
~SHARE~

SHARE SESSION REPORT

61 C209 Series/l DDp at Watchtower

SHARE NO. SESSION NO. SESSION TITLE

Local Area Networks Barry Lay

PROJECT SESSION CHAIRMAN

24

ATTENDANCE

TY

INST. CODE

University of Toronto Computing Services, 255 Huron St., Toronto, Ontario,
Canada, (416) 978-3328

SESSION CHAIRMXN'S-COMPANY-;- ADDRESS~AND PHONE NUMBER

ABSTRACT

Use of the S/l as a front end text capture tool offers high function at low
cost. The problems of communications, word processing, and file management in a
distributed environment will be discussed. The high speed 370 channel interface
on the S/l is used as a communications tool for host data base file and
retrieval capabilities. Use of the 3101 as an interactive user friendly word
processing terminal on the Series/l will be presented and contracted with use of
the Personal Computer.

Distributed Processing is usually an important part of Data Processing. We at
Watchtower have found it necessary in our installation to make use of this

~aluable function. It is the evaluation of distributed editors and functions in
~ 370 host environment that is the subject of this presentation.
~

The Series/l as a front end text capture tool offers the capability of
off-loading many functions from the host system. On the Series/l resides an
editor. This editor is able to

4/V/ear/3

access local Series/l disk as well as supporting many terminal
users of that editor. The Series/l also has a communication
link to the host System/370 running VM. It is able to communi
cate with a data base residing there. The advantages of using
a distributed editor on the Series/l are (1) editors that nor
mally run on the 3270 type terminals would now no longer
require host cycles to do their work. (2) in the event that
the host system would be down users of the Series/l editor
could continue to work locally employing the Series/l disk.

In working towards the implementation of the Series/l dis
tributed editor, there were many different tasks that had to be
accomplished. The first of these to be discussed is communi
cations. In order for any intelligent device to be useful to a
host system it is necessary that this device communicate with
it. One of our problems in writing a host distributed Series/l
editor was that of file communications. Secondly, in addition
to communicating files or buffers between the two processors,
it is important to consider the security of the host data base
and how the access mechanism of data in the host would work.
Thirdly, there was the question of word processing. What type
of word processing would be used on the Series/I? Currently
there are several editors available for the Series/I, yet none
of them seemed to fit our needs or seemed to integrate into the
file communications structure that we needed.

Therefore, it was decided that we would write our own edi
tor for word processing. We chose to do our initial develop
ment using the IBM 3101, a TTY-type terminal of low cost. We
felt that if we could make this low cost terminal perform in a
Series/l environment then it would make the best use of our
available resources, since numerous 3101s had already been pur
chased. After spending many months of research, programming,
testing and prototyping, it is appropriate to present our find
ings, evaluations and conclusions about the Series/I, its use,
the 3101 editor and other distributed data processing possibli
ties.

The first topic of communications is the environment.
Where will my distributed processor be located? Which options
are available in my host? What cabling is already installed or
which is the most desirable to install if none are currently
available? What amount of through-put will there be on this
link? Will the users be interactive or batch? The answers to
these questions will aid the user in clearly seeing which sol
ution best fits his requirements.

Our Series/Is were within the same Computer Room as our
370 System. Therefore, we chose a channel attachment interface
from the Series/l to the host. On the series/l it was neces
sary to write a device driver for the channel attachment hard
ware. On the VM/370 host it was necessary to write within a CMS
machine a device controller and interrupt handler. The

Co)

W
W

Series/l appeared to the host to be managing many real
addresses, these real addresses being attached as virtual
addresses to the user written CMS controller.

What did the Series/l channel hardware and device driver
do? The Series/l device driver and hardware emulated a 32-dev
ice 3270 controller. What type of controller? A 3272? Or a
3274? Actually the answer is none at all. The console I/O sup
port of VM CP was not used for this interface. The Series/l to
host interface was a strictly defined Start I/O protocol which
supports READ, WRITE and ATTENTION only.

