
--------- - ------- - --- Series/1 - - - ----------_ .-

Event Driven Executive
Problem Determination Guide

Version 6.0

Library Guide and
Common Index

SC34-0938

Language
Reference

SC34-0937

Operation
Guide

SC34-0944

Problem
Determinat ion
Gu ide

SC34-0941

Installation and
System Generation
Guide

SC34-0936

Communications
Guide

SC34-0935

Event Driven
Language
Programming Guide

SC34-0943

Customization
Guide

SC34-0942

SC34-0941 -0

Operator Commands
and
Utilities Reference

SC34-0940

Messages and
Codes

SC34-0939

APPC
Programming Guide
and Reference

SC34-0960

Internal
Design

LY34-0364

o

o

•

--------- - ------- -- --- Series/1 - - - ----------_.-
Event Driven Executive
Problem Determination Guide

Version 6.0

and
Gornrnon Indi:1;};

Reference

Problem
Determination
Guide

SC34-0941

;nstaUati€:m
%',',,","WiI5<",", Generation

Guide

GonuntJnications
Guide

Event Driven

Customization
Guide

SC34-0941-0

and
Utilities Rerferem~e

SC34-0940

Codes

SC34~0939

and Reference

SC34-0960

First Edition (September 1987)

Use this publication only for the purposes stated in the section entitled "About This Book."

Changes are made periodically to the information herein; any such changes will be reported in subsequent
revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not
be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Publications are not stocked at the address given below. Requests for copies of IBM publications should be
made to your IBM representative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for readers' comments
is provided at the back of this publication. If the form has been removed, address your comments to IBM
Corporation, Information Development, Department 28B (5414), P. O. Box 1328, Boca Raton, Florida
33429-1328. IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1987

o

o

o

o

•

Summary of Changes For Version 6.0

This document contains the following changes:

4956 J and K processors

• Chapter 3, "Interpreting the Task Control Block Information" on page 3-8
contains information about the AKR for 3-, 4-, and 5-bit processors

• Chapter 4, "How to Determine the Cause of a Run Loop" on page 4-1 contains
information about the AKR for 3-, 4-, and 5-bit processors

• Chapter 6, "Interpreting the Standard Program Check Message" on page 6-2
contains information about the AKR for 3-, 4-, and 5-bit processors

• Chapter 8, "Exception Entry Format" on page 8-4 contains information about
the AKR for 3-, 4-, and 5-bit processors

Usability Changes

• Chapter 9, "Displaying APPC Error Log Information" on page 9-12 contains
APPC error log examples, explanations, and information .

Summary of Changes For Version 6.0 iii

o

o
iv SC34-0941

o Contents

Chapter 1. Some Things You Should Know About Problem Determination 1-1

Chapter 2. Determining the Problem Type 2-1
Some Hints to Determine the Possible Problem Type 2-1

Can You Operate the System After Pressing the Load Button? 2-1
Is the Run Light On and Solidly Lit? 2-1
Is the System or a Program Idle While You Expect Activity? 2-1
Did the System Issue a Program Check Message? 2-1

Chapter 3. Analyzing and Isolating an !PL Problem 3-1
What You Should Check First 3-1
How to Recognize a Problem with the IPL Device 3-1

How to Correct the IPL Text 3-2
How to Reload the Supervisor 3-2

Determining the Failure in a Tailored Supervisor 3-3
Detecting an IPL Stop Code Error 3-3
Finding the Initialization Module in Storage When the Failure Occurred 3-4
Isolating a Failing Terminal Using the Terminal Control Block 3-5
Analyzing the INITT ASK Task Control Block 3-6

Chapter 4. Analyzing and Isolating Run Loops 4-1

o How to Determine the Cause of a Run Loop 4-1
How to Identify a Program in a Run Loop 4-2

Using the $D Operator Command to Identify a Looping Program 4-3
Using the Programmer Console to Identify a Looping Program 4-6

Using $DEBUG to Isolate a Run Loop 4-8
Determining the Starting and Ending Points of the Loop 4-9

Some Common Causes of Run Loops 4-11
Using the Compiler Listing to Locate the Loop 4-12
Examining an Unmapped Storage Area for the Cause of a Loop 4-14
Run Loops. Caused by Device Interrupts 4-20
Run Loops Caused by Stack Overflows 4-20

Chapter 5. Analyzing and Isolating a Wait State 5-1
How to Find the Address of the Waiting Instruction Using $DEBUG 5-1
Analyzing the Instruction that Caused the Wait State 5-2

Analyzing an ENQ Instruction 5-2
Common Causes of a Program Wait Using QCBs 5-5
Analyzing an ENQT Instruction 5-6
Analyzing a WAIT Instruction 5-7
Common Causes of a Program Wait Using ECBs 5-8
Other Possible Causes of a Wait State 5-8

Chapter 6. Analyzing and Isolating a Program Check 6-1
How to Interpret the Program Check Message 6-1

Interpreting the Standard Program Check Message 6-2
How to Interpret the Processor Status Word 6-4

o Interpreting the Processor Status Word Bits 6-4
Interpreting the Program Check Message from $$EDXIT 6-7

How to Analyze an Application Program Check 6-11
Examining an Unmapped Storage Area for the Cause of a Program Check 6-15

Some Common Causes of Application Program Checks 6-21

Contents V

vi SC34-0941

How to Analyze a System Program Check 6-21
Analyzing the Program Causing the System Program Check 6-22

Chapter 7. Analyzing a Failure Using a Storage Dump 7-1
Interpreting the Dump 7-1

Hardware Level and Register Contents 7-2
Floating-Point Registers and Exception Information 7-5
Segmentation Registers 7-6
Storage Map 7-10
Level Table and TCB Ready Chain 7-12
Terminal Device Information 7-13
Disk, Diskette, and Tape Device Information 7-13
EXIO, BSC, and Timer Information 7-16
Storage Partition Information 7-17
Unmapped Storage Information 7-18

Analyzing a Wait State 7-24
Analyzing a Program Check 7 -30
Analyzing a Run Loop 7-34

Chapter 8. Tracing Exception Information 8-1
Displaying the Software Trace Table 8-1
Software Trace Table Format 8-2

Control Information Format 8-3
Exception Entry Format 8-4

Finding the Program Load Point Address 8-6

Chapter 9. Recording Device I/O Errors and Program Check Information 9-1
Controlling Error Logging 9-2
Changing the Size of the Default Log Data Set 9-3
Printing or Displaying the Log Information 9-5

Printing the Default Log Data Set Using the ERAP Operator Command 9-5
Printing or Displaying a Log Data Set Using the $DISKUT2 Utility 9-6

Interpreting the Log Information 9-8
Displaying APPC Error Log Information 9-12

Appendix A. How to Use the Programmer Console A-I
Reading the Console Indicator Lights A-2
Displaying Main Storage Locations A-4
Storing Data into Main Storage A-5
Displaying Register Contents A-6
Storing Data into Registers A-6
Stopping at a Storage Address A-7
Stopping When an Error Occurs A-7
Executing One Instruction at a Time A-8

Appendix B. Allowing mM Access to Your System B-1
Hardware Requirements B-2
Authorizing the Link B-2
Disconnecting the Line B-4

Appendix C. Interpreting a Dump (Example) C-l
Overview C-l
Interpreting The Formatted Control Blocks in a Dump

Interpreting the State of Tasks (TCBs) in the Dump

Appendix D. Conversion Table D-l

C-2
C-I0

o

o

Index X-I o

o
Contents vii

o

o
viii SC34-0941

c

o

o

About This Book

Audience

This book is a guide to assist you in determining the causes of problems you may
encounter while using the Event Driven Executive (EDX) operating system. It
explains how to use many of the diagnostic tools available to help you identify
problems. Use this book when the Messages and Codes manual cannot point you to
the source of a problem or the corrective action to take.

This book is intended for anyone who encounters a hardware or software problem
while using the EDX operating system on the Series/I. The Operation Guide
describes how to record information that may be of help to you when analyzing the
problems discussed in this book.

How This Book Is Organized
This book contains 9 chapters and 3 appendixes:

• Chapter 1, "Some Things You Should Know About Problem Determination"
introduces the process of problem determination.

• Chapter 2, "Determining the Problem Type" presents some problem symptoms
to help you determine the type of problem you have.

• Chapter 3, "Analyzing and Isolating an IPL Problem" describes some
procedures that can help identify the cause of an IPL failure.

• Chapter 4, "Analyzing and Isolating Run Loops" explains how to pinpoint the
cause of a run loop in an application program.

• Chapter 5, "Analyzing and Isolating a Wait State" describes how to determine
the cause of a wait state during normal system operation.

• Chapter 6, "Analyzing and Isolating a Program Check" discusses how to
isolate the cause of a system or application program check.

• Chapter 7, "Analyzing a Failure Using a Storage Dump" describes how to read
a stand-alone or $TRAP storage dump to isolate failures.

• Chapter 8, "Tracing Exception Information" explains how you can isolate the
cause of exceptions by analyzing the software trace table, CIRCBUFF.

• Chapter 9, "Recording Device I/O Errors and Program Check Information"
discusses the use of the $LOG utility to record device I/O errors and program
check messages.

• Appendix A, "How to Use the Programmer Console" describes the functions
of the optional Series/1 programmer console and how you can use it during
problem analysis.

About This Book ix

• Appendix B, "Allowing IBM Access to Your System" describes the hardware
requirements and procedures for using the Remote Support Link feature of the
Event Driven Executive. This feature enables an IBM support center
representative to get direct access to your Series/l system through a remote
terminal.

• Appendix D, "Conversion Table" contains a table that shows the hexadecimal,
binary, EBCDIC, and ASCII equivalents of decimal values.

• Appendix C, "Interpreting a Dump (Example)" provides an example of an
interpretation of a dump and analyses of the causes for typical problems.

A Guide to the Library
Refer to the Library Guide and Common Index for information on the design and
structure of the Event Driven Executive library, for a bibliography of related
publications, for a glossary of terms and abbreviations, and for an index to the
en tire library.

Contacting IBM about Problems

X SC34-0941

You can inform IBM of any inaccuracies or problems you find with this book by
completing and mailing the Reader's Comment Form provided in the back of the
book.

If you have a problem with the IBM Series/1 Event Driven Executive, refer to the
IBM Series/l Software Service Guide, GC34-0099. o

o

c

o

Some Things You Should Know About Problem Determination

Chapter 1. Some Things You Should Know About Problem
Determination

Problem determination involves analyzing a software or hardware error. The system
can indicate in various ways that a problem exists. The two most common ways are
by displaying messages on a terminal or by returning a return code to your
application program. By using the Messages and Codes manual before you use this
book, you may be able to determine the type of problem you have and the corrective
action to take. If, however, you cannot determine the type of problem you have or
how to correct it, use this book.

This book can help you isolate the cause of an error and indicate what actions you
need to take to correct the error.

The cause of an error may not always be immediately apparent. An error may occur
in an IBM-supplied software component, a hardware unit, or in an application
program. A software component refers to programs or program modules such as
$EDXASM, $SlASM, $EDXLINK, and the rest of the software you install on your
Series/l. A hardware unit refers to a particular device attached to your Series/l.
Application programs are programs you write.

Some problems you encounter may require you to place a service call. However, by
using this book before you place a call for service:

• You might be able to correct the problem and continue operations.

• You might be able to circumvent the problem while you arrange for servicing.

• You may find that the problem is caused by equipment or programming other
than that supplied by IBM.

• The information you gather can reduce the time it takes to correct the problem
if you do call for service.

EDX provides various aids, such as utilities and operator commands, that help you
to pinpoint the source of a problem. The programmer console, an optional Series/l
hardware feature, enables you to perform more extensive analysis.

Some of the topics presented in this book show the use of the programmer console
in analyzing problems. For more information on using this feature, see
Appendix A, "How to Use the Programmer Console" on page A-l.

To begin investigating your problem, turn to Chapter 2, "Determining the Problem
Type" on page 2-1.

Chapter 1. Some Things You Should Know About Problem Determination 1-1

1-2 S C34-0941

0, I' ,:,1'

o

o

Determining the Problem Type

o Chapter 2. Determining the Problem Type

o

Before you begin analyzing a problem, you must determine the type of problem you
have. Some problem types you encounter may be very apparent while others may
not be so apparent. The following section presents some problem indicators and
symptoms to help you determine the problem type.

Some Hints to Determine the Possible Problem Type
To help you determine your problem type, review the following problem indicators
and symptoms. After reviewing these items and finding the indicator or symptom
that best describes your problem, turn to the chapter indicated. The chapter you are
referred to will help you to analyze and isolate the problem.

Can You Operate the System After Pressing the Load Button?
When you press the Load button on your Series/I, the system performs an initial
program load (IPL). When the IPL process ends, the system is ready for use. If you
cannot use the system after attempting an IPL, see Chapter 3, "Analyzing and
Isolating an IPL Problem" on page 3-1.

Is the Run Light On and Solidly Lit?
When the Series/l performs an operation, the Run light is on. Typically, the Run
light flickers on and off during the operation. However, if you observe that the Run
light remains on with a steady glow, the system or your program may be in a loop.
If this is your problem symptom, Chapter 4, "Analyzing and Isolating Run Loops"
on page 4-1 will help you isolate this problem type.

Is the System or a Program Idle While You Expect Activity?
When the Series/l is not performing any operation or servicing an interrupt, the
Wait light is on. The Wait light indicates the system is inactive. If, however, you
notice the Wait light on solidly while programs should be active, the system or a
program is probably in a wait state. Another symptom indicating a wait state is that
you do not receive the "greater than" symbol (>) after you press the attention key
on your terminal. If your system or program has these symptoms, see
Chapter 5, "Analyzing and Isolating a Wait State" on page 5-1.

Did the System Issue a Program Check Message?
When the system encounters an abnormal condition, it issues a program check
message. Two kinds of program checks can occur: a system program check or an
application program check. The system displays the program check message on the
$SYSLOG device. The system also records the program check message in a log data
set if $LOG is active.

If you observe a program check message, Chapter 6, "Analyzing and Isolating a
Program Check" on page 6-1, can help you isolate the problem.

Note: If you defined the SYSMSG statement in your $EDXDEF data set, the
messages go to your $SYSLOG terminal, a disk data set, the Communications
Facility log, or any combination of these depending on what you specified in the
$EDXDEF data set. For more information on the SYSMSG statement, refer to the
Installation and System Generation Guide.

Chapter 2. Determining the Problem Type 2-1

()

o
2-2 SC34-0941

o

()

o

Analyzing and Isolating an IPL Problem

Chapter 3. Analyzing and Isolating an IPL Problem

If your system fails to IPL correctly, there are a number of possible causes. This
chapter presents some problem symptoms and procedures that can help you to
identify the failing area and correct the problem.

What You Should Check First
Before you begin troubleshooting the problem, review the items in the following list.
By checking these items first, you may be able to pinpoint the problem immediately:

• Is the power switch in the ON position for all devices?

• Is the IPL Source switch in the correct position for the device from which you
are trying to IPL?

• For diskette IPL, is the IPLabie diskette inserted correctly?

• For diskette IPL, is the door on the diskette device closed?

• If this is a new installation (EDX is not installed) and you are trying to IPL the
starter system, verify with your service representative that all devices are at the
addresses supported in the starter system. Refer to the program directory or the
Installation and System Generation Guide for the device addresses.

• If EDX is already installed and the supervisor previously IPLed, does a backup
supervisor (or starter system) IPL from the alternate IPL device? If the alternate
device IPLs, go to the next section "How to Recognize a Problem with the IPL
Device."

• If the starter system IPLs but your tailored supervisor does not IPL, go to the
section "Determining the Failure in a Tailored Supervisor" on page 3-3.

If the previous items do not point out the problem, the problem may lie in the IPL
device, IPL text, the supervisor, or other attached devices. The following sections
describe how to isolate problems in these areas.

How to Recognize a Problem with the IPL Device
If the Load light remains on and you cannot IPL from the primary or alternate IPL
device and you have checked all the items listed under the heading "What You
Should Check First," call your service representative for corrective action. These
symptoms indicates that the hardware could not read the IPL text (bootstrap
program) from the IPL device. If you have a programmer console, you may also
notice that the console lights display the value X I EO I or X I ES I. The value X I EO I

indicates that there is a hardware problem with the IPL device. The value X I ES'
may indicate either a hardware or software problem.

Chapter 3. Analyzing and Isolating an IPL Problem 3-1

Analyzing and Isolating an IPL Problem

If you can IPL from one IPL device, the following procedures can help you
determine if the failure is due to:

• No IPL text written when you initialized the disk or diskette

• Defective IPL text

• IPL text points to an invalid supervisor

• Hardware problem on that IPL device.

How to Correct the IPL Text
Use the following procedure to correct the IPL text:

1 Set the IPL Source switch to point to the device from which you can IPL.

2 Press the Load button to IPL the system.

3 Load $INITDSK and rewrite the IPL text (II command) to the failing IPL
device.

4 Set the IPL Source switch to IPL from the failing IPL device.

5 Press the Load button to IPL the system.

If this procedure does not correct the IPL problem, the problem may be with the
supervisor on the failing IPL device or it may be a hardware problem. By reloading

o

the supervisor, you may correct the problem. The next section describes how to do O. "
this.

How to Reload the Supervisor

3-2 SC34-0941

Use the following procedure to reload the supervisor:

1 Set the IPL Source switch to point to the device from which you can IPL.

2 Press the Load button to IPL the system.

3 Load $COPYUTI and copy (CM command) the IPL supervisor from the
current IPL device to the failing IPL device. Copy also $LOADER and any
initialization modules you require.

4 Load $INITDSK and rewrite the IPL text (II command) to point to the
supervisor you copied to the failing IPL device.

5 Set the IPL Source switch to IPL from the failing IPL device.

6 Press the Load button to IPL the system.

If this procedure does not correct the IPL problem, you have a hardware problem
with that IPL device. Call your service representative for corrective action.

o

o

o

o

Analyzing and Isolating an IPL Problem

Determining the Failure in a Tailored Supervisor
Review the following items before you begin analyzing the failure:

• Did you receive a -1 completion code (successful) from the system generation
assembly and link-edit?

• Did you include all the modules you need (on the INCLUDE statements) to
support the attached devices?

• Are $EDXNUC the first seven characters of the $XPSLINK output?

• Does this tailored supervisor fail to IPL, although it did IPL previously? If it
did IPL previously, go to the section "How to Recognize a Problem with the
IPL Device" on page 3-1.

• If this tailored supervisor never did IPL, the following sections may assist you in
isolating the failure. In order to use this information, however, you must have a
programmer console or be able to use the $D operator command (in partition 1)
after the IPL failure.

If you do not have a programmer console but can use the $D operator command (in
partition 1) after the IPL failure, go to the section "Analyzing the INITTASK Task
Control Block" on page 3-6.

If you have a programmer console, begin with the section "Detecting an IPL Stop
Code Error."

If you do not have a programmer console and cannot use $D after the failure, use
the following procedure:

1 Set the IPL Source switch to IPL from diskette.

2 IPL the starter system.

3 Load $IOTEST and verify all hardware configured and their addresses (LD
command).

4 Review the system generation listing and ensure that you defined all devices
correctly and that you included all modules required to support those devices.

Detecting an IPL Stop Code Error
If the system encounters an error during terminal initialization or it encounters an
error within the cross-partition supervisor you are trying to IPL, the error could
cause the system to enter a run loop or a wait state. For example, the error could be
caused by a defective attachment card or perhaps a missing random access memory
load module. When such errors exist, the system issues a stop code. The stop code
can help you identify which area is failing.

This section explains how to determine if the failure is due to a stop code error.
You will need a programmer console to perform this step.

Chapter 3. Analyzing and Isolating an IPL Problem 3-3

Analyzing and Isolating an IPL Problem

To determine if the IPL failed because of a stop code, follow these procedures:

1 Set the IPL Source switch to point to the device from which you will IPL.

2 Set the Mode switch to Diagnostic mode position.

3 If the IPL is from diskette, insert the IPL diskette and close the door on the
diskette device.

4 Press the Load button.

If the system encounters a stop code condition, the processor will stop. The
Stop light also comes on.

5 Press the Op Reg button on the programmer console.

When you press the Op Reg button, the system displays the stop code in the
indicator lights. The stop code is in the form X I 64xx I. The xx portion of the code
indicates the error condition. Refer to the Messages and Codes manual for an
explanation of the stop code and the corrective action.

If the system has not issued a stop code, go to "Finding the Initialization Module in
Storage When the Failure Occurred."

Finding the Initialization Module in Storage When the Failure Occurred
If your system does not issue a stop code when an IPL failure occurs, you may find

o

it helpful to determine which initialization module was in storage at the time of the 0'
failure. The initialization modules prepare ("initialize") the hardware devices on -

3-4 SC34-0941

your system and set up storage areas required by the system after the IPL.

During an IPL, as the system calls each initialization module into storage, it displays
the entry point address of the module in the indicator lights of the programmer
console. When a failure occurs, the indicator lights contain the entry point address
of the module that was being processed at the time of the failure.

"Reading the Console Indicator Lights" on page A-2 describes how to read the
address displayed in the lights. After determining the entry point address:

1 Look in the INITMODS section of your supervisor link map (SECTION =
INITMODS).

2 Scan the addresses listed in this section for the entry point address displayed in
the indicator lights.

3 When you find the correct address, note the entry point it refers to. The entry
point name indicates which initialization module was in storage at the time of
the failure. For example, $DISKINT is the entry point for the DISKINIT
initialization module. $TRMINIT is the entry point for the TERMINIT
module. DISKINIT handles disk initialization. TERMINIT is the hardware
initialization module for all terminals. (The Internal Design lists each of the
initialization modules and the entry points for those modules.) o

o
Analyzing and Isolating an IPL Problem

In most cases, the entry point name itself will give you a good clue as to the
purpose of the initialization module. $TAPEINT, for example, is the entry
point for the module that initializes tape devices (T APEINIT).

4 Knowing the type of initialization module in use at the time of the error can
point you to the source of the IPL problem. For example, if the system
stopped while processing the DISKINIT module, the IPL problem is probably
related to the disk devices you defined on your system. If the problem seems
related to a specific type of device, such as disks or terminal devices, review
the system generation listing to ensure that:

• You correctly defined the definition statements for these devices.

• You defined only one device at anyone address.

• The last definition statement for the device type (for example, the last
TERMINAL statement) specifies END=YES.

• You included all the modules the system needs to support these devices.

If you suspect that one of the terminals on your system is causing the IPL failure,
you may also want to follow the procedure described under "Isolating a Failing
Terminal Using the Terminal Control Block."

If you cannot locate the source of the IPL problem after reviewing the system
generation listing, turn to "Analyzing the INITTASK Task Control Block" on
page 3-6.

c) Isolating a Failing Terminal Using the Terminal Control Block

o

This procedure enables you to determine if the system fails to initialize a terminal.
The terminal control block (CCB) may point to the failing terminal. To help you
detect if a terminal is causing the problem, you need the system generation link map
listing for your supervisor. Look in the link map and find the address of the entry
NEXTERM in module TERMINIT.

Using the programmer console, do the following:

1 Press the Reset key.

2 Press the Stop On Address key.

3 Enter the address ofNEXTERM.

4 Press the Store key.

5 IPL the system. Each time the processor stops, the system has successfully
initialized the terminal whose terminal control block (CCB) address is in"
register 3 (R3). J

If the processor does not stop, the failure occurred prior to terminal
initialization. If this is the case, go to the section "Analyzing the INITTASK
Task Control Block" on page 3-6.

6 When the processor stops, press R3 on the programmer console to determine
which terminal the system initialized. The address shown in R3 will match a
CCB address in the section $EDXDEF of the link map. The name of the
terminal also appears beside the address.

Chapter 3. Analyzing and Isolating an IPL Problem 3-5

Analyzing and Isolating an IPL Problem

If R3 does not contain a CCB address and you have overlay support, press
Start. When the processor stops, press R3 again. Repeat this step until R3
contains a CCB address.

7 Press Start after checking off the CCB address in your link map. The system
initializes each terminal in the order the terminals are specified in the
$EDXDEF data set during system generation.

8 If the system then enters a run loop or a wait state, the terminal whose
address follows the last CCB that you checked off is probably the cause of the
problem.

Ensure that you included all required initialization modules (if any) for that
terminal during system generation. Also check to see if you defined that
terminal correctly on the TERMINAL statement. If both the terminal and the
support modules are defined correctly, call your service representative for
corrective action on that terminal or attachment.

9 If the system does not enter a run loop, return to step 6 on page 3-5.

If you still cannot identify the cause of the IPL failure using the previous procedure,
go to the section "Analyzing the INITT ASK Task Control Block."

Analyzing the INITTASK Task Control Block

o

The technique discussed in this section requires you to examine the INITT ASK task
control block. By examining this control block, you may be able to identify the
cause of the IPL failure. INITTASK is the label of the task control block (TCB) 0' __
used by the system initialization routines. The address of INITT ASK (in module
EDXSTART) is in the supervisor link map from system generation.

If you have a programmer console, begin with the section "Storing the Address of
INITT ASK" on page 3-7.

If, after the IPL failure has occurred, you can press the attention key, enter $D from
a terminal in partition 1, and receive a prompt for input, continue with the next
section "Displaying the INITTASK Task Control Block with $D."

Displaying the INITTASK Task Control Block with $0

3-6 SC34-0941

Do the following when you receive the prompt ENTER ORIGIN from $D:

1 Enter 0000.

The next prompt, ADDRESS,COUNT, asks you for an address and the number of
words you want to display.

2 For ADDRESS, enter the address for INITTASK shown in the supervisor link
map.

3 For COUNT, enter the value 14. This value represents the first 14 words in
the INITTASK TCB.

o

o

0

o

Analyzing and Isolating an IPL Problem

The system then displays the 14 words of information.

4 Record all the values displayed on the terminal.

5 Reply N to the prompt ANOTHER DISPLAY?

6 Go to the section "Interpreting the Task Control Block Information" on
page 3-8.

Storing the Address of INITTASK
After you locate the address of INITTASK in the supervisor link map, do the
following at the programmer console:

1 Press the Stop key.

2 Press the SAR key.

3 Press the AKR key.

4 Enter X 10 1.

5 Press the Store key.

6 Press the SAR key.

7 Enter the address of INITT ASK.

8 Press the Store key.

The next step is to display the contents of the INITT ASK task control block.

Displaying the INITTASK Task Control Block Using the Programmer Console
By displaying the values contained in the INITT ASK task control block, you may
get a clue as to what is causing the IPL failure.

The procedure discussed here requires you to display and record the first 14 words of
information in the INITTASK TCB. To read the first word of the TCB do the
following:

1 Press the Main Storage key. The contents are displayed in the indicator lights.

2 Record the value displayed in the indicator lights.

Each time you press the Main Storage key, a new value is displayed.

3 Repeat the two previous steps 13 more times to obtain the remaining values in
the TCB.

Chapter 3. Analyzing and Isolating an IPL Problem 3-7

Analyzing and Isolating an IPL Problem

Interpreting the Task Control Block Information
The first three words (words 0 - 2) of the INITT ASK TCB make up the event
control block (ECB). The next 11 words (words 3 -13) contain the level status
block (LSB) information. This l4-word area appears as follows:

Word 0-2 ECB
Word 3 IAR
Word 4 AKR
Word 5 LSR
Word 6 RO
Word 7 Rl
Word 8 R2
Word 9 R3
Word 10 R4
Word 11 R5
Word 12 R6
Word 13 R7

The information in the LSB (words 3 - 13 of the TCB) is what you use to identify
the failure. Since many of the system initialization modules are written in EDL, the
register contents usually indicate the following:

IAR The instruction address register (IAR) contains the address of the last
machine instruction the system executed when the failure occurred.

o

AKR For 3-bit processors, bits 5 -7 form the operand 1 key, bits 9 -11 form the
operand 2 key, and bits 13 -15 form the instruction space key. For 4-bit
processors, bits 4 -7 form the operand 1 key, bits 8 -11 form the operand 2
key and bits 12-15 form the instruction space key. For 5-bit processors, bit 0-_"',
1 and bits 4 -7 form the operand 1 key, bit 2 and bits 8 -11 form the

3-8 SC34-0941

operand 2 key, and bit 3 and bits 12 -15 form the instruction space key.
For all processors, bit 0 of the AKR is the equate operand spaces (EOS) bit.
H bit 0 is set to 1, the operand 2 key is used for both operand 1 and operand
2.

LSR When set, the bit values of the level status register (LSR) indicate the
following:

• Bits 0 - 4 - The status of arithmetic operations. Refer to the processor
description manual for the meanings of these bits.

• Bit 8 - Program is in supervisor state.
• Bit 9 - Priority level is in process.
• Bit 10 - Class interrupt tracing is active.
• Bit 11 - Interrupt processing is allowed.

Bits 5 -7 and bits 12 -15 are not used and are always zero.

RO Because the supervisor uses this register as a work register, the contents are
usually not significant.

Rl Contains the address in storage of the last EDL instruction executed in the
initialization module when the failure occurred.

R2 Contains the address in storage of the active task control block (TCB).

R3 Contains the address in storage of EDL operand 1 of the failing instruction.

R4 Contains the address in storage of EDL operand 2 (if applicable) of the
failing instruction. o

c

o

R5

Analyzing and Isolating an IPL Problem

Contains the EDL operation code of the failing instruction. The first byte
contains flag bits that indicate how operands are coded. For example, the
flag bits indicate whether the operand is in #1, #2, or is specified as a
constant. The second byte is the operation code of the EDL instruction.

R6 Because the supervisor uses this register as a work register, the contents are
usually not significant. However, you can determine if the system was
emulating EDL code when the failure occurred if R6 is twice the value
shown in the second byte of R5. For example, if the second byte of R5
contained X 1321 and the system was emulating EDL, R6 would contain
X '00641.

R 7 The supervisor uses this register as a work register. However, in many cases,
R7 may contain the address of a branch and link instruction. The address
may give you a clue as to which module passed control to the address in the
IAR.

After you record all the TCB values, compare the value you recorded for R2 against
the address of INITT ASK. If these addresses do not match, you either have the
wrong storage area or the wrong link map.

If R2 does contain the address of INITT ASK, start looking at the addresses in the
remaining registers for a possible clue. Not all the registers may point to the failing
area, but you should check the addresses that the registers point to nevertheless.
Comparing the addresses you recorded and the addresses in the supervisor link map
can help you identify the failure.

You can generally get an idea of which device is faiiing by the name or names of the
supervisor modules. For example, if several of the addresses you recorded point to
disk routines, you could assume that the IPL failure was related to a disk device.

The following discussion illustrates how the register contents can identify the
problem area.

In this example, the IPL failure occurred because a disk device was defineQ
incorrectly during system generation. Figure 3-1 shows the registers in the
INITT ASK TCB and what they pointed to in the link map. The registers that did
not help identify the problem in this example are shown as "not applicable."

Register Address Module pointed to by register

IAR X '27FA' TAPE060 in DISKIO module

AKR XIOOOOI (not applicable)

LSR XI 80DO I (not applicable)

RO XI 0000 I (not applicable)

RI X'77BE'. DSKINITI in module DSKINIT2

R2 X '20DE' IN ITT ASK in module EDXST ART

R3 X ' 709A' DINITDSI in module DISKINIT

Figure 3-1 (Part 1 of 2). Sample INITT ASK Register Contents

Chapter 3. Analyzing and Isolating an IPL Problem 3-9

Analyzing and Isolating an IPL Problem

Register Address Module pointed to by register

R4 X'06BA' DMDDB in module $EDXDEF

R5 X'OOOO' (not applicable)

R6 X'OOOO' (not applicable)

R7 X'27F6' TAPE060 in DISKIO module

Figure 3-1 (Part 2 of 2). Sample INITT ASK Register Contents

Notice that the names of the supervisor modules are all disk-related. Since the
address in R4 (X'06BA') in this example is within the module $EDXDEF, you can
identify exactly which device is causing the failure as follows:

1 Subtract the address of $EDXDEF from the address in R4. The link map
showed that $EDXDEF is at address X' 052E '. The resulting address is
X'018C' .

2 Look in the system generation listing and find the definition statement at the
address you calculated in step 1. The device defined on this definition
statement is the cause of the IPL failure.

As was mentioned previously, the disk device was defined incorrectly. The disk was
defined as a 4963-23. It should have been defined as a 4963-64.

No IPL Completion Messages on $SYSLOG

3-10 SC34-0941

If R5 contains the value X'0016', the supervisor has issued a DETACH for
INITTASK and has completed the IPL process. (X'0016' is the EDL operation
code for a DETACH.) However, if the system did not display IPL completion
messages on $SYSLOG, $SYSLOG may be the cause of the problem.

Ensure that $SYSLOG is at the address you specified for $SYSLOG during system
generation.

If R5 is not X'0016' and R6 does not contain X'002C', look at the remaining TCB
values and see what supervisor modules they point to. The names of the modules
may give you a clue as to which device is failing.

o

o

o

c

o

Analyzing and Isolating Run Loops

Chapter 4. Analyzing and Isolating Run Loops

A loop is a sequence of instructions that the system executes a repeated number of
times. Often in application programs, you may need to code a loop to manipulate
data. Your program exits the loop, based on some exit condition that you establish.
Occasionally, a system or programming error can cause the system to execute a
sequence of instructions endlessly. This type of error is called a "run loop" and
when it occurs, you must isolate the cause.

If you know that a specific application program is in a run loop, see "Using
$DEBUG to Isolate a Run Loop" on page 4-8. If you do not know the source of
the run loop; you should check first to see whether or not the system has issued a
stop code. A stop code may point directly to the cause of the error. "How to
Determine the Cause of a Run Loop" describes how to obtain a stop code if your
system has issued one.

If your system has not issued a stop code, this chapter explains how you can identify
which program is in a run loop when more than one program is running. You can
then use tools, such as $DEBUG, to isolate the run loop in the failing program.

How to Determine the Cause of a Run Loop
Your system may enter a run loop if anyone of a number of conditions occurs.
These conditions may cause the system to issue a stop code. The following
procedure describes how to determine whether or not your system has issued a stop
code. Before you begin, consider what effect stopping the system will have on any
active p~ograms, in particular, any time-dependent programs.

1 Set the Mode switch on the Series/1 console to Diagnostic Mode.

2 If your system issues a stop code, the system will stop and the wait light will
come on and remain lit. If this is the case, continue with step 3.

If the wait light does not come on, return the Mode switch to its previous
setting. If you have more than one program running on your system, go to
"How to Identify a Program in a Run Loop" on page 4-2. Otherwise,
proceed to "Using $DEBUG to Isolate a Run Loop" on page 4-8.

3 If you have a programmer console, press the Op Reg button on the console.
(If you do not have a programmer console, go to the next step.) When you
press the Op Reg button, the system displays the stop code in the console
indicator lights. See "Reading the Console Indicator Lights" on page A-2 if
you do not know how to read the contents of the lights.

The stop code is in the form X I 64xx I. The xx portion of the code identifies
the error condition. Refer to the Messages and Codes manual for an
explanation of the stop code and the corrective action. If the stop code is
X I 64FB I, see "Run Loops Caused by Device Interrupts" on page 4-20.

4 If you do not have a programmer console, take a stand-alone or $TRAP
dump. Refer to the Operation Guide for details on taking a stand-alone dump.
The Operator Commands and Utilities Reference explains how to use $TRAP.

Chapter 4. Analyzing and Isolating Run Loops 4-1

Analyzing and Isolating Run Loops

After you perform the dump:

a Look at the first page of the dump, which lists the register contents on
each hardware level. (Figure 7-1 on page 7-2 shows an example of this
information.)

b Examine the contents of registers RO - R4 on levels 1, 2, and 3. Find
the level that shows values (other than XI 0000 I) for one or more of
these registers. This level was the active level.

C Record the contents of the IAR and AKR for the active level. For 3-bit
processors, bits 5 -7 form the operand 1 key, bits 9 -11 form the
operand 2 key, and bits 13 -15 form the instruction space key. For
4-bit processors, bits 4-7 form the operand 1 key, bits 8-11 form the
operand 2 key and bits 12-15 form the instruction space key. For 5-bit
processors, bit 1 and bits 4 -7 form the operand 1 key, bit 2 and bits
8-11 form the operand 2 key, bit 3 and bits 12-15 form the
instruction space key. For all processors, bit 0 of the AKR is the
equate operand spaces (EOS) bit. If bit 0 is set to ·1, the operand 2 key
is used for both operand 1 and operand 2.

Add one to the instruction space key to find the partition that contains
the IAR. For example, if the AKR contains the value X 10103 1, the
IAR resides in partition 4.

d Your dump displays the storage contents of each partition. Using the

o

information recorded in step 4c, find the partition the AKR points to. (-.)
Within this partition, look for the word at the address shown in the ~ "
IAR. This word contains the stop code.

e The stop code is in the form XI 64xx I. The xx portion of the code
identifies the error condition. Refer to the Messages and Codes manual
for an explanation of the stop code and the corrective action. If the
stop code is X 1 64FB 1 , see "Run Loops Caused by Device Interrupts"
on page 4-20.

How to Identify a Program in a Run Loop

4-2 SC34-0941

This section explains how to identify which program is in a run loop when more
than one program is running on your system.

Before beginning the procedures in this section, press the attention key on your
display terminal. If the system displays the "greater than" symbol (>), proceed to
"Using the $D Operator Command to Identify a Looping Program" on page 4-3. If
the system does not display the "greater than" symbol (>) but you have a
programmer console, proceed to "Using the Programmer Console to Identify a
Looping Program" on page 4-6.

If you do not have a programmer console and your terminal does not respond to the'
attention key, take a stand-alone or $TRAP dump. Chapter 7, "Analyzing a
Failure Using a Storage Dump" on page 7-1 explains how to read and analyze the
contents of the dump. Refer to the Operation Guide for details on taking a 0,
stand-alone dump. The Operator Commands and Utilities Reference explains how to""
use the $TRAP utility.

c

o

Analyzing and Isolating Run Loops

Using the $D Operator Command to Identify a Looping Program
To identify the program in a run loop, use the following procedure:

1 If your terminal is not assigned to partition 1, press the attention key and
enter $CP 1.

2 Look in the supervisor link map for your system and find the addresses of the
following entry points: SVCL1, SVCL2, and SVCL3. The addresses are
located in the EDXSYS section of the link map (SECTION = EDXSYS).

Each entry point refers to a 4-word area in storage that contains information
about the tasks running on a particular hardware level. SVCLI points to
information about hardware level 1. SVCL2 and SVCL3 describe hardware
levels 2 and 3, respectively.

The first (leftmost) word of each area contains the address of the task control
block (TCB) for the active task on the hardware level. The second word
shows the address space of the TCB. The third word contains the address of
the task with the next highest priority on the hardware level. This task is
called the "ready task." The fourth (right-most) word shows the address space
of the ready task.

3 Press the attention key and enter $D.

4 After you enter the command, use the, following procedure:

a For "ORIGIN," enter 0000.

b For "ENTER ADDRESS,COUNT," enter the address of SVCLI and a
count of 12. Use a comma to separate the address from the count.

C Record the values the system displays.

5 Figure 4-1 shows an example of the information that the system displays. In
this example, the address of SVCLI is X I 02B6 I.

Figure 4-1. Displaying Hardware Level Information

Item II in Figure 4-1 shows the start of the 4-word area for the entry point
SVCLI. The word below item II contains the address of the TCB for the
active task on hardware level 1. The task on this level is typically the
keyboard task for the terminal you used to issue the $D command.

Item g points to a word at address X I 02BE I. This is the address of the
entry point SVCL2. The word below item g contains the address of the
TCB for the active task on hardware level 2. The word below item II shows

Chapter 4. Analyzing and Isolating Run Loops 4-3

Analyzing and Isolating Run Loops

the address space for this task. The task is running in address space 1
(partition 2).

The word below item II contains the address of the ready task on level 2.
Item II shows that this task is also in address space 1 (partition 2).

