ternational Systems Centers

MAR 17 1985

Office Systems Interconnection:
Guide to Connecting non-DIA Systems to DISOSS

Document Number GG24-1604

March 1984

Rob van Olmen, IBM Netherlands
Laurence Barker, IBM UK
Warwick Wright, IBM New Zealand
David Harding, IBM Australia
Gordon Hay, Raleigh ISC

Project Adviser: Gordon Hay
Raleigh International Systems Centre
PO Box 12195, Dept 985/622
Research Triangle Park

NC 27709, USA

The information contained in this document has not been submitted to any for-
mal IBM test and is distributed on an 'As |s' basis without any warranty either
expressed or implied. The use of this information or the implementation of any
of these techniques is a customer responsibility and depends on the customer's
ability to evaluate and integrate them into the customer's operational environ-
ment. While each item may have been reviewed by IBM for accuracy in a specif-
ic situation, there is no guarantee that the same or similar results will be
obtained elsewhere. Customers attempting to adapt these techniques to their
own environments do so at their own risk. The samples described in this materi-
al are presented for illustrative purposes only and are not intended to be imple-
mented as described.

In this document, any references made to an IBM licensed program are not
intended to state or imply that only IBM's licensed program may be used; any
functionally equivalent program may be used instead.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming or services that are not
announced in your country. Such references or information must not be con-
strued to mean that IBM intends to announce such IBM products, programming
or services in your country.

First Edition (March 1984)

Publications are not stocked at the address below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to:

Raleigh International Systems Centre
IBM Corporation (985/B622-3)

PO Box 12195

Research Triangle Park, NC 27709, USA

IBM may use or distribute any of the information you supply without incurring
any obligation to you. You may, of course, continue to use the information you

supply.

© Copyright International Business Machines Corporation 1984

ii Connecting non-DIA Systems to DISOSS

ABSTRACT

DISOSS/370 provides document library and distribution services for a range of
intelligent subsystems (DISOSS/8100, Displaywriter, 5520, Scanmaster and
DISOSS/PS) which support the IBM document handling architectures DIA and
DCA.

This book examines the feasibility of extending these document filing and dis-
tribution functions to the various other intelligent devices that do not support
DIA and DCA; the assumption is that, although these devices are often not pri-
marily office systems, their users would nevertheless benefit from being able to
use a company-wide electronic mail distribution system.

The purpose is to show what can be done with currently available products, and
the book includes an example showing how documents can be exchanged between
DISOSS and PROFS.

Abstract iii

iv. Connecting non-DIA Systems to DISOSS

PREFACE

This document is the result of a Residency Project conducted at the Raleigh
International Systems Centre. The purpose of the project was to study the prob-
lem of connecting non-DIA systems to DISOSS, and to develop design guidelines
for the use of anyone wishing to implement such a connection.

There are four major parts:

* "Introduction and Design Overview" on page 3 describes the objectives of
the project, summarises the design options we considered, and provides an
overview of the suggested system design.

e "System Structure" on page 19 describes in detail the components of the
proposed system.

e "Sample System Implementation” on page 27, "System Definitions for the
Sample Implementation” on page 47, and "Communicating Between PROFS
and DISOSS" on page 53 describe our sample implementation of the proposed
system.

e "Sample System Components" on page 67, "APl and DIU-build Subroutines”
on page 105 and "Sample EXECs for the CMS and PROFS User" on page 155
contain listings of the programs used in the sample implementation.

Anyone contemplating the possibility of attaching non-DIA systems to DISOSS
should find the "Introduction and Design Overview" on page 3 useful. The
remaining chapters are intended for systems desighers and programmers
responsible for the design and implementation of such interfaces.

RELATED PUBLICATIONS

SC30-3096 DIS0OSS/370 Version 3 Application Programming
GG24-1614 DISOSS Application Interface: Programming Guidelines

ACKNOWLEDGEMENTS

Most of the sample programs shown in this book depend on a set of generalised
DISOSS API subroutines; these were designed and developed by Martin Hibbert
of Technical Support, IBM UK, and are described in detail in DISOSS Applica-
tion Interface: Programming Guidelines, GG24-1614.

Preface v

ABBREVIATIONS

Certain terms widely used in this document should be understood as follows:

JES

Box X

L2DCA

Refers to Job Entry Subsystems in general, and should be taken to
include VSE/POWER, 0OS/VS1 RES, MVS/JES2 and MVS/JES3, except
where otherwise stated.

Refers to the subsystem wishing to communicate with DISOSS. Where
there is no need to distinguish between the various real systems
(VM/SP, S/34, DPPX etc.), we will often use the term 'Box X' to
apply to them all.

Refers to the Level 2 Document Content Architecture. This is also
known as the Final Form Text DCA, or FFT, and is defined in Docu-
ment Content Architecture: Final-Form-Text Reference, SC23-0757.

vi Connecting non-DIA Systems to DISOSS

CONTENTS

SYSTEM DESIGN . i i i i i i e e et e e e e e e e e e e e e e e e e 1
1.0 Introduction and Design Overview« ¢« ¢ ¢ v ¢« o o o & 3
1.1 Design Objectives e . 4
1.2 Logic of the Design Process 4
1.2.1 Distribution of Function 5
1.2.2 End-User Interface e e e e e e e e e e e e e e e e e 5
1.2.3 Available Tools e 5
1.2.4 DISOSS/PS for Interactlve "Functions e e e e e e e e e e 6
1.2.5 RJE for Batch Functions e e .. e e e 8
1.2.6 Moving Documents from CICS to JES 9
1.2.7 Moving Documents from JES to CICS 9
1.2.7.1 Direct SNA Session . . 9
1.2.7.2 SNA Relay Program 10
1.2.7.3 JES External Writer 11
1.2.7.4 Shared Dataset . 12
1.2.8 CICS Application to Access DISOSS APl R 2
1.3 Overview of the System Structure . . . O 1
2.0 System Structure L . L L0 00 e e e e e e e e e e 19
2.1 Interactive Communication . e £
2.2 Document Transfer from DISOSS to Box X O £
2.3 Document Transfer from Box X to DISOSS S £
2.3.1 Major Components . . A
2.3.1.17 Box X Job Submlsswn '. A |
2.3.1.2 Batch Program 4|
2.3.1.3 CICS Program DBTSON1 A
2.3.1.4 CICS Transaction DBTM .
2.3.1.5 CICS Transaction DBTS 23
2.3.1.6 CICS Transaction DBTR e e e e e e e e e e . 23
SAMPLE IMPLEMENTATION . . . & i i i i ot e e e e e e e e e e e e e 25
3.0 Sample System Implementation00 00 27
3.1 Moving Documents from DISOSS to Box X 2 <
3.2 Moving Documents from Box X to DISOSS 1
3.2.1 Use of the DISOSS API e o, .. . 29
3.2.1.1 General Remarks 4 |
3.2.1.2 Our Use of the API. e e e e e e .. . 30
3.2.2 Document Transformations and Translatlons A 7
3.2.2.1 Datastream Transformations e 7
3.2.2.2 Character Translations . e e e 36
3.2.2.3 Overview of Transformatlons and Translatlons S 1
3.2.3 Batch-CICS Interface . S [
3.2.4 Components of the Box X to DISOSS’ Facmty - 72
3.2.4.1 DBTBAT1 S ¥: |
3.2.4.2 DBTMOVT & o e e e e e e e e e e e e e e e 24
3.2.4.3 DBTOPNI .- 7
3.2.4.4 DBTCLSI1 e e e e e e e e - ¥
3.2.4.5 DBTMSTI Y - L)
3.2.4.6 DBTTRNT & . v v v v v v v v v .. 4
3.2.4.7 DBTSNDI1 - 1+
3.2.4.8 DBTRSP1 Y
3.2.4.9 DBTSONI - 1+
3.2.4.10 DBTCLNI1 O
3.2.4.11 DBTSOF1 -

Contents vii

Do

S

oo, b N
U‘l(ﬂ(ﬂhwl\)—ﬂo mwb#hbbwwbbbbb—‘o

5.5

System Definitions for the Sample Implementation
CICS Tables .
1.1 File Control Table

.1.2 Program Control Table

.1.3 Program List Table

.1.4 Program Processing Table e e e e
.1.5 System Initialisation Table e e e e e e
VSAM Dataset Definitions .

DISOSS Table Definitions (Box X to DISOSS)

.1 Translate Tables e e e e e e e e e

.2 Host User Profile e e e e e e e e
DISOSS Table Definitions (DISOSS ‘to Box X)

-h-h ww

.2 Printer Description Table
Print/Format Procedure . .
Improvements and Alternative Optlons

Communicating Between PROFS and DISOSS e

Overview .

Accessing DISOSS/PS from PROFS
Sending a PROFS document to DISOSS e e e
Sending a PROFS note to DISOSS e e e e
.1 Forwarding an Existing Note

.22 The DBTNOTE EXEC ..

3 Creating and Sending a New Note
Changing a DCF file to 1403 Format

.1 Host User Profile

ooooo

.....

ooooo

ooooo

5.6 Loading a DISOSS/PS Document to the A-disk and then to PROFS
APPENDICES & . ¢« i i i ettt e e e e e

A.0
Al
A.2
A.3

0w >>
I B AR AR ERRR

os]

viii

Y RYRTRY AT R R R R R RY R KT RTR)

Sample System Components
General Remarks .

Software Used to Test the Desngn
Source Listings
DBTVSQ Common Block

DBTOC Common Block . .
DBTDOCIN Catalogued Procedure
DBTBAT1 Program Source .
DBTMOV1 Program Source
DBTOPN1 Program Source
DBTCLS1 Program Source
DBTMST1 Program Source
DBTTRN1 Program Source

=S OWOO~NOUHAWN—

.11 DBTRSP1 Program Source e e e e e e

.13 DBTCLN1 Program Source

.14 DBTSOF1 Program Source

.15 DBTTRTO1 Translate Table

Improvements and Alternatives .

Simultaneous CICS/Batch Access to Shared Dataset

Assembler Control Blocks e e e e e e e

.1.17 APICOM e e e e e e e e
.1.2 APIDPR2o
.1.3 APIRET e e e e e e e e e e
.1.4 APIREGS

PL/l Control Blo.clés '

2.1 APICOMP . .« o e v o

Connecting non-DIA Systems to DISOSS

O DBTSND1 Program Source A

.12 DBTSON1 Program Source A

APl and DIU-build Subroutines e e e

.......

......

109
110
110

UhWN—mO TEEEEEEEEEETEEEE D WD mEmEm

000000

AARMAAAARBRRARNDRARALN W MNNONN

2 APIDPRP
.3 APIDPRP2
4 APIRETP
5 APIRETP2

APICALL

1 APIACTIV
2 APIDIUSB
3 APIDIUS2

4 APIDISOS
.5 APIDIS2

6 APIFIL2

7 APIGTCMD
8 APILAST

9 APIPARSE
.10 APIPTDOC
.11 APIPURGE
.12 APIRECVE
.13 APIRTRVE
.14 APISGNON
.15 APISNOFF
.16 APISUFIX

Sample EXECs for the CMS and PROFS User

Assembler Macro

...................

oooooooooooooooooooo

....................

oooooooooooooooooooo

....................

....................

...................

....................

...................

....................

....................

...................

ooooooooooooooooooo

...................

Sample DBTMENU EXEC
Sample DBTSEND EXEC
Sample DBTLOGON EXEC
Sample DBTNOTE EXEC
Sample DBTRECV EXEC

oooooooooooooooooo

.....

ooooo

.....

.......................

1
Subroutine Listings

.....

ooooo

.....

.....

.....

..........................

ooooo

..........................

. .
.....
.....
.....
. .

.....
.....

ooooo
.....
.....
.....
.....

Contents

—t) o) e e) e
—))) cd) emd ek
GUbbhWWN=—

— 3 i
WNN =
[enle o (RN

133
136
137
138
146
148
149
150
151
153
154

155
155
157
161
163
164

ix

X Connecting non-DIA Systems to DISOSS

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

—) ol —

WN=OOWO~NOUIRWN—

LIST OF ILLUSTRATIONS

Interactive Communication between Box X and DISOSS . 7
Document Transfer from DISOSS to Box X T 1 ¢]
Document Transfer from Box X to DISOSS . 13
DISOSS--Box X Interactive and Document Transfer Connectlons 17
DIU Structure Built by DBTSND1 . . O 4]
Document Unit Segments for Document Text e e e e 30
Last Document Unit Segment O X |
DIU Prefix . . 7.2
Request Dlstrlbutlon Command . 72
Document Profile Information A X
. Graphic Character Set Definitions 37
. Transformations and Translations . R L |
. PROFS menu to Add/Change a Document File L -1

List of lllustrations Xi

xii Connecting non-DIA Systems to DISOSS

SYSTEM DESIGN

SYSTEM DESIGN 1

2 Connecting non-DIA Systems to DISOSS

1.0 INTRODUCTION AND DESIGN OVERVIEW

The Document Interchange Architecture (DIA) defines a set of rules (or 'proto-
cols'), allowing two programs to hold a 'conversation'; the purpose of this con-
versation is to exchange documents, together with commands describing what is
to be done with these documents. DIA defines the 'language' the two programs
use to exchange documents and control requests, but it is not concerned with
the means by which these requests are moved from one program to the other.
Typically, the transport function is provided by an SNA network; DIA does not
duplicate any SNA function, and could theoretically use any transport mech-
anism that provides appropriate levels of reliability, recovery etc.

DISOSS exists to provide document handling functions, and to cooperate in this
with intelligent devices such as 8100/DOSF, Displaywriter, 5520 and Scanmas-
ter; hence it is logical that DISOSS 'converses' with these systems using exclu-
sively the DIA protocols.?

DI1S0OSS/370 V3R1 provides an Application Program Interface (APIl), which allows
user-written CICS applications to use the DIA protocols to exchange documents
and commands with DISOSS. In this case, since the user program and DISOSS
are both executing under CICS, the transport mechanism for moving requests
between them is not an SNA network but internal CICS and DISOSS facilities;
however, the DIA protocols remain unchanged from those used to communicate
between DISOSS and its other subsystems.

The APl provides a means of interfacing almost any system to DISOSS in a man-
ner that does not require modifications to the product, and should be safe from
the effects of changes in future reieases. Ciearly, then, it is fundamental to
any gttempt to make DISOSS functions available to devices not directly sup-
ported.

The remainder of this chapter describes the basic characteristics of our pro-
posed system design, and explains the logic that led us to that design rather
than one of the many alternatives.

1 Note that DISOSS does not communicate with the end-user, but with a pro-

gram executing in the subsystem; it is the intelligent subsystem that pro-
vides end-user interfaces appropriate to the type of user it supports.

Introduction and Design Overview 3

1.1 DESIGN OBJECTIVES

Our principal aim was to discover whether it was possible to design a system
that embodied two fundamental characteristics:

e General Applicability
o Ease of Implementation

There was always the real possibility that these two characteristics would prove
to be mutually exclusive, and so to make our aims more precise, we defined the
following requirements of the design:

Generality

It should provide a generalised interface to DISOSS that could be used by the
majority of systems installed in today's networks, including, but not limited to:

VM/SP (and thus PROFS)
S/34, S/36, S/38
8100/DPPX

Series/1

5280

PC

In addition, it must be structured so that an IBM customer could implement it
without unreasonable difficulty or risk. This leads to the following three
requirements.

Minimum New Code

It should make every possible use of existing products and functions, rather
than demanding new ones specifically designed for the purpose.

Resilience

It must require no modifications to IBM-supported software.

Programming Skills

It should aim to avoid highly specialised or complex techniques and system

interfaces, and should aim to use only those programming skills which are gen-
erally available in customer installations.

1.2 LOGIC OF THE DESIGN PROCESS
Given the objectives listed above, several major design decisions must be
resolved at an early stage:

s Function Distribution. To what extent should we try to do things in the var-
ious subsystems rather than in the central CICS?

° User Interface. Should we attempt to define a standard one for all subsys-
tems, or allow each to select its own?

4 Connecting non-DIA Systems to DISOSS

e Available Tools. What standard system components and specialised program
products could be utilised to avoid developing new code?

1.2.1 DISTRIBUTION OF FUNCTION

The subsystems under consideration vary widely in the programming facilities
they offer: a VM system, for example, is vastly more powerful and flexible than
a 5280, and a function that is straightforward to implement on one may be
unreasonably difficult on the other. Furthermore, the range of programming
skills needed to support several subsystem types may be very wide.

It therefore seemed sensible to minimise the amount of function performed in the
subsystem, in order to minimise the amount of duplicated work in a network con-
taining a variety of subsystem types. This is the most generalised approach,
and is reflected in our design, but in a network containing only one subsystem
type, it might well be worth reconsidering this decision.

1.2.2 END-USER INTERFACE

Each subsystem has its own interfaces to its end-users, and it would usually be
desirable to retain some consistency with these; to achieve this, however, an
installation with a variety of different subsystems may have to write the same
function several times; on the other hand, each group of users could have an
end-user interface that is consistent with the rest of the system.

Our conclusion was that the need to minimise duplicated effort would usually
override the wish to provide tailored user interfaces, although, again, this bal-
ance might well change in a network containing-a large number of one subsystem

type.

1.2.3 AVAILABLE TOOLS

Two functions are common to all of the subsystems:

3270 Emulation The ability to appear to a host system as a cluster of remote-
ly-attached 3270 displays. This may be a BSC or an SNA
attachment, depending on the subsystem concerned, but both
are supported by NCP and VTAM and can thus access any
host application that supports 3270s.

Remote Job Entry The ability to emulate a batch terminal in order to send bulk
data to the MVS host. The subsystems use a variety of proto-
cols:

* BSC 2780 or 3780.

e BSC Multileaving Remote Job Entry (MRJE).

* SNA Single Logical Unit (SLU).

e SNA Multiple Logical Unit (MLU).

The first and third of these protocols are supported by
CICS; all four are supported by JES.

Introduction and Design Overview 5

Other communications facilities exist in some of the subsystems. For example:

e User programs in most subsystems may use SNA functions to communicate
with a CICS application; however, the programming interfaces differ great-
ly, and the same programs could not be used in all subsystems.

e Some 3270 Emulation packages allow batch data to be read from disk and
transmitted as if it had been keyed. This capability exists only on certain
configurations of Displaywriter and PC, and there is no standard host soft-
ware to perform the complementary receiving function for all implementa-
tions.

Since no communications function other than 3270 Emulation and RJE is common
to all of the subsystems, our objective of generality requires that we base our
system on them.

Given that all the subsystems can emulate 3270s, it is likely that DISOSS/PS will
be a valuable tool, since its purpose is precisely to allow 3270 devices to make
use of the DISOSS functions.

1.2.4 DISOSS/PS FOR INTERACTIVE FUNCTIONS

DISOSS/PS is a CICS application; it supports 3270 terminals, and provides
end-user services for users of those terminals. Thus it can be regarded as an
intelligent subsystem using DISOSS services, just as the DISOSS/8100, 5520 and
Displaywriter subsystems do; the only difference is that DISOSS/PS executes
under CICS, rather than in a separate machine, and communicates with DISOSS
via the APl rather than via an SNA session.

