
SESSION REPORT ~SHARE~

R __ M572 Experjence with peS/ADS asan Appl ieatinn 20

SHARE NO. SESSION NO. Deve 1 opment Tool SESSION TITLE

_@Plic_atian J1e.v.elopment Management
PROJECT

Elliot Chikofskv
SESSION CHAIRMAN

ATTENDANCE

UIH ------
INST.CODE

_ University of Michigan. Industrial and Operations Eng. 231 W Engineering-B..l1l.g.....

C.l'!
C)

N

SESSION CHAIRMAN'S COMPANY. ADDRESS, and PHONE NUMBER

Ann Arbor, Michigan 48109 (313) 763-2238

Experience with PCS/ADS as an
Application Development Tool

John W. Gerber

Information Systems Department
The University of Iowa Hospitals and Clinics

Room C500, GH
Iowa City, Iowa 52242

Installation Code: UIH

Application Development Management Project

M572

ABSTRACT

The desire for heightened productivity in
the application development process has
created an increased interest in applica­
tion generators. Patient Care System/
Application Development System (PCS/ADS)
is a general purpose, CICS-based app1 ica­
tion generator that is used primarily in
the health care field. It has been in use
at The University of Iowa Hospitals since
1978. In conjunction with other applica­
tion development tools, it is responsible
for a substantial reduction in the amount
of time and effort required to develop
new app 1 i cati ons.

SHRM-730-1/Bl

University of Iowa Hospitals Background

The University of Iowa Hospitals, with 1,100 beds, 1,000 physicians and dentists,
1,400 nursing personnel, and a support staff of 3,500, is the largest university­
owned, teaching hospital in the nation. As Iowa's tertiary-level health care
center, it served 40,000 inpatients and 335,000 outpatients last year. The
Information Systems Department was formed in 1970, and the first application,
Clinic Scheduling and Patient Registration, went into production in 1973. At
that time, the Hospitals' terminal network consisted of ten terminals and one
printer, connected to an IBM 360 Model 40· computer. Today, the Hospital Inform­
ation System has grown to include 13 major applications running on dual IBM
3081 computers, with a local network of 450 CRT terminals and 150 printers.

When application development began in 1970, it was based on the use of CICS
macro-level Assembler lan9uage and a structure of indexed and direct files.
By 1976, with new applications growing in complexity, increasing requirements
for modifications to be made to existing applications, and continuing demand
for new information to be added to the files, new development was becoming
increaSingly more difficult and time consuming. A search was begun for tools
that would help speed up the development process and ease future maintenance
and modifications. One of the tools acquired in 1978 was PCS/ADS.

PCS/ADS Description

Patient Care System/App1 ication Development System is a very flexible appl ica­
tion generator that runs as a CICS transaction. While it was developed at
Duke University Hospital and marketed by IBM primarily to health care insti­
tutions, it is actually a general-purpose development tool. The keys to its
operation are the "Symbol Table", used to pass data, and the "Execution Stack",
used to control execution of PCS commands and appl ication programs. Each PCS
transaction has its own stack and symbol table. See Figure 1 for a diagram
of the PCS Execution Environment. The first detail to notice in the diagram
is that all data passage is through the symbol table. Data retrieved from the
data base by the PCS Data Manager is placed in the symbol table for use by the
application. Data to be passed between parts of an application, such as two
different screens, is placed into and retrieved from the symbol table. Data
in the symbol table is accessed only by name. Applications are not aware of
the structure of the data base or of the format of the data in the symbol table.
This provides a high degree of independence between applications and data and
helps to minimize the impact that a change to part of an application has on the
rest of the application.

The Execution Stack is a last-in/first-out stack that controls the sequence
of execution of the parts of an application. Applications can place the names
of screens to be displayed or modules to be executed on the stack. PCS will
then display the screen or execute the module whose name is currently on top
of the stack.

2

Con
C)

c...J

CICS

EXECUTION
STACK

~ . PCs
MANAGER
PROGRAMS

PCS
SCREEN,
PRINT,
& DCl
DEFIN­
ITIONS

~ .

c;;J

SYMBOL
TABLE

=-===1+-+ -~

PCS
DATA
DIREC­
TORY

PCS Execution Environment

Figure 1

PCS
DATA
EDITOR

PCS DATA
MANAGER

3

j

The PCS Data Editor provides about 30 standard edit functions for use by appli-
cations. Data to be edited must be in the symbol table. .

The PCS Data Manager provides access to VSAM files or IMS data bases without
requiring the appl ication developer to be aware of the data structure in the
file or data base. Through the PCS Data Directory, it provides the ability to
map data from records or segments to the data lists required by the application.
As with the symbol table, the Data Manager helps to isolate applications from
physical data structures. Such isolation is extremely desirable when applica­
tions or data structures must be changed.