Item m marks the start of the 4-word area for entry point SVCL3. In this
example, the area begins at address X I 02C6 I. The TCB of the active task on
this level is at address X '8BFO I. The active task is in address space 3
(partition 4). The ready task on level 3 is at address X '43B6 1 in address space
5 (partition 6).

6 Respond N to the prompt message "ANOTHER DISPLAY?" If you have a
programmer console, continue with step 7. Otherwise, skip to step 8.

7 Look at the programmer console indicator lights for hardware levels I - 3
(Levell, Level 2, Level 3). Note which of the lights stays lit continuously.
Programs generally run on level 2 (the default) and level 3. Programs with an
attention list task active (ATTNLIST instruction) run on level 1. When the
indicator light for a level is constantly lit, you can generally assume that the
looping program is running on that hardware level.

Once you know the hardware level that contains the looping program, review

o

the information you recorded for that level in step 4 on page 4-3. Determine O. : '

the address and address space of the TCB for the active task on this level.

4-4 SC34-0941

For example, if the looping program appears to be on hardware level 2, you
would look at the 4-word area for the entry point SVCL2. In Figure 4-1 on
page 4-3, the address of the TCB for the active task on level 2 is X I 67B4 I

(item II). This TCB is in address space 1 (item II).
Continue with step 9.

8 Review the information you recorded in step 4 on page 4-3. Programs
generally run on level 2 (the default) and level 3. Programs with an attention
list task active (ATTNLIST instruction) run on level 1.

If you are running programs with attention list tasks, find the address and
address space of the TCB for the active task on level 1. If you are not running
programs with attention list tasks, find the address and address space of the
TCB for the active task on level 2.

9 Add one to the TCB address space you recorded. The result is the partition
that contains the TCB for the active task.

Press the attention key on your terminal and enter $CP followed by the
partition number.

The $CP operator command displays the programs active within the partition
you selected and the load points for those programs.

lOUsing the TCB address you recorded, find which program in the partition
contains this address. The program that contains the TCB is probably the
looping program.

o

o

o

Analyzing and Isolating Run Loops

In Figure 4-1 on page 4-3, X I 67B4 I is the address of the TCB for the active
task on level 2. Suppose that the partition you looked at contained a
program, PROGA, with a load point of X 16700 I and a program, PROGB,
with a load point of X I 6900 I. By looking at the program load points, you
can see that the TCB address of the active task (X I 67B4 I) is within PROGA.
If the loop is occurring on this hardware level, PROGA is the most likely
source.

11 Press the attention key and enter $D.

> $D

a For "ORIGIN," enter 0000.

b For "ENTER ADDRESS,COUNT," enter the address of the TCB for
the active task (from step 10) and a count of 8. Use a comma to
separate the address from the count.

C Reply N to the prompt message "ANOTHER DISPLAY?"

In the following example, the address of the TCB is X I 67B4 I •

; ENTER ORIGIN: 0000
>~NTER AOORESS.COUNT:, 6784.8

67l34: FFFFGGGG . GeGG 34CE GllGaGOeeeOQ67AS
ANOTHER.DISPLAY? N

12 The last word displayed shows the contents of general purpose register 1, Rl.
Subtract the load point of the program that contains the active TCB from the
address in R1. The result is the address of one of the instructions within the
run loop.

In step 11, R1 contains the (J.ddress X I 67 A8 I. If the load point of the failing
program is X 16700 I, one of the instructions within the loop is located at
X'OOAS'.

13 Look at the compiler listing for the program and find the instruction at the
address you calculated in step 12. Examine this area of your program for the
cause of the loop. If you cannot determine the exact cause of the loop,
proceed to "Using $DEBUG to Isolate a Run Loop" on page 4-8.

If you do not have a programmer console and you cannot find the cause of the
error, you may also want to examine the active task on another hardware
level. To do so, return to step 8 on page 4-4 and use the information you
recorded for the other hardware levels.

Using the Programmer Console to Identify a Looping Program
Look in the supervisor link map for your system and find the addresses of the
following entry points: SVCL1, SVCL2, and SVCL3. The addresses are located in
the EDXSYS section of the link map (SECTION = EDXSYS).

Each entry point refers to a 4-word area in storage that contains information about
the tasks running on a particular hardware level. SVCL1 points to information
about hardware level 1. SVCL2 and SVCL3 describe hardware levels 2 and 3,
respectively.

Chapter 4. Analyzing and Isolating Run Loops 4-5

Analyzing and Isolating Run Loops

4-6 SC34-0941

The first (leftmost) word of each area contains the address of the task control block
(TCB) for the active task on the hardware level. The second word shows the address 0'· ',I,

space of the TCB. The third word contains the .address of the task with the next
highest priority on the hardware level. This task is called the "ready task." The
fourth (right-most) word shows the address space of the ready task.

After you locate the entry point addresses in the link map, perform the following
steps on the programmer console:

1

2

3

4

5

6

7

8

9

Press the Stop key.

Press the SAR key.

Press the AKR key.

Enter X100001.

Press the Store key.

Press the SAR key.

Enter the address of SVCLI.

Press the Store key.

Press the Main Storage key.
I~

The system displays a value in the console indicator lights. See "Reading the V
Console Indicator Lights" on page A-2 if you do not know how to read the
contents of the lights.

10 Record the value displayed in the indicator lights.

Each time you press the Main Storage key, the system displays a new value.

11 Repeat steps 9 and 10 eleven more times to obtain the values for SVCL1,
SVCL2, and SVCL3 (12 words).

Figure 4-2 shows a sample of the values you might record.

o DBa g m
0000 0000 0000 0000 67B4 0001 6976 0001 8BF0 0003 43B6 0005

Figure 4-2. Obtaining Hardware Level Information with the Programmer Console

Item II in Figure 4-2 shows the start of the 4-word area for the entry point
SVCLI.

Item fJ shows the start of the 4-word area for the entry point SVCL2. The word
below item D contains the address of the TCB for the active task on hardware level
2. The word below item B shows the address space for this task. The task is
running in address space 1 (partition 2). 0
The word below item a contains the address of the ready task on level 2. Item g
shows that this task is also in address space 1 (partition 2).

o

Analyzing and Isolating Run Loops

Item II marks the start of the 4-word area for the entry point SVCL3. The TCB of
the active task on this level is at address X '8BFO I. The active task is in address
space 3 (partition 4). The ready task on level 3 is at address X '43B6 1 in address
space 5 (partition 6).

12 Look at the programmer console indicator lights for hardware levels 1 - 3
(Levell, Level 2, Level 3). Note which of the lights stays lit continuously.
Programs generally run on level 2 (the default) and level 3. Programs with an
attention list task active (ATTNLIST instruction) run on level 1. When the
indicator light for a level is constantly lit, you can generally assume that the
looping program is running on that hardware level.

Once you know the hardware level that contains the looping program, review
the information you recorded for that level in step 11. Record the address and
address space of the TCB for the active task on this level.

For example, if the looping program appears to be on hardware level 2, you
would look at the 4-word area for the entry point SVCL2. In Figure 4-2 on
page 4-6, the address of the TCB for the active task on level 2 is XI 67B4 1
(item fJ). This TCB is in address space 1 (item II).

13 Use the following procedure on the programmer console:

a Press the SAR key.

h Press the AKR key.

C Key in the TCB address space you recorded in step 12.

d Press the ~tore key.

e Press the SAR key.

14 Add X 1521 to the TCB address you recorded in step 12. Key in this address.

15 Press the Store key.

16 Press the Main Storage key.

The address displayed is the program load point of the looping program.
Record this address.

17 Press the SAR key and key in the address displayed in step 16. Now press the
Store key.

Chapter 4. Analyzing and Isolating Run Loops 4-7

Analyzing and Isolating Run Loops

18 Press the Main Storage key. The system displays the value X I 0808 I in the
lights. Repeat this step four more times and record the values the system
displays.

The resulting four words show the name of the looping program in
hexadecimal notation. See Appendix D; "Conversion Table" on page D-l to
convert these hexadecimal values into EBCDIC characters.

19 When you have determined the name of the looping program, do the
following:

a Press the SAR key.

b Key in the TCB address you recorded in step 12 on page 4-7.

C Press the Store key.

d Press the Main Storage key eight times. Record the value displayed in
the lights. This value reflects the contents of general purpose register 1,
Rl. (If you make a mistake, repeat steps 19a through 19d.)

e Subtract the program load point of the looping program from the value
shown for Rl. The result is the address of one of the instructions within
the run loop.

20 Look at the compiler listing for the program and find the instruction at the
address you calculated in step 19. Examine this area of your program for the 0',
cause of the loop. If you cannot determine the exact cause of the loop, ~

proceed to "Using $DEBUG to Isolate a Run Loop."

Using $DEBUG to Isolate a Run Loop

4-8 SC34-0941

This section explains how to isolate a run loop with $DEBUG. The $DEBUG
utility is described in detail in the Operator Commands and Utilities Reference. To
show some techniques of isolating a run loop with $DEBUG, this section uses a
sample program called MYPROG. The sample program contains a coding error
which causes it to loop. The sample program should display a prompt message
requesting up to 40 characters of input data. After receiving input, the program
should insert a blank between each character and then display the data. You end
the program by entering a /*. Figure 4-3 on page 4-9 shows the compiler listing for
the sample program MYPROG. You will need the compiler listing for your
program when using $DEBUG.

The first step in isolating a run loop is to determine the starting point and ending
point of the instructions causing the loop. "Determining the Starting and Ending
Points of the Loop" on page 4-9 shows you how to perform this step using
$DEBUO.

Note: If you use the EDL Accelerator Custom Feature, RPQ D02723, or have a
4956 Model E, 60E, 010, RIO, J, or K processor, do not leave $DEBUG loaded on
your system after you finish using the utility. $DEBUG disables the accelerator
feature. When you end the last copy of $DEBUG, the system enables the O-~, II"

accelerator feature again.

c

o

o

LOC

0000
0034
0034
0052
0072
0072
0078
0080
0086
008C
0092
0092
0098
009E
00A4
00AA
00B0
00B8
00BE

00C2
00C6
00CC
0000
0000
0004
00FE
0150
0152
0154

+0 +2 +4 +6 +8

0008 0709 06C7 09C1 0440 MYPROG
LABEll

8026 1A1A C505 E3C5 0940
8026 1C1C C505 E3C5 0940

402F 0006 0000
A0A2 0006 615C 0000
005A 0151 0005
835C 0000 0006
835C 0002 0100

065A 0000 0000
8332 0002 0001
025A 0000 0152
8332 0000 0001
8332 0002 0001
A0A2 0150 0000 00C2
8035 0150 0001
00A0 0092

0026 0100
902A 0001 0000
00A0 0072

0022 FFFF
2828 4040 4040 4040 4040
5050 4040 4040 4040 4040
0000
40
0000 0000 0000 0234 0000

LABEL2

LABEL3

LABEL4

INPUT
OUTPUT
COUNT
BLANK

PRINT
PROGRAM
EQU
PRINTEXT
PRINTEXT
EQU
REAOTEXT
IF
MOVE
MOVEA
MOVEA
EQU
MOVE
ADD
MOVE
ADD
ADD
IF

SUB
GOTO

ENOIF
PRINTEXT
PRINTEXT
GOTO
EQU
PROGSTOP
TEXT
TEXT
DATA
DATA
ENOPROG
END

NOOATA
LABEll
*

Analyzing and Isolating Run Loops

'ENTER UP TO 40 CHARACTERS@'
I ENTER A 11/*1 I TO END PROGRAM@'
*
INPUT,PROMPT=CONO
(INPUT,EQ,C ' /*'),GOTO,LABEL4
COUNT+1,INPUT-1,(1,BYTE)
#1, INPUT
#2,OUTPUT
*
(0,#2),(0,#1),(1,BYTE)
#2,1
(0,#2),BLANK,(1,BYTE)
#1,1
#2,1
(COUNT,NE,0) ,THEN
COUNT,l
LABEL3

OUTPUT
SKIP=l
LABEL2
*

LENGTH=40
LENGTH=80
F' 0 1

CI I

Figure 4-3. Sample Program Compiler Listing

Determining the Starting and Ending Points of the Loop
While the program is running and in a loop, use the following procedure:

1 Load $DEBUG in any available partition.

Try to load $DEBUG from a terminal other than the terminal from which the
looping program was loaded. If you cannot use a different terminal, then load
$DEBUG from the terminal used by the looping program.

2 Enter the name of the looping program when $DEBUG asks you for a
program name and volume. Because the program is already loaded, you do
not need to enter the volume name.

3 When $DEBUG asks for a partition, enter the number of the partition that
contains the looping program. If $DEBUG and the looping program are in
the same partition, press the enter key.

4 Reply N when asked if you want a new copy of the program loaded.

Chapter 4. Analyzing and Isolating Run Loops 4-9

Analyzing and Isolating Run Loops

The following example shows what you would enter if you loaded $DEBUG in
partition 2, with the sample program MYPROG running in partition 1:

5 Press the attention key and enter AT to set the first breakpoint at the address
of the program's entry point. The entry point is the address of the first
operand of the PROGRAM statement. Enter TASK when you are prompted
for an option.

The entry point for the sample program MYPROG is at address X I 0034 I, as shown
in the example below:

> AT
.. OPTlON (*/ADDR/TAS~/AL~J:.

LOW ADDRESS: .• 34 .

o

6 Set the next breakpoint at the address of the last executable instruction. This
will ensure that all instructions within the loop are traced by $DEBUG. 0

4-10 SC34-0941

The last executable instruction for MYPROG is the PROGSTOP at address
X'OODO'.

Because only the starting and ending points of the loop are needed at this point, the
NOLIST and NOSTOP options are selected:

7 Press the attention key and enter GO. $DEBUG displays the addresses of the
instructions that the program executes.

An example showing the output that $DEBUG displays while tracing the sample
program MYPROG follows. Notice that the low address (starting point of the loop)
is X I 0072 I. The high address (ending point of the loop) is X I OOCC I •

0
"

' ..• "

o

o

•
•
•

TASK0154 CHECKED AT 0072
TASK0154 CHECKED AT 0078
TA5K0154 . CHECKED .. AT 0080

',T,A~ K~.~?1~~pg~~gAT,,~0~.6,
TASK~154CHECK:ED 'AT '. 0aSC
TASK0154 CHECKED AT' 0092
TASKf:)154 .. eHEC.KED A r 0098
TASK0154" CHECKED AT 009E
TASK0154 CHECKED 'AT 00A4

·.·tASK0154,·CHECKED AT" 0.0AA
TASK0154 CHECKEllAT 0QB0
TASK0154 CHECKED .AT. 00C2

. 'TASK01S4CHECl<ED AT 00C6

.r~SK0154 'CH~~KED . AT .. ,00ee
,1AS1<0154 . CHECKED AT 0072'
:'TAs\<0154 'CHECKED AT ,0078 .

•

Analyzing and Isolating Run Loops

(1 ow address)

Figure 4-4. Sample Trace Addresses from $DEBUG

8 Ensure that all addresses displayed by $DEBUG are repeated at least once
before you end $DEBUG. You end $DEBUG by pressing the attention key
and entering END. When all the addresses have been repeated, you now have
all the instructions within the loop.

9 Using the trace addresses from $DEBUG, try to determine the cause of the
loop from the compiler listing. "Using the Compiler Listing to Locate the
Loop" on page 4-12 explains how you use the trace addresses to follow the
logic of the loop.

The section "Some Common Causes of Run Loops" gives some hints as to what
might be the cause of the loop.

Some Common Causes of Run Loops
Run loops are often caused by some exit condition not being met within a program.
The reason the exit condition is not met could be any of the following:

• Counters or variables that are never initialized when the program begins

• Counters or variables that are not tested for an exit condition

• Counters that never reach the limit you expected

• Control passed to the wrong label in the program.

Check your program listing to be sure that none of the previous logic errors exist. If
you cannot pinpoint any of these conditions immediately, continue reading this
chapter.

Chapter 4. Analyzing and Isolating Run Loops 4-11

Analyzing and Isolating Run Loops

Using the Compiler Listing to Locate the Loop
The compiler listing and the trace addresses displayed by $DEBUG enable you to
follow the flow of the loop. Use the following procedure to determine the problem:

1 Locate in the compiler listing the lowest trace address displayed by $DEBUG.
The lowest address for the sample program, MYPROG, is XI 0072 1 (see
Figure 4-4 on page 4-11).

At address XI 0072 1
, the instruction executed is a READTEXT.

LOC +0 +2 +4 +6 +8
•
•
•

'ENTER UP TO 40 CHARACTERS@'

o

0034
0052
0072
0072
0078

8026 lAlA C5D5 E3C5 D940
8026 lClC C5D5 E3C5 D940

PRINTEXT
PRINTEXT
EQU
READTEXT
IF

1 ENTER A 11/*11 TO END PROGRAM@'

4-12 SC34-0941

LABEL2
402F 00D6 0000
A0A2 00D6 615C 00D0

•
•
•

*
INPUT,PROMPT=COND
(INPUT,EQ,C ' /*'),GOTO,LABEL4

The symptoms of the loop appear to be that the READTEXT did not allow you to
enter input data when the program issued a message to do so. 0

2 Reload $DEBUG in any available partition to determine the problem.

In this example, $DEBUG is loaded in partition 1, the same partition as MYPROG:

> $L $DEBUG
LOADING $OEBUG . nnP.hh:ll1Ill:ss, LP=· xxxxtPART= yy
PROG.RAM (NAME,VOLUME): MYPROG
PA~flTION(DEFAULT ;IS . CURRENT PARtITION) ~
ALREADY ACnVEATB40e
DO .•. YOU. WANTA .. N;W;COPV: TO BE LOADED? N

3 Press the attention key to set a breakpoint at the address following the
READTEXT (address XI 0078 1

):

> AT
QPTIONf~/AQ[lR1TASK}ALLl:
B~~AKPOINI ... ·ADOR; 78
t..IST~~O,qST: NOLI ST
STUP/~OSTqP.: STOP••.

·'l.B~E:A,KPOINTlS).· SET

When the following message is displayed, $DEBUG has suspended the program's
execution:

o

c

o

o

Analyzing and Isolating Run Loops

l TASKe154 STOPPED AT ee78

At this point, you can look at any area of storage the program uses. If you set
counters or variables in a program, examine those fields first. For MYPROG, you
want to look at the number of characters the program read in as a result of
executing the READTEXT instruction.

The area labeled INPUT receives the input data when the program executes the
READTEXT:

LOC +0 +2 +4 +6 +8
•
•
•

0072 402F 0006 0000 REAOTEXT INPUT,PROMPT=CONO
•
•
•

0004 2828 4040 4040 4040 4040 INPUT TEXT LENGTH=40

4 Press the attention key and enter the following to see the number of characters
stored in INPUT:

$DEBUG displays the following information:

This information shows the length and count bytes for INPUT. The X 128 1 indicates
the buffer size is 40 characters in length. However, the XI 00 1 indicates that no
characters were read in as a result of the READTEXT. If INPUT contained any
data, the count byte would indicate the number of bytes.

Because INPUT contains no data, the problem might be either the TEXT statement
coded for INPUT or the READTEXT instruction. Because you use READTEXT
instructions to receive input data, the problem is probably with the READTEXT.

5 Review the description of READTEXT in the Language Reference to
determine if the READTEXT is coded correctly. The READTEXT is coded
as follows in the sample program:

REAOTEXT INPUT,PROMPT=CONO

The description for PROMPT = COND explains that when you use this
operand, you must also code message text. No message text is coded on

Chapter 4. Analyzing and Isolating Run Loops 4-13

Analyzing and Isolating Run Loops

READTEXT in the sample program. The description further explains that
when no message text is specified, READTEXT sets the count byte to zero
and does not wait for input.

The sample program entered a run loop because the READ TEXT is coded
incorrectly. Isolating the run loop for this sample program is now complete.

6 Press the attention key and enter END to end $DEBUG.

7 Cancel the looping program using the $C operator command.

8 Correct the coding error on the READTEXT as follows:

READTEXT INPUT,'ENTER NEW DATA: ',PROMPT=COND

9 Recompile the program.

The techniques discussed up to this point in the chapter were useful in isolating the
run loop in the sample program, MYPROG. The error, in this case, was somewhat
obvious. However, you can apply these same techniques when the cause of a run
loop in your program is not so apparent. The next section introduces additional
techniques that may be helpful if you are trying to locate the cause of a run loop in
a program that uses unmapped storage.

Examining an Unmapped Storage Area for the Cause of a Loop

4-14 SC34-0941

A program may occasionally receive invalid or incorrect data. If the program is not
prepared to handle such a situation, it could go into a run loop.

By using the LIST command of $DEBUG, you can examine the data areas in your
program to see if any of the data in these areas is invalid or incorrect. (For more
information on using the LIST command of $DEBUG, refer to the Operator
Commands and Utilities Reference.) If the failing program uses unmapped storage,
you may also want to look at the data in the unmapped storage areas. This section
explains how to examine an unmapped storage area to find the cause of a run loop.

The sample program used in this section is called ADDNAMES. ADDNAMES
processes a list of names and addresses which it reads from a data set into unmapped
storage. The program should end when it encounters a-I (X' FFFF I) or when it
processes more than 1,000 bytes of data. When ADDNAMES was loaded last,
however, it went into a run loop. Figure 4-5 on page 4-15 shows the compiler
listing for the sample program.

o

o

o

LOC

0000
000A
0014
001E
0028
0032
003C
0046
0050
005A
006E
0076
0080
008A
0094
0096

0098
00A2
00A8
00B2
00BC
00BE
00C8
00CA
0000
0008

0100
0106
010C
0112
0112

0116
0120

+0 +2 +4 +6 +8

0008 0709 06C7 09C1 0440
0000 0104 0184 0000 0000
0188 0800 0001 0000 0100
0186 0800 0000 0000 0000
0000 0800 0000 0000 0000
FFFF 0800 0000 0808 C4C1
E3C1 4840 4040 0606 C4D6
0506 D9E2 4040 0000 0000
0000 0801 0000 0001 0000
0000 0800 0000 0000 0000
0000 0800 0000 0000
0000 C1C1 0000 0000 0008
0001 FFFF 0000 0000 0090
0000 0800 0000 FFFF FFFF
0000
0000

00B9 0076 0000 0000 0101
035C 0000 0082
80B9 0076 0001 0000 0300
8120 0000 0008 0000 020C
0032
00A0 00CA 90A2 0094 03E8
00F6
045C 0096 0000
AOA2 0096 FFFF 00F6
EOA2 0096 0000 00F2

8332 0000 0002
0332 0000 0096
0032 0094 0096

00A0 00C2

00B9 0076 0000 0000 0201
0022 FFFF

Analyzing and Isolating Run Loops

AODNAMES PROGRAM

STORBLK1 STORBLK

TOTAL
LENGTH
START

QUIT

DC
DC
EQU
GETSTG
MOVE
SWAP
READ

DO

•
•
•

MOVE
IF
IF

ADD
ADD
ADD

ENOIF
ENOOO
EQU
FREESTG
PROGSTOP
COpy
•
•
•

START, DS=((DATA,DONORS))

TWOKBLK1=1,MAX=2

F' 0
1

F' 0 1

*
STORBLK1,TYPE=ALL
#1,STORBLK1+$STORMAP
STORBLK1,1
DS1,(0,#1),8

UNTIL, (TOTAL,GT,1000)

LENGTH, (0,#1)
(LENGTH,EQ,-l),GOTO,QUIT
(LENGTH,GT,0),

*

#1,2
#l,LENGTH
TOTAL, LENGTH

STORBLK1,TYPE=ALL

STOREQU

Figure 4-5. Sample Program Compiler Listing

When $DEBUG is used to trace the execution of the program, the starting point of
the loop (low address) is at X I OOBE I. The ending point of the loop (high address) is
at X I 0112 I. (The procedure for locating a run loop in a program is shown under
"Determining the Starting and Ending Points of the Loop" on page 4-9.)

The compiler listing for the sample program shows a DO instruction at address
X I OOBE I. The DO instruction marks the beginning of the loop. The loop ends with
the ENDDO instruction at address X I 0112 I.

Chapter 4. Analyzing and Isolating Run Loops 4-15

Analyzing and Isolating Run Loops

Looking at the contents of the DO loop, you can see that the program should be
able to exit the loop when one of two conditions is met:

(1) The total length of the data read into storage exceeds 1000 bytes. At this
point, the DO instruction at X I OOBE I would satisfy the condition that it execute
until the value in TOTAL is greater than 1000.

(2) The program finds a -1 in the data area. In this case, the IF instruction at
X I OODO I would detect the condition and send the program to the label QUIT.

Since neither of these conditions occurred, it appears that the program had less than
1000 bytes of data to process but did not encounter a -1 when the data ended.
Looking at the data in the unmapped storage area should reveal the source of the
problem. To look at the contents of an unmapped storage area, do the following:

1 While the program is running and in the loop, load $DEBUG in any available
partition.

Try to load $DEBUG from a terminal other than the terminal from which the
looping program was loaded. If you cannot use a different terminal, then load
$DEBUG from the terminal used by the looping program.

2 Enter the name of the looping program when $DEBUG asks you for a
program name and volume. Because the program is already loaded, you do
not need to enter the volume name.

o

3 When $DEBUG asks for a partition, enter the number of the partition which
contains the looping program. If $DEBUG and the looping program are in
the same partition, press the enter key. 0

4-16 SC34-0941

4 Reply N when asked if you want a new copy of the program loaded.

The sample program ADDNAMES is running in partition 1. In the following
example, $DEBUG also is loaded in partition 1:

5 Press the attention key and enter AT to set a breakpoint at the address
following the instruction that reads the data into unmapped storage.

Note: Your program may be using several unmapped storage areas. If the
SW AP instruction refers to a variable to find out the number of the unmapped
storage area it should gain access to, check the contents of this variable to see
which area was in use when the loop began.

In the sample program, the address of the instruction following the READ
instruction is X I OOBE I:

o

o

o

o

Analyzing and Isolating Run Loops

> AT
OPTION (*/ADDR/TASK/ALL): ADDR
BREAKPOINT ADDR: BE
LIST/NOLIST: NOLIST
STOP/NOSTOP: STOP

1 BREAKPOINT(S) SET

6 Press the attention key and enter GO.

$DEBUG displays a message when it suspends the program's execution at the
breakpoint:

l TASK9124 STOPPEO AT eeSE

7 Press the attention key and enter the LIST command. After you enter this
command, use the following procedure:

a For "OPTION," enter UNMAP.

b For "STORBLK ADDRESS," enter the address of the STORBLK
statement that defines the unmapped storage area you want to see.

C For "SWAP#," enter the number of the unmapped storage area you
want to see.

d For "DISPLACEMENT," indicate how far from the beginning of the
unmapped storage area the utility should go before listing the contents
of the area. Enter a number of bytes (in hexadecimal). For example, if
you enter lA, $DEBUG will begin the listing after the 26th byte in the
unmapped storage area.

e For "LENGTH," enter the number of words, doublewords, or
characters you want to list, depending on the MODE you select. Enter
a decimal number.

f For "MODE," enter the format you want the data to appear in.

The sample program reads eight 256-byte records into unmapped storage. The
following example lists the first 256-byte record in the unmapped storage area:

Figure 4-6 shows how $DEBUG displays the first record of the unmapped storage
area for the ADDNAMES program.

Chapter 4. Analyzing and Isolating Run Loops 4-17

Analyzing and Isolating Run Loops

;.~:;:, .. ··:.e~4;Ef:~·~~i;... " i':~i}:~ji2:Z~3;'~;'~Bh~':;/":'~:;.~';.':";:·.·· ";'
" .. " ". }.f9~;~~;:':C?Qfr~ ... : .. " '. . '.' .:q~:~?::;·~~Q~~:;:;'/'::.'.;,:··:·~\·;'t,.}::~~·~;/·

·0e~!:):;X'./ .. ' : <E3C8·.··ee26/p~·~B:·D.,,9~E9E.9.:0p03..' .. : .. : ...•....•.. :

I ~~:,~y~~~c~fr::·~~~~~~~~,H~~Ut~~~~~ .. .
.. ·.:·~~·~~i:~:;·.,~~~~/~~~t·:.~~~·f·;·~~ri.~:: t;~~~:·;k~ri~·.·~:~~~·~·:.g~~8 •. : "
· .. 0@?::~::,)(,:··. ~~.I~':.·q4~~·.:·{)2#i.fP2·¢:5 •. ~~·QB.:/ft·FZ .. ~.~PB:.·~6D9:i ..
. '0080 XI '. E3C84(:)E4P5C9.D6D56BD9C5C4·'05C5/C3D,21

~e90.KI . 0048::~1,4~~1f)5:.E9Cl.93D&P~q56BF~·J·ZF3'
e~A~.X'.:· .. 4~~6· .• :: ... C~E2 .• E3E~·C9C5E64~'C2P3.·:E5C4. 4~6Bl
00BO;.X L 09;06·.C?D2 ·t3D~ •. e5C5·D?6.B··.:.0p0a .. 000e.p00ai
~0~C0.XJ.0~0q.0e0~:e0.e(:)00e:)00o/e0·00900009i~gee' .. : ..
. 90b(J XI '0080090e :a900,:0.gee·e999.9pee·.'e0e0,gee9 ',"
0f)EOX':Be00·ee000e90 0.090 0e00.009009900000 1

.

e9F0X'0G00 0009 0000 090e 0000.'9900 90090009'

Figure 4-6. Sample Listing from $DEBUG

Each "logical record" that ADDNAMES processes consists of a name and address
preceded by a "length" word. The length word indicates the length of the name and
address in bytes. The program checks the length word, processes the amount of data
that follows it, and moves to the next length word. The following is what the
contents of the first logical record in Figure 4-6 would look like if they were
translated into EBCDIC.

Data

E.FEDER,123 NORTH HICKORY,PORTSMOUTH (Length - X'24' bytes)

4-18 SC34-0941

A0941 002

If you were to list the rest of the contents of the unmapped storage area, you would
see that no more data exists. A brief examination of the storage contents in
Figure 4-6 reveals that fewer than 1000 bytes of data were processed by the
program. However, when you look for the second exit condition, a-I (X I FFFF I)
at the end of the data, no -1 exists.

In the compiler listing for the ADDNAMES program, the first IF instruction in the
DO loop looks for a-I and the second IF instruction checks to see if the length of
the data being processed is greater than O. (See Figure 4-5 on page 4-15.) If no -1
is found, and if the length word contains only zeros, the program begins the loop
again. Without a-I to indicate the end of the data, the program performs the DO
loop endlessly.

In this case, the sample program obviously needs to be modified. However, to
ensure that you have diagnosed the cause of the error correctly, you could place a
- 1 at the end of the data with the PATCH command of $DEBUG.

To use the PATCH command:

1 Press the attention key and enter PATCH.

o

o

o

o

o

o

Analyzing and Isolating Run Loops

2 After you enter the command, use the following procedure:

a For "OPTION," enter UNMAP.

b For "STORBLK ADDRESS," enter the address of the STORBLK
statement that defines the unmapped storage area you want to modify.

C For "SWAP#," enter the number of the unmapped storage area you
want to modify.

d For "DISPLACEMENT," indicate how far from the beginning of the
unmapped storage area the utility should go before listing the contents
of the area. Enter a number of bytes (in hexadecimal). For example, if
you enter lA, $DEBUG will begin the listing after the 26th byte in the
unmapped storage area.

e For "LENGTH," enter the number of bytes, up to 16, that you want to
modify. You cannot modify more than 16 bytes of data at a time.
Enter a decimal number.

f For "MODE," enter the format you want the data to appear in.

3 The PATCH command displays the data to be modified. Enter your new data
following the "DATA:" prompt message. Separate each word of data with a
space.

If you enter less data than the amount displayed, the command pads the
remaining area with blanks (for character data) or zeros (for all other types of
data).

4 The command displays the data you entered and issues the prompt message
"YES/NO/CONTINUE." Respond Y to confirm the change, N to cancel the
change, or CONTINUE to confirm the change and to continue modifying
data.

The following example uses the PATCH command to place a - 1 at the end of the
data in the unmapped storage area. After the change is made, resume program
execution by pressing the attention key and entering GO.

Chapter 4. Analyzing and Isolating Run Loops 4-19

Analyzing and Isolating Run Loops

Run Loops Caused by Device Interrupts
The system can go into a run loop when device interrupts fill up the buffer area that
the system uses to contain interrupts. When the buffer fills up, the system issues a
stop code of X '64FB I. The loop begins at entry point SVCIBFOF in the supervisor
module EDXSVCX.

This problem can be caused by the following:

1 The value you specified on the IABUF = operand of the SYSP ARMS
statement (in $EDXDEFS) is not large enough to contain the number of
interrupts. The default for IABUF = 'is 20. You may have to increase the
value specified. Refer to the Installation and System Generation Guide for
details on this operand.

2 A hardware problem on a device causes the device to send excessive interrupts
which in turn causes IABUF to become full. Loading the $LOG utility, which
records I/O errors, may identify the device experiencing errors. The $LOG
utility is discussed in Chapter 9, "Recording Device I/O Errors and Program
Check Information" on page 9-1.

Run Loops Caused by Stack Overflows

4-20 SC34-0941

The system can enter a run loop when the buffer fills up with more pointers than
there are XPSSTK entries for pointers. When this is the case, the system issues a
stop code of X I 64FC I. The loop begins at entry point XPSSTKOF in the
supervisor module EDXSVCX.

This problem can be caused by the following:

1 The value you specified on the XPSSTK = operand of the SYSP ARMS
statement (in $EDXDEF) is not large enough to contain the number of return
addresses and partition numbers saved during cross-partition branches. The
default for XPSSTK = is 20. You may have to increase the value specified.
Refer to the Installation and System Generation Guide for details on this
operand.

2 A hardware problem on a device causes the device to send excessive interrupts
which in turn causes XPSSTK to become full. Loading the $LOG utility,
which records I/O errors, may identify the device experiencing errors. The
$LOG utility is discussed in Chapter 9, "Recording Device I/O Errors and
Program Check Information" on page 9-1.

3 More terminals than stack entries may be defined on your system. Make sure
you defined more stack entries than you have terminals.

()'",,'
~,

'-'

o

o

o

o

o

Analyzing and Isolating aWait State

Chapter 5. Analyzing and Isolating a Wait State

A wait state is a condition where the system or a program is waiting for the
completion of an event or operation, but because of an error, the completion of the
event or operation never occurs. When this condition exists, you must determine
what prevented the event or operation from completing.

This chapter describes how to determine the cause of a wait state in an application
program.

If, during a wait state, you press the attention key and the system does not display a
"greater than" symbol (>), you should take a stand-alone or $TRAP dump.
Chapter 7, "Analyzing a Failure Using a Storage Dump" on page 7-1 explains how
you can determine the cause of the problem from the dump. Refer to the Operation
Guide for details on taking a stand-alone dump. The Operator Commands and
Utilities Reference explains how to use the $TRAP utility.

In order to determine what caused the wait state in the application program, you
must first find the address of the waiting instruction. How to do this is described in
the next section.

Note: Several procedures in this chapter use the $DEBUG utility. If you have the
EDL Accelerator Custom Feature, RPQ D02723, or have a 4956 Model E, 60E,
G10, HIO, J or K processor, do not leave $DEBUG loaded on your system after you
finish using the utility. $DEBUG disables the accelerator feature. When you end
the last copy of $DEBUG, the system enables the accelerator feature again.

How to Find the Address of the Waiting Instruction Using $DEBUG
To find the address of the waiting instruction, do the following while the program is
in the wait state:

1 Load $DEBUG in any available partition.

Try to load $DEBUG from a terminal other than the terminal from which the
waiting program was loaded. If you cannot use a different terminal, then load
$DEBUG from the terminal used by the waiting program.

2 Enter the name of the waiting program when $DEBUG asks you for a
program name and volume. Because the program is already loaded, you do
not need to enter the volume name.

3 When $DEBUG asks for a partition, enter the number of the partition which
contains the waiting program. If $DEBUG and the waiting program are in
the same partition, press the enter key.

4 Reply N when asked if you want a new copy of the program loaded.

The following example shows what you would enter for the program W AITPGM
located in partition 1. $DEBUG, in this example, is loaded in partition 2.

Chapter 5. Analyzing and Isolating a Wait State 5-1

Analyzing and Isolating a Wait State

5 Press the attention key and enter the WHERE command. $DEBUG then
displays the instruction address where the program is waiting. The following
is an example of this sequence:

6 Using the address displayed by $DEBUG, look at the compiler listing of that
program to see what instruction is at that address.

7 Press the attention key and enter END to end $DEBUG.

After you identify the instruction that caused the wait, you must determine the
reason why it was waiting. The next section can help you analyze the instruction
that caused the wait state.

Analyzing the Instruction that Caused the Wait State
This section discusses how you can analyze the wait state if the program is stopped
at any of the following instructions:

• ENQ

• ENQT

• WAIT.

If the program is not waiting on any of these instructions, go to the section "Other
Possible Causes of a Wait State" on page 5-8.

Analyzing an ENQ Instruction

5-2 SC34-0941

When the program is pointing to an ENQ instruction, you must examine the queue
control block (QCB) the program tried to enqueue. By examining the queue control
block, you can determine which task has control of that queue control block.

This section explains how to examine the queue control block when the following
conditions apply:

• The queue control block is defined within the program with a QCB statement.

• The queue control block is defined in the system common area, $SYSCOM.

o

o

o

o

o

Analyzing and Isolating aWait State

Examining a Queue Control Block Defined in the Program
Use the following procedure to examine the queue control block defined in the
program:

1 Find the address of the QCB statement in the program compiler listing.

2 While the program is in the wait state, load $DEBUG in any available
partition.

Try to load $DEBUG from a terminal other than the terminal from which the
waiting program was loaded. If you cannot use a different terminal, then load
$DEBUG from the terminal used by the waiting program.

3 Enter the name of the waiting program when $DEBUG asks you for a
program name and volume. Because the program is already loaded, you do
not need to enter the volume name.

4 When $DEBUG asks for a partition, enter the number of the partition which
contains the waiting program. If $DEBUG and the waiting program are in
the same partition, press the enter key.

5 Reply N when asked if you want a new copy of the program loaded.

The following example shows what you would enter for the program W AITPGM
located in partition l. $DEBUG, in this example, is loaded in partition 2:

> $L $DEBUG
LOADING$DEBUG nnP,hh:mm:ss, LP= xxxx, PART= yy

.PROGRAMCNAME. VOLUME): WAITPGM
·PARTIUQN (DEFAULT IS CURRENT PARTITION): 1
f\LREADY ACTIVE AT B4(:)0
:()O. YOU WANT A NEW COpy TO.BE LOADED?' N

6 Press the attention key and enter the LIST command.

7 Respond to the prompts to display the 5-word queue control block. For
example, if the address of the QCB statement were at X I 05E8 I, you would
respond to the prompts as follows:

. > LIST
OPTION (*IADDR!R(:) ••• R7/#1!#2/IAR/TCOOE/UNMAP): ADDR

;~M:55E8
. MOO'E(j(/:FjO/AIG):

An example of the output follows:

Chapter 5. Analyzing and Isolating a Wait State 5-3

Analyzing and Isolating a Wait State

8 Look at word 3 of the queue control block. (The first word of the QCB is
word 0.) Word 3 contains the task control block (TCB) address of the task 0
that owns the QCB. In the sample output, the TCB address is X I CD38 I •

Word 4 contains the address space in which that task resides. Word 4 in the
example shows address space 1 (partition 2).

9 Examine the task at the address (identified in step 8) and determine why that
task did not issue a D EQ instruction.

The section "Common Causes of a Program Wait Using QCBs" on page 5-5
presents some hints as to what might be the cause of the problem.

1 0 Press the attention key and enter END to end $DEBUG.

Examining a Queue Control Block Defined in $SYSCOM

5-4 SC34-0941

Do the following steps to examine the queue control block defined in $SYSCOM:

1 Using the link map listing of the current supervisor, find the address of the
queue control block in $SYSCOM that you attempted to enqueue.

