
~
00
C

FILE. ItSG ASSEI1BLE A VlVSP CONVERSATIONAL ItONlTOR SYSTE"

*
.. Co •• 'ere 1t it's. connection co.plete 1nterrupt (IPTYPE = X'OZ')
•
CONIICOI'IP EQU

•
01
8R

* CONCOtIP,X'40'
R14

Post the CONCOIIP ECB
AND RETmN

* Th1s Is our conRect ,e"cliR, exit. It sllou14 .ever H driveR.
* If it 1s, we'll just ignore it and return.

HSGOlll0
HSG01120
HSS01130
HSGOll40
HSG01150
HSSOll60
1tSG01l70
HSGOll80
HSGOll90

* , HSGOl200
CONPEND EQU "SG01210

BR RI4 "SG01220
EJECT 1tSG01230

********* *********.***** ****** ttSG01240
* HSGOl250

E QUA T E Sand CON S TAN T S * HSGOl260
* * HSGOl270 ··************ ••••••••••••. 5)1************ •••••••••• 11 •••••••••••••••••••• ttSG01280

SPACE 2 1tSG01290
OS 00 HSGO 1300

SETHSG DC CLa'CP' Paraae'ter list to tell CP we "SG01310
DC CLa'SET' waat our aessage via lUCY ttsG01320
DC Cl8'HSS' HSG01330·
DC eL8'IUCY' tlSGOl340

. DC 8X'FF' HSSOl3S0
SeTCH DC eLa'CP' Parzu.eter list to tell CP w. HSG01360

ot eLa'SET' waRt our a.asage •• t back ttSG01370
'DC Cl8'HS6' to "ON'. t1SGOl380
DC ela'ON' 115601390
DC eX'FF' 1tSG01400

IUCVPLST DC "/tOX'OO' Used 'lor tlte lUCY para •• ter list "SG01410
I1SGID OS F Holds the lUCY aesse,. id HSG01420
tlSGCU.SS .os f Holds the lUCY .essag. -class HSG01430
STARHSG DC CLS '*HSG , The naa. of the lUCY Hessag. Service 115601440
SAM DC CLa'SAIt' Na •• vhicll CHS will know us by HSG01450
CONCOttP DC F"O' Con"ecti,. Co.plete EC8 11$601460
t1SGIN DC F'O' Hessage It.as arrived ECB f1SG01470
PATHID DC H-O' Hold. the lUCY path id 1tSG01480
BUfERLEH DC H'140' Says our buffer "Ill be 140 cllars H5G01490
tlSGAREA DC CUftO' tlessa,e butfer are. 11$&01500
DISA8LE DC X'OO' Byte to disable us for interrupts ttSG01510

RESEQU HSG01520
tu:aN 1tSG01530
COPY IPARHl HSG01540
END HSG01550

SESSION REPORT ~
'iSHARE!: -----.:

61 B638 CMS ARCHITECTURE AND INTERACTIVE COMPUTING _-=30=0 ___ _
SHAREND. SESSION NO. SESSION TITLE ATTENDANCE

CMS LARRY GRAZIOSE . ..lWL __
PROJECT SESSION CHAIRMAN INIY. COOE

BANK OF AMERICA, 1455 Market Street, San Francisco, CA 94103 (415) 622-1881

SESSION CHAIRMAN'S COMPANY. ADDRESS PHONE NUMBER

CMS ARCHITECTURE AND INTERACTIVE COMPUTING

Charles Daney
Senior Scientist
Tymshare, Inc.

20705 Valley Green Drive
Cupertino, California

Installation Code: TYM

August 22, 1983
CMS Project

Session B638

Copyright Charles Daney, 1983, All rights reserved,

Permission is hereby granted to SHARE, Inc, and its members to reproduce this
paper in whole or in part solely for internal distribution within member's
organizations, provided the copyright notice printed above is set forth in full
on the title page of each item reproduced.

This paper contains the personal views of the author and not necessarily those
of Tymshare, Inc.

1/c/pal/1

SHRM-730-1/S1

N
00

1. INTRODUCTION.

We shape our buildings:
thereafter they shape us.

Winston Churchill

Of all forms of visible otherworldliness,
it seems to me, the Gothic is at once

the most logical and the most beautiful.
It reaches up magnificently -

and a good half of it is palpably useless.

H. L. Mencken

It has become common to talk about architecture in connection
with computer software. We ought to think about it and consider
why. One reason, I believe, is that traditionally architecture
has dealt with large-scale forms and relationships, and with
multi-level structures that depend upon other similarly complex
structures. And so it is with large software systems. Further,
just like major public buildings, our software systems and the
underlying hardware design tend to be with us for long periods of
time. Finally, just as our architectural environment shapes the
way we work and play, the way we interact with others, even the
way we think, so also do the operating systems and large
application programs that we use to animate our computer
technology. Architecture has great power over our lives.

My purpose here is to talk about the architecture of CMS: what's
good about it, what's bad about it, and in what directions it
may, or should, be heading. At times I will be speaking about
mere details and features, but always keep in mind that these are
usually influenced strongly by the overall structure.

There probably hasn't been any time since CMS was conceived in
1964 that people who use CMS a lot or are responsible for its
care and feeding haven't been paying attention to details in the
architecture of CMS. But there are recognizable milestones in the
development of CMS, such as the announcement in 1972 of VM/370.
In more modern times, however, I think the most significant
milestone was the announcement of the so-called BSEPP (Basic
Systems Extension Program Product) version of CMS in 1979. That
was the first time that IBM added major new function which
clearly responded to explicit requests from the user community,
and that was the first time that IBM made it clear that VM/CMS
was a "strategic· product. At the same time, the 4300 series of
processors was announced. The compatibility of VM/CMS and the
4300 series has contributed to the great success of both since
then.

It did not take long before the leaders of the VM Group of Share

3

recognized that IBM intended to devote substantial resources to
the development and enhancement of VM/CMS. They realized that a
significant effort would be required to inform IBM of the user
community's needs for VM/CMS. A task force was formed in the fall
of 1979 to undertake this effort, and a year later it delivered
its final report. [1] I do not intend to summarize the
conclusions of that report, though they are still very relevant
and IBM has hardly begun to address most of them. But I will
inevitably repeat many of those conclusions in delivering my own
opinions.

One of the appendices in the final report of the task force set
out some proposals for the restructuring of CMS. It seemed to me
and several others in the CMS project that there was a lot more
that could be said in that area. So we decided in early 1981,
with a naivete that is almost touching, to undertake the quixotic
mission of writing a white paper on CMS restructuring. This we
delivered in 1982. [2] It seemed an appropriate excuse for a
session, and that, it would seem, is why I am here today. I want
to acknowledge the collaboration of my co-conspirators in this
endeavor: Pat Ryall and L. rry Graziose. However, although many of
the conclusions I shall mention today were formed in that effort,
I will also be going quite a bit beyond it. Also, of course,
these opinions are my own, and cannot in any way be blamed on Pat
or Larry, or my installation, or anyone else.

