SESSION REPORT

_ 6l M572 Experi i _%
SHARE NO. SESSION NO. Development Tool SESSION TITLE ATTENDANCE
i i UIH
Applicati velopment Management Elliot Chikofsky —_—an
~Application De PROJECT ? SESSION CHAIRMAN INST. CODE
University of Michigan, Industrial and Operations Eng., 231 W. Engineering Bldg.,

SESSION CHAIRMAN'S COMPANY, ADDRESS, and PHONE NUMBER

Ann Arbor, Michigan 48109 (313) 763-2238

Experience with PCS/ADS as an
Application Development Tool

John W. Gerber

Information Systems Department
The University of Iowa Hospitals and Clinics
Room €500, GH
Iowa City, Iowa 52242

Installation Code: UIH

(23]
:2 Application Development Management Project
M572
ABSTRACT

The desire for heightened productivity in
the application development process has
created an increased interest in applica-
tion generators. Patient Care System/
Application Development System (PCS/ADS)
is a general purpose, CICS-based applica-
tion generator that is used primarily in
the health care field. It has been in use
at The University of Iowa Hospitals since
1978. In conjunction with other applica-
tion development tools, it is responsible
for a substantial reduction in the amount
of time and effort required to develop
new applications.

SHRM-730-1/81

University of Iowa Hospitals Background

The University of Iowa Hospitals, with 1,100 beds, 1,000 physicians and dentists,
1,400 nursing personnel, and a support staff of 3,500, is the largest university-
owned, teaching hospital in the nation. As Iowa's tertiary-level health care
center, it served 40,000 inpatients and 335,000 outpatients last year. The
Information Systems Department was formed in 1970, and the first application,
Clinic Scheduling and Patient Registration, went into production in 1973. At
that time, the Hospitals' terminal network consisted of ten terminals and one
printer, connected to an IBM 360 Model 40 computer. Today, the Hospital Inform-
ation System has grown to include 13 major applications running on dual IBM

3081 computers, with a local network of 450 CRT terminals and 150 printers.

When application development began in 1970, it was based on the use of CICS
macro-level Assembler language and a structure of indexed and direct files.
By 1976, with new applications growing in complexity, increasing requirements
for modifications to be made to existing applications, and continuing demand
for new information to be added to the files, new development was becoming
increasingly more difficult and time consuming. A search was begun for tools
that would help speed up the development process and ease future maintenance
and modifications. One of the tools acquired in 1978 was PCS/ADS.

PCS/ADS Description

Patient Care System/Application Development System is a very flexible applica-
tion generator that runs as a CICS transaction. While it was developed at

Duke University Hospital and marketed by IBM primarily to health care insti-
tutions, it is actually a general-purpose development tool. The keys to its
operation are the "Symbol Table", used to pass data, and the "Execution Stack",
used to control execution of PCS commands and application programs. Each PCS
transaction has its own stack and symbol table. See Figure 1 for a diagram

of the PCS Execution Environment. The first detail to notice in the diagram

is that all data passage is through the symbol table. Data retrieved from the
data base by the PCS Data Manager is placed in the symbol table for use by the
application. Data to be passed between parts of an application, such as two
different screens, is placed into and retrieved from the symbol table. Data

in the symbol table is accessed only by name. Applications are not aware of
the structure of the data base or of the format of the data in the symbol table.
This provides a high degree of independence between applications and data and
helps to minimize the impact that a change to part of an application has on the
rest of the application.

The Execution Stack is a last-in/first-out stack that controls the sequence
of execution of the parts of an application. Applications can place the names
of screens to be displayed or modules to be executed on the stack. PCS will
then display the screen or execute the module whose name is currently on top
of the stack.






€35

TERMINALS
»

b. A

CICS

EXECUTION
STACK

prom——
——

PCS

<——p | MANAGER | 4—

PROGRAMS

T

SYMBOL
TABLE

|
I

«ﬁ

PCS
DATA
EDITOR

PCS DATA
MANAGER

alii

PCS
SCREEN,
PRINT,
& DCL
DEFIN-
ITIONS

PCS Execution Environment

Figure 1

|

IMS
DATA
BASES

+

The PCS Data Editor provides about 30 standard edit functions for use by appli-
cations. Data to be edited must be in the symbol table.

