
- - ------- - ---- - --- - ---- - - ----------_ .- Series/1

SC34-0637-0

Event Driven Executive
Language Programming Guide
Version 5.0

Library Guide and
Common Index

SC34-0645

Language
Reference

SC34-0643

Operation Guide

SC34.Q642

Problem
Determination
Guide

SC34-0639

Installation and
System Generation
Guide

SC34·0646

Communications
Guide

SC34·0638

Event Driven
Language
Programming Guide

SC34·0637

Customization
Guide

SC34-0635

.,

Operator Commands
and
Utilities Reference

SC34·0644

Messages and
Codes

SC34.Q636

Reference
Cards

SBOF·1625

Internal
Design

LY34·0354

--------- - ----.--- -. ---- - - --------------, -

SC34-0637-0

Event Driven Executive
Language Programming Guide
Version 5.0

o

o

Event Driven
Language
Programming Guide

SC34-0637

Series/1

First Edition (December 1984)

Use this publication only for the purpose stated in the Preface.

Changes are made periodically to the information herein; any such changes will be
reported in subsequent revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your
country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or the IBM branch office
serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form
for readers' comments is provided at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, Information
Development, 3406, P. O. Box 1328, Boca Raton, Florida 33432. IBM may use or
distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corporation 1984

o

o

o

Summary of Changes for Version 5.0

The following additions and changes have been made to this document:

•

•

A new section has been added to Chapter 7, Finding and Fixing Errors, that shows you how
to display unmapped storage.

Chapter 19, Writing Reentrant Code, has been added. It describes how to write reentrant
EDL programs and routines.

Much of the information that was contained in Appendix C, Static Screens and Device
Considerations has been incorporated into Chapter 8, Reading and Writing Data from
Screens.

Summary of Changes for Version 5.0 iii

o

o

o
iv SC34-0637

o

o

()

Audience

About This Book

This book contains an introduction to the Event Driven Language.

Chapters 1 through 8 of this book are intended for the application programmer who is coding in
the Event Driven Language for the first time. Readers should be familiar with basic data
processing terminology and concepts, such as input, output, and data sets.

Chapters 9 through 19 are intended for application programmers who need information about
such advanced topics as multitasking, data management from a program, communicating with
other programs, writing reentrant programs, and writing graphics or sensor 110 programs.

This book does not contain a description of all Event Driven Language instructions. For a
description of all Event Driven Language instructions, refer to the Language Reference.

How This Book is Organized

This book contains nineteen chapters and three appendixes:

• Chapter 1. Getting Started describes the steps necessary to develop and run a simple Event
Driven Language (EDL) program.

About This Book v

About This Book
How This Book is Organized (continued)

vi SC34-0637

Chapter 2. Writing a Source Program tells how to use EDL instructions to do such things as
read data, write data, convert data, and manipulate data.

• Chapter 3. Entering a Source Program tells how to use the full-screen editor to enter and
modify a source program.

• Chapter 4. Compiling a Source Program shows how to use the Event Driven Language
compiler to translate a source program to object code.

• Chapter 5. Preparing Object Code for Execution shows how to use the linkage editor to
prepare an object program for execution.

• Chapter 6. Executing a Program describes how to run a program that has been compiled and
link-edited.

• Chapter 7. Finding and Fixing Errors describes a tool you can use to diagnose program logic
errors and exception conditions.

Chapter 8. Reading and Writing Data from Screens shows how to read and write data from
display terminals. The chapter defines roll screens and static screens and describes how to
write programs that interact with the operator.

Chapter 9. Designing Complex Programs defines what a program and a task are and describes
multitasking, subroutines, program overlays, segment overlays, and unmapped storage.

• Chapter 10. Performing Data Management from an Application Program describes various
ways to do data management from a program. The chapter describes how to allocate,
delete, rename, and open a data set. In addition, the chapter shows how to set the logical
end of file, add records to a tape data set, and find device type from a program.

Chapter 11. Coding Programs That Use Tape tells how to read to and write from a magnetic
tape data set.

Chapter 12. Communicating with Another Program (Cross Partition Services) shows how
programs can interact with each other, either within the same partition or between
partitions.

• Chapter 13. Communicating with Other Programs (Virtual Terminals) shows how one program
can load another program and how the programs can interact with each other.

• Chapter 14. Designing and Coding Sensor I/O Programs describes digital and analog
input/ output and shows how to read and write to sensor I/O devices.

• Chapter 15. Designing and Coding Graphic Programs shows how to code the instructions that
produce graphic messages and draw curves on a display terminal.

• Chapter 16. Controlling Spooling from a Program describes how a program can control
printed output.

" 0 "·

o How This Book is Organized (continued)

o

Chapter 17. Creating, Storage and Retrieving Program Messages shows how to save storage
or coding time by creating messages than can be used by more than one program.

• Chapter 18. Queue Processing shows how to create queues, store data in queues, and retrieve
data from queues.

• Chapter 19. Writing Reentrant Code shows how to design and write EDL programs that are
reentrant.

Appendix A. Tape Labels shows the layout of tape labels.

• Appendix B. Interrupt Processing describes the interrupts that occur when a program interacts
with a terminal.

Appendix C. Static Screens and Device Considerations provides reference information on
defining logical screens, $IMAGE subroutines, and the $UNPACK and $P ACK
subroutines.

Aids in Using This Book

This book provides the following aids to assist you in using this book:

A glossary which defines abbreviations and terms

An index of topics covered in this book.

A Guide to the Library

Refer to the Library Guide and Common Index for information on the design and structure of the
Event Driven Executive library and for a bibliography of related publications.

Contacting I BM about Problems with Event Driven Executive Services

You can inform IBM of any inaccuracies or problems you find when using this book by
completing and mailing the Reader's Comment Form provided in the back of this book.

If you have a problem with the Series/l Event Driven Executive services, fill out an authorized
program analysis report (AP AR) form as described in the IBM Series/1 Software Service Guide,
GC34-0099.

About This Book vii

o

o
viii SC34-0637

o

o

o

Chapter .t. Getting Started PG-l
Designing a Program PG-2
Coding the Program PG-3

Starting the Program PG-3
Defining Your Data PG-4
Retrieving Data PG-4
Processing the Data PG-5
Obtaining the Results PG-5
Ending the Program PG-6

Entering the Source Program into a Data Set PG-7
Compiling Your Source Program PG-13

Checking Your Compiler Listing PG-19
Creating a Load Module PG-20
Running Your Program PG-23

Chapter 2. Writing a Source Program PG-27
Beginning the Program PG-28

Defining the Primary Task PG-28
Identifying Data Sets to be Used in Your Program PG-28

Reserving Storage PG-29
Reserving Storage for Integers PG-29
Defining Floating-Point Values PG-30
Defining Character Strings PG-31
Assigning a Value to a Symbol PG-32
Defining an Input/Output Area PG-33

Reading Data into a Data Area PG-34
Reading Data from Disk or Diskette PG-35
Reading Data from Tape PG-36
Reading from a Terminal PG-36

Contents

Contents ix

Contents

x SC34-0637

Moving Data PG-38
Converting Data PG-39

Converting to an EBCDIC Character String PG-39
Converting to Binary PG-40
Converting from Floating Point to Integer PG-42
Converting from Integer to Floating Point PG-42
Checking for Conversion Errors PG-43

Manipulating Data PG-44
Manipulating Integer Data PG-44
Manipulating Floating-Point Data PG-49
Manipulating Logical Data PG-53

Writing Data from a Data Area PG-57
Writing Data to Disk or Diskette PG-57
Writing Data to Tape PG-58
Writing to a Terminal PG-59

Controlling Program Logic PG-60
Relational Operators PG-60
The IF Instruction PG-61
The Program Loop PG-62
Branching to Another Location PG-64

Ending the Program PG-65

Chapter 3. Entering a Source Program PG-67
Invoking the Editor PG-67
Creating aNew Data Set PG-68
Saving Your Data Set PG-70
Modifying an Existing Data Set PG-71

Changing a Line PG-71
Inserting a Line PG-7 2
Deleting a Line PG-73
Moving Lines PG-75

Chapter 4. Compiling a Program PG-77
Allocating Data Sets PG-78
Running the Compilation PG-82

Checking Your Compiler Listing and Correcting Errors PG-84
Rerunning the Compilation PG-86

Chapter 5. Preparing an Object Module for Execution PG-89
Link-Editing a Single Object Module PG-90
Link-Editing More Than One Object Module PG-92

U sing Interactive Mode PG-94
Using N oninteractive Mode PG-I00

Pre finding Data Sets and Overlays PG-I0 1

Chapter 6. Executing a Program PG-I03
Executing a Program with the Session Manager PG-I04

Specifying Data Sets PG-I05

o

o

o

o

o

0·" "

Submitting a Program from Another Program PG-I07

Chapter 7. Finding and Fixing Errors PG-I09
Determining Logic Errors in a Program PG-I09

Creating and Running the Program PG-II0
Debugging and Fixing the Program PG-lll
Displaying Unmapped Storage PG-117

Using Return Codes to Diagnose Problems PG-122
Diagnosing Errors with ACCA Devices PG-123

Task Error Exit Routines PG-124
The System-Supplied Task Error Exit Routine ($$EDXIT) PG-124

Chapter 8. Reading and Writing Data from Screens PG-127
When to Use Roll Screens PG-128
When to Use Static Screens PG-128
Differences Between Static Screens and Roll Screens PG-129
Reading and Writing One Line at a Time PG-130

Reserving Storage for the Data PG-130
Reading a Data Item PG-130
Writing (Displaying) a Data Item PG-131
Example PG-131

Two Ways to Use Static Screens PG-132
Coding the Screen within a Program PG-133

Defining a Screen as Static PG-134
Getting Exclusive Access to the Terminal PG-134
Erasing the Screen PG-134
Reserving Storage PG-135
Prompting the Operator for a Data Item PG-135
Positioning the Cursor PG-135
Waiting for a Response PG-136
Reading a Data Item PG-136
Writing a Data Item PG-136
Example PG-137

Transferring an Entire Screen Image at Once PG-139
Defining Protected and Unprotected Fields PG-139
Defining the Screen PG-140
Erasing the Screen PG-140
Constructing a Screen Image PG-140
Reading a Series of Data Items PG-141
Releasing the Terminal PG-141
Example PG-141

Writing the Screen Image to a Data Set PG-144
Creating a Screen PG-145
Defining the Screen as Static PG-146
Reading the Screen Image into a Buffer PG-147
Getting Exclusive Access to the Terminal PG-148
Displaying the Screen and Positioning the Cursor PG-148
Reserving Storage for Data PG-149

Contents xi

Contents

xii SC34-0637

Waiting for a Response PG-149
Reading a Data Item PG-1S0
Writing a Data Item PG-1S0
Link-Editing the Program PG-1S1
Example PG ... lS2

Designing Device-Independent Static Screens PG-1S4
Compatibility Limitation PG-1S S
Coding for Device Independence PG-1S6
Using the $IMAGE Subroutines for Device Independence

Reading and Writing to a 3101 Display Terminal PG-161
Characteristics of the Terminal PG-162
Design Considerations PG-163
Defining the Format of the Screen PG-164
Enqueuing the Screen PG-16S
Changing the Attribute Byte PG-16S
Erasing the Screen PG-16S
Protecting the First Field PG-166
Creating Unprotected Fields PG-167
Creating Protected Fields PG-167
Writing a Nondisplay Field PG-168
Reading a Data Item PG-168
Writing a Blinking Field PG-169
Erasing an Individual Field PG-169
Blanking a Blinking Field PG-170
Writing More Than One Data Item PG-170
Prompting the Operator for Data PG-171
Changing the Attribute Byte to a Protected Blank PG-171
Displaying a Nondisplay Field PG-172
Creating a New Unprotected Field PG-172
Reading Modified Data PG-172
Erasing to the End of the Screen PG-17 S
Reading All Unprotected Data PG-17 S
Writing a Data Item PG-176
Reading a Data Item PG-176
Example PG-177

Chapter 9. Designing Programs PG-183
What Is a Task? PG-183

Initiating a Task PG-184
What Is a Program? PG-18S
Creating a Single-Task Program PG-18S
Creating a Multitask Program PG-187

Synchronizing Tasks PG-188
Defining and Calling Subroutines PG-189

Defining a Subroutine PG-189
Calling a Subroutine PG-190

Reusing Storage using Overlays PG-193
Using Overlay Segments PG-193

o

PG-1S8

o

o

o

Overlay Programs PG-196
Using Large Amounts of Storage (Unmapped Storage) PG-198

What Is Unmapped Storage? PG-198
Setting up Unmapped Storage PG-198
Obtaining Unmapped Storage PG-198
Using an Unmapped Storage Area PG-199
Releasing Unmapped Storage PG-199
Example PG-200

Chapter 10. Performing Data Management from a Program PG-203
Allocating, Deleting, Opening, and Renaming a Data Set PG-204

When to Use $DISKUT3 PG-205
Allocating a Data Set PG-206
Opening a Data Set PG-208
Deleting a Data Set PG-210
Releasing Unused Space in a Data Set PG-212
Renaming a Data Set PG-214
Setting End-of-Data on a Data Set PG-216
Performing More Than One Operation at Once PG-218

Opening a Data Set (DSOPEN) PG-220
DSOPEN Example PG-222
Coding for Volume Independence PG-226

Setting Logical End of File (SETEOD) PG-228
Finding the Device Type (EXTRACT) PG-230

Chapter 11. Reading and Writing to Tape PG-231
What Is a Standard-Label Tape? PG-231
What Is a Nonlabeled Tape? PG-232
Processing Standard-Label Tapes PG-232

Reading a Standard-Label Tape PG-232
Writing a Standard-Label Tape·· PG-233
Closing Standard-Label Tapes' . PG-234
Bypassing Labels PG-234
Processing a Tape Containing More than One Data Set PG-236
Reading a Multivolume DataSet PG-237

Processing Nonlabeled Tapes PG-238
Defining a Nonlabeled Tape PG-239
Initializing a NQnlabeled Tape PG-240
Reading a Non1~beled Tape PG-241
Writing a Nonlabeled Tape PG-242

Adding Records to a Tape File (UPDATE) PG-242

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-245
Loading Other Programs PG-246
Finding Other Programs PG-249
Starting Other Tasks PG-250
Sharing Resources with the ENQ/DEQ Instructions PG-252
Synchronizing Tasks in Other Partitions PG-254

Contents xiii

Contents

xiv SC34-0637

Moving Data Across Partitions PG-256
Reading Data across Partitions PG-258

Chapter 13. Communicating with Other Programs (Virtual Terminals) PG-261
Defining Virtual Terminals PG-262
Loading from a Virtual Terminal PG-263
Interprogram Dialogue PG-263
Sample Program PG-264

Chapter 14. Designing and Coding Sensor I/O Programs PG-265
What is Digital Input/Output? PG-265
What is Analog Input/Output? PG-266
What are Sensor-Based I/O Assignments? PG-268
Coding Sensor-Based Instructions PG-269

Providing Addressability (IODEF) PG-269
Specifying I/O Operations (SBIO) PG-271

Chapter 15. Designing and Coding Graphic Programs PG-283
Graphics Instructions PG-283
The Plot Control Block PG-285
Example PG-286

Chapter 16. Controlling Spooling from a Program PG-289
What Is Spooling? PG-289
Spooling the Output of a Program PG-290

The Spool-Control Record PG-290
Executing the Example PG-291

Printing Output That Has Been Spooled PG-295
Stopping Spooling PG-295
Determining Whether Spooling Is Active PG-296
Preventing Spooling PG-297

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-299
Creating a Data Set for Source Messages PG-300

Coding Messages with Variable Fields PG-300
Sample Source Message Data Set PG-302

Formatting and Storing Source Messages (using $MSGUTl) PG-303
Retrieving Messages PG-304

Defining the Location of a Message Data Set PG-305
The MESSAGE instruction PG-306
The GETV ALUE, QUESTION, and READ TEXT Instructions PG-307

Sample Program PG-308

Chapter 18. Queue Processing PG-3ll
Defining a Queue PG-311
Putting Data into a Queue PG-312
Retrieving Data from a Queue PG-312
Example PG-313

o

o

o

o

o

Chapter 19. Writing Reentrant Code PG-315
When to Use Reentrant Code PG-316
Coding Guidelines PG-316
Examples PG-318

Example 1 PG-318
Example 2 PG-322

Appendix A. Tape Labels PG-329

Appendix B. Interrupt Processing PG-331
Interrupt Keys PG-331

The Attention Key PG-331
Program Function (PF) Keys PG-332
Enter Key PG-332

Instructions that Process Interrupts PG-332
The READTEXT and GETV ALUE Instructions PG-332
The WAIT KEY Instruction PG-333
The ATTNLIST Instruction PG-333

Advance Input PG-334

Appendix C. Static Screens and Device Considerations PG-335
Defining Logical Screens PG-335

Using TERMINAL to Define a Logical Screen PG-335
Using IOCB and ENQT to Define a Logical Screen PG-336
Structure of the IOCB PG-337

$IMAGE Subroutines PG-338
$IMOPEN Subroutine PG-340
$IMDEFN Subroutine PG-342
$IMPROT Subroutine PG-344
$IMDATA Subroutine PG-346
Screen Image Buffer Sizes PG-347
Example of Using $IMAGE Subroutines PG-348

$UNPACK and $PACK Subroutines PG-350
$UNPACK Subroutine PG-350
$p ACK Subroutine PG-352

Glossary of Terms and Abbreviations PG-353

Index PG-363

Contents xv

o
xvi SC34-0637

o

Figures

1. Single-Task Application Example PG-186
2. Multitask Program Structure PG-187
3. Application Overlay Segments PG-193
4. Overlay Segments in Series/1 Storage PG-194
5. EDL Overlay Programs PG-196 o 6. EDL Overlay Programs in Series/1 Storage PG-197
7. Sensor Device Connections PG-267
8. Sensor-Based Symbolic I/O Assignment PG-268
9. Graphics Program Output PG-288

10. Compressed Data Format PG-351

o
Figures xvii

o

o
xviii SC34-0637

o

o

o

Chapter 1. Getting Started

This chapter is intended for people who have never coded an Event Driven Language (EDL)
program. It describes the steps necessary to develop and run a simple program on the Series/I.
Specifically, this chapter shows you how to design, code, enter, compile, link-edit, and execute
an EDL program.

Using a simple example program, we will show you all these steps. You may want to enter and
run this program on your Series/Ito gain hands-on experience.

Each of the major steps in the development and execution of an EDL program are covered in
greater detail later in this book. The following chart describes these steps and shows you where
the material is covered.

Write the source program

Enter the source program

Compile the source program

Link-edit the program

Run the program

Find and fix errors

Write a source program that does such things as read data,
manipulate data, and write data (Chapter 2).

Enter the source program by using the session manager to
build a data set (Chapter 3).

Compile your source program (Chapter 4).

Produce an executable load module (Chapter 5).

Cause your program to run or "execute" (Chapter 6).

Use the $DEBUG utility or a task error exit routine to help
you locate and correct any problems in your program
(Chapter 7).

Chapter 1. Getting Started PG-l

Getting Started

If you are familiar with EDL and the EDX operating system, skip this chapter and go to
Chapter 2.

Designing a Program

PG-2 SC34-0637

The first step in the development of any program is the design of the program. You must be
able to describe what you want the program to accomplish.

Typically, a program reads some data, processes the data, and writes the results. The sample
program we have chosen does all of these things. The program requests that an operator enter a
number at the terminal. That number is added to a storage area ten times, and the results are
displayed on the terminal screen.

Here are some questions you should ask when you plan a program. We have shown how we
answered those questions in our sample program.

Questions

Where is the data coming from and
what form will it take? '

What do you want to do with the
data and in what order do you want
to process the data?

Where do you print or record the
results?

In our program

The data is a number that the
operator enters at the terminal.

The number that is entered from the
terminal will be added ten times to a
storage area that you define.

The results are displayed on the
terminal screen.

In the next section, we will show you how to implement this design in an EDL program.

o

o

o

()

o

Coding the Program

On the next few pages, we will show you how the design of this program was implemented. We
will build the program step by step. We will not describe every possible operand of the
instructions we use. (Operands for every EDL instruction are fully described in the Language
Reference.)

The instructions and statements that make up a program are called the source program. They
have the following general format:

I label operation operands

where these terms have the following meanings:

label

operation

operands

The name you assign an instruction or statement. You can use this name in your
program to refer to that specific instruction or statement. In most cases, the
label is optional. Labels must begin in column 1; must begin with a letter or one
of the special characters $, #, or @; and must be 1 to 8 characters long.

The name of the instruction or statement you are coding. The operation can
begin in column 2 and cannot extend beyond column 71.

The data that is required to do an operation, or information on how the system is
to perform the operation.

To continue a line of code on the next line, place any nonblank character in column 72 and
continue the next line in column 16.

Starting the Program

Any EDL program begins with the PROGRAM statement.

A PROGRAM statement defines the address or label of the first instruction to be executed. The
PROGRAM statement also defines the name of the primary task of the program. (EDL
programs may consist of multiple tasks. In our sample program, the primary task is the only task
of the program.)

Our program statement looks like this:

ADD10 PROGRAM STPGM

ADDIO is the task name of the primary (and only) task.

STPGM is the label of the first instruction to be executed.

Chapter 1. Getting Started PG-3

Getting Started
Coding the Program (continued)

Defining Your Data

Retrieving Data

PG-4 SC34-0637

The program needs two data areas: one to hold the input and one to hold the results of the
process. Use the DATA statement to reserve storage for data.

ADD10

COUNT
SUM

PROGRAM

DATA
DATA

STPGM

F'O'
FlO'

These DATA statements indicate that the reserved areas are type F (for fullword) and that the
initial value of the areas is O. In the Series/I, a "fullword" contains two bytes (16 bits).

Since DATA statements do not cause any action to occur, place them either before the first
instruction or after the last instruction.

The next step is to get input data into the program. In this program, we use a GETV ALUE
instruction to get the data.

ADD10
STPGM

COUNT
SUM

PROGRAM
GETVALUE

DATA
DATA

STPGM
COUNT, 'ENTER NUMBER: '

F'O'
F'O'

When the GETV ALUE instruction executes, the message "ENTER NUMBER: " appears on
the terminal screen. When someone enters a number and presses the ENTER key, the system
stores the number in the data area called COUNT.

o

o

o Coding the Program (continued)

o

o

Processing the Data

This program is going to add the number that is entered from the terminal to the contents of
storage area SUM. You need an ADD instruction to perform the addition. The number is going
to be added to COUNT ten times. So the ADD instruction is placed inside a DO loop, which
consists of a DO instruction and an ENDDO instruction. The DO instruction indicates how
many times the instructions (in this case, an ADD instruction) is to be executed.

ADD10
STPGM
LOOP

COUNT
SUM

Obtaining the Results

PROGRAM
GETVALUE
DO

ADD
ENDDO

DATA
DATA

STPGM
COUNT, 'ENTER NUMBER: '
10,TIMES
SUM, COUNT

F'O'
F'O'

At this point, the program includes instructions to read data and process the data. To print the
results, you use two instructions: PRINTEXT and PRINTNUM.

ADD10
STPGM
LOOP

COUNT
SUM

PROGRAM
GETVALUE
DO

ADD
ENDDO
PRINTEXT
PRINTNUM

DATA
DATA

STPGM
COUNT, 'ENTER NUMBER: '
10,TIMES
SUM, COUNT

'@RESULT='
SUM

F'O'
F'O'

The PRINTEXT instruction will print "RESULT =" on the terminal screen. The" @" symbol
will cause "RESULT =" to be printed on a new line on the terminal screen. The PRINTNUM
instruction will print the results of the process, which is stored in the SUM data area.

Chapter 1. Getting Started PG-S

Getting Started
Coding the Program (continued)

Ending the Program

PG-6 SC34:'0637

The program needs three more statements to be complete. The PROGSTOP statement stops
the program. You code PROGSTOP after the last executable instruction in the program.

All EDL programs must end with the ENDPROG and END statements.

The completed program looks like this:

ADD10
STPGM
LOOP

COUNT
SUM

PROGRAM
GETVALUE
DO

ADD
ENDDO
PRINTEXT
PRINTNUM
PROGSTOP
DATA
DATA
ENDPROG
END

STPGM
COUNT, 'ENTER NUMBER: '
10,TIMES

SUM,COUNT

'@RESULT='
SUM

F'O'
F'O'

The next step is to enter your program into a data set. We will show you how to use the session
manager to enter the source program. The session manager provides a series of menus to help
you enter a source program. This section shows you how to enter our sample program. For
more information on entering a source program, see Chapter 3, "Entering a Source Program" on
page PG-67.

0, I.

I

o

o Entering the Source Program into a Data Set

o

o

All the steps for entering the source program into a data set are listed below. If you want to
actually enter the sample source program, follow the numbered steps.

To invoke the session manager on your terminal:

1. Press the attention key.

2. Type $L $SMMAIN.

3. Press the enter key.

When you press the enter key, the logon screen appears:

$SMMLOG: THIS TERMINAL IS LOGGED ON TO THE SESSION MANAGER-------------
09:55:31

ENTER 1-4 CHAR USER 10 ==> 10/24/82
(ENTER LOGOFF TO EXIT)

ALTERNATE SESSION MENU ==>
(OPTIONAL)

To begin a session:

1. Type a unique user identification (called a user ID). The user id can be one to four
characters long.

2. Press the enter key.

This chapter uses ABeD as the user ID.

Chapter 1. Getting Started PG-7

Getting Started
Entering the Source Program into a Data Set (continued)

PG-8 SC34-0637

The Primary Option Menu appears on the screen. To enter a source program into a data set,
select option 1 (TEXT EDITING).

r.",,':' 'TExT: ".EOI:T1NG.',',
2~ PROGJU\MPREPARAn ON
3-:> OAT~'MANAGE~E NT
4.- ,TERMI NAL ,.UT IL I T IE S
S""GRAPHICS UTlUTIES
6, ~EXECPROGRAM1UTJLITY

'7"'" EXEC, $JoBunCPROC
8,..· COMMUNI CATFONUTIL I TIES
9';" DIAGNOSTIC AloS

10 ,';'BACKGROUN:O, JOffCONTROL ,UT I LITrES

1. Type Ion the SELECT OPTION line.

2. Press the enter key.

,.1 'I 0'11

o

o

o

o

Entering the Source Program into a Data Set (continued)

The $FSEDIT PRIMARY OPTION MENU appears on the screen. Use option 2 (EDIT) to
create a new data set.

$FSEDIT PRIMARY OPTION MENU ----------.. --~--.,.----- ... ----.,.---.,.-STATUS = INIT
. PRESS PFl TO EXIT

OPTION ===> 2

DATASET NAME =========>
VOLUME NAME ==========>

HOST DATASET ========>

(CURRENTLY IN WORK FILE)

ENTER A VOLUME NAME AND PRESS ENTER FOR A DIRECTORY LIST.

1 ---- BROWSE
2 ---- EDIT
3 ---- READ (HOST/NATIVE)
4 ---- WRITE (HOST/NATIVE)
5 ---- SUBMIT
6 ---- PRINT
7 ---- MERGE
8 ---- END
9 ---- HELP

1. Type 2 on the OPTION line.

2. Press the enter key.

Chapter 1. Getting Started PG-9

Getting Started
Entering the Source Program into a Data Set (continued) o

Your data set then appears. This is where you will type the source program.

To enter the source program, do the following:

1. Type the first line of code.

2. Press the enter key to cause a blank entry line to appear.

3. Type the next line of code.

4. Press the enter key.

5. Repeat steps 3 and 4 until you have entered the entire source program.

6. When you finish entering the source program, move the cursor to the COMMAND INPUT r~\
line and type M (for "menu"). ~i

7. Press the enter key.

o
PG-IO SC34-0637

o

o

o

Entering the Source Program into a Data Set (continued)

The $FSEDIT PRIMARY OPTION MENU appears again.

The next step is to write the data set to a volume. When you write the data set, you copy the
data set from the temporary data set that $FSEDIT has been using. The data set name we have
chosen is ADDI0 and the volume name is EDX002. Select option 4 (WRITE) to write the data
set to a volume.

$FSEDIT PRIMARY OPTION MENU -,.------------------------;..-..:STATUS.=MOD.IFIED
PRESSPF3TO EXIT

OPTION ===> 4

DATASET NAME =========> ADD10
VOLUME NAME ==========> EDX002

HOST DATASET ========>

(CURRENTLY I~ WORK DATASET)

ENTER A VOLUME NAME AND PRESS ENTER FOR A DIRECTORY LIST.

1 ---- BROWSE
2 ---- EDIT
3 ---- READ (HOST/NATIVE)
4 ---- WRITE (HOST/NATIVE)
5 --,.;... SUBM IT
6---- PRINT
7 ---- MERGE
8 ---- END
9 ---- HELP

1. Type 4 on the OPTION line.

2. Type ADDIO on the DATASET NAME line.

3. Type EDX002 on the VOLUME NAME line.

4. Press the enter key.

The prompt:

tRITETQ AD 01 Q ON . EDXQOt ty IN)?

appears on the bottom of the screen. Type Y and press the enter key.

j

Chapter 1. Getting Started PG-ll

Getting Started
Entering the Source Program into a Data Set (continued)

PG-12 SC34-0637

The message:

appears on the bottom of the screen. This message means that your source program is 12 lines
long and has been written to volume EDX002.

Now that you have entered and written the source program to a data set, return to the Session
Manager Primary Option Menu.

$FSED IT. PR I MARY OPT! ON MENU ----------------- .. ------~----STATUS = SAVED
PRESS PF3 TO EXIT

OPT I ON ===> 8

DATASET NAME =========>
VOLUME NAME ==========>

HOST DATASET ========>

(CURRENTLY IN WORK FILE)

ENTER A VOLUME NAME AND PRESS ENTER FORA DIRECTORY LIST.

1 ---- BROWSE
2 - ... -- EDIT
3 ---- READ (HOST/NATIVE)
4 ~--- WRITE (HOST/NATIVE)
5 ---- SUBMIT
6---- PRINT
7 ---- MERGE
8 ---- END
9 ---- HELP

1. Type 8 on the. OPTION line.

2. Press the enter key.

o

o

o

o

Compiling Your Source Program

Now that you have coded and entered the source program into a data set, the next step is to
compile it into object code. Object code is code that the computer can read. To compile the
source program, use $EDXASM, the EDX compiler. This section shows you how to compile the
sample program. For more information on compiling a source program, see Chapter
4, "Compiling a Program" on page PG-77.

Before you actually begin to compile, you must allocate a data set to hold the output (the object
code). Start by selecting option 3 (DATA MANAGEMENT).

$SMMPRIM: SESSION MANAGER PRIMARY OPTION MENU ------------------------­
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

10:42:07
SELECT OPTION ==> 3 10/24/82

1 - TEXT EDITING
2 - PROGRAM PREPARATION
3 - DATA MANAGEMENT
4 - TERMINAL UTILITIES
5 - GRAPHICS UTILITIES
6 - EXEC PROGRAM/UTILITY
7 ~ EXEC $JOBUTIL PROC
8 - COMMUNICATION UTILITIES
9 - DIAGNOSTIC AIDS

10 - BACKGROUND JOB CONTROL UTILITIES

1. Type 30n the SELECT OPTION line.

2. Press the enter key.

ABeD

Chapter 1. Getting Started PG-13

Getting Started
Compiling Your Source Program (continued)

PG-14 SC34-0637

The Data Management Option Menu appears on the screen. To allocate your object code data
set, select option 1 ($DISKUT1).

; ;".:'. ,,,, .' ~; ;

:l:~~$H~i~KLJf:i ::;(~ I~S'~GE:fri~') \'AL ~OC:~'1":E·~.:~~i:strD.I,REG.T6k~;r:
;' ... ' ·/Z:·;~·$D).S~UTZ.&PJS.lStE!T~l::PQ.~.PALJS.r:QATA~~T~): .. :., .

· ..).: ~:' ·:$~.9.P,YU:-tl.:(jj.i~.K:(':ET:~~)': '. C.ogX :.·.QATAS.EI:SIVPLVMES.J
'# •••• -:<$COMPRE'S·. (Ol ~~~E!t.E:l::.~OM~:J{ES~· ·A:~01..UME) ' .
5-$COPY(tHSK:fETTE}:COPYDATASET~I\lOI.:UME~)·.· .

. 6·· .. ···"-·:$PASOI·· . ;;(DISKJET"E}·.S·URF~C~ .".1 N frfA!.. FZAT10N)·::·
· 7 .;.$INI.TOSK (Dr.SK(EtTEJINrUALIZEIVER,1 FV:)

a""$MO\lE\lOL (CQPY. DISK '.' VOLUME TO •• MULTI";DI SKETTES)
9.0;>'$1 AMUT1 (INDEXED ACCESS' METHOD UTILITY PROGRAM)

10 - $:tAPEUT1 (TAPE ALLOCATE,CHANGE, COpy)
11 ... $HXUTl (A-EXCHANGE PATASETUT ILITY) .

WHEN ~NTERINGTHESEUT ILITIE~,fHE. USER' 'ISEXPECTED
l'OENTE~ACOMMAND.: .1 F AQ.U~STI ONMARK(?) JS ENTE'RED
}'NSTEAQ ... wOFACOMMAND't TtiEUSE.R W IlX. BE pR,ESENTEDWITH

· A, L Is:r :.OFAVA ILAaLECOMMA.NDS~ . . '.

1. Type 1 on the SELECT OPTION line.

2. Press the enter key.

o

o Compiling Your Source Program (continued)

o

o

The $DISKUTI utility prompts you for the command and for information about the data set you
want to create. Use the AL (allocate) command. Call the data set that will hold the object code
ADDOBJ. Allocate a 25-record data set and use the default data type.

LOADING $DISKUTl 59P,11:00:00, LP=~200, PART= 1

$DISKUTl - DATA SET MANAGEMENT UTILITY

USING VOLUME EDX002

COMMAND (?): AL
MEMBER NAME: ADDOBJ
HOW MANY RECORDS? 25
DEFAULT TYPE = DATA - OK (YIN)? Y
ADDOBJ CREATED

COMMAND (?): EN

1. Type AL on the COMMAND (?) line.

2. Press the enter key.

3. Type ADDOBJ on the MEMBER NAME line.

4. Press the enter key.

5. Type 25 next to the HOW MANY RECORDS? prompt.

6. Press the enter key.

7. Type Y next to the DEFAULT TYPE = DATA - OK (YIN)? prompt.

8. Press the enter key.

A message appears telling you that the ADDOBJ data set has been created. Enter the EN (end)
command to return to the Data Management Option Menu screen.

1. Type EN next to the COMMAND (?) prompt.

2. Press the enter key.

The next step is to return to the Session Manager Primary Option Menu to begin the compile.
To return to that menu, press the PF3 key.

Chapter 1. Getting Started PG-15

Getting Started
Compiling Your Source Program (continued)

PG-16 SC34-0637

From the Session Manager Primary Option Menu, select option 2 (PROGRAM
PREPARATION) to begin the compile step.

r"',TEXTED:HLNG
2 ... PROGRAM' PREP~RATION

, . 3 ~ DATA. MANAGEMENT
4 ... TERMI NALUrfCI TIES
5 ;..···GRAPH ICS UTILITIES

"6-EXtC'PROGRAM/UT ILllY
7- EXEC$JOBUTILPRoe
8 - COMMUNI CAT ION UT I UllES
9 - DIAGNOST Ie A.I OS

10 - BACKG.ROUND . JOB CONTROL UTILITIES

1. Type 2 on the SELECT OPTION line.

2. Press the enter key.

o

o

o

o

o

Compiling Your Source Program (continued)

The Program Preparation Option Menu appears on your screen. To compile the source
program, select option 1 ($EDXASM COMPILER).

$SMM02 SESSION MANAGER PROGRAM PREPARATION OPTION MENU---------~---------­
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPT I ON ==> 1

1 - $EDXASM COMPILER
2 - $EDXASM/$EDXLINK
3 - $SlASM ASSEMBLER
4 - $COBOL COMPILER
5 - $FORT FORTRAN COMPILER
6 - $PLI COMPILER/$EDXLINK
7 - $EDXLINKLINKAGE EDITOR
8 - $XPSLINK LINKAGE EDITOR FOR SUPERVISORS
9 - $UPDATE

10 - $UPDATEH (HOST)
11 - $PREFIND
12 - $PASCAL COMPILER/$EDXLINK
13 - $EDXASM/$XPSLINK FOR SUPERVISORS
14 - $MSGUTl MESSAGE SOURCE PROCESSING UTILITY

1. Type 10n the SELECT OPTION line.

2. Press the enter key.

Chapter 1. Getting Started PG-17

Getting Started
Compiling Your Source Program (continued)

PG-18 SC34-0637

The $EDXASM Parameter Input Menu appears on your screen. You must enter the name of
your source program (data set ADDIO on volume EDX002) and your object output (data set
ADDOBJ on volume EDX002).

1. Type ADDIO,EDX002 next to SOURCE INPUT (NAME,VOLUME).

2. Type ADDOBJ,EDX002 next to OBJECT OUTPUT (NAME,VOLUME).

3. Press the enter key.

$EDXASM then compiles the source program into object code and puts the object code into
data set ADDOBJ. This data set is used as input in the next step, "Creating a Load Module."

The information listed under DEFAULT PARAMETERS means that the compiler will print a
listing of the program on the system printer, $SYSPRTR.

o

o

o Compiling Your Source Program (continued)

As the compilation runs, the following appears on your screen.

LOADING $JOBUTIL 4P,11:21:25, LP= 9400, PART=
REMARK
ASSEMBLE ADD10,EDX002 TO ADDOBJ,EDX002
*** JOB - $EDXASM - STARTED AT 11:21:56 00/00/00 ***
JOB $EDXASM ($SMP0201) USERID=ABCD
LOADING $EDXASM 78p,11:22:28, LP= 9800, PART=

ASSEMBLY STARTED 1 OVERLAY AREA ACTIVE
COMPLETION CODE = -1

$EDXASM ENDED AT 11:22:55

$JOBUTIL ENDED AT 11:22:56

PRESS ENTER KEY TO RETURN

If the screen gets filled up before displaying PRESS ENTER KEY TO RETURN, press the
enter key.

A completion code of -1 means that your compilation completed successfully. Any completion
code other than -1 means the program did not compile successfully.

C Checking Your Compiler Listing

o

The compiler prints a listing that consists of statistics, source code statements and object code,
undefined or external symbols, and a completion code.

If you do not receive a completion code of -1, check your listing for errors, fix them in your
source data set, and rerun the compilation. For information on fixing compiler errors, see
"Checking Your Compiler Listing and Correcting Errors" on page PG-84.

If you receive a completion code of -1, do the following:

1. Press the enter key to return to the $EDXASM Parameter Input Menu.

2. Press the PF3 key to return to the Program Preparation Option Menu.

Chapter 1. Getting Started PG-19

Getting Started
Creating a Load Module

PG-20 SC34-0637

The last step is creating a load module. A load module is a program that is ready to run or
"execute" on the system. In this example, we use the linkage editor, $EDXLINK, to create the
load module. $EDXLINK LINKAGE EDITOR is option 7 on the Program Preparation Option
Menu.

,.'$:St'U~02'.,· .SE?SIONMANA'GER'PR'OGRAt'f PREPARATION <O#T I()NMENU-'~"~·~.~·",~~-~",;~·-~-~'~---
. ENTER/SELECT PARAMETERS!~ \':

" ' ". ". ."

SEL.ECrOP:TtON=-:=:> 7

L,.. .$EOX:ASMCOMPI(ER
2 -$EDXASM/$EDXlINK
l-$SlASMASSEMBLER
4 ~$COBOLCOMPILER
5- $FORT·FORTRAN·COMPILER
6 ·..;$PL '.COMP ILER($EDXLI NK
7 - $EDXLINK LINKAGE EDrTOR
8 - $:XPSLINK LINKAGE EDITOR FOR SUPERVISORS
9 -$UPDATE

10 -$UPDATEH (HOST)
11 - $PREFIND
12- $PASCALCOMP ILER/$EDXLlNK
13 ,..$EDXASM/$XPSLINK FOR SUPERVISORS
14 - $MSGUTlMESSAGE SOURCE PROCESS ING UTILITY

1. Type 70n the SELECT OPTION line.

2. Press the enter key.

o

o

o Creating a Load Module (continued)

o

o

The $EDXLINK Parameter Input Menu appears on your screen. Enter an asterisk (*) next to
EXECUTION P ARM to indicate that you want the system to prompt you for linkage editor
statements.

$SMM0207: SESSION MANAGER $EDXLINK PARAMETER INPUT MENU-~-~-----~-----~-----­
ENTER/SELECT PARAMETERS: PRESSPF3 TO RETURN

EXECUTION PARM ==> *

ENTER A CONTROL DATA SET NAME,VOLUME OR
AN ASTERISK (*) FOR lNTERACTIVE MODE.

OUTPUT DEVICE (DEFAULTS TO $SYSPRTR) ==>

FOREGROUND OR BACKGROUND (F/B) =~>
(DEFAULT IS FOREGROUND)

1. Type an asterisk on the EXECUTION P ARM line.

2. Press the enter key.

Chapter 1. Getting Started PG-21

Getting Started
Creating a Load Module (continued)

PG-22 SC34-0637

$EDXLINK displays the following screen:

STMT (7):

Next, enter an INCLUDE statement to indicate which object module to use. (Remember, the
object module is ADDOBJ.) Then, enter a LINK statement to indicate the name of the output
data set. When you enter the name of this data set (in this case, ADDPGM), the system
allocates the data set.

1. Type INCLUDE ADDOBJ,EDX002 next to STMT (?).

2. Press the enter key.

3. Type LINK ADDPGM,EDX002 next to STMT (?).

4. Press the enter key.

After the system indicates that the link-edit is successful, return to the Primary Option Menu to
execute your program. To return to the Primary Option Menu:

1. Type EN next to STMT (?).

2. Press the enter key.

3. Press the PF3 key to return to the Program Preparation Option Menu.

4. Press the PF3 key again.

o

o

o

o

o

Running Your Program

To run (or execute) your program, select option 6 (EXEC PROGRAM/UTILITY).

$SMMPRIM: SESSION MAN~GER PRIMARY OPTION MENU ----------------------------­
ENTER/SELECT PARAMETE~S: PRESS PF3 TO EXIT

SELECT OPTION ==> 6

1 - TEXT EDITING
2 - PROGRAM PREPARATION
3 - DATA MANAGEMENT
4 - TERMINAL UTILITIES
5 - GRAPHICS UTILITIES
6 - EXEC PROGRAM/UTILITY
7 - EXEC $JOBUTIL PROC
8 - COMMUNICATION UTILITIES
9 - DIAGNOSTIC AIDS

10 - BACKGROUND JOB CONTROL UTILITIES

1. Type 6 on the SELECT OPTION line.

2. Press the enter key.

11:42:07
10/24/82
ABCD

Chapter 1. Getting Started PG-23

Getting Started
Running Your Program (continued)

PG-24 SC34-0637

The Execute Program/Utility menu appears. You must enter the program name (ADDPGM)
and volume (EDX002). Then, type asterisks (*) next to the data sets not used.

'DATA. SEt 1 (NAME,VOLUME.'/*='.os.fNOTU$EIY) ,,=:===>
DATASET2.(NAME"VOLUME!u*=:OS2 ~OT USE.o)===:;:>.'
O,ATASETlX NAME, VOLUME I *=,053 Nor USED) ",,==~

fOREGROUND OR..BACKGROVND (F/S}.=:=>
(DEFAULT IS FOREGROUND)

NOTE: IF A DATA SET (051,052 OR DS3) IS NOT USED,
AN ASTERISK (*) MUST BE ENTERED IN THE DATA SET FIELD.

1. Type ADDPGM,EDX002next to PROGRAM/UTILITY (NAME,VOLUME).

2. Type an asterisk in the DATA SET 1, DATA SET 2, and DATA SET 3 fields.

3. Press the enter key.

o

o

o Running Your Program (continued)

o

o

The following text appears on the terminal:

LOADING $JOBUTIL 4P,11:48:21, LP= 9400, PART= 1
REMARK
EXECUTE PROGRAM/UTiliTY: ADDPGM
*** JOB - ADDPGM - STARTED AT 11:48:22 11/14/82 ***
JOB ADDPGM ($SMP06) USERID=ABCD
LOADING ADDPGM 2P,11:48:23, LP= 9800, PART= 1
ENTER NUMBER:

The program displays ENTER NUMBER on the screen and waits for you to enter a number.
(Remember that "ENTER NUMBER" was coded on the GETVALUE instruction.)

1. Type 5 next to ENTER NUMBER.

2. Press the enter key.

LOADING ADDPGM 2P,11:48:55, LP= 9800, PART= 1
ENTER NUMBER: 5

RESULT= 50
ADDPGM ENDED AT 11:48:57

$JOBUTIL ENDED AT 11:48:58

PRESS ENTER KEY TO RETURN

The program displays the results of the processing. The program:

1. Stored the number you entered (5) in an area called COUNT.

2. Added the value of COUNT to the value of SUM, which was initialized to O.

3. Added the two values 10 times.

4. Displayed the result (RESULT= 50) on the terminal screen.

The PRINTEXT instruction displayed RESULT =. The PRINTNUM instruction displayed the
value of SUM (50).

Chapter 1. Getting Started PG-25

Notes

o

o
PG-26 SC34-0637

o

o

o

Chapter 2. Writing a Source Program

This chapter tells how to use the EDL instructions to handle the basic functions of the language:
reading and writing data, data conversions, and data manipulation (such as moving, adding, and
subtracting.)

This chapter discusses the following topics:

• Beginning the program

• Reserving storage

Reading data into a data area

Moving data

• Converting data

Manipulating data

• Writing data from a data area

Controlling program logic

Ending the program.

All the instructions are discussed in detail in the Language Reference. This chapter lists the
instructions by function and discusses only a subset of them.

Chapter 2. Writing a Source Program PG-27

Writing a Source Program
Beginning the Program

The first statement in every EDL program must be a PROGRAM statement. The PROGRAM
statement defines several things about the program to the Event Driven Executive, only two of
which are discussed in this section.

Defining the Primary Task

Two important functions of the PROGRAM statement are to define the "primary task" and
provide the label of the first "executable instruction."

The primary task is the first task the system starts when you invoke the program.

An executable instruction causes some action to take place. For example, instructions that read,
write, move, or perform arithmetic operations are executable instructions.

The following example shows a program with task name TASKl. Its first executable instruction
is at location ST ARTl.

TASK1 PROGRAM START1

Identifying Data Sets to be Used in Your Program

PG-28 SC34-0637

Another important function of the PROGRAM statement is to identify the data sets that a
program will use.

The DS= keyword operand of the PROGRAM statement allows you to identify up to nine data
sets that the program can use. A keyword operand usually contains an equal (=) sign. The
"keyword" to the left of the equal sign identifies what information you are supplying. The
keyword operand must appear, of course, exactly as the system expects it. For example, if you
code the DS= operand as SD=, the system would not recognize it. The advantage of keyword
operands is that you can code them in any order.

When you specify data set names in the PROGRAM statement, the system opens the data sets
when you load the program.

When the program executes, all data sets must already exist. One way to allocate data sets is
with the $DISKUTl utility.

If a program uses one data set and the data set resides on the IPL volume, the PROGRAM
statement might look like this:

UPDATE PROGRAM START1,DS=TRANS

The program uses data set TRANS on the IPL volume.

I I',' 0 1

o

o

o

Beginning the Program (continued)

If a program uses more than one data set and the data sets all reside on the IPL volume, the
DS= operand would contain one set of parentheses as follows:

UPDATE PROGRAM START1,DS=(TRANS,MASTIN,MASTOUT)

The program uses data sets TRANS, MASTIN, and MASTOUT on the IPL volume.

If the data resides on a volume other than the IPL volume, two sets of parentheses are required.
For example:

TASK1 PROGRAM START1,DS=«DATA1,MYVOL) ,MASTER)

The program uses data set DATAl on volume MYVOL and data set MASTER on the IPL
volume.

Reserving Storage

This section shows how to reserve storage for arithmetic values or character strings.

EDL allows you to define arithmetic values in two ways: as "integer" data or as
"floating-point" data. Integer data consists of positive and negative numbers with no decimal
point. Floating-point data consists of positive and negative numbers that can have decimal
points.

For example, you can define the number 7 as either a floating-point number or an integer. To
define the number 7.5, however, you must define it as a floating-point number.

Reserving Storage for Integers

To reserve storage for an integer, you can use either the DATA or DC statement. The following
DATA statement, for example, defines a storage area for a 2-byte signed integer.

NODOGS DATA F'O'

NODOGS is the name or label of the storage area. This type of storage area is often called a
variable. The F defines a fullword (two bytes) and '0' assigns an initial value of zero to the
area.

To set up more than one I-word area in one statement, you can use the duplication factor. The
statement:

FITABLE DATA 1SF'O'

reserves fifteen I-word areas and assigns a zero to each.

Chapter 2. Writing a Source Program PG-29

Writing a Source Program
Reserving Storage (continued)

You can use the areas called NODOGS and FIT ABLE in data manipulation instructions such as
ADD and SUBTRACT.

Assigning an Initial Value

To assign an initial value, enclose the value in apostrophes as follows:

FIM DATA F'S280'

The storage area called FIM will contain the decimal value 5280 throughout the execution of
your program, unless you change it.

You can also assign a hexadecimal value to a storage area. For example:

XFIM DATA X'14AO'

XFIM contains the hexadecimal value '14AO' (decimal 5280).

Defining a Halfword or Doubleword Data Area

You can also define a halfword (1-byte) or double word (4-byte) data area. The following
statements reserve storage for halfword integers:

MSIX
SHVAR

DATA H'-6'
DATA H'O'

MSIX contains the value of minus 6.

To reserve four bytes of storage, define a data area as follows:

QTRMIL
LNGVAR

DATA D'2S0000'
DATA D'O'

QTRMIL occupies a double word (4 bytes) of storage and contains an initial value of 250,000
(decimal).

Defining Floating-Point Values

PG-30 SC34-0637

To define floating-point values, you can use either the DATA or DC statement. How large the
number is determines how you define the storage. If the number falls between 10-76 and 1076

and contains less than seven significant digits, you can define a single-precision floating-point
data area. Each single-precision floating-point number requires 4 bytes of storage.

The following DATA statement defines a storage area for a single-precision floating-point
number.

NETPAY DATA E'OOO.OO'

NETP A Y is the name of the storage area. The E defines a floating-point data area and assigns
it an initial value of zero.

o

o

o

o

o

Reserving Storage (continued)

To set up more than one floating-point data area, you can use the duplication factor. The
statement

NPTAB DATA 12E'OOO.OO'

reserves storage for twelve 4-byte floating-point data areas and assigns an initial value of zero to
each.

Assigning an Initial Value

To assign an initial value to a floating point data area, enclose the value in apostrophes as
follows:

PI DATA E'3.14159'

PI contains the decimal value 3.14159.

You can also express the exponent for a floating-point data area as in the following examples:

PIE DATA E'.314159E1'
PIE2 DATA E'314.159E-2'

Defining an Extended-Precision Data Area

If a floating-point number requires more than 6 and fewer than 15 significant digits, you must
use extended-precision floating point. Each extended-precision floating-point number requires 8
bytes of storage.

The following DATA statements define storage areas for extended-precision floating-point
numbers:

MSMNT DATA L'O.OOO'
MYCELLS DATA L'15063842E12'

Defining Character Strings

To define character strings, you can use either the DATA or DC statement. The following
DATA statement defines a storage area for a 6-byte character string:

NAME DATA C'TILTON'

NAME is the name or label of the storage area. The length of the storage area is the number of
characters inside the apostrophes.

If you want an area of blanks, you can use the duplication factor:

BLNKS DATA 10C' ,

BLNKS is an area of 10 blanks.

Chapter 2. Writing a Source Program PG-31

Writing a Source Program
Reserving Storage (continued)

To set up an area that contains a character string followed by blanks, define the storage area like
this:

DOLCON DATA CL4'$$'

DOLCON contains two dollar signs ($$) followed by two blanks.

Assigning a Value to a Symbol

PG-32 SC34-0637

The EQU statement assigns a value to a symbol. You can use the symbol (the label on the EQU
statement) as an operand in other instructions wherever symbols are allowed. If you use a label
as an operand in an EQU statement, you must have defined it previously.

For example, you cannot code:

ABLE EQU BAKER

unless you have previously defined BAKER.

The following example assigns the word value X'0002' to A.

A EQU 2

If you refer to the equated value with its label, the system assumes you are referring to a storage
location. For example, if you use A in the following instruction:

MOVE B,A

the system moves the word at address 0002 to B.

If, however, you want to use the equated value as the number 2, you must precede the label with
a plus sign (+) as follows:

MOVE B,+A

This instruction moves 2 to B.

The next example assigns the word value of A to B.

B EQU A

o

o

o

o Reserving Storage (continued)

0

The following example shows how you can use the equated symbols in a program: ..
B
II ..
II A

II B
C ..

B

II ..
II

II

MOVE C,A
MOVE C,+A
MOVE C,+B
MOVE C,+A, (1,BYTE)

EQU 2
EQU A
DATA F

Move the contents of address 0002 to C.

Move X'0002' to C.

Move X'0002' to C .

Move the leftmost byte of the word value X'0002' (X'OO') to C.

Define A with a word value of X'0002'.

Assign B the value of A (X'0002').

Defining an Input/Output Area

To define an area to read into or to write from, you must know where the data is coming from
or where it is going.

If you are reading or writing data from tape, disk, or diskette, you can define an input/output
area with a BUFFER statement, a DATA statement, or a DC statement.

If you are reading or writing data from a terminal, you can define an input/output area with a
TEXT statement, a DATA statement, or a DC statement.

If you use either a DATA statement or a DC statement, however, you must precede the storage
area with a word (2 bytes) containing the length and count. (Refer to the Language Reference
for information on how the system constructs a storage area defined by a TEXT statement.)

Chapter 2. Writing a Source Program PG-33

Writing a Source Program
Reserving Storage (continued)

Defining a BUFFER Statement

A BUFFER statement defines a data storage area. When you read or write records to disk,
diskette, or tape, you can use the BUFFER statement to define the buffer. To define a
256-byte buffer, use the BUFFER statement as follows:

RDAREA BUFFER 256,BYTES

RDAREA is the name of the buffer.

A buffer consists of an index, a length, and the data storage area. The index and the length each
occupy one word (2 bytes). Therefore, a 256-byte buffer actually occupies 260 bytes of
storage. For more information on the structure of a buffer, refer to the Language Reference.

Defining a TEXT Statement

Use the TEXT statement to define a message or storage area. Use the TEXT statement in
conjunction with the PRINTEXT or READ TEXT instructions. The PRINTEXT instruction
prints the message or storage area on a terminal. The READ TEXT instruction reads a character
string from a terminal into the storage area defined by the TEXT statement.

When you code a TEXT statement, the system creates an area that consists of a I-byte length,
I-byte count, and the message or storage area. Therefore, a 24-character message, for example,
requires 26 bytes of storage. The maximum length of a TEXT statement is 254 bytes.

The following example creates the message ENTER YOUR NAME:

MSG1 TEXT 'ENTER YOUR NAME: '

To cause the message to appear on a terminal, code a PRINTEXT instruction that references
MSG I, the name of the TEXT statement.

To define a storage area for data that you will read from a terminal, code the following:

ADDRESS TEXT LENGTH=30

A READ TEXT instruction can read data from a terminal into the storage area by referencing
ADDRESS, the name of the TEXT statement.

Reading Data into a Data Area

PG-34 SC34-0637

When you read data into a data area, the instruction you use depends on the kind of data and
where it is coming from.

If the data resides on disk, diskette, or tape, use the READ instruction. If the data is coming
from a terminal, use either the READ TEXT or GETV ALUE instruction. If the data is

o

(~\
',-,

o

o Reading Data into a Data Area (continued)

o

o

alphameric, use READTEXT. If the data consists of one floating-point number or one or more
integers, use GETV ALUE.

Reading Data from Disk or Diskette

You can read disk or diskette data sets either sequentially or directly. You always read a
multiple of 256 bytes. In EDX, 256 bytes is called an "EDX record."

The READ instruction reads a record from one of the data sets you specify in the PROGRAM
statement. The following READ instruction reads a record sequentially from the third data set
defined on the PROGRAM statement.

READ DS3,DISKBUFF,1,O,ERROR=RDERROR,END=NOTFOUND

DISKBUFF BUFFER 256,BYTES

The system reads one record (indicated by 1 in the third operand) sequentially (indicated by 0 in
the fourth operand) into DISKBUFF. If no more records exist on the data set, the program
branches to NOTFOUND. If an I/O error occurs, the program branches to RDERROR.
Otherwise, the system places the data in the 256-byte buffer DISKBUFF.