2 Press the attention key and enter $CP 1.

3 Press the attention key and enter $D.

4 Enter 0000 as the origin. Enter the queue control block address from step 1.
Enter the number 5 for the count.

The following is an example of the output displayed for a queue control block at
address X I 19DO I :

The first word of the QCB (word 0) indicates the status of the QCB. A value of
X I FFFF I means that the QCB is available. A value of X I 0000 I means that the
QCB is enqueued.

5 Look at words 3 and 4 of the QCB. Word 3 is the task control block (TCB) 0
address of the task that owns the QCB. In the sample output, this TCB .. "
address is X ' 1FOO' Word 4 contains the address space in which that task

o

o

o

Analyzing and Isolating a Wait State

resides. In the sample output, the address space in which that task resides is
address space 1 (partition 2).

Word I contains the TCB address of the waiting task. Word 2 contains the
address space in which that task resides. The waiting task is at address
X I CD38 I in address space 0 (partition 1).

6 Press the attention key and enter SCP, specifying the partition number you
identified in step 5 on page 5-4.

7 Press the attention key and enter SA.

8 Find the program whose load point is within the range of the TCB address
you identified in step 5 on page 5-4.

,~Note: If the $A shows that no programs are active, the task whose TCB
address you identified in step 5 on page 5-4 is no longer in storage and failed
to issue a DEQ. When this is the case, you must IPL the system to clear the
wait state and to release the enqueued QCB.

To prevent this condition in the future, determine what other programs use
that QCB. If possible, also determine which of those programs was previously
active. Examine those programs and determine which one failed to dequeue
the QCB. The section "Common Causes of a Program Wait Using QCBs"
presents some hints as to what might have caused the problem.

9 Subtract the program load point address from the TCB address of the task
that owns the QCB. In this example, the TCB address is X '1FOO I.

10 Using the resulting address from step 9, locate that address in the compiler
listing for that program.

11 If that address points to an ENDPROG, ENDTASK, or DETACH statement,
examine that program and determine why it did not issue a DEQ.

12 If that address does not point to an ENDPROG, END TASK, or DETACH
statement, then the program in storage is not the program that enqueued the
QCB. When this is the case, you must IPL the system to clear the wait state
and to release the enqueued QCB.

To prevent this condition in the future, determine what other programs use
that QCB. If possible, also determine which of those programs was previously
active. Examine those programs and determine which one failed to dequeue
the QCB. The section "Common Causes of a Program Wait Using QCBs"
presents some hints as to what mie:ht have caused the problem.

Common Causes of a Program Wait Using aCBs
Wait states are often caused when:

• A program fails to issue a DEQ to an enqueued QCB.

• A program issues an ENQ to a queue control block defined in $SYSCOM when
$SYSCOM is not mapped in that program's partition. You map $SYSCOM
across partitions during system generation (COMMON = operand on the
SYSCOMM statement).

If $SYSCOM is not mapped in the partition in which you issued the ENQ or
DEQ, ensure you use cross-partition services to enqueue or dequeue the QCB.

Chapter 5. Analyzing and Isolating a Wait State 5-5

Analyzing and Isplating aWait State

Also check that the field $TCBADS of the program's TCB points to the address
space in which the QCB resides. This consideration applies to any QCB not
residing in a program's partition. Refer to the Language Reference for examples
of cross-partition operations.

• A program overlays the QCB area in storage (QCB destroyed).

Review the compiler listing of your program to ensure that none of the previous
conditions exist.

Analyzing an ENQT Instruction

5-6 SC34-0941

When the program is pointing to an ENQT instruction, you must examine the
terminal control block (CCB) of the device the program tried to enqueue. By
examining the terminal control block, you can determine which task has control of
that device.

Do the following steps to examine the terminal control block:

1 In the compiler listing, find the name of the terminal to which the program
issued the ENQT.

2 Look in the link map listing of your current supervisor and locate the section
labeled $EDXDEF. In that section, find the label that matches the name of
the device the program tried to enqueue.

3 Add X 160 1 to the address of that device. The resulting address points to word
3 of the field $CCBQCB in the terminal control block.

4 At the terminal, press the attention key and enter $CP 1.

5 Press the attention key and enter $D. The following example illustrates this
step.

6 Enter 0000 as the origin. Enter the address you calculated in step 3. In the
example, this address is represented by xxxx. Enter the number 2
for the count. The following example illustrates this step.

7 The first word displayed is the task control block (TCB) address of the
program that has control of the device. The partition in which that program
is running is the value of the second word plus 1.

8 Press the attention key and enter $CP, specifying the partition number from
step 7.

o

o

o

o

o

o

Analyzing and Isolating aWait State

9 Press the attention key and enter $A.

10 The TCB address from step 7 on page 5-6 will be within the range of the load
point address for the program that has control of the device.

11 Examine the compiler listing of that program and determine why it has not
issued a D EQT.

Analyzing a WAIT Instruction
If the event control block the program is waiting on is defined with an ECB
statement, go to the section "Common Causes of a Program Wait Using ECBs" on
page 5-8 for some hints as to what might be the problem.

If the event control block the program is waiting on is defined as a result of coding
the EVENT = operand on a PROGRAM or TASK statement, do the following:

1 While the program is in the wait state, load $DEBUG in any partition.

Try to load $DEBUG from a terminal other than the terminal from which the
waiting program was loaded. If you cannot use a different terminal, then load
$DEBUG from the terminal used by the waiting program.

2 Enter the name of the program which contains the EVENT = operand when
$DEBUG asks you for a program name and volume. Because the program is
already loaded, you do not need to enter the volume name.

3 When $DEBUG asks for a partition, enter the number of the partition which
contains the waiting program. If $DEBUG and the waiting program are in
the same partition, press the enter key.

4 Reply N when asked if you want a new copy of the program loaded.

The following example shows what you would enter for the program W AITPGM
located in partition 1. $DEBUG, in this example, is loaded in partition 2:

> $L $DEBUG
LOADING$DEBUG nnP ,hh;mm:s$, .LP=xxxx, PART= yy
PROGRAM (NAME,VOLUME) :WAITPGM' .
PARTITION (DEFAULTTSCURRENT PARTITION): 1

. ALREADY ACTIVE ATB400
DO YOU WANT A NEW COpy TO BE LOADED? N

5 Press the attention key and enter the WHERE command.

6 Using the compiler listing of that program, locate the instruction address
displayed in step 5 and determine why that program has not ended.

7 Press the attention key and enter END to end $DEBUG.

The next section, "Common Causes of a Program Wait Using ECBs" on page 5-8,
gives some hints as to what might be the problem.

Chapter 5. Analyzing and Isolating a Wait State 5-7

Analyzing and Isolating aWait State

Common Causes of a Program Wait Using ECBs
Wait states are often caused when a program:

• Fails to post an event control block (ECB) which another program is waiting on.
Ensure that all attached tasks post the ECB before issuing a DETACH.

• Issues aWAIT with the RESET operand specified when the event has already
been posted. Coding aWAIT followed by a RESET instruction may resolve the
problem.

• Waits on an ECB defined in $SYSCOM when $SYSCOM is not mapped in the
program's partition. You map $SYSCOM across partitions during system
generation (COMMON = operand on the SYSCOMM statement).

If $SYSCOM is not mapped in the partition in which you issued the WAIT or
POST, ensure that you use cross-partition services to wait on or post the ECB.
Also check that the field $TCBADS of the program's TCB points to the address
space in which the ECB resides. This consideration applies to any ECB not
residing in a program's partition. Refer to the Language Reference for examples
of cross-partition operations.

• Has a logic error that unintentionally branches to aWAIT instruction.

Review the compiler listing of your program and ensure none of the previous
conditions exist.

Other Possible Causes of a Wait State

5-8 SC34-0941

When the program stops at an instruction other than ENQ, ENQT, or WAIT,
consider the following:

• Is the program waiting for operator input to instructions such as READTEXT,
GETV ALUE, or QUESTION? The problem may be that the operator never
responded to a prompt message or a prompt message requesting input was not
coded.

• Is the instruction a READ or WRITE? It is possible that a hardware problem
on disk prevented a device interrupt being sent to the supervisor. The system
would wait until it received the device interrupt signaling completion of the I/O
request.

Any of the following may verify that a disk problem exists:

Verifying the disk using $INITDSK (VD command). If $INITDSK
indicates errors, load $DASDI and try assigning alternate sectors on the
device.

Note: If you are not familiar with the procedures for assigning alternate
sectors, contact your customer service representative for assistance.
Allocating a data set using $DISKUTI.
Verifying the hardware configuration using $IOTEST (LS or LD command).

If any or all of these attempts fail, the disk probably has a hardware problem.
Contact your service representative for corrective action.

• Is a program, while using full screen support, enqueued to $SYSLOG? If the
supervisor is unable to ·display a program check message to $SYSLOG, the
system enters a wait state.

o

o

o

o

o

Analyzing and Isolating a Program Check

Chapter 6. Analyzing and Isolating a Program Check

The system issues a program check message to provide you with status information
on an error that occurred during processing. The system writes this message to the
terminal defined as $SYSLOG.

Note: If you defined the SYSMSG statement in your $EDXDEF data set, the
messages go to your $SYSLOG terminal, a disk data set, the Communications
Facility log, or any combination of these depending on what you specified in the
$EDXDEF data set. However, if $SYSLOG is busy, the system does not redirect
the program check message to another terminal. For more information on the
SYSMSG statement, refer to the Installation and System Generation Guide.

The system provides two types of program check messages: one for a system
program check and another for an application program check. Application program
checks are caused by errors within an application program. System program checks
typically occur when the supervisor detects an error in its own code or when an
application program somehow overlays part of the supervisor.

This chapter explains how to analyze the status information in a program check
message so that you can determine the cause of a problem. A sample program that
causes a program check when executed is included to show the steps required to
isolate an error.

The first step in determining the cause of the problem is understanding the
information displayed in the message. The following section explains the program
check message.

How to Interpret the Program Check Message
The program check message can be in one of the following three formats:

• The standard format issued by the supervisor for application and all system
program checks. The system issues the standard program check message for
application programs when you do not code the ERRXIT = operand on the
PROGRAM or TASK statement. Go to the section "Interpreting the Standard
Program Check Message" on page 6-2 when you receive the standard program
check message.

• The format displayed when you code the ERRXIT= operand on the
PROGRAM or TASK statement and specify the task error exit routine
$$EDXIT. Refer to the Event Driven Executive Language Programming Guide
for details on how to use $$EDXIT. Go to the section "Interpreting the
Program Check Message from $$EDXIT" on page 6-7 when you receive this
application program check message.

• Any format you create when you code the ERRXIT = operand on the
PROGRAM or TASK statement and supply your own error exit routine. Refer
to the Customization Guide for details on how to provide your own task error
exit routine.

Chapter 6. Analyzing and Isolating a Program Check 6-1

Analyzing and Isolating a Program Check

Interpreting the Standard Program Check Message
This section explains the information displayed in the standard program check
messages. A description of the information follows the sample messages.

The following example shows the standard application program check message:

PROGRAM CHECK:
PLP TCB PSW IAR AKR LSR R0 R1 R2 R3 R4 R5 R6 R7
3A00 0120 8002 2AD6 0110 8000 0064 3B0A 3B20 3A37 3A34 015C 00B8 0000

The next example shows the system program check message:

SYSTEM PGM CHECK:
PSW IAR AKR LSR R0 R1 R2 R3 R4 R5 R6 R7
8002 2AD6 0110 8000 0064 3BOA 3B20 3A37 3A34 015C 00B8 0000

The 11 words of information beginning with IAR and ending with R 7 are called the
level status block (LSB).

The headings displayed in the messages and what the information means follows.
(Normally when you analyze an EDL application program check, you need only be
concerned with PLP, TCB, PSW, RI, R3, and R4.)

PLP The address in storage of the program load point. This is the address at
which the program was loaded for execution and represents the first word of
your program listing.

For a system program check message, this field is omitted because the failing
instruction is within the supervisor.

TCB The address of the active task control block (TCB) as per the compiler
listing (nonrelocated).

For a system program check message, this field is omitted because the failing
instruction is within the supervisor.

PSW The value of the processor status word (PSW) when the program check
occurred. See the section "How to Interpret the Processor Status Word" on
page 6-4 to determine the meaning of this value.

IAR The contents of the instruction address register (IAR) at the time of the
error. The value shown is the address of the machine instruction currently
executing.

AKR The value of the address key register (AKR) at the time of the error. For
3-bit processors, bits 5 -7 form the operand 1 key, bits 9 -11 form the
operand 2 key, and bits 13 -15 form the instruction space key. For 4-bit
processors, bits 4 -7 form the operand 1 key, bits 8 -11 form the operand 2
key and bits 12 -15 form the instruction space key. For 5-bit processors, bit
1 and bits 4 -7 form the operand 1 key, bit 2 and bits 8 -11 form the

o

o

operand 2 key, bit 3 and 12 -15 form the instruction space key. For all 0
processors, bit 0 of the AKR is the equate operand spaces (EOS) bit. If bit , ",:,1.

o is set to 1, the operand 2 key is used for both operand 1 and operand 2.

6-2 SC34-0941

c

o

Analyzing and Isolating a Program Check

LSR The value of the level status register (LSR) when the error occurred. The
bits, when set, indicate the following:

• Bits 0 - 4 - The status of arithmetic operations. Refer to the processor
description manual for the meanings of these bits.

• Bit 8 - Program is in supervisor state.

• Bit 9 - Priority level is in process.

• Bit 10 - Class interrupt tracing is active.

• Bit 11 - Interrupt processing is allowed.

Bits 5 -7 and bits 12 -15 are not used and are always zero.

The next portion of the program check message displays the contents of the general
purpose registers RO - R7. If the failing program is written in a language other than
EDL, refer to the user's guide for that language to determine the register usage.

Because the EDL interpreter, EDXALU, uses the general purpose registers, the
contents of the registers can vary during instruction processing. The description
below reflects the contents of the registers prior to entry into the system code that
executes an EDL instruction.

RO Because the supervisor uses this register as a work register, the contents are
usually not significant to the failing program.

Rl Contains the address of the failing EDL instruction.

R2 Contains the address in storage of the active task control block (TCB). The
address in R2 is the sum of the TCB address and the load point address.

R3 Contains the address in storage of EDL operand 1 of the failing instruction.

R4 Contains the address in storage of EDL operand 2 (if applicable) of the
failing instruction.

R5 Contains the EDL operation code of the failing instruction. The first byte
contains flag bits that indicate how operands are coded. For example, the
flag bits indicate whether the operand is in #1, #2, or is specified as a
constant. The second byte is the operation code of the EDL instruction.

R6 Because the supervisor uses this register as a work register, the contents are
usually not significant to the failing program. However, you can determine
if the system was emulating EDL code when the failure occurred if R6 is
twice the value shown in the second byte of R5. For example, if the second
byte of R5 contained X I 32 I and the system was emulating EDL, R6 would
contain X I 0064 I •

R7 Because the supervisor uses this register as a work register, the contents are
usually not significant to the failing program. Sometimes the supervisor uses
this register for a branch and link instruction. The address may give a clue
as to which function passed control to the address in the IAR.

After reviewing the information shown in the program check message, you must
analyze the contents displayed for the processor status word (PSW).

The processor status word is a 16-bit register the system uses to save error status.
By looking at the processor status word, you can determine whether the error is
hardware or software related. The next section explains how to interpret the
processor status word.

Chapter 6. Analyzing and Isolating a Program Check 6-3

Analyzing and Isolating a Program Check

How to Interpret the Processor Status Word
The value of the processor status word is shown as four hexadecimal digits. Each
hexadecimal digit represents the sum of four binary bits. Starting from left to right,
the value of each bit (when set) is 8, 4, 2, and 1. To interpret what bits are on, you
must convert each hexadecimal digit to binary. For example, if the PSW indicated
the value X 18002 I, the binary representation and the bit positions would be as
shown in Figure 6-1:

Hex Binary PSW
Value Value Bits

8 1000 0-3

0 0000 4-7

0 0000 8-11

2 0010 12-15

Figure 6-1. Sample Processor Status Word Bit Settings

In the previous example, note that bits 0 and 14 are set. These bit settings are the
same as X ' 80021.

After you convert the value to binary and identify which bit positions are set, refer
to "Interpreting the Processor Status Word Bits" for an explanation of what each bit
indicates. Remember that bit 0 is the leftmost bit in the 16-bit string.

Interpreting the Processor Status Word Bits 0

6-4 SC34-0941

The information indicated by the processor status word bits can be categorized into
three types:

• Software problems - bits 0 - 6

• Hardware problems - bits 8, 10, or 11

• Processor status - bit 7 and bits 12 -15.

Figure 6-2 on page 6-5 shows the PSW bits and their general assignment for the
different processors. An explanation of the bit settings follows Figure 6-2.

Refer to the specific processor description manual for details on class interrupts, I/O
interrupts, and the basic instruction set (including indicator settings and possible
exceptions conditions).

If the PSW indicates a hardware error (machine check), call your service
representative for corrective action.

If the PSW indicates a software problem and the program check occurred in an
application program, read the section "How to Analyze an Application Program
Check" on page 6-11.

Review the section "How to Analyze a System Program Check" on page 6-21 if the
error is a system program check. o

o

o

Analyzing and Isolating a Program Check

Processor
type 495x

Bit 2 3 4 5 6 Condition Class interrupt

0 X X X X X Specification check Program check
1 X X X X X Invalid storage address Program check
2 X X X X X Privilege violate Program check
3 X X X X Protect check Program check

4 X X X X X Invalid function Soft exception
5 X X X Floating -po in t exception Soft exception
6 X X X X X Stack exception Soft exception
7 X Extended Address Mode None

8 X X X Storage parity check Machine check
9 Not used

lO X X X X X Processor control check Machine check
11 X X X X X I/O check Machine check

12 X X X X X Sequence Indicator None
l3 X X X X Translator enabled None
14 X X X X X Auto IPL None
15 X X X X X Power/thermal warning Power /thermal

Figure 6-2. Processor Status Word Bit Assignments

Processor Status Word Bit Descriptions
An explanation of the bit settings follows.

Bit 0 - Specification Check: Set to 1 if (1) the storage address violates the boundary
requirements of the specified data type, or (2) the effective (computed) address is
odd.

This error would occur, for example, if a program attempted to move word to an
area on an odd-byte boundary. You can identify which operand (R3 or R4
addresses) violates the boundary if the last hex digit of the operand address is either
1, 3, 7, 9, B, D, or F.

This is a software error.

Bit 1 - Invalid Storage Address: Set to I when an attempt is made to access a
storage address outside the storage size of the partition or when an attempt is made
to refer to a storage address in a nonexistent partition.

This error would occur, for example, if a program attempted to do a cross-partition
move to a nonexistent partition.

This is a software error.

Chapter 6. Analyzing and Isolating a Program Check 6-5

Analyzing and Isolating a Program Check

6-6 SC34-0941

Bit 2 - Privilege Violate: Set to 1 if a program in problem state attempts to issue a
privileged instruction. The processor can run in either supervisor or problem state.
Some assembler instructions can be used only while in supervisor state. If an
assembler program in problem state attempts to issue a privileged instruction, the
privilege violate condition occurs.

Normally, this error would never occur in an EDL program.

This is a software error.

Bit 3 - Protect Check: Set to 1 if a program attempts to access protected storage.
The processor can control access to areas in storage by using a storage protect
feature. If a program attempts to address any part of the protected storage, the
protect check indicator is set.

Normally, this error would never occur in an EDL program.

This is a software error.

Bit 4 - Invalid Function: Set to 1 by if any of the following conditions occur:

• Attempted execution of an illegal operation code or function combination.

• The processor attempts to execute an instruction associated with a feature that is
not contained in the supervisor.

An EDL program can cause this error if it attempts to use floating-point instructions
(FADD, FSUB, FMULT, or FDIVD) when floating-point support is not in the
supervisor.

This is a software error.

Bit 5 - Floating-Point Exception: Set to 1 when an exception condition is detected by
the optional floating-point processor. Floating-point hardware sets this bit to
indicate underflow, overflow, and divide check exceptions. An EDL program can
detect these exceptions by the return code from a floating-point instruction. No
program check message is issued when this exception occurs.

This is a software error.

Bit 6 - Stack Exception: Set to 1 when an attempt has been made to pop an operand
from an empty processor storage stack or push an operand into a full processor
storage stack. A stack exception also occurs when the stack cannot contain the
number of words to be stored by an assembler Store Multiple (STM) instruction.

Normally, this error would never occur in an EDL program.

This is a software error.

Bit 7 - Extended Address Mode: Set to 1 when the processor is operating in
extended address mode.

This is a status indicator.

o

o

o

o

c

o

Analyzing and Isolating a Program Check

Bit 8 - Storage Parity:: Set to 1 when the hardware detects a parity error on data
being read out of storage by the processor.

This is a hardware error.

Bit 10 - Processor Control Check: Set to 1 if no levels are active but execution
continues.

This is a hardware error.

Bit 11 - 1/0 Check: Set to 1 when a hardware error has occurred on the I/O interface
that may prevent further communication with any I/O device.

This is a hardware error.

Bit 12 - Sequence Indicator: Set to 1 to reflect the last I/O interface sequence to
occur. This indicator is used in conjunction with I/O check (bit 11).

This is a status indicator.

Bit 13 - Auto IPL: Set to 1 by the hardware when an automatic IPL occurs.

This is a status indicator.

Bit 14 - Translator Enabled: Set to 1 when the Storage Address Relocation
Translator Feature is installed and enabled.

This is a status indicator.

Bit 15 - Power Warning and Thermal Warning: Set to 1 when these conditions occur
(refer to the appropriate processor manual for a description of a power/thermal
warning class interrupt).

This is a status indicator.

Interpreting the Program Check Message from $$EDXIT
When you specify $$EDXIT as the task error exit for an EDL program, the output
you receive is formatted with descriptive headings. In addition, $$EDXIT provides
more information than the standard program check message. $$EDXIT also
interprets the processor status word and tells you what it means.

When a program check occurs, the program check message is directed to $SYSLOG
and $SYSPRTR.

The following is an example of a program check message issued by $$EDXIT. An
explanation of each numbered item in the sample output follows the example.

Chapter 6. Analyzing and Isolating a Program Check 6-7

Analyzing and Isolating a Program Check

6-8 SC34-0941

I

PROGRAM,:NAME
PROGRAMVOl:UME

, PR~GRAM ,LOAO POINT =
ADORESS'OFACTIVE TCB
ADDRESS OF,CCB
NUMBER'OF,OATA .SETS

• NUMB~RtOF OVERLAYS
$TCBADS
ADDRESS OF FAILURE « REt. TO PGM LOAD PT)
DUMP OF' FAIL ADDRESS
010A: 015C0000 0034 8332
$TCBCO= -1 DEC; FFFFHEX
$TCBC02 = 0 DEC; 0000 HEX
PSW ANALYSIS:

SPECIFICATION CHECK
TRANSLATOR ENABLED

psw, ,= 8002
tAR =2AD6
AI~R =0110,
LSR ·=,,80D0

. R0 (WORK REG ~ STER) = '0064
RI (EDl INSTR ADDR) 010A '

, R2(EDL reS ADDR)- 0120
R3 (EDLOPI ADDR) 0037
R4 (EDl OP2ADDR) 0034
RS (EDl COMMAND) :;: ','015C
R6(WORKREGISTER) 00S8
R7 '(WORK REGISTER) =0000
#1 = 0037
#2 = 0000

After this message is issued, $$EDXIT displays the following message on the loading
terminal:

A MALFUNCTI ON HAS OCCURRED - - CALL SYSTEM PROGRAMMER

The previous message is not displayed if you code an extension error routine to
$$EDXIT with the entry point name PCHKRTN. Refer to the Customization Guide
for details on how to code an extension to $$EDXIT.

A description of the sample program check message follows.

II The PROGRAM NAME field identifies the name of the failing application
program. In this example, the program PCHECK failed.

fJ The PSW field indicates the value of the processor status word when the error
occurred. $$EDXIT interprets this value and displays its meaning as shown in field m of this sample message.

A detailed description of the processor status word and the associated bits are
presented in the section "Interpreting the Processor Status Word Bits" on page 6-4.

II The PROGRAM VOLUME field identifies the name of the volume from which
the failing application program was loaded. In this example, the name of the
volume is MYVOL.

II The IAR field (instruction address register) contains the address of the currently
executing machine instruction.

o

o

o

o

o

Analyzing and Isolating a Program Check

1.1 The PROGRAM LOAD POINT field contains the address at which the
program was loaded for execution. The address represents the first word of your
program listing.

II The AKR field contains the value of the address key register (AKR). For 3-bit
processors, bits 5 -7 form the operand 1 key, bits 9 -11 form the operand 2 key,
and bits 13 -15 form the instruction space key. For 4-bit processors, bits 4 -7 form
the operand 1 key, bits 8 -11 form the operand 2 key and bits 12 -15 form the
instruction space key. For 5-bit processors, bit 1 and bits 4 -7 form the operand 1
key, bit 2 and bits 8 -11 form the operand 2 key, bit 3 and bits 12 -15 form the
instruction space key .. For all processors, bit 0 of the AKR is the equate operand
spaces (EOS) bit. If bit 0 is set to 1, the operand 2 key is used for both operand 1
and operand 2.

fJ The ADDRESS OF ACTIVE TCB field contains the address (nonrelocated) of
the active task control block (TCB) as per the compiler listing.

II The LSR field level status register (LSR) information. The bits, when set,
indicate the following:

• Bits 0 - 4 - The status of arithmetic operations. Refer to the processor
description manual for the meanings of these bits.

• Bit 8 - Program is in supervisor state.

• Bit 9 - Priority level is in process.

• Bit 10 - Class interrupt tracing is active.

• Bit 11 - Interrupt processing is allowed.

Bits 5 - 7 and bits 12 - 15 are not used and are always zero.

II The ADDRESS OF CCB field contains the address of the terminal control
block (CCB) assigned to the failing program.

1m The RO field contains the contents of hardware register 0 when the error
occurred. Because the supervisor uses this register as a work register, the contents
are usually not significant when you analyze the failing program.

m The NUMBER OF DATA SETS field shows the number of data sets specified
on the DS = operand of the PROGRAM statement.

m The Rl field contains the address of the failing EDL instruction.

m The NUMBER OF OVERLAYS field indicates the number of overlay
programs specified on the PGMS = operand of the PROGRAM statement.

m The R2 field contains the address in storage of the active task control block.
This address is the sum of the TCB address and the program load point.

m The $TCBADS field contains the target task address space. The value of this
field plus I indicates the partition number in which the program was running.

III The R3 field contains the address of EDL operand 1 for the failing EDL
instruction.

Chapter 6. Analyzing and Isolating a Program Check 6-9

Analyzing and Isolating a Program Check

6-10 SC34-0941

m The ADDRESS OF FAILURE field contains the address of the failing EDL
instruction. This is the address shown in the compiler listing. This is also the
address shown in field m in this sample output. In this example, the failing EDL
instruction is at address X I 01 OA I •

1m The R4 field contains the address of EDL operand 2 (if applicable) for the
failing EDL instruction.

III The R5 field contains the EDL operation code of the instruction that was
executing when the failure occurred. The first byte contains flag bits which indicate
how operands are coded. For example, the flag bits indicate whether the operand is
in #1, #2, or specified as a constant. The second byte is the operation code of the
EDL instruction.

m The DUMP OF FAIL ADDRESS field shows the location and content of the
instruction that was executing when the failure occurred. The information at this
address also appears in the compiler listing.

m The R6 field contains the contents of hardware register 6 when the error
occurred. Because the supervisor uses this register as a work register, the contents
are usually not significant when you analyze the failing program. However, you can
determine if the system was emulating EDL code when the failure occurred if R6 is
twice the value shown in the second byte of R5. For example, if the second byte of
R5 contained X 132 I and the system was emulating EDL, R6 would contain
X ' 00641.

m The R7 field contains the contents of hardware register 7 when the error
occurred. Because the supervisor uses this register as a work register, the contents
are usually not significant when you analyze the failing program.

Sometimes the supervisor uses this register for a branch and link instruction. The
address may give you a clue as to which function passed control to the address in the
IAR.

m The $TCBCO field shows the value in the first word, of the failing program's
task control block (TCB). The value is displayed in decimal and followed by the
hexadecimal equivalent. .

til The #1 field shows the contents of index register 1 when the failure occurred.
In this example, #1 contains the value X I 0037 I •

m The $TCBC02 field shows the value in the second word of the failing
program's task control block (TCB). The value is displayed in decimal and followed
by the hexadecimal equivalent.

Ell The #2 field shows the contents of index register 2 when the failure occurred.

m The PSW ANALYSIS field explains the meanings of the bit settings in the
processor status word (PSW). The hexadecimal format of the processor status word
is shown in field II. This information indicates the type of error that occurred.

See the section "Processor Status Word Bit Descriptions" on page 6-5 to determine
the type of error the "PSW ANALYSIS" field indicates. If the error points to
hardware, call your service representative for corrective action. If the error points to
software, read the following section.

o

o

o

o

o

Analyzing and Isolating a Program Check

How to Analyze an Application Program Check
When the processor status word (PSW) indicates a software error, you need to find
out where in the program the error occurred. The information in the program check
message can help you find the error.

This section contains a sample program check message and the program that caused
the error. Using both the program check message and the compiler listing for the
sample program, this section will explain the steps required to find the problem. The
techniques used here can help you to analyze program checks that occur with your
own application programs.

The section "Examining an Unmapped Storage Area for the Cause of a Program
Check" on page 6-15 presents techniques that may be helpful if your program uses
unmapped storage. "Some Common Causes of Application Program Checks" on
page 6-21 provides some additional hints about what may cause this type of error.

Note: Several procedures in this chapter use the $DEBUG utility. If you have the
EDL Accelerator Custom Feature, RPQ D02723, or have a 4956 Model E, 4956-60E
processor, a 4956 Model GI0 or HI0 processor, or a 4956 Model J or K processor
do not leave $DEBUG loaded on your system after you finish using the utility.
$DEBUG disables the accelerator feature. When you end the last copy of
$DEBUG, the system enables the accelerator feature again. ,

To find the cause of the program check, use the following procedure:

1 Look at the program check message and determine what type of software
error the processor status word indicates.

The program check message from the sample program follows:

PROGRAM CHECK:
PLP TCB PSW IAR AKR LSR R8 R1 R2 R3 R4 R5 R6 R7
3A88 8128 S882 2AD6 8118 S8D8 8864 3B8A 3B28 3A37 3A34 815C 88BS 8888

The PSW indicates that a specification check occurred and that the translator was
enabled. A specification check indicates a boundary violation. Therefore the
specification check is the cause of the error.

2 Look at the addresses for operands 1 and 2 and determine which operand is
on an odd-byte boundary. R3 contains the address of operand 1. R4 contains
the address of operand 2.

Determining which operand is on an odd-byte boundary can help you analyze
the failing instruction.

In the sample program check message, notice that the address of operand 1
(X I 3A37 I) is on an odd-byte boundary.

3 Find the address of the failing instruction. Subtract the program load point
(PLP) from the address of Rl. The result is the address of failing instruction.

The program load point of the sample program is X '3AOO I. The value of Rl
is X '3BOA I. The result of subtracting these addresses is X I OlOA I.

Chapter 6. Analyzing and Isolating a Program Check 6-11

Analyzing and Isolating a Program Check

6-12 SC34-0941

At this point you know the address of the failing instruction and which
operand is on an odd-byte boundary.

4 Look in the compiler listing and determine if the instruction at the address
you calculated in step 3 on page 6-11 is coded correctly.

In the compiler listing of the sample program, a MOVE instruction is at address
X'OIOA':

LOC
0000
OOOA
0014
001E
0028
0032
0034
0036
00FE
00FE
0104
010A
0110
0116
011C
0120
012A
0134
013E
0148
0152
015C
0166
0170
017A
0198
01A2
0186
0188

+0 +2 +4 +6 +8
0008 0709 06C7 09C1 0440 PCHK
0000 0120 01A0 0000 0000
01A4 0000 0000 0000 0100
01A2 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000
4040 A
0000 0000 0000 0000 0000 8

835C 0000 0036
809C 0116 0064
015C 0000 0034
8332 0000 0001
0090 0000 0001
0022 FFFF
0000 0000 0000 0234 0000
0000 0000 00FE 0120 0000
0000 0000 0000 0000 0000
0002 0096 0000 0000 FFFF
0000 0000 014C 0000 0000
014E 07C3 C802 4040 4040
0000 0000 0000 0000 0000
0000 0000 FFFF 0000 0000
0000 0000 0000 0120 0000
0000 0000 0000 0000 0000
0000 0000 0120 0080 0000
0000 0000 0000 0000 0000
0000

START

PROGRAM

DATA
DATA
EQU
MOVEA
DO

MOVE
ADD

ENOOO
PROGSTOP
ENOPROG

END

START

X' 4040 1

100F ' 0 1

*
#1,8
100
(0,#1) ,A
#1,1

In this example, the MOVE instruction and its operands are coded correctly.
Because the cause of the error is not apparent by looking at the failing
instruction, you can use $DEBUG to trace the program's execution.

5 At tile terminal, press the attention key and load $DEBUG. Enter the name
of the program (and volume if not on EDX002) when $DEBUG asks you for
the program name and volume.

When $DEBUG asks you for a partition, enter the number of the partition
where you want the failing program to be loaded. If you want the program
loaded in the same partition as $DEBUG, press the enter key. For the
"TERMINAL" prompt, enter the terminal on which you want $DEBUG to
load the program. If you press the enter key, $DEBUG loads the program on
the terminal it is currently using. .

o

o

o

o

o

o

Analyzing and Isolating a Program Check

In this example, $DEBUG is loaded in partition 2. The utility loads the failing
program, PCRK, in the same partition and the program and the utility share the
same terminal.

> $L $DEBUG
LOADING $DEBUG nnP,hh:mm:ss, LP= xxxx, PART= yy
PROGRAM .(NAME,VOLUME): PCHK
PARTITION (DEFAULT IS CURRENT PARTITION) :
TERMINAL (DEFAULT IS CURRENT TERMINAL):
LOADING PCHK 2P,OO:OO:OO, LP=lF00, PART=2

REQUEST "HELP" TO GET LIST OF DEBUG COMMANDS
PCHK STOPPED AT DOFE

6 Press the attention key and enter AT to set the first breakpoint at the address
of the program's entry point (low address). Enter TASK when you are
prompted for an option. The entry point in the sample program is at address
X I OOFE I. This sequence follows:

> AT
OPTI ON (* I ADDR/TASK/ ALL): T AS K
lOW ADDRESS: FE

7' Set the next breakpoint at the address of the last executable instruction (high
address). The last executable instruction of the sample program is the
PROGSTOP at address X I 011 C I.

Because you only need the trace addresses at this point, select the NOLIST
and NOSTOP options:

HIGH ADDRESS: lIe
LIST INOLIST: NOLIST
STOP/NOSTOP:.NOSTOP

IBREAKPOINT(S) SET

8 Press the attention key and enter GO.

The program will run until it program checks again. During its execution, however,
$DEBUG will display all the instruction addresses up to the point of the program
check.

The following is an example of the trace addresses from the sample program:

Chapter 6. Analyzing and Isolating a Program Check 6-13

Analyzing and Isolating a Program Check

6-14 SC34-0941

9 Look at the trace addresses. Notice that in the sample trace output, the
instruction at address X' 010A' (MOVE) executed successfully the first time.
However, the second time the program executed the instruction at X 'OI0A',
the program failed with a program check. The supervisor cancels the
program.

Because the last instruction the program executed was at address X' 010A', you need
to reload the program under $DEBUG, set a breakpoint at address X 'OI0A', and
examine index register 1 (#1). The sample program uses the index of #1 to point to
the target address of the MOVE instruction.

By examining #1 before the program executes the instruction at X'OI0A', you can
determine if #1 points to an odd-byte boundary.

10 Press the attention key and enter END to end the current $DEBUG.

11 Reload $DEBUG and specify the name of the program.

12 Press the attention key and enter AT.

13 For the sample program, reply to the prompts as follows to set a breakpoint
at address X' 01 OA' and to examine #1:

,.'.' ,.,

OPT~PN(~/ioPRtj'ASKi ALL):··· ADDR
BREAKPOINTADDR: lOA
LIS;TjNOPST: LIST
OPTIOf'tC*/ADDR/R0 ••• R7/#1/#2/IAR/TCODE/UNMAP): #1
lE~GtH: 1

MODE(x/F/D lAIC): X
STOP!NOSTtW: ... STOP

1 BREAKPOINT (S) SET

14 Press the attention key and enter GO.

$DEBUG stops the program's execution at address X 'OI0A' and displays the
contents of #1. The following is an example of the output:

The value X' IP36' in #1 is the address in storage of the variable labeled "B". This
address gets stored in #1 on the previous MOVEA instruction. Notice that at this
point, the address for operand 1 (#1) points to an even address (word aligned).

The trace output showed that no problem occurred the first time through the DO
loop. Thus, you can assume that some instruction after that point caused the
address in #1 to point to an odd-byte boundary.

The next sequence shows how you can identify the cause of the problem.

15 Press the attention key and enter GO.

o

o

o

o

o

o

Analyzing and Isolating a Program Check

Again $DEBUG stops the program's execution at address X '010A 1 and displays the
contents of #1. The following sample output shows what #1 points to now:

l PCHK STOPPED AT. 010A
#1 PCHK XI 1F37 1

Notice that the address #1 points to is on an odd-byte boundary (X 1 1F37 1).
Further examination of the compiler listing shows that immediately after the MOVE
instruction, the program incremented the value in #1 by 1:

•
•
•

00FE 835C 0000 0036 MOVEA #l,B
0104 809C 0116 0064 DO 100
010A 015C 0000 0034 MOVE (0,#1),A
0110 8332 0000 0001 ADD #1,1
0116 0090 0000 0001 ENDDO

Because the program attempts to move a word of data and #1 points to an odd-byte
boundary (X 1 lF37 1), the program fails with a specification check.

Although the program check message indicates that the MOVE instruction failed,
the cause of the problem is the ADD instruction at address X 10110 1.

Because the MOVE instruction attempts to move a word of data, the program
should have incremented #1 by 2. Adding 2 to #1 enables the program to receive
the next word of data on a word boundary.

Examining an Unmapped Storage Area for the Cause of a Program Check
An application program check can occur if a program receives invalid data. By
using the LIST command of $DEBUG, you can examine the data areas in your
program to see if any of the data in these areas is invalid. (For more information on
using the LIST command of $DEBUG, refer to the Operator Commands and Utilities
Reference.) If the failing program uses unmapped storage, you may also want to
look at the data in the unmapped storage areas. This section explains how to
examine an unmapped storage area to determine the cause of an application
program check.

The sample program used in this section is named CODE. The CODE program
reads a set of addresses into unmapped storage, acquires the data at those addresses,
and processes the data. The last time CODE was loaded, however, the operator
received a program check message. The program check message from the sample
program follows:

PROGRAM CHECK:
PLP TCB PSW IAR AKR LSR R0 R1 R2 R3 R4 R5 R6 R7
0000 095A 4002 3CBA 0330 8800 0080 08DE 0904 00A0 8210 025C 00B8 0000

The PSW in the message indicates that the sample program attempted to use an
invalid storage address. This error can occur if a program attempts to use an

Chapter 6. Analyzing and Isolating a Program Check 6-15

Analyzing and Isolating a Program Check

address that is outside of the partition in which the program was loaded. It also can
occur if a program refers to a storage address in a nonexistent partition. In addition 0' I

to the software error, the PSW also shows that the translator was enabled. (See

6-16 SC34-0941

"Interpreting the Processor Status Word Bits" on page 6-4 for an explanation of
the bit settings.)

To find the address of the failing EDL instruction, subtract the program load point
(PLP) from the contents of Rl in the program check message. The value of Rl in
the program check message is X '08DE I. Since the program load point for the
sample program is X I 0000 I, the address of the failing EDL instruction is X I 08DE I.