The components involved in connecting Box X to DISOSS via DISOSS/PS are
shown in Figure 1 on page 7.

DISOSS/PS provides the 3270 user with access to most of the functions of
DISOSS, including:

Distribution A mailbox for documents received from Displaywriter,
DISOSS/8100, 5520 and other DISOSS/PS users. The following
functions can be performed on a document in the DISOSS/PS

mail-log:

* View

. File in the DISOSS Library

. Redistribute to other DISOSS users
. Print at the MVS host

Delete

In addition, DISOSS/PS provides a limited text entry and editing
function, so that simple documents can be created at the screen
and filed in the library or distributed to other DISOSS users.

Library The DISOSS/PS user has access to the DISOSS document library
and can use the following functions:

Search
View
Distribute
Print
Delete

6 Connecting non-DIA Systems to DISOSS

DISOSS

..I..
|
|
|
|
l

DISQSS/PS

c I € S N
VTAM .
“MVS .

* Interactive

* 3270 session

BOX - X .|
ff0cceccccce °
3270
DSC

eI I I I I I I I I I

r_J

Figure 1. Interactive Communication between Box X and DISOSS

Clearly, then, DISOSS/PS provides many of the required functions to any sub-
system that can emulate a 3270. However, precisely because it is designed for
3270 users, there are two important functions that it does not provide:

* A means of retrieving a document from the DISOSS/PS mail-log or the
DISOSS library to the subsystem's own storage.

* A means of filing or distributing via DISOSS a document or file created and
stored at the subsystem.

Introduction and Design Overview 7

We need a means of moving documents in both directions between DISOSS and
the subsystem; this is essentially batch data transfer, and our chosen vehicle
for this is one of the RJE protocols.

1.2.5 RJE FOR BATCH FUNCTIONS

All of the subsystems can emulate a batch terminal of some kind, and CICS sup-
ports certain batch devices, so clearly it would be convenient to connect the
subsystem to CICS and use a CICS transaction to send and receive files or doc-
uments. However, there are several difficulties:

¢ CICS does not support all of the protocols used by the various subsystems.
In particular, it does not support the BSC MRJE and SNA MLU protocols.

. Using a BSC protocol to communicate with CICS would usually require a ded-
icated connection between Box X and CICS. This may imply a dedicated line
plus two modems, which may be too expensive if the number of document
transfers is low.? The SNA SLU protocol would avoid this problem, but is
not supported by all subsystems.

¢ Not all subsystems can support multiple physical connections to a host, and
if one is already installed, it is more likely to be communicating with an RJE
system than with CICS.

e Subsystems designed in the expectation of communicating with an RJE sys-
tem may be more difficult to operate when communicating with a user-written
CICS transaction.

e JES has good facilities for recovering from communications failures,
safe-storing and re-transmitting data. Equivalent function, if desired in a
CICS connection, would have to be programmed by the user.

e JES is normally available whenever the operating system is running; thus a
job can be submitted whenever the network is available, regardless of
whether CICS is executing or not.

For these reasons, we concluded that the most general approach would be to
have the subsystem communicate with the RJE system rather than directly with
CICS. This leads to the question of how documents are to be moved in both
directions between JES and CICS.

2 It may be possible to reduce this cost in some cases:

e Channelised modems would allow two or more 'separate’ connections to
use the same physical link. This would still require separate 37x5 ports
for each connection, and depends on the total traffic being low enough
to allow the bandwidth to be divided up in this static way.

¢ Use of the Non-SNA Interconnection (NSI) licensed program in the 37x5
would allow the subsystem to switch its connection from one host appli-
cation to another, for example between JES and CICS. This, of course,
implies that only one communication function could use the physical link
at a time, which may be operationally unsatisfactory.

8 Connecting non-DIA Systems to DISOSS

1.2.6 MOVING DOCUMENTS FROM CICS TO JES-

We could write a CICS transaction to obtain documents via the DISOSS API,
transform them into a datastream appropriate to Box X, then submit batch jobs
(via the operating system's internal reader facility) to place the transformed
documents on the JES spool.

As it happens, however, there is a standard function in DISOSS which will
achieve the same result. The Host Print facility submits a batch job whose
function is to transform a document from its DISOSS form into a series of print-
lines appropriate to a host-attached 1403 printer. This print data is output to
the JES spool, from where it can be printed on a real printer, or routed to some
other destination known to JES. This destination could of course be our remote
subsystem.

Thus, the DISOSS Host Print function, together with appropriate JCL state-
ments to direct its output, provides the means of moving a document from
DISOSS to Box X, without the need for any user programming. Figure 2 on
page 10 shows the connection involved.

1.2.7 MOVING DOCUMENTS FROM JES TO CICS
There is no standard DISOSS function to meet this need, so this is a more diffi-
cult problem; nevertheless, there are several possible solutions:

Direct SNA Session between JES and CICS, or between the submitted batch
job and CICS.

SNA Relay Program receiving data from JES on one side, and passing it on to
CICS on the other.

JES External Writer executing under CICS and reading data from the JES

spool.
Shared Dataset allowing the batch job to insert data, and CICS to
retrieve it.

1.2.7.1 Direct SNA Session

The Network Job Entry (NJE) functions of JES2 and VSE/POWER (but not JES3
or OS/VS1 RES) allow one JES system to pass jobs and output across an SNA
session to another JES system. If such a session could exist between JES and
CICS, then JCL statements in the job submitted by Box X could cause the job to
be passed on to CICS rather than executed by JES. Unfortunately, however,
such a session is not possible since CICS does not support the particular set of
SNA protocols required by JES for this purpose.

Alternatively, the job submitted by Box X and executed by JES could certainly
establish an SNA session with CICS and pass the document across this session
to a user-written CICS transaction. The main problem is one of recoverability.
If the program cannot establish its session with CICS for some reason, it cannot
continue; but if it terminates, its input data is lost, and the originating user
must resubmit his request. It would be preferable to ensure that the data

Introduction and Design Overview 9

BATCH DISOSS

DISOSS . API

se0<o000000<00coe

JES
Cc I C S

VTAM
MVS

Document Transfer
DISOSS —> Box X

® © 9 8 06 © € 0 @ o @ O ¢ 0 © ©° o

'.

BOX-X
O......>....O..#

RJE

I 3 3 3 3 I 3 T T T I I I Ik

—

Figure 2. Document Transfer from DISOSS to Box X: this assumes an SNA
connection. If the RJE connection were BSC, RTAM would be used
instead of VTAM.

remains safely on the JES spool until we know it can be delivered to CICS, and
this cannot easily be achieved with this approach.

1.2.7.2 SNA Relay Program

This program would be a long-running task, active in the system whenever JES
and CICS are running. It would establish two SNA sessions:

10 Connecting non-DIA Systems to DISOSS

1. With CICS. This might be one of several session types supported by CICS;
the most convenient would probably be either the SNA SLU batch session,
or the LU6.2 session which is specifically designed for program-to-program
communication.

2. With JES. Only when the session with CICS is active would this second ses-
sion be started, thus avoiding the recoverability problem noted earlier.
This session might use the SNA SLU protocol to appear to JES as a 3770 RJE
device. Alternatively, it might use the SNA Network Job Entry protocol, so
that it would appear to JES as another JES. In this case, the batch job
submitted by Box X would not be executed by JES, but would be passed to
the relay program, which would in turn pass it on to CICS.

This approach avoids the problems of both types of direct session discussed
above: no batch jobs need be executed by JES, yet the JES spool is used as a
safe store until the data can be delivered to CICS.

The disadvantage is that the VTAM programming skills needed to implement it
are not universally available, and for that reason it must be rejected in our
case.

1.2.7.3 JES External Writer

An external writer is a user-written program using interfaces provided by the
operating system to read output data directly from the JES spool. If such a pro-
gram were executing as a CICS application, it could read JES output into the
CICS system with no need for SNA sessions. Unfortunately, the interfaces pro-
vided by MVS and VSE are not suitable for use under CICS, since they issue
WAIT macros which would cause the entire CICS system to wait; the alternative
is to implement the External Writer via a user SVC, but again we felt that this
type of programming skill would not be widely available.

A further disadvantage is that this interface can only handle SYSOUT data: in
other words, the incoming data is always 1403 printlines. This will often be sat-
isfactory, but cannot handle the possibility that Box X may wish to send some
more sophisticated datastream.

Introduction and Design Overview 11

1.2.7.4 Shared Dataset

An apparently very simple approach to the problem is to allow the job submitted
by Box X to write its document into a disk dataset, from where it can subse-
quently be read by a CICS transaction. There are still some potential difficul-
ties, however:

¢ The dataset must be concurrently shared between CICS and the batch job,
since it would not be satisfactory to run the batch jobs oniy when CICS was
down. JCL can allow both CICS and the batch job to allocate the dataset,
but to avoid data integrity problems we must ensure that concurrent updat-
ing is not allowed, or is very carefully controlled. VSAM can simply over-
come this problem, by ensuring that only one task can open the dataset at a
time; alternatively, concurrent updating can be permitted with VSAM, at
the cost of increased user programming effort.

e If the dataset is to be used concurrently by batch and CICS over a long
period, then we must be able to insert and delete records; this in addition
to the need for frequent OPEN and CLOSE functions from both batch and
CICS, could create a significant performance bottleneck if not considered
carefully in the system design.

However, this approach has the major advantages of being easy to program and
maintain, since VSAM file operations are well understood in most installations.
Also, having examined the potential performance problems, we felt that careful
dataset and application design could contain them to acceptable levels. We there-
fore concluded that, given our original objectives, this technique would be most
appropriate. Figure 3 on page 13 summarises the connection for document
transfer from Box X to DISOSS.

1.2.8 CICS APPLICATION TO ACCESS DISOSS API

By using the DISOSS Host Print function plus NJE for document transfer from
DISOSS to Box X, we eliminate the need for user-written CICS programs to
obtain documents via the APl and redistribute them to Box X users; thus new
code is only needed to pass documents into DISOSS from Box X. The next ques-
tion is, how much DIA function needs to be supported in this new user code?.
Any DIA application must support the SIGN_ON, ACKNOWLEDGE and SIGN_OFF
commands, and in this case we will "also need either FILE or
REQUEST_DISTRIBUTION (or both) in order to pass documents into DISOSS:

e FILE requests that DISOSS file the attached document in its library. This
command has many operands, since users may want to specify many attri-
butes of a document in order to ensure that it can later be retrieved in a
satisfactory way. Any of the following may be specified, for example:

Document Name

Author

Subject Matter

Recipients

Keywords for later search operations

Document Class (e.g. Memo, Letter, Report etc.)

Access Codes to ensure the desired level of security

Consequently, of course, 'File' is potentially a complex command, and there-
fore a variety of end-user errors could occur and would need to be handled
by our code. For example, if the end-user specified an invalid Access Code,

12 Connecting non-DIA Systems to DISOSS

BATCH DISOSS

_}:~ ————— API
USER .

0e>0000920>0000>00000

USER

c I C S

JES

VTAM
MVS

Document Transfer
Box X —> DISOSS

® 6 & @ © & O 0 ¢ O 6 0 O 0 0 ©° o

BOX-X

®0e0ecelscsessef

RJE

FE I I I IR I I I I I I

—

Figure 3. Document Transfer from Box X to DISOSS: the batch user program
communicates with the CICS user program via a shared VSAM dataset
not shown in this diagram.

DISOSS could not perform the File operation and would inform us via the
APIl. We would either have to discard the document and notify the end-user,
or ask the end-user to correct his request so that we could retry the File
command.

REQUEST_DISTRIBUTION asks that DISOSS distribute the attached docu-
ment to a named user or users. Since the document is not permanently
stored in the library, there is usually no need for all the descriptive infor-
matijond required by the File command. Often, only the following would be
needed:

Introduction and Design Overview 13

— Document Name

— Recipients '

However it would probably be desirable for the end-user to have, in addi-
tion, at least the following:

— Distribution Lists, so that he could simply name a list in order to have a
document distributed to several users.

— Priority Distribution, so that he could designate one document as more
urgent than another.

~ Personal Distribution, so that he could designate a document as Per-
sonal to the recipient (i.e. not available to the recipient's secretary).

These functions, of course, would also add complexity both to the Box X

end-user interface, and to the user-written CICS programs.

A reasonable interface should allow the Box X user to use both the filing and
distribution services of DISOSS, but a serious difficulty arises: there is no
interactive communication between the Box X user and the CICS application,
since document transfer occurs via batch RJE facilities, and thus there is no
reasonable way to converse with the end-user when DISOSS or our code detects
an error in his request. All we can do is send him a report identifying the error
and asking him to resubmit his request at some time in the future. Obviously
this is not ideal, but the more function we offer the end-user, the greater the
risk of such errors occurring.

Thus we have conflicting requirements:

e Full support of the File and Request_Distribution functions in the user API
programs will:

— Add complexity to the end-user interface at Box X, to allow the user to
specify the various options.

— Add complexity to the user APl programs to handle these options, build
the more complex DIA commands, interpret the possible error notifica-
tions returned by DISOSS, and return some useful message to the
end-user.

— Still only offer a batch-type interaction with the end-user, which he is
unlikely to find attractive.

This conflicts with our objectives in two ways:

1. It will require significant user code in each subsystem type to support
the more complex end-user interface.

2. It adds considerable complexity to the CICS application, and therefore
threatens the ease of implementation objective.

¢ On the other hand, the requirement that our system be generally applicable
across a wide range of subsystems and user groups, demands that the full
range of the DISOSS Library and Distribution services be made available.

The solution to this problem was surprisingly simple:

1. The Box X user is already a user of DISOSS/PS, and DISOSS/PS already
provides extensive support for the full range of filing and distribution
functions. Furthermore, it does so interactively, giving the end-user a
chance to correct an invalid request and resubmit it at once.

2. Our CICS application can distribute the Box X document to the DISOSS/PS
userid representing the Box X end-user. Thus the Box X user will see the
document in his mail-log, and can use all the facilities of DISOSS/PS to file
or distribute it.

14 Connecting non-DIA Systems to DISOSS

The user-written CICS code is thus greatly simplified, since it only has to
support a simple form of the Request_Distribution command?®, with a much
reduced likelihood of errors. Furthermore, the subsystem-unique code is
also simplified, since the complexities of the end-user interface for full sup-
port of filing and distribution are now handled by DISOSS/PS.

This approach views the user-written code as just a means of delivering Box X
documents to DISOSS/PS, which is the principal means for the Box X user to
interface with DISOSS. Apart from minimising the complexity (and thus the
maintenance) of the user-written code, it also increases the likelihood that the
Box X user will be able to take advantage of any new function in DISOSS or
DISOSS/PS, without being dependent on corresponding enhancements in the
user-written CICS programs.

3

In fact it may also be desirable to support a simple form of the File com-
mand. This is because a document delivered to DISOSS/PS is transformed on
receipt into a simple DISOSS/PS internal datastream; it is not always possi-
ble to reconstruct the original datastream when the document is subsequent-
ly filed or redistributed from the DISOSS/PS mail-log. In such cases, our
system can perform a simple File operation on behalf of the DISOSS/PS
user, who thus becomes the owner of the document in the DISOSS library,

ar_ldh can therefore update the profile or redistribute the document as he
wishes.

Introduction and Design Overview 15

1.3 OVERVIEW OF THE SYSTEM STRUCTURE

Figure 4 on page 17 illustrates the general organisation of our system design,
intended to allow the Box X user to work interactively with DISOSS via
DISOSS/PS, and to transfer documents in both directions between DISOSS and

Box X.
To summarise the main characteristics:

1. DISOSS/PS is the principal end-user interface to DISOSS, and is used for
all interactive functions.

2. DISOSS/PS invokes the DISOSS Host Print function in order to move a doc-
ument to Box X from either the DISOSS library or the DISOSS/PS mail-log.

3. RJE and user-written batch and CICS programs are used to move a docu-

ment from Box X to the Box X user's DISOSS/PS mail-log, from where the
full functions of DISOSS/PS are used to file or distribute it.

16 Connecting non-DIA Systems to DISOSS

ee>e00000
BATCH DISOSS e File,
e Dist.,
esee<ecccoscccscccceecese Search,
b i etc.
) o000 0>0000 [
DISOSS L. e —— o ———— —
e0eleccccee<occsceoc<ecce . e API .
. USER ° eeeee>00000
. 0e0>000000>0000> 00000 DI SQeSS/PS
. . USER .
e JES o .
° . CcC I C S .
. VTAM .
. MVS .
* Document Transfer e Interactive
* Box X <—> DISOSS e 3270 session
. BOX— X .|
° ®0cscccccsccscefioscssceccee .
Y . # . o]
3270
RJE
DSC

S 3 3 I I IR IR I I I I I I I

—

Figure 4. DISOSS--Box X Interactive and Document Transfer Connections

Introduction and Design Overview

18 Connecting non-DIA Systems to DISOSS

2.0 SYSTEM STRUCTURE

This chapter describes the general structure of the suggested design, and
summarises the functions of the various components.

"Introduction and Design Overview" on page 3 has shown that our system has
three logical components:

. Interactive communication between the Box X end-user and DISOSS/PS.
. Document transfer from DISOSS to Box X.

. Document transfer from Box X to DISOSS.

2.1 INTERACTIVE COMMUNICATION

This is implemented by a combination of existing product functions, and all that
is required to deliver the needed end-user function is appropriate customising
of the following:

° Box X 3270 emulation component.

° NCP, VTAM and CICS definitions for the emulated 3270 terminals.
. DISOSS/PS definitions for the Box X end-users.

. DISOSS Host User Profile definitions for the DISOSS/PS users.

The general organisation is shown in Figure 1 on page 7, and this component of
the system is not further described in this chapter.

2.2 DOCUMENT TRANSFER FROM DISOSS TO BOX X

This too is implemented by a combination of existing product functions, and all
that is needed is appropriate customising of the following:

Box X RJE component.

Definitions for the Box X RJE component in JES and in EP or NCP/VTAM.
JCL procedures to route output to Box X.

DISOSS Printer Description Table definitions to generate the appropriate
Host Print batch jobs.

The general organisation is shown in Figure 2 on page 10, and this component
of the system is not further described in this chapter.

2.3 DOCUMENT TRANSFER FROM BOX X TO DISOSS

This component of our system is the only one requiring user-written code, and
will be the subject of the remainder of this chapter. Figure 5 on page 20 shows
the major components involved.

System Structure 19

BOX-X
Submit batch job

.......... Vo oo
' RJE NETWORK '

.....................

DBTBAT1
Read card images
Write Box X text |————>| VSQO

B ATCH

0000000000009 000002000000000000000000002006060

c I C S

DBTM
DBTMOV1
Read Box X text |<
Write Box X text |——
(Delete from VSQO)

> VsQl

DBTS
DBTMST1
Select transform

DBTTRNn
Read Box X text |<————
Write L2DCA >

(Delete Box X txt)

DBTSND1
Read L2DCA <
Build DIU
Pass to API

DISOSS
Process
Distribution
Request

DBTR
DBTRSP1
Get API response
Delete L2DCA ——>

20 Connecting non-DIA Systems to DISOSS

2.3.1 MAJOR COMPONENTS

2.3.1.1 Box X Job Submission

User programming in Box X performs the following functions:

Co;lstructs a document header record to identify the document, its format
and its destination, so that the appropriate DIA request can be constructed
at the host.