A short example of a PCS application will now be presented to illustrate some
typical PCS features. This application consists of five screens that collect
a user's sign-on information, present three levels of function menu-selection
screens, and finally display the user's profile information. The extensive
use of light-pen selectable menu lists is very typical of PCS applications.

Figure 2 shows the sign-on screen "DOCSSION" as it appears on the terminal.
Figure 3 shows the screen definition for the DOCSSION screen. There are two
parts to the screen definition. The top part defines the appearance of the
screen, including the locations and types of input and output fields, and any
literal text contained in it. The bottom part of the screen definition is the
processing section. This screen has three output fields that are scanned
horizontally and three input fields that are scanned vertically. The output
fields display the variables T-SYSTEM, which is equal to "IHISNET2", SYSDTTM,
which is "07/28/83 15:18", and ERRMSG, which is blank, from the symbol table.
The first two input fields move data to the symbol table variables SIGNONID
and PASSWORD. The third input field, SIGNOFF, is light-pen detectable and
causes the user to be signed off of PCS.

Figure 4 shows the next screen that is displayed after the user 10 and password
have been successfully entered. It is a PCS menu screen that is part of our
own security system and is used only for testing. It allows the application
developer to emulate any user environment and perform any application function.
In the production environment, the security system uses PCS menu selection
screens to restrict each terminal operator to a set of functions that he re­
quires to do his job. In addition, his visibility is limited to patients within
his area of the Hospital. In this example, the terminal operator will use the
light-pen to select a menu of "Technical Support" functions.

Figure 5 shows the screen definition for the screen that appears in Figure 4.
It illustrates some of the processing power available in screen definitions.
Notice that for the selected "Technical Support" option, the values of several
variables in the symbol table are checked before the name of the next screen

4

to be displayed is placed on top of the stack. If the conditions are not sat­
isfied, this same screen (MSTPCi!I1li!) is displayed again with ali error message.
Further up in the definition, there is also a good example of multiple operations
being placed on the execution stack. If the terminal user selects "Department",
three program names and a screen name will be pushed into the stack, with the
last one, screen name MSTPCilili!, being the first one in and, therefore, the last to
be used. The result will be that programs PCSC316, PCSC317, and PCSC318 will be
executed in that order and then screen MSTPCi!i!i! will be displayed.

SD4J@@@TOP
IHIS - IOWA HOSPITAL INFORMATION SYSTEM - SIGN ON

PLEASE TYPE YOUR SECURITY ID AND PASSWORD, THEN PRESS THE ENTER KEY.

ID:

PASSWOI~D :

IHISNET2 ------------------------------- 08/16/83 13:18

PCS screen as
displayed!

DOCSSION Figure 2. Screen DOCSSION as displayed SIGN-OFF
1@@@BOT

HEADER. REPLACE~ 000010
"IHIS·- IOWA HOSPITAL INFORMATION SYSTEM - SIGN ON 000020

000030
Con 000040
C' 000050
~ "PLEASE TYPE YOUR SECURITY ID ANO PASSWORD. THEN PRESS THE ENTER KEY. 000060

.::. = = =. = = = = = = •• = = = =-••• = = =.: =. c::::::::::::: :.::::: = = = = =: c c = =:::. = = = = =.: = = = = = =.. 000010
000080
000090

J<D . 000'00
10:<. ,1.D •• > 000110

• 000120

000150
000160
000170
000180
000.90

_~ 000200

Screen
Image
Section Q)~PASSWO.D:<"""'lP."""""> ~:!g

C?M ... > ~~o.l!~ ... :,.> 5~~g
0~~TP~~' G' ~~~~~~:~t. i··"·'·,·······························,·, '(D' isi'f~OF~ 5~:g-------

SYSOTTN 2 Hori zonta 1 scan 000210
17:\ ERRMSG 3 t 000280

INPUT \!I:~!~~~~~g 12 Vertical scan ggg~~
!$CMDO' 00' 3 S.-S; Light-pen 0003'0

detectable

Input fields <,,,,,> commas

Output fields < > periods

Figure 3. Screen definition for DOCSSION

Processing
Section

SD4]~1(~(~@@(~(~@@I~@@@@@re@@@@@@@I~@I~le@re@@@r'@@I~1~1~@@@@(tl~@l~(~@mr.@(~m@m@@m@@@lem@@@m@@(el~T()p
MASTER MENU SELECTION

SELECT DESIRED ACTIONIS).
=====~=;===

IHISNET2

DISF~AY USER PROFILE

MODIFY USER PROFILE

DEPARTMENT:
DIVISION:
POPULATION:
efn LOCN:

DISPI.,IW /EXECUTE MASTEJ~ MENU SCREEN SELECTION

DEPARTMENTAL
DEMONSTRATION
SECURITY

COMPUTER OPERATIONS
IIECHlfrC;AL~

Light-pen select

88/16/8] 13:24 JOHN SMITH ---------

MST808 SIGN-OFF
~@(i!Ii!@i<li!@@li@@("I~@@@@r'@@@@@@@@@@@@@@m@li@@(~(e@@@(i@@@@@@"li@@@@@@@@"@@@@@@@@@l~@@(~@@})OT

Figure 4. Screen MSTPCI'lI'JI'J

CJ!
e)
c.,n

HEADER. REPLACE MSTPCOOO
MASTER MENU SELECTION

000010
0000.0
000030

SELECT DESIRED ACTION(S). 000040
'"'== "' "''''... 000050

!DISPLAY USER PROFILE

MODIFY USER PROFILE

000060
000070
000080
000090
000100

DEPARTMENT: < ,., ... > 000110
000120
000130
000140
000150
000160
000170

DIVISION: < ••••.......••..• , ••• >
POPULATION: < " .. >
CRT LOCN: < •• ,."••....••• >

DISPLAY /EXECUTE MASTER MENU SCREEN SELF-CTlDN

< •.•

! DEPARTMENTAL
! DEMONSTRATION
!SECURITY

<•.....•....•••.....•.

OUTPUT H DEP-NAME
DIV-NAME
POP-NAME
UNT-NAME
T-SYSTEM
SYSDTTM
SYSOPNAM
ERRMSG

ICOMPUTER OPERATIONS 000180
'fTEtHNlcAL sUppORT! 000181

Light-pen sel ect g:;g~~~
000220

<•••.... : •• >< ••••••....••........ > 000230
.•.................. > 000240

I SIGN-OFF 000250
000760
000770
000780
000790
000800
000810
000820
000830
000840

'" OISPLAY USER PROFILE INFORMATION 000850
000860
000870
000871
000872
000900

INPUT H! SCMD01 001 SPROG-PCSC321 • SS=MSTPCOOO;
- CHANGE OEPARTMENT

!$CM001 001

- CHANGE DIVISION
!$CMOOt

.. CHANGE POPULATION

00'

!SCMOOt 001
... CHANGE UNI T

!SCMOOt 001
- DEPARTMENTAL

!SCMOOt 001

'" COMPUTER OPERATIONS
!SCMOOt 001

'" DEMONSTRATION
ISCMDOt 001

SPRDG-PCSC3 16. SPROG-PCSC317 • SPROG-PCSC3t8.
SS"'MSTPCOOO;

$IF-(«T-SYSTEM=' IHISNETA': T-SYSTEM'"" IHISNETB')& 000901
T-OEPT-' INF') 000902

THEN 'ERRMSG" ** ERROR - USER CAN NOT PERFORM TH 000903
[S FUNCTION SS=MSTPCOOO' 000904

ELSE 'SPRDG-peSCa 17. SPROG=PCSC318, $S"NSTPCOOO'): 000905

SPRDG=PCSC318. SS"MSTPCOOO;

SPROG-PCSC319. SS=MSTPCOOO;

SIF:z((T-SYSTEN-' IHISNETA'! T-SYSTEM=' IHISNETB')
THEN 'SS-PCSPC357. SPROG=PCSC320'
ELSE '$PROG"PCSC320');

000920
000930
000940
000950
000960
000961
000962
000963
000980

SIF-«(T-SYSTEM='IHISNET2'1 T-5VSTEM-'IHISNET1') 1 000981
(T-DEPT-'INF' &. T-DIVSN-'TOP'» 000982

THEN '$S-MSTPC2WO' 000983
ELSE 'ERRMSG-.** ERROR· USER NOT AUTHORIZED FOR 000984

THIS FUNCTION _ ••• $S·MSTPCOOO'); 000985
001000

$IFs((T-SYSTEM-' IHISNETA' I T-SYSTEM=' IHISNETB') 001001
THEN ·ERRNSG ERROR - DEMONSTRATION NOT VAllO 001002

ON THIS NETWORK SS·MSTPCooO· 001003
ELSE'SS-PCSPC354'); 001004

'" sysiEiUiS sUPPURi 001005
'5(';M001 001 $IF=«(T-SYSTEM='IHISNET2'1 T-SYSTEM='IHISNET1') :001021

• SECURHy
!seMOOt

SIGN OFF
!SCM001

001

001

(T-DEPT-'INF' &. T-DIVSN.·TOP')) i001022
THEN 'SS.MSTPC2LO' 1001023
ELSE ·ERRMSG ERROR - USER NOT AUTHORIZED FOR ,001024

..... SS=MSTPCOOO')' :001025

SPROG-PCSC306. SS"MSTPCOOO;

