
~SHARE~

=

We have gone over the IBM Instruments Engineerings Scientific Computing System
and I would like to finish with a coup of words about where we see this product
being used. In general most people are looking at it for at least three areas.
One, as a relatively low cost intelligent controller usually with some data
acquisition component to it. The IICS is a candidate for process modeling and
simulation in control situations. A second application area is as an
Engineering Scientific work station. This is a very powerful processor at
roughly 10,000 floating point instructions per second with the current level of
the operating system and that~ is without an optimizing compiler for FORTRAN or
Floating Point hardware. Along that line with up to 5 megabytes of memory and
the speed of the FORTRAN it obviously is very attractive at a FORTRAN
application engine and we see a signficant amount of interest as a FORTRAN work
station.

3/C/ear/7

SESSION REPORT
s===
=':SHARE5: --= A Field Study of Human Factors

~ __ ~:1.~_ ~~ __ M~.l ___ ~l~l!Y~!y~d_J_~~~De~.9:'JA,!:!.~L~Q~T.I~AN_~!'!,_Qg~ams 55"-__ _
SHARE NO. SESSION NO. SESSION TITLE ATTENDANCE

~~ __ ~~_lI),!!lI.i!,ll.J-<!£tQ.I"~ ______ _ Jim I.ipkis--______ ~
PROJECT SESSION CHAIRMAN 'NST. CODE

~~ura_~!: __ ;r:nstitute, 251 Mercer St., New York, NY 10012
SESSION CHAIRMAN'S COMPANY, ADDRESS. and PHONE NUMBER

A FIELD STUDY OF HUMAN FACTORS INVOLVED
IN DEBUGGING FORTRAN PROGRAMS

-2.12..-460-7166

Richard Ha1stead-Nussloch and Vance Sutton
IBM Corporation

Department C42/701-S
P.O. Box 390

Poughkeepsie, NY 12602

Phone: 914-463-6196

SHARE Installation Code: IBM

SHARE Human Factors Project

Session A053
Thursday 25 August 1983 10:15 A.M.

Permission to publish:

Permission is granted to SHARE to publish this presentation
paper in the SHARE Proceedings. IBM retains its right to
distribute copies of this presentation to whomever it
chooses.

....

ABSTRACT

Thirty-two professional scientists. engineers. and
programmers were interviewed about debugging FORTRAN
application programs. The study found that debugging
involves the four tasks of symptom location and
classification. bug location. hypothesis generation and
testing. and information gathering and selection. All study
participants want to debug from the level of the FORTRAN
source code. but are currently forced to lower. machine
oriented levels. When progress towards bug resolution
stalls. programmers will either try a different debugging
tack or rewrite the problematic source code; whereas.
scientists and engineers are likely to drop the program as a
method to solve their scientific or engineering problems.

INTRODUCTION

Seidner and Tindall (1) have outlined requirements for
interactive debugging facilities (IDFs). Their requirement
report indicates that IDFs are seldomly used on large
systems. but that debugging is an extremely important part
of program development. If IDFs are to be integrated into
the program development process. it is evident that their
characteristics must conform to user patterns. Ehrman and
Hamilton (2) elaborate on many of the features and factors
required to integrate debugging and IDFs into program
development.

One step towards this integration involves determining
how debugging currently is done. To take this step. we
conducted a field study of professionals who develop
application programs in their work. The study attempted to
analyze the tasks and procedures the professionals performed
in the debugging phase of program development. The analysis
was based on empirical data obtained through interview and
survey. The study results are presented here to provide
guidance for integrating debugging into program development.

STUDY OBJECTIVES

The objectives of our study were threefold:

1. Analyze the tasks that professionals now perform in
program debugging.

2. Identify the information used in debugging. and the
sources of that information.

3. Assess the current use of IDFs and other debugging
tools.

From the objectives. we identified two specific topics to be
included in the survey:

1. Specific debugging tasks performed

2. Information required to do those tasks

DEFINITIONS AND DISTINCTIONS

For our purposes. a ~ is an integrated unit of user
activity having specific goals. For example. compiling a
FORTRAN program is a task. but FORTRAN programming is not.
because it lacks specificity in its goals. We define the
job of debuoging as starting with a program that does not
work and endin~ with a working version of that program.
Furthermore. the survey was limited to programs that had
already successfully compiled. and could be loaded for
execution.