In the compiler listing for the sample program, a MOVE instruction is at address
X '08DE':

+0 +2 +4 +6 +8 LOC
0000
000A
0014
001E
0028
0032
003C
0046
0050
005A
006E
0076
0080
008A
0094
0098
009A
0892
089A
089A
08A4
08AE
08B4
08BE
08C0
08C6
08D0
08D8
08DE
08E4
08EA
08F0

0008 D7D9 D6C7 D9C1 D440 CODE
0000 0104 0184 0000 0000
0188 0000 0001 0000 0100
0186 0000 0000 0000 0000
0000 0000 0000 0000 0000
FFFF 0000 0000 0808 C4C1
E3C1 4040 4040 0606 E5D6
D340 4040 0000 0000 0000
0000 0001 0000 0001 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000
0000 C1C1 0000 0000 0008
0002 FFFF 0000 0000 0090
0000 0000 0000 FFFF FFFF
FFFF FFFF
0000
0000 0000 0000 0000 0000
0000 0000 0000 0000

00B9 0076 0000 0000 0101
80B9 0076 0001 0000 0300
035C 0000 0082
8120 0000 0008 0000 020C
0032
815C 0002 009A
805C 0098 0000 809C 08F0
0080 8032 B098 0001
045C 08E2 0000
025C 0000 08E2
8332 0000 0002
8332 0002 0002
009D 0000 0001

0946 00B9 0076 0000 0000 0201
0A00 0022 FFFF

BLOCK

INDEX
ENTRY

START

PROGRAM START,DS=((DATA,VOL))

STORBLK TWOKBLK=1,MAX=2

DC F' 0 1

DC 1024F ' 0 1

EQU *
GETSTG BLOCK,TYPE=ALL
SWAP BLOCK,l
MOVE #l,BLOCK+$STORMAP
READ DS1,(0,#1),8

MOVEA #2,ENTRY
DO 128,TIMES,INDEX=INDEX

MOVE ADDRESS, (0,#1)
MOVE (0,#2),*,P2=ADDRESS
ADD #1,2
ADD #2,2

ENDDO
•
•
•

FREESTG BLOCK,TYPE=ALL
PROGSTOP
COpy STOREQU
•
•
•

0

0

c

o

o

Analyzing and Isolating a Program Check

The MOVE instruction at X I 08DE I should take a word of data from an address in
storage and place it in the data area labeled ENTRY at X '009A'. The address of
ENTRY is contained in #2. The MOVE instruction moves data from addresses
supplied by the previous MOVE instruction at X I 08D8 I. The addresses reside in the
unmapped storage area obtained by the program.

From the program check message, it appears that the MOVE instruction at
X I 08DE I received a storage address that was not in the partition in which the
program was loaded. To determine if this was the case, you first need to know the
partition CODE was loaded in and the largest storage address in that partition.

In this example, the operator loaded CODE in partition 2. You can find the largest
storage address in a partition by looking at the storage map for your system. The
storage map appears on the last page of the listing created when you generated your
system. It also is displayed when you IPL your system.

Look under the heading "TOTAL SIZE (HEX)" in the storage map and find the
value listed for the partition. Subtract 1 from this value to get the largest usable
storage address in the partition. For the sample system on which CODE is running,
the storage map shows a total size for partition 2 of X I 8000 I. Therefore, the largest
usable address in partition 2 is X I 7FFF I •

To see if the sample program attempted to gain access to a storage address greater
than X I 7FFF I, you need to look at the data in the unmapped storage area used by
the program. To examine the contents of an unmapped storage area, do the
following:

1 Load $DEBUG in any available partition.

2 Enter the name of the failing program (and volume if not on EDX002).

3 When $DEBUG asks for a partition, enter the number of the partition where
the utility should load the failing program. If you want the program loaded in
the same partition as $DEBUG, press the enter key.

4 For the "TERMINAL" prompt, enter the terminal on which you want
$DEBUG to load the program. If you press the enter key, $DEBUG loads
the program on the terminal it is currently using.

Chapter 6. Analyzing and Isolating a Program Check 6-17

Analyzing and Isolating a Program Check

6-18 SC34-0941

In the following example, $DEBUG is loaded in partition 1. The utility loads the
sample program in partition 2, but $DEBUG and the program share the same
terminal.

5 Press the attention key and enter AT to set a breakpoint at the address
following the instruction that reads the data into unmapped storage.

Note: If your program obtains several unmapped storage areas, you may need
to trace the execution of the program to determine what area was in use when
the program check occurred. Review the trace procedure beginning with step
6 on page 6-13.

In the sample program, the address following the READ instruction is X I 08BE I :

> AT
OPTION:(*jAOORjTASKjALL): ADDR
BREAKPOINTAOOR~8BE
LlSTjNOLIST: NOLI ST
STOPjNOSTOP: STOP

1 BREAKPOINT(S) SET.

6 Press the attention key and enter GO.

$DEBUG displays a message when it suspends the program's execution at the
breakpoint:

7 Press the attention key and enter the LIST command. After you enter this
command, do the following:

a For "OPTION," enter UNMAP.

b For "STORBLK ADDRESS," enter the address of the STORBLK
statement that defines the unmapped storage area you want to see.

C For "SWAP#," enter the number of the unmapped storage area you
want to see.

d For "DISPLACEMENT," indicate how far from the beginning of the
unmapped storage area the utility should go before listing the contents

o

o

o

c

o

o

Analyzing and Isolating a Program Check

of the area. Enter a number of bytes (in hexadecimal). For example, if
you enter lA, $DEBUG will begin the listing after the 26th byte in the
unmapped storage area.

e For "LENGTH", enter the number of words, doublewords, or
characters you want to list, depending on the MODE you select. Enter
a decimal number.

f For "MODE," enter the format you want the data to appear in.

The following example shows how you would list the first 256-byte record the
sample program read into unmapped storage.

::- LIST
OPTION (*/ADDR/R0 ..• R7/#1/#2/IAR/TCODE/UNMAP): UNMAP
STORBLKADDRESS (0 TO CANCEL LIST): 76
SWAP#: 1
DISPLACEMENT: (3
LENGTH: 128
MODE(X/F/D/A/C): X

Figure 6-3 shows how $DEBUG displays the first record of the unmapped storage
area for the CODE program.

GGGG XI GB36 GB38 GB3A GB3C GB3E GB4G GB42 GB44 I
GG1G XI GB46 GB48 GB4A GB4C GB4E GB5G GB52 GB54 1

GG2G XI GB56 GB58 GB5A GB5C GB5E GB6G GB62 GB64 I
GG3G XI GB76 GB78 GB7A GB7C GB7E GCGG GCG2 GCG4 1

GG4G XI GCG6 GCG8 GCGA GCGC GCGE GC1G GC12 GC14 1

GG5G XI GC16 GC18 GC1A GC1C GC1E GC2G GC22 GC24 1

GG6G XI GC26 GC28 GC2A GC2C GC2E GC3G GC32 GC34 1

GG7G XI GOGG GOG2 GOG4 GOG6 GOG8 GOGA GOGC GOGEl
GG8G XI G01G G012 G014 G016 G018 G01A G01C G01E '
GG8G XI 72GG 72G2 72G4 72G6 72G8 72GA 72GC 72GE '
GGgG XI 821G 7212 7214 7216 7218 721A 721C 721E'
GGAG XI 722G 7222 7224 7226 7228 722A 722C 722E'
GGBG XI 21GG 21G2 21G4 21G6 21G8 21GA 21GC 21GE '
GGCG XI 211G 2112 2114 2116 2118 211A 211C 211E'
GGOG XI 212G 2122 2124 2126 2128 212A 212C 212E'
GGEG XI 213G 2132 2134 2136 2138 213A 213C 213E '
GGFG XI 214G 2142 2144 2146 2148 214A 214C 214E'

Figure 6-3. Sample Listing from $DEBUG

Notice the word of data at address X '0090 ' in Figure 6-3. The word contains the
value X 18210 I. When the MOVE instruction in the sample program attempted to
use this value as an address, it went beyond the bounds of the partition and caused
the program check.

To verify that the address caused the program check, you could replace it with a
valid address (one smaller than X I 7FFF I) and see if the program runs successfully.
You can replace data in an unmapped storage area with the PATCH command of
$DEBUG.

To use the PATCH command do as follows:

Chapter 6. Analyzing and Isolating a Program Check 6-19

Analyzing and Isolating a Program Check

6-20 SC34-0941

1 Press the attention key and enter PATCH.

2 After you enter the command, do the following:

a For "OPTION," enter UNMAP.

b For "STORBLK ADDRESS," enter the address of the STORBLK
statement that defines the unmapped storage area you want to modify.

C For "SWAP#," enter the number of the unmapped storage area you
want to modify.

d For "DISPLACEMENT," indicate how far from the beginning of the
unmapped storage area the utility should go before listing the contents
of the area. Enter a number of bytes (in hexadecimal). For example, if
you enter lA, $DEBUG will begin the listing after the 26th byte in the
unmapped storage area.

e For "LENGTH," enter the number of bytes, up to 16, that you want to
modify. You cannot modify more than 16 bytes of data at a time.
Enter a decimal number.

f For "MODE," enter the format you want the data to appear in.

3 The PATCH command displays the data to be modified. Enter your new data
following the "DATA:" prompt message. Separate each word of data with a
space.

If you enter less data than the amount displayed, the command pads the
remaining area with blanks (for character data) or zeros (for all other types of
data).

4 The command displays the data you entered and issues the prompt message
"YES/NO/CONTINUE." Respond Y to confirm the change, N to cancel the
change, or CONTINUE to confirm the change and to continue modifying
data.

o

o

o

c

o

o

Analyzing and Isolating a Program Check

The following example uses the PATCH command to replace the invalid address in
the unmapped storage area with the address X 17210 1. After the change is made, the
program resumes executing when you press the attention key and enter GO.

> PATCH
OPTION (*/ADDR/R0 .•• R7/#l/#2/1AR/TCODEjUNMAP): UNMAP
STORBLK ADDRESS (0 TO CANCEL PATCH): 76
SWAP#: 1
DISPLACEMENT: 90
LENGTH: 1
MODE~/F/D/A/C): X
NOW IS
0090 X' 8210 1

DATA: 7210
NEW DATA
0090 X I 7210 1

YES/NO/CONTINUE: Y

> GO

Some Common Causes of Application Program Checks
Program checks in an application program are commonly caused by the following:

• PROGSTOP statement omitted in the program

• Failure to link-edit programs with external references (EXTRNs)

• Nonexecutable statements coded within inline executable code

• Attempting to move a word of data to an odd-byte boundary

• Reading or moving data into a storage area too small to contain the data.

How to Analyze a System Program Check
Generally a system program check is caused by either of the following:

• An error in the assembly or link-edit of the current supervisor during system
generation.

• An application program that somehow overlays a part of the supervisor in
storage.

This section describes some methods you may be able to use to isolate the cause of a
system program check.

To begin analyzing the system program check, do the following:

1 Review the compiler and link-edit listings of the current supervisor for -1
completion codes. If either of the listings do not indicate successful
completion, correct the errors and perform another system generation.

2 Try to reproduce the failure by rerunning all the programs that were actIve.
Ensure those programs run in the same partition they were running in when

Chapter 6. Analyzing and Isolating a Program Check 6-21

Analyzing and Isolating a Program Check

the failure occurred. While you rerun the programs, identify which program
caused the failure.

A program that was running in a partition containing supervisor code or a
program doing a cross-partition move is most likely the cause of the problem.

After determining which program caused the failure, go to the section
"Analyzing the Program Causing the System Program Check."

3 If you determine that the cause of the failure was not due to an application
program, submit an authorized program analysis report CAP AR) along with a
stand-alone dump the next time the failure occurs.

Analyzing the Program Causing the System Program Check
The program you identified as the cause of the system program check probably
overlaid an area of the supervisor. To correct the problem, you need to find the
instruction in the program that overlays the supervisor area.

This section explains two techniques you can use to isolate the cause of the failure.
The technique you use depends on the contents of the instruction address register
(IAR) shown in. the system program message.

If the address shown in the IAR does not contain all zeros, review the following
section. Go to the section "Technique 2 - JAR is All Zeros" on page 6-24 when the
IAR address is all zeros.

Technique 1 - IAR is Not All Zeros
To isolate the problem, do the following:

1 Record the address shown for the instruction address register (IAR) in the
system program check message.

2 Press the Load button to IPL the system.

3 Press the attention key and enter $CP 1.

4 Press the attention key and enter $D.

5 Enter 0000 as the origin. Enter the IAR address from step 1. Enter the
number 1 for the count.

6 Record the value displayed for that address.

7 Press the attention key and load $DEBUG.

8 Enter the name of the program you identified as the cause of the problem.

The next sequence of steps enables you to determine if the contents displayed in step
6 change during the program's execution. By setting breakpoints at various
addresses in the program and determining when the value from step 6 changes, you
can locate the portion of the program that causes the error.

o

o

9 Using the compiler listing of the program, select several addresses throughout 0
the program at which you want $DEBUG to stop the program's execution.

6-22 SC34-0941

o

o

Analyzing and Isolating a Program Check

10 Press the attention key and enter AT.

11 At the prompts, enter ADDR, a breakpoint address, and the NOLIST and
STOP options.

12 Repeat steps 10 and 11 for each breakpoint address you selected.

13 Press the attention key and enter GO.

14 When $DEBUG stops the program's execution at the breakpoint, press the
attention key and enter $D in partition 1.

15 Enter 0000 as the origin. Enter the IAR address from step 1 on page 6-22.
Enter the number 1 for the count.

16 Determine whether the value now displayed is the same value you recorded in
step 6 on page 6-22.

17 Repeat steps 13 through 16 until you notice a value other than the value
shown in step 6 on page 6-22. When you notice a different value, go to step
18.

18 In the compiler listing, look at the instructions between the last two
breakpoint addresses. One or more of the instructions within those breakpoint
addresses are the instructions that overlaid a supervisor area and caused a
system program check.

19 Determine what instructions caused the failure and correct the error.

Chapter 6. Analyzing and Isolating a Program Check 6-23

Analyzing and Isolating a Program Check

Technique 2 -IAR is All Zeros

6-24 SC34-0941

This technique uses $DEBUG to trace the program's execution. To isolate the
problem, do the following:

1 Press the attention key and enter $CP 1.

2 Press the attention key and load $DEBUG.

31
Enter the name of the program you identified as the cause of the problem.

4 Press the attention key and enter AT to set the first breakpoint at the address
of the program's entry point. Enter TASK when $DEBUG prompts for an
option. For the low address, enter the address of the program's entry point.

5 Enter the address of the program's last executable instruction as the high
address.

6 Press the attention key and enter GO.

7 When the system program check occurs, the instruction that caused the failure
is most likely at one of the last few addresses shown in the trace output.

8 Examine the compiler listing and determine which instruction caused the
failure.

9 Correct the error and recompile the program.

o

o

o

o

o

o

Analyzing a Failure Using a Storage Dump

Chapter 7. Analyzing a Failure Using a Storage Dump

This chapter explains how you can use a storage dump created by either $TRAP or
the stand-alone dump method to analyze a failure. The discussions include how to
analyze a wait state, run loop, and a program check.

Very often when you use a dump to analyze a failure, you may have to look at
control blocks to find information about the failure. You can obtain a control block
equate listing (copy code) by including a COpy statement in your program and
specifying the name of the control block you need. The Language Reference
contains a list of commonly used control block equate names. The control block
equates reside on volume ASMLIB and end with the characters "EQU." The
Internal Design shows the control blocks in detail.

Before you begin to analyze a failure using a dump, you need to know how to
interpret the various fields shown in a dump and what they mean. The following
section explains the various fields of a dump.

Interpreting the Dump
This section explains the various fields of a sample dump. $TRAP was used to
produce the sample dump presented in this section.

Some of the fields shown in a dump differ depending on whether you created the
dump using $TRAP or the stand-alone dump method. These differences are noted
in the explanation of the sample dump where appropriate. In addition, some of the
fields that can appear in a dump depend on the devices and features installed on
your system.

The examples presented show how $DUMP prints the information when you select
the "format control block" option. The order in which the examples are presented is
the same order the information would appear in a dump.

The various pieces of the dump shown in this section have numbered items. An
explanation of the numbered items follows each example.

Chapter 7. Analyzing a Failure Using a Storage Dump 7-1

Analyzing a Failure Using a Storage Dump

Hardware Level and Register Contents
Figure 7-1 shows the first part of the dump.

II EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP

fJ AT TIME OF TRAP PSW WAS 8006 ON HARDWARE LEVEL 1

I
LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3 SVC-LSB SVCI-LSB

Ij\R IFFA 2AD6 1F32 1F32 1F32
AKR 0100 0110 0000 0000 0000
LSR 8090 0000 0090 0090 00C0
R0 0000 0001 0000 0000 0000
R1 0000 0044 0000 0000 0000
R2 02C2 02C2 0000 0000 0000
R3 02B6 0040 0000 0000 0000
R4 0000 0048 0000 0000 0000
R5 0001 805C 0002 0003 0001
R6 0000 00B8 8000 8000 8000
R7 0000 0000 0000 0000 0000

Figure 7-1. Hardware Level and Register Contents

Item II as shown in Figure 7-1 indicates what type of dump was taken. This
example indicates a $TRAP dump. If a stand-alone dump were taken, the text
STAND ALONE STORAGE DUMP would appear.

Item II indicates the value of the processor status word (PSW) and the active

1F0A
0000
00C0
0000
0000
0000
0000
0000
0000
0000
0000

o

hardware interrupt level. In the sample dump, the PSW value indicates X I 8006 I on U~~--" ,
hardware level 1. A $TRAP dump always shows the value of the PSW and the

7-2 SC34-0941

active level; a stand-alone dump never contains this line of information.

See the section "How to Interpret the Processor Status Word" on page 6-4 for the
meaning of the processor status word.

The column headings at item II identify six level status blocks (LSB). There is an
II-word level status block shown for each of the system's hardware interrupt levels
(0 - 3). In addition, the contents of the SVC (supervisor call) LSB and the SVCI
(supervisor call immediate action) LSB are shown.

The contents of a level status block for a particular hardware interrupt level is
shown vertically beginning with IAR and ending with R 7. The fields shown for a
level status block in the dump are also displayed in a program check message.

Level 0 is inaccurate in the stand-alone dump. This is the level on which the dump
program runs; therefore, none of the information for level 0 in a stand-alone dump is
relevant to the problem being analyzed. However, the information shown for level 0
in a $TRAP dump is reliable; $TRAP saves the information for level 0 as well as
levels l, 2, and 3.

EDX uses the four hardware levels as follows. Level 0 is the highest priority level:

Level 0 - Timer interrupts and task dispatcher

Level 1 - Attention list tasks, supervisor tasks, and I/O interrupts

Level 2 - EDL tasks with a priority of 1 - 255

Level 3 - EDL tasks with a priority of 256 - 510.

o

c

o

o

Analyzing a Failure Using a Storage Dump

Item II shows the contents of the instruction address register (IAR). The value
shown is the address of the machine instruction currently executing.

Item II shows the value of the address key register (AKR). For 3-bit processors,
bits 5-7 form the operand I key, bits 9-11 form the operand 2 key, and bits 13-15
form the instruction space key. For 4-bit processors, bits 4-7 form the operand 1
key, bits 8-11 form the operand 2 key and bits 12-15 form the instruction space key.
For 5-bit processors, bit 1 and bits 4-7 form the operand 1 key, bit 2 and bits 8-11
form the operand 2 key, bit 3 and bits 12-15 form the instruction space key. For all
processors, bit 0 of the AKR is the equate operand spaces (EOS) bit. If bit 0 is set
to 1, the operand 2 key is used for both operand 1 and operand 2.

The value of the AKR for level 1 in the sample dump (X 'Oll0') indicates operands
1 and 2 reside in address space 1 (partition 2). The IAR resides in address space 0
(partition 1).

Item II shows the value of the level status register (LSR). The bits, when set,
indicate the following:

• Bits 0 - 4 - The status of arithmetic operations. Refer to the processor
description manual for the meanings of these bits.

• Bit 8 - Program 'is in supervisor state.

• Bit 9 - Priority level is in process.

• Bit 10 - Class interrupt tracing is active.

• Bit 11 - Interrupt processing is allowed.

Bits 4-7 and bits 12-15 are not used and are always zero.

The LSR value (X I OODO I) for level 1 in the sample dump indicates that bits 8, 9,
and 11 are set.

Item B shows the contents of general-purpose registers RO through R 7 for each
hardware interrupt level.

For programs written in EDL, the contents of these registers are described as
follows. If the program were written in a language other than EDL, refer to the
user's guide for that language to determine the register usage.

RO Because the supervisor uses this register as a work register, the contents are
usually not significant to the failing program.

R1 Contains the address in storage of the failing EDL instruction.

R2 Contains the address in storage of the active task control block (TCB).

R3 Contains the address in storage of EDL operand 1 of the failing instruction.

R4 Contains the address in storage of EDL operand 2 (if applicable) of the failing
instruction.

R5 Contains the EDL operation code of the failing instruction. The first byte
contains flag bits that indicate how operands are coded. For example, the flag
bits indicate whether the operand is in #1, #2, or is specified as a constant.
The second byte is the operation code of the EDL instruction.

Chapter 7. Analyzing a Failure Using a Storage Dump 7-3

Analyzing a Failure Using a Storage Dump

7-4 SC34-0941

R6 Because the supervisor uses this register as a work register, the contents are
usually not significant to the failing program. However, you can determine if
the system was emulating EDL code when the failure occurred if R6 is twice
the value shown in the second byte of R5. For example, if the second byte of
R5 contained X 132 I and the system was emulating EDL, R6 would contain
X'0064' .

R7 Because the supervisor uses this register as a work register, the contents are
usually not significant to the failing program.

If the hardware registers in your dump do not follow the EDL register conventions
previously discussed, you should examine the IAR and the AKR.

The IAR contains the address of the last machine instruction the system executed
when the failure occurred. The AKR tells you in which address space the IAR
resides.

To determine where the program failed, you must check the AKR for the correct
address space (partition) and check the IAR to find out what was executing at that
address.

Look in the supervisor link map from system generation and see if the IAR address
is within one of the supervisor modules. If that IAR address appears in the link
map, the name of the module that contains the IAR address may give you a clue as
to what function was executing when the failure occurred.

Since register usage can vary from one supervisor module to another, the contents of
each register mayor may not be meaningful to you. You should, however, check
the contents of each register.

Sometimes a register may point to a control block. For example, if R3 points to a
terminal control block (CCB), you can assume that the program was doing terminal
I/O when the failure occurred.

Sometimes the supervisor uses a register (R7 in many cases) for a branch and link
instruction. The address in R7 may give you a clue as to which function passed
control to the current IAR address.

If the address shown in. the IAR is within your program, subtract the program load
point from the IAR. Using the resulting address, look in the compiler listing and/or
link-edit listing of that program and determine which instruction is at that address
and why it failed.

o

o

o

c

o

Analyzing a Failure Using a Storage Dump

Floating-Point Registers and Exception Information
Figure 7-2 shows the next part of the sample dump.

II FRO FFOF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF 0000 0000 0000 0000 FFFF FFFF

FR1 FFFF FFFF FFFF FFOF 0000 0010 0000 0000
0000 0080 0000 0000 0000 0008 0000 0000

FR2 0000 FFFF FFFF FFFF FFFF FFFF FFFF FFFE
FFFF FFFF 0000 0000 0000 0000 FFFF FFFF

FR3 FFFF FFFF FFFF FFFF 0000 0000 0000 0000
0020 0000 0000 0000 0000 0008 0080 0000

IIMACHINE/PROGRAM CHECK LOG BUFFER - LATEST ENTRY PRINTS LAST

S/EAK TCBA PSW SAR IAR AKR LSR RO R1 R2 R3 R4 R5 R6 R7
0100 0120 8006 B437 2A06 0000 8000 0064 850A B52~ B437 B434 015C 00B8 0000

Figure 7-2. Floating-point Registers and Exception Information

Item II shows the contents of the floating-point registers (FRO - FR3) for each
hardware level. This information is printed if the system has the floating-point
feature installed.

Item II shows entries from the system's software trace table, CIRCBUFF (if
included during system generation). The system uses the software trace table to
record any program and machine-check entries that occurred since the last IPL. The
software trace table is described in greater detail in Chapter 8, "Tracing Exception
Information" on page 8-1.

The 2-byte SjEAK field indicates a state variable and an error address key.

The state variable (first byte) can be one of the following values:

0- No interrupt in process

1 - Standard processing (the default value)

2 - Now processing task error exit

3 - Undefined.

The error address key (second byte) is the address key (1 plus this value is the
partition number) that was in use when the error occurred.

The SAR (storage address register) field indicates the address in storage last accessed
when the failure occurred.

The remaining fields shown in item II also appear in a program check message.

Chapter 7. Analyzing a Failure Using a Storage Dump 7-5

Analyzing a Failure Using a Storage Dump

Segmentation Registers

7-6 SC34-0941

The next portion of the dump lists the contents of the system's segmentation 0
registers. Figure 7-3 and Figure 7-4 on page 7-7 illustrate how the dump displays " ..
the segmentation registers for systems with eight or less partitions. Figure 7-5 on
page 7-8 and Figure 7-6 on page 7-9 show how the dump displays the
segmentation registers for a processor in extended address mode. Your system could
have up to 32 partitions, numbered ADSOO through ADS31.

In Figure 7-3, the segmentation registers indicate a system with four partitions and
no supervisor mapping across partitions. The partitions are 64K each. The heading
ADSOO represents partition 1, ADSOI represents partition 2, and so on, up through
ADS07, which represents partition 8.

The leftmost column (BLOCK) shows the addresses mapped for each segmentation
register. Each segmentation register maps 2K of storage. The segmentation registers
are listed below each address space (ADS) heading.

STORAGE SEGMENTATION REGISTERS:

BLOCK AOSOO AOS01 AOS02 AOS03 AOS04 AOS05 AOS06 AOS07

0000 0004 0104 0204 0304
0800 OOOC 010C 020C 030C
1000 0014 0114 0214 0314
1800 001C 011C 021C 031C
2000 0024 0124 0224 0324
2800 002C 012C 022C 032C
3000 0034 0134 0234 0334
3800 003C 013C 023C 033C
4000 0044 0144 0244 0344
4800 004C 014C 024C 034C
5000 0054 0154 0254 0354
5800 005C 015C 025C 035C
6000 0064 0164 0264 0364
6800 006C 016C 026C 036C
7000 0074 0174 0274 0374
7800 007C 017C 027C 037C
8000 0084 0184 0284 0384
8800 008C 018C 028C 038C
9000 0094 0194 0294 0394
9800 009C 019C 029C 039C
AOOO 00A4 01A4 02A4 03A4
A800 OOAC 01AC 02AC 03AC
BOOO 00B4 01B4 02B4 03B4
B800 OOBC 01BC 02BC 03BC
COOO 00C4 01C4 02C4 03C4
C800 OOCC 01CC 02CC 03CC
0000 0004 0104 0204 0304
0800 OOOC 010C 020C 030C
EOOO 00E4 01E4 02E4 03E4
E800 OOEC 01EC 02EC 03EC
FOOO 00F4 01F4 02F4 03F4
F800 OOFC 01FC 02FC 03FC

Figure 7-3. Segmentation Registers of a Four-Partition System

Figure 7-4 on page 7-7 shows an example of the segmentation registers for a system
where part of the supervisor is mapped across three partitions.

0

0

o

0,'" , '

Analyzing a Failure Using a Storage Dump

EDX maps partitions starting at address X'OOOO'. As shown in Figure 7-4 on
page 7-7, address spaces 0 and 1 both have 32 segmentation registers mapped.
Address space 2 contains only 10 segmentation registers.

Because the first five segmentation registers in each partition are identical (up to
item 1m in Figure 7-4), you can see that the first 10K of the supervisor in partition
1 is mapped across each partition. Mapping the partitions in this manner leaves
partitions 1 and 2 with 54K of storage and partition 3 with 10K of storage which
can be used for either supervisor code or application programs.

STORAGE SEGMENTATION REGISTERS:

BLOCK ADS00 AOS01 AOS02 AOS03 AOS04 AOS05 AOS06 AOS07

0000
0S00
1000
lS00
2000

1m 2S00
3000
3S00
4000
4S00
5000
5S00
6000
6S00
7000
7S00
S000
SS0e
9000
9S00
A000
AS00
B000
BS00
C000
C800
0000
OS0e
E000
ES00
F000
F800

0e04 0004 0e04
0e0C 000C 000C
0014 0014 0014
0e1C 001C 001C
0e24 0024 0024
0e2C 0104 010C
0e34 010C 01E4
0e3C 0114 01EC
0044 011C 01F4
0e4C 0124 01FC
0e54 012C
0e5C 0134
0e64 013C
0e6C 0144
0e74 014C
0e7C 0154
0e84 015C
008C 0164
0e94 016C
0e9C 0174
0eA4 017C
0eAC 0184
0eB4 01SC
0eBC 0194
0eC4 e19C
0eCC e1A4
ee04 01AC
eeoc 01B4
0eE4 01BC
0eEC 01C4
0eF4 e1CC
eeFC e104

Figure 7-4. Segmentation Registers with Supervisor Mapped Across Partitions

Figure 7-5 on page 7-8 shows the segmentation registers for a processor in extended
address mode. The segmentation registers show a system with seven partitions and
no supervisor mapping across partitions. In extended address mode, the system
could have up to 32 partitions.

Chapter 7. Analyzing a Failure Using a Storage Dump 7-7

Analyzing a Failure Using a Storage Dump

7 -8 SC34-0941

The heading ADSOO represents partition 1, ADSOI represents partition 2, and so on,
up through ADS31, which represents partition 32. The leftmost column (BLOCK)
shows the addresses mapped for each segmentation register. Each segmentation
register maps 2K of storage. The segmentation registers are listed below each
address space (ADS) heading.

STORAGE SEGMENTATION REGISTERS:

BLOCK ADS00 ADS01 ADS02 ADS03 ADS04 ADS05 ADS06 ADS07

0000 0004 0104 0204 0304 0404 0504
0800 000C 010C 020C 030C 040C 050C
1000 0014 0114 0214 0314 0414 0514
1800 001C 011C 021C 031C 041C 051C
2000 0024 0124 0224 0324 0424 0524
2800 002C 012C 022C 032C 042C 052C
3000 0034 0134 0234 0334 0434 0534
3800 003C 013C 023C 033C 043C 053C
4000 0044 0144 0244 0344 0444 0544
4800 004C 014C 024C 034C 044C 054C
5000 0054 0154 0254 0354 0454 0554
5800 005C 015C 025C 035C 045C 055C
6000 0064 0164 0264 0364 0464 0564
6800 006C 016C 026C 036C 046C 056C
7000 0074 0174 0274 0374 0474
7800 007C 017C 027C 037C 047C

•
•
•

F800 00FC 01FC 02FC 03FC 04FC

BLOCK ADS08 ADS09 ADS10 ADS11 ADS12 ADS13 ADS14 ADS15

0000 0574
0800 057C
1000 0584
1800 058C
2000 0594
2800 059C
3000 05A4
3800 05AC
4000 05B4
4800 05BC
5000 05C4
5800 05CC
6000 05D4
6800 05DC

•
•
•

F800 066C

Figure 7-5. Segmentation Registers for a Processor in Extended Address Mode

o

0

o

Analyzing a Failure Using a Storage Dump

C
For processors in extended address mode, the dump also lists the contents of the I/O
segmentation registers. Figure 7-6 shows how this information is presented.

The heading BNKOO refers to the first "bank" of I/O segmentation registers.
BNKO 1 refers to the second bank of I/O segmentation registers, and so on. For
more information on the I/O segmentation registers, refer to the processor
description manuals for your processor.

I/O SEGMENTATION REGISTERS:

BLOCK BNKOO BNK01 BNK02 BNK03 BNK04 BNK05 BNK06 BNK07

0000 0004 0104 0204 0304 0404 0504
0800 OOOC 010C 020C 030C 040C 050C
1000 0014 0114 0214 0314 0414 0514
1800 001C 011C 021C 031C 041C 051C
2000 0024 0124 0224 0324 0424 0524
2800 002C 012C 022C 032C 042C 052C
3000 0034 0134 0234 0334 0434 0534
3800 003C 013C 023C 033C 043C 053C
4000 0044 0144 0244 0344 0444 0544
4800 004C 014C 024C 034C 044C 054C
5000 0054 0154 0254 0354 0454 0554
5800 005C 015C 025C 035C 045C 055C
6000 0064 0164 0264 0364 0464 0564
6800 006C 016C 026C 036C 046C 056C
7000 0074 0174 0274 0374 0474

0 7800 007C 017C 027C 037C 047C
8000 0084 0184 0284 0384 0484
8800 008C 018C 028C 038C 048C
9000 0094 0194 0294 0394 0494
9800 009C 019C 029C 039C 049C
AOOO 00A4 01A4 02A4 03A4 04A4
A800 OOAC 01AC 02AC 03AC 04AC
B000 00B4 01B4 02B4 03B4 04B4
B800 OOBC 01BC 02BC 03BC 04BC
COOO 00C4 01C4 02C4 03C4 04C4
C800 OOCC 01CC 02CC 03CC 04CC
DOOO 00D4 01D4 02D4 03D4 04D4
D800 OODC OlOC 02DC 03DC 04DC
E000 00E4 01E4 02E4 03E4 04E4
E800 OOEC 01EC 02EC 03EC 04EC
FOOO 00F4 01F4 02F4 03F4 04F4
F800 OOFC 01FC 02FC 03FC 04FC

Figure 7-6. I/O Segmentation Registers

o
Chapter 7. Analyzing a Failure Using a Storage Dump 7-9

Analyzing a Failure Using a Storage Dump

Storage Map

7-10 SC34-0941

The next section of the sample dump shows the activity in each partition when the
dump was taken. This part is called the storage map.

STORAGE MAP: m $SYSCOM AT ADDRESS 19C6

If) EDXFLAGS 6000 m SVCFLAGS 1000

m PART# NAME ADDR PAGES ATASK TCB(S)

m PI ADS= 0 0000 256
$FSEDIT CB00 31 E8AC m **FREE** EA00 22

P2 ADS= 1 0000 256 m
1m SAMPLA 0000 4 02C2(A) 0242 01A6 010E 0072

FREE 0400 252

P3 ADS= 2 0000 256
$SMURON 0000 5 038A
$DISKUT1 0500 59 2FF6(A) 2F76
FREE 4000 192

II P4 ADS= 3 0000 256
$TRAP 0000 65 3E92 (A) 3E12 1936 1762
FREE 4100 191

Figure 7-7. Storage Map

Item m in Figure 7-7 shows the address (X I 19C6 I) of the system common area,
$SYSCOM (if specified during system generation).

Item m is the EDXFLAGS field. The first two digits (60) shown for this field
represent the version and modification level of the supervisor. The dump programs
do not use the third digit. The last digit (0) indicates the program temporary fix
(PTF) level.

Item m, SVCFLAGS, contains status information. The bits, when set, indicate
the following:

• Bit 0 - Supervisor busy. The current active task will not be switched. The bit
is set on by a BAL (Branch and Link) to SETBUSY, R7, and turned off by the
SVC request.

• Bit 1 - A bit that tells the supervisor whether or not an itnmediate routine
requested an SVC (BAL SVCI) type of operation. For more information on the
EDXSVCX module, refer to the Internal Design.

• Bit 2 - Dequeue request.

• Bit 3 - Tells whether you have or do not have floating-point hardware. If this
bit is on, your hardware is floating-point hardware. If the bit is off, your
hardware is not floating-point hardware.

• Bit 4 - A task is active. The EDXSVCX module needs this for chaining
information.

• Bit 5 - Remote IPL through Communications Facility. If the bit is on, remote
IPL has already been done.

o

0

o

o

o

o

Analyzing a Failure Using a Storage Dump

• Bit 6 - W AITM posting in progress. If this bit is on, the EDXSVCX module
can tell that there is a wait for multiple events.

• Bit 7 - If this bit is off, your supervisor is a single partition supervisor. If the
bit is on, your supervisor is a cross partition supervisor.

• Bit 8 - Supervisor initialization complete. This bit is turned on when
initialization is complete.

• Bit 9 - Copy of $MEMDISK active. If this bit is on, a copy is already loaded
into the system. Only one copy may be loaded at a time.

• Bits 10 and 11 - extended address mode support. These bits indicate the
following possible support:

If Bit 10 is off (whether Bit 11 is on or off), your processor has a three-bit
architecture.

If Bit 10 is on and Bit 11 is off, your processor has a 4-bit architecture.

If Bit 10 is on and Bit 11 is on, your processor has a 5-bit architecture.

Bits 12-15 are reserved for future use. The value shown in the example, XI 1000 1 ,
indicates that floating-point hardware is installed.

The column headings at item III mean the following:

PART# Partition number.

NAME Program name.

ADDR Program load point address.

PAGES The size of the address space (partition) or program in pages. A page is
256 bytes in length. Programs loaded for execution always begin on a page
boundary.

AT ASK The task control block (TCB) address of the attention list task, if one exists.
Task control block addresses of attention list tasks also have (A) beside the
address.

TCB(S) The task control block addresses in a task chain. The first addresS in the
task chain is always the main task.

Item m indicates that partition 1 (address space 0) begins at address X I 0000 I and
is 256 pages in length (64K). Because the whole supervisor resides in partition 1 in
this example, the load point of the first program in this partition, $FSEDIT, begins
at address X I CBOO I. $TRAP is shown at item HI. The dump also shows that
$TRAP is 65 pages in length.

The TCB address X '3E92 1 is the address of $TRAP's attention list task. The main
TCB for $TRAP is at address X ' 3EI21.

Item m indicates the free space in partition 1 beginning at address X I EAOO I. The
22 pages of free storage are contiguous.

Item III indicates the program SAMPLA is loaded at address X I 0000 I in partition
2 (address space 1). SAMPLA has an attention list task at address X '02C2 1. Also
notice that the TCB chain shows the addresses of four task control blocks (item
m). The task control block at address X I 0242 I is the main TCB for SAMPLA.
The program SAMPLA consists of five task control blocks.

Chapter 7. Analyzing a Failure Using a Storage Duinp 7-11

Analyzing a Failure Using a Storage Dump

Task control block addresses shown on the TCB chain are the addresses of the tasks
defined within the main program. If the main program attaches a task that was
link-edited to the main program, and the ATTACH instruction has CHAIN=NO,
the address of that task does not appear on the TCB chain.

Because the load point ofSAMPLA is at address X I 0000 I, all addresses shown for
these tasks would be identical to the compiler listing of SAMPLA.

Item Em shows that no programs are running in partition 4 (address space 3) and
that there are 256 pages of free contiguous storage.

Level Table and TCB Ready Chain

7-12 SC34-0941

Figure 7-8 shows the next part of the sample dump.

m EDX LEVEL TABLE - TCB READY CHAIN

LEVEL ACTIVE READY (TCB-ADS)

It 1 02C2-1 NONE
2 NONE 010E-1 0242-1
3 NONE NONE

m LOADER QCB CUR-TCB CHAIN (TCB-ADS)

94F4 FFFF NONE NONE

Figure 7-8. Level Table and Task Ready Chain

Item m shows the level table and TCB ready chain. The level table keeps pointers
to the currently active tasks, all ready tasks for levels 1, 2, and 3, and the address
space key in which the tasks reside.

Item ED shows an active TCB on level 1 at address X I 02C2 I. The -1 that appears
beside this address indicates the address space. Notice also that for levell, there are
no TCBs on the ready chain.

The active TCB at address X I 02C2 1 belongs to the attention list task in partition 2
for program SAMPLA (item 1m in Figure 7-7 on page 7-10).

Item OJ shows no tasks active on level 2 and two tasks on the ready chain. Notice
that these two ready tasks are in address space 1 (partition 2).

The TCB at address X I 010E I will be the first task on level 2 to become active if no
other task on level 1 or level 2 (with a higher priority) becomes active. Also notice
that these two ready tasks reside in program SAMPLA (item 1m in Figure 7-7 on
page 7-10).

