SC34-0639-0

Event Driven Executive
Problem Determination Guide

Series/1

Version 5.0
r) @] h (-)
Library Guide and Installation and Operator Commands
Common Index System Generation and
Guide Utilities Reference
SC34-0645 SC34-0646 SC34-0644
P) & i,
(" %, r Pl ™) r o
Language Communications Messages and
Reference Guide Codes
SC34-0643 $C34-0638 $C34-0636
. y) @&)
s - R 4)
Operation Guide Event Driven Reference
Language Cards
Programming Guide
SC34-0642 $C34-0637 SBOF-1625
{; By € =y =1y
= N\ 3 R 4 ™=
Problem Customization Internal
Determination Guide Design
Guide
$C34-0639 SC34-0635 LY34-0354 J
, T J e J &

Series/1

SC34-0639-0

Event Driven Executive
Problem Determination Guide

Version 5.0

N

' \
Problem
Determination
Guide
$C34-0639

L _

First Edition (December 1984)
Use this publication only for the purpose stated in the Preface.

Changes are made periodically to the information herein; any such changes will be
reported in subsequent revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products
{machines and programs), programming, or services that are not announced in your
country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or the IBM branch office
serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form
for readers’ comments is provided at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, Information
Development, 3406, P. O. Box 1328, Boca Raton, Florida 33432. IBM may use or
distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corpéfation 1984

-

Summary of Changes for Version 5.0

The following additions and changes have been made to this document:

¢ A new section has been added to Chapter 4, Analyzing and Isolating Run Loops, which shows
you how to examine an unmapped storage area in your program for the cause of a run loop.

« A new section has been added to Chapter 6, Analyzing and Isolating a Program Check, which
shows you how to examine an unmapped storage area in your program for the cause of a
system or application program check.

e Chapter 7, Analyzing a Failure Using a Storage Dump has been updated to include a

description of how to interpret the unmapped storage information provided in the storage
dump.

o Chapter 9, Recording Device 1/0 Errors and Program Check Information includes a

description of how to record and print the contents of any program check messages that
may occur on your system.

« A new appendix (Appendix B) has been added to the book which describes the hardware
requirements and procedures for using the Remote Support Link feature of the Event
Driven Executive. This feature enables an IBM support center representative to get direct
access to your Series/ 1 system through a remote terminal.

Summary of Changes for Version 5.0 iii

iv

SC34-0639

TN

(N

C

About This Book

This book is a guide to assist you in determining the causes of problems you encounter while
using the system. It explains how to use many of the diagnostic tools available to help identify
the problem. Use this book when the Messages and Codes cannot point you to the source of the
problem or the corrective action to take.

i
i

Audience

This book is intended for anyone who uses the Series/1 and encounters a hardware or software

problem. The Operation Guide describes how you can recognize symptoms of the problems
discussed in this book.

How This Book Is Organized

This book contains 9 chapters and 3 appendixes:

e Chapter 1. Some Things You Should Know About Problem Determination overviews the
process of problem determination.

e Chapter 2. Determining the Problem Type presents some common problem symptoms that can
help you determine the type of problem you encounter.

o Chapter 3. Analyzing and Isolating an IPL Problem describes some procedures that can help
identify the cause of an IPL failure.

About This Book V

About This Book
How This Book Is Organized (continued) @

o Chapter 4. Analyzing and Isolating Run Loops explains how to pinpoint the cause of run loop
in an application program.

e Chapter 5. Analyzing and Isolating a Wait State describes how to determine the cause of a
wait state during normal system operation.

e Chapter 6. Analyzing and Isolating a Program Check discusses how to isolate the cause of a
system or application program check.

o Chapter 7. Analyzing a Failure Using a Storage Dump describes how to to read a stand-alone
or $TRAP storage dump to isolate failures.

e Chapter 8. Tracing Exception Information explains how you can isolate the cause of
exceptions by analyzing the software trace table CIRCBUFF.

e Chapter 9. Recording Device I/0 Errors and Program Check Information discusses the use of
the $LOG utility to record device I/O errors and program check messages.

o Appendix A. How to Use the Programmer Console describes the functions of the optional
Series/ 1 programmer console and how you can use it during problem analysis.

e Appendix B. Allowing IBM Access to Your System describes the hardware requirements and
procedures for using the Remote Support Link feature of the Event Driven Executive. This
feature enables an IBM support center representative to get direct access to your Series/1 £
system through a remote terminal. k o

« Appendix C. Conversion Table contains a conversion table for hexadecimal, binary, EBDCIC,
and ASCII equivalents of decimal values.

Aids in Using This Book

Several aids are provided to assist you in using this book:

« A Glossary that defines terms and acronyms used in this book and in other EDX library
publications.

« An Index of topics covered in this book.

A Guide to the Library

Refer to the Library Guide and Common Index for information on the design and structure of the
Event Driven Executive library and for a bibliography of related publications.

O

vi SC34-0639

0} Contacting IBM about Problems

You can inform IBM of any inaccuracies or problems you find with this book by completing and
mailing the Reader’s Comment Form provided in the back of the book.

If you have a problem with the Series/1 Event Driven Executive services, you should fill out an

authorized program analysis report (APAR) as described in the IBM Series/1 Software Service
Guide, GC34-0099.

About This Book Vil

viii

SC34-0639

Contents

Chapter 1. Some Things You Should Know About Problem Determination PD-1

Chapter 2. Determining the Problem Type PD-3

Some Hints to Determine the Possible Problem Type PD-3
Can You Operate the System After Pressing the Load Button? PD-3
Is the Run Light On and Solidly Lit? PD-4
Is the System or a Program Idle While You Expect Activity? PD-4
Did the System Issue a Program Check Message? PD-4

Chapter 3. Analyzing and Isolating an IPL Problem PD-5
What You Should Check First PD-5
How to Recognize a Problem with the IPL Device PD-6
How to Correct the IPL Text PD-7
How to Reload the Supervisor PD-7
Determining the Failure in a Tailored Supervisor PD-8
Detecting an IPL Stop Code Error PD-9
Isolating a Failing Terminal Using the Terminal Control Block PD-10
Analyzing the INITTASK Task Control Block PD-11

Chapter 4. Analyzing and Isolating Run Loops PD-17
How to Identify a Program in a Run Loop PD-18
Using the Programmer Console to Identify a Looping Program PD-18
Using $C to Identify a Looping Program PD-19
Using $DEBUG to Isolate a Run Loop PD-20
Determining the Starting and Ending Points of the Loop PD-21
Some Common Causes of Run Loops PD-23
Using the Compiler Listing to Locate the Loop PD-23
Examining an Unmapped Storage Area for the Cause of a Loop PD-26
How to Detect Loops Caused by Device Interrupts PD-32

Contents

ix

Contents

X SC34-0639

Chapter 5. Analyzing and Isolating a Wait State PD-33
How to Find the Address of the Waiting Instruction Using $DEBUG PD-34
Analyzing the Instruction that Caused the Wait State PD-35

Analyzing an ENQ Instruction PD-35

Common Causes of a Program Wait Using QCBs PD-38

Analyzing an ENQT Instruction PD-39

Analyzing a WAIT Instruction PD-40

Common Causes of a Program Wait Using ECBs PD-41

Other Possible Causes of a Wait State PD-42

Chapter 6. Analyzing and Isolating a Program Check PD-43
How to Interpret the Program Check Message PD-44

Interpreting the Standard Program Check Message PD-44

How to Interpret the Processor Status Word PD-47

Interpreting the Processor Status Word Bits PD-47

Interpreting the Program Check Message from $$EDXIT PD-50
How to Analyze an Application Program Check PD-54

Examining an Unmapped Storage Area for the Cause of a Program Check PD-60
Some Common Causes of Application Program Checks PD-66
How to Analyze a System Program Check PD-67

Analyzing the Program Causing the System Program Check PD-67

Chapter 7. Analyzing a Failure Using a Storage Dump PD-71
Interpreting the Dump PD-72
Hardware Level and Register Contents PD-72
Floating-Point Registers and Exception Information PD-76
Segmentation Registers PD-78
Storage Map PD-80
Level Table and TCB Ready Chain PD-82
Terminal Device Information PD-83
Disk, Diskette, and Tape Device Information PD-84
EXIO, BSC, and Timer Information PD-86
Storage Partition Information PD-87
Unmapped Storage Information PD-88
Analyzing a Wait State PD-94
Analyzing a Program Check PD-100
Analyzing a Run Loop PD-105

Chapter 8. Tracing Exception Information PD-107
Displaying the Software Trace Tabie PD-108
Software Trace Table Format PD-110
Control Information Format PD-110
Exception Entry Format PD-112
Finding the Program Load Point Address PD-115

Chapter 9. Recording Device 1/0 Errors and Program Check Information PD-117
Allocating the Log Data Set PD-118
Starting and Controlling Error Logging PD-118

Printing or Displaying the Log Information PD-120
Interpreting the Printed Output PD-122

Appendix A. How to Use the Programmer Console PD-127
Reading the Console Indicator Lights PD-128

Displaying Main Storage Locations PD-130

Storing Data into Main Storage PD-131

Displaying Register Contents PD-132

Storing Data into Registers PD-132

Stopping at a Storage Address PD-133

Stopping When an Error Occurs PD-133

Executing One Instruction at a Time PD-134

Appendix B. Allowing IBM Access to Your System PD-135
Hardware Requirements PD-136

Authorizing the Link PD-136

Disconnecting the Link PD-138

Appendix C. Conversion Table PD-139

Glossary of Terms and Abbreviations PD-145

Index PD-155

Contents

xi

xii

SC34-0639

Figures

. Sample INITTASK Register Contents PD-15
. Sample Program Compiler Listing PD-20

Sample Trace Addresses from $DEBUG PD-22

. Sample Program Compiler Listing PD-27

Sample Listing from $DEBUG PD-30
Sample Processor Status Word Bit Settings PD-47

. Processor Status Word Bit Assignments PD-48

. Sample Listing from $DEBUG PD-64

. Hardware Level and Register Contents PD-72

. Floating-point Registers and Exception Information PD-76
. Segmentation Registers of a Four-partition System PD-78
. Segmentation Registers with Supervisor Mapped Across Partitions PD-79
. Storage Map PD-80

. Level Table and Task Ready Chain PD-82

. Terminal Device Information PD-83

. Disk, Diskette, and Tape Device Information PD-84

. EXIO, BSC, and Timer Device Information PD-86

. Sample Contents of a Partition PD-87

. Unmapped Storage Pointers PD-88

. Sample Storage Control Block Listing PD-90

. Sample Segmentation Register Values PD-93

. Sample Storage Map for a Wait State PD-95

. Sample Storage Dump for a Wait State PD-97

. Compiler Listing of Wait State Program PD-98

. Register Contents from Program Check PD-100

. Storage Map and Level Table for Program Check PD-101
. Compiler Listing of Program Check Program PD-103

. Sample Software Trace Table Entries PD-109

. Control Information Example PD-110

. Example of Allocating a Log Data Set PD-118

. Example of Starting Error Logging PD-119

. Example of Printing the Log Data Set PD-121

. Example of Log Entries for I/O devices PD-122

. Example of Program Check Log Entries PD-125

. Indicator Lights — Example 1 PD-128

. Indicator Lights — Example 2 PD-128

Figures Xiii

Figures

Xiv SC34-0639

37. Indicator Lights — Example 3 PD-129

»

®

Chapter 1. Some Things You Should Know
About Problem Determination

Problem determination involves analyzing a software or hardware error. The system can
indicate in various ways that a problem exists. The two most common ways are by displaying
messages on a terminal or by returning a return code to your application program. By using the
Messages and Codes manual before you use this book, you may be able to determine the type of
problem you have and the corrective action to take. If, however, you cannot determine the type
of problem you have or how to correct it, use this book.

This book can help you isolate the cause of an error and indicate what actions you need to take
to correct the error.

The cause of an error may not always be immediately apparent. An error may occur in an
IBM-supplied software component, a hardware unit, or in an application program. A software
component refers to programs or program modules such as $EDXASM, $S1ASM, $EDXLINK,
and the rest of the software you install on your Series/1. A hardware unit refers to a particular
device attached to your Series/1. Application programs are programs you write.

Some problems you encounter may require you to place a service call. However, by using this
book before you place a call for service:

« You might be able to correct the problem and continue operations.

* You might be able to circumvent the problem while you arrange for servicing.

Chapter 1. Some Things You Should Know About Problem Determination ~ PD-1

Some Things You Should Know About Problem

Determination O

PD-2

SC34-0639

* You may find that the problem is caused by equipment or programming other than that
supplied by IBM.

» The information you gather can reduce the time it takes to correct the problem if you do call
« for service.

EDX provides various aids, such as utilities and operator commands, that help you to pinpoint
the source of a problem. The programmer console, an optional Series/1 hardware feature,
enables you to perform more extensive analysis.

Some of the topics presented in this book show the use of the programmer console in analyzing
problems. For more information on using this feature, see Appendix A, “How to Use the
Programmer Console” on page PD-127.

To start the problem investigation, turn to Chapter 2, “Determining the Problem Type”’ on page
PD-3.

£ *\;
N

C

Chapter 2. Detemining the Problem Type

Before you begin analyzing a problem, you must determine the type of problem you have. Some
problem types you encounter may be very apparent while others may not be so apparent. The
following section presents some problem indicators and symptoms to help you determine the
problem type.

Some Hints to Determine the Possible Problem Type

To help you determine your problem type, review the following problem indicators and
symptoms. After reviewing these items and finding the indicator or symptom that best describes
your problem, turn to the chapter indicated. The chapter you are referred to will help you to
further analyze and isolate the problem.

Can You Operate the System After Pressing the Load Button?

When you press the Load button on your Series/1, the system performs an initial program load
(IPL). When the IPL process ends, the system is ready for use. If you cannot use the system
after attempting an IPL, see Chapter 3, “Analyzing and Isolating an IPL Problem” on page
PD-5.

Chapter 2. Determining the Problem Type =~ PD-3

Determining the Problem Type

Some Hints to Determine the Possible Problem Type (continued) {)

Is the Run Light On and Solidly Lit?

When the Series/ 1 performs an operation, the Run light is on. Typically, the Run light flickers
on and off during the operation. However, if you observe that the Run light remains on with a
steady glow, the system or your program may be in a loop. If this is your problem symptom,
Chapter 4, “Analyzing and Isolating Run Loops” on page PD-17 will help you isolate this
problem type.

Is the System or a Program Idle While You Expect Activity?

When the Series/ 1 is not performing any operation or servicing an interrupt, the Wait light is on.
The Wait light indicates the system is inactive. If, however, you notice the Wait light on solidly
while programs should be active, the system or a program is probably in a wait state. Another
symptom indicating a wait state is that you do not receive the “greater than” symbol (>) after
you press the attention key on your terminal. If your system or program has these symptoms,
see Chapter 5, “Analyzing and Isolating a Wait State” on page PD-33.

Did the System Issue a Program Check Message?

PD-4

SC34-0639

When the system encounters an abnormal condition, it issues a program check message. Two

kinds of program checks can occur: a system program check or an application program check.

The system displays the program check message on the $SYSLOG device. The system also .
records the program check message in a log data set if $LOG is active. N

If you observe a program check message, Chapter 6, “Analyzing and Isolating a Program
Check” on page PD-43 can help you isolate the problem.

Chapter 3. Analyzing and Isolating an IPL
Problem

If your system fails to IPL correctly, there are a number of possible causes. This chapter

presents some problem symptoms and procedures that can help you identify the failing area and
O provide help in solving the problem.

What You Should Check First

Before you begin troubleshooting the problem, review the items in the following list. By
ensuring that these items are correct, you may be able to pinpoint the problem immediately:

o Is the power switch in the ON position for all devices?

« Is the IPL Source switch in the correct position for the device from which you are trying to
IPL?

« For diskette IPL, is the IPLable diskette inserted correctly?

« For diskette IPL, is the door on the diskette device closed?

« If this is a new installation (EDX is not installed) and you are trying to IPL the starter
system, verify with your service representative that the devices are at the addresses

supported in the starter system. Refer to the Program Information Department (PID)
directory or the Installation and System Generation Guide for the device addresses.

Chapter 3. Analyzing and Isolating an IPL Problem PD-5

Analyzing and Isolating an IPL Problem

What You Should Check First (continued)

« If EDX is already installed and the supervisor previously IPLed, does a backup supervisor (or
starter system) IPL from the alternate IPL device? If the alternate device IPLs, go to the
section “How to Recognize a Problem with the IPL Device.”

o If the starter system IPLs but your tailored supervisor does not IPL, go to the section
“Determining the Failure in a Tailored Supervisor” on page PD-8.

If the previous items do not point out the problem, the problem may lie in the IPL device, IPL

text, the supervisor, or other attached devices. The following sections describe how to isolate
problems in these three areas.

