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Conditional Assembly and Macro Overview 

Conditional Assembly and Macro 

Overview 

HLASM Macro Tu1Drial ©Copyright IBM Corporation 1993, 2002. All righ1s reserved. 
Rev. 10 Jun 2002 

Overview~1 

Fmt 10 Jun 02, 1805 

This presentation discusses a powerful capability of the System/360/370/390 assemblers that 
allows you to tailor programs to your specific needs: the "Conditional Assembly and Macro 
Facility". 

The Two Assembler Languages 

System/360/370/390 assemblers support two (nearly) independent 
languages 

- "ordinary" assembly language: you program the machine 

translated by the Assembler into machine language 

usually executed on a System/3601370/390 processor 

- "conditional" assembly language: you program the assembler 

interpreted and executed by the Assembler at assembly time 

tailors. selects, and creates sequences of statements 

HLASM Macro Tu1Drial <D Copyright IBM Corporation 1993. 2002. All rights reserved. Overview-2 

The System/360/370/390 Assembler Language is actually a mixture of two distinct languages: 

Ordinary assembly language - the language of machine and assembler instruction state­
ments, translated by the Assembler into machine language 

Conditional Assembly and Macro Overview 1 



• Conditional assembly and macro language - the language of conditional statements, var­
iable symbols, and macros, interpreted and executed by the Assembler at assembly time 
to tailor, select, and create sequences of statements. 

The conditional assembly and macro language is a special language with its own rules for 
declaring variables, assigning values, testing conditions, and generating values. The objects 
being manipulated at the time a program is assembled are primarily statements, character 
strings, and numeric quantities, so the conditional assembly language is oriented towards 
those items. 

The elements manipulated and controlled by the conditional assembly language include 
statements in the ordinary assembly language, so we sometimes refer to the conditional lan­
guage as the "outer" language, in which the ordinary or "inner" or "base" language is 
enclosed. (Some people would reverse this characterization: the conditional language is so 
less well known that it seems to be hidden somewhere "inside" the more familiar ordinary 
language!) 

Why is the Conditional Assembly Language Interesting? 

• Adds great power and flexibility to the base (ordinary) language 

- You write programs that write programs! 

- Lets the language do more of the work 

• Lets you build programs "bottom-up" 

- Repeated patterns become macro calls 

- Enhances program readability, reduces program size 

HLLs: you must make the problem fit the language 

Macros: you can change the language to fit the problem 

- Each application encourages design of its own language 

HLASM Macro Tutorial I[) Copyright IBM Corporation 1993, 2002. All rigMs reserved. Overview-3 

Understanding the conditional assembly language not only adds to your knowledge of useful 
programming techniques, but also lets you think about application programming in new and 
different ways. You can effectively design the language that best fits the application, rather 
than adapting the design of the application to fit the rules of a language. 

Thus, you can build an application not in the traditional "top-down" sense, but from the 
"bottom up". That is, by identifying the common, repeated elements of the application, you 
can create operations (macros) that reduce your concerns with details, so your program and 
its language can evolve together. Those common elements can then be used throughout the 
application (code re-use!). 

The approach we will take here is somewhat different from that used in most other tutorials 
and textbooks where the macro concept is introduced first, and conditional assembly con­
cepts are explained in an ad-hoc, incremental fashion. 

Part 1 describes the conditional assembly language and its complete set of facilities and fea­
tures. Part 2 explores basic aspects of macros and their definition and use in the 
System/360/370/390 Assembler Language. Part 3 provides "case study" examples of macro 
programming with IBM High Level Assembler for MVS & VM & VSE. 

Sometimes the conditional assembly language is called "macro language", but since its use 
is not limited to macro instructions, we will use the more general term. 

2 Assembler Language as a Higher Level Language, SHARE Summer 2002 



Part 1: The Conditional Assembly Language 

Part 1: The Conditional Assembly 

Language 

HLASM Macro Tu10rial ©Copyright IBM Corporation 1993, 2002. All nghts reserved. Conditional·1 

Though primitive in many respects, the conditional assembly language has most of the basic 
elements of a general purpose programming language: data types and structures, variables, 
expressions and operators, assignments, conditional and unconditional branches, some 
built-in functions, simple forms of 1/0, and subroutines. 

Conditional Assembly Language 

Conditional Assembly Language: 

- general purpose (if a bit primitive): data types and structures; variables: 
expressions and operators: assignments; conditional and unconditional 
branches: built-in functions: 1/0: subroutines: external functions 

Analogous to preprocessor support in some languages 

- But the Assembler's is much more powertull 

Fundamental concepts of conditional assembly apply 

- outside macros ("open code", the primary input stream) 

- inside macros ("assembly-time subroutines") 

The two languages manage different classes of symbols: 

- ordinary assembly: ordinary symbols (internal and external) 

- conditional assembly: variable and sequence symbols 

- variable symbols: for evaluation and substitution 

- sequence symbols: for selection 

HLASM Macro Tutorial [)Copyright IBM Corporation 1993, 2002. All r•ghts reserved Cond)tional·2 

The conditional assembly language is used primarily in macro instructions (or "macros"), 
which may be thought of as "assembly-time subroutines" invoked during the assembly to 
perform useful functions. Most of the same techniques can also be used in ordinary assem­
blies ("open code", the primary input stream) without relying on macros. 

Part 1: The Conditional Assembly Language 3 



Conditional assembly techniques are similar to those employed in some preprocessors for 
higher level languages such as C and PUI, where compilers can interpret a special class of 
statements to perform substitutions, inclusion or exclusion of code fragments, and string 
replacement. As we will see, the assembler's support of these capabilities is quite powerful: 
not only is the conditional assembly language complete (if a bit primitive), but it provides 
extensive interactions with both the "ordinary" or "base" language and the external 
assembly environment. 

The distinctive feature of the conditional assembly language is the introduction of two new 
classes of symbols: 

variable symbols are used for evaluation and substitution 

sequence symbols are used for selection among alternative actions. 

Just as "normal" or "ordinary" assembly deals with ordinary symbols - assigning values to 
symbols and using those values to evaluate various kinds of expressions - the conditional 
assembly language uses variable and sequence symbols. See Figure 117 on page 243 for a 
comparison of the eJements of the ordinary and conditional assembly languages. 
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Evaluation,· Substitution, and Selection 

Three key concepts of conditional assembly: 

1. Evaluation 

- Assigns values to variable symbols, based on the results of computing complex 
expressions 

2. Substitution 

- You write the name of a variable symbol where the Assembler is to substitute the 
value of the variable symbol. 

- Permits tailoring and modification of the "ordinary assembly language" text stream. 

3. Selection 

- Use sequence symbols to alter the normal. sequential flow of statement processing. 

- Selects different sets of statements for further processing. 
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Evaluation, Substitution, and Selection 

There are three key concepts in the conditional assembly language: 

• evaluation 
substitution 
selection 

Evaluation allows you to assign values to variable symbols based on the results of com­
puting complex expressions. 

Substitution is achieved by writing the name of a special symbol, a variable symbol, in a 
context that the Assembler will recognize as requiring substitution of the value of the vari­
able symbol. This permits tailoring and modification of the "ordinary assembly language" 
text stream to be processed by the assembler. 

Selection is achieved by using sequence symbols to alter the normal, sequential flow of 
statement processing. This permits different sets of statements to be presented to the 
Assembler for further processing. 
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I Variable Symbols 

Written as an ordinary symbol prefixed by an ampersand(&) 

Examples: 

&A &Time &DATE &Hy_Value 

Variable symbols starting with &SYS are reserved to the Assembler 

Three variable symbol types are supported: 

- Arithmetic: values represented as signed 32-bit (2's complement) integers 

- Boolean: values are 0, 1 

- Character: strings of O to 255 EBCDIC characters 

Two scopes are supported: 

- local: known only within a fixed, bounded context; not shared across scopes 
(macros, "open code") 

- global: shared in all contexts that declare the variable as global 

Some variable symbol values are modifiable ("SET" symbols) 
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Variable Symbols 

Conditional·4 

In addition to the familiar "ordinary" symbols managed by the assembler - internal and 
external - there is also a class of variable symbols. Variable symbols obey scope rules sup­
porting two types that roughly approximate internal and external ordinary symbols, but they 
are not retained past the end of an assembly, and do not appear in the object text produced 
by the assembly. 

Variable symbols are written just as are ordinary symbols, but with the ampersand character 
(&) prefixed. Examples of variable symbols are: 

&A 
&Time 
&DATE 
&My_Value 

&a (these two are treated identica11y) 

As indicated in these examples, variable symbols may be written in mixed-case characters; 
all appearances will be treated as being equivalent to their upper-case versions. Variable 
symbols starting with the characters &SYS are called System variable symbols, and are 
reserved to the Assembler. They are described more fully in Appendix B, "System (&SYS) 
Variable Symbols" on page 223. 

There are three types of variable symbols, corresponding to the values they may take: 

arithmetic 
The allowed values of an arithmetic variable symbol are those of 32-bit (fullword) two's 
complement integers (i.e., between -231 and + 231-1. (Be aware that in certain contexts, 
their values may be substituted as unsigned integers!) (This is discussed further at 
"Evaluating and Assigning Character Expressions: SETC" on page 22.) 

boolean 
The allowed values of a boolean variable symbol are 0 and 1. 

character 
The value of a character variable symbol may contain from 0 to 255 characters, each 
being any EBCDIC character. (A character variable symbol containing no characters is 
sometimes called a null string.} 

The conditional assembly language supports two scopes for symbols: local and global. 
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local 
Local variable symbols have a limited, bounded scope, and are not known outside that 
scope. There are two types of local scope: within macros, and "open code". "Open 
code" is the main sequence of Assembler Language statements read by the assembler, 
outside any macro invocations; it may contain a mixture of ordinary (base) language and 
conditional assembly. statements. 

global 
Global variable symbols are shared by name by all scopes that declare the variables to 
be global. Thus, they can be shared between macros and open code. All declarations 
of global variables must have the same type, and be uniformly declared as either 
scalars or arrays. 

The scope rules for variable symbols are somewhat similar to those of Fortran: some vari­
ables are local to each "routine" (main routines are like "open code" and macros are like 
"subroutines"), and others may be shared in a pool called "blank common". One key differ­
ence is that global variable symbols are shared by name in the Assembler Language, 
whereas they are shared by offset in Fortran COMMON. 

It is sometimes convenient to distinguish between two types of variable symbols: 

1. Symbols whose values you can change: 

these are sometimes called SET symbols, because you use a "SET" statement to assign 
their values; 

2. Symbols whose values you can use, but not change: 

these include system variable symbols and symbolic parameters. 

Each of these will be discussed in detail. 
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Declaring Variable Symbols 

There are six explicit declaration statements (3 types x 2 scopes) 

Arithmetic Type Boolean Type Character Type 

Local Scope LCLA LCLB 

Global Scope GBLA GBLB 

Initial Values 0 0 

Examples of scalar-variable declarations: 
LCLA &J,&K 
liBLB &lNIT 
LCLC &Temp_Chars 

LCLC 

GBLC 

·. null 

May be subscripted, in a 1-dimensional array (positive subscripts) 
LCLA &F(l5) ,&li(l} No fixed upper limit; (1) suffices 

May be created, in the form &(e) (where e is a character expression 
starting with an alphabetic character) 

&(B&J&K) SETA &(XY&J.Z)-1 
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Declaring Variable Symbols ... 

All explicitly declared variable symbols are SETtable 

- Their values can be changed 

Three forms of implicit declaration: 

1. by the Assembler (for System Variable Symbols) 

- names always begin with characters &SYS 

- most have local scope 

2. by appearing as symbolic parameters (dummy arguments) in a macro 
prototype statement 

- symbolic parameters always have local scope 

3. as local variables, if first appearance is as target of an assignment 

- this is the only implicit form that may be changed (SET) 
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Declaring Variable Symbols 

Variable symbols are declared in several ways: 

Conditional-6 

explicitly, through the use of declaration statements (global variable symbols must 
always be declared explicitly); all explicitly declared symbols are SET symbols, so their 
values may be changed; 

implicitly by the Assembler (the System Variable Symbols, which may not be declared 
explicitly); 

implicitly, by their appearance as dummy arguments in a macro prototype statement 
(these are known as symbolic parameters; they are of character type, and are local in 
scope); 

8 Assembler Language as a Higher Level Language, SHARE Summer 2002 



implicitly, as local variables, through appearing for the first time in the name field of a 
SET statement as the target of an assignment. Their values may be modified in other 
SET statements. 

Explicitly declared variable symbols are declared using two sets of statements that specify 
their type and scope: 

Arithmetic Type Boolean Type Character Type 

Local scope LCLA LCLB LCLC 

Global scope GBLA GBLB GBLC 

Initial Values 0 0 null 

Figure 1. Explicit Variable Symbol Declarations and Initial Values 

These declared variables are automatically initialized by the Assembler to zero (arithmetic 
and boolean variables) or to null (zero-length) strings (character variables). 

The two scopes of variable symbols - local and global - will be discussed in greater detail 
later, in "Variable Symbol Scope Rules: Summary" on page 89. For the time being, we will 
be concerned almost entirely with local variables. 

For example, to declare the three local variable symbols &A as arithmetic, &B as boolean, and 
&C as character, we would write 

LCLA &A 
LCLB &B 
LCLC &C 

More than one variable symbol may be declared on a single statement. The ampersand 
preceding the variable symbols may be omitted in LCLx and GBLx statements, if desired. 

Variable symbols may also be dimensioned or subscripted: that is, you may declare a one­
dimensional array of variable symbols all having the same name, by specifying a parenthe­
sized integer expression following the name of the variable. For example, 

LCLA &F(15) 
LCLB &G(15) 
LCLC &H(15) 

would declare the three subscripted local variable symbols F, G, and H to have 15 elements. 
We will see in practice that the declared size of an array is ignored, and any valid (positive) 
subscript value is permitted. Thus, it is sufficient to declare 

LCLA &F(l) 
LCLB &G(l) 
LCLC &H(l) 

You can determine the maximum subscript used for a subscripted variable symbol with a 
Number attribute reference (to be discussed later, at "Macro-Instruction Argument Proper­
ties: Number Attribute" on page 81). Undimensioned (scalar) variable symbols have number 
attribute reference value zero (to indicate they are not dimensioned). 

Note also that subscripts on variable symbols need not be assigned sequentially starting at 
1. For example, you could assign values to &F(1) and &F(98765431) without any space being 
allocated by the assembler for the (apparently unused) subscripts between 2 and 98765430. 

Subscripted variable symbols may appear anywhere a scalar (non-subscripted) variable 
symbol appears. 

Created variable symbols may be created "dynamically'', using characters and the values of 
other variable symbols. The general form of a created variable symbol is &(e). where e must 
(after substitutions) begin with an alphabetic character and result in a valid variable symbol 
name that is not the name of a macro parameter or a system variable symbol. Created 
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variable symbols may also be subscripted; like other variable symbols they may be declared 
explicitly or implicitly. 

Created variable symbols may be created from other created variable symbols, to many 
levels. For example (using some SET statements to be discussed shortly): 

&C 
&BX 
&APQ 

SetC 'X' 
SetC 1 PQ 1 

SetA 42 

Variable &X contains the character 'X' 
Variable &BX contains the character 'BX' 
Variable &APQ contains the integer 42 

Then, the variable symbol &(A&(B&C)) is the same as the variable &APQ: first B&C is evalu­
ated to form BX; then &(BX) is evaluated to form PQ; then A&(BX) is evaluated to form APQ; 
and finally &(APQ) is evaluated to form &APQ. 

This form of "associative addressing" can be quite powerful, and we will use it in several 
case studies. 

System variable symbols provide access to information the assembler "knows" about the 
state of the assembly and its environment. The symbols and examples of their use are 
given in Appendix B, "System (&SYS) Variable Symbols" on page 223; we will use some of 
them in later examples. 

In the examples that follow, we will typically enclose character string values in apostrophes, 
as in 1 String 1 , to help make the differences clearer between strings and descriptive text. 
However, the enclosing quotes are only sometimes required by the syntax rules of a partic­
ular statement or context. 

Substitution 

Substitution 

In appropriate contexts, a variable symbol is replaced by its value 

Example: Suppose the value of &A is 1. 

Then, substitute &A: 

thar&A DC t'&A' 
+Charl DC C'l' 

Before substitution 
After substitution 

Note: '+' in listing's "column O" indicates a generated statement 

This example illustrates why paired ampersands are required if you 
want a single & in a character constant or self-defining term! 

To avoid ambiguities, mark the end of a variable-symbol substitution 
with a period: 

Write: CONST&A.B DC t'&A.B' &A followed by 'B' 
Result: +CONSTlB DC t'lB' Value of &A followed by '8' I! 

Not: CONST&AB DC C'&AB' &A followed by 'B' ?? No: &AB I 
** ASMABBJE Undeclared variable symbol - OPENC/AB 

- OPENC/AB means "in Open Code, and &AB is an unknown symbol" 
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The value of a variable symbol is used by substituting its value, converted into a character 
string if necessary, into some element of a statement. For example, if the value of &A is 1 (at 
this point, it doesn't matter whether &A is an arithmetic, boolean, or character variable), and 
we write the following DC statement: 

Char&A DC C1 &A 1 

then the resulting statement would appear as 

+Charl DC C1 l 1 
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where the '+' character to the left of "column 1" is the assembler's indication in the listing 
that the statement was generated internally, and was not part of the original source 
program. (Such statements may be suppressed in the listing by specifying a PRINT NOGEN 
statement.) 

Thus, at each appearance of the variable symbol &A, its value is substituted in place of the 
symbol. (This behavior explains why you were required to write a pair of ampersands in 
character constants and self-defining terms where you wanted a single ampersand to appear 
in the character constant or self-defining term: a single ampersand would indicate to the 
Assembler that a variable symbol is expected to appear in that position.) The results of a 
substitution are almost always straightforward, but there are a few special cases we will 
discuss shortly. 

The positions where substitutable variable symbols appear, and at which substitutions are 
done, are sometimes called points of substitution. 

Suppose we need to substitute the value of &A into a character constant, such that its value 
is followed by the character 'B'. If we wrote 

CONST&AB DC C'&AB' &A followed by 'B' ?? 
** ASMA003E Undeclared variable symbol - OPENC/AB 

the assembler has a problem: should &AB be treated as the variable symbol &AB or as the 
variable symbol &A followed by 'B '? If the assembler made the latter choice, it could never 
recognize the variable symbol &AB (nor any other symbols beginning with &A, like &ABCDEFG)! 
As you can see, it chose to recognize &AB, which is undefined to the assembler, as indicated 
in the diagnostic: the OPENC/ indicator means "in Open Code", and AB is the unknown 
symbol. 

To eliminate such ambiguities, you should indicate the end of the variable symbol with a 
period (.). Thus, the constant should be written as 

CONST&A.B DC C'&A.B' &A followed by 'B' 

giving 

+CONSTlB DC c' lB' Value of &A followed by 'B' !! 

Variable symbols are not substituted in remarks fields or in comments statements. 

While the terminating period is not required in all contexts, it is a good practice to specify it 
wherever substitution is intended. (The two situations where the period most definitely is 
required are when the point of substitution is to be followed by a period or a left paren­
thesis.) 
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Substitution, Evaluation, and Re-Scanning 

Points of substitution identified only by variable symbols 

- HLASM is not a general string- or pattern-matehing macro processor 

Statements once scanned for points of substitution are not re-scanned 

&A SETC '3+4' 
&B SETA S*&A Is the result 5*(3+4} or (5*3}+4 ?? 

** ASMAlBZE Arithmetic term is not self-defining term; default = 8 
(Neither! The characters '3+4' are not a self=defining term!) 

Substitutions cannot create points of substitution 

Another example (the SETC syntax and the &&s are explained later): 
&A SETC '&&I• &A has value '&&I• 
&C SETC '&A'(Z,Z} &C has value '&B' 

&B SETC 'XXX' &B has value 'XXX' 
Con DC C'&C' Is the result '&B' or 'XXX'? 

** ASMA1Z7S Illegal use of Ampersand 

The operand is '&B •, so the statement gets a diagnostic 
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Comments on Substitution, Evaluation, and Re-Scanning 

The assembler uses a method of identifying points of substitution that may differ from the 
methods used in some other languages. 

1. Points of substitution are identified only by the presence of variable symbols. Ordinary 
symbols (or other strings of text) are never substituted. 

2. Statements are scanned only once to identify points of substitution. This means that if a 
substituted value seems to cause another variable symbol to "appear" (possibly sug­
gesting further points of substitution), these "secondary" substitutions will not be per­
formed. 

3. This single-scan rule applies both to ordinary-statement substitutions, and to conditional­
assembly statements. Thus, statements once scanned for points of substitution will not 
be re-scanned (or "re-interpreted") further. 

Consider the arithmetic expression '5*&A'. We would expect it to be evaluated by substi­
tuting the value qf &A, and then multiplying that value by 5. 

If this is used in statements such as 

&A 
&B 

SETC 
SETA 

I If) I 

5*&A 

then we would find that &B has the expected value, 50. However, in the statements: 

&A 
&B 

SETC 
SETA 

1 3+4 1 

5*&A 

we are faced with several possibilities. First, is the value of &B now 35 (corresponding to 
"5* (3+4) ")? That is, is the sum 3+4 evaluated before the multiplication? Second, is the 
value of &B now 19 (corresponding to • (5*3)+4•)? That is, is the string "5*3+4• evaluated 
according to the familiar rules for arithmetic expressions? 

In fact, a third situation occurs: because the expression '5*&A' is not re-scanned in any 
way, the value of &A must be a self-defining term. Because it is not, the assembler 
produces this error message: 
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** ASMA102E Arithmetic term is not self-defining term; default = 0 

indicating that the substitute.d "term" 3+4 is improperly formed. 

A similar result occurs if predefined absolute symbols are used as terms. If they are used 
directly (without substitution), they are valid; however, the name of the symbol may not 
be substituted as a character string. To illustrate: 

N Equ 3+4 
&B SetA 5*N 

&N SetC 'N' 
&C SetA 5*&N 

N is an ordinary symbol, value 7 
&B has value 35 

Set &N to the character 'N' 
Error message for invalid term! 

As another example, you might ask what happens in this situation: will the substituted 
value of &B in the DC statement be substituted again? (The pairing rules in SETC state­
ments for ampersands are different from the pairing rules in DC statements, and are 
explained in "Evaluating and Assigning Character Expressions: SETC" on page 22.) 

&A 
&C 
&B 
Con 

SETC 
SETC 
SETC 
DC 

'&&8' 
'&A' (2,2) 
'XXX' 
C1 &C 1 

&A has value '&&B' 
&C has value '&B' 
&B has value 'XXX' 
Is the result 1 &8 1 or 'XXX'? 

The answer is "no". In fact, this DC statement results in an error message: 

** ASMA127S Illegal use of Ampersand 

Because the assembler does not re-scan the DC statement to attempt further substi­
tutions for &C, there will be a single ampersand remaining in the nominal value ( '&B ') of 
the C-type constant. (We will see in "The AINSERT Statement" on page 184 that there 
are some ways around this problem.) 

As a further example, note that substitution uses a left-to-right scan, and that new vari­
able symbols are not created "automatically". For example, if the two character variable 
symbols &Cl and &C2 have values 'X' and 'Y' respectively, then the substituted value of 
'&Cl&C2' is 'XY', and not the value of '&ClY'. Similarly, the string '&&Cl.CZ' represents 
'&&Cl. C2', and not the value of '&XC2' ! 

The only mechanism for "manufacturing" variable symbols is that of the created variable 
symbol, whose recognition requires the specific syntax previously described. 
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Assigning Values to Variable Symbols: SET Statements 

Three assignment statements: SETA, SETB, and SETC 

- One SET statement for each type of variable symbol 

&x_varsym SETx x_expression Assigns value of x_expression to &x_varsywi 

&A_varsym SETA arithmetic_expression 
&B_varsym SETI boolean_expression 
&C_varsy• sm character_expressien 

- SETA uses familiar arithmetic operators and "internal function" notation 

- SETB uses "internal function" notation 

- SETC uses specialized forms and "internal function" notation 

Internal function notation: 

(operand DPERATDR operand) 
( DPERATDR operand) 

for binary operators 
f•r unary operators 
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Assigning Values to Variable Symbols: SET Statements ••• 

Target variable symbol may be subscripted 

&A(6) SETA 9 Set &A(6)=9 
&A(7) SETA Z Set &A(7)=Z 

Canditional-9 

Values can be assigned to successive elements in one statement 

&Subscripted_x_VarSym SETx x_Expression_List 'x' is A, B, or C 

&A(6) SETA 9,Z,5+5 Sets &A(6)=9, &A(7)sZ, &A(8)=18 

- Leave an e>dsting value unchanged by omitting the expression 

&A(l) SETA 6,,3 Sets &A(3)=6, &A(4) unchanged, &A(5)=3 

External functions use SETAF, SETCF (more at slide Conditional-22) 
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Assigning Values to Variable Symbols: SET Statements 

Assignment of new values to variable symbols occurs in three ways, corresponding to the 
types of declaration. 

• Explicitly and implicitly declared variable symbols of arithmetic, boolean, and character 
type are assigned values by the SETA, SETB, and SETC statements, respectively. (Since 
the type of the assigned variable is generally known in advance, having three separate 
SET statements is somewhat redundant; it does help, however, by allowing implicit decla­
rations.) 

• System variable symbols are assigned values by the Assembler (and only by the Assem­
bler). They may not appear in the name field of a SETx statement. 
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Symbolic parameters have their values assigned by appearing as actual arguments in a 
macro call statement. They may not appear in the name field of a SETx statement. 

At this point, we will discuss only assignments to declared variable symbols. 

In addition to the usual arithmetic operators such as +, -, *, and /, conditional assembly 
expressions may specify unary and binary operators in an "internal function" notation. 
Rather than the function-call format used in many high-level languages (such as 
function(arg)), and rather than introduce complex combinations of special characters (such 
as //or« or &&), the Assembler Language recognizes certain operators in a parenthesized 
format: 

(operand OPERATOR operand) 
(OPERATOR operand) 

for binary operators 
for unary operators 

We will see examples of this "internal function" notation shortly.1 External arithmetic func­
tions are invoked by the SET AF command, and are described at "External Conditional­
Assembly Functions" on page 32. 

Multiple array elements may have values assigned in a single SET statement by specifying a 
list of operand-field expressions of the proper type, separated by commas. For example: 

&A(6) SETA 9,2,5+5 Sets &A(6)=9, &A(7)=2, &A(8)=10 

would assign 9 to &A(6), 2 to &A(7), and 10 to &A(B). If you wish to leave one of the array 
elements unchanged, simply omit the corresponding value from the expression list: 

&A(J) SETA 6, ,3 Sets &A(3)=6, &A(4) unchanged, &A(5)=3 

Occasionally, the three declarable types of variable symbol (arithmetic, boolean, and char­
acter) are referred to as SETA, SETB, and SETC variables, respectively, and declarable vari­
able symbols are referred to as SET symbols. 

Evaluating Conditional-Assembly Expressions 

As in any programming language, it is useful to evaluate expressions involving variable 
symbols and other terms, and to assign the results to other variable symbols. 

The syntax of arithmetic and boolean expressions is quite similar to that of common higher­
level languages, but that of character expressions is apparently unique to the Assembler 
Language. 

1 One of the nice things about internal function notation is that spaces can be used within the parentheses to make 
statement formatting more readable. 
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Evaluating and Assigning Arithmetic Expressions: SETA 

Syntax: 
&Arithllll!tic_Var _Sy• SETA aritbllll!tic_expressien 

Follows same evaluation rules as ordinary-assembly expressions 

- Simpler, because no relocatable terms are allowed 
- Richer, because internal functions are allowed 
- Arithmetic overflows always detected! (but· anything/O = O!) 

Valid terms include: 

- arithmetic and boolean variable symbols 
- self-defining terms (binary, character, decimal, hexadecimal) 
- character variable symbols whose value is a self-defining term 
- predefined absolute ordinary symbols 
- numeric-valued attribute references 

(Count, Definition, Integer, Length, Number, Scale) 
- internal function evaluations (shifting and "masking") 

Example: 
&A SETA &11"(2+&K)/&li+ABSS~'l'+l'&Pll"(&ll Sll 5) 
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Evaluating and Assigning Arithmetic Expressions: SET A 

The rules for evaluating conditional-assembly arithmetic expressions are very similar to 
those for ordinary expressions, with the added great simplification that none of the terms in 
a conditional-assembly expression may be relocatable. The unary operators are + and -, 
which may precede any term. The binary operators are* and/, which must be preceded 
and followed by a term (itself possibly preceded by a unary operator). In addition to self­
defining terms, predefined absolute ordinary symbols may be used as terms, as may evalu­
ations of "internal functions" and variable symbols whose value can be expressed as a 
self-defining term (whose value in turn can be represented as a signed 32-bit integer). As 
usual, parentheses may be used in expressions to control the order and precedence of eval­
uation. 

&A 
&B 
&C 
&D 

SetA 2*750 
SetA 3+7/2 
SetA (3+7)/2 
SetA 0000005 

Value of &A is 1500 
Value of &B is 6 
Value of &C is 5 
Value of &D is 5 

Overflows are detected and diagnosed: 

addition and subtraction overflow returns 0 
multiplication overflow returns 1 

• division overflow (-2147483648/-1) returns 0 
• division by zero (including 0/0) returns 0. 

Numeric-valued attribute references to ordinary symbols may also be used as terms; these 
are normally attribute references to character variable symbols whose value is an ordinary 
symbol. The numeric-valued attribute references are: 

• Count (K 1 ) 

• Defined (D') 
• Integer (I ') 

Length (L ') 
Number (N') 

• Scale (S 1 ) 

A simple example of an attribute reference: 
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&A SetA K'&SYSVER Count of characters in &SYSVER 

We will illustrate applications of attribute references later, particularly when we discuss 
macros in "Macro Argument Attributes and Structures" on page 76. Attribute references 
may, of course, be used in "open code". 

Arithmetic Expressions: Internal Arithmetic Functions 

Shifting functions 
- Written (operand Shift_Op shift_amount) 

- Shift_Op may be SRL, SLL, SRA, SLA 
&A_SLL SetA (&Al Sll 3) Shift left 3 bits. unsigned 
&A_SRL SetA (&Al SRL &AZ) Shift right &AZ bits, unsigned 
&A SLA SetA (&Al SLA 1) Shift left 1 bit, signed 
&A=SRA SetA (&Al SRA &AZ) Shift right &AZ bits, signed 

Masking functions AND, OR, XOR 
- Written (operand Hask_Op operand) 

- Produces 32-bit bitwise logical result 
&B SETA (&B AND X'FB') AN8 &B with x·n· 
&A SetA (7 XOR (7 OR (&A+7))) Round &A ta next multiple of 8 

Masking function NOT 
- Takes only one operand, written (NOT operand) 

- Produces bit-wise complement; equivalent to (operand XOR -1} 

&C SETA (NDT &C) Invert all bits of &C 
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Arithmetic Expressions: Internal Arithmetic Fundions 

Internal function notation may be used in evaluating conditional assembly arithmetic 
expressions to simplify operations that would otherwise require elaborate or obscure coding. 
The two classes of internal arithmetic functions are shifting and "masking" operations: 

Shifting operations are written in the form 

(operand Shift_Operator shift_amount) 

where the Shift Operator may be one of SLA, SLL, SRA, or SRL. The operand to be 
shifted may be any arithmetic term, and the shift amount is an arithmetic term. The 
actual amount of the shift is determined from the nghtmost six bits of the shift amount, 
exactly as in the identically named machine instructions. -

&A SLL SetA 
&A SRL SetA 
&A SLA SetA 
&A SRA SetA 

(&Al SLL 3) 
(&Al SRL &A2) 
(&Al SLA 1) 
(&Al SRA &A2) 

Shift left 3 bits, unsigned 
Shift right &A2 bits, unsigned 
Shift left 1 bit, signed 
Shift right &A2 bits, signed 

Arithmetic Overflow is detected for addition, subtraction, multiplication, division, and the 
S LA operation. 

• Masking operations are written in the forms 

(operand! Masking_Operator operand2) 
or 

(NOT operand) 

where the Masking Operator may be one of AND, OR, or XOR. These operators act 
between the 32-bit operands as bit-wise operations, producing a 32-bit result. The oper­
ations are exactly equivalent to the hardware instructions NR, OR, and XR. 
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NOT is a unary operator, and inverts each bit of its operand to produce the 32-bit one's 
complement. (NOT operand) is equivalent to (operand XOR -1). 

&A And SetA 
&A Or SetA 
&A Xor SetA 
&A Not SetA 

((&Al AND &A2) AND X'FF') 
(&Al OR (&A2 OR &A3)) 
(&Al XOR (&A3 XOR 7)) 
(NOT &Al)+&A2 

Low-order 8 bits 
Or of 3 variables 
XOR of 7, 2 variables 
Complement and add 

Suppose you wish to "round up" the value of &A to a multiple of 8 (if it is not already a mul­
tiple. Using "old code", you might have written: 

&A SetA ((&A+7)/8)*8 Round &A to next multiple of 8 

Using the masking operations OR and XOR, you might write instead: 

&A 

&A 

SetA (7 XOR (7 OR (&A+7))) 
or 
SetA (&A+7 AND -8) 

Round &A to next multiple of 8 

Round &A to next multiple of 8 

For example, we might execute the following statement: 

&A SETA &D*(2+&K)/&G+ABSSYM-C'3'+L'&PL3*(&Q SLL 5) 

The value assigned to &A is evaluated as follows: 

1. multiply the value of &O by the value of (2+&K) 
2. divide the result by &G 
3. to that result, add the value of the symbol ABSSYM and subtract the character self-defining 

term C'3' 
4. evaluate the product of the length attribute of the symbol PL3 and the value of &Q shifted 

left logically 5 bit positions, and add this result to the result from the previous step. 

These functions can be used in places where the previously available capabilities of the con­
ditional assembly language led to clumsy constructions. Because the conditional assembly 
language is interpreted by the assembler, there will not always be significant performance 
gains in using these new arithmetic operators. However, any simpler expression will almost 
always be evaluated more rapidly than an equivalent but more complex expression. For 
example, suppose you must "extract" the value of bit 16 (having numeric weight 215) from 
the arithmetic variable &A. Previously, you might have written 

&Bitl6 SetA (&A/16384)-(&A/32768)*2 

which involves four arithmetic operations. Using shifting and masking, the same result can 
be obtained by writing 

&Bit16 SetA ((&A SRL 15) ANO 1) 
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SETA Statements vs. EQU Statements 

Note differences between SETA and EQU statements: 

SETA Statements EQU Statements 

Active only at conditional assembly Active at ordinary assembly time; 
time predefined absolute values usable 

at conditional assembly time 

May assign values to a given A value is assigned to a given 
variable symbol many times ordinary symbol only once 

Expressions yield a 32-bit binary Expressions may yield absolute, 
signed (non-relocatable) value simply relocatable, or complexly 

relocatable unsigned values 

No base-language attributes are Attributes (length, type) may be 
assignable to variable symbols assigned with an EQU statement 
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SETA Statements vs. EQU Statements 

It may be helpful at this point to identify some of the differences between the results of SETA 
and EQU statements. The following table compares some key factors: 

SETA Statements EQU Statements 

Active only at conditional assembly time Active at ordinary assembly time; prede-
fined absolute values may be usable at 
conditional assembly time 

May assign values to a given variable A value is assigned to a given ordinary 
symbol many times symbol only once 

Expressions yield a 32-bit binary signed Expressions may yield an absolute, simply 
(non-relocatable) value relocatable, or complexly relocatable 

unsigned values 

No base-language attributes are assign- Attributes (length, type) may be assigned 
able to variable symbols with an EQU statement 

Figure 2. Differences between SETA and EQU Statements 

Some earlier assemblers used ordinary symbols for both types of functions: conditional 
assembly and ordinary assembly. While this can be made to work in simple situations. the 
rules become much more complex and limiting when "interesting" things are tried. 

Further comparisons of ordinary and conditional assembly are shown in Appendix D, "Ordi­
nary and Conditional Assembly" on page 243. 

High Level Assembler permits one useful interaction between the "worlds" of ordinary and 
variable symbols: if an ordinary symbol is assigned an absolute value in an EQU statement 
prior to any reference in a conditional assembly expression, that "predefined absolute ordi­
nary symbol" may be used wherever an arithmetic term is allowed. 
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Evaluating and Assigning Boolean Expressions: SETS 

Syntax: 

&Boolean_Var _Sym SETI (boolean_expression) 

Boolean constants: 0 (false), 1 (true) 

Boolean operators: 

- NOT (highest priority), AND, OR, XOR (lowest) 

- Unary NOT also allowed in AND NOT, OR NOT, XOR NOT 

Relational operators (for arithmetic and character comparisons): 

- EQ, NE, GT, GE, LT, LE 

Examples 

&A SETI (UI LE 2) 
&B SETI (UI LE 2 AND '&CVAR' NE '*') 
&C SETI ((&A GT 18) AND NOT ( '&X' GE 'Z') OR &R) 
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Evaluating and Assigning Boolean Expressions: SETS •.. 

Warning! Character comparisons use EBCDIC collating sequence, but: 

- Comparisons don't stop at end of shorter string 

- Shorter string not blank-padded to length of longer string 

&B SETI ('B' GT 'A') 
&B SETB ('B' GT 'AA') 

&B is 1 (True) 
&B is 8 (False) 

-+ Shorter strings always compare LT than longer! 
-+ 'B' > 'A', but 'B' < 'AA' 

Note: cannot compare arithmetic to character expressions 

- Only character-to-character and arithmetic-to-arithmetic comparisons 
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Evaluating and Assigning Boolean Expressions: SETB 

Boolean expressions provide much of the conditional selection capability of the conditional 
assembly language. In practice, many boolean expressions are not assigned to boolean vari­
able symbols; rather, they are used in AIF statements to describe a condition to control 
whether or not a conditional-assembly "branch" will or will not be taken. 

Boolean primaries include boolean variable symbols, the boolean constants 0 and 1, and 
(most useful) comparisons. Boolean constants may also be assigned from self-defining 
terms, previously defined absolute symbols, and SET A variables, in the forms 

&Bool Var SetB (self-defining term) 
&Bool Var SetB (previously defined absolute symbol) 
&Bool Var SetB (SETA variable) 
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and the value assigned to the &Boo l _Var variable is zero if the value of the operand is zero, 
and is one otherwise. 

Two types of comparison are allowed: between arithmetic expressions, and between char­
acter expressions (which will be described in "Evaluating and Assigning Character 
Expressions: SETC" on page 22 below). Comparisons between arithmetic and character 
terms is not allowed. 

The comparison operators are 

EQ (equal) 
NE (not equal) 
GT (greater than) 
GE (greater than or equal) 
LT (less than) 
LE (less than or equal) 

In an arithmetic relation, the usual integer comparisons are indicated. (Remember that pre­
defined absolute ordinary symbols are allowed as arithmetic terms!) 

N 
&N 
&Bl 
&B2 

EQU Hl 
SETA 5 
SETB (&N GT 0) 
SETB (&N GT N) 

&Bl is TRUE 
&B2 is FALSE 

For character comparisons, a test is first made on the lengths of the two comparands: if they 
are not the same length, the shorter operand is always taken to be "less than" the longer. 
Note that this may not be what you would get if you did a "hardware" comparison! (The 
shorter string is not padded, nor is the comparison done using the shorter string's length.) 

The following example illustrates the difference: 

( I BB I GT I AAA I) is always FALSE in conditional assembly 
CLC =C'BB',=C'AAA' indicates that the first operand is high ('BB' GT 'AAA') 

If the character comparands are the same length, then the usual EBCDIC collating sequence 
is used for the comparison, so that 

('BB' GT 'AA') is always TRUE in conditional assembly 

The boolean operators are the usual logical operators NOT, AND, OR, and XOR. For 
example: 

&B SETB ((&A GT 10) AND NOT ('&X' GE 'Z') OR &R) 

NOT is used as a unary operator, as in the following: 

&Bool var SETB (NOT ('BB' EQ 'AA')) 

which would set &Bool_var to 1, meaning TRUE. 

In a compound expression involving mixed operators, the NOT operation has highest priority; 
AND has next highest priority; OR the next; and XOR has lowest priority. Thus, the 
expression 

(&A AND &B OR NOT &C XOR &D) 

is evaluated as 

((&A AND &B) OR ((NOT &C))) XOR &D 

where the nesting depth of the parentheses indicates the priority of evaluation. 

Some examples of SetB statements are: 
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&A 
&B 
&Z 
&S 
&T 

SetB 
SetB 
SetB 
SetB 
SetB 

(&V gt e AND &V le 7) 
( • &c ' 1 t • e 1 OR ' &c ' gt • g ' ) 
(&A AND NOT &B) 

True if &V between 1 and 7 
True if &C not a digit 
True if &A true, &B false 

(&B XOR (&G OR &D)) 
(&X ge 5 XOR (&Y*2 lt &X OR &D)) 

Evaluating and Assigning Character Expressions: SETC 

Syntax: 
&Character_var_S)'ll SETC character_expressian 

A character constant is a •quoted string' 
&CVarl SETC 'AaBbCcDdEeFf' 
&CVarZ SETC 'This is tbe Beginni119 of the End' 
&Decillill SETC '812345678!1' 
&lex SETC 'B1Z345678!1AICDEF' 

All terms must be quoted, except type-attribute references 
(and opcode-attribute references) 
- Type-attribute references are neither quoted nor duplicated nor combined 

&TCVarl SETC T'&CVarl 

Strings may be preceded by a parenthesized duplication factor 
&X SETC (l) 'ST' &X has value 'STSTST' 
&J SETA Z 
&Y SETC (Z*&J) ''" &Y has value '****' 
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Evaluating and Assigning Character Expressions: SETC ••. 

• Apostrophes and ampersands in strings must be paired 
- Apostrophes are paired internally for assignments and retationals! 

&QT Sett • • •' Value of &QT is a single apastrophe 
&Yes Seti ('&QT' eq "") &Yes is TRUE 

- Ampersands are not paired internally for assignments and relationa1s1 

&A111p Sett '&&' &A111p has value '&&' 
&Yes Seti ('&Amp' eq '&&') &Yes ts TRUE 
&D Sett (Z) 'A&&B' &D has value 'A&&BA&&B' 

- Use substring notation to get a single & (see slide Conditional-19) 

Warning! SETA variables are substituted without sign! 
&A SETA -5 

DC F'&A' Generates X'88888885' 
&C SETC '&A' &C has value '5' (not '-5'1) 

- The SIGNED built-in function avoids this problem 

&C SETC (SIGNED &A) &C has value '-5' 
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Evaluating and Assigning Character Expressions: SETC 

The major elements of character expressions are quoted strings. For example, we may 
assign values to character variable symbols using quoted strings, as follows: 

&CVarl 
&CVar2 
&Decimal 
&Hex 

SETC 
SETC 
SETC 
SETC 

'AaBbCcDdEeFf' 
'This is the Beginning of the End' 
'0123456789' 
'0123456789ABCDEF' 
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Type attribute and opcode attribute references may also be used as terms in character 
expressions, but they must appear as the only term in the expression: 

&TCVarl SETC T'&CVarl 
&OCVarl SETC O'&CVarl 

Type attribute 
Opcode attribute 

The opcode attribute will not be discussed further here. 

Repeated sets of characters may be written very easily using a parenthesized integer 
expression preceding a string as a duplication factor: 

&X 
&J 
&Y 

SETC (3) 'ST I 

SETA 2 
SETC (2*&J) I* I 

&X has value 'STSTST' 

&Y has value '****' 

Character-string constants in SETC expressions are quoted, and internal apostrophes and 
ampersands must be written in pairs, so that the term may be recognized correctly by the 
assembler. Thus, character strings in character {SETC) expressions look like character con­
stants and character self-defining terms in other contexts. {Note that predefined absolute 
symbols may be used in character expressions only in contexts where an arithmetic term is 
allowed.) 

However, when the assembler determines the value of a character-string term in a SETC 
expression, there is one key difference: while apostrophes are paired to yield a single 
internal apostrophe, ampersands are not paired to yield single internal ampersands! Thus, 
if we assign a string with a pair of ampersands, the result will still contain that pair: 

&QT SETC 1111 Value of &QT is a single apostrophe 
&Yes SetB ('&QT' eq I I I I) &Yes is TRUE 

&Amp SETC '&&' &Amp has value '&&' 
&Yes SetB ('&Amp' eq '&&') &Yes is TRUE 

&C SETC 1 A&&B 1 &C has value 'A&&B' 
&D SETC (2) 1A&&B 1 &D has value 'A&&BA&&B' 

If the value of such a variable is substituted into an ordinary statement, then the ampersands 
will be paired to produce a single ampersand, according to the familiar rules of the Assem­
bler Language: 

&C 
AandB 

SETC 'A&&B I 
DC C'&C. I 

&C has value 'A&&B' 
generated constant is 'A&B' 

If a single ampersand is required in a character expression, then a substring {described 
below) of a pair of ampersands should be used. 

One reason for this behavior is that it prevents unnecessary proliferation of ampersands. For 
example, if we had wanted to create the character string 1 A&&B'. a requirement for paired 
ampersands in SETC expressions would require that we write 

&C SETC 'A&&&&B' ??? 

which would clearly make the language become even more awkward. The existing rules 
represent a trade-off between inconvenience and inconsistency, in favor of greater conven­
ience. 

Be aware that substitution of arithmetic-valued variable symbols into character {SETC) 
expressions will not preserve the sign of the arithmetic value! For example: 
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&A SETA -5 
DC F'&A' Generates x100ee0ee5• 

&C SETC '&A' &C has value •s• (not '-5' !) 

&B SETA x•seeeeeee• (maximum negative number) 
&D SETC '&B' &D has value 2147483648 (!) 
&E SETA &D Error! (•not a self-defining tenn•) 

If signed arithmetic is important, use arithmetic expressions and variable symbols. If signed 
values must be substituted into character variables or ordinary statements with the proper 
sign, then you must either use the SIGNED built-in function (see "Character Expressions: 
Internal Character Functions" on page 29 for further details), or construct a character vari­
able with the desired sign, as in the following example. (Uses of the AIF and ANOP state­
ments, and the sequence symbol .GenCon will be discussed shortly.) 

&A SETA -5 
BadConl DC F'&A' Constant has value S 
&C SETC '&A' &C has value 'S' (not '-S' !) 
BadCon2 DC F'&C' Constant has value S 

AIF (&A GE 0).GenCon Check sign of &A 
&C SETC '-&C' Prefix minus sign if negative 
.GenCon ANOP 
GoodCon DC F'&C' Correctly signed constant with value -5 

Note: In Release 4 of High Level Assembler, support for predefined absolute symbols in 
character expressions was removed, because there are some possible ambiguities in how 
their values should be interpreted. 

Character expressions introduce two new concepts: string concatenation, and substring 
operations. 
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Character Expressions: Concatenation 

Concatenation of character variables indicated by juxtaposition 

Concatenation operator is the period (.) 

&C SETC 'Al' &C has value 1 AB 1 

&C SETC 'A'. •1• &C has value 'AB' 

&D SETC '&C' ~ 'E' &D has value 'ABE' 
&E SETC '&D&D' &E has value 'ABEABE' 

Remember: a period indicates the end of a variable symbol 

&E SETC '&D.&D' 
&D SETC '&C. E' 

&E has value 'ABEABE' 
&D has value 'ABE' 

Periods are data if not at the end of a variable symbol 

&E SETC '&D .. &D' 
&I SETC 'A. B' 

&E has value 'ABE.ABE' 
&I has value 'A.I' 
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String Concatenation 

We are somewhat familiar with the notion of string concatenation from some of the earlier 
examples of substitution, where a substituted value is concatenated with the adjoining char­
acters to create the completed string of characters. As before, the end of a variable symbol 
may be denoted with a period. The period is also used as the concatenation operator, as 
shown in the following examples: 

&C SETC 'AB' &C has value 'AB' 
&C SETC 'A'. I BI &C has value 'AB' 
&D SETC I &CI. 'E' &D has value 'ABE' 
&D SETC '&C.E' &D has value 'ABE' 

&E SETC '&D&D' &E has value 'ABEABE' 
&E SETC '&D.&D' &E has value 'ABEABE' 

&E SETC '&D .. &D' &E has value 'ABE.ABE' 
&B SETC I A.B' &B has value 'A.B' 

As these examples show, there may be more than one way to specify desired concatenation 
results. 
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I Character Expressions: Substrings 

Substrings specified by 'string' (start_position,span) 
&C SETC 'ABCDE'{l,3) &C has value 'ABC' 
&C SETC 'ABCDE'{l,3) &C has value 'CDE' 

span may be zero (substring is null) 
&C SETC 'ABCDE'{2,8} &C has value " 

span may be * (meaning "to end of string") 
&C SETC 'A8CDE'(2,*) &C has value 'BCDE' 

Substrings take precedence over duplication factors 
&C SETC (2}'abc'{2,2) &Chas value 'bcbc', not 'be' 

Incorrect substring operations may cause warnings or errors 
&C SETC 'A8CDE'{6,l) &C has value •• (with a warning) 
&C SETC '-ABCDE'{2,-l) &C has value " (with a warning) 
&C SETC 'ABCDE'(B,2) &C has value " (with an error) 

&C SETC 'ABCDE'(S,3) &C bas value 'E' (with a warning) 
Note: warning disabled in Asmll, KLASM Rl; option control was added in HLASM R2 

HLASM Macro Tu1Drial I[) Copyright IBM Corporation 1993, 2002. All rights reseNed. Condi1ional·19 

Substrings 

Substrings are defined by a somewhat unusual (and sometimes awkward) notation, as 
follows: 

substring= 'source_string'(start_position,span) 

where start_position is the position in the source_string where the substring is to begin, and 
span is the length of the substring to be extracted. 

To illustrate, consider the following examples: 

&C SETC 
&C SETC 
&C SETC 

'ABCDE'(l,3) 
1ABCDE 1 (3,3) 
'ABCDE' (5,3) 

&C has value 'ABC' 
&C has value 'COE' 
&C has value 'E' (with a warning, if FLAG(SUBSTR) was specified) 

So long as the substring is entirely contained within the source_string, the results are intui­
tive. For cases where one or another of the many possible boundary conditions would 
cause the substring not to be entirely contained within the source_string, the following rules 
apply: 

1. The length of the source_ string must be between 1 and 255. 

2. The span of the substring must be between 0 and 255. 

3. If 1$start_position$/ength, and 1$span$/ength, and start_position+span$/ength+1, then 
a normal substring will be extracted. 

4. If start_position$0, then the assembler will issue an error message, and the substring 
will be set to null. 

5. If start_position>length, then the assembler will issue a warning message, and the sub­
string will be set to null. 

6. If span=O, then the substring will be set to null. No error message will be issued. 

7. If span<O, then the assembler will issue a warning message, and the substring will be set 
to null. 
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8. If start _position+ span>length + 1, then the substring will be that portion of the 
source_string starting at start_position to the end. The assembler will issue a warning 
message. (Note: This warning was documented but disabled in Assembler H and High 
Level Assembler Release 1; it is now controlled by the FLAG(NOSUBSTR) option.) 

The assembler provides a simple substring notation meaning "from here to the end of the 
string": simply write the second operand of a substring specification as an asterisk. For 
example: 

&C SETC 'ABCDE'(2,*) &Chas value 'BCDE' 

will select the substring starting at the second character of 'ABCDE 1 through the last char­
acter, setting &C to 1 BCDE 1 • 

Substrings take precedence over duplication factors, as shown in the following example: 

&C SETC (2) 'abe'(2,2) &Chas value 'hebe', not 'be' 

The duplication factor repeats the substring 1 be' twice, rather than first creating the string 
'abeabe' and taking the two characters starting at position 2. 

String expressions are constructed using the operations of substitution, concatenation, and 
substringing. One may also use type attribute references as character terms, but they are 
limited to "single-term" expressions with no duplication factors. 

Substring operations apply to the string term they follow, and not to string expressions 
involving concatenation or character-valued internal functions (which are discussed in 
"Character Expressions: Internal Character Functions" on page 29). For example: 

&A 
&B 
&C 
&D 

SetC 
SetC 
SetC 
SetC 

'abede' 
'qrstu' 
'&A.&B' (4,4) 
1 &A 1 • 1&B 1 (4,4) 

&C contains 'deqr' 
&D contains 'abedetu' 

Note: There is occasional confusion of substring notation with subscripted variable symbols: 
for substrings, the parenthesized start_position and span appear following the quoted string: 

&SubStr SetC 'string'(start_position,span) 

whereas subscripts appear inside the quotes: 

&StrVal SetC '&ArrayVar(&Subseript)' 

They may of course appear together: 

&StrVal SetC '&ArrayVar(&Subseript)'(start_position,span) 
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Character Expressions: String Lengths 

Use a Count Attribute Reference (K ') to determine the number of 
characters in a variable symbol's value 

&H SETA K'&C Sets &H to number of characters in &C 

&C SETC '12345' &C has value 12345 
&H SETA K'&C &H has value 5 

&C SETC null string 
&II SETA K'&C &H has value 8 

&C SETC ···&&··· &C has value '&&' 
&H SETA K'&C &H has value 4 

&C SETC (3) 'AB' &C has value AB AB AB 
&H SETA K'&C &H has value 6 

Arithmetic and boolean variables converted to strings first 

&A SETA -1199 K'&A has value 3 
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String Lengths 

The number of characters in a character variable symbol's value can be determined using a 
Count attribute reference (K 1 )- For example: 

&C SETC 1 12345 1 &C has value 12345 
&N SETA K1 &C &N has value 5 

&C SETC 11 null string 
&N SETA K1 &C &N has value e 

&C SETC • • ·&&· • • &C has value '&&' 
&N SETA K1 &C &N has value 4 

&C SETC (3) 1 AB 1 &C has value A BA BAB 
&N SETA K1 &C &N has value 6 

Note that the pairing rules for apostrophes and ampersands apply only to character strings, 
not to the contents of SETC variables: 

&C 
&D 
&M 

SETC 111 && 111 

SETC &C 
SETA K'&D 

&C has value '&&' 
&D has value '&&' 
&M has value 4 

The Count attribute reference is very useful in cases where strings must be scanned from 
right to left; thus, 

&X SETC 1 &C 1 (K'&C,1) Extract rightmost character of &C 

assigns the rightmost character in the value of &C to &X. 

The value of a count attribute reference applied to an arithmetic or boolean variable symbol 
is determined by first converting the value of the symbol to a character string (remember 
that arithmetic values are converted without sign!). The length of the resulting string is the 
attribute's value_ For example, if &A has value -999, its count attribute is 3. 

&A SETA -999 K'&A has value 3 
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Character Expressions: Internal Character Functions 

Character-valued (unary) character operations: 

&X_Up Sett (UPPER '&X') All letters in &X set to upper case 
&Y_Low Sett (LOWER '&Y') All letters in &Y set to lower case 
&Z Pair Sett (DOUBLE '&?') Ampersands/apostrophes in &Z doubled 
&CharVal Sett (SIGNED &A) Convert arithaetic &A to signed string 
&EBCDIC Sett (BYTE X'FF') Create one-byte character-variable value 

Arithmetic-valued (binary) character operations: INDEX, FIND 

- INDEX finds position in 1st operand string of first match with 2nd operand 

&First_Match SetA ( '&BigStrg' INDEX '&SubStrg') First string match 
&First_Match SetA ('&Haystack' INDEX '&DneBigNeedle') 

- FIND finds position in 1st operand string of first match with~ character of 
the 2nd operand 

&First_ Char SetA ( '&BigStrg' FIND '&CharSet') First character match 
&First_ Char SetA ('&Haystack' FIND '&AnySmallNeedle') 

- Both return o if nothing matches 
- These two functions may not be recognizable in all SetA expressions 

- May have to write separate statements 
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Character Expressions: Internal Character Functions 

The assembler supports two types of internal character-string functions: character-valued 
and arithmetic-valued. 

• The five character-valued character functions UPPER, LOWER. DOUBLE, SIGNED, and 
BYTE are unary operators. 

The UPPER function operates on a string of characters and produces a string in which 
all lower-case letters (having EBCDIC representations X 181-89 1 , X 191-99 1 , and 
X 1A2-A9 1 respectively} are converted to their upper-case equivalents (having EBCDIC 
representations X 'C1-C9 ', X 'D1-D9 1 , and X' E2-E9 1 respectively}. 

&X_Up SetC (Upper 1 &X 1 ) All letters in &X set to upper case 

The LOWER function does the inverse of the UPPER function, converting all upper­
case letters to lower case. 

&Y Low SetC (Lower 1 &Y 1 ) All letters in &Y set to lower case 

The DOUBLE function scans its operand string for occurrences of ampersands and 
apostrophes (single quotes}, and replaces each occurrence with a pair. This allows 
the result to be directly substituted into a DC-statement character constant (or a char­
acter literal}. For example, 

&Z SetC 
&Z Pair SetC 
Z Const OC 

'&&'II 
(DOUBLE '&Z') 
C1 &Z Pair' 

Value is &&' 
Ampersands/apostrophes in &Z doubled (&&&&'') 
Constant is &&' 

The SIGNED function eliminates the need for special coding to create a properly 
signed character-string representation of arithmetic values. (Remember that assigning 
an arithmetic variable in a SetC statement to a character variable produces only the 
unsigned magnitude of the arithmetic value!) 

&X 
&Y 
&Z 

SetA -1f> 
SetC '&X' 
SetC (SIGNED -10) 

&X contains -1f> 
&Y contains 1 10 1 

&Z contains '-10' 
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The BYTE function allows you to assign any pattern of eight bits to a character vari­
able containing a single byte. 

&X00 
&XFF 

SetC 
SetC 

(BYTE 0) 
(BYTE X'Ffl) 

&X00 contains bit pattern X'90' 
&XFF contains bit pattern X'FF' 

Such assignments were extremely difficult or impossible to achieve in previous 
assemblers. 

Each of these five character-valued functions may be preceded by a duplication factor, 
and may be concatenated using the '. ' operator. For example: 

&Cl SetC (Upper 'a').(Lower 'B') 
&C2 SetC (2)(Upper 'a').(Lower 'B') 
&C3 SetC (Upper 'a').(2)(Lower 'B') 
&c4 setc (2)(upper 'a').(2)(1ower 'B') 

&Cl = 'Ab' 
&C2 = 'AAb' 
&C3 = 'Abb' 
&C4 = 'AAbb' 

• The two arithmetic-valued character functions INDEX and FIND are used for rapid string 
scanning. Both a_re binary operators. 

The INDEX function finds the position within the first operand string of the first occur­
rence of a match with the second operand string: 

&First_Match SetA ('&BigStrg' INDEX '&SubStrg') First string match 

sets &First Match to the position within &Bi gStrg of the first substring that matches 
&SubStrg. lfno match is found, the INDEX function returns a zero value. 

&First_Match SetA ('&BigStrg' INDEX '&SubStrg') First string match 

&Found SetA ('ABCdefg' Index 'de') &Found has value 4 
&NotFound SetA ('ABCdefg' Index 'DE') &NotFound has value 0 

The INDEX function can greatly simplify searches for a match in a list of strings. For 
example, suppose the character variable symbol &Response might contain one of four 
values: YES, NO, MAYBE, and NONE, and we wish to set the arithmetic variable symbol 
&RVal to 1, 2, 3, or 4 respectively (or to zero if no match is found). In the past, you 
might have written statements like these: 

&RVal SetA 0 
.Al Alf (•&Response' ne 'YES').A2 
&RVal SetA 1 

A Go .B 
.A2 Alf (•&Response• ne 'N0').A3 
&RVal Set A 2 

AGo .B 
etc . 

• B A Nop 

Each alternative is tested in turn until a match is found; and the desired value is then 
set. Alternatively, you might have searched a list of subscripted variable symbols: 

&OK(l) SetC 'YES','NO','MAYBE','NONE' Initialize valid matches 
&RVal SetA e Initialize match value 
&J Set A 0 Initialize count 
.Test Alf (&J ge N'&OK)~Done Check for all values tested 
&J Set A &J+l Increment test value 

Alf ('&Response' ne '&OK(&J)').Test Loop if not found 
&RVal SetA &J Set index of matched value 
.Done A Nop 

Using the INDEX function, the looping can be eliminated and the search for a match 
can be done in a single statement: 
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&OK SetC 'YES NO MAYBENONE' 5 positions per term 
&RVal SetA ('&OK' Index '&Response') Search for match 
&RVal SetA l+&RVal/5 Set corrected result 

The FIND function finds the position within the first operand string of the first occur­
rence of a match with any character of the second operand string: 

&First_Char SetA ('&BigStrg' FIND '&CharSet') First char match 

sets &Fi rst_Char to the position within &Bi gStrg of the first character that matches any 
single character of the &CharSet. If no matching character is found, the FIND function 
returns a zero value. For example, suppose you want to search an "expression 
string" for the presence of the arithmetic operators+,-, *,and f. Without the FIND 
function, you might have written a code fragment like this: 

.Scan 
&C 

&J 

.NoChar 

A Nop 
SetC 
Alf 
Alf 
Alf 
Alf 
Set A 
Alf 
ANop 

'&String' (&J, 1) 
('&CI eq 1+ 1 ) .Plus 
(I &CI eq '-').Minus 
( '&C' eq '* ') .Mult 
('&CI eq I/') .Div 
&J+l 
(&J le K'&String).Scan 

Pick off &J'th character 
Branch if plus 
Branch if mi nus 
Branch if asterisk 
Branch if slash 
Increment &J 
Try again 
No match found 

Note that every character must be tested inside the loop! With the FIND function, the 
scanning can be done more simply, and the "selection branch" to handle the desired 
characters is done only when such a character has been found: 

&OpPosn SetA 
Alf 
A Go 

('&String' Find •+-*/') Search for operator character 
(&OpPosn eq 0).NoChar Skip if no match found 
(&OpPosn).Plus,.Minus,.Mult,.Div Branch accordingly 
etc. 

Note that it might not be possible in all cases to use character functions in arithmetic 
expressions. For example, you might want to write 

Alf (0 ne ((UPPER '&SysParm') Index 'YES')).YESOK 

but you might in fact have to write three statements: 

&Tempe 
&TempA 

SetC (UPPER '&SysParm') 
SetA ('&TempC' Index 'YES') 
Alf (0 ne &TempA).YESOK 

You should verify that your copy of HLASM is capable of evaluating complex expressions 
before writing lots of conditional assembly code involving mixtures of character functions 
and arithmetic expressions. 
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External Conditional-Assembly Functions 

Interfaces to assembly-time environment and resources 

Two types of external, user-written functions 

1. Arithmetic functions: like &A= AFunc(&Vl, &V2, ••• ) 

&A SetAF 'Afunc',&Vl,&VZ, ••. 
&logN SetAF 'lug2', &N 

Arithmetic arguments 
lugb(&N} 

2. Character functions: like &C = CFunc( '&Sl', '&52', ••• ) 

&C SetCF 'Cfunc', '&Sl', '&SZ',... String arguments 
&RevX SetCF 'Reverse','&X' Reverse(&X} 

Functions may have zero to many arguments 

Standard linkage conventions 

HLASM Macro Tu10rial IO Copyright IBM Corporation 1993. 2002. All righls reserved. 

External Conditional-Assembly Functions 

Conditional-22 

IBM High Level Assembler for MVS & VM & VSE supports a powerful and flexible capability 
for invoking externally-defined functions during the assembly. These "conditional-assembly 
functions" can perform almost any desired action, and provide easy access to the environ­
ment in which the assembler is operating. They are invoked using the SET AF and SETCF 
statements, by analogy with SET A and SETC. 

The syntax of the statements is similar to that of SET A and SETC: a local or global variable 
symbol appears in the name field; it will receive the value returned from the function. The 
operation mnemonic indicates the type of function to be called, and the type of value to be 
assigned to the "target" variable. The first operand in each case is a character expression 
giving the name of the function to be called. The remaining operands are optional, and their 
presence depends on the function: some functions require no parameters, others may 
require several. The type of each parameter is the same as that of the target variable: arith­
metic parameters for SET AF, and character parameters for SETCF. 

A compact notational representation of this description is 

&Arith Var 
&Char Var 

SET AF 
SET CF 

'Arith_function'[,arith_val] ••• 
'Char_function 1 [,character_val] ••• 

For example, we might invoke the LOG2 and REVERSE functions with these two statements: 

&LogN SetAF 
&RevX SetCF 

'Log2' ,&N 
'Reverse', '&X' 

Logb(&N) 
Reverse(&X) 

Interface descriptions and sample code for these two functions is described in Appendix A, 
"External Conditional Assembly Functions" on page 208. Details of external function inter­
faces are described in the IBM High Level Assembler for MVS & VM & VSE product publica­
tions. 
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Conditional Expressions with Mixed Operand Types 

Expressions sometimes simplified with mixed operand types 

- Some limitations on substituted values and converted results 

Let &A, &B, &C be arithmetic, boolean, character: 

Variable Type SET A Statement SETB Statement SETC Statement 

Arithmetic no conversion zero &A becomes '&A' is decimal 
O; nonzero &A representation 
becomes 1 of magnitude(&A) 

Boolean extend &B to no conversion '&B' is '0' or 
32-bit 0 or 1 'l' 

Character &C must be a &C must be a no conversion 
self-defining self-defining 
term term; convert to 

0 or 1 as above 
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Conditional Expressions with Mixed Operand Types 

Conditional assembly expressions can be sometimes be simplified if mixed operand types 
are used, to avoid a need for additional statements for converting to the desired type. The 
following table indicates the allowed combinations of SETx statement types and operands; 
the variables &A, &B, and &C respectively represent arithmetic, boolean, and character vari­
able symbols. 

Variable Type SET A Statement SETB Statement SETC Statement 

Arithmetic no conversion zero &A becomes O; 1 &A 1 is decimal 
nonzero &A representation of 
becomes 1 magnitude of &A 

Boolean extend &B to 32-bit no conversion 1 &B 1 iS 1 f) 1 Or 1 l ' 
0 or 1 

Character &C must represent &C must represent no conversion 
a self-defining term a self-defining 

term; converted to 
0 or 1 as for arith-
metic variables 

Figure 3. Conditional Assembly SET Statement Operand Types 

In most cases, the result of a substitution is as expected. However, there are a few cases to 
note: 

Arithmetic values substituted into boolean expressions are converted using a simple rule: 
zero values are converted to 0, and nonzero values are converted to 1. 

