Series/1 SC34-0943-0

Event Driven Executive
Language Programming Guide

Version 6.0

A {5 B £ N
Library Guide and Installation and Operator Commands
Common Index System Generation and

Guide Utilities Reference

SC34-0938 SC34-0936 SC34-0940

> & =4 | B

D A ™ (™
Language Communications Messages and
Reference Guide Codes
SC34-0937 SC34-0935 SC34-0939

L/ & J & J

R N\ A B
Operation Event Driven APPC
Guide Language Programming Guide

Programming Guide and Reference

SC34-0944 SC34-0943 SC34-0960

p L _J & J

: Y D A ~

Problem Customization Internal
Determination Guide Design
Guide
SC34-0941 SC34-0942 LY34-0364

y &) L =

(§H]

== H SC34-0943-0
=5 Series/1
a -
Event Driven Executive
- -
Language Programming Guide
Version 6.0
£ Y
Library Guide and instalistion and Operator Commands
Common ndex
5C34-0938 S034-0836 SC34-0840
4
&Y & Sy
Language Communications Messages and
Heference Guide Codes
8L34-0837 SL34-0838 §C34-08938
I ' \ ,
Operation Event Driven APPC ‘
Guide Language Programming Guids
Programming Guide and Reference
SCa4-0844 SC34-0943 SC34-0960
R i L J S
Problem Customization Intarnal
Determination Guide ' Dasign
Guide
SL34-0847 5034-0842 LY34-0364

AN
\/

First Edition (October 1987)
Use this publication only for the purposes stated in the section entitled “About This Book.”

Changes are made periodically to the information herein; any such changes will be reported in subsequent
revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not
be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Publications are not stocked at the address given below. Requests for copies of IBM publications should be
made to your IBM representative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for readers’ comments

is provided at the back of this publication. If the form has been removed, address your comments to IBM

Corporation, Information Development, Department 28B (5414), P. O. Box 1328, Boca Raton, Florida 0
33429-1328. IBM may use or distribute any of the information you supply in any way it believes appropriate

without incurring any obligation whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1987

O Summary of Changes for Version 6.0

This document contains the following changes.
3151 Display Terminal

¢ Chapter 8,“Reading Data from and Writing to Screens,” has been updated to
include the 3151 display everywhere a reference to the 3161 appears.

¢ Appendix B, “Interrupt Processing” has been updated to include the 3151
display everywhere a reference to the 3161 appears.

* Appendix C, “Static Screens and Device Considerations” has been updated to
include the 3151 display everywhere a reference to the 3161 appears.

SINSTAL Utility Enhancements

e Chapter 1, “Getting Started” has been updated to include the new option for
$INSTAL (Option 12) on the Session Manager Option Menu screen.

e Chapter 4, “Compiling a Program” has been updated to include the new option
for SINSTAL (Option 12) on the Session Manager Option Menu screen.

System Partition Statements

¢ References to the SYSTEM statement have been replaced by the appropriate
system partition statements: SYSPARTS, SYSPARMS, SYSCOMM, or
SYSEND.

C\ Miscellaneous Changes

¢ Numerous editorial and usability changes have been made throughout the book.

Summary of Changes for Version 6.0 iii

iv SC34-0943

C

Contents

Chapter 1. Getting Started 1-1
Designing a Program 1-1
Coding the Program 1-2
Starting the Program 1-3
Defining Your Data 1-3
Retrieving Data 1-3
Processing the Data 1-4
Obtaining the Results 1-4
Ending the Program 1-5
Entering the Source Program into a Data Set 1-6
Compiling Your Source Program 1-11
Checking Your Compiler Listing 1-16
Creating a Load Module 1-17
Running Your Program 1-20

Chapter 2. Writing a Source Program 2-1
Beginning the Program 2-1
Defining the Primary Task 2-1
Identifying Data Sets to be Used in Your Program 2-2
Reserving Storage 2-2
Reserving Storage for Integers 2-3
Defining Floating-Point Values 2-4
Defining Character Strings 2-4
Assigning a Value to a Symbol 2-5
Defining an Input/Output Area 2-6
Reading Data into a Data Area 2-7
Reading Data from Disk or Diskette = 2-7
Reading Data from Tape 2-8
Reading from a Terminal 2-8
Moving Data 2-10
Converting Data 2-11
Converting to an EBCDIC Character String 2-11
Converting to Binary 2-12
Converting from Floating Point to Integer 2-14
Converting from Integer to Floating Point 2-14
Checking for Conversion Errors 2-15
Manipulating Data 2-16
Manipulating Integer Data 2-16
Manipulating Floating-Point Data 2-21
Manipulating Logical Data 2-24
Writing Data from a Data Area 2-28
Writing Data to Disk or Diskette 2-28
Writing Data to Tape 2-29
Writing to a Terminal = 2-29
Controlling Program Logic 2-30
Relational Operators 2-30
The IF Instruction 2-31
The Program Loop 2-32
Branching to Another Location 2-34
Ending the Program 2-35

Chapter 3. Entering a Source Program 3-1

Contents

vi SC34-0943

Loading the Editor 3-1
Creating a New Data Set 3-2
Saving Your Data Set 3-4
Modifying an Existing Data Set ~ 3-5
Changing a Line 3-5
Inserting a Line 3-6
Deleting a Line 3-7
Moving Lines 3-9

Chapter 4. Compiling a Program 4-]
Allocating Data Sets 4-1
Running the Compilation 4-4
Checking Your Compiler Listing and Correcting Errors 4-7
Rerunning the Compilation 4-9

Chapter 5. Preparing an Object Module for Execution 5-1
Link Editing a Single Object Module 5-1
Link Editing More Than One Object Module 5-4
Using Noninteractive Mode 5-9
Prefinding Data Sets and Overlays 5-10

Chapter 6. Executing a Program 6-1

Executing a Program with the Session Manager 6-1
Specifying Data Sets 6-3

Submitting a Program from Another Program 6-5

Chapter 7. Finding and Fixing Errors 7-1
Determining Logic Errors in a Program 7-1
Creating and Running the Program 7-2
Debugging and Fixing the Program 7-3
Displaying Unmapped Storage 7-9
Using Return Codes to Diagnose Problems 7-14
Diagnosing Errors with ACCA Devices 7-15
Task Error Exit Routines 7-16
The System-Supplied Task Error Exit Routine ($$EDXIT) 7-16

Chapter 8. Reading Data from and Writing to Screens 8-1
When to Use Roll Screens §-1
When to Use Static Screens 8-2
Differences Between Static Screens and Roll Screens §-2
Reading and Writing One Line at a Time 8-3
Reserving Storage for the Data 8-3
Reading a Data Item 8-3
Writing (Displaying) a Data Item 8-4
Example §8-4
Two Ways to Use Static Screens 8-5
Coding the Screen within a Program 8-6
Defining a Screen as Static 8-6
Getting Exclusive Access to the Terminal — 8-7
Erasing the Screen 8-7
Reserving Storage 8-7
Prompting the Operator for a Data Item 8-7
Positioning the Cursor 8-7
Waiting for a Response 8-8
Reading a Data Item 8-8
Writing a Data Item 8-8

Example 8-9
C Transferring an Entire Screen Image at Once 8-10

Defining Protected and Unprotected Fields 8-11

Defining the Screen 8-11
Erasing the Screen 8-11
Constructing a Screen Image 8-12
Reading a Series of Data Items 8-12
Releasing the Terminal 8-12
Example 8-13
Writing the Screen Image to a Data Set §-15
Creating a Screen 8-16
Defining the Screen as Static §-17
Reading the Screen Image into a Buffer 8-18
Getting Exclusive Access to the Terminal 8-18
Displaying the Screen and Positioning the Cursor
Reserving Storage for Data 8-19
Waiting for a Response 8-19
Reading a Data Item 8-20
Writing a Data Item 8-20
Link Editing the Program 8-21
Example 8-22
Designing Device-Independent Static Screens 8-24
Designing Static Screens 8-24
Compatibility Limitation 8-25
Coding for Device Independence 8-26

8-19

Using the $IMAGE Subroutines for Device Independence 8-28
Reading and Writing to a 3101, 3151, 3161, 3163, or 3164 8-31

C\‘ Characteristics of the Terminal ~ 8-32

Design Considerations 8-33
Defining the Format of the Screen 8-35
Enqueuing the Screen 8-35
Changing the Attribute Byte 8-36
Erasing the Screen 8-36
Protecting the First Field 8-36
Creating Unprotected Fields 8-37
Creating Protected Fields 8-37
Writing a Nondisplay Field 8-37
Reading a Data Item 8-37
Writing a Blinking Field 8-38
Erasing an Individual Field 8-38
Blanking a Blinking Field 8-38
Writing More Than One Data Item 8-38
Prompting the Operator for Data §-39
Changing the Attribute Byte to a Protected Blank
Displaying a Nondisplay Field 8-40
Creating a New Unprotected Field 8-40
Reading Modified Data 8-40
Erasing to the End of the Screen 8-42
Reading All Unprotected Data 8-43
Writing a Data Item 8-43
Reading a Data Item 8-43
Data Stream Considerations 8-43

0 Example 8-44

Chapter 9. Designing Programs 9.1
What Is a Task? 9-1

8-39

Contents

viii

SC34-0943

Initiating a Task 9-2

What Is a Program? 9-2

Creating a Single-Task Program 9-3

Creating a Multitask Program 9-5
Synchronizing Tasks 9-6

Defining and Calling Subroutines 9-6
Defining a Subroutine 9-7
Calling a Subroutine 9-8

Reusing Storage using Overlays 9-9
Using Overlay Segments 9-10
Overlay Programs 9-12

Using Large Amounts of Storage (Unmapped Storage) 9-13
What Is Unmapped Storage? 9-13
Setting up Unmapped Storage 9-14
Obtaining Unmapped Storage 9-14
Using an Unmapped Storage Area 9-15
Releasing Unmapped Storage 9-15
Example 9-16

Chapter 10. Performing Data Management from a Program 10-1
Allocating, Deleting, Opening, and Renaming a Data Set 10-1
When to Use $DISKUT3 10-2
Allocating a Data Set 10-2
Allocating a Data Set with Extents 10-4
Opening a Data Set 10-6
Deleting a Data Set 10-7
Releasing Unused Space in a Data Set 10-8
Renaming a Data Set 10-9
Setting End-of-Data on a Data Set 10-10
Performing More Than One Operation at Once 10-12
Opening a Data Set (DSOPEN) 10-14
DSOPEN Example 10-16
Coding for Volume Independence 10-20
Setting Logical End of File (SETEOD) 10-21
Finding the Device Type (EXTRACT) 10-24

Chapter 11. Reading and Writing to Tape 11-1
What Is a Standard-Label Tape? 11-1
What Is a Nonlabeled Tape? 11-1
Processing Standard-Label Tapes 11-2
Reading a Standard-Label Tape 11-2
Writing a Standard-Label Tape 11-3
Closing Standard-Label Tapes 11-4
Bypassing Labels 11-4
Processing a Tape Containing More than One Data Set 11-5
Reading a Multivolume Data Set 11-6
Processing Nonlabeled Tapes 11-7
Defining a Nonlabeled Tape 11-8
Initializing a Nonlabeled Tape 11-9
Reading a Nonlabeled Tape 11-10
Writing a Nonlabeled Tape 11-10
Adding Records to a Tape File (UPDATE) 11-11

Chapter 12. Communicating with Another Program (Cross-Partition Services)
Loading Other Programs 12-2
Finding Other Programs 12-4

12-1

C

Starting Other Tasks 12-4

Sharing Resources with the ENQ/DEQ Instructions 12-6
Synchronizing Tasks in Other Partitions 12-8

Moving Data Across Partitions 12-10

Reading Data across Partitions 12-12

Chapter 13. Communicating with Other Programs (Virtual Terminals) 13-1
Defining Virtual Terminals 13-1

Loading from a Virtual Terminal 13-2

Interprogram Dialogue 13-2

Sample Program 13-3

Chapter 14. Designing and Coding Sensor I/O Programs 14-1
What is Digital Input/Output? 14-1
What is Analog Input/Output? i4-1
What are Sensor-Based I/O Assignments? 14-3
Coding Sensor-Based Instructions 14-3
Providing Addressability (IODEF) 14-4
Specifying 1/O Operations (SBIO) 14-7

Chapter 15. Designing and Coding Graphic Programs 15-1
Graphics Instructions 15-1

The Plot Control Block 15-2

Example 15-3

Chapter 16. Controlling Spooling from a Program 16-1
What Is Spooling? 16-1
Spooling the Output of a Program 16-1

The Spool-Control Record 16-1

Executing the Example 16-3
Printing Output That Has Been Spooled 16-6
Stopping Spooling 16-7
Determining Whether Spooling Is Active 16-7
Preventing Spooling 16-8
Separating Program Output into Several Spool Jobs 16-8
Programming Considerations 16-9

Chapter 17. Creating, Storing, and Retrieving Program Messages 17-1
Creating a Data Set for Source Messages 17-1

Coding Messages with Variable Fields 17-2

Sample Source Message Data Set 17-4
Formatting and Storing Source Messages (using SMSGUT1) 17-4
Retrieving Messages 17-6

Defining the Location of a Message Data Set 17-6

The MESSAGE instruction 17-7

The GETVALUE, QUESTION, and READTEXT Instructions 17-8
Sample Program 17-9

Chapter 18. Queue Processing 18-1
Defining a Queue 18-1

Putting Data into a Queue 18-1
Retrieving Data from a Queue 18-2
Example 18-2

Chapter 19. Writing Reentrant Code 19-1
When to Use Reentrant Code 19-1

Contents

ix

X SC34-0943

Coding Guidelines 19-1

Examples 19-3 _
Example 1 19-3 O
Example 2 19-6

Chapter 20. Accessing $SSYSCOM through a Program 20-1
Sample Program A 20-1
Sample Program B~ 20-2

Appendix A. Tape Labels A-1

Appendix B. Interrupt Processing B-1
Interrupt Keys B-1
The Attention Key B-1
Program Function (PF) Keys B-1
Enter Key B-2
Instructions that Process Interrupts B-2
The READTEXT and GETVALUE Instructions B-2
The WAIT KEY Instruction B-2
The ATTNLIST Instruction B-3
Advance Input B-3

Appendix C. Static Screens and Device Considerations C-1
Defining Logical Screens C-1
Using TERMINAL to Define a Logical Screen C-1
Using IOCB and ENQT to Define a Logical Screen C-2
Structure of the IOCB C-3

- $IMAGE Subroutines C-3 AN

$IMOPEN Subroutine C-5 \“«_/
$IMDEFN Subroutine C-7
$IMPROT Subroutine C-8
$IMDATA Subroutine C-10
Screen Image Buffer Sizes C-12
Example of Using $IMAGE Subroutines C-13
$UNPACK and $PACK Subroutines C-15
$UNPACK Subroutine C-15
$PACK Subroutine C-16

Index X-1

O

C

About This Book

This book contains an introduction to the Event Driven Language. It does not
contain a description of all Event Driven Language instructions. For a description
of all Event Driven Language instructions, refer to the Language Reference.

Audience

Chapters 1 through 8 of this book are intended for the application programmer who
is coding in the Event Driven Language for the first time. Readers should be
familiar with basic data processing terminology and concepts, such as input, output,
and data sets.

Chapters 9 through 20 are intended for application programmers who need
information about such advanced topics as multitasking, data management from a
program, communicating with other programs, writing reentrant programs, and
writing graphics or sensor I/O programs.

How This Book is Organized

This book contains twenty chapters and three appendixes:

¢ Chapter 1, “Getting Started” describes the steps necessary to develop and run a
simple Event Driven Language (EDL) program.

¢ Chapter 2, “Writing a Source Program” tells how to use EDL instructions to do
such things as read data, write data, convert data, and manipulate data.

e Chapter 3, “Entering a Source Program” tells how to use the full-screen editor
to enter and modify a source program.

* Chapter 4, “Compiling a Program” shows how to use the Event Driven
Language compiler to translate a source program to object code.

e Chapter 5, “Preparing an Object Module for Execution” shows how to use the
linkage editor to prepare an object program for execution.

¢ Chapter 6, “Executing a Program” describes how to run a program that has
been compiled and link-edited.

¢ Chapter 7, “Finding and Fixing Errors” describes a tool you can use to
diagnose program logic errors and exception conditions.

¢ Chapter 8, “Reading Data from and Writing to Screens” on page 8-1 shows
how to read and write data from display terminals. The chapter defines roll
screens and static screens and describes how to write programs that interact with
the operator.

e Chapter 9, “Designing Programs” defines what a program and a task are and
describes multitasking, subroutines, program overlays, segment overlays, and
unmapped storage.

About This Book Xi

Chapter 10, “Performing Data Management from a Program” describes various

ways to do data management from a program. The chapter describes how to

allocate, delete, rename, and open a data set. In addition, the chapter shows @
how to set the logical end of file, add records to a tape data set, and find the

device type from a program.

Chapter 11, “Reading and Writing to Tape” tells how to read to and write from
a magnetic tape data set.

Chapter 12, “Communicating with Another Program (Cross-Partition Services)”
shows how programs can interact with each other, either within the same
partition or between partitions.

Chapter 13, “Communicating with Other Programs (Virtual Terminals)” shows
how one program can load another program and how the programs can interact
with each other.

Chapter 14, “Designing and Coding Sensor I/O Programs” describes digital and
analog input/output and shows how to read and write to sensor I/O devices.

Chapter 15, “Designing and Coding Graphic Programs” shows how to code the
instructions that produce graphic messages and draw curves on a display
terminal.

Chapter 16, “Controlling Spooling from a Program” describes how a program
can control printed output.

Chapter 17, “Creating, Storing, and Retrieving Program Messages” shows how
to save storage or coding time by creating messages than can be used by more
than one program.

N
Chapter 18, “Queue Processing” shows how to create queues, store data in U
queues, and retrieve data from queues.

Chapter 19, “Writing Reentrant Code” shows how to design and write EDL
programs that are reentrant.

Chapter 20, “Accessing $SYSCOM through a Program” provides sample EDL
programs that access the system common data area ($SYSCOM).

Appendix A, “Tape Labels” shows the layout of tape labels.

Appendix B, “Interrupt Processing” on page B-1 describes the interrupts that
occur when a program interacts with a terminal.

Appendix C, “Static Screens and Device Considerations” provides reference
information on defining logical screens, SIMAGE subroutines, and the
SUNPACK and $PACK subroutines.

Aids in Using This Book

This book contains the following aids to using the information it presents:

xii

SC34-0943

A table of contents that lists the major headings in the book.

In example screens where you must answer a system request, the sample
responses appear highlighted in red.

An index of the topics covered in this book. Q

C

Using the Enter and Attention Keys

This book uses the term “enter key” to mean the key that indicates that you have
completed input to a screen and want the system to process the data you keyed in.
It uses the term “attention key” to mean the key that indicates that you want to
direct keyboard input to the operating system supervisor. If your keyboard does not
have these keys, use the corresponding keys on your keyboard.

A Guide to the Library

Refer to the Library Guide and Common Index for information on the design and
structure of the Event Driven Executive library, for a bibliography of related
publications, for a glossary of terms and abbreviations, and for an index to the
entire library.

Contacting IBM about Problems

You can inform IBM of any inaccuracies or problems you find when using this book
by completing and mailing the Reader’s Comment Form provided in the back of this
book.

If you have a problem with the IBM Series/1 Event Driven Executive, refer to the
IBM Series/1 Software Service Guide, GC34-0099.

About This Book Xiii

Xiv SC34-0943

C

Getting Started

Chapter 1. Getting Started

This chapter is intended for people who have never coded an Event Driven
Language (EDL) program. It describes the steps necessary to develop and run a
simple program on the Series/1. If you are familiar with EDL and the EDX
operating system, skip this chapter and go to Chapter 2.

Specifically, this chapter shows you how to design, code, enter, compile, link edit,
and execute an EDL program. Using a simple example program, we will show you
all these steps. You may want to enter and run this program on your Series/1 to
gain hands-on experience.

All of the major steps in the development and execution of an EDL program are
covered in greater detail later in this book. The following chart describes these steps
and shows you where the material is covered:

Write the source program (Chapter 2) Write a source program that does such
things as read data, manipulate data,
and write data.

Enter the source program (Chapter 3) Enter the source program by using the
session manager to build a data set.

Compile the source program (Chapter 4) Compile your source program.

Link edit the program (Chapter 5) Produce an executable load module.

Run the program (Chapter 6) Cause your program to run or
“execute.”

Find and fix errors (Chapter 7). Use the $DEBUG utility or a task

error exit routine to help you locate
and correct any problems in your
program.

Designing a Program

The first step in the development of any program is the design of the program. You
must be able to describe what you want the program to accomplish.

Typically, a program reads some data, processes the data, and writes the results.
The sample program we have chosen does all of these things. The program requests
that an operator enter a number at the terminal. That number is added to a storage
area ten times, and the results are displayed on the terminal screen.

Here are some questions you should ask when you plan a program. We have shown
how we answered those questions in our sample program.

Chapter 1. Getting Started 1-1

Getting Started

Questions In Our Program

Where is the data coming The data is a number that
from and what form will it the operator enters at the
take? terminal.

What do you want to do The number that is entered
with the data and in what from the terminal will be
order do you want to added 10 times to a storage
process the data? area that you define.

Where do you print or The results are displayed on
record the results? the terminal screen.

In the next section, we will show you how to implement this design in an EDL
program.

Coding the Program

1-2 SC34-0943

On the next few pages, we will show you how the design of this program was
implemented. We will build the program step by step. We will not describe every
possible operand of the instructions we use. (The Language Reference fully describes
the operands for every EDL instruction.)

The instructions and statements that make up a program are called the source
program. They have the following general format:

label

operation operands

where these terms have the following meanings:

label

The name you assign an instruction or statement. You can use this
name in your program to refer to that specific instruction or statement.
In most cases, the label is optional. Labels must begin in column 1;
must begin with a letter or one of the special characters $, #, or @;
and must be 1 to 8 characters long.

operation The name of the instruction or statement you are coding. The

operation can begin in column 2 and cannot extend beyond column 71.

operands The data that is required to do an operation, or information on how

the system is to perform the operation.

To continue a line of code on the next line, place any nonblank character in column
72 and continue the next line in column 16.

Getting Started

Starting the Program ‘
c\\ Any EDL program begins with the PROGRAM statement.

A PROGRAM statement defines the address or label of the first instruction to be
executed. The PROGRAM statement also defines the name of the primary task of
the program. (EDL programs may consist of multiple tasks. In our sample
program, the primary task is the only task of the program.)

Our program statement looks like this:
ADD10 PROGRAM STPGM

ADDIO is the task name of the primary (and only) task.

STPGM is the label of the first instruction to be executed.

Defining Your Data ,
The program needs two data areas: one to hold the input and one to hold the
results of the process. Use the DATA statement to reserve storage for data.

ADD10 PROGRAM STPGM

L]

[]

[]
COUNT DATA F'o'
SUM DATA F'o'

™Y, These DATA statements indicate that the reserved areas are type F (for fullword)
(Jf\' and that the initial value of the areas is 0. In the Series/1, a “fullword” contains two
bytes (16 bits).

Since DATA statements do not cause any action to occur, place them either before
the first instruction or after the last instruction.

Retrieving Data
The next step is to get input data into the program. In this program, we use a
GETVALUE instruction to get the data.

ADD10 PROGRAM STPGM
STPGM GETVALUE COUNT,'ENTER NUMBER: '

COUNT DATA

F] 0 I
SUM DATA F'o'
When the GETVALUE instruction executes, the message “ENTER NUMBER: ”
appears on the terminal screen. When someone enters a number and presses the

ENTER key, the system stores the number in the data area called COUNT.

Chapter 1. Getting Started 1-3

Getting Started

Processing the Data
This program is going to add the number that is entered from the terminal to the
contents of storage area SUM. You need an ADD instruction to perform the @
addition. The number is going to be added to COUNT ten times. So the ADD
instruction is placed inside a DO loop, which consists of a DO instruction and an
ENDDO instruction. The DO instruction indicates how many times the instructions
(in this case, an ADD instruction) are to be executed.

ADD1G PROGRAM STPGM
STPGM GETVALUE COUNT,'ENTER NUMBER: '
LooOP DO 10, TIMES
ADD SUM, COUNT

ENDDO

[]

L]

[]
COUNT DATA F'o
SUM DATA F'o

Obtaining the Results
At this point, the program includes instructions to read the data and process the
data. To print the results, you use two instructions: PRINTEXT and PRINTNUM.

ADD10 PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER:
LOOP DO 10, TIMES
ADD SUM,COUNT
ENDDO

PRINTEXT '@RESULT='
PRINTNUM SUM

o

COUNT DATA F'o'
SUM DATA F'o

The PRINTEXT instruction will print “RESULT =" on the terminal screen. The
“@” symbol will cause “RESULT =" to be printed on a new line on the terminal
screen. The PRINTNUM instruction will print the results of the process, which are
stored in the SUM data area.

1-4 SC34-0943

Getting Started

Ending the Program
Y The program needs three more statements to be complete. The PROGSTOP
C‘ statement stops the program execution and releases the storage allocated to the
program. You code PROGSTOP after the last executable instruction in the
program. The ENDPROG statement ends the program. The END statement
signals the compiler that the program has no more source statements.

All EDL programs must end with the ENDPROG and END statements.

The completed program looks like this:

ADD10 PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER: '
Loop DO 10, TIMES
ADD SUM, COUNT
ENDDO

PRINTEXT '@RESULT='
PRINTNUM SUM

PROGSTOP
COUNT DATA F'o'
SUM DATA F'o'
ENDPROG
END

The next step is to enter your program into a data set. We will show you how to

use the session manager to enter the source program. The session manager provides

a series of menus to help you enter a source program. This section shows you how

to enter our sample program. For more information on entering a source program,
C} see Chapter 3, “Entering a Source Program.”

Chapter 1. Getting Started 1-5

Getting Started

Entering the Source Program into a Data Set @

All the steps for entering the source program into a data set are listed below. If you
want to actually enter the sample source program, follow the numbered steps.

