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Conditional Assembly and Macro Overview

Conditional Assembly and Macro

Overview

HLASM Macro Tutorial  © Copyright IBM Corporation 1893, 2002. All rights reserved. Overview-1
Rev. 10 Jun 2002 Fmt 10 Jun 02, 1806

This presentation discusses a powerful capability of the System/360/370/390 assemblers that

allows you to tailor programs to your specific needs: the “Conditional Assembly and Macro

Facility ”.

The Two Assembler Languages

* System/360/370/390 assemblers support two (nearly) independent
languages

- “ordinary” assembly language: you program the machine
— translated by the Assembler into machine language
— usually executed on a System/360/370/390 processor

- “conditional” assembly language: you program the assembler
— interpreted and executed by the Assembler at assembly time

— tailors, selects, and creates sequences of statements

HLASM Macro Tutorial  © Copyright IBM Corporation 1933, 2002. All rights reserved Overview-2

The System/360/370/3390 Assembler Language is actually a mixture of two distinct languages:

Ordinary assembly language — the language of machine and assembler instruction state-

ments, translated by the Assembler into machine language

Conditional Assembly and Macro Overview
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* Conditional assembly and macro language — the language of conditional statements, var-
iable symbols, and macros, interpreted and executed by the Assembler at assembly time
to tailor, select, and create sequences of statements.

The conditional assembly and macro language is a special language with its own rules for
declaring variables, assigning values, testing conditions, and generating values. The objects
being manipulated at the time a program is assembled are primarily statements, character
strings, and numeric quantities, so the conditional assembly language is oriented towards
those items.

The elements manipulated and controlled by the conditional assembly language include
statements in the ordinary assembly language, so we sometimes refer to the conditional lan-
guage as the “outer” language, in which the ordinary or “inner” or “base” language is
enclosed. (Some people would reverse this characterization: the conditional language is so
less well known that it seems to be hidden somewhere “inside” the more familiar ordinary
language!)

Why is the Conditional Assembly Language Interesting?

* Adds great power and flexibility to the base (ordinary) language
— You write programs that write programs!
— Lets the language do more of the work
* Lets you build programs “bottom-up”
- Repeated patterns become macro calls
~ Enhances program readability, reduces program size

* HLLs: you must make the problem fit the language

* Macros: you can change the language to fit the problem

- Each application encourages design of its own language

HLASM Macro Tutorial  © Copyright IBM Corporation 19383, 2082. All rights reserved. Overview-3

Understanding the conditional assembly language not only adds to your knowledge of useful
programming techniques, but also lets you think about application programming in new and
different ways. You can effectively design the language that best fits the application, rather
than adapting the design of the application to fit the rules of a language.

Thus, you can build an application not in the traditional “top-down” sense, but from the
“bottom up”. That is, by identifying the common, repeated elements of the application, you
can create operations (macros) that reduce your concerns with details, so your program and
its language can evolve together. Those common elements can then be used throughout the
application (code re-use!).

The approach we will take here is somewhat different from that used in most other tutorials
and textbooks where the macro concept is introduced first, and conditional assembly con-
cepts are explained in an ad-hoc, incremental fashion.

Part 1 describes the conditional assembly language and its complete set of facilities and fea-
tures. Part 2 explores basic aspects of macros and their definition and use in the
System/360/370/390 Assembler Language. Part 3 provides “case study” examples of macro
programming with IBM High Level Assembler for MVS & VM & VSE.

Sometimes the conditional assembly language is called “macro language”, but since its use
is not limited to macro instructions, we will use the more general term.
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Part 1: The Conditional Assembly Language

Part 1: The Conditional Assembly
Language
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Though primitive in many respects, the conditional assembly language has most of the basic
elements of a general purpose programming language: data types and structures, variables,

expressions and operators, assignments, conditional and unconditional branches, some
built-in functions, simpie forms of I/0, and subroutines.

Conditional Assembly Language

* Conditional Assembly Language:

- general purpose (if a bit primitive): data types and structures: variables:
expressions and operators: assignments; conditional and unconditional
branches: built-in functions; 1/O; subroutines; external functions

* Analogous to preprocessor support in some languages
- But the Assembler’s is much more powerfull

* Fundamental concepts of conditional assembly apply
~ outside macros (“open code”, the primary input stream)
- inside macros (“assembly-time subroutines”)

* The two languages manage different classes of symbols:
- ordinary assembly: ordinary symbols (internal and externat)

— conditional assembly: variable and sequence symbols
— variable symbols: for evaluation and substitution

— sequence symbols: for selection
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The conditional assembly language is used primarily in macro instructions (or “macros”™),
which may be thought of as “assembly-time subroutines” invoked during the assembly to
perform useful functions. Most of the same technigues can also be used in ordinary assem-
blies (“open code”, the primary input stream) without relying on macros.

Part 1: The Conditional Assembly Language
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4

Conditional assembly techniques are similar to those employed in some preprocessors for
higher level languages such as C and PL/I, where compilers can interpret a special class of
statements 1o perform substitutions, inclusion or exclusion of code fragments, and siring
replacement. As we will see, the assembler’s support of these capabilities is quite powerful:
not only is the conditional assembly language complete (if a bit primitive), but it provides
extensive interactions with both the “ordinary” or “base” language and the external
assembly environment.

The distinctive feature of the conditional assembly language is the introduction of two new
classes of symbols:

* variable symbols are used for evaluation and substitution
* sequence symbols are used for selection among alternative actions.

Just as “normal” or “ordinary” assembly deals with ordinary symbols — assigning values to
symbols and using those values to evaluate various kinds of expressions — the conditional
assembly language uses variable and sequence symbols. See Figure 117 on page 243 for a
comparison of the elements of the ordinary and conditional assembly languages.
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Evaluation, Substitution, and Selection

* Three key concepts of conditional assembly:

1. Evaluation

— Assigns values to variable symbols, based on the results of computing compiex
expressions

2. Substitution

— You write the name of a variable symbol where the Assembler is to substitute the
value of the variable symbol.

— Permits tailoring and modification of the "ordinary assembly language” text stream.

3. Selection
— Use sequence symbols to alter the normal, sequential flow of statement processing

— Selects different sets of statements for further processing.

HLASM Macro Tutorial  © Copyright IBM Corporation 1893, 2002. All rights reserved. Conditional-3

Evaluation, Substitution, and Selection

There are three key concepts in the conditional assembly language:

* evaluation
= substitution
* selection

Evaluation allows you to assign values to variable symbols based on the results of com-
puting complex expressions.

Substitution is achieved by writing the name of a special symbol, a variable symbol, in a
context that the Assembler will recognize as requiring substitution of the value of the vari-
able symbol. This permits failoring and modification of the “ordinary assembly language”
text stream to be processed by the assembler.

Selection is achieved by using sequence symbols to alter the normal, sequential flow of
statement processing. This permits different sets of statements 1o be presented to the
Assembler for further processing.

Part 1: The Conditional Assembly Language 5



Variable Symbols

» Written as an ordinary symbol prefixed by an ampersand (&)

* Examples:
&8A  &Time &DATE &My Value

» Variable symbols starting with &SYS are reserved to the Assembler
* Three variable symbol types are supported:
- Arithmetic: values represented as signed 32-bit (2’s complement) integers
- Boolean: values are 0, 1
- Character: strings of 0 to 255 EBCDIC characters
* Two scopes are supported:

- local: known only within a fixed, bounded context; not shared across scopes
{macros, “open code”)

- global: shared in all contexts that declare the variable as global

* Some variable symbol values are modifiable (“SET” symbols)
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Variable Symbols

In addition to the familiar “ordinary” symbols managed by the assembler — internal and
external — there is also a class of variable symbols. Variable symbols obey scope rules sup-
porting two types that roughly approximate internal and external ordinary symbois, but they
are not retained past the end of an assembly, and do not appear in the object text produced
by the assembly.

Variable symbols are written just as are ordinary symbols, but with the ampersand character
(&) prefixed. Examples of variable symbols are:

&A a (these two are treated identically)
&Time

8DATE

&My Value

As indicated in these examples, variable symbols may be written in mixed-case characters;
all appearances will be treated as being equivalent to their upper-case versions. Variable
symbols starting with the characters &SYS are called System variable symbols, and are
reserved to the Assembler. They are described more fully in Appendix B, “System (&SYS)
Variable Symbols” on page 223.

There are three types of variable symbols, corresponding to the values they may take:

arithmetic
The allowed values of an arithmetic variable symbol are those of 32-bit (fullword) two’s
complement integers (i.e., between —231 and +23'—1. (Be aware that in certain contexts,
their values may be substituted as unsigned integers!) (This is discussed further at
“Evaluating and Assigning Character Expressions: SETC” on page 22.)

boolean
The allowed values of a boolean variable symbol are 0 and 1.

character
The value of a character variable symbol may contain from 0 to 255 characters, each
being any EBCDIC character. (A character variable symbol containing no characters is
sometimes called a null string.)

The conditional assembly language supports two scopes for symbols: local and global.
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local
Local variable symbols have a limited, bounded scope, and are not known outside that
scope. There are two types of local scope: within macros, and “open code”. “Open
code” is the main sequence of Assembler Language statements read by the assembler,
ouiside any macro invocations; it may contain a mixture of ordinary (base) language and
conditional assembly statements.

global
Global variable symbols are shared by name by all scopes that declare the variables to
be global. Thus, they can be shared between macros and open code. All declarations
of global variables must have the same type, and be uniformly declared as either
scalars or arrays.

The scope rules for variable symbols are somewhat similar to those of Fortran: some vari-
ables are local to each “routine” {main routines are like “open code” and macros are like
“subroutines™), and others may be shared in a pool called “blank common”. One key differ-
ence is that global variable symbols are shared by name in the Assembler Language,
whereas they are shared by offset in Fortran COMMON.

It is sometimes convenient to distinguish between two types of variable symbols:

1. Symbols whose values you can change:

these are sometimes called SET symbols, because you use a “SET” statement to assign
their values;

2. Symbols whose values you can use, but not change:
these include system variable symbols and symbolic parameters.

Each of these will be discussed in detail.
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Declaring Variable Symbols

* There are six explicit declaration statements (3 types x 2 scopes)

Arithmetic Type

Boolean Type

Character Type

Local Scope LCLA LCLB LCLC
Global Scope GBLA GBLB GBLC
Initial Values 0 0 null

*» Examples of scalar-variable declarations:

LCLA &J),8K
GBLB &INIT
LCLC &Temp_Chars

May be subscripted, in a 1-dimensional array (positive subscripts)
LCLA &F(15),86(1)
May be created, in the form &(e) (where e is a character expression
starting with an alphabetic character)
&(B&JAK)  SETA &(XY&).Z)-1

No fixed upper limit; (1) suffices

HLASM Macro Tutorial O Copyright IBM Corporation 1893, 2002. All rights reserved.

Declaring Variable Symbols ...

All explicitly declared variable symbols are SETtable

- Their values can be changed

Three forms of implicit declaration:
1. by the Assembler (for System Variable Symbols)
— names always begin with characters &SYS

— most have local scope

2. by appearing as symbolic parameters (dummy arguments) in @ macro
prototype statement

— symbolic parameters always have local scope
3. as local variables, if first appearance is as target of an assignment

— this is the only implicit form that may be changed (SET)

HLASM Macro Tutorial © Copyright IBM Corporation 1993, 2602. All rights reserved.

Declaring Variable Symbols

8

Variable symbols are declared in several ways:

explicitly, through the use of declaration statements (global variable symbols must
always be declared explicitly); all explicitly declared symbols are SET symbols, so their

Conditional-5

Conditional-6

values may be changed;

implicitly by the Assembler (the System Variable Symbols, which may not be declared

explicitly);

implicitly, by their appearance as dummy arguments in a macro prototype statement
(these are known as symbolic parameters; they are of character type, and are local in

scope);
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» implicitly, as local variables, through appearing for the first time in the name field of a
SET statement as the target of an assignment. Their values may be modified in other
SET statements.

Explicitly declared variable symbols are declared using two sets of statements that specify
their type and scope:

Arithmetic Type Boolean Type Character Type
Local scope LCLA LCLB LCLC
Global scope GBLA GBLB GBLC
Initial Values 0 0] nuli

Figure 1. Explicit Variable Symbol Declarations and initial Values

These declared variables are automatically initialized by the Assembler to zero (arithmetic
and boolean variables) or to null {zero-length) strings (character variables).

The two scopes of variable symbols — local and global — will be discussed in greater detail
later, in "Variable Symbol Scope Rules: Summary” on page 83. For the time being, we will
be concerned almost entirely with local variables.

For example, to declare the three local variable symbols &A as arithmetic, &B as boolean, and
&C as character, we would write

LCLA BA
LCLB &B
LCLC &C

More than one variable symbol may be declared on a single statement. The ampersand
preceding the variable symbols may be omitted in LCLx and GBLx statements, if desired.

Variable symbols may also be dimensioned or subscripted: that is, you may declare a one-
dimensional array of variable symbols all having the same name, by specifying a parenthe-
sized integer expression following the name of the variable. For example,

LCLA &F(15)
LCLB  &G(15)
LCLC  8H(15)

would declare the three subscripted local variable symbols F, G, and H to have 15 elements.
We will see in practice that the declared size of an array is ignored, and any valid (positive)
subscript value is permitted. Thus, it is sufficient to declare

LCLA &F(1)
LCLB &6(1)
LCLC 8H(1)

You can determine the maximum subscript used for a subscripted variable symbol with a
Number attribute reference (lo be discussed later, at *“Macro-Instruction Argument Proper-
ties: Number Attribute” on page 81). Undimensioned (scalar) variable symbols have number
attribute reference value zero (to indicate they are not dimensioned).

Note also that subscripts on variable symbols need not be assigned sequentially starting at
1. For example, you could assign values to &F(1) and &F(98765431) without any space being
allocated by the assembler for the (apparently unused) subscripts between 2 and 98765430.

Subscripted variable symbols may appear anywhere a scalar (non-subscripted) variable
symbol appears.

Created variable symbols may be created “dynamically”, using characters and the values of
other variable symbols. The general form of a created variable symbol is &(e), where e must
(after substitutions) begin with an alphabetic character and result in a valid variable symbol
name that is not the name of a macro parameter or a system variable symbol. Created
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variable symbols may also be subscripted; like other variable symbols they may be declared
explicitly or implicitly.

Created variable symbols may be created from other created variable symbols, to many
levels. For example (using some SET statements to be discussed shortly):

&C SetC 'X! Variable &X contains the character 'X*
&BX SetC 'PQ’ Variable &BX contains the character 'BX'
&APQ  SetA 42 Variable &APQ contains the integer 42

Then, the variable symbol &(A&(B&C)) is the same as the variable &APQ: first B&C is evalu-
ated to form BX; then &(BX) is evaluated to form PQ; then A&(BX) is evaluated to form APQ;
and finally &(APQ) is evaluated to form &APQ.

This form of “associative addressing” can be quite powerful, and we will use it in several
case studies.

System variable symbols provide access to information the assembler “knows” about the
state of the assembly and its environment. The symbols and examples of their use are
given in Appendix B, “System (&SYS) Variable Symbols” on page 223; we will use some of
them in later examples.

In the examples that follow, we will typically enclose character string values in apostrophes,
as in 'String’, to help make the differences clearer between strings and descriptive text.
However, the enclosing quotes are only sometimes required by the syntax rules of a partic-
ular statement or context.

Substitution

* In appropriate contexts, a variable symbol is replaced by its value
* Example: Suppose the value of &8A is 1.
Then, substitute &A:
Char&A DC C'8A° Before substitution
+Charl DC c'1 After substitution
* Note: '+’ in listing’s “column 0” indicates a generated statement

» This example illustrates why paired ampersands are required if you
want a single & in a character constant or self-defining term!

* To avoid ambiguities, mark the end of a variable-symbol substitution

with a period:
write: CONST&A.B BC C'8A.B’ &A followed by °'B’
Result: +CONST1IB DC C'1B’ Value of & followed by B’ !!
Not: CONSTEAB DC  C'&AB* &R followed by 'B' 27 No: &AB !

** ASMABB3E Undeclared variable symbol — OPENC/AB

- OPENC/AB means “in Open Code, and &AB is an unknown symbol”
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Substitution

The value of a variable symbol is used by substituting its value, converted into a character
string if necessary, into some element of a statement. For example, if the value of 8A is 1 (at
this point, it doesn’t matter whether &A is an arithmetic, boolean, or character variable), and
we write the following DC statement:

Charg&A DC C'&A’
then the resulting statement would appear as

+Charl DC cr1
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where the '+' character to the left of “column 1” is the assembler’s indication in the listing
that the statement was generated internally, and was not part of the original source
program. (Such statements may be suppressed in the listing by specifying a PRINT NOGEN
statement.)

Thus, at each appearance of the variable symbol &A, its value is substituted in place of the
symbol. (This behavior explains why you were required to write a pair of ampersands in
character constants and self-defining terms where you wanted a single ampersand to appear
in the character constant or self-defining term: a single ampersand would indicate to the
Assembler that a variable symbol is expected to appear in that position.) The results of a
substitution are almost always straightforward, but there are a few special cases we will
discuss shortly.

The positions where substitutable variable symbols appear, and at which substitutions are
done, are sometimes called points of substitution.

Suppose we need to substitute the value of &A into a character constant, such that its value
is followed by the character 'B'. If we wrote

CONSTRAB DC C'8AB' &A followed by 'B' ??
** ASMAGO3E Undeclared variable symbol - OPENC/AB

the assembler has a problem: should &8AB be treated as the variable symbol &AB or as the
variable symbol &A followed by 'B'? If the assembler made the latter choice, it could never
recognize the variable symbol &AB (nor any other symbols beginning with &A, like &ABCDEFG)!
As you can see, it chose to recognize &AB, which is undefined to the assembler, as indicated
in the diagnostic: the OPENC/ indicator means “in Open Code”, and AB is the unknown
symbol.

To eliminate such ambiguities, you should indicate the end of the variable symbol with a
period (.). Thus, the constant should be written as

CONST&A.B DC C'%A.B! &A followed by 'B'
giving
+CONST1B  DC C'1B' Value of &A followed by 'B' !!

Variable symbols are not substituted in remarks fields or in comments statements.

While the terminating period is not required in all contexts, it is a good practice to specify it
wherever substitution is intended. (The two situations where the period most definitely is
required are when the point of substitution is to be followed by a period or a left paren-
thesis.)
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Substitution, Evaluation, and Re-Scanning

* Points of substitution identified only by variable symbols
- HLASM is not a general string- or pattern-matching macro processor
* Statements once scanned for points of substitution are not re-scanned

&A SETC *3+4"
&B SETA 5*&A Is the result 5*(3+4) or (5*3)+4 72

** ASMA182E Arithmetic term is not self-defining term; default = 8
{Neither! The characters '3+4' are not a self=defining term!)

* Substitutions cannot create points of substitution
* Another example (the SETC syntax and the &&s are explained later):

&A SETC "%4B’ 8A has value '2&B*
&C SETC  '2A°'(2,2) &C has value '&8°
&B SETC  *XXX*' &8 has value *XXX*
Con DC cac’ Is the result '&B’ or "XXX'?

** ASMA127S Illegal use of Ampersand

The operand is '&B’, so the statement gets a diagnostic
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Comments on Substitution, Evaluation, and Re-Scanning

The assembler uses a method of identifying points of substitution that may differ from the
methods used in some other languages.

1. Points of substitution are identified only by the presence of variable symbols. Ordinary
symbols (or other strings of text) are never substituted.

2. Statements are scanned only once to identify points of substitution. This means that if a
substituted value seems to cause another variable symbol to “appear” (possibly sug-
gesting further points of substitution), these “secondary” substitutions will not be per-
formed.

3. This single-scan rule applies both to ordinary-statement substitutions, and to conditional-
assembly statements. Thus, statements once scanned for points of substitution will not
be re-scanned (or “re-interpreted”) further.

Consider the arithmetic expression '5*8A'. We would expect it to be evaluated by substi-
tuting the value of &A, and then multiplying that value by 5.

If this is used in statements such as

&A SETC '10*
&B SETA 5*8A

then we would find that &B has the expected value, 50. However, in the statements:

&A SETC '3+4°!
&B SETA 5*8A

we are faced with several possibilities. First, is the value of & now 35 (corresponding to
"5*(3+4)")? Thatis, is the sum 3+4 evaluated before the multiplication? Second, is the
value of & now 18 (corresponding to "(5*3)+4")? That is, is the string "5*3+4" evaluated
according to the familiar rules for arithmetic expressions?

In fact, a third situation occurs: because the expression '5*&A' is nof re-scanned in any
way, the value of 8A must be a self-defining term. Because it is not, the assembler
produces this error message:
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** ASMA162E Arithmetic term is not self-defining term; default = 0

indicating that the substituted “"term” 3+4 is improperly formed.

A similar result occurs if predefined absolute symbols are used as terms. If they are used
directly (without substitution), they are valid; however, the name of the symbol may not
be substituted as a character string. To illustrate:

N Equ 3+4 N is an ordinary symbol, value 7
&B SetA 5*N &B has value 35

&N SetC 'N! Set &N to the character 'N'

&  SetA 5*&N Error message for invalid term!

As another example, you might ask what happens in this situation: will the substituted
value of &B in the DC statement be substituted again? (The pairing rules in SETC state-
ments for ampersands are different from the pairing rules in DC statements, and are
explained in “Evaluating and Assigning Character Expressions: SETC” on page 22.)

8A SETC  '&&B' &A has value '&8B'
&C SETC  '&A'(2,2) &C has value '&B'
&B SETC  'XXX' &B has value "XXX'
Con DC C'aC’ Is the result '8&B' or 'XXX'?

The answer is “no”. In fact, this DC statement results in an error message:

** ASMA127S Illegal use of Ampersand

Because the assembler does not re-scan the DC statement to attempt further substi-
tutions for &C, there will be a single ampersand remaining in the nominal value ('&B') of
the C-type constant. (We will see in "The AINSERT Statement” on page 184 that there
are some ways around this problem.)

As a further example, note that substitution uses a left-to-right scan, and that new vari-
able symbols are not created “automatically”. For example, if the two character variable
symbols &C1 and &C2 have values 'X' and 'Y' respectively, then the substituted value of
'&C1&C2°* is 'XY', and not the value of '&C1Y'. Similarly, the string '&C1.C2' represents
'28C1.C2', and not the value of '&xC2'!

The only mechanism for “manufacturing” variable symbols is that of the created variable
symbol, whose recognition requires the specific syntax previously described.
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Assigning Values to Variable Syﬁabols: SET Statements

* Three assignment statements: SETA, SETB, and SETC

- One SET statement for each type of variable symbol

&x_varsym SETx x_expression Assigns value of x_expression te &x_varsym
&A varsym SETA arithmetic_expression

& _varsym SETB beolean_expression
& _varsym SETC character_expression

- SETA uses familiar arithmetic operators and “internal function” notation
— SETB uses “internal function™ notation
- SETC uses specialized forms and “internal function” notation

* Internal function notation:

(operand OPERATOR operand) for binmary operators
(BPERATOR operand) - for unary operators
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Assigning Values to Variable Symbols: SET Statements ...

* Target variable symbol may be subscripted

8A(6) SETA 9 Set 8A(6)=9
8A(7) SETA 2 Set 8A(7)=2

* Values can be assigned to successive elements in one statement
&Subscripted_x_VarSym SETx x_Expressien_List 'x* is A, B, or €

&A(6) SETA 9,2,5+5 Sets &A(6)=9, 8A(7)=2, &A(8)=18

~ Leave an existing value unchanged by omitting the expression

&A(3) SETA 6,,3 Sets &A(3)=6, &A(4) unchanged, 8A(5)=3

» External functions use SETAF, SETCF (more at slide Conditional-22)
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Assigning Values to Variable Symbols: SET Statements

Assignment of new values to variable symbols occurs in three ways, corresponding to the
types of declaration.

* Explicitly and implicitly declared variable symbols of arithmetic, boolean, and character
type are assigned values by the SETA, SETB, and SETC statements, respectively. (Since
the type of the assigned variable is generally known in advance, having three separate
SET statements is somewhat redundant; it does help, however, by allowing implicit decla-
rations.)

= System variable symbols are assigned values by the Assembler (and only by the Assem-
bler). They may not appear in the name field of a SETx statement.
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* Symbolic parameters have their values assigned by appearing as actual arguments in a
macro call statement. They may not appear in the name field of a SETx statement.

At this point, we will discuss only assignments to declared variable symbols.

In addition to the usual arithmetic operators such as +, —, *, and /, conditional assembly
expressions may specify unary and binary operators in an “internal function” notation.
Rather than the function-call format used in many high-level languages (such as
function(arg)), and rather than introduce complex combinations of special characters (such
as // or << or &), the Assembler Language recognizes certain operators in a parenthesized
format:

(operand OPERATOR operand) for binary operators
(OPERATOR operand) for unary operators

We will see examples of this “internal function” notation shortly.? External arithmetic func-
tions are invoked by the SETAF command, and are described at "External Conditional-
Assembly Functions” on page 32.

Multiple array elements may have values assigned in a single SET statement by specifying a
list of operand-field expressions of the proper type, separated by commas. For example:

8A(6)  SETA 9,2,5+5 Sets &A(6)=9, BA(7)=2, 8A(8)=10

would assign 9 1o 8A(6), 2 to &A(7), and 10 to 8A(8). If you wish to leave one of the array
elements unchanged, simply omit the corresponding value from the expression list:

8A(3)  SETA 6,,3 Sets 8A(3)=6, &A(4) unchanged, &A(5)=3

Occasionally, the three declarable types of variable symbol (arithmetic, boolean, and char-
acter) are referred 1o as SETA, SETB, and SETC variables, respectively, and declarable vari-
able symbols are referred to as SET symbols.

Evaluating Conditional-Assembly Expressions

As in any programming language, it is useful to evaluate expressions involving variable
symbols and other terms, and to assign the results to other variable symbols.

The syntax of arithmetic and boolean expressions is quite similar to that of common higher-
level languages, but that of character expressions is apparently unique to the Assembler
Language.

1 One of the nice things about internal function notation is that spaces can be used within the parentheses to make
statement formatting more readable.
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Evaluaﬁng and Assignilig Arithmetic Expressions: SETA

* Syntax:
&Arithmetic_Var_Sym SETA arithmetic_expression

* Follows same evaluation rules as ordinary-assembly expressions

— Simpler, because no relocatable terms are allowed
- Richer, because internal functions are allowed
— Arithmetic overflows always detected! (but anything/0 = 0!)

* Valid terms include:

arithmetic and boolean variable symbols

self-defining terms (binary, character, decimal, hexadecimal)
character variable symbols whose value is a self-defining term
predefined absolute ordinary symbols

numeric-valued attribute references

(Count, Definition, integer, Length, Number, Scale)

- internal function evaluations (shifting and “masking”)

| I I I A |

*  Example:
8A SETA 8D*(2+8K)/8G+ABSSYM-C'3'+L'&PLI*(3Q SLL 5)
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Evaluating and Assigning Arithmetic Expressions: SETA

The rules for evaluating conditional-assembly arithmetic expressions are very similar to
those for ordinary expressions, with the added great simplification that none of the terms in
a conditional-assembly expression may be relocatable. The unary operators are + and -,
which may precede any term. The binary operators are * and /, which must be preceded
and followed by a term (itself possibly preceded by a unary operator). In addition to self-
defining terms, predefined absolute ordinary symbols may be used as terms, as may evalu-
ations of “internal functions™ and variable symbols whose value can be expressed as a
self-defining term (whose value in turn can be represented as a signed 32-bit integer). As
usual, parentheses may be used in expressions to control the order and precedence of eval-

uation.
&A SetA 2*758 Value of &A is 1560
&B SetA 3+7/2 Value of &B is 6
&C SetA (3+7)/2 Value of &C is 5
&D SetA 0000005 Value of &D is 5

Overflows are detected and diagnosed:

* addition and subtraction overflow returns O
* multiplication overflow returns 1

* division overflow (—2147483648/—1) returns O
» division by zero (inciuding 0/0) returns O.

Numeric-valued attribute references to ordinary symbols may also be used as terms; these
are normally attribute references to character variable symbols whose value is an ordinary
symbol. The numeric-valued attribute references are:

Count (K')
Defined (D')
Integer (1')
Length (L")
Number (N')
Scale (S')

A simple example of an attribute reference:
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8A SetA K'&SYSVER Count of characters in &SYSVER

We will illustrate applications of attribute references later, particularly when we discuss
macros in “Macro Argument Attributes and Structures” on page 76. Attribute references
may, of course, be used in “open code”.

Arithmetic Expressions: Internal Arithmetic Functions

~* Shifting functions
- Written (operand Shift_Op shift_amount)
- shift_Op may be SRL, SLL, SRA, SLA . .

&A SLL SetA (&A1 SLL 3) shift left 3 bits, unsigned
&A_SRL SetA (&A1 SRL &A2) Shift right &A2 bits, unsigned
&A SLA SetA (8Al SLA 1) Shift left 1 bit, signed
&A_SRA SetA (&A1 SRA &A2) Shift right 8A2 bits, signed

» Masking functions AND, OR, XOR
- Written (operand Mask_Op operand)
- Produces 32-bit bitwise logical result
& SETA (& AND X'F8*) AND &8 with X'Fe’
8A SetA (7 XOR (7 OR (8A+7))) Round 8A to next wultiple of 8
* Masking function NOT
— Takes only one operand, written (NOT operand)
- Produces bit-wise complement; equivalent to (operand XOR —1)
&C SETA (NOT &C) Invert all bits of &C
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Arithmetic Expressions: Internal Arithmetic Functions

Internal function notation may be used in evaluating conditional assembly arithmetic
expressions to simplify operations that would otherwise require elaborate or obscure coding.
The two classes of internal arithmetic functions are shifting and “masking” operations:

e Shifting operations are written in the form
(operand Shift_Operator shift_amount)

where the Shift_Operator may be one of SLA, SLL, SRA, or SRL. The operand to be
shifted may be any arithmetic term, and the shift_amount is an arithmetic term. The
actual amount of the shift is determined from the rightmost six bits of the shift_amount,
exactly as in the identically named machine instructions.

BA_SLL SetA (&A1l SLL 3) Shift left 3 bits, unsigned
8A_SRL SetA (8A1 SRL 8A2) Shift right 8A2 bits, unsigned
&A SLA SetA (BA1 SLA 1) Shift left 1 bit, signed

%A SRA SetA (BA1 SRA 8A2) Shift right 8A2 bits, signed

Arithmetic Overflow is detected for addition, subtraction, multiplication, division, and the
SLA operation.

* Masking operations are written in the forms

(operandl Masking_Operator operand?2)
or
(NOT  operand)

where the Masking_Operator may be one of AND, OR, or XOR. These operators act
between the 32-bit operands as bit-wise operations, producing a 32-bit result. The oper-
ations are exactly equivalent to the hardware instructions NR, OR, and XR.

Part 1: The Conditional Assembly Language 17



18

NOT is a unary operator, and inverts each bit of its operand to produce the 32-bit one’s
complement. (NOT operand) is equivalent to (operand XOR —1).

&A_And SetA ((&A1 AND &A2) AND X'FF') Low-order 8 bits
&A_Or  SetA (&A1 OR (8A2 OR &A3)) Or of 3 variables

&A Xor SetA (&A1 XOR (&A3 XOR 7)) XOR of 7, 2 variables
BA_Not SetA (NOT 8A1)+8A2 Complement and add

Suppose you wish to “round up” the value of &A to a multiple of 8 (if it is not already a mul-
tiple. Using “old code”, you might have written:
&A SetA ((&A+7)/8)*8 Round &A to next multiple of 8

Using the masking operations OR and XOR, you might write instead:

&A SetA (7 XOR (7 OR (3A+7))) Round BA to next multiple of 8
or
&A SetA (3A+7 AND -8) Round &A to next multiple of 8

For example, we might execute the following statement:
A SETA &D*(2+&K)/RG+ABSSYM-C'3'+L'&PL3*(&Q SLL 5)
The value assigned 1o 8A is evaluated as follows:

1. multiply the value of &D by the value of (2+&K)

2. divide the result by &6

3. 1o that result, add the value of the symbol ABSSYM and subtract the character self-defining
term C'3!

4. evaluate the product of the length attribute of the symbol PL3 and the value of &Q shifted
left logically 5 bit positions, and add this result to the result from the previous step.

These functions can be used in places where the previously available capabilities of the con-
ditional assembly language led to clumsy constructions. Because the conditional assembly
language is interpreted by the assembler, there will not always be significant performance
gains in using these new arithmetic operators. However, any simpler expression will almost
always be evaluated more rapidly than an equivalent but more complex expression. For
example, suppose you must “extract” the value of bit 16 (having numeric weight 215) from
the arithmetic variable &A. Previously, you might have written

&Bit16  SetA (&A/16384)- (8A/32768)*2

which involves four arithmetic operations. Using shifting and masking, the same result can
be obtained by writing

&Bit16  SetA ((%A SRL 15) AND 1)
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SETA Statements vs. EQU Statements

» Note differences between SETA and EQU statements:

SETA Statements

EQU Statements

Active only at conditional assembly | Active at ordinary assembly time;
time predefined absolute values usable
at conditional assembly time

May assign values to a given
variable symbol many times

A value is assigned to a given
ordinary symbol only once

Expressions yield a 32-bit binary
signed (non-relocatable) value

Expressions may yield absolute,
simply relocatable, or complexly
relocatable unsigned values

No base-language attributes are
assignable to variable symbols

Attributes (length, type) may be
assigned with an EQU statement
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SETA Statements vs. EQU Statements

It may be helpful at this point to identify some of the differences between the results of SETA
and EQU statements. The following table compares some key factors:

SETA Statements

EQU Statements

Active only at conditional assembly time

Active at ordinary assembly time; prede-
fined absolute values may be usable at
conditional assembly time

May assign values to a given variable
symbol many times

A value is assigned to a given ordinary
symbol only once

Expressions yield a 32-bit binary signed
(non-relocatable) value

Expressions may yield an absolute, simply
relocatable, or complexly relocatable
unsigned values

No base-language atiributes are assign-
able to variable symbols

Attributes (length, type) may be assigned
with an EQU statement

Figure 2. Differences between SETA and EQU Statements

Some earlier assemblers used ordinary symbols for both types of functions: conditional
assembly and ordinary assembly. While this can be made to work in simple situations, the
rules become much more complex and limiting when “interesting” things are tried.

Further comparisons of ordinary and conditional assembly are shown in Appendix D, “Ordi-

nary and Conditional Assembly” on page 243.

High Level Assembler permits one useful interaction between the “worlds” of ordinary and
variable symbols: if an ordinary symbol is assigned an absolute value in an EQU statement
prior to any reference in a conditional assembly expression, that “predefined absolute ordi-
nary symbol” may be used wherever an arithmetic term is allowed.
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Evaluating and Assigning Boolean Expressions: SETB

* Syntax:
&Boolean_Var_Sym SETB (boolean_expression)

* Boolean constants: 0 (false), 1 (true)

* Boolean operators:
- NOT (highest priority), AND, OR, XOR {lowest)
- Unary NOT also allowed in AND NOT, DR NOT, XOR NOT

* Relational operators (for arithmetic and character comparisons):
- EQ, NE, GT, GE, LT, LE

* Examples A

&A SETB (&N LE 2)
&8 SETB (&8N LE 2 AND '&CVAR' NE '*')
& SETB ((&A GT 18) AND NOT ('&X' GE 'Z') OR &R)
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Evaluating and Assigning Boolean Expressions: SETB ...

* Warning! Character comparisons use EBCDIC collating sequence, but:
- Comparisons don’t stop at end of shorter string

— Shorter string not blank-padded to length of longer string

&8 SETB ('B' GT 'A’) &8 s 1 (True)
88 SETE ('B' 6T 'AA’) 38 is 8 (False)

= Shorter strings always compare LT than longer!
= B’ > ’A’,but 'B’ < 'AA’

* Note: cannot compare arithmetic to character expressions

— Only character-to-character and arithmetic-to-arithmetic comparisons
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Evaluating and Assigning Boolean Expressions: SETB

Boolean expressions provide much of the conditional selection capability of the conditional
assembly language. In practice, many boolean expressions are not assigned to boolean vari-
able symbols; rather, they are used in AIF statements to describe a condition to control
whether or not a conditional-assembly “branch” will or will not be taken.

Boolean primaries include boolean variable symbols, the boolean constants 0 and 1, and
(most useful) comparisons. Boolean constants may also be assigned from self-defining
terms, previously defined absolute symbols, and SETA variables, in the forms

8Bool_Var SetB (self-defining term)
&Bool_Var SetB (previously defined absolute symbol)
&Bool_Var SetB (SETA variable)
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and the value assigned to the &Bool_Var variable is zero if the value of the operand is zero,
and is one otherwise.

Two types of comparison are allowed: between arithmetic expressions, and between char-
acter expressions (which will be described in “Evaluating and Assigning Character
Expressions: SETC” on page 22 below). Comparisons between arithmetic and character
terms is not allowed.

The comparison operators are

EQ (equal)

NE (not equal)

GT  (greater than)

GE (greater than or equal)
LT (less than)

LE (less than or equal)

In an arithmetic relation, the usual integer comparisons are indicated. (Remember that pre-
defined absolute ordinary symbols are allowed as arithmetic terms!)

N EQU 16
&N SETA 5
&B1 SETB (&N GT 0) &B1 is TRUE
&B2 SETB (&N GT N) &B2 is FALSE

For character comparisons, a test is first made on the lengths of the two comparands: if they
are not the same length, the shorter operand is always taken to be “less than” the longer.
Note that this may not be what you would get if you did a “hardware” comparison! (The
shorter string is not padded, nor is the comparison done using the shorter string’s length.)

The following example illustrates the difference:

('BB' GT 'AAA') is always FALSE in conditional assembly
CLC =C'BB',=C'AAA' indicates that the first operand is high ('BB' GT 'AAA')

If the character comparands are the same length, then the usual EBCDIC collating sequence
is used for the comparison, so that

('BB' GT 'AA') is always TRUE in conditional assembly

The boolean operators are the usual logical operators NOT, AND, OR, and XOR. For
example:

88 SETB ((BA GT 10) AND NOT ('8X' GE 'Z') OR &R)
NOT is used as a unary operator, as in the following:
8Bool_var SETB (NOT ('BB' EQ 'AA'))
which would set &Bool_var to 1, meaning TRUE.

In a compound expression involving mixed operators, the NOT operation has highest priority;
AND has next highest priority; OR the next; and XOR has lowest priority. Thus, the
expression

(%A AND &B OR NOT &C XOR &D)
is evaluated as
((3A AND &B) OR ((NOT &C))) XOR &D
where the nesting depth of the parentheses indicates the priority of evaluation.

Some examples of SeiB statements are:

Part 1: The Conditional Assembly Language 21



BA SetB (& gt 6 AND &V le 7) True if &V between 1 and 7
&B SetB ('&C' 1t '6' OR 'RC' gt '9') True if & not a digit

&z SetB (%A AND NOT &B) True if BA true, &B false
&S SetB (&8 XOR (&G OR &D))

&T SetB (&X ge 5 XOR (&Y*2 1t &X OR &D))

Evaluating and Assigning Character Expressions: SETC

* Syntax:
&Character_Var_Sym SETC character_expression

* A character constant is a 'quoted string’

&CVarl SETC ‘AaBbCcDdEeFf’

&CVarz SETC °'This is the Beginning of the End’
&Decimal SETC '08123456789°

&Hex SETC '8123456789ABCDEF*

« All terms must be quoted, except type-attribute references
(and opcode-attribute references)

- Type-attribute references are neither quoted nor duplicated nor combined
&TCVarl SETC T'&CVarl

* Strings may be preceded by a parenthesized duplication factor

&X SETC  (3)°ST' &X has value 'STSTST®
& SETA 2
&Y SETC  (2*aJ) >’ &Y has value **xxx'
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Evaluating and Assigning Character Expressions: SETC ...

* Apostrophes and ampersands in strings must be paired
— Apostrophes are paired internally for assignments and relationals!

8T SetC ''*’ Value of &0T is a single apostrophe
&Yes SetB ('&QT' eq '''‘) &Yes is TRUE

— Ampersands are not paired internally for assignments and relationals!

&Amp SetC ‘3&° &Amp has value *3&'
&Yes SetB ('&Amp’ eq '&%') &Yes is TRUE
& SetC (2)'As&B' &b has value 'A38BASSB’

— Use substring notation to get a single & (see slide Conditional-19)
* Warning! SETA variables are substituted without sign!
& SETA -5
BC  F'&A’' Generates X'68686085°
8 SETC '&A' &C has value '5° (mot '-5°'})
— The SIGNED built-in function avoids this problem
&C SETC (SIGNED 8A)  &C has value *-5'
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Evaluating and Assigning Character Expressions: SETC

The major elements of character expressions are quoted strings. For example, we may
assign values to character variable symbols using quoted strings, as follows:

&Cvarl SETC ‘'AaBbCcDdEeFf!’

&Cvar2 SETC 'This is the Beginning of the End’
&Decimal SETC '06123456789'

&Hex SETC '0123456789ABCDEF!
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Type atiribute and opcode attribute references may also be used as terms in character
expressions, but they must appear as the only term in the expression:

&TCvarl SETC T'&Cvarl Type attribute
&0Cvarl SETC O0'&Cvarl Opcode attribute

The opcode attribute will not be discussed further here.

Repeated sets of characters may be written very easily using a parenthesized integer
expression preceding a string as a duplication factor:

&X  SETC (3)'ST! &X has value 'STSTST’
&J SETA 2
Y SETC (2*&J)'*! &Y has value '***x’

Character-string constants in SETC expressions are quoted, and internal apostrophes and
ampersands must be written in pairs, so that the term may be recognized correctly by the
assembler. Thus, character strings in character (SETC) expressions look like character con-
stants and character self-defining terms in other contexts. (Note that predefined absolute
symbols may be used in character expressions only in coniexis where an arithmetic term is
allowed.)

However, when the assembler determines the value of a character-string term in a SETC
expression, there is one key difference: while apostrophes are paired to yield a single
internal apostrophe, ampersands are not paired 1o yield single internal ampersands! Thus,
if we assign a string with a pair of ampersands, the result will still contain that pair:

&QT  SETC ' Value of &QT is a single apostrophe
&Yes SetB ('8QT' eq '''!) &Yes is TRUE

&Amp SETC '&&' &Amp has value '&&'
&Yes SetB ('&Amp' eq '&%') &Yes is TRUE

&C SETC 'A&&B' &C has value 'A&3B'
&D SETC (2)'A&8&B' 8&D has value 'A&ZBA&&B’

If the value of such a variable is substituted into an ordinary statement, then the ampersands
will be paired to produce a single ampersand, according to the familiar rules of the Assem-
bler Language:

&C SETC 'AR&B' &C has value 'A%8B'
AandB DC C'&C.! generated constant is 'A&B'

If a single ampersand is required in a character expression, then a substring (described
below) of a pair of ampersands should be used.

One reason for this behavior is that it prevents unnecessary proliferation of ampersands. For
example, if we had wanted 1o create the character string 'A&B’', a requirement for paired
ampersands in SETC expressions would require that we write

& SETC 'A&&8&B' 777

which would clearly make the language become even more awkward. The existing rules
represent a trade-off between inconvenience and inconsistency, in favor of greater conven-
ience.

Be aware that substitution of arithmetic-valued variable symbols into character (SETC)
expressions will not preserve the sign of the arithmetic value! For example:
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&A SETA -5 -
bC F'&A' Generates X'00000005°*
& SETC '&A' &C has value '5' (not '-5'!)

& SETA X'86600000' (maximum negative number)
& SETC '&B' &D has value 2147483648 (!)
8E SETA &D Error! ("not a self-defining term®)

If signed arithmetic is important, use arithmetic expressions and variable symbols. If signed
values must be substituted into character variables or ordinary statements with the proper
sign, then you must either use the SIGNED built-in function (see “Character Expressions:
Internal Character Functions” on page 29 for further details), or construct a character vari-
able with the desired sign, as in the following example. (Uses of the AIF and ANOP state-
ments, and the sequence symbol .GenCon will be discussed shortly.)

RA SETA -5
BadConl DC F'&A* Constant has value §
&C SETC '&A! &C has value '5' (not '-5'!)
BadCon2 DC F'&C? Constant has value §
AIF  (&A GE 0).GenCon Check sign of %A
&C SETC '-&C! Prefix minus sign if negative
.GenCon  ANOP
GoodCon  DC F'&C! Correctly signed constant with value -5

Note: In Release 4 of High Level Assembler, support for predefined absolute symbols in
character expressions was removed, because there are some possible ambiguities in how
their values should be interpreted.

Character expressions introduce two new concepts: string concatenation, and substring
operations.
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Character Expressions: Concatenation

& SETC °"AB’
& SETC °A'.'B’

& SETC ‘'&C'.°E’

& SETC ‘'&baD’

& SETC '&p.a&d’
&) SETC ‘'&C.E°

& SETC '&p..&D'

& SETC ‘A.B’

Concatenation of character variables indicated by juxtaposition

Concatenation operator is the period (.)

&C has value 'AB’
&C has value 'AB’

&0 has value ‘ABE’
& has value 'ABEABE'

Remember: a period indicates the end of a variable symbol

&E has value 'ABEABE®
&b has value 'ABE’

Periods are data if not at the end of a variable symbol

&E has value 'ABE.ABE’
&8 has value 'A.B’®

HLASM Macro Tutorial
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String Concatenation

We are somewhat familiar with the notion of string concatenation from some of the earlier
examples of substitution, where a substituted value is concatenated with the adjoining char-
acters to create the completed string of characters. As before, the end of a variable symbol
may be denoted with a period. The period is also used as the concatenation operator, as
shown in the following examples:

&C
&C
&D
&D

&E
&E

&E
&8

SETC
SETC
SETC
SETC

SETC
SETC

SETC
SETC

IABI
IAI'IBI
I&CI. IEI
'&C.E’

'&D&D’
'3D.8&D°*

'8D..8&D'
lA.BI

&C
&C
&D
&D

&E
&E

&E
&B

has
has
has
has

has
has

has
has

As these examples show, there
results.

value 'AB’
value 'AB'
value 'ABE’
value 'ABE’

value 'ABEABE'
value 'ABEABE’

value 'ABE.ABE'
value 'A.B’

may be more than one way to specify desired concatenation
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Character Expressions: Substrings

» Substrings specified by  'string’'(start_position,span)
&C SETC °'ABCDE’(1,3) &C has value 'ABC'
8C SETC ‘'ABCDE’(3,3) &C has value 'CDE’

* span may be zero (substring is null)
& SETC ‘ABCDE'(2,8) &C has value *'

* span may be * (meaning “to end of string”)
8C SETC ‘ABCDE’(2,*) = &C has value 'BCDE’

* Substrings take precedence over duplication factors
& SETC (2)'abc’(2,2) &C has value ’becbc’, not ’bc’

* Incorrect substring operations may cause warnings or errors
&C SETC ‘'ABCBE'(6,1) &C has value '’ (with a warning)

&C SETC ‘'ABCDE'(2,-1) &C has value '' (with a warning)
& SETC 'ABCBE'(B,2) &C has value ' (with an error)

&C SETC 'ABCDE'(5,3) &C has value 'E' (with a warning)
Note: warning disabled in AsmH, KLASM R1; option control was added in HLASM R2
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Substrings

26

Substrings are defined by a somewhat unusual (and sometimes awkward) notation, as
follows:

substring = 'source_string'(start_position,span)

where start_position is the position in the source_string where the substring is to begin, and
span is the length of the substring to be exiracted.

To illustrate, consider the following examples:

& SETC 'ABCDE'(1,3) &C has value 'ABC’
& SETC 'ABCDE'(3,3) &C has value 'CDE’
&C SETC 'ABCDE'(5,3) &C has value 'E' (with a warning, if FLAG(SUBSTR) was specified)

So long as the substring is entirely contained within the source_string, the results are intui-
tive. For cases where one or another of the many possible boundary conditions would
cause the substring not to be entirely contained within the source_string, the following rules

apply:
1. The length of the source_string must be between 1 and 255.
2. The span of the substring must be between 0 and 255.

3. If 1<start_position<length, and 1<span<length, and start_position + span<length+1, then
a normal substring will be exiracted.

4. If start_position<0, then the assembler will issue an error message, and the substring
will be set to null.

5. If start_position>length, then the assembler will issue a warning message, and the sub-
siring will be set to null.

6. If span=0, then the substring will be set to null. No error message will be issued.

7. If span<0, then the assembler will issue a warning message, and the substring will be set
1o null.
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8. If start_position+ span>length+ 1, then the substring will be that portion of the
source_string starting at start_position to the end. The assembler will issue a warning
message. (Note: This warning was documented but disabled in Assembler H and High
Level Assembler Release 1; it is nhow controlled by the FLAG(NOSUBSTR) option.)

The assembler provides a simple substring notation meaning “from here to the end of the
string”: simply write the second operand of a substring specification as an asterisk. For
example:

&C SETC 'ABCDE'(2,*) &C has value 'BCDE’

will select the substring starting at the second character of 'ABCDE' through the last char-
acter, setting &C to 'BCDE’.

Substrings take precedence over duplication factors, as shown in the following example:
&C SETC (2)'abc'(2,2) &C has value 'bcbc', not 'bc'!

The duplication factor repeats the substring 'bc' twice, rather than first creating the string
'abcabc' and taking the two characters starting at position 2.

String expressions are constructed using the operations of substitution, concatenation, and
substringing. One may also use type attribute references as character terms, but they are
limited to “single-term” expressions with no duplication factors.

Substring operations apply to the string term they follow, and not to string expressions
involving concalenation or character-valued internal functions (which are discussed in
“Character Expressions: Internal Character Functions” on page 29). For example:

&A SetC ‘abcde’

&B SetC 'grstu’

&C SetC 'BA.&B'(4,4) &C contains ‘deqr'

&D SetC '8&A'.'&8B'(4,4) &D contains 'abcdetu’

Note: There is occasional confusion of substring notation with subscripted variable symbols:
for substrings, the parenthesized start_position and span appear following the quoted string:

&SubStr SetC ‘string'(start_position,span)
whereas subscripts appear inside the quotes:

&Strval SetC ‘'&ArrayVar(&Subscript)'
They may of course appear together:

&Strval SetC 'BArrayVar(&Subscript)'(start_position,span)
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Character Expréssions: String Lengths

* Use a Count Attribute Reference (K') to determine the number of
characters in a variable symbol’s value

&N SETA K'&C Sets 8N to number of characters in &C
&C SETC *12345°' &C has value 12345

&N SETA K'&C &N has value 5

&C SETC ** null string

&N SETA K'&C &N has value 8

&C SETC *’'&&’'’ &C has value '&&°

&N SETA K'&C 8N has value 4

&€ SETC  (3)'AB* &C has value ABABAB

&N SETA K'&C &N has value 6

* Arithmetic and boolean variables converted to strings first
8A SETA -999 K'&A has value 3
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String Lengths

The number of characters in a character variable symbol’s value can be determined using a
Count attribute reference (K'). For example:

&C SETC '12345° &C has value 12345
&N SETA K'&C &N has value 5

&C SETC *! null string

&N SETA K'&C &N has value 8

&C SETC 'trga'! &C has value '&&'
&N SETA K'&C &N has value 4

&C SETC (3)'AB* &C has value ABABAB
&N SETA K'&C &N has value 6

Note that the pairing rules for apostrophes and ampersands apply only to character strings,
not to the contents of SETC variables:

&C SETC  ‘'''aa't! &C has value '8&&'
&D SETC &C &D has value '&&'
&M SETA K'&D &M has value 4

The Count attribute reference is very useful in cases where strings must be scanned from
right to left; thus,

&X SETC '&C'(K'&C,1) Extract rightmost character of &C
assigns the rightmost character in the value of &C to &X.

The value of a count attribute reference applied to an arithmetic or boolean variable symbol
is determined by first converting the value of the symbol to a character string (remember
that arithmetic values are converted without sign!). The length of the resulting string is the
attribute’s value. For example, if &A has value —999, its count attribute is 3.

&A SETA  -999 K'&A has value 3
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Character Expressions: Internal Character Functions

» Character-valued (unary) character operations:

&X_Up SetC  (UPPER '&X')  A)] letters in &X set to upper case
&Y_Low SetC (LOWER '&Y’) All Jetters in &Y set to lower case

&2 Pair SetC  (DOUBLE '32')  Ampersands/apostrophes in &Z doubled
&Charval SetC  (SIGNED 8&A) Convert arithmetic &A to signed string
&EBCDIC SetC (BYTE X'FF') Create one—byte character—variable value

* Arithmetic-valued (binary) character operations: INDEX, FIND
" INDEX finds position in 1st operand string of first match with 2nd operand

&First_Match SetA ('&BigStrg’ INDEX '&SubStrg’) First string match
&First_Match SetA ('&HayStack' INDEX ’&OneBigNeedle')

— FIND finds position in 1st operand string of first match with any character of
the 2nd operand

&First_Char SetA ('&BigStrg’' FIND ‘&CharSet’') First character match
&First_Char SetA ('&HayStack® FIND '&AnySmallNeedle')

- Both return 0 if nothing matches
These two functions may not be recognizable in all SetA expressions
— May have to write separate statements

I
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Character Expressions: Internal Character Functions

The assembler supports two types of internal character-string functions: character-valued
and arithmetic-valued. -

* The five character-valued character functions UPPER, LOWER, DOUBLE, SIGNED, and
BYTE are unary operators.

— The UPPER function operates on a string of characters and produces a string in which
all lower-case letters (having EBCDIC representations X'81-89', X'91-99', and
X'A2-A9' respectively) are converted to their upper-case equivalents (having EBCDIC
representations X'C1-C9', X'D1-D9’, and X'E2-E9' respectively).

&X_Up SetC  (Upper '&X') A1l letters in &X set to upper case

— The LOWER function does the inverse of the UPPER function, converting all upper-
case letlers to lower case.

&Y Low SetC  (Lower '&Y') A1l letters in &Y set to lower case

— The DOUBLE function scans its operand string for occurrences of ampersands and
apostrophes (single quotes), and replaces each occurrence with a pair. This allows
the result to be directly substituted into a DC-statement character constant (or a char-
acter literal). For example,

&z SetC  '&&''"’ Value is &3'
&Z Pair SetC  (DOUBLE '&Z') Ampersands/apostrophes in & doubled (&83&'')
Z_Const DC C'&Z Pair' Constant is &&'

— The SIGNED function eliminates the need for special coding to create a properly
signed character-siring representation of arithmetic values. (Remember that assigning
an arithmetic variable in a SetC statement to a character variable produces only the
unsigned magnitude of the arithmetic value!)

&X SetA -10 &X contains -10
&Y SetC 'ax! &Y contains '10' !
Y4 SetC  (SIGNED -10)  &Z contains '-10'
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— The BYTE function allows you to assign any pattern of eight bits to a character vari-
able containing a single byte.

X060 SetC  (BYTE 0) &X06 contains bit pattern X'00'
BXFF SetC  (BYTE X'FF')  8&XFF contains bit pattern X'FF'

Such assignments were extremely difficult or impossible to achieve in previous
assemblers. :

Each of these five character-valued functions may be preceded by a duplication factor,
and may be concatenated using the '.' operator. For example:

8C1 SetC (upper 'a').(Lower 'B') &C1 = 'Ab’

&C2 SetC (2)(upper ‘'a').(Lower 'B') 8C2 = 'AAb'
&C3 SetC (Upper 'a').(2)(Lower 'B') &C3 = 'Abb’
8&c4 setc (2)(upper ‘'a').(2)(Tower 'B') 8&C4 = 'AAbb’

The two arithmetic-valued character functions INDEX and FIND are used for rapid string
scanning. Both are binary operators.

1]

— The INDEX function finds the position within the first operand string of the first occur-
rence of a match with the second operand string:

RFirst_Match SetA ('&BigStrg' INDEX '&SubStrg') First string match

sets &First_Match to the position within &BigStrg of the first substring that matches
&SubStrg. If no match is found, the INDEX function returns a zero value.

&First_Match SetA ('&BigStrg' INDEX '&SubStrg') First string match

&Found SetA ('ABCdefg' Index 'de'} &Found has value 4
&NotFound SetA ('ABCdefg' Index 'DE')  &NotFound has value 0

The INDEX function can greatly simplify searches for a match in a list of strings. For
example, suppose the character variable symbol &Response might contain one of four
values: YES, NO, MAYBE, and NONE, and we wish 10 set the arithmetic variable symbol
&RVal to 1, 2, 3, or 4 respectively (or 1o zero if no match is found). In the past, you
might have written statements like these:

&Rval SetA ©

.Al AIf  ('8Response' ne 'YES').A2
&RVal SetA 1

AGo .B
A2 AIf  ('&Response’ ne 'NO').A3
&RVal SetA 2

AGo .B

-- - etc.
.B ANop

Each alternative is tested in turn until a match is found, and the desired value is then
set. Alternatively, you might have searched a list of subscripted variable symbols:

80K(1) SetC 'YES’,'NO','MAYBE','NONE' Initialize valid matches

&Rval SetA © Initialize match value
&J SetA 0 Initialize count
.Test AIf (&) ge N'&0K).Done Check for all values tested
&J SetA &J+1 Increment test value

AIf  ('&Response' ne '&0K(&J)').Test Loop if not found
&Rval SetA &J Set index of matched value
.Done ANop

Using the INDEX function, the looping can be eliminated and the search for a match
can be done in a single statement:
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20K SetC 'YES NO  MAYBENONE' 5 positions per term
&RVal SetA ('&0K' Index '&Response'’) Search for match
&RVal SetA 1+&RVal/5 Set corrected result

— The FIND function finds the position within the first operand string of the first occur-
rence of a match with any character of the second operand string:

&First Char SetA ('&BigStrg' FIND '&CharSet') First char match

sets &First_Char to the position within &BigStrg of the first character that matches any
single character of the &CharSet. If no matching character is found, the FIND function
returns a zero value. For example, suppose you want to search an “expression
string” for the presence of the arithmetic operators +, —, *, and /. Without the FIND
function, you might have written a code fragment like this:

.Scan ANop
aC SetC '&String'(&J,1) Pick off &J'th character
AIf  ('&C' eq '+').Plus Branch if plus
AIf  ("8C' eq '-').Minus Branch if minus
AIf  ('&C' eq '*').Mult Branch if asterisk
AIf  ('8C' eq '/').Div Branch if slash
&J SetA &J+1 Increment &J
AIf  (&J le K'&String).Scan Try again
.NoChar ANop No match found

Note that every character must be tested inside the loop! With the FIND function, the
scanning can be done more simply, and the “selection branch” to handle the desired
characters is done only when such a character has been found:

&0pPosn SetA ('&String' Find '+-*/') Search for operator character
AIf  (&0pPosn eq 0).NoChar  Skip if no match found
AGo  (&0pPosn).Plus,.Minus,.Mult,.Div  Branch accordingly
- - - etc.

Note that it might not be possible in all cases to use character functions in arithmetic
expressions. For example, you might want to write

AIf (0 ne ((UPPER '&SysParm') Index 'YES')).YESOK
but you might in fact have to write three statements:

&TempC SetC (UPPER '&SysParm')
&TempA  SetA ('&TempC' Index 'YES')
AIf (0 ne &TempA).YESOK

You should verify that your copy of HLASM is capable of evaluating complex expressions
before writing lots of conditional assembly code involving mixtures of character functions
and arithmetic expressions. '
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External Conditional-Assembly Funétions

* Interfaces to assembly-time environment and resources

* Two types of external, user-written functions

1. Arithmetic functions: like & = AFunc(&Vl, &V2, ...)

&A SetAF ‘AFunc',&V1,8V2,... Arithmetic arguments
&logN SetAF 'Log2’',8N Logb(&N)

2. Character functions: like & = CFunc('&S1*, '&S2°, ...)
&C SetCF 'CFunc’,'&S1°’, ‘&S2',... String arguments
&RevX SetCF ‘Reverse', '8X* Reverse(&X)

* Functions may have zero to many arguments

* Standard linkage conventions
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External Conditional-Assembly Functions

IBM High Level Assembler for MVS & VM & VSE supporis a powerful and flexible capability
for invoking externally-defined functions during the assembly. These “conditional-assembly
functions” can perform almost any desired action, and provide easy access to the environ-
ment in which the assembler is operating. They are invoked using the SETAF and SETCF
statements, by analogy with SETA and SETC.

The syntax of the statements is similar 1o that of SETA and SETC: a local or global variable
symbol appears in the name field; it will receive the value returned from the function. The
operation mnemonic indicates the type of function to be called, and the type of value to be
assigned to the “target” variable. The first operand in each case is a character expression
giving the name of the function to be called. The remaining operands are optional, and their
presence depends on the function: some functions require no parameters, others may
require several. The type of each parameter is the same as that of the target variable: arith-
metic parameters for SETAF, and character parameters for SETCF.

A compact notational representation of this description is

&Arith_Var  SETAF ‘Arith_function'[,arith_val]...
&Char_Var  SETCF 'Char_function'[,character_val]...

For example, we might invoke the LOG2 and REVERSE functions with these two statements:

&LogN SetAF ‘'Log2',&N Logb (&N)
&RevX SetCF 'Reverse','&X' Reverse (&X)

Interface descriptions and sample code for these two functions is described in Appendix A,
“External Conditional Assembly Functions” on page 208. Details of external function inter-
faces are described in the IBM High Level Assembler for MVS & VM & VSE product publica-
tions.
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Conditional Expressions with Mixed Operand Types

* Expressions sometimes simplified with mixed operand types
- Some limitations on substituted values and converted results

* Let &A, &B, &C be arithmetic, boolean, character:

Variable Type SETA Statement | SETB Statement | SETC Statement
Arithmetic no conversion zero &A becomes | '&A' is decimal
0; nonzero &A representation
becomes 1 of magnitude(&A)
Boolean extend &B to no conversion '&B’ is '8’ or
32-bit0or 1 1’
Character &C must be a &C must be a no conversion
self-defining self-defining
term term; convert to
0 or 1 as above
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Conditional Expressions with Mixed Operand Types

Conditional assembly expressions can be sometimes be simplified if mixed operand types
are used, to avoid a need for additional statements for converting to the desired type. The
following table indicates the allowed combinations of SETx statement types and operands;
the variables &A, &B, and &C respectively represent arithmetic, boolean, and character vari-
able symbols.

Variable Type SETA Statement SETB Statement SETC Statement
Arithmetic no conversion zero &A becomes 0; '&A' is decimal
nonzero &A representation of
becomes 1 magnitude of &A
Boolean extend &B to 32-bit no conversion '&B' is '0' or '1’
OCor1
Character &C must represent &C must represent no conversion
a self-defining term a self-defining
term; converted to
0 or 1 as for arith-
metic variables

Figure 3. Conditional Assembly SET Statement Operand Types

In most cases, the result of a substitution is as expected. However, there are a few cases to

note:

« Arithmetic values substituied into boolean expressions are converted using a simple rule:
zero values are converted to O, and nonzero values are converted to 1.

