
Office Systems Interconnection:
Guide to Con cting

non-DIA Systems to DISOSS

GG24-1604

MAR 17 1986

Office Systems I ntercon nection :
Guide to Connecting non-DIA Systems to DISOSS

Document Number GG24-1604

March 1984

Rob van Olmen, IBM Netherlands
Laurence Barker, IBM UK

Warwick Wright, I BM New Zealand
David Harding, I BM Australia

Gordon Hay, Raleigh ISC

Project Adviser: Gordon Hay
Raleigh I nternational Systems Centre

PO Box 12195, Dept 985/622
Research Triangle Park

NC 27709, USA ,

The information contained in this document has not been submitted to any for­
mal IBM test and is distributed on an 'As Is' basis without any warranty either
expressed or implied. The use of this information or the implementation of any
of these techniques is a customer responsibility and depends on the customer's
ability to evaluate and integrate them into the customer's operational environ­
ment. While each item may have been reviewed by I BM for accuracy in a specif­
ic situation, there is no guarantee that the same or similar results will .be
obtained elsewhere. Customers attempting to adapt these techniques to their
own environments do so at their own risk. The samples described in this materi­
al are presented for illustrative purposes only and are not intended to be imple-
mented as described. .

In this document, any references made to an IBM licensed program are not
intended to state or imply that only I BM's licensed program may be used; any
functionally equivalent program may be used instead.

It is possible that this material may contain reference to, or information about,
I BM products (machines and programs), programming or services that are not
announced in your country. Such references or information must not be con­
strued to mean that I BM intends to announce such I BM products, programming
or services in your country.

First Edition (March 1984)

Publications are not stocked at the address below; requests for copies of IBM
publications should be made to you r I BM representative or to the I BM branch
office serving your locality.

A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to:

Raleigh I nternational Systems Centre
I BM Corporation (985/B622-3)
PO Box 12195
Research Triangle Park, NC 27709, USA

I BM may use or distribute any of the information you supply without Incurring
any obligation to you. You may, of course, continue to use the information you
supply.

© Copyright I nternational Business Machines Corporation 1984

ii Connecting non-DIA Systems to DISOSS

ABSTRACT

DISOSS/370 provides document library and distribution services for a range of
intelligent subsystems (DISOSS/8100, Displaywriter, 5520, Scanmaster and
DISOSS/PS) which support the 1 BM document handling architectures DIA and
DCA.

This book examines the feasibility of extending these document filing and dis­
tribution functions to the various other intelligent devices that do not support
DIA and DCA; the assumption is that, although these devices are often not pri­
marily office systems, their users would nevertheless benefit from being able to
use a company-wide electronic mail distribution system.

The purpose is to show what can be done with currently available products, and
the book includes an example showing how documents can be exchanged between
DISOSS and PROFS.

Abstract iii

iv Connecting non-DIA Systems to DISOSS

PREFACE

This document is the result of a Residency Project conducted at the Raleigh
International Systems Centre. The purpose of the project was to study the prob­
lem of connecting non-DIA systems to DISOSS, and to develop design guidelines
for the use of anyone wishing to implement such a connection.

There are four major parts:

• "I ntroduction and Design Overview" on page 3 describes the objectives of
the project, summarises the design options we considered, and provides an
overview of the suggested system design.

• "System Structu re" on page 19 describes in detail the components of the
proposed system.

• "Sample System Implementation" on page 27, "System Definitions for the
Sample Implementation" on page 47, and "Communicating Between PROFS
and DISOSS" on page 53 describe our sample implementation of the proposed
system.

• "Sample System Components" on page 67, "API and DIU-build Subroutines"
on page 105 and "Sample EXECs for the CMS and PROFS User" on page 155
contain listings of the programs used in the sample implementation.

Anyone contemplating the possibility of attaching non-DIA systems to DISOSS
should find the "I ntroduction and Design Overview" on page 3 useful. The
remaining chapters are intended for systems designers and programmers
responsible for the design and implementation of such interfaces.

RELATED PUBLICATIONS

SC30-3096 DISOSS/370 Version 3 Application Programming
GG24-1614 DISOSS Application Interface: Programming Guidelines

ACKNOWLEDGEMENTS

Most of the sample programs shown in this book depend on a set of generalised
DISOSS API subroutines; these were designed and developed by Martin Hibbert
of Technical Support, IBM UK, and are described in detail in DISOSS Applica­
tion Interface: Programming Guidelines, GG24-1614.

Preface v

ABBREVIATIONS

Certain terms widely used in this document should be understood as follows:

JES

Box X

L2DCA

Refers to Job Entry Subsystems in general, and should be taken to
include VSE/POWER, OS/VSl RES, MVS/JES2 and MVS/JES3, except
where otherwise stated.

Refers to the subsystem wishing to communicate with DISOSS. Where
there is no need to distinguish between the various real systems
(VM/SP, S/34, DPPX etc.), we will often use the term 'Box X' to
apply to them all.

Refers to the Level 2 Document Content Architecture. This is also
known as the Final Form Text DCA, or FFT, and is defined in Docu­
ment Content Architecture: Final-Form-Text Reference, SC23-0757.

vi Connecting non-DIA Systems to DISOSS

SYSTEM DESIGN

1.0 Introduction and Design Overview
1. 1 Design Objectives
1.2 Logic of the Design Process

1.2.1 Distribution of Function
1.2.2 End-User Interface
1.2.3 Available Tools
1.2.4 DISOSS/PS for Interactive Functions
1.2.5 RJE for Batch Functions
1.2.6 Moving Documents from CICS to JES
1.2.7 Moving Documents from JES to CICS

1.2.7.1 Direct SNA Session
1.2.7.2 SNA Relay Program
1.2.7.3 JES External Writer
1.2.7.4 Shared Dataset

1.2.8 CICS Application to Access DISOSS API
1.3 Overview of the System Structu re

2.0 System Structu re
2.1 Interactive Communication
2.2 Document Transfer from DISOSS to Box X
2.3 Document Transfer from Box X to DI SOSS

2.3.1 Major Components
2.3.1.1 Box X Job Submission
2.3.1.2 Batch Program
2.3.1.3 CICS Program DBTSON1
2.3.1.4 CICS Transaction DBTM
2.3.1.5 CICS Transaction DBTS
2.3.1.6 CICS Transaction DBTR

SAMPLE IMPLEMENTATION

3.0 Sample System Implementation
3.1 Moving Documents from DISOSS to Box X
3.2 Moving Documents from Box X to DISOSS

3.2.1 Use of the DISOSS API
3.2.1.1 General Remarks
3.2.1.2 Our Use of the API.

3.2.2 Document Transformations and Translations
3.2.2.1 Datastream Transformations
3.2.2.2 Character Translations
3.2.2.3 Overview of Transformations and Translations

3.2.3 Batch-CICS Interface
3.2.4 Components of the Box X to DISOSS Facility.

3.2.4.1 DBTBATl
3.2.4.2 DBTMOVl
3.2.4.3 DBTOPNl
3.2.4.4 DBTCLS1
3.2.4.5 DBTMST1
3.2.4.6 DBTTRNl
3.2.4.7 DBTSNDl
3.2.4.8 DBTRSPl
3.2.4.9 DBTSONl
3.2.4.10 DBTCLNl
3.2.4.11 DBTSOFl

CONTENTS

1

. 3
4
4
5
5
5
6
8
9
9
9

10
11
12
12
16

19
19
19
19
21
21
21
21
23
23
23

25

27
28
29
29
29
30
34
34
36
39
40
44
44
44
44
44
45
45
45
46
46
46
46

Contents vii

4.0 System Definitions for the Sample Implementation
4.1 CI CS Tables

4.1.1 File Control Table
4.1.2 Program Control Table
4.1.3 Program List Table
4.1.4 Program Processing Table
4.1.5 System Initialisation Table

4.2 VSAM Dataset Definitions
4.3 DISOSS Table Definitions (Box X to DISOSS)

4.3.1 Translate Tables
4.3.2 Host User Profile

4.4 DISOSS Table Definitions (DISOSS to Box X)
4.4.1 Host User Profile .
4.4.2 Printer Description Table

4.5 Print/Format Procedure
4.6 Improvements and Alternative Options

5.0 Communicating Between PROFS and DISOSS
5.1 Overview
5.2 Accessing DISOSS/PS from PROFS
5.3 Sending a PROFS document to DISOSS
5.4 Sending a PROFS note to DISOSS

5.4.1 Forwarding an Existing Note
5.4.2 The DBTNOTE EXEC ..
5.4.3 Creating and Sending a New Note

5.5 Changing a DCF file to 1403 Format
5.6 Loading a DISOSS/PS Document to the A-disk

APPENDICES

A.O Sample System Components
A.l General Remarks
A.2 Software Used to Test the Design
A.3 Source Listings

A.3.1 DBTVSQ Common Block
A.3.2 DBTOC Common Block .
A.3.3 DBTDOCIN Catalogued Procedure
A.3.4 DBTBATl Program Source
A.3.5 DBTMOVl Program Source
A.3.6 DBTOPNl Program Source
A.3.7 DBTCLSl Program Source
A.3.B DBTMSTl Program Source
A.3.9 DBTTRNl Program Sou rce
A.3.10 DBTSNDl Program Source
A .3.11 DBTRSPl Program Sou rce
A.3.12 DBTSONl Program Source
A.3.13 DBTCLNl Program Source
A.3.14 DBTSOFl Program Source
A.3.15 DBTTRT01 Translate Table

.
and then to PROFS

A.4 Improvements and Alternatives
A.5 Simultaneous CICS/Batch Access to Shared Dataset

B.O API and DIU-build Subroutines
B. 1 Assembler Control Blocks

B.l.1 APICOM
B. 1 .2 A P I D P R2
B .1.3 API RET
B.l.4 APIREGS

B.2 PL/I Control Blocks
B .2.1 APICOMP

viii Connecting non-DIA Systems to DISOSS

47
47
47
47
48
48
49
49
50

····50
<50
50
50
51
51
51

53
53
54
55
57
57
59
59
60
61

65

67
67
67
68
69
71
72
73
77
80
81
82
83
88
92
94
96
97
99

103
103

105
105
105
107
109
109
110
110

B.2.2 APIDPRP
B.2.3 APIDPRP2
B.2.4 APIRETP
B.2.5 APIRETP2

B.3 Assembler Macro
B.3.1 APICALL ..

B.4 Subroutine Listings
B.4.1 APIACTIV
B.4.2 APIDIUSB
B.4.3 APIDIUS2
B.4.4 APIDISOS
B.4.5 APIDIS2
B.4.6 APIFIL2
B.4.7 APIGTCMD
B .4.8 API LAST
B.4.9 APIPARSE
B.4.10 APIPTDOC
B.4.11 APIPURGE
B.4.12 API RECVE
B.4.13 APIRTRVE
B.4.14 APISGNON
B.4.15 APISNOFF
B.4.16 APISUFIX

C.O Sample EXECs for the CMS and PROFS User
C.1 Sample DBTMENU EXEC
C.2 Sample DBTSEND EXEC
C.3 Sample DBTLOGON EXEC
C.4 Sample DBTNOTE EXEC
C.5 Sample DBTRECV EXEC

111
112
113
113
114
114
115
115
117
122
128
130
133
136
137
138
146
148
149
150
151
153
154

155
155
157
161
163
164

Contents ix

x Connecting non-DIA Systems to DISOSS

LIST OF ILLUSTRATIONS

Figure 1. Interactive Communication between Box X and DISOSS 7
Figure 2. Document Transfer from DISOSS to Box X 10
Figure 3. Document Transfer from Box X to DISOSS 13
Figure 4. DISOSS--Box X Interactive and Document Transfer Connections 17
Figure 5. DIU Structure Built by DBTSND1 30
Figure 6. Document Unit Segments for Document Text 30
Figure 7. Last Document Unit Segment 31
Figu re 8. DI U Prefix 32
Figu re 9. Request Distribution Command 32
Figure 10. Document Profile Information . 33
Figure 11. Graphic Character Set Definitions 37
Figure 12. Transformations and Translations 39
Figure 13. PROFS menu to Add/Change a Document File 61

List of Illustrations xi

xii Connecting non-DIA Systems to DISOSS

SYSTEM DESIGN

SYSTEM DESIGN 1

2 Connecting non-DIA Systems to DISOSS

1.0 INTRODUCTION AND DESIGN OVERVIEW

The Document Interchange Architecture (DIA) defines a set of rules (or 'proto­
cols'), allowing two programs to hold a 'conversation'; the purpose of this con­
versation is to exchange documents, together with commands describing what is
to be done with these documents. DIA defines the 'language' the two programs
use to exchange documents and control requests, but it is not concerned with
the means by which these requests are moved from one program to the other.
Typically, the transport function is provided by an SNA network; DIA does not
duplicate any SNA function, and could theoretically use any transport mech­
anism that provides appropriate levels of reliability, recovery etc.

DISOSS exists to provide document handling functions, and to cooperate in this
with intelligent devices such as 8100/DOSF, Displaywriter, 5520 and Scanmas­
ter; hence it is logical that DISOSS 'converses' with these systems using exclu­
sively the DIA protocols. 1

DISOSS/370 V3Rl provides an Application Program Interface (API), which allows
user-written CICS applications to use the DIA protocols to exchange documents
and commands with DISOSS. In this case, since the user program and DISOSS
are both executing under CICS, the transport mechanism for moving requests
between them is not an SNA network but internal CICS and DISOSS facilities;
however, the DIA protocols remain unchanged from those used to communicate
between DISOSS and its other subsystems.

The API provides a means of interfacing almost any system to DISOSS in a man­
ner that does not require modifications to the product, and should be safe from
the effects of changes in future releases. Clearly, then, it is fundamental to
any attempt to make DISOSS functions available to devices not directly sup­
ported.

The remainder of this chapter describes the basic characteristics of our pro­
posed system design, and explains the logic that led us to that design rather
than one of the many alternatives.

1 Note that DISOSS does not communicate with the end-user, but with a pro­
gram executing in the subsystem; it is the intelligent subsystem that pro­
vides end-user interfaces appropriate to the type of user it supports.

I ntroduction and Design Overview 3

1.1 DESIGN OBJECTIVES

Our principal aim was to discover whether it was possible to design a system
that embodied two fundamental characteristics:

• General Applicability

• Ease of Implementation

There was always the real possibility that these two characteristics would prove
to be mutually exclusive, and so to make our aims more precise, we defined the
following requirements of the design:

Generality

It should provide a generalised interface to DISOSS that could be used by the
majority of systems installed in today's networks, including, but not limited to:

• VM/SP (and thus PROFS)
• S/34, S/36, S/38
• 8100/DPPX
• Series/l
• 5280
• PC

I n addition, it must be structu red so that an I BM customer could implement it
without unreasonable difficulty or risk. This leads ~o the following three
requirements.

Minimum New Code

It should make every possible use of existing products and functions, rather
than demanding new ones specifically designed for the purpose.

Resilience

It must require no modifications to IBM-supported software.

Programming Skills

It should aim to avoid highly specialised or complex techniques and system
interfaces, and should aim to use only those programming skills which are gen­
erally available in customer installations.

1.2 LOGIC OF THE DESIGN PROCESS

Given the objectives listed above, several major design decisions must be
resolved at an early stage:

• Function Distribution. To what extent should we try to do things in the var­
ious subsystems rather than in the central CICS?

• User I nterface. Should we attempt to define a standard one for all sul;>sys­
tems, or allow each to select its own?

4 Connecting non-DIA Systems to DISOSS

• Available Tools. What standard system components and specialised program
products could be utilised to avoid developing new code?

1.2.1 DISTRIBUTION OF FUNCTION

The subsystems under consideration vary widely in the programming facilities
they offer: a VM system, for example, is vastly more powerful and flexible than
a 5280, and a function that is straightforward to implement on one may be
unreasonably difficult on the other. Furthermore, the range of programming
skills needed to support several subsystem types may be very wide.

It therefore seemed sensible to minimise the amount of function performed in the
subsystem, in order to minimise the amount of duplicated work in a network con­
taining a variety of subsystem types. This is the most generalised approach,
and is reflected in our design, but in a network containing only one subsystem
type, it might well be worth reconsidering this decision.

1.2.2 END-USER INTERFACE

Each subsystem has its own interfaces to its end-users, and it would usually be
desirable to retain some consistency with these; to achieve this, however, an
installation with a variety of different subsystems may have to write the same
function several times; on the other hand, each group of users could have an
end-user interface that is consistent with the rest of the system.

Our conclusion was that the need to minimise duplicated effort would usually
override the wish to provide tailored user interfaces, although, again, this bal­
ance might well change in a network containing -a large number of one subsystem
type.

1.2.3 AVAILABLE TOOLS

Two functions are common to all of the subsystems:

3270 Emulation The ability to appear to a host system as a cluster of remote­
ly-attached 3270 displays. This may be a BSC or an SNA
attachment, depending on the subsystem concerned, but both
are supported by NCP and VTAM and can thus access any
host application that supports 3270s.

Remote Job Entry The ability to emulate a batch terminal in order to send bulk
data to the MVS host. The subsystems use a variety of proto­
cols:

• BSC 2780 or 3780.
• BSC Multileaving Remote Job Entry (MRJE).
• SNA Single Logical Unit (SLU).
• SNA Multiple Logical Unit (MLU).
The first and third of these protocols are supported by
CICS; all four are supported by JES.

Introduction and Design Overview 5

Other communications facilities exist in some of the subsystems. For example:

• User programs in most subsystems may use SNA functions to communicate
with a CICS application; however, the programming interfaces differ great­
Iy, and the same programs could not be used in all sUbsystems.

• Some 3270 Emulation packages allow batch data to be read from disk and
transmitted as if it had been keyed. This capability exists only on certain
configu rations of Oisplaywriter and PC, and there is no standard host soft­
ware to perform the complementary receiving function for all implementa­
tions.

Since no communications function other than 3270 Emulation and RJE is common
to all of the subsystems, our objective of generality requires that we base our
system on them.

Given that all the subsystems can emulate 3270s, it is likely that OISOSS/PS will
be a valuable tool, since its purpose is precisely to allow 3270 devices to make
use of the OISOSS functions.

1.2.4 DISOSS/PS FOR INTERACTIVE FUNCTIONS

OISOSS/PS is a CICS application; it supports 3270 terminals, and provides
end-user services for users of those terminals. Thus it can be regarded as an
intelligent sUbsystem using OISOSS services, just as the 01SOSS/8100, 5520 and
Oisplaywriter subsystems do; the only difference is that 01 SOSS/PS executes
under CICS, rather than in a separate machine, and communicates with OISOSS
via the API rather than via an SNA session.

The components involved in connecting Box X to OISOSS via OISOSS/PS are
shown in Figure 1 on page 7.

OISOSS/PS provides the 3270 user with access to most of the functions of
OISOSS, including:

Distribution

Library

A mailbox for documents received from Oisplaywriter,
01 SOSS/8100, 5520 and other 01 SOSS/PS users. The following
functions can be performed on a document in the OISOSS/PS
mail-log:

• View
• File in the OISOSS Library
• Redistribute to other 01 SOSS users
• Print at the MVS host
• Delete
In addition, OISOSS/PS provides a limited text entry and editing
function, so that simple documents can be created at the screen
and filed in the library or distributed to other OISOSS users.

The OISOSS/PS user has access to the OISOSS document library
and can use the following functions:

• Search
• View
• ~istribute
• Print
• Delete

6 Connecting non,..OIA Systems to OISOSS

D I $ 0 $ $
•

- - - - - - - - - -.- - - - - -

I A P I •
•
•

D I $ 0·$ S / P $
•
•
•

C I C S •
•
•

V TAM •
•

M V S •
•
•
•
• Interactive
• 3270 session
•
• .-

BOX - X •
•••••••••• •
.u.

'#

cO

I • .-
•••••••••

327 0

D S C

Figure 1. Interactive Communication between Box X and DISOS$

Clearly, then, DISOSS/PS provides many of the required functions to any sub­
system that can emulate a 3270. However, precisely because it is designed for
3270 users, there are two important functions that it does not provide:

• A means of retrieving a document from the DISOSS/PS mail-log or the
DISOSS library to the subsystem's own storage.

• A means of filing or distributing via DISOSS a document or file created and
stored at the subsystem.

Introduction and Design Overview 7

We need a. means of moving documents in both directions between DISOSS and
the subsystem; this is essentially batch data transfer, and our chosen vehicle
for this is one of the RJE protocols.

1.2.5 RJE FOR BATCH FUNCTIONS

All of the subsystems can emulate a batch terminal of some kind, and CICS sup­
ports certain batch devices, so clearly it would be convenient to connect the
subsystem to CICS and use a CICS transaction to send and receive files or doc­
uments . However, there are several difficulties:

• CICS does not support all of the protocols used by the various subsystems.
I n particular, it does not support the BSC MRJE and SNA MLU protocols.

• Using a BSC protocol to communicate with CICS would usually require a ded­
icated connection between Box X and CICS. This may imply a dedicated line
plus two modems, which may be too expensive if the number of document
transfers is low. 2 The SNA SLU protocol would avoid this problem, but is
not supported by all subsystems.

• Not all subsystems can support multiple physical connections to a host, and
if one is already installed, it is more likely to be communicating with an RJE
system than with CICS.

• Subsystems designed in the expectation of communicating with an RJE sys­
tem may be more difficult to operate when communicating with a user-written
CI CS transaction.

• JES has good facilities for recovering from communications failures,
safe-storing and re-transmitting data. Equivalent function, if desired in a
CICS connection, would have to be programmed by the user.

• JES is normally available whenever the operating system is running; thus a
job can be submitted whenever the network is available, regardless of
whether C I CS is executing or not.

For these reasons, we concluded that the most general approach would be to
have the subsystem communicate with the RJE system rather than directly with
CI CS. This leads to the question of how documents are to be moved in both
directions between JES and CICS.

2 It may be possible to reduce this cost in some cases:

• Channelised modems would allow two or more 'separate' connections to
use the same physical link. This would still require separate 37x5 ports
for each connection, and depends on the total traffic being low enough
to allow the bandwidth to be divided up in this static way.

• Use of the Non-SNA Interconnection (NSI) licensed program in the 37x5
would allow the subsystem to switch its connection from one host appli­
cation to another, for example between JES and CICS. This, of course,
implies that only one communication function could use the physical link
at a time, which may be operationally unsatisfactory.

8 Connecting non-DIA Systems to DISOSS

1.2.6 MOVING DOCUMENTS FROM CICS TO JES·

We could write a CICS transaction to obtain documents via the DISOSS API,
transform them into a datastream appropriate to Box X, then submit batch jobs
(via the operating system's internal reader facility) to place the transformed
documents on the JES spool.

As it happens, however, there is a standard function in DISOSS which will
achieve the same result. The Host Print facility submits a batch job whose
function is to transform a document from its DISOSS form into a series of print­
lines appropriate to a host-attached 1403 printer. This print data is output to
the JES spool, from where it can be printed on a real printer, or routed to some
other destination known to JES. This destination could of course be our remote
subsystem.

Thus, the DISOSS Host Print function, together with appropriate JCL state­
ments to di rect its output, provides the means of moving a document from
DISOSS to Box X, without the need for any user programming. Figure 2 on
page 10 shows the connection involved.

1.2.7 MOVING DOCUMENTS FROM JES TO CICS

There is no standard DISOSS function to meet this need, so this is a more diffi­
cult problem; nevertheless, there are several possible solutions:

Direct SNA Session

SNA Relay Program

JES External Writer

Shared Dataset

between JES and CICS, or between the submitted batch
job and CICS.

receiving data from JES on one side, and passing it on to
C I CS on the other.

executing under CICS and reading data from the JES
spool.

allowing the batch job to insert data, and CICS to
retrieve it.

1.2.7.1 Direct SNA Session

The Network Job Entry (NJE) functions of JES2 and VSE/POWER (but not JES3
or OS/VS1 RES) allow one JES system to pass jobs and output across an SNA
session to another JES system. If such a session could exist between JES and
CICS, then JCL statements in the job submitted by Box X could cause the job to
be passed on to CICS rather than executed by JES. Unfortunately, however,
such a session is not possible since CICS does not support the particular set of
SNA protocols required by JES for this purpose.

Alternatively, the job submitted by Box X and executed by JES could certainly
establish an SNA session with CICS and pass the document across this session
to a user-written CICS transaction. The main problem is one of recoverability.
If the program cannot establish its session with CICS for some reason, it cannot
continue; but if it terminates, its input data is lost, and the originating user
must resubmit his request. It would be preferable to ensure that the data

I ntroduction and Design Overview 9

J

BAT e H D I S 0 S S

E S

• '--. - - - - -
DISOSS •

•
••• < •••••• < ••••
•
•
•
•
•
•
•
•
•
•
•
•
•

e I e

V TAM

M V S

• Document Transfer
• DISOSS --> Box X
•
•

S

A P I

.--------------------------------------~

• BOX - X
• ••••••• > ••••••• #
.----. #------~--------~
••••••• #

R J E #

L-________ ~ ___________ # _______ ~ ________ ~

d2J
Fi gure 2. Document Transfer from DISOSS to Box X: thi s assumes an SNA

connection. If the RJE connection were BSe, RTAM would be used
instead of VTAM.

remains safely on the JES spool until we know it.can be delivered to CICS, and
this cannot easily be achieved with this approach.'

1.2.7.2 SNA Relay Program

This program would be along-running task, active in the system whenever JES
and CICS are running. It would establish two SNA sessions:

10 Connecting non-DIA Systems to DISOSS

1. With CICS. This might be one of several session types supported by CICS;
the most convenient would probably be either the SNA SLU batch session,
or the LU6.2 session which is specifically designed for program-to-program
communication.

2. With JES. Only when the session with CICS is active would this second ses­
sion be started, thus avoiding the recoverability problem noted earlier.
This session might use the SNA SLU protocol to appear to JES as a 3770 RJE
device. Alternatively, it might use the SNA Network Job Entry protocol, so
that it would appear to JES as another JES. I n this case, the batch job
submitted by Box X would not be executed by JES, but would be passed to
the relay program, which would in turn pass it on to CICS.

This approach avoids the problems of both types of direct session discussed
above: no batch jobs need be executed by JES, yet the JES spool is used as a
safe store until the data can be delivered to CICS.

The disadvantage is that the VTAM programming skills needed to implement it
are not universally available, and for that reason it must be rejected in our
case.

1.2.7.3 JES External Writer

An external writer is a user-written program using interfaces provided by the
operating system to read output data directly from the JES spool. If such a pro­
gram were executing as a CICS application, it could read JES output into the
CICS system with no need for SNA sessions. Unfortunately, the interfaces pro­
vided by MVS and VSE are not suitable for use under CICS, since they issue
WAIT macros which would cause the enti re CI CS system to wait; the alternative
is to implement the External Writer via a user SVC, but again we felt that this
type of programming skill would not be widely available.

A further disadvantage is that this interface can only handle SYSOUT data: in
other words, the incoming data is always 1403 printlines. This will often be sat­
isfactory, but cannot handle the possibility that Box X may wish to send some
more sophisticated datastream.

I ntroduction and Design Overview 11

1.2.7.4 Shared Dataset

An apparently very simple approach to the problem is to allow the job submitted
by Box Xto write its document into a disk dataset, from where it can subse­
quently be read by a CI CS transaction. There are still some potential difficul­
ties, however:

• The dataset must be concurrently shared between CICS and the batch job,
since it would not be satisfactory ~o run the batch jobs only when CICS was
down. JCL can allow both CICS and the batch job to allocate the dataset,
but to avoid data integrity problems we must ensure that concurrent updat­
ing is not allowed, or is very carefully controlled. VSAM can simply over­
come this problem, by ensuring that only one task can open the dataset at a
time; alternatively, concurrent updating can be permitted with VSAM, at
the cost of increased user programming effort.

• If the dataset is to be used concurrently by batch and CICS over a long
period, then we must be able to insert and delete records; this in addition
to the need for frequent OPEN and CLOSE functions from both batch and
CICS, could create a significant performance bottleneck if not considered
carefully in the system design.

However, this approach has the major advantages of being easy to program and
maintain, since VSAM file operations are well understood in most installations.
Also, having examined the potential performance problems, we felt that careful
dataset and application design could contain them to acceptable levels. We there­
fore concluded that, given our original objectives, this technique would be most
appropriate. Figure 3 on page 13 summarises the connection for document
transfer from Box X to DISOSS.

1.2.8 CICS APPLICATION TO ACCESS DISOSS API

By using the DISOSS Host Print function plus NJE for document transfer from
DISOSS to Box X, we eliminate the need for user-written CICS programs to
obtain documents via the API and redistribute them to Box X users; thus new
code is only needed to pass documents into DISOSS from Box X. The next ques­
tion is, how much DIA function needs to be supported in this new user code? ,
Any DIA application must support the SIGN_ON, ACKNOWLEDGE and SIGN_OFF
commands, and in this case we will also need either FI LE or
REQUEST _DISTRI BUTION (or both) in order to pass documents into DISOSS:

• FILE requests that DISOSS file the attached document in its library. This
command has many operands, since users may want to specify many attri­
butes of a document in order to ensu re that it can later be retrieved in a
satisfactory way. Any of the following may be specified, for example:

Document Name
Author
Subject Matter
Recipients
Keywords for later search operations
Document Class (e.g. Memo, Letter, Report etc.)
Access Codes to ensure the desired level of security

Consequently, of cou rse, 'Fi Ie' is potentially a complex command, and there­
fore a variety of end-user errors could occur and would need to be handled
by our code. For example, if the end-user specified an invalid Access Code,

12 Connecting non-DIA Systems to DISOSS

BAT C H D I S 0 S S

J

•
• - - -------------
• A P I -.

U S E R •
••• > •••••• > •••• > •••••

• I u S E R
•

E S •
• C I C S
•
•
• V TAM
•
• M V S
•
•
•
• Document Transfer
• Box X --> DISOSS
•
•
.--------------------------------------, C· BOX - X
• ••••••• < ••••••• #
.----. #------.---------~
••••••• #

R J E #

~--------~---------#------~--------~

cO
Figure 3. Document Transfer from Box X to DISOSS: the batch user program

communicates with the CICS user program via a shared VSAM dataset
not shown in this diagram.

DISOSS could not perform the File operation and would inform us via the
API. We would either have to discard the document and notify the end-user,
or ask the end-user to correct his request so that we could retry the File
command.

• REQUEST_DISTRIBUTION asks that DISOSS distribute the attached docu­
ment to a named user or users. Since the document is not permanently
stored in the library r there is usually no need for all the descriptive infor­
mation requi red by the File command. Often, only the following would be
needed:

I ntroduction and Design Overview 13

Document Name
Recipients

However it would probably be desi rable for the end-user to have, in addi­
tion, at least the following:

Distribution Lists, so that he could simply name a list in order to have a
document distributed to several users.
Priority Distribution, so that he could designate one document as more
urgent than another.
Personal Distribution, so that he could designate a document as Per­
sonal to the recipient (j. e. not available to the recipient's secretary).

These functions, of course, would also add complexity both to the Box X
end-user interface, and to the user-written CICS programs.

A reasonable interface should allow the Box X user to use both the filing and
distribution services of DI SOSS, but a serious difficulty a rises: there is no
interactive communication between the Box X user and the CICS application,
since document transfer occurs via batch RJE facilities, and thus there is no
reasonable way to converse with the end-user when DISOSS or our code detects
an error in his request. All we can do is send him a report identifying the error
and asking him to resubmit his request at some time in the future. Obviously
this is not ideal, but the more function we offer the end-user, the greater the
risk of such errors occurring.

Thus we have conflicting requi rements:

• Full support of the File and RequesLDistribution functions in the user API
p rog rams wi II :

Add complexity to the end-user interface at Box X, to allow the user to
specify the various options.
Add complexity to the user API programs to handle these options, build
the more complex DIA commands, interpret the possible error notifica­
tions returned by DISOSS, and return some useful message to the
end-user.
Still only offer a batch-type interaction with the end-user, which he is
unlikely to find attractive.

This conflicts with our objectives in two ways:

1. It will require significant user code in each subsystem type to support
the more complex end-user interface.

2. It adds considerable complexity to the CICS application, and therefore
threatens the ease of implementation objective.

• On the other hand, the requirement that our system be generally applicable
across a wide range of subsystems and user groups, demands that the full
range of the DI SOSS Library and Distribution services be made available.

The solution to this problem was surprisingly simple:

1. The Box X user is already a user of DISOSS/PS, and DISOSS/PS already
provides extensive support for the full range of filing and distribution
functions. Fu rthermore, it does so interactively, giving the end-user a
chance to correct an invalid request and resubmit it at once.

2. Our CICS application can distribute the Box X document to the DISOSS/PS
userid representing the Box X end-user. Thus the Box X user will see the
document in his mail-log, and can use all the facilities of DISOSS/PS to file
or distribute it.

14 Connecting non-DIA Systems to DISOSS

3. The user-written CICS code is thus greatly simplified, since it only has to
support a simple form of the RequesLDistribution command 3 , with a much
reduced likelihood of errors. Furthermore, the subsystem-unique code is
also simplified, since the complexities of the end-user interface for full sup­
port of filing and distribution are now handled by DISOSS/PS.

This approach views the user-written code as just a means of delivering Box X
documents to DISOSS/PS, which is the principal means for the Box X user to
interface with DI SOSS. Apart from minimising the complexity (and thus the
maintenance) of the user-written code, it also increases the likelihood that the
Box X user will be able to take advantage of any new function in DISOSS or
DISOSS/PS, without being dependent on corresponding enhancements in the
user-written CICS programs.

3 In fact it may also be desirable to support a simple form of the File com­
mand. This is because a document delivered to DISOSS/PS is transformed on
receipt into a simple DISOSS/PS internal datastream; it is not always possi­
ble to reconstruct the original datastream when the document is subsequent­
ly filed or redistributed from the DISOSS/PS mail-log. In such cases, our
system can perform a simple File operation on behalf of the DISOSS/PS
user, who thus becomes the owner of the document in the DISOSS library,
and can therefore update the profile or redistribute the document as he
wishes.

I ntroduction and Design Overview 15

1.3 OVERVIEW OF THE SYSTEM STRUCTURE

Figure 4 on page 17 illustrates the general organisation of our system design,
intended to allow the Box X user to work interactively with DI SOSS via
DISOSS/PS, and to transfer documents in both directions between DISOSS and
Box X.

To summarise the main characteristics:

1. DISOSS/PS is the principal end-user interface to DISOSS, and is used for
all interactive functions.

2. DISOSS/PS invokes the DISOSS Host Print function in order to move a doc­
ument to Box X from either the DISOSS library or the DISOSS/PS mail-log.

3. RJE and user-written batch and CICS programs are used to move a docu­
ment from Box X to the Box X user's DISOSS/PS mail-log, from where the
full functions of DISOSS/PS are used to file or distribute it.

16 Connecting non-DIA Systems to DISOSS

•• > ••••••

BAT C H D I S 0 S S • Fil e,
• Di st.,

•••• < ••••••••••••••• < ••••• Search,
• • etc.
• • •••• >.... •

DIsossl _OrO ----0- ----0- - - - --
••• < ••••••• < •••••• <..... • A PI·
• •••
• USE R • ••••• > •••••
• • •
• ••• > •••••• > •••• > ••••• DIS O·S S / P S
• •

II

I USE R I •
• • •
• J E S • •
• • C I C S •
••••••••• •

• •
• V TAM •
• •
• M V S •
• •
• •
• •
• Document Transfer • Interactive
• Box X <--> DISOSS
•
•

• 3270 session
•
•

.---.
• BOX-X • · #.......... .
.----. #..
••••••• # •••••••••

3 2 7 0

R J E #
D S C

~--------~---------#------~--------~

d2J
Figure 4. DISOSS--Box X Interactive and Document Transfer Connections

Introduction and Design Overview 17

18 Connecting non-DIA Systems to DISOSS

2.0 SYSTEM STRUCTURE

This chapter describes the general structure of the suggested design, and
summarises the functions of the various components.

"Introduction and Design Overview" on page 3 has shown that our system has
three logical components:

• Interactive communication between the Box X end-user and DISOSS/PS.

• Document transfer from DISOSS to Box X.

• Document transfer from Box X to DISOSS.

2.1 INTERACTIVE COMMUNICATION

This, is implemented by a combination of existing product functions, and all that
is required to deliver the needed end-user function is appropriate customising
of the followi ng:

• Box X 3270 emulation component.
• NCP, VTAM and CICS definitions for the emulated 3270 terminals.
• 01 SOSS/PS definitions for the Box X .end-users.
• DISOSS Host User Profile definitions for the DISOSS/PS users.

The general organisation is shown in Figure 1 on page 7, and this component of
the system is not further described in this chapter.

2.2 DOCUMENT TRANSFER FROM DISOSS TO BOX X

This too is implemented by a combination of existing product functions, and all
that is needed is appropriate customising of the following:

• Box X RJE component.
• Definitions for the Box X RJE component in JES and in EP or NCP/VTAM.
• JCL procedures to route output to Box X.
• DISOSS Printer Description Table definitions to generate the appropriate

Host Print batch jobs.

The general organisation is shown in Figure 2 on page 10, and this component
of the system is not further described in this chapter.

2.3 DOCUMENT TRANSFER FROM BOX X TO DISOSS

This component of our system is the only one requiring user-written code, and
will be the subject of the remainder of this chapter. Figure 5 on page 20 shows
the major components involved.

System Structu re 19

BOX - X
Submit batch job

J
. V. • . •

R J ENE TWO R K

1
~-----V'------~
DBTBATl
Read card images
Write Box X text

BAT C H "I ••

C I C S

.-------DBPM-A ----....,

DBTMOVI
Read Box X text <,----­
Write Box X text ~

(Delete from VSQO) 1 __ _

.-----DBTS.------,
DBTMSTl
Select transform

DBTTRNn

, > VSQl

Read Box X text <,----­
Wri te L2DCA ----->

(Delete Box X txt)

DBTSNDI
Read L2DCA <-------­
Buil d DIU
Pass to API

.-----D1 SOSS---,
Process

Distribution
Request

.-------DBTR--~
DBTRSPI
Get API response
Delete L2DCA ----->

20 Connecting non-DIA Systems to DISOSS

2.3.1 MAJOR COMPONENTS

2.3.1.1 Box X Job Submission

User programming in Box X performs the following functions:

• Constructs a document header record to identify the document, its format
and its destination, so that the appropriate DIA request can be constructed
at the host.

• Breaks the text lines into aO-byte card images.

• Adds JCL to invoke the appropriate user-written batch program, and sub­
mits the job via the RJE system.

2.3.1.2 Batch Program

DBTBA Tl is a user-written batch program whose pu rpose is to insert the Box X
document in the shared VSAM dataset DBTVSQO. In order to minimise contention
for the dataset, and to minimise the number of insert and delete operations
needed to transfer the document, DBTBATl does the following:

OJ Builds a document header from the header card sent by Box X.

• Reads the card images sent by Box X and rebuilds the original text lines.

• Concatenates these lines of text, separated by X" E' I nterchange Record
Separator characters, in large physical records.

• Adds a unique document identifier to be used later as part of the VSAM
key, then writes the large records to a temporary dataset.

• When the document is complete, opens the the shared VSAM dataset and
inserts the contents of the temporary dataset.

2.3.1.3 CICS Program DBTSONl

This program starts a DIA session with DISOSS via the API, and would normally
be executed at CICS start-up time. Having established the DIA session, it could
then initiate transaction DBTM to start document transfer.

System Structu re 21

BOX - X
Submit batch job

I
. V.

R J ENE TWO R K

I
r------V,----~
DBTBATl
Read card images
Write Box X text

BAT C H l' ••

C I C S

,....----0 B TMI-----,
DBTMOVI

Read Box X text <:-----­
Write Box X text ~

(Delete from VSQO) I

...---0 BT S,----,
DBTMSTl
Select transform

DBTTRNn

'----> VSQI

Read Box X text <:----­
Write L2DCA

(Delete Box X txt)

DBTSNDI

----->

Read L2DCA <-----
Build DIU
Pass to API

,....----DISOSS,---,
Process

Distribution
Request

,....----DBTR:----,
DBTRSPI
Get API response
De 1 ete L2DCA ------>

22 Connecting non-DIA Systems to DISOSS

2.3.1.4 CICS Transaction DBTM

This transaction consists of one program, DBTMOV1, whose purpose is to move
Box X documents from the shared dataset DBTVSQO to an identical VSAM data­
set, DBTVSQ1, which is wholly controlled by CICS. Functions are:

• Call subroutine DBTOPNl to open the shared dataset.