Item ED shows the address (X I 94F4 I) of the loader queue control block (QCB).
This address is the entry point of LOADQCB in the resident loader. This entry
point appears in the supervisor link map from system generation.

The value X I FFFF I indicates that no tasks are enqueued. If programs were being
loaded, this value would be X I 0000 I and the address of a TCB would be shown.

o

0

0,
__ Ii!

o

o

o

Analyzing a Failure Using a Storage Dump

Terminal Device Information
Figure 7-9 shows the terminals defined in the supervisor (item m).
m TERMINAL LIST:

m NAME CCB 10 IOOA FEAT QCB CUR-TCB CHAIN

m CORVTA 09FA FFFF 0040 0800 FFFF NONE NONE
CORVTB 0BAA FFFF 0000 0000 FFFF NONE NONE

~ $SYSLOG 0084 0406 0004 0400 0000 E8AC-0 NONE
TERM2 0F5E 040E 0024 0400 0000 02C2-1 NONE
TERM3 1138 040E 0025 0400 0000 2F76-2 NONE
$SYSPRTR 131C 0306 0021 0020 FFFF NONE NONE
MPRTR 1534 0206 0001 0020 FFFF NONE NONE
T3101 177A 2816 0058 0440 FFFF NONE

Figure 7-9. Terminal Device Information

The column headings at item m mean the following:

NAME

CCB

ID

IODA

FEAT

QCB

The label on the TERMINAL statement for this device.

The address of the terminal control block (CCB).

This value identifies the type of terminal. The values shown also appear
when you issue the LD or LS commands of $IOTEST. The value
X 'FFFF' as shown in item m indicates that both CDRVTA and
CDRVTB are virtual terminals.

The device address specified on the TERMINAL statement. For virtual
terminals, ignore any addresses that appear under this heading.

This value indicates the device characteristics defined at system
generation, such as output pause or spoolable device.

The queue control block (QCB) for the terminal. The value X' FFFF'
indicates that no task has enqueued the terminal. If the value were
X' 0000' as shown in item m, a task has enqueued the terminaJ. For
example, the task control block at address X' E8AC' in address space 0
(partition 1) belongs to $FSEDIT as shown in the storage map
(Figure 7-7 on page 7-10).

CUR-TCB The address of the task control block and address space of the task
currently enqueued on the terminal.

CHAIN The task control block chain. If a task issued an ENQT to any of these
terminals while the terminal is currently enqueued by a different task, the
TCB address and address space of the task attempting to enqueue that
terminal would appear on the chain.

Disk, Diskette, and Tape Device Information
Information on disk, diskette, and tape devices is presented in Figure 7-10 on
page 7-14, which is the next portion of the dump.

These three device types have volume directory entry (VDE) and device data block
(DDB) information listed. The VDE and DDB information is listed under separate
headings in the dump. Because of the interrelationship between the VDE and the
DDB, the meanings of the headings are explained first.

Chapter 7. Analyzing a Failure Using a Storage Dump 7-13

Analyzing a Failure Using a Storage Dump

7 -14 SC34-0941

DISK(ETTE)/TAPE VDE :

m VDE NAME DDB FLAGS QCB CUR-TCB CHAIN (TCB-ADS)

m 06DC *DDE* 0738 0800 FFFF NONE NONE
070A EDX002 0738 8000 FFFF NONE NONE
07F0 *DDE* 081E 2900 FFFF NONE NONE

III DDB IODA DEVID DSCB-> TASK DSCB-CHAIN

m 0738 0003 00CA 94A6-0 08DE NONE
081E 0002 0106 CA5A-0 08DE NONE

Figure 7-10. Disk, Diskette, and Tape Device Information

The column headings for the volume directory entry are shown at item m and
mean the following:

VDE The volume descriptor entry (VDE) control block describes a volume on
disk, diskette, or tape. One VDE is created for each DISK or TAPE
statement specified during system generation. If the VOLNAME =
operand is coded, one additional VDE is generated for each performance
volume.

NAME The name of the volume. The first VDE for each device is identified as
DDE. If you coded the VOLNAME = operand on the DISK
statement, the performance volumes you specified for the device also
appear here.

DDB The device data block (DDB) describes the physical disk, diskette, or
tape device. One DDB is created for each device.

FLAGS This value indicates information about the volume such as performance
volume, diskette, or disk directory.

QCB The queue control block (QCB) for the disk, diskette, or tape device.
The value X I FFFF I indicates that no task has enqueued the device. If
the value is X I 0000 I, a task has enqueued the device.

CUR-TCB The task control block address and address space of the task currently
enqueued on the device.

CHAIN The task control block chain. If a task attempts to enqueue any of these
devices while that device is currently enqueued by a different task, the
TCB address and address space of the task attempting to enqueue the
device would appear on the chain.

The column headings for the device data block (DDB) are shown at item 1m and
mean the following:

DDB

IODA

DEVID

DSCB->

The device data block (DDB) describes the physical disk,
diskette, or tape device. One DDB is created for each device.

The device address.

The value identifies the type of device. The values shown
also appear when you issue the LD or LS commands of
$IOTEST.

A pointer to the data set control block (DSCB) that is
currently performing I/O.

o

o

o

o

o

o

TASK

DSCB-CHAIN

Analyzing a Failure Using a Storage Dump

The address of the disk task TCB. If TASK = YES were
coded on each DISK or TAPE statement during system
generation, one task control block is created for each
statement.

Identifies the data set control block (DSCB), and its address
space, in the chain waiting for service.

If the system encounters erroneous data within a DDB, the dump would show
*ERROR-x following the line of DDB information. The "x" could be any of the
following characters:

A Control block pointer is an odd address.

D Address does not exist.

L Dump facility can dump up to 150 DSCBs. This limit was exceeded.

T TCB points to itself.

Item m in Figure 7-10 on page 7-14 shows the address of the VDE for a device
descriptor entry (DDE). A device descriptor entry describes the entire device and
points to the volume directory. The device data block (DDB) for this device is at
address X I 0738 I. Volume EDX002, which was defined as a performance volume,
also has X I 0738 I as the DDB address.

By looking at the DDB address at item IS, you can obtain further information
about this device. This information shows that the device is at address X I 0003 I •

The device ID, X I OOCA I, means that this device is a 4962 disk model 3.

Because TASK = YES was not specified for either device during system generation,
the disk task TCB address (X I 08DE I) is identical for the DDBs at addresses
X '0738 1 andX '081E'.

Chapter 7. Analyzing a Failure Using a Storage Dump 7-15

Analyzing a Failure Using a Storage Dump

EXIO, SSC, and Timer Information
Figure 7-11 shows the last part of the formatted control block section of the dump. 0

7 -16 SC34-0941

HI EXIO DEVICE LIST

NO EXIO DEVICE SYSGEN ED

m BSCA DEVICE LIST

NO BSCA DEVICE SYSGEN ED

III 7840 TIMER ATTACHMENT

TIMER DDB CHAIN (TCB-ADS)

III 095E 0072-1 01A6-1

III 10:01 :28 mm/dd/yy

Figure 7-11. EXIO, BSC, and Timer Device Information

Item m indicates that no EXIO devices are defined in this system. If any EXIO
devices were defined, the DDB address, device type, and device address would
appear.

Item m also indicates that no binary synchronous communications (BSC) devices
are defined. An example of the information you would see if BSC devices were
defined follows:

BSCA DEVICE LIST

DDB ID IODA

2864 1006 0009

This example shows the DDB at address X'28641. The value X ' I006 1 indicates a
single-line ACCA connection. The device address is X I 0009 I •

Item III indicates the type of timer attached to the system.

Item III indicates the time and date of the dump.

Item III shows the timer DDB and the TCB address and address space in the TCB
chain. If any tasks were executing an STIMER instruction, the entries on the chain
are indicated. In this example, the TCBs at addresses X I 0072 I and X I 01 A6 I (both
in address space 1) are on the timer chain. By looking at the storage map section of
this sample dump (Figure 7-7 on page 7-10), you can see that at item II, these
two TCB addresses are on the TCB chain for the program SAMPLA.

o

o

o

o

o

Analyzing a Failure Using a Storage Dump

Storage Partition Information
The next portion of the dump shows some of the information dumped from a
partition. The information in this example is in half-page (one column) format.

I!I P2 BEGINNING AT ADDRESS 0000 FOR 256 PAGES

PARTIAL DUMP REQUESTED FOR 0000 THRU 045E

0000
0010
0020
0030
0040
0050
•
•
•

m
0808 E2C1 0407 D3C1 4040 0000 0242 0034
0000 OF5E 0344 0000 0000 0000 0100 0342
0000 0000 0000 02C2 0000 0000 C5C4 E7FO
FOF2 0000 0001 0404 C6C9 D5C9 003E 0019
004E FFFF 805C 0040 0001 0010 0000 FFFF
0000 0001 90A9 13880015 0072 FFFF 0015

03FO 0000 0000 0000 0000 0000 0000 0000 0000
SAME AS ABOVE

0450 0000 0000 0000 0000 0000 0000 0000 0000

Figure 7-12. Sample Contents of a Partition

ED
.. SAMPLA
... ,
..•••.. B ••.. EDXO
02 FINI. •.•
• + .•• *. (....... .

I 1

I 1

Item 1m indicates which partition number was dumped and the size of that
partition in pages. In this example, partition 2 was dumped and is 256 pages in
length (64K).

Item 1m shows the range of storage addresses dumped. The partition addresses
XI 0000 1 through XI 0400 1 appear because the "partial dump" option of $DUMP
was selected.

Item 1m shows the beginning address (X 1 0000 I) of partition 2. Each line of
information shown for an address is 8 words in length. The information shown is
the contents of this location in storage when the dump was taken.

Below item IDI, the value XI E2Cli is shown. The dump shows that thls value is
at address X 100021 and begins on a word boundary.

Below item ED is the EBCDIC representation of the values that were in storage.
Thus, the value XI E2Cli shown for item m translates to EBCDIC as the
characters SA. These are the first two characters as shown in the name SAMPLA.
All characters that are not printable are shown as periods.

The text at item ED appears in the dump whenever the address that would have
been printed for this line contains all null characters (X 1 00 1). In this example, you
can see this because the address after XI 03FO 1 is XI 0450 1.

Item EEl shows the ending address that was specified for the partial dump display.

Chapter 7. Analyzing a Failure Using a Storage Dump 7 -17

Analyzing a Failure Using a Storage Dump

Unmapped Storage Information
If you choose to dump and format the unmapped storage areas of your system, the 0-i

storage dump also will contain a list of unmapped storage pointers. Each unmapped ~

7-18 SC34-0941

storage pointer refers to a 2K-byte block of unmapped storage that has been
obtained by an application program. Figure 7-13 shows a portion of a dump that
contains unmapped storage pointers.

II UNMAPPED STORAGE POINTER - 0780
fJ

0000 AAAA 0000 0000 0000 0000 0000 0000 0000
0010 0000 0000 0000 0000 0000 0000 0000 0000

SAME AS ABOVE
0100 AAAA 0000 0000 0000 0000 0000 0000 0000
0110 0000 0000 0000 0000 0000 0000 0000 0000

SAME AS ABOVE
•
•
•

0700
0710

AAAA 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000

II UNMAPPED STORAGE POINTER - 0788

UNMAPPED STORAGE POINTER - 0790

UNMAPPED STORAGE POINTER - 0798

Figure 7-13. Unmapped Storage Pointers

I
· ·1
................

I··············· ·1

I
· ·1
................

Item II in the figure shows how the unmapped storage pointers are displayed in the
dump.

Beneath item fJ is a listing of the contents of the unmapped storage area. The
contents of the unmapped storage area appear in the dump if the area was moved
into mapped storage with a SWAP instruction. If, at the time the dump was taken,
a program had acquired an area of unmapped storage but had not yet used it, only
the pointer to that area appears in the dump. The contents of the area are not
listed. See item II.
When the dump occurs, you may have several programs running that are using
unmapped storage. Determining which unmapped storage areas belong to a
particular program and which of those areas were in use when the dump occurred is
described next.

o

o

c

o

o

Analyzing a Failure Using a Storage Dump

Locating the Unmapped Storage Areas That Belong to a Program
You can locate the unmapped storage areas that belong to your program by
following the steps in this section. You will need the compiler listing for your
program and a storage dump. The dump should include the formatted control
blocks, a list of the unmapped storage pointers, and the contents of the partition in
which the program was running.

The examples in this section refer to a sample program, MAILSORT, and portions
of a sample dump.

To identify which unmapped storage areas belong to your program, do the
following:

1. Look in the compiler listing for your program and find the address of the
STORBLK statement. The STORBLK statement creates a storage control block
that defines the size and number of unmapped storage areas your program can
use. If your program contains more than one STORBLK statement, repeat the
steps described in this section for each statement.

•
•
•

0034
003E
0048
0066
0070

0000 C1C1 0000 0000 0040 BLK
0003 FFFF 0000 0000 006A
0000 0000 0000 0000 0000
0000 0000 FFFF FFFF FFFF
FFFF FFFF FFFF FFFF FFFF

STORBLK TWOKBLK=8,MAX=3

In the sample program, the STORBLK statement is at address X I 0034 I:

2. Look at the storage map section of the dump to find the partition in which the
program was running and the load point of the program.

Chapter 7. Analyzing a Failure Using a Storage Dump 7-19

Analyzing a Failure Using a Storage Dump

7 -20 SC34-0941

STORAGE MAP: $SYSCOM AT ADDRESS 19C6

EDXFLAGS 6000 SVCFLAGS 1000

PART# NAME ADDR PAGES ATASK TCB(S)

P1 ADS= 0 0000 256
FREE 3000 3
DATA 4000 64
FREE 8000 128

P2 ADS= 1 0000 256
$TRAP 0000 65 3E92(A) 3E12 1936 1762
FREE 4100 191

P3 ADS= 2 0000 256
CATALOG 0000 4 0242 01A6 010E
FREE 0400 252

P4 ADS= 3 0000 256
FREE 0000 256

P5 ADS= 4 0000 96
REORDER 0000 4 0240
FREE 0400 92

P6 ADS= 5 0000 160
DATA 0000 80

0 MAl LSORT
fJ
5000 4 5200

FREE 5400 76

In the sample storage map, MAILSORT is in partition 6 (item D). The load point
of the program is X 15000 I (item fJ).

3. Add the address of the STORBLK statement to the program's load point. The
result is the address in storage of the storage control block.

Ad~ing the address of the STORBLK statement in MAILSORT to the program's
load point yields a result of X I 5034 I •

4. Look at the portion of the dump which lists the contents of the partition in
which the program was running. Search this portion of the dump for the
address you calculated in step 3.

Figure 7-14 on page 7-21 shows the portion of the sample dump that contains the
storage control block for MAILSORT. The beginning of the control block is shown
at item D.

0

o

o

c

o

Analyzing a Failure Using a Storage Dump

P6 BEGINNING AT ADDRESS 0000 FOR 160 PAGES
•
•
•

5030

5040
5050

5060
5070
5080
5090
50AO
50BO

50CO
5000

II
E2E3 0000 0000 C1C1 0000 0000 0040 0003

fJ
4000 0001 0000 506A 0000 0144 0000 014C
0000 0154 0000 015C 0000 0164 0000 016C

II
0000 0174 0000 017C 0000 078C 0000 0794
0000 079C 0000 07A4 0000 07AC 0000 07B4
0000 07BC 0000 07C4 0000 07CC 0000 0704
0000 07DC 0000 07E4 0000 07EC 0000 07F4
0000 07FC 0000 0804 0000 080C 0000 0814
0000 081C 0000 0824 0000 082C 0000 0834

II
0000 083C 0000 0844 0000 0007 0003 0001
D02A 0001 0000 802C 50CE 50EO 0001 3231

1 ST. .•. AA .•.•..• 1

I
..... & ••••••• ·<1

....... * %

••••••• D ••••••• M
••••••• U ••••••• 4

I
· ·1
•••••••• &.&/ ••••

Figure 7-14. Sample Storage Control Block Listing

5. Within the storage control block, find the address of the first pointer to the
unmapped storage areas your program obtained. To find this address, do the
following:

a. Refer to the list of unmapped storage equates in your program. These
equates are generated when you code

COpy STOREQU

in your program. The list of equates in the MAILSORT program is as
follows:

$STRPCHN EQU
$STRPID EQU
$STRPLEN EQU
$STRPRES EQU
$STORBLK EQU
$STORMAX EQU
$STORMAP EQU
$STORMPK EQU
$STORRSV EQU
$STORUSR EQU
$STORFLG EQU
$STOROVY EQU
$STORMSR EQU

o
$STRPCHN+2
$STRPID+2
$STRPLEN+2
$STRPRES+2
$STORBLK+2
$STORMAX+2
$STORMAP+2
$STORMPK+2
$STORRSV+2
$STORUSR+2
XI 8000 1

$STORFLG+2

Note: The equates shown above are only for use in this example. For a
current listing of the STOREQU equates, refer to the list generated in your
program or refer to the control block equates shown in the Internal Design.

b. Find the $STORUSR equate in the list. This equate points to the word in
storage that contains the address of the first unmapped storage pointer. The
location of $STORUSR in the list reflects the displacement of this word
from the beginning of the storage control block.

In the equates in the MAILSORT program, $STORUSR is the tenth equate
in the list. Therefore, in this example, the word that contains the address of

Chapter 7. Analyzing a Failure Using a Storage Dump 7-21

Analyzing a Failure Using a Storage Dump

7 -22 SC34-0941

the first unmapped storage pointer is the tenth word from the beginning of
the storage control block. See item II in Figure 7-14.

c. Using the displacement into the storage control block, find the word that
contains the address of the first unmapped storage pointer. When you have
found the address of the pointer, locate this address in the dump.

The tenth word from the beginning of the MAILSORT control block
contains the address X '506A I. Item II in Figure 7-14 on page 7-21 shows
the location of this address in storage. In this example, the first pointer to
an unmapped storage area is the doubleword 078C 0000.

6. Now that you have found the first unmapped storage pointer, refer back to the
STORBLK statement in your program. The statement tells you how many
2K-byte blocks of unmapped storage the program obtained. The dump will
contain one pointer for each 2K-byte block of unmapped storage. Use the
STORBLK statement to calculate the number of unmapped storage pointers
your program required.

The STORBLK statement for the MAILSORT program is:

BLK STORBLK TWOKBLK=8,MAX=3

The STORBLK statement defines three unmapped storage areas of 16K-bytes each.
The number of unmapped storage pointers required then is 24.

7. Note that each unmapped storage pointer is a doubleword. The second word of
the doubleword consists of zeros (0000) and can be ignored. Return to the
storage dump and, beginning with the first unmapped storage pointer, list the
first word of each pointer that belongs to the program.

In the MAILSORT storage control block, the first word of the second unmapped
storage pointer is 0794. The first word of the third pointer is 079C. The first word
of the fourth pointer is 07 A4, and so on. The first word of the last pointer (number
24) is 0844. (See item II in Figure 7-14 on page 7-21.)

8. The list of pointer values you collected in step 7 tells you which unmapped
storage areas belong to your program. To determine which unmapped storage
areas were in use when the dump occurred, look at the portion of the dump that
lists the segmentation registers for your system. Scan this list for any of the
pointer values that belong to your program. If your program was using a block
of unmapped storage when the dump occurred, the pointers to that block of
unmapped storage will appear in the segmentation register list.

The following is the list of pointer values which belong to MAILSORT. Each of
these values is the first word of an unmapped storage pointer contained in
Figure 7-14.

078C 07CC 080C
0794 07D4 0814
079C 07DC 081C
07A4 07E4 0824
07AC 07EC 082C
07B4 07F4 0834
07BC 07FC 083C
07C4 0804 0844

o

o

0

0

0

o

Analyzing a Failure Using a Storage Dump

Figure 7-15 on page 7-23 shows the segmentation register information in the
sample dump. Looking at the segmentation register values for partition 2 (address
space 1), you can see eight of the pointer values that belong to MAILSORT. The
pointers are highlighted.

The pointers indicate that MAILSORT was using one of the three 16K-byte blocks
of unmapped storage it obtained with a GETSTG instruction. The segmentation
register values also show that MAILSORT obtained its mapped storage area in
partition 2.

STORAGE SEGMENTATION REGISTERS:

BLOCK AOSOO AOS01 AOS02 AOS03 AOS04 AOS05 AOS06 AOS07

0000 0004 0104 0204 0304 0404 073C
0800 008C OWC 828C 830C 040C 0744
1800 8814 0114 0214 0314 0414 874C
1880 081C 011C 821C 831C 841C 0754
2888 8824 0124 0224 0324 0424 875C
2808 882C 012C 022C 032C 042C 8764
3800 0834 0134 0234 8334 0434 076C
3880 083C 013C 823C 833C 843C 0774
4000 0044 080C 0244 0344 0444 077C
4800 004C 0814 024C 034C 044C 0784
5000 0054 081C 0254 0354 0454 0464
5800 005C 0824 025C 035C 045C 046C
6000 0064 082C 0264 0364 0474
6800 086C 0834 026C 036C 047C
7000 0074 083C 0274 0374 0484
7800 007C 0844 027C 037C 048C
8000 0084 0184 0284 0384 0494
8800 088C 018C 028C 038C 049C
9000 0094 0194 0294 0394 04A4
9800 009C 019C 029C 039C 04AC
AOOO 00A4 01A4 02A4 03A4
A800 OOAC 01AC 02AC 03AC
BOOO 00B4 01B4 02B4 03B4
B800 OOBC 01BC 02BC 03BC
COOO 00C4 01C4 02C4 03C4
C800 OOCC 01CC 02CC 03CC
0000 0004 0104 0204 0304
0800 OODC 010C 020C 030C
EOOO 00E4 01E4 02E4 03E4
E800 OOEC 01EC 02EC 03EC
FOOO 00F4 01F4 02F4 03F4
F800 OOFC 01FC 02FC 03FC

Figure 7-15. Sample Segmentation Register Values

Once you find which unmapped storage areas were in use by your program, return
to the portion of the dump which lists the contents of the unmapped storage areas
(see Figure 7-13 on page 7-18). You can then examine the contents of the
unmapped storage areas that belong to your program.

Chapter 7. Analyzing a Failure Using a Storage Dump 7-23

Analyzing a Failure Using a Storage Dump

Analyzing a Wait State
This section explains how you analyze a wait state using a stand-alone or $TRAP
dun.1p. A sample program and portions of a $TR.A .. P dump are presented to show
how you analyze the failure.

When you begin analyzing the dump for a wait state, first check to see if a value is
shown for the processor status word (PSW). If a value is shown, examine that value
to determine if a program check occurred also. The section "How to Interpret the
Processor Status Word" on page 6-4 explains what the PSW indicates. If the PSW
value does indicate a program check, refer to the section "Analyzing a Program
Check" on page 7-30 to help you analyze the failure.

The sample program, WTPGM, prints a test pattern on $SYSPRTR. An
ATTNLIST defined in the program should enable you to print the test pattern again
when you press the attention key and enter YES. However, when you attempt to
repeat the test pattern, the program enters a wait state.

The following discussion explains how to use the dump and the compiler listing to
identify the problem:

1. Look in the storage map section of the dump and find all the task control block
(TCB) addresses of the waiting tasks.

As shown for item II in the following sample dump, the TCB addresses of the
waiting tasks are X I CC28 I and X I CBA8 I. The task control block at address

o

X I CC28 I is the TCB address of the program's attention list task. The task control ;1.0: ..

block at address X I CBA8 I is the TCB address of the main task WTPGM. "

Notice also for item fJ that the level table shows no active or ready tasks on any
hardware level. This further indicates that WTPGM is in a wait state. The dump
also shows that $TRAP is not active on any hardware level because the dump was
taken using the "programmer console interrupt" option of $TRAP.

o
7 -24 SC34-0941

o

o

Analyzing a Failure Using a Storage Dump

STORAGE MAP: $SYSCOM AT ADDRESS 19C6

EDXFLAGS 6000 SVCFLAGS 1000

PART# NAME ADDR PAGES ATASK TCB(S)

P1 ADS= 0 0000 256
FREE B400 23

0 WTPGM CB00 2 CC28(A) CBA8
FREE CD00 51

P2 ADS= 1 0000 256
FREE 0000 256

P3 ADS= 2 0000 256
FREE 0000 256

P4 ADS= 3 0000 256
$TRAP 0000 65 3E92(A) 3El2 1936 1762
FREE 4100 191

EDX LEVEL TABLE - TCB READY CHAIN

LEVEL ACTIVE READY (TCB-ADS)

fJ 1 NONE NONE
2 NONE NONE
3 NONE NONE

LOADER QCB CUR-TCB CHAIN (TCB-ADS)

94F4 FFFF NONE NONE

Figure 7-16. Sample Storage Map for a Wait State

Because no tasks were active on any hardware level (except the supervisor on level
zero), the section of the dump showing the hardware registers does not point to the
last instruction executed (Rl).

Chapter 7. Analyzing a Failure Using a Storage Dump 7-25

Analyzing a Failure Using a Storage Dump

7 -26 SC34-0941

EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP

AT TIME OF TRAP PSW WAS 8882 ON HARDWARE LEVEL 8

LEVEL 8 LEVEL 1 LEVEL 2 LEVEL 3 SVC-LSB SVCI-LSB
iAR IF32 IF32 IF32 IF32 IF32 IF8A
AKR 8888 8888 8888 8888 8888 8888
LSR 88C8 8898 8898 8898 88C8 88C8
R8 8888 8888 8888 8888 8888 8888
R1 8888 8888 8888 8888 8888 8888
R2 8888 8888 8888 8888 8888 8888
R3 8888 8888 8888 8888 8888 8888
R4 8888 8888 8888 8888 8888 8888
R5 8888 8881 8882 8883 8888 8882
R6 8888 8888 8888 8888 8888 8088
R7 8888 8888 8888 8888 8880 114C

Because you need the address to which Rl is pointing to determine the last
instruction executed by each task, you must examine a dump of the partition
containing the TCB address for each task. By reviewing the dump of that partition,
you can find the address that Rl points to within the TCB of each task.

Figure 7-17 on page 7-27 shows a sample dump of partition 1. The dump begins at
the program's load point (X' CBOO ') and continues up to the beginning of the free
storage area (X' CDOO ').

2. Do the following to find Rl in the TCB:

0

a. Look in the dump and find the TCB address (as shown in Figure 7-16 on 0
page 7-25) of the first task. The first TCB address of the sample program is
at address X' CC28 , . This address appears under item II in Figure 7-17.

b. Using the TCB equates, find the Rl save area ($TCBSl) in the dump. You
locate this field by adding the offset X' OE' to the address of the TCB. In
this case, the address X' CC36' points to the address of Rl for the
program's attention list task. This address is X' CB60' and appears under
item FJ.

c. Subtract the program load point from the address shown for Rl. The
program load point of the sample program is at X' CBOO '. The resulting
address for the program's attention list task is X'0060'. You use this
address and the compiler listing to identify which instruction the program
was executing when the dump was taken. The compiler listing for the
sample program is shown in Figure 7-18 on page 7-28.

Because the sample program consists of two tasks (an attention list task and the
main program), you must also determine what address Rl points to for the second
task (main program). The steps you follow are the same as steps 1 through 2c but
using the TCB address X' CBA8' of the main task.

The TCB address for the main task is ~hown under item II. The address RI points
to for the main task is X' CB96' and is S:lOwn under item II.
Again, after subtracting the program load point from the address Rl points to for
the main task, the resulting address is X' 0096 ' . o

c

o

Analyzing a Failure Using a Storage Dump

PI BEGINNING AT AOORESS 0000 FOR 256 PAGES

PARTIAL OUMP REQUESTEO FOR CBOO THRU COOO

CBOO 0808 E6E3 07C7 0440 4040 0000 CBA8 CB3C
CB10 0000 0084 CCAA 0000 0000 0000 0100 CCA8
CB20 0000 0000 0000 CC28 CBOO 0000 C5C4 E7FO
CB30 FOF2 0000 0000 CBA8 0000 0001 0002 0202
CB40 0506 CB4C 0403 E8C5 E240 CB5A 805C CB3A
CB50 0002 0019 CB34 FFFF 0010 805C CB3A 0001
CB60 0010 A025 8026 1212 C1C2 C3C4 C5C6 C7C8
CB70 C901 0203 0405 0607 0809 8026 1413 E2E3
CB80 E4E5 E6E7 E8E9 F1F2 F3F4 F5F6 F7F8 F9FO
CB90 7C40 001A CB34 0017 CB34 AOA2 CB3A 0001

II
CBAO CB62 00B2 0022 FFFF FFFF 00000000 2098

II
CBBO 0000 8800 0000 CB96 CBA8 CB34 AOA2 0017
CBCO 002E 2094 0000 02BE 0096 0000 0000 0000
CBOO 0000 0000 CB04 0000 0000 CB06 C4C5 C2E4
CBEO C740 4040 0000 0000 0000 0000 0000 0000
CBFO 0000 FFFF 0000 0000 131C CBOO 0000 CBA8
CCOO 0000 0000 0000 0000 0000 0000 0000 0000

SAME AS ABOVE II
CC20 0000 0000 CBA8 0080 FFFF 0000 0000 4906

fJ
CC30 0000 8800 0000 CB60 CC28 0084 FBOO 0010
CC40 003A 4902 0000 0001 OOOA 0000 0000 FFFF
CC50 0000 0000 CC54 CC28 0084 CC56 5BC1 E3E3
CC60 C1E2 0240 0000 8000 49CE 0000 0000 0000
CC70 0000 FFFF 0000 0000 0084 CBOO 0000 CBA8
CC80 0000 0000 0000 0000 0000 0000 0000 0000

SAME AS ABOVE
CCAO 0000 0000 CC28 0080 0000 0000 0000 0000
CCBO 0000 0000 0000 0000 0000 0000 0000 0000
CCCO 0000 0000 0000 0000 0000 0000 01CC 0000
CCOO 0000 01CE E3C1 E202 F340 4040 0000 0000
CCEO 0000 0000 0000 0000 0000 FFFF 0000 0000
CCFO 0000 0000 0000 0108 0000 0000 0000 0000
COOO 011E 0000 011C B0A2 011EOOOO COlA 805C

Figure 7-17. Sample Storage Dump for a Wait State

.. WTPGM

............ EOX0
02
NO. < •• YES .!. * ..

*
........ ABCOEFGH
IJKLMNOPQR ST
UVWXYZ1234567890

I I

..... M OOEBU
G ••••••••••••

I····· ... ···· ... 01

....... -
••• K ••••••••••••
........... . $ATT
ASK

.... TASK3

J .•• J .•• J •••••• *

3. Using the resulting address from step 2c on page 7-26, look at the instruction at
that address in the compiler listing and try to determine what caused the wait.

Figure 7-18 on page 7-28 shows the compiler listing of the sample program. The
attention list task points to an END ATTN instruction at address X '0060 ' . Tills
address is shown as item II in Figure 7-18.

The main task points to a WAIT instruction at address X I 009(, I 0 Tills address is
shown as item fJ.

Chapter 7. Analyzing a Failure Using a Storage Dump 7-27

Analyzing a Failure Using a Storage Dump

7-28 SC34-0941

LOC +0 +2 +4 +6 +8

0000 0008 0709 06C7 09C1 0440 DEBUG PROGRAM START
000A 0(30 00A8 003C 0000 0000
0014 01AA 0000 0000 0000 0100
OOlE 01A8 0000 0000 0000 0128
0028 0000 0000 0000 0000 0000
0032 0000
0034 FFFF 0000 0000 EVENT ECB
003A 0000 PRINT DATA F' 0 1

003C 0002 0202 05D6 004C 0403 ALIST ATTNLIST (NO,POST1,YES,POST2)
0046 E8C5 E240 005A
004C POST1 EQU *
004C 805C 003A 0002 MOVE PRINT,2
0052 0019 0034 FFFF POST EVENT
0058 0010 ENDATTN
005A POST2 EQU *
005A 805C 003A 0001 MOVE PRINT,l

110060 001D ENOATTN
0062 START EQU *
0062 A025 ENQT $SYSPRTR
0064 8026 1212 C1C2 C3C4 C5C6 PRINTEXT 'ABCOEFGHIJKLMNOPQR '
006E C7C8 C901 0203 04D5 06D7
0078 0809
007A 8026 1413 E2E3 E4E5 E6E7 PRINTEXT 'STUVWXYZ1234567890@'
0084 E8E9 F1F2 F3F4 F5F6 F7F8
008E F9F0 7C40
0092 001A 0034 RESET EVENT

fJ 0096 0017 0034 WAIT EVENT
009A A0A2 003A 0001 0062 IF PRINT,EQ,l,START
00A2 00B2 DEQT
00A4 0022 FFFF PROGSTOP
00A8 0000 0000 0000 0234 0000 ENDPROG
00B2 00D0 0000 0062 00A8 0000
00BC 0000 0000 0000 0000 0000
•
•
•

01BE END

Figure 7-18. Compiler Listing of Wait State Program

Because the dump indicates that the attention list task is at the ENDATTN, you can
assume the program did pass control to the code at label POST2. The code at
POST2 handles the YES response. At this label, a value of 1 is moved to the field
PRINT. The main task is supposed to repeat the test pattern (branch to START)
when PRINT is equal to 1.

By examining the contents of PRINT in the storage dump, you can see that PRINT
does contain a 1. The field PRINT is at address X I CB3A I and is under item II.

0

0

o

o

C)

o

Analyzing a Failure Using a Storage Dump

PI BEGINNING AT ADDRESS 0000 FOR 256 PAGES

PARTIAL DUMP REQUESTED FOR CBOO THRU CDOO

CBOO
CBlO
CB20

CB30
•
•
•

0808 E6E3 D7C7 D440 4040 0000 CBA8 CB3C
0000 0084 CCAA 0000 0000 0000 0100 CCA8
0000 0000 0000 CC28 CBOO 0000 C5C4 E7FO

II
FOF2 0000 0000 CBA8 0000 0001 0002 0202

.. WTPGM

..........•. EDXO

102 1

However, even though the value of PRINT signals the program to repeat the test
pattern, the main task is still in a wait state.

By further examining the code at label POST2, notice that an ENDATTN is coded
immediately after the MOVE:

•
•
•

005A POST2 EQU *
005A 805e 003A 0001 MOVE PRINT,l
0060 0010 ENDATTN
0062 START EQU *

•
•
•

0096 0017 0034 WAIT EVENT
009A AOA2 003A 0001 0062 IF PRINT,EQ,l,START

Because the main task is waiting on the event control block EVENT to be p~sted,
you must determine what in the program prevents that event control block from
being posted.

Closer examination of the code at label POST2 shows that a POST instruction,
required to post the event control block, was omitted. Because the attention list
routine that processes the YES response never posts EVENT, control never passes to
the IF instruction which causes a branch to label START.

In order to correct the problem of the wait state in the sample program, the code at
label POST2 should look as follows:

POST2 EQU
MOVE
POST
ENOATTN

*
PRINT,l
EVENT

Chapter 7. Analyzing a Failure Using a Storage Dump 7-29

Analyzing a Failure Using a Storage Dump

Analyzing a Program Check
This section explains how you analyze a program check using a stand-alone or
$TRAP dump. A sample program, SAMPLA, and portions of a $TRAP dump are
presented to show how you analyze the failure.

The failure discussed in this section occurred while SAMPLA, which has an
attention list, was executing in partition 2. $FSEDIT was loaded in partition 1 and
was enqueued to $SYSLOG. When an operator entered the attention list command
FINI, the system stopped processing and the terminal from which SAMPLA was
loaded would not respond to the attention key. The operator, in this case, IPLed
the system, loaded $TRAP to trap all exception types, and reproduced the situation
in which the failure occurred. The failure occurred again and the operator printed
the dump using $DUMP. The "format control blocks" option was selected.

To analyze the failure, do the foHowing:

1. Look at the portion of the dump that shows the contents of the hardware
registers and see if the processor status word (PSW) indicates a program check.
The section "How to Interpret the Processor Status Word" on page 6-4 explains
the meaning of the PSW.

Note: If a stand-alone dump was taken, begin with step 2.

Figure 7-19 shows a portion of the $TRAP dump which contains the hardware
registers when the failure occurred:

EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP

II AT TIME OF TRAP PSW WAS 8006 ON HARDWARE LEVEL 1

LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3 SVC-LSB SVCI-LSB
IAR 1FFA 2AD6 1F32 1F32 1F32 1F0A
AKR 0100 0110 0000 0000 0000 0000
LSR 8090 00D0 0090 0090 00C0 00C0
R0 0000 0001 0000 0000 0000 0000
R1 0000 0044 0000 0000 0000 0000
R2 02C2 02C2 0000 0000 0000 0000
R3 02B6 004D 0000 0000 0000 0000
R4 0000 0048 0000 0000 0000 0000
R5 0001 805C 0002 0003 0001 0000
R6 0000 00B8 8000 8000 8000 0000
R7 0000 0000 0000 0000 0000 0000

Figure 7-19. Register Contents from Program Check

Because the PSW value shown at item II (X I 8006 I) indicates that a program check
did occur on level I, you must determine which task was active on level 1.

2. Look at the level table portion of the dump and find the active task on the
highest level.

Figure 7-20 on page 7-31 shows the portion of the sample dump containing the
storage map and level table. Item FJ shows that level 1 has an active TCB at

o

0

address X '02C2 1 in address space 1 (partition 2). The storage map shows that this 0" "',
TCB is the attention list task (item II) for program SAMPLA. The load point for
SAMPLA is X I 0000 I.

7 -30 SC34-0941

o

o

o

Analyzing a Failure Using a Storage Dump

STORAGE MAP: $SYSCOM AT ADDRESS 19C6

EDXFLAGS 6000 SVCFLAGS 1000

PART# NAME ADDR PAGES ATASK TCB(S)

PI ADS= 0 0000 256
FREE B400 23
$FSEDIT CB00 31 E8AC
FREE EA00 22

P2 ADS= 1 0000 256 II
SAMPLA 0000 4 02C2(A) 0242 01A6 010E 0072
FREE 0400 252

P3 ADS= 2 0000 256
$TRAP 0000 65 3E92(A) 3E12 1936 1762
FREE 4100 191

P4 ADS= 3 0000 256
FREE 0000 256

EDX LEVEL TABLE - TCB READY CHAIN

LEVEL ACTIVE

61
2
3

02C2-1
NONE
NONE

READY (TCB-ADS)

NONE
010E-1 0242-1
NONE

LOADER QCB CUR-TCB CHAIN (TCB-ADS)

94F4 FFFF NONE NONE

Figure 7-20. Storage Map and Level Table for Program Check

3. Look at the portion of the dump containing the hardware registers and see if the
address of the active TCB is in R2 of the level 1 registers.

At item II in the following example, notice that the address for R2 on level 1 does
show the address X I 02C2 I •

Chapter 7. Analyzing a Failure Using a Storage Dump 7-31

Analyzing a Failure Using a Storage Dump

7 -32 SC34-0941

EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP

AT TIME OF TRAP PSW WAS 8006 ON HARDWARE LEVEL 1

LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3 SVC-LSB SVCI-LSB
IAR IFFA 2AD6 IF32 IF32 IF32
AKR 0100 0110 0000 0000 0000
LSR 8090 0000 0090 0090 OOCO
RO 0000 0001 0000 0000 0000
R1 0000 10044 0000 0000 0000
R2 02C2 ~ 02C2 0000 0000 0000
R3 02B6 0040 0000 0000 0000
R4 0000 0048 0000 0000 0000
R5 0001 805C 0002 0003 0001
R6 0000 00B8 8000 8000 8000
R7 0000 0000 0000 0000 0000

Notice also that the address for Rl (item II), which points to the failing EDL
instruction, points to address X I 0044 I. Because the program load point for
SAMPLA is at address X I 0000 I , the address X I 0044 I corresponds to address
X I 0044 I in the compiler listing of SAMPLA.

IFOA
0000
00C0
0000
0000
0000
0000
0000
0000
0000
0000

When a program load point is other than X 10000 I, subtract the load point address
from the address of Rl. Use the resulting address to find the failing EDL
instruction in the compiler listing.