We distinguish between symptoms and bugs. A ~ is an
error in program specification. for example. labeling a
COMMON as VARSI instead of VARS1. A symptom is the result
of a bug. for example. attempting to divide by zero. From
this perspective. the job of debugging involves tasks of
determining where and what bugs are present in programs
based on the symptoms observed when one attempts to execute
the program.

METHOD AND PARTICIPANTS

To meet the study objectives. we conducted a survey
through face-to-face interviews at the participants' places

co

of work. A survey fDrm was used to ensure each interview
covered the questions in a standardized manner. The study
participants were all professional scientists, engineers, or
programmers who developed application programs (usually in
FORTRAN) as a part of their jobs.

RESULTS AND DISCUSSION

We visited ten major industrial and university computing
complexes. The following describes the study results and
discusses our interpretations of their meaning.

PARTICIPANT DEMOGRAPHICS

The study included thirty-two professionals. Nineteen
were scientists Dr engineers! thirteen were programmers. Of
the thirteen prDgrammers, three were trained as engineers
but were now programming to the exclusion of engineering.

USE OF AN IDF OR OTHER DEBUGGING TOOL

When debugging a prDgram, fDurteen Df the professionals
in the study said they do not use a debugging tODl! instead,
they place WRITE statements throughout the program to trace
its executiDn and determine the values of critical variables
as it executes tD completion. Table I shows the
distribution of scientists/engineers and programmers
according to whether an IDF or other debugging tool is used
Dr not:

Table I: Use of a debugging tool by profession

Scientists/Engineers PrDgrammers

Use debugging tDDl 7 11

No debugging tool 12 2

The Chi-square value for table I is 7.16, and with one
degree of freedom, is significant at p<O.01. The Chi-square
indicates that scientists and engineers tend not to use a
tool in debuggingl whereas programmers tend to use debugging
tools. This finding is not surprising given comments when
the study participants described their job responsibilities.
The scientists and engineers use the computer to perform
scientific studies and engineering analyses! the computer
is only one of many tools at the disposal of scientists and
engineers. If the computer does not deliver the necessary
help in the time required, an engineer or scientist will
choose another tODl instead of trying tD Dvercome the
difficulty with the program. Since a prDgrammer is
respDnsible fDr making prDgrams WDrk, he or she will invest
more time and effort in debugging, and consequently will be
more likely to use an IDF or other debugging tDol.

INFORMATION SOURCES IN DEBUGGING

Figur.e 1 shows the proportion of respondents who use four
informatiDn SDurces in debugging. The information SDurces
are ordered Dn the horizontal axis according to their
increasing semantic richness with respect to the FORTRAN
program. A striking feature of the graph is that all the
study participants use the source listing (frDm the
compiler) in debugging. As the informatiDn mDves further
away from the source towards the HEX level, its use
percentage decreases. No differences were Dbserved between
scientists/engineers and programmers on these percentages.

Figure 1 shows that the source listing is the mDst
valuable infDrmation source in debugging! indeed, the
participants whD used, for example, the PSW, indicated being
forced to that level in order to obtain necessary
information to simply IDcate a bug in the code. Some
additional cDmments made by the participants about the
information SDurces provide good insight into the value of
information sources.

The source listing appeared to play three key roles in
debugging. .

1. A map

2. NDtebook

3. SDurce of hypotheses

=

Percent of
Respondents
Who Use the
Information
Source

Figure 1:

100% 1
1 (100%)
1
1
1

75% 1 (78%)
1
1
1 (63%)
1

50% 1
1
1
1 (41%)
1

25% 1
1
1
1
1

0% 1------+--------+--------+---------+------
HEX PSW Map Source

(Dump) (Variables
or loader)

Use of information sources in debugging

The source listing functions as a map to guide the
overall debugging job. The respondents said they used the
source code to determine both how the program got into
subroutines (CSECTS), and where it could potentially go
following resumption of execution. They indicated the
source code allowed the use of subroutine names as major
landmarks. To them, this represented a significant
improvement over being restricted to hex addresses for
landmarks. The users said that they often make notes on the
source listing when debugging. The notes serve to remind
them of what transpired during the debug session, and what
corrections are required to fix the program. Finally, the
source listing provides users with information to develop
hypotheses about the bugs.