The PCS Data Manager provides access to VSAM files or IMS data bases without
requiring the application developer to be aware of the data structure in the
file or data base. Through the PCS Data Directory, it provides the ability to
map data from records or segments to the data lists required by the application.
As with the symbol table, the Data Manager helps to isolate applications from
physical data structures. Such isolation is extremely desirable when applica-
tions or data structures must be changed.

A short example of a PCS application will now be presented to illustrate some
typical PCS features. This application consists of five screens that collect
a user's sign-on information, present three levels of function menu-selection
screens, and finally display the user's profile information. The extensive
use of light-pen selectable menu lists is very typical of PCS applications.

Figure 2 shows the sign-on screen "DOCSSION" as it appears on the terminal.
Figure 3 shows the screen definition for the DOCSSION screen. There are two
parts to the screen definition. The top part defines the appearance of the
screen, including the locations and types of input and output fields, and any
Titeral text contained in it. The bottom part of the screen definition is the
processing section. This screen has three output fields that are scanned
horizontally and three input fields that are scanned vertically. The output
fields display the variables T-SYSTEM, which is equal to "IHISNET2", SYSDTTM,
which is "07/28/83 15:18", and ERRMSG, which is blank, from the symbol table.
The first two input fields move data to the symbol table variables SIGNONID
and PASSWORD. The third input field, SIGNOFF, is Tight-pen detectable and
causes the user to be signed off of PCS.

Figure 4 shows the next screen that is displayed after the user ID and password
have been successfully entered. It is a PCS menu screen that is part of our
own security system and is used only for testing. It allows the application
developer to emulate any user environment and perform any application function.
In the production environment, the security system uses PCS menu selection
screens to restrict each terminal operator to a set of functions that he re-
quires to do his job. In addition, his visibility is limited to patients within
his area of the Hospital. In this example, the terminal operator will use the
Tight-pen to select a menu of "Technical Support" functions.

Figure 5 shows the screen definition for the screen that appears in Figure 4.

It illustrates some of the processing power available in screen definitions.
Notice that for the selected "Technical Support" option, the values of several
variables in the symbol table are checked before the name of the next screen

to be displayed is placed on top of the stack. If the conditions are not sat-
isfied, this same screen (MSTPCP@P) is displayed again with an error message.
Further up in the definition, there is also a good example of multiple operations
being placed on the execution stack. If the terminal user selects "Department",
three program names and a screen name will be pushed into the stack, with the
last one, screen name MSTPC@PP, being the first one in and, therefore, the last to
be used. The result will be that programs PCSC316, PCSC317, and PCSC318 will be
executed in that order and then screen MSTPCPPP@ will be displayed.



SDABCRRRRPRERARLRRRALRRRRRARRARLRELLRLIEIRIVRNPERRRRRLERRLRRRPRRRRRRRRARPRRRRRRRRERTOR
IHIS - I0WA HOSFPITAL INFORMATION SYSTEM - SIGN ON

F'LEASE TYPE YOUR SECURITY ID AND FPASSWORD, THEN FRESS THE ENTER KEY.

iD: PCS screen as
displayed!

FASSWORD :

IHISNET2 e e 08/16/83 13:18

DOCSSION Figure 2. Screen DOCSSION as displayed SIGN-OFF
2CRRRRRRLRRRLRERLLRRRLRLRLRRELLRLLLRLPLERERLRLRLLLLRLRARALPARELRLPLRRALRRLRPERRPERRRAERERROT

HEADER. REPLACE[DOCSSION] 000010
“IHIS"- IOWA HOSPITAL INFORMATICN SYSTEM - SIGN ON 000020
000030

o 000040
c> 000050
M. "PLEASE TYPE YOUR SECURITY ID AND PASSWORD, THEN PRESS THE ENTER KEY. " 000060
EES==S =S =S=S=sS=SSZC===SSSESSESSSSSSSssSS=Z=SssE=sZssssssss==ss==s==========z==s= 000070
000080

000090

000100

@ 10:<,.in,.> 000110
l PCS Screen 00129 Screen

PASSWORD : < in > Definition 000130  Image

000140  Section
000150
000160
000170
000180
000190
e 000200
@ 000210
000220
..out. 000230
RIS QUL i Y Y G > 000240

@6 1 1SIGN-OFF 000250
output () T-SYSTEM > @ in 000260
SYSDTTM ; 000270
eRRMSG 3 Horizontal scan 000280 .
INPUT ®<S!GNONID i ical T 000290 rocessing
<PASSWORD Vertical scan 000300  Section
15cMDO1 001 3 $R=S; Light-pen 000310
detectable

Input fields <sss5>  COMMas
Output fields «<..... > periods

Figure 3. Screen definition for DOCSSION

Light-pen select

SMITH e

WREREERERERRERRRPRRRPRERRPERRRRRAREERERREEPRRRPREPPERERERRPEREEREREREE(

Screen MSTPC@@Q



L2
<
(%24

HEADER. REPLACE MSTPCOOOQ

MASTER MENU SELECTION

SELECT DESIRED ACTION(S).