Arithmetic values substituted into character expressions are converted to their unsigned 
decimal representation. This does not mean that the arithmetic value is treated as an 
unsigned 32-bit quantity, but that the magnitude of the arithmetic term is converted to 
decimal! (Further details are given below.) 

Character values substituted into arithmetic expressions must be self-defining decimal, 
hexadecimal, boolean, or character self-defining terms. 
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• Character values substituted into boolean expressions must be self-defining decimal, 
hexadecimal, boolean, or character self-defining terms, which are then converted to O or 
1 following the first case above. 

Statement Selection 

Allows the Assembler to select different sequences of statements for 
further processing 

Key elements are: 

1. Sequence symbols 

- Used to "mark" positions in the statement stream 

- A "conditional assembly label" 

2. Two statements that reference sequence symbols: 

AGO oonditional-assembly "unconditional branch" 

Alf conditional-assembly "conditional branch" 

3. One statement that helps define a sequence symbol: 

ANDP conditional-assembly "No-Operation" 
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Statement Selection 

The full power of the conditional assembly language lies in its ability to direct the Assembler 
to select different sequences of statements for processing. This allows you to tailor your 
program in many different ways, as we will see. 

The key facilities required for statement selection are sequence symbols, which are used to 
mark positions in the statement stream for reference by other statements, and the AIF and 
AGO statements, which allow the normal sequence of statement processing to be altered, 
based on conditions specified by the programmer. The ANOP statement is provided as a 
"place holder" for a sequence symbol. 
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Sequence Symbols 

Sequence symbol: an ordinary symbol preceded by a period ( . ) 

.A .Repeat_Scan .Loop_Head .ErrorlZ 

Used to mark a statement 

- Defined by appearing in the name field of a statement 

.A LR RB,R9 

- Used as target of AIF, AGO statements to alter sequential statement 
processing 

Not assigned any value (absolute, relocatable, or other) 

Purely local scope; no sharing of sequence symbols across scopes 

Cannot be created or substituted (unlike ordinary and variable 
symbols) 

- Cannot even be created by substitution in a macro-generated macro (I) 

- Never passed as the value of any symbolic parameter 
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Sequence Symbols and the ANOP Statement 

ANOP: conditional-assembly "No-Operation" 

Serves only to hold a sequence-symbol marker before statements that 
wouldn't have room for it in the name field 

• Target AHOP 
&ARV SETA &ARV+l Nallll! field required for target variable 

No other effect 

- Conceptually similar to (but very different from•) 

Target EQU * For ordinary symbols in ordinary assembly 
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Sequence Symbols and the ANOP Statement 

Sequence symbols are the key to statement selection: they "mark" the position of a specific 
statement in the stream of statements to be processed by the assembler. They are written 
as an ordinary symbol preceded by a period (.), as in the following examples: 

.A .Repeat_Scan .Loop_Head .Errorl2 

Sequence symbols have some unusual properties compared to ordinary symbols. 

Sequence symbols are defined by appearing in name field of any statement. They may 
appear on ordinary-assembly statements and on conditional-assembly statements, with 
no difference in meaning or behavior. 

Sequence symbols are not assigned an absolute or relocatable value, and they do not 
appear in the assembler's Symbol Table. They cannot be used in expressions of any 
kind. 
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Sequence symbols have purely local scope. That is, there is no sharing of sequence 
symbols between macros, or between macros and ordinary "open code" assembly. 

• Sequence symbols cannot be created or substituted (unlike ordinary and variable 
symbols). 

• Sequence symbols are never passed as values of any symbolic parameter. Thus, 
although they can appear in the name field of a macro instruction statement (or macro 
"call"), they are never made available to the macro definition as the value of a name­
field variable symbol. 

• Sequence symbols are used as the target of AIF and AGO statements to alter sequential 
statement processing, and for no other purpose. 

• Sequence symbols may be defined before or after references to them. This means that 
both forward and backward "branches" are possible (including the possibility of endless 
loops).2 

ANOP Statement 

The ANOP statement is provided as a "place holder" for a sequence symbol that could not 
otherwise be attached to a desired statement. This is illustrated in the following example, 
where the desired "target" is a SET A statement, which requires that an arithmetic variable 
symbol appear in the name field: 

.Target ANOP 
&ARV SETA &ARV+l Name field required for target variable 

Thus, the ANOP statement provides a way for other AIF and AGO statements to refer to the 
SET A statement. 

2 The ability of conditional assembly branching to go "backward" to an earlier point in the statement stream means 
that great care must be taken when defining sequence symbols in COPY segments, because the same symbol 
might be defined in open code or in another COPYed instance of the same segment. Typically, the assembler will 
not be able to complete enough processing to be able to create a listing with an error message. 
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The AGO Statement 

AGO unconditionally alters normal sequential statement processing 

- Assembler breaks normal sequential statement processing 

- Resumes at statement marked with the specified sequence symbol 

- Two forms: Ordinary AGO and Extended AGO 

Ordinary AGO (Go-To statement) 

AGO sequence_symbol 

Example: 
AGO .Target Next statellll!nt processed 11arked by • Target 

Example of use: 

AGO .BB 
This statellll!nt is ignored 

.BB ANOP 
* (Z) This statement is processed 
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The AGO Statement 

The function of the AGO statement is to unconditionally alter the sequence of statement 
processing, which resumes at the statement "marked" with the specified sequence symbol. 
It is written in the form 

AGO sequence_symbol 

Example: 
AGO .Target Next statement processed marked by .Target 

The Assembler breaks its normal sequential statement processing, and resumes processing 
at the statement "marked" with the specified sequence symbol. For example, 

* (1) 
.BB 
* (2) 

AGO .BB 
This statement is ignored 

ANOP 
This statement is processed 

the AGO statement will cause the following comment statement (1) to be skipped, and proc­
essing will resume at the ANOP statement. 
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I The Extended AGO Statement 

Extended AGO (Computed Go-To, Switch statement) 

AGO (arith_e.xpr)seqsy1t_l[,seqsy1t_k] ••• 

• Value of arithmetic expression determines which "branch~_ is taken 
from sequence-symbol list 

- Value must lie between 1 and number of sequence symbols in "branch" list 

• Warning! if value of arithmetic expression is invalid, no "branch" is 
taken! 

A60 (&SW) • S"1, • SllZ, • SW3, • SW4 
*DTE lZ, 'Invalid value af &&SW = &SW •• ' Always a goad practice! 
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The Extended AGO Statement 

The assembler provides a convenient extension to the simple imperative (unconditional) 
AGO statement, in the form of the "Computed AGO" statement, analogous to a "switch" or 
"case" statement in other languages. The operand field contains a parenthesized arithmetic 
expression, followed by a list of sequence symbols, as shown in the following example. 

AGO (arith_expr)seqsym_l[,seqsym_k] ..• 

Figure 4. General Form of the Extended AGO Statement 

The operation of this extended AGO statement is simple: the value of the 
arithmetic_expression is used to select one of the sequence symbols as a "branch target": if 
the value is 1, the first sequence symbol is selected; if the value is 2, the second sequence 
symbol is selected; and so forth. However, because it is possible that the value of the arith­
metic expression does not correspond to any entry in the list (e.g., the value of the 
expression may be less than or equal to zero, or larger than the number of sequence 
symbols in the list), the assembler will not take any branch, and will not issue any diagnostic 
message about the "failed' branch! Thus, it is important to verify that the values of arithmetic 
expressions used in extended AGO statements are always valid. 

A recommended technique is the following: 

AGO (&SW).SW1,.SW2,.SW3,.SW4 
MNOTE 12,'Invalid value of &&SW= &SW .. ' Always a good practice! 

where a message indication is placed after the AGO to trap cases where the arithmetic vari­
able's value is invalid. 

The operation of the extended AGO statement illustrated in Figure 4 is precisely equivalent 
to the following set of AIF statements {which will be described shortly): 

AIF (arith_expr EQ l)seqsym_l 
AIF (arith_expr EQ 2)seqsym_2 

AIF (arith_expr EQ k)seqsym_k 

This construction helps to illustrate how and when it is possible for no "branch" to be taken. 
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The AIF Statement 

AIF conditionally alters normal sequential statement processing 

Two forms: Ordinary AIF and Extended AIF 

Ordinary AIF: 

Alf (boolean_expression)seqsym 
Alf (&A GT 18).Exit_Loop 

If boolean_expression is 

true: continue processing at specified sequence symbol 
false: continue processing with next sequential statement 

AIF (&Z GT 48).BD 
This statement is processed if (NOT (&Z 6T 48)) 

.BO ANOP 
* (Z) This statement is processed 
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The AIF Statement 

The AIF statement provides a method for conditionally selecting a sequence of statements, 
by testing a condition before deciding to "branch" or not to the statement designated by a 
specified sequence symbol. The ordinary AIF statement is written in this form: 

AIF (boolean_expression)seqsym 

Example: 
AIF (&A GT 10).Exit_Loop 

If the "boolean_expression" is true, statement processing will continue at the statement 
marked with the specified sequence symbol. If the "boolean_ expression" is false, processing 
continues with the next sequential statement following the AIF. For example: 

* (1) 
.BO 
* (2) 

AIF (&A GT 10).BD 
This statement is processed if 

ANOP 
This statement is processed 

(NOT (&A GT 18)) 

In this case, the statement following the AIF will be processed if the boolean expression 
(&A GT Hl) is false; if the condition defined by the boolean condition is true, the next state­
ment to be processed will be the ANOP statement. 
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I The Extended AIF Statement 

Extended AIF (Multi-condition branch, Case statement) 

AIF (buul_expr _l)seqs,Yll_l[, (buul_expr _n)se11sp_n] ••• 

Equivalent to a sequence of ordinary AIF statements 

Boolean expressions are evaluated in turn until first true one is found 

- Remaining boolean expressions are not evaluated 

Example: 

AIF (&A &T 18).SS1,(&188L2).SSZ,('&C' EQ '*').SS3 
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The Extended AIF Statement 

The extended, or multi-condition, form of the AIF statement allows you to write multiple con­
ditions and "branch" targets on a single statement, as shown in the following: 

AIF (bool_expr_l)seqsym_l[,(bool_expr_n)seqsym_n] .•• 

Figure 5. General Form of the Extended AIF Statement 

The boolean expressions are evaluated in turn until the first true expression is found; the 
next statement processed will be the one "marked" by the corresponding sequence symbol. 
The remaining boolean expressions are not evaluated after the first true expression is found. 

An example of an extended AIF statement is: 

AIF (&A GT 19).SS1,(&BOOL2).SS2,('&C' EQ 1* 1).SS3 

The extended AIF statement illustrated in Figure 5 is entirely equivalentto the following 
sequence of ordinary AIF statements: 

AIF (bool_expr_l)seqsym_l 
AIF (bool_expr_2)seqsym_2 

AIF (bool_expr_n)seqsym_n 

The primary advantage of the extended AIF statement is in providing a concise notation for 
what would otherwise require multiple AIF statements. 
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Logical Operators in SETA, SETB, and AIF 

"Logical" operafors may appear in SETA, SETB, and AIF statements: 
- AND, OR, XOR, NOT 

Interpretation in SETA and SETB is well defined 
(see slide Conditional-23) 
- SETA: treated as 32-bit masking operators 
- SETB: treated as boolean connectives 

In AIF statements, possibility of ambiguous interpretation: 

AIF (&Al AND &AZ). Skip 

Let &Al = 1, &AZ = 2; then, evaluate 
AIF (1 AND Z).Skip 

- Arithmetic evaluation of (1 AND 2) yields O (bitwise AND) 
- Boolean evaluation of (1 AND 2) yields 1 (both operands TRUE) 

Rule: AIF statements use boolean interpretation 
- Provides consistency with previous language definitions. 

Alf ( l AND 2). Skip will go to • Skip! 
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Logical Operators in SETA, SETB, and AIF Statements 

Condit•onal-31 

Certain logical operators may appear in SETA, SETB, and AIF statements and pose a pos­
sibly ambiguous interpretation: AND, OR, XOR, and NOT. Their interpretation in SETA and 
SETB statements is well defined: in SET A statements, they are treated as 32-bit masking 
operators; in SETB statements, they are treated as boolean connectives. (See the dis­
cussion at "Conditional Expressions with Mixed Operand Types" on page 33 for details.) 

However, in AIF statements there is a possible ambiguity, as the following example illus­
trates: 

AIF (&Al AND &A2).Skip 

Suppose variable &A1 has value 1, and &A2 has value 2. Consider this AIF statement: 

AIF (1 AND 2).Skip 

If the expression is evaluated using "SET A rules", its value is zero: the arithmetic represen­
tations of 1 and 2 have no one-bits in common, so their logical AND is zero. 

However, if the expression is evaluated using "SETB rules", then according to the conver­
sion rules described in "Conditional Expressions with Mixed Operand Types" on page 33, 
the result must be 1 (because both 1 and 2 are nonzero, they are first converted to boolean 
terms having value 1). 

To avoid any possibility of ambiguity, High Level Assembler uses the boolean interpretation 
in AIF statements. Thus, 

AIF (1 AND 2).Skip 

will cause a conditional-assembly branch to . Skip. 
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Displaying Variable Symbol Values: The MNOTE Statement 

Useful for diagnostics, tracing, information, error messages 
- See also discussion of macro debugging (slide Concepts-41) 
Syntax: 

MHOTE severity, 'message text• 

severity may be 
- any arithmetic expression of value between O and 255 

- omitted (if the following comma is present, severity = t} 
- value of severity is used to determine assembly completion code 

- an asterisk: the message is treated as a comment 
- omitted (if the following comma is also omitted, treat as a comment} 

Displayed quotes and ampersands must be paired 
Examples: 

.Msg_lB MNOTE 8,'Missing Required Operand' 

.X14 MNOTE , 'Conditional Assembly has reached .Xl4' 

.Trace4 MNOTE *,'Value of &&A= &A., value of &&C = "&C.'" 
MNDTE 'Hello. World (How Original!}' 
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Displaying Variable Symbol Values: The MNOTE Statement 

The "inputs" to conditional assembly activities are usually values of variable symbols, and 
ordinary statements that may or may not be affected by substitution and/or selection. Simi­
larly, the "outputs" are normally sequences of statements on which selection and substi­
tution have been performed. 

There is another way for the conditional assembly language to "communicate" to the 
program and the programmer, by way of the MNOTE statement 

The MNOTE statement can be used in both "open code" and in macros to provide diagnos­
tics, trace information, and other data in an easily readable form. By providing suitable con­
trols, you can produce or suppress such messages easily, which facilitates debugging of 
macros and of programs with complex uses of the conditional assembly language. For 
example, a program could issue MNOTE statements like the following: 

.Msg_lB MNOTE 8,'Missing Required Operand' 

.X14 MNOTE ,'Conditional Assembly has reached .X14' 

.Trace4 MNOTE *,'Value of &&A= &A., value of &&C = ''&C. 111 

MNOTE 'Hello World (How Original!)' 

The first MNOTE sets the return code for the assembly to be at least 8 (presumably, due to 
an error condition); the second could indicate that the flow of control in a conditional 
assembly has reached a particular point (and will supply a default severity code value of 1); 
the third provides information about the current values of two variable symbols; and the 
fourth illustrates the creation of a simple message. 

Any quotation marks and ampersands intended to be part of the message must be paired, 
as illustrated in the example above. 

The first two MNOTEs are treated as "error" messages, which means that they will be 
flagged in the error summary in the listing and will appear in the SYSTERM output (if the 
TERM option was specified, and the setting of the FLAG option has not suppressed them). A 
setting of an assembly severity code is also performed. The latter two MNOTEs will be 
treated as comments, and will appear only in the listing. 
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The High Level Assembler provides two system variable symbols (&SYSM SEV and 
&&SYSM_HSEV) that allow you to determine the values of MNOTE statement severities. 
These two variables Will be discussed in "&SYSM_HSEV and &SYSM_SEV" on page 235 .. 

Examples of Conditional Assembly 

We will now describe two simple examples of open-code conditional assembly. Further 
examples of conditional assembly techniques will be illustrated later, when we discuss 
macros. 

Example: Generate a Byte String with Values 1-N 

Sample 0: write everything by hand 

N EQU 5 Predefined absolute spibol 
DC All(l,Z,l,4,N) Define the constants 

- Defect: if the value of N changes, must rewrite the DC statement 

Sample 1: generate separate statements 

- Pseudocode: DO for J = to N (GEN( DC All(J})) 

N EQU 5 Predefined absolute syd>ol 
LCLA &J 
AIF ( &J liE N) • Done 
SETA &J+l 

LDcal arith11etic variable symbol, initially B 
Test for completion (N could be LE 81) 
Increment &J 

DC All(&J) lienerate a byte constant 
Go to check for completion 
lieneration completed 

AGO • Test 
.Done ANOP 
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Example: Generate a Byte String with Values 1-N ... 

Sample 2: generate a string with the values (like ' 1, 2, 3, 4, 5') 

- Pseudocode: 
Set S='l'; DO for K = 2 to N (S = S II ',K'); GEN( DC All(S)) 

N EQU 
LCLA 
LCLC 

&I( SETA 

5 Predefined absolute symbol 
&K Local arith11etic variable symbol 
&S local character variable symbol 
1 Initialize counter 

Conditional·33 

AIF (&K GT N).DoneZ Test for co11pletian (N cuuld be LE 81) 
&S SETC 

l ::~: 
AIF 
SETC 
AGO 

.Donel DC 
4 . Donez ANDP 

'1' Initialize string 
Loup head 

&K+ 1 Incre11ent &K 
(&K liT N). Donel Test for completion 
'&S'. ',&ICJ Continue string: add co11111a and next value 
. Loop Branch back to check for comp 1 eted 
All ( &S.} Generate the byte string 

Generation co111pleted 

Try it with 'N EQU 30 ', 'N EQU 90 ', 'N EQU 300 • 

HLASM Macro Tu10rial IO Copyright IBM Corporation 1993. 2002. All righls reserved Conditiona.1~34 

Part 1: The Conditional Assembly Language 43 



Example 1: Generate a Sequence of Byte Values 

Suppose we wish to generate DC statements defining a sequence of byte values from 1 to N, 
where N is a predefined value. This could naturally be done by writing statements like 

N EQU 12 
DC All(l,2,3, ... ,N) 

but this requires knowing the exact value of N every time the program is modified and re­
assembled. 

Conditional assembly techniques can be used to solve this problem so that changing the 
EQU statement defining N will not require any rewriting. Pseudo-code for such a code 
sequence might look like this: 

DO for K = 1 to N (GEN( DC All(K))) 

We can write conditional-assembly statements to generate the sequence of DC statements 
as follows: 

N EQU 
LCLA 

. Test AIF 
&J SETA 

DC 
AGO 

.Done ANOP 

5 
&J 
(&J GE N).Done 
&J+l 
All(&J) 
.Test 

Predefined absolute symbol 
Local arithmetic variable symbol, initially 0 
Test for completion (N could be LE 8!) 
Increment &J 
Generate a byte constant 
Go to check for completion 
Generation completed 

Figure 6. Generating a Sequence of Bytes, Individually Defined 

The operation of this loop is simple. The LCLA declaration of &J also initializes it to zero (we 
could not have omitted the declaration in this example, because the first appearance of &J is 
not in a SETA statement). The AIF statement compares &J to N (a predefined absolute 
symbol), and if it exceeds N, a "branch" is taken to the label .Done. (In fact, the Assembler 
implements the "branch" by searching the source file for an occurrence of the sequence 
symbol in the local context of "open code".) If the AIF test does not change the flow of state­
ment processing, the next statement increments &J by one, and its new value is then substi­
tuted in the DC statement. The following AGO then returns control to the test in the AIF 
statement. 

Alternatively, we could generate only a single DC statement by using a technique that con­
structs the nominal value string for the DC statement. A pseudo-code sketch of the method 
is: 

Set S='l'; DO for K = 2 to N (S = S II ',K'); GEN( DC All(S)) 

A conditional-assembly code sequence might be written as follows: 
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N EQU 5 Predefined absolute symbol 
LCLA &K Local arithmetic variable symbol 
LCLC &S Local character variable symbol 

&K SETA 1 Initialize counter 
AIF (&K GT N).Done2 Test for completion (N could be LE 0!) 

&S SETC 'l' Initialize string 
.Loop ANOP Loop head 
&K SETA &K+l Increment &K 

AIF (&K GT N). Donel Test for completion 
&S SETC '&SI. I ,&KI Continue string: add comma and next value 

AGO .Loop Branch back to check for completed 
.Donel DC All (&S.) Generate the byte string 
.Done2 ANOP Generation completed 

Figure 7. Generating a Sequence of Bytes, as a Single Operand String 

In this program fragment, a single character string is constructed with the desired sequence 
of values separated by commas. The first SETC statement sets the local character variable 
symbol &C to 'l ', and the following loop then concatenates successive values of the arith­
metic variable symbol &K onto the string with a separating comma, on the right. When the 
loop is completed, the DC statement inserts the entire string of numbers into the nominal 
values field of the All operand. 

It is instructive to test this example with values of N large enough to cause the string &S to 
become longer than (say) 60 characters; try assigning a value of 30 to N, and observe what 
the assembler does with the generated DC statement. (Answer: it creates a continuation 
automatically!) 

Both these examples share a shortcoming: if more than one such sequence of byte values is 
needed in a program, with different numbers of elements in each sequence, these "blocks" 
of conditional assembly statements must be repeated. We will see in "Case Study 2: Gener­
ating a Sequence of Byte Values" on page 107 that a simple macro definition can make this 
task easier to solve. 

Example: System-Dependent 1/0 Statements 

Suppose a system-interface module declares 1/0 control blocks for 
MVS, CMS, and VSE: 

&OpSys SETC 'MVS' Set desired operating system 

Alf ( '&OpSys' NE 'MYS'). n Skip if not MVS 
Input DCB DDNAME=SYSIN, ••• etc ••• Generate MYS DCB 

A60 • T4 
.n Alf ( '&OpSys' NE 'CMS'). TZ Skip if not CMS 
Input FSCB ,LRECL=88, ••• etc ••• 6enerate CMS FSCB 

A60 .T4 
.TZ AIF ('&OpSys' NE 'VSE').TJ Skip if not VSE 
Input DTFCD LRECL=88, ••• etc ••. Generate VSE DTF 

A60 • T4 
• Tl MNOTE 8, 'Unknown &&OpSys value "&OpSys".' 
. T4 ANOP 

Setting of &OpSys selects statements for running on one system 
- Assemble the module with a system-specific macro library 
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Example 2: Generating System-Dependent 1/0 Statements 

Suppose you are writing a module that provides operating system services to a larger appli­
cation. As a simple example, suppose one portion of the module must read input records, 
and that you wish to use the appropriate system-interface macros for each of the 
System/360/370/390's MVS, CMS, and VSE operating systems. 

This is very simply solved using conditional-assembly statements to select the sequences 
appropriate to the system for which the module is intended. Suppose you have defined a 
character-valued variable symbol &OpSys whose values may be MVS, CMS, or VSE. Then the 
needed code sequences might be defined as in Figure 8: 

&OpSys SETC 'MVS' Set desired operating system 

AIF ('&OpSys' NE 'MVS').Tl Skip if not MVS 
Input DCB DDNAME=SYSIN, ••• etc .•• Generate MVS DCB 

AGO .T4 
• Tl AIF ('&OpSys' NE 'CMS').T2 Skip if not CMS 
Input FSCB ,LRECL=80, .•• etc •.. Generate CMS FSCB 

AGO .T4 
.T2 AIF ('&OpSys' NE 'VSE').T3 Skip if not VSE 
Input DTFCD LRECL=80, ••• etc ••. Generate VSE DTF 

AGO .T4 
. T3 MNOTE 8,'Unknown &&OpSys value ''&OpSys''.' 
.T4 ANOP 

Figure 8. Conditional Assembly of 110 Module for Multiple OS Environments 

In this example, different blocks of code contain the necessary statements for particular 
operating environments. In any portion of the program that contains statements particular to 
one of the environments, conditional assembly statements allow the assembler to select the 
correct statements. By setting a single variable symbol &OpSys to an appropriate value, you 
can tailor the application to a chosen environment without having to make into multiple 
copies of its processing logic, one for each environment 

Thus, for example, the first AIF statement tests whether the variable symbol &OpSys has 
value 'MYS'; if so, then the following statements generate an MVS Data Control Block. 
(Naturally, you will need to supply an appropriate macro library to the assembler at 
assembly time!) 

The technique illustrated here allows you to make your programs more portable across 
operating environments, and across versions and releases of any one operating system, 
without requiring major rewriting efforts or duplicated coding each time some new function 
is to be added. 
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Conditional Assembly Language Eccentricities 

Some items described above ... 

1. Character string comparisons: shorter string is always less (see slide 
Conditional-14) 

2. Different pairing rules for ampersands and apostrophes (see slide 
Conditional-17) 

3. SETC of an arithmetic value uses its magnitude (see slide Conditional-17) 

4. Character functions may not be recognized in SetA expressions (see slide 
Conditional-21) 

5. Computed AGO may fall through (see slide Conditional-28) 

6. Logical operators in SETx and AIF statements (see slide Conditional-31) 

Normal, every-day language considerations: 

- Arithmetic overflows in arithmetic expressions 

- Incorrect string handling (bad substrings, exceeding 255 characters) 

Remember, it's not a high-level language! 

HLASM Macro Tutorial «:> CopyTight IBM Corporation 1993, 2002. All rights reserved. Conditional-36 

Conditional Assembly Language Eccentricities 

The previous text has described several potential pitfalls in the conditional assembly lan­
guage; they are summarized here. 

1. When character strings of unequal lengths are compared, the shorter string is always 
treated as being less than the longer string, even though a comparison of their first char­
acters might indicate otherwise. (See "Evaluating and Assigning Boolean Expressions: 
SETB" on page 20.) 

2. The pairing rules for ampersands and apostrophes are different from those in the ordi­
nary Assembler Language (apostrophes are, but ampersands are not). (See "Evaluating 
and Assigning Character Expressions: SETC" on page 22.) 

3. Conversion of an arithmetic variable to a character string returns the magnitude of the 
variable; no minus sign is provided for negative values. The SIGNED internal function pro­
vides a minus sign. (See "Evaluating and Assigning Character Expressions: SETC" on 
page 22.) 

4. Internal function evaluations involving string functions cannot always be "nested" in 
arithmetic expressions. (See "Character Expressions: Internal Character Functions" on 
page 29.) 

5. If the number of sequence symbols listed on an extended AGO does not match the value 
of the supplied variable, no branch is taken. (See "The Extended AGO Statement" on 
page 38.) 

6. The rules for evaluating expressions involving logical operators such as AND and OR are 
different for SetA (arithmetic) and SetB (boolean) expressions. AIF expressions are evalu­
ated using the SetB rules. (See "Logical Operators in SETA, SETB, and AIF Statements" 
on page 41.) 

In addition, a// arithmetic overflow conditions are flagged; they cannot be suppressed. Most 
forms of incorrect string handling are also diagnosed. 
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Part 2: Basic Macro Concepts 

Part 2: Basic Macro Concepts 
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Macros are a powerful mechanism for enhancing any language, and they are a very impor­
tant part of the System/360/370/390 Assembler Language. Macros are widely used in many 
ways to simplify programming tasks. 

We will begin with a conceptual overview of the basic concepts of macros, in a way that is 
not specific to the Assembler Language.3 This will be followed by an investigation of the 
System/360/370/390 Assembler Language's implementation of macros, including the fol­
lowing topics: 

• macro definition: how to define a macro 

• macro encoding: how the assembler converts the definition into an internal format to sim-
plify interpretation and expansion 

• macro-instruction recognition: how the assembler identifies a macro call and its elements 

• macro parameters and arguments 

• macro expansion and text generation 

• macro argument attributes and structures 

• global variable symbols 

examples of macros. 

3 Some of the material in this chapter is based on an excellent overview artide by William Kent, titled "Assembler­
Language Macroprogramming: A Tutorial Oriented Toward the IBM 360" in the ACM Computing Surveys, Vol. 1, 
No. 4 (December 1969), pages 183-196. 
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What is a Macro Facility? 

A mechanism for extending a language 

- Introduces new statements into the language 

- Defines how the new statements translate into the "base language" 

- Which may include existing macros• 

- Allows mixing old and new statements 

In Assembler Language, "new" statements are called 
macro instructions or macro calls 

Easy to create application-specific languages 

- Typical use 1s to extend base language 

- Can even hide it entirely' 

- Create higher-level language appropriate to application needs 

- Can be made highly portable, efficient 
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What is a Macro Facility? 

Concepts-2 

Most simply, a macro facility is a mechanism for extending a language. It can be used not 
only to introduce new statements into the language, but also to define how the new state­
ments should be translated into the "base language" on which they are built. One major 
advantage of macros is that they allow you to mix "old" (existing) and "new" statements, so 
that your language can grow incrementally to accommodate new functions, added require­
ments, and other benefits as and when you are able to take advantage of them. The "old" 
statements may include existing macros, providing leverage with each increment of growth. 

In the Assembler Language, these new statements are called "macro instructions" or 
"macro calls". The use of the term "call" implies a useful analogy to subroutines; there are 
many parallels between (assembly-time) macro calls and (run-time) subroutine calls. You 
can think of a macro as an "assembly-time subroutine". 

The analogy of macros to subroutines is quite close: they are both 

• "named" collections of statements invoked by that name, 
to which various arguments are passed, 
and the values of the arguments are then processed according to the logic of the internal 
statements. 

The major difference is that subroutines are called at the time a program is executed by a 
processor (after having been translated to machine code), whereas a macro is executed 
during the translation (assembly) process, prior to the generation of machine code. 

Macros and macro techniques make it very easy to create application-specific languages: 

• you can create higher-level languages appropriate to the needs of particular application 
areas 
the language can be made highly portable and efficient 
typical uses are to extend the base language on which the extended language is built (in 
fact, it is possible to hide the base language entirely!). 

Part 2: Basic Macro Concepts 49 



Benefits of Macro Facilities 

Re-use: write once, use many times and places 

Reliability and modularity: write and debug "localized logic" once 

Reduced coding effort: minimize focus on uninteresting details 

• Simplification: hide complexities, isolate impact of changes 

Easier application debugging: fewer bugs and better quality 

• Standardize coding conventions painlessly 

Encapsulated, insulated interfaces to other functions 

Increased flexibility and adaptability of programs 

- Greater application portability 
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Benefits of Macro Facilities 

Concepts-3 

Macro facilities can provide you with many direct and immediate benefits: 

• Code re-use: once a macro is written, it becomes available to as many programmers and 
applications as are appropriate. A single definition can find multiple uses (even within a 
single application). 

Reliability and modularity: code and debug the logic in one place. 

• Reduced coding effort: the coding in a macro needs to be written only once, and then can 
be used in many places. 

Reduced focus on uninteresting details: macros allow you to create "higher-level" ele­
ments of your programming language, relieving you of the need to be concerned with 
details that are typically only marginally relevant to your programming task. 

• Greater application portability: because almost every system supports a macro assem­
bler, it is easy to port an application written in "macro language" to another host envi­
ronment simply by writing an appropriate set of macros definitions on the new system.4 

• Easier debugging, with fewer bugs and better quality: once you have debugged your 
macros, you can write your applications using their higher-level concepts and facilities, 
and then debug your programs at that higher level. Concerns with low-level details are 
minimized, because you are much less likely to make simple oversights among masses 
of uninteresting details. 

• Standardize coding conventions painlessly: if your organization requires that certain 
coding conventions be followed, it is very simple to embody them in a set of macros that 
all programmers can use. Then, if the conventions need to change, only one set of 
objects - the macros - needs to be changed, not the entire application suite. 

4 The SNOBOL4 language was implemented entirely in terms of a set of macros that defined a "string processing 
implementation language". The entire SNOBOL4 system could be "ported" to a new system with what the authors 
called "about a week of concentrated work by an experienced programmer". You may be interested in consulting 
The Macro Implementation of SNOBOL4, by Ralph Griswold. 
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Provide encapsulated interfaces to other functions, insulated from interface changes: 
using macros, you can support interfaces among different elements of your applications, 
and between applications and operating environments, in a controlled and defined way. 
This means that changes to those interfaces can be made in the macros, without 
affecting the coding of the applications themselves. 

• Localized logic: specific and detailed (and often complex) code sequences can be imple­
mented once in a macro, and used wherever needed, without the need for every user of 
the macro to understand the "inner workings" of the macro's logic. 

Increased flexibility and adaptability of programs: you can adapt your applications to dif­
ferent requirements by modifying only the macro definitions, without having to revise the 
fundamental logic of the program. 

The Macro Concept: Fundamental Mechanisms 

Macro processors rely on two basic mechanisms: 

1. Macro recognition: identify some character string as a macro "call" 

2. Macro expansion: generate a character stream to replace the "call" 

Macro processors typically do three things: 

1. Text insertion: injection of one stream of source program text into another 
stream 

2. Text modification: tailoring ("parameterization") of the inserted text 

3. Text selection: choosing alternative text streams for insertion 
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The Macro Concept: Fundamental Mechanisms 

Macro processors typically rely on two basic processes: 

Macro recognition requires that the processor identify some string of characters as a 
macro invocation or macro call, indicating that the string is to be replaced. 

Macro expansion or macro generation causes the macro definition to be interpreted by 
the processor, with the usual result that the original string is replaced with a new (and 
presumably different) string. 

In macro expansion, there are three fundamental mechanisms used by almost all macro 
processors: 

text insertion: the creation of a stream of characters to replace the string recognized in 
the macro "call" 

text parameterization: the tailoring and adaptation of the generated stream to the condi­
tions of the particular call 

text selection: the ability to generate alternative streams of characters, depending on 
various conditions available during macro expansion. 
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These correspond to the mechanisms already described for the conditional assembly lan­
guage: for example, tex1 parameterization uses the process of substitution, and tex1 
selection uses that of statement selection. 

Text Insertion 

Basic Macro Concepts: Text Insertion 

Text insertion: injection of one stream of source program text into 
another stream 

Macro Definition 
Na11e = MACBl 

cc 
DD 

Main Program 

AA 
BB 
MACBl 
EE 
FF 

logical Effect 

AA 
BB 

- cc DD 
EE 
FF 

The processor recognizes MAC01 as a macro name 

The text of the macro definition replaces the "macro call" in the Main 
Program 

• When the macro ends, processing resumes at the next statement 
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The simplest and most basic mechanism of macro processing is that of replacing a string of 
characters, or one or more statements, by other (often longer and more complex) strings or 
sets of statements. 

In Figure 9, a set of statements has been defined to be a macro with the name MAC01. When 
the processor of the Main Program recognizes the string MAC01 as matching that of the 
macro, that string is replaced by the tex1 within the macro definition. Finally, when the 
macro ends, statement processing resumes at the nex1 statement following the macro call. 

This is called text insertion: the injection of one stream of source tex1 into another stream. 

Macro Definition Main Program Logical Effect 
Name = MAC01 

I I 
AA AA 

cc BB BB 
DD MAC01 _. cc 

EE DD 

l FF EE 
FF 

Figure 9. Basic Macro Mechanisms: Text Insertion 
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Basic Macro Concepts: Text Parameterization 

Text parameterization: tailoring of the inserted text 

Macro Defi ni ti on 
Hame = MACB2 

Parameters X,Y 

[] E 

Main Program Logical Effect 

AA 
AA BB 
MACB2 CC,DD - CC 
FF DD 

EE 
FF 

Processor recognizes MAC02 as a macro name, with arguments CC, DD 

- Arguments CC,DD are associated with parameters X, Y by position 

- As in all high-level languages 

The text from the macro definition is modified during insertion 
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Text Parameterization and Argument Association 

Simple text insertion has rather limited uses, because we usually want to tailor and adapt 
the inserted text to accommodate the various conditions and situations of each macro invo­
cation. The simplest form of such adaptation is "text parameterization". In Figure 10, the 
macro with name MAC02 is defined with two parameters X and Y: that is, they are merely 
place-holders in the definition that indicate where other text strings are expected to be 
inserted when the macro is expanded. 

Macro Definition Main Program Logical Effect 
Name = MAC02 I Parameters X,Y 

I AA 
BB AA BB 
x MAC02 CC,DD I ___. cc 
y 

FF j DD 
EE EE 

FF 

Figure 10. Basic Macro Mechanisms: Text Parameterization 

This example illustrates text modification: tailoring of the inserted text ("parameterization") 
depending on locally-specified conditions. 

When a macro call is recognized, it is normal for additional information (besides the simple 
act of activating the definition) to be passed to the macro expansion. Thus, when the 
processor of the Main Program recognizes MAC02 as a macro name, it also provides the two 
arguments CC and DD to the macro expander, which substitutes them for occurrences of the 
two parameters X and Y, respectively. 

The argument CC is associated with parameter X, and DD is associated with Y. This simple 
example of parameter-argument association is typical of many macro processors: associ­
ation proceeds in left-to-right order, matching each positional parameter in turn with its cor­
responding positional argument. This is the familiar form of association used in almost all 
high-level programming languages. Other forms of association are possible. 
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Text Selection 

Basic Macro Concepts: Text Selection 

• Text selection: choosing alternative text streams for insertion 

JJ 

Macro Definition 
Name = MACll3 
Parameter X 

if (X = II) skip 1 stmt 
KK 
LL 

Main Program 

AA 
MAl:ll3 II 
BB 
MACB3 1 
cc 

Logical Effect 

AA 
JJ 
LL 

- BB 
JJ 
KK 
LL 
cc 

Processor recognizes MAC93 as a macro name with argument O or 1 

Conditional actions in the macro definition allow selection of different 
insertion streams 
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Text selection is fundamental to most macro processors, because it allows choices among 
alternative sequences of generated text. In Figure 11, a simple form of text selection is 
modeled by the if statement: the parameter Xis associated with the argument of the two 
calls to MAC03. A simple test of the argument corresponding to X tells whether or not to gen­
erate the string KK. If the argument is 0, KK is not generated; otherwise it is. 

JJ 

Macro Definition 
Name = MAC63 
Parameter X 

if (X = 6) skip 1 stmt 
KK 
LL 

Main Program 

AA 
MAC63 6 
BB 
MAC63 1 
cc 

Figure 11. Basic Macro Mechanisms: Text Selection 
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~ 
I ~~ I 
I BB 

JJ 

lU L 
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Basic Macro Concepts: Call Nesting 

Generated text may include calls on other ("inner") macros 

- New statements can be defined in terms of previously-defined extensions 

Generation of statements by the outer (enclosing) macro is interrupted 
to generate statements from the inner 

Multiple levels of call nesting OK (including recursion) 

Technical Detail: Inner macro calls recognized during expansion of the 
outer macro, not during definition and encoding of the outer macro 

- Can pass arguments of outer macros to inner macros that depend on 
arguments to, and analyses in, outer macros 

- Provides better independence and encapsulation 

- Allows passing parameters through multiple levels 

- Can change definition of inner macros without having to re-define the outer 
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Macro Call Nesting 

A key strength of the macro language is its ability to build new capabilities on existing facili­
ties. The most common of these abilities is called "macro call nesting" or "macro nesting": 
generated text may include (or create!) calls on other macros ("inner macro calls"). This 
mechanism lets you define new statements in terms of previously-defined extensions; it is 
fundamental to much of the power and "leverage" of macro languages. 

The generation process for inner macro calls requires that the macro processor maintain 
some kind of "push-down stack" for its activities. 

• Generation of statements by the outer (enclosing) macro is suspended temporarily to 
generate statements from the inner. 

Multiple levels of call nesting are quite acceptable (including recursion: a macro may call 
itself directly or indirectly), and are often a source of added power and flexibility. 

The inner calls are recognized during expansion of the outer (enclosing) macro, not during 
macro definition and encoding. This may seem a very minor and obscure technical detail, 
but it turns out in practice to have wide-ranging implications. 

• By deferring the recognition of inner macro calls until the enclosing macro is expanded, 
you can pass arguments to inner macros that depend on arguments to, and analyses in, 
outer macros. 

Recognition following expansion provides better independence and encapsulation: you 
can change the definition of the inner macro without having to re-define the outer. 

You will also save coding effort: if the definition of an inner macro needed to be changed, 
and its definition was already "embodied" in some way in other macros that called it, 
then all the "outer" macro definitions would have to be revised. 
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Macro Call Nesting: Example 

Two macro definitions: OUTER contains a call on INNER 

Macro Definitfons 
Name = OUTER 

BB 
IMNER 
EE 

Name = INNER 

cc 
DD 

Hain Program 

AA 
OUTER 
FF 
INNER 

Logical Effect 

AA 
BB 

- cc 
DD 
EE 
FF 
cc 
DD 

Expansion of OUTER is suspended until expansion of INNER completes 
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In the example in Figure 12, two macros named OUTER and INNER are known to the 
processor of the Main Program. When the name OUTER is recognized as a macro name, 
processing of the Main Program is suspended and expansion of the OUTER macro begins. 
When INNER is recognized as as macro name, processing of the OUTER macro is also sus­
pended and expansion of the INNER macro begins. When the INNER macro expansion com­
pletes, the OUTER macro resumes expansion at the next sequential statement (EE) following 
the call on INNER; when the expansion of the OUTER macro completes, processing resumes 
in the Main Program following the OUTER statement, at FF. 

Note also that the INNER macro can be called from the Main Program, because it is known 
to the processor at the time the call is recognized. 

Macro Definitions 
Name = OUTER 

BB 
INNER 
EE 

Name INNER 

cc 
DD 

Main Program 

~ 
I ~~NER I 
I I 

Figure 12. Basic Macro Mechanisms: Call Nesting 

Logical Effect 

!fl 
DO I 
EE 

lJLJ 
The power of a macro facility is enhanced by its ability to combine the basic functions of text 
insertion, text parameterization, text selection, and macro nesting. 

Each of the features, concepts, and capabilities described above can be expressed in a way 
natural to the System/360/370/390 Assembler Language. 
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I Macro Definition Nesting: Example 

j . Macro definitions may contain macro definitions 

Macro Definitions 
Name = OU1ER 

88 
MACRO INNER 

(( 

DD 
MACEND INNER 

EE 
INNER 

Mame = INNER 

I ~~ 

Hain Program 

AA 
OU1ER 
FF 

logi ca 1 Effect 

AA 
BB 
EE 
(( 

DD 
FF 

] 
This definition is created 
only when OUTER is called. 

Expansion of OUTER causes INNER to be defined 
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Macro Definition Nesting 

Concepts-10 

While macro call nesting is widely used, macro definition nesting is relatively rare. The idea 
of macro definition nesting is illustrated in Figure 13, where we suppose that the definition of 
the macro named INNER is enclosed within the MACRO and MACEND statements. 

Macro Definitions 
Name = OUTER 

I BB 
MACRO 

l 

INNER I 
I cc 

DD 
MACEND INNER 

EE 
INNER 

Name = INNER 

cc 
DD 

I 

Main Program 

AA 
OUTER 
FF 

Logical Effect 

J
l This definition is created 

only when OUTER is called. 

Figure 13. Basic Macro Mechanisms: Nested Macro Definitions 

In this example, only the OUTER macro is known to the processor of the Main Program. 
When the name OUTER is recognized as a macro call, processing of the Main Program is 
suspended and expansion of the OUTER macro begins. When the generated statement 
MACRO INNER is recognized, the processor begins to create a new macro definition for 
INNER, saving the following ~tatements until the MACEND INNER statement is recognized. 

Later in the expansion of the OUTER macro, the nested call on the INNER macro is recog­
nized, and the previously described mechanisms are used to generate the statements of the 
INNER macro. 
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Note that the INNER macro is known to the processor only after it has been generated during 
expansion of the OUTER macro. If INNER had been called from the Main Program prior to a 
call on OUTER, the processor would have to treat it as an unknown operation. 
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The Assembler Language Macro Definition 

A macro definition has four parts: 

(1) MACRO Macro Header (begins a definition). 
1-------------

(2) Prototype Statement Model of the macro instruction 
that can call on this definition; 
a model or •template" of the new 
statement introduced into the 
language by this definition. 

f-------------
(3) Model Statements 

t-------------
(4) MEND 

A single statement. 

Declarations, conditional assembly 
statements, and text for selection, 
modification, and insertion. 
Zero to many statements. 

Macro lrailer (ends a definition). 
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The Assembler Language Macro Definition ... 

1. Declares a macro name representing a stream of program text 

Concepts·11 

2. MACRO and MEND statements delimit start and end of the definition 

3. Prototype statement declares parameter variable symbols 

4. Model statements ("macro body") provide logic and text 

Definitions may be found 

- "in-line" (a "source macro definition") 

- in a library (COPY can bnng definitions "in-line") 

- or both 

Recognition rules affected by where the definition is found 
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The Assembler Language Macro Definition 

The definition of a macro declares the macro name that is to stand for (represent) a given 
stream of program text. The general form of an Assembler Language macro definition has 
four parts: 

1. a macro header statement (MACRO: the start of the definition) 

2. a prototype statement, which provides the macro name and a model or "template" of the 
macro-instruction "call" that must be recognized in order to activate this definition 

3. the macro body, containing declarations of variable symbols, model statements to be 
parameterized and generated, and conditional assembly statements to assign values to 
variable symbols and to select alternative processing sequences 
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4. a macro trailer statement (MEND: the end of the definition). 

These four parts are illustrated in Figure 14: 

Macro Header (begins a definition). 

Model of the macro instruction 
that can call on this definition; 
a model or •template• of the new 
statement introduced into the 
language by this definition. 
A single statement. 

Declarations, conditional assembly 
statements, and text for selection, 
modification, and insertion. 
Zero to many statements. 

Macro Trailer (ends a definition). 

Figure 14. Assembler Language Macro Definition: Format 

A macro definition may be "in-line" (also called a "source macro definition") or in a library. 
Where the definition is found by the assembler affects the recognition rules, as will be 
described in "Macro-Instruction Recognition: Details" on page 62. 

Macro-Instruction Definition Example 

We can rewrite the example in Figure 9 on page 52 to look like a "real" macro, as follows: 

Main Program Logical Effect 
Macro Definition 

I 
START START 

MACRO AA AA 
MAC01 BB BB 
cc MAC01 + cc 
DD EE + DD 
MEND FF EE 

END FF 
END 

Figure 15. Assembler Language Macro Mechanisms: Text Insertion by a "Real" Macro 

The "+" characters shown in the "Logical Effect" column correspond to the characters 
inserted by the assembler in its listing to indicate that the corresponding statements were 
generated from a macro. 
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Macro-Instruction Recognition Rules 

1. If the operation code is already known as a macro name, use its · 
definition 

2. If an operation code does not match any operation code already 
known to the assembler (i.e., it is "possibly undefined"): 

a. Search the library for a macro definition of that name 

b. If found, encode and then use that macro definition 

c. If there is no library member with that name, the operation code is flagged 
as "undefined". 

Macros may be redefined during the assembly! 

- New macro definitions supersede previous operation code definitions 

Name recognition activates interpretation of the macro definition 

- Also called "macro expansion" or "macro generation" 
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Macro-Instruction Recognition Rules 

The assembler recognizes a macro instruction as follows: 

1. If the macro name has already been defined in the program (as a "source" or "in-line" 
definition, either explicitly or because a COPY statement brought it in-line from a library, 
or because a previous macro instruction statement brought the definition from the 
library), use it in preference to any other definition of that operation. 

You may use a macro definition to override the assembler's default definitions of all 
machine instruction statements, and of most "native" Assembler Instruction state­
ments (generally, the conditional-assembly statements cannot be overridden). 

2. If an operation code does not match any operation code "known" to the assembler (i.e., it 
is "possibly undefined"), the assembler will then: 

a. Search the library for a macro definition of that name. 

b. If the assembler finds a library member with that name, the macro name defined on 
the prototype statement must match the member name. The assembler will then 
encode and use this definition. 

c. If there is no library member with that name, then the operation code is flagged as 
"undefined". 

While it is not a common practice to do so, macros may be redefined during the assembly 
by introducing a new macro definition for that name. 

When the assembler scans a statement, and identifies its operation code as a macro name, 
recognition of the name triggers an activation of an interpreter of the encoded form of the 
macro definition. This is called "macro expansion" or "macro generation", and typically 
results in insertion of program text into the assembler's input stream. 

Source macros are usable only in the program that contains them, whereas library macros 
can be used in any program. 

The 0' attribute can be used to determine the status of a macro or instruction name. Its uses 
are specialized, and will not be discussed here. 
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Macro-Instruction Recognition: Details 

A macro "call" could use a special CALL syntax, such as 

MCALL macrona111e(argl,argZ,etc ••• ) 
or MCALL macroname,argl,argZ,etc .•• 

Advantages to having syntax match base language's: 

- Format of prototype dictated by desire not to introduce arbitrary forms of 
statement recognition tor new statements 

- No special characters, statements, or rules to "trigger" recognition 

- No need to distinguish language extensions from the base language 

- Allows overriding of most existing opcodes; language extension can be 
natural (and invisible) 

No need for "MCALL"; just make "macroname" the operation code 
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Macro-Instruction Recognition: Details 

Both macro name declaration (definition) and recognition have specific rules that are closely 
tied to the base language syntax of the System/360/370/390 Assembler Language. Some 
"1.acro languages and preprocessors require special characters or syntactic forms to 
"trigger" the invocation of a macro. For example, an Assembler Language macro "call" 
could use or require a special CALL syntax, such as 

or 
MCALL 
MCALL 

macroname(argl,arg2,etc .•. ) 
macroname,argl,arg2,etc ... 

However, there are advantages to having the .syntax of macro calls match the base lan­
guage's, and to allow overriding of existing opcodes; hence, we simply elide the MCALL and 
make the "macroname" become the operation code and the arguments become the operands 
of the macro instruction statement. 

While many possible forms of macro definition and recognition are possible, the general 
format used in the System/360/370/390 Assembler Language is dictated by a desire not to 
introduce arbitrary forms of statement syntax and recognition rules for new statements. 

(Note that the syntax of the SET AF and SETCF instructions uses explicit invocation: 

SETxF macroname,argl,arg2,etc ••. 

in order to avoid conflicts between instruction names and external function names.) 
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Macro-Definition Encoding 

Assembler "edits" a macro definition into an efficient internal format 

- Macro name is identified and saved; all parameters are identified 

- COPY statements processed immediately 

- Model and conditional assembly statements converted to "internal text" for 
faster interpretation 

- All points of substitution are marked 

- In name, operation, and operand fields 
- But not in remarks fields or comment statements 

- Some errors in model statements are diagnosed 

- Others may not be detected until macro expansion 

- "Dictionary" space (variable-symbol tables) are defined 

- Parameter names discarded, replaced by dictionary indexes 

Avoids the need for repeated searches and scans on subsequent uses 

Re-interpretation is more flexible, but much slower 

- AINSERT statement provides some re-interpretation possibilities 
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Macro-Definition Encoding 

Because the System/360/370/390 Assemblers have been designed to support extensive use 
of macros, their implementation reflects a need to provide efficient processing. Thus, the 
assembler initially converts macro definitions into an efficient encoded internal format for 
later use; this is sometimes called "macro editing". 

The macro's name is identified and saved (so that later references to the macro name 
can be recognized as macro calls). 

All parameters are identified, and entries are made in a "local macro dictionary". 

Parameter and system variable symbol names are discarded, and references to them are 
replaced by indexes into the local macro dictionary. 

COPY statements are recognized and processed immediately. This allows common sets 
of declarations to be shared among macros. 

Model and conditional assembly statements are converted to "internal text" for faster 
interpretation. 

All points of substitution in the name, operation, and operand fields are identified and 
marked. (Substitutions are not supported in the remarks field, nor in comment state­
ments.) Because these points of substitution are determined during macro encoding, it is 
perhaps more understandable why substituting strings like '&A' will not cause a further 
effort to re-scan the statement and substitute a new value represented by '&A'. 

Note: Because generated machine instruction statements are scanned differently from 
generated macro instructions, you can create substitutions in remarks fields by creating 
an "operand" that contains the true operands, one or more blanks, and the characters of 
the remarks field. This technique is laborious, and is not recommended. 

Some errors in model statements are diagnosed, but others may not be detected until 
macro expansion is attempted. 

"Dictionary" space (variable-symbol tables) are defined for local variable symbols, and 
space is added to the global variable symbol dictionary for newly-encountered global 
names. 
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Encoding a macro definition in advance of any expansions avoids the need for repeated 
library.searches and encoding scans on subsequent uses of the macro. 

Some macro processors re-interpret macro definitions each time the macro is invoked. This 
provides greater flexibility (which is not often needed) at the expense of much slower inter­
pretation and expansion. The design choice made in the assembler was to encode the 
macro for fast interpretation and expansion. 

Nested Macro Definitions in High Level Assembler 

Nested macro definitions are supported by HLASM 

• Problem: should outer macro variables parameterize nested macro 
definitions? 

&L 
Macro , 
MAJDI &X 
LCLA &A 

Macro , 
MINDI &Y 
LCLA &A 

Start Df MAJDR's definition 

LDcal variable 

Start of MINDR's definition 

Local variable 

&A SetA 2*&A*&Y Evaluate expressiDn (Proble•: which &A 7?) 

llEnd • End of MINDR's definition 

MNote *,&&A = &A' Display value of &A 
MEnd , End of MAJ DR' s definition 

Solution: no parameterization of inner macro text 
- Statements are "shielded» from substitutions (no nested-scope problems) 
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Nested Macro Definition in High Level Assembler 

Nested macro definition is supported in the System/360/370/390 Assembler Language, but 
are more complicated than illustrated in the simple example in Figure 13 on page 57. To 
illustrate one complication, consider the following example: 

&L 

&N 

Macro , 
MAJOR &X 
LCLA &A 

Macro , 
MINOR &Y 
LCLA &A 

Start of MAJOR's definition 

Local variable 

Start of MINOR's definition 

Local variable 

&A SetA 2*&A*&Y Evaluate expression (Problem: which &A ??) 

MEnd End of MINOR's definition 

MNote *,&&A= &A' Display value of &A 
MEnd End of MAJOR's definition 

Figure 16. Macro Definition Nesting in High Level Assembler 

The variable symbol &A appears in both the outer macro MAJOR and the inner macro 
MINOR. Thus, the macro encoder must decide how to process the occurrences of &A in the 
nested definition: should they be marked as points of substitution? 
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To avoid complex syntax and rules of interpretation, the assembler simply treats all state­
ments between the Macro and MEnd statements of nested macro definitions as uninterpreted 
strings of text into which no substitutions are performed. In effect, all nested macro defi­
nitions are "shielded" from enclosing definitions. 

This means that a macro definition can generate a macro definition, but cannot parameterize 
or "tailor" it in any way. Some of the limitations imposed by this choice can be overcome 
by using the AINSERT statement, described in "The AINSERT Statement" on page 184. 

Macro Expansion and MEXIT 

Macro expansion or generation is initiated by recognition of a macro 
instruction 

Assembler suspends current activity, begins to "execute" or 
"interpret" the encoded definition 

- Parameter values assigned from associated arguments 
- Conditional assembly statements interpreted, variable symbols assigned 

values 
- Model statements substituted, and output to base language processor 

Generated statements immediately scanned for inner macro calls 

- Recognition of inner call suspends current expansion, starts new one 

Expansion terminates when MEND is reached, or MEXIT is interpreted 

- Some error conditions may also cause termination 
- HEXIT is equivalent to "AGO to MEND" (but quicker) 
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Macro Expansion, Generated Statements, and the MEXIT Statement 

When the assembler recognizes a macro instruction, macro expansion or macro generation 
is initiated. The assembler suspends its current activity, and begins to "execute" or "inter­
pret" the encoded definition of the called macro. 

During expansion, the first step is to assign parameter values from the associated argu­
ments on the macro call. Subsequently, conditional assembly statements are interpreted; 
variable symbols are assigned values, model statements are substituted, and text is output 
to the base language processor. 

The generated statements are immediately scanned for inner macro calls; recognition of an 
inner call suspends the current expansion, and starts a new one for the newly-recognized 
inner macro. 

Expansion of a macro terminates when either the MEND statement is reached, or when an 
expansion-terminating macro-exit MEXIT statement is interpreted. MEXIT is equivalent to an 
"AGO to MEND" statement, but is quicker to execute, because the assembler need not search 
for the target of the AGO statement. 
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I Macro Comments and Readability Aids 

Assembler Language supports two types of comment statement: 

1. Ordinary comments(•*" in first column position) 

- Can be generated from macros like all other model statements 

2. Macro comments(".*" in first two column positions) 

- Not model statements; never generated 

MACRO 
&II SAMPLE! &A 
.* This is macro SAMPLE!. It has a name-field par-ter &II, 
.* and an eperand-field pesitienal parameter &A. 
* This ce1111ent is a •del statement, and may be generated 

• Two "formatting" instructions are provided for macro listings: 

1. ASPACE provides blank lines in listing of macros 
2. AEJECT causes start of a new listing page for macros 
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Macro Comments and Readability Aids 

Concepts-18 

The macro facility provides a way to embed "macro comments" into the body of a macro 
definition. Because both ordinary comment statements (with an asterisk in the left margin) 
and blank lines (for spacing) are model statements, they may be part of the generated text 
from a macro expansion. Macro comments are never generated, and are defined by the 
characters . * in the left margin, as illustrated below: 

MACRO 
&N SAMPLEl &A 
* 
* 

* 

This is macro SAMPLE!. It has a name-field parameter &N, 
and an operand-field positional parameter &A. 

This corrment is a model statement, and may be generated 

MEND 

Figure 17. Example of Ordinary and Macro Comment Statements 

It is good practice to comment macro definitions generously, because the conditional 
assembly language is sometimes difficult to read and understand. 

The formatting and printing of macro definitions can be simplified by using the ASPACE and 
AEJECT statements. ASPACE provides blank lines in the assembler's listing of a macro defi­
nition, and AEJECT causes the assembler to start a new listing page when it is printing a 
macro definition. Both are not model statements, and are therefore never generated. 
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Example 1: Define General Register Equates 

Generate EQUates for general register names (GRO, ... , GR15) 

6R8 

... 
6R15 

MACRO 
6RE6S 
EQU 8 

EQU 15 
MEND 

etc • 

(Macro Header Statement) 
(Macro Prototype Statement) 
(First Model Statement) 

Similarly for 6Rl - GR14 

(Last Model Statement) 
(Macro Trailer Statement) 

A more interesting variation with a conditional-assembly loop: 

MACRO 
GREGS 
LCLA &N 
ANOP 
EQU 
SETA 
AIF 
MEND 

&N 
&H+l 
(&N LE 15).X 

Define a counter variable, initially 8 
Z paints of substitution in EQU statement 

Incre111ent &N by l 
Repeat for all registers l-15 
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Example 1: Define Equated Symbols for Registers 

To illustrate a basic form of macro, suppose you wish to define a macro named GREGS that 
generates a sequence of EQU statements to define symbolic names GRfl, GRl, .•• , GR15 for 
referring to the sixteen General Purpose Registers. A call to the GREGS macro will do this: 

GR0 
GRl 
GR2 
GR3 
GR4 
GR5 
GR6 
GR7 
GRB 
GR9 
GR10 
GRll 
GR12 
GR13 
GR14 
GR15 

MACRO 
GREGS 
EQU 0 
EQU 1 
EQU 2 
EQU 3 
EQU 4 
EQU 5 
EQU 6 
EQU 7 
EQU 8 
EQU 9 
EQU 10 
EQU 11 
EQU 12 
EQU 13 
EQU 14 
EQU 15 
MEND 

(Macro Header Statement) 
(Macro Prototype Statement) 
(First Model Statement) 

(Last Model Statement) 
(Macro Trailer Statement) 

Figure 18. Simple Macro to Generate Register Equates 

Then, a call to the GREGS macro will define the desired equates, by inserting the sixteen 
model statements into the statement stream. 

The macro definition can be made more compact by using conditional assembly statements 
to form a simple loop inside the macro: 
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Define a counter variable 
.x 
GR&N 
&N 

MACRO 
GREGS 
LCLA &N 
ANOP 2 points of substitution in EQU statement 
EQU &N 
SETA &N+l 
AIF (&N LE 15).X 
MEND 

Increment &N by 1 
Repeat for all registers 1-15 

Figure 19. Macro to Generate Register Equates Differently 

Macro Parameters and Arguments 

Distinguish parameters from arguments: 

Parameters are 

- declared on macro definition prototype statements 

- always local character variable symbols 

- assigned values by association with the arguments of macro cans 

Arguments are 

- supplied on a macro instruction (macro can) 

- almost any character string (typically, symbols) 

- providers of values to associated parameters 
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Macro Parameters and Arguments 

Concepts·20 

In the following discussion, we will distinguish parameters from arguments, as follows: 

Parameters are 

declared on the prototype statements of macro definitions 

always local character variable symbols 

assigned values by being associated with the arguments of a macro instruction 

sometimes known as "dummy arguments" or "formal parameters". 

Arguments are 

supplied on a macro instruction statement ("macro call") 

almost any character string (typically, symbols) 

the providers of values to the corresponding associated parameters 

sometimes known as "actual arguments" or "actual parameters". 
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Macro-Definition Parameters 

Parameters are declared on the prototype statement 

- as operands, and as the name-field symbol 

All macro parameters are ("read-only") local variable symbols 

- Name may not match any other variable symbol in this scope 

Parameters usually declared in exactly the same order as the 
corresponding actual arguments will be supplied on the macro call 

- Exception: keyword-operand parameters are declared by writing an equal 
sign after the parameter name 

- Can provide default keyword-parameter value on prototype statement 

Parameters example: one name-field, two positional, one keyword 

MACRO 
IMame MVMAC3 &Paraml,&ParalllZ,&KeyParm=YES 

MEND 
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Macro-Definition Parameters 

The parameters in a macro definition are declared by virtue of their appearing as operands 
(and the name-field symbol) on the prototype statement. These declared parameters are var­
iable symbols! (However, they cannot be assigned a value in the body of the macro; the 
value is assigned by association when the macro is called, as described in "Macro 
Parameter-Argument Association" on page 71) Usually, they are declared in exactly the 
same order as the corresponding actual arguments will be supplied on the macro call. 

The exception is keyword parameters: they are declared by writing an equal sign after the 
parameter name. You can also provide a default value for a keyword parameter on the pro­
totype statement, by placing that value after the equal sign. When the macro is called, the 
argument values for keyword parameters are supplied by writing the keyword parameter 
name, an equal sign, and the value, as an operand of the macro call. 

The name of a parameter may not be the same as that of any other variable symbol known 
in the macro's scope. 

For example, suppose we write a macro prototype statement as shown in Figure 20: 

MACRO 
&Name MYMAC3 &Paraml,&Pararn2,&KeyParm=YES 

MENO 

Figure 20. Sample Macro Prototype Statement 

The prototype statement defines a name-field parameter (&Name), two positional parameters 
(&Paraml,&Param2), and one keyword parameter (&KeyParm) with a default value YES. 

Unlike positional arguments and parameters, keyword arguments and parameters may 
appear in any order, and may be mixed freely among the positional items on the prototype 
statement and the macro call. 

Part 2: Basic Macro Concepts 69 



Macro-Instruction Arguments 

Arguments are: 

- Operands (and name field entry) of a macro instruction 

- Arbitrary strings (with some syntax limitations) 

- Most often, just ordinary symbols 
- "lntemat• quotes and ampersands in quoted strings must be paired 

Separated by commas, terminated by blank 

- Like ordinary Assembler-Language statement operands 

- Comma and blank must otherwise be quoted 

Omitted (null) arguments are recognized, and are valid 
Examples: 

A,. 'String' 2nd argument 111111 (emitted) MYMACl 
MmACl 
MYMACl 

Z,RR, 'Testing, Testing' 
A,B, 1 De 11s, && Don11 ts' 

3rd argument contains CDlllllMI and blank 
3rd argument with everything ••• 
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Macro-Instruction Arguments 

The arguments of a macro instruction are the name-field entry and the operands. They may 
be arbitrary strings of characters, with some syntax limitations such as requiring strings con­
taining quotes and ampersands to contain pairs of each. Most often, the operands will be 
just symbols (literals are allowed in almost all circumstances). 

The operands are separated by commas. and terminated by a blank (conforming to the 
normal Assembler Language syntax rules). If an argument is intended to contain a character 
normally used to delimit operands (blank, comma, parentheses, and sometimes apostrophes 
and periods), they must be quoted with apostrophes. Remember that the enclosing apostro­
phes are passed as part of the associated parameter's value, so you may need to test for 
(and maybe remove) them before processing the enclosed characters. 

Positional arguments are written in the order required for correspondence with their associ­
ated positional parameters in the macro definition. Keyword arguments may be intermixed 
freely, in any order, among the positional arguments, without affecting their positional 
sequence. 

Omitted (null) arguments are perfectly acceptable. 

To illustrate, suppose a macro named MYMAC1 expects three positional arguments. Then in 
the following example, 

MYMACI A,,'String' 2nd argument null (omitted) 

MYMACI Z,RR,'Testing, Testing' 3rd argument contains comma and blank 

MYMACI A,B,'Do''s, && Don 11 ts 1 3rd argument with everything .•. 

the first call omits the second argument; the second call has a quoted character string con­
taining an embedded comma and space as its third argument; and the third call has a 
variety of special characters in its quoted-string third argument. 

Pairs of quotes or ampersand characters are required within quoted strings used as macro 
arguments, for proper argument parsing and recognition. These characters are not con­
densed into a single character when the argument is associated ("passed") to the corre­
sponding symbolic parameter. 
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An argument consisting of a single ampersand will be diagnosed by the assembler as an 
invalid variable symbol. An argument consisting of a single apostrophe will appear to initiate 
a quoted string, and the assembler's reactions are unpredictable; one possibility is an error 
message indicating "no ending apostrophe". 

Macro Parameter-Argument Association 

Three ways to associate (caller's) arguments with (definition's) 
parameters: 

1. by position, referenced by declared name (most common way) 

2. by position, by argument number (using &SYS LIST variable symbol) 

3. by keyword: always referenced by name, arbitrary order 

- Argument values supplied by writing keyname==value 

Example 1: (Assume prototype statement as on slide/foil Concepts-21) 

&Name lfiMACl &Parallll,&Paralll2,&ICeyPann=YES Prototype 

Labl lfiMACl X, Y, KeyPann=N8 Call: Z positional, 1 keyword argu11ent 

* Para111eter values: &llallll! = Labl 
* &ICeyPar• = NO 

&Parillll = X 
&Paralll2 = Y 
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Macro Parameter-Argument Association ••• 

Example 2: 

Lab2 MYMACl A Call: 1 positional argument 

* Parameter values: &Na11e = Lab2 
&ICeyParm = YES 
&Parallll =A 
&Paralll2 = (null) 

Example 3: 

Concepts-23 

lfiMACl H, KeyParm=MAYBE,J Call: Z positiunal, 1 keyword argwnent 

* Parameter values: Ulaae = (null) 
&ICeyParm = MAYBE 

* &Parallll = H 
* &ParamZ = J 

- Note: it's good practice to put positionals first, keywords last 
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Macro Parameter-Argument Association 

There are three ways to associate arguments with parameters: 

Concepts-24 

1. by position, referenced by the declared positional parameter name (this is the most usual 
way for macros to refer to their arguments) 

2. by position and argument number (using the &SYSLIST system variable symbol, which 
will be discussed in "Macro-Instruction Argument Lists and the &SYSLIST Variable 
Symbol" on page 84) 
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3. by keyword: keyword arguments are always referenced by name, and the order in which 
they appear is arbitrary.5 Values provided for keyword arguments override default values 
declared on the prototype statement. 