Over one-half of the respondents used information about
variables, e.g., a variable cross-reference map. The

primary use of this information was for bugs involving
typographical errors and labelled COMMON areas.

About one-half of the respondents used information from
loader/linker and operatin. system (PSW, hex dumps, load
maps, etc.) in debugging FORTRAN programs. In about
one-half of the cases, the respondents indicated use of
information at the hex level was a function of necessity
rather than desire.

Although not listed in Figure 1, all of the respondents
said they used information about program execution, either
in the form of program output, or the output of a formal
debugging tool. Through the program output, the behavior of
the program can be traced. Symptoms appear in the output to
aid in error and fault diagnosis. The comments indicated
the program output has information value that is second only
to the source code.

Overall, the primary sources of information for debugging
appear to be source listing and the program output. Most
respondents said they try to focus on the source code in
debugging, and all use it as a map and notebook in fixing
bugs. The primacy of the source code in debugging is
reinforced by the responses received to a question about the
level that the respondents would desire to work when
debugging (see below). All the respondents indicated a
desire to stay at the FORTRAN source level, and not be
required to work at the machine level, for example, decode
PSWs and compute hex offsets.

PURPOSES OF DEBUGGING

The professionals included in the study were asked
whether they used a debugging procedure for the following
five purposes:

1. Bug locat i on

2. Data error location

3. Execution-path error location

4. Program testing

5. Error patching (temporary)

~

=

Almost all the respondents use debugging techniques to
locate bugs, data errors, and execution-path errors. This
makes sense because debugging techniques are designed to
locate bugs and errors.

About one-half of the professionals in the study
regularly use a debugging technique for program testing.
The other one-half either do not test programs or use some
other methodology. These data show that more
scientist/engineers regularly test programs with debugging
techniques (eleven of nineteen) than do programmers (four of
thirteen). This difference is not statisticallY
significant, however.

The single statistically significant difference between
the scientist/engineers and programmers occurred for
temporarily patching an error. Programmers tend to
temporarily patch errors and continue debugging (eight said
they did so), whereas scientist/engineers do not (fourteen
said they never do so). (For this difference, Chi-square is
3.97, with one degree of freedom, and is significant at
p<0.05). The scientist/engineers said they would rather
edit the source code and recompile for each error. The
programmers who did use an IDF for this purpose indicated
that it increased their efficiency in debugging--they could
find and fix more than one bug in a single session. In
their minds that added to their productivity, by reducing
the amount of their time and processor time required for
program development. In short, the programmers who employed
a debugging technique to patch faulty code did so to better
complete their professional responsibilities.

SPECIFIC USE OF AN EXISTING FORTRAN IDF

The study also examined the use of specific commands from
the FORTRAN interactive debug for CMS and TSO (program
number 5734-F05, called, here, TESTFORT). Of the thirty-two
study participants, sixteen (50%) had used TESTFORT. Of the
TESTFORT commands, only the AT, LIST, and GO commands were
reported to be necessary in every debugging session by all
sixteen professionals who had actually used TESTFORT. Other
commands, although not as heavily used as AT, LIST, and GO,
were reported as necessary to complete all of the functions
required of an IDF. Since AT, LIST, and GO are used by all
who use an IDF, and they simulate a WRITE statement (which
is used by those who do not use an IDF), they appear to
constitute the minimum set of commands for an IDF.

USE OF ABEND DUMPS IN DEBUGGING

For the study, we collected information on the value the
professionals in our study found in ABEND dumps. The
responses to that question are in Figure 2:

Value Scientist/Engineer Programmer

ABEND not recognized (0%) III (

Never use dump 11111111111111 (44%) II (

9%)
6%)

Information fair 1111 (13%) 11111 (16%)
Information good I (3%) I (3%)
Information excellent (0%) II (6%)

Figure 2: Information value of ABEND dumps

Figure 2 shows that scientists and engineers do not use
ABEND dump information; programmers gave responses that were
distributed throughout the scale. Overall, it appears ABEND
dump information is of greater value to programmers.