To load the session manager on your terminal:
1 Press the attention key.
2 Type SL $SMMAIN.

3 Press the enter key.

When you press the enter key, the logon screen appears:

To begin a session:

1 Type a unique user identification (called a user ID). The user id can be | to 4 \& I
characters long. This chapter uses ABCD as the user ID. -

2 Press the enter key.

1-6 SC34-0943

Getting Started

The Primary Option Menu appears on the screen. To enter a source program into a
data set, select option 1 (TEXT EDITING).

1 Type 1 on the SELECT OPTION line.

2 Press the enter key.

10

The $FSEDIT PRIMARY OPTION MENU appears on the screen. Use option 2
(EDIT) to create a new data set.

1 Type 2 on the OPTION line.

2 Press the enter key.

Chapter 1. Getting Started 1-7

Getting Started

Your data set then appears. This is where you will type the source program.

To enter the source program:
1 Type the first line of code.
Press the enter key to cause a blank entry line to appear.
Type the next line of code.
Press the enter key.

Repeat steps 3 and 4 until you have entered the entire source program.

A U AN W N

When you finish entering the source program, move the cursor to the
COMMAND INPUT line and type M (for “menu”).

O

7 Press the enter key.

C

1-8 SC34-0943

Getting Started

The SFSEDIT PRIMARY OPTION MENU appears again.
The next step is to write the data set to a volume. When you write the data set, you
copy the data set from the temporary data set that SFSEDIT has been using. The
data set name we have chosen is ADD10 and the volume name is EDX002. Select
option 4 (WRITE) to write the data set to a volume.

1 Type 4 on the OPTION line.

2 Type ADDI10 on the DATASET NAME line.

3 Type EDX002 on the VOLUME NAME line.

4 Press the enter key.

A prompt appears on the bottom of the screen. Type Y and press the enter key.

Chapter 1. Getting Started 1-9

Getting Started

1-10 sC34-0943

A message appears on the bottom of the screen. This message means that your
source program is 12 lines long and has been written to volume EDX002.

Now that you have entered and written the source program to a data set, return to
the Session Manager Primary Option Menu.

1 Type 8 on the OPTION line.

2 Press the enter key.

Getting Started

O Compiling Your Source Program

Now that you have coded and entered the source program into a data set, the next
step is to compile it into object code. Object code is code that the computer can
read. To compile the source program, use SEDXASM, the EDX compiler. This
section shows you how to compile the sample program. For more information on
compiling a source program, see Chapter 4, “Compiling a Program.”

Before you actually begin to compile, you must allocate a data set to hold the output
(the object code). Start by selecting option 3 (DATA MANAGEMENT).

I Type 3 on the SELECT OPTION line.

2 Press the enter key.

Chapter 1. Getting Started 1-11

Getting Started

The Data Management Option Menu appears on the screen. To allocate your object
code data set, select option 1 ($DISKUT1). G

1 Type 1 on the SELECT OPTION line.

2 Press the enter key.

1-12 SC34-0943

Getting Started

The $DISKUTT utility prompts you for the command and for information about the
" data set you want to create. Use the AL (allocate) command. Call the data set that
0 will hold the object code ADDOBJ. Allocate a 25-record data set and use the
default data type.

1 Type AL on the COMMAND (?) line.

2 Press the enter key.

3 Type ADDOBJ on the MEMBER NAME line.

4 Press the enter key.

5 Type 25 next to the HOW MANY RECORDS? prompt.
6 Press the enter key.

7 Type Y next to the DEFAULT TYPE = DATA - OK (Y/N)? prompt.

8 Press the enter key.

A message appears telling you that the ADDOBJ data set has been created. Enter
the EN (end) command to return to the Data Management Option Menu screen.

1 Type EN next to the COMMAND (?) prompt.

2 Press the enter key.

The next step is to return to the Session Manager Primary Option Menu to compile
your program. To return to that menu, press the PF3 key.

Chapter 1. Getting Started 1-13

Getting Started

From the Session Manager Primary Option Menu, seiect option 2 (PROGRAM
PREPARATION) to prepare to compile your program. @

1 Type 2 on the SELECT OPTION line.

2 Press the enter key.

The Program Preparation Option Menu appears on your screen. To compile the
source program, select option 1 (SEDXASM COMPILER). AN

1 Type 1 on the SELECT OPTION line.

2 Press the enter key.

1-14 sC34-0943

Getting Started

The SEDXASM Parameter Input Menu appears on your screen. You must enter the
name of your source program (data set ADD10 on volume EDX002) and your
object output (data set ADDOBJ on volume EDX002).

1 Type ADD10,EDX002 next to SOURCE INPUT (NAME,VOLUME).

2 Type ADDOBJ,EDX002 next to OBJECT OUTPUT (NAME,VOLUME).

3 Press the enter key.

* ADD10, EDX002

DDOBJ,EDX002

SEDXASM then compiles the source program into object code and puts the object
code into data set ADDOBJ. This data set is used as input in the next step,
“Creating a Load Module.”

The information listed under DEFAULT PARAMETERS means that the compiler
will print a listing of the program on the system printer, $SYSPRTR.

Chapter 1. Getting Started 1-15

Getting Started

As the compilation runs, the following appears on your screen.

If the screen fills up before displaying PRESS ENTER KEY TO RETURN, press
the enter key.

A completion code of —1 means that your program compiled successfully. Any
completion code other than — 1 means the program did not compile successfully.

Checking Your Compiler Listing

1-16 SC34-0943

The compiler prints a listing that consists of statistics, source code statements and N
object code, undefined or external symbols, and a completion code.

If you do not receive a completion code of — 1, check your listing for errors, fix
them in your source data set, and compile the program again. For information on
fixing compiler errors, see “Checking Your Compiler Listing and Correcting Errors.”
If you receive a completion code of —1:

1 Press the enter key to return to the SEDXASM Parameter Input Menu.

2 Press the PF3 key to return to the Program Preparation Option Menu.

Getting Started

Creating a Load Module

The last step is creating a load module. A load module is a program that is ready to
run or “execute” on the system. In this example, we use the linkage editor,
SEDXLINK, to create the load module. SEDXLINK LINKAGE EDITOR is
option 7 on the Program Preparation Option Menu.

1 Type 7 on the SELECT OPTION line.

2 Press the enter key.

Chapter 1. Getting Started 1-17

Getting Started

The SEDXLINK Parameter Input Menu appears on your screen. Enter an asterisk
(*) next to EXECUTION PARM to indicate that you want the system to prompt
you for linkage editor statements.

1 Type an asterisk on the EXECUTION PARM line.

2 Press the enter key.

Next, enter an INCLUDE statement to indicate which object module to use.
(Remempber, the object module is ADDOBJ.) Then, enter a LINK statement to
indicate the name of the output data set. When you enter the name of this data set
(in this case, ADDPGM), the system allocates the data set.

1-18 SC34-0943

Cﬁ

Getting Started

1 Type INCLUDE ADDOBJ,EDX002 next to STMT (7).

2 Press the enter key.

1 Type LINK ADDPGM,EDX002 next to STMT (7).

2 Press the enter key.

A completion code of —1 means that the link edit completed successfully. If you do
not receive a completion code of — 1, check your listing for errors, fix them, and link
edit the program again. After the system indicates that the link edit is successful,

return to the Primary Option Menu to execute your program by doing the following.

1 Type EN next to STMT ().
2 Press the enter key.

3 Press the PF3 key to return to the Program Preparation Option Menu.

4 Press the PF3 key again.

Chapter 1. Getting Started 1-19

Getting Started

Running Your Program @

To run (or execute) your program, select option 6 (EXEC PROGRAM/UTILITY).

1 Type 6 on the SELECT OPTION line.

2 Press the enter key.

The Execute Program/Utility menu appears. You must enter the program name @
(ADDPGM) and volume (EDX002). Then, type asterisks (*) next to the data sets
not used.

1-20 sC34-0943

Getting Started
1 Type ADDPGM,EDX002 next to PROGRAM/UTILITY
(NAME,VOLUME).

2 Type an asterisk in the DATA SET 1, DATA SET 2, and DATA SET 3
fields.

3 Press the enter key.

DDPGM, EDX002

The following text appears on the terminal:

Chapter 1. Getting Started 1-21

Getting Started

The program displays ENTER NUMBER on the screen and waits for you to enter a
number. (Remember that “ENTER NUMBER” was coded on the GETVALUE
instruction.)

1 Type 5 next to ENTER NUMBER.

2 Press the enter key.

The program displays the results of the processing. The program:
1 Stored the number you entered (5) in an area called COUNT.
2 Added the value of COUNT to the value of SUM, which was initialized to 0.
3 Added the two values 10 times.
4 Displayed the result (RESULT= 50) on the terminal screen.

The PRINTEXT instruction displayed RESULT=. The PRINTNUM instruction
displayed the value of SUM (50).

1-22 sC34-0943

Writing a Source Program

O Chapter 2. Writing a Source Program

This chapter tells how to use the EDL instructions to handle the basic functions of
the language: reading and writing data, data conversions, and data manipulation
(such as moving, adding, and subtracting).

This chapter discusses the following topics:
¢ Beginning the program
* Reserving storage
* Reading data into a data arca
* Moving data
¢ Converting data
* Manipulating data
¢ Writing data from a data area
¢ Controlling program logic
¢ Ending the program.

All the instructions are discussed in detail in the Language Reference. This chapter
discusses only a subset of the the instructions and lists them by function.

Beginning the Program

The first statement in every EDL program must be a PROGRAM statement. The
PROGRAM statement defines several things about the program to the Event Driven
Executive, only two of which are discussed in this section.

Defining the Primary Task
Two important functions of the PROGRAM statement are to define the “primary
task” and provide the label of the first “executable instruction.”

The primary task is the first task the system starts when you load the program.
An executable instruction causes some action to take place. For example,
instructions that read, write, move, or perform arithmetic operations are executable

instructions.

The following example shows a program with task name TASK1. Its first executable
instruction is at location START1.

TASK1 PROGRAM START1

Chapter 2. Writing a Source Program 2-1

Writing a Source Program

Identifying Data Sets to be Used in Your Program

Another important function of the PROGRAM statement is to identify the data sets
that a program will use.

The DS= keyword operand of the PROGRAM statement allows you to identify up
to nine data sets that the program can use. A keyword operand usually contains an
equal (=) sign. The “keyword” to the left of the equal sign identifies what
information you are supplying. The keyword operand must appear, of course,
exactly as the system expects it. For example, if you code the DS= operand as

SD =, the system would not recognize it. You can code keyword operands in any
order.

When you specify data set names in the PROGRAM statement, the system opens
the data sets when you load the program. When the program executes, all data sets
must already exist. One way to allocate data sets is with the SDISKUT]1 utility. If a
program uses one data set and the data set resides on the IPL volume, the
PROGRAM statement might look like this:

UPDATE PROGRAM START1,DS=TRANS
This program uses data set TRANS on the IPL volume.

If a program uses more than one data set and the data sets all reside on the IPL
volume, the DS= operand would contain one set of parentheses as follows:

UPDATE PROGRAM START1,DS=(TRANS,MASTIN,MASTOUT)

The program uses data sets TRANS, MASTIN, and MASTOUT on the IPL

volume. ﬂr\

If the data resides on a volume other than the IPL volume, two sets of parentheses
are required. For example:

TASK1 ~ PROGRAM START1,DS=((DATAL,MYVOL),MASTER)

The program uses data set DATA1 on volume MYVOL and data set MASTER on
the IPL volume. ’

Reserving Storage

2-2 SC34-0943

This section shows how to reserve storage for arithmetic values or character strings.

EDL allows you to define arithmetic values in two ways: as “integer” data or as
“floating-point” data. Integer data consists of positive and negative numbers with
no decimal points. Floating-point data consists of positive and negative numbers
that can have decimal points.

For example, you can define the number 7 as either a floating-point number or an
integer. To define the number 7.5, however, you must define it as a floating-point
number.

Writing a Source Program

Reserving Storage for Integers

To reserve storage for an integer, you can use either the DATA or DC statement.
The following DATA statement, for example, defines a storage area for a 2-byte
signed integer.

SUM DATA F'0'

SUM is the name or label of the storage area. This type of storage area is often
called a variable. The F defines a fullword (two bytes) and '0' assigns an initial
value of zero to the area.

To set up more than one 1-word area in one statement, you can use the duplication
factor. The statement:

FITABLE DATA 15F'0!

reserves fifteen 1-word areas and assigns a zero to each.

You can use the areas called SUM and FITABLE in data manipulation instructions
such as ADD and SUBTRACT.

Assigning an Initial Value

To assign an initial value, enclose the value in apostrophes as follows:
FIM DATA F'5280'

The storage area called FIM will contain the decimal value 5280 throughout the
execution of your program, unless you change it.

You can also assign a hexadecimal value to a storage area. For example:
XFIM DATA X'l4AQ'

XFIM contains the hexadecimal value '14A0"' (decimal 5280).

Defining a Halfword or Doubleword Data Area

You can also define a halfword (1-byte) or doubleword (4-byte) data area. The
following statements reserve storage for halfword integers:

MSIX DATA H'-6'
SHVAR DATA H'O'

MSIX contains the value —6.

To reserve a doubleword of storage, define a data area as follows:

QTRMIL DATA D'250000'
LNGVAR DATA D'6'

QTRMIL occupies a doubleword of storage and contains an initial value 250 000
(decimal).

Chapter 2. Writing a Source Program 2-3

Writing a Source Program

Defining Floating-Point Values
To define floating-point values, you can use either the DATA or DC statement.
How large the number is determines how you define the storage. If the number falls O
between 10-76 and 107 and contains fewer than seven significant digits, you can
define a single-precision floating-point data area. Each single-precision
floating-point number requires 4 bytes of storage.

The following DATA statement defines a storage area for a single-precision
floating-point number.

NETPAY DATA E'000.00'

NETPAY is the name of the storage area. The E defines a floating-point data area
and assigns it an initial value of zero.

To set up more than one floating-point data area, you can use the duplication factor.
The statement

NPTAB DATA 12E'000.00'

reserves storage for twelve 4-byte floating-point data areas and assigns an initial
value of zero to each.

Assigning an Initial Value
To assign an initial value to a floating point data area, enclose the value in
apostrophes as follows:

PI DATA E'3.14159'
PI contains the decimal value 3.14159. @

You can also assign an initial value to a floating-point data area in exponent (E)
notation as follows:

PI DATA E'.314159E1'
PI2 DATA E'314.159E-2'

Defining an Extended-Precision Data Area
If a floating-point number requires more than 6 and fewer than 15 significant digits,
you must use extended-precision floating point. Each extended-precision
floating-point number requires 8 bytes of storage.

The following DATA statements define storage areas for extended-precision
floating-point numbers:

MSMNT DATA L'0.000'
MYCELLS DATA L'15063842E12'

Defining Character Strings
To define character strings, you can use either the DATA or DC statement. The
following DATA statement defines a storage area for a 6-byte character string:

NAME DATA C'TILTON'

NAME is the name or label of the storage area. The length of the storage area is
the number of characters inside the apostrophes. Q

2-4 SC34-0943

O

Writing a Source Program

If you want an area containing blanks, you can use the duplication factor:
BLNKS DATA 10C' '

BLNKS contains ten blanks.

To set up an area that contains a character string followed by blanks, define the
storage area as follows:

DOLCON DATA CL4'S$$'

DOLCON contains two dollar signs ($3) followed by two blanks.

Assigning a Value to a Symbol

The EQU statement assigns a value to a symbol. You can use the symbol (the label
on the EQU statement) as an operand in other instructions wherever symbols are
allowed. You must define a label before you use that label as an operand in the
EQU statement.

For example, you cannot code:
ABLE EQU BAKER

unless you have defined BAKER previously.

The following example assigns the word value X'0002' to A.
A EQU 2
If you refer to the equated value by its label, the system assumes you are referring to
a storage location. For example, if you use A in the following instruction:
MOVE B,A

the system moves the word at address 0002 to B.

If, however, you want to use the equated value as the number 2, you must precede
the label with a plus sign (+) as follows:

MOVE B,+A
This instruction moves 2 to B.

The next example assigns the word value of A to B.
B EQU A

The following example shows how you can use the equated symbols in a program.
An explanation of the numbered items follows the example.

1 MOVE C,A
2 MOVE C,+A
3 MOVE C,+B
4 MOVE C,+A, (1,BYTE)

3 A EQU 2
3 B EQU A
C DATA F

Chapter 2. Writing a Source Program 2-5

Writing a Source Program

Move the contents of address 0002 to C.

Move X'0002' to C. @
Move X'0002' to C.

ﬂ Move the leftmost byte of the word value X'0002' (in this case, X'00') to C.

Define A with a word value of X'0002".

ﬂ Assign B the value of A (X'0002').

Defining an Input/Output Area

To define an area to read into or to write from, you must know where the data is
coming from or where it is going.

If you are reading or writing data from tape, disk, or diskette, you can define an
input/output area with a BUFFER statement, a DATA statement, or a DC
statement.

If you are reading or writing data from a terminal, you can define an input/output
area with a TEXT statement, a DATA statement, or a DC statement.

If you use either a DATA statement or a DC statement, however, you must precede

the storage area with a word (2 bytes) containing the length and count. (Refer to

the Language Reference for information on how the system constructs a storage area

defined by a TEXT statement.) (“(\\
\ Wl

Defining a BUFFER Statement

A BUFFER statement defines a data storage area. When you read or write records
to disk, diskette, or tape, you can use the BUFFER statement to define the buffer.
To define a 256-byte buffer, use the BUFFER statement as follows:

RDAREA BUFFER 256,BYTES
RDAREA is the name of the buffer.

A buffer contains an index, the length of the storage area, and the data storage area.
The index and the length occupy one word (2 bytes) each. Therefore, a 256-byte
buffer actually occupies 260 bytes of storage. For more information on the structure
of a buffer, refer to the Language Reference.

Defining a TEXT Statement

2-6 SC34-0943

Use the TEXT statement to define a message or storage area. Use the TEXT
statement in conjunction with the PRINTEXT or READTEXT instructions. The
PRINTEXT instruction prints the message or storage area on a terminal. The
READTEXT instruction reads a character string from a terminal into the storage
area defined by the TEXT statement.

When you code a TEXT statement, the system creates an area that contains the

length (the size of the storage area), the count (the actual number of characters in

the storage area), and the message or storage area. The length and count occupy

one byte each. Therefore, a 24-character message, for example, requires 26 bytes of Q
storage. The maximum length of a TEXT statement is 254 bytes.

@

Writing a Source Program

The following example creates the message ENTER YOUR NAME:
LABELZ PRINTEXT MSG1

MSG1 TEXT "ENTER YOUR NAME:'

The PRINTEXT instruction that references MSG1, the name of the TEXT
statement, causes the message to appear on the terminal.

To define a storage area for data that you will read from a terminal, code the
following:

ADDRESS TEXT LENGTH=30

A READTEXT instruction can read data from a terminal into the storage area by
referencing ADDRESS, the name of the TEXT statement. If the response entered
from the terminal is greater than 30 characters, the system truncates the response
after reading 30 bytes.

Reading Data into a Data Area

When you read data into a data area, the instruction you use depends on the kind of
data and where it is coming from.

If the data resides on disk, diskette, or tape, use the READ instruction. If the data
is coming from a terminal, use either the READTEXT or GETVALUE instruction.
If the data is alphanumeric, use READTEXT. If the data consists of one
floating-point number or one or more integers, use GETVALUE.

Reading Data from Disk or Diskette

You can read disk or diskette data sets either sequentially or directly. You always
read a multiple of 256 bytes. An “EDX record“ contains 256 bytes.

The READ instruction reads a record from one of the data sets you specify in the
PROGRAM statement. The following READ instruction reads a record
sequentially from the third data set defined on the PROGRAM statement.

READ DS3,DISKBUFF,1,0,ERROR=RDERROR,END=NOTFOUND

DISKBUFF BUFFER 256,BYTES

The system reads one record (indicated by 1 in the third operand) sequentially
(indicated by 0 in the fourth operand) into DISKBUFF. If no more records exist on
the data set, the program branches to NOTFOUND. If an I/O error occurs, the
program branches to RDERROR. Otherwise, the system places the data in the
256-byte buffer DISKBUFF.

Chapter 2. Writing a Source Program 2-7

Writing a Source Program

To read a data set directly, code the fourth operand with an integer greater than

zero as follows:
READ DS2,BUFR,1,52,ERROR=RDERR,END=ALLOVER “ P

BUFR BUFFER 512,BYTES

The system reads the 52nd record (indicated by 52 in the fourth operand) into
BUFR. If the data set does not contain 52 records, the program branches to
ALLOVER. If an I/O error occurs, the program branches to RDERR. Otherwise,
the system places one record (indicated by 1 in the third operand) into the 512-byte
buffer BUFR.

Reading Data from Tape

You can read tape data sets sequentially only. A tape READ retrieves a record
from 18 to 32767 bytes long.

The following READ instruction reads a record from a tape.
READ DS1,BUFF,1,327,END=END1,ERROR=ERR,WAIT=YES

BUFF BUFFER 327,BYTES

The system reads one record (indicated by 1 in the third operand). The size of the

record is 327 bytes (indicated by 327 in the fourth operand). If no more records (W(\
exist on the data set, control transfers to END1. If an error occurs, control transfers \ W
to ERR. The system waits for the operation to complete before continuing

(WAIT=YES). The buffer BUFF is 327 bytes long.

The following READ instruction reads 2 records into buffer BUFF2.
READ DS1,BUFF2,2,327 ,END=END1,ERROR=ERR,WAIT=YES

BUFF2 BUFFER 654,BYTES

The system reads two records (indicated by 2 in the third operand). The size of each
record is 327 bytes (indicated by 327 in the fourth operand). If no more records
exists on the data set, control transfers to ENDI1. If an error occurs, control
transfers to ERR. The system waits for the operation to complete before continuing
(WAIT=YES). The buffer BUFF2 is 654 bytes long.

Reading from a Terminal

2-8 SC34-0943

To read data that an operator enters on a terminal, you can use either the
READTEXT or GETVALUE instruction. The READTEXT instruction allows you
to read alphanumeric data (alphabetic characters, numbers, and special characters).
With the GETVALUE instruction, you can read numbers (both integer and
floating-point) only.

C

Writing a Source Program

Reading Alphanumeric Data

To read an alphanumeric data item into a storage area, use the READTEXT
instruction as follows:

READTEXT COUNTY,'ENTER YOUR COUNTY: ',SKIP=1,MODE=LINE

COUNTY TEXT LENGTH=20

The instruction displays the prompt ENTER YOUR COUNTY: and the system
waits for a response. When the operator enters a name and presses the enter key,
the system stores the text string in an area called COUNTY.

The operand SKIP =1 causes the system to skip one line before displaying the
prompt. The operand MODE = LINE allows blanks in the response.

For more information on reading alphanumeric data from terminals, see
Chapter 8, “Reading Data from and Writing to Screens.”

Reading Numeric Data

The GETVALUE instruction allows you to read either a single floating-point value
or more than one integer from a terminal. The following instruction reads a
floating-point number:

GETVALUE BASAL,'ENTER YOUR BASE SALARY: ', C
TYPE=F,FORMAT=(6,2,F)

[]

]

[)

BASAL DATA E'0.00'

The instruction prompts the operator, waits for a response, reads the response, and
stores the number in BASAL. You must have defined BASAL as a floating-point

variable. The operand TYPE=F means that the number will be a single-precision
floating-point number.

The operand FORMAT =(6,2,F) says that the number will occupy six positions on
the screen (including the decimal point), that the number will contain two digits to
the right of the decimal point, and that the number will be an “F-type” number such
as 325.78.

To read more than one integer, code a third operand on the instruction as follows:
GETVALUE HEIGHTS,'ENTER FIVE HEIGHTS (IN INCHES): ',5

The instruction assumes that you have defined HEIGHTS as follows:
HEIGHTS DATA 5F'0!

Chapter 2. Writing a Source Program 2-9

Writing a Source Program

Moving Data

2-10 SC34-0943

You can move data from one place in storage to another with the MOVE @
instruction. Unless you specify otherwise, the system moves one word (two bytes).
For example, the instruction

MOVE OLDDATA,NEWDATA

[]

[]

L]
OLDDATA DATA F'0'
NEWDATA DATA F'0'

moves the word at NEWDATA to OLDDATA. Note that whatever OLDDATA
contained before the instruction was executed has been overlaid by the data in
NEWDATA.

To move more than one word, you must code a third operand. For example, the
following instruction moves 12 words from NEWNAME to OLDNAME:

MOVE OLDNAME,NEWNAME,12

.

L

.
OLDNAME DATA F'0O'
NEWNAME DATA F'0’

To move bytes, code the third operand as follows:
MOVE OLDADDR,NEWADDR, (15,BYTE)

®

(]

L
OLDADDR TEXT LENGTH=15
NEWADDR TEXT LENGTH=15

This instruction moves the 15 bytes at NEWADDR to OLDADDR. To move
doublewords, code the third operand as follows:

MOVE OLDDESC,NEWDESC, (10,DWORD) .

[)

[)

L
OLDDESC DATA 10D'0!
NEWDESC DATA 106D'0'

This instruction moves the 10 doublewords at NEWDESC to OLDDESC. To move
floating-point values, you must specify FLOAT (for single-precision) or DFLOAT
(for extended-precision).

MOVE TEMPS,MSMNTS, (4,FLOAT)

°

[

L]
TEMPS DATA 4E'0.0'
MSMNTS DATA 4E'0.0'

The instruction moves the four single-precision floating-point values at MSMNTS to
TEMPS. N

0

Writing a Source Program

Converting Data

Converting to an

EDL allows you to do two types of conversion, from binary to an EBCDIC
character string and from an EBCDIC character string to binary. The CONVTB
instruction converts from binary to an EBCDIC character string, while the
CONVTD instruction converts from an EBCDIC character string to binary.

EBCDIC Character String

If 2 number has been stored as a binary number, you must convert it to an EBCDIC
character string if, for example, you want to display the number with the
PRINTEXT instruction.

A binary number is any variable you have defined as single-precision integer,
double-precision integer, single-precision floating point, extended-precision floating

point, or hexadecimal.

