
~SHARE~

....
W
00

61

SHARE NO.

PLII

SHARE SESSION REPORT

A764 The PL/I-VSAM Interface

SESSION NO. SESSION TITLE

Dan Galender

78

ATTENDANCE

TYM

PROJECT SESSION CHAIRMAN INST. CODE

Tymshare, 20705 Valley Green Dr., Cupertino, CA 95014, 408-446-6775

SESSION CHAIRMAN'S COMPANY, ADDRESS, AND PHONE NUMBER

TITLE:
SPEAKER:

PROJECT:
SESSION:

PLII - VSAM Interface
Thomas J. Kinzer (IBM)
IBM Corporation
610 Lincoln Street
Waltham, MA 02254
pLII
A764 (Wednesday, August 24, 1983, 4:30 p.m.)

IBM grants to SHARE, Inc., the right to reproduce this document in the
Inc., proceedings. IBM retains its right to distribute copies of this
presentation to whomever it chooses. .

4/C/LEJ/l

SHARE,

The OS/VS PL/I - VSAM Interface

I. Introduction

The IBM PL/I Program Products have provided an interface 'between
PL/I RECORD I/O and VSAM since very early in the life of VSAlI.
The amount of VSAIl function available to PL/I users was
increased considerably by the support supplied by Release 3 of
the OS PL/I Program Products (and for DOS/VS PL/r users by
Release 5 of the DOS PL/I Program Products). This support
became available in December 1976.

This paper attempts to describe this support and its iMplementa
tion for OS PL/I users.

II. Topics

Section I
Section II
Section III
Section IV
Section V
Section VI
Section VII
Section VIII
Section IX
Section X
Section)(1
Section XII
Section XIII
Section XIV

Introduction
Topics
PL/I Record I/O Language for VSAM
PL/I Record I/O Implementation
VSAM I/O As Used by PI,/I
General Techniques Used in PL/I's VSAM Process ina
PL/I Record lID Modules for "SAH .
ESDS Processing - IBMBP'vAA
KSDS Sequential Clutput Processing - IB~mRVGA
KSDS and Path Processing - IBMBRVHA
RRDS Processing - IPMBRVIA
Alternate Indices
BUffering
Bibliography

1

.....
W
~

III. PL/I Record 110 Language for VSAM

The details of PL/I record 110 language are covered in the PL/I
Language Reference Manual. No attempt will be made here to
summarize them exhaustively in written form. Two figures are
supplied, however, which do specify the compatible combinations
of PL/I statement constructs, PL/I file and environment
attributes, and VSAM dataset attributes. (Figures 1 and 2.)

Each statement type is associated with one and only one bit
position in the bit strings. If that position is AND'ed
together for all the file attributes and dataset attributes
applicable to the open PL/I file, a "1" indicates the statement
is valid; a "0" indicates it is not. AND'ing together the
appropriate strings for a particular set of attributes gives a
resultant string defining (by the presence of "1" bits) the
statement types that are valid. Note that all record 1/0
statements are consistent with a VSAM RRDS!---

These strings and this table come from the PL/I OPEN module,
IBMBOPEA.

Some comments are in order, however, about some of these
statements and options in cases where their meaning has
apparently not been clear.

A. KEYED SEQUENTIAL Processing of an ESDS.

This support allows sequential processing with or without
retrieval of the RBA for any record which VSAM reads from or
writes to an ESDS. It also allows retrieval and update by
key. PL/I regards RBA's as four-byte character strings
which are obtainable from VSAM for use as keys. Using such
an RBA as a key should always result in successful retrieval
of a record and establishment of positioning for future
successful sequential processing (if desired). Use of an
invalid RBA as a key results in the KEY condition being
raised without positioning being established. Since KEYED
SEQUENTIAL processing allows access by RBA to an ESDS, there
is no need to support the DIRECT attribute for an ESDS.

B. KEYED SEQUENTIAL Processing of a KSDS.

This support allows retrieval (and update if the UPDATE
attribute applies) by key anywhere in the dataset. If a key
is specified and a record exists to match this key, the
record is retrieved and positioning is established for
subsequent sequential reads. If no record is found to match
the specified key, the KEY condition is raised, but PL/r
establishes positioning in the dataset at the next record
following where the missing record would have been, so that

2

sequential reads may be performed anyway. This provioes a
technique for "key-greater-than" processing. KFYPD
SEQUENTIAL processing also allows insertion of ne.' records
via WRITE KEYFROM statements either within or heyono the
current key range of the dataset. A failing WPITE operation
docs not cause positioninq to he estahlishen, and, in fact,
causes positioning to be lost insofar as PI,/I' s definition
of positioning is concerned. Under the current
implementation of PL/I.ano VSAI1, if an attempt to write to a
PL/I KEYED SP.QUENTIAL file (with or without ENV(SKIP» fails
due to a duplicate key connition, VSMI will establish
positioning at the stored record with the duplicate key. 11
sequential read will actually retrieve it, but the PL/J
language does not define this to he the case, and the PL/I
programmer should not, therefore, depeno on it. 11 PL/I
program should use a read by key to retrieve this record.