To read a data set directly, code the fourth operand with an integer greater than zero as follows:

READ DS2,BUFR,1,52,ERROR=RDERR,END=ALLOVER

BUFR BUFFER 512,BYTES

The system reads the 52nd record (indicated by 52 in the fourth operand) into BUFR. If the
data set does not contain 52 records, the program branches to ALLOVER. If an I/O error
occurs, the program branches to RDERR. Otherwise, the system places one record (indicated
by 1 in the third operand) into the 512-byte buffer BUFR.

Chapter 2. Writing a Source Program PG-35

Writing a Source Program
Reading Data into a Data Area (continued)

Reading Data from Tape

You can read tape data sets sequentially only. A tape READ retrieves a record from 18 to
32,767 bytes long.

The following READ instruction reads a record from a tape.

READ DS1,BUFF,1,327,END=END1,ERROR=ERR,WAIT=YES

BUFF BUFFER 327,BYTES

The system reads one record (indicated by 1 in the third operand). The size of the record is 327
bytes (indicated by 327 in the fourth operand). If no more records exists on the data set,
control transfers to ENDl. If an error occurs, control transfers to ERR. The system waits for
the operation to complete before continuing (W AIT= YES). The buffer BUFF is 327 bytes
long.

The following READ instruction reads 2 records into buffer BUFF2.

READ DS1,BUFF2,2,327,END=END1,ERROR=ERR,WAIT=YES

BUFF2 BUFFER 654,BYTES

The system reads two records (indicated by 2 in the third operand). The size of each record is
327 bytes (indicated by 327 in the fourth operand). If no more records exists on the data set,
control transfers to ENDl. If an error occurs, control transfers to ERR. The system waits for
the operation to complete before continuing (WAIT = YES). The buffer BUFF2 is 654 bytes
long.

Reading from a Terminal

PG-36 SC34-0637

To read data that an operator enters on a terminal, you can use either the READTEXT or
GETV ALUE instruction. The READTEXT instruction allows you to read alphameric data
(alphabetic characters, numbers, and special characters). With the GETVALUE instruction,
you can read numbers (both integer and floating-point) only.

o

o

o

o

o

Reading Data into a Data Area (continued)

Reading Alphameric Data

To read an alphameric data item into a storage area, use the READTEXT instruction as follows:

READTEXT COUNTY, 'ENTER YOUR COUNTY: ',SKIP=1,MODE=LINE

COUNTY TEXT LENGTH=20

The instruction displays the prompt ENTER YOUR COUNTY: and the system waits for a
response. When the operator enters a name and presses the enter key, the system stores the text
string in an area called COUNTY.

The operand SKIP = 1 causes the system to skip one line before displaying the prompt. The
operand MODE=LINE allows blanks in the response.

Unless you know how the system constructs a storage area defined by a TEXT statement, you
should read into an area defined by a TEXT statement.

For more information on reading alphameric data from terminals, see Chapter 8, "Reading and
Writing Data from Screens" on page PG-127.

Reading Numeric Data

The GETV ALUE instruction allows you to read either a single floating-point value or more than
one integer from a terminal. The following instruction reads a floating-point number:

GETVALUE BASAL, 'ENTER YOUR BASE SALARY: '
TYPE=F,FORMAT=(6,2,F)

BASAL DATA E'O.OO'

C

The instruction prompts the operator, waits for a response, reads the response, and stores the
number in BASAL. You must have defined BASAL as a floating-point variable. The operand
TYPE=F means that the number will be a single-precision floating-point number.

The operand FORMAT = (6,2,F) says that the number will occupy six positions on the screen
(including the decimal point), that the number will contain two digits to the right of the decimal
point, and that the number will be an "F-type" number such as 325.78.

To read more than one integer, code a third operand on the instruction as follows:

GETVALUE HEIGHTS, 'ENTER FIVE HEIGHTS (IN INCHES): ',5

The instruction assumes that you have defined HEIGHTS as follows:

HEIGHTS DATA 5F'O'

Chapter 2. Writing a Source Program PG-37

Writing a Source Program
Moving Data

PG-38 SC34-0637

You can move data from one place in storage to another with the MOVE instruction. Unless
you specify otherwise, the system moves one word (two bytes).

For example, the instruction

MOVE OLDDATA,NEWDATA

OLDDATA DATA F'O'
NEWDATA DATA F'O'

moves the word at NEWDATA to OLDDATA. Note that whatever OLDDATA contained
before the instruction was executed has been overlaid by the data in NEWDATA.

To move more than one word, you must code a third operand. For example, the following
instruction moves 12 words from NEWNAME to OLDNAME:

MOVE OLDNAME,NEWNAME,12

OLDNAME DATA F'O'
NEWNAME DATA F'O'

To move bytes, code the third operand like this:

MOVE OLDADDR,NEWADDR, (15,BYTE)

OLDADDR TEXT LENGTH=15
NEWADDR TEXT LENGTH=15

This instruction moves the 15 bytes at NEW ADDR to OLDADDR.

To move doublewords, code the third operand as follows:

MOVE OLDDESC,NEWDESC, (10,DWORD)

OLDDESC DATA 10D'O'
NEWDESC DATA 10D'O'

This instruction moves the 10 doublewords at NEWDESC to OLDDESC.

To move floating-point values, you must specify FLOAT (for single-precision) or DFLOAT (for
extended-precision) .

TEMPS
MSMNTS

MOVE TEMPS,MSMNTS,(4,FLOAT)

DATA 4E'O.O'
DATA 4E'O.O'

This instruction moves the four single-precision floating-point values at MSMNTS to TEMPS.

o

o

o Converting Data

o

o

EDL allows you to do two types of conversion: from binary to an EBCDIC character string and
from an EBCDIC character string to binary. The CONVTB instruction converts from binary to
an EBCDIC character string, while the CONVTD instruction converts from an EBCDIC
character string to binary.

Converting to an EBCDIC Character String

If a number has been stored as a binary number, you must convert it to an EBCDIC character
string if, for example, you want to display the number with the PRINTEXT instruction.

A binary number is any variable you have defined as single-precision integer, double-pr.ecision
integer, single-precision floating point, extended-precision floating point, or hexadecimal.

You must convert any of the following data items before you can display them:

NODOGS
POPKANS
PI
FINMEAS
XTRAS

DATA
DATA
DATA
DATA
DATA

F'O'
D'O'
E'O.O'
L'O.O'
X'O'

The following example converts a single-precision integer to an EBCDIC character string.

CONVTB DOGS,NODOGS,PREC=S,FORMAT=(5,0,I)

DOGS TEXT
NODOGS DATA

LENGTH=5
F'O'

The instruction converts the single-precision integer (indicated by PREC=S) in NODOGS and
puts the result in DOGS. The FORMAT operand says that you want the converted output to be
5 digits long, contain 0 digits to the right of the decimal point, and be an integer (I).

To convert a double-precision integer, code the CONVTB instruction as follows:

CONVTB POP, POPKANS, PREC=D,FORMAT= (8,0,1)

POP TEXT LENGTH=8
POPKANS DATA D'O'

The instruction converts the double-precision integer (indicated by PREC=D) in POPKANS
and puts the result of the conversion in POP. The FORMAT operand says that you want the
converted output to be 8 digits long, contain 0 digits to the right of the decimal point, and be an
integer (I).

Chapter 2. Writing a Source Program PG-39

Writing a Source Program
Converting Data (continued)

The following instruction converts a single-precision floating-point variable:

PlOP
PI

CONVTB PIOP,PI,PREC=F,FORMAT=(15,4,F)

TEXT
DATA

LENGTH=16
E'O.OOOO'

The instruction converts the single-precision floating-point variable (indicated by PREC=F) in
PI and puts the result of the conversion in PlOP. The FORMAT operand says that you want
the converted output to be 15 digits long, contain 4 digits to the right of the decimal point, and
be a floating-point numeric (F).

To convert an extended-precision floating-point variable:

FLOP
OP

CONVTB FLOP,OP,PREC=L,FORMAT=(17,3,E)

TEXT
DATA

LENGTH=24
L

The instruction converts the extended-precision floating-point variable (indicated by PREC=L)
in OP and puts the result of the conversion in FLOP. The FORMAT operand says that you
want the converted output to be 17 digits long, contain 3 digits to the right of the decimal point,
and be expressed in exponent notation (E).

Converting to Binary

PG-40 SC34-0637

If you read a number with the READ TEXT instruction, you must convert it to binary before
you can add, subtract, multiply, or divide.

The CONVTD instruction converts a character string to a binary number. You can convert a
character string that contains a number to a single-precision integer, a double-precision integer,
single-precision floating point, or extended-precision floating point.

The following CONVTD instruction converts a single-precision integer to binary:

CONVTD GNUS,NOGNUS,PREC=S,FORMAT=(5,0,I)

GNUS DATA F'O'
NOGNUS TEXT LENGTH=5

The instruction converts the EBCDIC character string in NO GNUS and puts the result in
GNUS, a single-precision integer variable (indicated by PREC=S).

The FORMAT operand says that the data to be converted is 5 digits long, contains 0 digits to
the right of the decimal point, and is an integer(I).

o

o

o

o

o

o

Converting Data (continued)

To convert a number that is greater than 32,767, you must convert it to a double-precision
integer as follows:

CONVTD FLEAS,NOFLEAS,PREC=D,FORMAT=(9,O,I)

FLEAS DATA D'O'
NOFLEAS TEXT LENGTH=9

The instruction converts the EBCDIC character string in NOFLEAS and puts the result in
FLEAS, a double-precision integer variable (indicated by PREC=D).

The FORMAT operand says that the data to be converted is 9 digits long, contains 0 digits to
the right of the decimal point, and is an integer(I).

To convert to single-precision floating point, code the instruction as follows:

CONVTD AVTEMP,TEMP,PREC=F,FORMAT=(8,2,F)

AVTEMP DATA
TEMP TEXT

E'O.O'
LENGTH=9

The instruction converts the EBCDIC character string in TEMP and puts the result in
AVTEMP, a single-precision floating-point variable (indicated by PREC=F).

The FORMAT operand says that the data to be converted is 8 digits long, contains 2 digits to
the right of the decimal point, and is a floating-point number (F).

To convert to extended-precision floating point, code the instruction as follows:

CONVTD AVCOST,COST,PREC=L,FORMAT=(15,3,E)

AVCOST DATA
COST TEXT

L'O.OO'
LENGTH=20

The instruction converts the EBCDIC character string in COST and puts the result in AVCOST,
an extended-precision floating-point variable (indicated by PREC=L).

The FORMAT operand says that the data to be converted is 15 digits long, contains 3 digits to
the right of the decimal point, and is expressed in exponent notation (E).

Chapter 2. Writing a Source Program PG-41

Writing a Source Program
Converting Data (continued)

Converting from Floating Point to Integer

If you want to manipulate data, both operands in the operation must be either floating point or
integer.

To convert a single-precision floating-point number to integer, code the FPCONV instruction as
follows:

FPCONV INTNUM,FPNUM,PREC=SF

INTNUM DATA
FPNUM DATA

F'O'
E'O.O'

The instruction converts the single-precision floating-point number in FPNUM and puts the
result in INTNUM, a single-precision integer variable. The PREC operand indicates that
INTNUM is a single-precision integer (S) and that FPNUM is a single-precision floating-point
number (F).

To convert an extended-precision floating-point number to double-precision integer, code the
FPCONV instruction as follows:

FPCONV INTDBL,FPEXT,PREC=DL

INTDBL DATA
FPEXT DATA

D'O'
L'O.O'

The instruction converts the extended-precision floating-point number in FPEXT and puts the
result in INTDBL, a double-precision integer variable. The PREC operand indicates that
INTDBL is a double-precision integer (D) and that FPEXT is an extended-precision
floating-point number (L).

Note: When you convert from floating point to integer, remember that the system truncates all
data to the right of the decimal point.

Converting from Integer to Floating Point

PG-42 SC34-0637

To convert a single-precision integer to floating-point, code the FPCONV instruction as follows:

FPCONV FPNUM,INTNUM,PREC=FS

INTNUM DATA
FPNUM DATA

F'O'
E'O.O'

The instruction converts the single-precision integer INTNUM and puts the result in FPNUM, a
single-precision floating-point variable. The first letter in the PREC operand (F) indicates that
FPNUM is a single-precision floating-point variable. The second letter (S) indicates that
INTNUM is a single-precision integer.

o

o

o

o

o

Converting Data (continued)

To convert a double-precision integer to floating-point:

FPCONV FPEXT,INTDBL,PREC=LD

INTDBL DATA
FPEXT DATA

D'O'
L'O.O'

The instruction converts the double-precision integer INTDBL and puts the result in FPEXT, an
extended-precision floating-point variable. The first letter in the PREC operand (L) indicates
that FPEXT is an extended-precision floating-point variable. The second letter (D) indicates
that INTDBL is a double-precision integer.

Checking for Conversion Errors

Each time you execute an instruction that converts data, the system expects the data to be
numeric. If you try to convert a character other than a number, a conversion error occurs.

If, for example, a program prompts an operator for a number and he or she enters a letter, the
system places a return code in the task code word. You can check for a conversion error as
follows:

BEGIN PROGRAM START

CONVTD
ERR TEST MOVE

IF
ENDIF

CHECK

END
TASKRC
GNUS
NOGNUS

PRINTEXT
PRINTNUM
GOTO

PROGSTOP
DATA
DATA
TEXT
ENDPROG
END

GNUS,NOGNUS,PREC=S,FORMAT=(5,O,I)
TASKRC,BEGIN
(TASKRC,NE,-1),GOTO,CHECK

'CONVERSION ERROR' ,SKIP=1
TASKRC
END

F'O'
F'O'
LENGTH=5

The instructions at label ERRTEST compare the return code of the CONVTD instruction with
the successful return code (-1). IF NOGNUS contains a nonnumeric character, the system
branches to CHECK.

You must test the return code before executing any other instruction because the system may
overlay the task code word with the return code of the next instruction.

Chapter 2. Writing a Source Program PG-43

Writing a Source Program
Manipulafing Data

The data manipulation instructions perform arithmetic operations on single- or double-precision
integers and single- or extended-precision floating-point numbers. You can also manipulate two
bit-strings with logical instructions such as inclusive-OR and exclusive-OR.

Manipulating Integer Data

The instructions tha(manipulate integers add, subtract, multiply, or divide two integers. If two
numbers are floating-point numbers, you must use floating-point instructions.

If one number is a floating-point number and the other is an integer, use the FPCONV
instruction to convert one of the numbers to match the form of the other.

The instructions have the following general form:

operation operand1,operand2

The flow of data is from operand2 to operandI.

The ADD instruction adds the data in operand2 to the data in operandI and places the results in
operandI.

The SUBTRACT instruction subtracts the data in operand2 from the data in operandI and places
the results in operandI.

o

The DIVIDE and MULTIPLY instructions multiply or divide the data in operandI by the data in (-~l
operand2 and store the results in operandI. '-'

Adding Integers

PG-44 SC34-0637

The ADD instruction adds two integers. If A and B are integers, you can add A to B with the
following instruction:

ADD B,A

The result of the addition replaces B. The value in A remains unchanged.

To add two integers without altering the first operand, use the RESULT operand as follows:

ADD CAT,DOG,RESULT=GlRAFFE

The instruction adds DOG to CAT and places the result in GIRAFFE. The values in DOG and
CAT remain unchanged.

o

o

o

o

Manipulating Data (continued)

Adding Double-Precision Integers

Unless you specify otherwise, EDL assumes that the integers are single-precision (I-word)
integers. To add two double-precision (2-word) integers, specify the PREC operand as follows:

ADD TOTVEG,BEETS,PREC=DD

The operand PREC=DD says that both TOTVEG and BEETS are double-precision integers.

If only one of the operands is a double-precision integer, it must be the first operand. In
addition, if you specify the RESULT operand, it must be a double-precision variable. For
example:

ADD GHANA,CHAD,RESULT=TOTPOP,PREC=D

The operand PREC=D says that GHANA and TOTPOP are double-precision integers. The
absence of the second letter (D or S) on the PREC operand means that CHAD is a
single-precision integer.

Adding Consecutive Integers

To add more than one set of integers, you can specify the number of integers you want to add.
For example:

ADD NEWTOTS,OLDTOTS,10

The instruction adds the I-word integer at OLDTOTS to NEWTOTS. Then the instruction
adds the word in OLDTOTS+2 to the word at NEWTOTS+2. The instruction continues to add
until it adds the word at OLDTOTS+ 18 to the word at NEWTOTS+ 18. This instruction, then,
adds the 10 consecutive words at OLDTOTS to the 10 consecutive words at NEWTOTS. You
can specify up to 32,767 consecutive additions.

Subtracting Integers

The SUBTRACT instruction subtracts one integer from another. If QUERY and ANSWER are
integers, you can subtract ANSWER from QUERY with the following instruction:

SUBTRACT QUERY,ANSWER

The result of the subtraction replaces' QUERY. The value in ANSWER remains unchanged.

To subtract two integers without altering the first operand, use the RESULT operand as follows:

SUBTRACT POOLS,STREAMS,RESULT=LAKES

The instruction subtracts STREAMS from POOLS and places the result in LAKES. The values
in POOLS and STREAMS remain unchanged.

Chapter 2. Writing a Source Program PG-45

Writing a Source Program
Manipulating Data (continued)

Subtracting Double-Precision Integers

Unless you specify otherwise, EDL assumes that the integers are single-precision (I-word)
integers. To subtract two double-precision (2-word) integers, specify the PREC operand as
follows:

SUBTRACT TOTFRUT,PRUNES,RESULT=REST,PREC=DD

The instruction subtracts PRUNES from TOTFRUT and places the result in REST. The
operand PREC=DD says that TOTFRUT, PRUNES, and REST are all double-precision
integers.

If only one of the operands is a double-precision integer, it must be the first operand. In
addition, if you specify the RESULT operand, it must be a double-precision variable. For
example:

SUBTRACT ATTEND,MALES,RESULT=FEMALES,PREC=D

The instruction subtracts MALES from ATTEND and places the result in FEMALES. The
operand PREC=D says that ATTEND and FEMALES are double-precision integers. The
absence of the second letter (D or S) on the PREC operand means that MALES is a
single-precision integer.

Subtracting Consecutive Integers

To subtract more than one set of integers, you can specify the number of integers you want to
subtract. For example:

SUBTRACT NEWTOTS,OLDTOTS,6

The instruction subtracts the I-word integer at OLDTOTS from NEWTOTS. Then the
instruction subtracts the word in OLDTOTS+2 from the word at NEWTOTS+2. The
instruction continues to subtract until it subtracts the word at OLDTOTS+ 10 from the word at
NEWTOTS+I0. This instruction, then, subtracts the 6 consecutive words at OLDTOTS from
the 6 consecutive words at NEWTOTS. You can specify up to 32,767 consecutive subtractions.

Multiplying Integers

The MULTIPLY instruction mUltiplies one integer by another.

If M and N are single-precision integers, you can multiply M by N as follows:

MULTIPLY M,N

The result of the multiplication replaces M.

PG-46 SC34-0637

o

o

o

o

o

o

Manipulating Data (continued)

You can also mUltiply an integer by a constant. The following instruction multiplies FEET by
the constant 12:

MULTIPLY FEET,12

The result of the multiplication replaces FEET.

To multiply two integers without altering the first operand, use the RESULT operand as follows:

MULTIPLY BOXES,WEIGHT,RESULT=TOTWGT

The instruction mUltiplies BOXES by WEIGHT and places the result in TOTWGT. The values
in BOXES and WEIGHT do not change.

Multiplying Double-Precision Integers

Unless you specify otherwise, EDL assumes that integers are single-precision (1-word) integers.
To multiply two double-precision (2-word) integers, specify the PREC operand as follows:

MULTIPLY GRAPES,PITS,RESULT=TOTPITS,PREC=DD

The instruction multiplies GRAPES by PITS and places the result in TOTPITS. The operand
PREC=DD says that GRAPES, PITS, and TOTPITS are all double:-precision integers.

If only one of the operands is a double-precision integer, it must be the first operand. In
addition, if you specify the RESULT operand, it must be a double-precision variable. For
example:

MULTIPLY ATTEND,GAMES,RESULT=TOTATT,PREC=D

The instruction mUltiplies ATTEND by GAMES and places the result in TOT ATT. The
operand PREC=D says that ATTEND and GAMES are double-precision integers. The absence
of the second letter (D or S) on the PREC operand means that GAMES is a single-precision
integer.

Multiplying Consecutive Integers

To multiply more than one set of integers, you can specify the number of integers you want to
mUltiply. For example:

MULTIPLY SALRIES,RATES,400

The instruction multiplies the 1-word integer at RATES by SALRIES and stores the result in
SALRIES. Then the instruction multiplies the word in RATES+2 by the word at SALRIES+2.
The instruction continues to multiply until it multiplies the word at RATES+798 by the word at
SALRIES+798. This instruction, then, multiplies the 400 consecutive words at RATES by the
400 consecutive words at SALRIES. You can specify up to 32,767 consecutive multiplications.

Chapter 2. Writing a Source Program PG-47

Writing a Source Program
Manipulating Data (continued)

Dividing Integers

PG-48 SC34-0637

The DIVIDE instruction divides one integer by another. The system places the remainder in the
first word of the task control block (TCB).

If P and Q are single-precision integers, you can divide P by Q as follows:

DIVIDE P,Q

The result of the division replaces P.

You can also divide an integer by a constant. The following instruction divides FEET by the
constant 3:

DIVIDE FEET,3

The result of the division replaces FEET.

To divide two integers without altering the first operand, use the RESULT operand as follows:

DIVIDE TOTWGT,BOXES,RESULT=BOXWGT

The instruction divides TOTWGT by BOXES and places the result in BOXWGT. The values in
TOTWGT and BOXES do not change.

Dividing Double-Precision Integers

Unless you specify otherwise, EDL assumes that integers are single-precision (I-word) integers.
To divide double-precision (2-word) integers, specify the PREC operand as follows:

DIVIDE TOTSAL,NOEMPS,RESULT=AVESAL,PREC=DD

The instruction divides TOTSAL by NOEMPS and places the result in A VESAL. The operand
PREC=DD says that TOTSAL, NOEMPS, and A VESAL are all double-precision integers.

If only one of the operands is a double-precision integer, it must be the first operand. In
addition, if you specify the RESULT operand, it must be a double-precision variable. For
example:

DIVIDE TOTATT,GAMES,RESULT=AVEATT,PREC=D

The instruction divides TOTATT by GAMES and places the result in A VEATT. The opeqmd
PREC=D says that TOTATT and AVEATT are double-precision integers. The absence of the
second letter (D or S) on the PREC operand means that GAMES is a single-precision integer.

o

o

o Manipulating Data (continued)

o

o

Dividing Consecutive Integers

To divide more than one set of integers, you can specify the number of integers you want to
divide. For example:

DIVIDE RATES,SALRIES,100

The instruction divides the I-word integer at RATES by SALRIES. Then the instruction divides
the word in RATES+2 by the word at SALRIES+2. The instruction continues to divide until it
divides the word at RATES + 198 by the word at SALRIES+198. This instruction, then, divides
the 100 consecutive words at RATES by the 100 consecutive words at SALRIES. You can
specify up to 32,767 consecutive divisions.

Accessing the Remainder

One way to access the remainder is to use the TCBGET instruction as in the following example:

DIVIDE RATES,SALRIES
TCBGET REMAIN,$TCBCO

REMAIN DATA F'O'

The instruction puts the first word of the task control block, containing the remainder, into
REMAIN.

Manipulating Floating-Point Data

EDL allows you to add, subtract, multiply, and divide floating-point numbers. Floating-point
numbers are positive and negative numbers that can have decimal points.

To use floating-point instructions, you must:

• Have the hardware floating-point feature installed on your system.

Include floating-point support in the supervisor when it is generated.

• Specify FLOAT=YES on both the PROGRAM and TASK statements whenever you use
floating-point instructions in any task within a program.

• Define the variables you are manipulating as floating-point variables.

Chapter 2. Writing a Source Program PG-49

Writing a Source Program
Manipulating Data (continued)

Adding Floating-Point Data

The F ADD instruction adds two floating-point numbers. If A and B are floating-point numbers,
you can add A to B with the following instruction:

FADD B,A

The result of the addition replaces B. The value in A remains unchanged.

To add two floating-point numbers without altering the first operand, use the RESULT operand
as follows:

FADD MYSAL,YOURSAL,RESULT=OURSALS

The instruction adds MYSAL to YOURSAL and places the result in OURSALS. The values in
MYSAL and YOURSAL remain unchanged.

Adding Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumes that the floating-point numbers are single-precision
(2-word) floating-point numbers. To add two extended-precision (4-word) floating-point
numbers, specify the PREC operand as follows:

FADD TOTSAL,PRESAL,PREC=LL

The operand PREC=LL says that both TOTSAL and PRESAL are extended-precision
floating-point numbers.

If only one of the operands is an extended-precision floating-point number, the PREC operand
must reflect the precision. In the following example:

FADD MSMNT1,MSMNT2,RESULT=MSMTS,PREC=LFL

The operand PREC=LFL says that MSMNTI and MSMTS are extended-precision
floating-point numbers and MSMNT2 is a single-precision floating-point number.

Subtracting Floating-Point Numbers

PG-50 SC34-0637

The FSUB instruction subtracts one floating-point number from another. If OCTEMP and
NOVTEMP are floating-point numbers, you can subtract NOVTEMP from OCTEMP with the
following instruction:

FSUB OCTEMP,NOVTEMP

The result of the subtraction replaces OCTEMP. The value in NOVTEMP remains unchanged.

o

o

o Manipulating Data (continued)

o

o

To subtract two floating-point numbers without altering the first operand, use the RESULT
operand as follows:

FSUB SAL,DEDUCS,RESULT=NET

The instruction subtracts DEDUCS from SAL and places the result in NET. The values in SAL
and DEDUCS remain unchanged.

Subtracting Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumes that the floating-point numbers are single-precision
(2-word) floating-point numbers. To subtract two extended-precision (4-word) floating-point
numbers, specify the PREC operand as follows:

FSUB TOT SAL , TOTDUCS,RESULT=TOTNP, PREC=LLL

The instruction subtracts TOTDUCS from TOTSAL and places the result in TOTNP. The
operand PREC=LLL says that TOTSAL, TOTDUCS, and TOTNP are all extended-precision
floating-point numbers.

If only one of the operands is an extended-precision floating-point number, the PREC operand
should reflect the precision. In the following example:

FSUB SMALL,LARGE,RESULT=MINUS,PREC=FLF

The instruction subtracts LARGE from SMALL and places the result in MINUS. The operand
PREC=FLF says that SMALL and MINUS are single-precision and that LARGE is an
extended-precision floating-point number.

Multiplying Floating-Point Numbers

The FMULT instruction mUltiplies one floating-point number by another.

If M and N are single-precision floating-point numbers, you can multiply M by N as follows:

FMULT M,N

The result of the multiplication replaces M.

You can also mUltiply a floating-point number by an integer constant. The following instruction
multiplies FEET by the integer constant 12:

FMULT FEET,12

The result of the multiplication replaces FEET.

Chapter 2. Writing a Source Program PG-Sl

Writing a Source Program
Manipulating Data (continued)

To multiply two floating-point numbers without altering the first operand, use the RESULT
operand as follows:

FMULT LENGTH, WIDTH, RESULT=AREA

The instruction multiplies LENGTH by WIDTH and places the result in AREA. The values in
LENGTH and WIDTH do not change.

Multiplying Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumes that floating-point numbers are single-precision
(2-word) floating-point numbers. To multiply two extended-precision (4-word) floating-point
numbers, specify the PREC operand as follows:

FMULT PI,DIAM,RESULT=CIRCUM,PREC=LLL

The instruction multiplies PI by DIAM and places the result in CIRCUM. The operand
PREC=LLL says that PI, DIAM, and CIRCUM are all extended-precision floating-point
numbers.

If only one of the ope~ands is a double-precision floating-point number, the PREC operand
must reflect the precision. The following example:

FMULT BASEAREA,HEIGHT,RESULT=VOLUME,PREC=LFL

multiplies BASEAREA by HEIGHT and places the result in VOLUME. The operand
PREC=LFL says that BASEAREA and VOLUME are extended-precision floating-point
numbers and that HEIGHT is a single-precision floating-point number.

Dividing Floating-Point Numbers

PG-52 SC34-0637

The FDIVD instruction divides one floating-point number by another. The system places the
remainder in the first word of the task control block (TCB).

If P and Q are single-precision floating-point numbers, you can divide P by Q as follows:

FDIVD P,Q

The result of the division replaces P.

You can also divide a floating-point number by a constant. The following instruction divides
FEET by the integer constant 3:

FDIVD FEET,3

The result of the division replaces FEET.

o

o

o

o

o

o

Manipulating Data (continued)

To divide two floating-point numbers without altering the first operand, use the RESULT
operand as follows:

FDIVD TOTWGT,BOXES,RESULT=BOXWGT

The instruction divides TOTWGT by BOXES and places the result in BOXWGT. The values in
TOTWGT and BOXES do not change.

Dividing Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumes that floating-point numbers are single-precision
(2-word) floating-point numbers. To divide two extended-precision (4-word) floating-point
numbers, specify the PREC operand as follows:

FDIVD CUBICFT,BASEAREA,RESULT=HEIGHT,PREC=LLL

The instruction divides CUBICFT by BASEAREA and places the result in HEIGHT. The
operand PREC=LLL says that CUBICFT, BASEAREA, and HEIGHT are all
extended-precision floating-point numbers.

If only one of the operands is an extended-precision floating-point number, the PREC operand
must reflect the precision. The following example:

FDIVD TOTSAL,NOEMPS,RESULT=AVESAL,PREC=LFL

divides TOTSAL by NOEMPS and places the result in A VESAL. The operand PREC=LFL
says that TOTSAL and A VESAL are extended-precision floating-point numbers and that
NOEMPS is a single-precision floating-point number.

Manipulating Logical Data

The instructions that manipulate logical data make a bit-by-bit comparison of two bit strings.
The result of the comparison depends on the instruction.

The Exclusive-OR Instruction

The exclusive-OR instruction (EOR) compares two bit strings and produces a third bit string,
called the resulting field.

The instruction compares the two bit strings one bit at a time. If the bits are the same, the
instruction sets a bit in the resulting field to O. If the bits are not the same, the instructions sets
a bit in the resulting field to 1.

If the bit strings are identical, the resulting field contains all O's. If one or more bits differ, the
resulting field contains a mixture of O's and 1 'so

Chapter 2. Writing a Source Program PG-53

Writing a Source Program
Manipulating Data (continued)

PG-54 SC34-0637

The following example compares PHI to CHI and places the result in PHI.

EaR PHI,CHI

The following table shows PHI and CHI before and after the instruction executes.

Data Item Hex Binary

PH I (before) 049C 000001001001 1100

CHI 56AB 0101 0110 1010 1011

PHI (after) 5237 0101 00100011 0111

To compare a variable to a constant, code operand2 as follows:

EaR MU,X'5280'

The following table shows MU before and after the instruction executes.

Data Item Hex Binary

MU (before) FOFO 1111000011110000

constant 5280 0101 001010000000

MU (after) A270 101000100111 0000

To compare two bit strings without altering the first operand, use the RESULT operand as
follows:

EaR SIGMA,DELTA,RESULT=THETA

The instruction compares SIGMA and DELTA and places the resulting field in THETA.
SIGMA and DELTA do not change.

Unless you specify otherwise, EDL assumes that the bit strings you specify are one-word
(2-byte) variables. To compare a byte or more than two bytes, specify the number of
consecutive units (bytes, words, or doublewords) that you want to compare. For example:

CAIN
ABEL
SETH

EaR CAIN,ABEL, (3,BYTE),RESULT=SETH

DATA
DATA
DATA

X'12A4E6'
X'0101 '
X'OOOOOO'

The instruction compares three bytes at CAIN with ABEL and places the result in SETH.

o

c

o

o

o

o

Manipulating Data (continued)

The Inclusive-OR Instruction

The inclusive-OR instruction (lOR) compares two bit strings and produces a third bit string,
called the resulting field.

The instruction compares the two bit strings one bit at a time. If either or both bits are 1, the
instruction sets a bit in the resulting field to 1. If neither bit is 1, the instruction sets a bit in the
resulting field to O.

The following example compares ETA to RHO and places the result in ETA.

IOR ETA, RHO

The following table shows ETA and RHO before and after the instruction executes.

Data Item Hex Binary

ETA (before) 049C 000001001001 1100

RHO 56AB 0101 011010101011

ETA (after) 56BF 0101011010111111

To compare a variable to a constant, code operand2 as follows:

IOR XI,X'5280'

The following table shows XI before and after the instruction executes.

Data Item Hex Binary

XI (before) FOFO 1111000011110000

constant 5280 0101 001010000000

XI (after) F2FO 1111 0010 1111 0000

To compare two bit strings without altering the first operand, use the RESULT operand as
follows:

IOR PETER,PAUL,RESULT=MARY

The instruction compares PETER and PAUL and places the resulting field in MARY. PETER
and PAUL do not change.

Chapter 2. Writing a Source Program PO-55

Writing a Source Program
Manipulating Data (continued)

Unless you specify otherwise, EDL assumes that the bit strings you specify are one-word
(2-byte) variables. To compare a byte or more than two bytes, specify the number of
consecutive units (bytes, words, or doublewords) that you want to compare. For example:

lOR PlG,COW,(4,DWORD) ,RESULT=POW

The instruction compares the first doubleword at PIG with the four doublewords at COW and
places the resulting field in POW.

The AND Instruction

PG-56 SC34-0637

The AND instruction (AND) compares two bit strings and produces a third bit string, called the
resulting field.

The instruction compares the two bit strings one bit at a time. If both bits are 1, the instruction
sets a bit in the resulting field to 1. If either or both bits are 0, the instruction sets a bit in the
resulting field to 0.

The following example compares BET A to THETA and places the result in BETA.

AND BETA, THETA

The following table shows BET A both before and after the instruction executes.

Data Item Hex Binary

BETA (before) 049C 000001001001 1100

THETA 56AB 0101 011010101011

BETA (after) 0488 00000100 1000 1000

To compare a variable to a constant, code operand2 as follows:

AND LAMBDA,X'5280'

The following table shows LAMBDA both before and after the instruction executes.

Data Item Hex Binary

LAMBDA (before) FOFO 1111000011110000

constant 5280 0101 001010000000

LAMBDA (after) 5080 0101 0000 10000000

o

()

o

o Manipulating Data (continued)

o

o

To compare two bit strings without altering the first operand, use the RESULT operand as
follows:

AND CEMENT, STONE, RESULT=WALL

The instruction compares CEMENT and STONE and places the resulting field in WALL.
CEMENT and STONE do not change.

Unless you specify otherwise, EDL assumes that the bit strings you specify are one-word
(2-byte) variables. To compare a byte or more than two words, specify the number of
consecutive units (bytes, words, or doublewords) that you want to compare. For example:

AND WALL,CEILING,(2,WORD),RESULT=ROOM

The instruction compares the first word at CEILING with the two words at WALL and places
the resulting field in ROOM.

Writing Data from a Data Area

When you write data from a data area, the instruction you use depends on the kind of data and
where you write it.

To write data to disk, diskette, or tape, use the WRITE instruction. To write data to a terminal,
use either the PRINTEXT or PRINTNUM instruction. If the data is alphameric, use
PRINTEXT. If the data consists of either one floating-point number or one or more integers,
use PRINTNUM.

Writing Data to Disk or Diskette

You can write disk or diskette data sets either sequentially or directly. You always write 256
bytes, an "EDX record."

The following WRITE instruction writes a record sequentially:

WRITE DS3,DISKBUFF,1,O,ERROR=WRITERR

DISKBUFF BUFFER 256,BYTES

The instruction writes a record to the third data set defined on the PROGRAM statement
(DS3). The system writes one record (indicated by 1 in the third operand) sequentially
(indicated by 0 in the fourth operand) into DISKBUFF. If an I/O error occurs, the program
branches to WRITERR. Otherwise, the system writes the 256-byte buffer DISKBUFF to the
data set.

Chapter 2. Writing a Source Program PG-57

Writing a Source Program
Writing Data from a Data Area (continued)

The following WRITE instruction writes a record directly:

BUFR
RECNO

WRITE DS5,BUFR,1,RECNO,ERROR=BADWRIT

BUFFER 256,BYTES
DATA F

The instruction writes a record to the fifth data set defined on the PROGRAM statement (DS5).
The system writes one record (indicated by 1 in the third operand) directly (indicated by the
presence of the label RECNO in the fourth operand) into BUFR. Where the system writes the
record depends on the contents of RECNO. For example, if RECNO contains 150, the system
writes the 150th record.

If an I/O error occurs, the program branches to BADWRIT. Otherwise, the system writes
BUFR to the data set.

Writing Data to Tape

PG-58 SC34-0637

You can write tape data sets sequentially only. A tape WRITE writes a record from 18 to
32,767 bytes long.

The following WRITE instruction writes a record to a tape:

WRITE DS1,BUFF,1,328,ERROR=ERR,WAIT=YES

BUFF BUFFER 328,BYTES

The system writes one record (indicated by 1 in the third operand). The size of the record is
328 bytes (indicated by 328 in the fourth operand). If an error occurs, control transfers to
ERR. The system waits for the write operation to complete before continuing execution
(WAIT=YES).

o

o

o

o

o

Writing Data from a Data Area (continued)

The following WRITE instruction writes 2 records from buffer BUFF2:

WRITE DS1,BUFF2,2,328,ERROR=ERR,WAIT=YES

BUFF2 BUFFER 656,BYTES

The system writes two records (indicated by 2 in the third operand). The size of each record is
328 bytes (indicated by 328 in the fourth operand). If an error occurs, control transfers to
ERR. The system waits for the operation to complete before continuing (W AIT = YES).

Writing to a Terminal

Two of the instructions that write data to a terminal are the PRINTEXT and PRINTNUM
instructions. The PRINTEXT instruction allows you to write alphameric data (alphabetic
characters, numbers, and special characters). With the PRINTNUM instruction, you can write
numbers (both integer and floating-point) only.

Writing Alphameric Data

To write alphameric data to a terminal, use the PRINTEXT instruction as follows:

PRINTEXT DESC,SKIP=3

DESC TEXT 'NOW IS THE TIME FOR ALL GOOD MEN'

The instruction writes (or displays) the 25 alphameric characters in DESC. The operand
SKIP=3 causes the system to skip three lines before displaying DESC.

Unless you know how the system constructs a storage area defined by a TEXT statement, you
should write from an area defined by a TEXT statement.

For information on writing alphameric data to screens, see Chapter 8, "Reading and Writing
Data from Screens" on page PG-127.

Writing Numeric Data

The PRINTNUM instruction allows you to write either a single floating-point value or more
than one integer to a terminal. The following instruction writes a floating-point number:

PRINTNUM BASAL,TYPE=F,FORMAT=(6,2,F)

The instruction writes the number contained in the variable BASAL. The operand TYPE = F
means that BASAL is a single-precision floating-point number. The operand
FORMAT=(6,2,F) tells the system to display the number in 6 positions on the screen (including
the decimal point), to display 2 digits to the right of the decimal point, and to display it as an
"F-type" number such as 436.32.

Chapter 2. Writing a Source Program PG-59

Writing a Source Program
Writing Data from a Data Area (continued)

To write more than one integer, code a second operand on the instruction as follows:

PRINTNUM WEIGHTS,7

The instruction displays the 7 one-word values starting at location WEIGHTS.

The instruction assumes that you have defined WEIGHTS as follows:

WEIGHTS DATA 7F'O'

Controlling Program Logic

This section discusses the EDL instructions used to control the logic or execution of instructions.
The following instructions are the primary means of controlling program logic:

• DO - initializes a loop

ENDDO - ends a loop

IF - tests a condition

• ELSE - specifies the action for a false condition

• ENDIF - ends an IF-ELSE structure

GOTO - branches to another location.

Relational Operators

The IF and DO statements involve the use of the following relational operators:

• EQ -- equal

• NE -- not equal

G T -- greater than

L T -- less than

• GE -- greater than or equal

LE -- less than or equal.

PG-60 SC34-0637

o

o

o

o

o

Controlling Program Logic (continued)

The IF Instruction

The IF instruction allows you to compare two areas of storage. You can compare data in two
ways: arithmetically or logically.

When you compare data arithmetically, the system interprets each number as a positive or
negative value. The system, for example, interprets X'OFFF' as 4095. It interprets X'FFFD',
however, as a -3. Though X'FFFD' seems to be a larger hexadecimal number than X'OFFF',
the system recognizes X'FFFD' as a negative number and X'OFFF' as a positive number.
X'FFFD' is a negative number to the system because the leftmost bit is "on."

When you compare data logically, the system compares the data byte-by-byte. The system
interprets X'FFFF' as 2 bytes with all bits "on."

Comparing Data Arithmetically

The form of the arithmetic comparison is:

IF (data1,operator,data2,width)

If datal has the relationship indicated by operator to data2, the next sequential instruction
executes. Width indicates the length of the data to be compared and must be BYTE, WORD
(the default), DWORD, FLOAT, or DFLOAT.

The true portion of the IF-ELSE-ENDIF structure is usually an arithmetic comparison. For
example:

IF (A,EQ,B,WORD)
PRINTNUM A

ELSE
PRINTNUM B

ENDIF

ELSE is an optional part of the structure. The instructions following it are called the false part
of the structure. Therefore, in the preceding example, the instruction following the ELSE
instruction executes if A is not equal to B. If ELSE is not coded and the condition is false,
control passes to the instruction following the ENDIF.

You can test more than two conditions in a single IF statement.

IF (ALPHA,LT,BETA),AND,(GAMMA,NE,DELTA)

If ALPHA is less than BET A and GAMMA is not equal to DELTA, the next sequential
instruction executes.

You can also execute the next sequential instruction if either test produces a true condition.

IF (PI,GE,PSI) ,OR, (CHI,NE,OMEGA)

If PI is greater than or equal to PSI or CHI is not equal to OMEGA, the next sequential
instruction executes.

Chapter 2. Writing a Source Program PG-61

Writing a Source Program
Controlling Program Logic (continued)

To compare a variable to a constant, code the constant as data2 as follows:

IF (FEET,EQ,5280)

If FEET equals 5280 (decimal), the next sequential instruction executes.

Comparing Data Logically

The form of the logical comparison is:

IF (data1,operator,data2,width)

If datal has the relationship indicated by operator to data2, the next sequential instruction
executes. Width indicates the length of the data to be compared and must be an integer.

For example:

IF (A,GE,B,4)
PRINTNUM A

ELSE
PRINTNUM B

ENDIF

The instruction(s) that follow the IF instruction is (are) called the true portion of the
IF-ELSE-ENDIF structure. If the 4 bytes in A are greater than or equal to the 4 bytes in B, the
next sequential instruction executes.

The instruction(s) following the ELSE instruction is (are) called the false part of the structure.
ELSE is an optional part of the structure. If the 4 bytes in A are not greater than or equal to
the 4 bytes in B, the instruction following the ELSE instruction executes.

If the ELSE instruction is not coded and the condition is false, control passes to the instruction
following the ENDIF.

The Program Loop

The Simple DO

PG-62 SC34-0637

The DO instruction allows you to execute the same code repetitively. The DO instruction starts
a DO loop and the ENDDO instruction ends the loop. The loop consists of the instructions
between the DO and ENDDO. The following sections show the different forms of the DO loop.

The loop executes a specified number of times.

DO 100,TIMES
GETVALUE PSI, PROMPT 3
ADD COUNT, PSI

ENDDO

The GETV ALUE and ADD instruction execute 100 times.

o

o

o

o

o

Controlling Program Logic (continued)

The DO UNTIL

The DO WHILE

The loop executes until the condition occurs. (The loop always executes at least once.)

DO UNTIL, (CDED,GT,1000,FLOAT)
GETVALUE OMICRON,OMPRMPT
FSUB CDED,OMICRON

ENDDO

The GETV ALUE and FSUB instructions execute until CDED is greater than 1000.

The loop executes as long as the condition exists.

DO WHILE, (B,NE,C)
GETVALUE B, 'ENTER B'
GETVALUE C,'ENTER C'

ENDDO

The GETV ALUE instructions execute as long as B does not equal C.

The Nested DO Loop

A DO loop can contain other DO loops. For example:

DO UNTIL, (ALPHA,LT,BETA,DFLOAT),OR, (#1,EQ,1000)
GETVALUE ALPHA, 'ENTER ALPHA',TYPE=L,FORMAT=(12,3,E)
GETVALUE BETA, 'ENTER BETA' ,TYPE=L,FORMAT=(12,3,E)
MOVE #1,BETA, (1,DFLOAT)
DO 10,TIMES

FADD GAMMA,ALPHA,PREC=LLL
ENDDO

ENDDO

The FADD statement contained in the inner DO executes 10 times for each execution of the
outer DO.

Chapter 2. Writing a Source Program PG-63

Writing a Source Program
Controlling Program Logic (continued)

The Nested IF Instruction

A DO loop can also contain IF statements. For example:

READTEXT CHAR, 'ENTER A CHARACTER'
GETVALUE A, 'ENTER A'
GETVALUE B,'ENTER B'
DO WHILE, (A,GT,B)

IF (CHAR,EQ,C'A',BYTE)
DO 40,TIMES

ENDDO
ELSE

ENDIF
GETVALUE A, 'ENTER A'
GETVALUE B, 'ENTER B'

ENDDO

The outer DO loop executes as long as A is greater than B. The inner DO loop executes 40
times if CHAR equals the letter A.

Branching to Another Location

PG-64 SC34-0637

The GOTO instruction allows you to transfer control to another location within a program. For
example, the following instruction transfers control to the instruction at label LOC 1 :

GO TO LOC1

To branch to an address defined by a label, enclose the label in parentheses as follows:

GOTO (CALC)

This instruction branches to the address contained in CALC. You must define CALC as an
address variable as in the following DATA statement:

CALC DATA A(RTN01)

To branch to a location that is based on the contents of a variable, code the GOTO statement
like this:

GO TO (ERR,L1,L2) ,I

The instruction branches to Ll if I equals 1, to L2 if I equals 2, and to ERR for any other value
of I. The system branches to the first label in parentheses if the variable is less than 1 or greater
than the number of labels minus 1.

o

o

o

o

o

Controlling Program Logic (continued)

Referring to a Storage (Program) Location

You can use the EQU statement to refer to the next available storage location in a program.
You can use it to generate labels in your program. For example:

CALLA

Ending the Program

EQU
MOVE

*
C,+A, (1 ,BYTE)

GOTO CALLA

Ending a program requires three statements: PROGSTOP, ENDPROG, and END.

The PROGSTOP statement ends the program and releases any storage that it used. It also
signals the end of the executable instructions.

The ENDPROG statement follows the statements that define storage areas and precedes the
END statement.

The END statement follows the ENDPROG statement. It tells the compiler that the program
contains no more statements.

The following example shows the position of the three statements and the general structure of a
program.

PRINT PROGRAM START
START EQU *

PROGSTOP
FIELD1 DATA F'O'

ENDPROG
END

Chapter 2. Writing a Source Program PG-65

Notes

o

o
PG-66 SC34-0637

o

o

o

Chapter 3. Entering a Source Program

After you code a source program, you must enter it into a data set. The data set can be on
either disk, diskette, or tape.

This chapter shows how to use the text editor called the $FSEDIT utility. The chapter describes
the commands you need to enter a new source program or change an existing source program.
For a complete list of $FSEDIT commands, refer to Operator Commands and Utilities Reference.

Invoking the Editor

You can invoke the editor in one of two ways. You can load it directly using the $L command.
Or, you can invoke it using the session manager.

This chapter discusses how to invoke the editor with the session manager. For information on
how to invoke $FSEDIT with the $L command, refer to Operator Commands and Utilities
Reference.

As you learned in Chapter 1 of this book, you load the session manager by pressing the
attention key, typing $L $SMMAIN, and pressing the enter key.

At this point, enter a one to four character ID and press the enter key.

The Session Manager Primary Option Menu appears. From this menu, select option 1 (TEXT
EDITING). The session manager displays the $FSEDIT Primary Option Menu.

Chapter 3. Entering a Source Program PG-67

Entering a Source Program
Creating a New Data Set

PG-68 SC34-0637

The session manager allocates data sets automatically when you log on. One of these data sets,
a work data set used by $FSEDIT, is named $SMExxxx, where xxxx is the ID you entered when
you logged on to the session manager. For example, if you entered ABeD when you logged on,
the work data set is $SMEABCD.

Use option 2 (EDIT) to put your source program into the work data set.

":-.---;...-, -:..--·- .. .:.;;;...:·"f .. -..;,--- ----~-STATUS === INIT

DATASET ... NAME =============:;==========> ..
VOLUME '. NAME ==== =====:;:=;:::==== > .

HOST DATASET ========;:::=====>

(CURRENTLY IN WORK. FILE)

ENTER A VOLUME NAME AND PRESS ENTER FOR A DIRECTORY LIST.

1 ----BROWSE
2 ---- EDIT
3 ";---READ (HOST/NATIVE)
4~--- WRITE (HOST/NAT1VE)
5 ",,,, ... -SUBMIT
6 ... --- PRINT
7 --'--MERGE
8 ---- END
9 ----HELP

PRESSPFJTO.EXIT

An empty data set appears on your screen. The name of the data set and the volume on which it
resides are shown at the top of the screen.

EDI T --;;;. .$SMEABCD, EDX0030(1089)------------------... ,...-----;.. COLUMNS 001 072
COMMAND INPUT ====='> .' ". '.' .. SCROLL ==>HALF
*.**.**.*.***.* TOP .. OFDATA .*.***..~****.**.****.***.*.****,*****.******.*"ft***."ft***~****'!t**** **

*t.***W***,BOTTOM OF DATA ***,**

The cursor is located at the first input line. After you finish typing text on this line, press the
enter key.

o

o

o

o

o

Creating a New Data Set (continued)

The following example shows how the screen looks after you enter the first line of a source
program. (We have used the source program described in Chapter 1 of this book.) The editor
automatically numbers each line and presents a new blank line.

EDIT --- $SMEABCD, EDX003 0(1089)-~-~--~--~--~------------- COLUMNS OOf 072
COMMAND INPUT ===> SCROLL ==> HALF
***** ***** TOP OF DATA ***
00010 ADD10 PROGRAM STPGM·

***** w*** BOTTOM OF DATA ***

Continue to type each line of your source program. When you finish, press the enter key on a
blank line.

EDIT --- $SMEABCD , EDX003 12(1089)----------~------------- COLUMNS 001 072
COMMAND INPUT ===>
***** ***** TOP OF

SCROLL ==> HALF
DATA ***

+00010 ADDlO
+00020 STPGM
+00030 LOOP
+00040
+00050
+00060
+00070
+00080
+00090 COUNT
+00100 SUM
+00110
+00120
***** *****

PROGRAM
GETVALUE
DO

ADD
ENDDO
PRINTEXT
PRINTNUM
PROGSTOP
DATA
DATA
ENDPROG
END

BOTTOM OF DATA

STPGM
COUNT,' ENTER NUMBER: I

10,11MES
SUM,COUNT

I@RESULT='
SUM

FlO'
FlO'

***************,*************************.******.**:****

Chapter 3. Entering a Source Program PG-69

Entering a Source Program
Saving Your Data Set

PG-70 SC34-0637

The next step is to save your data set. Return to the $FSEDIT Primary Option Menu by typing
M (for "menu") on the COMMAND INPUT line.

Select option 4 (WRITE) to save the data set. Type the name next on the DATASET NAME
line. (In this example, we named the data set ADD10. Type the volume on the VOLUME
NAME line. (In this example, the volume is EDX002.) Then press the enter key.

----------~---~----~----~~---STATUS= MODIFIED
PR~SS PF3 TO EXIT

OPTION :::::=> 4

DATASETNAME=========> ADD10
VOLtiHE NAME ==========> EDX002

HOST DATASET ========>

(CURRENTLY IN WORK FILE)

ENTER A VOLUME NAME AND PRESS ENTER FOR A DIRECTORY LIST.

---- BROWSE
2 ---- EDIT
3 ---- READ (HOST/NATIVE)
4 ---.,. WRITE (HOST/NATIVE)
5 ---- SUBMIT
6 -'--- PR I NT
7 ---- MERGE
8 END
9 ---- HELP

Next, the system prompts you as follows:

~RITE TO ADDIO ON EDX002 (YIN)?

Type Y and press the enter key.

Then you see a message on your screen indicating that the data set has been written to the
volume. In the example shown above, the following message would appear:

)

l2 LI NES WR I TTENTO ADD 10, EDX002)

This message means that the source program is 12 records long and has been written to volume
EDX002.

o

o

o

o

o

Modifying an Existing Data Set

Changing a Line

You have seen how to enter a source program into a new data set. You can also modify an
existing data set.

You must first read the data set you want to modify into the work data set. Select option 3
(READ) from the $FSEDIT Primary Options Menu. On'the menu, you specify which data set
you want to read.

Next, you select option 2 (EDIT) to modify the data set.

The data set appears on your screen.

EDIT --- ADD10 ,EDX002
COMMAND INPUT ===>

12(1089)------------------------ COLUMNS 001 072
SCROLL ==> HALF

***** ***** TOP OF DATA ***
00010 ADD10
00020 STPGM
00030 LOOP
00040
00050
00060
00070
00080
00090 COUNT
00100 SUM
00110
00120
***** ***** BOTTOM

PROGRAM
GETVALUE
DO

ADD
ENDDO
PRINTEXT
PRINTNUM
PROGSTOP
DATA
DATA
ENDPROG
END

STPGM
COUNT, I ENTER NUMBER: I

10,TIMES
SUM,COUNT

'@RESULT='
SUM

OF DATA **

To change a line, move the cursor to the line and type in the correction. For example, suppose
you wanted to change 10 to 15 in the DO instruction. Move the cursor to the 0 and type a 5.

Or, suppose you wanted to delete the = character in the PRINTEXT instruction. You would
move the cursor to the = character and press the delete key.

Chapter 3. Entering a Source Program PG-71

Entering a Source Program
Modifying an Existing Data Set (continued)

Inserting a Line

PG-72 SC34-0637

You can insert a new line into your data set. You insert a line by typing an I in the line number
after which you want to insert.

For example, suppose you want to insert another instruction before PROGSTOP. Type the I as
follows:

,'X." '< ' .. , "; "0' ~ , " , •• ,.,. " ~

.::1:2 (•• 10;&'·) t,,~,"'~~H~:~~+~:·:::~~~'~~H+~:~~~.·~
. " ., ", .. ," .. , .. ~ .. " ,,. ,

After you press the enter key, your data set looks like this:

to! t:::-.-";ADO·10,t't6x,002"·
COMMAND:JNPUT'.""=:::> .
c:1s*~**J'f**.TOP ,OF

'00010,ADD·to,:
O~020",,:,,?Jr'G~.
00030 'l, .. oQP·,
'00040
'O~o50:

. : ~ ;Qo;Q6.(l; .;,.,
"00:07Q:

,,00080,
'. ;,QO~,9~;'i CQ~:NJ:
;. :oof09:SUM::
::00 J:tQ,,~,,:,':

You could now enter your new line of text at the position of the cursor. After you press enter,
the editor assigns a line number to your new line of text. A new blank input line also appears.
You can continue to insert lines or you can press the enter key again to indicate that you have
finished inserting.

o

o

o Modifying an Existing Data Set (continued)

Deleting a Line

o

o

You can delete a line or series of lines from your data set.

To delete a single line, enter a Din the line number you want deleted and press the enter key.

EDIT --- ADD10 ,EDX002 13(1089)------------------------ COLUMNS 001 072
COMMAND INPUT ===> SCROLL ==> HALF
***** ***** TOP OF DATA ***
00010 ADD10 PROGRAM STPGM
00020 STPGM GETVALUE COUNT,IENTER NUMBER: '
00030 LOOP DO 10,TIMES
00040 ADD SUM,COUNT
00050 ENDDO
00060 PRINTEXT '@RESULT='
00070 PRINTNUM SUM
00080 *********Delete this line**********************
00090 PROGSTOP
00100 COUNT DATA FlO'
00110 SUM DATA F'O'
00120 ENDPROG
00130 END
***** ***** BOTTOM OF DATA **

After you press the enter key, the editor deletes the line.

EDIT --- ADD10 ,EDX002 12(1089)-,..-----------,...------.;.--- COLUMNS 001 072
COMMAND INPUT===> SCROLL ==> HALF
***** ***** TOP OF DATA ***
00010 ADD10 PROGRAM STPGM, ,
00020 STPGM GETVALUE COUNT ,IENTERNUMBER: '
00030 LOOP DO 10,TJMES' ,
00040 ADD SUM,CoUNt
00050 ENOOO
00060 PRJ NTEXT
000]0 PRINTNUM
00090 PROGSTOP
00100 COUNT DATA
00110 SUM DATA
00120 ENDPROG

I@RESULT='
SUM

FlO'
FlO'

00130 END
***** ***** BOTTOM,Oj:DATA****************************~***********************

Chapter 3. Entering a Source Program PG-73

Entering a Source Program
Modifying an Existing Data Set (continued)

PG-74 SC34-0637

You can also delete more than one line.

