
~SHARE5

Nl
c::
CC

SHARE SESSION REPORT
61 B466 DASD Management & Measurement in TSO :35~-O

SHARE NO.

MVSI

SESSION NO. SESSION TITLE

Sam Lepore

PROJECT SESSION CHAIRMAN

Wells Fargo Bank, 525 Market St., #8513, San Francisco, CA

SESSION CHAIRMAN'S COMPANY, ADDRESS, AND PHONE NUMBER

DASD Management and Measurement
in the TSO Environment

Bill Fairchild

National Education Association
1201 Sixteenth Street, NW
Room 701E
Washington, DC 20036

Installation Code: NEA

ATTENDANCE

WFB

INST. CODE

94163, 415-396-4111

MVS Interactive Facilities Project (TSO)

Session Number B466

3/I/LEJ/4

DASD Management and Measurement in the TSO Environment

Introduction

The two major areas in which problems can occur in the management of
direct-access storage devices (DASD) are capacity and performance.
This paper discusses some common types of problems that occur in both
of these areas as well as some solutions to these problems. The
solutions concentrate on available user education and software
packages that address these problems.

Capacity Problems

Why do capacity problems exist in the first place? Frequently they
are caused by someone trying to make infinite use of a finite
resource. This is equivalent to trying to put ten pounds into a
five-pound bag. Eventually someone tries to allocate a new data set
and· cannot because all disks are full. As we will see, the 5-pound
bag will not even hold five pounds.

Capacity problems can be caused by a variety of conditions. Some of
them are:

• temporary data sets

• data set over-allocation

• needless production files

• inactive data sets

• repeated data set names

• PDS gas

• VTOe size

• VSAM files

• volume fragmentation

• CKD architecture

• block size

• data compression

• allocation unit size

N
=

Temporary Data Sets

Temporary data sets are often overlooked as a possible source of
capacity problems. Often a temporary data set is left behind if the
system crashes. Temporary data sets are removed when a job ends, but
if a job doesn't end, these data sets may remain on the system. The
system often allocates a temporary data set that becomes a permanent
data set if the system crashes before the job ends.

Data Set OVer-Allocation

Another problem that reduces the available DASD space is
over-allocation of a data set. The design of a new system should
allow for a certain amount of growth in the files. Over-allocation of
data sets prevents B37 ABENDs when the data sets do grow. An example
of an extreme case of being over-allocated is a completely empty file;
the file is allocated but is never opened for output.

Needless Production Files

Ocoasionally a job stream oreates a permanent file that should be
deleted by a subsequent job stream, but for some reason the file is
left on the disk. At one installation, for example, job streams
created intermediate files to be used if a job needed to be restarted •
Most of these files were never·needed, yet they were never deleted and
occupied valuable space.

Inaotive Data Sets

Inactive data sets can also be an important factor in wasted DASD
space. They might have been heavily used a year ago but now are not
aotively used. To detect this type of problem, look at the date on
which the data set was last used (now being maintained by Seleotable
Unit 60), and either delete any unnecessary data sets or move them to
tape.

Repeated Data Set Names

This problem occurs when DASD files are allocated with JCL such as
UNIT=SYSDA. This can cause the same data set name to appear on many
different volumes; however, only one data set name is ever cataloged.
It is difficult to determine which is the correct version of this
file.

PDS Gas

Wasted space oan ocour inside a PDS. For example, as maintenance is
performed on a PDS, a member might be replaced. The old member stays

2

where it is and the new member is written at the end of the file. The
space that was taken up by the old version of the member is never
re-used until the PDS is compressed. If many such replacements are
made without compressing the PDS, wasted space within the PDS will
increase. This may also increase the time needed to find the member •.

VTOC Size

A VTOC itself can cause capacity problems. For example, the VTOC
might be too small. In this case, all the space on the volume cannot
be allocated because each new data set requires a minimum of one DSCB.
Hundreds of cylinders may be available on a volume but if the VTOC is
too small, DSCBs may not be available to allocate that space. A VTOC
can also be too big. A VTOC with too many DSCBs means that the VTOC
can never be completely used, which wastes space. In addition, a VTOC
must be an unblocked data set with keys. This can cause performance
problems, and is discussed later in this paper.