The plan, then, is first to survey a few of the factors that have
made CMS successful and popular. Then I will go into a much
longer discussion of what I see as some of the most noteworthy
deficiencies of CMS at present. I will conclude by looking at
architectures for interactive computing in general, and possible
implications for CMS.

•

N
00
N

2. STRENGTHS OF CMS.

No architecture is so haughty
as that which is simple.

John Ruskin

Lovely promise and quick ruin
are seen nowhere better than in Gothic architecture.

George Santayana

I'm going to spend some time going over what I consider to be the
strengths of CMS, because I want to put on record those
characteristics of CMS which are meritorious and should be
preserved in extension and successor interactive systems. Many
of these observations can be found in the CMS Task Force report
itself.

The very most important strength, to my mind, of CMS is the
excellence of its system metaphor or conceptual model for
programmers. The notion of the "methaphor" embodied in an
interactive computer system has been popularized by recent
personal workstations like Xerox's Star and Apple's Lisa. The
metaphor is simply the concept or idea which the system's
designers intended for the system's users to employ in organizing
their knowledge of the system. In the case of Lisa, for example,
that metaphor is the office desktop.

For CMS the metaphor is a virtual machine. CMS commands are
conceived and named appropriately for dealing with concepts
pertaining to real (mainframe) computer systems: disks, tapes,
readers, printers, computer files, and so forth. In this context,
the command names and parameters are very mnemonic; they are very
easily learned and understood by programmers. Software
developers have access to essentially all the facilities of a
real compute~. ConsequentlYt it,is no surprise that CMS has been
so popular with computer proressionals.

At the same time, it comes as no surprise that CMS is difficult
to learn and use by people who are not familiar with computers.
Still, I stress the existence of the metaphor as a strength,
because there are any number of other interactive systems which
do not embrace a metaphor of any kind.

Despite some notable lapses, CMS command syntax is fairly simple
and consistent. File names and parameters tend to be specified in
the same way to all commands. Defaults tend to work as expected.
However, this consistency is almost an accident, since there are
no system facilities that promote it.

Another strength of CMS is its relative simplicity of

5

implementation. This is a consequence of several factors, such
as the fact that CMS is a single-user, single-task system, that
many functions essential in a complete interactive system (like
paging, spooling, physical I/O, etc) are handled elsewhere in the
system hardware and software, and, lastly, that, until recently,
CMS has flourished under a regime of benign neglect by the
vendor.

From this simplicity of implementation flow several other
agreeable characteristics. CMS is generally efficient in its use
of resources and hence provides good response time. (There are
exceptions, of course, and this generalization is threatened by
various poorly designed recent "enhancements"). Because of its
simplicity, it is easy for system programmers to learn and
understand its internals. This in turn allows for relative ease
of debugging, repair, modification, and enhancement. And, in
spite of the haphazard, even chaotic, fashion in which CMS has
evolved, its basic simplicity has preserved whatever decent level
of robustness and reliability CMS still possesses.

The CMS file system deserves special mention for its qualities of
simplicity, effectiveness, reliability, and device independence.
These characteristics are shared by both the original CMS file
system and the newer "EDF" file system introduced a few years
ago. In fact, the EDF file system merits substantial praise for
perserving compatibility with, and the best characteristics of,
the old file system while introducing more functionality and
be.tter performance. Incidentally, my own 191 disk is still in the
old format. I haven't lost data due to a file system error in
many years, and EDF was far from perfect for awhile.

The CMS file system is simple and easy to use both for
application programmers and end users. One never has to even
think about different device types. Things like BUFNO, TRK,
ABSTR, RLSE, CONTIG, MXIG, ALX, SPLIT, BFTEK, OPTCD, DSORG,
EROPT, NCP, etc. never arise to trouble the mind. Available space
management is automatic.

As a consequence of both its simplicity and its computer-oriented
metaphor, CMS is flexible, modifiable, tailorable, and extensible
- by anyone from casual users to systems programmers, although in
different degree. Old commands can be given synonyms or entirely
replaced. New commands can be added by anyone who can write a
program or an Exec.

The command executors, of which there are now three, contribute
heavily to this tailorability of CMS. They permit both slight
modification of the syntax and semantics of existing commands to
suit individual preferences as well as the construction of
powerful and complex application systems. Most importantly, the
availability of a relatively good executor has contributed
substantially to the popularity of a building-block approach to
application development under CMS, through the ease of combining
numerous commands and tools into integrated applications. The

Nt
00
~

development of the tools themselves was stimulated in the first
place by the programmer-friendly nature of CMS.

In summary, my advice to designers and developers working on
extensions to CMS would be as follows:

(1) Keep it SIMPLE.

(2) Keep it FAST.

(3) Keep it CONSISTENT.

(4) Keep it FLEXIBLE.

(5) Keep it NATIVE.

6

3. WEAKNESSES OF CMS.

The genius of architecture seems to have shed
its maledictions over this land.

Thomas Jefferson

If the design of a building be originally bad,
the only virtue it can ever possess

will be signs of antiquity.

John Ruskin

Clearly, CMS presents different faces to different groups of
users. Another way of looking at this is in terms of the diverse
"environments" in which various classes of users do their work.
For each type of user there is a different environment. The
first class of users is what programmers think of as "end users";
for them the environment may be PROFS, or SQL, or word processing
facilities. But a second type of end user is the professional
programmer himself. His environment consists of the original,
native CMS commands and utilities. A third type of "end user",
albeit non-human, is the executing application program. Another
way to consider the environment of this last "user" is as· that
faced by the professional programmer who must develop
applications to execute in CMS.

My purpose is to illustrate a number of the deficiencies and
weaknesses in CMS in order to motivate my enumeration of some of
the ways I think that CMS must be extended or redesigned. These
deficiencies turn out to be very different when viewed from the
perspectives of different classes of users, i. e. in terms of the
different environments.

It will turn out that many, if not most, of the strengths of CMS
are also weaknesses, at least when viewed from different
perspectives. This is another reason I want to insist on
considering the different environments separately.

This is my justification for lumping together all end users in
one category. These considerations even apply to professional
programmers, though perhaps with less force, because many of the
deficiencies in the end user environment have to do with one of
CMS's greatest strengths: its consistent virtual machine
metaphor. As we all know, professional programmers can put up
with more cryptic computerese than normal people. Yet I would
contend that many of these problems bedevil even the
professionals - perhaps unbeknownst to them.

