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ABSTRACT 

The desire for heightened productivity in 
the application development process has 
created an increased interest in applica­
tion generators. Patient Care System/ 
Application Development System (PCS/ADS) 
is a general purpose, CICS-based app1 ica­
tion generator that is used primarily in 
the health care field. It has been in use 
at The University of Iowa Hospitals since 
1978. In conjunction with other applica­
tion development tools, it is responsible 
for a substantial reduction in the amount 
of time and effort required to develop 
new app 1 i cati ons. 
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University of Iowa Hospitals Background 

The University of Iowa Hospitals, with 1,100 beds, 1,000 physicians and dentists, 
1,400 nursing personnel, and a support staff of 3,500, is the largest university­
owned, teaching hospital in the nation. As Iowa's tertiary-level health care 
center, it served 40,000 inpatients and 335,000 outpatients last year. The 
Information Systems Department was formed in 1970, and the first application, 
Clinic Scheduling and Patient Registration, went into production in 1973. At 
that time, the Hospitals' terminal network consisted of ten terminals and one 
printer, connected to an IBM 360 Model 40· computer. Today, the Hospital Inform­
ation System has grown to include 13 major applications running on dual IBM 
3081 computers, with a local network of 450 CRT terminals and 150 printers. 

When application development began in 1970, it was based on the use of CICS 
macro-level Assembler lan9uage and a structure of indexed and direct files. 
By 1976, with new applications growing in complexity, increasing requirements 
for modifications to be made to existing applications, and continuing demand 
for new information to be added to the files, new development was becoming 
increaSingly more difficult and time consuming. A search was begun for tools 
that would help speed up the development process and ease future maintenance 
and modifications. One of the tools acquired in 1978 was PCS/ADS. 

PCS/ADS Description 

Patient Care System/App1 ication Development System is a very flexible appl ica­
tion generator that runs as a CICS transaction. While it was developed at 
Duke University Hospital and marketed by IBM primarily to health care insti­
tutions, it is actually a general-purpose development tool. The keys to its 
operation are the "Symbol Table", used to pass data, and the "Execution Stack", 
used to control execution of PCS commands and appl ication programs. Each PCS 
transaction has its own stack and symbol table. See Figure 1 for a diagram 
of the PCS Execution Environment. The first detail to notice in the diagram 
is that all data passage is through the symbol table. Data retrieved from the 
data base by the PCS Data Manager is placed in the symbol table for use by the 
application. Data to be passed between parts of an application, such as two 
different screens, is placed into and retrieved from the symbol table. Data 
in the symbol table is accessed only by name. Applications are not aware of 
the structure of the data base or of the format of the data in the symbol table. 
This provides a high degree of independence between applications and data and 
helps to minimize the impact that a change to part of an application has on the 
rest of the application. 

The Execution Stack is a last-in/first-out stack that controls the sequence 
of execution of the parts of an application. Applications can place the names 
of screens to be displayed or modules to be executed on the stack. PCS will 
then display the screen or execute the module whose name is currently on top 
of the stack. 
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The PCS Data Editor provides about 30 standard edit functions for use by appli-
cations. Data to be edited must be in the symbol table. . 

The PCS Data Manager provides access to VSAM files or IMS data bases without 
requiring the appl ication developer to be aware of the data structure in the 
file or data base. Through the PCS Data Directory, it provides the ability to 
map data from records or segments to the data lists required by the application. 
As with the symbol table, the Data Manager helps to isolate applications from 
physical data structures. Such isolation is extremely desirable when applica­
tions or data structures must be changed. 

A short example of a PCS application will now be presented to illustrate some 
typical PCS features. This application consists of five screens that collect 
a user's sign-on information, present three levels of function menu-selection 
screens, and finally display the user's profile information. The extensive 
use of light-pen selectable menu lists is very typical of PCS applications. 

Figure 2 shows the sign-on screen "DOCSSION" as it appears on the terminal. 
Figure 3 shows the screen definition for the DOCSSION screen. There are two 
parts to the screen definition. The top part defines the appearance of the 
screen, including the locations and types of input and output fields, and any 
literal text contained in it. The bottom part of the screen definition is the 
processing section. This screen has three output fields that are scanned 
horizontally and three input fields that are scanned vertically. The output 
fields display the variables T-SYSTEM, which is equal to "IHISNET2", SYSDTTM, 
which is "07/28/83 15:18", and ERRMSG, which is blank, from the symbol table. 
The first two input fields move data to the symbol table variables SIGNONID 
and PASSWORD. The third input field, SIGNOFF, is light-pen detectable and 
causes the user to be signed off of PCS. 