VSAM Files

VSAM files can be over-allooated, have unusable spaoe, be left behind
in production job streams, and oan be inactive. VSAM is basically a
black box. It is very difficult to find out how much wasted spaoe
these files contain.

Volume Fragmentation

A volume can have enough total free spaoe to servioe a request but
still be'unable to do so because the space is in small fragments. For
example, if an operation requires ten contiguous oylinders, and the
volume has five in one plaoe, four in a second, and two in a third,
the operation cannot be done. There is enough free spaoe, but it is
not oontiguous. The operation must wait.

CKD Architecture

DASD architecture is itself the cause of many capacity and performance
problems. The count, key, and data (CKD) arohitecture was designed
twenty years ago, but today it wastes too much space.

Even a DASD track that is fUll has many gaps in it (see Figure 1).
Each record is followed by a gap, and increasing the number of records
increases the number of gaps. If the block size were smaller, more
records could be stored on the track, but this would also increase the
number of inter-record gaps.

3

N
......

Index
Point

End of
Track

RI
Data

• Known Uses of RO (Track Descriptor Record)
Count Field for Defectivel Alternate
Data Field for BDAM Track Balance

Figure 1. CKD Track Architecture

4

There are several problems with this architecture:

• Inter-record gaps

• Record a

• End-of-file record

• Keys

This architecture requires an inter-record gap between each pair of
records and even between the various pieces of an individual record.
This means much of the track is wasted.

What is Record a used for? It can be used to record a defective and
an alternate track pair. The count field of Record a on the alternate
track points back to the defective track (for which it is an
alternate). Record a can also contain the track balance. (BDAM files
only. For other types of access methods such as sequential and PDS,
the track balance is redundant.)

Is Record a needed? It maintains compatibility with the past, but it
serves no useful purpose in most modern cases. IBM is providing skip
displacements on its newest devices, which will dispense with the
defective and alternate track linkage. The purpose of skip
displacements is to do away with the serious performance problem of
moving the access arm away from a defective track to its alternate to
read the data on that alternate, and then dragging the arm back to the
next track after the defective one. On the other hand, Record a uses
only about one percent of the track, so removing it saves little
space. It is also possible to write data in Record 0, but the access
methods discourage this practice.

A third requirement of this architecture is an end-of-file record. It
is redundant in a sequential file because the end-of-file pointer is
also kept in the Format 1 DSCB. There is a software pointer to
end-of-file and a hardware end-of-file written after the last block of
data. This seems necessary in the case of a PDS to know where a
member ends, but the end of a member could also be stored in the
directory. An EOF record has the smallest possible block size (zero),
and this makes the least efficient use of the track.

The key also causes problems. Files are not typically created with
keys, but twenty years ago IBM designed many critical system files
this way. For example, the VTOC is an unblocked file that has a key
length of 44 and a data length of 96. The SYSCTLG data set contains
an 8-byte key and a 256-byte data field. PDS directory blocks also
have an 8-byte key and a 256-byte data field. ISAM files all have
keys. Any other type of user file could conceivably have keys as
well. Keys take up a great deal of space on a track and, depending on
the channel program that is generated to process this file, may cause
serious performance problems when being searched. This paper
discusses key searches in greater detail in the performance section.

5

~
~

Block Size

The block size, or length of a data record written on a track, can be
inappropriate. The optimum size varies from device to device, so what
may be an efficient size on one device may not be on another. This
can cause problems; for example: when programs, JCL, and systems have
been designed around a particular device and its optimum block size.
If that device is replaced with one having a different optimum block
size, the once efficient system may now waste a great deal of track
space.

Figure 2 shows the percentage of a 3350 track that is used depending
on how many blocks are written on the track.

The graph illustrates the percentage of the track used by the
following special data sets which have fairly small block sizes:

Data Set

VTOC
PDS Directory

SYSCTLG
VSAM Catalog

Percent Utilized

50S
65S
65S
75S

Table 1 shows what can happen over a period of years. Twenty years
ago, 2,311 tracks were optimized for a TSO card-image data set that
had a logical record length of 80. A block size of 3,600 was good
because it used 99S of the track. The 2314 device types with the same
block size use only 49S of the track. Note in Table 1 that a block
size of 3,520 on a 2314 utilizes 96.5S of the track.