» Arithmetic values substituted into character expressions are converted to their unsigned
decimal representation. This does not mean that the arithmetic value is treated as an
unsigned 32-bit quantity, but that the magnitude of the arithmetic term is converted to
decimal! (Further details are given below.)

* Character values substituted into arithmetic expressions must be self-defining decimal,
hexadecimal, boolean, or character self-defining terms.
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* Character values substituted into boolean expressions must be self-defining decimal,
hexadecimal, boolean, or characlier self-defining terms, which are then converted to 0 or
1 following the first case above.

Statement Selection

* Allows the Assembler to select different sequences of statements for
further processing

* Key elements are:

1. Sequence symbols
— Used to "mark” positions in the statement stream

— A "conditional assembly tabel”

2. Two statements that reference sequence symbols:
AGD  conditional-assembly *unconditional branch”
AIF conditional-assembly *conditional branch”

3. One statement that helps define a sequence symbol:

ANOP  conditional-assembly *No-Operation”
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Statement Selection

The full power of the conditional assembly language lies in its ability to direct the Assembler
1o select different sequences of statements for processing. This allows you to tailor your
program in many different ways, as we will see.

The key facilities required for statement selection are sequence symbols, which are used to
mark positions in the statement stream for reference by other statements, and the AIF and
AGO statements, which allow the normal sequence of statement processing to be altered,
based on conditions specified by the programmer. The ANOP statement is provided as a
“place holder” for a sequence symbol.
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Sequence Symbols

* Sequence symbbl: an ordinary symbol preceded by a period ( . )
A .Repeat_Scan .Loop_Head -Errorl2

* Used to mark a statement
- Defined by appearing in the name field of a statement
A LR R8,R9

- Used as target of AIF, AGO statements to alter sequential statement
processing

= Not assigned any value (absolute, relocatable, or other)
» Purely local scope; no sharing of sequence symbols across scopes

* Cannot be created or substituted (unlike ordinary and variable
symbols)

- Cannot even be created by substitution in a macro-generated macro (1)
- Never passed as the value of any symbolic parameter
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Sequence Symbols and the ANOP Statement

* ANOP: conditional-assembly “No-Operation”

* Serves only to hold a sequence-symbol marker before statements that
wouldn’t have room for it in the name field

.Target ANOP
ARV SETA &ARV+1 Name field required for target variable
* No other effect

- Conceptually similar to (but very different from!)

Target EQU > For ordinary symbols in ordinary assembly
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Sequence Symbols and the ANOP Statement

Sequence symbols are the key to statement selection: they “mark” the position of a specific
statement in the stream of statements to be processed by the assembler. They are writien
as an ordinary symbol preceded by a period (.), as in the following examples:

A .Repeat_Scan .Loop_Head .Errori2
Sequence symbois have some unusual properties compared to ordinary symbols.

* Sequence symbols are defined by appearing in name field of any statement. They may
appear on ordinary-assembly statements and on conditional-assembly statements, with
no difference in meaning or behavior.

 Sequence symbols are not assigned an absolute or relocatable value, and they do not
appear in the assembler’s Symbol Table. They cannot be used in expressions of any
kind.
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= Sequence symbols have purely local scope. That is, there is no sharing of sequence
symbols between macros, or between macros and ordinary “open code” assembly.

. Sequence symbo!s. cannot be created or substituted (unlike ordinary and variable
symbols).

¢« Sequence symbols are never passed as values of any symbolic parameter. Thus,
although they can appear in the name field of a macro instruction statement (or macro
“call”), they are never made available 1o the macro definition as the value of a name-
field variable symbol.

* Sequence symbols are used as the target of AlF and AGO statements to alter sequential
statement processing, and for no other purpose.

* Sequence symbols may be defined before or after references to them. This means that
both forward and backward “branches” are possible (including the possibility of endless
loops).2

ANOP Statement

The ANOP statement is provided as a “place holder” for a sequence symbol that could not
otherwise be attached 1o a desired statement. This is illustrated in the following example,
where the desired “target” is a SETA statement, which requires that an arithmetic variable
symbol appear in the name field:

.Target ANOP
&ARV SETA RARV+1 Name field required for target variable

Thus, the ANOP statement provides a way for other AlF and AGO statements to refer to the
SETA statement.

2 The ability of conditional assembly branching to go “backward” to an earlier point in the statement stream means
that great care must be taken when defining sequence symbols in COPY segments, because the same symbol
might be defined in open code or in another COPYed instance of the same segment. Typically, the assembler will
not be able to complete enough processing to be able to create a listing with an error message.
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The AGO Statement

* AGO unconditionally alters normal sequential statement processing
- Assembler breaks normal sequential statement processing
- Resumes at statement marked with the specified sequence symbol
- Two forms: Ordinary AGO and Extended AGO
* Ordinary AGO (Go-To statement)
AGO  sequence_symbol
Example:

AG0 .Target Next statement processed marked by .Target

» Example of use:

AGD  .BB
* (1) This statement is ignored
.BB ANOP

* (2) This statement js processed
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The AGO Statement

The function of the AGO statement is to unconditionally alter the sequence of statement
processing, which resumes at the statement “marked” with the specified sequence symbol.
It is written in the form

AGO sequence_symbol

Example:
RGO .Target Next statement processed marked by .Target

The Assembler breaks its normal sequential statement processing, and resumes processing
at the statement “marked” with the specified sequence symbol. For example,

AGO  .BB
* (1) This statement is ignored
.BB  ANOP

* (2) This statement is processed

the AGO statement will cause the following comment statement (1) to be skipped, and proc-
essing will resume at the ANOP statement.
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The Extended AGO Statement

* Extended AGO (Computed Go-To, Switch statement)
AGO  (arith_expr)seqsym_1[,seqsym K]...

* Value of arithmetic expression determines which “branch’ is taken
from sequence-symbol list

— Value must lie between 1 and number of sequence symbols in “branch” list

*  Warning! if value of arithmetic expression is invalid, no “branch” is
taken!

AGD  (&SW).SW1,.SW2,.SW3,.SW4
MNOTE 12, 'Invalid value of 8&SW = &SW..' Always a good practice!
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The Extended AGO Statement

38

The assembler provides a convenient extension to the simple imperative (unconditional)
AGO statement, in the form of the “Computed AGO” statement, analogous to a “switch” or
“case” statement in other languages. The operand field contains a parenthesized arithmetic
expression, followed by a list of sequence symbols, as shown in the following example.

AGO  (arith_expr)segsym_1[,segsym k]...

Figure 4. General Form of the Extended AGO Statement

The operation of this extended AGO statement is simple: the value of the
arithmetic_expression is used 1o select one of the sequence symbols as a “branch target”: if
the value is 1, the first sequence symbol is selected; if the value is 2, the second sequence
symbol is selected; and so forth. However, because it is possible that the value of the arith-
metic expression does not correspond to any entry in the list (e.g., the value of the
expression may be less than or equal to zero, or larger than the number of sequence
symbols in the list), the assembler will not take any branch, and will not issue any diagnostic
message about the “failed” branch! Thus, it is important to verify that the values of arithmetic
expressions used in extended AGO statements are always valid.

A recommended technique is the following:

AGO  (&SW).SW1,.SW2,.SW3,.SuW4
MNOTE 12,'Invalid value of &&SW = &SW..' Always a good practice!

where a message indication is placed after the AGO to trap cases where the arithmetic vari-
able’s value is invalid.

The operation of the extended AGO statement illustrated in Figure 4 is precisely equivalent
1o the following set of AIF statements (which will be described shortly):

AIF  (arith_expr EQ 1)segsym_1

AIF (arith_expr EQ 2)seqsym_2

AIF (arith_expr EQ k)segsym k

This construction helps 1o illustrate how and when it is possible for no “branch” to be taken.
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The AIF Statement

» AIF conditionally alters normal sequential statement processing
*  Two forms: Ordinary AlF and Extended AIF
* Ordinary AlF:

AIF  (boolean_expression)seqsym

AIF (%A GT 18).Exit_Loop

» If boolean_expression is

true:  continue processing at specified sequence symbol
false: continue processing with next sequential statement

AIF (&2 GT 48).BD

* (2) This statement is processed
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The AIF Statement

The AIF statement provides a method for conditionally selecting a sequence of statements,
by testing a condition before deciding 1o “branch” or not to the statement designated by a
specified sequence symbol. The ordinary AIF statement is written in this form:

AIF  (boolean_expression)segsym

Example:
AIF (%A GT 10).Exit Loop

If the “boolean_expression” is true, statement processing will continue at the statement
marked with the specified sequence symbol. If the “boolean_expression” is false, processing
continues with the next sequential statement following the AIF. For example:

AIF (%A GT 10).BD
* (1) This statement is processed if (NOT (&A 6T 18))
.BD ANOP
* (2) This statement is processed

In this case, the statement following the AIF will be processed if the boolean expression
(8A GT 10) is false; if the condition defined by the boolean condition is true; the next state-
ment to be processed will be the ANOP statement.
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I The Extended AIF Statement

* Extended AIF (Multi-condition branch, Case statement)

AIF  (bool_expr_1)seqsym_1[, (bool_expr_n)segsym n]...

* Equivalent to a sequence of ordinary AIF statements
* Boolean expressions are evaluated in turn until first true one is found
- Remaining boolean expressions are not evaluated

* Example:

AIF  (&A 6T 18).5S1, (&800L2).552, (*&C* EQ **').SS3
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The Extended AIF Statement

The extended, or multi-condition, form of the AIF statement allows you to write multiple con-
ditions and “branch” targets on a single statement, as shown in the following:

AIF  (bool_expr_1)segsym_1[, (bool_expr_n)segsym n]...

Figure 5. General Form of the Extended AIF Statement

The boolean expressions are evaluated in turn until the first true expression is found; the
next statement processed will be the one “marked” by the corresponding sequence symbol.
The remaining boolean expressions are not evaluated after the first true expression is found.

An example of an extended AIF statement is:
AIF  (8A GT 10).SS1,(&B00L2).SS2,('aC' EQ '*').SS3

The extended AIF statement illustrated in Figure 5 is entirely equivalent to the following
sequence of ordinary AIF statements:

AIF  (bool_expr_1)segsym_1
AIF  (bool_expr_2)segsym 2

AIF  (bool_expr_n)segsym n

The primary advantage of the extended AIF statement is in providing a concise notation for
what would otherwise require multiple AIF statements.

40 Assembler Language as a Higher Level Language, SHARE Summer 2002



Logical Operators in SETA, SETB, and AIF

* “Logical” operators may appear in SETA, SETB, and AIF statements:
- AND, OR, XOR, NOT

* Interpretation in SETA and SETB is well defined
(see slide Conditional-23)

- SETA: treated as 32-bit masking operators
- SETB: treated as boolean connectives

* In AIF statements, possibility of ambiguous interpretation:
AIF (&A1 AND &A2).Skip
Let 8A1 = 1, &A2 = 2; then, evaluate
AIF (1 AND  2).Skip
— Arithmetic evaluation of (1 AND 2) yields O (bitwise AND)
— Boolean evaluation of (1 AND 2) yields 1 (both operands TRUE)
* Rule: AIF statements use boolean interpretation
— Provides consistency with previous language definitions.
AIF (1 AND  2).Skip will go to .Skipt
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Logical Operators in SETA, SETB, and AIF Statements

Certain logical operators may appear in SETA, SETB, and AIF statements and pose a pos-
sibly ambiguous interpretation: AND, OR, XOR, and NOT. Their interpretation in SETA and
SETB statements is well defined: in SETA statements, they are treated as 32-bit masking
operators; in SETB statements, they are treated as boolean connectives. (See the dis-
cussion at “Conditional Expressions with Mixed Operand Types” on page 33 for details.)

However, in AIF statements there is a possible ambiguity, as the following example illus-
trates:

AIF (&A1 AND 8&A2).Skip
Suppose variable &A1 has value 1, and &A2 has value 2. Consider this AIF statement:
AIF (1 AND  2).Skip

If the expression is evaluated using “SETA rules”, its value is zero: the arithmetic represen-
tations of 1 and 2 have no one-bits in common, so their logical AND is zero.

However, if the expression is evaluated using “SETB rules”, then according to the conver-
sion rules described in “Conditional Expressions with Mixed Operand Types” on page 33,
the result must be 1 (because both 1 and 2 are nonzero, they are first converted to boolean
terms having value 1).

To avoid any possibility of ambiguity, High Level Assembler uses the boolean interpretation
in AIF statements. Thus,

AIF- (1 AND  2).Skip

will cause a conditional-assembly branch to .Skip.
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Displaying Variable Symbol Values: The MNOTE Statement

» Useful for diagnostics, tracing, information, error messages
- See also discussion of macro debugging (slide Concepts-41)

= Syntax:
MNOTE severity, 'message text®
* severity may be
- any arithmetic expression of value between 0 and 255

— omitted {if the following comma is present, severity = 1)
— value of severity is used to determine assembly completion code

— an asterisk: the message is treated as a comment
— omitted (if the following comma is also omitted, treat as a comment)
* Displayed quotes and ampersands must be paired
* Examples:

.Msg_1B MNOTE 8, ’'Missing Required Operand’

.X14 MNOTE ,'Conditional Assembly has reached .X14°®

.Traced MNBTE *,’Value of &R%A = &A., value of &&C = ''&C.’'"*
MNDTE 'Hello Werld (How Originall)’
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Displaying Variable Symbol Values: The MNOTE Statement

42

The “inputs” to conditional assembly activities are usually values of variable symbols, and
ordinary statements that may or may not be affected by substitution and/or selection. Simi-
larly, the “outputs” are normally sequences of statements on which selection and substi-
tution have been performed.

There is another way for the conditional assembly language to “communicate” 1o the
program and the programmer, by way of the MNOTE statement.

The MNOTE statement can be used in both “open code” and in macros to provide diagnos-
tics, trace information, and other data in an easily readable form. By providing suitable con-
trols, you can produce or suppress such messages easily, which facilitates debugging of
macros and of programs with complex uses of the conditional assembly language. For
example, a program could issue MNOTE statements like the following:

.Msg_1B MNOTE 8,'Missing Required Operand’
.X14 MNOTE ,'Conditional Assembly has reached .X14'

.Traced MNOTE *,'Value of &RA = &A., value of &&C = ''§C.'''
MNOTE 'Hello World (How Original!l)'

The first MNOTE sets the return code for the assembly to be at least 8 (presumably, due to
an error condition); the second could indicate that the flow of control in a conditional
assembly has reached a particular point (and will supply a default severity code value of 1);
the third provides information about the current values of two variable symbols; and the
fourth illustrates the creation of a simple message.

Any quotation marks and ampersands intended to be part of the message must be paired,
as illustrated in the example above.

The first two MNOTEs are treated as “error” messages, which means that they will be
flagged in the error summary in the listing and will appear in the SYSTERM output (if the
TERM option was specified, and the setting of the FLAG option has not suppressed them). A
setting of an assembly severity code is also performed. The latter two MNOTEs will be
treated as comments, and will appear only in the listing.
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The High Level Assembler provides two system variable symbols (&SYSM_SEV and

&&SYSM_HSEV) that allow you to determine the values of MNOTE statement severities.
These two variables will be discussed in “&SYSM_HSEV and &SYSM_SEV” on page 235.

Examples of Conditional Assembly

We will now describe two simple examples of open-code conditional assembly. Further
examples of conditional assembly techniques will be illustrated later, when we discuss

macros.

Example: Generate a Byte String with Values 1-N

N EQU
pC

» Sample 0: write everything by hand

- Defect: if the value of N changes, must rewrite the DC statement

* Sample 1: generate separate statements
- Pseudocode: DO for J = 1 to N (GEN( DC AL1(J)))

N EQU 5 Predefined absolute symbol
LCLA & Local arithmetic variable symbol, initially 8
.Test AIF (& GE N).Done Test for completion (N could be LE 81)
| & SETA &J+1 Increment &)
BC AL1(&d) Generate a byte constant
AGD  .Test 6o to check for completion
.Done ANOP Generation completed

5 Predefined absolute symbol
AL1(1,2,3,4,N) Define the constants
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Example: Generate a Byte String with Values 1-N ...

» Sample 2: generate a string with the values (like '1,2,3,4,5")

- Pseudocode:
Set S='1'; DO for K=2to N (S=S }] ',K'); GEN( DC AL1(S))

N EQU 5 Predefined absolute symbol
LCLA &K Local arithmetic variable symbol
LCLE &s Local character variable symbol

&K SETA 1 Initialize counter
AIF (&K GT N).Done2 Test for completion (N could be LE 8!)
SETC '1° Initialize string
ANOP Loop head
SETA 8K+l Increment &K

AIF (&K GT N).Donel Test for completion
SETC '&S'.’, &’

Continue string: add comma and next value

AGO
.Donel BC
.Done2 ANOP

-Loop
AL1(&S.)

Branch back to check for completed
Generate the byte string
Generation completed

*  Tryitwith 'N EQU 30’, 'N EQU 90°, 'N EQU 308’
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Example 1: Generate a Sequence of Byte Values

Suppose we wish to generate DC statements defining a sequence of byte values from 1 to N,
where N is a predefined value. This could naturally be done by writing statements like

N EQU 12
DC AL1(1,2,3,...,N)

but this requires knowing the exact value of N every time the program is modified and re-
assembled.

Conditional assembly techniques can be used to solve this problem so that changing the
EQU statement defining N will not require any rewriting. Pseudo-code for such a code
sequence might look like this:

DO for K = 1 to N (GEN( DC AL1(K)))

We can write conditional-assembly statements to generate the sequence of DC statements

as follows:
N EQU 5 Predefined absolute symbol
LCLA &J Local arithmetic variable symbol, initially 0
.Test AIF (&) GE N).Done Test for completion (N could be LE )
&J SETA  &J+1 Increment &J
DC  AL1(&J) Generate a byte constant
AGO  .Test Go to check for completion
.Done ANOP Generation completed

Figure 6. Generating a Sequence of Bytes, Individually Defined

The operation of this loop is simple. The LCLA declaration of &J also initializes it to zero (we
could not have omitted the declaration in this example, because the first appearance of &J is
not in a SETA statement). The AIF statement compares &J to N (a predefined absolute
symbol), and if it exceeds N, a “branch” is taken to the label .Done. {In fact, the Assembler
implements the “branch” by searching the source file for an occurrence of the sequence
symbol in the local context of “open code”.) If the AIF test does not change the flow of state-
ment processing, the next statement increments &J by one, and its new value is then substi-
tuted in the DC statement. The following AGO then returns control to the test in the AIF
statement.

Alternatively, we could generate only a single DC statement by using a technique that con-
structs the nominal value string for the DC statement. A pseudo-code sketch of the method
is:

Set S='1'; DO for K= 2 to N (S =S || ',K'); GEN( DC AL1(S))

A conditional-assembly code sequence might be written as follows:
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N EQu 5 Predefined absolute symbol
LCLA &K Local arithmetic variable symbol
LCLC &S Local character variable symbol
&K SETA 1 Initialize counter
AIF (&K GT N).Done2 Test for completion (N could be LE 0!)
&S SETC '1! Initialize string
.Loop ANOP Loop head
&K SETA  &K+1 Increment &K
AIF (& GT N).Donel Test for completion
S SETC '&S'.',8&K’ Continue string: add comma and next value
AGO  .Loop Branch back to check for completed
.Donel DC AL1(8S.) Generate the byte string
.Done2 ANOP Generation completed

Figure 7. Generating a Sequence of Bytes, as a Single Operand String

In this program fragment, a single character string is constructed with the desired sequence
of values separated by commas. The first SETC statement sets the local character variable
symbol &C to '1', and the following loop then concatenates successive values of the arith-
metic variable symbol &K onto the string with a separating comma, on the right. When the
loop is completed, the DC statement inserts the entire string of numbers into the nominal
values field of the AL1 operand.

It is instructive to test this example with values of N large enough to cause the string &S to
become longer than (say) 60 characters; try assigning a value of 30 to N, and observe what
the assembler does with the generated DC statement. (Answer: it creates a continuation
automatically!)

Both these examples share a shortcoming: if more than one such sequence of byte values is
needed in a program, with different numbers of elements in each sequence, these “blocks”
of conditional assembly statements must be repeated. We will see in “Case Study 2: Gener-
ating a Sequence of Byte Values” on page 107 that a simple macro definition can make this
task easier to solve.

Example: System-Dependent 1/O Statements

» Suppose a system-interface module declares 1/0 control blocks for
MVS, CMS, and VSE:

&0pSys  SETC °MVs® Set desired operating system
AIF  ('&DpSys' KE 'MVS').T1  Skip if not MVS

Input DCB  DDNAME=SYSIN,...etc... Generate MVS DCB
AGD .T4

.M AIF  ('&0pSys® NE 'CMS').T2  Skip if not CMS

Input FSCB ,LRECL=88,...etc... Generate CMS FSCB
AGD  .T4

T2 AIF  (’&0pSys® NE 'VSE').T3  Skip if not VSE

Input DTFCD LRECL=88,...etc... Generate VSE BTF
AGD  .T4

.13 MNOTE 8, 'Unknown &&0pSys value '’&DpSys’’.’

.T4 ANDP

* Setting of &OpSys selects statements for running on one system
- Assemble the module with a system-specific macro library
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Example 2: Generating System-Dependent I/O Statements

Suppose you are writing a module that provides operating system services to a larger appli-
cation. As a simple example, suppose one portion of the module must read input records,
and that you wish to use the appropriate system-interface macros for each of the
System/360/370/390’s MVS, CMS, and VSE operating systems.

This is very simply solved using conditional-assembly statements 1o select the sequences
appropriate to the system for which the module is intended. Suppose you have defined a
character-valued variable symbol &0pSys whose values may be MVS, CMS, or VSE. Then the
needed code sequences might be defined as in Figure 8:

&0pSys  SETC 'MVS! Set desired operating system

. AIF  ('&0pSys' NE 'MVS').T1  Skip if not MVS
Input DCB  DDNAME=SYSIN,...etc... Generate MVS DCB

AGO .T4 N
.T1 AIF  ('%0pSys' NE 'CMS').T2  Skip if not CMS
Input FSCB ,LRECL=80,...etc... Generate CMS FSCB
AGO .74
.12 AIF  ('8&0pSys' NE 'VSE').T3  Skip if not VSE
Input DTFCD LRECL=80,...etc... Generate VSE DTF
AGO .T4
.13 MNOTE 8, 'Unknown &&0pSys value ''&0pSys''.’
.T4 ANOP

Figure 8. Conditional Assembly of I/0 Module for Multiple OS Environments

In this example, different blocks of code contain the necessary statements for particular
operating environments. in any portion of the program that contains statements particular to
one of the environments, conditional assembly statements allow the assembler to select the
correct statements. By setting a single variable symbol &0pSys to an appropriate value, you
can tailor the application to a chosen environment without having to make into multiple
copies of its processing logic, one for each environment.

Thus, for example, the first AIF statement tests whether the variable symbol &0pSys has
value 'MVS’; if so, then the following statements generate an MVS Data Control Block.
(Naturally, you will need to supply an appropriate macro library to the assembler at
assembly time!)

The technique illustrated here allows you to make your programs more portable across
operating environments, and across versions and releases of any one operating system,
without requiring major rewriting efforts or duplicated coding each time some new function
is o be added.
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Conditional Assembly Language Eccentricities

* Some items described above...

1. Character string comparisons: shorter string is always less (see slide
Conditional-14)

2. Different pairing rules for ampersands and apostrophes (see slide
Conditional-17)

3. SETC of an arithmetic value uses its magnitude (see slide Conditional-17)

4. Cnharacter functions may not be recognized in SetA expressions (see slide
Conditional-21)

5. Computed AGO may fall through (see slide Conditional-28)

6. Logical operators in SETx and AIF statements (see slide Conditional-31)
* Normal, every-day language considerations:

- Arithmetic overflows in arithmetic expressions

- Incorrect string handling (bad substrings, exceeding 255 characters)

« Remember, it's not a high-level language!
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Conditional Assembly Language Eccentricities

The previous text has described several potential pitfalls in the conditional assembly lan-
guage; they are summarized here.

1.

When character strings of unequal lengths are compared, the shorter string is always
treated as being less than the longer string, even though a comparison of their first char-
acters might indicate otherwise. (See “Evaluating and Assigning Boolean Expressions:
SETB” on page 20.)

The pairing rules for ampersands and apostrophes are different from those in the ordi-
nary Assembler Language (apostrophes are, but ampersands are not). (See “Evaluating
and Assigning Character Expressions: SETC” on page 22.)

Conversion of an arithmetic variable 1o a character string returns the magnitude of the
variable; no minus sign is provided for negative values. The SIGNED internal function pro-
vides a minus sign. (See “Evaluating and Assigning Character Expressions: SETC” on
page 22.)

Internal function evaluations involving string functions cannot always be “nested” in
arithmetic expressions. (See “Character Expressions: Internal Character Functions” on
page 29.) .

If the number of sequence symbols listed on an extended AGO does not match the value
of the supplied variable, no branch is taken. (See “The Extended AGO Statement” on
page 38))

The rules for evaluating expressions involving logical operators such as AND and OR are
different for SetA (arithmetic) and SetB (boolean) expressions. AIF expressions are evalu-
ated using the SetB rules. (See “Logical Operators in SETA, SETB, and AIF Statements”
on page 41.)

In addition, all arithmetic overflow conditions are flagged; they cannot be suppressed. Most
forms of incorrect string handling are also diagnosed.
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Part 2: Basic Macro Concepts

Part 2: Basic Macro Concepts

HLASM Macro Tutorial  © Copyright IBM Corporation 1993, 2002. All rights reserved. Concepts-1

Macros are a powerful mechanism for enhancing any language, and they are a very impor-
tant part of the System/360/370/390 Assembler Language. Macros are widely used in many
ways to simplify programming tasks.

We will begin with a conceptual overview of the basic concepts of macros, in a way that is
not specific to the Assembler Language.?® This will be followed by an investigation of the
System/360/370/390 Assembler Language’s implementation of macros, including the fol-
lowing topics:

macro definition: how to define a macro

macro encoding: how the assembler converts the definition into an internal format to sim-
plify interpretation and expansion

macro-instruction recognition: how the assembler identifies a macro call and its elements
macro parameters and arguments

macro expansion and text generation

macro argument attributes and structures

global variable symbols

examples of macros.

3 Some of the material in this chapter is based on an excellent overview article by William Kent, titled “Assembler-
Language Macroprogramming: A Tutorial Oriented Toward the IBM 360" in the ACM Computing Surveys, Vol. 1,
No. 4 (December 1969), pages 183-196.
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What is a Macro Facility?

* A mechanism for extending a language
- Introduces new statements into the language

— Defines how the new statements transiate into the “base language”

— Which may include existing macros!

— Allows mixing old and new statements

* In Assembler Language, “new” statements are called
macro instructions or macro calls

» Easy to create application-specific languages
- Typical use is to extend base language
—~ Can even hide it entirely!
- Create higher-level language appropriate to application needs

—~ Can be made highly portable, efficient
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What is a Macro Facility?

Most simply, a macro facility is a mechanism for extending a language. It can be used not
only to introduce new statements into the language, but also to define how the new state-
ments should be translated into the “base language” on which they are built. One major
advantage of macros is that they allow you 1o mix “old” (existing) and “new” statements, so
that your language can grow incrementally to accommodate new functions, added require-
ments, and other benefits as and when you are able to take advantage of them. The “old”
statements may include existing macros, providing leverage with each increment of growth.

In the Assembler Language, these new statements are called “macro instructions” or
“macro calls”. The use of the term “call” implies a useful analogy to subroutines; there are
many parallels between (assembly-time) macro calls and (run-time) subroutine calls. You
can think of a macro as an "assembly-time subroutine”.

The analogy of macros to subroutines is quite close: they are both

* “named” collections of statements invoked by that name,

* to which various arguments are passed,

* and the values of the arguments are then processed according to the logic of the internal
statements.

The major difference is that subroutines are called at the time a program is executed by a
processor (after having been translated to machine code), whereas a macro is executed
during the translation (assembly) process, prior to the generation of machine code.

Macros and macro techniques make it very easy to create application-specific languages:

* you can create higher-level languages appropriate to the needs of particular application
areas

= the language can be made highly portable and efficient

» 1typical uses are to extend the base language on which the extended language is built (in
fact, it is possible to hide the base language entirely!).
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Benefits of Macro Facilities

* Re-use: write once, use many times and places

* Reliability and modularity: write and debug “localized logic” once
* Reduced coding effort: minimize focus on uninteresting details

* Simplification: hide complexities, isolate impact of changes

» Easier application debugging: fewer bugs and better guality

« Standardize coding conventions painlessly

* Encapsulated, insulated interfaces to other functions

* Increased flexibility and adaptability of programs

- Greater .application portability
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Benefits of Macro Facilities

Macro facilities can provide you with many direct and immediate benefits:

« Code re-use: once a macro is written, it becomes available to as many programmers and
applications as are appropriate. A single definition can find multiple uses (even within a
single application).

» Reliability and modularity: code and debug the logic in one place.

* Reduced coding effort: the coding in a macro needs to be written only once, and then can
be used in many places.

» Reduced focus on uninteresting details: macros allow you to create “higher-level” ele-
ments of your programming language, relieving you of the need to be concerned with
details that are typically only marginally relevant to your programming task.

« Greater application portability: because almost every system supports a macro assem-
bler, it is easy to port an application written in “macro language” to another host envi-
ronment simply by writing an appropriate set of macros definitions on the new system.*

» Easier debugging, with fewer bugs and better quality: once you have debugged your
macros, you can write your applications using their higher-level concepts and facilities,
and then debug your programs at that higher level. Concerns with low-level details are
minimized, because you are much less likely to make simple oversights among masses
of uninteresting details.

* Standardize coding conventions painlessly: if your organization requires that certain
coding conventions be followed, it is very simple to embody them in a set of macros that
all programmers can use. Then, if the conventions need to change, only one set of
objects — the macros — needs to be changed, not the entire application suite.

4 The SNOBOL4 language was implemented entirely in terms of a set of macros that defined a “string processing
implementation language”. The entire SNOBOL4 system could be “ported” to a new system with what the authors
called “about a week of concentrated work by an experienced programmer”. You may be interested in consulting
The Macro Implementation of SNOBOL4, by Ralph Griswold.

50  Assembler Language as a Higher Level Language, SHARE Summer 2002



Provide encapsulated interfaces to other functions, insulated from interface changes:
using macros, you can support interfaces among different elements of your applications,
and between applications and operating environments, in a controlled and defined way.
This means that changes to those interfaces can be made in the macros, without
affecting the coding of the applications themselves.

Localized logic: specific and detailed (and often complex) code sequences can be imple-
mented once in a macro, and used wherever needed, without the need for every user of
the macro to understand the “inner workings” of the macro’s logic.

Increased flexibility and adaptability of programs: you can adapt your applications to dif-
ferent requirements by modifying only the macro definitions, without having to revise the
fundamental logic of the program.

The Macro Concept: Fundamental Mechanisms

* Macro processors rely on two basic mechanisms:
1. Macro recognition: identify some character string as a macro “call”

2. Macro expansion: generate a character stream to replace the “cail”

* Macro processors typically do three things:

1. Text insertion: injection of one stream of source program text into another
stream

2. Text modification: tailoring (“parameterization™) of the inserted text

3. Text selection: choosing alternative text streams for insertion
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The Macro Concept: Fundamental Mechanisms

Macro processors typically rely on two basic processes:

Macro recognition requires that the processor identify some string of characters as a
macro invocation or macro call, indicating that the string is to be replaced.

Macro expansion or macro generation causes the macro definition to be interpreted by
the processor, with the usual result that the original string is replaced with a new (and
presumably different) string.

In macro expansion, there are three fundamental mechanisms used by almost all macro
processors:

text insertion: the creation of a stream of characters to replace the string recognized in
the macro “call”

text parameterization: the tailoring and adaptation of the generated stream to the condi-
tions of the particular call

text selection: the ability to generate alternative streams of characters, depending on
various conditions available during macro expansion.
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These correspond to the mechanisms already described for the conditional assembly lan-
guage: for example, text parameterization uses the process of substitution, and text
selection uses that of statement selection.

Basic Macro Concepts: Text Insertion

« Text insertion: injection of one stream of source program text into
another stream

Macro Definition Main Program Logical Effect

Name = MACB1

AR AR

cc BB BB

DD MACE1 g cc

EE bD

FF EE

FF

* The processor recognizes MAC81 as a macro name

» The text of the macro definition replaces the “macro call” in the Main
Program

* When the macro ends, processing resumes at the next statement
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Text Insertion

The simplest and most basic mechanism of macro processing is that of replacing a string of
characters, or one or more statements, by other (often longer and more complex) strings or
sets of statements.

In Figure 9, a set of statements has been defined to be a macro with the name MACO1. When
the processor of the Main Program recognizes the string MACO1 as matching that of the
macro, that string is replaced by the text within the macro definition. Finally, when the
macro ends, statement processing resumes at the next statement following the macro call.

This is called text insertion: the injection of one stream of source text into another stream.

Macro Definition Main Program Logical Effect

Name = MACO1

AA AA

cc BB BB

DD MACO1 —> cc

EE DD

FF EE

FF

Figure 9. Basic Macro Mechanisms: Text Insertion
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Basic Macro Concepts: Text Parameterization

* Text parameterization: tailoring of the inserted text

Macro Definition Main Program Legical Effect
Name = MACO2
Parameters X,Y
AA
BB AA BB
X MAC®2 CC,DD | — cc
Y FF DD
EE EE

FF

* Processor recognizes MACB2 as a macro name, with arguments CC,DD
— Arguments CC,DD are associated with parameters X,Y by position
- As in all high-level languages

* The text from the macro definition is modified during insertion
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Text Parameterization and Argument Association

Simple text insertion has rather limited uses, because we usually want to tailor and adapt
the inserted text to accommodate the various conditions and situations of each macro invo-
cation. The simplest form of such adaptation is “text parameterization”. In Figure 10, the
macro with name MACO2 is defined with two parameters X and Y: that is, they are merely
place-holders in the definition that indicate where other text strings are expected to be
inserted when the macro is expanded.

Macro Definition Main Program Logical Effect

Name = MACO2
Parameters X,Y

AA

BB AA BB

X MAC62 CC,DD | —» cc

Y FF DD

EE EE

FF

Figure 10. Basic Macro Mechanisms: Text Parameterization

This example illustrates text modification: tailoring of the inserted text (“parameterization”)
depending on locally-specified conditions.

When a macro call is recognized, it is normal for additional information (besides the simple
act of activating the definition) to be passed to the macro expansion. Thus, when the
processor of the Main Program recognizes MAC62 as a macro name, it also provides the two
arguments CC and DD to the macro expander, which substitutes them for occurrences of the
two parameters X and Y, respectively.

The argument CC is associated with parameter X, and DD is associated with Y. This simple
example of parameter-argument association is typical of many macro processors: associ-
ation proceeds in left-to-right order, maiching each positional parameter in turn with its cor-
responding positional argument. This is the familiar form of association used in almost all
high-level programming languages. Other forms of association are possible.
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. Basic Macro Concepts: Text Selection

Macre Definition
Name = MACB3
Parameter X

Main Program

* Text selection: choosing alternative text streams for insertion

Legical Effect

JJ
if (X = 0) skip 1 stmt
KK
LL

AA
MACO3 B
BB
MACB3 1
cC

* Processor recognizes MAC83 as a macro name with argument 0 or 1

* Conditional actions in the macro definition aliow selection of different
insertion streams

HLASM Macro Tutorial
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Text Selection

Text selection is fundamental to most macro processors, because it allows choices among
alternative sequences of generated text. In Figure 11, a simple form of text selection is
modeled by the if statement: the parameter X is associated with the argument of the two
calls 1o MACO3. A simple test of the argument corresponding to X tells whether or not to gen-
erate the string KK. If the argument is 0, KK is not generated; otherwise it is.

54

Macro Definition
Name = MACO3
Parameter X

JJ
if

KK

LL

(X = 8) skip 1 stmt

Main Program

AA
MACO3 ©
BB
MACE3 1
cc

Logical Effect

AA
JJ
LL
BB
JJ
KK
LL
cc

Figure 11. Basic Macro Mechanisms: Text Selection
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l Basic Macro Concepts: Call Nesting

* Generated text may include calls on other (“inner”) macros

- New statements can be defined in terms of previously-defined extensions

* Generation of statements by the outer (enclosing) macro is interrupted
to generate statements from the inner

* Muitiple levels of call nesting OK (including recursion)

» Technical Detail: Inner macro calls recognized during expansion of the
outer macro, not during definition and encoding of the outer macro

- Can pass arguments of outer macros to inner macros that depend on
arguments to, and analyses in, outer macros

- Provides better independence and encapsulation
- Allows passing parameters through multiple levels

- Can change definition of inner macros without having to re-define the outer
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Macro Call Nesting

A key strength of the macro language is its ability to build new capabilities on existing facili-
ties. The most common of these abilities is called “macro call nesting” or “macro nesting”:
generated text may include (or create!) calls on other macros (“inner macro calls™). This
mechanism lets you define new statements in terms of previously-defined extensions; it is
fundamental to much of the power and “leverage” of macro languages.

The generation process for inner macro calls requires that the macro processor maintain
some kind of “push-down stack” for its activities.

Generation of statements by the outer (enclosing) macro is suspended temporarily to
generate statements from the inner.

Multiple levels of call nesting are quite acceptable (including recursion: a macro may call
itself directly or indirectly), and are often a source of added power and flexibility.

The inner calls are recognized during expansion of the outer (enclosing) macro, not during
macro definition and encoding. This may seem a very minor and obscure technical detail,
but it turns out in practice to have wide-ranging implications.

By deferring the recognition of inner macro calls until the enclosing macro is expanded,
you can pass arguments to inner macros that depend on arguments to, and analyses in,
outer macros.

Recognition following expansion provides better independence and encapsulation: you
can change the definition of the inner macro without having to re-define the outer.

You will also save coding effort: if the definition of an inner macro needed to be changed,
and its definition was already “embodied” in some way in other macros that called it,
then all the “outer” macro definitions would have to be revised.
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Macro Call Nesting: Example

* Two macro definitions: OUTER contains a call on INNER

Macro Definitions Main Program Logical Effect
Name = DUTER -
AA
BB AR BB
INNER OUTER - [
EE FF DD
INNER EE
Name = INNER FF
cc
cc DD
DD

* Expansion of OUTER is suspended until expansion of INNER completes
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In the example in Figure 12, two macros named OUTER and INNER are known to the
processor of the Main Program. When the name OUTER is recognized as a macro name,
processing of the Main Program is suspended and expansion of the OUTER macro begins.
When INNER is recognized as as macro name, processing of the OUTER macro is also sus-
pended and expansion of the INNER macro begins. When the INNER macro expansion com-
pletes, the OUTER macro resumes expansion at the next sequential statement (EE) following
the call on INNER; when the expansion of the OUTER macro completes, processing resumes
in the Main Program following the OUTER statement, at FF.

Note also that the INNER macro can be called from the Main Program, because it is known
to the processor at the time the call is recognized.

Macro Definitions Main Program Logical Effect

Name = OUTER

AA

BB AA BB

INNER OUTER —> cc

EE FF DD

INNER EE

Name = INNER FF

cC

cC DD

DD

Figure 12. Basic Macro Mechanisms: Call Nesting

The power of a macro facility is enhanced by its ability to combine the basic functions of text
insertion, text parameterization, text selection, and macro nesting.

Each of the features, concepts, and capabilities described above can be expressed in a way
natural 1o the System/360/370/390 Assembler Language.
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Macro Definition Nesting: Example

* Macro definitions may contain macro definitions

Macro Definitions Main Program Logical Effect
Name = OUTER
AA
BB AR BB
MACRO INNER OUTER — EE
cc FF cc
DD DD
MACEND INNER FF
EE
INNER
Name = INNER
cc This definition is created
Db only when OUTER is called.

* Expansion of OUTER causes INNER to be defined
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Macro Definition Nesting

While macro call nesting is widely used, macro definition nesting is relatively rare. The idea
of macro definition nesting is illustrated in Figure 13, where we suppose that the definition of
the macro named INNER is enclosed within the MACRO and MACEND statements.

Macro Definitions Main Program Logical Effect
Name = OUTER
AA
BB AA BB
MACRO INNER OUTER —> EE
cc FF cc
DD DD
MACEND INNER FF
EE
INNER
Name = INNER
cc ] This definition is created
DD J only when OUTER is called.

Figure 13. Basic Macro Mechanisms: Nested Macro Definitions

In this example, only the OUTER macro is known 1o the processor of the Main Program.
When the name OUTER is recognized as a macro call, processing of the Main Program is
suspended and expansion of the OUTER macro begins. When the generated statement
MACRO INNER is recognized, the processor begins to create a new macro definition for
INNER, saving the following statements until the MACEND INNER statement is recognized.

Later in the expansion of the OUTER macro, the nested call on the INNER macro is recog-
nized, and the previously described mechanisms are used io generate the statements of the
INNER macro.
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Note that the INNER macro is known to the processor only affer it has been generated during
expansion of the CQUTER macro. If INNER had been called from the Main Program prior to a
call on OUTER, the processor would have 1o treat it as an unknown operation.
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The Assembler Language Macro Definition

* A macro definition has four parts:

(1) MACRO Macro Header (begins a definition).

(2) Prototype Statement Mode]l of the macre instruction
that can call on this definition;
a mode]l or “template” of the new
statement introduced into the
Tanguage by this definition.

A single statement.

(3) Model Statements Declarations, conditional assembly
statements, and text fer selection,
modification, and insertion.

Zero to many statements.

(4) MEND Macro Trailer (ends a definition).
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The Assembler Language Macro Definition ...

1. Declares a macro name representing a stream of program text
MACRO and MEND statements delimit start and end of the definition

Prototype statement declares parameter variable symbols

Eal o

Model statements (“macro body”) provide logic and text
* Definitions may be found

- “in-line” (a “source macro definition”)

~ in a library (COPY can bring definitions “in-line”)

— or both

= Recognition rules affected by where the definition is found
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The Assembler Language Macro Definition

The definition of a macro declares the macro name that is to stand for (represent) a given
stream of program text. The general form of an Assembler Language macro definition has
four parts:

1. a macro header statement (MACRO: the start of the definition)

2. a prototype statement, which provides the macro name and a model or “template” of the
macro-instruction “call” that must be recognized in order to activate this definition

3. the macro body, containing declarations of variable symbols, model statements to be
parameterized and generated, and conditional assembly statements to assign values to
variable symbols and to select alternative processing sequences
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4. a macro trailer statement (MEND: the end of the definition).

These four parts are illustrated in Figure 14:

(@))] MACRO

(2) Prototype Statement
(3) Model Statements

Q)] MEND

Macro Header (begins a definition).

Model of the macro instruction
that can call on this definition;
a model or "template® of the new
statement introduced into the
language by this definition.

A single statement.

Declarations, conditional assembly
statements, and text for selection,
modification, and insertion.

Zero to many statements.

Macro Trailer (ends a definition).

Figure 14. Assembler Language Macro Definition: Format

A macro definition may be “in-line” (also called a “source macro definition”) or in a library.
Where the definition is found by the assembler affects the recognition rules, as will be
described in “Macro-Instruction Recognition: Details” on page 62.

Macro-Instruction Definition Example

60

We can rewrite the example in Figure 8 on page 52 to look like a “real” macro, as follows:

Main Program

Logical Effect

Macro Definition
: START
MACRO AA
MACO1 BB
cc MACO1
DD EE
MEND FF
END

START
AA
BB
+ CC
+ DD
EE
FF

END

Figure 15. Assembler Language Macro Mechanisms: Text Insertion by a “Real” Macro

The “+” characters shown in the “Logical Effect” column correspond to the characters
inserted by the assembler in its listing 1o indicate that the corresponding statements were

generated from a macro.
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Macro-Instruction Recognition Rules

1. If the operation code is already known as a macro name, use its
definition

2. If an operation code does not match any operation code already
known to the assembler (i.e., it is “possibly undefined”):

a. Search the library for a macro definition of that name
b. If found, encode and then use that macro definition
c. If there is no library member with that name, the operation code is flagged
as “undefined”.
* Macros may be redefined during the assembly!

- New macro definitions supersede previous operation code definitions

* Name recognition activates interpretation of the macro definition

- Also called “macro expansion” or “macro generation”
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Macro-Instruction Recognition Rules

The assembler recognizes a macro instruction as follows:

1. If the macro name has already been defined in the program (as a “source” or “in-line”
definition, either explicitly or because a COPY statement brought it in-line from a library,
or because a previous macro instruction statement brought the definition from the
library), use it in preference to any other definition of that operation.

* You may use a macro definition to override the assembler’s default definitions of all
machine instruction statements, and of most “native” Assembler Instruction state-
ments (generally, the conditional-assembly statements cannot be overridden).

2. If an operation code does not match any operation code “known” to the assembler (i.e., it
is “possibly undefined”), the assembler will then:

a. Search the library for a macro definition of that name.

b. If the assembler finds a library member with that name, the macro name defined on
the prototype statement must match the member name. The assembler will then
encode and use this definition.

c. If there is no library member with that name, then the operation code is flagged as
“undefined™.

While it is not a common practice to do so, macros may be redefined duririg the assembly
by introducing a new macro definition for that name.

When the assembler scans a statement, and identifies its operation code as a macro name,
recognition of the name triggers an activation of an interpreter of the encoded form of the
macro definition. This is called “macro expansion” or “macro generation”, and typically
results in insertion of program text into the assembler’s input stream.

Source macros are usable only in the program that contains them, whereas library macros
can be used in any program.

The 0' attribute can be used to determine the status of a macro or instruction name. lis uses
are specialized, and will not be discussed here.
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Macro-Instruction Recognition: Details

* A macro “call” could use a special CALL syntax, such as
MCALL  macrename(argl,arg2,etc...)
or MCALL  wmacroname,argl,argZ,etc...
* Advantages to having syntax match base language’s:

— Format of prototype dictated by desire not to introduce arbitrary forms of
statement recognition for new statements

- No special characters, statements, or rules toc “trigger” recognition
- No need to distinguish language extensions from the base language

— Allows overriding of most existing opcodes; language extension can be
natural (and invisible)

e No need for “MCALL"; just make “macroname” the operation code
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Macro-Instruction Recognition: Details

62

Both macro name declaration (definition) and recognition have specific rules that are closely
tied to the base language syntax of the System/360/370/380 Assembler Language. Some
macro languages and preprocessors require special characters or syntactic forms to
“trigger” the invocation of a macro. For example, an Assembler Language macro “call”
could use or require a special CALL syntax, such as

MCALL  macroname(argl,arg2,etc...)
or MCALL  macroname,argl,arg2,etc...

However, there are advantages 1o having the syntax of macro calls match the base lan-
guage’s, and to allow overriding of existing opcodes; hence, we simply elide the MCALL and
make the “macroname” become the operation code and the arguments become the operands
of the macro instruction statement.

While many possible forms of macro definition and recognition are possible, the general
format used in the System/360/370/390 Assembler Language is dictated by a desire not to
introduce arbitrary forms of statement syntax and recognition rules for new statements.

{Note that the syntax of the SETAF and SETCF instructions uses explicit invocation:
SETxF  macroname,argl,arg2,etc...

in order to avoid conflicts between instruction names and external function names.)
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Macro-Definition Encoding

* Assembler “edits” a macro definition into an efficient internal format
— Macro name is identified and saved. all parameters are identified
— COPY statements processed immediately

— Model and conditional assembly statements converted to “internal text” for
faster interpretation

— Al points of substitution are marked

— In name, operation, 2nd operand fields
— But not in remarks fields or comment statements

— Some errors in model statements are diagnosed
— Others may not be detected until macro expansion

- “Dictionary” space (variable-symbol tables) are defined

- Parameter names discarded, replaced by dictionary indexes
* Avoids the need for repeated searches and scans on subsequent uses
* Re-interpretation is more flexible, but much slower

— AINSERT statement provides some re-interpretation possibilities
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Macro-Definition Encoding

Because the System/360/370/330 Assemblers have been designed to support extensive use
of macros, their implementation reflects a need to provide efficient processing. Thus, the
assembler initially converts macro definitions into an efficient encoded internal format for
later use; this is sometimes called “macro editing”.

The macro’s name is identified and saved (so that later references to the macro name
can be recognized as macro calls).

All parameters are identified, and entries are made in a “local macro dictionary”.

Parameter and system variable symbol names are discarded, and references to them are
replaced by indexes into the local macro dictionary.

COPY statements are recognized and processed immediately. This allows common sets
of declarations to be shared among macros.

Model and conditional assembly statements are converted to “internal text” for faster
interpretation.

All points of substitution in the name, operation, and operand fields are identified and
marked. (Substitutions are not supported in the remarks field, nor in comment state-
ments.) Because these points of substitution are determined during macro encoding, it is
perhaps more understandable why substituting strings like '&8A' will not cause a further
effort to re-scan the statement and substitute a new value represented by '8A°'.

Note: Because generated machine instruction statements are scanned differently from
generated macro instructions, you can create substitutions in remarks fields by creating
an “operand” that contains the true operands, one or more blanks, and the characters of
the remarks field. This technique is laborious, and is not recommended.

Some errors in model statements are diagnosed, but others may not be detected until
macro expansion is attempied.

“Dictionary” space (variable-symbol tables) are defined for local variable symbols, and
space is added to the global variable symbol dictionary for newly-encountered global
names.
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Encoding a macro definition in advance of any expansions avoids the need for repeated
library.searches and encoding scans on subsequent uses of the macro.

Some macro processors re-interpret macro definitions each time the macro is invoked. This
provides greater flexibility (which is not ofien needed) at the expense of much slower inter-
pretation and expansion. The design choice made in the assembler was to encode the
macro for fast interpretation and expansion.

Nested Macro Definitions in High Level Assembler

* Nested macro definitions are supported by HLASM
* Problem: should outer macro variables parameterize nested macro

definitions?
Macro , Start of MAJOR's definition
&l MAJOR &X
LCLA 8A Local variable
Hécrn , Start of MINOR's definition
&N MINDR &Y
LCLA &A Local variable
&A SetA 2*3A*&Y Evaluate expression (Problem: which 8A 77)
MEnd , End of MINOR's definition

MNote *,88A = &A' Display value of 8A
MEnd , End of MAJOR's definition

* Solution: no parameterization of inner macro text
— Statements are “shielded” from substitutions {no nested-scope probiems)
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Nested Macro Definition in High Level Assembler

Nested macro definition is supported in the System/360/370/390 Assembler Language, but
are more complicated than illustrated in the simple example in Figure 13 on page 57. To
illustrate one complication, consider the following example:

Macro , Start of MAJOR's definition
&L MAJOR &X
LCLA 8A Local variable
Macro , Start of MINOR's definition
&N MINOR &Y
LCLA B&A Local variable
&A SetA 2*3A*&Y Evaluate expression  (Problem: which &A ?7?)
MEnd End of MINOR's definition
MNote *,88%A = &A' Display value of &A
MEnd , End of MAJOR's definition

Figure 16. Macro Definition Nesting in High Level Assembler
The variable symbol &A appears in both the outer macro MAJOR and the inner macro

MINOR. Thus, the macro encoder must decide how to process the occurrences of &A in the
nested definition: should they be marked as points of substitution?
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To avoid complex syntax and rules of interpretation, the assembler simply treats all state-
ments between the Macro and MEnd statements of nested macro definitions as uninterpreted
strings of text into which no substitutions are performed. In effect, all nested macro defi-
nitions are “shielded” from enclosing definitions.

This means that a macro definition can generate a macro definition, but cannot parameterize
or “tailor” it in any way. Some of the limitations imposed by this choice can be overcome
by using the AINSERT statement, described in “The AINSERT Statement” on page 184.

Macro Expansion and MEXIT

* Macro expansion or generation is initiated by recognition of a macro
instruction

* Assembler suspends current activity, begins to “execute” or
“interpret” the encoded definition

Parameter values assigned from associated arguments
Conditional assembly statements interpreted, variable symbols assigned
values

- Model statements substituted, and output to base language processor

* Generated statements immediately scanned for inner macro calls
- Recognition of inner call suspends current expansion, starts new one

* Expansion terminates when MEND is reached, or MEXIT is interpreted

- Some error conditions may also cause termination
- MEXIT is equivalent to “AGD to MEND” (but quicker)
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Macro Expansion, Generated Statements, and the MEXIT Statement

When the assembler recognizes a macro instruction, macro expansion or macro generation
is initiated. The assembler suspends its current activity, and begins to “execute” or “inter-
pret” the encoded definition of the called macro.

During expansion, the first step is to assign parameter values from the associated argu-
ments on the macro call. Subsequently, conditional assembly statements are interpreted;
variable symbols are assigned values, model statements are substituted, and text is-output
to the base language processor.

The generated statements are immediately scanned for inner macro calls; recognition of an
inner call suspends the current expansion, and starts a new one for the newly-recognized
inner macro. v

Expansion of a macro terminates when either the MEND statement is reached, or when an
expansion-terminating macro-exit MEXIT statement is interpreted. MEXIT is equivalent to an
“AGO to MEND” statement, but is quicker to execute, because the assembler need not search
for the target of the AGO statement.
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Macro Comments and Readability Aids

* Assembler Language supports two types of comment statement:
1. Ordinary comments (“*” in first column position)
— Can be generated from macros like all other model statements
2. Macro comments (*.*” in first two column positions)
- Not model statements; never generated

MACRD
] SAMPLE1  &A
.*  This is macro SAMPLEl. It has a name—field parameter &N,
.* and an operand-field positional parameter 8A.
* This comment is a mode) statement, and may be generated

* Two “formatting” instructions are provided for macro listings:

1. ASPACE provides blank lines in listing of macros
2. ALJECT causes start of a new listing page for macros
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Macro Comments and Readability Aids

.. The macro facility provides a way 1o embed “macro comments” into the body of a macro
definition. Because both ordinary comment statements (with an asterisk in the left margin)
and blank lines (for spacing) are model statements, they may be part of the generated text
from a macro expansion. Macro comments are never generated, and are defined by the
characters .* in the left margin, as illustrated below:

MACRO
&N SAMPLE1  &A
.* This is macro SAMPLE1l. It has a name-field parameter &N,
* and an operand-field positional parameter B8A.

‘ This comment is a model statement, and may be generated

- - .

MEND

Figure 17. Example of Ordinary and Macro Comment Statements

It is good practice to comment macro definitions generously, because the conditional
assembly language is sometimes difficult to read and understand.

The formatting and printing of macro definitions can be simplified by using the ASPACE and
AEJECT statements. ASPACE provides blank lines in the assembler’s listing of a macro defi-
nition, and AEJECT causes the assembler to start a new listing page when it is printing a
macro definition. Both are not model statements, and are therefore never generated.
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Example 1: Define General Register Equates

* Generate EQUates for general register names (GRO, ..., GR15)

MACRD (Macro Header Statement)
GREGS (Macre Proteotype Statement)
GRO EQU ® {First Model Statement)
* - == etc. Similarly for GR1 — GR14
GR15 EQU 15 (Last Model Statement)
MEND (Macro Trailer Statement)

* A more interesting variation with a conditional-assembly loop:

MACRO
GREGS
LCLA &N Define a counter variable, initially 8

X ANOP 2 points of substitution in EQU statement

GR&N EQU &N

&N SETA &N+ Increment &N by 1
AIF (&N LE 15).X Repeat for al) registers 1-15
MEND
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Example 1: Define Equated Symbols for Registers

To illustrate a basic form of macro, suppose you wish to define a macro named GREGS that
generates a sequence of EQU statements 1o define symbolic names GR8, GR1, ..., GR15 for
referring to the sixteen General Purpose Registers. A call o the GREGS macro will do this:

MACRO (Macro Header Statement)
GREGS (Macro Prototype Statement)
GRO EQu o (First Model Statement)
GR1 EQu 1
GR2 EQu 2
GR3 EQU 3
GR4 EQU 4
GR5 EQU 5
GR6 EQU 6
GR7 EQU 7
GR8 EQU 8
GR9 EQU 9

GR16 EQU 10

GR11 EQU 11

GR12 EQU 12

GR13 EQU 13

GR14 EQU 14

GR15 EQU 15 (Last Model Statement)
MEND (Macro Trailer Statement)

Figure 18. Simple Macro to Generate Register Equates

Then, a call 1o the GREGS macro will define the desired equates, by inserting the sixteen
model statements into the statement stream.

The macro definition can be made more compact by using conditional assembly statements
to form a simple loop inside the macro:

Part 2: Basic Macro Concepts 67



MACRO

GREGS

LCLA &N Define a counter variable
X ANOP 2 points of substitution in EQU statement
GR&N EQU &N
&N SETA  &N+1 Increment &N by 1

. AIF (&N LE 15).X Repeat for all registers 1-15
MEND

Figure 19. Macro to Generate Register Equates Differently

Macro Parameters and Arguments

* Distinguish parameters from arguments:

* Parameters are

- declared on macro definition prototype statements

- always local character variable symbols

— assigned values by association with the arguments of macro calls
° Arguments are

- supplied on a macro instruction {(macro call)

- almost any character string (typically, symbols)

—~ providers of values to associated parameters
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Macro Parameters and Arguments

In the following discussion, we will distinguish parameters from arguments, as follows:

* Parameters are

declared on the prototype statements of macro definitions

always local character variable symbols

assigned values by being associated with the arguments of a macro instruction
— sometimes known as “dummy arguments” or “formal parameters”.

= Arguments are

supplied on a macro instruction-statement (“macro call”)

almost any character string (typically, symbols)

the providers of values to the corresponding associated parameters

sometimes known as “actual arguments” or “actual parameters”.

68 Assembler Language as a Higher Level Language, SHARE Summer 2002



1
| Macro-Definition Parameters '

* Parameters are declared on the prototype statement
- as operands, and as the name-field symbol

* All macro parameters are (“read-only”) local variable symbols

- Name may not match any other variable symboi in this scope

* Parameters usually declared in exactly the same order as the
corresponding actual arguments will be supplied on the macro call

- Exception: keyword-operand parameters are declared by writing an equal
sign after the parameter name
- Can provide default keyword-parameter value on prototype statement

* Parameters example: one name-field, two positional, one keyword

MACRD
Name MYMAC3 &Paraml,&Param2,8KeyParm=YES

MEND
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Macro-Definition Parameters

The parameters in a macro definition are declared by virtue of their appearing as operands
(and the name-field symbol) on the prototype statement. These declared parameters are var-
iable symbols! (However, they cannot be assigned a value in the body of the macro; the
value is assigned by association when the macro is called, as described in “Macro
Parameter-Argument Association” on page 71) Usually, they are declared in exactly the
same order as the corresponding actual arguments will be supplied on the macro call.

The exception is keyword parameters: they are declared by writing an equal sign after the
parameter name. You can also provide a default vaiue for a keyword parameter on the pro-
totype statement, by placing that value after the equal sign. When the macro is called, the
argument values for keyword parameters are supplied by writing the keyword parameter
name, an equal sign, and the value, as an operand of the macro call.

The name of a parameter may not be the same as that of any other variable symbol known
in the macro’s scope.

For example, suppose we write a macro prototype statement as shown in Figure 20:

MACRO
&Name  MYMAC3 &Paraml,&Param?2,&KeyParm=YES

MEND

Figure 20. Sample Macro Prototype Statement

The prototype statement defines a name-field parameter (&Name), two positional parameters
(&Paraml,&Param2), and one keyword parameter (&KeyParm) with a default value YES.

Unlike positional arguments and parameters, keyword arguments and parameters may
appear in any order, and may be mixed freely among the positional items on the prototype
statement and the macro call.
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! Macro-instruction Arguments

° Arguments are:
- Operands (and name field entry) of a macro instruction

— Arbitrary strings (with some syntax limitations)

— Most often, just ordinary symbols
— “Internal” quotes and ampersands in quoted strings must be paired

* Separated by commas, terminated by blank
- Like ordinary Assembler-Language statement operands
- Comma and blank must otherwise be quoted

* Omitted (null) arguments are recognized, and are valid
* Examples:
MYMAC1 A,,'String’ 2nd argument null (omitted)

MYMAC1 Z,RR, 'Testing, Testing' 3rd argument contains comma and blank
MYMAC1 A,B,'De’'s, &% Don''ts’ 3rd argument with everything...
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Macro-instruction Arguments

The arguments of a macro instruction are the name-field entry and the operands. They may
be arbitrary strings of characters, with some syntax limitations such as requiring strings con-
taining quotes and ampersands to contain pairs of each. Most often, the operands will be
just symbols (literals are allowed in almost all circumstances).

The operands are separated by commas, and terminated by a blank (conforming to the
normal Assembler Language syntax rules). If an argument is intended to contain a character
normally used to delimit operands (blank, comma, parentheses, and sometimes apostrophes
and periods), they must be quoted with apostrophes. Remember that the enclosing apostro-
phes are passed as part of the associated parameter’s value, so you may need to test for
(and maybe remove) them before processing the enclosed characters.

Positional arguments are written in the order required for correspondence with their associ-
ated positional parameters in the macro definition. Keyword arguments may be intermixed
freely, in any order, among the positional arguments, without affecting their positional
sequence.

Omitted (null) arguments are perfectly acceptable.

To illustrate, suppose a macro named MYMAC1 expects three positional arguments. Then in
the following example,

MYMAC1 A,,'String® 2nd argument null (omitted)
MYMAC1 Z,RR,'Testing, Testing' 3rd argument contains comma and blank

MYMAC1 A,B,'Do''s, && Don''ts' 3rd argument with everything...

the first call omits the second argument; the second call has a quoted character string con-
taining an embedded comma and space as its third argument; and the third call has a
variety of special characters in its quoted-string third argument.

Pairs of quotes or ampersand characters are required within quoted strings used as macro
arguments, for proper argument parsing and recognition. These characters are nof con-
densed into a single character when the argument is associated (“passed”) to the corre-
sponding symbolic parameter.
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An argument consisting of a single ampersand will be diagnosed by the assembler as an
invalid variable symbol. An argument consisting of a single apostrophe will appear to initiate
a quoted string, and the assembler’s reactions are unpredictable; one possibility is an error
message indicating “no ending apostrophe”.

Macro Parameter-Argument Association

* Three ways to associate (caller’s) arguments with (definition’s)
parameters:

1. by position, referenced by declared name {most common way)
2. by position, by argument number (using &SYSLIST variable symbol)
3. by keyword: always referenced by name, arbitrary order
— Argument values supplied by writing keyname=value
* Example 1: (Assume prototype statement as on slide/foil Concepts-21)
&Name  MYMAC3 &Paraml,&Param2,&KeyParm=YES Prototype

Labl NYMAC3 X, Y,KeyParm=N0 Call: 2 pesitional, 1 keyword argument
* Pparameter values: SName = Labl
* &KeyParm = NO
> &Paraml = X
* &Param2 =Y
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Macro Parameter-Argument Association ...

