

RECEIVE_DATA 
HS_ID: identif;es the half-session sending this record 
FMH: possible values: YES, NO !If FMH=YES, DATA contains an FMH-7.) 
TYPE: possible values: NOT_END_OF_DATA, CONFIRM, PREPARE_TO_RCV_CONFIRM, 

PREPARE_TO_RCV_FLUSH, DEALLOCATE_CONFIRM, OEALLOCATE_FLUSH 
DATA: data received from partner transaction program 

RECEIVE_ERROR 

~ECEIVE_ERROR is sent by the half-session to PS_CONV to inform PS_CONV that a -RSPC0846> 
has been received. 

RECEIVE_ ERROR 
HS_ID: identifies the half-session sending this record 

A-12 SNA Format and Protocol Reference Manual for LU Type 6.2 



REQUEST_TO_SEND 

REQUEST_TO_SEND 

REQUEST_TO_SEND is sent by the half-session to PS_CONV to inform PS_CONV that the trans­
action program at the partner LU has requested to enter the send state for the conversa­
tion. 

REQUEST_TO_SEND 
HS_ID: identifies the half-session sending this record 

RSP_TO_REQUEST_TO_SEND 

RSP_TO_REQUEST_TO_SEND is sent by the half-session to PS_CONV to inform PS_CONV that the 
response to the previous REQUEST_TO_SEND record Cpage A-26) has been received. 

RSP_TO_REQUEST_TO_SEND 
HS_ID: identifies the half-session sending this record 

HS_TO_RM_RECORD 

The HS_TO_RM_RECORD is the record that HS ("Chapter 6.0. Half-Session"> sends to RM 
("Chapter 3. LU Resources Manager"). 

HS_TO_RM_RECORD: contains ATTACH_HEAOER, BID, BID_RSP, FREE_SESSION, 
BIS_RQ, BIS_REPLY, RTR_RQ, RTR_RSP, or SECURITY_HEADER record (see below) 

ATTACH_HEADER 

ATTACH_HEAOER is sent by the half-session to the resources manager to inform the resources 
manager of the receipt of an FMH-5 on the half-session. The HEADER field contains the 
FMH-5. 

ATTACH_HEADER 
HS_IO: identifies the half-session sending this record 
HEADER: contains the received FMH-5 

Appendix A. Node Data Structures A-13 



BID 

A-14 

BID 

BID is sent by the half-session to the resources manager to inform the resources manager 
that the partner LU has requested permission to use the half-session for a conversation. 
The resources manager will reply with a BID_RSP record (page A-281. The half-session will 
send a BID record to the resources manager even if the partner LU is the first-speaker. 

BID 
HS_ID: identifies the half-session sending this record 

BID_RSP 

BID_RSP is sent by the half-session to the resources manager to inform the resources man­
ager of the partner LU's response to the local LU's request to use the session (see 
BID_WITHOUT_ATTACH [page A-29] and BID_WITH_ATTACH [page A-28]1. BID_RSP is sent by the 
half-session only if the local LU is the bidder. If RTI = NEG, SENSE_CODE contains the 
sense data carried on the negative response. 

BID_RSP 
HS_ID: identifies the half-session sending this record 
RTI: type of response--possible values: POS, NEG 
SENSE_CODE: indicates the type of error (reserved when RTI=POSI 

BIS_RQ 

BIS_RQ is sent by the half-session to the resources manager to inform the resources manag­
er that a BISCRQEll request unit was received. 

BIS_RQ 
HS_ID: identifies the half-session sending this record 

BIS_REPLY 

BIS_REPLY is sent by the half-session to the resources manager to inform the resources 
manager that a BISCRQE31 request unit was received. 

BIS_REPLY 
HS_ID: identifies the half-session sending this record 

SNA Format and Protocol Reference Hanual for LU Type 6.2 



FREE_ SESSION 

FREE_SESSION 

FREE_SESSION is sent by the half-session to the resources manager to inform the resources 
manager that the half-~ession has become free Ci.e., not in use by a conversation). 

FREE_ SESSION 
HS_ID: identifies the half-session sending this 

record !the half-session that has become free) 

RTR_RQ 

RTR_RQ is sent by the half-session to the resources manager to inform the resources manag­
er that an RTR request unit was received. 

RTR_RQ 
HS_ID: identifies the half-session sending this record 

RTR_RSP 

RTR_RSP is sent by the half-session to the resources manager to inform the resources man­
ager that an RTR response unit was received. If RTI = NEG, SENSE_CODE contains the sense 
data carried on the negative response. 

RTR RSP 
HS ID: identifies the half-session sending this record 
RTI type of response: possible values: POS, NEG 
SENSE_CODE: indicates the type of error (reserved when RTI=POS) 

SECURITY_HEADER 

SECURITY_HEADER is sent by the half-session 
resources manager of the receipt of an FMH-12 
tains the FMH-12. 

SECURITY_HEADER 

to the resources manager to inform the 
on the half-session. The HEADER field con-

HS_ID: identifies the half-session sending this record 
HEADER: contains the received FMH-12 

Appendix A. Node Data Structures A-lS 



LNS_TO_HS_RECORD 

LNS_TO_HS_RECORD 

LNS_TO_HS_RECORD is a record sent by LU network services (LNSl to the half-session (HSl. 

LNS_TO_HS_RECORD: contains HS_SEND_RECORD or INIT_HS record Csee below) 

HS_SEND_RECORD 

This record contains PIU infornation pertaining to FMD NS RUs that flow from the LU to the 
control point on the LU-CP session Ce.g., INIT-SELF, SESSSTl. 

NOTE: This record is sent only to LU-CP half-sessions. 

HS_SEND_RECORD 
PIU (see page A-35) 

INIT_HS 

This record contains the information necessary for the half-session to initialize itself. 
It is sent when a successful session activation occurs and contains information from the 
activation RUs Ce.g., BIND, ACTLUl. This is the first record received by the half-session 
after its creation. 

INIT_HS 
PC ID: identifies the path control the half-session communicates with 
TYPE of half-session: possible values: PRI, SEC 
DATA_TYPE: specifies whether the DATA contains ACTLU image or BIND image 
DATA: contains either ACTLU image or BIND image 

ACTLU_IMAGE: contains fields associated with activating an LU-CP half-session 
FM_PROFILE Csee ACTLU in Appendix El 
TS_PROFILE Csee ACTLU in Appendix El 
MAX_RU_SIZE: maximum RU size to be used on the LU-CP session 

BIND_IMAGE: fields associated with activating an LU-LU half-session 
(see BIND request in Appendix El 

LNS_TO_NNM_RECORD 

LNS_TO_NNM_RECORD is a record sent by LU network services CLNSl to the nodal NAU manager 
CNNMl. 

LNS_TO_NNM_RECORD: contains BIND_RQ_SEND_RECORD, BIND_RSP_SEND_RECORD, 
UNBIND_RQ_SENO_RECORD, UNBIND_RSP_SEND_RECORD, ACTLU_RSP_SEHO_RECORD, 
DACTLU_RSP_SEHD_RECORD, PC_COHHECT, HIERARCHICAL_RESET_RSP, 
or PC_HS_COHHECT record (see below> 

A-16 SNA Format and Protocol Reference Manual for LU Type 6.2 



ACTLU_RSP_SEND_RECORD 

ACTLU_RSP_SEND_RECORD 

This record contains information for an ACTLU response PIU that is to be sent. 

ACTLU_RSP_SEtl>_RECORD 
LU_ID: process identifier of the sending LU 
PC_ID: process identifier of path control to be sent to 
ADDRESS: contains TH address fields (see page A-34) 
PIU: contains ACTLU response (see page A-35) 

BIND_RQ_SEND_RECORD 

This record contains information for a BIND request PIU that is to be sent. 

BIND_RQ_SEND_RECORD 
LU_ID: process identifier of the sending LU 
PC_ID: process identifier of path control to be sent to 
ADDRESS: contains TH address fields Csee page A-34) 
PIU: contains BIND request <see page A-35) 

BIND_RSP_SEND_RECORD 

This record contains information for a BIND response PIU that is to be sent. 

BIND_RSP_SEND_RECORD 
LU_ID: process identifier of the sending LU 
PC_ID: process identifier of path control to be sent to 
ADDRESS: contains TH address fields Csee page A-34> 
PIU: contains BIND response Csee page A-35) 

DACTLU_RSP_SEND_RECORD 

This record contains information for a DACTLU response PIU that is to be sent. 

DACTLU_RSP_SEND_RECORD 
LU_ID: process identifier of the sending LU 
PC_ID: process identifier of path control to be sent to 
ADDRESS: contains TH address fields Csee page A-34) 
PIU: contains DACTLU response Csee page A-35) 

Appendix A. Node Data Structures A-17 



HIERARCHICAL_RESET_RSP 

HIERARCHICAL_RESET_RSP 

Th;s record is a response to a HIERARCHICAL_RESET record. It indicates that hierarch;cal 
reset processing is complete. 

HIERARCHICAL_RESET_RSP 
LU_ID: process identifier of the sending LU 
PC_ID: process identifier of path control to be sent to 
CP_ID: control point identifier !see page A-2) 

PC_CONNECT 

Th;s record is used, by primary LUs, to request infor•ation about a path control that Nill 
be used to activate an LU-LU session. for peripheral nodes, the adjacent link station 
(ALS> ;s used to specify the path to be used. For subarea nodes, the subarei!I address for 
the secondary LU (SUBAREA_ADDRESS> and path ;nfor.ation IPATH_INFORHATIOtO are used to 
specify the path. Path information includes the class-of-service n.•e and the virtual 
r~~te identifier list. 

PC_COHNECT 
LU_ID: process identifier of the sending LU 
HS_ID: half-session process identifier used to correlate the PC_CONNECT_RSP 
TYPE of node this PLU resides in: possible values: PERIPHERAL, SUBAREA 
ALS: adjacent link station !reserved when TYPE=SUBAREA> 
SUBAREA_ADDRESS: for SLU needed to ass;gn route (reserved when TYPE=PERIPHERAL> 
PATH_INFORMATIOH: contains class-of-service and virtual-route-identifier l;st 
(reserved when TYPE=PERIPHERAL) 

PC_HS_C~ECT 

Th;s record is used to notify a path control that it can now send to, and receive frot1, a 
newly activated half-session. 

PC_HS_CONNECT 
LU_ID: process ;dentif;er of the sending LU 
PC_ID: process identifier of path control to be sent to 
HS_ID: half-session process identifier 
ADDRESS: contains TH address fields (see page A-34) 

A-18 SHA Format and Protocol Reference Hanual for LU Type 6.2 



PC_HS_DISCONNECT 

PC_HS_DISCONNECT 

This record is used to notify a path control that a half-session has been deactivated. 
Path control will stop sending to, and receiving from, the half-session. 

PC_HS_DISCONNECT 
LU_ID: process identifier of the sending LU 
HS_ID: process identifier of half-session being deactivated 

UNBIND_RQ_SEND_RECORD 

This record contains information for an UNBIND request PIU that is to be sent. 

UNBIND_RQ_SEND_RECORD 
LU_ID: process identifier of the sending LU 
PC_ID: process identifier of path control to be sent to 
ADDRESS: contains TH address fields Csee page A-34) 
PIU: contains UNBIND request (see page A-35) 

UNBIND_RSP_SEND_RECORD 

This record contains information for an UNBIND response PIU that is to be sent. 

UNBIND_RSP_SEND_RECORD 
LU_ID: process identifier of the sending LU 
PC_ID: process identifier of path control to be sent to 
ADDRESS: contains TH address fields (see page A-34) 
PIU: contains UNBIND response (see page A-351 

LNS_TO_RM_RECORD 

The LNS_TO_RM_RECORD is the record that LNS !"Chapter 4. LU Network Services") sends to RM 
("Chapter 3. LU Resources Manager"). 

LNS_TO_RM_RECORD: contains ACTIVATE_SESSION_RSP, SESSION_ACTIVATED, 
SESSION_DEACTIVATED, or CTERM_DEACTIVATE_SESSION record !see below) 

Appendix A. Node Data Structures A-19 



ACTIVATE_SESSION_RSP 

ACTIVATE_SESSION_RSP 

ACTIVATE~SESSION_RSP is sent by LU network services to the resources. 111anager in reply to 
an ACTIVATE_SESSION record (page A-311. ACTIVATE_SESSION_RSP records need not be sent in 
the same order as the the ACTIVATE_SESSION records, so CORRELATOR is used to correlate the 
ACTIVATE_SESSION_RSP to the ACTIVATE_SESSION. If TYPE = POS (a session was activated), 
SESSION_INFORMATION contains session characteristics. If TYPE = NEG (a session was not 
activated), ERROR_TYPE contains a retry/no-retry indication. 

ACTIVATE_SESSION_RSP 
CORRELATOR: as supplied in ACTIVATE_SESSION (see page A-31) 
TYPE of response: possible values: POS, NEG 
SESSION_INFORMATION (reserved when TYPE=NEG--see page A-361 
ERROR_TYPE: possible values: RETRY, NO_RETRY (reserved when TYPE=POSl 

CTERM_DEACTIVATE_SESSION 

CTERM_DEACTIVATE_SESSION is sent by LU network services to the resources manager to 
request normal shutdown (i.e., BIS exchange followed by DEACTIVATE_SESSIONl of the session 
identified by HS_ID. 

CTERM_DEACTIVATE_SESSION 
HS_ID: identifier of the half-session to be shut down 

SESSION_ACTIVATED 

SESSION_ACTIVATED is sent by LU network services to the resources manager to notify the 
resources manager that the partner LU named by LU_NAME and MODE_NAME has activated a ses­
sion to this LU. The characteristics of the session are given in SESSION_INFORMATION. 

NOTES: 1. The (partner) LU_NAME is the name that a transaction program specifies in con­
junction with the MODE_NAME when requesting the allocation of a conversation. 
It is a local name by which one LU knows another LU and is not sent outside 
the LU. The maximum length of the LU_NAME is implementation-defined. 

2. LU names consist of type-G symbol strings. Mode·names consist of type-A sym­
bol strings. See "Appendix E. Request/Response Unit (RUl Formats" for 
symbol-string definitions. 

SESSION_ACTIVATED 
SESSION_INFORMATION (see page A-361 
LU_NAME (see Notes 1 and 21 
MODE_NAME (see Note 21 

A-20 SNA Format and Protocol Reference Manual for LU Type 6.2 



SESSION_DEACTIVATED 

SESSION_DEACTIVATED 

SESSION_DEACTIVATED is sent by LU network services to the resources manager to notify the 
resources manager that the session identified by HS_ID has been deactivated by the partner 
LU. 

SESSION_DEACTIVATED 
HS_ID: identifies half-session that was deactivated 
REASON for deactivation: possible values: NORMAL, ABNORMAL_RETRY, ABNORMAL_NO_RETRY 

NNM_TO_LNS_RECORD 

NNM_TO_LNS_RECORD is a record sent by the nodal NAU manager <NNMI to LU network services 
( LNSl. 

NNM TO LNS_RECORD: contains BIND_RQ_RCV_RECORO, BIND_RSP_RCV_RECORO, 
UNBINO_RQ_RCV_RECORD, UNBINO_RSP_RCV_RECORO, ACTLU_RQ_RCV_RECORO, 
DACTLU_RQ_RCV_RECORO, PC_CONNECT_RSP, SESSION_ROUTE_INOP, or 
HIERARCHICAL_RESET record (see below) 

ACTLU_RQ_RCV_RECORD 

This record contains information about a received ACTLU request PIU. 

ACTLU_RQ_RCV_RECORD 
PC_IO: process identifier of path control that received this PIU 
ADDRESS: contains TH address fields (see page A-341 
CP_ID: control point identifier (see page A-21 
PIU: contains ACTLU request (see page A-35) 

BIND_RQ_RCV_RECORD 

This record contains information about a received BIND request PIU and information about 
the path control that received it. 

BIND_RQ_RCV_RECORD 
PC_ID: process identifier of path control that received this PIU 
ADDRESS: contains TH address fields (see page A-341 
PC.CHARACTERISTICS: path control characteristics (see page A-351 
PIU: contains BIND request (see page A-351 

Appendix A. Node Data Structures A-21 



BIND_RSP_RCV_RECORD 

BIND_RSP_RCV_RECORD 

This record contains information about a received BIND response PIU. 

BIND_RSP_RCV_RECORD 
PC_ID: process identifier of path control that received this PIU 
ADDRESS: contains TH address fields (see page A-341 
PIU: contains BIND response Csee page A-351 

DACTLU_RQ_RCV_RECORD 

This record contains information about a received DACTLU request PIU. 

DACTLU_RQ_RCV_RECORD 
PC_ID: process identifier of path control that received this PIU 
ADDRESS: contains TH address fields (see page A-341 
CP_ID: control point identifier (see page A-21 
PIU: contains DACTLU request (see page A-351 

HIERARCHICAL_RESET 

This record is used to reset all sessions with respect to a specific control point (e.g., 
SSCPI session. It contains the identifier of the control point affected CCP_IDI and path 
control process identifier associated with that control point CPC_IDI. 

HIERARCHICAL_RESET 
PC_ID: path control process identifier associated with the CP-LU session 
CP_ID: control point identifier Csee page A-21 

PC_CONNECT_RSP 

This record is a response to a PC_CONNECT record sent by LU network services CLNSI. If 
positive, it contains information about the path control CPC_ID and PC_CHARACTERISTICSI 
that will be used for the LU-LU session being activated. For peripheral nodes, it also 
contains an assigned address CADDRESSI for the LU-LU session. 

PC_CONNECT_RSP 
HS_ID: half-session process identifier used- to correlate to PC_CONNECT record 
TYPE of response: possible values: POS, NEG 
PC_ID: process identifier of path control that received this PIU 

(reserved when TYPE=NEGI 
ADDRESS: contains TH address fields (for peripheral node--see page A-341 
PC_CHARACTERISTICS: path control characteristics (reserved when TYPE=NEG--see page A-351 
SENSE_CODE: indicating the type of error (reserved when TYPE=POSI 

A-22 SNA Format and Protocol Reference Manual for LU Type 6.2 



SESSION_ROUTE_INOP 

SESSION_ROUTE_INOP 

This record indicates that a route, represented by a path control process, has become 
inoperative. 

SESSION_ROUTE_INOP 
PC_ID: process identifier of path control process that has become inoperative 

UNBIND_RQ_RCV_RECORD 

This record contains information about a received UNBIND request PIU. 

UNBIND_RQ_RCV_RECORD 
PC_ID: process identifier of path control that received this PIU 
ADDRESS: contains TH address fields (see page A-34) 
PIU: contains UNBIND request (see page A-35) 

UNBIND_RSP_RCV_RECORD 

This record contains information about a received UNBIND response PIU. 

UNBIND_RSP_RCV_RECORD 
PC_ID: process identifier of path control that received this PIU 
ADDRESS: contains TH address fields Csee page A-341 
PIU: contains UNBIND response Csee page A-35) 

PC_TO_HS_RECORD 

PC_TO_HS_RECORD is a record sent by path control CPCl to the half-session CHS). It con­
tains PIU information that path control obtained from a received PIU. 

PC_TO~HS_RECORD 

PIU Csee page A-351 

Appendix A. Node Data Structures A-23 



PS_TO_HS_RECORD 

PS_TO_HS_RECORD 

The PS_TO_HS_RECORD is the record that PS COIW ("Chapter 5.1. Presentation Serv­
ices--Conversation Verbs") sends to HS C"Chapte; 6.0. Half-Session">. 

PS_TO_HS_RECORD: contains SEND_DATA_RECORD, SEND_ERROR, REQUEST_TO_SEND, 
or CONFIRMED record Csee belowl 

CONFIRMED 

CONFIRMED is sent by PS_CONV to the half-session to request the half-session to send a 
positive response to a previous request for confirmation by the partner transaction pro­
gr<im. 

CONFIRMED 

REQUEST_TO_SEND 

REQUEST_TO_SEND is sent by PS_CONV to the half-session to request the half-session to send 
a SIGNALCSOFTJ. SIGNALISOFTl is used to request permission to enter the send state for 
the conversation. 

REQUEST_TO_SEND 

SEND_DATA_RECORD 

SEND_DATA is sent by PS_CONV to the half-session to request the half-session to send con­
versation data. 

SEND_DATA_RECORD 
SEND_PARN: Csee page A-361 

SEND_ERROR 

SEND_ERROR is sent by PS_CONV to the half-session to request the half-session to send a 
-RSPC 0846 l. 

SEND_ERROR 

A-24 SNA Format and Protocol Refort>nce M;;inual for UJ Type 6. 2 



PS_TO_Rt1_RECORD 

PS_TO_RN_RECORD 

The PS_TO_RH_RECORD is the record that presentation services <i.e., PS.CONY ["Chapter 5.1. 
Presentation Services--Conversation Verbs"], PS.INITIALIZE ["Chapter 5.0. Overvieto1 of 
Presentation Services"], or PS.COPR ["Chapter S.4. Presentation Services--Control-Operator 
Verbs")) sends to RH ("Chapter 3. LU Resources Hanager"l to request that a certain func­
tion be performed. 

PS_TO_RH_RECORD: contains ALLOCATE_RCB, GET_SESSIOH, DEALLOCATE_RCB, TERHINATE_PS, 
CHANGE_SESSIONS, UNBil'l>_PROTOCOL_ERROR, RN_ACTIVATE_SESSION, or 
RH_DEACTIVATE_SESSION record (see belowl 

ALLOCATE_RCB 

ALLOCATE_RCB is sent by PS.CONY to the resources manager to request creation and initial­
ization of a resource control block. The resources Manager will also attempt to reserve a 
first-speaker session if Itt1EDIATE_SESSION = YES. The resources •anager will reply to the 
ALLOCATE_RCB with an RCB_ALLOCATED record <page A-321. 

NOTES: 1. The (partner) LU_NANE is the name that a transaction progra• specifies in con­
junction with the NODE_NAME when requesting the allocation of a conversation. 
It is a local name by which one LU knows another LU and is not sent outside 
the LU. The llilxi111.111 length of the LU_NAHE is iinplementation-defined, but is 
shown here as having a Maximum length of 17 characters. 

2. LU names consist of type-6 symbol strings. Mode names consist of type-A sy•­
bol strings. See "Appendix E. Request/Response Unit IRU) For11ats" for 
symbol-string definitions. 

ALLOCATE_RCB 
TCB_ID: ID of PS process that sent ALLOCATE_RCB 
LU_NAHE tsee Notes 1 and 2) 
MODE_NAHE tsee Note 21 
Itt1EOIATE_SESSIOH: possible values: YES, NO 
SYNC_LEVEL: possible values: NONE, CONFIRH, SYNCPT 
SECURITY_SELECT: possible values: NONE, SAME, PGH 

Appendix A. Node Data Structures A-25 



CHANGE_ SESSIONS 

CHANGE_ SESSIONS 

CHANGE_SESSIOHS ;s sent by PS.COPR to the resources 1Hnager to ;nfor• the resources unag­
er of a change ;n the session li•its for <LU_NAME, tlODE_NAMEl. PS.COPA changes the su­
s;on H•its in the MODE control block (page A-31 before sending this record to the 
resources manager. RESPONSIBLE = YES if th;• LU is responsible for deactivating sessions 
to sat;sfy the new session li•its. DELTA contains the Csignedl difference between the 
current HODE.SESSION_LIMIT and the previous tlODE.SESSION_LIHIT. 

NOTES: 1. The Cpartnerl LU_NAME ;s the nap that a transaction progr-am specifies ;n con­
junction Nith the HODE_NAME Nhen requesting the allocation of a conversat;on. 
It is a local name by which one LU knows another LU and is not sent outside 
the LU. The .axillUM length of the LU_NAME is i111pluentation-defined. 

2. LU names consist of type-6 syllbol strings. Hode names consist of type-A syi11-
bol strings. See "Appendix E. Request/Response Unit CRUI Format&" for symbol 
string definitions. 

CHANGE_ SESSIONS 
TCB_ID :• ID of the PS process that sent CHAN6E_SESSIOHS 
RESPONSIBLE: possible values: YES, NO 
LU_NAME (see Notes 1 and 21 
l'IODE_NAME (see Note 21 
DELTA: change in l100E.SESSION_LIHIT 

DEALLOCATE_RCB 

DEALLOCATE_RCB is sent by PS.CONV to the resources manager to request destruction of the 
resource control block identified by RCB_IO. The resources manager will reply to the 
OEALLOCATE_RCB with an RCB_DEALLOCATED record (page A-33). 

DEALLOCATE_RCB 
TCB_ID: ID of the PS process that sent OEALLOCATE_RCB 
RCB_ID: ID of the RCB to deallocate 

6ET_SESSION 

6ET_SESSION ;s sent by PS.CONY to the resour-ces manager to request the allocation of a 
session to the conver-sation ;dentified by RCB_ID. The resources ••nager will reply to the 
GET_SESSION with a SESSION_ALLOCATED record Cpage A-33). 

GET_SESSION 
TCB_ID: ID of the PS process that sent GET_SESSION 
RCB_ID: ID of the conversat;on 
BID_IN>ICATOR: poss;ble values: ATIACH, NO_ATTACH 

A-26 SNA ForMat and Protocol Reference Hant.Nil for LU Type 6.2 



RH_ACTIYATE_SESSION 

RH_ACTIVATE_SESSION 

RH_ACTIYATE_SESSION is sent by PS.COPR to the resources 11anager to request activation of a 
neN session with the partner LU identified by LU_NAHE on llOde name identified by 
t100E_NAHE. This record is sent as a result of the ACTIVATE_SESSION control operator verb. 

NOTES: 1. The (partner) LU_NAHE is the name that a transaction progra• specifies in con­
junction with the l10DE_NAME when requesting the allocation of a conversation. 
It is a local naaie by Nhich one LU knows another LU and is not sent outside 
the LU. The maxi- length of the LU_NAME is iniple11entation-def;ned, but is 
shown here as having a .axi- length of 17 characters. 

2. LU na-s consist of type-6 symbol strings. Hode names consist of type-A •Yll­
bol strings. See "Appendix E. Request/Response Unit (RUJ For•ats" for 
symbol-string definitions. 

RH_ACTIVATE_SESSION 
TCB_ID: ID of the PS process that sent RH_ACTIVATE_SESSION 
LU_NAME (see Notes 1 and 2 J 
MODE_NAHE (see Note 2) 

RH_DEACTIYATE_SESSION 

RH_DEACTIYATE_SESSION is sent by PS.COPR to the resources manager to request deactivation 
of the session identified by SESSION_ID. This record is sent as a result of the DEACTI­
YATE_SESSION control-operator verb. 

RH_DEACTIVATE_SESSION 
TCB_ID: ID of the PS process that sent RH_DEACTIVATE_SESSION 
SESSION_ID: identifies the session 
TYPE: possible values: NORMAL, CLEANUP 

TERHINATE_PS 

TERMIHATE_PS is sent by PS_INITIALIZE to the resources 11anager to request ter•ination of 
the process that C0111Prises presentation services and the transaction progr••· 

tERMINATE_PS 
TCB_ID: ID of the PS process to be ter•inated 

App91dix A. Node Data Structures A-27 



UNBIHD_PROTOCOL_ERROR 

l.teIHD_PROTOCOL_ERROR 

UNBIND_PROTOCOL_ERROR is sent by PS_COHV or PS_INITIALIZE to the resources unager to 
request abnorul ter•imition of the session identified by HS_ID. The record is sent Nhen 
the partner LU COlll•its • serious protocol error. The sense data to be carried on the 
UteIND is in SENSE_COOE. 

ll'eIHD_PROTOCOL_ERROR 
TCB_ID: ID of the PS process that sent UNBIHD_PROTOCOL_ERROR 
HS_ID: ID of the half-session to be deactivated 
SENSE_ CODE 

RH_TO_HS_RECORD 

The RH_TO_HS_RECORD is the record that RH ("Chapter 3. LU Resources Hanager"J sends to HS 
("Chapter 6.0. Half-Session"). 

RH_TD_HS_RECORD: contains BID_WITtlOlTT_ATTACH, BID_RSP, BID_WITH_ATTACH, BIS_REPLY, 
HS_PS_CONNECTED, BIS_RQ, YIELD_SESSIQN, RTR_RQ, RTR_RSP, or ENCIPHERED_RD2 record (see belONl 

BID_RSP 

BID_RSP is sent by the resources unager to the half-session in response to a previous BID 
record (page A-14) frOll the half-session. If RTI = POS, the partner LU is grQnted permis­
sion to use the session. If RTI = NEG, per•ission is denied and SENSE_CODE contains the 
sense data to be sent on the negative response. 

BID_RSP 
RTI: possible values: POS, NEG 
SENSE_CODE (reserved when RTI=POS> 

BID_WITtl_ATTACH 

BID_WITtl_ATTACH is sent by the resources Manager to the half-session to request per•ission 
(frOll the partner LU> to use the session. The request for per•is&ion is accot1panied by 
conversation data <including the Ftli-5 that Nill attach the remote transaction progra•> in 
the SEHD_PARH structure (page A-36). The resources manager 111ill send BID_WITH_ATTACH if 
this LU is the first speaker or the bidder. When bidding for a session, the resources 
Manager chooses bettaeen BID_WITtlOUT_ATTACH and BID_WITH_ATTACH on the basis of the 
BID_IHDICATOR field in the GET_SESSION (page A-26> fro• PS_CONV. If this LU is the bid­
der, the half-session will infer• the resources Manager of the partner LU's response with 
a BID_RSP record (page A-14>. 

BID_WITtl_ATTACH 
SEtl>_PARH <see page A-36 > 

A-28 SNA ForlMlt and Protocol Reference Hanual for LU Type 6.2 



BID_WITHOUT_ATTACH 

BID_WITHOUT_ATTACH 

BID_WITHOUT_ATTACH is sent by the resources manager to the half-session to request permis­
sion (from the partner LUI to use the session. The request for permission is not accompa­
nied by any other data. The resources manager will send BID_WITHOUT_ATTACH only if this 
LU is the bidder, since it does not need permission from the partner LU to use a 
first-speaker session. The half-session will inform the resources manager of the partner 
LU's response with a BID_RSP record (page A-141. 

BID_WITHOUT_ATTACH 

BIS_REPLY 

BIS_REPLY is sent by the resources manager to the half-session to request the half-session 
to send a BISCRQE3l request unit. 

BIS_REPLY 

BIS_RQ 

BIS_RQ is sent by the resources manager to the half-session to request the half session to 
send a BISCRQEll request unit. 

BIS_RQ 

HS_PS_CONNECTED 

HS_PS_CONNECTED is sent by the resources manager to the half-session to inform the 
half-session that it has been connected to a presentation services process. This occurs 
as a result of allocation of a session to a conversation. 

HS_PS_CONNECTED 
PS_ID: ID of presentation services process 

Appendix A. Node Data Structures A-29 



RTR_RQ 

RTR_RQ 

RTR_RQ ;s sent by the resources manager to tne half-session to request tne nalf-sess;on to 
send an RTR request un;t. 

RTR_RQ 

RTR_RSP 

RTR_RSP ;s sent by the resources manager to tne half-session to request the nalf-sess;on 
to send an RTR response un;t. If RTI = NEG, SENSE_CODE conta;ns the sense data to be sent 
with the negative response. 

RTR_RSP 
RTI: possible values: POS, NEG 
SENSE_CODE (reserved when RTI=POSl 

ENCIPHEREO_RD2 

ENCIPHERED_RD2 is sent by RM to tne half-session to request the half-session to send an 
FMH 12. 

ENCIPHERED_RD2 
SEND_PARM: (see page A-361 

YIELD_ SESSION 

YIELO_SESSION ;s sent by the resources manager to tne nalf-sess;on to end the open bracket 
in a newly act;vated sess;on. When a session is act;vated, tne session comes up in the 
"in-brackets" state with tne primary LU in control. If the resources manager at the pr;­
mary LU does not nave a waiting session-allocation request (see GET_SESSION, page A-261, 
it will send YIELD SESSION to the nalf-sess;on; tne half-session then reverts to con-
tent;on state. -

YIELO_SESSION 

A-30 SHA Format and Protocol Reference Manual for LU Type 6.2 



RM_TO_LNS_RECORD 

RH_TO_LNS_RECORD 

The RM_TO_LNS_RECORD is the record that RM !"Chapter 3. LU Resources HaNger") sends to 
LNS !"Chapter 4. LU Network Services">. 

RH_TO_LNS_RECORD: contains ACTIVATE_SESSION or DEACTIVATE_SESSION record !see belOllol) 

ACTIVATE_ SESSION 

ACTIVATE_SESSION is sent by the resources manager to LU network services to request the 
activation of a session of type SESSION_TYPE with the partner LU identified by LU_NAME and 
•ode na111e identified by MODE_NAHE. LU network services will reply to ACTIVATE_SESSION 
Mith an ACTIVATE_SESSION_RSP record (page A-20) that has the same CORRELATOR value as that 
in the ACTIVATE_SESSION. 

NOTES: 1. The (partner I LU_NAME is the name that a transaction progra• specifies in con­
junction with the MOOE_NAHE when requesting the allocation of a conversation. 
It is a local name by which one LU knows another LU and is not sent outside 
the LU. The maxi111U111 length of the LU_NANE is impleaentation-defined. 

2. LU names consist of type-G symbol strings. Mode naaies consist of type-A sy•­
bol strings. See "Appendix E. Request/Response Unit IRU> For•ats" for 
symbol-string definitions. 

ACTIVATE_ SESSION 
CORRELATOR 
SESSION_TYPE: possible values: FIRST_SPEAKER, BIDDER 
LU_NAME (see Notes 1 and 2> 
HODE~HANE (see Note 2) 

DEACTIVATE_ SESSION 

DEACTIVATE_SESSION is sent by the resources manager to LU network services to request the 
deactivation of a session. If STATUS = ACTIVE, the session is identified by HS_ID. If 
STATUS = PENDING, the session is identified by CORRELATOR, which contains the same value 
used in the ACTIVATE_SESSION request. 

DEACTIVATE SESSION 
STATUS:- possible values: ACTIVE, PENDING 
CORRELATOR (reserved when STATUS=ACTIVEl 
HS_ID !reserved when STATUS = PENDING) 
TYPE of deactivation: possible values: NORMAL, CLEANUP, ABNORMAL 

!CLEANUP or ABNORMAL imply STATUS=ACTIVE) 
SENSE_CODE: reason for deactivation (reserved when TYPE~ABNORHAL> 

Appendix A. Node Data Structures A-31 



Rtt_TO_PS_RECORD 

Rtt_TO_PS_RECORD 

1he RH_TD_PS_RECORD is the record that RH ("Chapter 3. LU Resources "41nager") sends to 
PS_INITIALIZE ("Chapter s.o. OvervieN of Presentation Services") or PS_CONV ("Chapter 5.1. 
Presentation Services--Conversation Verbs">. 

RH_TO_PS_RECORD: contains ATTACH_RECEIVEDt RCB_DEALLOCATEDt Rtt_SESSIOH_ACTIVATEDt 
or CQNVERSATIOH_FAILURE record (s .. balON). 

ATTACH_RECEIVED 

ATTACH_RECEIVED is sent by the resources Manager to PS_INITIALIZE in a ne1111ly created PS 
process (created as the result of an Attach Ftlf-5). TCB_ID is the ID of the transaction 
control block, RCB_ID is the ID of the initial resource control block. and Ftli_S is the 
Fl'tt-5 that initiated the new presentation services process. The resources -nager per­
forlllS so•e validity checks on the Ftli-5 before passing it to presentation services. 
SENSE_CODE indicates the result of these checks. · 

ATTACH_RECEIVED 
TCB_ID: ID of transaction control block 
RCB_ID: ID of resource control block 
SENSE_ CODE 
Ftlf_S: Attach FMH-5 header (see Appendix H> 

COHVERSATION_FAILURE 

COHVERSATIOtCFAILURE is sent by the resources manager to PS COHV to notify presentation 
services of the failure of the conversation identified by RCB_ID. The REASON field 
ass\.llles only the values SON or PROTOCOL_VIOLATIOH. 

CONVERSATION_FAILURE 
RCB_ID: ID of failed conversation 
REASON: possible values: SON, PROTOCOL_VIOLATION 

RCB_ALLOCATED 

RCB_ALLOCATED is sent by the resources .. nager to PS_CONV in reply to an ALLOCATE_RCB 
(page A-25>. RETURN_CODE indicates the success of the allocation. If RETURN_CODE = OKt 
RCB_ID contains the ID of the newly created resource control block. 

RCB_ALLOCATED 
RETURN_CODE: possible values: Ol<t '-"'SUCCESSFUL, SYNC_LEVEL_NOT_SUPPORTED 
RCB_ID: ID of ne11111ly created resource control block (reserved Nhen RETllUCCODEilfOIO 

A-32 SNA For•at and Protocol Reference Manual for LU Type 6.2 



RCB_DEALLOCATED 

RCB_DEALLOCATED 

RCB_DEALLOCATED is sant by thll resources manager to PS_CONV in reply to • DEALLOCATE_RCB 
record (page A-26). 

RCB_DEALLOCATED 

RH_SESSION_ACTIVATED 

RH_SESSION_ACTIYATED is sent by the resources Rnager to PS_COPR in reply to an 
RH_ACTIYATE_SESSION record (page A-27). The success or failure of the session act;vation 
is indicated in the RETlJRN_CODE field. 

RH_SESSION_ACTIVATED 
RETURN_CODE: possible values: OK, ACTIVATION_FAILURE_NO_RETRY, 

ACTIVATION_FAILURE_RETRYt LU_HODE_SESSION_LIHIT_EXCEEDED 

SESSION_ALLOCATED 

SESSION_ALLOCATED is sent by thll resources Hnager to PS_CONV in reply to a 6ET_SESSION 
record (page A-26>. RETURN_CODE indicates the success or failure of the session allo­
cation. 

SESSIOH_ALLOCATED 
RETURN_CODE: possible values: OK, IMSUCCESSFUL_RETRY, UNSUCCESSFUL_NO_RETRY, 

CRV_RQ_RU 
RQ_CODE: possible valuea: X'CO' (signifying CRY) 
CRYPTO_SEED 

Appendix A. Node Data Structures A-33 



ADDRESS 

ADDRESS 

ADDRESS contains TH addresses. For subarea nodes they are 6-byte network addresses. For 
peripheral nodes, they along with the TH ODA! bit, comprise a 17-bit session identifier. 
The ODA! identifies the node that assigned the session identifier, allowing two communi­
cating nodes to assign values independently without collision. The relationship between 
session identifier fields and the OAF! and DAFI fields in the TH depends on the direction 
of flow of the RU. If it flo~is in the direction of the session-activation request, 
OAFI=SIDH and DAFI=SIDL. If the RU flows in the opposite direction, the mapping is 
reversed. 

ADDRESS 
Subarea address structure: 

THIS NAU: address of the local NAU (contains 32-bit subarea and 16-bit 
ele;;;ent address) 

OTHER NAU: address of the partner NAU (contains 32-bit subarea and 16-bit 
elem;nt address) 

Peripheral node structure: 
ODAI: origin/destination assignment indicator 
SIDH: 8-bit address representing the local NAU 
SIDL: 8-bit address representing the partner NAU 

BIU 

This record is used only by the half-session !HS) process. It contains information about 
TH, RH, and RU fields. 

BIU: same as PIU (see page A-35) 

A-34 SNA Format and Protocol Reference Manual for LU Type 6.2 



PC_ CHARACTERISTICS 

PC_ CHARACTERISTICS 

PC_CHARACTERISTICS: path control char•cteristics 

PATH_CONTROL_TYPE~PEER 11eans that this p•th control is being used for 
a PNCP-11ediated session; BACKBONE 11eans that this path control is 
being used for an SSCP-llediated session. 

PATH_CONTROL_TYPE: possible values: PEER, BACKBONE 

ALS 

ALS--adjacent link station address associated Nith this path control. 
This field is used only by peripheral nodes. 

SEGHENTING--path control segmenting capability. This applies to both 
send and receive segmenting. Either both are supported or both are 
not supported. 

SEGHENTING: possible values: SUPPORTED, NOT_SUPPORTED 

HAX_RU_SEGHENT_SIZE~tha maxill\m maaber of RU bytes that aay be sent 
or received by this path control. This value is independent of path 
control's segmenting capability. 

HAX_RU_SEGHENT_SIZE 

PIU 

This record contains selected TH fieldst an RH, and •n RU. This is the infor11<1tion used 
by COlllponents in layers above path control dealing Ni th PIUs (e.g., half-session, LU net­
NOrk services). The PIU data structure does not contain a COllJ>lete TH. It contafos only 
the TH fields that are needed by the byers above PC. Other TH fields are not visible 
above PC. 

PIU 
TH: fields fro• the trans11ission header needed above the PC layer 

EFI expedited-flON indicator: possible values: EXP, NORHAL 
SNF: contains a 16-bit sequence number field 
DCF: data couit field--contains length of BIU 

BIU: basic information unit 
RH: request/response header (see Appendix 0) 
RU: request unit lsee Appendix E> 

Appendix A. Node Data Structures A-35 



SEND_PARM 

SEND_PARM 

SEND_PARM is a substructure that is embedded in SEND_DATA_RECORD Cpage A-24) and 
BID_WITH~ATTACH (page A-281. It contains the data to be sent to the half-session as well 
as an encoding of the RH bit settings. If ALLOCATE = YES, this data is the first to be 
sent on a conversation. If FMH = YES, DATA begins with an FM header CFMH-5 or FMH-71. 

SEND_PARM 
ALLOCATE: possible values: YES, NO Cif ALLOCATE=YES, DATA is first in bracket) 
FHH: possible values: YES, NO Cif FMH=YES, DATA begins with FM header) 
TYPE: possible values: NOT_END_OF_DATA, FLUSH, CONFIRM, DEALLOCATE_CONFIRM, 

DEALLOCATE_FLUSH, PREPARE_TO_RCV_FLUSH, PREPARE_TO_RCV_CONFIRM_SHORT, 
PREPARE_TO_RCV_CONFIRM_LONG 

DATA: data to be sent on the half-session 

SESSION_INFORMATION 

SESSION INFORMATION is a substructure that is embedded in SESSION_ACTIVATED Cpage A-20) 
and ACTIVATE_SESSION_RSP (page A-201. Sent from LU Network Services to Resources Manager, 
SESSION_INFORMATION contains data about the session that has just been established. 

SESSION_INFORMATION 
HS_ID: half-session identifier 
HALF_SESSION_TYPE: possible values: PRI, SEC 
BRACKET_TYPE: possible values: FIRST_SPEAKER, BIDDER 
RANDOM_DATA: used to validate FMH-12 

A-36 SNA Format and Protocol Reference Manual for LU Type 6.2 



APPENDIX !2.... B.!:! FORMATS 

The request/response header <RH> ;s a 3-byte 
field; i t may be a request header or a 
response header. Figure D-1 on page D-2 
shows the RH formats and summarizes the 
allowed values. 

The control fields in the request header 
include: 

Request indicator 

RU Category 

Format indicator 

Sense Data Included indicator 

Chaining Control 

Form of Response Requested 

Queued Response indicator 

Pacing indicator 

Bracket Control 

Change Direction indicator 

Code Selection indicator 

Enciphered Data indicator 

Padded Data indicator 

The control f;elds in the response header 
include: 

Response indicator 

RU Category 

Format indicator 

Sense Data Included indicator 

Chaining Control 

Response Type indicator 

Queued Response indicator 

Pacing indicator 

The above RH control fields are described 
below. 

Request/Response Indicator !.!IB.!.!: Denotes 
whether this is a request or a response. 

RU Cate~ory: Denotes that the BIU belongs to 
one of four categories: session control 
(SCI, network control (NC), data flow control 
(OfCJ, or function management data (fMDl. 
(The NC category is not supported by T2. 1 
nodes. l 

Format Indicator: Indicates which of two 
formats <denoted Format 1 and Format 0) is 
used within the associated RU (but not 
including the sense data field, if any; see 
Sense Data Included indicator, below!. 

For SC, NC, and DFC RUs, this indicator is 
always set to Format 1. 

For (SSCP,PUl and (SSCP,LUl sessions, Format 
1 indicates on FMD requests that the request 
RU includes a network services (NS l header 
and is field-formatted (with various 
encodings, such as bi nary data or 
bit-significant data, in the individual 
fields!. Format 0 indicates that no NS head­
er is contained in the request RU and the RU 
is character-coded. The Format indicator 
value on a response is the same as on the 
corresponding request. 

for LU-LU sessions that support FM headers on 
FMD requests, Format 1 indicates that an FM 
header is present. The Format indicator is 
always set to 0 on positive responses. 

Sense Data Included Indicator .!..rull..!: Indi -
cates that' a 4-byte sense data field is 
included in the associated RU. The sense 
data field Cwhen present! always immediately 
follows the RH and has the format and meaning 
described in Appendix G. Any other data con­
tained in the RU follows the sense data 
field. Sense data is included on negative 
responses and on EXRs, where it indicates the 
type of condition causing the exception. 

(The Format indicator does not describe or 
affect the sense data, which is always in the 
4-byte format shown in Appendix G.> 

Chaining Control: Indicates that a sequence 
of conHguous transmitted requests is being 
grouped in a chain. Two indicators, Begin 
Chain indicator (BCI) and End Chain indicator 
CECIJ, together denote the relative position 
of the associated RU within a chain. The 1 
values of these indicators CBCI = 1 and ECI = 
ll are referred to as BC and EC, respective­
ly. 

<BC, ~ECl = first RU in chain 

c~Bc, ~EC) = middle RU in chain 

<~BC, ECJ = last RU in chain 

CBC, ECl = only RU in chain 

Responses are always marked "only RU in 
chain." 

form of Response Requested: In a request 
header, defines the response protocol to be 
executed by the request receiver. 

Appendix D. RH Formats 0-1 



Request H.usll!; 
I Byte O Byte 1 Byte 2 

RU I I I 
RRI Category FI SDI BCI ECIIDRlI DR2I ERI QRI PI IBBI EBI CDI CSI EDI POI CEBII 
= OI I I r I I I I I 

: 
· B!!iDOnSI t!tisl.I!:: 

RRI 
= 11 

f.WJj 
RRI 

RU I 
Category FI SDI 1 1 IDRlI 

I I r I I I I 

Description 
Request/Response indicator 

I r I I I r I r I I I I I I r I I I 

DR2I RTI QRI PI 
I r I I r I r I I r I r I r I r r I r r I r 

Explanation/Usage 
0 = request (RQ)I 1 = response (RSP) 

RU Category Request/Response lklit Category 00 = FH data (Ftt>> 10 = data flON control (DFC> 
11 = session control (SC) 

FI 

SDI 

BCI 

ECI 

DRlI 

DR2I 

ERI 

RTI 

QRI 

PI 

BBI 

EBI 

CDI 

CSI 

EDI 

POI 

For•at indicator 

Sense Data Included indicator 

Begin Chain indicator 

End Chain indicator 

Definite Response 1 indicator 

Definite Response 2 indicator 

E><ception Response indicator 

Response Type indicator 

Queued Response indicator 

Pacing indicator 

Begin Bracket indicator 

End Bracket indicator 

CMnge Direction indicator 

Code Selection indicator 

Enciphered Data indicator 

Padded Data indicator 

CEBI Conditional End Bracket 
indfoator 

EJ = Reserved 

Figure D-1. RH ForMats 

01 = network control C NC) 

0 = no FH header ( .. fttf), for LU-LU sessions1 or 
character-coded without an NS header C .. NSH), 
for network services (NS) 

1 = FH header (ftti) follows, for LU-LU sessionsl or 
field-for•atted with an NS header <NSH>, for NS 

0 = not included C .. 50 )I 1 = included (SD> 

O =not first in chain c .. BC>J 1 = first in chain CBC) 

O =not last in chain ( .. EC)J 1 = last in chain (EC> 

0 = .. DRls 1 = DRl 

0 = .. DR2; 1 = DR2 

Used in conj~tion with DRlI and OR2I to indicate, 
in a request, the for• of response requested: 
<DRlI, DR2I1 ERI) = 000 means no-response requested 

= lOOIOlOlllO means definite-response requested 
= 10110111111 .. ans e><ception-response requested 

0 = poaitive (+)I 1 = negative (-) 

0 = response bypasses TC queues ( .. QR)I 
1 = enqueue response in TC queues (QR) 

0 = .. PAC; 1 = PAC 

o = .. ea; 1 = BB 

0 = .. EBI 1 = EB <reserved for LU type 6.2) 

O = do not change direction c .. CO)J 
1 = change direction (CD> 

0 = code OJ 1 = code l 

O = RU is not enciphered ( .. ED>; 1 = RU is enciphered (ED) 

0 = RU is not padded ( .. PO H 1 = RU is padded (PD J 

0 =not conditional end bracket ( .. CEB>1 1 = conditional 
end bracket CCEB> (uaed for LU type 6.21 else, reserved> 

D-2 SHA Format and Protocol Reference Manual for LU Type 6.2 



Thr- bits in a request header specify the 
for• of response that is desired. They are: 
Definite Response 1 i ndi ca tor COR lI J, Defi -
nite Response 2 indicator IDR2I), and the 
Exception Response indicator (ERI). They can 
be coded to request: 

1. No-response, which Means that a response 
wi 11 not be issued by the half-session 
receiving the request. CDRU,DR2Il = 
10,0J = <~DR1,~DR2l and ERI=O is the only 
coding possible; the abbrevi~tion RQN 
refers to a request with this coding. IA 
special response, ISOLATED PACING 
RESPONSE lIPR l, does set 
lDRU,DR2I,EIUJ=[O,O,Ol, but it is used 
independently of the other responses 
listed. IPR is sent in connection with 
session-level pacingl the sequence number 
in its associated TH does not correlate 
it to any given request.) 