SR=S;

001026
001027
001060
001070

Figure 5. Screen definition for MSTPC011J0

7

12/09/82
12/09/8'

10/26/82
10/26/8'

10/14/82
10/14/82
10/14/82
10/14/82
10/14/82

10/14/82
10/14182
10/14/82

10/26/82
10/.6/8.
10/.6/8.
10/26/82
10/26/82

10/14/82
10/14/82
10/14/82·
10/14/82
12/09/82
10/26/82
10/26/82
12/09/82
10/'6/82
10/26/82
10/14/82
"10/26/82

Figure 6 is an example of the primary screen for the high-level testing facility
that is part of PCS. When the test option is turned on, this screen will be dis­
played after each application screen display, program execution, or Data Collec­
tion list (DCl) execution. It shows the command that was executed last (in this
case, a PCS-generated command resulting from the conditional logic on the
previous screen), the condition code from that command, and the current con­
tents of the execution stack, which in this case contains only one screen name.
From this screen, the developer has the option of inspecting and modifying the
symbol table or modifying the stack.

Figure 7 shows the stack modification screen. It allows the developer to change
the execution flow of the transaction from what was originally coded. Figure 8
is an illustration of the symbol table modification screen. Since all data in
PCS is passed through the symbol table, this is a very useful testing and de­
bugging tool. USing these test facilities, a developer can enter and inspect
test data and can execute new screens, programs, and DCl's before the trans­
action that they are part of has been completely developed.

Figure 9 shows the Technical Support menu screen that is displayed when we re­
turn to the application. Its display is a result of the selection made on the
screen of Figure 4. The light-pen will be used to select the "Security" option
on this screen.

Illustrated in Figure 10 is the Security Function Menu Screen displayed as a
result of the Security selection on the previous screen. Its screen definition
is shown in Figure 11. Notice that in the coding for the selection that will
be made on this screen, "Review Your User Profile", there are two $P commands
that will be"placed on the stack. They are the Data Collection Lists (DCl)
PCSPD303 and PCSPD309. They are illustrated in Figures 12 and 13.

The PCS Data Collection list is a very powerful processing facility. Its cap­
abilities fall between those of a PCS screen definition and a conventional pro­
gram. The two DCl's shown here are very simple examples. The first one, in
Figure 12, clears all of the listed variables out of the symbol table. This is
a default for any variable named in a DCL. Since no other value is assigned to
any of these variables in this DCl, they remain cleared. The second DCl, in
Figure 13, is shorter but illustrates an interesting feature of DCl's. The
first statement sets the variable "Fl" in the symbol table to the value "ENTR/
UPOPERID/SIGNONID". The second statement invokes program "$FN" to assign a
value to variable "FlCC" in the symbol table. In order for the DCl to complete,
$FN must assign a value to F1CC. This is a general feature of DCl's. The DCl
will continue to be re-executed until all data specified for collection by the
DCl has been collected.

Figure 14 shows the final screen of the transaction, a display of the terminal
user's security profile.

In all of the screen definitions and DCl's that made up this example, no data
base accesses were shown. However, it is very simple to issue a command from
either a screen definition or a DCl that will move data between the symbol table
and a data base. An example of such a command is "$DM=(GET=TESDATA)". In this
case, there would be an entry for "TESDATA" in the PCS Data Directory that maps
fields in the data base, possibly in multiple segments, onto variables in the
PCS symbol table.

8

SD43@@@TOP
DEBUG PRIMAI~Y OPTION MENU

SELECT OPTION __ a) 3

CJ"!

2
;3
4

STACK
SYMBOL
EXIT
END DEBUG

MANIPULAfE THE SYSTEM STACK.
MANIPULAn~ THE SYMBUL TABLE.

- EXECU1~ NEXT STACK ITEM.
- END DEBUG MODE (OR 1"1"31

USE OPTION 3 OR PROBE CONTINUE
TO EXECUTE THE NEXT STACK ITEM.