The same block size (3,520) on a 3330 results in only 81S track
utilization. Decreasing the block size to 3,120 increases the track
utilization to almost 96S.

The optimal block size on a j330 yields only 82$ track utilization on
a 3350. Increasing the block size to 6,160 on a 3350 increases track
utilization to 97S.

Results for the 3375 and 3380 devices are similar.

Table 1 also shows how difficult it is to select a block size that is
optimally efficient for any two device types. In addition, it
demonstrates the effect of the number of blocks per track on the
usage.

Careful analysis is required to select effective block sizes. That is
why many users simply pick a block size at random or use unblocked
files.

An analysis of the block sizes used in several data centers indicates,
surprisingly enough, that the most common block size used is 80. For
example, studying one volume on which 99S of the tracks were allocated
showed that only 65S of the allocated space was actually used.

6

85
80
75
70
65
60

55

50

45
40
35

30
25
20

15
10

5
o

No. of
Blocks
Per
Track

o 10 20

Figure 2. 3350 Track Use

7

Table 1. Percentage of Track Utilized

(LRECL = 80)

Block Size 2311 2314 3330 3350

3,600 99.3(1)" 49.4 82.9 94.4
3,520 97.1 96.5(2) 81.0 92.3
3,120 86.1 85.5 95.8(4) 81.8
6,160 84.5 94.6 96.9(3)
5,520 75.7 84.7 86.8
5,440 74.6 83.5 85.6
4K 56.2 94.3 85.9
6K 84.2 94.3 96.7

19,040 99.8(1)
N 9,440 ~ - 6,160 96.9(3)
~

4,560 95.7(4)
3,600 94.4(5)

47,440
23,440
15,440 81.0
11,440 60.0
9,040 94.8
7,440 78.0
6,320 66.3
5,440 85.6
4,800 75.5
4,240 88.9

• Number in Parentheses IndIcates Number of Blocks Per Treck

a

3375 3380
91.0 83.4
88.9 81.6
87.6 85.4
86.5 90.8
93.0(6) 81.4
91.6 91.7(8)
92.0 86.3
86.3 90.6

80.2
79.5
90.8
86.4
83.4
~
98.7(2)
~
~
95.2(5)
94.0(6)
93.2(7)
91.7(8)
~
~

Furthermore, inter-record gaps occupied 111 of the tracks in use. A
total of 43S of this pack was unused because of gaps, unused space at
the end of allocated data sets, or a very small amount of unallocated
space. Only 57S of this volume contained user data, but the volume
was completely allocated.

Data Compression

To show how the lack of data compression can waste space, consider a
TSO session which usually generates aO-byte card images. When a card
image is saved in a sequential data set or a PDS, all ao bytes of that
logical record are written on a track even though many of those bytes
are blank. Using an interactive text-editing system or one of the TSO
enhancements to compress the card images and squeeze out blanks means
that fewer bytes are written on a track, which saves space.

Allocation Unit Size

The smallest unit that can be allocated is now and has always been one
track. On a 3380, one track equals 47,440 bytes. That is more
storage than was available on many whole processors twenty years ago.
This means, however, that storing only one aO-byte card image takes
47,360 bytes of overhead (59,200 percent).

Solving Capacity Problems

There are few good tools to report on DASD space usage. IBM offers
IEHLIST, but it reports only the total number of cylinders and odd
tracks that are available. It does not determine what is a good block
size and what is not. A PDS is very deceptive. The last block
pointer of a PDS may imply that the PDS is 90S full (or, rather, that
90S of it is used), but it cannot calculate how much of each track is
being wasted. This is because there may be multiple members on one
track, which means multiple end-of-file records and possibly multiple
short blocks on that track. There may be whole members of unusable
space until that PDS is compressed.

In 1978, the SHARE LSRAD report recognized all these problems. The
report asked IBM to eliminate the need for users to worry about
problems such as region size, block size, record format, number of
buffers, and device capacity. To date, IBM has not removed any of
these necessary evils. Today, end users can't be concerned with these
problems. Can they be avoided?

