Series/1

Event Driven Executive

Problem Determination Guide

Version 6.0

SC34-0941-0

i (€
Library Guide and Installation and Operator Commands
Common Index System Generation and

Guide Utilities Reference
SC34-0938 SC34-0936 SC34-0940

9 .

(Por
Language Communications Messages and
Reference Guide Codes
SC34-0937 SC34-0935 SC34-0939

\C _

(@ f
Operation Event Driven APPC
Guide Language Programming Guide

Programming Guide and Reference
SC34-0944 SC34-0943 SC34-0960

0 \

~
Problem Customization Internal
Determination Guide Design
Guide
SC34-0941 SC34-0242 LY34-0364

\S &

Series/1

Event Driven Executive

Problem Determination Guide

Version 6.0

Library Guide and
Common Index

SL34-0838

SC34-0941-0

instaliation and
Svstem Generation
Giuide

8C34-0436

Operator Commands
and
Utilities Heference

8L34-0940

Language
Reference

SC34.0837

Communications
Guide

8C34-0838

Messages and
Codes

SC34-0838

Operation
Guide

8C34-0844

Event Driven
Language
Programming Guide

S5C34-0843

APPC
Programming Guide
and Reference

5034-08860

N

Problem Customization internal

Determination Guide Deasign

Guide

SC34-0941 SC34.0842 LY34-03864
J

First Edition (September 1987)
Use this publication only for the purposes stated in the section entitled “About This Book.”

Changes are made periodically to the information herein; any such changes will be reported in subsequent
revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not
be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Publications are not stocked at the address given below. Requests for copies of IBM publications should be
made to your IBM representative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for readers’ comments
is provided at the back of this publication. If the form has been removed, address your comments to IBM
Corporation, Information Development, Department 28B (5414), P. O. Box 1328, Boca Raton, Florida

33429-1328. IBM may use or distribute any of the information you supply in any way it believes appropriate

without incurring any obligation whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1987

Summary of Changes For Version 6.0

This document contains the following changes:

4956 J and K processors

\

e Chapter 3, “Interpreting the Task Control Block Information” on page 3-8
contains information about the AKR for 3-, 4-, and 5-bit processors

e Chapter 4, “How to Determine the Cause of a Run Loop” on page 4-1 contains
information about the AKR for 3-, 4-, and 5-bit processors

e Chapter 6, “Interpreting the Standard Program Check Message” on page 6-2
contains information about the AKR for 3-, 4-, and 5-bit processors

e Chapter 8, “Exception Entry Format” on page 8-4 contains information about
the AKR for 3-, 4-, and 5-bit processors

Usability Changes

¢ Chapter 9, “Displaying APPC Error Log Information” on page 9-12 contains
APPC error log examples, explanations, and information.

Summary of Changes For Version 6.0 iii

iv SC34-0941

0 Contents

Chapter 1. Some Things You Should Know Abeut Problem Determination 1-1

Chapter 2. Determining the Problem Type 2-1

Some Hints to Determine the Possible Problem Type 2-1
Can You Operate the System After Pressing the Load Button? 2-1
Is the Run Light On and Solidly Lit? 2-1
Is the System or a Program Idle While You Expect Activity? 2-1
Did the System Issue a Program Check Message? 2-1

Chapter 3. Analyzing and Iselating an IPL Problem 3-1

What You Should Check First 3-1

How to Recognize a Problem with the IPL Device 3-1
How to Correct the IPL Text 3-2
How to Reload the Supervisor 3-2

Determining the Failure in a Tailored Supervisor 3-3
Detecting an IPL Stop Code Error 3-3
Finding the Initialization Module in Storage When the Failure Occurred 3-4
Isolating a Failing Terminal Using the Terminal Control Block 3-5
Analyzing the INITTASK Task Control Block 3-6

Chapter 4. Analyzing and Isolating Run Loops 4-1
How to Determine the Cause of a Run Loop 4-1
(:\ How to Identify a Program in a Run Loop 4-2
' Using the $D Operator Command to Identify a Looping Program 4-3

Using the Programmer Console to Identify a Looping Program 4-6

Using SDEBUG to Isolate a Run Loop 4-8
Determining the Starting and Ending Points of the Loop 4-9

Some Common Causes of Run Loops 4-11

Using the Compiler Listing to Locate the Loop 4-12

Examining an Unmapped Storage Area for the Cause of a Loop 4-14

Run Loops Caused by Device Interrupts ~ 4-20

Run Loops Caused by Stack Overflows 4-20

Chapter 5. Analyzing and Isolating a Wait State 5-1
How to Find the Address of the Waiting Instruction Using SDEBUG 5-1
Analyzing the Instruction that Caused the Wait State 5-2

Analyzing an ENQ Instruction 5-2

Common Causes of a Program Wait Using QCBs 5-5

Analyzing an ENQT Instruction 5-6

Analyzing a WAIT Instruction 5-7

Common Causes of a Program Wait Using ECBs 5-8

Other Possible Causes of a Wait State 5-8

Chapter 6. Analyzing and Isolating a Program Check 6-1
How to Interpret the Program Check Message 6-1

Interpreting the Standard Program Check Message 6-2

How to Interpret the Processor Status Word 6-4

Interpreting the Processor Status Word Bits 6-4

m Interpreting the Program Check Message from $SEDXIT 6-7
How to Analyze an Application Program Check 6-11

Examining an Unmapped Storage Area for the Cause of a Program Check 6-15
Some Common Causes of Application Program Checks 6-21

Contents V

vi SC34-0941

How to Analyze a System Program Check 6-21
Analyzing the Program Causing the System Program Check 6-22

»

Chapter 7. Analyzing a Failure Using a Storage Dump 7-1
Interpreting the Dump 7-1
Hardware Level and Register Contents 7-2
Floating-Point Registers and Exception Information 7-5
Segmentation Registers 7-6
Storage Map 7-10
Level Table and TCB Ready Chain 7-12
Terminal Device Information 7-13
Disk, Diskette, and Tape Device Information 7-13
EXIO, BSC, and Timer Information 7-16
Storage Partition Information 7-17
Unmapped Storage Information 7-18
Analyzing a Wait State = 7-24
Analyzing a Program Check 7-30
Analyzing a Run Loop 7-34