C")"'i1os1"REi:ENi'LY·'·
c;')EXECUTED COMMAND

{.EX %SET00()1

RETURN CIlDE
AFTER EXECUTION

0000

SYSTEM STACK
CMD OPERAND

$S MSTPC2L0 llASE

I1HSNET2 08/16/83 13:24 JOHN SMITH

DEBUG001 .. ••• •••.•• ••. .•.••.•• . .•.••• .••••• .• . ••• .•• .•••••••• CONTINUE
I@@@BOT

Figure 6. peS/ADS Debug screen

SD43@@@TOP
DEBUG STACK MENU

SELECT IlPTION __ a) 1

MODIFY
'" RETlJHN

- MODIFY STACK AS SHOWN.
HETUHN TO PRIMARY OPTION MENU.

ro ADD STACK ITEMS, ENTER THEM ANYWHERE IN THE
STACK (BLANK STACK ITEMS WILL BE IGNORED I.
TO DE~ETE STA~(ITEMS, BLANK (NULLS WILL NOT
WORK) n~E CMD FIELD.

SYSTEM SlACK
CMD W"ERAND

$S MSTPC21.0 BASE

DEBUG003 I
I@@@BOT

Figure 7. Stack modification screen

CJ'!
C,
.....

SI)43@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@i@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@~f"OP

SELECT OPTION
ENTER

2 ENfERX
3 DELETE
4 SCAN
5 Rf~TURN

SYMBOL. NAMf
SYMBOL VALUE

SYMBtJI" LEN
C,\SEI(EY O(:)~}

CASEUr'D·\ ()O"j

DOCSCMD 0()4
D{]CSOPER (J08
nOCS.s'CR 0()6

EI~I':hSG (:)O"j

1''"i;SSWOI'':D 0:20
PiHNUMi OO;;~

PA·j NUH? (-) () ~:>
F'ATNUri3 00i

DEBUG SYMBOE TABLE MENU
"""~) 4

ENTER NAHEn SYMBOL.
ENTEI": NAMEn SYMBOL (VALUE IN HEX).

- DELETE NAHED SYHBOL.
RETRIEVE SYHBOLS BEGINNING WITH NAMED SYHBOL.

- RETURN TO PI":IMARY OPTION MENU.
m==) PATNUM3
===)

VALUE
4040404040
40
lEX
%SET0001
00()000224C70
40
010101A6A6A6B2B2B2B2B2B2B2B2B2B2B2B2B2B2
404(J
4040404040
40

DEBtJG002
1@@@@0@@@@@@@@@@@@@(~0@@@BUT

Figure 8, Symbol table and modification screen

SD43@@~@@@@@@@@@@@@@@i@@@@@@@@@@@W@@@@@@@@(~@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"rop

tECHNICAL SUPPORT MASTER MENU

PROBE DESIRED ACTIONIS).

BROADCAST MESSAGE ..•..••••.. BRnc
DISPLAY A PCS SCREEN .••..••• CALL
ercs MASTER fERMINAL EUNC CEMY
REPRINT MESSAGES
DEBUG .. ,.,•. , ... ,. CORE
CICS FE TEST•.•....•. CSFE
SYSTEM KEYF~INTING ..•....... CSKP
SYSTEM STATUS INQUIRy•. CSMT
Cles SIGN-OFF•..•.... ' eSSE
lICS SIGN-ON ...•....•...... [SSN
CICS SEND WTO MESSAGE [WTO
DISPLAY OCT••. DCI
DATA DICTIONAl": SHUT DOWN ... DDSD
DAIA DICTIONAl": START UP DDSU
!)A"."A D:rC"flUNAR ."RANSAC:TleJN A DIeT"

111 J SNET·)

APPLY BATCH TO ONLINE•..• _ EPBU
EXTRA PARTITION fILE DEQUEUE •. EPDQ
DEBUG FILE OPTIONS •.........•• FILE
MIERAM CALL ••.••.•.•..•....•.• HIER
INITIATE LAB PROCESSING .•..... LBUP
OMEGAMON ..•.•••...•.....•..••. OM ON
STATUS Of ~ATCH UPDATES •...••. QBAT
QUERY STATUS OF LAB QUEUES QLAD
DISPLAY STATUS UE TERMINALS .•• STAT
ULD DATABASE ACCESS hETHODS •.. TDAM
UPDATE NEXT AVAILABLE PI. NUMBERS
DAtABASE UTILITY TRANSACTION .. UTIL
CICS STATISTICS EUNCTIUNS ...•. CSfT
PCS-ADS STATISTICS DISPLAy SDSP

08/16/83 13:25 J(jHN SMll"H

HST210 [HIS OVERVIEW ISECURITYI SIGN-Off
~@~~@@~@~@@@@@@@@@@@@@@@@@@@@@0@@@BUl

Figure 9, Technical Support function menu screen

SD43@@~@@TOP

USER PRrn=ILE SECURITY FUNCTION MENU

SELECT A FUNCTION FROM THE LIST BELOW.