*  Example 2:

Lab2z MYMAC3 A Call: 1 positional argument
* Pparameter values: 8Name = Lab2

* &KeyParm = YES

* &Paraml = A

* &Param2 = (npull)

*  Example 3:
MYMAC3  H,KeyParm=MAYBE,J Call: 2 pesitional, 1 keyword argument

* Pparameter values: &Name = (pull)
* &KeyParm = MAYBE
* &Paraml = H
* &Param2 =J

- Note: it's good practice to put positionals first, keywords last
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Macro Parameter-Argument Association

There are three ways to associate arguments with parameters:

1. by position, referenced by the declared positional parameter name (this is the most usual
way for macros to refer to their arguments)

2. by position and argument number (using the &SYSLIST system variable symbol, which
will be discussed in "Macro-instruction Argument Lists and the &SYSLIST Variable
Symbol” on page 84)
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3. by keyword: keyword arguments are always referenced by name, and the order in which
they appear is arbitrary.5 Values provided for keyword arguments override default values
declared on the prototype statement. :

To illustrate, consider the examples in Figure 21. Assuming the same macro definition pro-
totype statement shown in Figure 20 on page 69, the resulting values associated with the
parameters are as shown:

Labl  MYMAC3  X,Y,KeyParm=NO 2 positional, 1 keyword argument
* Parameter values: &Name = Labl &KeyParm = NO

* &Paraml = X &Paramz =Y

Lab2 MYMAC3 A 1 positional argument

* Parameter values: &Name = Lab2 &KeyParm = YES

* &Paraml = A &Param2 = (null)

MYMAC3  H,KeyParm=MAYBE,J 2 positional, 1 keyword argument

* Parameter values: &Name = (null) 8KeyParm = MAYBE
* &Paraml = H &Param? J

Figure 21. Macro Parameter-Argument Association Examples

In the third example, observe that the keyword argument KeyParm=MAYBE appears between the
first and second positional arguments.

Mixing positional and keyword parameters and arguments is not a good practice, because it
may be difficult to count the positional items correctly.

Constructed Keyword Arguments Do Not Work

* Keyword arguments cannot be created by substitution

* Suppose a macro prototype statement is
& TestMac &K=KeyVal,&P1 Keyword and Positional Parameters

» If you construct an “apparent” keyword argument and call the macro:

&C SetC 'K=What* Create an apparent keyword
TestMac . &C,Maybe Call with “keywerd"?

» This looks like a keyword and a positional argument:
TestMac K=What,Maybe Call with "keyword"?

* In fact, the argument is positional, with value 'K=What' !

* Macro calls are not re-scanned after substitutions!

- The loss of generality is traded for gains in efficiency
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5 The Ada™ programming language is the first major high-level language to support keyword parameters and argu-
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ments. Assembler Language programmers have been using them for decades!
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Constructed Keyword Arguments

It is sometimes tempting to construct argument lists for macro calls, particularly keyword
arguments. Suppose you have written a macro with a prototype statement like this:

&x TestMac &K=KeyVal,&P1 Keyword and Positional Parameters
and you want to construct a keyword argument:

&C SetC 'K=What' Create an apparent keyword
TestMac &C,Maybe Call with *keyword"?

While this appears to be a properly formed keyword argument K=What, it is in fact treated as
a positional argument, because the statement is not re-scanned after the value of &C has
been substituted. The little test program shown in Figure 22 shows what happens: the sub-
stituted string is treated as a positional argument.

Macro
&x TestMac &K=KeyVal,&P1 Keyword and Positional Parms
MNote * 'P1="&P1.", K="&K."' Display values of each
MEnd
TestMac Yes,K=No Test with positional first

+*,P1="Yes", K="No"

TestMac K=No,Yes Test with keyword first

+* P1="Yes", K="No"

&cC SetC 'K=What' Create an apparent keyword
TestMac &C,Maybe Call with 'keyword' first?

+* P1="K=What", K="KeyVal"

Figure 22. Example of a Substituted (Apparent) Keyword Argument

The original design of the System/360/370/330 assemblers focused on efficient macro expan-
sion, so macro calls containing substitutions were not re-scanned.
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Example 2. Generate a Byte Sequence (BYTESEQ1)

* Rewrite previous example (see slide Conditional-33) as a macro
* BYTESEQ1 generates a separate statement for each value

MACRD
&L BYTESEQ1 &N Prototype statement: 2 positional parameters
.* BYTESEQl — generate a sequence of byte values, one per statement.
.* No checking or validation is done.

LclA &K
AIF  ('3L' EQ *').Loop Don't define the label if absent
&L DS BALY Define the label
> .Loop  ANOP
&K SetA &K+l Increment &K
AIF (&K BT 2N).Done Check for termination condition
BC AT1(2K)
A0 .Leop Continue
.Done  MEND

» Examples

BSla BYTESEQ1 5
BYTESEQ1l 1
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Example 2: Generate a Sequence of Byte Values (BYTESEQ1)

We can write a macro named BYTESEQ1 with a single parameter that will generate a
sequence of bytes, using the same techniques as the conditional-assembly example given in
Figure 6 on page 44. The pseudo-code for the BYTESEQ1 macro is quite simple:

IF (name-field label is present) GEN(1label DS 0AL1)
DO for K = 1to N ( GEN( DC AL1(K)))

This macro generates a separate DC statement for each byte value. As we will see later, it
has some limitations that are easy to fix.

MACRO
&L BYTESEQ1 &N Prototype statement: 2 positional parameters
.* BYTESEQl -- generate a sequence of byte values, one per statement.
.* No checking or validation is done.

LclA &K
AIF ("8L' EQ '').Loop Don't define the label if absent
&L DS OAL1 Define the Tabel
.Loop  ANOP
&K SetA &K+l Increment &K
AIF (&K GT &N).Done Check for termination condition
bDC A11(8&K)
AGO  .Loop Continue
.Done  MEND

* Two test cases
BSla BYTESEQ1l 5
BYTESEQ1 1

Figure 23. Macro to Define a Sequence of Byte Values
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Macro Parameter Usage in Model Statements

» Parameter values supplied by arguments in the macro instruction
(“call”) are substituted as character strings

» Parameters may be substituted in name, operation, and operand fields
of model statements
- Substitutions ignored in remarks fields and comment statements
— Can sometimes play tricks with operand fields containing blanks

— AINSERT lets you generate fully substituted statements

*» Some limitations on which opcodes may be substituted in conditional
assembly statements

- Can’t substitute ACTR, AGO, AIF, ANOP, AREAD, COPY, GBLx, ICTL, LCiLx,
MACRO, MEND, MEXIT, REPRO, SETx, SETxF

- The assembler must understand basic macro structures at the time it
encodes the macro!

* Implementation trade-off. generation speed vs. generality
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Macro Parameter Usage in Model Statements

Values are assigned to macro parameters from the corresponding arguments on the macro-
instruction statement, either by position in lefi-to-right order (for positional arguments), or by
name (for keyword arguments). These are then substituted as character strings into model
statements (wherever points of substitution marked by the parameter variable symbols
appear). The points of substitution in model statements may be in the

* name field
* operation field
* operand field

but not in the remarks field, nor in comment statements. (For some operations, it is possible
to construct an operand string containing embedded blanks followed by “remarks” into
which substitutions have been done. We will leave as an exercise for the reader the delights
of discovering how to do this.)

Substitutions are not allowed in some places in conditional or ordinary assembly statements
such as COPY, REPRO, MACRO, and MEND, because the assembler must know some infor-
mation about the basic structure of the macro definition (and of the entire source program!)
at the time it is encoded. For example, substituting the string MEND for an operation code in
the middle of a macro definition could completely alter that definition!

The original implementation of the conditional assembly language assumed that macros will
be used frequently, so that speed of generation was more important than complete gener-
ality. Since this conditional assembly language is more powerful than that of most macro-
processors or preprocessors, the choice seemed reasonable.
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Macro Argument Attributes and Structures

= Assembler Language provides some simple mechanisms to “ask
questions” about macro arguments

* Built-in functions, called attribute references
- Most common questions: “What is it?” and “How big is it?”
* Determine properties (attributes) of the actual arguments

-~ Provides data about possible base language properties of symbols:
Type, Length, Scale, Integer, Defined, and “OpCode” attributes

» Decompose argument structures, especially parenthesized lists

- Use Number (N') and Count (K') attribute references
— Determine the number and nesting of argument list structures (N* )
— Determine the count of characters in an argument {K')
- Extract sublists or sublist elements
- Use substring and concatenation operations to parse list items

HLASM Macro Tutorial  © Copyright IBM Corporation 1983, 2002. AJl rights reserved. Concepts-28

Macro Argument Attributes and Structures

Among the elegant features of the Assembler Language are some simple mechanisms
(built-in functions, called attribute references) that allow you to determine some properties
(i.e., atiributes) of the actual arguments. For example, attribute references provide informa-
tion about possible base language (ordinary assembler language) use of the symbols: what
kinds of objects they name, what is the length attribute of the named object, etc.

Three major classes of attribute inquiry facilities are provided:

1. The “mechanical” or “physical” characteristics of macro arguments can be determined
by using

* iwo attribute references:
— Count (K') supplies the actual count of characters in the argument, and

— Number (N') tells you how many elements appear in an argument list structure (it
can also provide the largest subscript assigned to a dimensioned variable symbol,
as described in “Declaring Variable Symbols” on page 8)

« list-structure referencing and decomposition operations, involving subscnpted refer-
ences 10 parameter variable symbols.

A rather sophisticated list scanning capability is provided to help you decompose
argument structures, especially parenthesized lists. With this notation, you can

— determine the number and nesting of all such list structures
— exiract any sublists or sublist elements

— use the usual substring and concatenation operations to manipulate portions of
lists and list elements.
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2. The type attribute reference (1') allows you to ask “What base-language meaning is
attached to it?” about a macro argument. The value of the type attribute reference$ can
tell you whether the argument is.

* a base-language symbol that names data, machine instructions, macro instructions,
sections, etc.

* a self-defining term (binary, character, decimal, or hexadecimal)
* an “unknown” type.

3. The base-language attributes of ordinary symbols used as macro arguments can be
determined by using any of four atiribute references: Length (L'), Scale (S'), Integer (1),
and Defined (D'). All four have numeric values.

4. The “"Opcode” attribute (0') can be used to test a symbol for possible use as an instruc-
tion. Its value tells you whether the symbol represents an assembler instruction, a
machine instruction mnemonic, an already-encoded macro name, or a library macro
name. lis uses will not be described further here.

There is an important difference between the number (N') and count (K') attributes and all
the others: N' and K' treat their operands as sirings of characters, independent of any
meaning that might be associated with the strings. Thus, if the value of a parameter &X is the
five characters (A,9), then K'8X is 5 and N'&X is 2.

The other attribute references probe more deeply into the possible meanings of a param-
eter. Thus, T'&X(1) would test what the character A might designate: if A is a label on a
constant, T'&X(1) would return information about the type of the constant. If the type attri-
bute is indeed that of a constant, then L'&X(1) would provide its length attribute. Similarly,
T'&X(2) would be N, indicating that it is a self-defining term that may be used in contexts
where such terms are valid.

One way to think of this difference is that N' and K' only look at the character value of a
parameter, while the other attribute references look one level deeper into the possible
meanings of the character value of a parameter.

Attribute references of atiribute references (such as K'L'&X) are not allowed.

All eight types of attribute reference are valid in macros and conditional assembly state-
ments; only L', I', and S' are valid in ordinary assembly statements. Other limitations on
their use depend on the type of the value of the reference.

§ A single character; only the opcode (0') and type (T') attribute references have character values. All the others
have numeric attributes.
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Macro Argument Attributes: Type

« Type attribute reference (T') answers
- “What is it?”
- “Whnat meaning might it have in the ordinary assembly (base) language?”

— The answer may be "None” or "} can‘t tell”}

* Assume the following statements in a program:

A BC A(*)

B DC F'18*'

3 BC E'2.71828"
] MVC  A,B

* And, assume the following prototype statement for MACTA:
MACTA &P1,8P2,...,etc.

- Just a numbered list of positional parameters...
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Macro Argument Attributes: Type ...

* Then a call to MACTA like

b4 MACTA A,B,C,B,C*A',,'2',2 Call MACTA with various arguments

* would provide these type attributes:

T'&P1 = 'A° aligned, implied-length address
T'&P2 = 'F’ aligned, implied-length fullword binary
T'&P3 = 'E’ aligned, implied-length short floating—point
T'&P4 = 'I° machine instruction statement ’
T'&P5 = N’ self-defining term
T°&P6 = '0° omitted (pull)
T'&7 = 'V unknown, undefined, or unassigned
T'&P8 = 'M* macro instruction statement
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Macro-Instruction Argument Properties: Type Attribute

The type attribute reference is often the first used in a macro, to help the macro determine
“What is it?”. More precisely, it tries 1o answer the question “What meaning might this argu-
ment string have in the base language?” It typically appears in conditional assembly state-
ments like these: ‘

AIF  (T'&Paraml eq '0').Omitted Argument is null
AIF  (T'&Paraml eq 'U').Unknown Unknown argument type

To illustrate some of the possible values returned by a type attribute reference, assume the
following statements appear in a program:
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A DC A(%)

B D F'16

c DC  E'2.71828"
D MVC  A,B

If the same program contains a macro named MACTA with positional arguments

&P1,&P2,....etc., and if MACTA is called with the following arguments, then a type attribute

reference to each of the positional parameters would return the indicated values:

4 MACTA

T'&P1
T'&pP2

T'8P4
T'&P5
T'8P6

T'&P3 =

T'8P7 =
T'aP8 =

A,B,C,D,C'A",,'?",Z

IAI
IFI
IEI
III
INI
IOI
IUI
IMI

]

aligned, implied-length address

Call MACTA with various arguments

aligned, implied-length fullword binary
aligned, implied-length short floating-point

machine instruction statement
self-defining term
omitted (null)

unknown, undefined, or unassigned

macro instruction statement

There are 28 possible values that might be returned by a type attribute reference.
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Macro Argument Attributes: Count

Conditional-23)

* Count attribute reference (K') answers:

- “How many characters in a SETC variable symbol’s value (or in its
character representation, if not SETC)?” (see slides Conditional-20 and

» Suppose we have a macro with prototype statement
MACS &P1,8P2,8P3,...,8K1=,8K2=,8K3=, ...

* This macro instruction would give these count attributes:
MACB A,BCD, 'EFGH',,K1=5,K3==F'25"

K'&P1 = 1 corresponding to A
K'&P2 = 3 ABC
K'&P3 = 6 *BEFG*
K'&P4 = 8 (rull)
K'&P5 = B (npull; no argument)
K'8K1 = 1 5
K'&8K2 = 8 (null)
K'8K3 = 6 =F*25°*
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Macro-instruction Argument Properties: Count Attribute

A macro argument has one irreducible, inherent property: the count of the number of char-
acters it contains. These can be determined for any argument using the count attribute refer-
ence, K'. For example, if MAC8 has positional parameters &1, &P2, ..., eic., and keyword
parameters 8K1, &2, ..., etc., then for a macro instruction statement such as the following:

MAC8 A,BCD,'EFGH',,K1=5,K2=,

we would find that

K'&P1
K'&P2
K'&P3
K'&P4
K'&P5
K'&K1
K'&K2
K'8&K3

corresponding to

1
3
6
0
0
1
0
6

K3==F 25"

A

ABC

'DEFG’

(nul1)

(nul1; no argument)
5

(null)

=F 125!

When the value of a parameter is assigned to a character variable, the content of the param-
eter string is unchanged; the pairing rules for ampersands and apostrophes apply only to

character strings.
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Macro Argument Attributes: Number

* Number attribute reference (N') answers
“How many items in a list or sublist?”

* List: a parenthesized sequence of items separated by commas
Examples: () (8B,¢) (D,E,,F)

* List items may themselves be lists, to any nesting
Examples: ((A)) (A,(B,C)) (A, (B,C,(B,E,,F),6),H)

* Subscripts on parameters refer to argument list (and sublist) items
— Each added subscript references one nesting level deeper
— Provides powerful list-parsing capabilities

* N’ also determines maximum subscript used with a subscripted
variable symbol
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Macro-instruction Argument Properties: Number Attribute

A list is a parenthesized sequence of items, separated by commas. The following are exam-
ples of lists:

(A (B,L)  (D,E,,F)

Figure 24. Macro Argument List Structures

List items may themselves be lists {(which may in turn contain lists, and so forth). Examples
of lists containing sublists are:

((A)) (A (B,C)) (A, (B,C,s (D,E;,F),6),H)

Figure 25. Macro Argument Nested List Structures

Lists may have any number of items, and any level of nesting, subject only to the constraint
that the size of the argument may not exceed 255 characters.

The number attribute reference (N') is used to determine the number of elements in a list or
sublist, or the number of elements in a subscripted variable symbol. For example, if the
three lists in Figure 24 were arguments associated with parameters &P1, &P2, and &P3
respectively, then a number attribute reference to each parameter would return the following

values:
N'&P1 =1 )] is a Jist of 1 item
N'&P2 = 2 (B,0) is a list of 2 items
N'&P3 = 4 (b,E,,F) is a list of 4 items; the third is null
&2(17) = 42 Set an element of a subscripted variable symbol
N'&Z =17 maximum subscript of &Z is 17

A possibly confusing situation occurs when an argument is not parenthesized. For example
the macro call
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MAC8  (A),A

has two arguments, the first “obviously” a list with one item. However, the number attri-
butes and sublists are:

&P1 = (A) N'&P1 =1 1-item list: A
&P1(1) = A N'8P1(1) =1 (A is not a list)
&p2 = A N'&P2 =1 (A is not a list)

which may be unexpected. The following “rules of thumb” may help in understanding
number attribute references to variable symbols:

1. If the variable symbol is dimensioned, its number atiribute is the subscript of the highest-
numbered element of the array to which a value has been assigned.

2. If the variable symbol is not a macro parameter (either explicitly named, or implicitly
named as &SYSLIST(n)), its number attribute is zero.

3. If the first character of a macro argument is a left parenthesis, count the number of
unquoted and un-nested commas between it and the next matching right parenthesis.
That number plus 1 is the number attribute of the “list”.

4. If there is no initial left parenthesis, the number attribute is 1.

List and sublist structures provide a convenient way 1o pass multiple values as a single
argument.

Macro Argument List Structure Examples

* Assume the same macro prototype as in slide Concepts-31:
MACB &P1,8P2,8P3,...,8K1=,8K2=,8K3=,... Prototype

MAC8 (A),A,(B,C),(B,(C,(D,E))) Sample macrs call

* Then, the number attributes and sublists are:

&P1 = (A) N'&P1 =1 1l-item Jist: A
&P1(1) = A N'&P1(1) =1 (A is not a list)
&P2 =A N'&P2 =1 (A is not a list)
&P3 = (B,C) N'&P3 =2 2-item list: B and C
&P3(1) =B N'&P3(1) =1 (B is not a list)
&P4 = (B,(C,(D,E}))) N'&P4 =2 2-item Vist: B and (C,(D,E))
&P4(2) = (C,(D,E)) N'&P43(2) =2 2-item list: C and (D,E)
&P4(2,2) = (B,E) N'&P4(2,2) =2 2-item list: D and E
&P4(2,2,1) = D N'&P4(2,2,1) =1 (D is not a list)
&P4(2,2,2) = E N'&P4(2,2,2) =1 (E is not a list)
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Macro-Instruction Argument Lists and Sublists

It is sometimes useful to pass groups of related argument items as a single unit, by grouping
them into a list. This can save the effort needed to name additional parameters on the
macro prototype statement, and can simplify the documentation of the macro call.

To extract list items from argument lists and sublists within a macro, subscripts are attached
to the parameter name. For example, if &P is a positional parameter, and N'&P is not zero
(meaning that the argument associated with &P is indeed a list), then &P(1) is the first item in
the list, &P(2) is the second, and &P(N'&P) is the last item.
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To determine whether any list item is itself a list, we use another number attribute refer-
ence. For example, if & (1) is the first item in the list argument associated with &P, then
N'&P(1) is the number of items in the sublist associated with &P(1). For example, if argument
((X,Y),Z,T) is associated with &P, then

N'&P =3 items are (X,Y), Z, and T
N'8P(1) = 2 items are X and Y

As list arguments become more deeply nested, the number of subscripts used to refer to
their list items also increases. For example, &P(1,2,3) refers to the third item in the sublist
appearing as the second item in the sublist appearing as the first item in the list argument
associated with &P. Suppose MAC8 has positional parameters &P1, &P2, ..., etc, then for a
macro instruction statement such as the following:

MAC8  (A),A,(B,C),(B,(C,(D,E))) Sample macro call
&P1 = (A) N'&P1 =1 Tlist of 1 item, A
8P1(1) = A N'&P1(1) =1 (Ais not a list)
&P2 = A N'&P2 1 (A is not a list)
&P3 = (B,C) N'&P3 =2 list of 2 items, B and C
&P3(1) =B N'&P3(1) =1 (B is not a list)
8P4 = (8,(C,(D,E))) N'&P4 2 list of 2 items, B and (C,(D,E))
&P4(2) = (C,(D,E)) N'&P4(2) =2 1list of 2 items, C and (D,E)
&P4(2,2) = (Db,E) N'8P4(2,2) =2 list of 2 items, D and E
8P4(2,2,1) = D N'&P4(2,2,1) =1 (D is not a list)
&P4(2,2,2) = E N'8P4(2,2,2) =1 (E is not a list)

There is an oddity in the assembler’s interpretation of the number atiribute for items which
are not themselves lists. As can be seen from the first two samples above, both ' (A)' and
'A' return a number attribute of 1. The assembler will treat parameter references &P and
&P(1) as the same string if the argument corresponding to &P is not a properly formed list.
This means that if it is important to know whether or not a list item is in fact a parenthesized
list, you will need 1o test the first and last characters to verify that the list is properly
enclosed in parentheses. (Some macros test only for the opening left parenthesis, assuming
that the assembler will automatically enforce correct nesting of parentheses. This is not
always a safe assumption.)

In practice, it often is not a problem if a single item is or is not enclosed in parentheses
(depending on where the argument is substituted). For example,

LR  0,(R9)
and
LR 0,R9

will be processed the same way by the assembler.
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Macro Argument Lists and &SYSLIST

e &SYSLIST(K): a “synonym” for the k-th positional parameter
- Whether or not a named positional parameter was declared
- Handle macro calls with varying or unknown number of positional arguments
* N'&SYSLIST = number of all positional arguments
* Assume a macro prototype MACNP (with or without parameters)
* Then these arguments would have Number attributes as shown:
MACNP A, (A),(C, (D,E,F)), (YES,NO)

N'&SYSLIST =4 MACNP has 4 arguments
N'&SYSLIST(1) =1 &SYSLIST(1) = A (A is not a list)

N'&SYSLIST(2) =1 &SYSLIST(2)- = (A) is a Jist with 1 item
N'&SYSLIST(3) =2 &SYSLIST(3) = (C,(D,E,F)) is a list with 2 items
N’&SYSLIST(3,2) =3 &SYSLIST(3,2) = (B,E,F) is a list with 3 items
N'&SYSLIST(3,2,1) = 1 &SYSLIST(3,2,1) = D (D is not a 1ist)

N'&SYSLIST(4) =2 &SYSLIST(4) = (YES,NOD) is a list with 2 jtems

&SYSLIST(0) refers to the call’s name field entry
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Macro-Instruction Argument Lists and the &SYSLIST Variable Symbol

It is frequently useful to be able to call a macro with an indefinite number of arguments that
we intend to process “identically” or “equivalently”, so that no particular benefit is gained
from naming and referring 1o each one individually.

The system variable symbol &SYSLIST can be used to refer to the positional elements of the
argument list: &SYSLIST(k) refers to the k-th positional argument, whether or not a corre-
sponding positional parameter was declared on the macro’s prototype statement.
&SYSLIST(0) refers to the entry in the name field of the macro call (which of course need not
be present). The total number of positional arguments in the macro instruction’s operand list
can be determined using a Number aftribute reference: N'&SYSLIST is the number of posi-
tional arguments.

No other reference to &SYSLIST can be made without subscripts. Thus, it is not possible to
refer to all the arguments (or to all the positional parameters) as a group using a single
unsubscripted reference to &SYSLIST.

To illustrate the use of &SYSLIST references, suppose we have defined a macro named
MACNP; whether or not any positional parameters are declared doesn’t matter for this
example. If we write the following macro call:

MACNP A, (A), (C, (D,E,F)), (YES,NO)

then the number attributes of the &SYSLIST items, and their values, are the following:

N'&SYSLIST =4 MACNP has 4 arguments
N'&SYSLIST(1) &SYSLIST(1) =A (A is not a list)
N'&SYSLIST(2) = &SYSLIST(2) = (A) is a list with 1 item
N'&SYSLIST(3) = &SYSLIST(3) = (C,(D,E,F)) is a list with 2 items

N'8SYSLIST(3,2)
N'8SYSLIST(3,2,1) =
N'8SYSLIST(4)

&SYSLIST(3,2) = (D,E,F) is a list with 3 items
&SYSLIST(3,2,1) =D (D is not a list)
&SYSLIST(4) (YES,NO)  is a list with 2 items

I
N = W N =

]
L}

Observe that references to sublists are made in the same way as for named positional
parameters. One additional (leftmost) subscript is needed for &SYSLIST references, because
that parameter is being referenced by number rather than by name.
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Macro Ai'gument Lists and Sublists

* High Level Assembler can treat macro argument lists in two ways:

* Old assemblers pass these two types of argument differentiy:

MYMAC  (A,B,C,D) Macro call with one (1ist) argument
&Char SetC '(A,B,C,D)’ Create argument for MYMAC call
MYMAC  &Char Macro call with one (string) argument

- Second macro argument was treated simply as a string, not as a list
»  COMPAT(SYSLIST) option enforces “old rules”
- Inner-macro arguments treated as having no list structure

— NDCOMPAT(SYSLIST) option allows both cases to be handled the same way
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Macro Argument Lists and Sublists

There can be differences in the handling of lists of arguments passed to macros, depending
on setting of the COMPAT(SYSLIST) option. While this is rarely a concern, there are situ-
ations where your macros can be written much more simply if you can utilize the High Level
Assembler’s enhanced ability to handle lists.

There are two types of lists passed as argumenis 1o macros:

1. a positional argument list, and
2. a parenthesized list of terms passed as a single argument.

For example, a positional list of four arguments (A, B, C, and D) appears in the call
MYMAC  A,B,C,D Macro call with four arguments

and these may be treated as a list through references in the macro to the &SYSLIST system
variable symbol. A list of items passed as a single argument appears in the call

MYMAC  (A,B,C,D) Macro call with one (list) argument

where the argument (A,B,C,D) is a list of four items. We will discuss only the second of
these forms, where an argument is itself a list.

Inner-Macro Sublists

There are several ways to create and then pass arguments from an outer macro to an inner:

1. by direct substitution of an enclosing-macro’s entire argument:

MACRO

&L OUTER  &A,&B,&C Three positional parameters

&L INNER 8B Pass second parameter as an argument to INNER
MEND

OUTER R, (S,T,U),Vv Passes (S,T,U) to INNER
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In this case, the second argument of OUTER is passed unchanged as the argument of
INNER.

2. by substitution of parts:

MACRO

&L OUTER  RA,8B,&C

8L INNER  8B(1) Pass first element of 8B
MEND

OUTER R, (S,T,U),v Passes S to INNER
OUTER  R,S,T Passes S to INNER

In this case, the first list element of the second argument of OUTER is passed unchanged
as the argument of INNER. If the argument of the call io OUTER corresponding to the
parameter &B is not a list, then the entire argument will be passed.

3. by construction as a string, in part or as a whole:

MACRO

&L OUTER  &A,8&B,&C

&T ;E}C- '(*.'8B'(2,K'&B-2).')"

&L ;N&E& &T Pass parenthesized string of &B
MEND

OUTER R, (S,T,U),V Passes (S,T,U) to INNER

In this case, a string variable &T is constructed, and its contents is passed as the argu-
ment to INNER.

The method used can effect the recognition and treatment of arguments by inner macros. It
might appear that the third example should give the same results as the first, because they
both pass the argument (S,T,U) 1o INNER. However, they can be treated quite differently,
depending on High Level Assembler’s option settings. For example: suppose you want to
write a macro with positional operands that will pass some number of those operands to an
inner macro. This can be done by constructing a list for the inner macro. Let an outer
macro TOPMAC be called with a variable number of of arguments:

TOPMAC  X,Y,Z,...

and you wish to use some or all of the items in this varying-length list to create another
varying-length list to be passed to an inner macro BOTMAC.

To construct the varying-length argument list for the inner macro, build a string with the
arguments:

BARG SetC 'BARG'.'BSysList(&N)' Get &N-th argument
for as many arguments as necessary (so-long as &ARG will not exceed 253 characters).
Then, add parentheses:
RARGLIST SetC '(&ARG.)'
and call the inner macro:
BOTMAC RARGLIST

The inner macro will then be able to scan the list using notations like &SYSLIST(&N,1). Note
that calling the inner macro with
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BOTMAC  (&ARG)

only passes the complete (unstructured, parenthesized) string, which will not be recogni-
zable as a list by the inner macro.

Macro Lists and Sublists: COMPAT Option

* Powerful scanning techniques always usable for outer-level macros
- N'&SYSLIST(n) to refer to n-th positional argument
— N'&SYSLIST(n,m) to refer to m-th element of n-th positional argument
- K'&SYSLIST(n,m) to determine its character count
- T'&SYSLIST(n,m) to determine its type attribute
~ Result: Many language facilities available to scan a list
* Awkward scanning techniques were required for inner-level macros
- Parse the argument one character at a time
~ Figure out where symbols start and end, where delimiters intrude
- Then decide what to do with the pieces (no attributes available)
- Result: Lots of complicated logic, hard to debug and maintain

* NOCOMPAT (SYSLIST) relaxes restrictions on inner macros
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Control of Macro Argument Sublists

In older assemblers, all inner-macro arguments passed as strings were treated as having no
structure; that is, the operand scanner for the inner macro call generally recognized no list
structure, even if it is present (as in example 3 above). Thus, for example, a reference inside
the INNER macro to (say) the length atiribute of the argument would be diagnosed as invalid,
because the argument would not be recognized either as a symbol or as a list. The most
serious defect of this treatment is that the powerful facilities in the conditional assembly and
macro language such as number atiribute references (N') and subscripted &SYSLIST nota-
tion cannot be used be used to “parse” the operand to extract individual list elements.

For example, if (S,T,U) is the argument to INNER, you might have wanted to write state-

ments like
Macro
&Label  INNER R&Arg
&NItems SetA  N'RArg Determine number of list elements in &ARG
* Do something to each of the list elements in turn

&Temp SetC  '&Arg(8ArgNum)' Extract a list item into &Temp

If you specify the COMPAT(SYSLIST) option, the argument string providing the value of &Arg
must be scanned one character at a time to exiract the needed pieces of information. Thus,
macros called as inner macros may have to be much more complex than outer-level
macros, because they analyze arguments one character at a time; instead, substituted argu-
ments to inner macros will be treated as having no structure.

However, if you specify NOCOMPAT(SYSLIST), all macro arguments will be treated the same
way, independent of the level of macro invocation; no distinction is made between outermost
and inner macro calls. This means that the full power of the &SYSLIST notation, sublist
notations, and number attributes are available.
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[ Global Variable Symbols

* Macro calls have one serious defect:

— Can't assign (i.e. return) values to arguments
— unlike most high level languages

— “one-way” communication with the interior of a macro:
arguments in, statements out

- no “functions” (i.e. macros with a value)

* Values to be shared among macros {and/or with open code) must use
global variable symbols

— Scope: available to all declarers

— Can use the same name as a local variable in a scope that does not declare
the name as global

* One macro can create (multiple) values for others to use
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Global Variable Symbols

Thus far, our macro examples have been self-contained: all their communication with the
“outside world” has been through values received in their their argument lists and the state-
ments they generated.

In the System/360/370/330 Assembler Language, macro calls have one serious omission:
they can’t assign (i.e. return) values to arguments, unlike most high level languages. That is,
all macro arguments are “input only”. Thus, communication with the interior of a macro by
way of the argument list appears to be “one-way”: arguments go in, but only statements
come out.

Furthermore, there is no provision for defining macros which act as “functions” (that is,
macros which return a value associated with the macro name itself). This capability is avail-
able with external functions, but their access to global variables is severely limited (they
must be passed as arguments, and their values cannot be updated).

Thus, values to be shared among macros (and/or with open code) must use a different
mechanism, that of global variable symbols. The scope rule for global variable symbols is
simple: they are shared by and are available to all declarers. (You may of course use the
same name as a local variable in a scope that does not declare the name as global.)

With an appropriate choice of named global variable symbols, one macro can create single
or multiple values for others to use.

The “dictionary” or “pool” of global symbols has similar behavior to certain kinds of external
variables in high level languages, such as Fortran COMMON: all declarers of variables in
COMMON may refer to them. However, the assembler imposes no conformance rules of
ordering or size on declared global variable symbols; you simply declare the ones you need,
and the assembler will figure out where to put them so they can be shared with other
declarers. (Unlike most high-level languages, sharing of global variable symboils is purely
by name!)
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Variable Symbol Scope Rules: Summary

* Global Variable Symbols

- Available to all declarefs of those variables on GBLx statements (macros
and open code)

- Must be declared explicitly
- Arithmetic, boolean, and character types: may be subscripted

- Values persist through an entire assembly

— Values kept in a single, shared, common dictionary
- Values are shared by name

- All declarations must be consistent (type, scalar vs. dimensiobned)
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Variable Symbol Scope Rules: Summary ...

* Local Variable Symbols
- Explicitly and implicitly declared local variables
- Symbolic parameters
— Values are "read-only”

- Local copies of system variable symbols whose value is constant throughout
a macro expansion

— Values kept in a local, transient dictionary
— Created on macro entry, discarded on macro exit

— Recursion still implies a separate dictionary for each entry

- Open code has its own local dictionary
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Variable Symbol Scope Rules: Summary

At this point, we will review and summarize the scope rules for variable symboils.

Global variable symbols are available to all macros and open code that have declared
the symbols as GBLx. The three types denoted by “x” are as for local variable symbols:
Arithmetic, Boolean, and Character.

The values of global variable symbols persist through an entire assembly, and their
values are kept in a single, common dictionary. They may be referenced and set by any
declarer.

Local variable symbols include explicitly and implicitly declared variables, symbolic
parameters, and local copies of system variable symbols whose value is constant
throughout a macro expansion. They are not shared with other macros, or with open
code (and vice versa). Open code has its own local dictionary, which is active throughout
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an aséembly. Local variable symbols may be referenced or set only in their local
context.

e Variable symbol values for macros are kept in a local, transient dictionary that is created
on macro entry, and discarded on macro exit. Note that recursion implies a separate
dictionary for each entry to the macro; every invocation has its own local, non-shared
dictionary.

¢ System variable symbols and parameters are trealed as “read-only”, meaning that their
values are constant throughout a macro invocation, and cannot be changed.

The following figure illustrates the use of local and global variable symbol dictionaries for
local and global symbols, and for macros.

< Local Dictionaries >
4——— (One per macro invocation —
LCLs, system | " | LCLs, parms, LCLs, parms, LCLs, parms,
var'ble syms Sys var syms Sys var syms Sys var syms
Open Code 1 MAC1 I MAC2 v MAC3 v
- Macro Macro Macro
GBLA 8&A,&B MAC1 ... MAC2 ... MAC3 ...
GBLB &X GBLC &C,&D GBLA &A GBLC &C
- . GBLB &X .
GBLA &A GBLB &X GBLC &C
GBLA &B GBLC &D
< Global Dictionary >

Figure 26. Example of Variable Symbol Dictionaries

The open code dictionary contains system variable symbols applicable to open code, and
any local variable symbols declared in open code. Each of the macro dictionaries contains
local variable symbols, parameter values, and the values of system variable symbols local to
the macro, such as &SYSNDX. Finally, the global variable symbol dictionary contains all
global symbols declared in open code and in any macro. Only declarers of a global variable
symbol may refer to it; for example, only open code and macro MAC2 may refer to the GLBL
symbol &X. ‘ :
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Macro Debugging Techniques

2.

* Complex macros can be hard to debug
~ Wiritten in a difficult, unstructured language

* Some useful debugging facilities are available:
1.

MNOTE statement
— Can be inserted liberally to trace control flows and display values

MHELP statement
— Built-in assembler trace and display facility
= Many levels of control; can be quite verbose!

ACTR statement
— Limits number of conditional branches within a macro
= Very useful if you suspect excess looping

LIBMAC Option
— Library macros appear to be defined in-line

PRINT MCALL statement, PCONTROL(MCALL) option
— Displays inner-macro calls
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Macro Debugging Techniques

No discussion of macros would be complete without some hints about debugging them. The
macro language is complex and not well structured, and the “action” inside a macro is gen-
erally hidden because each statement is not “displayed” as it is interpreted by the condi-

tional assembly logic of the assembler.

We will briefly describe four statements and two options useful for macro debugging:
the MNOTE statement
the MHELP statement
the ACTR statement
the LIBMAC option
the PRINT MCALL statement and the PCONTROL(MCALL) option.
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Macro Debugging: The MNOTE Statement

» MNOTE allows the most detailed controls over debugging output
(see also slide Conditional-32)

* You specify exactly what to display, and where
MNote *,'At Skipl9: 88VG = &VG., SSTEXT = ''&TEXT'**

* You can control which ones are active (with global variable symbols)
6h1B  &DEBUG(28)

AIF  (NOT ZDEBUG(7)).Skipl9
MNote *,°At Skipl9: 38V6 = &VG., S&TEXT = ''STEXT''®
.Skipl9 ANop
* You can use &SYSPARM values to set debug switches

* You can “disable” MNOTEs with conditional-assembly comments
R MNote *,’At Skipl9: &&VG = &VG., &&TEXT = ''&TEXT'®’
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Macro Debugging: The MNOTE Statement

We have already touched on the use of MNOTE statements in “Displaying Variable Symbol
Values: The MNOTE Statement” on page 42. Their main benefits for debugging macros are:

92

MNOTE statements may be placed at exactly those points where the programmer knows
that internal information may be most useful, and exaclly the needed items can be dis-
played.

The MNOTE message text can provide specific indications of the internal state of the
macro at that point, and why it is being provided.

Though it requires additional programming effort to insert MNOTE statements in a macro,
they can be left “in place”, and enabled or disabled at will. Typical controls are as simple
as “commenting out” the statement (with a “.*” conditional-assembly comment) to adding
global debugging switches to control which statements will be executed, as illustrated

here:

Gb1B &DEBUG(26)

AIF  (NOT &DEBUG(7)).Skipl9
MNote *,'At Skipl9: 8&VG = &VG., R&TEXT = ''RTEXT'*'?
.Skip19 ANop

If the debug switch &DEBUG(7) is 1, then the MNOTE statement will produce the specified
output.
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Macro Debugging: The MHELP Statement

* MHELP controls display of conditional-assembly flow tracing and
variable “dumping”

- Use with care: output is potentially large
* MHELP operand value is sum of 8 bit values:

1 Trace macro calls {(name, depth, &SYSNDX value)

2 Trace macro branches (AGO, AIF)

4 AIF dump (dump scalar SET symbols before AlFs)

8 Macro exit dump (dump scalar SET symbols on exit)

16 Macro entry dump (dump parameter values on entry)

32 Global suppression (suppress GBL symbols in AlF, exit dumps)
64 Hex dump (SETC and parameters dumped in hex and EBCDIC)
128 MHELP suppression (turn off all active MHELP options)

- Best to set operand with a GBLA symbol (can save/restore its value), or
from &SYSPARM value

* Can also limit total number of macro calls (see Language Reference)
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Macro Debugging: The MHELP Statement

The MHELP statement is more general but less specific in its actions than the MNOTE state-
ment. Once an MHELP option is enabled, it stays active until it is reset. The MHELP operand
specifies which actions should be activated; the value of the operand is the sum of the “bit
values” for each action:

1

16

Trace macro calls

MHELP 1 produces a single line of information, giving the name of the called
macro, its nesting level, and its &SYSNDX number. This information can be used
1o trace the flow of control among a complex set of macros, because the
&SYSNDX value indicates the exact sequence of calls.

Trace macro branches

The AIF and AGO branch trace provides a single line of information giving the
name of the macro being traced, and the statement numbers of the model state-
ments from which and to which the branch occurs. (Unfortunately, the target
sequence symbol name is not provided, nor is branch tracing active for library
macros. This latier restriction can be overcome by using the LIBMAC option: if
you specify LIBMAC, tracing is active for library macros.

AlIF dump

When MHELP 4 is active, all the scalar (undimensioned) SET symbols in the
macro dictionary (i.e., explicitly or implicitly declared in the macro) are displayed
before each AlF statement is interpreted.

Macro exit dump

MHELP 8 has the same effect as the preceding (MHELP 4), but the values are
displayed at the time a macro expansion is terminated by either an MEXIT or
MEND statement.

Macro entry dump

MHELP 16 displays the values of the symbolic parameters passed to a macro at
the time it is invoked. This information can be very helpful when debugging
macros that create or pass complex arguments to inner macros.
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9

32 Global suppression

Sometimes you will use the MHELP 4 or MHELP 8 options to display variable
symbols in a macro that has also declared a large number of scalar global
symbols, and you are only interested in the local variable symbols. Setting
MHELP 32 suppresses the display of the global variable symbols.

64 Hex dump

When used in conjunction with any of MHELP’s “display” options (MHELP 4, 8,
and 16), causes the value of displayed SETC symbols to be produced in both
character (EBCDIC) and hexadecimal formats. If you are using character string
data that contains non-printing characters, this option can help with under-
standing the values of those symbols.

128 MHELP suppression

Setting MHELP 128 will suppress all currently active MHELP options. (MHELP O
will do the same.)

These values are additive: you may specify any combination. Thus,
MHELP 1+2 Trace macro calls and AIFs
will request both macro call tracing and AIF branch tracing.

As you might infer from the values just described, these MHELP “switches” fit in a single
byte. The actions of the MHELP facility are controlled by a fullword in the assembler, of
which these values are the rightmost byte. The remaining three high-order bytes can be
used to control the maximum number of macro calls allowed in an assembly; the details are
described in the IBM High Level Assembler for MVS & VM & VSE Language Reference
manual.

The output of the MHELP statement can sometimes be quite voluminous, especially if mul-
tiple traces and dumps are active. It is particularly useful in situations where the macro(s)
you are debugging were ones you didn’t write, and in which you cannot conveniently insert
MNOTE statements. Also, if macro calls are nested deeply, the MHELP displays can help
with understanding the actions taken by each inner macro.

To provide some level of dynamic control over the MHELP options in effect, it is useful to set
a global arithmetic variable outside the macros to be traced, and then refer to that value
inside any macro where the options might be modified; the MHELP operand can then be
saved in a local arithmetic value, and restored to its “global” value on exit. Another useful
technique is to derive the MHELP operand from the &SYSPARM string supplied to the
assembler at invocation time; this lets you debug macros without making any changes to the
program’s source statements.
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Macro Debugging: The ACTR Statement

* ACTR specifies the maximum number of conditional-assembly
branches in a macro or open code

ACTR 208 Limit of 288 successful branches

- Scope is local (to open code, and to each macro)

— Can set different values for each; default is 4096
— Count decremented by 1 for each successful branch
— When count goes negative, macro’s invocation is terminated

* Executing erroneous conditional assembly statements halves the

ACTR value!
B Following statement has syntax errors
&) SET) 8&J+?7 If executed, would cause ACTR = ACTR / 2
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Macro Debugging: The ACTR Statement

The ACTR statement can be used 1o limit the number of conditional assembly branches (AIF
and AGO) executed within a macro invocation (or in open code). It is written

ACTR arithmetic_expression

where the value of the “arithmetic_expression” will be used to set an upper limit on the
number of branches execuied by the assembler. In the absence of an ACTR statement, the
default ACTR value is 4096, which is adequate for most macros.

ACTR is most useful in two situations:

1. If you suspect a macro may be looping or branching excessively, you can set a lower
ACTR value to limit the number of branches.

2. If a very large or complex macro must make a large number of branches, you can set an
ACTR value high enough that all normal expansions can be handled safely.

If the macro definition contains errors detected during encoding, the ACTR value may be
divided by 2 each time such a statement is interpreted. This helps avoid wasting resources
on what will undoubtedly be a failed assembly.

The ACTR value is local to each scope. If exceeded in a macro, the expansion is terminated;
if exceeded in open code, the rest of the source program is “flushed” as comments, and is
not processed. ls value can be changed within its “owning” scope by executing other ACTR
statements.
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Macro Debugging: The LIBMAC Option

”»

* The LIBMAC option causes library macros to be defined “in-line
— Specify as invocation option, or on a *PROCESS statement
*PROCESS LIBMAC

e Errors in library macros harder to find:
- HLASM can only indicate “There’s an error in macro XYZ”
- Specific location (and cause) are hard to determine
* LIBMAC option causes library macros to be treated as “source”
- Can use ACONTROL [NOJLIBMAC statements to limit range
* Errors can be indicated for specific macro statements
* Errors can be found without
— modifying any source

- copying macros into the program
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Macro Debugging: The LIBMAC Option

The LIBMAC assembler option can be very helpful in locating errors in macros whose defi-
nitions have been placed in a macro library. Because library macros are edited as they are
read, they do not have statement numbers associated with each statement of the definition,
as with “source-stream” macros. If the assembler detects errors during encoding or expan-
sion of a library macro, it provides less precise information about the problem’s causes.

To help overcome this limitation, the LIBMAC option will cause the assembler to treat library
macro definitions as though they were found in the primary source stream. When a macro
call causes a macro definition to be brought from the library, the assembler treats all of its
statements in the same way as source macros are treated; when an error condition is
detected, the assembiler is then able (in most cases) to supply the number of the relevant
statement. This makes locating and correcting errors much easier.

If the program contains calls on many macros, but only one or two need this form of anal-
ysis, you can “bracket” the call with ACONTROL statements to limit the range of statementis
over which the LIBMAC option will be in effect:

ACONTROL LIBMAC Turn LIBMAC option on

OddMacro ... The macro to be analyzed
ACONTROL NOLIBMAC  Turn LIBMAC option off
GoodMac ... Trusted macro, analysis not needed

This facility would not be needed, of course, if macros were perfectly debugged before they
were placed into a macro library. Unfortunately, creators and testers of macro definitions
cannot always anticipate all possible uses, so errors sometimes occur long after the macro
was written and “certified”.
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Macro Debugging: The PRINT MCALL Statement

e PRINT [NOJMCALL controls display of inner macro calls

PRINT MCALL Turns ON inper—macro call display
PRINT NOMCALL Turns OFF inner—macro call display

- Normally, you see only the outermost call and generéted code from it and all
nested cails

— Difficult to tell which macro may have received invalid arguments
- With MCALL, HLASM displays each macro call before processing it
— Some limitations on length of displayed information
*  PCONTROL([NOJMCALL) option
— Forces PRINT MCALL on [or off] for the assembly
- Specifiable at invocation time, or on a *PROCESS statement:
*PROCESS PCONTROL(MCALL)
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Macro Debugging: The PRINT MCALL Statement

The PRINT MCALL statement and the PCONTROL(MCALL) assembler option can be very
helpful in locating errors in nested macro calls. Under normal circumstances, the assembler
displays only the outermost macro call, and (if PRINT GEN is in effect) the code generated
from that and all nested calls.

If a complex nest of macro calls generates incorrect code, it can sometimes be difficult to
isolate the problem to a specific macro, or to the interfaces among the macros. The PRINT
MCALL statement causes High Level Assembler to display inner macro calls before they are
processed; this can help in ensuring that the arguments passed to each macro in a nest
have the expected values. For example, suppose you have defined two macros, OUTER and

INNER:

Macro

&L OUTER &P,2Q,&R

&T SetC '&P. 0

&L.X INNER &Q,ZZ,&T
MEnd
Macro

&L INNER &F,&G,8&H
pDC C'F=&F., G=8G., H=&H'
MEnd

Then, if you call the OUTER macro with the statement
K OUTER A,B,C

the displayed result in the listing will show only the call to OUTER and (if PRINT GEN is in
effect) the generated DC statement. However, if PRINT MCALL is in effect, the displayed
result will also show the call to INNER:

K OUTER A,B,C
+KX INNER B,ZZ,A C
+ DC C'F=B, G=7Z, H=A C'
End
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If macro arguments are subjected to various modifications during their passage to inner
macros (as in this example), debugging can be made much simpler if the actual arguments
of the inner macro calls are visible.

The PRINT MCALL statement is subject to a “global” override through the use of the
PCONTROL option, which may specify that PRINT MCALL should be active or not for the
entire assembly, no matter what PRINT MCALL or PRINT NOMCALL statements may be
present in the source program.

IBM Macro Libraries

Every IBM operating system provides several macro libraries that can provide helpful exam-
ples of macro coding techniques.” Some macros simply set up parameters lists for calls to a
system service; these tend to be less instructive than macros that generate sequences of
instructions for other uses. You will probably want to defer study of very large macros until
you are comfortable with reading and writing macro definitions.

Please bear in mind that many IBM macros were written in the early days of System/360; the
assemblers of those times were far less powerful than today’s High Level Assembler, so the
coding techniques may appear unnecessarily complicated by today’s standards.

7 Not that the coding techniques are necessarily the best; as mentioned earlier, the conditional assembly language
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is awkward and unfamiliar to many programmers, and was especially so in the early days when many macros
were written.
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Part 3: Macro Techniques

Part 3: Macro Techniques
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Macro instructions (or macros for short) provide the Assembler Language programmer with
a wonderfully flexible set of possibilities. Macros share many of the properties of ordinary
subroutines (you can think of a macro as an assembly-time subroutine!) that can be called
from many different applications: once created, they may be used to simplify many other
tasks. Their capabilities range from the very simple:

« perform “housekeeping” such as saving registers, making subroutine calls, and restoring
the registers and returning (the operating system supplies the SAVE, CALL, and RETURN
macros for these functions)

» define symbols for registers and fixed storage areas, and declare data structures to
define or map certain system control blocks used by programs to communicate with the
operating system {(macros such as REGEQU, DCB, and DCBD)

* generate short code sequences to convert among data types, justify numeric fields,
search 1ables, validate data values, and other helpful tasks.

to the very complex:

= macros have been created to define “artificial languages” in which entire applications
are written. Examples include the SNOBOL4® language; specialized compiler-writing oper-
ations?; and banking, marketing, and teleprocessing applications.

Our purpose here is 1o show that you can write macros to simplify almost any part of the
programming process, from the simplest and smallest to the very complex and powerful.

8 See The Macro Implementation of SNOBOL4, by Ralph E. Griswold (Freeman & Co., San Francisco, 1972).
Chapter 10 describes the macro techniques used.

$ The IBM Fortran G-Level compiler was written in an assembler macro language that allowed it to be quickly and
easily ported to other systems. :
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Macros as a Higher Level Language

* Can be created to perform (/ery simple to very complex tasks

- Housekeeping {register saving, calls, define symbols, map structures)
- Define your own application-specific language increments and features

* Macros can provide much of the “goodness” of HLLs

Abstract data types, private data types
Information hiding, encapsulation
Avoiding side-effects

Polymorphism

Enhanced portability

| I |

* Macro sets can be built incrementally to suit application needs

- Can develop “application-specific languages” and increments
- Code re-use promotes faster learning, fewer errors

* Avoid struggling with the latest “universal language” fad

~ Add new capabilities to existing applications without converting
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Higher-level languages are often deemed useful because they provide desirable “advanced”
features. We will see that macros can also deliver most of these features:

» Abstract Data Types — are user-specified types for data objects, and sets of procedures
used to access and manipulate them. This “encapsulation” of data items and logic is
one of the key benefits claimed for object-oriented programming; it is a natural conse-
quence of macro programming.

* Information Hiding — is an established technique for hiding the details of an implementa-
tion from the user. The concept of separating application logic from data representations
is an old and well established programming principle. This also is a natural and normal
benefit of macro programming.

* Private Types — are user-defined data types for which the implementing procedures are
hidden.

* Avoiding Side-Effects — is achieved by having functions only return a value without
altering either input values or setting of shared variables not declared in the invocation of
an implementing procedure.

* Polymorphism — allows functions to accept arguments of different types, and enhances
the possibility of reusing components in many contexts.

We will see that macros provide simple ways to implement any or all of these features. They
provide some additional advantages:

*» Macros may be written to perform as much or as little as is needed for a particular task.

* Macros can be built incrementally, so that simple functions can be used by more
complex functions, as they are written.

* New “language” implemented by macros can be adapted to the needs of the application,
giving an application-specific language that may well be better suited to its needs than a
general-purpose “higher level” language designed to (nearly) fit (nearly) everything.
When completed, a macro can be used by everyone, giving immediate benefits of code
re-use.

* Macro-based implementations can often be much more efficient than compiled code. A
compiler must be prepared to accept quite arbitrary combinations of statements, and
then attempt to optimize them; a macro-based language can concentrate on just those
parts of the application for which optimization efforts are justified.
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* A macro-based language is your language! You need not adapt your view of your appli-
cation 1o fit the peculiarities and rigidities of a particular language or compiler (or of a
language designer’s pet theories). You can select whatever language features are
appropriate and useful for your application.

» Macros can also provide an excellent introduction 1o language and compiler concepts, in
a controllable way. You can create and analyze generated code immediately, and can
build any useful and interesting language fragment easily without having to worry about
extensive side-effects. Macros also allow you to investigate trade-offs involved in
compile-time vs. run-time issues such as a choice between generating in-line code or
calls to a run-lime library.

Examples of Macro Techniques

* Sample-problem “case studies” illustrate some techniques

-

Define EQUated names for registers

Generate a sequence of byte values

*MVC2” macro takes implied length from second operand
Conditional-assembly conversions between decimal and hex
Generate lists of named integer constants

Create length-prefixed message text strings and free-form comments
Recursion (indirect addressing, factorials, Fibonacci numbers)

Basic and advanced bit-handling techniques

© ® N o ¢k w N

Defining assembler and user-specified data types and operations

10. “Front-ending” or “wrapping” a library macro
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Macro Techniques Case Studies

We will now examine some sample macro “case studies” that illustrate various aspects of
the macro language.

We will discuss several sets of example macros that illustrate different aspects of macro
coding, and which provide various types of useful functions.

1. The example macros at “Case Study 1: Defining Equated Symbols for Registers” on
page 103 generate a set of EQU statements to define symbols to be used for register
references. They illustrate the use of a global variable symbol to set a “one-time” switch,
text parameterization, use of the &SYSLIST system variable symbol, and created variable
symbols. (This case study is a generalization of the macro discussed at “Example 1:
Define Equated Symbols for Registers” on page 67.)

2. Two example macros at “Case Study 2: Generating a Sequence of Byte Values” on
page 107 generate a sequence of byte values. They illustrate conditional assembly state-
ments, and some simple string-handling operations. (This case study is a generalization
of the macro discussed at “Example 2: Generate a Sequence of Byte Values
(BYTESEQ1)” on page 74))

3. The standard MVC instruction takes its implied length from the length attribute of the first
(target) operand. A simple “MVC2” macro at “Case Study 3: “MVC2” Macro Uses Source
Operand Length” on page 110 takes its implied length from the length attribute of its
second {source) operand.
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4. The “"utility” macros at “Case Study 4: Conversion Between Hex and Decimal” on
page 112 might be used by other macros to perform conversions between decimal and
hexadecimal representations. They illustrate construction of self-defining terms, global
variables for communicating among macros, and substring operations.

5. The example macro at “Case Study 5: Generate a List of Named Integer Constants” on
page 117 generates a list of constants from a varying-length list of arguments, using
&SYSLIST to refer to each argument in turn, and constructs a name for each constant
using its value.

6. “Case Study 6: Using the AREAD Statement” on page 121 illustrates two uses of the
AREAD statement:

a. Firsi, the three example macros at “Case Study 6a: Creating Length-Prefixed Message
Texts” on page 122 show how 1o generate a length-prefixed “message” string. The
first and second examples illustrate some familiar techniques, while the third uses the
AREAD statement and a full scan of a “human-format” message to generate an
insertion-text character string for the final DC statement containing the message.

b. Second, “Case Study 6b: Block Comments” on page 128 show how to use the AREAD
statement to help you write free-form or “block” comments in your program.

7. Three example macros at “Case Study 7: Macro Recursion” on page 130 illustrate recur-
sive macro calls. The first implements “indirect addressing”, and the remaining two illus-
trate the use of global variable symbols and recursive macro calls to generate factorials
and Fibonacci numbers.

8. Two styles of macros illusirate techniques that can be used to define a private “bit” data
type, with bit addressing by name and type checking within the bit handling macros
themselves. After describing some basic bit-handling techniques, simple and optimized
macros are created:

a. “Case Study 8a: Bit-Handling Macros -- Simple Forms” on page 140 describes basic
forms of declaring and using a bit data type.

b. “Case Study 8b: Bit-Handling Macros -- Advanced Forms” on page 150 shows how to
improve the basic forms for safety and efficiency, generating optimized code.

9. A set of macros illustrated at “Case Study 9: Defining and Using Data Types” on
page 172 illustrate some techniques that can be used 1o implement type-sensitive oper-
ations (“polymorphism”), and user-defined data types and user-defined operations on
them, with type checking and information hiding.

a. “Case Study 9a: Type Sensitivity -- Simple Polymorphism” on page 174 shows how
the assembler’s type atiributes can be used to tailor generated code sequences to the
types of operands.

b. “Case Study 9b: Type Checking” on page 180 shows how user-assigned type attri-
butes can be used to perform type checking “conformance” between instructions,
operands, and registers.

c. “Case Study 9c: Encapsulated Abstract Data Types” on page 192 shows how user-
defined data types and operations can “encapsulate” the details of data definitions
and low-level operations on the data objects.

10. Sometimes it is useful to be able to capture and analyze the arguments passed to
another macro, while still using the original macro definition for its intended purposes.
This is called “front-ending” or “wrapping” a macro, and “Case Study 10: “Front-Ending”
a Macro” on page 204 will illustrate a simple way to do this.
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Case Study 1: EQUated Symbols for Registers

* Intent: Write a GREGS macro to define “symbol equates” for GPRs

« Basic form: simply generate the 16 EQU statements

* Variation 1: ensure that “symbol equates” can be generated only once

* Variation 2: generate equates for up to four register types

~ General Purpose, Floating Point, Control, Access
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Case Study 1: Defining Equated Symbols for Registers

The technique illustrated in “Example 1: Define Equated Symbols for Registers” on page 67
is quite acceptable unless we need at some point to combine multiple code segments, each
of which may possible contain a call to GREGS (which was needed for its own modular
development). How can we avoid generating multiple copies of the EQU statements, with
their accompanying diagnostics for multiply-defined symbols?

Define General Register Equates (Simply)

* Define “symbol equates” for GPRs with this macro (see slide
Concepts-19)

MACRO
GREGS

GRO Equ ©

GR1 Equ 1

R - etc.

GR15  Equ 15
MEND

* Problem: what if two code segments are combined?

- If each calls GREGS, could have duplicate definitions
- How can we preserve modularity, and define symbols only once?

* Answer: use a global variable symbol &GRegs

- Value is available across all macro calls
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Define General Register Equates (Safely)

X
GR&N
&N
&GRegs

.Done

* Initialize &GRegs to “false”; set to “true” when EQUs are generated

MACRO

GREGS

GBLB  &GRegs

AIF {&GRegs) . Done
LCLA 8N

ANOP

Equ &N

SETA aN+1

AIF (&N LE 15).X
SetB 1
MEXIT

MNOTE 8, 'GREGS previously called, this call ignored.’

* |If &GRegs is true, no statements are generated

GREGS
G6REGS This,Call,Is, Ignored

&6Regs initially 8 (false)
Check if &GRegs already true
&N initially 8

Increment &N by 1
Test for completion
&GRegs true (definitions have been done)

HLASM Macro Tutorial
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The solution is simple: use a global variable symbol whose value will indicate that the
GREGS macro has been called already. This is illustrated in Figure 27.

MACRO
GREGS
GBLB
AIF
LCLA
X ANOP
GR&N Equ
&N SETA
AIF
&GRegs SetB
MEXIT
.Done  MNOTE
MEND

AAA GREGS
GREGS

8GRegs
(&GRegs) .Done
&N

&N
&N+1
(&N LE 15).X

(1)

&GRegs initially 0 (false)
Check if &GRegs already true
&N initially ©

Increment &N by 1
Test for completion
Indicate definitions have been done

0, 'GREGS previously called, this call ignored.'

What?,Again,Eh?