Chapter 8. Tracing Exception Information ~ 8-1
Displaying the Software Trace Table 8-1
Software Trace Table Format 8-2
Control Information Format 8-3
Exception Entry Format 8-4
Finding the Program Load Point Address 8-6

Chapter 9. Recording Device I/O Errors and Program Check Information 9-1 ‘
Controlling Error Logging 9-2 @
Changing the Size of the Default Log Data Set 9-3
Printing or Displaying the Log Information 9-5

Printing the Default Log Data Set Using the ERAP Operator Command 9-5

Printing or Displaying a Log Data Set Using the $DISKUT?2 Utility 9-6
Interpreting the Log Information 9-8
Displaying APPC Error Log Information 9-12

Appendix A. How to Use the Programmer Console A-1
Reading the Console Indicator Lights A-2

Displaying Main Storage Locations A-4

Storing Data into Main Storage A-5

Displaying Register Contents A-6

Storing Data into Registers A-6

Stopping at a Storage Address A-7

Stopping When an Error Occurs A-7

Executing One Instruction at a Time A-8

Appendix B. Allowing IBM Access to Your System B-1
Hardware Requirements B-2

Authorizing the Link B-2
Disconnecting the Line B-4

Appendix C. Interpreting a Dump (Example) C-1
Overview C-1

Interpreting The Formatted Control Blocks in a Dump C-2
Interpreting the State of Tasks (TCBs) in the Dump C-10

Appendix D. Conversion Table D-1

Index

X-1

Contents

vii

viil SC34-0941

About This Book

This book is a guide to assist you in determining the causes of problems you may
encounter while using the Event Driven Executive (EDX) operating system. It
explains how to use many of the diagnostic tools available to help you identify
problems. Use this book when the Messages and Codes manual cannot point you to
the source of a problem or the corrective action to take.

Audience

This book is intended for anyone who encounters a hardware or software problem
while using the EDX operating system on the Series/l. The Operation Guide
describes how to record information that may be of help to you when analyzing the
problems discussed in this book.

How This Book Is Organized

This book contains 9 chapters and 3 appendixes:

Chapter 1, “Some Things You Should Know About Problem Determination”
introduces the process of problem determination.

Chapter 2, “Determining the Problem Type” presents some problem symptoms
to help you determine the type of problem you have.

Chapter 3, “Analyzing and Isolating an IPL Problem” describes some
procedures that can help identify the cause of an IPL failure.

Chapter 4, “Analyzing and Isolating Run Loops” explains how to pinpoint the
cause of a run loop in an application program.

Chapter S, “Analyzing and Isolating a Wait State” describes how to determine
the cause of a wait state during normal system operation.

Chapter 6; “Analyzing and Isolating a Program Check” discusses how to
isolate the cause of a system or application program check.

Chapter 7, “Analyzing a Failure Using a Storage Dump” describes how to read
a stand-alone or $TRAP storage dump to isolate failures.

Chapter 8, “Tracing Exception Information” explains how you can isolate the
cause of exceptions by analyzing the software trace table, CIRCBUFF.

Chapter 9, “Recording Device 1/O Errors and Program Check Information”
discusses the use of the $LOG utility to record device I/O errors and program
check messages.

Appendix A, “How to Use the Programmer Console” describes the functions
of the optional Series/l programmer console and how you can use it during
problem analysis.

About This Book 1X

e Appendix B, “Allowing IBM Access to Your System” describes the hardware
requirements and procedures for using the Remote Support Link feature of the f
Event Driven Executive. This feature enables an IBM support center
representative to get direct access to your Series/1 system through a remote

M 1
terminal.

e Appendix D, “Conversion Table” contains a table that shows the hexadecimal,
binary, EBCDIC, and ASCII equivalents of decimal values.

e Appendix C, “Interpreting a Dump (Example)” provides an example of an
interpretation of a dump and analyses of the causes for typical problems.

A Guide to the Library

Refer to the Library Guide and Common Index for information on the design and
structure of the Event Driven Executive library, for a bibliography of related
publications, for a glossary of terms and abbreviations, and for an index to the
entire library.

Contacting IBM about Problems

You can inform IBM of any inaccuracies or problems you find with this book by
completing and mailing the Reader’s Comment Form provided in the back of the
book.

If you have a problem with the IBM Series/1 Event Driven Executive, refer to the ‘
IBM Series/1 Software Service Guide, GC34-0099. @

X SC34-0941

C

Some Things You Should Know About Problem Determination

Chapter 1. Some Things You Should Know About Problem
Determination

Problem determination involves analyzing a software or hardware error. The system
can indicate in various ways that a problem exists. The two most common ways are
by displaying messages on a terminal or by returning a return code to your
application program. By using the Messages and Codes manual before you use this
book, you may be able to determine the type of problem you have and the corrective
action to take. If, however, you cannot determine the type of problem you have or
how to correct it, use this book.

This book can help you isolate the cause of an error and indicate what actions you
need to take to correct the error.

The cause of an error may not always be immediately apparent. An error may occur
in an IBM-supplied software component, a hardware unit, or in an application
program. A software component refers to programs or program modules such as
$SEDXASM, $S1ASM, $SEDXLINK, and the rest of the software you install on your
Series/1. A hardware unit refers to a particular device attached to your Series/1.
Application programs are programs you write.

Some problems you encounter may require you to place a service call. However, by
using this book before you place a call for service:

* You might be able to correct the problem and continue operations.
¢ You might be able to circumvent the problem while you arrange for servicing.

¢ You may find that the problem is caused by equipment or programming other
than that supplied by IBM.

¢ The information you gather can reduce the time it takes to correct the problem
if you do call for service.

EDX provides various aids, such as utilities and operator commands, that help you
to pinpoint the source of a problem. The programmer console, an optional Series/1
hardware feature, enables you to perform more extensive analysis.

Some of the topics presented in this book show the use of the programmer console
in analyzing problems. For more information on using this feature, see

Appendix A, “How to Use the Programmer Console” on page A-l.

To begin investigating your problem, turn to Chapter 2, “Determining the Problem
Type” on page 2-1.