IDISPLAY USER PROFILE
MODIFY USER PROFILE

IDEPARTMENT :

IDIVISION:

1POPULATION:

1CRT LOCN:

IDEPARTMENTAL
!DEMONSTRATION

ISECURITY

OUTPUT H DEP-NAME
DIV-NAME
POP -NAME
UNT -NAME
T-SYSTEM
SYSDTTM
SYSOPNAM
ERRMSG

*
* DISPLAY USER PROFILE INFORMATION

INPUT H !$CMDO1 001
= CHANGE DEPARTMENT
t$CMDO1 001

* CHANGE DIVISION
! $CMDO1 001

»*

CHANGE POPULATION

1$CMDO1 001
CHANGE UNIT

!$CMDO 1 [ele}]
DEPARTMENTAL

1$CMDO1 001

*

*

*

COMPUTER OPERATIONS
t$CMDO1 001

*

DEMONSTRATION
1$CMDO1 001

$PROG=PCSC321,$S=MSTPCO00;

! SIGN-OFF

$PROG=PCSC316,$PROG=PCSC317,$PROG=PCSC318,

$5=MSTPCO00;

$IF=(((T-SYSTEM='IHISNETA’| T
T-DEPT=‘INF’)

THEN ‘ERRMSG=*** ERROR - USER CAN NOT PERFORM TH

IS FUNCTION **x,$S=MSTPCO00O’

-SYSTEM=‘IHISNETB' )&

ELSE ‘$PROG=PCSC317,$PRUG=PCSC318,$S=MSTPCQOO"):

$PROG=PCSC318,$5=MSTPCO00;

$PROG=PCSC319,$5=MSTPCO00;

$IF=((T-SYSTEM="IHISNETA’| T-SYSTEM=’IHISNETB’)
THEN ‘$S=PCSPC357,$PROG=PCSC320"

ELSE ‘$PROG=PCSC320');

$IF=(((T-SYSTEM='IHISNET2’] T
(T-DEPT=/INF’ & T-DIVSN=’TOP
THEN ‘$S=MSTPC2WO’

-SYSTEM='THISNET1’) |
‘)

ELSE ‘ERRMSG=#=x* ERROR - USER NOT AUTHORIZED FOR
THIS FUNCTION **+,$S=MSTPCO00’);

$IF=((T-SYSTEM='IHISNETA’| T-SYSTEM='IHISNETB’)

THEN ‘ERRMSG=+** ERROR - DEMONSTRATION NOT VALID

ON THIS NETWORK *xx,$S=MSTPCO00’

ELSE “$S=PCSPC354°);

00094C
000950
000960
00096 1
000962
000963
000980
000981
000982
000983
000984
000985
001000
001001
001002
001003
001004

»

SYSTEMS SUPPORT
1$CMO0Y 001

$IF=(((T-SYSTEM='IHISNET2’| T

-SYSTEM=‘IHISNET1’) |

(T-DEPT='INF’ & T-DIVSN='TOP’))

THEN ‘$S=MSTPC2L0

ELSE ‘ERRMSG=+*#* ERROR - USER NOT AUTHORIZED FOR

IHIS FUNCTION *=*, $S5=MSTPCO00‘):

* 001005
1001021
1001022
‘001023
001024
001025

* SECURITY
1$CMDO 1 001 $PROG=PCSC306,$5=MSTPCO00;
* SIGN OFF
1$CMDO1 001 $R=S;
Figure 5. Screen definition for MSTPCPRQ

001026
001027
001060
001070

12/09/82
12/09/82

10/26/82
10/26/82

10/14/82
10/14/82
10/14/82
10/14/82
10/14/82

10/14/82
10/14/82
10/14/82

10/26/82
10/26/82
10/26/82
10/26/82
10/26/82

10/14/82
10/14/82
10/14/82
10/14/82
12/09/82
10/26/82
10/26/82
12/09/82
10/26/82
10/26/82
10/14/82

10/26/82

Figure 6 is an example of the primary screen for the high-level testing facility
that is part of PCS. When the test option is turned on, this screen will be dis-
played after each application screen display, program execution, or Data Collec-
tion List (DCL) execution. It shows the command that was executed last (in this
case, a PCS-generated command resulting from the conditional logic on the
previous screen), the condition code from that command, and the current con-
tents of the execution stack, which in this case contains only one screen name.
From this screen, the developer has the option of inspecting and modifying the
symbol table or modifying the stack.