You must convert any of the following data items before you can display them:

NUM1 DATA F'0!
NUM2 DATA D'0!
PI DATA E'0.0'
FINMEAS DATA L'0.0°
XTRAS DATA X'0'

To convert a single-precision integer to an EBCDIC character string, code the
CONVTB instruction as follows:

CONVTB TEXT1,NUM1,PREC=S,FORMAT=(5,0,I)

[]

[

[]
TEXT1 TEXT LENGTH=5
NUM1 DATA Fo'

The instruction converts the single-precision integer (indicated by PREC=S) in
NUM1 and stores the result in TEXT1. The FORMAT operand says that you want
the converted output to be 5 digits long, contain 0 digits to the right of the decimal
point, and be an integer (I).

To convert a double-precision integer, code the CONVTB instruction as follows:
CONVTB TEXT2,NUM2,PREC=D,FORMAT=(8,0,1)
L]

L]

TEXTZ2 TEXT LENGTH=8
NUMZ DATA Do’

The instruction converts the double-precision integer (indicated by PREC=D) in
NUM2 and stores the result of the conversion in TEXT2. The FORMAT operand
says that you want the converted output to be 8 digits long, contain 0 digits to the
right of the decimal point, and be an integer (I).

Chapter 2. Writing a Source Program 2-11

Writing a Source Program

Converting to Binary CL\

2-12 SC34-0943

To convert a single-precision floating-point variable:
CONVTB TEXT3,PI,PREC=F,FORMAT=(15,4,F) ®)

L]

[4

[]
TEXT3 TEXT LENGTH=16
PI DATA £'0.0000'

The instruction converts the single-precision floating-point variable (indicated by
PREC=F) in PI and stores the result of the conversion in TEXT3. The FORMAT
operand says that you want the converted output to be 15 digits long, contain 4
digits to the right of the decimal point, and be a floating-point value (F).

To convert an extended-precision floating-point variable:
CONVTB TEXT4,0P,PREC=L,FORMAT=(17,3,E)

L]

[]

[]
TEXT4 TEXT LENGTH=24
opP DATA L

The instruction converts the extended-precision floating-point variable (indicated by
PREC=L) in OP and puts the result of the conversion in TEXT4. The FORMAT
operand says that you want the converted output to be 17 digits long, contain 3
digits to the right of the decimal point, and be expressed in exponent notation (E).

If you read a number with the READTEXT instruction, you must convert it to
binary before you can add, subtract, multiply, or divide.

The CONVTD instruction converts a character string to a binary number. You can
convert a character string that contains a number to a single-precision integer, a
double-precision integer, single-precision floating point, or extended-precision
floating point.

To convert a single-precision integer to binary:
CONVTD BINUML,NUM1,PREC=S,FORMAT=(5,0,1)

L]

L]

L]
BINUM1 DATA F'o
NUML TEXT LENGTH=5

The instruction converts the EBCDIC character string in NUMI and stores the
result in BINUMI, a single-precision integer variable (indicated by PREC=S).

The FORMAT operand says that the data to be converted is 5 digits long, contains
0 digits to the right of the decimal point, and is an integer ().

O

Writing a Source Program

To convert a a number that is greater than 32767, you must convert it to a
double-precision integer as follows:

CONVTD BINUM2,NUM2,PREC=D,FORMAT=(9,0,1)

[]

L
BINUMZ DATA D'oe’
NUM2 TEXT LENGTH=9

The instruction converts the EBCDIC character string in NUM2 and puts the result
in BINUM2, a double-precision integer variable (indicated by PREC=D).

The FORMAT operand says that the data to be converted is 9 digits long, contains
0 digits to the right of the decimal point, and is an integer().

To convert to a single-precision floating point number, code the instruction as
follows:

CONVTD AVTEMP,TEMP,PREC=F,FORMAT=(8,2,F)

[]

L]

L]
AVTEMP DATA E'0.0'
TEMP TEXT LENGTH=9

The instruction converts the EBCDIC character string in TEMP and stores the result
in AVTEMP, a single-precision floating-point variable (indicated by PREC=F).

The FORMAT operand says that the data to be converted is 8 digits long, contains
2 digits to the right of the decimal point, and is a floating-point number (F).

To convert to an extended-precision floating point number, code the instruction as
follows:

CONVTD AVCOST,COST,PREC=L,FORMAT=(15,3,E)

L]

L]

AVCOST DATA L'0.00"
cosT TEXT LENGTH=20

The instruction converts the EBCDIC character string in COST and stores the result
in AVCOST, an extended-precision floating-point variable (indicated by PREC=L).

The FORMAT operand says that the data to be converted is 15 digits long, contains
3 digits to the right of the decimal point, and is expressed in exponent notation (E).

Chapter 2. Writing a Source Program 2-13

Writing a Source Program

Converting from Floating Point to Integer
If you want to manipulate data, both operands in the operation must be either
floating point or integer. @

To convert a single-precision floating-point number to integer, code the FPCONV
instruction as follows:

FPCONV INTNUM, FPNUM, PREC=SF

[]

[)

]
INTNUM DATA F'o'
FPNUM DATA E'0.0

The instruction converts the single-precision floating-point number in FPNUM and
stores the result in INTNUM, a single-precision integer variable. The PREC
operand indicates that INTNUM is a single-precision integer (S) and that FPNUM
is a single-precision floating-point number (F).

To convert an extended-precision floating-point number to double-precision integer,
code the FPCONY instruction as follows:

FPCONV INTDBL,FPEXT,PREC=DL

[]

[]

[]
INTDBL DATA D'e’
FPEXT DATA L'e.0'

The instruction converts the extended-precision floating-point number in FPEXT @
and puts the result in INTDBL, a double-precision integer variable. The PREC

operand indicates that INTDBL is a double-precision integer (D) and that FPEXT is

an extended-precision floating-point number (L).

Note: When you convert from floating point to integer, remember that the system
truncates all data to the right of the decimal point.

Converting from Integer to Floating Point

To convert a single-precision integer to floating-point, code the FPCONY instruction
as follows:

FPCONV ~ FPNUM, INTNUM, PREC=FS

[]

L

L]
INTNUM DATA F'o'
FPNUM DATA E'0.0

The instruction converts the single-precision integer INTNUM and stores the result
in FPNUM, a single-precision floating-point variable. The first letter in the PREC
operand (F) indicates that FPNUM is a single-precision floating-point variable. The
second letter (S) indicates that INTNUM is a single-precision integer. -

2-14 SC34-0943

Writing a Source Program

To convert a double-precision integer to floating-point:
FPCONV FPEXT,INTDBL,PREC=LD

*

[]

L]
INTDBL DATA D'o’
FPEXT DATA L'0.0'

The instruction converts the double-precision integer INTDBL and stores the result
in FPEXT, an extended-precision floating-point variable. The first letter in the
PREC operand (L) indicates that FPEXT is an extended-precision floating-point
variable. The second letter (D) indicates that INTDBL is a double-precision integer.

Checking for Conversion Errors

Each time you execute an instruction that converts data, the system expects the data
to be numeric. If the conversion is successful, the value —1 appears in the first word
of the task control block (TCB) of the program or task issuing the instruction. (The
label of the TCB is the label of your program or task.) If you try to convert a
character other than a number, a conversion error occurs and the value —1 is not
stored as the return code.

If, for example, a program prompts an operator for a number and he or she enters a
letter, the system places a return code in the task code word indicating a conversion

error. Your program can check the return code for a conversion error and print an

error message. Notice that you must test the return code before executing any other
instruction because the system may overlay the task code word with the return code

of the next instruction.

The following program shows how to check for a conversion error:

BEGIN PROGRAM START

CONVTD BINUM1,NUMI,PREC=S,FORMAT=(5,0,I)

ERRTEST MOVE TASKRC,BEGIN
IF (TASKRC,NE,-1) ,GOTO,CHECK
ENDIF

[]
[]
[]
CHECK PRINTEXT 'CONVERSION ERROR',SKIP=1
PRINTNUM TASKRC
GOTO END

END PROGSTOP

TASKRC DATA F'o’
BINUM1 DATA F'o
NUM1 TEXT LENGTH=5
ENDPROG
END

The instructions at label ERRTEST compare the return code of the CONVTD
instruction with the successful return code (—1). If NUMI1 contains a nonnumeric
character, the system branches to CHECK.

Chapter 2. Writing a Source Program 2-15

Writing a Source Program

Manipulating Data @

The data manipulation instructions perform arithmetic operations on single- or
double-precision integers and single- or extended-precision floating-point numbers.
You can also manipulate two bit-strings with logical instructions such as
inclusive-OR and exclusive-OR.

Manipulating Integer Data

Adding Integers

2-16 SC34-0943

The instructions that manipulate integers add, subtract, multiply, or divide two
integers. If two numbers are floating-point numbers, you must use floating-point
instructions.

If one number is a floating-point number and the other is an integer, use the
FPCONY instruction to convert one of the numbers to match the form of the other.

The instructions have the following general form:

operation operandl,operand2
The flow of data is from operand2 to operandl.

The ADD instruction adds the data in operand? to the data in operandl and stores
the results in operandl.

The SUBTRACT instruction subtracts the data in operandl from the data in
operandl and stores the results in operandl.

The DIVIDE and MULTIPLY instructions multiply or divide the data in operandl U
by the data in operand2 and store the results in operand].
The ADD instruction adds two integers. If A and B are integers, you can add A to
B with the following instruction:
ADD B,A
The result of the addition replaces B. The value in A remains unchanged.
To add two integers without altering the first operand, use the RESULT operand as
follows:
ADD OLDSUM,SCORE,RESULT=NEWSUM
The instruction adds SCORE to OLDSUM and stores the result in NEWSUM. The
values in SCORE and OLDSUM remain unchanged.
Adding Double-Precision Integers:
Unless you specify otherwise, EDL assumes that the integers are single-precision
(1-word) integers. To add two double-precision (2-word) integers, specify the PREC
operand as follows:
ADD TQOTPOP,LOCPOP,PREC=DD
The operand PREC = DD says that both TOTPOP and LOCPOP are

double-precision integers.

Writing a Source Program

If only one of the operands is a double-precision integer, it must be the first
operand. In addition, if you specify the RESULT operand, it must be a
double-precision variable. For example:

ADD TOWN2,TOWN1,RESULT=TOTPOP,PREC=D

The operand PREC =D says that TOWN2 and TOTPOP are double-precision
integers. The absence of the second letter (D or S) on the PREC operand means
that TOWNI is a single-precision integer.

Adding Consecutive Integers:

To add more than one set of integers, you can specify the number of integers you
want to add. For example:

ADD NEWTOTS,OLDTOTS,10

The instruction adds the 1-word integer at OLDTOTS to NEWTOTS. Then the
instruction adds the word in OLDTOTS +2 to the word at NEWTOTS+2. The
instruction continues to add until it adds the word at OLDTOTS + 18 to the word at
NEWTOTS + 18. This instruction, then, adds the 10 consecutive words at
OLDTOTS to the 10 consecutive words at NEWTOTS. You can specify up to
32767 consecutive additions.

Subtracting Integers

The SUBTRACT instruction subtracts one integer from another. If QUERY and
ANSWER are integers, you can subtract ANSWER from QUERY with the
following instruction:

SUBTRACT QUERY,ANSWER

The result of the subtraction replaces QUERY. The value in ANSWER remains
unchanged.

To subtract two integers without altering the first operand, use the RESULT
operand as follows:

SUBTRACT SALES,COSTS,RESULT=PROFITS

The instruction subtracts COSTS from SALES and stores the result in PROFITS.
The values in SALES and COSTS remain unchanged.

Subtracting Double-Precision Integers:

Unless you specify otherwise, EDL assumes that the integers are single-precision
(1-word) integers. To subtract two double-precision (2-word) integers, specify the
PREC operand as follows:

SUBTRACT GROSS ,DEDUCT ,RESULT=NET, PREC=DD
The instruction subtracts DEDUCT from GROSS and stores the result in NET.

The operand PREC =DD says that GROSS, DEDUCT, and NET are all
double-precision integers. '

Chapter 2. Writing a Source Program 2-17

Writing a Source Program

Multiplying Integers

2-18 SC34-0943

If only one of the operands is a double-precision integer, it must be the first
operand. In addition, if you specify the RESULT operand, it must be a
double-precision variable. For example:

SUBTRACT ATTEND,MALES ,RESULT=FEMALES ,PREC=D

The instruction subtracts MALES from ATTEND and stores the result in
FEMALES. The operand PREC =D says that ATTEND and FEMALES are
double-precision integers. The absence of the second letter (D or S) on the PREC
operand means that MALES is a single-precision integer.

Subtracting Consecutive Integers:

To subtract more than one set of integers, you can specify the number of integers
you want to subtract. For example:

SUBTRACT NEWTOTS,OLDTOTS,6

The instruction subtracts the 1-word integer at OLDTOTS from NEWTOTS. Then
the instruction subtracts the word in OLDTOTS +2 from the word at
NEWTOTS +2. The instruction continues to subtract until it subtracts the word at
OLDTOTS + 10 from the word at NEWTOTS+10. This instruction, then, subtracts
the 6 consecutive words at OLDTOTS from the 6 consecutive words at NEWTOTS.
You can specify up to 32767 consecutive subtractions.

The MULTIPLY instruction multiplies one integer by another.

If M and N are single-precision integers, you can multiply M by N as follows:
MULTIPLY M,N

The result of the multiplication replaces M.

You can also multiply an integer by a constant. The following instruction multiplies
FEET by the constant 12:

MULTIPLY FEET,12
The result of the multiplication replaces FEET.

To multiply two integers without altering the first operand, use the RESULT
operand as follows:

MULTIPLY BOXES,WEIGHT,RESULT=TOTWGT

The instruction multiplies BOXES by WEIGHT and stores the result in TOTWGT.
The values in BOXES and WEIGHT do not change.

Multiplying Double-Precision Integers:

Unless you specify otherwise, EDL assumes that integers are single-precision
(1-word) integers. To multiply two double-precision (2-word) integers, specify the
PREC operand as follows:

MULTIPLY LENGTH,WIDTH,RESULT=TOTAREA,PREC=DD

C’)

C

Dividing Integers

Writing a Source Program

The instruction multiplies LENGTH by WIDTH and stores the result in
TOTAREA. The operand PREC=DD says that LENGTH, WIDTH, and
TOTAREA are all double-precision integers.

If only one of the operands is a double-precision integer, it must be the first
operand. In addition, if you specify the RESULT operand, it must be a
double-precision variable. For example:

MULTIPLY ATTEND,GAMES,RESULT=TOTATT,PREC=D

The instruction multiplies ATTEND by GAMES and stores the result in TOTATT.
The operand PREC =D says that ATTEND and TOTATT are double-precision
integers. The absence of the second letter (D or S) on the PREC operand means
that GAMES is a single-precision integer.

Muitiplying Consecutive Integers:

To multiply more than one set of integers, you can specify the number of integers
you want to multiply. For example:

MULTIPLY SALARIES,RATES,400

The instruction multiplies the 1-word integer at RATES by SALARIES and stores
the result in SALARIES. Then the instruction multiplies the word at RATES +2 by
the word at SALARIES +2. The instruction continues to multiply until it multiplies
the word at RATES + 798 by the word at SALARIES +798. This instruction, then,
multiplies the 400 consecutive words at RATES by the 400 consecutive words at

‘SALARIES. You can specify up to 32767 consecutive multiplications.

The DIVIDE instruction divides one integer by another. The system stores the
remainder in the first word of the task control block (TCB).

If P and Q are single-precision integers, you can divide P by Q as follows:
DIVIDE P,Q

The result of the division replaces P.

You can also divide an integer by a constant. The following instruction divides
FEET by the constant 3:

DIVIDE FEET,3
The result of the division replaces FEET.

To divide two integers without altering the first operand, use the RESULT operand
as follows:

DIVIDE TOTWGT,BOXES,RESULT=BOXWGT

The instruction divides TOTWGT by BOXES and stores the result in BOXWGT.
The values in TOTWGT and BOXES do not change.

Chapter 2. Writing a Source Program 2-19

Writing a Source Program

2-20 SC34-0943

Dividing Double-Precision Integers:

Unless you specify otherwise, EDL assumes that integers are single-precision 0)
(1-word) integers. To divide double-precision (2-word) integers, specify the PREC
operand as follows:

DIVIDE TOTSAL,NOEMPS,RESULT=AVESAL,PREC=DD

The instruction divides TOTSAL by NOEMPS and stores the result in AVESAL.
The operand PREC = DD says that TOTSAL, NOEMPS, and AVESAL are all
double-precision integers.

If only one of the operands is a double-precision integer, it must be the first
operand. In addition, if you specify the RESULT operand, it must be a
double-precision variable. For example:

DIVIDE TOTATT,GAMES,RESULT=AVEATT,PREC=D

The instruction divides TOTATT by GAMES and stores the result in AVEATT.
The operand PREC =D says that TOTATT and AVEATT are double-precision

integers. The absence of the second letter (D or S) on the PREC operand means
that GAMES is a single-precision integer.

Dividing Consecutive Integers:

To divide more than one set of integers, you can specify the number of integers you
want to divide. For example:

DIVIDE SALARIES,RATES,100

The instruction divides the 1-word integer at SALARIES by RATES. Then the @
instruction divides the word in SALARIES +2 by the word at RATES +2. The

instruction continues to divide until it divides the word at SALARIES + 198 by the

word at RATES +198. This instruction, then, divides the 100 consecutive words at

SALARIES by the 100 consecutive words at RATES. You can specify up to 32767

consecutive divisions.

Accessing the Remainder:

One way to access the remainder is to use the TCBGET instruction as in the
following example:

DIVIDE SALARIES,RATES
TCBGET REMAIN,$TCBCO

REMAIN DATA F'O'

The instruction puts the first word of the task control block, containing the
remainder, into REMAIN.

Writing a Source Program

Manipulating Floating-Point Data

EDL allows you to add, subtract, multiply, and divide floating-point numbers.
Floating-point numbers are positive and negative numbers that can have decimal
points.

To use floating-point instructions, you must:
¢ Have the hardware floating-point feature installed on your system.
* Include floating-point support in the supervisor when it is generated.

s Specify FLOAT =YES on both the PROGRAM and TASK statements
whenever you use floating-point instructions in any task within a program.

* Define the variables you are manipulating as floating-point variables.

Adding Floating-Point Data

The FADD instruction adds two floating-point numbers. If A and B are
floating-point numbers, you can add A to B with the following instruction:

FADD B,A
The result of the addition replaces B. The value in A remains unchanged.

To add two floating-point numbers without altering the first operand, use the
RESULT operand as follows:

FADD WAGES,OVTIME,RESULT=NETPAY

The instruction adds OVTIME to WAGES and stores the result in NETPAY. The
values in WAGES and OVTIME remain unchanged.

Adding Extended-Precision Floating-Point Numbers:

Unless you specify otherwise, EDL assumes that the floating-point numbers are
single-precision (2-word) floating-point numbers. To add two extended-precision
(4-word) floating-point numbers, specify the PREC operand as follows:

FADD TOTSAL,PRESAL,PREC=LL

The operand PREC=LL says that both TOTSAL and PRESAL are
extended-precision floating-point numbers.

If only one of the operands is an extended-precision floating-point number, the
PREC operand must reflect the precision. In the following example:

FADD MSMNT1,MSMNTZ,RESULT=MSMTS,PREC=LFL

the operand PREC =LFL says that MSMNT1 and MSMTS are extended-precision
floating-point numbers and MSMNT? is a single-precision floating-point number.

Chapter 2. Writing a Source Program 2-21

Writing a Source Program

Subtracting Floating-Point Numbers

The FSUB instruction subtracts one floating-point number from another. If
OCTEMP and NOVTEMP are floating-point numbers, you can subtract @
NOVTEMP from OCTEMP with the following instruction:

FSUB OCTEMP,NOVTEMP

The result of the subtraction replaces OCTEMP. The value in NOVTEMP remains
unchanged.

To subtract two floating-point numbers without altering the first operand, use the
RESULT operand as follows:

FSUB SAL,DEDUCS ,RESULT=NET

The instruction subtracts DEDUCS from SAL and stores the result in NET. The
values in SAL and DEDUCS remain unchanged.

Subtracting Extended-Precision Floating-Point Numbers:

Unless you specify otherwise, EDL assumes that the floating-point numbers are
single-precision (2-word) floating-point numbers. To subtract two
extended-precision (4-word) floating-point numbers, specify the PREC operand as
follows:

FSUB TOTSAL,TOTDUCS,RESULT=TOTNP,PREC=LLL

The instruction subtracts TOTDUCS from TOTSAL and stores the result in
TOTNP. The operand PREC=LLL says that TOTSAL, TOTDUCS, and TOTNP ‘
are all extended-precision floating-point numbers. @

If only one of the operands is an extended-precision floating-point number, the
PREC operand should reflect the precision. In the following example:

FSUB GROSS,TAXES,RESULT=NET,PREC=FLF

the instruction subtracts TAXES from GROSS and stores the result in NET. The
operand PREC=FLF says that GROSS and NET are single-precision and that
TAXES is an extended-precision floating-point number.

Multiplying Floating-Point Numbers

2-22 SC34-0943

The FMULT instruction multiplies one floating-point number by another.

If M and N are single-precision floating-point numbers, you can multiply M by N as
follows:

FMULT M,N
The result of the multiplication replaces M.

You can also multiply a floating-point number by an integer constant. The
following instruction multiplies FEET by the integer constant 12:

FMULT FEET,12

The result of the multiplication replaces FEET.

O

Writing a Source Program

To multiply two floating-point numbers without altering the first operand, use the
RESULT operand as follows:

FMULT LENGTH,WIDTH,RESULT=AREA

The instruction multiplies LENGTH by WIDTH and stores the result in AREA.
The values in LENGTH and WIDTH do not change.

Multiplying Extended-Precision Floating-Point Numbers:

Unless you specify otherwise, EDL assumes that floating-point numbers are
single-precision (2-word) floating-point numbers. To multiply two
extended-precision (4-word) floating-point numbers, specify the PREC operand as
follows:

FMULT PI,DIAM,RESULT=CIRCUM,PREC=LLL

The instruction multiplies PI by DIAM and stores the result in CIRCUM. The
operand PREC=LLL says that PI, DIAM, and CIRCUM are all extended-precision
floating-point numbers.

If only one of the operands is a double-precision floating-point number, the PREC
operand must reflect the precision. In the following example:

FMULT BASEAREA,HEIGHT,RESULT=VOLUME,PREC=LFL

the instruction multiplies BASEAREA by HEIGHT and stores the result in
VOLUME. The operand PREC=LFL says that BASEAREA and VOLUME are
extended-precision floating-point numbers and that HEIGHT is a single-precision
floating-point number.

Dividing Floating-Point Numbers

The FDIVD instruction divides one floating-point number by another. The system
stores the remainder in the first word of the task control block (TCB).

If P and Q are single-precision floating-point numbers, you can divide P by Q as
follows:

FDIVD P,Q
The result of the division replaces P.

You can also divide a floating-point number by a constant. The following
instruction divides FEET by the integer constant 3:

FDIVD FEET,3
The result of the division replaces FEET.

To divide two floating-point numbers without altering the first operand, use the
RESULT operand as follows:

FDIVD TOTWGT,BOXES,RESULT=BOXWGT

The instruction divides TOTWGT by BOXES and stores the result in BOXWGT.
The values in TOTWGT and BOXES do not change.

Chapter 2. Writing a Source Program 2-23

Writing a Seurce Program

Dividing Extended-Precision Floating-Point Numbers:

Unless you specify otherwise, EDL assumes that floating-point numbers are @
single-precision (2-word) floating-point numbers. To divide two extended-precision
(4-word) floating-point numbers, specify the PREC operand as follows:

FDIVD CUBICFT,BASEAREA,RESULT=HEIGHT,PREC=LLL

The instruction divides CUBICFT by BASEAREA and stores the result in
HEIGHT. The operand PREC=LLL says that CUBICFT, BASEAREA, and
HEIGHT are all extended-precision floating-point numbers.

If only one of the operands is an extended-precision floating-point number, the

PREC operand must reflect the precision. In the following example:
FDIVD TOTSAL,NOEMPS,RESULT=AVESAL,PREC=LFL

the instruction divides TOTSAL by NOEMPS and stores the result in AVESAL.
The operand PREC=LFL says that TOTSAL and AVESAL are extended-precision
floating-point numbers and that NOEMPS is a single-precision floating-point
number.

Manipulating Logical Data
The instructions that manipulate logical data make a bit-by-bit comparison of two
bit strings. The result of the comparison depends on the instruction.

The Exclusive-OR Instruction
The exclusive-OR instruction (EOR) compares two bit strings and produces a third
bit string, called the resulting field. /'(\)
W
The instruction compares the two bit strings one bit at a time. If the bits are the
same, the instruction sets a bit in the resulting field to 0. If the bits are not the
same, the instruction sets a bit in the resulting field to 1.

If the bit strings are identical, the resulting field contains all 0s. If one or more bits
differ, the resulting field contains a mixture of Os and 1s.

The following example compares PHI to CHI and stores the result in PHI. CHI
remains unchanged.

EOR PHI,CHI
The following table shows PHI and CHI before and after the instruction executes.
Data Item Hex Binary
PHI (before) 049C 0000 6100 1001 1100
CHI (before) 56AB 0101 0110 1010 1011

PHI (after) 5237 0101 0010 0011 0111

2-24 SC34-0943

Writing a Source Program

Data Item Hex Binary

CHI (after) 56AB 0101 0110 1010 1011

To compare a variable to a constant, code operand?2 as follows:
EOR MU,X'5280'

The following table shows MU before and after the instruction executes.
Data Item Hex Binary

MU (before) FOFO0 1111 0000 1111 0000

constant 5280 0101 0010 1000 0000

MU (after) A270 10106 0010 0111 0000

To compare two bit strings without altering the first operand, use the RESULT
operand as follows:

EOR SIGMA,DELTA,RESULT=THETA

The instruction compares SIGMA and DELTA and stores the resulting field in
THETA. SIGMA and DELTA do not change.