Chapter 1. Some Things You Should Know About Problem Determination 1-1

1-2 SC34-0941

®

Determining the Problem Type

Chapter 2. Determining the Problem Type

Before you begin analyzing a problem, you must determine the type of problem you
have. Some problem types you encounter may be very apparent while others may
not be so apparent. The following section presents some problem indicators and
symptoms to help you determine the problem type.

Some Hints to Determine the Possible Problem Type

To help you determine your problem type, review the following problem indicators
and symptoms. After reviewing these items and finding the indicator or symptom
that best describes your problem, turn to the chapter indicated. The chapter you are
referred to will help you to analyze and isolate the problem.

Can You Operate the System After Pressing the Load Button?
When you press the Load button on your Series/1, the system performs an initial
program load (IPL). When the IPL process ends, the system is ready for use. If you
cannot use the system after attempting an IPL, see Chapter 3, “Analyzing and
Isolating an IPL Problem” on page 3-1.

Is the Run Light On and Solidly Lit?

When the Series/1 performs an operation, the Run light is on. Typically, the Run
light flickers on and off during the operation. However, if you observe that the Run
light remains on with a steady glow, the system or your program may be in a loop.
If this is your problem symptom, Chapter 4, “Analyzing and Isolating Run Loops”
on page 4-1 will help you isolate this problem type.

Is the System or a Program Idle While You Expect Activity?
When the Series/1 is not performing any operation or servicing an interrupt, the
Wait light is on. The Wait light indicates the system is inactive. If, however, you
notice the Wait light on solidly while programs should be active, the system or a
program is probably in a wait state. Another symptom indicating a wait state is that
you do not receive the “greater than” symbol (>) after you press the attention key
on your terminal. If your system or program has these symptoms, see
Chapter 5, “Analyzing and Isolating a Wait State” on page 5-1.

Did the System Issue a Program Check Message?
When the system encounters an abnormal condition, it issues a program check
message. Two kinds of program checks can occur: a system program check or an
application program check. The system displays the program check message on the
$SYSLOG device. The system also records the program check message in a log data
set if $LOG is active.

If you observe a program check message, Chapter 6, “Analyzing and Isolating a
Program Check” on page 6-1, can help you isolate the problem.

Note: If you defined the SYSMSG statement in your SEDXDEF data set, the
messages go to your $SYSLOG terminal, a disk data set, the Communications
Facility log, or any combination of these depending on what you specified in the
SEDXDEF data set. For more information on the SYSMSG statement, refer to the
Installation and System Generation Guide.

Chapter 2. Determining the Problem Type 2-1

2-2 SC34-0941

®

C

Analyzing and Isolating an IPL Problem

Chapter 3. Analyzing and Isolating an IPL Problem

If your system fails to IPL correctly, there are a number of possible causes. This
chapter presents some problem symptoms and procedures that can help you to
identify the failing area and correct the problem.

What You Should Check First

Before you begin troubleshooting the problem, review the items in the following list.
By checking these items first, you may be able to pinpoint the problem immediately:

Is the power switch in the ON position for all devices?

Is the IPL Source switch in the correct position for the device from which you
are trying to IPL?

For diskette IPL, is the IPLable diskette inserted correctly?
For diskette IPL, is the door on the diskette device closed?

If this is a new installation (EDX is not installed) and you are trying to IPL the
starter system, verify with your service representative that all devices are at the
addresses supported in the starter system. Refer to the program directory or the
Installation and System Generation Guide for the device addresses.

If EDX is already installed and the supervisor previously IPLed, does a backup
supervisor (or starter system) IPL from the alternate IPL device? If the alternate
device IPLs, go to the next section “How to Recognize a Problem with the IPL
Device.”

If the starter system IPLs but your tailored supervisor does not IPL, go to the
section “Determining the Failure in a Tailored Supervisor” on page 3-3.

If the previous items do not point out the problem, the problem may lie in the IPL
device, IPL text, the supervisor, or other attached devices. The following sections
describe how to isolate problems in these areas.

How to Recognize a Problem with the IPL Device

If the Load light remains on and you cannot IPL from the primary or alternate IPL
device and you have checked all the items listed under the heading “What You
Should Check First,” call your service representative for corrective action. These
symptoms indicates that the hardware could not read the IPL text (bootstrap
program) from the IPL device. If you have a programmer console, you may also
notice that the console lights display the value X'E0' or X'ES'. The value X'E(Q*
indicates that there is a hardware problem with the IPL device. The value X'ES5'
may indicate either a hardware or software problem.

Chapter 3. Analyzing and Isolating an IPL Problem 3-1

~ Analyzing and Isolating an IPL Problem

If you can IPL from one IPL device, the following procedures can help you
determine if the failure is due to:

No IPL text written when you initialized the disk or diskette

Defective IPL text

IPL text points to an invalid supervisor

¢ Hardware problem on that IPL device.

How to Correct the IPL Text

Use the following procedure to correct the IPL text:
1 set the IPL Source switch to point to the device from which you can IPL.
2 Press the Load button to IPL the system.

3 Load $INITDSK and rewrite the IPL text (Il command) to the failing IPL
device.

4 Set the IPL Source switch to IPL from the failing IPL device.
5 Press the Load button to IPL the system.
If this procedure does not correct the IPL problem, the problem may be with the

supervisor on the failing IPL device or it may be a hardware problem. By reloading

the supervisor, you may correct the problem. The next section describes how to do
this.

How to Reload the Supervisor
Use the following procedure to reload the supervisor:

1 Set the IPL Source switch to point to the device from which you can IPL.
2 Press the Load button to IPL the system.

3 Load $COPYUT]1 and copy (CM command) the IPL supervisor from the
current IPL device to the failing IPL device. Copy also SLOADER and any
initialization modules you require.

4 Load SINITDSK and rewrite the IPL text (II command) to point to the
supervisor you copied to the failing IPL device.

5 Sset the IPL Source switch to IPL from the failing IPL device.
6 Press the Load button to IPL the system.

If this procedure does not correct the IPL problem, you have a hardware problem
with that IPL device. Call your service representative for corrective action.

3-2 SC34-0941

Analyzing and Isolating an IPL Problem

O Determining the Failure in a Tailored Supervisor
‘ Review the following items before you begin analyzing the failure:

¢ Did you receive a —1 completion code (successful) from the system generation
assembly and link-edit?