2. Exception response, which Means that a 
negative response will be issued by the 
half-session receiving the rit1quest only 
in the event of a detected exception (a 
positive response wi 11 not be issued). 
IDRlI, OR2Il = Cl,Oll!O,lllll,ll and 
ERI=l are the possible codings; RQEl, 
RQE2, and RQE3 are the abbreviations, 
respectively; the abbreviation RQE or 
RQE* refers to a request with any of 
these codings. 

3. Definite response, which •eans that a 
response Ni 11 always be issued by the 
half-session receiving the request, 
whether the response is positive or nega­
tive. !DRU, DR2Il = (1,0Jll01lllll1ll 
and ERI=O are the possible codings; RQDl, 
RQ02, and RQD3 are the abbreviations. 
respectively; the abbreviation RQO or 
RQD* refers to a request with any of 
these codings. 

A request that asks for an exception response 
or a definite response has one or both of the 
DRU and DR2I bi ts set to 1 (three combina­
tions J; a response to a request returns the 
same <DRII, DR2Il bit combination (see Fig­
ure D-2 on page D-4). 

The setting of the DRII, DR2I, and ERI bits 
varies by RU category. Chapter 4 and Chap­
ter 6.2 cktfine the settings for SC; Chapter 
6.1 defines ther1 for DFC; Chapter 4 defines 
them for network services Ft'D. 

In the case of LU-LU sessions, BIND parame­
ters C see Appendix E l spec i fy the for• of 

response to be requested ck.tring the session; 
see Chapter 2 and Chapter 5. 3, as Nell as 
Figure D-2 on page D-4. 

The <DRU, DR2I, ERI l = Io, O, 1 l combination 
is reserved. 

Ql!eued Reseonse Indicator ,!.gRll: In a 
response heacktr for a normal-flow RU, the 
Queued Response indicator denotes whether the 
response is to be enqueued in TC queues: 
QRI=QR, or whether it is to bypass these 
queues: QRI=~QR. In a request header for a 
normal-flow RU, it indicates what the setting 
of the QRI should be on the response, if any, 
to this request (i.e., the values on the 
request and response are the same). 

For e><pedited-flow RUs, ·this bit is reserved. 

The setting of the QRI bit is the sa111e for 
all RUs in a chain. 

Response ~: In a response header, tNO 
basic response types can be indicated: posi­
tive response or negative response. For neg­
ative responses, the RH is always immediately 
followed by four bytes of sense data in the 
RU. Thus, RTI=NEG and RTI=POS occur jointly 
with SDI=SD and SOI=·•SD, respectively. 

Three kinds of positive and negative 
responses correspond to the three valid 
CDRlI, DR2I l combinations allowed on 
requests. The settings of the DRlI and DR2I 
bits in a response always equal the settings 
of the DRlI and DR2I bits of the 
form-of-response-requested field of the cor­
responding request header, e><cept as shown in 
Figure 0-2 on page 0-4. 

Pacing: 
Request 
element 
tor. 

In a request header, the Pacing 
indicator denotes that the sending TC 
can accept a Pacing Response indica-

The Pacing Response indicator in a response 
header is used to i ndfoate to the receiving 
TC element that &ddi tional requests •.ay be 
sent on the normal floi.i. The Pacing Response 
indicator may be QJJ in an RH that is attached 
to a response RU on the normal flow; or, if 
desired, a separate, or isolated, response 
header may be used, to which no RU is 
attached. This latter RH signals only the 
pacing response; it is called an ISOLATED 
PACING RESPONSE C see Chapter 6. 2 l. Isolated 
and nonisoLated pacing responses are func­
tionally equivalent. 

Appendix O. RH Formats D-3 



REQUEST VALID RESPONSE MEANING OF RESPONSE 

RQOl=Cl,0,0) +RSPl=c1,o,o> positive response 
-RSPl=C1,o,1> negative response 

!Used by OFC> 

RQEl=Cl,0,1) -RSPl=c1,o,1> negative response 

!Used by 
OFC and PS) 

RQ02 I 3=C*, l •O > +RSP213=(*,l,0) confirmed 
-RSP213=C*,l,l> not confi rmed 

RQE213=C*,l,ll implied +RSP213 reply received with no inter-
vening response 

-RSP213=C*,l,l) not confirmed 
!Used by PS) 

RQN :(O,f;,O) 

(Not used) 

NOTES: 

1. Values displayed in this table are in the order CDR1I,OR2I,ERI> for requests and COR1I,DR2I,RTI> 
for responses. 

2. All ~EC requests are sent as RQEl. 

Figure D-2. FMO Request/Response Combinations for Sessions between Two LU 6.2s 

Bracket Control: Used to indicate the begin­
ning or end of a group of exchanged requests 
and responses called a bracket. Bracket pro­
tocols are used only on LU-LU sessions. When 
used, BB appears only on the first request in 
the first chain of a bracket; CEB appears 
only on the last request of the last chain of 
a bracket. (When bracket usage is spec i f i ed 
in BIND, the BIND request carries an implied 
BB.l The bracket indicators are set only on 
LUST AT and FMD requests, and a re thus sent 
normal-flow. See Chapter 6.1 for detailed 
discussion of bracket protocols. 

Change Direction Indicator CCDI>: Used when 
there is half-duplex CHDX> control of the 
normal flows within a session Cnot to be con­
fused with 1 ink-level HDX protocols). It 
permits a sending half-session to direct the 
receiving half-session to send. The HDX pro­
tocol is useful to half-sessions with limited 
input/output capabilities that cannot simul­
taneously send and receive user data. When 
used, CD appears only on the last request in 
a chain; it is set only on LUSTAT and FMD 
requests. See Chapter 6.1 for detailed dis­
cussion of this protocol. 

Code Selection Indicator CCSI>: Specifies 
the encoding used for the associated FMD RU. 
When a session is activated, the 
half-sessions can choose to allow use of two 
codes in their FMD RUs (e.g., EBCDIC and 
ASCII), which they designate as Code 0 and 
Code 1. FM headers and request and response 
codes are not affected by the Code Selection 
indicator. 

For SC, NC, and OFC RUs, this bit is 
reserved. 

Enciphered Data Indicator il.!U..l: Indicates 
that information in the associated RU is 
enciphered under session-level cryptography 
protocols. 

Padded Data Indicator CPDI>: Indicates that 
the RU was padded at the end, before 
encipherment, to the next integral multiple 
of 8 bytes in length; the last byte of such 
padding is the count of pad bytes added, the 
count being a number Cl-7 inclusive) in 
unsigned 8-bit binary representation. 

D-4 SNA Format and Protocol Reference Manual for LU Type 6.2 



APPEl-l>IX .[,:. REQYEST/RESPQNSE !!!::!!! tRUJ FQRHATS 

This appendix defines detailed RU for•ats. A categorized list of RU abbreviations is presented 
first, followed by an alphabetic list of request RU for•at descriptions, a summary of response 
RUs, and a list of response format descriptions for those positive response RUs that return data 
in addition to the request code. Two final sections describe control vectors and session keys. 

The initial line for each RU in the two RU format description lists is in one of the following 
foraiats: 

Reauests 

"RU ABBREVIATION; Origin HAU-->Oestination HAU, Hor11al 1Nor11l or Expedited !Exp> Flowl RU Cate­
gory IRU HAMEi" 

Responses 

"RSPtRU ABBREVIATIONll Origin HAU-->Oestination HAU, Hor• or Exp FlOllll RU Category" 

l. "RU Category" is abbreviated as follows: 

DFC data flow control 

SC session control 

FtlD t'3C11a) function 111anagement data, network services, Maintenance services 

FHD HSls) function 11anage111ent data, network services, session services 

2. The formats of character-coded FHD HS RUs are impluientation dependent; LU-->LU FHD RUs 
(e.g., FM headers> are described in "Appendix H. FM Header and LU Services Commands" • 

3. All values for field-formatted RUs that are not defined in this section are reserved. 

4. The request code value X'FF' and the NS header values X'C317IBIF>F****' and 
X'**l317IBIFlF**' are set aside for implementation internal use, and will not be otherwise 
defined in SHA. 

5. Throughout thhli appendix the following syiabol-string types are used: 

• Type-A !Assembler oriented>: a byte string consisting of one or 1110re EBCDIC uppercase 
letters !A through Z), numerics 10 through 9), $, 1, and a, the first ch;;iracter of which 
is nonnumeric. 

• Type-USS C "unformatted system services" or character-coded subset of the SHA character 
setl: a byte string consisting of one or more EBCDIC uppercase letters IA through ZI, 
numerics (0 through 9), $, 1, a, line feed IX'l5'), space CX'40') and the following 11 
special characters: •:( ),+-*./& with no restriction on the first character. 

• Type-AE IA extended): a byte string consisting of one or more EBCDIC lowercase letters 
(a through z l , uppercase letters I A through Z), numerics ( 0 through 9 >. $, I, a, &nd 
period(.), with no restriction on the first character. 

• Type-SR I EBCDIC graphics): a byte string consisting of one or more EBCDIC characters in 
the range X'41' through X'FE', with no restriction on the first character. 

• Type-6 (general I: a byte string consisting of one or MOre bytes of binary values 0 
through 255. 

The RU field to which a type-A, type-AE, or type-GR symbol string is assigned •ay be longer 
than the symbol string; in this case, the symbol string is left-justified within the field, 
which is filled out to the right with space IX'40') characters. Space characters, if pres­
ent, are not part of the symbol string. If the symbol string is formed from the concat­
enation of two or more individual symbol strings, such as the fully-qualified LU name, the 
concatenated symbol string as a whole is left-justified within the field ,which is filled 
out to the right with space characters. Space characters, if present, are not part of the 
concatenated symbol string. 

Appendix E. Request/Response Unit <RUI Formats E-1 



6. Throughout this appendix, ~~ is used as follows: reserved bits, or fields, are cur­
rently set to O's (unless explicitly stated otherwise); reserved values are those that cur­
rently are invalid. Correct usage of reserved fields is enforced by the sender; no receive 
checks are made on these fields. 

7. Throughout this appendix, retireg fields and values are those that were once defined by SNA 
but are no longer defined. To accommodate implementations of back-level SNA, current imple­
mentations of SNA treat retired fields as follows: send checks enforce the setting of 
retired fields to all O's except where other unique values are required (described individ­
ually in this appendix!; no receive checks are made on these fields, thereby accepting 
back-level settings of these fields. Special handling of retired fields, such as echoing or 
passing on retired fields as received, is discussed where appropriate. 

E-2 SNA Format and Protocol Reference Manual for LU Type 6.2 



SUMMARY OF REQUEST RU'S BY CATEGORY 

*ACTLU 
*BIND 

BIS 

ECHOTEST 

BINDF 
*CINIT 

CLEANUP 

CRV 

LUST AT 

REQECHO 

CT ERM 
INIT-SELF 
NOTIFY 

DACTLU 

RTR 

SE SS ENO 
SESSST 

UNBIND 

SIG 

TERM-SELF 
UMBINDF 

* These request RUs require response RUs that, if positive, may contain data in addition to the NS 
header or request code. See "Summary of Response RU's" on page E-18 and "Positive Response RU's with 
Extended Formats" on page E-18 

Appendix E. Request/Response Unit !RU) Formats E-3 



~ .Qf RU'S fU ~ HEADERS A!:!Q REQUEST tQlli 

w;th;n DFC, SC, or any spec;f;c FMD NS category, the request code ;s unique. However, while a request 
code has only one meaning in a specific category, a given code can represent different requests in sepa­
rate categories. 

FMD NS Headers CThird byte is the request code) 

X'810387' REQECHO 
X'810389' ECHOTEST 
X'810601' CINIT 
X'810602' CT ERM 
X'810620' NOTIFY (SSCP<-->LUl 
X'810629' CLEANUP 
X'810681' INIT-SELF <Format 1 ) 
X'810683' TERM-SELF <Format 1 ) 
X'810685' BINDF 
X'810686' SES SST 
X'810687' UNBINDF 
X'810688' SE SS END 

DFC Request Codes 

X'04' LUST AT 
X'05' RTR 
X'70' BIS 
X'C9' SIG 

SC Request Codes 

X'OD' ACTLU 
X'OE' DACTLU 
X'31' BIND 
X'32' UNBIND 
X'CO' CRV 

E-4 SHA Format and Protocol R .. .f~;ence Manual for LU Type 6.2 



ACT LU 

REQUEST RU FORMATS 

ACTLU; SSCP-->LU, Exp; SC <ACTIVATE LOGICAL UNITl 

0 
1 

ACTLU is sent from an SSCP to an LU to activate a session between the 
SSCP and the LU and to establish common session parameters. 

X'OD' request code 
Type activation requested: 
X' 01' cold 
X'02' ERP 
bits 0-3, FM profile: 

X'O' FM profile 0 
X'6' FM profile 6 

bits 4-7, TS profile: 
X'l' TS profile 1 (only value defined) 

BIND; PLU-->SLU, Exp; SC !BIND SESSION) 

0 
1 

3 

4 

5 

6 

BIND is sent from a primary LU to a secondary LU to activate a session 
between the LUs. The secondary LU uses the BIND parameters to help 
determine whether it will respond positively or negatively to BIND. 

X'31' request code 
bits 0-3, format: 0000 
bits 4-7, type: 

0000 negotiable 
FM profile: 
X'l3' FM profile 19 
TS profile: 
X'07' TS profile 7 
FM Usage--Primary LU Protocols for FM Data 
bit O, chaining use selection: 

1 multiple-RU chains allowed from primary LU half-session 
bit 1, request control mode selection: 

0 immediate request mode 
bits 2-3, chain response protocol used by primary LU half-session for FMD requests; 

chains from primary will ask for: 
11 definite or exception response 

bits 4-6, reserved 
bit 7, send End Bracket indicator: 

0 primary will not send EB 
FM Usaqe--Seccndary LU Protocols for FM Data 
bit o, chaining use selection: 

1 multiple-RU chains allowed from secondary LU half-session 
bit 1, request control mode selection: 

0 immediate request mode 
bits 2-3, chain response protocol used by secondary LU half-session for FMD requests; 

chains from secondary will ask for: 
11 definite or exception response 

bits 4-6, reserved 
bit 7, send End Bracket indicator 

0 secondary will not send EB 
FM Usage--Co!1'111on LU Protocols 
bit O, session segmenting support: 

bit 

bit 

bit 

bit 

bi ts 
bit 

0 this LU supports rec~ption of segments on this session 
1 this LU does not support reception of segments on this session; the BIND 

sender and receiver set the maximum RU sizes, in bytes 10-11 of BIND and 
RSPlBINO), so that segmenting will not occur on the link for this session 

1, FM header usage: 
1 FM headers allowed 

2, brackets usage and reset state: 
O brackets are used <1nd brcicket stcite managers' reset states are INB 

3, bracket termination rule selection 
1 Rule 1 (conditional termination) will be used during this session 

4, alternate code set cillowed indicator: 
0 al termite code set will not be used 
1 alternate code set may be used 

5-6, reserved 
7, BIND response queue capability: 

0 BIND response cannot be held/queued 

Appendix E. Request/Responst:! Unit IRUl Formats E-5 



BIND 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16-22 

1 BIND sender allONS bind receiver to queue Bitl> and withhold Bitl> response 
for an indefinite period 

Note: BIND sender HY provide a timer or operator interface to send UH8IND if 
session activation time exceeds BIND sender's li•its. BIND queuing is ter•i­
nated by sending UNBIND to the BIND receiver. 

bits 0-1, normal-flow send/receive mode selection: 
10 half-duplex flip-flop 

bit 2, recovery responsibility: 
1 synnnetric responsibility for recovery 

bit 3, contention winner/loser: 
0 secondary is contention wil'Vler and primary is contention loser 
1 primary is contention winner and secondary is contention loser 
!!2!t.l Contention winner is also brackets first speaker. 

bits 4-5, alternate code processing identifier (reserved unless Alternate Code Set 
Allowed indicator lbyte 6, bit 41 is 11: 
01 process alternate code Ftll RUs as ASCII-8 
H2.!.!l When the Alternate Code Processing Identifier indicator is set to the 
value 01, the entire FHD request RU is to be translated using the transfor111S 
defined by the ANSI Xl.26 Hollerith Card Code. 

bit 6, reserved 
bit 7, half-duplex flip-flop reset states: 

ll Usa9!! 

1 HDX-FF reset state is SEND for the pri11ary and RECEIVE for the secondary 
le.g., the pri11ary sends normal-flow requests first •fter session acti­
vation I 

bit o, staging indicator for secondary TC to primary TC normal flow: 
O pacing in this direction occurs in one stage lonly v•lue used for 

PHCP-medi a ted sessions I 
1 pacing in this direction occurs in more than one stage 
Note: The meanings of 0 and l are reversed fro• the staging indicator for 
primary TC to secondary TC. 

bit 1, reserved 
bits 2-7, secondary TC's send window size: 0 means no pacing of requests flowing frot1 

the secondary 
bits 0-1, reserved 
bits 2-7, secondary TC's receive window size: a value of 0 causes the boundary func­

tion to substitute the value set by a syste• definition pacing parameter lif 
the system definition includes such a parameter) before it sends the BIND RU 
on to the secondary half-session; a value of 0 received at the secondary is 
interpreted to mean no pacing of requests flowing to the secondary 

l1aximu111 RU size sent on the normal flow by the secondary half-session: bit 0 is set 
to 1, and the byte is interpreted as X'ab' = a•2**b. <By definition, a28 and there­
fore X'ab' is a normalized floating point representation.) See Figure E-1 on page E-8 
for all possible values. · 
Haximum RU size sent on the normal flow by the primary half-session: identical encod­
ing as described for byte 10 
bit o, staging indicator for primary TC to secondary TC normal flow: 

1 pacing in this direction occurs in one stage (only value used for 
PNCP-mediated sessions) 

0 pacing in this direction occurs in two stages 
~ The meanings of O and 1 are reversed from the staging indicator for 
secondary to primary TC. 

bit 1, reserved 
bits.2-7, primary TC's send window size: a value of 0 causes the value set by a sys­

te11 definition pacing parameter lif the system definition includes such a 
parameter> to be assumed for the session; if this is also o, it means no 
pacing of requests flowing from the primary. (For single-sfage pacing in 
the primary-to-secondary direction, this field is redundant Nith, and indi­
cates ·the same value as, the secondary TC's receive window size--see byte 9, 
bits 2-7, above. I 

bits 0-1. reserved 
bits 2-7,. primary TC's receive window size: a value of 0 means no pacing of requests 

flowing to the primary. <For single-stage pacing in the secondary-to-pri-
1.ary direction, this field is redundant with, and indicates the sa111e value 
as, the secondary TCis send window size--see byte a, bits 2-7, above.) 

~ Profile 
bit o, PS Usage field format: 

0 basic format 
bits 1-7, LU type: 

. 0000110 LU type 6 
~ Yliism characteristics 
LU-6 level: 
X'02' Level 2 Ci.e., LU 6.2) 
Reserved 

E-6 SNA For~t and Protocol Reference Manual for LU Type 6.2 



BIND 

23 b;ts 0-2, retired 
b;t 3, conversat;on-level secur;ty support: 

0 Access Security Information field will not be accepted on ;ncoming FMH-Ss 
1 Access Security Information field will be accepted on incoming FMH-5s 

bits 4-5, reserved 
bit 6, already-verified function support: 

O Already Verified indicator will not be accepted on ;ncom;ng FMH-Ss 
1 Already Verified indicator will be accepted on incoming FMH-5s 

bit 7, reserved 
24 bit o, reserved 

25 

26-k 

26 

27 

28-k 

k+l 

k+2-m 

m+i 
m+2-n 
m+2 

m+3-n 

n+l 

n+2-p 

bits 1-2, synchron;zat;on level: 
01 confirm is supported 
10 conf;rm, sync po:n,, and backout are supported 

bit 3, reserved 
bits 4-~. responsibility for session reinitiat;on: 

00 operator controlled 
01 primary half-session will rein;t;ate 
10 secondary half-se~sion will reinit;ate 
11 either may reinitiate 
Note: s;ts 4-5 are reserved when b;t 6 of this byte ;s set to 1. 

bit 6, parall~l session support for LU-LU pair: 
0 not supported 
1 supported 

bit 7, Change Number of Sess;ons GOS variable flow support Cset to 1 if byte 24, bit 
6 = ll: 
0 not supported 
1 supported 

Note j_;_ fields def;ned by bits 0-5 are cons;stent with the corresponding fields ;n 
other BINOs used for the same !partner LU, mode name) pair. 
Note 2: fields defined by b;ts 6-7 are consistent with the corresponding fields in 
other BINDs used for the same partner LU. 
Reserved 
End of PS Usage F;eld 
Cryptography Options 
Note: Cryptography usage ;s cons;stent for all parallel sess;ons w;th the same Cpart­
ner LU, mode name) pa;r. 
bits 0-1, reserved 
bits 2-3, session-level cryptography options: 

00 no session-level cryptography supported 
11 session-level mandatory cryptography supported; all cryptography key man­

agement is supported by the SSCP and LU; exchange Cvia +RSPIBINDJJ and 
verificaHon Cvia CRVJ of the cryptography session-seed value is sup­
ported by the LUs for the session; all HID requests are enci­
phered/deciphered by TC 

b;ts 4-7, session-level cryptography opt;ons f;eld length: 
X' O' no session-level cryptography specified; additional cryptography 

options f;elds !bytes 27-kl omitted 
X'9' session-.level cryptography specified; additional opt;ons follow in next 

nine bytes 
bits 0-1, sess;on cryptography key enc;pherment method: 

00 session cryptography key enciphered under SLU master cryptography key 
using a seed value of 0 

b;ts 2-4, reserved 
b;ts 5-7, cryptography cipher method: 

000 block chaining with seed and cipher text feedback, using the Data 
Encryption Standard CDESJ algorithm 

Sess;on cryptography key enciphered under secondary LU master cryptography key; an 
eight-byte value that, when deciphered, yields the sess;on cryptography key used for 
enciphering and deciphering FMO requests 
Length of primary LU name !values 0 to 17 are validl 
Note: X'OO' = no primary LU name present. 
Primary LU name or, if the secondary LU issued the INIT-SELF, the uninterpreted name 
as carried in that RU 
Length of user data 
User data 
User data key: 
X'OO' structured subfields follow 
~ Individual structured subfields may be omitted enti~ely. When present, 
they appear in ascending field number order. 

Structured subfields. I For detailed definitions, see "User Data Structured Subfield 
Formats" on page E-16 .J 
Length of user request correlation CURCJ field !values 0 to 12 are validl 
Note: X'OO' = no URC present. 
URC: LU-defined identifier (present only if carried in INIT from SLUJ 

Appendix E. Request/Response Unit CRUJ Formats E-7 



BINJ 

p+l Length of secondary LU na111e (values 0 to 17 are valid> 
li!UJu, X'OO' = no secondary LU naMe present. 

p+2-r Secondary LU name 

H219 .ll The length of the BINJ RU camot exceed 2·56 bytes, lut a negative response be 
returned. 

HsWil 1l If the last byte of a request is a length field and that field is o, that byte •Y be 
Olli tted fl"Oll the BINJ request. 

Mantissa (a) 

Exponent 8 9 A B c D E F 
(b) (10) (11) (12) (13) <14) (15) 

0 8 9 10 11 12 13 14 15 

1 16 18 20 22 24 26 28 30 

2 32 36 40 44 48 52 56 60 

3 64 7?. 80 88 96 104 112 120 

4 128 144 160 176 192 208 224 240 

5 256 288 320 352 384 416 448 480 

6 512 576 640 704 768 832 896 960 

7 1024 1152 1280 1408 1536 1664 1792 1920 

8 2048 2304 2560 2816 3072 3328 3584 3840 

9 4096 4608 5120 5632 6144 6656 7168 7680 

A (10) 8192 9216 10240 11264 12288 13312 14336 15360 

B (11) 16384 18432 20480 22528 24576 26624 28672 30720 

c (12) 32768 36864 40960 45056 49152 53248 57344 61440 

D (13) 65536 73728 81920 90112 98304 106496 114688 122880 

E (14) 131072 147456 163840 180224 196608 212992 229376 245760 

F (15) 262144 294912 327680 360448 393216 425984 458752 491520 

.l:f2i!: A value of X'ab' in byte 10 or byte 11 of BIND represents e•2•*b. For exe11ple1 X'CS' 
represents (in deci•al) 12•2••5 = 384. 

Figure E-1. RU Sizes Corresponding to Values X'ab' in BIND 

E-8 SHA ForMat and Protocol Reference l'hlnual for LU Type 6.2 



BIM>F 

Bitl>F; PLU-->SSCP, Nor•I FHD NS(&) (Bitl> FAILmE> 

Bitl>F is sent., with no-response requested, by the PLU to notify the 
SSCP that the attupt to activate the session between the specifled 
LUs has failed. 

0-2 X'810685' NS header 
3-6 Sense data 
7 Reason: 

bit o, reserved 
bit 1, 1 BIND error in reaching SLU 
bit 2, 1 setup reject at PLU 
bit 3, 1 setup reject at SLU 
bi ts 4-.7, reserved 

8-• Sessfon key, as described in the section "Session Keys" on page E-23 
!::!2!1.1 One of the folloi.iing session keys is used: 
X'07' network address pair: PLU and SLU, respectively 
X' 15' network•quali Hed address pair: PLU and SLU, respectively 

BIS; LU-->LU, Norm; DFC (BRACKET INITIATION STOPPED) 

0 

BIS is sent by a half-session to indicate that it will not attempt to 
begin any more brackets. 

X'70' request code 

CINIT; SSCP-->PLU, Nor•J Ft1D NS(s) CCONTROL INITIATE) 

0-2 
3 

5-9 

10-11 
12-• 

••1-n 
••1 ••2 
•+3-n 
n+l-n+2 
n+3-r 
n+3 

n+4-r 
r+l-s 
r+l-r+2 

r+3-s 
s+l 

CINIT requests the PLU to attempt to activate, via a BIMJ request, a 
session with the specified SLU. 

X'810601' NS header 
For•at 
bits 0-3, 0000 Format 0 Conly value defined> 

t!e.1!U. CINIT for!Mlt 0 ••Y carry control vectors at the end of the basic 
RU. 

bits 4-7, reserved 
bit O, INITIATE origin: 

0 ILU is OLU 
1 ILU is not OLU 

bit 1, reserved 
bit 2, origin LU: 

0 SLU is OLU 
1 PLU is OLU 

bit 3, initiator: 
0 network user is the initiator 
1 network Manager is the initiator 

bits 4-7, reserved 
Session key, as described in the section "Session Keys" on page E-23 
t!2W The follONing session key is used: 
X'07' network address pair: PLU and SLU, respectively 

!':!!UJu If control vector X' 15' is supported by the LU, then bytes 5-9 are 
reserved 1 otherwise, these bytes contain session key X' 07' Nfien sent frOll the 
SSCP to a subarea LU. 

length, in binary, of BIND Image field 
BIND image: bytes 1-p of the BIND RU, i.e., through the URC field (see Bitl> format 
descdption) 
t!2!sl The me Len-.i.)th field is included, even if it is set to O. 
H!M ~ .llY 
Type: X'F3' logical l.l"lit 
length, in binary, of symbolic na11e Cl-8 characters) 
Symbolic name, in EBCDIC characters 
Retired--set to x•oooo• 
Yu.t lli!s.I 
Length, in binary, of user data 
t:!2W X'OO' = no user data is present. 
User data (retired for LU 6.2--not sent by current-level imple11entation> 
JJ.! 2!: Noo-SNA ~ Spes;ificatigns 
Length, in binary, of Characteristics field 
t!2!sl X'OOOO' = no Characteristics field is present. 
Characteristics field (retired for LU 6.2--not sent by currtll\t-level iinplementation> 
length of Session Cryptography Key field 
!::!2!1.1 X'OO' = no Session Cryptography Key field present. 

Appendix E. Request/Response Unit (RU> Formats E-9 



CINIT 

s+2-t Session Cryptography Key field: session cryptography key enciphered under PLU Master 
cryptography key 

Note: End of base RU 

t+l-u Control vector, as described in the section "Control Vectors" on p11ge E-20 
Notg: The following vector keys are used in CINIT: 
X'OD' Mode/Class of Service/Virtual Route List !this control vector is always present> 
X'lS' network-qualified address pair: PLU and SLU, respectively (This control vector 

is .always present Nhen using extended network &dclressingl otherwise, it is 
optional. l 

CLEANUP; SSCP-->SLU, Norm; FMD HS!sl !CLEAN UP SESSION) 

0-2 
3 

4 
5 

CLEANUP is sent by the SSCP to an LU (in a subarea node or BF for 
peripheral LUI requesting that the LU or BF attempt to deactivate the 
session for the specified !PLU,SLUI network address p&ir. 

X'810629' NS header 
bits 0-3, 0000 Format 0 
bits 4-7, reserved 
Reserved 
Reason: 
bit o, 0 network user 

1 network manager 
bit 1, 0 normal 

1 abnormal 
bits 2-7, reserved 

6-n Session key, as described in the section "Session Keys" on page E-23 
Notr: One of the following session keys is used: 
X'07' network .address pair: PLU .and SlU, respectively 
X'l5' network-qu&lified address pair: PLU and SLU, respectively 

CTERM; SSCP-->PLU, Norm; FttO NSCsl !CONTROL TERMINATE! 

CTERH requests that the PLU attempt to deactivate a session identified 
by the specified CPLU,SLUI network address pair. 

0-2 X'810602' NS header 
3 bits 0-3, 0000 Format O 

bits 4-7, reserved 
4 Type: 

bits 0-1, reserved 
bits 2-3, 00 reserved 

01 orderly 
10 forced 
11 r-eserved 

bits 4-7, reserved 
5 Reason: 

bit o, 0 network user-
1 network man.ager 

bit 1, 0 normal 
1 abnor-mal 

bits 2-7, reserved 
6-7 Reserv~d 
8-m Session key, as described in the section ''Session Keys" on page E-23 

.t:!Qte: One of the following session keys is used: 
X'07' network address pair: PLU and SLU, respectively 
X' 15' network-qualified address pair: PLU and SLU, respectively 

m+l-m+2 Retired: set to X'OOOO' 

CRV; PLU-->SLU, Exp; SC (CRYPTOGRAPHY VERIFICATION) 

CRV, a valid request only when session-level cryptography was selected 
in BIND, is sent by the primary LU session control to verify 
cryptography security and thereby enable sending and receiving of Fl1D 
requests by both half-sessions. 

0 X'CO' r~t code 
1-8 A transform of the (deciphered) cryptography session-seed value received (enciphered) 

in bytes 28-k of +RSPCBINOJ, re-enciphered under the session cryptography key using a 
seed value of O; the transform is the cryptography session-seed value with the first 
four bytes inverted 
Notei The cryptography session-seed is used as the seed for all session-level 
cryptography encipherment and decipherment provided for Ftll RUs. 

E-10 SHA ForMat and Protocol Reference Manual for LU Type 6.2 



DACTLU 

DACTLU; SSCP-->LU, Exp; SC (DEACTIVATE LOGICAL UNIT> 

DACTLU is sent to deactivate the session between the SSCP and the LU. 

0 X'OE' request code 
Note: End of short (one-byte> request. 

2 

Type of deactivation requested: 
X'Ol' normal deactivation 
X'03' 
Cause 
X'07' 

X'08' 

X'09' 

X'OB' 

X'OC' 

X'OD' 

X'OE' 

X'OF' 

session outage notification (SON> 
(reserved if byte 1 ~ X'03'): 
virtual route inoperative: the virtual route serving the SSCP-LU session has 
become inope:"ative, thus forcing the deactivation of the session 
route extension inoperative: the route extension serving the SSCP-LU session 
has become inoperative, thus forcing the deactivation of the session 
hierarchical reset: the SSCP-LU session is being deactivated because of a 
+RSPCACTPU, Cold> 
virtual route deactivated: the SSCP-LU session is being deactivated because of 
a forced deactivation of the virtual route being used by the session 
SSCP or LU failure:--unrecoverable: the SSCP-LU session had to be reset because 
of an abnormal termination; recovery from the failure was not possible 
session override: the SSCP-LU session has to be deactivated because of a 110re 
recent session activation request for the SSCP to subarea PU session over a dif­
ferent virtual route 
SSCP or LU failure:--recoverable: the SSCP-LU session had to be deactivated 
because of an abnormal termination of the SSCP or LU of the session; recovery 
from the failure may be possible 
cleanup: the SSCP is resetting its half-session before receiving the response 
frOll the LU being deactivated 

ECHOTEST; SSCP-->LU, Norm; FMD NS(ma) <ECHO TEST) 

ECHOTEST carries test data to the target LU; the test data is the sa111e 
as that carried in the corresponding REQECHO. 

0-2 X'810389' NS header 
3-n Echo data field: same as bytes 4-m in the soliciting REQECHO 
3 Number of data bytes 
4-n Data 

INIT-SELF Format 1; ILU-->SSCP, Norm; FMD NSCsl <INITIATE-SELF> 

INIT-SELF from the ILU requests that the SSCP authorize and assist in 
the initiation of a session between the LU sending the request !that 
is, the ILU, lllhich also becomes the OLU> and the LU named in the 
request (the DLUJ. 

0-2 X'810681' NS header 
3 bits 0-3, format: 

0001 Format 1 
bits 4-7, reserved 

4 Type: 
bits 0-1, 01 initiate only III: do not enqueue 

11 initiate/enqueue (I/QJ: enqueue the request if it cannot be satisfied 
immediately 

bits 2-4, reserved 
bits 5-6, PLU/SLU specification: 

00 DLU is PLU 
01 DLU is SLU 

bit 7, reserved 
S Queuing conditions for DLU: 

bit o, O do not enqueue if session limit exceeded 
1 enqueue if session limit exceeded 

bit 1, 0 do not enqueue if DLU is not currently able to comply with the PLU/SLU spec­
ification !as given in byte 4, bits S-6) 

1 enqueue if DLU is not currently able to comply with the PLU/SLU specifica­
tion 

bits 2-4, reserved 
bits 5-6, queuing position/service: 

01 enqueue this request FIFO 
bit 7, reserved 
Note: Since queuing conditions are specified for the DLU only, the following default 
values are used by SSCP<OLUJ for the OLU: 
• Enqueue if session limit exceeded. 

Appendix E. Request/Response Unit tRUl Formats E-11 



INIT-SELF Format 1 

6-7 
8-15 

• Enqueue this request at the back of the queue !FIFO>. 
Reserved 
Mode name: an eight-character symbolic name !implementation and installation depend­
ent) that identifies the set of rules and protocols to be used for the session; used 
by the SSCPISLU> to select the BIND image that will be used by the SSCP(PLU> to build 
the CINIT request 

16-n Uninterpreted Name of DLU 
16 Type: X'F3' logical unit 
17 Length, in binary, of DLU name 
18-n DLU name EBCDIC character string 
n+l-n+2 Retired: set to X'OOOO' 
n+3-r<=n+3) Reserved 
r+l-s !lfilt.!: Request Correlation ~ Field 
r+l Length, in binary, of URC 

r+2-s 
Note: X'OO' =no URC. <The length field is always present.> 
URC: end-user defined identifier; this value can be returned by the SSCP in a subse­
quent NOTIFY to correlate a given session to this initiating request 

LUSTAT; LU-->LU, Norm; DFC (LOGICAL UNIT STATUS) 

LUSTAT is used by one half-session to send up to four bytes of status 
information to its paired half-session. 

0 X'04' request code 
1-4 Status value+ status extension field (two bytes each): 

X'0006'+'rrrr' no-op (used to allow an RH to be sent when no other request is avail­
able or allowed> + reserved field 

NOTIFY; SSCP<-->LU, Norm; FMD NS(s) !NOTIFY> 

NOTIFY is used to send information between an SSCP and an LU. NOTIFY 
carries information in the form of a (vector key, vector data> pair. 

0-2 X'810620' NS header Cfor SSCP-->LU and LU-->SSCPJ 
3-p One NOTIFY vector as described in detail below 

!iQill One of the following vector keys is used: 
X'03' ILU/TLU Notification: sent by the SSCP to inform the sender of an INIT or TERM 

request of the status of the session 
X'OC' LU Session Services Capabilities: sent by the LU to inform the SSCP having an 

active session with the sending LU of the current LU-LU session services capa­
bility of that LU 

NOTIFY vectors <described zero-origin> 

ILU/TLU Notification NOTIFY Vector 
0 Key: X'03' 
l Status: 

2-9 
10 

11-14 
15-m 

m+l-n 
m+l 
m+2-n 

LU-LU 
0 
1 
2-m 

X'03' procedure error 
PCID: a unique value used as a session identifier 
Reason Cdefined for Status field value of X'03' only) 
Setup Proced~ k!:.ru: 
bit o, 1 CINIT error in reaching the PLU 
bit 1, 1 BIND error in reaching the SLU 
bit 2, l setup reject at the PLU 
bit 3, 1 setup reject at the SLU 
bit 4, 0 setup procedure error 
bit 5, reserved 
bit 6, 1 setup reject at SSCP 
bit 7, reserved 
Sense data 
Session key, as described in the section "Session Keys" on page E-23 
Note: One of the following session keys is used: 
X'06' network name pair: IPLU or OLU>_and (SLU or DLU>, respectively 
X'l5' network-qualified address pair: PLU and SLU, respectively 
User Request Correlation (URC) Field 
Length, in binary, of the URC 
URC: end user defined identifier, specified in an INIT request; used to correlate the 
NOTIFY to the initiating requests 

Session Services Capabilities NOTIFY Vector 
Key: X'OC' 
Length, in binary, of Vector Data field 
~Data 

E-12 SNA Format and Protocol Reference Manual for LU Type 6.2 



NOTIFY 

2 bits 0-3, primary LU capability: 
0000 PLU capability is inhibited, sessions can neither be queued nor started 
0001 PLU capability is disabled, sessions can be queued but not started 

3-4 
5-6 

7 

8-lSC=m> 

0010 reserved 
0011 PLU capability is enabled, sessions can be queued or started 

bits 4-7, secondary LU capability: 
0000 SLU capability is inhibited, sessions can neither be queued nor started 
0001 SLU capability is disabled, sessions can be queued but not started 
0010 reserved 
0011 SLU capability is enabled, sessions can be queued or started 

LU-LU session limit Cwhere a value of 0 means that no session limit is specified> 
LU-LU session count: the number of LU-LU sessions that are not reset, for this LU, 
and for which SESSEND will be sent to the SSCP 
bit o, parallel session capability: 

0 parallel. sessions not supported 
1 parallel sessions supported 

bit 1, reserved 
bit 2, SESSST capability in RSPCACTLUJ !reserved in NOTIFY>: 

0 SESSST RU is suppressed if SLU 
1 SESSST RU is sent if SLU 

bits 3-7, reserved 
Retired Cset to X'4040404040404040'l or omitted 

REQECHO; LU-->SSCP, Norm; FMD NS(ma) !REQUEST ECHO TEST> 

REQECHO requests that the SSCP return to the LU in ECHOTEST the data 
included in REQECHO. 

0-2 X'810387' NS header 
3 Repetition factor: number of times the test data is to be echoed to the target LU 

!::!2!.!ll X'OO' is not a valid repetition factor. 
4-m Echoed Data Field 
4 Number of data bytes to be echoed 
S•m Echoed data 

RTR; LU-~>LU, Norm; DFC !READY TO RECEIVE> 

0 

RTR indicates to the bidder that it is now allowed to initiate a 
bracket. RTR is sent only by the first speaker. 

x•os• request code 

SESSEND; LU-->SSCP, Norm; FMD NS!sl (SESSION ENDEDJ 

SESSEND is sent, with no response requested, by the LU (or the bounda­
ry function on behalf of the LU in a peripheral node) to notify the 
SSCP that the session between the specified LUs has been successfully 
deactivated. 

0-2 X'810688' NS header 
3 bits 0-3, format: 

0010 format 2 
bits 4-7, reserved 

4 Cause: indicates the reason for the deactivation of the LU-LU session (see UNBIND for 
values) 

S Action indicating if any resultant action is to be taken and by whom: 
X'Ol' normal, no resultant automatic action 

6-n Session key, as described in the section "Session Keys" on page E-23 
!::!2!.!ll One of the following session keys is used: 
X'07' network address pair: PLU and SLU, respectively 
X'l5' network-qualified address pair: PLU and SLU, respectively 

SESSSTI LU--~SSCP, Norm; FMD NSCs) CSESSION STARTED> 

SESSST is sent, with no response requested, by the LU (or the boundary 
function on behalf of the LU in a peripheral node) to notify the SSCP 
that the session between the specified LUs has been successfully acti­
vated. 

0-2 X'810686' NS header 
3 Format: 

X'OO' Format 0: no control vectors present 
X'Ol' Format 1: control vectors present in bytes n+l-p 

4-n Session key, as described in the section "Session Keys" on page E-23 

Appendix E. Request/Response Unit CRU> Formats E-13 



SESSST 

n+l-p 

tf21l..i. One of the following session keys ;. used: 
X'0.7' network •ddress pair: PLU •nd SLU, respectively 
X'lS' network-qu•lified address p•ir: PLU and SLU, respectively 

t:lsWiu. End of Formit OJ For11at 1 continues belON. 

One or 110re control vectors, as described in the section "Control Vectors" on p•ge 
E-20 
H!UJu The following vector keys May be used in SESSST: 
X'lE' YR-ER Happing Data 
X'23' Local Form Session Identifier 

SIGJ LU-->LU, Exp; DFC (SIGNAL> 

SIG is an expedited request that can be sent between half-aesshins, 
regardless of the status of the normal flows. It carries a four-byte 
value, of which the first two bytes are the signal code and the last 
tMO bytes are the signal extension value. 

0 X'C9' request code 
1-2 Signal code: 

X'0001' request to send 
3-4 Signal extension: 

X'OOOl' soft 

TERM-SELF Format 11 TLU-->SSCP, NormJ Ft1D NS<sJ (TERMINATE-SELF) 

0-2 
3 

4 

5 

6-7 
8-n 

n+l-n+2 
n+3-p 
n+3 

n+4-p 

TERM-SELF frOll the TLU requests that the SSCP assist in the ter11i­
mition of one or 110re sessions between the sender of the request lTLU 
= OLUJ and the DLU. 

X'810683' NS header 
bits 0-3, format: 

0001 Format l 
bits 4-6, reserved 
bit 7, 1 indic•tes th•t byte 3, bits 0-3, contain the format value 
Type: 
bits 0-1, 01 the request applies to active, pending-active, and queued sessions 
bit 2, reserved if byte 4, bit 7 = 11 otherNise: 

0 forced ter11ination--session to be deactivated inediately and unconcH­
tionally 

l orderly ter11ination--permitting an end-of-session procedure to be executed 
at the PLU before the session is deactivated 

bit 3, 1 send DACTLU to OLU Nhen appropriateJ no further session initiation rec:pJeSt 
Nill be sent (fra this sender) for OLU 

bit 4, reserved 
bits S-6, 00 select session(s) for Nhich DLU is PLU 

01 select sessionCs> for Nhich DLU is SLU 
10 select sessionCsJ regardless of Nhether DLU is SLU or PLU 
11 reserved 

bit 7, 0 orderly or forced <see byte 4, bit 2) 
1 clean up 

Reason: 
bit o, 0 network user 
bit 1, 0 normal ter11ination 

1 abnormal termination 
bits 2-7, reserved 
Reserved 
hssion key, as described in the section "Session Keys" on page E-23 
H2.iJu. One of the follONing session keys is used: 
X'Ol' ~interpreted name 
X'OA' l»C 

t12i.1J. This l»C is the one carried in the INIT issued previously by the ••• W 
ti.e., ILU = TLU), and differs from the one in bytes n+4 through p. 

Retired: set to X'OOOO' 
YIE 8•9\!lsS Correltt;cm il!B&.l fllld 
Length, in binary, of URC field 
tl2!l.l X'OO' = no URC. 
URC: end-user defined ;ctentifier; this value can be returned by the SSCP ;n a s\bse­
quent NOTIFY to correlate the NOTIFY to this ter•inating request 

E-14 SNA F·"rnt and Protocol Reference Manual for LU Type 6.2 



UNBIND 

UNUl-l>J LU-->LU, ExpJ SC (UNBIND SESSION> 

IJ'IBIND is sent to deactivate • srit..sion between the two LUs. 

0 X' 32 • requta.st code 
l Type: 

X'Ol' nor11al end of session 
X'02' BIND forthcOMing: retain the node resources allocated to tMs sessfon, ;f pos­

sible 
X'06' invalid session para111eters: the BIND negotiation has failed due to an inability 

of the primary half-session to support parameters specified by the secondary 
X'07' virtual route inoperative: the virtual route used by the LU-LU session has 

becorie inoperative, thus forcing the deactivation of the identified LU-LU ses­
sion 

X'08' route extension inoperative: the route extension used by the LU-LU session has 
become inoperative, thus forcing the deactivation of the identified LU-LU ses­
sion 

X'09' hierarchic•l reset: the identified LU-LU session is being deactivated because 
of a +RSP<<ACTPU I ACTLU>, Cold> 

X'OA' SSCP gone: the identified LU-LU session had to be deactivated because of a 
forced deactivation of the SSCP-PU or SSCP-LU session (e.g., DACTPU, DACTLU, or 
DISCONTACT> 

X'OB' virtual route deactivated: the identified LU-LU session had to be deactivated 
because of a forced deactivation of the vi rtWtl route being used by the LU-LU 
session 

X'OC' LU failure--unrecoverable: the identified LU-LU session had to be deactivated 
because of an abnormal termination of the PLU or SLU; recovery from the failure 
was not possible 

X'OE' LU failure-recoverable: the identified LU-LU session had to be deactivated 
because of an abnor11al ter111ination of one of the LUs of the sessiona recovery 
frOll the failure uy be possible 

X'Of' cleanup: the LU sending UNBIND is resetting its half-session before receiving 
the response fro111 the partner LU 

X'll' gateway node cleanup: a gateway node is cleaning up the session because a gate­
way SSCP has directed the gateway node <via NOTIFY) to deactivate the session 
(e.g., a session setup error or session takedown failure has occurred> 

X'FE' format or protocol error: the LU sending UNBIND has detected a for111at or proto­
col error; the error is identified by the associated sense data 

2-5 Sense data «included only when Type = X'FE'; other11i1ise, this field is aitted>: sanie 
value as generated at the tit11e the error Nas originally detected (e.g., for a negative 
response, receive check, or EXR J 

UNBINDF; PLU-->SSCP, Norm; FHD HS<s) (UNBIND FAILURE> 

lteINDF is sent, with no-response requested, by the PLU to notify the 
SSCP th•t the attempt to deactivate the session between the specified 
LUs has failed (for example, because of a path failure>. 