0

4. Using the address of the failing EDL instruction (the address in Rl in this case),
look at that address in the compiler listing and determine the cause of the 0
failure. .

Figure 7-21 on page 7-33 shows the compiler listing for the program SAMPLA. As
shown for item II, notice that at address X I 0044 I the program attempts to move a
word of data to an odd-byte boundary (WORD + 1).

o

c

o

o

Analyzing a Failure Using a Storage Dump

LOC

0000
0034
003E
0044
004A
004C
004E
0054
0058
005E
0064
006A
006E
0072
00F2

+0 +2 +4 +6 +8

0008 D7D9 D6C7 D9C1 D440
0001 0404 C6C9 D5C9 003E
0019 004E FFFF
805C 004D 0001
001D
0000
0000 0000 0000
90A9 1388
0015 0072 FFFF
0015 010E FFFF
0015 01A6 FFFF
0017 004E
OOAO 023E
0000 0000 0000 0234 0000
835C 0000 0014

SAMPLA

DONE

WORD
ECB
START

TASK1

PRINT
PROGRAM
ATTNLIST
POST
MOVE
ENDATTN
DC
ECB
STIMER
ATTACH
ATTACH
ATTACH
WAIT
GOTO
TASK

START1 MOVE
•
•
•

0106 0016 FFFF OOAO 00F2 ENDTASK
010E 0000 0000 0000 0234 0000 TASK2 TASK
018E 835C 0000 0028 START2 MOVE

•
•
•

019E 0016 FFFF OOAO 018E ENDTASK
01A6 0000 0000 0000 0234 0000 TASK3 TASK
0226 835C 0000 0080 START3 MOVE

0236 0016 FFFF OOAO 0226
023E 0022 FFFF END
0242 0000 0000 0000 0234 0000

•
•
•
ENDTASK
PROGSTOP
ENDPROG

END

Figure 7-21. Compiler Listing of Program Check Program

NODATA
START
(FINI,DONE)
ECB
WORD+1 ,1

F'O'
o
50eO,WAIT
TASK1
TASK2
TASK3
ECB
END
START1
#1,20

START2
#1,40

START3
#1,128

In the following example of the hardware registers for levell, item IJ shows that
R3 (operand 1) is at address X '004D', which is on an odd-byte boundary. Item II
shows that the address of R4 (operand 2) is at address X I 0048 1

, which is on a word
boundary. Thus, any attempt to move a word of data to a byte boundary causes a
specification check as indicated by item O.

Chapter 7. Analyzing a Failure Using a Storage Dump 7-33

Analyzing a Failure Using a Storage Dump

EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP

II AT TIME OF TRAP PSW WAS 8006 ON HARDWARE LEVEL 1

LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3 SVC-LS8 SVCI-LSB
IAR 1FFA 2AD6 1F32 1F32 1F32 1F0A
AKR 0100 0110 0000 0000 0000 0000
LSR 8090 0000 0090 0090 00C0 00C0
R0 0000 0001 0000 0000 0000 0000
R1 0000 0044 0000 0000 0000 0000
R2 02C2 02C2 0000 0000 0000 0000
R3 0286 IBB4D 0000 0000 0000 0000
R4 0000 : 0048 0000 0000 0000 0000
R5 0001 805C 0002 0003 0001 0000
R6 0000 0088 8000 8000 8000 0000
R7 0000 0000 0000 0000 0000 0000

Because $FSEDIT had the $SYSLOG terminal enqueued, the system was unable to
display the program check message, and as a result, caused the system to stop
processing.

Analyzing a Run Loop

7-34 SC34-0941

This section explains an approach you can use to analyze a run loop with the help of
a stand-alone or $TRAP dump.

Because a run loop occurs within a range of instruction addresses in a program, the
dump would only show the instruction address at which the program was executing
when the dump was taken. You can, however, use a dump to identify which task
was active and the hardware level on which the task was executing.

To analyze a run loop using a dump, do the following:

1. Look at the level table in the dump and find the TCB address of the active task
on the highest level.

2. Look in the storage map of the dump and find the name of the program whose
TCB address matches the TCB address from step 1.

3. Rerun that program.

4. Tum to the section "Determining the Starting and Ending Points of the Loop"
on page 4-9. That section explains how to trace the addresses within the loop
using $DEBUG.

0

o

o

o

o

o

Tracing Exception Information

Chapter 8. Tracing Exception Information

The system sets aside an area in storage that it uses to record program check, soft
exception, and machine check information. This area in storage is called the
software trace table.

The software trace table provides you with an alternate method of identifying the
cause of an exception. For example, if for some reason you were not able to record
the information displayed in a program check message, you could use the
information in the trace table to help you analyze the exception.

The system makes an entry into the software trace table when an exception occurs.
The system does not record exceptions that occur in a program or task that has the
ERRXIT = operand coded on the PROGRAM or TASK statement.

The software trace table can contain a maximum of eight entries. When the
maximum number of entires is reached, the system overlays the oldest entry in the
table with the newest entry. The system records these entries in a "circular" fashion.

The entries in the trace table reflect the number of exceptions since the last IPL.
The system resets (clears) this table during each IPL.

If any entries are in the trace table when you take a stand-alone or $TRAP dump,
these entries are also shown in the dump. Figure 7-2 on page 7-5 shows an example
of how an entry appears in a dump.

You can display the contents of the trace table on a terminal using the $D operator
command. How you do this is described next.

Displaying the Software Trace Table
You can display the contents of the software trace table at your terminal. In order
to display the trace table, first you need the supervisor link map listing from system
generation.

To display the software trace table, do the following:

1 Change your terminal to partition 1 by pressing the attention key and entering
$CP 1.

2 Press the attention key and enter $D.

3 At the prompt for "ORIGIN," enter 0000.

Chapter 8. Tracing Exception Information 8-1

Tracing Exception Information

The next prompt, "ADDRESS,COUNT," asks you for an address and the number
of words you want to display. 0

4 For ADDRESS, enter the address of the software trace table. The address of
the software trace table appears beside the entry point name CIRCBUFF in
the supervisor link map listing.

5 For COUNT, enter the value 125. This value is the number of words in
storage the trace table occupies.

The system then displays the contents of the trace table at the terminal. An
explanation of the information displayed is in the section "Software Trace Table
Format."

6 Reply N to the prompt "ANOTHER DISPLAY?"

Figure 8-1 is an example showing steps 1 through 5. The address of the trace table
(CIRCBUFF) in this example is X I 8F64 I. The trace table contains two entries.

> $CP 1

PRQGRA~SAT00:00:15
IN PARTITION ,#I NONE '

PARTITION ADDRESS: B400 HEX; SIZE: 19456 DECIMAL BYTES
> $D
ENTER ORIGIN: 0000
ENTERADDRESS,CQUNT: , 8F64, 125
8F64:;8F~E8FAA 905E0002, 001£010(:)01208002
, BF74 :643 72AD600a0~0D1}0064B50~B520B43? '
'8F8~: El434.q15C<00B8000€10~~1 alA88e02,91A9

8F94:2B86.'El110· 80D0019201JC,01A8019A01A9
8FA4: :',005£ ,00Se: 0000 00f}0 •. 0000 0000 .00000000
8FB4:0000000000000000 0000000000000000
8FC4: 00000000.0000 000,000000000 0000 0000

,'SFD4 : ..•. 00000~0000~~1.0000 0000,000000000000
,8fE4:~0a0;"p000 .. '0~00i0000,.~000,·. 0009., .0000 .. ,0000
'.?FF4:0000::00~a',' 0003:'0000 0000:00~000e0 •• 0000
, 9004!"oe000ae0';0a00'00~O'0000 0000 . a0000000 '
9~14.:'0e00 '0~00:0(i10(1.·9E100:0000 .. 9000.:.000°.°000
9024; ,00000000':0000:a000'000000000000 ,'.0000

" ',9034 :000a.'00900000~0e.0e0000000'00000000 '.
, 9a44:0000009~;·'9009:9009:'00000e00·,,000·O 0090

9954 :0000Q000: 00a9,0000(;)000' '

Figure 8-1. Sample Software Trace Table Entries

The next section explains the format and contents of the software trace table.

Software Trace Table Format

8-2 SC34-0941

The software trace table is a 125-word area in processor storage. The trace table
consists of control information and exception entries. This area in storage is
described in the following sections.

o

o

o

o

o

Tracing Exception Information

Control Information Format
The first 5 words of the trace table are control information. This 5-word area
contains the following information:

Word Contents

o The address of the first entry in the table.

1 The address at which the next entry will be written.

2 The ending address of the table. This address points to the first byte
beyond the end of the table.

3 The number of exceptions that occurred since the last IPL.

4 The size (in bytes) of each en.try in the table. This field contains the value
X I IE I which indicates each entry is 30 bytes (15 words) in length.

Figure 8-2 shows several lines of control information from the previous example.
An explanation of each numbered item follows the figure.

liB BElli II
8F64: 8F6E 8FAA 905E 0002 001E 0100 0120 8002
8F74: B437 2A06 0000 8000 0064 B50A B520 B437

IJ
8F84: B434 015C 00B8 0000 0101 01A8 8002 01A9
8F94: 2B86 0110 8000 0192 013C 01A8 019A 01A9

m
8FA4: 005E 00BC 0000 0000 0000 0000 0000 0000
•
•
• m

9054: 0000 0000 0000 0000 0000

Figure 8-2. Control Information Example

The address (X '8F6E I) shown below item II points to the first exception entry in
the trace table. The first exception entry is shown below item II.

The address (X I 8F AA I) shown below item B points to the address at which the
next exception entry will be written. This address is shown below item m.
Item B points to the first byte of storage following the trace table. This address
(X I 905E I) is not shown in the example, but would begin immediately after item m.
Item EI indicates that two exceptions have occurred since the last IPL. The second
exception entry begins below item IJ.

The value (X 'OOIE') below item II indicates the length (in bytes) of each entry.

The next section explains the format and contents of an exception entry.

Chapter 8. Tracing Exception Information 8-3

Tracing Exception Information

Exception Entry Format

8-4 SC34-0941

Each exception entry in the trace table is 15 words (30 bytes) in length. The first
entry, which follows the five words of control information, begins at word 5 in the
table. When the maximum number of entries (eight) is reached, the system writes
the next entry at word 5 again, overlaying the previous entry. Each entry contains
the following information:

UVord (7ontents

o This word contains a state variable and an address key.

The state variable, which is the first byte, can have any of the following
values:

o - No interrupt in process

1 - Standard (default) processing

2 - Now processing task error exit

3 - Undefined.

The address key, which is the second byte, indicates the address space that
was in use when the exception occurred. The partition in which the
exception occurred is this value plus 1.

1 The task control block (TCB) address of the failing task.

2 The value of the processor status word (PSW). The section "How to
Interpret the Processor Status Word" on page 6-4 explains the meaning of
this value.

3 The contents of the storage address register (SAR). This field indicates the
address in storage last accessed when the failure occurred.

4 The contents of the instruction address register (IAR). This field indicates
the address of the machine instruction currently executing.

5 The contents of the address key register (AKR). For 3-bit processors, bits
5 -7 form the operand 1 key, bits 9 -11 form the operand 2 key, and bits
13 -15 form the instruction space key. For 4-bit processors, bits 4-7 form
the operand 1 key, bits 8 -11 form the operand 2 key and bits 12 - 15 form
the instruction space key. For 5-bit processors, bit 1 and bits 4 -7 form'
the operand 1 key, bit 2 and bits 8 -11 form the operand 2 key, bit 3 and
bits 12 -15 form the instruction space key. For all processors, bit 0 of the
AKR is the equate operand spaces (EOS) bit. If bit 0 is set to 1, the
operand 2 key is used for both operand 1 and operand 2.

6 The contents of the level status register (LSR). The bits, when set, indicate
the following:

Bits 0 - 4 - The status of arithmetic operations. Refer to the processor
description manual for the meanings of these bits.

Bit 8 - Program is in supervisor state.

Bit 9 - Priority level is in process.

Bit 10 - Class interrupt tracing is active.

Bit 11 - Interrupt processing is allowed.

Bits 5 -7 and bits 12 -15 are not used and are always zero.

o

o

o

0

o

o

7

8

9

10

11

12

Tracing Exception Information

The contents of hardware register 0 (RO). Because the supervisor uses this
register as a work register, the contents are usually not significant to the
failing program.

The contents of hardware register 1 (Rl). This field contains the address in
storage of the failing EDL instruction.

The contents of hardware register 2 (R2). This field contains the address in
storage of the active task control block (TCB).

The contents of hardware register 3 (R3). This field contains the address in
storage of EDL operand 1 of the failing instruction.

The contents of hardware register 4 (R4). This field contains the address in
storage of EDL operand 2 (if applicable) of the failing instruction.

The contents of hardware register 5 (R5). This field contains the EDL
operation code of the failing instruction. The first byte contains flag bits
which indicate how operands are coded. For example, the flag bits indicate
whether the operand is in #1, #2, or specified as a constant. The second
byte is the operation code of the EDL instruction.

13 The contents of hardware .register 6 (R6). Because the supervisor uses this
"

14

register as a work register, the contents are usually not significant to the
failing program. However, you can determine if the system was emulating
EDL code when the failure occurred if ~ is twice the value shown in the
second byte of R5. For example, if the secoh<lbyte of R5 contained X 132 I

"
and the system was emulating EDL, R6 would contain X I 0064 I.

The contents of hardware register 7 (R 7). Because the supervisor uses this
register as a work register, the contents are usually not significant to the
failing program. However, in many cases, R 7 may contain the address of a
branch and link instruction. The address may give you a clue as to which
module passed control to the address in the IAR.

Excluding the address of the program load point, all entries in the trace table
contain the same information that the system displays in a program check message,
plus two additional fields: the state variable and address key word, and the storage
address register (SAR). The section "Finding the Program Load Point Address" on
page 8-6 explains how you can find the address of the program load point.

The following application program check message caused the system to create the
exception entry in the trace table shown below the message. .

PROGRAM CHECK:
PLP TC8 PSW IAR AKR LSR R0 R1 R2 R3 R4 R5 R6 R7
8400 0120 8002 2A06 0000 8000 0064 850A 8520 8437 8434 015C 0088 0000

Chapter 8. Tracing Exception Information 8-5

Tracing Exception Information

The exception entry for the previous program check message begins below item II
and ends below item III· 0

II D II
8F64: 8F6E 8FAA 905E 0002 001E 0100 0120 8002

IIIIDOIJlllmm
8F74: B437 2AD6 0000 8000 0064 B50A B520 B437 mmmm
8F84: B434 015C 00B8 0000 0101 01A8 8002 01A9

Item D shows the value of the state variable and address key. The value of the
state variable (X I 011) indicates standard processing. The address key indicates
address space 0 (partition 1).

Item fJ shows the task control block (TCB) address X '0120 ' .

Item II shows the value of the processor status word (PSW). The value X I 8002 I

indicates a specification check occurred and that the translator was enabled. The
specification check was caused by a word move to a odd-byte boundary.

Item II shows the value (X I B437 I) of the storage address register (SAR).

Item II shows the value (X I 2AD6 I) of the instruction address register (IAR).

Item II shows the value (X I 0000 I) of the address key register (AKR).

Item II shows the value (X 18000 I) of the level status register (LSR).

Items II through m show the contents of hardware registers RO through R 7.

Finding the Program Load Point Address

8-6 SC34-0941

In order to determine where the failure occurred in the application program, you
need the address of the program load point. An exception entry in the trace table
does not contain this address, but you can find the load point address by using the
value of the address key and the TCB address.

If the area in storage that contained the failing program's task control block (TCB)
has been overlaid by other active tasks, you cannot find the load point address in the
failing program's TCB. The note under step 1 on page 8-7 may apply, however.

o

o

o

o

o

Tracing Exception Information

This discussion assumes that you are using the most recent exception entry in the
trace table and that you were unable to record the program check message displayed
for this exception. The following steps explain how to find the program load point
address:

1 Look at the value in the address key (word 0, second byte) and determine the
partition in which the failing program was active.

Note: If the failing program was the only program active in that partition, the
load point address is the address at which the partition begins. The $A ALL
operator command displays the beginning address of each partition. Using the
beginning address of that partition as the program IQad point address and the
rest of the information in the exception entry, tum to the section "How to
Analyze an Application Program Check" on page 6-11.

If multiple programs were active in that partition, go to step 2.

2 Add the value X 152 I to the address shown for the TCB (word 1 in the
exception entry). Adding this value to the TCB address points to the field
$TCBPLP in the task control block. $TCBPLP contains the program load
point address.

3 Press the attention key and enter $CP, specifying the partition number from
step 1.

4 Press the attention key and enter $D.

5 At the prompt for "ORIGIN," enter 0000.

6 At the prompt for "ADDRESS,COUNT," enter the address you calculated in
step 2. Enter the value 1 for the count.

The value the system displays is the program'load point address of the failing
program.

7 Reply N to the prompt "ANOTHER DISPLAY?"

The following items are ways in which you can determine if the program load point
is valid:

• Check to see if the address is within the size of the partition in which the
program was running.

• Subtract the load point address from the address shown for Rl (word 8 in the
exception entry). Using the resulting address and the compiler listing of the
failing program, determine if that address is within the program.

• Make sure that if the address is within the program, it is the address of an
executable instruction.

If all of the above items seem correct, the address of the program load point is
probably valid and belongs to the failing program. Using this program load point
address and the rest of the information in the exception entry, turn to the section
"How to Analyze an Application Program Check" on page 6-11.

Chapter 8. Tracing Exception Information 8-7

o

o

o
8-8 SC34-0941

o

o

Recording Device 1/0 Errors and Program Check Information

Chapter 9. Recording Device 1/0 Errors and Program Check
Information

When the system detects an I/O error for a device or encounters an error that
interrupts processing, it can supply you with information to help you pinpoint the
cause of the problem. The $LOG utility enables you to capture and record such
error information whenever the system issues it.

Typically, when the system detects an I/O error for one of the devices attached to
your Series/I, it issues status information about the device. However, $LOG does
not log busy conditions. If the system encounters an error during processing, it may
also report information about the error in the form of a program check message.
The system provides two types of program check messages: a system program check
and an application program check. (See to Chapter 6, "Analyzing and Isolating a
Program Check" on page 6-1 for more details on program check messages.)

Advanced program-to-program communication (APPC) generates error logs also.
You can display or print general error information about APPC, or you can display
or print APPC error log GDS variable information. You use $DISKUT2 to display
this information. For more information about these types of error log information,
see "Displaying APPC Error Log Information" on page 9-12.

$LOG stores the error information it receives in a default log data set named
EDXLOGDS. The system creates EDXLOGDS when you perform an IPL from
disk after system generation. (The system does not re-create EDXLOGDS on
subsequent IPLs unless you delete the data set.)

EDXLOGDS resides on the IPL volume. The system allocates 200 records for the
data set but you can change the size of EDXLOGDS if you need to.

$LOG writes a single 256-byte record in the log data set for each device I/O error or
program check error that it records. A log data set must contain at least three
records because $LOG uses the first two records of the data set for control
information.

If the log data set is empty, $LOG begins writing to the third record in the data set.
If the log data set already contains entries, $LOG adds new entries following the old
ones.

You can have other log data sets on your system but $LOG will not write
inforination to these data sets unless you end the utility and reload it, specifying the
particular data set you want to use. You can allocate a separate log data set with
the AL command of the $DISKUTI utility. The data set can reside on any disk or
diskette volume.

Note: For the Remote Manager (57I9-RMI) to receive error log information, you
must load either the host program (CJUALTHL) or the send program (CJUALTSL)
after each IPL.

See the following headings for more information on error logging:

• "Changing the Size of the Default Log Data Set" on page 9-3

• "Controlling Error Logging" on page 9-2

Chapter 9. Recording Device I/O Errors and Program Check Information 9-1

Recording Device 1/0 Errors and Program Check Information

• "Printing or Displaying the Log Information" on page 9-5

• "Interpreting the Log Information" on page 9-8.

Controlling Error Logging

Loading $LOG

9-2 SC34.-0941

This section describes how to load or reload $LOG and lists the utility commands
that enable you to control error logging. The utility commands are listed under
"$LOG Utility Commands" on page 9-3.

On most systems, $LOG is loaded automatically after each IPL. If you need to load
$LOG on your system or if you need to restart error logging, you can do so with the
$L operator command.

To load $LOG in any partition, press the attention key on your terminal and enter
$L $LOG. As shown in Figure 9-1, $LOG requests the name and volume of the log
data set. The name of the data set in this example is EDXLOGDS on volume
EDX002.

Note: For the remote manager (RMl) to receive error log information, you must
also load either the host program (CJUAL THL) or the send program (CJUALTSL).

After you identify the log data set, $LOG displays the attention commands you can
use to control the utility. You can issue these commands at any time. Error logging
starts when you receive the message "LOGGING ACTIVATED."

> $L $LO~'\:' ,;;:",', .,'
LQGOS, ' ", (NAME,VOLUME)::'

COAOtNG$tOG'
, .' ~ ... ". , , ".') ". ::, : "' :... . '.' ' '> . . . ; ".") ,

Figure 9-1. Example of Starting Error Logging

o

o

o

c

o

o

Recording Device 1/0 Errors and Program Check Information

$LOG Utility Commands
$LOG has attention commands that enable you to control its activity. To use these
commands, your terminal must be in the same partition as the utility. (The
command $A ALL lists the programs and utilities active in each partition on your
system.)

When you locate $LOG, you can display the utility commands by pressing the
attention key on your terminal and entering $LOG. To issue one of the utility
commands, press the attention key and enter the command name. The commands
are as follows:

Command Use

$LOGOFF Suspend error logging ($LOG is still loaded).

$LOGON Restart error logging,

$LOGINIT Clear the log data set and restart error logging. When you use the
$LOGINIT command, the system writes a new log control record to
indicate that no entries are in the log data set.

$LOGTERM End error logging ($LOG is no longer loaded).

Command

$LOG

Use

Display the list of attention commands. This command also displays
any error messages issued by the $LOG utility. These error messages
are from the utility itself and have nothing to do with the errors that
$LOG is tracking.

$LOGDISP Display any error messages issued by $LOG when they occur. For
example, if the log data set becomes full during error logging, an
error message will be displayed immediately. If you don't enter
$LOGDISP, you must use the $LOG command to display errors.

$LOGTDW End the $LOG utility if the log data set becomes full during error
logging. If you do not enter this command, $LOG returns to the
third record in the data set and begins writing over the existing
entries.

Changing the Size of the Defauli Log Data Set
To change the size of the default log data set, EDXLOGDS:

1 Find the partition that contains the $LOG utility. If you coded the
LOGPART= operand on the SYSPARMS statement during system
generation, this operand instructs the system where to load $LOG. If you did
not code LOGPART =, the system loads $LOG in any available partition,
starting with the highest and searching down.

By pressing the attention key on your terminal and entering $A ALL, you can
display the programs or utilities active in each partition.

2 If $LOG is in the same partition as your terminal, proceed to the next step. If
the utility is in a different partition, press the attention key and enter $CP
followed by the number of the partition that contains $LOG. For example, if
$LOG is in partition 2, you would enter $CP 2.

Chapter 9. Recording Device I/O Errors and Program Check Information 9-3

Recording Device 1/0 Errors and Program Check Information

9-4 SC34-0941

3 Press the attention key and enter $LOGTERM to cancel the $LOG utility.

4 Press the attention key and enter $L $DISKUTI.

5 Delete EDXLOGDS on the IPL volume. (The IPL volume is typically
EDX002.)

6 $LOG writes a single 256-byte entry in the log data· set for each device I/O
error or program check error that it records. The default log data set created
by the system can hold up to 198 entries, one for each record. You may
require more or fewer log entries. You must allocate at least three records
because $LOG uses the first two records of the data set for control
information.

The following example shows how to allocate a default log data set that can contain
up to 50 "log records."

7 To restart error logging, see the heading "Loading $LOG" on page 9-2.

o

o

o

o

o

o

Recording Device I/O Errors and Program Check Information

Printing or Displaying the Log Information
By reviewing the log information, you can determine if any device I/O errors or
program check errors occurred while $LOG was active.

The ERAP operator command enables you to print the contents of the default log
data set, EDXLOGDS, on the system printer. The system printer is $SYSPRTR.
"Printing the Default Log Data Set Using the ERAP Operator Command"
describes how to use ERAP. The $DISKUT2 utility enables you to display the
contents of a log data set on your terminal or to print it on any printer. See
"Printing or Displaying a Log Data Set Using the $DISKUT2 Utility" on page 9-6
for more details.

Printing the Default Log Data Set Using the ERAP Operator Command
To print the default log data set, EDXLOGDS, using the ERAP command, press the
attention key on any display terminal and enter ERAP. When the system has
printed the entire log data set on $SYSPRTR, the message "ERAP ENDED"
appears on your display screen.

t > ERAP

tRAP. ENDED

When you use the ERAP command, the system directs all output to the system
printer, $SYSPRTR. If $SYSPRTR is busy when you enter the ERAP command,
the system issues the message "$SYSPRTR NOT AVAILABLE." The system, in
this case, redirects the output to the terminal you used to issue the ERAP command.

Cancelling the ERAP Command
The ERAP command loads the program $ERAPUTI, which controls the printing of
the default log data set. The system loads this program in any available partition.

Note: You cannot load the $ERAPUTI program independently.

To cancel or stop the printing of the default log data set, you must cancel
$ERAPUTI as follows:

1 Press the attention key on your terminal and enter $A ALL. This command
lists all of the storage partitions for your system and tells you the names of the
programs running in each partition.

2 Look at the contents of each partitIOn until you locate the $ERAPUTI
program. If the program is in the Same partition as your terminal, proceed to
the next step. If the program is in a different partition, press the attention key
and enter $CP followed by the number of the partition that contains
$ERAPUTI. For example, if $ERAPUTI is in partition 4, you would enter
$CP4.

3 Press the attention key and enter $C $ERAPUTI. This command cancels the
program.

Chapter 9. Recording Device I/O Errors and Program Check Information 9-5

Recording Device 1/0 Errors and Program Check Information

Printing or Displaying a Log Data Set Using the $DISKUT2 Utility
You can display log information on your terminal by using the LL command of
$DISKUT2. The PL command prints the contents of the log data set on a printer.

Note: If you use the remote manager (RMl), use the LR command of $DISKUT2
to display the log information on a terminal or the PR command to print the
information on a printer. Refer to the Operator Commands and Utilities Reference
for more information on using these commands.

$DISKUT2 also enables you to display or print the following:

• The log entries for an I/O device at a particular address. If you do not know
the I/O device addresses on your system, load the $IOTEST utility and issue the
LS or LD command.

• The log entries for all program checks issued by the system while $LOG was
active (application program checks and system program checks).

• The log entries for all errors issued by the APPC support or APPC transaction
programs.

• All log entries in the. log data set. This includes log entries for the I/O devices
on your system and for program check errors.

Figure 9-2 shows an example of how to print all of the log entries in the log data
set. An explanation of the numbered items follows the example.

D > $L $DISKUT2
LOADING $DISKUJ2 nnP,hh:mm:ss, lP= XXXX t PART= yy

$gISKVT2- DATASET MGMT ; UTILITY II

USING'VOLUMEEDX002

COMMAND(?): PL MPRTR
LOG DSNAME: EOXLOGDS

CHOOSE ON.E OF' THt:FOLLOWING:
l-DISPLAYALLLOG RECORDS (DEFAULT)
2 ,'~, DISPLAY LOG RECORDS BY DEVrCEADDRESS

.3 DISPLAYPROGRAM/SYSTEMCHECKS
4:-0IS~lAr 'APPCGENERAL, INFORMATION
5-:-,<DISPLAYAPPC (,OS VARIABLE INFORMATION

Figure 9-2. Example of Printing the Log Data Set

Item D shows how you load $DISKUT2 after pressing the attention key.

o

o

As shown at item fJ, $DISKUT2 assumes that you are using the IPL volume. If 0"
the log data set does not reside on the IPL volume, enter the CV command (change

9-6 SC34-0941

o

o

Recording Device I/O Errors and Program Check Information

volume) for the "COMMAND(?)" prompt. Then specify the volume on which the
log data set resides.

The PL command entered at item II instructs the utility to print the log
information on a printer. The printer in this example is MPRTR. If you do not
enter the name of the printer, the system sends the output to $SYSPRTR. If you
enter the LL command, $DISKUT2 displays the log information on your terminal.

The prompt message at item II asks for the name of the log data set. If your
system loads $LOG automatically, the name of the log data set is EDXLOGDS.

The prompt message shown at item II asks you to specify the type of log
information you want displayed or printed. To display or print the log entries for a
specific I/O device, enter the option number for displaying log records by device
address, which is 2, and the address (hexadecimal) of the device. To display or print
only the log information for program or system check errors, enter option number 3.
Enter option number 1 if you want to display or print all of the log entries in the log
data set. To display APPC log entries, you enter either option number 4 or option
number 5.

In this example, the option number 1 is entered. If you press the enter key, you
receive the prompt shown at item m. Reply Y to confirm your choice to print the
entire log data set. If you reply N, $DISKUT2 asks you again for the type of log
information you want printed.

Chapter 9. Recording Device I/O Errors and Program Check Information 9-7

Recording Device 1/0 Errors and Program Check Information

Interpreting the Log Information
The figures in this section show examples of the log entries formatted by $DISKUT2
or the ERAP operator command. An explanation of the numbered items follows
each example. Figure 9-3 shows the general format of error log entries for I/O
devices.

II ERROR LOG LIST, DATASET: EDXLOGDS ON EDXee2
II I/O LOG ERROR COUNTERS (BY DEVICE ADDR):

II
808e
8010

e02e
e03e
e04e
8058
806e
8078
808e
80ge
80Ae
80Be
80Ce
80De
80Ee
80Fe

II PERM ERR m

8e8e 8188 ee80 88e8 e8ee e888 eeee e88e
8e8e 8ee8 Oe80 8888 e88e 8e88 88ee 888e
II

8e81 8e88 ee80 88ee e88e e888 e8ee 888e
8e8e 8e88 ee80 88e8 888e e888 e8ee e88e
8e8e 8ee8 0880 8888 e88e e888 88ee 88ee
8e8e 8e88 ee8e 8888 e88e e888 e8ee 888e
8e8e 8ee8 ee8e 8888 e88e e888 e8ee 808e
8e8e 8e8e ee8e 8ee8 e88e 8e88 e8ee 888e
ee8e 8888 ee8e 888e e88e ee88 e88e 888e
ee8e 88e8 e88e 8e8e e88e e888 e88e 888e
ee8e eee8 e88e 8eee 88e8 8888 e88e 888e
ee8e 88e8 ee8e 8e8e e88e e888 88ee 888e
8e8e 8ee8 ee8e 8888 e88e 8888 e88e 888e
8e8e eee8 ee8e 8ee8 e88e e888 e8ee e88e
8e8e 88ee ee8e 88e8 e88e e888 8eee 888e
ee8e 8ee8 ee80 88e8 e88e e888 e8ee 888e

IJ
DEV ADDR: 8e82 DEV ID: e1e6
m m 1m
DATE: 9/15/84
m

LVL: 0881
m

AKR: m
e8e8

TIME: 0:28:22 RETRY: 18 IDCB: 7882 8852
III m
INTCC: eee2 ISS: 0888

BlDCS 1: 8ee7 e8ee e088 ee00 0880 8862 888e eee0

DCS 2: 88e5 8e81 8e88 ee01 8ee8 e872 e888 88e8

DCS 3: 2189 0e88 e8e8 1e01 8881 8e8e 818e 1D4C

m CSSW: 8881 4eee 1081 e801

PERM ERR 1m 1m
DEV ADDR: 8821 DEV ID: 0386
DATE: 9/16/84 LVL: 0003 AKR: 8188
TIME: e: 2:53 RETRY: 2 IDCB: e888 88ee
INTCC: e882 ISS: 0088
CSSW: 12D1 2e41 8e15 4200 8888 FFFF 8eF8 6e8e
LOG LISTING ENDED

Figure 9-3. Example of Log Entries for I/O devices

o

o

Item II identifies the name and volume of the log data set $DISKUT2 is printing 0
or displaying. In this example, the log data set is EDXLOGDS on volume EDX002.

9-8 SC34-0941

o

o

o

Recording Device I/O Errors and Program Check Information

The information shown below item D lists device addresses and the number of I/O
errors that have occurred at those addresses. The device addresses range from
XIOOI - X'FF' (0-255).

Each byte indicates a device address and the number of I/O errors (in hexadecimal)
logged at that address since the log data set was last initialized. For example, the
value X I 011 shown below item II indicates that one I/O error occurred at device
address X I 02 1. The information beneath item II indicates that one I/O error
occurred at device address X I 21 I •

Item II indicates the type of I/O error. $DISKUT2 indicates either a permanent
error (PERM ERR) or a soft-recoverable error (SOFT RECOV ERR). A permanent error
is an I/O error from which the device cannot recover after attempting to retry the
I/O operation.

A soft-recoverable error is one from which the device is able to recover after retrying
the I/O operation.

Item II identifies the address of the device encountering the I/O error. The device
address is contained in the rightmost byte of the word. In this example, the device is
at address X 102 1.

Item II identifies the device type. The value shown in this example, X I 0106 I ,

represents a 4964 diskette unit. The device type is also shown when you issue the LS
or LD command of $IOTEST.

Item iii shows the date, according to the system clock, when the I/O error occurred.

Item m indicates the hardware interrupt level that was active when the I/O error
occurred. This example shows that hardware interrupt level 1 was active.

Item 1m shows the value of the address key register (AKR). This value indicates
the address space that contained the active task when the error occurred. In this
example, address space 0 (partition 1) contained the active task.

Item m shows the time, according to the system clock, when the I/O error
occurred.

Item lEI shows the number of times that the supervisor issued the I/O instruction
to the device before logging the error.

Item III shows two words of immediate device control block (IDCB) information.
The first word contains the I/O operation and the device address. The second word
can contain either an immediate data word, a DCB address, or zeros. The contents
of this word are device dependent. Refer to the device description manual for the
meaning of the two words of IDCB information.

Item III shows the value of the interrupt condition code. The code indicates the
successful or unsuccessful completion of the I/O operation. The meaning of the
interrupt condition code is device dependent. Refer to the device description manual
for the meaning of this code. If the device is a Local Communications Controller
(LCC), this item shows the return code issued by an LCC instruction.

Chapter 9. Recording Device I/O Errors and Program Check Information 9-9

Recording Device 1/0 Errors and Program Check Information

Item m shows the value of the interrupt status byte (ISB). The ISB contains
additional information about the I/O error. The meaning of the ISB is device O. '
dependent. Refer to the device description manual for the meaning of this value.

9-10 SC34-0941

Item III shows the device control block (DCB) information for this device when
the I/O error occurred. If the device did not require a DeB to perform the I/O
operation, this item would not appear in the listing. This example shows the
contents of three chained DCBs the device needed to perform the I/O.

Item m shows the contents of the cycle steal status words (CSSW) when the I/O
error occurred. Each word provides some information about the error. The number
of words varies by device type and in some cases by error type. Refer to the device
description manual for the meaning of the cycle steal status words.

Item 1m shows information about the I/O error that occurred on the device at
address X 1211. (Item II shows that only one I/O error occurred at this address.)

The value X I 0306 I shown below item III means that this device is a 4973 printer.

Notice that for this device, no DCBs were required to perform the I/O and that eight
words of cycle steal status were logged.

Figure 9-4 shows the format of a log entry for an application program check and a
system program check. See "How to Interpret the Program Check Message" on
page 6-1 for more information on the various fields shown in this example.

I *** PROGRAM CHECK ***
DATE: 12/23/85
II II
SAR = 5F4B PSW = 8002

II ADDRESS OF TCB = 0070

m 1m
IAR = 5380 AKR = 0111
m
RO (WORK REG)
R1 (INSTR ADDR)
R2 (EDL TCB ADDR)
R3 (EDL OP1 ADDR)

= 0002
= 5F49
= 5F70
= 0000

TIME: 11:17: 31
II

PSW ANALYSIS: SPECIFICATION CHECK
TRANSLATOR ENABLED

IJ PROGRAM NAME: TRAP1 wi- LOAD POINT; 5Fee

LSR = 4000

R4 (EDL OP2 ADDR) = 0100
R5 (EDL COMMAND) = 0000
R6 (WORK REG) = 0000
R7 (WORK REG) = 0001

III *** SYSTEM CHECK ***
DATE: 11/15/8~ TIME: 08:25:31
SAR = 90C2 PSW = 8002 PSW ANALYSIS: SPECIFICATION CHECK

ADDRESS OF TCB = 004C
IAR = 7B20 AKR = 0300
RO = 02BE
R1 = FFFF
R2 = 0904
R3 = A7A7

LSR = 1000
R4 = 2222
R5 = 7AFE
R6 = 8888
R7 = 2222

Figure 9-4. Example of Program Check Log Entries

TRANSLATOR ENABLED

o

o

o

o

o

Recording Device I/O Errors and Program Check Information

Item II indicates the type of program check information in the log record.
$DISKUT2 indicates either an application program check (PROGRAM CHECK) or a
system program check (SYSTEM CHECK).

Item II shows the date and time when the program check occurred, according to
the system clock.

Item II shows the contents of the Storage Address Register (SAR). The SAR tells
you which storage address the system was referring to when the program check
occurred.

Item II shows the value of the processor status word (PSW) when the program
check occurred. The PSW indicates the type of error encountered. The meaning of
the PSW is shown under item II. In this example, a specification check occurred in
the program. The PSW ANALYSIS field also shows that the Storage Address
Relocation Translator Feature was installed and enabled.

Item m shows the address of the active task control block (TCB). The address is
not relocated and reflects the address of the TCB in the program's compiler listing.

Item II shows the name of the failing program.

Item II is the address in storage of the program load point. This is the address at
which the program was loaded for execution.

Item m shows the contents of the instruction address register (IAR). The address
in the register is the address of the machine instruction that was executing when the
program check occurred.

Item 1m shows the contents of the address key register (AKR). Item m shows
the contents of the level status register.

Item m shows a list of the general purpose registers (RO - R 7) and their contents.
For programs written in EDL, the contents of these registers are as follows:

Register

RO

Rl

R2

R3

R4

R5

R6

R7

Contents

Work register. The contents of this register are usually not significant.

The address of the failing EDL instruction.

The address in storage of the active task control block (TCB). The
address in R2 is the sum of the TCB address and the load point address
of the program.

The address in storage of operand 1 of the failing EDL instruction.

The address in storage of operand 2 (if applicable) of the failing EDL
instruction.

The operation code of the failing EDL instruction.

Work register. The contents of this register are usually not significant.

Work register. The contents of this register are usually not significant.

Item III is a sample of a log record for a system program check. The format of
the system program check is similar to that used for application program checks.
Notice, however, that the general purpose registers are not labeled in the log entry

Chapter 9. Recording Device I/O Errors and Program Check Information 9-11

Recording Device 1/0 Errors and Program Check Information

for the system program check. The registers are not labeled because system program
checks normally involve Series/1 assembler code where the contents of the registers
can vary.

Displaying APPC Error Log Information

9-12 SC34-0941

You can display two types of error log information relating to APPC:

• APPC general information error logs

• APPC Error Log GDS variable information.

To display either type of error log information, use $DISKUT2.

Figure 9-5 shows an example of APPC general informatiop. Some of the
information is required information and is displayed whenever you request this type
of error log. Other information is included with some APPC error logs and omitted
with others. An explanation of the numbered items follows the example. Most
values for these items are in hexadecimal notation (hh). Some values are in decimal
notation (dd) or EBCDIC (ee).

II***APPC GENERAL INFORMATION***

rCB:, ·hhh

Figure 9-5. Required and Optional APPC General Information Displayed

Note: Items 0 through II will always appear in the log. Items fJ through m
are included for certain errors and omitted for others.

Item D (Required) Indicates the type of error log information in the log record.
$DISKUT2 allows you to display an application program check, a
system program check, APPC general information, of APPC GDS
information.