Figure 7 shows the stack modification screen. It allows the developer to change
the execution flow of the transaction from what was originally coded. Figure 8
is an illustration of the symbol table modification screen. Since all data in
PCS is passed through the symbol table, this is a very useful testing and de-
bugging tool. Using these test facilities, a developer can enter and inspect
test data and can execute new screens, programs, and DCL's before the trans-
action that they are part of has been completely developed.

Figure 9 shows the Technical Support menu screen that is displayed when we re-

turn to the application. Its display is a result of the selection made on the

screen of Figure 4. The light-pen will be used to select the "Security" option
on this screen.

I1lustrated in Figure 10 is the Security Function Menu Screen displayed as a
result of the Security selection on the previous screen. Its screen definition
is shown in Figure 11. Notice that in the coding for the selection that will
be made on this screen, "Review Your User Profile", there are two $P commands
that will be placed on the stack. They are the Data Collection Lists (DCL)
PCSPD3@3 and PCSPD3@9. They are illustrated in Figures 12 and 13.

The PCS Data Collection List is a very powerful processing facility. Its cap-
abilities fall between those of a PCS screen definition and a conventional pro-
gram. The two DCL's shown here are very simple examples. The first one, in
Figure 12, clears all of the listed variables out of the symbol table. This is
a default for any variable named in a DCL. Since no other value is assigned to
any of these variables in this DCL, they remain cleared. The second DCL, in
Figure 13, is shorter but illustrates an interesting feature of DCL's. The
first statement sets the variable "F1" in the symbol table to the value "ENTR/
UPOPERID/SIGNONID". The second statement invokes program "$FN" to assign a
value to variable "F1CC" in the symbol table. In order for the DCL to complete,
$FN must assign a value to FICC. This is a general feature of DCL's. The DCL
will continue to be re-executed until all data specified for collection by the
DCL has been collected.

Figure 14 shows the final screen of the transaction, a display of the terminal
user's security profile.

In all of the screen definitions and DCL's that made up this example, no data
base accesses were shown. However, it is very simple to issue a command from
either a screen definition or a DCL that will move data between the symbol table
and a data base. An example of such a command is "$DM=(GET=TESDATA)". In this
case, there would be an entry for "TESDATA" in the PCS Data Directory that maps
fields in the data base, possibly in multiple segments, onto variables in the
PCS symbol table.



JTED COMMAND
X ZSETO004

LN MSTH

BaSE

13:24  JOHN SMITH -

OB/16/83

aaaaa CONTINUE
.Z'l?(’!é.’@@@(?5'(?!(i’l@@@@@(Ze‘@i?&"(é(?@@@@I’(’.’@("?i??(?(?@@L"?ﬁ‘@@(?@@@ﬁ?@[. OT

Figure 6. PCS/ADS Debug screen

wERirreRRRrEEE @igi212ei2

- DERUG STACK MENU -

= MODIFY STACK AS SHOWM.
= RETURN TO PRIMARY OFTION MENU.

TO ADD STACK ITEMS, ENTER THEM ANYWHERE

IN THE
M WILL BE IGNORED ).
STACK TTEMS, BLANK ¢ NULLS WILL NOT
© CHMD FIELD.

STACK € BLANK STACK 17
o
WORK

$8 MSTHC2LD

BaSE

Figure 7. Stack modification screen

PREEEE@ERREHEEOD RO OO0 00500 01 (3 (4 s 6
PR R ErER e e A et R e e R R PR RRRERERRRREPRHEI R R @

IERERRPRERREREREROT



PRPRRERERRPRERPERRRRERRRRERRRRERRERY TOF
e DERUG SYHEOL TABLE MENL - e

¢ VALUE TN HEX ).