• If the open is unsuccessful, schedule a new DBTM for a later time, and
end.

• If the open is successful, copy all DBTVSQO data into DBTVSQ1.

• For each complete document transferred, initiate transaction DBTS, passing
it the key of the document in DBTVSQ1, and delete the document from
DBTVSQO.

• Call subroutine DBTCLSl to close the shared dataset.

• Before ending, schedule a new DBTM transaction to execute a few minutes
later.

2.3.1.5 CICS Transaction DBTS

This transaction contains the main processing of the system, and consists of
several programs;

• Program DBTMSTl examines the document header in DBTVSQ1, identifies an
appropriate program to transform the input datastream to the desired output
datastream, and invokes that transform routine.

• The chosen transform program, DBTTRNn, converts the text of the
DBTVSQl distribute request to a data stream understood in the DISOSS sys­
tem (probably the DCA Level 2 Final Form Text datastream), and passes
control to program DBTSND1.

• DBTSNDl builds the appropriate DIA structure, called a Document Inter­
change Unit (DIU), which contains a DIA RequesLDistribution command and
the document text, and passes it across the API to DISOSS, requesting that
transaction DBTR be invoked to process the subsequent response from
DISOSS.

2.3.1.6 CICS Transaction DBTR

This transaction consists of one program, DBTRSP1, which checks that the dis­
tribution request was successful, and deletes the document from DBTVSQ1.

System Structu re 23

24 Connecting non-DIA Systems to DISOSS

SAMPLE IMPLEMENTATION

SAMPLE IMPLEMENTATION 25

26 Connecting non-DIA Systems to DISOSS

3.0 SAMPLE SYSTEM IMPLEMENTATION

This chapter describes the sample implementation that was made to validate the
system design. We used VM/CMS as our Box X, and therefore this sample has
only implemented support for one inbound datastream, the 1403 printline.

It is important to remember that the purpose of this implementation was solely to
show that the proposed design was workable. It was never ou r intention to pro­
duce an implementation that could be used in a production environment: that
would have required more detailed documentation, more extensive error
detection and recovery code, and more rigorous programming and testing tech­
niques than were possible in the timescale of our project.

This sample implementation is only intended as a demonstration, and is not
appropriate for any other use.

Sample System Implementation 27

3.1 MOVING DOCUMENTS FROM DISOSS TO BOX X

The design of a CICS-Batch interface can be straightforward, because CICS
applications can write jobs to the internal reader. The DISOSS Host Print facili­
ty uses this technique, so rather than duplicate many of the functions of
DISOSS, the Host Print facility was used as the basis for the DISOSS to Box X
interface.

The DISOSS Host Print facility works as follows:

• The DISOSS user enters the name of a logical printer in the Destination
Name field of a Host Print menu.

• A batch job is written' to the internal reader for execution. The batch job
contains the following:

A jobname derived from the Host Print Menu jobname field.

Jobca rd pa rameters derived from:

The accounting information in the Host User Profile of the DISOSS
user.

The JOBJCL option that was specified in the Host Definition job
during installation

An invocation of the format procedure whose name was specified in the
JOB option of the PDT entry for the logical printer entered in the des­
tination name field of the Host Print menu.

An input dataset with the document text inline.

• A format program, usually the DISOSS supplied DSVOL500, should do the
following:

The document is formatted into 1403 printlines, according to the format
options and the printer characteristics data speci.fied in the relevant
entry in the Printer Description Table (PDT).

The print/fidelity table index DSVS5800 is searched for a table with an
input GPID and output GCID corresponding to the document GPID and
the printer GCI D specified in the PDT entry. The output characters
are translated if a table is found.

• The output document is routed by JES to the printer determined by the
procedu re JCL.

28 Connecting non-DIA Systems to DISOSS

3.2 MOVING DOCUMENTS FROM BOX X TO DISOSS

3.2.1 USE OF THE DISOSS API

3.2.1.1 General Remarks

One of our design objectives was to avoid the need for specialised programming
skills wherever possible; thus we have rejected designs requiring the use of
VTAM programming or the JES External Writer interfaces, and the DISOSS API
itself is the only requirement for special programming knowledge. We do not
attempt to describe the API in this book, and recommend that the following doc­
uments be regarded as essential reading for anyone wishing to understand this
implementation in detail:

SC30-3096
GG24-1614

DISOSS/370 Version 3 Application Programming
DISOSS Application Interface: Programming Guidelines

However, for the general reader, the following points may be helpful.

• The API consists of a queue (implemented as a VSAM KSDS), and a set of
commands to insert and retrieve data on that queue. The data itself must be
in the form of a DIA-defined DIU.

• A DISOSS supplied module (DSVAWOOO) must be part of the user transaction
to invoke the AP I commands.

• Every transaction that wants to use the API has to issue an API 'Activate'
command fi rst, and provide a 01 sass user name for the session. Then, the
first command on the DIA session must be an API-BIND, which will build a
DIA Sign_On.

• Multiple 01 Us can be put on this queue by different CI CS transactions for
the same DIA session. On an 'Activate' command, the API takes a unique
time stamp for that transaction and username of the DIA session. This time
stamp will be used as a key field for all data of this transaction put on the
API-queue.

• DIUs will only be processed after receipt of a API 'Last' command, and a
syncpoint of the user transaction.

• Only one DIU will be processed for every 'Last' command.

• Updates on the API queue will be backed out if an abend occurs.

• The responses for DIA commands that are processed through the API must
be analysed by a new transaction named in the API 'Last' command. That is,
the API is an asynchronous interface.

• The API gives the 16 byte DIU-ID field as part of the receive data for the
response. (DIU-ID is provided by the originator of a DIU).

Sample System Implementation 29

3.2 • .1.2 Our ,Use"of the APl. . .. '~. ., . ., " ,.,

The Box X to DISOSS transaction,s distribute documents into DISOSS by means
of a 2-way multithread communication with the DISOSS API; that is, multiple
DBTS transactions may concurrently pass documents into the API, and mUltiple
DBTR transac:tions mayc;;oncurrently receive results, but all share the same OIA
session with DISOSSandiJireregardedby DISOSS as one user.

Sign_On and Sign":'Off are provided by separate CICS transactions. Transaction
DBTN may be used to perform Sign_On if the CICS start-up procedure does not
invoke program DBTSONl to do so. DBTF performs a DIA Sign_Off, though this
is not normally requi red.

Transaction DBTS sends a distribute request to the API. For each document it
builds one DIU of the structure shown in Figure 5. ,

<.----- DOCUMENT INTERCHANGE UNIT (DIU) -------->

DIU Req_Distr. DOCUMENT DOCUMENT DOCUMENT DOCUMENT DIU
PREFIX COMMAND UNIT segl UNITseg2 UNIT segn UNIT segl SUFFIX

Figure 5. DIU Structure Built by DBTSNDl: the maximum number of document
units in one DIU is 255 (DIA architecture limitation). There is
no limit on the number of segments in a document unit.

, '

The structure of document unit segments that contain L2DCA data is shown in
Figure 6. As there is 1)0 limitation on the number of segments in one document
unit" there is ,also no limit on ,the size of a document to be passed through the
API (except, of course, the size of the API-queue dataset). " ,

<----- DOCUMENT INTERCHANGE UNIT (DIU) ----~----~------>

DIU Req_Distr. DOCUMENT DOCUMENT DOCUMENT DOCUMENT
PREFIX COMMAND UNIT segl UNIT seg2 UNIT segn UNIT segl

" J or J " .

v v
DOC. UNIT DCA-LEVEL-2 DOCUMENT DATA
introducer
x'C9038l200000'

Figure 6. Document Unit Segments for Document Text:
middle-in-chain segments, with only L2DCA data.

30 Connectingnon-DIA Systemsto DISOSS

DIU
SUFFIX

these are

The document unit is ended by a segment with only a 'last segment indicator'
and no data, shown in Figure 7.

<----- DOCUMENT INTERCHANGE UNIT (DIU) -------->

DIU
PREFIX

Req_Distr. DOCUMENT DOCUMENT
COMMAND UNIT segl UNIT seg2

I v
DOC. UNIT introducer
X'C90381000000'

DOCUMENT DOCUMENT DIU
UNIT segn UNIT segl SUFFIX

I

Figure 7. Last Document Unit Segment: there is no text content, only a
last segment indicator.

These DIA structures are built by the DBTSNDl program, which calls a set of
subroutines to perform particular functions:

• APIACTIV issues the API 'ACTIVATE' command for user DIST01, which is
the API user solely defined for this interface in the DISOSS Host User Pro­
file dataset.

• APIGTCMD issues API 'RECEIVE' to receive data from the API queue. It
parses the data and sets return code fields for the caller.

• APIDIS2 (or APIFIL2) builds the first DIU part, up to and including the
first document unit containing the document base profile, and issues API
'SEND' to pass it to the API.

• API PTDOC sends the remainder of document unit segments through the API.

• APISUFIX passes the DIU suffix through the API.

• API LAST issues API 'LAST' command.

• APIPURGE issues API 'PURGE' command in case of errors.

Refer to DISOSS Application Interface: Programming Guidelines, GG24-1614 for
details of the design and operation of these subroutines.

Sample System Implementation 31

DIU Correlation Data

<----- DOCUMENT INTERCHANGE UNIT (DIU) ------------~------>

DIU Req_Distr.
PREFIX COMMAND

I v
PFX X'C001xx'
DIUID Xl•

DOCUMENT DOCUMENT DOCUMENT DOCUMENT DIU
UNIT seg1 UNIT seg2 UNIT segn UNIT segl SUFFIX

Figure 8. DIU Prefix: the DIU-id field can be expanded to 16 bytes, and is
used in this system to correlate responses in DBTR with requests
from DBTS.

The first 16 bytes of the. DBTVSQl record key are used as the correlation data
in the DI U prefix. This data is unique, being made up of the date and time of
creation, together with an identifier of the creating interface (which in this case
is always the DBTBAT1 program). It is used as the document identifier in the
API communication, and it is passed to the response transaction DBTR. It can
be used by DBTR to identify the processed Box X request on DBTVSQ1, so that
appropriate action can be taken. I n the current design, this action is to delete
the request from DBTVSQ1 if it was successful, and to issue an API PURGE if it
was unsuccessful.

RequesLDistribution Command

<----- DOCUMENT INTERCHANGE UNIT (DIU) -------->

DIU Req_Distr. DOCUMENT DOCUMENT DOCUMENT DOCUMENT DIU
PREFIX COMMAND UNIT seg1 UNIT seg2 UNIT segn UNIT segl SUFFIX

I v
COMMAND IDDATA-1 DEST NODE ATTRIB. RECIPIENT
X'CCIC01 1 ADDRESS LIST ADDRESS

Figure 9. Request Distribution Command: attribute list and recipient
address are requi red parameters.

The command itself is in the ARR (asynchronous reply required) command class
designated by X'CC' in the 'I' byte of the command. ARR commands will be
replied to with an ACKNOWLEDGE command together with correlation data. It
contains the following parameters:

32 Connecting non-DIA Systems to DISOSS

• Identified Data format 1, for pointing to the first document unit in this DIU
as the document for this command.

• Destination node address format 1, an 8 byte parameter designating the
office systems node for the recipient address.

• Attribute list format 1, a required parameter, specifying:

no confi rmation of del ivery,

not personal,

no priority,

number of copies = 1.

DIA gives the option to specify a 256 byte message in this parameter, but
this is not used by our programs.

• Recipient address format 1, a required parameter up to 8 bytes long.

The address combination would usually be a DISOSS/PS user because
DISOss/ps provides all necessary functions for documents in the mail-log; how­
ever, a simple distribution to one user can still be done directly.

Document Profile

<----- DOCUMENT INTERCHANGE UNIT (DIU) -------->

DIU Req_Distr. DOCUMENT DOCUMENT DOCUMENT DOCUMENT DIU
PREFIX COMMAND UNIT segl UNIT seg2 UNIT segn UNIT segl SUFFIX

I v
DOC. UNIT DOC. PROF. DOC. PROF. DOC. PROF. DOC. SUB- AUTHOR III

III introduc. INTERCH. BASE TYPE GCID NAME JECT

III DOC. CONTENT
III introducer

V DOC. UNIT 10

X'C90381200000' DOC. SYST.
TYPE CODE

Figure 10. Document Profile Information: the first document unit segment
contains the document profile only. The first document unit
introducer in a segmented chain has a document unit id.

Sample System Implementation 33

The first document unit contains the document profile. We provide the followi·ng
pa rameters :

• Document name, a required parameter, maximum length of 15 characters in
our design (44 characters DIA maximum). According to DIA rules the first
and last character of the name may not be a space.

• Document type, a required parameter, a 2 byte field in our case always
X'0002' for L2DCA data.

• Profile GCID, a required parameter, in our case always set to X'01510100'.
This is the standard GCID in DISOSS for profile data.

• Document GCID is omitted from the document profile. The document GCID is
set in the DCA level 2 datastream to X'00D70108'. This is the standard GCID
in DISOSS for the 1403 TN chain. DISOSS will look in the DCA datastream
for the document GCID. See "Datastream Transformations" for a discussion
of why this GCI D was chosen.

• Subject, always set to 'Mailbox Project

• Author i always set to 'Mailbox

3.2.2 DOCUMENT TRANSFORMATIONS AND TRANSLATIONS

3.2.2.1 Datastream Transformations

From Box X inward the following data transformations are performed on 1403
print lines; a header record identifies the incoming data as 1403 rather than any
other datastream.

1. In Box X: reformatting of print lines to 80 byte cards for transportation
through the RJE system as SYSIN data.

Certain boxes might have abilities to transport data in a more efficient way
through a network. However the design of these programs would then no
longer be general.

2. In the DBTBAT1 program: re-blocking of 80 byte SYSIN data to print-lines
and blocking of print-lines in records with a maximum size of 5959 bytes (+
key of 39 bytes + 2 bytes length field = 6000 bytes). All trailing blanks in
the print lines are deleted. Blocking and deletion of trailing blanks is done
solely for efficiency purposes. For unblocking purposes the following addi­
tional data transformations are done:

• Print lines are separated by I RS codes, X'1 E'.

• Except for the first byte, which should be the 1403 print control char­
acter, all characters below X'40' are converted to X'40', to ensure that
no extraneous X'l E' characters will be present in the print data. (With
DCF, any character could have been generated as print data).

This serves an additional purpose: In L2DCA, multibyte and one-byte
controls are used to control the final printing of data; all multibyte con­
trols start with X'2B', so the above transformation ensures that no

34 Connecting non-DIA Systems to DISOSS

unwanted multibyte controls are present in the 1403 datastream. Single
byte controls above X'40' in DCA Level 2 that could still occur in the
datastream are:

Numeric Space, X'E1'
Required hyphen, X'60'
Required Space, X'41'
Syllable hyphen, X'CA'

3. In the DBTTRN1 program, the actual transformation of 1403 print data to
DCA Level 2 is done. The DCA Level 2 controls used should provide docu­
ment integrity for 1403 print data. After finding the print lines in the
blocked record the I RS codes are removed. 1403 print controls are con­
verted as follows:

Meaning Input Output L2DCA stream

1403 Printer Controls

Space 1 line after printing X' 09 1 -prtline X' OD ' -prtline-X ' 15 1

Space 2 lines after printing X 1111 -prt 1 i ne X' OD ' -prtline-X ' 1515 1

Space 3 lines after printing X' 19 1-prtline X' OD ' -prtline-X ' 151515 1

Skip to channel 1 after prt X' 89 1 -prtline X'OD'-prtline-X'OC '
Skip to channel 2 after prt X' 91 1-prtline X' OD ' -prtline-X ' 1515 1

..... X' OD ' -prtline-X ' 1515 1

Skip to channel 12 after prt X' E1 1 -prtline X' OD ' -prtline-X ' 1515 1
Space 1 line immediate X'OB'-prtline X' 15 1-prtline
Space 2 1 i nes immedi ate X' 13 1 -prtline X' 1515 1-prtline
Space 3 lines immediate X' 1B ' -prtline X' 151515 1-prtline
Skip to channel o immediate X' 83 1-prtline X'OC'-prtline
Sk i P to channel 1 immediate X' 8B ' -prtline X'OC'-prtline
Skip to channel 2 immediate X' 93 1-prtline X' 1515 1-prtline
. X' 1515 1-prtline

Skip to channel 12 immediate X' E3 1-prtline X' 1515 1-prtline
Write without spacing X' 01 1-prtline X'OD'-prtline
No-op X' 03 1-prtline delete prtline
Anything else -prtline X' 15 1-prtline

ANSI Print Controls

Space 1 line before printing X' 40 ' -prtline X' 15 1-prtline
Space 2 lines before printing 0 -prtline X'15151-~rtline
Space 3 lines before printing - -prtline X' 151515 -prtline
No space before printing + -prtline X'OD'-prtline
Start new page 1 -prtline X'OC'-prtline

The X'OD' controls at the beginning of 1403 print controls that are effective
after printing ensu re that if a previous print line had an 'immediate' print
control, these print lines still will start printing in position 1 of the print
line.

At the end of the document, the last print line will have no NL (X'15')
appended to it, since this could overflow the presentation space. Instead
the document will end with ZICR (X'OD') and FF (X'OC'). The reason for
this is that Displaywriter and DOSF do not always start a new document
with a form feed as SCRI PT output normally does; they end a document with
ZICR and FF instead. Documents without ZICR and FF at the end will give
an error message on Displaywriter when printed.

Sample System Implementation 35

Additionally, some initial settings for formatting are necessary with multi­
byte controls. The following settings are provided by DBTTRN1:

• SEA, set exception action I X'2BD2nnB5' where nn is a count field. We
have set the exception class and action bytes to X'OOOO' which means:
for all exception classes - still present the data but indicate loss of
fidelity and possible alternatives. If print fidelity is required this
should be set to: X '0001 01020202' . No data will be presented if loss of
text data or loss of appearance would occur.

• SHM, set horizontal margins, X'2BD2nnl1'. We have set the left margin
to 0.0 inch and the right margin to B. 5 inches. The right margin setting
is ignored because set justify mode is not used. The left margin is set
to 0 to ensure print fidelity with the original document. The operand
field is then: X'00012FDO'.

• SVM, set vertical margins, X'2BD2nn49'. We have set top margin to 0.5
inches as SCRI PT assumes that a 'skip to channel l' will actually be on
the 4th print line of a new page. The bottom margin is set to 11 inch­
es. Bottom margin is ignored in DCA Level 2. The operand field is
then: X'02D03DEO'.

• SPPS, set presentation page size, X'2BD2nn40'.
to B.5 inches and the page depth to 11 inches.
then: X'2FD03DEO'.

We have set the width
The operand field is

• SCG, set CGCSG I D4, X'2BD10601' The CGCSG I D is set to X'OOD7010B'
(215-264 when expressed in decimal). This corresponds to the GCID
reserved in DISOSS for the TN-chain of the 1403 printer.

3.2.2.2 Character Translations

Terminology

The L2DCA SCG control introduces the term CGCSG I D (Coded Graphic Charac­
ter Set Global ID). The CGCSGID is a definition of the relationship between the
hexadecimal codepoints in the datastream and the graphic characters presented
on a display or printer. CGCSGID is made up of two components:

GCSGID Graphic Character Set Global ID. A two-byte field identifying a pre­
defined and documented set of graphic characters. This set could be,
for example, the characters available on a particular keyboard on on a
particular printwheel.

CPGID Code-Page Global ID. A two-byte field identifying a codepage; a
codepage defines the graphic character to be displayed for each of
the 256 possible hexadecimalcodepoints.

There exist many more than 256 graphic characters which may need to be dis­
played, so the CPG I D provides a means of identifying which set is to be used in
a particular datastream, and which hexadecimal codepoints are to represent
them.

4

36

The term CGCSGID, used in the L2DCA architecture, is equivalent to the
term GCID used in DISOSS publications. Their meaning is described in
"Terminology. "

Connecting non-DIA Systems to DISOSS

Similarly, most displays and printers cannot support as many as 256 graphic
characters at any given moment, so the GCSGID provides a means of selecting a
subset from those characters available on the codepage.

The terms used here are those used in the L2DCA architecture; other terms are
used in other publications to refer to the same definitions. See Figu re 11.

Full Name Possible Abbreviations

L2DCA L3DCA DISOSS

Coded Graphic Character
Set Global ID. CGCSGID GCID GCID

Graphic Character
Set Global ID. GCSGID CGCS ID GGID

Code Page Global ID. CPGID Code Page ID GPID

Figure 11. Graphic Character Set Definitions: different terms may be used
to refer to the same entity.

For brevity, this book uses the terms GCID, GGID and GPID.

How DISOSS Chooses Character Translations

The procedure used by DISOSS to choose a translate table for an output docu­
ment is as follows:

The GCID list provided by the output device at DIA Sign_On is searched for the
output document GCID. If the search is successful, no translation occurs.

Otherwise, the translate table index is searched for a translate table suitable
for the document GPID, and an output device GCID. If the search is successful,
then that table is used.

Otherwise, no translation occurs.

Required Character Translations

There is a GCID known to DISOSS which represents the characters on the 1403
TN print train; this is X'OOD7 0108' (00215-00264). Clearly, if we describe our
input document with this GCID, then its content is accurately identified, and all
components of the network have the means of knowin~ what ou r text really is.
The disadvantage is that few components of today s DISOSS networks were
designed to handle this GCID: thus Displaywriter, Scanmaster, DISOSS/8100
and DISOSS/PS will all either reject a document using this GCID, or will print it
incorrectly. Only the DI SOSS Host Print function can handle it as intended.

Sample System Implementation 37

This is not an unexpected situation in a DISOSS system; there are many cases
in which a document is to be delivered to a sUbsystem which does not support
the document's GCID, and DISOSS provides a set of translate tables which it
uses to translate from the input GCID to a GCID acceptable to the receiver.
DISOSS also provides a way for an installation to add its own translate tables to
the standard ones. So our solution to the present problem is to provide a trans­
late table to map the 1403 TN characters on to a GCID that is understood by all
of the likely receiving subsystems. We could alternatively have performed a
translation in DBTTRN1, before passing the document into DISOSS, but rejected
this approach for two reasons:

1. If DISOSS will perform the translation for us, there seems no point in dupli­
cating the function.

2. The translation cannot completely retain the appearance of the original doc­
ument (certain box junction characters are lost, for example), and so it is
preferable to translate only when necessary: using the DISOSS translate
function ensures that translation occurs only when the document is about to
be output to a device that needs it. While stored in the library, or when
delivered to a recipient (such as another CMS/PROFS user) who can handle,
the original GCID, the document does not undergo any translation and
retains its original appearance.

The output GCID we selected is X'0151 0100' (00337-00256), which is the Mul­
ti-Lingual Codepage and is supported by all DISOSS subsystems. The translate
table we have set up from GPID X'108' (264) to GCID X'01510100' (337-256) tries
to preserve as much of the meaning of the printable ~raphics as possible. When
no similar graphic could be found on code page X'100 , a substitute was chosen.
See "DBTTRT01 Translate Table" on page 99.

38 Connecting non-DIA Systems to DISOSS

3.2.2.3 Overview of Transformations and Translations

vi DBTTRNll

Level 2 DCA
GCID 0007-0108

V

Level 2 DCA
GCID 0007-0108

llxlate tbl

Level 2 DCA

Performs transform

1403-TN GCID

See Note 1
Decimal 215-264

Provided for DlSOSS
by sample system

GClD 0151-0100 Multi-Lingual GClD

llx-form routinel

11403 print See Note 2
I
V

routinel

DBT programs

DlSOSS

DlSOSS/PS
internal format

Displayable on 3270, DlSOSS/PS
see Note 3

llx-form routinel

DCA-level 2
GCID 0151-0100

t
See Note 4
Decimal 337-256

DlSOSS

Figure 12. Transformations and Translations: as a document passes through
the system, it may be transformed and translated several times.

Notes

1. At this moment the document still conserves its print fidelity. If it were
filed now, it would be stored in the library with print fidelity maintained.

Sample System Implementation 39

2. As DISOSS/PS at signon time declares it can handle '1403' type documents,
DISOSS schedules the appropriate transform routine. The document will
thus be delivered to DISOSS/PS in a form equivalent to the original 1403
print output of Box X, apart from the character translation we provided.

3. DISOSS/PS will do a transform to an internal format to be able to display
documents on a 3270 screen. This means it will, amongst other things,
delete overprinted lines.

4. When DISOSS/PS again gives the document to DISOSS (for a file, distribute
etc.), it first transforms the document to a L2DCA format.

The last two transforms do not preserve print fidelity. The following changes
will occur compared with the L2DCA document created by our program
DBTTRN1 :

• The multibyte controls at the beginning of the DCA stream will be replaced
by the controls provided by DI SOSS/PS.

• NL controls (X'15') are replaced by RNL controls (X'OG').
• FF controls (X'OC') are replaced by RFF controls (X'3A').
• ZICR controls (X'OD') are deleted.
• Every overprinted line is deleted.
• The document ends with RNL, FF.

The main consequences of this to a DCF-generated document are:

• Box corner characters become full-stops.

• Overstruck lines are lost. This means:

DCF titles are no longer bold.
All underscoring is lost.
Box intersection characters, which are made up of one character over­
printed on another, are lost, and the box is incorrectly formed.

Simple memos, or output from programs other than DCF, may not be seriously
affected by these losses, but in order to allow complex DCF documents to be
handled by ou r system, we had to provide an additional function. It is possible
for the CMS/PROFS user to request that the document be filed on behalf of a
DISOSS/PS user (usually himself), instead of being distributed to that
DISOSS/PS user. In this way, the document is not sent to the DISOSS/PS user's
Mail Log, but remains intact as a L2DCA document in the DISOSS library. The
DISOSS/PS user can then search for it, add search terms and access codes if
necessary, distribute it to other DISOSS users, or delete it.

3.2.3 BATCH-CICS INTERFACE

A VSAM file, which we call DBTVSQO, is chosen as the vehicle to move docu­
ments from the RJE system into the CICS environment. Control of access to this
VSAM file is exercised through Open/Close processing and VSAM Shareoptions
set to 1 (which allows only one concurrent user). Both the batch program
DBTBATl and the CICS transaction DBTMOVl will try to open this file for as
short a period of time as possible. If DBTBATl does not succeed on the first
attempt, it will retry the open until it is successful. In the same circumstances,
DBTMOVl will end and the next initiation of DBTMOVl will pick up any accumu­
lated documents. Most of the time this dataset will be closed to CICS. DBTMOVl
copies the contents of DBTVSQO to an identical but non-shared file, DBTVSQ1.

40 Connecting non-DIA Systems to DISOSS

DBTVSQO has variable length records with a maximum record size of 6000 bytes
(which fits well on most type of DASD). A typical 2-3 page document will then
only take up one record on this dataset.

DBTVSQO and DBTVSQ1 are key sequenced to simplify possible future modifica­
tions where records may not be entered sequentially, or where concurrent
applications may be writing to the same dataset. The common
DBTVSQO/DBTVSQ1 key fields are as follows:

FIELD NAME SIZE IN BYTES DESCR! PTION
---------- ------------- =========== ---------- -------------

DATE

DATE
TIME
INTTYPE
OSN
USER
INTYPE
OUTYPE
SEQNO
CHFLAGF
CHFLAGL

5
9
1
8
8
2
2
2
1
1

TOTAL 39

Date
Time
Interface Type identifier
Office System Name
User name
Input document type
Output document type
Sequence Number
Chain flag first
Chain flag last

This is the date in YMMDD form. Y is the least significant year dig­
it.

TIME

INTTYPE

This is the time in hhmmssttt form. 'ttt' is the milliseconds.

This identifies the interface into our system. Only one is currently
defined (the DBTVSQO shared dataset), but others might be
required in the future. For example, some subsystems could have
an SNA session with CI CS, across -which documents could be trans­
ferred; the receiving CICS transaction could insert the document in
the CICS dataset DBTVSQ1, but would indicate in the document
header I NTTYPE field that the document arrived via a different
interface.

The combined DATE/TIME/INTTYPE field is used as a unique request identifier,
and this should ensure that each document is stored in a series of records in
ascending key sequence, and that duplicate keys cannot occur. This depends
on the assumption that the probability of more than one batch job using the PL/I
TIME pseudovariable in the same millisecond, is negligible. If this assumption is
not considered satisfactory, the problem could be avoided by ensu ring that the
batch jobs do not execute concu rrently, or that they serialise on some common
resource before taking the timestamp.

OSN

USER

INTYPE

This is the name of the distribution node of the recipient.

This is the name of the recipient.

This identifies the datastream type of the document text. Currently
valid values are:

• X'OOOC' --- 1403 print lines

• X'0002' --- DCA Level 2

Sample System Implementation 41

OUTYPE This identifies the desired datastreamtype. Currently valid values
are:

• X'0002' --- DCA Level 2

If INTYPE is not equel to OUTYPE, then this is an indication that
the document requires transformation.

SEQNO This is a binary number one less than the number of the record.
The existence of this field ensures the impossibility of duplicate
keys from the same request, and also causes the request records to
be arranged in order by VSAM.

CHFLAGF This is '1' if the record is the first of a document, and '0' if the
record is not the first. All other values are invalid. It is used to
identify the beginning of a document.

This field is strictly unnecessary I since its value can . always be
deduced from SEQNO. It is included however, to compartmentallse
the functions of the fields, and to make the code which manipulates
the fields more easy to follow.

CHFLAGL This is '1' if the record is the last of a document, and '0' if the
record is not the last. All other values are invalid. It is used to
identify the end of a document.

This field might be used by a future version of DBTMOV1, if the
design were changed to allow concurrent CICS/Batch access to the
shared dataset. I n that case, DBTMOV1 would not wish to start
reading a document until it knew that DBTBAT1 had finished writ­
ing it.

The key contains the minimum distribution information. It could be used in a
future design to allow partial distribution of a document in case of errors.

Additional distribution information is present in an 80-byte header field. This
field is the first card in the batch SYSIN stream. It is included in the first and
last VSAM record starting at byte number 42. There is currently still plenty of
space for more additions. The fields are as follows:

FIELD NAME

RECTYP
PROFLAG
PAGEL
PAGEW
DISNAM
EYECAT
DOCNAM
DISFIL
RESER

SIZE IN BYTES

1
1
3
3
8
6

15
1

42

TOTAL 80

DESCRIPTION

Batch SYSIN record type
Profile format indicator
Pagelength
Pagewidth
Not used
"HEADER" Eyecatcher
Document name
DIA Command - Req_Dist. or File
Not used

Below are some explanations of the header fields:

RECTYP Batch input record format identifier. Would be used by DBTBAT1 if
it supported more than 1 input record format.

42 Connecting non-DIA Systems to DISOSS

PROFLAG Profile format identifier. In our case, there is only one format, con­
tained on one card. Would be used by all programs in the request
processing flow if more than one profile format was ·supported. Addi­
tional profile formats would be required if and only if the total size of
possible profile parameters exceeded 80 bytes.

PAGEL Page length. Could be used by DBTTRNn if the input pagelength
were not ignored, or if the output pagelength were not preset. The
precise meaning of this field would depend on the transform.

PAGEW Page width. Could be used by DBTTRNn if the input pagewidth were
not ignored, or if the output pagewidth were not preset. The precise
meaning of this field would depend on the transform.

DISNAM Not used.

DOCNAM Document name. Up to 15 characters.

DISFIL

RESER

Allows the user to select the DIA command to be built; valid values
are 'D', for a RequesLDistribution command, and 'F' for a File com­
mand.

Not used.

Sample System Implementation 43

3.2.4 COMPONENTS OF THE BOX X TO DISOSS FACILITY.

3.2.4.1 DBTBAT1

Batch PL/I program DBTBAT1 is executed by the procedure invoked by the RJE
batch job. Its function is to write a document input request to DBSVSQO.

Input: JCL and instream data containing:

• Header with user, profile, and processing information.

• Chopped up printlines.

Output: 6000 byte DBTVSQO records containing:

• Key with user and processing information.

• Profile information on first and last record.

• IRS sepa rated p ri ntli nes

3.2.4.2 DBTMOV1

CICS PL/I program DBTMOV1, the only program of the DBTM transaction,
moves records from the CICS-Batch shared dataset DBTVSQO, to CICS dataset
DBTVSQ1. It calls subroutine DBTOPNl to open DBTVSQO to CICS, and calls
DBTCLSl to close DBTVSQO from CICS. '

No transformations are done.

Copied records are deleted form DBTVSQO.

A DBTS transaction is initiated for each request, with the key of the first
record as start data to help the transform selection program locate the docu­
ment.

The program issues a delayed start of its own transaction to cause its periodic
re-initiation.

3.2.4.3 DBTOPN1

CICS assembler program DBTOPNl issues a DFHOC OPEN macro for dataset
DBTVSQO on behalf of DBTMOV1.

3.2.4.4 DBTCLS1

CICS assembler program DBTCLSl issues a DFHOC CLOSE macro for dataset
DBTVSQO on behalf of DBTMOV1.

44 Connecting non-DIA Systems to DISOSS

3.2.4.5 DBTMSTl

CICS PL/I program DBTMST1, the first program of the DBTS transaction,
retrieves the first-in-chain key passed from DBTMOV1, and uses it to obtain
the whole FI C record. The fields of the record are analysed to select an appro­
priate DBTTRNn transform routine, which is started with the FIC key as start
data, to help locate the document in DBTVSQ1.

3.2.4.6 DBTTRNl

CICS PL/I program DBTTRNl is the only transform program in the sample sys­
tem. The input is a set of 6000 byte KSDS VSAM records from DBTVSQ1, with:

• 39 byte key with user and processing data.

• Profile data on FIC and LlC record.

• I RS separated printlines.

The output is a set of 4088 byte KSDS VSAM records to DBTVSQ1, with:

• 39 byte key with user and processing data.

• Profile data on FIC and LlC record.

• L2DCA data stream.

The firs~ input record is located by the start data received from DBTMST1.

The document is converted to a DCA Level 2 datastream and is written to
DBTVSQl in units of a convenient size for the API queue.

The input records are deleted from DBTVSQ1.

Program DBTSNDl is started with the new FIC key as start data.

3.2.4.7 DBTSNDl

CICS PL/I program DBTSNDl sends a DIA RequesLDistribution or File command
to the DISOSS API.

The document is located on DBTVSQl using the FIC key retrieved from
DBTTRN1.

A profile parameter block is constructed from the header.

The DIU text segments are transmitted to the API. Each segment corresponds to
one input record.

An API 'Last' command is transmitted to initiate DISOSS processing.

Sample System Implementation 45

The input records are not deleted from DBTVSQ1. This is a function of the
response transaction. This aids problem determination by preventing the
deletion of the transformed request in the event of an error.

3.2.4.8 DBTRSP1

CICS PL/I program DBTRSP1 is the only program of the response transaction
DBTR. If the DISOSS response is normal, the request is deleted from
DBTVSQ1. If the response is not normal, an API PURGE is issued.

3.2.4.9 DBTSON1

CICS PL/I pro~ram DBTSON1, the only program of the DBTN transaction, does
a DIA 'Sign_On to DISOSS. It is executed twice in the 'Sign_On' process.

In the first execution it sends a 'Sign_On' to DISOSS, naming itself as the
response transaction.

In the second execution it starts the DBTM cycle if the DISOSS response is
normal, and issues an API PURGE if the DISOSS response is not normal.

Instead of being invoked via DBTN, this program can be included in the CICS
PL T, and can thus be executed at CICS start-up.

3.2.4.10 DBTCLNl

CICS PL/I program DBTCLN1, the only program of the DBTC transaction, reini­
tialises the datasets DBTVSQO and DBTVSQ1.

The program is not strictly required, but it is useful, especially in a develop­
ment envi roment, because it enables these datasets to be reinitialised conven­
iently while CICS is up.

3.2.4.11 DBTSOFl

CICS PL/I program DBTSOF1, the only program in the DBTF transaction, does
a DIA 'Sign_Off' from DISOSS. It is executed twi~e in the 'Sign_off' process.

I n the fi rst execution it sends a 'Sign_Off' to D I SOSS, nami ng itself as the
response transaction. In the second execution, it issues an API PURGE if the
DISOSS response is not normal.

This program is not used in the sample implementation.

46 Connecting non-DIA Systems to DISOSS

4.0 SYSTEM DEFINITIONS FOR THE SAMPLE IMPLEMENTATION

This section deals with the system definitions used in the course of the project
to verify the design. Some knowledge of CICS and DISOSS table generation is
assumed.

4.1 CICS TABLES

These tables are needed for the Box X to DISOSS (inbound) function, and are
not used for the DISOSS to Box X (outbound) function.

4.1.1 FILE CONTROL TABLE

Below are the entries made for the VSAM datasets DBTVSQO and DBTVSQ1.

DFHFCT TYPE=DATASET,
DATASET=DBTVSQO,
ACCMETH=!VSAM,KSDS),
SERVREQ= UPDATE,NEWREC,BROWSE,DELETE),
FILSTAT= ENABLED,CLOSED),
RECFORM= VARIABLE,UNBLOCKED),
BUFND=3,BUFNI=2,
STRNO=2,
MODE=VSAM

DFHFCT TYPE=DATASET,
DATASET=DBTVSQl,
ACCMETH=!VSAM,KSDS),
SERVREQ= UPDATE,NEWREC,BROWSE,DELETE),
FILSTAT= ENABLED,OPENED),
RECFORM= VARIABLE,UNBLOCKED),
BUFND=12,BUFNI=lO,
STRNO=lO,
MODE=VSAM

The BUFND, BUFNI, and STRNO parameters determine the DBTVSQl buffer
allocation. Their values should be considered carefully.

4.1.2 PROGRAM CONTROL TABLE

Below are the entries made for the CICS transactions.

DCFPCT TYPE=ENTRY,TRANSID=DBTN,PROGRAM=DBTSON
DCFPCT TYPE=ENTRY,TRANSID=DBTM,PROGRAM=DBTMOVI
DCFPCT TYPE=ENTRY,TRANSID=DBTS,PROGRAM=DBTMSTI
DCFPCT TYPE=ENTRY,TRANSID=DBTR,PROGRAM=DBTRSPI
DCFPCT TYPE=ENTRY,TRANSID=DBTF,PROGRAM=DBTSOF
DCFPCT TYPE=ENTRY,TRANSID=DBTC,PROGRAM=DBTCLN

SIGNON
MOVE
SEND
RESPONSE
SIGNOFF
CLEANUP

System Definitions for the Sample Implementation 47

4.1.3 PROGRAM LIST TABLE

A startup PL T is a list of programs to be automatically initiated during GIGS
startup. The DIA Sign_On program DBTSONl is executed here, to ensure that a
DIA session exists with DISOSS before any DBTS transactions attempt to dis­
tribute documents.

If the GIGS system already has a startup PL T, the entry for DBTSONl can be
added to it; otherwise, a new table can be created as follows:

• A PL T table, similar to the one below, must be assembled.

• The table must be defined in the PPT, as described in the section about the
PPT in this chapter.

• The table suffix must be specified in the SIT, as described in the section
about the SIT in this chapter.

Below is a sample PL T used for the initiation of DBTSON1.

DFHPLT TYPE=INITIAL,SUFFIX=ST
DFHPLT TYPE=ENTRY,PROGRAM=DBTSONI
DFHPLT TYPE=FINAL
END

4.1.4 PROGRAM PROCESSING TABLE

Below are the entries for the GIGS programs in the PPT.

DFHPPT TYPE=ENTRY,PROGRAM=DBTSONl,PGMLANG=PLl
DFHPPT TYPE=ENTRY,PROGRAM=DBTMOVl,PGMLANG=PLl
DFHPPT TYPE=ENTRY,PROGRAM=DBTMSTl,PGMLANG=PLl
DFHPPT TYPE=ENTRY,PROGRAM=DBTTRNl,PGMLANG=PLl
DFHPPT TYPE=ENTRY,PROGRAM=DBTSNDl,PGMLANG=PLl
DFHPPT TYPE=ENTRY,PROGRAM=DBTRSPl,PGMLANG=PLl
DFHPPT TYPE=ENTRY,PROGRAM=DBTOPNI
DFHPPT TYPE=ENTRY,PROGRAM=DBTCLSI
DFHPPT TYPE=ENTRY,PROGRAM=DBTSOFl,PGMLANG=PLl
DFHPPT TYPE=ENTRY,PROGRAM=DBTCLNl,PGMLANG=PLl

SIGNON
MOVE FROM BATCH
SELECT TRANSFORM
1403 --> L2DCA
SEND TO API
API RESPONSE
OPEN DBTVSQO
CLOSE DBTVSQO
SIGNOFF
CLEANUP

Below is the entry for the startup PL T. This only has to be done if a new start­
up PL T has to be created.