Breaks the text lines into 80-byte card images.

Adds JCL to invoke the appropriate user-written batch program, and sub-
mits the job via the RJE system.

2.3.1.2 Batch Program

DBTBATT1 is a user-written batch program whose purpose is to insert the Box X
document in the shared VSAM dataset DBTVSQO. In order to minimise contention
for the dataset, and to minimise the number of insert and delete operations
needed to transfer the document, DBTBAT1 does the following:

Builds a document header from the header card sent by Box X.
Reads the card images sent by Box X and rebuilds the original text lines.

Concatenates these lines of text, separated by X'1E' Interchange Record
Separator characters, in large physical records.

Adds a unique document identifier to be used later as part of the VSAM
key, then writes the large records to a temporary dataset.

When the document is complete, opens the the shared VSAM dataset and
inserts the contents of the temporary dataset.

2.3.1.3 CICS Program DBTSONI1

This program starts a DIA session with DISOSS via the API, and would normally
be executed at CICS start-up time. Having established the DIA session, it could
then initiate transaction DBTM to start document transfer.

System Structure 21

BOX-X
Submit batch job

.....................

DBTBAT1
Read card images
Write Box X text |—— > VSQO

B ATCH

9000000000000 0060000600000000000000060000000¢0

Cc I C S

DBTM
DBTMOV1
Read Box X text |<
Write Box X text |—
(Delete from VSQO)

> vsQl

DBTS
DBTMST1
Select transform

DBTTRNn
Read Box X text |<————
Write L2DCA e

(Delete Box X txt) :

DBTSND1
Read L2DCA <
Build DIU
Pass to API

DISOSS
Process
Distribution
Request

DBTR
DBTRSP1
Get API response
Delete L2DCA —_—

22 Connecting non-DIA Systems to DISOSS

2.3.1.4 CICS Transaction DBTM

This transaction consists of one program, DBTMOV1, whose purpose is to move
Box X documents from the shared dataset DBTVSQO to an identical VSAM data-
set, DBTVSQ1, which is wholly controlled by CICS. Functions are:

Call subroutine DBTOPNT1 to open the shared dataset.

If the open is unsuccessful, schedule a new DBTM for a later time, and
end.

If the open is successful, copy all DBTVSQO data into DBTVSQ1.

For each compiete document transferred, initiate transaction DBTS, passing
it the key of the document in DBTVSQ1, and delete the document from
DBTVSQO.

Call subroutine DBTCLST1 to close the shared dataset.

Before ending, schedule a new DBTM transaction to execute a few minutes
later.

2.3.1.5 CICS Transaction DBTS

This transaction contains the main processing of the system, and consists of
several programs:

Program DBTMST1 examines the document header in DBTVSQI1, identifies an
appropriate program to transform the input datastream to the desired output
datastream, and invokes that transform routine.

The chosen transform program, DBTTRNn, converts the text of the
DBTVSQ1 distribute request to a datastream understood in the DISOSS sys-
tem (probably the DCA Level 2 Final Form Text datastream), and passes
control to program DBTSND1.

DBTSND1 builds the appropriate DIA structure, called a Document Inter-
change Unit (DIU), which contains a DIA Request_Distribution command and
the document text, and passes it across the APl to DISOSS, requesting that
transaction DBTR be invoked to process the subsequent response from
DISOSS.

2.3.1.6 CICS Transaction DBTR

This transaction consists of one program, DBTRSP1, which checks that the dis-
tribution request was successful, and deletes the document from DBTVSQ1.

System Structure 23

24 Connecting non-DIA Systems to DISOSS

SAMPLE IMPLEMENTATION

SAMPLE IMPLEMENTATION 25

26 Connecting non-DIA Systems to DISOSS

3.0 SAMPLE SYSTEM IMPLEMENTATION

This chapter describes the sample implementation that was made to validate the
system design. We used VM/CMS as our Box X, and therefore this sample has
only implemented support for one inbound datastream, the 1403 printline.

It is important to remember that the purpose of this implementation was solely to
show that the proposed design was workable. It was never our intention to pro-
duce an implementation that could be used in a production environment: that
would have required more detailed documentation, more extensive error
detection and recovery code, and more rigorous programming and testing tech-
niques than were possible in the timescale of our project.

This sample implementation is only intended as a demonstration, and is not
appropriate for any other use.

Sample System Implementation 27

3.1 MOVING DOCUMENTS FROM DISOSS TO BOX X

The design of a CICS-Batch interface can be straightforward, because CICS
applications can write jobs to the internal reader. The DISOSS Host Print facili-
ty uses this technique, so rather than duplicate many of the functions of
DISOfSS, the Host Print facility was used as the basis for the DISOSS to Box X
interface.

The DISOSS Host Print facility works as follows:

e The DISOSS user enters the name of a logical printer in the Destlnatlon
Name field of a Host Print menu.

e A batch job is written to the internal reader for execution. The batch job
contains the following:

— A jobname derived from the Host Print Menu jobname field.
— Jobcard parameters derived from:

— The accounting information in the Host User Profile of the DISOSS
user.

— The JOBJCL option that was specified in the Host Definition job
during installation

— An invocation of the format procedure whose name was specified in the
JOB option of the PDT entry for the logical printer entered in the des-
tination name field of the Host Print menu.

— An input dataset with the document text inline.

e A format program, usually the DISOSS supplied DSVOL500, should do the
following:

— The document is formatted into 1403 printlines, according to the format
options and the printer characteristics data specified in the relevant
entry in the Printer Description Table (PDT).

— The print/fidelity table index DSVS5800 is searched for a table with an
input GPID and output GCID corresponding to the document GPID and
the printer GCID specified in the PDT entry. The output characters
are translated if a table is found.

e The output document is routed by JES to the printer determined by the
procedure JCL.

28 Connecting non-DIA Systems to DISOSS

3.2 MOVING DOCUMENTS FROM BOX X TO DISOSS

3.2.1 USE OF THE DISOSS API

3.2.1.1 General Remarks

One of our design objectives was to avoid the need for specialised programming
skills wherever possible; thus we have rejected designs requiring the use of
VTAM programming or the JES External Writer interfaces, and the DISOSS API
itself is the only requirement for special programming knowledge. We do not
attempt to describe the APl in this book, and recommend that the following doc-
uments be regarded as essential reading for anyone wishing to understand this
implementation in detail:

SC30-3096 DISOSS/370 Version 3 Application Programming
GG24-1614 DISOSS Application Interface: Programming Guidelines

However, for the general reader, the following points may be helpful.

¢ The APl consists of a queue (implemented as a VSAM KSDS), and a set of
commands to insert and retrieve data on that queue. The data itself must be
in the form of a DIA-defined DIU.

e A DISOSS supplied module (DSVAW000) must be part of the user transaction
to invoke the APl commands.

* Every transaction that wants to use the APl has to issue an APl 'Activate'
command first, and provide a DISOSS user name for the session. Then, the
first command on the DIA session must be an API-BIND, which will build a
DIA Sign_On.

e Multiple DIUs can be put on this queue by different CICS transactions for
the same DIA session. On an 'Activate' command, the AP| takes a unique
time stamp for that transaction and username of the DIA session. This time
stamp will be used as a key field for all data of this transaction put on the
APl-queue.

* DIUs will only be processed after receipt of a APl 'Last' command, and a
syncpoint of the user transaction.

* Only one DIU will be processed for every 'Last’' command.

. Updates on the APl queue will be backed out if an abend occurs.

* The responses for DIA commands that are processed through the APl must
be analysed by a new transaction named in the APl 'Last’ command. That is,

the APl is an asynchronous interface.

* The APl gives the 16 byte DIU-ID field as part of the receive data for the
response. (DIU-ID is provided by the originator of a DIU).

Sample System Implementation 29

3.2.1.2 Our Use of the API.

The Box X to DISOSS transactions distribute documents into DISOSS by means
of a 2-way multithread communication with the DISOSS API; that is, multiple
DBTS transactions may concurrently pass documents into the API, and multiple
DBTR transactions may concurrently receive results, but all share "the same DIA
session with DISOSS and are regarded by DISOSS as one user.

Sign_On and Slgn Off are provided by separate CICS transactions. Transaction
DBTN may be used to perform Sign_On if the CICS start-up procedure does not
invoke program DBTSONT to do so. DBTF performs a DIA Sign_Off, though this
is not normally required. ,

Transaction DBTS sends a distribute request to the APl. For each document it
builds one DIU of the structure shown in Figure 5.

<— DOCUMENT INTERCHANGE UNIT (DIU) ‘ : ’ >

DIU Req_Distr. |DOCUMENT |DOCUMENT |DOCUMENT |DOCUMENT |DIU
PREFIX |COMMAND |UNIT segl|UNIT seg2|UNIT segn|UNIT segl |SUFFIX

FigUFe 5. DIU Structure Built by DBTSND1: the maximum number of document
units in one DIU is 255 (DIA architecture 11m1tat1on) There is
no 1imit on the number of segments in a document unit.

The structure of document unit segments that contain L2DCA data is shown in
Figure 6. As there is no limitation on the number of segments in one document
unit, there is also no limit on the size of a document to be passed through the
API (except of course, the size of the APl-queue dataset).

< DOCUMENT INTERCHANGE UNIT (DIU) . >

DIU Req_Distr. |DOCUMENT |DOCUMENT |DOCUMENT |DOCUMENT |DIU
PREFIX |COMMAND UNIT segl{UNIT seg2|UNIT segn|UNIT segl |SUFFIX

| or |
Vo

DOC. UNIT DCA-LEVEL-2 DOCUMENT DATA
introducer
x'C90381200000"

Figure 6. Document Unit Segments for Document Text: these are
middle-in-chain segments, with only L2DCA data.

30 Connecting non-DIA Systems to DISOSS

The document unit is ended by a segment with only a 'last segment indicator'
and no data, shown in Figure 7.

<

DOCUMENT INTERCHANGE UNIT (DIU) >

DIU Req_Distr. [DOCUMENT |DOCUMENT |DOCUMENT |DOCUMENT |[DIU
PREFIX |COMMAND UNIT segl|UNIT seg2|{UNIT segn|UNIT segl |SUFFIX

]

v

DOC. UNIT introducer
X'C90381000000"

Figure 7. Last Document Unit Segment: there is no text content, only a

last segment indicator.

These DIA structures are built by the DBTSND1 program, which calls a set of
subroutines to perform particular functions:

APIACTIV issues the APl 'ACTIVATE' command for user DISTO1, which is
}hle AAPI user solely defined for this interface in the DISOSS Host User Pro-
ile dataset.

APIGTCMD issues APl 'RECEIVE' to receive data from the APl queue. it
parses the data and sets return code fields for the caller.

APIDIS2 (or APIFIL2) builds the first DIU part, up to and including the
first document unit containing the document base profile, and issues API
'SEND’ to pass it to the API.

APIPTDOC sends the remainder of document unit segments through the API.
APISUFIX passes the DIU suffix through the API.

APILAST issues APl 'LAST' command.

APIPURGE issues APl 'PURGE' command in case of errors.

Refer to DISOSS Application Interface: Programming Guidelines, GG24-1614 for
details of the design and operation of these subroutines.

Sample System Implementation 31

DIU Correlation Data

<

DOCUMENT INTERCHANGE UNIT (DIU)

DIV
PREFIX

Req_Distr.

COMMAND

DOCUMENT
UNIT segl

DOCUMENT
UNIT seg2

DOCUMENT
UNIT segn

DOCUMENT
UNIT segl

DIU
SUFFIX

)

PFX X'COOlxx'
DIUID X'....'

Figure 8.

DIU Prefix:

from DBTS.

the DIU-id field can be expanded to 16 bytes, and is
used in this system to correlate responses in DBTR with requests

The first 16 bytes of the DBTVSQ1 record key are used as the correlation data
in the DIU prefix. This data is unique, being made up of the date and time of
creation, together with an identifier of the creating interface (which in this case
It is used as the document identifier in the
APl communication, and it is passed to the response transaction DBTR. It can
be used by DBTR to identify the processed Box X request on DBTVSQ1, so that
appropriate action can be taken. In the current design, this action is to delete
the request from DBTVSQ1 if it was successful, and to issue an APl PURGE if it

is always the DBTBAT1 program).

was unsuccessful.

Request_Distribution Command

< DOCUMENT INTERCHANGE UNIT (DIU)
DIU Req_Distr. |[DOCUMENT |DOCUMENT |DOCUMENT |DOCUMENT |DIU
PREFIX |COMMAND UNIT segl|UNIT seg2|UNIT segn{UNIT segl |[SUFFIX
)
COMMAND | IDDATA-1|DEST NODE|ATTRIB.|RECIPIENT
X‘ccicol! ADDRESS |LIST ADDRESS
Figure 9. Request Distribution Command: attribute 1ist and fecipient

address are required parameters.

The command itself is in the ARR (asynchronous reply required) command class
designated by X'CC' in the 'I
replied to with an ACKNOWLEDGE command together with correlation data.
contains the following parameters:

32

byte of the command.

Connecting non-DIA Systems to DISOSS

ARR commands will be

The

Identified Data format 1, for pointing to the first document unit in this DIU
as the document for this command.

Destination node address format 1, an 8 byte parameter designating the
office systems node for the recipient address.

Attribute list format 1, a required parameter, specifying:

— no confirmation of delivery,

- not personal,

— no priority,

— number of copies = 1.

DIA gives the option to specify a 256 byte message in this parameter, but
this is not used by our programs.

Recipient address format 1, a required parameter up to 8 bytes long.

address

combination would

usually be a

DISOSS/PS

user because

DISOSS/PS provides all necessary functions for documents in the mail-log; how-

ever, a simple distribution to one user can still be done directly.

Document Profile

DOCUMENT INTERCHANGE UNIT (DIU) >
DIU Req_Distr. [DOCUMENT [DOCUMENT |DOCUMENT |DOCUMENT DIU
PREFIX |COMMAND UNIT segl|UNIT seg2|UNIT segn|UNIT segl |SUFFIX
v
DOC. UNIT|DOC. PROF.|DOC. PROF.|DOC.|PROF.|DOC.|SUB—|AUTHOR|///
introduc. | INTERCH. BASE TYPE|GCID |NAME|JECT ///
///| DOC. CONTENT
///| introducer
v DOC. UNIT ID
X'C90381200000"' |DOC. |SYST.
TYPE | CODE

Figure 10.

Document Profile Information:

the first document unit segment

contains the document profile only.
introducer in a segmented chain has a document unit id.

The first document unit

Sample System Implementation

33

The first document unit contains the document profile. We provide the following
parameters:

Document name, a required parameter, maximum length of 15 characters in
our design (44 characters DIA maximum). According to DIA rules the first
and last character of the name may not be a space.

Document type, a required parameter, a 2 byte field in our case always
X'0002' for L2DCA data.

Profile GCID, a required parameter, in our case always set to X'01510100'.
This is the standard GCID in DISOSS for profile data.

Document GCID is omitted from the document profile. The document GCID is
set in the DCA level 2 datastream to X'00D70108'. This is the standard GCID
in DISOSS for the 1403 TN chain. DISOSS will look in the DCA datastream
for the document GCID. See "Datastream Transformations" for a discussion
of why this GCID was chosen.

Subject, always set to 'Mailbox Project

Author, always set to 'Mailbox

3.2.2 DOCUMENT TRANSFORMATIONS AND TRANSLATIONS

3.2.2.1 Datastream Transformations

From Box X inward the following data transformations are performed on 1403
print lines; a header record identifies the incoming data as 1403 rather than any
other datastream.

1.

34

In Box X: reformatting of print lines to 80 byte cards for transportation
through the RJE system as SYSIN data.

Certain boxes might have abilities to transport data in a more efficient way
through a network. However the design of these programs would then no
longer be general.

In the DBTBAT1 program: re-blocking of 80 byte SYSIN data to print-lines
and blocking of print-lines in records with a maximum size of 5959 bytes (*
key of 39 bytes * 2 bytes length field = 6000 bytes). All trailing blanks in
the print lines are deleted. Blocking and deletion of trailing blanks is done
solely for efficiency purposes. For unblocking purposes the following addi-
tional data transformations are done:

e Print lines are separated by IRS codes, X'1E'.

* Except for the first byte, which should be the 1403 print control char-
acter, all characters below X'40' are converted to X'40', to ensure that
no extraneous X'1E' characters will be present in the print data. (With
DCF, any character could have been generated as print data).

This serves an additional purpose: In L2DCA, multibyte and one-byte

controls are used to control the final printing of data; all multibyte con-
trols start with X'2B', so the above transformation ensures that no

Connecting non-DIA Systems to DISOSS

unwanted multibyte controls are present in the 1403 datastream. Single
byte controls above X'40" in DCA Level 2 that could still occur in the
datastream are:

Numeric Space, X'E1’
Required hyphen, X'60'
Required Space, X'41'
Syllable hyphen, X'CA'

In the DBTTRN1 program, the actual transformation of 1403 print data to

DCA Level 2 is done. The DCA Level 2 controls used should provide docu-
After finding the print lines in the
1403 print controls are con-

ment integrity for 1403 print data.

blocked record the IRS codes are removed.

verted as follows:

Meaning Input Output L2DCA stream

1403 Printer Controls

Space 1 line after printing X'09'-prtline X'0D'-prtline-X'15"

Space 2 lines after printing X'11'-prtline X'0D'-prtline-X'1515"

gﬁgcetB 1;nes ?fgerfgrintigg §:ég:—prt}jne %:88:—prt}jne-§:ég}515'
ip to channe after pr -prtline -prtline-

Skip to channel 2 after prt X'91'-prtline 5:88:-prt}ine-§:151§:
............... -prtline-X'151
gkip to ?hannel 12 after prt i:gé:—prt}ine %:?g:-prt}ine-X'ISIS'

pace 1 line immediate -prtline -prtline
Space 2 lines immediate X'13'-prtline X'1515'-prtline
Space 3 lines immediate X'1B'-prtline X'151515"'-prtline
Skip to channel 0 immediate X'83'-prtline X'0C'-prtline
Skip to channel 1 immediate X'8B'-prtline X'0C'-prtline
Skip to channel 2 immediate X'93'-prtline §:%51§:-prt}1ne

................ 515'=prtline
Skip to channel 12 immediate X'E3'-prtline X'1515'-prtline
Write without spacing X'01'-prtline X'0D'-prtline
No-op X'03'-prtline delete prtline
Anything else -prtline X'15'-prtline
ANSI Print Controls
Space 1 line before printing X'40'-prtline X'15'-prtline
Space 2 lines before printing 0 -prtline X'1515'-prtline
Space 3 lines before printing - ~-prtline X'151515'-prtline
No space before printing + -prtline X'0D'-prtline
Start new page 1 -prtline X'0C'-prtline

The X'OD' controls at the beginning of 1403 print controls that are effective
after printing ensure that if a previous print line had an 'immediate' print
control, these print lines still will start printing in position 1 of the print
line.