Figure 4 shows the next screen that is displayed after the user 10 and password 
have been successfully entered. It is a PCS menu screen that is part of our 
own security system and is used only for testing. It allows the application 
developer to emulate any user environment and perform any application function. 
In the production environment, the security system uses PCS menu selection 
screens to restrict each terminal operator to a set of functions that he re­
quires to do his job. In addition, his visibility is limited to patients within 
his area of the Hospital. In this example, the terminal operator will use the 
light-pen to select a menu of "Technical Support" functions. 

Figure 5 shows the screen definition for the screen that appears in Figure 4. 
It illustrates some of the processing power available in screen definitions. 
Notice that for the selected "Technical Support" option, the values of several 
variables in the symbol table are checked before the name of the next screen 
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to be displayed is placed on top of the stack. If the conditions are not sat­
isfied, this same screen (MSTPCi!I1li!) is displayed again with ali error message. 
Further up in the definition, there is also a good example of multiple operations 
being placed on the execution stack. If the terminal user selects "Department", 
three program names and a screen name will be pushed into the stack, with the 
last one, screen name MSTPCilili!, being the first one in and, therefore, the last to 
be used. The result will be that programs PCSC316, PCSC317, and PCSC318 will be 
executed in that order and then screen MSTPCi!i!i! will be displayed. 
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Figure 6 is an example of the primary screen for the high-level testing facility 
that is part of PCS. When the test option is turned on, this screen will be dis­
played after each application screen display, program execution, or Data Collec­
tion list (DCl) execution. It shows the command that was executed last (in this 
case, a PCS-generated command resulting from the conditional logic on the 
previous screen), the condition code from that command, and the current con­
tents of the execution stack, which in this case contains only one screen name. 
From this screen, the developer has the option of inspecting and modifying the 
symbol table or modifying the stack. 

Figure 7 shows the stack modification screen. It allows the developer to change 
the execution flow of the transaction from what was originally coded. Figure 8 
is an illustration of the symbol table modification screen. Since all data in 
PCS is passed through the symbol table, this is a very useful testing and de­
bugging tool. USing these test facilities, a developer can enter and inspect 
test data and can execute new screens, programs, and DCl's before the trans­
action that they are part of has been completely developed. 

Figure 9 shows the Technical Support menu screen that is displayed when we re­
turn to the application. Its display is a result of the selection made on the 
screen of Figure 4. The light-pen will be used to select the "Security" option 
on this screen. 

Illustrated in Figure 10 is the Security Function Menu Screen displayed as a 
result of the Security selection on the previous screen. Its screen definition 
is shown in Figure 11. Notice that in the coding for the selection that will 
be made on this screen, "Review Your User Profile", there are two $P commands 
that will be"placed on the stack. They are the Data Collection Lists (DCl) 
PCSPD303 and PCSPD309. They are illustrated in Figures 12 and 13. 

The PCS Data Collection list is a very powerful processing facility. Its cap­
abilities fall between those of a PCS screen definition and a conventional pro­
gram. The two DCl's shown here are very simple examples. The first one, in 
Figure 12, clears all of the listed variables out of the symbol table. This is 
a default for any variable named in a DCL. Since no other value is assigned to 
any of these variables in this DCl, they remain cleared. The second DCl, in 
Figure 13, is shorter but illustrates an interesting feature of DCl's. The 
first statement sets the variable "Fl" in the symbol table to the value "ENTR/ 
UPOPERID/SIGNONID". The second statement invokes program "$FN" to assign a 
value to variable "FlCC" in the symbol table. In order for the DCl to complete, 
$FN must assign a value to F1CC. This is a general feature of DCl's. The DCl 
will continue to be re-executed until all data specified for collection by the 
DCl has been collected. 

Figure 14 shows the final screen of the transaction, a display of the terminal 
user's security profile. 

In all of the screen definitions and DCl's that made up this example, no data 
base accesses were shown. However, it is very simple to issue a command from 
either a screen definition or a DCl that will move data between the symbol table 
and a data base. An example of such a command is "$DM=(GET=TESDATA)". In this 
case, there would be an entry for "TESDATA" in the PCS Data Directory that maps 
fields in the data base, possibly in multiple segments, onto variables in the 
PCS symbol table. 
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Figure 6. peS/ADS Debug screen 
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Figure 7. Stack modification screen 
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Figure 8, Symbol table and modification screen 
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Figure 9, Technical Support function menu screen 
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Figure 10. .Security function menu screen 
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Figure 11. Screen definition for screen PCSPC304 
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50 T-PAS$WD 
50 T-AEASDN 
50 T-SECNME 
50 T-$PVNME 
50 T-$RNNMA 
SO T-$RNNMS 
50 T-TITlE 
50 T-UPPSWO 
50 T-USERID 
50 UPCSSNID 
50 UPCSSNL 
50 UPCSSNPS 
50 UPBRTHMO 
50 UPBRTHDA 
50 UPBRTHYR 
!SO UPCURSPV 
50 UPOEPT" 
50 UPOEPTB 
50 UPOEPTC 
50 UPEMNRUM 
50 UPlUPOTN 
SO UPLUPDTT 
!SO UPOPERID 
50 UPPSWDTE 
50 UPRUPTO 
SO UPSECOFC 
50 UPSECLV 
50 UP$NAME 
50 UPSRNID 
50 UPSRNIOB 
SO UPTITLE 
50 UPTRNQTE 
50 UPTRNFLG 
50 UPTRNSCN 
50 USERNAME 