LEVEL AT WHICH DEBUGGING IS PERFORMED

The study included questions about the level of detail
and semantic richness that the professionals found it
necessary to work when debugging and the level they
preferred to work. The responses to the question on the
level of necessity were distributed as in Figure 3.

Necessary level

Mathematics/logic
Source code
Number representation
Machine operations

Scientist/Engineer

II
1111111I1111111
II

(0%)
(6%)
(47%)
(6%)

Programmer

I
II
11111111
II

Figure 3: Level of detail necessary during debugging

(3%)
(6%)
(25%)
(6%)

~

~

The responses to the question on the desired level were
distributed as in Figure 4.

Preferred level

Mathematics/logic
Source code
Number representation
Machine operations

Scientist/Engineer

III

"'"""" 1111 ,
(9%)
(34%)
(13%)
(3%)

Programmer

""'" II II , ,

Figure 4: Level of detail preferred during debugging

(22%)
(16%)
(3%)
(0%)

Overall, Figures 3 and 4 show that almost all study
participants are forced to debug at the level of how FORTRAN
represents numbers, and this is a more detailed and
machine-specific level than generally desired. Most
scientists and engineers would prefer to work at the
source-code level; whereas, programmers show a small
tendency toward the mathematics and logic level.

TASKS IN DEBUGGING

The study attempted to describe the tasks involved in
debugging by constructing a composite list of the activities
the participants said they performed when determining why a
program does not work. The analysis shows that debugging
involves four critical tasks, regardless of who is
performing the debugging or whether an IDF or other
debugging tool is employed. All the tasks appear to be
necessary to successfully debug a program; none of the
identified tasks appears sufficient in and of itself for
debugging. The four tasks are:

1. Symptom location and classification

2. Bug location

3. Hypothesis generation and testing

4. Information gathering and selection

Symptom Location and Classification

We have distinguished between symptoms and bugs. (A bug
is an error in program specification, for example, labeling
a COMMON as VARSI instead of VARS1. A symptom is the result
of a bug, for e.amp1e, attempting to divide by zero.) When
performing the symptom-location subtask, the user tries to
answer the question: Where in the program e.ecution did
things go wrong? In the symptom-classification subtask, he
e.amines the question: What went wrong in program
execution?

Bug Location

The bug-location task poses this question to the user:
Where is the program incorrectly specified?

All the respondents in the survey start debugging by
classifying the symptoms they can observe and then (or
simultaneously) determining where in the program the bug is
located. They look for this information in program output
and source listings. In some cases this information can not
be found in program output, for example, where the program
executes to completion but produces incorrect answers; here,
the user will attempt to gather information about the
symptom's and bug's location using either an IDF or
inserting WRITE statements into the source code.

Hypothesis Generation and Test

The hypothesis-generation subtask involves establishing a
set of the possible specification errors (bugs). The user
answers the question, what could be wrong in the source
code? From the survey results, this task appears to be
based upon the symptoms and information from the source
listing.

The hypothesis-testing subtask poses the question, which
of the possible specification errors were not made? It

~

NI

involves an iterative reduction in the size of the set of
possible bugs down to the actual bug.

Not surprisingly. the results show great variety in the
respondents' approach to these two subtasks inYolving
hypotheses. For example. some start at the level of the
underlying mathematics of the application in developing
possible explanations; whereas others immediately go to the
pseudo-assembler code to generate hypotheses. Regardless of
the level where hypothesis generation and test activity
starts. respondents uniformly indicated they were required
to deal with the bug at a level below source code. for
example. hexadecimal representation or machine operations.
if they wanted any chance of success.

The study indicates that the hypothesis generation
subtask is critical in debugging. Two specific situations
uncovered by the survey illustrate this critical nature of
the hypothesis-generation subtask. One expert programming
consultant resolves bugs in programs developed by engineers
that have already gone through an initial review (by another
programming consultant). The expert requires that the
engineer provide a current compiler source listing. a
program input listing. and a program output listing. The
expert mayor may not add information obtained from an rDF
to provide the engineer with a list of hypotheses about the
bug. Also. the consultant provides the engineer with
directions on how to fix the bug. appropriate for each
hypothesis. This case illustrates that since the expert
provided the hypotheses. and they were necessary to solve
the bug. hypothesis generation is a critical debugging
subtask.