If GENKEY processing is required, the short (generic) key
should be supplied via a PL/I character string the lenqth of
which (or current length of which, if it has the VAPYINr:
attribute) is less than the length of the key. Otherwise,
GENKEY has no effect.

C. KEYED SEQPENTIAL Processing of an PROS •

This support allows a RRDS to be processen either
sequentially or by key (relative slot number). Assuminq
that positioning already exists, a READ without a key causes
the next non-empty slot's record to be rean. A RFAD \~ith
key specified returns the record stored in the specifiea
slot and establishes positioning for subsequent sequential
retrieval. If the slot addressed by the RFAD with key is
empty, PL/I raises KEY but establishes positioning at the
empty slot so that a subsequent sequential read will return
the record from the next non-empty slot. An attempt to
write (not rewrite) into a slot that is already occupied
causes positioning to be lost, with KEY (if KEYFR0M was
specified) or ERROR (if KEYFROII was not specified) being
raised. GENKEY cannot be specified for an a RPDS.

D. DIRECT Processing

The DIRECT attribute is not supported when one processes an
ESDS (and is not needed since KEYED Sr0UENTIAL processinq
provides the function). DIRECT processing requires the use
of exact full-length keys on a KSDS: GENKPY is not
supported. For an RRDS, DIRECT processing can be performed
using slot numbers.

For AIX processing, the AIX must have the IJNI0l1E attribute
(i.e., no duplicate alternate keys). If the alternate reys
are non-unique, KEYED SEOUFNTIAL processinq must he usea.

3

......
iI:..
C

E. The DELETF Statement

If no key is specified, the record just read will be
deleted. If a key is specified and the user has not just
read the records with that key, PL/I will read it and then
delete it. Such a request by key is not desirable if the
file being processed is associated with a PATH used for
processing a non-unique alternate index, since the record
read and deleted will be the base cluster record associated
with the first entry in the alternate index record. .~ich
record this might be is a matter of luck.

F. The REWRITE Statement

REWRITE is handled just like DELETE (above) except that
some additional length checking must be perforwed. Record
lengths in an ESDS cannot be changed when the record is
rewritten. The warning ahout alternate index processing
(above, under DELETE) is appropriate for REWRITE as well.

IV. PL/I RECORD I/O Implementation Overview.

The OS PL/I Optimizing Compiler and Checkout Compiler do not
build detailed control block structures for RL/J files. They
build a simple control block called the Declaration Control
Block (DCLCB), which contains the information wh ich can be
specified on a PI,/I file declaration. At execution time, PL/I
OPEN builds the PL/I and OS control blocks required to process
the dataset, loads the appropriate PI,/I I/O routine
("transf'litter"), and identifies (and perhaps loads) the
appropriate error handling and end-of-file modules.

This process can be seen on the following chart, taken from the
OS PL/I Transient Library PLM. (Figure 3.)

PL/I OPEN may be invoked explicitly via an OPEN statement, in
which case one or more files can be opened, or implicitly hy an
I/O request to a file which is not open. In this case, either
compiled code or the link-edited record I/O interface module
IBMBRIOA branches to an address obtained from PL/I's "Dummy File
Control Block" (built durinq PI,/I initialization). This address
does not point to OS Data Management or a PL/I transmitter (as
it would if the file were open) but to the implicit open entry
point of PL/I OPEN/CLOSE. The link-edited. OPEN/CLOSE bootstrap
module IB~'BOCLA loads the first of PL/I' s OPEN transients
(module IBMBOPAA) from the PL/I Transient Library.

IBMBOPAA is the "driver" of PL/I OPEN. It gets a parameter .list
from the OPEN statement (or builds one if an iwp1.icit open
request is being processed), huilds a control block called an
Open Control Block, and then loads IE/mOPBA to process non-IJSM'

4

STREMI or RECORD files (if there are any) followed hy IP"}10PF'A
to process VSAM files (if there are any). After those wodules
have completed execution, IBIlBOPIIA scanns the parameter list and
OCB to see if UNDEFINEDFILE should be raised for any files or if
PL/I CLOSE should be invoked to close PL/I files whose
associated datasets were opened with some sort of error.

The non-VSAM PL/I OPEN modnle, IFl~'BOPBA, builds a PI,/J: File
Control Block (FCB) and the appropriate r>CB for each non-"8M'
dataset in the list and then XCTL's to modules to issue the Of'
OPEN macro, validate information derived from OS control blocks
after the dataset is open, select and load the appropriate
non-VSAM transmitters, etc. The details of this are not qerPlane
to the present discussion, except for one special bit of
processing that IBMBOPBA performs; as it scans the OPEN
parameter list, skipping files declared with "n'vIRotJl-'ENT
(VSAM)", it issues the RDJFCB macro for each remaining dataset's
JFCB and looks to see if the dataset is really a VSAl1 dataset.
If it is, IB/,IBOPBA flags it as "SAM so PL/I VSAM OPEN can
process it later. (Actually, if the file declaration specified
"ENVIRONMENT (INDEXED)" and the dataset is a .'TSAM dataset,
IBlIBOPBA does a little extra cheCking for certain special cases
that require an ISAl1 DCB and VSAli's FIP. See the PI,/I
Programmer's Guide.)