For example, suppose you want to delete lines 80 through 120 in the following program. Type
00 in line 80 and another 00 in line 120.

EDIT ~-- ADIHO , EOX002 17 (1089)--.,;--.,;--,;,.,;,...;-.,;---,;,.,;,.---- ... --COLUMNS 001072
COMMAND INPUT===> SCROLL ==>HALF
'**:.:~~*..* .. ,*-***.* .. T.Op OF OA"TA. **********~*.**~.****?t**~.*.*.*>k**** .. *:***.~~**************.**.***
00010ADD10 PROGRAM
00020STPGM GETVALUE
00030 LOOP DO
00040 ADD
00050 ENDDO
00060 PRINTEXT
00070 PRINTNUM
00080 **********Delete these
00090 ******
00100******
00110******

STPGM
COUNT,'ENTER NUMBER: .'
10,TIMES
SUM,COUNT

'@RESULT='
SUM

lines*********************

00120 **********Delete these lines*********************
00130 PROGSTOP
00140 COUNT DATA
00150 SUM DATA
00160 ENDPROG
00170 END

FlO'
FlO'

***** ***** BOTTOM OF DATA **

After you press the enter key, your program looks like this:

EDIT --- ADD10 ,EDX002 12(1089}------------------------ COLUMNS 001 072
COMMAND INPUT ===> SCROLL ==> HALF
***** ***** TOP Of DATA ***
00010 AOD10 PROGRAM STPGM
00020 STPGM GETVALUE COUNT, 'ENTER NUMBER: I

00030 LOOP DO 10, TI MES
00040 ADD SUM ,COUNT

. ·0005.(L ..ENO:DO ..
00060 PR I NTEXT
000'70 PRJ NTNUM
00)30 . PROGSTOP
0014.0 COUNT· DATA
00150 SUM DATA

:O()16a ENDPROG

,'@RESULT='
SUM

0.017'0·:> ." ...E'ND . '.' ' ' " . ' ... "
***** **.***. 130TTOM ". OF DATA *********************************~****************** .

The editor deletes the lines.

o

o

o

o

o

Modifying an Existing Data Set (continued)

Moving Lines

You can move a line or series of lines from one part of your data set to another.

For example, suppose you want to move lines 110 through 130. First type MM in both 110 and
130:

If you want to move these lines after line 10, place an A (for "after") on line 10 and press the
enter key.

EDIT --- ADD10 ,EDX002 15(1089)------------------------ COLUMNS 001 072
COMMAND INPUT ===> SCROLL ==> HALF
***** ***** TOP OF DATA ***
A0010 ADD10 PROGRAM STPGM
00020 STPGM GETVALUE COUNT, 'ENTER NUMBER: '
00030 LOOP DO 10,TIMES
00040 ADD SUM ,COUNT
00050 ENDDO
00060 PRINTEXT
00070 PRINTNUM
00080 PROGSTOP

'@RESULT='
SUM

00090 COUNT DATA FlO'
00100 SUM DATA F'O'
MMll0 *********Move these lines***********************
00120 ***** *****
MM130 *********Move these lines***********************
00140 ENDPROG
00150 END
***** ***** BOTTOM OF DATA **

When you press the enter key, the editor moves the lines to the position after line 10.

EDIT --- ADD10 ,EDX002 IS(1089)-----------------------~ COLUMNS ODt 072
COMMAND INPUT===> SCROLL ==> HALF
***** "***** TOP OF DATA **.***********
00010 ADD10 PROGRAM STPGM

+00020 *********Move these lines***********************
+00030 ***** *****
+00040 *********Move these lines***********************

00050STPGM GETVALUE COU~T,'ENTER NUMBER: I

00060 LOOP DO lO,T I MES
000]0 ADD SUM,COUNT
Q0080 ENDDO
0.0090 PRI NTEXT
00100 PRI NTNUM .
oono '. PROGS TOP
00120 COUNT DATA
00130 SUM DATA

'@RESI,JLT='
SUM'

.oOllto ENO'PROG

'00150' END...· ***:Hd:**~~**'~**:fi ******** *H:**~'*1d~**~Ic**~.~ •. ~~'~~.~~~;f*jt**.~. ***** ***** BOTTOM OFDATA"~

Chapter 3. Entering a Source Program PG-7S

Entering a Source Program
Modifying an Existing Data Set (continued)

PG-76 SC34-0637

After you make changes to your data set, return to the $FSEDIT Primary Options Menu.
Return to that menu by typing M (for "menu") on the COMMAND INPUT line. To save the
changes, select option 4 and press the enter key.

You have seen how you can change lines in your programs. You have also seen how to insert
and delete lines and move a series of lines. The session manager was used to invoke $FSEDIT
and to allocate the necessary data sets.

The next chapter explains how to compile your programs using $EDXASM, the EDX compiler.

o

o

o

o

0 ,
, ,'"

Chapter 4. Compiling a Program

After you design, code, and enter your source program into a data set, you have to compile the
source program into an object module. This chapter shows you how to compile your source
program using the Event Driven Language Compiler, $EDXASM.

The chapter also shows a step-by-step example of compiling a source program that contains
some syntax errors. The chapter then shows how to correct the errors so that the compilation is
successful.

You can invoke $EDXASM in one of three ways. You can load $EDXASM directly using the
$L command. You can use the $JOBUTIL utility to invoke $EDXASM. Or, you can run your
compilation under control of the session manager.

This chapter describes how to' compile a program using the session manager.

For information on using the $L command or the $JOBUTIL utility, see Operator Commands
and Utilities Reference.

Chapter 4. Compiling a Program PG-77

Compiling a Program
Allocating Data Sets

PG-78 SC34-0637

When you use $EDXASM under control of the session manager, you must provide two data
sets. The first data set is the actual source program to be compiled. You must have entered the
source program on a disk, diskette, or tape data set. Chapter 3, "Entering a Source Program"
on page PG-67 describes how to use the $FSEDIT utility to enter your source programs.

The output of the compiler is a data set that contains an object module. You can allocate this
data set by selecting option 3 (DATA MANAGEMENT) from the Session Manager Primary
Option Menu.

'. ..,." .. : ", .,

"$~MMPRIM:.'S'ESSION'MA~AGERPRtMARY9PT ION"'MENU ';--';~~-';'~-';"~~---~--~-'';'-'--''; .. .,.~
ENTER1SELECT PARAME~ERS: '" 'PRESSPF3 TO EXIT

SELECTOPTI ON==> 3

1 .,. TEXT ED III NG
2 .,. PROGRAM PREPARATION
3 ;.. DATA MANAGE.MENT
4- TERM1NAL UT1LITIIS
'5- GRAPHICS UTILITIES
6-EXECPROGRAM1UTI L lTV
7 ;.. EXEC $JOBUTILPROC
8 ,~.". COMMUNrCAT ION ,'Uit LI TIEs
9~DlAGNOSTI~ AIDS

10 - BACKGROUND JOB CONTROL UTI L ITI ES

19:42:01
10124182
ABeD

Note: This example assumes that you logged on to the Session Manager with an ID of ABCD.

o

o

o Allocating Data Sets (continued)

o

o

The Data Management Option Menu appears on the screen. To allocate your object code data
set, select option 1 ($DISKUTl).

$SMM03 SESSION MANAGER DATA MANAGEMENT OPTION MENU-----------------------­
ENTER/SELECT PARAMETERS: PRESS PF3TO RETURN

SELECT OPTION ==> 1

1 - $DISKUTl (DISK(ETTE) ALLOCATE, LIST DIRECTORY)
2 - $DISKUT2 (DISK(ETTE) DUMP/LIST DATASETS)
3 - $COPYUTl (DISK(fTTE) COpy DATASETS/VOLUMES)
4 - $COMPRES (DISK(ETTE) COMPRESS A VOLUME)
5 - $COPY (DISK(ETTE) COpy DATASETS/VOLUMES)
6 - $DASDI (DISK(ETTE) SURFACE INITIALIZATION)
7 - $INITDSK (D1SK(ETTE) INITIALIZE/VERIFY)
8 - $MOVEVOL (COPY DISK VOLUME TO MULTI-DISKETTES)
9 - $IAMUTl (INDEXED ACCESS METHOD UTILITY PROGRAM)

10 - $TAPEUTl (TAPE ALLOCATE, CHANGE, COpy)
11 - $HXUTl (H-EXCHANGE DATASET UTILITY)

WHEN ENTERING THESE UTILITIES, THE USER IS EXPECTED
TO .ENTER A COMMANO. IF A QUESTION MARK (?) IS ENTERED
rNSTEADOF A COMMAND, THE USER WILL BE PRESENTED WITH
ALIST OF AVAILABLE COMMANDS.

The session manager loads the $DISKUTI utility and prompts for the command you want to
use.

> $L $DISKUTl
LOADING $DISKUTl 59P,19:44:28, LP= 9200, PART=l

$DISKUTl - DATA SET MANAGEMENT UTILITY

USING VOLUME EDX002

COMMAND (?):

Notice the USING VOLUME EDX002 message. Unless you change volumes, $DISKUTI
allocates your data set on EDX002.

Chapter 4. Compiling a Program PG-79

Compiling a Program
Allocating Data Sets (continued)

PG-80 SC34-0637

To change the default volume, enter a CV command.

To change the default volume to MYVOL, enter the following CV command:

The system responds with:

~,"_~:_~_":_:_N:_O_~_~H_)~_."_:_YV_O_L_· __________________________ ~ __________________ --,,J
Use the CV command only when you do not want to use the default volume.

Use the AL command to allocate your data set.

L~~~:t~O Nm ~ AL)
The system then prompts you for the name of the data set. In this example, the data set name is
OBJECT.

l ~._~~_:_B_~A__· ~_A_~"~_C_o_·~_~"~_.~_c_~ ___________________________ ..."J
Next, the system prompts for the number of records you want to allocate. A 25- to 50-record
data set should be large enough for most programs. This example defines a 25-record data set.

HOW MANVRE~ORDS?25
DEFAULTTVPE~DATA .. 'C .OK(V/N)?

o

o

o Allocating Data Sets (continued)

o

o

Finally, the system prompts for the type of information to be contained in the data set. The
default is DATA. Because this data set will contain data, enter a Y.

l DEFAULT TYPE - DATA - OK(Y/N)? Y)

The system responds with:

lOBJECT CREATED J
COMMAND (?):

~----------""

Once the data set has been created, enter an EN (for "end") to return to the Data Management
Option Menu screen.

lCOMMAND (?): EN J
_$DISKUTl ENDED 08:30:24

Return to the Session Manager Primary Option Menu to begin the compilation by pressing the
PF3 key.

Chapter 4. Compiling a Program PG-81

Compiling a Program
Running the Compilation

PG-82 SC34-0637

Once you have allocated the data set to hold the output, you are ready to begin compiling the
source program. The following is a listing of the source program to be compiled:

STPGM
LOOP

COUNT
SUM

PROGRAM
GETVALUE
DO

ADD
ENDDO
PRINTEXT
PRINTNUM
PROGSTOP
DATA
DATA
ENDPROG
END

STPGM
COUNT, I ENTER NUMBER: I

10,TIMES
SUM,COUNT

'RESULT='
SUM

- FlO I

F'O'

This program is similar to the examples we used in Chapter 1 and Chapter 3 of this book.
However, we have included two errors in this source program.

From the Session Manager Primary Option Menu, select option 2 (PROGRAM
PREPARATION) to begin the compile step.

$SMMPRIM;'SESSIONMANAGER PRIMARY,OPTION MENU -------- .. --- ... -- ... ----- -- ... ---­
ENTERlSELECT p·ARAMETERS: PRESS PF3 TO EX IT

SELECT OPTION ~=> 2

1 - n:XT ED I TING
2 - PROtRAMPREPARATION
3- DATA MANAGEMENT
4 -TERMINALUTILiTIES
5 - GRAPHLCS UTILITIES
6 -EXEC PROGRAM/UTILITY
T ;;". EXE.G$JOBU"tIVPRoC
8 - cOMMuNrcAT'loNUT ILIT! ES
9- DI~GHOSTI(.AIDS

10- BACKGROUND JOB CONTROL ur J LI T! ES

19:48:07
10/24/82
ABCD

The Program Preparation Option Menu appears on your screen. To compile the program, select
option 1 ($EDXASM COMPILER).

o

o

o

o

o

Running the Compilation (continued)

$SMM02 SESSION MANAGER PROGRAM PREPARATION OPTION MENU-------------------­
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==> 1

1 - $EDXASM COMPILER
2 - $EDXASM/$EDXLINK
3 - $SlASM ASSEMBLER
4 - $COBOL COMPILER
5 - $FORT FORTRAN COMPILER
6 - $PLI COMPILER/$EDXLINK
7 - $EDXLINK LINKAGE EDITOR
8 - $XPSLINK LINKAGE EDITOR FOR SUPERVISORS
9 - $UPDATE

10 - $UPDATEH (HOST)
11 - $PREFIND
12 - $PASCAL COMPILER/$EDXLINK
13 - $EDXASM/$XPSLINK FOR SUPERVISORS
14 - $MSGUT1 MESSAGE SOURCE PROCESSING UTILITY

The $EDXASM Parameter Input Menu appears on your screen. Enter the name of your source
input (in this example, ADDIO on volume EDX002). Also enter the name of your object output
(in this example, data set OBJECT on volume MYVOL).

You could enter something on the OPTIONAL PARAMETERS line if you want to change one
of the parameters listed on the DEFAULT PARAMETERS line. In this example, we are using
the defaults.

$SMM0201: SESSION MANAGER $EDXASM PARAMETER INPUT MENU--------------------­
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SOURCE INPUT (NAME,VOLUME) ==> ADD10,EDX002

OBJECT OUTPUT (NAME,VOLUME) ==> OBJECT,MYVOL

OPTIONAL PARAMETERS ==>
. (SELECT FROM THE LIST BELOW)

FOREGROUND OR BACKGROUND (F/B) ==>
(DEFAULT IS FOREGROuND)

AVAILABLE PARAMETERS:
NOLIST
LIST TERMINAL-NAME
ERRORSTERMI~AL"'NAME
CONTROL DATA SET, VOLUME
OVERLAY#'

DEFAULT PARAMETERS:

ABBREV I AT! ON:
NO
LI TERMI.NAL,..NAME
ER TERMINAL-NAME
CO DATASET~VOLUME
OV#

LIST $SYSPRTRCONTRQL $EDXL,ASMLlBOVERLAY 4

DESCRIPTION:
USED TO SUPPRESS LISTING
USE~I 5T * FOR THI S TERM .. I NAL
USE. ERRORS * FOR THIS TERMINAL
$EDXASM . LANG;UAGECONTROLDATASET
IS NUMBER OF AREAS fROM 1 TO.6

Chapter 4. Compiling a Program PG-83

Compiling a Program
Running the Compilation (continued)

Checking Your Compiler Listing and Correcting Errors

The output of the compiler prints on your printer. The listing consists of statistics, source code
statements and object code, undefined or external symbols, and a completion code.

The following is an example of the output listing generated by the compile example being run.

EDX ASSEMBLER STATISTICS

SOURCE INPUT - ADD10,EDX002
WORK DATA SET - WORK1,MYVOL
OBJECT MODULE - OBJECT,MYVOL
DATE: 10/24/82 AT 19:56:18
ASSEMBLY TIME: 4 SECONDS
STATEMENTS PROCESSED - 12

4 STATEMENTS FLAGGED

LOC +0 +2 +4 +6 +8 SOURCE STATEMENT

PROGRAM
08 *** TASK NAME NOT SPECIFIED

0000 802C 0000 OOOA 0001 OEOE STPGM GETVALUE
OOOA C5D5 E3C5 D940 D5E4 D4C2
0014 C5D5 7A40

08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED
0018 809C 0024 OOOA LOOP DO
001E 0032 0040 0000 ADD

08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED
0024 009D 0000 0001 ENDDO
002A 8026 0808 D9C5 E2E4 D3E3 PRINT EXT
0034 7E40 PRINTNUM
003C 0022 FFFF PROGSTOP

COUNT DATA
08 *** INVALID OR UNDEFINED OPERATION CODE

0040 0000 SUM DATA
0042 ENDPROG
0042 END

EXTERNAL/UNDEFINED SYMBOLS

COUNT UNDEFINED

COMPLETION CODE 8

PAGE 1
ADD10 ,EDX002 (5719

STPGM
$EDXL 12

COUNT, , ENTER NUMBER: ,

$EDXL 3
10,TIMES
SUM, COUNT

$EDXL 3

'RESULT='
SUM

F'O'
$EDXL 11

F'O'

The previous example shows that the compile did not run successfully. The completion code
expected is a -1. The completion code received is an 8.

PG-84 SC34-0637

o

r-~\
~t_J

o

o Running the Compilation (continued)

o

o

The listing shows the compilation errors. They are:

08 *** TASK NAME NOT SPECIFIED

• 08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED

• 08 *** INVALID OR UNDEFINED OPERATION CODE

To fix these errors, you must understand what caused them. Look the errors up in Messages and
Codes.

The first message, 08 *** TASK NAME NOT SPECIFIED, is a result of not having a task name
coded on the PROGRAM statement.

The second message, 08 *** ONE OR MORE UNDEFINED LABELS WERE
REFERENCED, means that one of the labels referenced in the instruction has not been defined
to the program. If you check the listing for undefined symbols, you will see that COUNT is
undefined.

The third message, 08 *** INVALID OR UNDEFINED OPERATION CODE, means that
something is wrong with the COUNT definition statement. If you check the statement, you will
see.that the label, COUNT, starts in column two. The label must start in column one.

After isolating the errors, you must go back to the source data set and correct them. Use
$FSEDIT as explained in Chapter 3, "Entering a Source Program" on page PG-67 to make the
corrections. After you make the corrections, the source data set looks as follows:

PROGl
STPGM
LOOP

COUNT
SUM

PROGRAM
GETVALUE
DO

ADD
ENDDO
PRINTEXT
PRINTNUM
PROGSTOP
DATA
DATA
ENDPROG
END

STPGM
COUNT, I ENTER NUMBER: I

10,TIMES
SUM,COUNT

'@RESULT='
SUM

F'O'
F'O'

Chapter 4. Compiling a Program PG-85

Compiling a Program
Rerunning the Compilation

PG-86 SC34-0637

To rerun the compilation, return to the Session Manager Primary Option Menu.

From the Session Manager Primary Option Menu, select option 2 (PROGRAM
PREPARATION).

, F-TEXT EDITING
2 -PROGRAM PR~PARATION
3 ~ DATA MANAGEMENT
4 - TERMINAL UT~LITI.ES
5 - GRAPHICS UTILITIES
6 - EXEC PROGRAM/UT III TY
7 - ~XEC $JOBUTIL PROC
8- COMMUN I CAT ION UT III TIES
9 - DIAGNOSTIC AIDS

10 ~ BACKGROUND JOB CONTROL UTILITIES

The Program Preparation Option Menu appears on your screen. Select option 1 ($EDXASM
COMPILER).

$SMM02 SESSIONMAN.AGER PROGRAM PREPARATI ON OPTIONMENU-------~~~-;.---.;.--­
ENTER/SELECT PARAMETERS: PRESS PF3TO RETURN

SELECT OPTION ==> 1

1 ~ $EDXASM COMPILER
Z ~. $EDXASM/$EDXlINK
3-$SlASM ASSEMBLER
4 ~ $COBOL COMPILER
5 .~ $FORT FORTRAN CO~PILER
.6'::,:$P:LI' .. COMPILER1$EDXLI Nt<
7- $EDXLlNK LINKAGE EDI TOR
8..; $XPSLI NK t INKAGEEDITORFORSUPERVI SORS
9';' $UPDATE

10 •.. ~. '$U PDATE H (H OST)
11 -$PREFIND '. '. ..'
12~ $PAS~ALCOMPI LER/$EDXLIN~
13 $EDXJ:\SMI$XPSL·INK.FOR.SUeERVISO~S
14. ':-,$MSGUTI MESSA.GE SOURCE. PROCES;$ING UTI.(;;I TY

o

o

o Rerunning the Compilation (continued)

o

o

The $EDXASM Parameter Input Menu appears on your screen. Again, enter the name of your
source input (in this example, ADDIO). Also enter the name of your object output (in this
example, data set OBJECT on volume MYVOL).

$SMM0201: SESSION MANAGER $EDXASM PARAMETER INPUT MENU--------------------­
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SOURCE INPUT (NAME,VOLUME) ==> ADD10,EDX002

OBJECT OUTPUT (NAME,VOLUME) ==> OBJECT,MYVOL

OPTIONAL PARAMETERS ==>
(SELECT FROM THE LIST BELOW)

FOREGROUND OR BACKGROUND (F/B) ==>
(DEFAULT IS FOREGROUND)

AVAILABLE PARAMETERS:
NOLIST
LIST TERMINAL-NAME
ERRORS TERMINAL-NAME
CONTROL DATA SET,VOLUME
OVERLAY #

DEFAULT PARAMETERS:

ABBREVIATION:
NO
LI TERMINAL-NAME
ER TERMINAL-NAME
CO DATA SET,VOLUME
OV #

LIST $SYSPRTR CONTROL $EDXL,ASMLIB OVERLAY 4

DESCRIPTION:
USED TO SUPPRESS LISTING
USE LIST * FOR THIS TERMINAL
USE ERRORS * FOR THIS TERMINAL
$EDXASM LANGUAGE CONTROL DATASET
IS NUMBER OF AREAS FROM 1 TO 6

Chapter 4. Compiling a Program PG-87

Compiling a Program
Rerunning the Compilation (continued)

The following is an example of the output listing generated by the compiler.

EDX ASSEMBLER STATISTICS

SOURCE INPUT - ADD10,EDX002
WORK DATA SET - $SM1ABCD,EDX002
OBJECT MODULE - OBJECT,MYVOL
DATE: 10/24/82 AT 20:06:18
ASSEMBLY TIME: 4 SECONDS
STATEMENTS PROCESSED - 12

NO STATEMENTS FLAGGED

LOC +0 +2 +4 +6 +8

0000 0008 D7D9 D6D7 D9C1 D440

SOURCE STATEMENT ADD10 ,EDX002

PROG1 PROGRAM STPGM

(5719

0034 802C 0074 003E 0001 GEOE STPGM GETVALUE COUNT, 'ENTER NUMBER: ,
003E C5D5 E3C5 D940 D5E4 D4C2
0048 C5D9 7A40
004C 809C 0058 OOOA LOOP DO 10,TIMES
0052 0032 0076 0074 ADD SUM,COUNT
0058 009D 0000 0001 ENDDO
005E 8026 0808 D9C5 E2E4 D3E3 PRINTEXT 'RESULT='
0068 7E40
006A 0028 0076 0001 PRINTNUM SUM
0070 0022 FFFF PROGSTOP
0074 0000 COUNT DATA F'O'
0076 0000 SUM DATA F'O'
0078 0000 0000 0000 0234 0000 ENDPROG

OOFA 0000 0000 0000 0000 0000
010E 0000
a 11 a END

EXTERNAL/UNDEFINED SYMBOLS

SVC WXTRN
SUPEXIT WXTRN
SETBUSY WXTRN

COMPLETION CODE -1

PG-88 SC34-0637

The -1 completion code tells you that the compile was successful. The next step is to link-edit
the object module into program data that can be executed. See the next chapter, Chapter
5, "Preparing an Object Module for Execution" on page PG-89, for details.

o

I/-~
\

~

o

o

o

o

Chapter 5. Preparing an Object Module for
Execution

So far in this book, you have learned how to code and enter a source program into a data set.
You have also learned how to compile the source program.

The next step is to prepare your object modules for execution. In this chapter, we will show you
how to use the linkage editor $EDXLINK to prepare your object modules to run on an EDX
system. $EDXLINK links together any separately assembled object modules that make up your
program. $EDXLINK also produces a load module that is ready for execution.

In this chapter, we will show you how to prepare a single object module for execution. We will
also show you an example of link-editing more than one object module.

You can invoke $EDXLINK in one of three ways. You can load $EDXLINK directly using the
$L command. You can use the $JOBUTIL utility to invoke $EDXLINK or use $EDXLINK
under control of the session manager.

This chapter describes how to use $EDXLINK under control of the session manager. For
information on using the $L command or the $JOBUTIL utility, refer to Operator Commands
and Utilities Reference.

Chapter 5. Preparing an Object Module for Execution PG-89

Preparing an Object Module for Execution
Link-Editing a Single Object Module

PG-90 SC34-0637

This section shows how to link-edit a single object module.

$EDXLINK LINKAGE EDITOR is option 7 of the Session Manager Program Preparation
Option menu.

$SMM()2.··.·.·.S~$SJON:MANACiER:PROGRAM.· PREPARATI ON <6PTI6N ·MEN.U~--·.~7---..,~---~-~.-·.--­
ENTER/SELECT. PARAM'ETERS: .'. PRESSPF3" TO. RETURN

1 '-:$EDXASM COMPILER
2- .$ED)(ASM/$EDXU NK
3 - $~1ASMASSEMBLER
4 - $COBOLCOMPILER
5 ~ $FORT~ORTRAN COMPILER
6 - $PLJ COMPILER/$EDXLINK
7 - $EDXLINK LINKAGE EDITOR
8 - $XPSlINK LINKAGE EDITOR FOR SUPERVISORS
9 -$UPDATE

10 - $UPDATEH (HOST)
11 - $PREFIND
12- $PASCAL tOMPILER/$EDXlINK
11 - $EDXASM/$XPSLINK FOR SUPERVISORS
14 - $MSGUT1 MESSAGE SOURCE PROCESSING UTILITY

When you select option 7 and press the enter key, the $EDXLINK Parameter Input Menu
appears on your screen.

$SMM0207: SESSION MANAGER$EDXLlNK PARAMETER INPUT MENU-------,..-----------­
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

EXECUTION PARM ==> *
E,NTE~A··CQNIROl .DATA SETNAME,VOLl.JME OR
AN ASTERISK (*) FOR INTERACTIVE MQDE.

OUTPUT DEVrCE(DEFAULTS TO $SYSPRTR) ==>

fOREGROUND DR BACKGROUND (F/B) ==>
(OEFAuLT·fS· FOREGROUND)

You can run $EDXLINK in interactive mode. If you choose interactive mode, the system
prompts you for information about the object module you want to link-edit. To choose
interactive mode, enter an asterisk (*) on the EXECUTION PARM line.

o

o

o Link-Editing a Single Object Module (continued)

o

o

$EDXLINK then displays the following screen:

LOADING $JOBUTIL 4P,18:27:16, LP= 9400, PART= 1
REMARK
$EDXLINK *
*** JOB - $EDXLINK - STARTED AT 18:28:42 03/15/83 ***
JOB $EDXLINK ($SMP0207) USERID=ABCD
LOADING $EDXLINK 89P,18~28:49, LP= 9800, PART= 1

$EDXLINK - EDX LINKAGE EDITOR

$EDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

STMT (?):

$EDXLINK prompts you for a control statement. Control statements are the instructions
$EDXLINK uses to convert the object modules into load modules.

When using interactive mode, you enter the control statements one at a time. (As you will see
later in this chapter, you can write the control statements to a link control data set for execution
in noninteractive mode.)

To link-edit a single object module, use the INCLUDE and LINK statements. (You will learn
about some of the other control statements later in this chapter.)

The INCLUDE statement indicates which object module to use. (Remember that the object
module is the output from $EDXASM, the compiler.) In this example, the object module is
OBJECT. This is the only module name you enter next to the INCLUDE statement.

LOADING $JOBUTIL 4P,10:27:16, LP= 9400, PART= 1
REMARK .
$EDXLINK *
*** JOB - $EDXLlNK - STARTED AT 10:27: 16 00/00/00 ***
JOB $EDXLINK ($SMP0207} USERID=ABCD
LOADING $EDXLINK 89P,10:i7:18, LP= 9800, PART= 1

$EDXLINK - EDX LINKAGE EDITOR

$EDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

STMT (?): I NCLUDE OBJECT ,MYVOL

Chapter 5. Preparing an Object Module for Execution PG-91

Preparing an Object Module for Execution
Link-Editing a Single Object Module (continued)

Use the LINK statement to name the data set that is the output of $EDXLINK. When you
enter the name of this data set, $EDXLINK allocates it. In the following example, the data set
is named ADDPGM. It will reside on volume EDX002. The word REPLACE says to replace
the program if it already exists on volume EDX002. END tells $EDXLINK not to expect any
more statements.

LOADING $JOBUTIL 4P~10:21:16, LP=9400, PART= 1
REMARK
$EDXLI NK *
*** JOB -$EDXLlNK -STARTED AT 10:27:1600/00/00 ***
JOB $EDXLINK ($SMP0207) USERID=ABCD
LOADING $EDXLINK 89P,10:27:18, LP= 9800, PART= 1

$EDXLINK - EDX LINKAGE EDITOR

$EDXL~NK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

STMT (?): I NCLUDE OBJECT, EDX002

STMT (?): LINK ADDPGM,EDX002 REPLACE END

The system produces a data set (ADDPGM) that can now be executed on the system. In this
example, we link-edited only one object module (OBJECT). The next section shows how to
link-edit more than one object module.

If the system indicates (by returning a -1 completion code) that the link-edit was successful,
return to the Primary Option Menu to execute your program.

Link-Editing More Than One Object Module

PG-92 SC34-0637

This section shows how to specify that a load module consists of more than one object module.
If you divide a large program into modules, those modules can be compiled separately. If you
need to make a change to one of the modules, you need to recompile only that module. When
you are ready to run the program, you can link-edit the individual modules.

You might also have a function that is common to many of your programs. By making this
function a separate module, you could include it wherever needed in your programs.

This section shows how to use both interactive and noninteractive mode to link-edit the
modules. All examples show $EDXLINK being used under control of the session manager.

o

o

o

o

o

Link-Editing More Than One Object Module (continued)

As you learned earlier in this chapter, $EDXLINK LINKAGE EDITOR is option 7 of the
Session Manager Program Preparation Option menu.

$SMM02 SESSION MANAGER PROGRAM PREPARATION OPTION MENU-------------------­
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==> 7

1 - $EDXASM COMPILER
2 - $EDXASM/$EDXLINK
3 - $SlASM ASSEMBLER
4 - $COBOL COMPILER
5 - $FORT FORTRAN COMPILER
6 - $PLI COMPILER/$EDXLINK
7 - $EDXLINK LINKAGE EDITOR
8 - $XPSLINK LINKAGE EDITOR FOR SUPERVISORS
9 - $UPDATE

10 - $UPDATEH (HOST)
11 - $PREFIND
12 - $PASCAL COMPILER/$EDXLINK
13 - $EDXASM/$XPSLINK FOR SUPERVISORS
14 - $MSGUT1 MESSAGE SOURCE PROCESSING UTILITY

When you select option 7, the $EDXLINK Parameter Input Menu appears on your screen.

$SMM0207: SESSION MANAGER $EDXLINK PARAMETER INPUT MENU-------------------­
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

EXECUTION PARM ==> *
ENTER A CONTROL DATA SET NAME,VOLUME OR
AN ASTERISK (*) FOR INTERACTIVE MODE.

OUTPUT DEVICE (DEFAULTS TO $SYSPRTR) ==>

FOREGROUND OR BACKGROUND (F/B) ==>
(DEFAULT IS FOREGROUND)

Chapter 5. Preparing an Object Module for Execution PG-93

Preparing an Object Module for Execution
Link-Editing More Than One Object Module (continued)

Using Interactive Mode

PG-94 SC34-0637

You can choose interactive mode or noninteractive mode.

When you choose interactive mode, $EDXLINK displays the following screen:

LOADING$JOaUTIL
'RtMARK
$EDXLINK*
***JOB; $EDXLlNK - STARTED AT 07:27:16 00100/00 ***

JOB $EDXLI NK ($SMP0207) USE.R ID=::ABCD
LOADING $EDXLINK 89P,07:27:18, LP= 9800, PART= 1

$EDXLINK - EDX LINKAGE EDITOR

$EDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

STMT (?):

o

o

o Link-Editing More Than One Object Module (continued)

o

Including Individual Object Modules

With the INCLUDE statement, you indicate which object modules to use. If the modules reside
on the same volume, you can list them on one INCLUDE statement. In the example shown
below, the first INCLUDE statement includes four object modules from volume EDX003. The
second INCLUDE statement includes two object modules from volume MYVOL.

LOADING $JOBUTIL 4P,07:27:16, LP= 9400, PART= 1
REMARK
$EDXLINK *
*** JOB - $EDXLINK - STARTED AT 07:27:16 00/00/00 ***
JOB $EDXLINK ($SMP0207) USERID=ABCD
LOADING $EDXLINK 89P,07:27:18, LP= 9800, PART= 1

$EDXLINK - EDX LINKAGE EDITOR

$EDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

STMT (1): ~NCLUDE OBJ12,OBJ13,OBJ14,OBJ15,EDX003

STMT (?): INCLUDE SQRT, STDEV ,MYVOL

After you enter the first INCLUDE statement, $EDXLINK prompts you for another statement.
Enter the second INCLUDE statement.

Chapter 5. Preparing an Object Module for Execution PG-95

Preparing an Object Module for Execution
Link-Editing More Than One Object Module (continued)

PG-96 SC34-0637

The LINK statement tells the linkage editor what to call the load module and where to put it. In
this example, the output object data set will be named PGMI. It will reside on volume
EDX003. The word REPLACE says to replace the program if it already exists on volume
EDX003. END tells $EDXLINK not to expect any more statements.

STMT (1): INCLUDE OBJ12,OBJ13,OBJ14,OBJ15,EDX003

STMT (1): INCLUDE SQRT,STDEV~MYVOL

STMT (1): liNK PGM1,EDX003 RtPLACE END

$EDXLINK EXECUTION STARTED
PGMl ,EDX003 STORED
PROGRAM DATA SET SIZE = 7 RECORDS
COMPLETION CODE = -1

$EDXLINK ENDED AT 09:33:35

$JOBUTIL ENDED AT 09:33:55

PRESS ENTER KEY TO RETURN

Once you enter these statements, $EDXLINK produces a load module (PGMl) that is ready for
execution. PGMI consists of six object modules: OBJ12, OBJ13, OBJ14, OBJ15, SQRT, and
STDEV.

o

o

o link-Editing More Than One Object Module (continued)

0

o

Including Overlay Segments

Your program may include overlay segments. (Overlay segments are described in detail in
"Reusing Storage using Overlays" on page PG-193.) You use the OVERLAY statement to
identify these segments to $EDXLINK.

For example, suppose you had a program made up of a resident segment and two overlays.
Assume the name of the resident segment is TESTROOT and the overlays are named
TEST SUB 1 and TESTSUB2. Your control statements would look like this:

$EDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

STMT (?) : INCLUDE TESTROOT,EDX003

STMT (1) : OVERLAY

STMT (1): INCLUDE TESTSUB1,EDX003

STMT (1) : OVERLAY

STMT (1) : INCLUDE TESTSUB2,EDXOO3

STMT (1) : LINK TEST,EDXOO3 REPLACE END

$EDXLINK EXECUTION STARTED
TEST ,EDX003 STORED
PROGRAM DATA SET SIZE = 26
COMPLETION CODE = -1

$EDXLINK ENDED AT 04:05:35

The first INCLUDE statement identifies the resident (or root) portion of the program. The
INCLUDE statement following the first OVERLAY statement identifies the first overlay
segment. The INCLUDE statement following the second OVERLAY statement identifies the
second overlay segment.

The LINK statement identifies the object output data set.

Chapter 5. Preparing an Object Module for Execution PG-97

Preparing an Object Module for Execution
Link-Editing More Than One Object Module (continued)

Using the Autocall Feature

PG-98 SC34-0637

You can use the AUTO CALL control statement to invoke the autocall feature. You can include
up to three autocall data set names on the AUTO CALL statement. Autocall data sets contain a
list of object module names and volumes, along with their entry points. Use the autocall option
to include modules not explicitly included via the INCLUDE statement.

You need to use autocall data sets if, for example, you are link-editing a program that uses
$IMAGE subroutines. Some instructions, such as GETEDIT and PUTEDIT, also require that
you link-edit with the auto call option.

The following is an example of an autocall data set.

PGM1 , EDX003
PGM2,EDX40
PGM3,MYVOL
**END

ENTER
START
CALC

PGMl, PGM2, and PGM3 are object modules on EDX003, EDX40, and MYVOL. ENTER,
START, and CALC are the entry points for the modules. The module names must begin in
column one and end with a * *END statement.

Enter the AUTO CALL statement just before the LINK statement. This example specifies two
autocall data sets: the system-supplied autocall data set ($AUTO on volume ASMLIB) and data
set MYAUTO on volume MYVOL.

If you specify more than one A UTOCALL statement, the linkage editor uses the last one.

Suppose you wanted to add an AUTOCALL statement to the previous example. You would
enter it like this:

$EDXLINKINTERACT1VE MODE
DEFAULT. VOLUME = EDXOQ2

STMT (1): INCLUDE TESTROOT,EDX003

STMT (?): OVERLAY

STMT (?) : INCLUDE TESTSUB 1 ,EDX003

STMT (7); OVERLAY

STMT (?):I NCLUDE TESTSUB2,EDX003

STMT (?): AUTO·CAll. $AUTO,ASMLlB MYAUTO ; MYVOL

STMT (1) :UNKTEST,EDX003REPlACE END

o

o

o Link-Editing More Than One Object Module (continued)

o

o

The system would respond as follows:

$EDXLINK EXECUTION STARTED
TEST ,EDX003 STORED
PROGRAM DATA SET SIZE = 26
COMPLETION CODE = -1

$EDXLINK ENDED AT 04:05:35

The linkage editor also prints, on the system printer, the names of the object modules it
included. For example:

INCLUDE $IMOPEN ,ASMLIB FROM $AUTO
INCLUDE $IMGEN ,ASMLIB FROM $AUTO
INCLUDE $GPLIST ,ASMLIB FROM $AUTO
INCLUDE $GEER ,ASMLIB FROM $AUTO
INCLUDE $GEAC ,ASMLIB FROM $AUTO
INCLUDE $IMDTYPE,ASMLIB FROM $AUTO
INCLUDE $$RETURN,ASMLIB FROM $AUTO
INCLUDE $UNPACK ,ASMLIB FROM $AUTO

,ASMLIB VIA AUTOCALL
,ASMLIB VIA AUTOCALL
,ASMLIB VIA AUTOCALL
,ASMLIB VIA AUTOCALL
,ASMLIB VIA AUTOCALL
,ASMLIB VIA AUTOCALL
,ASMLIB VIA AUTOCALL
,ASMLIB VIA AUTOCALL

Chapter 5. Preparing an Object Module for Execution PG-99

Preparing an Object Module for Execution
Link-Editing More Than One Object Module (continued)

Using Noninteractive Mode

Using noninteractive mode means that you do not have to enter control statements each time
you link-edit a program.

When you use noninteractive mode, you must enter the name of a primary control data set on
the $EDXLINK Parameter Input Menu. The primary control data set contains the control
statements to be used by $EDXLINK.

You can create the primary control data set using $FSEDIT. Then enter control statements into
the data set.

The following is an example of a primary control data set. Control statements must begin in
column 1. This data set includes comment statements. A comment statement begins with an
asterisk (*).

* PLOT PROGRAM INCLUDES

*
INCLUDE PLOTXY,MYVOL
INCLUDE PLOTXX,MYVOL
INCLUDE PLOTYY,MYVOL
INCLUDE PLOTYX,MYVOL

* * PERFORM AUTO CALL PROCESSING USING:

* AUTO CALL MYAUTO,MYVOL $AUTO,ASMLIB

* * PERFORM THE LINK

*
LINK PLOT,MYVOL REPLACE END

After entering these statements into the data set, you would then specify the name of this data
set next to "EXECUTION P ARM" on the $EDXLINK Parameter Input Menu. In this
example, the data set is LINK1 on volume EDX003.

PG-100 SC34-0637

$SMM0207: SESSI~N MANAGER $EDXLINK PARAMETER INPUT MENU---------~---------­
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

EXECUTION PARM==> 1I NK 1,EDX003

ENTER A CONTROL DATASET NAME ,VOLUME OR
AN ASTERISK{*) FOR INTERACTIVE MODE.

OUTPUT DEVICE (DEFAULTS TO $SYSPRTR) ==>

FOREGROUND OR BACKGROUND (FIB) ==>
(DEFAULT IS FOREGROUND)

o

o Link-Editing More Than One Object Module (continued)

o

The primary control data set may also refer to a secondary control data set. The secondary
control data set contains additional control statements. These control statements can be
common control statements that are used frequently for many different link-edits. You use the
COpy control statement to refer to these secondary data sets. For example:

INCLUDE ASMOBJ,EDX003
COpy CTRL,EDX40
LINK PGM3,EDX40 REPLACE END

The linkage editor includes object module ASMOBJ on volume EDX003, copies additional
control statements from data set CTRL on volume EDX40, gives the load module the name
PGM3, and puts it on volume EDX40.

For more information on specifying primary and secondary control statement data sets, refer to
Operator Commands and Utilities Reference.

Prefinding Data Sets and Overlays

You can locate data sets and overlay programs before you load a program by using the
$PREFIND utility. You can improve program performance by using $PREFIND.

You should use $PREFIND if:

• The program uses a large number of data sets.

• The program loads several overlay programs.

You load the program frequently.

For information on how to use the $PREFIND utility, refer to Operator Commands and Utilities
Reference.

Chapter 5. Preparing an Object Module for Execution PG-IO 1

Notes

o

o
PG-I02 SC34-0637

o

o

o

Chapter 6. Executing a Program

After you have compiled and link-edited a program, you are ready to run (or execute) it.

This chapter shows how to execute a program. You can execute a program in any of the
following ways:

• You can load the program with the $L operator command.

• You can use the $JOBUTIL utility.

• You can use the session manager.

• You can submit the program from another program.

• You can use the $SUBMIT utility.

This chapter describes how to use the session manager to execute a program and how to submit
a program from another program. For information on how to use the $L operator command or
the $JOBUTIL utility or the $SUBMIT utility, refer to Operator Commands and Utilities
Reference.

Chapter 6. Executing a Program PG-I03

Executing a Program
Executing a Program with the Session Manager

To execute your program, select option 6 (EXEC PROGRAM/UTILITY) on the Primary
Option Menu.

1- TE:XT EDITING
2 -PROGRAMPREPARATION·
3- DATA MANAGEMENT
4: - TERMI NAL UTILI TJ ES
5 ... GRAPH I CSUT I LJ TIES
6 - EXEC PROGRAM/UTILITY
7 ..; EXEC $JOBUTIL PROC
8·~ COMMUNICATION UTiliTIES
9 - DIAGNOSTIC AIDS

1 0 ~ BACKGROUNDJ08 CONTROL UTILITIES

The Execute Program/Utility menu appears. Enter the program name (ADDPGM) and volume
(EDX002) next to PROGRAM/UTILITY (NAME,VOLUME). Then type an asterisk in the
DATA SET 1, DATA SET 2, and DATA SET 3 fields and press the enter key.

$SMM06SESSION. MANAGER EXECUTE PROGRAM/UTILITY-------,-:-----~~-'--..:--~~..;--~-~
ENTER/SElECTPARAMETERS:PRESS:PF3.TO RE;TURN

PROGRAM/UT I ClTv

PARAMETERS ===>

Putting asterisks in the DATA SET fields means either of two things. Either the program does
not use any data sets or the program specifies the data sets with the DS operand. For example,
the PROGRAM for program ADDPGM might look like this:

BEGIN PROGRAM ST

or this:

BEGIN PROGRAM ST,DS=((MASTER,EDX003), (UPDATES,MYVOL), (NEWMAST,EDX40»

PG-104 SC34-0637

o

o

o Executing a Program with the Session Manager (continued)

o

o

If you want the program to execute in the background, enter B next to FOREGROUND OR
BACKGROUND (F/B). Otherwise, the system executes the program in the foreground.

After' you press the enter key, the following screen appears on the terminal:

LOADING $JOBUTIL 4p,11:48:21, LP= 9400, PART= 1
REMARK
EXECUTE PROGRAM/UTILITY: ADDPGM
*** JOB - ADDPGM - STARTED AT 11:48:22 00/00/00 ***
JOB ADDPGM ($SMP06) USERID=ABCD
LOADING ADDPGM 2P,11:48:23, LP= 9800, PART= 1
ENTER NUMBER:

Specifying Data Sets

You can specify data sets in one of six ways:

1. In the DS= operand of a PROGRAM instruction

2. In the DS= operand of a LOAD instruction

3. With the $L operator command

4. During execution of some system utility programs

5. On the Execute Program/Utility menu

6. With the DS command of the $JOBUTIL utility.

You identify a data set by specifying:

1. The data set name (dsname)

2. An optional volume label (volume) which specifies the volume on which the data set resides.

Chapter 6. Executing a Program PG-I0S

Executing a Program
Executing a Program with the Session Manager (continued)

The format for a data set specification is:

dsname,volume

Volume is optional. If you omit volume, the system assumes that the data set resides on the
volume from which you performed an IPL. Definitions of dsname and volume are:

dsname An alphameric character string of eight characters. When you specify fewer than
eight characters, the system adds blanks to the right to complete the string.

volume An alphameric character string of six characters. To locate the volume, the
appropriate TAPE or DISK statement must be in the system I/O definition. You
must initialize the disk or diskette with the $INITDSK utility and tapes with the
$TAPEUTI utility. When you specify fewer than six characters, the system adds
blanks to the right to complete the string.

To specify up to three data sets on the Execute Program/Utility menu, enter the data set name
and volume as in the following example:

~SMM06 SESS ION .MANAGER E.XEC.UTE PROGRAM/UT I L ITY----:---'-:------'-------'-----..,­
ENTER/SELECT PARAMETERS: PRESS PF3TO RETURN

PROGRAM/UTfLITY (NAME,VOLUME) ==> ADDPGM,EDX002

p.ARAMETERS ;==;=>

DATA SET1(NAME, VOLUME / * = DSl NOT USED) ===> MASTER,EDX003
DATA SET 2 {NAME,VOLUME / * = DS2 NOT USED) ===> UPDATEs,~YVOL
DATA SET 3 (NAME,VOLUME / * = DS3 NOT USED) ===> NEWMAST,EDX40

FOREGROUND OR BACKGROUND (FIS) ==>
(DEFAULT IS FOREGROUND)

NOTE: IF A DATA SET (DS1, DS2 OR DS3) IS NOT USED,
AN ASTERISK (*) MUST BE ENTERED IN THE DATA SET
FIELD.

The PROGRAM statement for program ADDPGM might look like this:

BEGIN PROGRAM ST,DS=(??,??,??)

If a program requires less than three data sets, enter an asterisk (*) next to the data set(s) not
used.

PG-I06 SC34-0637

o

o

o

0

o

Submitting a Program from Another Program

A program can submit one or more programs to the EDX job processor. The job queue processor
executes the programs independently of the program that submitted them.

The following example shows how one program can submit programs CALC on volume
EDX003 and UPDATE on volume MYVOL.

BEGIN PROGRAM START
START EQU * .. LOAD $SUBMITP,SUBPARM1,LOGMSG=NO,EVENT=SUBEND

II WAIT SUBEND

II IF (SUBEND,NE,-1)
PRINTEXT 'ERROR LOADING CALC' ,SKIP=1

ENDIF

.. LOAD $SUBMITP,SUBPARM2,LOGMSG=NO,EVENT=SUBEND
WAIT SUBEND
IF (SUBEND,NE,-1)

PRINTEXT 'ERROR LOADING UPDATE' ,SKIP=1
ENDIF

PROGSTOP
SUBEND ECB
SUBPARM1 EQU *

II DATA C'SJ'

II DATA X'OOO2'

II DATA CL8 'JOB01'

II DATA CL6'EDX40'

II DATA A (JOBNO)
SUBPARM2 EQU *

DATA C'SJ'
DATA X'OOO2'
DATA CL8'JOB02'
DATA CL6'EDX40'
DATA A (JOBNO)

II JOBNO DATA F'O'
ENDPROG
END

.. Submit a job to the job queue. Point to a parameter list called SUBPARM1, and identify
the event to be posted when the job has been submitted (EVENT = SUBEND).

II Wait for the job to be submitted to the job queue.

II Test for successful completion (-1) of the submit.

.. Submit a job to the job queue. Point to a parameter list called SUBP ARM2, and identify
the event to be posted when the job has been submitted (EVENT=SUBEND).

II Specify that the job is to be submitted (SJ).

Chapter 6. Executing a Program PG-107

Executing a Program
Submitting a Program from Another Program (continued)

II Specify the priority of the job (0002).

II Identify the name of the data set that contains the job stream processor commands
(JOBOt).

II Specify the volume that contains JOBOt (EDX40).

II Specify the address of the field in which the system will put the job number (JOBNO).

II Reserve storage for the system to put the job number.

The data set called JOBOt contains job stream processor commands. It might look like the
following:

JOB JOB01
PROGRAM CALC,EDX003
EXEC
EOJ

The PROGRAM command refers to a program called CALC on volume EDX003.

The data set called JOB02 contains job stream processor commands. It might look like the
following:

JOB JOB02
PROGRAM UPDATE,MYVOL
EXEC
EOJ

The PROGRAM command refers to a program called UPDATE on volume MYVOL.

PG-t 08 SC34-0637

o

o

o

o

o

Chapter 7. Finding and Fixing Errors

Up to this point, you have written, compiled, and link-edited your program. However, the
program may not run as you expect it to. Steps may be out of sequence or the program may
come up with the wrong answers. In other words, you have problems with your program's logic.

The program also may not run to a successful conclusion. An exception condition may occur
that interrupts the execution of a program.

The $DEBUG utility assists you in determining logic errors. The task error exit routine is one of
the tools you can use to diagnose exception conditions.

Determining Logic Errors in a Program

This section tells you how to locate and fix logic errors in your program by using the $DEBUG
utility. $DEBUG can work from terminals; you do not have to use the console. $DEBUG has
commands that allow you to:

Stop execution at one or more specific places in a program. The places where you choose to
stop a program are called breakpoints.

Set up a trace routine. A trace routine allows you to step through program instructions one
at a time. You must specify one or more parts of the program you wish to trace (called a
trace range). Each time the program executes an instruction within any of the specified
trace ranges, the terminal displays a message identifying the task name and the instruction
address just executed. You can stop program execution after each instruction executes
within a trace range.

Chapter 7. Finding and Fixing Errors PG-I09

Finding and Fixing Errors
Detennining Logic Errors in a Program (continued)

List additional registers and storage location contents while the program is stopped at a
breakpoint or at an instruction within a trace range.

Change the contents of storage locations, registers, data, or instructions.

• Restart program execution. You can restart execution at the breakpoint or trace range
address where it is currently stopped or you may specify another instruction address.

Creating and Running the Program

This section shows an EDL program that has a logic error in it. It shows briefly how to enter,
compile, link-edit, and run (execute) the program.

Perform the following steps using the session manager. Give the program the name ADD10.

1. Enter the following program on your terminal exactly as shown.

ADD10 PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER:

,
LOOP DO 10,TIMES

ADD COUNT,SUM
ENDDO
PRINTEXT 'RESULT='
PRINTNUM SUM
PROGSTOP

COUNT DATA F'O'
SUM DATA F'O'

ENDPROG
END

This program is supposed to take a number entered on a terminal and add it to itself IO
times. For example, if you enter the number 10, you should get the response:
RESULT= 100. However, because of a program logic error, you will not get the expected
answer when you run the program.

2. Now compile the program. If you have any problems, see Chapter 4, "Compiling a
Program." Save the compiler listing. You will need it when you run $DEBUG.

3. Next, link-edit your program. If you have any problems, see Chapter 5, "Preparing an
Object Module for Execution."

4. Run the program. If you have any problems, see Chapter 6, "Executing a Program."

PG-I10 SC34-0637

o

/-~
(

~

o

o

o

o

Detennining Logic Errors in a Program (continued)

When the prompt ENTER NUMBER appears, enter the number 10.

l ENTER NUMBER: 10 J
RESULT= 0

--------------'
Because this program has a logic error, the answer returned is O. The expected result was 100.

Debugging and Fixing the Program

Loading $DEBUG

This section describes how to use $DEBUG to find and correct a logic error.

To start debugging the program, do the following:

1. End the session manager. You cannot run $DEBUG while the session manager is active.
One way to load $DEBUG is with the $L operator command.

2. Enter the following:

~ ____ >_$_L __ $D_E_B_UG __ -,~

The following message appears, telling you that $DEBUG is being loaded.

LOADING. $DEBUG 31P ~OO: 48: 05, LP=9EOO, PART= 1

3. Then $DEBUG asks for the name of the program to be debugged. Respond as follows:

lPROGRAM (NAME,VOLUME): A0010,EOXQ02

4. The utility then prompts for a partition number and a terminal name:

PART! liON {DEFAU~ TIS CURRENT PART IliON}:.
TERMINAL NAME (DEFAULT rS.CURRENTTERMINAL):

If you press enter after each of the prompts, the system uses the current partition and
terminal.

)

Chapter 7. Finding and Fixing Errors PG-lll

Finding and Fixing Errors
Determining Logic Errors in a Program (continued)

$DEBUG then displays the following information:

These messages tell you:

The load point (LP=) of the program
The partition where $DEBUG loaded the program
That $DEBUG set a breakpoint and stopped the program at address 0034, which is the first
executable instruction.

Note that you can also enter HELP to see a list of the available $DEBUG commands.

$DEBUG Commands

Both $DEBUG and the program have been loaded into partition 1. The program has stopped
and $DEBUG is waiting for a command. To see a list of the $DEBUG commands:

1. Press the attention key.

2. Enter HELP.

The list of $DEBUG commands appears on the screen.

PG-112 SC34-0637

,., .. , ." ,

~:'liISTP;~UG. C;Ot:1MAN'DS
"::PI.SP:~A~.:JASK 'SJ"~1"US" .,' ••.......•••.•.•.. '. ".'
·E··D.IS·PLA~; .ST.(;)RAGE: Ol(R.EGL~r~RS<

.·~~,:~,O:D:~f:.Y:~Asr 'IiQQR'. :i:'; :.:

.. ~~SIA~LI5'HBR~AKPO.1NlS
:.~: ~EMPy:~: ; ~~I~~.PO ,I: N7[:S,.· .:.

,~, ~&~~~~~~~~<~o~g~~~ .illi£Rf\YP1
~ .. ;,o IREel'. tJS:l':lNG<TOPRLN,,(:6R;' .
~.t. J:S"':' B"REAK:,POiNTS :.: .":;;.
:; ,C! H:ANGtiex~cli,.i[ONi::SEQP~N C!E·, ...•...•................ "
.":CL.OS£:.:sPo~L::jQ~·CRE;ATED·BY$DEBUG .
. :":'IEIU1INATE.:.OEBUG 'FAc:rU.TY·

, . '",. '.' " .. , , . " . ':-". , ., ~' .. ' '". :~.,' :-.::.

o

o

o

o

o

Detennining Logic Errors in a Program (continued)

Use the $DEBUG commands to:

• List $DEBUG commands (HELP).
• Display the current status of each task (WHERE).

Display storage or register contents (LIST).
• Change storage or register contents (PATCH).
• Change the base address (QUALIFY).
• Set breakpoints and trace ranges (AT).
• Remove breakpoints and trace ranges (OFF).
• Restart a stopped task (GO).
• Start a task waiting for an event or process interrupt (POST).
• Direct output to another terminal (PRINT).

List breakpoints and trace ranges (BP).
• Restart a stopped task at a different instruction (GOTO).

Close a spool job that was created by $DEBUG (CLOSE).
• End $DEBUG (END).

You can enter any of the commands by pressing the at!ention key and entering the command
name. $DEBUG then prompts for the command parameters. For example, if you want to set a
breakpoint, enter the AT command. $DEBUG then prompts for the parameters as shown
below.

> AT
OPTION(*/ADDR/TASK/ALL): ADDR
BREAKPOINT ADDRESS: 4C
LIST/NOLIST: liST
OPTION(*/ADDRiRO ... R7/#1/#2/IAR/TCODE,UNMAP): #1
LENGTH :1
MODE(X/F/D/A/C): X
STOP/NOSTOP: STOP

1 BREAKPOINT{S) SET

This command sets a breakpoint at address 4C. It requests that $DEBUG print the contents of
register 1 (one word) in hexadecimal. STOP tells $DEBUG to stop at address 4C.

For detailed syntax descriptions, refer to each individual command in the Operator Commands
and Utilities Reference.

You can also enter a command and its parameters without going through the prompts. For
example:

l>ATAD~R4C ~#11 xs j
gives you the same results.

Chapter 7. Finding and Fixing Errors PG-113

Finding and Fixing Errors
Detennining Logic Errors in a Program (continued)

Finding the Errors

Now that you have loaded $DEBUG, specified your program name, and reviewed the $DEBUG
commands, you are ready to start finding the logic errors in your program. You should have a
listing of the program before you start. Then follow these steps:

1. Use the AT command to set a breakpoint to stop the program after the GETV ALUE
executes (address 004C). Respond to the prompts as follows:

The breakpoint to stop after the GETV ALUE instruction executes is now set.