¢ Did you include all the modules you need (on the INCLUDE statements) to
support the attached devices?

e Are SEDXNUC the first seven characters of the $XPSLINK output?

* Does this tailored supervisor fail to IPL, although it did IPL previously? If it
did IPL previously, go to the section “How to Recognize a Problem with the
IPL Device” on page 3-1.

¢ If this tailored supervisor never did IPL, the following sections may assist you in
isolating the failure. In order to use this information, however, you must have a
programmer console or be able to use the $D operator command (in partition 1)
after the IPL failure.

If you do not have a programmer console but can use the $D operator command (in
partition 1) after the IPL failure, go to the section “Analyzing the INITTASK Task
Control Block” on page 3-6.

If you have a programmer console, begin with the section “Detecting an IPL Stop
Code Error.”

O If you do not have a programmer console and cannot use $D after the failure, use
/ the following procedure:

1 Set the IPL Source switch to IPL from diskette.
2 IPL the starter system.

3 Load $IOTEST and verify all hardware configured and their addresses (LD
command).

4 Review the system generation listing and ensure that you defined all devices
correctly and that you included all modules required to support those devices.

Detecting an IPL Stop Code Error
If the system encountetrs an error during terminal initialization or it encounters an
error within the cross-partition supervisor you are trying to IPL, the error could
cause the system to enter a run loop or a wait state. For example, the error could be
caused by a defective attachment card or perhaps a missing random access memory
load module. When such errors exist, the system issues a stop code. The stop code
can help you identify which area is failing.

This section explains how to determine if the failure is due to a stop code error.
You will need a programmer console to perform this step.

Chapter 3. Analyzing and Isolating an IPL Problem 3-3

Analyzing and Isolating an IPL Problem

To determine if the IPL failed because of a stop code, follow these procedures:
I set the IPL Source switch to point to the device from which you will IPL. @
2 Set the Mode switch to Diagnostic mode position.

3 If the IPL is from diskette, insert the IPL diskette and close the door on the
diskette device.

4 Press the Load button.

If the system encounters a stop code condition, the processor will stop. The
Stop light also comes on.

5 Press the Op Reg button on the programmer console.

When you press the Op Reg button, the system displays the stop code in the
indicator lights. The stop code is in the form X'64xx'. The xx portion of the code
indicates the error condition. Refer to the Messages and Codes manual for an
explanation of the stop code and the corrective action.

If the system has not issued a stop code, go to “Finding the Initialization Module in
Storage When the Failure Occurred.”

Finding the Initialization Module in Storage When the Failure Occurred

3-4 SC34-0941

If your system does not issue a stop code when an IPL failure occurs, you may find

it helpful to determine which initialization module was in storage at the time of the @
failure. The initialization modules prepare (“initialize”) the hardware devices on

your system and set up storage areas required by the system after the IPL.

During an IPL, as the system calls each initialization module into storage, it displays
the entry point address of the module in the indicator lights of the programmer
console. When a failure occurs, the indicator lights contain the entry point address
of the module that was being processed at the time of the failure.

“Reading the Console Indicator Lights” on page A-2 describes how to read the
address displayed in the lights. After determining the entry point address:

1 Look in the INITMODS section of your supervisor link map (SECTION =
INITMODS).

2 Scan the addresses listed in this section for the entry point address displayed in
the indicator lights.

3 When you find the correct address, note the entry point it refers to. The entry
point name indicates which initialization module was in storage at the time of
the failure. For example, SDISKINT is the entry point for the DISKINIT
initialization module. $TRMINIT is the entry point for the TERMINIT
module. DISKINIT handles disk initialization. TERMINIT is the hardware
initialization module for all terminals. (The Internal Design lists each of the
initialization modules and the entry points for those modules.)

C

Analyzing and Isolating an IPL Problem

In most cases, the entry point name itself will give you a good clue as to the
purpose of the initialization module. $STAPEINT, for example, is the entry
point for the module that initializes tape devices (TAPEINIT).

4 Knowing the type of initialization module in use at the time of the error can
point you to the source of the IPL problem. For example, if the system
stopped while processing the DISKINIT module, the IPL problem is probably
related to the disk devices you defined on your system. If the problem seems
related to a specific type of device, such as disks or terminal devices, review
the system generation listing to ensure that:

* You correctly defined the definition statements for these devices.
* You defined only one device at any one address.

¢ The last definition statement for the device type (for example, the last
TERMINAL statement) specifies END = YES.

* You included all the modules the system needs to support these devices.

If you suspect that one of the terminals on your system is causing the IPL failure,
you may also want to follow the procedure described under “Isolating a Failing
Terminal Using the Terminal Control Block.”

If you cannot locate the source of the IPL problem after reviewing the system
generation listing, turn to “Analyzing the INITTASK Task Control Block” on
page 3-6.

Isolating a Failing Terminal Using the Terminal Control Block

This procedure enables you to determine if the system fails to initialize a terminal.
The terminal control block (CCB) may point to the failing terminal. To help you
detect if a terminal is causing the problem, you need the system generation link map
listing for your supervisor. Look in the link map and find the address of the entry
NEXTERM in module TERMINIT.

Using the programmer console, do the following:
1 Press the Reset key.
2 Press the Stop On Address key.
3 Enter the address of NEXTERM.
4 Press the Store key.
5 1PL the system. Each time the processor stops, the system has successfully

initialized the terminal whose terminal control block (CCB) address is in’
register 3 (R3). : ’

If the processor does not stop, the failure occurred prior to terminal
initialization. If this is the case, go to the section “Analyzing the INITTASK
Task Control Block” on page 3-6.

6 When the processor stops, press R3 on the programmer console to determine
which terminal the system initialized. The address shown in R3 will match a
CCB address in the section SEDXDEF of the link map. The name of the
terminal also appears beside the address.

Chapter 3. Analyzing and Isolating an IPL Problem 3-5

Analyzing and Isolating an IPL Problem

If R3 does not contain a CCB address and you have overlay support, press
Start. When the processor stops, press R3 again. Repeat this step until R3
contains a CCB address.

~N

Press Start after checking off the CCB address in your link map. The sysiem
initializes each terminal in the order the terminals are specified in the
$EDXDEF data set during system generation.