In this way, most files ori<linally declared as using ISAM
("ENVIROmmNT (INDEXED)") end up using PL/I native VSAM support
if the dataset is actually VSAlI. In addition, in many cases a
VSAII ESDS, KSDS, or RRDS can be processed via a PI./I file
declaration originally coded. for 0f'All. In particular, if no
environment option for dataset orqanization \'TaS coded in the
declaration and no information incompatible with Vf'AM was coded,
the PL/I file can process an ESDS, KSDS, or RRDS. If
"RNVIFONllENT (CONSECUTIVE i" Wa s expl ici tly coded, an E'SDS can he
processed. VSAM datasets cannot be processed via PI,/I STPI'AM
files. Under /IVS JFCB's look the same whether built hy
scheduler allocation or dynamic allocation, and PI,/I can iletect
VSAM datasets to be associated with PL/I files not declared with
"ENV(VSAH)" under either TSO or batch. In the TSO fore<lround
under SVS (not HVS) this JFCB information is not available to
PL/!.

When non-VSAlI OPEN is complete, control returns to IRMBOPAII
which looks to see if there is any VSAlI dataset to open. If
there is it calls the PL/I VSAH open module, IBI'BOPF.A.

IPMBOPEA issues a SHOI'ICB macro to obtain the size of an)\.CB and
an RPL, gets some PL/I non-LIFO storage, in which it builds PL/I
FCB's and VSAM RPL' sand ACB' s for the \TSAr! datasets being
opened, opens them, issues SHOWCB macros for dataset
information, validates dataset information against PL/I file
information previously known, gets non-LIFO storage for control

5

~
0l:Io
~

blocks and perhaps a dummy buffer, selects and loans the proper
VSAM transmitter, issues any required POINT macros, and returns
to IBMBOPAA.

V. VSAIl I/O as Used by PL/I

To communicate with VSAM, the assemhler language programmer sets
fields in a VSAll Request Parameter List (RPL). These fields
specify which dataset is to be accessed by addressing its ACE,
the address and length of the user's I/O area (if. there is one),
the length of a short key, and processing options in a" field
called "OPTCD". After settina these fields in the RPL, the
programmer issues GET, PUT, POH'T, and perhaps READ, ~mI'1'E,
CHECK, and ENDREQ macros. The way the macros function is
conditioned by the various fields in the RPL.

The PL/I programmer codes PL/I READ, I'IRITE, REWRITE, UNLOCK, ann
perhaps WAIT statements. The transnitter must establish the
correct values of the RPL fields, issue the appropriate macros,
and interpret VSAM error information (if there is any) in PL/I
terms. It must see to it that the PL/I record I/O language is
implemented, and this means, for example, that PL/I file
positioning must be provided even though it sometimes differs
from VSAH's own positioning conventions.

VSAM OPTCD settings important for PL/I are reviewed below:

A. ADR/KEY (Addressed vs. Keyed).

"ADR" i!'lplies use of a Relative Byte Address, and thus
applies only to ESDS processing in PL/I. "KRY" iMplies use
of a logical key. This key is emhedded within each record
if the dataset is a KBDS. For an PRDS, this kev is not
within a record, but is a relative slot number.-

This distinction represents a VSAM distinction, not a PIo/T
distinction. If the PL/I progra!'l!'ler is to process via a
key, the PL/I file must have the KPYED attribute. This key
¥lill he a character strinq. The transmitter will set
/lOR/KEY in the RPL basen ';n type of re'luest and type of
dataset. In the PIo/! program an ESOS RRII, a KSOS logical
key, or an RRDS slot number are all keys.

B. FI'ID/BWD (Forward vs. Backward).

PL/I always uses FolD unless the user coded ENV(BKtVJ)) in the
file declaration. In this case PL/I OPBN issues a POINT
!'Iacro to establish positioning at the end of the dataset.

Backwards retrieval by key (full key, not generic) may he
done anYI.here in the dataset, but any sequential retrieval
(retrieval without a key specified) will retrieve the recorn

6

prior to the point of current positioning. If a backwarns
read by key results in a key-not-found condition, PI,/I does
not provide positioning for suhsequent sequential rean
requests. VSAM permits the user to switch hack and forth
between FWB and BWD, but PL/I does not support this
capability.

C. ASY/SYN (Asynchronous vs. Synchronous)

Normal synchronous processing returns control to the user
only after the request has heen "completed", meaning after
the RPL and user I/O area are available for reuse.
Asynchronous processing returns control to the user hefore
the user can safely reuse the RP~ and I/O area; the user
must issue a CHECK macro to gat error information and
re-synchronize with VSAll, thus being assuren of being ahle
to safely reus e the I/O area anc' RPI,. Note that the
question of when VSAM actually performs the physical I/O
operation is an entirely different question.

PL/I normally uses SYN, but if the user requests the EVF.NT
option on the I/O statement, PL/I will issue the I/O
requests in ASY mode and issue the CHECK macro at the user's
IVAIT statement.