2. Enter a GO command and, when prompted, enter the number 10.

Program execution has stopped at the instruction labeled LOOP. The GETVALUE
instruction has executed.

To check to see if the program read the data correctly, use the LIST command to display
data field COUNT at address 0074.

3. Enter a LIST command and respond as follows:

The LIST command shows that 0074 contains 10, the correct input. This indicates proper
logic to this point.

The next set of instructions is the DO loop. Set another breakpoint to stop the program
after execution of the DO loop at address OOSE.

PG-114 SC34-0637

o

o

o

o

o

Detennining Logic Errors in a Program (continued)

4. Enter an AT command and respond as follows:

> AT
OPTfON(*/ADDR/TASK/All): ADDR
BREAKPOINT A~DR: 005E
LIST/NOlIST: NOllST
STOP/NOSTOP: STOP

1 BREAKPOINT(S) SET

The breakpoint to stop after the DO loop instructions executes is now set.

5. Enter a GO command and the following occurs:

> GO
BREAKPOINT(S) ACTIVATED

ADD10 STOPPED AT 005E

At this point, the data field SUM at address 0076 should contain the number 100.

To check to see if the data field SUM contains the proper number, use the LIST command
to display data field SUM at address 0076.

6. Enter a LIST command and respond as follows:

Fixing the Problem

> lIST
OPT! ONf* / ADDR/R() ... R71#1/#i.11 AR/TCODE ,UNMAP): ADOR
ADDRESS: 0076
lENGTH: 1
MooE(X/F/OIA/C): 0

0()76 0 ' ·0000 I

The LIST command shows that this field contains zero. This means that the DO loop or
the ADD instruction in the DO loop is incorrect. If you examine these instructions, you will
see that the DO loop is correct. However, The ADD instruction has a logic error. In order
to receive the proper answer, the COUNT field should be added to the SUM field. The
operands are backwards. The DO loop executes the ADD instruction 10 times but is adding
SUM to COUNT, causing the SUM field to remain O.

To verify that this is the problem without having to recompile and link-edit the program, you can
use the PATCH command of $DEBUG for a temporary fix. This fix is good only for one
execution of the program. PATCH only fixes the copy of the program loaded by $DEBUG. It
does not fix the program on your volume. Once you have verified that the fix is correct, you can
then change the program on your volume.

Chapter 7. Finding and Fixing Errors PG-llS

Finding and Fixing Errors
Determining Logic Errors in a Program (continued)

To verify that the problem is the ADD instruction, do the following:

1. Find address 0052 on your compiler listing. This line contains the ADD instruction. The
entire line looks like this:

PG-116 SC34-0637

0052 0032 0074 0076 ADD COUNT,SUM

The address of the instruction is 0052. The operation code (0032) does not change. The
next two words, 0074 and 0076, are the addresses of data fields COUNT and SUM.

To fix the logic error, change the instruction to look as follows:

0052 0032 0076 0074

2. Enter a PATCH command and respond to the prompts as follows:

> PATCH
OPTIONe */ADDR/RO ... R71#1/#21IARlrCODE,UNMAP): ADDR
ADDRESS~ 0054 .
LENGTH; 2
MODE(XlfIOIAIC): A
NOW .. IS
0054A f 0074~0076J

DATA: 0076 0074
NEW DATA
0054 A I .0()76 0074 I

YES/NO/CONTINUE: YES

The program is now patched. When it executes, it will add COUNT to SUM to arrive at
the expected result. You can test the change by reexecuting the program.

To reexecute the program, you have to know two things: the address where the program is
currently stopped (005E) and the address of the first executable instruction (0034). Then
you can use the GOTO command to restart the program at the first executable instruction.

3. Enter a GOTO command as shown:

o

,/-""

U

o

o

o

o

Determining Logic Errors in a Program (continued)

Ending $DEBUG

4. The program is now at the beginning. To test it, set all the breakpoints off so that the
program will run to completion.

Enter the following:

L> OFF ALL

5. Now enter a GO command and respond to the prompts as follows:

> GO
ENTER NUMBER: 10
RESULTS= lOO
ADD10 ENtrED AT 00:27:56

This time you received the expected result of 100. You have verified that the logic error
was the ADD instruction.

)

Now that you have found and fixed the logic error in your program, use the END command to
terminate $DEBUG. Enter the following:

)
When $DEBUG ends, your program remains in storage with all of its tasks active and operating
if it has not already ended. In our example, however, the program has ended.

To make the fix permanent, change your source program (see Chapter 3, "Entering a Source
Program" on page PG-67), recompile it (seeChapter 4, "Compiling a Program" on page
PG-77), and link-edit your object code module (see Chapter 5, "Preparing an Object Module
for Execution" on page PG-89).

Displaying Unmapped Storage

If you write a program that uses unmapped storage, you may want to display portions of
unmapped storage. Displaying unmapped storage may be necessary to determine whether or not
a program is processing correctly.

This section shows how to display a portion of unmapped storage. The program example used
in this section is shown in "Sample Program" on page PG-120.

The program moves mortality rates to the unmapped storage areas. To find out if the rates are
being moved properly, you can display an unmapped storage area as follows:

Chapter 7. Finding and Fixing Errors PG-117

Finding and Fixing Errors
Detennining Logic Errors in a Program (continued)

1. Load $DEBUG and specify your program name:

The following message appears~ telling you that the system is loading $DEBUG.

2. When $DEBUG asks for the name of the program to be debugged, respond as follows:

lPROGRAti NAME, I NSURE, EDX40)

3. The utility then prompts for a partition number and a terminal name:

PARTITION (DEFAULT ,IS .cURRENT .. PARTlTION):
TERM I NALNAME (DEFAULT I S, CURRENT TERM I NAL):

If you press enter after each of the prompts, the system uses the current partition and
terminal.

4. Use the AT command to set a breakpoint to stop the program after the ENDIF statement
that follows the two MOVE instructions that move the rates to the unmapped storage area
(address 152). Respond to the prompts as follows:

PG-118 SC34-0637

> AT
OPTlor'H*lADOR1TASK/ALL): ADDR

'B\REAK,~O I"NT~DDR:',0152
LISt/NOb 1ST: "NOL'IST'
STopINOSTOP: STOP

, lBREAKPOINT(S) SET

o

.r<f ",

~j

o

o

o

Detennining Logic Errors in a Program (continued)

5. Enter a GO command.

> GO
1 BREAKPOINT(S) ACTIVATED

INSURE STOPPED AT 0152

Program execution has stopped at the ENDIF statement. One of the MOVE instructions
has executed.

6. To see if the program moved data correctly, first find the number of the unmapped storage
area. CNTRYC (address 02AE) contains the number of the unmapped storage area
obtained with the SWAP instruction.

> LIST
OPTION(*/ADDR/RO ... R7/#1/#2/IAR/TCODE/UNMAP): ADDR
ADDRESS; 02AE
LENGTH: 1
MODE(X/F/D/A/C): X

02AE Xl 0003 1

The SWAP instruction obtained unmapped storage area number 3.

Then display storage in unmapped storage area number 3, using the LIST command as
follows:

> LIST
OPTION(*/ADDR/RO ... R7/#1/#2/IAR/TCODE/UNMAP): UNMAP
STORBLK ADDRESS (0 TO CANCEL LIST): 04B4
SWAP#: 3
DISPLACEMENT: 0
LENGTH: 20
MODE(X/F/D/A/C): C

0000 Cl00010002000300030004 1

This LIST command shows the contents of the unmapped storage area. It contains five sets
of four-digit numbers that could be mortality rates. Check the input data to determine if the
program moved them properly.

Chapter 7. Finding and Fixing Errors PG-119

Finding and Fixing Errors
Determining Logic Errors in a Program (continued) o
Sample Program

The program:

LOC +0 +2 +4 +6 +8 SOURCE STATEMENT ADD10 ,EDX002

0000 0008 D7D9 D6C7 D9C1 D440 INSURE PROGRAM ST,DS=((ACTTAB,EDX40), (ACTOUT,EDX40))

COpy STOREQU
00B8 ST EQU * 00B8 00B9 04B4 0000 0000 0101 GETSTG HOLD, TYPE=ALL
00C2 805C 02A8 0001 MOVE USANO,1
00C8 035C 0000 04CO MOVE #1,HOLD+$STORMAP
OOCE 809C OOEC OOOA DO 10
00D4 00B9 04B4 02A8 01E4 0300 SWAP HOLD, USANO, ERROR=SWAPERR
OODE 8158 0000 4000 0320 MOVE (+MENTBL,#1) ,C' , , (800, BYTE)
00E6 8032 02A8 0001 ADD USANO,1
OOEC 009D 0000 0001 ENDDO
00F2 8020 04FA 0001 0000 220E READ READ DS1,MORTAL,1,END=STOP
OOFC 0032 0156
0100 00B1 02AE 04FA 0002 0080 CONVTD CNTRYC,CNTRY,PREC=S,FORMAT=(2,0,I)
010A 035C 0000 04CO MOVE #1,HOLD+$STORMAP
0110 00B9 04B4 02AE 01E4 0300 SWAP HOLD,CNTRYC,ERROR=SWAPERR
o 11A 00B1 02AC 04FC 0002 0080 CONVTD AGEC,AGE,PREC=S,FORMAT=(2,0,I)
0124 035C 0002 02AC MOVE #2,AGEC
012A 8338 0002 0004 MULT #2,4
0130 OF32 0000 0002 ADD #1,#2

;f~
0136 00A3 0502 02A6 014A IF (SEX,EQ,ONE,BYTE) I I

013E 015B 0000 04FE 0004 MOVE (+MENTBL,#1) ,RATE, (4,BYTES) \'-.i
0146 OOAO 0152 ELSE
014A 015B 0190 04FE 0004 MOVE (+WMNTBL,#1) ,RATE, (4,BYTES)
0152 ENDIF
0152 OOAO 00F2 GOTO READ
0156 STOP EQU *
0156 805C 02A8 0001 MOVE USANO,1
015C 035C 0000 04CO MOVE #1,HOLD:$STORMAP
0162 809C 01A8 OOOA DO 10
0168 00B9 04B4 02A8 01E4 0300 SWAP HOLD,USANO,ERROR=SWAPERR
0172 045B 02B4 0000 0190 MOVE OUTAREA, (+MENTBL,#1), (400,BYTES)
017A 8020 02B4 0002 0000 3110 WRITE DS2,OUTAREA,2,0,END=EOFILE,ERROR=WRERR
0184 0072 01B2 0274
018A 045B 02B4 0190 0190 MOVE OUTAREA, (+WMNTBL,#1), (400,BYTES)
0192 8020 02B4 0002 0000 3110 WRITE DS2,OUTAREA,2,0,END=EOFILE,ERROR=WRERR
019C 0074 01B2 0274
01A2 8032 02A8 0001 ADD USANO,1
01A8 009D 0000 0001 ENDDO
01AE OOAO 02A2 GOTO END

o
PG-120 SC34-0637

0 Determining Logic Errors in a Program (continued)

01B2 EOFILE EQU *
01B2 8026 2A2A 7C5C 5C40 C1C3 PRINTEXT '@** ACTUARIAL FILE HAS EXCEEDED ...

01EO OOAO 02A2 GOTO END
01E4 SWAPERR EQU *
01E4 005C 02AA 05FA MOVE TASKRC,INSURE
01EA 80A2 02AA 021A IF (TASKRC, EQ, 1)
01F2 8026 2423 7C5C 5C40 C9D5 PRINTEXT '@** INVALID UNMAPPED STORAGE ...

021A ENDIF
021A 802A 02AA 0002 0244 IF (TASKRC,EQ,2)
0222 8026 1E1D 7C5C 5C40 E2E6 PRINTEXT '@** SWAP AREA NOT INITIALIZED'

0244 ENDIF
0244 80A2 02AA 0064 0270 IF (TASKRC,EQ,100)
024C 8026 201F 7C5C 5C40 D5D6 PRINTEXT '@** NO UNMAPPED STORAGE SUPPORT'

0270 ENDIF
0270 OOAO 02A2 GO TO END
0274 WRERR EQU *
0274 8026 2626 7C5C 5C40 C4C9 PRINTEXT '@** DISK WRITE ERROR ON ACTUARIAL ...

029E OOAO 02A2 GOTO END

0 02A2 END EQU *
02A2 0022 FFFF PROGSTOP
02A6 F1 ONE DATA C'1 '
02A7
02A8 0000 USANO DATA F'O'
02AA 0000 TASKRC DATA F'O'
02AC 0000 AGEC DATA F'O'
02AE 0000 CNTRYC DATA F'O'
02BO 0000 0200 0000 0000 0000 OUT AREA BUFFER 512,BYTES
02BA 0000 0000 0000 0000 0000
04AE 0000 0000 0000
04B4 0000 C1C1 0000 0000 0000 HOLD STORBLK TWOKBLK=1,MAX=10

0000 MENTBL EQU 0
0000 WMNTBL EQU MENTBL+300
04F6 0000 0100 0000 0000 0000 MORTAL BUFFER 256,BYTES
0500 0000 0000 0000 0000 0000
04FA CNTRY EQU MORTAL
04FC AGE EQU MORTAL+2
04FE RATE EQU MORTAL+4
0502 SEX EQU MORTAL+8
05FA 0000 0000 0000 0234 0000 ENDPROG
0692 END

o
Chapter 7. Finding and Fixing Errors PG-121

Finding and Fixing Errors
Using Return Codes to Diagnose Problems

This section describes how to use the return codes to diagnose problems.

Many EDL instructions return a code to indicate whether or not they execute successfully. Each
time EDX executes one of these instructions, it stores a code, called a return code, in the first
two words, called task code words, of the task control block (TCB). You can access the TCB by
referencing the task name.

In the following example, the instructions at label ERRTEST compare the return code of the
READ TEXT instruction with the successful return code (-1).

BEGIN PROGRAM START

READTEXT
ERRTEST MOVE

CHECK

IF
ENDIF

PRINTEXT
PRINTNUM
GOTO

END PROGSTOP

NAME, 'ENTER NAME: ',SKIP=4,MODE=LINE
TASKRC,BEGIN
(TASKRC,NE,-1) ,GOTO,CHECK

'ERROR IN READING NAME' ,SKIP=1
TASKRC
END

TASKRC DATA F'O'
ENDPROG
END

You must test the return code before executing any other instruction because the system may
overlay the task code word with the return code of the next instruction.

PG-122 SC34-0637

o

o

o

o

o

Using Return Codes to Diagnose Problems (continued)

Diagnosing Errors with ACCA Devices

To diagnose an error that occurs after you read or write to an ACCA device, you can use the
following instructions to obtain the return code and three cycle steal status words.

TEST PROGRAM START,TERMERR=TERROR

COpy CCBEQU

.. TERROR TCBGET RETCD,$TCBCO

II TCBGET #1,$TCBCCB

11 MOVE CCS, ($CCBSTWO,#1) ,3,FKEY=O

RETCD DATA F'O'
CCS DATA 3F'O'

.. Obtain the return code from the first word of the TCB.

II

11

Obtain the address of the CCB (terminal control block).

Move the three cycle steal status words to CCS.

If the return code is not -1, the task code word contains the following information:

Bit Description

0 Unused

1-8 IS8 of last operation (I/O complete)

9-10 Unused

11 '1' if a write or control operation (I/O
complete)

12 Read operation (I/O complete)

13 Unused

14-15 Condition code +1 after I/O start or
condition code after I/O complete

Refer to the appropriate hardware description manual for a description of the cycle steal status
words and the interrupt status byte (ISB) condition codes.

Chapter 7. Finding and Fixing Errors PG-123

Finding and Fixing Errors
Task Error Exit Routines

This section describes the facilities provided by the system in the event that an exception occurs.
These are the supervisor facility and the system-supplied task error exit routine.

When an exception occurs, the supervisor takes certain actions. What action it takes depends on
whether or not you have coded a task error exit routine in your program. If your program does
not have a task error exit routine, the supervisor simply writes a program check message on
$SYSLOG, and terminates the program. If your program has a task error exit routine, either the
one supplied by the system or your own, the supervisor does the following:

1. Stores the hardware status at the time of the exception in a block of storage designated by
the task.

2. Passes control to the task at its task error exit entry point.

At this point, the task error exit routine gains control. The next section discusses only the
system-supplied routine. However, remember that, if necessary, you can substitute your own
routine. (For information on writing your own task error exit routine, refer to Customization
Guide.)

Notes:

1. A task error exit routine is a part of the task it serves. The supervisor passes control to it at
the task level; it is not a subroutine of the supervisor's error handler.

2. The registers (including the EDL software registers, #1 and #2) used by the error exit
routine are those normally used by the task.

3. To resume executing the task following corrective action by task error exit, branch (if in
Series/1 instruction mode) or GOTO (if in EDL mode) the appropriate location.

4. If the error exit is unable to recover from the exception, it should issue a PROGSTOP
instruction.

The System-Supplied Task Error Exit Routine ($$EDXIT)

A task error exit routine named $$EDXIT is available on volume ASMLIB. This routine:

PG-124 SC34-0637

Captures relevant data from the program header, task control block, and hardware status
area when an exception occurs

• Formats and prints this data on $SYSLOG and $SYSPRTR

Displays an error message on the loading terminal.

o

o

o Task Error Exit Routines (continued)

Using $$EDXIT

c

o

To use the supplied routine, you must:

Code $$EDXIT as the value of the ERRXIT keyword parameter of each PROGRAM and
TASK statement in your program. For example:

AB PROGRAM ,ERRXIT=$$EDXIT

CD TASK ,ERRXIT=$$EDXIT

Declare the label $$EDXIT to be an EXTRN.

EXTRN $$EDXIT

The task error exit routine is included in the autocalllist $AUTO on volume ASMLIB. It is
automatically included when you link-edit any program that references $$EDXIT. A separate
INCLUDE statement is not required for $$EDXIT in the LNKCTRL data set. All you need to
do is code $AUTO,ASMLIB as the autocall data set on the AUTO CALL statement of
$EDXLINK.

The following example shows what $$EDXIT prints on $SYSLOG and $SYSPRTR. It shows
that a program check has occurred in an application program named PCHECK. The numbers to
the left of both columns correspond to the ,explanations that follows the example.

* WARNING!! AN EXCEPTION HAS OCCURRED!! *

.. PROGRAM NAME
II PROGRAM VOLUME
II PROGRAM LOAD POINT
II ADDRESS OF ACTIVE TCB
II ADDRESS OF CCB

NUMBER OF DATA SETS

PCHECK
EDXWRK
0000
016C
1802

NUMBER OF OVERLAYS 0
II $TCBADS 0004

ADDRESS OF FAILURE
II (REL. TO PGM LOAD POINT 00E7

DUMP OF FAIL ADDRESS
II 00E6: 0000 0028 0028 3635

$TCBCO = -1 DEC; FFFF HEX
$TCB02 = 0 DEC; 0000 HEX

PSW ANALYSIS:

SPECIFICATION CHECK
TRANSLATOR ENABLED

lEI Psw. = 8002
IAR = 3124
AKR = 0440
LSR = 0000
RO (WORK REGISTER) = 0096

am R1 (EDL INSTR ADDR) = 00E7
aa R2 (EDL TCB ADDR) = 016c

R3 (EDL OP1 ADDR) = 00E7
R4 (EDL OP2 ADDR) = 00B2

DB R5 (EDL COMMAND) = 0000
R6 (WORK REGISTER) = 0000

R7 (WORK REGISTER) = 0000
#1 0000
#2 = 0000

Chapter 7. Finding and Fixing Errors PG-125

Finding and Fixing Errors
Task Error Exit Routines (continued)

Explanation:

.. N arne of the active program

II N arne of the volume where the program resides

II The load point of the program

II Address of the active TCB when the exception occurred

II Address of the CCB (terminal that loaded the program)

II Address key where program is loaded if not doing cross-partition move or the target
address key if doing a cross-partition move

II Address of the instruction that caused the program check

II Dump of the instruction that caused the program check

II Indicates the type of exception that occurred

III Usually points to the EDL instruction address

III Usually contains the EDL TCB address

IE Usually contains the operation code of the EDL instruction that was being executed

The following message appears on the loading terminal when the program check occurs:

A MALFUNCTION HAS OCCURRED -- CALL SYSTEM PROGRAMMER

Notes:

1. If you are executing either a combination of EDL instructions and Series/1 instructions or
all Series/1 instructions, the registers may not contain this information.

PG-126 SC34-0637

2. You can restart the program by writing your own error exit routine to reload it.

$$EDXIT provides you with information about the program, task, and hardware status when an
exception occurs. You can extend the capabilities of $$EDXIT so that it will also evaluate the
information and make an appropriate response. For more information on writing your own task
error exit routine, refer to Customization Guide.

o

(~\

~.---;

o

o

o

o

Chapter 8. Reading and Writing Data from
Screens

The Event Driven Executive allows you to read and write data from a screen that appears on a
terminal. A person at a terminal can supply data to a program and the program can display
information on the terminal screen.

EDX allows you to use two types of screens: roll screens and static screens.

This chapter describes:

When to use roll screens

When to use static screens

Differences between static screens and roll screens

Reading from and writing to roll screens

Reading from and writing to static screens

Designing device-independent static screens

• Reading from and writing to a 3101 Display Terminal.

The chapter shows how to write a program to read five data items from a screen and write them
back to the screen. The chapter shows how to use each kind of screen (roll and static).

You can generally code terminal programs using either roll or static screens. However, each
screen offers distinct advantages for certain types of programs.

Chapter 8. Reading and Writing Data from Screens PG-127

Reading and Writing Data from Screens
When to Use Roll Screens

A roll screen is similar to a typewriter. The system reads or writes data line-by-line, starting with
line 0 at the top of the screen and ending with line 23 at the bottom of the screen. You can use
roll screens to read or write a single data item.

A program that uses roll screens usually prompts the operator for data, waits for an operator
response, and checks the validity of the input data. Roll screens are best suited for application
programs in which:

• A simple question-and-answer dialogue occurs between program and operator.

• A single line is sufficient for each response.

An incorrect response requires only a reprompt.

You want to use a minimum of processor storage.

In addition, the terminal may support roll screens only.

Roll screen dialogue is relatively easy to code and requires little program preparation. You can
code prompts in a tree structure where the choice of the next prompt depends on the reply to
past prompts.

You can print more than one line of text to introduce a prompt. For example, you might want to
offer the choice of several programs to be loaded, each of which may choose to continue the
dialogue at the same terminal. You can also display more than one line of text in a program
reply.

When to Use Static Screens

A static screen represents a page of information. The system reads or writes an entire screen at
once. A static screen allows a terminal operator to modify an entire screen image before
entering the data. You can use static screens to read or write several data items at one time.

Programming for static screens involves managing the entire screen as a series of protected and
unprotected fields.

A protected field is an area that contains an operator prompt or an input field name. It is
protected from being accidentally changed by the operator.

An unprotected field is an area that is to be filled in by the operator.

Static screens are best suited for programs in which:

• The dialogue involves a series of full screens.

PG-128 SC34-0637

o

o

o

o

o

When to Use Static Screens (continued)

More than one line of response may be required.

• You need to determine cursor position or manipulate the cursor.

• You need to write protected fields.

• You need attribute characters such as blinking and non-display.

The unprotected fields may be scattered across the screen and interspersed with the
protected fields.

Many related data fields are to be entered at one· time.

Medium to large amounts of data accompany each prompt, operator response, or program
reply,

You can manage static screens most easily by using the $IMAGE utility to define your screens.
$IMAGE places the screens on direct access storage. The program then can read them into
processor storage. $IMAGE subroutines and terminal I/O statements allow you to read the
screen into the application program, display it at the terminal, position the cursor, scatter read or
write unprotected fields, and wait for a response.

Differences Between" Static Screens and Roll Screens

Static screens differ from roll screens in the following ways:

Forms-control operations that would cause a page-eject for roll screens simply wrap around
to the top for static screens.

On static screens, the system performs no automatic erasure.

• Input operations directed to static screens normally are executed immediately. This allows
the program to read selected fields from the screen after the operator modifies the entire
display. A program can issue the WAIT KEY instruction to wait for the operator to
respond. The operator can signal the program with the program function (PF) keys.

To allow convenient operator/program interaction, QUESTION, READTEXT, and
GETVALUE instructions which include prompt messages are executed as if they were
directed to a roll screen (automatic task suspension for input).

• On static screens, the "at sign" character @ is a data character. On roll screens it indicates
a new line.

Chapter 8. Reading and Writing Data from Screens PG-129

Reading and Writing Data from Screens
Reading and Writing One Line at a Time

Reading and writing a single line from a terminal screen involves reading the data item from a
roll screen and writing or displaying the data item on the screen.

To read and write to a roll screen:

1. Reserve storage for data.

2. Read a data item.

3. Write a-data item.

Reserving Storage for the Data

To reserve storage for a data item that you will read, you must know its maximum length. To
reserve storage for a text string of 30 characters, use the TEXT statement as follows:

NAME TEXT LENGTH=30

The name of the storage is NAME. The next section describes how to put a data item into
NAME.

Reading a Data Item

To read a data item from a roll screen, you can use either the READ TEXT or GETV ALUE
instruction. The READTEXT instruction allows you to read a text string. The GETV ALUE
instruction allows you to read one or more numbers.

To read a data item into a storage area, use the READTEXT instruction as follows:

READTEXT NAME, 'NAME:' ,SKIP=1,MODE=LINE

The instruction displays the prompt NAME: and the system waits for a response. When the
operator enters a name and presses the enter key, the system stores the text string in an area
called NAME.

The operand SKIP= 1 causes the system to skip one line before displaying the prompt. The
operand MODE=LINE allows blanks in the response. Since most names contain at least one
blank, you must code MODE=LINE to read the entire name.

PG-130 SC34-0637

o

o

o Reading and Writing One Line at a Time (continued)

0

o

Writing (Displaying) a Data Item

Example

Writing (or displaying) a data item involves transferring the data item from storage to the
terminal screen. You can use either the PRINTNUM or PRINTEXT instruction to transfer data
to the terminal screen. The PRINTNUM instruction transfers one or more numbers. The
PRINTEXT instruction transfers a text string.

To display the data item called NAME, use the PRINTEXT instruction as follows:

PRINTEXT NAME,SKIP=3

The operand SKIP=3 causes the system to skip three lines before displaying NAME.

Prompt the operator for five data items: name, address, city, state, and zip code. Then display
the five data items. Read from and write to the terminal that loaded the program . .. TEST PROGRAM BEG

BEG EQU *
II READTEXT NAME, , NAME:' ,SKIP=1,MODE=LINE

II READTEXT ADDR, , ADDRESS: ' ,MODE=LINE
READTEXT CITY, , CITY: ' ,MODE=LINE
READ TEXT ST, , STATE: '
READTEXT ZIP, , ZIP: '

III PRINTEXT NAME,SKIP=3

II PRINTEXT ADDR,SKIP=1
PRINTEXT CITY,SKIP=1

II PRINTEXT ST,SPACES=1
PRINTEXT ZIP,SPACES=2
PROGSTOP

NAME TEXT LENGTH=30
ADDR TEXT LENGTH=30
CITY TEXT LENGTH=30
ST TEXT LENGTH=2
ZIP TEXT LENGTH=5

ENDPROG
END

.. Begin the program and execute the instruction at label BEG.

II Prompt the operator for name and read the operator's response. Allow spaces in the
name (MODE=LINE), skip one line (SKIP = 1), and store the response in NAME.

II Prompt the operator for address and read the operator's response. Allow spaces in the
name (MODE=LINE) and store the response in ADDRESS. Because the program
writes to a roll screen, the prompt appears one line below the prompt for name.

III Display the data item in NAME. Skip three lines before displaying (SKIP=3).

Chapter 8. Reading and Writing Data from Screens PG-131

Reading and Writing Data from Screens
Reading and Writing One Line at a Time (continued)

II Display the data item in ADDR. Skip to the beginning of the next line before displaying
(SKIP=l).

II Display the data item in ST. Leave one blank space to the right before displaying
(SPACES=l).

Executing the Example

If you entered, compiled, link-edited, and loaded the example, the system would issue a prompt
for each data item. After entering each data item, press the enter key. After you enter the last
data item (zip code) and press enter, the system displays the data items.

After you enter all five data items, the screen might look like this:

NAME:ROSE PETERSON
ADDRESS:l1 CYPRESS CREEK .RD.

CITY :SAL I NA
STATE:KA

ZI P:45367

When you press the enter key, the program displays the name and address as follows:

ROSE PETERSON
l1CYPRES$ CREEK RD.
SAL INA KA 45367

Note: Even though CITY is 30 characters long, the system displays only the actual length of the
data.

Two Ways to Use Static Screens

Reading and writing an entire screen at once involves using static screens. The Event Driven
Executive provides two methods to define static screens.

The first method requires that the format of the screen be defined within the program. Any
change to the screen requires a change to the program.

PG-132 SC34-0637

In addition, programs that use this method are usually not device independent. In other words, a
program that contains instructions that define a static screen may execute successfully on a 4978
or 4979 terminal and not execute on a 3101 terminal.

The sections called "Coding the Screen within a Program" on page PG-133 and "Transferring
an Entire Screen Image at Once" on page PG-139 describe the first method.

o

(
~

, \

-~I

o

o

o

o

Two Ways to Use Static Screens (continued)

The second method for defining screens involves defining the screen with the $IMAGE utility
and saving it in a data set. This method allows more than one program to use the same screen.
In addition, a change to the screen does not necessarily require a change to each program that
uses it.

Finally, you can write programs that are device independent. You can write programs that
execute successfully on 4978, 4979, 4980, or 3101 terminals. For information on designing
static screens that you can use on a 4978,4979,4980, or a 3101, see "Designing
Device-Independent Static Screens" on page PG-1S4.

The section called "Writing the Screen Image to a Data Set" on page PG-144 describes the
second method. .

For more information on coding static screens, see Appendix C, "Static Screens and Device
Considerations" on page PG-33S.

Coding the Screen within a Program

This section describes reading data from and writing data to a static screen. Instructions in the
program create the static screen.

For more information on static screens, refer to Appendix C, "Static Screens and Device
Considerations" on page PG-33S.

This section describes one way to code a static screen within a program. For another way to
define a screen within a program, refer to "Transferring an Entire Screen Image at Once" on
page PG-139.

This section focuses on a sample program, describing the instructions in the same sequence that
they appear in the program.

The sample program:

1. Defines the screen as static

2. Gets exclusive access to the terminal

3. Erases the screen

4. Reserves storage for data

5. Prompts the operator for a data item

Chapter 8. Reading and Writing Data from Screens PG-133

Reading and Writing Data from Screens
Coding the Screen within a Program (continued)

6. Positions the cursor

7. Waits for a response

8. Reads a data item

9. Writes a data item.

Defining a Screen as Static

To define a screen as a static screen, use the IOCB statement as follows:

TERM IOCB SCREEN=STATlC

This statement defines the loading terminal as a static screen. The label TERM defines the
name you will use in other instructions in the program.

For information on defining logical screens, see Appendix C, "Static Screens and Device
Considerations" on page PG-335.

Getting Exclusive Access to the Terminal

Before you can use a terminal as a static screen, you must get exclusive access to it. Use the
ENQT instruction as follows:

ENQT TERM

The operand TERM is the name you used to define the terminal in an IOCB instruction.

Erasing the Screen

Before you code instructions that prompt the operator for data, you should erase the screen. To
erase the screen, use the ERASE instruction as follows:

PG-134 SC34-0637

ERASE MODE=SCREEN,TYPE=ALL,LlNE=O

The operand LINE=O tells the system to begin erasing on line 0 (the first line) of the screen.
The operand MODE=SCREEN causes the system to erase to the end of the screen. The
operand TYPE = ALL allows the system to erase both protected and unprotected data.

o

o

o

o

o

Coding the Screen within a Program (continued)

Reserving Storage

To reserve storage for a data item that you read, you must know its maximum length. To
reserve storage for a text string of 30 characters, use the TEXT statement as follows:

NAME TEXT LENGTH=30

The name of the storage is NAME. The READTEXT instruction transfers the data item
containing the name into this area of storage.

Prompting the Operator for a Data Item

One way you can display information on a static screen is by issuing PRINTEXT instructions.
For example, to prompt the operator for a name, use the PRINTEXT instruction as follows:

PRINTEXT 'NAME: ',LINE=1,PROTECT=YES

The instruction displays the prompt NAME:. The operand LINE= 1 causes the system to
display the prompt on the second line of the screen. (The lines on a screen are numbered 0-23
and the columns are numbered 0-79.) The operand PROTECT= YES causes the prompt
NAME: to be protected. A protected field cannot be changed by the operator.

Positioning the Cursor

If you use PRINTEXT instructions to prompt the operator for several data items, you would
probably want to position the cursor after the first prompt. To position the cursor, you need
two instructions: a PRINTEXT instruction and a TERMCTRL instruction:

PRINTEXT LINE=1,SPACES=13
TERMCTRL DISPLAY

The operands LINE= 1 and SPACES= 13 cause the system to position the cursor on the
fourteenth space of line 1 (the second line). (The lines of a screen are numbered 0 through 23.)

Since the PRINTEXT instruction actually accumulates output in the system buffer, the
TERMCTRL instruction is required to cause the cursor to be positioned.

Chapter 8. Reading and Writing Data from Screens PG-135

Reading and Writing Data from Screens
Coding the Screen within a Program (continued)

Waiting for a Response

After you issue all the prompts, you must wait for the operator to respond. To wait for a
response, use the WAIT instruction as follows:

WAIT KEY

The operand KEY means that the program will wait until the operator presses either the enter
key or one of the Program Function (PF) keys.

Reading a Data Item

Reading a data item involves issuing a READ TEXT instruction for each data item you want to
read. The READ TEXT instruction might look like this:

READTEXT NAME,LINE=1,SPACES=13,MODE=LINE

The instruction reads the data item into the storage area called NAME. The operands LINE = 1
and SPACES = 13 cause the system to look for the data starting in the fourteenth position of the
second line of the screen. The operand MODE=LINE allows the data to contain blanks.

Writing a Data Item

Writing a data item means transferring a data item from a storage area to the screen. A
PRINTEXT instruction might look like this:

PG-136 SC34-0637

PRINTEXT NAME,LINE=11

The instruction writes the data item from the storage area called NAME. The operand
LINE= 11 causes the system to display the data starting in the first position of the twelfth line of
the screen.

If you want to display another data item on the next line, you can use the SKIP operand as
follows:

PRINTEXT ADDR,SKIP=1

The SKIP= 1 causes the system to skip to the first position of the next line.

To leave spaces between one data item and another, use the SPACES operand as follows:

PRINTEXT CITY,SPACES=2

The SPACES=2 operand causes the system to leave two blanks between the previous data item
and CITY.

o

o

o

0

o

Coding the Screen within a Program (continued)

Example

Prompt the operator for five data items: name, address, city, state, and zip code. Then display
the five data items . .. TEST PROGRAM BEG

II TERM IOCB SCREEN=STATIC

II BEG ENQT TERM .. ERASE MODE=SCREEN,TYPE=ALL,LINE=O

II PRINTEXT NAME:' ,LINE=1,PROTECT=YES

II PRINTEXT ADDRESS:' ,SKIP=1,PROTECT=YES
PR"INTEXT CITY:' ,SKIP=1,PROTECT=YES
PRINTEXT STATE:' ,SKIP=1,PROTECT=YES
PRINT EXT ZIP:' ,SKIP=1,PROTECT=YES

II PRINTEXT LINE=1,SPACES=13

II TERMCTRL DISPLAY

II WAIT KEY

IE READ TEXT NAME,LINE=1,SPACES=13,MODE=LINE

III READTEXT ADDR,LINE=2,SPACES=13,MODE=LINE
READTEXT CITY,LINE=3,SPACES=13,MODE=LINE
READTEXT ST,LINE=4,SPACES=13
READ TEXT ZIP,LINE=5,SPACES=13

IE PRINTEXT NAME,LINE=11

II PRINTEXT ADDR,SKIP=1
PRINTEXT CITY,SKIP=1

II PRINTEXT ST,SPACES=1
PRINTEXT ZIP,SPACES=2

IE TERMCTRL DISPLAY

m DEQT
PROGSTOP

NAME TEXT LENGTH=30
ADDR TEXT LENGTH=30
CITY TEXT LENGTH=30
ST TEXT LENGTH=2
ZIP TEXT LENGTH=5

ENDPROG
END

.. Begin the program and execute the instruction at label BEG.

II Define the screen as static.

II Get exclusive use of the terminal.

.. Erase the screen. Erase the entire screen (MODE=SCREEN), including protected and
unprotected fields (TYPE=ALL), and begin on the first line of the screen (LINE=O).

II Prompt the operator for name. Display the prompt on the second line of the screen
(LINE= 1) and prevent the operator from overlaying the prompt (PROTECT= YES).

Chapter 8. Reading and Writing Data from Screens PG-137

Reading and Writing Data from Screens
Coding the Screen within a Program (continued)

III Prompt the operator for address. Display the prompt one line below the previous
prompt (SKIP= 1) and prevent the operator from overlaying the prompt
(PROTECT = YES).

II Position the cursor on the fourteenth space (SPACES=13) of the second line of the
screen (LINE= 1).

II Cause the cursor to be positioned (the previous PRINTEXT instruction accumulates
output in the system buffer).

III Wait for the operator to respond to the prompts. Resume execution when the operator
presses either the enter key or one of the Program Function keys.

IE Read the first data item. Look for the data in the fourteenth space (SPACES= 13) of
the second line of the screen (LINE = 1) and allow blanks in the data (MODE=LINE).

III Read the second data item (address). Look for the data in the fourteenth space
(SPACES=13) of the third line of the screen (LINE=2) and allow blanks in the data
(MODE=LINE).

IE Display the data item NAME. Begin displaying the data on the first position of the
twelfth line of the screen (LINE = 11).

Display the data item ADDR. Begin displaying the data on the first position of the next
line (SKIP= 1). (In this example, ADDR would appear on the thirteenth line of the
screen.)

III Display the data item ST. Begin displaying the data after leaving one space
(SPACES= 1). (In this example, data item ST would appear one space to the right of
data item CITY.)

IE Cause the data in ZIP to be displayed. (The data in ZIP remains in the system buffer
until you issue this instruction or end the program with a PROGSTOP.)

m Relinquish exclusive use of the terminal.

PG-138 SC34-0637

o

o

o

o

o

Transferring an Entire Screen Image at Once

This section describes a technique for transferring an entire screen to the display in one I/O
operation.

This section shows how to:

1. Define protected and unprotected fields.

2. Define the screen.

3. Erase the screen.

4. Construct a screen image.

5. Read a series of data items.

6. Release the terminal.

Defining Protected and Unprotected Fields

The format of a 4978, 4979, or 4980 screen is defined as each character is written to the
terminal. Fields are defined as follows:

Each character or group of characters written with PROTECT=YES defines a protected
field.

Each character or group of characters written without PROTECT = YES defines an
unprotected field.

Null characters (X'OO') can never be protected, so both protected and unprotected fields can
be defined by writing data with interspersed nulls with PROTECT= YES.

Once the fields of a screen have been defined, the 4978, 4979, or 4980 knows internally
whether each of the 1920 positions on the screen is protected or unprotected; this is transparent
to the user.

On the 4978, 4979, or 4980 there are two ways to write and read unprotected fields. The first
is to read/write all the unprotected fields with one input/output operation. All the unprotected
fields can be filled with data by one "scatter write" operation (PRINTEXT MODE=LINE).
The unprotected fields can be read using one "gather read" operation (READTEXT
MODE=LINE). The other way is to read or write individual fields by specifying screen
coordinates (the LINE= and SPACES= parameters).

Chapter 8. Reading and Writing Data from Screens PG-139

Reading and Writing Data from Screens
Transferring an Entire Screen Image at Once (continued)

Defining the Screen

To define a screen as static, use the IOCB statement as follows:

SCREEN IOCB SCREEN=STATIC,BOTM=11, C
BUFFER=BUFF,RIGHTM=959

This statement defines the loading terminal as a static screen. The label SCREEN is the name
you will use in other instructions in the program. The operand BOTM= 11 defines the last
usable line on the page as line eleven (the twelfth line). The operand RIGHTM=959 defines
the last usable character position on the screen as the 959th position. The number 959 is the
size of the buffer (BUFF is 960 bytes long) minus one.

Erasing the Screen

Before you code instructions that prompt the operator for data, you should erase the screen.
Use the ERASE instruction as follows:

ERASE TYPE=ALL,LINE=O

The operand TYPE=ALL tells the system to erase both protected and unprotected data. The
operand LINE=O tells the system to begin erasing on line 0 (the first line) of the screen.

Constructing a Screen Image

To construct a screen image that minimizes screen flicker, you can concatenate a series of
protected fields. The following instructions display an array of integers on the first six lines of
the screen (lines 0-5) . ..
II
II
II
II
II

DO 96,INDEX=1
PRINTEXT
PUTEDIT
PRINTEXT
PR1NTEXT

ENDDO

'FIELD' ,PROTECT=YES
FORMAT1,VALS, ((I)) ,PROTECT=YES
, ',PROTECT=YES
NULLS,PROTECT=YES

PR1NTEXT LINE=O

II Begin a DO loop to construct the screen image. The screen image consists of 96
protected fields of the form FIELDxx, where xx is a sequential field number, each
followed by one protected blank and two unprotected data positions.

II Put the literal FIELD in the buffer.

II Convert the sequence number to two EBCDIC characters and write it to the buffer.

PG-140 SC34-0637

o

o

o

o

o

Transferring an Entire Screen Image at Once (continued)

II Insert a protected separation character.

II Define the data position with two null characters. Null characters generate unprotected
fields. The operand PROTECT = YES is necessary to preserve concatenation. (You can
concatenate a series of fields only if the fields are all protected (PROTECT= YES) or all
unprotected (PROTECT=NO).)

II Write the concatenated line to the screen. (Any line control character causes the system
to display the concatenated fields.)

Reading a Series of Data Items

To read a series of data items, use the READTEXT instruction as follows:

READTEXT VALS ,MODE=LINE, LINE=6

The instruction does a "gather read," reading all the values beginning on line 6 (the seventh
line) of the screen into VALS. The operand MODE=LINE indicates the gather read.

Releasing the Terminal

Example

To release the terminal, use the DEQT instruction:

DEQT

The instruction releases the buffer designated in the loeB statement and restores the
configuration to that defined by the TERMINAL statement.

Line-oriented input I output instructions provide a straightforward way to construct and read
data from static screens. However, when individual data fields on the 4978, 4979, or 4980 are
accessed frequently, excessive screen flicker can result. This problem can be eliminated by
transferring an entire screen image to the display with one 110 operation. The following
program shows this technique.

The program accesses the top six lines of a static screen and initially formats the screen with a
sequence of protected fields. An array of integers is displayed on lines 0-5 of the screen and a
pause is executed to allow the operator to enter a new set of values in corresponding positions of
lines 6-11. The new values are then displayed on lines 0-5 of the screen.

In this program, terminal 110 operations are performed through concatenation of TEXT strings.
If the application requires more complex formatting of the screen image, or if input of more than

Chapter 8. Reading and Writing Data from Screens PG-141

Reading and Writing Data from Screens
Transferring an Entire Screen Image at Once (continued)

254 bytes at a time is necessary, then direct access to the buffer is appropriate. See the
PRINTEXT and READTEXT instructions in the Language Reference for details.

DISPLAY PROGRAM BEGIN
II SCREEN

I

II BUFF

II
II NULLS
II NUMS
II VALS
III BEGIN

II
IE
III
III
IE
m
III
III WRITE

Ell

fI1
II
fI

IOCB SCREEN=STATIC,BOTM=ll,
BUFFER=BUFF,RIGHTM=959

DATA F'O'
BUFFER
DATA
DATA
DATA
TEXT
ENQT
ERASE
DO
PRINTEXT
PUTEDIT
PRINTEXT
PRINTEXT
ENDDO

960,BYTES
X'0202'
X'OOOO'
48F'O'
LENGTH=254
SCREEN
TYPE=ALL,LINE=O
96,INDEX=I
'FIELD' ,PROTECT=YES
FORMAT1,VALS, ((I)) ,PROTECT=YES
, ',PROTECT=YES
NULLS,PROTECT=YES

PRINTEXT LINE=O
PUTEDIT FORMAT1,VALS,((NUMS,48)),

ACTION=STG
PRINTEXT VALS,MODE=LINE,LINE=O
PRINTEXT LINE=6,SPACES=8
TERMCTRL
WAIT
GOTO

DISPLAY
KEY
(TRANSFER, QUIT) ,DISPLAY+2

am TRANSFER READTEXT VALS,MODE=LINE,LINE=6
ma GETEDIT FORMAT1,VALS, ((NUMS,48)),

fI
III

ACTION=STG
ERASE LINE=6,MODE=SCREEN,TYPE=DATA
GOTO WRITE

II QUIT DEQT
PROGSTOP

FORMAT 1 FORMAT (12)
ENDPROG
END

The following numbers refer to lines (in the left margin) of the preceding figure:

C

C

C

II Define the static screen with the terminal I/O buffer to be in the application program at
BUFF, with a length of 960 bytes (half of the 4979 display screen).

II Allocate storage for the buffer. Note that in this program the buffer is never accessed
directly; the space is merely allocated here for use by the supervisor.

m a Define a TEXT message consisting of two null characters (EBCDIC code X'OO').

PG-142 SC34-0637

o

o

o

o

o

Transferring an Entire Screen Image at Once (continued)

fa m Define the array of integers (initially zero) and the TEXT buffer that will be used for
output of the data in EBCDIC form.

II III Acquire the terminal, erase all data and establish the screen position for the first 1/0
operation. Since several text strings will be concatenated to form the first output line,
the screen position must be established in advance.

IE Begin a DO loop to construct the initial screen image. This will consist of 96 protected
fields of the form FIELDxx, where xx is a sequential field number, each followed by one
protected blank and two unprotected data positions. Note the conditions required for
forming a concatenated line: the protect mode of the PRINTEXT instructions must not
change (either all PROTECT= YES or all PROTECT=NO), and no intervening forms
control operations can be executed. The TERMCTRL DISPLAY instruction prints the
contents of the terminal buffer.

II Write 'FIELD' to the buffer.

III Convert the sequence number to two EBCDIC characters and write it to the buffer.

Write a protected separation character.

Write the two null characters to define the data positions. Null characters always
generate unprotected positions on the screen; PROTECT= YES is nevertheless required
here in order to maintain concatenation.

Write the concatenated line to the display. Any convenient line control operation or the
DEQT instruction will accomplish this.

III Convert the integer array to two-character EBCDIC values and store the resulting line in
the TEXT buffer V ALS.

fII Write the values into successive unprotected positions of the display beginning at
LINE=O,sP ACES=O. This "scatter write" operation is defined by MODE=LINE;
without MODE=LINE the protected fields of the display would be overwritten.

rB Define the cursor to be at the first unprotected position.

fI Display the cursor at its defined position.

fII Wait for the operator to press an interrupt key.

fI Go to QUIT if PFI was pressed. Go to TRANSFER if the ENTER key or any key other
than PF 1 was pressed.

m Read the updated values entered by the operator in lines 6-11. MODE=LINE
indicates a "scatter read."

Chapter 8. Reading and Writing Data from Screens PG-143

Reading and Writing Data from Screens
Transferring an Entire Screen Image at Once (continued)

fB Convert the EBCDIC representations to binary and store the binary values in the array
NUMS.

fD Erase the unprotected (data) fields in lines 6-11 of the screen.

II Repeat.

II Release the terminal. The buffer designated in the IOCB will be released and the screen
configuration restored to that defined by the TERMINAL statement.

Writing the Screen Image to a Data Set

This section shows how to create a screen image and use it in a program. The approach assumes
that you want to write a program that can execute on either a 4978,4979,4980, or 3101
Display Terminal.

For information on writing terminal-independent static screens, see "Designing
Device-Independent Static Screens" on page PG-1S4.

For more information on writing a screen image to a data set, see Appendix C, "Static Screens
and Device Considerations" on page PG-33S.

Writing a screen to a data set and using it in a program requires that you do the following things:

1. Create the screen.

2. Define the screen as static.

3. Read the screen into a buffer.

4. Get exclusive access to the terminal.

5. Display the screen and position the cursor.

6. Reserve storage for data.

7. Wait for a response.

8. Read a data item.

9. Write a data item.

PG-144 SC34-0637

o

o

o

o

o

o

Writing the Screen Image to a Data Set (continued)

10. Link-edit the program.

Creating a Screen

To create a screen image, use the $IMAGE utility as follows:

1. From the session manager, select option 4 (TERMINAL UTILITIES) from the primary
option menu.

2. Then select option 4 ($IMAGE). This option loads the $IMAGE utility.

3. Define a null character when the COMMAND(?) prompt appears by by entering:

l.. COMMAND (1): NULL @

You will use the null character to define unprotected fields. Unprotected fields are the fields
in which the operator will enter data.

4. Define the screen dimensions as 24 by 80 (full screen) by entering:

l.. COMMAND (?); DIMS 24 80

5. Enter the command EDIT. A blank screen appears.

6. Press the PFI key to enter define mode. While in define mode, you can define the screen.

7. Enter the text for your screen image. Enter the fixed part of the screen exactly as you want
it to appear on the screen. The fixed fields are called protected fields. Use the null character
(@) to define the unprotected data fields.

The screen looks as follows:

NAME: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
ADDRESS: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

CITY: @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
STATE: @@

ZIP: @@@@@

(li fleO)
(line n
(line 2)
(li ne 3)
(1 i ne 4)
(line 5)

Chapter 8. Reading and Writing Data from Screens PG-14S

Reading and Writing Data from Screens
Writing the Screen Image to a Data Set (continued)

8. Press the enter key after you complete the design of your screen image. The enter key takes
you out of define mode.

9. Press the PF3 key to return to the $IMAGE command mode.

10. Save your new screen image in data set AP08CSCR on volume EDX002 by entering:

11. In response to the message:

reply N. (You would reply Y if you coded attributes (such as blinking or nondisplay) that
are available on the 3101 Display Terminal.)

At this point, the system saves the screen. Use the EN command to end the $IMAGE utility.

For more information on creating a screen image, refer to Language Reference.

Defining the Screen as Static

To define a screen as static, use the IOCB statement as follows:

TERM lOCB SCREEN=STATlC,
BUFFER=lOBUF,
OVFLlNE=YES,
LEFTM=O,
RlGHTM=1919,
TOPM=O,
BOTM=23

x
x
x
x
X
X

This statement defines the loading terminal as a static screen. The label TERM defines the
name you will use in other instructions in the program. The BUFFER operand identifies IOBUF
as the buffer that will be associated with the screen. The OVFLINE operand tells the system to
continue a line that exceeds the right margin on the next line. The next four operands (LEFTM,
RIGHTM, TOPM, and BOTM) define the static screen as the entire physical screen (lines 0-23
and columns 0-79).

PG-146 SC34-0637

Note: Remember that to continue a line, the continued line must begin in column 16.

For information on defining logical screens, see Appendix C, "Static Screens and Device
Considerations" on page PG-33S.

o

o

o

o

o

Writing the Screen Image to a Data Set (continued)

Reading the Screen Image into a Buffer

To read the screen you have created, you need to do the following things:

1. Code the name and volume of the screen in a TEXT statement:

DSNAME TEXT 'AP08CSCR,EDX002'

This TEXT statement refers to data set AP08CSCR on volume EDX002. This data set
contains the screen you saved when you used the $IMAGE utility.

2. Reserve storage for the screen with a BUFFER statement:

DISKBFR BUFFER 1024,BYTES

The amount of storage you reserve depends on how many bytes $IMAGE used to store the
screen image. For example, if $IMAGE used 900 bytes to store a screen image, use 1024
bytes (the next highest 256-byte increment).

3. Specify the type of image data set you have created:

TERMTYPE DATA C'4978'

The type of image data set refers to the way you stored the data set. Since you answered N
to the "SHOULD THE 3101 DATASTREAM BE SAVED?" prompt, the system saved the
data set as a 4978 image.

4. Use the CALL instruction to read the screen:

CALL $IMOPEN, (DSNAME) , (DISKBFR) , (TERMTYPE)

The $IMOPEN subroutine reads the screen from the data set defined by DSNAME and
puts the screen into DISKBFR. TERMTYPE refers to the DATA statement that defines
the type of image data set.

Chapter 8. Reading and Writing Data from Screens PG-147

Reading and Writing Data from Screens
Writing the Screen Image to a Data Set (continued)

Getting Exclusive Access to the Terminal

Before you can use a terminal as a static screen, you must get exclusive access to it. Use the
ENQT instruction as follows:

ENQT TERM

The operand TERM is the name you used to define the terminal in the IOCB instruction.

Displaying the Screen and Positioning the Cursor

Displaying the screen and positioning the cursor involves three instructions.

The first instruction, the CALL $IMPROT instruction, prepares the protected fields for display:

CALL $IMPROT, (DISKBFR) , (FTABLE)

The presence of the third operand (in this case, FTABLE) causes the instruction to construct
what is called a field table. A field table shows the location and length of each unprotected field
on the screen. Define the field table as follows:

FTABLE BUFFER 15,WORDS

The field table requires 3 words for each unprotected field.

The second instruction positions the cursor after the first prompt:

PRINTEXT LINE=1,SPACES=9

Finally, the third instruction displays the screen:

TERMCTRL DISPLAY

PG-148 SC34-0637

o

o

o

o

o

Writing the Screen Image to a Data Set (continued)

Reserving Storage for Data

To reserve storage for a data item that you read, you must know its maximum length. To
reserve storage for a text string of 5 characters, use the TEXT statement as follows:

ZIP TEXT LENGTH=5

The name of the storage is ZIP. This storage area will eventually contain five bytes of data (the
zip code).

Waiting for a Response

After you issue the prompts, you must wait for the operator to respond. To wait for a response,
use the WAIT instruction as follows:

WAIT KEY

The operand KEY means that the program will wait until the operator presses either the enter
key or one of the Program Function (PF) keys.

Chapter 8. Reading and Writing Data from Screens PG-149

Reading and Writing Data from Screens
Writing the Screen Image to a Data Set (continued)

Reading a Data Item

Reading a data item involves reading all unprotected data from the screen. Use the
READTEXT instruction as in the following example:

READTEXT IOBUF,MODE=LINE,LINE=O,SPACES=O

The instruction reads all unprotected data into the buffer called IOBUF. The operands LINE=O
and SP ACES=O cause the system to look for the data starting in the first position of the screen.
MODE=LINE allows for blanks in the input data.

To move each data item into its own storage area, use the following instructions:

MOVEA #1,IOBUF
MOVE NAME, (0,#1), (30,BYTE)

The MOVEA instruction moves the address of buffer containing the unprotected fields. The
MOVE instruction moves the 30 bytes at the start of the buffer to NAME.

For each additional field, increment register 1 to the next field in IOBUF and move it to its data
area:

ADD
MOVE

#1,FTABLE+4
ADDR, (0,#1), (30,BYTE)

The ADD instructions adds the size of the first field (NAME) to register 1. The MOVE
instruction moves the 30 bytes at IOBUF+30 to ADDR.

Writing a Data Item

Writing a data item means transferring a data item from a storage area to the screen. A
PRINTEXT instruction might look like this:

PG-lS0 SC34-0637

PRINTEXT NAME,LINE=11

The instruction writes the data item from the storage area called NAME. The operand
LINE= 11 causes the system to display the data starting in the first position of the twelfth line of
the screen.

If you wanted to display another data item on the next line, you could use the SKIP operand:

PRINTEXT CITY,SKIP=1

o

o

o

o

o

Writing the Screen Image to a Data Set (continued)

The SKIP= 1 causes the system to skip to the first position of the next line before displaying the
data item CITY.

To display another data item on the same line, you could use the SPACES operand:

PRINTEXT ST,SPACES=1

SP ACES= 1 causes the system to skip one space on the same line before displaying the data
item ST. on the same line before displaying the data item ST.

Link-Editing the Program

Using the $IMAGE subroutines ($IMOPEN, $IMDEFN, and $IMPROT) means that you must
do one more thing when you link-edit the program. You must reference the $IMAGE
subroutines you have used.

You must supply the linkage editor, $EDXLINK, the following "control statements":

AUTOCALL $AUTO,ASMLIB
INCLUDE ASMOBJ,EDX002
LINK AP08C,EDX40 REPLACE END

The first control statement refers to a library of IBM-supplied routines. Unless you have moved
the library, you can code this statement as you see it here.

The second control statement refers to where you put the output of the compiler.

The third control statement says to put the output of the link-edit on volume EDX40, call it
AP08C, and replace it if it already exists. END tells $EDXLINK not to expect any other
control statements.

You can either create a data set containing these control statements or enter the statements
"interactively" each time you execute $EDXLINK.

For more information on link-editing, see Chapter 5, "Preparing an Object Module for
Execution" on page PG-89.