Unless you specify otherwise, EDL assumes that the bit strings you specify are
one-word (2-byte) variables. To compare a single byte or more than two bytes,
specify the number of consecutive units (bytes, words, or doublewords) that you
want to compare. For example:

EOR MASK1,MASK2, (3,BYTE),RESULT=MASK3

[]

[]

[]
MASK1 DATA X'12A4E6"
MASK2 DATA X'0101'
MASK3 DATA X'000000

The instruction compares three bytes at MASK 1 with the first byte at MASK?2 and
stores the result in MASK3. After the instruction executes in this example, MASK3
contains X'13ASE7".

The Inclusive-OR Instruction

The inclusive-OR instruction (IOR) compares two bit strings and produces a third
bit string, called the resulting field.

The instruction compares the two bit strings one bit at a time. If either or both bits

are 1, the instruction sets a bit in the resulting field to 1. If neither bit is 1, the
instruction sets a bit in the resulting field to 0.

Chapter 2. Writing a Source Program 2-25

Writing a Source Program

2-26 SC34-0943

The following example compares ETA to RHO and stores the result in ETA. RHO
is unchanged.
IOR ETA,RHO @
The following table shows ETA and RHO before and after the instruction executes.
Data Item Hex Binary
ETA (before) 049C 0000 0100 1001 1100
RHO (before) S6AB 0101 0110 1010 1011
ETA (after) 56BF 0101 0110 1011 1111

RHO (after) 56AB 0101 0110 1010 1011

To compare a variable to a constant, code operand?2 as follows:
IOR XI,X'5280'

The following table shows XI before and after the instruction executes.

Data Item Hex Binary

XTI (before) FOFO 1111 0000 1111 0000

constant 5280 0101 0010 1000 0000 AN
XI (after) F2F0 1111 0010 1111 0000 U

To compare two bit strings without altering the first operand, use the RESULT
operand as follows:

IOR OPER1,0PERZ2,RESULT=TESTL

The instruction compares OPER1 and OPER2 and stores the resulting field in
TEST1. OPERI and OPER2 do not change.

Unless you specify otherwise, EDL assumes that the bit strings you specify are
one-word (2-byte) variables. To compare a single byte or more than two bytes,
specify the number of consecutive units (bytes, words, or doublewords) that you
want to compare. For example:

IOR MASK1,MASK2, (4,DWORD) ,RESULT=MASK3

The instruction compares the first doubleword at MASK?2 with the four doublewords
at MASK1 and stores the resulting field in MASK3.

O

Writing a Source Program

The AND Instruction

The AND instruction (AND) compares two bit strings and produces a third bit
string, called the resulting field.

The instruction compares the two bit strings one bit at a time. If both bits are 1, the
instruction sets a bit in the resulting field to 1. If either or both bits are 0, the

instruction sets a bit in the resulting field to 0.

The following example compares BETA to THETA and stores the result in BETA.
AND BETA,THETA

The following table shows BETA both before and after the instruction executes.
Data Item Hex Binary |

BETA (before) 049C 0000 0100 1001 1100

THETA S6AB 0101 0110 1010 1011

BETA (after) 0488 0000 0100 1000 1000

To compare a variable to a constant, code operand?2 as follows:
AND LAMBDA,X'5280'

The following table shows LAMBDA both before and after the instruction executes.

Data Item Hex Binary

LAMBDA FOFO 1111 0000 1111 0000
(before)

constant 5280 0101 0010 1000 0000
LAMBDA 5080 0101 0000 1000 0000
(after)

To compare two bit strings without altering the first operand, use the RESULT
operand as follows:

AND OPER1,0PERZ,RESULT=TEST1

The instruction compares OPER1 and OPER2 and stores the resulting field in
TEST1. OPERI! and OPER2 do not change.

Unless you specify otherwise, EDL assumes that the bit strings you specify are
one-word (2-byte) variables. To compare a single byte or more than two bytes,
specify the number of consecutive units (bytes, words, or doublewords) that you
want to compare. For example:

AND OPER1,0PER2,(2,WORD) ,RESULT=TEST1

The instruction compares the first word at OPER2 with the two words at OPER1
and stores the resulting field in TEST1.

Chapter 2. Writing a Source Program 2-27

Writing a Source Program

Writing Data from a Data Area @

When you write data from a data area, the instruction you use depends on the kind
of data and where you write it.

To write data to disk, diskette, or tape, use the WRITE instruction. To write data
to a terminal, use either the PRINTEXT or PRINTNUM instruction. If the data is
alphanumeric, use PRINTEXT. If the data consists of either one floating-point
number or one or more integers, use PRINTNUM.

Writing Data to Disk or Diskette

You can write disk or diskette data sets either sequentially or directly. You always
write 256 bytes, an “EDX record.”

The following WRITE instruction writes a record sequentially:
WRITE DS3,DISKBUFF,1,0,ERROR=WRITERR
[]
L

DISKBUFF BUFFER 256,BYTES

The instruction writes a record to the third data set defined on the PROGRAM

statement (DS3). The system writes one record (indicated by 1 in the third operand)

sequentially (indicated by 0 in the fourth operand) into DISKBUFF. If an I/O error

occurs, the program branches to WRITERR. Otherwise, the system writes the

256-byte buffer DISKBUFF to the data set. e

The following WRITE instruction writes a record directly:
WRITE DS5,BUFR,1,RECNO,ERROR=BADWRIT

L]
L]

BUFR BUFFER 256,BYTES
RECNO DATA F

The instruction writes a record to the fifth data set defined on the PROGRAM
statement (DS5). The system writes one record (indicated by 1 in the third operand)
directly (indicated by the presence of the label RECNO in the fourth operand) into
BUFR. The contents of RECNO indicate which record the system will write. For
example, if RECNO contains 150, the system writes the 150th record.

If an I/O error occurs, the program branches to BADWRIT. Otherwise, the system
writes BUFR to the data set.

2-28 SC34-0943

)

/

Writing Alphanume

Writing a Source Program

Writing Data to Tape

You can write tape data sets sequentially only. A tape WRITE writes a record from
18 to 32767 bytes long.

The following WRITE instruction writes a record to a tape:
WRITE DS1,BUFF,1,328,ERROR=ERR,WAIT=YES

BUFF BUFFER 328,BYTES

The system writes one record (indicated by 1 in the third operand). The size of the
record is 328 bytes (indicated by 328 in the fourth operand). If an error occurs,
control transfers to ERR. The system waits for the write operation to complete
before continuing execution (WAIT = YES).

The following WRITE instruction writes two records from buffer BUFF2:
WRITE DS1,BUFF2,2,328,ERROR=ERR,WAIT=YES

BUFF2 BUFFER 656,BYTES

The system writes two records (indicated by 2 in the third operand). The size of
each record is 328 bytes (indicated by 328 in the fourth operand). If an error occurs,
control transfers to ERR. The system waits for the operation to complete before
continuing (WAIT =YES).

Writing to a Terminal

Two of the instructions that write data to a terminal are the PRINTEXT and
PRINTNUM instructions. The PRINTEXT instruction allows you to write
alphanumeric data (alphabetic characters, numbers, and special characters). With
the PRINTNUM instruction, you can write numbers (both integer and
floating-point) only.

ric Data
To write alphanumeric data to a terminal, use the PRINTEXT instruction as
follows:

PRINTEXT DESC,SKIP=3

DESC TEXT 'NOW IS THE TIME FOR ALL GOOD MEN'

The instruction writes (or displays) the 25 alphanumeric characters in DESC. The
operand SKIP =3 causes the system to skip three lines before displaying DESC.

For information on writing alphanumeric data to screens, see Chapter 8, “Reading
Data from and Writing to Screens.”

Chapter 2. Writing a Source Program 2-29

Writing a Source Program

Writing Numeric Data
The PRINTNUM ihstruction allows you to write either a single floating-point value
or more than one integer to a terminal. The following instruction writes a @
floating-point number:

PRINTNUM BASAL ,TYPE=F,FORMAT=(6,2,F)

The instruction writes the number contained in the variable BASAL. The operand
TYPE =F means that BASAL is a single-precision floating-point number. The
operand FORMAT =(6,2,F) tells the system to display the number in 6 positions on
the screen (including the decimal point), to display 2 digits to the right of the
decimal point, and to display it as an “F-type” number such as 436.32.

To write more than one integer, code a second operand on the instruction as follows:
PRINTNUM WEIGHTS,7

The instruction displays the 7 one-word values starting at location WEIGHTS. The
instruction assumes that you have defined WEIGHTS as follows:

WEIGHTS DATA 7F'0'

Controlling Program Logic

This section discusses the EDL instructions used to control the logic or execution of
instructions. The following instructions are the primary means of controlling
program logic:

¢ DO-—initializes a loop (,(w\
e ENDDO—ends a loop U
* JF—tests a condition

¢ ELSE-—specifies the action for a false condition

o ENDIF—ends an IF-ELSE structure

e GOTO—branches to another location.

Relational Operators
The IF and DO statements involve the use of the following relational operators:

¢ EQ—equal

* NE—not equal

* GT—greater than

¢ LT—less than

® GE—greater than or equal

e LE—less than or equal.

2-30 sC34-0943

O

Writing a Source Program

The IF Instruction

The IF instruction allows you to compare two areas of storage. You can compare
data in two ways: arithmetically or logically.

When you compare data arithmetically, the system interprets each number as a
positive or negative value. The system, for example, interprets X'OFFF' as 4095. It
interprets X' FFFD', however, as —3. Although X'FFFD' seems to be a larger
hexadecimal number than X'0FFF', the system recognizes X' FFFD' as a negative
number and X'OFFF' as a positive number. X'FFFD' is a negative number to the
system because the leftmost bit is “on.”

When you compare data logically, the system compares the data byte-by-byte. The
system interprets X' FFFF' as 2 bytes with all bits “on.”

Comparing Data Arithmetically

The form of the arithmetic comparison is:
IF (datal,operator,data2,width)

If datal has the relationship indicated by operator to data2, the next sequential
‘instruction executes. Width indicates the length of the data to be compared and
must be BYTE, WORD (the default), DWORD, FLOAT, or DFLOAT.

The true portion of the IF-ELSE-ENDIF structure is usually an arithmetic
comparison. For example:
IF (A,EQ,B,WORD)
PRINTNUM A
ELSE
PRINTNUM B
ENDIF

ELSE is an optional part of the structure. The instructions following it are called the
false part of the structure. Therefore, in the preceding example, the instruction
following the ELSE instruction executes if A is not equal to B. If ELSE is not
coded and the condition is false, control passes to the instruction following the
ENDIF.

You can test more than two conditions in a single IF statement.
IF (ALPHA,LT,BETA),AND, (GAMMA ,NE,DELTA)

If ALPHA is less than BETA and GAMMA is not equal to DELTA, the next
sequential instruction executes.

You can also execute the next sequential instruction if either test produces a true
condition.

IF (PI,GE,PSI),OR,(CHI,NE,OMEGA)

If PI is greater than or equal to PSI or CHI is not equal to OMEGA, the next
sequential instruction executes.

Chapter 2. Writing a Source Program 2-31

Writing a Source Program

To compare a variable to a constant, code the constant as data?2 as follows:

IF (FEET,EQ,5280)

If FEET equals 5280 (decimal), the next sequential instruction executes.

Comparing Data Logically
The form of the logical comparison is:
IF (datal,operator,data2,width)

If datal has the relationship indicated by operator to data2, the next sequential
instruction executes. Width indicates the number of bytes to be compared and must
be an integer.

For example:

IF (A,GE,B,4)
PRINTNUM A
PRINTEXT SKIP=1

ELSE
PRINTNUM B
PRINTEXT SKIP=1

ENDIF

If the 4 bytes in A are greater than or equal to the 4 bytes in B, the “true” portion
of the structure executes. If the 4 bytes in A are not greater than or equal to the 4
bytes in B, the “false” portion of the structure executes.

The instructions between the IF instruction and the ELSE statement constitute the @
“true” portion of the IF-ELSE-ENDIF structure. The instructions following the ‘
ELSE statement constitute the “false” part of the structure. ELSE is an optional

part of the structure.

If the ELSE instruction is not coded and the condition is false, control passes to the
instruction following the ENDIF.

The Program Loop
The DO instruction allows you to execute the same code repetitively. The DO
instruction starts a DO loop and the ENDDO instruction ends the loop. The loop
consists of the instructions between the DO and ENDDQ. The following sections
show the different forms of the DO loop.

The Simple DO

The loop executes a specified number of times.

DO 100,TIMES
GETVALUE PSI,PROMPT3
ADD COUNT,PSI
ENDDO

The GETVALUE and ADD instructions execute 100 times.

2-32 SC34-0943

Writing a Source Program

The DO UNTIL
' The loop executes until the condition occurs. The loop always executes at least once
0 and is known as a “trailing” decision loop.

DO UNTIL,(CDED,GT,1000,FLOAT)
GETVALUE OMICRON,OMPRMPT
FSUB CDED,OMICRON

ENDDO

The GETVALUE and FSUB instructions execute until CDED is greater than 1000.

The DO WHILE

The loop executes as long as the condition exists and is know as a “leading” decision
loop.

DO WHILE,(B,NE,C)
GETVALUE B, 'ENTER B'
GETVALUE C,'ENTER C'

ENDDO

The GETVALUE instructions execute as long as B does not equal C.

The Nested DO Loop
A DO loop can contain other DO loops. For example:

DO UNTIL,(ALPHA,LT,BETA,DFLOAT),0R, (#1,EQ,1000)
GETVALUE ALPHA, 'ENTER ALPHA',TYPE=L,FORMAT=(12,3,E)
GETVALUE BETA, 'ENTER BETA',TYPE=L,FORMAT=(12,3,E)
MOVE #1,BETA, (1,DFLOAT)

‘ i DO 10,TIMES
: FADD GAMMA,ALPHA,PREC=LLL

ENDDO
ENDDO

The FADD statement contained in the inner DO executes 10 times for each
execution of the outer DO.

Chapter 2. Writing a Source Program 2-33

Writing a Source Program

The Nested IF Instruction

A DO loop can also contain IF statements. For example: ()

READTEXT CHAR, 'ENTER A CHARACTER'
GETVALUE A, 'ENTER A
GETVALUE B,'ENTER B'
DO WHILE, (A,GT,B)
IF (CHAR,EQ,C'A',BYTE)
DO 40,TIMES

ENDDO
ELSE

[]
[]
[
ENDIF
GETVALUE A, 'ENTER A'
GETVALUE B,'ENTER B'
ENDDO

The outer DO loop executes as long as A is greater than B. The inner DO loop
executes 40 times if CHAR equals the letter A.

Branching to Another Location

2-34 SC34-0943

The GOTO instruction allows you to transfer control to another location within a

program. For example, the following instruction transfers control to the instruction M"w\
at label LOCI: w
GOTO LoOC1

To branch to an address defined by a label, enclose the label in parentheses as
follows:

GOTO (CALC)

This instruction branches to the address contained in CALC. You must define
CALC as an address variable as in the following DATA statement:

CALC DATA A(RTNO1)

To branch to a location that is based on the contents of a variable, code the GOTO
statement like this:

GOTO (ERR,L1,L2),I

Tﬁe instruction branches to L1 if I equals 1, to L2 if I equals 2, and to ERR for any
other value of L.

Writing a Source Program

Referring to a Storage (Program) Location
You can use the EQU statement to refer to the next available storage location in a
program. You can use it to generate labels in your program. For example:

CALLA EQU *
MOVE C,+A,(1,BYTE)

GOTO CALLA

Ending the Program

Ending a program requires three statements: PROGSTOP, ENDPROG, and END.

The PROGSTOP statement ends the program and releases any storage that it used.
It also signals the end of the executable instructions.

The ENDPROG statement follows the statements that define storage areas and
precedes the END statement.

The END statement follows the ENDPROG statement. It tells the compiler that the
program contains no more statements.

The following example shows the position of the three statements and the general
structure of a program.

PRINT PROGRAM START
START EQU *

L[]
L]
L]
PROGSTOP
FIELD1 DATA F'o'

.
.
.
ENDPROG
END

Chapter 2. Writing a Source Program 2-35

2-36 SC34-0943

Entering a Source Program

0 Chapter 3. Entering a Source Program

After you code a source program, you must enter it into a data set. The data set
can be on either disk, diskette, or tape.

This chapter shows how to use the text editor called the SFSEDIT utility. The
chapter describes the commands you need to enter a new source program or change
an existing source program. For a complete list of $FSEDIT commands, refer to the
Operator Commands and Utilities Reference.

Loading the Editor

You can load the editor in one of two ways. You can load it directly using the $L
command. Or, you can load it using the session manager.

This chapter discusses how to load the editor with the session manager. For
information on how to load $FSEDIT with the $L. command, refer to the Operator

Commands and Ultilities Reference.

As you learned in Chapter 1 of this book, you load the session manager by pressing
the attention key, typing $L. $SSMMAIN, and pressing the enter key.

At this point, enter a one- to four-character ID and press the enter key.

“ A The Session Manager Primary Option Menu appears. From this menu, select option
1 (TEXT EDITING).

The session manager displays the SFSEDIT Primary Option Menu.

Chapter 3. Entering a Source Program 3-1

Entering a Source Program

Creating a New Data Set @

The session manager allocates data sets automatically when you log on. One of
these data sets, a work data set used by $FSEDIT, is named $SMExxxx, where xxxx
is the ID you entered when you logged on to the session manager. For example, if
you entered ABCD when you logged on, the work data set is SSMEABCD.

Use option 2 (EDIT) to type your source program into the work data set.

>

An empty data set appears on your screen. The name of the data set and the
volume on which it resides are shown at the top of the screen.

The cursor is located at the first input line. After you finish typing text on this line,
press the enter key.

3-2 SC34-0943

O

Entering a Source Program

The following example shows how the screen looks after you enter the first line of a
source program. (We have used the source program described in Chapter 1 of this
book.) The editor automatically numbers each line and presents a new blank line.

| EDIT --- $SMEABCD, EDXQ03 - 0(1089)

. COMMAND INPUT

Continue to type each line of your source program. When you finish, press the enter
key on a blank line.

Chapter 3. Entering a Source Program 3-3

Entering a Source Program

Saving Your Data Set

3-4 SC34-0943

The next step is to save your data set. Return to the $FSEDIT Primary Option
Menu by typing M (for “menu”) on the COMMAND INPUT line.

Select option 4 (WRITE) to save the data set. Type the name next on the
DATASET NAME line. (In this example, we named the data set ADD10.) Type
the volume on the VOLUME NAME line. (In this example, the volume is
EDX002.) Then press the enter key.

Next, the system prompts you as follows:

Type Y and press the enter key.

Then you see a message on your screen indicating that the data set has been written
to the volume. In the example shown above, the following message would appear:

This message means that the source program is 12 records long and has been written
to volume EDXO002.

O

Entering a Source Program

Modifying an Existing Data Set

Changing a Line

You have seen how to enter a source program into a new data set. You can also
modify an existing data set.

You must first read the data set you want to modify into the work data set. Select
option 3 (READ) from the $FSEDIT Primary Options Menu. On the menu, you
specify which data set you want to read.

Next, you select option 2 (EDIT) to modify the data set.

The data set appears on your screen.

To change a line, move the cursor to the line and type in the correction. For
example, suppose you wanted to change 10 to 15 in the DO instruction. Move the
cursor to the 0 and type a 5.

Or, suppose you wanted to delete the = character in the PRINTEXT instruction.
Move the cursor to the = character and press the delete key.

Chapter 3. Entering a Source Program 3-5

Entering a Source Program

Inserting a Line

You can insert a new line into your data set. You insert a line by typing an I in the
line number after which you want to insert. @

For example, suppose you want to insert another instruction before PROGSTOP.
Type the I as follows:

After you press the enter key, your data set looks like this:

You could now enter your new line of text at the position of the cursor. After you
press enter, the editor assigns a line number to your new line of text. A new blank
input line also appears. You can continue to insert lines or you can press the enter
key again to indicate that you have finished inserting.

3-6 SC34-0943

Entering a Source Program

Deleting a Line
0 You can delete a line or series of lines from your data set.

To delete a single line, enter a D in the line number you want deleted and press the
enter key.

Chapter 3. Entering a Source Program 3-7

Entering a Source Program

You can also delete more than one line.

For example, suppose you want to delete lines 80 through 120 in the following
program. Type DD in line 80 and another DD in line 120.

After you press the enter key, your program looks like this:

The editor deletes the lines.

3-8 SC34-0943

Entering a Source Program

Moving Lines
‘ You can move a line or series of lines from one part of your data set to another.
0 For example, suppose you want to move lines 110 through 130. First type MM in
both 110 and 130. If you want to move these lines after line 10, place an A (for
“after”) on line 10 and press the enter key.

When you press the enter key, the editor moves the lines to the position after line 10.

After you make changes to your data set, return to the SFSEDIT Primary Options
Menu. Return to that menu by typing M (for “menu”) on the COMMAND INPUT
line. To save the changes, select option 4 and press the enter key.

You have seen how you can change lines in your programs. You have also seen how

w to insert and delete lines and move a series of lines. The session manager was used
to load $FSEDIT and to allocate the necessary data sets. The next chapter explains
how to compile your programs using SEDXASM, the EDX compiler.

Chapter 3. Entering a Source Program 3-9

3-10 SC34-0943

C”)

Compiling a Program

Chapter 4. Compiling a Program

After you design, code, and enter your source program into a data set, you have to
compile the source program into an object module. This chapter shows you how to
compile your source program using the Event Driven Language Compiler,
SEDXASM.

The chapter also shows a step-by-step example of compiling a source program that
contains some syntax errors. The chapter then shows how to correct the errors so
that the compilation is successful.

You can load SEDXASM in one of three ways. You can load SEDXASM directly
using the $L command. You can use the $JOBUTIL utility to load SEDXASM.
Or, you can run your compilation under control of the session manager.

This chapter describes how to compile a program using the session manager.

For information on using the $L command or the $JOBUTIL utility, refer to the
Operator Commands and Utilities Reference.

Allocating Data Sets

When you use SEDXASM under control of the session manager, you must provide
two data sets. The first data set is the actual source program to be compiled. You
must have entered the source program on a disk, diskette, or tape data set.

Chapter 3, “Entering a Source Program” describes how to use the SFSEDIT utility
to enter your source programs. '

The output of the compiler is a data set that contains an object module. You can
allocate this data set by selecting option 3 (DATA MANAGEMENT) from the
Session Manager Primary Option Menu.

Note: This example assumes that you logged on to the Session Manager with an ID
of ABCD.

Chapter 4. Compiling a Program 4-1

Compiling a Program

4-2 SC34-0943

The Data Management Option Menu appears on the screen. To allocate your object
code data set, select option 1 (DISKUT1).

The session manager loads the $DISKUT]1 utility and prompts for the command you
want to use.

Notice the USING VOLUME EDX002 message. Unless you change volumes,
$DISKUT]1 allocates your data set on EDX002.

Compiling a Program

When you do not want to use the default volume, change the default volume to
MYVOL, using the following CV command:

Use the AL command to allocate your data set.

The system then prompts you for the name of the data set. In this example, the data
set name is OBJECT.

Next, the system prompts for the number of records you want to allocate. A 25- to
50-record data set should be large enough for most programs. This example defines
a 25-record data set.

Chapter 4. Compiling a Program 4-3

Compiling a Program

Finally, the system prompts for the type of information to be contained in the data
set. The default is DATA. Because this data set will contain data, enter a Y. 0

The system responds with:

Once the data set has been created, enter an EN (for “end”) to return to the Data
Management Option Menu screen.

Return to the Session Manager Primary Option Menu to begin the compilation by

pressing the PF3 key. O

Running the Compilation

4-4 SC34-0943

Once you have allocated the data set to hold the output, you are ready to begin
compiling the source program. The following is a listing of the source program to
be compiled:

s I
PROGRAM STPGM
STPGM GETVALUE COUNT, "ENTER NUMBER: '
LooP DO 10, TIMES
ADD SUM, COUNT
ENDDO
PRINTEXT 'RESULT='
PRINTNUM SUM
PROGSTOP
COUNT DATA F'o'
SUM DATA F'o!
ENDPROG
END
N J

This program is similar to the examples we used in Chapter 1 and Chapter 3 of this
book. However, we have included two errors in this source program.

Compiling a Program

From the Session Manager Primary Option Menu, select option 2 (PROGRAM
PREPARATION) to begin the compile step.

The Program Preparation Option Menu appears on your screen. To éompile the
program, select option 1 (SEDXASM COMPILER).

The SEDXASM Parameter Input Menu appears on your screen. Enter the name of
your source input (in this example, ADD10 on volume EDX002). Also enter the
name of your object output (in this example, data set OBJECT on volume
MYVOL).

Chapter 4. Compiling a Program 4-5

Compiling a Program

You could enter something on the OPTIONAL PARAMETERS line if you want to
change one of the parameters listed on the DEFAULT PARAMETERS line. In this
example, we are using the defaults. 0

4-6 SC34-0943

Compiling a Program

Checking Your Compiler Listing and Correcting Errors

The output of the compiler prints on your printer. The listing consists of statistics,
source code statements and object code, undefined or external symbols, and a
completion code.

The following is an example of the output listing generated by the compile example
being run.

EDX ASSEMBLER STATISTICS

SOURCE INPUT - ADD10O,EDX002
WORK DATA SET - WORK1,MYVOL
OBJECT MODULE - OBJECT,MYVOL
DATE: 10/24/82 AT 19:56:18
ASSEMBLY TIME: 4 SECONDS
STATEMENTS PROCESSED - 12

4 STATEMENTS FLAGGED

PAGE 1

Loc +0 +2 +4 +6 +8 SOURCE STATEMENT ADD10 ,EDX002 (5719
PROGRAM STPGM

08 *** TASK NAME NOT SPECIFIED $EDXL 12

0000 802C COOO OOGA 0001 OEGE STPGM GETVALUE COUNT, 'ENTER NUMBER: '
000A C5D5 E3C5 D940 D5E4 DAC2
0014 C5D5 7A40

08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED $EDXL 3
0018 809C 0024 0OGOA LooP DO 10, TIMES
001E 0032 0040 0000 ADD SUM, COUNT

08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED $EDXL 3
0024 009D 0000 0001 ENDDO
002A 8026 0808 DIC5 E2E4 D3E3 PRINTEXT 'RESULT="
0034 7E40 PRINTNUM SUM
003C 0022 FFFF PROGSTOP

COUNT DATA F'o'

08 *** INVALID OR UNDEFINED OPERATION CODE $EDXL 11
0040 0000 SUM DATA F'o'
0042 ENDPROG
0042 END

EXTERNAL/UNDEFINED SYMBOLS
COUNT UNDEFINED

COMPLETION CODE = 8

This example shows that the compile did not run successfully. The completion code
expected is a —1. The completion code received is an 8.