How to Recognize a Problem with the IPL Device

PD-6

SC34-0639

If the Load light remains on and you cannot IPL from the primary and the alternate IPL device
and you have ensured that all the items in the section “What You Should Check First” on page
PD-5 are correct, call your service representative for corrective action. This symptom indicates
that the hardware could not read the IPL text (bootstrap program) from the IPL device. If you
have a programmer console, you may also notice that the console lights indicate either X‘EQ’ or
X‘ES’. The value X‘E0Q’ indicates that there is a hardware problem with the IPL device. The
value X‘ES’ may indicate either a hardware or software problem.

If you can IPL from one IPL device, the following procedures can help you determine if the
failure is due to:

« No IPL text written when the disk or diskette was initialized

+« Defective IPL text

.

IPL text points to an invalid supervisor

Hardware problem on that IPL device.

0 How to Recognize a Problem with the IPL Device (continued)

How to Correct the IPL Text

Use the following procedure to correct the IPL text:

1. Set the IPL Source switch for an IPL from the device from which you can IPL.
2. Press the Load button to IPL the system.

3. Load $INITDSK and rewrite the IPL text (II command) to the failing IPL device.
4. Set the IPL Source switch to IPL from the failing IPL device.

B. Press the Load button to IPL the system.

If this procedure does not correct the IPL problem, the problem may be with the supervisor on
the failing IPL device or it may be a hardware problem. By reloading the supervisor, you may
correct the problem. How to do this is described next.

How to Reload the Supervisor
0 Use the following procedure to reload the supervisor:

1. Set the IPL Source switch for an IPL from the device from which you can IPL.

2. Press the Load button to IPL the system.

3. Load $COPYUT1 and copy (CM command) the IPLable supervisor from the current IPL

device to the failing IPL device. Copy also SLOADER and any initialization modules you
require.

4. 1.0ad $INITDSK and rewrite the IPL text (Il command) to point to the supervisor you
copied to the failing IPL device.

B. Set the IPL Source switch to IPL from the failing IPL device.

6. Press the Load button to IPL the system.

If this procedure does not correct the IPL problem, you have a hardware problem with that IPL
device. Call your service representative for corrective action.

Chapter 3. Analyzing and Isolating an IPL Problem PD-7

Analyzing and Isolating an IPL Problem

Determining the Failure in a Tailored Supervisor

Review the following items before you begin analyzing the failure:

« Did you receive a -1 completion code (successful) from the system generation assembly and
link-edit?

« Did you include all the modules you need (on the INCLUDE statements) to support the
attached devices?

« Is $EDXNUC the first seven characters of the $XPSLINK output?

« Does this tailored supervisor fail to IPL, although it did IPL previously? If it did IPL
previously, go to the section ‘“How to Recognize a Problem with the IPL Device” on page
PD-6.

« If this tailored supervisor never IPLed, the following sections may assist you in isolating the
failure. In order to use this information, however, you must have a programmer console or
be able to use the $D operator command (in partition 1) after the IPL failure.

If you do not have a programmer console but can use the $D operator command (in partition 1)

after the IPL failure, go to the section ‘“Analyzing the INITTASK Task Control Block” on page

PD-11.

If you have a programmer console, begin with the section ‘“Detecting an IPL Stop Code Error”
on page PD-9.

If you do not have a programmer console -and cannot use $D after the failure, do the following:
1. IPL the starter system.
2. Load $IOTEST and verify all hardware configured and their addresses (LD command).

3. Review the system generation listing and ensure that all devices are defined correctly and
that all modules required to support those devices are included.

PD-8 SC34-0639

w Determining the Failure in a Tailored Supervisor (continued)

Detecting an IPL Stop Code Error

If the system encounters an error during terminal initialization or it encounters an error within
the cross-partition supervisor you are trying to IPL, the error could cause the system to enter a
run loop or a wait state. For example, the error could be caused by a defective attachment card
or perhaps a missing random access memory load module. When such errors exist, the system
issues a stop code. The stop code can help you identify which area is failing.

This section explains how to determine if the failure is due to a stop code error. You will need a
programmer console to perform this step.

To determine if the IPL failed because of a stop code, follow these procedures:
1. Set the IPL Source switch to point to the device from which you will IPL.
Set the Mode switch to Diagnostic mode position.

If the IPL is from diskette, insert the IPL diskette and close the door on the diskette device.

P WD

Press the Load button.

0 If the system encounters a stop code condition, the processor will stop. The Stop light also
comes on.

B. Press the Op Reg button on the programmer console.
After pressing the Op Reg button, the stop code is displayed in the indicator lights. The stop
code is in the form X‘64nn’. The nn portion indicates the error condition. Refer to the

Messages and Codes manual for an explanation of the stop code and the corrective action.

The next section presents another method you can use to determine if a terminal is the cause of
the failure.

Chapter 3. Analyzing and Isolating an IPL Problem PD-9

Analyzing and Isolating an IPL Problem

Determining the Failure in a Tailored Supervisor (continued)

Isolating a Failing Terminal Using the Terminal Control Block

PD-10

SC34-0639

This procedure enables you to determine if the system fails to initialize a terminal. The terminal
control block (CCB) may point to the failing terminal. To help you detect if a terminal is
causing the problem, you need the system generation link map listing for your supervisor. Look
in the link map and find the address of the entry NEXTERM in module TERMINIT.

Using the programmer console, do the following:

1.

2.
3.
4.
5.

Press the Reset key.

Press the Stop On Address key.
Enter the address of NEXTERM.
Press the Store key.

IPL the system. Each time the processor stops, the terminal whose terminal control block
(CCB) address is in register 3 (R3) has been successfully initialized.

If the processor does not stop, the failure occurred prior to terminal initialization. If this is
the case, go to the section ‘“Analyzing the INITTASK Task Control Block’ on page PD-11.

. When the processor stops, press R3 on the programmer console to determine which terminal

was initialized. The address shown in R3 will match a CCB address in the section
$EDXDEEF of the link map. The name of the terminal also appears beside the address.

If R3 does not contain a CCB address and you have overlay support, press Start. When the
processor stops, press R3 again. Repeat this step until R3 contains a CCB address.

. Press Start after checking off the CCB address in your link map. The system initializes each

terminal in the order the terminals are specified in $EDXDEFS data set during system
generation.

If the system then enters a run loop or a wait state, the terminal whose address follows the
last CCB that you checked off is probably the cause of the problem.

Ensure that all required initialization modules (if any) for that terminal were included during
system generation. Also check to see if that terminal is defined correctly on the
TERMINAL statement. If both the terminal and the support modules are defined correctly,
call your service representative for corrective action on that terminal or attachment.

O Determining the Failure in a Tailored Supervisor (continued)

9. If the system does not enter a run loop, go to step 6 on page PD-10 .

If you still cannot identify the cause of the IPL failure using the previous procedure, go to the
section “Analyzing the INITTASK Task Control Block.”

Analyzing the INITTASK Task Control Block

The technique discussed in this section requires you to examine the INITTASK task control
block. By examining this control block, you may be able to identify the cause of the IPL failure.
INITTASK is the label of the task control block (TCB) used by the system initialization
routines. The address of INITTASK (in module EDXSTART) is in the supervisor link map
from system generation.

If you have a programmer console, begin with the section “Storing the Address of INITTASK”
on page PD-12.

If, after the IPL failure has occurred, you can press the attention key, enter $D from a terminal
in partition 1, and receive a prompt for input, go to the section ‘“Displaying the INITTASK Task
Control Block with $D.”

Displaying the INITTASK Task Control Block with $D

0 Do the following when you receive the prompt ENTER ORIGIN: from $D:

1. Enter 0000.

The next prompt, ADDRESS,COUNT:, asks you for an address and the number of words you
want to display.

2. For ADDRESS, enter the address for INITTASK shown in the supervisor link map.

3. For COUNT, enter the value 14. This value represents the first 14 words in the INITTASK
TCB.

The system then displays the 14 words of information.
4. Record all the values displayed on the terminal.
B. ReplyN to the prompt ANOTHER DISPLAY?

6. Go to the section “Interpreting the Task Control Block Information” on page PD-13.

Chapter 3. Analyzing and Isolating an IPL Problem PD-11

Analyzing and Isolating an IPL Problem

Determining the Failure in a Tailored Supervisor (continued)

Storing the Address of INITTASK

After you locate the address of INITTASK in the supervisor link map, do the following at the
programmer console:

1. Press the Stop key.
2. Press the AKR key.
Enter X‘0’.
Press the Store key.

3.

4.

5. Press the SAR key.
6. Enter the address of INITTASK.
7.

Press the Store key.

The next step is to display the contents of the INITTASK task control block.

Displaying the INITTASK Task Control Block using the Programmer Console

PD-12

SC34-0639

By displaying the values contained in the INITTASK task control block, you may get a clue as to
what is causing the IPL failure.

The procedure discussed here requires you to display and record the first 14 words of
information in the INITTASK TCB.

To read the first word of the TCB:
1. Press the Main Storage key. The contents is displayed in the indicator lights.

2. Record the value displayed in the indicator lights.

Each time you press the Main Storage key, a new value is displayed.

3. Repeat the two previous steps 13 more times to obtain the remaining values in the TCB.

7N

w Detemining the Failure in a Tailored Supervisor (continued)

Interpreting the Task Control Block Information

The first
(ECB).

three words (words 0—2) of the INITTASK TCB make up the event control block
The next 11 words (words 3—13) contain the level status block (LSB) information.

This 14-word area appears as follows:

Word 0-2 ECB

Word 3
Word 4
Word 5
Word 6
Word 7
Word 8
Word 9
Word 10
Word 11
Word 12
Word 13

IAR
AKR
LSR
RO
R1
R2
R3
R4
R5
R6
R7

The information in the LSB (words 3—13 of the TCB) is what you use to identify the failure.
Since many of the system initialization modules are written in EDL, the register contents usually
indicate the following:

C

AKR

LSR

The instruction address register (IAR) contains the address of the last machine
instruction the system executed when the failure occurred.

The last 3-hexadecimal digits indicate in which address space operand 1, operand 2,
and the IAR reside. Bit O of the AKR is the equate operand spaces (EOS) bit. If bit 0
is set to 1, the address space key indicated for operand 2 is the address space key used
for operand 1 and operand 2.

The value of level status register (LSR). The bits, when set, indicate the following:

« Bits 0—4 — The status of arithmetic operations. Refer to the processor description
manual for the meanings of these bits.

« Bit 8 — Program is in supervisor state.

« Bit 9 — Priority level is in process.

o Bit 10 — Class interrupt tracing is active.

« Bit 11 — Interrupt processing is allowed.

Bits 5—7 and bits 12—15 are not used and are always zero.

Chapter 3. Analyzing and Isolating an IPL Problem PD-13

Analyzing and Isolating an IPL Problem

Detemining the Failure in a Tailored Supervisor (continued) Q(j)
RO Because the supervisor uses this register as a work register, the contents are usually not
significant.
R1 The address in storage of the last EDL instruction executed in the initialization module
when the failure occurred.
R2 The address in storage of the active task control block (TCB).
R3 The address in storage of EDL operand 1 of the failing instruction.
R4 The address in storage of EDL operand 2 (if applicable) of the failing instruction.
RS The EDL operation code of the failing instruction. The first byte contains flag bits
which indicate how operands are coded. For example, the flag bits indicate whether
the operand is in #1, #2, or is specified as a constant. The second byte is the operation
code of the EDL instruction.
R6 Because the supervisor uses this register as a work register, the contents are usually not
significant. However, you can determine if the system was emulating EDL code when
the failure occurred if R6 is twice the value shown in the second byte of R5. For
example, if the second byte of RS contained X‘32’ and the system was emulating EDL,
R6 would contain X‘0064°.
R7 The supervisor uses this register as a work register. However, in many cases, R7 may (N
contain the address of a branch and link instruction. The address may give you a clue “ S/

as to which module passed control to the address in the IAR.

After you record all the TCB values, compare the value you recorded for R2 against the address
of INITTASK. If these addresses do not match, you either have the wrong storage area or
wrong link map.

If R2 does contain the address of INITTASK, start looking at the addresses in the remaining
registers for a possible clue. Not all the registers may point to the failing area, but you should
check the addresses that the registers point to nevertheless. Comparing the addresses you
recorded and the addresses in the supervisor link map can help you identify the failure.

You can generally get an idea of which device is failing by the name or names of the supervisor
modules. For example, if several of the addresses you recorded point to disk routines, you could
assume that the IPL failure was related to a disk device.

PD-14 SC34-0639

w Determining the Failure in a Tailored Supervisor (continued)

The following discussion illustrates how the register contents can identify the problem area.

In this example, the IPL failure occurred because a disk device was defined incorrectly during
system generation. The registers in the INITTASK TCB, and what they pointed to in the link
map, are shown in Figure 1 . The registers that did not help identify the problem in this example
are shown as “not applicable”.

Register Address Module pointed to by register
I1AR X27FA’ TAPEO60 in DISKIO module
AKR X’0000 (not applicable)
LSR X‘88D0’ (not applicable)
RO X‘0000° (not applicable)
R1 X‘77BE’ DSKINIT1 in module DSKINIT2
R2 X’20DFE' INITTASK in module EDXSTART
R3 X709A’ DINITDS1 in module DISKINIT
R4 X‘06BA’ DMDDB in module $EDXDEF
R5 X'0000° (not applicable)

0 R6 X‘0000' (not applicable)
R7 X'27F6° TAPEO60 in DISKIO module

Figure 1. Sample INITTASK Register Contents

Notice that the names of the supervisor modules are all disk related. Since the address in R4
(X‘06BA’) in this example is within the module $EDXDEF, you can identify exactly which
device is causing the failure as follows:

1. Subtract the address of $EDXDEF from the address in R4. The link map showed that
$EDXDEEF is at address X‘052E’. Thus, the resulting address is X‘0188’.

2. Using the resulting address from step 1 and the assembly listing, look at the device
definition statement at that address and identify which device is defined. The device
defined on the definition statement is the cause of the IPL failure.

As was previously mentioned, the disk device was defined incorrectly. The disk was defined as a
4963-23. It should have been defined as a 4963-64.

Chapter 3. Analyzing and Isolating an IPL Problem PD-15

Analyzing and Isolating an IPL Problem

Determining the Failure in a Tailored Supervisor (continued) @

No IPL Completion Messages on $SYSLOG

If RS contains the value X‘0016’, the supervisor has issued a DETACH for INITTASK and has
completed the IPL process. (X‘0016’ is the EDL operation code for a DETACH.) However, if
no IPL completion messages were displayed on $SYSLOG, $SYSLOG may be the possible
cause of the problem.

Ensure that $SYSLOG is at the address you specified for $SYSLOG during system generation.

If RS is not X‘0016’ and R6 does not contain X‘002C’, look at the remaining TCB values and
see what supervisor modules they point to. The names of the modules may give you a clue as to
which device is failing.

PD-16 sC34-0639

Chapter 4. Analyzing and Isolating Run Loops

A loop is a sequence of instructions that the system executes a repeated number of times. Often
in application programs, you may have a need to intentionally code a loop to manipulate data
and then exit the loop based on some exit condition you establish. Occasionally, a system or
programming error can cause the system to execute a sequence of instructions endlessly. This
type of loop is not intended and when it occurs, you must isolate the cause. To isolate the cause
of the loop, however, you must be able to identify the program.

This chapter explains how you can identify which program is in a run loop when multiple
programs are active. In addition, this chapter shows you how to isolate a run loop using
$DEBUG. If you already know which program is in a run loop, refer to the section “Using
$DEBUG to Isolate a Run Loop” on page PD-20.

It is possible for the system to enter a run loop if a device generates more interrupts than the
system can handle. The section “How to Detect L.oops Caused by Device Interrupts” on page
PD-32 explains how you can determine if device interrupts are the cause of a system run loop.

When the error is such that it causes the system to enter a loop and you cannot issue any
operator commands from a terminal, you should take a stand-alone or $STRAP dump. Chapter
7, “Analyzing a Failure Using a Storage Dump” on page PD-71 explains how to determine
system failures of this sort. Refer to the Operation Guide for details on taking a stand-alone
dump. The Operator Commands and Utilities Reference explains how to invoke $TRAP.

Chapter 4. Analyzing and Isolating Run Loops PD-17

Analyzing and Isolating Run Loops

How to Identify a Program in a Run Loop (\
J

This section explains how to identify which program is in a run loop when multiple programs are
active. Two methods are discussed: using the programmer console and using the $C operator
command.

Using the Programmer Console to Identify a Looping Program

PD-18

SC34-0639

Several steps using the programmer console will require you to stop all activity on the system.
Before you begin, consider what effect stopping the system will have on any active programs, in
particular, any time-dependent programs.

To identify the looping program, do the following:

1.

A W N

Press the attention key and enter the $A ALL operator command.

. Write down the program names and their load point for each partition.
. Set the Mode switch on the console to the Diagnostic position.

. Look at the Level indicators for levels 0—3 on the programmer console. You may notice a

particular level indicator showing more activity (pulsing more) than the other Level

indicators. Further, you may notice a particular Level indicator pulsing at the same time the

Run light is on. Noticing these indicators can help you determine on which hardware level N
the looping program is running. N

Note: Programs generally run on level 2 (the default) and level 3. Programs with an
attention list task active (ATTNLIST instruction) run on level 1.