At the end of the document, the last print line will have no NL (X'15")
appended to it, since this could overflow the presentation space. Instead
the document will end with ZICR (X'OD') and FF (X'0C'). The reason for
this is that Displaywriter and DOSF do not always start a new document
with a form feed as SCRIPT output normally does; they end a document with
ZICR and FF instead. Documents without ZICR and FF at the end will give
an error message on Displaywriter when printed.

Sample System Implementation 35

Additionally, some initial settings for formatting are necessary with multi-
byte controls. The following settings are provided by DBTTRNI1:

e SEA, set exception action, X'2BD2nn85' where nn is a count field. We
have set the exception class and action bytes to X'0000' which means:
for all exception classes - still present the data but indicate loss of
fidelity and possible alternatives. If print fidelity is required this
should be set to: X'000101020202'. No data will be presented if loss of
text data or loss of appearance would occur.

° SHM, set horizontal margins, X'2BD2nn11'. We have set the left margin
to 0.0 inch and the right margin to 8.5 inches. The right margin setting
is ignored because set justify mode is not used. The left margin is set

to 0 to ensure print fidelity with the original document. The operand
field is then: X'00012FDO’.

e SVM, set vertical margins, X'2BD2nn49'. We have set top margin to 0.5
inches as SCRIPT assumes that a 'skip to channel 1" will actually be on
the 4th print line of a new page. The bottom margin is set to 11 inch-
es. Bottom margin is ignored in DCA Level 2. The operand field is
then: X'02D0O3DEQ'.

e SPPS, set presentation page size, X'2BD2nn40'. We have set the width
to 8.5 inches and the page depth to 11 inches. The operand field is
then: X'2FDO3DEOQ'.

e SCG, set CGCSGID*, X'2BD10601' The CGCSGID is set to X'00D70108'
(215-264 when expressed in decimal). This corresponds to the GCID
reserved in DISOSS for the TN-chain of the 1403 printer.

3.2.2.2 Character Translations

Terminology

The L2DCA SCG control introduces the term CGCSGID (Coded Graphic Charac-
ter Set Global ID). The CGCSGID is a definition of the relationship between the
hexadecimal codepoints in the datastream and the graphic characters presented
on a display or printer. CGCSGID is made up of two components:

GCSGID Graphic Character Set Global ID. A two-byte field identifying a pre-
defined and documented set of graphic characters. This set could be,
for example, the characters available on a particular keyboard on on a
particular printwheel.

CPGID Code-Page Global ID. A two-byte field identifying a codepage; a
codepage defines the graphic character to be displayed for each of
the 256 possible hexadecimal codepoints.

There exist many more than 256 graphic characters which may need to be dis-
played, so the CPGID provides a means of identifying which set is to be used in
ah particular datastream, and which hexadecimal codepoints are to represent
them.

* The term CGCSGID, used in the L2DCA architecture, is equivalent to the
term GCID used in DISOSS publications. Their meaning is described in
"Terminology."

36 Connecting non-DIA Systems to DISOSS

Similarly, most displays and printers cannot support as many as 256 graphic
characters at any given moment, so the GCSGID provides a means of selecting a
subset from those characters available on the codepage.

The terms used here are those used in the L2DCA architecture; other terms are
used in other publications to refer to the same definitions. See Figure 11.

Full Name : Possible Abbreviations

Coded Graphic Character

Set Global ID. CGCSGID GCID GCID
Graphic Character

Set Global ID. GCSGID CGCS ID GGID

Code Page Global ID. CPGID Code Page ID GPID

Figure 11. Graphic Character Set Definitions: different terms may be used
to refer to the same entity.

For brevity, this book uses the terms GCID, GGID and GPID.

How DISOSS Chooses Character Translations

The procedure used by DISOSS to choose a translate table for an output docu-
ment is as follows:

The GCID list provided by the output device at DIA Sign_On is searched for the
output document GCID. If the search is successful, no translation occurs.

Otherwise, the translate table index is searched for a translate table suitable
for the document GPID, and an output device GCID. If the search is successful,
then that table is used.

Otherwise, no translation occurs.

Required Character Translations

There is a GCID known to DISOSS which represents the characters on the 1403
TN print train; this is X'00D7 0108" (00215-00264). Clearly, if we describe our
input document with this GCID, then its content is accurately identified, and all
components of the network have the means of knowing what our text really is.
The disadvantage is that few components of today's DISOSS networks were
designed to handle this GCID: thus Displaywriter, Scanmaster, DISOSS/8100
and DISOSS/PS will all either reject a document using this GCID, or will print it
incorrectly. Only the DISOSS Host Print function can handle it as intended.

Sample System Implementation 37

This is not an unexpected situation in a DISOSS system; there are many cases
in which a document is to be delivered to a subsystem which does not support
the document's GCID, and DISOSS provides a set of translate tables which it
uses to translate from the input GCID to a GCID acceptable to the receiver.
DISOSS also provides a way for an installation to add its own translate tables to
the standard ones. So our solution to the present problem is to provide a trans-
late table to map the 1403 TN characters on to a GCID that is understood by all
of the likely receiving subsystems. We could alternatively have performed a
translation in DBTTRNT1, before passing the document into DISOSS, but rejected
this approach for two reasons:

1. If DISOSS will perform the translation for us, there seems no point in dupli-
cating the function.

2. The translation cannot completely retain the appearance of the original doc-
ument (certain box junction characters are lost, for example), and so it is
preferable to translate only when necessary: using the DISOSS translate
function ensures that translation occurs only when the document is about to
be output to a device that needs it. While stored in the library, or when
delivered to a recipient (such as another CMS/PROFS user) who can handle
the original GCID, the document doés not undergo any translation and
retains its original appearance.

The output GCID we selected is X'0151 0100' (00337-00256), which is the Mul-
ti-Lingual Codepage and is supported by all DISOSS subsystems. The translate
table we have set up from GPID X'108" (264) to GCID X'01510100' (337-256) tries
to preserve as much of the meaning of the printable graphics as possible. When
no similar graphic could be found on code page X'100', a substitute was chosen.
See "DBTTRTOT Translate Table" on page 99.

38 Connecting non-DIA Systems to DISOSS

3.2.2.3 Overview of Transformations and Translations

1403
! DBTTRN1 Performs transform DBT programs
Level 2 DCA
GCID 00D7-0108 1403-TN GCID
v
Level 2 DCA See Note 1
GCID o0oD7-0108 Decimal 215-264
! xlate tbl Provided for DISOSS DISOSS
Vv by sample system
Level 2 DCA
GCID 0151-0100 Multi-Lingual GCID
\ X—form routine
)
1403 print See Note 2
v
1403 print
X—form routine
)
DISOSS/PS Displayable on 3270, | DISOSS/PS
internal format see Note 3
X—form routine
v
DCA-level 2 See Note 4
GCID 0151-0100 Decimal 337-256
v DISOSS

Figure 12. Transformations and Translations: as a document passes through
the system, it may be transformed and translated several times.

Notes

1. At this moment the document still conserves its print fidelity. If it were
filed now, it would be stored in the library with print fidelity maintained.

Sample System Implementation 39

2. As DISOSS/PS at signon time declares it can handle '1403' type documents,

. DISOSS schedules the appropriate transform routine. The document will

thus be delivered to DISOSS/PS in a form equivalent to the original 1403
print output of Box X, apart from the character translation we provided.

3. DISOSS/PS will do a transform to an internal format to be able to display
documents on a 3270 screen. This means it will, amongst other things,
delete overprinted lines.

4. When DISOSS/PS again gives the document to DISOSS (for a file, distribute
etc.), it first transforms the document to a L2DCA format.

The last two transforms do not preserve print fidelity. The following changes
will occur compared with the L2DCA document created by our program
DBTTRNT:

* The multibyte controls at the beginning of the DCA stream will be replaced
by the controls provided by DISOSS/PS.

NL controls (X'15') are replaced by RNL controls (X'06').

FF controls (X'0OC') are replaced by RFF controls (X'3A').

ZICR controls (X'OD') are deleted.

Every overprinted line is deleted.

The document ends with RNL,FF.

The main consequences of this to a DCF-generated document are:
o Box corner characters become full-stops.
s Overstruck lines are lost. This means:

— DCEF titles are no longer bold.

— All underscoring is lost.

— Box intersection characters, which are made up of one character over-
printed on another, are lost, and the box is incorrectly formed.

Simple memos, or output from programs other than DCF, may not be seriously
affected by these losses, but in order to allow complex DCF documents to be
handled by our system, we had to provide an additional function. It is possible
for the CMS/PROFS user to request that the document be filed on behalf of a
DISOSS/PS user (usually himself), instead of being distributed to that
DISOSS/PS user. In this way, the document is not sent to the DISOSS/PS user's
Mail Log, but remains intact as a L2DCA document in the DISOSS library. The
DISOSS/PS user can then search for it, add search terms and access codes if
necessary, distribute it to other DISOSS users, or delete it.

3.2.3 BATCH-CICS INTERFACE

A VSAM file, which we call DBTVSQO, is chosen as the vehicle to move docu-
ments from the RJE system into the CICS environment. Control of access to this
VSAM file is exercised through Open/Close processing and VSAM Shareoptions
set to 1 (which allows only one concurrent user). Both the batch program
DBTBAT1 and the CICS transaction DBTMOV1 will try to open this file for as
short a period of time as possible. If DBTBAT1 does not succeed on the first
attempt, it will retry the open until it is successful. In the same circumstances,
DBTMOV1 will end and the next initiation of DBTMOV1 will pick up any accumu-
lated documents. Most of the time this dataset will be closed to CICS. DBTMOVI
copies the contents of DBTVSQO to an identical but non-shared file, DBTVSQI1.

40 Connecting non-DIA Systems to DISOSS

DBTVSQO has variable length records with a maximum record size of 6000 bytes
(which fits well on most type of DASD). A typical 2-3 page document will then
only take up one record on this dataset.

DBTVSQO and DBTVSQ1 are key sequenced to simplify possible future modifica-
tions where records may not be entered sequentially, or where concurrent

applications may be writing to the same dataset. The common
DBTVSQO/DBTVSQ1 key fields are as follows:

FIELD NAME SIZE IN BYTES DESCRIPTION

DATE 5 Date
TIME 9 Time
INTTYPE 1 Interface Type identifier
OSN 8 Office System Name
USER 8 User name
INTYPE 2 Input document type
OUTYPE 2 Output document type
SEQNO 2 Sequence Number
CHFLAGF 1 Chain flag first
CHFLAGL 1 Chain flag last
TOTAL 39
DATE This is the date in YMMDD form. Y is the least significant year dig-
it.
TIME This is the time in hhmmssttt form. 'ttt' is the milliseconds.

INTTYPE This identifies the interface into our system. Only one is currently
defined (the DBTVSQO shared dataset), but others might be
required in the future. For example, some subsystems could have
an SNA session with CICS, across-which documents could be trans-
ferred; the receiving CICS transaction could insert the document in
the CICS dataset DBTVSQ1, but would indicate in the document
head?r INTTYPE field that the document arrived via a different
interface.

The combined DATE/TIME/INTTYPE field is used as a unique request identifier,
and this should ensure that each document is stored in a series of records in
ascending key sequence, and that duplicate keys cannot occur. This depends
on the assumption that the probability of more than one batch job using the PL/I
TIME pseudovariable in the same millisecond, is negligible. If this assumption is
not considered satisfactory, the problem could be avoided by ensuring that the
batch jobs do not execute concurrently, or that they serialise on some common
resource before taking the timestamp.

OSN This is the name of the distribution node of the recipient.
USER This is the name of the recipient.

INTYPE This identifies the datastream type of the document text. Currently
valid values are:

e X'000C' --- 1403 print lines
e X'0002' --- DCA Level 2

Sample System Implementation 41

OUTYPE

SEQNO

CHFLAGF

CHFLAGL

This identifies the desired datastream type. Currently valid values
are: '

e X'0002" --- DCA Level 2

If INTYPE is not equel to OUTYPE, then this is an indication that
the document requires transformation.

This is a binary number one less than the number of the record.
The existence of this field ensures the impossibility of duplicate
keys from the same request, and also causes the request records to
be arranged in order by VSAM.

This is '1" if the record is the first of a document, and 'O’ if the
record is not the first. All other values are invalid. It is used to
identify the beginning of a document.

This field is strictly unnecessary, since its value can always be
deduced from SEQNO. It is included however, to compartmentalise
the functions of the fields, and to make the code which manipulates
the fields more easy to follow.

This is '1" if the record is the last of a document, and '0' if the
record is not the last. All other values are invalid. It is used to
identify the end of a document.

This field might be used by a future version of DBTMOV1, if the
design were changed to allow concurrent CICS/Batch access to the
shared dataset. In that case, DBTMOV1 would not wish to start
reading a document until it knew that DBTBAT1 had finished writ-
ing it.

The key contains the minimum distribution information. It could be used in a
future design to allow partial distribution of a document in case of errors.

Additional distribution information is present in an 80-byte header field. This
field is the first card in the batch SYSIN stream. It is included in the first and
last VSAM record starting at byte number 42. There is currently still plenty of
space for more additions. The fields are as follows:

FIELD NAME SIZE IN BYTES DESCRIPTION

RECTYP 1 Batch SYSIN record type
PROFLAG 1 Profile format indicator
PAGEL 3 Pagelength
PAGEW 3 Pagewidth
DISNAM 8 Not used
EYECAT 6 "HEADER" Eyecatcher
DOCNAM 15 Bocument name
DISFIL 1 DIA Command - Req_Dist. or File
RESER 42 Not used
TOTAL 80

Below are some explanations of the header fields:

RECTYP Batch input record format identifier. Would be used by DBTBATTI1 if

42

it

supported more than 1 input record format.

Connecting non-DIA Systems to DISOSS

PROFLAG Profile format identifier. In our case, there is only one format, con-

PAGEL

PAGEW

DISNAM

DOCNAM

DISFIL

RESER

tained on one card. Would be used by all programs in the request
processing flow if more than one profile format was supported. Addi-
tional profile formats would be required if and only if the total size of
possible profile parameters exceeded 80 bytes.

Page length. Could be used by DBTTRNn if the input pagelength
were not ignored, or if the output pagelength were not preset. The
precise meaning of this field would depend on the transform.

Page width. Could be used by DBTTRNn if the input pagewidth were
not ignored, or if the output pagewidth were not preset. The precise
meaning of this field would depend on the transform.

Not used.

Document name. Up to 15 characters.

Allows the user to select the DIA command to be built; valid values
are ('jD', for a Request_Distribution command, and 'F' for a File com-
mand.

Not used.

Sample System Implementation 43

3.2.4 COMPONENTS OF THE BOX X TO DISOSS FACILITY.

3.2.4.1 DBTBATI

Batch PL/Il program DBTBATI1 is executed by the procedure invoked by the RJE
batch job. Its function is to write a document input request to DBSVSQO.
Input: JCL and instream data containing:

° Header with user, profile, and processing information.

¢ Chopped up printlines.

Output: 6000 byte DBTVSQO records containing:

e Key with user and processing information.

* Profile information on first and last record.

o IRS separated printlines

3.2.4.2 DBTMOVI

CICS PL/I program DBTMOV1, the only program of the DBTM transaction,
moves records from the CICS-Batch shared dataset DBTVSQO, to CICS dataset
DBTVSQl. It calls subroutine DBTOPN1 to open DBTVSQO to CICS, and calls
DBTCLS1 to close DBTVSQO from CICS. '

No transformations are done.

Copied records are deleted form DBTVSQO.

A DBTS transaction is initiated for each request, with the key of the first
record as start data to help the transform selection program locate the docu-
ment.

The program issues a delayed start of its own transaction to cause its periodic
re-initiation.

3.2.4.3 DBTOPNI1

CICS assembler program DBTOPN1 issues a DFHOC OPEN macro for dataset
DBTVSQO on behalf of DBTMOV1.

3.2.4.4 DBTCLS1

CICS assembler program DBTCLS1T issues a DFHOC CLOSE macro for dataset
DBTVSQO on behalf of DBTMOV1.

44 Connecting non-DIA Systems to DISOSS

3.2.4.5 DBTMSTI

CICS PL/I program DBTMST1, the first program of the DBTS transaction,
retrieves the first-in-chain key passed from DBTMOV1, and uses it to obtain
the whole FIC record. The fields of the record are analysed to select an appro-
priate DBTTRNn transform routine, which is started with the FIC key as start
data, to help locate the document in DBTVSQI1.

3.2.4.6 DBTTRNI1

CICS PL/I program DBTTRNT1 is the only transform program in the sample sys-
tem. The input is a set of 6000 byte KSDS VSAM records from DBTVSQ1, with:
e 39 byte key with user and processing data.

* Profile data on FIC and LIC record.

. IRS separated printlines.

The output is a set of 4088 byte KSDS VSAM records to DBTVSQ1, with:

* 39 byte key with user and processing data.

* Profile data on FIC and LIC record.

* L2DCA datastream.

The first input record is located by the start data received from DBTMST1.

The document is converted to a DCA Level 2 datastream and is written to
DBTVSQ1 in units of a convenient size for the APl queue.

The input records are deleted from DBTVSQ1.
Program DBTSNDT1 is started with the new FIC key as start data.

3.2.4.7 DBTSNDI1

CICS PL/I program DBTSND1 sends a DIA Request_Distribution or File command
to the DISOSS API.

The document is located on DBTVSQ1l using the FIC key retrieved from
DBTTRNI. ‘

A profile parameter block is constructed from the header.

The DIU text segments are transmitted to the APl. Each segment corresponds to
one input record.

An APl 'Last' command is transmitted to initiate DISOSS processing.

Sample System Implementation 45

The input records are not deleted from DBTVSQ1. This is a function of the
response transaction. This aids problem determination by preventing the
deletion of the transformed request in the event of an error.

3.2.4.8 DBTRSP1

CICS PL/l program DBTRSP1 is the only program of the response transaction
DBTR. If the DISOSS response is normal, the request is deleted from
DBTVSQI1l. If the response is not normal, an APl PURGE is issued.

3.2.4.9 DBTSONI
CICS PL/I program DBTSONT1, the only program of the DBTN transaction, does
a DIA 'Sign_On’ to DISOSS. It is executed twice in the 'Sign_On' process.

In the first execution it sends a 'Sign_On' to DISOSS, naming itself as the
response transaction.

In the second execution it starts the DBTM cycle if the DISOSS response is
normal, and issues an APl PURGE if the DISOSS response is not normal.

Instead of being invoked via DBTN, this program can be included in the CICS
PLT, and can thus be executed at CICS start-up.

3.2.4.10 DBTCLNI1

CICS PL/I program DBTCLN1, the only program of the DBTC transaction, reini-
tialises the datasets DBTVSQO and DBTVSQI.

The program is not strictly required, but it is useful, especially in a develop-

ment enviroment, because it enables these datasets to be reinitialised conven-
iently while CICS is up.