Chapter 8. Reading and Writing Data from Screens PG-151

Reading and Writing Data from Screens
Writing the Screen Image to a Data Set (continued)

Example

Prompt the operator for name, address, city, state, and zip code. Then display the five data
items. Use the screen AP08CSCR on volume EDX002 (already defined with the $IMAGE
utility) . .. TEST PROGRAM BEG

II EXTRN $IMOPEN,$IMDEFN,$IMPROT,$IMDATA

II TERM IOCB SCREEN=STATIC, C
BUFFER=IOBUF,OVFLINE=YES,LEFTM=O, C
RIGHTM=1919,TOPM=0,BOTM=23 .. BEG CALL $IMOPEN, (DSNAME) , (DISKBFR) , (TERMTYPE)

II MOVE CODE,TEST+2

II IF CODE,NE,-1
PRINTEXT 'OPEN ERROR CODE , ,SKIP=1
PRINTNUM CODE
GOTO END

ENDIF

II ENQT TERM

II CALL $IMPROT, (DISKBFR) , (FTABLE)

II PRINTEXT LINE=1,SPACES=9

IE TERMCTRL DISPLAY

III WAIT KEY

II READTEXT IOBUF,MODE=LINE,LINE=O,SPACES=O

IE MOVEA #1,IOBUF

III MOVE NAME, (0,#1), (30,BYTE)

IE ADD #1,FTABLE+4
MOVE ADDR, (0,#1), (30,BYTE)
ADD #1,FTABLE+10
MOVE CITY, (0,#1), (30,BYTE)
ADD #1,FTABLE+16
MOVE ST, (0, # 1) , (2, BYTE)
ADD #1,FTABLE+22
MOVE ZIP, (0,#1), (5,BYTE)

m PRINTEXT NAME,LINE=11

II PRINTEXT ADDR,SKIP=1
PRINTEXT CITY,SKIP=1

III PRINTEXT ST,SPACES=1
PRINTEXT ZIP,SPACES=2
DEQT

END PROGSTOP

1m DSNAME TEXT 'AP08CSCR,EDX002'

m DISKBFR BUFFER! 1024,BYTES

til TERMTYPE DATA C'4978'

E FTABLE BUFFER 15,WORDS

fI IOBUF BUFFER 1920,BYTES
CODE DC F'O'

PG-152 SC34-0637

o

~
~,J

o

o Writing the Screen Image to a Data Set (continued)

0

o

NAME
ADDR
CITY
ST
ZIP

TEXT
TEXT
TEXT
TEXT
TEXT
ENDPROG
END

LENGTH=30
LENGTH=30
LENGTH=30
LENGTH=2
LENGTH=5

.. Begin the program and execute the instruction at label BEG.

II Define as external references the $IMAGE subroutines that the program uses. The
linkage editor resolves these external references when you use the autocall option.

II Define the screen as static.

.. Read the screen from the data set defined by DSNAME. Put the screen in the buffer
defined by DISKBFR.

II

II

II

II

II

IE

III

IE

111

III

II

II

Move the return code that resulted from the $IMOPEN subroutine to CODE.

If the return code that resulted from the $IMOPEN subroutine does not indicate
"successful completion," display an error message and end the program.

Get exclusive use of the terminal.

Prepare the protected fields for display.

Position the cursor on the tenth space (SPACES=9) of the second line of the screen
(LINE = 1).

Display the screen.

Wait for the operator to respond to the prompts. Resume execution when the operator
presses either the enter key or one of the Program Function keys.

Read all unprotected data. Look for the data in the first space (SPACES=O) of the first
line of the screen (LINE=O) and allow blanks in the data (MODE=LINE).

Move the address of the buffer (IOBUF) that contains the unprotected data into
register 1.

Move the first 30 characters from the buffer to NAME.

Increment register 1 to point to the next data item (address).

Display the data item NAME. Begin displaying the data on the first position of the
twelfth line of the screen (LINE = 11).

Chapter 8. Reading and Writing Data from Screens PG-lS3

Reading and Writing Data from Screens
Writing the Screen Image to a Data Set (continued)

II Display the data item ADDR. Begin displaying the data on the first position of the next
line (SKIP= 1). (In this example, ADDR would appear on the thirteenth line of the
screen.)

III Display the data item ST. Begin displaying the data after leaving one space
(SPACES= O. (In this example, data item ST would appear one space to the right of
data item CITY.)

m Point to the data set (AP08CSCR on volume EDX002) that contains the screen created
with the $IMAGE utility.

m Reserve storage for the screen. (Except for screens much larger than the one in this
example, 1024 bytes is enough storage.)

fII Define the type of image data set to be read. (Coding C'4978' allows you to read the
screen to a 4978 or a 3101, whether or not you saved the 3101 datastream. C'3101'
allows you to read the screen to a 3101 if you saved the 3101 datastream. If you code
C' " you can read the screen to a 4978 or 3101 if you saved the 3101 datastream.)

E Reserve storage for the field table.

fI Reserve storage for the unprotected data.

Designing Device-Independent Static Screens

Screen design for the 4978, 4979, 4980, and 3101 can be as simple as screen design for only the
4978, 4979, or 4980. This section describes how to design such terminal independent static
screens, and discusses a limitation in compatibility between the 4978, 4979, 4980, and 3101.

This section mentions both the $IMAGE utility and the $IMAGE subroutines. For a complete
description of the $IMAGE utility, see the Operator Commands and Utilities Reference. For
descriptions of the $IMAGE subroutines, see "$IMAGE Subroutines" on page PG-338 in this
chapter.

The $IMAGE utility and subroutines treat an unprotected field as a string of unprotected
characters. In the 4978,4979, or 4980 unprotected characters are null characters. If the
$IMAGE null character were the at sign (@), then an unprotected field, eight characters long,
could be defined as:

PG-154 SC34-0637

L ENTER NAME HERE ==> @@@@@@@@

This field could be defined the same way for a 3101; $IMAGE automatically inserts the
attribute characters. In this case, the attribute byte immediately preceding the unprotected field
would specify an unprotected and high intensity field. Somewhere preceding the protected field

o

C)

o

o Designing Device-Independent Static Screens (continued)

o

o

(ENTER NAME HERE) would be an attribute byte specifying a protected and low intensity
field. Thus, if you do not want to define unique attributes (such as blinking), you can design
screens for the 4978, 4979, or 4980 and use them on 3101 terminals with default attributes.

You can also design 3101 screens with unique attribute characters; in this case, a 3101 data
stream is created by $IMAGE as well as a 4978, 4979, or 4980 image. The 3101 data stream is
ignored for display on the 4978, 4979, or 4980. If the pound sign ('#') were defined as the
blinking attribute, both fields in the previous example could be made to blink as follows:

~ tENTER NAME HERE ==> #@@@@@@@@

On a 3101, a blinking, protected attribute byte would replace the first pound sign and a blinking,
unprotected attribute byte would replace the second pound sign. The pound sign does not
change the protect status of the field, merely its display properties; the "null" character
determines whether the field is protected or unprotected.

Compatibility Limitation

This scheme has a limitation because an attribute byte is displayed as a protected blank. The I

character preceding a field (protected or unprotected) is always displayed as a blank on a 3101,
even if a protected (non-blank) character appears on a 4978, 4979, or 4980. For example, the
following screen is designed to display the month, day, and year as MM/DD/YY:

@@/@@/@@

On a 4978, 4979, or 4980, the date would appear as:

10/30/80

On a 3101, however, the date would appear as:

10 30 80

The slash characters on the 4978, 4979, or 4980 are replaced by attribute bytes on the 3101.
Therefore, screens designed for the 4978,4979, or 4980 do not have to be changed for use on
the 3101. However, you have to alter them if you do not want protected characters to disappear
when displayed on a 3101.

Chapter 8. Reading and Writing Data from Screens PG-155

Reading and Writing Data from Screens
Designing Device-Independent Static Screens (continued)

Coding for Device Independence

PG-156 SC34-0637

To achieve static screen device independence between the 4978, 4979, or 4980 Display Station
and the 3101 Display Terminal in block mode, you must use functionally equivalent terminal
instructions on both terminals. The following considerations show one approach which provides
some device independence.

• Use the 4978 screen images produced by $IMAGE for 4978, 4979, or 4980/3101
compatible applications. The 3101 data streams are not required.

• Specify an image type of C'4978' on calls to $IMOPEN.

Specify FTAB on calls to $IMPROT. The FTAB buffer is initialized to describe each
unprotected field on the screen and requires three words per entry.

Use calls to $IMDATA to "scatter write" to either type terminal.

PRINTEXT MODE=LINE does not produce a scatter write operation on the 3101 (as it
does on the 4978, 4979, or 4980). A call to $IMDATA, specifying the FTAB produced by
the prior call to $IMPROT and the user buffer, performs the scatter write operation on the
4978, 4979, or 4980 and simulates the scatter write on the 3101.

$IMDATA can be used to write either default unprotected data from the screen image or
user data contained in a user buffer.

For "gather read" operations use:

READTEXT MODE=LINE,TYPE=DATA,LINE=O,SPACES=O

Read operations from the 3101 in block mode start with the first data field encountered,
beginning with the upper left corner and continuing to the end of the screen. Specifying
LINE=O,SPACES=O makes the READ TEXT from the 4978, 4979, or 4980 functionally
equivalent to the 3101.

In addition, the 3101 prefixes each field transmitted with three bytes of control information;
this results in a 3101 data stream. Although EDX compresses out this control information,
the user buffer must be large enough to contain the entire data stream that is transmitted.

• U sing care, individual fields can be changed with:

PRINTEXT MODE=LINE,LINE= ,SPACES=

When directed to a 3101, the PRINTEXT instruction first writes an attribute byte,
followed by the text data. The data field thus appears displaced one position to the right
when compared to the result of a PRINTEXT directed to the 4978, 4979, or 4980.

o

o

o

o

o

0· .. ."
"

Designing Device-Independent Static Screens (continued)

To suppress writing an attribute byte to the screen, use:

TERMCTRL SET,ATTR~NO

prior to the PRINTEXT(s). After the last PRINTEXT, code TERMCTRL
SET,ATTR=YES. The 4978, 4979, or 4980 ignores these TERMCTRL instructions.

Be careful to ensure that the data being sent to the 3101 does not extend beyond one
data field; if it does, it will overlay and eliminate existing attribute characters. Once the
screen attributes are changed, the FT AB no longer represents the screen and $IMDAT A
operations will produce undesired results.

Writing protected nulls to create additional unprotected 4978, 4979, or 4980 fields is not
supported in 3101 block mode. Avoid this practice.

Avoid the combination of "count" and TYPE=DATA in the ERASE instruction. On the
3101, the erase starts at the current cursor position and continues to the end of screen; the
count operand is ignored.

Avoid the combinations of TYPE = DATA,MODE = LINE and
TYPE=DATA,MODE=FIELD in the ERASE instruction. Although these combinations
work as anticipated on the 4978, 4979, or 4980, the 3101 forces the MODE= parameter to
SCREEN.

Avoid the combination of "count", TYPE=ALL and MODE=FIELD in the ERASE
instruction. The 3101 forces MODE=FIELD to MODE=LINE. The operation terminates
when the count reaches zero or the current line ends, whichever occurs first.

To erase unprotected fields which do not end at end of line or end of screen, use one of the
following techniques:

Use a PRINTEXT instruction with LINE and SPACES parameters to write blank
characters to each individual field, being careful not to change or eliminate 3101
attribute bytes.

Note: If the 3101 screen attributes are changed or eliminated, then the screen format
will no longer match the FTAB and the data will not be directed to the correct locations
on the 3101 screen. To re-establish the screen, call $IMPROT before calling
$IMDATA.

Use READTEXT TYPE=DATA to read all unprotected data from the screen into a
user buffer. Next, blank out (or change) the appropriate fields in the buffer. Then use
the 'USER' buffer features of $IMDAT A to rewrite the unprotected data.

Chapter 8. Reading and Writing Data from Screens PG-157

Reading and Writing Data from Screens
Designing Device-Independent Static Screens (continued)

Using the $IMAGE Subroutines for Device Independence

This section presents a way to write terminal-independent applications that use static screens.
Using this method, the $IMAGE utility creates screen images and stores them on disk or
diskette. Later, your application program can display and use the images by calling
system-provided subroutines. Collectively these subroutines are called the "$IMAGE
subroutines" .

There are seven $IMAGE subroutines; see "$IMAGE Subroutines" on page PG-338 for
individual descriptions of each. Ordinarily, your programs will not need to use all seven.

This section describes the basic steps in an application program which displays and processes a
static screen (with a size of 24 lines and 80 characters per line):

• Retrieve the screen

Display the protected data

Display and retrieve the unprotected data.

Retrieving the Screen Format

The first step is to retrieve the screen format by calling $IMOPEN. The type operand specifies
the type of format to be retrieved. If the type operand is set to blanks, the format retrieved
corresponds to the type of terminal upon which the program is running. If a 3101 format is
needed but unavailable, the 4978, 4979, or 4980 format is retrieved and converted dynamically
to a 3101 data stream. For example:

CALL $IMOPEN, (DSNAME), (FORMAT), (TERMTYPE)

DSNAME TEXT
FORMAT BUFFER
TERMTYPE DATA

LENGTH=15
n,BYTES
CL4'

format dataset name
format buffer
adapt to running terminal

Displaying the Protected Data

PG-158 SC34-0637

The screen format itself (the protected data) can be displayed with a call to $IMPROT.

CALL $IMPROT, (FORMAT) , (FTAB)

FTAB BUFFER n,WORDS field table

For the 3101, the field table (FTAB) is required. For a description of the field table, see
"$IMPROT Subroutine" on page PG-344.

o

o

o

o

o

Designing Device-Independent Static Screens (continued)

Displaying the Unprotected Data

At this point many applications generate and then display some data in the unprotected fields.
On a 4978,4979, or 4980 you can use PRINTEXT MODE=LINE to perform a scatter write
operation. However, since this is not supported on a 3101, you should use $IMDATA to
perform the scatter write operation and thus preserve device independence.

$IMDATA writes all the unprotected fields in a screen image. When directing data to the 3101,
the field table generated by $IMPROT must be used. To write default unprotected data, use the
buffer containing the screen image or specify a user buffer containing the application-provided
data.

When $IMDATA is used with a user buffer, the application program must:

Set the characters 'USER' in the first four positions of the buffer

Set the message length, excluding 'USER', in the buffer index word (buffer-4).

MOVE USERDATA,CUSER,DWORD set up user message
MOVE DATALEN,8 set message length
MOVE USERDATA+4,MESSAGE, (8,BYTES) get message
CALL $IMDATA, (USERDATA) , (FTAB)
•
•
•

USERDATA BUFFER
MESSAGE DATA
CUSER DATA

Retrieving the Unprotected Data

12,BYTES,INDEX=DATALEN for user data
CL8'HI THERE' data
CL4'USER'

After the operator has entered data, all the data in the unprotected fields can be read by a single
statement. Both the 4978, 4979, or 4980 and 3101 support a "gather read" using READTEXT
MODE=LINE.

READTEXT SCRNDATA,MODE=LINE

SCRNDATA BUFFER n,BYTES

In this example, n is the number of data bytes being read plus three bytes per field being read.

A READ TEXT with MODE=LINE into a buffer from a 3101 screen has some special
considerations. A READTEXT to the 3101 always reads from the beginning of the screen,
regardless of the cursor position specified by LINE and SPACES. The 3101 has only three read
options: read the entire screen (TYPE=ALL), read all the unprotected fields (TYPE=DATA),
or read only the modified unprotected data (TYPE=MODDATA). (For more information on
3101 read options, see "Reading Modified Data on the 3101" on page PG-l 74).

Chapter 8. Reading and Writing Data from Screens PG-159

Reading and Writing Data from Screens
Designing Device-Independent Static Screens (continued)

The data will be read concatenated into the buffer. But the buffer must be large enough to
accommodate the data plus three bytes (TYPE=DATA and TYPE = ALL) or four bytes
(TYPE=MODDATA) per unprotected field. This extra data includes escape sequences and
attribute bytes which are edited out of the buffer before presentation to the application program
(as long as the default of STREAM=NO is in effect).

Although the 4978 has the capability to read a specific unprotected field, the 3101 does not. To
perform a similar operation, the application can read all the unprotected data and then use the
field table lengths to displace into the buffer and arrive at the desired data field.

Suppressing Attribute Bytes

Both the 4978 and 3101 can do a PRINTEXT with LINE and SPACES to a specific screen
coordinate. However, for the 3101, doing this has ramifications for subsequent I/O to the
screen. When a PRINTEXT is issued to a 3101 without a previous TERMCTRL
SET,ATTR=NO, the terminal support inserts an attribute byte. This attribute byte appears as a
protected blank at the screen coordinate specified by LINE and SPACES, and the data follows.
Normally, this displaces the data one byte to the right, and therefore the data writes over the
next attribute byte (which usually describes a protected field).

For example, assume the screen coordinate 5,5 (LINE=5,SPACES=5) contains a ten-byte
unprotected field which the application wants to fill with ten Xs. If a PRINTEXT
LINE=5,SPACES=5 of ten Xs is issued with no previous TERMCTRL SET,ATTR=NO, then
an attribute byte is added and written at location 5,5 and the tenth X overwrites the next
attribute byte for the following protected field. This leaves the screen with one large
unprotected field instead of a 10 byte unprotected field followed by a protected field.

A subsequent READTEXT of the unprotected data will result in much more data being returned
to the application than expected. In addition, the returned data stream might contain escape
sequences and attribute bytes which on a subsequent PRINTEXT from the same buffer will
cause the cursor to act unpredictably. The data will also be written incorrectly on the screen.

To avoid such problems, a TERMCTRL SET,ATTR=NO should always be issued before a
PRINTEXT with LINE and SPACES. A TERMCTRL SET,ATTR=YES should follow the
PRINTEXT.

Converting 4978 Screens for Use on the 3101

Many 4978-based applications can be converted to run on the 3101. In some cases, it is
sufficient to convert uses of PRINTEXT MODE=LINE to calls to $IMDAT A. If the
application uses READTEXT to specify screen coordinates with LINE and SPACES, the
technique described above in "Suppressing Attribute Bytes" can be used.

Screens might also need to be changed because the attribute bytes are displayed as protected
blanks on the 3101; see "Compatibility Limitation" on page PG-155.

PG-160 SC34-0637

o

o

o

o

o

Reading and Writing to a 3101 Display Tenninal

This section describes how to read data from and write data to a 3101 Display Terminal. It
describes the characteristics of the 3101 terminal and some things you should know when you
design programs that use the 3101.

This section focuses on a sample program, describing the instructions in the same sequence that
they appear in the program. The sample program:

1. Defines the format of the screen

2. Enqueues the screen

3. Change the attribute byte

4. Erases the screen

5. Protects the first field

6. Creates unprotected fields

7. Creates protected fields

8. Writes a nondisplay field

9. Reads a data item

10. Writes a blinking field

11 . Erases an individual field

12. Blanks a blinking field

13. Writes more than one data item

14. Prompts the operator for data.

15. Changes the attribute byte to a protected blank

16. Displays a nondisplay field

17. Creates a new unprotected field

Chapter 8. Reading and Writing Data from Screens PG-161

Reading and Writing Data from Screens
Reading and Writing to a 3101 Display Terminal (continued)

18. Reads modified data

19. Forces the modified data tag on

20. Reads modified data

21 . Erases to the end of the screen

22. Reads all unprotected data

23. Reads a data item.

Characteristics of the Terminal

Attribute Characters

The 3101 uses attribute characters (or bytes) to define fields on the screen. An attribute byte
defines the start of each field and the properties of the field (such as protected/unprotected,
high/low intensity). Each attribute byte appears as a protected blank on the screen.

o

The collection of attribute characters, special sequences required by the terminal, and user data (" ~-)-
is called a "data stream." Any invalid (unprintable) characters encountered in the data stream
will cause the alarm to ring. This condition might occur, for instance, if you try to display a
non-EBCDIC disk or diskette record.

Transmitting Data from the 3101

On a 3101 static screen, the application program must determine where the output data is
positioned, relative to the first position of the screen. When you issue a READ TEXT
instruction, the system reads the data from the beginning of the screen. Whether you read all
data or modified data depends on how you code the TYPE operand of the READ TEXT
instruction.

PG-162 SC34-0637

In response to a read request, the 3101 transmits the attribute characters that precede the input
field. To suppress the attribute characters from the data stream, EDX removes these special
characters and left-justifies the data.

An application program can have complete control of the input/output data transmitted. To do
this, the program must build the complete data stream, either in EBCDIC or ASCII codes. The
basic terminal I/O support simply handles the transmission of the data stream. Refer to the
description of the TERMCTRL SET,STREAM=YES/NO instruction and the XLATE
parameter of PRINTEXT /READTEXT instructions in the Language Reference when this mode
of data transmission is desired.

o

o Reading and Writing to a 3101 Display Terminal (continued)

o

o

Design Considerations

The following list contains items you should consider when designing a static screen application
for the 3101.

The 3101 uses a data stream, a collection of special characters, commands, and data that tell
the 3101 to do something.

A simple PRINTEXT of 'HI THERE' results in a data stream of:

ESC.Y.ROW.COL.ESC.3.ATTR.HI THERE

where ESC.Y is a set cursor address command followed by row and column position, and
ESC.3 is a start-of-field followed by an attribute byte defining the field.

An attribute byte defines how data will appear on the screen. It occupies one character
position on the screen and appears as a protected blank.

Special attributes supported by the 3101 are high intensity, low intensity, blinking, and
nondisplay.

TERMCTRL SET,ATTR= sets the attribute byte.

If an attribute is not required, code a TERMCTRL SET,ATTR=NO before coding a
PRINTEXT to a specific location.

Escape sequences take up space in the buffer. Therefore, it takes more than 1920 bytes to
read a complete screen. Depending on the TERMCTRL SET ATTR= and STREAM=
parameters in effect, a PRINTEXT operation could require the data length plus (7 x #
fields). A READTEXT requires the data length plus (3 x # fields) for TYPE = ALL and
TYPE=DATA, and the data length plus (4 x # fields) for TYPE=MODDATA.

• A READ TEXT TYPE=DATA reads all unprotected data. If MODE= WORD, fields are
separated by blanks. If MODE=LINE, fields are concatenated.

• A WAIT KEY prior to a READTEXT TYPE=MODDATA should be satisfied with a PF
key and not the SEND key. If MODE=WORD, fields are separated by blanks. If
MODE=LINE, fields are concatenated.

A READ TEXT without a prompt transmits data from the beginning of the screen,
regardless of the cursor position.

• After the SEND key is pressed, a RDCURSOR returns as the cursor position the first
position of the next line. If a PF key is pressed, it does not move the cursor.

Chapter 8. Reading and Writing Data from Screens PG-163

Reading and Writing Data from Screens
Reading and Writing to a 3101 Display Terminal (continued)

Defining the Format of the Screen

A screen format is a representation of the protected fields on a screen. References to the 3101
Display Terminal in this section mean a 3101 model 2x operating in block mode.

Like the 4978, 4979, or 4980, the format of a 3101 screen is defined by how the data is written,
either protected or unprotected. However, on the 3101, the field definitions are not transparent
to the user because attribute bytes separate protected and unprotected fields.

An attribute byte defines the start of each field and the properties of the field.

• Each field continues until another attribute byte is encountered.

Each attribute byte occupies one character position on the screen and is displayed as a
protected blank preceding the field.

Attribute bytes are like any other character on the screen in that they can be overwritten by
data or another attribute byte. When an attribute byte is overwritten, the screen format can
change.

On a 3101, you cannot do a scatter write with a PRINTEXT instruction; however, you can
specify screen coordinates on output (PRINTEXT LINE=,SPACES=). You can do a gather
read by specifying READ TEXT MODE=LINE. However, the input of a specific field (by
means of READ TEXT LINE = ,SP ACES=) always executes as though LINE=O and
SPACES =0 had been coded.

As a result of these differences between the 4978, 4979, or 4980 and the 3101, it can be
difficult to write terminal independent code using READTEXT /PRINTEXT instructions.
However, you can use $IMAGE to perform terminal independent input/output.

PG-164 SC34-0637

o

o

o Reading and Writing to a 3101 Display Tenninal (continued)

o

o

Enqueuing the Screen

The program must enqueue to change the function to static screen. The screen size is forced to
24 x 80 and the CCB buffer of 203 bytes is used.

lOCB1 lOCB SCREEN=STATlC

ENQT lOCB1

Changing the Attribute Byte

The default attribute is high intensity. After it is changed, this program always restores it to
high intensity.

TERMCTRL SET,ATTR=LOW

Erasing the Screen

Erasing the screen defaults the count to 1920.

ERASE TYPE=ALL

Chapter 8. Reading and Writing Data from Screens PG-165

Reading and Writing Data from Screens
Reading and Writing to a 3101 Display Terminal (continued)

Protecting the First Field

The first field defined is a protected field at 0,0. This ensures that the whole screen will be
formatted and that no unformatted data areas will be returned on whole screen reads, whether
the read is TYPE=ALL, TYPE=DATA or TYPE=MODDATA.

Printing the null character (defined in the, DATA statement ATTRBUTE) with STREAM=NO
in effect to LINE/SPACES causes EDX to:

Generate the set cursor address sequence to the LINE/SPACES specified

• Generate the start field sequence, including the current attribute which will create or cause
an attribute at LINE/SPACES to be rewritten.

The data stream is shown below; the attribute byte is shown as '#'.

ESC.Y.ROW.COL.ESC.3.#.X'OO'

The null data is required to force the start field sequence; however, a null character is ignored by
the 3101.

PG-166 SC34-0637

DATA X'0101'
ATTRBUTE DATA x'OOOO'

DUMMY TEXT STATEMENT CNT=1 LGTH=1
NULL TO FORCE ATTRIBUTE TO WRITE

PRINTEXT ATTRBUTE,LINE=O,SPACES=O,PROTECT=YES
TERMCTRL SET,ATTR=HIGH RESTORE ATTRIBUTE

o

o

o

o

Reading and Writing to a 3101 Display Tenninal (continued)

Creating Unprotected Fields

To create unprotected fields on the screen ("holes" in which the operator can enter data), start
each field with an unprotected attribute byte and end it with a protected attribute byte.

Creating Protected Fields

PRINTEXT

TERMCTRL
PRINTEXT

ATTRBUTE,LINE=4,SPACES=29

SET,ATTR=LOW
ATTRBUTE,LINE=4,SPACES=34,PROTECT=YES

The next step is to create protected field descriptions. This could be done with ATTR=NO
since the screen is already defined as protected in these areas. This program, however, uses a
standard PRINTEXT to write a protected attribute byte at LINE/SPACES, followed by the
literal data.

PRINTEXT HEAD1,LINE=1,SPACES=20,PROTECT=YES
PRINTEXT 'ENTER A NUMBER',LINE=4,SPACES=2,PROTECT=YES

Chapter 8. Reading and Writing Data from Screens PG-167

Reading and Writing Data from Screens
Reading and Writing to a 3101 Display Terminal (continued)

Writing a Nondisplay Field

The program uses a field description which is not initially displayed on the screen. To create a
nondisplay field, set the attribute to blank.

NONDISP TERMCTRL SET,ATTR=BLANK
PRINTEXT 'ENTER ANOTHER NUMBER' ,LINE=12,SPACES=2,PROTECT=YES
TERMCTRL SET,ATTR=HIGH RESTORE ATTRIBUTE

Reading a Data Item

Two EDL instructions that have an implied wait are:

READ TEXT with prompt

GETV ALUE with prompt

The LINE and SPACES parameters of these instructions specify the position of the attribute
byte of the unprotected prompt field. Printing a null prompt field positions the attribute byte
and cursor differently than for a prompt which is data. For example:

Normal GETVALUE = #prompt#
Null prompt GETVALUE #

NULPRMPT TEXT LENGTH=O USED ON IMPLIED WAIT INSTRUCTIONS

GETVAL GETVALUE FIELD1NO,NULPRMPT,LINE=4,SPACES=29

PG-168 SC34-0637

o

o

o

o

o

Reading and Writing to a 3101 Display Tenninal (continued)

Writing a Blinking Field

The program also uses a protected blinking field.

BLINK TERMCTRL SET,ATTR=BLINK
PRINTEXT 'FIELD1 MUST BE EVEN' ,LINE=2,SPACES=5,PROTECT=YES
TERMCTRL SET,ATTR=HIGH RESTORE ATTRIBUTE

Erasing an Individual Field

The program erases individual fields using the erase end-of-field/ end-of-line function of the
3101. To do this an ESC.! is sent as data. The field to be erased is specified by
LINE/SPACES, and the current attribute byte is rewritten followed by the ESC.1. The data
stream looks like:

ESC.Y.ROW.COL.ESC.3.#.ESC.I

DATA
ERASEFLD DATA

X'0202'
X'27C9'

ERASE END OF FIELD
ESC.I

ERASEF PRINTEXT ERASEFLD,LINE=4,SPACES=29

To erase a field, do an ERASE with a count value equal to the field length + 1 and
TYPE=ALL. The + 1 is for the unprotected attribute.

ERASEF2 ERASE 5,TYPE=ALL,LINE=4,SPACES=29 ERASE FLD1

Chapter 8. Reading and Writing Data from Screens PG-169

Reading and Writing Data from Screens
Reading and Writing to a 3101 Display Terminal (continued)

Blanking a Blinking Field

Once an even number is entered, the blinking field is blanked out by changing the attribute byte
to non display .

TERMCTRL SET,ATTR=BLANK
PRINTEXT ATTRBUTE,LINE=2,SPACES=5,PROTECT=YES

Writing More Than One Data Item

To simulate a scatter write, a horizontal tab character is inserted between fields. This is done
using PUTEDIT; however, you could also use the CONCAT instruction or indexed moves. The
data stream is shown below; an EBCDIC tab is a X'05'.

ESC.Y.ROW.COL.ESC.3.#.DATA1.HT.DATA2

TAB
DATA
DATA

X'0101 '
X'0500'

HORIZONTAL TAB
TAB TO NEXT FIELD

SCATTER PUTEDIT FORMAT1,TEXTOUT, (AS,TAB,BS),LINE=6,SPACES=29

FORMAT 1 FORMAT
TEXTOUT TEXT

PG-170 SC34-0637

(A 1 5 , A 1 , A 1 5) , PUT
LENGTH=31 SIZE OF DATA STREAM

o

()

o

o

o

o

Reading and Writing to a 3101 Display Terminal (continued)

Prompting the Operator for Data

The program uses a standard QUESTION instruction.

QUEST QUESTION 'WANT TO SEE MORE ?' ,NO=ENDIT,LINE=10,SPACES=5

An invalid response to a QUESTION (anything other than Y or N) is handled by the supervisor,
which reissues the read. This results in a string of two new fields: a question mark and a
response field.

#PROMPT#?#?#?#?#

Changing the Attribute Byte to a Protected Blank

To clear this string of fields, you could overwrite them with a protected field of blanks. Instead,
this program finds each field and changes the attribute to blank protected.

*

RDCURSOR LINE, SPACES FIND CURSOR
PRINTEXT LINE=LINE,SPACES=SPACES
TERMCTRL DISPLAY FORCE SOFT CURSOR ADDRESS

TO BE UPDATED
DO UNTIL, (SPACES,EQ,S),AND, (LINE,EQ,10)

A backtab command is sent as data to position the cursor in the first position of the unprotected
field preceding the current cursor address. SET,ATTR=NO is used to prevent EDX from
generating the attribute byte and preceding start field sequence. The data stream looks like:

ESC.2

DATA
BACKTAB DATA

X'0202'
X'27F2' BACK TAB TO FIRST CHARACTER

POSITION OF NON-PROTECTED FIELD *

TERMCTRL SET,ATTR=NO
PRINTEXT BACKTAB
RDCURSOR LINE, SPACES FIND NON-PROTECTED FIELD CURSOR

* IS IN
SUB SPACES, 1 ADJUST TO ATTRIBUTE BYTE
TERMCTRL SET,ATTR=BLANK PREPARE TO BLANK IT
PRINTEXT ATTRBUTE,LINE=LINE,SPACES=SPACES,PROTECT=YES

ENDDO

Chapter 8. Reading and Writing Data from Screens PG-171

Reading and Writing Data from Screens
Reading and Writing to a 3101 Display Terminal (continued)

Displaying a Nondisplay Field

Now the program displays the nondisplay field previously discussed (ENTER ANOTHER
NUMBER). The attribute that is currently blank protected is rewritten to low protected.

LIGHT TERMCTRL SET,ATTR=LOW
PRINTEXT ATTRBUTE,LINE=12,SPACES=2,PROTECT=YES

Creating a New Unprotected Field

Next the program creates a new unprotected field with the cursor in place; this is useful for data
entry. To create a unprotected field on demand with the cursor in place, write the end-of-field
attribute first and then the start of field attribute.

CREATEU TERMCTRL SET,ATTR=LOW
PRINTEXT ATTRBUTE,LINE=12,SPACES=34,PROTECT=YES
TERMCTRL SET,ATTR=HIGH RESTORE ATTRIBUTE
PRINTEXT ATTRBUTE,LINE=12,SPACES=29
WAIT KEY

Reading Modified Data

A read of modified data has several implications:

PG-172 SC34-0637

A field is modified by entering data or erasing the field. The modified data tag (MDT) in
the attribute byte is turned on by the 3101.

The modified data tag could be on when the attribute byte is written. $IMAGE provides
this capability for 3101 data streams.

• Group 2, switch 4 on the 3101 enables the SEND key to function as the SEND LINE key.
When the SEND key is pressed, the data that is on the same line as the cursor is sent. The
type of data that is sent depends on the type of read in effect, namely all data, unprotected
or modified.

• Once a modified field is sent to the Series/1 via the SEND key or a read buffer, the
modified data tag in the attribute byte is turned off.

At this point during program execution, another number (FIELD4 data) has been entered and
the SEND key has been pressed. The cursor was probably on the same line as FIELD4; if it was,
FIELD4 data was sent to satisfy the WAIT KEY and the modified data tag was turned off. A
subsequent READTEXT of TYPE=MODDAT A would not return FIELD4 unless the cursor
were moved to a line not containing modified fields, or a PF key were used to satisfy the WAIT
KEY.

o

o

o

o

o

Reading and Writing to a 3101 Display Terminal (continued)

To read only the fields in which numbers were entered, the program rewrites the attribute bytes
for those two fields with the modified data tags on; Before the modified fields are read, there is
an intervening write, so the program locks the keyboard.

TERMCTRL LOCK
TERMCTRL SET,ATTR=NO TO WRITE MDT ON ATTRIBUTE

Forcing the Modified Data Tag On

A start field sequence with a unprotected, high intensity, MDT on attribute is written as data.
The data stream looks like:

SETMOD

ESC.Y.ROW.COL.ESC.3.E

DATA
DATA
DATA

X'0303'
X'27F3'
X'C500'

TO FORCE MODIFIED DATA TAG ON
START FIELD SEQUENCE
ATTRIBUTE=HIGH,UNPROTECTED,MDT ON

PRINTEXT SETMOD,LINE=12,SPACES=29
PRINTEXT SETMOD,LINE=4,SPACES=29

Now the program issues a READ TEXT with TYPE=MODDATA; this reads all the modified
data on the screen, in this case two fields.

READMOD READTEXT MTEXT,TYPE=MODDATA,MODE=LINE

MTEXT

*

IF (MTEXT,NE,MTEXT+4,4) PSEUDO TESTING

TEXT LENGTH=8 READ OF MODDATA: STREAM
LENGTH = DATA + (4*NOFLDS) 16

Chapter 8. Reading and Writing Data from Scre~.ns PG-173

Reading and Writing Data from Screens
Reading and Writing to a 3101 Display Tenninal (continued)

Reading Modified Data on the 3101

On the 3101, an unprotected field is considered to be a modified field when:

• Any character within the field is changed by the operator

• Certain ERASE instructions are executed

The modified data tag (MDT) in the attribute byte is on.

The modified data tags are reset when the data is read by a READTEXT TYPE=MODDATA
instruction or transmitted by pressing the SEND key. To return a protected field using
READ TEXT TYPE = MODDAT A, design the field with the modified data tag set on in the
attribute byte.

To read all the modified fields from a screen, the operator must position the cursor on a
protected line which does not contain any modified fields. If the cursor is not on such a line and
the operator presses the enter key to satisfy a WAIT KEY instruction, the MDTs on that line are
reset. A subsequent READTEXT would therefore not return to the program the modified data
on that line. If a PF key instead of the SEND key is used to satisfy the WAIT KEY, the MDTs
are not changed.

The IOCB BUFFER= parameter or the CCB buffer must be large enough to contain the
received 3101 data stream prior to editing of the ESC sequences (four bytes for each modified
field). If the CCB buffer is not large enough, use the IOCB buffer.

PG-174 SC34-0637

o

o

o Reading and Writing to a 3101 Display Tenninal (continued)

o

Erasing to the End of the Screen

To prepare to erase the remaining fields, position the cursor to the second field.

PRINTEXT LINE=6,SPACES=29
TERMCTRL DISPLAY

Using ERASE with TYPE=DATA, all the unprotected fields from the current cursor position to
the end of screen are erased. The count value is not used and mode is forced to screen.

ERASUNP ERASE TYPE=DATA ERASE REMAINING UNPROTECT FIELDS

Reading All Unprotected Data

GETEDIT is used to get all the unprotected fields under format control. You could also use a
READ TEXT without a prompt; this would read all the unprotected data from the start of the
screen.

GETALL GETEDIT FORMAT2,TEXTAMT, (N01,ALPH1,ALPH2,N02)

TEXTAMT TEXT

*
FORMAT 2 FORMAT

LENGTH=38 GETEDIT STREAM LENGTH =
DATA + (3*NOFLDS) = 50

(I4,A15,A15,I4) ,GET

Chapter 8. Reading and Writing Data from Screens PG-17S

Reading and Writing Data from Screens
Reading and Writing to a 3101 Display Terminal (continued)

Writing a Data Item

A standard PRINTNUM is used to write to LINE/SPACES.

PRINTNUM N01,FORMAT=(5,O,I) ,LINE=18,PROTECT=YES

Reading a Data Item

PG-176 SC34-0637

To do a read from LINE/SPACES, a prompt field is required. The null prompt text statement
(NULPRMPT) is used.

TERMCTRL SET,ATTR=HIGH
READTEXT TEXTIN,NULPRMPT,LINE=23,SPACES=70

o

o

o

o Reading and Writing to a 3101 Display Terminal (continued)

Example

SAMPLE PROGRAM START
IOCB1 IOCB SCREEN=STATIC

* EBCDIC ESC SEQUENCES AND DATA STREAMS VIA PRINTEXT
*** .. DATA X'0202'

II ERASEFLD DATA X'27C9'

B DATA X'0303' .. SETMOD DATA X'27F3'

II DATA X'C500'

II DATA X'0101'

II ATTRBUTE DATA X'OOOO'

II DATA X'0202'

II BACKTAB DATA X'27F2'

IE DATA X'0101'

III TAB DATA x'0500'

IE NULPRMPT TEXT LENGTH=O
START EQU *

ENQT IOCB1
TERMCTRL SET,ATTR=LOW
ERASE TYPE=ALL

111 PRINTEXT ATTRBUTE,LINE=O,SPACES=O,PROTECT=YES
TERMCTRL SET,ATTR=HIGH

0 III PRINTEXT ATTRBUTE,LINE=4,SPACES=29

III PRINT EXT ATTRBUTE,LINE=6,SPACES=29

III PRINTEXT ATTRBUTE,LINE=8,SPACES=29

1& TERMCTRL SET,ATTR=LOW
PRINTEXT ATTRBUTE,LINE=4,SPACES=34,PROTECT=YES
PRINTEXT ATTRBUTE,LINE=6,SPACES=45,PROTECT=YES
PRINTEXT ATTRBUTE,LINE=8,SPACES=45,PROTECT=YES

m PRINTEXT HEAD1,LINE=1,SPACES=20,PROTECT=YES

m PRINTEXT 'ENTER A NUMBER' ,LINE=4,SPACES=2, C
PROTECT=YES

m PRINT EXT 'THIS IS FIELD2' ,LINE=6,SPACES=9, C
PROTECT=YES

m PRINTEXT 'THIS IS FIELD3' ,LINE=8,SPACES=9, C
PROTECT=YES

II NONDISP TERMCTRL SET,ATTR=BLANK
PRINTEXT 'ENTER ANOTHER NUMBER',LINE=12,SPACES=2, C

PROTECT=YES

o
Chapter 8. Reading and Writing Data from Screens PG-177

Reading and Writing Data from Screens
Reading and Writing to a 3101 Display Terminal (continued)

.. Define a dummy TEXT statement with length of 2 and count of 2.

II Erase end of field.

11 Define a dummy TEXT statement with length of 3 and count of 3.

.. Start field sequence.

II Set ATTR=HIGH, unprotected, with modified data tag on.

II Define a dummy TEXT statement with length of 1 and count of 1.

II Null to force attribute to write.

II Define a dummy TEXT statement with length of 2 and count of 2.

II Back tab to first character position of unprotected field.

IE Define a dummy TEXT statement with length of 1 and count of 1.

III Horizontal tab to next field.

IE Used on implied wait instructions.

Restore attribute - create unprotected fields.

Start screen with protected field at 0,0.

II N ow set the end of unprotected fields.

II Create protected literals as new fields. This could be done with ATTR=NO as screen is
protected.

II N ondisplay this literal field at this time.

PG-1 78 SC34-0637

o

o

o

o

0

o

Reading and Writing to a 3101 Display Terminal (continued)

II TERMCTRL

* NORMAL

* NULL
GETVAL GETVALUE

DIVIDE
IF

IE BLINK TERMCTRL
PRINTEXT

til TERMCTRL

FII ERASEF PRINTEXT
GOTO
ELSE

EB TERMCTRL
PRINTEXT
TERMCTRL

* IJ SCATTER PUTEDIT

ENDIF

*
E QUEST QUESTION

* *
* *
* *

E RDCURSOR

E PRINTEXT
TERMCTRL
DO
TERMCTRL
PRINTEXT

m RDCURSOR

!B SUB

fD TERMCTRL
PRINTEXT
ENDDO

Ell LIGHT TERMCTRL
PRINTEXT
PRINTEXT

ED CREATEU TERMCTRL
PRINTEXT

III TERMCTRL
PRINTEXT
WAIT

SET,ATTR=HIGH
GETVALUE = #PROMPT#
PROMPT GETVALUE = #­
FIELD1NO,NULPRMPT,LINE=4,SPACES=29
FIELD1NO,2,RESULT=DUMMY
(SAMPLE,NE,O)

SET,ATTR=BLINK
'FIELDl MUST BE EVEN' ,LINE=2,SPACES=5,
PROTECT=YES
SET,ATTR=HIGH
ERASEFLD,LINE=4,SPACES=29
GETVAL

SET,ATTR=BLANK
ATTRBUTE,LINE=2,SPACES=5,PROTECT=YES
SET,ATTR=HIGH RESTORE ATTRIBUTE

*

C

FORMAT1,TEXTOUT, (AS,TAB,BS) ,LINE=6, C
SPACES=2

'WANT TO SEE MORE ?' ,NO=ENDIT,LINE=10, C
SPACES=5

QUESTION AND INVALID RESPONSES CAN YIELD
#PROMPT#?#?#?#?#
NEED TO FIND ALL-ATTRIBUTES '#' AND CLEAR
LINE, SPACES FIND CURSOR
LINE=LINE,SPACES=SPACES
DISPLAY
UNTIL, (SPACES,EQ,5) ,AND, (LINE,EQ,10)
SET,ATTR=NO
BACKTAB
LINE, SPACES
SPACES, 1
SET,ATTR=BLANK
ATTRBUTE,LINE=LINE,SPACES=SPACES,PROTECT=YES

SET,ATTR=LOW
ATTRBUTE,LINE=12,SPACES=2,PROTECT=YES
'ON A WAIT KEY NOW' ,LINE=13,SPACES=9,

PROTECT=YES
SET,ATTR=LOW
ATTRBUTE,LINE=12,SPACES=34,PROTECT=YES
SET,ATTR=HIGH
ATTRBUTE,LINE=12,SPACES=29
KEY

C

Chapter 8. Reading and Writing Data from Screens PG-179

Reading and Writing Data from Screens
Reading and Writing to a 3101 Display Terminal (continued) o

II Restore attribute.

II Create new protected blinking field.

fI Restore attribute.

!II Going to erase an individual field using erase.

fB Blank out blinking field by going non-display.

fIJ Do scatter write by inserting tab character.

II Going to do standard question.

fD Force soft cursor address to be updated.

tID Find unprotected field cursor is in.

fI Adjust to attribute byte.

m Prepare to blank it.

fI Light up nondisplay field4 prompt.

II Create new unprotected field with cursor in place. 0
II Restore attribute.

o
PG-180 SC34-0637

o

o

o

Reading and Writing to a 3101 Display Terminal (continued)

II
III ERASEF2

II ERASEUNP

GETALL

ENDIT

FORMAT 1
Ell TEXTOUT

LINE
SPACES
FIELD1NO
HEAD 1

ml MTEXT
DATABFR
AS
BS

aI TEXTAMT
FORMAT 2
N01
N02
ALPH1
ALPH2
CAGAIN
TEXTIN
DUMMY

TERMCTRL
TERMCTRL
PRINTEXT
PRINTEXT
TERMCTRL
READMOD
IF
TERMCTRL
PRINTEXT

TERMCTRL
ERASE
PRINTEXT
TERMCTRL
ERASE
TERMCTRL
GOTO
ENDIF
TERMCTRL
GETEDIT
TERMCTRL
PRINTEXT
TERMCTRL
PRINTNUM
PRINTEXT
PRINTEXT
PRINTNUM
TERMCTRL
EQU
TERMCTRL
PRINTEXT

TERMCTRL
READTEXT
IF
PROGSTOP
FORMAT
TEXT
DATA
DATA
DATA
TEXT
TEXT
DATA
EQU
EQU
TEXT
FORMAT
DATA
DATA
TEXT
TEXT
DATA
TEXT
DATA
ENDPROG
END

LOCK
SET,ATTR=NO
SETMOD,LINE=12,SPACES=29
SETMOD,LINE=4,SPACES=29
SET,ATTR=YES RESTORE
READTEXT MTEXT,TYPE=MODDATA,MODE=LINE

(MTEXT,NE,MTEXT+4,4)
SET,ATTR=BLINK
'FLD4 MUST = FLD1 ',LINE=13,SPACES=9,
PROTECT=YES

SET,ATTR=HIGH
5,TYPE=ALL,LINE=4,SPACES=29
LINE=6,SPACES=29
DISPLAY
TYPE=DATA
UNLOCK
GETVAL

UNLOCK
FORMAT2,TEXTAMT, (N01,ALPH1,ALPH2,N02)
SET,ATTR=BLINK
'YOU ENTERED: ' ,LINE=16,PROTECT=YES
SET,ATTR=HIGH
N01,FORMAT=(5,0,I) ,LINE=18,PROTECT=YES
ALPH1,LINE=19,PROTECT=YES
ALPH2,LINE=20,PROTECT=YES
N02,FORMAT=(5,0,I) ,LINE=21,PROTECT=YES
DISPLAY

*
SET,ATTR=LOW

C

'IF YOU WANT TO SEE IT AGAIN ENTER' 'AGAIN", C
LINE=23,SPACES=5,PROTECT=YES
SET,ATTR=HIGH
TEXTIN,NULPRMPT,LINE=23,SPACES=70
(TEXTIN,EQ,CAGAIN,5) ,GOTO,START

LOGMSG=NO
(A 15, A 1 , A 15) , PUT

LENGTH=31
F'O'
F'O'
F'O'
'*** 3101 SAMPLE PROGRAM ***'

LENGTH=8
C'AAAAAAAAAAAAAAABBBBBBBBBBBBBBB'
DATABFR
AS+15
LENGTH=38
(I4,A15,A15,I4) ,GET
F'O'
F'O'
LENGTH=15
LENGTH=15
C 'AGAIN ,
, " LENGTH=5
F'O'

Chapter 8. Reading and Writing Data from Screens PG-181

Reading and Writing Data from Screens
Reading and Writing to a 3101 Display Terminal (continued)

Ell Lock the keyboard.

&I To write MDT on attribute.

II Pseudo testing. Read these two fields with TYPE=MODDATA.

II Restore.

ED Erase FLD 1.

IB Erase remaining unprotected fields.

ED Finally a READTEXT to line and space.

Ell Size of data stream.

aa Read of Moddata LGTH= DATA +(4*NOFLDS).

II Getedit stream LGTH= DATA + (3*NOFLDS).

PG-182 SC34-0637

o

o

o

o

o

o

Chapter 9. Designing Programs

This chapter discusses designing EDL programs.

All of the programs shown so far have had one thing in common: they are all short,
self -contained groups of instructions that perform a simple function without interacting with any
other program.

This chapter:

• Defines the terms program and task and describes how to create a program that consists of
more than one task

• Describes how to use the same group of instructions from more than one program

• Shows how to use the same storage more than once for different parts of a program
(overlays)

Shows how to improve performance by using storage as a buffer area.

What Is a Task?

A task is a unit of work that you form by combining instructions. In its simplest form, a task
consists of a TASK statement, instructions, and an ENDT ASK statement.

Each task runs independently, competing equally with other tasks for system resources.

Chapter 9. Designing Programs PG-183

Designing Programs
What Is a Task? (continued)

Initiating a Task

When you code a task, you assign a priority to the task. A priority is a number that determines
the rank of the task. The supervisor uses priority to determine which task receives system
resources. The highest priority is 1 and the lowest is 510.

In the following example, TASKOI is the name of a task. STARTOI is the label on the first
instruction to be executed, and 140 is the priority of the task.

TASK01 TASK START01,140

ENDTASK

The supervisor places each task in one of five states:

State Description

Inactive Task is detached or is not yet attached

Waiting Task is waiting for the occurrence of an event or the availability of a resource

Ready Task is ready but is not the highest priority task

Active Task is attached and is the highest priority task on its level

Executing Task is using the processor

Only one task may be active on each of four machine hardware levels. (The supervisor executes
on hardware level 1; application programs usually execute on hardware level 2 or 3.)

The active task in each hardware level is the ready task that has the highest priority and is not
waiting for an event or a resource.

You can initiate a task either by loading or attaching it. The system places the primary task in
the ready state when you load the program. You can initiate a secondary task with the
ATTACH statement if the task is not already active and you do either of the following:

You write a program that consists of a primary task and a secondary task.

• You link -edit a primary task with another task. (You must code an EXTRN statement in the
primary task and an ENTRY statement in the secondary task.)

You return a task to the inactive state when you execute either a DETACH instruction or
ENDTASK instruction. The DETACH instruction suspends the task and allows it to be
attached again.

PG-184 SC34-0637

o

o

o

o

o

o

What Is a Task? (continued)

Only one copy of a task may be active at a time. A task in processor storage remains until you
execute an ENDPROG statement in the associated primary task.

What Is a Program?

A program is a disk- or diskette-resident collection of one or more tasks that can be loaded into
storage for execution. Although program and task are sometimes used synonymously (when a
program contains a single task), the basic executable unit is the task; a program is the unit that
the system loads into storage.

You can divide a program into two or more tasks if, for example, you need to synchronize
execution between the tasks. Another reason to divide a program into tasks is to have more
than one task active at the same time.

The name of a program is the name of the data set in which the program resides. A program
can be brought into storage either by a terminal operator, a program, or a supervisor program
such as the job stream processor. It can be loaded more than once, either in the same partition
or in a different partition.

Creating a Single-Task Program

Most applications consist of a single task in a single program. The program contains no
execution overlay. The task competes for system resources with other tasks currently in the
system.

The following example shows the structure of a single-task program:

BEGIN PROGRAM START

PROGSTOP
ENDPROG
END

In this example, BEGIN is the name of the task, and ST ART is the label of the first instruction
to be executed.

Note that even though the TASK statement is not required in a simple program, the program still
consists of a single task.

Chapter 9. Designing Programs PG-185

Designing Programs
Creating a Single-Task Program (continued)

Figure 1 is an example of a single-task program structure.

UPDATE

Operator request loads
CUSTOMER FILE UPDATE
program

1. GET CUSTOMER NAME FROM TERMINAL
(OPERATOR INPUTl

2. SEARCH CUSTOMER FILE FOR NAME

3. READ CUSTOMER RECORD

4. DISPLAY CUSTOMER RECORD ON TERMINAL

5. ACCEPT UPDATE FROM TERMINAL (OPERATOR
INPUTl

6. WRITE UPDATED RECORD TO CUSTOMER FILE

7. GO BACK TO STEP 1 IF MORE RECORDS TO
UPDATE

8. ELSE, END UPDATE PROGRAM

Figure 1. Single-Task Application Example

PG-18 6 SC34~063 7

o

o

o

o

Creating a Multitask Program

A multitask program contains more than one task. For example:

BEGIN PROGRAM START

ATTACH CALC

PROGSTOP
CALC TASK

instructions
ENDTASK
ENDPROG
END

Note that the PROGRAM and PROGSTOP statements define a task called the primary task.
The TASK and ENDT ASK statements define a secondary task, invoked by the ATTACH
instruction.

Figure 2 illustrates multitasking in a single program. When you load the program, the system
loads PROGA, called the primary task. The other tasks shown in PROGA start when an active
task issues a command (such as an ATTACH instruction) that tells the tasks to begin.

PROGA

TASKX

TASKY

TASKZ

Program made up of multiple tasks

• Concurrent (asynchronous) execution

of tasks within a program
• Tasks compete for system resources

with all other tasks currently in system

Figure 2. Multitask Program Structure

Once in execution, all tasks within a program compete with one another and with all other tasks
active in the system. The supervisor considers each task as a discrete unit of work and assigns
processor time based on task priority, regardless of whether a task is the primary task of a
program. All tasks compete for resources based on assigned priorities.

If a primary task ends before the secondary task, the secondary task runs to completion.

Chapter 9. Designing Programs PG-187

Designing Programs
Creating a Multitask Program (continued)

Synchronizing Tasks

You can synchronize tasks with the WAIT and POST instructions or with the DETACH and
ATTACH instructions. If you use the WAIT and POST instructions, the waiting task must
contain an event control block (ECB) that can be posted by the POST instruction. Execution
then continues in the waiting task at the first instruction after the WAIT instruction. A task can
also wait for the operator to press a Program Function (PF) key, for a time interval to occur, or
for a program to finish execution.

While waiting to be posted, the task enters a waiting state. The task also enters a waiting state if
it is waiting for a read or write operation to occur or if it has executed a DETACH instruction.

PG-188 SC34-0637

You can use the DETACH and ATTACH instruction to synchronize tasks the same way you
use the WAIT and POST instruction, with the following differences:

The attached task becomes enqueued to the currently active terminal for the task that issued
the ATTACH instruction.

The system provides the ECB.

• You cannot use the ATTACH and DETACH instructions from within subroutines.

o

o

o

o

Defining and Calling Subroutines

In a program, certain functions may need to be repeated at different points in a program. For
example, you do not need to code the same sequence of instructions each time your program
needs to perform a given arithmetic function. You can code the instructions once and define
them as a subroutine. You can than enter and execute that subroutine from as many points in
your program as needed. You can also use the subroutine in another program by including it at
link-edit time.

The following instructions provide the means for defining and calling subroutines:

CALL Transfers control to a subroutine

RETURN Returns control from the subroutine to the calling program

SUB ROUT Defines the entry point and parameters of a subroutine

EXTRN Defines an external reference

ENTRY Defines a program entry point.

Defining a Subroutine

Use SUBROUT to define the entry point of a subroutine. You can specify up to five parameters
as arguments in the subroutine. The subroutine must include a RETURN instruction to provide
linkage back to the calling task. You can have nested subroutines, and a maximum of 99
subroutines are permitted per program. If you assemble your subroutine as an object module
that can be link-edited, you must code an ENTRY statement for the subroutine entry point
name.

You can call a subroutine from more than one task. When called, the subroutine executes as
part of the calling task. Because subroutines are not reentrant, you should ensure serial use of
the subroutine with the ENQ and DEQ instructions.

Note: Do not code a TASK statement within a subroutine.

The syntax of the SUBROUT instruction is as follows:

label SUBROUT name,par1, ... ,parS

Required: name
Defaults: none
Indexable: none

Code the name operand with the symbolic name of the subroutine to be referred to by other
instructions. The label field is optional. Do not confuse the label field with the subroutine name
you specify in the name operand.

Chapter 9. Designing Programs PG-189

Designing Programs
Defining and Calling Subroutines (continued)

Passing Parameters in a Subroutine (Example)

Par 1 through par5 are the parameter names to be passed to the subroutine when it is entered.
These names must be unique to the whole program. All parameters defined outside the
subroutine are known within the subroutine. Thus, you need to define only parameters that may
vary with each call to a subroutine.

For instance, assume two calls to the same subroutine. The first call passes parameters A and C
and the second CALL passes parameters Band C. Because C is common to both, you need not
define it in the SUBROUT instruction.