To begin with, there is the command language. It is better, more
English-like, more mnemonic than that of other interactive
systems, perhaps. But still it has its warts. There are multiple

N
00

""'"

8

commands to do essentially the same thing, such as sending a
"spool" file to another user (assuming you even know what a spool
file is). And different commands have different options to
accomplish the same result - the famous TERM/TYPE dilemma.
Further, for the non-computer-oriented user, many commands are
not the least bit mnemonic.

Although part of the problem with the command language is the
underlying metaphor, I am persuaded that the larger part is with
the nature of command languages in general. Command languages are
specialized languages that depart markedly from the idioms of
everyday speech. Nor would the availability of a command
language indistinguishable from natural language be fully
satisfactory. Natural language is too verbose and imprecise, even
for non-computer-oriented users. Worst of all, it requires a lot
of typing.

The traditional alternative to command languages is menus. Yet
both computer professionals and everyone else quickly tire of
conventional menus. The problem, I think, is not with menus per
se, but rather with current display technology. After all, when
you have just 24 lines of 80 characters to deal with, you have to
dedicate most or all of a screen to the menu instead of the data,
with the consequence that you may have to negotiate several
levels of menus in order to accomplish some desired effect, and
all the while your text or graphics or data or whatever is really
important to you can't be seen. By the time you finally see it
again, you've forgotten what you changed. Your train of thought
is certainly broken.

The deficiency, then, which I am trying to describe here is the
lack of several things: ways to present the user with menus of
current alternatives, ways to select quickly from those menus
with a choice of input devices such as mice or function keys or
touch pads, and most of all, ways of partitioning the user's
screen into multiple windows so that all the currently relevant
data and menus can be seen simultaneously. Just imagine, say, a
list of files in one window, a couple of windows with views of a
file, and one more window with help information in it.

Better terminal hardware is part of the answer, but not all of
it. After all, CMS has no facilities for window management, and
its whole internal structure revolves around reading a command
from a typewriter terminal.

There are many other problems with the end user's environment.
For example, there is no way to go back to an earlier point in
the session to recall a previous error message or view more than
24 lines of output, other than the extremely awkward artifice of
"spooling the console", whatever that means. Within reasonable
limits, one ought to be able to scroll backward in a session just
by hitting a key.

The help facilities available under CMS are not very good, but

9

they certainly are slow. I happen to believe that programs,
whether applications or operating systems, should be
"self-describing" in the sense that documentation is mostly
unnecessary. For all the hue and cry about the need for
high-quality system documentation, the real truth is that most
end users hate to read documentation. "Documentation" is
synonymous with drudgery and boredom. What users really want is
to be able to sit down at the terminal and figure the program out
for themselves, and the quicker the better.

I don't think that the Apple Lisa approach with heavy use of
icons is the only way to accomplish this. You should be aware
that Apple's claims that Lisa can be learned very quickly just by
sitting down at the keyboard are substantially true, but icons
also turn a lot of people off. There are other ways to implement
self-describing programs. I think the fundamentals are as
follows:

(I) Provide a clear and relatively complete basic help
facility with short, easily searchable items that is
available at all times.

(2) Provide longer, interactive tutorials with lots of
executable examples for the more complex parts of a
system. Make the program capable of teaching its own use.

(3) Use metaphors appropriate to the task at hand. Use
descriptive language on the screen that refers to these
metaphors. Keep the program simple and consistent with
its metaphor.

(4) Provide both a simple command language tied to the
metaphors and menus from which selection can be made with
a variety of input devices.

(5) When prompting for input or decisions, tell clearly what
is being requested, what the alternatives are, and what
the defaults are.

For the professional programmer as end user there is an
additional set of deficiencies in CMS. It is appropriate to
single these out for special mention, because CMS is first, and
still foremost, a tool for professional programmers to do their
jobs. In light of this fact, the existing problems are really
quite surprising.

The most astonishing gap in the environment that CMS provides the
professional programmer is the lack of tools for source code
management. True, there is the UPDATE command. And except for
facilities of ISPF, there are no code libraries, no tools for
version control, no easy means for teams of programmers to work
on the same systems of code.

I must confess my unfamiliarity with ISPF. Although it may have

N
00
c.n

10

answers to some of these problems, I would like to point out that
the implementation of hierarchical structure in the CMS file
system would be a conceptually simpler way of solving many of
these problems. Having separate subdirectories is a very natural
way to manage different versions of code; it is also much more
flexible than multiple minidisks. And incidentally, although
hierarchy is often criticized as an inappropriate metaphor for
non-computer-oriented users, it is (or should be) well understood
by professional programmers, whom we are now considering.

There are many other problems in the environment that CMS
provides to professional programmers. Another obvious one is the
extremely poor debugging facilities. This is just
incomprehensible; even TSO has a decent symbolic TEST facility.
Debugging under CMS is a trial of hex calculation and the ability
to follow internal control block chains. There are no control
block formatting tools. CMS does not even have a trace table.

One more deficiency, just for good measure, is the inadequate
support of high level languages. For example, there is the
incompatiblity of the different languages. Although this is a
problem which is nowhere adequately solved, it is certainly worse
under CMS than TSO. Several years ago the CMS and PL/I projects
came up with a long list of problems with running PL/I under CMS,
most of which have yet to be fixed. Generating executable
modules of high level language programs is a complicated,
error-prone process, which is subtly different for each language.

4. WEAKNESSES OF eMS: EXECUTION ENVIRONMENT.

In architecture the pride of man,
his triumph over gravitation, his will tc .• ower,

assume a visible form.
Architecture is a sort of oratory of power

by means of forms.

Friedrich Nietzsche

The third class of problems that I want to consider is the
special concern of those who develop applications to run in CMS.
But in terms of environments, we are really talking about the
environment that is faced by the executing application rather
than by its developer. Of course, the developer is the one who
must contend, repeatedly, with the deficiencies in this
environment.

I am going to spend relatively more time in this area than in the
other two, for a couple of reasons. The first is that it is the
best excuse I have to discuss problems with eMS structure and
architecture, which is one of my ultimate objectives. The other
is that the deficiencies in the eMS execution environment must be
corrected before we can make much progress in improving the other
environments of CMS.

I am going to discuss deficiencies in the CMS execution
environment by using a specific application as an example, the
VMSHARE conferencing facility. I am going to say a little about
the internals of this system in order to make the point about how
many basic operating system primitives needed by real, live
applications are simply missing in our current CMS. I trust that
most of my present audience knows what VMS HARE is. If not, you
may think of it simply as a sophisticated electronic mail system.