0-2 X'810687' HS header 
3-6 Sense data 
7 Reason: 

bit o, reserved 
bit 1, l UNBIND error in reaching SLU 
bit 2, 1 takedown reject at PLU 
bits 3-7, reserved 

8-n Session key, as described in the section "Session Keys" on page E-23 
tfs!W One of the following session keys is used: 
X'07' network address pair: PLU and SLU, respectively 
X'l5' network-qualified address pair: PLU and SLU, respectively 

Appendix E. Request/Response Unit fRUJ Formats E-15 



!mm 12!!! STRUCTURED SUBFIELD FORMATS 

The structured subfields of the User Data field are defined as follOMS (shown with zero-origin 
indexing of the subfield bytes--see the individual RU description for the actual displacement 
within the RUl. Each subfield starts with a one-byte binary Length field and is identified by a 
subfield number in the following byte. The length does not include the Length byte Hself. 
"'1en 110re than one subfield is included, they appear in ascending order by subfield l"IUlllber. 

Any subfields received in the Structured User Data field of BIND that are not recognized by the 
SLU are discarded and not returned as part of the.Structured User Data field of the RSP<BIND). 

Unfor•atted Data Structured Data Subfield 

0 
1 
2-n ------

The Unformatted Data subfield May optionally be sent in Bitll or 
RSPIBitlD). The content ;. implementation-defined. 

Length of the ret11ainder of the Unfor11atted Data subfield: values 1 to 17 are valid 
x•oo· 
Unformatted data: a type-6 syinbol string 

Mode Name Structured Data Subfield 

The Mode NaN subfield is present in both BIHD and RSP!BINDl if the 
PLU knows the 11ode name being used by the session. 

0 Length of the remainder of the Mode Name Structured User Data subfield: values 1 to 9 
are valid 

1 X'02' 
2-n Hode name: 0 to 8 type-A symbol string characters with optional lbut not significant> 

trai Hng blanks 

Session Instance Identifier Structured Data Subfield 

The Session Instance Identifier subfield may be present in both BIND 
and RSPI BIND). 

0 Length of the remainder of the Session Instance Identifier subfield: values 3 to 9 
are valid 

1 X'03' 
2-n Session instance identifier: a type-6 symbol string 

H2!su. In BIND, the PLU sets a unique session instance identifier of length 1 to 7 and 
appends it to X'OO'. If k"°"'"' the SLU compares its fully qualified name with that of 
the PLU; if the PLU name > SLU na11e then the SLU changes the first byte of the Session 
Instance Identifier subfield in the BitlD response from X'OO' to X'FO'; if the PLU name 
< SLU name then the subfield is simply echoed. The session instance identifier is 
alway present Nhen using either parallel sass i ans or synchronization level "all." 

Fully ~lified PLU Network Haine Structured Data Subfield 

BIND contains the Fully Qualified PLU Network Name subfield (if the 
name is known by the PLUl. · 

0 Length of the remainder of the Fully Qualified PLU Network Haine subf;eld; values 2 to 
18 are valid 

1 X'04' 
2-n Fully qualified PLU netNOrk name 
~ The fully qualified PLU netNOrk name is 1 to 17 bytes in length, consisting of 
an optional 1- to 8-byte network ID and a 1- to 8-byte LU naaMh both of Nhich are 
type-A symbol strings. When present, the network ID is concatenated to the left of 
the LU na_, using a separating period and having the for• "NWID.NAHE"J when the net­
work ID is e11itted, the period is also 011itted. 

Fully Glualified SLU Network Name Structured Data Subfield 

The RSP(BINDl contains the Fully Qualified SLU Network NaMa subfield 
!if the name is known by the SLU). 

0 length of the remainder of the Fully Qualified SLU Network Name subfield; values 2 to 
18 are valid 

1 X'OS' 
2-n Fully qualified SLU network name 

E-16 SHA For•at and Protocol Reference Manual for LU Type 6.2 



User Data Subfields 

Note: The fully qualified SLU network name is l to 17 bytes in length, consisting of 
an optional 1- to 8-byte network ID and a 1- to 8-byte LU name, both of which are 
type-A symbol strings. When present, the network ID is concatenated to the left of 
the LU name, using a separating period and having the form "NIUO.NAME"; when the net­
work ID is omitted, the period is also omitted. 

Random Data Structured Data Subfield 

The Random Data subfield contains the random data used in 
session-level security verification. When session-level security ver­
ification is in effect, this subfield is present in both BIND and 
RSPCBIND J. 

0 Length of the remainder of the Random Data subfield: 10 is the only valid value 
l X' 11' 
2 Reserved 
3-10 Random data: a type-G random value generated for subsequent encipherment and checking 

in RSPCBINDJ or FMH-12 

Enciphered Data Structured Data Subfield 

The Enciphered Data subfield is present in the RSPCBINDJ when 
session-level security verification is in effect. This subfield con­
tains the enciphered version of the random data received in BIND. 

0 Length of the remainder of the Enciphered Data subfield: 9 is the only valid value 
l X' 12' 
2-9 Enciphered version of the Random Data field carried in BIND (using the DES algorithm 

and the installation-defined LU-LU password as the cryptographic key) 

Appendix E. Request/Response Unit (RU> Formats E-17 



SUMMARY .Qf RESPONSE RU'S 

Apart from the exceptions cited below, response RUs return the number of bytes specified in the 
following table; only enough of the request RU is returned to include the field-formatted 
request code. 

RU Category of Response 

SC 
DFC 
FMD NS !FI=l> !field-formatted) 
FMD NS !FI=O> !character-coded> 
FMD I LU-LU) 

1 
1 
3 
0 
0 

Various positive response RUs return additional data. See "Positive Response RU's with Extended 
Formats" for details. 

All negative responses return four bytes of sense data in the RU, followed by either 11) the 
number of bytes specified in the table above or (2) three bytes !or the entire request RU, if 
shorter than three bytes>. The second option applies where a sensitivity to SSCP-based sessions 
versus LU-LU sessions does not exist and can be chosen for implementation simplicity. Refer to 
"Appendix G. Sense Data" for sense data values and their corresponding meanings. 

POSITIVE RESPONSE RU'S WITH EXTENDED FORMATS 

RSPCACTLU>; LU-->SSCP, Exp; SC 
0 X'OD' request code 
1 Type of activation selected: 

X'Ol' cold 
X'02' ERP 

2 bits 0-3, FM profile: 
X'O' FM Profile 0 
X'6' FM Profile 6 
Note: This field contains the same value as the 
in the ACTLU request except in the following case. 
FM profile o, the LU may respond either FM profile 

FM profile field received 
If the request specified 

0 or FM profile 6. 

3-m 
bits 4-7, TS profile: same as the corresponding request 
Control vectors, as described in the section "Control Vectors" on page E-20 

Note: Two versions of this RU are defined. 

• A full response can be sent in which all fields and control vectors are present. These con­
trol vectors always appear in the following order: 

X'OO' SSCP-LU session capabilities 
X'OC' LU-LU session services capabilities 

• A two-byte response can be sent; it means maximum Pl! ;.;ize = 2.5l- l,:;~::..:;., l:J-LU session limit = 
1, the LU can act as a secondary LU, and all ~ther fields in control vectors X'OO' and X'OC' 
are defaulted to O's. 

E-18 SNA Format and Protocol Reference Manual for LU Type 6.2 



RSPfBINDl; SLU-->PLU, Exp; SC 
0 X'31' request code 
1 bits 0-3, format: 0000 

bits 4-7, type: 
0000 negotiable 

RSP<BIND) 

2-25 Bytes as received on BIND request, or bytes having the same format as, but possibly 
with values changed fro•• those received on the BIND request 

26-k Cryptography Options 
26 bits 0-1, reserved 

bits 2-3, session-level cryptography options: same value returned as received in the 
request 

bits 4-7, sess·ion-~evel cryptography options field length: HM value returned as 
received in the request (Bytes 27-k are 0111itted 1f this length field is 
0111itted or set to 0.) 

27 bits 0-1, session cryptography key encipherment 11ethod: salff value returned as 
received in the request, if present 

bits 2-4, reserved 
bits 5-7, cryptography cipher Method: sa- value returned as received in the request, 

if present 
28-k An eight-byte implellM!ntation-chosen, nonzero, pseudo random session-seed cryptography 

value enciphered l.l'lder the session cryptography key, if session-level cryptography is 
specified 

k+l-r Bytes as received on BIND request, or bytes having the same format as, but possibly 
with values changed from, those rec•ived on the BIND request 

0 

H2!J!I l.t The extended format is required for the BIND response. 

Note 1.1 On a response, if the last byte of a response is a Length field and that field is o, 
that byte may be 011itted frOll the response. This applies also to byte 26 (where the count occu­
pies only bits 4-7) if bits 0-3 are also o~the entire byte may be omitted if no bytes follow. 

!:mll Jl. Reserved fields in the BIND are set by the SLU to binary O's in the RSPfBINDH any 
fields at the end of the BIND that are not recognized by the SLU are discarded and not returned 
in the RSP(BINDl. 

RSPfCINIT); PLU-->SSCP, Norm; FMD NS(s) 
0-2 X'810601' NS h~der 
3-n Control vectors as described in the section "Control Vectors" on page E-20 

!:fgll.i. The following control vector key is used in RSPtCINITI: 
X'FE' control vector keys not recognized 

Appendix E. Request/Response Unit fRU> Formats E-19 



Control Vectors 

COMMON STRUCTURED SUBFIELDS 

CONTROL VECTORS 

The following table shows, by key value, the control vect.or and the message-unit structures that 
can carry the control vector. 

~ Control~ Applicable Message-Unit Structures 

X'OO' SSCP-LU Session Capabilities 
X'OC' LU Session Services Capabilities 
X'OD' Mode I Class-of-Service I 

RSPCACTLUl 
RSPCACTLUl 
CINIT 

Virtual-Route-Identifier-List 
X'l5' Network-Qualified Address Pair 
X'lE' VR-ER Happing Data 

CINIT 
SESSST 
SESSST 
RSPCCINITl 

X'23' Local-Form Session Identifier 
X'FE' Control Vector Keys Not 

Recognized 

Note: Control vector X'FE' is used to report receipt of one or more unrecognized control vec­
tors, provided that each unrecognized control vector has a key greater thatn X'08'. A negative 
response indicating sense code 0835--Invalid Parameter Cwith Pointer Onlyl-is returned if a 
request is received with an unrecognized control vector with a key less than or equal to X'08'. 
When all unrecognized control vectors have keys greater than 8, the receiver responds using a 
X'FE' control vector that identifies each unrecognized control vector by key; this allows the 
response sender to indicate that some control vectors have been processed, while others have 
not. 

The control vectors are defined as follows Cwith zero-or1g1n indexing of the vector bytes-see 
the individual RU description for the actual displacement within the RUl: 
~ When more than one control vector may appear in an RU, the vectors may appear in any 
order, unless otherwise stated. 

SSCP-t..U 
0 
1 

2-3 

4 

Session Capabilities Control Vector 
Key: X'OO' 
Maximum RU size sent on the normal flow by either half-session: if bit 0 is set to o, 
then no maximum is specified and the remaining bits 1-7 are ignored; if bit 0 is set 
to 1, then the byte is interpreted as X'ab' = a•2**b. <Notice that, by definition, 
a2:8 and therefore X'ab' is a normalized floating point representation. l See Fig­
ure E-1 on page E-8 for all possible values. 
LU capabilities: 
bit o, character-coded capability: 

0 the SSCP may not send unsolicited character-coded requests; a solicited 
request is a reply request or a request that carries additional error infor­
mation to supplement a previously sent negative response or error informa­
tion after a positive response has already been sent 

1 the SSCP may send unsolicited character-coded requests 
bit 1, field-formatted capability: 

0 the SSCP may not send unsolicited field-formatted requests 
1 the SSCP may send unsolicited field-formatted requests 

bits 2-15, reserved 
Reserved 

E-20 SNA Format and Protocol Reference Manual for LU Type 6.2 



LU-LU 
0 
1 

3-4 
5-6 

7 

Session Services Capabilities Control Vector 
Key: X'OC' 
Length, in binar·y, of Vector Data field 
~Data 
bits 0-3, primary LU capability: 

Control Vec:tors 

0000 PLU capability is inhibited, sessions c:an neither be queued nor started 
0001 PLU capability is disabled, sessions c:an be queued but not started 
0010 reserved 
0011 PLU capability is enabled, sessions can be queued or started 

bits 4-7, secondary LU capability: 
0000 SLU capability is inhibited, sessions can neither be queued nor started 
0001 SLU capability is disabled, sessions can be queued but not started 
0010 reserved 
0011 SLU capability is enabled, sessions can be queued or started 

LU-LU session limit !where a value of 0 means that no session limit is specified) 
LU-LU session count: the number of LU-LU sessions that are not reset, for this LU, 
and for which SESSEND will be sent to the SSCP 
bit o, parallel session capability: 

O parallel sessions not supported 
1 parallel sessions.supported 

bit 1, reserved 
bit 2, SESSST capability in RSPCACTLUJ (reserved in NOTIFY): 

0 SESSST RU is suppressed if SLU 
l SESSST RU is sent if SLU 

bits 3-7, reserved 
8-15C=m> Retired <set to X'4040404040404040') or omitted 

Mode/ 
0 
1 
2-n 
2-9 

10-17 
18-n 
18 

19 

20 

21 
22-n 

Class-of-Service/ Virtual-Route-Identifier-List Control Vector 
Key: X'OO' 
Length, in binary, of Vector Data field 
Vector Data 
Mode name: an eight-character symbolic name !implementation and installation depend­
ent> of type-A symbol string characters that identifies the set of rules and protocols 
to be used for the session; used by the SSCP!SLUJ to select the BIND image that is to 
be used by the SSCPCPLU> to build the CINIT request 
COS name: symbolic name of class of service in EBCDIC characters 
Virtual Route Information 
Length Cin bytes>~binary, not including this length field, of remainder of Virtual 
Route Information field 
Format of virtual route identifier list: 
X'OO' format 0 
Type of virtual route required: 
X'OO' only virtual routes mapping to ERO from the subarea of the SLU to the subarea of 

the PLU may be used 
X'Ol' virtual routes mapping to any ERN may be used 
Number of entries in the virtual route identifier list 
Virtual route identifier list: two-byte CVRN, TPF> entries where VRN is one byte and 
TPF is one byte 

Network-Qualified Address Pair Control Vector 
0 Key: X' 15' 
1 Length, in binary, of Vector Data field 
2-n Vecto.r. Data 
2-7 NAU l network address 
8-13 NAU 2 network address 

Note: See the RUs that carry this vector for NAU1/NAU2 definitions and order require­
ments. 

14-21C=n> Network IO of the subnetwork in which the above addresses are valid 
Note: If the Network ID contains all space CX'40 ••• 40') characters, the network 
addresses are in the sender's network. 

Appendix E. Request/Response Unit CRU> Formats E-21 



Control Vectors 

YR-ER 
0 
1 
2-n 
2 

3 

4C=n> 

Local 
0 
1 
2-p 
2 

3-p 
3 
4 
SC=p> 

3-p 
3( :p) 

Happ;ng Data Control Vector 
l<ey: x• IE• 
Length, in binary, of Vector Data f;eld 
Vector Ill!! 
VRN and TPF data: 
bits 0-3, virtual route m.nber CVRNJ used by the aassion indicated ;n the containing 

RU 
bits 4-5, reserved 
bits 6-7, Transmission Priority field CTPF> used by the session indicated in the con-

taining RU 
Explicit route data: 
bits 0-3, reserved 
b;ts 4-7, outbound ERN for the VRN specified ;n byte 2, bits 0-3 
Reverse explicit route data: 
bits 0-3, reserved 
bits 4-7, RERN corresponding to the VRN specified in byte 2, bits 0-3 

For11 Session Identifier Control Vector 
l<ey: X'23' 
Length, in b;nary, of Vector Data field 
~D!!! 
For11at: 
X'02' Format 2: FID 2 for.at session identifier 
X'03' For .. t 3: FID 3 for11at session identifier 

• For format 2~FID 2 
Session identifier for Format 2~FID 2 
OAF' fro• the TH of the Bltll request 
OAF' frOll the TH of the 81"8) request 
Flags: 
bits 0-5, reserved 
bit 6, ODAI field from TH of the BIND request 
bi t 7, reserved 

• For format ~FID 3 
Session identifier for Format ~FID 3 
LSID from TH of the BIND request 

Control 
0 

Vector l<eys Not Recognized Control Vector 
l<ey: X'FE' 

1 
2-n 

Length, ;n binary, of Vector Data field 
Vector data: one or more one-byte control 
in the corresponding request 

vector key values that Mere not recognized 

E-22 SNA Format and Protocol Reference Manual for LU Type 6.2 



Session Keys 

SESSION KEYS 

The following table shows, by key value, the session key and the nssage-unit structures that 
can carry the session key. 

X'Ol' Uninterpreted na•e 

X'06' NetNOrk name pair 

X'07' NetNOrk address pair 

X'OA' URC 

X'lS' NetNOrk-Qualified address pair 

Applicable Hessaqe-Ynit Structures 

TERH-SELF 

NOTIFY 

BINDF, CINIT, CLEANUP, CTERH, NOTIFY, SESSEND, SESSST, 
UNBINDF 

NOTIFY, TERM-SELF 

Bil-l>F, CLEANUP, CTERH, NOTIFY, SESSEND, SESSST, UNBINDF 

The session ~ are defined as follo11i11 (Mith zero-origin indexing of the key bytes~see the 
individual RU description for the actual displacement within the RU>. 

Uninterpreted Na•e Session Key 
0 Key: X'Ol' 
1 Type: X'F3' logical unit 
2 Length, in binary, of name 
3-n Uninterpreted Name 

H2!!u. The name is •n EBCDIC character string. 

NetNOrk Name Pair Session Key 
0 Key: X'06' 
1 Type: X'F3'' logical mit 
2 Length, in binary; of PLU (or OLU or LUl> name 
3-• Name in EBCDIC characters (see Note belON) 
•+1 Type: X'F3' logical unit 
•+2 Length, in binary, of SLU (or DLU or LU2> na111e 
•+3-n Name in EBCDIC characters (see Note belON> 
H2!!l. The names in this session key consist of type-A symbol string characters. 

NetNork 
0 
1-2 
3-4 

Address Pair Session Key 
Key: X'07' 
Network address of NAUl 
Network address of NAU2 
!:l2iJll See the RUs that 
r-equirements. 

carry this session key for- NAU1/NAU2 definitions and order 

URC Session Key 
0 Key: X'OA' 
1 Length, in binary, of the URC 
2-n URC: LU-defined identifier 

NetNOrk-Qualified Address Pair Session Key 
0 Key: X'l5' 
1 Length, in binary, of Key Data field 
2-21 w I!!.!! .f.i.ili 
2-7 NAUl network address 
8-13 NAU2 network address 

!:l2iJll See the RUs that carry this session key for NAU1/NAU2 definitions and order 
requi r-ements. 

14-21 Network IO of the subnetwork in which the above addresses are valid 
t!2DJ. The Length byte is set to 12 Nhen network ID is n2t included and to 20 Nhen 
network IO is included. If the NetNOrk ID contains all space (X'40 ••• 40') characters, 
the network addresses are in the sender's network. 

Appendix E. Request/Response Unit (RU> For-ts E-23 



Common Subvectors 

COMMON SUBVECTORS 

The following table shows, by key value, the common subvectors and the messag4!-unit structures 
that can carry the subvector. 

X' 10' 
X'll' 

Subvector 

Product Set ID 
Product ID 

Applicable ~~~ Y!Ji! 

Error log GOS variable 
Error log GOS variable 

The common subvectors are defined as follows (with zero-origin indexing of the vector bytes~see 
the applicable messag4! unit for the actlnll displacement within the 11essage unit>: 

Product Set ID CX'lO'> Common Subvector 

The Product Set ID subvec:tor is an MS common subvector identifying one 
or more products that implement a netNOrk component. 

0 length (p+l), in binary, of the Product Set ID subvector 
1 Key: X'lO' 
2 Retired 
3-p Network product identifier consisting of one or more Product ID (X'll'> MS common sub­

vectors, as described below (using zero-origin indexing). Each Product ID (X'll') MS 
Common Subveetor uniquely identifies a product. Products fall into bto categodes: 
hardware Cwith or without microcode> and software. 

Product Identifier CX'll') Common Subvector 

The Product Identifier MS common subvector 
uct. A product may consist of electronic 
cutable instructions (software), or both 
containing microcode>. 

uniquely identifies a prod­
circuitry Chardwarel, exe­
( in the case of hardNare 

0 length Cq+ll, in binary, of the Product Identifier subvector 
1 Key: X'll' 
2 bits 0-3, Reserved 

bits 4-7, Product classification: 
X'l' IBM hardware 
X'3' IBM or non-IBM hardware (not distinguished> 
X'4' IBM software 
X'9' non-IBM hardware 
X'C' non-IBM software 
X'E' IBM or non-IBM software Cnot distinguished> 

3-q One or more subfields containing product- and installation-specHic information on 
hardware, microcode, and software (listed by Key value belOM and described in detail 
following): 

x•oo• 
X'Ol' 
X'02' 
X'03' 
X'04' 
X'05' 
X'06' 
X'07' 
X'OS' 
X'09' 

Hardware Product Identifier 
Emulated Harchtare Product Identifier 
Software Product Serviceable Component 
Retired 
Software Prod:.1et Common level 

Common Na111e 

Identifier 

Retired 
Software 
Sofbcare 
Software 
Sofb1are 

Product 
Product 
Product 
Product 

Customization Identifier 
Prc,,;Jram Number 
Customization Date and Time 

Hardware Product Identifier CX'OO'l Product Identifier Subfield 

0 
1 
2 

This subfield provides data sufficient to identify the hardware prod­
uct instance uniquely. 

Length Cr+l), in binary, of the Hardware Product Identifier subfield 
Key: X'OO' 
Format type: 
X'lO' product instance is identified by a serial nuinber (i.e., IBM plant of manufac­

ture and sequence nuinberl unique by machine type 

E-24 SNA Format and Protocol Reference Manual for LU Type 6.2 



Common Subvectors 

X' 11' product inshnce is identified by a ser-ial number (i.e., IBM plant of aranufac­
ture and sequence number! unique by machine type and MOdel number 

X'I~' product instance is identified by a serial number (i.e., IBM plant of 11anufac­
ture and sequence number l unique by 111achi ne type (as in Format X' l 0' &bove). 
This for11at provides the model number not to uniquely identify a product 
instance but, for the purpose of additional information only. 

X'l3' retired 
X'40' retired 
X'41' retired 

3-r Product identification 

3-6 
7-8 
9-151=rl 

Hot1t.t The originator of a message unit le.g., HMVT, XID) reporting for another prod­
uct that does not supply infor11ation required for the Hardware Product Identifier sub­
field inserts binary O's into the appropriate fields (except for the Machine Type 
field where EBCDIC O's [X'FO' J are inserted> of the Product Identification field to 
indicate that no identlfication information is available. 

• For11at X'lO' 
Machine type: four numeric EBCDIC characters 
IBM plant of manufacture: two numeric EBCDIC characters 
Sequence number: seven upper-case alphanumeric EBCDIC 
Nith EBCDIC O's IX'FO') fill on the left 

• Format X' 11' 

characters, right-justified, 

3-6 Machine type: four numeric EBCDIC characters 
7-9 Machine model number: three upper-case alphanumeric EBCDIC ehtiraeters 
10-11 IBM plant of 111anufacture: two numeric EBCDIC characters 
12-lS!=rl Sequence number: seven upper-case alphanumeric EBCDIC characters, right-justified, 

Ni th EBCDIC O's CX'FO') fill on the left 

•Format X'l2' 
3-6 Machine type: four numeric EBCDIC characters 
7-9 Machine model number: three upper-case alphanumeric EBCDIC characters 
10-11 IBM plant of manufacture: two numeric EBCDIC characters 
12-lS!=rl Sequence number: seven upper-ease alphanumeric EBCDIC characters, r-ight-justified, 

Nith EBCDIC O's IX'FO'J fill on the left 

Emulated Product Identifier CX'Ol' l Product Identifier Subfield 

0 
1 
2-5 
6-S<=rl 

This subfield describes the hardware of the product being e111Ulated in 
sufficient detail to allow problem determination 

Length (r+ll, in binary, of the Emulated Product Identifier subfield 
Key: X'Ol' 
Machine type of product being emulated: four numeric EBCDIC characters 
Model number of product being emulated: three upper-case alphanumeric EBCDIC charac­
ters 

Software Product Serviceable Component Identifier CX'02') Product Identifier Subfield 

0 

1 
2-10 
11-ll!=r> 

This subfield provides the serviceable component identifier and 
release level as assigned by service personnel. 

Length (r+ll, in binary, of the Software Product Serviceable Col'tlponent Identifier sub­
field 
Key: X'02' 
Serviceable component identifier: nine upper-case alphanumeric EBCDIC characters 
Serviceable component release level: three numeric EBCDIC characters 

Softwillre Product Common Level { X' 04' l Product Identifier Subf} eld 

This subfield provides the common version, re!easth and modification 
level numbers as given in the product announcement doclm'lentation. 

O Length !r+l), in binary, of the Software Product ColllWIOn level subf;eld 
1 Key: X'04' 
2-3 Common version ident;fier !numeric EBCDIC characters, right-justified Mith X'FO' fill 

on left> 
4-5 Common t"'elea@ identifier !numeric EBCtm:: ch111racters, right-justified with X'FO' fill 

on left> 



Co111110n Subvectors 

6-7(=r> Common llOdification identifier (nuaeric EBCDIC characters, right-justified with X'FO' 
fill on left) 

Soft-re Product Common Name IX'06') Product Identifier Subfield 

This subfield provides the COlllllOl"I na111e as given in the product 
announcement doc1.111entation 

0 Length lr+ll, in binary, of the Software Product COl!nllon NaMe subfield 
1 Key: X'06' 
2-r Up to thirty upper-case alphanuiteric EBCDIC characters identifying the product collllllOn 

n•-

Software Product Customization Identifier IX'07') Product Identifier Subfield 

This subfield identifies a set of executable instructions, cust0111ized 
to the user's environment 

0 Length lr+l), in binary, of the Software Product Cust0111ization Identifier subfield 
1 Key: X'07' 
2-r Cust011ization identifier: up to eight alphanUMeric EBCDIC characters 

Software Product Program Number (X'08') Product Identifier Subfield 

0 
1 
2-8(=rl 

This subfield provides the program product number as assigned by dis­
tribution personnel. 

Length Cr+l), in binary, of the Software Product Program Nufftber subfield 
Key: X'08' 
Program product number: seven upper-case alphanumeric EBCDIC characters 

Software Product Customization Date and Time CX'09') Product Identifier Subfield 

0 
l 
2 
3-4 
5 
61=rl 

This subfield identifies the date and tiine that a set of executable 
instructions was customized to the user's environment 

Length lr+l), in binary, of the Software Product Customization Date and Ti- subfield. 
Key: X'09' 
Year in unsigned packed decimal 
Julian day in unsigned packed decimal, right-justified with O's as fill 
Hour in unsigned packed decimal 124-hour clock> 
ttinute in unsigned packed deci11al 

E-26 SNA Format and Protocol Reference ttanual for LU Type 6.2 



APPENDIX f..:. PROFILES 

FUNCTION MANAGEMENT CFMl PROFILES 

This section describes the function management CFMl profiles and their use for LU 6.2 sessions. 
Profile numbers not shown are reserved in these sessions. 

Note: If the FM Usage field in BIND specifies a value for a parameter, that value is used 
unless it conflicts with a value specified by the FM profile. The FM profile overrides the FM 
Usage field. 

FM PROFILE 0 

Profile 0 (used on SSCP-LU sessions) specifies the following session rules: 

Primary and secondary half-sessions use immediate request mode and immediate response mode. 

Only single-RU chains allowed. 

Primary and secondary half-session chains indicate definite response. 

No compression. 

Primary half-session sends no DFC RUs. 

Secondary LU half-session may send LUSTAT. 

No brackets. 

No FM headers. 

No alternate code. 

Normal-flow send/receive mode is full-duplex. 

Appendix F. Profiles F-1 



FM PROFILE 6 

Profile 6 (used on SSCP-LU sessions) specifies the following session rules: 

Primary and secondary half-sessions use delayed request mode and delayed response mode. 

Only single-RU chains allowed. 

Primary and secondary half-session chains may indicate definite response, exception 
response, or no response. 

No compression. 

Primary half-session sends no DFC RUs. 

Secondary half-session may send LUSTAT. 

No brackets. 

No FM headers. 

No alternate code. 

Normal-flow send/receive mode is full-duplex. 

F-2 SHA Format and Protocol Reference Manual for LU Type 6.2 



FH PROFILE 19 

Profile 19 (used on LU-LU sessions) specif;es the follOMing session rules: 

Pri-ry LU half-session •nd second•ry LU half-session use h1111edi•te request and i-di•te 
response lllOde. 

Multiple RU chains •llONed. 

Primary LU half-session and secondary LU half-session chains indic•te definite or exception 
response. 

No compression. 

Primary •nd secondary half-sessions support the follOMing DFC functions: 

SIGNAL 
LUST AT 
BIS 
RTR 

Brackets are used. 

r't1 headers (types 5 and 7 only> ne allowed. 

Conditional termination for brackets (specified by CEBl 111Hl be used--pri11ary and secondary 
half-sessions may send CEB. 

The follONing combinations of RQE, RQD, CEB, and CD are allowed on end-cha;n RUs: 

RQE*• CD, .,CEB 
RQD2, CD, .,CEB 
RQD3, CD, .,CEB 
RQEl , .,CD , CEB 
R®*, .. co, CEB 
RQD*, .. co, .,CEB 

Nor11al-flON send/rece;ve mode is half-duplex flip-flop. 

Hall-duplex flip-flop reset state is ID for the primary LU half-session and receive for 
the secondary LU half-session after RSP<BIND>. 

Symmetric responsibility for recovery. 

Contention Ninner/loser polarity is negotiated at BIND tiineJ the contention 111inner ;s the 
first speaker and the contention loser ;s the bidder. 

The only FH Usage field defining options for Profile 19 is Contention Winner/Loser. 

Appendix F. Profiles F-3 



FM PROFILE VS. TYPE OF SESSION 

The following table specifies which FM profiles may be used with each type of session. 

Type of Session 

FM Profile SSCP-LU LU-LU 

0 yes no 

6 yes no 

l 
19 no yes 

LUs in the same node as an SSCP use FM profile 6 
for the SSCP-LU session; otherwise, the LU uses FM profile O. 

F-4 SNA Format and Protocol Reference Manual for LU Type 6.2 



TRANSMISSION SERVICES ~ PROFILES 

Th;s secHon describes the transmiss;on services CTS> profHes and their use for LU 6.2 ses­
sions. Prof;le numbers not shown are reserved in these sessions. 

Note: If the TS Usage field in BIND specifies a value for a parameter, that value is used 
unless ;t conflicts with a value specified by the TS profile. The TS prof;le overrides the TS 
Usage f;eld. 

TS PROFILE 1 

Profile 1 Cused on SSCP-LU sess;ons) specifies the following session rules: 

No pacing. 

Identif;ers rather than sequence numbers are used on the normal flows. 

SOT, CLEAR, RQR, STSN, and CRV are not supported. 

Maximum RU size on the normal flow fer either half-sess;on ;s 256, unless a different value 
is specified in RSPCACTLU). 

There ;s no T~ ~sage f;eld associated w;th this profile. 

TS PROFILE 7 

Prof;le 7 Cused on LU-LU sessions) spec; fies the following sess;on rules: 

Primary-to-secondary and secondary-to-primary normal flows are ~~tionally paced. 

Sequence numbers are used on the normal flows. 

SOT, CLEAR, RQR, and STSN are not supported. 

CRV is supported when session-level cryptography ;s selected (via a BIND parameter). 

The TS Usage subfields in BIND defining the options for this prof;le are: 

Pacing counts 

Max;mum RU s;zes on the normal flows 

Appendix F. Profiles F-5 



TS PROFILE VS. TYPE OF SESSION 

The following table specifies which TS profile may be used with each type of session. 

Type of Session 

TS Profile SSCP-LU LU-LU 

1 yes no 

7 no yes 

F-6 SNA Format and Protocol Reference Manual for LU Type 6.2 



APPENDIX !?.:. SENSE ~ 

The sense data included 1o1ith an EXCEPTION REQUEST CEXR), a negative response, an UNBIND request, 
a function management header type 7 CFl'li-7), or a send or receive check is a four-byte field 
I see Figure 6-1) that generally includes a one-byte category value, a one-byte lllOdifier value, 
and tNO bytes of sense code specific information, whose format is defined along with the sense 
code definition, below. 

Byte 0 3 

Category Modifier Sense code specific 
information 
--

I "' I I 
l<--
1 

Sense Code -->I I 

I<-------~ 
I 

I I 
Sense Data -------->I 

I 

Figure 6-1. Sense Data Format 

Together, the category byte o, the mo<:Hfier byte 11 and the sense code specific bytes 2 and 3 
hold the sense data defined for the exception condition that has occurred. 

The follONing categories are defined; all others are reserved: 

X'OO' 
X'08' 
X' 10' 
X'20' 
X'40' 
X'80' 

CATEGORY 

User Sense Data Only 
Request Reject 
Request Error 
State Error 
Request Header CRH) Usage Error 
Path Error 

The category llser Sense Data Only IX'OO'I allows the end users to exchange sense data in bytes 
2-3 for conditions not defined by SNA within the other categories land perhaps unique to the end 
users involved>. The 1110difier value is also X'OO'. In earlier versions of SNA, user data (as 
1o1ell as implementation-specific data) generally could be carried in bytes 2-3 for all catego­
ries. This is no longer permitted. Bytes 2-3 are used only for SNA-defined conditions for non­
zero categories. 

The sense codes for the other categories are discussed below. 

REQ!JEST REJECT !CATEGORY CODE ,: ~ 

This category indicates that the request 1o1as delivered to the intended half-session component 
and was understood and supported, but not executed. 

Category and lllOdifier Cin hexadecimal>: 

0601 Resource Not Available: The LU, PU, or link specified in an RU is not available. 

Appendix 6. Sense Data 6-1 



0805 Session Li•it Exceeded: The requested session cannot be activated, as one of the NAUs 
is at its session li11it (e.g., LU-LU session li•it, or [LU, MOdeJ session li•it>. 
Applies to ACTCDRH, INIT, Bitl>, and CINIT requests. 

Bytes 2 and 3 may contain the folloNing sense code specific inforlllllltion: 

0000 No specific code applies. 

0001 If accepted, the BIND request NOUld prevent either the rece1v1ng LU or the send­
ing LU from activating the l'IUlllber of contention Minner sessions to the partner 
LU that Nere agreed upon during a change-number-of-sessions procedure. 

0806 Resource Unknown: The request contained a name or address not identifying a PIJ, LU, 
linkt or link station knoltl"I to the receiver. 

0809 Hode Inconsistency: The requested fuiction cannot be performed in the present state 
of the receiver. 

080A Per11ission Rejected: The receiver has denied an i111PHcit or explicit request of the 
sender; Nhen sent in response to BIND, it i111Plies either that the secondary LU will 
not notify the SSCP when a Bltl> can be accepted, or that the SSCP does not recognize 
the NOTIFY vector key X'OC'. (See the X'084S' sense code for a contrasting response.) 

080E NAU Not Authorized: The requesting NAU does not have access to the requested 
resource. 

080F End User Not Authorized: The requesting end user does not have access to the 
requested resource. 

Bytes 2 and 3 may contain the following sense code specific infor11ation: 

0000 No specific code applies. 

6051 Security Violation: A security protocol error has been detected in an RU 
received fr011 the remote LU or transaction progra11. This sense data is sent in 
-RSPC BIND), lHIIND, and FMH-7. 

0812 Insufficient Resource: Receiver cannot act on the request because of a temporary lack 
of resources. 

0813 .Bracket Bid Reject--No RTR Forthcoming: BID (or BBJ was received Nhile the first 
speaker Mas in the in-bracket state, or Nhile the first speaker 111as in the 
between-brackets state and the first speaker denied per11ission. RTR Nill not be sent. 

0814 Bracket Bid Reject--RTR Forthce111ing: BID (or BBJ was received Nhile the first speaker 
was in the in-bracket state, or Nhile the first speaker was in the between-brackets 
state and the first speaker denied per11ission. RTR will be sent. 

0815 Function Active: A request to activate a network element or procedure Mas received, 
but the ele111ent or procedure -s already active. 

0816 Fwiction Inactive: A request to deactivate a network element or procedure Nas 
received, but the element or procedure llMIS not active. 

0819 RTR Not Required: Receiver of READY TD RECEIVE has nothing to send. 

081A Request Sequence Error: Invalid sequence of requests. 

0820 Control Vactor Error: Invalid data for the control vector specified by the target net~ 
NOrk address and key. 

0823 Unknown Control Vector: The control vector specified by a network address and key is 
not knc>Nn to the receiver. 

0824 Logical Uii t of Work Aborted: The current unit of Nork has been aborted; Nhen sync 
point protocols are in use, both sync point •anagers are to revert to the previously 
co11111itted sync point. 

Bytes 2 and 3 May contain the follow;ng sense code specific 1nforMation: 

0000 For LU 6.2, Backout Initiated: A transaction progra• 
backout. The protected resources for th~ distributed 
to be restored to the previously co111111i tted sync point. 
only in FHH-7. 

G-2 SHA For•at end Protocol Reference Manual for LU Type 6.2 

or its LU has initiated 
logical unit of work are 

This sense data is sent 



For non-LU 6.2. no specific code applies. 

082C Resource-Sharing Limit Reached: The request received from an SSCP was to activate a 
half-session, a link, or a procedure, when that resource was at its share limit. 

0835 Invalid Parameter <with Pointer Onlyl: The request contained a fixed- or 
variable-length field whose contents are invalid or not supported by the NAU that 
received the request. Bytes 2 and 3 are used for sense code specific information: 

nnnn Bytes 2 and 3 contain a two-byte binary count that indexes (zero-origin> the 
first byte of the fixed- or variable-length field having invalid contents. 

0836 PLU/SLU Specification Mismatch: For a specified LU-LU session, both the origin LU 
COLUJ and the destination LU <DLUJ have only the primary capability or have only the 
secondary capability. 

0837 Queuing limit Exceeded: For an LU-LU session initiation request CINIT, CDINIT. or 
INIT-OTHER-CDJ specifying (lJ Initiate or Queue <if Initiate not possible> or (2) 
Queue Only, the queuing limit of either the OLU or the DLU, or both, was exceeded. 

0839 LU-LU or SSCP-LU Session Being Taken Down: At the time an LU-LU session initiation or 
termination request is received, the SSCP of at least one of the LUs is either proc­
essing a CDTAKED request or is in the process of deactivating the associated SSCP-LU 
session. 

083A LU Not Enabled: At the time an LU-LU session initiation request is received at the 
SSCP, at least one of the two LUs, although having an active session with its SSCP, is 
not ready to accept CINIT or BIND requests. 

0842 SSCP-SSCP Session Not Active: The SSCP-SSCP session, which is required for the proc­
essing of a network services request, is not active; e.g., at the time an LU-LU ses­
sion initiation or termin<ition request is received, at le<ist one of the following 
conditions exists: 

• The SSCP of the ILU and the SSCP of the OLU do not have an active session with 
each other, and therefore !NIT-OTHER-CD cannot flow. 

• The SSCP of the OLU and the SSCP of the DLU do not have an active session with 
each other, and therefore CDINIT or CDTERM cannot flow. 

0845 Permission Rejected--SSCP Will Be Notified: The receiver has denied an implicit or 
exp! i cit request of the sender; when sent in response to BIND, it implies that the 
secondary LU will notify the SSCP <via NOTIFY vector key X'OC' l when a BIND c<in be 
accepted, and the SSCP of the SLU supports the notification. <See the X'080A' sense 
code for a contrasting response.> 

0846 ERP Message Forthcoming: The received request was rejected for a reason to be speci­
fied in a forthcoming request. 

0848 Cryptography Function Inoperative: The receiver of a request was not able to decipher 
the request because of a malfunction in its cryptography facility. 

084B Requested Resources Not Available: Resources named in the request, and required to 
honor it, are not currently available. It is not known when the resources wi 11 be 
made available. 

Bytes 2 and 3 may contain the following sense code specific information: 

0000 No specific code applies. 

6031 Transaction Program Not Avai lable--Retry Allowed: The FMH-5 Attach command 
specifies a transaction program that the receiver is unable to start. Either 
the program is not authorized to run or the resources to run it are not avail­
able at this ti me. The condition is temporary. The sender is responsible for 
SlJbsequent retry. This sense data is sent only in FMH-7. 

084C Permanent Insufficient Resource: Receiver cannot act on the request because resources 
reqt1i red to honor the request are permanently unavailable. The sender should not 
retry immediately because the situation is not transient. 

Bytes 2 and 3 may contain the following sense code specific information: 

0000 For LU 6.2, Transaction Program Not Available -- No Retry: The FMH-5 Attach 
command specifies a transaction program that the receiver is unable to start. 

Appendix G. Sense Data G-3 



The condition is not temporary. The sender should not retry immediately. This 
sense data is sent only in FMH-7. 

For non-LU 6. 2, no additional information is specified. 

084D Invalid Session Parameters--BF: Session parameters were not valid or were unaccepta­
ble by the boundary function. Bytes 2 and 3 following the sense code contain a binary 
count that indexes (zero origin) the first byte of the fixed- or variable-length field 
having invalid contents. 

084E Invalid Session Parameters--PRI: A positive response to an activation request (e.g., 
BIND) was received and was changed to a negative response because of invalid session 
parameters carried in the response. The services manager receiving the response will 
send a deactivation request for the corresponding session. 

0852 Duplicative Session Activation Request: Two session activation requests have been 
received with related identifiers. The relationship of the identifiers and the 
resultant action varies by request. For BIND, it means that the BIND request was 
received with the same session instance identifier !in the structured subfield X'03' 
of the User Data field) as an active session's; the current request is refused. 

0856 SSCP-SSCP Session Lost: Carried in the Sense Data field in a NOTIFY CThird-Party 
Notification vector, X'03') or -RSPIINIT OTHER! sent to an ILU to indicate that the 
activation of the LU-LU session is uncerl:ain because the SSCPCILUJ-SSCP<OLUl session 
has been lost. (Another sense code, X'0842', is used when it is known that the LU-LU 
session activation cannot be completed.) 

0857 SSCP- LU Session Not Active: The SSCP- LU session, requ i red for the processing of a 
request, is not active; e.g., in processing REQECHO, the SSCP did not have an active 
session with the target LU named in the REQECHO RU. 

0859 REQECHO Data Length Error: The specified length of data to be echoed <in REQECHOJ vio­
lates the maximum RU size limit for the target LU. 

0861 Invalid COS Name: The class of service <COS) name, either specified by the ILU or 
generated by the SSCP of the SLU from the mode table is not in the "COS name to VR 
identifier list" table used by the SSCP of the PLU. 

Bytes 2 and 3 may contain the following sense code specific information: 

0000 COS name was generated by the SSCP. 

0001 COS name was generated by the ILU. 

0003 CDINIT request (or response) contains a Session Initiation control vector that 
has class of service (COS) name fields that have not been properly specified. 
If the RU is a positive response, it is changed into a negative response and 
sent to the request sender; a CDTERM is sent to the CDINIT response sender. 
CThis is to cover a system definition error in the event a gateway SSCP down~ 
stream from another gateway SSCP receives a CDINIT or RSP<CDINITJ without valid 
information in the appropriate COS name fields of the Session Initiation control 
vector.) 

0864 Function Abort: The conversation was terminated abnormally. Other terminations may 
occur after repeated reexecutions; the request sender is responsible to detect such a 
loop. 

Bytes 2 and 3 may contain the following sense code specific information: 

0000 For LU 6.2, Premature Conversation Termination: The conversation is terminated 
abnormally; for example, the transaction program may have issued a DEALLO­
CATE_ABEND verb, or the program may have terminated ( norm<illy or abnorm<illy) 
without explicitly terminating the conversation. This sense d<it<i is sent only 
in FMH-7. 

For non-LU 6.2, no additional information is specified. 

0001 System Logic Error--No Retry: A system logic error has been detected. No retry 
of the convers<ition should be attempted. This sense data is sent only in FMH-7. 

0002 Excessive Elapsed Time--No Retry: Excessive time has elapsed while waiting for 
a required action or event. For example, <i transaction program has failed to 
issue a conversation-rel<ited protocol boundary verb. No retry of the conversa-

G-4 SNA Format and Protocol Reference Manu;il for LU Type 6.2 



tion should be attempted. This sense data is sent in UNBIND when there is no 
chain to respond to1 otherNise, it is sent in FMH-7. 

0889 Transaction Program Error: The transaction program has detected an error. 

This sense code is sent only in FMH-7. 

Bytes 2 and 3 ..ay contain the folloNing sense code specific inforMation: 

0000 Program Error--No Data Truncation: The transaction program sending data 
detected an error but did not truncate a logical record. 

Program Error--Purging: The transaction progra• receiving data detected an 
error. All remaining information, if any, that the receiving program had not 
yet received, and that the sending program had sent prior to being notified of 
the error, is discarded. 

0001 Program Error--Data Truncation: The transaction program sending data detected 
an error and tr\..l"lcated the logical record it Nas sending. 

0100 Service Error--No Data TruncaHon: The presentation services component for 
mapped conversations detected an error Nhile sending data but did not trU'lCate • 
logical record. 

Service Error--Purging: The presentation services component for mapped conver­
sations detected an error Nhile receiving data. All remaining information, if 
any, that the receiving mapped-conversations component had not yet received, and 
that the sending component had sent prior to being notified of the error, is 
discarded. 

0101 Service Error--Data Truncation: The presentation services component for mapped 
conversations detected an error NhHe sending data and truncated the logical 
record it 1o1as sending. 

088B BB Not Accepted--BIS Reply Requested: Sent in response to a BB (either an LUSTAT bid 
or an Attach) to indicate that the receiver has sent a BIS request and Nishes to ter­
minate the session Nithout processing any 1110re conversations, but without sending an 
UNBIND. A BIS reply is requested so that the negative response sender 111ay send • 
normal UNBIND. This sense code is sent only by LUs not supporting 
change-number-of-session protocols. 

088C Hissing Control Vector: The RU did not contain a control vector Nhich was expected to 
appear. The first byte of the sense code specific field contains the hex code of the 
control vector first noticed to be missing. If more than one control vector is Miss­
ing, only the first omission is reported. The second byte of the sense code specific 
field is set to X'OO'. 

REQUEST film2R (CATEGORY gmg ! ~ 

This category indicates that the RU 1o1as delivered to the intended NAU component, but could not 
be interpreted or processed. This condition represents a mismatch of NAU capabilities. 

Category and llOdifier (in hexadecimal): 

1001 RU Data Error: Data in the request RU is not acceptable to the receiving coMpOnentl 
for example, a character code is not in the set supported, a forntted data field is 
not acceptable to presentation services, a value specified in the length field (LL) of 
a structured field is invalid, or a required na- in the request has been omitted. 