Item fJ (Required) Shows the date and time when the error logging occurred
(according to the system clock).

Item II (Required) Shows the address of the active TCB.

Item II (Required) Shows the partition number where the program was
executing.

o

o

o

o

o

o

Recording Device I/O Errors and Program Check Information

Item II (Required) Corresponds to an SNA grouping of related functions that
are logically separate from the functions in other layers. Valid layer
identifications are as follows:

Value
o
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Layer
LU Basic Conversation Presentation Services
L U Services Resource Manager
LU Data Flow Control
L U Transmission Control
PU Path Control
EDX service routines
PU Network Addressable Unit Manager
PU Network Services
Operator supervisor services
PU activation services
LU Mapped Conversation Presentation Services
LU Operator Verb Presentation Services
SD LC Link Manager
LU Network Services
PU network deactivation services.

For more information on layer numbers for APPC, refer to Advanced
Program-to-Program Communication Programming Guide and Reference.

Item II (Required) Shows the value of SNA-defined sense data. For
explanations of sense data, refer to the Systems Network Architecture
Reference Summary. For a discussion of sense codes, refer to Advanced
Program-to-Program Communication Programming Guide and Reference.

Item fJ (Required) Shows the device address for the PU. (A local physical unit
has a device address of 00.)

Item II (Optional) Shows the identification value of the PU'S station. (For
SDLC PUs, this is the secondary station address.)

Item D (Optional) Shows the bytes in the transmission header (TH). For
formats and meanings of the bytes in the TH, refer to the Systems
Network Architecture Reference Summary.

Item 1m (Optional) Shows the bytes in the request/response header (RH). For
formats and meanings of the bytes in the RH, refer to the Systems
Network Architecture Reference Summary.

Item m (Optional) Shows the bytes in the request/response unit (RU). For
formats and meanings of the bytes in the RU, refer to the Systems
Network Architecture Reference Summary.

Note: Only as much of the RU as will fit in the log record is included.

Item m (Optional) Shows the conversation identifier.

Figure 9-6 on page 9-14 shows an example of the information that is displayed
when you choose to have APPC Error Log GDS variable information displayed. An
explanation of the fields follows each example. The values for some fields are
displayed in hexadecimal notation (hh); the values of other fields are displayed in
EBCDIC.

You can log APPC error log information by specifying the LOGDAT A parameters
on two APPC EDL instructions: ACDEALLC and ACSNDERR. In addition, your
partner transaction programs can provide log data along with error notification.

Chapter 9. Recording Device I/O Errors and Program Check Information 9-13

Recording Device 1/0 Errors and Program Check Information

9-14 SC34-0941

For more information on logging data for APPC, refer to the Advanced
Program-to-Program Communication Programming Guide and Reference.

(',',,,, ',' ' ",. ""Q'*~*'APPti:6risv*:~iA~LE;*'{::"

1'_..~iT~;llI1lfd~j>,~{ ""tr~, hlt;DJrt:S •. ,

I:Gn~Y~RIABLE.rp:., 12£1

.• ~1~~~~ii~"'{~X):' .··.h:~~~h~~heh~~6e· ..
, -.. ,' ;..' .. :', " ;":". ,.'.:'" . ::,' / ... ::..=,". . "':.".'

, ' •...•.. ' •• '··~E.~SAGE.·~:.···· ·.····.···.'.:;: •. '.· •.. ·.·.·ee,e.e. 'eeee··· .. ~.e·ee
..MESSAGE (HEX):· hhhn. hHhhl)hhh.

Figure 9-6. APPC ODS Information

~
I

Item D Indicates the type of error log information in the log record. $DISKUT2
allows you to display an application program check, a system program
check, APPC general information, or APPC Error Log GDS variable
information.

Item fJ Shows the date and time when the error logging occurred (according to
the system clock).

Item II Contains the error log GDS variable identifier, XI 12El1 .

Item II Shows the value of the product identifier. This is specified by the
transaction program that logged the error. (EBCDIC)

Item II Shows the value of the product identifier. This is specified by the
transaction program that logged the error. (hexadecimal)

Item II Contains the message text error information for use in debugging and
error recovery. This is specified by the transaction program that logged
the error. (EBCDIC)

Item II Contains the message text error information for use in debugging and
error recovery. This is specified by the transaction program that logged
the error. (hexadecimal)

o

o

o

o

o

How to Use the Programmer Console

Appendix A. How to Use the Programmer Console

The programmer console, which is an optional Series/1 processor feature, is a useful
tool when you analyze problems.

Several of the chapters in this book mention the use of the programmer console to
display storage locations. However, you can perform many more functions with the
programmer console. This appendix explains some additional functions you can do.
You can use the programmer console to:

• Display or alter main storage locations

• Store data into main storage

• Display or alter register contents

• Store data into registers

• Stop on a selected address

• Stop on an error condition

• Execute one instruction at a time.

The topics discussed in this appendix use the term "console" when referring to the
programmer console.

Before the various functions of the console are discussed, a section on how to read
the indicator lights is presented. This section follows.

Appendix A. How to Use the Programmer Console A-I

How to Use the Programmer Console

Reading the Console Indicator Lights
Across the top of the console is a row of 16 indicator lights. These lights represent
the 16 binary bits of a Series/l word or two bytes. You refer to each indicator light
as a bit position. The bit positions are numbered left to right as bit position 0
through bit 15. When an indicator light is on, this means that that bit is on or set to
l.

The value displayed in the lights may represent data in storage or registers, or it may
represent a storage address. What the value represents depends on the function you
are performing. How the console represents a value and how you read that value is
described as follows.

Each group of four binary indicators represents four bits of a word area. Byte 0
(group 1 and group 2) is the leftmost byte. Each light in a group of four has a
binary-coded decimal value, as follows:

xxx X
842 I

Group 1

XXXX XXXX XXXX
8421 8421 8421

Group 2 Group 3 Group 4

Figure A-I. Indicator Lights - Example I

o

If you add the values of anyone group of four lights when each of the lights are on 0
in that group, the total is 15 or F in hexadecimal. ... I

A-2 SC34-0941

Because data and addresses in the Series/l are represented in hexadecimal, it is good
practice to convert the binary-coded decimal values displayed by the lights to
hexadecimal. Appendix D, "Conversion Table" on page D-l contains a table to
help you convert from binary to hexadecimal.

o

c

o

o

How to Use the Programmer Console

In the following example, assume that the top row represents the indicator lights.
The 0 represents lights that are off (set to 0) and an X represents the lights that are
on (set to 1).

000 X
1

Group 1

00 XO
2

Group 2

OXOX X 000
4 1 8

Group 3 Group 4

Figure A-2. Indicator Lights - Example 2

In the second row is the decimal equivalent that corresponds to the X above the
value. Add the values within each group of four to get the total value of each
group. Therefore, the value of the indicator lights in Figure A-2 is 1 2 5 8.

Figure A-3 shows a value which requires conversion to hexadecimal. The value of
the indicator lights in this example is 1 3 9 A.

OOOX
1

Group 1

OOXX
2 1 8

Group 2

XOOX XOXO
182

Group 3 Group 4

Figure A-3. Indicator Lights - Example 3

The remaining sections explain the various functions of the console.

Appendix A. How to Use the Programmer Console A-3

How to Use the Programmer Console

Displaying Main Storage Locations

A-4 SC34-0941

To display an area in main storage, do the following:

1 Press the Stop key.

2 Press the SAR (storage address register) key.

3 Press the AKR (address key register) key. The contents of the AKR are
displayed in the indicator lights.

4 Key in one hexadecimal value (new address key). This is the value of the
address space (partition number minus 1) in which you want to display main
storage. For example, to display main storage in partition 2, you would key
in the value 1 on the console. The value you enter is displayed in bits 11-15
of the indicator lights.

5 Press the Store key to store the new address key into the AKR.

6 Press the SAR key. The contents of the SAR are displayed in the indicator
lights.

7 Key in the address (four hexadecimal characters) you want to display. This
address is displayed in the indicator lights.

8 Press the Store key. The address displayed in the lights is stored into the
SAR.

9 Press the Main Storage key. The contents of storage at the address you
entered is displayed in the indicator lights. To display sequential main storage
locations, continue pressing the Main Storage key.

Each time you press the Main Storage key, the system increments the storage
address by 2 and displays the contents at that address.

o

o

o

c

o

o

How to Use the Programmer Console

Storing Data into Main Storage
To store data area into main storage, do the following:

1 Press the Stop key.

2 Press the SAR (storage address register) key.

3 Press the AKR (address key register) key. The contents of the AKR are
displayed in the indicator lights.

4 Key in one hexadecimal value (new address key). This is the value of the
address space (partition number minus 1) in which you want to store data.
For example, to store data in partition 1, you would key in the value 0 on the
console. The value you enter is displayed in bits 11 - 15 of the indicator
lights.

5 Press the Store key to store the new address key into the AKR.

6 Press the SAR key. The contents of the SAR are displayed in the indicator
lights.

7 Key in the address (four hexadecimal characters) at which you want to store
data. The address you enter is displayed in the indicator lights.

8 Press the Store key. The address displayed in the indicator lights is stored into
the SAR.

9 Press the Main Storage key. The contents of the address you entered is
displayed in the indicator.

10 Key in the data (four hexadecimal digits) that you want stored at that address
in main storage. The value you entered is displayed in the indicator lights.

11 Press the Store key. The value shown in the indicator lights is stored at the
address you entered in step 7.

Each time you press the Store key, the system increments the SAR by 2, and the
data stored at that location is displayed.

Appendix A. How to Use the Programmer Console A-5

How to Use the Programmer Console

Displaying Register Contents
To display the contents of a register, do the following:

1 Press the Stop key.

2 Press the Level key for the hardware level that contains the register(s) you
want to display. Timers run on level O. The supervisor and attention list
tasks run on level 1. User programs and tasks run on levels 2 and 3.

You can display the contents of any of the following registers on that level by
pressing the key for that register:

LSR Level status register

AKR Address key register

IAR Instruction address register

RO - R7 Hardware registers 0 through 7.

After you press the register key, the contents of that register are displayed in the
indicator lights.

Storing Data into Registers

A -6 SC34-0941

You can store data into the IAR or registers RO - R7. Only the address key register
(AKR) and level status register (LSR) can be displayed.

To store data into a register, do the following:

1 Press the Stop key.

2 Press the Level key for the hardware level that contains the register(s) in which
you want to store data.

3 Press the key for the register in which the data is to be stored. The contents
of that register are displayed in the indicator lights.

4 Key in the data that you want to store. The value you enter is displayed in
the indicator lights.

5 Press the Store key. The value displayed in the indicator lights is stored in the
register you selected.

o

o

o

o

o

o

How to Use the Programmer Console

Stopping at a Storage Address
To stop on an address, do the following:

1 Press the Stop key.

2 Press the Stop On Address key twice.

3 Press the AKR (address key register) key. The contents of the AKR are
displayed in the indicator lights.

4 Key in one hexadecimal value (new address key). This is the value of the
address space (partition number minus 1) which contains the address on which
you want the system to stop. For example, to set a stop address in partition
1, you would key in the value 0 on the console. The value you enter is
displayed in bits 13 - 15 of the indicator lights.

5 Press the Store key to store the new address key into the AKR.

6 Press the Stop On Address key.

7 Key in the address at which you want execution to stop.

a Press the Store key. The address and address key are placed in the
stop-on-address buffer.

9 Press the Start key. Execution begins at the current IAR address on the
current hardware level.

When the system loads the address you specified into the IAR, the processor enters
the stop state. At this point, you can examine the contents of storage. To exit the
stop state, press the Start key; execution begins at the next sequential address.

Stopping When an Error Occurs
Pressing the Stop On Error key causes the system to stop immediately if it detects a
program check, machine check, or power/thermal warning. To determine the error
type, press the PSW (processor status word) key. The value of the PSW is displayed
in the indicator lights. The section "Interpreting the Processor Status Word Bits" on
page 6-4 explains what the bits indicate.

To restart the processor, press the Start key. The processor will proceed with error
handling as if it had not been stopped.

Appendix A. How to Use the Programmer Console A-7

How to Use the Programmer Console

Executing One Instruction at a Time

A -8 SC34-0941

Pressing the Instruct Step key causes the system to execute one instruction and then
stop.

To enable the system to execute one instruction at a time, do the following:

1 Press the Stop key.

2 Press the Stop On Address key twice.

3 Press the AKR (address key register) key.
displayed in the indicator lights.

The contents of the AKR are
\

4 Key in one hexadecimal value (new address key). This is the value of the
address space (partition number minus 1) which contains the IAR address on
which you want the system to stop. For example, if the IAR address was in
partition 1, you would key in the value 0 on the console. The value you enter
is displayed in bits 11-15 of the indicator lights.

5 Press the Store key to store the new address key into the AKR.

6 Press the Stop On Address key.

7 Key in the IAR address at which you want the system to stop.

a Press the Store key. The IAR address and address key are placed in the
stop-on-address buffer.

9 Press the Start key. When the system attempts to execute the IAR address,
the processor stops.

10 Press the Instruct Step key. The system resets the Stop On Address to off.

11 Press the Start key. The system executes the instruction at the IAR address
you entered and then stops. The system updates the IAR to point to the next
instruction address.

Each time you press the Start key, one instruction is executed and the IAR is
updated to the next instruction address.

If your supervisor contains timer support, interrupts will occur while you are
single-instruction stepping through your program. When this happens, you enter the
system interrupt handler at the time you press the Start key. You can set
stop-on-address mode on your program's next instruction and press the Start key;
then, single-step until the next interrupt.

If the processor is in run state, pressing the Instruct Step key causes the processor to
enter the stop state. Pressing the Instruct Step key a second time resets
instruction-step mode; the processor remains in the stop state.

o

o

o

o

o

o

Allowing IBM Access to Your System

Appendix B. Allowing IBM Access to Your System

On occasion, you may need to call an IBM support center to assist you in analyzing
a problem with your system. 'If the problem is complex, the IBM support center
representative may ask to establish a Remote Support Link. The Remote Support
Link enables the support center representative to get direct access to your Series/l
system through a remote terminal. The link is established over a switched telephone
line.

Using the Remote Support Link, an IBM support center representative can issue
operator commands to your system and run EDX utilities. You can use the link to
transfer disk data sets to the support center to assist representatives in diagnosing
your problem.

This appendix describes the hardware you need to set up a Remote Support Link
and the procedures for authorizing and disconnecting the link. To use these
procedures, you must have defined a remote support terminal and included the
necessary supervisor modules during system generation. Refer to the Installation and
System Generation Guide for more details.

You are responsible for ensuring the security and integrity of your data and software
before giving IBM access to your system. You must, for example, give IBM
permission to establish a Remote Support Link and you should remove all
confidential data from your system. IBM takes every precaution to ensure the
integrity of your data and software, but IBM assumes no responsibility in this
regard.

Appendix B. Allowing IBM Access to Your System B-1

Allowing IBM Access to Your System

Hardware Requirements
To set up a Remote Support Link, you need the following hardware:

• One of the following communications adapters:

An Asynchronous Communications Single-Line Controller (#1610)

An Asynchronous Communications 8-Line Controller (#2091) with a 4-Line
Adapter (#2092)

A Multifunction Attachment - Port 0 (#1310)

A Feature Programmable 8-Line Controller (#2095) with a 4-Line Adapter
(#2096).

• A Communications Power Feature (#2010)

• An EIAl Communication Cable (#2057)

• A modem (compatible with the American Telephone & Telegraph Co. 2I2A
modem)

• A voice-grade switched telephone line, preferably one that is not routed through
a manually-operated switchboard.

Note: It is easier for the IBM support center to assist you if you have a second
telephone line available near your Series/I. The second line enables you to
speak with a support center representative while your system is linked to the
IBM support center.

In addition to the hardware just described, your system also must have a disk and
diskette unit.

Authorizing the Link

B-2 SC34-0941

If the IBM support center representative determines that a Remote Support Link
would help in isolating or resolving your problem, you can use the following
procedure to authorize the link. Remember, you are responsible for ensuring the
security and integrity of your data and software before authorizing the link. You
should, for example, remove all confidential data from your system.

1 Check to see that your modem is switched on and that the line is ready for
use.

1 Electronic Industries Association

o

o

o

o

o

Allowing IBM Access to Your System

2 Load the IBM -supplied program called ANSWER. The ANSWER program
resides on the IPL volume. You can load this program from any terminal and
in any partition, but all messages issued by the program appear on the
operator console, $SYSLOG. To load the ANSWER program, press the
attention key on your terminal and enter $L ANSWER.

> $L ANSWER
LOADING ANSWER nnP.hh:mm:ss. LP=xxxx. PART=yy

IF YOU AGREE THAT IBM SHOULD INITIATE THE REMOTE SUPPORT LINK, AND
YOU HAVE TAKEN APPROPRIATE STEPS TO SAFEGUARD YOUR DATA, ENTER nyu

OR
ENTER uN Il TO EXIT AND NOT ALLOW REMOTE SUPPORT ACCESS =:;:>

3 If you have taken the appropriate steps to safeguard the data in your -system,
enter Y to authorize the Remote Support Link.

Entering N ends the program and prevents access to your system.

IPYOU,AGREE'1HAlIBM SHOULD INITIATE THE REMOTE SUPPORT LINK. AND
YOu HAVE, TAKEN 'APPROPRIATE. STEPS TO . SAFEGUARD YOUR.DA:fA. ENTER "yn

9R·;::.·::.· ": ...•......... , .. :/.' .. :........... '.::.:
£NTER"NII iTO EXrrANDNOT ALLOW REMOTE . SUPPORT ACCESS'==> Y

. NAME OF REMOTE TERMINAL:=> .

4 Enter the name of the remote support terminal. This name is the same as the
label on the TERMINAL definition statement for the remote support
terminal. In this example, the name of the terminal is REMSUPT.

IF YOU. AGREE THAT IBM· SHOULD I NITrAtE' nIEREMOTESUPP9~:T, LINK ,AND
YOU HAVE.TAKE~ APPROPRIATE STEPS TOSAFE.GUARD ·YOURDATA;. INTER llyn
. <OR,.... '.' ' :..... .' .' ",. ..:<•. '. .'
ENT~R .:uN:

n
.. :10. EXIT.:ANDNOT '" ALLOW REMOTE SUPPORT ACCESS·

"~;~AM~'Of'REMOTE' TERMINAL;'::i~ REMSUPT' .

When you complete this step, the program enables the communications
adapter and answers the phone when it receives a ring interrupt.

5 The IBM support center representative now ha~ access to your Series/l to
diagnose a problem or to transfer a correction over the line. The support
center representative can communicate with you by sending messages over the
Remote Support Link or by talking with you on a separate telephone line.

Appendix B. Allowing IBM Access to Your System B-3

Allowing IBM Access to Your System

Disconnecting the Line

B-4 SC34-0941

To disconnect the line and end the ANSWER program, press the attention key and
enter HANGUP.

It is your responsibility to ensure that the Remote Support Link has been
disconnected and disabled at the end of the problem-solving session.

Note: To communicate with your system, the IBM support center representative
loads a program called RSLEDXl from the remote terminal. If you disconnect the
line before the support center representative ends RSLEDXl, the program will still
be running on your system. You can cancel RSLEDXl in this case by pressing the
attention key and entering the $C command.

o

o

o

o

o

o

Interpreting a Dump

Appendix C. Interpreting a Dump (Example)

Overview

This appendix gives an interpretation of a storage dump as an example for reading
your own storage dumps. You will also find examples of determining specific
problems. Before reading this appendix you should read Chapter 7, "Analyzing a
Failure Using a Storage Dump" and be familiar with the procedures discussed there.
The information in this appendix supplements the instructions for using storage
dumps to analyze failures that appear in Chapter 7, "Analyzing a Failure Using a
Storage Dump."

The Event Driven Executive (EDX) is a task-driven system, and its language, the
Event Driven Language (EDL), is an emulated language. The EDL instructions are
examined and executed by a group of Series/l assembler instructions in the
appropriate supervisor supporting module.

The Series/l (EDX) Task Control Block (TCB) is useful for determining the state of
the task when interpreting a dump. A task's TCB is the 'place where the EDX
operating system saves the Level Status Block (LSB) when the task is not executing.
This LSB consists of the following hardware registers:

• The Instruction Address Register (IAR). This register always points to a
Series/l assembler language instruction. If you are coding in EDL, this register
always points into the supervisor.

• The Address Key. Register (AKR). This register tells you which address space
contains operand 1, operand 2, and the IAR.

• The Level Status Register (LSR).

• Hardware registers 0 (RO) through 7 (R 7).

Rl must be preserved because it points to the EDL instruction being executed.

R2 contains the address of the TCB and is preserved.

R3 through R7 may vary extensively depending upon the EDL instruction being
emulated.

For example, in terminal I/O, Register 3 contains the address of the Terminal
Control Block (CCB). A CCB is generated for each TERMINAL definition that is
defined in the supervisor. Commonly in TCBs, the contents of an IAR is R 7 plus
XI 0004 1

• It can be assumed that at that point in the code, the task executed an
assembler branch and link instruction (BAL xxx,R 7) in the supervisor.

If a task is executing on a level, the contents of the LSB in the TCB reflect the
hardware registers the last time they were saved. When a task is executing and a
dump is taken, the hardware register listed on the second page of the dump shows
exactly where the executing task was when the dump was was taken. Figure C-I on
page C-2 shows the LSB in the TCB. The LSB is located in the first three rows in
the TCB.

Appendix C. Interpreting a Dump (Example) C-l

Interpreting a Dump

Offset 0 2 4 6 8 A C E

o Task Task IAR AKR LSR RO R1

I
code code - - '-'

I I word 1 word 2

10 R2 R3 R4 R5 R6 R7 Temp Level
work
area RO

20 Priority Chain . Chain Pointer #1
TCB address Task end ECB to
address space

I I
#1

A0941 001

Figure C-l. Level Status Block Layout

Interpreting The Formatted Control Blocks in a Dump

C-2 SC34-0941

The following section shows the formatted control blocks that have been printed
from a $TRAP dump by the utility $DUMP. The interpretation of the formatted
control blocks is divided into several examples. Each example considers a portion of
the dump. An explanation of the numbered items follows the examples. All
numbers shown are in hex notation except where specified.

Example 1: Each level in EDX is used for specific functions. Level ° is used for
timer support and the EDX dispatcher. Levell is used for attention lists and for all
input/ output (I/O). Levels 2 and 3 are used by user programs as well as EDX
utilities. The priority as specified on the program and task statement will determine
on which of these two levels (2 or 3) the program or task will execute. For more
information on coding priority, refer to the Language Reference. If no priority is
specified, the program or task will take the default of level 2, priority 150, X '96' .

The first portion of the dump contains information on the following:

• The IAR

• The AKR

• The LSR

• RO through R 7.

o

o

o

o

o

o

Interpreting a Dump

EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP
II g

AT TIME OF TRAP PSW WAS 8882 ON HARDWARE LEVEL 2

IAR
AKR
LSR
RO
R1
R2
R3
R4
R5
R6
R7

LEVELO LEVELl LEVEL2 LEVEL3 SVC-LSB
2910 2832 3COA 2832 2832
0200 0000 II 0021 0000 0000
8090 0090 8800 0090 OOCO
0000 0000 0000 0000 0000
0000 0000 061A 0000 0000

R058E 0000 II 058E 0000 0000
~ 02BE 0000 1590 0000 0000

0000 0000 0000 0000 0000
0002 0001 B 0280 0003 0002
0000 COOO 0000 8000 8000
0000 0000 0000 0000 0000

SVCI-LSB
280A
8088
80CO
8000
8000
8000
8000
8000
8000
8000
8000

From this example, you can determine that the following applied when you took the
trap:

Item Explanation

II
fJ
II
II

The PSW was 8002.

The PSW was on hardware level 2.

Level 0 R2 contains a X I 058E I •

Level 2 R2 also contains a X I 058E I •

From this information, you can assume that a TCB located at address X I 058E I was
executing at the time the trap dump was taken. Further analysis shows the
following:

Item Explanation

II Level 0 R3 contains a X I 02BE I which points to entry point SVCL2 in
the EDX supervisor fixed storage area in partition 1 (module EDXSYS).
This entry point is the system table for the active and ready tasks for
level 2.

The AKR on level 2 shows which partition or address space this task was
executing in. The AKR contains a X I 0021 I meaning that operand 1,
represented by the second hex digit, (xOxx), was in address space 0
(partition 1). Operand 2 represented by the third hex digit (xx2x) was in
address space 2 (partition 3). The IAR represented by the fourth hex
digit of the AKR (xxxI) was executing a Series/1 assembler language
instruction in address space 1 (partition 2).

Since the program that is executing is written in EDL, the IAR will always be
executing in the supervisor. From this you can assume that the supervisor resides in
this system in at least partitions 1 and 2. The task in partition 3 at address X I 058E I

was the cause of the problem.

Since at the time of the trap, the PSW was 8002, this task caused a program check
with a specification errC5r. A specification error means that the system tried to
execute an instruction and expected operand 1 and operand 2 to be on an even-byte
boundary. Instead, one or both were on an odd-byte boundary.

Appendix C. Interpreting a Dump (Example) C-3

Interpreting a Dump

C-4 SC34-0941

Item Explanation

R5, which contains a X I 028D I , is the only register on level 2 that is on
an odd-byte boundary.

Rl points to the failing EDL instruction. The LSR values confirm that at the time
of the trap, level 2 was active.

With 3-bit mode, the Series/l supports up to 8 partitions (address spaces 0 to 7).
With 4-bit mode, address spaces can be 0 to 15. With 5-bit mode, the address spaces
oan be 0 to 31. In 3-bit and 4-bit mode, the AKR has three (3) reserved bits. In
5-bit mode, the bits are used to address partitions 17 to 32 (address spaces 16 to 31).
The AKR as it is used in 5-bit mode is as follows:

Bit

o
1 and 4-7

2 and 8-11

3 and 12 -15

Explanation

The EOS bit

Address space of operand 1

Address space of operand 2

Address space of the IAR

Sample AKR Values: The following are interpretations of some AKR values:

Value

0271

OADO

8254

4ADO

Interpreta tion

Operand 1 is in address space 2 (partition 3). Operand 2 is in
address space 7 (partition 8). The IAR is executing in address
space 1 (partition 2).

Operand 1 is in address space 10 (partition 11). Operand 2 is
in address space 13 (partition 14). The IAR is executing in
address space 0 (partition 1).

Since the EOS bit is on, ignore bits 4-7 and use the value for
the address space of operand 1 that is used for the address
space of operand 2. So, operand 1 is in address space 5
(partition 6). Operand 2 is in address space 5 (partition 6).
The IAR is executing in address space 4 (partition 5).

Since operand 1 bit 1 is on, add a binary 10000 to binary
01010 resulting in binary 11010, or add a hexadecimal 10
(decimal 16) to the hexadecimal number in bits 4 to 7 a
hexadecimal A (decimal 10). The result is hexadecimal lA (or
decimal 26) for the address space (partition 27). Since bit 2 is
off, operand 2 is in address space 13 (hexadecimal D or
decimal 13) (partition 14). Since bit 3 is off and bits 12 to 15
are also off, the IAR is executing in address space 0 (partition
1).

o

o

o

o

o

o

Interpreting a Dump

Example 2: The SVCI Interrupt Table follows the floating-point register information
(not shown for this interpretation).

SVCI INTERRUPT TABLE

REQ ADDR AKR
NO SVCI INTERRUPTS PENDING

The SVCI Interrupt buffer is used by the system to stack the SVCI requests when
the supervisor is marked busy. If entries appear in this buffer, it means that the
system has not processed these SVCIs yet. When this buffer is full, the system goes
into a loop or stops, depending on the setting of the Mode switch-normal, auto
IPL, or in diagnostic mode.

The IABUF parameter on the SYSPARMS statement in the system definitions data
set ($EDXDEF) allocates the SVCI buffer. The default value is 20 entries, each
made up of 4 words. The words are as follows:

Word 0

Word I

Word 2

Word 3

Address of the SVCI function to be performed (ATTACH, POST, or
DEQ)

Address of the TCB, ECB or QCB

ATTACH, POST or DEQ code value

Address space key of the TCB, ECB, or QCB.

For this dump, no SVCI interrupts were pending.

Example 3: The next portion of the dump is the machine/program check log buffer.

MACHINE/PROGRAM CHECK LOG BUFFER - LATEST ENTRY PRINTS LAST

NO CHECK LOG ENTRIES SINCE IPL

If any program checks had occurred since the last IPL, this portion of the dump
would contain information about those checks, but only if the system can get control
to log the error. The most recent information about program checks is printed last
in this portion of the dump.

In this case, since $TRAP was enabled, the program check that caused the trap
dump to be taken would not appear because the system did not get control to log it.

Example 4: The storage map portion of the dump follows the segmentation register
portion, which is not considered in this discussion. (For more information on
segmentation registers, see "Segmentation Registers" on page 7-6.

The storage map portion of the dump contains information about the flags (both
EDXFLAGS and SVCFLAGS). The partitions, numbered PI through P8, PI6, or
P32 (depending on the number of partitions supported for your system), indicate
which programs they contain and the tasks that are in that program. In the
following example, the program $TRAP is loaded in partition number PI.

Appendix C. Interpreting a Dump (Example) C-5

Interpreting a Dump

C-6 SC34-0941

STORAGE MAP: $SYSCOM AT ADDRESS 212A

EDXFLAGS 5183 SVCFLAGS 18S8

PART' NAME ADDR PAGES ATASK TCB(S)

P1 ADS= 8 8888 256
$TRAP 7388 34 SE5A(A) SODA

FREE 9588 187

P2 ADS= 1 8888 256
FREE SC88 116

P3 ADS= 2 8888 256
$COMMON 8888 9 8S1C(A) 879C 86EC 863E 85SE 84F4

844E 83A2 8318
FREE 8988 247

P4 ADS= 3 8888 256
FREE 8888 256

P5 ADS= 4 8888 256
FREE 8888 256

P6 ADS= 5 8888 256
**FREE*~ 8888 256

P7 ADS= 6 8888 256
FREE 8888 256

PS ADS= 7 8888 256
FREE 8888 256

The EDXFLAGS portion of this storage map shows the version, modification, and
PTF level of the supervisor, in this case, V5.1 PTF 3. The SVCFLAGS shows that
floating point hardware is present and the IPL was successful. The most important
bit in the SVCFLAGS is bit O. If it is on, it shows that SVC processing was
occurring. Since this bit is off, you can conclude that SVC processing was not
occurring, This section also shows that a $SYSCOM exists in the supervisor at
address X '212A I. It does not, however, show how its user area was defined.

From examining this storage map, you can conclude that the program $COMMON
(in partition 3) contains the task at address X I 058E I. This program contains nine
tasks: An attention list task at address X I 081 C I , a main task (which is generated by
the ENDPROG statement) at address X I 079C I , and seven secondary tasks. Since
task at address X I 058E I is not the first task under the TCB(S) heading, it is a
secondary task. A secondary task is one defined in a program by the TASK
statement.

o

o

o

o

o

Interpreting a Dump

Example 5: The next portion of the dump to examine is the EDX level table and
TCB ready chain. This portion of the dump shows which task is active on which
level and any ready tasks for levels 1, 2 and 3. The table also show the address
space keys in which tasks reside.

EDX LEVEL TABLE - TCB READY CHAIN

LEVEL ACTIVE

1
2
3

NONE
e58E-2
NONE

READY (TCB-ADS)

NONE
NONE
NONE

In this example, the information provided confirms the information you gathered
from the hardware registers. You can conclude that the task in address space 0
(partition 3), at address X I 058E I , was active on level 2. No ready tasks show for
any level.

Example 6: The next portion of the dump contains loader QCB information.

LOADER QCB CUR-TCB CHAIN (TCB-ADS)
57C4 FFFF NONE NONE

In this example, the loader QCB is located at address X I 57C4 I. Also, the first word
is X I FFFF I (or -1). This shows that the resource is not busy. Were programs
being loaded this word would be X I 0000 I •

Example 7: The next portion of the dump, the terminal device DDB information,
shows those terminals defined in the supervisor.

10 DEVICE DDB INFORMATION

TERMINAL LIST:

NAME CCS ID IODA FEAT QCB CUR-TCB
CDRVTA 11AE FFFF ee2E esee FFFF NONE
CDRVTB 13SA FFFF eeee eeee FFFF NONE
$SYSLOGA 15ge e4eE eee4 eeee eeee e58E- 2
$PRINTER 17AC e2eA ee5A ee28 FFFF NONE
$SYSLOG 1A1E 2S16 ee5B ee48 FFFF NONE
PRINTER1 IDee e2e6 eeel ee28 FFFF NONE
$SYSPRTR 1Fse 2ee1 eece 9828 eeee e3A2- 2

CHAIN
NONE
NONE
84F4-2
NONE
NONE
NONE

Appendix C. Interpreting a Dump (Example) C-7

Interpreting a Dump

C-8 SC34-0941

The terminal table shows that the failing task (at address X I 058E I) was in control
(ENQT) on $SYSLOGA. A second task at address X I 04F4 1 in address space 0
(partition 3) has also done an ENQT on $SYSLOGA. The task at X 104F4 1 will
only gain support of the terminal when the task (owner), at address X 1058EI,
releases the terminal with a DEQT. This also shows that a task at address X I 03A2 I
in address space 2 (partition 3) is enqueued on $SYSPRTR. All other tef!!1inals are
free, meaning no task has enqueued them.

Example S: The next portion of the dump contains information on disk, diskette,
and tape.

The volume descriptor entry (VDE) is a control block that describes a volume. One
VDE is created automatically for each DISK statement in the system definitions, and
in this case they are referred to as a Device Descriptor Entry (DDE). A DDE is a
special entry that describes the entire disk and points to the volume directory on the
disk-the Volume Table of Contents (VTOC). A DDE is also automatically
generated for each diskette. For instance, because the 4966 diskette unit can support
23 diskettes, 23 DDEs are generated for it.

A DDE and all VDEs that have the same Device Data Block (DDB) reside on the
same physical disk. One VDE is generated for each performance volume coded on a
DISK statement. A DDE or VDE contains information about the volume:

What the volume type is

What the volume name is

Where the volume starts and ends.

DISK(ETTE) OR TAPE VDE:

VDE NAME DDB FLAGS QCB CUR-TCB

OA96 *DDE* aB4E asaa 819E NONE
aAC4 EDxaa2 aB4E 8aaa 819E NONE
aAF2 ASMLIB aB4E 8aaa 819E NONE
aB2a EDX aB4E 8aaa 819E NONE
aC1A *DDE* aC48 a8aa 819E NONE
aD14 *DDE* aD7a 8aaa 819E NONE
aD42 EDxaa3 aD7a 8aaa 819E NONE
a3EC *DDE* aE6A 29a1 819E NONE

CHAIN (TCB-ADS)

NONE
NONE
NONE
NONE
NONE
NONE
NONE
NONE

The disk DDE and VDEs show that the disk DDB at address X I OB4E I has three
performance volumes (EDX002, ASMLIB, and EDX) defined, and these volumes are
located at addresses X I OAC4 I ,X I OAF2 I, and X I OB20 I. Another VDE is allocated
for that disk automatically at address X I OA96 I . No performance volumes were
defined on the disk whose DDB is at address X IOC48 I. The disk at DDB X I OD70 I
has EDX003 defined as a performance volume an its VDE, which is located at
address X I OD42 I. The last DDB is for a diskette unit and has no performance
volumes.

o

o

o

c

o

o

Interpreting a Dump

Example 9: The next portion of the dump contains device data block (DDB)
information. The DDB describes the physical disk, diskette, or tape device.

DDB IODA DEVID DSCB-> TASK DSCB-CHAIN

9B4E 9948 3116 169E- 2 9F3E NONE
9C48 9949 3116 9932- 2 9FBE NONE
9D79 9944 5152 899E- 9 193E NONE
9E64 9a45 5152 5776- a 1aBE NONE

From this section, it can now be determined what DDB is associated with each type
of disk as well as what address the disk is on. For example, the disk whose DDB is
at X IOB4E I is on address (IODA) 48, and it is a model 4967. The last DSCB that
accessed that disk was at address XI 169E 1 in address space 2 (partition 3). The disk
whose DDB is at address XI OC48 1 is on address (IODA) 49 and is also a 4967. The
last DSCB to access this disk is at address XI 0032 1 in address space 2 (partition 3).
The last two DDBs are for an integrated disk and diskette type DDSK. This section
shows that each DDB has a different TASK, which means that on each disk a
statement TASK=YES was coded.

Example 10: The next portions of the dump contain information on various devices.
For instance, a system might have one or more of the following:

• EXIO devices

• Binary synchronous communications (BSC) devices

• Local communications controller (LCC) devices.

EXIO DEVICE LIST

NO EXIO DEVICE SYSGENED

BSCA DEVICE LIST

NO BSCA DEVICE SYSGENED

LCC DEVICE LIST

NO LCC DEVICE SYSGENED

In this example, the information shows that no EXIO, binary synchronous
communications, or local communications controller devices have been defined in
this system. If any of these devices had been defined, the DDB address, device type,
and device address would appear for each type of device.

Appendix C. Interpreting a Dump (Example) C-9

Interpreting a Dump

Example 11: The next portion of the dump, native timer, contains information on
timers. The information includes the type of timer attached to the system and the
time and date of the dump. It also shows the address of the timer DDB and the
TCB. In addition, it shows the address space in the TCB chain.

NATIVE TIMER

TIMER DDB CHAIN (TCB-ADS) hh:mm:ss mm/dd/yy

4E9A 9319- 2 93A2- 2

This portion of the dump shows that two of the secondary tasks, one at address
X I 0310 I and the other at address X I 03A2 I , in the TCB chain address space have
done timer instructions, and those instructions have not yet been satisfied. These are
the final two tasks of the program $COMMON in partition 3. The storage map in
"Example 4" on page C-5 shows that this is the same program that contains the
failing secondary task at address X I 058E I.

Interpreting the State of Tasks (TeBs) in the Dump
By analyzing each task in a program, what each task was doing at the time of the
failure can be determined. The tasks to be analyzed are those in the program
$COMMON (see the storage map in "Example 4" on page C-5). '

A Task that Received a Specification Error (Program Check)

C-IO SC34-0941

The following section shows how to determine why the failing task (at address
X I 058E I) received a program check. The example shows the contents of the TCB in
the dump. This TCB is located in partition 3 at address space X I 058E I. The task
at address X I 058E I is in address space 02 (partition 3) executing on hardware level
2.

+0 +2 +4 +6 +8 +A +C +E
058E FFFF 0000 0000 4F9E 0020 8800 0000 061A
059E 058E 0508 0616 0001 80AC 4F9A 0000 02BE
05AE 00C8 0000 0000 0000 0000 0000 05BA 058E
05BE 0000 05BC E3Cl E202 F440 4040 0000 0000
05CE 3C9E 0000 0000 00000000 FFFF 0000 0000
050E 1590 0000 0000 04F4 0000 0000 0000 0000
05EE 061A 0000 0000 0000 0000 0000 0000 0000
05FE 0000 0002 0000 0000 0000 0000 058E 0080

The level status block (LSB) in the hardware registers shows the LSB at the time of
the dump, as follows:

IAR AKR LSR R0 Rl R2 R3 R4 R5 R6 R7
3COA 0021 8800 0000 061A 058E 1590 0000 0280 0000 0000

o

o

o

o

o

o

Interpreting a Dump

The contents of the registers in the TCB the last time they were saved (prior to the
dump) shows the following:

IAR AKR LSR R0 R1
058E FFFF 0000 0000 4F9E 0020 8800 0000 061A

R2 R3 R4 R5 R6 R7
059E 058E 0508 0616 0001 80AC 4F9A 0000 02BE

Register Address Explanation

AKR in TCB is 0020 in hardware register 0021

IAR 4F9E in PI EDXTIMR2 ENTRY WAITIMER 4F84
3CDA IN P2 EDXTIO ENTRY RDTEXT 3C8A

Rl IN BOTH 061A 002F 028D 0000 READ TEXT BUF3-1 in
$EDXASM listing

R2 Self-pointer in
both cases

R3 in TCB 5D8 Timer Event Control Block (ECB),
the TCB in the hardware register is the address of
$SYSLOGA CCB

R5 in the hardware register, it is the address of the
text statement

This information shows why the failing task received a program check. The TCB
LSB shows the remnants of the STIMER instruction that preceded the
READTEXT. The hardware registers on level 2 show that the task received a
program check because the operand on the READTEXT was on an odd-byte
boundary, causing a specification error and yielding the PSW of 8002.