D. KEQ/KGE (Key Equal vs. Key Greater Than or Equal)

This distinction is meaningful only for keyen retrieval
from a KSDS or RRDS. It specifies for a YSDS whether the
user insists on an exact !'latch on key or will take the next
higher record in the dataset. This distinction applies also
to an RRDS, but only for a POINT macro, not GFT.

PL/I always uses KEQ, except that after a keyen retrieval
attempt fails due to "key not found", PT,/I reestahlishes
positioning by issuing POINT using the sane key hut KGF.

E. FKS/GRN (Full Key Search vs. Generic)

This distinction is meaningful only for keyed retrieval
from a KSOS. It specifies whether the KBQ or K(;F. comparison
in (D.) above is to be made on the whole key or only on a
leading substring of it.

PL/I always uses FKS unless the "r;I;NKEY" environment option
applies. If GENKEY was specified a short key will he
compared only against a leading substrin~ of a key in the
dataset, the length compared being determined by the length
of the short key. If a full length key is specified, GRNKPY
has no effect, that is, the search si!'lply becomes a full key
search.

7

.....
0I:loo
N

F.

For example, suppose a dataset has seven-byte keys. If
GENKEY ~,ere not specified and the progral'l supplien a five
byte key fie~ a full key comparison'would be performed
using the supplied five bytes padded out to seven bytes ,~ith
blanks. If GENKEY had been specified, only the first five
bytes would have been comparen. If GENKFY had heen
specified and a seven-byte key provided, the search would
have become a full key search.

LaC/lIVE (Locate vs. Move)

Conventionally, this distinction differentiates hetween
processing in the buffers and moving the data to or from a
workarea. In VSAM, LaC may only he used for input-only
requests. This is of such limited usefulness that PL/I only
uses r,oc for READ IGNORE processing of datasets withollt
spanned records.

PL/I READ INTO and WRITE FROM stateMents are implemented
using MVE, with VSAM moving the data to or from the PL/I
record variable. If the PL/I file has the BUFFERED
attribute, so ,that READ SET and LOCATE SET statements may he
used, pr,/I OPEN allocates a buffer big enough to hold the
maximum-sizen logical record. READ SET and LOCATE SE~
statements are then implemented using this buffer and VSAM
MVE processing.

NSP/NUP/UPD (Note String position vs. No Update vs. Update)

These distinctions apply to the retrieval, rewriting, and
insertion of records. Their meaning with GET and PUT'macros
is as follows: '

GET UPD - Retrieve for update ann establish positioning.
PUT UPD - Pewrite and establish positioning.
GET NSP - Retrieve for input only, but establish

positioning.
PUT NSP - Write new record and establish positioning.
GET NUP - Retrieve for input and don't establish

positioning.
PUT NUP - Write new record and don't establish positioning.

For PL/I files that have the DIRECT attribute, positioning is
irrelevant, and PL/I uses either UPD or PUP. For PL/I KEYED
SEQUENTIAL files, positioning must be maintained, ann pr,/I l1ses
either UPD or NSP.

8

H. DIR/SEQ/SKP (Direct vs. Sequential vs. Skip)

These three critical distinctions represent the three VSAM
processing modes: direct, sequential, and skip sequential.

1. DIR implies that the user must supply a key (RBA for an
FSOS, logical key for a KSDS, or relative slot number
for an RRDS). PL/I uses DIR to process a Ksns or PRDS
if thc PL/I file declaration has the DIRECT attrihute.
In this case, PL/I requires a "full key" (F¥S) and a
"key equal" (KEQ) comparison, although "SAM itself
permits KGE and/or GEN for GET requests in DIR mode.

If a PUT macro is issued against a KSDS using DIR, ITSAH
finds the appropriate control interval by means of a
top-down index search, and places the record in it if
there is room for it. If there is not room, VSAH
"splits" the control interval at the record boundary
nearest the mid-point of the control interval. If?
control area must be split, it is split roughly in
half. Freespace percentages play no role in determining
whether there is room for a new record or a new CI when
an insert or update is performed in DIR mode.

A PUT in DIR mode causes an immediate write to DASf:'.
This immediate write, other DIR processing logic, hut
record insertion as though SEO were in effect can he
obtained hy coding "SIS" - Sequential Insert Strateqy.

2. SEQ implies that position is held in the dataset and
the user wishes to process forward (if FWD is in effect)
or backward (if BWD) from that position.

For a GET request, there is no way to specify a key.
Positioning in the dataset netermines which record will
be retrieved. Thus retrieval by key using SEO implies
that a POINT/GET macro sequence is required. If a
record was retrieved using GET UPD, a subsequent PUT
UPD will rewrite (and thus update) it.