8 1f the system then enters a run loop or a wait state, the terminal whose
address follows the last CCB that you checked off is probably the cause of the
problem.

Ensure that you included all required initialization modules (if any) for that
terminal during system generation. Also check to see if you defined that
terminal correctly on the TERMINAL statement. If both the terminal and the
support modules are defined correctly, call your service representative for
corrective action on that terminal or attachment.

9 If the system does not enter a run loop, return to step 6 on page 3-5.

If you still cannot identify the cause of the IPL failure using the previous procedure,
go to the section “Analyzing the INITTASK Task Control Block.”

Analyzing the INITTASK Task Control Block

The technique discussed in this section requires you to examine the INITTASK task
control block. By examining this control block, you may be able to identify the
cause of the IPL failure. INITTASK is the label of the task control block (TCB)
used by the system initialization routines. The address of INITTASK (in module
EDXSTART) is in the supervisor link map from system generation.

If you have a programmer console, begin with the section “Storing the Address of
INITTASK” on page 3-7.

If, after the IPL failure has occurred, you can press the attention key, enter $D from
a terminal in partition 1, and receive a prompt for input, continue with the next
section “Displaying the INITTASK Task Control Block with $D.”

Displaying the INITTASK Task Control Block with $D

3-6 sC34-0941

Do the following when you receive the prompt ENTER ORIGIN from $D:

1 Enter 0000.
The next prompt, ADDRESS,COUNT, asks you for an address and the number of
words you want to display.

2 For ADDRESS, enter the address for INITTASK shown in the supervisor link
map.

3 For COUNT, enter the value 14. This value represents the first 14 words in
the INITTASK TCB.

Analyzing and Isolating an IPL Problem

The system then displays the 14 words of information.

"
C 4 Record all the values displayed on the terminal.
5 Reply N to the prompt ANOTHER DISPLAY?

6 Go to the section “Interpreting the Task Control Block Information” on
page 3-8.

Storing the Address of INITTASK
After you locate the address of INITTASK in the supervisor link map, do the
following at the programmer console:
1 Press the Stop key.
2 Press the SAR key.
3 Press the AKR key.
4 Enter X'0'.
5 Press the Store key.
6 Press the SAR key.
7 Enter the address of INITTASK.
)
8 Press the Store key.
The next step is to display the contents of the INITTASK task control block.
Displaying the INITTASK Task Control Block Using the Programmer Console

By displaying the values contained in the INITTASK task control block, you may
get a clue as to what is causing the IPL failure.

The procedure discussed here requires you to display and record the first 14 words of
information in the INITTASK TCB. To read the first word of the TCB do the
following:

1 Press the Main Storage key. The contents are displayed in the indicator lights.

2 Record the value displayed in the indicator lights.

Each time you press the Main Storage key, a new value is displayed.

3 Repeat the two previous steps 13 more times to obtain the remaining values in
the TCB.

Chapter 3. Analyzing and Isolating an IPL Problem 3-7

Analyzing and Isolating an IPL Problem

Interpreting the Task Control Block Information

The first three words (words 0—2) of the INITTASK TCB make up the event @
control block (ECB). The next 11 words (words 3 — 13) contain the level status
block (LSB) information. This 14-word area appears as follows:

3-8 SC34-0941

Word 0—2 ECB
Word 3 IAR
Word 4 AKR
Word 5 'LSR
Word 6 RO
Word 7 R1
Word 8 R2
Word 9 R3
Word 10 R4
Word 11 RS
Word 12 R6
Word 13 R7

The information in the LSB (words 3 — 13 of the TCB) is what you use to identify
the failure. Since many of the system initialization modules are written in EDL, the

register

IAR

AKR

LSR

RO

R1

R3
R4

contents usually indicate the following:

The instruction address register (IAR) contains the address of the last
machine instruction the system executed when the failure occurred.

For 3-bit processors, bits 5—7 form the operand 1 key, bits 9—11 form the

operand 2 key, and bits 13— 15 form the instruction space key. For 4-bit

processors, bits 4 —7 form the operand 1 key, bits 8 —11 form the operand 2

key and bits 12— 15 form the instruction space key. For 5-bit processors, bit @
1 and bits 4 —7 form the operand 1 key, bit 2 and bits 8 — 11 form the w4
operand 2 key, and bit 3 and bits 12— 15 form the instruction space key.

For all processors, bit 0 of the AKR is the equate operand spaces (EOS) bit.

If bit 0 is set to 1, the operand 2 key is used for both operand 1 and operand

2.

When set, the bit values of the level status register (LSR) indicate the
following: ‘

¢ Bits 0 —4 — The status of arithmetic operations. Refer to the processor
description manual for the meanings of these bits.

¢ Bit 8 — Program is in supervisor state.

* Bit 9 — Priority level is in process.

e Bit 10 — Class interrupt tracing is active.

s Bit 11 — Interrupt processing is allowed.

Bits 5—7 and bits 12— 15 are not used and are always zero.

Because the supervisor uses this register as a work register, the contents are
usually not significant.

Contains the address in storage of the last EDL instruction executed in the
initialization module when the failure occurred.

Contains the address in storage of the active task control block (TCB).
Contains the address in storage of EDL operand 1 of the failing instruction.

Contains the address in storage of EDL operand 2 (if applicable) of the
failing instruction. ’

Analyzing and Isolating an IPL Problem

RS Contains the EDL operation code of the failing instruction. The first byte
contains flag bits that indicate how operands are coded. For example, the
flag bits indicate whether the operand is in #1, #2, or is specified as a
constant. The second byte is the operation code of the EDL instruction.

R6 Because the supervisor uses this register as a work register, the contents are
usually not significant. However, you can determine if the system was
emulating EDL code when the failure occurred if R6 is twice the value
shown in the second byte of RS. For exampile, if the second byte of R5
contained X'32* and the system was emulating EDL, R6 would contain
X'0064'.

R7 The supervisor uses this register as a work register. However, in many cases,
R7 may contain the address of a branch and link instruction. The address
may give you a clue as to which module passed control to the address in the
IAR.

After you record all the TCB values, compare the value you recorded for R2 against
the address of INITTASK. If these addresses do not match, you either have the
wrong storage area or the wrong link map.