. Press Stop on the programmer console. If the Level indicator light is on for the level on

which you suspect the program is running (determined in step 4), go to step 6.

If the Level indicator light is not on, continue pressing Start and Stop until the light is on,
then go to step 6.

. Press R1; a value is displayed.

0 How to Identify a Program in a Run Loop (continued)

7. Record the hexadecimal address displayed in the lights.

To identify which program is at the address displayed for R1, you must determine the
partition number:

a. Press AKR.

b. Press the Level indicator for the level you determined in step 4 on page PD-18 .

C. Record the sum of the hexadecimal value displayed in lights 5—7. The number of the
partition in which the program is running is 1 plus the value shown in lights 5—-7. For
example, if the sum of the lights had the value X‘3’, the partition number is partition 4.

8. Do steps 5 through 7 several times. This sequence will give you a range of instruction
addresses. By comparing these addresses to the program load point addresses from step 1

on page PD-18, you can get an idea of which program might be looping and some of the
instruction addresses within the loop.

After you have identified which program is in a run loop, you must determine where in the

program the loop starts. The section “Using $DEBUG to Isolate a Run Loop” on page PD-20
explains how to do this.

C

Using $C to Identify a Looping Program

The purpose of using $C is to identify the looping program through a process of elimination.

Before you begin canceling programs, consider what impact that may have on any programs
running normally. Also, consider whether you can recreate the environment from when the loop
began. You may be able only to identify the failing program and not be able to analyze it until
that program fails again. It is possible that the loop could be caused by this particular mix of
running programs. When this is the case, canceling programs may make it harder to determine
the cause of the loop. Consider taking a stand-alone or $TRAP dump as an alternative to $C.

When you issue $C, first cancel the programs you suspect are least likely to cause the problem.
If the run loop condition still exists, continue canceling programs until the problem goes away.

The last program you canceled is probably the cause of the run loop.

After canceling the program that caused the run loop, run that program again in an attempt to
recreate the loop, then go to “Using $DEBUG to Isolate a Run Loop” on page PD-20.

If you cancel all but one program and the run loop condition still exists, go to the section “Using
$DEBUG to Isolate a Run Loop” on page PD-20.

Chapter 4. Analyzing and Isolating Run Loops PD-19

Analyzing and Isolating Run Loops
Using $DEBUG to Isolate a Run Loop @

This section explains how to isolate a run loop with $DEBUG. The $DEBUG utility is
described in detail in the Operator Commands and Utilities Reference. To show some techniques
of isolating a run loop with $DEBUG, a sample program, MYPROG, is presented. The sample
program contains a coding error which causes it to loop.

The sample program should display a prompt message requesting up to 40 characters of input
data. After receiving input, the program should insert a blank between each character and then
display the data. You end the program by entering a /*.

You will need the compiler listing for your program when using $DEBUG. Figure 2 shows the
compiler listing for the sample program MYPROG.

The first step in isolating a run loop is to determine the starting point and ending point of the
instructions causing the loop. How you do this using $DEBUG is discussed in the section
“Determining the Starting and Ending Points of the Loop’” on page PD-21.

LOC +0 +2 +4 +6 +8

PRINT NODATA
0000 0008 D7D9 D6C7 D9C1 D440 MYPROG PROGRAM LABEL1
0034 LABEL1 EQU *
0034 8026 1A1A C5D5 E3C5 D940 PRINTEXT 'ENTER UP TO 40 CHARACTERSA'
0052 8026 1C1C C5D5 E3C5 D940 PRINTEXT 'ENTER A ''/*'' TO END PROGRAMAQ'
0072 LABEL2 EQU *
0072 402F 00D6 0000 READTEXT INPUT, PROMPT=COND
0078 AOA2 00D6 615C 00DO IF (INPUT,EQ,C'/*') ,GOTO, LABEL4 N
0080 005A 0151 00D5 MOVE COUNT+1, INPUT-1, (1,BYTE) !)
0086 835C 0000 00D6 MOVEA #1, INPUT AT 4
008C 835C 0002 0100 MOVEA #2,OUTPUT
0092 LABEL3 EQU *
0092 065A 0000 0000 MOVE (0,42), (0,#1), (1,BYTE)
0098 8332 0002 0001 ADD $2,1
009E 025A 0000 0152 MOVE (0,#2) ,BLANK, (1,BYTE)
00A4 8332 0000 0001 ADD $1,1
OOAA 8332 0002 0001 ADD $#2,1
00BO AOA2 0150 0000 00C2 IF (COUNT, NE, O) , THEN
00OB8 8035 0150 0001 SUB COUNT, 1
OOBE 00AO 0092 GOTO LABEL3
ENDIF
00C2 0026 0100 PRINTEXT OUTPUT
00C6 902A 0001 0000 PRINTEXT SKIP=1
00CC 00AO 0072 GOTO LABEL2
00DO0 LABEL4 EQU *
00D0 0022 FFFF PROGSTOP
00D4 2828 4040 4040 4040 4040 INPUT TEXT LENGTH=40
OOFE 5050 4040 4040 4040 4040 OUTPUT TEXT LENGTH=80
0150 0000 COUNT DATA F'O'
0152 40 BLANK DATA c' !
0154 0000 0000 0000 0234 0000 ENDPROG
END

Figure 2. Sample Program Compiler Listing

O

PD-20 sC34-0639

O

Using $DEBUG to Isolate a Run Loop (continued)

Determining the Starting and Ending Points of the Loop

While the program is running and in a loop, do the following:

1. Load $DEBUG in any available partition.

Try to load $DEBUG from a terminal other than the terminal from which the looping
program was loaded. If you cannot use a different terminal, then load $DEBUG from the
terminal used by the looping program.

2. Enter the name of the looping program when $DEBUG asks you for a program name and
volume. Because the program is already loaded, you do not need to enter the volume name.

3. When $DEBUG asks for a partition, enter the number of the partition which contains the

looping program. If SDEBUG and the looping program are in the same partition, press the
enter key.

4. Reply N when asked if you want a new copy of the program loaded.

The following example shows what you would enter if you loaded $DEBUG in partition 2, with
the sample program MYPROG running in partition 1:

B. Press the attention key and enter AT to set the first breakpoint at the address of the
program’s entry point. The entry point is the address of the first operand of the
PROGRAM statement. Enter TASK when you are prompted for an option.

The entry point for the sample program MYPROG is at address X‘0034°. This sequence
follows:

6. Set the next breakpoint at the address of the last executable instruction. This will ensure
that all instructions within the loop are traced by $DEBUG.

The last executable instruction for MYPROG is the PROGSTOP at address X‘00D0O’.

Chapter 4. Analyzing and Isolating Run Loops PD-21

Analyzing and Isolating Run Loops

Using $DEBUG to Isolate a Run Loop (continued)

PD-22

SC34-0639

Because only the starting and ending points of the loop are needed at this point, the NOLIST
and NOSTOP options are selected:

7. Press the attention key and enter GO. $DEBUG displays the addresses of the instructions
that the program executes.

An example showing the output that SDEBUG displays while tracing the sample program
MYPROG follows. Notice that the low address (starting point of the loop) is X‘0072’. The
high address (ending point of the loop) is X‘00CC’.

Figure 3. Sample Trace Addresses from $DEBUG

8. Ensure that all addresses displayed by $DEBUG are repeated at least once before you end
$DEBUG. You end $DEBUG by pressing the attention key and entering END. When all
the addresses have been repeated, you now have alii the instructions within the loop.

9. Using the trace addresses from $DEBUG, try to determine the cause of the loop from the
compiler listing. “Using the Compiler Listing to Locate the Loop” on page PD-23 explains
how you use the trace addresses to follow the logic of the loop.

The section “Some Common Causes of Run Loops™ on page PD-23 gives some hints as to what
might be the cause of the loop.

C

Some Common Causes of Run Loops

Run loops are often caused by some exit condition not being met within a program. The reason
the exit condition is not met could be any of the following:

o Counters or variables that are never initialized when the program begins.
« Counters or variables that are not tested for an exit condition.

« Counters that never reach the limit you expected.

« Control passed to the wrong label in the program.

Check your program listing to be sure that none of the previous logic errors exist. If you cannot
immediately pinpoint any of these conditions, continue reading this chapter.

Using the Compiler Listing to Locate the Loop

Loc

0034
0052
0072
0072
0078

+0

8026
8026

402F
AOA2

The compiler listing and the trace addresses displayed by $DEBUG enable you to follow the
flow of the loop. Do the following steps to determine the problem:

1. Locate in the compiler listing, the lowest trace address displayed by $DEBUG. The lowest
address for the sample program, MYPROG, is X‘0072’ (see Figure 3 on page PD-22).

At address X‘0072’, the instruction executed is a READTEXT.

+2 +4 +6 +8
[]
[]
[]

1A1A C5D5 E3C5 D940 PRINTEXT 'ENTER UP TO 40 CHARACTERS®'
1C1C C5D5 E3C5 D940 PRINTEXT 'ENTER A ''/*'' TO END PROGRAMa'
LABEL2 EQU *
00D6 0000 READTEXT INPUT, PROMPT=COND
00D6 615C 00DO IF (INPUT,EQ,C'/*') ,GOTO, LABEL4
L]
L]

The symptoms of the loop appear to be that the READTEXT did not allow you to enter input
data when the program issued a message to do so.

Chapter 4. Analyzing and Isolating Run Loops PD-23

Analyzing and Isolating Run Loops

Using the Compiler Listing to Locate the Loop (continued)

PD-24

SC34-0639

2. Again, reload $DEBUG in any available partition to determine the problem.

In this example, $DEBUG is loaded in partition 1, the same partition as MYPROG:

3. Press the attention key to set a breakpoint at the address following the READTEXT
(address X‘0078°):

When the following message is displayed, $DEBUG has suspended the program’s execution:

At this point, you can look at any area of storage the program uses. If you set counters or
variables in programs you run, examine those fields first. For MYPROG, you want to look at
the number of characters the program read in as a result of the READTEXT.

The area labeled INPUT receives the input data upon a READTEXT:

LOC +0 +2 +4 +6 +8
L]
L]
L]
0072 402F 00D6 0000 READTEXT INPUT, PROMPT=COND
°
L]
L]

00D4 2828 4040 4040 4040 4040 INPUT TEXT LENGTH=40

w Using the Compiler Listing to Locate the Loop (continued)

4. Press the attention key and enter the following to see the number of characters stored in
INPUT:

This information shows the length and count bytes for INPUT. The X‘28’ indicates the buffer
size is 40 characters in length. However, the X‘00’ indicates that no characters were read in as a
result of the READTEXT. If INPUT contained any data, the count byte would indicate the
number of bytes.

Because INPUT contains no data, the problem might be either the TEXT statement coded for
INPUT or the READTEXT instruction. Because you use READTEXT instructions to receive
input data, the problem is probably with the READTEXT.

B. Review the description of READTEXT in the Language Reference to determine if the
READTEXT is coded correctly. The READTEXT is coded as follows in the sample
program:

READTEXT INPUT, PROMPT=COND
The description for PROMPT=COND explains that when you use this operand, you must also
code message text. No message text is coded on READTEXT in the sample program. The
description further explains that when no message text is specified, READTEXT sets the count
byte to zero and does not wait for input.

The sample program entered a run loop because the READTEXT is coded incorrectly. Isolating
the run loop for this sample program is now complete.

6. Press the attention and enter END to end $DEBUG.

Chapter 4. Analyzing and Isolating Run Loops PD-25

Analyzing and Isolating Run Loops

Using the Compiler Listing to Locate the Loop (continued, ((:D

7. Cancel the looping program using the $C operator command.
8. Correct the coding error on the READTEXT as follows:
READTEXT INPUT,'ENTER NEW DATA: ', PROMPT=COND

9. Recompile the program.

The techniques discussed up to this point in the chapter were useful in isolating the run loop in
the sample program, MYPROG. The error, in this case, was somewhat obvious. However, you
can apply these same techniques when the cause of a run loop in your program is not so
apparent. The next section introduces additional techniques that may be helpful if you are
trying to locate the cause of a run loop in a program that uses unmapped storage.

Examining an Unmapped Storage Area for the Cause of a Loop

PD-26

SC34-0639

A program may occasionally receive invalid or incorrect data. If the program is not prepared to
handle such a situation, it could go into a run loop.

e

By using the LIST command of $DEBUG, you can examine the data areas in your program to
see if any of the data in these areas is invalid or incorrect. (For more information on using the
LIST command of $SDEBUG, refer to the Operator Commands and Utilities Reference.) If the
failing program uses unmapped storage, you may also want to look at the data in the unmapped
storage areas. This section explains how to examine an unmapped storage area to find the cause
of a run loop.

8

The sample program used in this section is called ADDNAMES. ADDNAMES processes a list
of names and addresses which it reads from a data set into unmapped storage. The program
should end when it encounters a -1 (X’FFFF’) or when it processes more than 1,000 bytes of
data. When ADDNAMES was loaded last, however, it went into a run loop. Figure 4 on page
PD-27 shows the compiler listing for the sample program.

Examining an Unmapped Storage Area for the Cause of a Loop (continued)

L.OC

0000
000A
0014
O01E
0028
0032
003C
0046
0050
005A
006E
0076
0080
008A
0094
0096

0098
00A2
00A8
00B2
00BC
00BE
0ocs8
ooca
00DO
00D8

0100
0106
010C
0112
0112

0116
0120

+0

0008
0000
0188
0186
0000
FFFF
E3C1
D5D6
0000
0000
0000
0000
0001
0000
0000
0000

00B9
035C
80B9
8120
0032
00AO
O0F6
045cC
AOA2
EOA2

8332
0332
0032

00AO

00B9
0022

+2 +4 +6 +8

D7D9 D6C7 D9C1 D440 ADDNAMES PROGRAM START, DS=((DATA,DONORS))
0104 0184 0000 0000

0000 0001 0000 0100

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0808 c4cC1

4040 4040 0606 C4D6

DY9E2 4040 0000 0000

0001 0000 0001 0000

0000 0000 0000 0000

0000 0000 0000

C1C1 0000 0000 0008 STORBLK1 STORBLK TWOKBLK1=1,MAX=2
FFFF 0000 0000 0090

0000 0000 FFFF FFFF

TOTAL DC F'0'
LENGTH DC F'0’
START EQU *
0076 0000 0000 0101 GETSTG STORBLK 1, TYPE=ALL
0000 0082 MOVE #1, STORBLK 1+$STORMAP
0076 0001 0000 0300 SWAP STORBLK1, 1
0000 0008 0000 020C READ DS1, (0,41),8
00CA 90A2 0094 O3ES DO UNTIL, (TOTAL,GT, 1000)
0096 0000 MOVE LENGTH, (0,#1)
0096 FFFF 00F6 IF (LENGTH, EQ,-1) ,GOTO, QUIT
0096 0000 OOF2 IF (LENGTH, GT, 0) ,
[]
[]
*
0000 0002 ADD $1,2
0000 0096 ADD #1,LENGTH
0094 0096 ADD TOTAL, LENGTH
ENDIF
00C2 ENDDO
QUIT EQU *
0076 0000 0000 0201 FREESTG STORBLK1,TYPE=ALL
FFFF PROGSTOP
COPY STOREQU

Figure 4. Sample Program Compiler Listing

When $DEBUG is used to trace the execution of the program, the starting point of the loop
(low address) is at X‘0O0BE’. The ending point of the loop (high address) is at X‘0112°. (The
procedure for locating a run loop in a program is shown under “Determining the Starting and
Ending Points of the L.oop” on page PD-21.)

Chapter 4. Analyzing and Isolating Run Loops PD-27

Analyzing and Isolating Run Loops

Examining an Unmapped Storage Area for the Cause of a Loop (continued)

PD-28

SC34-0639

The compiler listing for the sample program shows a DO instruction at address X‘O0BE’. The

DO instruction marks the beginning of the loop. The loop ends with the ENDDO instruction at
address X‘0112’.

Looking at the contents of the DO loop, the program should be able to exit the loop when one
of two conditions are met:

(1) The total length of the data read into storage exceeds 1000 bytes. At this point, the DO
instruction at X‘00BE’ would satisfy the condition that it execute until the value in TOTAL
is greater than 1000.

(2) The program finds a -1 in the data area. In this case, the IF instruction at X‘00D(’
would detect the condition and send the program to the label QUIT.

Since neither of these conditions occurred, it appears that the program had less than 1000 bytes
of data to process but did not encounter a -1 when the data ended. Looking at the data in the
unmapped storage area should reveal the source of the problem. To look at the contents of an
unmapped storage area, do the following:

1. While the program is running and in the loop, load $DEBUG in any available partition.

Try to load $DEBUG from a terminal other than the terminal from which the looping
program was loaded. If you cannot use a different terminal, then load $SDEBUG from the
terminal used by the looping program.

2. Enter the name of the looping program when $DEBUG asks you for a program name and
volume. Because the program is already loaded, you do not need to enter the volume name.

3. When $DEBUG asks for a partition, enter the number of the partition which contains the

looping program. If $DEBUG and the looping program are in the same partition, press the
enter key.

q. Reply N when asked if you want a new copy of the program loaded.