Chapter 4. Compiling a Program 4-7

Compiling a Program

The listing shows the compilation errors. They are:
¢ (8 *** TASK NAME NOT SPECIFIED
¢ (08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED
e 08 *** INVALID OR UNDEFINED OPERATION CODE

To fix these errors, you must understand what caused them. Look the errors up in
Messages and Codes.

- The first message, 08 *** TASK NAME NOT SPECIFIED, is a result of not having

4-8 SC34-0943

a task name coded on the PROGRAM statement.

The second message, 08 *** ONE OR MORE UNDEFINED LABELS WERE
REFERENCED, means that one of the labels referenced in the instruction has not
been defined to the program. If you check the listing for undefined symbols, you
will see that COUNT is undefined.

The third message, 08 *** INVALID OR UNDEFINED OPERATION CODE,
means that something is wrong with the COUNT definition statement. If you check
the statement, you will see that the label, COUNT, starts in column two. The label
must start in column one.

After isolating the errors, you must go back to the source data set and correct them.
Use SFSEDIT as explained in “Modifying an Existing Data Set” on page 3-5 to
make the corrections. After you make the corrections, the source data set looks as
follows:

4 N
PROG1 PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER: '
Loop DO 10, TIMES
ADD SUM, COUNT
ENDDO
PRINTEXT "@RESULT='
PRINTNUM SUM
PROGSTOP
COUNT DATA F'o!
SUM DATA F'o!
ENDPROG
END
N J

Compiling a Program

0 Rerunning the Compilation

To rerun the compilation, return to the Session Manager Primary Option Menu and
select option 2 (PROGRAM PREPARATION).

The Program Preparation Option Menu appears on your screen. Select option 1
(SEDXASM COMPILER).

O

Chapter 4. Compiling a Program 4-9

Compiling a Program

The SEDXASM Parameter Input Menu appears on your screen. Again, enter the
name of your source input (in this example, ADD10). Also enter the name of your
object output (in this example, data set OBJECT on volume MYVOL).

ADD10, EDX002

O

4-10 SC34-0943

Compiling a Program

The following is an example of the output listing generated by the compiler.
EDX ASSEMBLER STATISTICS

SOURCE INPUT - ADD10,EDX002
WORK DATA SET - $SM1ABCD,EDX002
OBJECT MODULE - OBJECT,MYVOL
DATE: 10/24/82 AT 20:06:18
ASSEMBLY TIME: 4 SECONDS
STATEMENTS PROCESSED - 12

NO STATEMENTS FLAGGED
Loc +0 +2 +4 +6 +8 SOURCE STATEMENT ADD10 ,EDX002 (5719
0000 0008 D7D9 D6D7 D9C1 D440 PROGI PROGRAM STPGM
0034 802C 6074 OO3E 0001 OEGE STPGM ~ GETVALUE COUNT, 'ENTER NUMBER: '

003E C5D5 E3C5 D940 D5E4 D4AC2
0048 C5D9 7A40

004C 809C 0058 GOGA LooP DO 10, TIMES
0652 0032 0076 0074 ADD SUM, COUNT
0058 009D 0000 0001 ENDDO
005E 8026 0808 D9C5 E2E4 D3E3 PRINTEXT 'RESULT='
0068 7E40
G06A 0028 0076 0001 PRINTNUM SUM
0076 0022 FFFF PROGSTOP
06674 0000 COUNT DATA F'o’
0076 0000 ; SUM DATA F'o’
0678 0000 0000 00O 0234 00BO ENDPROG
OGFA 0000 0000 0000 8000 0600
010E 0000
0110 END
EXTERNAL/UNDEFINED SYMBOLS

SvC WXTRN

SUPEXIT WXTRN

SETBUSY WXTRN
COMPLETION CODE = -1

The —1 completion code tells you that the compile was successful. The next step is
to link edit the object module into program data that can be executed. See the next
chapter, Chapter 5, “Preparing an Object Module for Execution,” for details.

Chapter 4. Compiling a Program 4-11

4-12

SC34-0943

®

C

Preparing an Object Module for Execution

Chapter 5. Preparing an Object Module for Execution

So far in this book, you have learned how to code and enter a source program into a
data set. You have also learned how to compile the source program.

The next step is to prepare your object modules for execution. In this chapter, we
will show you how to use the linkage editor SEDXLINK to prepare your object
modules to run on an EDX system. $EDXLINK links together any separately
assembled object modules that make up your program. $EDXLINK also produces a
load module that is ready for execution.

In this chapter, we will show you how to prepare a single object module for
execution. We will also show you an example of link editing more than one object
module.

You can load SEDXLINK in one of three ways. You can load SEDXLINK directly
using the $L. command. You can use the $JOBUTIL utility to load SEDXLINK, or
use SEDXLINK under control of the session manager.

This chapter describes how to use SEDXLINK under control of the session manager.
For information on using the $L. command or the SJOBUTIL utility, refer to the
Operator Commands and Utilities Reference.

Link Editing a Single Object Module

This section shows how to link edit a single object module.

SEDXLINK LINKAGE EDITOR is option 7 of the Session Manager Program
Preparation Option menu.

Chapter 5. Preparing an Object Module for Execution 5-1

Preparing an Object Module for Execution

When you select option 7 and press the enter key, the SEDXLINK Parameter Input
Menu appears on your screen. .‘Q

You can run SEDXLINK in interactive mode. If you choose interactive mode, the
system prompts you for information about the object module you want to link edit.
To choose interactive mode, enter an asterisk (*) on the EXECUTION PARM line.

$SEDXLINK then displays the following screen:

O

SEDXLINK prompts you for a control statement. Control statements are the
instructions SEDXLINK uses to convert the object modules into load modules.

5-2 SC34-0943

O

Preparing an Object Module for Execution

When using interactive mode, you enter the control statements one at a time. (As
you will see later in this chapter, you can write the control statements to a link
control data set for execution in noninteractive mode.)

To link edit a single object module, use the INCLUDE and LINK statements. (You
will learn about some of the other control statements later in this chapter.)

The INCLUDE statement indicates which object module to use. (Remember that
the object module is the output from SEDXASM, the compiler.) In this example,
the object module is OBJECT. This is the only module name you enter next to the
INCLUDE statement.

INCLUDE OBJECT,MYVOI

Use the LINK statement to name the data set that is the output of SEDXILINK.
When you enter the name of this data set, SEDXLINK allocates it. In the following
example, the data set is named ADDPGM. It will reside on volume EDX002. The
word REPLACE means to replace the program if it already exists on volume
EDXO002. The END statement signals SEDXLINK that the program contains no
further source statements.

INCLUDE OBJECT,EDX002

LINK ADDPGM,EDX002 REPLACE EN

Chapter 5. Preparing an Object Module for Execution 5-3

Preparing an Object Module for Execution

The system produces a data set (ADDPGM) that can now be executed on the
system. In this example, we link edited only one object module (OBJECT). The
next section shows how to link edit more than one object module. @

If the system indicates (by returning a — 1 completion code) that the link edit was
successful, return to the Primary Option Menu to execute your program. For
information on how to execute your program see Chapter 6, “Executing a
Program.”

Link Editing More Than One Object Module

5-4 SC34-0943

This section shows how to specify that a load module consists of more than one
object module. If you divide a large program into modules, those modules can be
compiled separately. If you need to make a change to one of the modules, you need
to recompile only that module. When you are ready to run the program, you can
link edit the individual modules.

You might also have a function that is common to many of your programs. By
making this function a separate module, you could include it wherever needed in
your programs.

This section shows how to use both interactive and noninteractive mode to link edit
thé modules. All examples show SEDXLINK being used under control of the
session manager.

As you learned earlier in this chapter, SEDXLINK LINKAGE EDITOR is option 7
of the Session Manager Program Preparation Option menu.

o

Preparing an Object Module for Execution

When you select option 7, the SEDXLINK Parameter Input Menu appears on your

0 screen.
)

$SMM020 /: SESSION MANAGER SEDXLINK PARAMETER'A'INPUT ME”" P e i
ENTER/SELECT PARAMETERS: PRESS PF3 T0 RETURN

o f;'EXECUTION PARM =

' V*;ENTER A CONTROL DATA St

Including Individual Object Modules
With the INCLUDE statement, you indicate which object modules to use. If the
modules reside on the same volume, you can list them on one INCLUDE statement.
In the example shown below, the first INCLUDE statement includes four object
modules from volume EDX003. The second INCLUDE statement includes two
C object modules from volume MYVOL.
I

DE 08212,08113, 08314, 08315,

INCLUDE SQRT,STDEV,MYVOL

After you enter the first INCLUDE statement, SEDXLINK prompts you for
another statement. Enter the second INCLUDE statement.

Chapter 5. Preparing an Object Module for Execution 5-5

Preparing an Object Module for Execution

The LINK statement tells the linkage editor what to call the load module and where

to put it. In this example, the output object data set will be named PGM1. It will \
reside on volume EDX003. The word REPLACE means to replace the program if ()Q
it already exists on volume EDX003. The END statement signals SEDXLINK that

the program contains no further source statements.

INCLUDE 0BJ12,0BJ13,08J14,08BJ15, EDX003

INCLUDE SQRT,STDEV,MYVO

Once you enter these statements, SEDXLINK produces a load module (PGM1) that
is ready for execution. PGMI1 consists of six object modules: OBJ12, OBJ13,
OBJ14, OBJ15, SQRT, and STDEV.

5-6 SC34-0943 :

Preparing an Object Module for Execution

Including Overlay Segments

Your program may include overlay segments. (Overlay segments are described in
detail in “Reusing Storage using Overlays” on page 9-9.) You use the OVERLAY
statement to identify these segments to SEDXLINK.

For example, suppose you had a program made up of a resident segment and two
overlays. Assume the name of the resident segment is TESTROOT and the overlays
are named TESTSUBI and TESTSUB2. Your control statements would look like
this:

The first INCLUDE statement identifies the resident (or root) portion of the
program. The INCLUDE statement following the first OVERLAY statement
identifies the first overlay segment. The INCLUDE statement following the second
OVERLAY statement identifies the second overlay segment.

The LINK statement identifies the object output data set.

Chapter 5. Preparing an Object Module for Execution 5-7

Preparing an Object Module for Execution

Using.the Autocall Feature

5-8 SC34-0943

You can use the AUTOCALL control statement to load the autocall feature. You ;
can include up to three autocall data set names on the AUTOCALL statement.
Autocall data sets contain a list of object module names and volumes, along with

their entry points. Use the autocall option to include modules not explicitly included

with the INCLUDE statement.

You need to use autocall data sets if, for example, you are link editing a program
that uses $IMAGE subroutines. Some instructions, such as GETEDIT and
PUTEDIT, also require that you link edit with the autocall option.

The following is an example of an autocall data set.

PGM1,EDX003 ENTER
PGM2,EDX40 START
PGM3,MYVOL CALC
**END

PGM1, PGM2, and PGM3 are object modules on EDX003, EDX40, and MYVOL.
ENTER, START, and CALC are the entry points for the modules. The module
names must begin in column one and end with an **END statement.

Enter the AUTOCALL statement just before the LINK statement. This example
specifies two autocall data sets: the system-supplied autocall data set (SAUTO on
volume ASMLIB) and data set MYAUTO on volume MYVOL.

If you specify more than one AUTOCALL statement, the linkage editor uses the last

one. :

O
Suppose you wanted to add an AUTOCALL statement to the previous example.)
You would enter it like this:

AUTOCALL $AUTO,ASMLIB MYAUTO,MYVOL

C

Preparing an Object Module for Execution

The system would respond as follows:

The linkage editor also prints, on the system printer, the names of the object
modules it included. For example:

INCLUDE $IMOPEN ,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL
INCLUDE $IMGEN ,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL
INCLUDE $GPLIST ,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL
INCLUDE $GEER ,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL
INCLUDE $GEAC ,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL
INCLUDE $IMDTYPE,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL
INCLUDE $$RETURN,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL
INCLUDE $UNPACK ,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL

Using Noninteractive Mode

Using noninteractive mode means that you do not have to enter control statements
each time you link edit a program.

When you use noninteractive mode, you must enter the name of a primary control
data set on the SEDXLINK Parameter Input Menu. The primary control data set
contains the control statements to be used by SEDXLINK.

You can create the primary control data set using SFSEDIT. Then enter control
statements into the data set.

The following is an example of a primary control data set. Control statements must
begin in column 1. This data set includes comment statements. A comment
statement begins with an asterisk (*).

* PLOT PROGRAM INCLUDES
*

INCLUDE PLOTXY,MYVOL
INCLUDE PLOTXX,MYVOL
INCLUDE PLOTYY,MYVOL
INCLUDE PLOTYX,MYVOL

*

* PERFORM AUTOCALL PROCESSING USING:

*

AUTOCALL MYAUTO,MYVOL $AUTO,ASMLIB

*

* PERFORM THE LINK

*

LINK PLOT,MYVOL REPLACE END

Chapter 5. Preparing an Object Module for Execution 5-9

Preparing an Object Module for Execution

After entering these statements into the data set, specify the name of this data set
next to “EXECUTION PARM?” on the SEDXLINK Parameter Input Menu. In this
example, the data set is LINK1 on volume EDXO003. @

LINK1,EDX003

The primary control data set can also refer to a secondary control data set. The
secondary control data set contains additional control statements. These control
statements can be common control statements that are used frequently for many
different link edits. You use the COPY control statement to refer to these secondary
data sets. For example:

INCLUDE ASMOBJ,EDX003 @
COPY CTRL,EDX40
LINK PGM3,EDX40 REPLACE END

The linkage editor includes object module ASMOBJ on volume EDX003, copies

additional control statements from data set CTRL on volume EDX40, gives the load
module the name PGM3, and puts it on volume EDX40.

For more information on specifying primary and secondary control statement data
sets, refer to the Operator Commands and Ultilities Reference.

Prefinding Data Sets and Overlays

You can locate data sets and overlay programs before you load a program by using
the SPREFIND utility. You can improve program performance by using
$PREFIND.

You should use SPREFIND if:
e The program uses a large number of data sets.
¢ The program loads several overlay programs.

* You load the program frequently.

For information on how to use the SPREFIND utility, refer to the Operator
Commands and Ultilities Reference. O

5-10 sSC34-0943

Executing a Program

c Chapter 6. Executing a Program

After you have compiled and link edited a program, you are ready to run (or
execute) it.

This chapter shows how to execute a program. You can execute a program in any
of the following ways:

You can load the program with the $L operator command.
You can use the $JOBUTIL utility.

You can use the session manager.

You can submit the program from another program.

You can use the $SSUBMIT utility.

This chapter describes how to use the session manager to execute a program and
how to submit a program from another program. For information on how to use
the $L operator command or the $JOBUTIL utility or the $SUBMIT utility, refer to
the Operator Commands and Utilities Reference.

Executing a Program with the Session Manager

, To execute your program, select option 6 (EXEC PROGRAM/UTILITY) on the
‘) Primary Option Menu.

Chapter 6. Executing a Program 6-1

Executing a Program

6-2 SC34-0943

The Execute Program/Utility menu appears. Enter the program name (ADDPGM)

and volume (EDX002) next to PROGRAM/UTILITY (NAME,VOLUME). Then ;
type an asterisk in the DATA SET 1, DATA SET 2, and DATA SET 3 fields and
press the enter key.

DDPGM, EDXGO

Putting asterisks in the DATA SET fields means either of two things. Either the
program does not use any data sets or the program specifies the data sets with the
DS operand. For example, the PROGRAM for program ADDPGM might look like
this:)
A
BEGIN PROGRAM ST M

or this:
BEGIN PROGRAM ST,DS=((MASTER,EDX003), (UPDATES,MYVOL), (NEWMAST,EDX40))

If you want the program to execute in the background, enter B next to
FOREGROUND OR BACKGROUND (F/B). Otherwise, the system executes the

program in the foreground.

After you press the enter key, the following screen appears on the terminal:

Executing a Program

Specifying Data Sets
0 You can specify data sets in any of these ways:

1 In the DS = operand of a PROGRAM instruction

2 In the DS= operand of a LOAD instruction

3 With the SL operator command

4 During execution of some system utility programs

5 On the Execute Program/Utility menu

6 With the DS command of the $TOBUTIL utility.
You identify a data set by specifying:

1 The data set name (dsname)

2 An optional volume label (volume) which specifies the volume on which the
data set resides.

The format for a data set specification is:

dsname,volume

Volume is optional. If you omit volume, the system assumes that the data set resides
‘ J on the volume from which you performed an IPL. Definitions of dsname and
volume are:

dsname An alphanumeric character string of eight characters. When you specify
fewer than eight characters, the system adds blanks to the right to
complete the string.

volume An alphanumeric character string of six characters. To locate the
volume, the appropriate TAPE or DISK statement must be in the system
I/O definition. You must initialize the disk or diskette with the
SINITDSK utility and tapes with the STAPEUT]1 utility. When you
specify fewer than six characters, the system adds blanks to the right to
complete the string.

Chapter 6. Executing a Program 6-3

Executing a Program

To specify up to three data sets on the Execute Program/Utility menu, enter the data
set name and volume as in the following example:

ADDPGM, EDX002

MASTER, EDX003

UPDATES ,MYVOL
NEWMAST, EDX40

The PROGRAM statement for program ADDPGM might look like this:
BEGIN PROGRAM ST,DS=(??,?7,77

If a program requires fewer than three data sets, enter an asterisk (*) next to the

data set(s) not used.
O

6-4 SC34-0943

Executing a Program

Submitting a Program from Another Program

A program can submit one or more programs to the EDX job processor. The job
queue processor executes the programs independently of the program that submitted
them.

The following example shows how one program can submit programs CALC on
volume EDX003 and UPDATE on volume MYVOL. The explanation for each
numbered step appears on the next page.

BEGIN PROGRAM START

START EQU *
[]
[]
1 LOAD $SUBMITP, SUBPARML , LOGMSG=NO, EVENT=SUBEND
2 WAIT SUBEND
3 IF (SUBEND,NE, -1)
PRINTEXT 'ERROR LOADING CALC',SKIP=1
ENDIF
L]
[]
[]
4] LOAD $SUBMITP, SUBPARM2 , LOGMSG=NO, EVENT=SUBEND
WAIT SUBEND
IF (SUBEND,NE, -1)
PRINTEXT 'ERROR LOADING UPDATE',SKIP=1
ENDIF
[]
[]
[J
PROGSTOP
SUBEND ECB
SUBPARML EQU *
5 DATA c'sJ
6 DATA X'0002"
7 DATA CL8'J0BO1"
8 DATA CL6'EDX40"
9

DATA A(JOBNO)
SUBPARM2 EQU *
DATA C'sd
DATA X'0002"
DATA CL8'J0B02"
DATA CL6'EDX4Q"
DATA A(JOBNO)
JOBNO DATA F'o'
ENDPROG
END

Chapter 6. Executing a Program 6-5

Executing a Program

6-6 SC34-0943

Submit a job to the job queue. Point to a parameter list called SUBPARMI,
and identify the event to be posted when the job has been submitted \
(EVENT =SUBEND). @

Wait for the job to be submitted to the job queue.
Test for successful completion (— 1) of the submit.

n Submit a job to the job queue. Point to a parameter list called SUBPARM2,
and identify the event to be posted when the job has been submitted
(EVENT =SUBEND).

Specify that the job is to be submitted (SJ).
B Specify the priority of the job (0002).

Identify the name of the data set that contains the job stream processor
commands (JOBO1).

E Specify the volume that contains JOB01 (EDX40).

n Specify the address of the field in which the system will put the job number
(JOBNO).

Reserve storage for the system to put the job number.

The data set called JOBO1 contains job stream processor commands. It might look “H’
like the following:

JOB JOBO1

PROGRAM CALC,EDX003
EXEC

E0J

The PROGRAM command refers to a program called CALC on volume EDX003.

The data set called JOB02 contains job stream processor commands. It might look
like the following:

JOB JOBO2

PROGRAM UPDATE ,MYVOL
EXEC

EQJ

The PROGRAM command refers to a program called UPDATE on volume
MYVOL.

Finding and Fixing Errors

C Chapter 7. Finding and Fixing Errors

Up to this point, you have written, compiled, and link edited your program.
However, the program may not run as you expect it to. Steps may be out of
sequence or the program may come up with the wrong answers. In other words, you
have problems with your program’s logic.

The program also may not run to a successful conclusion. An exception condition
may occur that interrupts the execution of a program.

The $DEBUG utility assists you in determining logic errors. The task error exit
routine is one of the tools you can use to diagnose exception conditions.

Determining Logic Errors in a Program

This section tells you how to locate and fix logic errors in your program by using the
SDEBUG utility. SDEBUG can work from terminals; you do not have to use the
console. $SDEBUG has commands that allow you to:

Stop execution at one or more specific places in a program. The places where
you choose to stop a program are called breakpoints.

Set up a trace routine. A trace routine allows you to step through program
instructions one at a time. You must specify one or more parts of the program
you wish to trace (called a trace range). Each time the program executes an
instruction within any of the specified trace ranges, the terminal displays a
message identifying the task name and the instruction address just executed.
You can stop program execution after each instruction executes within a trace
range.

List additional registers and storage location contents while the program is
stopped at a breakpoint or at an instruction within a trace range.

Change the contents of storage locations, registers, data, or instructions.

Restart program execution. You can restart execution at the breakpoint or trace
range address where it is currently stopped or you may specify another
instruction address.

Chapter 7. Finding and Fixing Errors 7-1

Finding and Fixing Errors

Creating and Running the Program

7-2 SC34-0943

This section shows an EDL program that has a logic error in it. It shows briefly
how to enter, compile, link edit, and run (execute) the program.

Perform the following steps using the session manager. Give the program the name

ADDI10. If you have any problems, see Chapter 3, “Entering a Source Program.”

1 Enter the following program on your terminal exactly as shown.

ADD1IO PROGRAM STPGM
STPGM GETVALUE COUNT,'ENTER NUMBER: '
LOOP DO 10, TIMES
ADD COUNT, SUM
ENDDO
PRINTEXT 'RESULT='
PRINTNUM SUM

PROGSTOP
COUNT DATA F'o'
SUM DATA F'o!
ENDPROG
END

This program is supposed to take a number entered on a terminal and add it
to itself 10 times. For example, if you enter the number 10, you should get
the response: RESULT =100. However, because of a program logic error,
you will not get the expected answer when you run the program.

‘)
2 Now compile the program. If you have any problems, see @
Chapter 4, “Compiling a Program.” Save the compiler listing. You will need
it when you run $DEBUG.

3 Next, link edit your program. If you have any problems, see
Chapter 5, “Preparing an Object Module for Execution.”

4 Run the program. If you have any problems, see Chapter 6, “Executing a
Program.”

When the prompt ENTER NUMBER appears, enter the number 10.

Because this program has a logic error, the answer returned is 0. The expected result
was 100.

Finding and Fixing Errors

Debugging and Fixing the Program

Loading $DEBUG

This section describes how to use $SDEBUG to find and correct a logic error.

To start debugging the program, do the following:
1 End the session manager. You cannot run $SDEBUG while the session
manager is active. One way to load SDEBUG is with the $L operator

command.

2 Enter the following:

The following message appears, telling you that SDEBUG is being loaded.

3 Then $DEBUG asks for the name of the program to be debugged. Respond
as follows:

4 The utility then prompts for a partition number and a terminal name:

If you press enter after each of the prompts, the system uses the current
partition and terminal.

$DEBUG then displays the following information:

Chapter 7. Finding and Fixing Errors 7-3

Finding and Fixing Errors

These messages tell you:

¢ The load point (LP=BD00) of the program @
* The partition where SDEBUG loaded the program (PART=1)
e That SDEBUG set a breakpoint and stopped the program at address 0034,

which is the first executabie instruction.

Note that you can also enter HELP to see a list of the available SDEBUG
commands.

$DEBUG Commands
Both $DEBUG and the program have been loaded into partition 1. The program

has stopped and $DEBUG is waiting for a command. To see a list of the SDEBUG
commands:

1 Press the attention key.

2 Enter HELP.

The list of SDEBUG commands appears on the screen.

3
/

=
o

T-4 SC34-0943

Finding and Fixing Errors

Use the SDEBUG commands to:

¢ List SDEBUG commands (HELP).

¢ Display the current status of each task (WHERE).

* Display storage or register contents (LIST).

¢ Change storage or register contents (PATCH).

¢ Change the base address (QUALIFY).

¢ Set breakpoints and trace ranges (AT).

¢ Remove breakpoints and trace ranges (OFF).

e Restart a stopped task (GO).

e Start a task waiting for an event or process interrupt (POST).
¢ Direct output to another terminal (PRINT).

¢ List breakpoints and trace ranges (BP).

* Restart a stopped task at a different instruction (GOTO).
¢ Close a spool job that was created by $DEBUG (CLOSE).
¢ End $DEBUG (END).

You can enter any of the commands by pressing the attention key and entering the
command name. $DEBUG then prompts for the command parameters. For
example, if you want to set a breakpoint, enter the AT command. $SDEBUG then
prompts for the parameters as shown below.

This command sets a breakpoint at address 4C. It requests that SDEBUG print the
contents of register 1 (one word) in hexadecimal. STOP tells SDEBUG to stop at
address 4C.

For detailed syntax descriptions, refer to each individual command in the Operator
Commands and Ultilities Reference.

You can also enter a command and its parameters without going through the
prompts. For example:

AT ADDR 4C L #1 1 X §

gives you the same results.