Human Solutions

The first solution is to educate users to solve their own problems.
Telling users what block size to use is an alternative, but a good
size for one user may not be for another. Users can be encouraged to
put small sequential files into a PDS, but then the PDS must be

9

N

periodically compressed; if a user forgets the compression, he will
suffer an ABEND. Also, users can be encouraged to delete their data
sets when they are no longer needed, but the typical user reaction to
this ranges from hilarity to hostility.

Software Solutions

The second solution is to have software manage DASD space
automatically. Some products or programs that address capacity
problems are shown in Table 2.

For the system-created temporary data sets, use IEHPROGH or a
superscratch program that may be available on the SHARE HODS tape.

There are a number of packages available to solve the problem of being
over-allocated, inactive, empty, not accessed for a long time, or not
cataloged. These include ASH2, DF/DSS, DHS/OS, FDR/COHPAKTOR/ABR,
HSH, PAC/HASTER, and UCC3.

There are three packages that can reduce wasted space in a PDS: ASM2,
PAC/HASTER, and UCC3.

To solve the problem of a too small or too large VTOC, there is
FDR/COHPAKTOR that makes it easy to change the size of a VTOC.

Performance Problems

The second major area of DASD management where problems can occur is
performance. Some of these problems are.

• path contention

• spindle contention

• data set contention

• VTOC

• fragmentation

• keys

• VTOC - catalog interaction

• SYSCTLG

• block size

• Link-List and STEPLIB

• hardware reliability

10

Table 2. Software Solutions to Capacity Problems

Problem Software Solutions

Systems-created Super scratch, IEHPROGH
temporary data
sets

Over-allocated, ASH2 (Cambridge Systems
inactive, empty Group),
not recently DF/DSS,HSH (IBH)
accessed, not DHS/OS (SHH)
cataloged FDR/CPK/ABR (Innovation

Data Processing)
PAC/Haster (CGA Computer

Associates)
UCC3 (University Computing

Company)

PDS gas ASH2,PAC/Haster,UCC3

VTOC Size FDR/CPK

11

N
~

c.n

Path Contention

There are several types of path contention. One type is shared DASD,
where two or more processors share DASD units. When the first
processor wants to access a path, it may find that the device is busy
because the other processor is doing I/O to that device. The other
processor also may have reserved the device, in which case it is not
busy, it is VERY busy. The device remains busy for an unpredictable
amount of time depending on what program has done the reserve. For
example, the Linkage Editor does not issue the release until the end
of step (possibly several minutes later).

Other types of contention are channel contention, control unit
contention, head of string, and/or end of string. Scme new devices
available from certain vendors allow I/O paths through either the
lowest- or the highest-addressed device in a string.

Spindle Contention

Wi thin the same volume, there will be contention if there are two or
more data sets being aooessed at the same time. That means the aooess
arm will probably be moving, thus oausing seek time. Another type of
spindle oontention is exemplifed by the STC 8650 devioe. The STC 8650
contains two logioal 3350s in one physioal devioe with only one
moveable aooess arm. If seek contention is oonsidered in·a case like
this, one has to. be aware of data sets that are being used ·on the
other logioal volume as well. One other oause of seek contention is
when multiple jobs simultaneously aooess the same data set.

Data Set Contention

The types of oontention described above may affeot any data set that
is needed by the TSO subsystem, and this impacts performanoe. The
Master Catalog, user oatalogs, swap data sets, and paging data sets
may all be affeoted by oontention, and that affeots response time.
The VTOC, Link List, STEPLIB, SYS1.UADS, BROADCAST, HELP, JES SPOOL
volumes, user files, or even PROCLIBs may be affeoted.

An artiole was reoently published that disousses CICS performance
(Referenoe 1). It desoribes a problem that oan exist on any
interaotive system. A paging file is on a volume that also oontains a
data set that is supposedly rarely used. It was found that this data
set was frequently being used, whioh interfered with the paging system
and resulted in muoh longer response times for all the CICS users.
The same thing can happen to TSO; if a oritioal system data set is
interfered with, TSO performance suffers.