To illustrate, consider the examples in Figure 21. Assuming the same macro definition pro­
totype statement shown in Figure 20 on page 69, the resulting values associated with the 
parameters are as shown: 

Labl MYMAC3 X,Y,KeyParm=NO 2 positional, 1 keyword argument 

* Parameter values: &Name Labl 
* &Paraml = X 

Lab2 MYMAC3 A 

* Parameter values: &Name = Lab2 
* &Paraml = A 

&KeyParm = NO 
&Param2 = Y 

1 positional argument 

&KeyParm = YES 
&Param2 = (null) 

MYMAC3 H,KeyParm=MAYBE,J 2 positional, 1 keyword argument 

* Parameter values: &Name = (null) 
* &Paraml = H 

&KeyParm = MAYBE 
&Param2 = J 

Figure 21. Macro Parameter-Argument Association Examples 

In the third example, observe that the keyword argument KeyParm=MAYBE appears between the 
first and second positional arguments. 

Mixing positional and keyword parameters and arguments is not a good practice, because it 
may be difficult to count the positional items correctly. 

Constructed Keyword Arguments Do Not Work 

Keyword arguments cannot be created by substitution 

Suppose a macro prototype statement is 

&X TestMac &K=KeyVal,&Pl Keyword and Positional Paraaeters 

If you construct an "apparent" keyword argument and call the macro: 

&C Sett 'K=What' 
TestMac . &C,Maybe 

Create an apparent keyword 
Call with •keyword•? 

This looks like a keyword and a positional argument: 

TestMac K=What,Maybe 

In fact, the argument is positional, with value 'K=What ' ! 

Macro calls are not re-scanned after substitutions! 

- The loss of generality is traded for gains in efficiency 
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5 The Adan.s programming language is the first major high-level language to support keyword parameters and argu­
ments. Assembler Language programmers have been using them for decades! 
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Constructed Keyword Arguments 

It is sometimes tempting to construct argument lists for macro calls, particularly keyword 
arguments. Suppose you have written a macro with a prototype statement like this: 

&X TestMac &K=KeyVal,&Pl Keyword and Positional Parameters 

and you want to construct a keyword argument: 

&C SetC 'K=What' 
TestMac &C,Maybe 

Create an apparent keyword 
Call with "keyword•? 

While this appears to be a properly formed keyword argument K=What, it is in fact treated as 
a positional argument, because the statement is not re-scanned after the value of &C has 
been substituted. The little test program shown in Figure 22 shows what happens: the sub­
stituted string is treated as a positional argument. 

Macro 
&X TestMac &K=KeyVal,&Pl Keyword and Positional Parms 

MNote *,'Pl=•&Pl.•, K=•&K.• 1 Display values of each 
MEnd 

TestMac Yes,K=No 
+*,Pl="Yes•, K="No• 

TestMac K=No,Yes 
+*,Pl=•Yes•, K=•No• 

&C SetC 'K=What' 

TestMac &C,Maybe 
+*,Pl="K=What•, K=•KeyVal• 

Test with positional first 

Test with keyword first 

Create an apparent keyword 

Call with 'keyword' first? 

Figure 22. Example of a Substituted (Apparent) Keyword Argument 

The original design of the System/360/370/390 assemblers focused on efficient macro expan­
sion, so macro calls containing substitutions were not re-scanned. 
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Example 2: Generate a Byte Sequence (BYTESEQ1) 

Rewrite previous example (see slide Conditional-33) as a macro 

BYTESEQ1 generates a separate statement for each value 

MACRO 
&l BYTESEQl &H Prototype statement: Z positional parameters 
* BYTESEfll - generate a sequence of byte values, one per statement. 
* No checking or validation is done. 

LclA &IC E AIF ('&l' EQ ").Loop Don't define the label if absent 
DS 8All Define the label 
ANOP 
SetA &IC+l Increment &IC 
Alf (&IC GT &H).Done Check for termination condition 
DC All(&K) 
AGO · • Loop Continue 

.Done MEND 

Examples 

BSla BYTESEQl 5 
BYTESEQl 1 
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Example 2: Generate a Sequence of Byte Values (BYTESEQ1) 
We can write a macro named BYTESEQ1 with a single parameter that will generate a 
sequence of bytes, using the same techniques as the conditional-assembly example given in 
Figure 6 on page 44. The pseudo-code for the BYTESEQ1 macro is quite simple: 

IF (name-field label is present) GEN(label DS OALl) 
DO for K = 1 to N ( GEN( DC All(K))) 

This macro generates a separate DC statement for each byte value. As we will see later, it 
has some limitations that are easy to fix. 

MACRO 
&l BYTESEQl &N Prototype statement: 2 positional parameters 
* BYTESEQl -- generate a sequence of byte values, one per statement. 
* No checking or validation is done. 

lclA &K 
AIF ( 1 &L 1 EQ 11 ).Loop Don't define the label if absent 

&L OS OALl Define the label 
.loop 
&K 

.Done 

ANOP 
Set A 
AIF 
DC 
AGO 
MEND 

&K+l 
(&K GT &N). Done 
All (&K) 
.Loop 

* Two test cases 
BSla BYTESEQl 5 

BYTESEQl 1 

Increment &K 
Check for termination condition 

Continue 

Figure 23. Macro to Define a Sequence of Byte Values 
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Macro Parameter Usage in Model Statements 

Parameter values supplied by arguments in the macro instruction 
("call") are substituted as character strings 

Parameters may be substituted in name, operation, and operand fields 
of model statements 

- Substitutions ignored 1n remarks fields and comment statements 

- Can sometimes play tncks with operand fields containing blanks 

- AINSERT lets you generate fully substituted statements 

Some limitations on which opcodes may be substituted in conditional 
assembly statements 

- Can'tsubStituteAClR, AGO, AIF, ANOP, AREAD, COPY, GBLx, IClL, LCLx, 
HACRO, HEND, HEXIT, REPRO, SETx, SETxF 

- The assembler must understand basic macro structures at the time it 
encodes the macrot 

Implementation trade-off: generation speed vs. generality 
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Macro Parameter Usage in Model Statements 

Values are assigned to macro parameters from the corresponding arguments on the macro­
instruction statement, either by position in left-to-right order (for positional arguments), or by 
name (for keyword arguments). These are then substituted as character strings into model 
statements (wherever points of substitution marked by the parameter variable symbols 
appear). The points of substitution in model statements may be in the 

name field 

operation field 

operand field 

but not in the remarks field, nor in comment statements. (For some operations, it is possible 
to construct an operand string containing embedded blanks followed by "remarks" into 
which substitutions have been done. We will leave as an exercise for the reader the delights 
of discovering how to do this.) 

Substitutions are not allowed in some places in conditional or ordinary assembly statements 
such as COPY, REPRO, MACRO, and MEND, because the assembler must know some infor­
mation about the basic structure of the macro definition (and of the entire source program!) 
at the time it is encoded. For example, substituting the string MEND for an operation code in 
the middle of a macro definition could completely alter that definition! 

The original implementation of the conditional assembly language assumed that macros will 
be used frequently, so that speed of generation was more important than complete gener­
ality. Since this conditional assembly language is more powerful than that of most macro­
processors or preprocessors, the choice seemed reasonable. 
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Macro Argument Attributes and Structures 

Assembler Language provides some simple mechanisms to "ask 
questions" about macro arguments 

Built-in functions, called attribute references 

- Most common questions: "What is it?" and "How big is it?" 

Determine properties (attributes) of the actual arguments 

- Provides data about possible base language properties of symbols: 
Type, Length, Scale, Integer, Defined, and "OpCode" attributes 

Decompose argument structures, especially parenthesized lists 

- use Number (N') and Count (K') attribute references 
- Determine the number and nesting of argument list structures (N ') 
- Determine the count of characters in an argument (K') 

- Extract sublists or sublist elements 
- Use substring and concatenation operations to parse list items 
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Macro Argument Attributes and Structures 

Among the elegant features of the Assembler Language are some simple mechanisms 
(built-in functions, called attribute references) that allow you to determine some properties 
(Le., attributes) of the actual arguments. For example, attribute references provide informa­
tion about possible base language (ordinary assembler language) use of the symbols: what 
kinds of objects they name, what is the length attribute of the named object, etc. 

Three major cl.asses of attribute inquiry facilities are provided: 

1. The "mechanical" or "physical" characteristics of macro arguments can be determined 
by using 

two attribute references: 

Count (K') supplies the actual count of characters in the argument, and 

Number (N') tells you how many elements appear in an argument list structure (it 
can also provide the largest subscript assigned to a dimensioned variable symbol, 
as described in "Declaring Variable Symbols" on page 8) 

list-structure referencing and decomposition operations, involving subscripted refer­
ences to parameter variable symbols. 

A rather sophisticated list scanning capability is provided to help you decompose 
argument structures, especially parenthesized lists. With this notation, you can 

determine the number and nesting of all such list structures 

extract any sublists or sublist elements 

use the usual substring and concatenation operations to manipulate portions of 
lists and list elements. 
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2. The type attribute reference (T ') allows you to ask "What base-language meaning is 
attached to it?" about a macro argument. The value of the type attribute reference6 can 
tell you whether the argument is 

a base-language symbol that names data, machine instructions, macro instructions, 
sections, etc. 

a self-defining term (binary, character, decimal, or hexadecimal) 

an "unknown" type. 

3. The base-language attributes of ordinary symbols used as macro arguments can be 
determined by using any of four attribute references: Length (L '), Scale (S '), Integer (I'), 
and Defined (D'). All four have numeric values. 

4. The "Opcode" attribute (O') can be used to test a symbol for possible use as an instruc­
tion. Its value tells you whether the symbol represents an assembler instruction, a 
machine instruction mnemonic, an already-encoded macro name, or a library macro 
name. Its uses will not be described further here. 

There is an important difference between the number (N') and count (K') attributes and all 
the others: N' and K' treat their operands as strings of characters, independent of any 
meaning that might be associated with the strings. Thus, if the value of a parameter &X is the 
five characters (A,9). then K'&X is 5 and N'&X is 2. 

The other attribute references probe more deeply into the possible meanings of a param­
eter. Thus, T '&X ( 1) would test what the character A might designate: if A is a label on a 
constant, T '&X ( 1) would return information about the type of the constant. If the type attri­
bute is indeed that of a constant, then L '&X(l) would provide its length attribute. Similarly, 
T'&X(2) would be N, indicating that it is a self-defining term that may be used in contexts 
where such terms are valid. 

One way to think of this difference is that N 1 and K' only look at the character value of a 
parameter, while the other attribute references look one level deeper into the possible 
meanings of the character value of a parameter. 

Attribute references of attribute references (such as K 1 L '&X) are not allowed. 

All eight types of attribute reference are valid in macros and conditional assembly state­
ments; only L 1 , I 1 , and S 1 are valid in ordinary assembly statements. Other limitations on 
their use depend on the type of the value of the reference. 

s A single character; only the opcode (O') and type (T ') attribute references have character values. All the others 
have numeric attributes. 
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I Macro Argument Attributes: Type 

1. Type attribute reference (T ') answers 

I - "What is it?" 

- "What meaning might it have in the ordinary assembly (base) language?" 

- The answer may be "None· or "I can't tell"! 

Assume the following statements in a program: 

A DC A(*) 
B DC F'lB' 
C DC E'Z.71828' 
D MVC A,B 

And, assume the following prototype statement for MACTA: 

MACTA &Pl,&PZ,. •• , etc. 

- Just a numbered list of positional parameters ... 
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Macro Argument Attributes: Type ... 

Then a call to MACTA like 

z MACTA A,B,C,D,C 1 A1 ,, '?',Z Call MACTA with various arguments 

would provide these type attributes: 

T'&Pl = 'A' aligned, implied-length address 
T'&P2 = 'F' aligned, implied-length fullword binary 
T'&P3 = 'E' aligned, implied-length short floating-point 
T'&P4 = 'I' machine instruction statement 
T'&PS = 'N' self-defining term 
T'&P6 = '0' omitted (null} 
T'&P7 = ·u· unknown, undefined, or unassigned 
T'&PB = 'M' macro instruction statement 
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Macro-Instruction Argument Properties: Type Attribute 

The type attribute reference is often the first used in a macro, to help the macro determine 
"What is it?". More precisely, it tries to answer the question "What meaning might this argu­
ment string have in the base language?" 11 typically appears in conditional assembly state­
ments like these: 

AIF 
AIF 

(T'&Paraml eq '0').0mitted 
(T'&Paraml eq 'U').Unknown 

Argument is null 
Unknown argument type 

To illustrate some of the possible values returned by a type attribute reference, assume the 
following statements appear in a program: 
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A DC A(*) 
B DC F1 10 1 

C DC E'2.71828 1 

D MVC A,B 

If the same program contains a macro named MACTA with positional arguments 
&P1,&P2,. .. ,etc., and if MACTA is called with the following arguments, then a type attribute 
reference to each of the positional parameters would return the indicated values: 

z MACTA A,B,C,D,C 1 A',, 1 ? 1 ,Z Call MACTA with various arguments 

T'&Pl = 'A' aligned, implied-length address 
T'&P2 = 'F' aligned, implied-length full word binary 
T'&P3 = 'E' aligned, implied-length short fl oat i ng-poi nt 
T'&P4 = I I I machine instruction statement 
T'&P5 = 'N' self-defining term 
T'&P6 = '0' omitted (null) 
T'&P7 = 'U' unknown, undefined, or unassigned 
T'&PB = 'M' macro instruction statement 

There are 28 possible values that might be returned by a type attribute reference. 
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Macro Argument Attributes: Count 

Count attribute reference (K') answers: 

- "How many characters in a SETC variable symbol's value (or in its 
character representation, if not SETC)?" (see slides Conditional-20 and 
Conditional-23) 

Suppose we have a macro with prototype statement 

MAC8 &Pl,&P2,&P3, ••• ,&Kl=,&KZ=,&Kl=, ••• 

This macro instruction would give these count attributes: 

MAC8 A,BCD, 'EFliH' .,Kl=5,K3==F'Z5' 

K'&Pl = l corr2sponding to A 
K'&P2 = 3 
K'&Pl = 6 
K'&P4 = 8 
K'&PS = 8 
K'&Kl = 1 
K'&K2 = 8 
K'&Kl = 6 

ABC 
'DEFG' 
I null) 
I null; no argu1111!nt) 
5 
I null) 
=F'ZS' 
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Macro-Instruction Argument Properties: Count Attribute 

Concepts-31 

A macro argument has one irreducible, inherent property: the count of the number of char­
acters it contains. These can be determined for any argument using the count attribute refer­
ence, K '. For example, if MAC8 has positional parameters &Pl, &P2, ••. , etc., and keyword 
parameters &Kl, &K2, .... etc., then for a macro instruction statement such as the following: 

MAC8 A,BCD,'EFGH',,K1=5,K2=,K3==F'25' 

we would find that 

K'&Pl 1 corresponding to A 
K'&P2 3 ABC 
K'&P3 6 1 DEFG 1 

K'&P4 fl (null) 
K'&P5 fl (null; 
K'&Kl 1 5 
K '&K2 = fl (null) 
K'&K3 = 6 =F'25' 

no argument) 

When the value of a parameter is assigned to a character variable, the content of the param­
eter string is unchanged; the pairing rules for ampersands and apostrophes apply only to 
character strings. 
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Macro Argument Attributes: Number 

Number attribute reference (N ')answers 
"How many items in a list or sublist?" 

List: a parenthesized sequence of items separated by commas 

Examples: (A) (l,C} (D,E,,F) 

List items may themselves be lists, to any nesting 

Examples: ((A)) (A,(B,C)) (A,(l,C,(D,E,,F),li),H) 

Subscripts on parameters refer to argument list (and sublist) items 

- Each added subscript references one nesting revel deeper 

- Provides powerful list-parsing capabilities 

N' also determines maximum subscript used with a subscripted 
variable symbol 
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Macro-Instruction Argument Properties: Number Attribute 

A list is a parenthesized sequence of items, separated by commas. The following are exam­
ples of lists: 

(A) (B,C) (D,E,,F) 

Figure 24. Macro Argument List Structures 

List items may themselves be lists (which may in turn contain lists, and so forth). Examples 
of lists containing sublists are: 

((A)) (A, (B,C)) (A,(B,C,(D,E,,F),G),H) 

Figure 25. Macro Argument Nested List Structures 

Lists may have any number of items, and any level of nesting, subject only to the constraint 
that the size of the argument may not exceed 255 characters. 

The number attribute reference (N') is used to determine the number of elements in a list or 
sublist, or the number of elements in a subscripted variable symbol. For example, if the 
three lists in Figure 24 were arguments associated with parameters &Pl, &P2, and &P3 
respectively, then a number attribute reference to each parameter would return the following 
values: 

N'&Pl = 1 (A) is a list of 1 i.tem 
N'&P2 = 2 (B,C) is a list of 2 items 
N'&P3 = 4 (D,E,,F) is a list of 4 items; the third is null 

&Z (17) = 42 Set an element of a subscripted variable symbol 
N1 &Z = 17 maximum subscript of &Z is 17 

A possibly confusing situation occurs when an argument is not parenthesized. For example 
the macro call 
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MACS (A) ,A 

has two arguments, the first "obviously" a list with one item. However, the number attri­
butes and sublists are: 

&Pl 
&Pl(l) 
&P2 

= (A) 
= A 
=A 

N'&Pl 
N'&Pl(l) 
N'&P2 

1 
1 
1 

1-item list: A 
(A is not a 1ist) 
(A is not a list) 

which may be unexpected. The following "rules of thumb" may help in understanding 
number attribute references to variable symbols: 

1. If the variable symbol is dimensioned, its number attribute is the subscript of the highest­
numbered element of the array to which a value has been assigned. 

2. If the variable symbol is not a macro parameter (either explicitly named, or implicitly 
named as &SYSLIST ( n) ), its number attribute is zero. 

3. If the first character of a macro argument is a left parenthesis, count the number of 
unquoted and un-nested commas between it and the next matching right parenthesis. 
That number plus 1 is the number attribute of the "list". 

4. lfthere is no initial left parenthesis, the number attribute is 1. 

List and sublist structures provide a convenient way to pass multiple values as a single 
argument. 

Macro Argument List Structure Examples 

Assume the same macro prototype as in slide Concepts-31: 

MAC8 &Pl,&P2,&Pl, ••• ,&Kl=,&K2=,&Kl=,... Prototype 

MAC8 (A),A,(B,C),(B,(C,(D,E))) Sample macro call 

Then, the number attributes and sublists are: 

&Pl = (A) N'&Pl = l 1-item list: A 
&Pl(l) = A N'&Pl(l) = 1 (A is not a list) 
&PZ = A N'&PZ = 1 (A is not a list) 
&Pl = (B, C) N'&Pl = z Z-item list: B and C 
&Pl(l) = B N'&Pl(l) = 1 (B is not a list) 
&P4 = (B,(C,(D,E)}) N'&P4 = 2 Z-item list: B and (C, (D,E)) 
&P4(Z) = (C, (D,E)) N'&P4(2) = z 2-item list: C and (D,E) 
&P4(2,Z) = (D,E) N'&P4(Z,2) = z 2-item list: D and E 
&P4(2, 2, 1) = D N'&P4(Z,2,l) = 1 (D is not a list) 
&P4(2,2,2) = E N'&P4(2,2,2) = 1 (E is not a list) 
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Macro-Instruction Argument Lists and Sublists 

It is sometimes useful to pass groups of related argument items as a single unit, by grouping 
them into a list. This can save the effort needed to name additional parameters on the 
macro prototype statement, and can simplify the documentation of the macro call. 

To extract list items from argument lists and sublists within a macro, subscripts are attached 
to the parameter name. For example, if &P is a positional parameter, and N' &P is not zero 
(meaning that the argument associated with &Pis indeed a list). then &P(l) is the first item in 
the list, &P(2) is the second, and &P(N'&P) is the last item. 
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To determine whether any list item is itself a list, we use another number attribute refer­
ence. For example, if &P(l) is the first item in the list argument associated with &P, then 
N'&P(l) is the number of items in the sublist associated with &P(l). For example, if argument 
( (X, Y) ,Z, T) is associated with &P, then 

N'&P = 3 
N'&P(l) = 2 

items are (X,Y), Z, and T 
items are X and Y 

As list arguments become more deeply nested, the number of subscripts used to refer to 
their list items also increases. For example, &P(l,2,3) refers to the third item in the sublist 
appearing as the second item in the sublist appearing as the first item in the list argument 
associated with &P. Suppose MACS has positional parameters &Pl, &P2, ... , etc., then for a 
macro instruction statement such as the following: 

MACS (A) ,A,(B,C) ,(B,(C,(D,E))) Sample macro call 

&Pl = (A) N'&Pl = 1 list of 1 item, A 
&P 1 ( 1) = A N'&Pl(l) = 1 (A is not a list) 
&P2 = A N'&P2 = 1 (A is not a 1 i st) 
&P3 = (B ,C) N'&P3 = 2 list of 2 items, B and c 
&P3(1) = B N'&P3(1) = 1 (B is not a list) 
&P4 = ( B, ( C, ( D, E))) N'&P4 = 2 list of 2 items, Band (C,(D,E)) 
&P4(2) = (C,(D,E)) N'&P4(2) = 2 list of 2 items, C and (D,E) 
&P4(2,2) = (D, E) N'&P4(2,2) = 2 list of 2 items, D and E 
&P4(2,2,1) = D N I &P4 ( 2, 2, 1) = 1 (D is not a list) 
&P4(2,2,2) = E N'&P4(2,2,2) = 1 (E is not a list) 

There is an oddity in the assembler's interpretation of the number attribute for items which 
are not themselves lists. As can be seen from the first two samples above, both '(A) 1 and 
'A' return a number attribute of 1. The assembler will treat parameter references &P and 
&P(l) as the same string if the argument corresponding to &Pis not a properly formed list. 
This means that if it is important to know whether or not a list item is in fact a parenthesized 
list, you will need to test the first and last characters to verify that the list is properly 
enclosed in parentheses. (Some macros test only for the opening left parenthesis, assuming 
that the assembler will automatically enforce correct nesting of parentheses. This is not 
always a safe assumption.) 

In practice, it often is not a problem if a single item is or is not enclosed in parentheses 
(depending on where the argument is substituted). For example, 

LR O, (R9) 
and 

LR O,R9 

will be processed the same way by the assembler. 
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Macro Argument Lists and &SYSLIST 

• &SYSLIST(k): a "synonym" for the k-th positional parameter 

- Whether or not a named positional parameter was declared 

- Handle macro calls with varying or unknown number of positional arguments 

N'&SYSLIST == number of all positional arguments 

• Assume a macro prototype MACNP (with or without parameters) 

• Then these arguments would have Number attributes as shown: 

MACNP A, (A), (C, (D,E,F)), (YES, ND) 

N'&SYSLlST " 4 
N'&SYSLIST(l) " 1 
N'&SYSLIST(Z) = 1 
N'&SYSLIST(l) = Z 
N'&SYSL1ST(3,Z) • 3 
N'&SYSLIST(3,Z,1) = 1 
N'&SYSLlST(4) = Z 

MACNP has 4 argu11ents 
&SYSLIST(l) " A (A is net a list) 
&SYSLlST(Z) · = (A) is a list with 1 itea 
&SYSLIST(l) = (C,(D,E,F)) is a list with Z ite115 
&SYSLIST(3,Z) = (D,E,F) is a list with 3 items 
&SYSLIST(3,Z,1) = D (D is net a list) 
&SYSLIST(4) • (YES,N8) is a list with Z itellS 

&SYSLIST(9) refers to the call's name field entry 
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Macro-Instruction Argument Lists and the &SYSLIST Variable Symbol 

It is frequently useful to be able to call a macro with an indefinite number of arguments that 
we intend to process "identically" or "equivalently", so that no particular benefit is gained · 
from naming and referring to each one individually. 

The system variable symbol &SYSLIST can be used to refer to the positional elements of the 
argument list: &SYSLIST(k) refers to the k-th positional argument, whether or not a corre­
sponding positional parameter was declared on the macro's prototype statement 
&SYSLIST(O) refers to the entry in the name field of the macro call (which of course need not 
be present). The total number of positional arguments in the macro instruction's operand list 
can be determined using a Number attribute reference: N'&SYSLIST is the number of posi­
tional arguments. 

No other reference to &SYS LIST can be made without subscripts. Thus, it is not possible to 
refer to all the arguments (or to all the positional parameters) as a group using a single 
unsubscripted reference to &SYSLIST. 

To illustrate the use of &SYS LIST references, suppose we have defined a macro named 
MACNP; whether or not any positional parameters are declared doesn't matter for this 
example. If we write the following macro call: 

MACNP A,(A),(C,(D,E,F)),(YES,NO) 

then the number attributes of the &SYS LIST items, and their values, are the following: 

N'&SYSLIST = 4 
N'&SYSLIST(l) = 1 
N'&SYSLIST(2) = I 
N'&SYSLIST(3) = 2 
N'&SYSLIST(3,2) = 3 
N'&SYSLIST(3,2,1) = 1 
N'&SYSLIST(4) = 2 

&SYSLIST(l) = A 
&SYSLIST(2) (A) 
&SYSLIST(3) = (C,(D,E,F)) 
&SYSLIST(3,2) = (D,E,F) 
&SYSLIST(3,2,1) = D 
&SYSLIST ( 4) = (YES,NO) 

MACNP has 4 arguments 
(A is not a list) 
is a list with 1 item 
is a list with 2 items 
is a list with 3 Hems 
(D is not a list) 
is a list with 2 items 

Observe that references to sublists are made in the same way as for named positional 
parameters. One additional (leftmost) subscript is needed for &SYSLIST references, because 
that parameter is being referenced by number rather than by name. 
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Macro Argument Lists and Sublists 

High Level Assembler can treat macro argument lists in two ways: 

Old assemblers pass these two types of argument differently: 

MYMAC (A,B,C,D) Macro call with one (list) argument 

&Char SetC '(A,B,C,D)' Create argument for MYMAC call 
MYMAC &Char Macro call with one (string) argument 

- Second macro argument was treated simply as a string, not as a list 

COMPAT(SYSLIST) option enforces "old rules" 

- Inner-macro arguments treated as having no list structure 

- NOCOHPAT(SYSLIST) option allows both cases to be handled the same way 
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Macro Argument Lists and Sublists 

There can be differences in the handling of lists of arguments passed to macros, depending 
on setting of the COMPAT(SYSLIST) option. While this is rarely a concern, there are situ­
ations where your macros can be written much more simply if you can utilize the High Level 
Assembler's enhanced ability to handle lists. 

There are two types of lists passed as arguments to macros: 

1. a positional argument list, and 
2. a parenthesized list of terms passed as a single argument 

For example, a positional list of four arguments (A, B, C, and D) appears in the call 

MYMAC A,B,C,D Macro call with four arguments 

and these may be treated as a list through references in the macro to the &SYS LIST system 
variable symbol. A list of items passed as a single argument appears in the call 

MY MAC (A,B,C,D) Macro call with one (list) argument 

where the argument (A,B,C,D) is a list of four items. We will discuss only the second of 
these forms, where an argument is itself a list 

Inner-Macro Sublists 

There are several ways to create and then pass arguments from an outer macro to an inner: 

1. by direct substitution of an enclosing-macro's entire argument: 

MACRO 
&L OUTER &A,&B,&C Three positional parameters 

&L INNER &B Pass second parameter as an argument to INNER 

MEND 

OUTER R,(S,T,U),V Passes (S,T,U) to INNER 
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2. 

In this case, the second argument of OUTER is passed unchanged as the argument of 
INNER. 

by substitution of parts: 

MACRO 
&L OUTER &A,&B,&C 

&L INNER &B(l) Pass first element of &B 

MEND 

OUTER R,(S,T,U),V Passes s to INNER 
OUTER R,S,T Passes s to INNER 

In this case, the first' list element of the second argument of OUTER is passed unchanged 
as the argument of INNER. If the argument of the call to OUTER corresponding to the 
parameter &B is not a list, then the entire argument will be passed. 

3. by construction as a string, in part or as a whole: 

MACRO 
&L OUTER &A,&B,&C 

&T SETC I ( '· '&B' (2,K'&B-2). ')I 

&L INNER &T Pass parenthesized string of &B 

MEND 

OUTER R,(S,T,U),V Passes (S,T,U) to INNER 

In this case, a string variable & T is constructed, and its contents is passed as the argu­
ment to INNER. 

The method used can effect the recognition and treatment of arguments by inner macros. It 
might appear that the third example should give the same results as the first, because they 
both pass the argument (S, T ,U) to INNER. However, they can be treated quite differently, 
depending on High Level Assembler's option settings. For example: suppose you want to 
write a macro with positional operands that will pass some number of those operands to an 
inner macro. This can be done by constructing a list for the inner macro. Let an outer 
macro TOPMAC be called with a variable number of of arguments: 

TOPMAC X,Y,Z, •.. 

and you wish to use some or all of the items in this varying-length list to create another 
varying-length list to be passed to an inner macro BOTMAC. 

To construct the varying-length argument list for the inner macro, build a string with the 
arguments: 

&ARG SetC '&ARG'.'&Syslist(&N)' Get &N-th argument 

for as many arguments as necessary (so long as &ARG will not exceed 253 characters). 

Then, add parentheses: 

&ARGLIST SetC '(&ARG.)' 

and call the inner macro: 

BOTMAC &ARGUST 

The inner macro will then be able to scan the list using notations like &SYSLIST(&N,1). Note 
that calling the inner macro with 

86 Assembler Language as a Higher Level Language, SHARE Summer 2002 



BOTMAC (&ARG) 

only passes the complete (unstructured, parenthesized) string, which will not be recogni-
zable as a list by the inner macro. · 

Macro Lists and Sublists: COMPAT Option 

Powerful scanning techniques always usable tor outer-level macros 

- N'&SYSLIST(n) to refer ton-th positional argument 

- N' &SYSLIST (n,m) to refer to m-th element of n-th positional argument 

- K • &SYSLIST(n,m) to determine its character count 

- T •&SYS LIST (n,m) to determine its type attribute 

- Result: Many language facilities available to scan a list 

Awkward scanning techniques were required for inner-level macros 

- Parse the argument one character at a time 

- Figure out where symbols start and end, where delimiters intrude 

- Then decide what to do with the pieces (no attributes available) 

- Result: Lots of complicated logic, hard to debug and maintain 

NOCOMPAT(SYSLIST) relaxes restrictions on inner macros 
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Control of Macro Argument Sublists 

In older assemblers, all inner-macro arguments passed as strings were treated as having no 
structure; that is, the operand scanner for the inner macro call generally recognized no list 
structure, even if it is present (as in example 3 above). Thus, for example, a reference inside 
the INNER macro to (say) the length attribute of the argument would be diagnosed as invalid, 
because the argument would not be recognized either as a symbol or as a list. The most 
serious defect of this treatment is that the powerful facilities in the conditional assembly and 
macro language such as number attribute references (N') and subscripted &SYSLIST nota­
tion cannot be used be used to "parse" the operand to extract individual list elements. 

For example, if (S, T ,U) is the argument to INNER, you might have wanted to write state­
ments like 

Macro 
&Label INNER &Arg 
&Nltems SetA N'&Arg Determine number of list elements in &ARG 

* Do something to each of the list elements in turn 
&Temp SetC '&Arg(&ArgNum)' Extract a list item into &Temp 

If you specify the COMPAT(SYSLIST) option, the argument string providing the value of &Arg 
must be scanned one character at a time to extract the needed pieces of information. Thus, 
macros called as inner macros may have to be much more complex than outer-level 
macros, because they analyze arguments one character at a time; instead, substituted argu­
ments to inner macros will be treated as having no structure. 

However, if you specify NOCOMPAT(SYSLIST), all macro arguments will be treated the same 
way, independent of the level of macro invocation; no distinction is made between outermost 
and inner macro calls. This means that the full power of the &SYS LIST notation, sublist 
notations, and number attributes are available. 
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Global Variable Symbols 

Macro calls have one serious defect: 

- Can't assign (i.e. return) values to arguments 

- unhke most high level languages 

- "one-way" communication with the interior of a macro: 
arguments in, statements out 

- no "functions" (i.e. macros with a value) 

Values to be shared among macros (and/or with open code) must use 
global variable symbols 

- Scope: available to all declarers 

- Can use the same name as a local variable in a scope that does not declare 
the name as global 

One macro can create (multiple) values for others to use 
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Global Variable Symbols 

Thus far, our macro examples have been self-contained: all their communication with the 
"outside world" has been through values received in their their argument lists and the state­
ments they generated. 

In the System/360/370/390 Assembler Language, macro calls have one serious omission: 
they can't assign (i.e. return) values to arguments, unlike most high level languages. That is, 
all macro arguments are "input only". Thus, communication with the interior of a macro by 
way of the argument list appears to be "one-way": arguments go in, but only statements 
come out. 

Furthermore, there is no provision for defining macros which act as "functions" (that is, 
macros which return a value associated with the macro name itself). This capability is avail­
able with external functions, but their access to global variables is severely limited (they 
must be passed as arguments, and their values cannot be updated). 

Thus, values to be shared among macros (and/or with open code) must use a different 
mechanism, that of global variable symbols. The scope rule for global variable symbols is 
simple: they are shared by and are available to all declarers. (You may of course use the 
same name as a local variable in a scope that does not declare the name as global.) 

With an appropriate choice of named global variable symbols, one macro can create single 
or multiple values for others to use. 

The "dictionary" or "pool" of global symbols has similar behavior to certain kinds of external 
variables in high level languages, such as Fortran COMMON: all declarers of variables in 
COMMON may refer to them. However, the assembler imposes no conformance rules of 
ordering or size on declared global variable symbols; you simply declare the ones you need, 
and the assembler will figure out where to put them so they can be shared with other 
declarers. (Unlike most high-level languages, sharing of global variable symbols is purely 
by name!) 
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Variable Symbol Scope Rules: Summary 

Global Variable Symbols 

- Available to all declarers of those variables on GBL.x statements (macros 
and open code) 

- Must be declared explicitly 

- Arithmetic, boolean, and character types; may be subscripted 

- Values persist through an entire assembly 

- Values kept in a single, shared, common dictionary 

- Values are shared by name 

- All declarations must be consistent (type, scalar vs. dimensioned) 
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Variable Symbol Scope Rules: Summary •.. 

Local Variable Symbols 

- Explicitly and implicitly declared local variables 

- Symbolic parameters 

- Values are "read-only" 

- Local coJijes of system variable symbols whose value is constant throughout 
a macro expansion 

- Values kept in a local, transient dictionary 

Created on macro entry, discarded on macro exit 

Recursion still implies a separate dictionary for each entry 

- Open code has its own local dictionary 
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Variable Symbol Scope Rules: Summary 

At this point, we will review and summarize the scope rules for variable symbols. 

Global variable symbols are available to all macros and open code that have declared 
the symbols as GBLx. The three types denoted by "x" are as for local variable symbols: 
Arithmetic, Boolean, and Character. 

The values of global variable symbols persist through an entire assembly, and their 
values are kept in a single, common dictionary. They may be referenced and set by any 
declarer. 

Local variable symbols include explicitly and implicitly declared variables, symbolic 
parameters, and local copies of system variable symbols whose value is constant 
throughout a macro expansion. They are not shared with other macros, or with open 
code (and vice versa). Open code has its own local dictionary, which is active throughout 
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an assembly. Local variable symbols may be referenced or set only in their local 
context. 

Variable symbol values for macros are kept in a local, transient dictionary that is created 
on macro entry, and discarded on macro exit. Note that recursion implies a separate 
dictionary for each entry to the macro; every invocation has its own local, non-shared 
dictionary. 

• System variable symbols and parameters are treated as "read-only", meaning that their 
values are constant throughout a macro invocation, and cannot be changed. 

The following figure illustrates the use of local and global variable symbol dictionaries for 
local and global symbols, and for macros. 

.. Local Dictionaries ... ... One per macro invocation ...... 

LCLs, system LCLs, parms, LCLs, parms, LCLs, parms, 
var'ble syms sys var syms sys var syms sys var syms 

t ! t t 
Open Code • MACl MAC2 • MAC3 • r 1 r 1 ! ! I I . . . I I Macro I I Macro I Macro 

GBLA &A,&B MACl MAC2 ... MAC3 

L:J GBLC &C,&D I I GBLA &A I GBLC &C I GBLB &X 

I I I I I 
! ! ! ! 

GBLA &A GBLB &X GBLC &C 
GBLA &B GBLC &D 

Global Dictionary ... 
Figure 26. Example of Variable Symbol Dictionaries 

The open code dictionary contains system variable symbols applicable to open code, and 
any local variable symbols declared in open code. Each of the macro dictionaries contains 
local variable symbols, parameter values, and the values of system variable symbols local to 
the macro, such as &SYSNDX. Finally, the global variable symbol dictionary contains all 
global symbols declared in open code and in any macro. Only declarers of a global variable 
symbol may refer to it; for example, only open code and macro MAC2 may refer to the GLBL 
symbol &X. 
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Macro Debugging Techniques 

Complex macros can be hard to debug 

- Written in a difficult, unstructured language 

Some useful debugging facilities are available: 
1. MNOTE statement 

- Can be inserted liberally to trace control flows and display values 

2. MHELP statement 
- Built-in assembler trace and display facility 
- Many levels of control; can be quite verbose! 

3. ACTR statement 
- Limits number of conditional branches within a macro 
- Very useful if you suspect excess looping 

4. UBMAC Option 
- Library macros appear to be defined in-line 

5. PRINT MCALL statement, PCONTROL(MCALL) option 
- Displays inner-macro calls 
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Macro Debugging Techniques 

Concepts-40 

No discussion of macros would be complete without some hints about debugging them. The 
macro language is complex and not well structured, and the "action" inside a macro is gen­
erally hidden because each statement is not "displayed" as it is interpreted by the condi­
tional assembly logic of the assembler. 

We will briefty describe four statements and two options useful for macro debugging: 

the MNOTE statement 

the MHELP statement 

the ACTR statement 

• the LIBMAC option 

the PRINT MCALL statement and the PCONTROL(MCALL) option. 
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Macro Debugging: The MNOTE Statement 

MNOTE allows the most detailed controls over debugging output 
(see also slide Conditional-32) 

• You specify exactly what to display, and where 

MNote *,'At Skipl9: &&VG = &VG., &&TEXT = "&TEXT'" 

You can control which ones are active (with global variable symbols) 

Gb 1B &DEBUG ( 28) 

AlF (NOT &DE8UG(7)) .Skipl9 
MNote *,'At Skip19: &&VG = &VG., &&TEXT = ''&TEXT''' 

.Skipl9 ANop 

You can use &SYSPARM values to set debug switches 

You can "disable" MNOTEs with conditional-assembly comments 

MNote *,'At Skipl9: &&VG = &VG .• &&TEXT = "&TEXT' .. 
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Macro Debugging: The MNOTE Statement 

We have already touched on the use of MNOTE statements in "Displaying Variable Symbol 
Values: The MNOTE Statement" on page 42. Their main benefits for debugging macros are: 

• MNOTE statements may be placed at exactly those points where the programmer knows 
that internal information may be most useful, and exactly the needed items can be dis­
played. 

• The MNOTE message text can provide specific indications of the internal state of the 
macro at that point, and why it is being provided. 

Though it requires additional programming effort to insert MNOTE statements in a macro, 
they can be left "in place", and enabled or disabled at will. Typical controls are as simple 
as "commenting out" the statement (with a ".*" conditional-assembly comment) to adding 
global debugging switches to control which statements will be executed, as illustrated 
here: 

GblB &DEBUG(26) 

AIF (NOT &DEBUG(7)).Skip19 
MNote *,'At Skip19: &&VG= &VG., &&TEXT 

.Skip19 ANop 
''&TEXT' 11 

If the debug switch &DEBUG(?) is 1, then the MNOTE statement will produce the specified 
output. 
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Macro Debugging: The MHELP Statement 

MHELP controls display of conditional-assembly flow tracing and 
variable "dumping" 

- Use with care: output is potentially large 

MHELP operand value is sum of 8 bit values: 

1 Trace macro calls (name, depth, &SYSNDX value) 
2 Trace macro branches (AGO, Alf) 
4 AIF dump (dump scalar SET symbols before AIFs) 
B Macro exit dump (dump scalar SET symbols on exit) 
16 Macro entry dump (dump parameter values on entry) 
32 Global suppression (suppress GBL symbols in AIF, exit dumps) 
64 Hex dump (SETC and parameters dumped in hex and EBCDIC) 
128 MHELP suppression (turn off all active MHELP options) 

- Best to set operand with a GBLA symbol (can save/restore its value), or 
from &SYSPARM value 

Can also limit total number of macro calls (see Language Reference) 
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Macro Debugging: The MHELP Statement 

The MHELP statement is more general but less specific in its actions than the MNOTE state­
ment. Once an MHELP option is enabled, it stays active until it is reset. The MHELP operand 
specifies which actions should be activated; the value of the operand is the sum of the "bit 
values" for each action: 

1 

2 

4 

Trace macro calls 

MHELP 1 produces a single line of information, giving the name of the called 
macro, its nesting level, and its &SYSNDX number. This information can be used 
to trace the flow of control among a complex set of macros, because the 
&SYSNDX value indicates the exact sequence of calls. 

Trace macro branches 

The AIF and AGO branch trace provides a single line of information giving the 
name of the macro being traced, and the statement numbers of the model state­
ments from which and to which the branch occurs. (Unfortunately, the target 
sequence symbol name is not provided, nor is branch tracing active for library 
macros. This latter restriction can be overcome by using the LIBMAC option: if 
you specify LIBMAC, tracing is active for library macros. 

AIF dump 

When MHELP 4 is active, all the scalar (undimensioned) SET symbols in the 
macro dictionary (i.e., explicitly or implicitly declared in the macro) are displayed 
before each AIF statement is interpreted. 

8 Macro exit dump 

MHELP 8 has the same effect as the preceding (MHELP 4), but the values are 
displayed at the time a macro expansion is terminated by either an MEXIT or 
MEND statement. 

16 Macro entry dump 

MHELP 16 displays the values of the symbolic parameters passed to a macro at 
the time it is invoked. This information can be very helpful when debugging 
macros that create or pass complex arguments to inner macros. 
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32 Global suppression 

Sometimes you will use the MHELP 4 or MHELP 8 options to display variable 
symbols in a macro that has also declared a large number of scalar global 
symbols, and you are only interested in the local variable symbols. Setting 
MHELP 32 suppresses the display of the global variable symbols. 

64 Hex dump 

When used in conjunction with any of MHELP's "display" options (MHELP 4, 8, 
and 16), causes the value of displayed SETC symbols to be produced in both 
character (EBCDIC) and hexadecimal formats. If you are using character string 
data that contains non-printing characters, this option can help with under­
standing the values of those symbols. 

128 MHELP suppression 

Setting MHELP 128 will suppress all currently active MHELP options. (MHELP 0 
will do the same.) 

These values are additive: you may specify any combination. Thus, 

MHELP 1+2 Trace macro calls and AIFs 

will request both macro call tracing and AIF branch tracing. 

As you might infer from the values just described, these MHELP "switches" fit in a single 
byte. The actions of the MHELP facility are controlled by a fullword in the assembler, of 
which these values are the rightmost byte. The remaining three high-order bytes can be 
used to control the maximum number of macro calls allowed in an assembly; the details are 
described in the IBM High Level Assembler for MVS & VM & VSE Language Reference 
manual. 

The output of the MHELP statement can sometimes be quite voluminous, especially if mul­
tiple traces and dumps are active. It is particularly useful in situations where the macro(s) 
you are debugging were ones you didn't write, and in which you cannot conveniently insert 
MNOTE statements. Also, if macro calls are nested deeply, the MHELP displays can help 
with understanding the actions taken by each inner macro. 

To provide some level of dynamic control over the MHELP options in effect, it is useful to set 
a global arithmetic variable outside the macros to be traced, and then refer to that value 
inside any macro where the options might be modified; the MHELP operand can then be 
saved in a local arithmetic value, and restored to its "global" value on exit. Another useful 
technique is to derive the MHELP operand from the &SYSPARM string supplied to the 
assembler at invocation time; this lets you debug macros without making any changes to the 
program's source statements. 
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Macro Debugging: The ACTR Statement 

ACTR specifies the maximum number of conditional-assembly 
branches in a macro or open code 

ACTR zaa Limit of ZBB successful branches 

- Scope is local (to open code, and to each macro) 

- Can set different values for each: default is 4096 

- Count decremented by 1 for each successful branch 

- When count goes negative, macro's invocation is terminated 

Executing erroneous conditional assembly statements halves the 
ACTR value! 

Following statement has syntax errors 
SETJ &J+? If executed, would cause ACTR = ACTR I Z 
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Macro Debugging: The ACTR Statement 

The ACTR statement can be used to limit the number of conditional assembly branches (AIF 
and AGO) executed within a macro invocation (or in open code)_ It is written 

ACTR arithmetic_expression 

where the value of the "arithmetic_ expression" will be used to set an upper limit on the 
number of branches executed by the assembler. In the absence of an ACTR statement, the 
default ACTR value is 4096, which is adequate for most macros. 

ACTR is most useful in two situations: 

1_ If you suspect a macro may be looping or branching excessively, you can set a lower 
ACTR value to limit the number of branches. 

2_ If a very large or complex macro must make a large number of branches, you can set an 
ACTR value high enough that all normal expansions can be handled safely. 

If the macro definition contains errors detected during encoding, the ACTR value may be 
divided by 2 each time such a statement is interpreted. This helps avoid wasting resources 
on what will undoubtedly be a failed assembly. 

The ACTR value is local to each scope. If exceeded in a macro, the expansion is terminated; 
if exceeded in open code, the rest of the source program is "flushed" as comments, and is 
not processed. Its value can be changed within its "owning" scope by executing other ACTR 
statements. 
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Macro Debugging: The LIBMAC Option 

The LIBMAC option causes library macros to be defined "in-line" 

- Specify as invocation option, or on a *PROCESS statement 

*PROCESS LIBMAC 

Errors in library macros harder to find: 

- HLASM can only indicate "There's an error in macro XYZ" 

- Specific location (and cause) are hard to determine 

LIBMAC option causes library macros to be treated as "source" 

- Can use ACONTROL [NO]LIBMAC statements to limit range 

Errors can be indicated for specific macro statements 

Errors can be found without 

- modifying any source 

- copying macros into the program 
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Macro Debugging: The LIBMAC Option 

The LIBMAC assembler option can be very helpful in locating errors in macros whose defi­
nitions have been placed in a macro library. Because library macros are edited as they are 
read, they do not have statement numbers associated with each statement of the definition, 
as with "source-stream" macros. If the assembler detects errors during encoding or expan­
sion of a library macro, it provides less precise information about the problem's causes. 

To help overcome this limitation, the LIBMAC option will cause the assembler to treat library 
macro definitions as though they were found in the primary source stream. When a macro 
call causes a macro definition to be brought from the library, the assembler treats all of its 
statements in the same way as source macros are treated; when an error condition is 
detected, the assembler is then able (in most cases) to supply the number of the relevant 
statement. This makes locating and correcting errors much easier. 

If the program contains calls on many macros, but only one or two need this form of anal­
ysis, you can "bracket" the call with ACONTROL statements to limit the range of statements 
over which the LIBMAC option will be in effect: 

ACONTROL LIBMAC 
OddMacro 
ACONTROL NOLIBMAC 
GoodMac 

Turn LIBMAC option on 
The macro to be analyzed 
Turn LIBMAC option off 
Trusted macro, analysis not needed 

This facility would not be needed, of course, if macros were perfectly debugged before they 
were placed into a macro library. Unfortunately, creators and testers of macro definitions 
cannot always anticipate all possible uses, so errors sometimes occur long after the macro 
was written and "certified". 
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Macro Debugging: The PRINT MCALL Statement 

PRINT [NO]MCALL controls display of inner macro calls 

PRINT MCALL 
PRINT NOMCALL 

Turns ON inner-macro call display 
Turns OFF inner-macro call display 

- Normally, you see only the outermost call and generated code from it and all 
nested calls 

- Difficult to tell which macro may have received invalid arguments 

- With MCALL, HLASM displays each macro call before processing it 

- Some limitations on length of displayed information 

PCONTROL([NO]MCALL) option 

- Forces PRINT MCALL on [or off] for the assembly 

- Specifiable at invocation time, or on a "PROCESS statement: 

"PROCESS PCONTRDL(MCALL) 
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Macro Debugging: The PRINT MCALL Statement 

The PRINT MCALL statement and the PCONTROL(MCALL) assembler option can be very 
helpful in locating errors in nested macro calls. Under normal circumstances, the assembler 
displays only the outermost macro call, and (if PRINT GEN is in effect) the code generated 
from that and all nested calls. 

If a complex nest of macro calls generates incorrect code, it can sometimes be difficult to 
isolate the problem to a specific macro, or to the interfaces among the macros. The PRINT 
MCALL statement causes High Level Assembler to display inner macro calls before they are 
processed; this can help in ensuring that the arguments passed to each macro in a nest 
have the expected values. For example, suppose you have defined two macros, OUTER and 
INNER: 

&L 
&T 
&L.X 

&L 

Macro 
OUTER 
SetC 
INNER 
MEnd 

Macro 
INNER 
DC 
MEnd 

&P,&Q,&R 
'&P. 0 
&Q,ZZ,&T 

&F,&G,&H 
C1 F=&F., G=&G., H=&H 1 

Then, if you call the OUTER macro with the statement 

K OUTER A,B,C 

the displayed result in the listing will show only the call to OUTER and (if PRINT GEN is in 
effect) the generated DC statement. However, if PRINT MCALL is in effect, the displayed 
result will also show the call to INNER: 

K OUTER A,B,C 
+KX INNER B,ZZ,A_C 
+ DC C'F=B, G=ZZ, H=A C1 

End 
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If macro arguments are subjected to various modifications during their passage to inner 
macros (as in this example}, debugging can be made much simpler if the actual arguments 
of the inner macro calls are visible. 

The PRINT MCALL statement is subject to a "global tt override through the use of the 
PCONTROL option, which may specify that PRINT MCALL should be active or not for the 
entire assembly, no matter what PRINT MCALL or PRINT NOMCALL statements may be 
present in the source program. 

IBM Macro Libraries 

Every IBM operating system provides several macro libraries that can provide helpful exam­
ples of macro coding techniques.7 Some macros simply set up parameters lists for calls to a 
system service; these tend to be less instructive than macros that generate sequences of 
instructions for other uses. You will probably want to defer study of very large macros until 
you are comfortable with reading and writing macro definitions. 

Please bear in mind that many IBM macros were written in the early days of System/360; the 
assemblers of those times were far less powerful than today's High Level Assembler, so the 
coding techniques may appear unnecessarily complicated by today's standards. 

7 Not that the coding techniques are necessarily the best; as mentioned earlier, the conditional assembly language 
is awkward and unfamiliar to many programmers, and was especially so in the early days when many macros 
were written. 
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Part 3: Macro Techniques 

Part 3: Macro Techniques 
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Macro instructions (or macros for short} provide the Assembler Language programmer with 
a wonderfully flexible set of possibilities. Macros share many of the properties of ordinary 
subroutines (you can think of a macro as an assembly-time subroutine!) that can be called 
from many different applications: once created, they may be used to simplify many other 
tasks. Their capabilities range from the very simple: 

• perform "housekeeping" such as saving registers, making subroutine calls, and restoring 
the registers and returning (the operating system supplies the SAVE, CALL, and RETURN 
macros for these functions} 

• define symbols for registers and fixed storage areas, and declare data structures to 
define or map certain system control blocks used by programs to communicate with the 
operating system (macros such as REGEQU, DCB, and DCBD} 

generate short code sequences to convert among data types, justify numeric fields, 
search tables, validate data values, and other helpful tasks. 

to the very complex: 

• macros have been created to define "artificial languages" in which entire applications 
are written. Examples include the SNOBOL48 language; specialized compiler-writing oper­
ations9; and banking, marketing, and teleprocessing applications. 

Our purpose here is to show that you can write macros to simplify almost any part of the 
programming process, from the simplest and smallest to the very complex and powerful. 

8 See The Macro Implementation of SNOBOL4, by Ralph E. Griswold (Freeman & Co., San Francisco, 1972). 
Chapter 10 describes the macro techniques used. 

9 The IBM Fortran G-Level compiler was written in an assembler macro language that allowed it to be quickly and 
easily ported to other systems. 
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Macros as a Higher Level Language 

Can be created to perform very simple to very complex tasks 

- Housekeeping (register saving, calls, define symbols, map structures) 
- Define your own application-specific language increments and features 

Macros can provide much of the "goodness" of HLLs 

- Abstract data types, private data types 
- Information hiding, encapsulation 
- Avoiding side-effects 
- Polymorphism 
- Enhanced portability 

Macro sets can be built incrementally to suit application needs 

- Can develop "application-specific languages" and increments 
- Code re-use promotes faster learning, fewer errors 

Avoid struggling with the latest "universal language" fad 

- Add new capabilities to existing applications without converting 
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Higher-level languages are often deemed useful because they provide desirable "advanced" 
features. We will see that macros can also deliver most of these features: 

Abstract Data Types - are user-specified types for data objects, and sets of procedures 
used to access and manipulate them. This "encapsulation" of data items and logic is 
one of the key benefits claimed for object-oriented programming; it is a natural conse­
quence of macro programming. 

Information Hiding - is an established technique for hiding the details of an implementa­
tion from the user. The concept of separating application logic from data representations 
is an old and well established programming principle. This also is a natural and normal 
benefit of macro programming. 

Private Types - are user-defined data types for which the implementing procedures are 
hidden. 

Avoiding Side-Effects - is achieved by having functions only return a value without 
altering either input values or setting of shared variables not declared in the invocation of 
an implementing procedure. 

• Polymorphism - allows functions to accept arguments of different types, and enhances 
the possibility of reusing components in many contexts. 

We will see that macros provide simple ways to implement any or all of these features. They 
provide some additional advantages: 

• Macros may be written to perform as much or as little as is needed for a particular task. 

Macros can be built incrementally, so that simple functions can be used by more 
complex functions, as they are written. 

• New "language" implemented by macros can be adapted to the needs of the application, 
giving an application-specific language that may well be better suited to its needs than a 
general-purpose "higher level" language designed to (nearly) fit (nearly) everything. 
When completed, a macro can be used by everyone, giving immediate benefits of code 
re-use. 

Macro-based implementations can often be much more efficient than compiled code. A 
compiler must be prepared to accept quite arbitrary combinations of statements, and 
then attempt to optimize them; a macro-based language can concentrate on just those 
parts of the application for which optimization efforts are justified. 
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A macro-based language is your language! You need not adapt your view of your appli­
cation to fit the peculiarities and rigidities of a particular language or compiler (or of a 
language designer's pet theories). You can select whatever language features are 
appropriate and useful for your application. 

Macros can also provide an excellent introduction to language and compiler concepts, in 
a controllable way. You can create and analyze generated code immediately, and can 
build any useful and interesting language fragment easily without having to worry about 
extensive side-effects. Macros also allow you to investigate trade-offs involved in 
compile-time vs. run-time issues such as a choice between generating in-line code or 
calls to a run-time library. 

Examples of Macro Techniques 

Sample-problem "case studies" illustrate some techniques 

1. Define EQUated names for registers 

2. Generate a sequence of byte values 

3. • MVC2" macro takes implied length from second operand 

4. Conditional-assembly conversions between decimal and hex 

5. Generate lists of named integer constants 

6. Create length-prefixed message text strings and free-form comments 

7. Recursion (indirect addressing, factorials, Fibonacci numbers) 

8. Basic and advanced bit-handling techniques 

9. Defining assembler and user-specified data types and operations 

10. "Front-ending" or •wrapping" a library macro 
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Macro Techniques Case Studies 

Tech·3 

We will now examine some sample macro "case studies" that illustrate various aspects of 
the macro language. 

We will discuss several sets of example macros that illustrate different aspects of macro 
coding, and which provide various types of useful functions. 

1. The example macros at "Case Study 1: Defining Equated Symbols for Registers" on 
page 103 generate a set of EQU statements to define symbols to be used for register 
references. They illustrate the use of a global variable symbol to set a ''one-time" switch, 
text parameterization, use of the &SYSLIST system variable symbol, and created variable 
symbols. (This case study is a generalization of the macro discussed at "Example 1: 
Define Equated Symbols for Registers" on page 67.) 

2. Two example macros at "Case Study 2: Generating a Sequence of Byte Values" on 
page 107 generate a sequence of byte values. They illustrate conditional assembly state­
ments, and some simple string-handling operations. (This case study is a generalization 
of the macro discussed at "Example 2: Generate a Sequence of Byte Values 
(BYTESEQ1)" on page 74.) 

3. The standard MVC instruction takes its implied length from the length attribute of the first 
(target) operand. A simple "MVC2" macro at "Case Study 3: "MVC2" Macro Uses Source 
Operand Length" on page 110 takes its implied length from the length attribute of its 
second (source) operand. 
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4. The "utility" macros at "Case Study 4: Conversion Between Hex and Decimal" on 
page 112 might be used by other macros to perform conversions between decimal and 
hexadecimal representations. They illustrate construction of self-defining terms, global 
variables for communicating among macros, and substring operations. 

5. The example macro at "Case Study 5: Generate a List of Named Integer Constants" on 
page 117 generates a list of constants from a varying-length list of arguments, using 
&SYSLIST to refer to each argument in turn, and constructs a name for each constant 
using its value. 

6. "Case Study 6: Using the AREAD Statement" on page 121 illustrates two uses of the 
AREAD statement: 

a. First, the three example macros at "Case Study 6a: Creating Length-Prefixed Message 
Texts" on page 122 show how to generate a length-prefixed "message" string. The 
first and second examples illustrate some familiar techniques, while the third uses the 
AREAD statement and a full scan of a "human-format" message to generate an 
insertion-text character string for the final DC statement containing the message. 

b. Second, "Case Study 6b: Block Comments" on page 12S show how to use the AREAD 
statement to help you write free-form or "block" comments in your program. 

7. Three example macros at "Case Study 7: Macro Recursion" on page 130 illustrate recur­
sive macro calls. The first implements "indirect addressing", and the remaining two illus­
trate the use of global variable symbols and recursive macro calls to generate factorials 
and Fibonacci numbers. 

S. Two styles of macros illustrate techniques that can be used to define a private "bit" data 
type, with bit addressing by name and type checking within the bit handling macros 
themselves. After describing some basic bit-handling techniques, simple and optimized 
macros are created: 

a. "Case Study Sa: Bit-Handling Macros -- Simple Forms" on page 140 describes basic 
forms of declaring and using a bit data type. 

b. "Case Study Sb: Bit-Handling Macros - Advanced Forms" on page 150 shows how to 
improve the basic forms for safety and efficiency, generating optimized code. 

9. A set of macros illustrated at "Case Study 9: Defining and Using Data Types" on 
page 172 illustrate some techniques that can be used to implement type-sensitive oper­
ations ("polymorphism"), and user-defined data types and user-defined operations on 
them, with type checking and information hiding. 

a. "Case Study 9a: Type Sensitivity - Simple Polymorphism" on page 174 shows how 
the assembler's type attributes can be used to tailor generated code sequences to the 
types of operands. 

b. "Case Study 9b: Type Checking" on page 1SO shows how user-assigned type attri­
butes can be used to perform type checking "conformance" between instructions, 
operands, and registers. 

c. "Case Study 9c: Encapsulated Abstract Data Types" on page 192 shows how user­
defined data types and operations can "encapsulate" the details of data definitions 
and low-level operations on the data objects. 

10. Sometimes it is useful to be able to capture and analyze the arguments passed to 
another macro, while still using the original macro definition for its intended purposes. 
This is called "front-ending" or "wrapping" a macro, and "Case Study 10: "Front-Ending" 
a Macro" on page 204 will illustrate a simple way to do this. 
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Case Study 1: EQUated Symbols for Registers 

Intent: Write a GREGS macro to define "symbol equates" for GPRs 

Basic form: simply generate the 16 EOU statements 

Variation 1: ensure that "symbol equates" can be generated only once 

Variation 2: generate equates for up to four register types 

- ~eneral Purpose, f.loating Point, £ontrol, ~ccess 
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Case Study 1: Defining Equated Symbols for Registers 

The technique illustrated in "Example 1: Define Equated Symbols for Registers" on page 67 
is quite acceptable unless we need at some point to combine multiple code segments, each 
of which may possible contain a call to GREGS (which was needed for its own modular 
development). How can we avoid generating multiple copies of the EQU statements, with 
their accompanying diagnostics for multiply-defined symbols? 

Define General Register Equates (Simply) 

Define "symbol equates" for GPRs with this macro (see slide 
Concepts-19) 

MACRO 
&REGS 

GR8 Equ 8 
GRl Equ l 

6R15 Equ 15 
MEND 

etc. 

Problem: what if two code segments are combined? 

- If each calls GREGS, could have duplicate definitions 
- How can we preserve modularity, and define symbols only once? 

Answer: use a global variable symbol &GRegs 

- Value is available across all macro calls 
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I Define General Register Equates (Safely) 

Initialize &GRegs to "false"; set to "true" when EQUs are generated 

MAC RB 

.x 
liR&N 
&II 

&liRegs 

.Dune 

liREliS 
lilLB &&Regs 
Alf (&liRegs).Dene 
LCLA &II 

s;: 4 :.1 I 
Alf (&II LE 15).X 
Seti 1 

&liRegs initially 8 (false) 
Check if &&Regs already true 
&N initially 8 

Increment &N by 1 
Test fer completion 
&&Regs true (definitiDJIS have been done) 

MEX IT 
MllOTE 8,'GREGS previously called, this call ign1red.' 
MEND 

If &GRegs is true, no statements are generated 

liREliS 
liREliS This, tall, Is, Ignored 
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The solution is simple: use a global variable symbol whose value will indicate that the 
GREGS macro has been called already. This is illustrated in Figure 27. 

MACRO 
GREGS 
GBLB &GRegs &GRegs initially 0 (false) 
AIF (&GRegs).Done Check if &GRegs already true 
LCLA &N &N initially 0 

.x ANOP 
GR&N Equ &N 
&N SETA &N+l Increment &N by 1 

AIF (&N LE 15).X Test for completion 
&GRegs SetB (1) Indicate definitions have been done 

MEX IT 
.Done MNOTE 0, 1 GREGS previously called, this call ignored. 1 

MEND 

AAA GREGS 
GREGS What?,Again,Eh? 

Figure 27. Macro to Define General Purpose Registers Once Only 
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Defining Register Equates Safely: Pseudo-Code 

Allow declaration of multiple register types on one call: 
Examp 1 e: REGS type1 [, type2). • • as in REGS G, F 

Pseudo-code: 

IF (number of arguments is zero) EXIT 
FoR each argument: 

Verify valid register type (A, C, F, or 6): 
IF invalid, ERROR EXIT with message 

!! (that type already done) 6ive message and ITERATE 
6enerate equates 
Set appropriate 'Type_Done' flag and ITERATE 

'Type_Done' flags are global boolean variable symbols 

- Use created variable symbols &(&T .Regs_Done) 

If &(&T.Regs_Done) is true, no statements are generated 

REGS 6,F,A,6 6 registers are not defined again 
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Define All Register Equates (Safely) 

MACRO 
REGS 
Alf 

&J SETA 
.GETARG ANOP 
&T SETC 
&• SETA 

AIF 
GBLB 
AIF 

&H SETA 

W&SYSl!ST EO 9).EXIT 
I InITIAllZE ARGUME•T COUtlTER 

(UPPER '&SYSLIST(&J)•) PICK UP AH ARGUME•T 
('ACfG' InDEX '&T') CHECK TYPE 
(&H EO &).BAD ERROR If HOT A SUPPORTED TYPE 
&(&T.REGS DOHE) DECLARE GLOBAL VARIABLE SYMBOL 

(&(&T.REGS-DO•E)).DOtlE TEST IF TRUE ALREADY 
a -

.GEtl AUOP GENERA1E EOU STATEMHHS 
&T .R&N EOLf &tf 
&11 SETA &thl 

Alf (&H LE 1sJ .cm 
&(&T.REGS DO•E) SETB (I) IHDICATE DEFHIITIO•S HAVE BEEH DO•E 
.NEXT Afiop 
&J SETA &J+l coutn TO lfEXT ARGUMEtlT 

Alf 
MEXIT 

.BAD MHOTE 
MEXIT 

.OOtlE Mt'IOTE 
AGO 

.EXIT MEffD 

(&J LE tl'&SYSLIST) »ETARG GET HEXT ARGUMEHT 

8.'&SYS~C.: Ul'IKtlOW!i TYPE ''&l.''.' 

9,'&SYSMAC.: PREVIOUSLY CMLED FOR TYPE &T • .' 
.HEXT 
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Tech-7 

Tech-8 

Encouraged by the success of this approach, we might wish to define a macro which will 
create equates for all the registers we might use in our program: General Purpose, Floating 
Point, Control, and Access. Rather than write three separate macros (one for each type of 
register), we can write a single REGS macro whose operands specify the type of registers 
desired (e.g., "G" for GPRs, "F" for FPRs, "C" for CRs, and "A" for ARs). Its syntax could be 
like this: 

REGS type1[,type2] ••• one or more register types 

as in 

REGS G,F 

A pseudo-code sketch of the techniques used is the following: 
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lE. (number of arguments is zero) EXIT 
FOR each argument: 

Verify valid register type (A, C, F, or G): 
lE. invalid, ERROR EXIT with message 

lE. (that type already done) Give message and ITERATE 
Generate equates 
Set appropriate 'Type_Done' flag and ITERATE 

The following example uses the technique illustrated in Figure 27 on page 104 above, but 
generalizes it by using a "created set symbol" to select the name of the proper global vari­
able symbol. 