Figure 27. Macro to Define General Purpose Registers Once Only
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Defining Register Equates Safely: Pseudo-Code

* Allow declaration of multiple register types on one call:
Example: REGS type,[,type,]... asin REGS G,F

* Pseudo-code:

IF (number of arguments is zers) EXIT
FOR each argument:
Verify valid register type (A, C, F, or G):
IF invalid, ERROR EXIT with message
IF (that type already done) Give message and ITERATE
Generate eguates
Set appropriate 'Type_Done' flag and ITERATE

* 'Type_Done' flags are global boolean variable symbols
- Use created variable symbols &(&T.Regs_Done)
» If &(&T.Regs_Done) is true, no statements are generated

REGS G,F,A,6 6 registers are not defined again
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Define All Register Equates (Safely)

MACRO

REGS

AIF (%'ESYSLIST EQ B).EXIT
&) SETA 1 INITIALIZE ARGUMENT COUNTER
.GETARG ANOP
&T SETC (UPPER *BSYSLIST(8J)') PICK UP AN ARGUMENT
&N SETA  (*ACFG' INDEX '81') CHECK TYPE

ATF (2n £0 ).BAD ERROR IF HOT A SUPPORTED TYPE
GBLB  &(&7.REGS_DOWE) DECLARE GLOBAL VARIABLE SYMBOL
AIF (8 (BT.REGS_DOME)).DONE TEST If TRUE ALREADY

&N SETA 8

-GEN ANOP » GENERATE EQU STATEMENTS
&T1.REN EQU &N

&N SETA BH+1

ATF (&M LE 15).GEN
&(&T.REGS_DOME) SETB (1)  IMDICATE DEFINITIONS HAVE BEEM DONE

JHEXT  ANOP
& SETA  &J+41 COUNT TO NEXT ARGUMENT
ALF (RJ LE N’BSYSLIST).GETARG  GET NEXT ARGUMENT
MEXIT
_BAD  MNOTE B, 'RSYSMAC.: UNKNOWN TYPE ''&T.''.’
MEXIT
.DOME  MHOTE  8,'&SYSMAC.: PREVIOUSLY CALLED FOR TYPE &T..'
AGD NEXT
SEXIT  MENWD
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Encouraged by the success of this approach, we might wish to define a macro which will
create equates for all the registers we might use in our program: General Purpose, Floating
Point, Control, and Access. Rather than write three separate macros (one for each type of
register), we can write a single REGS macro whose operands specify the type of registers
desired (e.g., “G” for GPRs, “F” for FPRs, “C” for CRs, and “A” for ARs). lts syntax could be
like this:

REGS type,[,type,]... one or more register types
asin
REGS G,F

A pseudo-code sketch of the techniques used is the following:
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IF (number of arguments is zero) EXIT
FOR each argument:
Verify valid register type (A, C, F, or G):
IF invalid, ERROR EXIT with message
IF (that type already done) Give message and ITERATE
Generate equates
Set appropriate 'Type Done' flag and ITERATE

The following example uses the technique illustrated in Figure 27 on page 104 above, but
generalizes it by using a “created set symbol” to select the name of the proper giobal vari-

able symbol.
MACRO
REGS
AIF (N'&SysList eq 0).Exit
&J SetA 1 Initialize argument counter
.GetArg ANOP
&T Set( (Upper '&SysList(&J)') Pick up an argument
&N SetA ('ACFG' Index '&T') Check type

AIF (&N eq 0).Bad Error if not a supported type
GBLB &(&T.Regs_Done) Declare global variable symbol
AIF (&(&T.Regs_Done)) .Done Test if true already

0

&N SetA

.Gen ANop , Generate Equ statements
&T.R&N Equ &N

&N SetA aN+1

Alf (&N 1e 15).Gen
&(&T.Regs_Done) SetB (1) Indicate definitions have been done

.Next  ANOP

&J SetA &J+1 Count to next argument
AIF (&) le N'&SysList).GetArg Get next argument
MEXIT

.Bad MNOTE  8,'&SysMac.: Unknown type *'&T.''.!
MEXIT

.Done  MNOTE ©,'&SysMac.: Previously called for type &T..'
AGO .Next

.Exit  MEND

Figure 28. Macro to Define Any Sets of Registers Once Only
This REGS macro may be safely used any number of times (so long as no other definitions

of the global variable symbols 8ARegs_Done, &FRegs_Done, &CRegs_Done, or &GRegs. Done appear
elsewhere in the program!).
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| Case Study 2: Generate Sequence of Byte Values

* Intent: generate a sequence of bytes containing values 1,2,.. N
» Basic form: simple loop generating one byte at a time

* Variation: generate a single DC with all values; check for invalid input
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Case Study 2: Generating a Sequence of Byte Values

Generating a Byte Sequence: BYTESEQ1 Macro

* BYTESEQ1 generates a separate DC statement for each value
{compare with slides Conditional-33 and Concepts-26)

MACRO
&L BYTESEQ1 &N
.* BYTVESEQl — generate a sequence of byte values, one per statement.

.* No checking or validation is done.

LclA &K
AIF  (°&L' EQ '’).Loop Don't define the label if absent
&L DS BAL1 Define the label
.Loop  ANOP
&K SetA &K+l Increment &K
AIF (8K GT &N).Done Check for termination condition
DC AL1(&X)
AG0  .Loop Continue
.Done  MEND

* Two test cases

BSla BYTESEQ1 5
BYTESEQ1l 1
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The sample BYTESEQ2 macro illustrated in Figure 29 on page 109 uses the same tech-
niques as the conditional-assembly examples given in Figure 6 on page 44 and Figure 7 on
page 45. and the corresponding BYTESEQ1 macro illustrated in Figure 23 on page 74.
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! Generating a Byte Sequence: Pseudo-Code

* BYTESEQ2: generate a single DC statement, creating a string of bytes
with binary values from 1 to N

— N has been previously defined as an absolute symbol

IF (N not self_defining) ERROR EXIT with message
IF (N > 88) ERROR EXIT with too_big message

IF (N = 8) EXIT with notification

Set local string variable s = '1'

DO for K = 2 te N

$=8|}"''K (append comma and next value)
GEN (label BC ALI(S) )

* Compare to slide Conditional-34
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Generating a Byte Sequence (BYTESEQ2)

MACRD
&L BYTESEQ2 3N Generates a single DC statement
&K SetA 1 Initialize generated value counter
&S SetC '3’ Initialize output string
ALF (T'8N EQ °N’).Num Validate type of argument
MNOTE 8, 'BYTESEQZ2 — =8N not self-defining.’
MEXIT
.Num  AIF (8N LE 88).NotBig Check size of argument
MNOTE 8, 'BYTESEQ2 — =8N is too large.'
MEXIT
.NotBig AIF (&N GT 8).0K Check for small argument
MNOTE *, 'BYTESEQ2 — &3N=38N too small, no data generated.’
MEXIT
.0K AIF (&K GE &N).DoDC If done, generate BC statement
&K SetA &K+1 Increment &K
&S SetC *8S.'.',8K" Add comma and new value of &K to &S
AGD .0K Continue
DoDC  ANOP
&L bC AL1(&S)
MEND
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A pseudo-code outline of the macro implementation is as follows:

IF (N not self-defining) ERROR EXIT with message
IF (N > 88) ERROR EXIT with too-big message

IF (N = @) EXIT with notification

Set local string variable S = '1'

DO for K =2 to N

=S|} 'K (append comma and next value)
GEN (label DC AL1(S) )

The BYTESEQ2 macro shown in Figure 29 on page 109 performs several validations of its
argument, including a type attribute reference to verify that the argument is a self-defining
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term. . As its output, the macro generates a single DC statement for the bylte values, but it
has a limitation: can you tell what it is, without reading the text following the next figure?

MACRO
&L BYTESEQ2 &N
.* BYTESEQ2 -- generate a sequence of byte values, one per statement.
The argument is checked and validated, and the entire constant is
.* generated in a single DC statement.
LclA &K
LciC &S
&K SetA 1 Initialize generated value counter
&S SetC e Initialize output string
AIF (T'&N EQ 'N').Num Validate type of argument
MNOTE 8,'BYTESEQ2 -- &&N=&N not self-defining.’
MEXIT
Num  AIF (&N LE 88).NotBig Check size of argument
MNOTE 8,'BYTESEQ2 -- &&N=&N is too large.'
MEXIT
.NotBig AIF (&N GT 0).0K Check for small argument
MNOTE * 'BYTESEQ2 -- &&N=&N too small, no data generated.'
MEXIT
.0K AIF (&K GE &N).DoDC If done, generate DC statement
&K SetA &K+1 Increment &K
&S SetC '8S.'.',8K' Add comma and new value of & to &S
AGO .0K Continue
.DoDC  ANOP
&L DC AL1(&S)
MEND
* Test cases
BS2e BYTESEQ2 6
BS2b BYTESEQZ2 1
BS2a BYTESEQ2 5
BS2d BYTESEQ2 X'58!
BS2c BYTESEQ2 256

Figure 29. Macro to Define a Sequence of Byte Values As a Single String

Because no character variable symbol may contain more than 255 characters, the argument

to BYTESEQ2 may not exceed 88; otherwise &S exceeds 255 characters. We leave as an
exercise to the interested reader what steps could be taken to adapt this macro to accept
arguments up to and including 255, and still generate a single DC statement.
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| Case Study 3: MVC2 Macro

*  Want a macro to do an MVC, but with the source operand’s length:
MVC2 Buffer,=C’Message Text' should move 12 characters...

Buffer DS €L133 even though buffer is longer

— MVC would move 133 bytes!

* Macro utilizes ORG statements, forces literal “definitions”

Macre
&Lab MVC2 &Target,&Source
&lab CLC 8(8,8),aSource X*D588 6888*,S(&Source)

Org *6 Back up to first byte of instruction
LA 8,&Target. (8) X'4188°,S({&Target), S(&Seurce)

Org *-4 Back up to first byte of instruction
BC AL1(X'D2',L'&Source-1) First 2 bytes of instruction
brg *+4 Step to next instruction

MEnd

* The CLC instruction “forces” a literal source operand into the
assembler’s symbol table, so it’s available to the L’ reference
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Case Study 3: “MVC2” Macro Uses Source Operand Length

Sometimes it is useful to determine the length byte of an MVC instruction from the length
attribute of the second operand, rather than of the first. That is, rather than write something
clumsy and error-prone like

MVC  Buffer(L'=C'Message Text'),=C'Message Text'
you would rather write something like
MVC2 Buffer,=C'Message Text'
and get the same result. This can be done with an MVC2 macro with prototype
MVC2 &Target,&Source
where the macro effectively generates
MVC  &Target(L'&Source),&Source

There are several reasons why this might not work as simply as it is written; the most diffi-
cult situation (and also probably the most useful!) occurs when a literal is used as the.
source operand. When the assembler processes the length expression L'&Source, it must
find the symbol {or literal) corresponding to &Source in the symbol table; otherwise the
expression cannot be evaluated and is treated as invalid. :

The following macro avoids this problem by first generating a CLC instruction (for which
literals are valid in both the first and second operands), which causes any literal operands in
the macro call to be entered into the symbol table. Then, the CLC instruction is overlaid with
the fields appropriate to the desired MVC instruction.
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Macro
&lLab MVC2 &Target,&Source
AIf  (N'&SysList eq 2).0K
MNote 8,'Wrong number of operands in MVC2 macro call.’

MExit
.0K ANop
R Generate the CLC instruction with correct source operand
&Lab CLC  6(0,0),8&Source X'D5006 0000',S(&Source)

Org *-6 Back up to first byte of instruction
R Generate the addressing halfword for the target operand

LA 0,&Target. (0) X'4100',S(&Target),S(&Source)

Org *-4 Back up to first byte of instruction
R Generate the MVC opcode and the length byte

DC AL1(X'D2',L'&Source-1) First 2 bytes of instruction

Org *+4 Step to end of MVC instruction

MEnd

Figure 30. MVC2 Macro Definition

The CLC instruction causes any literals used as source operands to be placed into the
symbol table prior to the length attribute reference in the DC statement.

An example of the code generated by the MVC2 macro is shown in the following:

HVC2 Buff,=C'-Error: '

00660 D500 BOOO FBAD ... + CLC 06(0,0),=C’-Error: ' X'D500 0008',S(&Source)

000666 . Org *-6 Back up to first byte of instruction
000600 4100 F765 + LA 0,Buff(D) X'4100°,S(&Target),S (&Source)

000604 + Org *-4 Back up to first byte of instruction
000600 D207 + DC  AL1(X'D2’,L'=C’-Error: ’'-1) First 2 bytes of instruction
000602 + Org *+4 Step to end of MVC instruction

000765 ... Buff DS CL133

DOOBAD 60C5999996997A40 =C’'-Error: '
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Case Study 4: Conversion Between Hex and Decimal

* Convert hexadecimal values to their decimal equivalent in a SetA
variable '

Dec A Sets global SetA variable &Dec to 18

* Convert decimal values to their hexadecimal equivalent in a SetC
variable

Hex 18 Sets global SetC variable &Hex to 'A’
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Case Study 4: Conversion Between Hex and Decimal

If you are writing macros, you may need to convert between two different representations of
a data item. Some of these conversions are already available in the conditional assembly
language; for example, arithmetic variables are automatically converted to character form by
substituting them in SETC expressions.

Macro-Time Conversion from Hex to Decimal

* Convert macro-time hex digit strings to decimal values;
return values in GBLA variable &DEC

Macro
Dec  &Hex Convert &ex to decimal
Gbl1A &Dec Decimal value returned in &Dec
& SetC °X'‘&Hex''’ Create hex self-defining term
&Dec SetA &X Do the conversion
MNote 0, '&Hex (hex) = &Dec (decimal)’ For debugging
MEnd
*
Dec AA
**% MNOTE *** 8,AA (hex) = 178 (decimal)
Dec  FFF
***x MNOTE *** B8,FFF (hex) = 4695 (decimal)
Dec  FFFFFF

*** MNOTE *** 8,FFFFFF (hex) = 16777215 (decimal)
Dec  7FFFFFFF
*** MNOTE *>* 8,7FFFFFFF (hex) = 2147483647 (decimal)
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Macro-Time Conversion from Hex to Decimal

To illustrate two “utility” macros, we will show how to convert between decimal and
hexadecimal representations. The first macro, Dec, converts from hex to decimal, and places
the result of its conversion into the global arithmetic variable &Dec for use by the calling
macro (or open code statement). Because the assembler accepts hexadecimal self-defining
terms in SETA expressions, the conversion merely needs to construct such a hexadecimal

term.
Macro
Dec  &Hex Convert &Hex to decimal
Gb1A &Dec Decimal value returned in &Dec
&X SetC 'X''&Hex''! Create hex self-defining term
&Dec SetA &X Do the conversion
MNote 0,'&Hex (hex) = &Dec (decimal)' For debugging
MEnd

Figure 31. Macro-Time Conversion from Hex to Decimal

Some examples of calls 1o the Dec macro are shown in the following figure, where the
MNOTE statement has been used to display the results. (In production use, the MNOTE state-

ment would probably be inactivated by placing a “.”” (conditional-assembly) comment indi-
cator in the first two columns.)

Dec AA

*** MNOTE *** ©0,AA (hex) = 176 (decimal)
Dec  FFF

*** MNOTE *** ©,FFF (hex) = 4095 (decimal)
Dec  FFFFFF

*** MNOTE *** 0,FFFFFF (hex) = 16777215 (decimal)
Dec  7FFFFFFF
*** MNOTE *** 0,7FFFFFFF (hex) = 2147483647 (decimal)

Figure 32. Macro-Time Conversion from Hex to Decimal: Examples

Note that this macro may appear to have a problem: any hex value exceeding X' 7FFFFFFF'
will not be displayed as a negative number. However, its internal representation in the vari-
able &Dec will be correct.

Another shoricoming of this macro is that it makes no checks for the validity of the argument
&Hex. This can be done using internal functions, as follows:
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Macro
Dec  &Hex Convert &Hex to decimal
Gb1A &Dec Decimal value returned in &Dec
&X SetC (Upper '&Hex') Convert to argument upper case
.Check ANOP
&J SetA &J+1 Increment &J
&T SetA ('&X'(&J,1) Find '0123456789ABCDEF') Validate character
AIf  (&T eq 0).Bad Error if invalid character
AIf (& 1t K'&X).Check Look at next character
&ax SetC 'X''&Hex''® Create hex self-defining term
&Dec SetA &X Do the conversion
MNote ©,'&Hex (hex) = &Dec (decimal)' For debugging
MExit
.Bad MNote 5,'Invalid hex argument &&Hex = &Hex'
MEnd

Figure 33. Macro-Time Conversion from Hex to Decimal, with Checking

The added statements first convert the alphabetic characters in the argument to upper case
(to simplify the Find function). Then, each character of the argument is validated; if an invalid
character is found, the macro branches to .Bad and issues an error message and terminates
the macro, with severity code value 5.

Macro-Time Conversion from Decimal to Hex

» Convert macro-time decimal values to hex digit strings

- Returns value in GBLC variable &Hex

* Pseudo-code:

Set § = decimal value
Set Hex = **

DO_UNTIL (¢ = B)
Remainder = Q mod 16
Hex = Substr('6123456789ABCDEF®, Remainder+l, 1) II Hex
e=0Q/16

- Note: DD WHILE (Q # 0) wouldn’t work for decimal value zero

HLASM Macro Tutorial  © Copyright IBM Corporation 1983, 2602. All rights reserved. Tech-16

114 Assembler Language as a Higher Level Language, SHARE Summer 2002



‘ Macro-Time Conversion from Decimal to Hex ...

* Convert decimal values to hex digit strings in GBLC variable &Hex

Macro
Hex &Dec Convert &Dec to hexadecimal
GbIC &Hex Hex value returned in &Hex
&Hex SetC '° Initialize &Hex
&9 SetA &Dec Local working variable
.Loop ANop , Top of reduction loop
&R SetA (&Q AND 15) &R = Mod ( &9, 16 )
&0 SetA (&Q SRL 4) Quotient for next iteration

&Hex SetC '0123456789ABCDEF’(&R+1,1). '3Hex’ Build hex value
Aif  (&Q gt 8).Loop Repeat if &0 not zers
MNote 8, '&Dec (decimal) = &Hex (hex)' For debugging
MEnd

Hex 178
**x MNOTE *** 8,178 (decimal) = AA (hex)
Hex 16777215
»xx MNOTE ***  8,16777215 (decimal) = FFFFFF (hex)

» Exercise: extend Hex macro to accept negative arguments
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Macro-Time Conversion from Decimal to Hex

Conversion from decimal to hexadecimal requires reducing the decimal value one hex digit
at a time, using successive divisions by sixteen. A pseudo-code description of the conver-
sion process is as follows:

Set Q = decimal value (assumed non-negative!)
Set Hex = !

DO_UNTIL (Q = 6)

Remainder = Q mod 16 (other bases possible, too)
Hex = Substr{'0123456789ABCDEF', Remainder+l, 1) || Hex
Q=0/16

The Hex macro is shown in Figure 34. It accepis a single non-negative decimal argument,
and returns its value in the GBLC variable &Hex. :

Macro
Hex  &Dec Convert &Dec to hexadecimal
Gb1C &Hex Hex value returned in &Hex
&Hex SetC '! Initialize &Hex
&Q SetA &Dec Local working variable
.Loop ANop , Top of reduction loop
&R SetA (8Q AND 15) &R = Mod ( &Q, 16 )
&Q SetA (&Q SRL 4) Quotient for next iteration

&Hex SetC '0123456789ABCDEF' (&R+1,1).'8Hex' Build hex value
Aif  (8Q gt 0).Loop Repeat if &Q not zero
MNote O,'&Dec (decimal) = &Hex (hex)' For debugging
MEnd

Figure 34. Macro-Time Conversion from Decimal to Hex

Some examples of calls to the Hex macro to perform decimal-to-hex conversion are shown in
the following figure.
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Hex 170

*** MNOTE *** 0,170 (decimal) = AA (hex)
Hex 16777215

*** MNOTE ***  0,16777215 (decimal)
Hex 16777216

*** MNOTE ***  0,16777216 (decimal)
Hex 2147483647

*** MNOTE ***  0,2147483647 (decimal) = 7FFFFFFF (hex)

FFFFFF (hex)

[}

1000000 (hex)

Figure 35. Macro-Time Conversion from Decimal to Hex: Examples

The technigue shown in the Hex macro could be used to convert from decimal to any other
base, simply by replacing occurrences of the value “16” in the macro with the desired base.
As an exercise, rewrite this macro to support a keyword parameter &BASE, with default value
16, and try it with various bases such as 2, 8, and 12.

It is an interesting further exercise to extend the function of the Hex macro to handle positive
(unsigned) or negative (signed) arguments. This can be done with a few exira statements in
the &Hex macro:

&Hex SetC "!
AIF  ('8&Dec'(1,1) NE '-').NotNeg Test for negative
&T SetC '&Dec'(2,*) Save magnitude of &Dec
&Q SetA -&T Set &Q to signed value
AGO  .Loop
.NotNeg ANOP
&Q SetA &Dec Non-negative argument
.Loop ANOP

Completion and testing of the revised macro is left as part of the exerciée! (Note that we
can’t directly substitute a negative value of &Dec into the SETA statement for &Q, because it
does not have the form of a self-defining term, and must therefore be handled specially.)

In practice, it would probably be simpler (and maybe more efficient) to write external func-
tions to do these conversions, without any need for global variables to communicate
between the conversion “routine” and its caller.
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Case Study 5: Generate Named Integer Constants

* Intent: generate a list of “intuitively” named halfword or fullword
integer constants

* For example:
- Fullword value “1” is a constant named F1

~ Halfword value “—1” is a constant named HM1
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Case Study 5: Generate a List of Named Integer Constants

To illustrate a typical use of the &SYSLIST system variable symbol, we suppose we wish to
write a macro named INTCONS that will generate integer-valued constants, giving them
names by appending their value to a letter designating their type (F if the value is non-
negative, or to FM if the value is negative). For good measure, we will provide a keyword
parameter to specify their type, either F or H, with F as the default. (Negative halfword con-
stants will then start with the letters HM.)

Generate a List of Named Integer Constants

* Syntax: INTCONS n,[,n,]...[,Type=F]

- Default constant type is F

* Examples:

C1b INTCONS 8,-1 Type F: names FB, FM1
+C1b BC 6F'8’ Define the label
+F8 BC F's’
+M1 BC F'-1'

Clc INTCONS 99,-99, Type=H Type H: names H99, HM99

+C1c bC BH'8’ Define the label
+H99 BC H'99* .
+HM99 bc R'-99*
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Generate a List of Named Integer Constants ...

* INTCONS Macro definition (with validity checking omitted)

MACRO
&lab INTCONS &Type=F Default type is F
AIF (*&Lab’ eq '').Args0K Skip if no label
&Lab BC 8&Type. '8’ Define the label
.ArgsOK ANOP Argument—checking loop
& SetA &J+1 Increment argument counter

AIF (&3 GT N'&SysList).End Exit if all dome
&Name  SetC  ‘'&Type.&SysList(&J)' Assume non—negative arg

AIF (*&SysList(&3)'(1,1) ne '-').NotNeg Check arg sign
Name SetC  '&Type.M'.'8SysList(&J)'(2,*) Negative argument, drop -

.NotNeg ANOP
&Name DC &Type. '&SysList(8J)"*

AGO .ArgsoK Repeat for further arguments
.End  MEND

* Exercise: generalize to support + signs on operands
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The syntax of the macro might look like this:
INTCONS ny[,n5])...[,Type=F]

If we wrote
INTCONS 1,-1

the macro would generate these statements:

F1 DC F'1°
M1 DC F'-1

Similarly, if we wrote
INTCONS 2,-2,Type=H
then the macro would generate:

H2 DC H'2!
HM2 DC H'-2!

The basic structure of this macro is in two parts: the first (through the second MEXIT state-
ment, following the MNOTE statement for null arguments) checks the values and validity of the

arguments, issuing various messages for cases that do not satisfy the constraints of the defi-
nition.

The second part (beginning at the sequence symbol .Args0K) uses the &SYSLIST system var-
iable symbol to step through each of the positional arguments in turn, by applying a sub-
script (&J) 1o indicate which positional argument is desired. The argument is checked for
being non-null, and then 1o see if its first character is a minus sign. If the minus sign is

present, it is removed for constructing the constant’s name; finally, the constant is generated
with the required name.
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MACRO

&Lab INTCONS &Type=F Default type is F
J* INTCONS -- assumes a varying number of positional arguments
W to be generated as integer constants, with created names.
* Type will be F (default) or H if specified.

LclA  &J Count of arguments

Lc1C  &Name Name of the constant

J* Validate the Type argument
AIF ('&Type' eq 'F' OR '&Type' eq 'H').TypOK Check Type
MNOTE 8,'INTCONS -- Invalid Type=''&Type''."’
MEXIT
* Generate the name-field symbol &lLab if provided
.TypOK AIF ('8Lab* eq '').NoLab Skip if no label
&Lab DC 0&Type.'06’ Define the label
J* Verify that arguments are present; no harm if none.
.NoLab AIF (N'&SysList gt 8).ArgsOK Check presence of args
MNOTE *,'INTCONS -- No arguments provided.'
MEXIT
X Argument -checking loop
.ArgsOK ANOP
&J SetA  &J+1 Increment argument counter
AIF (&J GT N'&SysList).End Exit if all done
AIF (K'&SysList(&J) gt 0).DoArg
MNOTE 4,'INTCONS -- Argument No. &J. is empty.’
AGO .Args0K Go for next argument
.DoArg ANOP
&Name SetC  '&Type.&SysList(&J)' Assume nonnegative arg
AIF ("&SysList(&J)'(1,1) ne '-').NotNeg Check arg sign
&Name  SetC  '&Type.M'.'&SyslList(&J)'(2,*) Negative argument, drop -
.NotNeg ANOP
&Name  DC RType.'&SysList(&J)'
AGO .Args0K Repeat for further arguments
.End MEND

Figure 36. Macro Parameter-Argument Association Example: Create a List of Constants

Some test cases for the INTCONS macro are shown in the following figure. The first two and
the last two test various unusual conditions, and the third and fourth display the statements
generated by the macro. (The '+' characters in the left margin are inserted by the assem-
bler to indicate generated statements).
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* Test cases -- first has no label, no args; second has no args.
INTCONS :
Cla INTCONS

Clb .INTCONS 06,-1 : Type F: names FO, FM1
+C1b DC oF'e! Define the label
+F0 DC Fro!
+FM1 DC Fr-1t

Clc INTCONS . 99,-99,Type=H Type H: names H99, HM99
+Clc DC oH'e!* Define the label

+H99 DC H'9g’
+HMO9 DC H'-99!

Cid INTCONS -600000060,2147483647
Cle INTCONS 1,2,3,4,Type=D Invalid type
INTCONS 1,2,3,4,,5,6,7,8,9,16E7 Null 5th argument

Figure 37. Macro Example: List-of-Constants Test Cases

As an interesting exercise: what would happen if you wished to add a test to verify that each
argument is a valid self-defining term? Are negative arguments valid? Would the argument
10E7 be valid? (It's acceptable as a nominal value in an F-type constant.) Another interesting
exercise is to modify the macro to handle leading plus (+) signs on the numeric values.
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Case Study 6: Using the AREAD Statement

1. Case Study 6a: Generate strings of message text
* Prefix string with “effective length” byte (length-1)
* Basic form: count characters
* Variation 1: create an extra symbol, use its length attribute

* Variation 2: use the AREAD statement and conditional-assembly functions to
support “readable” input

2. Case Study 6b: Block comments

* Write free-form text comments (without * in column 1)
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Case Study 6: Using the AREAD Statement

This case study shows two examples of the power of the AREAD statement. The first shows
- -how to simplify creating message texis prefixed by a length byte, and the second illustrates
a technique for entering “block comments” into your source program.

Case Study 6a: Create Length-Prefixed Message Texts

* Problem: want messages with prefixed “effective length” byte

(]

* How they might be used:

L Characters ——————————»

LL PFMSG 'Hello World® Define a sample message text

+hW DC AL1(18),C'Hello World' Length—prefixed message text
LA 2, Prepare to move message to buffer
IC 1,8(,2) Effective Jength of message text
EX 1,MsgMove Move message to output buffer

MsgMove MVC  Buffer(*-*),1(2) Executed to move message texts
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Part 3: Macro Techniques 121



Case Study 6a: Creating Length-Prefixed Message Texts

122

A common need in many applications is to produce messages. Often, the length of the
message must be reduced by 1 prior to executing a move instruction, so it is helpful to store
the message text and its “effective length” (i.e., its true length minus one), as shown:

A

v

-1 L Characters

Such a length-prefixed message text could be used in code sequences like the following.
The message is declared using a PFMSG macro, which generates the length byte followed
by the message text:

HW PFMSG ‘Hello World!' Define a sample message text
+HW DC AL1(10),C'Hello World' Length-prefixed message text

Then, this small “data structure” could be used in instructions like these to moVe the
message text to a buffer:

LA 2,Hu Prepare to move message to buffer

- - - Call message-buffering routine?

IC 1,0(,2) Effective length of message text
EX 1,MsgMove Move message to output buffer

MsgMove MVC  Buffer(*-*),1(2) Executed to move message texts

We will illustrate three macros to create message texis with an effective-length prefix, each
using progressively more powerful techniques.

Create Length-Prefixed Messages (1)

* PFMSG1: length-prefixed message texts

MACRO
&Lab PFMSGl &Txt
o PFMS61 — requires that the text of the message, &Txt,
R contain no embedded apostrophes (quotes) or ampersands.

LclA  &len Effective Length
&len SetA  K'&Txt-3 (# text chars)-3 (quotes, eff. length)
&ab  BC AL1(&Len),C&Txt

MEND

* Limited to messages with no quotes or ampersands

Mla PFMSG1 'This is a test of message text 1.°'
Mla [+ AL1(32),C’'This is a test of message text 1.°'

Mlb PFMSG1 'Hello’
#M1b BC AL1(4),C’Helle’
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Simplest Prefixed Message Text

In this first example, the text of the message may not contain any “special” characters,
namely apostrophes (quotes) or ampersands. A Count atiribute reference is used to deter-
mine the number of characters in the message argument.

MACRO
&Lab PFMSG1 &Txt
* PFMSG1 -- requires that the text of the message, &Txt,
* contain no embedded apostrophes (quotes) or ampersands.

LclA  &lLen Effective Length
&Len SetA  K'&Txt-3 (# text chars)-3 (quotes, eff. length)
alab  DC AL1(8Len),C&Txt

MEND

Mla PFMSG1 'This is a test of message text 1.°'
+Mla DC AL1(32),C'This is a test of message text 1.'

Mlb  PFMSG1 'Hello!
#Mlb  DC  AL1(4),C'Hello’

Figure 38. Macro to Define a Length-Prefixed Message

Create General Length-Prefixed Messages (2)

*»  PFMSG2: Allow all characters in text (may require pairing)

MACRD
&lab PFMSG2 &Txt
* PFMSG2 — the text of the message, &Txt, may contain embedded
B apostrophes (quotes) or ampersands, so long as they are paired.

&T SetC  'TXT&SYSNDX.M'  Create TXTnnnM symbol to name the text
&Lab bC ALI(L'&T.-1) Effective length
&T BC C&Txt
MEND
M2a PFMS62 'Test of '’This'’® && ''That'*.’
M2a BC ALI(L'TXT8881IM-1) Effective length
+TXT8861M DC C'Test of ''This'' && '"That''.*
M2b PFMS62 'Hells, World’'
+M2b bc ALI(L'TXTE882M-1) Effective length

+TXTB868682M DC C'Hells, World'

* Quotes/ampersands in message are harder to write, read, translate
* Extra (uninteresting) labels are generated
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More General Prefixed Message Text

The requirement that no ampersands or quotes may be used in the message text defined by
PFMSG1 may not be acceptable in some situations. Thus, in Figure 39 on page 124 we will
define a second macro PFMSG2 that allows such characters in the message, but requires
that they be properly paired in the argument string. It also generates an ordinary symbol so
that a length attribute reference may be used.
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MACRO
&Lab PFMSG2 &Txt
* PFMSG2 -- the text of the message, &Txt, may contain embedded

X apostrophes (quotes) or ampersands, so long as they are

x properly paired. The macro expansion generates a symbol

¥ using the &SYSNDX system variable symbol, and uses a Length

J* attribute reference for the effective length.

&T SetC  'TXT&SYSNDX.M' Create symbol to name the text string
&Lab DC ALI1(L'&T.-1) Effective length

&T DC C&Txt

MEND

Figure 39. Macro to Define a Length-Prefixed Message With Paired Characters

Some sample calls to the PFMSG2 macro are shown in the following figure:

M2a PFMSG2 'Test of ''This'' && ''That''.!
+M2a DC  ALI(L'TXTO001M-1)

+TXTO00IM DC  C'Test of ''This'' && ''That’'.’
M2b PFMSG2 'Hello, World'

+M2b DC  AL1(L'TXT0062M-1)

+TXT06062M DC C'Hello, Worild'®

The generated symbol is of the form TXTnnnnM, where the characters nnnn are the value of the
system variable symbol &SYSNDX. The assembler increments &SYSNDX by one each time a
macro expansion begins, and its value is constant within that macro. (Inner macro calls
have their own, different value of &SYSNDX.) Thus, &SYSNDX can be used to generate
unique symbols (or other values) for every macro expansion.

While the PFMSG2 macro defined in this example allows any characters in the message text,
it is much more difficult 1o read and understand the macro argument. (Consider, for
example, how to explain the odd rules about pairing quotes and ampersands to someone
who wants 1o translate the message text into a different language!) Also, the generated
TXTnnnnM symbols are used only for a length attribute reference, and are otherwise uninter-
esting.

This limitation can be removed by using an elegant and powerful feature of the macro lan-
guage, the AREAD statement.
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Readable Length-Prefixed Messages (3): Pseudo-Code

* User writes “plain text” messages (single line, < 72 characters)

* PFMSG3: AREAD statement within the macro “reads” the next source
record (following the macro call) into a character variable symbol

* Pseudo-code:

IF (any positional arg s) ERROR EXIT with message

AREAD a message from the following source record
Trim off sequence field (73-88) and trailing blanks

Create paired quotes and ampersands (for nominal value in DC)

GEN (label DC AL1(Text_Length-1),C’MessageText’)

HLASM Macro Tutorial © Copyright IBM Corporation 1983, 2002. All rights reserved. Tech-25

Create Readable Length-Prefixed Messages

* Allow all characters in message text without pairing, using AREAD

MACRO
&lab PFMSG3  &Null Comments 0K after comma
. PFMSG3 — the text of the message may contain any characters.
x The message is on a single line following the call to PFMSG3.
LclA  &L,8N Local arithmetic variables
LcIC  &T,&C,3M Local character variables
AIF ("&Null1* eq '').0K Null argument 8K
AIF (N’&SYSLIST EQ 8).0K No arguments allowed
MNote 8,°'PFMSG3 — ne operands should be provided.'®

MEXIT Terminate macro precessing
.0K ANOP
&N SetA 1 Initialize char—scan pointer to 1
.* Read the record following the PFMSG3 call ints &M
&M ARead , Read the message text
&M SetC  'aM'(1,72) Trim off sequence field
&L SetA 72 Point to end of initial text string

.* Trim off trailing blanks from message text
.Trim  AIF ('aM'(aL,1) NE * ').C Check last character

&L SetA &l-1 Deduct blanks from length
AGD Trim Repeat trimming loop
o - — = (continued)
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Create Readable Length-Prefixed Messages ...

N - = = (continuation)
.C ANBP
&T SetC  (DOUBLE '3M'(1,&L)) Pair—up quotes, ampersands
&L SetA &L-1 Set to effective length
&lLab BC AL1(&L),C'aT’
MEnd

* Messages are written as they are expected to appear!
* Easier to read and translate to other national languages

Mia PF¥SG3 Test with mixed apostrophes/ampersands
~Test of 'This® & 'That’.
+Mda BC AL1(27),C'Test of *'This'' 8& ''That''.®

Mac PFMSG3

~This is the text of a Jong message & says nothin’ very much.

+Mac DC AL1{63),C'This is the text of a long message && saysX
+ nothin'® very much.’

+ '3+ prefix in listing for generated statements, '-' for AREAD records
* Exercise: generalize to multi-line messages, of any length!

HLASM Macro Tutorial  © Copyright IBM Corporation 1993, 2002. Al rights reserved. Tech-27

Prefixed Message Text with the AREAD Statement

The AREAD statement can be used in a macro to read lines from the program into a char-
acter variable symbol in the macro. If we write

&CVar AREAD

then the first statement in the main program following the macro containing the AREAD
statement (or the macro call that eventually resulted in interpreting the AREAD statement)
will be “read” by the assembler, and the contents of that record will be assigned to the vari-
able symbol &Cvar.

We will exploit this capability in the PFMSG3 macro, which reads the text of a message
written in its desired final form from the line following the macro call. The operation of the
PFMSG3 macro is summarized in the following pseudo-code:

IF (any positional arguments) ERROR EXIT with message

AREAD a message from following record

Trim off sequence field (73-80) and trailing blanks

Create paired quoted and ampersands (for nominal value in DC)
GEN (iabel DC AL1(Text_Length-1),C'MessageText')

The macro illustrated in Figure 40 on page 127 scans the text of the string, creating pairs of
quotes and ampersands wherever needed; thus, the writer of the message need not be
aware of the peculiar rules of the Assembler Language.

A note on style: to aliow users of the PFMSG3 macro to add comments to the macro-cali
line, the &Null parameter is provided on the prototype statement. If the corresponding argu-
ment is null (that is, any comments are preceded by a comma), the rest of the statement —
the comments — are ignored.
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MACRO
&Lab PFMSG3  &Null Comments OK after comma

AIF ("&Nul1' eq '').0K Null argument OK

.* Trim off trailing blanks from message text

J* PFMSG3 -- the text of the message may contain any characters.

* The message is on a single line following the call to PFMSG3.
LclA  &L,8&N Local arithmetic variables
Lc1C  &T,&C,&M Local character variables

AIF (N*&SYSLIST EQ 6).0K No arguments allowed
MNote 8,'PFMSG3 -- no operands should be provided.'

MEXIT Terminate macro processing
.0K ANOP
&N SetA 1 Initialize char-scan pointer to 1
.* Read the record following the PFMSG3 call into &M
&M ARead , Read the message text
&M SetC  '&M'(1,72) Trim off sequence field
&L SetA 72 Point to end of initial text string

.Trim  AIF ('&M'(&L,1) NE ' ').C Check last character

&L SetA  &L-1 Deduct blanks from length
AGO Trim Repeat trimming loop
.C ANOP
&T SetC  (DOUBLE '&M'(1,&L)) Pair-up quotes, ampersands
&L SetA  &L-1 Set to effective length
&Lab DC AL1(&L),C'&T'
MEnd

Figure 40. Macro to Define a Length-Prefixed Message With “True Text”

Some test cases for the PFMSG3 macro are shown in the following figure.

-Test of 'This' & 'That'.
+Mda DC AL1(27),C'Test of ''This'' && ''That''.’

Mac PFMSG3

+ nothin'' very much.'

M4a PFMSG3 Test with mixed apostrophes/ampersands

-This is the text of a long message & says nothin' very much.
+M4c DC AL1(63),C'This is the text of a long message && saysX

Figure 41. Test Cases for Macro With “True Text” Messages

The '+' characters in the left margin denote statements generated by the assembler; the '-!
characters denote records read from the source stream by AREAD instructions.

An instructive exercise can be found in generalizing the above macro to accept multi-line
messages, first with total length less than 255 characters, and then with no limitations on

total length.

Note also that the loop that removes trailing blanks from the string accepted by the AREAD

statement could be replaced by a call to an external conditional-assembly function TRIM;

again, writing such a character-valued function is a useful exercise.

Part 3: Macro Techniques

127



Case Study 6b: Block Comments

* Sometimes want to write “free-form” comments in a program:

This is some text
for a block of
free—form comments.

* Must tell HLASM where the comments begin and end:

COMMENT

This is some text

for a block of
free—form comments.

TNEMMOC

* Restriction: block-end statement (TNEMMOC) can’t appear in the text
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Case Study 6b: Block Comments

Occasionally it is helpful to be able to insert “blocks” of comments into a program, but
without having to put an asterisk in the first position of each line. For example, you might
want to write something like

This is some text
for a block of
comments.

Naturally, we will need some way to tell the assembler that the comment “lines” are not to
be scanned as normal input statements. Thus, we need something that indicates the start
(and end) of a “block comment”.

Suppose we create a macro named COMMENT that indicates the start of a block comment, and
that the end of the block is indicated by a TNEMMOC (“COMMENT” spelled backward) statement.
You could of course choose any terminator you like, such as ENDCOMMENT.

In the above example, the lines would be entered as follows:

Comment
This is some text
for a block of
comments.
Tnemmoc

(You might even be able to embed program documentation in your source code!)
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! Block Comments Macro

* COMMENT macro initiates block comments:

Macro
&L Comment &Arg
Leic &C

ALf ('L’ eg '’ and '8Arg’' eq '').Read
MNete *,'Comment macre: Label and/er argument ignored.’

- Read ANop
&C ARead
&C SetC (Upper ‘&C') Force upper case
A SetA (*8&C'(1,72) Index ' TNEMMOC ') Note blanks!
ALf (8A eq 8).Read
MEnd

+ Can even include “SCRIPT-able” text (with .xx command words) IF the
command words aren’t used elsewhere as sequence symbols!
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A simple macro using the AREAD statement can do the job:

Macro
&L Comment &Arg
LclC &C

AIf ("8L" eq '' and '&Arg' eq '').Read
MNote  *,'Comment macro: Label and/or argument ignored.'’

.Read ANop
&C ARead ,
&C SetC (Upper '&C') Force upper case
&A SetA  ('&C'(1,72) Index ' TNEMMOC ')  Note blanks!
AIf (%A eq 0).Read
MEnd

Figure 42. Macro for Block Comments

The macro first checks for the presence of a label or operand on the COMMENT statement, and
if either is present, it emits an MNOTE comment saying they were ignored. The macro then
reads each line of the comment block (using the AREAD statement) until a line containing
the end-of-comment marker (in any mixture of upper and lower case, with preceding and
following blanks and without quotes) is encouniered. The UPPER function converts each line
of the block comment text to upper case 1o simplify checking for the presence of the TNEMMOC
terminator. :

The only restriction on this technique is that the end-of-block terminator cannot appear in the
text of the comments with blanks on either side. A test case with the comment terminator
embedded in the text is:

Comment
Note that the block-comment terminator can't appear in the
comments! That's because the embedded terminator string on
this line causes an error when TNEMMOC is encountered:
Tnemmoc

The presence of the string ' TNEMMOC ' in an input line causes the macro to terminate its
AREAD loop too early, leaving one or more statements to be scanned by the assembler as
normal input:
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27 Comment
28-Note that the block-comment terminator can't appear in the
29-comments! That's because the embedded terminator string on
30-this line causes an error when TNEMMOC is encountered:
31 Tnemmoc

** ASMAB57E Undefined operation code - TNEMMOC

Suppose you want to use the terminating strihg TNEMMOC in a record, as in this example. As
an exercise, you can modify the COMMENT macro to remove leading and trailing blanks before
checking that the terminator record contains only the string ' TNEMMOC'.

Note also that you can keep your code and its documentation in one file, by embedding the
SCRIPT-able documentation as block comments. This will require some care, however, 1o
avoid possible confusion between SCRIPT command words (like .SP) and sequence symbols
of the same name.

Case Study 7: Macro Recursion

* Macro recursion illustrated with:

1. “Indirect addressing”

2. Integer factorial values: N! = N * (N-1)

3. Integer Fibonacci numbers: F(N) = F(N-1) + F(N-2)
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Case Study 7: Macro Recursion

Macros that call themselves either directly or indirectly are recursive. Three examples are
given:

* a “Load Indirect” macro LI
* a “Factorial” macro FACTORAL
* a FIBONACI macro to calculate Fibonacci numbers.

We will first illustrate a recursive call with a simple “Load Indirect” macro, which introduces
a simple form of indirect addressing.
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Indirect Addressing via Recursion

* “Load Indirect” macro for multiple-level “pointer following” -

* Syntax: each operand prefix asterisk specifies a level of indirection

LI 3,8(4) Load from 8(4)

LI 3,*8(,4) Load from what 8(,4) points to
LI 3,*8(,7) Two levels of indirection

LI 3, xx*X Three levels of indirection

* LI macro calls itself for each level of indirection

Macro
&lLab LI &Reg, &X Load &Reg with indirection
Aif  ('3X'(1,1) eq **').Ind Branch if indirect
&Lab L &Reg, &X

MExit Exit from bottom level of recursion
.Ind ANop
8XI SetC ‘8&X'(2,*) Strip off Jeading asterisk
LI &Reg, 8XI Call myself recursively
L &Reg, B(, &Reg)
MEnd
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Indirect Addressing via Recursion ...

= Examples of code generated by calls to LI macro:

LI 3,8(4) Load from 8(3)
+ L 3,8(4)
LI 3,*8(,4) Load from what 6(,4) points to
+ L 3,8(,4)
+ L 3,8(,3)
LI 3,**8(,7) Two levels of indirection
+ L 3,8(,7)
+ L 3,8(,3)
+ L 3,8(,3)
LI 3, %xx) Three levels of indirection
+ L 3,X
* L 3,8(,3)
+ L 3,8(,3)
+ L 3,8(,3)
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Recursion Example 1: Indirect Addressing

In Figure 43 on page 132, the LI macro implements a form of “indirect” addressing: if the
storage operand is preceded by an asterisk, the assembler interprets this as meaning that
the operand to be loaded into the register is not at the operand, but is at the address speci-
fied by the operand without the asterisk.™ Thus, if an instruction was written as

LI 8,*XXX Indirect reference via XXX

" ndirect addressing was a popular hardware feature in many second-generation computers, such as the IBM
708-7090-7094 series. The hardware supported only a single level of indirect addressing, and the instruction
syntax was slightly different on those machines: a single asterisk could be appended to the mnemonic (as in
TRA*), and the statement’s operand field was not modified.
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then the item to be loaded into R8 is not at XXX, but is at the position “pointed t0” by XXX.
Thus, the asterisk can be thought of as a “de-referencing” operator.

Note that RO cannot be used for &Reg if any levels of indirection are indicated.

This definition is recursive, in the sense that the “operand” preceded by an asterisk may
itself be preceded by an asterisk, which thus provides multiple levels of indirection. A macro
to implement this form of indirect addressing is shown in Figure 43.

Macro
&Lab LI &Reg, &X Load &Reg with indirection
Aif  ('8&X'(1,1) eq '*').Ind Branch if indirect
&lLab L &Reg, &X

MExit Exit from bottom level of recursion
.Ind ANop
&XI SetC '&X'(2,K'&X-1) Strip off leading asterisk

LI &Reg, &XI Call myself recursively

L &Reg,6(,&Reg)

MEnd

Figure 43. Recursive Macro to Implement Indirect Addressing

Some examples of calls to the LI macro are shown in Figure 44, where the “+ " characters
at the left margin are the assembler’s indication of a macro-generated statement.

LI 3,08(9) Load from 0(4)
+ L 3,0(4)
LI 3,*6(,4) Load from what 6(,4) points to
+ L 3,0(,4)
+ L 3,0(,3)
LI 3,**0(,7) Two levels of indirection
+ L 3,6(,7)
+ "L 3,0(,3)
+ L 3,6(,3)
LI 3,%**X Three levels of indirection
+ L 3,X ‘
+ L 3,6(,3)
+ L 3,6(,3)
+ L 3,6(,3)

Figure 44. Recursive Macro to Implement Indirect Addressing: Examples
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Generate Factorial Values Recursively

Macro

&lab  FACTORAL &N

.* Factorials defined by Fac(N) = N * Fac(N-1), Fac(8) = Fac(l) = 1
GBLA &Ret Fer returning values of inner calls
AIF (T°&N NE °N').Error N must be numeric

&L SetA &N Convert from external form

* MNote 8, ’Evaluating FACTORAL(&L.)' For debugging
AIF (&L LT 8).Error Can't handle N < 8
AIF (&L GE 2).Calc Calculate via recursion if N > 1

&Ret  SetA 1 F(B) = F(1) =1
AGD .Test Return to caller

.Calc ANDP

8K SetA &l-1
FACTORAL &K Recursive call

&Ret  SethA &Ret*&L

.Test AIF (&SysNest 6T 1).Cont

W MNote 8, *Factorial(&L.) = &Ret.' Display result

&lab DC F'&Ret’

.Cont MExit Return to caller

.Error MNote 11, 'Invalid Factorial argument 8N..°'
MEnd
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Recursion Example 2: Factorial Function Values

Probably the best-known recursive function is the Factorial function. it can be defined and
implemented iteratively (and more simply), but its familiarity makes it useful as an example.

in the macro in Figure 45 on page 134, the macro FACTORAL uses the global arithmetic var-
iable symbol &Ret to return calculated values.

There are many ways to test for the end of a recursive calculation. In this example, the
&SYSNEST variable symbol is used to check the “nesting” level at which the macro was
called. The assembler increments &SYSNEST by one each time a macro expansion begins,
and decreases it by one each time a macro expansion terminates. Thus, for nested macro
calls, &SYSNEST indicates the current nesting level or “depth” of the call. Macros called
from open code are always at level 1.

Part 3: Macro Techniques 133



Macro
&Lab  FACTORAL &N
.* Factorials defined by Fac(N) = N * Fac(N-1), Fac(8) = Fac(1) = 1
GBLA &Ret For returning values of inner calls
LCLA &Temp, &K, &L Local variables
AIF (T*&N NE 'N').Error N must be numeric
&L SetA &N Convert from external form
¥ MNote 0, 'Evaluating FACTORAL(&L.)' For debugging
AIF (&L LT ©).Error Can't handle N < ©
AIF (&L GE 2).Calc Calculate via recursion if N > 1
&Ret  SetA 1 F(e) = F(1) =1
AGO .Test Return to caller
.Calc ANOP
&K SetA &L-1
FACTORAL &K Recursive call
&Ret  SetA - &Ret*&L
.Test AIF (&SysNest GT 1).Cont
¥ MNote 0,'Factorial (&L.) = &Ret.' Display result
&lab DC F'&Ret’
.Cont MExit Return to caller
.Error MNote 11,'Invalid Factorial argument &N..'
MEnd

Figure 45. Macro to Calculate Factorials Recursively

Some test cases for the FACTORAL macro are shown in the following figure:

FACTORAL ©
+ DC Fr1t
FACTORAL 1
+ DC Fr1t
FACTORAL B'11' Valid self-defining term
+ DC F'e!
FACTORAL X'4! Also valid
+ DC Fr24®
FACTORAL 16
+ DC F'36288600°*

Figure 46. Macro to Calculate Factorials Recursively: Examples

As noted previously, the generated statements are tagged with a '+' character in the left
margin.

We leave to the reader the modifications needed to allow FACTORAL to be called from other
macros.
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l Generate Fibonacci Numbers: Pseudo-Code

IF (arg

* Defined by F(0) = F(1) = 1, F(n) = F(n-1) + F(n-2)
* Use a global arithmetic variable &Ret for returned values

- Macros have no other way to return “function” values

* Pseudo-code:

N < 8) ERROR EXIT with message

IF (N < 2) Set &Ret = 1 and EXIT

CALL myself recursively with érgument N1
Save evaluation in local temporary &Temp

CALL myself recursively with argument N-2
Set &Ret = &Ret + &Temp, and EXIT
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Generate Fibonacci Numbers Recursively
Macro
&Lab  FIBONACI &N
.* Fibonacci numbers defined by F(N) = F(N-1)+F(N-2), F(8) = F(1) = 8
GBLA &Ret For returning values of inner calls
MNote 8, 'Evaluating FIBONACI(&N.), Level &SysNest.'
AIF (&N LT 8).Error Negative values not allowed
AIF (&8N GE 2).Calc If &8N > 1, use recursion
&Ret  SETA 1 Return F(8) or F(1)
AGD .Test Return te caller
.Calc ANOP Do computation
8K SetA N1 First value 'K' = N-1
&L Seth &N-2 Second value 'L’ = N-2
FIBONACI 8K Evaluate F(K) = F(N-1) (Recursive call)
&Temp SetA &Ret Hold computed value
FIBONACI &L Evaluate F(L) = F(N-2) (Recursive call)
8&Ret  SetA SRet+&Temp Evaluate F(N) = F(K) + F(L)
.Test AIF (&SysNest 6T 1).Cont
MNote 8, 'Fibonacci(&N.) = &Ret..' Display result
&Lab DBC F'&Ret*
.Cont MExit Return to caller
.Error MNote 11, *Invalid Fibonacci argument &N..°
MEnd
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Recursion Example 3: Fibonacci Numbers

The Fibonacci numbers are defined by the recursion relations

F(N) =

F(N—1) + F(N=2)

with F(0) = 1 and F(1) =1

Calculating them recursively is quite inefficient (though educational!) because many values
are calculated more than once. The global arithmetic variable symbol &Ret is used 1o return
values calculated at lower levels of the recursion.

A pseudo-code description of the macro’s operation is as follows:
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IF (argument N < ©) ERROR EXIT with message
IF (N < 2) Set &Ret = 1 and EXIT

CALL myself recursively with argument N-1
Save evaluation in local temporary &Temp
CALL myself recursively with argument N-2
Set &Ret = &Ret + &Temp, and EXIT

The FIBONACI macro is illustrated in Figure 47. The global variable &Ret is used to return
the value of a call to FIBONACI, because macros do not have any other method to return
function values. The local variable &Temp is used to hold the value returned by the first recur-
sive call, so that the second can be made without destroying the value returned by the first.

Macro
&Lab  FIBONACI &N
GBLA &Ret For returning values of inner calls
LCLA &Temp,&K,&L Local variables
MNote 0, 'Evaluating FIBONACI(&N.), Level &SysNest.'
ATF (&N LT 8).Error Negative values not allowed
AIF (&N GE 2).Calc If &N > 1, use recursion
&Ret  SETA 1 Return F(0) or F(1)
AGO .Test Return to caller
.Calc ANOP Do computation
&K SetA &N-1 First value 'K' = N-1
&L SetA &N-2 Second value 'L' = N-2
FIBONACI &K Evaluate F(K) = F(N-1) (Recursive call)
&Temp SetA &Ret Hold computed value
FIBONACI &L Evaluate F(L) = F(N-2) (Recursive call)
&Ret  SetA &Ret+&Temp Evaluate F(N) = F(K) + F(L)
.Test AIF (8SysNest GT 1).Cont
MNote 0,'Fibonacci(&N.) = &Ret..' Display result
&lab DC F'&Ret’
.Cont MExit Return to caller
.Error MNote 11,'Invalid Fibonacci argument &N..'
MEnd
*
FIBONACI 4
FIBONACI 5

Figure 47. Macro to Calculate Fibonacci Numbers Recursively
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[ Case Study 8: Macros for Bit-Handling Operations

» Discuss safe bit-manipulation techniques
* Use bit-manipulation operations to create a “mini-language”
* Basic forms: create macros to
- Allocate storage to named bits
~ Set bits on and off, and invert their values
- Test bit values and branch if on or off
» Enhanced forms: create macros to
- Ensure bit names were properly declared

— Generate highly optimized code for bit manipulation and testing
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Bit-Defining and Bit-Handling Macros

* Two levels of implementation:
1. One-pass, “memory-less”, “trusting” macros that make no attempts to
- verify that names identify bit flags
— validate type declarations
~ retain information across macro calls
— optimize storage utilization or generated instructions

2. Two-pass “cautious” macros utilize retained information to provide
encapsulation and abstract data typing:

— Bit names must be declared to have "bit” type before use
— Storage utilization minimized, generated instructions optimized

- "Symbol table” retains information across macro calls
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Case Study 8: Defining Macros for Bit-Handling Operations

We will now examine some macros that show how you can “build” a language to suit your
needs. Our examples will be based on a typical Assembler Language requirement to manip-
ulate bit values, and we will iliustrate two levels of possible implementation:

1. The first set of macros (Case Study 8a) will illustrate simple techniques for declaring bit
names, assigning them to storage, performing operations on them, and testing bit values
and making conditional branches.

2. The second set (Case Study 8b) will do the same functions, but will in addition validate
the declared names when they are used elsewhere, and generate optimized code for
storage allocation, bit operations, and bit testing.

One purpose of these examples is 1o show how macros can be made as simple or as
complex as are needed for a specific application: if bit operations need not be efficient, the
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simple macros can be used; if storage requirements and/or execution time must be mini-
mized, the second set of macros can be used.

Basic Bit Definition and Manipulation Techniques

» Frequently need to set, test, manipulate “bit flags”:

Flagl Bs X Pefine 1st byte of bit flags
BitA Equ X'81’ Befine a bit flag
Flag2 DS X Define 2nd byte of bit flags
BitB Equ X'18' Define a bit flag

» Serious defect: no correlation between bit name and byte name!
oI  Flagl,BitB Set Bit B ON 7?7
NI Flag2,255-BitA  Set Bit A OFF ?7

* Want a simpler technique: use a length attribute reference; then use
just one name for all references

- Advantage: less chance to misuse bit names and byte names!
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Basic Bit Handling Techniques

Applications frequently require status flags with binary values: ON or OFF, YES or NO,
STARTED or NOT_STARTED, and the like. On a binary machine, such flags are represented
by individual bits. However, few machines provide individually addressable bits; the bits are
parts of larger data elements such as bytes or words. This means that special programming
is needed to “address” and manipulate bits by name.

It is a very common technique in Assembler Language programming to define bits using
statements like the following:

Flagl DS X Define 1st byte of bit flags
BitA Equ X'01! Define a bit flag
Flag2 DS X Define 2nd byte of bit flags
BitB Equ X'10' Define a bit flag

and then doing bit operations like
01 Flagl,BitA Set bit A ‘on'!

There is implicitly a problem: the names of the bytes holding the flag bits, and the names
given to the bits, are unrelated. This means that it is easy to make mistakes like the fol-
lowing:

01 Flagl,BitB Set Bit B ON 7?27
NI Flag2,255-BitA Set Bit A OFF ??

Because there is no strict association between the byte and the bit it “contains”, there is no
way for the assembler (and often, the programmer) to detect such misuses.
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Simple Bit-Defining Macro: Design Considerations

» Two similar ways to generate bit definitions
1. Allocate storage byte first, define bits following:

pc B'8’ Unnamed byte
Bit_ A Equ *-1,X'88' Bit_A defined as bit 8
2. Define bits first, allocate storage byte following:
Bit_B DS BXL(X'4B') Bit_B defined as bit 1
pc  x'e’ Unnamed byte

* Length Attribute used for named bits and unnamed bytes
T™ Bit_Name,L'Bit_Name Refer to byte and bit using bit name

BS X Unnamed byte

BitA Equ *-1,X'01’ Define BitA: Length Attribute = bit value
DS X Unnamed byte

BitB Egqu *-1,X"18’ Define BitB: Length Attribute = bit value
[} 4 BitB,L'BitB Set BitB ON (uses name 'BitB' only)

NI BitA,255-L'BitA Set BitA OFF (uses name 'BitA’ only)
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One solution to this “association” problem is to use length attribute references to designate
bit values. This allows us fo “name” a bit, as follows:

DS X Unnamed byte

BitA Equ *-1,X'01' Length Attribute = bit value
DS X Unnamed byte

BitB Equ *-1,X'10' Length Attribute = bit value

Another way 1o achieve the same result is 10 associate the length attribute with the storage
location:

BitA DS OXL(X'01') Length Attribute = bit value
DS X Unnamed byte

BitB DS OXL(X'10*) Length Attribute = bit value
DS X Unnamed byte

In each case, the bit name is the same as the name of the byte that contains it. Then, all bit
references are made only with the bit “names”:

01 BitA,L'BitA Set Bit A ‘'on'
™ BitB,L'BitB Test Bit B

and (if one is careful) the bits will never be associated with the wrong byte! There is, of
course, no guarantee that one might not write something like

0I BitA,L'BitB 272

but there is clearly something peculiar about the statement; and, a quick scan of the symbol
cross-reference will show that there are unpaired references to the symbols BitA and BitB in
this statement; correct references will occur in pairs.
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Simple Bit-Defining Macro: Pseudo-Code

» Generate a bit-name EQUate for each argument, allocate storage
e Syntax: SBitDef bitname[,bitname]...
* Examples:

SBitbef bl,b2,b3,b4,b5,b6,b7,b8  Eight bits in one byte -

sBitbef c,d,e,f,g,h,i,j,k,1,m,p,0,p,q,r,5,t,u,v Many bitstbytes

* Pseudo-code:
Set Lengths to bit—position weights (128,64,32,16,8,4,2,1)
DO for M = 1 to Number_of_Arguments

IF (Mod(M,8)=1) GEN ( DC B'B8' ) (Generate unnamed byte)
GEN (Arg(M) EQU *-1,Lengths(Mod(M-1,8)+1) )} (Define bit name)
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Simple Bit-Defining Macro: SBITDEF

Macro , Errer checking omitted
SBitDef , No declared parameters
&L(1) setA 128,64,32,16,8,4,2,1 Define bit position values
3NN SetA N’&SysList Number of bit names provided
M SetA 1 Name counter
— .NB Aif  (8M gt 2NN).Done Check if names exhausted
&C SetA 1 Start new byte at leftmost bit
pC B'0’ Allocate a bit-flag byte
.NewN ANop , Get a new bit name
8 SetC ‘'&SysList(sM)’ Get M-th name from argument Jist
&8 Equ  *-1,8L(3C) Define bit via length attribute
&M SetA &M+l Step to next name
Aif (&M gt 3NN).Done Exit if names exhausted
&C SetA &(+1 Count bits in a byte
Aif  (&C le 8).NewN Get new name if byte not full
Ago .NB Byte is filled, start a new byte
.Done MEnd
SBitDef bl,b2 Define bits bl, b2
+ DC B'B’ Allocate a bit-flag byte
+bl Equ *-1,128 Define bit via length attribute
+b2 Equ *-1,64 Define bit via length attribute
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Case Study 8a: Bit-Handling Macros -- Simple Forms

The simplest way to “encourage” correct'matching of bit names and byte names is 1o make
all bit references with macros. We will illustrate a simple set of macros to do this.

First, suppose we want to “define” bit names, and allocate storage for them. We will write a
macro that accepts a list of bit names, and defines bit values in successive bytes, eight bits
to a byte. A pseudo-code description of the macro’s operation is as follows:

Set Lengths to bit-position weights (128,64,32,16,8,4,2,1)

DO for M = 1 to Number_of_Arguments
IF (Mod(M,8)=1) GEN ( DC B'8') (Generate unnamed byte)
GEN (Arg(M) EQU *-1,Lengths(Mod(M-1,8)+1) ) (Define bit name)
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The SBitDef macro in Figure 48 on page 141 takes the names in the argument list and allo-
cates a single bit to each, eight bits to a byte. Each call to the SBitDef macro starts a new
byte. We use the &SYSLIST system variable symbol to access the arguments, and a Number
attribute reference, N'&SYSLIST, to determine the number of arguments.

&L(1)
&NN
&M

-NB
&C

.NewN
&B

&B
&M

&C

.Null
&M

.Done

No declared parameters

Define bit position values
Number of bit names provided
Name counter

Check for null argument list
Check if names exhausted

Start new byte at leftmost bit
Allocate a bit-flag byte

Get a new bit name

Get M-th name from argument list
Note null argument

Define bit via length attribute
Step to next name

Exit if names exhausted

Count bits in a byte

Get new name if not done

Byte is filled, start a new byte

4,'SBitDef: Missing name at arglist position &M’

Macro

SBitDef ,

SetA 128,64,32,16,8,4,2,1
SetA N'&Syslist

SetA 1

Aif  (&NN eq 0).Null
Aif (&M gt &NN).Done
SetA 1

DC B'o*

ANop ,

SetC '&SysList(&M)'
Aif  ('&B' eq '').Null
Equ  *-1,8L(&C)

SetA &M+l

Aif (&M gt &NN).Done
SetA &C+1

Aif (& e 8).NewN
Ago .NB

MNote

SetA &M+l

Aif (&M le &NN).NewN
MEnd

Step to next name
Go get new name if not done

Figure 48. Simple Bit-Handling Macros: Bit Definitions

Some examples of calls to the SBitDef macro are shown in the following figure:
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SBitDef bl,b2,b3,b4,b5,b6,b7,b8 Eight bits in one byte

+ DC B'O!’ Allocate a bit-flag byte
+bl Equ *-1,128 Define bit via length attribute
+b2 Equ *-1,64 Define bit via length attribute
+b3 Equ *-1,32 Define bit via length attribute
+bd Equ *-1,16 Define bit via length attribute
+b5 Equ *-1,8 Define bit via length attribute
+b6 Equ *-1,4 Define bit via length attribute
+b7 Equ *-1,2 Define bit via length attribute
+b8 Equ *-1,1 Define bit via length attribute
SBitDef c¢,d,e,f,g,h,i,j,k,1,m Many bits and bytes
+ DC B'o’ Allocate a bit-flag byte
+C Equ *-1,128 Define bit via length attribute
+d Equ *-1,64 Define bit via length attribute
+e Equ *-1,32 Define bit via length attribute
+f Equ *-1,16 Define bit via length attribute
+g Equ *-1,8 Define bit via length attribute
+h Equ *-1,4 Define bit via length attribute
+i Equ *-1,2 Define bit via length attribute
+j Equ *-1,1 Define bit via length attribute
+ DC B'o! Allocate a bit-flag byte
+K Equ *-1,128 Define bit via length attribute
+] Equ *-1,64 Define bit via length attribute
+m Equ *-1,32 Define bit via length attribute

Figure 49. Simple Bit-Handling Macros: Examples of Bit Definitions

This simple macro has several limitations:

* Bits cannot be “grouped” so that related bits are certain to reside in the same byte,
except by writing a statement with a new SBitDef macro call.