If R2 does contain the address of INITTASK, start looking at the addresses in the
remaining registers for a possible clue. Not all the registers may point to the failing
area, but you should check the addresses that the registers point to nevertheless.
Comparing the addresses you recorded and the addresses in the supervisor link map
can help you identify the failure.

You can generally get an idea of which device is failing by the name or names of the
supervisor modules. For example, if several of the addresses you recorded point to
disk routines, you could assume that the IPL failure was related to a disk device.

The following discussion illustrates how the register contents can identify the
problem area.

In this example, the IPL failure occurred because a disk device was defined
incorrectly during system generation. Figure 3-1 shows the registers in the
INITTASK TCB and what they pointed to in the link map. The registers that did
not help identify the problem in this example are shown as “not applicable.”

Register Address Module pointed to by register

IAR X'27FA' | TAPEO60 in DISKIO module

AKR X'0000" (not applicable)

LSR X'80D0' | (not applicable)

RO X'0000' | (not applicable)

R1 X'77BE'. | DSKINITI in module DSKINIT2
R2 X'20DE' | INITTASK in module EDXSTART
R3 X'709A' | DINITDSI in module DISKINIT

Figure 3-1 (Part 1 of 2). Sample INITTASK Register Contents

Chapter 3. Analyzing and Isolating an IPL Problem 3-9

Analyzing and Isolating an IPL Problem

Register Address Module pointed to by register @
R4 X'06BA' | DMDDB in module SEDXDEF

RS X'0000" (not applicable)

R6 X'0000' | (not applicable)

R7 X'27F6' TAPE060 in DISKIO module

Figure 3-1 (Part 2 of 2). Sample INITTASK Register Contents

Notice that the names of the supervisor modules are all disk-related. Since the

address in R4 (X'06BA ') in this example is within the module SEDXDEF, you can
identify exactly which device is causing the failure as follows:

1 Subtract the address of SEDXDEF from the address in R4. The link map
showed that SEDXDEF is at address X'052E'. The resulting address is
X'018C".

2 Look in the system generation listing and find the definition statement at the
address you calculated in step 1. The device defined on this definition
statement is the cause of the IPL failure.

As was mentioned previously, the disk device was defined incorrectly. The disk was
defined as a 4963-23. It should have been defined as a 4963-64.

No IPL Completion Messages on $SYSLOG @
If R5 contains the value X'0016', the supervisor has issued a DETACH for ‘ -
INITTASK and has completed the IPL process. (X'0016' is the EDL operation
code for a DETACH.) However, if the system did not display IPL completion
messages on $SYSLOG, $SYSLOG may be the cause of the problem.

Ensure that $SYSLOG is at the address you specified for $SYSLOG during system
generation.

If RSis not X'0016' and R6 does not contain X'002C', look at the remaining TCB

values and see what supervisor modules they point to. The names of the modules
mdy give you a clue as to which device is failing.

3-10 sC34-0941

C

C

Analyzing and Isolating Run Loops

Chapter 4. Analyzing and Isolating Run Loops

A loop is a sequence of instructions that the system executes a repeated number of
times. Often in application programs, you may need to code a loop to manipulate
data. Your program exits the loop, based on some exit condition that you establish.
Occasionally, a system or programming error can cause the system to execute a
sequence of instructions endlessly. This type of error is called a “run loop” and
when it occurs, you must isolate the cause.

If you know that a specific application program is in a run loop, see “Using
$DEBUG to Isolate a Run Loop” on page 4-8. If you do not know the source of
the run loop, you should check first to see whether or not the system has issued a
stop code. A stop code may point directly to the cause of the error. “How to
Determine the Cause of a Run Loop” describes how to obtain a stop code if your
system has issued one.

If your system has not issued a stop code, this chapter explains how you can identify
which program is in a run loop when more than one program is running. You can
then use tools, such as SDEBUG, to isolate the run loop in the failing program.

How to Determine the Cause of a Run Loop

Your system may enter a run loop if any one of a number of conditions occurs.
These conditions may cause the system to issue a stop code. The following
procedure describes how to determine whether or not your system has issued a stop
code. Before you begin, consider what effect stopping the system will have on any
active programs, in particular, any time-dependent programs.

1 Set the Mode switch on the Series/1 console to Diagnostic Mode.

21 your system issues a stop code, the system will stop and the wait light will
come on and remain lit. If this is the case, continue with step 3.

If the wait light does not come on, return the Mode switch to its previous
setting. If you have more than one program running on your system, go to
“How to Identify a Program in a Run Loop” on page 4-2. Otherwise,
proceed to “Using SDEBUG to Isolate a Run Loop” on page 4-8.

3 If you have a programmer console, press the Op Reg button on the console.
(If you do not have a programmer console, go to the next step.) When you
press the Op Reg button, the system displays the stop code in the console
indicator lights. See “Reading the Console Indicator Lights” on page A-2 if
you do not know how to read the contents of the lights.

The stop code is in the form X'64xx'. The xx portion of the code identifies
the error condition. Refer to the Messages and Codes manual for an
explanation of the stop code and the corrective action. If the stop code is
X'64FB', see “Run Loops Caused by Device Interrupts” on page 4-20.

4 1 you do not have a programmer console, take a stand-alone or $TRAP
dump. Refer to the Operation Guide for details on taking a stand-alone dump.
The Operator Commands and Utilities Reference explains how to use $TRAP.

Chapter 4. Analyzing and Isolating Run Loops 4-1

Analyzing and Isolating Run Loops

After you perform the dump:

@ Look at the first page of the dump, which lists the register contents on
each hardware level. (Figure 7-1 on page 7-2 shows an example of this
information.)

b Examine the contents of registers RO—R4 on levels 1, 2, and 3. Find

the level that shows values (other than X'0000') for one or more of
these registers. This level was the active level.

€ Record the contents of the IAR and AKR for the active level. For 3-bit
processors, bits 5—7 form the operand 1 key, bits 9— 11 form the
operand 2 key, and bits 13— 15 form the instruction space key. For
4-bit processors, bits 4—7 form the operand 1 key, bits 8-11 form the
operand 2 key and bits 12— 15 form the instruction space key. For 5-bit
processors, bit 1 and bits 4 —7 form the operand 1 key, bit 2 and bits
8—11 form the operand 2 key, bit 3 and bits 12— 15 form the
instruction space key. For all processors, bit 0 of the AKR is the
equate operand spaces (EOS) bit. If bit 0 is set to-1, the operand 2 key
is used for both operand 1 and operand 2.