The second specific situation originated from comments
provided by many of the engineers. They indicated a reliance
on programmer consultants to provide "guidance and
direction" in interpreting the symptoms and developing
hypotheses about the bug. One group of engineers also
described a specific need to obtain hypotheses about the bug
in mathematical and not computer terms and that they seek
only those consultants who could make the necessary
translations. The survey results indicate engineers
perceive value in appropriately termed hypotheses about
bugs.

Information Gathering and Selection

According to the survey respondents. the information
gathering and selection subtasks are performed for three
reasons:

1. To locate the bug and determine symptoms.

2. To ensure progress towards bug resolution.

3. To eliminate hypotheses about the bug.

Sometimes the user can not locate the bug and/or
determine the symptoms from the source listing and program
output alone. In these cases. an initial round of
information gathering is perf~rmed to do so.

An important purpose for gathering information is to
ensure that progress is being made towards bug resolution.
In cases where progress is perceived to be too slow.
professional programmers said they would either try a
different debugging tack or rewrite the offending source
module. In contrast. professional engineers and scientists
said.they would either rewrite the source code or completely
drop the program as an alternative method to solve the
engineering or scientific problem. Engineers and scientists
cite time pressures as the reason for abandoning programs.

Information gathering and selection to
hypotheses about a bug is undertaken in a
approach in most every debugging session.
on this approach for more difficult bugs.)

eliminate
simple and basic

(Some elaborate

After the bug has been tentatively located. the
symptoms classified and hypotheses generated.
breakpoints are established at a number of statements
(usually less than five). At those breakpoints the
contents of critical variables are displayed as the
program executes and the symptoms develop.

The survey results indicate that regardless of whether a
formal tool was employed. users performed the four tasks
described above in debugging a FORTRAN program. The survey
results showed great uniformity across respondents in
approach to symptom location and classification. bug
location. and information gathering. Great variety was
observed in approaches to hypothesis generation and testing.

SUMMARY

~

t.4

In summa~y we see th~ee majo~ points. Fi~st,
sou~ce-Ievel debugging has p~imacy. All p~ofessionals in
ou~ su~vey want to "fix it in the language in which it
b~oke" (2). The thought that goes into debugging depends on
the sou~ce code to a ve~y la~ge deg~ee.

Second, ~ega~dless of whethe~ IDFs a~e used o~ not, four
tasks a~e ~egula~ly applied in the job of debugging. They
include symptom location and classification, bug location,
hypothesis gene~ation and testing, and info~mation gathe~ing
and selection.

Thi~d and finally, when debugging becomes complicated and
difficult, o~ p~og~ess slows significantly, p~og~amme~s will
continue debugging by t~ying alte~native tacks. In
cont~ast, scientists and enginee~s cu~~ently will abandon
the p~og~am as a method to solve thei~ substantive p~oblems.

REFERENCES

1. Seidne~, R.I., and Tindall, W.N.J. Inte~active Debug
Requi~ements. 18" Technical Repo~t TR-03.2l8, "a~ch
1983.

2. Eh~man, J.R., and Hamilton, H. The th~ill of
p~og~amming--the agony of debugging. SHARE 57, 1981.

iSHARE~

61 A054

SHARE NO. SESSION NO.

SHARE SESSION REPORT

An Empirical Study of the Use and
Effectiveness of Online Documentation

SESSION TITLE

65

Human Factors June Genis

ATTENDANCE

STU

PROJECT SESSION CHAIRMAN INST. CODE

CIT, Stanford University, Stanford, CA 94305 (415) 497-4422

SESSION CHAIRMANrS -C()MPANY; ADDRESS, AND PHONE NUMBER

An Empirical Study of the Use and Effectiveness

of Online Documentation:

Presented at:

Session A054
SHARE 61
New York, N. Y.

Final Report

Joan M. winters
Stanford Linear Accelerator Center (SLA)

P.O. Box 4349
Stanford, California 94305

August, 1983

Keith J. Sours
SPSS inc. (SPH)

Suite 3300
444 N. Michigan Ave.

Chicago, Illinois 60611