DFHPPT TYPE=ENTRY,PROGRAM=DFHPLTST STARTUP PLT

Below is an entry for a print/translate table

DFHPPT TYPE=ENTRY,PROGRAM=DBTTRTOl,PGMLANG=ASSEMBLER,
PGMSTAT=ENABLED,RELOAD=NO,RES=NO

48 Connecting non-DIA Systems to DISOSS

4.1.5 SYSTEM IN ITIAlISATION TABLE

Below is the DFHSIT TYPE=CSECT macro option which indicates the startup
program list table suffix.

PLTPI=ST,

If desired, reassembly of the SIT table can be avoided, by specifying the PLTPI
option within a PARM parameter in the CICS startup JCL.

4.2 VSAM DATASET DEFINITIONS

The VSAM datasets DBTVSQO and DBTVSQl were created using a job with the
following three steps:

1. Delete the datasets in case they already exist

2. Allocate the datasets.

3. Initialise the datasets using the IDCAMS REPRO utility to write a dummy
record. The first 39 bytes of the dummy records, which form the key, were
all set to X'FF'. This ensures that the dummy record is always pushed to
the end of the file when data is added.

Below is the SYSIN data for the IDCAMS allocate step.

DEFINE CLUSTER -
(NAME(DISOSS30.DBTVSQO) -
VOL(WTL372) -
CYLINDERS (2 1) -
KEYS(39 0) -
RECSl(5000 6000) -
SHAREOPTI ONS (1)
UNIQUE) -

CATALOG(VWTL372) -
DATA -

(NAME(DISOSS30.DBTVSQO.DATA)) -
INDEX -

(NAME(DISOSS30.DBTVSQO.INDEX))
DEFINE CLUSTER -

(NAME(DISOSS30.DBTVSQ1) -
VOL(WTL372) -
CYLINDERS (2 1) -
KEYS(39 0) -
RECSl(5000 6000) -
SHAREOPTIONS (1)
UNIQUE) -

CATALOG(VWTL372) -
DATA -

(NAME(DISOSS30.DBTVSQ1.DATA)) -
INDEX -

(NAME(DISOSS30.DBTVSQ1.INDEX))

System Definitions for the Sample Implementation 49

4.3 DISOSS TABLE DEFINITIONS (BOX X TO DISOSS)

4.3.1 TRANSLATE TABLES

Most devices which are to receive L2DCA documents containing the 1403 TN
character set will require a suitable translate/print fidelity table; we provided a
table called DBTTRT01, which translates from 1403 to the Multi-Lingual Code­
page. I nstalling this table in 01 SOSS involves two steps:

1. Assemble and link the translate table itself. The best way to create a new
table is to modify a copy of a previously existing job; 01 SOSS provides
samples on the installation tape. The job we used is shown in "DBTTRTOl
Translate Table" on page 99.

2. Make the new table known to DISOSS by adding an entry into the index
table DSVS5800. Again, a sample job is provided by DISOSS; our new entry
was:

DSVXIDX TYPE=ENTRY,INGPID=00264,OUTGCID=00337-00256,
TBLID=DBTTRTOI

4.3.2 HOST USER PROFILE

Below is an example of the HUP definition for the mailbox API user represented
by our programs. The ·FORUSER parameter authorises DIST01 to file documents
on behalf of DI SOSS/PS user PSUSER01.

ADD USERTYPE=API,
EXTERNAL='Mailbox API User 1 I

REQPWD='l' ,DDN='DSVHOST ' ,SA='DISTOl l
FORUSER=(DSVHOST,PSUSEROl)

4.4 DISOSS TABLE DEFINITIONS (DISOSS TO BOX X)

These HUP and PDT entries are used by the DISOSS to Box X (outbound) func­
tion. They are not used by the Box X to DISOSS (inbound) function.

4.4.1 HOST USER PROFILE

If the jobcard parameters in the JOBJCL option of the DISOSS Host Definition
job have not been set or are insufficient, then extra Host Print jobcard parame­
ters may be specified in the accounting information field of the DISOSS user
Host User Profile. Below is an example:

ACCOUNT='(P-032007),MSGCLASS=A,MSGLEVEL=(1,1),CLASS=A ' ,

50 Connecting non-DIA Systems to DISOSS

4.4.2 PRINTER DESCRIPTION TABLE

Box X destinations must be defined as printers in the PDT. The PDT specifies
the page width, page length, and a print/format procedure. Below is a sample
entry:

DBTPRT DSVPDT TYPE=ENTRY,PRTTYPE=PRINTER,
LINEWD=132,PAGEDP=66,
JOB=DBTPRT

x
X

If Box X has RJE output support for multiple destinations (as, for example the
VM support for a virtual reader for each user), then multiple PROCs will be
required: one for each Box X destination. They could all be invoked via this
single entry in the PDT, however; the DISOSS user would specify printer
DBTPRTnn (where nn is two numeric digits) and DISOSS would invoke a JCL
PROC called DBTPRTnn. Only the single entry for DBTPRT is needed in the
PDT.

4.5 PRINT/FORMAT PROCEDURE

Below is an example of a simple print/format procedure. The procedure could
be customised to produce output specific to Box X. As an example, the docu­
ment could be converted to a PROFS note, by using the IDCAMS REPRO utility
to wrap a header and footer around the formatter output.

//DBTPRT99 PROC DSVCOPY=l,
// DOCNODE=RALYDPD3,DOCUSER=HAY,
// MSGNODE=RALVSMV3,MSGUSER=RMT99
//*
//FORMAT EXEC PGM=DSVOLSOO
//STEPLIB DO DSN=OISOSS30.0SVLOAO,DISP=SHR
//*

DOCUMENT DESTINATION
JCL, MESSAGES ETC.

//DOC OUTPUT COPIES=&OSVCOPY,DEST=&OOCNODE .. &OOCUSER
//MSG OUTPUT OEFAULT=YES,OEST=&MSGNODE .. &MSGUSER
//*
//OSVPRINT DO SYSOUT=A,OCB=(RECFM=FA,LRECL=133),OUTPUT=(*.OOC)
//DSVMSG DO SYSOUT=A,DCB=(RECFM=FA,LRECL=133)
//DSVDUMP DO SYSOUT=A

This procedure makes use of the OUTPUT JCL statement available with MVS/SP
Version 1 Release 3.3. This allows NJE output routing information to be included
in a PROC, which was not possible with the earlier JES2 /*ROUTE statement.

4.6 IMPROVEMENTS AND ALTERNATIVE OPTIONS

A limit to the load on CICS can be set by specifying the maximum number of
concurrent active Mailbox tasks. This can be done by assigning a transaction
class to Mailbox transactions in the PCT, using the TCLASS parameter, for
example TCLASS=7, and by specifying a class activation ceiling in the SIT using
the CMAT option, for example CMAT=("", ,9",) .

System Definitions for the Sample Implementation 51

It was noticed during program development that when the number of DBTS tran­
sactions exceeded the available DBTVSQO/l buffer allocation, they always hung
as if in a deadlock, until enough had been force-purged to allow the others to
continue execution. This may have been the result of bad system tuning, but
since it has occurred in one system, it could occur in others. For this reason a
maximum active task limit is a worthwhile precaution against overloading the
available buffers.

52 Connecting non-DIA Systems to DISOSS

5.0 COMMUNICATING BETWEEN PROFS AND DISOSS

5.1 OVERVIEW

PROFS (Professional Office System) runs under VM, and uses CMS facilities to
create, file and retrieve notes and documents.

We have attempted to provide a "bridge" between PROFS and DISOSS that would
allow the PROFS user access to all the functions of DISOSS. The examples giv­
en here are for guidance only, an account of how the problem was tackled at the
Raleigh International Systems Centre.

The steps involved in this part of the exercise are:

1. Invoking DISOSS/PS from PROFS

Some small EXECs are given, showing the user how to log on to DISOSS/PS
from the PROFS main menu, send files from the A-disk to DISOSS and to
use RDRLlST to receive and edit documents sent from DISOSS.

2. Sending PROFS documents to DISOSS.

An explanation is given on the difference between PROFS "final" documents
and "draft" documents. A method is given explaining how to copy a draft
document to a final document before sending it to DISOSS.

3. Sending PROFS notes to DISOSS.

PROFS notes are unformatted and contain some characters not needed by
DISOSS. A sample EXEC is shown, demonstrating how to edit these files,
getting rid of the unwanted lines and hex characters, and then submitting
the edited note to the DBTSEND EXEC, which passes it on to DISOSS.

4. Loading DISOSS documents to the CMS A-disk and moving them to PROFS.

This part explains how to load a document sent to the PROFS/CMS user's
virtual reader from DISOSS.

Communicating Between PROFS and DISOSS 53

5.2 ACCESSING DISOSS/PS FROM PROFS

To access DISOSS/PS from PROFS, we made a simple change to the OFS $SYS­
PROF file on the SYSADMIN 399 disk.

For example:

SET TITLE PROFESSIONAL OFFICE SYSTEM
SET MENU 1
SET PFI 'APPOINTM ' Process schedules
SET PF2 'OPENMAIL ' Open the mail
SET PF3 'SEARCH ' Search for documents
SET PF4 'OFSNOTE ' Process notes and messages
SET PF5 'MEMO ' Prepare documents
SET PF6 'SET FILEDOCU ' Process documents from other sources
SET PF7 IMAILLOG 1 Process the mail log
SET PF8 'MAILMAN STATUS 1 Check the outgoing mail
SET PFI0 'DISOSS ' DISOSS tasks
SET PFll 'SET MENU 21 Look at main menu number 2
SET MENU 2
SET PFll 'SET MENU 31 Look at main menu number 3
SET MENU 3
SET PFll 'SET MENU 11 Look at main menu number 1
SET MENU 1

The DISOSS option accessed by PF10 in PROFS main menu 1 invokes a simple
EXEC (called DBTMENU) that presents this menu:

Send a Document to DISOSS Users 1
Logon to DISOSS/PS - . 2
Read in and send a Note to DISOSS Users 3
Receive a Document from DISOSS - 4

• Option 1, "Send a Document to DISOSS Users", builds a batch job and
sends it via RJE to MVS.

• Option 2, "Logon to DISOSS/PS", allows the user to sign on to DISOSS/PS
via the VM PASSTHRU program.

• Option 3, "Read in and send a Note to DISOSS Users", invokes RDRLlST
from where the user enters the "DBTNOTE" command, as explained in "The
DBTNOTE EXEC" on page 59.

• Option 4, "Receive a Document from DISOSS", invokes RDRLlST from where
the user enters the "DBTRECV" command to read a DISOSS document on to
his A-disk.

The DBTMENU EXEC is shown in "Sample DBTMENU EXEC" on page 155.

The DBTSEND EXEC (Option 1), after asking the user for the filename, filetype
and filemode, then takes a 1403 print file (usually a document extracted from
the PROFS library), encapsulates it in an MVS job and submits it to the MVS
system for input to DISOSS. An example of this EXEC is shown in "Sample
DBTSEND EXEC" on page 157.

54 Connecting non-DIA Systems to DISOSS

The DBTLOGON EXEC (Option 2) invokes VM PASSTHRU and gives the user
direct access to CICS so that he can log on to DISOSS/PS. An example of this
EXEC is shown in "Sample DBTLOGON EXEC" on page 161.

RDRLlST, invoked by Options 3 and 4, is a standard VM/SP2 facility which dis­
plays a list of the files in the virtual reader, and allows the user to enter com­
mands alon~side the name of a file on the list. I n this case, the user enters
"DBTNOTE' or "DBTRECV" and presses PF10.

An example of DBTRECV is shown in "Sample DBTRECV EXEC" on page 164.
An example of DBTNOTE is shown in "Sample DBTNOTE EXEC" on p,age 163,
and an explanation of its function is given in "The DBTNOTE EXEC' on page
59.

5.3 SENDING A PROFS DOCUMENT TO DISOSS

The diagram on the following page illustrates the steps involved in searching for
a PROFS document and copying the document on to your A-disk, ready to be
sent via DBTSEND to DISOSS.

Our method assumes that the document being sent to DISOSS is in 1403 final
form; that is, any SCRI PT control words and GML tags have been resolved.
Therefore, only a PROFS "final" document is sent, not a "draft" document.

If you need to send a PROFS draft document to DISOSS, follow the steps out­
lined in "Changing a DCF file to 1403 Format" on page 60; this will take a copy
of your draft document, convert it to final form, then send it to DISOSS.

Communicating Between PROFS and DISOSS 55

1 Search for documents PROFESSIONAL OFFICE SYSTEM
AOO Press PF3

I
SEARCH FOR DOCUMENTS , 2 Enter search terms needed

DOl to locate PROFS document

I
COMPLETED SEARCH FOR DOCUMENTS 3 Look at list of documents found

D03 Press PF1

I
LIST OF THE DOCUMENTS FOUND 4 Choose document from list and

D04 press corresponding PF key

I
PROCESS THE DOCUMENT FOUND 5 Press PF10 to

D08 Look at the next screen

I
PROCESS THE DOCUMENT FOUND

D02
6 Press PF2 to Copy the document

into your personal storage

I
PROFESSIONAL OFFICE SYSTEM

AOO
7 Keep pressing PF12 until back to

PROFS main menu - then press PF5

I
PREPARE DOCUMENTS 8 Enter filename that was

Faa placed on A-disk and press PF3

I
PROCESS THE DOCUMENT 9 Press PF5 to file and send the

F01 document as a Final document

I
SEND THE FINAL DOCUMENT 10 Press PF2 to erase the SELECTED

F06 parameter and press ENTER

I
PROFESSIONAL OFFICE SYSTEM

AOO
11 Keep pressing PF12 until back to

PROFS main menu

56 Connecting non-DIA Systems to DISOSS

Notes:

After step 6, assuming the document is in "final" form, you will receive a mes­
sage saying '''Dxxxxxxx MEMO' has been placed in your personal storage," whe­
re 'Dxxxxxxx' is a number such as: D2890001. If the document was in "draft"
form, the message will read: '''Dxxxxxxx SCR I PT' has been placed in you r per­
sonal storage." In this case, the document must be converted to "final' form, as
described in "Changing a DCF file to 1403 Format" on page 60, ready to be sent
to DISOSS.

5.4 SENDING A PROFS NOTE TO DISOSS

A PROFS note is an unformatted file, containing no DCF control words or tags.

A note can be transferred from the PROFS notelog, which is on your A-disk, by
sending the note to your own CMS userid. PROFS will place the note in your
virtual reader, from where it can be read in via RDRLlST and edited as neces­
sary and transferred to DISOSS by the "DBTNOTE" EXEC.

5.4.1 FORWARDING AN EXISTING NOTE

We used the following steps to send a PROFS note to DI SOSS/PS:

1. From the PROFS main menu (AOO), press PF4, Process notes and messages.

2. From the PROCESS NOTES AND MESSAGES menu (E05), press PF3, Look at
the Note Log.

3. From the LOOK AT THE NOTE LOG menu (E08), select a note to be sent to
01 SOSS, and press the corresponding PF key.

4. From the PROCESS THE NOTE LOG menu (E09), press PF5, Forward the
note.

5. From the FORWARD THE NOTE menu (Ell), enter your own CMS userid
after "Forward to:", and press PF7.

You will receive a message saying:

PUN FILE xxxx TO userid COPY 001 NOHOLD
OFSNSP002I SENT TO <userid> AT <nodeid>

6. Press PF12 until back to the PROFS main menu.

7. Press the PF key for "DISOSS Tasks" (in our case, PF10), then select
Option 3, "Read in and send a Note to DISOSS Users", and press ENTER.

Communicating Between PROFS and DISOSS 57

When the RDRLlST screen appears, enter the command DBTNOTE under "Cmd",
alongside the PUN file created by the above steps and press PF10.

WTCR16 RDRLIST AO V .106 TRUNC=106 SIZE=l LINE=l COLUMN=l

Cmd Filename Filetype Class User at Node Hold Records· Date Time
WTCR16 RALYDPD3 PUN WTCR16 RALYDPD3 NONE 6 10/14 14:27:22

l=Help 2= Refresh 3= Quit 7=Backward 8=Forward 9=Receive
4= Sort(type) 5= Sort(date) 6= Sort(user) 10=Execute 11=Peek 12=Cursor
===>

XEDIT 1 FILE

58 Connecting non-DIA Systems to DISOSS

5.4.2 THE DBTNOTE EXEC

An example of the DBTNOTE EXEC is shown in "Sample DBTNOTE EXEC" on page
163.

DBTNOTE edits the note file that may look like the following example:

--
MSG:FROM: WTCR16 --RALYDPD3 TO: WTCR16 --RALYDPD3
To: WTCR16 --RALYDPD3

Subject: Forwarding Note 08/05/83 14:57 Sending Notes
* * * FOR WAR D E D NOT E * * *

To: MILLAR --RALYDPD3 MILLAR --RALYDPD3
Subject: Sending Notes
John:

10/12/83 11:58:12

This is a test note being sent from SYSTEM3(WTCR16) to your signon.

Cheers ... Joe B10ggs
Forwarding Note 08/05/83 14:57 Sending Notes

For this example, the output from DBTNOTE would be:

Subject: Sending Notes
John:
This is a test note being sent from SYSTEM3(WTCR16) to your signon.

Cheers ... Joe B10ggs

This is then submitted within an MVS job via RJE, to become an entry in the
DISOSS/PS mail-log.

5.4.3 CREATING AND SENDING A NEW NOTE

This procedure is similar to the previous one, with the exception of the following
steps:

1. From the PROCESS NOTES AND MESSAGES menu (E05), press PF1 Send a note.

2. Enter your own CMS userid or nickname after "Send to:", fill in the note and
press PF7 (Send).

From here, the procedure is the same as before.

Communicating Between PROFS and DISOSS 59

5.5 CHANGING A DCF FILE TO 1403 FORMAT

When a "final" PROFS document is retrieved from the database and placed on the
A-disk, it will be in 1403 format. If you retrieve a "draft" document, it will be in
DCF input format, that is, the document will consist of the text, SCRI PT control
words and tags. The document must be converted to 1403 format before it can be
transferred to DISOSS/PS.

You could SCRI PT the document from CMS using the PROFS starter set Profile
OFSMPROF instead of the normal DCF Release 2 Profile - SSPROF .. This ent~ils sqme
extra work, as PROFS passes tokens to the $FORMAT EXEC on the SYSADMI N399
disk when the document is processed normally by PROFS.

We chose to use existing PROFS facilities to process a draft document by following
the steps listed below: This means there are a few extra steps involved, but if
PROFS is changed to a newer release, the method is still valid, whereas a customer
written EXEC runs the risk of needing to be re-written to work with the new
release.

1. From the PROFS main menu (AOO) press PF3 Search for documents.

2. From the SEARCH FOR DOCUMENTS menu (001), enter the search terms needed
to retrieve the draft document.

3. From the COMPLETED SEARCH FOR DOCUMENTS menu (003), press PF1 Look
at list of documents found with the mail log comments.

4. From the LIST OF DOCUMENTS FOUND menu (004), press the corresponding PF
key to select the draft document to be copied into the database as a final docu­
ment. The original draft document will remain as before.

5. From the PROCESS THE DOCUMENT FOUND menu (011), press PF10 Look at the
next screen.

S. From the next PROCESS THE DOCUMENT FOUND menu (009), press PF2 Copy
the document into your personal storage.

You will receive a message saying '''Dxxxxxxx SCRI PT' has been placed in your
personal storage," where 'Dxxxxxxx ' is a number such as: 02890001. Note
this filename for use in next steps.

7. Press PF12 until you get back to the main menu. From the main menu, press
PF5 Prepare Documents.

8. From the Prepare Documents menu (FOO), enter the filename (noted in step 6),
after PF3 Change a Draft Document. Then press PF3.

9. From the Process the document menu (F01), press PF5 File and send the docu­
ment as a Final document.

10. From the Send the Final document menu (FOS), press PF2 to erase the
SELECTED parameter, and press ENTER.

You will receive a message saying "DOCUMENT ASSIGNED 83xxxxxxxxx".
Press CLEAR. You are now back at the PROFS main menu (003), and a copy of
the draft document is now stored in the data base in final form. This final form
document can now be retrieved and transferred to DISOSS/PS as described in
"Sending a PROFS document to DISOSS" on page 55.

SO Connecting non-DIA Systems to DISOSS

5.6 LOADING A DISOSS/PS DOCUMENT TO THE A-DISK AND THEN TO PROFS

The DISOSS/PS document is transferred to CMS as a print file in the virtual reader.
From here it can be processed in two ways:

• Via Option 4 of the DBTMENU menu, which invokes RDRLlST and allows the
DBTRECV command to be issued.

• Via the PROFS 'Open the Mail' function.

Then you can browse or edit the document, and note any information you may need
when describing the document to PROFS later.

From the PROFS main menu, press the PF key to Process documents from other
sources (usually PF6).

From the PROCESS DOCUMENTS FROM OTHER SOURCES menu, press PF2 Add and
cha'1ge a document file and its mail log information.

I
I PROFESSIONAL OFFICE SYSTEM I

PROCESS DOCUMENTS FROM OTHER SOURCES I
ADD AND CHANGE A DOCUMENT FILE AND ITS MAIL LOG INFORMATION F13

Type the file name here: (filename, filetype, filemode)
-------------------- (the default filemode is A1)

Type the mail log information below, if you want it included.

From:

To:

Subject:

Comments:

Action: Due date:

Identifier: Type:

Now, press ENTER

PF9 Help PF12 Return

Figure 13. PROFS menu to Add/Change a Document File

The cursor is positioned for you to enter file identifier information (file name, file
type, and file mode).

Communicating Between PROFS and DISOSS 61

When you press ENTER, you will see a second ADD AND CHANGE A DOCUMENT
FILE AND ITS MAIL LOG INFORMATION menu.

I PROFESSIONAL OFFICE SYSTEM I
I PROCESS DOCUMENTS FROM OTHER SOURCES J

ADD AND CHANGE A DOCUMENT FILE AND ITS MAIL LOG INFORMATION F14

Press one of the following PF keys.

PFl

PF2
PF3

Add a new document file to which you will be making changes.
Type the number of draft copies of the document that you want to
save here 1 (4 is the maximum number)
Add a document file to which no changes will be made
Change a document file you previously added

Press the PF keyes) for additional document file information.

PF4 Restrict those who can see the document to you and
the people on the document distribution list

PF5 Assign the document distribution information

Press ENTER to add or change the document file and its mail log information

PF9 Help PFl2 Return

This menu requests information about how you want the document file stored.

1. If you are filing a document for the first time and plan to change it later, use
PFl Add a new document file to which you will be making changes. With this
choice, you can also specify the n umber of versions of this file that you want
stored as it is revised. The system wi II save one version if you do not change
the number on this menu. The maximum number of versions you can save is
four.

2. Use PF2 Add a document file to which no changes will be made if you are stor­
ing it as a final document.

3. Use PF3 Change a document file you previously stored if you are storing a
changed copy of a document that is already in the central file.

4. Use PF4 to restrict access to the document.

5. Use PF5 Assign the document distribution information to forward the document
to other people.

Press ENTER when you finish making selections.

After you have finished, you will see the assigned document number and the mes­
sage:

DELETE FROM PRIVATE WORKSPACE?

62 Connecting non-DIA Systems to DISOSS

1. If you type "y" or "yes" and press the ENTER key, the original document file
will be erased. Access to the document will only be possible thr:-ough PROFS.

2. If you type "n" or "no" and press ENTER, the original copy will remain on your
personal storage.

Communicating Between PROFS and DISOSS 63

64 Connecting non-DJA Systems to DISOSS

APPENDICES

APPENDICES 65

66 Connecting non-DIA Systems to DISOSS

A.O SAMPLE SYSTEM COMPONENTS

A.l GENERAL REMARKS

This section contains the code used in the course of the project to verify the
design. These examples could form a basis for implementation at another
location, but it should be clearly recognised that they were never intended to
be anything other than demonstration code. They lack detailed documentation,
adequate error notification and recovery, and professional programmers will find
them inefficiently and unimaginatively coded.

During the early stages of the development of these programs, an error in our
PL/I compiler involving concatenation to varying strings required fixed strings
to be used in places where varying strings may seem more appropriate. The
error was later corrected, but it influenced the coding of PL/I programs
DBTBATl and DBTTRN1.

The following were set up for the CICS PL/I programs:

• A partitioned dataset containing the control blocks DBTVSQ, and DBTOC,
and the six DIU build subroutine control blocks listed in Appendix A, is
included in the SYSLIB DD statement of the compile step of the CICS proce­
dure CICEITPL. The INCLUDE option must be among the compile step PARM
options in order for these blocks to be included.

• The library containing the load modules of the DIU routines is included in
the linkedit step of the CICEITPL procedure, in order for these routines to
be linked into the CICS PL/I programs.

A.2 SOFTWARE USED TO TEST THE DESIGN

The systems used to test the design were:

• MVS/SP-JES2 Version 1 Release 3.3

• C I CS/OS/VS Release 1.6. 1

• DISOSS/370 Version 3 Release 1

• DISOSS/Professional Support Release 1

Sample System Components 67

A.3 SOURCE LISTINGS

Below is a summary of the common blocks, programs and JCL used by the Box X
to DI SOSS (I nbound) function.

DBTVSQ
DBTOC
DBTDOCIN
DBTBATl
DBTMOVl
DBTOPNl
DBTCLSl
DBTMSTl
DBTTRNl
DBTSNDl
DBTRSPl
DBTSONl
DBTCLNl
DBTSOFl
DBTTRTOl

Common block for VSAM record input/output overlays.
Subroutine communication field for open and close macro.
Catalogued procedure invoked by batch job.
PL/I program to place document on DBTVSQO.
PL/I program to move request from DBTVSQO to DBTVSQ1.
Assembler program to invoke DFHOC open for DBTMOV1.
Assembler program to invoke DFHOC close for DBTMOV1.
PL/I program to select appropriate transform program.
PL/I program to transform request text.
PL/I program to send request to API.
PL/I program to process responses received from DISOSS.
PL/I program to signon to DISOSS.
PL/I program to reset VSAM datasets.
PL/I program to signoff from DISOSS.
Job to assemble and link-edit a DISOSS translate table.

68 Connecting non-DIA Systems to DISOSS

A.3.1 DBTVSQ COMMON BLOCK

DBTVSQ is a common block which defines the input and output record struc­
tures for files DBTVSQO and DBTVSQ1.

The 3rd level fields are intended for reference to specific parameters. The 2nd
level fields are intended for larger scale manipulation of sets of parameters.

/**/
1* */
/* DBTVSQ: VSQO/VSQl I/O RECORD OVERLAYS */
/* THE INPUT & OUTPUT AREA POINTERS, VIPTR & VOPTR ARE DEFINED */
/* IN EACH APPLICATION PROGRAMS CONTROL BLOCK, TO FACILITATE */
/* DEBUGGING */
/**/

DCL 1 VI CHAR(6002) BASED(VIPTR), /* INPUT MAP
1 VIG BASED(VIPTR), /* 2ND LEVEL FIELDS

2 VIKEY CHAR(39),
2 VIDATA CHAR(5961) VARYING,

1 VID BASED(VIPTR), /* 3RD LEVEL FIELDS
2 VI3KEY,

3 DATE CHAR(5), /* DATE
3 TIME CHAR(9), /* TIME
3 INTTYPE CHAR(I), /* INTERFACE TYPE
3 OSN CHAR(8), /* OSN NAME
3 USER CHAR(8), /* USER NAME FOR DISTRIBUTION
3 INTYPE BIT~16), /* INPUT DOCTYPE DIA-CODED
3 OUTYPE BITtI6), /* OUPUT DOCTYPE OIA-COOED
3 SEQNO FIXED BIN(15), /* SEQUENCE NO X10000 I TO X'FFFF '
3 CHFLAGF CHAR(I), /* CHAINING FLAG 1
3 CHFLAGL CHAR(I), /* CHAINING FLAG 2

2 VI3DATA, /* PROFILE FIELDS FOR FIC/LIC/OIC
3 DUM LEN BIN(15 FIXED, /* DUMMY LENGTH FIELD */
3 RECTYP CHAR 1, /* RECORD TYPE A ->
3 PROFLAG CHAR 1, /* RECORD SIZE IN CARD IMAGE UNITS
3 PAGEL CHAR 3, /* PAGE LENGTH IN LINES/PAGE
3 PAGEW CHAR 3, /* PAGEWIDTH IN CHAR/LINE
3 DISNAM CHAR 8, /* DISTRIBUTION 10
3 EYECAT CHAR 6, /* 'HEADER' CONSTANT
3 DOCNAM CHAR 15), /* DOCUMENT NAME
3 DISFIL CHAR 1), /* DISTRIBUTE OR FILE
3 RESER CHAR 42), /* RESERVED

1 VIC BASED(VIPTR), /*GENERIC KEY
2 VICKEY CHAR(35), /*GENERIC KEY
2 VICKEY2 CHAR(4), /*KEY LAST PART
2 VICOUM CHAR(2), /*OUMMY LENGTH FIELD
2 VICHEAD CHAR(80), /* HEADER

1 VIDKEY BIT(312) BASED(VIPTR); /*KEY IN BIT
DCL 1 VO CHAR(6002) BASED(VOPTR), /* OUTPUT MAP

1 VOG BASED(VOPTR), /* 2ND LEVEL FIELDS
2 VOKEY CHAR(39),
2 VODATA CHAR(5961) VARYING,

1 VOD BASED(VOPTR), /* 3RD LEVEL FIELDS
2 V03KEY,

3 DATE CHAR(5L
3 TIME CHAR(9),
3 INTTYPE CHAR(I),
3 OSN CHAR(B),

1* DATE
/* TIME
/* INTERFACE TYPE
/* OSN NAME

*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/

Sample System Components 69

3 USER CHAR(B), /* USER NAME FOR DISTRIBUTION
3 INTYPE BIT(16), /* INPUT DOCTYPE DIA-CODED
3 OUTYPE BIT(16), /* OUPUT DOCTYPEDIA-CODED
3 SEQNO FIXED BIN(15), /* SEQUENCE NO X1 0000 I TO X'FFFF '
3 CHFLAGF CHAR(l), /* CHAINING FLAG 1
3 CHFLAGL CHAR(l), /* CHAINING FLAG 2

2 VO 3 DATA , /* PROFILE FIELDS FOR FIC/LIC/OIC
3 DUM LEN BIN(15 FIXED, /* DUMMY LENGTH FIELD */
3 RECTYP CHAR 1, /* RECORD TYPE A ->
3 PROFLAG CHAR 1, /* RECORD SIZE IN CARD IMAGE UNITS
3 PAGEL CHAR 3, /* PAGE LENGTH IN LINES/PAGE
3 PAGEW CHAR 3, /* PAGEWIDTH IN CHAR/LINE
3 DISNAM CHAR 8, /* DISTRIBUTION ID
3 EYECAT CHAR 6, /* 'HEADER' CONSTANT
3 DOCNAM CHAR 15), /* DOCUMENT NAME
3 DISFIL CHAR 1), /* DISTRIBUTE OR FILE
3 RESER CHAR 42); /* RESERVED

70 Connecting non-DIA Systems to DISOSS

*/
*/
*/
~/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

A.3.2 DBTOC COMMON BLOCK

/**/
/* */
/* DBTOC: */
/* SUBROUTINE COMMUNICATION FIELD */
/* FOR OPEN AND CLOSE MACRO. */
/**/

DCl OPENPTR POINTER;
DCl

1 OPENBLK BASED(OPENPTR),
2 DBNAME CHAR(8),
2 RC BITl8L 2 FCT BIT 24),
2 FFF BIT 24);

/**/
/* */
/* DBTMOV1 CONTROL BLOCK */
/* USED FOR REMEMBERING FIELDS ETC */
/**/

DCl QOQ1PTR POINTER;
DCl

1 QOQ1 BASED(QOQ1PTR),
2 KEY, /* KEY 39 CHARACTERS

3 DATE CHAR(5), /* DATE
3 TIME CHAR(9), /* TIME
3 INTTYPE CHAR(l), /* INTERFACE TYPE
3 OSN CHAR(8), /* OSN NAME
3 USER CHAR(8), /* USER NAME FOR DISTRIBUTION
3 INTYPE BIT(16), /* INPUT DOCTYPE DIA-CODED
3 OUTYPE BIT(16), /* OUPUT DOCTYPE DIA-CODED
3 SEQNO FIXED BIN(15), /* SEQUENCE NUMBER X10000 I TO X'FFFF '
3 CHFlAGF CHAR(l), /* CHAINING FLAG 1
3 CHFLAGL CHAR(l), /* CHAINING FLAG 2

2 HEAD, /* ONLY FOR FIC OR LIC
3 RECTYP CHAR(l), /* RECORD TYPE A ->
3 PROFLAG CHAR(l), /* RECORD SIZE IN CARD IMAGE UNITS
3 PAGEL FIXED DEC(3,O), /* DECIMAL PAGELENGTH IN LINES/PAGE
3 PAGEW FIXED DEC(3,O), /* DECIMAL PAGEWIDTH IN CHAR/lINE
3 DISNAM CHAReB), /* UNUSED
3 EYECAT CHAR(6), /* 'HEADER' CONSTANT
3 DOCNAM CHAR(15), /* DOCUMENT NAME
3 RESER CHAR(43), /* RESERVED FILED LENGHT

2 COUNTERI FIXED BIN(15,O),
2 COUNTER2 FIXED BIN(15,O),
2 VIPTR POINTER,

1 QOQ1B BASED(QOQIPTR), /*FIC OR Ole OR lIC

2 KEY,
3 KEYl CHAR(35),
3 KEY2 CHAR(4),

2 HEAD CHAR(80),

1 QOQIC BASED(QOQIPTR),

2 KEY CHAR(39);

/* KEY 39 CHARACTERS
/* FIXED PART FOR ONE DOC
/* USER NAME FOR DISTRIBUTION

/* ONLY FOR FIC OR lIC

/*FIC OR OIC OR lIC

/* KEY 39 CHARACTERS

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/

*/

*/

*/

Sample System Components 71

A.3.3 DBTDOCIN CATALOGUED PROCEDURE

DBTDOCIN is a sample catalogued procedure invoked by the batch job submitted
from Box X.

IIDBTOOCIN PROC
11*
11***
11* *
11* DISOSS - BATCH INTERFACE. *
11* *
11* THIS PROCEDURE IS INVOKED BY A BATCH JOB SUBMITTED BY *
11* IBOX XI. FUNCTION IS TO REBUILD 1403 PRINTLINES FROM *
11* INPUT CARD IMAGES, CONCATENATE THEM IN LARGE PHYSICAL *
11* RECORDS, AND INSERT THEM IN THE BATCH-->CICS INTERFACE *
11* DATASET DBTVSQO. *
11* *
11***
11*
IIINSERT EXEC PGM=DBTBAT1
IISTEPLIB DO DSN=DISOSS30.DBT.LOADLIB,DISP=SHR
II DO DSN=F5.PLIBASE,DISP=SHR
IISYSPRINT DO SYSOUT=A
IILOGFILE DO SYSOUT=A
IIBUFFER DO DCB=(RECFM=V,LRECL=6006),SPACE=(CYL,(1,1»,UNIT=SYSDA
IIVSQO DO DSN=OISOSS30.DBTVSQO,DISP=SHR
11*
11* INPUT DDNAME IS DOCIN
11*

72 Connecting non-DIA Systems to DISOSS

A.3.4 DBTBATl PROGRAM SOURCE

This program uses its own DBTVSQl output record definitions. The reasons for
this are historical. There is no reason why they should not now be changed to
conform with DBTVSQ.

If the dataset DBTVSQO is open to the CICS transaction DBTM, the program will
repeatedly branch to the label OPEN FILE to repeat its open attempts until suc­
cessful. The use of a loop to enforce a delay period between open attempts is
unsatisfactory because it consumes considerable processing resource. It could
be replaced with an assembler subroutine to issue a WAIT macro.

The sample program does nothing to avoid two batch jobs using the PL/I TIME
pseudovariable during the same millisecond, which could cause duplicate keys on
the VSAM datasets. This problem can be solved in the following way. A recur­
sive on-ILLOGIC branch to a routine could be set up before the FIC write. The
routine could either add one to VSQD. KEY. TIME, or could reassign the TIME
psudovariable. Continued attempts would then be made until a unique key was
found. Alternatively, an assembler subroutine could issue an ENQUEUE before
getting the date and time.

The record of error codes in the file LOGFILE was found genuinely useful dur­
ing debugging, although it was intended merely as an example of a way to begin
error detection.