* This means that we cannot plan to use the machine’s bit-manipulation instructions (which
can handle up 10 8 bits simultaneously) without manually arranging the assignments of
bits and bytes.

e If a bit name is declared twice, it will cause HLASM 1o issue a diagnostic ASMAO43E
message for a previously defined symbol.

We will explore some techniques that can be used to overcome these limitations.
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Simple Bit-Manipulation Macros: Pseudo-Code

* Operations on “named” bits
» Setting bits on: one Ol instruction per named bit
IF (Label # null) GEN (Label DC BH'S’)

DO for M = 1 to Number_of_Arguments
GEN ( OI Arg(M),L'Arg(M) ) to set bits on

* Length Attribute reference specifies the bit
- As illustrated in the simple bit-defining macro
* Similar macros for setting bits off, or inverting bits

IF (Label # null) GEN (Label BC 8H'8")
GEN ( NI Arg(M),255-L’Arg(M) ) to set bits off

GEN ( XI Arg(M),L'Arg(M) ) to invert bits

* Warning: these simple macros are very trusting!
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Simple Bit-Manipulation Macros

Now, we will illustrate some simple macros that “utilize” the bit definitions just described.
(The macros are useful, but do very little checking; improvements will be discussed later, at
“Case Study 8b: Bit-Handling Macros — Advanced Forms” on page 150.)

Simple Bit-Handling Macros: Setting Bits ON

* Macro SBitOn to set one or more bits ON

* Syntax: SBitOn bitname[,bitname]...

Macre , Errer Checking omitted
&Lab SBitOn
NN SetA N'&SysList Number of Names
] SetA 1
Aif  (°&lab’ eq '').Next Skip if no name field
&lab BC 8H'e’ Define label
.Next ANop , Get a bit name
&8 SetC ‘&SysList(aM)’ Extract name (3M-th positional argument)
.Go 01 &B,L'&8 Set bit on
& SetA &M+l Step to next bit name
Aif  (8M le &NN).Next 6o get another name
MEnd
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Simple Bit-Handling Macros: Setting Bits ON ...

* Examples:

ARl SBitobn bl,b3,b8,cl,c2

+AA1 bC BN’e’ Define label
+ 01 bl,L’'bl Set bit on
+ 01 b3,L'b3 Set bit on
+ [} ¢ b8,L'b8 Set bit on
+ oI cl,L’'cl Set bit on
+ [} 4 c2,l'c2 Set bit on
SBitOn bl,b8
+ [1}4 bl,L’'bl Set bit on
+ [1}4 b8,L b8 Set bit on

» Observe: one Ol instruction per bit!

- We will consider optimizations later
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Simple Bit-Manipulation Macros: Setting Bits ON

Having created the SBitDef macro to define bit names, we can now write some macros to
manipulate them by setting them on and off, and by inverting (“flipping”) their state. First, we
will write a macro SBitOn that will set a bit to an "on” state (i.e., 1o 1).

A pseudo-code description of the SBitOn macro is as follows:

IF (Label # nul1) GEN (Label DC OH'')

DO for M =1 to Number_of_Arguments
GEN ( OI EQU Arg(M),L'Arg(M) )

The SBitOn macro is shown in Figure 50 on page 145.
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Macro
&Lab SBitOn

&NN SetA N'&SysList Number of Names

&M SetA 1
Aif  (&NN gt 0).0K Should not have empty name list
MNote 4,'SBitOn: No bit names?'
MExit

.0K ANop Names exist in the list
Aif  ('&Lab' eq '').Next Skip if no name field

&lab DC GH'O! Define label

.Next ANop , Get a bit name

&B SetC '&SysList(&M)' Extract name (8M'th positional arg)
Aif ('8’ ne '').Go Check for missing argument
MNote 4,'SBitOn: Missing argument at position &M'
Ago  .Step ‘ Go Took for more names

.Go 01 &B,L'8&B Set bit on

.Step ANop ,

&M SetA &M+1 Step to next bit name
Aif (&M le &NN).Next Go get another name
MEnd

Figure 50. Simple Bit-Handling Macros: Bit Setting

In the following figure, we illustrate some calls 1o this macro 1o perform various bit settings;

the generated statements are flagged with a “+ ” in the left margin:

AAl  SBitOm bl,b3,b8,cl,c2

+AAl DC OH'0D! Define label
+ 01 bl,L'bl Set bit on
+ 01 b3,L'b3 Set bit on
+ 01 b8,L'b8 Set bit on
+ 01 cl,L'cl Set bit on
+ 0I c2,L'c2 Set bit on

SBitOn b1,b8
+ 0I ~ bl,L'bl Set bit on
+ 01 b8,L'b8 Set bit on

Figure 51. Simple Bit-Handling Macros: Examples of Bit Setting

Each bit operation is performed by a separate instruction, even when two or more bits have

been allocated in the same byte. We will see in “Case Study 8b: Bit-Handling Macros --

Advanced Forms” on page 150 how we might remedy this defect.
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Simple Bit-Handling Macros: Set OFF and Invert Bits

* Macros SBit0ff and SBitInv are defined like SBitOn:
- SBitDff uses NI to set bits off

Bacro
&lab  SBitOff
x - - - etc., as for SBitdn
. 6o NI 88,255-L'&B Set bit off
R - = - etc.
MEnd

- SBitlnv uses Xl to invert bits

Macro
&Lab  SBitInv
* - -~ etc., as for SBitdn
.Go X 8B,L'&B Invert bit
o - - - etc.
MEnd
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Simple Bit-Handling Macros: Set OFF and Invert Bits ...

* Examples:
bbl  SBitoff b1,b3,bs,cl,c2

+bbl bC 6H'e’ Define label
+ NI b1,255-L'b1 Set bit off
+ NI b3,255-L°b3 Set bit off
+ NI b8,255-L'b8 Set bit off
+ NI c1,255-L'cl Set bit off
+ NI €2,255-L'c2 Set bit off

ccl SBitInv bl,b3,b8,cl,c2

+ccl BC en'e’ Define label
+ XI b1,L'bl Invert bit
+ X1 b3,L'b3 Invert bit
+ XI b8, L b8 Invert bit
+ XI cl,L'cl Invert bit
+ XI c2,L'c2 Invert bit

» Observe: one NI or Xl instruction per bit
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Simple Bit-Manipulation Macros: Inverting and Setting Bits OFF

The SBitOff macro is exactly like the SBitOn macro, except that the generated statement to
set the bit “off” (i.e., 10 0) is changed from Ol to NI, and the bit-testing mask field is inverted:

Macro
&lab SBitOff
¥ - - - etc., as for SBitOn
.Go NI &B,255-L'8&B Set bit off
L* - - - etc., as for SBitOn
MEnd

Figure 52. Simple Bit-Handling Macros: Bit Resetting
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Some macro calls that illustrate the operation of the SBitOff macro are shown in the fol-

lowing figure:

bbl
+bbl
+

+ 4+ + 4+

+
+

SBit0ff b1,b3,b8,cl,c2

DC 6H'O! Define label
NI b1,255-L'bl Set bit off
NI b3,255-L'b3 Set bit off
NI b8,255-1L'b8 ) Set bit off
NI c1,255-L'cl Set bit off
NI c2,255-L'c2 Set bit off
SBitOff bl,b8

NI b1,255-L'bl Set bit off
NI b8,255-L'b8 Set bit off

Figure 53. Simple Bit-Handling Macros: Examples of Bit Resetting

Similarly, the SBitinv macro inverts the designated bits, using Xl instructions:

&Lab
*

.Go

*
.

Macro

SBitInv

- - - etc., as for SBitOn

X1 B,L'&B Invert bit
- - - etc., as for SBitOn

MEnd

Figure 54. Simple Bit-Handling Macros: Bit Inversion

Some calls to SBitlnv illustrate its operation:

ccl

+tccl
+

+ + + +

+

SBitInv bl,b3,b8,cl,c2

DC OH'O! Define label
XI bl,L'bl Invert bit
XI b3,L'b3 Invert bit
XI b8,L'b8 Invert bit
XI cl,L’'cl Invert bit
X1 c2,L'c2 Invert bit
SBitInv bl,b8

XI bl,L'bl Invert bit
XI b8,L'b8 Invert bit

Figure 55. Simple Bit-Handling Macros: Examples of Bit Inversion
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Simple Bit-Handling Macros: Branch on Bit Values
Simple bit-testing macros: branch to target if bitname is on/off
* Syntax: SBBitxxx bitname,target
Macro
&lab SBBitOn &B,AT Bitname and branch label
&ab ™ &B,L'aB Test specified bit
BO &T Branch if ON
MEnd
Macreo
&ab SBBitoff &B,&T Bitname and branch label
&lab TH &8,L'88 Test specified bit
BNO &T Branch if OFF
MEnd
* Examples
ddl SBBiton bl,aal
+ddl ™ b1,L'bl Test specified bit
+ BO aal Branch if ON
SBBitOn b2,bbl
+ ™. b2,L'b2 Test specified bit
+ BO bbl Branch if ON
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Simple Bit-Testing Macros

148

To complete our set of simple bit-handling macros, suppose we need macros to test the
setting of a bit, and to branch to a designated label specified by &T if the bit named by &B is
on or off. We can write tiwo macros named SBBitOn and SBBIitOff o do this; each has two
arguments, a bit name and a label name.

The syntax of the two macros is the same:

SBBitxxx bitname,target

tests the bit named bitname, and if on or off (as specified by the name of the macro)
branches to the statement with label target.

&lab

.0K
&lLab

.Bad

Macro

SBBitOn &B,&T Bitname and branch label

Aif  (N'&SysList eq 2).0K Should have exactly 2 arguments
MNote 4,'SBBitOn: Incorrect argument list?’® '

MExit

Aif ('8B' eq '' or '&T' eq '').Bad

™ &B,L'&B Test specified bit

BO aT Branch if ON

MExit

MNote 8,'SBBitOn: Bit Name or Target Name missing’
MEnd

Figure 56. Simple Bit-Testing Macros: Branch if Bit is On

Some examples of calls to the SBBitOn macro are shown in the following figure:
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dd1 SBBitOn bl,aal
+dd1 ™ bl,L'bl

+ BO aal
SBBitOn b2,bbl

+ ™ b2,L'b2

+ BO bb1l

Test specified bit
Branch if ON

Test specified bit
Branch if ON

Figure 57. Simple Bit-Handling Macros: Examples of “Branch if Bit On”

A similar macro can be written to branch to a specified label if a bit is off:

Macro
&lab SBBitOff &B,&T
*

&Lab M &B,L'8&B
BNO  &T

MEnd

Bitname and branch label
- - - etc., as for SBBitOn macro

Test specified bit
Branch if OFF

x - - - etc., as for SBBitOn macro

Figure 58. Simple Bit-Handling Macros: Branch if Bit is Off

Calls to the SBBitOff macro might appear as follows:

eel SBBit0ff bl,ddl
+eel ™ bl,L'bl

+ BNO  ddl
SBBitOff b2,ddl

+ ™  b2,L'b2

+ BNO  ddl

Branch to ddl if bl is off
Test specified bit
Branch if OFF

Branch to ddl1 if b2 is off
Test specified bit
Branch if OFF

Figure 59. Simple Bit-Handling Macros: Examples of “Branch if Bit Off’

This completes our first, simple set of bit-handling macros. It is evident that a fairly helpful

set of capabilities can be written with a very small effort, and be put to immediate use.
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Bit-Handling Macros: Enhancements

* The previous macros work, and can be put to immediate use.
They will be enhanced in two ways:

1. Check to ensure that “bit names” really do name bits!
(We need “encapsulation” and “strong typing!”)

X 1o Fr23* Define a constant
Flag Equ  X'88' Define a flag bit (?) 'somewhere’
SBitOn Flag,X Set two bits ON ‘somewhere’ 27277

2. Handle bits within one byte with one instruction (code optimization!)

* More enhancements are possible (but not illustrated here):

—~ Pack all bits (storage optimization) (but may not gain much)

- "“Hide” declared bit names so they don’t appear as ordinary symbols
(make “strong typing” even stronger})

- Provide a “run-time symbol table” for debugging
— ADATA instruction can put info into SYSADATA file
— Create separate CSECT with names, locations, bit values

HLASM Macro Tutorial © Copyright IBM Corporation 1993, 2002. All rights reserved. Tech-48

Case Study 8b: Bit-Handling Macros -- Advanced Forms

There are two problems with the preceding “simple set” of bit-handling macros:

1. itis common to want to operate on more than one bit within a given byte at the same
time. For example, suppose two bits are defined within the same byte:

DS X
Bitd Equ *-1,X'48"
BitK Equ *-1,X'20"

We would prefer to set both bits “on” with a single Ol instruction. Two possibilities are
evident:

01 BitJ,L'BitJ+L'BitK
01 BitK,L'BitJ+L'BitK

While these generated instructions are correct, they do not completely satisfy our intent
to name only the bits we wish to manipulate, and not the bytes in which they are defined.
Thus, we need some degree of “optimization” in our bit-handling macros.

2. It's worth observing that these simple macros are very trusting (and therefore require
that you be very careful). There is no checking of the “bit names” presented as argu-
ments in the bit-manipulation macros to verify that they were indeed declared as bits in a
“bit definition” macro. For example, one might have written (through some oversight,
probably not as drastic as this!)

Flag Equ X'e8’ Define a flag bit

SBitOn  Flag Set 'something, somewhere' on 772

and the result would not have been what was expected or desired.

Similarly, if you had defined a variable X as the name of a fullword integer:
X DC  F'23!
then you could use X as a “bit name” with no warnings:

SBitbn X
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would generate the instruction
0I XL X
which is unlikely to give the result you intended!

Thus, we need some degree of “strong typing” and “type checking” in our bit-handling
macros.

Bit-Handling “Micro-Compiler”

* Goal: Create a “Micro-compiler” for bit operations
~ Micro: Limit scope of actions to specific data types and operations

~ Compiler: Perform typical syntax/semantic scans, generate code
— Each macro can check syntax of definitions and uses

— Build and use "Symbol Tables” of created global variable symbols

* “Bit Language” the same as for the simple bit-handling macros:
- Data type: named bits
— Operations: define: set on/off/invert; test-and-branch

» Can incrementally add to and improve each language element

~ As these enhancements will illustrate
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Bit-Handling “Micro Language” and “Micro-Compiler”

Solving these problems provides us with an opportunity to create a “micro-compiler” for
handling bit declarations and operations. Because we have limited our concerns to bit oper-
ations, the macros can be fairly simple, while illustrating some of the types of functions
needed in a typical compiler for a high-level language.

We will start with a BitDef macro that declares bit flags, and keeps track of which ones have
been declared. We will add an extra feature to help improve program efficiency: if a group of
bits should be kept in a single byte, so that they can be set and tested in combinations, then
their names may be specified as a parenthesized operand sublist. The macro will ensure
that (if at most eight are specified) they will fit in a single byte. Thus, in

BitDef a,b,c,(d,e,f,g,h,i),J,k

the bits named a,b,c will be allocated in one bylte, and bits d,e,f,g,h,i will be allocated in a
new byte because there is not enough room left for all of them in the byte containing a,b,c.
However, bits j,k will share the same byte as d,e,f,g,h,i because there are two bits
remaining for them.

One of the decisions influencing the design of these macros is that we wish to optimize exe-
cution performance more than we wish to minimize storage utilization; because bits are
small, wasting a few shouldn’t be a major concern. Each instruction saved represents many
bits! (Storage optimization is left as an exercise for the reader.)
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Bit-Handling Macros: Data Structures

< Bit declaration requires three simple “global” items:
1. A Byte_Number to count bytes in which bits are declared
2. A BitCount for the next unallocated bit in the current byte

3. An associatively addressed Symbol Table -
Each declared bit name creates a global arithmetic variabie:

= Its name &(BitDef_MyBit_ByteNo)} is constructed from
— a prefix BitDef_ (whatever you like, to avoid global-name collisions)
— the declared bit name MyBit {the "associative” feature)
— a suffix _ByteNo {(whatever you like, to avoid global-name collisions}

— Its value is the Byte_Number in which this bit was allocated

* Remember: the bytes themselves will be unnamed!
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The data structures (which may be thought of as our “micro-compiler’s” symbol table) used
for these macros include a Byte_Number 1o enumerate the bytes in which the named bits have
been allocated, a Bit_Count to count how many bits have been allocated in the current byte,
and a created global arithmetic variable symbol for each bit. The value of the created vari-
able symbol is the Byte_Number in which the named bit resides. (We will use the fact that a
declared arithmetic variable symbol is initialized 1o zero to detect undeclared bit names.)

The created variable symbol’s name is quite arbitrary, and need only contain the bit name
somewhere; we will construct the name from a prefix BitDef_, the bit name, and a suffix
_ByteNo. If such names collide with global names used by other macros, it is easy to change
the prefix or suffix.

General Bit-Defining Macro: Design

* Bits may be “packed”; sublisted names are kept in one byte
* Example: BitDef a,(b,c),d keeps b and c together
* High-level pseudo-code:

DO for all arguments
IF argument is not a sublist
THEN assign the named bit to a byte (start another if needed)
ELSE IF sublist has more than 8 items, ERROR STOP, can’t assign
ELSE if not enough room in current byte,. start another

Assign sublist bit names to a byte
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[ General Bit-Defining Macro: Pseudo-Code

Set Lengths = 128,64,32,16,8,4,2,1 (Bit values, indexed by Bit_Count)
DO for M = 1 to Number_of_Arguments
Set B = Arg_List(M)
IF (Substr(B,1,1) # '(') PERFORM SetBit(B) (not a sublist)
ELSE (Kandle sublist)

IF (N_SublList_Items > 8) ERROR Sublist too long

IF (littnuntﬂl Sublist_| Items > 8) PERFORM NewByte

D8 for €S =1 to N_Sub'l ist_Items (Handle sublist)
PERFORM SetBit(Arg_List(M,CS))

SetBit(B): (Save bit name and Byte Number in which the bit resides:)
IF (Mod(BitCount,B) = 8) PERFORM NewByte
Declare created global variable &(BitDef_&B. Byte Number)
Set created variable (Symbol Table entry) to Byte_Number
GEN (B EQU *-1,Lengths(BitCount) )
Set BitCount = BitCount+l (Step to next bit in this byte)

NewByte: GEN( DC B'8’ ); Increment Byte Number; BitCount = 1

* Created symbol contains bit name; its value is the byte number
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This bit-defining macro starts a new byte in storage for each macro call. It would be easy to
“pack” all bits (not just those in sublists) to improve storage utilization by providing a global

arithmetic variable to remember the current unallocated bit position across calls to the

BitDef macro.

In the SetBit(B): portion of the pseudo-code, we use created variable symbols as entries in

the “BitDef” symbol table. Each such entry is set to a nonzero value determined by the

Byte_Number in which the bit was allocated. (This “Byte_Number” is simply a count of the

number of bytes allocated to hold bits declared by the BitDef macro.)

General Bit-Handling Macros: Bit Definition

Macro , Some error checks omitted
BitDef
Gb1A &BitDef_ByteNo Used to count defined bytes

&L(1) SetA 128,64,32,16,8,4,2,1 Define bit position values

&NN SetA N'&SyslList Number of bit names provided

&M SetA 1 Name counter

-NB Aif (&M gt &NN).Done Check if names exhausted

&C SetA 1 Start new byte at leftmost bit
DC B'8’ Define a bit—flag byte

&BitDef_ByteNo SetA &BitDef_ByteNo+l Increment byte number

.NewN ANep , Get a new bit name

&8 SetC ‘&SysList(&M)’ Get M-th name from argument Jist
Aif  ('&B’(1,1) me *(').NoL Branch if not a sublist

8NS SetA N'&SysList(&M) Number of sublist elements

&CS SetA 1 Initialize count eof sublist items
A3f  (&C+8NS le 9).SubT skip if room Jeft in current byte

8C SetA 1 Start a new byte
bC B'O’ Define a bit-flag byte

Bltnef _ByteNo SetA BitDef_ByteNo+l Increment byte number

. --- (continued)
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General Bit-Handling Macros: Bit Definition ...

* --- (continuation) Name is in a sublist

.SubT  ANop , Generate sublist equates
8B SetC ‘’&SysList(8M,8&CS)’ Extract sublist element

GbJA &(BitDef_aB. ByteNo) Created var sym with ByteNo for this bit
&8 Equ *-1,8L(&C) Define bit via Jength attribute
&(BitDef_%B. ByteNo) SetA 8BitDef_ByteNe Byte no. for this bit
&Cs SetA &(5+1 Step to next sublist item

Adf  (&CS gt &NS).NewA Skip if end of sublist
&C SetA &C+l Count bits in a byte

Ago  .SubT And go do more list elements
.NolL ANop , Not a sublist

6bIA &(BitDef_2B. ByteNo) Declare byte number for this bit
&B Equ  *-1,3L(&C) Define bit via length attribute
&(BitDef_&B._ByteNo) SetA &BitDef ByteNo Byte no. for this bit
.NewA ANop , Ready for next argument
M SetA &+l Step to next name

Aif (&M gt &NN).Done Exit if names exhausted
&C SetA &C+1 Count bits in a byte

Aif  (&C le 8).NewN Get new name if not done

Ago .NB Bit filled, start a new byte
.Done  MEnd
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Declaring Bit Names

In the BitDef macro illustrated in Figure 61 on page 155, several techniques are used. The
global arithmetic variable &BitDef ByteNo is used to keep track of a “byte number” in which
the various bits are allocated; each time a new byte is allocated, this variable is incre-
mented by 1. The first SETA statement initializes the local arithmetic array variables &L(1)
through &L(8) to values corresponding to the binary weights of the bits in a byte, in left-to-
right order.

After each bit name has been extracted from the argument list, a global arithmetic variable
&(BitDef_&B. ByteMNo) is constructed (and declared) using the supplied bit name as the value
of &B, and is assigned the value of the byte nhumber to which that bit will be assigned. This
has two effects:

1. a unique global variable symbol is generated for every bit name;

2. the value of that symbol identifies the byte it “belongs 10” (remember that the bytes have
no names themselves; references in actual instructions will be made using bit names and
length attribute references).

An additional benefit of this technique is that later references to a bit can be checked
against this global variable: if its value is zero (meaning it was declared but not initialized)
we will know that the bit was not declared, and therefore not allocated to a byte in storage.

A pseudo-code description of the macro is as follows:
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Set Lengths = 128,64,32,16,8,4,2,1 (Bit values, indexed by Bit Count)
DO for M = 1 to Number_of_ Arguments
Set B = Arg_List(M)
IF (Substr(B,1,1) # '(') PERFORM SetBit(B) (not a sublist)
ELSE (Handle sublist)

]

IF (N_Sublist Items > 8) ERROR Sublist too long

IF (BitCount+N Sublist Items > 8) PERFORM NewByte

DO for CS = 1 to N_Sublist_Items (Handle sublist)
PERFORM SetBit(Arg List(M,CS))

SetBit(B): (Save bit name and Byte Number in which the bit resides:)
IF (Mod(BitCount,8) = 6) PERFORM NewByte
Declare created global variable &(BitDef_&B. Byte Number)
Set created variable (Symbol Table entry) to Byte Number
GEN (B EQU *-1,Lengths(BitCount) )
Set BitCount = BitCount+l (Step to next bit in this byte)

NewByte: GEN( DC B'0' ); Increment Byte Number; BitCount = 1

Figure 60. Bit-Handling Macros: Define Bit Names: Pseudo-Code

Another new feature introduced in this macro definition is the ability to handle sublists of bit

names that are to be allocated within the same byte. The pseudo-code doesn’t test for
missing or duplicate bit names, but the full macro definition, shown in the following figure,
does include them.

Macro
BitDef
Gb1A &BitDef ByteNo Used to count defined bytes
BL(1) SetA 128,64,32,16,8,4,2,1 Define bit position values
&NN SetA N'&SysList Number of bit names provided
&M SetA 1 Name counter
Aif  (&NN eq 6).Null Check for null argument list
.NB Aif (&M gt &NN).Done Check if names exhausted
&C SetA 1 Start new byte at leftmost bit
DC B'0O' Define a bit-flag byte
&BitDef_ByteNo SetA &BitDef ByteNo+1 Increment byte number
.NewN  ANop , Get a new bit name
&B SetC '&SysList(&M)' Get M-th name from argument list
Aif  (*&B' eq '').Null Note null argument
Aif  ('&B'(1,1) ne '(').NoL Branch if not a sublist
&NS SetA N'8SysList (&M) Number of sublist elements
Aif  (&NS gt 8).ErrS Error if more than 8
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&CS SetA 1 Initialize count of sublist items
Aif  (&C+&NS le 9).SubT  Skip if room left in current byte

&C SetA 1 Start a new byte

DC B'O! Define a bit-flag byte
&BitDef ByteNo SetA 8BitDef ByteNo+1 Increment byte number
.SubT  ANop , Generate sublist equates
B SetC '&SysList(&M,&CS)’ Extract sublist element

Aif  ("&B' eq '').Null Check for null item

Aif  (&(BitDef_&B. ByteNo) gt ©0).DupDef Branch if declared

&B Equ *-1,8&L(&C) Define bit via length attribute
&(BitDef_8&B. ByteNo) SetA &BitDef ByteNo Byte no. for this bit
&CS SetA &CS+1 Step to next sublist item

Aif  (&CS gt &NS).NewA Skip if end of sublist
&C SetA &C+1 ' Count bits in a byte

Ago  .SubT And go do more list elements
.NoL ANop , Not a sublist

Gb1A &(BitDef_8&B. ByteNo) Declare byte number for this bit
Aif.  (&(BitDef_&B. ByteNo) gt 0).DupDef Branch if declared

B Equ  *-1,8L(&C) Define bit via length attribute
&(BitDef_&B. ByteNo) SetA &BitDef ByteNo Byte no. for this bit
.NewA  ANop , Ready for next argument
&M SetA &M+1 Step to next name
Aif (&M gt &NN).Done Exit if names exhausted
&C SetA &C+1 Count bits in a byte
Aif (& le 8).NewN Get new name if not done
Ago .NB Bit filled, start a new byte
.DupDef MNote 8,'BitDef: Bit name ''&B'' was previously declared.'
MExit
.ErrS  MNote 8,'BitDef: Sublist Group has more than 8 members'
MExit
.Null  MNote 8,'BitDef: Missing name at argument &M'
.Done  MEnd

Gb1A &(BitDef_8&B. ByteNo) Created var sym with ByteNo for this bit

Figure 61 (Part 2 of 2). Bit-Handling Macros: Define Bit Names
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| Examples of Bit Definition

* Example: Define ten bit names (with macro-generated code)

+ BC B'e’ Define a bit-flag byte

+dl Equ *-1,128 Befine bit via Jength attribute
+d2 Equ *-1,64 Define bit via length attribute
+d3 Equ *-1,32 Define bit via length attribute
+ bC B'e’ Befine a bit-flag byte

+d4 Equ *-1,128 Define bit via Jength attribute
+d5 Equ *-1,64 Define bit via length attribute
+d6 Equ *-1,32 Define bit via length attribute
+d7 Equ  *-1,16 Define bit via length attribute
+d8 Equ *-1,8 Define bit via length attribute
+d9 Equ *>-1,4 Define bit via length attribute
+dl8 Equ *-1,2 Befine bit via length attribute

* Bits named d4-d9 are allocated in a single byte

— Causes some bits to remain unused in the first byte

a4 BitDef  dl1,d2,d3, (d4,d5,d6,d7,ds,d9),d18 d4 starts new byte
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Some examples of calls to this BitDef macro are shown in the following figure; the gener-

ated instructions are displayed (with “+” characters in the left margin) for two of the calls:

ad BitDef d1,d2,d3,(d4,d5,d6,d7,d8,d9),d10  d4 starts new byte

+ DC B'0! Define a bit-flag byte
+d1 Equ *-1,128 Define bit via length attribute
+d2 Equ *-1,64 Define bit via length attribute
+d3 Equ *-1,32 Define bit via length attribute
+ DC B'O!' Define a bit-flag byte
+d4 Equ *-1,128 Define bit via length attribute
+d5 Equ *-1,64 Define bit via length attribute
+db Equ *-1,32 Define bit via length attribute
+d7 Equ *-1,16 Define bit via length attribute
+d8 Equ *-1,8 Define bit via length attribute
+d9 Equ *-1,4 Define bit via length attribute
+d16 Equ *-1,2 Define bit via length attribute
a5 BitDef el,e2,e3,ed,e5,e6,e7,(e8,e9) e8 starts new byte
ab BitDef g¢1,(92,93,94,95,96,97,98,99) g2 starts new byte

a7 BitDef  (h2,h3,h4,h5,h6,h7,h8,h9,h16),h11 error, 9 in a byte
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ag BitDef  (k1,k2,k3,k4),(k5,k6,k7,k8),k9,k10 two sublists
+ DC B'0’ Define a bit-flag byte
+k1 Equ *-1,128 Define bit via length attribute
+k2 Equ *-1,64 Define bit via length attribute
+k3 Equ *-1,32 Define bit via length attribute
+k4 Equ *-1,16 Define bit via length attribute
+k5 Equ *-1,8 Define bit via length attribute
+k6 Equ *-1,4 Define bit via length attribute
+k7 Equ *-1,2 Define bit via length attribute
+k8 Equ *-1,1 Define bit via length attribute
+ DC B'o! Define a bit-flag byte
+k9 Equ  *-1,128 Define bit via length attribute
+k10 Equ *-1,64 Define bit via length attribute
alé BitDef 11,(12,13,14),(15,16,17,18),19,116 two sublists
all BitDef ml,(m2,m3,m4),(m5,m6,m7,m8,m9),m16 two sublists

Figure 62 (Part 2 of 2). Bit-Handling Macros: Examples of Defining Bit Names

We will now see how we can utilize the information created by this BitDef macro to gen-
erate efficient instruction sequences to manipulate them.

General Bit-Setting Macro: Data Structures

Two “phases” used to generate bit-operation instructions:

1. Check that bit names are declared (the “strong typing”), and
collect information about bits to be set:

a. Number of distinct Byte_Numbers (what bytes “own” the bit names?)
b. For each byte, the number of instances of bit names in that byte

¢. An associatively addressed “name table” (variable symbol)
¢ Name prefix is Bitbef_Nm_ (whatever, to avoid global-name collisions)
® Suffix is a "double subscript”, &ByteNumber._ &InstanceNumber
* Value (of the symbol) is the bit name itself

2. Use the information to generate optimal instructions

* Names and number of name instances needed to build each operand
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General Bit-Setting Macro: Design

» Optimize generated code using variables declared by BitDef macro

e Syntax: BitOn bitname[,bitname]...
Example: BitOn a,b,c,d

* High-level pseudo-code:
D0 for all arguments (Pass 1)

Verify that the argument bit name was declared (check global symbol)
IF not declared, stop with error message for undeclared bit name

Save argument bit names and their associated byte numbers
B0 for all saved distinct byte numbers (Pass 2)

GEN Instructions to handle argument bits belonging to each byte

* Pass 1 captures bit names & byte numbers, pass 2 generates code
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General Bit-Setting Macro: Pseudo-Code

* Detailed pseudo-code:

Save macro-call label
Set NBN (Number of known Byte Numbers) = 8
D0 for M = 1 to Number_of_Arguments
Set B = Arg(M)
Beclare created global variable &(BitDef _&B. Byte Number)
IF (Its value is zero) ERROR EXIT ‘Undeclared Bitname &B'
DO for K = 1 to NBN (Check byte number from the global variable)
IF (This Byte Number is known) Increment its count
ELSE Increment NBN (this Byte Number is new: set its count = 1)
Save B in bitname 1ist for this Byte Number

(End Arg scan: have all byte numbers and their associated bit names)
B0 for M = 1 to number of distinct Byte Numbers
Set Operand = 'First_Bitname,L’'First_Bitname' (local character string)
Do for K = 2 to Number of bitnames in this Byte
Operand = Operand || *+L’’Bitname(K)’
GEN (label O0I Operand ); set label = **

* Easy generalization to Bit_Off (NI) and Bit_Invert (XI)
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improved Bit-Manipulation Macros
We will now explore some improved techniques for managing bit variables, including veri-
fying that they were declared properly, and minimizing the number of instructions needed to
manipulate and test them.

These macros use created variable symbols as an associatively-addressed symbol table,
reducing the effort needed for table searches.
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l General Bit-Setting Macros: Set Bits ON

omitted)
Macro
&Lab Biton
&L SetC ‘alab*
SNBN SetA 8
2. SetA 8
&NN SetA N'&Syslist
.NmLp Aif (&M ge 8NN).Pass2
2] SetA &M+l
8B SetC ‘&SysList(aM)’

Aif  ("8B' eq '').Null
GbI1A &(BitDef_8B. ByteNo)

X SetA 8
LBNLp  Aif (8K ge SNBN).NewBN
K SetA &K+l

* ——

. continued

* Macro Bit0n optimizes generated instructions (most error checks

Save label

No. of distinct Byte Nos.
Name counter

Number of names provided
Check if all names scanned
Step to next name

Pick off a name

Check for null item
Declare GBLA for Byte No.

Aif  (&(BitDef_&B._ByteNo) eq B).UnDef Exit if undefined

Loop through known Byte Nos
Not in list, a new Byte No
Search next known Byte No

Aif  (&BN(8K) ne &(BitDef_&B. ByteNo)).BNLp Check match
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General Bit-Setting Macros: Set Bits ON ...
* - {continuation)
bAJ SetA 1 Check if name already specified
.CkBup  Aif (&) gt &IBN(2K)).NmOK Branch if name is unigque
Aif  ('8B’ eq '&(BitDef_Nm &BN(2K)._&J)°).DupNm Duplicated
&) SetA &J+1 Search next name in this byte
Ago  .CkDup Check further for duplicates
.BupNm  MNote 8,'BitOn: Name ''&B'’ duplicated in operand list’
MExit
. NmOK ANep , Ne match, enter name in list
S&IBN(3K) SetA &IBN(2X)+1 Matching BN, bump count of bits in this byte
LelC  &(BitDef Nm_8BN(&K). &IBN(&K))  Slot for bit name
&(BitDef_Nm_&BN(8K). &IBN(2K)) SetC '&B" Save K'th Bit Name, this byte
Age .NMLp 6o get next name
-NewBN  ANop , New Byte No
ENBN SetA &NBN+1 Increment Byte No count
&BN(SNBN) SetA &(BitDef_&B. ByteNo) Save new Byte No
SIBN(3NBN) SetA 1 Set count of this Byte No to 1
LcIC  &(BitDef_Nm_&BN(3NBN). 1) Slot for first bit name
&(BitDef Nm &BN(&NBN). 1) SetC '3B* Save 1st Bit Name, this byte
Ago .NMLp 6o get next name
W = == continued
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General Bit-Setting Macros: Set Bits ON ...

J® -=-- {continuation)
.Pass2 ANop , Pass 2: scan Byte No Jist
&M SetA 8 Byte No counter
— .Blp Aif  (8M ge &NBN).Done Check if all Byte Nos done
2] SetA &+l Increment outer—loop counter
&X SetA 3BN(&M) Get M-th Byte No
8K SetA 1 Set up inner loop
&0p SetC '&(BitDef_Nm_&X. &K).,L''&(BitDef_Nm 8X._8&K)' 1st operand

.Oplp Aif (8K ge &IBN(8M)).GenOI Operand loop, check for done

8K SetA &K+l } Step to next bit in this byte

&0p SetC '&0p.+L'°&(BitDef Nm &X. 8K)*' Add "L’bitname” to operand
Ago  .Opip I Loop (inner) for next operand

.Gen0I  ANop , Generate instruction for Byte No
&L [ 4 &0p Turn bits ON
&L SetC ** Nullify label string
Ago  .Blp Loop (outer) for next Byte No
.UnDef MNote 8,’BitOn: Name ''&B’’' not defined by BitDef’
MExit -
Null MNote 8,'BitOn: Null argument at position &8M.°'
.Done BEnd
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Using Declared Bit Names in a BitOn Macro

The BitOn macro accepts a list of bit names, and generates the minimum number of
instructions needed 1o set them on (io 1), as illustrated in Figure 64 on page 162. The macro
makes two “passes” over the supplied bit names:

In the first pass, the bit names are read, and the global arithmetic variable

&(BitDef_&B. &ByteNo) (where the value of &B is the bit name) is constructed and
declared, and its value is checked. If the value is zero, we know that the name was not
declared in a call to a BitDef macro (which would have assigned a nonzero byte number
value to the variable).

If the bit name was defined, the value of the constructed name is the byte number of the
byte to which the bit was assigned. The array &BN() is searched to see if other bits with
the same byte number have been supplied as arguments 1o this BitOn macro; if not, a
new entry is made in the &N() array.

A second array &IBN() (paralleling the &BN() array) is used to count the number of
Instances of the Byte Number that have occurred thus far.

Finally, the bit name is saved in a created local character variable symbol
&(BitDef_Nm_&bn._ &in), where &bn is the byte number for this bit name, and &in is the
“instance number” of this bit within this byte. (By checking the current bit name from the
argument list against these names, the macro can also determine that a bit name has
been “duplicated” in the argument list.)

Once all the names in the argument list have been handled, the macro uses the information
in the two arrays and the created local character variable symbols:

In the second pass, one instruction will be generated for each distinct byte number that
was entered in the &N() array during the first pass, using two nested loops; the outer
loop is executed once per byte number.

The inner loop is executed as many times as there are instances of names belonging to
the current byte number (as determined from the elements of the &IBN() array), and con-
structs the operand field in the local character variable &0p, using the created local char-
acter variable symbols 1o retrieve the names of the bits.

Part 3: Macro Techniques 161



« At the end of the inner loop, the Ol instruction is generated using the created operand
field string in &0p, and then the outer loop is repeated until the instructions for all the
" bytes containing named bit have been generated.

A pseudo-code description of the macro’s operation is illustrated in Figure 63.

Save macro-call label
Set NBN (Number of known Byte Numbers) = 0
DO for M = 1 to Number_of_Arguments
Set B = Arg(M)
Declare created global variable &(BitDef &B. Byte Number)
IF (Its value is zero) ERROR EXIT, undeclared bit name
DO for K = 1 to NBN (Check byte number from the global variable)
IF (This Byte Number is known) Increment its count
ELSE Increment NBN (this Byte Number is new: set its count = 1)
Save B in bit name list for this Byte Number

(End Arg scan: have all byte numbers and their associated bit names)
DO for M = 1 to number of distinct Byte Numbers
Set Operand = 'First Bitname,L''First_Bitname'
DO for K = 2 to Number of bitnames in this Byte
Operand = Operand |} ',L''Bitname(K)'
GEN (Yabel 0I Operand ); set label = '!

Figure 63. Bit-Handling Macros: Set Bits ON: Pseudo-Code

The definition of the BitOn macro is shown in Figure 64.

Macro
&Lab BitOn
&L SetC ‘'&Lab’ Save label
&NBN SetA © No. of distinct Byte Nos.
&M SetA © ’ Name counter
&NN SetA N'&SyslList Number of names provided
-NmLp Aif (&M ge &NN).Pass2 Check if all names scanned
&M SetA &M+1 Step to next name
8B SetC '&SysList(&M)* Pick off a name

Aif  ('&B' eqg '').Null Check for null item

Gb1A &(BitDef 8B. ByteNo)  Declare GBLA with Byte No.
Aif  (&(BitDef_&B. ByteNo) eq 0).UnDef Exit if undefined

&K SetA 0 Loop through known Byte Nos
.BNLp Aif (&K ge &NBN).NewBN Not in list, a new Byte No
&K SetA RK+1 Search next known Byte No
Aif  (&BN(&K) ne &(BitDef &B. ByteNo)).BNLp Check match
&J SetA 1 Check if name already specified

.CkDup Aif  (&J gt &IBN(&K)).NmOK Branch if name is unique
Aif ('8’ eq '&(BitDef_Nm &BN(&K). &J)').DupNm Duplicated
&J SetA &J+1 Search next name in this byte
Ago  .CkDup Check further for duplicates
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.DupNm  MNote 8,'BitOn: Name ''&B'' duplicated in operand list'
MExit
. NmOK ANop , No match, enter name in list
RIBN(&K) SetA &IBN(&K)+1 Matching BN, bump count of bits in this byte
LciC  &(BitDef Nm_&BN(&K). &IBN(8K)) Slot for bit name
&(BitDef Nm_&BN(&K). &IBN(&K)) SetC '&B' Save K'th Bit Name, this byte

Ago  .NMLp Go get next name
.NewBN  ANop , New Byte No
&NBN SetA &NBN+1 Increment Byte No count
8BN(&NBN) SetA &(BitDef &B. ByteNo) Save new Byte No
RIBN(&NBN) SetA 1 Set count of this Byte No to 1

Lc1C &(BitDef Nm_&BN(&NBN). 1) Slot for first bit name
&(BitDef Nm &BN(&NBN). 1) SetC '&B’ Save 1st Bit Name, this byte

Ago  .NMLp Go get next name
.Pass2  ANop , Pass 2: scan Byte No list
M SetA © Byte No counter
.BLp Aif  (8M ge &NBN).Done Check if all Byte Nos done
&M SetA &M+l Increment outer-loop counter
&X SetA &BN(&M) Get M-th Byte No
&K SetA 1 Set up inner loop
&0p SetC ‘'&(BitDef Nm_&X. &K).,L''&(BitDef_Nm &X. &K)' 1st operand
.OpLp Aif (8K ge &IBN(8M)).GenOI Operand loop, check for done
&K SetA &K+l Step to next bit in this byte
&0p SetC '&0p.+L''&(BitDef_Nm_8&X. &K)' Add L'bitname to operand
Ago  .OpLp Loop (inner) for next operand
.Gen0I  ANop , Generate instruction for Byte No
&L 01 &0p Turn bits ON
&L SetC ! Nullify label string
Ago  .BLp Loop (outer} for next Byte No
.UnDef  MNote 8,'BitOn: Name ''&B'' not defined by BitDef'
MExit
.Null MNote 8,'BitOn: Null argument at position &M.'
.Done MEnd

Figure 64 (Part 2 of 2). Bit-Handling Macros: Set Bits ON

Some examples of calls to the BitOn macro are illustrated in the figure below. In each case,

the minimum number of instructions necessary to set the specified bits will be generated.
The instructions generated by the macro are shown for two of the calls.
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ABCD  BitOn bl,b2

+ 01 bi,L'b1+L'b2 Turn bits ON
Fbc BitOn bl,c2,bl Duplicate bit name 'b1'
Fbd BitOn jj Undeclared bit name 'jj!

Biton cl1,c2,c3,c4,c5,c6,c7,c8,c9,c18,c11,c12,c13,c14,c15,c16,c17

Fbg BitOn bl,cl,d1,el,b2,c2,d2,c3,b3,m2,c4,c5,m5,d6,c6,d7,b4,c7
+Fbg 0  bl,L'bl+L'b2+L'b3+L'b4 Turn bits ON

+ 01 cl,b'cl+l c2+L'c3+L'c4+L'cS5+L'cb+L'c7  Turn bits ON
+ 01 d1,L'd1+L'd2 Turn bits ON
+ 0I el,L'el Turn bits ON
+ 01 m2,L'm2 Turn bits ON
+ 01 m5,L'm5 Turn bits ON
+ 01 d6,L'd6+L'd7 Turn bits ON

DupBl1  BitOn bl1,c2,c3,c4,c5,cb,c7,c8,c9,c16,bl Duplicated name 'b1*

Figure 65. Bit-Handling Macros: Examples of Setting Bits ON

Extending this macro to create Bit0ff and BitInv macros is straightforward (we can use the
schemes illustrated in Figure 52 on page 146 and Figure 54 on page 147), and is left as the
traditional “exercise for the reader”.

General “Branch if Bits On” Macro: Design

* Function: branch to target if all named bits are on

* Syntax: BBitOn (bitlist),target
Example: BBitOn (a,b,c,d),Label

* Optimize generated code using global data created by BitDef

* If more than one byte is involved, need “skip-if-false” branches

[ Test a I——$l Test b l»——-—l Test ¢ }—*[ Test d ‘—-»Target_Label
T 1 T T

¢ Faise False False False

Y
Next Statement (tagged by “Skip Label®)

* Need only one test instruction for multiple bits in a byte!
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Using Declared Bit Names in a BBitOn Macro

The BBitOn macro is intended to branch to a specified label if all the specified bit names are
“on”, and should use the minimum number of instructions; the calling syntax is the fol-
lowing:

BBitOn (Bit_Name_List),Branch_Target

and we will accept a single non-parenthesized bit name for the first argument.
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This macro will require a slightly different approach from the one used in the BitOn macro: if
any of the bits have been allocated in different bytes, we must invert the “sense” of all gen-
erated branch instructions except the last. To see why this is so, suppose we wish to
branch to XX if both BitA and BitB are “true”, and the two bits have been allocated in the
same byte:

DC B'9!
BitA Equ *-1,X'0l’ Allocate BitA
BitB Equ  *-1,X'20' Allocate BitB
*

™ BitA,L'BitA+L'BitB  Test BitA and BitB
BO XX Branch if both are ON

and we see that only a single test instruction is needed. Now, suppose the two bits have
been allocated to distinct bytes:

DC B'0’

BitA Equ *-1,X'01' Allocate BitA
DC B'0!

BitB Equ *-1,X'20’ Allocate BitB

Then, to branch if both are true, we must use two test instructions:

™ BitA,L'BitA Check BitA

BNO  Not True Skip-Branch if not true

™ BitB,L'BitB BitA is 1; check BitB

BO XX Branch to XX if both are true
Not _True DC OH'O' Label holder for 'skip target'

This situation is illustrated in the following “flowchart™:

Test a —»| Test b —>»| Test ¢ —| Test d —>Target_Label

<
<

T T T T
+ False ¢y False y False vy False

Next Statement (tagged by "Skip Label®)

Figure 66. Bit-Handling Macros: Branch if Bits are ON (Flow Diagram)

The implementation of the BBitOn macro uses a scheme similar to that in the BitOn macro:
the list of bit names in the first argument will be extracted, and the same list of variables will
be constructed. The second “pass” will need some modifications:

» If more than one pair of test and branch instructions will be generated, a “not true” or
“skip” label must be used for all branches except the last, and the label must be defined
following the final test and branch.

« The sense of all branches except the last must be “inverted” so that a branch will be
taken to the target label only if all the bits tested have been determined to be “true”.
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General “Branch if Bits On” Macro: Pseudo-Code

* Pseudo-code:

Save macro—call label; Set NBN (Number of known Byte Numbers) = 8
DO for M = 1 to Number_of_lst-Arg_Items
Set B = Arg(M)
Declare created global variable &(BitDef_&B. Byte Number)
IF (Its value is zero) ERROR EXIT, undeclared bitname
B0 for K = 1 to NBN (Check byte number from the global variable)
IF (This Byte Number is known) Increment its count
ELSE Increment NBN (this Byte Number is mew: set jts count = 1)
Save B in bit pame list for this Byte Number

(End Arg scan: have all byte numbers and their associated bit names)
Create Skip_Label (using &SYSNDX)
B0 for M = 1 to NBN
Set Operand = *First_Bitname,L’'First_Bitname' (first operand)
DO for K = 2 to Number of bitnames in this Byte
Operand = Operand || *+L’'’Bitname(K)’ .
IF (M < NBN) GEN (labe) TM Operand ; BNO Skip_Label); set label = '*
ELSE | GEN (label TM Operand ; B0 Target_label)
IF (NBN > 1) GEN (Skip_Label DS 6H)
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A pseudo-code description of the BBitOn macro is shown in Figure 67.

Save macro-call label; Set NBN (Number of known Byte Numbers) = ©
DO for M =1 to Number_of_lst-Arg_Items
Set B = Arg(M)
Declare created global variable &(BitDef &B. Byte Number)
IF (Its value is zero) ERROR EXIT, undeclared bit name
DO for K =1 to NBN (Check byte number from the global variable)
IF (This Byte Number is known) Increment its count
ELSE Increment NBN (this Byte Number is new: set its count = 1)
Save B in bit name 1ist for this Byte Number

(End Arg scan: have all byte numbers and their associated bit names)
Create Skip_Label (using &SYSNDX)
DO for M =1 to NBN

Set Operand = 'First_Bitname,L''First_Bitname'

DO for K = 2 to Number of bitnames in this Byte

Operand = Operand || '+L''Bitname(K)"'

IF (M < NBN) GEN (Yabel TM Operand ; BNO Skip_Label); set label = '!

ELSE GEN (1abel TM Operand ; BO Target label;Skip_Label DS OH)
IF (NBN > 1)} GEN (Skip_Label DS ©6H)

Figure 67. Bit-Handling Macros: Branch if Bits are ON: Pseudo-Code
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General Bit-Handling Macros: Branch if Bits On

« BBitOn macro optimizes generated instructions (most error checks

omitted)

* Two “passes”

1. Scan, check, and save names, determine byte numbers (as in BitOn)

over bit name list:

2. Generate optimized tests and branches:
if multiple bytes, generate “skip” tests/branches and label

Macro

&lLab BBitOn &NL,&T

Aif
&L SetC
&NBN SetA
M SetA
NN SetA
.NmLp Aif
* - - -

Bit Name List, Branch Target
(N'&SysList ne 2 or '8NL' eq '’ or '&T’ eq '°).BadArg

‘&lab’ Save label

8 No. of distinct Byte Nos.

8 Name counter

N'8NL Number of names provided

(8M ge &NN).Pass2 Check if all names scanned
{continued)
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> --- {continuatien)
&M SetA 8M+1 Step to next name
&8 SetC ’3NL(2M)°® Pick off a name
6b1A &(BitDef 8&B. ByteNo) Declare GBLA with Byte No.
Aif  (&(BitDef_8B. ByteNo) eq 8).UnDef Exit if undefined
& SetA 8 Loop through known Byte Nos
.BNLp Aif (3K ge ZNBN).NewBN Not in list, a new Byte No
&K SetA &K+l Search next known Byte No
Aif  (3BN(&K) ne &(BitDef &B. ByteNo)).BNLp Check match
&) SetA 1 Check if name already specified
.CkBup  Aif (&) gt &IBN(&K)).NmDK Branch if name is unique
Aif (&’ eq '&(BitDef_Nm_&BN(8K)._&J)').DupNm DBup)icated
& SetA &J+1 Search next name in this byte
Ago  .CkDup Check further for duplicates
.DupNm  MNote 8,'BBitOn: Name '°8B’'' duplicated in sperand list'
MExit
.NmOK ANop No match, enter name in list
SIBN(8K) SetA &IBN(&K)+1 Have matching BN, count up by 1
LelC &(BitDef Nm &BN(3K). &IBN(&K))  Slot for bit name
&(BitDef Nm_8BN(&K). &IBN(&K)) SetC '&B’' Save K'th Bit Name, this byte
Ago  .NMLp 6o get next name
* --- {cont inued)
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General Bit-Handling Macros: Branch if Bits On ...

* - -

.NewBN  ANop
SNBN SetA

Ago
.Pass2  ANop
M SethA
&Skip SetC
.BLp Af
&M SetA
&X SetA
&K SetA
&0p SetC
.OpLp Aif
&K SetA
&0p SetC

Ago

» - -

(continuation)

ENBN+1

SBN(3NBN) SetA &(BitDef_&B. ByteNo)
S&IBN(ENBN) SetA 1

LclC  &(BitDef_Nm_8BN(3NBN)._ 1) Slot for first bit name
&(BitDef_Nm_&BN(SNBN). 1) SetC *&B’

-NMLp

8

'0ffaSysNdx’

(&M ge &NBN).Done
Ml

SBN(2M)

1

New Byte No

Increment Byte No count

Save new Byte No

Set count of this Byte No to 1

Save 1st Bit Name, this byte
Go get next name

Pass 2: scan Byte No list
Byte No counter

False-branch target

Check if all Byte Nos done
Increment outer—loop counter
Get M—th Byte No

Set up inner Joop

'&(BitDef_Nm_8X. &K).,L''&(BitDef_Nm_&X._2K)' Operand
(&K ge LIBN(&M)). Genbr Operand loop, check for done
8K+1

Step to next bit in this byte

'&0p.+L'*&(BitDef_Nm &X. 8K)' Add next bit to operand

.OpLp
(continued)

Loop (inner) for next operand
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W* - (continuation)
.GenBr  ANop , Generate instruction for Byte No
Af (&M eq 3NBN).Last Check for last test
&L ™ &0p Test if bits are ON
BNO  &Skip Skip if not all ON
&l SetC *' Nullify label string
Ago  .Blp Loop (outer) for next Byte No
.lLast ANop , Generate last test and branch
&L ™ &0p Test if bits are ON
BO &7 Branch if all oON
Aif  (SNBN eq 1).Done No skip target if just 1 byte
a&skip DC  BH'B* Skip target
MExit
.UnDef MNote 8,'BBitOn: Name ''&B°'* not defined by BitDef"
MExit
.BadArg MNote 8,°'BBitOn: Improperly specified argument 1ist®
.Done MEnd
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The actual BBitOn macro definition is shown in Figure 68 on page 169.
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Macro
&Lab BBitOn &NL,&T

&L SetC ‘'&Lab’

&NBN SetA ©

M SetA ©

&NN SetA N'&NL

NmLp  Aif (&M ge &NN).Pass2
&M SetA &M+l

&8 SetC 'BNL(&M)'

Gb1A &(BitDef_&B. ByteNo)

&J SetA &J+1
Ago  .CkDup

.DupNm
MExit

. NmOK ANop ,

RIBN(&K) SetA &IBN(&K)+1

Ago  .NMLp
.NewBN  ANop ,
&NBN SetA &NBN+1
BBN(&NBN) SetA &(BitDef_ &B. ByteNo)
ZIBN(&NBN) SetA 1

&(BitDef_Nm_&BN(ZNBN). 1) SetC '&B'

.GenBr  ANop ,

&K SetA ©

.BNLp AT (&K ge &NBN) . NewBN

&K SetA &K+1 '

&J SetA

.CkDup Aif  (&J gt &IBN(&K)).NmOK

Lc1C  &(BitDef Nm_8BN(8K). &IBN(&K))
&(BitDef Nm 8BN(K). KIBN(&K)) SetC '8B'

Ago  .NMLp

.Pass2  ANop ,

&M SetA ©

&Skip SetC 'Off&SysNdx'

.BLp Aif (&M ge &NBN).Done

&M SetA &M+l

&X SetA &BN(&M)

&K SetA 1

&0p SetC

.OpLp Af

&K SetA B&K+1

20p SetC '&0p.+L''&(BitDef_Nm &X. 8&K)'
Ago  .OpLp

Bit Name List, Branch Target

Aif  (N'&SyslList ne 2 or '&8NL' eq '' or '&T' eq '').BadArg

Save label

No. of distinct Byte Nos.
Name counter

Number of names provided
Check if all names scanned
Step to next name

Pick off a name

Declare GBLA with Byte No.

Aif  (&(BitDef_&B. ByteNo) eq 0).UnDef Exit if undefined

Loop through known Byte Nos
Not in list, a new Byte No
Search next known Byte No

Aif  (8BN(BK) ne &(BitDef_&B. ByteNo)).BNLp Check match
1

Check if name already specified
Branch if name is unique

Aif  ('&B' eq '&(BitDef_Nm_&BN(&K)._&J)').DupNm Duplicated

Search next name in this byte
Check further for duplicates

MNote 8,'BBitOn: Name ''&B'' duplicated in operand list'

No match, enter name in list
Have matching BN, count up by 1
Slot for bit name

Save K'th Bit Name, this byte
Go get next name

New Byte No

Increment Byte No count

Save new Byte No

Set count of this Byte No to 1

Lc1C  &(BitDef_Nm_&BN(&NBN). 1) Slot for first bit name

Save 1st Bit Name, this byte
Go get next name

Pass 2: scan Byte No list
Byte No counter

False-branch target

Check if all Byte Nos done
Increment outer-loop counter
Get M-th Byte No

Set up inner loop

'&(BitDef_Nm_&X. 8K).,L''&(BitDef Nm_&X. 8K)' Operand
(8K ge &IBN(&M)).GenBr Operand loop, check for done

Step to next bit in this byte
Add next bit to operand
Loop (inner) for next operand
Generate instruction for Byte No

Figure 68 (Part 1 of 2). Bit-Handling Macros: Macro to Branch if Bits are ON
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Aif  (8M eq &NBN).Last Check for last test

&L ™ &0p Test if bits are ON

BNO  &Skip Skip if not all ON
&L SetC '! Nullify label string

Ago  .BLp Loop (outer) for next Byte No
.Last ANop , Generate last test and branch
aL ™ &0p Test if bits are ON

BO &T Branch if all ON
Aif  (&NBN eq 1).Done No skip target if just 1 byte
&Skip DC OH'0! Skip target

MExit
.UnDef  MNote 8,'BBitOn: Name ''&B'' not defined by BitDef'
MExit
.BadArg MNote 8,'BBitOn: Improperly specified argument list!
.Done MEnd

Figure 68 (Part 2 of 2). Bit-Handling Macros: Macro to Branch if Bits are ON

Some examples of calls to the BBitOn macro are shown in the following figure; the generated
instructions are indicated by “+ ” characters in the left margin:

TB4 BBitOn  bl,TB5

+TB4 ™ bl,L*bl Test if bits are ON
+ BO TBS Branch if all ON

BBitOn (c5,c4,c3,c2),tb7

+ ™ c5,L'cS54L'c4+L'c3+L'c2 Test if bits are ON
+ BO tb7 Branch if all ON

TB6 BBitOn (b1,c2,b2,c3,b3,bd,c4,b5,c5),tbd

+TB6 ™ bl,L'b1+L'b2+L'b3+L'b4+L"'bS Test if bits are ON
+ BNO  0ff0051 Skip if not all ON
+ ™ c2,L'c2+L'c3+L'ca4+L'c5 Test if bits are ON
+ BO tb4 Branch if all ON
+0ffe651 DC OH'0! Skip target

TB7 BBitOn (b1,b2,b3,b4,b5,b6,b7),tb7

BBitOn (bl,c2,b2,c3,d4,e2),tb7

+ ™ b1l,L'bl+L'b2 Test if bits are ON
+ BNO  0ff0054 Skip if not all ON
+ ™ c2,L'c2+L'c3 Test if bits are ON
+ BNO  0ff8054 Skip if not all ON
+ ™ d4,L'd4 Test if bits are ON
+ BNO  0ff0054 Skip if not all ON
+ ™ e2,L'e2 Test if bits are ON
+ BO tb7 Branch if all ON

+0ff6054 DC OH'0! Skip target

Figure 69. Bit-Handling Macros: Examples of Calls to BBitON Macro

The extension of the BBitOn macro to a similar BBit0ff macro is simple, and is also left as
an exercise. This set of macros can be used to define, manipulate, and test bit flags with
reliability and efficiency.

An interesting generalization of the BBitOn macro might be a modification causing a branch
to the Target_Label if any bit in the first-argument list is “on”. (Remember that the macro in
Figure 68 on page 169 branches 1o the target only if all bits are on.) Try adding a Type=
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keyword parameter to the macro definition, specifying which type of branch is desired. For
example, the new keyword parameter might look like this:

BBitOn (a,b,c,d),Target,Type=All (default)
BBiton (a,b,c,d),Target,Type=Any

where the default value (Type=A11) causes the macro to work as described above. If Type=Any
is specified, the logic of the bit tests in the BBitOn macro must be modified slightly to cause a
branch 1o the Target_Label if any of the tested bits is on. This situation is illustrated in the
following “flowchart”:

Test a —»| Test b —>| Test ¢ —»| Test d (—>Next Statement
F F F F
l True v True y True Y True

Target Label

Figure 70. Bit-Handling Macros: Branch if Any Bits are ON (Flow Diagram)

In this “Any” case, no Skip_Label is needed!
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Case Study 9:‘Deﬁning and Using Data Types

* Overview of data typing
. Using base-language type attributes

- Case Study 9a: use operand type attribute to generate correct literal types
* Shortcomings of assembler-assigned type attributes

~ Case Study 9b: create macros to check conformance of instructions and
operand types

— Extension: instruction vs. operand vs. register consistency checking
* User-assigned (and assembler-maintained) data types

~ Case Study 9c: declare user data types and “operators” on them

HLASM Macro Tutorial  © Copyright IBM Corporation 1893, 2002. All rights reserved. Tech-68

Case Study 9: Defining and Using Data Types

Defining and Using Data Types

* We're familiar with type sensitivity in higher-level languages:
- Instructions generated from a statement depend on data types:
A=B+C; *=* and '+' are pelymorphic operators
- A, B, C might be integer, float, complex, boolean, string, ...
* Most named assembler objects have a type attribute

- Can exploit type attribute references for type-sensitive code sequences and
for operand validity checking

« Extensions to the “base language” types are possible:

~ Assign our own type attributes (avoiding conflicts with Assembler’s)
— Utilize created variable symbols to retain type information

HLASM Macro Tutorial  © Copyright IBM Corporation 1893, 2002, All rights reserved. Tech-69

One of the most useful features of the macro language is that it allows you to write macros
whose behavior depends on the “types” of its arguments. A single macro definition can gen-
erate different instruction sequences, depending on what it can determine about its argu-
ments. This behavior is common in most higher-level languages; for example, the statement

A=B+¢C

may generate very different instructions depending on whether the variables A, B, and C
have been declared 1o be integer, floating, complex, boolean, or character string (or mix-
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tures of those, as in PL/l), each possibly having different lengths or precisions. We will see
that macros offer the same flexibility and power.

These case studies will show how macros can be used to provide increasingly powerful

levels of control over generated code.

Case study 9a uses the assembler’s “native” type attributes to determine what kind of

literal should be used in an instruction.

Case study 8b creates macros that check for consistency between instructions and their
operands, utilizing the AINSERT statement to simplify macro creation.

Case study 9c uses user-defined type attributes for declaring “abstract types” for vari-

ables, and illustrates how to use such abstract types to generate instructions with

“encapsulation” of the types for use by “private methods”.