What happens within the Series/l when the host sends an
interrupt? The Series/l hardware transfers control to our
interrupt handler. It checks the device control block which is
set up by our application program to find the status of that
hardware address. If the device status is valid the I/O drivers
use the device control block to perform the I/O requested by
the host in behalf of the appropriate Series/l application.
When the I/O is complete the Series/l application program with
which the host is communicating is informed. It can now contin
ue as required.

What happens on the host when the Series/l generates an
interrupt? CP turns control of the interrupt over to the
interrupt handler in our CMS application program. It interro
gates the current CSW, channel status word, and determines the
address of the interrupting device as well as its interrupt
code. Using this information, the application control block is
searched to determine if this interrupt was appropriate.
Appropriate status information and address information reg?rd
ing any data are saved in the control block. The interrupt han
dler posts the CMS device controll er application informing it
that there is work to be done. The device controller searches
the control blocks and processes any outstanding work. This may
include the building of CCWs and the execution of Start l/Os.
When all work is done the controller waits on the interrupt
handler to signal it to begin again.

It is interesting to note that by the use of an interrupt
handler in conjunction with an application program and by the
careful use of control blocks in the form of status tables that
a multi-tasking environment within CMS can be simulated.

We have talked about how interrupts are handled in both
the host and Series/I. How, then, is a block of text sent from
one processor to another. The sending of a block of data is
driven by the Series/I. This is comparable to the way a 3277
terminal operator drives an application program. When that
operator hits ENTER, it signals the host application to read
data. The host application processes that data and writes the
appropriate reply back to the 3277. The Series/!, like the
3277, always does a WRITE to the host followed by a READ from

the host. To send a block of text the Series/I: I} generates
an attention to the host, the host responds by doing a READ,
requesting that the data on the Series/l be sent to it, 2} the
Series/l writes its data to the host, the host processes that
data and finishes the block transfer by writing its response to
the Series/I. Data transfers are fully interlocked. If the
Series/l were sending a file of many blocks to the host, it
could not write them to the host one after another. The host
must acknowledge each Series/l block by a WRITE. The protocol
expects every READ to be followed by a corresponding WRITE.

The next area of concern is data security and access man
agement. What are some of the objectives of a security and
access management system? What were our objectives? One is
that the host must protect its data base. It was felt inappro
priate to place the responsibility for protection in the
Series/I, a distributed user. Therefore all requests made by
the Series/l for data transfers need to be validated by a secu
rity m.echanism within the host itself. It was determined that
this mechanism should be as close to the file access mechanism
as possible. In our description so far a C~lS interrupt handler
and a device controller were mentioned. These also should not
validate requests from the Series/l for files as they are too
far removed from the actual data. Those programs that directly
access the data base are in the best position to evaluate any
user requests and are thus able to best protect the system's
integri ty.

Once a block of data or a request for data has been
received by the CMS device controller how is that file access
accomplished? Our file access mechanism has three parts, the
device controller, the security server and the file server,
which directly connects to our data base. The device control
ler sends a block or a request which it has received from the
Series/l to the security server by means of VMCF. That device
is marked as waiting for a reply. The W1CF message from the
controller will cause an INTERRUPT in the interrupt handler of
the secur i ty server who saves the VHCF request block. The secu
rity server application is posted that work is to be done. The
request block or data block contains security and function
information. This allows the security server to validate the
work it receives. Besides request validation, data may need to
be formatted or buffered to make it usable by the file server.
This is done in the secur i ty server. VMCF is used t.o send to
the file server validated blocks or requests. The security ser
ver marks the request as outstanding and continues with any
other work it has to do.

The file server is interrupted and eventually receives and
processes the security server request. The dat~ is read from or
written to the dat~ base according to the control information
supplied by the security server. When this is complete, a
reply by means of VMCF is made to the security server. The

w
w
!$a

security server again receives an external INTERRUPT, this time
from the file server. This reply from the file server is ana
lyzed to determine what was done and where the reply should go.
The reply is forwarded by means of VMCF to the device control
ler. The device controller is interrupted by the VMCF
response. When the response is processed an indication that the
operation is complete is sent from the device controller back
to the Series/I.