DBTBAT1: PROC OPTIONS(MAIN);
/***/
/* */
/* DBTBAT1 15/09/1983 */
/* Pl1 PROGRAM SOURCE DBTBAT1 FOR PROCEDURE DBTDOCIN */
/* CAllED BY BATCH JOB SUBMITTED FROM BOX X */
/* */
/* INPUT: JCl INSTREAM DATA */
/* 1) HEADER WITH USER, PROFILE, AND PROCESSING DATA */
/* 2) CHOPPED UP PRINT lINES */
/* */
/* OUTPUT: KEY SEQUENCED 6K VSAM RECORDS TO DBTVSQO */
/* 1j KEYS WITH USER AND PROCESSING DATA */
/* 2 PROFILE DATA ON FIRST AND LAST RECORD */
/* 3 IRS SEPARATED PRINTlINES */
/* */
/* OUTBOUND RECORDS ARE FIRST WRITTEN TO A BUFFER, AND */
/* THEN COPIED TO DBTVSQO, TO MINIMISE THE PERIOD OF */
/* TIME DURING WHICH DBTVSQO IS HELD OPEN */
/* */
/***/

DCl (DATE,TIME,MIN,SUBSTR,UNSPEC,lENGTH,MAX,ADDR) BUILTIN;
/*------------------- DATASET DEFINITIONS -----------------*/

DCl DOCIN FILE RECORD, /* INPUT FILE */
BUFFER FILE RECORD, /* TEMPORY BUFFER FILE */
lOGFIlE FILE RECORD, /* ERROR lOGGING FILE */
VSQO FILE RECORD OUTPUT DIRECT BUFFERED KEYED

ENV(VSAM); /* OUTPUT FILE */
/* THE DCB FOR BUFFER IS DCB=(RECFM=V,LRECl=6006) */
/* THE DCB FOR LOGFIlE IS DCB=RECFM=F,lRECL=80,BlKSIZE=80) */
/*------------- DOCIN HEADER RECORD LAYOUT ---------------*/

DCl 1 HEADER,
3 HOSN CHAR(8), /* OSN NAME */

Sample System Components 73

3 HUSER
3 HINTYPE
3 HOUTYPE
3 HRECSIZE

CHAR!8j' /* USER NAME FOR DISTRIBUTION */
CHAR 2 • /* INPUT DOCUMENT TYPE */
CHAR 2 , /* OUTPUT DOCUMENT TYPE */
CHAR 1 , /* NUMBER OF 80-BYTE CARD */

/* IMAGES PER PRINT LINE */
3 HRECTYPE CHAR 1 , /* RECORD TYPE */
3 HPROFLAG CHAR 1 • /* PROFILE FLAG */
3 HPAGEl CHAR 3 , /* PAGE lENGTH IN lINES/PAGE */
3 HPAGEW CHAR 3 , /* PAGEWIDTH IN CHARS/lINE */
3 HDISNAM CHAR 8 , /* RESERVED */
3 HEYECAT CHAR 6 , /* 'HEADER' CONSTANT */
3 HDOCNAM CHAR(15 , /* DOCUMENT NAME */
3 HDISFIl CHAR(I), /* FILE OR DISTRIBUTE */
3 HRESERCHAR(21); /* RESERVED */

/*----------VSQO RECORD OVERLAYS ---------------------*/
DCl VSQPTR POINTER;
DCl VSQBASE BASED(VSQPTR) CHAR(6000), /* BASIC OVERLAY AREA
1 VSQD BASED(VSQPTR), /* lEVEL 3 FIELDS
2 KEY, /* KEY
3 DATE CHAR!5, /* DATE
3 TIME CHAR 9 , /* TIME
3 INTTYPE CHAR 1 , /* INTERFACE TYPE
3 OSN CHAR 8 , /* OSN NAME
3 USER CHAR 8 • /* USER NAME FOR DISTRIBUTION
3 INTYPE BIT(16 , /* INPUT DOCTYPE DIA-CODED
3 OUTYPE BIT(16 , /* OUPUT DOCTYPE DIA-CODED
3 SEQNO FIXED BIN(15), /* SEQUENCE NUMBER X10000' TO X'FFFF'
3 CHFlAGF CHAR11) INIT('I'), /* CHAINING FLAG 1
3 CHFLAGl CHAR 1) INIT('O'), /* CHAINING FLAG 2

2 DUMDATA CHAR 5961), /* DUMMY DATA FIELD
1 VSQA BASED(VSQPTR), /* LEVEL 2 FIELDS
2 KEY CHAR(39), /* KEY
2 DATA CHAR(5959) VARYING; /* RECORD DATA
DCl lENPOINT POINTER,

lENBIN FIXED BIN(15,0) INIT(l) BASED(LENPOINT),
lENCHAR CHAR(2) BASED(LENPOINT);

/*------------------- PROFILE OVERLAYS ---------------*/
DCl PRPTR POINTER; /* PROFILE OVERLAY POINTER */
DCL 1 PROFILED BASED(PRPTR), /* PROFILE DETAIL

3 RECTYP CHARllj' /* RECORD TYPE
3 PROFLAG CHAR 1, /* RECORD SIZE IN CARD IMAGE UNITS
3 PAGEL CHAR 3, /*NOT DECIMAL PAGE LENGTH IN LINES/PAGE
3 PAGEW CHAR 3, /*NOT DECIMAL PAGEWIDTH IN CHAR/LINE
3 DISNAM CHAR(8), /* UNUSED
3 EYECAT CHAR(6), /* 'HEADER' CONSTANT
3 DOCNAM CHAR(15), /* DOCUMENT NAME
3 DISFIL CHAR(lj' /* DISTRIBUTE OR FILE
3 RESER CHAR(42 , /* RESERVED FILED LENGHT

PROFILEA CHAR(80 BASED(PRPTR); /* PROFILE GENERAL AREA
/*------------------- VARIABLES ----------------------*/

DCL CARD CHAR180), /* 80-BYTE I/O CARD IMAGE */
VSR CHAR 6002) VARYING, /* VARYING OUTPUT STRING */
Pl CHAR 500) VARYING, /* PRINT LINE */
PlPTR BIN(15,0) FIXED, /* PRINT lINE POINTER */
ERROR DEC(4) FIXED INIT(O), /* ERROR CODE */
NL CHAR(I), /* NEWLINE CHARACTER */
NLBP POINTER,/* NEWLINE BIT OVERLAY POINTER */
NLB BIT(8) BASED(NLBP) INIT('OOOIIII0'B),

/* NEWLINE BIT OVERLAY */
N DEC(7) FIXED INIT(O), /* SCRATCH VARIABLE */

74 Connecting non-DIA Systems to DISOSS

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*1
*/

Nl DEC(7) FIXED INIT(O); /* SCRATCH VARIABLE */
/*------------- SET UP -------------------------------*/

ON ENDFILE !DOCIN) GOTO FINAL;
ON ENDFILE BUFFER) GOTO STOP;
ON RECORD BUFFER) GOTO CONTI;
ON UNDEFINEDFILE(VSQO) GOTO OPENFILE;
ALLOCATE NLB;
ALLOCATE VSQBASE;
ALLOCATE PROFILED;
ALLOCATE LENBIN;
NLBP = ADDR(NL)'
NLB = 100011110 ' B;

/*------------- CONSTRUCT VSAM HEADER ----------------*/
/***/
/* THE MINIMUM OF PROCESSING IS PERFORMED HERE. */
/* INPUT PARAMETERS WHICH CAN HAVE ONLY ONE */
/* MEANINGFUL VALUE ARE IGNORED */
/***/

KEY.DATE=SUBSTR(DATE t2);
KEY. TIME=TIME;
KEY.INTTYPE=IA I;
READ FILE (DOCIN) INTO (HEADER);
OSN = HOSN;
IF OSN = I I THEN OSN = IDSVHOST I;
USER = HUSER'
IF USER = I 1 THEN USER = IHDVF02 I;
INTYPE = 10000000000001100 1B; /* TO BE DEP ON INTYPES */
OUTYPE = 10000000000000010 1B; /* TO BE DEP ON OUTYPES */
RECTYP = IAI r /* TO BE DEPENDENT ON RECTYPES */
PROFLAG = 'A ; /* TO BE DEPENDENT ON PROFLAGS */
PAGEL = HPAGEL;
PAGEW = HPAGEW;
DISNAM = HDISNAM;
IF DISNAM = I I THEN DISNAM = USER;
EYECAT = HEYECAT;
IF EYECAT ~= IHEADERI THEN GOTO ERRORl;
DOCNAM = HDOCNAM;
DISFIL = HDISFIL;
CHFLAGF= 111;
CHFLAGL = 10 1;
IF HPROFLAG = IAI THEN GOTO TEXT;

/*-----------PROCESS PROFILE TYPE IBI DATA -----------*/
/* */
/* */
/* (TO BE CONTINUED) */
/* */
/* */
/*---------------- EXTRACT NEXT LINE -----------------*/

TEXT: P L = I I ; .
N = UNSPEC(HRECSIZE) - 15*16;
DO Nl = 1 TO N;
READ FILE (DOCIN) INTO (CARD);
PL = PL I I CARD;
END; /* Nl */
PLPTR = LENGTH(PL);

/*---------------- REMOVE TRAILING BLANKS ------------*/
NEXTCHAR: IF SUBSTR(PLtPLPTRtl)~=1 I I PLPTR=l THEN GOTO REMOVE;

PLPTR = PLPTR - 1;
GOTO NEXTCHAR;

/*---------------- REMOVE UNPRINTABLE CHARACTERS -----*/

Sample System Components 75

REMOVE: PL = SUBSTR(PL,1,PLPTR);
N1 = PLPTR + 1;

PREVCHAR: N1 = N1 - 1;
IF N1 < 2 THEN GOTO ADDLINE;
IF UNSPEC(SUBSTR(PL,N1,1» < 64 THEN

PL = SUBSTR(PL,1,N1-1) II I I II SUBSTR(PL,N1+1);
GOTO PREVCHAR;

/*---------------- TEST FOR FULL OUTPUT RECORD -------*/
ADDLINE: IF LENGTH(DATA) + LENGTH(PL)

< 6000-39-80-2+1 THEN GOTO SAMEREC;
/*----------- INCLUDE PROFILE DATA IF FIC/LIC/OIC ----*/

LASTONE: IF SEQNO=O I CHFLAGF='1 1 I CHFLAGL=11 1 THEN
DATA = PROFILEA I I DATA;

/*---------------- WRITE OUTPUT RECORD ----------------------*/
LENBIN = LENGTH(VSQA.DATA);
VSR = VSQA.KEY I I LENCHAR II VSQA.DATA;
WRITE FILE (BUFFER) FROM (VSR);

CONTI: IF CHFLAGL = 111 THEN GOTO COPY;
SEQNO = SEQNO + 1;
CHFLAGF = 10 1;
DATA = I I ;

/*---------- APPEND PRINT LINE TO RECORD UNDER CONSTRUCTION -*/
SAMEREC: DATA = DATA I I PL I I NL;

GOTO TEXT;
/*------- REPEAT ATTEMPTS TO OPEN VSQO UNTIL SUCCESSFUL ---*/

OPENFILE: DO N = 1 TO 999;
CARD = 'THIS IS AN UNSATISFACTORY WAY OF WAITING ' ;
END;
OPEN FILE(VSQO) OUTPUT;
GOTO AGAIN;

/*---SET CHAINFLAG LAST TO REMEMBER TO STOP AFTER NEXT WRITE -*/
FINAL: CHFLAGL = 111;

GOTO LASTONE;
/*------------ COPY BUFFER INTO REQUEST QUEUE --------*/

COPY: CLOSE FILE(BUFFER);
ON RECORD!BUFFER) GOTO CONT2;
OPEN FILE BUFFER) INPUT;
OPEN FILE VSQO) OUTPUT;

AGAIN: READ FILE(BUFFER) INTO (VSR);
CONT2: IF LENGTH(VSR) < 41 THEN GOTO ERROR3;

VSQA.KEY = SUBSTR(VSR,1,39);
WRITE FILE(VSQO) FROM (VSR) KEYFROM(VSQA.KEY);
GOTO AGAIN;

/*------WRITE ERROR MESSAGE TO LOGFILE ---------------*/
ERROR3: ERROR = MAX!ERROR,3j; /* BUFFER RECORD TOO SHORT */
ERROR2: ERROR = MAX ERROR,2 ; /* FEWER KEYS THAN RECORDS */
ERROR1: ERROR = MAX ERROR,l i /* EYECATCHER HAS SLIPPED !!! */

CARD = IERROR CODE:- I I ERROR;
IF ERROR> 0 THEN WRITE FILE (LOGFILE) FROM (CARD);

/*------------ FINISH --------------------------------*/
STOP: END;

76 Connecting non-DIA Systems to DISOSS

A.3.5 DBTMOVl PROGRAM SOURCE

DBTMOV1: PROC OPTIONS(MAIN REENTRANT);
/***/
/* */
/* DBTMOV1: 17 AUGUST 1983 */
/* - PLI CICS COMMAND LEVEL PROGRAM */
/* - GET AUTOMATICALLY INITIATED EVERY */
/* 5 MINUTES */
/* - SUBROUTINES LINKED VIA CICS: DBTOPN1 */
/* DBTCLS1 */
/* - INPUT KEY SEQUENCED 6K VSAM RECORDS OF */
/* DBTVSQO, KEY IN FIRST 39 BYTES */
/* - OUTPUT KEY SEQUENCED 6K VSAM RECORDS TO */
/* DBTVSQ1, KEY IN FIRST 39 BYTES */
/* - NO DATA TRANSFORMATIONS ARE DONE */
/* - COPIED RECORDS ARE DELETED FROM DBTVSQO */
/* - THE PROGRAM CHECKS IF DBTVSQO IS OPEN */
/* IF SO IT ASSUMES THAT DBTBAT1 IS RUNNING */
/* STOPS TO RETRY IN 5 MINUTES TIME */
/* - FOR EVERY DOCUMENT (CHANGE IN FIRST 35 BYTES */
/* OF KEY) IT INITIATES CICS TRANSACTION DBTS */
/* (PROGRAM DBTMSTl) WITH THE KEY OF THE FIRST */
/* RECORD OF THE DOCUMENT AS THE START KEY */
/* - CLOSES DBTVSQO */
/* - STARTS ITSELF IN 5 MINUTES */
/* */
/***/

DCL (LENGTH,STG,CSTG,ADDR,MAX) BUILTIN;
%INCLUDE DBTVSQ; /* DBTVSQO AND DBTVSQ1 */
/**/
/* */
/* DBTOC: CONTROL BLOCK */
/* USED FOR REMEMBERING KEY, HEADER */
/* AND POINTERS TO OTHER CONTROL BLOCKS */
/**/

DCL QOQ1PTR POINTER;
DCL

1 QOQ1 BASED(QOQ1PTR),
2 KEY, /* KEY 39 CHARACTERS

3 DATE CHAR(S), /* DATE
3 TIME CHAR(9), /* TIME
3 INTTYPE CHAR(1), /* INTERFACE TYPE
3 OSN CHAR(8), /* OSN NAME
3 USER CHAR(8), /* USER NAME FOR DISTRIBUTION
3 INTYPE BIT(16), /* INPUT DOCTYPE DIA-CODED
3 OUTYPE BIT(16), /* OUPUT DOCTYPE DIA-CODED
3 SEQNO FIXED BIN(15), /* SEQUENCE NUMBER X10000' TO X'FFFF '
3 CHFLAGF CHAR(1), /* CHAINING FLAG 1
3 CHFLAGL CHAR(1), /* CHAINING FLAG 2

2 HEAD,

3 RECTYP CHAR(1),
3 PROFLAG CHAR(1),
3 PAGEL CHAR(3) ,
3 PAGEW CHAR(3),
3 DISNAM CHAR(8),
3 EYECAT CHAR(6),

/* ONLY FOR FIC OR LIC

/* RECORD TYPE A ->
/* RECORD SIZE IN CARD IMAGE UNITS
/* DECIMAL PAGE LENGTH IN LINES/PAGE
/* DECIMAL PAGEWIDTH IN CHAR/LINE
/* UNUSED
/* 'HEADER' CONSTANT

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/

Sample System Components 77

3 DOCNAM CHAR(15), /* DOCUMENT NAME */
3 RESER CHAR(43); /* RESERVED FILED LENGHT */

DCL VIPTR .POINTER, /* POINTER TO INPUT AREA */
VOPTR POINTER, /* POINTER TO OUTPUT AREA */
OPENPTR POINTER, /* POINTER TO OPENBLK COMMAREA */

1 QOQ1B BASED(QOQ1PTR), /* OVERLAY */

2 KEY, /* KEY 39 CHARACTERS */
3 KEYl CHAR~35), /* FIXED PART FOR ONE DOC */
3 KEY2 CHAR 4), /* USER NAME FOR DISTRIBUTION */

2 HEAD CHAR(80), /* ONLY FOR FIC OR LIC */

1 QOQ1C BASED(QOQ1PTR), /*FIC OR OIC OR LIC */

2 KEY CHAR(39); /* KEY 39 CHARACTERS */

/**/
/* OPENBLK SUBROUTINE COMMUNICATION FIELD */
/* FOR OPEN AND CLOSE MACRO. */
/* LAYOUT CORRESPONDS WITH DATA */
/* DEFINITION FOR DFHOC MACRO */
/**/

DCL
1 OPENBLK BASED(OPENPTR),

2 DBNAME CHAR(8), /* DATA BASE NAME TO BE OPENED/CLOSED */
2 RC BIT!8)' 2 FCT BIT 24),
2 FFF BIT 24);

/* RETURN CODE FIELD X'OO' OKAY */
/* FCT ENTRY ON RETURN */
/* X'FFFFFF' MARKS END OF CONTROL BLK */

/**/
/* GET STORAGE AREAS */
/**/

EXEC CICS GETMAIN SET!QOQ1PTR) LENGTH(125) INITIMG('OOOOOOOO'B);
EXEC CICS GETMAIN SET OPENPTR) LENGTH(15) INITIMG('OOOOOOOO'B);
EXEC CICS GETMAIN SET VIPTR) LENGTH(6002) INITIMG('OOOOOOOO'B);

/**/
/*-------------- OPEN MACRO ATTEMPT ----------------*/
/**/

DBNAME = 'DBTVSQO ';
FFF = (3)'11111111'B;

EXEC CICS LINK PROGRAM('DBTOPN1 1) COMMAREA(OPENBLK) LENGTH(15);
IF RC ~= 'OOOOOOOO'B THEN GOTO CLOSE;

/**/
/* START READING DATASET AT BEGINNING */
/**/

EXEC CICS STARTBR DATASET('DBTVSQO') KEYLENGTH(O) RIDFLD(VIKEY)
GENERIC;

NEXTREC: EXEC CICS HANDLE CONDITION ENDFILE(STOP);
EXEC CICS READNEXT DATASET('DBTVSQO') INTO(VI)
RIDFLD(VIKEY);
IF VIDKEY = «39)'11111111'B) THEN GOTO STOP; /* DUMMY RECORD HIT*/
IF VICKEY ~= QOQ1B.KEY.KEY1 /* DOC# CHANGE */
& VI3KEY.CHFLAGF ~= 'I' /* INPUT NOT FIC */
THEN DO;

/* NO FIC ON NEW DOCUMENT ERROR CODE TO BE ADDED */

78 Connecting non.,DIA Systems to DISOSS

END;
IF VI3KEY.CHFLAGF = 111
& QOQl.CHFLAGL ,= 111
& QOQlC.KEY ,= II

/* NEW DOCUMENT WITH FIC */
/* SHOULD HAVE HAD LIC */
/* ONLY ON FIRST DOCUMENT */

THEN DO;
/* NO LIC ON LAST DOCUMENT ERROR CODE TO BE ADDED */

END;
/* SAVE KEY FOR CHECK OF FIC/LIC

QOQlC.KEY = VIKEY;
/* SAVE HEADER FOR LOST LIC RECOVERY

IF VI3KEY.CHFLAGF= 111 THEN QOQlB.HEAD = VICHEAD;
/*--------- COPY RECORDS TO DBTVSQl ----------*/

EXEC CICS WRITE DATASET(IDBTVSQll) FROM(VI)
RIDFLD(VIKEY) LENGTH(39+2+LENGTH(VIDATA»;

/**/
/* AT END OF DOCUMENT START DBTTRNI */
/* AND DELETE RECORDS ON DBTVSQO */
/**/

IF VI3KEY.CHFLAGL=lll /* LIC?
THEN DO;

*/

*/

IF VI3KEY.CHFLAGF ,= 111
THEN DO;

/* REBUILD FIRST KEY

VI3KEY.SEQNO = 0;
VI3KEY.CHFLAGF = 111;

END;
/*--------- MASS DELETE DBTVSQO DOCUMENT-------*/

EXEC CICS DELETE DATASET(IDBTVSQOI) RIDFLD(VICKEY)
KEYLENGTH(35) GENERIC;

/*--------- PASS KEY TO DBTTRNI ---------------*/

*/

*/

- EXEC CICS START TRANSID(IDBTS I) FROM(VIKEY) LENGTH(39);
/* TERMID(IL430 1) */ /* ONLY FOR TESTING */

VI3KEY.SEQNO = QOQl.KEY.SEQNO; /* TO PREVENT ILLOGIC ON READ */
VI3KEY.CHFLAGF = QOQl.KEY.CHFLAGF; /* TO PREVENT ILLOGIC ON READ */
END;
GOTO NEXTREC;

STOP:
EXEC CICS ENDBR DATASET('DBTVSQOI);

/*--------- CLOSE DATASET ---------------------*/
CLOSE:

EXEC CICS LINK PROGRAM(IDBTCLSl l) COMMAREA(OPENBLK) LENGTH(15);
IF RC ,= 100000000'B THEN GOTO ERR3;
GOTO LAST;

ERR3: GOTO LAST; /* OPEN/CLOSE ERROR */
/*----- START ITSELF IN 5 MINUTES AND STOP ----wi
LAST:

RESTART OF DBTM COMMENTED OUT FOR TESTING ... WBW
*/
*/
*/

/*
/*
/*
/*
/*
/*

EXEC CICS START TRANSID(IDBTMI) INTERVAL(000500); */

/*
END;

*/
*/
*/

Sample System Components 79

A.3.G DBTOPNl PROGRAM SOURCE

OPN TITLE I*DBTOPNl* -
PRINT NOGEN
GBLB &DFHEIMX

&DFHEIMX SETB 1
COPY DFHCSADS
COPY DFHTCADS
SPACE

DBTOPNI CSECT

PERFORM CICS OPEN FOR DATASET*I

INDICATE MIXED MODE
INDICATE MIXED MODE
COPY CSA DEFINITION
COPY TCA DEFINITION

* DBTOPNl: *
* ASSEMBLER MIXED MODE TRANSACTION *
* SUBROUTINE TO DO A CICS OPEN *
*
* INPUT PARMLIST:

*
*

*
*
*
*
*
*

-> OPENBLK CONTROL BLOK POINTER CONTAINING: *
-> DATSETNAME 18 BYTES) *
-> RC FIELD 1 BYTE) *
-> FCT FIELD 3 BYTES *
-> FFF FIELD 3 BYTES~ TO INIDCATE END OF BLOCK *

*
* OUTPUT: RC HAS RETURN CODE. *

*
*
*

* = 8
* = a

BAD RETURN FROM OPEN MACRO
OKAY

* ***
SPACE
PRINT ON
L 8,DFHEICAP
SPACE
DFHOC TYPE=OPEN,

DATASET=DATABASE,
LISTADR=8

EXEC CICS RETURN
EJECT
PRINT ON
END

OPENBLK ADDRESS

ONLY OPEN
THIS IS FOR A VSAM DATASET

POINTER TO PARM LIST

80 Connecting non-DIA Systems to DISOSS

X
X

A.3.7 DBTCLSl PROGRAM SOURCE

CLO TITLE '*DBTCLSl* - PERFORM CICS CLOSE FOR DATABASE*'
PRINT NOGEN
GBLB &DFHEIMX

&DFHEIMX SETB 1
COPY DFHCSADS
COpy DFHTCADS

DBTCLSI CSECT

INDICATE MIXED MODE
INDICATE MIXED MODE
COPY CSA DEFINITION
COPY TCA DEFINITION

* DBTCLSI
* ASSEMBLER SUBROUTINE, MIXED MODE TRANSACTION

*
*
*
*
*
*

*
* SUBROUTINE TO DO A CICS CLOSE
*
* INPUT PARMLIST:
*
*
*
*
*
*
*
*
*
*

OUTPUT: RC
= 8
= 0

-> OPENBLK CONTROL BLOK POINTER CONTAINING: *

-> RC FIELD 1 BYTE) *
-> DATSETNAME 18 BYTES) *

-> FCT FIELD 3 BYTES) *
-> FFF FIELD 3 BYTES) INDICATING END OF BLOCK ~

HAS RETURN CODE.
BAD RETURN FROM OPEN MACRO
OKAY

*
*
*
*
*

SPACE
PRINT ON
L 8,DFHEICAP
DFHOC TYPE=CLOSE,

DATASET=DATABASE,
LISTADR=8

EXEC CICS RETURN
EJECT
PRINT ON
END

OPENBLK ADDRESS
ONLY CLOSE

THIS IS FOR A VSAM DATASET
POINTER TO PARM LIST

X
X

Sample System Components 81

A.3.B DBTMST1 PROGRAM SOURCE

DBTMSTl: PROC OPTIONS(MAIN);
/***/
/* */
/* DBTMSTl: DBTMSTI PROGRAM SOURCE FOR TRANSACTION DBTS */
/* */
/* INPUT: 39-BYTE FIC KEY START DATA */
/* */
/* OUTPUT: 39-BYTE FIC KEY START DATA */
/* */
/* FUNCTION: 11· RETRIEVE VSQl REQUEST FIC KEY */
/* 2 OBTAIN FIC RECORD */
/* 3 DETERMINE CORRECT TRANSFORM PROGRAM */
/* FROM KEY AND PROFILE PARAMETERS */
/* 4) TRANSFER CONTROL TO CORRECT */
/* TRANSFORM, PASSING FIC KEY */
/* */
/***/

%INClUDE DBTVSQ; /* --- DBTVSQO/DBTVSQl I/O OVERLAYS --- */
DCl (lENGTH,STG,CSTG,ADDR) BUILTIN;
DCl KEYlEN FIXED BIN(15) INIT(39);
DCl VOPTR POINTER,

VIPTR POINTER;
/* --- AllOCATE INPUT RECORD STORAGE --- */
EXEC CICS GETMAIN SET(VIPTR) lENGTH(6002) INITIMG('OOOOOOOO'B);
/* --- RETRIEVE FIC KEY --- */
EXEC CICS RETRIEVE INTO(VIG) lENGTH(KEYlEN);
/* --- OBTAIN FIC RECORD --- */
EXEC CICS STARTBR DATASET('DBTVSQ1 1) RIDFlD(VICKEY)

KEYlENGTH(35) GENERIC EQUAL; .
EXEC CICS READNEXT DATASET('DBTVSQ1') INTO(VIG)

RIDFlD(VICKEY);
/* --- ENDBROWSE TO PERMIT VALID TRANSFORM STARTBROWSE --- */
EXEC CICS ENDBR DATASET('DBTVSQ1 1);

/* ------- PASS KEY TO TRANSFORM ------- */
/* TRANSFORM SELECTION DEPENDENT ON: */
/* VID.INTYPE */
/* VID.OUTYPE */
/* VID.RECTYP */
/* 'IF THEN GOTO I STRUCTURE INSTEAD OF */
/* 'IF THEN DO I TO AVOID COMPILER *1
/* SYNTAX ERRORS DUE TO TRANSLATOR */
/* COMMENT AND DO BLOCK */
/* ------------------------------------- */
/* --- TRANSFORM 1 : X' 02 1 , XIOC I• IAI */
/* 1403 PRINT DATA ===> 1403 DCA l2 */
IF «VID.INTYPE='000000000000I100 ' B) &

(VID.OUTYPE='000000000000001.0 I B) &
(VID.RECTYP='A ' » THEN GOTO TRNl;

/* --- DEFAULT TRANSFORM : (TRANSFORM 1) *1
EXEC CICS XCTl PROGRAM('DBTTRNl ') COMMAREA(VIKEY) lENGTH(39);

1* --- TRANSFORM TRANSFER lIST --- */
TRNl: EXEC CICS XCTl PROGRAM('DBTTRNl ') COMMAREA(VIKEY) lENGTH(39);
TRN2:
TRN3:
TRN4: /* ETC. */

END;

82 Connecting non-DIA Systems to DISOSS

A.3.9 DBTTRNl PROGRAM SOURCE

The DCA initial multibyte controls are constant, independent of the input profile
information. A subset of the 1403 and ANSI design conversions are made.

DBTTRN1: PROC(STPOINT) OPTIONS(MAIN);
1***1
r ~
1* DBTTRN1: PLl PROGRAM SOURCE DBTTRN1 FOR TRANSACTION DBTS *1
1* *1
1* INPUT: 6000 BYTE KEY SEQUENCED VSAM RECORDS FROM VSQ1 *1
1* 1j KEYS WITH USER AND PROCESSING DATA *1
1* 2 PROFILE DATA ON FIRST AND LAST RECORD *1
1* 3 IRS SEPARATED PRINTlINES *1
1* *1
1* OUTPUT: 4088 BYTE KEY SEQUENCED VSAM RECORDS TO VSQ1 *1
1* 1j KEYS WITH USER AND PROCESSING DATA *1
1* 2 PROFILE DATA ON FIRST AND LAST RECORD *1
1* 3 DCA lEVEL 2 DOCUMENT INCLUDING PRESET INITIAL DATA *1
1* *1 .
1* PROCEDURE: *1
1* 1) THE VSQ1 BLOCKED PRINT lINE MAILBOX REQUEST IS IDENTIFIED *1
1* BY THE START DATA PASSED FROM DBTMSTI *1
1* 2) THE DOCUMENT IS CONVERTED TO A DCA lEVEL 2 DATASTREAM *1
1* AND IS WRITTEN TO VSQl IN UNITS OF A CONVENIENT SIZE *1
1* 3) THE INPUT RECORDS ARE DELETED FROM VSQl *1
/* 4) PROGRAM DBTSNDI IS INITIATED WITH FIRST KEY START DATA *1
1* *1
1***1
1*-------- CONTROL BLOCK --*1
DCl XFPTR POINTER;
DCl 1 XF BASED(XFPTR)~

3 DOCCHAR CHAR(1 ,
3 CHFlAGF CHAR(1 ,
3 SEQNO FIXED BIN(15),
3 DOCIPTR POINTER,
3 DOC2PTR POINTER,
3 VIPTR POINTER,
3 VOPTR POINTER,
3 DOCPTRI FIXED BIN(31),
3 DOCPTR2 FIXED BIN(31),

1 DOCBIT BIT(8) BASED(XFPTR);
Del PROREM CHAR(80);
Del XFlEN FIXED BIN(15)'
DCl KEY lEN FIXED BIN(15) FIXED INIT(39);
Del VICREM CHAR(35);
Del TDATAREM CHAR(39);
DCl SDATAREM CHAR(35);
1*-------- WORK AREAS --- BASED FOR DEBUGGING ---------------------*1
DCl 1 DOCWORKI BASED(DOCIPTR) CHAR(6000) VARYING; I*INPUT WORK AREA*I
Dell DOCWORK2 BASED(DOC2PTR) CHAR(4090) VARYING; I*OUTPUT WORK AREA*I
1*-------- CONTROL CHARACTER OVERLAYS -----------------------------*1
DCl 1 BIT,

2 Nl BIT!8j INIT!1000I0I0I I Bj' 2 FF BIT 8 IN IT 100001100 l B ,
2 CR BIT 8 INIT 100001101 1B ,

1 CHAR BASED(ADDR(BIT»,
2 Nl CHAR(1),

Sample System Components 83

2 FF CHAR(lL
2 CR CHAR(lL

/*-------- DCA INITIAL DATA OVERLAYS ------------------------------*/
1 DCAINI,

3 SEAl BIT(48)
INIT('001010111101001000000100100001010000000000000000'B)1

3 SHM1 BIT132j INIT '00101011110100100000011000010001 B ,
3 SHM2 BIT 32 INIT '00000000000000010010111111010000'B
3 SVM1 BIT 32 INIT '00101011110100100000011001001001'B
3 SVM2 BIT 32 INIT 100000010110100000011110111100000 l B
3 SPPS1 BIT(32) INIT 100101011110100100000011001000000 l B
3 SPPS2 BIT(32) IN IT '00101111110100000011110111100000 1B
3 SCG1 BIT 32) IN IT '00101011110100010000011000000001'B
3 SCG2 BIT 32) INIT 100000000110101110000000100001000 l B

1 DCACHAR BASED ADDR(DCAINI»,
3 SEA CHAR 6j' /* X'2BD204850000' */
3 SHM CHAR 8 , /* X12BD2061100012FDO' */
3 SVM CHAR 8 , /* X'2BD2064902D03DEO' */
3 SPPS CHAR(8), /* X12BD206402FD03DEO' */
3 SCG CHAR(8); /* X'2BD1060100D70108' 1403 PRINT */

/*-------- VSQO/VSQ1 I/O RECORD OVERLAYS --------------------------*/
%INCLUDE DBTVSQ;
DCL (SUBSTR,LENGTH,ADDR,CSTG) BUILTIN;
/*-------- START KEY VARIABLE -------------------------------------*/
DCL STPOINT POINTER,

START KEY CHAR(39) BASED(STPOINT);
/*-------- ALLOCATE STORAGE AREAS ---------------------------------*/

XFLEN = CSTG(XF);
EXEC CICS GETMAIN SET!XFPTR) LENGTH(XFLENl INITIMG!'OOOOOOOO'Bl;
EXEC CICS GETMAIN SET DOC1PTR) LENGTH16002 INITIMG 'OOOOOOOO'B ;
EXEC CICS GETMAIN SET DOC2PTR) LENGTH 4090 INITIMG ·OOOOOOOO'B ;
EXEC CICS GETMAIN SET VIPTR) LENGTH 6002 INITIMG 'OOOOOOOOIB ;
EXEC CICS GETMAIN SET VOPTR) LENGTH 6002 INITIMG 'OOOOOOOOIB ;
VOD.CHFLAGF = '1';
VOD.CHFLAGL = ·0';

/* THIS IS FOR BUG IN PL1 ONLY, NO CONCATENATE TO NULL STRING */
DOCWORK2 = Il';

/*-------- RETRIEVE START DATA (IF PRIMARY TRANSFORM) -----------*/
/*XXXX CICS RETRIEVE INTO(VIG) LENGTH(KEYLEN)*/
/*-------- RETRIEVE START DATA (IF SECONDARY TRANSFORM) -----------*/

VICKEY = STARTKEY;
SDATAREM = SUBSTR(VI,1,35)·
EXEC CICS STARTBR DATASET(I DBTVSQ1') RIDFLD(VICKEY)
KEYLENGTH(35) GENERIC EQUAL;

GTDOC: /*--------- GET NEXT INPUT RECORD -------*/
/***/
/* CHAINFLAG LAST IS SET BEFORE THE READ, AND RESET AFTER THE READ,*/
/* SO THAT IF THERE IS NO MORE INPUT DATA, IT IS POSSIBLE TO */
/* BRANCH TO WRITE THE REMAINING OUTPUT DATA, WITHOUT FORGETING */
/* THAT THIS IS THE LAST OUTPUT RECORD. */
/***/

VOD.CHFLAGL = '1';
EXEC CICS HANDLE CONDITION NOTFND(PTDOC);
VICREM = VICKEY; .
EXEC CICS READNEXT DATASET('DBTVSQ1') INTO(VIG)

RIDFLD(VICKEY) ;
EXEC CICS HANDLE CONDITION NOTFND;
IF VICREM ~= VICKEY THEN GOTO PTDOC;
IF VID.CHFLAGF = 'I' THEN PROREM = SUBSTR(VIDATA,1,80);
VOD.CHFLAGL = 10 1;

84 Connecting non-DIA Systems to DISOSS

/*-------- SET INPUT WORK AREA ------------------------------------*/
DOCPTR2 = 0;
DOCWORK1 = VIDATA;
IF VID.CHFLAGF = 1 I VID.CHFLAGL = 1 THEN

DOCWORK1 = SUBSTR(VIDATA,81,LENGTH(VIDATA)-80);
IF VID.CHFLAGF = 'I' THEN
DOCWORK2 = 'I' I I SEA I I SHM I I SVM I I SPPS I I SCG;

FNDPRT: /*--------- FIND NEXT PRINT LINE ---------*/
IF DOCPTR2 >= LENGTH(DOCWORK1) THEN GOTO GTDOC;
/* DOCPTR1 GIVES PREVIOUS FOUND IRS, DOCPTR2 GIVES LAST IRS */
DOCPTR1 = DOCPTR2;
DOCPTR2 = DOCPTR2 + 1;
DO DOCPTR2 = DOCPTR2 TO LENGTH(DOCWORK1);

DOCCHAR = SUBSTR(DOCWORK1,DOCPTR2,1);
IF DOCBIT = '00011110'B THEN GOTO IRSFND; /* IRS FOUND */

END;
/*RECORD DID NOT END WITH IRS */

DOCPTR2 = DOCPTR2 + 1;
IRSFND:

IF (LENGTH(DOCWORK2) + DOCPTR2 - DOCPTR1 + 1) > 4008 THEN DO;
PTDOC: /*------ WRITE RECORD IF IT IS FULL ------------*/

VOKEY = VICREM I I SUBSTR(VOKEY,36,4); /* SET APPROXIMATE KEY */
VODATA = SUBSTR(DOCWORK2,2,LENGTH(DOCWORK2)-1);
VOD.INTYPE = '0000000000000010'; /* FF TEXT */

/*-------- ADD PROFILE DATA IF FIC/LIC/OIC ------------------------*/
IF VOD.CHFLAGF = 'I' I VOD.CHFLAGL = II' THEN

VODATA = PROREM I I VODATA;
SKIPADD: EXEC crcs WRITE DATASET('DBTVSQ1') FROM(VOG) RIDFLD(VOKEY)

LENGTH(39 + 2 + LENGTH(VODATA));
/*-------- REMEMBER TDQ2 DATA -------------------------------------*/

IF VOD.CHFLAGF = 'I' THEN TDATAREM = SUBSTR(VO,1,35);
IF VOD.CHFLAGL = 'I' THEN GOTO ENDAT;
VOD.SEQNO = VOD.SEQNO + 1;
VOD.CHFLAGF = '0';
/* THIS IS FOR BUG IN PL1 ONLY, NO CONCATENATE TO NULL STRING */
DOCWORK2 = '1':

END; /*------- MODIFY PRINTLINE ACCORDING TO CARRIAGE CONTROL ---*/
/***/
/* DOCPTR1 POINTS TO PREVIOUS IRS */
/* DOCPTR2 POINTS TO NEXT IRS */
/***/

DOCCHAR = SUBSTR(DOCWORK1,DOCPTR1 + 1,1);
IF DOCPTR2 >= LENGTH(DOCWORK1)
& VID.CHFLAGL = 1 THEN DO;
/* DO NOT INSERT DCA CONTROLS AT END OF DOCUMENT */

SELECT(DOCBIT); /* SPI -> NL */
WHEN ('00001011'B)
DOCWORK2 = DOCWORK2 I I CHAR.NL I I

SUBSTR~DOCWORKl,DOCPTR1 + 2,DOCPTR2 - DOCPTR1 - 2);
WHEN (00010011 1 B) DO;

DOCWORK2 = DOCWORK2 I I CHAR.NL I I CHAR.NL I I

SUBSTR(DOCWORKl,DOCPTR1 + 2,DOCPTR2 - DOCPTR1 - 2);
END;
WHEN ('00011011'B) DO;

DOCWORK2 = DOCWORK2 I I CHAR.NL I I CHAR.NL I I CHAR.NL I I

SUBSTR(DOCWORK1,DOCPTR1 + 2,DOCPTR2 - DOCPTR1 - 2);
END;
WHEN ('10001011'B)
DOCWORK2 = DOCWORK2 I I CHAR.FF I I
SUBSTR(DOCWORKl,DOCPTRl + 2,DOCPTR2 - DOCPTR1 - 2);

Sample System Components 85

WHEN (I00000001'B) DO;
EXEC CICS ENTER TRACEID(2);
DOCWORK2 == DOCWORK2 II CHAR. CR II
SUBSTR(DOCWORKl,DOCPTRI + 2,DOCPTR2 - DOCPTRI - 2);

END;
WHEN ('00001001 1 8) DO;

DOCWORK2 == DOCWORK2 I I CHAR.CR I I
SUBSTR(DOCWORK1,DOCPTR1 + 2,DOCPTR2 - DOCPTR1 - 2);

END;
WHEN ('00010001'8) DO;

DOCWORK2 == DOCWORK2 I I CHAR.CR I I
SUBSTR(DOCWORK1,DOCPTRl + 2,DOCPTR2 - DOCPTR1 - 2);

END;
WHEN ('00000011'8) GOTO FNDPRT; /* -> DELETE */
OTHERWISE DOCWORK2 == DOCWORK2 I I CHAR.NL I I
SU8STR(DOCWORK1,DOCPTRl+2,DOCPTR2-DOCPTRl-2);

END;
DOCWORK2 == DOCWORK2 I I CHAR.eR I I CHAR.FF;
/* AT END OF DOCUMENT ADD CR AND FF */
GOTO FNDPRT;
END;

SELECT(DOCBIT); /* SP1 -> NL * /
WHEN ('00001011 I B)
DOCWORK2 == DOCWORK2 I I CHAR.NL I I
SUBSTR(DOCWORK1 I DOCPTRl + 2,DOCPTR2 - DOCPTR1 - 2);
WHEN ('00010011 B) DO;

DOCWORK2 == DOCWORK2 I I CHAR.NL I I CHAR.NL I I
SUBSTR(DOCWORK1,DOCPTR1 + 2,DOCPTR2 - DOCPTR1 - 2);

END;
WHEN (100011011 I B) DO;

DOCWORK2 == DOCWORK2 I I CHAR.NL I I CHAR.NL
I I CHAR.NL I I SUBSTR(DOCWORKl,DOCPTRl + 2,DOCPTR2 - DOCPTR1 - 2);

END;
WHEN ('10001011 I B)
DOCWORK2 == DOCWORK2 I I CHAR.FF I I
SU8STR(DOCWORK1,DOCPTRl + 2,DOCPTR2 - DOCPTR1 - 2);
WHEN (100000001 1 8) DO;

DOCWORK2 == DOCWORK2 I I CHAR.CR I I
SUBSTR(DOCWORKl,DOCPTRl + 2,DOCPTR2 - DOCPTR1 - 2);

END;
WHEN (100001001 1 8) DO;

DOCWORK2 == DOCWORK2 I I CHAR.CR I I
SUBSTR(DOCWORKl,DOCPTRl + 2,DOCPTR2 - DOCPTR1 - 2) I I CHAR.NL;

END;
WHEN (100010001 18) DO;

DOCWORK2 == DOCWORK2 I I CHAR.CR I I
SUBSTR(DOCWORK1,DOCPTRl + 2,DOCPTR2 - DOCPTRI - 2) I I
CHAR.NLIICHAR.NL;

END;
WHEN ('OOOOOOll I B) GOTO FNDPRT; /* -> DELETE */
OTHERWISE DOCWORK2 == DOCWORK2 I I CHAR.NL I I
SUBSTR(DOCWORK1,DOCPTR1+2,DOCPTR2-DOCPTRl-2);

END;
GOTO FNDPRT;

ENDAT: /* ------- DELETE INPUT RECORDS ----------------*/
EXEC CICS ENDBR DATASET('DBTVSQ1 ');
/* ADD CODING FOR INCOMPLETE DOCUMENTS, NO FIC, NO LIe */
EXEC CICS DELETE DATASET('DBTVSQ1 1)