3.2.4.11 DBTSOF1

CICS PL/Il program DBTSOF1, the only program in the DBTF transaction, does
a DIA 'Sign_Off' from DISOSS. It is executed twice in the 'Sign_off' process.

In the first execution it sends a 'Sign_Off' to DISOSS, naming itself as the
response transaction. In the second execution, it issues an APl PURGE if the
DISOSS response is not normal.

This program is not used in the sample implementation.

46 Connecting non-DIA Systems to DISOSS

4.0 SYSTEM DEFINITIONS FOR THE SAMPLE IMPLEMENTATION

This section deals with the system definitions used in the course of the project
to veri(ij the design. Some knowledge of CICS and DISOSS table generation is
assumed.

4.1 CICS TABLES

These tables are needed for the Box X to DISOSS (inbound) function, and are
not used for the DISOSS to Box X (outbound) function.

4.1.1 FILE CONTROL TABLE

Below are the entries made for the VSAM datasets DBTVSQO0O and DBTVSQI1.

DFHFCT TYPE=DATASET,
DATASET=DBTVSQO,
ACCMETH=(VSAM, KSDS),
SERVREQ=(UPDATE,NEWREC,BROWSE ,DELETE),
FILSTAT=(ENABLED,CLOSED),
RECFORM=(VARIABLE,UNBLOCKED),
BUFND=3,BUFNI=2,
STRNO=2,
MODE=VSAM

DFHFCT TYPE=DATASET,
DATASET=DBTVSQ1,
ACCMETH=(VSAM,KSDS),
SERVREQ=(UPDATE ,NEWREC , BROWSE , DELETE),
FILSTAT=(ENABLED,OPENED),
- RECFORM=(VARIABLE, UNBLOCKED),
BUFND=12,BUFNI=10,
STRNO=10,
MODE=VSAM

The BUFND, BUFNI, and STRNO parameters determine the DBTVSQ1 buffer
allocation. Their values should be considered carefully. _

4.1.2 PROGRAM CONTROL TABLE

Below are the entries made for the CICS transactions.

DCFPCT TYPE=ENTRY,TRANSID=DBTN,PROGRAM=DBTSON SIGNON
DCFPCT TYPE=ENTRY,TRANSID=DBTM,PROGRAM=DBTMOV1 MOVE
DCFPCT TYPE=ENTRY,TRANSID=DBTS,PROGRAM=DBTMST1 SEND
DCFPCT TYPE=ENTRY,TRANSID=DBTR,PROGRAM=DBTRSP1 RESPONSE
DCFPCT TYPE=ENTRY,TRANSID=DBTF,PROGRAM=DBTSOF SIGNOFF
DCFPCT TYPE=ENTRY,TRANSID=DBTC,PROGRAM=DBTCLN CLEANUP

System Definitions for the Sample Implementation 47

4.1.3 PROGRAM LIST TABLE

A startup PLT is a list of programs to be automatically initiated during CICS
startup. The DIA Sign_On program DBTSONT1 is executed here, to ensure that a
DIA session exists with DISOSS before any DBTS transactions attempt to dis-
tribute documents.

If the CICS system already has a startup PLT, the entry for DBTSON1 can be
added to it; otherwise, a new table can be created as follows:

. A PLT table, similar to the one below, must be assembled.

. The table must be defined in the PPT, as described in the section about the
PPT in this chapter.

e The table suffix must be specified in the SIT, as described in the section
about the SIT in this chapter.

Below is a sample PLT used for the initiation of DBTSONT1.

DFHPLT TYPE=INITIAL,SUFFIX=ST
DFHPLT TYPE=ENTRY,PROGRAM=DBTSON1
EESPLT TYPE=FINAL

4.1.4 PROGRAM PROCESSING TABLE

Below are the entries for the CICS programs in the PPT.

DFHPPT TYPE=ENTRY,PROGRAM=DBTSON1,PGMLANG=PL1 - SIGNON

DFHPPT TYPE=ENTRY,PROGRAM=DBTMOV1,PGMLANG=PL1 MOVE FROM BATCH
DFHPPT TYPE=ENTRY,PROGRAM=DBTMST1,PGMLANG=PL1 SELECT TRANSFORM
DFHPPT TYPE=ENTRY,PROGRAM=DBTTRN1,PGMLANG=PL1 1403 --> L2DCA
DFHPPT TYPE=ENTRY,PROGRAM=DBTSND1,PGMLANG=PL1 SEND TO API
DFHPPT TYPE=ENTRY,PROGRAM=DBTRSP1,PGMLANG=PL1 API RESPONSE
DFHPPT TYPE=ENTRY,PROGRAM=DBTOPN1 OPEN DBTVSQO
DFHPPT TYPE=ENTRY,PROGRAM=DBTCLS1 CLOSE DBTVSQO
DFHPPT TYPE=ENTRY,PROGRAM=DBTSOF1,PGMLANG=PL1 SIGNOFF

DFHPPT TYPE=ENTRY,PROGRAM=DBTCLN1,PGMLANG=PL1 CLEANUP

Below is the entry for the startup PLT. This only has to be done if a new start-
up PLT has to be created.

DFHPPT TYPE=ENTRY,PROGRAM=DFHPLTST STARTUP PLT
Below is an entry for a print/translate table

DFHPPT TYPE=ENTRY,PROGRAM=DBTTRTO1,PGMLANG=ASSEMBLER,
PGMSTAT=ENABLED,RELOAD=NO,RES=NO

48 Connecting non-DIA Systems to DISOSS

4.1.5 SYSTEM INITIALISATION TABLE

Below

program list table suffix.

PLTPI=ST,

is the DFHSIT TYPE=CSECT macro option which indicates the startup

If desired, reassembly of the SIT table can be avoided, by specifying the PLTPI

option within a PARM parameter in the CICS startup JCL.

4.2 VSAM DATASET DEFINITIONS

The VSAM datasets DBTVSQO and DBTVSQ1 were created using a job with the
following three steps:

1.
2.
3.

Delete the datasets in case they already exist

Allocate the datasets.

(NAME(DIS0SS30.DBTVSQO) -
VOL(WTL372) -
CYLINDERS (2 1) -
KEYS(39 0) -
RECSZ(5000 6000; -
SHAREOPTIONS (1
UNIQUE) -

CATALOG(VWTL372) -

DATA -

NBEAME(DISOSS%.DBTVSQO.DATA)) -
X -

(NAME(DIS0SS30.DBTVSQO. INDEX))

DEFINE CLUSTER -

(NAME(DIS0SS30.DBTVSQL) -
VOL(WTL372) -
CYLINDERS (2 1) -
KEYS(39 0) -
RECSZ(5000 6000; -
SHAREOPTIONS (1
UNIQUE) -

CATALOG(VWTL372) -
DATA -

(NAME(DISOSS30.DBTVSQl.DATA)) -

INDEX -

(NAME(DIS0SS30.DBTVSQ1.INDEX))

System Definitions for the Sample Implementation

Initialise the datasets using the IDCAMS REPRO utility to write a dummy
record. The first 39 bytes of the dummy records, which form the key, were
all set to X'FF'. This ensures that the dummy record is always pushed to
the end of the file when data is added.

Below is the SYSIN data for the IDCAMS allocate step.
DEFINE CLUSTER -

49

4.3 DISOSS TABLE DEFINITIONS (BOX X TO DISOSS)

4.3.1 TRANSLATE TABLES

Most devices which are to receive L2DCA documents containing the 1403 TN
character set will require a suitable translate/print fidelity table; we provided a
table called DBTTRTO1, which translates from 1403 to the Multi-Lingual Code-
page. Installing this table in DISOSS involves two steps:

1. Assemble and link the translate table itself. The best way to create a new
table is to modify a copy of a previously existing job; DISOSS provides
samples on the installation tape. The job we used is shown in "DBTTRTO1
Translate Table" on page 99.

2. Make the new table known to DISOSS by adding an entry into the index
table DSVS5800. Again, a sample job is provided by DISOSS; our new entry
was:

DSVXIDX TYPE=ENTRY,INGPID=00264,0UTGCID=00337-00256,
TBLID=DBTTRTO1

4.3.2 HOST USER PROFILE

Below is an example of the HUP definition for the mailbox APl user represented
by our programs. The FORUSER parameter authorises DISTO1 to file documents
on behalf of DISOSS/PS user PSUSERO1.

ADD USERTYPE=API,
EXTERNAL="Mailbox API User 1 '

REQPWD="1"',DDN="'DSVHOST', SA='DISTO1/,
FORUSER=(DSVHOST, PSUSER01)

4.4 DISOSS TABLE DEFINITIONS (DISOSS TO BOX X)

These HUP and PDT entries are used by the DISOSS to Box X (outbound) func-
tion. They are not used by the Box X to DISOSS (inbound) function.

4.4.1 HOST USER PROFILE

If the jobcard parameters in the JOBJCL option of the DISOSS Host Definition
job have not been set or are insufficient, then extra Host Print jobcard parame-
ters may be specified in the accounting information field of the DISOSS user
Host User Profile. Below is an example:

ACCOUNT="'(P-032007) ,MSGCLASS=A ,MSGLEVEL=(1,1),CLASS=A",

50 Connecting non-DIA Systems to DISOSS

4.4.2 PRINTER DESCRIPTION TABLE

Box X destinations must be defined as printers in the PDT. The PDT specifies
the page width, page length, and a print/format procedure. Below is a sample
entry:

DBTPRT DSVPDT TYPE=ENTRY,PRTTYPE=PRINTER, X
LINEWD=132,PAGEDP=66, X
JOB=DBTPRT

If Box X has RJE output support for multiple destinations (as, for example the
VM support for a virtual reader for each user), then multiple PROCs will be
required: one for each Box X destination. They could all be invoked via this
single entry in the PDT, however; the DISOSS user would specify printer
DBTPRTnn (where nn is two numeric digits) and DISOSS would invoke a JCL
gg?c called DBTPRTnn. Only the single entry for DBTPRT is needed in the

4.5 PRINT/FORMAT PROCEDURE

Below is an example of a simple print/format procedure. The procedure could
be customised to produce output specific to Box X. As an example, the docu-
ment could be converted to a PROFS note, by using the IDCAMS REPRO utility
to wrap a header and footer around the formatter output.

//DBTPRT99 PROC DSVCOPY=1,
// DOCNODE=RALYDPD3,DOCUSER=HAY, DOCUMENT DESTINATION
;;* MSGNODE=RALVSMV3 ,MSGUSER=RMT99 JCL, MESSAGES ETC.

//FORMAT EXEC PGM=DSVOL500
fﬁTEPLIB DD DSN=DISOSS30.DSVLOAD,DISP=SHR

//DOC OUTPUT COPIES=&DSVCOPY,DEST=&DOCNODE. .&DOCUSER
//l:]SG OUTPUT DEFAULT=YES,DEST=&MSGNODE. .&MSGUSER

//
//DSVPRINT DD SYSOUT=A,DCB=§ RECFM=FA, LRECL=133§ ,OUTPUT=(*.DOC)
//DSVMSG DD SYSOUT=A,DCB=(RECFM=FA,LRECL=133

//DSVDUMP DD SYSOUT=A

This procedure makes use of the OUTPUT JCL statement available with MVS/SP
Version 1 Release 3.3. This allows NJE output routing information to be included
in a PROC, which was not possible with the earlier JES2 /*ROUTE statement.

4.6 IMPROVEMENTS AND ALTERNATIVE OPTIONS

A limit to the load on CICS can be set by specifying the maximum number of
concurrent active Mailbox tasks. This can be done by assigning a transaction
class to Mailbox transactions in the PCT, using the TCLASS parameter, for
example TCLASS=7, and by specifying a class activation ceiling in the SIT using
the CMAT option, for example CMAT=(,,,,,.9,,.,).

System Definitions for the Sample Implementation 51

It was noticed during program development that when the number of DBTS tran-
sactions exceeded the available DBTVSQO0/1 buffer allocation, they always hung
as if in a deadlock, until enough had been force-purged to allow the others to
continue execution. This may have been the result of bad system tuning, but
since it has occurred in one system, it could occur in others. For this reason a
maximum active task limit is a worthwhile precaution against overloading the
available buffers.

52 Connecting non-DIA Systems to DISOSS

5.1

5.0 COMMUNICATING BETWEEN PROFS AND DISOSS

OVERVIEW

PROFS (Professional Office System) runs under VM, and uses CMS facilities to
create, file and retrieve notes and documents.

We have attempted to provide a "bridge" between PROFS and DISOSS that would
allow the PROFS user access to all the functions of DISOSS. The examples giv-
en here are for guidance only, an account of how the problem was tackled at the
Raleigh International Systems Centre.

The steps involved in this part of the exercise are:

1.

Invoking DISOSS/PS from PROFS

Some small EXECs are given, showing the user how to log on to DISOSS/PS
from the PROFS main menu, send files from the A-disk to DISOSS and to
use RDRLIST to receive and edit documents sent from DISOSS.

Sending PROFS documents to DISOSS.

An explanation is given on the difference between PROFS "final" documents
and "draft" documents. A method is given explaining how to copy a draft
document to a final document before sending it to DISOSS.

Sending PROFS notes to DISOSS.

PROFS notes are unformatted and contain some characters not needed by
DISOSS. A sample EXEC is shown, demonstrating how to edit these files,
getting rid of the unwanted lines and hex characters, and then submitting
the edited note to the DBTSEND EXEC, which passes it on to DISOSS.
Loading DISOSS documents to the CMS A-disk and moving them to PROFS.

This part explains how to load a document sent to the PROFS/CMS user's
virtual reader from DISOSS.

Communicating Between PROFS and DISOSS 53

5.2 ACCESSING DISOSS/PS FROM PROFS

To access DISOSS/PS from PROFS, we made a simple change to the OFS $SYS-
PROF file on the SYSADMIN 399 disk.

For example:

SET
SET
- SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

&éﬁbEl PROFESSIONAL OFFICE SYSTEM
PF1 'APPOINTM' Process schedules

PF2 'OPENMAIL' Open the mail

PF3 'SEARCH' Search for documents

PF4 'OFSNOTE' Process notes and messages

PF5 'MEMO' Prepare documents

PF6 'SET FILEDOCU' Process documents from other sources
PF7 'MAILLOG' Process the mail log

PF8 'MAILMAN STATUS' Check the outgoing mail

PF10 'DISOSS' DISOSS tasks

PF11 'SET MENU 2' Look at main menu number 2

MENU 2

PF11 'SET MENU 3' Look at main menu number 3

MENU 3

PF11 'SET MENU 1' Look at main menu number 1

MENU 1 v

The DISOSS option accessed by PF10 in PROFS main menu 1 invokes a simple
EXEC (called DBTMENU) that presents this menu:

Send a Document to DISOSS Users

Logon to DISOSS/PS

Read in and send a Note to DISOSS Users
Receive a Document from DISOSS

PHWN =

e Option 1, "Send a Document to DISOSS Users", builds a batch job and
sends it via RJE to MVS.

¢ Option 2, "Logon to DISOSS/PS", allows the user to sign on to DISOSS/PS
via the VM PASSTHRU program.

e Option 3, "Read in and send a Note to DISOSS Users", invokes RDRLIST
from where the user enters the "DBTNOTE" command, as explained in "The
DBTNOTE EXEC" on page 59.

e Option 4, "Receive a Document from DISOSS", invokes RDRLIST from where
the user l<<enter's the "DBTRECV" command to read a DISOSS document on to
his A-disk.

The DBTMENU EXEC is shown in "Sample DBTMENU EXEC" on page 155.

The DBTSEND EXEC (Option 1), after asking the user for the filename, filetype
and filemode, then takes a 1403 print file (usually a document extracted from
the PROFS library), encapsulates it in an MVS job and submits it to the MVS
system for input to DISOSS. An example of this EXEC is shown in "Sample
DBTSEND EXEC" on page 157.

54

Connecting non-DIA Systems to DISOSS

The DBTLOGON EXEC (Option 2) invokes VM PASSTHRU and gives the user
direct access to CICS so that he can log on to DISOSS/PS. An example of this
EXEC is shown in "Sample DBTLOGON EXEC" on page 161.

RDRLIST, invoked by Options 3 and 4, is a standard VM/SP2 facility which dis-
plays a list of the files in the virtual reader, and allows the user to enter com-
mands alongside the name of a file on the list. In this case, the user enters
"DBTNOTE" or "DBTRECV" and presses PF10.

An example of DBTRECV is shown in "Sample DBTRECV EXEC" on page 164.
An example of DBTNOTE is shown in "Sample DBTNOTE EXEC" on page 163,

ggd an explanation of its function is given in "The DBTNOTE EXEC" on page

5.3 SENDING A PROFS DOCUMENT TO DISOSS

The diagram on the following page illustrates the steps involved in searching for
a PROFS document and copying the document on to your A-disk, ready to be
sent via DBTSEND to DISOSS.

Our method assumes that the document being sent to DISOSS is in 1403 final
form; that is, any SCRIPT control words and GML tags have been resolved.
Therefore, only a PROFS "final" document is sent, not a "draft" document.

If you need to send a PROFS draft document to DISOSS, follow the steps out-

lined in "Changing a DCF file to 1403 Format" on page 60; this will take a copy
of your draft document, convert it to final form, then send it to DISOSS.

Communicating Between PROFS and DISOSS 55

10

11

56

PROFESSIONAL OFFICE SYSTEM A0

SEARCH FOR DOCUMENTS
D01

COMPLETED SEARCH FOR DOCUMEBE?

LIST OF THE DOCUMENTS FOUND004

PROCESS THE DOCUMENT FOUND 008

PROCESS THE DOCUMENT FOUND 002

PROFESSIONAL OFFICE SYSTEM AQO

PREPARE DOCUMENTS
FOO

PROCESS THE DOCUMENT
FO1

SEND THE FINAL DOCUMENT
FO6

PROFESSIONAL OFFICE SYSTEM AQO

Search for documents
Press PF3

Enter search terms needed
to locate PROFS document

Look at Tist of documents found
Press PF1

Choose document from list and
press corresponding PF key

Press PF10 to
Look at the next screen

Press PF2 to Copy the document
into your personal storage

Keep pressing PF12 until back to
PROFS main menu — then press PF5

Enter filename that was
placed on A-disk and press PF3

Press PF5 to file and send the
document as a Final document

Press PF2 to erase the SELECTED
parameter and press ENTER

Keep pressing PF12 until back to
PROFS main menu

Connecting non-DIA Systems to DISOSS

Notes:

After step 6, assuming the document is in "final" form, you will receive a mes-
sage saying "'Dxxxxxxx MEMOQO' has been placed in your personal storage,”" whe-
re 'Dxxxxxxx' is a number such as: D2890001. If the document was in "draft"
form, the message will read: "'Dxxxxxxx SCRIPT' has been placed in your per-
sonal storage." In this case, the document must be converted to "final" form, as
described in "Changing a DCF file to 1403 Format" on page 60, ready to be sent
to DISOSS.

5.4 SENDING A PROFS NOTE TO DISOSS

A PROFS note is an unformatted file, containing no DCF control words or tags.
A note can be transferred from the PROFS notelog, which is on your A-disk, by
sending the note to your own CMS userid. PROFS will place the note in your

virtual reader, from where it can be read in via RDRLIST and edited as neces-
sary and transferred to DISOSS by the "DBTNOTE" EXEC.