&J 

MACRO 
REGS 
AIF 
Set A 

.GetArg ANOP 
&T SetC 
&N SetA 

AIF 
GBLB 
AIF 

&N Set A 
.Gen 
&T.R&N 
&N 

A Nop 
Equ 
Set A 
Alf 

&(&T.Regs_Oone) 
.Next ANOP 
&J Set A 

.Bad 

AIF 
MEX IT 
MNOTE 
MEX IT 

.Done MNOTE 
AGO 

.Exit MEND 

(N'&Syslist eq O).Exit 
1 Initialize argument counter 

(Upper '&Syslist(&J)') Pick up an argument 
('ACFG' Index '&T') Check type 
(&N eq O).Bad Error if not a supported type 
&(&T.Regs_Done) Declare global variable symbol 

(&(&T.Regs_Oone)).Done Test if true already 
fl 

Generate Equ statements 
&N 
&N+l 
(&N le 15) .Gen 
SetB (1) Indicate definitions have been done 

&J+l Count to next argument 
(&J le N'&Syslist).GetArg Get next argument 

8,'&SysMac.: Unknown type ''&T.''·' 

fl,'&SysMac.: Previously called for type &T .• ' 
.Next 

Figure 28. Macro to Define Any Sets of Registers Once Only 

This REGS macro may be safely used any number of times (so long as no other definitions 
of the global variable symbols &ARegs_Oone, &FRegs_Oone, &CRegs_Done, or &GRegs.:....Done appear 
elsewhere in the program!). 
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Case Study 2: Generate Sequence of Byte Values 

Intent: generate a sequence of bytes containing values 1,2, .... N 

Basic form: simple loop generating one byte at a time 

Variation: generate a single DC with all values; check for invalid input 
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Case Study 2: Generating a Sequence of Byte Values 

Generating a Byte Sequence: BYTESEQ1 Macro 

BYTESEQ1 generates a separate DC statement for each value 
(compare with slides Conditional-33 and Concepts-26) 

MACRD 
&l BmSEQl &N 
* amsEQl - generate a sequence of byte values, one per state111ent. 
* 1111 checking ar validation is done. 

LclA &IC 
Alf ( '&l' EQ ").Loop Don't define the label if absent 

&L DS BALl Define the label 
.Loup ANOP 
&IC 

.Done 

SetA 
AIF 
DC 
AliD 
MEND 

&K+l 
(&IC &T &II} • Dune 
All(&IC) 
.Leap 

* Tw test cases 

ISla BmSEQl 5 
BmSEQl l 

Increment &IC 
Check fur ter•inatian cundition 

Cuntinue 
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Tech-9 

Tech-10 

The sample BYTESEQ2 macro illustrated in Figure 29 on page 109 uses the same tech­
niques as the conditional-assembly examples given in Figure 6 on page 44 and Figure 7 on 
page 45. and the corresponding BYTESEQ1 macro illustrated in Figure 23 on page 74. 
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Generating a Byte Sequence: Pseudo-Code 

BYTESE02: generate a single DC statement, creating a string of bytes 
with binary values from 1 to N 

- N has been previously defined as an absolute symbol 

!f (N not self-defining} ERROR EXIT with message 

!f (N > 88) ERROR EXIT with too-big message 

!f (N ~ 8) EXIT with notification 

Set local string variable S = 'l' 
DO for K = 2 to N 
- S = S II ', 'K (append comma and next value) 
GEN (label DC All(S) ) 

Compare to slide Conditional-34 
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Generating a Byte Sequence (BYTESEQ2) 

&L 
&K 
&S 

.Num 

MACRO 
BYTESEQZ &N Generates a single DC statement 
SetA 1 Initialize generated value counter 
Sett '1' Initialize output string 
AIF (T'&N EQ 'N').Num Validate type of argument 
MNOTE 8,'BYTESEQZ - &&N=&N not self-defining.' 
MEXIT 
AIF 
MNOTE 
MEX IT 

(&N LE 88).NotBig Check size of argument 
8, 'BYTESEQZ - &&N=&N ts too large.' 

.NotBig AIF (&N GT 8). OK Check for small argument 

.OK 
&K 
&S 

.DoDC 
&L 

MNOTE 
MEXIT 
AIF 
SetA 
Sett 
A&D 
ANOP 
DC 
MEND 

*,'BYTESEQZ - &&N=&N too small, no data generated.' 

(&K GE &N).DoDC If done, generate DC statement 
&K+l Increment &K 
'&S. •. ·.&K' 
.OK 

All(&S) 

Add comma and new value of &K to &S 
Continue 
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A pseudo-code outline of the macro implementation is as follows: 

lE (N not self-defining) ERROR EXIT with message 

1.E (N > 88) ERROR EXIT with too-big message 

lE (N s 0) EXIT with notification 

Set local string variable S = '1' 
DO for K = 2 to N 

s = s 11 
GEN (label 

I, I K 

DC All (S) ) 
(append comma and next value) 

lech-11 

lech-12 

The BYTESEQ2 macro shown in Figure 29 on page 109 performs several validations of its 
argument, including a type attribute reference to verify that the argument is a self-defining 
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term. As its output, the macro generates a single DC statement for the byte values, but it 
has a limitation: can you tell what it is, without reading the text following the next figure? 

MACRO 
&L BYTESEQ2 &N 
* BYTESEQ2 -- generate a sequence of byte values, one per statement. 
* The argument is checked and validated, and the entire constant is 
* generated in a single DC statement. 

LclA &K 
LclC &S 

&K 
&S 

.Num 

SetA 
SetC 
AIF 
MNOTE 
MEX IT 
AIF 
MNOTE 
MEX IT 

.NotBig AIF 
MNOTE 
MEX IT 

.OK 
&K 
&S 

.DoDC 
&L 

AIF 
SetA 
SetC 
AGO 
ANOP 
DC 
MEND 

* Test cases 

1 Initialize generated value counter 
'l' Initialize output string 
(T'&N EQ 'N').Num Validate type of argument 
8,'BYTESEQ2 -- &&N=&N not self-defining.' 

(&N LE 88).NotBig Check size of argument 
8,'BYTESEQ2 -- &&N=&N is too large.' 

(&N GT B).OK Check for small argument 
*,'BYTESEQ2 -- &&N=&N too small, no data generated.' 

(&K GE &N).DoDC If done, generate DC statement 
&K+l Increment &K 
'&S. 1 • 1 ,&K' Add comma and new value of &K to &S 
.OK Continue 

All(&S) 

BS2e BYTESEQ2 e 
BS2b BYTESEQ2 1 
BS2a BYTESEQ2 5 
BS2d BYTESEQ2 X1S8 1 

BS2c BYTESEQ2 256 

Figure 29. Macro to Define a Sequence of Byte Values As a Single String 

Because no character variable symbol may contain more than 255 characters, the argument 
to BYTESEQ2 may not exceed 88; otherwise &S exceeds 255 characters. We leave as an 
exercise to the interested reader what steps could be taken to adapt this macro to accept 
arguments up to and including 255, and still generate a single DC statement. 
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Case Study 3: MVC2 Macro 

Want a macro to do an MVC, but with the source operand's length: 

MVCZ Buffer,=C'Message Text' should move lZ characters ••. 

Buffer DS Cll33 even though buff er is longer 

- MVC would move 133 bytes! 

Macro utilizes ORG statements, forces literal "definitions" 

Macro 
&lab MVCZ &Target,&Source 
&Lab CLC 8(8,8),&Source X'D508 0888',S(&Source) 

Org *-6 Back up to first byte of instruction 
LA 8,&Target. (8) X'4108' ,S(&Target} ,S(&Source} 
Org *-4 Back up to first byte of instruction 
DC All(X'DZ',l'&Source-1} First Z bytes of instruction 
Org *+4 Step to next instruction 
MEnd 

• The CLC instruction "forces" a literal source operand into the 
assembler's symbol table, so it's available to the L' reference 

HlASM Macro TuU>rial ~Copyright IBM Corporation 1993, 2002. All righ1s reserved. Tech-13 

Case Study 3: ~'MVC2" Macro Uses Source Operand Length 

Sometimes it is useful to determine the length byte of an MVC instruction from the length 
attribute of the second operand, rather than of the first. That is, rather than write something 
clumsy and error-prone like 

MVC Buffer(L'=C'Message Text'),=C'Message Text' 

you would rather write something like 

MVC2 Buffer,=C'Message Text' 

and get the same result. This can be done with an MVC2 macro with prototype 

MVC2 &Target,&Source 

where the macro effectively generates 

MVC &Target(l'&Source)~&Source 

There are several reasons why this might not work as simply as it is written; the most diffi­
cult situation (and also probably the most useful!) occurs when a literal is used as the 
source operand. When the assembler processes the length expression L '&Source, it must 
find the symbol {or literal) corresponding to &Source in the symbol table; otherwise the 
expression cannot be evaluated and is treated as invalid. 

The following macro avoids this problem by first generating a CLC instruction (for which 
literals are valid in both the first and second operands), which causes any literal operands in 
the macro call to be entered into the symbol table. Then, the CLC instruction is overlaid with 
the fields appropriate to the desired MVC instruction. 
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&Lab 

.OK 
* 

&Lab 

* 

* 

Macro 
MVC2 &Target,&Source 
Alf (N'&SysList eq 2).0K 
MNote 8,'Wrong number of operands in MVC2 macro call.' 
MExit 
A Nop 
Generate the CLC instruction with correct source operand 
CLC 0(0,0),&Source X'D500 0000',S(&Source) 
Org *-6 Back up to first byte of instruction 
Generate the addressing halfword for the target operand 
LA 0,&Target.(0) X'4100',S(&Target),S(&Source) 
Org *-4 Back up to first byte of instruction 
Generate the MVC opcode and the length byte 
DC All(X'D2',L'&Source-l) First 2 bytes of instruction 
Org *+4 Step to end of MVC instruction 
MEnd 

Figure 30. MVC2 Macro Definition 

The CLC instruction causes any literals used as source operands to be placed into the 
symbol table prior to the length attribute reference in the DC statement. 

An example of the code generated by the MVC2 macro is shown in the following: 

HVC2 Buff,=C'-Error: ' 
0006~0 0500 0000 FBAD ••• + CLC 0(0,0),=C'-Error: ' X'D500 0000',S(&Source) 
000606 .•• + Org *-6 Back up to first byte of instruction 
000600 4100 F765 .•• + LA O,Buff(O) X'4100',S(&Target),S(&Source) 
000604 + Org *-4 Back up to first byte of instruction 
000600 0207 + DC All(X'D2',L'=C'-Error: '-1) First 2 bytes of instruction 
000602 + Org *+4 Step to end of HVC instruction 

000765 Buff DS Cll33 

OOOBAO 60C5999996997A40 =('-Error: ' 
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Case Study 4: Conversion Between Hex and Decimal 

Convert hexadecimal values to their decimal equivalent in a SetA 
variable · 

Dec A Sets global SetA variable &Dec to lD 

Convert decimal values to their hexadecimal equivalent in a SetC 
variable 

Hex 18 Sets global SetC variable &llex te 'A' 

HLASM Macro TW>rial 0 (:opyrighl IBM Corporation 1993, 2002. All riflh1s resened. 

Case Study 4: Conversion Between Hex and Decimal 

Tech-14 

If you are writing macros, you may need to convert between two different representations of 
a data item. Some of these conversions are already available in the conditional assembly 
language; for example, arithmetic variables are automatically converted to character form by 
substituting them in SETC expressions. 

Macro-Time Conversion from Hex to Decimal 

Convert macro-time hex digit strings to decimal values; 
return values in GBLA variable &DEC 

Macro 
Dec &llex Cenvert &Hex ta decillill 
&blA &Dec Decillill vahe returned in &Dec 

&X SetC 'X' '&llex''' Create hex self-defining tent 
&Dec SetA &X DD the c1nversbn 

lllllte 8, '&llex (hex) = &Dec (deci•l) • For debagging 
Mtnd 

* 
Dec AA 

*"'"' lllDTE *"'* D,AA (hex) = 178 (decillill} 
lee FFF 

*** llNOTE **" l,FFF (hex) = 4895 (decimal) 
Dec FFFFFF 

""'* llNDTE ""* 8,FFFFFF (hex) = 16777215 (decimal) 
Dec 7FFFFFFF 

""'" lllDTE *** 8,7FFFFFFF (hex) " 2147483647 (deciaal) 

HLASM Macro TW>rial Cl Copyright IBM Corporation 1993, 2002. All righ1s resened. 
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Macro-Time Conversion from Hex to Decimal 

To illustrate two "utility" macros, we will show how to convert between decimal and 
hexadecimal representations. The first macro, Dec, converts from hex to decimal, and places 
the result of its conversion into the global arithmetic variable &Dec for use by the calling 
macro (or open code statement). Because the assembler accepts hexadecimal self-defining 
terms in SET A expressions, the conversion merely needs to construct such a hexadecimal 
term. 

Macro 
Dec &Hex Convert &Hex to decimal 
GblA &Dec Decimal value returned in &Dec 

&X SetC Ix I I &Hex I I I Create hex self-defining term 
&Dec Set A &X Do the conversion 

MNote 0,'&Hex (hex) &Dec (decimal)' For debugging 
MEnd 

Figure 31. Macro-Time Conversion from Hex to Decimal 

Some examples of calls to the Dec macro are shown in the following figure, where the 
MNOTE statement has been used to display the results. (In production use, the MNOTE state­
ment would probably be inactivated by placing a ".*"(conditional-assembly) comment indi­
cator in the first two columns.) 

Dec AA 
*** MNOTE *** 0,AA (hex) = 170 (decimal) 

Dec FFF 
*** MNOTE *** 0,FFF (hex) = 4095 (decimal) 

Dec FFFFFF 
*** MNOTE *** 0,FFFFFF (hex) = 16777215 (decimal) 

Dec 7FFFFFFF 
*** MNOTE *** 6,7FFFFFFF (hex) = 2147483647 (decimal) 

Figure 32. Macro-Time Conversion from Hex to Decimal: Examples 

Note that this macro may appear to have a problem: any hex value exceeding X' 7FFFFFFF' 
will not be displayed as a negative number. However, its internal representation in the vari­
able &Dec will be correct. 

Another shortcoming of this macro is that it makes no checks for the validity of the argument 
&Hex. This can be done using internal functions, as follows: 
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Macro 
Dec 
GblA 

&X SetC 
.Check ANOP 
&J SetA 

&Hex 
&Dec 
(Upper 1 &Hex 1 ) 

Convert &Hex to decimal 
Decimal value returned in &Dec 
Convert to argument upper case 

&J+l Increment &J 
&T SetA ( 1&X 1 (&J,l) Find 10123456789ABCDEF 1 ) Validate character 

Alf (&T eq 0).Bad Error if invalid character 
Alf (&J lt K1&X).Check Look at next character 

&X SetC 1X11 &Hex 111 Create hex self-defining term 
&Dec SetA &X Do the conversion 

MNote e, 1 &Hex (hex)= &Dec (decimal)' For debugging 
MExit 

.Bad MNote 5,'lnvalid hex argument &&Hex= &Hex• 
MEnd 

Figure 33. Macro-Time Conversion from Hex to Decimal, with Checking 

The added statements first convert the alphabetic characters in the argument to upper case 
(to simplify the Find function). Then, each character of the argument is validated; if an invalid 
character is found, the macro branches to .Bad and issues an error message and terminates 
the macro, with severity code value 5. 

Macro-Time Conversion from Decimal to Hex 

Convert macro-time decimal values to hex digit strings 

- Returns value in GBLC variable &Hex 

Pseudo-code: 

Set II = deciNl value 
Set llex = " 

DD UNTIL (Q = 8) 
Relllilinder = q 111d lli 
Hex " Substr( '8123451i789ABCDEF', Relllilinder+l, 1) 11 lex 
Q•Q/16 

- Note: DO WHILE (Q f- D) wouldn't work for decimal value zero 

HLASM Macro Tutorial ID Copyright IBM Corporation 1993, 2002. All righls reserved. 
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Macro-Time Conversion from Decimal to Hex ... 

Convert decimal values to hex digit strings in GBLC variable &Hex 

Macro 
Hex &Dec Convert &Dec to hexadecimal 
GblC &Hex Hex value returned in &Hex 

&Hex SetC •• Initialize &Hex 
&Q SetA &Dec Local working variable 
.Loop ANop , Top of reduction loop 
&R SetA (&Q AND lS) &R = Mod ( &Q, 16 ) 
&Q SetA (&Q SRL 4) Quotient for next iteration 
&Hex SetC '81Zl4S6789ABCDEF'(&R+l,l). '&Hex' luild hex value 

Aif (&Q gt 8). Loop Repeat if &Q not zero 
MMote a, '&Dec (decimal) = &Hex (hex)' For debugging 
MEnd 

Bex 178 
*** MNOTE *** 8,178 (decimal) = AA (hex) 

Hex 16777215 
*** MNOTE *** 8,16777215 (deci11al) : FFFFFF (hex) 

Exercise: extend Hex macro to accept negative arguments 
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Macro-Time Conversion from Decimal to Hex 

Conversion from decimal to hexadecimal requires reducing the decimal value one hex digit 
at a time, using successive divisions by sixteen. A pseudo-code description of the conver­
sion process is as follows: 

Set Q = decimal value 
Set Hex = 11 

(assumed non-negative!) 

DO UNTIL (Q = 0) 
Remainder = Q mod 16 (other bases possible, too) 
Hex= Substr( 1 0123456789ABCDEF 1 , Remainder+l, 1) II Hex 
Q = Q I 16 

The Hex macro is shown in Figure 34. It accepts a single non-negative decimal argument, 
and returns its value in the GBLC variable &Hex. 

&Hex 
&Q 
.Loop 
&R 
&Q 
&Hex 

Macro 
Hex &Dec 
GblC &Hex 

Convert &Dec to hexadecimal 
Hex value returned in &Hex 

SetC 11 Initialize &Hex 
SetA &Dec Local working variable 
ANop , Top of reduction loop 
SetA (&Q AND 15) &R = Mod ( &Q, 16 ) 
SetA (&Q SRL 4) Quotient for next iteration 
SetC 1 0123456789ABCDEF 1 (&R+l,l). 1 &Hex 1 Build hex value 
Aif (&Q gt 0).Loop Repeat if &Q not zero 
MNote 0,'&Dec (decimal)= &Hex (hex)' For debugging 
MEnd 

Figure 34. Macro-Time Conversion from Decimal to Hex 

Some examples of calls to the Hex macro to perform decimal-to-hex conversion are shown in 
the following figure. 
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Hex 170 
*** MNOTE *** 0,170 (decimal) = AA (hex) 

Hex 16777215 
*** MNOTE *** 0, 16777215 (decimal) = FFFFFF {hex) 

Hex 16777216 
*** MNOTE *** 0,16777216 (decimal) = 1aeeeee {hex) 

Hex 2147483647 
*** MNOTE *** 0,2147483647 {decimal) = 7FFFFFFF (hex) 

Figure 35. Macro-Time Conversion from Decimal to Hex: Examples 

The technique shown in the Hex macro could be used to convert from decimal to any other 
base, simply by replacing occurrences of the value "16" in the macro with the desired base. 
As an exercise, rewrite this macro to support a keyword parameter &BASE, with default value 
16, and try it with various bases such as 2, 8, and 12. 

It is an interesting further exercise to extend the function of the Hex macro to handle positive 
(unsigned) or negative (signed) arguments. This can be done with a few extra statements in 
the &Hex macro: 

&Hex SetC 11 

AIF ( I &Dec I ( 1, 1) NE ' - ') . NotNeg Test for negative 
&T SetC '&Oec'{2,*) Save magnitude of &Dec 
&Q SetA -&T Set &Q to signed value 

AGO .Loop 
.NotNeg ANOP 
&Q SetA &Dec Non-negative argument 
.Loop ANOP 

Completion and testing of the revised macro is left as part of the exercise! (Note that we 
can't directly substitute a negative value of &Dec into the SET A statement for &Q, because it 
does not have the form of a self-defining term, and must therefore be handled specially.) 

In practice, it would probably be simpler (and maybe more efficient) to write external func­
tions to do these conversions, without any need for global variables to communicate 
between the conversion "routine" and its caller. 
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Case Study 5: Generate Named Integer Constants 

Intent: generate a list of "intuitively" named halfword or fullword 
integer constants 

For example: 

- Fullword value "1" is a constant named Fl 

- Halfword value "-1" is a constant named HHl 
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Case Study 5: Generate a List of Named Integer Constants 
To illustrate a typical use of the &SYSLIST system variable symbol, we suppose we wish to 
write a macro named INTCONS that will generate integer-valued constants, giving them 
names by appending their value to a letter designating their type (F if the value is non­
negative, or to FM if the value is negative). For good measure, we will provide a keyword 
parameter to specify their type, either F or H, with F as the default. (Negative halfword con­
stants will then start with the letters HM.) 

Generate a List of Named Integer Constants 

Syntax: I NT CONS n1 [, n2] ••• [, Type=F] 

- Default constant type is F 

Examples: 

Clb 
+Clb 
+Fl 
+FMl 

INTCDNS 8,-1 
DC BF'I' 
DC F'I' 
DC F'-1' 

Define the label 
Type F: names Fl, FM1 

Cle INTCDNS 99,-99, Type=H Type H: names 899, llM99 
+Cle DC BH'B' Define the label 
+H99 DC H'99' 
+HM99 DC B'-99' 
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l Generate a List of Named Integer Constants ... 

INTCONS Macro definition (with validity checking omitted) 

MACRO 
&Lab INTCDNS &Type=F Default type is F 

AIF ('&lab' eq '').ArgsOK Skip if RD label 
&lab DC 8&Type. •a' Define the label 
.ArgsDK ANOP Argument-checking loop 
&J SetA &.J+l Increment argument counter 

AIF (&.J GT N'&Syslist).End Exit if all done 
&Halle Sett '&Type.&Syslist(&J)' Assume non-negative arg 

AIF ('&Syslist(&J)'(l,l) ne •-•).NotNeg Check arg sign 
&Nalle Sett '&Type.M'. '&Syslist(&.J)'(Z,") Negative argllllll!nt, drep -
. NBtNeg ANDP 
&Nallll! DC &Type. '&Syslist(&.J)' 

A6D .ArgsDK Repeat fer further arguments 
.End MEND 

Exercise: generalize to support + signs on operands 

HlASM Macro Tutorial Cl Copyright IBM Corporation 1993, 2002. All rights reserved. 

The syntax of the macro might look like this: 

INTCONS n1[,n2] ••• [,Type=F] 

lfwe wrote 

INTCONS 1,-1 

the macro would generate these statements: 

Fl 
FMl 

oc 
oc 

F'l' 
F'-1' 

Similarly, if we wrote 

INTCONS 2,-2,Type=H 

then the macro would generate: 

H2 
HM2 

oc 
oc 

H'2' 
H'-2' 

Tech-20 

The basic structure of this macro is in two parts: the first (through the second MEXIT state­
ment, following the MNOTE statement for null arguments) checks the values and validity of the 
arguments, issuing various messages for cases that do not satisfy the constraints of the defi­
nition. 

The second part (beginning at the sequence symbol .ArgsOK) uses the &SYSUST system var­
iable symbol to step through each of the positional arguments in turn, by applying a sub­
script (&J) to indicate which positional argument is desired. The argument is checked for 
being non-null, and then to see if its first character is a minus sign. If the minus sign is 
present, it is removed for constructing the constant's name; finally, the constant is generated 
with the required name. 
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MACRO 
&Lab INTCONS &Type=F Default type is F 
* 
* 
* 

INTCONS -- assumes a varying number of positional arguments 
to be generated as integer constants, with created names. 
Type will be F (default) or H if specified. 

LclA &J Count of arguments 
LclC &Name Name of the constant 

* Validate 
AIF 
MNOTE 
MEX IT 

the Type argument 
( 1&Type 1 eq 1F1 OR 1 &Type 1 eq 1H1).TypOK Check Type 
8, 1 INTCONS -- Invalid Type= 11 &Type 1 •. 1 

* Generate the name-field symbol &Lab if provided 
.TypOK AIF ( 1&Lab 1 eq 11 ).NoLab Skip if no label 
&Lab DC B&Type. 16 1 Define the label 
* Verify that arguments are present; no harm if none . 

. NoLab AIF (N'&SysList gt B).ArgsOK Check presence of args 
MNOTE *, 1 INTCONS -- No arguments provided. 1 

MEX IT 
* Argument-checking loop 

.ArgsOK ANOP 
&J SetA 

AIF 
AIF 
MNOTE 
AGO 

.DoArg ANOP 
&Name SetC 

AIF 
&Name SetC 
.NotNeg ANOP 
&Name DC 

AGO 
.End MEND 

&J+l Increment argument counter 
(&J GT N'&SysList).End Exit if all done 
(K 1&SysList(&J) gt B).DoArg 
4, 1 INTCONS Argument No. &J. is empty.' 
.ArgsOK Go for next argument 

1&Type.&SysList(&J)' Assume nonnegative arg 
('&SysList(&J)'(l,l) ne 1 - 1 ).NotNeg Check arg sign 
1 &Type.M 1 • 1 &SysList(&J)'(2,*) Negative argument, drop -

&Type. 1&SysList(&J)' 
.ArgsOK Repeat for further arguments 

Figure 36. Macro Parameter-Argument Association Example: Create a List of Constants 

Some test cases for the INTCONS macro are shown in the following figure. The first two and 
the last two test various unusual conditions, and the third and fourth display the statements 
generated by the macro. (The 1+ 1 characters in the left margin are inserted by the assem­
bler to indicate generated statements). 
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*Test cases -- first has no label, no args; second has no args. 
INT CONS 

Cla INTCONS 

Clb .INTCONS 0,-1 Type F: names Fa, FMl 
+Clb DC 0F'0' Define the label 
+Fa DC F'0' 
+FMl DC F'-1' 

Cle INTCONS 99,-99,Type=H Type H: names H99, HM99 
+Cle DC 0H'0' Define the label 
+H99 DC H'99' 
+HM99 DC H'-99' 

Cld INT CONS -aaaaaaaaa,2147483647 
Cle INTCOKS 1,2,3,4,Type=D Invalid type 

INTCONS 1,2,3,4,,5,6,7,8,9,10E7 Null 5th argument 

Figure 37. Macro Example: List-of-Constants Test Cases 

As an interesting exercise: what would happen if you wished to add a test to verify that each 
argument is a valid self-defining term? Are negative arguments valid? Would the argument 
10E7 be valid? (It's acceptable as a nominal value in an F-type constant.) Another interesting 
exercise is to modify the macro to handle leading plus ( +) signs on the numeric values. 
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Case Study 6: Using the AREAD Statement 

1. Case Study Sa: Generate strings of message text 

Prefix string with "effective length" byte (length-1) 

Basic form: count characters 

• Variation 1: create an extra symbol, use its length attribute 

• Variation 2: use the AREAD statement and conditional-assembly functions to 
support "readablen input 

2. Case Study Sb: Block comments 

• Write free-form text comments (without * in column 1) 
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Case Study 6: Using the AREAD Statement 
This case study shows two examples of the power of the AREAD statement. The first shows 

• -,/low to simplify creating message texts prefixed by a length byte, and the second illustrates 
a technique for entering "block comments" into your source program. 

Case Study &a: Create Length-Prefixed Message Texts 

Problem: want messages with prefixed "effective length" byte 

I L-1 1------ L Characters -----• 

How they might be used: 

ftll PFMSG 'Hello World' Define a sample message text 
+Hll DC All(ll},C'Hello llerld' Length-prefixed 11essage text 

LA Z,HW 

IC 1,8(,Z) 
EX l,MsgMove 

MsgMove MVC Bnffer(*-*),l(Z) 

Prepare to •ve lll!ssage to buffer 

Effective length of message text 
Move message to output buffer 

Executed to move message texts 

HLASM Macro Tutorial ©Copyright IBM Corporation 1993. ZOOZ. All rights reserved. Tech-22 
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Case Study 6a: Creating Length-Prefixed Message Texts 

A common need in many applications is to produce messages. Often, the length of the 
message must be reduced by 1 prior to executing a move instruction, so it is helpful to store 
the message text and its "effective length" {i.e., its true length minus one), as shown: 

I l-1 !------- l Characters------• 

Such a length-prefixed message text could be used in code sequences like the following. 
The message is declared using a PFMSG macro, which generates the length byte followed 
by the message text: 

HW PFMSG 'Hello World' Define a sample message text 
+HW DC ALl(lB),C'Hello World' Length-prefixed message text 

Then, this small "data structure" could be used in instructions like these to move the 
message text to a buffer: 

LA 2,HW Prepare to move message to buff er 

Call message-buffering routine? 

IC 1,0(,2) 
EX 1,MsgMove 

Effective length of message text 
Move message to output buffer 

MsgMove MVC Buffer(*-*),1(2) Executed to move message texts 

We will illustrate three macros to create message texts with an effective-length prefix, each 
using progressively more powerful techniques. 

Create Length-Prefixed Messages (1) 

PFMSGl: length-prefixed message texts 

MACRO 
&Lab PFMSGl &Txt 

PFMSGl - requires that the text of the message, &Txt, 
.* contain no embedded apostrophes (quotes) or ampersands. 

lclA &Len Effective length 
&Len SetA K'&Txt-3 (# text chars)-3 (quotes, eff. length) 
&Lab DC All(&len),C&Txt 

MEND 

Limited to messages with no quotes or ampersands 

Mla PFMS61 'This is a test ef 11essage text l.' 
+Mla DC All(l2),C'This is a test of 11essage text 1.' 

Mlb PFMSGl 'Kello' 
+Mlb DC All(4),C'Rello' 

HLASM Macro Tu10rial <O Copyrighl IBM Corporation 1993. 2002. All rights reserved. 
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Simplest Prefixed Message Text 

In this first example, the text of the message may not contai_n any "special" characters, 
namely apostrophes (quotes) or ampersands. A Count attribute reference is used to deter­
mine the number of characters in the message argument 

MACRO 
&Lab PFMSGl &Txt 
* 
* 

PFMSGl -- requires that the text of the message, &Txt, 
contain no embedded apostrophes (quotes) or ampersands. 

LclA &Len Effective Length 
&Len 
&Lab 

SetA K'&Txt-3 (# text chars)-3 (quotes, eff. length) 
DC ALl(&Len),C&Txt 
MEND 

Mla PFMSGl 'This is a test of message text 1.' 
+Mla DC AL1(32),C'This is a test of message text 1.' 

Mlb PFMSGl 'Hello' 
+Mlb DC AL1(4),C'Hello' 

Figure 38. Macro to Define a Length-Prefixed Message 

Create General Length-Prefixed Messages (2) 

PFMSG2: Allow all characters in text (may require pairing) 

MACRO 
&lab PFMSG2 &Txt 

PFMSG2 - the text of the message, &Txt, may cantain embedded 
apostrophes (quotes) er ampersands, so long as they are paired. 

&T Sett 'lXT&SYSNDX.M' Create TXTnnnM symbol to nalll! the text 
&Lab DC All(L'&T.-1) Effective length 
&T DC C&Txt 

MEND 

M2a PFMS62 'Test of •'This'• && •'That••. ' 
+M2a DC All(L 'TXT8881M-1) Effective length 
+TXTBBBlM DC C'Test of "This" && "That".' 

M2b PFMSG2 'Helle, llllrld' 
+M2b DC All( L 'TXT88821t-l) Effective length 
+TXT8882M DC C'Hellu, llllrld' 

Quotes/ampersands in message are harder to write, read, translate 
Extra (uninteresting) labels are generated 
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More General Prefixed Message Text 

The requirement that no ampersands or quotes may be used in the message text defined by 
PFMSG1 may not be acceptable in some situations. Thus, in Figure 39 on page 124 we will 
define a second macro PFMSG2 that allows such characters in the message, but requires 
that they be properly paired in the argument string. It also generates an ordinary symbol so 
that a length attribute reference may be used. 
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&Lab 
* 
* 
* 
* 
* 

&T 
&Lab 
&T 

MACRO 
PFMSG2 &Txt 

PFMSG2 -- the text of the message, &Txt, may contain embedded 
apostrophes (quotes) or ampersands, so long as they are 
properly paired. The macro expansion generates a symbol 
using the &SYSNDX system variable symbol, and uses a Length 
attribute reference for the effective length. 

SetC 1TXT&SYSNDX.M 1 Create symbol to name the text string 
DC All(L '&T.-1)" Effective length 
DC C&Txt 
MEND 

Figure 39. Macro to Define a Length-Prefixed Message With Paired Characters 

Some sample calls to the PFMSG2 macro are shown in the following figure: 

M2a PFMSG2 1Test of 11 This 11 && 11 That 11 • 1 

+M2a DC ALI(L 1TXT0001M-1) 
+TXT0001M DC C'Test of 11 This 11 && 11 That 11 • 1 

M2b PFMSG2 'Hello, World' 
+M2b DC AL1(L'TXT0002M-1) 
+TXT0002M DC C'Hello, World' 

The generated symbol is of the form TXTnnnnM, where the characters nnnn are the value of the 
system variable symbol &SYSNDX. The assembler increments &SYSNDX by one each time a 
macro expansion begins, and its value is constant within that macro. (Inner macro calls 
have their own, different value of &SYSNDX.) Thus, &SYSNDX can be used to generate 
unique symbols (or other values) for every macro expansion. 

While the PFMSG2 macro defined in this example allows any characters in the message text, 
it is much more difficult to read and understand the macro argument. (Consider, for 
example, how to explain the odd rules about pairing quotes and ampersands to someone 
who wants to translate the message text into a different language!) Also, the generated 
TXTnnnnM symbols are used only for a length attribute reference, and are otherwise uninter­
esting. 

This limitation can be removed by using an elegant and powerful feature of the macro lan­
guage, the AREAD statement. 
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Readable Length-Prefixed Messages (3): Pseudo-Code 

User writes "plain text" messages (single line, :s; 72 characters) 

PFMSG3: AREAD statement within the macro "reads" the next source 
record (following the macro call) into a character variable symbol 

Pseudo-code: 

.!!: (any positional arguments) ERROR EXIT with message 

AREAD a message fro• the following source record 
Trim off sequence field (73-88) and trailing blanks 

Create paired quotes and ampersands (for nominal value in DC) 

&EN (label DC ALl(Text_Length-1),C'MessageText') 
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Create Readable Length-Prefixed Messages 
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Allow ~ characters in message text without pairing, using AREAD 
MACRO 

&Lab PFMS&l &Null Co11111ents DK after COllllJla 

PFMSGl - the text of the message may contain any characters. 
The message is on a single line following the call to PFMSlil. 

LclA &L,&N Local arithmetic variables 
Lele &T, &C,&N Local character variables 
AIF ('&Mull' eq ").DK Null argument DK 
AIF (N'&SYSLIST EQ B).OK No arguments allowed 
MNote 8, 'PFMSGl - no operands should be provided.' 
MEXIT Terminate macro processing 

.DK ANDP 
&M SetA 1 Initialize char-scan pointer to 1 
* Read the record following the PFMS63 call into 8H 

8H ARead , Read the message text 
&N Sett '&M'{l,72) Trim off sequence field 
&L SetA 72 Point to end of initial text string 
* Trim off trailing blanks from message text 

.Trim AIF ('&N'{&L,1) NE • ').C Check last character 
&L SetA &L-1 Deduct blanks from length 

AGO • Trim Repeat trimming loop 
* (continued) 
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Create Readable Length-Prefixed Messages ... 

(continuation) 
.C AHOP 
&T Sett (DOUBLE 'Ul'(l,&l)) Pair-up quotes, ampersands 
&l SetA &L-1 Set to effective length 
&lab DC All(&L).C'&T' 

MEnd 

Messages are written as they are expected to appear! 
Easier to read and translate to other national languages 

M4a PFMSGJ , Test with mixed apostrophes/ampersands 
-Test of 'This' & 'That'. 
+M4a DC All(Z7),C'Test of "This" && "That".• 

M4c PFMSGl 
-This is the text of a long message & says nothin' very much. 
+M4c DC All(63),C'This is the text of a long message && saysX 
+ nothin'' very much.' 

'+' prefix in listing for generated statements, ' - ' for A READ records 
Exercise: generalize to multi-line messages, of any length! 
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Prefixed Message Text with the AREAD Statement 

The AREAD statement can be used in a macro to read lines from the program into a char­
acter variable symbol in the macro. If we write 

&CVar AREAO 

then the first statement in the main program following the macro containing the AREAD 
statement (or the macro call that eventually resulted in interpreting the AREAD statement) 
will be "read" by the assembler, and the contents of that record will be assigned to the vari­
able symbol &CVar. 

We will exploit this capability in the PFMSG3 macro, which reads the text of a message 
written in its desired final form from the line following the macro call. The operation of the 
PFMSG3 macro is summarized in the following pseudo-code: 

l.E (any positional arguments) ERROR EXIT with message 
AREAO a message from following record 
Trim off sequence field (73-80) and trailing blanks 
Create paired quoted and ampersands (for nominal value in DC) 
GEN (label DC All(Text_length-1),C'MessageText') 

The macro illustrated in Figure 40 on page 127 scans the text of the string, creating pairs of 
quotes and ampersands wherever needed; thus, the writer of the message need not be 
aware of the peculiar rules of the Assembler Language. 

A note on style: to allow users of the PFMSG3 macro to add comments to the macro-call 
line, the &Null parameter is provided on the prototype statement. If the corresponding argu­
ment is null (that is, any comments are preceded by a comma), the rest of the statement -
the comments - are ignored. 
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MACRO 
&Lab PFMSG3 &Null Comments OK after comma 
* 
* 

PFMSG3 -- the text of the message may contain any characters. 
The message is on a single line following the call to PFMSG3. 

LclA &L,&N Local arithmetic variables 
LclC &T,&C,&M Local character variables 
AIF ('&Null' eq 11 ).0K Null argument OK 
AIF (N'&SYSLIST EQ 0).0K No arguments allowed 
MNote 8,'PFMSG3 -- no operands should be provided.' 
MEXIT Terminate macro processing 

.OK ANOP 
&N SetA 1 Initialize char-scan pointer to 1 
* Read the record following the PFMSG3 call into &M 

&M ARead , Read the message text 
&M SetC '&M'(l,72) Trim off sequence field 
&L SetA 72 Point to end of initial text string 
* Trim off trailing blanks from message text 

.Trim AIF ('&M'(&L,l) NE 1 1).C Check last character 
&L SetA &L-1 Deduct blanks from length 

AGO .Trim Repeat trimming loop 
ANOP .c 

&T 
&L 

SetC 
SetA 
DC 
MEnd 

(DOUBLE 1 &M 1 (l,&L)) Pair-up quotes, ampersands 
&L-1 Set to effective length 

&Lab All (&L) ,c I &TI 

Figure 40. Macro to Define a Length-Prefixed Message With "True Text" 

Some test cases for the PFMSG3 macro are shown in the following figure. 

M4a PFMSG3 , Test with mixed apostrophes/ampersands 
-Test of 'This' & 'That'. 
+M4a DC AL1(27),C'Test of 11 This 11 && 11 That 11 • 1 

M4c PFMSG3 
-This is the text of a long message & says nothin' very much. 
+M4c DC AL1(63),C'This is the text of a long message && saysX 
+ nothin'' very much.' 

Figure 41. Test Cases for Macro With "True Text" Messages 

The •+ 1 characters in the left margin denote statements generated by the assembler; the 1 - 1 

characters denote records read from the source stream by AREAD instructions. 

An instructive exercise can be found in generalizing the above macro to accept multi-line 
messages, first with total length less than 255 characters, and then with no limitations on 
total length. 

Note also that the loop that removes trailing blanks from the string accepted by the AREAD 
statement could be replaced by a call to an external conditional-assembly function TRIM; 
again, writing such a character-valued function is a useful exercise. 
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, Case Study 6b: Block Comments 

• Sometimes want to write "free-form" comments in a program: 

Tlais is so• text 
for a block of 

free-fer• cDJ1111ents. 

Must tell HLASM where the comments begin and end: 

CIJll!IENT 
Tlais ts so• text 

for a block of 
free-f ena co1111111nts. 

TNDMIC 

Restriction: block-end statement (TNEr+lOC) can't appear in the text 

HLASM Macro Tutorial Q Copyright IBM Corporation 1993. 2002. All rigllls reserved. Tech-28 

Case Study 6b: Block Comments 

Occasionally it is helpful to be able to insert "blocks" of comments into a program, but 
without having to put an asterisk in the first position of each line. For example, you might 
want to write something like 

This is some text 
for a block of 

co1T111ents. 

Naturally, we will need some way to tell the assembler that the comment "lines" are not to 
be scanned as normal input statements. Thus, we need something that indicates the start 
(and end) of a "block comment". 

Suppose we create a macro named COMMENT that indicates the start of a block comment, and 
that the end of the block is indicated by a TNEMMOC ("COMMENT" spelled backward) statement. 
You could of course choose any terminator you like, such as ENDCOMMENT. 

In the above example, the lines would be entered as follows: 

C011111ent 
This is some text 
for a block of 

co1T111ents. 
Tne11J11oc 

(You might even be able to embed program documentation in your source code!) 
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Block Comments Macro 

COMMENT macro initiates block comments: 

Macro 
&L Co111111ent &Arg 

Lele &c 
Aif ('&L' eq "and '&Arg' eq ").Read 
MNote •,'Co111111ent macro: Label and/or argument ignored.' 

.Read AN op 
&C AAead 
&C SetC (Upper '&C ') Force upper case 
&A SetA ( '&C' (1, 72) Index ' TNEllllDC ') Note blanks! 

Alf (&A eq 8).Read 
MEnd 

Can even include "SCRIPT-able" text (with .xx command words) IF the 
command words aren't used elsewhere as sequence symbols! 

HLASM Macro Tutortal [)Copyright IBM Corporation 1993, 2002. All rights reserved. 

A simple macro using the AREAD statement can do the job: 

&L &Arg 
&C 
('&L' eq ''and '&Arg' eq '').Read 

Tech-29 

Macro 
Comment 
LclC 
Alf 
MNote *,'Co!Mlent macro: Label and/or argument ignored.' 

.Read 
&C 
&C 
&A 

A Nop 
ARead 
SetC 
Set A 
Alf 
MEnd 

(Upper '&C') 
('&C'(l,72) Index 'TNEMMOC ') 
(&A eq 8).Read 

Force upper case 
Note blanks! 

Figure 42. Macro for Block Comments 

The macro first checks for the presence of a label or operand on the COMMENT statement, and 
if either is present, it emits an MNOTE comment saying they were ignored. The macro then 
reads each line of the comment block (using the AREAD statement) until a line containing 
the end-of-comment marker (in any mixture of upper and lower case, with preceding and 
following blanks and without quotes) is encountered. The UPPER function converts each line 
of the block comment text to upper case to simplify checking for the presence of the TNEMMOC 
terminator. 

The only restriction on this technique is that the end-of-block terminator cannot appear in the 
text of the comments with blanks on either side. A test case with the comment terminator 
embedded in the text is: 

Comment 
Note that the block-comment terminator can't appear in the 
comments! That's because the embedded terminator string on 
this line causes an error when TNEMMOC is encountered: 

Tnemmoc 

The presence of the string ' TNEMMOC ' in an input line causes the macro to terminate its 
AREAD loop too early, leaving one or more statements to be scanned by the assembler as 
normal input: 
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27 Comment 
28-Note that the block-comment terminator can't appear in the 
29-cormnents! That's because the embedded terminator string on 
30-this line causes an error when TNEMMOC is encountered: 
31 Tnemmoc 

** ASMA057E Undefined operation code - TNEMMOC 

Suppose you want to use the terminating string TNEMMOC in a record, as in this example. As 
an exercise, you can modify the COMMENT macro to remove leading and trailing blanks before 
checking that the terminator record contains only the string 'TNEMMOC •. 

Note also that you can keep your code and its documentation in one file, by embedding the 
SCRIPT-able documentation as block comments. This will require some care, however, to 
avoid possible confusion between SCRIPT command words (like .SP) and sequence symbols 
of the same name. 

Case Study 7: Macro Recursion 

Macro recursion illustrated with: 

1. "Indirect addressing" 

2. Integer factorial values: N! = N * (N-1) 

3. Integer Fibonacci numbers: F(N) = F(N-1) + F(N-2) 

HLASM Macro lu1Crial CJ Copyright IBM Corporation 1993, 2002. All righlS reserved. lech·30 

Case Study 7: Macro Recursion 

Macros that call themselves either directly or indirectly are recursive. Three examples are 
given: 

• a "Load Indirect" macro LI 
• a "Factorial" macro FACTORAL 

a FIBONACI macro to calculate Fibonacci numbers. 

We will first illustrate a recursive call with a simple "Load Indirect" macro, which introduces 
a simple form of indirect addressing. 
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Indirect Addressing via Recursion 

"Load Indirect" macro for multiple~level "pointer following" 

Syntax: each operand prefix asterisk specifies a level of indirection 

LI 3,8(4} Load from 8(4) 
LI 3, *8(, 4) Load from what 8( ,4) points to 
LI 3,**8(,7) Two levels of indirection 
LI 3,***X Three levels of indirection 

LI macro calls itself for each level of indirection 

&Lab 

&Lab 

.Ind 
&XI 

Macro 
LI &Reg,&X Load &Reg with indirection 
Aif ('&X'(l,l) eq '*').Ind Branch if indirect 
L &Reg,&X 
MExit 
AN op 
SetC 
LI 
L 
MEnd 

'&X'(Z,*) 
&Reg,&XI 
&Reg, 8(, &Reg) 

Exit from bottom level of recursion 

Strip off leading asterisk 
Call lll)'Self recursively 
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Indirect Addressing via Recursion ... 

Examples of code generated by calls to LI macro: 

LI 3,8(4) Load from 8(4) 
+ L 3,8(4) 

LI 3,*8(,4) Load from what 8(,4) points to 
+ L 3, 8( ,4) 
+ L 3,8(,3) 

LI 3, **8(. 7) Two levels of indirection 
+ L 3,8(,7) 
+ L 3,8(,3) 
+ L 3, 8( ,3) 

LI 3,***X Three levels of indirection 
+ L 3,X 
+ L 3,8(,3} 
+ L 3,8(,3) 
+ L 3,8( ,3) 

HLASM Macro Tumrial ID Copyright IBM Corporation 1993, 2002. All rights rese"'8d. 

Recursion Example 1: Indirect Addressing 

Tech-31 

Tech-32 

In Figure 43 on page 132, the LI macro implements a form of "indirect" addressing: if the 
storage operand is preceded by an asterisk, the assembler interprets this as meaning that 
the operand to be loaded into the register is not at the operand, but is at the address speci­
fied by the operand without the asterisk.10 Thus, if an instruction was written as 

LI 8,*XXX Indirect reference via XXX 

10 Indirect addressing was a popular hardware feature in many second-generation computers, such as the IBM 
709-7090-7094 series. The hardware supported only a single level of indirect addressing, and the instruction 
syntax was slightly different on those machines: a single asterisk could be appended to the mnemonic (as in 
TRA*), and the statement's operand field was not modified. 
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then the item to be loaded into R8 is not at XXX, but is at the position "pointed to" by XXX. 
Thus, the asterisk can be thought of as a "de-referencing" operator. 

Note that RO cannot be used for &Reg if any levels of indirection are indicated. 

This definition is recursive, in the sense that the "operand" preceded by an asterisk may 
itself be preceded by an asterisk, which thus provides multiple levels of indirection. A macro 
to implement this form of indirect addressing is shown in Figure 43. 

Macro 
&Lab LI &Reg,&X Load &Reg with indirection 

Aif ('&X'{l,1) eq '*').Ind Branch if indirect 
&Lab L &Reg,&X 

MExit Exit from bottom level of recursion 
.Ind A Nop 
&XI SetC '&X' (2,K'&X-1) Strip off leading asterisk 

LI &Reg,&XI Call myself recursively 
L &Reg, 0( ,&Reg) 
MEnd 

Figure 43. Recursive Macro to Implement Indirect Addressing 

Some examples of calls to the LI macro are shown in Figure 44, where the "+" characters 
at the left margin are the assembler's indication of a macro-generated statement. 

LI 3,0(4) Load from 0(4) 
+ L 3,0(4) 

LI 3,*0(,4) Load from what 0(,4) points to 
+ L 3,0(,4) 
+ L 3,0(,3) 

LI 3,**0(,7) Two levels of indirection 
~ L 3,0( ,7) 
+ L 3,0( ,3) 
+ L 3,0( ,3) 

LI 3,***X Three levels of indirection 
+ L 3,X 
+ L 3,0( ,3) 
+ L 3,0( ,3) 
+ L 3,0( ,3) 

Figure 44. Recursive Macro to Implement Indirect Addressing: Examples 
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Generate Factorial Values Recursively 

Macro 
&Lab FACTORAL IH 
.• Factorials defined by Fac(N) = N * Fac(ll-1), Fac(B) • Fac(l) • 1 

liBLA &Ret Fer returning values of inner calls 
AlF (T'IH NE 'N') .Error N 11111st be numeric 

&L SetA IH Convert from external f or111 
MNote 8,'Evaluating FACTORAL(&L.)' For debugging 

AlF (&L LT B).Error Can't handle N < B 
AlF (&L GE Z).Calc Calculate via recursion if N > 1 

&Ret SetA 1 F(B) = F(l) = 1 
Ali8 • Test Return to caller 

.Cale ANBP 
&IC SetA &L-1 

FACTORAL &IC Recursive call 
&Ret SetA &Ret*&L 
.Test AlF (&SysNest GT l).Cont 
* MNote 8, 'Factorial (&L.) • &Ret.' Display result 

&Lab DC F'&Ret' 
.Cont MExit Return to caller 
.Error MNute 11, 'Invalid Facturial argument IH •• ' 

MEnd 
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Recursion Example 2: Factorial Function Values 

Probably the best-known recursive function is the Factorial function. It can be defined and 
implemented iteratively (and more simply), but its familiarity makes it useful as an example. 

In the macro in Figure 45 on page 134, the macro FACTORAL uses the global arithmetic var­
iable symbol &Ret to return calculated values. 

There are many ways to test for the end of a recursive calculation. In this example, the 
&SYSNEST variable symbol is used to check the "nesting" level at which the macro was 
called. The assembler increments &SYSNEST by one each time a macro expansion begins, 
and decreases it by one each time a macro expansion terminates. Thus, for nested macro 
calls, &SYSNEST indicates the current nesting level or "depth" of the call. Macros called 
from open code are always at level 1. 
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Macro 
&Lab FACTORAL &N 
* Factorials 

GBLA 
LCLA 
AIF 

defined by Fac(N) = N * Fac(N-1), Fac(8) = Fac(l) = 1 

&L SetA 
* MNote 

AIF 
AIF 

&Ret Set A 
AGO 

.Cale ANOP 
&K SetA 

FACTORAL 
&Ret SetA 
.Test AIF 
* MNote 

&Lab DC 
.Cont MExit 
.Error MNote 

MEnd 

&Ret For returning values of inner calls 
&Temp,&K,&L Local variables 
(T 1 &N NE 1 N1).Error N must be numeric 
&N Convert from external form 

8,'Evaluating FACTORAL(&L.)' For debugging 
(&L LT 8).Error Can't handle N < 0 
(&L GE 2).Calc Calculate via recursion if N > 1 
1 F(8) = F(l) = 1 
.Test Return to caller 

&L-1 
&K 
&Ret*&L 

Recursive ca 11 

(&SysNest GT 1).Cont 
0,'Factorial(&L.) = &Ret. 1 Display result 
F1 &Ret 1 

Return to caller 
11,'Invalid Factorial argument &N •. 1 

Figure 45. Macro to Calculate Factorials Recursively 

Some test cases for the FACTORAL macro are shown in the following figure: 

FACTORAL 0 
+ DC F1 l1 

FACTORAL 1 
+ DC F'l' 

FACTORAL B' 11' Valid self-defining term 
+ DC F16 1 

FACTORAL x•4• Also valid 
+ DC F'24' 

FACTORAL 18 
+ DC F1 3628880 1 

Figure 46. Macro to Calculate Factorials Recursively: Examples 

As noted previously, the generated statements are tagged with a 1 +' character in the left 
margin. 

We leave to the reader the modifications needed to allow FACTORAL to be called from other 
macros. 
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Generate Fibonacci Numbers: Pseudo-Code 

Defined by F(O) = F(1) = 1, F(n) = F(n-1) + F(n-2) 

Use a global arithmetic variable &Ret for returned values 

- Macros have no other way to return "function" values 

Pseudo-code: 

!! (argument N < B) ERROR EXIT with message 

!! (N < 2) Set &Ret = 1 and EXIT 

CALL myself recursively with argument N-1 
Save evaluation in local temporary &Teap 

CALL myself recursively w1th argument N-Z 
Set &Ret = &Ret + &Te11p, and EXIT 
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Generate Fibonacci Numbers Recursively 

Macro 
&Lab FIBONACI &N 
• " Fibonacci numbers defined by F(N) = F(ll-l)+F(N-Z), F(B) = F(l) = 8 

GILA &Ret For returning values ef inner calls 
MNote 8,'Evaluating FIIONACI(&N.), Level &SysNest.' 
AIF (&N LT B).Error Negative values not allowed 
AIF (&N &E 2).Calc If &N > 1, use recursion 

&Ret SETA l Return F(B) or F(l) 
AGO • Test Return to caller 

.Cale ANDP DD CDllpUtation 
&IC SetA &N-1 First value 'K' = N-1 
&L SetA &N-Z Second va 1 ue • L' = N-2 

FIBDNACI &IC Evaluate F(K) = F(N-1) (Recursive call) 
&Te111p SetA &Ret Hold computed value 

FIBONACI &L Evaluate F(L) = F(N-2) (Recursive call) 
&Ret SetA &Ret+&Temp Evaluate F(N) = F(K) + F(l) 
.Test AIF (&SysNest GT l).Cont 

MNote a, 'Fibonacci(&N.) = &Ret •• • Display result 
&Lab DC f'&Ret' 

Return to caller .Cont MExit 
• Error MNote 

MEnd 
11, 'Invalid Fibonacci argllllll!nt &N •• • 
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Recursion Example 3: Fibonacci Numbers 

The Fibonacci numbers are defined by the recursion relations 

F(N) = F(N-1) + F(N-2) 
with F(0) = 1 and F(l) = 1 

Tech-34 

Tech-35 

Calculating them recursively is quite inefficient (though educational!) because many values 
are calculated more than once. The global arithmetic variable symbol &Ret is used to return 
values calculated at lower levels of the recursion. 

A pseudo-code description of the macro's operation is as follows: 
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IE (argument N < 0) ERROR EXIT with message 
IE (N < 2) Set &Ret = 1 and EXIT 
CALL myself recursively with argument N-1 
Save evaluation in local temporary &Temp 
CALL myself recursively with argument N-2 
Set &Ret = &Ret + &Temp, and EXIT 

The FIBONACI macro is illustrated in Figure 47. The global variable &Ret is used to return 
the value of a call to FIBONACI, because macros do not have any other method to return 
function values. The local variable &Temp is used to hold the value returned by the first recur­
sive call, so that the second can be made without destroying the value returned by the first. 

Macro 
&Lab FIBONACI &N 

GBLA &Ret For returning values of inner calls 
LCLA &Temp,&K,&L Local variables 
MNote 0,'Evaluating FIBONACI(&N.), Level &SysNest.' 
AIF (&N LT 0).Error Negative values not allowed 
AIF (&N GE 2).Calc If &N > 1, use recursion 

&Ret SETA 1 Return F(O) or F(l) 
AGO .Test Return to caller 

.Cale ANOP Do computation 
&K SetA &N-1 First value 'K' = N-1 
&L SetA &N-2 Second value 'L' = N-2 

FIBONACI &K Evaluate F(K) = F(N-1) (Recursive call) 
&Temp SetA &Ret Hold computed value 

FIBONACI &L Evaluate F(L) = F(N-2) (Recursive call) 
&Ret SetA &Ret+&Temp Evaluate F(N) = F(K) + F(L) 
.Test AIF (&SysNest GT 1).Cont 

MNote 0,'Fibonacci(&N.) = &Ret .. ' Display result 
&Lab DC F'&Ret' 
.Cont MExit 
.Error MNote 

MEnd 
* 

Return to caller 
11,'Invalid Fibonacci argument &N .. ' 

FIBONACI 4 
FIBONACI 5 

Figure 47. Macro to Calculate Fibonacci Numbers Recursively 
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Case Study 8: Macros for Bit-Handling Operations 

Discuss safe bit-manipulation techniques 

Use bit-manipulation operations to create a "mini-language" 

Basic forms: create macros to 

- Allocate storage to named bits 

- Set bits on and off, and invert their values 

- Test bit values and branch if on or off 

Enhanced forms: create macros to 

- Ensure bit names were properly declared 

- Generate highly optimized code for bit manipulation and testing 
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Bit-Defining and Bit-Handling Macros 

Two levels of implementation: 

1. One-pass, "memory-less", "trusting" macros that make no attempts to 

- verify that names identify bit flags 

- validate type declarations 

- retain information across macro calls 

- optimize storage utilization or generated instructions 

2. Two-pass "cautious" macros utilize retained information to provide 
encapsulation and abstract data typing: 

- Bit names must be declared to have "bit" type before use 

- Storage utilization minimized, generated instructions optimized 

- "Symbol table" retains information across macro calls 
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Case Study 8: Defining Macros for Bit-Handling Operations 

We will now examine some macros that show how you can "build" a language to suit your 
needs. Our examples will be based on a typical Assembler Language requirement to manip­
ulate bit values, and we will illustrate two levels of possible implementation: 

1. The first set of macros (Case Study 8a) will illustrate simple techniques for declaring bit 
names, assigning them to storage, performing operations on them, and testing bit values 
and making conditional branches. 

2. The second set (Case Study 8b) will do the same functions, but will in addition validate 
the declared names when they are used elsewhere, and generate optimized code for 
storage allocation, bit operations, and bit testing. 

One purpose of these examples is to show how macros can be made as simple or as 
complex as are needed for a specific application: if bit operations need not be efficient, the 
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simple macros can be used; if storage requirements and/or execution time must be mini­
mized, 1he second set of macros can be used. 

Basic Bit Definition and Manipulation Techniques 

Frequently need to set, test, manipulate "bit flags": 

nagl DS X 
litA Eqa X'81' 

Flag2 DS X 
litl Eqa X'H' 

Define 1st byte ef bit flags 
Define a bit flag 

Define 2nd byte Df bit flags 
Define a bit flag 

• Serious defect: no correlation between bit name and byte name! 

BI Flagl, litl 
NI rlagZ,255-liU 

Set lit I Dll 77 
Set lit A IFF 77 

• Want a simpler technique: use a length attribute reference; then use 
just one name for all references 

- Advantage: less chance to misuse bit names and byte names! 
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Basic Bit Handling Techniques 

Applications frequently require status flags with binary values: ON or OFF, YES or NO, 
STARTED or NOT_STARTED, and 1he like. On a binary machine, such flags are represented 
by individual bits. However, few machines provide individually addressable bits; the bits are 
parts of larger data elements such as bytes or words. This means that special programming 
is needed to "address" and manipulate bits by name. 

It is a very common technique in Assembler Language programming to define bits using 
statements like the following: 

Flagl 
BitA 
Flag2 
BitB 

OS X 
Equ X1 91' 
OS X 
Equ X1 19' 

and then doing bit operations like 

01 Flagl,BitA 

Define 1st byte of bit flags 
Define a bit flag 
Define 2nd byte of bit flags 
Define a bit flag 

Set bit A 'on' 

There is implicitly a problem: the names of the bytes holding the flag bits, and the names 
given to the bits, are unrelated. This means that it is easy to make mistakes like the fol­
lowing: 

01 
NI 

Flagl,BitB 
Fl ag2 ,255-Bi tA 

Set Bit B ON ?? 
Set Bit A OFF ?? 

Because there is no strict association between the byte and the bit it "contains", there is no 
way for the assembler (and often, the programmer) to detect such misuses. 
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Simple Bit-Defining Macro: Design Considerations 

Two similar ways to generate bit definitions 

1. Allocate storage byte first, define bits following: 

DC 1'8' Unnamed byte 
Bit_A Equ *-l,X'88' Bit_A defined as bit 8 

2. Define bits first, allocate storage byte following: 

Bit_B DS DXL(X'48') 
DC x•a• 

Bit I defined as bit 1 
unnamed byte 

Length Attribute used for named bits and unnamed bytes 

1M Bit_Naae,L'lit_Na1111! Refer to byte and bit using bit name 

DS 
BitA Equ 

DS 
Bitl Equ 

01 
NI 

x 
*-l,X'81' 
x 
*-l,X'l8' 
BitB, L 'Bill 
Bi tA, 255-L' Bi tA 

Unna111ed byte 
Define litA: Length Attribute = bit value 
Unnamed byte 
Define litl: Length Attribute = bit value 
Set litl ON (uses na11e 'BitB • only) 
Set BitA OFF (uses na111e 'litA' only) 
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One solution to this "association" problem is to use length attribute references to designate 
bit values. This allows us to "name" a bit, as follows: 

DS X 
BitA Equ *-1,X'01' 

DS X 
BitB Equ *-1,X' 10' 

Unnamed byte 
Length Attribute = bit value 
Unnamed byte 
Length Attribute = bit value 

Another way to achieve the same result is to associate the length attribute with the storage 
location: 

BitA 

BitB 

DS 
DS 
DS 
DS 

0XL(X'01') 
x 
0XL(X' 10') 
x 

Length Attribute = bit value 
Unnamed byte 
Length Attribute =bit value 
Unnamed byte 

In each case, the bit name is the same as the name of the byte that contains it. Then, all bit 
references are made only with the bit "names": 

01 
TM 

BitA,L'BitA 
BitB,L'BitB 

Set Bit A 'on' 
Test Bit B 

and (if one is careful) the bits will never be associated with the wrong byte! There is, of 
course, no guarantee that one might not write something like 

01 BitA,L'BitB ??? 

but there is clearly something peculiar about the statement; and, a quick scan of the symbol 
cross-reference will show that there are unpaired references to the symbols BitA and BitB in 
this statement; correct references will occur in pairs. 
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Simple Bit-Defining Macro: Pseudo-Code 

Generate a bit-name EQUate for each argument, allocate storage 

Syntax: SBitDef bitname[,bitname] •.. 

Examples: 

SBitDef bl,b2,bl,b4,b5,b6,b7,b8 Eight bits in one byte 

SBitDef c,d,e,f,g,h,i,j,k, l,•,n,o,p,q,r,s,t,u,v Many bits+bytes 

Pseudo-code: 

Set Lengths to bit-position weights (128,64,JZ,16,8,4,Z,l) 

!! for M = l to Number_of_Arguments 
!f (Mod(M,8)=1) GEN ( DC 1'8' ) (Generate unnamed byte) 
GEN (Arg(M) EQU "-1, Lengths(Mod(M-1,8}+1) ) (Define bit nue) 

HLASM Macro Tutorial l!:l Copyright IBM Corporation 1993, 2002. All rights reserved. 

Simple Bit-Defining Macro: SBITDEF 

Macro , Error checking o•itted 
SBitDef , No declared parameters 

&L(l} SetA 128, 64,32,16,8,4,Z,l Define bit position values 
&NH SetA N'&Syslist Number of bit names provided 
&M SetA 1 Name counter 

~.NB Aif ( UI gt &llN} • Done Check if names exhausted 
&C SetA 1 Start new byte at leftmost bit 

DC B'8' Allocate a bit-flag byte 

[ 
AN op Get a new bit name 
Sett '&Syslist(&M)' Get M-th name from argument list 
Equ *-1,&L(&C) Define bit via length attribute 
SetA Ul+l Step to next name 
Aif , .... ""'·'"j Exit if names exhausted 
SetA &C+l Count bits in a byte 
Aif (&Cle 8}.Newll Get new name if byte not full 
Ago .NB Byte is filled, start a new byte 

.Done MEnd 

SBitDef bl,bZ Define bits bl, bZ 
+ DC B'8' Allocate a bit-flag byte 
+bl Equ "-1,128 Define bit via length attribute 
+bZ Equ "-1,64 Define bit via length attribute 
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Case Study Sa: Bit-Handling Macros -- Simple Forms 

Tech-40 

Tech-41 

The simplest way to "encourage" correct matching of bit names and byte names is to make 
all bit references with macros. We will illustrate a simple set of macros to do this. 

First, suppose we want to "define" bit names, and allocate storage for them. We will write a 
macro that accepts a list of bit names, and defines bit values in successive bytes, eight bits 
to a byte. A pseudo-code description of the macro's operation is as follows: 

Set Lengths to bit-position weights (128,64,32,16,8,4,2,1) 

DO for M = 1 to Number_of_Arguments 
.!£ (Mod(M,8)=1) GEN ( DC B'fl') (Generate 
GEN (Arg(M) EQU *-1,Lengths(Mod(M-1,8)+1) ) 

unnamed byte) 
(Define bit name) 
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The SBi tDef macro in Figure 48 on page 141 takes the names in the argument list and allo­
cates a single bit to each, eight bits to a byte. Each call to the SBi tDef macro starts a new 
byte. We use the &SYSLIST system variable symbol to access the arguments, and a Number 
attribute reference, N'&SYSLIST, to determine the number of arguments. 