Base-Language Type Sensitivity: Simple Polymorphism

* Intent: INCR macro increments var by a constant amt (or 1)
Syntax: INCR var[,amt] (default amt=1)

* Usage examples:

Day Bs H Type H: Day of the week

Rate DS F Type F: Rate of something

MyPay DS PL6 Type P: My salary

pist  BS ] Type D: A distance

Wt Bs E Type E: A weight

wxy DS X Type X: Type not valid for INCR macro

*
cc Incr Day
BD Incr Rate,-3,Reg=15 Decrease rate by 3
Incr MyPay,158.58 Add 158.58 to my salary
3 Incr Dist,-3.16227766 Decrease distance by sqrt(18)
KK Incr Wt,-2E4,Reg=6 Decrement weight by 18 tons
Incr WXY,2 Test with unsupported type

* INCR uses assembler type attribute of &var to create compatible
literals

- type of amt guaranteed to match type of var

Add 1 te Day

HLASM Macro Tutorial  © Copyright IBM Corporation 1993, 2002. All rights reserved.
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Base-Language Type Sensitivity: Simple Polymorphism ...

* Supported types: H, F, E, D, P
Macre , Increment &V by amount &8A (default 1)
&lab INCR &V,&A,&Reg=8B Default work register = 8
&T SetC T'&v Type attribute of 1st arg
&0p SetC ‘&T* Save type of & for mnemonic suffix
& SetC ‘1’ Default increment
A¥f  (°8A’' eq '').INcOK  Increment now set 0K
&l SetC °"3A’ Supplied increment (N.B. Not SETA!)

.IncOK Aif  ("&T' eq 'F').F,('&T’ eq 'P').P, (check base language types) X
(*&T* eq "H' or '&T' eq 'D’ or '&T' eq ’E').T Valid types

MNote 8, 'INCR: Cannot use type °*'&T'' of *‘&V'*.°

MExit
.F ANOP Type of &V is F
&0p set¢c ' Null opcode suffix for F (no LF opcode)
T ANOP Register—types B, E, H (and F)

&lab L&0p &Reg,&V Fetch variable to be incremented
A%0p &Reg,=&T.'&I"

ST&Bp &Reg, &Y Store incremented value

Add requested increment as typed literal

MExit

-P ANOP Type of &V is P

&lab AP &V, =P &I’ Incr packed variable with P-type literal
MEnd

HLASM Macro Tutorial O Copyright IBM Corporation 1993, 2002. Al rights reserved.
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Case Study 9a: Type Sensitivity -- Simple Polymorphism

The assembler’s assignment of type attributes to most forms of declared data lets us write
macros that utilize the type information to make decisions about instructions to be gener-
ated.

For example, suppose we want to write a macro INCR 1o add a constant value to a variable,
with default increment 1 if no value is specified in the macro call. Because we know the
assembler-assigned type of the variable, we can use that same type for the constant incre-

ment.
Macro
&Lab  INCR &V,8A,8&Reg=0
aT SetC T'&v Type attribute of 1lst arg
&0p SetC '&T' Save type of &V for mnemonic suffix
&1 SetC '1! Default increment
Aif  ('BA' eq '').IncOK  Increment now set OK
&1 SetC 'B&A' Supplied increment (N.B. Not SETA!)

.IncOK Aif  ('&T' eq 'F').F,('&T' eq 'P').P, (check base language types) X
("8T* eq 'H' or '&T' eq 'D' or '&T' eq 'E').T Valid types
MNote 8,'INCR: Cannot use type ''&T'' of ''&V''.!

MExit
.F ANOP , Type of &V is F
&0p Setc *! Null opcode suffix for F (no LF opcode)
T ANOP Register-types D, E, H (and F)
&Lab L&0p &Reg,&V Fetch variable to be incremented
A&0Op &Reg,=&T.'RI'’ Add requested increment
ST&0p &Reg,&V Store incremented value
MExit
.P ANOP , Type of &V is P
&lab AP av,=P'&I" Increment variable
MEnd

Figure 71. Macro Type Sensitivity to Base Language Types

The macro first determines the type atiribute of the variable &V, and sets the increment
value &l. The type attribute is checked for one of the five allowed types: D, E, F, H, and P.
Finally, an instruction sequence appropriate to the variable’s type is generated to perform
the requested incrementation. This macro “works” because we can use the type attribute
information about the variable &V to create a literal of the same type.

This macro illustrates a form of polymorphism: the operation it performs depends on the
type(s) of its argumenti(s).

Some examples of calls to the INCR macro are shown in the following figure.
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Day DS
Rate DS
MyPay DS
Dist DS
Wt DS
WXY DS
*
cC Incr
DD Incr
Incr
JJ Incr
KK Incr
Incr

H Type H
F Type F.
PL6 Type P:
D Type D
E Type E
X Type X
Day

Rate,-3,Reg=15
MyPay, 156.560

Dist,-3.16227766
Wt,-2E4,Reg=6
WXY,2

: Day of the week

: Rate of something
My salary

: A distance

: A weight

Type not valid for INCR macro

Add 1 to Day
Decrease rate by 3
Add 156.56 to my salary

Decrease distance by sqrt(10)
Decrement weight by 10 tons
Test with unsupported type

Figure 72. Examples: Macro Type Sensitivity to Base Language Types

Base-Language Type Sensitivity: Generated Code

* Code generated by INCR macro (see slide Tech-70)

cc
+CC
+
+
bD
+bb
+
N

R
3
+33
.
+
KK
+KK
N
N

Incr Day

LH 8,Day

AH 8,=H"'1"

STH  8,Day

Incr Rate,—3,Reg=15
L 15,Rate

A 15,=F*-3"*

ST 15, Rate

Incr MyPay,158.50
AP MyPay,=P'158.58°
Incr Dist,-3.16227766

LD 8,Dist

AD 8,=D"-3.16227766"
STB  8,Dist

Incr  Wt,-2E4,Reg=6

LE 6,Wt

AE 6,=E'~2E4"*

STE  6,Wt

Incr WXY,2

Add 1 te Day
Fetch variable to be increment
Add requested increment
Store incremented value
Decrease rate by 3
Fetch variable to be increment
Add requested increment
Store incremented value
Add 158.58 te my salary
Increment variable
Decrease distance by sqrt(18)
Fetch variable to be increment
Add requested increment
Store incremented value
Becrement weight by 18 tons
Fetch variable to be increment
Add requested increment
Store incremented value

Test with unsupported type

+ *** MNOTE *** 8,INCR: Cannot use type 'X* of ‘'WXY'.

HLASM Macro Tutorial

© Copyright IBM Corporation 1933, 2002. All rights reserved.
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Examples of the code generated by the INCR macro are shown in Figure 73 on page 176.
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cC Incr Day Add 1 to Day

+CC LH 0,Day Fetch variable to be increment
+ AH 0,=H'1l’ Add requested increment
+ STH  ©,Day Store incremented value
DD Incr Rate,-3,Reg=15 Decrease rate by 3
+DD L 15,Rate Fetch variable to be increment
+ A 15,=F'-3! Add requested increment
+ ST 15,Rate Store incremented value
Incr MyPay,150.50 Add 150.50 to my salary
+ AP MyPay,=P'150.50' Increment variable
JJ Incr Dist,-3.16227766  Decrease distance by sqrt(16)
+JJ LD 0,Dist Fetch variable to be increment
+ AD 0,=D'-3.16227766' Add requested increment
+ STb  6,Dist Store incremented value
KK Incr Wt,-2E4,Reg=6 Decrement weight by 16 tons
+KK LE 6,Wt Fetch variable to be increment
+ AE 6,=E'-2E4"' Add requested increment
+ STE  6,Wt Store incremented value
Incr WXY,2 Test with unsupported type

+ *** MNOTE *** 8,INCR: Cannot use type 'X' of 'WXY'.

Figure 73. Examples: Macro Type Sensitivity: INCR Macro Generated Code

Type sensitivity of this form can be used in many applications, and can help simplify
program logic and structure.

Shortcomings of Assembler-Assigned Types

* Suppose amt is a variable, not a constant...
- Need an ADD2 macro: syntax like ADDZ var,amt
* What if the assembler types of var and amt don’t conform?
- Mismatch? Might data type conversions be required? How will we know? .

Rate DS F Rate of something
MyPay DS PL6 My salary
ADD2 MyPay,Rate Add (binary) Rate to (packed) MyPay ??

» Assembler data types know nothing about “meaning” of variables,
only their hardware representation; so, typing is very weak!

Day Bs ] Day of the week
Rate DS F Rate of something
Dist DS B A distance
Wt DS E A weight
*
* Following (assembler) types conform!
*
ADD2 Rate,Day Add binary Day to Rate (??)
ADBZ Dist,WT Add floating Distance to Weight (?7)
HLASM Macro Tutorial  © Copyright IBM Corporation 1993, 2002. All rights reserved. Tech-73
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Shortcomings of Assembler-Assigned Types

While many benefits are achievable from utilizing assembler type attributes, they do not
provide as reliable a checking mechanism as we might need. Suppose, for example, that we
wish to add two variables using a macro named ADD2 that works like the INCR macro just
described. Two problems arise:

1.

The types of the variables to be added may not “conform” by having the same
assembler-assigned type attribute. For example, let some variables be defined as in
Figure 71 on page 174:

Rate DS F Rate of something
MyPay DS PL6 My salary

Then, if we can write a macro call like
ADD2 MyPay,Rate Add binary Rate to packed MyPay

then some additional conversion work is needed because the types of the two variables
do not allow direct addition. Such conversions are sometimes easy to program, either
with in-line code or with a call to a conversion subroutine. However, as the number of
allowed types grows, the number of needed conversions may grow almost as the square
of the number of types.

The more serious problem is that the assembler-assigned types may conform, but the
programmer’s “intended types” may have no sensible relationship 1o one another! Con-
sider the same set of definitions:

Day DS H Day of the week
Rate DS F Rate of something
Dist DS D A distance

Wt DS E A weight

Then, it is clear that we can write simple macros to implement these additions:

ADD2 Rate,Day Add binary Halfword to Fullword
ADD2 Dist,WT Add floating Distance to Weight

because the data types conform: halfword and fullword binary additions and short and
long floating additions are supported by hardware instructions.

Consider, however, what is being added: in the first example, we are adding a “day” to a
“rate” and in the second we are adding a “distance” to a “weight”, and neither of these
operations makes sense in the real world, even though a computer will blindly add the
numbers representing these quantities.

This lack of programmer-defined meaning (sometimes called “strong typing”) can be a
serious shortcoming of the Assembler Language, but it is easily overcome by defining and
using macros.
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Symbol Attributes and Lookahead Mode

* Symbol attributes are entered in the symbol table when defined
« Attribute references are resolved during conditional assembly by
1. Finding them in the symbol table, or

2. Forward-scanning the source file (“Lookahead Mode™) for the symbol’s
definition
— No macro definition/generation, no substitution, no AGO/AIF
— Symbol attributes may change during final assembly
— Scanned records are saved (SYSIN is read only oncel}

* Symbols generated by macros can’t be found in Lookahead Mode
— Unknown or partially-defined symbols assigned type attribute 'U*

* Symbol attributes needed for conditional assembly must be defined
before they are referenced

¢ Can use LOCTR instruction to “group” code and data separately
- Data declarations can precede code in source, but follow it in storage

HLASM Macro Tutoriat  © Copyright IBM Corporation 1893, 2002. Ali rights reserved. Tech-74

Symbol Attributes and Lookahead Mode
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There is one potential problem in utilizing attribute information in conditional assembly: the
attributes might not be available at the time they are needed. For example, a statement with
a symbol definition might occur later in the source file than a macro that references that
symbol’s attributes. When the assembler notes that the symbol’s attributes are currently
unknown, it begins a forward scan of the primary source file called “Lookahead Mode”.

In Lookahead mode, all scanned statements are saved (so that the primary input file is read
only once). No macros are encoded or expanded, and no AIF or AGO statements are
obeyed. Symbol definitions are entered in the symbol table with a flag indicating that their
attributes are “partially defined” (later conditional assembly statements might choose
among several possible definitions). When the assembly completes, the attributes of a
symbol might be different from the attributes assigned during Lookahead mode.

The straightforward solution is to execute all macros that generate necessary symbol defi-
nitions before any other macros that reference their attributes. While this might seem 1o
force data to be generated in a module ahead of (or mixed with) the code, the assembler
provides a simple technique for “grouping” related segments of the object code: the LOCTR
statement.
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The LOCTR Statement

The LOCTR statement lets you define named “groups” of statements in such a way that all

object code generated from statements in each named group will eventually be combined
with other statements from groups with the same name, even though the various groups
with other names are scattered among one another in the source file. The following figure
illustrates how LOCTR works:

Source File

Generated Code

CODE

DATA

CODE

DATA

CSECT
Code segment 1

LOCTR
Data segment 1

LOCTR
Code segment 2

LOCTR
Data segment 2

END

CODE

CSECT
Code segment 1

Code segment 2

Data segment 1

Data segment 2

Figure 74. Using the LOCTR Statement to “Group” Code and Data
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Case Study 9b: Simple lnstrucﬁon-Operand Type Checking

* Check the second operand of the A instruction
- Accept type attributes type F, A, or Q: note others
* First, save the assembler’s definition of “A”
My_A OpSyn A Save definition of A as My_A

« Define a macro named “A” that eventually calls My_A

e Macro “A” checks the second operand for type F, A, or Q

Macro

&L A &R, &X
AIF (T'8X eq 'F’ or T'8X eq 'A* or T'8X eq '§").0K
MNote 1,'Note! Second operand type not F, A, or §.*

0K ANop
&L My A &R, &X
MEnd

Note that allowed types are “hard coded” in the macro
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Case Study 9b: Type Checking

The Assembler’s type attribute values can be used 1o check for consistency between data
types and instruction types, as the following example will show. You may want to ensure
that an instruction in your application references only operands that are likely to be
“natural” for that instruction.

As an example, suppose we wish to check the second operand of the Add (A) instruction to
verify that its type is only F, A, or Q. After preserving the original definition of the A opcode
as My_A with an OPSYN, we could write a macro like the following:

My A OpSyn A Save assembler's definition of A
Macro
&L A &R, &X

AIF (T'8X eq 'F' or T'&X eq 'A' or T'8X eq 'Q').0K
MNote 1,'Note! Second operand type not F, A, or Q.'

.0K ANop
&L My A &R,8&X
MEnd

This simple macro requires a non-macro statement (OPSYN) to preserve the assembler’s
definition of the A instruction. The generated machine language instruction will be the same
as it would be for the assembler’s “native” A instruction. The result of using this macro
might look like the following:

A 1,D2
*** MNOTE *** 1,Note! Second operand type not F, A, or Q.
+ My A 1,D2
*
D2 DC D'2!

To extend this example, we might choose 1o permit type attributes F and D (fullword and
doubleword constants), A, Q, and V (fullword address constants), and X (“almost anything”),
and flag uses of other types with a low-level message.
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We will examine some generalizations of this simple example to show how the assembler
can provide very useful forms of consistency checking of instructions, operands, and regis-
ters.

Base-Language Type Sensitivity: General Type Checking

* Intent: compatibility checking between instruction and operand types
* Define TypeChek macro to request type checking
Syntax: TypeChek opcode,valid_types
= Call TypeChek with: opcode to check, allowable types
TypeChek L, "ADFQVX’ Allowed types: AQV (adcons), D, F, X

* Sketch of macro to initiate type checking for one mnemonic:

Macro

TypeChek &0p,&valid Mnemonic, set of valid types

6b1C  &(TypeCheck_&0p._Valid),&(TypeCheck_&0p)
&(TypeCheck_&0p. Valid) SetC ‘avalid’ Save valid types

TypeCheck_&0p. OpSyn &0p. Save original opcede definition

&0p OpSyn , Bisable previous definition of &0p

o MNote *, 'Mnemonic °'‘&0p.'’' valid types are ''&(TypeCheck &0p. Valid).''.®
MEnd

* Generalizable to multiple opcode mnemonics
- But: requires creating macros for each mnemonic...
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Base-Language Type Sensitivity: General Type Checking ...

* Now, need to install L macro in the macro library:

Macro
&tab L &Reg, &0perand
6bIC  &(TypeCheck_L_Valid) List of valid types for L

&TypOp SetC T'&Dperand Type attribute of &0perand
&Test SetA ('&(TypeCheck_L_Valid)' Find '&TypOp') Check validity
AIf  (&Test ne 8).0K Skip if valid
MNote 1, 'Possible type incompatibility between L and '‘&Operand.’'’?’
.0K ANop Now, do the eriginal L instruction
&lab  TypeCheck_L &Reg,&0perand
MEnd

* Now, use L “instruction” as usual:

6660884 5A BS F A has type attribute F
666688 6B BS L] B has type attribute H
8BB1E4 5818F884 23 L 1A Load from fullword
B8BB1E8 5826FB88 24 L 2,B Load from halfword

*** MNOTE *** + 1,Possible type incompatibility between L and 'B'?

* Inconvenience: have to write a macro for each checked mnemonic
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Instruction-Operand Type Checking

First, we will define a TypeChek macro whose arguments are an instruction mnemonic and a
set of allowed types. (This approach is more general than strictly needed, but it will allow
easy generalization to multiple mnemonics with the same set of permitted operand types.)
This macro will define two created variable symbols, &(TypeCheck_80p. Valid) with the types,
and &(TypeCheck_&0p) with a substituted name TypeCheck_&0p for saving the meaning of the
mnemonic to be checked.
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Macro :

TypeChek &0p,&Valid Mnemonic, set of valid types

Gb1C &(TypeCheck_&0p._Valid),&(TypeCheck_&0p)
&(TypeCheck_&0p. Valid) SetC '&valid' Save valid types

TypeCheck_&0p. OpSyn &0p. Save original opcode definition

&0p OpSyn , ‘Disable previous definition of &0p

¥ MNote *,'Mnemonic ''&0p.'' valid types are ''&(TypeCheck &0p. Valid).'"'
MEnd

Figure 75. Instruction-Operand Type Checking: TypeChek Macro

This definition of the TypeChek macro may be called to define checked types for other mne-
monics, aiso. When the TypeChek macro is called:

TypeChek L,'ADFQVX* Allowed types: AQV (adcons), DF, X
it will nullify the Assembler’s definition of the L mnemonic.

Thus, the second step is to define an L macro which will be added to the macro library used
before the type-checked application is assembled.

Macro
&ab L &Reg, &0perand
Gb1C &(TypeCheck L_Valid) List of valid types for L

&TypOp SetC T'&Operand Type attribute of &0Operand
&Test SetA ('&(TypeCheck_L Valid)' Find '&TypOp') Check validity
AIf  (&Test ne 0).0K Skip if valid
MNote 1,'Possible type incompatibility between L and ''&0perand.''?’
.0K ANop Now, do the original L instruction
&Lab  TypeCheck L &Reg,8&0perand
MEnd

Figure 76. Instruction-Operand Type Checking: “Instruction” Macro

Now, when the L “instruction” is used, it will actually invoke the L macro, which then checks
the type of the operand and issues an MNOTE message in case of a mismatch. Finally, the

correct instruction (whose true definition was saved by the TypeChek macro as TypeCheck_L)
is generated, with the same operands as the call to the L macro.

000084 5A DS F A has type attribute F
000088 6B DS H B has type attribute H
0001E4 5810F084 23 L 1,A Load from fullword
0601E8 5820F688 24 L 2,8 Load from halfword

*¥*x MNOTE *** + 1,Possible type incompatibility between L and 'B'?

Figure 77. Instruction-Operand Type Checking: Examples

As the above example illustrates, using an operand of a “non-approved” type will be
flagged.

While useful, this scheme requires writing a separate macro for each instruction to be “type
checked”. Installing the macros in a library needs to be done only once, but their presence
could cause problems if other users accidentally reference the macros when no type
checking was intended. These difficulties can be overcome by generalizing the TypeChek
macro, and by finding a way for the instruction-replacement macros to be generated auto-
matically.
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Base-Language Type Checking: Extensions

* Previous technique req\jires writing a macro for each checked
instruction

~ Not difficult to write, just a lot of repetitive work

- Macros must be available in a library

— M not using TypeChek, don’t use the instruction-replacement macros!

e Better:

- Specify a list of instructions to be checked, such as

TypeChek (L,ST,A,AL,S,SL,N,X,0), "ADFQVX"’

- The TypeChek macro generates the replacement macros as needed
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Instruction-Operand Type Checking (Generalized)

Obviously, we could define the list of allowed types in the L macro itself, and eliminate the
TypeChek macro; but we will still need statements like

TypeChek_L Opsyn L Save original definition of L
L OpSyn , Null operand eliminates 'L' mnemonic

to “nullify” the assembler’s built-in definition, for each mnemonic to be checked.

The scheme illustrated here can be generalized in many ways. For example, the TypeChek
macro could accept a list of mnemonics that share the same set of valid types:

TypeChek (L,ST,A,AL,S,SL,N,X,0), 'ADFQVX’
which allows handling mnemonics in related groups.

One attractive possibility would be to have the TypeChek macro generate the “mnemonic”
macros for the mnemonics to be checked, as they will all have the same pattern for a given
class of mnemonics. Unfortunately, one key capability of the original macro and conditional
assembly language was missing: when a macro is defined inside another macro (so that
expanding the first causes the second 1o become defined), values cannot be substituted from
the scope of the enclosing “outer” macro definition into the statements of the enclosed
“inner” macro definition. (See “Nested Macro Definition in High Level Assembler” on

page 64.) The ability to parameterize generated macros would make it much easier to
create the “mnemonic” macros directly.

This shortcoming has been eliminated by the AINSERT statement introduced with HLASM
Release 3.
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| The AINSERT Statement

AINSERT allows generation of fully parameterized records

AINSERT ‘string’, [ FRONT|BACK]

* Placed at front or back of assembler’s internal buffer queue
- HLASM pads or truncates string to form 80-byte record

* HLASM reads from the FRONT of the buffer before reading from SYSIN

- Input from SYSIN resumes when the buffer is empty

* Operand string may contain “almost anything”

Alnsert °'* comment about &SysAsm. &SysVer.',BACK
>* comment about HIGH LEVEL ASSEMBLER 1.4.8

- The '>' character in “column 0” indicates AINSERTed statement

* We will use AINSERT to generate macro definitions

HLASM Macro Tutorial  © Copyright IBM Corporation 1993, 2002. A}l rights reserved. Tech-78

The AINSERT Statement

Sometimes it is useful 1o exercise greater control over the order in which generated state-
ments will be processed. The AINSERT statement lets you generate complete statements in
almost any order you like, at the same time removing many of the restrictions associated
with encoding.

The syntax of AINSERT is
AINSERT 'string',[FRONT|BACK]
The first operand may contain points of substitution.

The assembler maintains an internal buffer queue into which AINSERT strings are placed,
padded or truncated to an 80-byte record. Each record is placed either at the front or back
end of the buffer, depending on the second AINSERT operand. When the assembler is ready
1o read records from the primary input (SYSIN) file, it first checks the AINSERT buffer: if non-
empty, records are taken from the buffer until it is empty, and input then resumes from the
primary input stream. :

This technique removes many limitations on substitutable fields:

Alnsert '* comment about &SysAsm. &SysVer.',BACK
>* comment about HIGH LEVEL ASSEMBLER 1.4.0

Alnsert '* Assembled &SYSDatC.',BACK
+ Alnsert '* Assembled 20000768',BACK
>* Assembled 20000708

where the *>* character in the listing is the assembler’s indication of a statement inserted
into the statement stream via AINSERT. (Remember that AINSERTed statements are treated
as part of the primary input stream, and are not within the body of any existing macro.)

We will now see how we can use AINSERT 1o generate the desired instruction-replacement
macros as needed.
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Base-Language Type Checking: Generated Macros

* Generate each type-checking macro using AINSERT
TypeChek (L,ST,A,AL,S,SL,N,X,0), ADFQVX*  Desired style

» Sketch of revised inner lloop of TypeChek macro:

&0p SetC '0ps(&X)* Pick off K-th opcode

&0p OpSyn , Bisable previous definition of &0p

.* Generate macro to redefine &0p for type checking

Alnsert ' Macro ',BACK

Alnsert ‘&&Lab &0p. &&Reg,&30pd’,BACK

AInsert ' 6b1C &&(TypeCheck_&Dp._Valid)',BACK

Alnsert '&&T0 SetC T''&0pd °,BACK

Alnsert °'8&T SetA (''&&(TypeCheck_&0p. Valid)'' Find '’8&T0'')"’,BACK

Alnsert ' AIf (8T ne B).OK ',BACK

AlInsert * MNote 1,''Possible type conflict between &0p and &30pd?''’,B*
ACK

Alnsert *.0K ANop ',BACK

Alnsert *33Lab TypeCheck_80p &3Reg,&30pd °,BACK

Alnsert * MEnd ',BACK

* End of macre generation

* Compare to “hand-coded” L macro (slide Tech-77)
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In Figure 76 on page 182 we saw how the “instruction” macro was created for a single mne-
monic (L). We can use the AINSERT statement so the TypeChek macro creates such macros
for each mnemonic.

These examples have used RX-type instructions to show how to set up a type-checking
macro. Assuming that we will want to generalize 1o other instruction types, we will first write
a TypChkRX macro (based on the TypeChek macro illustrated above). The same techniques
are used, and now we will generate the needed macros for each mnemonic:
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Macro
TypChkRX &0ps,&Valid

&K SetA 1 Count of mnemonics
.Prcss ANop Process each opcode in &0ps
&0p SetC '&0ps(&K)* Pick off K-th opcode

Gb1C &(TypeCheck_&0p. Valid),&(TypeCheck_&0p.)
&(TypeCheck_&0p._Valid) SetC ‘'&Valid' Save valid types
&(TypeCheck_8&0p.) SetC 'TypeCheck_8&0p.' Create new opcode
& (TypeCheck_&0p.) OpSyn &0p Save original opcode
&0p OpSyn , Disable previous definition of &0p

MNote *,'Mnemonic &0p. valid types are &(TypeCheck_&0p. Valid)'
.* Generate macro to redefine &0p for type checking
Alnsert ' Macro ',BACK
Alnsert '8&Lab &0p. &8&Reg,&&0pd',BACK
Alnsert ' GbIC &&(TypeCheck_&0p._Valid)',BACK
Alnsert '&&T0 SetC T''&&0pd ',BACK
Alnsert '&&T SetA (''&&(TypeCheck_&0p. Valid)'®' Find ''&&T0'')*,BACK
Alnsert ' AIf (&&T ne 6).0K ',BACK
Alnsert ' MNote 1,''Possible type conflict between &0p and &&0pd?''',B*
ACK
Alnsert '.0K ANop ',BACK
Alnsert '&&lLab TypeCheck &0p &&Reg,&30pd ',BACK
Alnsert ' MEnd ',BACK

* End of macro generation

&K SetA &K+1 Increment &K
AIf (&K le &N).Prcss If not finished get next opcode
MEnd

Figure 78. Instruction-Operand Type Checking: Generated Macro Definitions

A call to the TypChkRX macro causes a “mnemonic” macro to be created for each mne-
monic in the first operand:

TypChkRX  (L,A,ST),'ADFQVX' Allowed types: AQV (adcons), D, F, X

will generate macros for mnemonics L, A, and ST, each of which will validate that their
operand types are one of the six allowed types.

A minor detail worth noting: the second operand of the macro is enclosed in apostrophes, in
case we may want to include user-defined (lower-case) types in the &Valid operand in the
future. If the user has specified the COMPAT(MACROCASE) option, unquoted lower-case
letters would be converted to upper case before being made available to the expansion of
the macro. . :

The following figure illusirates the operation of the TypChkRX macro. (Many repetitive lines
were removed; if you don’t want all the AINSERT statements and AINSERTed records to
appear in your listing, you could modify the macro to generate PRINT OFF and PRINT ON
statements in appropriate places.)
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TypChkRX (L,ST,A,AL,S,SL,N,X,0),ADFQVX
+TypeCheck_L OpSyn L Save original opcode
+L OpSyn , Disable previous definition of &0p
,Mnemonic L valid types are ADFQVX
Alnsert ' Macro ',BACK
Alnsert '&8&lab L &&Reg,&&0pd’',BACK
Alnsert ' Gb1C &&(TypeCheck_L_Valid)',BACK
Alnsert '&&T0O SetC T''&&0pd ',BACK
Alnsert '&&T SetA (''8%(TypeCheck_L_Valid)'' Find ''&T0'')’,BACK
Alnsert ' AIf (&&T ne 6).0K ',BACK
Alnsert ' MNote 1,''Possible type conflict between L and &&0pd?''',BACX

K

Alnsert '.0K ANop ',BACK
Alnsert '&&lLab TypeCheck_L &&Reg,880pd ',BACK
Alnsert ' MEnd ',BACK
+TypeCheck ST OpSyn ST Save original opcode
+ST OpSyn , Disable previous definition of &0p
+* Mnemonic ST valid types are ADFQVX

SR T N Y

. etc. etc.
... many AINSERT statements later, the assembler reads the buffer:

> Macro

>&tab L &Reg,&0pd

> Gb1C &(TypeCheck_L_Valid)

>&T0 SetC T'&0pd

>&T SetA ('&(TypeCheck_L Valid)' Find '&T0')
> AIf (&T ne 0).0K

> MNote 1,'Possible type conflict between L and &0pd?’
>.0K ANop

>&Lab TypeCheck_L &Reg,80pd

> MEnd

> Macro .

>&lab ST &Reg,&0pd

... etc. etc.
.. many macro definitions later, the assembler reads the input file:

L 1,A
+ ‘TypeCheck_L 1,A
ST 1,B
*** MNOTE *** 1,Possible type conflict between ST and B?
+ TypeCheck ST 1,B
A 1,B
*** MNOTE *** 1,Possible type conflict between A and B?
A DS F
B DS H

Figure 79. Generated Statements from TypChkRX Macro
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rUser-Assigned Assembler Type Attributes

* We can utilize third operand of EQU statement for type assignment:

symbol EQU  expression,length, type

- Assembler’s “native” types are upper case letters (and '€’)

— We can use Jower case letters for user-assigned types

* Example (extend the REGS macro, slide Tech-8) to create a TYPEREGS

macro:
GRN EQU  &N,,C'g’ Assign value and type attribute 'g* for GPR
FR&N EQU &N, ,C'f’ Assign value and type attribute *f' for FPR

* GRnn symbols have type attribute 'g’, FRnn have 'f'

= Can use type attribute to check symbols used in register operands
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User-Defined Assembler Type Attributejs

One can obtain some relief from the limitations of the Assembler’s assignment of type attri-
butes by using the third operand of an EQU statement to assign user-defined type attributes
to program objects. As a reminder, the full syntax of the EQU statement is

symbol Equ expression[,[1ength][,type expression]]

The type_expression in the third operand must evaluate to an absolute quantity in the range
from O to 255. The “native” type attributes assigned by the assembler are all upper-case
letters or the '@' character, so the other values can be used for user-assigned atiributes.

A simple generalization of two previous examples will show how we could do further
assembly-time checking of instruction usage. First, consider the previously defined REGS
macro (see Figure 28 on page 106) that generates symbolic names to refer to various types
of registers. If we modify the EQU statements in those macros to include a user-assigned
type attribute, we could (for example) assign type 'g' to general purpose registers, 'f' to
floating point registers, and so forth. Then, a simple extension of the TypeChek macro (or
the L macro) can be used to verify that a symbolic name used to designate a register is of
the correct type.

First, in the TYPEREGS macro, the EQU statements are modified:

GR&N  EQU  &N,,C'g’ Assign value and type attribute 'g' for GPRs
FR&N  EQU &N, ,C'f! Assign value and type attribute *f' for FPRs
- - - etc.

As an example, suppose we want to extend the REGS macro described in “Case Study 1:
Defining Equated Symbols for Registers” on page 103 to create a TYPEREGS macro that
assigns a special type attribute to the symbols naming each register. Figure 80 on

page 189 shows how 1o do this.
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MACRO

TypeRegs
AIF
&J SetA
.GetArg ANOP
&7 SetC
&N SetA
AIF
GBLB
AIF
&L SetC
&N SetA
.Gen ANop
&T.R&N Equ
&N SetA
AILf
& (&T.Regs_Done)
.Next  ANOP
&J SetA
AIF
MEXIT
.Bad MNOTE
MEXIT
.Done  MNOTE
AGO
.Exit  MEND

(N'8SysList eq 0).Exit
1 Initialize argument counter

(Upper '&SysList(&J)') Pick up an argument
('ACFG' Index '&T!) Check type

(&N eq 6).Bad Error if not a supported type
&(&T.Regs_Done) Declare global variable symbol
(&(&T.Regs_Done)).Done Test if true already

(Lower '&T') Lower case for type attribute
0

, Generate Equ statements
&N,,C'aL’

&N+1

(&N 1e 15).Gen
SetB (1) Indicate definitions have been done

&J+1 Count to next argument
(% e N'&Syslist).GetArg Get next argument

8,'&SysMac. -- Unknown type ''&T.''.!

0,'&sysMac. -- Previously called for type &T..'
.Next

Figure 80. Instruction-Operand Type Checking: Assigning Register Types

This macro assigns the same symbolic names to register symbols, but also assigns special
type attributes that specify the type of register. These types can be used in the macros gen-
erated for each instruction type to verify correct usage.

A sample of the Type-Regs generated statements is shown in the following figure.

TYPEREGS  F,G

+FRO Equ
+FR1 Equ
+FR2 Equ

.. etc.
+FR15 Equ
+GRO Equ
+GR1 Equ
+GR2 Equ

. etc.
+GR15 Equ

0,,C'f!
1,,C'f"
2,,0'f"

15,,C'f!
6,,C'g’
1,,C'g!
2,,C'g’

15,,C'q’
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Instruction-Operand-Registef Type Checking

* Intent: check “typed” register names in type-checking macros

* Example: extend L macro (see slides Tech-76 and Tech-77)

Macro

&lab L &Reg, &0perand
6b1C &(TypeCheck_L_Valid),&(TypeCheck_L_RegType)

&TypOp SetC T'&Operand Type attribute of &Bperand

&Test SetA ('&(TypeCheck_L_Valid)' Find '&TypOp’) Check validity
AIf  (&Test ne 8).0K_Op Skip if valid

MNote 1, 'Possible type incompatibility between L and '‘&Dperand.’'?’

.0K_Op ANop Now, do the original L instruction

x Added checking for register type:

&TypRg SetC T'&Reg Type attribute of &Reg

&Test SetA ('&(TypeCheck_L_RegType)® Find '&TypRg') Check validity
AIf  (&Test ne 0).0KReg Skip if valid

MNote 1, 'Possible register incompatibility between L and ’’'&Reg.''?’

.O0KReg ANop Now, do the original L instruction

&lab  TypeCheck_L &Reg,&Bperand
MEnd

* Typical expected output...
L FR4,F
*** MNOTE *** 1,Possible type incompatibility between L and 'F'?
***x MNOTE *>** 1,Possible register incompatibility between L and *FR4'?
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Instruction-Operand-Register Type Checking

After assigning user-defined type attributes to the register symbols generated by the
TYPEREGS macro, the TypeChek macro (see Figure 75 on page 182) could be modified by
adding a keyword parameter &RegType, with a default value that includes ‘g*:

Macro
TypeChek &0p,&Valid,&RegType='gN' Mnemonic, set of types, RegType
Gb1C &(TypeCheck_8&0p. Valid),&(TypeCheck_ &0p)
Gb1C &(TypeCheck_80p._RegType)
&(TypeCheck_8&0p._Valid) SetC '&Valid' Save valid operand types
&(TypeCheck_&0p. RegType) SetC '&RegType'(2,K'&RegType-2) Save valid reg types
- - - etc.

The default &RegType values allow self-defining terms with type attribute 'N' (that is, self-
defining constants) and declared register types ('g') as register operands. As mentioned
before, the &RegType operand is a quoted string, to avoid the possibility that the
COMPAT(MACROCASE) option might convert the argument value to upper case. (Note: if
you want to use the apostrophe character as the value of a user-assigned type attribute, you
will need to add statements to remove the quotes from each end of the &Valid and
&RegType operands before assigning the strings to the global variables
&(TypeCheck_&Op._Valid) and &(TypeCheck_&Op._RegType) respectively.)

An enhanced L macro (see Figure 76 on page 182) can then be used to validate both the
register type and the operand type:
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Macro
&lab L &Reg,&0perand
Gb1C & (TypeCheck_L Valid),&(TypeCheck_L RegType)

&TypOp SetC T'&0Operand Type attribute of &0perand
8Test SetA ('&(TypeCheck L Valid)' Find '&TypOp') Check validity
AIf  (&Test ne 0).0K _Op Skip if valid
MNote 1,'Possible type incompatibility between L and ''&0perand.''?’
.0K_Op ANop , Now, check register validity
&TypRg SetC T'&Reg Type attribute of &Reg

&Test SetA ('&(TypeCheck L RegType)' Find '&TypRg') Check validity
AIf  (&Test ne 0).0KReg Skip if valid
MNote 1,'Possible register incompatibility between L and ''&Reg.''?’

.0KReg ANop , Now, do the original L instruction
&tab  TypeCheck_L &Reg,&0perand
MEnd

Figure 81. Instruction-Operand-Register Type Checking: “Instruction” Macro

This modification would then check that all values provided as register operands for the L

instruction are properly defined.

An example of the output of these macros is shown in the following figure.

TYPEREGS F,G Create typed names for registers
TYPCHKRX  L,FDEAVQX,RegType='gN' L instruction valid types
L 1,A Register operand self-defining
+ TypeCheck L 1,A
L GR1,C
*** MNOTE *** 1,Possible type incompatibility between L and 'C'?
+ TypeCheck_L GR1,C
L FR2,D Floating-point register
*** MNOTE *** Pssible register incompatibility between L and 'FR2'?
+ TypeCheck_L FR2,D
L FR4,F Float register and invalid operand

*** MNOTE *** 1,Possible type incompatibility between L and 'F'?
*** MNOTE *** 1,Possible register incompatibility between L and 'FR4'?

+ TypeCheck L FR4,F
A DS F
o DS CL3
D DS D
F DS S

These type-checking examples are incomplete, and are intended more as a detailed sketch
than a completed macro package. Feel free to extend and adapt them to suit your needs and

inclinations.

Part 3: Macro Techniques

191




Case Study 9c: Encapsulated Abstract Data Types

* Intent: declare two user types, and define operations on them

» Types: Date and Duration (or Interval) between 2 Dates

- Unfortunately, both Date and Duration start with D
— So, we’ll use "Interval” as the safer {if less intuitive) term

* A measure of elapsed time, in days

- We will use lower case letters 'd' and 'i' for our types!

» DCLDATE and DCLNTVL macros declare variables (abstract data types):
DCLDATE Birth,Graduation,Marry,Hire,Retire,Expire

DCLNTVL Training, Employment,Retirement,LoanPeriod

HLASM Macro Tutorial  © Copyright IBM Corporation 1983, 2002. All rights reserved. Tech-83

Case Study 9c: Encapsulated Abstract Data Types

To overcome the limitations of using just assembler-assigned types, we will now examine a
set of macros that declare and operate on data items with just two specific types: calendar
dates, and durations or intervals of elapsed time in days. (Because both “date” and “dura-
tion” begin with the letter “D”, we’ll use “interval” as the preferred term.) With these two
data types, we can perform certain kinds of arithmetic and comparisons:

* iwo dates may be subtracted to yield an interval

* an interval may be added or subtracted from a date 1o yield a date
* two intervals may be added or subtracted to yield a new interval

* dates may be compared with dates, and intervals with intervals
Any other operation involving dates and intervals is invalid.

First, we will examine two macros that “declare” variables of type “date” and “interval”,
(DCLDATE and DCLNTVL, respectively). Each macro will accept a list of names to be
declared with that type, assign “private” type attributes 'd*' and 'i', and allocate storage for
the variables.
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User-Assigned Type Attributes: DCLDATE Macro

Macro ,

DCLDATE

6b1C  &bateTyp
&pateTyp SetC ‘d’
&Datelen SetA 4
*

&NV

SetA N'&SysList
&K SetA 8
.Test Aif (8K ge &NV).Done
&K SetA &K+l

bC PL&Datelen. 8"
Ago  .Test
.Done MEnd

Dclbate LoanStart, LoanEnd
+ pC PLA’E’

+LoanStart Equ *—4,4,C'd’

+ BC PLA'E’

*-4,4,C'd’

+LoanEnd Equ

» Declaration of DATE types made by DciDate macro

Length of a DATE type could also be a global variable

&SysList(8K) Equ *-&Datelen.,&DBatelen.,C'&DateTyp’

Args = list of names

Type attr of Date variable
User type attr is lower case ‘d’
Dates stored as PL4'yyyyddd’

Number of arguments to declare
Counter

Check for finished

Increment argument counter

Define storage as packed decimal
Befine name, length, type

Declare 2 date fields
Define storage as packed decimal
Define name, length, type
Define storage as packed decimal
Define name, length, type
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Tech-84

First, we will illustrate a macro Dc1Date to declare variables of type “date”. The DclDate
macro accepts a list of names, and allocates a packed decimal variable of 4 bytes for each,
which we assume are represented as Julian dates in the form PL4'yyyyddd'

Macro
DclDate
Gb1C &DateTyp
&DateTyp SetC ‘'d'
&DatelLen SetA 4
*
&NV SetA N'&SysbList
&K SetA 0O
.Test Aif (& ge &NV).Done
&K SetA &K+l
DC PL&Datelen.'0"
&SysList (&K) Equ
Ago .Test
.Done MEnd

*-gDatelen. ,&DatelLen.,C'&DateTyp’

Type attr of Date variable
User type attr is lower case 'd’
Dates stored as PL4'yyyyddd’

Length of a DATE type could also be a global variable

Number of arguments to declare

Counter

Check for finished

Increment argument counter

Define storage as packed decimal

Define name, length, type

Figure 82. Macro to Declare “DATE” Data Type

Sample calls to the DCLDATE macro are illustrated in Figure 83 below:

Print  NoGen
DciDate Birth,Hire,Degree,Retire,Decease Declare 5 date fields
Print  Gen
Dc1Date LoanStart,LoanEnd Declare 2 date fields
+ DC PL4'E? Define storage as packed decimal
+LoanStart Equ *-4,4,C'd’ Define name, length, type
+ DC PL4'O? Define storage as packed decimal
+Loanknd Equ *-4,4,C'd’ Define name, length, type

Figure 83. Examples of Declaring Variables with “DATE” Data Type
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| User-Assigned Type Attributes: DCLNTVL Macro

¢ Declaration of INTERVAL types made by DcINtvl macro
- Initial value can be specified with Init= keyword

Macro , Args = 1ist of names
DCLNTVL &Init=8 Dptional initialization value
Gb1C &NtvITyp Type attr of Interval variable
LclA &Ntvlilen Length of an Interval variable
&NtviTyp SetC 'i® User type attr is lower case 'i'
&Ntvilen SetA 3 Intervals stored as PL3'ddddd’
¥ Length of an INTERVAL type could also be a global variable
&NV SetA N'&Syslist Number of arguments to declare
&K SetA 8 Counter
.Test Aif (8K ge 8NV).Done Check for finish
&K SetA 8&K+1 Increment argument count
BC PL&NtvILen. '&Init. " Define storage
&SysList(&K) Equ *—&Ntvllen.,&8NtviLen.,C'8NtviTyp' Declare name, length, type
Ago  .Test
.Done MEnd
DcINtvl  Week, Init=7
+ pC PL3'7® Define storage
+Week Equ *-3,3,C'§’ Name, length, type
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The DcINtvl macro also accepts a list of names, and allocates a packed decimal field of 3
bytes for each, which we will assume represents an interval of up to 99999 days in the form
PL3'ddddd’. In addition, a keyword variable &Init= can be used to supply an initial value for
all the variables declared on any one macro call.

Macro
DCLNTVL &Init=6 Declare a time interval in days
Gb1C &NtviTyp Type attr of Interval variable
LclA B&NtviLen Storage length of interval variable
&NtviTyp SetC 'i! User type attr is lower case 'i'
&NtviLen SetA 3 Intervals stored as PL3'ddddd’
R Length of an INTERVAL type could also be a global variable
&NV SetA N'&SysList Number of names to declare
&K SetA © Counter
.Test Aif (&K ge &NV).Done Check for finish
&K SetA &K+l Increment argument count
bC PL&NtviLen.'&Init' Declare variable and initial value
&SysList(&K) Equ *-&NtviLen.,&NtviLen.,C'&NtviTyp' Declare name, length, type
Ago .Test Check for more arguments
.Done MEnd

Figure 84. Macro to Declare “INTERVAL” Data Type

Sample calls to the DCLNTVL macro are illustrated in Figure 85 on page 135 below:
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Aaa DcINtvl Vacation,Holidays

+ DC PL3'0’ Define storage

+Vacation Equ  *-3,3,C'i! Name, length, type

+ DC PL3'0’ . Define storage

+Holidays Equ  *-3,3,C'i' Name, length, type
DcINtvl LoanTime

+ DC pL3'0’ Define storage

+LoanTime Equ *-3,3,C'i' Name, length, type
DcINtvl  Year,Init=365

+ DC PL3'365! Define storage

+Year Equ *-3,3,C'3! Name, length, type
DcINtvl LeapYear,Init=366

+ DC PL3'366" Define storage

+LeapYear Equ  *-3,3,C'3’ Name, length, type
DcINtvl Week,Init=7

+ DC PL3'7? Define storage

+Week Equ  *-3,3,C'3! Name, length, type

Figure 85. Examples of Declaring Variables with “INTERVAL” Data Type
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Calculating With Date Variables: CalcDat Macro

* Now, define operations on DATEs and INTERVALs

* User-callable CalcDat macro calculates dates:
&AnsDate CalcBat 8&Argl, 0p,8Arg2 Calculate a Date variable

* Allowed forms are:

ResultDate CalcDat Date,+, Interval Bate = Date + Interval
ResultDate CalcDat Date,—,Interval Date = Date - Interval
ResultDate CalcDat Interval,+,Date Date = Interval + Bate

* CalcDat validates (abstract) types of all arguments,
and calls one of two auxiliary macros

DATEADBI Datel, LBat, Interval,LNv],AnsDate,AnsLen Date = Date+Interval
DATESUBI Datel, LDat,Interval,LNv],AnsDate,AnsLlen Date = Date-Interval

- Auxiliary service macros (“private methods”) understand actual data
representations (“encapsulation™)
— In this case: packed decimal, with known operand lengths
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Calculating With Date Variables: CalcDat Macro ...

* Calculate Date=Date+Interval or Date=Interval+Date
— DATESUBI and DATEADDI are “private methods”

Macre , Most error checks omitted}!!
&Ans CALCDAT &Argl, &0p, 8Arg2 Calculate a date in &Ans
GbIC &NtviTyp,&DateTyp Type attributes
&T1 SetC T'&Argl Save type of 8Argl
&T2 SetC T'8Arg2 And of &Arg2
AVf  ('&T1&T2' ne '2DateTypaNtviTyp' and X
*&T1&T2' ne '8NtviTyp&DateTyp').Errd Validate types
Aif  ('&0p’ eq '+’).Add Check for add operation
DATESUBI &Argl,L’'&%Argl,8Arg2,L’'&Arg2,8Ans,L'8Argl B = D-I
MExit

. Add AIF  ('&T1' eq "&NtviTyp').Add2 1st opnd is interval of days
DATEADDI 8Argl,L'8Argl,3Arg2,L 8Arg2,8Ans,L'8Argl B = D+I

MExit
. Add2 DATEADDI &Arg2,L’'8Arg2,8Argl,L &Argl,3Ans,L'8Arg2 B = I+D
MExit
.Errs MNote 8, 'CALCDAT: Incorrect declaration of Date or Interval?’
MEnd
Hire CalcDat Degree,+,Year
+ DATEADDI Degree,L’Degree, Year,L'Year,Hire,L'Degree B = D+I
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Calculating with Date Variables

Having written macros to declare the two data types, we can now consider macros for doing
calculations with them. First, we will examine a date-calculation macro CALCDAT, with the
following syntax:

&AnsDate CalcDat &Argl,Op,&Arg2 Calculate a Date variable

where &AnsDate must have been declared a “date” variable, and the allowed operand com-
binations are:

ResultDate CalcDat Date,+,Interval Date = Date + Interval
ResultDate CalcDat Date,-,Interval Date = Date - Interval
ResultDate CalcDat Interval,+,Date Date = Interval + Date

"
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We are now in a position 1o write a CalcDat macro that validates the types of all three oper-
ands before setting up the actual computations which will be done by two “service” macros
called DATEADDI (to add an interval to a date) and DATESUBI (to subtract an interval from a
date). These service macros will “understand” the actual representation of “date” and

“interval” variables, and can perform the operations accordingly.

Aif  ('&0p' ne '+' and '%0p' ne '-').Err2

Aif  (T'8Ans ne '&DateTyp').Err3
&T1 SetC T'&Argl Save type of &Argl
&12 SetC T'B&Arg2 And of &Arg2

Aif  ('&T1&T2' ne '&DateTyp&NtvlTyp' and

MExit

DATEADDI &Argl,L'&Argl,&Arg2,L'&Arg2,8&Ans,L'8Argl D
MExit

.Add2 DATEADDI &Arg2,L'&Arg2,&Argl,L'&Argl,8Ans,L'8Arg2 D
MExit

.Errl MNote 8,'&M.Incorrect number of arguments'’
MExit

.Err2 MNote 8,'&M.0Operator ''&0p'' not + or -!
MExit

MNote 8,'&M.Target ''&Ans'' not declared by DCLDATE®
MExit

MExit
MExit

.Err5 MNote 8,'8M.Subtraction operands in reversed order'
MEnd

Macro
&Ans CALCDAT &Argl,&0p,&Arg2 Calculate a date in &Ans
M SetC 'CALCDAT: ' Macro name for messages
Gb1C &NtviTyp,&DateTyp Type attributes

L}

.Err3 Aif  (T'%Ans eq '0').Err3a Check for omitted target

Aif  (N'&SysList ne 3).Errl Check for required arguments

'8T1&T2' ne '&NtviTyplDateTyp').Errd Validate types
Aif  ('&0p' eq '+').Add Check for add operation
Aif  ('&T1&T2' ne '8DateTyp&Ntvityp').Err5 Bad operand seq?
DATESUBI &Argl,L'&Argl,&Arg2,L'&Arg2,8Ans,L'8argl D = D-I

.Add AIF  ('&T1' eq '&Ntv1Typ').Add2 1st opnd an interval of days

D+1

14D

.Err3A  MNote 8,'&M.Target Date variable omitted from name field'

.Errg MNote 8,'8M.Incorrect declaration of Date/Interval arguments'

Figure 86. Macro to Calculate “DATE” Results

Some examples of calls to the CalcDat macro are shown in the following figure.

Hire CalcDat Degree,+,Year

+ DATEADDI Degree,lL'Degree,Year,L'Year,Hire,L'Degree D
Hire CalcDat Year,+,Degree

+ DATEADDI Degree,l 'Degree,Year,L'Year,Hire,L'Degree D
Hire CalcDat Degree,-,Year

+ DATESUBI Degree,l 'Degree,Year,L'Year,Hire,L'Degree D

D+1

1+D

D-1I

Figure 87. Examples of Macro Calls to Calculate “DATE” Results

The “service” macros DATEADDI and DATESUBI do the real work: they must be able to handle
whatever representation is chosen for dates {e.g. YYYYDDD for Julian dates, or YYYYMMDD for
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readable dates), accounti'ng for things like month lengths and leap years. These two macros
would most likely invoke a general-purpose service subroutine that handles all such details,
rather than generating the rather complex.in-line code to handle all possible cases. -

Calculating Interval Variables: CalcNvi Macro
» Define user-called CalcNvl macro to calculate intervals
e Allowed forms are:
ResultInterval CalcNvl Date,—,Date Difference of two date variables
ResultInterval CalcNvl Interval,+,Interval Sum of two interval variables
ResultInterval CalcNvl Interval,—,Interval Difference of two intervals
ResultInterval CalcNvl Interval,*,Number Product of interval, number
ResultInterval CalcNvl Interval,/,Number Quotient of interval, number
» CalcNv] validates declared types of arguments, and calls one of five
auxiliary macros (more “private methods”):
NTVLADDI Nvll,Lenl,Nv12,Len2,Ansl,Anslen Nvl = Nvl + Nv1
NTVLSUBI Nvll,Lenl,Nvl2,Len2,AnsI,Anslen Nvl = Nv]l = Nvl
NTVLMULI Nvll,Lenl,Nvi2,Len2,Ansl,AnsLen Nvl = Nvl * Num
NTVLBIVI Nv1l,Lenl,Nv12,Len2,AnsI,AnsLen Nvl = Nvl / Num
DATESUBD Datel,LDatl,Date2,LDat2,AnsI,Anslen Nvl = Date-Date
HLASM Macro Tutorial © Copyright IBM Corporation 1983, 2002. All rights reserved. Tech-88
Calculating Interval Variables: CalcNvl Macro ...
Macro
&Ans CALCNVL  8Argl, &0p, 8Arg2
6b1C  &Ntv1Typ,&BateTyp Type attributes
8X(C'+') SetC 'ADD’ Name for ADD routine
&X(C*-') SetC ’'SUB’ Name for SUB routime
&X(C'*') SetC 'MUL® Name for MUL routine
&X(C'/') SetC 'DIV’ Name for DIV routine
&z SetC ‘'C''&0p'*’ Convert &0p char to self-def term
an SetC T'aArgl Type of Argl
&T2 SetC T'8Arg2 Type of Arg2
Aif  (°&T18T230p' eq '&DateTypidateTyp.—').BB Chk date-date
Aif  (°&T2' ne 'N’).II Second operand nonnumeric
NTVLRX(8Z).I Argl,L’'&Argl,=PL3'&Arg2',3,8Ans,L & ns I op const
MExit
II NTVL8X(82Z).I &Argl,L'&Argl,&8Arg2,L'8Arg2,8Ans,L'8Ans I op I
MExit
.Db DATESUBD &Argl,L’&Argl, 8Arg2,L'8Arg2,8Ans,L '8&Ans date—date
MEnd
Days CALCNVL Days, +,Days Interval + Interval
+ NTVLADDI Days, L'Days, Days, L'Days, Days, L' Days Topl
Days CALCNVL  Hire,—,Degree Date — Date
+ DATESUBD Mire,L'Hire,Degree,L’Degree,Days,L'Days date-date
HLASM Macro Tutorial  © Copyright IBM Corporation 1993, 2002. All rights reserved. Tech-89

Calculating with Interval Variables

A second macro CalcNvl to calculate intervals of time is similar in concept, but somewhat
more complex because of a greater allowed set of operand combinations:

&AnsNtvl  CalcNvl &Argl,Op,&Arg2 Calculate an Interval variable

where &AnsNtvl must have been declared a “interval” variable, and the allowed operand
combinations are:
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Interval CalcNvl Date,-,Date Difference of two date variables
Interval CalcNvl Interval,+,Interval Sum of two interval variables

Interval CalcNvl Interval,-,Interval Difference of two interval variables
Interval  CalcNvl Interval,*,Number Product of an interval and a number
Interval CalcNvl Interval,/,Number Quotient of an interval and a number

The CalcNvl macro validates its arguments before generating calls to the “operational”

macros that do the actual arithmetic.

Macro
8Ans CALCNVL &Argl,&0p,8&Arg2
Gb1C &NtviTyp,&ateTyp Type attributes
&M SetC 'CALCNVL: °* Macro name for messages
Aif  (N'&SysList ne 3).Errl Wrong number of arguments
Aif  (T'&Ans ne '&Ntv1Typ').Err2 Invalid target
Aif  (T'&%p ne 'U' or K'&0p ne 1).Err5 Invalid operator
&X(C'+') SetC 'ADD’ Name for ADD routine
&X(C'-') SetC 'SUB!' Name for SUB routine
&X(C'*') SetC 'MuL’ Name for MUL routine
&X(C'/') SetC 'DIV’ Name for DIV routine
&z SetC ‘'C''&0p''’ Convert &0p to self-def term
Jx &7 used as an index into the &X array
&T1 SetC T'&Argl Type of Argl
&T2 SetC T'&Arg2 Type of Arg2
Aif  ('&T1&T2&0p' eq '&DateTyp&DateTyp.-').DD Chk date-date
Aif  ('&T1' ne '&NtviTyp').Err3 Invalid first operand

Aif  ('&T2' eq '&NtviTyp' and
('%0p' eq '+' or '&0p' eq '-')).II
Aif  ('80p' eq '+' or '80p' eq '-' or '&0p' eq '*').0pOK,
('&0p' ne '/').Errd
.0pOK Aif  ('&T2' ne 'N').Err4 Second operand nonnumeric
* Third operand is a constant
NTVL&X(&Z).I Argl,3,=PL3'&Arg2',3,8Ans,3 interval op const

MExit

11 NTVL&X(&Z).I &Argl,3,8Arg2,3,%Ans,3 interval op interval
MExit

.DD DATESUBD &Argl,4,8Arg2,4,8Ans,3 Difference of 2 dates
MExit

.Errl MNote 8,'&M.Incorrect number of arguments’
MExit

Err2  Aif (T'%Ans ne '0').Err2A Check for omitted target
MNote 8,'&M.Target variable omitted®
MExit

.Err2A  MNote 8,'&8M.Target ''&Ans'' not declared by DCLNTVL'
MExit

Err3 MNote 8,'&M.First argument invalid or not declared by DCLNTVL®
MExit

Errd MNote 8,'&M.Third argument invalid or not declared by DCLNTVL'
MExit

-Err5 MNote 8,'8M.Invalid (or missing) operator ''&0p'''
MEnd

X

X

Figure 88. Macro to Calculate “INTERVAL” Results

Note that this macro provides a form of encapsulation: the “operators” (or “methods”) are

hidden internally, and are not expected to be visible to the programmer. Thus, the macro

names NTVLADDI, NTVLSUBI, NTVLMULI, NTVLDIVI, and DATESUBD perform the actual operations,

and need not be visible directly to the user of the CALCNVL macro.
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The calls to the “private” NTVLxxxl macros are generated with a form of “associative indi-
rect addressing” by using the single-character operator (such as + or —) as an index into a
four-entry “table” of strings specifying which macro name will be generated.

+

+

+

+

+

+

+

+

Days

Days

Days

Days

Days

Days

Days

Days

CALCNVL Days,+,Days Interval + Interval

NTVLADDI Days,L 'Days,Days,L 'Days,Days,L'Days Topl
CALCNVL Hire,-,Degree Date - Date

DATESUBD Hire,L'Hire,Degree,L'Degree,Days,L'Days date-date
CALCNVL Hire,-,Hire Date - Date

DATESUBD Hire,L'Hire,Hire,L'Hire,Days,L'Days date-date
CALCNVL Days,-,Days Interval - Interval

NTVLSUBI Days,L 'Days,Days,L'Days,Days,L'Days Topl

CALCNVL Days,+,10 Interval + Number .
NTVLADDI Argl,L'Days,=PL3'10',3,Days,L'Days I op const

CALCNVL Days,-,10 Interval - Number
NTVLSUBI Argl,L'Days,=PL3'10*,3,Days,L'Days I op const

CALCNVL Days,*,10 Interval * Number
NTVLMULI Argl,L'Days,=PL3'10',3,Days,L'Days I op const

CALCNVL Days,/,10 Interval / Number
NTVLDIVI Argl,L'Days,=PL3'16',3,Days,L'Days 1 op const

Figure 89. Examples of Macro Calls to Calculate “INTERVAL” Results

As you can see, these macros provide a fairly strong degree of type checking of their argu-
ments to ensure that they conform to the sets of operations appropriate to their types. If we
had writien only machine instructions, the opportunities for operand type conflicts, or
operator-operand conflicts, would not only have been larger, but might have gone unde-
tected. In addition, once a set of useful macros has been coded, you can think in terms of
“higher level” operations, and avoid the many details necessary to deal with the actual
machine instructions.

It is clear that these macros can be extended to avoid using the Assembler’s (rather limited)
type-attribute mechanism, by maintaining global data structures containing information such
as a programmer-declared type, length, and so forth.
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Example of an Interval-Calculation Macro

= Macro NTVLADDI adds intervals to intervals

Macro
&L NTVLADDI &Argl,&L1,8Arg2,&L2,8%Ans,&LAns

AIf  ('%Argl’ ne '&Ans’).T1 Check for Ans being Argl

AIf  (&L1 ne &LAns).Error Same field, different lengths
&L AP &Ans. (&Lans),8Arg2. (8L2) Add Arg2 to Answer

MExit
.M AIf  ('&Arg2’ ne '8Ans’).T2 Check for Ans being Arg2

AIf  (&L2 ne &lLAns).Error same field, different lengths
EAR AP &Ans. (&Lans),&Argl. (&L1) Add Argl to Answer

MEXit
.T2 ANop ,
&L ZAP  &Ans. (&lans),&Argl.(&L1) Move Argl to Answer

AP &Ans. (&Lans),8Arg2. (3L2) Add Arg2 to Argl

MExit

.Error MNote 8, 'NTVLADDI: Target '‘&Ans'' has same name as, but diffe*
rent length than, a source operand’

MEnd
A NTVLADDI X,3,=P'5',1,X,3
+A AP X(3),=P'5'(1) Add Arg2 to Answer
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The “service” macros for handling intervals will probably be much simpler than those for
dates (except for DATESUBD, which subiracts two dates 1o yield an interval, and therefore must
account for the choice of date representiation, leap years, and the like). As an example of an
interval-handling macro, consider the possible implementation of NTVLADDI shown below.

Macro
&L NTVLADDI &Argl,&L1,8&Arg2,8L2,8&Ans,&LAns
AIf  ('&Argl' ne '&Ans').T1 Check for Ans being Argl
AIf  (&L1 ne &LAns).Error Same field, different lengths
&L AP &Ans. (&Lans),&Arg2.(&L2) Add Arg2 to Answer
MExit
.11 AIf  ('&Arg2' ne '8Ans').T2 Check for Ans being Arg2
AIf  (&L2 ne &LAns).Error Same field, different lengths
&L AP 8Ans. (8Lans),8Argl.(&L1) Add Argl to Answer
MEXit
.12 ANop ,
&L ZAP  B&Ans.(&Lans),&Argl.(8L1) Move Argl to Answer
AP &Ans. (&Lans),&Arg2. (&L2) Add Arg2 to Argl
MExit
.Error MNote 8,'NTVLADDI: Target ''&Ans'' has same name as, but diffe*
rent length than, a source operand'
MEnd

Figure 90. Macro to Add an Interval to an interval

The macro checks first to see if the "answer” or “target” operand &Ans is the same as one
of the “source” operands &Arg1 and &Arg2. If one of them matches, the macro then checks
to ensure that the lengths specified are the same, and issues an error message if not. If
neither source operand matches the target, then the first operand is copied to the target
field, and the second operand is then added to it.

Examples of code generated by the macro are shown in the following figure:
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A NTVLADDI X,3,=P'5',1,X,3

+A AP X(3),=P'5'(1) ‘ Add Arg2 to Answer
B NTVLADDI X,3,Year,2,Y,3
+B ZAP  Y(3),X(3) Move Argl to Answer
+ AP Y(3),Year(2) Add Arg2 to Argl
C NTVLADDI X,3,Year,2,X,4

*** MNOTE *** B NTVLADDI: Target 'X' has same name as, but
different length than, a source operand

X DS PL3
Y DS PL3
Year DC P'365"

The NTVLADDI (and related) macros could be generalized to allow length attribute refer-
ences 1o be used for length operands, by inserting some additional SETA statements before
the AIF tests of the lengths. This is left as an exercise for the reader.