Chapter 7. Finding and Fixing Errors 7-5

Finding and Fixing Errors

Finding the Errors
Now that you have loaded $SDEBUG, specified your program name, and reviewed)
the SDEBUG commands, you are ready to start finding the logic errors in your -
program. You should have a listing of the program before you start. Then follow
these sieps:)

1 Use the AT command to set a breakpoint to stop the program after the
GETVALUE executes (address 004C). Respond to the prompts as follows:

The breakpoint to stop after the GETVALUE instruction executes is now set.

2 Enter a GO command and, when prompted, enter the number 10.

o

Program execution has stopped at the instruction labeled LOOP. The
GETVALUE instruction has executed.

To check to see if the program read the data correctly, use the LIST command
to display data field COUNT at address 0074.

3 Enter a LIST command and respond as follows:

The LIST command shows that 0074 contains 10, the correct input. This
indicates proper logic to this point.

The next set of instructions is the DO loop. Set another breakpoint to stop
the program after execution of the DO loop at address 005E.

T-6 SC34-0943

Finding and Fixing Errors

4 Enter an AT command and respond as follows:

The breakpoint to stop after the DO loop instructions executes is now set.

5 Enter a GO command and the following occurs:

At this point, the data field SUM at address 0076 should contain the number
100.

To check to see if the data field SUM contains the proper number, use the
LIST command to display data field SUM at address 0076.

6 Enter a LIST command and respond as follows:

The LIST command shows that this field contains zero. This means that the
DO loop or the ADD instruction in the DO loop is incorrect. If you examine
these instructions, you will see that the DO loop is correct. However, The
ADD instruction has a logic error. In order to receive the proper answer, the
COUNT field should be added to the SUM field. The operands are
backwards. The DO loop executes the ADD instruction 10 times but is
adding SUM to COUNT, causing the SUM field to remain 0.

Fixing the Problem

To verify that this is the problem without having to recompile and link edit the
program, you can use the PATCH command of $DEBUG for a temporary fix. This
fix is good only for one execution of the program. PATCH only fixes the copy of
the program loaded by SDEBUG. It does not fix the program on your volume.
Once you have verified that the fix is correct, you can then change the program on
your volume.

Chapter 7. Finding and Fixing Errors 7-7

Finding and Fixing Errors

7-8 SC34-0943

To verify that the problem is the ADD instruction, do the following:

1 Find address 0052 on your compiler listing. This line contains the ADD
instruction. The entire line looks like this:
0052 0032 0074 0076 ADD COUNT, SuM

The address of the instruction is 0052. The operation code (0032) does not
change. The next two words, 0074 and 0076, are the addresses of data fields
COUNT and SUM.

To fix the logic error, change the instruction to look as follows:
0052 0032 0076 0074

2 Entera PATCH command and respond to the prompts as follows:

A
The program is now patched. When it executes, it will add COUNT to SUM L W
to arrive at the expected result. You can test the change by reexecuting the
program.

To reexecute the program, you have to know two things: the address where
the program is currently stopped (005E) and the address of the first executable
instruction (0034). Then you can use the GOTO command to restart the
program at the first executable instruction.

3 Enter a GOTO command as shown:

4 The program is now at the beginning. To test it, set all the breakpoints off so
that the program will run to completion.

Enter the following:

C

‘ "
1 i

Ending $SDEBUG

Finding and Fixing Errors

5 Now enter a GO command and respond to the prompts as follows:

This time you received the expected result of 100. You have verified that the
logic error was the ADD instruction.

Now that you have found and fixed the logic error in your program, use the END
command to terminate SDEBUG. Enter the following:

When $DEBUG ends, your program remains in storage with all of its tasks active
and operating if it has not already ended. In our example, however, the program
has ended.

To make the fix permanent, change your source program (see Chapter 3, “Entering
a Source Program”), recompile it (see Chapter 4, “Compiling a Program”), and
link edit your object code module (see Chapter 5, “Preparing an Object Module for
Execution”).

Displaying Unmapped Storage

If you write a program that uses unmapped storage, you may want to display
portions of unmapped storage. Displaying unmapped storage may be necessary to
determine whether or not a program is processing correctly.

This section shows how to display a portion of unmapped storage. The program
example used in this section is shown in “Sample Program” on page 7-12.

The program moves mortality rates to the unmapped storage areas. To find out if
the rates are being moved properly, you can display an unmapped storage area as
follows:

1 Load $DEBUG and specify your program name:

The following message appears, telling you that the system is loading
$SDEBUG.

Chapter 7. Finding and Fixing Errors 7-9

Finding and Fixing Errors

2 When $DEBUG asks for the name of the program to be debugged, respond as
follows: '

3 The utility then prompts for a partition number and a terminal name:

If you press enter after each of the prompts, the system uses the current
partition and terminal.

4 Use the AT command to set a breakpoint to stop the program after the
ENDIF statement that follows the two MOVE instructions that move the
rates to the unmapped storage area (address 152). Respond to the prompts as
follows:

Program execution has stopped at the ENDIF statement. One of the MOVE
instructions has executed.

6 To sce if the program moved data correctly, first find the number of the
unmapped storage area. CNTRYC (address 02AE) contains the number of
the unmapped storage area obtained with the SWAP instruction.

7-10 SC34-0943

Finding and Fixing Errors

The SWAP instruction obtained unmapped storage area number 3.

Then display storage in unmapped storage area number 3, using the LIST
command as follows:

This LIST command shows the contents of the unmapped storage area. It
contains five sets of four-digit numbers that could be mortality rates. Check
the input data to determine if the program moved them properly.

Chapter 7. Finding and Fixing Errors 7-11

Finding and Fixing Errors

Sample Program

LoC
0000

0088
00B8
ooc2
00C8
00CE
00D4
0ODE
0OEb
0OEC
00F2
00FC
0100
010A
0110
011A
0124
012A
0130
0136
013E
0146
014A
0152
0152
0156
0156
015C
0162
0168
0172
017A
0184
018A
0192
019C
01A2
01A8
O1AE
01B2
01B2

+0
0008

00B9
805C
035C
809C
00B9
8158
8032
009D
8020
0032
00B1
035C
00B9
00B1
035C
8338
0F32
00A3
015B
00A0
0158

00A0

805C
035C
809C
00B9
0458
8020
0072
045B
8020
0074
8032
009D
00A0

8026

+2
D7D9

04B4
02A8
0000
00EC
04B4
0000
02A8
0000
04FA
0156
02AE
0000
04B4
02AC
0002
0002
0000
0502
0000
0152
0190

00F2

02A8
0000
01A8
04B4
02B4
02B4
01B2
02B4
02B4
01B2
02A8
0000
02A2

2A2A

7-12 SC34-0943

+4
D6C7

0000
0001
04C0
000A
02A8
4000
0001
0001
0001

O4FA
04Co
02AE
04FC
02AC
0004
0002
02A6
04FE

O4FE

0001
04Co
000A
02A8
0000
0002
0274
0190
0002
0274
0001
0001

7C5C

+6
D9C1

0000

01E4

0320

0000

0002

O1E4
0002

014A
0004

0004

01E4
0190
0000

0190
0000

5C40

+8
D440

0101

0300

220E
0080

0300
0080

0300

3110

3110

C1c3

SOURCE STATEMENT

INSURE

ST

READ

STOP

EOFILE

PROGRAM

CoPY
EQU
GETSTG
MOVE
MOVE
DO
SWAP
MOVE
ADD
ENDDO
READ

CONVTD
MOVE
SWAP
CONVTD
MOVE
MULT
ADD
IF
MOVE
ELSE
MOVE
ENDIF
GOTO
EQU
MOVE
MOVE
Do
SWAP
MOVE
WRITE

MOVE
WRITE

ADD
ENDDO
GOTO

EQU

i !
ADD10 , EDX002 !»

ST,DS=((ACTTAB,EDX40) , (ACTOUT,EDX40))

STOREQU

*

HOLD, TYPE=ALL

USANO, 1

#1,HOLD+$STORMAP

10
HOLD, USANQ, ERROR=SWAPERR
(+MENTBL,#1),C" ', (800,BYTE)
USANO,1

DS1,MORTAL,1,END=STOP

CNTRYC,CNTRY, PREC=S, FORMAT=(2,0,1)

#1,HOLD+$STORMAP

HOLD,CNTRYC, ERROR=SWAPERR

AGEC,AGE, PREC=S,FORMAT=(2,0,1)

#2 ,AGEC

#2,4

#1,#2

(SEX,EQ,ONE,BYTE)
(+MENTBL,#1) ,RATE, (4,BYTES)

b
(+HMNTBL, #1) ,RATE, (4,BYTES) L

READ

*

USANO, 1

#1,HOLD+$STORMAP

10
HOLD,USANO, ERROR=SWAPERR
OUTAREA, (+MENTBL,#1) , (400,BYTES)
DS2,0UTAREA,2,0,END=EOFILE,ERROR=WRERR

OUTAREA, (+WMNTBL,#1) , (400,BYTES)
DS2,0UTAREA,2,0,END=EQFILE, ERROR=WRERR

USANO,1

END

*

PRINTEXT '@** ACTUARIAL FILE HAS EXCEEDED ...

O1EQ
O1E4
OlE4
O1EA
01F2

021A
021A
0222

0244
0244
024C

0270
0270
0274
0274

029E
02A2
02A2
02A6
02A7
02A8
02AA
02AC
02AE
02B0
02BA
04AE
04B4

00006
0000
04F6
0500
04FA
04FC
OAFE
0502
05FA
0692

00AO

005C
80A2
8026

802A
8026

80A2
8026

00A0

8026

00AO

0022
F1

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000

0000

02A2
02AA

02RA
2423

02AA
1E1D

02AA
201F

02A2

2626

02A2

FFFF

6200
0000
0000
CiC1

0100
0000

0000

05FA
021A
7C5C

0002
7C5C

0064
7C5C

7C5C

0000
0000
0000
0000

0000
0000

0000

5C40

0244
5C40

0270
5C40

5C40

0000
0000

0000

0000
0000

0234

C9D5

E2E6

D5D6

C4c9

0000
0000

0000

0000
0000

0000

SWAPERR

WRERR

END

ONE

USANO
TASKRC
AGEC
CNTRYC
OUTAREA

HOLD

MENTBL
WMNTBL
MORTAL

CNTRY
AGE
RATE
SEX

Finding and Fixing Errors

GOTO END

EQU *

MOVE TASKRC, INSURE
IF (TASKRC,EQ,1)

PRINTEXT '@** INVALID UNMAPPED STORAGE ...

ENDIF
IF (TASKRC,EQ,2)
PRINTEXT '@** SWAP AREA NOT INITIALIZED'

ENDIF
IF (TASKRC,EQ,100)
PRINTEXT '@** NO UNMAPPED STORAGE SUPPORT'

ENDIF
GOTO END
EQU *

PRINTEXT '@** DISK WRITE ERROR ON ACTUARIAL ...

GOTO END
EQU *
PROGSTOP
DATA c'1
DATA Fo'
DATA F'o'
DATA F'o'
DATA F'o'

BUFFER 512,BYTES

STORBLK TWOKBLK=1,MAX=10

EQU 0

EQU MENTBL+300
BUFFER 256,BYTES
EQU MORTAL

EQU MORTAL+2
EQU MORTAL+4
EQU MORTAL+8
ENDPROG

END

Chapter 7. Finding and Fixing Errors

7-13

Finding and Fixing Errors

Using Return Codes to Diagnose Problems @

7-14 SC34-0943

This section describes how to use the return codes to diagnose problems.

Many EDL instructions return a code to indicate whether or not they execute
successfully. Each time EDX executes one of these instructions, it stores a code,
called a return code, in the first two words, called task code words, of the task
control block (TCB). You can access the TCB by referencing the task name.

In the following example, the instructions at label ERRTEST compare the return
code of the READTEXT instruction with the successful return code (—1).

BEGIN PROGRAM START

READTEXT NAME,'ENTER NAME: ',SKIP=4,MODE=LINE

ERRTEST MOVE TASKRC,BEGIN
IF (TASKRC,NE,-1) ,G0TO,CHECK
ENDIF

L]
L]
[
CHECK ~ PRINTEXT 'ERROR IN READING NAME',SKIP=1
PRINTNUM TASKRC

GOTO END
.
.
] M\\
END PROGSTOP Mkafj
TASKRC DATA F'o'
ENDPROG
END

You must test the return code before executing any other instruction because the
system may overlay the task code word with the return code of the next instruction.

Finding and Fixing Errors

Diagnosing Errors with ACCA Devices

TEST

I8 TERROR
2
3

RETCD
CCS

To diagnose an error that occurs after you read or write to an ACCA device, you
can use the following instructions to obtain the return code and three cycle steal
status words.

PROGRAM START, TERMERR=TERROR

TCBGET
TCBGET
MOVE

DATA
DATA

CCBEQU

RETCD, $TCBCO
#1,$TCBCCB
CCS, ($CCBSTWO, #1) ,3,FKEY=0

FIOI
3F'0"

Obtain the return code from the first word of the TCB.

Obtain the address of the CCB (terminal control block).

Move the three cycle steal status words to CCS.

If the return code is not — 1, the task code word contains the following information:

Bit Description

0 Unused

1-8 ISB of last operation (I/O
complete)

9 Unused

10 1 if error reported as attention
interrupt

11 1 if a write or control operation
(1/O complete)

12 Read operation (I/O complete)

13—15 Condition code + 1 after I/O start

or condition code after I/O
complete

Refer to the appropriate hardware description manual for a description of the cycle
steal status words and the interrupt status byte (ISB) condition codes.

Chapter 7. Finding and Fixing Errors 7-15

Finding and Fixing Errors

Task Error Exit Routines @

This section describes the facilities provided by the system when an exception occurs.
These are the supervisor facility and the system-supplied task error exit routine.

When an exception occurs, the supervisor takes certain actions. What action it takes
depends on whether or not you have coded a task error exit routine in your
program. If your program does not have a task error exit routine, the supervisor
simply writes a program check message on $SYSLOG and terminates the program.
If your program has a task error exit routine, either the one supplied by the system
or your own, the supervisor does the following:

1 Stores the hardware status at the time of the exception in a block of storage
designated by the task.

2 Passes control to the task at its task error exit entry point.

At this point, the task error exit routine gains control. The next section discusses
only the system-supplied routine. However, remember that, if necessary, you can
substitute your own routine. (For information on writing your own task error exit
routine, refer to the Customization Guide.)

Notes:

1. A task error exit routine is a part of the task it serves. The supervisor passes
control to it at the task level; it is not a subroutine of the supervisor’s error
handler.

>

2. The registers (including the EDL software registers, #1 and #2) used by the error
exit routine are those normally used by the task.

3. To resume executing the task following corrective action by task error exit,
branch (if in Series/! instruction mode) or GOTO (if in EDL mode) the
appropriate location.

4. If the error exit is unable to recover from the exception, it should issue a
PROGSTOP instruction.

The System-Supplied Task Error Exit Routine ($$EDXIT)
A task error exit routine named $SEDXIT is available on volume ASMLIB. This
routine:

¢ Captures relevant data from the program header, task control block, and
hardware status area when an exception occurs

¢ Formats and prints this data on $SYSLOG and $SYSPRTR

¢ Displays an error message on the loading terminal.

7-16 SC34-0943

Using $$EDXIT

Finding and Fixing Errors

To use the supplied routine, you must:

* Code $SEDXIT as the value of the ERRXIT keyword parameter of each
PROGRAM and TASK statement in your program. For example:

AB PROGRAM,ERRXIT=$$EDXIT

CD TASK <o, ERRXIT=$$EDXIT

* Declare the label $SEDXIT to be an EXTRN.
EXTRN $$EDXIT

The task error exit routine is included in the autocall list SAUTO on volume
ASMLIB. It is included automatically when you link edit any program that
references $SEDXIT. A separate INCLUDE statement is not required for $SSEDXIT
in the LNKCTRL data set. All you need to do is code SAUTO,ASMLIB as the
autocall data set on the AUTOCALL statement of SEDXLINK.

The following example shows what $SEDXIT prints on $SYSLOG and $SYSPRTR.
It shows that a program check has occurred in an application program named
PCHECK. The numbers to the left of both columns correspond to the explanations
that follow the example. For additional information on interpreting program check
messages refer to the Problem Determination Guide.

(khkhkkkrkkkhhhkhhhdkhhhrhkhrhkhhhxhdhhhhdhrhksx \
* WARNING!! AN EXCEPTION HAS OCCURRED!! *
hhkkhkkhkhhhhkhkhkxrhhdhhhkhhhhhhhhrkhhkhkd

Y PROGRAM NAME = pcieck Bl psw = 8002

7l PROGRAM VOLUME = EDXWRK IAR = 3124

K] PROGRAM LOAD POINT = 0000 AKR = 0440

'] ADDRESS OF ACTIVE TCB = 016C LSR = 00DO

 ADDRESS OF CCB = 1802 RO (WORK REGISTER) = 0096
NUMBER OF DATA SETS = 1] R1 (EDL INSTR ADDR) = OOE7
NUMBER OF OVERLAYS = 0 8] R2 (EDL TCB ADDR) = 016C

B srcsans = 0004 R3 (EDL OP1 ADDR) = GOE7
ADDRESS OF FAILURE R4 (EDL OP2 ADDR) = 00B2

(REL. TO PGM LOAD POINT = OOE7 RS (EDL COMMAND) = 0000
DUMP OF FAIL ADDRESS R6 (WORK REGISTER) = 0000

B 00e6: 0000 0628 0028 3635 R7 (WORK REGISTER) = 0000
$TCBCO = -1 DEC; FFFF HEX #1 = 0000
$TCBO2 = 0 DEC; 0000 HEX #2 = 0000
PSW ANALYSIS:
SPECIFICATION CHECK
TRANSLATOR ENABLED

\ J

Chapter 7. Finding and Fixing Errors 7-17

Finding and Fixing Errors

7-18 SC34-0943

Explanation:
The PROGRAM NAME field identifies the name of the active program.

ﬂ The PROGRAM VOLUME field identifies the name of the volume where the
program resides.

The PROGRAM LOAD POINT field contains the address at which the program
was loaded for execution.

I The ADDRESS OF ACTIVE TCB field contains the address of the active task
control block (TCB) when the exception occurred.

The ADDRESS OF CCB field contains the address of the terminal control block
for the terminal that loaded the program.

ﬂ The $STCBADS field contains the address space where the program is loaded if
not doing cross-partition move or the target address space if doing a cross-partition

move.

The ADDRESS OF FAILURE field contains the address of the instruction that
caused the program check.

B The DUMP OF FAIL ADDRESS ficld shows the location and content of the
instruction that was executing when the failure occurred.

Bl The PSW field indicates the type of exception that occurred.
The R1 field usually points to the EDL instruction address.
The R1 field usually contains the EDL TCB address.

The RS5 field usually contains the operation code of the EDL instruction that
was being executed.

The following message appears on the loading terminal when the program check
occurs:

Notes:

1. If you are executing either a combination of EDL instructions and Series/1
instructions or all Series/1 instructions, the registers may not contain this
information.

2. You can restart the program by writing your own error exit routine to reload it.

$SEDXIT provides you with information about the program, task, and hardware
status when an exception occurs. You can extend the capabilities of $SEDXIT so
that it will also evaluate the information and make an appropriate response. For
more information on writing your own task error exit routine, refer to the
Customization Guide.

()

O

C

Reading Data from and Writing to Screens

Chapter 8. Reading Data from and Writing to Screens

The Event Driven Executive allows you to read from and write to a screen that
appears on a terminal. A person at a terminal can supply data to a program and the
program can display information on the terminal screen. EDX allows you to use
two types of screens: roll screens and static screens.

This chapter describes:
* When to use roll screens
e When to use static screens
¢ Differences between static screens and roil screens
¢ Reading from and writing to roll screens
¢ Reading from and writing to static screens
¢ Designing device-independent static screens
e Reading from and writing to a 3101, 3151, 3161, 3163, or 3164 Display terminal.

Note: The procedures for a 3151, 3161, 3163, or 3164 terminal may differ from the
procedures for a 3101 terminal. The notations to the examples explain the
differences in the procedures. However, the procedures in this chapter that describe
the 3101 terminal also apply to the 3151, 3161, 3163, and 3164 terminals running in
3101 emulation mode.

This chapter shows how to write a program to read five data items from a screen
and write them back to the screen. The chapter shows how to use each kind of
screen (roll and static).

You can generally code terminal programs using either roll or static screens.
However, each screen offers distinct advantages for certain types of programs.

When to Use Roll Screens

A roll screen is similar to a typewriter. The system reads or writes data line-by-line,
starting with line 0 at the top of the screen and ending with line 23 at the bottom of
the screen. You can use roll screens to read or write a single data item.

A program that uses roll screens usually prompts the operator for data, waits for an
operator response, and checks the validity of the input data. Roll screens are best
suited for application programs in which:

¢ A simple question-and-answer dialogue occurs between program and operator.
¢ A single line is sufficient for each response.
¢ An incorrect response requires only a reprompt.

¢ You want to use a minimum of processor storage.

In addition, the terminal may support roll screens only.

Chapter 8. Reading Data from and Writing to Screens 8-1

Reading Data from and Writing to Screens

Roll screen dialogue is relatively easy to code and requires little program
preparation. You can code prompts in a tree structure where the choice of the next Y
prompt depends on the reply to past prompts. @

You can print more than one line of text to introduce a prompt. For example, you
might want to offer the choice of several programs to be loaded, each of which may
choose to continue the dialogue at the same terminal. You can also display more
than one line of text in a program reply.

When to Use Static Screens

A static screen represents a page of information. The system reads or writes an
entire screen at once. A static screen allows a terminal operator to modify an entire
screen image before entering the data. You can use static screens to read or write
several data items at one time.

Programming for static screens involves managing the entire screen as a series of
protected and unprotected fields. A protected field is an area that contains an
operator prompt or an input field name. It is protected from being accidentally
changed by the operator. An unprotected field is an area that is to be filled in by the
operator. ~

Static screens are best suited for programs in which:

¢ The dialogue involves a series of full screens.
¢ More than one line of response may be required.
¢ You need to determine cursor position or manipulate the cursor. AN
¢ You need to write protected fields. N
¢ You need attribute characters such as blinking and nondisplay.
¢ The unprotected fields may be scattered across the screen and interspersed with
the protected fields.
e Many related data fields are to be entered at one time.

e Medium to large amounts of data accompany each prompt, operator response,
or program reply.

You can manage static screens most easily by using the $IMAGE utility to define
your screens. SIMAGE places the screens on direct access storage. The program
then can read them into processor storage. SIMAGE subroutines and terminal I/O
statements allow you to read the screen into the application program, display it at
the terminal, position the cursor, scatter read or write unprotected fields, and wait
for a response.

Differences Between Static Screens and Roll Screens

8-2 SC34-0943

Static screens differ from roll screens in the following ways:

 Forms-control operations that would cause a page-eject for roll screens simply
wrap around to the top for static screens.

¢ On static screens, the system performs no automatic erasure.

Reading Data from and Writing to Screens

* Input operations directed to static screens normally are executed immediately.
This allows the program to read selected fields from the screen after the operator
modifies the entire display. A program can issue the WAIT KEY instruction to
wait for the operator to respond. The operator can signal the program with the
program function (PF) keys.

¢ To allow convenient operator/program interaction, QUESTION, READTEXT,
and GETVALUE instructions which include prompt messages are executed as if
they were directed to a roll screen (automatic task suspension for input).

¢ On static screens, the “at sign” character @ is a data character. On roll screens,
it indicates a new line.

Reading and Writing One Line at a Time

Reading and writing a single line from a terminal screen involves reading the data
item from a roll screen and writing or displaying the data item on the screen.

To read and write to a roll screen:

1. Reserve storage for data.
2. Read a data item.
3. Write a data item.

Reserving Storage for the Data
To reserve storage for a data item that you will read, you must know its maximum
length. To reserve storage for a text string of 30 characters, use the TEXT statement
as follows:

NAME TEXT LENGTH=30

The name of the storage is NAME. The next section describes how to put a data
item into NAME.

Reading a Data Item
To read a data item from a roll screen, you can use either the READTEXT or
GETVALUE instruction. The READTEXT instruction allows you to read a text
string. The GETVALUE instruction allows you to read one or more numbers.

To read a data item into a storage area, use the READTEXT instruction as follows:
READTEXT NAME, 'NAME:"',SKIP=1,MODE=LINE

The instruction displays the prompt NAME: and the system waits for a response.
When the operator enters a name and presses the enter key, the system stores the
text string in an area called NAME.

The operand SKIP =1 causes the system to skip one line before displaying the
prompt. The operand MODE = LINE allows blanks in the response. Since most
names contain at least one blank, you must code MODE =LINE to read the entire
name.

Chapter 8. Reading Data from and Writing to Screens 8-3

Reading Data from and Writing to Screens

Writing (Displaying) a Data ltem
Writing (or displaying) a data item involves transferring the data item from storage
to the terminal screen. You can use either the PRINTNUM or PRINTEXT s
instruction to transfer data to the terminal screen. The PRINTNUM instruction
transfers one or more numbers. The PRINTEXT instruction transfers a text string.

To display the data item called NAME, use the PRINTEXT instruction as follows:
PRINTEXT NAME,SKIP=3

The operand SKIP =3 causes the system to skip three lines before displaying
NAME.

Example
Prompt the operator for five data items: name, address, city, state, and zip code.
Then display the five data items. Read from and write to the terminal that loaded
the program.

TEST PROGRAM BEG
BEG EQU *

READTEXT NAME, ' NAME: *,SKIP=1,MODE=LINE

3 READTEXT ADDR, ' ADDRESS: * ,MODE=LINE
READTEXT CITY,' CITY:',MODE=LINE
READTEXT ST, STATE:'
READTEXT ZIP,' zZ1p:"

PRINTEXT NAME,SKIP=3

5 PRINTEXT ADDR,SKIP=1

PRINTEXT CITY,SKIP=1

ﬂ PRINTEXT ST,SPACES=1 @

PRINTEXT ZIP,SPACES=2 =
PROGSTOP

NAME TEXT LENGTH=30

ADDR TEXT LENGTH=30

CITY TEXT LENGTH=30

ST TEXT LENGTH=2

Z1P TEXT LENGTH=5
ENDPROG
END

Begin the program and execute the instruction at label BEG.