Figure 12. Data Collection List PCSPD303 
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Fi~ure 13. Data Collection List PCSPD309 
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USER PI{OFIl.E SECURITY -- DISPLAY 

:====~=~===:==================================~================================= 

USER: .JOlIN SM ITH 
BIRTH DATE: 11 11 1911 

EMPl.OYEE NUMBER: 999999999 

SECURITY l.EVEL: SECURITY FUNCTION I 
DEPAlHMENT: INFORMATION SYSTEMS 

DIVISION: TECHNICAl. OPERATIONS 
PllPUl.ATIfJN: NOT APPLICABLE 

SUPERVISOR: ~)HN GERBER 
SECURITY OFFICER: ,JOHN GERBER 

PASSWllRD LAST CHANGED: 88/16/83 
PROFIl.E LAST UPDATED: 08/16/83 13:16 BY DAl.E WILHEl.M 

HnSNET2 88/16/83 13:26 .JllHN SMITH 

PCS324 SECURITY MASTER SIGN-OFF 
)@@@@@@@@@@@'@@@'@'@@@@@@@@~@@@I!@I!Y@@@@@@@@@@@'@@@@'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@BUl 

Figure 14. User profile display screen 
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In addition to the Screen Manager and the DCl Processor, there is one additional, 
widely-used PCS manager that did not appear in the example; that is the Print 
Manager. The PCS Print Manager uses Print Definitions that are very similar to 
Screen Definitions in appearance, capability, and use. The difference between 
them is that the Print Definitions have no input fields. Output can be routed 
to individual printers or to groups of printers, and routing can be either fixed 
or dynamic. 

The purpose of this brief description has been to give you a feel for how PCS 
works, and to give an idea of its power, flexibility, and ease of use. With 
the information that I've presented, you could understand most straightforward 
PCS transactions, and you could probably code a simple transaction. Compare 
that with the level of knowledge and effort required to code a command-level 
CICS transaction. 

The Application Development Environment 

The application development environment is not just the sum of the tools and 
methodologies that make it up. A poorly matched set will yield disappointing 
results. A well chosen set of complementary tools and methodologies will show 
a synergistic effect, yielding exceptional results. For this reason, it is 
difficult to evaluate the effectiveness of a part of the development environ­
ment, such as PCS/ADS, in isolation. 

The development environment at The University of Iowa Hospitals is shown in 
Figure 15. Combined with a development methodology that emphasizes proto­
typing and iterative development of large applications, the tools shown have 
proven to be very satisfactory. However, since all of them, except the Data 
Directory and Data Dictionary, which are more recent additions, came into use 
in the same time frame, it is difficult to attribute particular increases in 
productivity to individual tools. 

Since PCS/ADS is so well suited to prototyping and iterative development, 
would 1 ike to briefly comment about those two techniques. Prototyping involves 
building a mock-up system for demonstration to the user prior to development of 
the complete functional system. This allows the user to actually operate a 
terminal to see what his final system will look like and what it will be like 
to use. This is much more effective in eliciting comments, criticisms, and 
suggestions than thirty pages of paper screen simulations. It helps to avoid 
the "But that isn't what I wanted" types of problems that can occur at the end 
of a project. 

Iterative development is a natural follow-on to prototyping. It involves grad­
ually replacing the simulated data and flow controls of the prototype with real 
data and application logic. PCS/ADS is ideally suited to these techniques. It 
is nearly as easy to code PCS Screen and Print Definitions as it is to just lay 
out an image of the screen on a piece of paper. Fields that will eventually be 
used to display variables have constants coded into them instead, and what will 
eventually be processing logic in the screen definition is simply coded as a 
call to the next screen. These prototype screen definitions are simple enough 
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so that they can be created or modified by user personnel. Once the prototype 
screen definitions have been finalized, programs, DCl's, and data base accesses 
can be added to complete the application. If the user is kept involved during 
this process, misunderstandings and changes in requirements can be caught before 
they become major problems. 