1002 RU Length Error: The request RU Nas too long or too short. 

1003 Ftmetion Not Supported: The fl.A'lCtion requested is not supported. The fl.A'lCtion ••Y 
have been specified by a formatted request code, a field in an RU, or a control char­
acter. 

1005 Parameter Error: A parameter modifying a control function is invalid, or outside the 
range allowed by the receiver. 

AppendilC 6. Sense Data 6-5 



1007 Category Not Supported: DFC, SC, NC, or FMD request was received by a half-session not 
supporting any requests in that category; or an NS request byte 0 was not set to a 
defined value, or byte 1 was not set to an NS category supported by the receiver. 

1008 Invalid FM Header: The FM header was not understood or translatable by the receiver, 
or an FM header was expected but not present. This sense code is sent in FHH-7 or 
UNBIND. 

Bytes 2 and 3 may contain the following sense code specific information: 

0000 Reserved. 

200E In~alid Concatenation Indicator: The concatenation indicator is st~ but concat­
enation is not allowed. 

201D FM Header and Associa+cJ Oata Mismatch: The FM header indicated associated data 
would or ~~uld not follow (e.g., FM header 7 followed by log data, or FM header 
!' followed by program initialization parameters), but this indication was in 
error; or a previously received RU !e.g., -RSP!0846ll implied that an FM header 
would follow, but none was rece;ved. 

4001 Invalid FM Header Type: The type of the FM header is other than 5, 7, or 12. 

6000 FM Header Length Not Correct: The value in the FM header Length field differs 
from the sum of the lengths of the subfields of the FM head';!r. 

6005 Invalid Access Security Information length or invalid Access Security Informa­
tion subfield length. 

6009 Invalid Parameter Length. The field that specifies the length of fixed-length 
parameters has an invalid setting. 

600B Unrecognized FM Header Command Code: 
mand code that it does not recognize. 
in FMH-7. 

The partner LU received an FM header com­
For LU 6.2, this sense data is sent only 

6011 Invalid Logical Unit of Work: The LUW Length field !in a Compare States GOS 
variable or an FMH-5) is incorrect or the LUW is invalid or a LUWID is not pres­
ent but is required by the setting of the synchronization level field. 

6021 Transaction Program Name Not Recognized: The FMH-5 Attach command specifies a 
transaction program name that the receiver does not recognize. This sense data 
is sent only in FMH-7. 

6031 PIP Not Allowed: The FMH-5 Attach command specifies program initialization 
parameter !PIP> data is present but the receiver does not support PIP data for 
the specified transaction program. This sense data is sent only in FMH-7. 

6032 PIP Not Specified Correctly: The FHH-5 Attach command specifies a transaction 
program name that requires program initialization parameter (PIP) data <ind 
either the FMH-5 specifies PIP dat.1 is not present or the number of PIP sub­
fields present does not agree with the number required for the program. This 
sense data is sent only in FMH-7. 

6034 Conversation Type Mismatch: The FMH-5 Attach command specifies a conversation 
type that the receiver does not support for the specified transaction program. 
This sense data is sent only in FMH-7. 

6040 Invalid Attach Parameter: A parcimeter in the FHH-5 Attach command conf 1 i cts 
with the statement of LU capability previously provided in the BIND negotiation. 

6041 Synchronization Level Not Supported: The FMH-5 Attach command specifies a syn­
chronization level that the receiver does not support for the specified trans­
action program. This sense data is sent only in FMH-7. 

STATE ERROR !CATEGORY CODE_ X'20') 

This category indicates a sequence number error, or <in RH or RU that is not allowed for the 
receiver's current session control or data flow control state. These errors prevent delivery of 
the request to the intended half-session component. 

~-6 SNA Format and Protocol Reference Manual for LU Type 6.2 



Category and 110difier (in hexadecimal): 

2001 Secr.ience Number: Sequence number recehed on nor11al-flON request was not 1 greater 
than the last. 

2002 Chaining: Error in the sequence of the chain indicator settings (BCI. ECI), such as 
first, middle, first. 

2003 Bracket: Error resulting from failure of sender to enforce bracket rules for session. 
I This error does not apply to contention or race conditions.) 

2004 Direction: Error resulting fron1 a nor111al-flow request received Nhile the half-duplex 
flip-flop state was not Receive. 

2008 No Begin Bracket: An Ftm request specifying BBI=BB NH received after the receiver 
had previously received a BRACKET INITIATION STOPPED request. 

2009 Session Control Protocol Violation: An SC protocol has been violated; a request, 
allowed only after a successful exchange of an SC request and its associated positive 
response, has been received before such successful exchange has occurred (e.g •• an Ftl> 
request has preceded a required CRYPTOGRAPHY VERIFICATION request). The request code 
of the particular SC request or response required, or X'OO' if undeter11ined. appears 
in the fourth byt• of the sense data. 

200A I111mediate Request Hode Error: The ianediate request lllOde protocol has been violated 
by the request. 

2008 Queued Response Error: The Queued Response protocol has been vfolated by a request, 
i.e •• QRI=~QR lllllhen an outstanding request had QRI=QR. 

200E Response Correlation Error: A response Mas received that cannot be correlated to a 
previously sent request. 

200F Response Protocol Error: A violation has occurred in the response protocol; e.g., a 
+RSP to an RQE chain Nas generated. 

2010 BIS Protocol Error: A BIS protocol error was detected; e.g.• a BIS request Mas 
received after a previous BIS was received and processed. 

2011 Pacing Error: A nor111al-flON request is received by a half-session after the pacing 
count has been reduced to 0 and before a pacing response has been sent. 

2012 Invalid Sense Code Received: A negative response Nas received that contains an 
SNA-defined sense code that cannot be used for the sent request. 

RH USAGE ERROR (CATEGORY ~ ,: ~ 

This category indicates that the value of a field or combination of fields in the RH violates 
architectural rules or previously selected Bii-i> oJ)tions. These errors prevent delivery of the 
request to the intended half-session component and are independent of the current states of the 
session. They may result frot11 the failure of the sender to enforce sess;on rules. Detection by 
the receiver of each of these errors is optional. 

Category and llOdifier (in hexadecimal): 

4003 BB Not Allowed: The Begin Bracket indicator (BBIJ was specified incorrectly, e.g.• 
BBI=BB Mith BCI=~BC. 

4004 CEB or EB Not Allowed: The Conditional End Bracket indicator (CEBil or End Bracket 
indicator (EBIJ Nas specified incorrectly, e.g., CEBI=CEB Nhen ECI=~EC or EBI=EB with 
BCI=~ec, or by the primary half-session Nhen only the secondary ••Y send EB, or by the 
secondary when only the priMary •ay send EB. 

4005 IncOtnPlete RH: Tr•ns•ission shorter than full TH-RH. 

4006 Exception Response Not Allowed: Exception response Mas requested Nhen not per11itted. 

4007 Definite Response Not Allowed: Definite response Nas requested Nhen not permitted. 

Appendix G. Sense Data G-7 



4008 

4009 

400A 

400B 

400C 

4000 

400F 

4010 

4011 

4012 

4013 

4014 

4015 

4016 

4017 

4018 

4019 

Pacing Not Supported: The Pacing indicator was set on a request, but the receiving 
half-session or bo1.mdary function half-session does not support pacing for thls ses­
sion. 

CD Not Allowed: The Change Direction indicator CCDI> was specified incorrectly, e.g., 
CDI=CD Nith ECI=~Ec , or CDI=CD with EBI=EB. 

No-Response Not Allowed: No-response NH specified on a request when not per11i tted. 
(Used only on EXR. J 

Chaining Not Supported: The chaining indicators CBCI and ECil -re specified incor­
rectly, e.g., .chaining bits indicated other than !BC,ECJ. but multiple-request chains 
are not supported for the session or for the category specified in the request header. 

Brackets Not Supported: The bracket indicators <BBI, CEBI, and EBil were speeified 
incorrectly, e.g., a bracket indicator was set CBBI=BB, CEBI=CEB, or EBI=EBJ, but 
brackets are not used for the session. 

CD Not Supported: The Change-Direction indicator was set, but is not supported. 

Incorrect Use of Format Indicator: The Format indicator CFil was specified incorrect­
ly, e.g., FI was set with BCI=~Bc, or FI was not set on a DFC request. 

Alternate Code Not Supported: The Code Sel.....:tion indicator CCSil was set when not sup­
ported for the session. 

Incorrect Specification of RU Category: The RU Category indicator was specified incor­
rectly, e.g., an expedited-flow request or response was specified Ni th RU Category 
indicator = Ft1D. 

Incorrect Specification of Request Code: The request code on a response does not 
match the request code on its corresponding request. 

Incorrect Specification of CSDI, RTII: The Sense Data Included indicator CSDil and the 
Response Type indicator CRTil Nere not specified properly on a response. The proper 
value pairs are ISDI=so, RTI=negativel and CSDI=~sD, RTI=positiveJ. 

Incorrect Use of CDRlI, DR2I, ERII: The Definite Response 1 indicator !ORlII, Definite 
Response 2 indicator IOR2I), and Exception Response indicator CERil were specified 
incorrectly, e.g., a SIGNAL request NH not specified with DRlI=DRl, DR2I=~DR2, and 
ERI=~ER. 

Incorrect Use of QR!: The Queued Response indicator CQRI> was specifled incorrectly, 
e.g., QRI=QR on an expedited-flow request. 

Incorrect Use of EDI: The Enciphered Data indicator <EDil was specified incorrectly, 
e.g., EDI=ED on a DFC request. 

Incorrect Use of POI:· The Padded Data indicator (POIJ was specified incorrectly, e.g., 
PDI=PD on a DFC request. 

Incorrect Setting of QRI with Bidder's BB: The first speaker half-session received a 
BB chain requesting use of a session <via LUSTAT(X'0006'J), but the QR! was specified 
incorrectly, i.e., QR!= ~QR. 

Incorrect Indicators Nith Last-In-Chain Request: A last-in-chain request has speci­
fied incompatible RH settings, e.g., RQE•. CEBI=~CEB. and CDI=~co. 

4021 QR! Setting in Response Different From That in Request: The QR! setting in the 
response differs fro• the QR! setting in the corresponding request. 

f!!!:I ERROR <CATEGORY ~ ,: ~ 

This category indicates that the request could not be delivered to the intended receiver, 
because of a path outage, an invalid sequence of activation requests, or ·one of the listed path 
information 1.r1it <PIUl errors. !Some PIU errors fall into other categories, e.g., sequence num­
ber errors are category X'20'.) A path error received while the session is active generally 
indicates that the path to the session partner has been lost. 

Category and modifier (in hexadecimal): 

6-8 SNA Format and Protocol Reference Manual for LU Type 6.2 



8001 Intermediate Node Failure: Hachine or program check in a node providing interllediate 
routing function. A response may or •ay not be possible. 

8002 Link Failure: Data link failure. 

8003 NAU Inoperative: The NAU is unable to process requests or responses, e.g., the NAU has 
been disrupted by an abnorul ter11iMtion. 

8004 Unrecognized Destination: A node in the path has no routing information for the des­
tination specified either by the SLU name in a BUI> request or by the TH. 

8005 

Bytes 2 and 3 may contain the follONing sense code specific infor•ation: 

0000 No specific code applies. 

0001 A request NH received by a gateway function that could not be rerouted because 
of invalid or inc0111plete routing information. 

Ho Session: No half-session is active in the receiving end node for the 
origination-destination pair, or no bo\.aidary function half-session COlllponent 
for the origin-destination pair in a node providing the boundary function. 
activation request is needed. 

Bytes 2 and 3 may contain the follONing sense code specific information: 

0000 Ho specific code applies. 

indicated 
is active 
A session 

0001 The receiver received a request other than session control request Nhen no LU-LU 
session Nas active. 

0002 The receiver received a request other than session control request Nhen no 
LU-SSCP session was active. 

0003 The receiver received a session control request other than BIND/UNBIND when no 
LU-LU session NH active. 

0004 The receiver received an ~IND Nhen no LU-LU session Mas active. 

0005 The receiver received a session control request other than ACTLU/DACTLU for the 
LU-SSCP session Nhen no LU-SSCP session Nas active. 

0006 The receiver received DACTLU Nhen no LU-SSCP session was active. 

8006 Invalid FID: Invalid FID for the receiving node. (Note 1> 

8007 Segmenting Error: First BIU segment had less than 10 bytes; or mapping field sequenc­
ing error, such as first, last, middle; or segmenting not supported and HPF not set to 
11. (Note U 

8008 PU Not Active: The SSCP-PU secondary half-session in the receiving node has not been 
activated and the request Na& not ACTPU for this half-session; for example, the 
request NH ACTLU from an SSCP that does not have an active SSCP-PU session Mith the 
PU associated with the addressed LU. 

8009 LU Not Active: The destination address specifies an LU for which the SSCP-LU second­
ary half-session has not been activated and the request Mas not ACTLU. 

8008 Inc°""lete TH: Trans•ission received NH shorter than a TH. (Note 1> 

800C DCF Error: Data Count field inconsistent Mith transmission length. 

800E Unrecognized Origin: The origin address specified in the TH Mas not recognized. 

800F InvaHd Address Combination: The (DAF' ,OAF'> (fIDU combination or the LSID (fIDl> 
specified •n invalid type of session, e.g., a PU-LU combination. 

8010 Segniented RU Length Error: An RU Mas found to exceed a maxhnum length, or required 
buffer •!location th•t •ight cause future buffer depletion. 

8013 COS Not Available: A session activation request cannot be satisfied because none of 
the virtual routes requested for the session is available. 

Bytes 2 •nd 3 •ay contain the follONing sense code specific inforution: 

Appendix 6. Sense Data 6-9 



Notes: 

Byte 2 indicates the environment in which the failure was detected: 

00 Single network 

01 Interconnected network: Failure was detected at a node in a subnetwork other 
than that of the NAU sending the activation request. 

Byte 3 indicates the reason for the session-activation failure: 

00 No Specific Code applies: This means an error occured, but none of the condi­
tions listed below applies. 

01 No Mapping Specified: A session activation request cannot be satisfied because 
for each VR in the VR identifier list for the session, no VR to ER mapping is 
specified. 

02 No Explicit Routes Defined: A session activation request cannot be satisfied 
because each VR in the VR identifier list for the session maps to a correspond­
ing ER that is not defined. 

03 No VR Resource Available: A session activation request cannot be satisfied 
because each VR specified in the VR identifier list for the session requires a 
node resource that is not available. 

04 No Explicit Routes Operative: A session activation request cannot be satisfied 
because no underlying ER is operative for any VR specified in the VR identifier 
list for the session. 

05 No Explicit Route Can Be Activated: A session activation request cannot be sat­
isfied because no VR specified in the VR identifier list for the session mapped 
to a defined and operative ER that could be activated. 

06 No Virtual Route Can Be Activated: A session activation request cannot be sat­
isfied because no VR specified in the VR identifier list for the session can be 
activated by the PU, though for at least one VR an underlying ER is defined, 
operative, and activated. 

07 No Virtual Route Identifier List Available: A session activation request cannot 
be satisfied because a VR identifier list is not available. 

~: If none of the virtual routes specified in the VR identifier list for the ses­
sion is active or can be activated, the reported reason is set based on a hierarchy of 
failure events. The "highest" of the failures that occurred within the set of virtual 
routes is returned on the response. For example, if the VR manager receives a nega­
tive response to an NC_ACTVR request for a VR specified in the VR identifier list and 
for all other VRs in the list no VR to ER mapping is specified, then reason X'06' is 
reported. The hierarchy of the failure reasons is in ascending numeric order (e.g., 
reason X'02' is higher than reason X'Ol'). 

1. It is generally not possible to send a response for this exception condition, since informa­
tion (fID, addresses) required to generate a response is not available. It is logged as an 
error if this capability exists in the receiver. 

2. If segmenting is not supported, a negative response is returned for the first segment only, 
since this contains the RH. Subsequent segments are discarded. 

6-10 SNA Format and Protocol Reference Manual for LU Type 6.2 



APPENDIX J:L. FM ~ ANO LU SERVICES COMMANDS 

Throughout this appendix the same symbol-string types are used as defined in "Appendix E. 
Request/Response Unit CRUJ Formats". The symbol-string types define the character sets that LUs 
and transaction programs use to specify the symbol strings used in RUs. 

Figure H-1 defines the send 
symbol-string types. Depending 
or multiple types. Where 
implementation-defined and send 

and receive support for each symbol string in terms of the 
on the symbol string, support is defined by either a single type 

multiple types are indicated, the type selected is 
support may differ from receive support. 

Type 

Symbol String Send Receive 
Support Support 

Network ID A A 

LU Name A A 

Fully Qualified LU Name [l] A.A A.A 

Mode Name A A 

Transaction Program Name [2] AE, GR, or DB A, AE, GR, or DB 

Access Security Information Subfields AE, GR, or DB A, AE, GR, or DB 

Program Initialization Parameters CPIPJ G G 

Conversation Correlator G G 

Session Instance ID G G 

LU-LU Password [3] - -

Map Name A, AE, or GR A, AE, or GR 

NOTES: 

I. The fully qualified LU name consists of two symbol strings of 
type A concatenated by a period C. J. The lef t-h;;ind symbol 
string represents the network ID; the right-hand symbol 
string represents the network LU name. The period is not 
part of the network ID or the network LU name. 

2. The first character of an SNA-defined service transaction 
program name is a character ranging in value from X' 00' 
through X'OD' and X' 10' through X'3F' (excluding X'OE' and 
x I OF). The remaining characters of the name are type-A 
without any restriction on the first type-A character. A 
list of SHA-defined service programs is given in "SHA-Defined 
Transaction Program Names" on page H-15. 

3. The LU-LU password is a locally-specified value and is not 
sent outside the LU. The symbol-string type is G. 

Figure H-1. Symbol-String Types 

Appendix H. FM Header and LU Services Commands H-1 



The symbol-string length represents the number.of characters a symbol string can contain. Three 
symbol-string lengths are defined: 

• Minimum specification length: the mtn1mum number of characters that a transaction program 
is allowed to use to specify the symbol string. For some symbol strings, the minimum spec­
ification length is O. Zero-length strings are valid symbol strings and are subject to the 
same usage conditions as nonzero-length strings that fulfill the definition of the specific 
symbol-string type (or range of types) allowed. 

• Maximum send support: the maximum number of characters that every implementation can send 
in the symbol string. 

• Maximum receive support: the maximum number of characters that every implementation can 
receive in the symbol string. 

The maximum send or receive support for a symbol-string's length is defined either by a single 
value or within a range of values, depending on the symbol string: 

• the single value is the maximum number of characters in a symbol string that every implemen­
tation can send or receive. 

• The range of values represents a lower and upper bound of the maximum number of characters 
in a symbol string that an implementation can send or receive. The specific maximum number 
of characters an implementaHon can send or receive for each of these symbol strings is 
implementation-defined within the range. Compatibility in the maximum lengths allowed by 
sender and receiver is a concern of system definition and program design. 

Figure H-2 on page H-3 defines the product maximum send and receive support for each symbol 
string in terms of the symbol-string lengths. Where support is defined to be within a range of 
values, the range is given as "lower-value<->upper-value," which identHies the lower and upper 
bounds of the range. 

The variable to which a type-A, type-AE, or type-GR symbol string is assigned may be longer than 
the symbol string; in this case, the symbol string is left-justified within the variable and the 
variable is filled out to the right with space (X'40'l characters. Space characters, if pres­
ent, ar-e not part of the symbol string. If the symbol string is formed from the concatenation 
of two or more individual symbol strings, such as the fully qualified LU name, the concatenated 
symbol string as a whole is left-justified within the variable and the variable is filled out to 
the right with space characters. Space characters, if present, are not part of the concatenated 
symbol string. 

H-2 SNA Format and Protocol Reference Manual for lU Type 6.2 



length 

Symbol Str;ng t1inhn.111 Ha><i- Haxhn.1111 
SpecHication Send Support Rece;ve Support 

Network ID 0 8 8 

LU Name 0 8 8 

Fully Qualified LU Name 1 17 17 

Mode Narwe 0 8 8 

Transaction Progra111 Name [ 1 J 1 8<->64 8<->64 

Access Security Information Subf;elds 0 8<->10 0<->10 

PIP Subfields [2] 0 64<->~64 131 64<->64 [4] 

Conversation Correlator 0 8 8 

Session Instance ID 2 8 8 

LU-LU Password [5] 8 - -
Map Name 0 [6 J 8<->64 7<->64 

NOTES: 

1. The narwe of an SNA service transaction progra• can be one to four 
characters in length; typically, however, they are four characters in 
length. 

2. Support of PIP subfields is optional, and send support is independent of 
receive support. The 11axi11U111 nunber of PIP subfields an i11plemefltation 
can send or receive is hiplenientation-defined; it is any nunber greater 
than or equal to 16. 

3. The ••><i111U111 send support for PIP subfields is i11iplementation-defined. 

4. The 11N1><i111U11 receive support for PIP subfields is imple11entation-def ined. 

s. LU-LU passwords are 64 bits f 8 bytes). Product designs 11ay allON shorter 
passNOrcls to be entered, in Nhich case the passwords are filled to the 
right with binary O's. 

6. The zero-length map name has a special 11eaning: it indicates mapping is 
not to be perfor11ed by the LU. 

Figure H-2. Symbol-String lengths 

Appendix H. Ft1 Header and LU Services COlllllands H-3 



f!j HEADERS 

TMs. section explains how function management <FM> headers are used to exchange infor11ation by 
LU 6.2. It also defines the for111ats of the FM headers and how they are related to other data in 
request units. 

The request header (RH> contains a format indicator fFI> that, Nhen ml• indicates that an FM 
header is at the beginning of the RU; FM headers 11ay appear only singly at the beginning of an 
RU. The RU containing the FM header 111ay appear anywhere 11t1thin a chain. 

The placement of FM headers Nithin a request ll'lit is shoNn beloN: 

FM Header Contained in One RU: 

I RH: FMH, *BC,*EC I FM header Data 

FM Header Contained in TNO Contiguous RUs of a Chain: 

I RH: FMH, *BC,~Ec I First of FM header 

Rest of FM header I Data 

NOTE: FM handers are placed at the beginning of a request unit, but not necessarily the 
first or last request unit of a chain. When the FM header is longer than one RU Nill hold, 
the FM header is continued in as many additional RUs as are needed to hold it. 

Figure H-3. Examples of FM Header Placement 

H-4 SNA Format and Protocol Reference Manual for LU Type 6.2 



The following Fl1 headers are used by LU 6.2: 

• Fttt-5 carries a request for a conversation to be established between two transaction pro­
grams. identifies the transaction progra• that is to be put into execution and connected to 
the receiving half-session. 

When a transaction progra11 issues an ALLOCATE verb (see SNA Transaction f.!rogrammea Refer­
~ f!!.DY!! .f2t .l:Y ~ !,,j for details> naming a transaction progra11 to be rll"I at the other 
end of the conversation, an Attach FMH-5 carries the transaction pr~gram nanie (TPNJ to the 
receiving LU. 

• Ftfl-7 carries infor11ation that relates to an error on the session or conversation. For 
example, an F11H-7 and additional error information are sent when an Fl'lf-5 specifies a nonex­
istent transaction program na111e. 

• Fl1H-12 carries the enciphered version 
received in the +RSP(BINDJ; the 
installation-defined LU-LU password as 
verification. 

of the random data found in the Random Data Subfield 
encryption uses the DES algori thm and the 

cryptographic key. Ftfl-12 is used for LU-LU password 

The formats for these Fl1 headers are shot.n beloN. 

Appendix H. Fl1 Header and LU Services Conmiands H-5 



FM header 5: Attach 

The function management header 5 lFl1H-5J, w;th • command of Attach, has the following for•at. 

0 
1 

2-3 
4 

5 

6-6+j-1 
6 

7 
8 

6+j-p 
6+j 
6+j+l-k 
k+l 
k+2-ll 

11+1 

•+2-n 
11+2 
m+3-N 

N+l-N+6 
W+7-

1>t+8( =n) 
n+l 
n+2-p 

Length, in binary, of FMH-5, including th;s Length byte 
bit O, reserved 
bits 1-7, type: 0000101 
Co111111and code: X'02FF' (Attach) 
bit o, security indicator: 

0 user ID is not already veriffed 
1 user ID is already verified 

bits 1-3, reserved 
bit 4, progra• initialization parameter CPIP) presence: 

0 PIP not present follONing this FttH-5 
1 PIP present follONing this FMH-5 <see "PIP Variable " on page H-7 for for-

11aU 
bits 5-7, reserved 
Length CjJ, in b;nary, of Fixed Length Parameters field (currently 3--future expansion 
possible> 
fu.!lll 1.!!:!g!b Parameters 
Resource type: 
X'DO' basic conversation 
X'Dl' mapped conversation 
Reserved 
bits 0-1, synchronization level: 

00 none 
01 confir• 
10 confi r•• sync point, and backout 
11 reserved 

bits 2-7, reserved 
Variable Length Parameters 
Length (values 1 to 64 are valid>. in binary, of transaction progra11 name 
Transaction program name (see Figure H-1 on page H-1 for valid formats) 
Length 10 or m-k-1>, in binary, of Access Security Information subfields 
Zero or 1110re Access Security Infor111ation subfields (see "Access Security InforMtion 
Subfields " on page H-7 for forHt) 
Length (values O and 10 to 26 are valid>, in binary, of Logical-Unit-of-Work Identifi­
er field 
boqical-Vnit-of-Work Identifier 
Length Cvalues 1 to 17 are valid), in binary, of fully qualified LU network na111e 
Fully qualified LU netNOrk nan (format described in "User Data Structured S\J>field 
For111ats" in "Appendix E. Request/Response Unit fRU) Formats'') 
Logical-unit-of-work instance number, in binary 

logical-unit-of-1>«ork sequence number, in binary 
Length (values O to 8 are valid), in binary, of conversation correlator of sender 
Conversation correlator of the sending transaction: a 1- to 8-byte identifier (unique 
within the sending LU) of the conversation being allocated via Fl1H-5 Can example con­
struction of this field NOUld be the composition of a transaction progra• instance 
identifier and a resource identif;er) 

Trailing Length fields <bytes n+l, m+l, and k+l) that have value X'OO' can be omitted. 

In FMH-5, the offset "•" represents the end of the last subfield. 

H-6 SNA Format and Protocol Reference Manual for LU Type 6.2 



Access Security Information Subfields 

The Access Security Information subfields in FMH-5 have the following formats: 

0 Length (valid values are 1 to 11), in binary, of remainder of subfield--does not 
include this Length byte 

1 Subfield type: 
X'OO' profile 
X • O l ' password 
X'02' user ID 

2-i Data (see Figure H-1 on page H-1 for the symbol-string type and Figure H-2 on page H-3 
for the symbol-string length restrictions! 

Note: The Access Security Information subfields may appear in any order in the Access Security 
Information field of the FMH-5. 

PIP Va,.iable 

The PIP variable following FMH-5 Attach has the following format: 

0-1 Length (4 or n+l), in binary, of PIP variable, including this Length field 
2-3 GOS indicator: X'12F5' 
4-n Zero or more PIP subfields, each of which has the following format (shown using 

zero-origin> 
0-1 Length, in binary, of PIP subfield, including this Length field 
2-3 GOS indicator: X'12E2' 
4-m PIP subfield data Csee Figure H-1 on page H-1 for the symbol-string type and Fig­

ure H-2 on page H-3 for the symbol-string length restrictions) 

Appendix H. FM Header and LU Services Commands H-7 



FM header 7: Error Description 

The function management header 7 CFMH-71 has the following format: 

0 Length C7J, in binary, of FMH-7, including this Length byte 
1 bit o, reserved 

bits 1-7, type: 0000111 
2-5 SHA-defined sense data (see below) 
6 bit o, error log variable presence: 

0 no error log variable follows this FMH-7 
1 error log GOS variable follows this FMH-7 

bits 1-7, reserved 

The following sense data Cin hexadecimall can be sent in an FMH-7; see "Appendix G. Sense Data" 
for additional details on the sense data; The phrases following the sense data are the symbolic 
return codes provided to the application program in LU 6.2 verbs (see SNA Transaction Program­
.!!!fil:..'..l! Reference Manual for LU ~ ~l when the sense data is received. 

10086006 RESOURCE_FAILURE_NO_RETRY 

10086021 ALLOCATION_ERROR--TPN_NOT_RECOGNIZED 

10086031 ALLOCATION_ERROR--PIP_NOT_ALLOWED 

10086032 ALLOCATION_ERROR--PIP_NOT_SPECIFIED_CORRECTLY 

10086034 ALLOCATION_ERROR--CONVERSATION_TYPE_MISMATCH 

10086041 ALLOCATION_ERROR--SYNC_LEVEL_NOT_SUPPORTED_6Y_PGM 

080F6051 ALLOCATION_ERROR--SECURITY_NOT_VALID 

08240000 6ACKED_OUT 

08466031 ALLOCATION_ERROR--TRANS_PGM_NOT_AVAIL_RETRY 

084COOOO ALLOCATION_ERROR--TRANS_PGM_NOT_AVAIL_NO_RETRY 

08640000 DEALLOCATE_A6END_PROG 

08640001 DEALLOCATE_A6END_svc 

08640002 DEALLOCATE_A6END_TIMER 

08890000 PROG_ERROR_NO_TRUNC or PROG_ERROR_PURGING 

08890001 PROG_ERROR_TRUNC 

08890100 SVC_ERROR_NO_TRUNC or SVC_ERROR_PURGING 

08890101 SVC_ERROR_TRUNC 

H-8 ~NA Format and Protocol Reference Manual for LU Type 6.2 



FM header 12: Security 

The function management header 12 CFMH-12) has the following format: 

O Length ClOJ, fn binary, of FMH-12, including this Length byte. 
1 bit o, reserved 

bits 1-7, ty~a1 0001100 
2-9 Enciphered version of the random data received in RSPCBINDJ 

Appendix H. FM Header and LU Services Commands H-9 



Pff ESEN!AIIQN SERYICES !f!1U HEADERS 

Presentation serv;ces (PS) headers convey informatiQn between PS component sync point •anagers 
Nhen the conversation using the session is allocated with the sync-point synchronization level. 
"Chapter 5.3. Presentation Services--Sync Point Services Verbs" describes the use of these PS 
headers. 

Transaction progra11 data is deli11ited using a 2-byte length field called an LL, containing a 
value that is the nullber of bytes contained in the transaction progrH data plus 2 (the length 
of the LL field itself). 

LL transaction program data 

All PS headers are identified by an LL of X'OOOl' i .. ediately preceding the header. X'OOOl' is 
an invalid LL value for use by transaction progralllS because the LL 's value 111ust include the 
length of itself, Nhich is 2 bytes. Therefore, all LLs indicating a length of less than 2 are 
reserved for use by the LU. The for11at of PS headers is shotln below. 

PS header 10: Sync Point Control 

Presentation services header 10 (Sync Point Control> has the following format: 

0 Length, in binary, of PS header, including this length field 
1 bit o, reserved 

bits 1-7, type: 0001010 sync point control (only value defined) 
2-3 Sync point co111111and type: 

X'0005' Prepare 
X'0006' Request Co11111it 
X'0007' C0111111itted 
x•ooos• Forget 
X'0009' Heuristic Hixed 

4-5 Modifier specifying next flow (present only if bytes 2-3 = X'0005' or X'0006' J 
reserved when bytes 2-3 = X'0006' and 2-phase sync point being used>: 
X'OOOO' request RECEIVE 
X'OOOl' request DEALLOCATE 
X'0002' request SEND 
t:!.211.l Bytes 4-5 affect the CD and CEB settings generated by data flow control on the 
last PS header in the sync point sequence, i.e., Forget if Prepare was received, and 
Co111111itted if Request Conlnlit was the first PS header received (see "Chapter 5.3. Pres­
entation Services--Sync Point Services Verbs" for details). 

H-10 SNA Format and Protocol Ref•rence H<a~l for LU Type 6.2 



F()RHATS .Q!: RECQRDS ~ IX .IJl A.al SERVICE JRAHSACTIQN PRQG!AMS 

A JPN value starting ~ith X'06' in the Attach header indicates that the LU resources manager is 
to initiate execution of one of the LU service transaction progra1111. 

LU services 11anagers exchange data directly via 6DS variables. A group of 6DS IDs of the for• 
X'12**' is assigned for use by the LU service transaction progralllSJ the ce>Mmancls use a Service 
Flag (SF> byte (follONing the 6DS ID> to denote the processing options of the cotnt11andJ the spe­
cific options are encoded in the last four bits of the Service Flag byte as shown in the indi­
vidual GOS variables. Requests tulve bit 4 set to 0 and replies have bit 4 set to lJ therefore, 
requests and replies have the HIM ID values. The first four bits are unique to the c011111and. 

Appendix H. FH Header and LU Services Cot11111ands H-11 



Cmange Nulllber of Sessions (CNOS> 

See "Cmapter 5.4. Presentation Services--Control-Operator Verbs" for a detailttd description of 
the use of this COlllllland. 

0-1 

2-3 
4 

5 

6 

7 

8 

9-10 

11-12 

13-14 

15 

16 

17-n 

Length Cl7 or n+'), in binary, of Change Hullber of Sessions 60S variable, including 
this Length field 
GDS ID: X' 1210' 
Service flag: 
bits 0-3, reserved 
bits 4-7, request/reply indicator: 

0010 request 
1000 reply, functfon completed abnornl 
1010 reply, function accepted but not, yet completed 

Reply llOdifier (reserved if byte 4, bits 4-7 = 0010): 
X'OO' normal--no negotiation performed 
X'Ol' abnor•al--co.mand race detected 
X'02' abnor•al--MOde nan not recognized 
X'03' reserved 
X'04' noriul--negotiated reply 
X'OS' abnormal--(LU,110d!!l session li•it is 0 
Action: 
X'OO' set (LU,lllOde> session li•its 
X'Ol' reserved 
X'02' close 
Drain i-ediacy: 
bits 0-2, reserved 
bit 3, source LU drain (reserved if byte 6 ~= 02>: 

0 no (send BIS at next opportunity) 
1 yes 

bits 4-6, reserved 
bit 7, target LU drain (reserved if byte 6 ~= 02): 

0 no (send BIS at next opportunity) 
1 yes 

Action flags: 
bits 0-6, reserved 
bit 7, session deactivation responsibility: 

0 sender of Change Number of Sessions request (source LU> 
1 receiver of Cmange Number of Sessions request (target LU> 

tl2!!u, Bytes 9-14 are reserved if byte 6 ~= O. 
(LU.model session li•it: 
bit o, reserved 
bits 1-15, •axi- CLU,lllOde> session count, in bhuiry 
Source LU contention Ninners: 
bit o, reserved 
bits 1-lS, guaranteed •ini-... nulllber of contention Minner sessions at source LU, in 

binary 
Target LU contention Ninners: 
bit o, reserved 
bits 1-15, guaranteed •ini-... number of contention Minner sessions at target LU, in 

binary 
Mode na11e selection: 
bits 0-6, reserved 
bit 7, •ode na11es affected by this conwand: 

0 a single 110de naMe is affected 
1 all mode names are affected 

Length (values O to 8 are validl reserved if byte 15, bit 7 = l), in binary, of llOde 
name 
Mode name (011itted if byte 16 = X'OO') 

H~12 SNA Format and Protocol Reference tlanual for LU Type 6.2 



Exchange Log Name 

See "Chapter 5.3. Presentation Services--Sync Point Services Verbs" for a detailed description 
of the use of this command. 

0-1 

2-3 
4 

5 

6 
7-n 

n+l 
n+2-p 

Length Cp+lJ, in binary, of Exchange Log Name GOS variable, including this Length 
field 
GOS ID: X'l211' 
Service flag: 
bits 0-3, reserved 
bits 4-7, request/reply indicator: 

0010 request 
1000 reply, function completed abnormally 
1001 reply, function completed normally 

Sync point manager flags: 
bits 0-6, reserved 
bit 7, log status: 

0 cold 
1 warm 

Length (values 1 to 17 are valid l , in bi nary, of fully qualified LU network name 
Fully qualified LU netNork name (format described in "User Data Structured Subfield 
Formats" in "Appendix E. Request/Response Unit CRUl Formats") 
Length (values 1 to 64 are validl, in binary, of log name 
Log name !symbol-string type-AEl 

Appendix H. FM Header and LU Services Commands H-13 



Compare States 

See "Chapter 5.3. Presentation Services--Sync Point Services Verbs" for a detailed description 
of the use of this command. 

0-1 
2-3 
4 

5 

6 
7 

8-n 
8 
8-w 

w+l-w+6 
w+7-

w+8C =n > 
n+l 
n+2-q 

q+l 
q+2-p 

Length Cp+l), in binary, of Compare States GOS variable, including this Length field 
GOS ID: X'l213' 
Service flag: 
bits 0-3, reserved 
bits 4-7, request/reply indicator: 

0010 request 
1000 reply, function completed abnormally 
1001 reply, function completed normally 

Sync point m1mager state: 
X'Ol' RESET 
x I 02. SYNC_POINT_MANAGER_PENDING 
X'03' IN_DOUBT 
X'04' COMMITTED 
X'05' HEURISTIC_RESET 
X'06' HEURISTIC_COMMITTED 
X'07' HEURISTIC_MIXED 
Reserved 
Length, in binary, of Logical-Unit-of-Work Identifier field (values 10 to 26 are val­
id) 
Logical-Unit-of-Work Identifier 
Length, in binary, of fully qualified LU network name (values 1 to 17 are validl 
Fully qualified LU neti~ork name (format described in "User Data Structured Subfield 
Formats" in "Appendix E. Request/Response UnH !RU) Formats" l 
Logical-unit-of-work instance number, in binary 

Logical-unit-of-work sequence number, in binary 
Length (values 0 to 8 are valid), in binary, of conversation correlator 
Conversation correlator of transaction program that allocated the conversation that 
failed: see FHH-5 for format of this correlator 
Length !values 2 to 8 are valid), of session instance identifier 
Session instance identifier of session being used by conversation at time of failure 
(See "User Data Structured Subfield Formats" in "Appendix E. Request/Response Unit 
IRUl Formats" for the format of this identifier.) 

H-14 SHA Format and Protocol Reference Manual for LU Type 6.2 



SHA-DEFINED TRANSACTION PROGRAM NAMES 

The following transaction program names CTPNs> specify SHA-defined service transaction programs 
discussed in this book. 

TPN 

X' 06Fl' 
X'06F2' 

Service Transaction Program 

Change Number of Sessions 
Compare States and Exchange Log Name 

Appendix H. FM Header and LU Services Commands H-15 



GOS VARIABLES 

The following chart indicates (using an "X"> each GOS variable code point !with first byte = 
X'l2'J used by LU 6.2. 

rFirst hexadecimal digit 
I rSecond hexadecimal digit 
I I 
I I 
I I 
I L 
I 
L> 

> 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 

D 

E 

F 

0 

x 

x 

1 2 3 4 

x x 

x x 

x x x x 

5 6 

x 

The code points used by LU 6.2 are: 

7 

Change Number of Sessions 
Exchange Log Name 
Compare States 

8 9 

X' 1210' 
X'l211' 
X' 1213' 
X' 12AO' 
X'l2El' 
X'l2E2' 
X'l2Fl' 
X'l2F2' 
X' 12F3' 
X' 12F4' 
X' 12F5' 
X'l2FF' 

Workstation Display Passthrough 
Error Log 
PIP Subfield Data 
Null Data 
User Control Data 
Map Name 
Error Data 
PIP Data 
Application Data 

A B 

H-16 SNA Format and Protocol Reference Manual for LU Type 6.2 

c D E F 

x 



FORMAT OF APPLICATION DATA GOS VARIABLE 

The Application Data GOS variable, ID X' 12FF', contains application data. The application 
transaction program's data as specified in the MC_SEND_DATA verb is (optionally) mapped and then 
sent as X'l2FF' variables. 

FORMAT OF NULL DATA VARIABLE 

The Null Data GOS variable, ID X'l2Fl', contains no application data. This variable may 
optionally be gener<ited (see "Chapter 5.2. Presentation Services--M<ipped Conversation Verbs") to 
carry certain control information (e.g., Confirm) when no application data is available. 

FORMAT OF USER CONTROL DATA GOS VARIABLE 

The User Control Data GOS variable, ID X'l2F2', contains user control data. The meaning of this 
data is known only to the LU Services Component Programs or the transaction programs and their 
mapping programs. This data can be used, for example, as prefix control information for an 
Application Data GOS variable that follows it or to carry FM Header Data for a mapped conversa­
tion transaction. 

FORMAT OF MAP NAME GOS VARIABLE 

The Map Name GOS variable, ID X'l2F3', is followed by a 0- to 64-byte map name. See Figure H-1 
on page H-1 for the valid map name symbol-string type. 

Appendix H. FM Header and LU Services Commands H-17 



Format of an Error Data GOS variable 

The Error Data SOS v~riable. ID X'l2F4', is used to convey infor11ation about Mapping errors. It 
is sent using the SEl'l>_DATA verb follONing a SEND_ERROR verb. Its for11at is: 

0-1 Length (n+l), in binary, of Error Data SOS variable, including this Length field 
2-3 GDS ID: X'l2F4' 
4-7 Error code: 

X'OOOlOOOO' Invalid GOS ID: The 11apped conversation verb coniponent (see "Chapter 5.2. 
Presentation Services--Mapped Conversation Verbs") encountered a SOS ID 
that it did not recognize. 

X'00030001' Map Not Found: The specified map NH not avaHable at the target, or 
access to the referenced 11ap could not be completed. 

X'00030002' Map Execution Failure: The 11ap progra11 1o1as not able to process the data 
stream. 

8 Length (n-8), in binary, of error parameter 
9-n Error parameter: for a Mapping failure, the •ap name carried in the GOS variable for 

Nhich the error occurred; for an invalid SOS ID, the 2-byte GOS ID that NaS not recog­
nized 

H-18 SNA For•at and Protocol Reference Manual for LU Type 6.2 



For•at of Error log 6DS Variable 

The Error Log GOS variable, 10 X'l2El', following an FMH-7 conveys implementation-specific error 
infor•ation to an LU, Nhere it is added to the syste11 error log for use in debugging and error 
recovery. It is not used by SHA-defined service transaction programs Cother than to log it> 
since 1t contains implementation-specific data. The Error Log variable is sent as a consequence 
of issuing the SEtll_ERROR verb, but is not passed to the receiving transaction program. Its 
for11at is: 

0-1 length (n+l), in binary, of Error log GDS variable, including this length field 
2-3 GDS ID: X'l2El' 
4-• Product ~ .m 
4-S Length, in binary, of Product Set ID, including this length field (values 2 to 32,767 

are vaHd> 
tls!.!!u The length fleld is ab1ays presents a value of 2 indicates no Product Set ID 
subvector follows. 

6-11 Product Set ID CX' 10') subvector (forMt described in "Co-on Subvectors" on page 
E-24> 

•+l-n Message I.ms! 
11+1-•+2 length, in binary, of 111essage text, including this length field (values 2 to 32,767 

are valid> 
H2!!U. The Length field is always presents a value of 2 indicates no message text fol­
lows. 

11+3-n Hessage text data: imple111entation-%pecific data 

AppencHx H. Fl1 Header and LU Services COlalllands H-19 



Th;s paga ;ntenthM1ally left blank 

20 SHA ForMat and Protoco' Reference Manual for LU Type 6.2 



APPENQIX .1.. GENERAL .l2!IA ~ 

This •ppendix defines the general data streH 
(6DS>, ""'ich is used in a variety of Nays by 
SNA products. For instance, it is used to 
encode the Document Interchange Architecture 
<DIA> message units. The basfo structural 
unit in 6DS is the structured field, a string 
of bytes preceded by a length and beginning 
Nith a SOS ; dent if i er UD) that defines the 
structure of the remainder of the field. 
Some structured fields are used by c0111ponents 
of SHA that are defined in this book; these 
uses are defined in "Appendix E. 
Request/Response Unit <RUJ Formats" and "Ap-

STRUCTIJRED f.ll.!J2I 

Byte 0 

Each structured field has the format shown in 
Figure I-1. 

LENGTH IDENTIFIER INFORMATION ... 
(LL> UDJ 

2 N 

Figure I-1. 6DS Structured Field 

~ !.I..!..! DESCRIPTIQH 

Bits 1 to 15 of the LL contain a binary num­
ber fr011 4 through 32767, Nhich is the 
length, in bytes. of the variable-length 
field that follows. Values O and 1 of the LL 
are reserved for use as escape sequences; 
values 2 and 3 are not used. For example, a 
value of X'OOOl' indicates a presentation 
services header, Nhich is used for sync point 
management. 

IDENTIFIER !!!!.! DESCRIP!ION 

The 2-byte identifier that follONS the length 
field describes the format and meaning of the 
data that follow. Sometimes additiorn1l val-

pendix H. Ftt Header and LU Services 
Commands". SOS IDs are assigned, generally 
in blocks of consecutive values, to different 
layers and components of SNA and to other 
interconnection architectures.. For a com­
plete listing of these block assignments, see 
the SNA Reference SU111111ary. 

The general d•ta strea11 applies to data 
exchanged beti.reen nodes over SNA links, over 
non-SHA links, and to data exchanged via 
removable storage media or shared storage 
facilities. 

Bit 0 of byte 0 (high-order bitJ is used for 
a length continuation indicator, Nhere a val­
ue of 0 means last GOS variable segment, and 
a value of 1 11eans not-last seg111ent. Some 
data streams built from structured fields use 
other 111ethods to create data objects that are 
longer than a 15-bit length can specify. 

ues appearing in the information field are 
needed to completely specify the foformation 
field's content. 

Appendix I. General Data Stream I-1 



11\is page intentionally left blank 

/ 

2 SHA For11at and Protocol Reference Manual for LU Type 6.2 



APPENQIX !:!:. fm:I NOTATIQN 

A fjnit1-stat1 111achhJJ; (FSHl is a comb;nation of process;ng and 111e110ry, where the 11emory con­
s;sts of the .l!.!!9 of the FSM. The state can take one of a small number of named values Uhe 
ll!!.!9 .!:1!.!!.!!liL An FSM ;s defined by a matr1x that lists the states and spec1fies the processing 
to be performed when the FSH is called. This processing typically depends on the current state 
of the FSH and on the ; nput passed to the FSH, and may change the FSt1 state {resulting ; n • 
a.1!1s trans;t;on> and produce output. w;thin this •atrix definition, each state ;s given a num­
ber as ..ell as its name, for notational convenience. 

A number of alternative FSM definitions may be grouped together as a generfo FSl1, the definition 
to be used being ass;gned dynamically. The assignment of a particular definition to be used at 
a given ti•e is called the binc:finq of the generic FSM. A gener;c FSH can also be assigned to be 
a "no operation." 

The follOM;ng operations are perfornied on an FSM: 

• Call. Processing ;s perforlled as defined in the FSM definition for the ex; sting combination 
of current state and 1nput. Th;s llNIY involve a state transit;on. 

• State check. Val;d;ty check;ng ;s performed for the existing colllb;nat;on of current state 
and input. 

• State test. The current state of the FSM is tested for equality or ;nequa1;ty Ni th a speci­
fied value. 

An FSl1 is represented by a state-tra09;tion matrix. 

The synkx of the state-trans;tion •atr;x FSt1 definit;on is shown in Figure N-1 on page 2. The 
column headings give the FSM state names, mile the roN headh195 naMe the inputs to the FSl1s. 
The 11atrix elements-(rOM,columnl intersections--define the state transitions and output 
actions. 

Horizontal lines are used to group input lines together to improve readability. Their location 
has no bearing on the FSH funct;on. For compactness, 111ne1110nic abbrev;at;ons are used in the 
••trices. 