SGINNING WITH NAMED §YMEDL .
RETURN T0 PRIMARY GBTION HENU.
FATNUMNS

Q10101 ALAGALRY
4040
4040404040

49

AERERRERRRERRERERERRARRER FpereeReeee

Figure 8. Symbol table and modification screen

PRRERERERRERRREROT

HpRERRRERRRERE IEERRRRERREE 2@ TOF

AFFLY BATCH TO ONLINE .. ... .
FARTITION FILE D

M CaLl ... . a
ELAk FROC YING oaaaaan
. OMON
QBAT
¢ STATUS QRLAR

nY STAI[ 3 STAT

"DéM

s W0
aaaa . DbCT

COSHUT DOWN ... lm\l)
! STaRT U
LONART TRANSACT

UTIL

OVERVIEW g
Lf’l"l"L"l"l"!"l"l"("L"l FRBEERERPEREERCREPRREERRERRPRERPEREEHIEBRECREEERRFFELREREERREREFEREROT

Figure 9. Technical Support function menu screen



HEADER. REPLACE PCSPC304 000010

USER PROFILE SECURITY - FUNCTION MENU 000020
000030
000040
000050
"SELECT A FUNCTION FROM THE LIST BELOW * 000060

A FUNCTION FROM

1CHANGE YOUR PASSWORD 000100
000110
[TREVIEW VOUR USER PROFILE] 000120
000130
000140
000150
000160
000170
000180
000190
e 000200
ey 000210
’ 000220
S > 000221
.> 000240
IMASTER 1SIGN-OFF 000250
OUTPUT H T-SYSTEM 00086 1 12/06/82
SYSDTTM 000862 12/06/82
SYSOPNAM 000880
ERRMSG 000890
INPUT H 1$CMDO1 004 001 T-DBFUNC=PSWD.$P=PCSP0303,$P=PCSPDSO7.$S=PCSPC313. 000900
T-STATUS=20; 000910
FUNC=GU, $P=PCSPD303, $P=PCSPD309, 000920
PCSC305, $5=PCSPC324 T-STATUS=10:1 000930
STGN-OFF $R=S; %ggg
ROT $AUTO $5=PCSPC304; 000960

..................... 12/06/82

08/16/783  13:25  JOHN SHMITH

THISNE

“CXA04 MASTER

.
weee

@i © kgt

Figure 10. Security function menu screen

Figure 11. Screen definition for screen PCSPC304



629

DCL. REPLAC
50

DoCcL.

E PCSPD303

CPOEPTA
CPSNAME

SCOFCNEW
SCOFCOLD
SUPVNEW
SUPVOLD
T-BRTHOT
T-COUNT
T-DOCNUM
T-DEPT1
T-DEPT2
T-DEPT3
T-NEWPSW
T-OLDPSW
T-OPERID
T-0PSWRD
T-PASSWD
T-REASON
T-SECNME
T-SPVNME
T-SRNNMA
T-SRNNMB
T-TITLE
T-UPPSWD
T-USERID
UPCSSNID
UPCSSNL
UPCSSNPS
UPBRTHMO
UPBRTHDA
UPBRTHYR
UPCURSPV
UPDEPTA
UPDEPTB
UPDEPTC
UPEMNRUM
UPLUPDTN
UPLUPDTT
UPOPERID
UPPSWDTE
UPRUPTQ
UPSECOFC
UPSECLV
UPSNAME
UPSRNID
UPSRNIDB
UPTITLE
UPTRNDTE
UPTRNFLG
UPTRNSCN
USERNAME

Figure 12. Data Collection List PCSPD3p3

REPLACE PCSPD309

10
10

F1
FicC

ENTR!UPOPERID | SIGNONID :
SPROG=$FN;

Figure 13. Data Collection List PCSPD309

000240

000270
000280
000290
000300
000310
000320
000330
000340
000350

000370
000380
000390

0004 10
000420
000430
000440
000450
000460
000470
000480
000490
000500
000510
000520
000530
000540
000550
000560
000570
000580

000010
000020
000030

15

BIRTH DAT

EMPLOYEE NUMBER :

SECURLTY LEVEL:
DEFARTMENT :
DIVISION:
FOFULATION:

Su
SECURITY (

[ CHANGE

© LAST UFDATED:

PRRRECRRRERERRRRPEERPRRREVRRRRRRPERR

Figure 14.