In the following example, a program calls subroutine CHKBUFF, passing two parameters. The
first (BUFFLEN) is a variable containing the maximum allowable buffer count. The second
(BUFFEND) is the address of the instruction to be executed if the buffer is full.

SUBROUT CHKBUFF, BUFFLEN, BUFFEND

SUBTRACT BUFFLEN,1
IF (BUFFLEN,GE,MAX)

GOTO (BUFFEND)
ENDIF
ADD BUFF LEN ,1
RETURN

MAX DATA F'256'

Calling a Subroutine

PG-190 SC34-0637

Use the CALL instruction to execute your subroutine.

If the called subroutine is a separate object module to be link-edited with your program, then
you must code an EXTRN statement for the subroutine name in the calling program.

The syntax of the CALL instruction is as follows:

label CALL

Required: name
Defaults: none
Indexable: none

name,par1, ... ,par5,P1=, ... ,P6=

The name operand is the name of the subroutine to be executed.

Par 1 through par5 are the parameters associated with the subroutine. You can pass Up to five
single-precision integers, labels of single-precision integers, or null parameters to the subroutine.
The actual constant or the value at the named location moves to the corresponding subroutine
parameter.

o

o

o

o

Defining and Calling Subroutines (continued)

If you enclose the parameter name in parentheses, the address of the variable passes to the
subroutine. The address can be the label of the first word of any type of data item or data array.
Within the subroutine, you must move the passed address of the data item into index registers #1
or #2 to :r:eference the data item. If the parameter name enclosed in parentheses is a symbol
defined by an EOD instruction, the system passes the value of the symbol.

If the parameter to be passed is the value of a symbol defined by an EOD instruction, it can also
be preceded by a plus (+) sign. This causes the value of the EOD to be passed to the
subroutine. If not preceded by a +, the EOD is assumed to represent an address and the data at
that address is passed as the parameter.

Subroutine Call Examples

The following example passes the value 5 to the subroutine PROG:

CALL PROG,S

The following example passes the value 5 and the null parameter 0 to the subroutine CALC:

CALL CALC,S,

The following example passes the contents of PARMI, the address of PARM2, and the value of
the EOD symbol FIVE:

CALL SUBROUT,PARM1, (PARM2),+FIVE

Chapter 9. Designing Programs PG-191

Designing Programs
Defining and Calling Subroutines (continued)

Calling a Subroutine Passing Integer Parameters (Example)

The following example shows a program that passes integers to a subroutine:

SUBEXAMP
START

C2

INTEGERA
INTEGERB
SUM1
SUM2
SUB1
A1

PROGRAM
CALL

CALL

PROGSTOP
DATA
DATA
DATA
DATA
SUBROUT
ADD
RETURN
ENDPROG
END

START
CALC,50,SUM1

CALC,SUM1,SUM2

F' 10'
F' 15'
F'O'
F'O'
CALC, XVAL, YVAL
INTEGERA,XVAL,RESULT=YVAL

o

In the first CALL, the first parameter (the integer value 50) corresponds to the first parameter
defined in the subroutine (XVAL). Program location SUMI corresponds to the second
parameter (YVAL). When the ADD instruction executes, the system substitutes 50 for XVAL
and location SUMI for YV AL. After the ADD instruction, SUMI equals 60, the sum of
INTEGERA and 50. (~

The second call causes 70, the sum of SUMI and INTEGERA, to be put in location SUM2.
Because INTEGERA does not change, you do not need to pass it as a parameter.

PG-192 SC34-0637

,,=,

o

o

o

o

Reusing Storage using Overlays

You can reuse a single storage area allocated to a program by using overlays. EDL provides two
kinds of overlays: overlay segments and overlay programs.

An overlay segment is a self -contained portion of a program that is called and executed as a
synchronous task. The program that calls the overlay segment need not be in storage while the
overlay segment is executing. Overlay segments perform a specific function and generally
execute only once.

An overlay program is a self -contained portion of a program that is loaded and executed as an
asynchronous task. Overlay programs require a main control program that controls the execution
of up to nine overlay programs.

Using Overlay Segments

Figure 3 shows the structure of an application program that is split into a root segment and three
overlay segments. When you load the main program, the loader reserves enough space for the
root segment, the overlay area manager, the overlay control table, and the largest overlay
segment as shown in Figure 4 on page PG-194 .

APPLICATION PROGRAM

Root Segment

Overlay Area Manager

I I
Overlay Overlay Overlay
Segment 1 Segment 2 Segment 3

Figure 3. Application Overlay Segments

Chapter 9. Designing Programs PG-193

Designing Programs
Reusing Storage using Overlays (continued) o

SERIES/l STORAGE

Root (Resident) Segment

$OVLMGR
Overlay Manager

$OVLCT
Overlay Control Table

Overlay Area
(Large enough to contain

segment 2)

Available Storage

Figure 4. Overlay Segments in Series/l Storage

o
PG-194 SC34-0637

o

o

o

Reusing Storage using Overlays (continued)

The following example shows a root segment and three overlay segments:

BEGIN PROGRAM START
EXTRN CALC ,UPDATE ,WRITE

CALL CALC

CALL UPDATE

CALL WRITE

PROGSTOP
ENDPROG
END

**
* OVERLAY SEGMENT 1 *
**

SUBROUT CALC
ENTRY CALC

instructions
RETURN
END

**
* OVERLAY SEGMENT 2 *
**

SUBROUT UPDATE
ENTRY UPDATE

instructions
RETURN
END

**
* OVERLAY SEGMENT 3 *
**

SUBROUT WRITE
ENTRY WRITE

instructions
RETURN
END

Each of the overlay segments is a subroutine that you can compile separately.

Creating an Overlay Structure

To create an overlay structure, use the linkage editor $EDXLINK. The linkage editor allows
you to combine the overlay segments you link-edited separately into a program segment overlay
structure. $EDXLINK automatically includes an overlay manager with the root segment, along
with an overlay area equal to the largest overlay segment. A CALL (or transfer of control) to a
module within an overlay segment triggers the overlay area manager to load the overlay segment
into the overlay area and transfer control to it. Overlay segments execute as synchronous tasks.
An overlay segment cannot call another overlay segment.

Overlay segments are specified in the OVERLAY statement of $EDXLINK which is discussed
in detail in Chapter 5, "Preparing an Object Module for Execution" on page PG-89.

Chapter 9. Designing Programs PG-195

Designing Programs
Reusing Storage using Overlays (continued)

Overlay Programs

An overlay program is a program in which certain control sections can use the same storage
location at different times during execution. Overlay programs execute concurrently as
asynchronous tasks with other programs and are specified in the PROGRAM statement in the
main program.

With overlay programs, the main program loads the overlay programs. The loader allocates the
overlay area for overlay programs at main program load time. The overlay area is equal to the
largest overlay program listed in the main program header.

In Figure 5, the application is split into separate programs. PHASE l, the primary program,
loads the overlay programs (PHASE2, PHASE3, and PHASE4) as requested. When PHASEl is
loaded, the loader recognizes that overlay programs are referenced. The loader looks at each
overlay program and reserves enough storage to hold PHASEl plus the largest overlay program
(PHASE3) as shown in Figure 6 on page PG-l97.

PHASE1
application

program

PHASE1

PHASE2

I
PHASE3

'---------'- - - :~=~_.lII.....__p_H_A_S_E_4_....J
Figure 5. EDL Overlay Programs

PG-l96 SC34-0637

o

o

o

o

o

Reusing Storage using Overlays (continued)

Space for
PHASE1 plus

I overlay area
reserved
when PHASE1
is loaded

Series/1 storage

Supervisor

PHASE1

(Overlay area)

(Available
storage)

}

Overlay area large
enough for PHASE3,
the largest overlay
program

Figure 6. EDL Overlay Programs in Series/1 Storage

As each overlay program completes execution, PHASElloads the next overlay program, until all
required programs have run. When PHASE 1 terminates, the system releases the storage
reserved for PHASEl and its overlay programs. See the Language Reference for information on
coding the PROGRAM statement for overlays.

Chapter 9. Designing Programs PG-l97

Designing Programs
Using Large Amounts of Storage (Unmapped Storage)

Unmapped storage allows you to write a program that uses large amounts of storage.
Unmapped storage allows you to store large amounts of data and retrieve data faster than you
could retrieve it from disk or diskette. This section describes setting up, obtaining, accessing,
and releasing unmapped storage.

What Is Unmapped Storage?

Unmapped storage is storage that has not been reserved by the SYSTEM statement.

Setting up Unmapped Storage

Use the STORBLK statement to define the size and number of the unmapped storage areas a
program will use. The TWOKBLK operand defines the size of each unmapped storage area.
For example, if you need unmapped storage areas to accommodate 6000 bytes of data, code
TWOKBLK=3 (6K = 6144 bytes). The maximum size of an unmapped storage area is 65,536
bytes (TWOKBLK=32).

The MAX operand defines the number of unmapped storage areas. For example, if you need
ten unmapped storage areas, code MAX= 10.

In the following example, HOLD defines 16 (MAX= 16) 2K-byte areas of unmapped storage.

HOLD STORBLK TWOKBLK=1,MAX=16

The STORBLK statement also sets up a mapped storage area the same size as the unmapped
storage area.

Obtaining Unmapped Storage

PG-198 SC34-0637

Use the GETSTG instruction to obtain the mapped and unmapped storage areas you defined in
the STORBLK statement. For example:

GETSTG HOLD,TYPE=ALL

This instruction obtains the mapped and unmapped storage that you defined in the STORBLK
statement with the label HOLD. The size of the area depends on the TWOKBLK operand of
the STORBLK statement. The operand TYPE=ALL tells the system to obtain the unmapped
and mapped storage areas. The number of unmapped storage areas the system obtains depends
on the MAX parameter of the STORBLK statement.

If you want to obtain only one unmapped storage area, code the GETSTG instruction as
follows:

GETSTG HOLD, TYPE=NEXT

The instruction causes the system to obtain an unmapped storage area that you defined in the
STORBLK statement with the label HOLD. The size of the area depends on the TWOKBLK
operand of the STORBLK statement. The system obtains one unmapped storage area. For

o

o

o

o

o

Using Large Amounts of Storage (Unmapped Storage) (continued)

example, if you specified MAX=24 on the STORBLK statement and the system had already
obtained fifteen unmapped storage areas, the system would obtain the sixteenth one.

Using an Unmapped Storage Area

You can use an unmapped storage area just like you would use any other storage area. For
example, you can move data into the area or perform calculations on data within the area.

The SWAP instruction allows you to use an unmapped storage area. For example:

SWAP HOLD,USANO

The instruction allows you to access the unmapped storage area defined by the STORBLK
statement at label HOLD. The operand USANO refers to the label of a DATA statement that
defines the number of the unmapped storage area you want to access. For example, if USANO
contains "5," the SWAP instruction allows the program to access the fifth unmapped storage
area.

You can also code the number of the unmapped storage area you want to use:

SWAP HOLD,10

This instruction allows you to use the tenth unmapped storage area defined by the STORBLK
statement at label HOLD. Until you execute another SW AP instruction, you can use only the
tenth unmapped storage area.

Notes:

1. You can use only one unmapped storage area at a time.

2. While you are using an unmapped storage area, you cannot use the mapped storage area.

Releasing Unmapped Storage

Use the FREESTG instruction to release any unmapped storage area that you obtained with the
GETSTG instruction. For example:

FREESTG HOLD, TYPE=ALL

This instruction releases the unmapped storage areas defined by the STORBLK statement at
label HOLD. The operand TYPE=ALL causes the instruction to release all of the storage
areas. For example, if the STORBLK statement specifies MAX= 16, this instruction causes all
sixteen unmapped storage areas and the mapped storage area to be released.

Chapter 9. Designing Programs PG-199

Designing Programs
Using Large Amounts of Storage (Unmapped Storage) (continued)

Example

The following example uses ten unmapped storage areas to create a table of actuarial data. The
table for each of the ten countries consists of four-digit mortality rates. The program
accumulates 100 rates for both men and women. The unmapped storage the program uses is
determined by the country number.

The input records have the following format:

Country number
Age
Death rate
Sex code

The program:

2 bytes
2 bytes
4 bytes
1 byte

INSURE PROGRAM ST,DS=((ACTTAB,EDX40), (ACTOUT,EDX40))

D
B
II
II
II
II
II
II
II
IE
III
IE
IE
III
II
m
II
IE

ST

READ

STOP

COPY
GETSTG
MOVE
MOVE
DO

SWAP
MOVE
ADD

ENDDO
READ
CONVTD
MOVE
SWAP
CONVTD
MOVE
MULT
ADD
IF

MOVE
ELSE

MOVE
ENDIF
GOTO
MOVE
MOVE
DO

SWAP
MOVE
WRITE
MOVE
WRITE
ADD

ENDDO
GO TO

STOREQU
HOLD, TYPE=ALL
USANO,1
#1,HOLD+$STORMAP
10

HOLD, USANO, ERROR=SWAPERR
(+MENTBL,#1) ,e' " (800,BYTE)
USANO,1

DS1,MORTAL,1,END=STOP
CNTRYC,CNTRY,PREC=S,FORMAT=(2,0,I)
#1,HOLD+$STORMAP
HOLD,CNTRYC,ERROR=SWAPERR
AGEC,AGE,PREC=S,FORMAT=(2,O,I)
#2,AGEC
#2,4
1 , #2
(SEX,EQ,ONE,BYTE)

(+MENTBL,#1) ,RATE, (4,BYTES)

(+WMNTBL,#1) ,RATE, (4,BYTES)

READ
USANO,1
#1,HOLD+$STORMAP
10

HOLD,USANO,ERROR=SWAPERR
OUTAREA, (+MENTBL,#1), (400,BYTES)
DS2,OUTAREA,2,0,END=EOFILE,ERROR=WRERR
OUTAREA, (+WMNTBL,#1), (400,BYTES)
DS2,OUTAREA,2,0,END=EOFILE,ERROR=WRERR
USANO,1

END

PG-200 SC34-0637

o

o

o

o Using Large Amounts of Storage (Unmapped Storage) (continued)

0

C' 1.,1 ,)

.. Copy the storage control block equates into the program.

II Obtain the mapped and unmapped storage (one 2K-byte mapped storage area and ten
2K-byte unmapped storage areas) specified in the STORBLK statement with the label
HOLD.

II ..
II

II

II

II

II

IE

III

IE

III

III

IE

ED

II

III

II

fI

til

Initialize USANO to 1.

Move the address of the mapped storage area to register 1.

Begin a loop to initialize all ten unmapped storage areas to blanks.

Access an unmapped storage area.

Move blanks to the first 800 positions of the unmapped storage area.

Add 1 to USANO so that the SW AP instruction accesses the next unmapped storage
area.

Read an input record from data set ACTT AB on volume EDX40 into the buffer with the
label MORTAL.

Convert the country number in the input record to binary and put the result in
CNTRYC.

Move the address of the mapped storage area into register 1.

Use the country number (in CNTRYC) to access the appropriate unmapped storage
area.

Convert the age in the input record to binary and put the result in AGEC.

Move the age (in AGEC) into register 2.

Multiply the age by 4 to arrive at the proper offset into the table.

Add the offset to the address of the mapped storage area.

Test the sex code for 1 (1 = men).

Move the mortality rate into the appropriate slot in the MENTBL (the men's mortality
rate table).

Initialize USANO to 1.

Move the address of the mapped storage area to register 1.

Begin a loop to write records from the unmapped storage areas.

Chapter 9. Designing Programs PG-201

Designing Programs
Using Large Amounts of Storage (Unmapped Storage) (continued)

fB Access an unmapped storage area.

IJ Move a man's mortality rate table to OUT AREA.

fI Write an output record to data set ACTOUT on volume EDX40 from the buffer with
the label OUT AREA.

fI Move a woman's mortality rate table to OUTAREA.

fD Write an output record to data set ACTOUT on volume EDX40 from the buffer with
the label OUT AREA.

fI Add 1 to USANO so that the SWAP instruction accesses the next unmapped storage
area.

EOFILE EQU *
PRINTEXT '@** ACTUARIAL FILE HAS EXCEEDED DISK SPACE'
GOTO END

SWAPERR EQU *
MOVE TASKRC,INSURE
IF (TASKRC,EQ, 1)

PRINTEXT '@** INVALID UNMAPPED STORAGE NUMBER'
ENDIF
IF (TASKRC,EQ,2)

PRINTEXT '@** SWAP AREA NOT INITIALIZED'
ENDIF
IF (TASKRC,EQ,100)

PRINTEXT '@** NO UNMAPPED STORAGE SUPPORT'
ENDIF
GO TO END

WRERR EQU *
PRINTEXT '@** DISK WRITE ERROR ON ACTUARIAL DATA SET'
GOTO END

END EQU *
PROGSTOP

ONE DATA F'1 '
USANO DATA F'O'
TASKRC DATA F'O'
AGEC DATA F'O'
CNTRYC DATA F'O'
OUTAREA BUFFER 512,BYTES

m HOLD STORBLK TWOKBLK=1,MAX=10
MENTBL EQU 0
WMNTBL EQU MENTBL+300
MORTAL BUFFER 256,BYTES
CNTRY EQU MORTAL
AGE EQU MORTAL+2
RATE EQU MORTAL+4
SEX EQU MORTAL+8

ENDPROG
END

m Set up a 2K-byte mapped storage area and ten 2K-byte unmapped storage areas.

PG-202 SC34-0637

o

(-~ ,-,

o

o

Chapter 10. Performing Data Management from
a Program

This section describes ways to accomplish data management from a program. Topics discussed
are:

o Allocating, deleting, opening, and renaming a data set

o

• Opening a data set

Setting logical end of file

Finding the device type.

To perform other data management functions from an application program such as allocating,
deleting, and renaming volumes, see Chapter 13, "Communicating with Other Programs (Virtual
Terminals)" on page PG-261.

Chapter 10. Performing Data Management from a Program PG-203

Performing Data Management from a Program
Allocating, Deleting, Opening, and Renaming a Data Set

The $DISKUT3 program enables you to perform the following data management operations
from a program:

Allocate a data set.

Open a data set.

• Delete a data set.

• Release unused space in a data set.

• Rename a data set.

Set end-of-data on a data set.

$DISKUT3 allows you to open and set end-of-data on disk, diskette, or tape data sets. You can
perform the other four operations (allocating, deleting, releasing unused space, and renaming)
on disk or diskette data sets only.

For more information on $DISKUT3, including a list of return codes, refer to Language
Reference.

PG-204 SC34-0637

o

o

o

o

o

Allocating, Deleting, Opening, and Renaming a Data Set (continued)

When to Use $DISKUT3

You might use $DISKUT3 for any of the following reasons:

Your program requires more than nine data sets.

You do not know, at the time you load a program, whether or not the program will need a
data set.

• You need to perform several data management functions in one program.

You want the processor storage that $DISKUT3 requires to be available when $DISKUT3
finishes executing.

To use $DISKUT3, you should be aware of the following factors:

$DISKUT3 requires about 6.25K bytes of processor storage.

If you need only to open a data set, $DISKUT3 will be slower than DSOPEN.

You need to perform error recovery if the system cannot load $DISKUT3.

Chapter 10. Performing Data Management from a Program PG-205

Performing Data Management from a Program
Allocating, Deleting, Opening, and Renaming a Data Set (continued)

Allocating a Data Set

The following example shows how to allocate a data set from an application program. An
explanation of the numbered items follows the program.

..
B

II ..
II
II
II
II
II
III
III
IE

PG-206 SC34-0637

TASK PROGRAM GO
GO EQU *

LOAD
WAIT

PROGSTOP

$DISKUT3,LISTPTR1,EVENT=DSK3EVNT
DSK3EVNT

DSK3EVNT ECB 0
LISTPTR1 DC A (LIST1)
LIST1 DC A (REQUEST1)

DC F'O'
REQUEST 1 DC F'2'

DC A(DSX)
DC D'50'
DC F'1 '
DSCB DS#=DSX,DSNAME=DATA4
COpy DSCBEQU
ENDPROG
END

o

o

o

o

o

Allocating, Deleting, Opening, and Renaming a Data Set (continued)

.. Load $DISKUT3 to allocate data set DATA4. Specify the address (LISTPTRl) of the
list of requests (in this case, a single request). Identify the event
(EVENT=DSK3EVNT) to be posted when $DISKUT3 completes.

II Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

II Set the initial state of the event control block to zero.

.. Point to the list of requests at LISTl.

II Point to the specific allocate request.

II Indicate the end of the list of requests.

II Request an allocate (2).

II Point to the DSCB for the data set to be allocated. (The allocate function requires that
the data set being allocated be defined by a DSCB.)

II

III

III

IE

Indicate that 50 records are to be allocated.

Indicate that the data set type is data.

Define a DSCB for the data set to be allocated.

Copy the DSCB equates into the program.

If you attempt to allocate a data set that already exists, $DISKUT3 considers the operation
successful if:

The type of the data set that already exists matches the type on the data set you are
allocating

The size of the data set that already exists matches the size of the data set you are allocating.

Chapter 10. Performing Data Management from a Program PG-207

Performing Data Management from a Program
Allocating, Deleting, Opening, and Renaming a Data Set (continued)

Opening a Data Set

If you have defined a data set with a DSCB, you need to open the data set from your application
program.

The following example shows how to open a data set from an application program. An
explanation of the numbered items follows the program.

..
II

II ..
II
II
II
II
II
III
III
II

PG-208 SC34-0637

TASK PROGRAM GO
GO EQU *

DSK3EVNT
LISTPTR1
LIST1

REQUEST1

LOAD
WAIT

ECB
DC
DC
DC
DC
DC
DC
DC
DSCB
COpy

0

$DISKUT3,LISTPTR1,EVENT=DSK3EVNT
DSK3EVNT

A (LIST1)
A (REQUEST1)
F'O'
F'1 '
A(DSY)
D'O'
F' -1 '
DS#=DSY,DSNAME=DATA4

DSCBEQU
ENDPROG
END

o

o

o Allocating, Deleting, Opening, and Renaming a Data Set (continued)

o

o

.. Load $DISKUT3 to open data set DATA4. Specify the address (LISTPTRl) of the list
of requests (in this case, a single request). Identify the event (EVENT=DSK3EVNT)
to be posted when $DISKUT3 completes.

II Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

II Set the initial state of the event control block to zero.

II Point to the list of requests at LIST 1.

II Point to the specific open request.

II Indicate the end of the list of requests.

II Request an open (1).

II Point to the DSCB for the data set to be opened.

II This doubleword is not used for an open request.

III Tell $DISKUT3 to return the type of the data set being opened (0 for undefined, 1 for
data, 3 for program).

III Define a DSCB for the data set to be opened.

IE Copy the DSCB equates into the program.

Chapter 10. Performing Data Management from a Program PG-209

Performing Data Management from a Program
Allocating, Deleting, Opening, and Renaming a Data Set (continued)

Deleting a Data Set

The following example shows how to delete a data set from an application program. An
explanation of the numbered items follows the program.

TASK PROGRAM GO,DS=((MASTER,EDX002), (UPDATE,EDX003))
GO EQU *

.. LOAD $DISKUT3,LISTPTR1,EVENT=DSK3EVNT

II WAIT DSK3EVNT

II DSK3EVNT ECB 0 .. LISTPTR1 DC A (LIST1)

II LIST1 DC A (REQUEST 1)

II DC F'O'

II REQUEST1 DC F'4'

II DC A(DS2)

II DC D'O'

IE DC F'-1 '

III COpy DSCBEQU
ENDPROG
END

PG-210 SC34-0637

o

o

o Allocating, Deleting, Opening, and Renaming a Data Set (continued)

o

o

.. Load $DISKUT3 to delete data set UPDATE on volume EDX003. Specify the address
(LISTPTRl) of the list of requests (in this case, a single request). Identify the event
(EVENT=DSK3EVNT) to be posted when $DISKUT3 completes.

II Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

II Set the initial state of the event control block to zero.

II Point to the list of requests at LISTI.

II Point to the specific delete request.

II Indicate the end of the list of requests.

II Request a delete (4).

II Point to the DSCB for the data set to be deleted (UPDATE on volume (EDX003).

II This doubleword is not used for a delete request.

m Tell $DISKUT3 to return the type of the data set being deleted (0 for undefined, 1 for
data, 3 for program).

III Copy the DSCB equates into the program.

If you try to delete a data set that does not exist, $DISKUT3 considers the operation to be
successful.

Chapter 10. Performing Data Management from a Program PG-211

Performing Data Management from a Program
Allocating, Deleting, Opening, and Renaming a Data Set (continued)

Releasing Unused Space in a Data Set

The following example shows how to release unused space in a data set from an application
program. An explanation of the numbered items follows the program.

TASK PROGRAM GO
GO EQU *

D LOAD $DISKUT3,LISTPTR1,EVENT=DSK3EVNT

II WAIT DSK3EVNT

II DSK3EVNT ECB 0 .. LISTPTR1 DC A (LIST1)

II LIST1 DC A (REQUEST1)

II DC F'O'

II REQUEST1 DC F'5'

II DC A(DSX)

II DC D'O'

III DC F' -1 '

III DSCB DS#=DSX,DSNAME=TRANS

IE COpy DSCBEQU
ENDPROG
END

PG-212 SC34-0637

o

o

o

0

o

Allocating, Deleting, Opening, and Renaming a Data Set (continued)

.. Load $DISKUT3 to release space on data set TRANS. Specify the address (LISTPTRl)
of the list of requests (in this case, a single request). Identify the event
(EVENT=DSK3EVNT) to be posted when $DISKUT3 completes.

II

II

II

EI

II

II

II

EI

II

III

IE

Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero.

Point to the list of requests at LIST 1.

Point to the specific release request.

Indicate the end of the list of requests.

Request a release (5).

Point to the DSCB for the data set on which space to be released (TRANS).

Indicate the number of records you want the data set to contain. (This number must be
greater than zero and less than the current number of records.)

Tell $DISKUT3 to return the type of the data set on which space is being released (0 for
undefined, 1 for data, 3 for program).

Define a DSCB for the data set on which to release unused space.

Copy the DSCB equates into the program.

Chapter 10. Performing Data Management from a Program PG-213

Performing Data Management from a Program
Allocating, Deleting, Opening, and Renaming a Data Set (continued)

Renaming a Data Set

The following example shows how to rename in a data set from an application program. An
explanation of the numbered items follows the program.

..
II

II
II
II
II
II
II
II
II
III
IE
II

PG-214 SC34-0637

TASK PROGRAM GO,DS=((MASTER,EDX003»
GO EQU *

LOAD
WAIT

DSK3EVNT ECB
LISTPTR1 DC
LIST1 DC

DC
REQUEST 1 DC

DC
DC
DC
DC
COpy

NEWNAME DC
ENDPROG
END

$DISKUT3,LISTPTR1,EVENT=DSK3EVNT
DSK3EVNT

0
A (LIST1)
A (REQUEST 1)
F'O'
F'3'
A(DS1)
F'O'
A (NEWNAME)
F' -1 '
DSCBEQU
CL8'NEWMAST ,

o

n
'='

o

o Allocating, Deleting, Opening, and Renaming a Data Set (continued)

0

o

.. Load $DISKUT3 to rename data set MASTER. Specify the address (LISTPTRl) of the
list of requests (in this case, a single request). Identify the event
(EVENT=DSK3EVNT) to be posted when $DISKUT3 completes.

II

II ..
II

II

II

II

II

III

III

Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero .

Point to the list of requests at LISTl.

Point to the specific rename request.

Indicate the end of the list of requests.

Request a rename (3).

Point to the DSCB for the data set to be renamed (MASTER on volume EDX003).

This word is not used for a rename request.

Point to the new data set name.

Tell $DISKUT3 to return the type of the data set being renamed (0 for undefined, 1 for
data, 3 for program).

IE Copy the DSCB equates into the program.

III Define the new name for the data set.

Chapter 10. Performing Data Management from a Program PG-2l5

Performing Data Management from a Program
Allocating, Deleting, Opening, and Renaming a Data Set (continued)

Setting End-of-Data on a Data Set

If you define a data set with a DSCB, you need to set end-of-data from your application
program.

The following example shows how to set end-of-data on a data set from an application program.
An explanation of the numbered items follows the program.

TASK PROGRAM GO,DS=«MASTER,EDXOO3))
GO EQU * .. LOAD $DISKUT3,LISTPTR1,EVENT=DSK3EVNT

II WAIT DSK3EVNT

II DSK3EVNT ECB 0

II LISTPTR1 DC A (LIST1)

II LIST1 DC A (REQUEST1)

II DC F'O'

II REQUEST 1 DC F'6'

II DC A (DS 1)

II DC D'O'

II DC F' -1 '

III COpy DSCBEQU
ENDPROG
END

PG-216 SC34-0637

o

()

o

o Allocating, Deleting, Opening, and Renaming a Data Set (continued)

0

o

.. Load $DISKUT3 to set end-of-data on data set MASTER. Specify the address
(LISTPTRl) of the list of requests (in this case, a single request). Identify the event
(EVENT=DSK3EVNT) to be posted when $DISKUT3 completes.

II

II ..
II

II

II

II

II

IE

Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero .

Point to the list of requests at LISTl.

Point to the specific end-of -data request.

Indicate the end of the list of requests.

Request end-of-data (6).

Point to the DSCB for the data set on which to set end-of-data (MASTER on volume
EDX003).

Indicate that the last record is full. (If the last record is not yet full, this field would
contain the number of bytes in the last record.)

Tell $DISKUT3 to return the type of the data set on which end-of-data is being set (0
for undefined, 1 for data, 3 for program).

III Copy the DSCB equates into the program.

Chapter 10. Performing Data Management from a Program PG-217

Performing Data Management from a Program
Allocating, Deleting, Opening, and Renaming a Data Set (continued)

Performing More Than One Operation at Once

$DISKUT3 allows you to perform more than one operation with one invocation of the program.
For example, you can delete two data sets and allocate a third without loading $DISKUT3 more
than once.

The following example shows how to delete two data sets and allocate one data set. An
explanation of the numbered items follows the program.

TASK PROGRAM GO,DS=«MASTER,EDX003), (UPDATE,EDXOO2))
GO EQU * .. LOAD $DISKUT3,LISTPTR1,EVENT=DSK3EVNT

II WAIT DSK3EVNT

II DSK3EVNT ECB 0
.. LISTPTR1 DC A (LIST1)

II LIST1 DC A (REQUEST1)

II DC A (REQUEST2)

II DC A (REQUEST3)

II DC F'O'
II REQUEST1 DC F'4'

II DC A(DS1)

III DC D'O'

II DC F' -1 '
111 REQUEST2 DC F'4'

III DC A (DS2)
DC D'O'
DC F' -1 '

II REQUEST3 DC F'2'

II DC A(DSA)

II DC D'300'

II DC F'1 '

II COpy DSCBEQU

fD DSCB DS#=DSA,DSNAME=NEWMAST,VOLSER=EDXOO3
ENDPROG
END

PG-218 SC34-0637

o

r-~I
~~-'

o

o

0

o

Allocating, Deleting, Opening, and Renaming a Data Set (continued)

.. Load $DISKUT3 to delete data sets MASTER and UPDATE and to allocate data set
NEWMAST. Specify the address (LISTPTR1) of the list of requests (in this case, a
single request). Identify the event (EVENT=DSK3EVNT) to be posted when
$DISKUT3 completes.

II

II ..
II

II

II

II

II

IE

III

IE

II

III

II

IE

II

IE

III

m

Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT.

Set the initial state of the event control block to zero .

Point to the list of requests at LIST1.

Point to the request to delete data set MASTER.

Point to the request to delete data set UPDATE.

Point to the request to allocate data set NEWMAST.

Indicate the end of the list of requests.

Request a delete (4).

Point to the DSCB for the first data set to be deleted (MASTER on volume EDX003).

This doubleword is not used for delete requests.

Tell $DISKUT3 to return the type of the data set being deleted (0 for undefined, 1 for
data, 3 for program).

Request a delete (4).

Point to the DSCB for the second data set to be deleted (UPDATE on volume
EDX002).

Request an allocate (2).

Point to the DSCB for the data set to be allocated (NEWMAST).

Allocate 300 records.

Indicate that the data set type is data.

Copy the DSCB equates into the program.

Define a DSCB for the data set being allocated (NEWMAST on volume EDX003).

Chapter 10. Performing Data Management from a Program PG-219

Performing Data Management from a Program
Opening a Data Set (DSOPEN)

Error Exits

You can open a disk, diskette, or tape data set from a program with the DSOPEN copy code.
DSOPEN does the same thing that the system does when you specify a data set in the
PROGRAM statement and load the program with either the $L operator command or the
LOAD instruction.

Note: Only one DSCB can be open to a tape at a time. If you open a tape data set, you must
close the data set before you can open another tape data set.

You might use DSOPEN for any of the following reasons:

Your program requires more than nine data sets.

You do not know, at the time you load a program, whether or not the program will need a
data set.

You need to open a data set and do not want to load $DISKUT3 (the system does not need
to load DSOPEN).

The processor storage that $DISKUT3 requires is not available (DSOPEN requires about
1.5K bytes).

DSOPEN performs the following functions:

• Verifies that the specified volume is online
Verifies that the specified data set is in the volume

• Initializes the DSCB.

To use DSOPEN, you must first copy the source code into your program by coding:

COpy TCBEQU
COpy PROGEQU
COpy DDBEQU
COpy DSCBEQU
COpy DSOPEN

Note: You must code the equates in the order given.

During execution, invoke DSOPEN with the CALL instruction as follows:

CALL DSOPEN, (dscb)

If an error occurs while DSOPEN executes, the system transfers control to one of several error
exit routines. You must define these routines in your program and move their addresses to
labels that are contained in DSOPEN before you call DSOPEN. The routines cannot be
subroutines.

PG-220 SC34-0637

o

o

o

c

0 ···,
.. :,)

Opening a Data Set (DSOPEN) (continued)

The labels and their meanings are as follows:

Label Description

$DSNFND Data set name not found in directory. If DSOPEN cannot find the data set, then
it does not fill in the DSCB.

$DSBVOL Volume not found in disk directory. The system set the DDB pointer in the
DSCB to 0 ($DSCBVDE does not equal 0).

$DSIOERR Read error occurred while DSOPEN was searching the directory. (For more
information, refer to the Language Reference more information. See the READ
instruction return codes for more information.

$$EXIT Exit address. If $$EXIT is 0 and $DSCBNAME is $$ or $$EDXVOL,
DSOPEN initializes the DSCB to the first record (first record in the library) of
the volume specified in the $DSCBVOL. If $$EXlT is 0 and $DSCBNAME is
$$EDXVOL, DSOPEN initializes the DSCB to the first record of the device
where the volume specified on $DSCBVOL resides.

$DSDCEA Address of an area for DSOPEN to store the directory control entry (DCE).
This label contains a 0 if this area does not exist.

If you define an error exit routine as a word of zeroes or move a zero to one of the labels,
DSOPEN transfers control to the next sequential instruction after the CALL instruction. For
example, the following instruction causes control to return to the next sequential instruction if
DSOPEN cannot find the data set:

MOVEA $DSNFND,LIBEXIT

LIBEXIT DATA F'O'

The following instruction causes control to return to the next sequential instruction if DSOPEN
cannot the volume:

MOVEA $DSBVOL, 0

DSOPEN Considerations

When you use DSOPEN, you should know the following things:

You must have a 256-byte work area labeled DISKBUFR in your program as follows:

DISKBUFR DC 128F'O'

The DSCB to be opened can be DSI-DS9 or a DSCB defined in your program with the
DSCB statement. The DSCB must be initialized with a six-character volume name in
$DSCBVOL and an eight-character data set name in $DSCBNAM.

Chapter 10. Performing Data Management from a Program PG-221

Performing Data Management from a Program
Opening a Data Set (DSOPEN) (continued)

• To reopen a data set, initialize $DSCBVDE to zero; DSOPEN ignores all other fields.

If you specify the volume name as six blanks, DSOPEN searches the IPL volume for the
data set.

• After DSOPEN completes, #1 contains the number of the directory record containing the
member entry and #2 contains the displacement within DISKBUFR to the member entry.

The fields $DSCBEND and $DSCBEDB contain the next available logical record data, if
any, placed in the directory by SETEOD.

• You can open only one data set on any tape volume at a time.

DSOPEN Example

The following example shows how to open a data set when the data set is not known when the
program is loaded. Program MAINPGM, the primary task, prompts the operator for the data
set name and volume and calls secondary task OPENPGM. If the operator does not enter
volume name, the program assumes the IPL volume.

.. MAINPGM PROGRAM START,MAIN=YES
OPENPGM II

II ..
II

II
II
II
II
IE
III

START
READDS

II DSONLY

II
III
II

PG-222 SC34-0637

EXTRN
MOVEA #1,DS1
READTEXT RESPONSE, '@@ENTER DSNAME,VOLUME -
IF (RESPONSE-1,EQ,X'OO',BYTE),THEN

GOTO READDS
ENDIF
MOVE ($DSCBVOL,#1),IPLVOL, (6,BYTE)
MOVE WHERE, 0
FIND C',',RESPONSE,15,WHERE,DSONLY
MOVE #2,WHERE
MOVE ($DSCBVOL,#1), (1,#2), (6,BYTE)
MOVE (O,#2),BLANK8, (8,BYTE)
MOVE ($DSCBNAM,#1) ,RESPONSE, (8,BYTE)
CALL OPENPGM, (DS 1)
MOVE CODE,DS1
IF (CODE,NE,-1),THEN

PRINTEXT '@ERROR DURING DSOPEN. RETURN CODE
PRINTNUM CODE

ELSE

ENDIF
PROGSTOP

o

o

o Opening a Data Set (DSOPEN) (continued)

II
II
111
fI
II
!B

..
II

II

II

II

II

0 II

II

IJ

II

III

IE

III

III

II

III

II

0

COpy DSCBEQU
CODE DC F'O'
IPLVOL EQU * BLANK8 DC CL8'
WHERE DC F'O'
RESPONSE TEXT , , ,LENGTH=15

DSCB DS#=DS1,DSNAME=DUMMY
ENDPROG
END

Begin the program at START and identify this task as the primary task (MAIN=YES).

Identify as an external entry the subroutine that this task will call.

Place the address of the DSCB in register 1.

Prompt the operator for the data set name. When the operator responds, the system
places the response in RESPONSE.

Test for a null entry. RESPONSE-l contains the length of the operator's response.

Initialize the volume field (DSCBVOL) of the DSCB to blanks.

Initialize the comma locator to zero.

Find a comma in the operator's response. If no comma exists, branch to DSONLY.

Move the position of the comma to register 2.

Move the volume name to the volume field (DSCBVOL) of the DSCB.

Blank the volume name and the comma preceding it.

Move the data set name to the data set name field (DSCBNAM) of the DSCB.

Call the routine that opens the data set. Pass the address of the DSCB (pointed to by
DS 1) to the subroutine.

Move the return code into CODE.

If the return code does not indicate successful completion (-1), print an error message
and the return code.

Process the data set with READ/WRITE instructions. ($DSCBEND contains the
number of records in the data set.)

Cause the DSCB equates to be copied into the program.

Chapter 10. Performing Data Management from a Program PG-223

Performing Data Management from a Program
Opening a Data Set (DSOPEN) (continued)

II Reserve storage for the subroutine return code.

II Set up a default value for IPL volume.

fI Reserve storage for an index to be used in locating the comma.

fII Reserve storage for the operator's response.

til Generate a data set control block (DSCB). Give the data set name field (DSCBNAM)
the temporary name DUMMY.

Program OPENPGM consists of a subroutine and error exit routines for DSOPEN. The
subroutine calls DSOPEN.

D OPENPGM PROGRAM MAIN=NO

II ENTRY OPENPGM

II SUBROUT OPENPGM,ADSN .. MOVE SAVE 1 , # 1

II MOVE SAVE2,#2

II MOVE #1,ADSN

II MOVE (0,#1) ,-1

II MOVEA $DSNFND,LIBEXIT

II MOVEA $DSBVOL,VOLEXIT

II MOVEA $DSIOERR,IOEXIT

II CALL DSOPEN,ADSN
GOTO RETURN

IE LIBEXIT EQU *
111 MOVE # 1 ,ADSN

III MOVE (0,#1),1
PRINTEXT '@DATA SET NOT FOUND DURING DSOPEN@'
GOTO RETURN

II VOLEXIT EQU *
IE MOVE # 1 ,ADSN

II MOVE (0,#1) ,2
PRINTEXT '@VOLUME NOT FOUND DURING DSOPEN@'
GOTO RETURN

II IOEXIT EQU *
II MOVE # 1 ,ADSN

fI MOVE (0,#1),3
PRINTEXT '@ERROR ENCOUNTERED DURING DSOPEN@'
GOTO RETURN

fII RETURN MOVE #1,SAVE1

til MOVE #2,SAVE2

fI RETURN

PG-224 SC34-0637

o

(r~1
'=J

o

o

0

0

Opening a Data Set (DSOPEN) (continued)

til COpy TCBEQU

m COPY PROGEQU

m COpy DDBEQU

tI COpy DSCBEQU

m COpy DSOPEN

E DISKBUFR DC 128F'O'

&I SAVE 1 DC F'O'

Ell SAVE2 DC F'O'
END

.. Identify the name of the subroutine as OPENPGM. Specify that it is not the main
program (MAIN=NO).

II Identify the name of the subroutine as an entry. (In conjunction with the EXTRN
statement in the main program, this statement allows the linkage editor to resolve
external references.)

II

..
II

II

II

II

II

II

III

II

II

III

II

IE

Define a subroutine with the name OPENPGM. Define a parameter (ADSN) that is
passed by the calling program .

Save index register 1.

Save index register 2.

Move the parameter that was passed from the calling program (the address of the
DSCB) to register 1.

Initialize the return code to indicate successful completion (-1).

Move the address of the data-set-not-found routine to the proper error exit within
DSOPEN.

Move the address of the invalid-volume routine to the proper error exit within DSOPEN.

Move the address of the I/O error routine to the proper error exit within DSOPEN.

Call DSOPEN, passing the address of the DSCB.

Indicate the beginning of the data-set-not-found exit routine.

Move the address of the DSCB to register 1.

Move a 1 to the first word of the DSCB, indicating data set not found.

Indicate the beginning of the invalid-volume exit routine.

Move the address of the DSCB to register 1.

Chapter 10. Performing Data Management from a Program PG-22S

Performing Data Management from a Program
Opening a Data Set (DSOPEN) (continued)

II Move a 2 to the first word of the DSCB, indicating an invalid volume.

II Indicate the beginning of the I/O error exit routine.

II Move the address of the DSCB to register 1.

m Move a 3 to the first word of the DSCB, indicating an I/O error.

II Restore index register 1.

fI Restore index register 2.

til Return to the calling program.

fII Cause the TCB equates to be copied into the program.

m Cause the PROGRAM equates to be copied into the program.

fI Cause the DDB equates to be copied into the program.

fI Cause the DSCB equates to be copied into the program.

!D Cause the DSOPEN equates to be copied into the program.

Reserve a 256-byte area for DSOPEN. (This area must have the label DISKBUFR.)

Reserve an area in which to save register 1.

Ell Reserve an area in which to save register 2.

Coding for Volume Independence

PG-226 SC34-0637

You may code your applications so that they are independent of the volume in which they
reside. To achieve volume independence, place all programs and data sets in a single volume on
any system and specify the characters ## in the volume name field of any DS= operand or
PGMS= operand of the PROGRAM statement. (For information on the PROGRAM
statement, refer to the Language Reference.)

You can also insert the volume name from which your program was loaded into any DSCB you
have coded in your program. If you insert the volume name into a DSCB, you must do so
before invoking DSOPEN or $DISKUT3. The volume name, a six-byte field, is located in the
$PRGVOL field of the program header.

o

o

o Opening a Data Set (DSOPEN) (continued)

C)

o

The following example shows a routine that retrieves the volume name and invokes DSOPEN to
open the data set JOURNAL, located in the same volume from which the program was loaded.

..
II
II ..
II
II

II
II
II ..
II

II ..
II

II

II

II

II

COpy
COpy
COpy
COpy
COpy

ENTER TCBGET
MOVE
MOVE
MOVEA
MOVE
CALL

DSCB
DISKBUFR DC

TCBEQU
PROGEQU
DDBEQU
DSCBEQU
DSOPEN

TCBADDR
#1,TCBADDR
#2, ($TCBPLP,#1)
#1,INDS
($DSCBVOL,#1), ($PRGVOL,#2), (6,BYTE)
DSOPEN, (INDS)

DS#=INDS,DSNAME=JOURNAL
128F'O'

TCBADDR DC F'O'

Get the address of the task control block (TCB).

Move the address of the TCB into register 1.

Move the address of the program header into register 2 .

Move the address of the data set control block (DSCB) into register 1.

Move the volume into the DSCB.

Call DSOPEN, passing the DSCB as a parameter.

Define the DSCB.

Define a work area for DSOPEN.

Define an area for the TCB address.

Chapter 10. Performing Data Management from a Program PG-227

Performing Data Management from a Program
Setting Logical End of File (SETEOD)

PG-228 SC34-0637

The copy code routine SETEOD allows you to indicate the logical end of file on disk. If your
program does not use SETEOD when creating or overwriting a file, the READ end of data
exception will occur at either the physical or logical end that was set by some previous use of the
data set.

The relative record number of the last full physical record is placed in the $$FPMF field of the
directory member entry (DME).

Notes:

1. If the $DSCBEDB field is zero, the $$FPMF field is set to the next record pointer field
($DSCBNEX) minus one.

2. If the $DSCBEDB field is not zero, the $$FPMF field is set to the $DSCBNEX minus two.

If the last physical record is partially filled, the number of bytes contained in this record is
placed in the $$FPMD of the DME. Otherwise, a zero is placed in this field. (This is done by
copying the $DSCBEDB field of the DSCB directly into the DME.) (Further information on
the DME can be found in Internal Design.)

If the next record pointer field ($DSCBNEX) in the DSCB is 1 when SETEOD is executed, the
DME is set to indicate that the data set is empty and $DSCBEND is set to X' -1', indicating that
the data set is empty. If $DSCBEOD is zero, the data set is unused.

SETEOD can be used before, during, or after any READ or WRITE operation. It does not
inhibit further 110 and can be used more than once. The only requirement is that the DSCB
passed as input must have been previously opened.

The POINT instruction modifies the $DSCBNEX field. If SETEOD is used after a POINT
instruction, the new value of $DSCBNEX is used by SETEOD.

SETEOD requires that the DSOPEN copy code, PROGEQU, TCBEQU, DDBEQU, and
DSCBEQU be copied in your program.

o

o

o

o

o

Setting Logical End of File (SETEOD) (continued)

To use SETEOD, copy the source code into your program and allocate a work data set as
follows:

COpy
COpy
COpy
COpy
COpy
COpy

DISKBUFR DC

TCBEQU
PROGEQU
DDBEQU
DSCBEQU
DSOPEN
SETEOD
128F'O' WORK AREA FOR DSOPEN

You invoke SETEOD as a subroutine through the Event Driven Language CALL statement,
passing the DSCB and an I/O error exit routine pointer as parameters.

CALL SETEOD, (DS1), (IOERROR)

where:

DS 1 N ames a previously opened DSCB

IOERROR Names the routine in the application program to which control is passed if an I/O
error occurs

Chapter 10. Performing Data Management-from a Program PG-229

Performing Data Management from a Program
Finding the Device Type (EXTRACT)

The inline copy code routine EXTRACT determines the device type from the device descriptor
block. This routine is provided for applications that are sensitive to device type. For example,
an application may need to allocate a data set unless the data set were to reside on a tape.
Before attempting to execute instructions that would not execute successfully, the EXTRACT
routine may be used to determine the device type.

To use EXTRACT, you must copy the source code inline into your program. The routine
requires the address of a DSCB in #1 and returns the device type in #1.

MOVEA #1,DS1
COPY EXTRACT
IF (#1,EQ,X'3186') ,GOTO,TAPEDS

In this example, X'3186' is the device ID of an IBM 4969 Magnetic Tape.

To get a list of the device IDs on your system, use the LD command of the $IOTEST utility.

PG-230 SC34-0637

o

o

o

o

o

Chapter 11. Reading and Writing to Tape

This chapter describes the tape facilities you can use when using tape as part of your EDL
program.

For information on how to allocate tape data sets, copy data sets from one medium to another,
and change tape attributes, refer to the $TAPEUT1 utility in the Operator Commands and
Utilities Reference or the Operation Guide.

For more information on how to access magnetic tape data sets, refer to the Language
Reference.

For information on data set naming conventions, refer to the "Specifying Data Sets" on page
PG-10S.

What Is a Standard-Label Tape?

A standard-label tape consists of data sets separated by 80-character label records and
tapemarks.

A label record is a record that the system writes on a tape to do such things as identify the
volume, indicate the beginning of a data set, and indicate the end of a data set.

Standard label tapes contain a volume label (VaLl) and a header label (HDR1) before each
data set and a trailer label (EOFl) after each data set. For the contents of the labels, see
Appendix A, "Tape Labels" on page PG-329.

Chapter 11. Reading and Writing to Tape PG-231

Reading and Writing to Tape
What Is a Standard-Label Tape? (continued)

A tapemark is a control character that the system writes on a tape. The hardware uses
tapemarks to recognize such things as the beginning or end of a data set.

You would use standard-label tapes to maintain data security or to control an extensive library
of tapes.

What Is a Nonlabeled Tape?

A nonlabeled tape consists of data sets separated only by tapemarks.

Nonlabeled tapes allow you to read tapes that have unknown record length or an unknown label.

You would use nonlabeled tapes if you do not need to maintain strict data security or if you use
only a small number of tapes.

Processing Standard-Label Tapes

This section describes how to:

• Read a standard-label tape

Write a standard-label tape

Close a standard-label tape

Bypass standard labels

• Process a tape containing more than one data set.

Reading a Standard-Label Tape

The READ instructions allows you to retrieve a record from 18 to 32,767 bytes long.

In the following example:

TASK04 PROGRAM START,DS=(UPDATES, (MASTER,56390))

READ DS2,BUFF,1,120,END=NMRCDS,ERROR=OOPS,WAIT=YES

BUFF DATA 60F'O'

PG-232 SC34-0637

o

I;(~~

I,,~"./

o

o

o

o

Processing Standard-Label Tapes (continued)

the system reads one record (indicated by 1 in the third operand) from the second file listed on
the PROGRAM statement (data set MASTER on volume serial 56390) into BUFF. (The term
volume serial means the same as the term volume.)

The size of the record is 120 bytes (indicated by 120 in the fourth operand). If no more records
exist on the data set, control transfers to NMRCDS. If an error occurs, control transfers to
OOPS. The system waits (WAIT = YES) for the read operation to complete before executing
the next sequential instruction.

The following READ instruction reads 2 records into BUFF2. BUFF2 must be 654 bytes long.

TASK37 PROGRAM BEGIN,DS=((UPDATES,73499), (MASTER,56390))

READ DS1,BUFF2,2,327,END=END1,ERROR=ERR,WAIT=YES

BUFF2 DATA 327F'O'

The system reads two records (indicated by 2 in the third operand) from the first data set
(UPDATES on volume serial 73499) listed on the PROGRAM statement. The size of the
record is 327 bytes (indicated by 327 in the fourth operand). If no more records exists on the
data set, control transfers to END 1. If an error occurs, control transfers to ERR. The system
waits (W AIT= YES) for the read operation to complete before executing the next sequential
instruction.

Writing a Standard-Label Tape

The WRITE instruction allows you to write a record from 18 to 32767 bytes long.

In the following example:

TASK04 PROGRAM START,DS=(UPDATES, (MASTOUT,00032))

WRITE DS2,BUFF,1,120,ERROR=GOOF,WAIT=YES

BUFF DATA 60F'O'

the system writes one record (indicated by 1 in the third operand) to the second file listed on the
PROGRAM statement (data set MASTOUT on volume serial 00032) from BUFF. The size of
the record is 120 bytes (indicated by 120 in the fourth operand). If an error occurs, control
transfers to GOOF. The system waits (W AIT= YES) for the write operation to complete before
executing the next sequential instruction.

The following WRITE instruction writes 2 records from BUFF2. BUFF2 must be 656 bytes
long.

Chapter 11. Reading and Writing to Tape PG-233

Reading and Writing to Tape
Processing Standard-Label Tapes (continued)

TASK74 PROGRAM BEGIN,DS=((DATES,28345), (MASTER,56390»

WRITE DS1,BUFF2,2,328,ERROR=ERROR,WAIT=YES

BUFF2 DATA 328F'O'

The system writes two records (indicated by 2 in the third operand) to the first data set (DATES
on volume serial 28345) listed on the PROGRAM statement. The size of the record is 328
bytes (indicated by 328 in the fourth operand). If an error occurs, control transfers to ERROR.
The system waits (WAIT = YES) for the read operation to complete before executing the next
sequential instruction.

Note: To write an uneven number of bytes to a 4969 Tape Unit, you must have the latest
Engineering Changes installed on the device.

Closing Standard-Label Tapes

Whether you read or write a standard-label tape, you should close the tape data set when you
finish reading or writing. Closing a tape data set causes the system to write trailer labels. Use
the CONTROL instruction to close a tape data set as follows:

TASK98 PROGRAM BEGIN,DS=((DATES,28345), (MASTER,56390»

CONTROL DS1,CLSOFF

The system closes the first data set (DATES on volume serial 28345) listed on the PROGRAM
statement. CLSOFF causes the system to rewind the tape and set the tape drive offline.

For information on other ways to close a tape, refer to Language Reference.

Bypassing Labels

PG-234 SC34-0637

If you want to bypass the labels on a standard-label tape, you must have defined a tape drive as
BLP during system generation or changed the label processing attribute with the $T APEUT 1
utility. For information on defining a BLP drive, refer to Installation and System Generation
Guide.

o

o

o

o

o

Processing Standard-Label Tapes (continued)

The following sample program shows how to bypass standard labels . ..
II
II
II

II

II

PROG8
START

LOOP

ALLDONE

ENDIT

ERRl

PROGRAM START,DS=((XYZ,TAPE01))
EQU *
READ DS1,BUFFER,1,80,ERROR=ERRl
READ DS1,BUFFER,1,80,ERROR=ERRl
CONTROL DS1,FSF
EQU *
READ DS1,BUFFER,1,50,ERROR=ERR2,END=ALLDONE
GOTO LOOP
EQU *
READ DS1,BUFFER,1,80,ERROR=ERRl
EQU *
PROGSTOP
EQU *
PRINTEXT '@LABEL ERROR - RC= '
PRINTNUM DSl
GOTO ENDIT

ERR2 EQU *
PRINTEXT '@READ ERROR - RC= '
PRINTNUM DSl
QUESTION '@DO YOU WANT TO CONTINUE? '

YES=LOOP,NO=ENDIT
BUFFER DATA 40F'O'

ENDPROG
END

C

.. Identify the tape as data set XYZ on tape ID T APEO 1. The system ignores the data set
name but you must supply it.

II Read the first of the standard label records (the VOLllabel) into BUFFER. (You can
insert instructions after this instruction to process the label.)

II Read the second of the standard label records (the HDRllabel) into BUFFER. (You
can insert instructions after this instruction to process the label.)

II Forward space the file one tapemark. This instruction causes the system to skip any
remaining blocks in the header and position itself at the first record of the file.

II Process the data. This instruction reads a 50-character record (indicated by 50 in the
third operand) into BUFFER. If an error occurs, control transfers to ERR2. If no more
records exist on the data set, control transfers to ALLDONE.

II Read the trailer label (the EOFllabel) into BUFFER. You can insert instructions after
this instruction to process the label.

Chapter 11. Reading and Writing to Tape PG-235

Reading and Writing to Tape
Processing Standard-Label Tapes (continued)

Processing a Tape Containing More than One Data Set

To process a tape that contains more than one data set, use the $V ARYON operator command
to position the tape to the data set you want to read. For example, to position a tape at address
4C to the fourth data set, issue the following command:

~V~YQ~~e4· •• ••

The system responds as follows:

T APEO 1 is the ID that was assigned to the tape drive at system generation.

After you use the $V ARYON operator command, you can process the data set as you would
any other tape data set.

PG-236 SC34-0637

o

o

o

o

o

Processing Standard-Label Tapes (continued)

Reading a Multivolume Data Set

To read a multivolume data set, you must add instructions to your program to process the data
set. The following program reads a multivolume data set.