E Prompt the operator for the name and read the operator’s response. Allow
spaces in the name (MODE = LINE), skip one line (SKIP=1), and store the
response in NAME.

Prompt the operator for the address and read the operator’s response. Allow
spaces in the name (MODE = LINE) and store the response in ADDRESS. Because
the program writes to a roll screen, the prompt appears one line below the prompt
for name.

ﬂ Display the data item in NAME. Skip three lines before displaying (SKIP =3).

Display the data item in ADDR. Skip to the beginning of the next line before

displaying (SKIP=1). C
¥

ﬂ Display the data item in ST. Leave one blank space to the right before
displaying (SPACES=1).

8-4 s5C34-0943

Reading Data from and Writing to Screens

Executing the Example

If you entered, compiled, link edited, and loaded the example, the system would
issue a prompt for each data item. After entering each data item, press the enter
key. After you enter the last data item (zip code) and press enter, the system
displays the data items.

After you enter all five data items, the screen might look like this:

ROSE PETERSON =
:11 CYPRESS CREEK RD.

When you press the enter key, the program displays the name and address as
follows:

Note: Even though CITY is 30 characters long, the system displays only the actual
length of the data.

Two Ways to Use Static Screens

Reading and writing an entire screen at once involves using static screens. The
Event Driven Executive provides two methods to define static screens.

The first method requires that the format of the screen be defined within the
program. Any change to the screen requires a change to the program.

In addition, programs that use this method are usually not device independent. In
other words, a program that contains instructions that define a static screen may
execute successfully on a 4978, 4979, or 4980 terminal and not execute on a 3101,
3151, 3161, 3163, or 3164 terminal.

The sections called “Coding the Screen within a Program™ on page 8-6 and
“Transferring an Entire Screen Image at Once” on page 8-10 describe the first
method.

The second method for defining screens involves defining the screen with the
$IMAGE utility and saving it in a data set. This method allows more than one
program to use the same screen. In addition, a change to the screen does not
necessarily require a change to each program that uses it.

Finally, you can write programs that are device independent; they execute
successfully on 4978, 4979, 4980, 3101, 3151, 3161, 3163, or 3164 terminals. For
information on designing static screens that you can use on these terminals, see
“Designing Device-Independent Static Screens” on page 8-24.

Chapter 8. Reading Data from and Writing to Screens 8-5

Reading Data from and Writing te Screens

The section called “Writing the Screen Image to a Data Set” on page 8-15 describes
the second method.

For more information on coding static screens, see Appendix C, “Static Screens and
Device Considerations.”

Coding the Screen within a Program

This section describes reading data from and writing data to a static screen.
Instructions in the program create the static screen.

For more information on static screens, see Appendix C, “Static Screens and Device
Considerations.”

This section describes one way to code a static screen within a program. For
another way to define a screen within a program, see “Transferring an Entire Screen
Image at Once” on page 8-10.

This section focuses on a sample program, describing the instructions in the same
sequence that they appear in the program.

The sample program:
1 Defines the screen as static
2 Gets exclusive access to the terminal
3 Erases the screen
4 Reserves storage for data
5 Prompts the operator for a data item
6 Positions the cursor
7 Waits for a response
8 Reads a data item

9 Writes a data item.

Defining a Screen as Static

8-6 SC34-0943

To define a screen as a static screen, use the IOCB statement as follows:
TERM I0CB SCREEN=STATIC

This statement defines the loading terminal as a static screen. The label TERM
defines the name you will use in other instructions in the program.

For information on defining logical screens, see Appendix C, “Static Screens and
Device Considerations.”

O

C

Reading Data from and Writing to Screens

Getting Exclusive Access to the Terminal

Before you can use a terminal as a static screen, you must get exclusive access to it.
Use the ENQT instruction as follows:

ENQT TERM

The operand TERM is the name you used to define the terminal in an IOCB
instruction.

Erasing the Screen

Before you code instructions that prompt the operator for data, you should erase the
screen. To erase the screen, use the ERASE instruction as follows:

ERASE MODE=SCREEN,TYPE=ALL,LINE=0

The operand LINE =0 tells the system to begin erasing on line 0 (the first line) of
the screen. The operand MODE =SCREEN causes the system to erase to the end of
the screen. The operand TYPE = ALL allows the system to erase both protected and
unprotected data.

Reserving Storage

To reserve storage for a data item that you read, you must know its maximum

length. To reserve storage for a text string of 30 characters, use the TEXT statement
as follows:

NAME TEXT LENGTH=30

: The name of the storage is NAME. The READTEXT instruction transfers the data
C) item containing the name into this area of storage.

Prompting the Operator for a Data ltem

One way you can display information on a static screen is by issuing PRINTEXT
instructions. For example, to prompt the operator for a name, use the PRINTEXT
instruction as follows:

PRINTEXT 'NAME: ',LINE=1,PROTECT=YES

The instruction displays the prompt NAME. The operand LINE=1 causes the
system to display the prompt on the second line of the screen. (The lines on a screen
are numbered 0 —23 and the columns are numbered 0 —79.) The operand
PROTECT =YES causes the prompt NAME: to be protected. A protected field
cannot be changed by the operator.

Positioning the Cursor

If you use PRINTEXT instructions to prompt the operator for several data items,
you would probably want to position the cursor after the first prompt. To position
the cursor, you need two instructions: a PRINTEXT instruction and a
TERMCTRL instruction:

PRINTEXT LINE=1,SPACES=13
TERMCTRL DISPLAY

Chapter 8. Reading Data from and Writing to Screens 8-7

Reading Data from and Writing to Screens

The operands LINE =1 and SPACES =13 cause the system to position the cursor on
the fourteenth space of line 1 (the second line). (The lines of a screen are numbered
0 through 23.)

Since the PRINTEXT instruction actually accumulates output in the system buffer,
the TERMCTRL instruction is required to cause the cursor to be positioned.

Waiting for a Response

After you issue all the prompts, you must wait for the operator to respond. To wait
for a response, use the WAIT instruction as follows:

WAIT KEY

The operand KEY means that the program will wait until the operator presses either
the enter key or one of the Program Function (PF) keys.

Reading a Data Item

Reading a data item involves issuing a READTEXT instruction for each data item
you want to read. The READTEXT instruction might look like this:

READTEXT NAME,LINE=1,SPACES=13,MODE=LINE

The instruction reads the data item into the storage area called NAME. The
operands LINE=1 and SPACES=13 cause the system to look for the data starting
in the fourteenth position of the second line of the screen. The operand
MODE=LINE allows the data to contain blanks.

Writing a Data ltem

8-8 SC34-0943

Writing a data item means transferring a data item from a storage area to the screen.
A PRINTEXT instruction might look like this:

PRINTEXT NAME,LINE=11

The instruction writes the data item from the storage area called NAME. The
operand LINE =11 causes the system to display the data starting in the first position
of the twelfth line of the screen.

If you want to display another data item on the next line, you can use the SKIP
operand as follows:

PRINTEXT ADDR,SKIP=1
The SKIP =1 causes the system to skip to the first position of the next line.

To leave spaces between one data item and another, use the SPACES operand as
follows:

PRINTEXT CITY,SPACES=2

The SPACES =2 operand causes the system to leave two blanks between the
previous data item and CITY.

.

Reading Data from and Writing to Screens

Example
Prompt the operator for five data items: name, address, city, state, and zip code.
0 Then display the five data items.
I8 TEST PROGRAM BEG
rd TERM I0CB SCREEN=STATIC
K} BEG ENQT TERM
4 ERASE MODE=SCREEN,TYPE=ALL,LINE=0
5 PRINTEXT ' NAME:',LINE=1,PROTECT=YES
6 PRINTEXT ' ADDRESS: ' ,SKIP=1,PROTECT=YES
PRINTEXT ' CITY:',SKIP=1,PROTECT=YES
PRINTEXT STATE: ' ,SKIP=1,PROTECT=YES
PRINTEXT ' ZIP:',SKIP=1,PROTECT=YES
7 PRINTEXT LINE=1,SPACES=13
8 TERMCTRL DISPLAY
9 WAIT KEY
10 READTEXT NAME,LINE=1,SPACES=13,MODE=LINE
11 READTEXT ADDR,LINE=2,SPACES=13,MODE=LINE
READTEXT CITY,LINE=3,SPACES=13,MODE=LINE
READTEXT ST,LINE=4,SPACES=13
READTEXT ZIP,LINE=5,SPACES=13
PRINTEXT NAME,LINE=11
13 PRINTEXT ADDR,SKIP=1
PRINTEXT CITY,SKIP=1
PRINTEXT ST,SPACES=1
PRINTEXY ZIP,SPACES=2
15 TERMCTRL DISPLAY
16 DEQT
PROGSTOP
C@) NAME TEXT LENGTH=30
s ADDR TEXT LENGTH=30
CITY TEXT LENGTH=30
ST TEXT LENGTH=2
ZIP TEXT LENGTH=5
ENDPROG
END
Begin the program and execute the instruction at label BEG.
Define the screen as static.
Get exclusive use of the terminal.
I Erase the screen. Erase the entire screen (MODE = SCREEN), including
protected and unprotected fields (TYPE=ALL), and begin on the first line of the
screen (LINE=0).
Prompt the operator for name. Display the prompt on the second line of the
screen (LINE=1) and prevent the operator from overlaying the prompt
(PROTECT =YES).
B Prompt the ‘operator for address. Display the prompt one line below the
previous prompt (SKIP=1) and prevent the operator from overlaying the prompt
(PROTECT =YES).
m Position the cursor on the fourteenth space (SPACES =13) of the second line of

the screen (LINE=1).

Chapter 8. Reading Data from and Writing to Screens 8-9

Reading Data from and Writing to Screens

E Cause the cursor to be positioned (the previous PRINTEXT instruction
accumulates output in the system buffer). O\
/

n Wait for the operator to respond to the prompts. Resume execution when the
operator presses either the enter key or one of the Program Function keys.

Read the first data item. Look for the data in the fourteenth space
(SPACES =13) of the second line of the screen (LINE=1) and allow blanks in the
data (MODE=LINE).

Read the second data item (address). Look for the data in the fourteenth space
(SPACES =13) of the third line of the screen (LINE=2) and allow blanks in the
data (MODE =LINE).

Display the data item NAME. Begin displaying the data on the first position
of the twelfth line of the screen (LINE=11).

Display the data item ADDR. Begin displaying the data on the first position
of the next line (SKIP=1). (In this example, ADDR would appear on the thirteenth
line of the screen.)

Display the data item ST. Begin displaying the data after leaving one space
(SPACES=1). (In this example, data item ST would appear one space to the right
of data item CITY.)

Cause the data in ZIP to be displayed. (The data in ZIP remains in the system
buffer until you issue this instruction or end the program with a PROGSTOP.) @

Relinquish exclusive use of the terminal.

Transferring an Entire Screen Image at Once

8-10 SC34-0943

This section describes a technique for transferring an entire screen to the display in
one 1/O operation.

This section shows how to:
1 Define protected and unprotected fields.
2 Define the screen.
3 Erase the screen.
4 Construct a screen image.
5 Read a series of data items.

6 Release the terminal.

Reading Data from and Writing to Screens

Defining Protected and Unprotected Fields

J The format of a 4978, 4979, or 4980 screen is defined as each character is written to
Y the terminal. Fields are defined as follows:

* Each character or group of characters written with PROTECT = YES defines a
protected field.

* Fach character or group of characters written without PROTECT = YES defines
an unprotected field.

¢ Null characters (X'00') can never be protected, so both protected and
unprotected fields can be defined by writing data containing interspersed nulls
with PROTECT =YES.

Once the fields of a screen have been defined, the 4978, 4979, or 4980 knows
internally whether each of the 1920 positions on the screen is protected or
unprotected; this is transparent to the user.

On the 4978, 4979, or 4980 there are two ways to write and read unprotected fields.
The first is to read/write all the unprotected fields with one input/output operation.
All the unprotected fields can be filled with data by one “scatter write” operation
(PRINTEXT MODE=LINE). The unprotected fields can be read using one
“gather read” operation (READTEXT MODE =LINE). The other way is to read
or write individual fields by specifying screen coordinates (the LINE= and
SPACES = parameters).

Defining the Screen
O To define a screen as static, use the IOCB statement as follows:

SCREEN I0CB SCREEN=STATIC,BOTM=11, : C
BUFFER=BUFF ,RIGHTM=959

This statement defines the loading terminal as a static screen. The label SCREEN is
the name you will use in other instructions in the program. The operand

BOTM =11 defines the last usable line on the page as line eleven (the twelfth line).
The operand RIGHTM =959 defines the last usable character position on the screen
as the 959th position. The number 959 is the size of the buffer (BUFF is 960 bytes
long) minus one.

Erasing the Screen

Before you code instructions that prompt the operator for data, you should erase the
screen. Use the ERASE instruction as follows:

ERASE TYPE=ALL,LINE=0
The operand TYPE=ALL tells the system to erase both protected and unprotected

data. The operand LINE =0 tells the system to begin erasing on line 0 (the first
line) of the screen.

Chapter 8. Reading Data from and Writing to Screens 8-11

Reading Data from and Writing to Screens

Constructing a Screen Image
To construct a screen image that minimizes screen flicker, you can concatenate a :
series of protected fields. The following instructions display an array of integers on @
the first six lines of the screen (lines 0 —5).

DO 96, INDEX=1
PRINTEXT 'FIELD',PROTECT=YES
PUTEDIT FORMAT1,VALS, ((I)),PROTECT=YES
PRINTEXT ' ',PROTECT=YES
PRINTEXT NULLS,PROTECT=YES
ENDDO
PRINTEXT LINE=0

Begin a DO loop to construct the screen image. The screen image consists of 96
protected fields of the form FIELDxx, where xx is a sequential field number, each
followed by one protected blank and two unprotected data positions.

Put the literal FIELD in the buffer.

Convert the sequence number to two EBCDIC characters and write it to the
buffer.

B Insert a protected separation character.

Define the data position with two null characters. Null characters generate

unprotected fields. The operand PROTECT =YES is necessary to preserve

concatenation. (You can concatenate a series of fields only if the fields are all

protected (PROTECT = YES) or all unprotected (PROTECT =NO).) ((\
T

[Write the concatenated line to the screen. (Any line control character causes the
system to display the concatenated fields.)

Reading a Series of Data ltems
To read a series of data items, use the READTEXT instruction as follows:

READTEXT VALS,MODE=LINE,LINE=6

The instruction does a “gather read,” reading all the values beginning on line 6 (the
seventh line) of the screen into VALS. The operand MODE = LINE indicates the

gather read.

Releasing the Terminal
' To release the terminal, use the DEQT instruction:

DEQT

The instruction releases the buffer designated in the IOCB statement and restores the
configuration to that defined by the TERMINAL statement.

8-12 sC34-0943

Example

Reading Data from and Writing to Screens

Line-oriented input/output instructions provide a straightforward way to construct
and read data from static screens. However, when individual data fields on the
4978, 4979, or 4980 are accessed frequently, excessive screen flicker can result. This
problem can be eliminated by transferring an entire screen image to the display with
one I/O operation. The following program shows this technique.

The program accesses the top six lines of a static screen and initially formats the
screen with a sequence of protected fields. An array of integers is displayed on lines
0—5 of the screen and a pause is executed to allow the operator to enter a new set
of values in corresponding positions of lines 6 —11. The new values are then
displayed on lines 0 —5 of the screen.

In this program, terminal I/O operations are performed through concatenation of
TEXT strings. If the application requires more complex formatting of the screen
image, or if input of more than 254 bytes at a time is necessary, then direct access to
the buffer is appropriate. See the PRINTEXT and READTEXT instructions in the
Language Reference for details.

DISPLAY PROGRAM BEGIN

SCREEN IOCB SCREEN=STATIC,BOTM=11, C
BUFFER=BUFF,RIGHTM=959
I DATA F'o'
BUFF BUFFER 960,BYTES
DATA X'0202'
NULLS DATA X'0000'
NUMS DATA 48F'0!
VALS TEXT LENGTH=254
BEGIN ENQT SCREEN
ERASE TYPE=ALL,LINE=0
DO 96, INDEX=I

PRINTEXT 'FIELD',PROTECT=YES

PUTEDIT FORMAT1,VALS,((I)),PROTECT=YES
PRINTEXT ' ',PROTECT=YES

PRINTEXT NULLS,PROTECT=YES

ENDDO
PRINTEXT LINE=0
IR WRITE PUTEDIT FORMAT1,VALS,((NUMS,48)), C
ACTION=STG
PRINTEXT VALS,MODE=LINE,LINE=0
PRINTEXT LINE=6,SPACES=8
17 TERMCTRL DISPLAY
18 WAIT KEY
19 GOTO (TRANSFER,QUIT) ,DISPLAY+2
¥{:R TRANSFER READTEXT VALS,MODE=LINE,LINE=6
21 GETEDIT FORMAT1,VALS,((NUMS,48)), C
ACTION=STG
22 ERASE LINE=6 ,MODE=SCREEN, TYPE=DATA
23 GOTO WRITE
Py QUIT DEQT
PROGSTOP
FORMAT1 FORMAT (I2)
ENDPROG
END

Define the static screen with the terminal I/O buffer to be in the application
program at BUFF, with a length of 960 bytes (half of the 4979 display screen).

Chapter 8. Reading Data from and Writing to Screens 8-13

Reading Data from and Writing to Screens

8-14 SC34-0943

Allocate storage for the buffer. Note that in this program the buffer is never
accessed directly; the space is merely allocated here for use by the supervisor.

and Define a TEXT message consisting of two null characters (EBCDIC
code X'00%).

n and Define the array of integers (initially zero) and the TEXT buffer that
will be used for output of the data in EBCDIC form.

B and Acquire the terminal, erase all data and establish the screen position for
the first I/O operation. Since several text strings will be concatenated to form the
first output line, the screen position must be established in advance.

B Begin a DO loop to construct the initial screen image. This will consist of 96
protected fields of the form FIELDxx, where xx is a sequential field number, each
followed by one protected blank and two unprotected data positions. Note the
conditions required for forming a concatenated line: the protect mode of the
PRINTEXT instructions must not change (either all PROTECT =YES or all
PROTECT = NO), and no intervening forms control operations can be executed.
The TERMCTRL DISPLAY instruction prints the contents of the terminal buffer.

Bl Write “FIELD” to the buffer.

Convert the sequence number to two EBCDIC characters and write it to the
buffer.

Write a protected separation character.
Write the two null characters to define the data positions. Null characters
always generate unprotected positions on the screen; however, PROTECT = YES is

required here in order to maintain concatenation.

Write the concatenated line to the display. Any convenient line control
operation or the DEQT instruction will accomplish this.

Convert the integer array to two-character EBCDIC values and store the
resulting line in the TEXT buffer VALS.

Write the values into successive unprotected positions of the display beginning
at LINE=0,SPACES=0. This “scatter write” operation is defined by
MODE = LINE; without MODE =LINE the protected fields of the display would be
overwritten.

Define the cursor to be at the first unprotected position.

Display the cursor at its defined position.

Wait for the operator to press an interrupt key.

Go to QUIT if PF1 was pressed. Go to TRANSFER if the ENTER key or
any key other than PF1 was pressed.

Reading Data from and Writing to Screens
Read the updated values entered by the operator in lines 6 —11.
MODE =LINE indicates a “scatter read.”

Convert the EBCDIC representations to binary and store the binary values in
the array NUMS.

Erase the unprotected (data) fields in lines 6 — 11 of the screen.
Repeat beginning at the label WRITE.

Release the terminal. The buffer designated in the IOCB will be released and
the screen configuration restored to that defined by the TERMINAL statement.

Writing the Screen Image to a Data Set

This section shows how to create a screen image and use it in a program. The
approach assumes that you want to write a program that can execute on different
terminals.

For information on writing terminal-independent static screens, see “Designing
Device-Independent Static Screens” on page 8-24. For more information on writing

a screen image to a data set, see Appendix C, “Static Screens and Device
Considerations.”

Writing a screen to a data set and using it in a program requires that you do the
following things:

I Create the screen.

Define the screen as static.

Read the screen into a buffer.

Get exclusive access to-the terminal.
Display the screen and position the cursor.
Reserve storage for data.

Wait for a response.

Read a data item.

o G NN QN U AW oN

Write a data item.

~
S

Link edit the program.

Chapter 8. Reading Data from and Writing to Screens 8-15

Reading Data from and Writing to Screens

Creating a Screen

To create a screen image, use the SIMAGE utility as follows:

1

From the session manager, select option 4 (TERMINAL UTILITIES) from
the primary option menu.

Then select option 4 ($IMAGE). This option loads the SIMAGE utility.

Define a null character when the COMMAND(?) prompt appears by entering:

You will use the null character to define unprotected fields. Unprotected fields
are the fields in which the operator will enter data.

Define the screen dimensions as 24 by 80 (full screen) by entering:

- DIMS 24 80

5 Enter the command EDIT. A blank screen appears.

Press the PF1 key to enter define protected fields mode. While in define
protected fields mode, you can define the screen. ({\\

Enter the text for your screen image. Enter the fixed part of the screen exactly
as you want it to appear on the screen. The fixed fields are called protected
fields. Use the null character (#) to define the unprotected data fields.

An example of how the screen might look follows:

idsddsdssaaaaadbddia g andi
i diaasddddasddssdadiaat dddsd
FHEfH R AR AR R R

8 Press the enter key after you complete the design of your screen image. The
enter key takes you out of define mode.

9 Press the PF3 key to return to the SIMAGE command mode.

8-16 SC34-0943

C

Reading Data from and Writing to Screens

1 0 Save your new screen image in data set APOSCSCR on volume EDX002 by
entering:

SAVE APBBCSCR, EDX002

11 i response to the message:

reply N if you want to save only a 4978/4979/4980 screen image. Reply Y to
this message if you are using the ATTR command of $IMAGE to define a
31xx screen image. Refer to the Operator Commands and Utilities Reference
for details on the ATTR command of SIMAGE.

Note: A 31xx screen image is used for a 3101, 3151, 3161, 3163, or 3164
terminal in block mode.

12 After the system saves the screen, use the EN command to end the SIMAGE
utility.

For more information on creating a screen image, refer to the Language Reference.

Defining the Screen as Static

To define a screen as static, use the IOCB statement as follows:

TERM I0CB SCREEN=STATIC,
BUFFER=IOBUF,
OVFLINE=YES,
LEFTM=0,
RIGHTM=79,
TOPM=0,
BOTM=23

> > > X X X

This statement defines the loading terminal as a static screen. The label TERM
defines the name you will use in other instructions in the program. The BUFFER
operand identifies IOBUF as the buffer that will be associated with the screen. The
OVFLINE operand tells the system to continue a line that exceeds the right margin
on the next line. The next four operands (LEFTM, RIGHTM, TOPM, and BOTM)
define the static screen as the entire physical screen (lines 0 —23 and columns 0—79).

Note: Remember that to continue a line, the continued line must begin in column
16.

For information on defining logical screens, see Appendix C, “Static Screens and
Device Considerations.”

Chapter 8. Reading Data from and Writing to Screens 8-17

Reading Data from and Writing to Screens

Reading the Screen Image into a Buffer
To read the screen you have created, you need to do the following things: @

1 Code the name and volume of the screen in a TEXT statement:
DSNAME TEXT ‘'APO8CSCR,EDX002Z!

This TEXT statement refers to data set APOSCSCR on volume EDX002. This
data set contains the screen you saved when you used the SIMAGE utility.

2 Reserve storage for the screen with a BUFFER statement:
DISKBFR BUFFER 1024,BYTES

The amount of storage you reserve depends on how many bytes SIMAGE
used to store the screen image. For example, if SIMAGE used 900 bytes to
store a screen image, use 1024 bytes (the next highest 256-byte increment). See
“Coding for Device Independence” on page 8-26 for more information about
calculating additional buffer requirements for $IMAGE for the 3101, 3151,
3161, 3163 and 3164 terminals.

3 Specify the type of image data set you have created or specify four blank
characters for the data stream of the terminal type:

TERMTYPE DATA C' '

The type of image data set refers to the way you stored the data set. The
system always saves a 4978/4979/4980 screen image. You may, however,
choose that the system also save 31xx screen information.

Note: A 31xx screen image is used for a 3101, 3151, 3161, 3163, or 3164 AN
terminal in block mode. @

4 Use the CALL instruction to read the screen:
CALL $IMOPEN, {DSNAME), (DISKBFR), (TERMTYPE)

The $SIMOPEN subroutine reads the screen from the data set defined by
DSNAME and puts the screen into DISKBFR. TERMTYPE refers to the
DATA statement that defines the type of image data set.

Getting Exclusive Access to the Terminal
Before you can use a terminal as a static screen, you must get exclusive access to it.
Use the ENQT instruction as follows:

ENQT TERM

The operand TERM is the name you used to define the terminal in the IOCB
instruction.

8-18 sC34-0943

Reading Data from and Writing to Screens

Displaying the Screen and Positioning the Cursor
Displaying the screen and positioning the cursor involves three instructions.

The first instruction, the CALL $IMPROT instruction, prepares the protected fields
for display:

CALL $IMPROT, (DISKBFR), (FTABLE)

The presence of the third operand (in this case, FTABLE) causes the instruction to
construct what is called a field table. A field table shows the location and length of
each unprotected field on the screen. Define the field table as follows:

FTABLE BUFFER 15,WORDS
The field table requires 3 words for each unprotected field.

The second instruction positions the cursor after the first prompt:
PRINTEXT LINE=1,SPACES=9

Finally, the third instruction displays the screen:
TERMCTRL DISPLAY

Reserving Storage for Data
To reserve storage for a data item that you read, you must know its maximum
length. To reserve storage for a text string of 5 characters, use the TEXT statement
as follows:

Z1P TEXT LENGTH=5

The name of the storage is ZIP. This storage area will eventually contain five bytes
of data in our example (the zip code).