JOHN SMITH
1 11 1941
PIPPV9999

SECURLITY FUNCTION I
INFORMATION SYSTEMS
TECHNICAL OFERATIONS
NOT AFPLICARLE

JOHN GER
JOHN GERBER -

0B/16/83

DBANE/8E 1B 16 BY  DALE WILHELM ~—eee

O8/16/83%

JOHN SMITH oo

MA
PRREeRRRRRRR

STGN
CRERREEERERRLT

User profile display screen



17

In addition to the Screen Manager and the DCL Processor, there is one additional,
widely-used PCS manager that did not appear in the example; that is the Print
Manager. The PCS Print Manager uses Print Definitions that are very similar to
Screen Definitions in appearance, capability, and use. The difference between
them is that the Print Definitions have no input fields. Output can be routed
to individual printers or to groups of printers, and routing can be either fixed
or dynamic.

The purpose of this brief description has been to give you a feel for how PCS
works, and to give an idea of its power, flexibility, and ease of use. With
the information that I've presented, you could understand most straightforward
PCS transactions, and you could probably code a simple transaction. Compare
that with the level of knowledge and effort required to code a command-level
CICS transaction.

The Application Development Environment

The application development environment is not just the sum of the tools and
methodologies that make it up. A poorly matched set will yield disappointing
results. A well chosen set of complementary tools and methodologies will show
a synergistic effect, yielding exceptional results. For this reason, it is
difficult to evaluate the effectiveness of a part of the development environ-
ment, such as PCS/ADS, in isolation.

The development environment at The University of Iowa Hospitals is shown in
Figure 15. Combined with a development methodology that emphasizes proto-
typing and iterative development of large applications, the tools shown have
proven to be very satisfactory. However, since all of them, except the Data
Directory and Data Dictionary, which are more recent additions, came into use
in the same time frame, it is difficult to attribute particular increases in
productivity to individual tools.

Since PCS/ADS is so well suited to prototyping and iterative development, I
would Tike to briefly comment about those two techniques. Prototyping involves
building a mock-up system for demonstration to the user prior to development of
the complete functional system. This allows the user to actually operate a
terminal to see what his final system will look 1like and what it will be 1ike
to use. This is much more effective in eliciting comments, criticisms, and
suggestions than thirty pages of paper screen simulations. It helps to avoid
the "But that isn't what I wanted" types of problems that can occur at the end
of a project.

Iterative development is a natural follow-on to prototyping. It involves grad-
ually replacing the simulated data and flow controls of the prototype with real
data and application logic. PCS/ADS is ideally suited to these techniques. It
is nearly as easy to code PCS Screen and Print Definitions as it is to just lay
out an image of the screen on a piece of paper. Fields that will eventually be
used to display variables have constants coded into them instead, and what will
eventually be processing logic in the screen definition is simply coded as a
call to the next screen. These prototype screen definitions are simple enough

Analyst

The University of Iowa Hospitals and Clinics

ISPF/PDF

Application Development Environment

AUTOMATIC
DIRECTORY
GENERATOR

PL/T CICS
COMMAND
LANGUAGE
TRANSLATOR/
COMPILER

v

CICS

Figure 15.

]
LIBRARY ——— >

4.
5.

1.
2.
3.

Application Development
Productivity Elements:

ISPF/PDF
DB/DC Data Dictionary

CICS PL/I Command
Language

PCS/ADS
IMS/DB

University of Iowa Hospitals Development Environment

18



19

so that they can be created or modified by user personnel. Once the prototype
screen definitions have been finalized, programs, DCL's, and data base accesses
can be added to complete the application. If the user is kept involved during
this process, misunderstandings and changes in requirements can be caught before
they become major problems.

While I have seen some claims that PCS/ADS applications can be developed by user
personnel without the assistance of professional programmer/analysts, and I
understand that this is being done at some institutions, it has not been our
policy to do so at The University of Iowa Hospitals. There are two primary
reasons for this decision. First, our applications are developed around an
integrated Hospital Data Base. Its evolution and use must be centrally coor-
dinated and controlled. Second, while it may not be prohibitively difficult

to train user personnel to use PCS/ADS effectively, we have not felt that it
would be practical to train them to develop, document, and maintain complex inter-
related application systems.