In addition to simply being able to access the information
in our host data base, it is necessary to keep those files
secure. How is this done? Our data base is divided into two
sections-- a directory and a data library. There is a third
portion called Groups and Users. Groups and Users is actually a
file that is used in conjunction with the directory to provide
data protection. The directory contains the publication and
unit names of all files in our data base. In addition to that,
such things as the authorization for READ/WRITE privileges,
READ ONLY privileges, the date of creation, the date of last
update, the publication status and block key information are
found in the directory.

The data library consists of logically linked blocks of
data. Each file is given a unique block key which identifies
it. Within the file there is also a relative key which main
tains the logical order of the file.

The directory which contains the authorization is checked
against the group and user file when a request is made to
access a data file. If the requesting user is a member of the
set of users with access privileges to the file then access is
given for that request. Many groups or users may have authori
zation to a file at a time, but only one may update it at any
time. Flexibility is provided by the use of groups which may
contain many users or even other groups. If a group were autho
rized to READ & WRITE a file then any user in that group or any
user in any group assigned to the authorized group could gain
access to that file. This allows users working together to
easily share data while controlling use of the data base as a
whole.

Word processing was done on the Series/I. This meant that
there would be a need for paging. Why is paging needed? Bas
ically because the Series/I is a S12K system. We intended to
support 32 users per Series/I. This left little work space for
each user in memory. In order to make efficient use of this
limited storage it was evident that a file paging system be
used.

With any paging system there are several questions that
need to be answered regarding page storage and free space man
agement. We chose to link pages of a file together using for-

ward and backward pointers. When a user reads a file it becomes
a working copy in his paging area. A directory entry fo~ that
user is made in the paging space for the copied file. This
entry is a known location to the editor such that when the copy
is referenced it need not be searched for but can be directly
accessed. As work progressed on our paging system we also were
writing a local file manager for Series/I disk and a printer
spooling routine. These tasks both required disk record man
agement which was very similar to that used by paging. There
fore it was decided that instead of having three systems doing
disk record management there would be one. Instead of dividing
the disk into three separate pools of records we used but one
big area shared by all. Each task (paging, spoolinq and local
data base) would need its own directory, but because directo
ries are treated like files this posed no real problem. This
concept saved much work and some valuable main storage.

How does paging work? Paging is a black box, meaning that
the internals of paging are not known to anyone of the appli
cation systems that use it. The editor knows about only one
line at· a time, the current line. If the editor needs to move
forward in the file it makes a request to paging for the
address of the next line. By requesting previous and next
lines from paging the editor can perform all its functions.
Because of this concept only paging knows when and where to
page the various pages. At sign-on each user is given a fixed
number of pages which become his private pool. Paging manipu
lates the text of the file currently being edited by the user
to and from these private pools.

When a file is read, that user has an exclusive copy of
that file. No one else can access that data. Free space is
treated as a file, and yet free space is different in that all
users need to access it at any time. In order to prevent the
free space file's chain of forward and backward pointers from
being broken only one user at a time may use it. For the dura
tion of the critical breaking and relinking of chains the
requesting user enqueues the resource, quickly performs his
operation and then releases the chain for others to use.

In addition to free space, the problem of how to protect
chains from being broken with low overhead was considered. It
is possible to specify a link order in which it is impossible
for the chains to be inadvertently broken. Yet we found that
this resulted in large amounts of overhead. By writing a
RESTORE program we were able to cut overhead and improve
response times. The RESTORE program, by tracing pointers in
both directions, is able to recreate all files completely. The
only exception is when the program is caught just at the point
where it had broken a chain. That file would lose the temporar
ily free page, but the rest of the file would be intact.

w
~
t.r/

An area of concern in our Series/l word processing was
screen management. This was made especially noticeable by our
goal of using the 3101 terminal. Output processing has to take
into consideration that at 9600 bps (bits pre second) it takes
two seconds to repaint'the 1920 character screen of the 3101-
This means that when the user does real time interactive
scrolling it could take two seconds to display the results if
each line were individually scrolled. This user interface
restriction is not acceptable. Scrolling is the worst case in
terms of output processing because it requires the most data to
be displayed in the shortest period of time. What could be
done to correct or circumvent this problem?