e..~
c,
CO

IHISNET2

1"'[.';304

C.1ANGE ·fOI.JR PASSWORD

illI:\li[WYUORlTSIJ! l'IWFn,,:q

08/16/83 13:25 JOHN SMITH

t1ASTER SJhN""()FF
!~@~@@@@@@~@@@~@@@@@@@BO·r

Figure 10. .Security function menu screen

HEADER. REPLACE PCSPC304 000010
USER PROFILE SECURITY - FUNCTION MENU 000020

000030
000040
000050

"SELECT A FUNCTION FROM THE LIST BELOW. 000060
;; '" '" '" '" "'" '" "'::: '" "''' ::===="'''''''====== '" = = = '" '" '" "'====== '" '" '" '" '" ;;== ==:='" "';; '" '" '" "'''''''=== '" '" '" '" '" '" === ;;;==== 000070

OUTPUT H T-SYSTEM
SYSOTTM
SYSOPNAM
ERRMSG

000080
000090

ICHANGE YOUR PASSWORD 000100
000110

I. IREVIEW YOUR USER PROFILE] 000120

. >< ..

!MASTER

000130
000140
000150
000160
000170
000180
000190
000200
000210
000220

. > 000221

. > 000240
! SIGN-OFF 000"250

000861
000862
000880

INPUT H! $CMD01 004 001 T-OBFUNC=PSWO. $P=PCSP0303. $P=PCSPD307. $S"'PCSPC313.
T-STATUS=20:

000890
000900
000910

$AUTO

T-OBFUNC=GU. $P=PC$P0303. $P=PCSP0399 . .L­

I$PROG~=1l&.~=J2LI.oSrAI.US.;1O;:J
$R::M:
$R"Sj
$S=PCSPC3Q4 :

Figure 11. Screen definition for screen PCSPC304

000920
000930
000940
000950
000960

12/06/82

12/06/82
12/06/82

~'1
C,
W

DCL. REPLACE PCSP0303
50 CPOEPTA
50 CPSNAIIE
50 FS
50 FO
50 NEWSPNII
50 NEWSOFNII
50 OLDSOFNII
50 OLDSPNII
!SO $COFCNEW
50 SCOFCOLD
50 SUPYNEW
50 SUPVDLD
50 T-BRTHDT
50 T-COUNT
50 T-DDCM*
!SO T--OEPT1
50 T-DEPT2
50 T-O£PT3
50 T-NEWPSW
50 T-OLDPSW

-So T~ciPERID
50 T-OPSWRD
50 T-PAS$WD
50 T-AEASDN
50 T-SECNME
50 T-$PVNME
50 T-$RNNMA
SO T-$RNNMS
50 T-TITlE
50 T-UPPSWO
50 T-USERID
50 UPCSSNID
50 UPCSSNL
50 UPCSSNPS
50 UPBRTHMO
50 UPBRTHDA
50 UPBRTHYR
!SO UPCURSPV
50 UPOEPT"
50 UPOEPTB
50 UPOEPTC
50 UPEMNRUM
50 UPlUPOTN
SO UPLUPDTT
!SO UPOPERID
50 UPPSWDTE
50 UPRUPTO
SO UPSECOFC
50 UPSECLV
50 UP$NAME
50 UPSRNID
50 UPSRNIOB
SO UPTITLE
50 UPTRNQTE
50 UPTRNFLG
50 UPTRNSCN
50 USERNAME

Figure 12. Data Collection List PCSPD303

Del. REPLACE PCSP0309
10 F1 ENTRluPOPERIOISIGNONIO:
10 F iCC $PROG-$FN:

Fi~ure 13. Data Collection List PCSPD309

000010
000020
000030
000040
000050
OOOOBO
000070
OOOOBO
000090
000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230
000240
000250
000260
000270
000280
000290
000300
000310
000320
000330
000340
000350
0003&0
000370
000380
000390
000400
000410
000420
000430
000440
000450
000460
000470
000480
000490
000500
000510
000520
000530
000540
000550
000560
000570
000580

000010
000020
000030

IS

Sl)4;:I(~I!@i~(~l~(~li!l~@(~@@(e@@.(t@'@'(~@@'i~@@@@'@'@'@@@@@(~@@@@@@f~(~@@(~@@@@@@@(~@@@(~@@(q@@@@@@@@@@T[)P