As you may know, VMSHARE was originally implemented by Dave
Smith, starting in 1976, as a system, a very large system, of CMS
commands and Execs. In fact, VMSHARE was one of the earlier
examples of developing sophisticated end-user applications using
mostly Execs and native eMS facilities. That original system
illustrates vividly various strengths of CMS that have already
been discussed: its flexibility and tailorability, the power of
the Exec processor, the usability of the file system, and the
amenability of CMS to the building-block approach to application
development.

Several functional objectives of VMSHARE emerged early in its
development. In addition to providing a tailored environment in
which the commands would be customized to the task at hand, the
system also had to provide what became known as a padded-cell
environment: users would be limited to only such capabilities as
the system was intended to support.

tIO
00
~

12

This ability to create secure, limited, or ·padded cell"
environments is a natural requirement of many typical application
systems. But it was not possible to do it in the CMS of seven
years ago without system mods, and it is still impossible today.
Yet it is very easy to dol Mainly, you need a way to prevent the
user from issuing commands to CP - that's a telatively simple CP
mod. within CMS itself there are several very small features
that are necessary. Probably the most basic of these is
provision for an exit routine that can examine CMS commands
before they are executed in order to be sure they are allowable.
Ideally, this should handle commands from any source: the
command line, the editors, the executors, special commands like
FLIST, etc. Unfortunately, the lack of any centralization of the
command handling function makes this capability unnecessarily
difficult.

In order to manta in security, the application must also be able
to retain control when an abend occurs. At Tymshare we did this
with a special Exec that was run after abend cleanup was
complete. It is possible that the new abend exit provided by
VM/SP release 3 will satisfactorily handle this requirement, but
one can't be sure until one sees how it is implemented.

The initial implementation of VMSHARE used the old CMS line
editor, which needed a couple of simple modifications in order to
be made "secure", so as to prevent access to unintended files. I
am happy to report that XEDIT can be made secure without mods,
due to its programmability with macros, but with a steep penalty
in terms of performance and loss of function. Some very simple
changes to XEDIT would allow more security with fewer unfortunate
side effects.

Jumping ahead to 1980 in this mini-history of VMSHARE, we can
observe that the database had become fairly large - over 400 MEMO
and PROB files. (There are more than 1500 today.) It was becoming
difficult, to say the least, to find specific information one
wanted. The solution was simply an index. I decided to include in
the index all but a few hundred common Unoise" words, so that
just by specifying the term or terms you wanted you could get a
list of all files that contained them. This kind of an index is a
very simple thing to implement in a higher-level language using
VSAM or a similar indexed file access method. You simply provide
for one record for each term to be indexed. The record is of
variable length and contains a coded list of all files that
reference the term.

Well, CMS ·supported" VSAM, but it was not the kind of support I
wanted. CMS VSAM, as you all know, uses code kludged in from
DOS. It does not fit well in the CMS architecture; it is slow and
inefficient; it requires one to learn a new language just to
create and manage files; and it is incompatible with the CMS file
system. In short, it makes the application developer's life
miserable. I was not about to do what was a "for fun" project
using "CMS" VSAM. Fortunately, I was not alone in my distaste for

13

this facility. Others at Tymshare held this view also, so we had
undertaken to develop our own native CMS indexed file system, and
to provide ISAM and VSAM emulation with it.

Thus, a.s an appl ication developer, I was able to implement a
keyword index in VMSHARE with very little fuss or bother. Indexed
access methods are really nice for doing large data management
tasks. IBM owes it to CMS application developers to provide a
really good one. From an architectural point of view, the access
method should be very well integrated into the rest of CMS and
use the native CMS file system, so that it's very easy to use,
like the rest of CMS is (or should be).

By 1980 VMS HARE had become fairly popular within the VM Group of
Share - so much so that people were finding it difficult to login
to the single userid provided for that purpose. Although there
were other reasons of an economic nature. for providing only one
conference login, it is apparent when you think about it that
there is one overwhelming technical difficulty as well. That is,
CMS provides NO WAY to share ordinary CMS files in read-write
mode. Never did, still doesn't. This is NOT a satisfactory
situation for application developers.

This was no novel insight even 5 years ago, so we undertook to
correct this deficiency too. The process of implementing CMS
file· sharing taught us a number of lessons about deficiencies in
the internal architecture of CMS as well. A lot of people have
spent a lot of time thinking about the best way to implement file
sharing under VM/CMS. One alternative is to move the file system
into CPo This was actually tried at Brown University under
CP/67. It has the drawback that CP is NOT the right place to put
an application-oriented tool like a file system, for a number of
reasons.

Every other approach to file sharing in VM/CMS that I have heard
of uses a service virtual machine in some way or another. Some
approaches use the service virtual machine primarily for
synchronization control and pass most of the data through a
writable shared segment. This approach is probably viable, but
very tough to implement with good data security and integrity.
The easier approach is to use the service machine for everything
- both synchronization and data management. I contend, and will
explain later, that this approach is in an important sense the
RIGHT approach, in spite of the high overhead of intermachine
communication.

In any case, whether or not it is the right approach, it is the
EASY way, so that's what we chose to do. In our file sharing
implementation, all files to be shared are accessed and managed
directly only by a service virtual machine. A new command, called
CONNECT, is provided in CMS to replace the ACCESS command.
CONNECT requests the service machine to grant access to a certain
collection of files (residing on a normal minidisk), and to set
up internal CMS control blocks as if the minidisk had been

N>
CO

'"

14

accessed normally. Most CMS file system functions have been
modified to recognize the special case of a "connected" disk and
simply pass the request on to the service machine. A few
functions like LISTFILE did not require modification at all,
since they operate entirely off of control blocks.

One of the beauties of this scheme is that applications need very
little, if any, modification in order to use it. You simply
replace one ACCESS early on with a CONNECT and you're in
business. Thereafter all of the shared files appear to the user
as if they were present on a linked minidisk. The file server
even notifies the user machine of any changes that occur to the
files being shared. The proof of the relative transparency of
this mechanism to applications may be found in the fact that
VMSHARE required very few changes in order to use it. The changes
that were necessary were almost all in the area of
synchronization. Conceptually, there just isn't any way around
the problem that if two different users of a file can mOdify it
simultaneously, then they had better obey (or be constrained by
the application to obey) some sort of locking protocol.

The rest is history. In February of 1981 concurrent access to the
VMSHARE database became available. No changes to the user command
syntax were required. Users were not even aware there had been a
change. In spite of the fact that there are real performance
implications of using a service machine to do data management,
little if any performance degradation could be noticed by users,
partly because conferencing isn't really that data-intensive an
applicatio~. Mostly it's terminal I/O.