Macro 
SBitDef , No declared parameters 

&L( 1) SetA 128,64,32,16,8,4,2,1 Define bit position values 
&NN Set A N'&Syslist Number of bit names provided 
&M SetA 1 Name counter 

Aif (&NN eq 0).Null Check for null argument list 
.NB Aif (&M gt &NN).Done Check if names exhausted 
&C SetA 1 Start new byte at leftmost bit 

DC BI fJ I Allocate a bit-flag byte 
.NewN A Nop , Get a new bit name 
&B SetC '&Syslist(&M)' Get M-th name from argument list 

Aif ( '&B ' eq ' ') . Nu 11 Note null argument 
&B Equ *-1,&L(&C) Define bit via length attribute 
&M SetA &M+l Step to next name 

Aif (&M gt &NN).Done Exit if names exhausted 
&C SetA &C+l Count bits in a byte 

Aif (&C le 8). NewN Get new name if not done 
Ago .NB Byte is filled, start a new byte 

.Null MNote 4,'SBitDef: Missing name at arglist position &M' 
&M SetA &M+l Step to next name 

Aif (&M le &NN).NewN Go get new name if not done 
.Done MEnd 

Figure 48. Simple Bit-Handling Macros: Bit Definitions 

Some examples of calls to the SBi tDef macro are shown in the following figure: 
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SBi tDef bl,b2,b3,b4,b5,b6,b7,b8 Eight bits in one byte 
+ DC B'El' Allocate a bit-flag byte 
+bl Equ *-1,128 Define bit via length attribute 
+b2 Equ *-1, 64 Define bit via length attribute 
+b3 Equ *-1,32 Define bit via length attribute 
+b4 Equ *-1,16 Define bit via length attribute 
+b5 Equ *-1,8 Define bit via length attribute 
+b6 Equ *-1,4 Define bit via length attribute 
+bl Equ *-1,2 Define bit via length attribute 
+b8 Equ *-1,1 Define bit via length attribute 

SBitDef c,d,e,f,g,h,i,j,k,l,m Many bits and bytes 
+ DC B'El' Allocate a bit-flag byte 
+c Equ *-1, 128 Define bit via length attribute 
+d Equ *-1,64 Define bit via length attribute 
+e Equ *_-1, 32 Define bit via length attribute 
+f Equ *-1,16 Define bit via length attribute 
+g Equ *-1,8 Define bit via length attribute 
+h Equ *-1,4 Define bit via length attribute 
+i Equ *-1,2 Define bit via length attribute 
+j Equ *-1,1 Define bit via length attribute 
+ DC B'El' Allocate a bit-flag byte 
+k Equ *-1,128 Define bit via length attribute 
+l Equ *-1,64 Define bit via length attribute 
+m Equ *-1,32 Define bit via length attribute 

Figure 49. Simple Bit-Handling Macros: Examples of Bit Definitions 

This simple macro has several limitations: 

• Bits cannot be "grouped" so that related bits are certain to reside in the same byte, 
except by writing a statement with a new SBi tDef macro call. 

This means that we cannot plan to use the machine's bit-manipulation instructions (which 
can handle up to 8 bits simultaneously) without manually arranging the assignments of 
bits and bytes. 

• If a bit name is declared twice, it will cause HLASM to issue a diagnostic ASMA043E 
message for a previously defined symbol. , 

We will explore some techniques that can be used to overcome these limitations. 
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Simple Bit-Manipulation Macros: Pseudo-Code 

Operations on "named" bits 

Setting bits on: one OI instruction per named bit 

!f (Label 'I null) GEN (Label DC BH'B') 

.!!! for M = l to Mumber_of_Arguments 
GEN ( DI Arg(M),l'Arg(M) ) to set bits on 

Length Attribute reference specifies the bit 

- As illustrated in the simple bit-defining macro 

Similar macros for setting bits off, or inverting bits 

IF (Label '/ null) 6EN (Label DC BH'B') 
- GEN ( NI Arg(M);ZSS-l 'Arg(M) ) to set bits off 

GEN { XI Arg{M), l 'Arg{M) ) to invert bi ts 

Warning: these simple macros are very trusting! 
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Simple Bit-Manipulation Macros 

Tech-42 

Now, we will illustrate some simple macros that "utilize" the bit definitions just described. 
(The macros are useful, but do very little checking; improvements will be discussed later, at 
"Case Study 8b: Bit-Handling Macros - Advanced Forms" on page 150.) 

Simple Bit-Handling Macros: Setting Bits ON 

Macro SBitOn to set one or more bits ON 

Syntax: SBitOn bitname[,bitname] •.. 

Macro , Error Checking omitted 
&lab SlitOn 
&NH SetA N'&Syslist Number of Names 
UI SetA l 

Aif {'&Lab' eq ").Next Skip if no name field 
&lab DC BH'B' Define label 

[ 
ANop . Get a bit name 
Sett '&Syslist{UI)' Extract nalll! (Ul-th positional argullll!nt) 

0 DI &B,L '&B Set bit on 
UI SetA Ul+l Step to next bit nallll! 

Aif (UI le &NN) .Next Go get another name 
MEnd 

Hl.ASM Macro Tutorial ©Copyright IBM Corporation 1993, 2002. All rights reserved. Tech-43 
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I Simple Bit-Handling Macros: Setting Bits ON ... 

Examples: 

AA1 Slit8n bl, bl, b8, cl, c2 
+AAl DC 8H'B' Define label 
+ DI bl,L'bl Set bit on 
+ DI bl,L'bl Set bit on 
+ DI b8,L'b8 Set bit on 
+ DI cl,L'cl Set bit on 
+ DI cZ,L'cZ Set bit on 

SBitDn bl,b8 
+ DI bl,L'bl Set bit on 
+ DI b8,L'b8 Set bit DR 

Observe: one 01 instruction per bit! 

- We will consider optimizations tater 
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Simple Bit-Manipulation Macros: Setting Bits ON 

Having created the SBitDef macro to define bit names, we can now write some macros to 
manipulate them by setting them on and off, and by inverting ("Hipping") their state. First, we 
will write a macro SBitOn that will set a bit to an "on" state (i.e., to 1). 

A pseudo-code description of the SBitOn macro is as follows: 

IF (Label i null) GEN (Label DC 0H'0') 

DO for M = 1 to Number_of_Arguments 
GEN ( 01 EQU Arg(M),L'Arg(M) ) 

The SBitOn macro is shown in Figure 50 on page 145. 
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&Lab 
&NN 
&M 

.OK 

Macro 
SBitOn 
SetA N'&SysList 
SetA 1 
Aif (&NN gt 0).0K 
MNote 4,'SBitOn: No bit 
MExit 

, 

Number of Names 

Should not have empty name list 
names?' 

&Lab 

A Nop 
Aif 
DC 

('&Lab' eq 1 ').Next 
eH 1e1 

Names exist in the list 
Skip if no name field 
Define label 

.Next ANop , 
&B SetC 1&SysList(&M) 1 

Aif ( 1 &B 1 ne 11 ).Go 
MNote 4,'SBitOn: Missing 
Ago .Step 

.Go 01 &B,L 1 &B 

.Step ANop , 
&M SetA &M+l 

Aif (&M le &NN).Next 
MEnd 

Get a bit name 
Extract name (&M'th positional 
Check for missing argument 

argument at position &M' 
Go look for more names 
Set bit on 

Step to next bit name 
Go get another name 

Figure 50. Simple Bit-Handling Macros: Bit Setting 

arg) 

In the following figure, we illustrate some calls to this macro to perform various bit settings; 
the generated statements are flagged with a "+" in the left margin: 

AAl SBitOn bl,b3,b8,cl,c2 
+AAl DC 8H 10 1 Define label 
+ 01 bl,L'bl Set bit on 
+ 01 b3,L'b3 Set bit on 
+ 01 b8,L 1 b8 Set bit on 
+ 01 cl,L'cl Set bit on 
+ 01 c2,L'c2 Set bit on 

SBitOn bl,bB 
+ 01 bl,L'bl Set bit on 
+ 01 b8,L 1 b8 Set bit on 

Figure 51. Simple Bit-Handling Macros: Examples of Bit Setting 

Each bit operation is performed by a separate instruction, even when two or more bits have 
been allocated in the same byte. We will see in "Case Study 8b: Bit-Handling Macros -
Advanced Forms" on page 150 how we might remedy this defect. 
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Simple Bit-Handling Macros: Set OFF and Invert Bits 

Macros SBitOff and SBitlnv are defined like SBitOn: 

- SBitOff uses NI to set bits off 

Macro 
&lab SBitOff 

- - - etc., as for SBiton 
.60 NI &8,ZSS-L'&B Set bit off 
. * etc • 

MEnd 

- SBitlnv uses XI to invert bits 

Macro 
&lab SBitlnv 

- - - etc., as for SBitOn 
. 60 XI &8, L '&8 Invert bit 

etc. 
MEnd 

HLASM Macro Tutorial I!:> Copyi-ight IBM Corporation 1993. 2002 All rights reserved. 

Simple Bit-Handling Macros: Set OFF and Invert Bits .•. 

Examples: 

bbl SBitOff bl,b3,b8,cl,cZ 
+bbl DC BH'B' Define label 
+ NI bl,ZSS-L'bl Set bit off 
+ NI bl, Z55-L 'bl Set bit off 
+ NI b8, Z55-L 'b8 Set bit off 
+ NI cl, 255-L 'cl Set bit off 
+ NI cZ,255-L'cZ Set bit off 

eel SBitlnv bl,b3,b8,cl,eZ 
+eel DC BH'B' Define label 
+ XI bl,L'bl Invert bit 
+ XI b3,L'b3 Invert bit 
+ XI b8,L'b8 Invert bit 
+ XI el,l'cl Invert bit 
+ XI cZ,L'eZ Invert bit 

Observe: one NI or XI instruction per bit 
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Simple Bit-Manipulation Macros: Inverting and Setting Bits OFF 

Tech-45 

lech-46 

The SBitOff macro is exactly like the SBitOn macro, except that the generated statement to 
set the bit "off" (i.e., to 0) is changed from 01 to NI, and the bit-testing mask field is inverted: 

Macro 
&Lab SBi tOff 
* etc., as for SBitOn 

.Go NI &B,255-L'&B Set bit off 
* etc., as for SBitOn 

MEnd 

Figure 52. Simple Bit-Handling Macros: Bit Resetting 
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Some macro calls that illustrate the operation of the SBitOff macro are shown in the fol­
lowing figure: 

bbl SBi tOff bl,b3,b8,cl,c2 
+bbl DC 6H'6' Define label 
+ NI bl,255-L'bl Set bit off 
+ NI b3,255-L'b3 Set bit off 
+ NI b8,255-L'b8 Set bit off 
+ NI cl,255-L'cl Set bit off 
+ NI c2,255-L'c2 Set bit off 

SBitOff bl,b8 
+ NI bl,255-L'bl Set bit off 
+ NI bB,255-L'bB Set bit off 

Figure 53. Simple Bit-Handling Macros: Examples of Bit Resetting 

Similarly, the SBitlnv macro inverts the designated bits, using XI instructions: 

Macro 
&Lab SBi tinv 
* etc., as for SBitOn 

.Go XI &B,L'&B Invert bit 
* etc., as for SBitOn 

MEnd 

Figure 54. Simple Bit-Handling Macros: Bit Inversion 

Some calls to SBitlnv illustrate its operation: 

eel SBitinv bl,b3,b8,cl,c2 
+eel DC 6H'6' Define label 
+ XI bl,L'bl Invert bit 
+ XI b3,L'b3 Invert bit 
+ XI b8,L'b8 Invert bit 
+ XI cl,L'cl Invert bit 
+ XI c2,L'c2 Invert bit 

SBitinv bl,b8 
+ XI bl,L'bl Invert bit 
+ XI b8,L'b8 Invert bit 

Figure 55. Simple Bit-Handling Macros: Examples of Bit Inversion 
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Simple Bit-Handling Macros: Branch on Bit Values 

Simple bit-testing macros: branch to target if bitname is on/off 
Syntax: SBBitxxx bitname,target 

Macro 
&Lab SBBitOn &B,&T 
&Lab TM &B,L'&B 

BO &T 
MEnd 

Macro 
&Lab SBBitOff &B,&T 
&Lab TM &B,L'&B 

BNO &T 
MEnd 

Examples 
ddl SBB i ten bl, aal 

+ddl TM bl,L'bl 
+ BO aal 

SBBitDn bZ,bbl 
+ TM. bZ,L'bZ 
+ BO bbl 

Bitname and branch label 
Test specified bit 
Branch if ON 

Bitname and branch label 
Test specified bit 
Branch if OFF 

Test specified bit 
Branch if ON 

Test specified bit 
Branch if ON 
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Simple Bit-Testing Macros 

Tech-47 

To complete our set of simple bit-handling macros, suppose we need macros to test the 
setting of a bit, and to branch to a designated label specified by & T if the bit named by &B is 
on or off. We can write two macros named SBBitOn and SBBitOff to do this; each has two 
arguments, a bit name and a label name. 

The syntax of the two macros is the same: 

SBBitxxx bitname,target 

tests the bit named bitname, and if on or off (as specified by the name of the macro) 
branches to the statement with label target. 

Macro 
&Lab SBBitOn &B,&T Bitname and branch label 

Aif (H'&Syslist eq 2).0K Should have exactly 2 arguments 
MHote 4,'SBBitOn: Incorrect argument list?' 
MExit 

.OK Aif ( 1 &B 1 eq 11 or '&T' eq ").Bad 
&Lab TM &B,L'&B Test specified bit 

BO &T Branch if OH 
MExit 

.Bad MHote 8,'SBBitOn: Bit Name or Target Name missing' 
MEnd 

Figure 56. Simple Bit-Testing Macros: Branch if Bit is On 

Some examples of calls to the SBBitOn macro are shown in the following figure: 
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ddl SBBitOn bl,aal 
+ddl TM bl,L'bl Test specified bit 
+ BO aal Branch if ON 

SBBitOn b2,bbl 
+ TM b2,L'b2 Test specified bit 
+ BO bbl Branch if ON 

Figure 57. Simple Bit-Handling Macros: Examples of "Branch if Bit On" 

A similar macro can be written to branch to a specified label if a bit is off: 

Macro 
&Lab SBBi tOff &B,&T Bitname and branch label 
* etc., as for SBBitOn macro 

&Lab TM &B,L 1 &B Test specified bit 
BNO &T Branch if OFF 

* etc., as for SBBitOn macro 
MEnd 

Figure 58. Simple Bit-Handling Macros: Branch if Bit is Off 

Calls to the SBBitOff macro might appear as follows: 

eel SBBitOff bl,ddl Branch to ddl if bl is off 
+eel TM bl,L'bl Test specified bit 
+ BNO ddl Branch if OFF 

SBBitOff b2,ddl Branch to ddl if b2 is off 
+ TM b2,L'b2 Test specified bit 
+ BNO ddl Branch if OFF 

Figure 59. Simple Bit-Handling Macros: Examples of "Branch if Bit Off' 

This completes our first, simple set of bit-handling macros. It is evident that a fairly helpful 
set of capabilities can be written with a very small effort, and be put to immediate use. 
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Bit-Handling Macros: Enhancements 

The previous macros work, and can be put to immediate use. 
They will be enhanced in two ways: 

1. Check to ensure that "bit names" really do name bits! 
(We need "encapsulation" and "strong typing!") 

x 
Flag 

DC F'Zl' 
Equ X'88' 
SBitOn Flag,X 

Define a constant 
Define a flag bit (?) 'sollll!where' 
Set two bits ON •somewhere' ??7 

2. Handle bits within one byte with one instruction (code optimization!) 

More enhancements are possible (but not illustrated here): 

- Pack all bits (storage optimization) (but may not gain much) 
- "Hide" declared bit names so they don't appear as ordinary symbols 

(make "strong typing" even stronger•) 
- Provide a "run-time symbol table" for debugging 

ADATA instruction can put info into SYSADATA file 
- Create. separate CSECT with names. locations. bit values 
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Case Study Sb: Bit-Handling Macros -- Advanced Forms 

Tech-48 

There are two problems with the preceding "simple set" of bit-handling macros: 

1. it is common to want to operate on more than one bit within a given byte at the same 
time. For example, suppose two bits are defined within the same byte: 

OS X 
BitJ Equ *-1,X'46' 
BitK Equ *-1,X'26' 

We would prefer to set both bits "on" with a single 01 instruction. Two possibilities are 
evident: 

OI BitJ,L'BitJ+L'BitK 
OI BitK,L'BitJ+L'BitK 

While these generated instructions are correct, they do not completely satisfy our intent 
to name only the bits we wish to manipulate, and not the bytes in which they are defined. 
Thus, we need some degree of "optimization" in our bit-handling macros. 

2. It's worth observing that these simple macros are very trusting (and therefore require 
that you be very careful). There is no checking of the "bit names" presented as argu­
ments in the bit-manipulation macros to verify that they were indeed declared as bits in a 
"bit definition" macro. For example, one might have written (through some oversight, 
probably not as drastic as this!) 

Flag Equ X'68' Define a flag bit 

SBitOn Flag Set 'something, somewhere' on ??? 

and the result would not have been what was expected or desired. 

Similarly, if you had defined a variable X as the name of a fullword integer: 

X DC F'23' 

then you could use X as a "bit name" with no warnings: 

SBitOn X 
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would generate the instruction 

01 X,L 'X 

which is unlikely to give the result you intended! 

Thus, we need some degree of "strong typing" and "type checking" in our bit-handling 
macros. 

Bit-Handling "Micro-Compiler" 

Goal: Create a "Micro-compiler" for bit operations 

- Micro: Limit scope of actions to specific data types and operations 

- Compiler: Perform typical syntax/semantic scans, generate code 

- Each macro can check syntax of definitions and uses 

- Build and use "Symbol Tables" of created global variable symbols 

"Bit Language" the same as for the simple bit-handling macros: 

- Data type: named bits 

- Operations: define: set on/off/invert; test-and-branch 

Can incrementally add to and improve each language element 

- As these enhancements will illustrate 
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Bit-Handling "Micro Language" and "Micro-Compiler" 

Tech-49 

Solving these problems provides us with an opportunity to create a "micro-compiler" for 
handling bit declarations and operations. Because we have limited our concerns to bit oper­
ations, the macros can be fairly simple, while illustrating some of the types of functions 
needed in a typical compiler for a high-level language. 

We will start with a Bi tDef macro that declares bit flags, and keeps track of which ones have 
been declared. We will add an extra feature to help improve program efficiency: if a group of 
bits should be kept in a single byte, so that they can be set and tested in combinations, then 
their names may be specified as a parenthesized operand sublist. The macro will ensure 
that (if at most eight are specified) they will fit in a single byte. Thus, in 

BitDef a,b,c,(d,e,f ,g,h,i),j,k 

the bits named a,b,c will be allocated in one byte, and bits d,e,f,g,h,i will be allocated in a 
new byte because there is not enough room left for all of them in the byte containing a,b,c. 
However, bits j,k will share the same byte as d,e,f,g,h,i because there are two bits 
remaining for them. 

One of the decisions influencing the design of these macros is that we wish to optimize exe­
cution performance more than we wish to minimize storage utilization; because bits are 
small, wasting a few shouldn't be a major concern. Each instruction saved represents many 
bits! (Storage optimization is left as an exercise for the reader.) 
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Bit-Handling Macros: Data Structures 

Bit declaration requires three simple "global" items: 

1. A Byte _Number to count bytes in which bits are declared 

2. A BitCount for the next unallocated bit in the current byte 

3. An associatively addressed Symbol Table -
Each declared bit name creates a global arithmetic variable: 

- Its name &(Bi1Def_MyBit_ByteNo) is constructed from 

a prefix BitDef_ (whatever you like. to avoid global-name collisions) 

the declared bit name HyBi t (the "associative" feature) 

a suffix _ByteNo (whatever you like, to avoid global-name collisions) 

- Its value is the Byte_Number in which this bit was allocated 

Remember: the bytes themselves will be unnamed! 
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The data structures (which may be thought of as our "micro-compiler's" symbol table) used 
for these macros include a Byte_Number to enumerate the bytes in which the named bits have 
been allocated, a Bit_ Count to count how many bits have been allocated in the current byte, 
and a created global arithmetic variable symbol for each bit. The value of the created vari­
able symbol is the Byte Number in which the named bit resides. (We will use the fact that a 
declared arithmetic variable symbol is initialized to zero to detect undeclared bit names.) 

The created variable symbol's name is quite arbitrary, and need only contain the bit name 
somewhere; we will construct the name from a prefix BitDef . the bit name, and a suffix 
_ByteNo. If such names collide with global names used by other macros, it is easy to change 
the prefix or suffix. 

General Bit-Defining Macro: Design 

Bits may be "packed"; sublisted names are kept in one byte 

Example: BitDef a,(b,c),d keeps b and c together 

High-level pseudo-code: 

!!_ for all arguments 

!f argument is not a sublist 

THEN assign the named bit to a byte (start another if needed} 

ELSE !f sublist has 1110re than 8 items, ERROR STOP, can't assign 

ELSE if not enough room in current byte,. start another 

Assign sublist bit names to a byte 
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General Bit-Defining Macro: Pseudo-Code 

Set Lengths = 1Z8,li4,JZ,11i,8,4,Z,1 (Bit values, indexed by lit_Coant} 
.!!!! for M = 1 to Number_of_Arguments 

Set I = Arg_List(M) . 
IF (Substr(B,1,1) f '( '} PERFORM SetBit(B} (not a sublist) 
- ELSE (Handle sublist) ---

!!: (N_SubList_ItellS > 8) ERROR Sublist too lDng 
!f (BitCount+N_Sublist_ItellS > 8} PERFORM NewByte 
DB for CS = 1 to N Sublist Items (Handle sublist) 
- PERFORM SetBit(Arg_List(M,CS)} 

Setlit(B): (Save bit name and lyte_Number in which the bit resides:) 
IF (Mod(BitCount,8} = 8) PERFORM Newlyte 
Declare created global variable &(BitDef_&l._Byte_Nulllber) 
Set created variable (Symbal Table entry} to Byte_Nulllber 
liEN (I EQU *-1, Lengths(litCaant) } 
Set BitCaunt = BitCount+l (Step ta next bit in this byte} 

Newlyte: liEN( DC B'B' }; Increment lyte_Nullber; BitCaunt = 1 

Created symbol contains bit name; its value is the byte number 
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This bit-defining macro starts a new byte in storage for each macro call. It would be easy to 
"pack" all bits (not just those in sublists) to improve storage utilization by providing a global 
arithmetic variable to remember the current unallocated bit position across calls to the 
Bi tDef macro. 

In the SetBi t (B) : portion of the pseudo-code, we use created variable symbols as entries in 
the "BitDef" symbol table. Each such entry is set to a nonzero value determined by the 
Byte~Number in which the bit was allocated. (This "Byte_Number" is simply a count of the 
number of bytes allocated to hold bits declared by the BitDef macro.) 

General Bit-Handling. Macros: Bit Definition 

&L(l) 
INN 
UI 
.NB 
&C 

Macro , 
BitDef 

Some error checks amitted 

GblA &BitDef_ByteND Used to caunt defined bytes 
SetA 1Z8,li4,JZ,lli,8,4,Z,l Define bit positian values 
SetA N'&SysList ltuJDer of bit names provided 
SetA 1 Name caunter 
Aif (UI gt UBI}. Dene Check if naaes exhausted 
SetA 1 Start new byte at 1 eft1111st bit 
DC B'B' Define a bit-flag byte 

&BitDef_ByteND SetA &BitDef_Bytello+l Incre11ent byte nllllber 
.NewN ANDp , liet a new bit na1ll! 

&B Sett '&Syslist(&M) • liet M-th na1ll! fro• argnent list 
Aif ('&B'(l,l) ne '('}.Nol Branch tf llDt a sublist 

8HS 
&CS 

&C 

SetA N'&Syslist(&M) Number af sublist elements 
SetA l Initialize count ef sublist item 
Aif (&C+8HS le 9).SubT Skip if room left in current byte 
SetA 1 Start a new byte 
DC B'B' Define a bit-flag byte 

&BitDef_ByteND SetA &BitDef _ByteNo+l lncre11ent byte number 
* (continued) 
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General Bit-Handling Macros: Bit Definition ... 

(continuation) Naae is in a sublist 
.SubT ANop , Generate sublist equates 
&I SetC '&Syslist(Ul,&CS) • Extract sublist element 

GblA &(BitDef_&l._lyteNo) Created var sym lfith ByteNo for this bit 
&I Equ •-i,&L(&C) Define bit via length attribute 
&(BitDef_&l._ByteNo) SetA &litDef_lyteNo Byte no. for this bit 
&CS SetA &CS+l Step to next sublist ite11 

Aif (&CS gt &NS).NewA Skip if end of sublist 
&C SetA &C+l Coant bits in a byte 

Ago .SubT And go do 1111re list elellll!nts 
.Nol ANop , Not a sublist 

liblA &(BitDef_&l._lyteNo) Declare byte nuDlber f&r this bit 
&I Eqa *-1,&L(&C) Define bit via length attribute 
&(BitDef_&l._ByteNo) SetA &litDef_ByteNa Byte no. for this bit 
• NewA ANop , Ready for next argUD1ent 
UI SetA Ul+l Step to next nallll! 

Aif (UI gt IMN}. Done Exit if names exhausted 
&C SetA &C+l Coant bits in a byte 

Aif (&C le 8) .Newll Get new name if not done 
Ago .NB Bit filled, start a new byte 

.Dane MEnd 
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Dedaring Bit Names 

In the BitDef macro illustrated in Figure 61 on page 155, several techniques are used. The 
global arithmetic variable &BitDef ByteNo is used to keep track of a "byte number" in which 
the various bits are allocated; each time a new byte is allocated, this variable is incre­
mented by 1. The first SETA statement initializes the local arithmetic array variables &L(l) 
through &L(8) to values corresponding to the binary weights of the bits in a byte, in left-to­
right order. 

After each bit name has been extracted from the argument list, a global arithmetic variable 
&(BitDef_&B._ByteNo) is constructed (and declared) using the supplied bit name as the value 
of &B, and is assigned the value of the byte number to which that bit will be assigned. This 
has two effects: 

1. a unique global variable symbol is generated for every bit name; 

2. the value of that symbol identifies the byte it "belongs to" (remember that the bytes have 
no names themselves; references in actual instructions will be made using bit names and 
length attribute references). 

An additional benefit of this technique is that later references to a bit can be checked 
against this global variable: if its value is zero (meaning it was declared but not initialized) 
we will know that the bit was not declared, and therefore not allocated to a byte in storage. 

A pseudo-code description of the macro is as follows: 
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Set Lengths= 128,64,32,16,8,4,2,1 (Bit values, indexed by Bit_Count) 
DO for M = 1 to Number of Arguments 
~Set B = Arg_List(M)- -

1£ (Substr(B,1,1) f 1 ( 1 ) PERFORM SetBit(B) (not a sublist) 
ELSE (Handle sublist) 

1£ (N_Sublist_Items > 8) ERROR Sublist too long 
1£ (BitCount+N_Sublist_Items > 8) PERFORM NewByte 
DO for CS= 1 to N_Sublist_Items (Handle sublist) 

PERFORM SetBit(Arg_List(M,CS)) 

SetBit(B): (Save bit name and Byte_Number in which the bit resides:) 
IF (Mod(BitCount,8) = 0) PERFORM NewByte 
Declare created global variable &(BitDef_&B._Byte_Number) 
Set created variable (Symbol Table entry) to Byte_Number 
GEN (B EQU *-1,Lengths(BitCount) ) 
Set BitCount = BitCount+l (Step to next bit in this byte) 

NewByte: GEN( DC B'0' ); Increment Byte_Number; BitCount = 1 

Figure 60. Bit-Handling Macros: Define Bit Names: Pseudo-Code 

Another new feature introduced in this macro definition is the ability to handle sublists of bit 
names that are to be allocated within the same byte. The pseudo-code doesn't test for 
missing or duplicate bit names, but the full macro definition, shown in the following figure, 
does include them. 

Macro 
BitDef 
GblA &BitDef _ByteNo Used to count defined bytes 

&L(l) SetA 128,64,32,16,8,4,2,1 Define bit position values 
&NN SetA N'&Syslist Number of bit names provided 
&M SetA 1 Name counter 

Aif (&NN eq 0).Null Check for null argument list 
.NB Aif (&M gt &NN).Done Check if names exhausted 
&C SetA 1 Start new byte at leftmost bit 

DC B'0' Define a bit-flag byte 
&BitDef_ByteNo SetA &BitDef_ByteNo+l Increment byte number 
.NewN ANop , Get a new bit name 
&B SetC 1&Syslist(&M)' Get M-th name from argument list 

Aif ('&B' eq '').Null Note null argument 
Aif ('&B'(l,1) ne 1 ( 1 ).Nol Branch if not a sublist 

&NS SetA N'&Syslist(&M) Number of sublist elements 
Aif (&NS gt 8).ErrS Error if more than 8 
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&~S SetA 1 Initialize count of sublist items 
Aif (&C+&NS le 9)~SubT Skip if room left in current byte 

&C SetA 1 Start a new byte 
DC B101 Define a bit-flag byte 

&BitDef _ByteNo SetA &BitDef_ByteNo+l Increment byte number 
.SubT ANop , Generate sublist equates 
&B SetC 1&Syslist(&M,&CS)' Extract sublist element 

Aif ('&B' eq '').Null Check for null item 
GblA &(BitDef_&B._ByteNo) Created var sym with ByteNo for this bit 
Aif (&(BitDef_&B._ByteNo) gt 0).DupDef Branch if declared 

&B Equ *-1,&L(&C) Define bit via length attribute 
&(BitDef_&B._ByteNo) SetA &BitDef_ByteNo Byte no. for this bit 
&CS SetA &CS+l Step to next sublist item 

Aif (&CS gt &NS).NewA Skip if end of sublist 
&C SetA &C+l · Count bits in a byte 

Ago .SubT And go do more list elements 
.Nol ANop , Not a sublist 

GblA &(BitDef_&B._ByteNo) Declare byte number for this bit 
Aif (&(BitDef_&B._ByteNo) gt 0).DupDef Branch if declared 

&B Equ *-1,&L(&C) Define bit via length attribute 
&(BitDef_&B._ByteNo) SetA &BitDef_ByteNo Byte no. for this bit 
.NewA ANop , Ready for next argument 
&M SetA &M+l Step to next name 

Aif (&M gt &NN).Done Exit if names exhausted 
&C SetA &C+l Count bits in a byte 

Aif (&Cle 8)~NewN Get new name if not done 
Ago .NB Bit filled, start a new byte 

.DupDef MNote 8,'BitDef: Bit name 11 &B 11 was previously declared.' 
MExit 

.Errs MNote 8,'BitDef: Sublist Group has more than 8 members• 
MExit 

.Null MNote 8, 1 BitDef: Missing name at argument &M' 

.Done MEnd 

Figure 61 (Part 2 of 2). Bit-Handling Macros: Define Bit Names 
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Examples of Bit Definition 

Example: Define ten bit names (with macro-generated code) 

a4 Bit Def dl,d2,dl,(d4,d5,d6,d7,d8,d9),dlU d4 starts new byte 
+ DC a•o• Define a bit-flag byte 
+dl Equ *-1,128 Define bit via length attribute 
+dZ Equ *-1, 64 Define bit via length attribute 
+dl Equ *-1,32 Define bit via length attribute 
+ DC B'B' Define a bit-flag byte 
+d4 Equ *-1,128 Define bit via length attribute 
+d5 Equ *-1,64 Define bit via length attribute 
+d6 Equ *-1,32 Define bit via length attribute 
+d7 Equ *-1,16 Define bit via length attribute 
+d8 Equ *-1,8 Define bit via length attribute 
+d9 Equ *-1,4 Define bit via length attribute 
+dlU Equ *-1,Z Define bit via length attribute 

Bits named d4-d9 are allocated in a single byte 

- Causes some bits to remain unused in the first byte 
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Some examples of calls to this Bi tDef macro are shown in the following figure; the gener­
ated instructions are displayed (with "+" characters in the left margin) for two of the calls: 

a4 BitDef dl,d2,d3,(d4,d5,d6,d7,d8,d9),d1S d4 starts new byte 
+ DC B'S' Define a bit-flag byte 
+dl Equ *-1,128 Define bit via length attribute 
+d2 Equ *-1,64 Define bit via length attribute 
+d3 Equ *-1,32 Define bit via length attribute 
+ DC B'S' Define a bit-flag byte 
+d4 Equ *-1,128 Define bit via length attribute 
+d5 Equ *-1,64 Define bit via length attribute 
+d6 Equ *-1,32 Define bit via length attribute 
+d7 Equ *-1,16 Define bit via length attribute 
+d8 Equ *-1,8 Define bit via length attribute 
+d9 Equ *-1,4 Define bit via length attribute 
+dl8 Equ *-1,2 Define bit via length attribute 

as BitDef el,e2,e3,e4,e5,e6,e7,(e8,e9) e8 starts new byte 

a6 BitDef gl,(g2,g3,g4,g5,g6,g7,g8,g9) g2 starts new byte 

a7 BitDef (h2,h3,h4,h5,h6,h7,h8,h9,h1S),hll error, 9 in a byte 
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a9 BitOef (kl,k2,k3,k4),(k5,k6,k7,k8),k9,kl0 two sublists 
+ DC 8 1 8 1 Define a bit-flag byte 
+kl Equ *-1,128 Define bit via length attribute 
+k2 Equ *-1,64 Define bit via length attribute 
+k3 Equ *-1,32 Define bit via length attribute 
+k4 Equ *-1,16 Define bit via length attribute 
+k5 Equ *-1,8 Define bit via length attribute 
+k6 Equ *-1,4 Define bit via length attribute 
+k7 Equ *-1,2 Define bit via length attribute 
+k8 Equ *-1, 1 Define bit via length attribute 
+ DC 8 1 8 1 Define a bit-flag byte 
+k9 Equ *-1,128 Define bit via length attribute 
+kl0 Equ *-1,64 Define bit via length attribute 

a10 BitDef 11, (12, 13, 14) , (15, 16, 17, 18), 19, 110 two sublists 

all BitDef ml,(m2,m3,m4),(m5,m6,m7,m8,m9),ml0 two sublists 

Figure 62 (Part 2 of 2). Bit-Handling Mac.res: Examples of Defining Bit Names 

We will now see how we can utilize the information created by this Bi tDef macro to gen­
erate efficient instruction sequences to manipulate them. 

General Bit-Setting Macro: Data Structures 

Two "phases" used to generate bit-operation instructions: 

1. Check that bit names are declared (the "strong typing"), and 
collect information about bits to be set: 

a. Number of distinct Byte_Numbers (what bytes "own• the bit names?) 

b. For each byte, the number of instances of bit names in that byte 

c. An associatively addressed "name table• (variable symbol) 

• Name prefix is litDef_Na_ (whatever, to avoid global-name collisions) 

• Suffix is a "double subscript", &lytellulllber._&InstanceNullber 

• Value (of the symbol) is the bit name itself 

2. Use the information to generate optimal instructions 

• Names and number of name instances needed to build each operand 
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General Bit-Setting Macro: Design 

Optimize generated code using variables declared by BitDef macro 

Syntax: 
Example: 

Bit On 
BitOn 

bitname[,bitname] ... 
a,b,c,d 

High-level pseudo-code: 

!I! for all arguments (Pass l) 

Verify that the argument bit name was declared (check global symbol) 
!f not declared, stop with error message for undeclared bit name 

Save argument bit names and their associated byte numbers 

!I! for all saved distinct byte numbers (Pass 2) 

GEN Instructions to handle argument bits belonging to each byte 

Pass 1 captures bit names & byte numbers, pass 2 generates code 
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General Bit-Setting Macro: Pseudo-Code 

Detailed pseudo-code: 

Save macro-call label 
Set NBN (Number of known Byte Nullbers) = B 
!I! for M = 1 to Number_of_Arguments 

Set B = Arg(M) 
Declare created global variable &(BitDef_&B._Byte_Number) 
IF (Its value is zero) ERROR EXIT 'Undeclared Bitname &B' 
~ for K = 1 to NBN (Check byte number from the global variable} 

IF (This Byte Number is known} Increment its count 
ELSE Increment NIN (this Byte Number is new: set its count = 1) 

Save B in bitna111e list for this Byte Number 

(End Arg scan: have all byte numbers and their associated bit names) 
!I! for M = 1 to number of distinct Byte Numbers 

Set Operand= 'First_Bitname,L''First_Bitname' (local character string} 
!I! for K = Z to Number of bitnames in this Byte 

Operand= Operand II '+L''Bitname(K}' 
GEN (label DI Operand } ; set label = " 

Easy generalization to Bit_Off (NI) and Bit_lnvert (XI) 
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Improved Bit-Manipulation Macros 

Tech-57 

Tech-58 

We will now explore some improved techniques for managing bit variables, including veri­
fying that they were declared properly, and minimizing the number of instructions needed to 
manipulate and test them. 

These macros use created variable symbols as an associatively-addressed symbol table, 
reducing the effort needed for table searches. 
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General Bit-Setting Macros: Set Bits ON 

Macro Bi ton optimizes generated instructions (most error checks 
omitted) 

Macro 
&lab BitOn 
&L SetC '&lab' Save label 
&NBN SetA a No. of distinct Byte Nos. 
YI Set A a Name counter 
&NN SetA N'&Syslist Number of names provided 
.NmLp Aif (&M ge &NN).Pass2 Check if all names scanned 
YI SetA Ul+l Step to next name 
&B Sett '&SysList(&M)' Pick off a name 

Aif ('&I' eq ").Null Check for null item 
GblA &(BitDef_&B._ByteNo) Declare 68LA for Byte No. 
Aif (&(BitDef _&B. _ByteNo) eq 8).UnDef Exit if undefined 

&K Set A a Loop through known Byte Nos 
.BNLp Aif ( &K ge 8HBN). NewBN Not in list, a new Byte No 
&K Set A &K+l Search next known Byte No 

Aif (&BN(&K) ne &(BitDef_&B._ByteNo)).BNLp Check match 
continued 
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General Bit-Setting Macros: Set Bits ON •.. 

.* 
&J 
.CkDup 

&J 

.DupNm 

(continuation) 
SetA l Check if name already specified 
Aif (&J gt &IBN(&K)) .NmOK Branch if name is unique 
Aif ( '&8 • eq '&(BitDef _Nm_&BN(&K) ._&J) ') .DupNm Duplicated 
SetA &J+l Search next name in this byte 
Ago • CkDup Check further for duplicates 
MNote 8, 'BitOn: Name ''&8' • duplicated in operand list' 
MExit 

.NmOK ANop , No match, enter name in list 
&IBN(&K) SetA &IBN(&K)+l Matching BN, bump count of bits in this byte 

Lclt &(BitDef Nm &BN(&K). &IBN(&K)) Slot for bit nallll! 
&(BitDef_Nm_&IN(&K)._&IBN(iK)) SetC-'&B' Save K'th Bit Name, this byte 

Ago • NMLp Go get next name 
• NewBN ANop , New Byte No 
&NBN SetA &NBN+l Increment Byte No count 
&BN(&NBN} SetA &(BitDef _&B._ByteNo) Save new Byte No 
&IBN(&NBN) SetA 1 Set count of this Byte No to 1 

Lele &(BitDef Nm &BN(&NBN). l) Slot for first bit name 
&(BitDef _Nm_&BN(&NBN)._i) SetC '&8' - Save 1st Bit Name, this byte 

Ago • NMLp Go get next name 
continued 
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General Bit-Setting Macros: Set Bits ON ... 

(continuation) 
.Pass2 ANup . Pass 2: scan lyte Na list 
UI SetA 8 lyte Na counter 
.Blp Aif ( UI ge UIBN). Dune Check if a 11 lyte Nas dune 
UI SetA ut+l lncrellll!nt auter-1 DDp counter 
&X Set A &BN(UI) liet M-th lyte Na 
&K SetA 1 Set up inner leap 
&Op Sett '&(litDef_Nll_&X._&K).,L''&(litDef_llll_&X._&K)' 1st operand 

r_;;:_ Aif (&K ge &llN(UI)). lienDI Operand leap, check fur done 
SetA &K+l ' Step tu next bit in this byte 

p Sett '&Dp.+L"&(litDef_Nll_&X._&K)' Add •L'bitname• tu operand 
Ago .Oplp I Loup (inner) far next operand 

.&enDI ANup , • Generate instruction for lyte ND 
&L DI &Op Turn bits DN 
&L Sett .. Nullify label string 

Ago .llp Loop (outer) for next lyte No 
.UnDef MNote 8, 'litOn: Name "&I" not defined by litDef' 

MExit 
.Null MNote 8, 'litDn: Null argu111ent at position IM.• 
.Done MEnd 
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Using Declared Bit Names in a Biton Macro 

The Bi ton macro accepts a list of bit names, and generates the minimum number of 
instructions needed to set them on (to 1), as illustrated in Figure 64 on page 162. The macro 
makes two "passes" over the supplied bit names: 

• In the first pass, the bit names are read, and the global arithmetic variable 
&(BitDef_&B._&ByteNo) (where the value of &Bis the bit name) is constructed and 
declared, and its value is checked. If the value is zero, we know that the name was not 
declared in a call to a Bi tDef macro (which would have assigned a nonzero byte number 
value to the variable). 

• If the bit name was defined, the value of the constructed name is the byte number of the 
byte to which the bit was assigned. The array &BN () is searched to see if other bits with 
the same byte number have been supplied as arguments to this Bi ton macro; if not, a 
new entry is made in the &BN() array. 

• A second array &IBN() (paralleling the &BN() array) is used to count the number of 
Instances of the Byte Number that have occurred thus far. 

• Finally, the bit name is saved in a created local character variable symbol 
&(BitDef_Nm_&bn._&in), where &bn is the byte number for this bit name, and &in is the 
"instance number" of this bit within this byte. (By checking the current bit name from the 
argument list against these names, the macro can also determine that a bit name has 
been "duplicated" in the argument list.) 

Once all the names in the argument list have been handled, the macro uses the information 
in the two arrays and the created local character variable symbols: 

In the second pass, one instruction will be generated for each distinct byte number that 
was entered in the &BN() array during the first pass, using two nested loops; the outer 
loop is executed once per byte number. 

The inner loop is executed as many times as there are instances of names belonging to 
the current byte number (as determined from the elements of the &IBN() array), and con­
structs the operand field in the local character variable &Op, using the created local char­
acter variable symbols to retrieve the names of the bits. 
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At the end of the inner loop, the 01 instruction is generated using the created operand 
field string in &Op, and then the outer loop is repeated until the instructions for all the 
bytes containing named bit have been generated. 

A pseudo-code description of the macro's operation is illustrated in Figure 63. 

Save macro-call label 
Set NBN (Number of known Byte Numbers) = 0 
DO for M = 1 to Number_of_Arguments 

Set B = Arg(M) 
Declare created global variable &(BitDef_&B._Byte_Number) 
IF (Its value is zero) ERROR EXIT, undeclared bit name 
DO for K = 1 to NBN (Check byte number from the global variable) 

l[ (This Byte Number is known) Increment its count 
ELSE Increment NBN (this Byte Number is new: set its count = 1) 

Save B in bit name list for this Byte Number 

(End Arg scan: have all byte numbers and their associated bit names) 
DO for M = 1 to number of distinct Byte Numbers 

Set Operand= 'First_Bitname,L' 1First_Bitname 1 

DO for K = 2 to Number of bitnames in this Byte 
Operand= Operand II 1 ,L 11 Bitname(K) 1 

GEN (label 01 Operand ); set label= 11 

Figure 63. Bit-Handling Macros: Set Bits ON: Pseudo-Code 

The definition of the Bi ton macro is shown in Figure 64. 

&Lab 
&L 
&NBN 
&M 
&NN 
.NmLp 
&M 
&B 

&K 
.BNLp 
&K 

&J 
.CkDup 

&J 

Macro 
Bit On 
SetC '&Lab' 
SetA 0 
SetA 0 

Save label 
No. of distinct Byte Nos. 
Name counter 

SetA N'&SysList Number of names provided 
Aif (&M ge &NN).Pass2 Check if all names scanned 
SetA &M+l Step to next name 
SetC '&SysList(&M)' Pick off a name 
Aif ('&B' eq 11 ).Null Check for null item 
GblA &(BitDef_&B._ByteNo) Declare GBLA with Byte No. 
Aif (&(BitDef_&B._ByteNo) eq O).UnDef Exit if undefined 
SetA 0 Loop through known Byte Nos 
Aif (&K ge &NBN).NewBN Not in list, a new Byte No 
SetA &K+l Search next known Byte No 
Aif (&BN(&K) ne &(BitDef_&B._ByteNo)).BNLp Check match 
SetA 1 Check if name already specified 
Aif (&J gt &IBN(&K)).NmOK Branch if name is unique 
Aif ( 1 &B 1 eq '&(BitDef_Nm_&BN(&K)._&J)').DupNm Duplicated 
SetA &J+l Search next name in this byte 
Ago .CkDup Check further for duplicates 
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.DupNm MNote B,'BitOn: Name ''&B'' duplicated in operand list' 
MExi t 

.NmOK ANop , No match, enter name in list 
&IBN(&K) SetA &IBN(&K)+l Matching BN, bump count of bits in this byte 

LclC &(BitDef_Nm_&BN(&K)._&IBN(&K)) Slot for bit name 
&(BitDef_Nm_&BN(&K)._&IBN(&K)) SetC '&B' Save K'th Bit Name, this byte 

Ago .NMLp Go get next name 
.NewBN ANop , New Byte No 
&NBN SetA &NBN+l Increment Byte No count 
&BN(&NBN) SetA &(BitDef_&B._ByteNo) Save new Byte No 
&IBN(&NBN) SetA 1 Set count of this Byte No to 1 

LclC &(BitDef_Nm_&BN(&NBN)._1) Slot for first bit name 
&(BitDef_Nm_&BN(&NBN)._1) SetC '&B' Save 1st Bit Name, this byte 

.Pass2 
&M 
.BLp 
&M 
&X 
&K 
&Op 
.Oplp 
&K 
&Op 

Ago .NMLp Go get next name 
ANop , Pass 2: scan Byte No list 
SetA e Byte No counter 
Aif (&M ge &NBN).Done Check if all Byte Nos done 
SetA &M+l Increment outer-loop counter 
SetA &BN(&M) Get M-th Byte No 
SetA 1 Set up inner loop 
SetC '&(BitDef_Nm_&X._&K).,L''&(BitDef_Nm_&X._&K)' 1st operand 
Aif (&K ge &IBN(&M)).GenOI Operand loop, check for done 
SetA &K+l Step to next bit in this byte 
SetC '&Op.+L''&(BitDef_Nm_&X._&K)' Add L'bitname to operand 
Ago .OpLp Loop (inner) for next operand 

.GenOI ANop , Generate instruction for Byte No 
&L 01 &Op Turn bits ON 
&L SetC '' Nullify label string 

Ago .BLp Loop (outer) for next Byte No 
.UnDef MNote B,'BitOn: Name ''&B'' not defined by BitDef' 

MExit 
.Null MNote B,'BitOn: Null argument at position &M.' 
.Done MEnd 

Figure 64 (Part 2 of 2). Bit-Handling Macros: Set Bits ON 

Some examples of calls to the Bi tOn macro are illustrated in the figure below. In each case, 
the minimum number of instructions necessary to set the specified bits will be generated. 
The instructions generated by the macro are shown for two of the calls. 
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ABCD BitOn bl,b2 
+ OI bl,L'bl+L'b2 Turn bits ON 

Fbc BitOn bl,c2,bl Duplicate bit name 'bl' 

Fbd BitOn jj Undeclared bit name 'jj' 

BitOn cl,c2,c3,c4,c5,c6,c7,c8,c9,cl9,cll,cl2,cl3,cl4,cl5,cl6,cl7 

Fbg BitOn bl,cl,dl,el,b2,c2,d2,c3,b3,m2,c4,c5,m5,d6,c6,d7,b4,c7 
+Fbg OI bl,L'bl+L'b2+L'b3+L'b4 Turn bits ON 
+ 01 cl,L'cl+L'c2+L'c3+L'c4+L'c5+L'c6+L'c7 Turn bits ON 
+ OI dl,L'dl+L'd2 Turn bits ON 
+ OI el,L'el Turn bits ON 
+ 01 m2,L'm2 Turn bits ON 
+ OI m5,L 'm5 Turn bits ON 
+ 01 d6,L'd6+L'd7 Turn bits ON 

DupBl BitOn bl,c2,c3,c4,c5,c6,c7,c8,c9,cl0,bl Duplicated name 'bl' 

Figure 65. Bit-Handling Macros: Examples of Setting Bits ON 

Extending this macro to create BitOff and Bitlnv macros is straightforward (we can use the 
schemes illustrated in Figure 52 on page 146 and Figure 54 on page 147), and is left as the 
traditional "exercise for the reader". 

General "Branch if Bits On" Macro: Design 

Function: branch to target if all named bits are on 

Syntax: BBitOn (bitl ist), target 
Example: BBitOn (a,b,c,d) ,Label 

Optimize generated code using global data created by Bi tDef 

If more than one byte is involved, need "skip-if-false" branches 

Test a Test b Test c Test d Target_Label 
~--T 

False False False 

Next Statement (tagged by "Skip label•) 

Need only one test instruction for multiple bits in a byte! 

HLASM Macro TulDrial I[) Copyright IBM Corporation 1993, 200Z. All righ1s resened. 

Using Declared Bit Names in a BBitOn Macro 

Tech-62 

The BBi ton macro is intended to branch to a specified label if all the specified bit names are 
"on", and should use the minimum number of instructions; the calling syntax is the fol­
lowing: 

BBitOn (Bit_Name_List),Branch_Target 

and we will accept a single non-parenthesized bit name for the first argument. 
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This macro will require a slightly different approach from the one used in the BitOn macro: if 
any of the bits have been allocated in different bytes, we must invert the "sense" of all gen­
erated branch instructions except the last. To see why this is so, suppose we wish to 
branch to XX if both BitA and BitB are "true", and the two bits have been allocated in the 
same byte: 

DC B'fl' 
Bit A Equ *-1,X'fll' Allocate BitA 
BitB Equ *-1,X'20' Allocate BitB 
* 

TM BitA,L'BitA+L'BitB Test BitA and BitB 
BO xx Branc~ if both are ON 

and we see that only a single test instruction is needed. Now, suppose the two bits have 
been allocated to distinct bytes: 

DC B'fl' 
BitA Equ *-1,X'Ell' Allocate BitA 

DC B'fl' 
BitB Equ *-1,X'20' Allocate BitB 

Then, to branch if both are true, we must use two test instructions: 

TM BitA,L'BitA 
BNO Not True 
TM BitB,L'BitB 
BO XX 

Not True DC 0H'0' 

Check BitA 
Skip-Branch if not true 
BitA is 1; check BitB 
Branch to XX if both are true 
Label holder for 'skip target' 

This situation is illustrated in the following "flowchart": 