\~at we determined was that by using leaps, small vertical
windows and some other tools, many of the problems inherent in
the 3101 could be circumvented. If the user was not to scroll
one line at a time but do leaps of a quarter page, a half-page
or any other user specifiable amount, this would mean that the
scrolling or repainting of the screen could be limited in its
occurrences. By dividing the screen vertically in half or in
quarters, the amount of time that it would take to repaint the
text in any given portion of that screen would also likewise be
reduced. By presenting only a part of the window during con
secutive scrolls the user can see enough of the result of his
operation to make it useful and yet reduce the time required to
do each display. \~en the last scroll in a consecutive scroll
ing operation has been processed the entire screen is painted
showing the final resul ts. By optimizing output using erase
end of line and erase end of screen it is possible to improve
the responsiveness of the presentation to the user.

Another output problem cent.ers "round the limited high
lighting capabilities of a 3101 in Chi1racter Hode. How do you
show defined blocks for MOVES, COPIES or DELETES when there is
neither high or low intensity available in the hardw~re? We
found that by temporarily translClting all text, to upper case
for defined blocks the user is given an adequate indicCltion of
the area with which he is working.

One of the requirements of state-of-the-art word process
ors today is that of interactive character processing.
3270-type terminals are not interactive as they require that
ENTER be hit in order to transmit a character or block of char
acters to the processor. Characters on the Series/l are cap
tured as they occur. These keystrokes are buffered into a user
input area from which the editor retrieves them. The editor
can react to each keystroke as it occurs displaying the results
to the user.

All of the editor modules (REMOTE READ and WRITE, LOCAL
READ and WRITE, PAGING, PRINT, SCREEN MANAGE~IENT and the EDITOR
itself) were designed as black boxes. Each was defined as an

interface to the other. Thus if the internals of any module
were changed, the interface and operation of the other modules
was not affected.

As we neared the completion of our 3101 Series/l distrib
uted word processor, it became evident that other options were
available. In comparing the 3101 against the IBM Personal Com
puter (PC) as an intelligent terminal, the restriction of a
9600 bps refresh rate and the limited highlighting options for
the 3101 screen made it less desirable. The 3101 hardware
character generator also limited the character set available
for user display.

The PC, on the other hand, had fast access to the screen
with memory mapped screen display. The many highlighting
options of the PC terminal made its presentation of text to the
user more friendly. Not only could defined blocks be clearly
presented, but even such things as underline, blinking, reverse
video, etc could be used to help make clear to the user exactly
what he is doing. A PC with a graphics attachment and color
display monitor could also be programmed to display soft char
,acters in graphic mode. Given enough time font styles such as
bold and italic could be shown on the PC.

\~at were the advantages of the 3101 terminal? At the
time we began our project we had a relatively large number of
these 3101 terminals. To write a distributed editor for them
would make good use of currently existing resources. On the
other hand, we at that time had no PCs. To buy PCs and write
an editor for a distributed environment would mean a large
investment.

The PC processor can also be compared to the Series/I.
The Series/l is very good at easily controlling many terminals
and devices. This is due in part to its multi-tasking supervi
sor as well as its four-level hardware interrupt architecture.
The Series/l can access large amounts of disk storage. On the
other hand the PC gives each user his own processor and main
memory equal to that of a Series/I. On the PC this meant that
paging for word processing could be simple. There is also no
contention for shared resources within the PC processor since
each user is self-sufficient. Because of this we are able to
use high level li1nguages such as PASCAL, C or PL/l on the PC.
On the Series/I, ASSEMBLER language was needed to write reen
trant cross partition code. These considerations provide a
three to one increase in programmer productivity on the PC.

In addition to channel attach, BISYNC, SDLC and ASYNC com
munications were used. PCs connected to Series/l with 5250 twi
nax or Ethernet coax for high speed data transfer was also
considered. It is hard to compare these different communi
cation options to one another. Rather it is more important to
know what can and can not be done with eClch. With this knowl-

'" ~
Q;)

edge the right communications can be sel ect.ed to meet organiza
tional needs.