5.4.1 FORWARDING AN EXISTING NOTE

We used the following steps to send a PROFS note to DISOSS/PS:
1. From the PROFS main menu (A00), press PF4, Process notes and messages.

2. From the PROCESS NOTES AND MESSAGES menu (E05), press PF3, Look at
the Note Log.

3. From the LOOK AT THE NOTE LOG menu (E08), select a note to be sent to
DISOSS, and press the corresponding PF key.

4. From the PROCESS THE NOTE LOG menu (E09), press PF5, Forward the
note.

5. From the FORWARD THE NOTE menu (E11), enter your own CMS userid
after "Forward to:", and press PF7.

You will receive a message saying:

PUN FILE xxxx TO userid COPY 001 NOHOLD
OFSNSPG02I SENT TO <userid> AT <nodeid>

6. Press PF12 until back to the PROFS main menu.

7. Press the PF key for "DISOSS Tasks" (in our case, PF10), then select
Option 3, "Read in and send a Note to DISOSS Users", and press ENTER.

Communicating Between PROFS and DISOSS 57

When the RDRLIST screen appears, enter the command DBTNOTE under "Cmd",
alongside the PUN file created by the above steps and press PF10

WTCR16 RDRLIST A0 V 106 TRUNC=106 SIZE=1 LINE=1 COLUMN=1
Cmd Filename Filetype Class User at Node Hold Records ' Date Time
WTCR16 RALYDPDB PUN WTCR16 RALYDPD3 NONE 6 10/14 14:27:22

1=Help 2= Refresh 3= Quit 7=Backward 8=Forward 9=Receive
4= Sort(type) 5= Sort(date) 6= Sort(user) 10=Execute 11=Peek 12=Cursor
XEDIT 1 FILE

58 Connecting non-DIA Systems to DISOSS

5.4.2 THE DBTNOTE EXEC

i

?6% example of the DBTNOTE EXEC is shown in "Sample DBTNOTE EXEC" on page

DBTNOTE edits the note file that may look like the following example:

MSG:FROM: WTCR16 --RALYDPD3 TO: WTCR16 --RALYDPD3 10/12/83 11:58:12
To: WTCR16 --RALYDPD3

Subject: Forward1ng Note 08/05/83 14:57 Sending Notes
FORWARDED NOTEX*

To: MILLAR --RALYDPD3 MILLAR --RALYDPD3
3uﬁject: Sending Notes
ohn:

This is a test note being sent from SYSTEM3(WTCR16) to your signon.

Cheers... Joe Bloggs
Forwarding Note 08/05/83 14:57 Sending Notes

For this example, the output from DBTNOTE would be:

Suﬁject: Sending Notes
ohn:
This is a test note being sent from SYSTEM3(WTCR16) to your signon.

Cheers... Joe Bloggs

This is then submitted within an MVS job via RJE, to become an entry in the
DISOSS/PS mail-log.

5.4.3 CREATING AND SENDING A NEW NOTE

This procedure is similar to the previous one, with the exception of the following
steps:
1. From the PROCESS NOTES AND MESSAGES menu (E05), press PF1 Send a note.

2. Enter your own CMS userid or nickname after "Send to:", fill in the note and
press PF7 (Send).

From here, the procedure is the same as before.

Communicating Between PROFS and DISOSS 39

5.5 CHANGING A DCF FILE TO 1403 FORMAT

When a "final" PROFS document is retrieved from the database and placed on the
A-disk, it will be in 1403 format. If you retrieve a "draft" document, it will be in
DCF input format, that is, the document will consist of the text, SCRIPT control
words and tags. The document must be converted to 1403 format before it can be
transferred to DISOSS/PS.

You could SCRIPT the document from CMS using the PROFS starter set Profile
OFSMPROF instead of the normal DCF Release 2 Profile - SSPROF. This entails some
extra work, as PROFS passes tokens to the $SFORMAT EXEC on the SYSADMIN 399
disk when the document is processed normally by PROFS.

We chose to use existing PROFS facilities to process a draft document by following
the steps listed below: This means there are a few extra steps involved, but if
PROFS is changed to a newer release, the method is still valid, whereas a customer
wrlitten EXEC runs the risk of needing to be re-written to work with the new
release.

1. From the PROFS main menu (A00) press PF3 Search for documents.

2. From the SEARCH FOR DOCUMENTS menu (DO1), enter the search terms needed
to retrieve the draft document.

3. From the COMPLETED SEARCH FOR DOCUMENTS menu (D03), press PF1 Look
at list of documents found with the mail log comments.

4. From the LIST OF DOCUMENTS FOUND menu (D04), press the corresponding PF
key to select the draft document to be copied into the database as a final docu-
ment. The original draft document will remain as before.

5. From the PROCESS THE DOCUMENT FOUND menu (D11), press PF10 Look at the
next screen.

6. From the next PROCESS THE DOCUMENT FOUND menu (D09), press PF2 Copy
the document into your personal storage.

You will receive a message saying "'Dxxxxxxx SCRIPT' has been placed in your
personal storage,” where 'Dxxxxxxx ' is a number such as: D2890001. Note
this filename for use in next steps.

7. Press PF12 until you get back to the main menu. From the main menu, press
PF5 Prepare Documents.

8. From the Prepare Documents menu (F00), enter the filename (noted in step 6),
after PF3 Change a Draft Document. Then press PF3.

9. From the Process the document menu (FO1), press PF5 File and send the docu-
ment as a Final document.

10. From the Send the Final document menu (F08), press PF2 to erase the
SELECTED parameter, and press ENTER. - :

You will receive a message saying "DOCUMENT ASSIGNED 83xxxxxxxxx".
Press CLEAR. You are now back at the PROFS main menu (D03), and a copy of
the draft document is now stored in the data base in final form. This final form
document can now be retrieved and transferred to DISOSS/PS as described in
"Sending a PROFS document to DISOSS" on page 55.

60 Connecting non-DIA Systems to DISOSS

5.6 LOADING A DISOSS/PS DOCUMENT TO THE A-DISK AND THEN TO PROFS

The DISOSS/PS document is transferred to CMS as a print file in the virtual reader.
From here it can be processed in two ways:

e Via Option 4 of the DBTMENU menu, which invokes RDRLIST and allows the
DBTRECYV command to be issued.

e Via the PROFS 'Open the Mail' function.

Then you can browse or edit the document, and note any information you may need
when describing the document to PROFS later.

From the PROFS main menu, press the PF key to Process documents from other
sources (usually PF6). '

From the PROCESS DOCUMENTS FROM OTHER SOURCES menu, press PF2 Add and
change a document file and its mail log information.

PROFESSIONAL OFFICE SYSTEM
PROCESS DOCUMENTS FROM OTHER SOURCES

ADD AND CHANGE A DOCUMENT FILE AND ITS MAIL LOG INFORMATION F13
Type the file name here: Efi]ename, filetype, filemode)
Type the nail Tog fnformstion Betans 17307 it TE Sortubta” omede 12 AD
From:
To: T
suject:
Comments: TTTTTTTTTTTTToTTTTTTTTTTTTTTTTTTT
Action: T peomn e
Identifier: per T

Now, press ENTER

PFS Help PF12 Return

Figure 13. PROFS menu to Add/Change a Document File

The cursor is positioned for you to enter file identifier information (file name, file
type, and file mode).

Communicating Between PROFS and DISOSS 61

When you press ENTER, you will see a second ADD AND CHANGE A DOCUMENT
FILE AND ITS MAIL LOG INFORMATION menu.

PROFESSIONAL OFFICE SYSTEM
PROCESS DOCUMENTS FROM OTHER SOURCES

ADD AND CHANGE A DOCUMENT FILE AND ITS MAIL LOG INFORMATION F14
Press one of the following PF keys.

PF1 Add a new document file to which you will be making changes.
Type the number of draft copies of the document that you want to
save here 1 (4 is the maximum number)

PF2 Add a document file to which no changes will be made

PF3 Change a document file you previously added

Press the PF key(s) for additional document file information.
PF4 Restrict those who can see the document to you and

the people on the document distribution list
PF5 Assign the document distribution information

Press ENTER to add or change the document file and its mail Tog information

PF9 Help PF12 Return

This menu requests information about how you want the document file stored.

1. If you are filing a document for the first time and plan to change it later, use
PF1 Add a new document file to which you will be making changes. With this
choice, you can also specify the number of versions of this file that you want
stored as it is revised. The system will save one version if you do not change
;(the number on this menu. The maximum number of versions you can save is
our.

2. Use PF2 Add a document file to which no changes will be made if you are stor-
ing it as a final document.

3. Use PF3 Change a document file you previously stored if you are storing a
changed copy of a document that is already in the central file.

4. Use PF4 to restrict access to the document.

5. Use PF5 Assign the document distribution information to forward the document
to other people.

Press ENTER when you finish making selections.

After you have finished, you will see the assigned document number and the mes-
sage:

DELETE FROM PRIVATE WORKSPACE?

62 Connecting non-DIA Systems to DISOSS

If you type "y" or "yes" and press the ENTER key, the original document file
will be erased. Access to the document will only be possible through PROFS.

If you type "n" or "no" and press ENTER, the original copy will remain on your

personal storage.

Communicating Between PROFS and DISOSS 63

64 Connecting non-DIA Systems to DISOSS

APPENDICES

APPENDICES 65

66 Connecting non-DIA Systems to DISOSS

A.0 SAMPLE SYSTEM COMPONENTS

A.1 GENERAL REMARKS

This section contains the code used in the course of the project to verify the
design. These examples could form a basis for implementation at another
location, but it should be clearly recognised that they were never intended to
be anything other than demonstration code. They lack detailed documentation,
adequate error notification and recovery, and professional programmers will find
them inefficiently and unimaginatively coded.

During the early stages of the development of these programs, an error in our

PL/1 compiler involving concatenation to varying strings required fixed strings

to be used in places where varying strings may seem more appropriate. The

error was later corrected, but it influenced the coding of PL/l programs

DBTBAT1 and DBTTRNI.

The following were set up for the CICS PL/| programs:

e A partitioned dataset containing the control blocks DBTVSQ, and DBTOC,
and the six DIU build subroutine control blocks listed in Appendix A, is
included in the SYSLIB DD statement of the compile step of the CICS proce-
dure CICEITPL. The INCLUDE option must be among the compile step PARM
options in order for these blocks to be included.

e The library containing the load modules of the DIU routines is included in

the linkedit step of the CICEITPL procedure, in order for these routines to
be linked into the CICS PL/I programs.

A.2 SOFTWARE USED TO TEST THE DESIGN

The systems used to test the design were:
e MVS/SP-JES2 Version 1 Release 3.3

* CICS/0OS/VS Release 1.6.1

e DISOSS/370 Version 3 Release 1

e DISOSS/Professional Support Release 1

Sample System Components 67

A.3 SOURCE LISTINGS

Below is a summary of the common blocks, programs and JCL used by the Box X
to DISOSS (Inbound) function. :

DBTVSQ Common block for VSAM record input/output overlays.
DBTOC Subroutine communication field for open and close macro.
DBTDOCIN Catalogued procedure invoked by batch job.

DBTBAT1 PL/l program to place document on DBTVSQO.

DBTMOV1 PL/Il program to move request from DBTVSQO to DBTVSQI1.
DBTOPN1 Assembler program to invoke DFHOC open for DBTMOV1.
DBTCLS1T Assembler program to invoke DFHOC close for DBTMOV1.
DBTMST1 PL/I program to select appropriate transform program.
DBTTRN1 PL/I program to transform request text.

DBTSND1 PL/I program to send request to API.

DBTRSP1 PL/1l program to process responses received from DISOSS.
DBTSON1 PL/I program to signon to DISOSS.

DBTCLN1 PL/I program to reset VSAM datasets.

DBTSOF1 PL/I program to signoff from DISOSS.

DBTTRTO1 Job to assemble and link-edit a DISOSS translate table.

68 Connecting non-DIA Systems to DISOSS

A.3.1 DBTVSQ COMMON BLOCK

DBTVSQ is a common block which defines the input and output record struc-
tures for files DBTVSQO and DBTVSQL1.

The 3rd level fields are intended for reference to specific parameters. The 2nd
level fields are intended for larger scale manipulation of sets of parameters.

/**/

7 */
/* DBTVSQ: VSQO/VSQL I/0 RECORD OVERLAYS */
/% THE INPUT & OUTPUT AREA POINTERS, VIPTR & VOPTR ARE DEFINED */
/* IN EACH APPLICATION PROGRAMS CONTROL BLOCK, TO FACILITATE x/
/* DEBUGGING */
**/
DCL 1 VI CHAR(6002) BASED(VIPTR), /* INPUT MAP */
1 VIG BASED(VIPTR), /* 2ND LEVEL FIELDS */

2 VIKEY CHAR(39),
2 VIDATA CHAR(5961) VARYING,

1 VID BASED(VIPTR), /* 3RD LEVEL FIELDS */
2 VI3KEY,
3 DATE CHARéSg, /* DATE */
3 TIME CHAR(9), /* TIME */
3 INTTYPE CHAR(1), /* INTERFACE TYPE */
3 OSN CHAR(8), /* OSN NAME */
3 USER CHAR(8), /* USER NAME FOR DISTRIBUTION */
3 INTYPE BITglG;, /* INPUT DOCTYPE DIA-CODED */
3 OUTYPE BIT(16), /* OUPUT DOCTYPE DIA-CODED */
3 SEQNO FIXED BIN(15), /* SEQUENCE NO X'0000' TO X'FFFF' */
3 CHFLAGF CHARélg, /* CHAINING FLAG 1 */
3 CHFLAGL CHAR(1), /* CHAINING FLAG 2 */
2 VI3DATA, /* PROFILE FIELDS FOR FIC/LIC/0IC */
3 DUMLEN BIN(15) FIXED, /* DUMMY LENGTH FIELD */
3 RECTYP CHAR(1), /* RECORD TYPE A -> */
3 PROFLAG CHAR(1), /* RECORD SIZE IN CARD IMAGE UNITS */
3 PAGEL CHAR(3), /* PAGELENGTH IN LINES/PAGE */
3 PAGEW CHAR(3), /* PAGEWIDTH IN CHAR/LINE */
3 DISNAM CHAR(8), /* DISTRIBUTION ID */
3 EYECAT CHAR(6), /* 'HEADER' CONSTANT */
3 DOCNAM CHAR(15), /* DOCUMENT NAME */
3 DISFIL CHAR(1), /* DISTRIBUTE OR FILE */
3 RESER CHAR(42), /* RESERVED */
1 VIC BASED(VIPTR), /*GENERIC KEY */
2 VICKEY CHAR(35), /*GENERIC KEY */
2 VICKEY2 CHAR(4), /*KEY LAST PART */
2 VICDUM CHAR(2), /*DUMMY LENGTH FIELD */
2 VICHEAD CHAR(80), /* HEADER */
1 VIDKEY BIT(312) BASED(VIPTR); /*KEY IN BIT */
DCL 1 VO CHAR(6002) BASED(VOPTR), /* OUTPUT MAP */
1 VOG BASED(VOPTR), /* 2ND LEVEL FIELDS */

2 VOKEY CHAR(39),
2 VODATA CHAR(5961) VARYING,

1 VOD BASED(VOPTR), /* 3RD LEVEL FIELDS */
2 VO3KEY,

3 DATE CHARgS;, /* DATE */

3 TIME CHAR(9), /* TIME */

3 INTTYPE CHAR(1), /* INTERFACE TYPE */

3 OSN CHAR(8), /* OSN NAME */

Sample System Components 69

70

3 USER CHAR(8),

3 INTYPE BIT 16;,
3 OUTYPE BIT(16),

3 SEQNO FIXED BIN(15
3 CHFLAGF CHAR lg,

3 CHFLAGL CHAR(1

),

/* USER NAME FOR DISTRIBUTION

/* INPUT DOCTYPE DIA-CODED

/* OUPUT DOCTYPE DIA-CODED

/* SEQUENCE NO X'0000' TO X'FFFF'
/* CHAINING FLAG 1

/* CHAINING FLAG 2

2 VO3DATA, /* PROFILE FIELDS FOR FIC/LIC/OIC
3 DUMLEN BIN(15) FIXED, /* DUMMY LENGTH FIELD */
3 RECTYP CHAR(1), /* RECORD TYPE A ->
3 PROFLAG CHAR(1), /* RECORD SIZE IN CARD IMAGE UNITS
3 PAGEL CHAR(3), /* PAGELENGTH IN LINES/PAGE
3 PAGEW CHAR(3), /* PAGEWIDTH IN CHAR/LINE
3 DISNAM CHAR(8), /* DISTRIBUTION ID
3 EYECAT CHAR(6), /* 'HEADER' CONSTANT
3 DOCNAM CHAR(15), /* DOCUMENT NAME
3 DISFIL CHAR(1), /* DISTRIBUTE OR FILE
3 RESER CHAR 42) /* RESERVED

Connecting non-DIA Systems to DISOSS

A.3.2 DBTOC COMMON BLOCK

/**/

/* */
/* DBTOC: */
/* SUBROUTINE COMMUNICATION FIELD */
/* FOR OPEN AND CLOSE MACRO. */

/**/

DCL OPENPTR POINTER;
1 OPENBLK BASEDSOPENPTR),

2 DBNAME CHAR(8),

2 RC_ BIT(8),

2 FCT BIT(24),

2 FFF BIT(24);

/**/

/x */
/* DBTMOV1 CONTROL BLOCK */
/* USED FOR REMEMBERING FIELDS ETC */

**/

DCL QOQIPTR POINTER;

DCL

1 QoQ1 BASED(QOQ1PTR),

2 KEY, /* KEY 39 CHARACTERS
3 DATE CHARgSg, /* DATE
3 TIME CHAR(9), /* TIME
3 INTTYPE CHAR(1), /* INTERFACE TYPE
3 OSN CHAR(8), /* OSN NAME
3 USER CHAR(8), /* USER NAME FOR DISTRIBUTION
3 INTYPE BIT(16), /* INPUT DOCTYPE DIA-CODED
3 OUTYPE BIT(16), /* OUPUT DOCTYPE DIA-CODED
3 SEQNO FIXED BIN(15), /* SEQUENCE NUMBER X'0000' TO X'FFFF'
3 CHFLAGF CHAR%I;, /* CHAINING FLAG 1
3 CHFLAGL CHAR(1), /* CHAINING FLAG 2

2 HEAD, /* ONLY FOR FIC OR LIC

RECTYP CHARElg, /* RECORD TYPE A ->
PROFLAG ~ CHAR(1

PAGEW FIXED DEC(3,0
DISNAM CHAR(8), /* UNUSED

EYECAT CHAR(6), /* 'HEADER' CONSTANT
DOCNAM CHAR(15), /* DOCUMENT NAME

RESER CHAR(43), /* RESERVED FILED LENGHT
2 COUNTER1 FIXED BINEIS,O;,

2 COUNTERZ FIXED BIN(15,0
2 VIPTR POINTER,

1 Q0Q1B BASED(QOQ1PTR), /*FIC OR OIC OR LIC

WWWWWwwww

’

2 KEY, /* KEY 39 CHARACTERS
3 KEY1 CHARE35), /* FIXED PART FOR ONE DOC
3 KEY2 CHAR(4), /* USER NAME FOR DISTRIBUTION
2 HEAD CHAR(80), /* ONLY FOR FIC CR LIC
1 Q0Q1C BASED(QOQ1PTR), /*FIC OR OIC OR LIC
2 KEY CHAR(39); /* KEY 39 CHARACTERS

Sample System Components

, /* RECORD SIZE IN CARD IMAGE UNITS
PAGEL FIXED DEC€3,03, /* DECIMAL PAGELENGTH IN LINES/PAGE
, /* DECIMAL PAGEWIDTH IN CHAR/LINE

71

A.3.3 DBTDOCIN CATALOGUED PROCEDURE

DBTDOCIN is a sample catalogued procedure invoked by the batch job submitted
from Box X.