Comparison Operators for Dates and Intervals

* Define comparison macros CompDate and CompNtv]

&Label CompDate &Datel,&0p,8Date2,&True Compare two dates
&label CompNtvl &Ntv]l,&0p,8Ntv12,&True Compare twe intervals

- &Op is any useful comparison operator (EQ, NEQ, GT, LE, etc.)
- &True is the branch target for true compares

Macro
8Label CompDate &Datel,&0p,&Date2,&True
6bJA &bDatelen Length of Date variables
&Mask(1) setA 8,7,2,13,4,11,18,5,12,3 BC Masks
&T SetC ' EQ NEQ 6T NGT LT NLT GE NGE LE NLE *® Operators
ac setC (Upper '80p’) Convert to Upper Case
&N SetA ('&T' INDEX '&C') Find operator
AIf (3N eq 6).BadOp
2] SetA (&N+3)/4 Calculate mask index

&Label CP &Datel. (&Datelen), &Date2. (&Datelen)
BC &8Mask(&N) ,&True  Branch to 'True Target'

MExit
.Bad0p MNote B, '&SysMac: Bad Comparison Operator '‘&0p.'"’
MEnd
HLASM Macro Tutorial  © Copyright IBM Corporation 1933, 2002. Al rights reserved. Tech-91

Comparison Operators for Dates and Intervals

One further set of functions is needed 1o complete the set of macros, the comparison opera-
tors. Suppose we define two macros CompDate and CompNtvl:

&Label CompDate &Datel,&0p,&Date2,&True Compare two dates
&l abel CompNtvl &Ntv11,80p,&Ntv12,&8True Compare two intervals

where the allowed operators could include mnemonic terms such as EQ, NEW, GT, NGT, LT,
NLT, GE, NGE, LE, NLE, or “graphics” such as =, <, <=, >, >=, <>, and the like. The fourth
operand &True is the name of an instruction to which control should branch if the compar-
ison relation is true. As an example, the CompDate macro could be written as follows:
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Macro
&Label  CompDate &Datel,&0p,&Date?2,&True

Gb1A &Datelen Length of Date variables
&Mask (1) SetA 8,7,2,13,4,11,16,5,12,3 BC Masks
&T SetC ' EQ NEQ GT NGT LT NLT GE NGE LE NLE ' Operators
&C SetC (Upper '&0p') Convert to Upper Case
&N SetA ('&T' INDEX '&C') Find operator
AIf (N eq 0).BadOp
&N SetA (&N+3)/4 Calculate mask index

&Label CP  &Datel.(&DateLen),&Date2.(&Datelen)
BC &Mask (&N),&True  Branch to 'True Target'
MExit

.BadOp  MNote 8,'&SysMac: Bad Comparison Operator ''&0p.''!'
MEnd

Figure 91. Comparison Macro for “Date” Data Types

The only unusual consideration in this macro is the ordering of the allowed operators in the
character variable &T: EQ must appear before NEQ (and similarly for the other combinations)

so that if the specified operator is EQ, the INDEX function does not match the EQ in NEQ

before finding the correct maitch at EQ.

The code generated by the macro is shown in the following figure:

XXX Compdate A,eq,B,ABEqual
+XXX cp A(4),B(4)
+ BC 8,ABEqual Branch to 'True Target'
YY Compdate A,ne,B,ABNeq
+YY CP A(4),B(4)
+ BC 7,ABneq Branch to 'True Target'
A DS PL4
B DS PL4
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Case Study 10: “Front-Ending” a Macro

* Put your code “around” a call to a library macro, to:

- Validate arguments to the library macro
~ Generate your own code before/after the library macro’s

* Use OPSYN for dynamic renaming of opcodes:

1. Define your “wrapper” macro with the same name

2. OPSYN the name to a temp, then nullify itself (1)

3. Do “front-end” processing, then call the library macro

4. Do “back-end” processing

5. Re-establish the “wrapper” definition from the temp name

* Example: “Wrapper” for READ macro

Macro
&L READ  &A,&B,&C
READ_XX OpSyn READ Save Wrapper's definition as READ_XX
READ Opsyn , Nullify this definition
--- ...perform 'front-end’ processing
&L READ  3A,8B,8C Call system version of READ
--- ...perform ‘back-end’ processing
READ OpSyn READ_XX Re—establish Wrapper's definition
MEnd
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Case Study 10: “Front-Ending” a Macro

Sometimes it is useful to modify slightly the behavior of a “system” or other established
macro. Making changes to the macro itself can lead to maintenance problems if service or
updates are provided to the original definition. If your needs can be met by “front-ending” or
“wrapping” the original macro definition, it can be called by the “wrapper” macro using the
same name! , -

This may seem strange, because the assembler knows of only one definition of each opera-
tion code at a given time. The technique used is this:

1. Define a “wrapper” macro with the same name as the original macro.

2. When the “wrapper” is expanded, it uses OPSYN to save its name under a different
name, and then nullifies its own definition!

3. The “wrapper” macro does whatever “front-end” processing it likes, and then calls the
original macro. Because the “wrapper” definition has been nullified, the assembler will
search the macro library for the intended “official” definition of the original macro; once
found, it will be encoded and the call will cause normal macro expansion.

4. When expansion of the original macro is finished, the “wrapper” macro can do any
further “back-end” processing needed.

5. Finally, the “wrapper” macro re-establishes its own definition, and exits.

To illustrate, suppose we want to “front-end” the READ macro, as shown in Figure 92 on
page 205 below:

204 Assembler Language as a Higher Level Language, SHARE Summer 2002



Macro
&L READ
READ_XX OpSyn
READ OpSyn
&L READ
READ OpSyn

MEnd

8A, 88, 8C
READ

bl
&A, 8B, 8C

READ_XX

Save Wrapper's definition as READ_XX
Nullify this definition

...perform 'front-end' processing
Call system version of READ
...perform 'back-end’ processing
Re-establish Wrapper's definition

Figure 92. Example of a Macro “Wrapper”

The “wrapper” macro cannot be placed in the macro library, because it would then replace
the original macro it is intended to “wrap”! Similarly, the wrapping macro cannot be placed
in a separate library concatenated before or after the wrapped macro, because the assem-

bler will always find the definition first in the search order, and never the other. If the

“wrapper” macro is not part of the source file, it can easily be inserted either via COPY or
as part of a PROFILE-option member (with a different name, of course!).
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Summary

* Easy to implement “High-Level Language” features in your Assembler
Language

¢ Start with simple, concrete, useful forms
* Build new “language” elements incrementally

* Useful resuits directly proportional to implementation effort
- Create as few or as many capabilities as needed
— Checking and diagnostics as simple or elaborate as desired

* New language can precisely match application requirements

* Bestof all: it’s fun!

HLASM Macro Tutorial  © Copyright IBM Corporation 1993, 2002. All rights reserved. Tech-93

Summary

We hope that this overview has conveyed how concepts of typical high-level languages can
be implemented in Assembler Language in a controlled, incremental, and comprehensible
way. Nothing unusual has been done here: all macro actions and designs are straightfor-

ward, with simple goals and results.

These macro techniques are also useful for teaching:

* One can start with very simple, concrete examples before attempting complex or abstract
designs.

» From a simple base, one can elaborate and extend the macros in many directions, to
enhance whatever features are interesting.

* One can create a “language of choice” with as few or as many features as desired. For
example, it is easy 1o design a “mini-language” with at least two different data types,
inter-conversion between them, operations on each (possibly involving mixing of types),
and input-output operations (possibly involving conversions to and from “external”
representations).”

The best aspect of using macros to build your own language is that you can watch what is
happening at each stage, and elaborate or tailor the results as desired.

A humorous example of dynamic language modification appeared many years ago in the
Reader’s Digest.”?

In a letter to The Economist, M. J. Shields, of Jarrow, England, points out that George
Bernard Shaw, among others, urged spelling reform, suggesting that one letter be altered
or deleted each year, thus giving the populace time to absorb the change. Shields writes:

" The author has seen examples of macro sets to perform recursive-descent parsing of expressions; to generate
in-line code for Format-statement conversion expansions; and even a single macro named “FORTRAN” followed
by a Fortran program all of whose statements were read by AREAD statements!

2 Reprinted by permission.
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For example, in Year 1 that useless letter “c” would be dropped to be replased by
either “k” or “s,” and likewise “x” would no longer be part of the alphabet. The
only kase in which “c” would be retained would be the “ch” formation, which will
be dealt with later. Year 2 might well reform “w” spelling, so that “which” and
“one” would take the same konsonant, wile Year 3 might well abolish “y”

we o

replasing it with “i,” and lear 4 might fiks the “g-j” anomali wonse and for all.

Jenerally, then, the improvement would kontinue iear bai iear, with lear 5 doing
awai with useless double konsonants, and lears 6-12 or so modifaiing vowlz and
the rimeining voist and unvoist konsonantis. Bai ler 15 or sou, it wud fainali bi
posibl tu meik ius ov thi ridandant letez “c,” *y” and “x” -- bai now jast a memori
in the maindz ov ould doderez -- tu riplais “ch,” “sh” and “th” rispektivii.

Fainali, xen, aafte sam 20 iers of orxogrefkl riform, wi wud hev a lojikl, kohirnt
speling in ius xrewawt xe Ingliy-spiking werld. Haweve, sins xe Wely, xe Airiy, and
xe Skots du not spik Ingliy, xei wud hev to hev a speling siutd tu xer oun lengwij.
Xei kud, haweve, orlweiz lern Ingliy az a sekond lengwij et skuul!

-- lorz feixfuli, M. J. Yilz.
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Appendix A. External Conditional Assembly Functions

External Functions

HLASM Macro Tutorial © Copyright IBM Corporation 1983, 2002. All rights reserved. External Functions-1

External Conditional Assembly Functions

* Two types of external, user-written functions
1. Arithmetic functions: like 8A = AFunc (&Vl, &v2, ...)

8A SetAF ‘'AFunc',&V1,8V2,... Arithmetic arguments
&logN SetAF ’'Log2’',3N Logb(2&N)

2. Cnharacter functions: like & = CFunc(’&S1', '&S2°, ...)
&C SetCF ‘'CFunc',’&S1*,°'&52',... String arguments
&RevX SetCF ‘Reverse’, '3X’ Reverse(&X)

* Functions may have zero to many arguments
* Assembler’s call uses standard linkage conventions
- Assembier provides a save area and a 4-doubleword work area
* Functions may provide messages with severity codes for the listing
* Return code indicates success or failure
— Failure return terminates the assembly

HLASM Macro Tutorial  © Copyright IBM Corporation 1993, 2002. Al rights reserved. External Functions-2
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External Conditional Assembly Functions

IBM High Level Assembler for MVS & VM & VSE supports a powerful capability for invoking
externally-defined functions during the assembly. These functions are known as “conditional-
assembly functions”, and can perform almost any desired action. They are invoked using the
conditional assembly statements SETAF and SETCF, by analogy with the familiar SETA and
SETC statements.

The syntax of the statements is similar to that of SETA and SETC: a local or global variable
symbol appears in the name field; it will receive the value returned from the function. The
operation mnemonic indicates the type of function to be called, and the type of value to be
assigned to the “target” variable. The first operand in each case is a quoted character
expression (typically a character string) giving the name of the function to be called. The
remaining operands are optional, and their presence depends on the function: some func-
tions require no parameters, others may require several. The type of each of these parame-
ters is the same as that of the target variable: arithmetic parameters for SETAF, and
character parameters for SETCF.

A compact notational representation of this description is

8Arith_Var  SETAF 'Arith_function'[,arith_val]...
&Char_Var SETCF  'Char_function’'[,character_val]...

For example, we might invoke the LOG2 and REVERSE functions (o be discussed in detail
below) with these two statements:

&LogN SetAF ‘'Log2',8&N Logb (&N)
&RevX SetCF 'Reverse','&X' Reverse (&X)

When a function is first invoked, the assembler dynamically loads the module containing the
function into working storage, and prepares the necessary control structures for invoking the
function. The call to the function uses standard operating system calling conventions; the
assembler creates the calling sequence using the parameters and the function name sup-
plied in the SETxF statement.

Following normal parameter-passing conventions, the assembler sets R1 to point to a list of
addresses. The first address in this primary list is that of a “Request Information Area”, a
list of fullword integer values which describe the type of function (arithmetic or character),
the version of the interface, the number of arguments, the return code, and either the
returned value and the integer arguments (for SETAF), or the lengths of the respective argu-
ment strings (for SETCF). The remaining items in the primary list pointed to by R1 are
pointers to a 32-byte work area, and (for SETCF) pointers to the result string and each of the
argument strings.

HLASM provides a means whereby an external function can return messages and severity
codes; this allows functions to detect and signal error conditions in a way similar to the
facility provided by I/O exits.

At the end of the assembly, HLASM will check to see if each called external function wants a
final “closing” call so it can free any resources it may have acquired. Finally, the assembler
lists for each function the number of SETAF and SETCF calls, the number of messages
issued, and the highest severity code returned by the function.

We will illustrate the capabilities of these functions with two simple examples: an arithmetic
function LOG2 to evaluate the binary logarithm of an integer argument, and a string function
REVERSE 1o reverse the characters in a character-string argument. These examples don’t
really require an external function; they can be programmed easily (if inelegantly) using
familiar conditional assembly statements. However, external functions have considerably
greater power and flexibility than the conditional language can provide.
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| SETAF External Function Interface
Primary List Request Info Area
ii}—-v % RegInfoArea |—s| ParmList Version
WorkArea —> Function Type
t » * (n) means the
Reserved Number of Params field is
repeated n
Reserved Return Code times
% Message Buf F’lagl Reserved e HLASM
rovides a
Reserved P
32-byte work
Msg Lenl Msg Sev area
Function Value
(n)| Parameters 1-n
HLASM Macro Tutorial © Copyright IBM Corporation 1993, 2002. All rights reserved. External Functions-3

SETAF External Function Interface

The interface used by High Level Assembler to invoke external arithmetic-valued functions is
a standard calling sequence, with an argument list composed of two structures: the layout
of the Primary Address List and the Request Information Area is shown in Figure 93. (Sym-
bolic mappings of the Primary List and the Request Information Area are provided by the
ASMAEFNP macro.)

Primary List Request Info Area
Rl (——>»| A(ReqInfoArea) |————>| Parm List Version
A(WorkArea) —> Function Type
Reserved Number of Params
Reserved Return Code
4 Message Buffer Flag| Reserved
Reserved

Msg Len Msg Sev

Returned Fn. Value

Parameter 1

Parameter n

Figure 93. Interface for Arithmetic (SETAF) External Functions
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Arithmetic-Valued Function Example: LOG2

This LOG2 function evaluates the binary logarithm of its single argument, and returns the
exponent of the largest power of two not exceeding the value of the argument. Mathemat-
ically, the result of calling LOG2 with argument x can be expressed as

result = floor( log,(x) )

This result can be used easily 1o calculate the actual value of the corresponding power of
two. For example, if &Exponent is an arithmetic variable symbol returned by a call to LOG2,
the value of the actual power of two can be found using statements such as

&Exponent SETAF  'Log2',BArith_Var
&Power_of 2 SETA (1 SLA &Exponent)

Special treatment is provided for non-positive arguments, for which the binary logarithm is
undefined. Invalid calls to LOG2 cause either an error message or a nonzero return code to
be returned to the assembler (which will then terminate the assembly).

We will now describe the implementation of the LOG2 function. It uses no local storage, and
may reside anywhere below or above 16MB.

L0G2 Title 'HLASM Conditional-Assembly Function LOG2'

E2 2222222222 RSS2 RS s st R R st sttt s s S

*

Call from High Level Assembler:
&Int_Ans SETFA 'L0OG2',&Int_Arg

If &Int_Expr > 0, &Int_Ans is set to floor(log2(&Int_Arg))
That is, to the largest N such that
2**N <= &Int_Arg.

If the function is invoked incorrectly, the return code
will indicate the reason, and the assembler will terminate
the assembly. An appropriate message is provided, except
when the wrong parameter list version is detected, in which
the function causes assembly termination (the interface for
returning a message may not be available).

L I I N S A I I I R T T I I R

* 0 ko A % % A A * % ¥ ¥ * #

L2222 2RSSR RSt SR SRRt s st s s Rt st s R aR S E S S

Figure 94. Conditional-Assembly Function LOG2: Initial Commentary

The block of comments in Figure 94 describes the operation of the function, the returned
function values, and return codes.

I2 2222 SRR SRR R Rttt sttt s Rt S S

* Primary Entry Point *
E2 22222222822ttt it s st st s st s is s st s s 2 2 2222222 R TR S
Using LOG2,R15 Addressability for code
STM  R14,R4,D12(R13) Save caller's registers
Using AEFNPARM,R1 Map the Primary List
L R2,AEFNRIP Load address of Request Info Area
Using AEFNRIL,R2 Map Request Info Area

XC AEFNRETC,AEFNRETC  Set Return Code area to zero
XC AEFN_VALUE,AEFN_VALUE Set answer to zero also

Figure 95. Conditional-Assembly Function LOG2: Entry
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The entry point instructions illustrated in Figure 95 saves appropriate general registers, and
establishes mappings for the Primary List and the Request Information Area. The return
code field is set to zero, indicating that the assembler can continue. (This field will be
changed if the parameter list version is invalid.) In case the assembly might continue in
spite of errors, the result field is set to zero.

EEZ2 2222223223322t st s s s s st s Rt R RS S S]

* Validate Calling Sequence _ *
EE R R R e SRR TS 22222 s RsR2R2R2dRas st R st st it s st S

CLC  AEFNVER,=A(AEFNVER2)  Check for expected version

BNE  Err_LVer Branch if wrong PList version

CLC  AEFNTYPE,=A(AEFNSETAF) Check for SETAF function call

BNE  Err_Flyp Branch if wrong function type

CLC  AEFNUMBR,=A(OurNArgs) Check for single argument

BNE  Err_NArg Branch if wrong # of arguments

E2 2222222222222ttt s i s s s s s Rttt Sl

* Calling sequence is valid, check value of argument *
L2232 E 22222222222 s s s s s s s st s st s ss st st sttt ss s s
L R3,AEFN_PARM1 Get function argument in R1
LTR  R3,R3 Check for non-negative argument
BZ Zero_Arg Branch if zero argument
BM Neg Arg Branch if negative argument

Figure 96. Conditional-Assembly Function LOG2: Validation

The instructions illustrated in Figure 96 first validate that the function is being invoked with
the expected calling sequence. The function type, parameter list version, and number of
arguments are checked, and error messages for the assembler will be used 1o indicate
improper invocations. Once the interface has been checked, the argument itself is tested.
(Naturally, these checks could be eliminated if efficiency is a major concern.)

L2 22222222222t sttt st bt s s s s st S S

* Calculate Floor(Log2(argument)) in RO *
X2 2 S A R SRR 22 S R 2 L S 2 RS RS S SRR SRR RS RS2SRSS 2222222 SR

LA R4,31 Set answer to 1 past max possible
TestLoop DC OH'O’ Check magnitude of the argument

BCTR R4,Null Count answer down by 1

BXH  R3,R3,TestlLoop Double arg, branch if no overflow
R 2222222222222ttt s s s a2ttt s 2 s ss st i s sz s st sl S
* Store result and return to High Level Assembler *
EX 2222222 st st s s s s s s s 2 oS R 2SS asss s st i s st

ST R4,AEFN_VALUE Store result in Request Info List

LM R2,R4,D28(R13) Restore registers

BR R14 Return to Assembler

Figure 97. Conditional-Assembly Function LOG2: Computation

The “computation” of the logarithm itself is quite simple, as shown in Figure 97. The BXH
instruction effectively doubles the value in R3 each time it is executed, and compares the
doubled result to the previous (un-doubled) value. When a bit overflows into the sign posi-
tion, the BXH branch-test condition will fail and control will pass 1o the sequence that stores
the result and returns control to the assembler.
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Zero_Arg DC OH'0!
LA R4,BadArgZ
B Err_Exit

Neg_Arg DC 6H'0’
LA R4,BadArgN
B Err_Exit

Err_LVer DC oH'0’
B Return
Err_FTyp DC eH'e’

LA R4,BadFun
B Err_Exit

Err_NArg DC OH'O’
LA R4,BadNum

E2 22222 S22 RS SR RSt RS RRtaRaRRssRatiatssstaRstatsaRls S S

* Handle zero and negative arguments *
222222 2222222222222 22222 s s s s s s s s s s as s s s s st s s s e

Return for negative argument
Point to error message
And return with a message

Return for negative argument
Point to error message
And return with a message

L2 22222222222 st st s st s s s sRsRRsssRsst st

* Handle invalid calling sequences *
R 2222222222222 2222ttt s s s s s sttt ss st s s s S

Wrong interface version

MVC  AEFNRETC,=A(AEFNBAD) Can't count on doing a message

Return to Assembler immediately

Wrong function type
Point to error message
Return to Assembler

Wrong number of arguments
Point to error message

Figure 98. Conditional-Assembly Function LOG2: Error Handling

The error-handling code in Figure 98 provides either an immediate termination return to the

assembler (at Err_LVer) in case the parameter list format is unacceptable, or points to an

error message and its preceding length byte.

Err_Exit DC OH'0’

L R1,AEFNMSGA
Drop R1

XR R3,R3

IC R3,D0(,R4)
STH  R3,AEFNMSGL

BCTR R3,Null

EX R3,Move_Msg
Return DC OH'6"’

LM R2,R4,28(R13)

Drop R2,R15

BR R14

Move Msg MVC

DB (*-*,R1),D1(R4)

MVC  AEFNMSGS,=Y(ErrSev) Set error message severity

Get pointer to message buffer

Clear for message length

Get message length

Store for assembler's use
Decrement for MVC instruction
Move message to buffer

Return to HLASM
Restore R2-R4

Release addressability
Return to assembler

Executed

Figure 99. Conditional-Assembly Function LOG2: Error Message Handling

The error-handling code in Figure 99 moves messages to the assembler’'s message buffer,
and sets the message severity code 1o 12 (as defined by the symbol ErrSev).
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EE RS2SRSS 22222 R st st s s s SRRt sttt LSS SR

* Error Messages *
E RS RS RSS2 SRR 222 SRRt ast s s s s s s s s ss s st ssss s s s
BadFun DC AL1(L'BadFunM) Length of message

BadFunM DC C'Wrong function type (not SETAF)'

BadNum DC AL1(L'BadNumM) Length of message
BadNumM DC C'Wrong number of arguments (not 1)’

BadArgZ DC AL1(L'BadArgZM) Length of message
BadArgZM DC C'Zero argument’

BadArgN DC AL1(L'BadArgNM) Length of message
BadArghNM DC C'Negative argument'

Figure 100. Conditional-Assembly Function LOG2: Error Message Handling

Each message text shown in Figure 100 is defined with a preceding byte containing its

length.
E2 SR 2222222t ss sttt s sttt st s stssstsss s S
* Equates for Registers and Displacements *
L2222 2222222822222 s s s s sz s s s st s st s ss st sd
Null Equ © Null Register for BCTR
R1 Equ 1 A(Parm 1ist), A(msg buffer)
R2 Equ 2 A(Req info 1ist)
R3 Equ 3 Arg test, msg length
R4 Equ 4 Result value, msg address
R13 Equ 13 Save area
R14 Equ 14 Return address
R15 Equ 15 Code base
Do Equ © Displacement 6
D1 Equ 1 Displacement 1
D12 Equ 12 Displacement 12
D28 Equ 28 Displacement 28

Figure 101. Conditional-Assembly Function LOG2: Symbol Equates

The equates shown in Figure 101 are typical, except that symbols are defined for use wher-
ever an absolute displacement is to be used in an instruction. This technique helps in
locating (and, if necessary, modifying) non-symbolic references in instructions.

E2 22222 SR RsRss s Rttt Rttt Rt SRS S

* Equates for values used in argument and call validations *
E2 2222222222222 sttt s R s st s s st sssssR sssstas R s g
OurNArgs Equ 1 Expected number of arguments
ErrSev  Equ 12 ~ Severity code for all messages
AEFN_PARM1 Equ AEFN_PARMN First argument in list

Figure 102. Conditional-Assembly Function LOG2: Validation Equates

The symbols defined in Figure 102 define the expected value of the number of arguments in
the Request Information Area provided by the assembler, and the severity code used for
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messages. The symbol AEFN_PARM1 is equated to the first item in the argument list; it is used
only for its symbolic value.

I2 22222222222t s s st s ez s sss s ss s s s st s s sttt sd

* Dummy Control Sections for SETAF Interface *
*********************************************************************
ASMAEFNP PRINT=GEN
End

Figure 103. Conditional-Assembly Function LOG2: Dummy Sections

Finally, the Request information Area is mapped by calling the ASMAEFNP macro supplied
with HLASM, as shown in Figure 103.

Installation of the LOG2 function will be described in “Installing the LOG2 and REVERSE
Functions” on page 222. '

'
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SETCF External Function Interface

Primary List

Request Infs Area

I ng}——-> f ReginfoArea |——| ParmList Version
% workArea — Function Type
(2)| Reserved Number of Params
} Msg Buffer Return Code
1 Ret. String —> Flagl Reserved
(n)| 4 Parm 1-n Str. Reserved

Msg Len l Msg Sev

Ret. Str. Length

(n)

Parm 1-n Str. Len

(n) means the
field is
repeated n
times

HLASM
provides a
32-byte work
area

HLASM Macro Tutorial

© Copyright IBM Corporation 1993, 2002. All rights reserved.

SETCF External Function Interface

The assembler interface for character functions is illustrated in Figure 104, where the layout
of the Primary Address List and the Request Information Area are shown.

Primary List

Request Info Area

Rl ——>| A(RegInfoArea) |————| Parm List Version

A(WorkArea) —> Function Type

Reserved Number of Parms

Reserved Return Code

f Msg Buffer Flag| Reserved

A(Return Strg) —» Reserved

A(Parm 1 Strg) [—» Msg Len | Msg Sev
Return String Len.

A(Parm n Strg) (—» Parm 1 String Len.
Parm n String Len

Figure 104. Interface for Character (SETCF) External Functions
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String-Valued Function Example: REVERSE

The REVERSE function accepts a single string argument, and returns a string of the same
length, but with the characters in reverse order. All valid string lengths are accepted.

The implementation described here uses no local or working storage, and may reside any-
where above or below 16MB.

REV Title 'Macro-Time Function REVERSE: Reverse Character Strings'

R R 2R RS R R RS RsatR Rt sttt sttt bRt SRl RS

*

*

This external function reverses a character string. Null
strings are acceptable.

*
*
*
If the function is invoked with an unsupported parameter *
list version, the assembly will be terminated. Other error *
conditions will be indicated by an error message, and a *
null string will be returned. Errors detected are: *
*
*
*
*
*

Function was not invoked by SETCF
Number of arguments was not 1
Argument string length was invalid (not 0-255)

* % % % * % ¥ % ¥ % ¥ *

AR E AT T I A A A A AR I AT A AR AT T A A A A AR AR AR AT AR A AR AR A A AR A I A AT AT A A A Ak k k%

Figure 105. Conditional-Assembly Function REVERSE: Prologue Text

The prologue text for the REVERSE function shown in Figure 105 describes the operation of
the function, and the error conditions diagnosed. If the parameter list version is not sup-
ported, the assembler will be requested to terminate the assembly, as there is no guarantee
that a message can be provided by the function.

REVERSE Rsect ,
REVERSE RMode Any
REVERSE AMode Any

Using Reverse,R15 Establish code base register

STM  R14,R5,D12(R13) Save caller's registers

Using AEFNPARM,R1 Map primary argument-address list
L R2,AEFNRIP Get address of Request Info Area
Using AEFNRIL,R2 Map Request Info Area

XC AEFNRETC ,AEFNRETC  Set return code to zero
XC AEFN_STRL,AEFN_STRL Set return string to null
L R5,AEFNMSGA Address of message buffer

Figure 106. Conditional-Assembly Function REVERSE: Entry Point

The entry point instructions in Figure 106 first save the caller’s registers. No save area
linkage is required, as the REVERSE function makes no further calls, and uses no system
services.

Then, the Primary Address and the Request Information Area are mapped using fields
defined by the ASMAEFNP macro. The return code and returned siring length are set to
zero, and R5 is set to point to the message buffer in case a message is to be produced.
(Note that the Primary Address List contains more fields than were referenced in the LOG2
example.)
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EE 2232222222222 s S saRssssssRsRss sttt sttt st

* Validate calling sequence *
E2 2222222222222 st s st s s st s s sttt s s s

CLC  AEFNVER,=A(AEFNVER2) Check for interface version

BNE  Err_LVer Branch if bad PList version

CLC  AEFNTYPE,=A(AEFNSETCF) Check for SETCF function call

BNE  Err_FTyp Branch if bad function type

CLC  AEFNUMBR,=A(OurNArgs) Check for single argument

BNE  Err_NArg Branch if bad number of arguments

L R3,AEFNCF_PARM1 Point R3 to argument string
L R1,AEFNCF_SA Point R1 to returned string
Drop R1 R1 no longer addresses primary list

Figure 107. Conditional-Assembly Function REVERSE: Call Validation

The instructions shdwn in Figure 107 validate that the version of the parameter list is
correct, that the REVERSE function was invoked as a character function, and that there is a
single argument. Then, pointers to the argument and result strings are established.

b2 222222222 RSt s s s Rttt s s sS T

* Check for invalid argument string length S
E2 2222222222 s RR sttt ss st et eSS s

L R4 ,AEFN_PARM1 L Get length of argument string

LTR  R4,R4 Validate length of input string
BM Err_Arg Branch if invalid argument

BZ Return Branch if input string is null
c R4,=A(OurStMax) Check for excess length

BH Err_Arg Branch if invalid argument

Figure 108. Conditional-Assembly Function REVERSE: Argument Validation

While it should not normally be necessary, the length of the argument string is validated.
The instructions shown in Figure 108 should not in fact be required if the assembler is func-
tioning correctly, but the added “insurance” helps avoid further damage that might occur if
there is some mis-communication between the function and the assembler.

If efficiency is a major concern, all of these validation checks could be omitted.
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ST R4,AEFN_STRL
LA R5,EndTrans
SR R5,R4

BCTR R4,Null

EX R4,Move_TR
EX R4,Tran_Ans

Return DC OH'D’
LM R2,R5,D28(R13)
BR R14

Move TR DC OH'D’
MVC  DO(*-*,R1),DO(RS)

Tran_Ans DC OH'O!
TR De(*-*,R1),DO(R3)

AEEEE T KA AT AT AR A A A I AT AT A A I AR AT A I AAA IR A AN A A AR A A Ak kA kkkkdhkhk

* Argument is valid; set up reversing translate string *
L2222 222222222 st sRaR s a s s st s sttt s s s st S Sy

Set return string length

Point 1 past end of translate table
Subtract argument length

Decrement count by 1 for move

Move translation string to answer
Reverse bytes of arg into answer

Result string was null, just return
Restore R2-R5
Return to Assembler

Executed, length in R4
Move trimmed arg to result string

Executed, length in R4
Translate with reversal into answer

Figure 108. Conditional-Assembly Function REVERSE: String Reversal

The instructions in Figure 109 perform the actual “work” of the REVERSE function. The

length of the argument string is used to extract the proper number of bytes from the end of
the translate table (which contains the byte values from X'FF' to X'00' in descending order),
and place them in the output string. Then, the output string is “translated” using the argu-
ment string as the “table”, yielding the reversed argument string as a result. The caller’s

register contents are then restored, and control is returned to the assembler.

The function could of course use an MVCIN instruction, but there is no guarantee it is avail-

able on the system doing the assembly.
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EE 222 2R R S S 2R 2 S 2 2 2RSSR s AR 2RSSR sttt s s s s st s SR
* Error Returns and Message Handling *
222 S 22 2 22222222222 s sttt s s s 222t s st s st s
Err_LVer DC OH'0! Unsupported parameter l1ist version

MVC  AEFNRETC,=A(AEFNBAD) Termination return code

B Err_Exit Return to Assembler
Err_Arg DC OH'0! Return for invalid argument

LA R3,InvArg Point to error message

B Err_Msg Return message to Assembler
Err FTyp DC OH'0’ Wrong function type for this call

LA R3,BadFun Point to error message

B Err_Msg Return message to Assembler
Err_NArg DC OH'O! Wrong number of arguments

LA R3,BadNum Point to error message
Err_Msg DC OH'O! Return error message to HLASM

XR R4,R4 Clear R4 for length

IC R4,D0(,R3) Pick up message length

STH  R4,AEFNMSGL Save length for HLASM

MVC  AEFNMSGS,=Y (ErrSev) Set message severity code

BCTR R4,Null Decrement length for executed MVC

EX R4,Move_Msg Move message to buffer
Err_Exit DC 6H'O’

LM R2,R5,D28(R13) Restore R2-RS

Drop R2,R15 Addressability now lost

BR R14 Return to Assembler to terminate
Move_Msg DC GH'0’

MvC  DO(*-*,R5),D1(R3) Move message to buffer

Figure 110. Conditional-Assembly Function REVERSE: Error Handling

The instructions shown in Figure 110 set the return code for a severe error in case the
parameter interface version is not supported. For the other possible error conditions
detected during call and argument validation, the appropriate message is moved to the
message buffer, and the severity is set 1o 12 (the value of ErrSev). Control is then returned
1o the assembler.

L2222 222 S22 22222t s s s a2 s S 23 2322222222322 22222222 sss S
* Error Messages *
KA KT T A AR T AR A A A AT R AR A A A A AR AR A A AR A AR AR AR AR I AR A AR I AR ARk Ak A Ak hkh &
InvArg DC AL1(L'InvArgM) Length of message text

InvArgM DC C'Argument length invalid’®

BadFun DC AL1(L'BadFunM) Length of message text

BadFunM DC C'Not invoked by SETCF!'

BadNum  DC AL1(L'BadNumM) Length of message text

BadNumM DC C'Wrong number of arguments (not 1)'

Figure 111. Conditional-Assembly Function REVERSE: Error Messages

The error message texts (preceded by a length byte) are shown in Figure 111.
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Print Data
Trans DC 0XL256'0',256AL1(255- (*-Trans)) Table from 255 to @
EndTrans DC ox'e’ End of translate string

LtOrg

Figure 112. Conditional-Assembly Function REVERSE: Translate Table

The translate table defined in Figure 112 is a string of 256 byte values in descending order.

The “tail” of this string is moved 10 the result string to be used as a translation source.

2322282222 st st Rt st st st ssss s
* Equates for Registers, Lengths, Displacements, etc. *
22222222222t atsss sttt sttt sttt st sdt s Riss s s S
Null Equ © For BCTR instructions

R1 Equ 1 Primary List, A(returned string)
R2 Equ 2 A(Request Info List)

R3 Equ 3 Message pointer

R4 Equ 4 Lengths

R5 Equ 5 A(TR table), A(message buffer)

R13 Equ 13 Save area

R14 Equ 14 Return address

R15 Equ 15 Code base

Do Equ © Displacement 0

D1 Equ 1 Displacement 1

D12 Equ 12 Displacement 12

D28 Equ 28 Displacement 28

Figure 113. Conditional-Assembly Function REVERSE: Basic Equates

Standard equates for the general purpose registers are defined in Figure 113, along with
three equated symbols representing displacements used in various instructions.

AT AT AT AR A AT A A AR A KR A AT A A AR I A IR A A A KR IA AR A AR A AR AR T A A A A A AR AR A Ak hk Kk

* Equates for Parameter-List Values and Fields *
EE 222222 SRR SRRt st s s st sttt st st S
OurNArgs Equ 1 Expected number of arguments
ErrSev. Equ 12 Error message severity

OurStMax Equ 255 Maximum allowed string length
AEFNCF_PARM1 Equ AEFNCF_PARMA Name for first string parameter
AEFN_PARM1 L Equ AEFN_PARMN_L Name for first string length

Figure 114. Conditional-Assembly Function REVERSE: Validation Equates

The symbols used in call and argument validation are defined in Figure 114.

EE S EE 2SR RR Rt ARttt st st st iR R Rt

* Dummy Control Sections for SETCF Interface *
E2 222822222222 s s s st s e s eSS R R R T
ASMAEFNP  PRINT=GEN
End

Figure 115. Conditional-Assembly Function REVERSE: Dummy Sections
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The DSECT mappings for the Primary Address List and the Request Information Area are
created by the call to the ASMAEFNP macro, as shown in Figure 115.

Installing the LOG2 and REVERSE Functions

Installing the functions for use during assembly time is simple. First, the statements for the
exit are assembled, and the resulting object file is converted into a loadable module:

* on MVS, the object file is link edited into an appropriate library and given the name LOG2
or REVERSE (as appropriate). It may be marked re-entrant if desired. Be sure that the
library containing the function modules is available to the assembler during subsequent
assemblies that require the functions.

* on CMS, LOAD the text deck from the assembly with the CLEAR and RLDSAVE options;
then GENMOD 1o obtain a loadable file with name LOG2 or REVERSE (as appropriate)
and filetype MODULE. Be sure that the minidisk containing the function modules is avail-
able to the assembler during subsequent assemblies that require the functions.
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Appendix B. System (&SYS) Variable Symbols

System (&SYS) Variable Symbols

HLASM Macro Tutorial  © Copyright IBM Corporation 1983, 2002. All rights reserved. SVAR-1

System variable symbols are a special class of variable symbols, starting with the charac-
ters &SYS. They are “owned” by the assembler: they may not be declared in LCLx or GBLx
statements, and may not be used as symbolic parameters. Their values are assigned by the
assembler, and never by SETx statements.

High Level Assembler provides many new system variable symbols: thirty-nine will be new
to users of the H-Level Assembler, and three additional symbols will be new 1o users of the
DOS/VSE Assembler. Four symbols are available in all three assemblers: &SYSECT,
&SYSLIST, &SYSNDX, and &SYSPARM. Figure 116 on page 225 summarizes their proper-
ties.

System Variable Symbols: History and Overview

* Symbols whose value is defined by the assembler
~ Three in the OS/360 (1966) assemblers: &SYSECT, &SYSLIST, &SYSNDX
- DOS/TOS Assembler (1968) added &SYSPARM
— Assembler XF (1971) added &SYSDATE, &SYSTIME
-~ Assembler H (1971) added &SYSLOC
— High Level Assembler provides 39 additional symbols
* Symbol characteristics include
- Type (arithmetic, boolean, or character)
- Type attributes (mostly U’ or '0’)
~ Scope (usable in macros only, or in open code and macros)

— Variability {(when and where values might change)

HLASM Macro Tutorial  © Copyright IBM Corporation 1893, 2002. All rights reserved. SVAR-2
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System Variable Symbols: Properties

The symbols have a variety of characterizations:

Availability

Symbols that were available in Assembler H are designated “AsmH”; High Level Assem-
bler provides a rich set of 39 additional system variable symbols, designated “HLAR”

(where “n” indicates the release of High Level Assembler in which the symbol first
appeared).

Type

Most symbols have character values, and are therefore of type C: that is, they would
normally be used in SETC statements or in similar contexts. A few, however, have arith-
metic values (type A) or boolean values (type B). &SYSDATC and &SYSSTMT are nomi-
nally type C, but.may also be used as type A.

Type attributes

Most system variable symbols have type attribute U (*undefined™) or 0 ("omitted”, usually
indicating a null value); some numeric variables have type N. ' The exception is &SYSLIST:
its type attribute is determined from the designated list item.

Scope of usage

Some symbols are usable only within macros (“local” scope), while others are usable
both within macros and in open code (“global” scope).

Variability

Some symbols have values that do not change as the assembly progresses. Normally,
such values are established at the beginning of an assembly. These values are denoted
“Fixed”. Note that all have Global scope.

Other symbols have values that may change during the assembly. These values might
be established at the beginning of an assembly or at some point subsequent to the
beginning, and may change depending on conditions either internal or external to the
assembly process.

— Variables whose values are established at the beginning of a macro expansion, and
for this the values remain unchanged throughout the expansion, are designated “Con-
stant”, even though they may have different values in a later expansion of the same
macro, or within “inner macros” invoked by another macro. Note that all have local
scope.

— Variables whose values may change within a single macro expansion are designated
“Variable”. Currently, this designation applies only to &SYSSTMT, &SYSM_HSEV, and
&SYSM SEV.

These symbols have many uses: helping to control conditional assemblies, capturing envi-
ronmental data for inclusion in the generated object code, providing program debugging
data, and more.
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Figure 116 (Page 1 of 2). Properties and Uses of System Variable Symbols

Variable Symbol Avail- Type Type Usage Vari- Content and Use

ability Attr, Scope ability
&SYSADATA_DSN HLA2 C u Local Fixed SYSADATA file data set name
&SYSADATA_MEMBER HLA2 c u Local Fixed SYSADATA file member name
&SYSADATA_VOLUME HLA2 C u Local Fixed SYSADATA file volume identifier
&SYSASM HLA1 C u Global Fixed Assembler name
&SYSCLOCK HLA3 c u Local Constant Date/time macro was generated
&SYSDATC HLA1 CA N Global Fixed Assembly date, in YYYYMMDD format
&SYSDATE AsmH c u Global Fixed Assembly date in MM/DD/YY format
&SYSECT AsmH C U Local Constant Current control section name
&SYSIN_DSN HLA1 C u Local Constant Current primary input data set name
&SYSIN_MEMBER HLA1 c uo Local Constant Current primary input member name
&SYSIN_VOLUME HLA1 C uo Local Constant Current primary input data set name volume identifier
&SYSJOB HLA1 C u Global Fixed Assembly job name
&SYSLIB_DSN HLA1 C u Local Constant Current library data set name
&SYSLIB_MEMBER HLA1 C u,0o Local Constant Current library member name
&SYSLIB_VOLUME HLA1 C u,o Local Constant | Current library data set volume identifier
&SYSLIN_DSN HLA2 C u Local Fixed SYSLIN file data set name
&SYSLIN_MEMBER HLA2 C u Local Fixed SYSLIN file member name
&SYSLIN_VOLUME HLA2 C u Local Fixed SYSLIN file volume identifier
&SYSLIST AsmH C any Local Constant Macro argument list and sublist elements
&SYSLOC AsmH C u Local Constant | Current location counter name
&SYSM_HSEV HLA3 C N Global Variable Highest MNOTE severity so far in assembly
&SYSM_SEV HLA3 C N Global Variable Highest MNOTE severity for most recently called macro
&SYSMAC HLA3 Cc uo Local Constant Name of current macro and its callers
&SYSNDX AsmH CA N Local Constant Macro invocation count
&SYSNEST HLA1 A N Local Constant Nesting level of the macro call
&SYSOPT_DBCS HLA1 B N Global | Fixed Setting of DBCS invocation parameter
&SYSOPT_OPTABLE HLA1 C u Global | Fixed Setting of OPTABLE invocation parameter
&SYSOPT_RENT HLA1 B N Global | Fixed Setting of RENT invocation parameter
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Figure 116 (Page 2 of 2). Properties and Uses of System Variable Symbols

Variable Symbol Avail- Type Type Usage Vari- Content and Use

ability Attr, Scope ability
&SYSOPT_XOBJECT HLA3 B N Global Fixed Setting of XOBJECT/GOFF invocation parameter
&SYSPARM AsmH C U0 Global Fixed Value provided by SYSPARM invocation parameter
&SYSPRINT_DSN HLA2 C u Local Fixed SYSPRINT file data set name
&SYSPRINT_MEMBER HLA2 C u Local Fixed SYSPRINT file member name
&SYSPRINT_VOLUME HLA2 C u Local Fixed SYSPRINT file volume identifier
&SYSPUNCH_DSN HLA2 C u Local Fixed SYSPUNCH file data set name
&SYSPUNCH_MEMBER HLA2 C U Local Fixed SYSPUNCH file member name
&SYSPUNCH_VOLUME HLA2 C u Local Fixed SYSPUNCH file volume identifier
&SYSSEQF HLA1 C u,0 Local Constant Sequence field of current open code statement
&SYSSTEP HLA1 C U Global Fixed Assembly step name
&SYSSTMT HLA1 CA N Global Variable Number of next statement to be processed
&SYSSTYP HLA1 C u,o Local Constant Current control section type
&SYSTEM_ID HLA1 c u Global Fixed System on which assembly is done
&SYSTERM_DSN HLA2 C u Local Fixed SYSTERM file data set name
&SYSTERM_MEMBER HLA2 C u Local Fixed SYSTERM file member name
&SYSTERM_VOLUME HLA2 C u Local Fixed SYSTERM file volume identifier
&SYSTIME AsmH C u Global Fixed Assembly start time
&SYSVER HLA1 C u Global | Fixed Assembler version




System Variable Symbols: Fixed Values

* &SYSASM, &SYSVER: describe the assembler itself

* &SYSTEM_ID: describes the system where the assembly is done
* &SYSJOB, &SYSSTEP: describe the assembly job

e &SYSDATC, &SYSDATE: assembly date

* &SYSTIME: assembly time (HH.MM)

= R&SYSOPT_OPTABLE: which opcode table is being used

* R&SYSOPT_DBCS, &SYSOPT_RENT, &SYSOPT_XOBJEXT: status of the DBCS,
RENT, and XOBJECT options

* &SYSPARM: value of the SYSPARM option

* All 15 output-file symbols (SYSADATA, -LIN, -PRINT, -PUNCH, -TERM)
- E.g., &SYSLIN DSN, &SYSLIN_MEMBER, &SYSLIN_VOLUME

HLASM Macro Tutorial  © Copyright IBM Corporation 1983, 2002. All rights reserved. SVAR-3

Variable Symbols With Fixed Values During an Assembly

These sequence symbol values are established at the beginning of an assembly, and remain
unchanged throughout the assembly.

&SYSASM and &SYSVER

The &SYSASM symbol provides the name of the assembler. For High Level Assembler, the
value of this variable is

HIGH LEVEL ASSEMBLER

The &SYSVER variable symbol describes the version, release, and modification of the
assembler. A typical value of this variable might be

1.4.0

This pair of variables could be used to provide identification within an assembled program of
the assembler used to assemble it:

What ASM DC C'Assembled by &SYSASM., Version &SYSVER..'

The value of &SYSVER increases monotonically across versions and releases of HLASM.

&SYSTEM_ID

The &SYSTEM_ID variable provides an identification of the operating system under which the
current assembly is being performed. A typical value of this variable might be

MVS/ESA SP 5.2.0

This variable could be used to provide identification within an assembled program of the
system on which it was assembled:

What_Sys DC C'Assembled on &SYSTEM_ID..'
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&SYSJOB and &SYSSTEP

These two variables provides the name of the job' and step under which the assembler is
running.

When assembling under the CMS system, the value of the &SYSJOB variable is always
(N0JOB); and when assembling under the CMS or VSE systems, the value of the &SYSSTEP
variable is always (NOSTEP).

This pair of variables could be used to provide identification within an assembled program of
the job and step used to assemble it:

Who ASM  DC C'Assembled in Job &SYSJOB., Step &SYSSTEP..'

&SYSDATC

This provides the current date, with century included, in the format YYYYMMDD. A typical value
of this variable might be

19920626
Observe that the &SYSDATE variable provides only two digits of the year.

&SYSDATE

&SYSDATE provides the current date, in the form MM/DD/YY. A typical value of this variable
might be

06/26,/92

&SYSTIME

The &SYSTIME variable provides the time at which the assembly started, in the form HH.MM.

This variable, along with &SYSDATE or &SYSDATC, could be used to provide identification
within an assembled program of the date and time of assembly:

When_ASM DC C'Assembled on &SYSDATC., at &SYSTIME..'

Differences among &SYSTIME, &SYSCLOCK, and the CLOCKB and CLOCKD operands of the
AREAD statement are discussed at “&SYSTIME, &SYSCLOCK, and the AREAD Statement” on
page 236.

&SYSOPT_OPTABLE

This variable provides the name of the current operation code table being used for this
assembly, as established by the OPTABLE option. A typical value of this variable might be

ESA

This variable is useful for creating programs that must execute on machines with limitations
on the set of available instructions. For macro-generated code, this variable can be used to
determine what instructions should be generated for various operations, e.g. BALR vs. BASR.

This variable could be used to provide-identification within an assembled program of the
operation code table used to assemble it:

What_Ops DC C'Opcode table for assembly was &SYSOPT_OPTABLE..'
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&SYSOPT_DBCS, &SYSOPT_RENT, and &SYSOPT_XOBJECT

The &SYSOPT_DBCS, &SYSOPT_RENT, and &SYSOPT_XOBJECT binary variables provide
the settings of the DBCS, RENT, and XOBJECT options, respectively. Their values can be
used to control the generation of instructions or data appropriate to the type of desired
object code, or to help control the scanning of DBCS macro arguments.

For example, character data to be included in constants can be generated with proper
encodings if DBCS environments must be considered. Similarly, macros can use the setting
of the RENT option to generate different instruction sequences for reentrant and non-
reentrant situations.

For example, the &SYSOPT_RENT variable could be used to provide conditional assembly
support for different code sequences:

AIF (&SYSOPT_RENT).Do_Rent
MYMAC Parml,Parm2,GENCODE=NORENT Generate non-RENT code
AGO .Continue
.Do_Rent MYMAC Parml,ParmZ,GENCODE=RENT Generate RENT code
.Continue ANOP

&SYSPARM

The &SYSPARM variable symbol provides the character string provided by the programmer
in the invoking parameter string, in the SYSPARM option:

SYSPARM(string)

This variable could be used to provide identification within an assembled program of the
&SYSPARM value used 1o assemble it, as well as 1o control conditional assembly activities:

What PRM DC C'&&SYSPARM value was ''&SYSPARM.''.’
.X14 AIF  ("&SYSPARM' NE 'TRACE').Skip_Trace

MNOTE 'Assembly reached Sequence Symbol .X14'
.Skip_Trace ANOP

&SYS Symbols for Output Files

There are fifteen variable symbols describing the output files of High Level Assembler, three

for each file:

File DataSet Name Member Name Volume ID
SYSPRINT &SYSPRINT_DSN &SYSPRINT_MEMBER &SYSPRINT_VOLUME
SYSTERM &SYSTERM_DSN &SYSTERM_MEMBER &SYSTERM_VOLUME
SYSPUNCH &SYSPUNCH_DSN &SYSPUNCH_MEMBER &SYSPUNCH_VOLUME
SYSLIN &SYSLIN_DSN &SYSLIN_MEMBER &SYSLIN VOLUME
SYSADATA &SYSADATA DSN &SYSADATA MEMBER &SYSADATA_VOLUME

The &SYSxxxx_DSN variable symbols provide the file or data set name used for the corre-
sponding output file; the &SYSxxxx_MEMBER variable symbols provide the member name (if
any) used for the output file; and the &SYSxxxx_VOLUME variable symbols provide the
volume identifier used for the output file.

To illustrate, suppose you wish to “capture” information about the destination of the object
file written to the SYSLIN data set. You could write a set of statements to do this, such as:

What_OBJF DC C'SYSLIN file name is ''&SYSLIN DSN.''. !
What_0BJM DC C'SYSLIN member is ''&SYSLIN_MEMBER.''.'
What_0BJV DC C'SYSLIN volume is ''&SYSLIN VOLUME.''.'
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System Variable Symbols: Valués Constant in Macros

* &SYSSEQF: sequence field of the statement calling the macro
» &SYSECT: section name active at time of call

» &SYSSTYP: section type active at time of call

* R&SYSLOC: name of location counter active at time of call

e &SYSIN_DSN, &SYSIN_MEMBER, &SYSIN_VOLUME:
origins of current primary input file

* &SYSLIB_DSN, &SYSLIB_MEMBER, &SYSLIB_VOLUME:
origins of current library input file

* &SYSCLOCK: date/time macro was called

* &SYSNEST: macro nesting level

*  &SYSMAC: name of current macro and its callers
* &SYSNDX: incremented by 1 at each macro call

* &SYSLIST: access to macro positional parameters and sublists
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Variable Symbols With Constant Values Within a Macro

These sequence symbol values are initialized at the point where a macro expansion is initi-
ated, and remain fixed throughout the duration of that expansion.

&SYSSEQF

The &SYSSEQF symbol provides the contents of the sequence field of the current input state-
ment. This information can be used for debugging data. For example, suppose we have a
macro which inserts information about the current sequence field into the object code of the
program, and sets RO to its address (so that a debugger can tell you which statement was
identified in some debugging activity). A macro like the following might be used:

Macro

&L DebugPtA

&L BAS  ©0,*+12 Addr of Sequence Field in RO
DC CL8'&SYSSEQF! Sequence Field info
MEnd

B DebugPtA

&SYSECT

The &SYSECT symbol provides the name of the control section (CSECT, DSECT, COM, or
RSECT) into which statements are being grouped or assembled at the time the referencing
macro was invoked. If a macro must generate code or data in a different control section,
this variable permits the macro to restore the name of the previous environment before
exiting. (Note also its relation to &S YSSTYP.) An example illustrating &SYSECT and
&SYSSTYP is shown below.
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&SYSSTYP

The &SYSSTYP symbol provides the type of the control section into which statements are
being grouped or assembled (CSECT, DSECT, or RSECT) at the time the referencing macro
was invoked. If a macro must generate code or data in a different control section, this vari-
able permits the macro 1o restore the proper type of control section for the previous environ-
ment, before exiting.

For example, suppose we need to generate multiple copies of a small DSECT. The macro
shown in the following example generates the DSECT so that each generated name is pre-
fixed with the characters supplied in the macro argument. The environment in which the
macro was invoked is then restored on exit from the macro.

Macro

DSectGen &P
&P.Sect DSect , Generate tailored DSECT name
&P.F1 DS D DSECT Field No. 1.
&P.F2 DS 18F DSECT Field No. 2, a save area
&SYSECT  &SYSSTYP Restore original section

MEnd

&SYSLOC

&SYSLOC contains the name of the current location counter, as defined either by a control
section definition or a LOCTR statement.

As in the example of &SYSSTYP, the &SYSLOC variable can be used to capture and restore
the current location counter name. We again suppose in this example that we are inter-
rupting the statement flow to generate a small DSECT:

Macro
DSectGen &P

&P.Sect DSect Generate the DSECT name

&P.F1 DS D DSECT Field No. 1

&P.F2 DS 18F DSECT Save Area

&SYSLOC LOCTR Restore previous location counter
MEnd

&SYSIN_DSN, &SYSIN_MEMBER, and &SYSIN_VOLUME

These three symbols identify the origins of the current primary input file. Their values
change across input-file concatenations. This information can be used to determine reas-
sembly requirements.

The &SYSIN_DSN symbol provides the name of the current primary input (SYSIN) data set or
file.

The &SYSIN_MEMBER symbol provides the name of the current primary inbm member, if
*any.

The &SYSIN_VOLUME symbol provides the name of the current primary input volume. For
example, the following SYSINFO macro will capture the name of the current input file, its
member name, and the volume identifier. (If the input does not come from a library
member, the member name will be replaced by the characters “(None)”.)
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Macro
&L SYSINFO
8L - DC  C'Input: &SYSIN DSN'
&Mem SetC '&SYSIN MEMBER'
AIF  ('&Mem' ne ''}).Do_Mem
&Mem SetC '(None)'
.Do_Mem DC C'Member: &Mem’
DC C'Volume: &SYSIN VOLUME®
MEnd
My Job  SYSINFO

&SYSLIB_DSN, &SYSLIB_MEMBER, and &SYSLIB_VOLUME

These three symbols identify the origins of the current library member. Their values change
from member to member. This information can be used to determine reassembly require-
ments.

The &SYSLIB_DSN symbol provides the name of the library data set from which each macro
and COPY file is retrieved.

The &SYSL-IB_MEMBER symbol provides the name of the library member from which this
macro and COPY file is retrieved.

The &SYSLIB_VOLUME symbol provides the volume identifier (VOLID) of the library data set
from which this macro and COPY file is retrieved.

For example, suppose the LIBINFO macro below is stored in a macro library accessible to
the assembler at assembly time. (The macro includes a test for a blank member name,
which should never occur.)

Macro
&L LIBINFO
&L DC C'Library Input: &SYSLIB DSN'

&Mem SetC '&SYSLIB MEMBER'

AIF  ('&Mem’' ne '').Do_Mem

MNote 4,'The library member name should not be null.'
.Do_Mem DC C'Member: &Mem'

DC C'Volume: &SYSLIB VOLUME'

MEnd

Then the following small test assembly would capture information into the object text of the
generated program about the macro library.

My Job  LIBINFO
End

&SYSCLOCK

232

The &SYSCLOCK character variable provides the date and time at which the current macro
was invoked, as a string of 26 characters:

'YYYY-MM-DD HH:MM:SS mmmmmm®

where mmmmmm is measured in microseconds. Note that &SYSCLOCK can be used only in
macros, not in open code.

Differences among &SYSTIME, &SYSCLOCK, and the CLOCKB and CLOCKD operands of the
AREAD statement are discussed at “&SYSTIME, &SYSCLOCK, and the AREAD Statement” on
page 236.
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&SYSNEST

The &SYSNEST arithmetic variable provides the nesting level at which the current macro
was invoked (the outermost macro called from open code is at level 1).

For example, a macro might contain tests or MNOTE statements to indicate the nesting-

depth:
AIF  (&SYSNEST LE 50).0K
MNOTE 12, 'Macro nesting depth exceeds 56. Possible recursion?’
MEXIT
.OK ANOP
&SYSMAC

The &SYSMAC character variable provides the name of the macro currently being expanded,
and of its entire call chain. If &SYSMAC is used without any subscript, it returns the name of
the macro (or open code) in which it was used. If a subscript is provided, &SYSMAC(0)
returns the same value as &SYSMAC; &SYSMAC(1) returns the name of the macro that
called this one; and so forth for subscripts up to and including &SYSMAC(&SYSNEST), which
returns 'OPEN CODE'. For values of the subscript greater than &SYSNEST, a null string is
returned.

For example, instructions to display a macro’s call chain might look like this:

&J SetA &SYSNEST

&K SetA &SYSNEST-&J

.Loop  MNOTE *,'Name at nesting level &J is &SYSMAC(&K)'
&J SetA &J.-1

AIf  (&J ge 0).Loop

&SYSNDX

The &SYSNDX variable provides a unique value for every macro invocation in the program.
It may be used as a suffix for symbols generated in the macro, so that they will not “collide”
with similar symbols generated in other invocations. It is incremented by 1 for every macro
call in the program.

For values of &SYSNDX less than or equal to 9999, the value will always be four characters
long (padded on the left with leading zeros, if necessary).

Macro
&L BDisp &Target Branch to non-addressable target
&L BAS 1,Add&SYSNDX  Skip over constant

Off&SYSNDX DC  Y(&Target-*) Target offset
Add&SYSNDX AH  1,0ff&SYSNDX Add offset
BR 1 Branch to target
MEnd

Note that although the contents of &SYSNDX is always decimal digits, it is actually a
character-valued variable.

&SYSLIST

The &SYSLIST variable can be used to access positional parameters on a macro call
(whether named or not). &SYSLIST supports a very rich set of sublist and attribute capabili-
ties, and is therefore quite different from the other system variable symboils.
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&NameF1d SETC
&NArgs  SETA

&Arg 1  SETC
&NArgs_1 SETA
8Arg 2 SETC

18SYSLIST(0)"
N'8SYSLIST

'8SYSLIST(1)"
N'8SYSLIST(1)
1RSYSLIST(2)"

Name field of macro call
Number of arguments
Argument 1

Number of sub-arguments
Argument 2

System Variable Symbols: Varying Values

* &SYSSTMT: next statement number to be processed
*  &SYSM_HSEV: highest MNOTE severity so far

* &SYSM_SEV: highest MNOTE severity in most recently invoked macro

HLASM Macro Tutorial  © Copyright IBM Corporation 1393, 2002. Al rights reserved.
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Variable Symbols Whose Values May Vary Anywhere

There are three system variable symbols whose value can vary in all contexts: &SYSSTMT,

&SYSM_HSEV, and &SYSM_SEV.

&SYSSTMT

The &SYSSTMT symbol provides the number of the next statement to be processed by the
assembler. Debugger data that depends on the statement number can be generated with
this variable. For example, suppose we have a macro which inserts information about the
current statement number into the object code of the program, and sets RO 1o its address (so
that a debugger can tell you which statement was identified in some debugging activity). A

macro like the following might be used:

&L
&L

+

Macro

DebugPtN

BAS  0,*+8

DC AL4 (&SYSSTMT)
MEnd

Addr of Statement Number in RO
Statement number information

DebugPtN
BAS  0,*+8
DC AL4(00000527)

Addr of Statement Number in RO
Statement number information
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&SYSM_HSEV and &SYSM_SEV

The &SYSM_HSEV and &SYSM_SEV symbols provide access 1o the severity codes generated
by MNOTE statements in macros called during the assembly. This can help a macro 1o
determine that an inner macro call may have detected some special condition requiring
action by the caller, without having to set global variables. Their values are returned as
three numeric characters, such as 008.

&SYSM_SEV provides the highest MNOTE severity code for the macro most recently called
from this macro or from open code. &SYSM_HSEV provides the highest MNOTE severity
code for the entire assembly up to the point of reference to &SYSM_HSEV.

System Variable Symbol Usage

Who_ASM

What_In

[ An example, using many System variable symbols: |

What_ASM BC
Wwhat_Sys BC

BC

When_ASM  BC
What_Ops BC
What_PRM  BC

What _0bj DC

C'Assembled by &SYSASM., Version &SYSVER.'

€', on &SYSTEM_ID.®

C*, in Job &SYSJOB., Step &SYSSTEP.'

C', on &SYSDATC. at &SYSTIME..'

C* Opcode table for assembly was &SYSOPT_OPTABLE..®
C* 8ASYSPARM value was '‘&SYSPARM.''.'

C* SYSIN file was ''&SYSIN_DSN.''.’

C' SYSLIN (object) file was '°&SYSLIN_DSN.’'.’

HLASM Macro Tutorial O Copyright IBM Corporation 1993, 2082. All rights reserved. SVAR-6

Example Using Many System Variable Symbols

You might want to insert information into the object code of a program giving information
about its assembly environment, in a form readable without “translation” from hex. The fol-
lowing example shows one way you might do this:

What_ASM
What_Sys
Who_ASM

When_ASM
What_Ops
What_PRM
What_In

What_Obj

DC
DC
DC
DC
DC
DC
DC
DC

C'Assembled by &SYSASM., Version &SYSVER.'®

C', on &SYSTEM ID.'

C', in Job &SYSJOB., Step &SYSSTEP.'

C', on 8SYSDATC. at &SYSTIME..'

C' Opcode table for assembly was &SYSOPT_OPTABLE..'
C' BRSYSPARM value was ''BSYSPARM.''.'