RIDFLD(SOATAREM)
KEYLENGTH(35) GENERIC;

86 Connecting non-DIA Systems to DISOSS

/*-------- T~ANSFER CONTROL TO DBTSNDI ----------------------------*/
EXEC CICS XCTL PROGRAM('DBTSND1') COMMAREA(TDATAREM) LENGTH(39);
END;

Sample System Components 87

A.3.10 DBTSNDl PROGRAM SOURCE

DBTSND1: PROC(COMARPTR) OPTIONS(MAIN);
/**/
/* DBTSND1: 17 AUGUST 1983 */
/* - PlI CICS COMMAND lEVEL TRANSACTION */
/* - SUBROUTINES CAllED: APIACTIV */
/* APIPURGE */
/* APIDIS2 */
/* APIFIl2 */
/* APIPTDOC */
/* APISUFIX */
/* API lAST */
/* All lINKED INTO MAIN ROUTINE */
/* - XCTl FROM DBTTRN1 WITH COMMAREA KEY */
/* - INPUT:-KEY ITEM AS COMMAREA */
/* -VSAM KEY SEQUENCED RECORDS WITH */
/* MAXIMUM RECORDSIZE OF 4088 + 80 + 39 */
/* - OUTPUT: l2DCA DATA IS PASSED THROUGH API */
/* TOGETHER WITH DIA */
/* 'REQUEST_DISTRIBUTION ' OR */
/* 'FIlE' COMMAND, */
/* AND DOCUMENT PROFILE. */
/* - RESPONSE TRANSACTION TRIGGERED BY DISOSS */
/* IS DBTR. */
/* */
/**/
DCl (STG,SUBSTR,ADDR,lENGTH,CSTG,UNSPEC) BUILTIN;

/**/
/* CONTROL BLOCKS USED BY API ROUTINES */
/**/
%INClUDE APICOMP; /* COMMON PlI VERSION */
DCl CBlEN FIXED BIN(15); /* APICOMP lENGTH */
%INClUDE APIRETP2; /* RETRIEVE AREA */
%INClUDE APIDPRP2; /* PROFILE AREA */
/**/
/* INPUT/OUTPUT AREAS FOR DBTVSQ1 */
/**/

DCl VIPTR POINTER;
DCl VOPTR POINTER;

%INClUDE DBTVSQ;

DCl COMARPTR POINTER;
DCl 1 COMKEY CHAR(39) BASED(COMARPTR),

1 COMB BASED1COMARPTR),
2 COR CHAR 16),

1 COMC BASED COMARPTR),
2 KEY35 CHAR(35);

DCl1 NEXTRANS CHAR(4) INIT('DBTR');

DCl DOCPTR POINTER; /* AREA FOR PASSING DCA-l2 DATA */
DCl 1 DOCUMENT CHAR(4088) VARYING BASED(DOCPTR),

1 DOC2 BASED(DOCPTR),
2 DOC2FIll CHAR(2), /* lENGTH FIELD */
2 DOC2l2 CHAR(4088); /* MAXIMUM lENGTH 4096 - 8 */

DCl 1 SONPARMS, /* PARAM. FOR DIA SIGNON */

88 Connecting non-DIA Systems to DISOSS

2 DOCTYPE BIT(16) INIT('00000000000000I0 '), /* NOT USED
2 lNAME BIT(8) INIT('00000II0 ' B), /* lENGTH NAME
2 lPASS BIT(8) INIT('OOOOOOOI IB), /* lENGTH PASSW.
2 NAME, /* USED BY ACTIV.
3 NAMEI CHAR(6) INIT('DISTOl l), /* SIGNON ID
3 NAME2 BIT(16) INIT«2)'00000000'B), /*

2 PASS, /* NOT USED
3 PASSI CHAR(I) INIT('ll~, /* PASSWORD
3 PASS2 BIT(56) INIT«7) OOOOOOOO'B); /*

*/
*/
*/
*/
*/
*/
*/
*/
*/

DCl Z64 BIT(64) INIT«8)'00000000'B); /* FOR ACTIVATE */

DCl

DCl

DIUBUF CHAR(1096) BASED(COMDIUP); /* FOR DIA/DCA
1* CONSTRUCTS

*/
*/

APIACTIV ENTRY EXTERNAL OPTIONS ASM INTER
APIRTRVE ENTRY EXTERNAL OPTIONS ASM INTER
APIRECVE ENTRY EXTERNAL OPTIONS ASM INTER
APIGTCMD ENTRY EXTERNAL OPTIONS ASM INTER
APIFIl2 ENTRY EXTERNAL OPTIONS ASM INTER
APIPURGE ENTRY EXTERNAL OPTIONS ASM INTER
APIDIS2 ENTRY EXTERNAL OPTIONS ASM INTER
APIPTDOC ENTRY EXTERNAL OPTIONS ASM INTER
APISUFIX ENTRY EXTERNAL OPTIONS ASM INTER
API LAST ENTRY EXTERNAL OPTIONS ASM INTER

CBLEN = CSTG(APICOM);

/* ACTIVATE */
/* RETRIEVE */
/* RECEIVE */
/* GET COMMAND */
/* DIA IFIlE" */
/* PURGE All */
/* DIA "DIST" */
/* PUT DOC */
/* DIU SUFFIX */
/* API IlAST" */

EXEC CICS GETMAIN SET1COMPTR) LENGTH(CBLENj INITIMG!IOOOOOOOO'Bj;
EXEC CICS GETMAIN SET COMDPRP) LENGTH(4096 INITIMG 'OOOOOOOOIB ;
EXEC CICS GETMAIN SET COMDIUP) LENGTH(1096 INITIMG 'OOOOOOOO'B ;
EXEC CICS GETMAIN SET DOCPTR) lENGTH(4090) INITIMG(OOOOOOOO'B);
EXEC CICS GETMAIN SET VIPTR) lENGTH(6004) INITIMG('OOOOOOOO'B);
COMTRFlG = COMTRYES;

/**/
/* ACTIVATE API FOR THIS TRANSACTION */
/**/
ATI IN:

CALL APIACTIV(DFHEIBlK,APICOM,NAME,Z64);
EXEC CICS ENTER TRACEID(91);
IF COMRETCD ~= 0 THEN GOTO ERROR;

DISDOC:
/* NOW LOOK IF MORE DOCUMENTS ARE PRESENT ON DBTVSQl */

EXEC CICS STARTBR DATASET('DBTVSQll) KEYlENGTH(35) RIDFlD(KEY35)
GENERIC EQUAL;

/*--------- READ FIRST REC AND CHECK FIC ------*/
NEXTREC: EXEC CICS HANDLE CONDITION ENDFIlE(STOP);

EXEC CICS HANDLE CONDITION NOTFND(STOP),
EXEC CICS READNEXT DATASET('DBTVSQll) INTO(VI)
RIDFLD(COMKEY) ;
IF VIDKEY = «39)'I1111111 IB) THEN GOTO NODOC; /* DUMMY RECORD */
IF VI3KEY.CHFLAGF ~= 111
THEN DO;

EXEC CICS ENTER TRACEID(I);
/* NO FIC ON NEW DOCUMENT ERROR CODE TO BE ADDED */

END;

IF VI3KEY.CHFLAGF = 111
THEN DO;
/* NOW BUILD DIA COMMAND FOR DISTRIBUTE AND CORRECT PARAMETERS */

Sample System Components 89

1* OR FILE DEPENDING ON DISFIL FIELD IN HEADER *1'
DISTRIB:

DPRCOR = COMB.COR; 1* CORRELATION *1
DPRRID = VID.USER; 1* RECEPIENT ADDR*I
DPRDDN = VID.OSN; 1* DEST.NODE *1
DPRSYS = 'IBM DCA-L2' ;1* SYSTEM CODE *1
IF VID.INTYPE = '0000000000000010'B THEN 1* DCA-L2 ? *1
DPRDOT = 2;
ELSE GOTQ INTYP; I*INVALID INPUT TYPE *1
DPRPGC = '00000001010100010000000100000000'B; 1* X'01510100' *1
DPRDON = VI3DATA.DOCNAM; 1* DOC. NAME• *1 '
DPRDONL = '00001111'B; 1* LENGTH *1
DPRSUB = 'MAl LBOX PROJECT ' ; 1* SUBJECT * I
DPRSUBL = '00010100'B; 1* 20 *1 1* LENGTH *1
DPRAUT = 'MAILBOX '; 1* AUTHOR *1
DPRAUTL = '00001010'B; 1* 10 *1 1* LENGTH *1
1* ACCESS CODE USED FOR FILE, COMMON ACCESS *1
DPRACC = '0000'; 1* ACCESS CODE *1
DPRACCL = '00000100'B; 1* 4 *1 1* LENGTH *1
IF VI3DATA.DISFIL = 'F'
THEN DO;

CALL APIFIL2(DFHEIBLK,APICOM,APIDPR,DIUBUF);
END;
ELSE DO;

CALL APIDIS2(DFHEIBLK,APICOM,APIDPR,DIUBUF);
END;

EXEC CICS ENTER TRACEID(92);
IF COMRETCD ~= 0 THEN GOTO ERROR;

END;
IF VI3KEY.CHFLAGF= 'I' 1* FOR FIC OR *1
I VI3KEY.CHFLAGL= 111 THEN DO; 1* LIe ONLY *1

DOCUMENT = SUBSTR(VIDATA,81,(LENGTH(VIDATA)-80»; 1* DATA *1
END;
ELSE DO;

DOCUMENT = SUBSTR(VIDATA,l,LENGTH(VIDATA»; 1* DCA-L2 DATA *1
END;
CBLEN = LENGTH(DOCUMENT);

1* DOC2L2 IS DCA-L2 DATA WITHOUT LENGTH FIELD *1
CALL APIPTDOC(DFHEIBLK,APICOM,DOC2L2,CBLEN,APIDPR);
IF COMRETCD ~= 0 THEN GOTO ERROR;
IF VI3KEY.CHFLAGL = 'I' 1* LIC *1
THEN GOTO SEGL;
GOTO NEXTREC;

SEGL:
EXEC CICS ENDBR DATASET('DBTVSQl');
CBLEN = 0;

1* BUILD DOC. UNIT, SEGMENT LAST *1
CALL APIPTDOC(DFHEIBLK,APICOM,DOC2L2,CBLEN,APIDPR);
EXEC CICS ENTER TRACEID(93);
IF COMRETCD ~= 0 THEN GOTO ERROR;
EXEC CICS ENTER TRACEID(94);

1* BUILD DIU SUFFIX *1
CALL APISUFIX(DFHEIBLK,APICOM);
IF COMRETCD ~= 0 THEN GOTO ERROR;
GOTO LAST;

LAST:
1* TELL API TO PROCESS

CALL APILAST(DFHEIBLK,APICOM,NEXTRANS);
IF COMRETCD ~= 0 THEN GOTO ERROR;

90 Connecting non-DIA Systems to DISOSS

*1

RETURN;

STOP:
EXEC CICS ENDBR DATASET('DBTVSQ1');

EXEC CICS ENTER TRACEID(95);
/*NO LAST IN CHAIN FOUND ON DBTVSQl FOR A DOCUMENT */

RETURN;

NOHEAD:
/*NO HEADER RECORD FOUND ON DBTVSQl FOR A DOCUMENT */

EXEC CICS ENTER TRACEID(96);
RETURN;

NODOC:
/*NO MORE DOCUMENTS FOR DISTRIBUTION STOP */

EXEC CICS ENTER TRACEID(97);
RETURN;

INTYP:
/*INVALID INPUT DOCUMENT TYPE */

RETURN;

Q3BUS:
/*ANOTHER DBTSNDl IS BUSY GET OUT QUICKLY */

RETURN;

ERROR:
/* PURGE DELETES EVERYTHING ON THE APIQUEUE FOR THIS USER */
/* A DIFFERENT WAY OF HANDLING API ERRORS SHOULD BE USED */
EXEC CICS ENTER TRACEID(98);
CALL APIPURGE(DFHEIBLK,APICOM,NAME);

END;

Sample System Components 91

A.3.11 DBTRSPl PROGRAM SOURCE

DBTRSP1: PROC OPTIONS(MAIN);
/**/
/* DBTRSP1: 17 AUGUST 1983 */
/* - PlI CICS COMMAND lEVEL TRANSACTION */
/* - SUBROUTINES CAllED: APIRTRVE */
/* APIACTIV */
/* APIGTCMD */
/* APIPURGE */
/* API lAST */
/* All lINKED INTO MAIN ROUTINE */
/* - DISOSS API RESPONSE TRANSACTION */
/* - INPUT -VSAM KEY SEQUENCED RECORDS WITH */
/* MAXIMUM RECORDSIZE OF 4088 + 80 + 39 */
/* -RETRIEVE DATA OF DISOSS */
/* - OUTPUT: NONE */
/* */
/**/
DCl (STG,SUBSTR,ADDR,lENGTH,CSTG,UNSPEC) BUILTIN;

/**/
/* CONTROL BLOCKS USED BY API ROUTINES */
/**/
%INClUDE APICOMP; /* COMMON PlI VERSION */
DCl CBlEN FIXED BIN(l5); /* APICOMP lENGTH */
%INClUDE APIRETP2; /* RETRIEVE AREA */
%INClUDE APIDPRP2; /* PROFILE AREA */
/**/
/* INPUT/OUTPUT AREA FOR DISVSQl */
/**/

DCl VIPTR POINTER;
DCl VOPTR POINTER;

%INClUDE DBTVSQ;

DCl DOCPTR POINTER; /* AREA FOR PASSING DCA-L2 DATA */
DCl 1 DOCUMENT CHAR(4088) VARYING BASED(DOCPTR),

1 DOC2 BASED(DOCPTR),
2 DOC2FIll CHAR(2), /* lENGTH FIELD
2 DOC2l2 CHAR(4088); /* MAXIMUM lENGTH 4096 - 8

DCl 1 SONPARMS, /* PARAM. FOR DIA SIGNON
2 DOCTYPE BIT(16) INIT('0000000000000010 '), /* NOT USED
2 lNAME BIT(8) INIT('OOOOOllO'B), /* lENGTH NAME
2 lPASS BIT(8) INIT('00000001 I B), /* lENGTH PASSW.
2 NAME, /* USED BY ACTIV.
3 NAMEl CHAR(6) INIT('D.IST01 1), /* SIGNON 10
3 NAME2 BIT(l6) INIT«2)'00000000'B), /*

2 PASS, /* NOT USED
3 PASS1 CHAR(l) INIT('l'~, /* PASSWORD
3 PASS2 BIT(56) INIT«7) OOOOOOOO'B); /*

DCl Z64 BIT(64) INIT«8)'00000000'B); /* FOR ACTIVATE

DCl

DCl

92

DIUBUF CHAR(1096) BASED(COMDIUP)j /* FOR DIA/DCA
/* CONSTRUCTS

APIRTRVE ENTRY EXTERNAL OPTIONS(ASM INTER), /* RETRIEVE
APIACTIV ENTRY EXTERNAL OPTIONS(ASM INTER), /* ACTIVATE

Connecting non-DIA Systems to DISOSS

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

*/

*/
*/

*/
*/

API PURGE ENTRY EXTERNAL OPTIONS ASM INTER , /* PURGE ALL */
APIGTCMD ENTRY EXTERNAL OPTIONS!ASM INTERj' /* GET COMMAND */

API LAST ENTRY EXTERNAL OPTIONS ASM INTER ; /* API "LAST" */

CBLEN = CSTG(APICOM);
EXEC CICS GETMAIN SET COMPTR) LENGTH(CBLENj INITIMGIIOOOOOOOOIBj;
EXEC CICS GETMAIN SET COMDPRP) LENGTH(4096 INITIMG 100000000lB ;
EXEC CICS GETMAIN SET COMDIUP) LENGTH(1096 INITIMG 100000000lB ;
EXEC CICS GETMAIN SET DOCPTR) LENGTH(4090) INITIMG~ OOOOOOOOIB);
EXEC CICS GETMAIN SET VIPTR) LENGTH(6004) INITIMG(OOOOOOOOIB);
COMTRFLG = COMTRYES;

/**/
/* GET DISOSS RETRIEVE DATA */
/**/

CALL APIRTRVE(DFHEIBLK,APICOM);
IF COMDLEN = 0 THEN GOTO ERROR;

RESPONSE:
RETPTR = COMDPTR;

RDISTR:
CALL APIACTIV(DFHEIBLK,APICOM,RETNAME,RETTIME);
IF COMRETCD ~= 0 THEN GO TO ERROR;
CALL APIGTCMD(DFHEIBLK,APICOM,APIDPR);
IF COMRETCD ~= 0 THEN GO TO ERROR;
IF COMDCMD ~= COMDACK THEN GOTO ERROR;
IF DPREXCOD ~=(3)'00000000'B THEN GOTO ERROR;

/* ACTIVATE API*/

/* RECEIVE DATA*/
/* OKAY? */
/* ACKNOWLEDGE?*/
/* EXCEPT. CODE*/

/* PREVIOUS DISTRIBUTION OKAY NOW CLEANUP LAST DISTRIBUTED DOC*/
CLNUP:

EXEC CICS STARTBR DATASET('DBTVSQll) RIDFLD(RETDIUID)
KEYLENGTH(16) GENERIC EQUAL;
VIKEY=RETDIUID;
EXEC CICS READNEXT DATASET(IDBTVSQl l) RIDFLD(VIKEY)
INTO(VI) ;
EXEC CICS ENDBR DATASET('DBTVSQl'~;
EXEC CIes DELETE DATASET(IDBTVSQl) RIDFLD(VIKEY)
KEYLENGTH(31) GENERIC;
RETURN;

ERROR:
/* PURGE DELETES EVERYTHING ON THE APIQUEUE FOR THIS USER */
/* A DIFFERENT WAY OF HANDLING API ERRORS SHOULD BE USED */
CALL APIPURGE(DFHEIBLK,APICOM,NAME);

END;

Sample System Components 93

A.3.12 DBTSON1 PROGRAM SOURCE

Experience has shown that if distribute or file requests are placed on the API
queue before this signon program has completed, then not only will those
requests cause DISOSS transaction DSVl to fail, but any subsequent signons
will also fail. The only obvious course of action under these circumstances is to
submit the DISOSS installation job which recreates the API queue.

DBTSON1: PROC OPTIONS(MAIN);

/***/
/* */
/* DBTSON1: 17 AUGUST 1983 */
/* - PlI CICS COMMAND lEVEL PROGRAM */
/* - SUBROUTINES CAllED: APIRTRVE */
/* APIACTIV */
/* APISGNON */
/* API LAST */
/* API PURGE */
/* APIRECVE */
/* APIGTCMD */
/* - INPUT RETRIEVE DATA FROM DISOSS*/
/* - SIGNON COMMAND TO DISOSS */
/* */
/***/

%INClUDE APICOMP;
%INClUDE APIRETP;
%INClUDE APIDPRP;

DCl (ADDR,lENGTH,CSTG,UNSPEC) BUILTIN;

DCl CBlEN FIXED BIN(15);

DCl 1 SONPARMS,
2 DOCTYPE BIT(16) INIT('0000000000000010'),
2 lNAME BIT(8) INIT('00000110'B),
2 lPASS BIT(8) INIT('00000001'B),
2 NAME,
3 NAME1 CHAR(6) INIT('DIST01'),
3 NAME2 BIT(16) INIT«2)'00000000'B),

2 PASS,
3 PASS1 CHAR(1) INIT('1'~,
3 PASS2 BIT(56) INIT«7) 00000000'8);

DCl DIU8UF CHAR(4096) BASED(COMDIUP);

DCl Z64 8IT(64) INIT«8)'00000000'B);

DCl APISGNON ENTRY EXTERNAL OPTIONS ASM INTER
APIRTRVE ENTRY EXTERNAL OPTIONS ASM INTER
APIACTIV ENTRY EXTERNAL OPTIONS ASM INTER
APIRECVE ENTRY EXTERNAL OPTIONS ASM INTER
APIGTCMD ENTRY EXTERNAL OPTIONS ASM INTER
APIPURGE ENTRY EXTERNAL OPTIONS ASM INTER
API LAST ENTRY EXTERNAL OPTIONS ASM INTER

, /* SIGNON
, /* RETRIEVE
, /* ACTIVATE
, /* RECEIVE
, /* GET COMMAND

/* PURGE All
/* API "LAST"

*/
*/
*/
*/
*/
*/
*/

CBlEN = CSTG(APICOM);
EXEC CICS GETMAIN SET(COMPTR) lENGTH(CBlEN) INITIMG('OOOOOOOO'B);

94 Connecting non-DIA Systems to DISOSS

EXEC CICS GETMAIN SET(COMDPRP) LENGTH(4096) INITIMG('OOOOOOOO'B);
EXEC CICS GETMAIN SET(COMDIUP) LENGTH(4096) INITIMG('OOOOOOOO'B);
COMTRFLG = COMTRYES;

CALL APIRTRVE(DFHEIBLK,APICOM);
IF COMDLEN ,= 0 THEN GOTO RESPONSE;

SIGNON:
CALL APIACTIV(DFHEIBLK,APICOM,NAME,Z64);
IF COMRETCD ,= 0 THEN GOTO ERROR;
CALL APISGNON(DFHEIBLK,APICOM,DIUBUF,SONPARMS);
IF COMRETCD ,= 0 THEN GOTO ERROR;
GOTO LAST;

LAST:
CALL APILAST(DFHEIBLK,APICOM,EIBTRNID);
IF COMRETCD ,= 0 THEN GOTO ERROR;
RETURN;

RESPONSE:
RETPTR = COMDPTR;
SELECT(RETDIUID);

WHEN('Ol') GOTO RSGNON;
OTHERWISE GOTO ERROR;

END;

RSGNON:
CALL APIACTIV(DFHEIBLK,APICOM,RETNAME,RETTIME);
IF COMRETCD ,= 0 THEN GOTO ERROR;
CALL APIGTCMD(DFHEIBLK,APICOM,APIDPR);
IF COMRETCD ,= 0 THEN GOTO ERROR;
IF COMDCMD ,= COMDSON THEN GOTO ERROR;
EXEC CICS START TRANSID('DBTM');
RETURN;

ERROR:
CALL APIPURGE(DFHEIBLK,APICOM,NAME);

END;

Sample System Components 95

A.3.13 DBTCLNl PROGRAM SOURCE

DBTCLN1: PROC OPTIONS(MAIN REENTRANT);
/***/
r ~
/* DBTCLN1: DELETES ALL RECORDS ON VSQO AND VSQ1 */
/* AND PUTS ONE DUMMY RECORD ON EACH. */
/* */
/***/

DCL (LENGTH,STG,CSTG,ADDR,MAX) BUILTIN;
%INCLUDE DBTVSQ; /*VSQO AND VSQ1 */
%INCLUDE DBTOC; /*OPEN8LK FOR OPEN/CLOSE MACRO */ .

EXEC CICS GETMAIN SETIOPENPTR) LENGTH(15) INITIMG('OOOOOOOO'B)'
EXEC CICS GETMAIN SET QOQ1PTR) LENGTH(125) INITIMG~'OOOOOOOO'B);
EXEC CICS GETMAIN SET VIPTR) LENGTH(6002) INITIMG(00000000'8);

/*--------- MASS DELETE VSQ1 ENTRIES ----------*/
EXEC CICS START8R DATASET('D8TVSQ1') RIDFLD(VICKEY) GENERIC
KEYLENGTH(O);
EXEC CICS HANDLE CONDITION ENDFILE(VSQ1EN);

VSQ1 :
EXEC CICS READNEXT DATASET~'D8TVSQ1') RIDFLD(VICKEY) INTO(VI);
IF VIDKEY = «39)'11111111 8) THEN GOTO VSQ1END;
EXEC CICS DELETE DATASET('D8TVSQ1 1) RIDFLD(VICKEY)

KEYLENGTH(35) GENERIC;
GOTO VSQ1;

VSQ1EN:
VIDKEY = (39)11111111118'
EXEC CICS WRITE DATASET('D8TVSQ1 1) FROM(VI)
RIDFLD(VIKEY) LENGTH(39);

VSQ1END:
EXEC CICS END8R DATASET('D8TVSQ1 1);

/*--------- MASS DELETE VSQO ENTRIES ----------*/
D8NAME = 'D8TVSQO I;
RC = 11111111118;
FCT = (3)11111111118;
FFF = (3)11111111118;

EXEC CICS LINK PROGRAM('D8TOPN1') COMMAREA(OPEN8LK) LENGTH(15);
IF RC ~= '00000000'8 THEN GOTO STOP;

EXEC CICS START8R DATASET('DBTVSQO') RIDFLD(VICKEY) GENERIC
KEYLENGTH(O);
EXEC CICS HANDLE CONDITION NOTFND(VSQOEN);

VSQO:
EXEC CICS READNEXT DATASET~'D8TVSQO') RIDFLD(VICKEY) INTO(VI);
IF VIDKEY = «39)'11111111 B) THEN GOTO VSQOEND;
EXEC CICS DELETE DATASET('D8TVSQO') RIDFLD(VICKEY) .

KEYLENGTH(35) GENERIC;
GOTO VSQO;

VSQOEN:
VIDKEY = (39)'11111111 I B;
EXEC eICS WRITE DATASET('D8TVSQO') FROM(VI)
RIDFLD(VIKEY) LENGTH(39);

VSQOEND:
EXEC CICS ENDBR DATASET('DBTVSQO');

STOP:
EXEC CICS LINK PROGRAM('DBTCLS1 1) COMMAREA(OPEN8LK) LENGTH(15);
IF RC ~= '00000000 18 THEN GOTO ERR3;

ERR3: GOTO LAST; /* OPEN/CLOSE ERROR */
LAST: END;

96 Connecting non-DIA Systems to DISOSS

A.3.14 DBTSOFl PROGRAM SOURCE

Since a DIA Sign_Off is rarely required, the DBTSOFl program is unlikely to be
needed, and is not used in our system.

DBTSOF1: PROC OPTIONS(MAIN);

1***1
1* *1
1* DDBSOF1: 17 AUGUST 1983 *1
1* - PlI CICS COMMAND lEVEL PROGRAM *1
1* - SUBROUTINES CAllED: APIRTRVE *1
1* APIACTIV *1
1* APISNOFF *1
1* API lAST *1
1* APIPURGE *1
1* API RECVE * I
1* AP IGTCMD * I
1* - INPUT RETRIEVE DATA FROM DISOSS *1
1* - SIGNOFF COMMAND TO DISOSS *1
1* *1
1***1

%INClUDE APICOMP;
%INClUDE APIRETPj
%INClUDE APIDPRPj

DCl (ADDR,LENGTH,CSTG,UNSPEC) BUILTIN;

DCl CBlEN FIXED BIN(15)j

DCl 1 SONPARMS,
2 DOCTYPE BIT(16) INIT('0000000000000l10!),
2 lNAME BIT(8) INIT('00000110 ' B),
2 lPASS BIT(8) INIT('00000001 IB),
2 NAME,
3 NAME1 CHAR(6) INIT('DIST01 1),
3 NAME2 BIT(16) INIT«2)'00000000'B),

2 PASS,
3 PASS1 CHAR(l) INIT('11~,
3 PASS2 BIT(56) INIT«7) OOOOOOOO'B);

DCl DIUBUF CHAR(4096) BASED(COMDIUP);

DCl Z64 BIT(64) INIT«8)'00000000'B);

DCl APISNOFF ENTRY EXTERNAL OPTIONS ASM INTER , 1* SIGNOFF *1
APIRTRVE ENTRY EXTERNAL OPTIONS ASM INTER , 1* RETRIEVE *1
APIACTIV ENTRY EXTERNAL OPTIONS ASM INTER , 1* ACTIVATE *1
APIRECVE ENTRY "EXTERNAL OPTIONS ASM INTER , 1* RECEIVE *1
APIGTCMD ENTRY EXTERNAL OPTIONS ASM INTER , 1* GET COMMAND *1
API PURGE ENTRY EXTERNAL OPTIONS ASM INTER 1* PURGE All *1
API LAST ENTRY EXTERNAL OPTIONS ASM INTER 1* API "LAST" *1

CBlEN = CSTG(APICOM);
EXEC CICS GETMAIN SET!COMPTR) lENGTH(CBlENj
EXEC CICS GETMAIN SET COMDPRP) lENGTH(4096
EXEC CICS GETMAIN SET COMDIUP) lENGTH(4096
COMTRFlG = COMTRYESj

INITIMG!IOOOOOOOO'Bj;
INITIMG 'OOOOOOOO'B ;
INITIMG 'OOOOOOOO'B j

Sample System Components 97

CALL APIRTRVE(DFHEIBLK,APICOM);
IF COMDLEN ~= 0 THEN GOTO RESPONSE;

SIGOFF:
CALL APIACTIV(DFHEIBLK,APICOM,NAME,Z64);
EXEC CICS ENTER TRACEID(3);
IF COMRETCD ,= 0 THEN GOTO ERROR;
EXEC CICS ENTER TRACEID(4);
CALL APISNOFF(DFHEIBLK,APICOM);
EXEC CICS ENTER TRACEID(5);
IF COMRETCD ,= 0 THEN GOTO ERROR;
GOTO LAST;

LAST:
CALL APILAST(DFHEIBLK,APICOM,EIBTRNID);
EXEC CICS ENTER TRACEID(3);
IF COMRETCD ,= 0 THEN GOTO ERROR;
EXEC CICS ENTER TRACEID(4);
RETURN;

RESPONSE:
RETPTR = COMDPTR;
SELECT(RETDIUID);

WHEN('Ol') GOTO RSGOFF;
OTHERWISE GOTO ERROR;

END;

RSGOFF:
CALL APIACTIV(DFHEIBLK,APICOM,RETNAME,RETTIME);
IF COMRETCD ,= 0 THEN GOTO ERROR;
CALL APIGTCMD(DFHEIBLK,APICOM,APIDPR);
IF COMRETCD ,= 0 THEN GOTO ERROR;
RETURN;

ERROR:
CALL APIPURGE(DFHEIBLK,APICOM,NAME);

END;

98 Connecting non-DIA Systems to DISOSS

A.l.15 DBTTRTOl TRANSLATE TABLE

This job generates a special translate table to be added to the DISOSS system.
DISOSS will use this table to translate documents from Codepage 264 (1403 TN)
to GCID 337-256 (the Multi-Lingual Codepage), for delivery to subsystems (in­
cluding DISOSS/PS and Displaywriter) which do not support Codepage 264.

//WTCR7A JOB (0-863201),WRIGHT,MSGLEVEL=(1,1),MSGCLASS=A,
// CLASS=A, REGION=1024K, NOTIFY=WTCR7
/*ROUTE PRINT RALYDPD3.WTCR7
/*ROUTE XEQ RALVSMV8
//***
//* DISOSS V3 INSTALLATION ASSIST *
//* TRANSLATE/PRINT FIDELITY TABLE *
//* *
//* THIS JOB ASSEMBLES AND LINK-EDITS TRANSLATE/PRINT FIDELITY *
/ /* TABLE DBTTRT01 *
//* *
//* LIBRARY - DISOSS30.DSVLOAD *
/ /* MEMBER - DBTTRTO 1 *
//* *
//* NOTE: REFER TO COMMENTS IN SOURCE CODE FOR PRINT FIDELITY TABLE *
//* REGARDING OUTSTANDING DISOSS PROBLEM AS AT JAN 24 1984 *
//* *
//***
//XLATE PROC
//EXASM EXEC PGM=IFOXOO,PARM='OBJ,NODECK '
//SYSLIB DO DSN=SYS1.MACLIB,DISP=SHR
// DO DSN=DISOSS30.ADSVMAC,DISP=SHR
//SYSPRINT DO SYSOUT=A
//SYSPUNCH DO DUMMY
//SYSUT1 DO UNIT=SYSDA,SPACE=!1700,!600,lOOll
//SYSUT2 DO UNIT=SYSDA,SPACE= 1700, 600,100
//SYSUT3 DO UNIT=SYSDA,SPACE= 1700, 600,100
//SYSGO DO UNIT=SYSDA,SPACE= 80,(500,50»,DISP=(,PASS),DSN=&&OBJ
//SYSIN DO DDNAME=DSVIN
//LKED EXEC PGM=IEWL,
// PARM='NCAL,MAP,LET,XREF,SIZE=(500K,100K)I ,REGION=130K
//SYSPRINT DO SYSOUT=A
//SYSUDUMP DO SYSOUT=A
//SYSLIB DO DSN=DISOSS30.DSVLOAD,DISP=SHR
//SYSLIN DO DSN=&&OBJ,DISP=(OLD,DELETE)
//SYSLMOD DO DSN=DISOSS30.DSVLOAD(&MBR),DISP=SHR
//SYSUT1 DO UNIT=SYSDA,SPACE=(CYL,(5,5»
// PEND
//EXECPROC EXEC XLATE,MBR=DBTTRT01
//DSVIN DO *

*
* $MOD(DBTTRT01) COMP(ST) PROD(DISOSS):
*
*
*
* 0*

*
*
*

DESCRIPTIVE NAME: TRANSLATION/PRINT FIDELITY TABLE

COPYRIGHT: 5665-290 COPYRIGHT IBM CORP 1983
LICENSED MATERIAL - PROGRAM PROPERTY OF IBM
REFER TO COPYRIGHT INSTRUCTIONS FORM
NUMBER G120-2083

Sample System Components 99

* STATUS: VERSION 3 RELEASE 1
*
*
*
*
*
*

FUNCTION: THIS MODULE IS THE TRANSLATE / PRINT FIDELITY
TABLE THAT ALLOWS TRANSLATION
FROM XXXXX-00264 (1403 TN PRINT TRAIN)
TO 00337-00256 (INTERNATIONAL MULTILINGUAL)

* NOTES:
* DEPENDENCIES: NONE
* RESTRICTIONS: NONE
* REGISTER CONVENTIONS: NONE
*
* INPUT: N/A
*
*
*
*
*

OUTPUT: N/A

EXIT CONDITIONS: N/A

* EXTERNAL REFERENCES:
*
* ROUTINES: NONE
*
* DATA AREAS:
* REFERENCED: NONE
* MODIFIED: NONE
*
* CONTROL BLOCKS:
* REFERENCED: NONE
*
*
*
*
*

MODIFIED: NONE

TABLES: N/A

* MACROS:
* INTERNAL: NONE
* EXTERNAL: NONE
*
* CHANGE ACTIVITY:
* $LO=ST HD03102 052682 846301: DR-G
* $Pl=MPF0956 HD03102 090282 846301: OUTGCID COMMENT WRONG
* $Dl=B@@ST900 HD03102 120682 846301: CHANGE TO VERSION 2 TABLE
* $P2=MPS0022 HD03102 120682 846301: SAME AS $01 (B@@ST900)
* $P3=MPS0009 HD03102 121382 846301: CORRECT XREF PROBLEM
* $P4=MPS0270 HD03102 021083 846301: CHANGE TO REGISTERED GGID

DBTTRTOI CSECT IN DSVXIDX TBLID=DBTTRTOI

DC AL2(00264) INGPID=00264
DC AL2(00337,00256) OUTGCID=00337-00256 /*@P1C @P4C*/

DSVS6TRN OS OXL256 THE TRANSLATION TABLE
DC X'000102030405060708090AOBOCODOEOF' /* 00 - OF */
DC X'101112131415161718191A1B1C1D1EIF' /* 10 - IF */
DC X'202122232425262728292A2B2C2D2E2F' /* 20 - 2F */
DC X'303132333435363738393A3B3C3D3E3F' /* 30 - 3F */

* MAP CENT (4A) TO CENT . (BO)
* MAP VERTICAL BAR (4F) TO VERTICAL BAR (BB}

DC X'40414243444546474849B04B4C4D4EBB /*40 - 4F*//*@DIC*/
* MAP EXCLAMATION (SA) TO EXCLAMATION (4F~
* MAP LOGICAL NOT (SF) TO LOGICAL NOT (BA

DC X'505152535455565758594F5B5C5D5EBA /*50 - 5F*//*@D1C*/
DC X'606162636465666768696A6B6C6D6E6F' /*60 - 6F*//*@DIC*/

100 Connecting non-DIA Systems to DISOSS

DC X' 707I72737475767778797A7B7C7D7E7F ' /*70 - 7F*//*@D1C*/
* MAP LEFT BRACE !8Bl TO LEFT BRACE !COj * MAP LESS OR EQUAL 8C TO LEFT CHEVRON 8A
* MAP LEFT PAREN 80 TO LEFT PAREN 40
* MAP PLUS 8E TO PLUS 4E

DC X'808I82838485868788898AC08A4D4E8F /*80 - 8F*//*@DIC*/
* MAP RIGHT BRACE 9B TO RIGHT BRACE DO
* MAP HOLLOW SQUARE 9C TO LOZENGE 9F
* MAP RIGHT PAR EN 90 TO RIGHT PAREN 50
* MAP PLUS OR MINUS 9E TO PLUS OR MINUS 8F
* MAP FILLED SQUARE 9F TO LOZENGE 9F

DC X' 909I92939495969798999AD09F5D8F9F /*90 - 9F*//*@D1C*/
* MAP HORIZONTAL BAR AO~ TO MINUS 60
* MAP DEGREE Al TO DEGREE 90
* MAP BOX CNR-LWR LEFT AB TO PERIOD 4B

* MAP LEFT BRACKET AD TO LEFT BRACKET 4A
* MAP GREATER OR EQUAL AE TO RIGHT CHEVRON 8B

* MAP BOX CNR-UPR LEFT ACl TO PERIOD 4B

DC X' 6D90A2A3A4A5A6A7A8A9AA4B4B4A8BAF /*AO - AF*//*@DIC*/
* MAP SUBSCRIPTS 0-9 (BO-9) TO NUMERICS 0-9 (FO-9)
* MAP BOX CNR-LWR RGHTIBBj TO PERIOD 4B
* MAP BOX CNR-UPR RGHT BC TO PERIOD 4B
* MAP RIGHT BRACKET BD TO RIGHT BRACKET 5A
* MAP NOT EQUAL BE TO HASH 7B
* MAP LONG UNDERSCORE BF TO UNDERSCORE 60

DC XI FOFIF2F3F4F5F6F7F8F9BA4B4B5A6F6D
DC X'COCIC2C3C4C5C6C7C8C9CACBCCCDCECF '
DC XI DOD1D2D3D4D5D6D7D8D9DADBDCDDDEDF '
DC X' EOE1E2E3E4E5E6E7E8E9EAEBECEDEEEF'
DC XI FOF1F2F3F4F5F6F7F8F9FAFBFCFDFEFF '
EJECT

DSVS6PFC OS OXL256 THE PRINT FIDELITY TABLE
*

/*BO - BF*//*@D1C*/
/*CO - CF*//*@DIC*/
/*00 - DF*//*@D1C*/
/*EO - EF*//*@D1C*/
/*FO - FF*//*@D1C*/

*
*
*

XIOO I - PRINT FIDELITY MAINTAINED
X' 04 1 ~ PRINT FIDELITY COMPROMISED

* NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE NOTE
*
* THERE IS A DISOSS PROBLEM OUTSTANDING AT THE DATE OF THE LATEST
* REVISION OF THIS TABLE (JAN 24 1984). IF THE TABLE INDICATES
* THAT PRINT FIDELITY HAS BEEN COMPROMISED, DISOSS WILL DELIVER A
* GARBAGE DOCUMENT TO DISOSS/PS. DISOSS/PS WILL SHOW AN ENTRY IN THE
* MAIL LOG, BUT WHEN THE DOCUMENT IS DISPLAYED NOTHING WILL APPEAR IN
* THE AREA OF THE SCREEN WHERE THE TEXT SHOULD BE.
* IF THE PROBLEM HAS BEEN FIXED BY THE TIME YOU INSTALL THIS TABLE,
* YOU SHOULD DETERMINE WHICH OF THE TRANSLATIONS IN THE ABOVE TABLE
* CAUSE A LOSS OF PRINT FIDELITY, AND MODIFY THE FOLLOWING TABLE
* ACCORDINGLY. TO DO THIS, ENTER X' 04 1 IN THE POSITION IN THE TABLE
* WHICH CORRESPONDS TO THE HEX VALUE OF THE INPUT CHARACTER THAT
* TRANSLATES TO A DIFFERENT SYMBOL ON OUTPUT. FOR EXAMPLE, THE LOWER
* LEFT BOX CORNER CHARACTER (X'AB') HAS NO EQUIVALENT IN THE OUTPUT
* GCID AND WE HAVE CHOSEN TO TRANSLATE IT TO X'4B' WHICH IS A PERIOD
* (FULL STOP) ON THE MULTILINGUAL CODE PAGE. THEREFORE A VALUE OF
* X'041 SHOULD BE PLACED IN THE TWELFTH ENTRY OF THE ELEVENTH LINE
* OF THE TABLE THUS:
*
*
*

DC X 100000000000000000000000400000000' /*AO - AF*//*@DIC*/

* NOTE HOWEVER THAT NOT ALL OF THE ENTRIES IN THE TRANSLATE TABLE
* WHICH ALTER THE HEX VALUE OF THE OUTPUT CHARACTER CAUSE A LOSS OF

Sample System Components 101

* FIDELITY. FOR EXAMPLE, A CENT SYMBOL IS X'4A' ON THE INPUT. THIS
* TRANSLATES TO X'BO' ON OUTPUT. X'BO' IN THE MULTILINGUAL CODE
* PAGE IS A CENT SYMBOL, SO THE INPUT AND OUTPUT SYMBOLS ARE THE
* SAME. THE INPUT VALUES WHICH TRANSLATE TO A DIFFERENT SYMBOL USING
* THE ABOVE TABLE ARE 8C,9C,9F,AO,AB,AC,AE,BO-B9,BB,BC,BE,AND BF.
*

/*
//

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
END

X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'
X'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO'

102 Connecting non-DIA Systems to DISOSS

/* 00 - OF */
/* 10 - IF */
/* 20 - 2F */
/* 30 - 3F */
/* 40 - 4F */
/*50 - 5F*//*@DIC*/
/*60 - 6F*//*@DIC*/
/*70 - 7F*//*@DIC*/
/*80 - 8F*//*@DIC*/
/*90 - 9F*//*@DIC*/
/*AO - AF*//*@DIC*/
/*BO - BF*//*@DIC*/
/*CO - CF*//*@DIC*/
/*DO - DF*//*@DIC*/
/*EO - EF*//*@DIC*/
/*FO - FF*//*@DIC*/

A.4 IMPROVEMENTS AND ALTERNATIVES

This section is a list of ideas for programming improvements and alternative
options.