The PUT macro in SEQ mode for a new record must be
clearly understood. PUT SEO conjures up the intuitive
image of writing the next tape recorn, and indeed, this
image is appropriate if the VSAM dataset is an ESDS or
an RRDS; a new record is always written at the end of an
ESDS, and a PUT SEQ to an RRDS causes the recorn to he
written into the slot at which VSMl is positioned. In a
KSDS, however, each record, incluninq the new one, has a
key embed den within it. The logical sequence of the
dataset is defined by the sequence of these keys; I7SAll
will not write a new record in the wrong place. For a
PUT SEQ, VSAH presumes that the new key is higher than

9

~

~
.::..
~

the key of the current positioning and Moves forward
through the dataset to the proper location in the
dataset at which to write the new record. If
positioning is not established or if the new key is
lower than the key of current positionin~, VSAM returns
an error indication and does not write the record. If,
to impleMent a PUT SEQ, VSAM must move forward past the
end of the current CI, it does so by searching the index
top down - a sort of implicit POINT.

PUT SEQ uses a special technique for inserting records'
into a KSDS so that in case a nUMber of record.s are to
be inserted at one spot in the dataset, VSM1 will be
able to insert theM efficientlv. If the new record
would have neither the highest" nor lowest key in the,
target CI, VSAM inserts it if it will fit and splits tha
CI at the point of record insertion if it will not fit.
If the new record would have the highest or lowest key
in the control interval, VSAll May place it in a new ('I
by itself so there will he plenty of space after it for
the "mass sequential insertion" that may be about to
occur. If the new record would have the lowest key in
the CI, but there is not room for it, VS)lJ1 will ahlays
put it in a new CI unless there is not only room for it
to fit, but room for it to fit while preserving the
free space percentage specified in the catalog. If the
record goes into a new CI and the Mass sequential
insertion does occur, the new CI's will contain free
space as specified in the catalog. In effect, PUT SI'(l
into the middle of a dataset is executed as though the
operation were in initial load of the dataset which
happens to be occurring in the middle of it, not at the
end.

PUT SEQ works similarly insofar as control area splits
are concerned. If a CI split would produce a new CI
that would not be the last eI in the CA, VS)lJ1 will split
the CA, but at the point of insertion, not in the
middle. If a new highest CI in the CT>. would cause the
CA's freespace to fall below the freespace percentage
specified in the catalog, VSAll will not split the CA but
will put the new CI at the beginning of a new CA.

F:xtension into a new CI or CA does no"t count as a C1 or
CA split in the VSMI statistics. --

It follows that if all insertions into a Ksrs are done
via PUT SEQ, a lot of freespace will be created,
preserved, and propagated, but little of it will be used
to hold new records. One might he well-advised to
create the dataset with freespace and then alter the
freespace percentages downwards after loading the

10

dataset, but before inserting new records via sequential
(PUT SEQ) processing.

PL/I primarily uses SE(l mode to access a "SAM dataset
associated with a PL/I SEQUENTIAL file. Records are
read sequentially by means of GET SEQ Macros. If the
file has the KEYED attribute, then records are retrieved
by key by using a POINT/GET macro sequence in SEQ Mode.

WRITE KEYFROM (or f.OCATE KEYFRmn is impleMented by PUT
SEQ if the key of current positioning is known and the
key of the new records is higher than the key of current
positioning. If either of these con8itions is not Met,
the record is written using PUT DIR,NSP.

It should be remembered that VSAM reads ahead when one
retrieves in SEQ mode and defers writing to disk when
one adds or updates records in SEO Mode.

3. SKP implies that skip sequential mode will be used, and
is meaningful only for processing a KSDS. GI'T and PUT
wi th SKP function like GET and PUT ~li th DIR in that the
user must supply a key, but differently in that SKP
requires that keys be supplied in ascending sequence.
SKP processing for ascending keys establishes
positioning by reading the sequence set rather than
searching the index top down. SKP functions like DIP
for inserting new records in that no atteMpt is made to
preserve feespace percentages, and CI splits and CA
splits occur at midpoint, not point of insertion. That
is, insertions done in SKP mode use "direct insert
strategy", not .. sequential insert strate'1Y".

Since VSAll will not insert a record in the wrong place
in a KSDS, it may have to position itself forward in the
dataset beyond the control interval associated with
current positioning. Hhereas VSAll uses a top-down index
search (implicit POINT) to Move forward to implement a
PUT SEQ request, it reads forward via the sequence set
for a PUT SKP request.

If the PL/I file declaration specifies "KEYED
SEQUENTIAL ENV(SKP)", PL/I sets the default processing
Mode to SEQ and uses SEQ for reading without a key
specified, but attempts to use SKP for keyed requests.
For a keyed read PL/I issues GET SKP if the key is
greater than the key of current positioning and POIN'!'
followed by GET SEQ otherwise.

For a write by key, PL/I issues a PUT SKP if the key is
greater than the key of current positioning and PU'!'
DIR,NSP otherwise.

11

.....

VI. Implementation Techniques l'sed in PL/I Processinq of 1!RArl

After the dataset has been successfully opened, there are a PL/T
File Control Block (FCB), a VSAM Access Method Control Block
(ACB), a dummy record buffer (if the PL/I file has the BUFFERED
attribute), a PL/I I/O Control Block (IOCB), and a pair of areas
in which to save keys (if the PL/I file has the KEYED
attribute). A VSA~l Request Parameter List has beep built within
the PL/I IOCB.