But back to CMS. Communication between user and service virtual
machines is done with VMCF. (IUCV wasn't then available). It is
notorious that IBM never supplied decent macro-level support for
the use of VMCF in CMS, much less any higher-level language
support. Finally, in Release 3 of VM/SP, IBM has provided some
macro facilities for IUCV, but they fall far short of what is
needed. Partly, this is because of specific architectural
deficiences in CMS itself which have not been addressed.

The most noteworthy of these deficiencies is multi-tasking. There
are those who think that implementing multi-tasking under CMS is
a misguided attempt to force inappropriate MVT/MVS-ish constructs
into CMS, further subverting whatever remnant is left of it's
architectural purity. I hope anyone who might feel this way will
reconsider. In the first place, multitasking is absolutely
essential for implementing most service machine applications
which should be capable of responding quickly to many
simultaneous users. IBM-developed service machine applications
like Smart and Passthru have had to implement their own private
versions of multitasking. A large number of user-developed
applications have had to do likewise, all redundantly and
incompatibly. Quite simply, multitasking must be a system
primitive.

15

But even in the normal user, as opposed to service machlne,
environment multitasking is necessary. It is needed in order to
implement the concept of "any command from anywhare" called for
in the Share VM/CMS Task Force report. That is the notion that
any user of an interactive system may legitimately need to be
doing several distinct things (tasks) simultaneously - like
consulting an appointments calender while a compilation is under
way, and trying to get HELP information too. We cannot conceal
such possibilities from our users for much longer - not when they
have micros on their desks like Lisa or an IBM PC with Concurrent
CP/M-86.

Let us return to the discussion of deficiencies in the CMS
application execution environment by picking up the thread of the
history of that typical end-user application we have been
following, VMSHARE. As you recall, the system was originally
written in CMS Execs. Although this approach was excellent for
prototyping and rapid application development, it was less than
ideally efficient. Resource consumption and response time were
both too large. Therefore, in order to produce a more efficient
production system and to lay the foundations for future
enhancements, it was decided to re-implement the conferencing
system in a non-interpretive language. The language chosen was
PL/I, but the story would be the same in most any other language.

There is both good news and bad news in the story. The good news
is that CMS is very application-friendly in many respects. 'Quite
a few system commands can be called directly (using a simple
assembler-language interface) from application programs. Even
Execs can be called from applications, provided they don't in
turn invoke any of the ·wrong" commands, and you watch out for a
few Gotchas. CMS interfaces to the file system and the user
terminal are also easy to use, again with simple
assembler-language subroutines. (It is, perhaps, unfortunate that
access to such operating system facilities is not in fact defined
in any of the higher-level languages. But another school of
thought holds that such operating system dependent functions
should be confined to subroutine libraries anyway. IBM hasn't
seen fit to support either approach for CMS.) The net result for
VMSHARE was that it was very simple to recode the "kernel" of the
application in PL/I and to continue to use the same operating
system facilities in almost the same way as in the Exec version.
Further, many of the parts of the older Exec version could
continue to be used in the PL/lversion until the developer got
around to rewriting them. A sizeable number of functions have not
yet been converted, nor does there seem to be much need that they
should be, given a relatively low frequency of use.

On the other hand, the bad news is that CMS can also be very
application-hostile in many ways. The most egregious of these
ways lies in the fact that CMS support for relocatable load
modules has always been very poor. Until the LKED command became
available, support was really nonexistent. Today, the typical CMS
command or application program in executable form is still a

~
00
00

16

core-image module. If you want to arrange for one program to call
another in a separate module, you have several choices, all
disagreeable. You can make one program run in the transient area
and one in the user area. You can write the program to be called
so that it is either adcon-free or relocates its own adcons, and
then load it yourself into some handy storage you have acquired.
You can talk your friendly local systems programmer into defining
a new shared segment just for your application's modules. Or you
can process it with the LKED command into a LOADLIB and then call
it with OS simulation support. But you CANNOT do what you want
to do simply by using native CMS facilities. We may well
ask: just why has IBM stopped short of letting LKED produce
"loose" module files and letting CMS fetch them with its standard
module loading facilities?

Then there are a few other Gotchas. Like the CMS Executor which
delights in releasing your applic;.:ion's dynamic storage or its
STAX and SPIE exits. Or the various and sundry programs that have
their very own STRINIT calls to reinitialise your application's
storage. Then there is the lack, already alluded to, of any
central command handling mechanism that provides the various
services of parsing a command line, resolving aliases,
determining whether to run a module or exec or nucleus command,
setting up plists, calling the command, issuing pertinent error
messages, and cleaning up after the command. Well, yes, SUBSET
does some of that, but it can't be entered recursively and won't
run a command in the user area because of the relocatability
problem. Consequently every application winds up implementing its
own version of this package of services, subtly different from
any other implementation of course.

Naturally, at Tymshare, since we fancy ourselves to be civilized
folk who are too lazy and uncreative to reinvent a system
function every time we need it, we implemented relocatable module
support in CMS back in 1977. We thus take for granted that if an
application like VMS HARE needs to call a system utility like
COPYFILE or some more esoteric processing program like Script or
a spelling checker or a communications package, then VMS HARE just
calls it and CMS makes the right things happen for program
loading and storage management.

There are other, more subtle benefits to having relocatable
module support around. Namely, it is easier to implement new
system function as well as new application function. Many of the
things I have already mentioned, like our indexed access method
and our VMCF support, were much easier to put into CMS because
they could be isolated in relocatable modules. Much easier to
test too. This use of relocatable modules is very similar to the
"nucleus extension" support of VM/SP Release 2. Since
relocatable modules that are serially reusable are automatically
retained in storage, unless explicitly purged, they are in effect
permanent nucleus extensions. Except that the mechanism is all
automatic, and there are no cumbersome NUCXLOADs to do.

17

We have all learned that the modular approach is the right way to
develop large, complex applications. Developers should write
small building blocks that are relatively independent, and only
brought together at a very late stage, execution time being the
best. This is easier on developers, as well as resulting in more
powerful and more robust applications. Unfortunately, in making
it difficult for one module to call another, CMS hasn't got the
word yet. Let's hope it does soon.

Since I've said so much about various enhancements we've made to
CMS at Tymshare, let me close this unfortunately long survey of
the deficiencies in the application execution environment of CMS
by mentioning something we haven't done, and what the consequence
is. What we haven't done that CMS badly needs is device
independent full-screen I/O. The consequence is that VMSHARE
still has no full-screen mode of operation. I just haven't felt
like getting down on my hands and knees and coding all the
diagnose 58's that would be required, to say nothing of all the
bookkeeping necessary to keep track of all the possible
full-screen terminals that should be supported.

What is wanted is an interface that lets the application
developer call the operating system to determine the capabilities
of the terminal on which the application is executing, as well as
specifying what minimal set of capabilities the application
requires. A system call to define virtual screen and window
sizes. A system call to update or replace the contents of a
window. Perhaps even some rudimentary graphics support, like
defining special characters with bit maps. (Next year I'll ask
for more sophisticated graphics, so watch out.)