The input lines Nithin the Matrix are scanned frot11 top to bott01t at execution t;... The f;rst 
input line found Nith all its conditions 1cia is used to address the utrix for the next state 
and the output code. No more than one input line in a 11111trix has all its conditions 1l:l:m during 
a scan. 

An FSH comes into existence ;n;tialized to state l. If another state ;s to be the initial 
state, the FSH ;s initialized explicitly by calling the FSM Ni th an appropr;ate signal. 

Calling an FSH executes the FSH; ; .e., an FSH action code is selected based on the current state 
of the FSl1 and the input line that is 1cia· The input line evaluation uses the parameters or 
signal passed to the FSl1. The FSl1 is scanned for a !CY! input line frOlll top to bottOM of the 
11atrix. 

If the next-state indicator is a m.nber n, the FSM enters state n. If the next-state indicator 
is a state-check indicator (>), the call of the FSM NOUld act as if a no-state-change indicator 
(-) Nere encountered. (In pract;ce, the for•al descript;on checks for such conditions prior to 
calling an FSH in order to perfor111 special error handling.> If the next-state indicator is a 
cannot-occur indicator (/), this is an execution-time error; calls of the FSH cannot encounter 
this indicator because previous logic has filtered out the input for that state of the FSH. 

If no input line is !!::YI• the CALL acts as if a no-state-change indicator (-) Nere encountered. 

Appendix N. FSl1 Notation N-1 



fname: 

STATE NAMES----> snam 

[ . . . ] . 
INPUTS STATE NUMBERS--> snum 

ic [ ,ic J . . . ac 

ic [ ,ic J . . . ac 

ic [ ,ic J . . . ac . . . 
ic [ , ic J . . . ac 

OUTPUT FUNCTION 
CODE 

oc-1 Output logic statements 

. . . 
oc-n Output logic statements [ 

Legend: 

= optional parameter 
fname = FSM name 
snam = state name component 
snum = state number 
ic = input condition name 
ac = action code 

An action code Caci has the syntax: ns[Coc)J, where: 

ns = next-state indicator 
oc = output code !The parentheses around the oc are 

sometimes omitted to save space.I 

. . 

Possible next-state indicators and associated action code 
formats are: 

n[ Coe) J 

-CCocll 
>[Coe I] 

I 

normal state transition to state n (corresponding 
to some snuml 
same-state transition-remain in the same state 
error condition, no state change 
"cannot occur" condition, no state change 

Figure N-1. Syntax of an FSM State-Transition Matrix 

2 SNA Format and Protocol Reference Manual for LU Type 6.2 

l 

l 



SPECIAL CHARACTERS 

• lperiod>. to sep11r•t• n11• qualifhtrs 
ct.noting ct.c0111pOsition 1-5 

_ lunct.rscor•>• in n••• phr••.. 1-S 
I lvertic•l strok•>• to ••n "•i­
ther ••• or" 1-S 

I l•mperHnd>t to indic•t• c0111pOsition In 
M ... 1-5 

* l•sterisk>. to ... n "•ny v•lu." or "don't 
car•" 1-6 

ABORT_HS structur• A-11 
ref•renctad by 

FSt'l_STATUS 4-95 
PROCESS_ABORT_HS 4-77 
PROCESS_lU_LU_SESSIOH 6.0-4 
PROCESS_RECORD_FROl1_HS 4-48 

Acc .. • S.Curity Infor .. tion 9'.bfi•lds H-7 
for••t H-7 

•ction codas 
c•lling result N-1 

ACTIVATE LOGICAL UNIT IACTlU> 4-17t E-5 
ACTIVATE_NEEDED_SESSIOHS procedure 3-22 

r•f•r.nc•d by 
CHANSE_SESSIONS_PROC 3-37 
SESSION_DEACTIYATED_PROC 3-58 

ACTIYATE_SESSIOH_ERROR procec:ln-• 4-51 
ref •r9nced by 

PROCESS_ACTIYATE_SESSIOH 4-77 
ACTIYATE_SESSIOH_PROC procedure S.4-36 

r•f erer\Ced by 
PS_COPR S.4-32 

ACTIYATE_SESSIOH_RSP_PROC proc9dure 3-23 
ref•renced by 

PROCESS_lNS_TO_RH_RECORD 3-20 
ACTIYATE_SESSION_RSP structure A-20 

referenced by 
ACTIYATE_SESSIDN_RSP_PROC 3-23 
BUILD_Atl>_SEND_ACT_SESS_RSP_NEG 4-56 
BUILD_Atl>_SEND_ACT_SESS_RSP_POS 4-57 

ACTIVATE_SESSION structure A-31 
referenced by 

ACTIVATE_NEEDED_SESSIONS 3-22 
ACTIYATE_SESSION_ERROR 4-51 
BUILD_AND_SEND_ACT_SESS_RSP_NEG 4-56 
INITIALIZE_LULU_CB_ACT_SESS 4-73 
PROCESS_ACTIVATE_SESSIOH 4-77 
PROCESS_RECORD_FROH_RH 4-48 
SEND_ACTIVATE_SESSIOH 3-52 

ACTIVATE_SESSIOH verb 5.4-6, 5.4-20 
proc .. sing by PS.COPR 5.4-25 

•ctivation, session 
CP-LU 4-2, 4-17 

Cold 4-17 
ERP 4-17 

LU-LU 4-3, 4-19 
ACTLU E-5 

See •lso ACTIVATE LOGICAL UNIT 
ACTLU response 4-17 

ACTLU_Rct_RCY_RECORD structure A-21 
r•ferenced by 

BUILD_AND_SEND_ACTLU_RSP_NEG 4-57 
BUILD_AND_SEND_ACTLU_RSP_POS 4-58 
PROCESS_ACTLU_R~ 4-78 
PROCESS_RECORD_FRott_NNH 4-50 

ACTLU_RSP_SEND_RECORD structur• A-17 
referenced by 

BUILO_AND_SEND_ACTLU_RSP_HEG 4-57 
BUILD_AND_SEND_ACTLU_RSP_POS 4-58 

addr .. • 
Se• netMOrk adclr .. s 

ADDRESS structure A-34 
referenced by 

BIND_SESSION_LIHIT_EXCEEDED 4-55 
BUILD_AND_SEND_PC_HS_COHNECT 4-65 

•gent 
See sync point. roles. agent 

ALLOCATE_PROC procedure 5.1-11 
referenced by 

PS_COHY 5.1-10 
ALLOCATE_RCB_PROC procedure 3-24 

ref•renced by 
PROCESS_PS_TO_RH_RECORD 3-21 

ALlOCATE_RCB structure A-25 
r•ferenc•d by 

ALLOCATE_PROC 5.1-11 
ALLOCATE_RCB_PROC 3-24 
CREATE_RCB 3-39 
TEST_FOR_FREE_FSP_SESSIOH 3-65 

Alre•dy Verified indicator 

API 

See convers•tion-level security, Already 
Verified indicator 

See application progr•• interface CAPI> 
application progra• interface IAPI> 2-4 

See also-protocol boundary 
closed 2-13 
open 2-13 

•pplication trans•ction progra• 2-1 
See also transaction progra• 

asynchronous transf•r 2-7, 2-38 
See •lso SHA Distribution Servh:es (SHADS> 

ATTACH_CHECK procedure 3-25 
r•f erenced by 

ATTACH_PROC 3-27 
ATTACH_ERROR_PROC procedur• S.0-10 

r•f•renced by 
PS_INITIAlIZE s.o-6 

Attach FH header IFHH-5> 
See •lso FH header, type 5 (Attach> 
purpoH of H-5 

ATTACH_HEADER structur• A-13 
referenced by 

ATTACH_CHECK 3-25 
ATTACH_PROC 3·27 
GENERATE_RH_PS_INPUTS 6.l-31 
PROCESS_RU_DATA 6.1-34 
PS_CREATIOH_PROC 3-47 

ATTACH_LENGTH_CHECK procedur• 3-26 
referenc•d by 

ATTACH_CHECK 3-25 
ATTACH_PROC procedure 3-27 

ref•renced by 
PROCESS_HS_TO_RM_RECORD 3·19 
RH 3-18 

ATTACH_RECEIYED structure A-32 

Inda>< X•l 



referenced by 
ATTACH_PROC 3-27 
RCB_ALLOCATED_PROC 5.1-48 

ATTACH_SECURITY_CHECK procedure 3-29 
referenced by 

ATTACH_CHECK 3-25 
attach;ng transact;on programs 2-38, 2-47 
autoactivat;on 

See sess;on l;•its, automat;c act;vat;on 
automatic sess;on activat;on 

See sess;on l;•;ts, automat;c act;vation 
ava;lab;lity of an LU 

for sess;on in;t;at;on 4-9 
not;f;cat;on using NOTifY(Vector Key 
x•oc• > 4-14 

back-out 
See sync point, !>Qck-out 

Backed Out 
See sync point, co1111ands, Backed Out 

!>Qse function set 2-12, 2-13 
CNOS funct;ons 5.4-21 
control operator funct;ons 5.4-20 

bas;c conversation 2-3, 2-13 
See also conversat;on 
state 5.1-6 

bas;c conversat;on •essage 2-15 
bas;c infor•at;on unit (BIU> 2-15, 2-16, 

2-32 
Beg;n Bracket indicator <BBI> 

use 6.1-1, 6.1-4, 6.1-6, 6.1-9, 6.1-10, 
6.1-11. 6.1-12, 6.1-14 

Beg;n Cha;n ind;cator CBCI> 
use 6.1-8. 6.1-12, 6.1-13 

bid 
See bracket, bid 

BID_PROC procedure 3-30 
referenced by 

PROCESS_HS_TO_RH_RECORD 3-19 
BID_RSP_PROC procedure 3-32 

referenced by 
PROCESS_HS_TO_RH_RECORD 3-19 

BID RSP structure A-14, A-28 
referenced by 

BIO_PROC 3-30 
BID_RSP_PROC 3-32 
GENERATE_RH_PS_INPUTS 6.1-31 
SEND_RSP_TO_RM_OR_PS 6.1-39 

BID structure A-14 
referenced by 

BID_PROC 3-30 
GENERATE_RH_PS_INPUTS 6.1-31 

BID_WITH_ATTACH structure A-28 
referenced by 

BIDDER_PROC 3-34 
DFC_SEtll_FROH_RH 6.1-20 
FIRST_SPEAKER_PROC 3-43 
SESSION_ACTIVATED_ALLOCATION 3-56 

BID_WITHOUT_ATTACH structure A-29 
referenced by 

BIDDER_PROC 3-34 
DFC_SEND_FRot1_RH 6.1-20 

b;dder 2-8, 2-35 
See also bracket, b;dder 
See also contention loser 

BIDDER_PROC procedure 3-34 
referenced by 

GET_SESSION_PROC 3-45 
b;dd;ng 2-35. 3-5, 3-10 

See also bracket, bidding 
bidd;ng Nith data 

See bracket, bidding 
Bitll 2-8, 2-16, 2-36, E-5 

See also BIND SESSION 
BIND FAILURE CBINDFJ 4-11, E-9 
BIND image 

der;ved from lllOde na- 4-5 
in CINIT 4-9 

Bitll negotiation 2-36 
BIND response 4-25 
BINO_RQ_RCV_RECORD structure A-21 

referenced by 
BIND_RQ_STATE_ERROR 4-52 
BUILD_AND_SEND_Bitll_RSP_NEG 4-59 
BUil.D_AND_SEND_BIND_RSP _POS 4-60 
FSH_STATUS 4-95 
INITIALIZE_LULU_CB_BIND 4-74 
PROCESS_BIND_RQ 4-79 
PROCESS_RECORO_FROH_tll1 4-50 

BIND_RQ_SEND_RECORD structure A-17 
referenced by 

BUILD_At«>_SEND_BIND_RQ 4-59 
BIND_RQ_STATE_ERROR procedure 4-52 

referenced by 
PROCESS_BIND_RQ 4-79 

BIND_RSP_RCV_RECORD structure A-22 
referenced by 

BIND_RSP_STATE_ERROR 4-53 
PROCESS_BIND_RSP 4-81 
PROCESS_RECORD_FROH_NNH 4-50 

BIND_RSP_SEND_RECORD structure A-17 
referenced by 

BUILD_Al'l>_SEND_BIND_RSP_NEG 4-59 
BUILD_AND_SEl'l>_Bil'l>_RSP_POS 4-60 

BIND_RSP_STATE_ERROR procedure 4-53 
referenced by 

PROCESS_BIND_RSP 4-81 
BIND SESSION <BINDI 4-19, E-5 
BIND_SESSION_LIMIT_EXCEEDED procedure 4-55 

referenced by 
BIND_RQ_STATE_ERROR 4-52 

BINDF E-9 
See also BIND FAILURE 

b;nd;ng of generic finite-state Machines N-1 
BIS 2-16, 2-36, E-9 

See also BRACKET INITIATION STOPPED 
BIS <BRACKET INITIATION STOPPEDI 6.1-14 
BIS_RACE_LOSER procedure 3-35 

referenced by 
FStt_BIS_BIDDER 3-70 

BIS_REPLY_PROC procedure 3-35 
referenced by 

PROCESS_Hs_ro_RH_RECORD 3-19 
BIS_REPLY structure A-14, A-29 

referenced by 
BIS_RACE_LOSER 3-35 
BIS_REPLY_PROC 3-35 
GENERATE_RH_PS_INPUTS 6.1-31 
SEt«>_BIS_REPLY 3-53 

BIS_RQ_PROC procedure 3-36 
referenced by 

PROCESS_Hs_TO_RH_RECORD 3-19 
BIS_RQ structure A-14, A-29 

BIU 

referenced by 
BIS_RQ_PROC 3-36 
GENERATE_RM_PS_INPUTS 6.1-31 
SEND_BIS_RQ 3-54 

See !>Qsic information unit (BIU> 
BIU structure A-34 
blanks 

See space <X'40') characters 
block chaining cryptography 6.2-5 

X-2 SNA For111at and Protocol Reference Manual for LU Type 6.2 



block d;agra• representation 1-1 
block diagram, arrOM and line conventfons 

Mlthin 1-6 
blocking of lllt!ssage uiits 

See reblocking 
bracket 2-16, 2-35 

See also Mssage units, session sequences 
bid 6.1-4, 6.1-9, 6.1-10, 6.1-14 
bidder 6.1-3, 6.1-9, 6.1-10, 6.1-15 
bidding 6.1-4. 6.1-9 
bracket ter•ination rule 6.1-3, 6.1-4, 
6.1-9 

error conditions 6.1-10 
first on session 2-35 
first speaker 6.1-3, 6.1-9, 6.1-10 
;nit;ation 6.1-9 
protocols 6.1-1, 6.1-9 
relationship to conversation 6.1-9 
RH ind;cators 6.1-9, 6.1-10 

BRACKET INITIATION STOPPED <BIS> 3-16, 
5.1-12, 6.1-2, 6.1-9, 6.1-10, 6.1-12, 
6.1-13, 6.1-14, E-9 

bracket state 2-35, 2-36 
bracket ter•ination rule 

See bracket, bracket ter•ination rule 
BUFFER_ELEHENT structure A-8 

referenced by 
ATTACH_ERROR_PROC 5.0-10 
DEQUEUE_F11H7_PROC 5.1-36 
GET_El-l>_CHAIN_FROH_HS 5.1-37 
PERFORM_RECEIVE_PROCESSIH6 5.1-39 
SEND_ERROR_PROC 5.1-26 
TEST_FOR_POST_SATISFIED 5.1-58 
TEST_PROC 5.1-27 
WAIT_FOR_RSP_TO_RQ,_TO_SEND_PROC 5.1-61 
WAIT_FOR_SEND_ERROR_DONE_PROC 5.1-62 

buffer record 2-14, 2-16, 2-31, 2-32 
buffering betNeen LU component proc­
esses 2-32 

BUILD_AND_SEtll_ACT_SESS_RSP_HE6 proce­
dure 4-56 

referenced by 
FSt1_STATUS 4-95 
PROCESS_ACTIVATE_SESSION 4-77 

BUILD_AND_SEtll_ACT_SESS_RSP_POS proce-
dure 4-57 

referenced by 
FSH_STATUS 4-95 

BUILD_AND_SEND_ACTLU_RSP_NEG procedure 4-57 
referenced by 

PROCESS_ACTLU_RQ 4-78 
BUILD_AND_SEND_ACTLU_RSP_POS procedure 4-58 

referenced by 
PROCESS_ACTLU_RQ 4-78 

BUILD_AND_SEl-l>_BIND_RQ procedure 4-59 
referenced by 

FSH_STATUS 4-95 
BUILD_AND_SEND_BIND_RSP_NE& procedure 4-59 

referenced by 
FSH_STATUS 4-95 
PROCESS_BIND_RQ 4-79 

BUILD_AND_SEND_BIND_RSP_POS procedure 4-60 
referenced by 

FSH_STATUS 4-95 
BUILD_AND_SEND_BINDF_RQ procedure 4-60 

referenced by 
FSH_STATUS 4-95 

BUILD_Atll_SENO_CINIT_RSP procedure 4-61 
referenced by 

FSH_STATUS 4-95 
PROCESS_CINIT_RQ 4-82 

BUILD_AND_SEND_DACTLU_RSP procedure 4-62 
referenced by 

PROCESS_DACTLU_RQ 4-86 

BUILD_AND_SEND_DEACTIVATE_SESS proce-
dure 4-62 

referenced by 
FSM_STATUS 4-95 

BUILD_AND_SEND_HIER_RESET_RSP procec:l.lre 4-63 
referenced by 

PROCESS_HIERARCHICAL_RESET 4-87 
BUILD_AND_SEND_INIT_HS procedure 4-63 

referenced by 
FSH_STATUS 4-95 

BUILD_AND_SEND_INIT_Rt procedure 4-64 
referenced by 

FSH_STATUS 4-95 
BUILD_AND_SEND_PC_CONNECT procedure 4-64 

referenced by 
FSH_STATUS 4-95 

BUILD_AND_SEND_PC_HS_CONNECT procedure 4-65 
referenced by 

FSM_STATUS 4-95 
PROCESS_ACTLU_RQ 4-78 

BUILD_AND_SEND_PC_HS_DISCONNECT proce-
dure 4-65 

referenced by 
CLEANUP_LU_LU_SESSION 4-72 
FSM_STATUS 4-95 
PROCESS_DACTLU_RQ 4-86 

BUILD_AND_SEND_RSP_OR_l06 procedure 4-66 
referenced by 

FSH_STATUS 4-95 
PROCESS_CLEANUP_RQ 4-84 
PROCESS_CTERM_RQ 4-85 
PROCESS_NOTIFY_RQ 4-89 
PROCESS_RECORD_FROt1_HS 4-48 

BUILD_AND_SEND_SESS_ACTIVATED procedure 4-67 
referenced by 

FSH_STATUS 4-95 
BUILD_AND_SEND_SESS_DEACTIVATED proce-
dure 4-67 

referenced by 
FSM_STATUS 4-95 

BUILD_AND_SEND_SESSEMl_RQ procedure 4-68 
referenced by 

CLEANUP_LU_LU_SESSION 4-72 
BUILD_AND_SEND_SESSST_RQ procedure 4-68 

referenced by 
FSH_STATUS 4-95 

BUILD_AND_SEND_TERM_RQ procedure 4-69 
referenced by 

FSH_STATUS 4-95 
BUILD_AHD_SEND_uteIND_RQ procedure 4-69 

referenced by 
FSM_STATUS 4-95 

BUILD_AND_SEND_uteIND_RSP procedure 4-70 
referenced by 

FSM_STATUS 4-95 
PROCESS_uteIND_RQ 4-91 

BUILD_AND_SEND_uteINDF_RQ procedure 4-70 
referenced by 

FSH_STATUS 4-95 

CALL/RETURN procedure interaction 
CALL statement 

f;nite-state 11achines N-l 
input signal N-1 
next-state ind;cator N-1 

calling trees 
TC initi•lization calling tree 6.2-7 
TC RCV calling tree 6.2-7 
TC SEND calling tree 6.2-7 

Inda>< X-3 



cHcaded agent 
See sync point, roles, cascaded agent 

cascaded protocol 
See sync po;nt, roles, cascaded agent 

category value, sense code 6-1 
See also sense dat• 

ch.in 2-16 
relationship to verbs 2-19 

chaining 
definite-response chain 6.1-8 
exception-response chain 6.1-8 
general descripUon 6.1-1, ,6,1-8 
RH indic•tors 6.1-8 
use in FH profiles 6.1-2, 6.1-16 

CHANGE_ACTION procedure 5.4-44 
referenced by 

LOCAL_SESSION_LIMIT_PROC 5.4-41 
PROCESS_SESSION_LIMIT_PROC 5.4-58 
RESET_SESSION_LIMIT_PROC 5.4-34 
SOURCE_SESSION_LIMIT_PROC 5.4-46 

Change Direction indicator <CDI) 
use 6.1-4, 6.1-9, 6.1-10, 6.1-11, 6.1-12, 

6.1-14 
change number of sessions (CNOS> 2-38, 
5.4-3, 5.4-5, H-12 

See also presentat;on services for the 
control operator <PS.COPR) 

c011111and format H-12 
component relationship 5.4-6 

source-LU services 5.4-25 
target-LU services 5.4-28 

conversation 5.4-7 
allocating 5.4-27 
Attach processing 5.4-22 
basic conversation verbs used 5.4-9 
1110de name 5.4-20, 5.4-27 

error recovery 
See error recovery, CNOS 

locking (LU,lllOde) entry 5.4-14, 5.4-30 
111essage unit flONS 5.4-10 
privilege 5.4-24, 5.4-27 
processes 5.4-11 

concurrency 5.4-12 
race resolution 

action race 5.4-14 
COtmland race 5.4-14 
double cmmnand failure 5.4-15, S.4-19 
LU name comparison 5.4-19 
no race 5.4-16 
single conand failure 5.4-16 

relationship to HS 5.4-12 
relationship to LHS 5.4-8 
relationship to RM 5.4-8, 5.4-28 
retry 

See change nullber of sessions ( CNOS > , 
race resolution, double c0111111and fail­
ure 

See error recovery, CNOS 
security 

See change number of sessions (CNQS), 
privilege 

transaction 5.4-9, 5.4-12 
Change Number of Sessions GOS variable 5.4-7 

CNOS command 5.4-7, 5.4-27 
Close action 5.4-30 
Set action 5.4-28, 5.4-29 

CNOS reply 5.4-7, 5.4-27, 5.4-28 
See also Change tuwber of Sessions GOS 
variable, CNOS command 

Accepted reply •edifier S.4-28 
Co111111and Race reply 11edifier 5.4-15, 
S.4-30 

Mode Name Closed reply modifi­
er 5.4-29, 5.4-30 

Mode Na111e Not Recognized reply llOdifi­
er S.4-30 

Negotiated reply modifier 5.4-28 
reply modifier field 5.4-30 

change-number-of-sessions service transaction 
program 5.4-1, 5.4-5, 5.4-11, 5.4-21, 
5.4-22 

name 5.4-22, 5.4-27 
relationship to PS.COPR 5.4-1, 5.4-28 

CHANGE_SESSION_LIHIT_PROC procedure 5.4-35 
referenced by 

PS_COPR 5.4-32 
CHANGE_SESSION_LIHIT verb S.4-6, S.4-15, 
5.4-21 

processing by PS.COPR 5.4-29 
CHANGE_SESSIOHS 5.4-8, 5.4-24, 5.4-25, 
5.4-28 

CHANGE_SESSIONS_PROC procedure 3-37 
referenced by 

PROCESS_PS_TO_RM_RECORD 3-21 
CHANGE_SESSIONS structure A-26 

referenced by 
CHANGE_ACTION 5.4-44 
CHANGE_SESSIONS_PROC 3-37 

CHECK_CNOS_CONHAND procedure 5.4-63 
referenced by 

PROCESS_SESSION_LIHIT_PROC S.4-58 
CHECK_CNOS_REPLY procedure 5.4-56 

referenced by 
SOlmCE_SESSION_LIHIT_PROC 5.4-46 

CHECK_FOR_BIS_REPLY procedure 3-38 
referenced by 

FSM_BIS_BIDDER 3-70 
FSM_BIS_FSP 3-71 

CINIT E-9 
See also CONTROL INITIATE 

CINIT response 4-10 
CINIT_RQ_STATE_ERROR procedure 4-71 

referenced by 
PROCESS_CINIT_RQ 4-82 

class of service 2-3, 4-5 
CLEAN UP SESSION (CLEANUP> 4-12, E-10 
CLEANUP E-10 

See also CLEAN UP SESSION 
CLEANUP_LU_LU_SESSION procedure 4-72 

referenced by 
FStl STATUS 4-95 

CLOSE_ONE:REPLY procedure 5.4-65 
referenced by 

NEGOTIATE_REPLY S.4-64 
CNOS 

See change number of sessions (CNOS> 
CNOS service TP 

See change-number-of-sessions service 
transaction progra• 

COlllll;t 
See sync point 

COlllll itment 
See sync point 

Committed 
See sync point, C0111111ands, Cownitted 

Common Subvector 
Product Identifier (X'll') E-24 
Product Set ID (X'10') E-24 

Compare States H-14 
See also sync point, eo111111ands, Compare 
States 

co111111and format H-14 
COMPLETE_CONFIRH_PROC proceclire 5.1-29 

referenced by 
CONFIRM_PROC 5.1-12 

COHPLETE_DEALLOCATE_ABEND_PROC proce­
dure 5.1-30 

referenced by 

X-4 SHA For1111t and Protocol Reference Manual for LU Type 6.2 



DEALLOCATE_ABEND_PROC 5.1-32 
WAIT_FOR_SEND_ERROR_DONE_PROC 5.1-62 

Cot1PLETE_HS_ATTACH procedure 3-38 
referenced by 

ATTACH_PROC 3-27 
conditional bracket ter•ination 

See bracket, bracket ter•ination rule 
Conditional End Bracket indicator (CEBil 

use 6.1-2, 6.1-41 6.l-61 6.1-91 6.1-10, 
6.1-111 6.1-14 

CONFIRM_PROC procedure 5.1-12 
referenced by 

PS_CONV S. l-10 
CONFIRMED_PROC procedure 5.1-14 

referenced by 
PS_CONV 5.1-10 

CONFIRMED structure A-121 A-24 
referenced by 

CONFIRNED_PROC 5.1-14 
DFC_SEND_FROM_PS 6.1-19 
SEND_RSP_TO_RM_OR_PS 6.1-39 

CO....ECT_RCB_AND_sce procedure 3-39 
referenced by 

BID_RSP_PROC 3-32 
COMPLETE_HS_ATTACH 3-38 
FIRST_SPEAKER_PROC 3-43 
SESSION_ACTIVATED_ALLOCATION 3-56 I 

TEST_FOR_FREE_FSP_SESSION 3-65 
contention loser 2-8, 2-351 S.4-31 5.4-4 

See also bidder 
See also bracket, bidder 
See also session, contention polarity 

contention Minner 2-8, 2-35, 5.4-4 
See also bracket, first speaker 
See also first speaker 
See also session, contention polarity 

contention, bracket 
See bracket, protocols 

continuation bit in length prefix 2-14 
See also length prefix (LL) 

control component 
See service component 

CONTROL INITIATE (CINITl 4-9, E-9 
control Made 

delayed request 6.1-16 
delayed response 6.1-16 
iimnediate request 6.1-1, 6.1-2, 6.l-81 
6.1-16 

i11111ediate response 6.1-1, 6.1-2, 6.1-8, 
6.1-16 

control operator 2-2, 2-3, 2-38, 5.4-1, 
S.4-22 

See also control-operator transaction pro­
gra• 

control-operator transaction progra• 2-3, 
2-36, 2•38, 2·46, 5.4-11 5.4-51 5.4-71 
5.4-11, 5.4-20. 5.4-21, 5.4-22 

relationship to PS.COPR 5.4-1, 5.4-25 
control-operator verbs 2-3, 2-8, 2·38, 5.4-2 

CNOS 5.4-61 5.4-21 
See also change number of sessions 

(CNOSJ 
distributed f1.11Ction 5.4-3, 5.4-5, S.4-6 
local f1.11etion 5.4-3, 5.4-5, 5.4-6, 
5.4-24 

local session control 5.4-6 
LU definition S.4-5, 5.4-20 
processing by PS.COPR 5.4-24 

control point (CPJ 2-41 2-61 2-8, 2-11, 
2-161 2-36, 2-42, 4-2 

See also PHCP (peripheral node control 
poinU · 

See also SSCP (syste11 services control 
point) 

relationship to LU 2-281 2-37 
CONTROL TERMINATE (CTERHJ 4-121 E-10 
Control Vector 

Control Vactor Keys Not Recognized E-22 
Local For• Session Identifier E-22 
LU-LU Session Services Capabilities E-21 
Hode/ Class-of-Service/ 
Virtual-Route-Identifier-list E-21 

NetNOrk-Qualified Address Pair E-21 
SSCP-LU Session Capabilities E-20 
VR-ER Napping Data E-22 

Control Vector Keys Not Recognized Control 
Vector E-22 

conversation 2-11 2-3, 6.1-9 
See also bracket 
allocation to transaction progra• 2-35, 

3-4, 5.1-6 
basic 

See basic conversation 
deallocation 2-35 
upped 

See mapped conversation 
relationship to bracket 6.1-9 
ter•ination 3-12 

conversation correlator S.3-31 5.3-18 
conversation exchange 2-15 

See also Message units, conversation 
sequences 

conversation failure 
See errors, conversation failure 

CONVERSATION_FAILURE_PROC procedure S.l-31 
referenced by 

6ET_END_CHAIN_FRot1_HS 5.1-37 
PROCESS_RM_OR_HS_TO_PS_RECORDS 5.1-47 
PS_PROTOCOL_ERROR 5.0-15 
WAIT_FOR_CONFIRHED_PROC 5.1-59 
WAIT_FOR_RH_REPLY S.1-60 
WAIT_FOR_RSP_TO_RQ_TO_SE.al_PROC 5.l-61 

CONVERSATION_FAILURE structure A-32 
referenced by 

CONVERSATION_FAILURE_PROC 5.1-31 
PS_PROTOCOL_ERROR 5.0-15 
RECEIVE_RM_OR_HS_TO_PS_RECORD 5.1-51 
SE.al_DATA_PROC 5.1-24 
SESSION_DEACTIVATED_PROC 3-58 

conversation-level security 2-101 2-111 
2-341 2-36, 2-37, 3-2. 3-9 

Access Security Infor .. tion subfields H-7 
already verified Attach 2-11 
Already Verified indicator 2-11, 2-34 
downgrade 5.1-4, 5.1-7 
passNOrd 2-11, 2-37 
profile 2-11, S.0-3 
user ID 2-11, S.0-3 

conversation message 2-15, 2-16 
See also basic conversation Message 
See also 111essage units 

conversation resource 2-35, 2-42 
See also conversation 

correlation 
See request/response correlation 

correlation entries 
See request/response correlation 

cos 
See class of service 

CP 
See control point (CPJ 

CP_ID structure A-2 
referenced by 

ACTIVATE_SESSION_ERROR 4-51 
INITIALIZE_LULU_ce_ACT_SESS 4-73 
PROCESS_ACTIVATE_SESSION 4-77 

CP-LU session 2-161 2-36, 2-45 
See also session 

Index X-5 



CPLU_CAPABILITY structure 2-42 
CPLU_CB structure A-1 

referenced by 
INITIALIZE_LULU_CB_CINIT 4-75 
PROCESS_ACTLU_RQ 4-78 
PROCESS_DACTLU_RQ 4-86 
PROCESS_HIERARCHICAt._RESET 4-87 
PROCESS_SESSION_ROUTE_INOP 4-90 

CREATE_RCB procedure 3-39 
referenced by 

ALLOCATE_RCB_PROC 3-24 
TEST_FOR_FREE_FSP_SESSION 3-65 

CREATE_SCB procedure 3-40 
referenced by 

SUCCESSFUL_SESSION_ACTIYATION 3-63 
CRY E-10 

See also CRYPTOGRAPHY VERIFICATION 
See also CRYPTOGRAPHY VERIFICATION CCRVJ 

CRV_RQ_RU structure A-33 
cryptography 6.2-1, 6.2-2, 6.2-3, 6.2-4, 
6.2-5 

See also sess;on cryptography 
block cha;n;ng 6.2-5 
CRY 6.2-2, 6.2-3 

initial chaining value 6.2-2, 6.2-3 
session cryptography key 6.2-2 
session seed 6.2-2 
test value 6.2-2 

Data Encryption Standard (DES> 6.2-S 
initial chaining value 6.2-2, 6.2-3 
initializat;on 6.2-2 
parameters in BitlJ 4-23 
session cryptography key 6.2-2, 6.2-5 
session key distribut;on 6.2-3 
session-level 4-23 
session seed 6.2-2, 6.2-S 
session seed d;stribution 6.2-3 

cryptography key, session 
;n BitlJ i .. ge 

enciphered under SLU Master key 4-10 
fo CINIT 

enciphered under PLU llMl&ter key 4-10 
CRYPTOGRAPHY VERIFICATION CCRVJ 6.2-2, E-10 

session cryptography key 6.2-2 
session seed 6.2-2 
test value 6.2-2 

CTERM E-10 
See also CONTROL TERMINATE 

CTERM_DEACTIVATE_SESSION_PROC procedure 3-40 
referenced by 

PROCESS_LNS_TO_RH_RECORD 3-20 
CTERH_DEACTIVATE_SESSION structure A-20 

referenced by 
BUILD_AND_SEtlJ_DEACTIVATE_SESS 4-62 
CTERH_DEACTIVATE_SESSION_PROC 3-40 

current bracket ID 
See current bracket sequence number 

current bracket sequence number 6.1-5, 
6.1-6, 6.1-7 

DACTLU E-11 
s .. also DEACTIVATE LOGICAL UNIT 

DACTLU_RQ_RCV_RECORD structure A-22 
referenced by 

BUILD_AND_SEND_DACTLU_RSP 4-62 
PROCESS_DACTLU_RQ 4-86 
PROCESS_RECORD_FROM_Ntt1 4-50 

DACTLU_RSP_SEtlJ_RECORD structure A-17 
referenced by 

BUILD_Atl>_SEND_DACTLU_RSP 4-62 
data base resources 2-4, 2-39 

consistency of updates 
See sync point, data base update con­
sistency 

Data Encryption Standard CDESJ 6.2-1 
data flott control (DfC) 

BIS 6.1-2, 6.1-9, 6.1-10, 6.1-12t 6.1-13, 
6.1-14 

initialization 6.1-1 
LUSTAT 6.1-2, 6.1-4, 6.1-10, 6.1-12, 
6.1-13. 6.1-14 

protocol boundaries 6.1-3, 6.1-17 
request formats 6.1-12, 6.1-13 
response for•ats 
RTR 6.1-2, 6.1-4, 6.1-51 6.1-7, 6.l-9, 
6.1-10, 6.1-12, 6.1-13, 6.1-15 

SIG 6.1-2, 6.1-4, 6.1-5, 6.1-6, 6.1-7, 
6.1-12, 6.1-13, 6.1-15 

structure 6.1-1 
data record 2-14, 2-31, 2-39 
data shipping 
data structures 2-42 

system definition 2-42 
data traffic 

activation 6.2-1 
deactivation 6.2-1 

data traffic protocols 
CRY 6.2-2 

session cryptography key 6.2-2 
session seed 6.2-2 
test value 6.2-2 

session cryptography key 6.2-2 
session seed 6.2-2 

DEACTIVATE_FREE_SESSIONS procedure 3-41 
referenced by 

CHANGE_SESSIONS_PROC 3-37 
DEACTIVATE LOGICAL UNIT <DACTLUJ 4-19t E-11 
DEACTIVATE_PENDING_SESSIONS procedure 3-41 

referenced by 
CHANGE_SESSIONS_PROC 3-37 

DEACTIYATE_SESSION_PROC procedure 5.4-37 
referenced by 

PS_COPR S.4-32 
DEACTIVATE_SESSION structure A-31 

referenced by 
BUILD_AND_SEtlJ_TERH_RQ 4-69 
FSH_STATUS 4-95 
PROCESS_DEACTIYATE_SESSION 4-87 
PROCESS_RECORD_FROl't_RM 4-48 
SEND_DEACTIYATE_SESSION 3-55 

DEACTlYATE_SESSION verb S.4-6, S.4-20 
processing by PS.COPR S.4-21 

deactivation, session 
CP-LU 4-2, 4-19 
LU-LU 4.3, 4·28 

deadlock 6.2-6 
DEALLOCATE_ABEtl>_PROC procedure 5.1-32 

referenced by 
DEALLOCATE_PROC S.l-15 

DEALLOCATE_CONFIRH_PROC procedure 5.1-33 
referenced by 

DEALLOCATE_PROC S.1-15 
DEALLOCATE_FLUSH_PROC procedure 5.1-35 

referenced by 
DEALLOCATE_PROC S.1-15 

DEALLOCATE_PROC procedure 5.1-11 
referenced by 

PS_CONV S.1-10 
DEALLOCATE_RCB structure A-26 

referenced by 
DEALLOCATE_PROC 1.1-15 
FLUSH_PROC S.1-17 
PROCESS_PS_TO_RH_RECORD 3·21 

X-6 SHA ForRt and Protocol Reference Hanual for LU Type 6.2 



DEALLOCATION_CLEANUP_PROC procedure 5.0-13 
referenced by 

ACTIYATE_SESSION_PROC 5.4-36 
ALLOCATE_PROC 5.1-11 
ATTACH_ERROR_PROC 5.0-10 
CHANGE_SESSION_LIMIT_PROC 5.4-35 
CONFIRM_PROC 5.1-12 
DEACTIVATE_SESSION_PROC S.4-37 
DEALLOCATE_CONFIRM_PROC 5.1-33 
DEALLOCATE_FLUSH_PROC 5.1-35 
DEALLOCATE_PROC 5.1-15 
FSH_CONVERSATION 5.1-63 
INITIALIZE_SESSION_LIHIT_PROC 5.4-33 
LOCAL_VERB_PARAMETER_CHECK 5.4-42 
HC_ALLOCATE_PROC 5.2-20 
PREPARE_TO_RECEIVE_PROC 5.1-19 
PROCESS_SESSION_LIMIT_PROC 5.4-58 
PS_INITIALIZE 5.0-6 
PS_VERB_ROUTER 5.0-11 
RECEIVE_PIP_FIELD_FROH_HS 5.0-7 
RESET_SESSION_LIMIT_PROC 5.4-34 
SEND_DATA_PROC 5.1-24 
SNASVCHG_VERB_PARAMETER_CHECK 5.4-43 
VERB_PARAMETER_CHECK 5.4-48 
WAIT_PROC 5.0-13 

deciphering 6.2-1, 6.2-4, 6.2-5 
block chaining 6.2-5 
CRY 6.2-2 

session cryptography key 6.2-2 
session seed 6.2-2 
test value 6.2-2 

Data Encryption Standard CDES) 6.2-5 
session cryptography key 6.2-2, 6.2-5 
session seed 6.2-2 

DEFINE_PRDC procedure 5.4-38 
referenced by 

PS_COPR 5.4-32 
definite-response chain 

See chaining, definite-response ctulin 
delayed request Mode 

See control Mode, delayed request 
delayed response 11ede 

See control Mode, delayed response 
DELETE_PROC procedure 5.4-40 

referenced by 
PS_COPR 5.4-32 

DEQUEUE_FMH7_PROC procedure 5.1-36 
referenced by 

CONFIRM_PROC 5.1-12 
DEALLOCATE_CONFIRM_PROC 5.1-33 
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-41 
RECEIVE_AND_WAIT_PROC S.1-20 
RECEIVE_IHHEDIATE_PROC 5.1-22 
SEND_DATA_PROC S.1-24 
SENO_ERROR_IH_SENO_STATE 5.1-55 
TEST_l'ROC 5.1-27 
WAIT_FOR_CONFIRMED_PROC 5.1-59 

DEQUEUE_WAITING_REQUEST procedure 3-42 
referenced by 

FREE_SESSION_PROC 3-44 
RTR_RSP_PROC 3-51 

DES algorith• 4-5 
destination LU (OLU> 4-4 
destination transaction program 2-7 
DFC_INITIALIZE procedure 6.1-18 

referenced by 
HS 6.0-3 

DFC_RCV_FSMS procedure 6.1-24 
referenced by 

DFC_RCY 6.1-23 
DFC_RCY procedure 6.1-23 

referenced by 
TC.RCV 6.2-15 

DFC_SEtl>_FROM_LNS procedure 6.1-22 

referenced by 
PROCESS_CP_LU_SESSION 6.0-5 

DFC_SEND_FROH_PS procedure 6.1-19 
referenced by 

PROCESS_LU_LU_SESSION 6.0-4 
DFC_SEND_FRON_RM procedure 6.1-20 

referenced by 
PROCESS_LU_LU_SESSION 6.0-4 

DFC_SENO_FSMS procedure 6.1-25 

DIA 

referenced by 
DFC_SEND_FROH_PS 6.1-19 
DFC_SEND_FROM_RM 6.1-20 
SEND_BIU 6.1-37 
SEND_RSP_BIU 6.1-38 

See DocU111ent Interchange Architecture 
CDIA) 

DISPLAY_PROC procedure 5.4-39 
referenced by 

PS_COPR 5.4-32 
distributed operator control 2-3 

See also control-operator verbs, distrib­
uted function 

distributed processing 2-1 
distributed transaction 2-1, 2-38, 2-45 

CNOS 5.4-9 
distributed transaction program 

See logical unit of NOrk (llJW), distrib­
uted 

distribution service unit CDSUJ 2-38 
DLU 

See destination LU !DLUJ 
Document Interchange Architecture IDIA> 2-38 
doeU111ent interchange services 

See Doclllltent Interchange Architecture 
<DIA) 

domain, definition of 1-S 
drain 2-36, 2-47 
drain of session allocation requests 3-161 
5.4-4, 5.4-81 S.4-21, 5.4-25, 5.4-30 

negotiation by CNOS 5.4-30 
DSU 

See distribution service unit (DSU) 

ECHO TEST CECHOTESTJ 4-31, E-11 
ECHOTEST E-11 

See also ECHO TEST 
EDI 

See Enciphered Data indicator <EDIJ 
E111Ulated Product Identifier <X'Ol') Product 
Identifier Subfield E-25 

enciphered data 4-27 
See also LU-LU verification 
See also session-level security, enci­
phered data 

Enciphered Data indicator IEDI) 6.2-5 
Enciphered Data Structured Data Sub­
field E-17 

ENCIPHERED_RD2 structure A-30 
referenced by 

DFC_SEND_FROM_RH 6.1-20 
SUCCESSFUL_SESSION_ACTIVATION 3-63 

enciphering 6.2-1, 6.2-4, 6.2-5 
block chaining 6.2-5 
CRV 6.2-2 

session cryptography key 6.2-2 
session seed 6.2-2 
test value 6.2-2 

Data Encryption Standard <DES) 6.2-5 

Index X-7 



sessfon cryptography key 6.2-2, 6.2-5 
session seed 6.2-2 

End Chain indicator (ECI> 
use 6.1-s, 6.1-11 

end of conversation 111essage 2-15, 2-20, 
2-31, 2-32 

ERP (error recovery procedure) 
session activation and deactivation 4-34 
type of RSP(ACTLU) 4-17 

error category 
See sense data 

ERROR_DATA_STRUCTURE structure 5.2-48 
referenced by 

PROCESS_ERROR_DATA 5.2-43 
RCVD_SVC_ERROR_PURGING S.2-42 
RCVD_SVC_ERROR_TRUNC_NO_TRUNC 5.2-41 
SEND_SVC_ERROR_PURGING 5.2-45 

Error Description FH header (FHH-7) H-5 
See also FH header, type 7 (Error 
Description> 

error recovery 
See also error-s 
CNOS 5.4-27, 5.4-30 

conver-sation failur-e 5.4-20, 5.4-27 
protocol violation 5.4-30 
unrecognized c0111111and para111eters 5.4-30 

confirmation 2-12, 2-15 
control operator 2-12 
conversation deallocation 2-12 
distributed 

See sync point 
LU 2-12 
program 2-12, 2-15 
session deactivation 2-12 
sync point 

See sync point 
tr-ansaction progr-am 2-12 

ERROR_TYPE structure 4-101 
r-eferenced by 

ACTIVATE_SESSION_ERROR 4-51 
BUILD:AND_SEND_ACT_SESS_RSP_NEG 4-56 
PROCESS_ACTIVATE_SESSION 4-77 

errors 2-11 
See also error r-ecover-y 
See also error-s and failures 
application-detected 2-11 
conver-sation failure 2-12, 2-36, 5.1-9 
local resour-ce 2-11 
LU failur-e 2-12, 2-42 
pr-ogr-am failure 2-11 
protocol S.1-9 
session failure 2-12 
system r-ecoverable 2-11 

errors and failures 5.3-1, S.3-19, S.3-24, 
5.3-25, 5.3-30, 5.3-31, 5.3-32, 5.3-33, 
5.3-41 

application errors 5.3-1 
conver-sation failur-es S.3-1, 5.3-2, 

5.3-18, 5.3-19, 5.3-22, 5.3-32 
local r-esour-ce failur-es 5.3-1 
LU failur-es S.3-1, 5.3-2, 5.3-20 
program failures 5.3-1, 5.3-2 
r-ecoverable syste111 errors S.3-1 

err-ors during sync point 
See sync point, err-or-s during sync point 

exception-response chain 
See chaining, exception-r-esponse chain 

Exchange Log Name H-13 
See also sync point, c0tmnands, Exchange 

Log Name 
command format H-13 

expedited flow 
in contrast to normal flow 6.2-4, 6.2-5 
TC 6.2-1, 6.2-4, 6.2-5 

EXR <F.XCEPTIOH REQUEST> 
StBISe data included Mi th G-1 

failures 
See errors and failures 

FI 
See Forniat indicator (fl) 

files 
See sync point, local resources 

finite-state machine (FSHJ, basic notion 
of 1-1 

finite-state machines 
binding N-1 
call N-1 
generic finite-state machines N-1 
initialization N-1 
no-op finite-state Machines N-1 
state N-1 
state check N-1 
state name N-1 
state test N-1 
state transition N-1 

first speaker 2-8, 2-35 
See also bracket, first speaker 
See also contention winner 