//DBTDOCIN PROC
//*

//***

//*

;;: DISOSS - BATCH INTERFACE.

//* THIS PROCEDURE IS INVOKED BY A BATCH JOB SUBMITTED BY
//* 'BOX X'. FUNCTION IS TO REBUILD 1403 PRINTLINES FROM
//* INPUT CARD IMAGES, CONCATENATE THEM IN LARGE PHYSICAL
//* RECORDS, AND INSERT THEM IN THE BATCH-->CICS INTERFACE
//: DATASET DBTVSQO.

[/ XFFKFK KKK KK KKK KK KKK KKK KKK KKK H KKK KK KA KKK I FR KK KKK KKK KKK kX
/*

//INSERT EXEC PGM=DBTBAT1

//STEPLIB DD DSN=DISOSS30.DBT.LOADLIB,DISP=SHR

// DD DSN=F5.PLIBASE,DISP=SHR

//SYSPRINT DD SYSOUT=A

//LOGFILE DD SYSOUT=A

//BUFFER DD DCB=(RECFM=V,LRECL=6006),SPACE=(CYL,(1,1)),UNIT=SYSDA
//¥500 DD DSN=DIS0SS30.DBTVSQO,DISP=SHR

//
//* INPUT DDNAME IS DOCIN
//*

¥ X % X X X X X X %

72 Connecting non-DIA Systems to DISOSS

A.3.4 DBTBAT1 PROGRAM SOURCE

This program uses its own DBTVSQ1 output record definitions. The reasons for
this are historical. There is no reason why they should not now be changed to
conform with DBTVSAQ.

If the dataset DBTVSQO is open to the CICS transaction DBTM, the program will
repeatedly branch to the label OPENFILE to repeat its open attempts until suc-
cessful. The use of a loop to enforce a delay period between open attempts is
unsatisfactory because it consumes considerable processing resource. It could
be replaced with an assembler subroutine to issue a WAIT macro.

The sample program does nothing to avoid two batch jobs using the PL/I TIME
pseudovariable during the same millisecond, which could cause duplicate keys on
the VSAM datasets. This problem can be solved in the following way. A recur-
sive on-ILLOGIC branch to a routine could be set up before the FIC write. The
routine could either add one to VSQD.KEY.TIME, or could reassign the TIME
psudovariable. Continued attempts would then be made until a unique key was
found. Alternatively, an assembler subroutine could issue an ENQUEUE before
getting the date and time.

The record of error codes in the file LOGFILE was found genuinely useful dur-
ing debugging, although it was intended merely as an example of a way to begin
error detection.

DBTBAT1: PROC OPTIONS(MAIN);

/***/
/* */
/* DBTBAT1 15/09/1983 */
/* PL1 PROGRAM SOURCE DBTBAT1 FOR PROCEDURE DBTDOCIN */

/+ CALLED BY BATCH JOB SUBMLTTED FROM BOX X :5
*

/* INPUT: JCL INSTREAM DATA x/
/* 13 HEADER WITH USER, PROFILE, AND PROCESSING DATA */
/% 2) CHOPPED UP PRINT'LINES Y
/* OUTPUT: KEY SEQUENCED 6K VSAM RECORDS TO DBTVSQO */
/* 1) KEYS WITH USER AND PROCESSING DATA */
/% 2y PROFILE DATA ON FIRST AND LAST RECORD */
/% 3) IRS SEPARATED PRINTLINES Y

/* OUTBOUND RECORDS ARE FIRST WRITTEN TO A BUFFER, AND */
/* THEN COPIED TO DBTVSQO, TO MINIMISE THE PERIOD OF */
/: TIME DURING WHICH DBTVSQO IS HELD OPEN */

/**k****************/

DCL (DATE,TIME,MIN,SUBSTR,UNSPEC,LENGTH,MAX,ADDR) BUILTIN;

e DATASET DEFINITIONS --2----2------=-2 x/
DCL DOCIN ~ FILE RECORD, /* INPUT FILE */
BUFFER FILE RECORD, /* TEMPORY BUFFER FILE x/
LOGFILE FILE RECORD, /* ERROR LOGGING FILE x/

VSQD' FILE RECORD OUTPUT DIRECT BUFFERED KEYED
ENV(VSAM); /* OUTPUT FILE x/
/* THE DCB FOR BUFFER IS DCB=(RECFM=V,LRECL=6006) x/
/* THE DCB FOR LOGFILE IS DCB=RECFM=F,LRECL=80,BLKSIZE=80) */
J¥emmmmmmmmmmee DOCIN HEADER RECORD LAYOUT =-2---------=- x/

DCL 1 HEADER,
3 HosN CHAR(8), /* OSN NAME */

Sample System Components 73

HUSER CHAR
HINTYPE CHAR
HOUTYPE CHAR
HRECSIZE CHAR

HRECTYPE CHAR
HPROFLAG CHAR
HPAGEL CHAR
HPAGEW CHAR
HDISNAM CHAR
HEYECAT CHAR
HDOCNAM CHAR('15
HDISFIL CHAR(1),
HRESER CHAR(21)
---------- VSQO RECORD OVERLAY
DCL VSQPTR POINTER;

DCL VSQBASE BASED(VSQPTR) CHA

1 vSQD BASED(VSQPTR), /*

. w v

OO0 L W b= NN 00

w @ W W w W e

WWLWWWWWWwW Wwww

2 KEY, /*
3 DATE CHAR(5), /*
3 TIME CHAR(9), /*
3 INTTYPE CHAR(1), /*
3 OSN CHAR(8), /*
3 USER CHAR(8), /*
3 INTYPE BIT(16), /*
3 OUTYPE BIT(16), /*
3 SEQNO FIXED BIN(15), /*
3 CHFLAGF CHAR(1) INIT('1'
3 CHFLAGL CHAR(1) INIT('

2 DUMDATA CHAR(5961), /*
1 VSQA BASED(VSQPTR), /*
2 KEY CHAR(39), /*
2 DATA CHAR(5959) VARYING;
DCL LENPOINT POINTER,
LENBIN FIXED BIN(15 0)
LENCHAR CHAR(2)

e PROFILE O

3 RECTYP CHAR(1), /* RECORD TYPE
3 PROFLAG CHAR(1), /* RECORD SIZE IN CARD IMAGE UNITS
3 PAGEL CHAR(3), /*NOT DECIMAL PAGELENGTH IN LINES/PAGE
3 PAGEW "CHAR(3), /*NOT DECIMAL PAGEWIDTH IN CHAR/LINE
3 DISNAM CHAR(8), /* UNUSED
3 EYECAT CHAR(6), /* 'HEADER' CONSTANT
3 DOCNAM CHAREIS), /* DOCUMENT NAME
3 DISFIL CHAR(1), /* DISTRIBUTE OR FILE
3 RESER CHAR€42 , /* RESERVED FILED LENGHT
PROFILEA CHAR(80) BASED(PRPTR); /* PROFILE GENERAL AREA
[F e e VARIABLES ==========—=e—————————

DCL CARD CHAR(80), /* 80-BYTE I/0O CARD IMAGE */
VSR CHAR(6002) VARYING, /* VARYING OUTPUT STRING */
PL CHAR 500; VARYING, /* PRINT LINE */
PLPTR BIN(15,0) FIXED, /* PRINT LINE POINTER */
ERROR DEC(4) FIXED INIT(O), /* ERROR CODE */
NL CHAR(1), /* NEWLINE CHARACTER *
NLBP POINTER,/* NEWLINE BIT OVERLAY POINTER */
NLB BIT(8) BASED(NLBP) INIT('00011110'B),

/* NEWLINE BIT OVERLAY */
N DEC(7) FIXED INIT(O), /* SCRATCH VARIABLE */

74

DCL PRPTR POINTER; /* PROFILE
DCL 1 PROFILED BASED(PRPTR),

Connecting non-DIA Systems

/* USER NAME FOR DISTRIBUTION */
/* INPUT DOCUMENT TYPE */

/* OUTPUT DOCUMENT TYPE */

/* NUMBER OF 80-BYTE CARD */
/* IMAGES PER PRINT LINE */

/* RECORD TYPE */

/* PROFILE FLAG */

/* PAGELENGTH IN LINES/PAGE */
/* PAGEWIDTH IN CHARS/LINE */
/* RESERVED */

/* 'HEADER' CONSTANT */

/7« DOCUMENT NAWE »/

* FILE OR DISTRIBUTE */

< RESERVED */

§ mmmmm i x/

R(6000), /* BASIC OVERLAY AREA
LEVEL 3 FIELDS
KEY
DATE
TIME
INTERFACE TYPE
OSN NAME
USER NAME FOR DISTRIBUTION
INPUT DOCTYPE DIA-CODED
OUPUT DOCTYPE DIA-CODED
SEQUENCE NUMBER X'0000' TO X'FFFF'
; /* CHAINING FLAG 1
/* CHAINING FLAG 2
DUMMY DATA FIELD
LEVEL 2 FIELDS

/* RECORD DATA

INIT(1) BASEDgLENPOINTg
BASED(LENPOINT

VERLAYS ======-—--—oo-” %/

OVERLAY POINTER */

/* PROFILE DETAIL

to DISOSS

N1 DEC(7) | FIXED INIT(0); /* SCRATCH VARIABLE */
R SET UP —-mmmmmmmmmmmm oo */

ON ENDFILE (DOCIN) GOTO FINAL;

ON ENDFILE BUFFER; GOTO STOP;

ON RECORD (BUFFER) GOTO CONTi;

ON UNDEFINEDFILE(VSQO) GOTO OPENFILE;

ALLOCATE NLB;

ALLOCATE VSQBASE;

ALLOCATE PROFILED;

ALLOCATE LENBIN;

NLBP = ADDR(NL):

NLB = '00011110'8;

[Xmmmmmmm i m CONSTRUCT VSAM HEADER ==---=========== x/
/***/
/* THE MINIMUM OF PROCESSING IS PERFORMED HERE. */
/% INPUT PARAMETERS WHICH CAN HAVE ONLY ONE */
*

/* MEANINGFUL VALUE ARE IGNORED
/***/
KEY.DATE=SUBSTR(DATE,2);
KEY.TIME=TIME;
KEY. INTTYPE"'A'
READ FILE (DOCIN) INTO (HEADER);

OSN = HOSN;

IF OSN = ' ' THEN OSN = 'DSVHOST ';

USER = HUSER:

IF USER = THEN USER = 'HDVF02 ‘';

INTYPE = '0000000000001100'B; /* TO BE DEP ON INTYPES */
OUTYPE = '0000000000000010'3; /* TO BE DEP ON OUTYPES */
RECTYP = 'A': /* TO BE DEPENDENT ON RECTYPES */

PROFLAG = 'Af; /* TO BE DEPENDENT ON PROFLAGS */
PAGEL = HPAGEL;

PAGEW = HPAGEW;

DISNAM = HDISNAM

IF DISNAM = ' ' THEN DISNAM = USER;

EYECAT = HEYECAT;

IF EYECAT -= 'HEADER' THEN GOTO ERROR1;

DOCNAM = HDOCNAM;

DISFIL = HDISFIL;

CHFLAGF = '1';
CHFLAGL = '0';
IF HPROFLAG = 'A' THEN GOTO TEXT;
JKmmmmmm e PROCESS PROFILE TYPE 'B' DATA ----------- x/
/* */
/* */
/* (TO BE CONTINUED) x/
/* */
/* */
[¥=mmmmm oo e EXTRACT NEXT LINE ---=--=--======== x/
TEXT: PL='';
N = UNSPEC(HRECSIZE) - 15*16;
DO N1 = 1 TO N;
READ FILE (DOCIN) INTO (CARD);

PL = PL || CARD;
END; /* N1 */
PLPTR = LENGTH(PL);
JX=mmmmmmmmmmmmm o REMOVE TRAILING BLANKS =-=-===----= x/
NEXTCHAR: IF SUBSTR(PL,PLPTR,1)-=' ' | PLPTR=1 THEN GOTO REMOVE;
PLPTR = PLPTR - 1;
GOTO NEXTCHAR;
[*mmmmmm e REMOVE UNPRINTABLE CHARACTERS ----- x/

Sample System Components

75

REMOVE: PL = SUBSTR(PL,1,PLPTR);
N1 = PLPTR + 1;
PREVCHAR: N1 = N1 - 1;

IF N1 < 2 THEN GOTO ADDLINE;
IF UNSPEC(SUBSTR(PL,N1, 1;) < 64 THEN
PL = SUBSTR(PL,1,N1-1)"|| ' ' || SUBSTR(PL,N1+1);
GOTO PREVCHAR;
e — TEST FOR FULL OUTPUT RECORD --==--- */
ADDLINE: IF LENGTH(DATA) + LENGTH(PL)
< 6000-39-80-2+1 THEN GOTO SAMEREC;
¥ mmmmm e INCLUDE PROFILE DATA IF FIC/LIC/0IC =----*/
LASTONE: IF SEQNO=0 | CHFLAGF='1' | CHFLAGL='1' THEN
DATA = PROFILEA || DATA;
[*mmmmmm e WRITE OUTPUT RECORD ====m==mmm=mmmmmmmmeam */
LENBIN = LENGTH(VSQA.DATA);
VSR = VSQA.KEY || LENCHAR || VSQA.DATA;
WRITE FILE (BUFFER) FROM (VSR);
CONT1: IF CHFLAGL = '1' THEN GOTO COPY:
SEQNO = SEQNO + 1;

CHFLAGF = '0';

DATA = '';
[*mmmmmmmm e APPEND PRINT LINE TO RECORD UNDER CONSTRUCTION -*/
SAMEREC: DATA = DATA || PL || NL;

GOTO TEXT;
[*==mmmme REPEAT ATTEMPTS TO OPEN VSQO UNTIL SUCCESSFUL ---*/
OPENFILE: DO N = 1 TO 999;

CARD = 'THIS IS AN UNSATISFACTORY WAY OF WAITING';

END;
OPEN FILE(VSQO) OUTPUT;
GOTO AGAIN;
/*---SET CHAINFLAG LAST TO REMEMBER TO STOP AFTER NEXT WRITE - */
FINAL: CHFLAGL = '1';
GOTO LASTONE;
[*============ COPY BUFFER INTO REQUEST QUEUE -------- */
COPY: CLOSE FILE(BUFFER);
ON RECORD BUFFERg GOTO CONTZ2;
OPEN FILE(BUFFER) INPUT;
OPEN FILE(VSQO) OUTPUT,
AGAIN: READ FILE(BUFFER) INTO (VSR);
CONT2: IF LENGTH(VSR) < 41 THEN GOTO ERROR3;
VSQA.KEY = SUBSTR(VSR,1,39);
WRITE FILE(VSQO) FROM (VSR) KEYFROM(VSQA.KEY);
GOTO AGAIN;
[* == WRITE ERROR MESSAGE TO LOGFILE ===-======w==--- */
ERROR3: ERROR = MAX(ERROR, 3§ /* BUFFER RECORD TOO SHORT */
2t

ERROR2: ERROR = MAX(ERROR,2); /* FEWER KEYS THAN RECORDS ~ */
ERRORI: ERROR = MAX(ERROR,1): /* EYECATCHER HAS SLIPPED !!! */
CARD = 'ERROR CODE:-f || ERROR;
IF ERROR > O THEN WRITE FILE (LOGFILE) FROM (CARD)
[¥emmmmmmmnmae FINISH ===mmmmmmmmmmmmmmmm o m oo

76 Connecting non-DIA Systems to DISOSS

A.3.5 DBTMOV1 PROGRAM SOURCE

DBTMOV1: PROC OPTIONS(MAIN REENTRANT);

/***/

/* */
/* DBTMOVI1: 17 AUGUST 1983 */
/* - PLI CICS COMMAND LEVEL PROGRAM */
/* - GET AUTOMATICALLY INITIATED EVERY */
/* 5 MINUTES */
/* - SUBROUTINES LINKED VIA CICS: DBTOPN1 */
/* DBTCLS1 */
/* - INPUT KEY SEQUENCED 6K VSAM RECORDS OF */
/* DBTVSQO, KEY IN FIRST 39 BYTES */
/* - OUTPUT KEY SEQUENCED 6K VSAM RECORDS TO */
/* DBTVSQ1, KEY IN FIRST 39 BYTES */
/* - NO DATA TRANSFORMATIONS ARE DONE */
/* - COPIED RECORDS ARE DELETED FROM DBTVSQO */
/* - THE PROGRAM CHECKS IF DBTVSQO IS OPEN */
/* IF SO IT ASSUMES THAT DBTBAT1 IS RUNNING */
/* STOPS TO RETRY IN 5 MINUTES TIME */
/* - FOR EVERY DOCUMENT (CHANGE IN FIRST 35 BYTES */
/* OF KEY) IT INITIATES CICS TRANSACTION DBTS */
/* (PROGRAM DBTMST1) WITH THE KEY OF THE FIRST */
/* RECORD OF THE DOCUMENT AS THE START KEY */
/* - CLOSES DBTVSQO */
/: - STARTS ITSELF IN 5 MINUTES :/

/***/
7

DCL (LENGTH,STG,CSTG,ADDR,MAX) BUILTIN;
%INCLUDE DBTVSQ; /* DBTVSQO AND DBTVSQl */

/**/

/* */
/* DBTOC: CONTROL BLOCK */
/* USED FOR REMEMBERING KEY, HEADER */
/* AND POINTERS TO OTHER CONTROL BLOCKS */

/**/

Bgt QOQ1PTR POINTER;
1 Q0Q1 BASED(QOQ1PTR),
2 KEY /* KE

, Y 39 CHARACTERS */

3 DATE CHARgSg, /* DATE */
3 TIME CHAR(9), /* TIME */
3 INTTYPE CHAR(1), /* INTERFACE TYPE */
3 OSN CHAR(8), /* OSN NAME */
3 USER CHAR(8), /* USER NAME FOR DISTRIBUTION */
3 INTYPE BIT(16), /* INPUT DOCTYPE DIA-CODED */
3 OUTYPE BIT(16), /* QUPUT DOCTYPE DIA-CODED */
3 SEQNO FIXED BIN(15), /* SEQUENCE NUMBER X'0000' TO X'FFFF' */
3 CHFLAGF CHARgl;, /* CHAINING FLAG 1 */
3 CHFLAGL CHAR(1), /* CHAINING FLAG 2 */
2 HEAD, /* ONLY FOR FIC OR LIC */
3 RECTYP CHAR(1), /* RECORD TYPE A -> */
3 PROFLAG ~ CHAR(1), /* RECORD SIZE IN CARD IMAGE UNITS */
3 PAGEL CHAR$3 , /* DECIMAL PAGELENGTH IN LINES/PAGE */
3 PAGEW CHAR(3), /* DECIMAL PAGEWIDTH IN CHAR/LINE */
3 DISNAM CHAR(8), /* UNUSED */
3 EYECAT CHAR(6), /* 'HEADER' CONSTANT */