IBM has taken note of the importance of full screen facilities in
such products as ISPF. While panel managers are good for many
kinds of high-level application development, they are just too
slow and clumsy for programming detailed interaction between
applications and screens that have to update unpredictable
portions of screens in a data-dependent fashion. In effect, what
you need is, at least, to be able to treat each character
position as a separate "field". And this support needs to be
implemented as operating system primitives that can be used
easily from any application.

Enough emphasis simply cannot be laid on the observation that
increasingly effective human-computer interaction depends on very
high bandwidth between the computer and the terminal - and on the
ability of applications to control in detail the elements of that
dialog. Microcomputers with bit-mapped display devices are far
out in front of maniframes with their clunky old 3270 screens in
this regard. But even though the hardware technology is
available (e. g. the 3290), if the operating system primitives
aren't there, applications can't use it without always rebuilding
from scratch.

N
00 =

5. THE FUTURE OF INTERACTIVE COMPUTING

The future you shall know when it has comel
before then, forget it.

Aeschylus

When half the people believe one thing,
and the other half another,

it is usually safe to accept either opinion.

Edgar Watson Howe

There is nothing
that a New Englander so nearly worships

as an argument.

Henry Ward Beecher

In order to properly assess the future of CMS and to attempt to
pronounce our verdict on the direction its development ought to
take, we need to go back to the essence of it: CMS is an
operating system for interactive, personal computing. I take it,
therefore, as an axiom that whatever directions we propose for
CMS should be conceived with the objective in mind of enhancing
its ability to support interactive, personal computing, rather
than, say, other types of computing, such as batch or transaction
processing. Some will disagree and point out that CMS can be used
for these other types of computing as well. That may be true, but
I will hold to my axiom on the grounds that interactive, personal
computing, where CMS has been all this time, now represents the
most important area of computing in general, and will only
continue to increase in importance.

This being said, we must confront the fact that there is now
another option for the support of interactive, personal
computing, an option which did not exist, or at least did not
seem real, even five years ago. I mean personal computers, of
course.

There is a great debate underway, a debate which will not be
resolved and which will be with us, at least through the end of
the decade. That is: should interactive, personal computing in
large organizations be primarily supported on large central
timesharing systems, or on distributed personal workstations?

To better deal with this issue, let me be clearer about what I
mean by interactive personal computing. Quite simply, I have in
mind just the sorts of things CMS has always been good for, the
uses which have made it so popular, the things it is still
predominantly used for today: program development, text

19

processing, electronic mail, personal electronic filing, ad hoc
database inquiry, interactive data analysis, modeling, and
simulation, problem solving. These are the applications that IBM
salesmen rely on to sell VM!CMS computers. They are also
applications that are now mostly well within the range of today's
personal workstations. Although there will always be other
applications, or instances of these applications, that are beyond
their capabilities, for most people in most organizations,
personal computers will suffice quite well.

So the question is: how should one choose? Let's look at some of
the advantages and disadvantages of central vs. distributed
computing.

Advantages of central computing

* Very large amounts of data may be stored.

* Much larger problems, models, etc. can be handled.

* Data is more easily shared among many users.

*

*

*

*
*

Software maintenance and distribution is easier.

User collaboration and software sharing is easier.

Advantages of distributed computing

Users have more control, so that hardware and software can be
more easily tailored to individual needs.

Incremental expansion of capacity is easier.

Workstations have more predictable and often better response
time.

* Personal workstations have better availability.

* Personal workstations permit a higher data bandwidth between
the user and the application.

Let me admit right now that I am not going to give a,balanced
discussion of these points. I fully concede all of the advantages
I have listed for central time-sharing. I think they are obvious
and speak for themselves. But I view them as challenges, as
problems that computing on distributed personal workstations will
gradually aspire to address. Instead I choose to elaborate on the
advantages of distributed computing, because I sense they may not
be as fully appreciated by my present audience. Were I addressing
a microcomputer industry audience, the situation would be
completely reversed, the arguments for distributed computing
would seem both compelling and self-evident, and I should
probably elaborate on the advantages of central computing.

~

NI
C'O
Q

20

Response time is clearly a factor that cuts both ways. The nature
of the application will ultimately decide whether central or
personal computers can deliver better response time. For trivial
interactions, however, I think it is plain that personal
computers have the decided advantage in that they are not
burdened with time-slicing, scheduling, paging, or communication
delays. For non-trivial interactions, of course, the situation is
otherwise. Large mainframes can deliver 5 to 10 MIPS of
instantaneous compute power, perhaps 25 to 50 times what the
"average" micro can do today. This is impressive if you have
access to a large mainframe that is relatively unloaded. But
realistically, if you are using a shared system with an expansion
factor of 20, for example, and your computation really is
non-trivial so that it requires many time slices, then your
advantage is only 1.25 to 2.5 times, because you have only .25 to
.5 MIPS available. Or look at it this way, even more
pessimistically, if you are on a 10 MIPS system with 400 other
users, that's only .025 MIPS for you. Fortunately, most of those
other 400 users are on a long lunch break.

Until they all come back to work at 2pm. That raises the
consistency issue. The response time of a standalone micro is
nothing if it's not consistent. This is not reassuring if the
response time does not happen to be satisfactory to you, but if
it does suffice for your particular application, it's very nice
to know you'll never be caught in a computer traffic jam just
when you are anxious to get your work done. And let's be humble
about this: I think that most interactions of most people with
their computers are fairly termed "trivial". Certainly this is
true for the common activity known as editing. I'm composing
these lines on my personal computer now because there's no way I
can get this kind of response out of my mainframe, even now at
llpm. The power of even a personal computer for this kind of
interaction is overkill - that's what's so nice about it.

What is likely to happen in the future with regard to response
time? Well, we all know that the speed of large, general-purpose
mainframes isn't increasing all that fast. IBM is quite frankly
moving to multi-processor architectures which do not give users
any improvement at all in instantaneous compute power available.
And DP managers will just tend to put more users on shared
systems in proportion to their total capacity. That alone would
erase any possible advantages for the individual user. But even
worse, existing operating systems become increasingly lesS
efficient the more simultaneous users they have to handle. (And
history teaches that future operating systems will be even less
efficient.) How many times have you seen a new CPU come in that
theoretically had twice the power, but could handle nowhere near
twice as many users? Yet at the same time, the opportunity for
price-performance improvements in microcomputers is immense. The
average micro today has an 8/l6-bit CPU, while full l6-bit chips
are also common, 16/32-bit chips are readily available, and
32-bit CPU chips are being manufactured. Note that IBM has
entered into an agreement with Carnegie-Mellon University that

21

calls for 32-bit workstations with .5 to 1 MIPS by 1985.