.. PROGX
START

B

PROGRAM START,DS=??
EQU *
READ DS1,BUFFER,1,80,ERROR=ERR1,END=CHKEND

GOTO START
ENDIT EQU *

II a
II
II
II
II
II

III
III
III

PROGSTOP
CHKEND EQU *

ERRDSN

ERRVOL

ERRIO

ERRMSG

MSG1
MSG2
MSG3
ERR1

CONTROL DS1,CLSOFF
IF (DS1,EQ,33)
PRINTEXT '@EOV ENCOUNTERED - ENTER VOL1 OF NEXT VOLUME@'
READTEXT NEWVOL
MOVEA #1,DS1
MOVE ($DSCBVOL,#1) ,NEWVOL, (3,WORD)
MOVEA $DSNFND,ERRDSN
MOVEA $DSBVOL,ERRVOL
MOVEA $DSIOERR,ERRIO
QUESTION '@REPLY Y WHEN NEXT VOLUME MOUNTED AND ONLINE@',

NO=ENDIT
CALL
GOTO
ENDIF
GOTO

DSOPEN, (DS 1)

EQU
MOVEA
GOTO
EQU
MOVEA
GOTO
EQU
MOVEA
EQU
PRINTEXT
PRINTEXT
PRINTEXT
GOTO
TEXT
TEXT
TEXT
EQU
PRINTEXT
PRINTNUM
GOTO

START

ENDIT

*
MSGX,MSG1
ERRMSG

*
MSGX,MSG2
ERRMSG

*
MSGX,MSG3

*
'@DSOPEN ERROR -@'
MSG1,P1=MSGX
SKIP=1
ENDIT
'DATA SET NOT FOUND'
'VOLUME NOT FOUND'
'I/O ERROR'

* '@READ ERROR - RC='
DS1
ENDIT

Chapter 11. Reading and Writing to Tape PG-237

C

Reading and Writing to Tape
Processing Standard-Label Tapes (continued)

BUFFER
NEWVOL
REPLY

DISKBUFR

DATA
TEXT
TEXT
COpy
COpy
COpy
COPY
DC
ENDPROG
END

40F'0'

LENGTH=2
DSOPEN
DSCBEQU
PROGEQU
DDBEQU
12SF'0'

SO BYTE BUFFER
HOLDS NEW VOLUME #

.. Cause the system to issue a prompt for the data set name and volume of the input data
set.

II Read an 80-character record into BUFFER. If an error occurs transfer control to
ERR1. If no more records exist, transfer control to CHKEND.

II Close the input data set, rewind the tape, and set the tape drive offline.

II Test for a return code of 33, indicating that the system found an end-of-volume label.

.. Prompt the operator for the volume serial of the next tape.

II Read the volume serial into NEWVOL.

II

II

Move the address of the DSCB for the data set into software register 1.

Move the volume serial into the $DSCBVOL field of the DSCB.

II Set the DSOPEN error exits in this instruction and in the next two instructions.

III Prompt the operator for a response when he/she has mounted the tape.

III Call the DSOPEN routine to open the next volume of the data set.

IE Resume processing the data.

Processing Nonlabeled Tapes

This section describes how to:

• Define a nonlabeled tape

• Initialize a nonlabeled tape

PG-238 SC34-0637

o

o

o

o

o

Processing Nonlabeled Tapes (continued)

• Read a nonlabeled tape

• Write a nonlabeled tape.

Defining a Nonlabeled Tape

To read and write from a nonlabeled tape, you must define the drive as nonlabeled. If the tape
drive hasn't already been defined as nonlabeled, you must:

1. Vary the tape drive offline.

2. Change the label processing attribute to nonlabeled using the $TAPEUTl utility.

3. Vary the tape drive online.

To vary the tape drive offline, use the $VARYOFF operator command as follows:

$VARYOFF 4C
TAPEOl OFFLINE

The command varies offline the tape drive at address 4C. TAPED 1 is the ID that was assigned
during system generation.

The following example shows how to use the $TAPEUTl utility to change the label processing
attribute:

$L $TAPEUTl

COMMANO(?) CT

ENTER TAPE 10 (l':;6CHARS): TAPEOl
TAPE TAPEOl AT ADDR 4c is S6 1600 BPl

00 YOU ,W ISHTO MODI FY?: Y

LABEL(NULL~SL,NL,BLP1?: NL
DENS ITY (f.JULL,800,1600)1: 800

TAPETAPEO r AT ADDRESS 4c IS NL 800 BP r

COMMAND,? EN

This example changes tape TAPED 1 to nonlabeled 800 bytes per inch.

Chapter 11. Reading and Writing to Tape PG-239

Reading and Writing to Tape
Processing Nonlabeled Tapes (continued)

To vary the tape drive online, use the $VARYON operator command as follows:

'. ;$VA~V.ON,·4~;.;.
:.:rAP~9.r· .ONLINE

The command varies online the tape drive at address 48. TAPEDI is the ID that was assigned
during system generation.

Initializing a Nonlabeled Tape

To initialize a nonlabeled tape, you must:

1. Vary the tape drive offline.

2. Initialize the tape.

3. Vary the tape drive online.

To vary the tape drive offline, use the $VARYOFF operator command as follows:

The command varies offline the tape drive at address 4C. TAPEDI is the ID that was assigned
during system generation.

To initialize the tape, use the $TAPEUTI utility as follows:

PG-24D SC34-'0637

o

o

o Processing Nonlabeled Tapes (continued)

o

o

To vary the tape drive online, use the $V ARYON operator command as follows:

$VARYON 4c
TAPEOl ONLINE

The command varies online the tape drive at address 4C. TAPEOI is the ID that was assigned
during system generation.

Reading a Nonlabeled Tape

The READ instructions allows you to retrieve a record from a nonlabeled tape. The records can
be from 18 to 32,767 bytes long.

In the following example:

TASK04 PROGRAM START,DS=(UPDATES, (MASTER,TAPE01))

READ DS2,BUFFER,1,80,END=NOMORE,ERROR=ERROR,WAIT=YES

BUFFER DATA 60F'O'

the system reads one record (indicated by 1 in the third operand) from the second file listed on
the PROGRAM statement (data set MASTER on tape ID TAPEOl) into BUFFER. The size of
the record is 80 bytes (indicated by 80 in the fourth operand). If no more records exist on the
data set, control transfers to NOMORE. If an error occurs, control transfers to ERROR. The
system waits (WAIT = YES) for the read operation to complete before executing the next
sequential instruction.

Chapter 11. Reading and Writing to Tape PG-241

Reading and Writing to Tape
Processing Nonlabeled Tapes (continued)

Writing a Nonlabeled Tape

The WRITE instruction allows you to write a nonlabeled record from 18 to 32,767 bytes long.

In the following example:

TASK04 PROGRAM START,DS=(UPDATES, (MASTOUT,TAPE01»

WRITE DS2,BUFF,1,120,ERROR=GOOF,WAIT=YES

BUFF DATA 60F'O'

the system writes one record (indicated by 1 in the third operand) to the second file listed on the
PROGRAM statement (data set MASTOUT on tape ID TAPEOl) from BUFF. The size of the
record is 120 bytes (indicated by 120 in the fourth operand). If an error occurs, control
transfers to GOOF. The system waits (WAIT = YES) for the write operation to complete before
executing the next sequential instruction.

Adding Records to a Tape File (UPDATE)

The copy code routine UPDT APE allows you to add records to an existing (or new) tape file.
The records added are placed after existing records on the file. On standard label tapes, the
routine updates the block count counters in the EOFllabel.

To use UPDT APE, you must copy the source code into your program by coding:

COpy UPDTAPE

You invoke UPDT APE as a subroutine through the CALL instruction, passing the DSCB as a
parameter.

PG-242 SC34-0637

CALL UPDTAPE, (DS1)

where DS 1 is a previously opened DSCB.

After the CALL, you must check the return code in the first word of the DSCB for the tape
motion return codes. A -1 return code indicates that the tape is positioned correctly for writing
records.