The PL/I control blocks listed here are not unique to PL/I's
VSAM support; they might be built (with some differences in
content) for data sets requiring other access methods. The Vr.AH
ACB and RPL are not built for any other access method that PL/I
supports.

The FCB contains various fields relating to PL/I I/O, and for
VSArl it includes the default settings of such fields in the RPL
as OPTCD, RECLEN, AREA, AREALEN, and KEYLP-N. These default
values were placed in the RPL when IBMBOPEA issued the GE~CP
macro to generate the RPL.

The IOCB contains in addition to the PPL, fields to hold backup
copies of the fields in the RPL. The OPTCD, AREA, AREALl'N, and
KEYLEN do not change unless PL/I changes them, so the PL/I
transmitter can generate in workareas in the IOCB the settings
required for the current request, compare theM to the current
settings in the RPL (without actually referencing the RPL) and
avoid issuing a HODeB macro unless it is really necessary. In
this way, PL/I can maintain the discipline of the /IODCB, SHOWCB,
TESTCB, GENCB interface without actually issuing any more of
these macros than absolutely necessary. Record length
represents a special case, since after a READ operation, the
length of the record just read is stored in the RECLE~ field of
the RPL. The PL/I transmitter does not retrieve it unless it
has to, (Le., unless the file has the SCII.LARVAPYING attribute,
the record variable has the VARYING attribute, or a record froM
an ESDS is to be rewritten). Thus, if the most recent operation
was READ, PL/I may have to execute an otherwise unneeded /10DCB
before executing a NRITE or REWRITF: because it doesn't know the
value currently set for RECLEN in the RPI,.

At the beginning of each I/O request, the default setting of
OPTCD is copied from the FCB into a workarea in the loeB. The
options are then modified as necessary for this request, and
required values of other RPL fields are determined. Finally, a

'common routine is invoked to compare the requisite fields to the
backup copies of the current RPL fields and a /IODCB paral'1eter
list is progressively built in the IOCB as mismatches are
found. At the end of this process, if a MonCB parameter list
has been started, it is completed and a single HODCB l!1acro is
issued. If MODcn is not needed, it is not issued.

12

VII. PL/I Record I/O Modules for VSArl

PL/I OPEN loads the appropriate transmitter to provide the
interface to data management. There are currently some
fifty-four of these modules in the PL/I Transient Library. They
all have names of the form:

IBMBRxyA

There are four VSAM transmitters, recognizable by the "V" as the
sixth letter of their names. They are:

IBllBRVAA - ESDS TransMitter
IBIIBRVGA - KSDS Sequential Output Transmitter
IBMBRVHA - KSDS and PATH Transmitter
IBMBRVIA - RRDS Transmitter

PL/I OPEN also at least identifies an error module and an 1'01'
module, but does not actually load them into storage unless the
prograM is running under PL/I multitasking. For "SAM there is a
single error module, and it handles EOF as well. Record I/O
error modules all have names of the form:

IBMBREyA

PL/I's error module for VSAM is IBMBREEA.

The transmitters receive each request, validate it, handle WAIT
statements and event variables if necessary, build the
par;;uneters needed by VSArl as described earlier, issue the /lOnCR
macro if necessary, issue the appropriate VSAM macros (GF:T, PUT,
POINT, plus CRECK for WAIT statements), and set flags for the
error module if any exceptional conditions arise. The
transmitter either returns control to the user, or loads (if
necessary) and calls the error module.

The error module sets up the paremeters (ONKEY, O~lFILE, ONCOOI':,
etc.) needed by the error handler and identifies the condition
to be raised based on information passed to it by the
transmitter. This does not include VSAM feedback (FDBK) fields,
since the transmitter has:already translated VSAM information
into' PL/I terms. When an attempt to read a KSDS or RRDS
declared with the KEYED SEQUENTIAL attributes causes
key-not-found, it is the error module which, just before raising
the PL/I KEY condition, issues a POINT macro with OPTCD KGE to
establish positioning for the user.

VIII. ESDS Processing - IBMBRVAA

This transmitter executes using the SE0 and ADR options. Any
WRITE request places the new record at the end of the dataset.

13

....
~

c.n

A READ KEY statement becomes a "SAM POINT/GFT macro seauence."
The KEYTO option allows RBA's to be retrieved. "

IX. RSDS Sequential Output Processing - IBMBRVG;>I

This transmitter performs only the functions of initial load and
resume load of an KSDS. It only implements ~~ITE KEYPROH, WPITE
KEYFROll EVENT, and LOCATE KEYFROM statements. Each new record
must have a higher key than any record already in the dataset.

x. KSDS and Path Processing - IR~BRVHA

This transmitter performs all functions associated with KSDS
processing except dataset loading. It processes alternate index
paths. It implements, in one context or another, every record
I/O statement defined by the PL/I languaae except WRITE or
LOCATE without KEYFROH.