FIRST_SPEAKER_PROC procedure 3-43 
referenced by 

GET_SESSION_PROC 3-45 
flip-flop, half-duplex 

See send/receive mode, half-duplex 
flip-flop (HDX-FFJ 

flow sequences 
basic conversation 2-50 
external protocol boundaries 2-19 

application-detected error cases 2-25 
er-ror-free cases 2-20 
REQUEST_TO_SEND case 2-25 

internal protocol bot.a'ldaries 2-50 
session activation and deactivation 2-s2, 

2-54 
FLUSH_PROC procedure 5.1-17 

referenced by 
PS_CDNV 5.1-10 

FH (function 111anagementJ 
profiles F-1 
Usage field F-1 

FM header 2-15, 2-16, 2-40 
relationship to verbs 2-19 
type 12 (Security> 2-10, 2-15, 2-35, 
2-37, 3-14, 6.1-3, 6.1-4 

type 5 (Attach) 2-11, 2-15, 2-32, 2-34, 
2-35, 3-2, 3-9, 5.0-3, 5.1-7, S.3-12, 
6.1-3, 6.1-4 

type 7 IEr-ror Description> 2-15, 5.1-7, 
5.3-6, 5.3-7, 6.1-3, 6.1-4. 6.1-7 

use in FM profile 19 6.1-3 
FM header 12: Security H-9 
FH header 5: Attach H-6 
FM header 7: Error Description H-8 
FM headers 

using H-4 
FH pr-ofile 

See also profiles 
in BIND 4-20 

FM pr-ofile 0 6.1-1, 6.1-16 
FH profile 19 6.1-1, 6.1-2, 6.1-4, 6.1-8, 
6.1-14 

FH profile 6 6.1-1, 6.1-16 
FH Usage field F-1 

X-8 SNA Format and Pr-otocol Reference Manual for LU Type 6.2 



in BIN:> <t-20 
Ftlf valua in RH 

use in chains H-<t 
FHH-12 

See also FM header, type 12 <Security) 
for•at H-9 
purpose of H-5 

Ftlf-5 
See also FH header, type 5 (Attach) 
for111at H-6 
purpose of H-5 

FHH-7 
See also FM header, type 7 <Error 
Description) 

for111at H-8 
purpose of H-5 

Forget 
See sync point, COllllllands, Forget 

for•al description, definition of 1-1 
FORHAT_ERROR_EXP_RSP procedure 6.1-27 

referenced by 
FORHAT_ERROR 6.1-26 

FORHAT_ERROR_NORH_RSP procedure 6.1-27 
referenced by 

FORHAT_ERROR 6.1-26 
FORHAT_ERROR procedure 6.1-26 

referenced by 
DFC_RtV 6.1-23 

FORHAT_ERROR_Rll_DFC procedure 6.1-28 
referenced by 

FORMAT_ERROR 6.1-26 
FORHAT_ERROR_Rll_FMD procedure 6.1-29 

referenced by 
FOR~IAT_ERROR 6.1-26 
FORMAT_ERROR_Rll_DFC 6.1-28 

FORHAT_ERROR_SSCP_LU procedure 6.1-30 
referenced by 

DFC_RCV 6.1-23 
For111at indicator fFIJ 

of RH H-<t 
use 6.1-<t 

For•at of an Error Data 6DS variable H-18 
For111at of Error Log 6DS Variable H-19 
FREE_SESSION_PROC procedure 3-44 

referenced by 
PROCESS_HS_TO_RH_RECORD 3-19 

FREE_SESSION structure A-15 
referenced by 

FREE_SESSION_PROC 3-4<t 
FSH_CHAIN_RCV_FHP19 6.1-<t4 
FSH_CHAIN_SENl_FMP19 6.1-<t6 
GENERATE_RM_PS_INPllTS 6.1-31 

FSH_BIS_BIDDER 3-70 
FSH_BIS_BIDDER FSH 

referenced by 
BID_PROC 3-30 
BIS_REPLY_PROC 3-35 
BIS_RQ_PROC 3-36 
CREATE_sce 3-40 
FREE_SESSION_PROC 3-4<t 
PROCESS_Hs_ro_RM_RECORD 3-19 
RH_DEACTIVATE_SESSION_PROC 3-49 
RTR_RSP_PROC 3-51 
SENl_BIS 3-53 
SENl_BIS_REPLY 3-53 
SEND_BIS_RQ 3-5<t 
SHOULD_SEND_BIS 3-62 

FSH_BIS_FSP 3-71 
FSH_BIS_FSP FStl 

referenced by 
BID_PROC 3-30 
BIS_REPLY_PROC 3-35 
BIS_Rll_PROC 3-36 
CREATE_SCB 3-40 

FREE_SESSION_PROC 3-<t4 
PROCESS_HS_TO_RH_RECORD 3-19 
RH_DEACTIVATE_SESSION_PROC 3-49 
RTR_RSP_PROC 3-51 
SENl_BIS 3-53 
SENl_BIS_REPLY 3-53 
SEND_BIS_RQ 3-54 
SHDULD_SEN:>_BIS 3-62 

FSH_BStl_FHP19 6.1-43 
FSH_BSM_FHP19 FSH 

referenced by 
DFC_INITIALIZE 6.1-18 
DFC_SEND_FROt1_RM 6.1-20 
FSH_CHAIN_SEHD_FHP19 6.1-<t6 
6ENERATE_RH_PS_INPUTS 6.1-31 
OK_TO_REPLY 6.1-33 
PROCESS_LU_LU_SESSION 6.0-<t 
PROCESS_RU_DATA 6.1-34 
RCV_STATE_ERROR 6.1-36 
SEND_RSP_TO_RM_OR_PS 6.1-39 
STRAY_RSP 6.1-<tl 
TRY_TO_RCV_SIGNAL 6.1-22 

FSH_CHAIN_RCV_FMP19 6.1-44 
FSH_CHAIN_RCV_FHP19 FSH 

referenced by 
DFC_INITIALIZE 6.1-18 
DFC_RCV_FSHS 6.1-24 
DFC_SEtl>_FROt1_PS 6.1-19 
DFC_SEND_FSHS 6.1-25 
OK_TO_REPLY 6.1-33 
RCV_STATE_ERROR 6.1-36 
SEND_RSP_BIU 6.1-38 
UPDATE_FSHS 6.1-42 

FSH_CHAIN_SEND_FHP19 6.l-<t6 
FSH_CHAIN_SEND_FMP19 FSH 

referenced by 
DFC_INITIALIZE 6.1-18 
DFC_RCV_FSl1S 6.1-2<t 
DFC_SEND_FSHS 6.1-25 
OK_TO_REPLY 6.1-33 
PROCESS_LU_LU_SESSION 6.0•4 
RCV_STATE_ERROR 6.1-36 
UPOATE_FSHS 6.1-<t2 

FSH_CONVERSATION 5.1-63 
FSH_CONVERSATION FSH 

referenced by 
COHPLETE_CONFIRH_PROC S.1-29 
COHPLETE_DEALLOCATE_ABEtlJ_PROC 5.1•30 
CONFIRH_PROC 5.1-12 
CONFIRMED_PROC 5.1-l<t 
DEALLOCATE_ABEND_PROC 5.1-32 
DEALLOCATE_CONFIRH_PROC 5.1-33 
DEALLOCATE_FLUSH_PROC 5.1-35 
DEALLOCATE_PROC S.1-15 
FLUSH_PROC S.1-17 
6ET_ATTRIBUTES_PROC 5.1-18 
PERFORM_RECEIVE_PROCESSIN6 S.1-39 
POST_ON_RECEIPT_PROC 5.1-18 
PREPARE_TO_RECEIVE_CONFIRH_PROC 5.1-41 
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-43 
PREPARE_TO_RECEIVE_PROC S.1-19 
PROCESS_FHH7_PROC S.1-46 
PROCESS_RH_OR_Hs_ro_Ps_RECORDS 5.1-47 
RCB_ALLOCATED_PROC 5.1-48 
RECEIVE_At«>_WAIT_PROC S.l-20 
RECEIVE_It1HEDIATE_PROC 5,1-22 
REQUEST_TO_SEND_PROC S.1-23 
SEND_DATA_PROC 5.1-24 
SEND_ERROR_DONE_PROC S.l-53 
SEtlJ_ERROR_IN_RECEIVE_STATE S.1-54 
SEND_ERROR_IH_SEND_STATE 5.1-55 
SEND_ERROR_PROC 5.1•26 
SET_Ftlf7_RC 5.1-57 
TEST_PROC 5.1-27 

Index X-9 



NAIT_FOR_CONFIRHED_PROC 5.1-59 
NAIT_FOR_SEND_ERROR_DONE_PROC 5.1-62 

Fstt_ERROR_OR_FAllURE 5.1-65 
Fstt_ERROR_OR_FAILURE FSH 

referenced by 
COHPLETE_CONFIRH_PROC 5.1-29 
COHPLETE_DEALLOCATE_ABEND_PROC 5.1-30 
CONFIRH_PROC 5.1-12 
CONFIRHED_PROC 5.1-14 
CONVERSATION_FAILURE_PROC 5.1-31 
DEALLOCATE_ABEND_PROC 5.1-32 
DEALLOCATE_CONFIRl1_PROC 5.1-33 
DEALLOCATE_FLUSH_PROC 5.1-35 
FLUSH_PROC 5.1-17 
FSH_CONVERSATION 5.1-63 
OBTAIN_SESSION_PROC 5.1-38 
PERFORH_RECEIVE_PROCESSING 5.l-39 
PREPARE_TO_RECEIVE_CONFIRH_PROC 5.1-41 
PREPARE_TO_RECElYE_FLUSH_PROC 5.1-43 
PROCESS_RH_OR_HS_TO_Ps_RECORDS 5.1-47 
RCB_ALLOCATED_PROC S.l-48 
RECEIVE_AND_WAIT_PROC 5.1-20 
RECEIVE_lHHEDlATE_PROC 5.1-22 
SEND_DATA_BUFFER_HANAGEHENT 5.1-51 
SEND_DATA_PROC 5.1-24 
SEND_ERROR_IN_SEND_STATE 5.1-55 
SEND_ERROR_PROC 5.1-26 
SET_FHH7_RC 5.1-57 
TEST_PROC 5.1-27 
NAlT_FOR_CONFIRHED_PROC 5.1-59 
WAIT_FOR_RSP_TO_RQ,_TO_SEND_PROC 5.1-61 
WAIT_FOR_SEHD_ERROR_DONE_PROC 5.1-62 

FSH_lHHEDlATE_RQ,_tlODE_RCV 6.1-48 
FSH_IHHEDIATE_RQ,_HODE_RCV FSH 

referenced by 
DFC_INITIALIZE 6.1•18 
DFC_RCY 6.1-23 
DFC_SEND_FROH_LNS 6.1-22 
STATE_ERROR_SSCP_LU 6.1-40 

FSH_IHHEDIATE_RQ,_HODE_SEtl> 6.1-48 
FSl1_IHHEDIATE_RQ,_t10DE_SEtl> FSH 

referenced by 
DFC_INITIALIZE 6.1-18 
DFC_RCY 6.l-23 
DFC_SEND_FROH_LNS 6.1-22 
PROCESS_CP_LU_SESSION 6.0-5 
STATE_ERROR_SSCP_LU 6.l-40 

Fstt_PAC_RQ,_RCY 6.2-21 
FSH_PAC_RQ,_RCY FSH 

referenced by 
TC.DEQUEUE_PAC 6.2-18 
TC.INITIALIZE 6.2-8 
JC.RCV_NORH_RQ 6.2-17 
TC.SEND 6.2-13 
TC.TRY_TO_SEND_IPR 6.2-19 

Fstt_PAC_RQ....SEND 6.2-20 
FSH_PAC_RQ,_SEND Fstt 

referenced by 
TC.DEQUEUE_PAC 6.2-18 
TC.INITIALIZE 6.2-8 
TC.SEND 6.2-13 

FSH_POST 5.1-66 
FSH_POST FSH 

referenced by 
CONVERSATION_FAILURE_PROC 5.l-31 
DEQUEUE_FHH7_PROC 5.1-36 
PERFORH_RECEIVE_PROCESSING 5.1-39 
POST_AND_WAIT_PROC 5.1-40 
POST_ON_RECEIPT_PROC 5.1-18 
PROCESS_RH_OR_Hs_To_PS_RECORDS 5.1-47 
TEST_FOR_POST_SATISFIED 5.1-58 
TEST_PROC 5.1-27 

Fstl_QR1_CHAIN_RCV_FHP19 6.1-49 
Fstt_CllU_CHAIN_RCY_FttP19 FSH 

referenced by 
DFC_INITIALIZE 6.l-18 
RCY_STATE_ERROR 6.1-36 
UPDATE_FSHS 6.1-42 

Fstt_RCB_STATUS_BIDDER 3-72 
FSH_RCB_STATUS_BIDDER FSH 

referenced by 
BID_RSP_PROC 3-32 
BIDDER_PROC 3-34 
PS_CREATION_PROC 3-47 
SESSION_ACTIVATED_ALLOCATION 3-56 
SESSION_DEACTIVATED_PROC 3-58 
SET_RCB_AND_SCB_FIELDS 3-61 

Fstt_RCB_STATUS_FSP 3-73 
FSH_RCB_STATUS_FSP FSH 

referenced by 
BID_RSP_PROC 3-32 
BIDDER_PROC 3-34 
PS_CREATION_PROC 3·47 
SESSION_ACTIVATED_ALLOCATION 3·56 
SESSION_DEACTIVATED_PROC J-58 
SET_RCB_AND_SCB_FIELDS 3-61 

FSH_RCY_PURGE_FHP19 6.1-50 
FSH_RCV_PURGE_FHP19 FSH 

referenced by 
DFC_INITIALIZE 6.1-18 
DFC_RCV_FSHS 6.1-24 
GENERATE_RH_PS_INPUTS 6.1-Jl 
UPDATE_FSHS 6.1-42 

Fstl_SCB_STATUS_BIDDER 3-68 
FSH_SCB_STATUS_BIDDER FSH 

referenced by 
ATTACH_PROC 3-27 
BID_PROC 3-30 
COtlPLETE_HS_ATTACH 3-38 
CREATE_SCB 3-40 
FREE_SESSION_PROC 3-44 
SECURITY_PROC 3-52 
SESSION_DEACTIVATED_PROC 3-58 
SET_RCB_AND_SCB_FIELDS 3-61 
SUCCESSFUL_SESSION_ACTIVATION J-63 

FSH_SCB_STATUS_FSP 3-69 
FSH_SCB_STATUS_FSP FSH 

referenced by 
ATTACH_PROC 3-27 
BID_PROC 3-30 
COHPLETE_HS_ATTACH J-38 
CREATE_SCB 3-40 
FREE_SESSION_PROC 3-44 
SECURITY_PROC 3-52 
SESSION_DEACTIVATED_PROC 3-58 
SET_RCB_AHD_sce_FIELDS J-61 
SUCCESSFUL_SESSION_ACTIVATION J-63 

Fstt_STATUS 4-94 
FSH_STATUS FSH 

referenced by 
BUILD_AND_SEND_ACTLU_RSP_POS 4-58 
PROCESS_ABORT_HS 4-77 
PROCESS_ACTIVATE_SESSION 4-77 
PROCESS_BIND_RQ 4-79 
PROCESS_BIND_RSP 4-81 
PROCESS_CINIT_RQ 4-82 
PROCESS_CLEANUP_RQ 4-84 
PROCESS_CTERH_RQ 4-85 
PROCESS_DACTLU_RQ 4-86 
PROCESS_DEACTIVATE_SESSION 4-87 
PROCESS_HIERARCHICAL_RESET 4-87 
PROCESS_INIT_HS_RSP 4-88 
PROCESS_INIT_SELF_RSP 4-88 
PROCESS_NOTIFY_RQ 4-89 
PROCESS_PC_CONNECT_RSP 4-90 
PROCESS_SESSION_ROUTE_INOP 4•90 
PROCESS_UNBIND_RQ 4-91 
PROCESS_UNBIND_RSP 4-92 

X-10 SHA For .. t •nd Protocol Reference Han\All for LU Type 6.2 



full-duplex send/rece;ve llOde 
See send/rece;ve llOCfe. full-duplex (fDXl 

fully qual;f;ted LU na111e 
See LU na•e• fully qual;f;ed 

fully qual;f;ed netNOrk name 4-5 
Fully qu.1;f;ed PLU Network NaMe Structured 
Data Subfield E-16 

Fully Qualif;ed SLU Network Na•e Structured 
Data Subf;eld E-16 

funct;on ••nageinent IFHl profiles F-1 
funct;on ~•nagement header 

See FH header and Fttf 
funcHon sh;pp;ng 

See sync point. funcUon shippfog 
resource 

See resource. function-sh;pped 

GOS 
See general data strea• 
See general data strea• variable 

GOS header 
See general data strea• header 

60S ID 
See general data strea• var;able identif;­
er 

GDS variable 
See general data stream variable 

general data strea• I-1 
general data strea• header 2-14. 2-31. 2-32 
general data strea• variable 2-14. 2-38, 
s.2-s. 1-1 

Applicat;on Data S.2-5. 5.2-11, H-17 
Change Number of Sessions 2-38 

See also Change Number of Sessions 605 
variable 

code points H-16 
COtll!)are States 2-42 
Error Data 5.2-14, 5.2-15, H-18 
Error Log H-19 
Exchange Log Na.. 2~42 
format H-11 
Hap Na .. 2-39. 5.2-9. s.2-11, H-17 
Null Data 5.2-5. H-17 
User Control Data S.2-5, 5.2-11, 5.2-14, 
H-17 

general data strea• variable ident;fier 2-14 
general data strea• variables 

for Mapped conversations 2-16, 2-39 
for resynchronizat;on 2-42 

6ENERATE_RH_PS_INPUTS procedure 6.1-31 
referenced by 

DFC_RCV_FSt1S 6.1-24 
gener;c f;n;te-state •ach;nes N-1 

binding N-1 
no-op finite-state ••chines N-1 

6ET_ATTRIBUTES_PROC procedure 5.1-18 
referenced by 

PS_CONV 5.1-10 
GET_END_CHAIN_FRott_HS procedure S.1-37 

referenced by 
ATTACH_ERROR_PROC 5.0-10 
NAIT_FOR_SEND_ERROR_DONE_PROC 5.1-62 

6ET_SEND_INDICATOR procedure S.2-44 
referenced by 

RCVD_svc_ERROR_F'URGIHG S.2-42 
6ET_SESSION_PROC procedure 3-45 

referenced by 
BID_RSP_PROC 3-32 
DEQUEUE_WAITIHG_REQUEST 3-42 

PROCESS_PS_TO_RH_RECORD 3-21 
RTR_RQ...PROC 3-50 
SESSION_DEACTIVATED_PROC 3-58 

GET_SESSION structure A-26 
referenced by 

BID_RSP_PROC 3-32 
BIDDER_PROC 3-34 
DEQUEUE_WAITIHG_REQUEST 3-42 
FIRST_SPEAKER_PROC 3-43 
GET_SESSION_PROC 3-45 
OBTAIN_SESSION_PROC S.l-38 
RTR_RQ...PROC 3-50 
SESSION_ACTIVATED_ALLOCATION 3-56 
SESSION_DEACTIVATED_PROC 3-58 
SUCCESSFUL_SESSION_ACTIVATION 3-63 

half-duplex flip-flop send/receive mode 2-6 
See also send/receive mode. half-duplex 
flip-flop IHDX-FF> 

See also two-Nay alternate s.nd.lreceive 
protocol 

half-session IHS> 2-1 
activation and deactivation 6.0-1 
components 6.0-1 
funct;on s1.1111111ary 2-37 
process 2-35. 2-37. 2-42t 2-44, 2-47 
process queues 6.0-2 
processes 6.0-2 
protocol boundaries 2-49, 2-so, 6.0-2 

half-session ID 2-6 
HardNare Product Identifier IX'OO'l Product 
Identifier Subfield E-24 

HIERARCHICAL_RESET_RSP structure A-18 
referenced by 

BUILD_AND_SEND_HIER_RESET_RSP 4-63 
HIERARCHICAL_RESET structure A-22 

HS 

referenced by 
BUILD_AND_SEND_HIER_RESET_RSP 4-63 
PROCESS_HIERARCHICAL_RESET 4-87 
PROCESS_RECORD_FRott_..... 4-50 

See half-session (HS> 
HS_ID structure 3-74 

referenced by 
BIDDER_PROC 3-34 
BIS_RACE_LOSER 3-35 
CHECK_FOR_BIS_REPLY 3-38 
COHPLETE_HS_ATTACH 3-38 
CONNECT_RCB_AND_SCB 3-39 
DEQUEUE_NAITIHG_REQUEST 3-42 
FIRST_SPEAKER_PROC 3-43 
FSM_BIS_BIDDER 3-70 
FSM_BIS_FSP 3-71 
PS_PROTOCOL_ERROR 5.0-15 
RM_PROTOCOL_ERROR 3-49 
SEND_BIS 3-53 
SEl'E_BIS_REPLY 3-53 
SEND~BIS_R~ 3-54 
SESSION_ACTIVATED_ALLOCATION 3-56 
SET_RCB_AND_sce_FIELDS 3-61 
SHOULD_SEtl>_BIS 3-62 

HS-initiated procedure 
HS process 6.0-3 

referenced by 
BID_PROC 3-30 
BIDDER_PROC 3-34 
BIS_RACE_LOSER 3-35 
CONFIRMED_PROC 5.1-14 
COf.tlECT_RCB_AND_SCB 3-39 

Index X-11 



DEALLOCATE_ABEND_PROC 5.1-32 
FIRST_SPEAKER_PROC 3-43 
FLUSH_PROC S.1-17 
FREE_SESSION_PROC 3-44 
FSM_CONVERSATION S.l-63 
FSM_ERROR_OR_FAILURE 5.1-65 
PROCESS_RM_OR_Hs_ro_PS_RECORDS 5.1-47 
RECEIVE_RM_OR_Hs_ro_PS_RECORD 5.1-51 
REQUEST_TO_SEND_PROC 5.1-23 
RTR_RQ_PROC 3-50 
SEl'l>_BIS_REPLY 3-53 
SEl'l>_BIS_RQ 3-54 
SEND_DATA_TO_HS_PROC 5.1-52 
SEND_ERROR_IN_RECEIVE_STATE 5.1-54 
SEND_ERROR_PROC S.1-26 
SESSION_ACTIVATED_ALLOCATION 3-56 
SUCCESSFUL_SESSION_ACTIVATION 3-63 
WAIT_FOR_CONFIRMED_PROC 5.1-59 

HS_PS_CONNECTED structure A-29 
referenced by 

CONNECT_RCB_AND_SCB 3-39 
DFC_SEND_FROH_RH 6.1-20 
PROCESS_RU_DATA 6.1-34 
SEND_RSP_TO_RM_OR_PS 6.1-39 

HS_RCV_RECORD structure A-11 
referenced by 

BUILD_AND_SEND_CINIT_RSP 4-61 
BUILD_AND_SEND_RSP_OR_LOG 4-66 
CINIT_RQ_STATE_ERROR 4-71 
DFC_RCV 6.1-23 
FSM_STATUS 4-95 
INITIALIZE_LULU_ce_CINIT 4-75 
PROCESS_CINIT_RQ 4-82 
PROCESS_CLEANUP_RQ 4-84 
PROCESS_CTERH_RQ 4-85 
PROCESS_ECHOTEST_RQ 4-87 
PROCESS_INIT_SELF_RSP 4-88 
PROCESS_NOTIFY_RQ 4-89 
PROCESS_NOTIFY_RSP 4-89 
PROCESS_RECORD_FROH_HS 4-48 
PROCESS_REQECHO_RSP 4-90 
PROCESS_TERM_SELF_RSP 4-91 

HS_SEND_RECORD structure A-16 
referenced by 

BUILD_AND_SEND_BINDF_RQ 4-60 
BUILD_AND_SEND_CINIT_RSP 4-61 
BUILD_AND_SEND_INIT_RQ 4-64 
BUILD_AND_SEND_RSP_OR_LOG 4-66 
BUILD_AM:>_SEND_SESSEND_RQ 4-68 
BUILD_AND_SEND_SESSST_RQ 4-68 
BUILD_AND_SEND_TERM_RQ 4-69 
BUILD_AND_SEND_UNBINDF_RQ 4-70 
DFC_SEND_FROH_LNS 6.1-22 

HS_TO_LNS_RECORD structure A-IO 
referenced by 

lNS 4-47 
PROCESS_RECORD_FROH_HS 4-48 

HS_TO_PC_RECORD structure A-11 
referenced by 

TC.DEQUEUE_PAC 6.2-18 
TC.EXCHANGE_CRV 6.2-10 
TC.SEND 6.2-13 

HS_TO_PS_RECORD structure A-12 
referenced by 

PROCESS_RH_OR_Hs_ro_PS_RECORDS 5.1-47 
RECEIVE_RH_OR_Hs_ro_PS_RECORD 5.1-51 
WAIT_FOR_CONFIRHED_PROC 5.1-59 

HS_TO_RM_RECORD structure A-13 
referenced by 

GENERATE_RH_PS_INFUTS 6.1-31 
PROCESS_Hs_ro_RM_RECORD 3-19 
PROCESS_RU_DATA 6.1-34 

hlentification of session 
in BIND 4-24 
in BIND i•age in CINIT 

PLU network na•e 4-10 
PLU uninterpreted na11e 4-10 

in BINDF 
PLU-SLU netNOrk addresses 4-11 

in CINIT 
URC 4-10 

in CLEANUP 
PLU-SLU network addresses 4-12 

in CTERH 
PLU-SLU network addresses 4-12 

in INIT-SELF 
DLU uninterpreted na111e 4-9 
URC 4-9 

in NOTIFY(Vector Key X'03') 
PLU-SLU network names 4-14 

;n SESSEND 
o PLU-SLU netNOrk addresses 4-13 

in SESSST 
PLU-SLU netNOrk addresses 4-11 

in TERM-SELF 
URC 4-11 

in UNBINDF 
PLU-SLU network addresses 4-13 

identity transfor.ation of uninterpreted 
name 4-S 

ILU 
See initiating LU (ILUl 

IlU/TLU Notification NOTIFY Vector E-12 
innediate request •ode 6.1-8 

See also control llOde, i111111ediate request 
i•mediate response lllOde 6.1-8 

See also control llOde, illlllll!diate response 
i111plementation-dependent parameters 4-6 
implementation-deter•ined functions 

See also non-SNA functions 
API 2-4 

closed 2-13 
buffer sizes 2-31, 2-32 
control operator 2-3 
control operator TP 2-38 
error recovery 2-11 
initiating TP locally 2-34 
logging 2-40 
Mapping 2-39 
names 2-5 
netNOrk configuration 2-4 
optional function sets 2-13 
record length and format con-
straints 2-14, 2~31 

resou.rces 2-30, 2-39, 2-40 
function-shipping 

syste• definition 2-46 
i111Plied Forget 

See sync point, COllllMnds, i111Plied Forget 
INIT_HS_RSP structure A-11 

referenced by 
BUILD_AND_SEND_ACTLU_RSP_POS 4-58 
FSH_STATUS 4-95 
HS 6.0-3 
PROCESS_INIT_HS_RSP 4-68 
PROCESS_RECORD_FROH_HS 4-48 

INIT_HS structure A-16 
referenced by 

8UILD_AND_SEND_ACTLU_RSP_POS 4-58 
BUILD_AND_SEND_INIT_HS 4-63 
DFC_INITIALIZE 6.1-18 
HS 6.0-3 

X-12 SNA Format and Protocol Reference Manual for LU Type 6.2 



TC.INITIALIZE 6.2-8 
INIT-SELF E-11 

See •lso INITIATE-SELF 
INIT-SELF ForM•t 1 

See INITIATE-SELF 
initi•l ch.ining value 6.2-2, 6.2-3 
INITIALIZE_ATTACHED_RCB procedure 5.0-16 

referenced by 
PS_INITIALIZE 5.0-6 

INITIALIZE_LULU_CB_ACT_SESS procedure 4-73 
referenced by 

PROCESS_ACTIYATE_SESSION 4-77 
INITIALIZE_LULU_CB_BIND procedure 4-74 

referenced by 
PROCESS_BIND_RQ 4-79 

INITIALIZE_LULU_CB_CINIT procedure 4-75 
referenced by 

PROCESS_CINIT_RQ 4-82 
INITIALIZE_SESSION_LIMIT_PROC proce-
dure 5.4-33 

referenced by 
PS_COPR 5.4-32 

INITIALIZE_SESSION_LIMIT verb 5.4-6, 5.4-20 
processing by PS. COPR 

parallel-session mode name 5.4-29 
single-session mode name 5.4-24 
SNASVCMG mode name 5.4-24 

INITIATE-SELF (lNIT-SELF) 4-9, E-11 
initi•ting LU fILU) 4-4 
initiator 

See sync point, roles, initiator 
installation-specified parameters 4-6 
intermediate routing 1-4 
internal transaction routine 
INVALID_SENSE_CODE procedure 6.1-32 

IPR 

referenced by 
RCY_STATE_ERROR 6.1-36 

See Isolated Pacing Response UPR) 
Isolated Pacing Response fIPR) 6.2-5, 6.2-6 

last resource 
See sync point, flows, last resqurce opti-
11ization 

layer of SNA 2-4, 2-28 
layer protocols 2-4 
length prefix f LL) 2-3, 2-14, 2-16, 2-31, 
5.1-6, I-1 

accU111Ulation and checking 2-31, 2-32 
LL 

See length prefix (LL> 
LLID 

See general data strea• header 
UIS 

See LU netNOrk services (UIS) 
UIS process 4-47 

referenced by 
BUILD_AND_SEND_PC_HS_CONNECT 4-65 
SEND_ACTIVATE_SESSION 3-52 
SEND_DEACTIVATE_SESSION 3-55 

UIS_TO_HS_RECORD structure A-16 
referenced by 

DFC_SEND_FROM_LNS 6.1-22 
LNS_TO_l*IM~RECORD structure A-16 
LNS_TO_RM_RECORD structure A-19 

referenced by 
PROCESS_LNS_TO_RM_RECORD 3-20 

Local For• Session Identifier Control Vec­
tor E-22 

local LU characteristics 2-42 
local LU name 

See LU name, local 
local resources 

See resource, local 
See sync point, local resources 

LOCAL_SESSION_LIMIT_PROC procedure 5.4-41 
referenced by 

INITIALIZE_SESSION_LIMIT_PROC 5.4-33 
RESET_SESSION_LIMIT_PROC 5.4-34 

LOCAL structure 4-101, 6.0-6 
referenced by 

BIND_RQ_STATE_ERROR 4-52 
BIHD_SESSION_LIMIT_EXCEEDED 4-55 
BUILD_AND_SEND_ACTLU_RSP_NEG 4-57 
BUILD_AND_SEtlD_BIND_RSP_NE6 4-59 
BUILD_AND_SEND_CINIT_RSP 4-61 
BUILD AND SEND DACTLU RSP 4-62 
BUILD:AND:seND:RsP_OR:LOG 4-66 
BUILD_AND_SEND_UNBIND_RSP 4-70 
CINIT_RQ_STATE_ERROR 4-71 
DFC_INITIALIZE 6.1-18 
DFC_RCV 6.1-23 
DFC_RCY_FSHS 6.1-24 
DFC_SEND_FROM_LNS 6.1-22 
DFC_SEND_FROM_PS 6.1-19 
DFC_SEND_FROM_RM 6.1-20 
DFC_SEND_FSMS 6.1-25 
FORNAT_ERROR 6.1-26 
FORNAT_ERROR_EXP_RSP 6.1-27 
FORMAT_ERROR_NORM_RSP 6.1-27 
FORMAT_ERROR_RQ_DFC 6.1-28 
FORMAT_ERROR_RQ_FHD 6.1-29 
FORMAT_ERROR_SSCP_LU 6.1-30 
FSM_BSM_FMP19 6.1-43 
FSM_CHAIN_RCV_FMP19 6.1-44 
FSM_CHAIN_SEND_FMP19 6.1-46 
FSM_IHtlEDIATE_RQ_MOOE_RCY 6 .1-48 
FSM_PAC_RQ_RCY 6.2-21 
FSM_PAC_RQ_SEND 6.2-20 
FSM_QRI_CHAIN_RCV_FMP19 6.1-49 
FSM_STATUS 4-95 
6ENERATE_RM_PS_INPUTS 6.1-31 
HS 6.0-3 
LNS 4-47 
LU_MOOE_SESSION_LIMIT_EXCEEDED 4-76 
OK_TO_REPLY 6.1-33 
PROCESS_ABORT_HS 4-77 
PROCESS_ACTLU_RQ 4-78 
PROCESS_BIND_RQ 4-79 
PROCESS_BIND_RSP 4-81 
PROCESS_CINIT_RQ 4-82 
PROCESS_CLEANUP_RQ 4-84 
PROCESS_CP_LU_SESSION 6.0-5 
PROCESS_CTERM_RQ 4-85 
PROCESS_DACTLU_RQ 4-86 
PROCESS_LU_LU_SESSION 6.0-4 
PROCESS_NOTIFY_RQ 4-89 
PROCESS_RECORD_FRotl_HS 4-48 
PROCESS_RECORD_FROM_NNM 4-50 
PROCESS_RU_DATA 6.1-34 
PROCESS_SEND_PARM 6.1-35 
PROCESS_UtlBIND_RQ 4-91 
RCY_STATE_ERROR 6.1-36 
SEND_NEG_RSP_OR_L06 6.1-37 
SEND_RSP_TO_RM_OR_PS 6.1-39 
STATE_ERROR_SSCP_LU 6.1-40 
STRAY_RSP 6.1-41 
TC.DEQUEUE_PAC 6.2-18 
TC.EXCHANGE_CRY 6.2-10 
TC.FORHAT_CHECK 6.2-11 
TC.INITIALIZE 6.2-8 
TC.RCV 6.2-lS 
TC.RCY_CHECKS 6.2-16 

Index X-13 



TC.RCV_NORM_RQ 6.2-17 
TC.SEND 6.2-13 
TC.TRY_TO_ENCIPHER 6.2-14 
TC.TRY_TO_SEND_IPR 6.2-19 
TRY_TO_RCV_SIGNAL 6.1-22 

LCICAL_VERB_PARAMETER_CHECK procedure S.4-42 
referenced by 

LOCAL_SESSION_LIMIT_PROC 5.4-41 
local, role of LU and TP 2-5 
lock Manager 

See sync po;nt, heurbtic dec;s;on, and 
lock Manager . 

log manager S.3-3, S.3-19, 5.3-20-, 5.3-25, 
5.3-32, 5.3-33, 5.3-34 

log Mismatch 5.3-33, 5.3-34 
See also sync point, log 

log name 
See sync point, log 

logg;ng 2-4 
See also sync point, logging 

logical record 2-14, 2-16, 2-31, 2-32, S.1-6 
logical unit lLU> 

See LU Clogical unit> 
logical unit of NOrk 

See sync point 
logical unit of NOrk llUWJ 5.3-1, S.3-3, 
S.3-16, S.3-19, 5.3-24, 5.3-25, S.3-30, 
5.3-32 

delimiting 5.3-1, S.3-20, S.3-32 
distributed 5.3-4 
local S.3-4 
state of S.3-4, 5.3-18, S.3-20, 5.3-22, 
5.3-24, S.3-25, S.3-30, S.3-32 

LOGI~Al UNIT STATUS CLUSTATJ 6.1-2, 6.1-4, 
6.1-10, 6.1-12, 6.1-13, 6.1-14, E-12 

loser, contention 
See bracket, bidder 

LU llogical unit) 2-1 
association with end users 1-3 
component interaction 2-50 
control block CLUCBJ S.1-1 
creation 2-45 
definition 1-3 
parallel-session 5.4-3 
peripheral 1-S 
single-session 5.4-3 
structure 2-28 
subarea 1-5 

LU data structures 
LU control block (LUCB> 5.2-4 
transaction program control block 

(TPCB) 5.2-4 
LU definition 5.4-3 
LU_ID structure S.0-20 

referenced by 
PS 5.0-5 

LU-LU password 4-5 
See also session-level security, LU-LU 

password 
LU-LU session 

See session 
LU-LU Session Services Capabilities Control 
Vector E-21 

LU-LU Session Services Capabilities NOTIFY 
Vector E-12 

LU-LU sessions 
;nitiaUon 

overv;etit 4-3 
RUs 4-7 

status notif;cation RUs 4-7 
See also sess;on status notification 

RUs 
termination 

overvieN 4-3 

RUs 4-7 
LU-LU verification 4-5 

See also session-level security, LU-LU 
verification 

LU-MOde 2-4 
LU-lllOde entry S.4-5, S.4-12 

locking for CNOS 
See change number of sessions ( CNOS), 

locking CLU,mode> entry 
processing by PS.COPR CCNOS> S.4-8, 
S.4-27 

LU_HODE_SESSION_LIMIT_EXCEEDED proce-
dure 4-76 

referenced by 
ACTIVATE_SESSION_ERROR 4-51 
BIND_SESSION_LIMIT_EXCEEDED 4-55 
CINIT_RQ_STATE_ERROR 4-71 

LU name 2-6, 2-34 
fully qualified 2-6, 2-42 
local 2-6, 2-42 
netwrk-qualified 

See LU name, fully qualified 
uninterpreted 2-6, 2-42 

LU_NAME structure 3-74 
referenced by 

ACTIVATE_NEEDED_SESSIONS 3-22 
BIS_RACE_LOSER 3-35 
CREATE_SCB 3-40 
DEACTIVATE_PENDING_SESSIONS 3-41 
DEQUEUE_WAITING_REQUEST 3-42 
SEND_ACTIVATE_SESSION 3-52 
SESSION_ACTIVATION_POLARITY 3-57 
SESSION_DEACTIVATION_POLARITY 3-60 
SHOULD_SENO_BIS 3-62 
SUCCESSFUL_SESSION_ACTIVATION 3-63 
UNSUCCESSFUL_SESSION_ACTIVATION 3-66 

LU network services CLNS) 4-1 
formal description 4-46 
function summary 2-38 
general description 4-1 
process 2-45 
protocol boundaries 2-49, 2-so, 4-32 

LU services manager 
See LU network. serv i ees ( LNS l 
See resources manager !RM) 

LU services record 
See Change Number of Sessions 6DS variable 

LUC:B_LIST_PTR structure 5.0-20 
referenced by 

PS 5.0-5 
LUCB structure 2-42, A-1 

referenced by 
BUILD_AND_SEND_BINO_RQ 4-59 
BUILD_AND_SEND_BINO_RSP_POS 4-60 
CHANGE_SESSION_LIMIT_PROC S.4-35 
CHECK_CNOS_Cott1AND S.4-63 
CHECK_CNOS_REPLY 5.4-56 
DEFINE_PROC 5.4-38 
DELETE_PROC 5.4-40 
DISPLAY_PROC 5.4-39 
GET_ATTRIBUTES_PROC S.l-18 
INITIALIZE_SESSION_LIMIT_PRCIC S.4-33 
LNS 4-47 
LOCAL_SESSION_LIMIT_PROC 5.4-41 
LOCAL_VERB_PARAMETER_CHECK 5.4-42 
PROCESS_BINO_RQ 4-79 
~OCESS_BIND_RSP 4-81 
PROCESS_SESSION_LIHIT_PROC 5.4-58 
PROCESS_UNEIItlD_RQ 4-91 
PS 5.0-5 
PS_ATTACH_CHECK 5.0-8 
RESET_SESSION_LIMIT_PROC 5.4-34 
SECURITY_PROC 3-52 
SESSION_LIMIT_DATA_LOCK_HANAGER 5.4-67 

X-14 SHA For111&t and Protocol Reference Manual for LU Type 6.2 



SNASVCM6_VERB_PARAttETER_CHECK 5.4-43 
SOURCE_CONVERSATION 5.4-50 
~CE_CONVERSATIOH_CONTROL S.4-49 
VERB_PARAHETER_CHECK 5.4-48 

LULU_CB structure A-5 
referenced by 

BIND_RSP_STATE_ERROR 4-53 
BUILD_AtlJ_SEtlJ_ACT_SESS_RSP_NEG 4-56 
BUILD_Atl>_SEND_ACT_SESS_RSP_POS 4-57 
BUILO_AtlJ_SEtlJ_ACTLU_RSP_POS 4-58 
BUILO_AtlJ_SEND .. BitlJ_RQ 4-59 
BUILO_AtlJ_SEND_BitlJ_RSP_POS 4-60 
BUILO_AtlJ_SEND_BINDF_RQ 4-60 
BUILD_AND_SENO_INIT_HS 4-63 
BUILD_AtlJ_SEtlJ_INIT_RQ 4-64 
BUILD_AtlJ_SEtl>_PC_CONNECT 4-64 
BUILD_AtlJ_SEtlJ_SESS_ACTIVATEO 4-67 
BUILO_AtlJ_SEND_SESSEND_RQ 4-68 
BUILD_Atl>_SEtlJ_SESSST_RQ 4-68 
BUILD_AND_SEtlJ_TERH_RQ 4-69 
BUILO_AND_SENO_UNBIND_RQ 4-69 
BUILD_AND_SEND_UNBINDF_RQ 4-70 
CIHIT_R~STATE_ERROR 4-71 
CLEAHUP_LU_LU_SESSIOH 4-72 
FSH_STA.TUS 4-95 
INITIALIZE_LULU_CB_ACT_SESS 4-73 
IHITIALIZE_LULU_CB_BINO 4-74 
IHITIALIZE_LULU_ce_cINIT 4-75 
PROCESS_ABORT_HS 4-77 
PROCESS_ACTIVATE_SESSION 4-77 
PROCESS_Bitl>_RQ 4-79 
PROCESS_Bltl>_RSP 4-81 
PROCESs_CINIT_RQ 4-82 
PROCESS_CLEANUP_RQ 4-84 
PROCESS_CTERH_RQ 4-85 
PROCESS_DEACTIVATE_SESSION 4-87 
PROCESS_INIT_HS_RSP 4-88 
PROCESS_INIT_SELF_RSP 4-88 
PROCESS_HOTIFY_RQ 4-89 
PROCESS_PC_CONNECT_RSP 4-90 
PROCESS_SESSIOH_ROUTE_INOP 4-90 
PROCESS_UNBINO_RQ 4-91 
PROCESS_UHBitlJ_RSP 4-92 

LUSTAT E-12 
See also LOGICAL UNIT STATUS 

LUSTAT (LOGICAL UNIT STATUS> 6.1-14 
LlM 

See logical unH of Nork (LUW> 

Rintenance services RUs 2-18, 4-29 
ECHOTEST 4-31 
REQECHO 4-31 

.. nager COlllpOnent 
•ap 2-39 
Mp name 2-39 

globally known 2-39 
receiver locally known 2-39 
sender locally knoNn 2-39 

•apped conversation 2-3, 2-13, 5.2-3, 5.2-5 
See also conversation 
data strea• format 5.2-5 
errors 5.2-14, 5.2-16, 5.2-17 
function summary 5.2-1 
initiation 5.2-7 
protocol bou-ldary 5.2-1 
ter11ination 5.2-7 

.. pped-conversation Message 2-15 

.. pped-conversation record 2-14, 2-16, 2-31 
11apper 2-39 

Mapping 2-7, 2-13, 2-16, 2-31, 2-39, 5.2-lt 
5.2-8 

errors 5.2-14 
.. p naftlf!s 5.2-8, 5.2-9, s.2-12 
.. pper 5.2-8, 5.2-11, s.2-12, 5.2-14 

para~eters 5.2-10 
save area 5.2-4. s.2-e, 5.2-9 

receive mapping 5.2-11 
receive-buffer list 5.2-4 

send •apping 5.2-9. s.2-10 
.. xi11U111 send size 5.2-5, 5.2-4 

tte_ALLOCATE_PROC procedure 5.2-20 
referenced by 

PS_MC S.2-19 
HC_CONFIRH_PROC proceclire S.2-21 

r-ef erenced by 
PS_MC 5.2-19 

HC_CONFIRMED_PROC procedure 5.2-22 
r-eferenced by 

PS_HC 5.2-19 
l'IC_DEALLOCATE_PROC pr-oeedur-e 5.2-23 

referenced by 
PS_MC 5.2-19 

MC_FLUSH_PROC procedure 5.2-23 
r-eferenced by 

PS_MC S.2-19 
HC_6ET_ATTRIBUTES_PROC pr-ocedure 5.2-24 

r-ef erenced by 
PS_HC 5.2-19 

tlt_POST_OH_RECEIPT_PROC pr-ocedure 5.2-25 
r-eferenced by 

PS_HC 5.2-19 
tlt_PREPARE_TO_RECEIVE_PROC pr-ocedure 5.2-26 

ref er-enced by 
PS_l1C S.2-19 

HC_RECEIVE_Atl>_WAIT_PROC procedure S.2-27 
r-ef erenced by 

PS_HC 5.2-19 
HC_REQUEST_TO_SEHD_PROC pr-ocedure 5.2-37 

refer-enced by 
PS_HC 5.2-19 

tlC_SEtlJ_DATA_PROC procedur-e S.2-38 
refer-enced by 

PS_t1C S.2-19 
HC_SEtl>_ERROR_PROC pr-ocedure S.2-40 

referenced by 
PS_t1C 5.2-19 

t1C_TEST_PROC procedur-e 5.2-28 
ref er-enced by 

PS_HC 5.2-19 
TEST_FOR_RESOURCE_POSTEO 5.0-17 

11eSsage-unit tr-ansformation 2-31 
basic conversation 2-16, 2-32 
Rpped conversation 2-16, 2-31 

See also •apping 
MeSsage units 2-13 

basic conver-sation 2-14 
CHOS 

.see Change Hl.aRber of Sessions GDS vari­
able 

conversation sequences 2-15 
data recor-d 

See data record 
header 2-14 
length li•itations 2-14, 2-lS 
mapped conversation 2-14 
session 2-15 
session sequences 2-16 

lllOde 
control block 3-3, s.1-2 

Mode/ Class-of-Service/ 
Virtual-Route-Identifier-List Control Vec­
tor E-21 

mode na• 2-6, 2-34, 2-42, 4-S 

Index X-15 



deriving BIND image frc:>111 4-5 
;n CINIT 4-9 
in INIT-SELF 4-9 

tfODE_NAME structure 3-74 
referenced by 

ACTIVATE_NEEDED_SESSIONS 3-22 
ACTIVATE_SESSION_RSP_PROC 3-23 
BIS_RACE_LOSER 3-35 
CREATE_sce 3-40 
DEACTIVATE_PENDING_SESSIONS 3-41 
DEQUEUE_WAITING_REQUEST 3-42 
SEND_ACTIVATE_SESSION 3-52 
SESSION_ACTIVATION_POLARITY 3-57 
SESSION_DEACTIVATION_POLARITY 3-60 
SHOULD_SEND_BIS 3-62 
SUCCESSFUL_SESSION_ACTIVATION 3-63 
UNSUCCESSFUl_SESSIOH_ACTIVATION 3-66 

11ode Name Structured Data Subfield E-16 
HOOE structure 2-42. A-3 

referenced by 
ACTIVATE_NEEDED_SESSIONS 3-22 
ACTIVATE_SESSION_ERROR 4-51 
ACTIVATE_SESSION_RSP_PROC 3-23 
AllOCATE_PROC 5.1-11 
BID_PROC 3-30 
BIND_RQ_STATE_ERROR 4-52 
BIND_SESSION_LIMIT_EXCEEDED 4-55 
BIS_RACE_lOSER 3-35 
BUILD_AND_SEND_BIND_RSP_POS 4-60 
CHANGE_ACTION 5.4-44 
CHANGE_SESSIONS_PROC 3-37 
CHECl<_CNOS_CONMAND 5.4-63 
CHECK_CNOS_REPLY 5.4-56 
CHECK_FOR_~IS_REPLY 3-38 
CINIT_RQ_STATE_ERROR 4-71 
CLOSE_ONE_REPLY 5.4-65 
DEACTIVATE_PENDING_SESSIONS 3-41 
DEFINE_PROC 5.4-38 
DELETE_PROC 5.4-40 
DISPLAY_PROC 5.4-39 
INITIALIZE_LULU_CB_BIND 4-74 
INITIALIZE_LULU_CB_CINIT 4-75 
LOCAL_VERB_PARAMETER_CHECK 5.4-42 
LU_HODE_SESSION_LIMIT_EXCEEDED 4-76 
NEGOTIATE_REPLY 5.4-64 
PROCESS_SESSION_LIMIT_PROC 5.4-58 
SEND_ACTIVATE_SESSION 3-52 
SEND_BIS_REPLY 3-53 
SEND_BIS_RQ 3-54 
SEND_DEACTIVATE_SESSION 3-55 
SESSION_ACTIVATED_PROC 3-57 
SESSION_ACTIVATION_POLARITY 3-57 
SESSION_DEACTIVATED_PROC 3-58 
SESSION_DEACTIVATION_POLARITY 3-60 
SESSION_LIMIT_DATA_LOCK_MANAGER 5.4-67 
SHOULD_SEND_BIS 3-62 
SNASVCMG_VERB_PARAMETER_CHECK 5.4-43 
SOURCE_CONVERSATION_CONTROL 5.4-49 
SOURCE_SESSION_LIMIT_PROC 5.4-46 
UNSUCCESSFUL_SESSION_ACTIVATION 3-66 
VERB_PARAMETER_CHECK 5.4-48 