Waiting for a Response
After you issue the prompts, you must wait for the operator to respond. To wait for
a response, use the WAIT instruction as follows:

WAIT KEY

The operand KEY means that the program will wait until the operator presses either
the enter key or one of the Program Function (PF) keys.

Chapter 8. Reading Data from and Writing to Screens 8-19

Reading Data from and Writing to Screens

Reading a Data item

Reading a data item involves reading all unprotected data from the screen. Use the
READTEXT instruction as in the following example:

READTEXT IOBUF,MODE=LINE,LINE=0,SPACES=0

The instruction reads all unprotected data into the buffer called IOBUF. The
operands LINE =0 and SPACES =0 cause the system to look for the data starting in
the first position of the screen. MODE = LINE allows for blanks in the input data.

To move each data item into its own storage area, use the following instructions:

MOVEA #1,I0BUF
MOVE NAME, (0,#1), (30,BYTE)

The MOVEA instruction moves the address of IOBUF which contains the
unprotected fields. The MOVE instruction moves the 30 bytes at the start of the
buffer to NAME.

For each additional field, increment register 1 to the next field in IOBUF and move
the field to its data area:

ADD #1,FTABLE+4
MOVE ADDR, (0,#1),(30,BYTE)

The ADD instructions adds the size of the first field (NAME) to register 1. The
MOVE instruction moves the 30 bytes at IOBUF +30 to ADDR.

Writing a Data Item

8-20 sC34-0943

Writing a data item means transferring a data item from a storage area to the screen.
A PRINTEXT instruction might look like this:

PRINTEXT NAME,LINE=11

The instruction writes the data item from the storage area called NAME. The
operand LINE =11 causes the system to display the data starting in the first position
of the twelfth line of the screen.

If you wanted to display another data item on the next line, you could use the SKIP
operand:

PRINTEXT CITY,SKIP=1

The SKIP =1 causes the system to skip to the first position of the next line before
displaying the data item CITY.

To display another data item on the same line, you could use the SPACES operand:
PRINTEXT ST,SPACES=1

SPACES =1 causes the system to skip one space on the same line before displaying
the data item ST.

CW‘:

O

Reading Data from and Writing to Screens

Link Editing the Program

Using the SIMAGE subroutines (SIMOPEN, $SIMDEFN, $SIMPROT, and
SIMDATA) means that you must do one more thing when you link edit the
program. You must reference the SIMAGE subroutines you have used. An
EXTRN statement must be coded for each subroutine name your program
references.

You must supply the linkage editor, SEDXLINK, the following “control
statements”:

AUTOCALL $AUTO,ASMLIB
INCLUDE ASMOBJ,EDX002
LINK APO8C,EDX40 REPLACE END

The first control statement refers to a library of IBM-supplied routines. Unless you
have moved the library, you can code this statement as you see it here.

The second control statement refers to where you put the output of the compiler.
The third control statement says to put the output of the link edit on volume
EDX40, call it APO8C, and replace it if it already exists. END tells SEDXLINK not

to expect any other control statements.

You can either create a data set containing these control statements or enter the
statements “interactively” each time you execute SEDXLINK.

For more information on link editing, see Chapter 5, “Preparing an Object Module
for Execution.”

Chapter 8. Reading Data from and Writing to Screens 8-21

Reading Data from and Writing to Screens

Example
Prompt the operator for name, address, city, state, and zip code. Then display the
five data items. Use the screen APOSCSCR on volume EDX002 (already defined
with the $IMAGE utility).

N TEST PROGRAM BEG

2 EXTRN $IMOPEN, $IMDEFN, $IMPROT, $IMDATA

£ TERM 10CB SCREEN=STATIC, C
BUFFER=I0BUF,OVFLINE=YES,LEFTM=0, C
RIGHTM=79,TOPM=0,B0TM=23

LY BEG CALL $IMOPEN, (DSNAME) , (DISKBFR) , (TERMTYPE)

5 MOVE CODE, TEST+2

6 IF CODE,NE, -1

PRINTEXT 'OPEN ERROR CODE = ',SKIP=1
PRINTNUM CODE

GOTO END
ENDIF
ENQT TERM
CALL $IMPROT, (DISKBFR), (FTABLE)

PRINTEXT LINE=1,SPACES=9

TERMCTRL DISPLAY

WAIT KEY

READTEXT IOBUF,MODE=LINE,LINE=0,SPACES=0
MOVEA #1,I0BUF

MOVE NAME, (0,#1) , (30,BYTE)
ADD #1,FTABLE+4
MOVE ADDR, (0,#1), (30,BYTE)
ADD #1,FTABLE+10
MOVE CITY, (0,#1), (30,BYTE)
ADD #1,FTABLE+16
MOVE ST, (0,#1), (2,BYTE)
ADD #1,FTABLE+22
MOVE Z1P, (0,#1), (5,BYTE)

16 PRINTEXT NAME,LINE=11

17 PRINTEXT ADDR,SKIP=1
PRINTEXT CITY,SKIP=1

18] PRINTEXT ST,SPACES=1
PRINTEXT ZIP,SPACES=2
DEQT

END PROGSTOP

fE] DSNAME TEXT *APOBCSCR, EDX002"

Pl DISKBFR BUFFER 1024,BYTES

728 TERMTYPE DATA C'4978"

yy4 FTABLE BUFFER 15,WORDS
&3] I10BUF BUFFER 1920,BYTES

CODE DC F'o'
NAME TEXT LENGTH=30
ADDR TEXT LENGTH=30
CITY TEXT LENGTH=30
ST TEXT LENGTH=2
ZIP TEXT LENGTH=5
ENDPROG
END

8-22 SC34-0943

O

Reading Data from and Writing to Screens

Begin the program and execute the instruction at label BEG.

Define as external references the $IMAGE subroutines that the program uses.
The linkage editor resolves these external references when you use the autocall
option.

Define the screen as static.

n Read the screen from the data set defined by DSNAME. Put the screen in the
buffer defined by DISKBFR.

B Move the return code that resulted from the $SIMOPEN subroutine to CODE.

B If the return code that resulted from the SIMOPEN subroutine does not indicate
“successful completion,” display an error message and end the program.

Get exclusive use of the terminal.
B} Prepare the protected fields for display.

n Position the cursor on the tenth space (SPACES=9) of the second line of the
screen (LINE=1).

Display the screen.

Wait for the operator to respond to the prompts. Resume execution when the
operator presses either the enter key or one of the Program Function keys.

Read all unprotected data. Look for the data in the first space (SPACES=0)
of the first line of the screen (LINE=0) and allow blanks in the data
(MODE=LINE).

Move the address of the buffer IOBUF) that contains the unprotected data
into register 1.

Move the first 30 characters from the buffer to NAME.
Increment register 1 to point to the next data item (address).

Display the data item NAME. Begin displaying the data on the first position
of the twelfth line of the screen (LINE=11).

Display the data item ADDR. Begin displaying the data on the first position
of the next line (SKIP=1). (In this example, ADDR would appear on the thirteenth
line of the screen.)

Display the data item ST. Begin displaying the data after leaving one space
(SPACES=1). (In this example, data item ST would appear one space to the right
of data item CITY.)

Point to the data set (APO8CSCR on volume EDX002) that contains the screen
created with the SIMAGE utility.

Chapter 8. Reading Data from and Writing to Screens 8-23

Reading Data from and Writing to Screens

Reserve storage for the screen. (Except for screens much larger than the one in
this example, 1024 bytes is enough storage.)

Define the type of image data set to be read. C'4978' allows you to write the
screen to a 4978, 4979, 4980, 3101, 3151, 3161, 3163, or 3164 terminal, regardliess of
what screen image was saved on disk. C'3101' allows you to write the screen to a
3101 terminal if you saved the 31xx screen image. C'3161' allows you to write the
screen to a 3151/3161 if you saved the 31xx screen image. C'3163' allows you to
write the screen to a 3163 if you saved the 31xx screen image. C'3164' allows you
to write the screen to a 3164 if you saved the 31xx screen image. If you code C'

', you can write the screen to whatever terminal has been enqueued.

Reserve storage for the field table.

Reserve storage for the unprotected data.

Designing Device-Independent Static Screens

The following sections mention both the SIMAGE utility and the $IMAGE
subroutines. For a complete description of the SIMAGE utility, refer to the
Operator Commands and Utilities Reference. For descriptions of the SIMAGE
subroutines, see “SIMAGE Subroutines” on page C-3.

Designing Static Screens

8-24

SC34-0943

This section describes how to design terminal independent static screens and
discusses a limitation in compatibility between the terminal types.

The $SIMAGE utility and subroutines treat an unprotected field as a string of
unprotected characters. Unprotected characters are denoted as null characters. If
the SIMAGE null character were the “percent sign” character, (%), then an
unprotected field, eight characters long, could be defined as:

ENTER NAME HERE ==> %%%%%%%%

If you do not place attribute characters around an unprotected field, SIMAGE
automatically inserts the default attribute in 31xx screen images for the 3101, 3151,
3161, 3163, and 3164 terminals. Refer to the Operator Commands and Utilities
Reference for information on the characteristics of the default attribute. If you do
not want to define unique attributes (such as blinking), you can design screens for
the 4978, 4979, or 4980 and use them on 3101, 3151, 3161, 3163, and 3164 terminals
with default attributes.

Reading Data from and Writing to Screens

You can also design 31xx screens with unique attribute characters. In this case, a
31xx screen image is created by SIMAGE as well as a 4978/4979/4980 image. The
31xx information is ignored for display on the 4978, 4979, or 4980. If the “pound
sign” character ,(#), were defined as the blinking attribute, both fields in the
previous example could be made to blink as follows:

#ENTER NAME HERE ==> #%%%%%%%@

On a 3101, 3151, 3161, 3163, or 3164, a blinking, protected attribute byte would
replace the first pound sign and a blinking, unprotected attribute byte would replace
the second pound sign. The pound sign does not change the protect status of the
field, merely its display properties; the “null” character determines whether the field
is protected or unprotected. The screen could be reset to nonblinking by placing the
default attribute (in this case, @) at the end of the protected field.

Compatibility Limitation

This scheme has a limitation because an attribute byte is displayed as a protected
blank. This character, the attribute byte, which precedes a field (protected or
unprotected) is always displayed as a blank on a 3101, 3151, 3161, 3163, or 3164
terminal, even if a protected (nonblank) character appears on a 4978, 4979, or 4980.
For example, the following screen is designed to display the month, day, and year as
MM/DD/YY:

On a 4978, 4979, or 4980, the date would appear as:
10/30/80

On a 3101, 3151, 3161, 3163, or 3164, however, the date would appear as:
10 30 80

The slash characters on the 4978, 4979, or 4980 are replaced by attribute bytes on
the 3101, 3151, 3161, 3163, and 3164. Therefore, screens designed for the 4978,
4979, or 4980 do not have to be changed for use on the 3101, 3151, 3161, 3163, and
3164. However, you have to alter them if you do not want protected characters to
disappear when displayed on a 3101, 3151, 3161, 3163, or 3164.

Chapter 8. Reading Data from and Writing to Screens 8-25

Reading Data from and Writing to Screens

Coding for Device Independence

To achieve static screen device independence between the 4978, 4979, or 4980
Display Terminal and the 3101, 3151, 3161, 3163, and 3164 Display Terminal, you
must use functionally equivalent terminal instructions on the terminals. The
following considerations show one approach which provides some device
independence.

8-26 SC34-0943

Use the 4978/4979/4980 screen images produced by SIMAGE for 4978, 4979,
4980 and 3101, 3151, 3161, 3163, 3164 compatible applications.

Specify an image type of C'4978"' on calls to SIMOPEN.

Specify FTAB on calls to SIMPROT. The FTAB buffer is initialized to describe
each unprotected field on the screen and requires three words per entry.

Use calls to SIMDATA to “scatter write”the unprotected data to either type
terminal.

PRINTEXT MODE = LINE does not produce a scatter write operation on the
3101, 3151, 3161, 3163, or 3164 (as it does on the 4978, 4979, or 4980). A call
to SIMDATA, specifying the FTAB produced by the prior call to SIMPROT
and the user buffer, performs the scatter write operation on the 4978, 4979, or
4980 and simulates the scatter write on the 3101, 3151, 3161, 3163, or 3164.

SIMDATA can be used to write either default unprotected data from the screen
image or user data contained in a user buffer.

For “gather read” operations use:
READTEXT MODE=LINE,TYPE=DATA,LINE=0,SPACES=0

Read operations from the 3101 running in block mode start with the first data
field encountered, beginning with the upper left corner and continuing to the end
of the screen. Specifying LINE =0,SPACES =0 makes the READTEXT from
the 4978, 4979, or 4980 functionally equivalent to the 3101 running in block
mode.

On the 3151, 3161, 3163, and 3164 terminals, if the first position of the screen is
unprotected, unpredictable results will occur when reading the screen. To
achieve static screen independence, ensure that the first character position on the
screen is protected from operator input. The first character should be either an
attribute character or a protected data character on the 3151, 3161, 3163, or
3164, never a null character.

In addition, the 3101 prefixes each field transmitted with three bytes of control
information; this results in a 3101 data stream. The 3151 and 3161 prefixes each
field transmitted with four bytes of control information; this results in a 3161
data stream. The 3163 and 3164 prefix each field transmitted with six bytes of
control information; this results in a 3164 data stream. Although EDX removes
this control information, the user buffer must be large enough to contain the
entire data stream that is transmitted.

®

Reading Data from and Writing to Screens

¢ Using care, individual fields can be changed with:
PRINTEXT MODE=LINE,LINE= ,SPACES=

— When issued to a 3101, 3151, 3161, 3163, or 3164, the PRINTEXT
instruction first writes an attribute byte, followed by the text data. The data
field thus appears displaced one position to the right when compared to the
result of a PRINTEXT issued to the 4978, 4979, or 4980.

To suppress the writing of an attribute byte to the screen, use:
TERMCTRL SET,ATTR=NO

prior to the PRINTEXT(s). After the last PRINTEXT, code TERMCTRL
SET,ATTR=YES. The 4978, 4979, and 4980 ignore these TERMCTRL
instructions.

— Be careful to ensure that the data being sent to the 3101, 3151, 3161, 3163,
or 3164 does not extend beyond one data field; if it does, it will overlay and
eliminate existing attribute characters. Once the screen attributes are
changed, the FTAB no longer represents the screen and $SIMDATA
operations will produce undesired results.

— Writing protected nulls to create additional unprotected 4978, 4979, or 4980
fields is not supported for the 3101, 3151, 3161, 3163, or 3164 running in
block mode. Avoid this practice.

¢ Avoid the combination of “count” and TYPE=DATA in the ERASE
instruction. On the 3101, 3151, 3161, 3163, or 3164, the erase starts at the
current cursor position and continues to the end of screen; the count operand is
ignored.

¢ Avoid the combinations of TYPE =DATA,MODE =LINE and
TYPE=DATA,MODE=FIELD in the ERASE instruction. Although these
combinations work as anticipated on the 4978, 4979, or 4980, the 3101, 3151,
3161, 3163, and 3164 force the MODE = parameter to SCREEN.

¢ Avoid the combination of “count,” TYPE=ALL and MODE=FIELD in the
ERASE instruction. The 3101, 3151, 3161, 3163, and 3164 force
MODE=FIELD to MODE=LINE. The operation ends when the count
reaches zero or the current line ends, whichever occurs first.

¢ To erase unprotected fields that do not end at end-of-line or end-of-screen, use
one of the following techniques:

— Use a PRINTEXT instruction with LINE and SPACES parameters to write
blank characters to each individual field, being careful not to change or
eliminate 3101, 3151, 3161, 3163, or 3164 attribute bytes.

Note: If the screen attributes are changed or eliminated, then the screen
format will no longer match the FTAB and the data will not be directed to
the correct locations on the screen. To re-establish the screen, call
$IMPROT before calling SIMDATA.

— Use READTEXT TYPE=DATA to read all unprotected data from the
screen into a user buffer. Next, blank out (or change) the appropriate fields
in the buffer. Then use the “USER” buffer features of $IMDATA to
rewrite the unprotected data.

Chapter 8. Reading Data from and Writing to Screens 8-27

Reading Data from and Writing to Screens

Using the $IMAGE Subroutines for Device Independence

This section presents a way to write terminal-independent applications that use static
screens. Using this method, the SIMAGE utility creates screen images and stores
them on disk or diskette. Later, your application program can display and use the
images by calling system-provided subroutines. Collectively these subroutines are
called the “SIMAGE subroutines.” See “$SIMAGE Subroutines” on page C-3 for
individual descriptions of each subroutine.

This section describes the basic steps in an application program which displays and
processes a static screen (with a size of 24 lines and 80 characters per line):

¢ Retrieve the screen
¢ Display the protected data

¢ Display and retrieve the unprotected data.

Retrieving the Screen Format

The first step is to retrieve the screen image by calling SIMOPEN. The type
operand of SIMOPEN specifies the type of image to be retrieved. If the type
operand is set to blanks, the image retrieved corresponds to the type of terminal
upon which the program is running, if that image was saved. If a particular screen
image is needed but unavailable, the 4978/4979/4980 format is retrieved and
converted dynamically. For example:

CALL $IMOPEN, (DSNAME) , (FORMAT) , (TERMTYPE)
DSNAME TEXT LENGTH=15 format data set name

FORMAT BUFFER n,BYTES format buffer
TERMTYPE DATA cLg! ! adapt to running terminal

Displaying the Protected Data

8-28 SC34-0943

The screen format itself (the protected data) can be displayed with a call to
$IMPROT.

CALL $IMPROT, (FORMAT) , (FTAB)
FTAB BUFFER n,WORDS field table
The field table (FTAB) is required for the 3101, 3151, 3161, 3163, and 3164

terminals. For a description of the field table, see “SIMPROT Subroutine” on
page C-8.

C

O

Reading Data from and Writing te Screens

Displaying the Unprotected Data

At this point many applications generate and then display some data in the
unprotected fields. On a 4978, 4979, or 4980 you can use PRINTEXT
MODE =LINE to perform a scatter write operation. However, since this is not
supported on a 3101, 3151, 3161, 3163, or 3164, you should use $IMDATA to
perform the scatter write operation and thus preserve device independence.

SIMDATA writes all the unprotected fields in a screen image. You must call
$IMDATA if any of your unprotected fields have the right justify or must enter
characteristics. When directing data to the 3101, 3151, 3161, 3163, or 3164, the field
table generated by SIMPROT must be used. To write default unprotected data, use
the buffer containing the screen image or specify a user buffer containing the
application-provided data.

When SIMDATA is used with a user buffer, the application program must:
¢ Set the characters “USER” in the first four positions of the buffer

e Set the message length, excluding “USER”, in the buffer index word (buffer —4).

MOVE USERDATA,CUSER,DWORD set up user message
MOVE DATALEN,8 set message length

MOVE USERDATA+4 ,MESSAGE, (8,BYTES) get message
CALL $IMDATA, (USERDATA), (FTAB)

[

L

[]
USERDATA BUFFER 12,BYTES,INDEX=DATALEN for user data
MESSAGE DATA CL8'HI THERE' data
CUSER DATA CL4'USER'

Retrieving the Unprotected Data

After the operator has entered data, all the data in the unprotected fields can be read
by a single statement. The 4978, 4979, 4980, 3101, 3151, 3161, 3163, and 3164
support a “gather read” using READTEXT MODE =LINE.

READTEXT SCRNDATA,MODE=LINE

SCRNDATA BUFFER n,BYTES

There are a number of considerations when using a READTEXT with
MODE=LINE and a buffer from a 3101 screen. A READTEXT instruction issued
to the 3101 always reads from the beginning of the screen, regardless of the cursor
position specified by LINE and SPACES. The 3101 has only three read options:
read the entire screen (TYPE =ALL), read all the unprotected fields
(TYPE=DATA), or read only the modified unprotected data
(TYPE=MODDATA). (For more information on 3101 read options, see “Reading
Modified Data on the 3101” on page 8-42).

Chapter 8. Reading Data from and Writing to Screens 8-29

Reading Data from and Writing to Screens

The data will be read and concatenated into the buffer. But the buffer must be large

enough to accommodate the data. On the 3101, the buffer must accommodate the ‘
data plus three bytes (TYPE=DATA and TYPE=ALL) or four bytes @
(TYPE=MODDATA) per unprotected field. On the 3151, 3161, 3163, and 3164

terminals, the buffer must be large enough to accommodate the data plus four bytes
(TYPE=MODDATA) per unprotected field. On the 3151 and 3161, the buffer must
accommodate the data plus four bytes (TYPE=DATA and TYPE=ALL) per

unprotected field. On 3163 and 3164, the buffer must accommodate the data plus

six bytes (TYPE=DATA and TYPE=ALL) per unprotected field. This extra data

includes escape sequences and attribute bytes which are edited out of the buffer

before presentation to the application program (as long as the default of

STREAM =NO is in effect).

Although the 4978, 4979, and 4980 terminals have the capability to read a specific
unprotected field, the 3101, 3151, 3161, 3163 and 3164 do not. To perform a similar
operation, the application can read all the unprotected data and then use the field
table lengths to displace into the buffer and arrive at the desired data field.

Suppressing Attribute Bytes

8-30 SC34-0943

The 4978, 4979, 4980, 3101, 3151, 3161, 3163, and 3164 terminals can do a
PRINTEXT with LINE and SPACES to a specific screen coordinate. However,
issuing this instruction on the 3101, 3151, 3161, 3163, or 3164 affects subsequent 1/O
to the screen. When a PRINTEXT is issued without a previous TERMCTRL
SET,ATTR =NO, the terminal support inserts an attribute byte. This attribute byte
appears as a protected blank at the screen coordinate specified by LINE and
SPACES, and the data follows. Normally, this displaces the data one byte to the
right, and therefore the data writes over the next attribute byte (which usually

describes a protected field). @

For example, assume the screen coordinate 5,5 (LINE = 5,SPACES =5) contains a
ten-byte unprotected field which the application wants to fill with ten Xs. If a
PRINTEXT LINE = 5,SPACES=35 of ten Xs is issued with no previous
TERMCTRL SET,ATTR =NO, then an attribute byte is added and written at
location 5,5 and the tenth X overwrites the next attribute byte for the following
protected field. This leaves the screen with one large unprotected field instead of a
10 byte unprotected field followed by a protected field.

A subsequent READTEXT of the unprotected data will result in much more data
being returned to the application than expected. In addition, the returned data
stream might contain escape sequences and attribute bytes which on a subsequent
PRINTEXT from the same buffer will cause the cursor to act unpredictably. Also,
the data will be written incorrectly on the screen.

To avoid such problems, a TERMCTRL SET,ATTR =NO should always be issued
before a PRINTEXT with LINE and SPACES. A TERMCTRL SET,ATTR=YES
should follow the PRINTEXT.

Reading Data from and Writing to Screens

Converting 4978 Screens
Many 4978-based applications can be converted to run on the 3101, 3151, 3161,
Q 3163, or 3164. In some cases, it is sufficient to convert uses of PRINTEXT
MODE=LINE to calls to $IMDATA. If the application uses READTEXT to
specify screen coordinates with LINE and SPACES, the technique described above
in “Suppressing Attribute Bytes” can be used.

Some screens may require changes because the attribute bytes are displayed as
protected blanks on the 3101, 3151, 3161, 3163, and 3164. See the “Compatibility
Limitation” on page 8-25.

Reading and Writing to a 3101, 3151, 3161, 3163, or 3164

This section describes how to read data from and write data to a 3101, 3151, 3161,
3163, or 3164 Display Terminal. It describes the characteristics of these terminals
and some things you should know when you design programs that use these
terminals.

This section focuses on a sample program, describing the instructions in the same
sequence that they appear in the program. The sample program uses a 3101
terminal, the TERMCTRL instruction to set attribute bytes, and EBCDIC escape
sequences to control data transmission. Wherever similarities exist, notations for the
3151, 3161, 3163, and 3164 terminals have been made. The sample program, which
appears at the end of this chapter:

1 Defines the format of the screen
h
C 2 Enqueues the screen
3 Change the attribute byte
4 Erases the screen
5 Protects the first field
6 Creates unprotected fields
7 Creates protected fields
8 writes a nondisplay field
9 Reads a data item

10 writes a blinking field

(®

Chapter 8. Reading Data from and Writing to Screens 8-31

Reading Data from and Writing to Screens

11 Erases an individual field

12 Blanks a blinking field O
13 Writes more than one data item

14 Prompts the operator for data

1 5 Changes the attribute byte to a protected blank
16 Displays a nondisplay field

1 7 Creates a new unprotected field

18 Reads modified data

1 9 Forces the modified data tag on

20 Reads modified data

21 Erases to the end of the screen

22 Reads all unprotected data

23 Reads a data item.

Characteristics of the Terminal s

Attribute Characters

Transmitting Data

8-32 SC34-0943

The 3101, 3151, 3161, 3163, and 3164 terminals use attribute characters (or bytes) to
define fields on the screen. An attribute byte defines the start of each field and the
properties of the field (such as high/low intensity, underline, or blink). Each
attribute byte appears as a protected blank on the screen.

The collection of attribute characters, special sequences required by the terminal, and
user data is called a data stream. Any invalid (unprintable) characters encountered
in the data stream will cause the terminal to beep. This condition might occur, for

. instance, if you try to display a non-EBCDIC disk or diskette record. The message

“HOST PROGRAM WRONG? is issued if any invalid (unprintable) characters are
encountered in the 3151, 3161, 3163, or 3164 data stream.

On a static screen, the application program must determine where the output data is
positioned, relative to the first position of the screen. When you issue a
READTEXT instruction on a 3101, the system reads the data from the beginning of
the screen. Whether you read all the data, unprotected data, or modified data
depends on how you code the TYPE operand of the READTEXT instruction. See
“Coding for Device Independence” on page 8-26 for more information about using
the READTEXT instruction on the 3151, 3161, 3163, and 3164 terminals.

Reading Data from and Writing to Screens

In response to a read request, the 3101, 3151, 3161, 3163, and 3164 terminals
transmit the attribute characters that precede the input field. To suppress the
attribute characters from the data stream, EDX removes these special characters and
left-justifies the data.

An application program can have complete control of the input/output data
transmitted. T