Sample System Components 77

3 DOCNAM CHAR(15), /* DOCUMENT NAME */

3 RESER CHAR(43); /* RESERVED FILED LENGHT */

DCL VIPTR POINTER, /* POINTER TO INPUT AREA */

VOPTR POINTER, /* POINTER TO OUTPUT AREA */

OPENPTR POINTER, /* POINTER TO OPENBLK COMMAREA */

1 QOQ1B BASED(QOQIPTR), /* OVERLAY */

2 KEY, /* KEY 39 CHARACTERS */

3 KEY1 CHARE35), /* FIXED PART FOR ONE DOC */

3 KEY2 CHAR(4), /* USER NAME FOR DISTRIBUTION */

2 HEAD CHAR(80), /* ONLY FOR FIC OR LIC */

1 QOQIC BASED(QOQIPTR), /*FIC OR OIC OR LIC *x/

2 KEY CHAR(39); /* KEY 39 CHARACTERS */
/**/
;o oesi e oo s
/* LAYOUT CORRESPONDS WITH DATA */
* DEFINITION FOR DFHOC MACRO */

/**/

DCL
1 OPENBLK BASED(OPENPTR),

2 DBNAME CHAR(8), /* DATA BASE NAME TO BE OPENED/CLOSED */
2 RC BIT(8), /* RETURN CODE FIELD X'00' OKAY */
2 FCT BIT 24;, /* FCT ENTRY ON RETURN */
2 FFF BIT(24); /* X'FFFFFF' MARKS END OF CONTROL BLK */

/**/

/% GET STORAGE AREAS x/
/**/
EXEC CICS GETMAIN SET(Q001PTR) LENGTH%lZS) INITIMG(' 00000000'B);
EXEC CICS GETMAIN SET(OPENPTR) LENGTH 153 INITIMG%'OOOOOOOO'B;;
EXEC CICS GETMAIN SET(VIPTR) LENGTH(6002) INITIMG('00000000'B

/**/

T OPEN MACRO ATTEMPT ==-========zzzm- x/
**/
DBNAME = 'DBTVSQO ';
FFF = (3)'11111111'8;
EXEC CICS LINK PROGRAM('DBTOPN1') COMMAREA(OPENBLK) LENGTH(15);
IF RC -= '00000000'B THEN GOTO CLOSE;

/**/

/* START READING DATASET AT BEGINNING */
/**
ééEER%éCS STARTBR DATASET('DBTVSQO') KEYLENGTH(O) RIDFLD(VIKEY)

NEXTREC: EXEC CICS HANDLE CONDITION ENDFILE(STOP;;
EXEC CICS READNEXT DATASET('DBTVSQO') INTO(VI

.
s

RIDFLD(VIKEY); |

IF VIDKEY = ((39)'11111111'B) THEN GOTO STOP; /* DUMMY RECORD HIT*/
IF VICKEY ~= QOQ1B.KEY.KEY1 /* DOC# CHANGE */
$H¥&3SEY.CHFLAGF ~= 1]l /* INPUT NOT FIC */

/* NO FIC ON NEW DOCUMENT ERROR CODE TO BE ADDED */

78 Connecting non-DIA Systems to DISOSS

END;

IF VI3KEY.CHFLAGF = '1' /* NEW DOCUMENT WITH FIC */
& Q0Q1.CHFLAGL -= '1' /* SHOULD HAVE HAD LIC */
#HggQég KEY ~= *! /* ONLY ON FIRST DOCUMENT */

END/* NO LIC ON LAST DOCUMENT ERROR CODE TO BE ADDED */

/* SAVE KEY FOR CHECK OF FIC/LIC */
QOQ1C.KEY = VIKEY;
/* SAVE HEADER FOR LOST LIC RECOVERY */
IF VI3KEY.CHFLAGF= '1' THEN QOQ1B.HEAD = VICHEAD;
[¥mmmmmmmms COPY _RECORDS TO DBTVSQl ~====--=== */

EXEC CICS WRITE DATASET('DBTVSQL') FROM(VI)
RIDFLD(VIKEY) LENGTH(39+2+LENGTH(VIDATA));
/**/
/* AT END OF DOCUMENT START DBTTRNI */
AND DELETE RECORDS ON DBTVSQO */

/‘k**************‘k**‘k***********‘k*********************/

IF VI3KEY.CHFLAGL='1" /* LIC ? */
THEN DO,
IF VI3KEY.CHFLAGF -~= '1' /* REBUILD FIRST KEY */
THEN DO; :

VI3KEY.SEQNO = O;
VI3KEY.CHFLAGF = '1';

/*'-----—:- MASS DELETE DBTVSQO DOCUMENT-==-==-- */
EXEC CICS DELETE DATASET('DBTVSQO') RIDFLD(VICKEY)
KEYLENGTH(35) GENERIC;

[Hmmmmmmman PASS KEY TO DBTTRNI =========z==uce x/
EXEC CICS START TRANSID('DBTS') FROM(VIKEY) LENGTH(39);

/* TERMID('L430") */ /* ONLY FOR TESTING */
VI3KEY.SEQNO = QOQ1.KEY.SEQNO; /* TO PREVENT ILLOGIC ON READ */

gﬁSKEY.CHFLAGF = QOQ1.KEY.CHFLAGF; /* TO PREVENT ILLOGIC ON READ */
GOTO NEXTREC;

STOP:
EXEC CICS ENDBR DATASET('DBTVSQ0');

O CLOSE DATASET =-=--===22nmmmmmmnnee x/

CLOSE:

EXEC CICS LINK PROGRAM(DBTCLS1') COMMAREA(OPENBLK) LENGTH(15);
IF RC -= '00000000'B THEN GOTO ERR3;

GOTO LAST;

ERR3: GOTO LAST; /* OPEN/CLOSE ERROR */

[H=mm—= START ITSELF IN 5 MINUTES AND STOP ----%*/

LAST:

/* */
;: RESTART OF DBTM COMMENTED OUT FOR TESTING ...WBW :;
/: EXEC CICS START TRANSID('DBTM') INTERVAL(000500); :/
; /
/* */

END;

Sample System Components

79

A.3.6 DBTOPN1 PROGRAM SOURCE

OPN TITLE '*DBTOPN1* - PERFORM CICS OPEN FOR DATASET*'

PRINT NOGEN

GBLB &DFHEIMX INDICATE MIXED MODE
&DFHEIMX SETB 1 INDICATE MIXED MODE

COPY DFHCSADS ~ COPY CSA DEFINITION

COPY DFHTCADS ~ COPY TCA DEFINITION

SPACE
DBTOPN1 CSECT
AKKKA KKK KK AK KKK KKK KKKAKAKKKAKK KA KK KKK AKAKAAKKKAAARAAKRRA AR AAR KAk k)
* DBTOPNI:
ASSEMBLER MIXED MODE TRANSACTION
SUBROUTINE TO DO A CICS OPEN

INPUT PARMLIST:

*

*
%*
* *
* *
* *
* -> OPENBLK CONTROL BLOK POINTER CONTAINING: *
* -> DATSETNAME (8 BYTES) *
* -> RC FIELD 1 BYTE) *
* -> FCT FIELD (3 BYTES; *
: -> FFF FIELD (3 BYTES) TO INIDCATE END OF BLOCK :
* *
* *
* *
* *
* *

OUTPUT: RC HAS RETURN CODE.
8 : BAD RETURN FROM OPEN MACRO
0 : OKAY

% % 3K % KK K ok K Kk KK Kk K K K K Kk Kk Kk Kk sk sk kR K K 3k K ok K 3k Kk 3k 3k ok 3k K 3k ke ok 9k Sk ok ok 3k Sk Sk ke ke 3k ok Sk Sk e ke ok ok ke ke ke ke ke

SPACE

PRINT ON

L 8,DFHEICAP OPENBLK ADDRESS

SPACE

DFHOC TYPE=0OPEN, ONLY OPEN
DATASET=DATABASE, THIS IS FOR A VSAM DATASET
LISTADR=8 POINTER TO PARM LIST

EXEC CICS RETURN

EJECT

PRINT ON

END

80 Connecting non-DIA Systems to DISOSS

A.3.7 DBTCLS1 PROGRAM SOURCE

CLO TITLE '*DBTCLS1* - PERFORM CICS CLOSE FOR DATABASE*'
PRINT NOGEN
GBLB &DFHEIMX INDICATE MIXED MODE
&DFHEIMX SETB 1 INDICATE MIXED MODE
COPY DFHCSADS ~ COPY CSA DEFINITION
COPY DFHTCADS ~ COPY TCA DEFINITION
DBTCLS1 CSECT |
% % % % % R K K K Kk %k %k %k %k vk R ke sk %k ok ke dke ok ok ke vk dk ok ke 3k ke ok kK e ke 3k 9k 3k 3k 3k ke 3k K K 9k ok 9k ke 9k K 9k e Sk 3k K 3k ok kK ok Kk k ke ke
* DBTCLS1
ASSEMBLER SUBROUTINE, MIXED MODE TRANSACTION

SUBROUTINE TO DO A CICS CLOSE

INPUT PARMLIST:
-> OPENBLK CONTROL BLOK POINTER CONTAINING:
-> DATSETNAME (8 BYTES)
-> RC FIELD (1 BYTE)
-> FCT FIELD (3 BYTES
-> FFF FIELD (3 BYTES) INDICATING END OF BLOCK

OUTPUT: RC HAS RETURN CODE.
8 : BAD RETURN FROM OPEN MACROC
0 : OKAY

KAKKKKKKAKKK KKK KKK KAAKKKAKAKKAAIAKKKAKKAKA KKK KKA KKK AKKK AR KKKk K Kk

SPACE

PRINT ON

L 8,DFHEICAP OPENBLK ADDRESS

DFHOC TYPE=CLOSE, ONLY CLOSE X
DATASET=DATABASE, THIS IS FOR A VSAM DATASET X
LISTADR=8 POINTER TO PARM LIST

EXEC _CICS RETURN

EJECT

PRINT ON

END

*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*

¥ % % % % % % X % X X X X X %

Sample System Components 81

A.3.8 DBTMST1 PROGRAM SOURCE

DBTMST1: PROC OPTIONS(MAIN);

/***/

/* */
5: DBTMST1: DBTMST1 PROGRAM SOURCE FOR TRANSACTION DBTS :5
;: INPUT: 39-BYTE FIC KEY START DATA :;
;: OUTPUT: 39-BYTE FIC KEY START DATA :;
/* FUNCTION: 1) RETRIEVE VSQl REQUEST FIC KEY */
/* 2) OBTAIN FIC RECORD */
/* 3) DETERMINE CORRECT TRANSFORM PROGRAM */
/* FROM KEY AND PROFILE PARAMETERS */
/* 4) TRANSFER CONTROL TO CORRECT */
/: TRANSFORM, PASSING FIC KEY :/

/***/

%INCLUDE DBTVSQ; /* =--- DBTVSQO/DBTVSQl I/O OVERLAYS === */
DCL (LENGTH,STG,CSTG,ADDR) BUILTIN;
DCL KEYLEN FIXED BIN(15) INIT(39);
DCL VOPTR POINTER,
VIPTR POINTER;
/* === ALLOCATE INPUT RECORD STORAGE --- *
EXEC CICS GETMAIN SET(VIPTR) LENGTH(6002) INITIMG('00000000'B);
/* === RETRIEVE FIC KEY === */
EXEC CICS RETRIEVE INTO(VIG) LENGTH(KEYLEN);
/* === OBTAIN FIC RECORD === */
EXEC CICS STARTBR DATASET('DBTVSQ1l') RIDFLD(VICKEY)
KEYLENGTH(35) GENERIC EQUAL
EXEC CICS READNEXT DATASET(' DBTVSQl) INTO(VIG)

RIDFLD(VICKEY);

/* === ENDBROWSE TO PERMIT VALID TRANSFORM STARTBROWSE --- */
EXEC CICS ENDBR DATASET('DBTVSQl');

[* mmm———— PASS KEY TO TRANSFORM ======- */
/* TRANSFORM SELECTION DEPENDENT ON: */
/* VID.INTYPE */
/* VID.OUTYPE */
/* VID.RECTYP */
/* 'IF THEN GOTO' STRUCTURE INSTEAD OF */
/* 'IF THEN DO ' TO AVOID COMPILER */
/* SYNTAX ERRORS DUE TO TRANSLATOR */
;: COMMENT AND DO BLOCK :/
/* --- TRANSFORM 1 : X'02', X'OC', 'A* */
/* 1403 PRINT DATA ===> 1403 DCA L2 */

IF ((VID.INTYPE=' 0000000000001100'8) &
VID.OUTYPE=" 0000000000000010'8) &
VID.RECTYP='A')) THEN GOTO TRNl
/* === DEFAULT TRANSFORM : 2TRANSFORM 1) *
EXEC CICS XCTL PROGRAM('DBTTRN1') COMMAREA(VIKEY) LENGTH(39);
/% =-- TRANSFORM TRANSFER LIST =-=-- */
¥Em% EXEC CICS XCTL PROGRAM('DBTTRN1') COMMAREA(VIKEY) LENGTH(39);
TRN3:
TRNG: /* ETC. */
END;

82 Connecting non-DIA Systems to DISOSS

A.3.9 DBTTRN1 PROGRAM SOURCE

The DCA initial multibyte controls are constant, independent of the input profile
information. A subset of the 1403 and ANSI| design conversions are made.

DBTTRNI1: PROC(STPOINT) OPTIONS(MAIN);

/************‘k***‘k***‘k******/

/% x/
5: DBTTRN1: PL1 PROGRAM SOURCE DBTTRN1 FOR TRANSACTION DBTS :;
/* INPUT: 6000 BYTE KEY SEQUENCED VSAM RECORDS FROM VSQl */
7* 1) KEYS WITH USER AND PROCESSING DATA Y,
/% 2% PROFILE DATA ON FIRST AND LAST RECORD x/
;: 3) IRS SEPARATED PRINTLINES :5
/* OUTPUT: 4088 BYTE KEY SEQUENCED VSAM RECORDS TO VSQl */
7* 1) KEYS WITH USER AND PROCESSING DATA x/
7* 2% PROFILE DATA ON FIRST AND LAST RECORD */
;: 3 DCA LEVEL 2 DOCUMENT INCLUDING PRESET INITIAL DATA :5
/* PROCEDURE: X/
/* 1) THE VSQl BLOCKED PRINT LINE MAILBOX REQUEST IS IDENTIFIED */
7* " BY THE START DATA PASSED FROM DBTMST1 x/
/* 2) THE DOCUMENT IS CONVERTED TO A DCA LEVEL 2 DATASTREAM */
7% " AND IS WRITTEN TO VSQl IN UNITS OF A CONVENIENT SIZE */
/* 3; THE INPUT RECORDS ARE DELETED FROM VSQ1 */
/* 8% PROGRAM DBTSNDI IS INITIATED WITH FIRST KEY START DATA */
/***/
L —— CONTROL BLOCK ========mmm=mmmmmmmmm oo e e x/

DCL XFPTR POINTER;
DCL 1 XF BASED(XFPTR),
DOCCHAR CHAR(1),
CHFLAGF CHAR(1),
SEQNO FIXED BIN(15),
DOC1PTR POINTER,
DOC2PTR POINTER,
VIPTR POINTER,
VOPTR POINTER,
DOCPTR1 FIXED BIN 31;,
DOCPTRZ2 FIXED BIN(31),

1 DOCBIT BIT(8) BASED(XFPTR);
DCL PROREM CHAR(80);
DCL XFLEN FIXED BIN(15)
DCL KEYLEN FIXED BIN(lSS FIXED INIT(39);
DCL VICREM CHAR(35);
DCL TDATAREM CHAR(39
DCL SDATAREM CHAR(35 ;
[¥ === WORK AREAS --- BASED FOR DEBUGGING =============-c-c—-—- */
DCL 1 DOCWORK1 BASED§DOC1PTR3 CHARE6000; VARYING; /*INPUT WORK AREA*/

WWWWWWwWwww

DCL 1 DOCWORK2 BASED(DOC2PTR) CHAR(4090) VARYING; /*OUTPUT WORK AREA*/
[Fmmmmm——— CONTROL CHARACTER OVERLAYS =====m==—mme e e e e e */
DCL 1 BIT,

2 NL' BIT(8) INIT('00010101'B),

2 FF BIT(8) INIT '00001100'8 ,

2 CR BIT(8) INIT('00001101'B),

1 CHAR BASED(ADDR(BIT)),
2 NL CHAR(1),

Sample System Components 83

2 FF CHAR(1
2 CR CHAR(1

[*mmmmmmmm DCA INITIAL DATA OVERLAYS ===mmmm=mmmmmmmm e o */
1 DCAINI,

3 SEAI "BIT(48)
INIT('001010111101001000000100100001010000000000000000'8),
SHM1 BIT(32) INIT('00101011110100100000011000010001'B
SHM2 BIT(32) INIT('00000000000000010010111111010000'8
SYMI BIT(32) INIT('00101011110100100000011001001001'B
SVM2 BIT(32) INIT('00000010110100000011110111100000'B
SPPS1 3175323 INIT('00101011110100100000011001000000'B
SPPS2 BIT(32) INIT('00101111110100000011110111100000'B
SCG1 BIT(32)" INIT('00101011110100010000011000000001'B
SCG2 BIT(32) INIT('00000000110101110000000100001000'B

1 DCACHAR BASED ADDR(DCAINI)),

WWwWwWWwwww

W W W W W W e W

3 SEA CHAR(6 *"X1 2BD204850000" */

3 SHM CHAR(8 J X158D206 1100012FD0" =/

3 SVM CHAR(8), /* X'2BD2064902D03DEQ" */

3 SPPS CHAR(8), /* X'2BD206402FDO3DEQ’ */

3 SCG CHAR(8); /* X'2BD1060100D70108' 1403 PRINT */
e VSQO/VSQl 1/0 RECORD OVERLAYS =======mmzmmmmmmmmeemcmmee x/
%INCLUDE DBTVSQ;

DCL (SUBSTR,LENGTH,ADDR,CSTG) BUILTIN;
[X=mmmmmn START KEY VARIABLE ===========2mmmmmmm oo oo x/

DCL STPOINT POINTER,
STARTKEY CHAR(39) BASED(