USER PI{OFIl.E SECURITY -- DISPLAY

:====~=~===:==================================~=================================

USER: .JOlIN SM ITH
BIRTH DATE: 11 11 1911

EMPl.OYEE NUMBER: 999999999

SECURITY l.EVEL: SECURITY FUNCTION I
DEPAlHMENT: INFORMATION SYSTEMS

DIVISION: TECHNICAl. OPERATIONS
PllPUl.ATIfJN: NOT APPLICABLE

SUPERVISOR: ~)HN GERBER
SECURITY OFFICER: ,JOHN GERBER

PASSWllRD LAST CHANGED: 88/16/83
PROFIl.E LAST UPDATED: 08/16/83 13:16 BY DAl.E WILHEl.M

HnSNET2 88/16/83 13:26 .JllHN SMITH

PCS324 SECURITY MASTER SIGN-OFF
)@@@@@@@@@@@'@@@'@'@@@@@@@@~@@@I!@I!Y@@@@@@@@@@@'@@@@'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@BUl

Figure 14. User profile display screen

en
--1
C

In addition to the Screen Manager and the DCl Processor, there is one additional,
widely-used PCS manager that did not appear in the example; that is the Print
Manager. The PCS Print Manager uses Print Definitions that are very similar to
Screen Definitions in appearance, capability, and use. The difference between
them is that the Print Definitions have no input fields. Output can be routed
to individual printers or to groups of printers, and routing can be either fixed
or dynamic.

The purpose of this brief description has been to give you a feel for how PCS
works, and to give an idea of its power, flexibility, and ease of use. With
the information that I've presented, you could understand most straightforward
PCS transactions, and you could probably code a simple transaction. Compare
that with the level of knowledge and effort required to code a command-level
CICS transaction.

The Application Development Environment

The application development environment is not just the sum of the tools and
methodologies that make it up. A poorly matched set will yield disappointing
results. A well chosen set of complementary tools and methodologies will show
a synergistic effect, yielding exceptional results. For this reason, it is
difficult to evaluate the effectiveness of a part of the development environ­
ment, such as PCS/ADS, in isolation.

The development environment at The University of Iowa Hospitals is shown in
Figure 15. Combined with a development methodology that emphasizes proto­
typing and iterative development of large applications, the tools shown have
proven to be very satisfactory. However, since all of them, except the Data
Directory and Data Dictionary, which are more recent additions, came into use
in the same time frame, it is difficult to attribute particular increases in
productivity to individual tools.

Since PCS/ADS is so well suited to prototyping and iterative development,
would 1 ike to briefly comment about those two techniques. Prototyping involves
building a mock-up system for demonstration to the user prior to development of
the complete functional system. This allows the user to actually operate a
terminal to see what his final system will look like and what it will be like
to use. This is much more effective in eliciting comments, criticisms, and
suggestions than thirty pages of paper screen simulations. It helps to avoid
the "But that isn't what I wanted" types of problems that can occur at the end
of a project.

Iterative development is a natural follow-on to prototyping. It involves grad­
ually replacing the simulated data and flow controls of the prototype with real
data and application logic. PCS/ADS is ideally suited to these techniques. It
is nearly as easy to code PCS Screen and Print Definitions as it is to just lay
out an image of the screen on a piece of paper. Fields that will eventually be
used to display variables have constants coded into them instead, and what will
eventually be processing logic in the screen definition is simply coded as a
call to the next screen. These prototype screen definitions are simple enough

17

~ \
Analyst

The University of Iowa Hospitals and Clinics

App 1 i cat ion Development Envi ronment

AUTOMATIC
~ DIRECTORY) ; GENERATOR

ISPF/PDF

~I M/OC

PCS

DATA

SCREEN,

DICTION-

PRINT, I
& DCl

ARY

Pl/I CICS I I DEFINI-COMMAND
TIONS lANGUAGE

TRANSlATOR/

?
CiCs

PCS
DATA

DIRECT-I . I ORY PCS •
Application Development
Producti vity El ements:

IMS I 1. ISPF /PDF
DATA
BASES 2. DB/DC Data Dictionary

3. CICS Pl/I Command
language

4. PCS/ADS

5. IMS/DB

Figure 15. University of Iowa Hospitals Development Environment

18

c,1"!
~'- .• j

I-

so that they can be created or modified by user personnel. Once the prototype
screen definitions have been finalized, programs, DCl's, and data base accesses
can be added to complete the application. If the user is kept involved during
this process, misunderstandings and changes in requirements can be caught before
they become major problems.

While I have seen some claims that peS/ADS applications can be developed by user
personnel without the assistance of professional programmer/analysts, and I
understand that this is being done at some institutions, it has not been our
policy to do so at The University of Iowa Hospitals. There are two primary
reasons for this decision. First, our applications are developed around an
integrated Hospital Data Base. Its evolution and use must be centrally coor­
dinated and controlled. Second, while it may not be prohibitively difficult
to train user personnel to use PCS/ADS effectively, we have not felt that it
would be practical to train them to develop, document, and maintain complex inter­
related application systems.