• DBTBATl performs the enti re construction of its output 80-byte header. On
reflection, it would probably be better for it to copy the input header into
the output header, modifying only those fields concerning DBTBATl direct­
Iy. The philosophy of this is to increase efficiency, to minimise the proc­
essing of fields which pass through a program without being used or
modified, and to decrease the likely number of changes should the meaning
of an area be altered.

• More analysis could be made of the responses from the OPEN/CLOSE in the
program DBTMOV1, and the response from DISOSS to the programs
DBTSON1, DBTSOF1, DBTCLN1, and DBTSND1. Errors could be identified
instead of just detected.

Most of the above CICS programs issue an API queue PURGE command upon
error detection. This deletes all API requests associated with the issuing
user. This is safe for the DISOSS system, but somewhat drastic for the
user, especially since currently the mailbox API requests are all issued in
the name of the same user. Some errors may not require the purge.

• The initial data inserted into the DCA datastream by DBTTRNl from struc­
ture DCAINI could be modified according to input profile information such
as the pagelength and pagewidth. DBTTRNl could also be made to deduce
information about the document. Some deduced information might only be
available to the program after the body of the document has been proc­
essed. For example the pagelength or pagewidth might be specified by the
user as undefined, causing DBTTRNl to keep a tally on the largest output
lines as they are created. Such information would then have to be written to
the profile area in the first and last output.records using a READ UPDATE.

• Some users may wish to turn the facility on and off. The facility can be
turned on, but it cannot be safely turned off, because irreversible damage
appears to be done to the API queue by a RequesLDistribution without a
preceding Sign_On. Perhaps the simplest way to switch the system off
would be to use CEMT to disable transaction DBTM.

A.5 SIMULTANEOUS CICS/BATCH ACCESS TO SHARED DATASET

A CICS attempt to open dataset DBTVSQO during batch access caused DBTM to
stop, and reinitiate itself, as intended, and allowed the batch job to continue
normal execution.

A batch attempt to open dataset DBTVSQO during CICS access did not terminate
the job, allowed DBTM to continue normal execution, and caused IEC1Sl 052-084
data management messages to be displayed on the MVS operator console until
CICS relinquished control. In a production environment, it would be worth
warning the operators that these messages are expected and normal.

Sample System Components 103

104 Connecting non-DIA Systems to DISOSS

B.O API AND DIU-BUILD SUBROUTINES

The DIU-building and API interface utilities were written by Martin Hibbert of
I BM UK Technical Support, and are documented in DISOSS Application I nter­
face: Programming Guidelines, GG24-1614. A few of them have been modified for
use in our system; these are identified by names ending in '2', e.g. APIDPR2,
APIDPRP2, API RETP2, API DIS2, API FI L2, APIDI US2.

B.l ASSEMBLER CONTROL BLOCKS

B.l.l APICOM

DISOSS API program common area

* APICOM : DISOSS API PROGRAM COMMON AREA *

SPACE
APICOM DSECT

COMXN
COMXC
COMXT

SPACE
DC CL8 1 *APICOM*'
DC CL8 I COMMAND '
DC CL4 I TRAN ' I

SPACE
COMPARMS DS OF
COMPI DS A
COMP2 DS A
COMP3 DS A
COMP4 DS A
COMPS DS A
COMP6 DS A
COMP7 DS A

SPACE
COMCPTR DS A
COMRETCD DS F
COMREASN DS F
COMDPTR DS A
COMDLEN DS H
COMSPARI DS H

SPACE
COMDPRP DS A
COMDIUP DS A

SPACE
COMDBUFP DS A
COMLDIUI DS H
COMLDIU2 DS H
COMLDIU3 DS H
COMLDIU4 DS H
COMDCMD DS X
COMDDLV EQU X'OI '
COMDACK EQU X' 02 1

COMDSON EQU X' 03 1

EYE CATCHER NAME
& CURRENT COMMAND
& TRANSACTION 10

STANDARD PARM LIST:

POINTER TO CONTROL BLOCK
RETURN CODE
REASON CODE
POINTER TO COMMAND DATA
DATA LENGTH
SPARE

DOC PROFILE POINTER
OUTPUT DIU POINTER

INTERNAL DIU BUFFER POINTER
TOTAL DIU DATA LEGTH
TOTAL DIU SEGMENT LENGTH
AMOUNT OF SEGMENT USED SO FAR

WHAT COMMAND IS BEING SENT
THIS IS DELIVER COMMAND

. THIS IS ACK
THIS IS SIGNON RESPONSE

API and DI U-build Subroutines 105

COMDST
COMDSTC
COMDSTP
COMDSTD
COMDSTX
COMDSTE

OS B
EQU X I 01 1

EQU XI02 1

EQU X'04 1

EQU X' 40 '
EQU XI 80 1

SPACE
COMTRFLG OS C
COMTRYES EQU CITI
COMTRREG OS 16F

SPACE
COMLEN EQU *-APICOM

STATUS FLAGS WITHIN DIU ANALYSIS
COMMAND + OPERANDS ANALYSED
DOCUMENT PROFILE ANALYSED
DOCUMENT TEXT BUFFER FULL
HAVE REACHED SUFFIX
HAVE REACHED END OF DATA

DO EXTRA TRACE CALLS IF "TII

SAVE AREA WHEN DOING TRACE

LENGTH OF API COMMON AREA

106 Connecting non-DIA Systems to DISOSS

B.1.2 APIDPR2

This is a modification of the original APIDPR.

* AREA FOR COMMAND PARAMETERS AND DOCUMENT PROFILE . *

SPACE
APIDPR DSECT
DPR OS OF

SPACE
* FOllOWING ARE RESERVED FOR COMPATIBILITY WITH TEXT 4K BLOCKS
DPRRESV EQU *

OS H
OS H
OS F

DPRRESVl EQU *-DPRRESV
SPACE

* COMMAND PARAMETERS SECTION.
DPRCMD OS OF

SPACE
* 'DElIVER' COMMAND
DPRSID OS Cl8
DPRRID OS Cl8
DPRDDN OS Cl8
DPRDIS OS Cl20
DPRMSG OS Cl255
DPRMSGl OS All

SPACE
* I ACKNOWLEDGE I COMMAND

ORG DPRCMD
DPREXCOD OS Cl3
DPRACKR EQU *
DPRACKRF DS Cl8

ORG DPRACKR
DPRACKRD OS Cl20

ORG DPRACKR
DPRACKRS DS Cl7

ORG
SPACE

* END OF COMMAND PARAMETERS SECTION

SOURCE ID
RECIPIENT ID
DDN (lOCATION)
DISTN DOC NAME
MESSAGE
& lENGTH

ACK EXCEPTION CODE
ACK REPLY
FILE: DTM PART OF lADN

DISTRIB: DISTN DOC NAME

SEARCH: COUNT VALUE

DPRCMDl EQU *-DPRCMD lENGTH OF COMMAND PARAMETERS
SPACE

* DOC PROFILE PART
DPRPROF EQU *
DPRDOT OS H
DPRSYS OS Cll3
DPRPGC OS F
DPRLAD OS Cl8
DPRACC OS Cl4
DPRACCl OS All
DPRDON OS Cll5
DPRDONl OS All
DPRSUB OS Cl60
DPRSUBl OS All
DPRAUT DS Cl60
DPRAUTl DS All
DPRREC OS Cl60

DOC TYPE
SYSTEM ID VALUE
PROFI lE GCID
lADN (DTM PART ONLY)
ACCESS CODE VALUE

AND lENGTH
DOCUMENT NAME
& lENGTH

SUBJECT
& lENGTH

AUTHORS
& lENGTH

RECIPIENTS

API and DIU-build Subroutines 107

DPRRECL OS ALl & LENGTH
DPRKEY OS CL60 KEYWORDS (SEARCH TERMS)
DPRKEYL OS ALl & LENGTH
DPRCOR OS CLl6 CORRELATION DATA
DPRCORL OS All & LENGTH
DPRPROFL EQU *-DPRPROF LENGTH OF PROFILE SECTION

SPACE
DPRLEN EQU *-DPR LENGTH OF DPR DSECT

108 Connecting non-DIA Systems to DISOSS

B.1.3 APIRET

* DEFINE THE STRUCTURE RETURNED BY RETRIEVE *

SPACE
APIRET DSECT
RET OS
RETAPID DC
RETDIUID OS
RETKEY OS
RETNAME OS
RETTIME OS
RETLEN EQU

SPACE

OF
CL4' APID'
CL16
OCL16
CL8
CL8
*-RET

B.1.4 APIREGS

SPACE

AREA FOR CICS RETRIEVE

IDENTIFIER (WE HOPE)
DIU 10 OF ORIGINAL REQUEST DIU
KEY VALUE TO PASS ON ACTIVATE
USER NAME
TIME STAMP

*
* RISC SAMPLE DISOSS API ROUTINES - STANDARD REGISTER EQUATES

*
*
* *

RO
Rl
R2
R3
R4
R5
R6
R7
R8
R9
RIO
Rll
R12
R13
R14
R15

SPACE
EQU 0
EQU 1
EQU 2
EQU 3
EQU 4
EQU 5
EQU 6
EQU 7
EQU 8
EQU 9
EQU 10
EQU 11
EQU 12
EQU 13
EQU 14
EQU 15
SPACE

USED TO HOLD LENGTHS ETC.
USED TO HOLD ADDRESSES

MODULE BASE

ADDRESSES COMMON AREA
API CONTROL BLOCK POINTER

EIB ADDRESS

DYNAMIC STORAGE REGISTER

API and DIU-build Subroutines 109

B.2 PL/I CONTROL BLOCKS

B.2.1 APICOMP

1***1
1* (APICOMP) - API COMMON AREA - PlI VERSION - API SAMPLE PROGRAMS *1
1***1

DCl COMPTR POINTER;

DCl
1 APICOM BASED(COMPTR),

DCl

2 COMXN CHARlBl' 2 COMXC CHAR B ,
2 COMXT CHAR 4 ,

2 COMPARMS,
3 COMPI POINTER,
3 COMP2 POINTER,
3 COMP3 POINTER,
3 COMP4 POINTER,
3 COMP5 POINTER,
3 COMP6 POINTER,
3 COMP7 POINTER,

1* EYE CATCHER NAME
1* DISOSS FUNCTION CODE
1* TRANSACTION ID

1* USED IN ASSEMBLER SUBROUTINES
1* CAN BE USED IN MAINLINE

2 COMCPTR POINTER, 1* DISOSS API CONTROL BLOCK POINTER
2 COMRETCD FIXED BIN(31), 1* RETURN CODE VALUE
2 COMREASN FIXED BIN(31), 1* REASON CODE VALUE
2 COMDPTR POINTER, 1* DATA POINTER
2 COMDlEN FIXED BIN(15), 1* DATA lENGTH
2 COMSPARI FIXED BIN(15), 1* SPARE HAlFWORD

2 COMDPRP POINTER,
2 COMDIUP POINTER,

1* DPR BLOCK POINTER
1* DIU BUFFER POINTER

2 COMPARSE, 1* AREA USED BY PARSER ROUTINE
3 COMDBUFP POINTER,
3 COMlDIUl FIXED BINlI5j' 3 COMlDIU2 FIXED BIN 15 ,
3 COMlDIU3 FIXED BIN 15 ,
3 COMlDIU4 FIXED BIN 15 ,
3 COMDCMD BIT(B), 1* COMMAND CODE
3 COMDST CHAR(I), 1* PARSING STATUS BYTE

2 COMTRFlG CHAR(I), 1* TRACE FLAG. IF "T" THEN All DISOSS
1* CAllS WIll BE TRACED

2 COMTRSP CHAR(I), 1* FOR ALIGNMENT *1
2 COMTRREG(16) FIXED BIN(31); 1* USED BY ASSEMBLER ROUTINES

COMDDlV BITlBl INITlIOOOOOOOIIBl' COMDACK BIT B INIT 100000010 l B ,
COMDSON BIT B INIT 100000011 1B ;

DCl
COMTRYES CHAR(I) INIT('T');

110 Connecting non-DIA Systems to DISOSS

*1
*1
*1

*1
*1

*1
*1
*1
*1
*1
*1

*1
*1

*1

*1
*1

*1
*1

*1

B.2.2 APIDPRP

Profile and command parameter area - Pl/I. Used by programs DBTSON1 and
DBTSOF1.

DCl
1 APIDPR BASED(COMDPRP),

DCl

3 DPRRESV,
5 DPRRESVI FIXED BIN!15j'
5 DPRRESV2 FIXED BIN 15 ,
5 DPRRESV3 FIXED BIN 31 ,

3 DPRCMD CHAR(300),

3 DPRPROF,
5 DPRDOT FIXED BIN(15),
5 DPRSYS CHAR(13),
5 DPRPGC FIXED BIN(31),
5 DPRLAD CHAR 8j'
5 DPRACC CHAR 4 ,
5 DPRACCl BIT 8 ,
5 DPRDON CHAR 15),
5 DPRDONl BIT 8),
5 DPRSUB CHAR 60),
5 DPRSUBl BIT 8),
5 DPRAUT CHAR 60),
5 DPRAUTl BIT 8),
5 DPRREC CHAR 60),
5 DPRRECl BIT 8),
5 DPRKEY CHAR 60),
5 DPRKEYl BIT 8);

1 DPRCMDI BASED(COMDPRP),

DCl

3 DPRRESVI FIXED BIN!15j'
3 DPRRESV2 FIXED BIN 15 ,
3 DPRRESV3 FIXED BIN 31 ,

3 DPRSID CHAR 8j'
3 DPRRID CHAR 8 ,
3 DPRDDN CHAR 8 ,
3 DPRDIS CHAR 20),
3 DPRMSG CHAR 255),
3 DPRMSGl BIT 8);

1 DPRCMD2 BASED(COMDPRP),
3 DPRRESVI FIXED BIN!15j'
3 DPRRESV2 FIXED BIN 15 ,
3 DPRRESV3 FIXED BIN 31 ,

3 DPREXCOD BIT(18)~
3 DPRACKR CHAR(20},

DPRACKRF CHAR!8) BASED!ADDR!DPRACKRjj' DPRACKRD CHAR 20) BASED ADDR DPRACKR ,
DPRACKRS CHAR 7) BASED ADDR DPRACKR ;

API and DIU-build Subroutines 111

B.2.3 APIDPRP2

Profile and command parameter area - PL/I. Used by CICS program DBTSND1.
This is a modification of the original API DPRP.

DCl
1 APIDPR BASED(COMDPRP),

3 DPRRESV,

DCl

5 DPRRESVI FIXED BIN115j'
5 DPRRESV2 FIXED BIN 15 ,
5 DPRRESV3 FIXED BIN 31 ,

3 DPRCMD CHAR(300),

3 DPRPROF,
5 DPRDOT FIXED BIN(15),
5 DPRSYS CHAR(13),
5 DPRPGC FIXED BIN(31),
5 DPRlAD CHAR 8j'
5 DPRACC CHAR 4 ,
5 DPRACCl BIT 8 ,
5 DPRDON CHAR 15),
5 DPRDONl BIT 8),
5 DPRSUB CHAR 60),
5 DPRSUBl BIT 8),
5 DPRAUT CHAR 60),
5 DPRAUTl BIT 8),
5 DPRREC CHAR 60),
5 DPRRECl BIT 8),
5 DPRKEY CHAR 60),
5 DPRKEYl BIT 8),
5 DPRCOR CHAR 16),
5 DPRCORl BIT 8);

1 DPRCMDI BASED(COMDPRP),

DCl

3 DPRRESVI FIXED BIN115j'
3 DPRRESV2 FIXED BIN 15 ,
3 DPRRESV3 FIXED BIN 31 ,

3 DPRSID CHAR 8j'
3 DPRRID CHAR 8 ,
3 DPRDDN CHAR 8 ,
3 DPRDIS CHAR 20)
3 DPRMSG CHAR 255),
3 DPRMSGl BIT 8);

1 DPRCMD2 BASED(COMDPRP),
3 DPRRESVI FIXED BIN115j'
3 DPRRESV2 FIXED BIN 15 ,
3 DPRRESV3 FIXED BIN 31 ,

3 DPREXCOD BIT(18){
3 DPRACKR CHAR(20),

DPRACKRF CHAR!8) BASED!ADDR1DPRACKRjj' DPRACKRD CHAR 20) BASEDADDR DPRACKR ,
DPRACKRS CHAR 7) BASED ADDR DPRACKR ;

112 Connecting non-DIA Systems to DISOSS

B.2.4 APIRETP

API response start data area. Used by programs DBTSON1 and DBTSOF1.

DCl RETPTR POINTER;
DCl 1 APIRET BASED(RETPTR),

2 RETAPID CHAR(4)~
2 RETDIUID CHAR(2}
2 RETDIUI2 CHAR(14~,
2 RETNAME CHAR(8),
2 RETTIME CHAR(8)'

DCl RETSON CHAR12j INIT!IOllj' RETOBT CHAR 2 INIT 1021 ,
RETFIl CHAR 2 INIT 103 1 ,
RETSOF CHAR 2 INIT 104 1 ;

B.2.5 APIRETP2

API response start data area. Used by program DBTRSP1. This is a modifica­
tion of the original API RETP.

DCl RETPTR POINTER;
DCl 1 APIRET BASED(RETPTR),

2 RETAPID CHAR(4),
2 RETDIUID CHAR(16),
2 RETNAME CHAR(8),
2 RETTIME CHAR(8)'

DCl RETSON CHAR12j INIT!IOllj' RETOBT CHAR 2 INIT 1021 ,
RETFIl CHAR 2 INIT 103 1 ,
RETSOF CHAR 2 INIT 1041 ;

API and DI U-build Subroutines 113

B.3 ASSEMBLER MACRO

B .3. 1 APICALL

This is the macro used for subroutine calls.

&NAME

&N
&C

&NAME
. NONAME

. LOOP
&C

&A

.BAL

MACRO
APICALL &ENTRY,&OPRNDS
LCLA &N ,&C ,&A
SETA N'&OPRNDS
SETA ° AIF ('&NAME' EQ ").NONAME
OS OF
ANOP
L
ST
LA
ST
ANOP
SETA
AIF
SETA
LA
ST
AGO
ANOP
LA
L
BALR
L
L
MEND

RO,DFHEIBP
RO,COMPI
RO,APICOM
RO,COMP2

&C+l
(&C GT &N).BAL
&C+2
RO,&OPRNDS(&C)
RO,COMP&A
. LOOP

Rl,COMPARMS
15,=V(&ENTRY.)
14,15
RI5,COMRETCD
RO,COMREASN

LOAD EIB POINTER
STORE IN PARM LIST
LOAD ADDR OF APICOM
STORE IN PARM LIST

ADDRESS OF PARM
STORE IN LIST

ADDRESS OF PARAMETERS
LOAD 15 WITH ENTRY ADR
BRANCH TO ENTRY POINT
RETURN CODE IN R15
& REASON CODE IN RO

114 Connecting non-DIA Systems to DISOSS

B.4 SUBROUTINE LISTINGS

B .4.1 APIACTIV

ACT TITLE I *APIACTIV* - PERFORM DISOSS "ACTIVATE" - DISOSS API SAMPLE *
PROGRAMS'

PRINT NOGEN
APIACTIV CSECT

*
* SUBROUTINE TO DO A DISOSS 'ACTIVATE '
*
*
*
*
*

INPUT PARMLIST:
-> NAME (8 BYTES)
-> TIME STAMP (8 BYTES)

*
*
*
*
*
*
*

* COMCPTR IS SET TO ZERO BY CALLER IF THIS IS A FIRST TIME CALL *
*
* OUTPUT: COMRETCD HAS RETURN CODE.
* = 8 : BAD RETURN FROM DISOSS CALL.
* DISOSS RC IN COMREASN
*

*
*
*
*
*

SPACE
L R8,4(Rl)
USING APICOM,R8
SPACE
XC ACTRSV,ACTRSV
L R4,8(Rl)
MVC ACTNAME,O(R4)
L R4,12(Rl)
MVC ACTTIME,O(R4)
SPACE
LA
ST
LA
STH
SPACE

RO,ACT
RO,COMDPTR
RO,ACTLEN
RO,COMDLEN

APICOM ADDRESS

ZERO RESERVED FIELD
GET NAME POINTER
MOVE IN USER NAME
ADDR OF TIME DATA
MOVE INTO STD PARMS

GET COMMAND DATA
& TELL DISOSS

GET DATA LENGTH
TELL DISOSS

APICALL APIDISOS,(=CL8 I ACTIVATE ')
SPACE

* WE RETURN WITH THE RETURN CODE FROM DISOSS
ST R15,COMREASN OUR REASON CODE IS DISOSS RC
LTR R15,R15 WAS IT BAD RC ?
BZ *+8 NO, USE ZERO AS OUR RC
LA R15,8 OTHERWISE WE HAVE RC 8
ST R15,COMRETCD
EJECT

DFHEISTG DSECT
ACT OS OF
ACTNAME OS CL8 I USERNAME '
ACTTIME OS XL8
ACTRSV OS XL4
ACT LEN EQU *-ACT

SPACE
PRINT OFF
COPY APICOM
COPY APIDPR

ACTIVATE PARAMETER DATA
USER NAME GOES HERE
TIME VALUE
RESERVED

API and DIU-build Subroutines 115

COPY API REGS
PRINT ON
END

116 Connecting non-DIA Systems to DISOSS

, ,.~

B.4.2 APIDIUSB

This is a collection of 01 U element building subroutines. Used by program
DBTSON1 via routine API SGNON.

* SUBROUTINES TO BUILD DIU ELEMENTS *

* REGISTERS ARE NOT SAVED IN THESE ROUTINES. *
* REGS 0,1 CARRY PARAMETER VALUES AND ARE ALSO USED AS WORK REGS. *
* REG 15 IS OCCASIONALLY USED AS A WORK REGISTER *
* REG 2 POINTS TO THE CURRENT POSITION IN THE OUTPUT BUFFER *

SPACE

* PREFIX AND SUFFIX BUILDERS *

DIUPFX

MVCPFX

DIUSFX

SPACE
DS
LR
LA
STH
MVC
BCTR
EX
LA
BR
SPACE

OF
R15,RO
RO,5(R15)
RO,O(R2)
2(3,R2),=X'C00102'
RI5,O
R15,MVCPFX
R2,6(R15,R2)
R14

MVC 5(1,R2),O(R1)
SPACE 2
DS OF
MVC 2(3,R2),=X'CF0100'
LA RO,5
STH RO,O(R2)
LA R2,5(R2)
BR R14
SPACE 2

LENGTH OF CORRELATION DATA
ADD 5 FOR LLCTF
STORE LL VALUE
MOVE CTF DATA
-1 FOR EXECUTE
MOVE IN CORRELATION DATA
POINT AT NEXT AVAIL BYTE
& RETURN

EXECUTED MOVE

STANDARD SUFFIX DATA
FI X ED LENGTH

OF FIVE
INCREMENT BUFFER POINTER
& RETURN

* COMMANDS *

SPACE
FILECMD DS OF BUILD A DIU 'FILE' COMMAND
*

SONCMD
*

OBTCMD
*

MVC 2(3,R2){=X'CC0201'
LA R2,5(R2)
BR R14
SPACE 2

LL ADDED LATER
MOVE CTF
INCR BUFFER POINTER
RETURN TO CALLER

DS OF BUILD A DIU 'SIGNON' COMMAND

MVC 2(3,R2){=X'CDOC01'
LA R2,5(R2)
BR R14
SPACE 2

LL ADDED LATER
MOVE CTF
INCR BUFFER POINTER
RETURN TO CALLER

DS OF BUILD A DIU 'OBTAIN' COMMAND

MVC
LA
BR

2(3,R2),=X'CC1701'
R2,5(R2)
R14

LL ADDED LATER
MOVE CTF
INCR BUFFER POINTER
RETURN TO CALLER

API and DIU-build Subroutines 117

SPACE 2
DISCMD DS OF BUILD A DIU 'DISTRIBUTE 1 COMMAND
*

MVC 2(3,R2)~=X'CCICOlt
LA R2,5(R2}
BR R14
SPACE 2

LL ADDED LATER
MOVE CTF
INCR BUFFER POINTER
RETURN TO CALLER

* PARAMETERS FOR 'FILE' & 'DISTRIBUTE'

IDDATAI

ACCCODE

DUSEGN
*

DUSEGL
*

DUSYS
*

PRDOC
*

PRBASE
*

SPACE
DS OF
MVC 2(3,R2)~=X'C52001'
STC RO,5(R2}
LA RO,6
STH RO,O(R2)
LA R2,6(R2)
BR R14
SPACE 2
DS OF
MVC 2(3,R2),=X'C33941'
MVC 5(2,R2),=X'0601'
L RO,O(Rl)
ST RO,7(R2)
LA RO,11
STH RO,O(R2)
LA R2, 11(R2)
BR R14
SPACE 2
DS OF

MVC 2(6,R2)~=X'C90381200000'
LA R2,8(R2}
BR R14
SPACE 2
DS OF

MVC 2(6,R2)~=X'C90381000000'
LA R2,8(R2}
BR R14
SPACE 2
DS OF

STH RO,O(R2)
MVC 2(13,R2){O(Rl)
LA R2,15(R2}
BR R14
SPACE 2 .
DS OF

MVC 2(3,R2){=X'CA0301'
LA R2,5(R2}
BR R14
SPACE 2
DS OF

MVC
LA
BR

2(3,R2){=X'CA0401'
R2,5(R2}
R14

MOVE CTF
IDENTIFIED DATA IN RO

SET LL
INCR BUFFER POINTER

SET CTF VALUE
LENGTH + TYPE
LOAD ACCESS CODE VALUE
SET ACCESS CODE VALUE

SET LL VALUE
UPDATE TOTAL LENGTH

LL SET LATER
SEGMENT INTRODUCER
INCREMENT BUFFER PTR

LL SET LATER
SEGMENT INTRODUCER
INCREMENT BUFFER PTR

LL SET LATER
SET DOC TYPE
MOVE SYSTEM ID
INCR BUF PTR

LL SET LATER
CTF
INCR BUF PTR

LL SET LATER
CTF
INCR BUF PTR

118 Connecting non-DIA Systems to DISOSS

SPACE 2
PRBTYPE DS OF

MVC 2(3,R2»=X ' C70601 ' CTF
STH RO,5(R2 DOC TYPE
LA RO,7
STH RO,O~R2~ SET LL VALUE
LA R2,7 R2 INCR BUF PTR
BR R14
SPACE 2

PRBGCID DS OF
MVC 2(3,R2),=X ' C70101 ' CTF
ST RO,5(R2) SET GCID/GPID
LA RO,9
STH RO,O~R2~ SET LL VALUE
LA R2,9 R2 INCR BUF PTR
BR R14
SPACE 2

PRBDOCN DS OF
LR R15,RO LENGTH OF DOC NAME
LA RO,5~R15) ADD 5 FOR LLCTF
STH RO,O R2) STORE LL VALUE
MVC 2(3,R2),=X ' C70001' MOVE CTF DATA
BCTR R15,O -1 FOR EXECUTE
EX R15,MVCPRBD MOVE IN DOC NAME
LA R2,6(R15,R2) POINT AT NEXT AVAIL BYTE
BR R14 & RETURN
SPACE

MVCPRBD MVC
SPACE

5(1, R2), O(Rl) EXECUTED MOVE

PRBSUBJ DS OF
LR R15,RO LENGTH OF SUBJECT FIELD
LA RO,5~R15) ADD 5 FOR LLCTF
STH RO,O R2) STORE LL VALUE
MVC 2(3,R2),=X ' C70BOl ' MOVE-CTF DATA
BCTR R15,O -1 FOR EXECUTE
EX R15,MVCPRBS MOVE IN SUBJECT
LA R2,6(R15,R2) POINT AT NEXT AVAIL BYTE
BR R14 & RETURN
SPACE

MVCPRBS MVC 5(1, R2), O(Rl) EXECUTED MOVE
SPACE

PRBAUTH DS OF
LR R15,RO LENGTH OF AUTHOR FIELD
LA RO,5~R15) ADD 5 FOR LLCTF
STH RO,O R2) STORE LL VALUE
MVC 2(3,R2),=X ' C70401 ' MOVE CTF DATA
BCTR R15,O -1 FOR EXECUTE
EX R15,MVCPRBA MOVE IN AUTHOR NAME
LA R2,6(R15,R2) POINT AT NEXT AVAIL BYTE
BR R14 & RETURN
SPACE

MVCPRBA MVC 5(1,R2),O(R1)
SPACE

EXECUTED MOVE

PRBTIME DS OF
MVC 2~3,R2~,=X'C70701' CTF VALUE
MVC 5 6,R2 ,DATETIME STD VALUE FOR THE MOMENT
LA RO,ll LENGTH
STH RO,O(R2)
LA R2, 11(R2) POINT TO NEXT FREE BYTE
BR R14

API and 01 U-build Subroutines 119

SPACE
DATETIME DC AL2(1983),ALl(05),ALl(21),ALl(22),ALl(30)
* 22.30 ON 21ST MAY 1983

SPACE

* PARAMETERS FOR 'SIGNON' *

SPACE
FUNCSETS OS OF

LR R15,RO
LA RO,5(RI5)
STH RO,0(R2)
MVC 2(3,R2),=X'C31201'
BCTR R15,0
EX RI5,MVCFUNC
LA R2,6(RI5,R2)
BR R14
SPACE

MVCFUNC MVC 5(I,R2),0(Rl)
SPACE

SONNAME OS OF
LR RI5,RO
LA RO,5(RI5)
STH RO,0(R2)
MVC 2(3,R2),=X'C30DOl'
BCTR R15,0
EX RI5,MVCSONN
LA R2,6(RI5,R2)
BR R14
SPACE

MVCSONN MVC 5(I,R2),0(Rl)
SPACE

SONPASS OS OF
LR RI5,RO
LA RO,5(RI5)
STH RO,0(R2)
MVC 2(3,R2),=X'C33801'
BCTR R15,O
EX RI5,MVCSONP
LA R2,6(RI5,R2)
BR R14
SPACE

MVCSONP MVC 5(I,R2),0(Rl)
SPACE

RCVDOCS OS OF
MVC 2(3,R2),=X'C32901'
STH RO,5(R2)
LA RO,7
STH RO,0(R2)
LA R2, 7(R2)
BR R14
SPACE

LENGTH OF NAME FIELD
ADD 5 FOR LLCTF
STORE LL VALUE
CTF VALUE
-1 FOR EXECUTE
MOVE IN FUNC SETS STRING
POINT AT NEXT AVAIL BYTE
& RETURN

EXECUTED MOVE

LENGTH OF NAME FIELD
ADD 5 FOR LLCTF
STORE LL VALUE
MOVE CTF DATA
-1 FOR EXECUTE
MOVE IN USER NAME
POINT AT NEXT AVAIL BYTE
& RETURN

EXECUTED MOVE

LENGTH OF PASSWORD
ADD 5 FOR LLCTF
STORE LL VALUE
MOVE CTF DATA
-1 FOR EXECUTE
MOVE IN PASSWORD
POINT AT NEXT AVAIL BYTE
& RETURN

EXECUTED MOVE

SINGLE RECEIVE DOC TYPE
CTF
STORE DOC TYPE
LENGTH
STORED IN LL FIELD
BUMP BUFPTR

* PARAMETERS FOR 'OBTAIN' *

SPACE
OBTOPTS OS OF

MVC 2(3,R2),=X'C31EOl'
STC RO,5(R2)
LA RO,6

OBTAIN-OPTIONS
CTF
STORE OPTION BYTE
LENGTH

120 Connecting non-DIA Systems to DISOSS

STH
LA
BR
SPACE

RO,O(R2)
R2,6(R2)
R14

STORED IN LL FIELD
BUMP BUFPTR

* PARAMETERS FOR 'DISTRIBUTE ' *

SPACE
DNADDR DS OF DESTINATION NODE ADDRESS

LR R15,RO LENGTH OF ADDRESS NAME
LA RO,5~R15) ADD 5 FOR LLCTF
STH RO,O R2) STORE LL VALUE
MVC 2(3,R2),=X ' C32FOl' MOVE CTF DATA
BCTR R15,O -1 FOR EXECUTE
EX R15,MVCDNAD MOVE IN ADDRESS
LA R2,6(R15,R2) POINT AT NEXT AVAIL BYTE
BR R14 & RETURN
SPACE

MVCDNAD MVC
SPACE

5(1,R2),O(Rl) EXECUTED MOVE

RECADDR DS OF RECIPIENT NAME
LR R15,RO LENGTH OF NAME
LA RO,5~R15) ADD 5 FOR LLCTF
STH RO,O R2) STORE LL VALUE
MVC 2(3,R2),=X ' C30601 ' MOVE CTF DATA
BCTR R15,O -1 FOR EXECUTE
EX R15,MVCRECAD MOVE IN NAME
LA R2,6(R15,R2) POINT AT NEXT AVAIL BYTE
BR R14 & RETURN
SPACE

MVCRECAD MVC 5(l,R2),O(Rl) EXECUTED MOVE
SPACE

* DOCUMENT BUILDERS *

DCI
SPACE
DS
MVC
LA
STH
LA
BR

OF
2(3,R2),=X ' CBOIOl '
RO,5
RO,O(R2)
R2,5(R2)
R14

API and DIU-build Subroutines 121

B .4.3 APIOI US2

This collection of 01 U element building subroutines is a modified version of API­
OIUSB, and is used by program DBTSND1 via routines API0IS2 and APIFIL2.