BISYNC and SDLC are good for long distance communications.
Using modems, communications to anywhere con be achieved. Addi
tionally, the BISYNCH and SDLC cable is relatively small in
size, meaning that it can easily be run within a building with
out much trouble. On the other hand, the remote communication
rate of these t lO methods is slow, usual ly somewhere in the
area of 9600 bps.

Twinax from the Series/I using 5250 emulation on the PC is
good in that it gives us a high-speed 500K bps interface. This
cabling too is small, allowing it to be strung easily through
out our buildings. On the other hand, it is a local connect,
meaning that the maximum distance from the Series/l to a PC is
less than 5,000 feet.

The ASYNC connection between the PC and the Series/I, the
PC and the host and the 3101 and t.he Series/I allows for long
distance communications with the use of modems. Since the cabJ
ing is quad-wire, it is convenient to usp. Often quad-wire is
found already in buildings for its telephone system. Yet the
9600 bps communication rate makes interactive processing diffi
cult if not impossible.

The 370 channel interface to the Series/l allowed us a
super-fast l600k bps interface for high-speed data transfers
between our host data base and a distributed Series/I process
or. If the distributed intelligent terminal were not local or
if it were not capable of a host channel interface, such as is
the case of a PC workstation, that device \voulc1 need some oth0r
processor or interface to gain high speed access to a 370 host.

In summ<1ry, we found that the Series/I is an excellent
smart_ device controller and protocol converter. The PC on the
other hand functions well <1S a distributed intelligent terminal
connected to <1 controller such as the Series/I.

vlhat, then I is our current strategy? \.oJe intend to use PCs
as a multi-function workstation which can perform pass-through
emulations of 3270, 5250 and 4978 terminals, as well as dis
tributed host functions. The Series/l can be used as a virtual
PC diskette, network controller and a dpvice controller for OEM
devices.

As the data processing industry changes, user expectations
and requirements change. In order to meet such needs data pro
cessing must be able to make use of those tools that become
available.

)

SESSION REPORT l§SHARE=
--=

61 C307 .Managing Personal Computers in the Corp. Env. 600
SHARE NO, SESSION NO. SESSION TITLE ATTENDANCE

Integrated Personal_. C;omputer C. Wrandle Barth CSR
PROJECT SESSION CHAIRMAN INST.COOE

Computer Sciences Corp .• 11700 Montqomerv Rd., Beltsville. MD 20705
SESSION CHAIRMAN'S COMPANY. ADDRESS. and PHONE NUMBER

MANAGING PERSONAL COMPUTERS
IN THE CORPORATE ENVIRONMENT

John Gosden and Joy Strasser

The Equitable Life Assurance Society of the United States
1285 Avenue of the Americas

New York, N.Y. 10019

Installation Code: ELA

Integrated Personal Computers Project

Session Number C307

ABSTRACT

As the use of Personal Computers continues to expand in the corporate
environment, proper management of them involves maintaining a good balance
between encouragement and control.

Personal Computer Growth

In only a few years, the use of personal computers in the office has grown
very rapidly. The growth is fueled by a number of factors: general consumer
expectation, computer-minded staff, decreasing cost and increasing capacity of
personal computers, availability of good software and, of course, the
nationwide advertising and enthusiastic articles extolling the wonders of
personal computers for the office.

A major factor behind the growth of personal computers for both office and
home is consumer expectation of faster and more useful services. The message
from consumers is "I want It Now". Marketers have responded with cash
machines and extended business hours, 800 phone numbers and shop-at-home
services. Computer services that have been marketed for the home computers
include: electronic mail, stock quotations and airline flight information;
while cable TV supplies the local weather, community news and first-run movies.

Employees bring their expectations of faster and easier to use service to the
office. While most corporations have the:r major business systems
computerized and many of them have word pr~:essing to support the general
office, they lack systems to meet rapid:y g:;-:Jwing management information
needs. When managers find they cannot get the information they need from the
data processing department in the timeframe they need it, they are motivated
to buy personal computer systems of thei::- :J"n to meet these needs.

SHR!,- 7 30-1 IS:'