The PCS application developers at The University of Iowa Hospitals have primary
skills of systems analysis and design, although they are also able to write any
CICS Pl/I Command language programs that are required. I feel that this emphasis
on analysis, design, and familiarity with the application area has been most
beneficial. Serious or fatal flaws in appl ications systems are usually in the
design of the system, rather than in its programming. I think that this em­
phasis on design, which is a direct result of the power and ease of use of PCS,
has enabled us to produce more usable and reliable systems than would have been
poss i b 1 e otherwi se.

Figure 16 provides a rough measure of the effectiveness of the applications
development environment, including PCS/ADS, currently in place at The Univer­
sity of Iowa Hospitals. It shows the number of major applications completed
each year since the Department's inception. Those completed to date are com­
prised of 350 PCS functions (equivalent to transaction types), with 2,000 dif­
ferent screen definitions. While the increased rate after 1978 is not entirely
due to the use of PCS/ADS, its use was certainly a factor.

Disadvantages of PCS/ADS

So far, I've discussed the advantages of using PCS/ADS. There are also some
disadvantages. The first is the additional processing overhead that is in­
curred, compared to CICS macro-level, assembler-coded transactions. Since we
also began using the IMS Data Base Manager and CICS command-level Pl/I coding
in the same time frame that we began using PCS, it is difficult to quantify
the amount of additional overhead that can be attributed to PCS. We have not
considered it to be prohibitive.

Two more problems are a direct result of the ease with which new application
systems can be created with PCS. Part of the ease of use of PCS is due .to the
high level at which it allows the application developer to work. He is isolated
from machine procedures and physical data structures. However, this feature
also makes it easy to develop transactions that suffer from poor performance

19

Number of
Appl ications

9

8

Completed 6

4

o I I I.
70 71 72 73 74 75 76 77 78 t79 80 81 82

Start of use
of PCS/ADS

Year

APPLICATION DEVELOPMENT RATE AT

UNIVERSITY OF IOWA HOSPITALS

Fi gure 16

20

Plann ed

83 84 85

~l"!
-.J
r-:,

and use excessive system resources. For this reason, and because of the rapid
rate at which new applications can be developed, it is particularly important
in a PCS environment to do an effective job of predicting and tracking system
resource usage.

There are three more "technical" problems that currently affect the use of
PCS/ADS. First, all PCS transactions run under a single CICS transaction name.
To CICS, pes is a single transaction. This prevents assigning differing prior­
ities to different PCS-based applications. Second, the PCS execution modules
are written in CICS macro-level Assembler language. Some new CICS facilities
can only be used with command level transactions. Finally, the PCS DCl pro­
cessor runs as a conversational transaction, causing data areas for DCl-based
transactions to tie up virtual storage for long periods of time. We have not
considered any of these problems to be prohibitive to our use of PCS. Indeed,
some of them are by-products of its overriding advantages. In addition, we are
optimistic that the technical problems cited above will be resolved.

Summary

PCS/ADS is a general purpose, CICS-based application generator that has been in
use at The University of Iowa Hospitals since 1978. It's primary advantages
are:

1.

2.

The development cycle is speeded up due to the minimal requirements
for conventional programming.

PCS/ADS facilitates system prototyping and an iterative development
process.

3. The reduction of conventional programming requirements allows the
systems developer to concentrate on understanding user requirements
and on system analysis and design.

4. The systems developer has the flexibility to use screen descriptions,
Data Collection lists, or conventional programs to implement PCS/ADS
transactions.

5. Users are kept involved by the iterative development process and
may also create or modify screen and print formats.

6. PCS/ADS includes a good, high-level test facility.

We have found these advantages to far outweigh its disadvantages. In conjunc­
tion with the other application-development tools and the development method­
ologies in use here, PCS/ADS has proven to be an effective and valuable tool.

21
~SHARE~

61

SHARE NO.

ADM

PROJECT

M583

SHARE SESSION REPORT

Me~~~fit~~a~gElication Development &

SESSION NO. SESSION TITLE

Steve Theby

SESSION CHAIRMAN

450

ATTENDANCE

MA

INST. CODE

McDonnell Douglas Automation PO Box 516 St. Louis, MO 63166 314-233-3994

SESSION CHAIRMAN'S COMPANY, ADDRESS, AND PHONE NUMBER

ABSTHACT

Consistently defined and applied application development and maintenance
measurements are essential to a program to improve the application development
and maintenance activity in an organization. Those measures are required:

1. To identify and promote practices which help-.
2. To identify and avoid practices which hurt.
3. To support rational estimating processes.
4. To portray productivity improvement trends.

These basic objectives of productivity measurement will be used to define a
measure called Function Points. Experience with this measure will be described.

2/D/LEJ/l