MOde, control 
See control llOCle 

llOCle, LU 2-3, 2-4, 2-6, 2-42 
See also transport characteristics 

llOClifier value, sense code 6-1 
See also sense data 

11Ultiple-sess;on LU 2-7 
See also session, parallel 

name 2-4 
fully qualified LU 

See LU name, fully qualified 
local alias 2-5 
LU 

See LU name 
MOde 

See •ode name 
name translation 2-5, 2-6, 2-16 
na11ing conventions 

using periods 1-5 
using underscores 1-5 

NAU (network addressable unit> 2-16 
definition 1-3 

negative response 
sense data included with 6-1 

negotiable BIND 4-20, 4-25 
NEGOTIATE_REPLY proceck!re 5.4-64 
nested nodes 1-4 
network 

path control 1-3, 1-5 
SNA 1-3 

network address 2-6, 2-16, 2-36 
netNOrk address of LU 

fo BINDF 4-11 
in ClEAt«JP 4-12 
;n CTERM 4-12 
in SESSEND 4-13 
in SESSST 4-11 
in ~INDF 4-13 

Network Address Pair Session Key E-23 
netNOrk addressable 1.r1it 

See NAU (network addressable unit> 
netNOrk ID 2-6 
netNOrk LU name 2-6 
network name 4-5 
network name of LU 

in BIND i•age 4-10 
in NOTIFYIVector Key X'03') 4-14 

Network Na111e Pair Session Key E-23 
Network-Qualified Address Pair Control Vec­
tor E-21 

Network-Qualified Address Pair Session 
Key E-23 

network-qualified LU naae 
See LU name, fully qu;iilified 

Ntf'l_TO_LNS_RECORD structure A-21 
referenced by 

LHS 4-47 
PROCESS_RECORD_FROH_NNH 4-50 

no-op finite-state aachines N-1 
node 

deHnition 1-3 
SNA 1-3, 1-4 
SNA product 1-3, 1-4 
synonymous Mith "SNA node" 1-3 
type 

1 1-3 
2.0 1-3 
2.1 1-3 
4 1-3 
5 1-3 

user-application 1-3, 1-4 
node type 2-16 
nodes 

nesting of 1-3, 1-4 
non-SNA functions 

See also hiplementation-deter11ined func­
tions 

API 2-4 

X-16 SNA Foruat and Protocol Reference Manual for LU Type 6.2 



error recovery 2-11 
11apping 2-39 
naraes 2-5 
resources 2-11, 2-30, 2-40 

local 2-4 
nornl flON 6.2-1 

session-level pacing 6.2-5 
TC 6.2-4 

noral-f!ON send/receive mode 
See send/receive •ode 

notational conventions, general 1-5 
notification 

of changes in LU's 1u1ssion services capa­
bil Hies 4-14 

of LU's availability 
using NOTIFY(Vector Kay X'OC') 4-14 

of session initiation failure· 
using NOTIFY(Vector Kay X'03') 4-14 

of session ter•ination failure 
using NOTIFYtVector Key X'03') 4-14 

NOTIFY 4-14, E-12 
NOTIFY Vector 

ILU/TLU Notification E-12 
LU-LU Session Services Capabilities E-12 

OAF'-DAF' assignor inctlcator tODAI> 4-19 
OBTAIN_SESSION_PROC procedure 5.1-38 

referenced by 

ODAI 

RCB_ALLOCATED_PROC 5.1-48 
SEND_DATA_TO_HS_PROC 5.1-52 

See OAF'-DAF' assignor indicator tODAI> 
OK_TO_REPLY procedure 6.1-33 

referenced by 
FSM_CHAIN_RCV_FMP19 6.1-44 
FSM_CHAIN_SEND_FMP19 6.1-46 
GENERATE_RH_PS_INPUTS 6.1-31 

OLU 
See origin LU tOLU) 

one-way conversation 2-6 
operator 

See control operator 
operator llt!Ssages, sync point 

See sync point, operator 11essages 
opth1ized floNS 

See sync point, flONS 
optional function sets 2-12, 2-13, 2-38, 
2-42 

CNOS 5.4-21 
receive options 2-13 
send options 2-13 

origin LU (OLU> 4-4 
origin transaction program 2-7 

pacing 6.2-6 
Sq also session-level pacing 
initialization 6.2-2 
pacing queue 6.2-6 
~Response indicator tQRU 6.2-6 
session-level 6.2-1, 6.2-4, 6.2-5 

deadlock 6.2-6 
FSM_PAC_Rq_Rcv 6.2-21 
FSM_PAC_Rq_SEND 6.2-20 
IPR 6.2-6 

pacing count 6.2-6 
parameter set up 6.2-2, 6.2-6 
PI 6.2-5, 6.2-6 
stages 6.2-5 
Nindow size 6.2-5 

Pacing Request indicator IPI) 6.2-5 
Pacing Response indicator lPI> 6.2-5, 6.2-6 
Padded Data indicator tPOI> 6.2-5 
padding H-2 
parallel session 

See session, parallel 
parallel session LU 2-7, 2-38 

See also session, parallel 
partner LU 2-4, 2-42 

See also remote, role of LU and TP 
control block 5.1-2 

PARTNER_LU structure 2-42, A-2 
referenced by 

ACTIVATE_SESSION_ERROR 4-51 
BIND_Rq_STATE_ERROR 4-52 
BIND_SESSION_LIMIT_EXCEEDED 4-55 
BUILD_AND_SEND_BIND_RSP_POS 4-60 
CHANGE_ACTION 5.4-44 
CHECK_CNOS_COHHAND S.4-63 
CHECK_CNOS_REPLY S.4-56 
CINIT_Rq_STATE_ERROR 4-71 
CLOSE_OHE_REPLY 5.4-65 
DEFINE_PROC 5.4-38 
DELETE_PROC 5.4-40 
DISPLAY_PROC 5.4-39 
6ET_ATTRIBUTES_PROC 5.1-18 
INITIALIZE_LULU_CB_ACT_SESS 4•73 
INITIALIZE_LULU_CB_BIND 4-74 
INITIALIZE_LULU_CB_CINIT 4-75 
LOCAL_VERB_PARAMETER_CHECK 5.4-42 
NE60TIATE_REPLY 5.4-64 
PROCESS_SESSION_LIMIT_PROC 5.4-58 
SESSIOH_LIMIT_DATA_LOCK_MANAGER 5.4-67 
SNASVCMG_VERB_PARAMETER_CHECK 5.4-43 
SOURCE_CONVERSATION S.4-50 
SOURCE_CONVERSATION_CONTROL 5.4-49 
SOURCE_SESSION_LIHIT_F'ROC 5.4-46 
VERB_PARAMETER_CHECK 5.4-48 

password 
Saa conversation-level security 
See session-level security 

path control network 1-3, 1-5, 2-1, 2-28 
protocol boundary with LU 2-281 2-49 

PC 
Sae path control network 

PC_CHARACTERISTICS structure A-35 
PC_CONNECT_RSP structure A-22 

referenced by 
FSM_STATUS 4-95 
PROCESS_PC_CONNECT_RSP 4-90 
PROCESS_RECORD_FROl1_NNl'1 4-50 

PC_CONNECT structure A-18 
referenced by 

BUILD_AND_SEND_PC_CONNECT 4-64 
PC_HS_CONNECT structure A-18 

referenced by 
BUILD_AND_SEND_PC_HS_CClff-IECT 4-65 

PC_HS_DISCONNECT structure A-19 
referenced by 

BUILD_AND_SEND_PC_HS_DISCONNECT 4-65 
PC_TO_HS_RECORD structure A-23 

ref eranced by 
TC.EXCHANGE_CRV 6.2-10 
TC.RCV 6.2-15 

POI 
Sae Padded Data indicator (PIJU 

peer protocols 2-4 
PERFORH_RECEIVE_PROCESSING procedure 5.1-39 

referenced by 

Index X-17 



PROCESS_FMH7_PROC 5.1-46 
RECEIVE_AND_WAIT_PROC 5.1-20 
RECEIVE_IMMEDIATE_PROC 5.1-22 

perforMance-related options 2-13 
periods, separating nante qualifiers denoting 

decomposition 1-5 
peripheral LU 1-5 
peripheral node 1-4 

See also node 
peripheral node control point (PNCP) 

See PHCP (peripherel node control point> 
peripheral node to peripheral node cOlllllll.l"li­
cation 2-1 

See also PNCP-lllediated sessions 
peripheral node to subarea node communi­
cation 2-1 

See also SSCP-inediated sessions 
peripheral PU 1-5 
phases, sync point 

See sync point, eotnmands 
physical unit (PUJ 

PI 

PIP 

See PU (physical U"litJ 

See Pacing Request or Pacing Response 
i nc:H ca tor (PI J 

See progra• initialization parameters 
(PIP> 

PIP_FIELD structure 5.0-19 
referenced by 

PS_ATTACH_CHECK 5.0-8 
PS_INITIALIZE 5.0-6 
RECEIVE_PIP_FIELD_FROM_HS 5.0-7 

PIP_LIST structure 5.0-20 
referenced by 

PS_INITIALIZE 5.0-6 
PIP Variable H-7 
PIU structure A-35 
PLU 

See priMary LU (PLU) 
PLU na11e 

in BIND 4-23 
PNCP Cpedpheral node control point J 1-5, 
4-2 

PNCP-•ediated sessions 4-2 
POST_AND_WAIT_PROC procedure 5.1-40 

referenced by 
CONFIRM_PROC 5.1-12 
DEALLOCATE_CONFIRM_PROC 5.1-33 
PREPARE_TO_RECEIVE_CONFIRH_PROC 5.1-41 
PROCESS_FMH7_PROC 5.1-46 
RECEIVE_Atll_WAIT_PROC 5.1-20 
RECEIVE_IMHEDIATE_PROC 5.1-22 
SEND_DATA_PROC 5.1-24 
SEND_ERROR_IN_SEND_STATE 5.1-55 
TEST_PROC 5.1-27 
WAIT_FOR_CONFIRMED_PROC 5.1-59 

POST_ON_RECEIPT_PROC p.-ocedure 5.1-18 
referenced by 

PS_CONV 5.1-10 
Prepare 

See sync point, commands, Prepare 
PREPARE_TO_RECEIVE_CONFIRM_PROC proce­
dure 5.1-41 

referenced by 
PREPARE_TO_RECEIVE_PROC 5.1-19 

PREPARE_TO_RECEIVE_FLUSH_PROC proce-
dure 5.1-43 

referenced by 
PREPARE_TO_RECEIVE_PROC 5.1-19 

PREPARE_TO_RECEIVE_PROC procedure 5.1-19 
referenced by 

PS_CONV 5.1-10 
presentation services (PS) 5.0-1, 5.2-1 

creation 3-17 
data structures 5.2-4 
function SUllllllary 2-37 
process 2-34, 2-35, 5.0-3 
protocol boundaries 2-49, 5.0-2 
structure 2-30, 5.0-2, 5.1-1 
ter•ination 3-17 

presentation services CPS) headers 2-40, 
5.1-6, 5.3-6, S.3-7, 5.3-8, 5.3-35 

definition H-10 
for.at H-10 

presentation services (PS> initialize 2-30, 
5.0-3 

See also presentation services (PS) 
protocol boundaries 5.0-3 

presentation services (PS) verb router 2-30, 
5.0-4 

See also presentation services (PS) 
See also recursion in PS 

presentation services for conversations 
(PS.CONY> 2-30 

See also presentation services (PS) 
function SUllllllary 5,l•l 
protocol boundaries 2-491 5.1-1 
structure 5.1-1 

presentation services for Mapped conversa-
tions <PS.MC> 2-30, 2-39 

See also mapped conversation 
See also Mapping 
See also presentation services (PS) 
protocol boU"ldaries 2-49 

presentation services for sync point services 
lPS.SPSJ 2-30, 2-40 

See also presentation services (PS) 
See also sync point 
protocol bOU"ldaries 2-40 

presentation services for the control opera-
tor (PS.COPR> 2-30, 5.4-1, S.4-21 

See also change nu.ber of sessions fCNOS) 
See also presentation services (PS> 
local-verb services 5.4-24 
p.-otocol boundaries 2-49 
session-limit-cl&ta lock 5.4-12, 5.4-31 
session-limit-data-lock manager 5.4-12, 
5.4-14, S.4-30 

shared data S.4-12 
See also LU-mode entry 

source-LU session-limit services 5.4-12, 
5.4-14. 5.4-25 

See also change nuMber of sessions 
( CNOS), component relationship, 
source-LU services 

structure 5.4-1, 5.4-23 
target-LU session-limit services 5.4-12, 
S.4-lS, 5.4-28 

See also change number of sessions 
(CNOSJ, component relationship, 
target-LU services 

verb router 5.4-24 
presentation services verb router 5.2-3 
presentation space 2-7 
prilft&ry LU (PLUl 2-8, 2-35, 2-36, 4-4 

See also session, activation polarity 
pri11ary LU name 

inBIND 4-23 
process 2-42 
PROCESS_ABORT_HS procedure 4-77 

referenced by 
PROCESS_RECORD_FROM_HS 4-48 

PROCESS_ACTIVATE_SESSION procedure 4-77 
referenced by · 

PROCESS_RECORD_fROH_RH 4-48 
PROCESS_ACTLU_RQ procedure 4-78 

referenced by 

X-18 SNA For111at and Protocol Reference Manual for LU Type 6.2 



PROCESS_RECORD_FROM_NNM 4-50 
PROCESS_Bit«>_RQ procedure 4-79 

referenced by 
PROCESS_RECORD_FROM_NNl1 4-50 

PROCESS_Bit«>_RSP procedure 4-81 
referenced by 

PROCESS_RECORD_FROM_NNM 4-50 
PROCESS_CINIT_RQ procedure 4-82 

referenced by 
PROCESS_RECORD_FROM_HS 4-48 

PROCESS_CLEANUP_RQ procedure 4-84 
referenced by 

PROCESS_RECORD_FROH_HS 4-48 
process connection 2-35, 2-37 
PROCESS_CP_LU_SESSION procedure 6.0-5 

referenced by 
HS 6.0-3 

PROCESS_CTERH_RQ procedure 4-85 
referenced by 

PROCESS_RECORD_FROM_HS 4-48 
PROCESS_DACTLU_RQ procedure 4-86 

referenced by 
PROCESS_RECORD_FROH_Ntl1 4-50 

PROCESS_DATA_COMPLETE procedure 5.2-33 
referenced by 

RECEIVE_INFO_PROC 5.2-30 
PROCESS_DATA_INCOHPLETE procedure 5.2-36 

referenced by 
RECEIVE_INFO_PROC 5.2-30 

PROCESS_DATA_PROC procedure 5.1-ltlt 
referenced by 

PERFORH_RECEIVE_PROCESSING 5.1-39 
PROCESS_DEACTIVATE_SESSION procedure 4-87 

referenced by 
PROCESS_RECORD_FROH_RM 4-48 

PROCESS_ECHOTEST_RQ procedure 4-87 
referenced by 

PROCESS_RECORD_FROM_HS 4-48 
PROCESS_ERROR_DATA procedure 5.2-43 

ref ereneed by 
RCVD_SVC_ERROR_PURGING 5.2-42 

PROCESS_ERROR_OR_FAILURE_RC procedure 5.2-31 
referenced by 

HC_TEST_PROC 5.2-28 
RECEIVE_INFO_PROC 5.2-30 

PROCESS_Fl'lf7_PROC procedure 5.1-46 
referenced by 

DEQUEUE_FMH7_PROC 5.1-36 . 
PERFORM_RECEIVE_PROCESSING 5.1-39 

PROCESS_HIERARCHICAL_RESET procedure 4-87 
referenced by 

PROCESS_RECORD_FROH_NNM 4-50 
PROCESS_HS_TO_RM_RECORD procedure 3-19 

referenced by 
RH 3-18 

PROCESS_INIT_HS_RSP procedure 4-88 
referenced by 

PROCESS_RECORD_FROM_HS 4-48 
PROCESS_INIT_SELF_RSP procedure 4-88 

referenced by 
PROCESS_RECORD_FROH_HS 4-48 

PROCESS_LNS_TO_RM_RECORD procedure 3-20 
referenced by 

RM. 3-18 
PROCESS_LU_LU_SESSION procedure 6.0-4 

referenced by 
HS 6.0-3 

PROCESS_HAPPER_RETURN_CODE procedure 5.2-35 
referenced by 

PROCESS_DATA_COMPLETE 5.2-33 
PROCESS_NOTIFY_RQ procedure 4-89 

referenced by 
PROCESS_RECORD_FROH_HS 4-48 

PROCESS_NOTIFY_RSP procedure 4-89 

referenced by 
PROCESS_RECORD_FROH_HS 4-48 

PROCESS_PC_Cot-INECT_RSP procedure 4-90 
referenced by 

PROCESS_RECORD_FROH_NNM 4-50 
PROCESS_Ps_ro_RM_RECORO procedure 3-21 

referenced by 
RM 3-18 

PROCESS_RECORO_FROM_HS procedure 4-48 
referenced by 

lN5 4-47 
PROCESS_RECORD_FROH_NNM procedure 4-50 

referenced by 
UIS 4-47 

PROCESS_RECORD_FROM_RM procedure 4-48 
referenced by 

LNS 4-47 
PROCESS_REQECHO_RSP procedure 4-90 

referenced by 
PROCESS_RECORO_FROH_HS 4-48 

PROCESS_RM_OR_HS_TO_PS_RECORDS proce­
dure 5.1-47 

referenced by 
CONFIRH_PROC 5.1-12 
CONFIRHED_PROC 5.1-14 
DEALLOCATE_ABEND_PROC 5.1-32 
DEALLOCATE_CONFIRH_PROC 5.1-33 
DEALLOCATE_FLUSH_PROC 5.1-35 
FLUSH_PROC 5.1-17 
POST_AND_WAIT_PROC 5.1-40 
POST_ON_RECEIPT_PROC 5.1-18 
PREPARE_TO_RECEIVE_CONFIRM_PROC S.1-41 
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-43 
RECEIVE_At«>_WAIT_PROC S.1-20 
RECEIVE_Il1l1EDIATE_PROC 5.1-22 
REQUEST_TO_SEND_PROC 5.1-23 
SEt«>_DATA_PROC 5.1-24 
SEND_ERROR_PROC 5.1-26 
SET_FMH7_RC 5.1-57 
TEST PROC 5.1-27 

PROCESS_RU=DATA procedure 6.1-34 
referenced by 

GENERATE_RH_PS_IHPUTS 6.1-31 
PROCESS_SEHD_PARM procedure 6.1-35 

referenced by 
DFC_SEt«>_FROM_PS 6.1-19 
DFC_SEt«>_FROM_RM 6.1-20 

PROCESS_SESSION_LIHIT_PROC procedure 5.4-58 
referenced by 

PS_COPR 5.4-32 
PROCESS_SESSION_LIMIT verb 5.4-6 

processing by PS.COPR 5.4-22, 5.4-28 
PROCESS_SESSION_ROUTE_INOP procedure 4-90 

referenced by 
PROCESS_RECORD_FROM_Ntl1 4-50 

PROCESS_TERM_SELF_RSP procedure 4-91 
referenced by 

PROCESS_RECORD_FROM_HS 4-48 
PROCESS_UNBIHO_RQ procedure 4-91 

referenced by 
PROCESS_RECORD_FROM_NNH 4-50 

PROCESS_IJNBIND_RSP procedure 4-92 
referenced by 

PROCESS_RECORD_FROH_NNM 4-50 
Product Identifier CX'll') Common Subvec­
tor E-24 

Product Identifier Subfield 
Emulated Product Identifier (X'Ol') E-25 
Hardware Product Identifier (X'OO') E-24 
Software Product Co11111on Level 

(X'04') E-25 
Software Product Co!lll!IOn Name CX'06') E-26 
Software Product Cust0111ization Date and 

TiMe fX'09') E-26 

Index X-19 



Software Product Cust0111ization Identifier 
(X'07'J E-26 

Software Product Progra• Number 
(X'08' J E-26 

Software Product Serviceable Component 
Identifier (X'02') E-25 

Product Set ID (X'lO'J COllllllOn SubVt1Ctor E-24 
profile, security 

See conversation-level security 
profiles 2-9 

corresponding to type of session F-4, F-6 
Ftt (function 11anage•ent) F-1 
Ftt profile 0 2-9, F-1 
Ftt profile 19 2-9, F-3 
Ftt profile 6 2-9, F-2 
TS (trans•ission services> F-5 
TS profile 1 2-9, F-5 
TS profile 7 2-9, F-5 

program initialization para111eters 
(PIPJ 2-13, 5.0-4 

program-to-progra• c011m1Unication 2-1 
protection 

See sync point 
protection manager 

See sync point, protection 111anager 
protocol bouidary 2-4, 2-49 

See also application progra• interface 
(APIJ 

Sea also uider individual component 
betNeen layers 2-4 
between peer components 2-4 
general definition 1-1 
internal 2-49 
partitioned 2-4 

PROTOCOL_ERROR_PROC procedure 5.2-47 
referenced by 

GET_SEND_INDICATOR 5.2-44 
MC_TEST_PROC 5.2-28 
PROCESS_DATA_COt1PLETE 5.2-33 
PROCESS_DATA_IHCOMPLETE 5.2-36 
PROCESS_ERROR_DATA 5.2-43 
PROCESS_ERROR_OR_FAILURE_RC 5.2-31 
PROCESS_ttAPPER_RETURH_CODE 5.2-35 
RCYD_Svt_ERROR_PURGING 5.2-42 
RCYD_svc_ERROR_TRUHC_NO_TRUNC 5.2-41 
RECEIVE_INFO_PROC 5.2-30 
SEND_svc_ERROR_PUR6IN6 5.2-45 

protocol 111achine, definition of 1-1 
PS 

See presentation services (PS) 
PS_ATTACH_CHECK procedure 5.0-8 

referenced by 
PS_INITIALIZE 5.0-6 

PS.CONY 
See presentation services for conversa­

tions (PS.CONY> 
PS_CONV procedure 5.1-10 

referenced by 
PS_VERB_ROUTER 5.0-11 

PS.COPR 
See presentation services for the control 
operator (PS.COPRJ 

PS_COPR procedure 5.4-32 
referenced by 

PS_YERB_ROUTER 5.0-11 
PS_CREATION_PROC procedure 3-47 

referenced by 
ATTACH_PROC 3-27 

PS header 
See presentation services (PS> headers 

PS header 10: Sync Point Control H-10 
PS_INITIALIZE procedure 5.0-6 

referenced by 
PS 5.0-5 

PS.tte 
Sea presentation servic9s for Mapped con­
versations (PS.MC> 

PS_tte procedure 5.2-19 
referenced by 

PS_VERB_ROUTER 5.0-11 
PS process 5.0-5 

referenced by 
ALLOCATE_PROC 5.1-11 
ALLOCATE_RCB_PROC 3-24 
ATTACH_PROC 3-27 
BID_RSP_PROC 3-32 
CONFIRHED_PROC 5.1-14 
CONNECT_RCB_AND_SCB 3-39 
DEALLOCATE_ABEND_PROC 5.1-32 
FIRST_SPEAKER_PROC 3-43 
FLUSH_PROC 5.1-17 
6ET_SESSION_PROC 3-45 
IHITIALIZE_ATTACHED_RCB 5.0-16 
PROCESS_PS_TO_Rtt_RECORD 3-21 
PROCESS_Rtt_OR_HS_TO_PS_RECORDS 5.1-47 
PS_CREATIOH_PROC 3-47 
RECEIVE_Rtt_OR_HS_TO_PS_RECORD 5.1-51 
Rtt_ACTIVATE_SESSION_PROC 3-48 
SEHD_DATA_TO_HS_PROC 5.1-52 
SEHD_DEACTIVATE_SESSION 3-55 
SEHD_ERROR_IH_RECEIVE_STATE 5.1-54 
SEHD_ERROR_PROC 5.1-26 
SEND_ERROR_TD_HS_PROC 5.1-56 
SESSION_ACTIVATED_ALLOCATION 3-56 
SESSION_DEACTIVATED_PROC 3-58 
SUCCESSFUL_SESSION_ACTIVATIOH 3-63 
UNSUCCESSFUL_SESSIOH_ACTIVATION 3-66 
WAIT_FOR_COHFIRHED_PROC 5.1-59 
WAIT_FOR_Rtt_REPLY 5.1-60 

PS_PROCESS_DATA structure 5.0-2, 5.0-19, 
5.1-3 

referenced by 
ACTIVATE_SESSIOH_PROC 5.4-36 
ATTACH_ERROR_PROC 5.0-10 
DEACTIVATE_SESSION_PROC 5.4-37 
DEALLOCATIOH_CLEAHUP_PROC 5.0-13 
INITIALIZE_ATTACHED_RCB 5.0-16 
PS 5.0-5 
PS_ATTACH_CHECK 5.0-8 
PS_INITIALIZE 5.0-6 
PS_PROTOCOL_ERROR 5.0-15 
PS_VERB_ROUTER 5.0-11 
RECEIVE_PIP_FIELD_FROH_HS 5.0-7 
TEST_FOR_RESOURCE_POSTED 5.0-17 
WAIT_PROC 5.0-13 

PS profile 
in BIND 4-22 

PS_PROTOCOL_ERROR procedure 5.0-15 
referenced by 

ATTACH_ERROR_PROC 5.0-10 
DEQUEUE_F11H7_PROC 5.1-36 
PERFORM_RECEIYE_PROCESSIN6 5.1-39 
PROCESS_DATA_PROC 5.1-44 
PROCESS_F11H7_PROC 5.l"'.46 
PROCESS_Rtt_OR_HS_TO_PS_RECORDS 5.1-47 
RECEIYE_PIP _FIELD_FROtt_tlS 5. 0-7 
SET_FttH7_RC 5.1-57 

PS.SPS 
See also presentation services for sync 
point services (PS.SPS) 

See also sync point, 11anager 
logic 5.3-9, 5.3-16, 5.3-18, 5.3-20, 
5.3-22, 5.3-25, 5.3-30, 5.3-31, 5.3-32. 
5.3-34, 5.3-35 

PS_SPS procedure S.3-35 
referenced by 

tte_COHFIRH_PROC 5.2-21 
tte_SEND_DATA_PROC 5.2-38 

X"'.20 SHA For•at and Protocol Reference tlanu.l for LU Type 6.2 



tte_SEND_ERROR_PROC 5.2-40 
PROCESS_DATA_PROC 5.1-44 
PROCESS_ERROR_OR_FAILURE_RC 5.2-31 
PS_VERB_ROUTER 5.0-11 

PS_TO_HS_RECORD structure A-24 
referenced by 

DFC_SEND_FROH_PS 6.1-19 
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-43 

PS_TO_RM_RECORD structure A-25 
referenced by 

PROCESS_PS_TO_RM_RECORD 3-21 
PS Usage field 

in BIND 4-22 
PS_VERB_ROUTER procedure 5.0-11 

referenced by 
GET_SEND_INDICATOR 5.2-44 
MC_ALLOCATE_PROC 5.2-20 
MC_CONFIRM_PROC 5.2-21 
MC_COHFIRMED_PROC 5.2-22 
MC_DEALLOCATE_PROC 5.2-23 
MC_FLUSH_PROC 5.2-23 
MC_PREPARE_TO_RECEIVE_PROC 5.2-26 
MC_REQUEST_TO_SEND_PROC 5.2-37 
ttc_SEHD_DATA_PROC 5.2-38 
MC_SEND_ERROR_PROC 5.2-40 
MC_TEST_PROC 5.2-28 
PROCESS_DATA_IHCOHPLETE 5.2-36 
PROTOCOL_ERROR_PROC 5.2-47 
RC\ID_SVC_ERROR_PURGING 5.2-42 
RC\ID_SVC_ERROR_TRUHC_NO_TRUNC 5.2-41 
SEND_svc_ERROR_PURGING 5.2-45 

PU Cphysical unit> 1-3. 2-16. 2-36 
peripheral 1-5 
protocol boundary to LU 2-49 
rel•tionship to LU 2-18. 2-28t 2-37. 2-45 
subarea 1-5 

PU type 1-5 
corresponding to node type 1-5 

purging of chains 2-12. 2-15, 6.1-1 

QIU 
See Queued Response indicator CQRIJ 

queue 2-4 
See also SEND/RECEIVE process interaction 

Queued Response indicator CQRIJ 6.2-6 
use 6.1-9, 6.1-10 

queuing of session initiation RUs 
deter•ination using NOTIFYCVector Key 

X'OC' > 4-14 
INIT-SELF 4-9 

randotll data 4-24, 4-27 
See also LU-LU verification 
See also session-level security, r•ndotll 
data 

Rando• Data Structured Data Subfield E-17 
RCB 

See resource control block CRCB> 
RCB_ALLOCATED_PROC procedure 5.1-48 

referenced by 
ALLOCATE_PROC 5.1-11 

RCB_ALLOCATED structure A-32 
referenced by 

ALLOCATE_PROC 5.1-11 

AlLOCATE_RCB_PROC 3-24 
CREATE_RCB 3-39 
RCB_ALLOCATED_PROC 5.1-48 
TEST_FOR_FREE_FSP_SESSION 3-65 

RCB_DEALLOCATED structure A-33 
referenced by 

PROCESS_Ps_To_RH_RECORD 3-21 
RCB_ID structure 3-74 

referenced by 
ATTACH_PROC 3-27 
COMPLETE_HS_ATTACH 3-38 
CONNECT_RCB_AND_SCB 3-39 
DEALLOCATION_CLEANUP_PROC 5.0-13 
PS_PROTOCOL_ERROR 5.0-15 
SET_RCB_AND_SCB_FIELDS 3-61 

RCB_LIST_PTR structure 5.0-20 
referenced by 

PS 5.0-5 
RCB structure A-7 

referenced by 
ATTACH_ERROR_PROC 5.0-10 
BID_RSP_PROC 3-32 
BIDDER_PROC 3-34 
COMPLETE_CONFIRH_PROC 5.1-29 
COMPLETE_DEALLOCATE_ABEND_PROC 5.1-30 
CONFIRM_PF!OC 5.1-12 
CONFIRMED_PROC 5.1-14 
CONVERSATION_FAILURE_PROC 5.1-31 
CREATE_RCB 3-39 
DEALLOCATE_ABEND_PROC 5.1-32 
DEALLOCATE_CONFIRM_PF!OC 5.1-33 
DEALl.OCATE_FlUSH_PROC 5.1-35 
DEAllOCATE_PROC S.l-15 
DEAllOCATION_ClEANUP_PROC S.0-13 
DEQUEUE_Ft1H7_PROC 5.1-36 
FIRST_SPEAKER_PROC 3-43 
FlUSH_PROC 5.1-17 
FREE_SESSION_PROC 3-44 
FSM_CONVERSATION 5.1-63 
FSM_ERROR_DR_FAILURE 5.1-65 
GET_ATTRIBUTES_PROC 5.1-18 
GET_END_CHAIN_FROM_HS S.1-37 
6ET_SEND_INDICATOR S.2-44 
6ET_SESSION_PROC 3-45 
INITIALIZE_ATTACHED_RCB 5.0-16 
ttc_AllOCATE_PROC S.2-20 
MC_CONFIRM_PROC 5.2-21 
MC_DEALLOCATE_PROC 5.2-23 
MC_POST_ON_RECEIPT_PROC 5.2-25 
tte_PREPARE_TO_RECEIVE_PROC 5.2-26 
MC_RECEIVE_AND_WAIT_PROC 5.2-27 
MC_srnD_DATA_PROC 5.2-38 
MC_SEND_ERROR_PROC S.2-40 
MC_TEST_PROC S.2-28 
OBTAIN_SESSION_PROC 5.1-38 
PERFORM_RECEIVE_PF!OCESSING S.1-39 
POST_AtID_WAIT_PROC 5.1-40 
POST_ON_RECEIPT_PROC S.1-18 
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-41 
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-43 
PREPARE_TO_RECEIVE_PROC 5.1-19 
PROCESS_DATA_COMPLETE S.2-33 
PROCESS_DATA_IHCOMPLETE S.2-36 
PROCESS_DATA_PROC 5.1-44 
PROCESS_ERROR_OR_FAILURE_RC 5.2-31 
PF!OCESS_Ft1H7_PROC S.1-46 
PROCESS_MAPPER_RETURN_CODE 5.2-35 
PROCESS_PS_TO_RM_RECORD 3-21 
PROCESS_Rtl_OR_HS_TO_PS_RECORDS 5.1-47 
PROTOCOL_ERROR_PROC S.2-47 
PS_CREATION_PROC 3-47 
PS_INITIALIZE 5.0-6 
PS_VERB_ROUTER S.0-11 
RCB_ALLOCATED_PROC S.l-48 

Index X-21 



RCVD_svc_ERROR_PURGING 5.2-42 
RCVD_svc_ERROR_TRUHC_HO_TRUNC 5.2-41 
RECEIVE_AND_WAIT_PROC 5.1-20 
RECEIVE_DATA_PROCESSING 5.1-50 
RECEIVE_IMMEDIATE_PROC 5.1-22 
RECEIVE_INFO_PROC 5.2-30 
RECEIVE_PIP_FIELD_FROH_HS 5.0-7 
RECEIVE_RM_DR_Hs_ro_PS_RECORD 5.1-51 
REQUEST_TO_SEND_PROC 5.1-23 
SEND_DATA_BUFFER_HANASEMENT 5.1-51 
SEND_DATA_PROC 5.1-24 
SEND_DATA_TO_HS_PROC 5.1-52 
SEND_ERROR_DONE_PROC 5.1-53 
SEND_ERROR_IN_RECEIVE_STATE 5.1-54 
SEND_ERROR_IN_SEND_STATE 5.1-55 
SE!tl_ERROR_PROC 5.1-26 
SEND_ERROR_TO_HS_PROC 5.1-56 
SEND_svc_ERROR_PURSING 5.2-45 
SESSION_ACTIVATED_ALLOCATION 3-56 
SESSIOH_DEACTIVATED_PROC 3-58 
SET_FMH7_RC 5.1-57 
SET_RCB_AND_SCB_FIELDS 3-61 
TEST_FOR_FREE_FSP_SESSION 3-65 
TEST_rOR_POST_SATISFIED 5.1-58 
TEST_FOR_RESOURCE_POSTED 5.0-17 
TEST_PROC 5.1-27 
NAIT_FOR_CONFIRtlED_PROC 5.1-59 
NAIT_FOR_RSP_TO_RQ...TO_SEND_PROC 5.1-61 
WAIT_FOR_SEND_ERROR_DONE_PROC 5.1-62 
NAIT_PROC 5.0-13 

RCV_STATE_ERROR procedure 6.1-36 
referenced by 

DFC_RCV_FSMS 6.1-24 
RCVD_svc_ERROR_PURGINS procedure 5.2-42 

referenced by 
MC_CONFIRM_PROC 5.2-21 
MC_DEALLOCATE_PROC 5.2-23 
11C_PREPARE_TO_RECEIVE_PROC 5.2-26 
MC_SEND_DATA_PROC 5.2-38 
MC_SEND_ERROR_PROC 5.2-40 
PROCESS_ERROR_OR_FAILURE_RC 5.2-31 

RCVD_svc_ERROR_TRUNC_NO_TRUNC proce-
dure 5.2-41 

referenced by 
PROCESS_DATA_INCOMPLETE 5.2-36 
PROCESS_ERROR_OR_FAILURE_RC 5.2-31 

READY TO RECEIVE CRTR> 3-10, 6.1-2, 6.1-4, 
6.1-s, 6.1-1, 6.1-9, 6.1-10, 6.1-12, 6.1-13, 
6.1-15, E-13 

reblocking 2-14, 2-16, 2-32 
RECEIVE_AND_WAIT_PROC procedure 5.1-20 

referenced by 
PS_CONV 5.1-10 

rece;ve check 5.1-9 
sense data ;ncluded with G-1 

RECEIVE_DATA_PROCESSING procedure 5.1-50 
referenced by 

PROCESS_DATA_PROC S.1-44 
RECEIVE_DATA structure A-12 

referenced by 
GET_END_CHAIN_FROM_HS 5.1-37 
PROCESS_RU_DATA 6.1-34 

RECEIVE_ERROR structure A-12 
referenced by 

DEALLOCATE_FLUSH_PROC 5.1-35 
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-41 
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-43 
RECEIVE_AND_NAIT_PROC 5.1-20 
RECEIVE_IMMEDIATE_PROC 5.1-22 
SEtl>_DATA_PROC 5.1-24 
SEND_RSP_TO_RM_OR_PS 6.1-39 

RECEIVE_IMMEDIATE_PROC procedure 5.1-22 
referenced by 

PS_CONV 5.1-10 

RECEIVE_INFO_PROC procedure S.2-30 
r1!'i'erenced by 

MC_RECEIVE_AND_WAIT_PROC 5.2-27 
MC_TEST_PROC 5.2-28 

RECEIVE_PIP_FIELD_FRott_HS procedure 5.0-7 
referenced by 

PS_INITIALIZE 5.0-6 
RECEIVE_RM_OR_HS_TO_PS_RECORD proce-
dure 5.1-51 

referenced by 
GET_END_CHAIN_FROM_HS 5.1-37 
PROCESS_RM_OR_HS_TO_PS_RECORDS S.1-47 
NAIT_FOR_CONFIRMEO_PROC 5.1-59 
WAIT_FOR_RSP_TO_RQ...TO_SEND_PROC 5.1-61 

RECEIVED_INFO structure A-8 
receiving data 2-32 
recovery 

See errors and failures 
recursion in PS 2-31, 2-32 
re1110te, role of LU and TP 2-5, 2-42 
reply in HDX-FF protocol 

See send/receive 11<>de, half-duplex 
flip-flop CHDX-FFl 

REQECHO E-13 
See also REQUEST ECHO TEST 

Request Co111111it 
See sync po;nt, cotm11ands, Request ComMit 

request control inode 6.2-6 
See also control lllOde 
illltllftdiate request MOde 6.1-8 

REQUEST ECHO CREQECHO) 4-31 
REQUEST ECHO TEST (REQECHO> 4-31, E-13 
request/response correlation 6.1-1. 6.1-8 
request/response header IRH> 2-15, 2-16, 
2-20, 2-32, D-1, D-2 

discussion of bit usage and val-
ues D-1-D-4 

format and bit settings D-2 
Format ;nc1icator <fl) H-4 
relat;onship to verbs 2-19 
session control 6.2-3 

request/response un;ts IRUs> 2-15 
s- also individual RUs 
character-coded 4-2 
field-formatted 4-2 
LU-LU session in;tiation 4-7 
LU-LU session status notificat;on 4-7 
LU-LU session ter•ination 4-7 
maintenance services 4-29 
maxim1.1111 s;ze 2-8, 2-16, 2-32, 2-42, 6.2-S 
sess;on control 4-15 
session services 4-7 

REQUEST_TO_SEHD_PROC procedure 5.1-23 
referenced by 

PS_CONV 5.1-10 
REQUEST_TO_SEND structure A-13, A-24 

referenced by 
DFC_SEND_FROM_PS 6.l-19 
REQUEST_TO_SEND_PROC 5.1-23 
TRY_To_RcV_SIGNAL 6.1-22 

request unit <RU> 
FM headers in H-4 

RESET_NORMAL structure 4-101 
RESET_SESSION_LIMIT_PROC procedure 5.4-34 

referenced by 
PS_COPR 5.4-32 

RESET_SESSION_LIMIT verb 5.4-6, S.4-20 
processing by PS.COPR 

all mode names 5.4-6, 5.4-27, 5.4-28, 
5.4-30 

parallel-session llOde name 5.4-30 
single-session lllOde na11e 5.4-25 
SNASVCMG lllode name 5.4-25 

RESET_SON structure 4•101 

X-22 SHA format and Protocol Reference Manual for LU Type 6.2 



resource 2-3, 2-45 
dynamic 2-42 
f1.r1ction-shipped 
local 2-4 
network, LU-accessed 2-3, 2-4, 2-38, 

2-42, 2-46, S.4-1, S.4-3, S.4-S 
control point 
local LU 5.4-S 
11ode S.4-5 
partner LU 5.4-5 
transaction progra11 5.4-5 

posHng 5.0-4, s:l-7 
protected 2-4, 2-39 

resource control block CRCB> S.2-4, 2-45, 
3-3, 5.o-3, s.1-3, s.2-4, 5.3-7, 5.3-8, 
5.3-18, S.3-20 

resource ID 2-6 
resources Manager (RM> 2-40, 3-1 

fl.a'lction summary 2-37, 3-2 
process 2-45 
protocol boundaries 2-49, 2-50 
protocol boundary 3-2 

resources, local 
See sync point, local resources 

response control 1110de 6.2-6 
See also control 11<>de 
immediate response •ode 6.1-8 

response correlation 2-32 
response to ch&in 

See request/response units lRUs) 
responsible para111eter 3-16 

See also session, deactivation, responsi­
bility 
negoti~tion by CNOS 5.4-30 

RESULT_CHECK_ALLOCATE procedure 5.4-52 
referenced by 

SOURCE_CONVERSATION 5.4-50 
RESULT_CHECK_RECEIVE_Cotl1AND proce-
dure 5.4-61 

referenced by 
TARGET_COMMAND_CONVERSATION 5.4-60 

RESULT_CHECK_RECEIVE_DEALLOCATE proce-
dure 5.4-55 

referenced by 
SOURCE_CONVERSATION 5.4-50 

RESULT_CHECK_RECEIVE_REPLY procedure 5.4-54 
referenced by 

SOURCE_CONVERSATION 5.4-50 
RESULT_CHECK_RECEIVE_SEN> procedure 5.4-62 

referenced by 
TARGET_COMMAND_CONVERSATION 5.4-60 

RESULT_CHECK_SEND_COMHAND procedure 5.4-53 
referenced by 

SOURCE CONVERSATION S.4-50 
RESULT_CHECK:seND_REPLY procedure 5.4-66 

referenced by 
TARGET_COMMAND_CONVERSATION 5.4-60 
TARGET_REPLY_CONVERSATION. 5.4-65 

resync service transaction program 
See sync point, resynchronization 

resynchronization 
See sync point 

return 
See CALL/RETURN procedure interaction 

RETURN_CODE structure 5.0-19 

RH 

referenced by 
TEST_FOR_RESOURCE_POSTED 5.0-17 
WAIT_PROC 5.0-13 

See request/response header (RH) 
RH 

See resources 11anager lRH> 
RH_ACTIVATE_SESSION_PROC procedure 3-48 

referenced by 

PROCESS_PS_TO_RM_RECORD 3-21 
RH_ACTIVATE_SESSION structure A-27 

referenced by 
ACTIVATE_SESSION_PROC 5.4-36 
RM_ACTIVATE_SESSION_PROC 3-48 
SUCCESSFUL_SESSION_ACTIVATION 3-63 

RM_DEACTIVATE_SESSION_PROC procedure 3-49 
referenced by 

CTERH_DEACTIVATE_SESSIOH_PROC 3-40 
PROCESS_PS_TO_RM_RECORD 3-21 

RM_DEACTIVATE_SESSION structure A-27 
referenced by 

CTERM_DEACTIVATE_SESSION_PROC 3-40 
DEACTIVATE_SESSION_PROC 5.4-37 
RM_DEACTIVATE_SESSION_PROC 3-49 

Rl1 process 3-18 
referenced by 

ACTIVATE_SESSION_PROC 5.4-36 
ALLOCATE_PROC 5.1-11 
CHANGE_ACTION S.4-44 
DEACTIVATE_SESSION_PROC 5.4-37 
FLUSH_PROC 5.1-17 
FSM_ERROR_OR_FAILURE 5.1-65 
PROCESS_RH_OR_HS_TO_PS_RECORDS 5.1-47 
RECEIVE_RH_OR_HS_TO_PS_RECORD S.l-51 
WAIT_FOR_CONFIRMED_PROC 5.1-59 
NAIT_FOR_RH_REPLY 5.1-60 

RM_PROTOCOL_ERRDR procedure 3-49 
referenced by 

ATTACH_PROC 3-27 
BID_PROC 3-30 
FREE_SESSION_PROC 3-44 
FSM_BIS_BIDDER 3-70 
FSM_BIS_FSP 3-71 
RTR_RQ_PROC 3-50 
SECURITY_PROC 3-52 
UNBIND_PROTOCOL_ERROR_PROC 3-65 

RM_SESSION_ACTIVATED structure A-33 
referenced by 

ACTIVATE_SESSION_PROC 5.4-36 
RM_ACTIVATE_SESSION_PROC 3-48 
SESSION_DEACTIVATED_PROC 3-58 
SUCCESSFUL_SESSION_ACTIVATION 3-63 
UNSUCCESSFUL_SESSION_ACTIVATION 3-66 

R11_TO_HS_RECORD structure A-28 
referenced by 

DFC_SEtlD_FROH_RH 6 .1-20 
RH_TO_LNS_RECORD structure A-31 

referenced by 
LNS 4-47 
PROCESS_RECORD_FROM_RM 4-48 

RM_TO_PS_RECORD structure A-32 
referenced by 

PROCESS_RM_OR_HS_TO_PS_RECORDS 5.1-47 
WAIT_FOR_CONFIRMED_PROC 5.1-59 
WAIT_FOR_RM_REPLY 5.1-60 

role of LU and TP 2-S 
route 2-42 
routing and checking logic, representation 
within the forllllll description 

RSP_TO_REQUEST_TO_SEND structure A-13 
referenced by 

DFC_RCV_FSMS 6.1-24 
RSPIACTLU> 4-171 E-18 
RSPIBIND> 4-25, E-19 
RSPICINITl 4-10, E-19 
RTR E-13 

See also READY TO RECEIVE 
RTR (READY TO RECEIVE> 6.1-15 
RTR_RQ_PROC procedure 3-SO 

referenced by 
PROCESS_HS_TO_RH_RECORD 3-19 

RTR RQ structure A-15. A-30 
referenced by 

Index X-23 



FREE_SESSION_PROC 3-44 
GENERATE_RM_PS_INPUTS 6.1-31 
RTR_Rfl_PROC 3-50 

RTR_RSP_PROC procedure 3-51 
referenced by 

PROCESS_Hs_ro_RM_RECORD 3-19 
RTR_RSP structure A-15, A-30 

RU 

referenced by 
GENERATE_RM_PS_INPUTS 6.1-31 
RTR_Rfl_PROC 3-50 
RTR_RSP_PROC 3-51 
SEND_RSP_TO_RM_OR_PS 6.1-39 

See request/response uni ts ( RUs ) 
RU parameters 

implementation-dependent 4-6 
installation-specified 4-6 
specification of 4-6 
used by LU netNOrk services 4-5 

rule l (conditional termination> 
See bracket, bracket termination rule 

SC8 structure A-9 
referenced by 

ATTACH_PROC 3-27 
COMPLETE_HS_ATTACH 3-38 
CREATE_SCB 3-40 
FREE_SESSION_PROC 3-44 
PROCESS_HS_TO_RM_RECORD 3-19 
SECURITY_PROC 3-52 
SEND_DEACTIVATE_SESSION 3-55 
SESSION_DEACTIVATED_PROC 3-58 
SET_RCB_AND_SCB_FIELDS 3-61 
SUCCESSFUL_SESSION_ACTIVATION 3-63 

secondary LU <SLU) 2-36, 4-4 
See also session, activation polarity 

secondary LU name 
in BIND 4-25 

security 2-10, 2-13 
See also conversation-level security 
See also session cryptography 
See also session-level security 

security dotingrade 
See conversation-level security 

Security FM header 4-6 
See also FM header, type 12 (Security) 