The sample program ADDNAMES is running in partition 1. In the following example,
$DEBUG also is loaded in partition 1:

()» Examining an Unmapped Storage Area for the Cause of a Loop (continued)

B. Press the attention key and enter AT to set a breakpoint at the address following the
instruction that reads the data into unmapped storage.

Note: Your program may be using several unmapped storage areas. If the SWAP
instruction refers to a variable to find out the number of the unmapped storage area it
should gain access to, check the contents of this variable to see which area was in use when
the loop began.

In the sample program, the address of the instruction following the READ instruction is
X‘00BE’:

OPTION (*/ADDR/TASK/ALL): ADDR -
_BREAKPOINT ADDR: BE
~ LIST/NOLIST:]
- STOP/NOSTOP

6. Press the attention key and enter GO.

$DEBUG displays a message when it suspends the program’s execution at the breakpoint:

7. Press the attention key and enter the LIST command. After you enter this command, do the
following:

a. For “OPTION”, enter UNMAP.

b. For “STORBLK ADDRESS”, enter the address of the STORBLK statement that
defines the unmapped storage area you want to see.

C. For “SWAP#”, enter the number of the unmapped storage area you want to see.

d. For “DISPLACEMENT?”, indicate how far from the beginning of the unmapped storage
area the utility should go before listing the contents of the area. Enter a number of
bytes (in hexadecimal). For example, if you enter 1A, $DEBUG will begin the listing
after the 26th byte in the unmapped storage area.

€. For “LENGTH?”, enter the number of words, doublewords, or characters you want to
list, depending on the MODE you select. Enter a decimal number.

f. For “MODE”, enter the format you want the data to appear in.

Chapter 4. Analyzing and Isolating Run Loops PD-29

Analyzing and Isolating Run Loops

Examining an Unmapped Storage Area for the Cause of a Loop (continued)

PD-30

SC34-0639

The sample program reads eight 256-byte records into unmapped storage. The following
example lists the first 256-byte record in the unmapped storage area:

Figure 5 shows how $DEBUG displays the first record of the unmapped storage area for the
ADDNAMES program.

Figure 5. Sample Listing from SDEBUG

Each “logical record” that ADDNAMES processes consists of a name and address preceded by
a “length” word. The length word indicates the length of the name and address in bytes. The
program checks the length word, processes the amount of data that follows it, and moves to the
next length word. The following is what the contents of the first logical record in Figure 5
would look like if they were translated into EBCDIC.

Data

E.FEDER,123 NORTH HICKORY,PORTSMOUTH (Length — X'24' bytes)

If you were to list out the rest of the contents of the unmapped storage area, you would see that
no more data exists. A brief examination of the storage contents in Figure 5 reveals that less
than 1000 bytes of data were processed by the program. However, when you look for the
second exit condition, a -1 (X‘FFFF’) at the end of the data, no -1 exists.

'®

Q.

Examining an Unmapped Storage Area for the Cause of a Loop (continued)

In the compiler listing for the ADDNAMES program, the first IF instruction in the DO loop
looks for a -1 and the second IF instruction checks to see if the length of the data being
processed is greater than 0. (See Figure 4 on page PD-27.) If no -1 is found, and if the length
word contains only zeros, the program begins the loop again. Without a -1 to indicate the end
of the data, the program preforms the DO loop endlessly.

In this case, the sample program obviously needs to be modified. However, to ensure that you
have diagnosed the cause of the error correctly, you could place a -1 at the end of the data with
the PATCH command of $DEBUG.

To use the PATCH command:

1. Press the attention key and enter PATCH.

2. After you enter the command, do the following:
a. For “OPTION”, enter UNMAP.

b. For “STORBLK ADDRESS”, enter the address of the STORBLK statement that
defines the unmapped storage area you want to modify.

C. For “SWAP#”, enter the number of the unmapped storage area you want to modify.

d. For “DISPLACEMENT”, indicate how far from the beginning of the unmapped storage
area the utility should go before listing the contents of the area. Enter a number of
bytes (in hexadecimal). For example, if you enter 1A, $DEBUG will begin the listing
after the 26th byte in the unmapped storage area.

€. For “LENGTH”, enter the number of bytes, up to 16, that you want to modify. You
cannot modify more than 16 bytes of data at a time. Enter a decimal number.

f. For “MODE”, enter the format you want the data to appear in.

3. The PATCH command displays the data to be modified. Enter your new data following the

“DATA:” prompt message. Separate each word of data with a space.

If you enter less data than the amount displayed, the command pads the remaining area with
blanks (for character data) or zeros (for all other types of data).

Chapter 4. Analyzing and Isolating Run Loops PD-31

Analyzing and Isolating Run Loops

Examining an Unmapped Storage Area for the Cause of a Loop (continued) @

4. The command displays the data you entered and issues the prompt message
“YES/NO/CONTINUE.” Respond Y to confirm the change, N to cancel the change, or
CONTINUE to confirm the change and to continue modifying data.

The following example uses the PATCH command to place a -1 at the end of the data in the

unmapped storage area. After the change is made, program execution is resumed by pressing
the attention key and entering GO.

-
How to Detect Loops Caused by Device Interrupts hadd

The system can go into a run loop when device interrupts fill up the buffer area the system uses

to contain interrupts. When this is the case, the loop begins at entry point SVCIBFOF in the
supervisor module EDXSVCX.

If you have a programmer console installed, you can detect this condition by setting the Mode
switch in the Diagnostic position while the system is looping. If the interrupt buffer becomes
full, the system will stop and display a X‘64FB’ in the console indicator lights.

This run loop condition can be caused for two reasons:

1. The value you specified on the IABUF= operand of the SYSTEM statement (in
$EDXDEFS) is not large enough to contain the number of interrupts. The default for
IABUF= is 20. You may have to increase the value specified. Refer to the Installation and
System Generation Guide for details on this operand.

2. A hardware problem on a device causes the device to send excessive interrupts which in turn
causes IABUF to become full. Loading the $L.OG utility, which records 1/0 errors, may
identify the device experiencing errors. The $LOG utility is discussed in Chapter
9, “Recording Device 1/0 Errors and Program Check Information” on page PD-117.

PD-32 SC34-0639

Chapter 5. Analyzing and Isolating a Wait State

A wait state is a condition where the system or a program is waiting for the completion of an
event or operation, but because of an error, the completion of the event or operation never
occurs. When this condition exists, you must determine what prevented the event or operation
from completing.

This chapter describes how to determine the cause of a wait state in an application program.

If, during a wait state, you press the attention key and the system does not display a “greater
than” symbol (>), you should take a stand-alone or $TRAP dump. Chapter 7, “Analyzing a
Failure Using a Storage Dump”’ on page PD-71 explains how you can determine the cause of the
problem from the dump. Refer to the Operation Guide for details on taking a stand-alone dump.
The Operator Commands and Utilities Reference explains how to invoke $TRAP.

In order to determine what caused the wait state in the application program, you must first find
the address of the waiting instruction. How to do this is described next.

Chapter 5. Analyzing and Isolating a Wait State PD-33

Analyzing and Isolating a Wait State

How to Find the Address of the Waiting Instruction Using $DEBUG

PD-34

SC34-0639

To find the address of the waiting instruction, do the following while the program is in the wait
state:

1. Load $DEBUG in any available partition.

Try to load $DEBUG from a terminal other than the terminal from which the waiting
program was loaded. If you cannot use a different terminal, then load $SDEBUG from the
terminal used by the waiting program.

2. Enter the name of the waiting program when $DEBUG asks you for a program name and
volume. Because the program is already loaded, you do nof need to enter the volume name.

3. When $DEBUG asks for a partition, enter the number of the partition which contains the
waiting program. If $DEBUG and the waiting program are in the same partition, press the
enter key.

q, Reply N when asked if you want a new copy of the program loaded.

The following example shows what you would enter if the name of the program were
WAITPGM and it was loaded in partition 1. $DEBUG, in this example, is loaded in partition 2:

B. Press the attention key and enter the WHERE command. $DEBUG then displays the

instruction address where the program is waiting. The following is an example of this
sequence:

6. Using the address displayed by $DEBUG, look at the compiler listing of that program to see
what instruction is at that address.

7. Press the attention key and enter END to end $DEBUG.

After you identify the instruction that caused the wait, you must determine the reason why it

was waiting. The following section can help you analyze the instruction that caused the wait
state.

00 Analyzing the Instruction that Caused the Wait State

This section discusses how you can analyze the wait state if the program is stopped at any of the
following instructions:

« ENQ
« ENQT
« WAIT.

If the program is not waiting on any of these instructions, go to the section “Other Possible
Causes of a Wait State” on page PD-42.

Analyzing an ENQ Instruction

When the program is pointing to an ENQ instruction, you must examine the queue control block
(QCB) the program tried to enqueue. By examining the queue control block, you can determine
which task has control of that queue control block.

This section explains how to examine the queue control block when :

« The queue control block is defined within the program with a QCB statement.

C « The queue control block is defined in the system common area, $SYSCOM.
)

Examining a Queue Control Block Defined in the Program

Do the following steps to examine the queue control block defined in the program:
1. Find the address of the QCB statement in the program compiler listing.

2. While the program is in the wait state, load $DEBUG in any available partition.

Try to load $DEBUG from a terminal other than the terminal from which the waiting

program was loaded. If you cannot use a different terminal, then load $DEBUG from the
terminal used by the waiting program.

3. Enter the name of the waiting program when $DEBUG asks you for a program name and

volume. Because the program is already loaded, you do not need to enter the volume
name.

4. When $DEBUG asks for a partition, enter the number of the partition which contains the

waiting program. If $DEBUG and the waiting program are in the same partition, press the
enter key.

Chapter 5. Analyzing and Isolating a Wait State PD-35

Analyzing and Isolating a Wait State

Analyzing the Instruction that Caused the Wait State (continued)

PD-36

SC34-0639

5. Reply N when asked if you want a new copy of the program loaded.

The following example shows what you would enter for the program WAITPGM located in
partition 1. $DEBUG, in this example, is loaded in partition 2:

6. Press the attention key and enter the LIST command.

7. Respond to the prompts to display the 5-word queue control block. For example, if the
address of the QCB statement were at X‘05ES8’, you would respond to the prompts as
follows:

An example of the output follows:

8. Look at word 3 of the queue control block. (The first word of the QCB is word 0.) Word
3 contains the task control block (TCB) address of the task that owns the QCB. In the
sample output, the TCB address is X‘CD38’. Word 4 contains the address space in which
that task resides. Word 4 in the example shows address space 1 (partition 2).

9. Examine the task at the address (identified in step 8) and determine why that task did not
issue a DEQ instruction.

The section “Common Causes of a Program Wait Using QCBs” on page PD-38 presents
some hints as to what might be the cause of the problem.

10. Press the attention key and enter END to end $DEBUG.

O Analyzing the Instruction that Caused the Wait State (continued)

Examining a Queue Control Block Defined in $SYSCOM

Do the following steps to examine the queue control block defined in $SYSCOM:

1. Using the link map listing of the current supervisor, find the address of the queue control
block in $SYSCOM that you attempted to enqueue.

2. Press the attention key and enter $CP 1.
3. Press the attention key and enter $D.

4. Enter 0000 as the origin. Enter the queue control block address from step 1. Enter the
number 5 for the count.

The following is an example of the output displayed for a queue control block at address
X‘19D0’:

The first word of the QCB (word 0) indicates the status of the QCB. The value X‘FFFF’ means
0 that the QCB is available. A value of X‘0000’ means that the QCB is enqueued upon.

5. Look at words 3 and 4 of the QCB. Word 3 is the task control block (TCB) address of the
task that owns the QCB. In the sample output, this TCB address is X‘1F00’. Word 4
contains the address space in which that task resides. In the sample output, the address
space in which that task resides is address space 1 (partition 2).

Word 1 contains the TCB address of the waiting task. Word 2 contains the address space
in which that task resides. The waiting task is at address X‘CD38”’ in address space 0
(partition 1).

6. Press the attention key and enter $CP, specifying the partition number you identified in
step 5.

7. Press the attention key and enter $A.

Chapter 5. Analyzing and Isolating a Wait State ~ PD-37

Analyzing and Isolating a Wait State

Analyzing the Instruction that Caused the Wait State (continued)

8. Find the program whose load point is within the range of the TCB address you identified in
step 5 on page PD-37.

Note: If the $A shows that no programs are active, the task whose TCB address you
identified in step 5 on page PD-37 is no longer in storage and failed to issue a DEQ.
When this is the case, you must IPL the system to clear the wait state and to release the
enqueued QCB.

To prevent this condition in the future, determine what other programs use that QCB. If
possible, also determine which of those programs was previously active. Examine those
programs and determine which one failed to dequeue the QCB. The section “Common
Causes of a Program Wait Using QCBs” presents some hints as to what might have caused
the problem.

9. Subtract the program load point address from the TCB address of the task that owns the
QCB. In this example, the TCB address is X‘1F00’.

10. Using the resulting address from step 9, locate that address in the compiler listing for that
program.

11. If that address points to an ENDPROG, ENDTASK, or DETACH statement, examine that
program and determine why it did not issue a DEQ.

12. 1f that address does not point to an ENDPROG, ENDTASK, or DETACH statement, then

the program in storage is not the program that enqueued the QCB. When this is the case,
you must IPL the system to clear the wait state and to release the enqueued QCB.

To prevent this condition in the future, determine what other programs use that QCB. If
possible, also determine which of those programs was previously active. Examine those
programs and determine which one failed to dequeue the QCB. The section “Common
Causes of a Program Wait Using QCBs”’ presents some hints as to what might have caused
the problem.

’

Common Causes of a Program Wait Using QCBs
Wait states are often caused when:
« A program fails to issue a DEQ to an enqueued QCB.
« A program issues an ENQ to a queue control block defined in $SYSCOM when $SYSCOM

is not mapped in that program’s partition. You map $SYSCOM across partitions during
system generation (COMMON= operand on the SYSTEM statement).

PD-38 SC34-0639

0; Analyzing the Instruction that Caused the Wait State (continued)

If $SYSCOM is not mapped in the partition in which you issued the ENQ or DEQ, ensure
you use cross-partition services to enqueue or dequeue the QCB. Also check that the field
$TCBADS of the program’s TCB points to the address space in which the QCB resides.
This consideration applies to any QCB not residing in a program’s partition. See the
Language Reference for examples of cross-partition operations.

e A program overlays the QCB area in storage (QCB destroyed).

Review the compiler listing of your program and ensure none of the previous conditions exist.

Analyzing an ENQT Instruction

When the program is pointing to an ENQT instruction, you must examine the terminal control
block (CCB) of the device the program tried to enqueue. By examining the terminal control
block, you can determine which task has control of that device.

Do the following steps to examine the terminal control block:

1. Inthe compiler listing, find the name of the terminal to which the program issued the
ENQT.

$EDXDEF. In that section, find the label that matches the name of the device the

O 2. Look in the link map listing of your current supervisor and locate the section labeled
‘ program tried to enqueue.

3. Add X‘60’ to the address of that device. The resulting address points to word 3 of the field
$CCBQCB in the terminal control block.

4. At the terminal, press the attention key and enter $CP 1.
B. Press the attention key and enter $D.

6. Enter 0000 as the origin. Enter the address you calculated in step 3. Enter the number 2
for the count.

7. The first word displayed is the task control block (TCB) address of the program that has
control of the device. The partition in which that program is running is the value of the
second word plus 1.

8. Press the attention key and enter $CP, specifying the partition number from step 7.

9. Press the attention key and enter $A.

Chapter 5. Analyzing and Isolating a Wait State ~ PD-39

Analyzing and Isolating a Wait State

Analyzing the Instruction that Caused the Wait State (continued)

10. The TCB address from step 7 on page PD-39 will be within the range of the load point

address for the program that has control of the device.

11. Examine the compiler listing of that program and determine why it has not issued a DEQT.

Analyzing a WAIT Instruction

PD-40

SC34-0639

If the event control block the program is waiting on is defined with an ECB statement, go to the
section “Common Causes of a Program Wait Using ECBs” on page PD-41 for some hints as to
what might be the problem.

If the event control block the program is waiting on is defined as a result of coding the
EVENT= operand on a PROGRAM or TASK statement, do the following:

1.

4.,

While the program is in the wait state, load $DEBUG in any partition.

Try to load $DEBUG from a terminal other than the terminal from which the waiting
program was loaded. If you cannot use a different terminal, then load $DEBUG from the
terminal used by the waiting program.

Enter the name of the program which contains the EVENT= operand when $DEBUG asks i
you for a program name and volume. Because the program is already loaded, you do not N
need to enter the volume name.

When $DEBUG asks for a partition, enter the number of the partition which contains the

waiting program. If $DEBUG and the waiting program are in the same partition, press the
enter key.

Reply N when asked if you want a new copy of the program loaded.

The following example shows what you would enter for the program WAITPGM located in
partition 1. $DEBUG, in this example, is loaded in partition 2:

5.

Press the attention key and enter the WHERE command.