Slebo Friesenborg, who works at IBM, Gaithersburg, has stated, "There
is no suoh thing as a low-aotivity data set." There are only
high-activity data sets that are frequently used and high-aotivity
data sets that are infrequently used. No matter whioh type is
aooessed, the computer performs I/O operations on the data set as fast
as it possibly oan.

12

As an illustration, Figure 3 shows a typical high-performance 3350
with two cylinders of fixed heads. Under the fixed heads is a
critical system data set SYS1.HOTFILE. Scmeone got the bright idea
not to waste the other 552 cylinders, so there is another file on the
same volume - SYS1.NEVER.USED. No wonder response is terrible.
Analysis of the volume I/O shows that SYS1.NEVER.USED is being
accessed, which means it is interfering with the ability of the system
to get to that critical file. If the· data set is never used, it
should be moved to tape. If it is used, it ruins performance being on
this volume, so it should be moved to another. To achieve the
expected performance gain from these fixed heads, you must be prepared
to waste the rest of the space of the volume.

VTOC

Another type of performance problem involves the VTOC. The VTOC is an
unblooked file that has keys. What does being unblooked do to the
size of the VTOC?

The last four major devioe types from IBM have so many tracks per
volume that a huge VTOC may be needed, espeCially on a TSO storage
volume where there oould oonoeivably be thousands of very small data
sets, eaoh perhaps only one track long. It is possible, therefore,
for every single traok on that volume to be a separate one traok data
set. There ought to be a VTOC that would allow the entire paok to be
allooated that way. A VTOC that big, however, will have to be 21
cylinders long on a dual-density 3330, 12 oylinders long on a 3350,
and 17 oylinders long on a 3380 beoause the VTOC has a very small
blook size. Table 3 shows the maximum size of a VTOC for these four
reoent devioe types.

. What is the performance impaot of a huge VTOC? Whenever a new data
set is allooated, the system must first search the VTOC to see if a
data set already exists with the same name. It may have to scan all
12 oylinders of a 3350 VTOC with 30 traoks in eaoh cylinder, or 360
revolutions. This will take six seoonds. Onoe the system knows there
is no duplioate data set name, then it. must searoh the VTOC again to
find the first available Format 0 DSCB to turn it into a Format 1
DSCB. On the average, this will take a searoh of one-half of the VTOC
if you have a TSO storage volume where the VTOC is essentially full.
If the storage volume is filled with very small data sets, then these
timing estimates are reasonably olose. Thus, it oould easily take 9
seoonds to allocate a new data set on a 3350. That is very poor
response time. It is also poor for the rest of the system beoause
during those 9 seconds DADSM is doing Multi-Track Searoh Key Equal
operations on a whole oylinder at a time. This keeps the path busy
and everyone else looked out of the path for most of those 9 seoonds.

13

1:\0
~
<:I)

CYL. ° 1 3 555

Sys1.Hot.File

(Fixed Heads)
Sys1.Never.Used ..

Figure 3. Typical High-Performance 3350

14

Table 3. VTOC Size on TSO Storage Volumes

Device Type 3330-1 3350 3375 3380

Tracks Per
Cylinder 19 30 12 15

Cylinders
Per Volume 808 555 959 885

Tracks Per
Volume 15,352 16,650 . 11,508 13,275

Track Capacity
(Max. R1) 13,030 19,069 35,616 47,476

DSCBs
Per Track 39 47 51 53

Max. F1
DSCBs Needed 14,968 16,303 11,286 13,029

Max. VTOC
Size (Tracks) 384 347 222 246

Max. VTOC
Size (Cyls.) 21 12 19 17

15

~
-..J

Fragmentation

A TSO storage volume may contain many small fragments of available
space. This causes long chains of Format 5 OSCBs that have to be
updated whenever a . new data set is allocated or an old data set is
extended, scratched, or released.

Search Key Equal Multi-Track Operation

During the time the VTOC is being updated, a shared OASO will be both
busy and reserved. Table 4 shows two channel programs. The only
difference between these two channel programs Is the third command.
Channel Program A has a Search 10 Equal command, which causes at most
two revolutions of the track before either a record is found or a
record not found condition is detected. Channel Program B, on the
other hand, has a Search Key Equal Multi-Track operation because this
file has been allocated on a cylinder boundary and the file has keys,
such as a VTOC, SYSCTLG, or a POS directory. Channel Program B might
not end until the entire cylinder has been searched, which, in the
case of a 3350, will mean 30 revolutions, or about one-half of a
second.