* SUBROUTINES TO BUILD DIU ELEMENTS *

*
*
*
*
*

COPY OF APIDIUSB, ADDED OPERANDS FOR
LENGTH OF CORRELATION DATA 16 BYTES (INSTEAD OF 2),
SOURCE ADDRESS,
DOCUMENT GCID (NOT USED IN DBT ... SYSTEM),
ATTRIBUTE LIST

*
*
*
*
*

*
*
*
*

REGISTERS ARE NOT SAVED IN THESE ROUTINES.
REGS 0,1 CARRY PARAMETER VALUES AND ARE ALSO USED AS WORK REGS.
REG 15 IS OCCASIONALLY USED AS A WORK REGISTER
REG 2 POINTS TO THE CURRENT POSITION IN THE OUTPUT BUFFER

*
*
*
*

SPACE

* PREFIX AND SUFFIX BUILDERS *

DIUPFX

MVCPFX

DIUSFX

SPACE
DS
LR
LA
STH
MVC
BCTR
EX
LA
BR
SPACE

OF
RI5,RO
RO,5(R15)
RO,0(R2)
2(3,R2),=X 1 COOI02 1

R15,0
RI5,MVCPFX
R2,6(R15,R2)
R14

MVC 5(I,R2),O(RI)
SPACE 2
OS OF
MVC 2(3,R2),=X 1 CF0100 1

LA RO,5
STH RO,O(R2)
LA R2,5(R2)
BR RI4
SPACE 2

LENGTH OF CORRELATION DATA
ADD 5 FOR LLCTF
STORE LL VALUE
MOVE CTF DATA
-1 FOR EXECUTE
MOVE IN CORRELATION DATA
POINT AT NEXT AVAIL BYTE
& RETURN

EXECUTED MOVE

STANDARD SUFFIX DATA
FIXED LENGTH

OF FIVE
INCREMENT BUFFER POINTER
& RETURN

* COMMANDS *

SPACE
FILECMD DS OF BUILD A DIU IFILEI COMMAND
*

SONCMD
*

MVC 2(3,R2){=X 1 CC0201 1

LA R2,5(R2)
BR R14
SPACE 2

LL ADDED LATER
MOVE CTF
INCR BUFFER POINTER
RETURN TO CALLER

OS OF BUILD A DIU ISIGNON 1 COMMAND

MVC
LA
BR

2(3,R2),=X 1 CDOC01 1

R2,5(R2)
R14

LL ADDED LATER
MOVE CTF
INCR BUFFER POINTER
RETURN TO CALLER

122 Connecting non-OIA Systems to DISOSS

SPACE 2
OBTCMD DS OF BUILD A DIU 'OBTAIN' COMMAND
* LL ADDED LATER

MVC 2(3,R2),=X'CC1701' MOVE CTF
LA R2,5(R2) INCR BUFFER POINTER
BR R14 RETURN TO CALLER
SPACE 2

DISCMD OS OF BUILD A DIU 'DISTRIBUTE' COMMAND
* LL ADDED LATER

MVC 2(3,R2),=X'CCICOl' MOVE CTF
LA R2,5(R2) INCR BUFFER POINTER
BR R14 RETURN TO CALLER
SPACE 2

* PARAMETERS FOR 'FILE' & 'DISTRIBUTE' *

SPACE
IDDATAI OS OF

MVC 2(3,R2),=X'C52001'
STC RO,5(R2)
LA RO,6
STH RO,O(R2)
LA R2,6(R2)
BR R14
SPACE 2

MOVE CTF
IDENTIFIED DATA IN RO

SET LL
INCR BUFFER POINTER

SRCADDR OS OF SOURCE ADDRESS
LR R15,RO
LA RO,5(R15)
STH RO,O(R2)
MVC 2(3,R2),=X ' C32301 '
BCTR R15,0
EX R15,MVCSRCAD
LA R2,6(R15,R2)
BR R14
SPACE

MVCSRCAD MVC S(1,R2),O(Rl)
SPACE

ACCCODE OS OF
MVC 2(3,R2),=X'C33941'
MVC 5(2,R2),=X'0601 1

L RO,O(Rl)
ST RO,7(R2)
LA RO,l1
STH RO,0(R2)
LA R2 , 11 (R2)
BR R14
SPACE 2

DUSEGN DS OF
'"

DUSEGL
*

MVC 2(6,R2),=X'C9038120000Q'
LA R2,8(R2)
BR R14
SPACE 2
OS OF

MVC
LA
BR

2(6,R2),=X'C90381000000·
R2,8(R2)
R14

LENGTH OF NAME
ADD 5 FOR LLCTF
STORE LL VALUE
MOVE eTF DATA
-1 FOR EXECUTE
MOVE IN NAME
POINT AT NEXT AVAIL BYTE
& RETURN

EXECUTED MOVE

SET CTF VALUE
LENGTH + TYPE
LOAD ACCESS CODE VALUE
SET ACCESS CODE VALUE

SET LL VALUE
UPDATE TOTAL LENGTH

LL SET LATER
SEGMENT INTRODUCER
INCREMENT BUFFER PTR

LL SET LATER
SEGMENT INTRODUCER
INCREMENT BUFFER PTR

API and DIU-build Subroutines 123

OUSYS
*

PROOC
*

PRBASE
*

PRBTYPE

PRBGCID

DGCID

*

PRBDOCN

MVCPRBD

PRBSUBJ

SPACE 2
OS OF

STH RO,O(R2)
MVC 2(13,R2),O(Rl)
LA R2, IS(R2)
BR R14
SPACE 2
OS OF

MVC 2(3,R2),=X ' CA03011
LA R2, S(R2)
BR R14
SPACE 2
OS OF

MVC 2(3,R2),=X ' CA0401 1
LA R2,S(R2)
BR R14
SPACE 2
OS OF
MVC 2(3,R2),=X ' C706011
STH RO,S(R2)
LA RO,7
STH RO,O(R2)
LA R2,7(R2)
BR R14
SPACE 2
OS OF
MVC 2(3,R2),=X ' C70101 1
ST RO,S(R2)
LA RO, 9
STH RO,O(R2)
LA R2,9(R2)
BR R14
SPACE 2
OS OF
MVC 2(7,R2),=X ' C70S0100D70108 1

MVC 2(7,R2),=X ' C70S0101S10100 '
LA RD. 9
STH RO,O(R2)
LA R2,9(R2)
BR R14
SPACE 2
OS OF
LR RlS,RO
LA RO,S(RlS)
STH RO,0(R2)
MVC 2(3,R2),=X ' C70001 1
BCTR RlS,O
EX RlS,MVCPRBD
LA R2,6(RlS,R2)
BR R14
SPACE
MVC S(I,R2),0(Rl)
SPACE
OS OF
LR RlS,RO
LA RO,S(RlS)
STH RO,0(R2)

LL SET LATER
SET DOC TYPE
MOVE SYSTEM ID
INCR BUF PTR

LL SET LATER
CTF
INCR BUF PTR

LL SET LATER
CTF
INCR BUF PTR

CTF
DOC TYPE

SET LL VALUE
lNCR BUF PTR

CTF
SET GCID/GPID

SET LL VALUE
lNCR BUF PTR

GClD 21S-264 11403 1
GCID 337-2S6 1 FOR TESTING 1

SET LL
INCR BUFFER POINTER

LENGTH OF DOC NAME
ADD S FOR LLCTF
STORE LL VALUE
MOVE CTF DATA
-1 FOR EXECUTE
MOVE IN DOC NAME
POINT AT NEXT AVAIL BYTE
& RETURN

EXECUTED MOVE

LENGTH OF SUBJECT FIELD
ADD S FOR LLCTF
STORE LL VALUE

124 Connecting non-DIA Systems to DISOSS

MVC 2(3,R2),=X'C70BOl'
BCTR R15,0
EX R15,MVCPRBS
LA R2,6(R15,R2)
BR R14
SPACE

MVCPRBS MVC 5(1,R2),0(Rl)
SPACE

PRBAUTH OS OF
LR RlS,RO
LA RO,5(RlS)
STH RO,0(R2)
MVC 2(3,R2),=X'C70401 '
BCTR RlS,O
EX RlS,MVCPRBA
LA R2,6(RlS,R2)
BR R14
SPACE

MVCPRBA MVC 5(I,R2),0(Rl)
SPACE

PRBTIME OS OF
MVC 2(3,R2),=X ' C70701'
MVC S(6,R2),DATETIME
LA RO,l1
STH RO,0(R2)
LA R2, 11(R2)
BR R14
SPACE

MOVE CTF DATA
-1 FOR EXECUTE
MOVE IN SUBJECT
POINT AT NEXT AVAIL BYTE
& RETURN

EXECUTED MOVE

LENGTH OF AUTHOR FIELD
ADD 5 FOR LLCTF
STORE LL VALUE
MOVE CTF DATA
-1 FOR EXECUTE
MOVE IN AUTHOR NAME
POINT AT NEXT AVAIL BYTE
& RETURN

EXECUTED MOVE

CTF VALUE
STD VALUE FOR THE MOMENT
LENGTH

POINT TO NEXT FREE BYTE

DATETIME DC AL2(1983),ALl(OS),ALl(21),ALl(22),ALl(30)
* 22.30 ON 21ST MAY 1983

SPACE

* PARAMETERS FOR 'SIGNON ' *

SPACE
FUNCSETS OS OF

LR R15,RO
LA RO,5(RI5)
STH RO,0(R2)
MVC 2(3,R2),=X ' C31201 '
BCTR R15,0
EX R15,MVCFUNC
LA R2,6(R15,R2)
BR R14
SPACE

MVCFUNC MVC 5(I,R2),0(Rl)
SPACE

SON NAME OS OF
LR R15,RO
LA RO,5(R15)
STH RO,0(R2)
MVC 2(3,R2),=X ' C30DOl '
BCTR RlS,O .
EX R15,MVCSONN
LA R2,6(RI5,R2)
BR R14
SPACE

MVCSONN MVC 5(1,R2),0(Rl)
SPACE

SON PASS OS OF

LENGTH OF NAME FIELD
ADD 5 FOR LLCTF
STORE LL VALUE
CTF VALUE
-1 FOR EXECUTE
MOVE IN FUNC SETS STRING
POINT AT NEXT AVAIL BYTE
& RETURN

EXECUTED MOVE

LENGTH OF NAME FIELD
ADD 5 FOR LLCTF
STORE LL VALUE
MOVE CTF DATA
-1 FOR EXECUTE
MOVE IN USER NAME
POINT AT NEXT AVAIL BYTE
& RETURN

EXECUTED MOVE

API and DIU-build Subroutines 125

LR R15,RO
LA RO,5(R15)
STH RO,O(R2) .
MVC 2(3,R2),=X'C33801'
BCTR R15,O
EX R15,MVCSONP
LA R2,6(R15,R2)
BR R14
SPACE

MVCSONP MVC 5(1,R2),O(Rl)
SPACE

RCVDOCS DS OF
MVC 2(3,R2){=X'C32901'
STH RO,5(R2)
LA RO,7
STH RO,O(R2)
LA R2,7(R2)
BR R14
SPACE

LENGTH OF PASSWORD
ADD 5 FOR LLCTF
STORE LL VALUE
MOVE CTF DATA
-1 FOR EXECUTE
MOVE IN PASSWORD
POINT AT NEXT AVAIL BYTE
& RETURN

EXECUTED MOVE

SINGLE RECEIVE DOC TYPE
CTF
STORE DOC TYPE
LENGTH
STORED IN LL FIELD
BUMP BUFPTR

* PARAMETERS FOR 'OBTAIN' *

SPACE
OBTOPTS DS OF

MVC 2(3,R2){=X'C31EOl'
STC RO,5(R2)
LA RO,6
STH RO,O(R2)
LA R2,6(R2)
BR R14
SPACE

OBTAIN-OPTIONS
CTF
STORE OPTION BYTE
LENGTH
STORED IN LL FIELD
BUMP BUFPTR

* PARAMETERS FOR 'DISTRIBUTE' '*

DNADDR

MVCDNAD

ATTLST

RECADDR

SPACE
DS OF
LR R15,RO
LA RO,5(R15)
STH RO,O(R2)
MVC 2(3,R2),=X'C32FOl'
BCTR R15,O
EX R15,MVCDNAD
LA R2,6(R15,R2)
BR R14
SPACE
MVC 5(1,R2),O(Rl)
SPACE
DS OF

DESTINATION NODE ADDRESS
LENGTH OF ADDRESS NAME
ADD 5 FOR LLCTF
STORE LL VALUE
MOVE CTF DATA
-1 FOR EXECUTE
MOVE IN ADDRESS
POINT AT NEXT AVAIL BYTE
& RETURN

EXECUTED MOVE

MVC 2(7,R2),=X'C3050100000001' MOVE CTFATL

SET LL
LA RO,9
STH RO,O(R2)
LA R2,9(R2)
BR R14
SPACE 2
DS OF
LR R15,RO
LA RO,5(R15)
STH RO,O(R2)
MVC 2(3,R2),=X'C30601'
BCTR RIS,O

INCR BUFFER POINTER

RECIPIENT NAME
LENGTH OF NAME
ADD 5 FOR LLCTF
STORE LL VALUE
MOVE CTF DATA
-1 FOR EXECUTE

126 Connecting non-DIA Systems to DISOSS

EX
LA
BR
SPACE

MVCRECAD MVC
SPACE

R15,MVCRECAD
R2,6(R15,R2)
R14

5(1,R2),O(Rl)

MOVE IN NAME
POINT AT NEXT AVAIL BYTE
& RETURN

EXECUTED MOVE

* DOCUMENT BUILDERS *

DCI
SPACE
OS
MVC
LA
STH
LA
BR

OF
2(3,R2),=X'CBOI01'
RO,5
RO,O(R2)
R2,5(R2)
R14

API and DIU-build Subroutines 127

B .4.4 APIDISOS

DIS TITLE '*APIDISOS* - CALL DISOSS INTERFACE - DISOSS API SAMPLE PROG*
RAMS I

PRINT NOGEN
APIDISOS CSECT

*
*
*
*
*
*
*

(APIDISOS) - SUBROUTINE TO DO DISOSS CALLS

INPUT PARMS: -> APICOM
-> COMMAND VERB

ON EXIT, THE DISOSS RETURN CODE IS IN COMRETCD

*
*
*
*
*
*
* ***

SPACE
L R8,4(R1) LOAD API COM ADDRESS
USING APICOM,R8
L R4,8(R1)
SPACE

LOAD ADDRESS OF VERB

MVC COMXN,=C'*APICOM*' & EYE CATCHER
MVC COMXC,O(R4) COMMAND VERB
SPACE
LA RO,COMXC
ST RO,COMP1
XC COMRETCD,COMRETCD
LA RO,COMRETCD
ST RO,COMP2
LA RO,COMCPTR
ST RO,COMP3
LA RO,COMDPTR
ST RO,COMP4
LA RO,COMDLEN
ST RO,COMP5
01 COMP5,X'80 '
SPACE

ADDRESS THE COMMAND VERB
STORE ADDRESS OF COMMAND VERB
ZERO RETCODE FIELD
RETCODE FULLWORD

CONTROL BLOCK POINTER

DATA POINTER

DATA LENGTH

SET VL BIT

* TRACE IF TRACE FLAG IS SET
CLI COMTRFLG,COMTRYES SHALL WE TRACE?
BNE DIS1 NO
STM RO,R15,COMTRREG SAVE ALL REGS
EXEC CICS ENTER TRACEID(l)
LM RO,R15,COMTRREG RELOAD REGS

DIS1 EQU *
SPACE

* NOW ASK DISOSS TO PROCESS THE REQUEST
LA R1,COMPARMS R1 -> PARM LIST
L R15,=V(DSVAWOOO) INTERFACE ROUTINE ADDRESS
BALR R14,R15 CALL DISOSS
SPACE

* TRACE IF TRACE FLAG IS SET
CLI COMTRFLG,COMTRYES SHALL WE TRACE?
BNE DIS2 NO
STM RO,R15,COMTRREG SAVE ALL REGS
EXEC CICS ENTER TRACEID(2)
LM RO,R15,COMTRREG RELOAD REGS

DIS2 EQU *
EJECT

DFHEISTG DSECT
PRINT OFF

128 Connecting non-DIA Systems to DISOSS

COpy APICOM
COpy API REGS
PRINT ON
END

API and DIU-build Subroutines 129

B.4.5 APIDIS2

This is a modification of the original APIDISTR.

DIST TITLE '*APIDIS2* - BUILD AND SEND A DIA DISTRIBUTE COMMAND - DISO*
SS API SAMPLE PROGRAMS I

PRINT NOGEN
APIDIS2 CSECT
~************************
* (APIDIS2) - BUILDS A DIA 'DISTRIBUTE ' COMMAND AND PROFILE INFO *
* THEN SENDS IT TO DISOSS *
* THIS IS A COpy OF APIDISTR t ADDED FUNCTIONS ARE: * * -EXPANDED DIU CORRELATION TO 16 BYTES *
* INPUT PARM LIST: *
* -> APIDPR (DOCUMENT PROFILE MAP)
* -> DIU BUFFER (4K)

*
*

* OUTPUT: RETURN CODE IN COMRETCD *
* 0 COMMAND BUILT AND SENT OK *
* 4 ERROR IN DPR PARAMETERS *
* 8 BAD RETURN FROM DISOSS. VALUE IN COMREASN * ***

SPACE
L
USING
L
USING
L
LR
EJECT

R8,4(R1)
APICOM,R8
R9,8(R1)
APIDPR,R9
R10 t12(R1)
R2,R10

GET COM ADDRESS

ADDRESS OF DPR MAP

ADDRESS OF DIU BUFFER
FOR DIU BUILDERS

* HERE WE BUILD THE DIU BASED ON THE DPR INFORMATION *

SPACE
* DIU PREFIX

LA R1 tDPRCOR
LA RO t 16
BAL R14 tDIUPFX

* COMMAND SEQUENCE - 'DISTRIBUTE '

SET CORRELATION DATA
CORRELATION LENGTH ALWAYS 16

BUILD DIU PREFIX

LR R4 tR2 SAVE ADDR OF CMD SEQUENCE LL
BAL R14 tDISCMD BUILD 'DISTRIBUTE ' COMMAND

* IDENTIFIED DATA: DOCUMENT IS IN FIRST DOCUMENT UNIT
LA RO t1 = 1ST DOC UNIT
BAL R14 t IDDATA1 IDENTIFIED DATA (FORMAT 1)

* DESTINATION NODE ADDRESS
LA RO t 8
LA R1 tDPRDDN
BAL R14,DNADDR

ALWAYS LENGTH 8
DESTINATION NODE

* ATTRIBUTE LIST t NO COOt NOT PERSONAL t NO PRIORITY t COPIES = 1
BAL R14 tATTLST ATTRIBUTE LIST

* RECIPIENT NAME
LA RO t 8
LA R1 t DPRRID
BAL R14 tRECADDR

ALWAYS LENGTH 8
RECIPIENT NAME

* SET LENGTH OF COMMAND SEQUENCE SEGMENT
LR RO tR2 SET CURRENT POINTER
LR R1 tR4 COLLECT ADDR OF CMD SEQ LL
SLR RO tR1 SUBTRACT ADDR OF LL

130 Connecting non-DIA Systems to DISOSS

STH RO,O(Rl)· SET CMD SEQUENCE LL
* NOW START DOCUMENT UNIT SEGMENTS

LR R4,R2 USE R4 FOR ADDR OF LL
BAL R14,DUSEGN DOCUMENT UNIT SEGMENT (NOT LAST)

* SET DOC TYPE AND SYSTEM 10
LH RO,DPRDOT
LA R1,DPRSYS
BAL R14,DUSYS

* START OF DOCUMENT PROFILE(S)
LR R5,R2
BAL R14,PRDOC

* BASE SUBPROFILE
LR R6,R2
BAL R14,PRBASE

* DOCUMENT TYPE
LH RO,DPRDOT
BAL R14,PRBTYPE

* PROFILE GCID
L RO,DPRPGC
BAL Rl4,PRBGCID

* DOCUMENT GCID

SET DOC TYPE AS PASSED
AND SYSTEM ID (IGNORE LENGTHS)

SET DOC TYPE ~ SYSTEM ID

ADDR OF PROFILE LL
BUILD DOC PROFILE LLCTF

ADDR OF BASE SUBPROFILE LL
BUILD BASE SUBPROFILE LLCTF

DOCTYPE AS PASSED
SET DOCUMENT TYPE

GPID + GCID
SET PROFILE GCID

* DISOSS DOES NOT LOOK AT GCID IN PROFILE
* BAL R14,DGCID DOCUMENT GCID 215-108
* DOCUMENT NAME

LA R1,DPRDON DOCUMENT NAME
SLR RO,RO
IC RO,DPRDONL
BAL R14,PRBDOCN

& LENGTH
SET DOCUMENT NAME

* SUBJECT
LA
SLR
IC
BAL

R1,DPRSUB
RO,RO
RO,DPRSUBL
R14,PRBSUBJ SET SUBJECT FIELD

* AUTHOR
LA R1,DPRAUT
SLR RO,RO
IC RO,DPRAUTL
BAL R14,PRBAUTH SET AUTHOR VALUE

* CREATION DATE & TIME
* BAL R14,PRBTIME SET CURRENT DATE AND TIME
* END OF BASE SUBPROFILE - SET BASE SUBPROFILE LL

LR RO,R2 GET CURRENT ADDRESS
SLR RO,R6 GET LENGTH OF BASE SUBPROF
STH RO,0(R6) & STORE LENGTH IN LL FIELD

* END OF DOCUMENT PROFILES - SET PROFILE LL
LR RO,R2 GET CURRENT ADDRESS
SLR RO,R5 GET LENGTH OF DOC PROFILE
STH RO,0(R5) & STORE LENGTH IN LL FIELD

* DOCUMENT CONTENT INTRODUCER
BAL R14,DCI DCI BUILDER

* END OF DOC UNIT SEGMENT - SET DOC UNIT LL
LR RO,R2 GET CURRENT ADDRESS
SLR RO,R4 GET LENGTH OF DOC UNIT
STH RO,0(R4) & STORE LENGTH IN LL FIELD
EJECT

* DIU NOW BUILT - SEND IT TO DISOSS *

SPACE
* TELL DISOSS WHAT WE HAVE

API and DIU-build Subroutines 131

ST
SLR
STH
SPACE

RIO,COMDPTR
R2,RIO
R2,COMDLEN

TELL DISOSS WHERE IT IS
OBTAIN LENGTH
TELL DISOSS ALSO

APICALL APIDISOS,(=CL8'SEND')
SPACE

* WE RETURN WITH THE RETURN CODE FROM DISOSS
ST R15,COMREASN SET REASON CODE AS DISOSS RC
LTR R15,R15 WAS IT BAD RC ?
BZ *+8 NO, USE ZERO AS OUR RC
LA R15,8 OTHERWISE WE HAVE RC 8
ST R15,COMRETCD
SPACE
B ENDCSECT
EJECT
COPY APIDIUS2
EJECT

ENDCSECT OS OH
DFHEISTG DSECT

PRINT OFF
COPY APICOM
COPY APIDPR2
COPY API REGS
PRINT ON
END

BRANCH ROUND STATIC DATA ETC

DIU BUILDER SUBROUTINES

132 Connecting non-DIA Systems to DISOSS

B.4.6 APIFIL2

This is a modification of the original API FI LE.

FILE TITLE '*APIFILE* - BUILD AND SEND A DIA FILE COMMAND - DISOSS API *
SAMPLE PROGRAMS'

PRINT NOGEN
APIFIL2 CSECT

* (FILE) - BUILDS A 'FILE' COMMAND, PLUS PROFILE INFO
* THEN SENDS IT TO DISOSS
* COpy OF API FILE, ADDED
* 16 BYTES CORR. DATA
* SOURCE ADDRESS, FILE ON BEHALF ..
* INPUT PARM LIST:
* -> APIDPR (DOCUMENT PROFILE MAP)
* -> DIU BUFFER (4K)
* OUTPUT: RETURN CODE IN COMRETCD
* ° COMMAND BUILT AND SENT OK
* 4 ERROR IN DPR PARAMETERS
* 8 BAD RETURN FROM DISOSS. VALUE IN COMREASN

*
*
*
*
*
*
*
*
*
*
*
* ***

SPACE
L
USING
L
USING
L
LR
EJECT

R8,4(R1)
APICOM,R8
R9,8(R1)
APIDPR, R9
R10,12(R1)
R2,R10

GET COM ADDRESS

ADDRESS OF DPR MAP

ADDRESS OF DIU BUFFER
FOR DIU BUILDERS

* HERE WE BUILD THE DIU BASED ON THE DPR INFORMATION *

SPACE
* DIU PREFIX
* LA R1,=C'03'
* LA RO,2

LA R1,DPRCOR
LA RO,16
BAL R14,DIUPFX

* COMMAND SEQUENCE - 'FILE'

SET ADDRESS AND
LENGTH OF CORRELATION DATA
CORRELATION DATA
LENGTH OF CORRELATION DATA

BUILD DIU PREFIX

LR R4,R2 SAVE ADDR OF CMD SEQUENCE LL
BAL R14,FILECMD BUILD 'FILE' COMMAND

* IDENTIFIED DATA: DOCUMENT IS IN FIRST DOCUMENT UNIT
LA RO, 1, = 1ST DOC UNIT
BAL R14,IDDATA1 IDENTIFIED DATA (FORMAT 1)

* SOURCE ADDRESS FILE ON BEHALF OF
LA RO,8 SET LENGTH ALWAYS 8
LA R1,DPRRID RECIPIENT NAME USED AS SOURCE ADRESS
BAL R14,SRCADDR

* ACCESS CODE VALUE
SLR RO,RO
IC RO,DPRACCL
LA R1,DPRACC
BAL R14,ACCCODE

CLEAR REG °
SET LENGTH
SET ACC CODE VALUE

* SET LENGTH OF COMMAND SEQUENCE SEGMENT
LR RO,R2 SET CURRENT POINTER
LR R1,R4 COLLECT ADDR OF CMD SEQ LL

API and DIU-build Subroutines 133

SLR RO,R1 SUBTRACT ADDR OF LL
STH RO,O(R1) SET CMD SEQUENCE LL

* NOW START DOCUMENT UNIT SEGMENTS
LR R4,R2 USE R4 FOR ADDR OF LL
BAL R14,DUSEGN DOCUMENT UNIT SEGMENT (NOT LAST)

* SET DOC TYPE AND SYSTEM ID
LH RO, DPRDOT
LA R1,DPRSYS
BAL R14,DUSYS

* START OF DOCUMENT PROFILE(S)
LR R5,R2
BAL R14,PRDOC

* BASE SUBPROFILE
LR R6, R2
BAL R14,PRBASE

* DOCUMENT TYPE
LH RO,DPRDOT
BAL R14,PRBTYPE

* PROFILE GCID
L RO,DPRPGC
BAL R14,PRBGCID

* DOCUMENT GC ID

SET DOC TYPE AS PASSED
AND SYSTEM 10 (IGNORE LENGTHS)

SET DOC TYPE & SYSTEM 10

ADDR OF PROFILE LL
BUILD DOC PROFILE LLCTF

ADDR OF BASE SUBPROFILE LL
BUILD BASE SUBPROFILE LLCTF

DOCTYPE AS PASSED
SET DOCUMENT TYPE

GPID + GCID
SET PROFILE GelD 101510100 1

* DISOSS DOES NOT LOOK INTO DOC GelD IN PROFILE
* BAL R14,DGCID SET DOCUMENT GCID 100070108'
* DOCUMENT NAME

LA R1,DPRDON DOCUMENT NAME
SLR RO,RO
IC RO,DPRDONL & LENGTH
BAL R14,PRBDOCN SET DOCUMENT NAME

* SUBJECT
LA
SLR
IC
BAL

R1,DPRSUB
RO,RO
RO,DPRSUBL
R14,PRBSUBJ SET SUBJECT FIELD

* AUTHOR
LA R1,DPRAUT
SLR RO,RO
IC RO,DPRAUTL
BAL R14,PRBAUTH SET AUTHOR VALUE

* CREATION DATE & TIME
* BAL R14,PRBTIME SET CURRENT DATE AND TIME
* END OF BASE SUBPROFILE - SET BASE SUBPROFILE LL

LR RO,R2 GET CURRENT ADDRESS
SLR RO,R6 GET LENGTH OF BASE SUBPROF
STH RO,0(R6) & STORE LENGTH IN LL FIELD

* END OF DOCUMENT PROFILES - SET PROFILE LL
LR RO,R2 GET CURRENT ADDRESS
SLR RO,R5 GET LENGTH OF DOC PROFILE
STH RO,O(RS) & STORE LENGTH IN LL FIELD

* DOCUMENT CONTENT INTRODUCER
BAL R14,DCI DCI BUILDER

* END OF DOC UNIT SEGMENT - SET DOC UNIT LL
LR RO,R2 GET CURRENT ADDRESS
SLR RO,R4 GET LENGTH OF DOC UNIT
STH RO,0(R4) & STORE LENGTH IN LL FIELD
EJECT

* DIU NOW BUILT - SEND IT TO DISOSS *

134 Connecting non-DIA Systems to DISOSS

SPACE
* TELL DISOSS WHAT WE HAVE

ST RIO,COMDPTR
SLR R2,RIO
STH R2,COMDLEN
SPACE

TELL DISOSS WHERE IT IS
OBTAIN LENGTH
TELL DISOSS ALSO

APICALL APIDISOS,(=CL8 I SEND ')
SPACE

* WE RETURN WITH THE RETURN CODE FROM DISOSS
ST R15,COMREASN SET REASON CODE AS DISOSS RC
LTR R15,R15 WAS IT BAD RC ?
BZ *+8 NO, USE ZERO AS OUR RC
LA R15,8 OTHERWISE WE HAVE RC 8
ST R15,COMRETCD
SPACE
B ENDCSECT
EJECT
COPY APIDIUS2
EJECT

ENDCSECT OS OH
DFHEISTG DSECT

PRINT OFF
COPY APICOM
COPY APIDPR2
COPY APIREGS
PRINT ON
END

BRANCH ROUND STATIC DATA ETC

DIU BUILDER SUBROUTINES

API and DIU-build Subroutines 135

S.4.7 APIGTCMD

GCMD TITLE I *APIGTCMD* - GET COMMAND && PARMS FROM INPUT DIU - DISOSS A*
PI SAMPLE PROGRAMS'

PRINT NOGEN .
APIGTCMD CSECT

* *
* (APIGTCMO) ANALYZES DIU INPUT AND INDICATES COMMAND IN THE
* COM BLOCK AND THE PARAMETERS IN THE PASSED DPR BLOCK
*

*
*
*

SPACE
L R8,4(Rl)
USING APICOM,R8
L R4,8(Rl)
USING APIDPR,R4
SPACE

GETCMDI EQU *

ADDR OF APICOM

ADDRESS OF DPR BLOCK

* WE PASS ON OUR PASSED 4K DPR BLOCK
APICALL APIPARSE,(APIDPR)
SPACE
LTR R15,R15
BNZ GETCMDR
TM COMDST,COMDSTC
BZ GETCMDl

GETCMDR EQU *
EJECT

DFHEISTG DSECT
PRINT OFF
COPY APICOM
COPY APIDPR
COPY APIREGS
PRINT ON
END

MAKE SURE OK.
RETURN IF NOT
HAVE WE GOT COMMAND YET ?
NO, TRY FOR NEXT

136 Connecting non-DIA Systems to DISOSS

B.4.8 APILAST

LAST TITLE '*APILAST* - PERFORM A "LAST" CALL - DISOSS API SAMPLE PROGR*
AMS'

PRINT NOGEN
API LAST CSECT

*
*
*
*
*

(LAST) SUBROUTINE TO ISSUE A 'LAST' CALL TO DISOSS
PARMS:

NAME OF TRANSACTION THAT DISOSS SHOULD START IN RESPONSE

*
*
*
*
*

SPACE
L R8,4(Rl)
USING APICOM,R8
L R4,8(Rl)
SPACE
MVC LSTTRAN,O~R4~
MVI LSTFLAG,X FF
MVC LSTTERM,EIBTRMID
SPACE
LA RO, LST
ST RO,COMDPTR
LA RO, LSTLEN
STH RO,COMDLEN
SPACE

* NOW CALL DISOSS

LOAD APICOM ADDRESS

ADDR OF TRANSACTION NAME

RESPONSE TRANSACTION ID
1 RESPONSE TRAN FOR ALL
RESPONSE TRAN FOR THIS TERMINAL

GET COMMAND DATA
& TELL DISOSS

GET DATA LENGTH
TELL DISOSS

APICALL APIDISOS,(=CL8'LAST')
SPACE
ST R15,COMREASN
LTR R15,R15
BZ *+8
LA R15,8
ST R15,COMRETCD
EJECT

DFHEISTG DSECT
LST DS OF
LSTTRAN DS CL4
LSTFLAG DS X
LSTTERM OS CL4
LSTLEN EQU *-LST

SPACE
PRINT OFF
COpy APICOM
COpy APIDPR
COPY API REGS
PRINT ON
END

SET REASON CODE AS DISOSS RC
WAS IT BAD RC ?
NO, USE ZERO.AS OUR RC
OTHERWISE WE HAVE RC 8

PARAMETERS FOR "LAST"
RESPONSE TRANSACTION ID
1 TRANSACTION PER MSG
TERMID TO START TRAN AGAINST

API and DI U-build Subroutines 137

B.4.9 APIPARSE

PARS TITLE '*APIPARSE* - DIU PARSER - DISOSS API SAMPLE PROGRAMS'
PRINT NOGEN

API PARSE CSECT

* *
*
*
*
*
*
*

(API PARSE) PARSE AN INCOMIMG DIU ELEMENT
RECEIVE THE NEXT DIU SEGMENT FROM DISOSS IF NECESSARY.

INPUT: -> 4K DPR OR TEXT BUFFER TO RECEIVE PARAMETERS OR
PROFILE OR DOCUMENT SEGMENT.

*
*
*
*
*
* ***

SPACE
L .. R8, 4(Rl)
USING APICOM,R8
L R2,8(Rl)
USING APIDPR,R2
SPACE

APICOM ADDRESS'

HOLD 4K BLOCK POINTER IN R2 HERE

L RIO,COMDBUFP LOAD CURRENT DIU BUFFER ADDRESS
LTR RIO,RIO DO WE HAVE ONE?
BNZ ANDIUO YES, SKIP GETMAIN
EXEC CICS GETMAIN SET(RIO) LENGTH(8220) INITIMG(X'OO')
ST RIO,COMDBUFP STORE ITS ADDRESS
SLR RO,RO INITIALIZE ...
STH RO,COMLDIUl - TOTAL BUFFER LENGTH
STH RO,COMLDIU2 - TOTAL DIU SEGMENT LENGTH
STH RO,COMLDIU3 - AMOUNT OF SEGMENT USED SO FAR
MVI COMDCMD,X'OO' NO COMMAND AS YET
MVI COMDST,X'OQ' STATUS INDETERMINATE
SPACE

ANDIUO EQU *
TM COMDST,COMDSTE
BO ANDIU2
LH RO,COMLDIUl
CH RO,=H'4110'
BH ANDIU2
APICALL APIRECVE
LTR R15,R15
BZ ANDIUl
CH RO,=H'3'
BNE ANDIUR
XC COMRETCD,COMRETCD
01 COMDST,COMDSTE
B ANDIU2
SPACE

HAVE WE REACHED END OF DATA ?
YES, NO MORE TO GET
HOW MUCH IN BUFFER ?
IF .GT 4110
DON'T GET MORE
OTHERWISE GET MORE FROM DISOSS
CHECK RC
o - CARRY ON
WAS IT END OF DATA ?
NO, QUIT WITH BAD RETURN
CLEAR BAD RETURN CODE INDICATOR
SET END OF DATA FLAG
AND GO PROCESS.

* WE HAVE SOME DATA. MOVE IT INTO OUR BUFFER
ANDIUl EQU *

LR R4,RIO GET BUFFER ADDRESS
AH R4,COMLDIUl INCR TO CURRENT POSITION
L R6,COMDPTR ADDRESS OF INPUT DATA
LH R7,COMDLEN SOURCE LENGTH
LR R5,R7 TARGET LENGTH = SOURCE

. MVCL R4,R6 MOVE INPUT DATA
* AND MAINTAIN RECORD OF THIS DATA

LH R7,COMLDIUl CURRENT LENGTH
AH R7,COMDLEN PLUS NEW LENGTH
STH R7,COMLDIUl UPDATED

138 Connecting non-DIA Systems to DISOSS

B ANDIUO GET NEXT AS NECESSARY
SPACE

ANDIU2 EQU * DIU ANALYSIS
LA R4,ANTAB POINT AT C-T TABLE
LA R6,8 LENGTH OF TABLE ENTRY
LA R7,ANTABE-l POINT AT TABLE END

ANDIU3 L R5,4(R4) GET BRANCH ADDRESS
CLC 2(2,RIO),O(R4) IS IT THIS TABLE ENTRY?
BER R5 YES, BRANCH TO PROCESSING ROUTINE
BXLE R4,R6,ANDIU3 OTHERWISE LOOP FOR NEXT

* DIU C-T BYTE NOT RECOGNIZED - ERROR
LA R15,255 INDICATE MAJOR ERROR
B ANDIUR AND RETURN TO CALLER
SPACE 2

ANCMDCH OS OF
LR R4,R9
AH R4,COMLDIU3
CH R4,COMLDIU2
BL AN END
01 COMDST,COMDSTC
B ANEND
SPACE 2

ANPRFCH OS OF
LR R4,R9
AH R4,COMLDIU3
CH R4,COMLDIU2
BL ANEND
01 COMDST,COMDSTP
B ANEND
SPACE 2

ANEND EQU *

COPY LL VALUE FOR ELEMENT
ADD IN AMOUNT USED
HAVE WE PROCESSED ALL SEGMENT
NO, RETURN
YES, MARK COMMAND COMPLETE
& RETURN

COPY LL VALUE FOR ELEMENT
ADD IN AMOUNT USED
HAVE WE PROCESSED ALL SEGMENT
NO, RETURN
YES, MARK PROFILES COMPLETE
& RETURN

* WE SHIFT ALL THE BUFFER LEFT OVER THE CURRENT ELEMENT
LR R4,RIO TARGET ADDRESS
LA R6,O(R9,R4) SOURCE ADDRESS
LH R7,COMLDIUl CURRENT LENGTH
SLR R7,R9 LESS LL FOR CURRENT ELEMENT
LR R5,R7 TARGET LENGTH
MVCL R4,R6 SHIFT LEFT IN BUFFER
SPACE

* UPDATE LENGTH POINTERS
LH R7,COMLDIUl
SLR R7,R9
STH R7,COMLDIUl
LH R7,COMLDIU3
ALR R7,R9
STH R7,COMLDIU3
SPACE

TOTAL LENGTH
LESS AMOUNT JUST PROCESSED
UPDATED
AMOUNT USED IN SEGMENT
+ ELEMENT JUST PROCESSED
UPDATED

TM COMDST,COMDSTE DID WE HIT END OF DATA?
BZ ANDIURI NO
LH RO,COMLDIUl YES, SO GET DATA LENGTH
LTR RO,RO ANYTHING LEFT?
BNZ ANDIURI YES
L RIO,COMDBUFP NO, LOAD ADDR OF BUFFER
EXEC CICS FREEMAIN DATA(O(RIO»
XC COMDBUFP,COMDBUFP CLEAR ADDRESS
SPACE

ANDIURI EQU *
SLR R15, R15
SPACE

ANDIUR EQU *

INDICATE GOOD RETURN

API and DIU-build Subroutines 139

STM RO,R15,COMTRREG
EXEC CICS ENTER'TRACEID(7)
LM RO,R15,COMTRREG
ST RO,COMREASN
ST R15,COMRETCD
B ENDCSECT
EJECT

SET OUR REASON CODE
AND OUR CALCULATED RC
FINISHED

* *
*
*

(ANXX) DIU ANALYSIS ROUTINES, REACHED BY BRANCH TABLE *
*

SPACE

* PREFIX
ANIO EQU *

MVI
NI
LH
B

COMDCMD,X'OO' CLEAR COMMAND BYTE
COMDST,255-(COMDSTC+COMDSTP+COMDSTD+COMDSTX)
R9,O(RIO) GET LL VALUE
ANEND BUMP AND CHECK LENGTH

* SUFFIX
AN 11 EQU *

01 COMDST,COMDSTX
LH R9,O(RIO)
B ANEND
SPACE 2

* DELIVER COMMAND
AN15 EQU *

MVI COMDCMD,COMDDLV
B ANSTCMD

* ACKNOWLEDGE COMMAND
AN16 EQU *

MVI COMDCMD,COMDACK
B ANSTCMD

* SIGNON RESPONSE
AN 17 EQU *

MVI COMDCMD,COMDSON
B ANSTCMD
SPACE 2

SHOW SUFFIX FOUND
SO WE CLEANLY HAVE ZERO LENGTH
GO SCHEDULE DISOSS

INDICATE THIS IS DELIVER
SETUP FOR START OF COMMAND

INDICATE THIS IS ACK
SETUP FOR START OF COMMAND

INDICATE THIS IS SIGNON RESPONSE
SETUP FOR START OF COMMAND

ANSTCMD EQU * START OF COMMAND SEGMENT
SLR RO,RO
STH RO,COMLDIU3
LH R9,O(RIO)
STH R9, COMLDIU2
LA R9,5
B ANEND
EJECT

NOTHING USED IN SEGMENT SO FAR
GET COMMAND UNIT LENGTH
SO WE KNOW WHEN END OF COMMAND
JUST 5 FOR COMMAND
BUMP AND CHECK LENGTH

* THE FOLLOWING COMMAND OPERANDS WE IGNORE, EXCEPT THAT WE CHECK
* TO SEE IF THE COMMAND OPERANDS ARE COMPLETE

AN20
AN21
AN24
AN25
AN40
AN41

SPACE
EQU *
EQU *
EQU *
EQU *
EQU *
EQU *
LH R9,O(RIO)
B ANCMDCH
EJECT

IDENTIFIED DATA
CORRELATION
ATTRIBUTE LIST
RECIPIENT NAME (WE KNOW IT)
FUNCTION SETS
SIGNON REPLY
LL VALUE
CHECK COMMAND COMPLETE

* THE FOLLOWING ARE PROFILE INTRODUCERS, SO WE JUST SKIP
* OVER THE LLCTF

140 Connecting non-DIA Systems to DISOSS

SPACE
AN51 EQU '" PROFILE INTRODUCER
AN52 EQU '" BASE SUBPROFILE
AN53 EQU '" APPLICATION SUBPROFILE

LA R9,5 5 ONLY, FOR LLCTF
B ANPRFCH CHECK TO SEE IF PROFILES COMPLETE
SPACE

'" MANY OF THE DIU OPERANDS WE IGNORE, SO WE GROUP THESE
'" TOGETHER AS 'NULL ACTION'

SPACE
AN54 EQU '" 3730 SUBPROFILE
AN55 EQU * DISOSS SUBPROFILE
AN56 EQU '" 5520 SUBPROFILE
AN60 EQU * DOCUMENT NAME
AN62 EQU * OWNER
AN63 EQU * AUTHOR
AN64 EQU * DOCUMENT GCID
AN65 EQU '" DOCUMNT TYPE
AN66 EQU '" CREATE DATE/TIME
AN67 EQU * LAST CHANGED DATE
AN68 EQU '" COPY LIST
AN69 EQU * FILE CABINET REF
AN70 EQU '" SUBJECT
AN 71 EQU '" SYSTEM CODE
AN 72 EQU '" DOCUMENT SIZE
AN74 EQU '" DOCUMENT CLASS
AN75 EQU * DOCUMENT DATE
AN76 EQU '" LEVEL 3 PARAMETER SET
AN80 EQU '" FILE DATE/TIME
AN81 EQU '" OWNERSHIP
AN82 EQU * KEYWORDS
AN83 EQU '" EXPIRY DATE
AN84 EQU '" OWNER DELEGATE
AN91 EQU * DOCUMENT CONTENT PROFILES ONLY
AN90 EQU '" DOCUMENT CONTENT WITH TEXT

LH R9,0(RIO) LL VALUE
B ANPRFCH CHECK TO SEE IF PROFILES COMPLETE
EJECT

"'
* '" * HERE WE PROCESS THOSE OPERANDS THAT MEAN SOMETHING TO US '" * '" **"''''*'''***'''********''''''***'''*****'''*'''*'''***''''''******''''''*****''''''"'*****"''''*****'''*'''*

SPACE
* SOURCE NAME
AN22 EQU *

LH R9,0(RIO)
LR R5,R9
S R5,=F'6'
EX R5,MVDLVUSR
B ANCMDCH

MVDLVUSR MVC DPRSID(I),5(RIO)
SPACE

* DOC DISTRIBUTION NAME
AN23 EQU *

LH R9,0(RIO)
MVC DPRDIS,5(RIO)
B ANCMDCH

COLLECT LL VALUE
COPY LL VALUE
5 FOR LLCTF + I FOR EXECUTE
PUT IN DPRAREA

COPY SOURCE NAME

COLLECT LL VALUE
PUT IN OUT MAP

API and 01 U-build Subroutines 141

SPACE
'I< SOURCE ADDRESS (LOCATION)
AN26 EQU 'I<

LH R9,O(RIO)
LR R5,R9
S R5,=F ' 61

EX R5,MVDLVLOC
B ANCMDCH

MVDLVLOC MVC DPRDDN(1),5(RIO)
SPACE

COLLECT LL VALUE

5 FOR LLCTF + 1 FOR EXECUTE
PUT IN OUT MAP

'I< MESSAGE (IF DOC WAS DISTRIBUTED FROM LIBRARY BY ONLINE USER)
AN27 EQU 'I< .