If the PL/I file has the KEYED and SEQUENTIAL attributes, then
the default processing mode established by PL/I OPEN is SEO. If
ENV(SKIP) was not specified, SEQ is reinstated for every I/O
operation except an out-of-sequence !'/RITE, in ~lhich case PUT
DIR,NSP is issued. If ENV'(SKIP) was specified, SEQ is
tentatively reinstated for every I/O request (and used in a READ
request without a key specified), but PUT DIR,N8P is used for an
out-of-sequence WRITE, POINT followed by GET SEQ is used for an
out-of-sequence keyed READ, and SKP mode is used for all other
keyed requests.

PL/I DIRECT files are processed in VSAII DIR mode.

XI. RRDS Processing - IBHRRVIA

This transmitter performs all functions associated with RRDS
processing. In one context or another it implements every
possible syntactic variant of every record I/O statement defined
by the PL/I language!

The key used \~i th an RRDS is a relative slot nU!"1her, which from
VSAWs point of view is a binary integer. ",0 PL/I, clataset keys
are character strings, and the relative slot number is a
character s"tring eight bytes long. When the user supplies the
key, the key field must be a decimal number that either fills
the whole eight-byte string or is bounded before, after, or both
by blanks. vThen PL/I returns such a key to the user (e. q.,
KEYTO) the numeric digits will be right-justified and the
leading zeroes will be suppressed. One should code rather
carefully to minimize character-to-arithmetic conversions, since
they are performed by library call. It is best to use "PIC
'(7)Z9'" as the data type of the key.

14

XII. Alternate Indices

VSAH permits the user to define alternate indices over a KSDS or
an ESDS using any contiguous field w:i:thin the first 4096 bytes
of a record (and within the first segment of a spanned record)
as the alternate key. The maximum length of such a key is ?56
bytes. As the base cluster records are changed, VSAH "upgrades"
the alternate indices as necessary to reflect these chanaes.

To process a dataset by alternate key, one declares a PL/J file
just as one would for a KSDS. The execution time DD statement
points to a dataset name which is the name of a P;>ITP linking the
alternate index and base cluster. If the keys in the AIY are
UNIQUE, the PL/I file can have either the DIRECT or KrYFD
SEQUENTIAL attributes. If they are non-unique, the PL/I file
must have the KEYED SEQUENTIAI, attributes. For non-unique
al ternate keys, the SA~!EKEY BIF tells the user whether or not
the set of primary keys for an alternate key has been exhausted
as the user processes them sequentially.

It is possible to declare two PL/I files, point one to an AIY
path and the other to the base cluster, and process either or
both at the same time. There are no problems at all with doing
this for input-only processing. There are no problems doing
this with updates to either or both as long as both are PL/I
DIRECT files (in which case the AIX must have the UNIQUE
attribute).

Problems can arise when updating with both a path and base
cluster open if the AIX is non-unique (and thus must he
processed via a PLII KEYED SEQUENTIAL file) and/or the base
cluster is processed as a PL/I K~YED SEQl1ENTIAL file.

Users should be very careful with application prOararns that do
such processing. There is no way for the PL/I programmer to
deal ~li th the VSArl multiple-string processing issues that arise
in such a program.

XIII. Buffering

OS/VS PL/I-VSAM users can control buffering by specifying RlJllNI
and BUFND either in the JCL or in the PL/I file declaration.
For Ksns processing that does anything except read the RSDS
sequentially as though it were a reel of tape, it is essentiaJ
to good performance to provide enough index buffers (via BUnTI)
to enable VSAM to do top-down index searches efficiently. T~us
a PL/I file declaration that specifies RF.YF'D SEOUFNTIAL (with or
without ENV(SRIP» or DIRECT should specify a numher for BTJ1"NI
'larger than VSAW s default of one. The number specified should
exceed the number of index levels shown in the VSAM cataloq for
the KSDS to be processed. '

15

......
"'" C)

Extra data buffers are helpful for doing CA splits and for
reading ahead sequentially. They are not helpful if one's
sequential processing is really direct-processing by key with
occasional "runs" of sequential processing interspersed with
lots of repositioning in the dataset. This latter situation is
likely not uncommon for PLiI KEYED SEQUENTIAL processing.

A special case of interest involves an application prograM which
reads an input transaction file and either updates an existinQ
master file record (if such a record exists) or writes a new
record into the master file. One can imagine two scenarios for
such a program:

-Try to read the master file record. If it exists, update
it. If KEY is raised (due to key-not-found), build a new
record and write it.

-Build and try to write a new master file record. If KFY
is raised (due to duplicate key), read the record and
update it.

Host programmers instinctively implement the firs.t approach. If
any significant percentage (over five or ten percent) of the
transactions will actually result in adding a new record, the
second approach is more efficient because of VSAM buffering and
the .fact that a failed read-for-update attempt causes loss of
positioning.

XIV. Bibliography

A. SHARE/GUIDE Papers

B •

1. "VSAH Concepts and User P.xperiences", Tina "artin,
SHARE 45, August 1975.

2. "VSAM Application Desion and ImpleMentation", T •• 1.
Kinzer, SHARE 45, August 1975.

3. "New Releases of PL/I Products - A step Forward", T.
J. Kinzer, GUIDE 43, Novemher 1976.

4. "Recent Improvements in PL/I", T. J. Kinzer, SHAPF.
48, Harch 1977.