VTOC - Catalog Interaction

On TSO storage volumes, there are typically only three types of data
sets. There is always a VTOC, there may be a system catalog, and
there will be user data sets almost all of which will be sequential or
POS.

If there is a catalog on this volume, there is usually a heavy
interaction between the VTOC and the catalog. The reason for this
interaction is that whenever a data set name is entered at a terminal,
the TOO subsystem must do a catalog look-up to find out what volume
that data set is on. First, the system looks in the master catalog
and it finds the User 10 as a CVOL pointer to a specific volume. Now
the system must go to that volume and read through the catalog on that
volume, but the system does not know where the catalog is on that
volume. After all, you may have moved that catalog since the last TOO
command was entered (something we do all the time I) • Maybe someday
IBM will keep such pointers in main storage like the UCB pointer to
the VTOC. So first the system has to search the VTOC on that volume
to obtain the Format 1 OSCB for the catalog. Once the extents of the
catalog are known, the system must do IIOs to the catalog itself until
it finds the block that describes the data set name.

Assuming the data set is on the same volume as the catalog just
searched, even more interaction is required because next the system
has to go back to the VTOC on this same volume to locate the Format 1.
OSCB that describes the data set. This 1/0 used to be another
Multi-Track Search Key Equal operation, but IBM has finally seen the
wisdom of storing a pointer to this OSCB within the catalog entry. So
at least the whole VTOC does not have to be searched now to find the

16

Table 4. Two Channel Programs

"Happy"
Channel Program

g
Seek

Set Sector

Search 10 Equal

TIC *-8

Read/Write Block

"Unhappy"
Channel Program

Q
Seek

Set Sector

Search Key Equal Multi-Track

TIC *-8

Read/Write Block

17

N
00

DSCB for a cataloged data set. Now the system can go directly to that
DSCB but it must still go back to the VTOC and do one more I/O. Thus
every time any TSO command is entered that involves one of your user
data sets, there will likely be at least two interactions between the
VTOC and the catalog on that volume.

Since the first of these interactions involves looking through the
VTOC to find the DSCB for the catalog, the catalog should be the very
first data set that is ever allocated on that volume. This causes its
DSCB to be as close as possible to the beginning of the VTOC. Then
when that Multi-Track Search Key Equal operation begins, it finds the
DSCB of the catalog very quickly. All of this interaction between the
VTOC and the catalog causes some seek time to occur unless the VTOC
and the catalog can be placed within the same cylinder, or one of them
under fixed heads. A VTOC, however, may be twelve cylinders long, all
of which will not fit under fixed heads.

SYSCTLG

Another problem is that the SYSCTLG data set has hardware keys, so the
problem of Multi-Track Search Key Equal commands still exists in an as
Catalog.

Block Size

Another performance problem mentioned before is block size. The VTOC
must be unblocked, which causes performance problems. A SYSCTLG and a
PDS directory are both blocked, but they have very small blocks.

Richard Schardt, who works for IBM at Gaithersburg, Maryland, wrote an
IBM pUblication entitled "An MVS Tuning Perspective" in 1981. In it,
he said, "Approximately seventy-five percent of the problems reported
as poor MVS performance can be traced to some kind of I/O contention."

He also stated that a recent survey of over a quarter of a million
user data sets from 47 different installations showed two-thirds of
all data sets were sequential. He studied the sequential data sets
and found 85S had block sizes of 4K or less, 70r, of all those data
sets were 2K or less, and 40r, of all those sequential data sets had a
block size of 500 bytes or less.

A non-optimum block size causes more EXCPs than should be necessary in
order to read or write the whole file. The more EXCPs are done, the
more CPU time will be used because each EXCP executes 5,000
instructions. The elapsed time to process that file is longer, and
the path stays busy for a much longer time than necessary. Also, the
file requires more DASD space than would be necessary with a more
optimal block size.