LH R9,O(RIO)
LR R5,R9
S R5,=F ' 61

EX R5,MVDLVMSG
LA R5,1(R5)
STC R5,DPRMSGL
B ANCMDCH

MVDLVMSG MVC DPRMSG(1),5(RIO)
SPACE

'I< EXCEPTION CODE
AN30 EQU 'I<

MVC DPREXCOD,5(RIO)
LH R9,O(RIO)
B ANCMDCH
SPACE

'I< REPLY DATA
AN31 EQU 'I<

LH R9,O(RIO)
LR R5,R9
S R5,=F ' 61

EX R5,AN31MVC
B ANCMDCH

AN31MVC MVC DPRACKR(1),5(RIO)
EJECT

'I< PROFI LE GCID
AN61 EQU 'I<

LH R9,O(RIO)
MVC DPRPGC,5(RIO)
B ANPRFCH
SPACE

'I< LADN PROFILE OPERAND
AN73 EQU 'I<

LH R9,O(RIO)
MVC DPRLAD,7(RIO)
B ANPRFCH
EJECT

'I< TEXT SEGMENT INTRODUCER
AN95 EQU 'I<

LH R9,O(RIO)
TM COMDST,COMDSTP
BO AN95A
STH R9,COMLDIU2
SLR RO,RO
STH RO,COMLDIU3
MVC DPRDOT,8(RIO)
MVC DPRSYS,lO(RIO)
LA R9,23
B ANPRFCH

COLLECT LL VALUE

5 FOR LLCTF + 1 FOR EXECUTE
PUT IN DPR BLOCK
PUT BACK 1 FOR EXECUTE
SET LENGTH IN MAP

COPY EXCEPTION CODE
LL VALUE

CHECK FOR COMMAND PARMS COMPLETE

LL VALUE

5 FOR LLCTF + 1 FOR EXECUTE
PUT IN DPR BLOCK
CHECK FOR COMMAND COMPLETE

LL VALUE
COpy PROFILE GClD FOR REFILE
CHECK FOR PROFILE COMPLETE

LL VALUE
COPY DTM PART OF LADN
CHECK FOR PROFILE COMPLETE

LL VALUE
HAVE WE HAD PROFILES?
YES, PROCESS TEXT
NO, SET SEGMENT LENGTH
INITIALIZE ...
.. LENGTH USED

COPY DOC TYPE
AND SYSTEM CODE
INCR FOR LLCTF, ISS, TYPE & CODE
CHECK FOR PROFILE COMPLETE

142 ·Connecting non-DIA Systems to DISOSS

SPACE
AN95A EQU *
* IF THIS IS LAST TEXT SEGMENT, MARK TEXT BUFFER COMPLETE AND QUIT

TM 5(RIO),X ' 20 ' LAST SEGMENT?
BZ AN95C YES, FINISH
SPACE

* WILL SEGMENT FIT IN BUFFER?
LR R7,R9
SH R7,=H '81

LR RI,R7
LH RO,=H'4088 1

SH RO,O(R2)
CR RO,R7
BL AN95B
SPACE

* YES, THERE IS SPACE IN BUFFER
LH R5,O!R2)
LA R4,8 R5,R2)
LA R6,8 RIO)
LR R5,R7
MVCL R4,R6
SPACE

* AND UPDATE BUFFER USE VALUES
AH RI,O(R2)
STH RI,O(R2)
B AN95R
SPACE

AN95B EQU *

ELEMENT LENGTH
REDUCE FOR LLCTF AND ISS
COpy LENGTH FOR LATER
MAX DATA IN BLOCK
CALCULATE SPACE AVAILABLE
COMPARE AGAINST THIS BLOCK
TOO MUCH, WE MUST SPLIT IT

GET CURRENT LENGTH
TARGET ADDRESS
SOURCE ADDRESS
TARGET LENGTH
MOVE TEXT SEGMENT

NEW LENGTH + OLD LENGTH
UPDATED

* THERE WAS NOT ENOUGH SPACE IN BUFFER
* RO = SPACE AVAILABLE RI = LENGTH OF DATA

SPACE
* MOVE AS MUCH AS WILL FIT

LR R7,RO
LH R5,O!R2)
LA R4,8 R5,R2)
LA R6,8 RIO)
LR R5,R7
MVCL R4,R6
SPACE

USE SPACE AVAILABLE
GET CURRENT LENGTH
TARGET ADDRESS
SOURCE ADDRESS
TARGET LENGTH
MOVE TEXT SEGMENT

* WE SET A NEW ELEMENT LENGTH COUNT TO REFLECT THE PSEUDO LLCTF
* CREATED BELOW

*
*

LR R9,RO

SPACE

LENGTH OF TEXT MOVED
+ 8 FOR THE LLCTFISS
-8 FOR THE LLCTF WE OVERLAY

* NOW WE CREATE AN ARTIFICIAL LLCTF OVER THE LAST 8 BYTES OF THE
* TEXT WE HAVE JUST MOVED.

LR R4,RO COpy LENGTH MOVED
LA R4,O(R4,RIO) 8 BYTES B4 END OF TEXT MOVED
SLR RI, RO RI HAS RESIDUAL LENGTH
LA RI,8(RI) + 8 FOR LLCTFISS
STH RI,O(R4) STORE LL VALUE
MVC 2(6,R4),=X ' C9038I200000' AND CREATE CTFISS
SPACE

* AND UPDATE BUFFER USE VALUES
AH RO,O(R2)
STH RO,O(R2)
SPACE

AN95C EQU *
01 COMDST,COMDSTD

NEW LENGTH + OLD LENGTH
UPDATED

OUR BUFFER IS FULL
DOC SEGMENT EXISTS

API and DIU-build Subroutines 143

SPACE
AN95R EQU *

B ANEND
SPACE
DROP R2
EJECT

* * * (ANTAB) TABLE OF VALID CTF VALUES AND PROCESSING ADDRESSES *
* * ***
ANTAB DS

DC
DC

OD ALIGN NICELY
X'COOl',X i OOOO' ,A(ANI0) PREFIX
X'CFOl' ,X'OOOO' ,A(ANll) SUFFIX

* COMMANDS
DC X'CI19',X'OOOO',AIANI51
DC X'CI0l' ,X'OOOO' ,A AN16
DC X'CI0C' ,X'OOOO' ,A AN17

* COMMON COMMAND OPERANDS
DC X'C520' ,X'OOOO' ,A(AN20)
DC X'C328',X'0000' ,A(AN21)

* COMMAND OPERANDS FOR DELIVER
DC X'C323' ,X'OOOO' ,A AN22
DC X'C340' ,X'OOOO' ,A AN23
DC X'C305' ,X'OOOO' ,A AN24
DC X'C306' ,X'OOOO' ,A AN25
DC X'C311' ,X'OOOO' ,A AN26
DC X'C325' ,X'OOOO' ,A AN27

* COMMAND OPERANDS FOR ACKNOWLEDGE
DC X'C322' ,X'OOOO' ,A(AN30)
DC X'C345' ,X'0000',A(AN31)

* COMMAND OPERANDS FOR SIGNON REPLY
DC X'C312' ,X'OOOO' ,A(AN40)
DC X'C30D' ,X'OOOO' ,A(AN41)

* DOCUMENT PROFILES
DC X'CA03' ,X'OOOO',A AN51
DC X'CA04',X'OOOO' ,A AN52
DC X'CA05' ,X'OOOO' ,A AN53
DC X'CA70' ,X'OOOO' ,A AN54
DC X'CA71' ,X'OOOO' ,A AN55
DC X'CA72' ,X'OOOO' ,A AN56

* BASE SUBPROFILE OPERANDS
DC X'C700' ,X'OOOO' ,A AN60
DC X'C701' ,X'OOOO' ,A AN61
DC X'C702' ,X'OOOO' ,A AN62
DC X'C704' ,X'OOOO',A AN63
DC X'C705' ,X'OOOO' ,A AN64
DC X'C706' ,X'OOOO' ,A AN65
DC X'C707' ,X'OOOO' ,A AN66
DC X'C708' ,X'OOOO',A AN67
DC X'C709' ,X'OOOO' ,A AN68
DC X'C70A' ,X'OOOO',A AN69
DC X'C70B' ,X'OOOO' ,A AN70
DC X'C70C' ,X'OOOO' ,A AN71
DC X'C70D' ,X'OOOO' ,A AN72
DC X'C720' ,X'OOOO' ,A AN73
DC X'C721' ,X'OOOO' ,A AN74
DC X'C236' ,X'OOOO' ,A AN75
DC X'C770' ,X'OOOO' ,A AN76

* APPLICATION SUBPROFILE (DLS)

DELIVER COMMAND
ACKNOWLEDGE COMMAND
SIGNON REPLY

IDENTIFIED DATA
CORRELATION

SOURCE NAME
DOC DISTN NAME
ATTRIBUTE LIST
RECIPIENT NAME
ORIGIN NODE ID
MESSAGE

EXCEPTION CODE
REPLY DATA

FUNCTION SETS
SIGNON ID

PROFILE INTRODUCER
BASE SUBPROFILE
APPLICATION SUB PROFILE
3730 SUBPROFILE
DISOSS SUBPROFILE
5520 SUBPROFILE

DOCUMENT NAME
PROFILE GCID
OWNER
AUTHOR
DOCUMENT GCID
DOCUMENT TYPE
CREATE DATE/TIME
LAST CHANGED DATE
COPY LIST
FILE CABINET REF
SUBJECT
SYSTEM CODE
DOCUEMNT SIZE
LADN
DOCUMENT CLASS
DOCUMENT DATE
LEVEL 3 PARAMETER SET

144 Connecting non-DIA Systems to DISOSS

. , , .

DC X'C740' ,X'OOOO' ,A ANSO
DC X'C741' ,X'OOOO',A ANSI
DC X'C742' ,X'OOOO',A ANS2
DC X'C744' ,X'OOOO' ,A ANS3
DC X'C745' ,X'OOOO' ,A ANS4

* DOCUMENT CONTENT INTRODUCERS
DC X'CBOI' ,X'OOOO' ,A(AN90)
DC X'CB02' ,X'OOOO' ,A(AN91)

* DOCUMENT CONTENT SEGMENTS
DC X'C903' ,X'OOOO',A(AN95)
SPACE

ANTABE EQU *
ANTABN EQU (*-ANTAB)/S

EJECT
ENDCSECT OS OH
DFHEISTG DSECT

PRINT OFF
COpy APICOM
COPY APIDPR
COpy API REGS
PRINT ON
END

FILE DATE/TIME
OWNERSHIP
KEYWORDS
EXPIRY DATE
OWNER DELEGATE

DOC CONTENT WITH TEXT
DOC CONTENT WITH PROF

SEGMENT INTRODUCER

NUMBER OF TABLE ENTRIES

API and 01 U-build Subroutines 145

B.4.10 APIPTDOC

PDOC TITLE '*APIPTDOC* - SENDS A DOCUMENT DIU SEGMENT - DISOSS API SAMP*
LE PROGRAMS'

PRINT NOGEN
APIPTDOC CSECT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

(APIPTDOC) TAKES A PASSED BUFFER FULL OF DATA (MAX LENGTH IS
4088 BYTES). BUILDS A DIU TEXT SEGMENT INTRODUCER
AND SENDS THE DIU SEGMENT TO DISOSS
IF THE LENGTH IS ZERO THEN THIS IS A 'LAST SEGMENT'
AND A NULL LAST SEGMENT IS BUILT AND SENT

INPUT PARMLIST:
-> TEXT RECORD
-> TEXT LENGTH (HALFWORD)
-> BUFFER TO BUILD DIU IN

OUTPUT: COMRETCD HAS RETURN CODE
o = GOOD RETURN
8 = BAD RETURN FROM DISOSS. COMREASN HAS DISOSS RC

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

SPACE
L R8,4(RI)
USING APICOM,R8
L R2,16(RI)
L R4,8(RI)
L R5,12(RI)
LH R5,0(R5)
LR R9,R2
LR RIO,R5
SPACE
LTR R5,R5
BNZ PTDOCI
SPACE

* ITS A 'LAST SEGMENT' CALL
BAL RI4,DUSEGL
B PTDOC2
SPACE

GET APICOM ADDRESS

GET BUFFER ADDRESS
GET TEXT ADDRESS

GET ADDR OF TEXT LENGTH
GET TEXT LENGTH ITSELF
REMEMBER BUFFER START
& TEXT LENGTH (DESTROYED BY MVCL)

ANY TEXT ?
YES, BUILD FULL DIU

BUILD NULL LAST SEGMENT

* ITS A NORMAL CALL TO BUILD A SEGMENT WITH TEXT
PTDOCI EQU *

BAL R14,DUSEGN DOC UNIT SEGMENT (NOT LAST)
* MOVE TEXT FOLLOWING DIU SEGMENT INTRODUCER
* R4 -> TEXT. R5 = LENGTH. SET UP ON ENTRY (RIO = LENGTH ALSO)

LR R6,R2 TARGET ADDRESS
LR R7,R5 = SOURCE LENGTH, ZERO PAD
MVCL R6,R4 MOVE TO BUFFER
LA R2,0(RIO,R2) INCREMENT DIU POINTER
SPACE

* SET VALUES FOR DISOSS
PTDOC2 EQU *

ST R9,COMDPTR
SLR R2, R9
STH R2,COMDLEN
STH R2,0(R9)
SPACE

* CALL DISOSS

TELL DISOSS WHERE IS DATA
GET DATA LENGTH

TELL DISOSS
SET LL VALUE

146 Connecting non-DIA Systems to DISOSS

APICALL APIDISOS,(=CL8 I SEND 1)

SPACE
* WE RETURN WITH THE RETURN CODE FROM DISOSS

L R4,COMRETCD
ST R15,COMREASN
LTR R15,R15
BZ *+8
LA R15,8
ST R15,COMRETCD
B ENDCSECT
EJECT
COPY APIDIUSB
EJECT

ENDCSECT DS OH
DFHEISTG DSECT

PRINT OFF
COPY API COM
COPY APIDPR
COPY APIREGS
PRINT ON
END

DISOSS RC
DISOSS RC IS OUR REASON CODE
IS IT OK ?
YES, USE ZERO VALUE AS OUR RC
NO, WE QUIT WITH RC=8
STORE RETURN CODE
BRANCH ROUND STATIC DATA ETC

DIU BUILDER SUBROUTINES

API and DIU-build Subroutines 147

c

B.4.11 APIPURGE

PURG TITLE '*APIPURGE* - PURGE ALL API QUEUED DATA FOR USER - DISOSS AP*
I SAMPLE PROGRAMS'

PRINT NOGEN
APIPURGE CSECT

* * * SUBROUTINE TO DO A DISOSS 'PURGE' FOR ALL DATA ASSOCIATED WITH *
* THE USER *
*
*
*

INPUT: USER NAME (8 BYTES)
*
*
* ***

SPACE
L R8,4(Rl)
USING APICOM,R8
L R9,8(Rl)
SPACE
MVC PRGNAME,O(R9)
MVI PRGOPT,C'A'
LA RO,PRG
ST RO,COMDPTR
LA RO,PRGLEN
STH RO,COMDLEN
SPACE

* NOW CALL DISOSS

LOAD APICOM ADDRESS

LOAD ADDRESS OF NAME

MOVE IN USER NAME
ALL OF IT
GET COMMAND DATA
& TELL DISOSS

GET DATA LENGTH
TELL DISOSS

APICALL APIDISOS,(=CL8'PURGE')
ST R15,COMREASN SET REASON CODE AS DISOSS RC
LTR R15,R15 WAS IT BAD RC ?
BZ *+8 NO, USE ZERO AS OUR RC
LA R15,8 OTHERWISE WE HAVE RC 8
ST R15,COMRETCD
EJECT

DFHEISTG DSECT
PRG DS OF
PRGNAME DS CL8
PRGOPT DS C
PRGLEN EQU *-PRG

SPACE
PRINT OFF
COPY APICOM
COPY APIDPR
COPY API REGS
PRINT ON
END

NAME TO PURGE
PURGE OPTION

148 Connecting non-DIA Systems to DISOSS

B.4.12 APIRECVE

RECV TITLE '*APIRECVE* - RECEIVE A RESPONSE OIU SEGMENT - OISOSS API SA*
MPLE PROGRAMS I

PRINT NOGEN
APIRECVE CSECT

*
*
*

(RECEIVE) SUBROUTINE TO RECEIVE A RESPONSE FROM OISOSS
*
*
*

SPACE
L R8,4(Rl)
USING APICOM,R8
SPACE

* NOW CALL OISOSS
APICALL APIOISOS,(=CL8 I RECEIVE ')
SPACE

* CHECK ON OISOSS RC
ST R15,COMREASN
LTR R15,R15
BZ *+8
LA R15,8
ST R15,COMRETCO
EJECT

OFHEISTG OSECT
PRINT OFF
COpy APICOM
COPY APIDPR
COPY APIREGS
PRINT ON
END

SET REASON CODE AS DISOSS RC
WAS IT BAD RC ?
NO, USE ZERO AS OUR RC
OTHERWISE WE HAVE RC 8

API and DIU-build Subroutines 149

B.4.13 APIRTRVE

RTRV TITLE '*APIRTRVE* - RETRIEVE CICS "STARTn DATA - DISOSS API SAMPLE*
PROGRAMS'

PRINT NOGEN
APIRTRVE CSECT

*
*
*
*

(RETRIEVE) - SUBROUTINE TO PICK UP CICS • START' DATA
ON RETURN COMDPTR -> RETURNED DATA

COMDLEN = LENGTH OF DATA

*
*
*
*

SPACE
L R8,4(Rl)
USING APICOM,R8
SPACE
EXEC CICS HANDLE CONDITION ENDDATA(RETRO)
MVC COMDLEN,=AL2(lOO) ARBITRARY MAX VALUE (NEED 36)
EXEC CICS RETRIEVE SET(RS) LENGTH(COMDLEN)
ST RS,COMDPTR SET DATA POINTER FOR CALLER
B RETRI OK, SET RC VALS

RETRO EQU *
SLR RO,RO
STH RO,COMDLEN INDICATE NO START DATA

RETRI EQU *
EXEC CICS HANDLE CONDITION ENDDATA
SLR RlS,R15
ST R15,COMRETCD SET ZERO RETURN CODE
EJECT

DFHEISTG DSECT
PRINT OFF
COPY APICOM
COPY APIDPR
COPY APIREGS
PRINT ON
END

150 Connecting non-DIA Systems to DISOSS

B.4.14 APISGNON

SON TITLE '*APISGNON* - PERFORM API SIGNON - DISOSS API SAMPLE PROGRAM*
S'

PRINT NOGEN
APISGNON CSECT

* (SIGNON) - BUILDS A 'SIGNON ' DIU *

SPACE
L
USING
L
LR
L
SPACE

* DIU PREFIX

R8,4(Rl)
APICOM,R8
R2,8(Rl)
R9,R2
R5,12(R1)

LA R1 ,=C I 01 1

LA RO,2
BAL R14,DIUPFX

* COMMAND SEQUENCE - 'SIGNON'

APICOM ADDRESS

DIU BUFFER ADDRESS

ADDRESS SIGNON PARMS

SET ADDRESS AND
LENGTH OF CORRELATION DATA

BUILD DIU PREFIX

LR R6,R2 SAVE ADDR OF CMD SEQUENCE LL
BAL R14,SONCMD BUILD 'SIGNON ' COMMAND

* FUNCTION SETS: WE TAKE ALL SOURCE/RECIPIENT FS
LA R1,=X ' 02000202000402000502000802000902000A '
LA RO,18 FUNC SETS 2, 4, 5, 8, 9, 10
BAL R14,FUNCSETS INDICATE WHICH FUNCTION SETS

* SIGNON 10
LA R1,4(RS)
SLR RO, RO
IC RO,2(RS)
BAL R14,SONNAME

* SIGNON PASSWORD
LA R1,12(RS)
SLR RO,RO
IC RO,3(RS)
LTR RO, RO
BZ SIGNON1
BAL R14,SONPASS

SIGNON1 EQU *
* TYPE OF DOCUMENTS TO BE RECEIVED

SIGNON NAME

LENGTH OF NAME
SET NAME

SIGNON PASSWORD

LENGTH OF PASSWORD
IS THERE A PASSWORD ?
NO, SKIP PASSWORD
SET PASSWORD

LH RO,O(RS) DOC TYPE.
LTR RO,RO ANY TYPE SPECIFIED?
BZ SIGNON2 NO, SKIP DOC TYPE
BAL R14,RCVDOCS SET DOC TYPES TO RECEIVE

SIGNON2 EQU *
* SET LENGTH OF COMMAND SEQUENCE SEGMENT

LR RO,R2 SET CURRENT POINTER
SLR RO,R6 SUBTRACT ADDR OF CMD SEQ LL
STH RO,0(R6) SET CMD SEQUENCE LL

* SET DIU SUFFIX
BAL R14,DIUSFX
EJECT

* SET PARMS FOR DISOSS CALL
ST R9,COMDPTR
SLR R2.R9
STH R2,COMDLEN

SPACE
* NOW CALL DISOSS

BUILD DIU SUFFIX

TELL DISOSS WHERE IT IS
OBTAIN LENGTH
TELL DISOSS ALSO

API and DIU-build Subroutines 151

APICALL APIDISOS t (=CL8'BIND')
SPACE

* CHECK ON DISOSS RC
ST R15,COMREASN
LTR R15 t R15
BZ *+8
LA R15,8
ST R15,COMRETCD
B ENDCSECT
EJECT
COPY APIDIUSB
EJECT

ENDCSECT OS OH
DFHEISTG DSECT

PRINT OFF
COPY APICOM
COPY APIDPR
COPY APIREGS
PRINT ON
END

SET REASON CODE
WAS IT BAD RC ?
NO, USE ZERO AS OUR RC
OTHERWISE WE HAVE RC 8

DIU BUILDER SUBROUTINES

152 Connecting non-DIA Systems to .DISOSS

B.4.15 APISNOFF

SOFF TITLE '*APISNOFF* - PERFORM DISOSS API SIGNOFF - DISOSS API SAMPLE*
PROGRAMS'

PRINT NOGEN
APISNOFF CSECT

*
*

(SIGNOFF)
SUBROUTINE TO SIGN OFF FROM DISOSS

*
* ***

SPACE
L R8,4(Rl)
USING APICOM,R8
SPACE
LA
ST
LA
STH
SPACE

RO,SNOFF
RO,COMDPTR
RO,SNOFFL
RO,COMDLEN

* NOW CALL DISOSS

APICOM ADDRESS

GET COMMAND DATA
& TELL DISOSS

GET DATA LENGTH
TELL DISOSS

APICALL APIDISOS,(=CL8'UNBIND')
SPACE

* CHECK ON DISOSS RC
ST R15,COMREASN
LTR R15,R15
BZ *+8
LA R15,8
ST R15,COMRETCD
B ENDCSECT
EJECT

SET REASON CODE FROM DISOSS RC
WAS IT BAD RC ?
NO, USE ZERO AS OUR RC
OTHERWISE WE HAVE RC 8

BRANCH ROUND STATIC DATA ETC

* *
* THIS IS THE SIGNOFF DIU
*

*
* ***

SPACE
SNOFF DC X'0007' ,X'COOI02' ,C'04'

DC X'0005' ,X'CDODOl'
DC X'0005' ,X'CFOIOO'

SNOFFL EQU *-SNOFF
EJECT

ENDCSECT OS OH
DFHEISTG DSECT

PRINT OFF
COPY APICOM
COPY APIDPR
COPY APIREGS
PRINT ON
END

API and DIU-build Subroutines 153

B.4.16 APISUFIX

SUFX TITLE '*APISUFIX* - SEND A DIU SUFFIX TO DISOSS - DISOSS API SAMPL*
E PROGRAMS I

PRINT NOGEN
APISUFIX CSECT

* *
* (SUFFIX) SUBROUTINE TO SEND A STANDARD SUFFIX. *
* * ***

L R8,4(RI)
USING APICOM,R8
SPACE
LA
ST
LA
STH
SPACE
SPACE

RO,SUFI
RO,COMDPTR
RO,SUFIL
RO,COMDLEN

* NOW CALL DISOSS

APICOM ADDRESS

GET COMMAND DATA
& TELL DISOSS

GET DATA LENGTH
TELL DISOSS

APICALL APIDISOS,(=CL8 I SEND ')
SPACE

* CHECK ON DISOSS RC
ST RI5,COMREASN
LTR R15,R15
BZ *+8
LA R15,8
ST RI5,COMRETCD
B ENDCSECT
EJECT

SET REASON CODE FROM DISOSS RC
WAS IT BAD RC ?
NO, USE ZERO AS OUR RC
OTHERWISE WE HAVE RC 8

BRANCH ROUND STATIC DATA ETC

* THIS IS THE STANDARD SUFFIX DATA *

SPACE
SUFI DC AL2(5),X'CFOIOO'
SUFIL EQU *-SUFI

EJECT
ENDCSECT DS OH
DFHEISTG DSECT

PRINT OFF
COPY APICOM
COPY APIDPR
COPY APIREGS
PRINT ON
END

154 Connecting non-OIA Systems to DISOSS

DIU SUFFIX

C.O SAMPLE EXECS FOR THE CMS AND PROFS USER

C.l SAMPLE DBTMENU EXEC

&TRACE OFF

**
* Sample EXEC2 program to present a menu of DISOSS functions to the
* CMS/PROFS user, and invoke appropriate EXECs to process requests.
*

*
*
*

**

-START
CLEAR
&BEGTYPE -ENDTYP1

DIS 0 S S

Which Task do you require?

T ASK S

Send a Document to DISOSS Users - 1
Logon to DISOSS/PS - 2
Read in and send a Note to DISOSS Users - 3
Receive a Document from DISOSS - 4
Quit - 9

Enter 1, 2, 3, 4 or 9

-ENDTYP1
&READ VARS &ANS
&IF .&ANS = &GOTO -START
&IF &ANS = 9 &GOTO -EXIT
&IF &ANS = 1 &GOTO -SENDOC
&IF &ANS = 2 &GOTO -PTHRU
&IF &ANS = 3 &GOTO -SNDNOTE
&IF &ANS = 4 &GOTO -RECEIVE
&GOTO -START

-SEN DOC
EXEC DBTSEND
&GOTO -START

-PTHRU
EXEC DBTLOGON
&GOTO -START

-SNDNOTE
-RECEIVE
&IF &ANS EQ 3 &NXT= DBTNOTE
&IF &ANS EQ 4 &NXT = DBTRECV
&TYPE When you see the RDRLIST panel, enter &NXT under the IICmd ll ,

&TYPE then press PF10.
&TYPE Now press ENTER to continue.
&READ
EXEC RDRLIST
&IF &RETCODE NE 28 &GOTO -START

Sample EXECs for the CMSand PROFS User 155

&TYPE
&TYPE Press ENTER to continue.
&READ
&GOTO -START

-EXIT
CLEAR
&EXIT

156 Connecting non-DIA Systems to DISOSS

C.2 SAMPLE DBTSEND EXEC

&TRACE ERR

**
* Sample EXEC2 program to take a 1403 print file, encapsulate it in an *
* MVS job and submit to the MVS system for input to DISOSS V3. *
* *
**

**
* Set default values.
**
* &RSCSVM is the name of the RSCS virtual machine.
&RSCSVM = RJE
* &VMNODE is the node name of the VM system.
&VMNODE = RALYDPD3
* &MVSNODE is the nodename of the MVS system.
&MVSNODE = RALVSMV3
* &OSN is the DISOSS OSN name. DISOSS default is DSVHOST.
&OSN = DSVHOST
* &JOBNAME is first 6 characters of desired MVS jobname.
&JOBNAME = DBTDOC
* &JOBACCT is accounting information for MVS jobcard.
&JOBACCT = P-032007

**
* Direct the virtual punch to the MVS system. *
**
CP SPOOL PUNCH CONT TO &RSCSVM
CP TAG DEV PUNCH &MVSNODE JOB 10
&DIACMD = &4
&IF .&4 NE .TEST &SKIP 2

CP SPOOL PUNCH CONT TO *
&DIACMD = &5

**
* Check that the file exists, and decide whether it has to be chopped *
* up into 80-byte records. *
**
&IF .&1 EQ . &GOTO -PROMPT
-CHECK
&FN = &1
&FT = &2
&FM = &3
&IF .&2 EQ . &FT = MEMO
&IF .&3 EQ . &FM = A
&IF .&4 NE . &IF .&DIACMD EQ . &DIACMD = &4
STATE &FN &FT &FM
&IF &RC EQ 0 &GOTO -GOTFILE

-PROMPT
&BEGTYPE 4

Which file is to be sent? Enter 'filename filetype filemode ' .
Defaults: none MEMO A

To quit, just press Enter.
&READ ARGS

Sample EXECs for the CMS and PROFS User 157

&IF .&1 EQ . &GOTO -END
&GOTO -CHECK

-GOTFIlE
LISTFIlE &FN &FT &FM (STACK. FORMAT
&IF &RC NE 0 &EXIT &RC
&READ VARS &FN &FT &FM &J &lRECl
lISTFIlE &FN &FT &FM
DROPBUF 0

&IF &lRECl lE 160 &SKIP 2
&TYPE Print lines mu~t not be more than 160 chars.
&EXIT 98

&CDREC = 1
&IF &lRECl GT 80 &CDREC = 2

**
* Set up the parameter card for the MVS batch program. *
**
&CASE M

* DSVHOST is the default OSN name in DISOSS.
&OSN = &lEFT OF &OSN 8

* DISOSS userid. Default is the CMS userid.
IDENTIFY (STACK
&READ VARS &CMSUID
&TYPE Enter DISOSS user name for distribution. Default is &CMSUID
&READ STRING &USER
&IF .&USER EQ . &USER = &CMSUID
&USER = &LEFT OF &USER 8

* 1 C1 indicates 1403 data stream as input.
&INTYPE = &RIGHT OF C 2

* 1 21 indicates l2DCA data stream as output.
&OUTYPE '= &RIGHT OF 22

* Number of 80-bytecard images representing one printline.
&RECSIZE = &CDREC

* IAI indicates this is record type A (only type defined at present).
&RECTYPE = A I

* IAI indicates this is the only header card in the file.
&PROFLAG = A

* Number of lines per page (optional).
&PAGEl = &BlANK
&PAGEL = &LEFT OF &PAGEL 3

* Number of characters per line (optional).
&PAGEW = &BLANK
&PAGEW = &LEFT OF &PAGEW 3

* Not used.
&DISNAM = &BLANK
&DISNAM = &LEFT OF &DISNAM 8

158 Connecting non-DIA Systems to. DISOSS .

* Eyecatcher
&EYECAT = HEADER

* Document name; default is CMS filename.
&TYPE Enter document name (maximum 15 chars.) Default is &FN
&READ STRING &DOCNAM
&IF .&DOCNAM EQ . &DOCNAM = &FN
&DOCNAM = &LEFT OF &DOCNAM 15

* DIA Command required: D = Request_Distribution, F = File.
&UPPER VARS &DIACMD
&IF .&DIACMD NE.D &IF .&DIACMD NE.F &DIACMD = 0

* Fill er
&RESER = &LEFT OF &BLANK 21

* Now build the parameter card.
&PARMCD = &CONCAT OF &OSN &USER &INTYPE &OUTYPE
&PARMCD = &CONCAT OF &PARMCD &RECSIZE &RECTYPE &PROFLAG &PAGEL &PAGEW
&PARMCD = &CONCAT OF &PARMCD &DISNAM &EYECAT &DOCNAM &DIACMD &RESER

**
* Punch the MVS JCL and parameter card. *
**
&J = &SUBSTR OF &TIME 7 2
&JOBCARD = &CONCAT OF II &JOBNAME &J &BLANK JOB &BLANK (&JOBACCT)
&ROUTECD = &CONCAT OF I*ROUTE &BLANK PRINT &BLANK &VMNODE . &CMSUID

&STACK &JOBCARD
&STACK &ROUTECD
&STACK IIVMVSAM EXEC DBTDOCIN
&STACK IIDOCIN DD *
&STACK &PARMCD
&STACK
EXECIO * PUNCH

**
* Punch the CMS file; either one or two card images per printline. *
**
-AGAIN
&TRACE OFF
EXECIO 100 DISKR &FN &FT &FM
&EOF = &RC
SENTRIES
&LOOPCT = &RC
&TRACE ERR

&LOOP -ENDLOOP &LOOPCT
&READ STRING &LINE
&IF &CDREC GT 1 &SKIP 2

EXECIO 1 PUNCH (STRING &LINE
&GOTO -END LOOP

&LIN1 = &SUBSTR OF &LINE 1 80
&LIN2 = &SUBSTR OF &LINE 81 *
EXECIO 1 PUNCH (STRING &LIN1
EXECIO 1 PUNCH (STRING &LIN2
-END LOOP
&IF &EOF EQ a &GOTO -AGAIN

Sample EXECs for the CMS and PROFS User 159

EXECIO 1 PUNCH (STRING 1*
EXECIO 1 PUNCH (STRING II

**
* Tidy up and exit: *
**
-END
CP SPOOL PUNCH NOCONT CLOSE
CP SPOOL PUNCH OFF
CP TAG DEV PUNCH
&EXIT

160 Connecting non-DIA Systems to DISOSS

C.3 SAMPLE DBTLOGON EXEC

&TRACE ERR

**
* Sample EXEC2 program to invoke VM PASSTHRU in order to logon to
* DISOSS/PS.
*

*
*
*

* This example selects a specific port on the emulated *
* 3271, which allows the user interface to be simplified as follows: *
* 1 - the VTAM LU represented by that port can be logged on *
* automatically to CICS by VTAM via the LOGAPPL parameter, so *
* the user does not need to log on to CICS explicitly. *
* 2 - the CICS Iterminal l represented by the VTAM LU can be *
* automatically connected to the DISOSS/PS transaction via the *
* TRANSID parameter in the CICS TCT. Thus, the user does not *
* have to enter IDMD11 to select DISOSS/PS. *
* *
* Consequently, all the user should need to know is: *
* 1 - Select 121 from the PROFS menu screen, or enter I DBTLOGON I *
* from CMS. *
* 2 - When the CICS/VS logo appears, press CLEAR. *
* 3 - He should then see the DISOSS/PS logon panel. *
* 4 - The following VM PASSTHRU functions are available while *
* logged on to DISOSS/PS: *
* - PAl will suspend the session and return to CMS. I DBTLOGON I *
* will then allow the DISOSS/PS session to be resumed. *
* - PA2 will terminate the CICS session, but should not be used *
* until the DISOSS/PS session has been ended via PF12. *
* - PF10 will copy a screen image into file PASSTHRU DATA on *
* the A-disk. Useful to take a quick copy of a DISOSS note. *
* *
**

* VM PASSTHRU NODE NAME
&NODE = RALYSNA

* PORT NUMBER ON EMULATED 3271
&PORT = 7

* NAME OF PASSTHRU VIRTUAL MACHINE (DEFAULT IS PVM)
&VMID = *

* PFKEY TO INVOKE NOTEPAD
&NOTEPFK = 10

* NO. OF LINES TO BE SAVED BY NOTEPAD
&NOTELIN = 24

* NO. OF COLS. TO BE SAVED BY NOTEPAD
&NOTECOL = 80

* KEY TO BE USED FOR TEMPORARY DISCONNECTION FROM PASSTHRU
&DISC = PAl

* KEY TO BE USED TO END PASSTHRU SESSION
&END = PA2

Sample EXECs for the eMS and PROFS User 161

* NOW INVOKE VM PASSTHRU
CP SET MSG OFF
DVMUSI &NODE &PORT &VMID &NOTEPFK &NOTELIN &NOTECOL &DISC &END
CP SET MSG ON

&EXIT

162 Connecting non-DIA Systems to DISOSS

C.4 SAMPLE DBTNOTE EXEC

&TRACE ERR

**
* Sample EXEC2 program to send a PROFS Note to DISOSS.
*

*
*

* First part of the process is, using normal PROFS functions, to send *
* (or resend) the Note to yourself; this puts the note in your virtual *
* reader. This EXEC then reads it on to the A-disk, edits it to a form *
* suitable to DISOSS, and sends it to DISOSS by calling DBTSEND. *
* *
**

&FN = DBTNOTE
&FT = NOTEBOOK
&FM = A

* Read in the file and look for first valid line (Subject:)
ERASE &FN &FT &FM
EXEC RECEIVE &1 &FN &FT &FM (NOTEBOOK DBTNOTE
EXECIO * DISKR &FN &FT &FM (ZONE 1 9 FIND / Subject:/
&READ VARS &START

* Back up to blank line before "Subject".
&START = &START - 1
DROPBUF 0
LISTFILE &FN &FT &FM (STACK ALLOC
&IF &RC NE 0 &EXIT &RC
&READ VARS &FN &FT &FM &J &J &NORECS

* Drop last line of file
&NORECS = &NORECS - 1
DROPBUF 0

* Calculate number of lines to copy
&CPYCT = &NORECS - &START
&CPYCT = &CPYCT + 1

* Copy to new file, getting rid of nasty hex characters
&STACK FE 40 FF 40 00 40
COPY &FN &FT &FM DBTNOTE TEMP A (REP FROM &START FOR &CPYCT TRA NOPR

* Send lovely new file to DISOSS/PS
EXEC DBTSEND DBTNOTE TEMP A
&TYPE NOTE has been sent to DISOSS
ERASE DBTNOTE NOTEBOOK A
ERASE DBTNOTE TEMP A
-END
&EXIT

Sample EXECs for the CMS and PROFS User· 163

C.5 SAMPLJ:: DBTRECV EXEC

&TRACE OFF

**
* Sample EXEC2 program to take a 1403 print file sent from DISOSS, and *
* read it on to the A-disk for subsequent filing in PROFS. *
* *
* Note: The VM/SP RECEIVE EXEC used here strips 1403 carriage control
* off the file when reading it in. A better solution is needed.
*

*
*
*

**

STATE DBTRECV TEMP A
&TRACE ERR
&IF &RC EQ 0 &GOTO -RECV

&TYPE File IDBTRECV TEMP AI already exists.
&TYPE Do you want to overwrite it? (yin)
&READ VARS &YN
&IF .&YN NE .Y &EXIT 99

-RECV
ERASE DBTRECV TEMP A
EXEC RECEIVE &1 DBTRECV TEMP A
&TYPE File DBTRECV TEMP A is now on your A-disk
&TYPE Use the PROFS "Soft Copy" facil ity to store
&TYPE this document in the PROFS data base.

&EXIT

164 Connectingnon-DIA Systems to DISOSS

GG24-1604 READER'S COMMENT FORM
Connecting non-DIA Systems to DISOSS

You may use this form to communicate your comments about this publication, its
organisation, or subject matter, with the understanding that IBM may use or dis­
tribute whatever information you supply in any way it believes appropriate with­
out incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and
action, if any, is deemed appropriate. Comments may be written in your own lan­
guage; use of English is not required.

Note: Copies of I BM publications are not stocked at the location to which this form
is addressed. Please direct any requests for copies of publications, or for assist­
ance in using your I BM system, to your I BM representative or to the I BM branch
office serving your locality.

Possible topics for comment include: Clarity, Accuracy, Completeness, Organisa­
tion, Coding, Retrieval, Legibility.

If you would like a reply,_ ple-ase give your name, company, mailing address and
date:

What is your occupation?

Most recent Newsletter associated with this publication:

Thank you for your cooperation.

Reader's Comment Form
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

,---~--------------~----------------------I

Raleigh International Systems Centre
IBM Corporation (985/B622-3)
PO Box 12195
Research Triangle Park
North Carolina 27709
U.S.A.

For the attention of Gordon Hay.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

--1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