Add one to the instruction space key to find the partition that contains
the IAR. For example, if the AKR contains the value X'0103*, the
IAR resides in partition 4.

d Your dump displays the storage contents of each partition. Using the
information recorded in step 4c, find the partition the AKR points to.
Within this partition, look for the word at the address shown in the
IAR. This word contains the stop code.

€ The stop code is in the form X'64xx'. The xx portion of the code
identifies the error condition. Refer to the Messages and Codes manual
for an explanation of the stop code and the corrective action. If the
stop code is X'64FB', see “Run Loops Caused by Device Interrupts”
on page 4-20.

How to Identify a Program in a Run Loop

This section explains how to identify which program is in a run loop when more
than one program is running on your system.

Before beginning the procedures in this section, press the attention key on your
display terminal. If the system displays the “greater than” symbol (>), proceed to
“Using the $D Operator Command to Identify a Looping Program” on page 4-3. If
the system does not display the “greater than” symbol (>) but you have a
programmer console, proceed to “Using the Programmer Console to Identify a
Looping Program” on page 4-6.

If you do not have a programmer console and your terminal does not respond to the
attention key, take a stand-alone or $TRAP dump. Chapter 7, “Analyzing a

Failure Using a Storage Dump” on page 7-1 explains how to read and analyze the
contents of the dump. Refer to the Operation Guide for details on taking a
stand-alone dump. The Operator Commands and Utilities Reference explains how to
use the $STRAP utility. \

4-2 SC34-0941

-

Analyzing and Isolating Run Loops

Using the $D Operator Command to Identify a Looping Program
0 To identify the program in a run loop, use the following procedure:

1 your terminal is not assigned to partition 1, press the attention key and
enter SCP 1.

2 Look in the supervisor link map for your system and find the addresses of the
following entry points: SVCLI1, SVCL2, and SVCL3. The addresses are
located in the EDXSYS section of the link map (SECTION = EDXSYS).

Each entry point refers to a 4-word area in storage that contains information
about the tasks running on a particular hardware level. SVCLI points to
information about hardware level 1. SVCL2 and SVCL3 describe hardware
levels 2 and 3, respectively.

The first (leftmost) word of each area contains the address of the task control
block (TCB) for the active task on the hardware level. The second word
shows the address space of the TCB. The third word contains the address of
the task with the next highest priority on the hardware level. This task is
called the “ready task.” The fourth (right-most) word shows the address space
of the ready task.

3 Press the attention key and enter $D.
4 After you enter the command, use the following procedure:
@ For “ORIGIN,” enter 0000.

C
d b For “ENTER ADDRESS,COUNT,” enter the address of SVCL1 and a
count of 12. Use a comma to separate the address from the count.

€ Record the values the system displays.

5 Figure 4-1 shows an example of the information that the system displays. In
this example, the address of SVCL1 is X'02B6".

Figure 4-1. Displaying Hardware Level Information

Item in Figure 4-1 shows the start of the 4-word area for the entry point
SVCL1. The word below item contains the address of the TCB for the
active task on hardware level 1. The task on this level is typically the
keyboard task for the terminal you used to issue the $D command.

m Ttem points to a word at address X'02BE'. This is the address of the
entry point SVCL2. The word below item contains the address of the
TCB for the active task on hardware level 2. The word below item shows

Chapter 4. Analyzing and Isolating Run Loops 4-3

Analyzing and Isolating Run Loops

4-4 SC34-0941

10

the address space for this task. The task is running in address space 1

(partition 2). @
i

The word below item [} contains the address of the ready task on level 2.
Ttem shows that this task is also in address space 1 (partition 2).

Item [J marks the start of the 4-word area for entry point SVCL3. In this
example, the area begins at address X'02C6'. The TCB of the active task on
this level is at address X'8BF0'. The active task is in address space 3

(partition 4). The ready task on level 3 is at address X'43B6' in address space
5 (partition 6).

Respond N to the prompt message “ANOTHER DISPLAY?” If you have a
programmer console, continue with step 7. Otherwise, skip to step 8.

Look at the programmer console indicator lights for hardware levels 1 —3
(Level 1, Level 2, Level 3). Note which of the lights stays lit continuously.
Programs generally run on level 2 (the default) and level 3. Programs with an
attention list task active (ATTNLIST instruction) run on level 1. When the
indicator light for a level is constantly lit, you can generally assume that the
looping program is running on that hardware level.

Once you know the hardware level that contains the looping program, review
the information you recorded for that level in step 4 on page 4-3. Determine @
the address and address space of the TCB for the active task on this level.

For example, if the looping program appears to be on hardware level 2, you
would look at the 4-word area for the entry point SVCL2. In Figure 4-1 on
page 4-3, the address of the TCB for the active task on level 2 is X'67B4'
(item). This TCB is in address space 1 (item).

Continue with step 9.

Review the information you recorded in step 4 on page 4-3. Programs
generally run on level 2 (the default) and level 3. Programs with an attention
list task active (ATTNLIST instruction) run on level 1.

If you are running programs with attention list tasks, find the address and
address space of the TCB for the active task on level 1. If you are not running
programs with attention list tasks, find the address and address space of the
TCB for the active task on level 2.

Add one to the TCB address space you recorded. The result is the partition
that contains the TCB for the active task.

Press the attention key on your terminal and enter SCP followed by the
partition number.

The $CP operator command displays the programs active within the partition
you selected and the load points for those programs.

Using the TCB address you recorded, find which program in the partition
contains this address. The program that contains the TCB is probably the
looping program.

Analyzing and Isolating Run Loops

In Figure 4-1 on page 4-3, X'67B4' is the address of the TCB for the active
O task on level 2. Suppose that the partition you looked at contained a
; program, PROGA, with a load point of X'6700"' and a program, PROGB,
with a load point of X'6900'. By looking at the program load points, you
can see that the TCB address of the active task (X'67B4') is within PROGA.
If the loop is occurring on this hardware level, PROGA is the most likely
source.