C' SYSIN file was ''&SYSIN DSN.''.®

C' SYSLIN (object) file was ''&SYSLIN DSN.''.’
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Relationships of Old and New System Variable Symbols

Some of the new system variable symbols introduced with High Level Assembler comple-
ment and supplement the data provided by system variable available in previous assem-
blers.

&SYSDATE and &SYSDATC

The variable symbol &SYSDATE is available in High Level Assembler and Assembler H, but
was not supported by the earliest IBM assemblers. It provides a date in “American”
(MM/DD/YY) format, without any century indication. As such, users in other countries some-
times had to extract and re-compose its fields to obtain a date conforming to local custom,
convention, or standards. Further, the date could not be placed directly into fields as a sort
key, because the year digits were in the lowest-order positions. Finally, no century was indi-
cated.

High Level Assembler’s introduction of the &SYSDATC variable solves all these problems
very simply.

&SYSECT and &SYSSTYP

All previous assemblers have supported the &SYSECT variable to hold the name of the
enclosing control section at the time a macro was invoked. This allows a macro which needs
1o change control sections (e.g., to declare a DSECT or to create code or data for a different
CSECT) to resume the original control section on exit from the macro. There was, however,
a sticky problem: there was no way for the macro to determine what type of control section
to resume!

High Level Assembler provides the &SYSSTYP variable to rectify this omission: it provides
the type of the control section named by &SYSECT. This permits a macro to restore the
correct previous “control section environment” on exit.

&SYSNDX and &SYSNEST

All previous assemblers have supported the &SYSNDX variable symbol, which is incre-
mented by one for every macro invocation in the program. This permits macros to generate
unique ordinary symbols if they are needed as “local labels”. Occasionally, in recursively
nested macro calls, the value of the &S YSNDX variable was used to determine either the
depth of nesting, or to determine when control had returned to a particular level.

Alternatively, the programmer could define a global variable symbol of his own, and in each
macro insert statements to increment that variable on entry and decrement it on exit. This
technique is both clumsy (because it requires extra coding in every macro) and insecure
(because not every macro called in a program is likely 1o be under the programmer’s
control, particularly IBM-supplied macros).

High Level Assembler provides the &SYSNEST variable to keep track of the level of macro-
call nesting in the program. The value of &SYSNEST is incremented globally on each macro
entry, and decremented on each exit.

&SYSTIME, &SYSCLOCK, and the AREAD Statement

The &SYSTIME variable symbol is provided by High Level Assembler and Assembler H, but
not by earlier assemblers. It provides the local time of the start of the assembly in HH/MM
format. This “time stamp” may not have sufficient accuracy or resolution for some applica-
tions.

There are two alternatives to the unvarying quality of &SYSTIME: the &SYSCLOCK variable,
and the AREAD statement; &SYSCLOCK is described at “"&SYSCLOCK” on page 232.
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High Level Assembler provides an extension to the AREAD statement that may be useful if a
more accurate time stamp is required. The current time can be obtained either in decimal
or binary format.

The macro in the following example captures the clock reading in both decimal and binary
formats:

Macro
&Lab AREADCLK
LCLC  &D,&B
&D Aread CLOCKD
B Aread CLOCKB
&Lab DC c'&D? Decimal Clock
DC C'aB’' Binary Clock
MEnd
A AREADCLK
+A DC C'13020700' Decimal Clock
+ DC C'04692700' Binary Clock

Thus, you can capture time values at three levels of granularity:
* &SYSTIME provides the time at which the assembly began
s &SYSCLOCK provides the time at which the macro expansion began

* AREAD provides the current time whenever it is executed.
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Appendix C. Glossary of Abbreviations and Terms

absolute symbol. A symbol whose value
does not change if Location Counter values
change in the program; a non-relocatable
symbol.

ADATA. See SYSADATA file.

address. (1) (n) A number used by the
processor at execution time to locate and
reference operands or instructions in
central processor storage. In the context of
this document, an address is what refer-
ence manuals (such as the Principles of
Operation) would call a virtual address.

(2) (v) To reference; to provide an address
{sense no. 1) that may be used 1o reference
an item in storage.

(3) Sometimes used to mean an assembly
time location.

address constant. A field in a program con-
taining values calculated at assembly time,
bind time, or execution time, typically con-
taining an address, an offset, or a length.
The operands of an address constant often
are expressions involving internal symbols,
external symbols, or both.

address resolution. The process whereby
the assembler converts implied addresses
into addressing halfwords, using information
in its USING Table.

addressable. (1) At execution time an
operand is addressable if it lies either in the
4096 bytes starting at address zero, or in
any 4096-byte region of storage whose
lowest address is contained in one of
_general purpose registers 1 through 15.
(2) At assembly time an implied address is
addressable if it can be validly resolved by
the Assembler into a base-displacement
addressing halfword, using information con-
tained in the USING Table at the time of the
resolution.

addressing halfword. A two-byte field in
the second and/or third halfwords of a
machine language instruction, composed of
a 4-bit base digit and a 12-bit displacement.
An address expressed in base-displacement
format.

anchor. (1) The base location or base reg-
ister specified in the second operand of a
USING statement.

(2) The starting point of a chained list.

Assembler. A program which converts
source statements written in Assembler

Language into machine language, providing
additional useful information such as diag-
nostic messages, symbol usage cross-
references, and the like.

Assembler Language. The symbolic lan-
guage accepted by High Level Assembler,
in which program statements are written.
{Often, these statements describe individual
instructions; this is why Assembler Lan-
guage is frequently characterized as a “low
level” language.) The Assembler translates
these statements to an equivalent represen-
tation of the program in machine language.
Assembler Language is intelligible to
human beings trained in the art, but exces-
sive art may render it unintelligible.
Compare machine language.

In this document, we sometimes distinguish
two components: (1) conditional assembly
language and (2) ordinary assembly lan-
guage. See also Figure 117 on page 243.

assembly language. See Assembler Lan-
guage.

assembly time. The period in the lifetime of
a program when its representation as a
sequence of symbolic statements is being
converted to the desired equivalent machine
language form.

attribute. A property of a symbo! known to
the assembler, typically the characteristics
of the item named by the symbol, such as
its type, length, etc. A program may
request the assembler to provide values of
symbol attributes using attribute references.

A variable symbol may have one atiribute
specific to the symbol itself (the nhumber
attribute), and many atiributes specific to
the value of the variable symbol.

attribute reference. A notation used to
request the value of a symbol attribute from
the assembler’s symbol table, or of a vari-
able symbol or its value.

BAL (acronym). Basic Assembler Lan-
guage. Intended to mean Assembler Lan-
guage. The use of this term is deprecated,
due to possible confusions with the BAL
(Branch and Link) instruction and the BASIC
programming language. The Assembler
Language implemented by High Level
Assembler is neither basic nor BASIC.

base. See base register, base address.
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base address. The address in one of
general purpose registers 1 to 15 1o which a
displacement is added to obtain an effective
address.

base digit. See base register specification
digit.

base-displacement addressing. A technique
for addressing central storage using a
compact base-displacement format for
representing the derivation of storage
addresses.

base location. (1) In base-displacement
address resolution, the first operand of a
USING statement, from which displacements
are to be calculated. For ordinary USING
statements, the base location is assumed to
be at a relative offset (displacement) of zero
from the address contained in the base reg-
ister; for dependent USING statements, the
base location may be at a positive nonzero
offset from the location specified in the base
register eventually used 1o resolve an
implied address.

(2) Informally, this term is sometimes used
to mean (a) the origin of a control section,
(b) a base address in a register at execution
time, and (c) whatever the speaker likes.

base register. The General Purpose Reg-
ister specified in the second operand of a
labeled USING or ordinary USING.

base register specification digit. The 4-bit
field in bit positions 0-3 of an addressing
halfword.

bind time. The time following assembly
time during which one or more object
modules are combined to form an execut-
able module, ready for loading into central
storage at execution time. Also known as
“link time™.

COM. A statement declaring the start or
resumption of a common section.

common section. A special dummy control
section whose name is an external symbol.
Common sections receive special treatment
during program linking: space is allocated
for the greatest length received for all
common sections with a given name.

complex relocatability. An aftribute of a
symbol indicating that its value is neither
constant nor variable in exactly the same
way as changes to the origin of its con-
taining section. See refocatability attribute.

conditional assembly. A form of assembly
whose input is a mixture of conditional

assembly language and ordinary assembly
language statements, and whose outputs
are statements of the ordinary assembly
language. Statements of the ordinary
assembly language are treated only as
“text”, and are not obeyed during condi-
tional assembly.

conditional assembly language. The
“outer” language that controls the
sequencing, selection, and tailoring of ordi-
nary assembly language statements,
through the use of variable symbols,
sequence symbols, conditional assembly
expressions, and substitutions. See also
Figure 117 on page 243.

conditional assembly function. See
external function and internal function.

control section. The smallest independ-
ently relocatable unit of instructions and/or
data. All elements of a given control section
maintain the same fixed relative positions to
one another at assembly time. These fixed
relative positions at assembly time are
usually (but not necessarily) maintained by
the program after control sections are
placed into storage at execution time.

CSECT. See control section

dependent USING. A form of USING state-
ment in which the first operand is based or
anchored at a relocatable address. May
also take the form of a labeled dependent
USING statement. See also anchor, labeled
USING, and ordinary USING.

displacement. The 12-bit field in bit posi-
tions 4-15 of an addressing halfword. Fre-
quently used to describe the offset
(difference) between a given storage
address and a base address that might be
used to address (sense no. 2) it.

DSECT. See dummy control section and
control section.

dummy control section. A confrol section
with the additional special property that no
object code is generated for any of its state-
ments. Most DSECT definitions are used as
mappings or templates for data structures.
The three types of dummy control sections
are (1) ordinary dummy control sections, (2)
common sections, and (3) dummy external
control sections.

EAR. See Effective Address Register.

effective address. The storage address or
similar value calculated at execution time
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from a base address and a displacement.
See also indexed effective address.

Effective Address Register. An internal reg-
ister used by the processor for calculating
an effective address. '

ESD. See External Symbol Dictionary.

execution time. The period in the lifetime
of a program when its representation in
machine language is interpreted by the
processor as a sequence of instructions.
(2) The time at which programmers whose
programs consistently fail o execute cor-
rectly are themselves executed.

explicit address. An instruction address in
which the displacement, and either the base
or index or both, are fully specified in the
instruction, and for which no resolution into
base-displacement format is required.

extended object module. A new general-
ized object file format supporting long
external names, section sizes up to 1GB,
multi-segment modules, and other enhance-
ments. Produced by High Level Assembler
when the XOBJECT or GOFF option is spec-
ified. See also object module.

external dummy section. A dummy control
section (DSECT) whose name is made part
of the External Symbol Dictionary. The
Binder, Linkage Editor or Loader will
resolve the lengths and alignment require-
ments of external dummy sections in such a
way that storage may be allocated to the
entire collection of external dummy sections
(see the definition of the CXD Assembler
Instruction Statement in the Assembler Lan-
guage Reference), and the offset of each
dummy section may be defined 1o the
program using Q-type address constants
(again, refer to the Assembler Language
Reference).

external function. A function defined by the
user and invoked by the assembler by the
SETAF and/or SETCF statements during
conditional assembly. External functions
may access the assembler’s operating
system environment and return either arith-
metic or character values, and optional
messages to be placed into the listing.

external symbol. A symbol whose name
and value are a part of the object module
text provided by the Assembler. Such
names include (1) control section names, (2)
referenced names declared in V-type
address constants or EXTRN statements, (3)
names of common sections, {4) names of
Pseudo Registers or external dummy

sections, (5) referenced names declared on
ENTRY statements, and (6) symbols and
character strings renamed through the use
of the ALIAS statement. Compare to
internal symbol.

External Symbol Dictionary. The set of
external symbols defined or referenced in
an assembly, and provided in the object
module for later use during program linking
or binding.

function. See external function and internal
function.

generalized object file format (GOFF). A
new form of object module produced by
High Level Assembler, providing numerous
enhancements and extensions not sup-
ported by the traditional object module
format.

GOFF. See generalized object file format.

GOFF option. An option that causes High
Level Assembler to generate an object
module using the generalized object file
Format.

General Purpose Registers. A set of 16
32-bit registers used in the
System/360/370/390 family of processors for
addressing, arithmetic, logic, shifting, and
other general purposes. Compare to special
purpose registers such as Access Registers,
Control Registers, and Floating Point Regis-
ters.

GPR. See General Purpose Register

HLASM. High Level Assembler/MVS & VM
& VSE (Release 1); High Level Assembler
for MVS & VM & VSE (Release 2 and later).

High Level Assembler. IBM’s most modern
and powerful symbolic assembler for the
System/370 and System/390 series of com-
puters, running on the MVS, VM, and VSE
operating systems. Not necessarily an _
oxymoron, as High Level Assembler can do
much more than ordinary (low-level) assem-
blers.

implied address. An instruction address
requiring resolution by the Assembler into
base-displacement format; an address for
which base and displacement are not
explicitly specified. Also implicit address.

index. (1) The contents of that index reg-
ister specified by the index register specifi-
cation digit in an RX-type instruction.

(2) Less frequently, the index register spec-
ification digit itself.
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index digit. See index register specification

digit.

index register specification digit. In an
RX-type instruction, the 4-bit field contained
in bit positions 12 through 15 of the instruc-
tion; the digit which, if not zero, specifies an
index register to be used in calculating the
indexed effective address

indexed effective address. The storage
address or similar value calculated during
program execution from a base address, a
displacement, and an index. The term effec-
tive address is commonly used whether or
not indexing is present.

index register. One of general purpose reg-
isters 1 through 15 specified by the index
register specification digit in an RX-type
instruction.

internal function. A function defined and
executed by the assembler during condi-
tional assembly, which acts on arithmetic,
boolean, and character expressions to
produce arithmetic, boolean, or character
values. Compare external function.

internal symbol. A symbol naming an
element of an Assembler Language
program, which is assigned a single value
by the assembler. Internal symbols are
normally discarded at the end of the
assembly, but may be retained in the
SYSADATA file. Compare to external
symbol.

internal symbol dictionary. See symbol
table.

label. (1) The name field entry of an
assembler or machine instruction state-
ment. Normally, the presence of a label in
the name field of an instruction statement
will define the value of that label.

(2) In common parlance, the name of an
instruction or data definition. This is more
properly called a name field symbol.

(3) In High Level Assembler, the name field
symbol of a USING statement, designating
that statement as a /abeled USING. -

labeled USING. A form of USING statement
with a gualifier symbol in the name field.
Symbolic expressions resolved with respect
to a labeled USING must use a qualified
symbol with the qualifier of that labeled
USING.

LC. See Location Counter.

Location Counter. A counter used by the
Assembler to determine relative positions of

all elements of a program as it is assem-
bled.

location. A position within the object code
of an assembled program, as determined by
assigning values of the Location Counter
during assembly. An assembly time value,
sometimes confused with an execution time
address.

machine language. The binary instructions
and data interpreted and manipulated by
the processor when the program is exe-
cuted (at execution time). It is not meant to
be intelligible to ordinary or normal human
beings. Compare Assembler Language.

object module. A file produced by the
Assembler, containing the external symbols,
machine language instructions and data,
and other data produced by assembling the
source program. See also extended object
module.

open code. Statements that are not within
a macro definition or expansion. The state-
ments in an assembly source file are typi-
cally in open code. See also ordinary
assembly language.

options. Directives to the Assembler speci-
fying various “global” controls over its
behavior. For example, the PRINT option
specifies that the assembler should produce
a listing file. Options are specified by the
user as a string of characters, as part of the
command or statement that invokes the
assembler, or on *PROCESS statements.

ordinary assembly language. The portion of
the Assembler Language that includes
machine instructions, data definitions, and
assembler controls, but not including state-
ments involved in conditional assembly.

See conditional assembly language. See
also Figure 117 on page 243.

ordinary symbol. See internal symbol.

ordinary USING. The oldest form of USING
statement, in which (a) no entry is present
in the name field, (b) the first operand spec-
ifies a base address, and (c) the second and
successive operands are absolute
expressions designating General Purpose
Registers to be used as base registers.

PR. See Pseudo Register and external
dummy section.

Pseudo Register. The name used by other
processors such as the Linkage Editor and
Loader for what the assembler calls an
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external dummy section. See external
dummy section.

qualified symbol. An ordinary symbol pre-
ceded by a qualifier, and separated from the
qualifier by a period.

qualifier. An ordinary symbol, defined as a
qualifier by its appearance in the name field
of a labeled USING statement. It is used
only in qualified symbols to direct base-
displacement addressing resolutions to a
specified register or anchor location.

RA. See relocatability attribute.
reenterable. See reenftrant.

reentrant. (1) Capable of simultaneous exe-
cution by two or more asynchronously exe-
cuting processes or processors, with only a
single instance of the code image. Typically,
reentrant programs are expected not to
modify themselves, but this is neither a nec-
essary nor sufficient condition for
reentrancy.

(2) When requested by the RENT option, or
in an RSECT, simple tests are made by High
Level Assembler for conditions of obvious
self-modification of the program being
assembled.

relocatability attribute. Each independently
relocatable element of an Assembler Lan-
guage program (such as a control section
or external symbol) is assigned a distinct
relocatability attribute. Each symbol in the
symbol table is assigned the relocatability
attribute of the element to which it belongs.
An absolute symbol is assigned a zero
relocatability attribute. See also simple
relocatability and complex relocatability.

relocatable. (1) Capable of being placed
into storage at an arbitrary (possibly prop-
erly aligned) address; not requiring place-
ment at a fixed or pre-specified address in
order to execute correctly.

(2) Having a non-zero relocatability
attribute, which can mean either simple
relocatability or complex relocatability.

relocation. The assignment of new or dif-
ferent locations or addresses 1o a set of
symbols or addresses, by adding or sub-
tracting constants depending on a module’s
assigned storage addresses.

relocation ID. Same as relocatability attri-
bute. A numeric value assigned by the
assembler to each independently relocat-
able element of a program such as control
sections and external symbols.

resolution. See address resolution.
resolved. See address resolution.

RSECT. A reentrant control section, distin-
guished from an ordinary control section
(CSECT) only by (a) the presence of a flag
in the External Symbol Dictionary and (b)
that High Level Assembler will perform
reentrant checking of instructions within the
RSECT.

run time. See execution time.

sequence symbol. A conditional assembly
symbol used to mark positions in a state-
ment stream, typically inside a macro defi-
nition.

simple relocatability. An affribute of a
symbol indicating that changes to the value
of the origin location of a control section
will cause the value of the symbol to
change by the same amount. See also
absolute symbol and complex relocatability.

symbol table. A table created and main-
tained by the Assembler, to assign values
and attributes to all symbols in the
program. Except for symbols named in
V-type address constants, the symbol table
contains only a single occurrence of a
symbol.

SYSADATA file. A file created by the High
Level Assembler when the ADATA opfion is
specified, containing machine-readable
information about all aspects of the assem-
bled program and the assembly process.

system variable symbol. A variable symbol
defined by the assembler;\, containing infor-
mation about the assembly process. Iis
value cannot be changed by the pro-
grammer.

USING Table. A table maintained at
assembly time by the Assembler, used for
resolution of implied addresses into base-
displacement form. Each entry contains the
number of a base register and a base
location.

variable symbol. A symbol prefixed with a
single ampersand (&). Used during condi-
tional assembly 1o assist with substitution,
expression evaluation, and statement
selection and sequencing. Unlike ordinary
symbols, the values of certain variable
symbols may change freely during an
assembly.
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Appendix D.

Ordinary and Conditional Assembly

Comparison Ordinary Assembly Conditional Assembly

Generality the “inner” language of instructions the “outer” language that controls
and data definitions and tailors the inner language

Usage a language for programming a a language for programming an
machine assembler and its language

Inputs statements from primary input, library statements from primary input (and
(via COPY or macro call), and gener- records via AREAD), library (via
ated statements from macros and COPY and macro call), external func-
AINSERT statementis tions

Outputs generated machine language object ordinary assembly statements and
code, records (via REPRO, PUNCH) macro instructions, messages (via

MNOTE), records (via AINSERT)
Symbols ordinary symbols (internal and variable symbols, sequence symbols

external)

Symbol declara-
tion

ordinary symbols appear in the name
field of ordinary assembly statements
(except names in V-type address con-
stants); always explicitly declared

sequence symbols appear in the
name field of any statement; variable
symbols are (a) user-declared
(implicit or explicit declaration), (b)
system, or (c) macro parameters
{both implicit)

Statement labels

ordinary symbols take the values of
locations in the ordinary assembly
statement stream, and other assigned
values, or are positional arguments in
macro calls

sequence symbols denote positions in
the conditional assembly statement
stream

Symbol scope

internal and external; external
symbols persist in the object code
beyond assembly time

variable symbols have local or global
scope; sequence symbols have local
scope; both discarded at assembly
end

Symbol types

ordinary symbols have no types;

variable symbols have arithmetic,

and values values are normally assigned from boolean, or character types and
Location Counter values or by EQU values
statements
Symbol attri- ordinary symbols have many attri- variable symbols have only the prop-
butes butes erty of maximum subscript (if dimen-

sioned), but their values may have
attributes

Expression eval-
uation

expressions in ordinary statements,
and in A-type and Y-type address con-
stants

expressions in conditional-assembly
statements

Expression oper-
ators

ty = *)/

+, -, *, /; internal arithmetic func-
tions; internal boolean functions;
internal character functions; external
arithmetic and character functions

Attribute Opera-
tors

LY, I', S

Tl’ Ll, II, SI’ DI’ Kl’ Ni’ OI

Figure 117. Comparison of Ordinary and Conditional Assembly
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Special Characters

*PROCESS statement 241
&SYSADATA_DSN 225, 229
ADATA file name 225

&SYSADATA_MEMBER 225, 229

ADATA member name 225

&SYSADATA_VOLUME 225, 229

ADATA volume name 225
&SYSASM 225, 227

assembler name 225
&SYSCLOCK 225, 232

date/time 225

in macros only 232
&SYSDATC 225, 228

date 225

vs. &SYSDATE 236
&SYSDATE 225, 228

date 225

vs. &SYSDATC 236
&SYSECT 225, 230

current control section 225

vs. &SYSSTYP 236
&SYSIN_DSN 225, 231

SYSIN file name 225
&SYSIN_MEMBER 225, 231

SYSIN member name 225
&SYSIN_VOLUME 225, 231

SYSIN volume name 225
&SYSJOB 225, 228

assembly job name 225
&SYSLIB_DSN 225, 232

SYSLIB file name 225
&SYSLIB_MEMBER 225, 232

SYSLIB member name 225
&SYSLIB_VOLUME 225, 232

SYSLIB volume name 225
&SYSLIN_DSN 225, 229

SYSLIN file name 225
&SYSLIN_MEMBER 225, 229

SYSLIN member name 225
&SYSLIN_VOLUME 225, 229

SYSLIN volume name 225
&SYSLIST 71, 84, 85, 225

invalid without subscript 84

list scanning 76

lists 84

macro arguments 84

name field entry 233

&SYSLIST(0) 233

number attribute reference 82

positional parameters 233
sublists 84, 233
list scanning 84

Appendix E

&SYSLIST notation 87
&SYSLIST(0)

name field entry on macro call 84
&SYSLOC 225, 231

current location counter 225
&SYSM_HSEV 225, 235

highest MNOTE severity 225
&SYSM_SEV 225, 235

recent MNOTE severity 225
&SYSMAC 225, 233

macro and ancestor name 225

subscripts 233
&SYSNDX 225, 233

macro invocation counter 225

vs. &SYSNEST 236
&SYSNEST 225, 233

macro nesting level 225

vs. &SYSNDX 236
&SYSOPT_DBCS 225, 229

DBCS option setting 225
&SYSOPT_OPTABLE 225, 228

OPTABLE option setting 225
&SYSOPT_RENT 225, 229

RENT option setting 225
&SYSOPT_XOBJECT 226

GOFF/XOBJECT option setting 226

XOBJECT/GOFF option setting 226
&SYSPARM 226, 229

in macro debugging 94

SYSPARM parameter value 226
&SYSPRINT_DSN 2286, 229

SYSPRINT file name 226
&SYSPRINT_MEMBER 226, 229

SYSPRINT member name 226
&SYSPRINT_VOLUME 226, 229

SYSPRINT volume name 226
&SYSPUNCH_DSN 226, 229

SYSPUNCH file name 226
&SYSPUNCH_MEMBER 226, 229

SYSPUNCH member name 226
&SYSPUNCH_VOLUME 226, 229

SYSPUNCH volume name 226
&SYSSEQF 226, 230

sequence field 226
&SYSSTEP 226, 228

step name 226
&SYSSTMT 226, 234

next statement number 226
&SYSSTYP 226, 231

control section type 226

vs. &SYSECT 236
&SYSTEM_ID 226, 227

assembly system 226
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&SYSTERM_DSN 226, 229
SYSTERM file name 226
&SYSTERM_MEMBER 226, 229
SYSTERM member name 226
&SYSTERM_VOLUME 226, 229
SYSTERM volume name 226
&SYSTIME 226, 228, 232
time of assembly 226
&SYSVER 226, 227
assembler version 226

A

absolute symbol
definition 238
predefined 13, 16, 19, 23
ACONTROL statement
LIBMAC operand 96
ACTR statement 95
ACTR value halved 85
looping 95
macro debugging 95
macro errors 95
modifiable value 85
value default 95
ADATA
definition 238
option 242
ADATA file name
&SYSADATA_DSN 225
ADATA member name
&SYSADATA_MEMBER 225
ADATA volume name
&SYSADATA_VOLUME 225
adcon
See address constant
address
assembly time 238
base 240
base address 240
base-displacement format 240
definition 238
displacement 240
effective address 239
execution time 238, 240
explicit address 240
implied address 240
index 240
location 238
resolution 240
address constant 238
definition 238
address resolution 238
addressing halfword 238
definition 238
implied addresses 238

addressable 238
addressing halfword 238
assembly time 238
base-displacement resolution 238
definition 238
execution time 238
resolution 238
addressing
base-displacement addressing 239
base-displacement format 239
addressing halfword 238
base 238
base-displacement format 238
definition 238
displacement 238
AEJECT statement 66
AGO statement 37
. computed AGO 38
extended form 38
failure to branch 38
statement sequencing 37
unconditional branching 37
AIF statement 39
conditional branching 39
extended form 40
statement sequencing 39
AINSERT statement 183
internal buffer queue 184
syntax 184
ALIAS statement 240
external symbol renaming 240
ampersand pairing in strings 23, 47, 70
ancestor macro name
&SYSMAC 225
anchor 238
base location 238
base register 238
definition 238
AND function 17
AND operator 21
ANOP statement 35
sequence symbol definition 36
apostrophe pairing in strings 23, 47, 70
application portability 46
AREAD statement 236
in case studies 102
operands 236
CLOCKB operand 236
CLOCKD operand 236
vs. &SYSTIME 236
timing measurements 236
argument association 53
See also association
argument list
&SYSLIST 225
arguments
See macro arguments
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arithmetic comparison 21
arithmetic expression 16
atiribute reference 16
binary operators 16
internal functions 17
numeric-valued attribute
count (K’) 16
defined (D) 16
integer {I') 16
length (L") 16
number (N) 16
scale (S) 16
overflow 16
string length
count atiribute reference (K’) 28
unary operators 16
arithmetic operators 15
arithmetic type 6
arithmetic variable symbols
substituted as magnitude 23
arrays of variable symbols 9
maximum subscript 9
number attribute reference (N’) 9
ASPACE statement 66
Assembler 238
assembler language 238
definition 238
machine language 238
assembler language
base language 4, 238
conditional assembly language 238
outer language 2
definition 238
interactions 4
machine language 238
macro definition 59
ordinary assembly language 4, 238
base language 1
inner language 1
machine language 1 :
assembler language macro definition
See macro definition
assembler name
&SYSASM 225
assembler version
&SYSVER 226
assembly functions
See functions
assembly job name
&SYSIN_VOLUME 225
assembly language
See assembler language
assembly system
&SYSTEM_ID 226
assembly time 49
&SYSTIME 226
definition 238
macros as subroutines 49

assignment
implicit declaration 9
multiple 15
SET statements 9, 14, 15
association

arguments 71
by keyword name 72
arbitrary order 72
overriding defaults 72
by name 71
by position 71
by positional argument number 71
&SYSLIST 71
of parameters and arguments 75
by name 75
positional 75
parameters 71
associative addressing
created variable symbols 10
attribute
changed
lookahead mode 178
definition 238
macro arguments 48
unknown
lookahead mode 178
variable symbols
symbol itself 77
symbol’s value 77
attribute reference 16
character-valued attribute 23
opcode atiribute reference (O°) 23
type attribute reference (T") 23, 27
count (K) 16, 76, 80
defined (D) 16, 77
definition 238
in open code 17
integer (I') 186, 77
length (L) 16, 77
lookahead mode 178
number (N) 16, 76, 81
opcode (O") 23, 61, 77
scale (8°) 16, 77
type (T') 23,27,77, 79
value type
character (1°,0) 77
numeric 77
where valid

BAL (acronym) 238
definition 238
deprecation 238

base
See also base address
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base (continued)
See also base register
definition 238
base address
definition 239
displacement 239
effective address 239
general purpose register 239
base digit
See also base register specification digit
definition 239
base location
base-displacement address
resolution 239
_definition 239
dependent USING statement 239
displacement 239
ordinary USING statement 239
base register
definition 239
general purpose register 239
labeled USING statement 239
ordinary USING statement 239
base register specification digit
addressing halfword 239
definition 239
base-displacement addressing
definition 239
base-displacement format 238
benefits of macros
abstract data types 100
adaptability 51
application portability 50
application-specific 100
avoiding side-effects 100
code re-use 50
create language 49
easier debugging 50
efficiency 100
encapsulated interfaces 51
flexibility 51
high-level constructs 50
incremental growth 100
information hiding 100
language extension 49
language implementation tutorial 101
language portability 49
localized logic 51
minimal language burden 100
optimization 100
personal style 101
polymorphism 100
private data types 100
programmer choice 100
reduced coding effort 49, 50
standardized conventions 50
suppression of detail 50
task-specific 100

binary logarithm function example 211
binary operator 16
bind time
after assembly time 239
before execution time 239
definition 239
body of a macro definition 59
boolean expression 20
in AlIF statement 39
possible ambiguity 41
predefined absolute symbols 20
self-defining term 20
SETA variables 20
boolean operators
See also masking functions
AND 21
NOT 21
OR 21
XOR 21
boolean type 6
BYTE function 30
BYTESEQ1 macro example 74

Cc

call nesting 55
call of a macro
See macro instruction
case studies
abstract data types 192
AREAD statement 121, 122, 128
block comments 102, 128
create length-prefixed messages 102,
122
bit handling 102, 137
advanced forms 150
optimization 151
safe references 139
simple forms 140
type checking 151
convert decimal to hex 102, 115
convert hex to decimal 102, 113
define symbols for registers 101, 103
defining data types 102, 172, 188
polymorphism 174
type checking 180, 181, 183
type sensitivity 176
front-ending a macro 102, 204
generate named constants 102, 117
generate sequence of byte values 101,
107
macro recursion 130, 131, 133, 135
factorial 102, 133
Fibonacci numbers 102, 135
indirect addressing 102, 131
MVC2 macro to use second operand
length 101, 110

Appendix E. Index

247



case studies (continued)
recursive macros 102, 130
using private data types 102, 172
polymorphism 174
type checking 180, 181, 183
type sensitivity 176
wrapping a macro 102, 204
character comparison 21
vs. hardware comparison
instructions 21
character expression 22
character-valued attribute 23
opcode attribute reference (O’) 23
type attribute reference (T") . 23
concatenation 25
internal functions 29
quoted strings 22
string length 28
count attribute reference (K ) 28
subsirings 26
type attribute reference (T') 27
character string length 28
character string reversal example 217
character strings
See character expression
character substrings 26
character type 6
character-valued attribute reference
opcode (O) 23
type (T") 23, 27
COM statement
common section 239
definition 239
comment statements
lack of substitution 63
macro commenis 66
ordinary comments 66
comments fields
lack of substitution 63
common section 240
as a dummy control section 239
COM statement 239
definition 239
external symbol 239
comparison operators
arithmetic comparison 21
character comparison 21
EQ 21
GE 21
GT 21
LE 21
LT 21
NE 21
COMPAT(SYSLIST) option 85, 87
complex relocatability
definition 239
computed AGO 38
failure to branch 38

concatenation
See character expression
conditional assembly 4
analogy to preprocessors 4
conditional assembly language 239
definition 239
conditional assembly expressions 15
arithmetic 16
boolean 20
character 22
evaluation 15, 16, 20, 22
arithmetic 16
boolean 20
character 22
internal functions 15
binary operators 15
unary operators 15
conditional assembly functions 32
See also external functions
See also internal functions
assembler interface
arithmetic functions 210, 211
character functions 216
SETAF functions 210, 211
SETCF functions 216
binary logarithm example 211
character string reversal example 217
definition 239
installing example functions 222
LOG2 example 211
logarithm base 2 211
message severilty code 209
messages 209
primary address list 210, 211, 216
request information area 211, 216
return code 209
REVERSE example 217
SETAF interface 211
SETCF interface 216
severity code 209
conditional assembly language 3, 238
as macro language 2
definition 239
elements 3
evaluation 5
interpreted by assembler 18
outer language 2
vs. inner language 2
selection 5
sequence symbol 4, 239
substitution 5
variable symbol 4
See also variable symbols
vs. ordinary assembly language 239
conditional branching
AIF 39
boolean expression 39
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constructed macro arguments 73
control section
common control section 239
CSECT 238
definition 239
dummy control section 239
ordinary control section 239
RSECT 239
control section type
&SYSSTYP 226
COPY statement
in macro encoding 63
count attribute reference (K’) 16, 76
difference from N° 77
macro arguments 80
to arithmetic variable 28
to boolean variable 28
to character variable 28
created variable symbols 9, 13
associative addressing 10, 159
case studies
bit handling 152, 153
define symbols for registers 101, 106
type checking 181
multiple levels 10
CSECT
See also control section
definition 239
current control section
&SYSECT 225
current location counter
&SYSLOC 225
CXD instruction 240
Q-type address constant 240

D

D’ attribute reference 16, 77
See also defined attribute reference
data structure mapping
See also dummy control section
common control section 239
dummy external control section 239
ordinary dummy control section 239
data structure template
See dummy control section
date of assembly
&SYSCLOCK 232
in macros only 232
&SYSDATC 225, 228
&SYSDATE 225, 228
date/time
&SYSCLOCK 225
DBCS option setting
&SYSOPT_DBCS 225

debugging macros
ACTR statement 91, 95
AlIF dump 93
global variable suppression 94
hex dump 94
inner macro calls 97
LIBMAC option 91, 96
library macros 96
local scope 95
looping 95
macro entry dump 93
macro exit dump 93
MHELP statement 91, 93
MHELP suppression 94
MNOTE statement 91, 92
PCONTROL(MCALL) option 81
PRINT MCALL statement 91, 97
tracing macro branches 93
tracing macro calls 93
declaring variable symbols 9
arrays 9
explicitly 8,9
GBLA statement §
GBLB statement 9
GBLC statement 9
LCLA statement 9
LCLB statement 9
LCLC statement 9
SET symbols 8
implicitly 8
by the assembler 8
macro parameters 8
SET symbols 8
system variable symbols 8
defined attribute reference (D) 16, 77
defining macros
See macro definition
dependent USING
anchor 239
definition 239
labeled dependent USING 239
dictionaries
global 90
macros 90
open code 90
dimensioned variable symbols 9
gaps in subscripts 9
maximum subscript 8, 76
number attribute reference (N’) 9
displacement
addressing halfword 239
definition 239
displaying values of variable symbols
MNOTE 42
division by zero 16
DOUBLE function 29
DSECT
See also control section
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DSECT (continued)

See also dummy control section

definition 239 i
dummy control section 239

COM 240

CXD instruction 240

DSECT 240

DXD 240

external 240

External Symbol Dictionary 240
dummy external section 240
dummy section

See dummy control section
duplication factor

for quoted strings 23

substrings 27

E

EAR
See also effective address register
definition 239
eccentricities
apparently boolean expressions in SETA
and SETB 47
nesting of internal character functions in
SETA 47
no branch for extended AGO 47
overflow 47
pairing rules 47
string comparisons 47
substitution of arithmetic variables 47
editing
See macro encoding
effective address 241
definition 239
indexed effective address 241
Effective Address Register
definition 240
effective address 240
encoding
See macro encoding
ENTRY statement 240
EQU statement 19
compared to SETA statement 19
error checking
in macro encoding 63
ESD
See also External Symbol Dictionary
definition 240
evaluating conditional assembly
expressions 15
execution time 49
definition 240
expansion
See macro expansion

explicit address
definition 240
execution time 240
explicit declaration 8, 9
expression
arithmetic 16
atiribute reference 16
internal functions 16, 17
predefined absolute ordinary
symbols 16
string length 28
arithmetic overflow 16
binary operators 16
boolean 20
arithmetic comparison 21
character comparison 21
comparison operators 21
operators 21
relational operators 21
character 22
concatenation 25
internal functions 29
opcode attribute reference (O’) 23
quoted strings 23
string length 28
substrings 26
type atiribute reference (T) 23
division by zero 16
mixed operand types 33
parentheses 16
precedence of evaluation 16
simplification 18
unary operators 16
extended AGO statement 38
failure to branch 38
extended AIF statement 40
exiended object module
See also generalized object file format
GOFF option 240
external dummy section
definition 240
DXD 240
external functions 32
See also functions
arithmetic functions 210, 211
assembler interface
arithmetic functions 210, 211
character functions 216
SETAF functions 210, 211
SETCF functions 216
calling sequence 208
character functions 216

definition 240
examples 209
LOG2 211

REVERSE 217
initial invocation 209
installation 222

CMS 222
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external functions (continued)
installation (continued)
MVS 222
loading by assembler 209
LOG2 example 211
messages 209
parameter list 209
REVERSE example 217
SETAF interface 210, 211
SETAF statement 32, 208
SETCF interface 216
SETCF statement 32, 208
string reversal example 217
external symbol 6, 240
ALIAS statement 240
common section 240
definition 240
dummy external section 240
DXD 240
ENTRY statement 240
pseudo register 240
renaming via ALIAS statement 240
External Symbol Dictionary
definition 240
object module 240
EXTRN statement 240

F

FIND function 31
FLAG option 42
FLAG(NOSUBSTR) option 27
front-ending a macro 204
function
binary operators 15
external 32, 209
SETAF statement 32
SETCF statement 32
internal
arithmetic 17
character 28
masking 17
shifting 17
unary operators 15
functions
See also external functions
See also internal functions
conditional assembly 240
definition 240
external 240
internal 241
SETAF statement 240
SETCF statement 240

G

GBLA statement 9
GBLB statement 9
GBLC statement 9
general purpose registers
definition 240
generalized object file format
definition 240
object module 240
generated statements
AINSERT statement 184
inner macro calls 65
limitations and AINSERT statement 65
generation
See macro expansion
global variable symbol dictionary 90
in macro encoding 63
global variable symbols 48, 88
dictionary 88
for macro output values 88
in macro encoding 63
sharing by name 88
type consistency 88
uniform declaration 7
GOFF
See also generalized object file format
definition 240
object module 240
GOFF option
definition 240
GPR
See also general purpose register
definition 240

H

High Level Assembler
definition 240
highest MNOTE severity
&SYSM_HSEV 225
HLASM
definition 240
host system
&SYSTEM_ID 226

I’ attribute reference 16, 77

See also integer attribute reference
implicit address

See implied address
implicit declaration

macro parameters 8

Appendix E. Index

251



implicit declaration (continued)
SET statements 9
system variable symbois 8
unmodifiable values 8
implied address
base-displacement format 240
definition 240
resolution 240

index
See also Index
definition 240

index register 240
index register specification digit 240
index digit
See also index register specification digit
definition 241
INDEX function 30
index register
definition 241
general purpose register 241
index register specification digit 241
index register specification digit
definition 241
index register 241
indexed effective address 241
indexed effective address
base 241
definition 241
displacement 241
index 241
initializing variable symbols 9
inner macro calls
in generated statements 65
inner-macro arguments
list structures 87
installing external functions 222
CMS 222
MVS 222
integer attribute reference (I’) 16, 77
internal arithmetic functions 17
masking
AND 17
NOT 17
OR 17
XOR 17
shifting
SLA 17
SLL 17
SRA 17
SRL 17
with character operands
FIND 30
INDEX 30
internal character functions 29
BYTE 30
DOUBLE 29
FIND 31
INDEX 30

internal character functions (continued)
LOWER 28
SIGNED 29
UPPER 29
internal function notation 15
internal functions
See also functions
arithmetic-valued 30
character operands
arithmetic-valued 30
character-valued 29
conditional assembly 241
definition 241
notation 15
internal symbol 6
Assembler Language 241
definition 241
SYSADATA file 241
internal symbol dictionary
See also symbol table
definition 241
internal text 63
interpretation
See macro interpretation

J

job name
&SYSJOB 225

K

K’ attribute reference 16, 76, 80
See also count attribute reference
character value of parameter 77
to arithmetic variable 28
1o boolean variable 28
to character variable 28
keyword parameters 69, 72
arbitrary ordering 69
argument value overrides default 72
default values 69
mixing with positional parameters 69

L

L’ attribute reference 16, 77
See also length attribute reference
label
definition 241
labeled USING statement 241
name field symbol 241
symbol definition 241
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labeled USING
definition 241
gualified symbol 241
qualifier 241
LC
See also location counter
definition 241
LCLA statement 9
LCLB statement 9
LCLC statement 9
length attribute reference (L") 16, 77
LIBMAC option 396
library macros 96
macro debugging 96
library macro 60, 61
list structures 82
nesting 81, 83
sublists 81
subscripts 83
listing spacing
AEJECT statement 66
ASPACE statement 66
lists in macro arguments 76
local symbol dictionary 63, 90
location
assembly time 241
base location 239
definition 241
execution time address 241
location counter 241
Location Counter
definition 241
LOCTR name
&SYSLOC 225
LOCTR statement 179, 231
LOG2 example 211
logical expressions 41
in SETA, SETB, and AIF 41
logical operators 41
in SETA, SETB, and AIF 41
lookahead mode 178
attribute reference 178
looping in macros
ACTR statement 95
LOWER function 29

machine language 1
definition 241
execution time 241
macro argument attributes 48, 76
macro argument list
&SYSLIST 225
macro argument structures 48, 76
examples 81

macro argument structures (continued)
lists 76, 81
sublists 76

macro argument-parameter association
See association

macro arguments 48, 68

&SYSLIST 84
&SYSLIST(0) 84
attributes 76
by construction 86
by direct substitution 85
by substitution of parts 86
constructed 73
count attribute 80
length
given by K’ attribute 76
list structures 81
lists and sublists 82, 85
name field entry 84
&SYSLIST(0) 84
nesting 81
null arguments 70
number attribute 81
pairing of apostrophes and
ampersands 70
parenthesized list 85
positional 84
number given by N'&SYSLIST 84
positional arguments 70, 85
properties 78
guoted string arguments 70
structures 76
sublists 81
type attribute 78
macro body 59
macro call
See also macro instruction
as assembly-time subroutine 49
global variable symbols as output 88
no return values 88
macro call nesting level
&SYSNEST 225
macro comments 66
macro concepts
argument association 53
basic processes 51
expansion 51
recognition 51
text insertion 51
text parameterization 51
text selection 51
inner calls 55
macro nesting 55
nested macro calls 55
nested macro definitions 57
recognition of inner calls 55
text insertion 52
text parameterization 53
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macro concepts (continued) macro editing 63

text selection 54 See also macro encoding
macro debugging macro encoding 48, 63, 183
ACTR statement 91, 95 COPY statements 63
AIF dump 93 definitions 63
global variable suppression 94 error checking 63
hex dump 94 expansion errors
inner macro calls 97 ACTR value halved 85
LIBMAC option 91, 96 . global variable symbol dictionary 63
library macros 96 internal text 63
looping 95 limitations 183, 184
macro entry dump 93 AINSERT 184
macro exit dump 93 local dictionary 63
MHELP statement 91, 93 parameter name encoding 63
MHELP suppression 94 points of substitution 63
MNOTE statement = 91, 92 recognition of inner calls 55
PCONTROL{(MCALL) option 91 system variable symbol encoding 63
PRINT MCALL statement 91,.97 macro examples
tracing macro branches 93 BYTESEQ1 74
tracing macro calls 93 GREGS 67
macro definition 48, 59 sequence of byte values 74
comment statements 66 symbols for register names 67
macro comments 66 macro expansion 48, 51, 65
ordinary comments 66 generated statements 65
efficiency vs. generality 64 inner macro calls 65
format 60 MEXIT statement 65
in-line 60 parameter association 65
keyword parameters 69 recognition of inner calls 55
operands of prototype statement 69 termination 65
library 60 MEND statement 65
limitations on generated statements - 65 MEXIT statement 65
AINSERT statement 65 text insertion 51
listing spacing text parameterization 51
AEJECT statement 66 text selection 51
ASPACE statement 66 macro facility 49
macro arguments 68 benefits 49, 50, 51
macro body 59 adaptability 51
macro comments 66 application portability 50
macro editing 63 code re-use 50
macro encoding 63 create language 49
macro header statement 59 easier debugging 50
macro parameters 68 encapsulated interfaces 51
MACRO statement 59 flexibility 51
macro trailer statement 60 high-level constructs 50
MEND statement 60 language extension 49
name recognition 63 language portability 49
nested definitions 57 localized logic 51
in HLASM 64 modularity 50
overriding instructions 61 reduced coding effort 50
parameters 69 reliability 50
points of substitution 63 standardized conventions 50
name, operation, operand fields 63 suppression of detail 50
not in remarks or comments 63 macro front-ending 204
positional parameters macro generation
operands of prototype statement 69 See macro expansion
prototype statement 58, 69 macro header statement
re-interpretation 64 MACRO statement 59
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macro instruction 49
&SYSLIST(0) for name fieid entry 84
arguments 70

null arguments 70
positional arguments 70
quoted string arguments 70
library macro 61
nested calls 57, 97
null arguments 70 ,
overriding instructions 61
positional arguments 70
quoted string arguments 70
recognition rules 61
redefinition 61
source macro 61
undefined 61
macro-instructions
as assembly-time subroutines 3
macro invocation counter
&SYSNDX 225

macro language 2

macro library 61

macro name
&SYSMAC 225

macro nesting
calls 55
definitions 57

macro parameter-argument association
See association

macro parameters 48, 68, 69
in model statements 75
not in declarations 15
not in SET statements 15
points of substitution 75
positional 69
sublists 83
subscripts 83

macro recognition 48, 51
details 62
expansion 61
generation 61

macro recursion 102

MACRO statement 59

macro techniques case studies 101

macro trailer statement
MEND statement 60

mapping of data structure
See dummy control section

masking functions
See also boolean operators
AND 17
NOT 17
OR 17
XOR 17

maximum subscript 9
number attribute reference (N) 8, 76

MCALL operand 91, 97

MEND statement 60, 65
messages
external functions 209
MNOTE statement 42
severity code 42, 209
MEXIT statement 65
MHELP statement
AlF dump 93
debugging macros 93
global variable suppression 94
hex dump 94
macro debugging 93
macro entry dump 93
macro exit dump 93
suppression 94
tracing macro branches 93
tracing macro calls 93
mixed operand types
in expressions 33
MNOTE severity
&SYSM_HSEV 43, 225
&SYSM_SEV 43, 225
MNOTE statement 42
commenis 42
debugging macros 92
macro debugging 92
severity code 42
&SYSM _HSEV 43
&SYSM_SEV 43
SYSTERM 42
TERM option 42
model statements
parameters 75
points of substitution 75
multiple assignment 15

N’ attribute reference 16, 76
See also number atiribute reference
character value of parameter 77
maximum subscript 76
N’&SYSLIST
number of positional arguments 84
name field entry on macro call
&SYSLIST(0) 84
nested macro calls 55
nested macro definitions 57, 64
nesting level
&SYSNEST 225
NOCOMPAT(SYSLIST) option 87
NOT function 17
NOT operator 21
number attribute reference (N’)- 9, 16, 76
&SYSLIST 82
difference from K* 77
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number attribute reference {N’) (continued)
dimensioned variable symbol 82
number of positional arguments 84
N’&SYSLIST 84
rule of thumb 82
to variable symbols 81
vs. maximum subscript 81
numeric-valued atiribute reference
count (K’) 16
defined (D") 16
integer (I} 16
length (L") 16
number (N) 16
scale (8") 16

o

O’ attribute reference 61
See also opcode attribute reference
object module
definition 241
external symbols 241
opcode attribute reference (O’) 23, 61, 77
open code 3
attribute reference 17
definition 7, 241
local scope 7
operating system environment 240
OPSYN statement 180, 204
OPTABLE option setting
&SYSOPT_OPTABLE 225
options
*PROCESS statement 241
COMPAT(SYSLIST) 85, 87
definition 241
FLAG(NOSUBSTR) 27
LIBMAC 96
NOCOMPAT(SYSLIST) 87
OR function 17
OR operator 21
ordinary assembly language 238
definition 241
inner language 1
ordinary symbol 4
vs. conditional assembly language 239
ordinary control section
See also control section
common control section 239
CSECT 239
offsets fixed at assembly time 239
positions at execution time 239
relocation at later times 239
RSECT 239
ordinary symbol 6, 241
definition 241
external symbol 6

ordinary symbol (continued)

internal symbol &
ordinary USING

base address 241

definition 241

general purpose register 241
overflow

arithmetic expression 47
overriding instructions

macro definitions 61

P

pairing
ampersands 23, 28, 47, 80
apostrophes 23, 28, 47, 70, 80
DOUBLE function 29
not in SETC variable 28
parameter association
See association
parameters
See macro parameters
PCONTROL option
PRINT MCALL override 98
points of substitution 11, 63
identifying 12
in model statements 75
not in remarks or comments 11 75
re-scanning 12
where not allowed 75
positional parameters
See macro parameters
PR
See also external dummy section
See also pseudo register
definition 241
predefined absolute symbols 13, 19
in arithmetic expressions 16
in boolean expression 20
in character expressions 23
removed in HLASM R4 24
preprocessors
analogy to conditional assembly 4
primary address list
SETAF interface 210, 211
SETCF interface 216
PRINT MCALL statement
inner macro calls 97
macro debugging 97
MCALL operand 97
PCONTROL option 98
PROFILE option 205
prototype statement
See macro definition
pseudo register 240, 242
See also external dummy section
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pseudo register (continued)
definition 241
external dummy section 242 .

Q

Q-type address constant 240
qualified symbol
definition 242

qualifier 242
qualifier
anchor 242

base-displacement resolution 242
definition 242
labeled USING statement 242
quoted string arguments
See macro arguments
quoted strings 22
See also character expression
duplication factor 23

R

RA
See also relocatability attribute
definition 242
recent MNOTE severity
&SYSM_SEV 225
recognition of macro call 61
recursive macro calls 102, 130
factorial example 133
Fibonacci numbers 135
indirect addressing 131
separate local dictionary 90
reenterable
See reentrant

reentrant
definition 242
RSECT 242

relational operators
arithmetic comparison 21
character comparison 21
EQ 21
GE 21
GT 21
LE 21
LT 21
NE 21
relocatability
See also relocatability attribute
complex 239
simple 242
relocatability attribute
definition 242

relocatable
complex relocatability 242
definition 242
relocatability attribute 242
simple relocatability 242
relocation
definition 242
relocation ID
See also relocatability attribute
definition 242
remarks fields
lack of substitution 63
RENT option setting
&SYSOPT_RENT 225
request information area
SETAF interface 210, 211
- SETCF interface 216
resolution
See also address resolution
definition 242
resolved
See also address resolution
definition 242
REVERSE example 217
reversed string function example 217
RSECT
control section 242
definition 242
External Symbol Dictionary 242
reentrant 242
run time
See also execution time
definition 242

S

S’ attribute reference 16, 77

See also scale attribute reference
scale attribute reference (S") 16, 77
scope

ACTR value 95

of variable symbols 6

global 7
local 7

rules for variable symbols 89

sequence symbol 36

system variable symbols 224
self-defining term

in boolean expression 20
sequence field

&SYSSEQF 226
sequence symbol 4, 34

ANOP 36

branch targets 36

defining 35, 36

definition 242
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sequence symbol (continued)
lack of creation 36
“lack of substitution 36
lack of value 35
local scope 36
not as arguments 36
statement selection 5, 35
SET statements 14
arithmetic operators 15
multiple assignment 15
SETA statement 16
SETB statement 20
SETC statement 22
SET symbols 7, 15
associative addressing 10

created 9, 101, 106, 152, 153, 159, 181

explicit declaration 8

modifiable value 8

SETA symbols 15

SETB symbols 15

SETC symbols 15
SETA statement 16, 19

compared to EQU statement 19
SETA variables

in boolean expression 20
SETAF interface

primary address list 210, 211

request information area 210, 211

SETAF statement 32, 209
SETB statement 20
SETC statement 22
SETCF interface
primary address list 216
request information area 216
SETCF statement 32, 209
severity code
external functions 209
FLAG option 42
MNOTE statement 42
shift functions

SLA 17
SLL 17
SRA 17
SRL 17

SIGNED function 24, 29

simple relocatability
definition 242

SLA function 17

SLL function 17

source macro 61

SRA function 17

SRL function 17

statement number
&SYSSTMT 226

statement selection 34
sequence symbol 34

statement sequencing
AGO 37

statement sequencing (continued)
AIF 39
step name
&SYSSTEP 226
string concatenation
See character strings
strings
See also character expression
See also character strings
concatenation 27
length 28
substrings
duplication factor 27
structures
macro arguments 48
sublists 81, 82
sublists in macro arguments 76
subscripted variable symbols 9, 84
maximum subscript 9
number attribute reference (N’)
subscripts 84
&SYSLIST 84
macro parameters 83
positional parameters 84
variable symbols 9
substitution 10
‘See also points of substitution
substrings 26
duplication factor 27
symbol
absolute
definition 238
attribute 238
forward reference 178
control section name 240
external symbol 240
EXTRN statement 240
internal symbol 241
location counter values 238
lookahead mode 178
non-relocatable symbol 238
ordinary symbol 241
qualified symbol 242
qualifier 242
sequence symbol 34, 35
symbol table 242
variable symbol 242
symbol attributes
See atiribute reference
symbol dictionary
See also symbol table

global 63
“internal symbol 241
local 63

symbol table
definition 242
symbolic parameters
See also macro parameters
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symbolic parameters (confinued)
not in declarations 15
not in SET statements 15
symbols for register names 67
macro example 67
SYSADATA file
ADATA option 242
definition 242
SYSIN file name
&SYSIN_DSN 225
SYSIN member name
&SYSIN_MEMBER 225
SYSIN volume name
&SYSIN_VOLUME 225
SYSLIB file name
&SYSLIB_DSN 225
SYSLIB member name
&SYSLIB_MEMBER 225
SYSLIB volume name
&SYSLIB_VOLUME 225
SYSLIN file name '
&SYSLIN DSN 225
SYSLIN member name
&SYSLIN MEMBER 225
SYSLIN volume name
&SYSLIN_VOLUME 225
SYSPARM parameter value
&SYSPARM 226
SYSPRINT file name
&SYSPRINT_DSN 226
SYSPRINT member name
&SYSPRINT_MEMBER 226
SYSPRINT volume name
&SYSPRINT_VOLUME 226
SYSPUNCH file name
&SYSPUNCH_DSN 226
SYSPUNCH member name
&SYSPUNCH_MEMBER 226
SYSPUNCH volume name
&SYSPUNCH_VOLUME 226
system variable symbol
definition 242
system variable symbols 6, 8, 10, 223
&SYSADATA DSN 225, 229
ADATA file name 225
&SYSADATA_MEMBER 225, 229
ADATA member name 225
&SYSADATA _VOLUME 225, 223
ADATA volume name 225
&SYSASM 225, 227
assembler name 225
&SYSCLOCK 225, 232
date/time 225
in macros only 232
&SYSDATC 225, 228
date 225
vs. &SYSDATE 236
&SYSDATE 225, 228
date 225

system variable symbols (continued)

&SYSDATE (continued)

vs. &SYSDATC 236
&SYSECT 225, 230

current control section 225

vs. &SYSSTYP 236
&SYSIN_DSN 225, 231

SYSIN file name 225
&SYSIN_MEMBER 225, 231

SYSIN member name 225
&SYSIN_VOLUME 225, 231

SYSIN volume name 225
&SYSJOB 225, 228

assembly job name 225
&SYSLIB_DSN 225, 232

SYSLIB file name 225
&SYSLIB_MEMBER 225, 232

SYSLIB member name 225
&SYSLIB_VOLUME 225, 232

SYSLIB volume name 225
&SYSLIN_DSN 225, 229

SYSLIN file name 225
&SYSLIN_ MEMBER 225, 229

SYSLIN member name 225
&SYSLIN_VOLUME 225, 229

SYSLIN volume name 225
&SYSLIST 71, 85, 225, 233

list scanning 71

name field entry 233

positional parameters 233

sublists 233
&SYSLOC 225, 231

current location counter 225
&SYSM_HSEV 225, 235

highest MNOTE severity 225
&SYSM_SEV 225, 235

recent MNOTE severity 225
&SYSMAC 225, 233

macro name 225

subscripts 233
&SYSNDX 225, 233

macro invocation counter 225

vs. &SYSNEST 236
&SYSNEST 225, 233

macro nesting level 225

vs. &SYSNDX 236
&SYSOPT DBCS 225, 229

DBCS option setting 225
&SYSOPT_OPTABLE 225, 228

OPTABLE option setting 225
&SYSOPT_RENT 225, 229

&SYSOPT_RENT 225
&SYSOPT_XOBJECT 226

&SYSOPT_XOBJECT 226
&SYSPARM 226, 229

SYSPARM parameter value 226
&SYSPRINT_DSN 226, 229

SYSPRINT file name 226
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system variable symbols (continued)

&SYSPRINT_MEMBER 226, 229
SYSPRINT member name 226
&SYSPRINT_VOLUME 226, 229
SYSPRINT volume name 226
&SYSPUNCH_DSN 226, 229
SYSPUNCH file name 226
&SYSPUNCH_MEMBER 226, 229
SYSPUNCH member name 226
&SYSPUNCH_VOLUME 226, 229
SYSPUNCH volume name 226
&SYSSEQF 226, 230
sequence field 226
&SYSSTEP 226, 228
step name 226
&SYSSTMT 226, 234
next statement number 226
&SYSSTYP 226, 231
control section type 226
vs. &SYSECT 236
&SYSTEM_ID 226, 227
assembly system 226
&SYSTERM_DSN 226, 228
SYSTERM file name 226
&SYSTERM_MEMBER 226, 229
SYSTERM member name 226
&SYSTERM_VOLUME 226, 229
SYSTERM volume name 226
&SYSTIME 226, 228, 236
time of assembly 226
vs. AREAD operands 236
&SYSVER 226, 227
assembler version 226
assigned by assembler 14
availability 224
encoding in macro definition 63
implicit declaration 8
not in declarations 14
not in SET statements 14
scope of usage 224
symbols with constant values 230
&SYSCLOCK 230
&SYSECT 230
&SYSIN_DSN 230
&SYSIN_MEMBER 230
&SYSIN_VOLUME 230
&SYSLIB_DSN 230
&SYSLIB_MEMBER 230
&SYSLIB_VOLUME 230
&SYSLIST 230
&SYSLOC 230
&SYSMAC 230
&SYSNDX 230
&SYSNEST 230
&SYSSEQF 230
&SYSSTYP 230
symbols with fixed values 227
&SYSASM 227
&SYSDATC 227

system variable symbols (continued)

symbols with fixed values (continued)

&SYSDATE 227
&SYSJOB 227
&SYSOPT_DBCS 227
&SYSOPT_OPTABLE 227
&SYSOPT_RENT 227
&SYSOPT_XOBJECT 227
&SYSPARM 227
&SYSSTEP 227
&SYSTEM_ID 227
&SYSTIME 227
&SYSVER 227
symbols with varying values 234
&SYSM_HSEV 234
&SYSM_SEV 234
&SYSSTMT 234
type attributes 224
type of symbol’s value 224
unmodifiable values 8
variability 224
constant 224
fixed 224
variable 224
SYSTERM
MNOTE statement 42
TERM option 42
SYSTERM file name
&SYSTERM_DSN 226
SYSTERM member name
&SYSTERM_MEMBER 226
SYSTERM volume name
&SYSTERM_VOLUME 226

T

T’ attribute reference 77
See also type attribute reference
template for data structure
See dummy control section
TERM option 42
text generation
See macro expansion
text insertion 52
text parameterization 53
text selection 54
time 242
assembly 49, 239
definition 238

bind 239

execution 49, 239
definition 240

in microseconds 232

link 239

machine language 240

run time

See execution time
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time (continued)
translation
See assembly time
time of assembly
&SYSCLOCK 232
in macros only 232
&SYSTIME 226, 228, 232
local dynamic time 236
AREAD statement operands- 236
CLOCKB 236
CLOCKD 236
local start time 236
type attribute reference (T’) 77
in character expressions 23, 27
values 79

u

unary operator 16

unconditional branching
AGO 37

undefined operation 61

unmodifiable variable symbols 7

UPPER function 29

USING statement
dependent 239
labeled 239, 241
labeled dependent 239
ordinary 239

USING Table
assembly time 242
definition 242
implied address 242

\'

values of type attribute reference 79
variable symbols
See also SET symbols
arithmetic type 6
arrays 7
assigning values 14
attribute 238
symbol itself 77, 238
symbol’s value 77, 238
boolean type 6
character type 6
constructed by substitution 13
created 9, 13, 101, 106, 152, 153, 159,
181
declaration
arrays 9
by the assembler 8
explicit 8
GBLA statement 9
GBLB statement 9

variable symbols (continued)

declaration (continued)

GBLC statement 9

implicit 8

LCLA statement 9

LCLB statement 9

LCLC statement 9
definition 242
dictionaries

macros 90

open code 90
dimensioned 9

number attribute reference (N’) 82
displaying values 42
global 88

in macro encoding 63
global symbol dictionary 90
initialization 9
local symbol dictionary 90
manufactured 13
modifiable values 7

SET symbols 7
multiple assignment 15
number attribute zero 9
points of substitution 11, 12

identifying 12

not in remarks or comments 11

re-scanning 12

scalars 7

scope 6,9
global 6,7
local 6,7

scope rules 6, 89
global symbols 89
local symboils 89
SET symbols 7
subscripted 9
substitution 10
symbolic parameters 15
not in declarations 15
not in SET statements 15
syntax 6
system
See system variable symboils
undimensioned 9
unmodifiable values 7
symbolic parameters 7
system variable symbols 7

w

wrapping a macro 204
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X

XOBJECT/GOFF option setting
GOFF/XOBJECT option setting 226

XOR function 17

XOR operator 21

Z

zero, division by 16
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