O

C

Analyzing the Instruction that Caused the Wait State (continued)

6. Using the compiler listing of that program, locate the instruction address displayed in step 5

on page PD-40 and determine why that program has not ended.

7. Press the attention key and enter END to end $DEBUG.

The next section, “Common Causes of a Program Wait Using ECBs,” gives some hints as to
what might be the problem.

Common Causes of a Program Wait Using ECBs

Wait states are often caused when a program:

Fails to post an event control block (ECB) which another program is waiting on. Ensure
that all attached tasks post the ECB before issuing a DETACH.

Issues a WAIT with the RESET operand specified when the event has already been posted.
Coding a WAIT followed by a RESET instruction may resolve the problem.

Waits on an ECB defined in $SYSCOM when $SYSCOM is not mapped in the program’s

partition. You map $SYSCOM across partitions during system generation (COMMON=
operand on the SYSTEM statement).

If $SYSCOM is not mapped in the partition in which you issued the WAIT or POST, ensure
you use cross-partition services to wait or post the ECB. Also check that the field
$TCBADS of the program’s TCB points to the address space the ECB resides. This
consideration applies to any ECB not residing in a program’s partition. See the Language
Reference for examples of cross-partition operations.

Has a logic error that unintentionally branches to a WAIT instruction.

Review the compiler listing of your program and ensure none of the previous conditions exist.

Chapter 5. Analyzing and Isolating a Wait State PD-41

Analyzing and Isolating a Wait State

Analyzing the Instruction that Caused the Wait State (continued)

Other Possible Causes of a Wait State

When the program stops at an instruction other than ENQ, ENQT, or WAIT, consider the
following:

« Is the program waiting for operator input to instructions such as READTEXT,
GETVALUE, or QUESTION? The problem may be that the operator never responded to a
prompt message or a prompt message requesting input was not coded.

« Is the instruction a READ or WRITE? It is possible that a hardware problem on disk
prevented a device interrupt being sent to the supervisor. The system would wait until it
received the device interrupt signaling completion of the I/0 request.

Any of the following may verify that a disk problem exists:

— Verifying the disk using $INITDSK (VD command). If $INITDSK indicates errors, load
$DASDI and try assigning alternate sectors on the device.
— Allocating a data set using $DISKUT]1.

— Verifying the hardware configuration using $IOTEST (LS or LD command).
— Sending messages to another terminal using $TERMUTS3.

If any or all of these attempts fail, the disk probably has a hardware problem. Contact your
service representative for corrective action.

« Is a program, while using full screen support, enqueued to $SYSLOG? If the supervisor is
unable to display a program check message to $SYSL.OG, the system enters a wait state.

PD-42 sC34-0639

Chapter 6. Analyzing and Isolating a Program
Check

The system issues a program check message to provide you with status information on an error
that occurred during processing. This message is written to the terminal defined as $SYSLOG.

The system provides two types of program check messages: one for a system program check and
one for an application program check. Application program checks are caused by errors within
an application program. System program checks typically occur when the supervisor detects an
error in its own code or when an application program somehow overlays part of the supervisor.

This chapter explains how to analyze the status information in a program check message so that
you can determine the cause of a problem. A sample program that causes a program check

when executed is included to show the steps required to isolate an error.

The first step in determining the cause of the problem is understanding the information
displayed in the message. The following section explains the program check message.

Chapter 6. Analyzing and Isolating a Program Check PD-43

Analyzing and Isolating a Program Check

How to Interpret the Program Check Message O

The program check message can be in one of the following three formats:

« The standard format issued by the supervisor for application and all system program checks.
The system issues the standard program check message for application programs when you
do not code the ERRXIT= operand on the PROGRAM or TASK statement. Go to the
section “Interpreting the Standard Program Check Message” when you receive the standard
program check message.

« The format displayed when you code the ERRXIT= operand on the PROGRAM or TASK
statement and specify the task error exit routine $$EDXIT. Refer to the Event Driven
Executive Language Programming Guide for details on how to use $$EDXIT. Go to the
section “Interpreting the Program Check Message from $$EDXIT” on page PD-50 when
you receive this application program check message.

¢ Any format you create when you code the ERRXIT= operand on the PROGRAM or TASK
statement and supply your own error exit routine. Refer to the Customization Guide for
details on how to provide your own task error exit routine.

Interpreting the Standard Program Check Message

PD-44

SC34-0639

This section explains the information displayed in the standard program check messages. A

description of the information follows the sample messages.

N
The following is an example of the standard application program check message: ’\\ S

PROGRAM CHECK:
PLP TCB PSW IAR AKR LSR RO R1 R2 R3 R4 R5 R6 R7
3A00 0120 8002 2AD6 0110 80DO 0064 3BOA 3B20 3A37 3A34 015C 00B8 0000

The next example shows the system program check message:

SYSTEM PGM CHECK:
PSW IAR AKR LSR RO R1 R2 R3 R4 R5 R6 R7
8002 2AD6 0110 80D0O 0064 3BOA 3B20 3A37 3A34 015C 00B8 0000

The 11 words of information beginning with IAR and ending with R7 is called the level status
biock (LSB).

The headings displayed in the message and what the information means follows. (Normally

when you analyze an EDL application program check, you need only be concerned with PLP,
TCB, PSW, R1, R3, and R4.)

0 How to Interpret the Program Check Message (continued)

PLP

TCB

PSW

IAR

AKR

LSR

The address in storage of the program load point. This is the address at which the
program was loaded for execution and represents the first word of your program listing.

For a system program check message, this field is omitted because the failing
instruction is within the supervisor.

The address of the active task control block (TCB) as per the compiler listing
(nonrelocated).

For a system program check message, this field is omitted because the failing
instruction is within the supervisor.

The value of the processor status word (PSW) when the program check occurred.
Refer to the section “How to Interpret the Processor Status Word” on page PD-47 to

determine the meaning of this value.

The contents of the instruction address register (IAR) at the time of the error. The
value shown is the address of the machine instruction currently executing.

The value of the address key register (AKR) at the time of the error. This last
3-hexadecimal digits indicate in which address space operand 1, operand 2, and the
IAR reside. Bit O of the AKR is the equate operand spaces (EOS) bit. If bit 0 is set to
1, the address space key indicated for operand 2 is the address space key used for both
operand 1 and operand 2.

The value of the level status register (LSR) when the error occurred. The bits, when
set, indicate the following:

« Bits 0—4 — The status of arithmetic operations. Refer to the processor description
manual for the meanings of these bits.

« Bit 8 — Program is in supervisor state.

e Bit 9 — Priority level is in process.~

« Bit 10 — Class interrupt tracing is active.
« Bit 11 — Interrupt processing is allowed.

Bits 5—7 and bits 12—15 are not used and are always zero.

Chapter 6. Analyzing and Isolating a Program Check ~ PD-45

Analyzing and Isolating a Program Check

How to Interpret the Program Check Message (continued) (J)

The next portion of the program check message displays the contents of the general purpose
registers RO—R7. If the failing program were written in a language other than EDL, refer to the
user’s guide for that language to determine the register usage.

RO

R1

R2

R3

R4

RS

R6

R7

Because the supervisor uses this register as a work register, the contents are usually not
significant to the failing program.

The address of the failing EDL instruction.

The address in storage of the active task control block (TCB). The address in R2 is the
sum of the TCB address and the load point address.

The address in storage of EDL operand 1 of the failing instruction.
The address in storage of EDL operand 2 (if applicable) of the failing instruction.

The EDL operation code of the failing instruction. The first byte contains flag bits
which indicate how operands are coded. For example, the flag bits indicate whether
the operand is in #1, #2, or specified as a constant. The second byte is the operation
code of the EDL instruction.

Because the supervisor uses this register as a work register, the contents are usually not
significant to the failing program. However, you can determine if the system was

emulating EDL code when the failure occurred if R6 is twice the value shown in the ‘
second byte of RS. For example, if the second byte of RS contained X‘32’ and the \
system was emulating EDL, R6 would contain X‘0064’.

#
\\«\

Because the supervisor uses this register as a work register, the contents are usually not
significant to the failing program. Sometimes the supervisor uses this register for a
branch and link instruction. The address may give a clue as to which function passed
control to the address in the IAR.

After reviewing the information shown in the program check message, you must analyze the
contents displayed for the processor status word (PSW).

The processor status word is a 16-bit register the system uses to save error status. By looking at
the processor status word, you can determine whether the error is hardware or software related.
The next section explains how to interpret the processor status word.

PD-46 $C34-0639

®

O

C

How to Interpret the Program Check Message (continued)

How to Interpret the Processor Status Word

Interpreting the

The value of the processor status word is shown as 4 hexadecimal digits. Each hexadecimal digit
represents the sum of 4 binary bits. Starting from left to right, the value of each bit (when set)
is 8,4, 2, and 1. Thus to interpret what bits are on, you must convert each hexadecimal digit to
binary. For example, if the PSW indicated the value X‘8002’, the binary representation and the
bit positions would be as shown in Figure 6:

Hex Binary PSW
value value bits

8 1000 0-3

0 0000 4-7

0 0000 8-11
2 0010 12-15

Figure 6. Sample Processor Status Word Bit Settings

In the previous example, note that bits O and 14 are set. These bit settings are the same as
X‘8002’.

After you convert the value to binary and identify which bit positions are set, refer to

“Interpreting the Processor Status Word Bits” for an explanation of what each bit indicates.
Remember that bit 0 is the leftmost bit in the 16-bit string.

Processor Status Word Bits

The information indicated by the processor status word bits can be categorized into three types:
« Software problems — bits 0—6

« Hardware problems — bits 8, 10, or 11

« Processor status — bit 7 and bits 12—15.

Figure 7 on page PD-48 shows the PSW bits and their general assignment for the different
processors. An explanation of the bit settings follows Figure 7.

Refer to the specific processor description manual for details on class interrupts, 1/0 interrupts,
and the basic instruction set (including indicator settings and possible exceptions conditions).

If the PSW indicates a hardware error (machine check), call your service representative for
corrective action.

If the PSW indicates a software problem and the program check occurred in an application
program, read the section “How to Analyze an Application Program Check” on page PD-54.

Chapter 6. Analyzing and Isolating a Program Check PD-47

Analyzing and Isolating a Program Check

How to Interpret the Program Check Message (continued)

Review the section ‘“How to Analyze a System Program Check” on page PD-67 if the error is a

system program check.

Processor

type 495x Class
Bit 2 3 4 5 6 Condition interrupt
0 X X X X X Specification check Program check
1 X X X X X Invalid storage address Program check
2 X X X X X Privilege violate Program check
3 X X X X Protect check Program check
4 X X X X X Invalid function Soft-exception
5 X X X Floating-point exception Soft-exception
6 X X X X X Stack exception Soft-exception
7 Extended Address Mode None
8 X X X X X Storage parity check Machine check
9 Not used
10 X X X X X Processor control check Machine check
11 X X X X X 1/0 check Machine check
12 X X X X X Sequence indicator None
13 X X X X X Auto IPL None
14 X X X X Translator enabled None
15 X X X X X Power/thermal warning Power/thermal

Figure 7. Processor Status Word Bit Assignments

Processor Status Word Bit Descriptions

An explanation of the bit settings follows.

Bit 0 - Specification Check: Set to 1 if (1) the storage address violates the boundary
requirements of the specified data type, or (2) the effective (computed) address is odd.

This error would occur, for example, if a program attempted to do a word move to an area on an
odd-byte boundary. You can identify which operand (R3 or R4 addresses) violates the
boundary if the last hex digit of the operand address is either 1, 3,7, 9, B, D, or F.

This is a software error.
Bit 1 - Invalid Storage Address: Set to 1 when an attempt is made to access a storage
address outside the storage size of the partition or when an attempt is made to refer to a storage

address in a nonexistent partiton,

This error would occur, for example, if a program attempted to do a cross-partition move to a
nonexistent partition.

This is a software error.

PD-48

SC34-0639

O

O

How to Interpret the Program Check Message (continued)

Bit 2 - Privilege Violate: Set to 1 if a program in problem state attempts to issue a
privileged instruction. The processor can run in either supervisor or problem state. Some
assembler instructions can be used only while in supervisor state. If an assembler program in
problem state attempts to issue a privileged instruction, the privilege violate condition occurs.
Normally, this error would never occur in an EDL program.

This is a software error.

Bit 3 - Protect Check: Set to 1 if a program attempts to access protected storage. The
processor can control access to areas in storage by using a storage protect feature. If a program
attempts to address any part of the protected storage, the protect check indicator is set.
Normally, this error would never occur in an EDL program.

This is a software error.

Bit 4 - Invalid Function: Set to 1 by if any of the following conditions occur:

» Attempted execution of an illegal operation code or function combination.

« The processor attempts to execute an instruction associated with a feature that is not
contained in the supervisor.

An EDL program can cause this error attempting to use floating-point instructions (FADD,
FSUB, FMULT, or FDVID) when the floating-point support is not in the supervisor.

This is a software error.

Bit 5 - Floating-Point Exception: Set to 1 when an exception condition is detected by the
optional floating-point processor. Floating-point hardware sets this bit to indicate underflow,
overflow, and divide check exceptions. An EDL program can detect these exceptions by the
return code from a floating-point instruction. No program check message is issued when this
exception occurs.

This is a software error.

Bit 6 - Stack Exception: Set to 1 when an attempt has been made to pop an operand from
an empty processor storage stack or push an operand into a full processor storage stack. A stack
exception also occurs when the stack cannot contain the number of words to be stored by an
assembler Store Multiple (STM) instruction.

Normally, this error would never occur in an EDL program.

This is a software error.

Chapter 6. Analyzing and Isolating a Program Check PD-49

Analyzing and Isolating a Program Check

How to Interpret the Program Check Message (continued)

Bit 7 - Extended Address Mode: Set to 1 when the processor is operating in Extended
Address Mode.

This is a status indicator.

Bit 8 - Storage Parity: Set to 1 when the hardware detects a parity error on data being read
out of storage by the processor.

This is a hardware error.
Bit 10 - Processor Control Check: Set to 1 if no levels are active but execution continues.
This is a hardware error.

Bit 11 - 1/0 Check: Set to 1 when a hardware error has occurred on the I/O interface that
may prevent further communication with any I/0 device.

This is a hardware error.

Bit 12 - Sequence Indicator: Set to 1 to reflect the last I/O interface sequence to occur.
This indicator is used in conjunction with I/O check (bit 11).

This is a status indicator.
Bit 13 - Auto IPL: Set to 1 by the hardware when an automatic IPL occurs.
This is a status indicator.

Bit 14 - Translator Enabled: Set to 1 when the Storage Address Relocation Translator
Feature is installed and enabled.

This is a status indicator.
Bit 15 - Power Warning and Thermal Warning: Set to 1 when these conditions occur
(refer to the appropriate processor manual for a description of a power/thermal warning class

interrupt).

This is a status indicator.

Interpreting the Program Check Message from $$EDXIT

PD-50

SC34-0639

When you specify $$EDXIT as the task error exit for an EDL program, the output you receive
is formatted with descriptive headings. In addition, $$EDXIT provides more information than
the standard program check message. $$SEDXIT also interprets the processor status word and
tells you what it means.

®

/ ~
Nt

")

How to Interpret the Program Check Message (continued)

When a program check occurs, the program check message is directed to $SYSLOG and
$SYSPRTR. .

The following is an example of a program check message issued by $$EDXIT. An explanation
of each numbered item in the sample output follows the example.

’ . : ***++****+***********f****************k*** i - o

N HAS OCCURRED!! *

G ****************** y

B PROGRAM NAME | Psw = 8002

P PROGRAM VOLUME B AR = 2AD6

B PROGRAM LOAD POINT o000 [AR =ute

[ADDRESS OF ACTIVE TCB 0120 [LSR = 80DO

| ,DRESS OF O ofse [I§ RO (WORK REGI STER) = 0064

| : BB Rt (EDL INSTR ADDR) = 010A
(EDL TCB ADDR) = 0120
) 0037
0034

MALFUNCTION HAS OCCURRED

The previous message is not displayed if you code an extension error routine to $SEDXIT with
the entry point name PCHKRTN. Refer to the Customization Guide for details on how to code
an extension to $$SEDXIT.

Chapter 6. Analyzing and Isolating a Program Check PD-51

Analyzing and Isolating a Program Check

How to Interpret the Program Check Message (continued)

PD-52

SC34-0639

A description of the sample program check message follows.

E The PROGRAM NAME field identifies the name of the failing application program. In this
example, the program PCHECK failed.

The PSW field indicates the value of the processor status word when the error occurred.

$SEDXIT interprets this value and displays its meaning as shown in field P§J of this sample
message.

A detailed description of the processor status word and the associated bits are presented in the
section “Interpreting the Processor Status Word Bits” on page PD-47.

The VOLUME NAME field identifies the name of the volume from which the failing
application program was loaded. In this example, the name of the volume is MYVOL.

A The IAR field (instruction address register) contains the address of the currently executing
machine instruction.

The PROGRAM LOAD POINT field contains the address at which the program was loaded
for execution. The address represents the first word of your program listing.