5. "VSAM PerforMance IMprovements for Random or
Alternate Index Processing", G. H. Royer, GUIDE 45,
November 1977.

6. "PL/I and VSAM: Forwards, Backwards, and Inside-Out,
Bob Stearns, SHARE 51, August 1978.

IBM PL/I Manuals

1. OS PL/I Checkout and Optimizing Compilers:
Language Reference Manual, GC33-0009.

2. OS PL/I Checkout Compiler: Programmer's Guide,
SC33-0007.

3. OS PL/I Optimizing Compiler: programmer's Guide,
SC33-0006.

4. OS PL/I Checkout Compiler: Hessages, SC33-0034.

5. OS PL/I Optimizing Compiler: Messages, SC33-0027.

6. OS PL/I Checkout Compiler: Rxecution Looic,
SC33-0032.

7. OS PL/I Optimizing COMpiler: Fxecution Loqic,
SC33-0025.

8. OS PL/I Transient Lihrary: Program Loqic, LY33-~009.

16 17

....
~
....:J

C.

D.

IBM VSAM ~lanuals

1. Planning for Enhanced VSAM Under OS/'1S, GC26-3842.

2. Os/VS Virtual Storage Access Hethod (VSAr~) Options
For Advanced Applications, GC26-3819.

3. OS/vs Virtual Storage Access Method (VSAM)
Programmer's Guide, (For VS1 R6 and MVS R3, 7),
GC26-3838.

4. OS/VS2 Access Method Services, (For MVS), GC26-3841.

5. Data Facility Extended Function: Access "ethod
Services Reference, SC26-3967.

6. OS/VS1 Access Method Services, (For 'lSI), GC26-3840.

7. OS/VS2 Virtual Storage Access Hethod (VRAIn Loqic,
(For MVS), SY26-3825.

8. OS/VS1 Virtual Storage Access r~ethod (VSAln Logic,
(For VS1), sy26-3841.

9. OS /VS2 SVS Independent Component: Access rlethod
Services, (For SVS), GC26-3867.

10. OS/VS2 SVS Independent Component: Planning For
Enhanced VSAM, (For SVS), GC26-3869.

11. OS/VS2 SVS Independent Component: VSMI Options For
Advanced Applications, (For SVS), GC26-3870.

12. OS/VS2 SVS Independent Component: virtual Storaqe
Access Method (VSAM) Programmer's Guide, (For SVS),
GC26-3868.

13. OS/VS2 SVS Independent Component: virtual Storage
Access Method (VSAM) Logic, (For SVS), SY26-38S7.

Other

1. Os/vs VSAM Sharing - A Technical niscussion (Part I),
Edward H. Daray, IBM Corporation, Palo Al to SysteMs
Center, G320-6015.

2. IMS/VS and OS/VS VSAM Buffer Options (Shared vs.
on-Shared P.esources), ~'layne Neikel & Fdward I!. Daray,
IBM corporation, Palo Alto SysteMs Center, G320-6035.

3. VSA!! Primer and Reference, G320-5774.

18

Masks which indicate valid statements. This table shows which
bits represent which statements.

1

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

BYTE 0 80 READ SET
40 SET KEYTO
20 SET KEY
10 I:-.ITO
08 INTO KEYTO
04 INTO KEY
02 INTO KEY NOLOCK
01 IGNORE

BYTE 1 80 INTO EVENT
40 INTO KEYTO EVENT
20 INTO KEY EVENT
10 INTO KEY NOLOCK EVENT
08 IGNORE EVENT
04 WRITE FRO~I
02 FRO~I KEYFROM
01 FROM EVENT

BYTE 2 80 FROM KEYFROM EVENT
40 REWRITE
20 FROM
10 FROM KEY
08 FROM EVENT
04 FROM KEY EVENT
02 LOCATE
01 KEYFROM

BYTE 3 80 DELETE
40 KEY
20 EVENT
10 KEY EVENT
08 UNLOCK
04 WRITE FRO~I KEYTO
02 FRml KEYTO EVENT

Figure 1

19

.....
oJ;o.

00

Bit Strings For Valid Combinations

DC X'26329~58'
DC X'FDEFFFF6'
DC X'FFFFFDFE'
DC X'918D6AAO'
DC X'FFF80008'
DC X'FFFFFCFE'
DC X' 00078306'
DC X'FFFD7EOE'
DC X'FFFAFDF8'
DC X'lFFFBCFE'
DC X'FF0673CC'
DC X'FDEFFFF6'
DC X'FFF8iCF8'
DC X'FFFFFFFF'

DIRECT
SEQUENTIAL
KEYED
NON-KEYED
INPUT
UPDATE
OUTPUT
ESDS
KSDS
UNBUFFERED
BUFFERED
NON-EXCLUSIVE
BKWD
RRDS

Figure

20

I/O slufemenf OPE.N Cl.O.sE.

IU18RZOA

8 .

IBMSOPA I8NEOCA

.I.3M8DnA

TrQ.tI~mj#er

21
FiJI.I~ 3: OPE.N/CLOS£