18

Link List and STEPLIB

Another type of performance problem that can occur in a TSO
environment is with Link List and/or STEPLIB. These have PDS
directories that must be searched, and the normal channel program that
is generated to search a PDS directory has a Multi-Track Search Key
Equal command. If your Link List has many libraries concatenated, you
can waste a lot of elapsed time and keep those I/O paths busy for too
long if the libraries are in the wrong sequence I

Hardware Reliability

The final type of performance problem discussed here is hardware
reliability. A soft data check may cause a DASD record to be re-read
many times before the control unit decides that the error is
correctable. Each re-read operation costs another revolution of the
device, which means another 16.7 milliseconds. The tracks where soft
errors occur must be identified and remedied.

Performance Solutions

What are some ways to address DASD performance problems? (See Table
5)

For shared DASD types of problems, there are three products available:
GRS (Global Resource Serialization), MSI, and SDSI.

To solve the VTOC performance problems requires use of the indexed
VTOC product (DF/DS) from IBM for your TSO storage volumes. Indexed
VTOCs eliminate the Multi-Track Search Key operations by having a
second copy of the VTOC which is in a pseudo-VSAM format and VSAM
files do not have real hardware keys written on the tracks. This
pseudo-VSAM file can be searched very quickly to determine if there is
a duplicate data set name, and also the Format a and Format 5 chains
are kept in a different form so they don't have to be searched and
updated the same way they used to.

The multi-track key searches in catalogs can be eliminated by using
VSAM Catalogs instead of as Catalogs.

To address the problem of non-optimal block size or certain other
types of data set attributes, there are some user exits available,
such as the dynamic ·allocation exit, described in the Job Management
Logic manual. Its name is IEFBD401. There are also three user exits
now with the DF/DS product.

To reduce the problem of load library or Link List performance, there
are five possible software solutions. PMO from Software Module
Marketing dynamically manages Link List or a STEPLIB. TSOMON from
Morino Associates describes which TSO commands are used most
frequently; this can be misleading, however, because one TSO command
might result in many different modules being loaded from Link List or

19

~
......
~

Table 5. Performance Solutions

• Shared DASD

GRS (IBM)
MSI (CGA Computer Associates)
SDSI (Duquesne Systems)

• Contention

Balance I/O Workload
Dedicate Channel Or String To Sub-System

• Seek Analysis - Determine Data Set Activity

• Indexed VTOC (IBM)

• VSAM Catalogs

• Data Set Attributes (Blk Size, Cyl. Alloc.)-User Exits

Dynamic Allocate (IEFBD401-Job Mgmnt. PLM)
DF/DS (IGGPREOO,IGGPOSTO,IFGOEXOB)

• Load Libraries (Link List, STEPLIB)

PMO (Software Module Marketing)
TSO/MON (Morino Associates)
FastDASD (Software Corp. of America)
MVS/XA (IBM)
IMS Virtual Fetch (IBM)

• PROCLIB

FastDASD (Software Corp. of America)
EasyPROCLIB (Software Corp. of America)

• Reliability

Alarm (Tagg Associates)
UCCR+ (University Computing Co.)

DCR (Software Corp. of America)

• Fixed Heads on Storage Volumes

Not on Latest Devices
VTOC Won't Fit
Catalog, VTOC Index

20

from a STEPLIB. The third option is to use a seek analysis program,
especially one that lists the load library members being accessed,
because this can help determine which modules to make resident or put
into a BLDL list. The only seek analyzer the author is aware of that
can report on PDS member accesses is FastDASD. It works on any type
of PDS -- load library, PROCLIB, source library, SMP, etc. It can
also be used to determine the best sequence for all the concatenated
libraries of the Link List. When going to MVS/XA, all the directories
of the Link List will be in virtual storage (akin to a BLDL entry for
every member). This will eliminate PDS directory searches to fetch a
module at the expense of the paging subsystem. But still, the module
must be fetched. There is only one way to keep all members of a
library in storage, and that is with the new Virtual Fetch in IMS.