B The AKR field contains the value of the address key register (AKR). The last 3-hexadecimal
digits indicate in which address space operand 1, operand 2, and the IAR reside. Bit O of the
AKR is the equate operand spaces (EOS) bit. If bit 0 is set to 1, the address space key indicated
for operand 2 is the address space key used for both operand 1 and operand 2.

The ADDRESS OF THE ACTIVE TCB field contains the address (nonrelocated) of the
active task control block (TCB) as per the compiler listing.

B The LSR field level status register (LSR) information. The bits, when set, indicate the
following:

« Bits 0—4 — The status of arithmetic operations. Refer to the processor description manual
for the meanings of these bits.

e Bit 8 — Program is in supervisor state.

o Bit 9 — Priority level is in process.

« Bit 10 — Class interrupt tracing is active.
« Bit 11 — Interrupt processing is allowed.

Bits 5—7 and bits 12—15 are not used and are always zero.

£\
4

O

O

How to Interpret the Program Check Message (continued)

n The ADDRESS OF CCB field contains the address of the terminal control block (CCB)
assigned to the failing program.

[} The RO field contains the contents of hardware register 0 when the error occurred. Because
the supervisor uses this register as a work register, the contents are usually not significant when
you analyze the failing program.

The NUMBER OF DATA SETS field shows the number of data sets specified on the DS=
operand of the PROGRAM statement.

IB The R1 field contains the address of the failing EDL instruction.

The NUMBER OF OVERLAYS field indicates the number of overlay programs specified on
the PGMS= operand of the PROGRAM statement.

[The R2 field contains the address in storage of the active task control block. This address is
the sum of the TCB address and the program load point.

The $TCBADS field contains the target task address space. The value of this field plus 1
indicates the partition number in which the program was running.

The R3 field contains the address of EDL operand 1 for the failing EDL instruction.

The ADDRESS OF FAILURE field contains the address of the failing EDL instruction.
This is the address shown in the compiler listing. This is also the address shown in field [in
this sample output. In this example, the failing EDL instruction is at address X‘010A’.

The R4 field contains the address of EDL operand 2 (if applicable) for the failing EDL
instruction.

[B The RS field contains the EDL operation code of the instruction that was executing when

the failure occurred. The first byte contains flag bits which indicate how operands are coded.

For example, the flag bits indicate whether the operand is in #1, #2, or specified as a constant.
The second byte is the operation code of the EDL instruction.

m The DUMP OF FAIL ADDRESS field shows the location and content of the instruction that
was executing when the failure occurred. The information at this address also appears in the
compiler listing.

BBl The R6 field contains the contents of hardware register 6 when the error occurred. Because
the supervisor uses this register as a work register, the contents are usually not significant when
you analyze the failing program. However, you can determine if the system was emulating EDL
code when the failure occurred if R6 is twice the value shown in the second byte of RS. For
example, if the second byte of R5 contained X‘32’ and the system was emulating EDL, R6
would contain X‘0064°.

Chapter 6. Analyzing and Isolating a Program Check PD-53

Analyzing and Isolating a Program Check

How to Interpret the Program Check Message (continued) O

The R7 field contains the contents of hardware register 7 when the error occurred. Because
the supervisor uses this register as a work register, the contents are usually not significant when
you analyze the failing program.

Sometimes the supervisor uses this register for a branch and link instruction. The address may
give you a clue as to which function passed control to the address in the IAR.

The $TCBCO field shows the value in the first word of the failing program’s task control
block (TCB). The value is displayed in decimal and followed by the hexadecimal equivalent.

The #1 field shows the contents of index register 1 when the failure occurred. In this
example, #1 contains the value X‘0037’.

The $TCBCO2 field shows the value in the second word of the failing program’s task
control block (TCB). The value is displayed in decimal and followed by the hexadecimal
equivalent.

B The #2 field shows the contents of index register 2 when the failure occurred.

The PSW ANALYSIS field explains the meanings of the bit settings in the processor status
word (PSW). The hexadecimal format of the processor status word is shown in field [fJ. This

information indicates the type of error that occurred.

Refer to the section ‘“Processor Status Word Bit Descriptions” on page PD-48 to determine the / N
type of error the “PSW ANALYSIS” field indicates. _ J/

If the error points to hardware, call your service representative for corrective action.

If the error points to software, read the following section.

How to Analyze an Application Program Check

PD-54

SC34-0639

When the processor status word (PSW) indicates a software error, you need to find out where in
the program the error occurred. The information in the program check message can help you
find the error.

Presented in this section is a sample program check message and the program that caused the
program check. Using both the program check message and the compiler listing of the sample
program, this section will explain the steps required to find the problem. The techniques used
can help you to isolate program checks in your application programs. The section ‘“Examining
an Unmapped Storage Area for the Cause of a Program Check” on page PD-60 presents
techniques that may be helpful if your program uses unmapped storage.

The section “Some Common Causes of Application Program Checks” on page PD-66 provides
some additional hints about what may cause this type of error.

C
-4

O

How to Analyze an Application Program Check (continued)

To find the cause of the program check, do the following:

1. Lookat the program check message and determine what type of software error the
processor status word indicates.

The program check message from the sample program follows:

PROGRAM CHECK:
PLP TCB PSW IAR AKR LSR RO R1 R2 R3 R4 R5 R6 R7
3A00 0120 8002 2AD6 0110 80DO 0064 3BOA 3B20 3A37 3A34 015C 00B8 0000

The PSW indicates that a specification check occurred and that the translator was enabled. A

specification check indicates a boundary violation. Thus, the specification check is the cause of
the error.

2. Look at the addresses for operands 1 and 2 and determine which operand is on an

odd-byte boundary. R3 contains the address of operand 1. R4 contains the address of
operand 2.

Determining which operand is on an odd-byte boundary can help you analyze the failing
instruction.

In the sample program check message, notice that the address of operand 1 (X3A37’) is on an
odd-byte boundary.

3. Find the address of the failing instruction. Subtract the program load point (PLP) from the
address of R1. The result is the address of failing instruction.

The program load point of the sample program is X‘3A00’. The value of R1 is X‘3B0OA’. The
result of subtracting these addresses is X‘010A’.

At this point you know the address of the failing instruction and which operand is on an
odd-byte boundary.

4. Look in the compiler listing and determine if the instruction at the address you calculated in
step 3 is coded correctly.

Chapter 6. Analyzing and Isolating a Program Check PD-55

Analyzing and Isolating a Program Check

How to Analyze an Application Program Check (continued)

In the compiler listing of the sample program, a MOVE instruction is at address X‘010A”:

LocC +0 +2 +4 +6 +8

0000 0008 D7D9 D6C7 D9C1 D440 PCHK PROGRAM START
000A 0000 0120 01A0 0000 0000

0014 01A4 0000 0000 0000 0100

001E 01A2 0000 0000 0000 0000

0028 0000 0000 0000 0000 0GOO0

0032 0000

0034 4040 A DATA X'4040"
0036 0000 0000 0000 0000 0000 B DATA 100F'0"
OOFE START EQU *

OOFE 835C 0000 0036 MOVEA #1,B
0104 809C 0116 0064 DO 100

010A 015C 0000 0034 MOVE (0,#1) ,A
0110 8332 0000 0001 ADD #1,1
0116 009D 0000 0001 ENDDO

011C 0022 FFFF PROGSTOP

0120 0000 0000 0000 0234 0000 ENDPROG

012A 00DO 0000 OOFE 0120 0000
0134 0000 0000 0000 0000 0000
013E 0002 0096 0000 0000 FFFF
0148 0000 0000 014C 0000 0000
0152 O14E D7C3 C8D2 4040 4040
015C 0000 0000 0000 0000 0000
0166 0000 0000 FFFF 0000 0000
0170 0000 0000 0000 0120 0000
017A 0000 0000 0000 0000 0000
0198 0000 0000 0120 0080 00GO
01A2 0000 0000 0000 0000 0000
01B6 0000

01B8 END

In this example, the MOVE instruction and its operands are coded correctly. Because the cause
of the error is not apparent by looking the the failing instruction, you can use $DEBUG to trace
the program’s execution.

B. Atthe terminal, press the attention key and load $DEBUG. Enter the name of the
program (and volume if not on EDX002) when $DEBUG asks you for the program name
and volume.

When $DEBUG asks you for a partition, enter the number of the partition where you want
the failing program to be loaded. If you want the program loaded in the same partition as
$DEBUG, press the enter key. For the “TERMINAL” prompt, enter the terminal on
which you want $DEBUG to load the program. If you press the enter key, $DEBUG
loads the program on the terminal it is currently using.

PD-56 SC34-0639

.

0 How to Analyze an Application Program Check (continued)

In this example, $DEBUG is loaded in partition 2. The utility loads the failing program, PCHK,
in the same partition and the program and the utility share the same terminal.

6. Press the attention key and enter AT to set the first breakpoint at the address of the
program’s entry point (low address). Enter TASK when you are prompted for an option.
The entry point in the sample program is at address X‘00FE’. This sequence follows:

- 7. Set the next breakpoint at the address of the last executable instruction (high address).

O The last executable instruction of the sample program is the PROGSTOP at address
X011C.

Because you only need the trace addresses at this point, select the NOLIST and NOSTOP
options:

8. Press the attention key and enter GO.

The program will run until it program checks again. During its execution, however, $DEBUG
will display all the instruction addresses up to the point of the program check.

The following is an example of the trace addresses from the sample program:

Chapter 6. Analyzing and Isolating a Program Check PD-57

Analyzing and Isolating a Program Check

How to Analyze an Application Program Check (continued)

9. Look at the trace addresses. Notice that in the sample trace output, the instruction at
address X‘010A’ (MOVE) executed successfully the first time. However, the second time
the program executed the instruction at X‘010A’, the program failed with a program check.

The supervisor cancels the program.
Because the last instruction the program executed was at address X‘010A’, you need to reload
the program under $DEBUG, set a breakpoint at address X‘010A’, and examine index register 1
(#1). The sample program uses the index of #1 to point to the target address of the MOVE
instruction.

By examining #1 before the program executes the instruction at X‘010A’, you can determine if
#1 points to an odd-byte boundary.

10. Press the attention key and enter END to end the current $DEBUG.
11. Reload $DEBUG and specify the name of the program.

12. Press the attention key and enter AT.

13. For the sample program, reply to the prompts as follows to set a breakpoint at address
X‘010A’ and to examine #1:

14. Press the attention key and enter GO.

$DEBUG stops the program’s execution at address X‘010A’ and displays the contents of #1.
The following is an example of the output:

The value X‘1F36’ in #1 is the address in storage of the variable labeled “B”. This address gets
stored in #1 on the previous MOVEA instruction. Notice that at this point, the address for
operand 1 (#1) points to an even address (word aligned).

PD-58 SC34-0639

0 How to Analyze an Application Program Check (continued)

The trace output showed that no problem occurred the first time through the DO loop. Thus,
you can assume that some instruction after that point caused the address in #1 to point to an
odd-byte boundary.

The next sequence shows how you can identify the cause of the problem.

15. Press the attention key and enter GO.

Again $DEBUG stops the program’s execution at address X‘010A’ and displays the contents of
#1. The following sample output shows what #1 points to now:

- PCHK ~~ STOPPED AT O010A
S F1PCHK X! 1F37!

Notice that the address #1 points to is on an odd-byte boundary (X‘1F37’). Further
examination of the compiler listing shows that immediately after the MOVE instruction, the
program incremented the value in #1 by 1:

: OOFE 835C 0000 0036 MOVEA #1,B
0104 809C 0116 0064 DO 100

) 010A 015C 0000 0034 MOVE (0,#1),A
0110 8332 0000 0001 ADD #1,1

0116 009D 0000 0001 ENDDO

Because the program attempts to move a word of data and #1 points to an odd-byte boundary
(X‘1F37), the program fails with a specification check.

Although the program check message indicates that the MOVE instruction failed, the cause of
the problem is the ADD instruction at address X‘0110°.

Because the MOVE instruction attempts to move a word of data, the program should have

incremented #1 by 2. Adding 2 to #1 enables the program to receive the next word of data on a
word boundary.

Chapter 6. Analyzing and Isolating a Program Check PD-59

Analyzing and Isolating a Program Check

How to Analyze an Application Program Check (continued) ‘.@

Examining an Unmapped Storage Area for the Cause of a Program Check

PD-60

SC34-0639

An application program check can occur if a program receives invalid data. By using the LIST
command of $DEBUG, you can examine the data areas in your program to see if any of the data
in these areas is invalid. (For more information on using the LIST command of $DEBUG, refer
to the Operator Commands and Utilities Reference.) If the failing program uses unmapped
storage, you may also want to look at the data in the unmapped storage areas. This section
explains how to examine an unmapped storage area to determine the cause of an application
program check.

The sample program used in this section is named CODE. The CODE program reads a set of
addresses into unmapped storage, acquires the data at those addresses, and processes the data.
The last time CODE was loaded, however, the operator received a program check message. The
program check message from the sample program follows:

PROGRAM CHECK:
PLP TCB PSW AR AKR LSR RO R1 R2 R3 R4 R5 R6 R7
0000 095A 4002 3CBA 0330 88D0 0080 O8DE 0904 00AO 8210 025C 00B8 0000

The PSW in the message indicates that the sample program attempted to use an invalid storage

address. This error can occur if a program attempts to use an address that is outside of the

partition in which the program was loaded. It also can occur if a program refers to a storage L
address in a nonexistent partition. In addition to the software error, the PSW also shows that / \,
the translator was enabled. (See “Interpreting the Processor Status Word Bits” on page PD-47 N
for an explanation of the bit settings.)

To find the address of the failing EDL instruction, subtract the program load point (PLP) from
the contents of R1 in the program check message. The value of R1 in the program check
message is X‘O8DE’. Since the program load point for the sample program is X‘0000’, the
address of the failing EDL instruction is X‘08DE’.

0 How to Analyze an Application Program Check (continued)

In the compiler listing for the sample program, a MOVE instruction is at address X‘08DE’:

LOC +0 +2 +4 +6 +8

0000 0008 D7D9 D6C7 DOC1 D440 CODE PROGRAM START,DS=((DATA,VOL))
000Aa 0000 0104 0184 0000 0000

0014 0188 0000 0001 0000 0100

O01E 0186 0000 0000 0000 0000

0028 0000 0000 0000 0000 0000

0032 FFFF 0000 0000 0808 c4cC1

003C E3C1 4040 4040 0606 E5D6

0046 D340 4040 0000 0000 0000

0050 0000 06001 0000 0001 0000

005A 0000 0000 0000 0000 0000

O06E 0000 0000 0000 0000

0076 0000 C1C1 0000 0000 0008 BLOCK STORBLK TWOKBLK=1,MAX=2
0080 0002 FFFF 0000 0000 0090

008A 0000 0000 0000 FFFF FFFF

0094 FFFF FFFF

0098 0000 INDEX DC F'0"
0092 0000 0000 0000 0000 0000 ENTRY DC 1024F'0"
0892 0000 0000 0000 0000
089A START EQU *
089A 00B9 0076 0000 0000 0101 GETSTG BLOCK,TYPE=ALL
08A4 80B9 0076 0001 0000 0300 SWAP BLOCK, 1
08AE 035C 0000 0082 MOVE #1, BLOCK+$STORMAP
08B4 8120 0000 0008 0000 020C READ DS1, (0,41),8
08BE 0032
08CO 835C 0002 009A MOVEA #2 ENTRY
: 08C6 805C 0098 0000 809C O8FO DO 128, TIMES, INDEX=INDEX
\ 08DO 0080 8032 0098 0001
/ 08D8 045C 08E2 0000 MOVE ADDRESS, (0,#41)
08DE 025C 0000 O0SE2 MOVE (0,#2) ,%,P2=ADDRESS
08E4 8332 0000 0002 ADD $1,2
08EA 8332 0002 0002 ADD #2,2
08FO0 009D 0000 0001 ENDDO
L]
[]
L]
0946 00B9 0076 0000 0000 0201 FREESTG BLOCK, TYPE=ALL
0AO0 0022 FFFF PROGSTOP
CcopPY STOREQU

The MOVE instruction at X‘08DE’ should take a word of data from an address in storage and
place it in the data area labeled ENTRY at X‘009A’. The address of ENTRY is contained in #2.
The MOVE instruction moves data from addresses supplied by the previous MOVE instruction
at X‘08D8’. The addresses reside in the unmapped storage area obtained by the program.

From the program check message, it appears that the MOVE instruction at X‘08DE’ received a
storage address that was not in the partition in which the program was loaded. To determine if
this was the case, you first need to know the partition CODE was loaded in and the largest
storage address in that partition.

Chapter 6. Analyzing and Isolating a Program Check PD-61

Analyzing and Isolating a Program Check

How to Analyze an Application Program Check (continued) O

PD-62

SC34-0639

In this example, the operator loaded CODE in partition 2. You can find the largest storage
address in a partition by looking at the storage map for your system. The storage map appears

on the last page of the listing created when you generated your system. It also is displayed when
you IPL your system.