Reliability and availability have always been significant issues
to computer system managers and users. Great improvements have
been made over the years, to the point where 99.5% availability
is an attainable goal. But users' expectations have grown
proportionately, as has the importance to the enterprise of
continuous availability. More and more data is stored in our
systems, and more and more people depend on being able to get at
that data. The new users of interactive computer systems tend to
be increasingly intolerant of service interruptions of even a few
minutes duration. Today the average user of a shared computer
system may experience a service interruption perhaps once a week
- if he has a hard-wired terminal. If he should be so unfortunate
as to have to access the system through a communications network
of any kind, interruptions once a day are not uncommon. And the
telecommunications system in the United States is quite reliable
relative to the rest of the world.

By contrast, users of the present generation of personal computer
may experience a service interruption only once a year, at least
as far as their personal equipment is concerned. If and when an
interruption does occur, the user, with any luck at all, can find
an equivalent workstation somewhere else in the office that will
let him get his work done, especially if it has any kind of
urgency. I think that this reliability and availability of
personal computers comes as a pleasant· surprise in our present
age of deterioration in the quality of many features of our
social and material environment. It is a clear advantage of
personal computers over shared systems, and it has only just
recently begun to be perceived.

The last advantage of personal workstations that I want to
discuss is the higher data bandwidth that is possible between the
user and his application. I think it is also the decisive
advantage. It is, furthermore, relatively new. Early
microcomputers often used ordinary asynchronous terminals,
connected at perhaps 19.6K Baud. Now bit-mapped displays are
common, and they can be rewritten in as little as 1/30th of a
second (depending on the software and support hardware). This
makes a world of difference.

The significant advantage here doesn't lie in being able to
display masses of data more rapidly. After all, most people can
only read at about 800 Baud anyway. The advantage lies instead in
the powerful new ways you can manipulate the screen, which is the
user's principal communication path to his application. And the
reason you want more control over the screen is to provide better
human factors.

Imaginative use of the screen to provide a better user interface
can be done in many ways. As discussed above, applications can be
made to be self-de.lcribing by providing numerous cues and clues
on the screen in the form of labels, prompts, and help

information. This kind of information must be changed rapidly,
perhaps as often as every keystroke, to reflect the changing
state of the application. Menus can be provided that scroll and
change quickly, yet occupy only a portion of the screen real
estate. You can offer multiple windows that allow the user to
keep track of the multiple processes he may well be trying to
control (remember multitasking?) •

22

To really understand the possibilities of bit-mapped displays and
character-at-a-time interaction you really need to see them in
action with well-designed software. It may be as simple as a
"what you see is what you get" editor, in which words are
repositioned when they extend outside the margins. Or a
spreadsheet program that uses highlighting to help the user
locate the cursor

Not the least of the advantages of bit-mapped displays is the
opportunity of communication through graphics. The picture IS
worth a thousand words - the information transfer rate possible
with graphics is much higher than with text, when it is
appropriate for the application. In this way you overcome the
objection that people can read text at only 800 Baud.

~ I think that we have barely begun to appreciate the possibilities
~ that bit-mapped displays under direct CPU control offer. For
~ example, we ,will see increasing use of animation, at least in

limited forms, to convey information. This not only has mnemonic
value, but can even serve to better hold the user's attention and
make the application more "fun" to use. It has been pointed out
that one of the reasons for the surprising success of Visicalc is
the fact that it is just plain interesting to watch; the user
receives immediate feedback and confirmation for every step in a
way that supports his problem-solving. [3]

Note that it requires a lot of CPU power to take advantage of
bit-mapped displays. This is a valid way to use CPU resources,
and it is easily within the capacity of today's micros. But even
if you had the bandwidth to drive hundreds of bit-mapped
terminals from a shared system, this would impose a heavy new
load on the host CPU.

Interestingly enough, a factor which does not seem to favor
either personal workstations or central shared systems is cost.
It has been estimated that a single user can be supported on a
large, shared VMjCMS system in a research environment for about
$7000 to $10000 per year, with relatively good average response
time guarantees. Assuming a 3-year pay-out period, you could
equip the same user with a workstation and peripherals worth
$21,000 to $30,000. That would, by today's standards, be a pretty
high-performance personal computer! While it would still not have
the same instantaneous memory or compute power as the mainframe,
it might suit the user's requirements quite well. Or, yOu could
provide the user with a much cheaper personal computer and a
certain amount of shared system resources when required for large

jobs. There just do not seem to be economies of scale in
computing anymore. This may be due in part to the much greater
sophistication required in the large shared system in order to
handle hundreds of users, and the major inefficiencies of a
multiuser operating system.

23

As I warned you earlier, this does not pretend to be a balanced
discussion of the relative merits of central and distributed
computing. Instead, my aim was to make the point that
distributed computing with personal workstations is a very
serious contender for the title of preferred architecture to
support interactive computing. There will, to be sure, continue
to be many instances when large central mainframes are required
to handle heavy computing or data management demands. But in at
least as many instances, distributed workstations will be the way
to go.

Realistically, I am sure that both models of interactive
computing will not merely coexist throughout this decade. They
will be used together, as we learn how to integrate them. And
gradually they will merge, until we are little aware of the
distinction. The question, therefore, is: what does this have to
do with the future of CMS?

N)

t::l
N

6. ONE POSSIBILITY.

Future, n. That period of time in which our affairs prosper,
our friends are true, and our happiness is assured.

Ambrose Bierce

People live for the morrow,
because the day after tomorrow is doubtful.

Friedrich Nietzsche

I never think of the future.
It comes soon enough.

Albert Einstein

We've all been hearing for years now, it seems, that before long
we could have the power of a 4341 in a desktop computer. I think
that may be somewhat of an exaggeration as far as the next year
or two are concerned, but something a little less powerful is a
distinct possibility. Tom Rosato told us just a year and a half
ago of his experiments with the Micro CMS/370 project, in which a
modified version of CMS has been run on a micro computer with a
Motorola 68000 CPU and a 370 instruction set emulator. [4)
Although this project was in the "experimental" category, it
seems clear to me that once you have a personal computer capable
of executing or emulating the 370 instruction set, then CMS is a
very natural operating system to run on it. After all, CMS has
been a dedicated single-user operating system ever since its
earliest days in the Cambridge Scientific Center when it could
run stand-alone on a 360/40. A CMS virtual machine has always
been a personal computer.