Test a 

False 

+ 

~~~Target_Label 
t False t False t False 

Next Statement (tagged by •Skip Label•) 

Figure 66. Bit-Handling Macros: Branch if Bits are ON (Flow Diagram) 

The implementation of the BBi ton macro uses a scheme similar to that in the Bi ton macro: 
the list of bit names in the first argument will be extracted, and the same list of variables will 
be constructed. The second "pass" will need some modifications: 

• If more than one pair of test and branch instructions will be generated, a "not true" or 
"skip" label must be used for all branches except the last, and the label must be defined 
following the final test and branch. 

The sense of all branches except the last must be "inverted" so that a branch will be 
taken to the target label only if all the bits tested have been determined to be "true". 
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I General .. Branch if Bits On" Macro: Pseudo-Code 

Pseudo-code: 

Save rnacr.-call label; Set NIH (llumber of known Byte llulllbers) = 8 
.!!! far M"' 1 to Number_uf_lst-ArLiteas 

Set I "' Arg(M) 
Declare i:reated glebal variable &(BttDef_&B._Byte_llulllber) 
IF (Its value is zere) ERROR EXIT, undeclared bitnaae 
!! fir K = 1 lD NIN (Check byte IHllllber fr•• the gl•bal variable) 

!! (This lyte NUlllber is knlwn) Increment its ceunt 
!.!:!! Increment NIN (this lyte Nlllllber is new: set its ceunt = 1) 

Save B in bit llillll! list fDr this lyte Number 

(End Arg scan: have all byte nlllllbers and their assDciated bit names) 
Create Skip_Label (•sing &SYSNDX) 
DO fDr M = 1 tD NIN 
- Set Operand = 'First_litllalll!,L''First_litname' (first eperand) 

DO for K = Z ta Nullber •f bitllillles in this Byte 
- Operand = Operand 11 '+L "Bitnaee(K)' . 
!! (M < NIN) GEN (label 1M Operand ; IND Skip_Label); set label = '' 
ELSE . GEN (label 1M Bperand ; 10 Target_label) 

!! (NIN > 1) &EN (Sktp_Label DS BR) 

HlASM Macro TulDrial 0 Copyright IBM Corporation 1993, 211112. All rights reserwd. 

A pseudo-code description of the BBitOn macro is shown in Figure 67. 

Tach-63 

Save macro-call label; Set NBN (Number of known Byte Numbers) = 0 
DO for M = 1 to Number of lst-Arg Items 
~ Set B = Arg(M) - - -

Declare created global variable &(BitDef_&B._Byte_Number) 
l£ (Its value is zero) ERROR EXIT, undeclared bit name 
DO for K = 1 to NBN (Check byte number from the global variable) 

IF (This Byte Number is known) Increment its count 
ELSE Increment NBN (this Byte Number is new: set its count = 1) 

Save B in bit name list for this Byte Number 

(End Arg scan: have all byte numbers and their associated bit names) 
Create Skip_Label (using &SYSNDX) 
DO for M = 1 to NBN 

Set Operand= 1First_Bitname,L 11 First_Bitname 1 

DO for K = 2 to Number of bitnames in this Byte 
Operand= Operand II 1+L 11 Bitname(K)' 

IF (M < NBN) GEN (label TM Operand ; BNO Skip_Label); set label = 11 

ELSE GEN (label TM Operand ; BO Target_label;Skip_Label DS 0H) 
IF (NBN > 1) GEN (Skip_Label OS 0H) 

Figure 67. Bit-Handling Macros: Branch if Bits are ON: Pseudo-Code 
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General Bit-Handling Macros: Branch if Bits On 

BBitOn macro optimizes generated instructions (most error checks 
omitted) 

Two "passes" over bit name list: 

1. Scan, check, and save names, determine byte numbers (as in BitOn) 

2. Generate optimized tests and branches; 
if multiple bytes, generate "skip" tests/branches and label 

Macro 
&lab BlitDn ML,&T Bit Name List, Branch Target 

Aif (N'&Syslist ne 2 or 'UIL' eq " or '&T' eq ").BadArg 
&L Sett '&Lab' Save label 
UIBN Set A 8 No. of distinct Byte Nos. 
UI SetA 8 Name counter 
YIN Set A N'UIL Number of names provided 
.lllllp Aif ( UI ge &NN). Pass2 Check if a 11 names scanned 
* (continued) 

HLASM Macro TulDrial 0 Copyright IBM Corporation 1993. 2002. All righls reserved. 

General Bit-Handling Macros: Branch if Bits On ... 

UI 
&I 

&K 
.BNLp 
&K 

&J 
.tkDup 

&J 

.Dupllll 

(continuation) 
SetA 8"'+1 Step to next name 
Sett 'ML(&M) • Pick off a name 
GblA &(BitDef_&B._ByteNo) Declare GBLA with Byte No. 
Aif (&(litDef_&l._ByteNo) eq 8).UnDef Ex~t if undefined 
SetA 8 Loop through known Byte Nos 
Aif (&K ge &NIN) .NewBN Not in list, a new Byte No 
SetA &K+l Search next known Byte No 
Aif (&BN(&K) ne &(BitDef_&l._lyteNo)).BNLp Check match 
SetA 1 Check if name already specified 
Aif (&J gt &IBN(&K)).llllOK Branch if name is unique 
Aif ('&I' eq '&(BitDef_Nm_&BN(&K)._&J) ').DupN• Duplicated 
SetA &J+l Search next nallll! in this byte 
Ago .CkDup Check further for duplicates 
MNote 8, 'IBitDn: Name • '&B' • duplicated in operand list' 
MExit 

.NmOK ANop , ND match, enter nallll! in list 
&IBN(&K) SetA &IIN(&K)+l Have matching IN, count up by 1 

lclt &(BitDef Nm &BN(&K). &IBN(&K)) Slot for bit name 
&(BitDef_Nm_&BN(&K)._&IBN(Mc)) SetC-'&B' Save K'th Bit Hame, this byte 

Ago . tlllp 6D get next name 
.* (cantinued) 

HLASM Macro TulOrial 0 Copyright IBM Corporation 1993. 2002. Alt righls reserved. 

Tech-64 

Tech-65 
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General Bit-Handling Macros: Branch if Bi1s On •.. 

(continuation) 
• NewBN ANop , New Byte No 
&llBN SetA &11811+1 Incrnent lyte No count 
&IN(&NBN) SetA &(BitDef _&B._ByteNo) Save new Byte No 
&IBN(&NBN) SetA l Set count of this Byte No to l 

Lele &(BitDef_llll_&IN(&NBN)._l) Slot for first bit name 
&(BitDef_llll_&IN(&llBN)._l) SetC '&I' Save lst lit Na111t, this byte 

.PassZ 
&M 
&Skip 
.Blp 
&M 
&X 
&K 
&Op 
.Dplp 
&IC 
&8p 

Ago .lllLp lio get next name 
ANop • Pass Z: scan lyte No list 
SetA 8 Byte No counter 
Sett 'Dff&SysNdx' False-branch target 
Aif (UI ge &NBN).Dene Check if all Byte NDs dene 
SetA Ul+l Incre11ent DBter-loop ceunter 
SetA &BN(IH) liet ~th Byte No 
SetA l Set up inner loop 
Sett '&(litDef_llll_&X._&K) .,L"&(litDef_llll_&X._&K}' Operand 
Aif (&IC ge &IBN(Ul}).lienBr Operand leep, check for done 
SetA &IC+l Step to next bit in this byte 
Sett '&Dp.+L"&(litDef_llll_&X._&IC}' Add next bit to eperand 
Ago • OpLp Loop (inner} for next operand 

(continued) 

HLASM Macro Tutorial C> Copyright IBM Corporation 1993. 2002. All rights reserved. 

General Bit-Handling Macros: Branch if Bi1s On ••. 

. * (continuation) 

.lienBr ANDp . Generate instructien for lyte No 
Aif (UI 111 IHBN}. Last Check far last test 

&L lM &Dp Test if bits are DN 
BNO &Skip Skip if not all ON 

&L Sett .. Nullify label string 
Age .BLp Loop (eater) for next Byte No 

.Last ANop . Generate last test and branch 
&L lM &8p Test if bits are DN 

BD &T Branch if all 8N 
Aif (&llBN eq 1}.Done No skip target if Just l byte 

&Skip DC ••••• Skip target 
MExit 

.UnDef MNDte 8, 'BBitDn: Name ''&I'' not defined by BitDef' 
Mfxit 

.ladArg MNDte 8, 'BBitDn: Improperly specified argument list' 

.Done Mfnd 

HLASM Macro Tutorial C> Copyright IBM Corporation 1993, 2002. All rights reserwd. 

The actual BBi ton macro definition is shown in Figure 68 on page 169. 
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&Lab 

&L 
&NBN 
&M 
&NN 
.NmLp 
&M 
&B 

&K 
.BNLp 
&K 

&J 

Macro 
BBitOn &NL,&T Bit Name List, Branch Target 
Aif (N'&SysList ne 2 or '&NL' eq 11 or '&T' eq 11 ).BadArg 
SetC '&Lab' Save label 
SetA 0 No. of distinct Byte Nos. 
SetA e Name counter 
SetA N'&NL Number of names provided 
Aif (&M ge &NN).Pass2 Check if all names scanned 
SetA &M+l Step to next name 
SetC '&NL(&M)' Pick off a name 
GblA &(BitDef_&B._ByteNo) Declare GBLA with Byte No. 
Aif (&(BitDef_&B._ByteNo) eq 0).UnDef Exit if undefined 
SetA 0 Loop through known Byte Nos 
Aif (&K ge &NBN).NewBN Not in list, a new Byte No 
SetA &K+l Search next known Byte No 
Aif (&BN(&K) ne &(BitDef_&B._ByteNo)).BNLp Check match 
SetA 1 Check if name already specified 

.CkDup Aif (&J gt &IBN(&K)).NmOK Branch if name is unique 
Aif ('&B' eq '&(BitDef_Nm_&BN(&K)._&J)').DupNm Duplicated 

&J SetA &J+l Search next name in this byte 
Ago .CkDup Check further for duplicates 

.DupNm MNote 8,'BBitOn: Name 11 &B 11 duplicated in operand list' 
MExit 

.NmOK ANop , No match, enter name in list 
&IBN(&K) SetA &IBN(&K)+l Have matching BN, count up by 1 

LclC &(BitDef_Nm_&BN(&K)._&IBN(&K)) Slot for bit name 
&(BitDef_Nm_&BN(&K)._&IBN(&K)) SetC '&B' Save K'th Bit Name, this byte 

Ago .NMLp Go get next name 
.NewBN ANop , New Byte No 
&NBN SetA &NBN+l Increment Byte No count 
&BN(&NBN) SetA &(BitDef _&B._ByteNo) Save new Byte No 
&IBN(&NBN) SetA 1 Set count of this Byte No to 1 

LclC &(BitDef_Nm_&BN(&NBN)._1) Slot for first bit name 
&(BitDef_Nm_&BN(&NBN)._1) SetC 1 &B 1 Save 1st Bit Name, this byte 

Ago .NMLp Go get next name 
.Pass2 ANop , Pass 2: scan Byte No list 
&M SetA 0 Byte No counter 
&Skip 
.BLp 
&M 
&X 
&K 
&Op 
.OpLp 
&K 
&Op 

SetC 'Off&SysNdx' False-branch target 
Aif (&M ge &NBN).Done Check if all Byte Nos done 
SetA &M+l Increment outer-loop counter 
SetA &BN(&M) Get M-th Byte No 
SetA 1 Set up inner loop 
SetC '&(BitDef_Nm_&X._&K).,L''&(BitDef_Nm_&X._&K)' Operand 
Aif (&K ge &IBN(&M)).GenBr Operand loop, check for done 
SetA &K+l Step to next bit in this byte 
SetC '&Op.+L''&(BitDef_Nm_&X._&K)' Add next bit to operand 
Ago .OpLp Loop (inner) for next operand 

.GenBr ANop , Generate instruction for Byte No 

Figure 68 (Part 1 of 2). Bit-Handling Macros: Macro to Branch if Bits are ON 
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Aif (&M eq &NBN).Last Check for last test 
&l TM &Op Test if bits are ON 

BNO &Skip Skip if not all ON 
&L SetC 11 Nullify label string 

Ago .BLp Loop (outer) for next Byte No 
.Last AN op , Generate last test and branch 
&l TM &Op Test if bits are ON 

BO &T Branch if all ON 
Aif (&NBN eq 1) .Done No skip target if just 1 byte 

&Skip DC 0H'0' Skip target 
MExit 

.UnDef MNote 8, 'BBitOn: Name 11 &B 1 ' not defined by BitDef' 
MExit 

.BadArg MNote 8,'BBitOn: Improperly specified argument list' 

.Done MEnd 

Figure 68 (Part 2 of 2). Bit-Handling Macros: Macro to Branch if Bits are ON 

Some examples of calls to the BBi ton macro are shown in the following figure; the generated 
instructions are indicated by "+" characters in the left margin: 

TB4 BBitOn bl,TB5 
+TB4 TM bl,L'bl Test if bits are ON 
+ BO TB5 Branch if all ON 

BBitOn (c5,c4,c3,c2),tb7 
+ TM c5,L'c5+L'c4+L'c3+L'c2 Test if bits are ON 
+ BO tb7 Branch if a 11 ON 

TB6 BBitOn (bl,c2,b2,c3,b3,b4,c4,b5,c5),tb4 
+TB6 TM bl,L'bl+L'b2+L'b3+L'b4+L'b5 Test if bits are ON 
+ BNO 0fff)f)51 Skip if not all ON 
+ TM c2,L'c2+L'c3+L'c4+L'c5 Test if bits are ON 
+ BO tb4 Branch if all ON 
+0fff)f)51 DC 0H'0' Skip target 

TB7 BBitOn (bl,b2,b3,b4,b5,b6,b7),tb7 

BBitOn (bl,c2,b2,c3,d4,e2),tb7 
+ TM bl,L'bl+L'b2 Test if bits are ON 
+ BNO Off0054 Skip if not all ON 
+ TM c2,L'c2+l'c3 Test if bits are ON 
+ BNO 0fff)f)54 Skip if not all ON 
+ TM d4,L'd4 Test if bits are ON 
+ BNO Off0054 Skip if not all ON 
+ TM e2,L'e2 Test if bits are ON 
+ BO tb7 Branch if all ON 
+Off 0054 DC 0H'0' Skip target 

Figure 69. Bit-Handling Macros: Examples of Calls to BBitON Macro 

The extension of the BBitOn macro to a similar BBi tOff macro is simple, and is also left as 
an exercise. This set of macros can be used to define, manipulate, and test bit flags with 
reliability and efficiency. 

An interesting generalization of the BBi ton macro might be a modification causing a branch 
to the Target Label if any bit in the first-argument list is "on". (Remember that the macro in 
Figure 68 on-page 169 branches to the target only if all bits are on.) Try adding a Type= 
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keyword parameter to the macro definition, specifying which type of branch is desired. For 
example, the new keyword parameter might look like this: 

BBitOn (a,b,c,d),Target,Type=All 
BBitOn (a,b,c,d),Target,Type=Any 

(default) 

where the default value (Type=Al 1) causes the macro to work as described above. If Type=Any 
is specified, the logic of the bit tests in the BBi ton macro must be modified slightly to cause a 
branch to the Target Label if any of the tested bits is on. This situation is illustrated in the 
following "flowchart'': 

Test a Test b Test c Test d Next Statement 

True True True True 

t 
Target_Label 

Figure 70. Bit-Handling Macros: Branch if Any Bits are ON (Flow Diagram) 

In this "Any" case, no Skip_Label is needed! 
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Case Study 9: Defining and Using Data Types 

Overview of data typing 

Using base-language type attributes 

- Case Study 9a: use operand type attribute to generate correct literal types 

Shortcomings of assembler-assigned type attributes 

- Case Study 9b: create macros to check conformance of instructions and 
operand types 

- Extension: instruction vs. operand vs. register consistency checking 

User-assigned (and assembler-maintained) data types 

- Case Study 9c: declare user data types and "operators" on them 

HLASM Macro Tu1orial ©Copyright IBM Corporation 1993. ZOOZ. All righ1S reserved. Tech-68 

Case Study, 9: Defining and Using Data Types 

Defining and Using Data Types 

We're familiar with type sensitivity in higher-level languages: 

- Instructions generated from a statement depend on data types: 

A=B+C; '=' and '+' are polymorphic operators 

- A, B, c might be integer, float, complex, boolean, string, ... 

Most named assembler objects have a type attribute 

- Can exploit type attribute references for type-sensitive code sequences and 
for operand validity checking 

Extensions to the "base language" types are possible: 

- Assign our own type attributes (avoiding conflicts with Assembler's) 
- Utilize created variable symbols to retain type information 

HLASM Macro T1rtorial ©Copyright IBM Corporation 1993, ZODZ. All rights reserved. Tech-69 

One of the most useful features of the macro language is that it allows you to write macros 
whose behavior depends on the "types" of its arguments. A single macro definition can gen­
erate different instruction sequences, depending on what it can determine about its argu­
ments. This behavior is common in most higher-level languages; for example, the statement 

A = B + C 

may generate very different instructions depending on whether the variables A, B, and C 
have been declared to be integer, floating, complex, boolean, or character string (or mix-
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tu res of those, as in PUI), each possibly having different lengths or precisions. We will see 
that macros offer the same flexibility and power. 

These case studies will show how macros can be used to provide increasingly powerful 
levels of control over generated code. 

Case study 9a uses the assembler's "native" type attributes to determine what kind of 
literal should be used in an instruction. 

Case study 9b creates macros that check for consistency between instructions and their 
operands, utilizing the AINSERT statement to simplify macro creation. 

Case study 9c uses user-defined type attributes for declaring "abstract types" for vari­
ables, and illustrates how to use such abstract types to generate instructions with 
"encapsulation" of the types for use by "private methods". 

Base-Language Type Sensitivity: Simple Polymorphism 

Intent: INCR macro increments var by a constant amt (or 1) 
Syntax: I NCR var[, amt] (default amt= 1) 
Usage examples: 

Day DS H Type H: Day of the week 
Type F: Rate of something 
Type P: My salary 

Rate DS F 
MyPay DS PL6 
Dist DS D Type D: A distance 
Wt DS E Type E: A weight 
WXY DS X Type X: Type not valid for INCR macro 

cc Iner Day Add 1 to Day 
DD Iner Rate,-3,Reg=l5 Decrease rate by 3 

Iner MyPay,158.58 Add 158. 58 to my salary 
JJ Iner Dist,-3.16ZZ7766 Decrease distance by sqrt(lB) 
KK Iner llt,-ZE4,Reg=6 Decrement weight by lB tons 

Iner llXY,Z Test with unsupported type 

INCR uses assembler type attribute of &var to create compatible 
literals 
- type of amt guaranteed to match type of var 

HLASM Macro Tll1Drial 0 Copyright IBM Corporation 1993. 2002. All ri9h1s rese,.,,..d. 

Base-Language Type Sensitivity: Simple Polymorphism ..• 

Supported types: H, F, E, D, P 

&Lab 
&T 
&Dp 
&I 

Macro , Increment &V by -•nt &A (default 1) 
INCR &V,&A,&Reg=8 Default WDrk register = 8 
Sett T'&V Type attribute of lst arg 
Sett '&T' Save type of &V for memnic suffix 
Sett 'l' Default incre11ent 
Aif ('&A' eq ").IncDK Increment nDlf set DK 

&I Sett '&A' Supplied increment (N.I. Not SETA!) 

Teclt-711 

.IncDK Aif ('&T' eq 'F').F,('&T' eq 'P').P, (check base language types) X 

.F 
&Dp 
.T 
&Lab 

.P 
&Lab 

( '&T' eq 'H' or '&T' eq 'D' or '&T' eq 'E'). T Valid types 
MNote 8, 'INCR: Cannot use type "&T" of "&V". • 
MExit 
ANDP , 
Sett '' 
ANDP , 
L&Dp &Reg, &V 
A&Dp &Reg,=&T.'&I' 
ST&Dp &Reg,&V 
MExit 
ANDP 
AP &V,=P'&I' 
MEnd 

Type of &V is F 
Null opcede suffix for F (no LF opcode) 
Register-types D, E, H (and F) 
Fetch variable to be incre111ented 
Add requested incre11ent as typed literal 
Store incremented value 

Type of &V is P 
Iner packed variable with P-type literal 

HLASM Macro Tu10rial 0 Copyright IBM Corporation 1993, 2002. All righls reserved. Tectt-71 
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Case Study 9a: Type Sensitivity -- Simple Polymorphism 

The assembler's assignment of type attributes to most forms of declared data lets us write 
macros that utilize the type information to make decisions about instructions to be gener­
ated. 

For example, suppose we want to write a macro INCR to add a constant value 1o a variable, 
with default increment 1 if no value is specified in the macro call. Because we know the 
assembler-assigned type of the variable, we can use that same type for the constant incre­
ment. 

&Lab 
&T 
&Op 
&I 

Macro 
!NCR &V,&A,&Reg=B 
SetC T'&V Type attribute of 1st arg 
SetC 1&T 1 Save type of &V for mnemonic suffix 
SetC 111 Default increment 
Aif ( 1'&A 1 eq 11 ).IncOK Increment now set OK 

&I SetC 1 &A 1 Supplied increment (N.B. Not SETA!) 
.IncOK Aif ('&T' eq 1 F1).F,( 1 &T 1 eq 'P').P, (check base language types) X 

.F 
&Op 
.T 
&Lab 

.P 
&Lab 

('&T' eq 'H' or 1 &T 1 eq 'D' or 1 &T 1 eq 'E').T Valid types 
MNote 8,'INCR: Cannot use type 11 &T 11 of 11 &V 11 • 1 

MExit 
ANOP , 
SetC 11 

ANOP , 
L&Op &Reg,&V 
A&Op &Reg,=&T. 1 &! 1 

ST&Op &Reg,&V 
MExit 
ANOP , 
AP &V,=P 1 &l I 

MEnd 

Type of &V is F 
Null opcode suffix for F (no LF opcode) 
Register-types D, E, H (and F) 
Fetch variable to be incremented 
Add requested increment 
Store incremented value 

Type of &V is P 
Increment variable 

Figure 71. Macro Type Sensitivity to Base Language Types 

The macro first determines the type attribute of the variable &V, and sets the increment 
value &I. The type attribute is checked for one of the five allowed types: D, E, F, H, and P. 
Finally, an instruction sequence appropriate to the variable's type is generated to perform 
the requested incrementation. This macro "works" because we can use the type attribute 
information about the variable &V to create a literal of the same type. · 

This macro illustrates a form of polymorphism: the operation it performs depends on the 
type(s) of its argument(s). 

Some examples of calls to the INCR macro are shown in the following figure. 
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Day DS H Type H: Day of the week 
Rate DS F Type F.: Rate of something 
My Pay DS PL6 Type P: My salary 
Dist DS D Type D: A distance 
Wt DS E Type E: A weight 
WXY DS x Type X: Type not valid for INCR macro 
* 
cc Iner Day Add 1 to Day 
DD Iner Rate,-3,Reg=l5 Decrease rate by 3 

Iner MyPay,158.58 Add 158.58 to my salary 
JJ Iner Dist,-3.16227766 Decrease distance by sqrt(18) 
KK Iner Wt,-2E4,Reg=6 Decrement weight by 18 tons 

Iner WXY,2 Test with unsupported type 

Figure 72. Examples: Macro Type Sensitivity to Base Language Types 

Base-Language Type Sensitivity: Generated Code 

Code generated by INCR macro (see slide Tech-70) 
cc Iner Day Add l to Day 

+CC LH 8,Day Fetch variable to be increment 
+ AH 8,=H'l' Add requested increment 
+ STH l,Day Store incremented value 

DD Iner Rate,-3,Reg=l5 Decrease rate by 3 
+DD L 15,Rate Fetch variable to be increment 
+ A 15,=F'-3' Add requested increment 
+ ST 15,Rate Store incre111ented value 

Iner MyPay, 158. 58 Add 158.58 te my salary 
+ AP MyPay,=P'l58. 58' Increment variable 
JJ Iner Dist,-3.16227766 Decrease distance by sqrt(l8) 

+JJ LD I, Dist Fetch variable to be increment 
+ AD l,=D'-3.16227766' Add requested increment 
+ STD 8,Dist Store incre111ented value 

KK Iner Wt, -2E4, Reg=6 Decrement weight by 18 tons 
+KK LE 6,Wt Fetch variable to be increment 
+ AE 6,=E'-2E4' Add requested increment 
+ STE 6,Wt Store incremented value 

Iner llXY, 2 Test 11i th unsupported type 
+ *** MHOTE *** 8, INCR: Cannot use type 'X' of 'llXY'. 
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Examples of the code generated by the INCR macro are shown in Figure 73 on page 176. 
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cc 
+CC 
+ 
+ 

DD 
+DD 
+ 
+ 

+ 

JJ 
+JJ 
+ 
+ 

KK 
+KK 
+ 
+ 

Iner 
LH 
AH 
STH 

Iner 
L 
A 
ST 

Day 
0,Day 
0,=H'l' 
0,Day 

Rate,-3,Reg=15 
15,Rate 
15,=F'-3' 
15,Rate 

Iner MyPay,150.50 
AP MyPay,=P'150.50' 

Iner 
LD 
AD 
STD 

Iner 
LE 
AE 
STE 

Dist,-3.16227766 
0,Dist 
0,, =D • -3. 16227766 • 
0,Dist 

Wt,-2E4,Reg=6 
6,Wt 
6,=E'-2E4' 
6,Wt 

Add 1 to Day 
Fetch variable to be increment 
Add requested increment 
Store incremented value 

Decrease rate by 3 
Fetch variable to be increment 
Add requested increment 
Store incremented value 

Add 150.50 to my salary 
Increment variable 

Decrease distance by sqrt(10) 
Fetch variable to be increment 
Add requested increment 
Store incremented value 

Decrement weight by 10 tons 
Fetch variable to be increment 
Add requested increment 
Store incremented value 

Iner WXY,2 Test with unsupported type 
+ *** MNOTE *** 8,INCR: Cannot use type 'X' of 1WXY'. 

Figure 73. Examples: Macro Type Sensitivity: INCR Macro Generated Code 

Type sensitivity of this form can be used in many applications, and can help simplify 
program logic and structure. 

Shortcomings of Assembler-Assigned Types 

Suppose amt is a variable, not a constant ... 
- Need an ADD2 macro: syntax like ADD2 var,amt 

What if the assembler types of var and amt don't conform? 
- Mismatch? Might data type conversions be required? How will we know?_ 

Rate DS F Rate Df SD•thing 
MyPay DS PL6 My salary 

ADDZ MyPay,Rate Add (binary) Rate tD (packed} MyPay ?? 

Assembler data types know nothing about "meaning" of variables, 
only their hardware representation; so, typing is very weak! 

Day BS H 
Rate DS F 
Dist DS D 
Wt DS E 

Day •f the week 
Rate ef something 
A distance 
A weight 

Fallowing (assembler) types confDn! 

ADDZ Rate, Day 
ADDZ Dist,WT 

Add binary Day ta Rate ( ??) 
Add fleating Distance tu Weight (??) 
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Shortcomings of Assembler-Assigned Types 

While many benefits are achievable from utilizing assembler type attributes, they do not 
provide as reliable a checking mechanism as we might need. Suppose, for example, that we 
wish to add two variables using a macro named ADD2 that works like the INCR macro just 
described. Two problems arise: 

1. The types of the variables to be added may not "conform" by having the same 
assembler-assigned type attribute. For example, let some variables be defined as in 
Figure 71 on page 174: 

Rate OS 
MyPay OS 

F 
PL6 

Rate of something 
My salary 

Then, if we can write a macro call like 

ADD2 MyPay,Rate Add binary Rate to packed MyPay 

then some additional conversion work is needed because the types of the two variables 
do not allow direct addition. Such conversions are sometimes easy to program, either 
with in-line code or with a call to a conversion subroutine. However, as the number of 
allowed types grows, the number of needed conversions may grow almost as the square 
of the number of types. 

2. The more serious problem is that the assembler-assigned types may conform, but the 
programmer's "intended types" may have no sensible relationship to one another! Con­
sider the same set of definitions: 

Day OS 
Rate OS 
Dist OS 
Wt OS 

H 
F 
D 
E 

Day of the week 
Rate of something 
A distance 
A weight 

Then, it is clear that we can write simple macros to implement these additions: 

ADD2 Rate,Day 
ADD2 Dist,WT 

Add binary Halfword to Fullword 
Add floating Distance to Weight 

because the data types conform: halfword and fullword binary additions and short and 
long floating additions are supported by hardware instructions. 

Consider, however, what is being added: in the first example, we are adding a "day" to a 
"rate" and in the second we are adding a "distance" to a "weight", and neither of these 
operations makes sense in the real world, even though a computer will blindly add the 
numbers representing these quantities. 

This lack of programmer-defined meaning (sometimes called "strong typing") can be a 
serious shortcoming of the Assembler Language, but it is easily overcome by defining and 
using macros. 
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Symbol Attributes and Lookahead Mode 

Symbol attributes are entered in the symbol table when defined 

Attribute references are resolved during conditional assembly by 

1. Finding them in the symbol table, or 

2. Forward-scanning the source file ("Lookahead Mode") for the symbol's 
definition 

- No macro definition/generation. no substitution. no AGO/AlF 
- Symbol attributes may change during final assembly 
- Scanned records are saved (SYSlN is read only once•) 

Symbols generated by macros can't be found in Lookahead Mode 

- Unknown or partially-defined symbols assigned type attribute 'U' 

Symbol attributes needed for conditional assembly must be defined 
before they are referenced 

Can use LOCTR instruction to "group" code and data separately 

- Data declarations can precede code in source, but follow it in storage 
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Symbol Attributes and Lookahead Mode 
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There is one potential problem in utilizing attribute information in conditional assembly: the 
attributes might npt be available at the time they are needed. For example, a statement with 
a symbol definition might occur later in the source file than a macro that references that 
symbol's attributes. When the assembler notes that the symbol's attributes are currently 
unknown, it begins a forward scan of the primary source file called "Lookahead Mode". 

In Lookahead mode, all scanned statements are saved (so that the primary input file is read 
only once). No macros are encoded or expanded, and no AIF or AGO statements are 
obeyed. Symbol definitions are entered in the symbol table with a flag indicating that their 
attributes are "partially defined" (later conditional assembly statements might choose 
among several possible definitions). When the assembly completes, the attributes of a 
symbol might be different from the attributes assigned during Lookahead mode. 

The straightforward solution is to execute all macros that generate necessary symbol defi­
nitions before any other macros that reference their attributes. While this might seem to 
force data to be generated in a module ahead of (or mixed with) the code, the assembler 
provides a simple technique for "grouping" related segments of the object code: the LOCTR 
statement. 
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The LOCTR Statement 

The LOCTR statement lets you define named "groups" of statements in such a way that all 
object code generated from statements in each named group will eventually be combined 
with other statements from groups with the same name, even though the various groups 
with other names are scattered among one another in the source file. The following figure 
illustrates how LOCTR works: 

Source File Generated Code 

lcoDE CSE CT I rcODE CSE CT 

I Code segment 1 I I Code segment 1 
~ - - - - -

IDATA LOCTR 
I 

Code segment 2 
Data segment 1 - - -

lcoDE 
- - - I Data segment 1 
LOCTR - - -
Code segment 2 Data segment 2 
- - - - - -

DATA LOCTR 
Data segment 2 
- - -
END 

Figure 74. Using the LOCTR Statement to "Group" Code and Data 
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Case Study 9b: Simple Instruction-Operand Type Checking 

Check the second operand of the A instruction 

- Accept type attributes type F, A, or Q: note others 

First, save the assembler's definition of "A" 

My_A OpSyn A Save definition of A as My_A 

Define a macro named "A" that eventually calls My_A 

Macro "A" checks the second operand for type F, A, or Q 

&l 

.OK 
&l 

Macro 
A 
AIF 
MHote 
ANop 
My_A 
MEnd 

&R,&X 
(T'&X eq 'F' or T'&X eq 'A' or T'&X eq 'Q.').OK 
l,'Notel Second operand type not F, A, or Q.' 

&R,&X 

Note that allowed types are "hard coded" in the macro 
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The Assembler's type attribute values can be used to check for consistency between data 
types and instruction types, as the following example will show. You may want to ensure 
that an instruction in your application references only operands that are likely to be 
"natural" for that instruction. 

As an example, suppose we wish to check the second operand of the Add (A) instruction to 
verify that its type is only F, A, or Q. After preserving the original definition of the A opcode 
as My _A with an OPSYN, we could write a macro like the following: 

My_A Op Syn A Save assembler's definition of A 

Macro 
&L A &R,&X 

AIF (T'&X eq 1 F1 or T'&X eq 1A' or T'&X eq 1Q1 ) .OK 
MNote l, 1 Note! Second operand type not F, A, or Q. 1 

.OK AN op 
&L My_A &R,&X 

MEnd 

This simple macro requires a non-macro statement {OPSYN) to preserve the assembler's 
definition of the A instruction. The generated machine language instruction will be the same 
as it would be for the assembler's "native" A instruction. The result of using this macro 
might look like the following: 

A 1,02 
*** MNOTE *** 1,Note! Second operand type not F, A, or Q. 

+ My_A 1,02 
* 
02 DC 0'2 1 

To extend this example, we might choose to permit type attributes F and D {fullword and 
doubleword constants), A, Q, and V (fullword address constants), and X ("almost anything"), 
and flag uses of other types with a low-level message. 
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We will examine some generalizations of this simple example to show how the assembler 
can provide very useful forms of consistency checking of instructions, operands, and regis­
ters. 

Base-Language Type Sensitivity: General Type Checking 

Intent: compatibility checking between instruction and operand types 

Define TypeChek macro to request type checking 
Syntax: TypeChek opcode,valid_types 

Call TypeChek with: opcode to check, allowable types 

TypeChek L, 'ADFQVX' Allowed types: AQV (adcons), D, F, X 

Sketch of macro to initiate type checking for one mnemonic: 
Macro 
Typethek &Dp,&Valid MnelllDnic, set of valid types 
&b lt &(Typetheck_ &Dp. _Ya lid),&(Typetheck_&Dp) 

&(TypeCheck_&Op._Valid) Sett '&Valid' Save valid types 
Typetheck_&Op. OpSyn &Op. Save original opcode definition 
&Op OpSyn , Disable previous definition of &Op 
* MHote *,'Mne11111nic ''&Op.'' valid types are ''&(Typetheck_&Dp._Valid).''.' 

MEnd 

Generalizable to multiple opcode mnemonics 

- But: requires creating macros for each mnemonic ... 
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Base-Language Type Sensitivity: General Type Checking ••• 

Now, need to install L macro in the macro library: 
Macro 

&Lab L &Reg,&Operand 
&blt &(TypeCheck_L_Valid) List of valid types for L 

&TypDp Sett T'&Dperand Type attribute of &Operand 
&Test SetA ( '&(Typetheck_L_Valid)' Find '&TypDp') Check validity 

Aif (&Test ne 8).DK Skip if valid 
MNote 1, 'Possible type incompatibility between L and ''&Operand.''?' 

.OK ANop Now, do the original L instruction 
&Lab Typetheck_L &Reg,&Operand 

MEnd 

Now, use L "instruction" as usual: 
888884 SA DS F 
888888 6 I DS ft 

A has type attribute F 
I has type attribute H 

8BD1E4 5818F884 Zl L 1,A Load from fullword 
8881E8 5828F888 Z4 L 2,1 Load from halfword 

Tech-76 

"** MNOTE *** + !,Possible type incompatibility between L and 'B'? 

Inconvenience: have to write a macro for each checked mnemonic 
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Instruction-Operand Type Checking 

First, we will define a TypeChek macro whose arguments are an instruction mnemonic and a 
set of allowed types. (This approach is more general than strictly needed, but it will allow 
easy generalization to multiple mnemonics with the same set of permitted operand types.) 
This macro will define two created variable symbols, &(TypeCheck_&Op._Valid) with the types, 
and &(TypeCheck_&Op) with a substituted name TypeCheck_&Op for saving the meaning of the 
mnemonic to be checked. 
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Macro 
TypeChek &Op,&Valid Mnemonic, set of valid types 
GblC &(TypeCheck_&Op._Valid),&(TypeCheck_&Op) 

&(TypeCheck_&Op._Valid) SetC '&Valid' Save valid types 
TypeCheck_&Op. OpSyn &Op. Save original opcode definition 
&Op OpSyn , Disable previous definition of &Op 
* MNote *,'Mnemonic ''&Op.'' valid types are ''&(TypeCheck_&Op._Valid). 111 

MEnd 

Figure 75. Instruction-Operand Type Checking: TypeChek Macro 

This definition of the TypeChek macro may be called to define checked types for other mne­
monics, also. When the TypeChek macro is called: 

TypeChek l,'ADFQVX' Allowed types: AQV (adcons), OF, X 

it will nullify the Assembler's definition of the L mnemonic. 

Thus, the second step is to define an L macro which will be added to the macro library used 
before the type-checked application is assembled. 

Macro 
&lab L 

GblC 
&TypOp SetC 
&Test SetA 

Alf 
MNote 

&Reg,&Operand 
&(TypeCheck_L_Valid) list of valid types for L 
T'&Operand Type attribute of &Operand 
('&(TypeCheck_l_Valid)' Find '&TypOp') Check validity 
(&Test ne 0).0K Skip if valid 

.OK 
&Lab 

!,'Possible type incompatibility between Land ''&Operand.''?' 
Now, do the original l instruction A Nop 

TypeCheck_L 
MEnd 

&Reg,&Operand 

Figure 76. Instruction-Operand Type Checking: "Instruction" Macro 

Now, when the L "instruction" is used, it will actually invoke the L macro, which then checks 
the type of the operand and issues an MNOTE message in case of a mismatch. Finally, the 
correct instruction (whose true definition was saved by the TypeChek macro as TypeCheck l) 
is generated, with the same operands as the call to the L macro. -

900084 
aaaaaa 

5 A 
6 B 

El001E4 581BF084 23 
BBEllEB 5820F088 24 

*** MNOTE *** + 

OS 
OS 

F 
H 

A has type attribute F 
B has type attribute H 

l 1,A Load from fullword 
L 2,B load from halfword 

!,Possible type incompatibility between land 'B'? 

Figure 77. Instruction-Operand Type Checking: Examples 

As the above example illustrates, using an operand of a "non-approved" type will be 
flagged. 

While useful, this scheme requires writing a separate macro for each instruction to be "type 
checked". Installing the macros in a library needs to be done only once, but their presence 
could cause problems if other users accidentally reference the macros when no type 
checking was intended. These difficulties can be overcome by generalizing the TypeChek 
macro, and by finding a way for the instruction-replacement macros to be generated auto­
matically. 
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Base-;Language Type Checking: Extensions 

Previous technique requires writing a macro for each checked 
instruction 

- Not difficult to write, just a lot of repetitive work 

- Macros must be available in a library 

- If not using TypeChek, don't use the instruction-replacement macros• 

Better: 

- Specify a list of instructions to be checked, such as 

TypeChek (L,ST,A,AL,S,SL,N,X,O}, 'ADFQVX' 

- The TypeChek macro generates the replacement macros as needed 
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Obviously, we could define the list of allowed types in the L macro itself, and eliminate the 
TypeChek macro; but we will still need statements like 

Save original definition of L TypeChek_L Opsyn L 
L OpSyn , Null operand eliminates 'L' mnemonic 

to "nullify" the assembler's built-in definition, for each mnemonic to be checked. 

The scheme illustrated here can be generalized in many ways. For example, the TypeChek 
macro could accept a list of mnemonics that share the same set of valid types: 

TypeChek (L,ST,A,AL,S,SL,N,X,O),'ADFQVX' 

which allows handling mnemonics in related groups. 

One attractive possibility would be to have the TypeChek macro generate the "mnemonic" 
macros for the mnemonics to be checked, as they will all have the same pattern for a given 
class of mnemonics. Unfortunately, one key capability of the original macro and conditional 
assembly language was missing: when a macro is defined inside another macro (so that 
expanding the first causes the second to become defined), values cannot be substituted from 
the scope of the enclosing "outer" macro definition into the statements of the enclosed 
"inner" macro definition. (See "Nested Macro Definition in High Level Assembler" on 
page 64.) The ability to parameterize generated macros would make it much easier to 
create the "mnemonic" macros directly. 

This shortcoming has been eliminated by the AINSERT statement introduced with HLASM 
Release 3. 
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! The AINSERT Statement 

AINSERT allows generation of fully parameterized records 

AINSERT 'string', [FRDNTIBACK] 

Placed at front or back of assembler's internal buffer queue 

- HLASM pads or truncates string to form 80-byte record 

HLASM reads from the FRONT of the buffer before reading from SYSIN 

- Input from SYSIN resumes when the buffer is empty 

Operand string may contain "almost anything" 

Alnsert '* co111112nt about &SysAsn. &SysVer. ',BACK 
>* co111111ent about HIGH LEVEL ASSEMBLER 1.4.8 

- The '>' character in "column O" indicates AINSERTed statement 

We will use AINSERT to generate macro definitions 
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Sometimes it is useful to exercise greater control over the order in which generated state­
ments will be processed. The AINSERT statement lets you generate complete statements in 
almost any order you like, at the same time removing many of the restrictions associated 
with encoding. 

The syntax of AINSERT is 

AINSERT 1string 1 ,[FRONTjBACK] 

The first operand may contain points of substitution. 

The assembler maintains an internal buffer queue into which AINSERT strings are placed, 
padded or truncated to an 80-byte record. Each record is placed either at the front or back 
end of the buffer, depending on the second AINSERT operand. When the assembler is ready 
to read records from the primary input (SYSIN) file, it first checks the AINSERT buffer: if non­
empty, records are taken from the buffer until it is empty, and input then resumes from the 
primary input stream. 

This technique removes many limitations on substitutable fields: 

A!nsert 1* comment about &SysAsm. &SysVer. 1 ,BACK 
>* comment about HIGH LEVEL ASSEMBLER 1.4.0 

A!nsert '*Assembled &SYSDatC. 1 ,BACK 
+ A!nsert 1* Assembled 2aaaa788 1 ,BACK 
>* Assembled 20800708 

where the •>• character in the listing is the assembler's indication of a statement inserted 
into the statement stream via AINSERT. (Remember that AINSERTed statements are treated 
as part of the primary input stream, and are not within the body of any existing macro.) 

We will now see how we can use AINSERT to generate the desired instruction-replacement 
macros as needed. 
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Base-Language Type Checking: Generated Macros 

Generate each type-checking macro using AINSERT 
TypeChek (L,ST,A,AL,S,SL,N,X,D), 'ADFQVX' Desired style 

Sketch of revised inner loop of TypeChek macro: 
&Op SetC •&Ops( &K) • Pick off K-th opcode 
&Op DpSyn , Disable previous definition of &Op 
• * Generate 11acru ta redefine &Dp for type checking 
Alnsert • Macro •,BACK 
Alnsert '&&Lab &Dp. &&Reg,&&Dpd',BACK 
Alnsert ' liblC &&(TypeCheck_&Dp._Valid) ',BACK 
Alnsert '&&TD SetC T' '&&Dpd ',BACK 
Alnsert '&&T SetA ("&&(TypeCheck_&Dp._Valid)" Find "&&TD")',BACK 
Alnsert ' Alf (&&T ne B).DK ',BACK 
Ainsert ' .,..ute 1, "Puss ib 1 e type canfl ict between &Op and &&Dpd? • " , B* 

ACK 
Alnsert '.DK ANup ',BACK 
Alnsert '&&Lab TypeCheck_&Dp &&Reg,&&Dpd ',BACK 
Alnsert ' MEnd ',BACK 

End uf macro generat ian 

Compare to "hand-coded" L macro (slide Tech-77) 
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In Figure 76 on page 182 we saw how the "instruction" macro was created for a single mne­
monic (L). We can use the AINSERT statement so the TypeChek macro creates such macros 
for each mnemonic. 

These examples have used RX-type instructions to show how to set up a type-checking 
macro. Assuming that we will want to generalize to other instruction types, we will first write 
a TypChkRX macro (based on the TypeChek macro illustrated above). The same techniques 
are used, and now we will generate the needed macros for each mnemonic: 
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&K 

Macro 
TypChkRX &Ops,&Valid 
SetA 1 Count of mnemonics 

.Press ANop Process each opcode in &Ops 
&Op SetC '&Ops(&K)' Pick off K-th opcode 

GblC &(TypeCheck_&Op._Valid),&(TypeCheck_&Op.) 
&(TypeCheck_&Op._Valid) SetC '&Valid' Save valid types 
&(TypeCheck_&Op.) SetC 'TypeCheck_&Op.' Create new opcode 
&(TypeCheck_&Op.) OpSyn &Op Save original opcode 
&Op OpSyn , Disable previous definition of &Op 

MNote *,'Mnemonic &Op. valid types are &(TypeCheck_&Op._Valid)' 
* Generate macro to redefine &Op for type checking 
Alnsert ' Macro ',BACK 
Alnsert '&&Lab &Op. &&Reg,&&Opd',BACK 
Alnsert 'GblC &&(TypeCheck_&Op._Valid)',BACK 
Alnsert '&&TO SetC T''&&Opd ',BACK 
Alnsert '&&T SetA (11 &&(TypeCheck_&Op._Valid) 11 Find ''&&TO'')',BACK 
Alnsert ' Alf (&&T ne 0).0K ',BACK 
Alnsert ' MNote 1,''Possible type conflict between &Op and &&Opd? 11 ',B* 

ACK 
Alnsert '.OK ANop ',BACK 
Alnsert '&&Lab TypeCheck_&Op &&Reg,&&Opd 
Alnsert ' MEnd ',BACK 

I ,BACK 

* End of macro generation 
&K SetA &K+l Increment &K 

Alf (&K le &N).Prcss If not finished get next opcode 
MEnd 

Figure 78. Instruction-Operand Type Checking: Generated Macro Definitions 

A call to the TypChkRX macro causes a "mnemonic" macro to be created for each mne­
monic in the first operand: 

TypChkRX (L,A,ST), 1 ADFQVX 1 Allowed types: AQV (adcons), D, F, X 

will generate macros for mnemonics l, A, and ST, each of which will validate that their 
operand types are one of the six allowed types. 

A minor detail worth noting: the second operand of the macro is enclosed in apostrophes, in 
case we may want to include user-defined (lower-case) types in the &Valid operand in the 
future. If the user has specified the COMPAT(MACROCASE) option, unquoted lower-case 
letters would be converted to upper case before being made available to the expansion of 
the macro. 

The following figure illustrates the operation of the TypChkRX macro. (Many repetitive lines 
were removed; if you don't want all the AINSERT statements and AINSERTed records to 
appear in your listing, you could modify the macro to generate PRINT OFF and PRINT ON 
statements in appropriate places.) 
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TypChkRX (L,ST,A,AL,S,SL,N,X,O),ADFQVX 
+TypeCheck_L OpSyn L Save original opcode 
+L OpSyn , Disable previous definition of &Op 
+*,Mnemonic L valid types are ADFQVX 
+ Alnsert 1 Macro ',BACK 
+ Alnsert '&&Lab L &&Reg,&&Opd',BACK 
+ Alnsert 1 GblC &&(TypeCheck_L_Valid)',BACK 
+ Alnsert '&&TO SetC T11 &&0pd ',BACK 
+ Alnsert '&&T SetA (11 &&(TypeCheck_L_Valid) 11 Find 11 &&T0 11 ) 1 ,BACK 
+ Alnsert 1 Alf (&&T ne 0).0K ',BACK 
+ Alnsert 1 MNote l,''Possible type conflict between Land &&Opd? 111 ,BACX 
+ K 
+ Alnsert '.OK ANop ',BACK 
+ Alnsert '&&Lab TypeCheck_L &&Reg,&&Opd ',BACK 
+ Alnsert 1 MEnd ',BACK 
+TypeCheck_ST OpSyn ST Save original opcode 
+ST OpSyn , 
+*,Mnemonic ST valid 

Disable previous definition of &Op 
types are ADFQVX 

etc. etc. 
many AINSERT statements later, the assembler reads the buffer: 

> Macro 
>&Lab L &Reg,&Opd 
> GblC &(TypeCheck_L_Valid) 
>&TO SetC T'&Opd 
>&T SetA ( 1&(TypeCheck_L_Valid) 1 Find '&TO') 
>Alf (&T ne 0).0K 
> MNote !,'Possible type conflict between Land &Opd?' 
>.OK ANop 
>&Lab TypeCheck_L &Reg,&Opd 
> MEnd 
> Macro 
>&Lab ST &Reg,&Opd 

etc. etc. 
many macro definitions later, the assembler reads the input file: 

L 1,A 
+ ·TypeCheck_L 1,A 

ST l,B 
*** MNOTE *** !,Possible type conflict between ST and B? 

+ TypeCheck_ST l,B 
A l,B 

*** MNOTE *** !,Possible type conflict between A and B? 

A 
B 

OS 
OS 

F 
H 

Figure 79. Generated Statements from TypChkRX Macro 
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I User-Assigned Assembler Type Attributes 

• We can utilize third operand of EQU statement for type assignment: 

sylllbol EQU expression, length,!Y,2! 

- Assembler's "native• types are upper case letters (and ·~·) 

- We can use lower case letters for user-assigned types 

Example (extend the REGS macro, slide Tech-8) to create a TYPEREGS 
macro: 

&R&M EQU &H,,C 'g' 
FR&H EQU &M, ,C'f' 

Assign value and type attribute •g• for &PR 
Assign value and type attribute 'f' for FPR 

GRnn symbols have type attribute 'g '. FRnn have 'f' 

Can use type attribute to check symbols used in register operands 
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User-Defined Assembler Type Attributes 

One can obtain some relief from the limitations of the Assembler's assignment of type attri­
butes by using the third operand of an EQU statement to assign user-defined type attributes 
to program objects. As a reminder, the full syntax of the EQU statement is 

symbol Equ expression[;[length][,type_expression]] 

The type expression in the third operand must evaluate to an absolute quantity in the range 
from 0 to-255. The "native" type attributes assigned by the assembler are all upper-case 
letters or the '@' character, so the other values can be used for user-assigned attributes. 

A simple generalization of two previous examples will show how we could do further 
assembly-time checking of instruction usage. First, consider the previously defined REGS 
macro (see Figure 28 on page 106) that generates symbolic names to refer to various types 
of registers. If we modify the EQU statements in those macros to include a user-assigned 
type attribute, we could (for example) assign type 1 g' to general purpose registers, • f • to 
floating point registers, and so forth. Then, a simple extension of the TypeChek macro (or 
the L macro) can be used to verify that a symbolic name used to designate a register is of 
the correct type. 

First, in the TYPEREGS macro, the EQU statements are modified: 

GR&N 
FR&N 

EQU &N,,C'g' 
EQU &N,,C'f' 

etc. 

Assign value and type attribute 'g' for GPRs 
Assign value and type attribute 'f' for FPRs 

As an example, suppose we want to extend the REGS macro described in "Case Study 1: 
Defining Equated Symbols for Registers" on page 103 to create a TYPEREGS macro that 
assigns a special type attribute to the symbols naming each register. Figure 80 on 
page 189 shows how to do this. 
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MACRO 
TypeRegs 
AIF (N 1 &SysList eq 0).Exit 

&J SetA 1 Initialize argument counter 
.GetArg ANOP 
&T SetC 
&N Set A 

AIF 
GBLB 
AIF 

&L 
&N 
.Gen 
&T.R&N 
&N 

SetC 
SetA 
A Nop 
Equ 
SetA 
Alf 

&(&T.Regs_Done) 
.Next ANOP 
&J SetA 

.Bad 

AIF 
MEX IT 
MNOTE 
MEX IT 

.Done MNOTE 
AGO 

.Exit MEND 

(Upper 1&SysList(&J) 1 ) Pick up an argument 
( 1ACFG 1 Index 1&T 1 ) Check type 
(&N eq 0).Bad Error if not a supported type 
&(&T.Regs_Done) Declare global variable symbol 

(&(&T.Regs_Done)).Done Test if true already 
(Lower 1 &T 1 ) Lower case for type attribute 
0 
, 
&N,,C 1 &L 1 

&N+l 
(&N le 15).Gen 

Generate Equ statements 

SetB (1) Indicate definitions have been done 

&J+l Count to next argument 
(&J le N1&SysList).GetArg Get next argument 

8, 1 &SysMac. 

0, '&sysMac . 
. Next 

Unknown type 11 &T. 11 • 1 

Previously called for type &T •. 1 

Figure 80. Instruction-Operand Type Checking: Assigning Register Types 

This macro assigns the same symbolic names to register symbols, but also assigns special 
type attributes that specify the type of register. These types can be used in the macros gen­
erated for each instruction type to verify correct usage. 

A sample of the Type-Regs generated statements is shown in the following figure. 

TYPEREGS F,G 
+FR0 Equ 0,,C 1f 1 

+FRI Equ 1,,c 1f 1 

+FR2 Equ 2,,C 1 f 1 

etc. 

+FR15 Equ 15,,C 1f 1 

+GR0 Equ 0,,C 1g1 

+GRl Equ l,,C 1g1 

+GR2 Equ 2,,C 1g1 

etc. 

+GRIS Equ 15,,C 'g I 
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Instruction-Operand-Register Type_ Checking 

Intent: check "typed" register names in type-checking macros 
Example: extend L macro (see slides Tech-76 and Tech-77) 

MacrD . 

&Lab L &Reg,&Dperand 
&blC &(TypeCheck_L_Val id) ,&(TypeCheck_L_RegType) 

&Typlp Sett T'&Dperand Type attribute Bf &Operand 
&Test SetA ( '&(TypeCheck_L_Valid)' Find '&TypOp') Check validity 

Alf (&Test ne 8).DK_Op Skip if valid 
MN&te 1, 'Possible type inco11po1tibility between L and "&operand."?' 

.DK_Dp AHop NDW, do the original L instractiDn 
* Added checking for register type: 

&TypRg Sett T'&Reg Type attribute of &Reg 
&Test SetA ( '&(Typetheck_L_RegType) • Find '&TypRg') Check validity 

Alf (&Test ne 8).0KReg Skip if valid 
Mtlote 1, 'Possible register incompatibility between L and ''&Reg.''?' 

.DKReg AHop Now, do the original L instruction 
&Lab Typetheck_L &Reg,&Dperand 

MEnd 

Typical expected output... 
L' FR4,F 

*** MNOTE *** 1,Possible type incompatibility between L and 'F'? 
*** MllOTE *** 1,Pussible register incompatibility between Land 'FR4'? 
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Instruction-Operand-Register Type Checking 

Tech-82 

After assigning user-defined type attributes to the register symbols generated by the 
TYPEREGS macro, the TypeChek macro (see Figure 75 on page 182) could be modified by 
adding a keyword parameter &RegType, with a default value that includes 19 1 : 

Macro 
TypeChek &Op,&Valid,&RegType= 1 gN 1 Mnemonic, set of types, RegType 
GblC &(TypeCheck_&Op._Valid),&(TypeCheck_&Op) 
GblC &(TypeCheck_&Op._RegType) 

&(TypeCheck_&Op._Valid) SetC '&Valid' Save valid operand types 
&(TypeCheck_&Op._RegType) SetC '&RegType'(2,K'&RegType-2) Save valid reg types 

- - - etc. 

The default &RegType values allow self-defining terms with type attribute 'N' (that is, self­
defining constants) and declared register types ( 19 1) as register operands. As mentioned 
before, the &RegType operand is a quoted string, to avoid the possibility that the 
COMPAT(MACROCASE) option might convert the argument value to upper case. (Note: if 
you want to use the apostrophe character as the value of a user-assigned type attribute, you 
will need to add statements to remove the quotes from each end of the &Valid and 
&RegType operands before assigning the strings to the global variables 
&(TypeCheck _&Op._ Valid) and &(TypeCheck _&Op._ Reg Type) respectively.) 

An enhanced L macro (see Figure 76 on page 182) can then be used to validate both the 
register type and the operand type: 
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Macro 
&Lab L &Reg,&Operand 

GblC &(TypeCheck_L_Valid),&(TypeCheck_L_RegType) 
&TypOp SetC T'&Operand Type attribute of &Operand 
&Test SetA ('&(TypeCheck_L_Valid)' Find '&TypOp') Check validity 

Aif (&Test ne O).OK_Op Skip if valid 
MNote l,'Possible type incompatibility between Land ''&Operand.''?' 

.OK_Op ANop Now, check register validity 
&TypRg SetC T'&Reg Type attribute of &Reg 
&Test SetA ('&(TypeCheck_L_RegType)' Find '&TypRg') Check validity 

Aif (&Test ne O).OKReg Skip if valid 
MNote l,'Possible register incompatibility between Land ''&Reg.''?' 

.OKReg ANop Now, do the original L instruction 
&Lab TypeCheck_L &Reg,&Operand 

MEnd 

Figure 81. Instruction-Operand-Register Type Checking: "Instruction" Macro 

This modification would then check that all values provided as register operands for the L 
instruction are properly defined. 

An example of the output of these macros is shown in the following figure. 

+ 

+ 

+ 

+ 

*** 

*** 

*** 
*** 

A 
c 
0 
F 

TY PERE GS 
TYPCHKRX 

F,G Create typed names for registers 
L,FDEAVQX,RegType='gN' L instruction valid types 

L l,A Register operand self-defining 
TypeCheck_L l,A 
L GRl,C 

MNOTE *** l,Possible type incompatibility between L and 'C'? 

TypeCheck_L GRl,C 
L FR2,D Floating-point register 

MNOTE *** Pssible register incompatibility between L and 'FR2'? 
TypeCheck_L FR2,0 

L FR4,F Float register and invalid operand 
MNOTE *** l,Possible type incompatibility between L and 'F'? 
MNOTE *** l,Possible register incompatibility between L and 'FR4'? 

TypeCheck_L FR4,F 

OS 
OS 
OS 
OS 

F 
CL3 
D 
s 

These type-checking examples are incomplete, and are intended more as a detailed sketch 
than a completed macro package. Feel free to extend and adapt them to suit your needs and 
inclinations. 
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Case Study 9c: Encapsulated Abstract Data Types 

Intent: declare two user types, and define operations on them 

Types: Date and Duration (or Interval) between 2 Dates 

- Unfortunately, both Qate and Quration start with D 

- So, we'll use "ln1erval" as the safer (if less intuitive) term 

• A measure of elapsed time, in days 

- We will use lower case letters 'd' and 'i' for our types! 

DCLOATE and DCLNTVL macros declare variables (abstract data types): 

DtLDATE Birth, &raduation,Marry, Hire, Retire, Expire 

DCLNTVL Training, Employment, Retirement, LoanPeriod 
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Case Study 9c: Encapsulated Abstract Data Types 

To overcome the limitations of using just assembler-assigned types, we will now examine a 
set of macros that declare and operate on data items with just two specific types: calendar 
dates, and durations or intervals of elapsed time in days. (Because both "date" and "dura­
tion" begin with the letter "D", we'll use "interval" as the preferred term.) With these two 
data types, we can perform certain kinds of arithmetic and comparisons: 

two dates may be subtracted to yield an interval 

an interval may be added or subtracted from a date to yield a date 

• two intervals may be added or subtracted to yield a new interval 

• dates may be compared with dates, and intervals with intervals 

Any other operation involving dates and intervals is invalid. 

First, we will examine two macros that "declare" variables of type "date" and "interval", 
(DCLDATE and DCLNTVL, respectively). Each macro will accept a list of names to be 
declared with that type, assign "private" type attributes 'd' and 'i •,and allocate storage for 
the variables. 
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User-Assigned Type Attributes: DCLDATE Macro 

Declaration of DATE types made by DclDate macro 
Macro , Args = list of names 
DCLDATE 
&blC &DateTyp Type attr of Date variable 

&DateTyp SetC 'd' User type attr is lower case 'd' 
&Date Len SetA 4 Dates stored as PL4 'yyyyddd' 

length of a DATE type could also be a global variable 
&HV SetA N'&Syslist Number of arguments to declare 
&K SetA 8 Counter 
.Test Aif (&K ge &NV).Done Check for finished 
&K SetA &K+ 1 Increment argument counter 

DC PL&Datelen.'9' Define storage as packed decimal 
&Syslist(&K) Equ *-&Datelen.,&Datelen. ,C'&DateTyp' Define nallll!, length, type 

Ago • Test 
.Done MEnd 

DclDate LoanStart,LoanEnd 
+ DC PL4'8' 
+LoanStart Equ *-4,4,C'd' 
+ DC PL4'9' 
+LoanEnd Equ *-4,4,C'd' 

Declare Z date fields 
Define storage as packed decimal 
Define name, length, type 
Define storage as packed decimal 
Define name, length, type 
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I 
I 

First, we will illustrate a macro OclDate to declare variables of type "date". The DclDate 
macro accepts a list of names, and allocates a packed decimal variable of 4 bytes for each, 
which we assume are represented as Julian dates in the form PL4 1yyyyddd 1 

Macro 
DclDate 
GblC &OateTyp Type attr of Date variable 

&OateTyp SetC 'd' User type attr is lower case 'd' 
&Oatelen SetA 4 Oates stored as PL4'yyyyddd' 
* Length of a DATE type could also be a global variable 

&NV SetA N'&Syslist Number of arguments to declare 
&K SetA 0 Counter 
.Test Aif (&K ge &NV).Oone Check for finished 
&K SetA &K+l Increment argument counter 

DC PL&Datelen. 1 81 Define storage as packed decimal 
&Syslist(&K) Equ *-&Datelen.,&Oatelen.,C 1&DateTyp 1 Define name, length, type 

Ago . Test 
.Done MEnd 

Figure 82. Macro to Declare "DATE" Data Type 

Sample calls to the DCLDATE macro are illustrated in Figure 83 below: 

Print NoGen 
DclDate Birth,Hire,Oegree,Retire,Oecease 
Print Gen 

Declare 5 qate fields 

DclDate LoanStart,LoanEnd 
+ DC PL4'0' 
+LoanStart Equ *-4,4,C'd' 
+ DC PL4 1 81 

+LoanEnd Equ *-4,4,C 1 d1 

Declare 2 date fields 
Define 
Define 
Define 
Define 

storage as packed decimal 
name, length, type 
storage as packed decimal 
name, length, type 

Figure 83. Examples of Declaring Variables with "DATE" Data Type 
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User-Assigned Type Attributes: DCLNTVL Macro 

Declaration of INTERVAL types made by OclNtvl macro 
- Initial value can be specified with lni t= keyword 

Macro , Args = list of names 
DCLNTVL &Init=B Optional initialization value 
&blC &NtvlTyp Type attr of Interval variable 
LclA &Ntvllen Length of an Interval variable 

&NtvlTyp Sett 'i' User type attr is lower case 'i' 
&Ntvllen SetA 3 Intervals stored as Pl3'ddddd' 

Length of an INTERVAL type could also be a global variable 
YtV SetA N'&Syslist Number of arguments to declare 
&IC SetA 8 Counter 
• Test Aif (&IC ge YtV) .Done Check for finish 
&IC SetA &K+l Increment argument count 

DC Pl&Ntvllen.'&Init.' Define storage 
&Syslist(&K) Equ *-&Ntvllen.,&Ntvllen.,C'&NtvlTyp' Declare name, length, type 

Ago • Test 
.Done MEnd 

+ 
+Week 

DclNtvl Week,Init=7 
DC PL3'7' 
Equ *-3,3,C'i' 

Define storage 
Name, length, type 
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The De 1 Ntvl macro also accepts a list of names, and allocates a packed decimal field of 3 
bytes for each, which we will assume represents an interval of up to 99999 days in the form 
PL3' ddddd'. In addition, a keyword variable &I nit= can be used to supply an initial value for 
all the variables declared on any one macro call. 

Macro 
DCLNTVL &Init=e 
GblC &NtvlTyp 
LclA &NtvlLen 

&NtvlTyp SetC 'i' 
&NtvlLen SetA 3 

Declare a time interval in days 
Type attr of Interval variable 
Storage length of interval variable 
User type attr is lower case 'i' 
Intervals stored as PL3'ddddd' 

* 
&NV 
&K 
.Test 
&K 

Length of an INTERVAL type could also be a global variable 
SetA N'&SysList Number of names to declare 
SetA 0 Counter 
Aif (&K ge &NV).Done Check for finish 
SetA &K+l Increment argument count 
DC PL&NtvlLen.'&Init' Declare variable and initial value 

&SysList(&K) Equ *-&NtvlLen.,&NtvlLen.,C'&NtvlTyp' Declare name, length, type 
Ago .Test Check for more arguments 

.Done MEnd 

Figure 84. Macro to Declare "INTERVAL" Data Type 

Sample calls to the DCLNTVL macro are illustrated in Figure 85 on page 195 below: 
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Aaa Del Ntvl Vacation,Holidays 
+ DC PL3'0' 
+Vacation Equ *-3,3,C'i I 
+ DC PL3'0' 
+Holidays Equ *-3,3,C'i I 

DclNtvl LoanTime 
+ DC PL3'0' 
+LoanTime Equ *-3,3,C'i' 

+ 
+Year 

DclNtvl Year,Init=365 
DC PL3'365' 
Equ *-3,3,C'i' 

DclNtvl LeapYear,Init=366 
+ DC PL3'366' 
+LeapYear Equ *-3,3,C'i' 

+ 
+Week 

DclNtvl Week,Init=7 
DC PL3'7' 
Equ *-3,3,C'i' 

Define storage 
Name, length, type 
Define storage 
Name, length, type 

Define storage 
Name, length, type 

Define storage 
Name, length, type 

Define storage 
Name, length, type 

Define storage 
Name, length, type 

Figure 85. Examples of Declaring Variables with "INTERVAL" Data Type 
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Calculating With Date Variables: CalcDat Macro 

Now, define operations on DATEs and INTERVALs 

User-callable Cal cDat macro calculates dates: 

&AnsDate CalcDat &Argl,Op,&ArgZ 

Allowed forms are: 

ResultDate 
ResultDate 
ResultDate 

talcDat Date,+,Interval 
CalcDat Date,-,Interval 
CalcDat Interval,+,Date 

Calculate a Date variable 

Date = Date + Interval 
Date = Date - Interval 
Date = Interval + Date 

Cal coat validates (abstract) types of all arguments, 
and calls one of two auxiliary macros 

DATEADDI Datel,LDat,Interval,LNvl,AnsDate,Anslen Date = Date+Interval 
DATESUBI Datel,lDat,Interval,lNvl,AnsDate,Anslen Date = Date-Interval 

- Auxiliary service macros ("private methods") understand actual data 
representations ("encapsulation") 

- In this case: packed decimal, with known operand lengths 
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Calculating With Date Variables: CalcDat Macro ... 

Calculate Date=Date±lnterval or Date=lnterval+Date 
- DATESUBI and DATEADDI are "private methods" 

Macro , Most error checks omitted!! 
&Ans CALCDAT &Argl,&Dp,&ArgZ Calculate a date in &Ans 

6blC &NtvlTyp,&DateTyp Type attributes 
&Tl Sett T'&Argl Save type of &Argl 
&TZ Sett T'&Arg2 And of &ArgZ 

Aif ( '&Tl&T2' ne '&DateTyp&NtvlTyp' and X 
'&Tl&TZ' ne '&NtvlTyp&DateTyp').Err4 Validate types 

Aif ('&Op' eq •+').Add Check for add operation 
DATESUBI &Argl,l'&Argl,&ArgZ,l'&Arg2,&Ans,l'&Argl D = 0-I 
MExit 

.Add AIF ('&Tl' eq '&NtvlTyp').Add2 lst opnd is interval of days 
DATEADDI &Argl,L'&Argl,&ArgZ,l'&Arg2,&Ans,l'&Argl D = D+I 
MExit 

.AddZ DATEADDI &ArgZ,l'&ArgZ,&Argl,l'&Argl,&Ans,l'&ArgZ D = I+D 
MExit 

.Err4 MNote 8,'CALCDAT: Incorrect declaration of Date or Interval?' 
MEnd 

Hire CalcDat Degree,+,Year 
+ DATEADDI Degree,l'Degree,Year,l'Year,Hire,l'Degree D = D+I 
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Calculating with Date Variables 

Tech-86 

Tech-87 

Having written macros to declare the two data types, we can now consider macros for doing 
calculations with them. First, we will examine a date-calculation macro CALCDAT, with the 
following syntax: 

&AnsDate CalcDat &Argl,Op,&Arg2 Calculate a Date variable 

where &AnsDate must have been declared a "date" variable, and the allowed operand com­
binations are: 

ResultOate 
ResultDate 
ResultDate 

CalcDat Date,+,Interval 
CalcDat Date,-,Interval 
CalcDat Interval,+,Date 

Date 
Date 
Date 

Date + Interval 
Date - Interval 
Interval + Date 
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We are now in a position to write a CalcDat macro that validates the types of all three oper­
ands before setting up the actual computations which will be done by two "service" macros 
called DATEADDI (to add an interval to a date) and DATESUBI (to subtract an interval from a 
date). These service macros will "understand" the actual representation of "date" and 
"interval" variables, and can perform the operations accordingly. 

Macro 
&Ans CALCDAT &Argl,&Op,&Arg2 Calculate a date in &Ans 
&M SetC 'CALCDAT: ' Macro name for messages 

GblC &NtvlTyp,&DateTyp Type attributes 
Aif (N'&Syslist ne 3).Errl Check for required arguments 
Aif ('&Op' ne '+' and '&Op' ne '-').Err2 
Aif (T'&Ans ne '&DateTyp').Err3 

&Tl SetC T'&Argl Save type of &Argl 
&T2 SetC T'&Arg2 And of &Arg2 

Aif ('&Tl&T2' ne '&DateTyp&NtvlTyp' and X 
'&Tl&T2' ne '&NtvlTyp&DateTyp').Err4 Validate types 

Aif ('&Op' eq '+').Add Check for add operation 
Aif ('&Tl&T2' ne '&DateTyp&Ntvltyp').ErrS Bad operand seq? 
DATESUBI &Argl,L'&Argl,&Arg2,L'&Arg2,&Ans,L'&argl D = D-I 
MExit 

.Add AIF ('&Tl' eq '&Ntv1Typ').Add2 1st opnd an interval of days 
DATEADDI &Argl,L'&Argl,&Arg2,L'&Arg2,&Ans,L'&Argl D = D+I 
MExit 

.Add2 DATEADDI &Arg2,L'&Arg2,&Argl,L'&Argl,&Ans,L'&Arg2 D = I+D 
MExit 

.Errl MNote 8,'&M.Incorrect number of arguments' 
MExit 

.Err2 MNote 8,'&M.Operator ''&Op'' not+ or-' 
MExit 

.Err3 Aif (T'&Ans eq 'O').Err3a Check for omitted target 
MNote 8,'&M.Target ''&Ans'' not declared by DCLDATE' 
MExit 

.Err3A MNote 8,'&M.Target Date variable omitted from name field' 
MExit 

.Err4 MNote 8,'&M.Incorrect declaration of Date/Interval arguments' 
MExit 

.Errs MNote 8,'&M.Subtraction operands in reversed order' 
MEnd 

Figure 86. Macro to Calculate "DATE" Results 

Some examples of calls to the CalcDat macro are shown in the following figure. 

Hire CalcDat Degree,+, Year 
+ DATEADDI Degree,L'Degree,Year,L'Year,Hire,L'Degree D = D+I 

Hire CalcDat Year,+,Degree 
+ DATEADDI Degree,L'Degree,Year,L'Year,Hire,L'Degree D = I+D 

Hire CalcDat Degree,-, Year 
+ DATESUBI Degree,L'Degree,Year,L'Year,Hire,L'Degree D = D-I 

Figure 87. Examples of Macro Calls to Calculate "DATE" Results 

The "service" macros DATEADDI and DATESUBI do the real work: they must be able to handle 
whatever representation is chosen for dates (e.g. YYYYDDD for Julian dates, or YYYYMMDD for 
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readable dates), accounting for things like month lengths and leap years. These two macros 
would most likely invoke a general-purpose service subroutine that handles all such details, 
rather than generating the rather complex in-line code to handle all possible cases. 

Calculating Interval Variables: CalcNvl Macro 

Define user-called Cal cNvl macro to calculate intervals 

Allowed forms are: 

Resaltinterval CalcNvl Date,-,Date Difference of two date variables 
Resaltinterval CalcNvl lnterval,+,Interval Sum of two interval variables 
Resaltinterval talcNvl Interval,-,Interval Difference uf two intervals 
Resultinterval CalcNvl Interval,*,Number Product of interval, number 
Resultlnterval talcNvl Interval,/,Number Quotient of interval, nul!Der 

CalcNvl validates declared types of arguments, and calls one of five 
auxiliary macros (more "private methods"): 

NTVLADDI Nvll,lenl,Nvl2,Len2,AnsI,Anslen 
NTVLSUBI Nvll,Lenl,Nv12,Len2,AnsI,Anslen 
NTVUIULI Nvll,Lenl,ltv12,len2,Ansl,Anslen 
NTVLDIVI Nvll,Lenl,ltvl2,Len2,AnsI,Anslen 
DATESUBD Batel, LDatl, Date2, LDat2,AnsI,Anslen 

ltvl & Nvl + ltvl 
Nvl : Nvl - Nvl 
Nvl : Nvl ,. Nu• 
Nvl : Nvl I Mum 
Nvl : Date-Date 
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Calculating Interval Variables: CalcNvl Macro •.. 

Macro 
&Ans CALCNYL &Argl,&Op,&Arg2 

GblC llltvlTyp.&DateTyp Type attributes 
&X(C'+') Sett 'ADD' Name fur ADD routine 
&X(C'-') Sett 'SUB' Nalll! for SUB routine 
&X(C'* ') Sett 'MUL • Name for MUL routine 
&X(C' /') Sett 'DIV' Name for DIV routine 
&Z Sett •c• '&Op'•• Convert &Op char to self-def term 
&n Sett T'&Argl Type of Argl 
&TZ Sett T'&Arg2 Type of Arg2 

Aif ('&n&TZ&Dp' eq '&DateTyp&DateTyp.-').DD Chk date-date 
Aif ('&TZ' ne 'N').II Second operand nonnu111eric 
NTVL&X(&Z).I Argl,L'&Argl,:PL3'&Arg2',3,&Ans,L'&Ans I up const 
MExit 

.II NTVL&X(&Z).l &Argl,L'&Argl,&Arg2,l'&Arg2,&Ans,L'&Ans l op I 
MExit 

.DD DATESUBD &Argl,L'&Argl,&ArgZ,L'&ArgZ,&Ans,L'&Ans date-date 
MEnd 

Days tALCNVL Days,+,llays Interval + Interval 
+ NTVLADDI Days,L'llays,llays,L'Days,Days,L'Days I op I 

Days CALCNVL Hire,-,Degree Date - Date 
+ DATESUBD Nire,L'Hire,Degree,L'Degree,Days,L'Days date-date 
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Calculating with Interval Variables 

Tech-88 

Tech-89 

A second macro Cal cNvl to calculate intervals of time is similar in concept, but somewhat 
more complex because of a greater allowed set of operand combinations: 

&AnsNtvl CalcNvl &Argl,Op,&Arg2 Calculate an Interval variable 

where &AnsNtvl must have been declared a "interval" variable, and the allowed operand 
combinations are: 
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Interval CalcNvl Date,-,Date Difference of two date variables 
Interval CalcNvl Interval,+,Interval Sum of two interval variables 
Interval CalcNvl Interval,-,Interval Difference of two interval variables 
Interval CalcNvl Interval,*,Number Product of an interval and a number 
Interval CalcNvl Interval,/,Number Quotient of an interval and a number 

The Cal cNvl macro validates its arguments before generating calls to the "operational" 
macros that do the actual arithmetic. 

&Ans 

&M 

&X(C'+') 
&X(C'-') 
&X(C'*') 
&X(C' /') 
&Z 
* 

&Tl 
&T2 

.OpOK 
* 

. II 

.DD 

Macro 
CALCNVL &Argl,&Op,&Arg2 
GblC &NtvlTyp,&DateTyp Type attributes 
SetC 'CALCNVL: ' Macro name for messages 
Aif (N'&Syslist ne 3).Errl Wrong number of arguments 
Aif (T'&Ans ne '&Ntv1Typ').Err2 Invalid target 
Aif (T'&Op ne 'U' or K'&Op ne 1).ErrS Invalid operator 
SetC 'ADD' Name for ADD routine 
SetC 'SUB' Name for SUB routine 
SetC 'MUL' Name for MUL routine 
SetC 'DIV' Name for DIV routine 
SetC 'C''&Op''' Convert &Op to self-def term 
&Z used as an index into the &X array 
SetC T'&Argl Type of Argl 
SetC T'&Arg2 Type of Arg2 
Aif ('&Tl&T2&0p' eq '&DateTyp&DateTyp.-').DD Chk date-date 
Aif ('&Tl' ne '&Ntv1Typ').Err3 Invalid first operand 
Aif ('&T2' eq '&Ntvllyp' and X 

('&Op' eq '+' or '&Op' eq '-')).II 
Aif ('&Op' eq '+' or '&Op' eq '-' or '&Op' eq '*').OpOK, X 

('&Op' ne '/').Errs 
Aif ('&T2' ne 'N').Err4 Second operand nonnumeric 
Third operand is a constant 
NTVL&X(&Z).I Argl,3,=PL3'&Arg2',3,&Ans,3 interval op const 
MExit 
NTVL&X(&Z).I &Argl,3,&Arg2,3,&Ans,3 interval op interval 
MExit 
DATESUBD &Argl,4,&Arg2,4,&Ans,3 
MExit 

Difference of 2 dates 

.Errl MNote 8,'&M.Incorrect number of arguments' 
MExit 

.Err2 Aif (T'&Ans ne '0').Err2A Check for omitted target 
MNote 8,'&M.Target variable omitted' 
MExit 

.Err2A MNote 8,'&M.Target ''&Ans'' not declared by DCLNTVL' 
MExit 

.Err3 MNote 8,'&M.First argument invalid or not declared by DCLNTVL' 
MExit 

.Err4 MNote 8,'&M.Third argument invalid or not declared by DCLNTVL' 
MExit 

.Errs MNote 8,'&M.Invalid (or missing) operator ''&Op''' 
MEnd 

Figure 88. Macro to Calculate "INTERVAL" Results 

Note that this macro provides a form of encapsulation: the "operators" (or "methods") are 
hidden internally, and are not expected to be visible to the programmer. Thus, the macro 
names NTVLADDI, NTVLSUBI, NTVLMULI, NTVLDIVI, and DATESUBD perform the actual operations, 
and need not be visible directly to the user of the CALCNVL macro. 
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The calls to the "private" NTVLxxxl macros are generated with a form of "associative indi­
rect addressing" by using the single-character operator (such as+ or-) as an index into a 
four-entry "table" of strings specifying which macro name will be generated. 