Look under the heading “TOTAL SIZE (HEX)” in the storage map and find the value listed for
the partition. Subtract 1 from this value to get the largest usable storage address in the partition.
For the sample system on which CODE is running, the storage map shows a total size for
partition 2 of X‘8000°. Therefore, the largest usable address in partition 2 is X‘7FFF’,

To see if the sample program attempted to gain access to a storage address greater than
X‘TFFF’, you need to look at the data in the unmapped storage area used by the program. To
examine the contents of an unmapped storage area, do the following:

1. Load $DEBUG in any available partition.
2. Enter the name of the failing program (and volume if not on EDX002).

3. When $DEBUG asks for a partition, enter the number of the partition where the utility

should load the failing program. If you want the program loaded in the same partition as
$DEBUG, press the enter key.

AN
4. For the “TERMINAL” prompt, enter the terminal on which you want $DEBUG to load the I\‘k J/

program. If you press the enter key, $DEBUG loads the program on the terminal it is
currently using.

In the following example, $DEBUG is loaded in partition 1. The utility loads the sample
program in partition 2, but $DEBUG and the program share the same terminal.

0 How to Analyze an Application Program Check (continued)

B. Press the attention key and enter AT to set a breakpoint at the address following the
instruction that reads the data into unmapped storage.

Note: If your program obtains several unmapped storage areas, you may need to trace the
execution of the program to determine what area was in use when the program check
occurred. Review the trace procedure beginning with step 6 on page PD-57.

In the sample program, the address following the READ instruction is X‘08BE’:

6. Press the attention key and enter GO.

$DEBUG displays a message when it suspends the program’s execution at the breakpoint:

7. Press the attention key and enter the LIST command. After you enter this command, do the
following:

a. For “OPTION”, enter UNMAP,

b. For “STORBLK ADDRESS”, enter the address of the STORBLK statement that
defines the unmapped storage area you want to see.

C. For “SWAP#”, enter the number of the unmapped storage area you want to see.

d. For “DISPLACEMENT?”, indicate how far from the beginning of the unmapped storage
area the utility should go before listing the contents of the area. Enter a number of
bytes (in hexadecimal). For example, if you enter 1A, $DEBUG will begin the listing
after the 26th byte in the unmapped storage area.

€. For “LENGTH”, enter the number of words, doublewords, or characters you want to
list, depending on the MODE you select. Enter a decimal number.

f. For “MODE”, enter the format you want the data to appear in.

Chapter 6. Analyzing and Isolating a Program Check PD-63

Analyzing and Isolating a Program Check

How to Analyze an Application Program Check (continued) O

PD-64

SC34-0639

The following example shows how you would list the first 256-byte record the sample program
read into unmapped storage.

Figure 8 shows how $DEBUG displays the first record of the unmapped storage area for the
CODE program.

Figure 8. Sample Listing from $DEBUG

Notice the word of data at address X‘0090’ in Figure 8. The word contains the value X‘8210’.
When the MOVE instruction in the sample program attempted to use this value as an address, it
went beyond the bounds of the partition and caused the program check.

0 How to Analyze an Application Program Check (continued)

To verify that the address caused the program check, you could replace it with a valid address
(one smaller than X“7FFF’) and see if the program runs successfully. You can replace data in
an unmapped storage area with the PATCH command of $DEBUG.

To use the PATCH command:

1. Press the attention key and enter PATCH.

2. After you enter the command, do the following:

a.

f.

For “OPTION”, enter UNMAP.

. For “STORBLK ADDRESS”, enter the address of the STORBLK statement that

defines the unmapped storage area you want to modify.

For “SWAP#”, enter the number of the unmapped storage area you want to modify.

. For “DISPLACEMENT”, indicate how far from the beginning of the unmapped storage

area the utility should go before listing the contents of the area. Enter a number of
bytes (in hexadecimal). For example, if you enter 1A, $DEBUG will begin the listing
after the 26th byte in the unmapped storage area.

. For “LENGTH”, enter the number of bytes, up to 16, that you want to modify. You

cannot modify more than 16 bytes of data at a time. Enter a decimal number.

For “MODE”, enter the format you want the data to appear in.

3. The PATCH command displays the data to be modified. Enter your new data following the
“DATA:” prompt message. Separate each word of data with a space.

If you enter less data than the amount displayed, the command pads the remaining area with
blanks (for character data) or zeros (for all other types of data).

Chapter 6. Analyzing and Isolating a Program Check ~ PD-65

Analyzing and Isolating a Program Check
How to Analyze an Application Program Check (continued) Q

4. The command displays the data you entered and issues the prompt message
“YES/NO/CONTINUE”. Respond Y to confirm the change, N to cancel the change, or
CONTINUE to confirm the change and to continue modifying data.

The following example uses the PATCH command to replace the invalid address in the
unmapped storage area with the address X‘7210°. After the change is made, program execution
is resumed by pressing the attention key and entering GO.

Some Common Causes of Application Program Checks -

Program checks in an application program are commonly caused by the following:
« PROGSTOP statement omitted in the program

« Failure to link-edit programs with external references (EXTRNSs)

« Nonexecutable statements coded within inline executable code

« Attempting to move a word of data to an odd-byte boundary

« Reading or moving data into a storage area too small to contain the data.

PD-66 sC34-0639

O

How to Analyze a System Program Check

Generally a system program check is caused by either of the following:
« An error in the assembly or link-edit of the current supervisor during system generation.
« An application program that somehow overlays a part of the supervisor in storage.

This section describes some methods you may be able to use to isolate the cause of a system
program check.

To begin analyzing the system program check, do the following:

1. Review the compiler and link-edit listings of the current supervisor for -1 completion codes.
If either of the listings do not indicate successful completion, correct the errors and perform
another system generation.

2. Try to reproduce the failure by rerunning all the programs that were active. Ensure those
programs run in the same partition they were running in when the failure occurred. While
you rerun the programs, identify which program caused the failure.

A program that was running in a partition containing supervisor code or a program doing a
cross-partition move is most likely the cause of the problem.

After determining which program caused the failure, go to the section ‘“Analyzing the
Program Causing the System Program Check.”

3.1t you determine that the cause of the failure was not due to an application program, submit

an authorized program analysis report (APAR) along with a stand-alone dump the next time
the failure occurs.

Analyzing the Program Causing the System Program Check

The program you identified as the cause of the system program check probably overlaid an area

of the supervisor. To correct the problem, you need to find the instruction in the program that
overlays the supervisor area.

This section explains two techniques you can use to isolate the cause of the failure. The

technique you use depends on the contents of the instruction address register (IAR) shown in
the system program message.

If the address shown in the IAR does not contain all zeros, review the following section. Go to

the section “Technique 2 — IAR is All Zeros™ on page PD-69 when the IAR address is all
ZEeros.

Chapter 6. Analyzing and Isolating a Program Check PD-67

Analyzing and Isolating a Program Check

How to Analyze a System Program Check (continued)

Technique 1 — IAR is Non-Zero

PD-68

SC34-0639

To isolate the problem, do the following:

1. Record the address shown for the instruction address register (IAR) in the system program
check message.

Press the Load button to re-IPL the system.
Press the attention key and enter $CP 1.

Press the attention key and enter $D .

o R~ W0 N

Enter 0000 as the origin. Enter the IAR address from step 1. Enter the number 1 for the
count.

6. Record the value displayed for that address.
7. Press the attention key and load $DEBUG.

8. Enter the name of the program you identified as the cause of the problem.
The next sequence of steps enable you to determine if the contents displayed in step 6 change
during the program’s execution. By setting breakpoints at various addresses in the program and

determining when the value from step 6 changes, you can locate the portion of the program that
causes the error.

9. Using the compiler listing of the program, select several addresses throughout the program
at which you want $DEBUG to stop the program’s execution.

10. Press the attention key and enter AT .

11. At the prompts, enter ADDR,, a breakpoint address, and the NOLIST and STOP options.

nnnnnn

amd
N
iv]
)
el
6]
1
o
172}
o
o
T3
o}
-
>
I
=]
[N
ok
-
=
@
X
I
Y
C
=
=2
=1
o
1]
=R
g}
]
=
o
19
o
o
=t
o
v
1753
]
[«]
]
2]

D
o,
>

e}
P
@
="

13. Press the attention key and enter GO.

14. When $DEBUG stops the program’s execution at the breakpoint, press the attention key
and enter $D in partition 1.

O

How to Analyze a System Program Check (continued)

15. Enter 0000 as the origin. Enter the IAR address from step 1. Enter the number 1 for the
count.

16. Determine whether the value now displayed is the same value you recorded in step 6 on
page PD-68.

17. Repeat steps 13 through 16 until you notice a value other than the value shown in step 6
on page PD-68. When you notice a different value, go to step 18.

18. In the compiler listing, look at the instructions between the last two breakpoint addresses.
One or more of the instructions within those breakpoint addresses are the instructions that
overlaid a supervisor area and caused a system program check.

19. Determine what instructions caused the failure and correct the error.

Technique 2 — IAR is All Zeros

This technique uses $DEBUG to trace the program’s execution. To isolate the problem, do the
following:

1. Press the attention key and enter $CP 1,
Press the attention key and load $DEBUG.

Enter the name of the program you identified as the cause of the problem.

AW N

. Press the attention key and enter AT to set the first breakpoint at the address of the
program’s entry point. Enter TASK when $DEBUG prompts for an option. For the low
address, enter the address of the program’s entry point.

o

Enter the address of the program’s last executable instruction as the high address.
6. Press the attention key and enter GO.

7. When the system program check occurs, the instruction that caused the failure is most likely
at one of the last few addresses shown in the trace output.

8. Examine the compiler listing and determine which instruction caused the failure.

9. Correct the error and recompile the program.

Chapter 6. Analyzing and Isolating a Program Check PD-69

Notes

PD-70 SC34-0639

C

Chapter 7. Analyzing a Failure Using a Storage
Dump

This chapter explains how you can use a storage dump created by either $TRAP or the
stand-alone dump method to analyze a failure. The discussions include how to analyze a wait
state, run loop, and a program check.

Very often when you use a dump to analyze a failure, you may have to look at control blocks to
find information about the failure. You can obtain a control block equate listing (copy code) by
including a COPY statement in your program and specifying the name of the control block you
need. The Language Reference contains a list of commonly used control block equate names.
The control block equates reside on volume ASMLIB and end with the characters “EQU”. The
Internal Design shows the control blocks in detail.

Before you begin to analyze a failure using a dump, you need to know how to interpret the

various fields shown in a dump and what they mean. The following section explains the various
fields of a dump.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-71

Analyzing a Failure Using a Storage Dump
Interpreting the Dump ﬂ

This section explains the various fields of a sample dump. $TRAP was used to produce the
sample dump presented in this section.

Some of the fields shown in a dump differ depending on whether you created the dump using
$TRAP or the stand-alone dump method. These differences are noted in the explanation of the
sample dump where appropriate. In addition, some of the fields that can appear in a dump
depend on the devices and features installed on your system.

The examples presented show how $DUMP prints the information when you select the “format

control block” option. The order in which the examples are presented is the same order the
information would appear in a dump.

Note: If you are using a processor in Extended Address Mode, see the Extended Address Mode
and Performance Analyzer User Guide for additional information on the format of the dump.

The various pieces of the dump shown in this section have numbered items. An explanation of
the numbered items follows each example.

Hardware Level and Register Contents

Figure 9 shows the first part of the dump.

El EVENT DRIVEN EXECUTIVE $TRAP FORMAT STORAGE DUMP Clj\\
e
B AT TIME OF TRAP PSW WAS 8006 ON HARDWARE LEVEL 1
B LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3 SVC-LSB SVCI-LSB
A 1ar 1FFA 2AD6 1F32 1F32 1F32 1FOA
B 2xr 0100 0110 0000 0000 0000 0000
B sk 8090 00DO 0090 0090 00CO 00CO
RO 0000 0001 0000 0000 0000 0000
R1 0000 0044 0000 0000 0000 0000
R2 02C2 02C2 0000 0000 0000 0000
R3 02B6 004D 0000 0000 0000 0000
R4 0000 0048 0000 0000 0000 0000
R5 0001 805C 0002 0003 0001 0000
R6 0000 00B8 8000 8000 8000 0000
R7 0000 0000 0000 0000 0000 0000

Figure 9. Hardware Level and Register Contents

PD-72 SC34-0639

O Interpreting the Dump (continued)

Item [fJ] as shown in Figure 9 on page PD-72 indicates what type of dump was taken. This
example indicates a $TRAP dump. If a stand-alone dump were taken, the text STAND ALONE
STORAGE DUMP would appear.

Item n indicates the value of the processor status word (PSW) and the active hardware
interrupt level. In the sample dump, the PSW value indicates X‘8006’ on hardware level 1. A
$TRAP dump always shows the value of the PSW and the active level; a stand-alone dump
never contains this line of information.

Refer to the section “How to Interpret the Processor Status Word” on page PD-47 for the
meaning of the processor status word.

The column headings at item [§J] identify six level status blocks (LSB). There is an 11-word
level status block shown for each of the system’s hardware interrupt levels (0—3). In addition,
the contents of the SVC (supervisor call) LSB and the SVCI (supervisor call immediate action)
LSB are shown.
The contents of a level status block for a particular hardware interrupt level is shown vertically
beginning with IAR and ending with R7. The fields shown for a level status block in the dump
are also displayed in a program check message.
Level 0 is inaccurate in the stand-alone dump. This is the level on which the dump program
) runs; therefore, none of the information for level 0 in a stand-alone dump is relevant to the
O problem being analyzed. However, the information shown for level 0 in a $TRAP dump is
- reliable; $TRAP saves the information for level O as well as levels 1, 2, and 3.
EDX uses the four hardware levels as follows. Level O is the highest priority level:
Level 0 — Timer interrupts and task dispatcher
Level 1 — Attention list tasks, supervisor tasks, and I/0 interrupts

Level 2 — EDL tasks with a priority of 1-255

Level 3 — EDL tasks with a priority of 256—510.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-73

Analyzing a Failure Using a Storage Dump

Interpreting the Dump (continued)

PD-74

SC34-0639

Item n shows the contents of the instruction address register (IAR). The value shown is the
address of the machine instruction currently executing.

Item [|J shows the value of the address key register (AKR). The last 3-hexadecimal digits
indicate in which address space operand 1, operand 2, and the IAR reside. Bit O of the AKR is
the equate operand spaces (EOS) bit. If bit 0 is set to 1, the address space key indicated for
operand 2 is the address space key used for both operand 1 and operand 2.

The value of the AKR for level 1 in the sample dump (X‘0110’) indicates operands 1 and 2
reside in address space 1 (partition 2). The IAR resides in address space O (partition 1).

Item [shows the value of the level status register (LSR). The bits, when set, indicate the
following:

Bits 0—4 — The status of arithmetic operations. Refer to the processor description manual
for the meanings of these bits.

Bit 8 — Program is in supervisor state.
Bit 9 — Priority level is in process.
Bit 10 — Class interrupt tracing is active.

Bit 11 — Interrupt processing is allowed.

Bits 5—7 and bits 12—15 are not used and are always zero.

The LSR value (X‘00D0’) for level 1 in the sample dump indicates that bits 8, 9, and 11 are set.

Item [g§ shows the contents of general-purpose registers RO through R7 for each hardware
interrupt level.

For programs written in EDL, the contents of these registers are described as follows. If the
program were written in a language other than EDL, refer to the user’s guide for that language
to determine the register usage.

RO

R2

R3

R4

Because the supervisor uses this register as a work register, the contents are usually not
significant to the failing program.

The address in siorage of the failing EDL instruction.
The address in storage of the active task control block (TCB).
The address in storage of EDL operand 1 of the failing instruction.

The address in storage of EDL operand 2 (if applicable) of the failing instruction.

O

Interpreting the Dump (continued)

R5 The EDL operation code of the failing instruction. The first byte contains flag bits which
indicate how operands are coded. For example, the flag bits indicate whether the operand

is in #1, #2, or specified as a constant. The second byte is the operation code of the EDL
instruction.

R6 Because the supervisor uses this register as a work register, the contents are usually not
significant to the failing program. However, you can determine if the system was
emulating EDL code when the failure occurred if R6 is twice the value shown in the
second byte of RS5. For example, if the second byte of R5 contained X‘32’ and the system
was emulating EDL, R6 would contain X‘0064°.

R7 Because the supervisor uses this register as a work register, the contents are usually not
significant to the failing program.

If the hardware registers in your dump do not follow the EDL register conventions previously
discussed, you should examine the IAR and the AKR.

The IAR contains the address of the last machine instruction the system executed when the
failure occurred. The AKR tells you in which address space the IAR resides.

To determine where the program failed, you must check the AKR for the correct address space
(partition) and check the IAR to find out what was executing at that address.

Look in the supervisor link map from system generation and see if the IAR address is within one
of the supervisor modules. If that IAR address appears in the link map, the name of the module
that contains the IAR address may give you a clue as to what function was executing when the
failure occurred.

Since register usage can vary from one supervisor module to another, the contents of each
register may or may not be meaningful to you. You should, however, check the contents of each
register.

Sometimes a register may point to a control block. For example, if R3 points to a terminal
control block (CCB), you can assume that the program was doing terminal I/O when the failure
occurred.