A Task That is Waiting
The following section illustrates how to determine why the task at address X I 079C I

in address space 2 (partition 3) is waiting. The task at address X I 079C I is the main
task in the program $COMMON located in address space 2 (partition 3) in the
storage map (see "Example 4" on page C-5).

+0 +2 +4 +6 +8 +A +C +E
079C FFFF 0000 0000 29E0 0020 88000000 02F4
07AC 079C 0336 0002 0017 002E 290C 0000 02BE
07BC 0096 0000 0002 0000 0000 0000 07C8 0000
07CC 0000 07CA 7EB2 E8E2 4040 4040 0000 0000
070C 0000 0000 0000 0000 0000 FFFF 0000 0000
07EC 1590 0000 0000 06EC 0000 0000 00000000
07FC 0000 0000 0000 0000 0000 0000 0000 0000
080C 0000 0002 0000 0000 0000 0000 079C 0080

Appendix C. Interpreting a Dump (Example) C-ll

Interpreting a Dump

Analysis of the level status block (LSB) shows the following:

Register Address Explanation

AKR 0020 Shows the IAR in address space 0 (partition 1)

$TCBADS 0002 TCB offset of X 10072 1

IAR 29EO Module EDXSVCX
Entry SWAIT 29B6
Entry SPOST 29E2

R1 02F4 0017 0336 WAIT EOT1 $EDXASM listing
is waiting for T ASKI to end

R2 079C Points to the TCB

R3 0336 Points to the ECB at XI 0336 1 in address space 2,
0000 079C 0002 EeB

R5 0017 WAIT opcode

R6 002E double the opcode

R7 29DC Is 4 less than the IAR. Therefore, it was on a
BRANCH and LINK R7 to SVC wait.

$TCBLEV 02BE Points to Level Active and Ready Table for level
2 in module EDXSYS at entry point SVCL2.

From the information available, you can conclude that this task is waiting in
TASKl's TCB at address X '0310 ' . The task at address X '0336 1 is the task end
event control block ($TCBEEC) at offset X '0026 1 in TASKl's TCB. Therefore,
when T ASKI issues an ENDTASK, this task will be posted. This task attached
TASKl. TASKl's task statement is coded as follows:

TASKl TASK START1,EVENT=EOTl

A Task That Has Never Been Started

C-12 SC34-0941

The following section illustrates how to identify a task that has never been started.
This task is at address XI 06EC 1 in the example. The task at address XI 06EC 1 is
one of the secondary tasks in the program $COMMON (see "Example 4" on
page C-5).

+0 +2 +4 +6 +8 +A +C +E
06EC 0000 0000 0000 0234 0000 0000 0000 076C
06FC 06EC 0000 0000 0000 0000 0000 0000 0002

A TCll that has never been attached will look like the example. The TCB was
located in storage at address XI 06EC I. Register 1 contains the address of the first
instruction to be executed, which in the task is located at address XI 076C I. The
IAR contains a XI 0234 1 pointing to a BRANCH to $EXEC, which will be executed
when the task is attached.

o

o

o

o

o

o

Interpreting a Dump

The task, when attached, will execute on level 2 at a priority of 150. The TCB
LEVEL at offset X 1 IE 1 contains a binary 2 which is proof that the task is not
attached. When the task is attached, the TCB LEVEL will be changed from a
XI 0002 1 to a XI 02BE I. On examination, a system generation link map of partition
1 in the module EDXSYS shows an entry point SVCL2 located at address XI 02BE 1 .
This label is the level active and ready task for level 2. The TCB level will not
change again until the task is detached. Then the XI 02BE 1 will be replaced with a
X ' 00021.

The AKR contains XI 0000 1. IAR contains XI 0234 1 which points to partition 1 in
the EDX communication vector table, which is in the module EDXSYS. The
module starts at fixed location XI 0230 I. At address XI 0234 1 is a branch to
$EXEC, which when attached will go to command setup. $TCBLEV is located at
address X '001E ' in the TCB containing a X '0002 1 which also proves the task is not
attached. When this task is attached, this field will contain a XI 02BE 1 (active and
ready chain for leveI2), which is the entry point of SVCL2 in the supervisor. R1
contains the address of the first EDL instruction to be executed when the task is
attached.

From the information, you can conclude that if the IAR save area in the TCB
contains a XI 0234 1 , then the task has never been started.

A Task That Has Been Detached
The following section illustrates how to tell if a task has been detached. The task is
at address XI 063E 1 in the example. This task is a secondary task in the program
$COMMON.

+8 +2 +4 +6 +8 +A +C +E
863E FFFF 8880 0888 297C 0020 88DO 0888 86E4
864E 863E FFFF 88A8 8816 082C 2978 0888 8802
865E 8897 844E 0882 FFFF 8880 8888 066A 863E
866E 8888 866C E2C1 E2D2 F648 4048 0882 8808
867E 4F12 8880 0888 0318 8882 FFFF 0880 0882
068E 1598 8880 0088 858E 8888 8888 0888 8080
069E 8888 8888 8880 8880 8882 8888 0888 8808
86AE 8888 8882 8888 8088 8880 8888 063E 8888

Register 1 contains the address of the next EDL instruction to be executed, which in
the task is located at address X '06E41. The address of the IAR points into the
module EDXSVCX in the entry SDETACH; RI is still pointing to the ENDTASK
instruction. When the task is re-attached, RI will be incremented by 4, and the
system will execute a GOTO, to the entry point of the task. The task when attached
will execute on level 2 at a priority of 150. The TCB level at offset X 1 IE 1 contains
a binary 2, indicating that the task is not attached. R5 contains a XI 0016 1 , which is
the opcode for a detach. This task must be a secondary task since a primary task
issues a PROGSTOP instead of a detach.

Appendix C. Interpreting a Dump (Example) C-13

Interpreting a Dump

C-14 SC34-0941

The ENDT ASK instruction generates two instructions. The first is a detach with a
default code of -1, and the second is a GOTO, to the beginning of the task. 0
Therefore, when the task is re-attached, Rl will execute the GOTO to the beginning '.
of the task and the TCB level will again contain a X I 02BE I if it is to execute on
ievei 2.

Analysis of the register contents shows the following:

Register Address Explanation

AKR 0020 IAR is in address space 0 (partition 1)

IAR 297C Points to module EDXSVCX ENTRY
SDETACH 2964 next ENTRY 2986

R1 06E4 0016 FFFF OOAO 06BE ENDTASK DETACH
GOTO beginning of task

$TCBLEV 0002 No longer points to the Level Active and Ready
Table X I 02BE I

R7 2978 Probably a BRANCH AND LINK R 7

From the information, you can conclude that the detach has occurred. When the
task is attached again, Rl will be incremented by 4 and will execute the GOTO, the
first instruction (entry point) of the task.

The task at address X I 044E I in the example is also a secondary task in the program
$COMMON.

+0 +2 +4 +6 +8 +A +C +E
044E FFFF 0001 0000 0050 0021 8000 0001 0404
045E 044E 0032 0C48 0028 0002 004C 0000 02BE
046E 00C0 0000 0002 0000 0000 0000 047A 0032
047E 0000 047C 8020 E202 F340 4040 0000 0000
048E 0000 0000 0000 0000 0000 FFFF 0000 0000
049E 1590 0000 0000 03A2 0000 0000 0000 0000
04AE 0000 0000 0000 0000 0000 0000 0000 0000
04BE 0000 0002 0000 0000 0000 0000 044E 0080

Analysis of the register contents shows the following:

Register Address Explanation

AKR 0021 IAR in partition 2

IAR OD50 in DISKIO in partition 2
entry DSKXRET1 OD28
next entry DSKXRET3 OD74

R1 04D4 8020 018C 0001 0001 020C 0032
$EDXASM listing READ READ DS1,BUF2,1,1

R3 0032 Points to the DSCB used by the READ.
The first 3 words of the DSCB are 0000 044E 0002;
There is a wait for 10 to complete.

R4 OC48 Disk Device Block (DDB)

o

o

o

o

o

Interpreting a Dump

Register Address Explanation

R6 0002 User address space key

R7 OD4C BRANCH AND LINK R7

From this information, you can conclude that this task has issued a disk read and
the 10 has not completed.

The task at address X I 04F4 1 in the example is another secondary task in he
program $COMMON.

+0 +2 +4 +6 +8 +A +C +E
04F4 FFFF 0000 0000 4FF8 0021 8000 057A 057A
0504 04F4 1590 0000 0000 0002 4FF4 1666 02BE
0514 00C5 0000 0002 0000 0000 0000 0520 04F4
0524 0000 0522 E3C1 E202 F440 4040 0002 8002
0534 40E2 0000 0000 0000 0000 FFFF 0000 0000
0544 1590 0000 0000 044E 0000 0000 0000 0000
0554 0000 0000 0000 0000 0000 0000 5050 0000
0564 0000 0000 0000 0000 0000 0000 04F4 0080

Analysis of the register contents shows the following:

Register Address Explanation

AKR 0021 IAR is in address space 1 (partition 2)

IAR 4FF8 Points to EDXTERMQ
ENTRY QUTERM
ENTRY DQTERM

Rl 057A Points to 8025
$EDXASM listing ENQT

4F6C
SOlE

R3 1590 Points to the $SYSLOGA CCB in address space 0
in the formatted control dump in the terminal
list (see "Example 7" on page C-7):
$SYSLOGA 1590 040E 0004 0000 0000 058E- 2 04F4- 2
$CCBQCB is at location 15EA OFFSET X I 005A I in the
CCB

0000 04F4 0002 058E 0002

From this information, you can conclude that this task is on the waiting queue for
$SYSLOGA. When the task at address X I 058E I - 2 dequeues the $SYSLOGA
terminal, this task will execute.

Appendix C. Interpreting a Dump (Example) C-15

Interpreting a Dump

C-16 SC34-0941

The task at address X'081C' in the example is the ATTENTION LIST task for the
program $COMMON (see "Example 4" on page C-5). 0

+0 +2 +4 +6 +8 +A +C +E
081C FFFF 0000 0000 425C 0021 8000 0002 0086
082C 081C 1590 FBOO 0010 003A 4258 0000 0001
083C OOOA 0000 0000 FFFF 0000 0000 0848 081C
084C 1590 084A 5BC1 E3E3 C1E2 0240 0002 8002
085C 4256 0000 0000 0000 0000 FFFF 0000 0000
086C 1590 0000 0000 079C 0000 0000 0000 0000
087e 0000 0000 0000 0000 0000 0000 5050 0000
088C 0000 0002 0000 0000 0000 0000 081C 0080

Analysis of the register contents shows the following:

Register Address Explanation

AKR 0021 IAR is in address space 1 (partition 2)

IAR 425C is in EDXTIO
Entry ENDATTN 423E
Entry #TERMOUT 4258

R1 0086 Points to 001D $EDXASM listing ENDATTN

R3 1590 $SYSLOGA CCB

R5 001D END ATTN opcode

R6 003A Double the opcode

$TCBLEV 0001 X'OOIE' is in the TCB
ATTENTION LIST task run on level 1

$TCBPRI OOOA Offset X' 0020' task priority of 10

From this information, you can conclude that this task executed the ENDATTN
instruction. Since $TCBLEV is X' 0001 " the task has been detached.

o

o

Conversion Table

o Appendix D. Conversion Table

o

o

This appendix contains a conversion table for the hexadecimal, binary, EBCDIC,
and ASCII equivalents of decimal values. The table also contains transmission codes
for communications devices.

Appendix D. Conversion Table D-l

Conversion Table

ASCII EBASC*
(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP o
a 00 0000 0000 NUL NUL NUL
1 01 I 0001 I SOH I SOH I NUL I ~pace I space I 2 02 0010 STX STX @ 1 1

'll
/
I

3 03 0011 ETX ETX @

4 04 0100 PF EOT space 2 2
5 05 0101 HT ENQ space
6 06 0110 LC ACK
7 07 0111 DEL BEL 3
8 08 1000 BS DLE 4 5
9 09 1001 RLF HT DLE

10 OA 1010 SMM LF P
11 OB 1011 VT VT P 5 7
12 OC 1100 FF FF a
13 00 1101 CR CR a 6 6
14 OE 1110 SO SO p 7 8
15 OF 1111 SI SI p
16 10 0001 0000 DLE OLE BS 8 4
17 11 0001 DCl OCl BS
18 12 0010 DC2 OC2 H
19 13 0011 TM OC3 H 9 a
20 14 0100 RES OC4 (

21 15 0101 NL NAK (a z
22 16 0110 BS SYN h © (EOA) ® (EOA),9
23 17 0111 IL ETB h
24 18 1000 CAN CAN CAN
25 19 1001 EM EM CAN
26 lA 1010 CC SUB X RS RS
27 lB 1011 CUl ESC X
28 lC 1100 IFS FS 8 upper case upper case
29 10 1101 IGS GS 8 i\ o
30 lE 1110 IRS RS x
31 1F 1111 IUS US x © (EOT) © (EOT)
32 20 0010 0000 DS space EOT @ t
33 21 0001 SOS ! EOT
34 22 0010 FS ., 0
35 23 0011 # 0 / x
36 24 0100 BYP $ $
37 25 0101 LF % $ s n
38 26 0110 ETB & d t u
39 27 0111 ESC d
40 28 1000 (OC4
41 29 1001) OC4 u e
42 2A 1010 SM * T v d
43 2B 1011 CU2 + T
44 2C 1100 4 w k
45 20 1101 ENQ 4
46 2E 1110 ACK t
47 2F 1111 BEL / t x c
48 30 0011 0000 0 form feed
49 31 0001 1 form feed y I
50 32 0010 SYN 2 L z h

*The no-parity TWX code for any given character is the code that has the rightmost bit position off.

o
D-2 SC34-0941

Conversion Table

o ASCII EBASC*
(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

51 33 0011 3 L
52 34 0100 PN 4
53 35 0101 RS 5
54 36 0110 UC 6 1 SOA
55 37 0011 0111 EOT 7 1 ® (SOA),comma b

56 38 1000 8 FS
57 39 1001 9 FS
58 3A 1010 : \
59 3B 1011 CU3 ; \ index index
60 3C 1100 DC4 < <
61 3D 1101 NAK = < ® (EOB)
62 3E 1110 > I
63 3F 1111 SUB ? I
64 40 0100 0000 space @ STX @ (NAK),- !
65 41 0001 A STX
66 42 0010 B B
67 43 0011 C B i m
68 44 0100 D "

69 45 0101 E " k
70 46 0110 F b I v

71 47 0111 G b
72 48 1000 H DC2
73 49 1001 I DC2 m
74 4A 1010 ¢ J R n r

75 4B 1011 K R
76 4C 1100 < L 2 0 i
77 4D 1101 (M 2
78 4E 1110 + N r o 79 4F 1111 1 0 r p a
80 50 0101 0000 & P line feed
81 51 0001 Q line feed q 0

82 52 0010 R J r s
83 53 0011 S J
84 54 0100 T *
85 55 0101 U *
86 56 0110 V j

87 57 0111 W j $ w
88 58 1000 X SUB
89 59 1001 y SUB
90 5A 1010 ! Z Z
91 5B 1011 $ [Z CRLF CRLF
92 5C 1100 * \ :

93 5D 1101) 1 : backspace backspace
94 5E 1110 ; 1\ z idle idle
95 5F 1111 --, - z
96 60 0110 0000 ACK
97 61 0001 / a ACK & j

98 62 0010 b F a 9
99 63 0011 c F
100 64 0100 d & b
101 65 0101 e &
102 66 0110 f f

103 67 0111 9 f c f

o
Appendix D. Conversion Table D-3

Conversion Table

ASCII EBASC*
(see Notes 1 (see Notes 2 o

Decimal Hex . Binary EBCDIC and 3) and 3) EBCD CRSP

104 68 1000 h SYN d P

1
105 69

1
1001

I Ii I
SYN

I I I
106 6A 1010 I j V
107 6B 1011 k V e

108 6C 1100 % 1 6
109 60 1101 m 6 f q

110 6E 1110 > n v 9 comma

111 6F 1111 ? 0 v
112 70 0111 0000 p shift out h I
113 71 0001 q shift out

114 72 0010 r N
115 73 0011 s N i y

116 74 0100 t
117 75 0101 u
118 76 0110 v n G) (YAK),period

119 77 0111 w n
120 78 1000 x RS
121 79 1001 y RS

122 7A 1010 : z /\ horiz tab tab

123 7B 1011 # I 1\
124 7C 1100 @ I > lower case lower case

125 70 1101 f >
126 7E 1110 = '" rv
127 7F 1111 " DEL rv delete

128 80 1000 0000 NUL SOH

129 81 0001 a SOH SOH space space

130 82 0010 b STX A = ±,[

131 83 0011 c ETX A
132 84 0100 d EOT ! < @

133 85 0101 e ENQ ! o
134 86 0110 f ACK a
135 87 0111 9 BEL a ; #
136 88 1000 h BS DCl : %

137 89 1001 i HT OCl
138 8A 1010 LF Q

139 8B 1011 VT Q % &
140 8C 1100 FF 1
141 80 1101 CR 1 ¢

142 8E 1110 SO q > *
143 8F 1111 SI q

144 90 1001 0000 OLE horiz tab * $
145 91 0001 j OCl horiz tab

146 92 0010 k OC2 I

147 93 0011 I OC3 I ()

148 94 0100 m OC4)

149 95 0101 n NAK)) Z

150 96 0110 0 SYN i 0 (EOA)," (

151 97 0111 p ETB i

152 98 1000 q CAN EM

153 99 1001 r EM EM
154 9A 1010 SUB Y

155 98 1011 ESC Y

156 9C 1100 FS 9 upper case upper case

o
D-4 SC34-0941

Conversion Table

O"ltI,I,", ',I

ASCII EBASC*
(see Notes 1 (see Notes 2

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

157 9D 1101 GS 9
158 9E 1110 RS y

159 9F 1111 US y C (EOT) C (EOT)
160 AD 1010 0000 Space ENQ ¢ T
161 A1 0001 ! ENQ
162 A2 0010 s " E
163 A3 0011 t # E ? X
164 A4 0100 u $ %

165 A5 0101 v % % S N
166 A6 1010 0110 w & e T U
167 A7 0111 x e
168 A8 1000 y (NAK
169 A9 1001 z) NAK U E
170 AA 1010 * U V D
171 AB 1011 + U
172 AC 1100 5 W K
173 AD 1101 5
174 AE 1110 u
175 AF 1111 / u X C
176 BO 1011 0000 0 return
177 B1 0001 1 return Y L
178 B2 0010 2 M Z H
179 B3 0011 3 M
180 B4 0100 4
181 B5 0101 5
182 B6 0110 6 m
183 B7 0111 7 m ® (SOA),I B
184 B8 1000 8 GS

o 185 B9 1001 9 GS
186 BA 1010 : 1
187 BB 1011 1 index index
188 BC 1100 < =

189 BD 1101 = @(EOB),ETB
190 BE 1110 > I
191 BF 1111 ? I
192 CO 1100 0000 f @ ETX @ (NAK),-
193 C1 0001 A A ETX
194 C2 0010 B B C
195 C3 0011 C C C J M
196 C4 0100 D D #
197 C5 0101 E E # K
198 C6 0 0110 F F c L V
199 C7 0111 G G c
200 C8 1000 H H DC3
201 C9 1001 I I DC3 M "
202 CA 1010 J S N R
203 CB 1011

U
K S

204 CC 1100 L 3 0 I
205 CD 1101 M 3
206 CE 1110 Y N s
207 CF 1111 0 s P A
208 DO 1101 0000 f p vertical tab
209 D1 0001 J Q vertical tab Q 0

o
Appendix D. Conversion Table D-5

Conversion Table
'\.\ ..

ASCII EBASC*
(see Notes 1 (see Notes 2 o

Decimal Hex Binary EBCDIC and 3) and 3) EBCD CRSP

210 02 0010 I K I~ I K I R I S
211 D3 0011 L K
212 04 0100 M T +
213 05 0101 N U +
214 06 0110 0 V k
215 07 0111 P W k ! W
216 08 1000 Q X ESC
217 09 1001 R Y ESC
218 OA 1010 Z [
219 DB 1011 [[CRLF CRLF
220 DC 1100 \ ;

221 DO 1101 1 ; backspace backspace
222 DE 1110 1\ 1 idle idle
223 OF 1111 - t
224 EO 1110 0000 \ bell
225 El 0001 a bell + J
226 E2 0010 S b G A G
227 E3 0011 T c G
228 E4 0100 U d B +
229 E5 0101 V e
230 E6 0110 W f 9
231 E7 0111 X 9 9 C F
232 E8 1000 y h ETB 0 P

233 E9 1001 Z i ETB
234 EA 1010 j W
235 EB 1011 k W E
236 EC 1100 r1 I 7
237 ED 1101 m 7 F Q
238 EE 1110 n w G comma o
239 EF 1111 0 w
240 FO 1111 0000 0 p 'shift in H ?
241 Fl 0001 1 q shift in
242 F2 0010 2 r 0
243 F3 0011 3 s 0 I Y
244 F4 0100 4 t /
245 F5 0101 5 u /
246 F6 0110 6 v 0 C0 (YAK),--'
247 F7 0111 7 w 0

248 F8 1000 8 x US
249 F9 1001 9 y US
250 FA 1010 LVM z - horiz tab tab
251 FB 1011 { -
252 FC 1100 I ? lower case lower case
253 FO 1101 I ?
254 FE 1110 '" DEL
255 FF 1111 DEL DEL delete

Notes:

1. ASCII terminals attached via #1310, #7850, #2095 with #2096, or #2095 with RPQ 002350.
2. ASCII terminals attached via #1610 or #2091 with #2092.
3. There are two entries for each character, depending on whether the parity is odd or even.

o
D-6 SC34-0941

o

o

o

Index

Special Characters
$$EDXIT task error exit routine

interpreting the output 6-8
message description 6-8
output example 6-7

$D - dump storage
use to identify looping program 4-3

$DEBUG utility
analyzing program checks 6-12, 6-15
analyzing wait state 5-1
examine unmapped storage 4-14, 6-15
isolating run loops 4-8
list

storage area 4-13
unmapped storage 6-17

modify data in unmapped storage 4-18, 6-19
set

breakpoints 4-10, 6-18
trace ranges 4-10

$DISKUT2 utility
list

log data set 9-6
$EDXNUC supervisor data set

analyzing problems with 3-3
reloading 3-2
rewriting IPL text 3-2

$LOG utility
commands 9-3
controlling 9-2
description 9-1
display errors 9-5
end 9-3
end if data set is full 9-3
load from a terminal 9-2
loaded during IPL 9-1
log data set

change default data set size 9-3
clear 9-3
when the system loads $LOG 9-1

print errors 9-5
record I/O errors 9-1
record program check messages 9-1
restart 9-3
sample output, explanation 9-8
suspend 9-3
use with remote manager (RM1) 9-2

$TRAP utility
interpreting the dump. 7-1, C-IO

$VIRLOG
storing program check messages

in a disk data set 2-1
in a log data set 2-1
on a $SYSLOG terminal 2-1
with Communications Facility log 2-1

A
activate

error logging from a terminal 9-2
address key register (AKR) 3-8, 7-3
address, failing instruction 6-3, 7-3
AKR C-3

See also address key register (AKR)
analyze failures, how to

IPL problems 3-1
program checks 6-1, 7-30
run loops 4-1, 7-34
wait states 5-1, 7-24

ANSWER program, use for remote support B-2
application program check

analyzing 6-11
logging occurrences 9-1

auto IPL, description 6-7

B
bi t settings

level status register 3-8, 6-3, 7-3
processor status word 6-4
programmer console A-2
SVCFLAGS 7-10

bootstrap, rewriting 3-2
boundary

violations 6-5, 6-11
breakpoint and trace range

settings 4-10, 6-12

C
cancel

ERAP command 9-5
CCB

See terminal control block (CCB)
CIRCBUFF, software trace table 8-1
class interrupt descriptions 6-5
codes

obtaining stop code for IPL error 3-3
obtaining stop code for run loop 4-1

communications features
used with remote support link B-2

console, programmer
displaying main storage A-4
displaying registers A-6
instruction step A-8
reading indicator lights A-2
stop on address A -7
stop on error A -7
storing data into main storage A-5
storing data into registers A-6

Index X-I

control blocks
analyzing queue control block 5-2
INITT ASK task control block 3-6

cross-partition supervisor

D

obtaining IPL stop codes 3-3
segmentation registers 7-6

Device Data Block (DDB) C-8
Device Descriptor Entry (DDE) C-8
diagnostic mode, putting processor into 4-1
display

an error log 9-5
program check messages

in a disk data set 2-1
in a log data set 2-1
on a $SYSLOG terminal 2-1
with Communications Facility log 2-1

registers A-6
software trace table 8-1
storage

on the programmer console A-4
dump, interpreting a storage

E

BSC information 7-16
disk/diskette information 7-13
exception information 7-5
EXIO information 7-16
floating-point registers 7-5
hardware level and registers 7-2
level table 7-12
loader QCB 7-12
partition contents 7-17
segmentation registers 7-6
storage map 7 -10
tape information 7-13
TCB ready chain 7-12
terminal information 7-13
timer information 7-16
unmapped storage contents 7-18

EDX level table, example C-7
EDXALU C-1
EDXFLAGS, example C-6
EDXLOGDS, default log data set

change size of 9-3
clear 9-3
description of 9-1

ENQT instruction
examining the terminal control block 5-6
identifying the task in control 5-6

entry point C-1
ERAP - print log data set

cancelling 9-5
interpreting sample output 9-8
procedure 9-5

x -2 SC34-0941

error handling
error logging 9-1
program checks 6-1
remote manager (RM 1) considerations 9-2, 9-6

error log data set
change default data set size 9-3
clear 9-3
contents 9-8
when the system loads $LOG 9-1

error logging facility
See $LOG utility

errors
determining the type 2-1
IBM assistance in diagnosing B-1
recording I/O 9-1
recording program check 9-1

event control block
causes of a wait state 5-8
waiting task, identifying 5-7

exception interrupt
how to trace 8-1
types of 6-4

Extended Address Mode support
segmentation registers 7-7

F
floating-point

exception, description 6-6
registers 7-5

formatted control blocks in a dump, interpreting C-2

H
hardware

registers
contents during program check 6-2
IN ITT ASK task control block 3-8
software trace table 8-4
storage dump 7-2

I/O check, description 6-7
I/O error logging

controlling 9-2
display errors 9-5
for remote manager (RM1) 9-2
interpreting sample output 9-8
log data set

change default data set size 9-3
clear 9-3
when the system loads $LOG 9-1

print errors 9-5
utility, $LOG 9-1

I/O segmentation registers
in storage dump 7-8

IBM support center, communication with B-1

o

o

o

o

o

o

initialization modules
in storage during IPL failure, find 3-4

INITT ASK, analyzing at IPL
interpreting register contents 3-8
using $D operator command 3-6
using programmer console 3-7

instruction address register (lAR)
description 7-4
displaying 6-22, A-6

instruction address~ failing 6-3, 7-3
instruction step (console) A-8
interpreting a dump (example) C-l
interrupt

class 6-5
invalid function, description 6-6
invalid storage address, description 6-5
IPL problems

L

detecting stop codes 3-3
disk/diskette device 3-1
find initialization module in use during 3-4
initialization failures

displaying INITTASK 3-6, 3-7
no messages on $SYSLOG 3-10
register contents 3-8

isolating terminal control blocks 3-5
reloading supervisor 3-2
rewriting IPL text 3-2
tailored supervisor 3-3
terminal errors 3-3
what to check first 3-1

level status block (LSB)
analyzing an IPL problem 3-8
interpreting a program check message 6-2
interpreting a storage dump 7-2
layout in TCB C-l
software trace table 8-4

level status register (LSR) 7-3
levels in EDX, specific functions of C-2
link, remote support B-1
load light, symptom at IPL 3-1
loader QCB, example C-7
log data set

change default data set size 9-3
clear 9-3
contents 9-8
default, EDXLOGDS 9-1
list on printer 9-5
list on terminal 9-5

logging errors ($LOG) 9-1
loops, analyzing run

caused by device interrupts 4-20
caused by stack overflow 4-20
how to identify the program

using $D operator command 4-3
using the programmer console 4-5

loops, analyzing run (continued)
locating the loop in the compiler listing 4-12
obtain stop code 4-1
some common causes 4-11
using $DEBUG

examining storage locations 4-13
examining unmapped storage 4-14
sample trace output 4-10
setting breakpoints 4-16
tracing the loop addresses 4-9

LSB (level status block)
analyzing an IPL problem 3-8
interpreting a program check message 6-2
interpreting a storage dump 7-2
software trace table 8-4

M
machine/program check log buffer C-5
main storage

displaying A-4
storing data into A-5

mapped storage
segmentation register use 7-6

messages, interpreting exception
$$EDXIT program check 6-7
application program check 6-2
system program check 6-2

Mode switch setting C-5
module descriptions

NOLOGLD 9-1

N
NEXTERM, stop on address 3-5
NOLOGLD module, affect on error logging 9-1
nucleus, reloading 3-2

o
odd-byte boundary, analyzing 6-11
operator commands

ERAP - print log data set 9-5

p
partition

size, finding 7-6
partitions 17 to 32 C-4
patch

data in unmapped storage 4-18, 6-19
performance volumes C-8
power/thermal warning, description 6-7
print

an error log 9-5
privilege violate, description 6-6
problem determination

definition 1-1
how to start 1-1

Index X-3

problem determination (continued)
IBM support center assistance B-1
identifying problem type 2-1
reading a dump 7-1, C-1
using $VIRLOG 2-1
using a remote support link B-1

processor control check, description 6-7
processor status word (PSW)

bit descriptions 6-5
auto IPL indicator 6-7
Extended Address Mode 6-6
floating-point exception 6-6
I/O check 6-7
invalid function 6-6
invalid storage addres,§ 6-5
power /therptal warning 6-7
privilege violate 6-6
processor control check 6-7
protect check 6-6
sequence indicator check 6-7
specification check 6-5
stack exception 6-6
storage parity 6-7
translator enabled indicator 6-7

converting to bits 6-4
how to interpret 6-4

program check
analyzing 6-1
analyzing system 6-21
bit settings, interpreting PSW 6-4
displaying log records of 9-5
examine unmapped storage for cause of 6-15
exception types 6-4
failing instruction 6-3
how to analyze application 6-11
locating failing instruction 7-3
logging occurrences 9-1
message description 6-2
message types

$$EDXIT error exit 6-7
application check 6-2
system check 6-2

printing log records of 9-5
processor status word, analysis 6-4
program check, determining a C-IO
register contents at failure 6-3, 7-3
storing

in disk data set 2-1
on a $SYSLOG terminal 2-1
with $VIRLOG 2-1
with Communications Facility log 2-1

using $DEBUG to analyze 6-13
programmer console

displaying main storage A-4
displaying registers A-6
instruction step A-8
reading indicator lights A-2
stop on address A-7

X -4 SC34-0941

programmer console (continued)
stop on error A -7
storing data into main storage A-5
storing data into registers A-6
use to identify a looping program 4-5
use to identify IPL failure 3-7

protect check, description 6-6
PSW (processor status word)

Q

bit descriptions 6-5
auto IPL indicator 6-7
Extended Address Mode 6-6
floating-point exception 6-6
I/O check 6-7
invalid function 6-6
invalid storage address 6-5
power/thermal warning 6-7
privilege violate 6-6
processor control check 6-7
protect check 6-6
sequence indicator check 6-7
specification check 6-5
stack exception 6-6
storage parity 6-7
translator enabled indicator 6-7

converting to bits 6-4
interpreting 6-4

queue control block

R

analyzing
causes of wait state 5-5
defined in $SYSCOM 5-4
defined in program 5-3
task ownership 5-4

recording
I/O errors 9-1
program checks 9-1

registers
contents

in a storage dump 7-3
program check 6-3

displaying A-6
floating-point 7-5
INITT ASK during IPL failure 3-8
level status block 7-2
segmentation 7-6
shown in software trace table 8-4
storing data into A-6

Remote Support Link
authorizing the link B-2
customer responsibilities B-l
description B-1
disconnecting the line B-4
hardware requirements B-2

o

o

o

c

o

o

run loops, analyzing
caused by device interrupts 4-20
caused by stack overflow 4-20
how to identify the program

using $D operator command 4-3
using the programmer console 4-5

locating the loop in the compiler listing 4-12
obtain stop code 4-1
some common causes 4-11
using $DEBUG

examining storage locations 4-13
examining unmapped storage 4-14
sample trace output 4-10
setting breakpoints 4-16
tracing the loop addresses 4-9

run loops, stack overflow 4-20

s
segmentation registers

mapping of 7-6
sequence indicator error, description 6-7
set

breakpoints and trace ranges 4-10, 6-12
software trace table

control table format 8-3
displaying 8-1
exception entry format 8-4

specification check, description 6-5
stack exception, description 6-6
stand-alone dump

BSC information 7-16
disk/diskette information 7-13
EXIO information 7-16
floating-point registers 7-5
hardware level and registers 7-2
interpreting 7 -1, C-lO
level table 7-12
loader QCB 7 -12
partition contents 7-17
segmentation registers 7-6
storage map 7 -10
tape information 7-13
TCB ready chain 7-12
terminal information 7-13
timer information 7-16
unmapped storage contents 7-18

standard program check message, formats 6-2
stop

on error A-7
stop codes

obtaining for IPL failure 3-3
obtaining for run loop error 4-1

storage
displaying

on programmer console A-4
locate unmapped 7-18
mapping 7-6

storage (continued)
parity error 6-7

storage dump
how to interpret 7-1, C-l
use to

analyze a program check 7-30
analyze a run loop 7-34
analyze a wait state 7-24

storage map, example C-6
storage map, IPL

find last usable address in partition 6-17
supervisor

IPL problems with 3-3
reloading 3-2

SVCFLAGS, example C-6
SVCI buffer C-5
SVCI interrupt table C-5
SYSPARMS C-5
system

program check, analyzing 6.:.21
program check, logging 9-1

system definitions ($EDXDEF)
Word 0 C-5
Word 1 C-5
Word 2 C-5
Word 3 C-5

system unit

T
task control block (TCB) C-l

INITTASK during IPL 3-6
ready chain in dump 7-12

task error exit routine
interpreting output of $$EDXIT 6-7

TCB C-I
TCB ready chain C-7
terminal

errors at IPL 3-3
information in dump 7-13
used for remote support B-3

terminal control block (CCB)
CCB generation C-l
displaying during IPL 3-5
enqueuing task, determining 5-6
task partition, determining 5-6

trace
exceptions 8-1
loop addresses 4-9
program check addresses 6-12

trace table, CIRCBUFF software
control table format 8-3
displaying 8-1
exception entry format 8-4

translator enabled, description 6-7
types of problems, determining 2-1

Index X-5

U
unmapped storage

V

data in storage dump 7-18
examine using $DEBUG 4-14,6-15
find areas in use 7 -19
modify data in 4-18, 6-19

volume descriptor entry (VDE) C-8
Volume Table of Contents (VTOC). C-8

w
WAIT instruction
wait state

analyzing
ENQ instruction 5-2
ENQT instruction 5-6
finding the waiting instruction 5-1
some common causes 5-5, 5-8
using $DEBUG 5-1
WAIT instruction 5-7

cause of 5-7
sample program 7-28
using a dump to analyze

finding the TCB address 7-24
locating Rl in the TCB 7-26
locating the error in the compiler listing 7-27
multiple tasks active 7-26

X -6 SC34-0941

o

o

o

--- -----
~ ::f"f~ Series/1 Event Driven Executive

o Publications Order Form

o

o

Instructions:

1. Complete the order form, supplying all of the

requ)sted information. (Please print or type.)

2. If you are placing the order by phone, dial

1-800-1 BM -2468.

3. If you are mailing your order, fold the

postage-paid order form as indicated, seal

with tape, and mail.

Ship to:

Name:

Address:

City:

State: Zip:

Bill to:

Customer number:

Name:

Address:

City:

State: Zip:

Your Purchase Order No.:

Phone: (

Signature:

Date:

Order:

.:scription:

Basic Books:

Advanced Program-to-Program Communica­
tion Programming Guide and Reference

Communications Guide

Installation and System Generation Guide

Language Reference

Library Guide and Common Index

Messages and Codes

Operator Commands and Utilities
Reference

Problem Determination Guide

Additional books and reference aids:

Event Driven Executive Language
Programming Guide

Operation Guide

Language Reference Summary

Operator Commands and Utilities
Reference Summary

Conversion Charts Card

Binders:

Easel binder with 1 inch rings

Easel binder with 2 inch rings

Standard binder with 1 inch rings

Standard binder with 1 1/2 inch rings

Standard binder with 2 inch rings

Diskette binder (Holds eight 8-inch diskettes.)

Order
number Oty.

SC34-0935 __ _

SC34-0936 __ _

SC34-0937 __ _

SC34-0938 __ _

SC34-0939 __ _

SC34-0940 __ _

SC34-0941

SC34-0943 __ _

SC34-0944 ---

SX34-0199 __ _

SX34-0198 __ _

SX34-0163 __ _

SR30-0324 __ _

SR30-0327 __ _

SR30-0329 __ _

SR30-0330 __ _

SR30-0331 __ _

S830-0479 __ _

Publications Order Form

J
"')

~
"T1
0
'i:i
l:>
'0
:l
\0

C.
:l
(b

I

I
I
I
I
I
I

Fold and tape Please Do Not Staple Fold and tape I ..

Fold and tape

--------- - ---- ---- - ---- -- -----------,-(B)

III

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM Corporation
1 Culver Road
Dayton, New Jersey 08810

Please Do Not Staple

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

0

o

o

o

..;
c:
Q)

E
0.
':;
0"
Q)

C')
c:

'';:;

0
VI

ctI

E
"0
Q)
+-'
ctI

E
0
+-' a
~
VI

E
Q)

::c
0 c.
Q)
VI
::l
ctI
U
c:
ctI
U
en
Q)

c.
ctI
+-'
en

Q)
+-'
0

Z

o

E
:....
0

'+-

.~
~
+-'

ro
Q)
VI

0
+-'
Q)

0.
ctI
+-'

"0
Q)

E
E
::l
C')

:....
Q)

~
+-'
0

0
Q)

>
'';:;
'c;;
c:
Q)
VI

e
::l
VI
VI
Q)

C.
Q)
VI
::l
Q)
VI
ctI
Q)

a:

IBM Series/1 Event Driven Executive
Problem Determination Guide

Order No. SC34-0941-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understan'ding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.
Your comments will be sent to the author's department for whatever review and action, if any, are deemed'
appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or'you may mail directly to the address
in the Edition Notice on the back of the title page.)

SC34-0941 -0
Printed in U.S.A.

Reader's Comment Form

Fold and tape

Fold and tape

--------- - ------- - ---- - - -----------_.-
®

Please Do Not Staple

11111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Information Development, Department 28B
5414 (Internal Zip)

P.O. Box 1328
Boca Raton, Florida 33429-9960

11111'1111111 •• 1 •• 1.11.1111.1 •• 1.1 ••• 11 •• 1111 •• 1.1.1

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

I
()

0 s.
~
'Tl
0
a.

~
0
::l

LCl

!:'.
::l
(l)

I

I
I
I
I
I
I
I

o

o

--------- - ------- - ---- -- ----------_ .-
®

Printed in U.S.A.

Program Number
5719-XS6

5C34-0941-0

File Number
S1 -37