Days CALCNVL Days,+,Days Interval + Interval 
+ NTVLADDI Days,L 1Days,Days,L 1Days,Days,L 1Days I op I 

Days CALCNVL Hire,-,Degree Date - Date 
+ DATESUBD Hire,L'Hire;Degree,L 1Degree,Days,L 1Days date-date 

Days CALCNVL Hire,-,Hire Date - Date 
+ DATESUBD Hire,L'Hire,Hire,L'Hire,Days,L'Days date-date 

Days CALCNVL Days,-,Days Interval - Interval 
+ NTVLSUBI Days,L'Days,Days,L'Days,Days,L'Days op I 

Days CALCNVL Days,+, 10 Interval + Number 
+ NTVLADDI Argl,L'Days,=PL3'10',3,Days,L'Days I op const 

Days CALCNVL Days,-,10 Interval - Number 
+ NTVLSUBI Argl,L'Days,=PL3'10',3,Days,L'Days I op const 

Days CALCNVL Days,*,10 Interval * Number 
+ NTVLMULI Argl,L'Days,=PL3'10',3,Days,L'Days I op const 

Days CALCNVL Days,/ ,10 Interval / Number 
+ NTVLDIVI Argl,L'Days,=PL3'10',3,Days,L'Days I op const 

Figure 89. Examples of Macro Calls to Calculate "INTERVAL" Results 

As you can see, these macros provide a fairly strong degree of type checking of their argu­
ments to ensure that they conform to the sets of operations appropriate to their types. If we 
had written only machine instructions, the opportunities for operand type conflicts, or 
operator-operand conflicts, would not only have been larger, but might have gone unde­
tected. In addition, once a set of useful macros has been coded, you can think in terms of 
"higher level" operations, and avoid the many details necessary to deal with the actual 
machine instructions. 

It is clear that these macros can be extended to avoid using the Assembler's (rather limited) 
type-attribute mechanism, by maintaining global data structures containing information such 
as a programmer-declared type, length, and so forth. 
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Example of an Interval-Calculation Macro 

Macro NTVLADDI adds intervals to intervals 
Macro 

&l NTVLADDI &Argl,&Ll,&Arg2,&LZ,&Ans,&lAns 
Alf ('&Argl' ne '&Ans').n Check for Ans being Argl 
Alf (&ll ne &LAns).Error Same field, different lengths 

&l AP &Ans.(&Lans},&ArgZ.(&LZ) Add ArgZ to Answer 

.n 

&L 

MExlt 
Alf ('&ArgZ' ne '&Ans').TZ 
Alf (&LZ ne &LAns).Error 
AP &Ans. (&Lans), &Argl. (&Ll) 
MEX it 

Check for Ans being ArgZ 
Same field, different lengths 
Add Argl to Answer 

• TZ ANop , 
&l ZAP &Ans. (&Lans) ,&Argl. (&Ll) Move Argl to Answer 

AP &Ans. (&Lans) ,&Arg2. (&LZ) Add ArgZ to Argl 
MExit 

.Error MNote 8, 'NTVLADDI: Target "&Ans" has salllt! na111e as, but diffe" 

A 
+A 

rent length than, a source operand' 
MEnd 

NTVLADDI X,3,=P'S' ,1,X,l 
AP X(l),=P'S'(l) Add ArgZ to Answer 
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The "service" macros for handling intervals will probably be much simpler than those for 
dates (except for DATESUBD, which subtracts two dates to yield an interval, and therefore must 
account for the choice of date representation, leap years, and the like). As an example of an 
interval-handling macro, consider the possible implementation of NTVLAODI shown below. 

Macro 
&L NTVLADDI &Argl,&Ll,&Arg2,&L2,&Ans,&LAns 

Alf ('&Argl' ne '&Ans').Tl Check for Ans being Argl 
Alf (&Ll ne &LAns).Error Same field, different lengths 

&L AP &Ans.(&Lans),&Arg2.(&L2) Add Arg2 to Answer 
MExit 

.Tl Alf ('&Arg2' ne '&Ans').T2 Check for Ans being Arg2 
Alf (&L2 ne &LAns).Error Same field, different lengths 

&L AP &Ans.(&Lans),&Argl.(&Ll) Add Argl to Answer 
MEX it 

.T2 A Nop • 
&L ZAP &Ans.(&Lans),&Argl.(&Ll) Move Argl to Answer 

AP &Ans.(&Lans),&Arg2.(&L2) Add Arg2 to Argl 
MExit 

.Error MNote 8,'NTVLADDI: Target ''&Ans'' has same name as, but diffe* 
rent length than, a source operand' 

MEnd 

Figure 90. Macro to Add an Interval to an Interval 

The macro checks first to see if the "answer" or "target" operand &Ans is the same as one 
of the "source" operands &Arg1 and &Arg2. If one of them matches, the macro then checks 
to ensure that the lengths specified are the same, and issues an error message if not If 
neither source operand matches the target, then the first operand is copied to the target 
field, and the second operand is then added to it. 

Examples of code generated by the macro are shown in the following figure: 
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A 
+A 

B 
+B 
+ 

c 

NTVLADDI X,3,=P'5',l,X,3 
AP X(3),=P'5'(1) 

NTVLADDI X,3,Year,2,Y,3 
ZAP Y(3) ,X(3) 
AP Y(3),Year(2) 

NTVLADDI X,3,Year,2,X,4 

Add Arg2 to Answer 

Move Argl to Answer 
Add Arg2 to Argl 

*** MNOTE *** 8,NTVLADDI: Target 'X' has same name as, but 
different length than, a source operand 

x 
y 

Year 

OS 
OS 
DC 

PL3 
PL3 
P'365' 

The NTVLADDI (and related) macros could be generalized to allow length attribute refer­
ences to be used for length operands, by inserting some additional SET A statements before 
the AIF tests of the lengths. This is left as an exercise for the reader. 

Comparison Operators for Dates and Intervals 

Define comparison macros CompOate and ColJl>Ntvl 

&Label Co111pDate &Datel,&Dp,&DateZ,&True Compare two dates 
&label CompHtvl &Htvll,&Dp,&NtvlZ,&True Compare two intervals 

- &Op is any useful comparison operator (EQ, NEQ, GT, LE, etc.) 
- & True is the branch target for true compares 

Macro 
&Label CompDate &Datel,&Dp,&DateZ,&True 

liblA &DateLen Length of Date variables 
Ulask(l) SetA 8,7,Z,13,4,11,18,5,lZ,3 BC Masks 
&T Sett ' EQ NEQ liT NliT LT NLT liE NliE LE NLE ' Operators 
&C Sett (Upper '&Op') Convert to Upper Case 
&N SetA ( '&T' INDEX '&C') Find operator 

Alf (&N eq B).BadDp 
&N SetA (&N+3)/4 Calculate mask index 
&Label CP &Batel. (&DateLen),&DateZ. (&Datelen) 

BC Ulask(&H),&True Branch to 'True Target' 
MExit 

.BadDp MNote 8, '&SysMac: Bad Comparison Operator • '&Dp. • • • 
MEnd 
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Comparison Operators for Dates and Intervals 

lech-91 

One further set of functions is needed to complete the set of macros, the comparison opera­
tors. Suppose we define two macros CompDate and CompNtvl: 

&Label 
&Label 

CompDate 
CompNtvl 

&Datel,&Op,&Date2,&True 
&Ntvll,&Op,&Ntvl2,&True 

Compare two dates 
Compare two intervals 

where the allowed operators could include mnemonic terms such as EQ, NEW, GT, NGT, LT, 
NLT, GE, NGE, LE, NLE, or "graphics" such as=, <, <=, >, >=, <>, and the like. The fourth 
operand & True is the name of an instruction to which control should branch if the compar­
ison relation is true. As an example, the CompDate macro could be written as follows: 
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Macro 
&Label CompDate &Datel,&Op,&Date2,&True 

GblA &DateLen Length of Date variables 
SetA 8,7,2,13,4,11,18,5,12,3 BC Masks &Mask(l) 

&T SetC ' EQ NEQ GT NGT LT NLT GE NGE LE NLE ' Operators 
&C 
&N 

&N 
&Label 

SetC (Upper '&Op') Convert to Upper Case 
SetA ('&T' INDEX '&C') Find operator 
Alf (&N eq 0).BadOp 
SetA (&N+3)/4 Calculate mask index 
CP &Datel.(&DateLen),&Date2.(&DateLen) 
BC &Mask(&N),&True Branch to 'True Target' 
MExit 

.BadOp MNote 8,'&SysMac: Bad Comparison Operator ''&Op.''' 
MEnd 

Figure 91. Comparison Macro for "Date" Data Types 

The only unusual consideration in this macro is the ordering of the allowed operators in the 
character variable &T: EQ must appear before NEQ (and similarly for the other combinations) 
so that if the specified operator is EQ, the INDEX function does not match the EQ in NEQ 
before finding the correct match at EQ. 

The code generated by the macro is shown in the following figure: 

XXX Compdate A,eq,B,ABEqual 
+XXX CP A(4),B(4) 
+ BC 8,ABEqual Branch to 'True Target' 

VY Compdate A,ne,B,ABNeq 
+YY CP A(4),B(4) 
+ BC 7,ABneq Branch to 'True Target' 

A 
B 

DS 
OS 

PL4 
PL4 
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Case Study 10: "Front-Ending" a Macro 

Put your code "around" a call to a library macro, to: 
- Validate arguments to the library macro 
- Generate your own code before/after the library macro's 

Use OPSYN for dynamic renaming of opcodes: 
1. Define your "wrapper" macro with the same name 
2. OPSYN the name to a temp, then nullify itself (I) 
3. Do "front-end" processing, then call the library macro 
4. Do "back-end" processing 
5. Re-establish the "wrapper" definition from the temp name 

Example: "Wrapper" for READ macro 
Macro 

&l READ &A,&B,&C 
READ_ xx OpSyn READ 
READ OpSyn , 

&l READ &A,&B,&C 

READ DpSyn READ_XX 
MEnd 

Save Wrapper's definition as READ_XX 
Nullify this definition 
•.• perform 'front-end' processing 
Call system version of READ 
.•. perform 'back-end' processing 
Re-establish Wrapper's definition 

HLASM Macro Tutorial I[) Copyright IBM Corporation 1993, 2002. All rights reserved. 

Case Study 10: "Front-Ending" a Macro 

Tech-92 

Sometimes it is useful to modify slightly the behavior of a "system" or other established 
macro. Making changes to the macro itself can lead to maintenance problems if service or 
updates are provided to the original definition. If your needs can be met by "front-ending" or 
"wrapping" the original macro definition, it can be called by the "wrapper" macro using the 
same name! 

This may seem strange, because the assembler knows of only one definition of each opera­
tion code at a given time. The technique used is this: 

1. Define a "wrapper" macro with the same name as the original macro. 

2. When the "wrapper" is expanded, it uses OPSYN to save its name under a different 
name, and then nullifies its own definition! 

3. The "wrapper" macro does whatever "front-end" processing it likes, and then calls the 
original macro. Because the "Wrapper" definition has been nullified, the assembler will 
search the macro library for the intended "official" definition of the original macro; once 
found, it will be encoded and the call will cause normal macro expansion. 

4. When expansion of the original macro is finished, the "wrapper" macro can do any 
further "back-end" processing needed. 

5. Finally, the "wrapper" macro re-establishes its own definition, and exits. 

To illustrate, suppose we want to "front-end" the READ macro, as shown in Figure 92 on 
page 205 below: 
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Macro 
&L READ &A,&B,&C 
READ_XX OpSyn READ 
READ OpSyn , 

&L READ &A,&B,&C 

READ OpSyn READ XX 
MEnd 

Save Wrapper•s definition as READ_XX 
Nullify this definition 
.•• perform 1 front-end 1 processing 
Call system version of READ 
... perform 1 back-end 1 processing 
Re-establish Wrapper•s definition 

Figure 92. Example of a Macro "Wrapper" 

The "wrapper" macro cannot be placed in the macro library, because it would then replace 
the original macro it is intended to "wrap"! Similarly, the wrapping macro cannot be placed 
in a separate library concatenated before or after the wrapped macro, because the assem­
bler will always find the definition first in the search order, and never the other. If the 
"wrapper" macro is not part of the source file, it can easily be inserted either via COPY or 
as part of a PROFILE-option member (with a different name, of course!). 
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Summary 

Summary 

Easy to implement "High-Level Language" features in your Assembler 
Language 

Start with simple, concrete, useful forms 

Build new "language" elements incrementally 

Useful results directly proportional to implementation effort 

- Create as few or as many capabilities as needed 

- Checking and diagnostics as simple or elaborate as desired 

New langu,age can precisely match application requirements 

Best of all: it's fun! 
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We hope that this overview has conveyed how concepts of typical high-level languages can 
be implemented in Assembler Language in a controlled, incremental, and comprehensible 
way. Nothing unusual has been done here: all macro actions and designs are straightfor­
ward, with simple goals and results. 

These macro techniques are also useful for teaching: 

• One can start with very simple, concrete examples before attempting complex or abstract 
designs. 

From a simple base, one can elaborate and extend the macros in many directions, to 
enhance whatever features are interesting. 

• One can create a "language of choice" with as few or as many features as desired. For 
example, it is easy to design a "mini-language" with at least two different data types, 
inter-conversion between them, operations on each (possibly involving mixing of types), 
and input-output operations (possibly involving conversions to and from "external" 
representations ).11 

The best aspect of using macros to build your own language is that you can watch what is 
happening at each stage, and elaborate or tailor the results as desired. 

A humorous example of dynamic language modification appeared many years ago in the 
Reader's Digest.12 

In a letter to The Economist, M. J. Shields, of Jarrow, England, points out that George 
Bernard Shaw, among others, urged spelling reform, suggesting that one letter be altered 
or deleted each year, thus giving the populace time to absorb the change. Shields writes: 

11 The author has seen examples of macro sets to perform recursive-descent parsing of expressions; to generate 
in-line code for Format-statement conversion expansions; and even a single macro named "FORTRAN" followed 
by a Fortran program all of whose statements were read by AREAD statements! 

12 Reprinted by permission. 
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For example, in Year 1 that useless letter "c" would be dropped to be replased by 
either "k" or "s," and likewise "x" would no longer be part of the alphabet. The 
only kase in which "c" would be retained would be the "ch" formation, which will 
be dealt with later. Year 2 might well reform "w" spelling, so that "which" and 
"one" would take the same konsonant, wile Year 3 might well abolish "y" 
replasing it with "i," and iear 4 might fiks the "g-j" anomali wonse and for all. 

Jenerally, then, the improvement would kontinue iear bai iear, with lear 5 doing 
awai with useless double konsonants, and tears 6-12 or so modifaiing vowlz and 
the rimeining voist and unvoist konsonants. Bai ler 15 or sou, it wud fainali bi 
posibl tu meik ius ov thi ridandant letez "c," "y" and "x" -- bai now jast a memori 
in the maindz ov ould doderez -- tu riplais "ch," "sh" and "th" rispektivli. 

Fainali, xen, aafte sam 20 iers of orxogrefkl riform, wi wud hev a lojikl, kohirnt 
speling in ius xrewawt xe lngliy-spiking werld. Haweve, sins xe Wely, xe Airiy, and 
xe Skots du not spik lngliy, xei wud hev to hev a speling siutd tu xer oun lengwij. 
Xei kud, haweve, orlweiz tern lngliy az a sekond lengwij et skuul! 

-- lorz feixfuli, M. J. Yilz. 
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Appendix A. External Conditional Assembly Functions 

External Functions 

HLASM Macro Tutorial 0 Copyright IBM Corporation 1993, 2002. All rights reserved. 

External Conditional Assembly Functions 

Two types of external, user-written functions 

1. Arithmetic functions: like &A= AFunc(&Vl, &V2, .•• ) 

&A SetAF 'AFunc',&Vl,&VZ,... Arithmetic arguments 
&logN SetAF 'LogZ ', &N Logb( &N) 

2. Character functions: like &C = CFunc('&Sl', '&S2', ••• ) 

&C SetCF 'CFunc','&Sl','&SZ',... String argullll!nts 
&RevX SetCF 'Reverse','&X' Reverse(&X) 

Functions may have zero to many arguments 

Assembler's call uses standard linkage conventions 

EJClernal Functions-1 

- Assembler provides a save area and a 4-<loubleword work area 

Functions may provide messages with severity codes for the listing 

Return code indicates success or failure 

- Failure return terminates the assembly 

HLASM Macro Tutorial 0 Copyright IBM Corporation 1993, 2002. All rights reserved. External Functions-2 
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External Conditional Assembly Functions 

IBM High Level Assembler for MVS & VM & VSE supports a powerful capability for invoking 
externally-defined functions during the assembly. These functions are known as "conditional­
assembly functions", and can perform almost any desired action. They are invoked using the 
conditional assembly statements SETAF and SETCF, by analogy with the familiar SETA and 
SETC statements. 

The syntax of the statements is similar to that of SET A and SETC: a local or global variable 
symbol appears in the name field; it will receive the value returned from the function. The 
operation mnemonic indicates the type of function to be called, and the type of value to be 
assigned to the "target" variable. The first operand in each case is a quoted character 
expression (typically a character string) giving the name of the function to be called. The 
remaining operands are optional, and their presence depends on the function: some func­
tions require no parameters, others may require several. The type of each of these parame­
ters is the same as that of the target variable: arithmetic parameters for SET AF, and 
character parameters for SETCF. 

A compact notational representation of this description is 

&Arith Var 
&Char Var 

SET AF 
SET CF 

1Arith_function 1 [,arith_val] •.. 
1 Char_function 1 [,character_val] ... 

For example, we might invoke the LOG2 and REVERSE functions (to be discussed in detail 
below) with these two statements: 

&LogN SetAF 
&RevX SetCF 

1 Log2 1 ,&N 
1 Reverse 1 , 1 &X 1 

Logb(&N) 
Reverse(&X) 

When a function is first invoked, the assembler dynamically loads the module containing the 
function into working storage, and prepares the necessary control structures for invoking the 
function. The call to the function uses standard operating system calling conventions; the 
assembler creates the calling sequence using the parameters and the function name sup­
plied in the SETxF statement. 

Following normal parameter-passing conventions, the assembler sets R1 to point to a list of 
addresses. The first address in this primary list is that of a "Request Information Area", a 
list of fullword integer values which describe the type of function (arithmetic or character), 
the version of the interface, the number of arguments, the return code, and either the 
returned value and the integer arguments (for SET AF), or the lengths of the respective argu­
ment strings (for SETCF). The remaining items in the primary list pointed to by R1 are 
pointers to a 32-byte work area, and (for SETCF) pointers to the result string and each of the 
argument strings. 

HLASM provides a means whereby an external function can return messages and severity 
codes; this allows functions to detect and signal error conditions in a way similar to the 
facility provided by 1/0 exits. 

At the end of the assembly, H LASM will check to see if each called external function wants. a 
final "closing" call so it can free any resources it may have acquired. Finally, the assembler 
lists for each function the number of SET AF and SETCF calls, the number of messages 
issued, and the highest severity code returned by the function. 

We will illustrate the capabilities of these functions with two simple examples: an arithmetic 
function LOG2 to evaluate the binary logarithm of an integer argument, and a string function 
REVERSE to reverse the characters in a character-string argument. These examples don't 
really require an external function; they can be programmed easily (if inelegantly) using 
familiar conditional assembly statements. However, external functions have considerably 
greater power and flexibility than the conditional language can provide. 
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; SETAF External Function Interface 

Primary List Request Info Area 

f ReqlnfoArea f--· Par-.L i st Version 

f WorkArea r- Function Type 

Reserved Nullber of Paras 

Reserved Return Code 

f Message Buf Fl agj Reserved 

Reserved 

Hsg Len~ Hsg Sev 

Function Value 

(n) Parameters 1-n 

• (n) means the 
field is 
repeated n 
times 

• HLASM 
provides a 
32-byte work 
area 
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SET AF External Function Interface 

The interface used by High Level Assembler to invoke external arithmetic-valued functions is 
a standard calling sequence, with an argument list composed of two structures: the layout 
of the Primary Address List and the Request Information Area is shown in Figure 93. (Sym­
bolic mappings of the Primary List and the Request Information Area are provided by the 
ASMAEFN P macro.) 

Primary Li st Request Info Area 

A(ReqlnfoArea) ... Parm List Version 

A(WorkArea) i-. Function Type 

Reserved Number of Params 

Reserved Return Code 

f Message Buffer Fl agl Reserved 

Reserved 

Msg Len I Msg Sev 

Returned Fn. Value 

'· Parameter 1 

Parameter n 

Figure 93. Interface for Arithmetic (SETAF) External Functions 
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Arithmetic-Valued Function Example: LOG2 

This LOG2 function evaluates the binary logarithm of its single argument, and returns the 
exponent of the largest power of two not exceeding the value of the argument. Mathemat­
ically, the result of calling LOG2 with argument x can be expressed as 

result = floor( log2 (x) ) 

This result can be used easily to calculate the actual value of the corresponding power of 
two. For example, if &Exponent is an arithmetic variable symbol returned by a call to LOG2, 
the value of the actual power of two can be found using statements such as 

&Exponent SET AF 
&Power of 2 SETA 

1Log2',&Arith_Var 
(1 SLA &Exponent) 

Special treatment is provided for non-positive arguments, for which the binary logarithm is 
undefined. Invalid calls to LOG2 cause either an error message or a nonzero return code to 
be returned to the assembler (which will then terminate the assembly). 

We will now describe the implementation of the LOG2 function. It uses no local storage, and 
may reside anywhere below or above 16MB. 

LOG2 Title 'HLASM Conditional-Assembly Function LOG2' 
********************************************************************** 

* * 
* Call from High Level Assembler: * 
* * 
*&Int Ans SETFA 'LOG2',&Int_Arg * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

If &Int_Expr > 0, &Int Ans is set to floor(log2(&Int_Arg)) 
That is, to the largest N such that 
2**N <= &Int_Arg. 

* 
* 
* 
* 
* 

If the function is invoked incorrectly, the return code * 
will indicate the reason, and the assembler will terminate * 
the assembly. An appropriate message is provided, except * 
when the wrong parameter list version is detected, in which * 
the function causes assembly termination (the interface for * 
returning a message may not be available). * 

* 
********************************************************************** 

Figure 94. Conditional-Assembly Function LOG2: Initial Commentary 

The block of comments in Figure 94 describes the operation of the function, the returned 
function values, and return codes. 

********************************************************************* 

* Primary Entry Point * 
********************************************************************* 

Using LOG2,R15 Addressability for code 
STM R14,R4,D12(R13) Save caller's registers 
Using AEFNPARM,Rl Map the Primary List 
L R2,AEFNRIP Load address of Request Info Area 
Using AEFNRIL,R2 Map Request Info Area 
xc AEFNRETC,AEFNRETC Set Return Code area to zero 
xc AEFN_VALUE,AEFN_VALUE Set answer to zero also 

Figure 95. Conditional-Assembly Function LOG2: Entry 
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The entry point instructions illustrated in Figure 95 saves appropriate general registers, and 
establishes mappings for the Primary List and the Request Information Area. The return 
code field is set to zero, indicating that the assembler can continue. (This field will be 
changed if the parameter list version is invalid.) In case the assembly might continue in 
spite of errors, the result field is set to zero. 

********************************************************************* 

* Validate Calling Sequence * 
********************************************************************* 

CLC 
BNE 
CLC 
BNE 
CLC 
BNE 

AEFNVER,=A(AEFNVER2) 
Err LVer 
AEFNTYPE,=A(AEFNSETAF) 
Err_FTyp 
AEFNUMBR,=A(OurNArgs) 
Err_NArg 

Check for expected version 
Branch if wrong Plist version 
Check for SETAF function call 
Branch if wrong function type 
Check for single argument 
Branch if wrong # of arguments 

********************************************************************* 

* Calling sequence is valid, check value of argument * 
********************************************************************* 

L R3,AEFN_PARM1 
LTR R3,R3 
BZ Zero_Arg 
BM Neg_Arg 

Get function argument in Rl 
Check for non-negative argument 
Branch if zero argument 
Branch if negative argument 

Figure 96. Conditional-Assembly Function LOG2: Validation 

The instructions illustrated in Figure 96 first validate that the function is being invoked with 
the expected calling sequence. The function type, parameter list version, and number of 
arguments are checked, and error messages for the assembler will be used to indicate 
improper invocations. Once the interface has been checked, the argument itself is tested. 
(Naturally, these checks could be eliminated if efficiency is a major concern.) 

********************************************************************* 

* Calculate Floor(Log2(argument)) in R0 * 
********************************************************************* 

LA 
Testloop DC 

BCTR 
BXH 

R4,31 
0H'0' 
R4,Null 
R3,R3,Testloop 

Set answer to 1 past max possible 
Check magnitude of the argument 
Count answer down by 1 
Double arg, branch if no overflow 

********************************************************************* 

* Store result and return to High Level Assembler * 
********************************************************************* 

ST 
LM 
BR 

R4,AEFN_VALUE 
R2,R4,028(R13) 
Rl4 

Store result in Request Info List 
Restore registers 
Return to Assembler 

Figure 97. Conditional-Assembly Function LOG2: Computation 

The "computation" of the logarithm itself is quite simple, as shown in Figure 97. The BXH 
instruction effectively doubles the value in R3 each time it is executed, and compares the 
doubled result to the previous (un-doubled) value. When a bit overflows into the sign posi­
tion, the BXH branch-test condition will fail and control will pass to the sequence that stores 
the result and returns control to the assembler. 
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********************************************************************* 

* Handle zero and negative arguments * 
********************************************************************* 
Zero_Arg DC 0H'0' Return for negative argument 

LA R4,BadArgZ Point to error message 
B Err Exit And return with a message 

Neg_Arg DC 0H'0 1 Return for negative argument 
LA R4,BadArgN Point to error message 
B Err Exit And return with a message 

********************************************************************* 

* Handle invalid calling sequences * 
********************************************************************* 
Err LVer DC 

MVC 
B 

Err_FTyp DC 
LA 
B 

Err_NArg DC 
LA 

0H'0' Wrong interface version 
AEFNRETC,=A(AEFNBAD) Can't count on doing a message 
Return Return to Assembler immediately 

0H'0' Wrong function type 
R4,BadFun Point to error message 
Err Exit Return to Assembler 

0H'0' Wrong number of arguments 
R4,BadNum Point to error message 

Figure 98. Conditional-Assembly Function LOG2: Error Handling 

The error-handling code in Figure 98 provides either an immediate termination return to the 
assembler (at Err _LVer) in case the parameter list format is unacceptable, or points to an 
error message and its preceding length byte. 

Err Exit DC 0H'0 1 

MVC AEFNMSGS,=Y(ErrSev) Set error message severity 
L Rl,AEFNMSGA Get pointer to message buffer 
Drop Rl 
XR R3,R3 Clear for message length 
IC R3,D0(,R4) Get message length 
STH R3,AEFNMSGL Store for assembler's use 
BCTR R3,Nul1 Decrement for MVC instruction 
EX R3,Move_Msg Move message to buffer 

Return DC OH'0' Return to HLASM 
LM R2,R4,28(R13) Restore R2-R4 
Drop R2,R15 Release addressability 
BR R14 Return to assembler 

Move_Msg MVC D0(*-*,Rl),Dl(R4) Executed 

Figure 99. Conditional-Assembly Function LOG2: Error Message Handling 

The error-handling code in Figure 99 moves messages to the assembler's message buffer. 
and sets the message severity code to 12 (as defined by the symbol ErrSev). 
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********************************************************************* 

* Error Messages * 
********************************************************************* 
BadFun DC All(L'BadFunM) Length of message 
BadFunM DC C'Wrong function type (not SETAF)' 

BadNum DC All (L' BadNunt-1) Length of message 
BadNumM DC C'Wrong number of arguments (not l)' 

BadArgZ DC All (L' BadArgZM) Length of message 
BadArgZH DC C'Zero argument' 

BadArgN DC All(L'BadArgNH) Length of message 
BadArgNH DC C'Negative argument' 

Figure 100. Conditional-Assembly Function LOG2: Error Message Handling 

Each message text shown in Figure 100 is defined with a preceding byte containing its 
length. 

********************************************************************* 
* Equates for Registers and Displacements * 
********************************************************************* 
Null Equ a Null Register for BCTR 
Rl Equ 1 A(Parm list), A(msg buffer) 
R2 Equ 2 A(Req info list) 
R3 Equ 3 Arg test, msg length 
R4 Equ 4 Result value, msg address 
R13 Equ 13 Save area 
R14 Equ 14 Return address 
Rl5 Equ 15 Code base 

D0 Equ 0 Displacement a 
Dl Equ 1 Displacement 1 
D12 Equ 12 Dis p 1 acement 12 
028 Equ 28 Displacement 28 

Figure 101. Conditional-Assembly Function LOG2: Symbol Equates 

The equates shown in Figure 101 are typical, except that symbols are defined for use wher­
ever an absolute displacement is to be used in an instruction. This technique helps in 
locating (and, if necessary, modifying) non-symbolic references in instructions. 

********************************************************************* 

* Equates for values used in argument and call validations * 
********************************************************************* 
OurNArgs Equ 
ErrSev Equ 

1 
12 

AEFN_PARMl Equ AEFN_PARMN 

Expected number of arguments 
Severity code for all messages 

First argument in list 

Figure 102. Conditional-Assembly Function LOG2: Validation Equates 

The symbols defined in Figure 102 define the expected value of the number of arguments in 
the Request Information Area provided by the assembler, and the severity code used for 
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messages. The symbol AEFN PARM! is equated to the first item in the argument list; it is used 
only for its symbolic value. -

********************************************************************* 

* Dummy Control Sections for SETAF Interface * 
********************************************************************* 

ASMAEFNP PRINT=GEN 
End 

Figure 103. Conditional-Assembly Function LOG2: Dummy Sections 

Finally, the Request Information Area is mapped by calling the ASMAEFNP macro supplied 
with HLASM, as shown in Figure 103. 

Installation of the LOG2 function will be described in "Installing the LOG2 and REVERSE 
Fundions" on page 222. 
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SETCF External Function Interface 

Primary List 

f ReqlnfoArea 

f WorkArea t-

(2) Reserved 

f Hsg Buff er 

f Ret. String t--

(n} f Parm 1-n Str. 

: 

~ 

(n) 

Request Info Area 

Parlll. i st Version 

Function lype 

Number of Params 

Return Code 

Fl agl Reserved 

Reserved 

Hsg Len I Hsg Sev 

Ret. Str. length 

Pal'll 1-n Str. Len 

• (n) means the 
field is 
repeated n 
times 

• HLASM 
provides a 
32-byte work 
area 

HLASM Macro lu10rial 0 Copyright IBM Corporation 1993, 2002. All righls reserved. Elllernal Functions4 

SETCF External Function Interface 

The assembler interface for character functions is illustrated in Figure 104, where the layout 
of the Primary Address List and the Request Information Area are shown. 

Primary List Request Info Area 

A(ReqlnfoArea) __.. Parm List Version 

A(WorkArea) I-+ Function Type 

Reserved Number of Parms 

Reserved Return Code 

t Msg Buffer Fl agI Reserved 

A{Return Strg) I-+ Reserved 

A(Parm 1 Strg) I-+ Msg Len I Msg Sev 

: : Return String Len. 

I A(Parm n Strg) ~ Parm 1 String Len. 

Parm n String Len 

Figure 104. Interface for Character (SETCF) External Functions 
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String-Valued Function Example: REVERSE 

The REVERSE function accepts a single string argument, and returns a string of the same 
length, but with the characters in reverse order. All valid string lengths are accepted. 

The implementation described here uses no local or working storage, and may reside any­
where above or below 16MB. 

REV Title 'Macro-Time Function REVERSE: Reverse Character Strings' 
********************************************************************** 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

This external function reverses a character string. Null 
strings are acceptable. 

* 
* 
* 
* 

If the function is invoked with an unsupported parameter * 
list version, the assembly will be terminated. Other error * 
conditions will be indicated by an error message, and a * 
null string will be returned. Errors detected are: * 

Function was not invoked by SETCF 
Number of arguments was not 1 
Argument string length was invalid (not B-255) 

* 
* 
* 
* 
* 

********************************************************************** 

Figure 105. Conditional-Assembly Function REVERSE: Prologue Text 

The prologue text for the REVERSE function shown in Figure 105 describes the operation of 
the function, and the error conditions diagnosed. If the parameter list version is not sup­
ported, the assembler will be requested to terminate the assembly, as there is no guarantee 
that a message can be provided by the function. 

REVERSE Rsect , 
REVERSE RMode Any 
REVERSE AMode Any 

Using Reverse,R15 Establish code base register 
STM R14,R5,012(R13) Save caller's registers 
Using AEFNPARM,Rl Map primary argument-address list 
L R2,AEFNRIP Get address of Request Info Area 
Using AEFNRIL,R2 Map Request Info Area 
XC AEFNRETC,AEFNRETC Set return code to zero 
XC AEFN_STRL,AEFN_STRL Set return string to null 
L R5,AEFNMSGA Address of message buffer 

Figure 106. Conditional-Assembly Function REVERSE: Entry Point 

The entry point instructions in Figure 106 first save the caller's registers. No save area 
linkage is required, as the REVERSE function makes no further calls, and uses no system 
services. 

Then, the Primary Address and the Request Information Area are mapped using fields 
defined by the ASMAEFNP macro. The return code and returned string length are set to 
zero, and RS is set to point to the message buffer in case a message is to be produced. 
(Note that the Primary Address List contains more fields than were referenced in the LOG2 
example.) 

Appendix A. External Conditional Assembly Functions 217 



********************************************************************** 

* Validate calling sequence * 
********************************************************************** 

Check for interface version 
Branch if bad Plist version 
Check for SETCF function call 
Branch if bad function type 
Check for single argument 

CLC 
BNE 
CLC 
BNE 
CLC 
BNE 

AEFNVER,=A(AEFNVER2) 
Err LVer 
AEFNTYPE,=A(AEFNSETCF) 
Err_FTyp 
AEFNUMBR,=A(OurNArgs) 
Err_NArg Branch if bad number of arguments 

L R3,AEFNCF_PARM1 
L Rl,AEFNCF_SA 

Point R3 to argument string 
Point Rl to returned string 

Drop Rl Rl no longer addresses primary list 

Figure 107. Conditional-Assembly Function REVERSE: Call Validation 

The instructions shown in Figure 107 validate that the version of the parameter list is 
correct, that the REVERSE function was invoked as a character function, and that there is a 
single argument. Then, pointers to the argument and result strings are established. 

********************************************************************** 

* Check for invalid argument string length * 
********************************************************************** 

L R4,AEFN_PARMl_L 
LTR R4,R4 
BM Err_Arg 
BZ Return 
C R4,=A(OurStMax) 
BH Err_Arg 

Get length of argument string 
Validate length of input string 
Branch if invalid argument 
Branch if input string is null 
Check for excess length 
Branch if invalid argument 

Figure 108. Conditional-Assembly Function REVERSE: Argument Validation 

While it should not normally be necessary, the length of the argument string is validated. 
The instructions shown in Figure 108 should not in fact be required if the assembler is func­
tioning correctly, but the added "insurance" helps avoid further damage that might occur if 
there is some mis-communication between the function and the assembler. 

If efficiency is a major concern, all of these validation checks could be omitted. 
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********************************************************************** 

* Argument is .valid; set up reversing translate string * 
********************************************************************** 

ST 
LA 
SR 
BCTR 
EX 
EX 

Return DC 
LM 
BR 

Move TR DC 
MVC 

Tran Ans DC 
TR 

R4,AEFN_STRL 
R5,EndTrans 
R5,R4 
R4,Null 
R4,Move_TR 
R4,Tran_Ans 

BH I El I 

R2,R5,D28(R13) 
R14 

(;)HI El I 

DB(*-*,Rl),DB(R5) 

(;)HI El I 
DB(*-*,Rl),DB(R3) 

Set return string length 
Point 1 past end of translate table 
Subtract argument length 
Decrement count by 1 for move 
Move translation string to answer 
Reverse bytes of arg into answer 

Result string was null, just return 
Restore R2-R5 
Return to Assembler 

Executed, length in R4 
Move trimmed arg to result string 

Executed, length in R4 
Translate with reversal into answer 

Figure 109. Conditional-Assembly Function REVERSE: String Reversal 

The ins1ruc1ions in Figure 109 perform 1he actual "work" of the REVERSE function. The 
length of the argument string is used to extract the proper number of bytes from the end of 
the 1ranslate table (which contains the byte values from X1 FF 1 to X'OO' in descending order). 
and place them in the output string. Then, the output string is "translated" using the argu­
ment string as the "table". yielding the reversed argument string as a result. The caller's 
register contents are 1hen res1ored, and control is re1urned to the assembler. 

The function could of course use an MVCIN ins1ruction, but there is no guarantee it is avail­
able on the system doing the assembly. 
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********************************************************************** 

* Error Returns and Message Handling * 
********************************************************************** 
Err LVer DC 

MVC 
B 

OH'O' Unsupported parameter list version 
AEFNRETC,=A(AEFNBAD) Termination return code 
Err Exit Return to Assembler 

Err_Arg DC OH'O' Return for invalid argument 
LA R3,InvArg Point to error message 
B Err_Msg Return message to Assembler 

Err_FTyp DC OH'El' Wrong function type for this call 
LA R3,BadFun Point to error message 
B Err_Msg Return message to Assembler 

Err_NArg DC OH'O' Wrong number of arguments 
LA R3,BadNum Point to error message 

Err_Msg DC 0H I 0 I Return error message to HLASM 
XR R4,R4 Clear R4 for length 
IC R4,00(,R3) Pick up message length 
STH R4,AEFNMSGL Save length for HLASM 
MVC AEFNMSGS,=Y(ErrSev) Set message severity code 
BCTR R4,Null Decrement length for executed MVC 
EX R4,Move_Msg Move message to buff er 

Err Exit DC 0H'0' 
LM R2,R5,D28(R13) Restore R2-R5 
Drop R2,R15 Addressability now lost 
BR R14 Return to Assembler to terminate 

Move_Msg DC 0H'0' 
MVC 00(*-*,R5),Dl(R3) Move message to buff er 

Figure 110. Conditional-Assembly Function REVERSE: Error Handling 

The instructions shown in Figure 110 set the return code for a severe error in case the 
parameter interface version is not supported. For the other possible error conditions 
detected during call and argument validation, the appropriate message is moved to the 
message buffer, and the severity is set to 12 (the value of ErrSev). Control is then returned 
to the assembler. 

********************************************************************* 

* Error Messages * 
********************************************************************* 
InvArg DC All (L' InvArgM) length of message text 
InvArgM DC C'Argument length invalid' 
Bad Fun DC All(L'BadFunM) Length of message text 
BadFunM DC C'Not invoked by SETCF' 
BadNum DC All(L'BadNumM) length of message text 
BadNumM DC C'Wrong number of arguments (not 1)' 

Figure 111. Conditional-Assembly Function REVERSE: Error Messages 

The error message texts (preceded by a length byte) are shown in Figure 111. 
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Print Data 
Trans DC SXL256'S',256ALI(255-(*-Trans)) Table from 255 to S 
EndTrans DC SX'S' End of translate string 

LtOrg 

Figure 112. Conditional-Assembly Function REVERSE: Translate Table 

The translate table defined in Figure 112 is a string of 256 byte values in descending order. 
The "tail" of this string is moved to the result string to be used as a translation source. 

********************************************************************* 
* Equates for Registers, Lengths, Displacements, etc. * 
********************************************************************* 

Null Equ e For BCTR instructions 
RI Equ I Primary List, A(returned string) 
R2 Equ 2 A(Request Info List) 
R3 Equ 3 Message pointer 
R4 Equ 4 Lengths 
R5 Equ 5 A(TR table), A(message buffer) 
R13 Equ 13 Save area 
RI4 Equ 14 Return address 
RI5 Equ I5 Code base 

DS Equ e Displacement e 
DI Equ I Displacement I 
DI2 Equ 12 Displacement I2 
D28 Equ 28 Displacement 28 

Figure 113. Conditional-Assembly Function REVERSE: Basic Equates 

Standard equates for the general purpose registers are defined in Figure 113, along with 
three equated symbols representing displacements used in various instructions. 

********************************************************************* 
* Equates for Parameter-List Values and Fields * 
********************************************************************* 
OurNArgs Equ I 
ErrSev Equ I2 
OurStMax Equ 255 

AEFNCF_PARMI Equ AEFNCF_PARMA 
AEFN_PARMI_L Equ AEFN_PARMN_L 

Expected number of arguments 
Error message severity 
Maximum allowed string length 

Name for first string parameter 
Name for first string length 

Figure 114. Conditional-Assembly Function REVERSE: Validation Equates 

The symbols used in call and argument validation are defined in Figure 114. 

********************************************************************* 

* Dummy Control Sections for SETCF Interface * 
********************************************************************* 

ASMAEFNP PRINT=GEN 
End 

Figure 115. Conditional-Assembly Function REVERSE: Dummy Sections 
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The DSECT mappings for the Primary Address List and the Request Information Area are 
created by the call to the ASMAEFNP macro, as shown in Figure 115. 

Installing the LOG2 and REVERSE Functions 

Installing the functions for use during assembly time is simple. First, the statements for the 
exit are assembled, and the resulting object file is converted into a loadable module: 

on MVS, the object file is link edited into an appropriate library and given the name LOG2 
or REVERSE (as appropriate). It may be marked re-entrant if desired. Be sure that the 
library containing the function modules is available to the assembler during subsequent 
assemblies that require the functions. 

on CMS, LOAD the text deck from the assembly with the CLEAR and RLDSAVE options; 
then GENMOD to obtain a loadable file with name LOG2 or REVERSE (as appropriate) 
and filetype MODULE. Be sure that the minidisk containing the function modules is avail­
able to the assembler during subsequent assemblies that require the functions. 
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Appendix B. System (&SYS) Variable Symbols 

System (&SYS) Variable Symbols 

HLASM Macro TulDrial 0 Copyright IBM Corporation 1993, 2002. All rights reserwd. SVAR-1 

System variable symbols are a special class of variable symbols, starting with the charac­
ters &SYS. They are "owned" by the assembler: they may not be declared in LCLx or GBLx 
statements, and may not be used as symbolic parameters. Their values are assigned by the 
assembler, and never by SETx statements. 

High Level Assembler provides many new system variable symbols: thirty-nine will be new 
to users of the H-Level Assembler, and three additional symbols will be new to users of the 
DOSNSE Assembler. Four symbols are available in all three assemblers: &SYSECT, 
&SYSLIST, &SYSNDX, and &SYSPARM. Figure 116 on page 225 ·summarizes their proper­
ties. 

System Variable Symbols: History and Overview 

Symbols whose value is defined by the assembler 

- Three in the OS/360 (1966) assemblers: &SYSECT. &SYSLIST' &SYSNDX 

- DOS/TOS Assembler (1968) added &SYSPARH 

- Assembler XF (1971) added &SYSDATE, &SYSTIHE 

- Assembler H (1971) added &SYSLOC 

- High Level Assembler provides 39 additional symbols 

Symbol characteristics include 

- Type (arithmetic, boolean, or character) 

- Type attributes (mostly 'U' or 'O') 

- Scope (usable in macros only, or in open code and macros) 

- Variability (when and where values might change) 

HLASM Macro Tutorial I[) Copyright IBM Corporation 1993, 2002. All rights reserved. SVAR-Z 
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System Variable Symbols: Properties 

The symbols have a variety of characterizations: 

Availability 

Symbols that were available in Assembler Hare designated "AsmH"; High Level Assem­
bler provides a rich set of 39 additional system variable symbols, designated "HLAn" 
(where "n" indicates the release of High Level Assembler in which the symbol first 
appeared). 

Type 

Most symbols have character values, and are therefore of type C: that is, they would 
normally be used in SETC statements or in similar contexts. A few, however, have arith­
metic values (type A) or boolean values (type B). &SYSDATC and &SYSSTMT are nomi­
nally type C, but .may also be used as type A. 

• Type attributes 

Most system variable symbols have type attribute U ("undefined") or 0 ("omitted", usually 
indicating a null value); some numeric variables have type N. The exception is &SYSLIST: 
its type attribute is determined from the designated list item. 

• Scope of usage 

Some symbols are usable only within macros ("local" scope), while others are usable 
both within macros and in open code ("global" scope). 

• Variability 

Some symbols have values that do not change as the assembly progresses. Normally, 
such values are established at the beginning of an assembly. These values are denoted 
"Fixed". Note that all have Global scope. 

Other symbols have values that may change during the assembly. These values might 
be established at the beginning of an assembly or at some point subsequent to the 
beginning, and may change depending on conditions either internal or external to the 
assembly process. 

Variables whose values are established at the beginning of a macro expansion, and 
for this the values remain unchanged throughout the expansion, are designated "Con­
stant'', even though they may have different values in a later expansion of the same 
macro, or within "inner macros" invoked by another macro. Note that all have local 
scope. 

Variables whose values may change within a single macro expansion are designated 
"Variable". Currently, this designation applies only to &SYSSTMT, &SYSM HSEV, and 
&SYSM SEV. -

These symbols have many uses: helping to control conditional assemblies, capturing envi­
ronmental data for inclusion in the generated object code, providing program debugging 
data, and more. 
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Figure 116 (Page 1 of 2). Properties and Uses of System Variable Symbols 

Variable Symbol Avail· Type Type Usage 
ability Attr. Scope 

&SYSADATA_DSN HLA2 c u Local 

&SYSADATA_MEMBER HLA2 c u Local 

&SYSADATA_VOLUME HLA2 c u Local 

&SYSASM HLA1 c u Global 

&SYSCLOCK HLA3 c u Local 

&SYSDATC HLA1 C,A N Global 

&SYSDATE AsmH c u Global 

&SYSECT AsmH c u Local 

&SYSIN_DSN HLA1 c u Local 

&SYSIN_MEMBER HLA1 c U,O Local 

&SYS IN_ VOLUME HLA1 c U,O Local 

&SYSJOB HLA1 c u Global 

&SYSLIB_DSN HLA1 c u Local 

&SYSLIB_MEMBER HLA1 c U,O Local 

&SYSLIB_VOLUME HLA1 c U,O Local 

&SYSLIN_DSN HLA2 c u Local 

&SYSLIN_MEMBER HLA2 c u Local 

&SYSLIN_ VOLUME HLA2 c u Local 

&SYSLIST AsmH c any Local 

&SYSLOC AsmH c u Local 

&SYSM_HSEV HLA3 c N Global 

&SYSM_SEV HLA3 c N Global 

&SYSMAC HLA3 c u.o Local 

&SYSNDX AsmH C,A N Local 

&SYSNEST HLA1 A N Local 

&SYSOPT _DBCS HLA1 B N Global 

&SYSOPT _OPTABLE HLA1 c u Global 

&SYSOPT_RENT HLA1 B N Global 

Vari- Content and Use 
ability 

Fixed SYSADATA file data set name 

Fixed SYSADATA file member name 

Fixed SYSADATA file volume identifier 

Fixed Assembler name 

Constant Date/time macro was generated 

Fixed Assembly date, in YYYYMMDD format 

Fixed Assembly date in MM/DD/YY format 

Constant Current control section name 

Constant Current primary input data set name 

Constant Current primary input member name 

Constant Current primary input data set name volume identifier 

Fixed Assembly job name 

Constant Current library data set name 

Constant Current library member name 

Constant Current library data set volume identifier 

Fixed SYSLIN file data set name 

Fixed SYSLIN file member name 

Fixed SYSUN file volume identifier 

Constant Macro argument list and sublist elements 

Constant Current location counter name 

Variable Highest MNOTE severity so far in assembly 

Variable Highest MNOTE severity for most recently called macro 

Constant Name of current macro and its callers 

Constant Macro invocation count 

Constant Nesting level of the macro call 

Fixed Setting of DBCS invocation parameter 

Fixed Setting of OPTABLE invocation parameter 

Fixed Setting of RENT invocation parameter 
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Figure 116 (Page 2 of 2). Properties and Uses of System Variable Symbols 

Variable Symbol Avail- Type Type Usage 
ability Attr. Scope 

&SYSOPT _XOBJECT HLA3 B N Global 

&SYSPARM AsmH c U,O Global 

&SYSPRINT _DSN HLA2 c u Local 

&SYSPRINT _MEMBER HLA2 c u Local 

&SYSPRINT _VOLUME HLA2 c u Local 

&SYSPUNCH_DSN HLA2 c u Local 

&SYSPUNCH_MEMBER HLA2 c u Local 

&SYSPUNCH_VOLUME HLA2 c u Local 

&SYSSEQF HLA1 c U,O Local 

&SYSSTEP HLA1 c u Global 

&SYSSTMT HLA1 C,A N Global 

&SYSSTYP HLA1 c U,O Local 

&SYSTEM_ ID HLA1 c u Global 

&SYSTERM_DSN HLA2 c u Local 

&SYSTERM_MEMBER HLA2 c u Local 

&SYSTERM_ VOLUME HLA2 c u Local 

&SYSTIME AsmH c u Global 

&SYSVER HLA1 c u Global 

Vari- Content and Use 
ability 

Fixed Setting of XOBJECT/GOFF invocation parameter 

Fixed Value provided by SYSPARM invocation parameter 

Fixed SYSPRINT file data set name 

Fixed SYSPRINT file member name 

Fixed SYSPRINT file volume identifier 

Fixed SYSPUNCH file data set name 

Fixed SYSPUNCH file rnember name 

Fixed SYSPUNCH file volume identifier 

Constant Sequence field of current open code statement 

Fixed Assembly step name 

Variable Number of next statement to be processed 

Constant Current control section type 

Fixed System on which assembly is done 

Fixed SYSTERM file data set name 

Fixed SYSTERM file member name 

Fixed SYSTERM file volume identifier 

Fixed Assembly start time 

Fixed Assembler version 



System Variable Symbols: Fixed Values 

• &SYSASM, &SYSVER: describe the assembler itself 

• &SYSTEM_ID: describes the system where the assembly is done 

• &SYSJOB, &SYSSTEP: describe the assembly job 

• &SYSDATC, &SYSDATE: assembly date 

• &SYSTIME: assembly time (HH.MM) 

• &SYSOPT_OPTABLE: which opcode table is being used 

• &SYSOPT DBCS, &SYSOPT RENT, &SYSOPT XOBJEXT: status of the DBCS, 
RENT, and XOBJECT options -

• &SYSPARM: value of the SYSPARM option 

• All 15 output-file symbols (SYSADATA, -LIN, -PRINT, -PUNCH, -TERM) 

- E.g., &SYSLIN_DSN, &SYSLIN_HEHBER, &SYSLIN_VOLUHE 

HlASM Macro Tu1Drial © Copyright IBM Corporation 1993. 2002. All rights reserved. SVAR·3 

Variable Symbols With Fixed Values During an Assembly 

These sequence symbol values are established at the beginning of an assembly, and remain 
unchanged throughout the assembly. 

&SYSASM and &SYSVER 

The &SYSASM symbol provides the name of the assembler. For High Level Assembler, the 
value of this variable is 

HIGH LEVEL ASSEMBLER 

The &SYSVER variable symbol describes the version, release, and modification of the 
assembler. A typical value of this variable might be 

1.4.0 

This pair of variables could be used to provide identification within an assembled program of 
the assembler used to assemble it: 

What_ASM DC C'Assembled by &SYSASM., Version &SYSVER .• 1 

The value of &SYSVER increases monotonically across versions and releases of HLASM. 

&SYSTEM_ID 

The &SYSTEM ID variable provides an identification of the operating system under which the 
current assembly is being performed. A typical value of this variable might be 

MVS/ESA SP 5.2.0 

This variable could be used to provide identification within an assembled program of the 
system on which it was assembled: 

What_Sys DC C'Assembled on &SYSTEM ID .. ' 
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&SYSJOB and &SYSSTEP 

These two variables provides ·the name of the job and step under which the assembler is 
running. 

When assembling under the CMS system, the value of the &SYSJOB variable is always 
(NOJOB); and when assembling under the CMS or VSE systems, the value of the &SYSSTEP 
variable is always (NOS TEP). 

This pair of variables could be used to provide identification within an assembled program of 
the job and step used to assemble it: 

Who ASM DC C1Assembled in Job &SYSJOB., Step &SYSSTEP .. 1 

&SYSDATC 

This provides the current date, with century included, in the format YYYYMMDD. A typical value 
of this variable might be 

19920626 

Observe that the &SYSDATE variable provides only two digits of the year. 

&SYSDATE 

&SYSDATE provides the current date, in the form MM/DD/YY. A typical value of this variable 
might be 

06/26/92 

&SYSTIME 

The &SYSTIME variable provides the time at which the assembly started, in the form HH.MM. 

This variable, along with &SYSDATE or &SYSDATC, could be used to provide identification 
within an assembled program of the date and time of assembly: 

When_ASM DC C1Assembled on &SYSDATC., at &SYSTIME .. 1 

Differences among &SYSTIME, &SYSCLOCK, and the CLOCKS and CLOCKD operands of the 
AREAD statement are discussed at "&SYSTIME, &SYSCLOCK, and the AREAD Statement" on 
page 236. 

&SYSOPT_OPTABLE 

This variable provides the name of the current operation code table being used for this 
assembly, as established by the OPT ABLE option. A typical value of this variable might be 

ESA 

This variable is useful for creating programs that must execute on machines with limitations 
on the set of available instructions. For macro-generated code, this variable can be used to 
determine what instructions should be generated for various operations, e.g. BALR vs. BASR. 

This variable could be used to provide identification within an assembled program of the 
operation code table used to assemble it: 

What_Ops DC C'Opcode table for assembly was &SYSOPT_OPTABLE .. ' 
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&SYSOPT _DBCS, &SYSOPT _RENT, and &SYSOPT _XOBJECT 

The &SYSOPT_DBCS, &SYSOPT_RENT, and &SYSOPT_XOBJECT binary variables provide 
the settings of the DBCS, RENT, and XOBJECT options, respectively. Their values can be 
used to control the generation of instructions or data appropriate to the type of desired 
object code, or to help control the scanning of DBCS macro arguments. 

For example, character data to be included in constants can be generated with proper 
encodings if DBCS environments must be considered. Similarly, macros can use the setting 
of the RENT option to generate different instruction sequences for reentrant and non­
reentrant situations. 

For example, the &SYSOPT _RENT variable could be used to provide conditional assembly 
support for different code sequences: 

AIF (&SYSOPT_RENT).Do_Rent 
MYMAC Parm1,Parm2,GENCODE=NORENT Generate non-RENT code 
AGO . Continue 

.Do Rent MYMAC Parm1,Parm2,GENCODE=RENT Generate RENT code 

.Continue ANOP 

&SYSPARM 

The &SYSPARM variable symbol provides the character string provided by the programmer 
in the invoking parameter string, in the SYSPARM option: 

SYSPARM(string) 

This variable could be used to provide identification within an assembled program of the 
&SYSPARM value used to assemble it, as well as to control conditional assembly activities: 

What PRM DC C'&&SYSPARM value was ''&SYSPARM. 11 • 1 

.Xl4 AIF ('&SYSPARM' NE 'TRACE').Skip_Trace 
MNOTE 'Assembly reached Sequence Symbol .X14' 

.Skip_Trace ANOP 

&SYS Symbols for Output Files 

There are fifteen variable symbols describing the output files of High Level Assembler, three 
for each file: 

File Dataset Name Member Name Volume ID 

SYS PRINT &SYSPRINT DSN &SYSPRINT MEMBER &SYSPRINT VOLUME 
SYSTERM &SYSTERM DSN &SYSTERM MEMBER &SYSTERM VOLUME 
SYS PUNCH &SYSPUNCH DSN &SYSPUNCH MEMBER &SYSPUNCH VOLUME 
SYSLIN &SYSLIN DSN &SYSLIN MEMBER &SYSLIN VOLUME 
SYSADATA &SYSADATA DSN &SYSADATA MEMBER &SYSADATA VOLUME 

The &SYSxxxx_DSN variable symbols provide the file or data set name used for the corre­
sponding output file; the &SYSxxxx_MEMBER variable symbols provide the member name (if 
any) used for the output file; and the &SYSxxxx_ VOLUME variable symbols provide the 
volume identifier used for the output file. 

To illustrate, suppose you wish to "capture" information about the destination of the object 
file written to the SYSLIN data set. You could write a set of statements to do this, such as: 

What OBJF DC 
What OBJM DC 
What OBJV DC 

C'SYSLIN file name is ''&SYSLIN DSN. 11 • 1 

C'SYSLIN member is ''&SYSLIN MEMBER.''.' 
C'SYSLIN volume is ''&SYSLIN VOLUME.''.' 
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System Variable Symbols: Values Constant in Macros 

&SYSSEQF: sequence field of the statement calling the macro 

&SYSECT: section name active at time of call 

&SYSSTYP: section type active at time of call 

&SYSLOC: name of location counter active at time of call 

&SYSIN DSN, &SYSIN MEMBER, &SYSIN VOLUME: 
origins-of current primary input file -

&SYSLIB DSN, &SYSLIB MEMBER, &SYSLIB VOLUME: 
origins of current library input file -

&SYSCLOCK: date/time macro was called 

&SYSNEST: macro nesting level 

&SYSMAC: name of current macro and its callers 

&SYSNDX: incremented by 1 at each macro call 

&SYSLIST: access to macro positional parameters and sublists 

HLASM Macro Tutorial ii:> Copyright IBM Corporation 1993, 2002. All rights reserved. 

Variable Symbols With Constant Values Within a Macro 
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These sequence symbol values are initialized at the point where a macro expansion is initi­
ated, and remain fixed throughout the duration of that expansion. 

&SYSSEQF 

The &SYSSEQF symbol provides the contents of the sequence field of the current input state­
ment. This information can be used for debugging data. For example, suppose we have a 
macro which inserts information about the current sequence field into the object code of the 
program, and sets RO to its address (so that a debugger can tell you which statement was 
identified in some debugging activity). A macro like the following might be used: 

&SYSECT 

&L 
&L 

Macro 
DebugPtA 
BAS 0,*+12 
DC CLB'&SYSSEQF' 
MEnd 

B DebugPtA 

Addr of Sequence Field in Ra 
Sequence Field info 

The &SYSECT symbol provides the name of the control section (CSECT, DSECT, COM, or 
RSECT) into which statements are being grouped or assembled at the time the referencing 
macro was invoked. If a macro must generate code or data in a different control section, 
this variable permits the macro to restore the name of the previous environment before 
exiting. (Note also its relation to &SYSSTYP.) An example illustrating &SYSECT and 
&SYSSTYP is shown below. 
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&SYSSTYP 

The &SYSSTYP symbol provides the type of the control section into which statements are 
being grouped or assembled (CSECT, DSECT, or RSECT) at the time the referencing macro 
was invoked. If a macro must generate code or data in a different control section, this vari­
able permits the macro to restore the proper type of control section for the previous environ­
ment, before exiting. 

For example, suppose we need to generate multiple copies of a small DSECT. The macro 
shown in the following example generates the DSECT so that each generated name is pre­
fixed with the characters supplied in the macro argument. The environment in which the 
macro was invoked is then restored on exit from the macro. 

&SYSLOC 

&P.Sect 
&P.Fl 
&P.F2 
&SY SECT 

Macro 
OSectGen &P 
OSect , 
OS 0 
OS 18F 
&SYSSTYP 
MEnd 

Generate tailored DSECT name 
OSECT Field No. 1 
OSECT Field No. 2, a save area 
Restore original section 

&SYSLOC contains the name of the current location counter, as defined either by a control 
section definition or a LOCTR statement. 

As in the example of &SYSSTYP, the &SYSLOC variable can be used to capture and restore 
the current location counter name. We again suppose in this example that we are inter­
rupting the statement flow to generate a small DSECT: 

&P.Sect 
&P.Fl 
&P.F2 
&SYSLOC 

Macro 
OSectGen &P 
OSect 
OS 0 
OS 18F 
LOCTR 
MEnd 

Generate the OSECT name 
OSECT Field No. 1 
OSECT Save Area 
Restore previous location counter 

&SYSIN_DSN, &SYSIN_MEMBER, and &SYSIN_ VOLUME 

These three symbols identify the origins of the current primary input file. Their values 
change across input-file concatenations. This information can be used to determine reas­
sembly requirements. 

The &SYSIN_DSN symbol provides the name of the current primary input (SYSIN) data set or 
file. 

The &SYSIN_MEMBER symbol provides the name of the current primary input member, if 
·any. 

The &SYSIN VOLUME symbol provides the name of the current primary input volume. For 
example, the following SYSINFO macro will capture the name of the current input file, its 
member name, and the volume identifier. (If the input does not come from a library 
member, the member name will be replaced by the characters "(None)".) 
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Macro 
&L SYS INFO 
&L DC C'lnput: &SYSIN_DSN' 
&Mem SetC '&SYSIN MEMBER' 

AIF ('&Mem' ne '').Do_Mem 
&Mem SetC '(None)' 
.Do Mem DC C'Member: &Mem' 

DC C'Volume: &SYS IN VOLUME I 

MEnd 
My_Job SYS INFO 

&SYSLIB_DSN, &SYSLIB_MEMBER, and &SYSLIB_VOLUME 

These three symbols identify the origins of the current library member. Their values change 
from member to member. This information can be used to determine reassembly require­
ments. 

The &SYSLIB DSN symbol provides the name of the library data set from which each macro 
and CO PY file is retrieved. 

The &SYSLIB_MEMBER symbol provides the name of the library member from which this 
macro and COPY file is retrieved. 

The &SYSLIB VOLUME symbol provides the volume identifier {VOLID) of the library data set 
from which this macro and COPY file is retrieved. 

For example, suppose the LIBINFO macro below is stored in a macro library accessible to 
the assembler at assembly time. {The macro includes a test for a blank member name, 
which should never occur.) 

Macro 
&L LIB INFO 
&L DC C'Library Input: &SYSLIB_DSN' 
&Mem SetC '&SYSLIB MEMBER' 

AIF ('&Mem' ne '').Do_Mem 
MNote 4,'The library member name should not be null.' 

.Do Mem DC C'Member: &Mem' 
DC C'Volume: &SYSLIB VOLUME' 
MEnd 

Then the following small test assembly would capture information into the object text of the 
generated program about the macro library. 

My_Job LIBINFO 
End 

&SYSCLOCK 

The &SYSCLOCK character variable provides the date and time at which the current macro 
was invoked, as a string of 26 characters: 

'YYYY-MM-DD HH:MM:SS mmmmmm' 

where mmmmmm is measured in microseconds. Note that &SYSCLOCK can be used only in 
macros, not in open code. 

Differences among &SYSTIME, &SYSCLOCK, and the CLOCKB and CLOCKD operands of the 
AREAD statement are discussed at "&SYSTIME, &SYSCLOCK, and the AREAD Statement" on 
page 236. 
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&SYS NEST 
The &SYSNEST arithmetic variable provides the nesting level at which the current macro 
was invoked (the outermost macro called from open code is at level 1). 

For example, a macro might contain tests or MNOTE statements to indicate the nesting· 
depth: 

.OK 

&SYS MAC 

AIF 
MNOTE 
MEX IT 
ANOP 

(&SYSNEST LE 50).0K 
12,'Macro nesting depth exceeds 50. Possible recursion?' 

The &SYSMAC character variable provides the name of the macro currently being expanded, 
and of its entire call chain. If &SYSMAC is used without any subscript, it returns the name of 
the macro (or open code) in which it was used. If a subscript is provided, &SYSMAC(O) 
returns the same value as &SYSMAC; &SYSMAC(1) returns the name of the macro that 
called this one; and so forth for subscripts up to and including &SYSMAC(&SYSNEST), which 
returns 'OPEN CODE'. For values of the subscript greater than &SYSNEST, a null string is 
returned. 

For example, instructions to display a macro's call chain might look like this: 

&J SetA &SYSNEST 
&K SetA &SYSNEST-&J 
.Loop MNOTE *,'Name at nesting level &J is &SYSMAC(&K)' 
&J SetA &J.-1 

Alf (&J ge 0).Loop 

&SYSNDX 
The &SYSNDX variable provides a unique value for every macro invocation in the program. 
It may be used as a suffix for symbols generated in the macro, so that they will not "collide" 
with similar symbols generated in other invocations. It is incremented by 1 for every macro 
call in the program. 

For values of &SYSNDX less than or equal to 9999, the value will always be four characters 
long (padded on the left with leading zeros, if necessary). 

&L 
&L 
Off&SYSNDX 
Add&SYSNDX 

Macro 
BDisp &Target 
BAS 1,Add&SYSNDX 
DC Y(&Target-*) 
AH 1,0ff&SYSNDX 
BR 1 
MEnd 

Branch to non-addressable target 
Skip over constant 
Target offset 
Add off set 
Branch to target 

Note that although the contents of &SYSNDX is always decimal digits, it is actually a 
character-valued variable. 

&SYS LIST 
The &SYSLIST variable can be used to access positional parameters on a macro call 
(whether named or not). &SYSLIST supports a very rich set of sublist and attribute capabili­
ties, and is therefore quite different from the other system variable symbols. 
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&NameFld SETC 
&NArgs SETA 
&Arg_l SETC 
&NArgs_l SETA 
&Arg_2 SETC 

I &SYSLIST (0) I 

N '&SYSLIST 
'&SYSLIST(l)' 
N'&SYSLIST(l) 
I &SYSLIST (2) ' 

Name field of macro call 
Number of arguments 
Argument 1 
Number of sub-arguments 
Argument 2 

System Variable Symbols: Varying Values 

&SYSSTMT: next statement number to be processed 

&SYSM_HSEV: highest MNOTE severity so far 

&SYSM_SEV:. highest MNOTE severity in most recently invoked macro 
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Variable Symbols Whose Values May Vary Anywhere 

There are three system variable symbols whose value can vary in all contexts: &SYSSTMT, 
&SYSM_HSEV, and &SYSM_SEV. 

&SYSSTMT 
The &SYSSTMT symbol provides the number of the next statement to be processed by the 
assembler. Debugger data that depends on the statement number can be generated with 
this variable. For example, suppose we have a macro which inserts information about the 
current statement number into the object code of the program, and sets RO to its address (so 
that a debugger can tell you which statement was identified in some debugging activity). A 
macro like the following might be used: 

&L 
&L 

D 
+D 
+ 

Macro 
DebugPtN 
BAS 0,*+8 
DC AL4(&SYSSTMT) 
MEnd 

DebugPtN 
BAS B,*+8 
DC AL4(BBB00527) 

Addr of Statement Number in RB 
Statement number information 

Addr of Statement Number in RB 
Statement number information 
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&SYSM_HSEV and &SYSM_SEV 

The &SYSM HSEV and &SYSM SEV symbols provide access to the severity codes generated 
by MNOTE statements in macros called during the assembly. This can help a macro to 
determine that an inner macro call may have detected some special condition requiring 
action by the caller, without having to set global variables. Their values are returned as 
three numeric characters, such as 908. 

&SYSM SEV provides the highest MNOTE severity code for the macro most recently called 
from this macro or from open code. &SYSM HSEV provides the highest MNOTE severity 
code for the entire assembly up to the point of reference to &SYSM_HSEV. 

System Variable Symbol Usage 

An example, using many System variable symbols: 

What ASM DC C'Asselllbled by &SYSASM., Version &SYSVER.' 
What:sys DC C ', on &SYSTEM ID.' 
Who ASM DC C', in Job &SYSJDB., Step &SYSSTEP.' 
When ASM DC C', on &SYSDATC. at &SYSTIME •• ' 
What:aps DC C' Opcode table for assembly was &SYSDPT_DPTABLE •• ' 
What PRM DC C' &&SYSPARM value was "&SYSPARM. ".' 
What-In DC C' SYSIN file was "&SYSIN DSN. ".' 
What:abj DC C' SYSLIN (object) file was ''&SYSLIN_DSN. ''.' 
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You might want to insert information into the object code of a program giving information 
about its assembly environment, in a form readable without "translation" from hex. The fol­
lowing example shows one way you might do this: 

What ASM DC C'Assembled by &SYSASM., Version &SYSVER.' 
What_Sys DC c• , on &SYSTEM ID. 1 

Who ASM DC C', in Job &SYSJOB., Step &SYSSTEP.' 
When ASM DC C', on &SYSDATC. at &SYSTIME •• I 

What_Ops DC C' Opcode table for assembly was &SYSOPT_OPTABLE •. I 

What PRM DC C' &&SYSPARM value was ''&SYSPARM. 11 • 1 

What In DC C' SYSIN file was ''&SYSIN DSN. 11 • 1 

What_Obj DC C' SYSLIN (object) file was ''&SYSLIN DSN. 11 • 1 
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Relationships of Old and New System Variable Symbols 

Some of the new system variable symbols introduced with High Level Assembler comple­
ment and supplement the data provided by system variable available in previous assem­
blers. 

&SYSDATE and &SYSDATC 