SECURITY_HEADER structure A-15 
referenced by 

PROCESS_RU_DATA 6.1-34 
SECURITY_PROC 3-52 

SECURITY_PROC procedure 3-52 
referenced by 

PROCESS_HS_TO_RM_RECORD 3-19 
SEND_ACTIVATE_SESSION procedure 3-52 

referenced by 
ACTIVATE_NEEDED_SESSIONS 3-22 
GET_SESSION_PROC 3-45 
RM_ACTIVATE_SESSION_PROC 3-48 

SEND_BIS procedure 3-53 
referenced by 

DEACTIVATE_FREE_SESSIONS 3-41 
FREE_SESSION_PROC 3-44 
RTR_Rfl_PROC 3-50 
RTR_RSP_PROC 3-51 

SEND_BIS_REPLY procedure 3-53 
referenced by 

CHECK_FOR_BIS_REPLY 3-38 
SEND_BIS 3-53 

SEND_BIS_RQ procedure 3-54 

referenced by 
BIS_RACE_LOSER 3-35 
RM_DEACTIVATE_SESSION_PROC 3-49 
SEND_BIS 3-53 

SEND_BIU procedure 6.1-37 
referenced by 

PROCESS_SEND_PARM 6.1-35 
SEND_BUFFER structure 5.2-48 

referenced by 
MC_SEND_DATA_PROC 5.2-38 

send check 
sense data included Mith 6-1 

SEND_DATA_BUFFER_MANAGEMENT procedure 5.1-51 
referenced by 

ATTACH_ERROR_PROC S.0-10 
COMPLETE_DEALLOCATE_ABEND_PROC 5.1-30 
SEt«>_DATA_PROC 5.1-24 
SEND_ERROR_DONE_PROC 5.1-53 

SEND_DATA_PROC procedure S.1-24 
referenced by 

PS_CONV 5.1-10 
SEND_DATA_RECORD structure A-24 

referenced by 
COMPLETE_CONFIRM_PROC S.1-29 
COMPLETE_DEALLOCATE_ABEND_PROC 5.1-30 
DEALLOCATE_CONFIRM_PROC 5.1-33 
DEALLOCATE_FLUSH_PROC 5.1-35 
DFC_SEND_FROM_PS 6.1-19 
PREPARE_TO_RECEIVE_CONFIRM_PROC 5.1-41 
RECEIVE_AND_WAIT_PROC 5.1-20 
SEND_DATA_TO_HS_PROC 5.1-52 

SEND_DATA_TO_HS_PROC procedure 5.1-52 
referenced by 

ATTACH_ERROR_PROC 5.0-10 
COMPLETE_CONFIRM_PROC 5.1-29 
COMPLETE_DEALLOCATE_ABEND_PROC 5.1-30 
CONFIRM_PROC 5.1-12 
DEALLOCATE_CONFIRM_PROC 5.1-33 
DEALLOCATE_FLUSH_PROC 5.1-35 
FLUSH_PROC 5.1-17 
FSM_CONVERSATION 5.1-63 
PREPARE_TO_RECEIVE_CONFIRH_PROC 5.1-41 
PREPARE_TO_RECEIVE_FLUSH_PROC 5.1-43 
RCB_ALLOCATED_PROC 5.1-48 
RECEIVE_AND_NAIT_PROC 5.1-20 
SEND_DATA_BUFFER_HANAGEMENT 5.1-51 
SEND_DATA_PROC 5.1-24 
SEND_ERROR_DONE_PROC 5.1-53 
SEND_ERROR_IN_SEND_STATE 5.1-55 

SEND_DEACTIVATE_SESSION procedure 3-55 
referenced by 

BID_RSP_PROC 3-32 
DEACTIVATE_PENDING_SESSIOHS 3-41 
FSH_BIS_BIDDER 3-70 
FSM_BIS_FSP 3-71 
RH_DEACTIVATE_SESSION_PROC 3-49 
RM_PROTOCOL_ERROR 3•49 

SEND_ERROR_DONE_PROC procedure 5.1-53 
referenced by 

SEND_ERROR_IN_SEND_STATE 5.1-55 
SEND_ERROR_PROC 5.1-26 
NAIT_FOR_SEND_ERROR_OOHE_PROC 5.1-62 

SEND_ERROR_IN_RECEIVE_STATE procedure 5.1-54 
referenced by 

SEND_ERROR_PROC 5.1-26 
SEND_ERROR_IN_SEND_STATE procedure 5.1-55 

referenced by 
SEND_ERROR_PROC 5.1-26 

SEND_ERROR_PROC procedure 5.1-26 
referenced by 

PS_CONV 5.1-10 
SEND_ERROR structure A-24 

referenced by 
DEALLOCATE_ABENO_PROC 5.1-32 

X-24 SNA Format •nd Protocol Reference Manual for LU Type 6.2 



DFC_SEtl>_FROM_PS 6.1-19 
SEND_ERROR_IN_RECEIVE_STATE 5.1-54 
SEND_ERROR_PROC 5.1-26 
SEND_ERROR_TO_HS_PROC 5.1-56 

SEND_ERROR_TO_HS_PROC procedure 5.1-56 
referenced by 

ATTACH_ERROR_PROC 5.0-10 
SEND_NEG_RSP_OR_LOG procedure 6.1-37 

referenced by 
DFC_RCV 6. 1-23 
TC.Rev 6.2-15 

SEND PARM structure A-36 
referenced by 

PROCESS_SEND_PARM 6.1-35 
sand/receive concurrency 2-6 
send/receive lllOde 

full-duplex (FOX> 6.1-16 
half-duplex flip-flop CHDX-ff) 6.1-1, 
6.1-31 6.1-10 

SEND/RECEIVE process interaction 2-45 
send/receive state of conversation 2-6, 

2-311 2-34, 2-35 
See also half-duplex flip-flop 
send/receive lllOde 

SEND_RSP_BIU procedure 6.1-38 
referenced by 

DFC_RCV 6.1-23 
DFC_RCV_FSMS 6.1-24 
OFC_SEND_FROM_PS 6.1-19 
6EHERATE_RM_PS_INPUTS 6.1-31 

SEND_RSP_TO_RM_OR_PS procedure 6.1-39 
referenced by 

DFC_RCV_FSMS 6.1-24 
SEl-IJ_svc_ERROR_PUR6IN6 procedure 5.2-45 

referenced by 
PROCESS_DATA_COMPLETE 5.2-33 
PROCESS_HAPPER_RETURN_COOE 5.2-35 

sending data 2-31 
sense code 

See sense data 
sense-code specific infor111ation 6-1 
SENSE_CODE structure 3-75 

referenced by 
RM_PROTOCOL_ERROR 3-49 
SEND_DEACTIVATE_SESSION 3-55 

sense data G-1 
for11at of 6-1 
in FttH-7 2-20 
sense code 

category X'OO' (user sense data 
only> G-1 

category X'08' (request reject) 6-1, 
6-1 

category X'10' (request error) 6-5, 
G-1 

category X'20' (state error) 6-6, 6-1 
category X'40' CRH usage error) 6-7, 

6-1 
category x•ao• (path error> 6-8, 6-1 
modifier G-1 
modifier value of x•oo• 6-1 

sense-code specific infor11ation 6-1 
user-defined data 6-1 

SENSE~DATA structure 5.0-21 
referenced by 

ATTACH_ERROR_PROC 5.0-10 
PS_ATTACH_CHECK 5.0-8 
PS_INITIALIZE 5.0-6 
PS_PROTOCOL_ERROR 5.0-15 

sequence numbers and IDs 
use in data flow control 6.1-4 

sequence numbers, TH 2-161 2-32, 6.2-5 
checking 6.2-1 
expedited flow 6.2-5 

identifiers 6.2-5 
initialization 6.2-2, 6.2-5 
normal flow 6.2-5 
TC 6.2-4 
1io1rapping 6.2-5 

service component 
service transaction program 2-3, 2-38 

See also transaction progra• 
CNOS 2-3 
DIA 2-3 
resync ( X' 06F2' ) 

See sync point, resynchronization 
resynchronization 2-3 
SHADS 2-3, 2-7 

SESSEND E-13 
See also SESSION ENDED 

session 2-1, 2-3 
See also CP-LU session 
activation 2-8, 2-35, 2-36, 2-38, 2-47, 
5.4-4, 5.4-8 

CP-LU 4-2, 4-17 
LU-LU 4-3, 4-19 
newly active session 2-35 
relation to PS.COPR 5.4-8 

activation polarity 2-8 
allocation to conversation 2-7, 2-35, 3-4 

session selection 2-7, 2-35, 3-5 
contention polarity 2-8, 2-351 5.4-3, 
S.4-8 

See also session li•its, •inilllUll con­
tention winner 

processing by PS.COPR--mode Mme 
SNASVCMG session 5.4-25 

processing by PS.COPR--single ses­
sion S.4-25 

cryptography 4-10 
See also cryptography key, session 

deactivation 2-8, 2-32, 2-37, 2-38, 2-47, 
5.4-4, 5.4-8 

CP-LU 4-2, 4-19 
LU-LU 4-3, 4-28 
operator controlled 2-36 
relation to PS.COPR 5.4-8, 5.4-25 
responsibility 5.4-5, 5.4-8, 5.4-21, 
5.4-28 

specific session 2-36 
identification 5.4-3 

See also identification of session 
initiation 2-s, 2-16, 2-36, 5.4-4 
initiation, LU-LU 4-3 

failure notification using NOTI­
FYIVector Key X'03') 4-14 

key 4-5 
content 4-5 

LU-LU 
activation 3-13 

11Ultiplicity 2-7 
parallel 2-1, 2-7, S.4-3, 5.4-20 
shutdONn 2-8, 2-36, 5.4-4, 5.4-8 
single 2-7, 5.4-3, 5.4-20 
state 2-32 
ter11ination 2-8, S.4-4 
ter111ination, LU-LU 4-3 

failure notification using HOTI­
FYIVector Key X'03'J 4-14 

type, for terMination 
iinplied by CLEANUP 4-12 
specified in CTERM 4-12 
specified in TERM-SELF 4-12 

SESSIOH_ACTIVATED_ALLOCATION procedure 3-56 
referenced by 

SUCCESSFUL_SESSION_ACTIVATION 3-63 
SESSION_ACTIVATED_PROC procedure 3-57 

referenced by 

Index X-25 



PROCESS_LHS_TO_RM_RECORD 3-20 
SESSIOH_ACTIVATED structure A-20 

referenced by 
BUILD_AND_SEND_SESS_ACTIVATED 4-67 
SESSION_ACTIVATED_PROC 3-57 

SESSION_ACTIVATION_POLARITY procedure 3-57 
referenced by 

ACTIVATE_NEEDED_SESSIONS 3-22 
GET_SESSION_PROC 3-45 
RH_ACTIVATE_SESSION_PROC 3-48 

SESSION_ALLOCATED structure A-33 
referenced by 

BID_RSP_PROC 3-32 
CHANGE_SESSIOHS_PROC 3-37 
FIRST_SPEAKER_PROC 3-43 
GET_SESSION_PROC 3-45 
OBTAIH_SESSION_PROC 5.1-38 
SEND_DEACTIVATE_SESSIOH 3-55 
SESSION_ACTIVATED_ALLOCATION 3-56 
SESSION_DEACTIVATED_PROC 3-58 
SUCCESSFUL_SESSION_ACTIVATION 3-63 
UNSUCCESSFUL_SESSION_ACTIVATION 3-66 

sess;on control block (SCB> 3-3 
session control RUs 2-18, 2-36, 2-45 

ACTLU 4-17 
BIND 4-19 
CRV 6.2-2, 6.2-3 
DACTLU 4-19 
RH 6.2-3 
RSP<ACTLU> 4-17 
RSPIBIND) 4-25 
TH 6.2-3 
UNBINO 4-28 

session counts 5.4-4, 5.4-8 
See also session li•its 
relationship to CNOS 5.4-6, 5.4-28 
termination cot.ait 3-16, 5.4-5, 5.4-8 

session cryptography 2-10. 2-11, 2-320 2-36, 
2-42 

key 2-11, 2-36 
session seed 2-11 
verification 2-36 

SESSION_DEACTIVATED_PROC procedure 3-58 
referenced by 

PROCESS_LNS_TO_RM_RECORD 3-20 
SEND DEACTIVATE SESSION 3-55 

SESSION DEACTIVATED structure A-21 
referenced by 

BUILD_Atl>_SEND_SESS_DEACTIVATED 4-67 
SEND_DEACTIVATE_SESSION 3-55 
SESSION_DEACTIVATED_PROC 3-58 

SESSION_DEACTIVATION_POLARITY procedure 3-60 
referenced by 

BIS_RACE_LOSER 3-35 
DEACTIVATE_FREE_SESSIOHS 3-41 
DEACTIVATE_PENDING_SESSIOHS 3-41 
SHOULD_SEND_BIS 3-62 

SESSION ENDED CSESSEND> 4-13, E-13 
SESSION_INFORMATION structure A-36 

referenced by 
CREATE_SCB 3-40 
SUCCESSFUL_SESSION_ACTIVATION 3-63 

session initiation RUs 4-7 
BINDF 4-11 
CINIT 4-9 
INIT-SELF 4-9 
RSPCCINITl 4-10 
SESSST 4-11 

Session Instance Identifier Structured Data 
Subfield E-16 

Session Key 
NetNOrk Address Pair E-23 
Network Name Pair E-23 
Network-Qualified Address Pair E-23 

l.hinterpreted Name E-23 
URC E-23 

Session Keys 
table of E-23 

session-level pacing 2-8, 2-32, 6.2-1, 6.2-5 
deadlock 6.2-6 
FSM_PAC_R~RCV 6.2-21 
FSM_PAC_R~SEND 6.2-20 
IPR 6.2-6 
pacing count 6.2-6 
pacing queue 6.2-6 
parameter set up 6.2-2 
PI 6.2-5, 6.2-6 
Queued Response indicator U~RI> 6.2-6 
response 2-8. 2-32 
stages 6.2-5 
window 2-8, 2-32 
window size 2-3, 2-8, 2-42, 6.2-5 

session-level security 2-10, 2-35, 2-36, 
2-37, 3-14 

DES CData Encryption Standard) 2-10 
enciphered data 2-10, 2-36 
Ftti-12 H-9 

See also FH header, type 12 !Security) 
LU-LU passNOrd 2-10, 2-36 
LU-LU verification 2-10, 2-37, 2-38, 3-2, 
3-14 

LU-LU verification sequence 2-10 
physical security 2-11 
randowi data 2-10, 2-36 

SESSION_LiffIT_DATA_lOCK_MAHA6ER proce-
dure S.4-67 

referenced by 
PROCESS_SESSION_LIHIT_PROC 5.4-58 
SOURCE_SESSION_LIHIT_PROC 5.4-46 

session liMits 2-8, 3-14, 3-15, 5.4-4, 5.4-8 
automatic activation 2-8, 2-36, 3-15, 

3-16, 5.4-4, 5.4-8 
initialization 2-8, 2-35, 2-38, 2-46, 
5.4-4 

LU-mode 2-8, 5.4-4, 5.4-8 
mini111Um contention Ninner 2-8, 3-15, 
S.4-4, 5.4-8, S.4-21, 5.4-25 

negotiation by CNOS 5.4-7, 5.4-28 
reset 2-8, 2-36, 2-47, S.4-4 
total LU-LU 2-8, S.4-4 

session outage 3-17 
See also errors and failures 

session outage notification ISON) 2-12, 
2-361 4-4 

See also errors, conversation failure 
CNOS recovery 5.4-20 

See also error recovery, CNOS. conver­
sation failure 

session pool 2-7 
See also session, allocation to conversa­
tion 

SESSION_ROUTE_INOP structure A-23 
referenced by 

PROCESS_RECORD_FROM_NNH 4-50 
PROCESS_SESSION_ROIJTE_ItlOP 4-90 

session seed 6.2-2 
session services capabilities 

conveyed in NOTIFY(Vector Key X'OC'l 4-14 
conveyed in RSP!ACTLU) 4-18 

session services RUs 2-16, 2-36, 2-42, 4-7, 
4-15 

BIHDF 4-11 
CINIT 4-9 
CLEANUP 4-12 
CTERM 4-12 
for reporting status 4-7 
for session initiation 4-7 
for session termination 4-7 

X-26 SNA Format and Protocol Reference Manual for LU Type 6.2 



INIT-SELF lt-9 
NOTIFY 4-llt 
RSPCCINIT) 4-10 
SESSENO 4-13 
SESSST 4-11 
TERM-SELF 4-11 
UNBINOF 4-13 

SESSION STARTED CSESSST> 4-11, E-13 
session status notification RUs 4-7 

NOTIFY 4-14 
session termination RUs 4-7 

CLEANUP 4-12 
CTERl1 4-12 
SESSENO 4-13 
TERM-SELF 4-11 
UNBINOF 4-13 

SESSION_TYPE structure 4-101 
referenced by 

BINO_R<t_STATE_ERROR lt-52 
CINIT_R<t_STATE_ERROR 4-71 

SESSST E-13 
See also SESSION STARTED 

SET_FMH7_RC procedure 5.1-57 
referenced by 

PROCESS_FMH7_PROC 5.1-46 
SET_RCB_AND_SCB_FIELDS procedure 3-61 

referenced by 
BID_RSP_PROC 3-32 
FIRST_SPEAKER_PROC 3-43 
SESSION_ACTIVATED_ALLOCATION 3-56 
TEST_FOR_FREE_FSP_SESSION 3-65 

sharing sessions 
See session, allocation to conversation 

SHOULD_SEND_BIS procedure 3-62 
referenced by 

FREE_SESSION_PROC 3-41t 
RTR_RQ_PROC 3-50 
RTR_RSP_PROC 3-51 

shutdown of LU 2-45 
shutdoM!'l of sessions 

See session, shutdown 
SIG E-14 

See also SIGNAL 
SIG !Signal RU> 2-25 
SIG !SIGNAL) 6.1-15 
SIGNAL CSIGl 6.1-2, 6.1-4, 6.1-5, 6.1-6, 
6.1-7, 6.1-12, 6.1-13, 6.1-15, E-llt 

single session 
See session, single 

single session LU 2-7 
See also session, single 

SLU 
See secondary LU (SLU> 

SLU name 
in BIND 4-25 

SHA-defined mode name for CNOS 
(SHASVCMGl 2-46, 5.4-5, 5.4-21, 5.4-27 

SHA Distribution Services CSNADS) 2-7, 2-38 
SHA network, definition of 1-3 
SHA node 1-3, 1-4 

See also node 
SHA product node 1-3, 1-4 

See also node 
SN ADS 

See SNA Distribution Services CSNADS) 
SHASVCMG 

See SHA-defined 11ode name for CNOS 
CSHASVCMGl 

SHASVCMG_VERB_PARAMETER_CHECK proce­
dure 5.4-43 

referenced by 
LOCAL_SESSIDH_LIMIT_PROC 5.4-41 

SHF structure 6.0-6 

Software Product COlllmOn Level (X'04') Product 
Identifier Subfield E-25 

Software Product Co1111110n Naae CX'06') Product 
Identifier Subfield E-26 

Software Product Customization Date and Ti111e 
(X'09') Product Identifier Subfield E-26 

Software Product Custe•ization Identifier 
CX'07') Product Identifier Subfield E-26 

Software Product Program Number (X'08'l Prod­
uct Identifier Subfield E-26 

Software Product Serviceable C0111ponent Iden­
tifier (X'02') Product Identifier Sub­
field E-25 

SON 
See sessfon outage notification CSONl 

SOURCE_COHVERSATION_CON'TROL procedure 5.4-49 
referenced by 

SOURCE_SESSION_LIMIT_PROC 5.4-46 
SOURCE_CONVERSATION procedure 5.4-50 

referenced by 
SOURCE_CONVERSATION_CONTROL 5.4-lt9 

SOURCE_SESSION_LIMIT_FROC procedure S.4-46 
referenced by 

CHANGE_SESSION_LIMIT_PROC 5.4-35 
INITIALIZE_SESSION_LIMIT_PROC 5.4-33 
RESET_SESSION_LIMIT_PROC 5.4-34 

source, role of TP and LU 2-5, 5.4-3 
space (X'40') characters 

traiHng 
in LU name comparison 5.4-19 

SSCP Csyste• services control pointl 1-3, 
4-2 

SSCP-LU Session Capabilities Control Vec-
tor E-20 

SSCP-111ediated sessions 4-2 
startup of LU 2-45 
STATE_ERROR_SSCP_LU procedure 6.1-40 

referenced by 
DFC_RCV 6.1-23 

state name H-1 
state transition N-1 
state-transition matrix N-1 

action codes 
calling result N-1 

calling N-1 
input signal H-1 
next-state indicator N-1 

initialization H-1 
inputs to H-1 
output actions N-1 
state name H-1 
state transitions N-1 

state, FSM H-1 
statements 

CALL 
finite-state machines N-1 

stray responses 6.1-5 
STRAY_RSP procedure 6.1-41 

referenced by 
DFC_RCY 6.1-23 

stray SIGNALs 6.1-5 
Structured Data Subfield 

Enciphered Data E-17 
Fully Qualified PLU Network Name E-16 
Fully Qualified SLU Network Name E-16 
Mode Name E-16 
Rando• Data E-17 
Session Instance Identifier E-16 
Unformatted Data E-16 

structured fields I-1 
See also general data strea• 

subarea 1-4 
subarea LU 1-5 
subarea node 1-4 

Index X-27 



See also node 
subarea node to peripheral node commlrlication 

See peripher•l node to subarea node comll!U­
nication 

subare• node to subarea node comMUni­
cation 2-1 

See also SSCP-llediated sessions 
subOtrea PU 1-5 
sublayer• of PS 2-4 
SUCCESSFUL_SESSION_ACTIVATION procedure 3-63 

referenced by 
ACTIVATE_SESSION_RSP_PROC 3-23 
SESSION_ACTIYATED_PROC 3-57 

symbol strhig 
lengths H-2 
lengths chart H-2 
Type-A E-1 
Type-AE E-1 
Type-& E-1 
Type-SR E-1 
Type-USS E-1 
types H-1 

sync point 2-4, 2-12, 2-13, 2-39, S.3-1 
back-out 2-39, 2-40 
commands 5.3-2 

Backed Out 5.3-3, 5.3-16, 5.3-17, 
5.3-32, 5.3-41 

COtlllllittftd 5.3-3, 5.3-9, 5.3-35, 5.3-36 
Compare States 5.3-2, 5.3-7, S.3-8, 
5.3-9, 5.3-151 5.3-18, 5.3-20, S.3-22, 
5.3-25, 5.3-32, S.3-331 S.3-34 

Exchange Log Name 5.3-2, 5.3-18, 
5.3-31, 5.3-33, 5.3-34 

Forget 5.3-31 5.3-91 5.3-32, 5.3-35, 
5.3-36 

Heuristic Hixed 5.3-26, 5.3-35, 5.3-37 
i111Plied Forget 5.3-5, 5.3-12, 5.3-30 
Prepare 5.3-3, 5.3-9, 5.3-22, 5.3-35 
Request Com11it 5.3-3, 5.3-9, 5.3-22, 
5.3-35, 5.3-36 

conversation resources 5.3-7 
conversation resource protection •anag­
er 5.3-7 

data base update consistency 2-39 
errors during sync point S.3-9, 5.3-15, 
5.3-20, 5.3-22. 5.3-24, 5.3-32, 5.3-34 

failures and recovery 5.3-24, S.3-25, 
5.3-30, 5.3-31t &.3-32. 5.3-33. 5.3-41 

relationships among 5.3-2 
flONS 5.3-37t 5.3-39, S.3-40t 5.3-41 

general case 5.3-11 
last resource opti•ization S.3-5, 
5.3-9, S.3-13, 5.3-20, 5.3-25, 5.3-32t 
S.3-36, S.3-38 

no changes opti11ization 5.3-5, S.3-14, 
S.3-36, S.3-39 

f1metion shipping S.3-8 
heuristic decision 5.3-15, 5.3-16, 
5.3-18, 5.3-22t S.3-24t 5.3-25, 5.3-30, 
5.3-32, 5.3-34, 5.3-37 

and lock manager 5.3-16, 5.3-30 
local resoYrces S.3-5, S.3-7, S.3-18, 
5.3-20 

log 5.3-3, 5.3-6t 5.3-18, 5.3-31 
See also log unager 
forcing 5.3-7, 5.3-8 

logging 2-39, 2-40 
logical '-"'it of NOrk 2-39 
manager 5.3-3, 5.3-25, S.3-30, 5.3-32, 
S.3-35 

operator iaessages 5.3-25, 5.3-30 
phases 

See also sync point, c01111ands 
classification 5.3-9 

presentation services header 
See presentation services (PS) headers 

protection 11anager 2-40, S.3-6, 5.3-15, 
5.3-18, 5.3-20 

protocol 2-40 
resynchronization 2-42, 5.3•2• 5.3-15, 
5.3-16, 5.3-18, 5.3-19, 5.3-20, 5.3-22, 
5.3-25, 5.3-30, 5.3-31, 5.3-32, 5.3-33, 
&.3-34 

roles 5.3-2, 5.3-18, 5.3-22, S.3-25 
agent 5.3-2, 5.3-3, 5.3-18, 5.3-22 
cascaded agent 5.3-2, S.3-3, S.3-18, 
5.3-20, 5.3-28, 5.3-32 

initiator 5.3-2, 5.3-3, 5.3-9, 5.3-18, 
S.3-32 

structure 2-40 
synchronization point 2-39 
unit of NOrk 

See sync point, logical unU of NOrk 
sync point protocols 

RH bit settings D-4 
synchronized unit of work 

See sync point, logical U'\it of NOrk 
synchronous transfer 2-6, 2-38 
SYNC PT 

See sync point 
syste11 services control point <SSCP) 

See SSCP (syste11 services control poinU 

TARGET_COt111AND_CONVERSATION procedure 5.4-60 
referenced by 

PROCESS_SESSION_LIMIT_PROC 5.4-58 
TARGET_REPLY_CONVERSATION procedure 5.4-65 

referenced by 
PROCESS_SESSION_LIHIT_PROC 5.4-58 

target, role of TP and LU 2-5, 5.4-3 
TC 

See transmission control <TC> 
TC.BUILD_CRV procedure 6.2-11 

referenced by 
TC.EXCHANGE_CRV 6.2-10 

TC.DEQUEUE_PAC procedure 6.2-18 
TC.EXCHANGE_CRY procedure 6.2-10 

referenced by 
TC.INITIALIZE 6.2-8 

TC.FORHAT_CHECK procedure 6.2-11 
referenced by 

TC.EXCHANGE_CRY 6.2-10 
TC.INITIALIZE 6.2-2 
TC.INITIALIZE procedure 6.2-8 

referenced by 
HS 6.0-3 

TC.RCY_CHECKS procedure 6.2-16 
referenced by 

TC.RCV 6.2-15 
TC.RCY_NORM_RQ procedure 6.2-17 

referenced by 
TC.RCY 6.2-15 

TC.RCY procedure 6.2-15 
referenced by 

PROCESS_CP_LU_SESSION 6.0-5 
PROCESS_LU_LU_SESSIOH 6.0-• 

TC.SEND procedure 6.2-13 
referenced by 

DFC_SEtl>_FROH_LNS 6.1-22 
DFC_SEND_FSMS 6.1-25 
SEND_NEG_RSP_OR_LOG 6.1-37 

TC.TRY_TO_ENCIPHER procedure 6.2-14 
referenced by 

X-28 SHA For•at and Protocol Reference Manual for LU Type 6.2 



TC.SEND 6.2-13 
TC.TRY_TO_SEHD_IPR 6.2-4, 6.2-19 
TC.TRY_TO_SEND_IPR procedure 6.2-19 

referenced by 
PROCESS_LU_LU_SESSION 6.0-4 

TCB 
See transaction control block (TCB) 

TCB_ID structure 3-74 
referenced by 

ATTACH_PROC 3-27 
COf1PLETE_HS_ATTACH 3-3a 
PS S.0-5 

TCB_LIST_PTR structure 5.0-20 
referenced by 

PS S.0-5 
TCB structure A-10 

referenced by 
DEALLOCATION_CLEANUP_PROC 5.0-13 
GET_ATTRIBUTES_PROC 5.1-18 
PROCESS_PS_TO_RM_RECORD 3-21 
PS S.0-5 
PS_ATTACH_CHECK S.0-8 
PS_CREATION_PROC 3-47 
PS_INITIALIZE S.0-6 
PS_VERB_ROUTER S.0-11 
RCB_ALLOCATED_PROC S.1-48 
WAIT_PROC 5.0-13 

TCCB 
See transmission control control block 

!TCCB) 
TERM-SELF E-14 

See also TERMINATE-SELF 
TERM-SELF Format 1 

See TERMINATE-SELF 
terminal 2-1, 2-4 

See also peripheral node to subarea node 
communication 

See also resource, local 
TERMINATE PS structure A-27 

referenced by 
DEALLOCATION_Cl.EANUP _PROC 5.0-13 

TERMINATE-SELF (TERM-SELFl 4-llt E-14 
terminating LU (TLU) 4-4 
termination count 

See session counts, termination COi.iit 
termination rule, bracket 

See bracket, bracket termination rule 
TEST_FOR_FREE_FSP_SESSION procedure 3-65 

referenced by 
ALLOCATE_RCB_PROC 3-24 

TEST_FOR_POST_SATISFIED procedure S.1-58 
referenced by 

POST_AND_WAIT_PROC 5.I-40 
PROCESS_RH_OR_Hs_TO_Ps_RECORDS 5.1-47 

TEST_FOR_RESOURCE_POSTED procedure 5.0-17 
referenced by 

WAIT_PROC 5.0-13 
TEST_PROC procedure 5.1-27 

referenced by 
MC_TEST_PROC 5.2-28 
PS_CONV 5.1-10 
TEST_FOR_RESOURCE_POSTED 5.0-17 

TEST structure 5.1-67 
referenced by 

TEST_PROC 5.1-27 
TH 

See transmission header (TH) 
TLU 

See terminating LU <TLUl 
TP 

See transaction program instance 
TP-PS process 

See presentation services (PS), process 
See transaction progra11, proc•:.ss 

TPN 
See transaction pro91ra111 na111e fTPN) 

transaction control block (TCB) J-3, S.0-3, 
5.1-3, 5.2-4, 5.3-7, S.3-8, S.3-18, S.3-20 

TRANSACTION_PGN_VERB structure 
processing by PS.COPR 5.4-24, 5.4-28 

transaction program 2-1, 2-4, 2-42 
See also transaction program code 
See also transaction program instance 
invoking initial (local) 2-2, 2-34, 2-47, 
3-4 

invoking remote 2-34, 3-4, 3-9 
process 2-42, 2-43, 2-47 
protocol boundary 2-4, 2-28 

See also presentation services for con­
versations IPS.CONV), protocol bounda­
rh!s 

See also presentation services for 
mapped conversations (PS.MC), protocol 
boundaries 

See also presentation serv;ces for the 
control operator tPS.COPR>, protocol 
boundaries 

ter11inating 2-35, 5.0-4 
transaction progra11 code 2-34 

See also transaction program 
transact;on program instance 2-42 

See also transaction progra• 
identifying 2-5 · 

transaction program name (TPNl 2-5, 2-34, 
2-38, 2-42, H-15 

TRANSACTION_PROGRAM structure 2-42, 5.1-1, 
A-4 

referenced by 
DEFINE_PROC 5.4-38 
DELETE_PROC 5.4-40 
DISPLAY_PROC 5.4-39 
PS_ATTACH_CHECK 5.0-8 

transaction program verbs 2-3, 2-4, 2-31, 
2-49. 5.1-4 

See also basic conversation 
See also presentation services for Mapped 
conversations (PS.MC>, protocol bounda­
ries 

See also presentation services for the 
control operator IPS.COPRl, protocol 
boundaries 

See also transaction program, protocol 
boundary 

examples 2-19 
GET_TYPE verb 5.0-4 
issued by LU 2-31, 2-34, 2-38 
parameter checks 5.1-6 
POST_ON_RECEIPT 5.1-7 
REQUEST_TO_SEND 5.1-7 
SEND ERROR 5.1-7 
stat; 5.1-6 
WAIT verb 5.0-4 

transaction services 2-38 
See also transaction program, protocol 
boundary 

transmission control (TC> 
CRV 6.2-2 

initial chaining value 6.2-2, 6.2-3 
session cryptography key 6.2-2 
session seed 6.2-2 
test value 6.2-2 

cryptography 6.2-1, 6.2-4, 6.2-5 
block chaining 6.2-5 
Data Encryption Standard (DES> 6.2-5 
enciphering/deciphering 6.2-1, 6.2-4, 
6.2-5 

initial chaining value 6.2-2, 6.2-3 
session cryptography key 6.2-5 

Incle>< X-29 



session seed 6.2-2 
data traffic protocols 6.2-l 
deadlock 6.2-6 
deciphering 6.2-1, 6.2-4 
enciphering 6.2-1, 6.2-4 
expedited flow 6.2-1, 6.2-4 
HS-initiated procedures 6.2-4 
initial chaining value 6.2-2, 6.2-3 
Isolated Pacing Response UPR) 6.2-5, 
6.2-6 

nor•al flOM 6.2-4 
pacing 

pacing queue 6.2-6 
Queued Response indicator U~RI> 6.2-6 
session-level 6.2-1 

QRI 6.2-6 
Queued Response indicator <QRI> 6.2-6 
request control lllOde 6.2-6 
sequence numbers, TH 6.2-4, 6.2-5 

assignment 6.2-5 
checking 6.2-1 
expedited flot1 6.2-5 
identifiers 6.2-S 
initialization 6.2-5 
nornl flOlll 6.2-5 
111rapping 6.2-5 

session cryptography key 6.2-2 
session-level pacing 6.2-1, 6.2-4, 6.2-5, 
6.2-20, 6.IH~l 

fSH_PAC_Rlii._RCV 6.2-21 
fStt_PAC_Rlii._SEND 6.2-20 
IPR 6.2-6 
pacing count 6.2-6 
PI 6.2-5, 6.2-6 
stages 6.2-5 
111indo111 size 6.2-5 

session seed 6.2-2, 6.2-5 
structure 

interrelation of TC.SEt«> and 
TC.RCV 6.2-4 

relation to the half-session 6.2-l 
TC initialization calling tree 6.2-7 
TC RCV calling tree 6.2-7 
TC SEND calling tree 6.2-7 

TC.RCV 6.2-4 
TC.SEt«> 6.2-4 
trans•ission header (TH) 6.2-3 
TS profile l 6.2-5 

. TS profHe 7 6.2-5 
transmission control calling trees 6.2-7 

TC initialization calling tree 6.2-7 
TC RCV calling tree 6.2-7 
TC SEND calling tree 6.2-7 

trans•ission control control block 
<TCCB) 6.2-S 

trans•ission header (TH) 2-1s, 2-16, 2-32 
session control 6.2-3 

transmission services (TS) profiles F-5 
transport characteristics 2-3 

See also 110de, LU 
tree 

See logical unit of NOrk lllMh distrib­
uted 

truncation of logical records 2-12, 2-14 
TRY_TO_RCV_SIGNAL procedure 6.1-22 

referenced by 
PROCESS_LU_LU_SESSION 6.0-4 

TS (trans•ission services) 
prof;les f-5 
Usage field F-5 

TS Urans•ission services> profile 
;n Bit«> 4-20 

TS profile 
See profiles 

TS profile 1 6.2-S 
TS profile 7 6.2-5 
TS Usage field 

. in BIND 4-21 
tNO-llAy ·alternate send/receive protocol 

See half-clupleK flip-flop send/receive 
1110de 

Type-A symbol string E-1 
Type-AE syinbol string E-1 
Type-6 symbol string E-1 
Type-SR symbol string E-1 
type of session ter11imaUon 

t111plied by CLEAt«JP 4-12 
specified in CTERH 4-12 
specified in TERM-SELF 4-12 

Type-USS symbol string E-1 
typth node 1-3 

See also node 
type, PU 1-5 

See also PU type 

UNBIND 2-16, 2-37, E-15 
See also UNBIND SESSION 
session faHure 2-32 

UNBIND FAILLRE UJNBINDF) 4-13, E-15 
UNBIND_PROTOCOL_ERROR_PROC proceclire 3-65 

referenced by 
PROCESS_PS_TO_RH_RECORD 3-21 

UNBIND_PROTOCOL_ERROR structure A-28 
referenced by 

PS_PROTOCOL_ERROR S.0-15 
UNBIND_PROTOCOL_ERROR_PROC 3-65 

UNBil'l>_Rlii._RCV_RECORD structure A-23 
referenced by 

BUILD_Al'l>_SEl«>_UNBIND_RSP 4-70 
FSH STATUS 4-95 
PRoCESS_RECORD_fROH_l+lt 4-50 
PROCESS_UNBil«>_RQ 4-91 

UNBIND_Rlii._SEl-l>_RECORD structure A-19 
referenced by 

BUILD_AND_SEl'l>_UNBIND_RQ 4•69 
UNBil-l>_RSP_Rcv_RECORD •tructure A-23 

referenced by 
FSH_STATUS 4-95 
PROCESS_RECORD_FROtt_Ntl't 4-SO 
PROCESS_UNBIND_RSP 4-92 

UHBIND_RSP_SEl«>_RECORD structure A-19 
referenced by 

BUILD_AND_SEND_UNBIND_RSP 4-70 
lHil'I> SESSION HJNBit-1>) 4-28, E-15 
UHBil'I> N;thout CTERH 4-12 
UNBINDF E-15 

See also UNBIND FAILLRE 
undefined protocol ••chine (\JPtU, definition 
of 1-6 

underscores, separating 11Ultiple teMMI of a 
name phrase 1-5 

UnforMatted Data Structured Data SUb­
fi eld E-16 

uninterpreted LU naMe 4-S 
See also LU nan 
identity tran•fo.-..tion of 4-5 
in CINIT 4-10 
in INIT-SELF 4-9 
interpretation of 4-S 

Uninterpreted Na111e Session Key E-23 
unit of NOrk 

See sync point, logical unit of NOrk 

X-30 SNA For11at and Protocol Reference Manual for LU Type 6.2 



UNSUCCESSFUL_SESSION_ACTIVATION proce­
dure 3-66 

referenced by 
ACTIVATE_SESSION_RSP_PROC 3-23 

UPDATE_FsttS procedure 6.1-42 
referenced by 

DFC_RCV_FSHS 6.1-24 
GENERATE_RM_PS_INPUTS 6.1-31 

UPH (undefined protocol 1HchineJ, definition 
of 1-6 

UPH_ATTACH_LOG procedure 5.0-18 
referenced by 

ATTACH_ERROR_PROC 5.0-10 
UPH_EXECUTE procedure 5.0-17 

referenced by 
PS_INITIALIZE 5.0-6 

UPtf_MAPPER procedure 5.2-46 
ref eranced by 

tte_CONFIRM_PROC 5.2-21 
tte_DEALLOCATE_PROC 5.2-23 
tte_PREPARE_TO_RECEIVE_PROC 5.2-26 
MC_SEND_DATA_PROC 5.2-38 
tte_SEND_ERROR_PROC 5.2-40 
PROCESS_DATA_COHPLETE 5.2-33 
PROCESS_ERROR_OR_FAILURE_RC 5.2-31 
RCVD_SVC_ERROR_PURGING 5.2-42 r 

RCVD_svc_ERROR_TRUNC_NO_TRUNC 5.2-41 
RECEIVE_INFO_PROC 5.2-30 
SEND_svc_ERROR_PURGING 5.2-45 

UPH_RETURN_PROCESSING procedure 5.0-18 
referenced by 

DEALLOCATIDH_CLEANUP_PROC 5.0-13 
URC 

See user request correlation (URCJ 
I.RC Session Key E-23 
user-application node 1-3, 1-4 

See also node 
User Data field 

in BIND 4-23 
user ID, security 

See conversation-level security 
tmer of LU 2-1 
user request correlation UJRCJ 4-5 

in BIND 4-25 
in CINIT 4-10 
in INIT-SELF 4-9 
in TERM-SELF 4-11 

VERB_PARAMETER_CHECK procedure 5.4-48 
referenced by 

SO\JRCE_SESSION_LIHIT_PROC 5.4-46 
VR-ER Happing Data Control Vl!\Ctor E-22 

NAIT_FOR_CONFIRMED_PROC procedure 5.1-59 
referenced by 

COHPLETE_CONFIRH_PROC 5.1-29 
DEALLOCATE_CONFIRM_PROC 5.1-33 
PREPARE_TO_RECEIVE_CONFIRM_PROC S.1-41 

NAIT_FOR_RM_REPLY procedure 5.1-60 
referenced by 

AllOCATE_PROC 5.1-11 
OBTAIN_SESSION_PROC 5.1-38 

WAIT_FOR_RSP_TO_RQ_TO_SEND_PROC proce­
dure 5.1-61 

referenced by 
RE~EST_TO_SEND_PROC 5.1-23 

NAIT_FOR_SEND_ERROR_DONE_PROC proce-
cl.ire S.1-62 

referenced by 
DEALLOCATE_ABEND_PROC 5.1-32 
SEND_ERROR_IN_RECEIVE_STATE 5.1-54 

WAIT_PROC procedure 5.0-13 
referenced by 

PS_VERB_ROUTER 5.0-11 
Nindow size 

session-level pacing 6.2-5 
Minner, contention 

See bracket, first speaker 
wrkstation 

See peripheral node to peripheral node 
communication 

See peripheral node to subarea node cotnlU­
nication 

See resource, local 

X06Fl procedure 5.4-57 

YIELD_SESSION structure A-30 
referenced by 

SUCCESSFUL_SESSIOH_ACTIVATION 3-63 

Index X-31 





Systems Network Architecture 
Format and Protocol 
Reference Manual: 
Architecture Logic For 
LU Type 6.2 

Publication No. SC30-3269-3 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, 
;:ind operators of IBM systems. You may use this form to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or distribute 
whatever information you supply in any way it believes appropriate without incurring any obligation 
to you. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to 
your IBM representative or to the IBM branch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

Number of latest Newsletter associated with this publication: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail directly to the 
address in the Edition Notice on the back of the title page.) 



Reader's Comment Form 

Fold and tape Please Do Not Staple 

111111 

BUSINESS REPLY MAIL 

Fold and tape 

--..- .... ----- ------- - -- -. ---- ----------_ _.._. -
® 

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Dept. E01 
P.O. Box 12195 
Research Triangle Park, N.C. 27709-2195 

Please Do Not Staple 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 



APPENDIX L. TERMINOLOGY: ACRONYMS ANO ABBREVIATIONS 

ACT <ictiv<ite 

ACT LU ACTIVATE LOGICAL UNIT 

AP! <ipplic<ition progr<imming interf<ice 

ASCII 

BB 

BBI 

BC 

BC! 

BETS 

BIND 

BINDF 

BIS 

BIU 

CD 

Americ<in St<indard Code for Inform<i­
tion Interchange 

Begin Br<icket 

Begin Bracket indic<itor 

Begin Ch<iin 

Begin Ch<iin indicator 

between brackets 

BIND SESSION 

BIND FAILURE 

BRACKET INITIATION STOPPED 

basic information unit 

Change Direction 

CD! Change Direction indicator 

CEB Conditional End Bracket 

CINIT CONTROL INITIATE 

CLEANUP CLEAN UP SESSION 

CNOS change number of sessions 

COPR control oper<itor services 

COS class of service 

CP control point 

CR conversation resource 

CRV CRYPTOGRAPHY VERIFICATION 

CS! Code Selection indicator 

CT 

CT ERM CONTROL TERMINATE 

DACTLU DEACTIVATE LOGICAL UNIT 

DES 

DFC d<ita flow control 

DIA Document Interchange Architecture 

DLC data link control 

DLU destin<ition LU 

ORI Definite Response 1 

DRlI Definite Response 1 indicator 

DR2 Definite Response 2 

DR2I Definite Response 2 indicator 

DSU distribution service unit 

EC End Chain 

ECHOTEST ECHO TEST 

ECI End Chain indicator 

ED Enciphered Data 

Appendix T. Terminology: Acronyms <ind Abbreviations T-1 



EDI Enciphered Data indicator 

EFI Expedited Flow indicator 

ERI Exception Response indicator 

ERP error recovery procedure(s) 

EXP expedited 

EXR EXCEPTION REQUEST 

FOX 

FF 

FI 

FIC 

FM 

FMD 

FMH 

FMP 

FSM 

FSP 

GOS 

HDX 

HDX-FF 

HS 

HSIO 

ID 

ILU 

full-duplex 

flip-flop 

Format Indicator 

first in chain CBC, ~ECl 

function management 

function management data 

FM header 

FM profile 

finite-state machine 

first speaker 

general data stream 

half-duplex 

HDX flip-flop 

half-session 

half-session identification 

identifier, identification 

initiating 
INIT-SELF l 

LU C LU sending 

INIT initiate 

INIT-SELF INITIATE-SELF 

IPR ISOLATED PACING RESPONSE 

LIC last in chain C~BC, ECJ 

LL logical record length (prefix) 

LLID logical record length and GOS ID 
Cprefixl 

LNS LU network services 

LU logical unit 

LUCB LU control block 

LUST AT LOGICAL UNIT STATUS 

LUW logical unit of work 

MC mapped conversation 

NCR mapped conversation record 

MGR manager 

MIC middle in chain C~BC,~ECJ 

MSG message 

MU message unit 

NAU network addressable unit 

NC network control 

NEG negative 

NG no good 

NNM nodal NAU manager 

NS network services 

T-2 SPA Form::>t <>nd Protocol P<0f Prf!nce M<'>nuaJ for LU Type 6. 2 



HTWK network 

OIC only in chain CBC, ECl 

OLU origin LU 

p primary 

PAC Pacing Request , Pacing Response 
!value of PI in RH) 

PC path control 

PO Padded Data 

POI Padded Data indicator 

PI Pacing indicator 

PIP program initialization parameters 

PIU path information unit 

PLU 

POS positive 

PRI primary 

PS presentation services 

PTR pointer 

PU physical unit 

queue 

QR Queued Response 

QR! Queued Response indicator 

R receive, receiving 

RC return code 

RCB resource control block 

RCV receive 

REQECHO REQUEST ECHO TEST 

RES resource(s) 

RE SYNC 

RH 

RQ 

RQO 

RQE 

RQN 

RRI 

RSP 

RTI 

RTR 

RU 

s 

sync point resynchronization serv­
ice TP 

request/response header 

request 

RQ indicating 
required 

definite-response 

RQ indicating exception-response 
requested 

RQ indicating no response required 

Request/Response indicator 

response 

Response Type indicator 

READY TO RECEIVE 

request/response unit 

secondary, sending 

SCB session control block 

SCS SNA character string 

SO Sense Data Included 

SOI Sense Data Included indicator 

SEC secondary 

SESS session 

SESSENO SESSION ENDED 

SESSST SESSION STARTED 

Appendix T. Terminology: Acronyms and Abbreviations T-3 



SETCV SET CONTROL VECTOR 

SIG SIGNAL 

SLDLM session-limit data-lock manager 

SLU secondary LU 

SNA Systems Network Architecture 

SNADS SNA Distribution Services 

SNASVCMG SNA services manager (LU-LU session 
mode name) 

SNF sequence number field 

SON session outage notification 

SQN sequence number 

SS session services 

SSCP system services control point 

SSLS source-LU session-limit services 

SVC service 

SYNC PT synchronization point 

TC transmission control 

TCB transaction control block 

TCCB transmission control control block 

TERM terminate, terminating, termi-
nation, terminal 

TERM-SELF TERMINATE-SELF 

TH 

TLU 

TP 

TS 

TSLS 

transmission header 

terminating logical unit (LU send­
ing TERM) 

transaction program 

transmission services 

target-LU session-limit services 

TSP TS profile 

UNBIND UNBIND SESSION 

UNBINDF UNBIND FAILURE 

UPM undefined protocol machine 

URC user request correlation 

T-4 SNA Format and Protocol Reference Manual for LU Type 6.2 