While I have seen some claims that peS/ADS applications can be developed by user 
personnel without the assistance of professional programmer/analysts, and I 
understand that this is being done at some institutions, it has not been our 
policy to do so at The University of Iowa Hospitals. There are two primary 
reasons for this decision. First, our applications are developed around an 
integrated Hospital Data Base. Its evolution and use must be centrally coor­
dinated and controlled. Second, while it may not be prohibitively difficult 
to train user personnel to use PCS/ADS effectively, we have not felt that it 
would be practical to train them to develop, document, and maintain complex inter­
related application systems. 

The PCS application developers at The University of Iowa Hospitals have primary 
skills of systems analysis and design, although they are also able to write any 
CICS Pl/I Command language programs that are required. I feel that this emphasis 
on analysis, design, and familiarity with the application area has been most 
beneficial. Serious or fatal flaws in appl ications systems are usually in the 
design of the system, rather than in its programming. I think that this em­
phasis on design, which is a direct result of the power and ease of use of PCS, 
has enabled us to produce more usable and reliable systems than would have been 
poss i b 1 e otherwi se. 

Figure 16 provides a rough measure of the effectiveness of the applications 
development environment, including PCS/ADS, currently in place at The Univer­
sity of Iowa Hospitals. It shows the number of major applications completed 
each year since the Department's inception. Those completed to date are com­
prised of 350 PCS functions (equivalent to transaction types), with 2,000 dif­
ferent screen definitions. While the increased rate after 1978 is not entirely 
due to the use of PCS/ADS, its use was certainly a factor. 

Disadvantages of PCS/ADS 

So far, I've discussed the advantages of using PCS/ADS. There are also some 
disadvantages. The first is the additional processing overhead that is in­
curred, compared to CICS macro-level, assembler-coded transactions. Since we 
also began using the IMS Data Base Manager and CICS command-level Pl/I coding 
in the same time frame that we began using PCS, it is difficult to quantify 
the amount of additional overhead that can be attributed to PCS. We have not 
considered it to be prohibitive. 

Two more problems are a direct result of the ease with which new application 
systems can be created with PCS. Part of the ease of use of PCS is due .to the 
high level at which it allows the application developer to work. He is isolated 
from machine procedures and physical data structures. However, this feature 
also makes it easy to develop transactions that suffer from poor performance 

19 

Number of 
Appl ications 

9 

8 

Completed 6 

4 

o I I I. 
70 71 72 73 74 75 76 77 78 t79 80 81 82 

Start of use 
of PCS/ADS 

Year 

APPLICATION DEVELOPMENT RATE AT 

UNIVERSITY OF IOWA HOSPITALS 

Fi gure 16 

20 

Plann ed 

83 84 85 



~l"! 
-.J 
r-:, 

and use excessive system resources. For this reason, and because of the rapid 
rate at which new applications can be developed, it is particularly important 
in a PCS environment to do an effective job of predicting and tracking system 
resource usage. 

There are three more "technical" problems that currently affect the use of 
PCS/ADS. First, all PCS transactions run under a single CICS transaction name. 
To CICS, pes is a single transaction. This prevents assigning differing prior­
ities to different PCS-based applications. Second, the PCS execution modules 
are written in CICS macro-level Assembler language. Some new CICS facilities 
can only be used with command level transactions. Finally, the PCS DCl pro­
cessor runs as a conversational transaction, causing data areas for DCl-based 
transactions to tie up virtual storage for long periods of time. We have not 
considered any of these problems to be prohibitive to our use of PCS. Indeed, 
some of them are by-products of its overriding advantages. In addition, we are 
optimistic that the technical problems cited above will be resolved. 

Summary 

PCS/ADS is a general purpose, CICS-based application generator that has been in 
use at The University of Iowa Hospitals since 1978. It's primary advantages 
are: 

1. 

2. 

The development cycle is speeded up due to the minimal requirements 
for conventional programming. 

PCS/ADS facilitates system prototyping and an iterative development 
process. 

3. The reduction of conventional programming requirements allows the 
systems developer to concentrate on understanding user requirements 
and on system analysis and design. 

4. The systems developer has the flexibility to use screen descriptions, 
Data Collection lists, or conventional programs to implement PCS/ADS 
transactions. 

5. Users are kept involved by the iterative development process and 
may also create or modify screen and print formats. 

6. PCS/ADS includes a good, high-level test facility. 

We have found these advantages to far outweigh its disadvantages. In conjunc­
tion with the other application-development tools and the development method­
ologies in use here, PCS/ADS has proven to be an effective and valuable tool. 
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