Sometimes the supervisor uses a register (R7 in many cases) for a branch and link instruction.
The address in R7 may give you a clue as to which function passed control to the current IAR
address.

If the address shown in the IAR is within your program, subtract the program load point from

the TAR. Using the resulting address, look in the compiler listing and/or link-edit listing of that
program and determine which instruction is at that address and why it failed.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-75

Analyzing a Failure Using a Storage Dump
Interpreting the Dump (continued) @

Floating-Point Registers and Exception Information

Figure 10 shows the next part of the sample dump.

n FRO FFDF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFF FFFF 0000 0000 0000 0000 FFFF FFFF

FR1 FFFF FFFF FFFF FFDF 0000 0010 0000 0000
0000 0080 0000 0000 0000 0008 0000 0000

FR2 0O0ODD FFFF FFFF FFFF FFFF FFFF FFFF FFFE
FFFF FFFF 0000 0000 0000 0000 FFFF FFFF

FR3 FFFF FFFF FFFF FFFF 0000 0000 0000 0000
0020 0000 0000 0000 0000 0008 0080 0000

n MACHINE/PROGRAM CHECK LOG BUFFER -~ LATEST ENTRY PRINTS LAST

S/EAK TCBA PSW SAR IAR AKR LSR RO R1 R2 R3 R4 R5 R6 R7
0100 0120 8006 B437 2AD6 0000 80DO 0064 850A B520 B437 B434 015C 00B8 0000

Figure 10. Floating-point Registers and Exception Information

Item [fJ] shows the contents of the floating-point registers (FRO—FR3) for each hardware level.
This information is printed if the system has the floating-point feature installed.

Item [fJ shows entries from the system’s software trace table, CIRCBUFF (if included during
system generation). The system uses the software trace table to record any program and AN

machine-check entries that occurred since the last IPL. The software trace table is described in \k);‘“
greater detail in Chapter 8, “Tracing Exception Information” on page PD-107. ;

O

PD-76 SC34-0639

O

Interpreting the Dump (continued)

The 2-byte S/EAK field indicates a state variable and an error address key.
The state variable (first byte) can be one of the following values:

0 — No interrupt in process

1 — Standard processing (the default value)

2 — Now processing task error exit

3 — Undefined.

The error address key (second byte) is the address key (1 plus this value is the partition number)
that was in use when the error occurred.

The SAR (storage address register) field indicates the address in storage last accessed when the
failure occurred.

The remaining fields shown in item] also appear in a program check message.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-77

Analyzing a Failure Using a Storage Dump

Interpreting the Dump (continued) (}

Segmentation Registers

PD-78

SC34-0639

Item ffj in Figure 11 shows the next part of the dump which contains the segmentation registers.
In this example, the segmentation registers indicate a system with four partitions and no
supervisor mapping across partitions. The partitions are 64K each.

The heading ADSO represents partition 1, ADS1 represents partition 2, and so on, up through
ADS7 which represents partition 8.

The leftmost column (BLOCK) shows the addresses mapped for each segmentation register.
Each segmentation register maps 2K of storage. The segmentation registers are listed below
each address space (ADS) heading.

STORAGE SEGMENTATION REGISTERS:
BLOCK ADSO ADS1 ADS2 ADS3 ADS4 ADS5 ADS6 ADS7

0000 0004 0104 0204 0304
0800 000C 010C 020C 030C
1000 0014 0114 0214 0314
1800 001C 011C 021C 031C
2000 0024 0124 0224 0324
2800 002C 012C 022C 032C
3000 0034 0134 0234 0334
3800 003C 013C 023C 033C

4000 0044 0144 0244 0344 («f\
4800 004C 014C 024C 034C N
5000 0054 0154 0254 0354 =

5800 005C 015C 025C 035C
6000 0064 0164 0264 0364
6800 006C 016C 026C 036C
7000 0074 0174 0274 0374
7800 007C 017C 027C 037C
8000 0084 0184 0284 0384
8800 008C 018C 028C 038C
9000 0094 0194 0294 0394
9800 009C 019C 029C 039C
AOOO 00A4 O1A4 02A4 O3A4
A800 00AC O1AC 02AC 0O3AC
BOOO 00B4 01B4 02B4 O3B4
B80O O0OBC 01BC 02BC 03BC
C000 00C4 01C4 02C4 03cC4
C800 00CcC 01Ccc 02CCc 03cc
DOO0OO 00D4 01D4 02D4 03D4
D800 00DC 01DC 02DC 03DC
EOOO OOE4 O1E4 0O2E4 O3E4
E800 OOEC 01EC 0O2EC O3EC
FOO0O O0OF4 O1F4 O2F4 O0O3F4
F800 OOFC 01FC 0O2FC O03FC

Figure 11. Segmentation Registers of a Four-partition System

O

Interpreting the Dump (continued)

Figure 12 shows another example of the segmentation registers in which the supervisor is

mapped across three partitions.

EDX maps partitions starting at address X‘0000’. As shown in Figure 12 , address spaces 0 and
1 both have 32 segmentation registers mapped. Address space 2 contains only 10 segmentation

registers.

Because the first five segmentation registers in each partition are identical (up to item [in
Figure 12), you can see that the first 10K of the supervisor in partition 1 is mapped across each
partition. Mapping the partitions in this manner leaves partitions 1 and 2 with 54K of storage
and partition 3 with 10K of storage which can be used for either supervisor code or application

programs.

STORAGE SEGMENTATION REGISTERS:

BLOCK

0000
0800
1000
1800
2000

[1] 2800

3000
3800
4000
4800
5000
5800
6000
6800
7000
7800
8000
8800
9000
9800
A000
A800
B0OOO
B80O
C000
€800
D000
D800
EOOO
E800
F000
F800

ADSO

0004
oooc
0014
001C
0024

002C
0034
003C
0044
004c
0054
005C
0064
006C
0074
007cC
0084
008cC
0094
009cC
00A4
0oAacC
O0OB4
00BC
0oc4
oocc
00D4
0opc
OOCE4
O0EC
OOF4
O0FC

ADS1

0004
000cC
0014
001C
0024

0104
010C
0114
011cC
0124
012C
0134
013C
0144
014c
0154
015C
0164
01e6C
0174
017C
0184
018C
0194
019cC
0124
01AC
01B4
01BC
01ca
o1cc
01b4

ADS2 ADS3 ADS4 ADS5 ADS6 ADS7

0004
0ooc
0014
001C
0024

01DC
01E4
01EC
01F4
O1FC

Figure 12. Segmentation Registers with Supervisor Mapped Across Partitions

Chapter 7. Analyzing a Failure Using a Storage Dump

PD-79

Analyzing a Failure Using a Storage Dump

Interpreting the Dump (continued)

Storage Map

PD-80

SC34-0639

The next section of the sample dump shows the activity in each partition when the dump was
taken. This part is called the storage map.

STORAGE MAP: [H $sYScoM AT ADDRESS 19C6
EDXFLAGS 4000 SVCFLAGS 1000
[} PaRT# NAME ADDR PAGES ATASK TCB(S)
15| p1 ADS=0 0000 256
16 $TRAP B400 23 C9E4(A) (964
$FSEDIT CBOO 31 E8AC
FREE EAOO 22
P2 ADS=1 0000 256 1 9|
16 SAMPLA 0000 4 02C2(aA) 0242 01A6 010E 0072
FREE 0400 252
P3 ADS=2 0000 256
$SMURON 0000 5 038A
$DISKUTI1 0500 59 2FF6(A) 2F76
**FREE* * 4000 192
m P4 ADS=3 0000 256 YN
**FREE* * 0000 256 *‘)
e

Figure 13. Storage Map

Item [R] in Figure 13 shows the address (X‘19C6’) of the system common area, $SYSCOM (if
specified during system generation).

Item) is the EDXFLAGS field. The first two digits (40) shown for this field represent the
version and modification level of the supervisor. The dump programs do not use the third digit.
The last digit (0) indicates the program temporary fix (PTF) level.

Item , SVCFLAGS, contains status information. The bits, when set, indicate the following:

« Bit 0 — Supervisor busy

« Bit 1 — Interrupt address (IA) buffer active

« Bit 2 — Dequeue request

« Bit 3 — Floating-point hardware

« Bit4 — A task is active

« Bit 5 — Remote IPL through Communications Facility
e Bit 6 — WAITM posting in progress

« Bit 7 — Single partition supervisor

« Bit 8 — Supervisor initialization complete

« Bit 9 — Copy of SMEMDISK active

¢ Bit 10 — Extended Address Mode support active.

O

Interpreting the Dump (continued)

Bits 11—15 are not used. The value shown in the example, X‘1000’, indicates floating-point
hardware is installed.

The column headings at item [Jf] mean the following:
PART# Partition number.

NAME Program name.

ADDR Program load point address.

PAGES The size of the address space (partition) or program in pages. A page is 256 bytes in
length. Programs loaded for execution always begin on a page boundary.

ATASK The task control block (TCB) address of the attention list task, if one exists. Task
control block addresses of attention list tasks also have (A) beside the address.

TCB(S) The task control block addresses in a task chain. The first address in the task chain is
always the main task.

Item fJ§ indicates that partition 1 (address space 0) begins at address X‘0000’ and is 256 pages
in length (64K). Because the whole supervisor resides in partition 1 in this example, the load
point of the first program in this partition, $TRAP, begins at address X‘B400’. $TRAP is shown
at item ffJ. The dump also shows that STRAP is 23 pages in length.

The TCB address X‘C9E4’ is the address of $TRAP’s attention list task. The main TCB for
$TRAP is at address X‘C964".

Item fF] indicates the free space in partition 1 beginning at address X‘EA00Q’. The 22 pages of
free storage are contiguous.

Item [indicates the program SAMPLA is loaded at address X‘0000’ in partition 2 (address
space 1). SAMPLA has an attention list task at address X‘02C2’. Also notice that the TCB
chain shows the addresses of four task control blocks (item m). The task control block at
address X‘0242’ is the main TCB for SAMPLA. The program SAMPLA consists of five task
control blocks.

Task control block addresses shown on the TCB chain are the addresses of the tasks defined
within the main program. If the main program attaches a task that was link-edited to the main
program, and the ATTACH instruction has CHAIN=NO, the address of that task does not
appear on the TCB chain.

Because the load point of SAMPLA is at address X‘0000’, all addresses shown for these tasks
would be identical to the compiler listing of SAMPLA.

Item BJJ shows that no programs are running in partition 4 (address space 3) and that there are
256 pages of free contiguous storage.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-81

Analyzing a Failure Using a Storage Dump

Interpreting the Dump (continued) @

Level Table and TCB Ready Chain

PD-82

SC34-0639

Figure 14 shows the next part of the sample dump.

m EDX LEVEL TABLE - TCB READY CHAIN

LEVEL ACTIVE READY (TCB-ADS)
2 2} 1 02C2-1 NONE
2 NONE 010E-1 0242-1

3 NONE NONE

m LOADER QCB CUR-TCB CHAIN (TCB-ADS)
94F4 FFFF NONE NONE

Figure 14. Level Table and Task Ready Chain

Item pY] shows the level table and TCB ready chain. The level table keeps pointers to the
currently active tasks, all ready tasks for levels 1, 2, and 3, and the address space key in which
the tasks reside.

Item pF} shows an active TCB on level 1 at address X‘02C2’. The -1 that appears beside this i
address indicates the address space. Notice also that for level 1, there are no TCBs on the ready N

chain. \‘k;/ 1

The active TCB at address X‘02C?2’ belongs to the attention list task in partition 2 for program
SAMPLA (item [in Figure 13 on page PD-80).

Item PF] shows no tasks active on level 2 and two tasks on the ready chain. Notice that these
two ready tasks are in address space 1 (partition 2).

The TCB at address X‘010E’ will be the first task on level 2 to become active if no other task on
level 1 or level 2 (with a higher priority) becomes active. Also notice that these two ready tasks
reside in program SAMPLA (item fF] in Figure 13 on page PD-80).

Item m shows the address (X‘94F4’) of the loader queue control block (QCB). This address is
the entry point of LOADQCB in the resident loader. This entry point appears in the supervisor
link map from system generation.

The value X‘FFFF’ indicates that no tasks are enqueued. If programs were being loaded, this
value would be X‘0000’ and the address of a TCB would be shown.

Q

Q Interpreting the Dump (continued)

Terminal Device Information

Figure 15 shows the terminals defined in the supervisor (item EJ).

TERMINAL LIST:

m NAME CCB ID IODA FEAT QCB CUR-TCB CHAIN

CDRVTA O9FA FFFF 0040 0800 FFFF NONE NONE
CDRVTB OBAA FFFF 0000 0000 FFFF NONE NONE

m $SYSLOG 0D84 0406 0004 0400 0000 EB8AC-0 NONE
TERM2 OF5E O40E 0024 0400 0000 02C2-1 NONE
TERM3 1138 O40E 0025 0400 0000 2F76-2 NONE
$SYSPRTR 131C 0306 0021 0020 FFFF NONE NONE
MPRTR 1534 0206 0001 0020 FFFF NONE NONE
T3101 177A 2816 0058 0440 FFFF NONE

Figure 15. Terminal Device Information

The column
NAME

CCB
C .
IODA
FEAT

QCB

CUR-TCB

CHAIN

headings at item pfJ mean the following:
The label on the TERMINAL statement for this device.
The address of the terminal control block (CCB).

This value identifies the type of terminal. The values shown also appear when you
issue the LD or LS commands of $IOTEST. The value X‘FFFF’ as shown in item
indicates that both CDRVTA and CDRVTB are virtual terminals.

The device address specified on the TERMINAL statement. For virtual terminals,
ignore any addresses that appear under this heading.

This value indicates the device characteristics defined at system generation, such as
output pause or spoolable device.

The queue control block (QCB) for the terminal. The value X‘FFFF’ indicates that
no task has enqueued the terminal. If the value were X‘0000’ as shown in item EJj,
a task has enqueued the terminal. For example, the task control block at address
X‘E8AC’ in address space 0 (partition 1) belongs to $FSEDIT as shown in the
storage map (Figure 13 on page PD-80).

The address of the task control block and address space of the task currently
enqueued on the terminal.

The task control block chain. If a task issued an ENQT to any of these terminals
while the terminal is currently enqueued by a different task, the TCB address and

address space of the task attempting to enqueue that terminal would appear on the
chain.

Chapter 7. Analyzing a Failure Using a Storage Dump PD-83

Analyzing a Failure Using a Storage Dump

Interpreting the Dump (continued) @

Disk, Diskette, and Tape Device Information

PD-84

SC34-0639

Information on disk, diskette, and tape devices is presented in Figure 16 , which is the next
portion of the dump.

These three device types have volume directory entry (VDE) and device data block (DDB)
information listed. The VDE and DDB information is listed under separate headings in the
dump. Because of the interrelationship between the VDE and the DDB, the meanings of the
headings are explained first.

DISK (ETTE) /TAPE VDE :

m VDE NAME DDB FLAGS QCB CUR-TCB CHAIN (TCB-ADS)

ERl o06DC *DDE* 0738 0800 FFFF NONE NONE
070A EDX002 0738 8000 FFFF NONE NONE
07F0 *DDE* 081E 2900 FFFF NONE NONE

DDB IODA DEVID DSCB~> TASK DSCB-CHAIN

0738 0003 OOCA 94A6-0 O8DE NONE
081E 0002 0106 CA5A-0 O8DE NONE

Figure 16. Disk, Diskette, and Tape Device Information

AN
The column headings for the volume directory entry are shown at item P and mean the b
following: S
VDE The volume descriptor entry (VDE) control block describes a volume on disk,

diskette, or tape. One VDE is created for each DISK or TAPE statement specified
during system generation. If the VOLNAME= operand is coded, one additional
VDE is generated for each performance volume.

NAME The name of the volume. The first VDE for each device is identified as *DDE*. If
you coded the VOLNAME= operand on the DISK statement, the performance
volumes you specified for the device also appear here.

DDB The device data block (DDB) describes the physical disk, diskette, or tape device.
One DDB is created for each device.

FLAGS This value indicates information about the volume such as performance volume,
diskette, or disk directory.

QCB The queue control block (QCB) for the disk, diskette, or tape device. The value
X‘FFFF’ indicates that no task has enqueued the device. If the value is X‘0000’, a
task has enqueued the device.

CUR-TCB The task control block address and address space of the task currently enqueued on
the device.

O

Interpreting the Dump (continued)

CHAIN The task control block chain. If a task attempts to enqueue any of these devices
while that device is currently enqueued by a different task, the TCB address and
address space of the task attempting to enqueue the device would appear on the
chain.

The column headings for the device data block (DDB) are shown at item Ff§ and mean the
following:

DDB The device data block (DDB) describes the physical disk, diskette, or tape
device. One DDB is created for each device.

IODA The device address.

DEVID The value identifies the type of device. The values shown also appear when

you issue the LD or LS commands of $IOTEST.

DSCB-> A pointer to the data set control block (DSCB) that is currently performing
1/0.
TASK The address of the disk task TCB. If TASK=YES <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>