11 Press the attention key and enter $D.
@ For “ORIGIN,” enter 0000.
b For “ENTER ADDRESS,COUNT,” enter the address of the TCB for

the active task (from step 10) and a count of 8. Use a comma to
separate the address from the count.

€ Reply N to the prompt message “ANOTHER DISPLAY?”
In the following example, the address of the TCB is X'67B4'.

12 The last word displayed shows the contents of general purpose register 1, R1.
Subtract the load point of the program that contains the active TCB from the
address in R1. The result is the address of one of the instructions within the
run loop.

In step 11, R1 contains the address X'67A8". If the load point of the failing
program is X'6700', one of the instructions within the loop is located at
X'00A8".

13 Look at the compiler listing for the program and find the instruction at the
address you calculated in step 12. Examine this area of your program for the
cause of the loop. If you cannot determine the exact cause of the loop,
proceed to “Using $DEBUG to Isolate a Run Loop” on page 4-8.

If you do not have a programmer console and you cannot find the cause of the
error, you may also want to examine the active task on another hardware
level. To do so, return to step 8 on page 4-4 and use the information you
recorded for the other hardware levels.

Using the Programmer Console to Identify a Looping Program
Look in the supervisor link map for your system and find the addresses of the
following entry points: SVCLI1, SVCL2, and SVCL3. The addresses are located in
the EDXSYS section of the link map (SECTION = EDXSYS).

*\.‘*W Each entry point refers to a 4-word area in storage that contains information about
the tasks running on a particular hardware level. SVCLI points to information
about hardware level 1. SVCL2 and SVCL3 describe hardware levels 2 and 3,
respectively.

Chapter 4. Analyzing and Isolating Run Loops 4-5

Analyzing and Isolating Run Loops

4-6 SC34-0941

The first (leftmost) word of each area contains the address of the task control block

(TCB) for the active task on the hardware level. The second word shows the address (O
space of the TCB. The third word contains the address of the task with the next ‘
highest priority on the hardware level. This task is called the “ready task.” The

fourth (right-most) word shows the address space of the ready task.

After you locate the entry point addresses in the link map, perform the following
steps on the programmer console:

1 Press the‘ Stop key.

2 Press the SAR key.

3 Press the AKR key.

4 Enter X'0000".

5 Press the Store key.

6 Press the SAR key.

7 Enter the address of SVCLL.
8 Press the Store key.

9 Press the Main Storage key. ‘ AN
The system displays a value in the console indicator lights. See “Reading the u
Console Indicator Lights” on page A-2 if you do not know how to read the
contents of the lights.

1 0 Record the value displayed in the indicator lights.
Each time you press the Main Storage key, the system displays a new value.
11 Repeat steps 9 and 10 eleven more times to obtain the values for SVCLI,
SVCL2, and SVCL3 (12 words).

Figure 4-2 shows a sample of the values you might record.

B EOB QB

0000 0000 0000 0000 67B4 0001 6976 0001 8BFO 0003 43B6 0005

Figure 4-2. Obtaining Hardware Level Information with the Programmer Console

Item in Figure 4-2 shows the start of the 4-word area for the entry point
SVCLI1.

Item shows the start of the 4-word area for the entry point SVCL2. The word

below item contains the address of the TCB for the active task on hardware level

2. The word below item shows the address space for this task. The task is

running in address space 1 (partition 2).

The word below item] contains the address of the ready task on level 2. Item
shows that this task is also in address space 1 (partition 2).

Analyzing and Isolating Run Loops

Item [marks the start of the 4-word area for the entry point SVCL3. The TCB of
the active task on this level is at address X'8BF0'. The active task is in address
space 3 (partition 4). The ready task on level 3 is at address X'43B6' in address
space 5 (partition 6).

12

13

14
15
16

17

Look at the programmer console indicator lights for hardware levels 1 —3
(Level 1, Level 2, Level 3). Note which of the lights stays lit continuously.
Programs generally run on level 2 (the default) and level 3. Programs with an
attention list task active (ATTNLIST instruction) run on level 1. When the
indicator light for a level is constantly lit, you can generally assume that the
looping program is running on that hardware level.

Once you know the hardware level that contains the looping program, review
the information you recorded for that level in step 11. Record the address and
address space of the TCB for the active task on this level.

For example, if the looping program appears to be on hardware level 2, you
would look at the 4-word area for the entry point SVCL2. In Figure 4-2 on
page 4-6, the address of the TCB for the active task on level 2 is X'67B4'
(item H). This TCB is in address space 1 (item [F]).
Use the following procedure on the programmer console:

@ Press the SAR key.

b Press the AKR key.

C Key in the TCB address space you recorded in step 12.

d Press the Store key.

€ Press the SAR key.
Add X'52' to the TCB address you recorded in step 12. Key in this address.

Press the Store key.

Press the Main Storage key.

The address displayed is the program load point of the looping program.
Record this address.

Press the SAR key and key in the address displayed in step 16. Now press the
Store key.

Chapter 4. Analyzing and Isolating Run Loops 4-7

Analyzing and Isolating Run Loops

1 8 Press the Main Storage key. The system displays the value X*0808"' in the
lights. Repeat this step four more times and record the values the system M
displays. A

The resulting four words show the name of the looping program in
hexadecimal notation. See Appendix D, “Conversion Table” on page D-1 to
convert these hexadecimal values into EBCDIC characters.

19 when you have determined the name of the looping program, do the
following:

@ Press the SAR key.
b Key in the TCB address you recorded in step 12 on page 4-7.
C Press the Store key.

d Press the Main Storage key eight times. Record the value displayed in
the lights. This value reflects the contents of general purpose register 1,
R1. (If you make a mistake, repeat steps 19a through 19d.)

€ Subtract the program load point of the looping program from the value
shown for R1. The result is the address of one of the instructions within
the run loop.

2 0 Look at the compiler listing for the program and find the instruction at the
address you calculated in step 19. Examine this area of your program for the @
cause of the loop. If you cannot determine the exact cause of the loop, ¥
proceed to “Using $DEBUG to Isolate a Run Loop.”

Using $DEBUG to Isolate a Run Loop

4-8 SC34-0941

This section explains how to isolate a run loop with SDEBUG. The $SDEBUG
utility is described in detail in the Operator Commands and Utilities Reference. To