Let us then suppose we have CMS running in a personal
workstation. In what ways should CMS be enhanced for this
environment? I think the answer is that we will still want
remedies for all of the deficiences which we have been examining
at such length. We will surely want very good facilities for
handling bit-mapped displays, because it would be such a waste of
good technology to live with 3270 emulation for long. We will
quickly want all of the improvements to the user interface which
are possible with better display technology, like multiple window
management and support for self-describing programs. We will also
want the structural and architectural changes in CMS that are
essential, or at least very helpful, to providing the new
end-user and application support: multi-tasking, relocatable
modules, indexed file access method, better command handling.

What else? How about file sharing? Does that make sense in a
workstation environment? Of course it does. Let's go back to the

25

advantages we enumerated for central computing. There are really
just two categories of those advantages. One category is a matter
of scale, the fact that mainframes can handle more data and
larger problems. The other category is sharing between users - of
code, data, special peripherals, or whatever. NOw, since I think
that the provision of interactive computing via personal
workstations is certain to occur, I also think that ways will be
found to overcome as many as possible of the disadvantages this
approach has relative to large shared systems.

To make a long story short, local area networks with specialized
network servers to support sharing of files, peripherals, network
gateways, and the like can be expected to address this
requirement. In this approach, all of the participating
workstations are interconnected together with high speed
communications (1 megabit per second or more). Requests for a
particular shared resource are passed from the individual
workstation to the relevant server machine on the network. The
server processes the request and replies to the requestor or
returns data when it is done.

Does this sound familiar? It should, because this is exactly how
our VM/CMS systems have evolved in order to provide all kinds of
sophisticated services to our users. We are all familiar with how
successful various products like VM/Passthru, Dirmaint, Profs,
RSCS and so forth have been in implementing function in service
virtual machines. We can all think of dozens of other examples
in our installations and elsewhere of how service virtual
machines are used to provide essential functions like mail
systems, network gateways, plotter support, and file sharing. The
ONLY difference is that in VM currently all of the users and
service machines are virtual machines on a shared host, and they
communicate via VMCF or IUCV. On a local area network the users
and servers have distinct computers and communicate using the
network protocols. But from the viewpoint of how these
applications are implemented, the differences are almost
irrelevant.

In particular, file sharing is almost the first application
implemented on any local network. And the way it is implemented
is precisely the same as the easiest way to do it in VM. That is,
you have one or more server machines which manage the files. You
either patch the user's operating system or else provide new
interfaces so that all file I/O requests are routed to the server
machine. The server machine interprets and performs the request,
and returns the data to the user's machine. In addition, the
server machine will optionally maintain a distributed file
directory by informing all users when changes occur. Notice that
this description applies without any differences at all to both
VM and LANs. This situation is why I asserted above that service
virtual machines are, conceptually, the right way to implement
file sharing.

It should also be remarked that in a local network, many of the

N
CC
~

26

performance penalties associated with doing file sharing under VM
simply do not apply, because you do not have to worry about task
scheduling overhead, and the CPU resources required to manage
file sharing are not preempted from users who aren't using the
facility. At the same time, the server machine can still be a
bottleneck, since it's likely to be single-threaded, and you need
to have bandwidth in your network in proportion to the amount of
shared file usage you expect. There's no free lunch.

Another problem with LANs that I will freely admit is that as
soon as you come to depend on the network and its various
services the overall availability of your total interactive
computing environment is much more in jeopardy. Local networking
is complex and relatively new technology. There's a lot of room
for failure. But I believe that improvements will be made because
they have to be. And even if there is a network failure, you can
still use your workstation in stand-alone mode if you are able to
work on another suitable task. You are even better off if just
one of the network servers goes down. Because when a central
shared system is down, it's ALL down.

7. SUMMARY.

AS for the Future, your task is not to foresee,
but to enable it.

Antoine de Sainte-Exupery

No person who is not a great sculptor or painter
can be an architect.

If he is not a sculptor or painter,
He can only be a builder.

John Ruskin

The brevity of human life gives a melancholy
to the profession of the architect.

Ralph Waldo Emerson

All of us know that computer technology is advancing faster now
than ever before. But we tend to think of this advance in terms
of faster, cheaper, larger, or denser: faster CPUs, more real
memory, larger storage devices. You can now buy 5.25" Winchester
disks that hold l40 megabytes of data. Next year it will be
390MB. A megabyte of RAM storage for a personal computer can be
bought for less than $800, retail. You can today purchase a
32-bit workstation whose CPU chip contains 450,000 transistors.
These are the quantitative changes.

However, there are equally significant qualitative changes
occurring as well. Voice recognition and voice input devices
usable with a personal computer will be available soon. Whole
operating systems will be etched into silicon chips. Artificial
intelligence programs that can process natural language and
implement human expertise are commercially available. Bit-mapped
CRT displays are now standard on personal computers. And they
are enabling new kinds of man-machine interfaces that help their
users to understand what is going on much better and hence to be
much more productive. Local area networks are making it possible
to entirely change the way that computing services are delivered.

This is gee-whiz stuff, but it's also real, very real. It WILL
change the way we view computing.

How will CMS adapt to these changes? Or rather, simply, will CMS
adapt to these changes? I'm going to pass on those questions.
It's better to prophesy after the event, and the best prophets
are merely the best guessers. Most importantly, what happens with
CMS is largely up to its users.

Many of the things we want in CMS can be had within the current

~

28

architecture. We can have a native indexed access method,
relocatable modules, padded cells, session management, good help
facilties, or file sharing. I know these things are possible
because they've been done. Neither do there seem to be any
conceptual problems with support for bit-mapped display devices.
The current architecture suffices.

But I don't think the current architecture will suffice for some
other things we want as well: centralized command handling,
general multitasking, hierarchical file system, support for
31-bit virtual memory. I don't think that these can be added
adventitiously to the current architecture. Or at least, they
shouldn't be. After nearly 20 years, it doesn't seem to be too
much to ask for a thorough rewrite of CMS, from scratch if
necessary, making provision for the new requirements we can
perceive now. The architecture doesn't really need to change all
that much. But a whole lot of its implementation certainly does.

So there are basically three alternatives: Keep adding
incrementally to the present CMS and remove some of its
deficiences. Rewrite CMS, bringing its architecture up to date
but without drastic change, and remove most of its deficiences.
Or find another interactive system.

~ It's up to you.
~

8. REFERENCES.

(1) Fred Jenkins, et al., "SHARE VM/CMS Task Force Final Report",
SHARE, Inc., October, 1980.

(2) Charles Daney, Larry Graziose, Pat Ryall, "CMS
Restructuring", 1982.

(3) Paul Heckel, "The Elements of Friendly Software", QuickView
Systems, 1982. (Early version serialized in Infowor1d,
starting July 12, 1982.)

(4) Tom Rosato, "Micro CMS/370 (Cambridge nano System)",
procedings of SHARE 58, 1982.