In addition to a load library, there might also be performance
problems from a PROCLIB because it is also a PDS which may have a
rather large directory that will need to be searched. PROCLIB members
cannot be made resident or put in a BLDL list, but this type of PDS
can be tuned if a seek analysis program is available that identifies
the most actively used members. The PDS can be organized by copying
it and moving the most actively used members together and as close as
possible to the directory. There is also a program called EasyPROCLIB
which allows as many different PROCLIBs as desired. Each TSO user can
have his own private PROCLIB if he wants. This will cause most
PROCLIBs to be very small, thus allowing them to be searched quickly.

In the area of reliability, two products will report problems with a
device or a particular track on a device. There is ALARM and UCC
Reliability Plus. There is also one product that will actually repair
a hard data check error. This product, DCR, which stands for Data
Check Recovery, can make an unreadable record readable once again.

Should you have fixed heads on a TSO storage volume? Perhaps, but
they are not available now on the latest devices such as the 3375 and
3380. Also, the VTOC now will no longer fit in the fixed heads
because. a 3350 can have only two cylinders under the fixed heads, and
a 3350 VTOC could be twelve cylinders long. Some possible categories
for fixed heads on a storage volume would be an OS Catalog, a VSAM
Catalog, or perhaps the VTOC Index data set.

A seek analysis (see Table 6) or an I/O analYSis package could
identi fy which particular data set on a storage volume ought to be
under fixed heads. Generally, the most heavily accessed data set on a
volume should be under fixed heads if it will fit.

To attack the channel, control unit, and string contention problems,
there are two schools of thought. One idea is to balance the I/O
workload, resulting in the same percentage of I/O operations on all
channels, control units, and heads of string. But this assumes that
all I/O is equally important and equally random. The other school of
thought is to isolate each subsystem from all other subsystems, thus
eliminating the possibility, for example, that IMS on one processor in
a shared DASD complex can interfere with TSO on another processor. To
do this, you have to dedicate a path to a particular subsystem. The

21

t'¢
t'¢
Q

Table 6. Seek Analysis Programs

FastDASD Seek
(Software Analysis

Q...app'!!r Corporation Freebie GTF PARS et29.!!!!l ~
(EDS) of America) (SHARE) (IBM) (IBM) (IBM)

Cross Volume Reporting no yes no no no no
(essential for load balancing)
Analyzes Multiple Volumes yes no yes
PDS Analysis no yes no no no no
PDS Reorganization no yes no no no no
Graphs no yes' no yes" no no
History File no yes no no no no
Shared DASD yes
Reference Card no yes no no no
Recommended Reorganization no yes no no no
Extra Features

Interfaces no yes'" no no no
TTR Reports no yes no no no
Defective Track no yes no no no

Graphs can be generated using SAS
Histogram of Seeks

••• FOR, COMPAKTOR, IBM Utilities

benefit of this approach is that response for that subsystem wiil be
predictable and thus tunable no matter what happens to the files of
other sUbsystems.

No matter which of these two schools of thought you subscribe to, you
need some type of program to analyze your I/O activity, to tell you
what the workload is on the different channels, control units,
volumes, which data sets are being accessed, and so on.

What are some programs that can analyze liD activity? There's DAPPER
from EDS, DASD Seek Simulator from IBM, and FastDASD. There's even a
free program on the SHARE MODs tape. IBM also has GTFPARS, MVS, and
VS1PT for VS1.

Summary

Managing DASD in a TSO environment calls for attention to capacity as
well as performance. There is no single vendor product that will do
everything. A combination of products is needed: at least one to
address capacity problems, and another to address performance
problems.

References

1. Bloom, Jack, "NERDC CICS Performance Considerations," pp. 45-57
of CME Newsletter, December, 1982 .. See especially p. 51.

2. Johnston, Ted, "3350s and Small Data Sets," pp. 223-228, CME
Selected Papers, Volume VI.

3. Kashmarek, Ken, "A Large Scale TSO System," pp. 631-643,
Computer Management and Evaluation Selected Papers, Volume VI.

4. Reed, M. L., "Managing DASD Performance to Satisfy Workload
Requirements," paper presented at CMG-XII Conference (December
1981) •

5. Schardt, Richard, "An MVS Tuning Perspective," IBM Publication
GG22-9023-01, 1981.

~ ~