The variable symbol &SYSDATE is available in High Level Assembler and Assembler H, but 
was not supported by the earliest IBM assemblers. It provides a date in "American" 
(MM/DD/YY) format, without any century indication. As such, users in other countries some­
times had to extract and re-compose its fields to obtain a date conforming to local custom, 
convention, or standards. Further, the date could not be placed directly into fields as a sort 
key, because the year digits were in the lowest-order positions. Finally, no century was indi­
cated. 

High Level Assembler's introduction of the &SYSDATC variable solves all these problems 
very simply. · 

&SYSECT and &SYSSTYP 

All previous assemblers have supported the &SYSECT variable to hold the name of the 
enclosing control section at the time a macro was invoked. This allows a macro which needs 
to change control sections (e.g., to declare a DSECT or to create code or data for a different 
CSECT) to resume the original control section on exit from the macro. There was, however, 
a sticky problem: there was no way for the macro to determine what type of control section 
to resume! 

High Level Assembler provides the &SYSSTYP variable to rectify this omission: it provides 
the type of the control section named by &SYSECT. This permits a macro to restore the 
correct previous "control section environment" on exit. 

&SYSNDX and &SYSNEST 

All previous assemblers have supported the &SYSNDX variable symbol, which is incre­
mented by one for every macro invocation in the program. This permits macros to generate 
unique ordinary symbols if they are needed as "local labels". Occasionally, in recursively 
nested macro calls, the value of the &SYSNDX variable was used to determine either the 
depth of nesting, or to determine when control had returned to a particular level. 

Alternatively, the programmer could define a global variable symbol of his own, and in each 
macro insert statements to increment that variable on entry and decrement it on exit. This 
technique is both clumsy (because it requires extra coding in every macro) and insecure 
(because not every macro called in a program is likely to be under the programmer's 
control, particularly IBM-supplied macros). 

High Level Assembler provides the &SYSNEST variable to keep track of the level of macro­
call nesting in the program. The value of &SYSNEST is incremented globally on each macro 
entry, and decremented on each exit. 

&SYSTIME, &SYSCLOCK, and the AREAD Statement 

The &SYSTIME variable symbol is provided by High Level Assembler and Assembler H, but 
not by earlier assemblers. It provides the local time of the start of the assembly in HH/MM 
format. This "time stamp" may not have sufficient accuracy or resolution for some applica­
tions. 

There are two alternatives to the unvarying quality of &SYSTIME: the &SYSCLOCK variable, 
and the AREAD statement; &SYSCLOCK is described at "&SYSCLOCK" on page 232. 
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High Level Assembler provides an extension to the AREAD statement that may be useful if a 
more accurate time stamp is required. The current time can be obtained either in decimal 
or binary format. 

The macro in the following example captures the clock reading in both decimal and binary 
formats: 

Macro 
&Lab AREADCLK 

LCLC &D,&B 
&D Are ad CLOCKD 
&B Are ad CLOCKS 
&Lab DC C'&D' Decimal Clock. 

DC C'&B' Binary Clock. 
MEnd 

A AREADCLK 
+A DC C I 13020700 I Decimal Clock. 
+ DC C'04692700' Binary Clock. 

Thus, you can capture time values at three levels of granularity: 

&SYSTIME provides the time at which the assembly began 

• &SYSCLOCK provides the time at which the macro expansion began 

AREAD provides the current time whenever it is executed. 
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Appendix C. Glossary of Abbreviations and Terms 

absolute symbol. A symbol whose value 
does not change if Location Counter values 
change in the program; a non-relocatable 
symbol. 

ADATA. See SYSADATA file. 

address. (1) (n) A number used by the 
processor at execution time to locate and 
reference operands or instructions in 
central processor storage. In the context of 
this document, an address is what refer­
ence manuals (such as the Principles of 
Operation) would call a virtual address. 
(2) (v) To reference; to provide an address 
(sense no. 1) that may be used to reference 
an item in storage. 
(3) Sometimes used to mean an assembly 
time location. 

address constant A field in a program con­
taining values calculated at assembly time, 
bind time, or execution time, typically con­
taining an address, an offset, or a length. 
The operands of an address constant often 
are expressions involving internal symbols, 
external symbols, or both. 

address resolution. The process whereby 
the assembler converts implied addresses 
into addressing halfwords, using information 
in its USING Table. 

addressable. (1) At execution time an 
operand is addressable if it lies either in the 
4096 bytes starting at address zero, or in 
any 4096-byte region of storage whose 
lowest address is contained in one of 

. general purpose registers 1 through 15. 
(2) At assembly time an implied address is 
addressable if it can be validly resolved by 
the Assembler into a base-displacement 
addressing halfword, using information con­
tained in the USING Table at the time of the 
resolution. 

addressing halfword. A two-byte field in 
the second and/or third halfwords of a 
machine language instruction, composed of 
a 4-bit base digit and a 12-bit displacement. 
An address expressed in base-displacement 
format. 

anchor. (1) The base location or base reg­
ister specified in the second operand of a 
USING statement. 
(2) The starting point of a chained list. 

Assembler. A program which converts 
source statements written in Assembler 

Language into machine language, providing 
additional useful information such as diag­
nostic messages, symbol usage cross­
references, and the like. 

Assembler Language. The symbolic lan­
guage accepted by High Level Assembler, 
in which program statements are written. 
(Often, these statements describe individual 
instructions; this is why Assembler Lan­
guage is frequently characterized as a "low 
level" language.) The Assembler translates 
these statements to an equivalent represen­
tation of the program in machine language. 
Assembler Language is intelligible to 
human beings trained in the art, but exces­
sive art may render it unintelligible. 
Compare machine language. 

In this document, we sometimes distinguish 
two components: (1) conditional assembly 
language and (2) ordinary assembly lan­
guage. See also Figure 117 on page 243. 

assembly language. See Assembler Lan­
guage. 

assembly time. The period in the lifetime of 
a program when its representation as a 
sequence of symbolic statements is being 
converted to the desired equivalent machine 
language form. 

attribute. A property of a symbol known to 
the assembler, typically the characteristics 
of the item named by the symbol, such as 
its type, length, etc. A program may 
request the assembler to provide values of 
symbol attributes using a~tr(.bute references . 

A variable symbol may have one attribute 
specific to the symbol itself (the number 
attribute), and many attributes specific to 
the value of the variable symbol. 

attribute reference. A notation used to 
request the value of a symbol attribute from 
the assembler's symbol table, or of a vari­
able symbol or its value. 

BAL (acronym). Basic Assembler Lan­
guage. Intended to mean Assem~ler Lan­
guage. The use of this term is deprecated, 
due to possible confusions with the BAL 
(Branch and Link) instruction and the BASIC 
programming language. The Assembler 
Language implemented by High Level 
Assembler is neither basic nor BASIC. 

base. See base register, base address. 
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base address. The address in one of 
general purpose registers 1 to 15 to which a 
displacement is .added to obtain an effective 
address. 

base digit. See base register specification 
digit. 

base-displacement addressing. A technique 
for addressing central storage using a 
compact base-displacement format for 
representing the derivation of storage 
addresses. 

base location. (1) In base-displacement 
address resolution, the first operand of a 
USING statement, from which displacements 
are to be calculated. For ordinary USING 
statements, the base location is assumed to 
be at a relative offset (displacement) of zero 
from the address contained in the base reg­
ister, for dependent USING statements, the 
base location may be at a positive nonzero 
offset from the location specified in the base 
register eventually used to resolve an 
implied address. 
(2) Informally, this term is sometimes used 
to mean (a) the origin of a control section, 
(b) a base address in a register at execution 
time, and (c) whatever the speaker likes. 

base register. The General Purpose Reg­
ister specified in the second operand of a 
labeled USING or ordinary USING. 

base register specification digit. The 4-bit 
field in bit positions 0-3 of an addressing 
halfword. 

bind time. The time following assembly 
time during which one or more object 
modules are combined to form an execut­
able module, ready for loading into central 
storage at execution time. Also known as 
"link time". 

COM. A statement declaring the start or 
resumption of a common section. 

common section. A special dummy control 
section whose name is an external symbol. 
Common sections receive special treatment 
during program linking: space is allocated 
for the greatest length received for all 
common sections with a given name. 

complex relocatability. An attribute of a 
symbol indicating that its value is neither 
constant nor variable in exactly the same 
way as changes to the origin of its con­
taining section. See relocatability attribute. 

conditional assembly. A form of assembly 
whose input is a mixture of conditional 

assembly language and ordinary assembly 
language statements, and whose outputs 
are statements of the ordinary assembly 
language. Statements of the ordinary 
assembly language are treated only as 
"text", and are not obeyed during condi­
tional assembly. 

conditional assembly language. The 
"outer" language that controls the 
sequencing, selection, and tailoring of ordi­
nary assembly language statements, 
through the use of variable symbols, 
sequence symbols, conditional assembly 
expressions, and substitutions. See also 
Figure 117 on page 243. 

conditional assembly function. See 
external function and internal function. 

control section. The smallest independ­
ently relocatable unit of instructions and/or 
data. All elements of a given control section 
maintain the same fixed relative positions to 
one another at assembly time. These fixed 
relative positions at assembly time are 
usually (but not necessarily) maintained by 
the program after control sections are 
placed into storage at execution time. 

CSECT. See control section 

dependent USING. A form of USING state­
ment in which the first operand is based or 
anchored at a relocatable address. May 
also take the form of a labeled dependent 
USING statement. See also anchor, labeled 
USING, and ordinary USING. 

displacement. The 12-bit field in bit posi­
tions 4-15 of an addressing halfword. Fre­
quently used to describe the offset 
(difference) between a given storage 
address and a base address that might be 
used to address (sense no. 2) it. 

DSECT. See dummy control section and 
control section. 

dummy control section. A control section 
with the additional special property that no 
object code is generated for any of its state­
ments. Most DSECT definitions are used as 
mappings or templates for data structures. 
The three types of dummy control sections 
are (1) ordinary dummy control sections, (2) 
common sections, and (3) dummy external 
control sections. 

EAR. See Effective Address Register. 

effective address. The storage address or 
similar value calculated at execution time 
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from a base address and a displacement. 
See also indexed effective address. 

Effective Address Register. An internal reg­
ister used by the processor for calculating 
an effective address. ' 

ESD. See External Symbol Dictionary. 

execution time. The period in the lifetime 
of a program when its representation in 
machine language is interpreted by the 
processor as a sequence of instructions. 
(2) The time at which programmers whose 
programs consistently fail to execute cor­
rectly are themselves executed. 

explicit address. An instruction address in 
which the displacement, and either the base 
or index or both, are fully specified in the 
instruction, and for which no resolution into 
base-displacement format is required. 

extended object module. A new general­
ized object file format supporting long 
external names, section sizes up to 1GB, 
multi-segment modules, and other enhance­
ments. Produced by High Level Assembler 
when the XOBJECT or GOFF option is spec­
ified. See also object module. 

external dummy section. A dummy control 
section (DSECT) whose name is made part 
of the External Symbol Dictionary. The 
Binder, Linkage Editor or Loader will 
resolve the lengths and alignment require­
ments of external dummy sections in such a 
way that storage may be allocated to the 
entire collection of external dummy sections 
(see the definition of the CXD Assembler 
Instruction Statement in the Assembler Lan­
guage Reference), and the offset of each 
dummy section may be defined to the 
program using Q-type address constants 
(again, refer to the Assembler Language 
Reference). 

external function. A function defined by the 
user and invoked by the assembler by the 
SET AF and/or SETCF statements during 
conditional assembly. External functions 
may access the assembler's operating 
system environment and return either arith­
metic or character values, and optional 
messages to be placed into the listing. 

external symbol. A symbol whose name 
and value are a part of the object module 
text provided by the Assembler. Such 
names include (1) control section names, (2) 
referenced names declared in V-type 
address constants or EXTRN statements, (3) 
names of common sections, (4) names of 
Pseudo Registers or external dummy 

sections, (5) referenced names declared on 
ENTRY statements, and {6) symbols and 
character strings renamed through the use 
of the ALIAS statement. Compare to 
internal symbol. 

External Symbol Dictionary. The set of 
external symbols defined or referenced in 
an assembly, and provided in the object 
module for later use during program linking 
or binding. 

function. See external function and internal 
function. 

generalized object file format (GOFF). A 
new form of object module produced by 
High Level Assembler, providing numerous 
enhancements and extensions not sup­
ported by the traditional object module 
format. 

GOFF. See generalized object file format. 

GOFF option. An option that causes High 
Level Assembler to generate an object 
module using the generalized object file 
Format. 

General Purpose Registers. A set of 16 
32-bit registers used in the 
System/360/370/390 family of processors for 
addressing, arithmetic, logic, shifting, and 
other general purposes. Compare to special 
purpose registers such as Access Registers, 
Control Registers, and Floating Point Regis­
ters. 

GPR. See General Purpose Register 

HLASM. High Level Assembler/MYS & VM 
& VSE (Release 1); High Level Assembler 
for MVS & VM & VSE (Release 2 and later). 

High Level Assembler. IBM's most modern 
and powerful symbolic assembler for the 
System/370 and System/390 series of com­
puters, running on the MVS, VM, and VSE 
operating systems. Not necessarily an 
oxymoron, as High Level Assembler can do 
much more than ordinary (low-level) assem­
blers. 

implied address. An instruction address 
requiring resolution by the Assembler into 
base-displacement format; an address for 
which base and displacement are not 
explicitly specified. Also implicit address. 

index. (1) The contents of that index reg­
ister specified by the index register specifi­
cation digit in an RX-type instruction. 
(2) Less frequently, the index register spec­
ification digit itself. 
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index digit. See index register specification 
digit. 

index register specification digit. In an 
RX-type instruction, the 4-bit field contained 
in bit positions 12 through 15 of the instruc­
tion; the digit which, if not zero, specifies an 
index register to be used in calculating the 
indexed effective address 

indexed effective address. The storage 
address or similar value calculated during 
program execution from a base address, a 
displacement, and an index. The term effec­
tive address is commonly used whether or 
not indexing is present. 

index register. 0 ne of general purpose reg­
isters 1 through 15 specified by the index 
register specification digit in an RX-type 
instruction. 

internal function. A function defined and 
executed by the assembler during condi­
tional assembly, which acts on arithmetic, 
boolean, and character expressions to 
produce arithmetic, boolean, or character 
values. Compare external function. 

internal symbol. A symbol naming an 
element of an Assembler Language 
program, which is assigned a single value 
by the assembler. Internal symbols are 
normally discarded at the end of the 
assembly, but may be retained in the 
SYSADATA tile. Compare to external 
symbol. 

internal symbol dictionary. See symbol 
table. 

label. (1) The name field entry of an 
assembler or machine instruction state­
ment. Normally, the presence of a label in 
the name field of an instruction statement 
will define the value of that label. 
(2) In common parlance, the name of an 
instruction or data definition. This is more 
properly called a name field symbol. 
(3) In High Level Assembler, the name field 
symbol of a USING statement, designating 
that statement as a labeled USING. 

labeled USING. A form of USING statement 
with a qualifier symbol in the name field. 
Symbolic expressions resolved with respect 
to a labeled USING must use a qualified 
symbol with the qualifier of that labeled 
USING. 

LC. See Location Counter. 

Location Counter. A counter used by the 
Assembler to determine relative positions of 

all elements of a program as it is assem­
bled. 

location. A position within the object code 
of an assembled program, as determined by 
assigning values of the Location Counter 
during assembly. An assembly time value, 
sometimes confused with an execution time 
address. 

machine language. The binary instructions 
and data interpreted and manipulated by 
the processor when the program is exe­
cuted (at execution time). It is not meant to 
be intelligible to ordinary or normal human 
beings. Compare Assembler Language. 

object module. A file produced by the 
Assembler, containing the external symbols, 
machine language instructions and data, 
and other data produced by assembling the 
source program. See also extended object 
module. 

open code. Statements that are not within 
a macro definition or expansion. The state­
ments in an assembly source file are typi­
cally in open code. See also ordinary 
assembly language. 

options. Directives to the Assembler speci­
fying various "global" controls over its 
behavior. For example, the PRINT option 
specifies that the assembler should produce 
a listing file. Options are specified by the 
user as a string of characters, as part of the 
command or statement that invokes the 
assembler, or on *PROCESS statements. 

ordinary assembly language. The portion of 
the Assembler Language that includes 
machine instructions, data definitions, and 
assembler controls, but not including state­
ments involved in conditional assembly. 
See conditional assembly language. See 
also Figure 117 on page 243. 

ordinary symbol. See internal symbol. 

ordinary USING. The oldest form of USING 
statement, in which (a) no entry is present 
in the name field, (b) the first operand spec­
ifies a base address, and (c) the second and 
successive operands are absolute 
expressions designating General Purpose 
Registers to be used as base registers. 

PR. See Pseudo Register and external 
dummy section. 

Pseudo Register. The name used by other 
processors such as the Linkage Editor and 
Loader for what the assembler calls an 

Appendix C. Glossary of Abbreviations and Terms 241 



external dummy section. See external 
dummy section. 

qualified symbol. An ordinary symbol pre­
ceded by a qualifier, and separated from the 
qualifier by a period. 

qualifier. An ordinary symbol, defined as a 
qualifier by its appearance in the name field 
of a labeled USING statement. It is used 
only in qualified symbols to direct base­
displacement addressing resolutions to a 
specified register or anchor location. 

RA. See relocatability attribute. 

reenterable. See reentrant. 

reentrant. (1) Capable of simultaneous exe­
cution by two or more asynchronously exe­
cuting processes or processors, with only a 
single instance of the code image. Typically, 
reentrant programs are expected not to 
modify themselves, but this is neither a nec­
essary nor sufficient condition for 
reentrancy. 
(2) When requested by the RENT option, or 
in an RSECT, simple tests are made by High 
Level Assembler for conditions of obvious 
self-modification of the program being 
assembled. 

relocatability attribute. Each independently 
relocatable element of an Assembler Lan­
guage program (such as a control section 
or external symbol) is assigned a distinct 
relocatability attribute. Each symbol in the 
symbol table is assigned the relocatability 
attribute of the element to which it belongs. 
An absolute symbol is assigned a zero 
relocatability attribute. See also simple 
relocatability and complex relocatability. 

relocatable. (1) Capable of being placed 
into storage at an arbitrary (possibly prop­
erly aligned) address; not requiring place­
ment at a fixed or pre-specified address in 
order to execute correctly. 
(2) Having a non-zero re/ocatabi/ity 
attribute, which can mean either simple 
relocatability or complex relocatabi/ity. 

relocation. The assignment of new or dif­
ferent locations or addresses to a set of 
symbols or addresses, by adding or sub­
tracting constants depending on a module's 
assigned storage addresses. 

relocation ID. Same as relocatabi/ity attri­
bute. A numeric value assigned by the 
assembler to each independently relocat­
able element of a program such as control 
sections and external symbols. 

resolution. See address resolution. 

resolved. See address resolution. 

RSECT. A reentrant control section, distin­
guished from an ordinary control section 
(CSECT) only by (a) the presence of a flag 
in the External Symbol Dictionary and (b) 
that High level Assembler will perform 
reentrant checking of instructions within the 
RSECT. 

run time. See execution time. 

sequence symbol. A conditional assembly 
symbol used to mark positions in a state­
ment stream, typically inside a macro defi­
nition. 

simple relocatability. An attribute of a 
symbol indicating that changes to the value 
of the origin location of a control section 
will cause the value of the symbol to 
change by the same amount. See also 
absolute symbol and complex relocatability. 

symbol table. A table created and main­
tained by the Assembler, to assign values 
and attributes to all symbols in the 
program. Except for symbols named in 
V-type address constants, the symbol table 
contains only a single occurrence of a 
symbol. 

SYSADATA file. A file created by the High 
Level Assembler when the ADATA option is 
specified, containing machine-readable 
information about all aspects of the assem­
bled program and the assembly process. 

system variable symbol. A variable symbol 
defined by the assembler,\, containing infor­
mation about the assembly process. Its 
value cannot be changed by the pro­
grammer. 

USING Table. A table maintained at 
assembly time by the Assembler, used for 
resolution of implied addresses into base­
displacement form. Each entry contains the 
number of a base register and a base 
location. 

variable symbol. A symbol prefixed with a 
single ampersand (&). Used during condi­
tional assembly to assist with substitution, 
expression evaluation, and statement 
selection and sequencing. Unlike ordinary 
symbols, the values of certain variable 
symbols may change freely during an 
assembly. 
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Appendix D. Ordinary and Conditional Assembly 

Comparison Ordinary Assembly Conditional Assembly 

Generality the "inner" language of instructions the "outer" language that controls 
and data definitions and tailors the inner language 

Usage a language for programming a a language for programming an 
machine assembler and its language 

Inputs statements from primary input, library statements from primary input (and 
(via COPY or macro call), and gener- records via AREAD), library (via 
ated statements from macros and COPY and macro call), external func-
AINSERT statements tions 

Outputs generated machine language object ordinary assembly statements and 
code, records (via REPRO, PUNCH) macro instructions, messages (via 

MNOTE), records (via AINSERT) 

Symbols ordinary symbols (internal and variable symbols, sequence symbols 
external) 

Symbol declara- ordinary symbols appear in the name sequence symbols appear in the 
tion field of ordinary assembly statements name field of any statement; variable 

(except names in V-type address con- symbols are (a) user-declared 
stants); always explicitly declared (implicit or explicit declaration), (b) 

system, or (c) macro parameters 
(both implicit) 

Statement labels ordinary symbols take the values of sequence symbols denote positions in 
locations in the ordinary assembly the conditional assembly statement 
statement stream, and other assigned stream 
values, or are positional arguments in 
macro calls 

Symbol scope internal and external; external variable symbols have local or global 
symbols persist in the object code scope; sequence symbols have local 
beyond assembly time scope; both discarded at assembly 

end 

Symbol types ordinary symbols have no types; variable symbols have arithmetic, 
and values values are normally assigned from boolean, or character types and 

Location Counter values or by EQU values 
statements 

Symbol attri- ordinary symbols have many attri- variable symbols have only the prop-
but es but es erty of maximum subscript (if dimen-

sioned), but their values may have 
attributes 

Expression eval- expressions in ordinary statements, expressions in conditional-assembly 
uation and in A-type and Y-type address con- statements 

stants 

Expression oper- +,-,*,/ +, -, *, /;internal arithmetic func-
a tors tions; internal boolean functions; 

internal character functions; external 
arithmetic and character functions 

Attribute Opera- L', I', S' T', L', I', S', 0', K', N', 0 1 

tors 

Figure 117. Comparison of Ordinary and Conditional Assembly 
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Special Characters 

"PROCESS statement 241 
&SYSADATA DSN 225 229 

ADAT A file name 225 
&SYSADATA MEMBER 225 229 

ADAT A member name 225 
&SYSADATA VOLUME 225 229 

ADATA volume name 225 
&SYSASM 225, 227 

assembler name 225 
&SYSCLOCK 225, 232 

date/time 225 
in macros only 232 

&SYS DA TC 225, 228 
date 225 
vs. &SYSDATE 236 

&SYSDA TE 225, 228 
date 225 
vs. &SYS DA TC 236 

&SYSECT 225, 230 
current control section 225 
vs. &SYSSTYP 236 

&SYSIN_DSN 225, 231 
SYSIN file name 225 

&SYSIN MEMBER 225 231 
SYSIN member nam~ 225 

&SYSIN VOLUME 225 231 
SYSIN volume name' 225 

&SYSJOB 225, 228 
assembly job name 225 

&SYSLIB DSN 225, 232 
SYSLIB file name 225 

&SYSLIB MEMBER 225 232 
SYSLIB member nam~ 225 

&SYSLIB VOLUME 225 232 
SYSLIB volume name' 225 

&SYSLIN DSN 225 229 
SYSLIN file name' 225 

&SYSLIN MEMBER 225 229 
SYSLIN member nam~ 225 

&SYSLIN VOLUME 225 229 
SYSLIN volume name' 225 

&SYSLIST 71, 84, 85, 225 
invalid without subscript 84 
list scanning 76 
lists 84 
macro arguments 84 
name field entry 233 

&SYSLIST(O) 233 
number attribute reference 82 
positional parameters 233 
sublists 84, 233 

list scanning 84 

&SYSLIST notation 87 
&SYSLIST(O) 

Appendix E. Index 

name field entry on macro call 84 
&SYSLOC 225, 231 

current location counter 225 
&SYSM HSEV 225 235 

highest MNOTE ;everity 225 
&SYSM_SEV 225, 235 

recent MNOTE severity 225 
&SYSMAC 225, 233 

macro and ancestor name 225 
subscripts 233 

&SYSNDX 225, 233 
macro invocation counter 225 
vs. &SYSNEST 236 

&SYSNEST 225, 233 
macro nesting level 225 
vs. &SYSNDX 236 

&SYSOPT _DBCS 225, 229 
DBCS option setting 225 

&SYSOPT_OPTABLE 225, 228 
OPTABLE option setting 225 

&SYSOPT RENT 225 229 
RENT option setting 225 

&SYSOPT XOBJECT 226 
GOFF/XOBJECT option setting 226 
XOBJECT/GOFF option setting 226 

&SYSPARM 226, 229 
in macro debugging 94 
SYSPARM parameter value 226 

&SYS PRINT DSN 226 229 
SYSPRINT file name' 226 

&SYSPRINT MEMBER 226 229 
SYSPRINT member nam~ 226 

&SYSPRINT VOLUME 226 229 
SYSPRINT volume name' 226 

&SYSPUNCH DSN 226 229 
SYSPUNCH file name' . 226 

&SYSPUNCH MEMBER 226 229 
SYSPUNCH member nam~ 226 

&SYSPUNCH VOLUME 226 229 
SYSPUNCH volume name' 226 

&SYSSEQF 226, 230 
sequence field 226 

&SYSSTEP 226, 228 
step name 226 

&SYSSTMT 226, 234 
next statement number 226 

&SYSSTYP 226, 231 
control section type 226 
vs. &SYSECT 236 

&SYSTEM _ID 226, 227 
assembly system 226 
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&SYSTERM DSN 226 229 
SYSTERM file name' 226 

&SYSTERM_MEMBER 226, 229 
SYSTERM member name 226 

&SYSTERM VOLUME 226 229 
SYSTERM volume name' 226 

&SYSTIME 226, 228, 232 
time of assembly 226 

&SYSVER 226, 227 
assembler version 226 

A 

absolute symbol 
definition 238 
predefined 13, 16, 19, 23 

ACONTROL statement 
LIBMAC operand 96 

ACTR statement 95 
ACTR value halved 95 
looping 95 
macro debugging 95 
macro errors 95 
modifiable value 95 
value default 95 

ADA TA 
definition 238 
option 242 

ADAT A file name 
&SYSADAT A DSN 225 

ADATA member name 
&SYSADATA MEMBER 225 

ADAT A volume -name 
&SYSADATA VOLUME 225 

ad con -
See address constant 

address 
assembly time 238 
base 240 
base address 240 
base-displacement format 240 
definition 238 
displacement 240 
effective address 239 
execution time 238, 240 
explicit address 240 
implied address 240 
index 240 
location 238 
resolution 240 

address constant 238 
definition 238 

address resolution 238 
addressing halfword 238 
definition 238 
implied addresses 238 

addressable 238 
addressing halfword 238 
assembly time 238 
base-displacement resolution 238 
definition 238 
execution time 238 
resolution 238 

addressing 
base-displacement addressing 239 
base-displacement format 239 

addressing halfword 238 
base 238 
base-displacement format 238 
definition 238 
displacement 238 

AEJECT statement 66 
AGO statement 37 

computed AGO 38 
extended form 38 

failure to branch 38 
statement sequencing 37 
unconditional branching 37 

AIF statement 39 
conditional branching 39 
extended form 40 
statement sequencing 39 

AINSERT statement 183 
internal buffer queue 184 
syntax 184 

ALIAS statement 240 
external symbol renaming 240 

ampersand pairing in strings 23, 47, 70 
ancestor macro name 

&SYSMAC 225 
anchor 238 

base location 238 
base register 238 
definition 238 

AND function 17 
AND operator 21 
ANOP statement 35 

sequence symbol definition 36 
apostrophe pairing in strings 23, 47, 70 
application portability 46 
AREAD statement 236 

in case studies 102 
operands 236 

CLOCKS operand 236 
CLOCKD operand 236 
vs. &SYSTIME 236 

timing measurements 236 
argument association 53 

See also association 
argument list 

&SYSLIST 225 
arguments 

See macro arguments 
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arithmetic comparison 21 
arithmetic expression 16 

attribute reference 16 
binary operators 16 
internal functions 17 
numeric-valued attribute 

count (K') 16 
defined (D') 16 
integer (I') 16 
length ( L') 16 
number (N') 16 
scale (S') 16 

overflow 16 
string length 

count attribute reference (K') 28 
unary operators 16 

arithmetic operators 15 
arithmetic type 6 
arithmetic variable symbols 

substituted as magnitude 23 
arrays of variable symbols 9 

maximum subscript 9 
number attribute reference (N') 9 

ASPACE statement 66 
Assembler 238 

assembler language 238 
definition 238 
machine language 238 

assembler language 
base language 4, 238 
conditional assembly language 238 

outer language 2 
definition 238 
interactions 4 
machine language 238 
macro definition 59 
ordinary assembly language 4, 238 

base language 1 
inner language 1 
machine language 1 

assembler language macro definition 
See macro definition 

assembler name 
&SYSASM 225 

assembler version 
&SYSVER 226 

assembly functions 
See functions 

assembly job name 
&SYSIN VOLUME 225 

assembly language 
See assembler language 

assembly system 
&SYSTEM ID 226 

assembly time 49 
&SYSTIME 226 
definition 238 
macros as subroutines 49 

assignment 
implicit declaration 9 
multiple 15 
SET statements 9, 14, 15 

association 
arguments 71 
by keyword name 72 

arbitrary order 72 
overriding defaults 72 

by name 71 
by position 71 
by positional argument number 71 

&SYSLIST 71 
of parameters and arguments 75 

by name 75 
positional 75 

parameters 71 
associative addressing 

created variable symbols 10 
attribute 

changed 
lookahead mode 178 

definition 238 
macro arguments 48 
unknown 

lookahead mode 178 
variable symbols 

symbol itself 77 
symbol's value 77 

attribute reference 16 
character-valued attribute 23 

B 

opcode attribute reference (O') 23 
type attribute reference (T') 23, 27 

count (K') 16, 76, 80 
defined (D') 16, 77 
definition 238 
in open code 17 
integer (I') 16, 77 
length (L') 16, 77 
lookahead mode 178 
number (N') 16, 76, 81 
opcode (O') 23, 61, 77 
scale (S') 16, 77 
type (T') 23, 27, 77, 79· 
value type 

character (T',O') 77 
numeric 77 

where valid 

BAL (acronym) 238 
definition 238 
deprecation 238 

base 
See also base address 
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base (continued) 
See also base register 
definition 238 

base address 
definition 239 
displacement 239 
effective address 239 
general purpose register 239 

base digit 
See also base register specification digit 
definition 239 

base location 
base-displacement address 

resolution 239 
definition 239 
dependent USING statement 239 
displacement 239 
ordinary USING statement 239 

base register 
definition 239 
general purpose register 239 
labeled USING statement 239 
ordinary USING statement 239 

base register specification digit 
addressing halfword 239 
definition 239 

base-displacement addressing 
definition 239 

base-displacement format 238 
benefits of macros 

abstract data types 100 
adaptability 51 
application portability 50 
application-specific 100 
avoiding side-effects 100 
code re-use 50 
create language 49 
easier debugging 50 
efficiency 100 
encapsulated interfaces 51 
flexibility 51 
high-level constructs 50 
incremental growth 100 
information hiding 100 
language extension 49 
language implementation tutorial 101 
language portability 49 
localized logic 51 
minimal language burden 100 
optimization 100 
personal style 101 
polymorphism 100 
private data types 100 
programmer choice 100 
reduced coding effort 49, 50 
standardized conventions 50 
suppression of detail 50 
task-specific 100 

binary logarithm function example 211 
binary operator 16 
bind time 

after assembly time 239 
before execution time 239 
definition 239 

body of a macro definition 59 
boolean expression 20 

in AIF statement 39 
possible ambiguity 41 
predefined absolute symbols 20 
self-defining term 20 
SET A variables 20 

boolean operators 
See also masking functions 
AND 21 
NOT 21 
OR 21 
XOR 21 

boolean type 6 
BYTE function 30 
BYTESEQ1 macro example 74 

c 
call nesting 55 
call of a macro 

See macro instruction 
case studies 

abstract data types 192 
AREAD statement 121, 122, 128 

block comments 102, 128 
create length-prefixed messages 102, 

122 
bit handling 102, 137 

advanced forms 150 
optimization 151 
safe references 139 
simple forms 140 
type checking 151 

convert decimal to hex 102, 115 
convert hex to decimal 102, 113 
define symbols for registers 101, 103 
defining data types 102, 172, 188 

polymorphism 174 
type checking 180, 181, 183 
type sensitivity 176 

front-ending a macro 102, 204 
generate named constants 102, 117 
generate sequence of byte values 101, 

107 
macro recursion 130, 131, 133, 135 

factorial 102, 133 
Fibonacci numbers 102, 135 
indirect addressing 102, 131 

MVC2 macro to use second operand 
length 101, 110 
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case studies (continued) 
recursive macros 102, 130 
using private data types 102, 172 

polymorphism 17 4 
type checking 180, 181, 183 
type sensitivity 176 

wrapping a macro 102, 204 
character comparison 21 

vs. hardware comparison 
instructions 21 

character expression 22 
character-valued attribute 23 

opcode attribute reference (O') 23 
type attribute reference (T') 23 

concatenation 25 
internal functions 29 
quoted strings 22 
string length 28 

count attribute reference {K') 28 
substrings 26 
type attribute reference {T') 27 

character string length 28 
character string reversal example 217 
character strings 

See character expression 
character substrings 26 
character type 6 
character-valued attribute reference 

opcode {O') 23 
type {T') 23, 27 

COM statement 
common section 239 
definition 239 

comment statements 
lack of substitution 63 
macro comments 66 
ordinary comments 66 

comments fields 
lack of substitution 63 

common section 240 
as a dummy control section 239 
COM statement 239 
definition 239 
external symbol 239 

comparison operators 
arithmetic comparison 21 
character comparison 21 
EQ 21 
GE 21 
GT 21 
LE 21 
LT 21 
NE 21 

COMPAT(SYSLIST) option 85, 87 
complex relocatability 

definition 239 
computed AGO 38 

failure to branch 38 

concatenation 
See character expression 

conditional assembly 4 
analogy to preprocessors 4 
conditional assembly language 239 
definition 239 

conditional assembly expressions 15 
arithmetic 16 
boolean 20 
character 22 
evaluation 15, 16, 20, 22 

arithmetic 16 
boolean 20 
character 22 

internal functions 15 
binary operators 15 
unary operators 15 

conditional assembly functions 32 
See also external functions 
See also internal functions 
assembler interface 

arithmetic functions 210, 211 
character functions 216 
SET AF functions 210, 211 
SETCF functions 216 

binary logarithm example 211 
character string reversal example 217 
definition 239 
installing example functions 222 
LOG2 example 211 
logarithm base 2 211 
message severity code 209 
messages 209 
primary address list 210, 211, 216 
request information area 211, 216 
return code 209 
REVERSE example 217 
SET AF interface 211 
SETCF interface 216 
severity code 209 

conditional assembly language 3, 238 
as macro language 2 
definition 239 
elements 3 
evaluation 5 
interpreted by assembler 18 
outer language 2 

vs. inner language 2 
selection 5 
sequence symbol 4, 239 
substitution 5 
variable symbol 4 

See also variable symbols 
vs. ordinary assembly language 239 

conditional branching 
AIF 39 
boolean expression 39 
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constructed macro arguments 73 
control section 

common control section 239 
CSECT 239 
definition 239 
dummy control section 239 
ordinary control section 239 
RSECT 239 

control section type 
&SYSSTYP 226 

COPY statement 
in macro encoding 63 

count attribute reference {K') 16, 76 
difference from N' 77 
macro arguments 80 
to arithmetic variable 28 
to boolean variable 28 
to character variable 28 

created variable symbols 9, 13 
associative addressing 10, 159 
case studies 

bit handling 152, 153 
define symbols for registers 101, 106 
type checking 181 

multiple levels 10 
CSE CT 

See also control section 
definition 239 

current control section 
&SYSECT 225 

current location counter 
&SYSLOC 225 

CXD instruction 240 
Q-type address constant 240 

D 

D' attribute reference 16, 77 
See also defined attribute reference 

data structure mapping 
See also dummy control section 
common control section 239 
dummy external control section 239 
ordinary dummy control section 239 

data structure template 
See dummy control section 

date of assembly 
&SYSCLOCK 232 

in macros only 232 
&SYSDATC 225, 228 
&SYSDATE 225, 228 

date/time 
&SYSCLOCK 225 

DBCS option setting 
&SYSOPT DBCS 225 

debugging macros 
ACTR statement 91, 95 
AIF dump 93 
global variable suppression 94 
hex dump 94 
inner macro calls 97 
LIBMAC option 91, 96 
library macros 96 
local scope 95 
looping 95 
macro entry dump 93 
macro exit dump 93 
MHELP statement 91, 93 
MHELP suppression 94 
MNOTE statement 91, 92 
PCONTROL{MCALL) option 91 
PRINT MCALL statement 91, 97 
tracing macro branches 93 
tracing macro calls 93 

declaring variable symbols 9 
arrays 9 
explicitly 8, 9 

GBLA statement 9 
GBLB statement 9 
GBLC statement 9 
LCLA statement 9 
LCLB statement 9 
LCLC statement 9 
SET symbols 8 

implicitly 8 
by the assembler 8 
macro parameters 8 
SET symbols 8 
system variable symbols 8 

defined attribute reference (D') 16, 77 
defining macros 

See macro definition 
dependent USING 

anchor 239 
definition 239 
labeled dependent USING 239 

dictionaries 
global 90 
macros 90 
open J:Ode 90 

dimensioned variable symbols 9 
gaps in subscripts 9 
maximum subscript 9, 76 

number attribute reference {N') 9 
displacement 

addressing halfword 239 
definition 239 

displaying values of variable symbols 
MNOTE 42 

division by zero 16 
DOUBLE function 29 
DSECT 

See also control section 
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DSECT (continued) 
See also dummy control section 
definition 239 

dummy control section 239 
COM 240 
CXD instruction 240 
DSECT 240 
DXD 240 
external 240 
External Symbol Dictionary 240 

dummy external section 240 
dummy section 

See dummy control section 
duplication factor 

E 

for quoted strings 23 
substrings 27 

EAR 
See also effective address register 
definition 239 

eccentricities 
apparently boolean expressions in SET A 

and SETB 47 
nesting of internal character functions in 

SETA 47 
no branch for extended AGO 47 
overflow 47 
pairing rules 47 
string comparisons 47 
substitution of arithmetic variables 47 

editing 
See macro encoding 

effective address 241 
definition 239 
indexed effective address 241 

Effective Address Register 
definition 240 
effective address 240 

encoding 
See macro encoding 

ENTRY statement 240 
EQU statement 19 

compared to SETA statement 19 
error checking 

in macro encoding 63 
ESD 

See also External Symbol Dictionary 
definition 240 

evaluating conditional assembly 
expressions 15 

execution time 49 
definition 240 

expansion 
See macro expansion 

explicit address 
definition 240 
execution time 240 

explicit declaration 8, 9 
expression 

arithmetic 16 
attribute reference 16 
internal functions 16, 17 
predefined absolute ordinary 

symbols 16 
string length 28 

arithmetic overflow 16 
binary operators 16 
boolean 20 

arithmetic comparison 21 
character comparison 21 
comparison operators 21 
operators 21 
relational operators 21 

character 22 
concatenation 25 
internal functions 29 
opcode attribute reference (O') 23 
quoted strings 23 
string length 28 
substrings 26 
type attribute reference (T') 23 

division by zero 16 
mixed operand types 33 
parentheses 16 
precedence of evaluation 16 
simplification 18 
unary operators 16 

extended AGO statement 38 
failure to branch 38 

extended AIF statement 40 
extended object module 

See also generalized object file format 
GOFF option 240 

external dummy section 
definition 240 
DXD 240 

external functions 32 
See also functions 
arithmetic functions 210, 211 
assembler interface 

arithmetic functions 210, 211 
character functions 216 
SETAF functions 210, 211 
SETCF functions 216 

calling sequence 209 
character functions 216 
definition 240 
examples 209 

LOG2 211 
REVERSE 217 

initial invocation 209 
installation 222 

CMS 222 
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external functions (continued) 
installation (continued) 

MVS 222 
loading by assembler 209 
LOG2 example 211 
messages 209 
parameter list 209 
REVERSE example 217 
SETAF interface 210, 211 
SET AF statement 32, 209 
SETCF interface 216 
SETCF statement 32, 209 
string reversal example 217 

external symbol 6, 240 
ALIAS statement 240 
common section 240 
definition 240 
dummy external section 240 

DXD 240 
ENTRY statement 240 
pseudo register 240 
renaming via ALIAS statement 240 

External Symbol Dictionary 
definition 240 
object module 240 

EXTRN statement 240 

F 

FIND function 31 
FLAG option 42 
FLAG(NOSUBSTR) op1ion 27 
front-ending a macro 204 
function 

binary operators 15 
external 32, 209 

SET AF statement 32 
SETCF statement 32 

internal 
arithmetic 17 
character 29 
masking 17 
shifting 17 

unary operators 15 
functions 

See also external functions 
See also internal functions 
conditional assembly 240 
definition 240 
external 240 
internal 241 
SET AF statement 240 
SETCF statement 240 

G 

GBLA statement 9 
GBLB statement 9 
GBLC statement 9 
general purpose registers 

definition 240 
generalized object file format 

definition 240 
object module 240 

generated statements 
AINSERT statement 184 
inner macro calls 65 
limitations and AINSERT statement 65 

generation 
See macro expansion 

global variable symbol dictionary 90 
in macro encoding 63 

global variable symbols 48, 88 
dictionary 88 
for macro output values 88 
in macro encoding 63 
sharing by name 88 
type consistency 88 
uniform declaration 7 

GOFF 
See also generalized object file format 
definition 240 
object module 240 

GOFF option 
definition 240 

GPR 
See also general purpose register 
definition 240 

H 

High Level Assembler 
definition 240 

highest MNOTE severity 
&SYSM_HSEV 225 

HLASM 
definition 240 

host system 
&SYSTEM_ID 226 

I' attribute reference 16, 77 
See also integer attribute reference 

implicit address 
See implied address 

implicit declaration 
macro parameters 8 
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implicit declaration (continued) 
SET statements 9 
system variable symbols 8 

unmodifiable values 8 
implied address 

base-displacement format 240 
definition 240 
resolution 240 

index 
See also Index 
definition 240 
index register 240 
index register specification digit 240 

index digit 
See also index register specification digit 
definition 241 

INDEX function 30 
index register 

definition 241 
general purpose register 241 
index register specification digit 241 

index register specification digit 
definition 241 
index register 241 
indexed effective address 241 

indexed effective address 
base 241 
definition 241 
displacement 241 
index 241 

initializing variable symbols 9 
inner macro calls 

in generated statements 65 
inner-macro arguments 

list structures 87 
installing external functions 222 

CMS 222 
MVS 222 

integer attribute reference (I') 16, 77 
internal arithmetic functions 17 

masking 
AND 17 
NOT 17 
OR 17 
XOR 17 

shifting 
SLA 17 
SLL 17 
SRA 17 
SRL 17 

with character operands 
FIND 30 
INDEX 30 

internal character functions 29 
BYTE 30 
DOUBLE 29 
FIND 31 
INDEX 30 

internal character functions (continued) 
LOWER 29 
SIGNED 29 
UPPER 29 

internal function notation 15 
internal functions 

See also functions 
arithmetic-valued 30 
character operands 

arithmetic-valued 30 
character-valued 29 
conditional assembly 241 
definition 241 
notation 15 

internal symbol 6 
Assembler Language 241 
definition 241 
SYSADATA file 241 

internal symbol dictionary 
See also symbol table 
definition 241 

internal text 63 
interpretation 

See macro interpretation 

J 

job name 
&SYSJOB 225 

K 

K' attribute reference 16, 76, 80 
See also count attribute reference 
character value of parameter 77 
to arithmetic variable 28 
to boolean variable 28 
to character variable 28 

keyword parameters 69, 72 
arbitrary ordering 69 

L 

argument value overrides default 72 
default values 69 
mixing with positional parameters 69 

L' attribute reference 16, 77 
See also length attribute reference 

label 
definition 241 
labeled USING statement 241 
name field symbol 241 
symbol definition 241 
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labeled USING 
definition 241 
qualified symbol 241 
qualifier 241 

LC 
See also location counter 
definition 241 

LCLA statement 9 
LCLB statement 9 
LCLC statement 9 
length attribute reference { L') 16, 77 
LIBMAC option 96 

library macros 96 
macro debugging 96 

library macro 60, 61 
list structures 82 

nesting 81, 83 
sublists 81 
subscripts 83 

listing spacing 
AEJECT statement 66 
ASPACE statement 66 

lists in macro arguments 76 
local symbol dictionary 63, 90 
location 

assembly time 241 
base location 239 
definition 241 
execution time address 241 
location counter 241 

Location Counter 
definition 241 

LOCTR name 
&SYSLOC 225 

LOCTR statement 179, 231 
LOG2 example 211 
logical expressions 41 

in SETA, SETB, and AIF 41 
logical operators 41 

in SETA, SETB, and AIF 41 
lookahead mode 178 

attribute reference 178 
looping in macros 

ACTR statement 95 
LOWER function 29 

M 

machine language 1 
definition 241 
execution time 241 

macro argument attributes 48, 76 
macro argument list 

&SYSLIST 225 
macro argument structures 48, 76 

examples 81 

macro argument structures (continued) 
lists 76, 81 
sublists 76 

macro argument-parameter association 
See association 

macro arguments 48, 68 
&SYSLIST 84 

&SYSLIST(O) 84 
attributes 76 
by construction 86 
by direct substitution 85 
by substitution of parts 86 
constructed 73 
count attribute 80 
length 

given by K' attribute 76 
list structures 81 
lists and sublists 82, 85 
name field entry 84 

&SYSLIST(O) 84 
nesting 81 
null arguments 70 
number attribute 81 
pairing of apostrophes and 

ampersands 70 
parenthesized list 85 
positional 84 

number given by N'&SYSLIST 84 
positional arguments 70, 85 
properties 78 
quoted string arguments 70 
structures 76 
sublists 81 
type attribute 78 

macro body 59 
macro call 

See also macro instruction 
as assembly-time subroutine 49 
global variable symbols as output 88 
no return values 88 

macro call nesting level 
&SYSNEST 225 

macro comments 66 
macro concepts 

argument association 53 
basic processes 51 

expansion 51 
recognition 51 
text insertion 51 
text parameterization 51 
text selection 51 

inner calls 55 
macro nesting 55 
nested macro calls 55 
nested macro definitions 57 
recognition of inner calls 55 
text insertion 52 
text parameterization 53 
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macro concepts (continued) 
text selection 54 

macro debugging 
ACTR statement 91, 95 
AIF dump 93 
global variable suppression 94 
hex dump 94 
inner macro calls 97 
LIBMAC option 91, 96 
library macros 96 
looping 95 
macro entry dump 93 
macro exit dump 93 
MHELP statement 91, 93 
MHELP suppression 94 
MNOTE statement 91, 92 
PCONTROL(MCALL) option 91 
PRINT MCA LL statement 91,. 97 
tracing macro branches 93 
tracing macro calls 93 

macro definition 48, 59 
comment statements 66 

macro comments 66 
ordinary comments 66 

efficiency vs. generality 64 
format 60 
in-line 60 
keyword parameters 69 

operands of prototype statement 69 
library 60 
limitations on generated statements 65 

AINSERT statement 65 
listing spacing 

AEJECT statement 66 
ASPACE statement 66 

macro arguments 68 
macro body 59 
macro comments 66 
macro editing 63 
macro encoding 63 
macro header statement 59 
macro parameters 68 
MACRO statement 59 
macro trailer statement 60 
MEND statement 60 
name recognition 63 
nested definitions 57 

in HLASM 64 
overriding instructions 61 
parameters 69 
points of substitution 63 

name, operation, operand fields 63 
not in remarks or comments 63 

positional parameters 
operands of prototype statement 69 

prototype statement 59, 69 
re-interpretation 64 

macro editing 63 
See also macro encoding 

macro encoding 48, 63, 183 
COPY statements 63 
definitions 63 
error checking 63 
expansion errors 

ACTR value halved 95 
global variable symbol dictionary 63 
internal text 63 
limitations 183, 184 

AINSERT 184 
local dictionary 63 
parameter name encoding 63 
points of substitution 63 
recognition of inner calls 55 
system variable symbol encoding 63 

macro examples 
BYTESEQ1 74 
GREGS 67 
sequence of byte values 74 
symbols for register names 67 

macro expansion 48, 51, 65 
generated statements 65 
inner macro calls 65 
MEXIT statement 65 
parameter association 65 
recognition of inner calls 55 
termination 65 

MEND statement 65 
MEXIT statement 65 

text insertion 51 
text parameterization 51 
text selection 51 

macro facility 49 
benefits 49, 50, 51 

adaptability 51 
application portability 50 
code re-use 50 
create language 49 
easier debugging 50 
encapsulated interfaces 51 
flexibility 51 
high-level constructs 50 
language extension 49 
language portability 49 
localized logic 51 
modularity 50 
reduced coding effort 50 
reliability 50 
standardized conventions 50 
suppression of detail 50 

macro front-ending 204 
macro generation 

See macro expansion 
macro header statement 

MACRO statement 59 

254 Assembler Language as a Higher Level Language, SHARE Summer 2002 



macro instruction 49 
&SYSLIST(O) for name field entry 84 
arguments 70 · 

null arguments 70 
positional arguments 70 
quoted string arguments 70 

library macro 61 
nested calls 57, 97 
null arguments 70 
overriding instructions 61 
positional arguments 70 
quoted string arguments 70 
recognition rules 61 
redefinition 61 
source macro 61 
undefined 61 

macro instructions 
as assembly-time subroutines 3 

macro invocation counter 
&SYSNDX 225 

macro language 2 
macro library 61 
macro name 

&SYSMAC 225 
macro nesting 

calls 55 
definitions 57 

macro parameter-argument association 
See association 

macro parameters 48, 68, 69 
in model statements 75 
not in declarations 15 
not in SET statements 15 
points of substitution 75 
positional 69 
sublists 83 
subscripts 83 

macro recognition 48, 51 
details 62 
expansion 61 
generation 61 

macro recursion 102 
MACRO statement 59 
macro techniques case studies 101 
macro trailer statement 

MEND statement 60 
mapping of data structure 

See dummy control section 
masking functions 

See also boolean operators 
AND 17 
NOT 17 
OR 17 
XOR 17 

maximum subscript 9 
number attribute reference (N') 9, 76 

MCALL operand 91, 97 

MEND statement 60, 65 
messages 

external functions 209 
MNOTE statement 42 
severity code 42, 209 

MEXIT statement 65 
MHELP statement 

AIF dump 93 
debugging macros 93 
global variable suppression 94 
hex dump 94 
macro debugging 93 
macro entry dump 93 
macro exit dump 93 
suppression 94 
tracing macro branches 93 
tracing macro calls 93 

mixed operand types 
in expressions 33 

MNOTE severity 
&SYSM_HSEV 43, 225 
&SYSM_SEV 43, 225 

MNOTE statement 42 
comments 42 
debugging macros 92 
macro debugging 92 
severity code 42 

&SYSM HSEV 43 
&SYSM SEV 43 

SYSTERM 42 
TERM option 42 

model statements 
parameters 75 
points of substitution 75 

multiple assignment 15 

N 

N' attribute reference 16, 76 
See also number attribute reference 
character value of parameter 77 
maximum subscript 76 

N'&SYSLIST 
number of positional arguments 84 

name field entry on macro call 
&SYSLIST(O) 84 

nested macro calls 55 
nested macro definitions 57, 64 
nesting level 

&SYSNEST 225 
NOCOMPAT(SYSLIST) option 87 
NOT function 17 
NOT operator 21 
number attribute reference (N') 9, 16, 76 

&SYSLIST 82 
difference from K' 77 
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number attribute reference (N') (continued) 
dimensioned variable symbol 82 
number of positional arguments 84 

N'&SYSLIST 84 
rule of thumb 82 
to variable symbols 81 
vs. maximum subscript 81 

numeric-valued attribute reference 
count (K') 16 
defined (D') 16 
integer (I') 16 
length (L') 16 
number (N') 16 
scale (S') 16 

0 

O' attribute reference 61 
See also opcode attribute reference 

object module 
definition 241 
external symbols 241 

opcode attribute reference (O') 23, 61, 77 
open code 3 

attribute reference 17 
definition 7, 241 
local scope 7 

operating system environment 240 
OPSYN statement 180, 204 
OPT ABLE option setting 

&SYSOPT OPT ABLE 225 
options 

*PROCESS statement 241 
COMPAT(SYSLIST) 85, 87 
definition 241 
FLAG(NOSUBSTR) 27 
LIBMAC 96 
NOCOMPAT(SYSLIST) 87 

OR function 17 
OR operator · 21 
ordinary assembly language 238 

definition 241 
inner language 1 
ordinary symbol 4 
vs. conditional assembly language 239 

ordinary control section 
See also control section 
common control section 239 
CSECT 239 
offsets fixed at assembly time 239 
positions at execution time 239 
relocation at later times 239 
RSECT 239 

ordinary symbol 6, 241 
definition 241 
external symbol 6 

ordinary symbol (continued) 
internal symbol 6 

ordinary USING 
base address 241 
definition 241 
general purpose register 241 

overflow 
arithmetic expression 47 

overriding instructions 
macro definitions 61 

p 

pairing 
ampersands 23, 28, 47, 80 
apostrophes 23, 28, 47, 70, 80 
DOUBLE function 29 
not in SETC variable 28 

parameter association 
See association 

parameters 
See macro parameters 

PCONTROL option 
PRINT MCALL override 98 

points of substitution 11, 63 
identifying 12 
in model statements 75 
not in remarks or comments 11, 75 
re-scanning 12 
where not allowed 75 

positional parameters 
See macro parameters 

PR 
See also external dummy section 
See also pseudo register 
definition 241 

predefined absolute symbols 13, 19 
in arithmetic expressions 16 
in boolean expression 20 
in character expressions 23 

removed in H LASM R4 24 
preprocessors 

analogy to conditional assembly 4 
primary address list 

SETAF interface 210, 211 
SETCF interface 216 

PRINT MCALL statement 
inner macro calls 97 
macro debugging 97 
MCALL operand 97 
PCONTROL option 98 

PROFILE option 205 
prototype statement 

See macro definition 
pseudo register 240, 242 

See also external dummy section 
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pseudo register (continued) 
definition 241 
external dummy section 242 

Q 

Q-type address constant 240 
qualified symbol 

definition 242 
qualifier 242 

qualifier 
anchor 242 
base-displacement resolution 242 
definition 242 
labeled USING statement 242 

quoted string arguments 
See macro arguments 

quoted strings 22 

R 

See also character expression 
duplication factor 23 

RA 
See also relocatability attribute 
definition 242 

recent MNOTE severity 
&SYSM SEV 225 

recognition of macro call 61 
recursive macro calls 102, 130 

factorial example 133 
Fibonacci numbers 135 
indirect addressing 131 
separate local dictionary 90 

reenterable 
See reentrant 

reentrant 
definition 242 
RSECT 242 

relational operators 
arithmetic comparison 21 
character comparison 21 
EQ 21 
GE 21 
GT 21 
LE 21 
LT 21 
NE 21 

relocatability 
See also relocatability attribute 
complex 239 
simple 242 

relocatability attribute 
definition 242 

relocatable 
complex relocatability 242 
definition 242 
relocatability attribute 242 
simple relocatability 242 

relocation 
definition 242 

relocation ID 
See also relocatability attribute 
definition 242 

remarks fields 
lack of substitution 63 

RENT option setting 
&SYSOPT RENT 225 

request information area 
SETAF interface 210, 211 
SETCF interface 216 

resolution 
See also address resolution 
definition 242 

resolved 
See also address resolution 
definition 242 

REVERSE example 217 
reversed string function example 217 
RSECT 

control section 242 
definition 242 
External Symbol Dictionary 242 
reentrant 242 

run time 

s 

See also execution time 
definition 242 

S' attribute reference 16, 77 
See also scale attribute reference 

scale attribute reference (S') 16, 77 
scope 

ACTR value 95 
of variable symbols 6 

global 7 
local 7 

rules for variable symbols 89 
sequence symbol 36 
system variable symbols 224 

self-defining term 
in boolean expression 20 

sequence field 
&SYSSEQF 226 

sequence symbol 4, 34 
ANOP 36 
branch targets 36 
defining 35, 36 
definition 242 
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sequence symbol (continued) 
lack of creation 36 

· lack of substitution 36 
lack of value 35 
loca I scope 36 
not as arguments 36 
statement selection 5, 35 

SET statements 14 
arithmetic operators 15 
multiple assignment 15 
SET A statement 16 
SETB statement 20 
SETC statement 22 

SET symbols 7, 15 
associative addressing 10 
created 9, 101, 106, 152, 153, 159, 181 
explicit declaration 8 
modifiable value 8 
SET A symbols 15 
SETB symbols 15 
SETC symbols 15 

SETA statement 16, 19 
compared to EQU statement 19 

SETA variables 
in boolean expression 20 

SETAF interface 
primary address list 210, 211 
request information area 210, 211 

SET AF statement 32, 209 
SETB statement 20 
SETC statement 22 
SETCF interface 

primary address list 216 
request information area 216 

SETCF statement 32, 209 
severity code 

external functions 209 
FLAG option 42 
MNOTE statement 42 

shift functions 
SLA 17 
SLL 17 
SRA 17 
SRL 17 

SIGNED function 24, 29 
simple relocatabili1y 

definition 242 
SLA function 17 
SLL function 17 
source macro 61 
SRA function 17 
SRL function 17 
statement number 

&SYSSTMT 226 
statement selection 34 

sequence symbol 34 
statement sequencing 

AGO 37 

statement sequencing (continued) 
AIF 39 

step name 
&SYSSTEP 226 

string concatenation 
See character strings 

strings 
See also character expression 
See also character strings 
concatenation 27 
length 28 
substrings 

duplication factor 27 
structures 

macro arguments 48 
sublists 81, 82 
sublists in macro arguments 76 
subscripted variable symbols 9, 84 

maximum subscript 9 
number attribute reference (N') 9 

subscripts 84 
&SYSLIST 84 
macro parameters 83 
positional parameters 84 
variable symbols 9 

substitution 10 
See also points of substitution 

substrings 26 
duplication factor 27 

symbol 
absolute 

definition 238 
attribute 238 

forward reference 178 
control section name 240 
external symbol 240 
EXTRN statement 240 
internal symbol 241 
location counter values 238 
lookahead mode 178 
non-relocatable symbol 238 
ordinary symbol 241 
qualified symbol 242 
qualifier 242 
sequence symbol 34, 35 
symbol table 242 
variable symbol 242 

symbol attributes 
See attribute reference 

symbol dictionary 
See also symbol table 
global 63 
internal symbol 241 
local 63 

symbol table 
definition 242 

symbolic parameters 
See also macro parameters 
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symbolic parameters (continued) 
not in declarations 15 
not in SET statements 15 

symbols for register names 67 
macro example 67 

SYSADATA file 
ADAT A option 242 
definition 242 

SYSIN file name 
&SYSIN DSN 225 

SYSIN member name 
&SYSIN MEMBER 225 

SYSIN volume name 
&SYSIN VOLUME 225 

SYSLIB file name 
&SYSLIB_DSN 225 

SYSLIB member name 
&SYSLIB MEMBER 225 

SYSLIB volume name 
&SYSLIB VOLUME 225 

SYSLIN file name 
&SYSLIN DSN 225 

SYSLIN member name 
&SYSLIN_MEMBER 225 

SYSLIN volume name 
&SYSLIN VOLUME 225 

SYSPARM parameter value 
&SYSPARM 226 

SYSPRINT file name 
&SYSPRINT_DSN 226 

SYSPRINT member name 
&SYSPRINT MEMBER 226 

SYSPRINT volume name 
&SYSPRINT VOLUME 226 

SYSPUNCH file name 
&SYSPUNCH DSN 226 

SYSPUNCH member name 
&SYSPUNCH MEMBER 226 

SYSPUNCH volume name 
&SYSPUNCH VOLUME 226 

system variable symbol 
definition 242 

system variable symbols 6, 8, 10, 223 
&SYSADATA DSN 225, 229 

ADATA file name 225 
&SYSADATA MEMBER 225, 229 

ADAT A member name 225 
&SYSADATA VOLUME 225, 229 

ADAT A volume name 225 
&SYSASM 225, 227 

assembler name 225 
&SYSCLOCK 225, 232 

date/time 225 
in macros only 232 

&SYSDA TC 225, 228 
date 225 
vs. &SYSDATE 236 

&SYSDATE 225, 228 
date 225 

system variable symbols (continued) 
&SYSDATE (continued) 

VS. &SYSDATC . 236 
&SYSECT 225, 230 

current control section 225 
vs. &SYSSTYP 236 

&SYSIN_DSN 225, 231 
SYSIN file name 225 

&SYSIN MEMBER 225, 231 
SYSIN member name 225 

&SYSIN VOLUME 225, 231 
SYSIN volume name 225 

&SYSJOB 225, 228 
assembly job name 225 

&SYSLIB DSN 225, 232 
SYSLIB file name 225 

&SYSLIB MEMBER 225, 232 
SYSLIB member name 225 

&SYSLIB VOLUME 225, 232 
SYSLIB volume name 225 

&SYSLIN DSN 225, 229 
SYSLIN file name 225 

&SYSLIN MEMBER 225, 229 
SYSLIN member name 225 

&SYSLIN VOLUME 225, 229 
SYSLIN volume name 225 

&SYSLIST 71, 85, 225, 233 
list scanning 71 
name field entry 233 
positional parameters 233 
sublists 233 

&SYSLOC 225, 231 
current location counter 225 

&SYSM HSEV 225, 235 
highest MNOTE severity 225 

&SYSM SEV 225, 235 
recent MNOTE severity 225 

&SYSMAC 225, 233 
macro name 225 
subscripts 233 

&SYSNDX 225, 233 
macro invocation counter 225 
vs. &SYSNEST 236 

&SYSNEST 225, 233 
macro nesting level 225 
vs. &SYSNDX 236 

&SYSOPT DBCS 225, 229 
DBCS option setting 225 

&SYSOPT_OPTABLE 225, 228 
OPTABLE option setting 225 

&SYSOPT RENT 225, 229 
&SYSOPT RENT 225 

&SYSOPT XOBJECT 226 
&SYSOPT XOBJECT 226 

&SYS PARM - 226, 229 
SYS PARM parameter value 226 

&SYSPRINT_DSN 226, 229 
SYSPRINT file name 226 
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system variable symbols (continued) 
&SYSPRINT MEMBER 226, 229 

SYSPRINT member name 226 
&SYSPRINT VOLUME 226, 229 

SYSPRINT volume name 226 
&SYSPUNCH DSN 226, 229 

SYSPUNCH file name 226 
&SYSPUNCH MEMBER 226, 229 

SYSPUNCH member name 226 
&SYSPUNCH VOLUME 226, 229 

SYSPUNCH volume name 226 
&SYSSEQF 226, 230 

sequence field 226 
&SYSSTEP 226, 228 

step name 226 
&SYSSTMT 226, 234 

next statement number 226 
&SYSSTYP 226, 231 

control section type 226 
vs. &SYSECT 236 

&SYSTEM_ID 226, 227 
assembly system 226 

&SYSTERM_DSN 226, 229 
SYSTERM file name 226 

&SYSTERM MEMBER 226, 229 
SYSTERM member name 226 

&SYSTERM VOLUME 226, 229 
SYSTERM volume name 226 

&SYSTIME 226, 228, 236 
time of assembly 226 
vs. AREAD operands 236 

&SYSVER 226, 227 
assembler version 226 

assigned by assembler 14 
availability 224 
encoding in macro definition 63 
implicit declaration 8 
not in declarations 14 
not in SET statements 14 
scope of usage 224 
symbols with constant values 230 

&SYSCLOCK 230 
&SYSECT 230 
&SYSIN DSN 230 
&SYSIN MEMBER 230 
&SYSIN VOLUME 230 
&SYSLIB DSN 230 
&SYSLIB MEMBER 230 
&SYSLIB VOLUME 230 
&SYSLIST 230 
&SYSLOC 230 
&SYSMAC 230 
&SYSNDX 230 
&SYSNEST 230 
&SYSSEQF 230 
&SYSSTYP 230 

symbols with fixed values 227 
&SYSASM 227 
&SYSDATC 227 

system variable symbols (continued) 
symbols with fixed values (continued) 

&SYSDA TE 227 
&SYSJOB 227 
&SYSOPT DBCS 227 
&SYSOPT=OPTABLE 227 
&SYSO PT RENT 227 
&SYSOPT XOBJECT 227 
&SYSPARM 227 
&SYSSTEP 227 
&SYSTEM ID 227 
&SYSTIME 227 
&SYSVER 227 

symbols with varying values 234 
&SYSM HSEV 234 
&SYSM SEV 234 
&SYSSTMT 234 

type attributes 224 
type of symbol's value 224 
unmodifiable values 8 
variability 224 

constant 224 
fixed 224 
variable 224 

SYSTERM 
MNOTE statement 42 
TERM option 42 

SYSTERM file name 
&SYSTERM DSN 226 

SYSTERM member name 
&SYSTERM MEMBER 226 

SYSTERM volume name 
&SYSTERM VOLUME 226 

T 

T' attribute reference 77 
See also type attribute reference 

template for data structure 
See dummy control section 

TERM option 42 
text generation 

See macro expansion 
text insertion 52 
text parameterization 53 
text selection 54 
time 242 

assembly 49, 239 
definition 238 

bind 239 
execution 49, 239 

definition 240 
in microseconds 232 
link 239 
machine language 240 
run time 

See execution time 
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time (continued) 
translation 

See assembly time 
time of assembly 

&SYSCLOCK 232 
in macros only 232 

&SYSTIME 226, 228, 232 
local dynamic time 236 

AREAD statement operands 236 
CLOCKB 236 
CLOCKD 236 

local start time 236 
type attribute reference (T') 77 

u 

in character expressions 23, 27 
values 79 

unary operator 16 
unconditional branching 

AGO 37 
undefined operation 61 
unmodifiable variable symbols 7 
UPPER function 29 
USING statement 

dependent 239 
labeled 239, 241 
labeled dependent 239 
ordinary 239 

USING Table 

v 

assembly time 242 
definition 242 
implied address 242 

values of type attribute reference 79 
variable symbols 

See also SET symbols 
arithmetic type 6 
arrays 7 
assigning values 14 
attribute 238 

symbol itself 77, 238 
symbol's value 77, 238 

boolean type 6 
character type 6 
constructed by substitution 13 
created 9, 13, 101, 106, 152, 153, 159, 

181 
declaration 

arrays 9 
by the assembler 8 
explicit 8 
GBLA statement 9 
GBLB statement 9 

variable symbols (continued) 

w 

declaration (continued) 
GB LC statement 9 
implicit 8 
LCLA statement 9 
LCLB statement 9 
LCLC statement 9 

definition 242 
dictionaries 

macros 90 
open code 90 

dimensioned 9 
number attribute reference (N') 82 

displaying values 42 
global 88 

in macro encoding 63 
global symbol dictionary 90 
initialization 9 
local symbol dictionary 90 
manufactured 13 
modifiable values 7 

SET symbols 7 
multiple assignment 
number attribute zero 
points of substitution 

identifying 12 

15 
9 

11, 12 

not in remarks or comments 11 
re-scanning 12 

scalars 7 
scope 6, 9 

global 6, 7 
local 6, 7 

scope rules 6, 89 
global symbols 89 
local symbols 89 

SET symbols 7 
subscripted 9 
substitution 10 
symbolic parameters 15 

not in declarations 15 
not in SET statements 15 

syntax 6 
system 

See system variable symbols 
undimensioned 9 
unmodifiable values 7 

symbolic parameters 7 
system variable symbols 7 

wrapping a macro 204 
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x 
XOBJECT/GOFF option setting 

GOFF/XOBJECT option setting 226 
XOR function 17 
XOR operator 21 

z 
zero, division by 16 
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