The PCS application developers at The University of Iowa Hospitals have primary
skills of systems analysis and design, although they are also able to write any
CICS PL/I Command language programs that are required. 1 feel that this emphasis
on analysis, design, and familiarity with the application area has been most
beneficial. Serious or fatal flaws in applications systems are usually in the
design of the system, rather than in its programming. I think that this em-
phasis on design, which is a direct result of the power and ease of use of PCS,
has enabled us to produce more usable and reliable systems than would have been
possible otherwise.

Figure 16 provides a rough measure of the effectiveness of the applications
development environment, including PCS/ADS, currently in place at The Univer-
sity of Iowa Hospitals. It shows the number of major applications completed
each year since the Department's inception. Those completed to date are com-
prised of 350 PCS functions (equivalent to transaction types), with 2,000 dif-
ferent screen definitions. While the increased rate after 1978 is not entirely
due to the use of PCS/ADS, its use was certainly a factor.

Disadvantages of PCS/ADS

So far, I've discussed the advantages of using PCS/ADS. There are also some
disadvantages. The first is the additional processing overhead that is in-
curred, compared to CICS macro-level, assembler-coded transactions. Since we
also began using the IMS Data Base Manager and CICS command-level PL/I coding
in the same time frame that we began using PCS, it is difficult to quantify
the amount of additional overhead that can be attributed to PCS. We have not
considered it to be prohibitive.

Two more problems are a direct result of the ease with which new application
systems can be created with PCS. Part of the ease of use of PCS is due to the
high level at which it allows the application developer to work. He is isolated
from machine procedures and physical data structures. However, this feature
also makes it easy to develop transactions that suffer from poor performance

Number of
Applications
Completed

20

Planned

70 71 72 73 74 75 76 77 78*79 80 81 82 83 84 85

Year
Start of use
of PCS/ADS

APPLICATION DEVELOPMENT RATE AT
UNIVERSITY OF IOWA HOSPITALS
Figure 16



and use excessive system resources. For this reason, and because of the rapid
rate at which new applications can be developed, it is particularly important

in a PCS environment to do an effective job of predicting and tracking system

resource usage.

There are three more "technical" problems that currently affect the use of
PCS/ADS. First, all PCS transactions run under a single CICS transaction name.
To CICS, PCS is a single transaction. This prevents assigning differing prior-
ities to different PCS-based applications. Second, the PCS execution modules
are written in CICS macro-level Assembler language. Some new CICS facilities
can only be used with command level transactions. Finally, the PCS DCL pro-
cessor runs as a conversational transaction, causing data areas for DCL-based
transactions to tie up virtual storage for long periods of time. We have not
considered any of these problems to be prohibitive to our use of PCS. Indeed,
some of them are by-products of its overriding advantages. In addition, we are
optimistic that the technical problems cited above will be resolved.

Summary

PCS/ADS is a Qenera] purpose, CICS-based application generator that has been in
use at The University of Iowa Hospitals since 1978. It's primary advantages
are:

1. The development cycle is speeded up due to the minimal requirements
for conventional programming.

2. PCS/ADS facilitates system prototyping and an iterative development
process.

3.  The reduction of conventional programming requirements allows the
systems developer to concentrate on understanding user requirements
and on system analysis and design.

4. The systems developer has the flexibility to use screen descriptions,
Data Collection Lists, or conventional programs to implement PCS/ADS
transactions.

5. Users are kept involved by the iterative development process and
may also create or modify screen and print formats.

6. PCS/ADS includes a good, high-level test facility.
We have found these advantages to far outweigh its disadvantages. In conjunc-

tion with the other application-development tools and the development method-
ologies in use here, PCS/ADS has proven to be an effective and valuable tool.

21

EsHAREZ

SHARE SESSION REPORT
61 M583 Meﬁggﬁ%gﬁaégglication Development & 450
SHARE NO.  SESSION NO. SESSION TITLE ATTENDANCE
ADM - Steve Theby MA
PROJECT SESSION CHAIRMAN INST. CODE

McDonnell Douglas Automation PO Box 516 St. Louis, MO 63166 314-233-3994

SESSION CHAIRMAN'S COMPANY, ADDRESS, AND PHONE NUMBER

ABSTRACT

Consistently defined and applied application development and maintenance
measurements are essential to a program to improve the application development
and maintenance activity in an organization. .Those measures are required:

. To identify and promote practices which help.
. To identify and avoid practices which hurt.

. To support rational estimating processes.

To portray productivity improvement trends.

N

These basic objectives of productivity measurement will be used to define a
measure called Function Points. Experience with this measure will be described.

2/D/LEJ/1