o

r---"\
~~~ 

o 



o 

o 

o 

Adding Records to a Tape File (UPDATE) (continued) 

The following example adds 1000 records to a tape data set. The program prompts the operator 
for the data set name and volume. 

.. UPDTAP 
START 

II 
II 

.. 
II 

ENDIT 

ERR 

BUFF 

PROGRAM START,DS=((TAPEDS,??)) 
EQU * 
CALL UPDTAPE, (DS1) 
IF (DS1 ,NE,-1) 

PRINTEXT '@ERROR - UPDTAPE RC =' 
PRINTNUM DS1 
PRINTEXT SKIP=1 
GOTO 

ENDIF 
ENDIT 

DO 1000,TIMES 
WRITE DS1,BUFF,ERROR=ERR 
ADD BUFFNUM,1 

ENDDO 
EQU * 
IF (DS1,EQ,-1) 

PRINTEXT '@TAPE UPDATED SUCCESSFULLY@' 
CONTROL DS1,CLSRU 
IF (DS1,NE,-1) 

PRINTEXT '@CLOSE ERROR - RC =' 
PRINTNUM DS1 
PRINTEXT SKIP=1 

ENDIF 
ENDIF 
PROGSTOP 
EQU 
PRINTEXT 
PRINTNUM 
PRINTEXT 
GOTO 
DC 

* 
'@WRITE ERROR - RC =' 
DS1 
SKIP=1 
ENDIT 
127X'FFFF' 

BUFFNUM DC F'1 ' 
DSCBEQU 
TDBEQU 
DDBEQU 
UPDTAPE 

COPY 
COpy 
COpy 
COPY 
ENDPROG 
END 

.. Cause the system to prompt for the name and volume of the tape data set. 

II Call the subroutine, passing the DSCB as a parameter. 

II Check the return code from the subroutine. 

.. Add 1000 records to the tape data set. 

II Write a record to the data set from buffer BUFF. If an error occurs, branch to ERR. 

Chapter 11. Reading and Writing to Tape PG-243 



Notes 

o 

o 
PG-244 SC34-0637 



o 

o 

o 

Chapter 12. Communicating with Another 
Program (Cross Partition Services) 

To communicate with another program, you can use cross partition services. Cross partition 
services require synchronization logic in your programs but no additional storage in the 
supervisor. 

Communication is possible between two programs within the same partition and between 
programs in different partitions. Cross partition services permit asynchronous but coordinated 
execution of application programs running in different partitions. 

Use these services when interrelated programs and tasks in your application cannot be 
accommodated in a single partition. 

When your task is attached, its TCB ($TCBADS) is updated to contain the number of the 
address space in which it is executing. The address space value (the partition number minus 
one) is also known as the hardware address key. This key, along with an address you supply, is 
used to calculate the target address used in cross partition services. For some functions, you put 
the address key of the target partition in $TCBADS. 

The following sections contain examples of the different uses of the cross partition services. 

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-24S 



Communicating with Another Program (Cross Partition 
Services) 
Loading Other Programs 

In the following example, PROGA loads PROGB into partition two and passes the parameters 
at PROGASWI to it. When PROGB terminates, the supervisor posts the ECB at ENDWAIT, 
signaling PROGA that PROGB has ended. 

In this example, the system queues the program loaded (PROGB) to the terminal that is 
enqueued by the loading program (PROGA). 

$TCBADS is not modified by the LOAD instruction. 

PROGA, the loading program, looks like this: 

.. PROGA PROGRAM START,1,MAIN=YES 
II ATLIS ATTNLIST (CA,PROGASTP) 

II .. PROGASTP EQU * 
MOVE #1,PROGASW1 
MOVE (O,#1),1,TKEY=1 
ENDATTN 

START EQU * 
II TCBGET PROGAKEY,$TCBADS 
II LOAD PROGB,PROGASW1,EVENT=ENDWAIT,LOGMSG=YES,PAR T=2 
II IF (PROGA,EQ,-1) ,THEN 

PG-246 SC34-0637 

WAIT ENDWAIT 
ELSE 

PRINTEXT 'LOAD FAILED' ,SKIP=1 
ENDIF 
PROGSTOP 

ENDWAIT ECB 
PROGASW1 DATA A(PROGASW1) 
PROGAKEY DATA F'O' 

ENDPROG 
END 

o 

(1~ 

~c_~ 

o 



o Loading Other Programs (continued) 

o 

o 

Notes on PROGA are as follows: 

.. Define the primary task (MAIN = YES). Assign priority 1 to the task. 

II Define an attention-interrupt-handling routine. When the operator enters "CA" and 
presses the attention key, branch to PROGASTP. 

II Move PROGASW1 into register 1. (When this instruction executes, PROGASW1 
contains the address of CANCELSWin PROGB.) 

.. Move 1 to address (0,#1). Indicate the address key of the loaded program (TKEY = 1). 
Address (0,#1) points to the address of CANCELSW. In PROGB, the IF instruction 
finds that CANCELSW contains a 1 and passes control to the label STOP. 

II Put PROGA's address key into PROGAKEY. 

II Load PROGB, passing the parameters beginning at label PROGASW1. Identify the 
event to be posted when PROGB completes (EVENT=ENDWAIT), indicate that the 
PROGRAM LOADED message is to appear on the terminal, and load the program into 
partition 2 (PART=2). 

II If PROGB loads successfully, wait for PROGB to post the event ENDWAIT. 

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-247 



Communicating with Another Program (Cross Partition 
Services) 
Loading Other Programs (continued) 

The following program, PROGB, is the program being loaded. 

When the operator presses the attention key and enters "CA", the attention-interrupt-handling 
routine at label CANCEL in PROGA begins executing . .. 
II 
II 
II 
II 
II 

II 

.. 

PROGB PROGRAM START,509,PARM=2 
START EQU * 

PRINTEXT 'TO CANCEL HIT> CA' , SKIP=1 
PRINTEXT SKIP=1 
MOVEA PROGAWRK,CANCELSW 
MOVE #1,$PARM1 
MOVE (O,#1),PROGAWRK,TKEY=$PARM2 

LOOP IF (CANCELSW,EQ,1) ,GOTO,STOP 
GOTO LOOP 

STOP EQU * 
PROGSTOP -1,LOGMSG=NO 

PROGAWRK DATA F'O' 
CANCELSW DATA F'O' 

ENDPROG 
END 

Specify the length of the parameter list that PROGB receives from PROGA 
(PARM=2). The system recognizes each word in the parameter list by the label 
$P ARMx, where "x" indicates the position of the word in the list. $P ARM 1 refers to 
the first word in the list (PROGASWl) and $PARM2 refers to the second word in the 
list (PROGAKEY). 

II Display a prompt that tells the operator how to cancel PROGB. 

II Move the address of CANCELSW into PROGA WRK. 

II Move the first parameter (the address of PROGASWl) into software register 1. 

II Move the contents of PROGA WRK to the address (0,#1) in PROGA. The TKEY 
operand of the MOVE instruction supplies the address key of PROGA. 

II Loop until the operator cancels the program. 

II Post the loading program (PROGA) with a -1. Suppress the PROGRAM ENDED 
message (LOGMSG=NO). 

PG-248 SC34-0637 

Note: When you execute a LOAD instruction for an overlay or nonoverlay program, the default 
terminal address or the currently active terminal address of the program issuing the LOAD is 
placed in the program header of the loaded program. This address is taken from $PRGCCB in 
the issuing program's program header and placed into $PRGCCB of the loaded program's 
program header. This address is a CCB address. 

o 

o 



o 

o 

o 

Finding Other Programs 

The following example uses the WHERES instruction to find another program and return the 
address key and the load point of a program . 

.. WHERES PROGB,ADDRB,KEY=KEYB 

II PROGB DATA C'PROGB 
II ADDRB DATA F'O' 
.. KEYB DATA F'O' 

.. Find program PROGB. Put the load point address in ADDRB and the address key in 
KEYB. 

II Define the program to be found (the name you give the program when you link-edit it). 

II Define storage for the load-point address. 

.. Define storage for the address key. 

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-249 



Communicating with Another Program (Cross Partition 
Services) 
Starting Other Tasks 

You can start a task in another partition with the ATTACH instruction. 

In the following example, PROGA starts (or "attaches") the task labeled TASKADDR in 
PROGB. 

PROGA PROGRAM START .. COpy PROGEQU 

II COpy TCBEQU 
START EQU * 

II WHERES PROGB,ADDRB,KEY=KEYB .. IF (PROGA,EQ,O) ,THEN 
PRINTEXT 'PROGRAM NOT FOUND' ,SKIP=1 
GO TO DONE 

ENDIF 

II TCBGET SAVEKEY,$TCBADS 

a TCBPUT KEYB,$TCBADS 

II ADD ADDRB,X'34' ,RESULT=TASKADDR 

II ATTACH *,P1=TASKADDR 

lID TCBPUT SAVEKEY,$TCBADS 

DONE PROGSTOP 
SAVEKEY DATA F'O' 

III PROGB DATA C'PROGB 
ADDRB DATA F'O' 
KEYB DATA F'O' 

ENDPROG 
END 

.. Copy the PROGRAM equates into the program. 

II Copy the task control block (TCB) equates into the program. 

II Find the load-point address and address key of PROGB. Place the load-point address of 
PROGB into ADDRB and the address key of the program into KEYB. 

.. If the WHERES instruction returns a zero, indicating an error, print an error message 
and end the program. 

II Save PROGA's address key in SA VEKEY. 

a Move PROGB's address key to the address key field ($TCBADS) of the TCB. 

II Add X'34' to the load point of PROGB. Put the result of the addition in TASKADDR. 
(PROGA assumes that PROGB defines the task to be attached immediately after the 
PROGRAM statement. The PROGRAM statement generates 52 bytes (X'34') of 
code.) 

PG-25 0 SC34-0637 

o 

~\ 
~~>,; 

o 



o 

o 

Starting Other Tasks (continued) 

II Attach the task. Assume that the address of the task to be attached is contained in 
TASKADDR (calculated by the ADD instruction). 

III Restore PROGA's address key from SA VEKEY. 

III Indicate the name of the program to be found. (The name of the program is the name 
assigned to it when the program was link-edited.) 

The following program contains task NEXT that PROGA attaches. This program must be in 
storage when PROGA issues the WHERES instruction. 

.. 
II 

11 
II 

.. 
II 

11 

II 

PROGB 
TASKADDR 
NEXT 

START 

PROGRAM 
TASK 
ENQT 
PRINTEXT 

DEQT 
ENDTASK 
EQU 
PRINTEXT 
WAIT 

PROGSTOP 
ENDPROG 
END 

START 
NEXT 
$SYSPRTR 
'@SUBTASK IS ATTACHED' 

* 
'@PROGB STARTED' 
KEY 

Define a task with the name TASKADDR. 

Enqueue the system printer ($SYSPRTR). 

Print the message PROGB STARTED. 

Wait for the operator to press the enter key. (The example assumes that the operator 
will not press the enter key until the task labeled T ASKADDR in PROGB has 
executed.) 

Notes: 

1. When an ATTACH instruction is executed, the default terminal address or the currently 
active terminal address of the task issuing the ATTACH is placed into $TCBCCB. 

2. When you issue an ATTACH instruction, the system places into $TCBCCB the default 
terminal address or the terminal address of the task that issued the ATTACH instruction. 

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-251 



Communicating with Another Program (Cross Partition 
Services) 
Sharing Resources with the ENQ/DEQ Instructions 

You can share serially reusable resources with programs in other partitions by using the ENQ 
and DEQ instructions. 

In the following example, SQROOT is a subroutine that has been link-edited by several other 
programs. The subroutine is serially reusable because only one program can use the subroutine 
at a time. PROGA attempts to enqueue the queue control block (QCB) in PROGB. PROGA 
must enqueue the QCB before it can call the subroutine labeled SQROOT. 

PROGA PROGRAM START .. COpy TCBEQU 

II EXTRN SQROOT 
START EQU * 

II WHERES PROGB,ADDRB,KEY=KEYB 

II IF (PROGA,EQ,O) ,THEN 
PRINTEXT, 'PROGRAM NOT FOUND' ,SKIP=l 
GOTO DONE 

ENDIF 

II TCBGET SAVEKEY,$TCBADS 

II TCBPUT KEYB,$TCBADS 

II ADD ADDRB,X'34' ,RESULT=PROGBQCB 

II ENQ *,BUSY=CANTHAVE,Pl=PROGBQCB 

III CALL SQROOT 

III DEQ 

II TCBPUT SAVEKEY,$TCBADS 
GOTO DONE 

CANTHAVE EQU * 
PRINTEXT '@RESOURCE BUSY' 
TCBPUT SAVEKEY,$TCBADS 

DONE PROGSTOP 
SAVEKEY DATA F'O' 

II PROGB DATA C'PROGB 
ADDRB DATA F'O' 
KEYB DATA F'O' 

ENDPROG 
END 

.. Copy the task control block (TCB) equates into the program. 

II Identify the subroutine as an external entry (to be resolved at link-edit time). 

II Find the load-point address and address key of PROGB. Place the load-point address of 
PROGB into ADDRB and the address key of the program into KEYB. 

II If the WHERES instruction returns a zero, indicating an error, print an error message 
and end the program. 

II Save PROGA's address key in SA VEKEY. 

PG-252 SC34-0637 

o 

n 
"'=,,' 

o 



o Sharing Resources with the ENQ/DEQ Instructions (continued) 

o 

o 

II Move PROGB's address key to the address key field ($TCBADS) of the TCB. 

II Add X'34' to the load point of PROGB. Put the result of the addition in PROGBQCB. 
(PROGA assumes that PROGB defines the queue control block (QCB) immediately 
after the PROGRAM statement. The PROGRAM statement generates 52 bytes (X'34') 
of code.) 

II Enqueue the subroutine. Assume that the address of the task to be attached is contained 
in PROGBQCB (calculated by the ADD instruction). 

IE Call the SQROOT subroutine. 

III Dequeue the subroutine. 

IE Restore PROGA's address key from SA VEKEY. 

II Indicate the name of the program to be found. (The name of the program is the name 
assigned to it when the program was link -edited.) 

The subroutine link-edited with PROGA looks like: 

SUBROUT SQROOT 
ENTRY SQROOT 
PRINTEXT '@SUBROUTINE HAS BEGUN' 

RETURN 
END 

PROGB could look like this: 

PROGB PROGRAM START 
QCB1 QCB 
START EQU * .. WAIT KEY 

PROGSTOP 
ENDPROG 
END 

.. Wait for an operator to press the enter key. (The program contains the QCB and should 
remain active while other programs in the system are using the SQROOT subroutine.) 

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-253 



Communicating with Another Program (Cross Partition 
Services) 
Synchronizing Tasks in Other Partitions 

You can synchronize two or more tasks in different partitions with the WAIT and POST 
instructions. The following programs show how to issue a POST instruction to a program in 
another partition. 

The first program, PROGA, finds the second program, PROGB, finds its,event control block 
(ECB), and posts the ECB. In this example, PROGB must be loaded before PROGA. 

PROGA assumes that PROGB contains an ECB immediately following the PROGRAM 
statement. 

PROGA PROGRAM START .. COpy TCBEQU 
START EQU * 

II WHERES PROGB,ADDRB,KEY=KEYB 

II IF (PROGA,EQ,O) ,THEN 
PRINTEXT 'PROGRAM NOT FOUND' 
GOTO DONE 

ENDIF 

II TCBGET SAVEKEY,$TCBADS 

II TCBPUT KEYB,$TCBADS 

II ADD ADDRB,X'34' ,RESULT=PGMBECB 

II POST *,-1,P1=PGMBECB 

II MOVE SAVEKEY,$TCBADS 
DONE PROGSTOP 

IE PROGB DATA C'XP12B 
SAVEKEY DATA F'O' 
ADDRB DATA F'O' 
KEYB DATA F'O' 

ENDPROG 
END 

.. Copy the task control block (TCB) equates into the program. 

II Find the program defined at PROGB, put the address of the program in ADDRB, and 
put the address key of the program in KEYB. 

II If the WHERES instruction returns a zero, print an error message and end the program. 

II Save PROGA's address key in SA VEKEY. 

II Move PROGB's address key to the address key field ($TCBADS) of the TCB. 

II Add a hexadecimal 34 to the load point address returned by the WHERES instruction. 
Put the results of the addition in PGMBECB. (PROGA assumes that PROGB defines 
an ECB immediately after the PROGRAM statement. The PROGRAM statement 
generates 52 bytes (X'34) of code.) 

PG-254 SC34-0637 

o 

~, 
~~j 

o 



o Synchronizing Tasks in Other Partitions (continued) 

o 

o 

B Post the ECB with a -1. The operand Pl=PGMBECB allows the ECB to be calculated 
by the ADD instruction. 

B Restore PROGA's address key from SA VEKEY. 

IE Indicate the name of the program to be found. The name of the program is the name 
assigned to it when the program was link-edited. 

The following program shows how PROGB receives the POST from PROGA. This program 
must be in storage when PROGA issues the WHERES instruction . 

.. PROGB PROGRAM START 

II ECB1 ECB 
START EQU * 

II WAIT ECB1 

PROGSTOP 
ENDPROG 
END 

.. Identify the label at which to start executing (START). 

II Define an event control block (ECB). The program defines the ECB here because it will 
always be 52 bytes (X'34') from the program load point. 

II Wait for PROGA to post the program. 

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-255 



Communicating with Another Program (Cross Partition 
Services) 
Moving Data Across Partitions 

You can also move data across partitions. The following programs show how to move data to a 
program in another partition. 

The first program, PROGA, finds the second program, PROGB, stores its address key, and 
moves data to the dynamic storage area of PROGB. In this example, PROGB must be loaded 
before PROGA. 

PROGA PROGRAM START .. COpy PROGEQU 

II COpy TCBEQU 
START EQU * 

II WHERES PROGB,ADDRB,KEY=KEYB 

a IF (PROGA,EQ,O) ,THEN 
PRINTEXT 'PROGRAM NOT FOUND' 
GOTO DONE 

ENDIF 

II READTEXT MSG, , @ENTER UP TO 30 CHARACTERS' , MODE=LINE 

II MOVE #2,ADDRB 

II MOVE PROGBBUF, ($PRGSTG,#2) ,FKEY=KEYB 

II TCBGET SAVEKEY,$TCBADS 

IE TCBPUT KEYB,$TCBADS 

III MOVE #2,PROGBBUF 

IE MOVE (0,#2) ,MSG, (30,BYTE) ,TKEY=KEYB 

II TCBPUT SAVEKEY,$TCBADS 
DONE PROGSTOP 
MSG TEXT LENGTH=30 
PROGBBUF DATA F'O' 

III PROGB DATA C'PROGB 
SAVEKEY DATA F'O' 
ADDRB DATA F'O' 
KEYB DATA F'O' 

ENDPROG 
END 

.. Copy the PROGRAM equates into the program. 

II Copy the task control block (TCB) equates into the program. 

II Find the program defined at PROGB, put the address of the program in ADDRB, and 
put the address key of the program in KEYB. 

a If the WHERES instruction returns a zero, print an error message and end the program. 

II Prompt the operator for data and place the operator's response in MSG. 

II Move the address of PROGB in register 2. 

PG-256 SC34-0637 

o 

r"\ 
''''=)f 

o 



o 

c 

o 

Moving Data Across Partitions (continued) 

II Move the address of PROGB's dynamic storage area to PROGBBUF. Indicate 
PROGB's address key (FKEY =KEYB). PROGB has STORAGE=256 on its 
PROGRAM statement. This operand causes the system to acquire a 256-byte area of 
storage when it loads PROGB. The address of this area is in PROGB's program header 
(at $PRGSTG). 

II Save PROGA's address key in SA VEKEY. 

III Move PROGB's address key to the address key field ($TCBADS) of the TCB. 

III Move the address of PROGB's dynamic storage area to register 2. 

IE Move the data that the operator entered (MSG) into PROGB's dynamic storage area. 
Move 30 bytes and indicate the address key of the program to which the data is being 
moved (TKEY =KEYB). 

IE Restore PROGA's address key from SAVEKEY. Note that $TCBADS is immediately 
restored to its original value. Doing so avoids unpredictable results. 

III Indicate the name of the program to be found. The name of the program is the name 
assigned to it when the program was link-edited. 

The following program shows how PROGB receives the data from PROGA. The program must 
be in storage when PROGA issues the WHERES instruction. 

II PROGB PROGRAM START,STORAGE=256 
START EQU * 

II 
II MOVE #1,$STORAGE 

II MOVE MSG2, (0, # 1) , (30, BYTE) 

II PRINTEXT '@THE DATA THAT WAS PASSED WAS' 
PRINTEXT MSG2 
PROGSTOP 

MSG2 TEXT LENGTH=30 
ENDPROG 
END 

II Identify the label at which to start executing (START). Specify 256 bytes of dynamic 
storage. (Even though the program requires only 30 bytes, the system rounds up to a 
multiple of 256.) 

II Insert instructions here to wait for PROGA to send data. 

II Move the address of the dynamic storage area (contained in $STORAGE) to register 1. 

II Move 30 bytes from the dynamic storage area to MSG2. 

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-257 



Communicating with Another Program (Cross Partition 
Services) 
Moving Data Across Partitions (continued) 

II Print the data. 

$TCBADS is used to calculate the partition and address to/from which data will be transferred. 

Reading Data across Partitions 

You can read data across partitions with the READ instruction. 

In the following example, program PROGA reads data and passes it to a buffer in program 
PROGB. PROGA assumes that PROGB is in another partition . .. PROGA PROGRAM START, DS=ACCOUNTS 

B COpy PROGEQU 

II COpy TCBEQU 
START EQU * .. WHERES PROGB,ADDRB,KEY=KEYB 

II IF (PROGA,EQ,O) ,THEN 
PRINTEXT 'PROGRAM NOT FOUND' ,SKIP=1 

GOTO DONE 
ENDIF 

II MOVE #2,ADDRB 

II MOVE PROGBBUF, ($PRGSTG,#2) ,FKEY=KEYB 

II TCBGET SAVEKEY,$TCBADS 

IE TCBPUT KEYB,$TCBADS 

III READ DS1,*,P2=PROGBBUF 

III TCBPUT SAVEKEY,$TCBADS 
DONE PROGSTOP 
SAVEKEY DATA F'O' 

111 PROGB DATA C'PROGB 
ADDRB DATA F'O' 
KEYB DATA F'O' 

ENDPROG 
END 

.. Define data set ACCOUNTS on the IPL volume. 

B Copy the PROGRAM equates into the program. 

II Copy the task control block (TCB) equates into the program. 

.. Find the load-point address and address key of PROGB. Place the load-point address of 
PROGB into ADDRB and the address key of the program into KEYB. 

II If the WHERES instruction returns a zero, indicating an error, print an error message 
and end the program. 

PG-258 SC34-0637 

o 

t-~, 

~~ 

o 



o 

0 

o 

Reading Data across Partitions (continued) 

II Move the address key of PROGB into software register 2. 

II Move the address of PROGB's dynamic storage area into PROGBBUF in PRO GA. The 
STORAGE= operand on the PROGRAM statement of PROGB causes the system to 
acquire a 256-byte storage area when it loads the program. The address of this storage 
area is in PROGB's program header (at $PRGSTG). 

II Save PROGA's address key in SAVEKEY. 

III Moves PROGB's address key to the address key field ($TCBADS) of the TCB. 

III Read one record from the data set ACCOUNTS into PROGBBUF. Because 
PROGBBUF is the label of the P2= operand on the READ instruction, the system uses 
the contents of PROGBBUF as the location where the data is to be stored. 

IE Restore PROGA's address key from SA VEKEY. 

111 Indicate the name of the program to be found. (The name of the program is the name 
you give the program when you link-edit it.) 

The following program shows how PROGB receives the data from PRO GA. The program must 
be in storage when PROGA issues the WHERES instruction . .. PROGB PROGRAM START,STORAGE=256 

START EQU * 

II MOVE #1,$STORAGE 

II MOVE OUTPUT, (0,#1), (50,BYTE) .. PRINTEXT '@THE DATA RECEIVED FROM PROGA IS 

II PRINTEXT OUTPUT,SKIP=1 
OUTPUT TEXT LENGTH=50 

ENDPROG 
END 

.. Identify the label at which to start executing (START). Specify 256 bytes of dynamic 
storage. (Even though the program requires only 50 bytes, the system rounds up to a 
multiple of 256.) 

II Move the address of the dynamic storage area (contained in $STORAGE) to software 
register 1. 

II Move 50 bytes of data from the dynamic storage area into OUTPUT. 

.. Print a message. 

II Print the data. 

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-259 



Notes 

PG-260 SC34-0637 

o 

t--~~ 

'''\..-",' 

o 



o 

o 

o 

Chapter 13. Communicating with Other 
Programs (Virtual Terminals) 

A virtual terminal is a logical EDX device that simulates the actions of a physical terminal. An 
EDL application program can acquire control of, or enqueue, a virtual terminal just as it would 
an actual terminal. By using virtual terminals, programs can communicate with each other as if 
they were terminal devices. One program (the primary) loads another program (the secondary) 
and takes on the role of an operator entering data at a physical terminal. 

The secondary program can be an application program or a system utility, such as $COPYUTl. 
You can use virtual terminals, for example, to provide simplified menus for running system 
utilities. An operator could load a virtual terminal program, select a utility to run, and allow the 
program to pass predefined parameters to the utility. 

Virtual terminals simulate roll screen devices. The terminals communicate through EDL 
terminal 110 instructions contained in the virtual terminal programs. The programs use a set of 
virtual terminal return codes to synchronize communication. 

For example, an EDL program, the primary program, loads a system utility such as $COPYUTl. 
The program cannot distinguish between connection to a real terminal or a virtual terminal. The 
program uses the READTEXT instruction to read the prompts from the utility. Then it uses the 
PRINTEXT instruction to send replies to the utility. 

Chapter 13. Communicating with Other Programs (Virtual Terminals) PG-261 



Communicating with Other Programs (Virtual Terminals) 
Defining Virtual Tenninals 

To define a virtual terminal connection during system generation, you must: 

Define two TERMINAL configuration statements. 

Include the supervisor module IOSVIRT. 

For information on how to define TERMINAL statements and include IOSVIRT, refer to 
Installation and System Generation Guide. 

You can find out if your system has virtual terminals by using the LA command of the 
$TERMUTI utility. If your system has virtual terminals, $TERMUTllists the virtual terminals 
as follows: 

NAME ADDR TYPE PART HARDCOPY ON-LINE 

o 

CDRVTA 
CDRVTB 

** 
** 

VIRT 
VIRT 

YES CONNECTED CDRVTB SYNC=YES 
YES CONNECTED CDRVTA 

The output from $TERMUTI indicates that CDRVTA is the primary program (SYNC=YES). 

The DEVICE and ADDRESS parameters of the TERMINAL statement define the terminals as 
virtual terminals. The two TERMINAL statements must reference each other, as shown below. 

CDRVTA 
CDRVTB 

TERMINAL DEVICE=VIRT,ADDRESS=CDRVTB,SYNC=YES 
TERMINAL DEVICE=VIRT,ADDRESS=CDRVTA 

The SYNC parameter of terminal CDRVTA designates it as the terminal to which 
synchronization events will be posted. The synchronization between virtual terminals is 
discussed in "Interprogram Dialogue" on page PG-263. 

PG-262 SC34-0637 

o 



o 

o 

Loading from a Virtual Tenninal 

When an EDX program is loaded from a real terminal, that terminal becomes its "primary" 
communication port. When one program loads another, the current terminal of the first program 
is "passed" and becomes the primary terminal of the second. It is this convention that allows a 
new program to establish a virtual terminal as the primary port for the loaded program. For 
example: 

PRIM 
SEC 

ENQT 
LOAD 
ENQT 

IOCB 
IOCB 

SEC 
$TERMUT1,LOGMSG=NO,EVENT=ENDWAIT 
PRIM 

CDRVTA 
CDRVTB 

After this sequence, $TERMUTI has CDRVTB (the "other" end of the channel) as its primary 
port, and the loading program has CDRVTA ("this" end of the channel) as its current port. 

Interprogram Dialogue 

Once the connection between the two communicating programs has been established, you can 
use the PRINTEXT, READTEXT, PRINTNUM and GETVALUE instructions to send and 
receive data. You can generate attention interrupts with the TERMCTRL instruction. (Refer 
to the Language Reference for information on the TERMCTRL instruction.) The usual 
conventions with respect to output buffering and advance input apply. 

To use virtual terminals, you must know something about communications protocol (such as 
knowing when a program is ready for input or has ended). You can use the task code word to 
find out this information. 

Chapter 13. CommuniC'ating with Other Programs (Virtual Terminals) PG-263 



Communicating with Other Programs (Virtual Terminals) 
Sample Program 

The following sample program uses virtual terminals to process the prompt/reply sequence of 
the $INITDSK utility. The program initializes volume EDX003. 

The replies to $INITDSK prompts begin at label REPLIES+2. (The six bytes in each TEXT 
statement is preceded by two length/count bytes.) 

Each reply is 8 bytes long (six bytes of text plus two length/count bytes). The program issues a 
READTEXT until $INITDSK prompts for input. Then the program issues a PRINTEXT to 
send the reply to the $INITDSK prompt. After $INITDSK ends, the program prints a 
completion message to the terminal. 

PG-264 SC34-0637 

INIT 
A 
B 
DEND 
BEGIN 

RETCODE 
LINE 
REPLIES 

PROGRAM 
IOCB 
IOCB 
ECB 
EQU 
ENQT 
LOAD 
ENQT 
MOVEA 
DO 

BEGIN 
CDRVTA 
CDRVTB 

* 

SYNC TERMINAL 

B 
$INITDSK,LOGMSG=NO,EVENT=DEND 
A GET SYNC TERMINAL 
#1,REPLIES+2 
6,TIMES REPLY TO PROMPTS 

DO UNTIL, (RETCODE,EQ,B) BREAK CODE 
READTEXT LINE,MODE=LINE LOOP FOR PROMPT MSGS 
MOVE RETCODE,INIT SAVE RETURN CODE 

ENDDO 
PRINTEXT (0,#1) 
ADD 

ENDDO 
READTEXT 
WAIT 
DEQT 
PRINTEXT 
PROGSTOP 
DATA 
TEXT 
EQU 
TEXT 
TEXT 
TEXT 
TEXT 
TEXT 
TEXT 
ENDPROG 
END 

# 1 ,8 

LINE,MODE=LINE 
DEND 

'EDX003 INITIALIZED' 

F'O' 
LENGTH=BO 

* 'IV 
'EDX003' 
'y 
'60 
'N 
'EN 

SEND REPLY 
NEXT REPLY 

PGM END MSG 
WAIT FOR END EVENT 

RETURN CODE 

COMMAND? 
VOLUME? 
CONTINUE? 
NBR OF DATA SETS? 
VERIFY? 
COMMAND? 

(--\, 
',,",-jl 

o 



o 

o 

o 

Chapter 14. Designing and Coding Sensor I/O 
Programs 

This chapter provides the information you need to code a sensor I/O application program. 
Topics covered include: 

• Sensor I/O devices 

Symbolic I/O assignments 

• Sensor I/O instructions. 

The chapter also provides several examples. 

What is Digital Input/Output? 

A unit of digital sensor I/O is a physical group of sixteen contiguous points. The entire group of 
sixteen points is accessed as a unit on the I/O instruction level: programming support allows 
logical access down to the single point level. 

Digital input (DI) is usually used to acquJre information from instruments which present binary 
encoded output, or to monitor contactlSwitch status (open/closed). Digital output (DO) is used 
to control electrically operated devices through closing relay contacts, such as pulsing stepping 
motors. 

Process interrupt (PI) is a special form of digital input. If a point of digital input changes state, 
and then changes state again, without an intervening READ operation from the program, the 

Chapter 14. Designing and Coding Sensor I/O Programs PG-265 



Designing and Coding Sensor I/O Programs 
What is Digital Input/Output? (continued) 

status change will be undetected. With process interrupt, a point changing from the off state to 
on generates a hardware interrupt, which is then routed through software support to an 
interrupt-servicing application program that can respond to the external event which caused the 
interrupt. Process interrupt is often used for monitoring critical or alarm conditions, which must 
be serviced quickly, the occurrence of which must not go undetected. 

What is Analog Input/Output? 

A physical unit of analog input (AI) can be a group of eight points or sixteen points, depending 
on the type. Analog output (AO) is installed in groups of two points. Each point of analog 
input or analog output is accessed separately. 

Analog input is used to monitor devices that produce output voltages proportional to the 
physical variable or process being measured. Examples include laboratory instruments, strain 
gauges, temperature sensors, or other nondigitizing instruments. Digital input was described as 
monitoring an on/off status; only two conditions were possible. With analog input, the 
information is carried in the amplitude of the voltage sensed rather than in its presence or 
absence. . 

The starter supervisor contains no support for sensor I/O. You must do a tailored system 
generation to include the required support modules in your own supervisor. 

Figure 7 on page PG-267 shows how sensor devices are connected to a Series/1 through the 
4982 sensor I/O unit. The devices (DI, DO, PI, AO, and AI) attach to a controller, which in 
turn attaches to the Series/1. The sensor I/O attachment (controller), and each of the devices 
attaching to it, have unique hardware addresses. In this figure, the physical connections are 
there, and the hardware addresses are assigned (wired in), but the starter supervisor in storage 
lacks the support necessary to operate the devices. 

PG-266 SC34-0637 

o 

o 



o 

o 

0'··" 
,., 

What is Analog Input/Output? (continued) 

Series/1 

Supervisor 
with 
sensor I/O 
support 

Figure 7. Sensor Device Connections 

Sensor I/O 
attachment 

Address 68 

Digital output 
group address 70 

Digital output 

group address 71 

Digital input 

group address 72 

Building a tailored supervisor involves the assembly of a series of system configuration 
statements that reflect the I/O configuration you wish to support. For more information on 
system configuration statements, refer to Installation and System Generation Guide. When 
programs reference these devices, they use symbolic references, rather than actual addresses. 
The I/O definition statement (IODEF) establishes the logical link between the addresses 
defined in the supervisor, and the symbols used to read from and write to the devices at those 
addresses from an application program. 

All sensor-based input/output operations are performed by executing a sensor-based I/O 
(SBIO) instruction. The type of operation is determined by the type of device referenced in the 
instruction. For more information on the SBIO statement, refer to Language Reference. The 
symbolic reference to a logical device in the SBIO statement is linked to the definition in the 
10DEF statement, which relates that device to the hardware address specified by the system 
configuration statement at system generation time. 

Chapter 14. Designing and Coding Sensor I/O Programs PG-267 



Designing and Coding Sensor I/O Programs 
What are Sensor-Based I/O Assignments? 

The sensor-based I/O instruction (SBIO) refers to the I/O devices using a three- or 
four-character name. The first two characters identify the type of device: AI, DI, PI, AO, and 
DO for analog input, digital input, process interrupt, analog output, and digital output, 
respectively. The next one or two characters are the identification for the device, a number 
between I and 99. For example, if you have three analog input terminals, you may identify 
them as All, AI2, and AI3. Before the application program is compiled, the sensor-based I/O 
definition statement (IODEF) assigns the actual physical addresses. All SBIO instructions are 
independent of the physical location of the sensor I/O points. 

The assignment of sensor I/O symbolic addresses is described under "Providing Addressability 
(IODEF)" on page PG-269. Figure 8 shows the relationship between sensor-based I/O 
instructions, definition statements, and configuration statements. 

Sensor-based 
1/0 execution 
instruction 
(S810) 

CCx 

Specifies 
the action 

CC can be: 
AI 
AO 
DI 
DO 

x can be: 
1-99 

r---. 

Sensor-based 
1/0 definition 
instruction 
(IODEF) 

CCx 

Specifies 
the physical 
location 

Specifies 
logical 
device 

~ 

Figure 8. Sensor-Based Symbolic I/O Assignment 

PG-268 SC34-0637 

Sensor-based 
configuration 
statement 
(SENSORIO) 

Describes 
the physical 
device 

o 

() 

o 



o 

o 

0
, 

'II, 

Coding Sensor-Based Instructions 

This section describes the instructions used in sensor-based I/O applications. The following 
instructions are defined: 

10DEF - provides addressability by specifying physical location 

SBIO - specifies the I/O operation to be performed 

SPECPIRT - allows control to be returned to the supervisor from a special process-interrupt 
routine. 

Providing Addressability (lODEF) 

Examples 

Use the 10DEF instruction to provide addressability for the sensor-based I/O facilities which 
are referenced symbolically in an application program. The specific form used varies with the 
type of I/O being performed. 

Group all 10DEF statements of the same form (AI, AO, DI, DO, or PI) together in the program 
and place them ahead of the SBIO instructions that reference them. 

All 10DEF statements must be in the same assembly module as the TASK or ENDPROG 
statement. For high level languages, see the appropriate manual for instructions on how to 
accomplish this. If the SBIO instructions are to be in a separate module, you can provide 
addressability using ENTRY /EXTRN statements. 

Each 10DEF statement creates an SBIOCB control block. The contents of the SBIOCB is 
described in the Internal Design. 

The 10DEF statement generates a location into/from which data is read/written. You must 
create a separate 10DEF for each task; different tasks cannot use the same 10DEF statement. 

See the Language Reference for the syntax of PI, DO, DI AO, and AI. 

The following IODEF instructions define two process interrupts, a digital output group, a digital 
output group as external sync, a digital input group, an analog input point, and an analog output 
point. 

IODEF 
IODEF 
IODEF 
IODEF 
IODEF 
IODEF 
IODEF 

PI1,ADDRESS=48,BIT=2 
PI2,ADDRESS=49,BIT=15 
D01,TYPE=GROUP,ADDRESS=4B 
D02,TYPE=EXTSYNC,ADDRESS=4A 
DI1,TYPE=GROUP,ADDRESS=49 
AI1,ADDRESS=72,POINT=1,RANGE=50MV,ZCOR=YES 
A02,ADDRESS=75,POINT=1 

The SBIO instruction references the digital and analog I/O points as described under the SBIO 
instruction. Process interrupts are referenced by the POST and WAIT instructions and are 
described under the respective instruction. Further examples of 10DEF statements are shown 
following the SBIO instruction. 

Chapter 14. Designing and Coding Sensor I/O Programs PG-269 



Designing and Coding Sensor I/O Programs 
Coding Sensor-Based Instructions (continued) 

SPECPI - Process Interrupt User Routine 

The SPECPI option of the IODEF statement defines a special process interrupt routine. The 
supervisor executes a routine written in Series/1 assembler language when the defined interrupt 
occurs. The purpose is to provide the minimum delay before service of the interrupt, by 
bypassing the normal supervisor interrupt servicing. Multiple special process-interrupt routines 
are allowed in a program. 

TYPE=BIT The system gives control to the specified routine when an interrupt occurs on 
the specified bit. On return to the supervisor, the contents of R1 must be the 
same at entry to the user's routine and RO must contain either '0' or a POST 
code. In the latter case, R3 must contain the address of an ECB to be posted 
by the POST instruction. Register 7 contains the supervisor return address 
upon entry. If the user routine is in partition 1, you can return to the 
supervisor with the BXS (R 7) instruction. Otherwise, you must return with 
the SPECPIR T instruction. You can use SPECPIR T in partition 1. The 
value that is in R 7 upon entry may be used to return to the supervisor using 
BXS (R 7) only if the user routine is in partition 1. 

o 

TYPE=GROUP The system gives control to the specified routine if any bit in the PI group 
occurs. The PI group is not read or reset by the supervisor; this is the 
routines responsibility. Return to the supervisor is done with a branch to the 
entry point SUPEXIT. The module $EDXATSR must be included with the 
PROGRAM to use SUPEXIT. If interrupt is processed on level 0, the 
routine may issue a Series/1 hardware exit level instruction (LEX) instead of (' --) 
returning to SUPEXIT. This· improves performance significantly. "" .. 

Note: To use TYPE=GROUP, you must be familiar with the operation of the Series/1 process 
interrupt feature. Your routine must contain all instructions necessary to read and reset the 
referenced process-interrupt group. 

PG-270 SC34-0637 

o 



o 

o 

o 

Coding Sensor-Based Instructions (continued) 

Using the Special Process-Interrupt Bit 

IODEF PI2,ADDRESS=48,BIT=3,TYPE=BIT,SPECPI=FASTPI1 

FASTPI1 EQU * 
.. MVW R1,SAVER1 

II MVA PI2,R3 

II MVWI 3,RO .. MVW SAVER1,R1 

B SPECPIRT .. Save Rl. 

II Put the address of PI2 in R3. 

II Posting code in RD . .. Restore RI. 

B Return to supervisor. 

In the following example, control is given to the user at label F ASTPI2. 

IODEF PI6,ADDRESS=49,TYPE=GROUP,SPECPI=FASTPI2 

FASTPI2 EQU * 

Specifying I/O Operations (5810) 

The SBIO instruction provides communication using analog and digital I/O. Options allow you 
to: 

• Index using a previously defined BUFFER statement. 

• Update a buffer address in the SBIO instruction after each operation. 

• Use a short form of the instruction, omitting loc (data location) to imply a data address 
within the SBIOCB. 

Options available with digital input and output provide PULSE output and the manipulation of 
portions of a group with the BITS=(u,v) keyword parameter. 

SBIO instructions are independent of hardware addresses. The actual operation performed is 
determined by the definition of the sensor address in the referenced IODEF statement. 

Chapter 14. Designing and Coding Sensor I/O Programs PG-27I 



Designing and Coding Sensor I/O Programs 
Coding Sensor-Based Instructions (continued) 

The IODEF statement generates a location into/from which data is read/written. You must 
create a separate IODEF for each task; different tasks cannot use the same IODEF statement. 

A sensor based input/output control block (SBIOCB) is inserted into an application program for 
each referenced sensor I/O device. The SBIOCB, containing a data I/O area and an event 
control block (ECB), supplies information to the supervisor. When an SBIO instruction 
executes, the supervisor either stores data (for AI and DI operations) or fetches data (for AO 
and DO operations) from a location in the 10CB with the label of the referenced I/O point (for 
example, All, D12, D033, AOI). An application program can reference these locations the 
same way any other variable is referenced, allowing you to use the short form of the SBIO 
instruction (for example, SBIO DIl), and subsequently reference DIl in other instructions. You 
may equate a more descriptive label to the symbolic names (for example SWITCH EQU DI1S), 
but the SBIO instruction must use the symbolic name as described above. 

Each control block also contains an ECB to be used by those operations which require the 
supervisor to service an interrupt and 'post' an operation complete. These include analog input 
(AI), process interrupt (PI), and digital I/O with external sync (DI/DO). For process interrupt, 
the label on the ECB is the same as the symbolic I/O point (for example PIx). For analog and 
digital I/O, the label is the same as the symbolic I/O point with the suffix 'END' (for example 
DlxEND). 

Reading Analog Input (example) 

This example shows SBIO instructions and 10DEF statements to read analog input. 

.. 
a 
II 
II 
II 
II 
IJ 

TASK PROGRAM 
IODEF 

SBIO 
SBIO 
SBIO 
SBIO 
SBIO 
SBIO 

SBIO 

GO 
AI1,ADDRESS=72,POINT=5 

AI1 
AI1,DAT 
AI1,BUF,INDEX 
AI1 , (BUF, # 1 ) 
AI1,BUF,2,SEQ=YES 
AI1 , BUF, 2 
or 
AI1,BUF,2,SEQ=NO 

.. Data into location All. 

a Data into location DAT. 

II All into next location of 'BUF.' 

II All into location (BUF, # I). 

II Read 2 sequential AI points into next 2 locations of 'BUF.' 

II Read the same point two times and put information in two. 

PG-272 SC34-0637 

o 

o 



o Coding Sensor-Based Instructions (continued) 

o 

o 

II Locations of buff. 

Writing Analog Output (example) 

This example shows SBIO instructions and IODEF statements to write analog output. 

IODEF A01,ADDRESS=63 .. SBIO A01 

II SBIO A01 , DATA 

II SBIO A01,1000 

a SBIO A01, (0, # 1 ) 

B SBIO A01,BUF,INDEX .. Set A01 to value in 'AOl.' 

II Set A01 to value in 'DATA.' 

II Set A01 to 1000 

a Set A01 to value in (0,#1) 

B Set A01 to value in next. 

Reading Digital Input (example) 

This example shows SBIO instructions and IODEF statements to read digital input. 

IODEF DI1,TYPE=GROUP,ADDRESS=49 
IODEF DI2,TYPE=SUBGROUP,ADDRESS=48,BITS=(7,3) 
IODEF DI3,TYPE=EXTSYNC,ADDRESS=62 

.. SBIO DI1 
II SBIO DI1,DATA 
II SBIO DI1,(0,#1) a SBIO DI1,BUF,INDEX 
B SBIO DI1,BDAT,BITS=(3,5) 
II SBIO DI2 
II SBIO DI2,DAT2 
II SBIO DI2,D,BITS=(0,3) 
II SBIO DI2,E,BITS=(0,1) 
am SBIO DI2,F,BITS=(2,1),LSB=7 
DD SBIO DI3,G,128 

.. Data into location 'DIl' 

II DIl into location 'DATA.' 

II DIl into location (0,#1). 

a DIl into next location of 'BUF.' 

Chapter 14. Designing and Coding Sensor I/O Programs PG-273 



Designing and Coding Sensor I/O Programs 
Coding Sensor-Based Instructions (continued) 

II Bits 3 to 7 of DB into 'BDAT.' 

II Bits 7-9 of D12 into 'DI2.' 

II Bits 7 to 9 of D12 into 'DAT2.' 

II Bits 7-9 of D12 into'D.' 

II Bit 7 of D12 into 'E.' 

II Bit 9 of D 12 into location F bit 7. 

III Read 128 words into 'G' using external sync. 

Writing Digital Output (example) 

This example shows SBIO instructions and IODEF statements to write digital output. 

II 
II 
II 
II 
II 
II 
II 
II 
II 

IODEF D03,TYPE=GROUP,ADDRESS=4B 
IODEF D012,TYPE=SUBGROUP,ADDRESS=4A,BITS=(5,4) 
IODEF D013,TYPE=EXTSYNC,ADDRESS=4F 

SBIO D03 
SBIO D03,DODATA 
SBIO D03,1023 
SBIO D03, (DATA,#1) 
SBIO D03,7,BITS=(3,3) 
SBIO D012,15 
SBIO D012,X,BITS=(O,4) 
SBIO D012,1,BITS=(O,1) 
SBIO D013,Y,80 

II Value of location 'D03' to D03. 

II Value of 'DODATA' to D03. 

II Set D03 to 1023. 

II Value at (Data,#l) to D03. 

II Set bits 3 to 5 of D03 to 7. 

II Set bits 5 to 8 of D012 to 15. 

II Set bits 5 to 8 of DO 12 to value in 'X.' 

II Set bit 5 of D012 to 1. 

II Write 80 locations of 'Y' to DO 13 external sync. 

PG-274 SC34-0637 

o 

() 

o 



o 

o 

o 

Coding Sensor-Based Instructions (continued) 

Pulse Digital Output (example) 

This example shows pulse digital output. 

IODEF D013,TYPE=SUBGROUP,BITS=(3,1) 
IODEF D014,TYPE=SUBGROUP,BITS=(7,4) 

.. SBIO D013, (PULSE, UP) 

.. SBIO D014,(PULSE,DOWN) 

.. Pulse DO 13 bit 3 to on and then off. 

.. Pulse DO 14 bits 7 -10 off and then on. 

Returning from the Process-Interrupt Routine (SPECPIRT) 

Use the SPECPIRT instruction to return control to the supervisor from a special process 
interrupt (SPECPI) routine. If the user routine is in partition 1, a branch instruction is used to 
return. Return from another partition requires execution of a Series/1 assembler SELB 
instruction after registers RO and R3 are saved in the level block to be selected. SPECPIRT is 
used only for TYPE=BIT SPECPI routines. See the description of IODEF (SPECPI) for 
additional information. 

label SPECPIRT 

Required: none 
Defaults: none 
Indexable: none 

Chapter 14. Designing and Coding Sensor I/O Programs PG-27S 



Designing and Coding Sensor I/O Programs 
Coding Sensor-Based Instructions (continued) 

Analog Input Sample 

This program takes 256 samples from analog input address AIl at a sampling rate of 10 
points/ second. Set the run light on in the lab at the start of the run and turn it off at the end. 
The run light is connected to bit 3 of group D02. 

.. 
II 
II 
II 
II 
II 

TKNAME 

START 

PROGRAM 
IODEF 
IODEF 
SBIO 
DO 
STIMER 
SBIO 

ENDDO 
SBIO 

START 
D02,TYPE=GROUP,ADDRESS=87 
AI1,ADDRESS=83 
D02,1,BITS=(3,1) 
256,TIMES 
100 
AI 1 , BUFR, INDEX 

WAIT TIMER 

D02,0,BITS=(3,1) 
CONTINUE PROGRAM 

II BUFR BUFFER 256 

.. Turn on run light. 

II Set up for 256 points. 

II Set timer for 100 MS. 

II Read All with automatic indexing into the buffer 'BUPR' and then wait for the timer to 
expire. 

II End of loop. 

II Turn off run light. 

II 256 word buffer. 

The program begins by writing a 1 into bit 3 of digital output group D02. A DO loop initializes 
for 256 cycles. At this point, a software timer is set up for 100 milliseconds to provide sampling 
at 10 points/second. The analog data is read into BUFR using the SBIO instruction with 
automatic indexing. After the data is read, the program waits for the timer to expire before 
returning for the next sample. When all the data is collected, the run light is turned off by 
writing a 0 into bit 3 of D02. 

PG-276 SC34-0637 

o 

() 

o 



o 

Ci 

o 

Coding Sensor-Based Instructions (continued) 

Analog Input With Buffering To Disk 

This program takes analog data readings at equal time intervals. The number of data points and 
the time interval in milliseconds are read in from the operator's terminal. The program will 
allow from 10 to 10,000 data points to be taken at time intervals between 10 milliseconds and 
10 seconds (10,000 msec). The data collection is initiated by a process interrupt start signal. 
The program is ended by using the keyboard function 'AB'. Also, a second keyboard function, 
'NP', is used to print a status switch. The switch will be equal to zero if the start signal has not 
been received or equal to the number of data points to be read if the start signal has been 
received and data collection has begun. 

TITLE 'SAMPLE ANALOG DATA ACQUISITION PROGRAM' 
READATA PROGRAM BEGIN,DS=?? 

ATTNLIST (AB,ABORT,NP,SWPRNT) .. ABORT MOVE SWITCH, 1 
ENDATTN 

SWPRNT PRINTEXT TXT10 

II PRINTNUM SWITCH 
PRINTEXT SKIP=1 
ENDATTN 
IODEF AI1,ADDRESS=91,POINT=O 
IODEF PI1,ADDRESS=94,BIT=15 

* EXPERIMENT INITIALIZATION 
BEGIN PRINTEXT TXT1 

II GETVALUE RUNUM,TXT2 .. GETINT GETVALUE INTVL,TXT3 
IF (INTVL,LT,10) ,OR, (INTVL,GT,10000) ,GOTO,GETINT 

II GETPTS GETVALUE NPTS,TXT4 
IF (NPTS,LT,10) ,OR, (NPTS,GT,10000) ,GOTO,GETPTS 

II WRITE DS1,RUNUM 
RESET SWITCH 

.. End the experiment. 

II Print experiment switch. 

II Request run identifier. 

.. Request time interval. 

II Request number of points. 

II Run parameters in 1st sector. 

Chapter 14. Designing and Coding Sensor I/O Programs PG-277 



Designing and Coding Sensor I/O Programs 
Coding Sensor-Based Instructions (continued) 

II PRINTEXT TXT9 

II WAIT PI1,RESET 

II MOVE SWITCH,NPTS 

III DO NPTS 

III STIMER INTVL 

III SBIO AI1,BUFFER,INDEX 

II IF (BUFINDEX,EQ,128) ,GOTO,ATTACH 

III IF (BUFINDEX,NE,256),GOTO,TWAIT 

II MOVE BUFINDEX,O 

m ADD POINTCNT,256 

1& ATTACH IF (DISK,NE,-1) ,GOTO,STOP 

III ATTACH DISKTASK 

III TWAIT WAIT TIMER 

fD IF (SWITCH,EQ,1) ,GOTO,STOP 
END LOOP ENDDO 

IF (BUFINDEX,EQ,O) ,OR, (BUFINDEX,EQ,128) ,GOTO,STOP 

II WAIT DS1 

fa ADD POINTCNT,BUFINDEX 

fI ATTACH DISKTASK 

fII STOP WAIT DS1 

E ENQT 

m PRINTEXT TXT6 
PRINTNUM POINTCNT 
PRINTEXT TXT7 

fa DEQT 
PROGSTOP 

II Print ready message. 

II Wait for start signal. 

II Set switch to NPTS. 

III Begin the data acquisition portion of the program. Perform the loop the number of times 
set in 3. 

III Time interval set above. 

III Read a data point. 

II 1st buffer full? 

III No, is 2nd full? 

II Yes, reset buffer index. 

m Increment data counter. 

1& Is disk task attached? 

PG-278 SC34-0637 

o 

(--~ 
I ., 

"=' 

o 



o 

o 

o 

Coding Sensor-Based Instructions (continued) 

.IE Start the disk output task. 

III Wait for end of time interval. 

m Test for 'end.' 

II Wait for disk write. 

E Update data counter. 

11 Start last disk output. 

fI1 Wait for last output operation. 

E Get control of terminal. 

fD Print terminating message. 

EI Release terminal. 

The following is the data recording task. It is attached by the data acquisition task each time 
that 128 words of data have been read. One portion of the buffer will be transferred to disk 
while data is being read into the other portion of the buffer. The task runs on level 3 at a lower 
priority than the data acquisition task in order to maximize timing accuracy. 

.. 
II 
II 
II 
II 

II 
II 

.. 
II 

DISKTASK 
DISK1 

DISKERR 

TXT1 
TXT2 
TXT3 
TXT4 
TXT5 
TXT6 
TXT7 
TXT9 
TXT10 

. .. OK 

... OK 

TASK DISK1,300,EVENT=DISK 
WRITE DS1,BUFFER1,ERROR=DISKERR 
DETACH -1 
WRITE DS1,BUFFER2,ERROR=DISKERR 
DETACH -1 
GOTO DISK1 
MOVE ERROR,DISKTASK 
ENQT 
PRINTEXT TXT5 
PRINTNUM ERROR 
PRINTEXT SKIP=1 
DEQT 
ENDTASK 1 
TEXT '@SAMPLE ANALOG DATA ACQUISITION PROGRAM@' 
TEXT '@ENTER RUN NUMBER' 
TEXT '@ENTER INTERVAL IN MS (10-10000) , 
TEXT '@ENTER NO. OF POINTS (10-10000) , 
TEXT '@DISK ERROR' 
TEXT '@RUN ENDED AFTER' 
TEXT' POINTS@' 
TEXT '@READY FOR PI SIGNAL TO BEGIN TAKING DATA@' 
TEXT '@EXPERIMENT SWITCH = ' 

Chapter 14. Designing and Coding Sensor I/O Programs PG-279 



Designing and Coding Sensor I/O Programs 
Coding Sensor-Based Instructions (continued) 

II Save error code. 

II Get control of terminal. 

II Print disk error message. 

II Release terminal. 

II Detach with code = 1 . .. POINTCNT DATA F'O' 

II SWITCH DATA F'O' 

II RUNUM DATA F'O' 

II INTVL DATA F'O' 

II NPTS DATA F'O' 
ERROR DATA F'O' 

II BUFFER BUFFER 256,INDEX=BUFINDEX 

II BUFFER1 EQU BUFFER 

II BUFFER2 EQU BUFFER+256 
ENDPROG 
END .. N umber of points taken. 

II Set to '1' for 'end.' 

II Run identifier. 

II Time interval. 

II Number of points to take. 

II Data buffers. 

II First 128 words. 

II Second 128 words. 

Digital Input and Averaging 

This example illustrates the programming of a simple time averaging application. The program 
reads digital input group DIl every time a process interrupt occurs on PI2. One complete scan is 
128 data points. Each scan is added to a double-precision averaging buffer. The number of 
scans is read from the terminal as an initialization parameter. Also, the program asks whether to 
reset the averaging buffer before starting to scan. The maximum number of scans must be less 
than 1000. 

PG-280 SC34-0637 

o 

o 

o 



0 

0 

o 

Coding Sensor-Based Instructions (continued) 

.. START GETVALUE NSCAN,TXT1 
IF (NSCAN,GE,1000) ,GOTO,ERROR 
RESET PI2 

II QUESTION TXT2,NO=BEGIN 

II MOVE ABUFR,0,256 

II BEGIN DO NSCAN 

II DO 128 

II WAIT PI2 

II RESET PI2 

II SBIO DI1,BUFR,INDEX 
ENDDO 

II ADDV ABUFR,BUFR,128,PREC=D 

IE MOVE 1,0 
ENDDO 
PRINTEXT TXT3 

ERROR PRINTEXT TXT4 

III GOTO START 
TXT1 TEXT '@NUMBER OF SCANS - , 
TXT2 TEXT , RESET AVERAGING BUFFER? , 
TXT3 TEXT , ALL SCANS COMPLETE@' 
NSCAN DATA F'O' 
BUFR BUFFER 128,INDEX=I 
ABUFR BUFFER 256 
TXT4 TEXT , TOO MANY SCANS - RE-ENTER@' .. Get number of scans. 

II Reset average buffer? 

II Yes - reset it. 

II Set up for NSCANS. 

II Set up for 128 points. 

II Wait for interrupt. 

II Reset interrupt. 

II Read Dl1 (Indexing). 

II One scan is complete. Move the data to the averaging buffer. 

IE Reset buffer index. 

III Return for input. 

In this example, the number of scans to be done is read from the terminal and checked against 
1000. If it is greater than or equal, an error message is printed and the program returns for a 

Chapter 14. Designing and Coding Sensor I/O Programs PG-281 



Designing and Coding Sensor I/O Programs 
Coding Sensor-Based Instructions (continued) 

new input parameter. The operator is asked if the averaging buffer is to be reset. If yes, the 
MOVE instruction sets the averaging buffer (ABUFR) to O. A loop is then initialized for the 
number of scans desired. A second loop is set up for a single scan of 128 points. The program 
waits for an interrupt on PI2 and, when it occurs, resets the interrupt for the next point, reads 
the digital input DB using automatic indexing into the buffer BUFR. When a scan is complete, 
the data is added to the ABUFR buffer. The buffer index, I, is reset to O. When all scans are 
complete, a message is printed. The output from the program is illustrated in the following 
example: 

NUMBER OF SCANS - 33 

PG-282 SC34-0637 

RESET AVERAGING BUFFER? Y 
ALL SCANS COMPLETE 

o 

o 



o 

o 

o 

Chapter 15. Designing and Coding Graphic 
Programs 

The Event Driven Executive provides various graphics-oriented tools that can assist you in the 
development of a graphics application. 

The graphics tools you can use are the EDL graphics instructions and the graphics utilities. This 
section describes the graphic instructions supported by the Event Driven Executive. The graphic 
utilities are described in the Operator Commands and Utilities Reference. 

Graphics Instructions 

Seven graphics instructions are provided by the Event Driven Executive. These graphics 
instructions, used with the terminal support described, can aid in the preparation of graphic 
messages, allow interactive input, and draw curves on a display terminal. 

These instructions are only valid for ASCII terminals that have a point-to-point vector graphics 
capability and are compatible with the coordinate conversion algorithm described in Internal 
Design for graphics mode control characters. The function of the various ASCII control 
characters used by a terminal are described in the appropriate device manual. Such terminals 
may be connected to the Series/l via the #7850 Teletypewriter Adapter. 

Use the graphics instructions in the same manner as other Event Driven Language instructions, 
except that the supporting code is included in your program rather than in the supervisor. If you 
code all the instructions in a program, this code requires approximately 1500 bytes of storage. 

Chapter 15. Designing and Coding Graphic Programs PG-283 



Designing and Coding Graphic Programs 
Graphics Instructions (continued) o 

PG-284 SC34-0637 

When using the graphics instructions described, detailed manipulation of terminal instructions 
and text messages is not required. 

All graphics instructions deal with ASCII data. Therefore, when you send an ASCII text string 
to the terminal, code the XLATE=NO parameter on the PRINTEXT instruction. 

Use of the graphics instructions requires that your object program be processed by the linkage 
editor, $EDXLINK, to include the graphics functions which are supplied as object modules. 
Refer to Chapter 5, "Preparing an Object Module for Execution" on page PG-89 for the 
description of the autocall option of $EDXLINK, and for information on the use of the 
"AUTO=$AUTO,ASMLIB" option of $EDXLINK. 

The following is a list of the graphics instructions provided by the Event Driven Executive. 
These instructions are described in detail in the Language Reference. 

The CONCAT statement concatenates two text strings or a text string and a graphic control 
character. 

The GIN instruction allows you to specify unscaled coordinates interactively, rings the bell, 
displays cross hairs, waits for the operator to position the cross hairs and key in any single 
character, returns the coordinates of the cross-hair cursor, and optionally returns the 
character entered by the user. 

The PLOTGIN instruction allows you to specify scaled coordinates, rings the bell, displays (~. '" 
the cross hairs, and waits for the operator to position the cross-hairs and key any character. V 

The SCREEN instruction converts x and y numbers representing a point on the screen of a 
terminal to the 4-character text string which will be interpreted by the terminal as the 
graphic address of the point. 

The XYPLOT instruction is used to draw a curve on the display connecting points specified 
by arrays of x and y values. 

The YTPLOT instruction draws a curve on the display connecting points equally spaced 
horizontally and having heights specified by an array of y values. Data values are scaled to 
screen addresses according to the plot control block, and points outside the range are placed 
on the boundary of the plot area. 



o 

0 

o 

The Plot Control Block 

The plot control block is required by the PLOTGIN, XYPLOT, and YTPLOT instructions. 

The plot control block is 8 words of data defined by DATA statements which provide definition 
of size and position of the plot area on the screen and the data values associated with the edges 
of the plot area. Indirectly, the scale of the plot is specified. The format of a plot control block 
is: 

label DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

F'xls' 
F'xrs' 
F'xlv' 
F'xrv' 
F'ybs' 
F'yts' 
F'ybv' 
F'ytv' 

All 8 explicit values (no addresses) are required and have the following meaning: 

xIs x screen location at left edge of plot area 

xrs x screen location at right edge of plot area 

xIv x data value plotted at left edge of plot 

xrv x data value plotted at right edge of plot 

ybs y screen location at bottom edge of plot 

yts y screen location at top edge of plot 

ybv y data value plotted at bottom edge of plot 

ytv y data value plotted at top edge of plot 

Chapter 15. Designing and Coding Graphic Programs PG-285 



Designing and Coding Graphic Programs 
Example 

In the following example, the graphic control characters (GS, US, ESC, etc.) are assumed to 
have certain meanings for the terminal. A different terminal may require the use of different 
control characters to perform a similar functions. 

The example shows the use of the graphics instructions described on the preceding pages. This 
program prints a message, plots a curve with axes, puts the cross hair on the screen, waits for the 
user to position the cross hair and press a key and carriage return, and then displays the 
character entered and x,y coordinates of the cross-hair position. You may then end the program 
or start it again. 

GTEST PROGRAM START 
START EQU * .. PRINTEXT 'GRAPHICS TEST PROGRAM PRESS ENTER @' 

READTEXT TEXT1 

II CONCAT TEXT1,ESC,RESET 

II CON CAT TEXT1,FF .. PRINTEXT TEXT1,XLATE=NO 

II STIMER 1000,WAIT 

II CONCAT TEXT1,GS,RESET 

II SCREEN TEXT1,520,300,CONCAT=YES 

II CONCAT TEXT1 , US 

II PRINTEXT TEXT1,XLATE=NO 
PRINTEXT TEXT3 

IE YTPLOT YDATA,X1,PCB,NPTS,1 

III XYPLOT YAXISX,YAXISY,PCB,TWO 
XYPLOT XAXISX,XAXISY,PCB,TWO 

IE PLOTGIN X,Y,CHAR,PCB 

II PRINTEXT TEXT4 
PRINTEXT CHAR,XLATE=NO 
PRINTEXT TEXT5 
PRINTNUM X,2 

II QUESTION TEXT6,NO=START 
PROGSTOP 

TEXT1 TEXT LENGTH=30 
TEXT3 TEXT 'X-AXIS LABEL' 
TEXT4 TEXT '@CHARACTER STRUCK WAS , 
TEXT5 TEXT '@X,Y COORDINATES =' 
TEXT6 TEXT '@END PROG (YIN)? 

, 
DATA X'0201' 

CHAR DATA F'O' 
YDATA DATA F'O' 

DATA F'1 ' 
DATA F'O' 
DATA F'2' 
DATA F'O' 
DATA F'1 ' 
DATA F'-2' 
DATA F' -1 ' 

PG-286 SC34-0637 

o 

f'\ 
I l 
,"--, 

o 



0 

0 

o 

Example (continued) 

.. 
II 

II .. 
II 

II 

II 

II 

II 

II 

X1 DATA P'O' 
NPTS DATA P'8' 
YAXISX DATA 2P'0' 
YAXISY DATA P'-S' 

DATA p'S' 
XAXISX DATA P'O' 

DATA p' 10' 
XAXISY DATA 2P'0' 
TWO DATA P'2' 
PCB DATA p'SOO' 

DATA P'1000' 
DATA P'O' 
DATA p' 10' 
DATA p' 100' 
DATA P'600' 
DATA P'-S' 
DATA p'S' 

X DATA P'O' 
Y DATA P'O' 

ENDPROG 
END 

Print a message. 

Reset the text string character count and put the ESC code into TEXT 1. 

Put the FF character into TEXT1. 

Erase the screen and send the alpha cursor to the home position (upper left corner). 

Delay for a second to allow the erase sequence to complete. 

Reset the text string again and insert the graph mode character (GS) to the text string. 

Form the 4 characters required to draw a dark vector to the screen address (520,300). 
The 4 characters represent the Hi Y, Lo Y, Hi X, and Lo X values. 

Write an axis label at this position by returning to alpha mode (US). 

Perform the full operation. Prevent conversion of data (XLATE=NO), as it is already 
in ASCII. 

Plot the data, YDATA (8 points). The plot area and coordinates are given by the 8 
words at the label PCB. The plot area in screen addresses is 500 to 1000 in the 
x-direction (horizontal) and 100 to 600 in the y-direction (vertical). The corresponding 
plot area in the user's coordinates is 0 to 10 in the x-direction and -5 to 5 in the 
y-direction. 

III Draw the X and Y axes with this and the next instruction. Each of these is simply a 
2-point plot, from the origin to the end point. 

Chapter 15. Designing and Coding Graphic Programs PG-287 



Designing and Coding Graphic Programs 
Example (continued) 

III Put the cross-hair cursor on the screen. The operator should position the cursor and 
enter a character. When the program receives the character, it converts the cursor 
position to the plot coordinates as specified at PCB, and stores the results at X and Y. 

111 Print the results. 

111 Ask if the operator wishes to end the program. 

Figure 9. Graphics Program Output. This figure shows the result of the preceding program. 

PG-288 SC34-0637 

o 

o 

o 



o 

Chapter 16. Controlling Spooling from a 
Program 

o What Is Spooling? 

o 

Spooling is the process of writing to disk or diskette an output listing that you eventually want to 
print or display. 

You might use spooling for any of the following reasons: 

Your program writes more than one output listing to the same printer. 

• You want a program to finish processing more quickly. (Most programs can generate output 
faster than the printer can print it.) 

• You want to delay printing an output listing until some time after a program has executed. 

• You want more than one copy of an output listing. 

• Two or more programs write output listings to the same printer at the same time. 

Chapter 16. Controlling Spooling from a Program PG-289 



Controlling Spooling from a Program 
Spooling the Output of a Program 

An application program can control the printing and disposition of its spooled output with a 
spool-control record. 

The Spool-Control Record 

The spool-control record consists of a special print record. It must be the first item printed by 
the program after you enqueue the device. 

The spool-control record allows the application program to specify: 

Whether or not the spool job is to be held and not printed 

Whether or not the spool job is to be kept after printing 

The type of forms to be used to print the output 

The number of copies to be printed 

The separator page heading to be printed 

Whether forms alignment should be done. 

The spool-control record applies only to the spool job that follows it. Thus, if a program creates 
more than one spool job, and is to control the printing and disposition of each spool job, each 
spool job must have its own spool-control record. 

Note: The $S AL T operator command overrides the spool-control record. 

The format of the spool-control record is as follows: 

PG-290 SC34-0637 

Position 

1-8 
9 
10-12 
13 
14 
15 
16 
17 
18-21 
22 
23-30 
31 
32 

Contents 

***SPOOL 
blank 
Number of copies to print (1-127) 
blank 
Whether spool job is held (Y=yes, N=no) 
blank 
Whether spool job is held (Y=yes, N=no) 
blank 
Forms type 
blank 
Report identification 
blank 
Forms alignment (Y=yes, N=no) 

If you use the spool-control record, specify the fields exactly as shown. The fields with a YIN 
option default to N. If you enter a character other than a Y or N, the system uses the default. 

Note: Do not generate the spool-control record in an application program unless spooling has 
been activated. If spooling is not active, the line is printed as ordinary text to the printer (see 

o 

, I Or 



o 

o 

o 

Spooling the Output of a Program (continued) 

Example 

"Determining Whether Spooling Is Active" on page PG-296 for a description of how an 
application program can determine if the spooling facility is active). 

The following program uses the spool-control record to create 10 copies with report 
identification SPOOLPRG, hold and keep disposition in effect, specify forms type ABCD, and 
specify no forms alignment. The report printed consists of two messages. 

SPOOL PROGRAM START 
PRTR lOCB MPRTR 
START EQU * .. ENQT PRTR 

II PRlNTEXT '***SPOOL 010 Y Y ABCD SPOOLPRG N' 

II PRlNTEXT '@MESSAGE 1 ' 
PRlNTEXT '@MESSAGE 2' 
DEQT 
PROGSTOP 
ENDPROG 
END 

.. Obtain exclusive use of the system printer. 

II Create a spool-control record. Specify the number of copies as 10 (010), that you want 
to hold and keep the output (Y Y), that the type of forms is ABCD, that the report 
identification is SPOOLPRG, and that you do not require forms alignment (N). 

II Create a line of output. 

Executing the Example 

To execute the example, you must do the following: 

1. Make sure that your system includes the spooling facility. To use the spooling facility, you 
must include IOSPOOL at system generation time. (For information on how to include 
IOSPOOL in your supervisor, refer to Installation and System Generation Guide.) 

/ 

Chapter 16. Controlling Spooling from a Program PG-291 



Controlling Spooling from a Program 
Spooling the Output of a Program (continued) 

PG-292 SC34-0637 

2. Find out whether the device you want to use is a spool device. Use the $TERMUTI utility 
as follows: 

l>~L$JE~MUil··.·· 

The system responds: 

L.OADI NG $JERMUTl 26P ,n :28: 07 ~ 

***TERMINAL CONFIGURATOR*** 

COMMAND (?): 

Respond with the CT (Configure Terminal) command: 

L COMMAND (1): CT 

The system prompts for the terminal name. Respond with the terminal name as follows: 

ENTER TERMINAL. NAME: MPRTR 

The system then displays, one at a time, the parameters that define how the terminal 
operates. Since we are changing only one of the parameters, the one concerning whether or 
not the terminal is a "spoolable device," simply press enter until the system displays the 
SPOOLABLE prompt: 

PAGE SIZE 

OUTPUT PAUSE 

SPOOLABLE (YIN) 

(NOW IS 24) : 
VALUE NOT CHANGED 

(NOW IS N): 
VALUE NOT CHANGED 

(NOW IS N): 

If the system displays "NOW IS N," the terminal is not a spoolable device. Change the 
parameter to Y. 

L-...~_S_PO_O ... L_A_BL ... E .... • .... (_Y I_N_> __ ...... ___ (_NO_W_I_S_N_: ... Y_· __________________________ ...,J 

o 

o 



o Spooling the Output of a Program (continued) 

o 

o 

Continue hitting enter until the COMMAND prompt appears. Then end the utility: 

l COMMAND (1), EN 

3. Tell the spool facility that a device is a spool device. Use the $SPLUTI utility as follows: 

l> $L $SPLUTl 

The system responds: 

LOADING $SPLUTl 26P!11:28:07! LP=9200, PART= 2 

****************************************************** 
** EDX SPOOL UTILITY ** 
** CHANGES EFFECTIVE THE NEXT TIME $SPOOL IS LOADED ** 
****************************************************** 

DSNAME---VOLUME-MAXJOBS-MAXACTV-RESTRT-GRPS-GRPSZ-SEP--DEVICES-AUTO-FORM 

SPOOL EDX003 10 4 Y 10 100 Y $SYSPRTR Y 

COMMAND (?): 

If the restart option is Y, change it to N. Enter the RS command: 

lCOMMAND (1), RS 

The system responds: 

RESTART YIN? 

Enter N and press enter. 

The system responds: 

DSNAME---VOLUME-MAXJOBS-MAXACTV-RESTRT';"GRPS-GRPSZ-SEP--DEVICES~AUTO-FORM 

SPOOL EDX003 10 4 N 10 100 Y $SYSPRTR Y 

COMMAND (?): 

Chapter 16. Controlling Spooling from a Program PG-293 



Controlling Spooling from a Program 
Spooling the Output of a Program (continued) 

PG-294 SC34-0637 

Respond with the CD (Change Spool Devices) command: 

The system prompts for the terminal name. Respond with the terminal name as follows: 

L O.VICENAME (ENTER BLANK TO END): MPRTR J 
The system then asks whether you want the spool job (the output of a program that 
generates spool output) to print as soon as the program completes. It also asks for the form 
number you want to use and whether you want to change another spool device. 

In this example, we are responding that we do not want the spool job to begin printing as 
soon as the program completes, that the forms code is ABCD, and that we do not want to 
change another spool device. 

WRITER AUTOSTART? (YIN): N 
ENTER FORMS CODE: ABCD 
DEVICE NAME (ENTER BLANK TO END): 

Then end the utility: 

l COMMAND (1): EN 

4. Load the spooling facility as follows: 

l' $L $SPOOL 

Note: Do not use the session manager to start the spool facility. 

If the spooling facility was not included at system generation time, the system responds with 
return code 8. 

Otherwise, the system responds: 

LOAD ING$SPOOL 26P,12:25:54, LP=8800, PART= 2 

SPOOL INITIALIZATION COMPLETE 

o 

o 



o Spooling the Output of a Program (continued) 

o 

o 

5. Start the program that generates the output that is to be spooled (in this case, program 
AP16A on volume EDX40). 

> $L AP16A,EDX40 

The system executes the program and places the output on the spool data set. 

Printing Output That Has Been Spooled 

To print output that has been spooled, use the $S operator command as follows: 

L> $5 W5TR 

The system prompts you for the writer name. Respond with the name of the device on which 
you want the spool job displayed or printed: 

WRITER NAME: MPRTR 

The system then prompts for the forms code. Respond with the one- to four-character forms 
code (in our example, ABeD): 

lFORM5' ABtD 

The system responds: 

WRITER STARTED 

and begins to print or display the spool job. 

Stopping Spooling 

To stop spooling, use the $S operator command as follows: 

l> $5 STOP 

Chapter 16. Controlling Spooling from a Program PG-295 



Controlling Spooling from a Program 
Determining Whether Spooling Is Active 

An EDL application might be such that it should not be run unless spooling has been activated 
(or deactivated). Such an application can determine if spooling is active and use that 
information to instruct the operator to activate or deactivate spooling. An application program 
can also decide whether or not to print a spool-control record, depending on whether or not 
spooling is activated. 

The following EDL coding example shows how an application program can determine if the 
spooling facility has been activated: 

.. MOVE #2,$CVTSPL,FKEY=O 
II IF #2,NE,O 
II MOVE #2, (+$IOSPSPM,#2) ,FKEY=O 

ENDIF .. IF #2,NE,O 

ENDIF 

II COpy PROGEQU 
II COpy $IOSPTBL 

.. 
II 

II 

Move the address of the spool control table to register 2. 

Test whether module IOSPOOL was included at system generation time. 

If so, move the address of SPM to register 2. 

.. Test whether spooling has been activated. 

II Copy the program equates to the program. 

II Copy the spool table equates to the program. 

PG-296 SC34-0637 

High-level language programs can call this type of EDL subroutine to determine if spooling is 
active. 

o 

o 



o 

o 

o 

Preventing Spooling 

You can prevent a program from spooling its output by coding a parameter on the ENQT 
command. The parameter is coded as follows: 

ENQT SPOOL=NO 

This instruction causes the printer to be enqueued directly, when available, and prevents output 
spooling. The system ignores the SPOOL= parameter on an ENQT instruction if the device is 
not designated as a spool device or if spooling is not active. 

The default is ENQT SPOOL= YES. This allows output spooling. 

Note: ENQT SPOOL=NO without the BUSY= operand coded causes the program to wait if a 
spool writer is started to the device, even if the writer is temporarily stopped. The writer must 
be terminated to free the device. 

Chapter 16. Controlling Spooling from a Program PG-297 



Notes 

o 

o 
PG-298 SC34-0637 



o 

o 

o 

Chapter 17. Creating, Storing, and Retrieving 
Program Messages 

When designing EDL programs, you can save storage space or coding time by placing prompt 
messages and other message text in a separate message data set. EDL instructions enable your 
program to retrieve the appropriate message text when the program executes. 

By storing messages in a data set, you can change the text of a message without having to alter 
and recompile each program that uses that message. 

You can store program messages in two ways. You can store them on disk or diskette. You can 
also store them as a module that you can link-edit with a program. 

Creating and using your own program messages involves the following steps: 

1. Creating a data set for your source messages 

2. Entering your source messages 

3. Formatting and storing your source messages using the message utility, $MSGUT1 

4. Retrieving program messages using the COMP statement and the MESSAGE, GETV ALUE, 
QUESTION or READ TEXT instructions. 

The following sections describe how to create, store, and retrieve program messages. 

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-2 99 



Creating, Storing, and Retrieving Program Messages 
Creating a Data Set for Source Messages 

You create a data set for source messages with the text editor described in Chapter 3, "Entering 
a Source Program" on page PG-67. You can create one or more source message data sets and 
can store them on any volume. Messages can be simple statements or questions, or they can 
include variable fields which are filled with parameters supplied by your program. 

To enter your source messages, observe the following rules: 

• Begin each message in column 1. 

Precede each variable field with two less than symbols « <) and follow each variable field 
with two greater than symbols (> > ). 

• End each message with the characters: /* 

Begin and end comments with double slashes (/ /comment/ I). A comment must be 
associated with a message. 

Use the at sign (@) to cause the message to skip to the next line. 

Code source messages a maximum length of 253 bytes long. You can calculate the length of 
a message by adding one byte for each character in the text and one byte for each variable 
field. 

• Continue a message on a new line by coding any non-blank character in column 72. Begin 
the continued line in the first column. 

The system identifies each message by its position in the source message data set. For example, 
the system assigns a message number of 3 to the third message in the source message data set. 
Once you format your source messages with the $MSGUT1 utility, you should add any new 
messages you have to the end of the source message data set. If you no longer need a certain 
message, you should leave it in the source message data set or replace it with a new message to 
preserve the numbering scheme. 

Coding Messages with Variable Fields 

To construct a message that can return information supplied or generated by your program, you 
can code a message with one or more variable fields. When you execute your program, the 
system inserts the appropriate parameters in these variable fields and prints a complete message. 
For example, if you want to construct a message that tells a program operator how many records 
are in a particular data set on a particular volume, you could code the following: 

PG-300 SC34-0637 

THERE ARE «SIZE>S> RECORDS IN «DATA SET NAME>T> ON «VOLUME>T>./* 

The variable fields in the previous example are the number of records in the data set (SIZE), the 
data set name, and the volume name. The variable field names do not need to correspond with 
names in a program. 

o 

o 

o 



o 

o 

o 

Creating a Data Set for Source Messages (continued) 

Note: To print or display a message with variable fields, you must have included the FULLMSG 
module in your system during system generation. 

The variable fields are set off from the message text with two less than and two greater than 
symbols « < > > ). The symbols should enclose a description of the field. The system treats 
the field description as a comment. You can include up to eight variable fields within a single 
message. 

As shown in the previous example, all variable fields must also contain a control character that 
describes the type of parameter your program will pass to the variable field. S is the control 
character in the field «SIZE>S>; Tis the control character in the field < <VOLUME>T>. 
The following is a list of valid control characters and their descriptions: 

C Character data. Specify a length for the data by coding a value from 1 to 253 before the 
'c' (for example, «NAME>8C». There is no default. 

T Text. No length is necessary. (The system derives the length from the TEXT statement.) 

H Hexadecimal data. The length is four EBCDIC characters. 

S Single-word integer. Specify a length for the data by coding a value from 1 to 6 before 
the'S'. The default is six EBCDIC characters. The valid range for a single-word integer 
value is from -32768 to 32767. 

D Double-word integer. Specify a length for the data by coding a value from 1 to 11 before 
the 'D'. The default is six EBCDIC characters. The valid range for a double-word 
integer value is from -2147483648 to 2147483647. 

Your program passes parameters to a message in the order you specified the parameters in the 
instruction. The following example shows a message instruction with the parameter list operand 
(PARMS=): 

MSG 

ID 
SIZE 
DSNAME 
VOLUME 

PROGRAM 

MESSAGE 

COMP 
DC 
TEXT 
TEXT 

START,DS=((MSGSET,EDX003)) 

2,COMP=ID,PARMS=(DSNAME,VOLUME,SIZE) 

'SRCE' ,DS1,TYPE=DSK 
F' 100' 
'DATA SET l' 
'EDX002' 

The instruction will retrieve message number 2. The source message for message number 2 
appears as follows: 

«DATA SET NAME>T> ON «VOLUME>T> IS ONLY «SIZE>S> RECORDS./* 

The system places the first parameter (DSNAME) in the first variable field, the second 
parameter (VOLUME) in the second field, and the third parameter (SIZE) in the third field. 

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-301 



Creating, Storing, and Retrieving Program Messages 
Creating a Data Set for Source Messages (continued) 

You may, however, want to alter or reword the message in the previous example. To change the 
order of the variable fields in your source message without changing the order of the parameter 
list in your program, you can code an additional number after the control character. This 
number, from 1 to 8, points to the parameter that the system should insert into the variable field. 
The number corresponds to the position of the parameter in the parameter list. For example, 
< <NAME>C3 > tells the system to retrieve the third parameter in a parameter list. 

In the following example, the order of the variable fields in message number 2 has been 
switched, but a number following the control character points to the correct parameter for the 
variable field: 

THERE ARE ONLY «SIZE>S3> RECORDS IN «DATA SET NAME>T1> ON C 

«VOLUME>T2>./* 

'S3' points to the third parameter in the list (SIZE), 'Tl' points to the first parameter in the list 
(DSNAME), and 'T2' points to the second parameter in the list (VOLUME). 

Sample Source Message Data Set 

The following is sample of a source message data set. The data set is named SOURCE on 
volume EDX40. 

PG-302 SC34-0637 

//THIS IS A COMMENT 
DO YOU WANT TO ENTER A NUMBER? /* 
ENTER «TYPE OF VALUE>T> VALUE LESS THAN «VALUE>S>./* 
THE PROGRAM HAS PROCESSED THE INPUT DATA./* 
ENTER YOUR «FIRST/LAST/FULL NAME>10C>./* 
//THIS IS ANOTHER COMMENT. // 
ALL INPUT DATA HAS BEEN RECEIVED./* 
THE VALUE YOU ENTERED IS: «VALUE>S1> /* 
THE DATA YOU ENTERED IS: «DATA>T> /* 
THE DEVICE «ID>H1> AT ADDRESS «DEVICE ADDRESS>H2> IS IN USE./* 
THIS MESSAGE WILL BE CONTINUED @ ON THE NEXT LINE./* 

//+ 

+ 

o 

o 



o 

o 

o 

Fonnatting and Storing Source Messages (using $MSGUT1) 

Example 1 

Once you have created a source message data set, you must use the message utility, $MSGUTl, 
to convert the source messages into a form the system can use. The utility copies the source 
messages, formats them, and stores the formatted messages in another data set or module that 
you specify. (Refer to the Operator Commands and Utilities Reference for a detailed explanation 
of how to use the message utility.) 

Each time you add new messages to the source message data set, you must reformat the data set 
with $MSGUTl. 

The $MSGUTI utility allows you to: 

Format a source message data set and store the formatted messages on disk or diskette. 

• Format a source message data set as a module that you link-edit with a program. Use this 
option for systems without disk or diskette storage or to improve performance. 

• Obtain a hard-copy listing of the messages contained in a specific source message data set. 

Before you load the $MSGUTI utility, you must allocate a work file. You can use the AL 
command of the $DISKUTI utility to allocate the work file. Allocate a data-type data set large 
enough to hold the source message data set (one record for every source message). 

When you load $MSGUTl, the utility prompts you for the name and volume of the work file as 
follows: l WORKJ;'ILE( NAME, VOLUME;) : ) 
Respond with the data set name and volume that you allocated with the $DISKUTI utility. 

In the following example, $MSGUTI formats the source message data SOURCE shown in the 
previous section. The example uses the DSK option and stores the formatted messages in the 
data set MESSAGE on volume EDX40. 

C'OM~f\Nf){?} :f)SK . '. . . 
:MESSAGESOURCEDAJASET (NAME~Vq~UME): ,SQURCE,EDX40' 
OISKRESlDEIHI)ATASET .. (NAME;V~LUME:): MESSAGE,EOX40 

/STARTOf· 0 ISK:t1ESSAG;PR9CESStNG:B;GI N$ . 

When the utility finishes formatting and storing the messages, it returns the following message: 
" , ., 

D1S:K;RES.I:DENTM.ESSAGES.SJORE.b,';I·N···MESSAGE,;DX4(j 

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-303 



Creating, Storing, and Retrieving Program Messages 
Formatting and Storing Source Messages (using $MSGUT1) (continued) 

Example 2 

The following example uses the STG option and stores the module in data set MSG on volume 
EDX003. 

When the utility finishes formatting and storing the messages, it returns the following message: 

If the $MSGUTI utility encounters er~ors, it prints an error message on the system printer. 

Retrieving Messages 

To retrieve a message from storage and include it in your program, you must code a COMP 
statement and anyone of the following instructions: MESSAGE, GETVALUE, QUESTION, 
and READTEXT. (Refer to the Language Reference for a full description of these instructions 
and how to code them to retrieve messages.) 

The system retrieves program messages from the data set or module that you created with 
$MSGUT1. If you stored your formatted messages on disk or diskette, you must code the name 
of the data set that contains the messages and the volume it resides on in the PROGRAM 
statement for your program. 

If you formatted the messages as a module, you must link-edit your program with the module. 

PG-304 SC34-0637 

o 

I~ 
r I 
~ 

o 



o 

o 

Retrieving Messages (continued) 

Defining the Location of a Message Data Set 

The CaMP statement defines the location of a message data set or the name you assigned the 
module when you used the STG option of the $MSGUTI utility. To retrieve a message, the 
MESSAGE, GETVALUE, QUESTION, and READ TEXT instructions must refer to the label of 
a CaMP statement. More than one instruction can refer to the same CaMP statement. You 
must code a separate statement, however, for each message data set your program uses. 

If your messages are in a module, you must code the name of the module. If your message data 
resides on disk or diskette, you must indicate the data set in the PROGRAM statement. You 
indicate the correct data set by specifying its position in the data set list. 

In addition to coding the location of the message data set, you must also code a four-character 
prefix. The system prints this prefix and the number of the message you retrieved if you specify 
(MSGID= YES) on the MESSAGE, GETV ALUE, QUESTION, or READTEXT instructions. 

The following example shows a CaMP statement that refers to the second data set on the 
PROGRAM statement. DS2 points to data set MESSAGE on volume EDX40. 

MESSAGE 

DISKMSG 

PROGRAM 

PROGSTOP 
COMP 

START,DS=(DATA, (MESSAGE,EDX40» 

'ERRS' ,DS2,TYPE=DSK 

The following example shows a CaMP statement that refers to a module that contains 
messages. 

MESSAGE 

STGMSG 

PROGRAM 

PROGSTOP 
COMP 

START 

'ERRS' ,MSG,TYPE=STG 

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-305 



Creating, Storing, and Retrieving Program Messages 
Retrieving Messages (continued) 

The M ESSAG E instruction 

The MESSAGE instruction retrieves a message from a data set on disk, diskette, or from a 
module. Then the instruction prints or displays the message. You must code the number of the 
message you want displayed or printed and the label of the COMP statement that gives the 
location of the message (COMP=). 

You can pass parameters to variable fields in a message by coding the parameters on the 
P ARMS = operand of the instruction. If you code MSGID= YES, the system prints or displays 
the number of the message and the four-character prefix you coded on the COMP statement in 
front of the message text. 

In the following example, the MESSAGE instruction retrieves the third message in a message 
data set and passes the parameter PART# to the message. The COMP statement defines the 
message data set as the first data set in the PROGRAM statement list. 

STOCK 

PARTS 
PART# 

PROGRAM 
MESSAGE 

PROGSTOP 
COMP 
DC 

START,DS=(PARTS,DATA) 
3,COMP=PARTS,PARMS=PART#,MSGID=YES 

'PART' ,DS1,TYPE=DSK 
P'56' 

In the following example, the MESSAGE instruction retrieves the second message in a module 

o 

that has been link-edited with the program and passes the message the parameter PART#. The rr-\ 
COMP statement defines the message data set as module MSG. ~,"-::,.I) 

STOCK 

PARTS 
PART# 

PG-306 SC34-0637 

PROGRAM 
MESSAGE 

PROGSTOP 
COMP 
DC 

START 
2,COMP=PARTS,PARMS=PART#,MSGID=YES 

'PART' ,MSG,TYPE=STG 
P'43' 

o 



o 

o 

o 

Retrieving Messages (continued) 

The GETVALUE, QUESTION, and READTEXT Instructions 

Instead of coding prompt messages on the GETV ALUE, QUESTION, and READTEXT 
instructions, you can retrieve prompt messages from a message data set or module. You code 
the number of the message you want to retrieve for the second operand of the GETV ALUE and 
READTEXT instructions and the first operand of the QUESTION instruction. In addition, you 
must code the label of the COMP statement that gives the location of the message (COMP=). 

You can pass parameters to variable fields in a message by coding the parameters on the 
P ARMS = operand of the instruction. By coding MSGID= YES, the system prints or displays 
the number of the message and the four-character name you coded on the COMP statement at 
the front of the message text. 

In the following example, the GETVALUE instruction retrieves the fifth message from a 
module, called MSGTEXT, that has been link-edited with your program. The instruction also 
passes the message the parameters VALUE and SIZE to the message. 

PROMPT 
VALUE 
SIZE 

GETVALUE 

PROGSTOP 
COMP 
TEXT 
DC 

INPUT, S,COMP=PROMPT,PARMS= (VALUE, SIZE) 

'TASK' ,MSGTEXT,TYPE=STG 
'AN INTEGER' 
F'7S' 

In the following example, the GETV ALUE instruction retrieves the ninth message from a data 
set on disk or diskette. The instruction passes the message the parameters V ALUE and SIZE. 

BEGIN 

PROMPT 
VALUE 
SIZE 

PROGRAM 

GETVALUE 

PROGSTOP 
COMP 
TEXT 
DC 

START, DS=MSGS 

INPUT, 9, COMP=PROMPT, PARMS= (VALUE, SIZE) 

'TASK' ,DS1,TYPE=DSK 
'AN INTEGER' 
F'7S' 

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-307 



Creating, Storing, and Retrieving Program Messages 
Sample Program 

The following sample program retrieves five program messages from a disk data set formatted in 
the previous section. (See "Example 1" on page PG-303.) The name of the data set is 
MESSAGE and it resides on EDX40. 

.. MESSAGE 
II START 

II .. 
II NAME 

II 
II 
II 

II 

IE 
III 

MSG4 
MSG6 
MSG7 
MSG9 
DISKMSG 
A 
B 
P1 
P2 
TXT 

PROGRAM START,DS=«MESSAGE,EDX40)) 
QUESTION 1,NO=NAME,SKIP=1,COMP=DISKMSG 
GETVALUE A,2,SKIP=1,COMP=DISKMSG,PARMS=(P1,P2) 
PRINTEXT '@THE NUMBER IS: ' 
PRINTNUM A,SKIP=1 
READTEXT B,+MSG4,SKIP=1,COMP=DISKMSG,PARMS=TXT 
PRINTEXT '@THE DATA ENTERED IS: ' 
PRINTEXT B,SKIP=1 
MESSAGE +MSG6,COMP=DISKMSG,SKIP=2,PARMS=A, 

MSGID=YES 
MESSAGE +MSG7,COMP=DISKMSG,SKIP=2,PARMS=B, 

MSGID=YES 
MESSAGE +MSG9,COMP=DISKMSG,SKIP=2,PARMS=B, 

MSGID=YES 
PROGSTOP 
EQU 4 
EQU 6 
EQU 7 
EQU 9 
COMP 'SRCE',DS1,TYPE=DSK 
DATA 
TEXT 
TEXT 
DATA 
DATA 
ENDPROG 
END 

F'O' 
LENGTH=40 
'AN INTEGER' 
F' 10' 
CL10'LAST NAME' 

C 

C 

C 

.. Begin the program and identify the data set name and volume of the message data set 
(MESSAGE on volume EDX40). 

II Display the prompt message DO YOU W ANT TO ENTER A NUMBER? The first 
operand (I) identifies the message as the first message in the data set MESSAGE. The 
COMP= operand refers to a COMP statement labeled DISKMSG. If the operator 
enters Y, the next sequential instruction, the GETV ALUE instruction, executes. If the 
operator enters N, control passes to the label NAME. 

II Use the second message in the message data set as a prompt message. The instruction 
retrieves the prompt message and inserts parameters PI and P2 into the message. The 
operator receives the prompt message ENTER AN INTEGER VALUE LESS THAN 10. 

.. Print the number the operator enters. 

II Retrieve the fourth message (because MSG I is equated to 4) from the message data set 
and inserts parameter TXT into the message. The operator receives the prompt message 
ENTER YOUR LAST NAME. 

PG-308 SC34-0637 

o 

(f-~ 

',=, 

o 



o Sample Program (continued) 

o 

o 

II Print the name the operator enters. 

II Print or display the sixth message (because MSG6 is equated to 6) from the message 
data set. The COMP= operand refers to the COMP statement labelled DISKMSG. The 
instruction uses the integer value the operator entered as the parameter for the message. 
If the operator entered a 6, for example, the system would print or display: THE VALUE 
YOU ENTERED IS 6. 

II Print or display the seventh message (because MSG7 is equated to 7) from the message 
data set. The COMP= operand refers to the COMP statement labelled DISKMSG. The 
instruction uses the last name the operator entered as the parameter for the message. If 
the operator entered the name FRENCH, for example, the system would print or 
display: SRCE0007 THE DATA YOU ENTERED IS FRENCH. 

EI Equate MSG4 to the fourth message in the message data set. 

III Define the message data set as the first data set on the PROGRAM statement. Identify 
the data set as a disk- or diskette-resident data set (TYPE=DSK). SRCE is the prefix 
that would appear if you coded MSGID=YES on a QUESTION, PRINTEXT, 
GETV ALUE, or READTEXT instruction. 

III Define a parameter (used by the first MESSAGE instruction). 

The program uses the following source message data set: 

//THIS IS A COMMENT 
DO YOU WANT TO ENTER A NUMBER? /* 
ENTER «TYPE OF VALUE>T> VALUE LESS THAN «VALUE>S>./* 
THE PROGRAM HAS PROCESSED THE INPUT DATA./* 
ENTER YOUR «FIRST/LAST/FULL NAME>10C>./* 
//THIS IS ANOTHER COMMENT. // 
ALL INPUT DATA HAS BEEN RECEIVED./* 
THE VALUE YOU ENTERED IS: «VALUE>Sl> /* 
THE DATA YOU ENTERED IS: «DATA>T> /* 
THE DEVICE «ID>Hl> AT ADDRESS «DEVICE ADDRESS>H2> IS IN USE./* 
THIS MESSAGE WILL BE CONTINUED @ ON THE NEXT LINE./* 

//+ 

+ 

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-309 



Creating, Storing, and Retrieving Program Messages 
Sample Program (continued) o 

The program might produce output like the following: 

o 
PG-310 SC34-0637 



o 

o 

o 

Chapter 18. Queue Processing 

You can use the queue processing instructions of EDL to store and retrieve large amounts of 
data. You can retrieve data from a queue on either a first-in-first-out or last-in-first-out basis. 

Defining a Queue 

To define a queue, use the DEFINEQ statement. The following DEFINEQ statement defines a 
queue with ten queue elements. A queue element is either an address or data that you want to 
store. 

MSGQ DEFINEQ COUNT=10 

The queue called MSGQ can contain ten one-word addresses or one-word data items. 

If you want to store data items that are longer than one word, code the SIZE operand as follows: 

QUEUE DEFINEQ COUNT=15,SIZE=30 

The queue called QUEUE can contain 15 thirty-byte queue elements. 

Chapter 18. Queue Processing PG-311 



Queue Processing 
Putting Data into a Queue 

To put data into a queue, use the NEXTQ instructions as follows: 

NEXTQ MSGQ,ADDR 

ADDR DATA F'O' 

The instruction puts ADDR into the queue called MSGQ. ADDR can contain either one word 
of data or an address. 

To put more than one word of data into a queue, use the FIRSTQ instructions to find the 
address of the first storage area into which data can be moved. 

FIRSTQ QUEUE,#1 

QUEUE DEFINEQ COUNT=15,SIZE=20 

The instruction puts into register 1 the address of the first storage area into which you can move 
twenty bytes of data. 

You could use the following instructions to prompt the operator for data and store the response 
in QUEUE: 

READTEXT ELEMENT, 'ENTER YOUR NAME: 
MOVE (O,#1),ELEMENT, (20,BYTE) 

The READTEXT instruction prompts the operator and places the response in ELEMENT. The 
MOVE instruction moves the response to the address retrieved by the FIRSTQ instruction. 

Retrieving Data from a Queue 

To retrieve data from a queue, use either the FIRSTQ or LASTQ instruction. 

Use the FIRSTQ instruction to retrieve the oldest entry from a queue. The following example 

FIRSTQ QUEUE, #2 

puts into register 2 the address of the oldest element in the queue called QUEUE. 

Use the LASTQ instruction to retrieve the newest entry from a queue. The following example 

LASTQ QUEUE,ADDR 

puts into ADDR the address of the oldest element in the queue called QUEUE. 

PG-312 SC34-0637 

o 

o 



o 

0 

o 

Retrieving Data from a Queue (continued) 

Example 

To transfer control if the queue becomes empty, code the EMPTY operand as follows: 

,FIRSTQ QUEUE,ADDR,EMPTY=MT 

MT EQU * 

ADDR DATA F 

The instruction retrieves an element from the queue called QUEUE, puts the address of the 
element in ADDR, and causes a branch to MT if no more elements exist in the queue. 

The following example prompts the operator for 20 characters of data, stores the data in one 
queue, moves the addresses of the elements to another queue, and prints the elements on a 
first-in-first-out (FIFO) basis. 

QTEST PROGRAM START 
START EQU * 

DO 10,TIMES .. FIRSTQ QUEUE1,#1 

B READTEXT MSG, 'ENTER UP TO 20 CHARACTERS: , 

II MOVE ( ° , # 1 ) , MSG, (2 0, BYTE) .. NEXTQ QUEUE2,#1,FULL=FULLQ 
ENDDO 
GOTO PRINT 

FULLQ EQU * 
PRINTEXT '@QUEUE2 FULL. , 

PRINT EQU * 
DO 10,TIMES 

II FIRSTQ QUEUE1,#1,EMPTY=DONE 

II MOVE MSG, (0,#1), (20,BYTE) 

II PRINTEXT MSG,SKIP=1 

II NEXTQ QUEUE1,#1 
ENDDO 

DONE PROGSTOP 

II QUEUE 1 DEFINEQ COUNT=10,SIZE=20 

III QUEUE2 DEFINEQ COUNT=10 
MSG TEXT LENGTH=20 

ENDPROG 
END 

Chapter 18. Queue Processing PG-313 



Queue Processing 
Example (continued) 

.. Put the address of the oldest element into register 1. 

EI Prompt the operator for twenty characters of data. Put the prompt in MSG. 

II Move the operator's response into QUEUE 1 , to the address retrieved by the FIRSTQ 
instruction. 

.. Store in QUEUE2 the address where the response was stored in QUEUEI. 

II Retrieve the oldest element from QUEUEI and put the address of the data into 
register 1. 

II Move twenty bytes from the address pointed to by register 1 to MSG. 

II Print the data, skipping a line between each data item (SKIP = O. 

II Put back into QUEUEI the element retrieved by the FIRSTQ instruction. 

II Define a queue large enough to accommodate ten 20-character data items. 

lID Define a queue large enough to accommodate ten I-word data items or addresses. 

PG-314 SC34-0637 

o 

o 



o 

o 

o 

Chapter 19. Writing Reentrant Code 

Reentrant code is a group of instructions that can be executed simultaneously by more than one 
task in the same partition. Only one copy of the program that contains the reentrant 
instructions exists in storage at a given time. 

This chapter describes how to write reentrant EDL programs and subroutines and describes the 
following topics: 

When to use reentrant code 

Coding guidelines 

Examples. 

Chapter 19. Writing Reentrant Code PG-315 



Writing Reentrant Code 
When to Use Reentrant Code 

You should consider writing reentrant code when: 

• You don'/ want each task to have its own copy of the reentrant code. If the routine is called 
by several other tasks and occupies a large amount of processor storage, you may want to 
write reentrant code. 

• You don'/ want to enqueue the routine each time a task needs it. If a routine is called 
frequently, you may want to write reentrant code to avoid the problem that occurs when 
several tasks are waiting for a serially-reusable resource to become available. 

Coding Guidelines 

To write reentrant code, use the following guidelines: 

PG-316 SC34-0637 

• Avoid self-modifying instructions such as the use of the parameter-naming operands PI, P2, 
and P3. 

Place all program variables in a storage area unique to the task that is executing. You can 
map these variables adjacent to the task control block (TCB) and access them as a 
displacement from the TCB. 

You can obtain the TCB address with the TCBGET instruction as follows: 

TCBGET #1 

This instruction puts the address of the TCB in register 1. 

Notes: 

1. If you place the variables ahead of the TCB, avoid using the TCB generated by the 
ENDPROG statement because the compiler may put data between the mapped variables 
and the main task control block. 

2. If you place the variables after the TCB, ensure that all TCBs are the same length. 
Inconsistent use of the FLOAT operand of the TASK or PROGRAM statement can 
cause TCBs to be different lengths. 

• Use only instructions that are reentrant. 

You can use the instructions that are not reentrant, however, by "protecting" them with the 
ENQ and DEQ instructions. For example, if you want to use a subroutine in reentrant 
code, a CALL to a subroutine might look like this: 

o 

o 



o 

o 

Coding Guidelines (continued) 

ENQ SUB4QCB 
CALL SUB4, ... 
DEQ SUB4QCB 

Note: Any code that you place between the ENQ and DEQ statements is serially reusable 
but not reentrant. 

The following instructions are not reentrant: 

CALL 
CONCAT 
DOx,TIMES 
DSCB or any instruction that uses a DSCB: 
- GIN 
- LOAD $DISKUT3 
- LOADPGMx 
- NOTE 
- POINT 
-READ 
- WRITE 
GETEDIT 
GETVALUE with the FORMAT operand 
IODEF 
PLOTGIN 
PRINTNUM with the FORMAT operand 
PUTEDIT 
SCREEN 
SUBROUT 
XPLOT 
YPLOT 

Chapter 19. Writing Reentrant Code PG-317 



Writing Reentrant Code 
Examples 

Example 1 

This section contains two examples. 

Example I consists of a main task and two subtasks. The main task, containing the reentrant 
code, and the two subtasks all transfer control to the reentrant code. 

Example 2 shows how to make a nonreentrant routine into a reentrant routine. It also shows 
how to execute the reentrant routine from three tasks. 

The following example consists of a main task and two subtasks. The main task and the two 
subtasks all transfer control to a group of reentrant instructions with the label RENTER. The 
reentrant instructions perform two additions and print the result. Each task prints the results on 
a different terminal. 

The next two pages contain the reentrant code and the main task. The two subtasks are 
contained on the two subsequent pages. 

TCB PROGRAM START .. RENTER ADD (0, # 1 ) , (2 , # 1 ) , RESULT= (4, # 1 ) 

II ADD (0, # 1) , 1 

11 PRINTEXT (10,#1) 

II PRINTNUM (4, #1) 

II GOTO (6,#1) 

II START LOAD TASK1,PASSPARM,EVENT=ECB1 

II LOAD TASK2,PASSPARM,EVENT=ECB2 

II MOVEA #1,PARM 

II ENQT $SYSPRTR 

II DO 100 

III GOTO RENTER 

I LM ENDDO 
DEQT 

III WAIT ECB1 

II WAIT ECB2 
PROGSTOP 

II PASSPARM DC A (RENTER) 

II ECB1 ECB 0 

II ECB2 ECB 0 

II PARM DC F'1 ' 

II DC F'1 ' 

fD DC F'O' 

II DC A(LM) 

E TEXT '@ANSWER FROM MAIN TASK 
ENDPROG 
END 

.. Begin the reentrant routine. Add the first two data areas in the parameter area and 
place the result in the third word of the parameter area. 

PG-3I8 SC34-0637 

o 

.~ 
\ 

',=,' 

o 



o Examples (continued) 

0 

o 

II Add 1 to the first word of the parameter area. 

II Print the message that begins at the fifth word of the parameter area. 

.. Print the result of the ADD instructions. 

II Transfer control back to the task from which control was transferred. 

II Attach the first of the two sub tasks (TASK1). Pass the address of the reentrant routine 
in P ASSP ARM. Identify ECB2 as the event to be posted when the task has completed. 

II Attach the second of the two subtasks (T ASK2). 

II Move the address of P ARM to register 1. P ARM contains the numbers the reentrant 
instructions will add, a data area for the result, an address (to which the reentrant 
routine will branch), and a message used to display the result. 

EI Get exclusive use of the system printer. 

II Begin a DO loop. Execute the DO loop 100 times. 

III Transfer control to the reentrant routine. 

IE End the DO loop. 

II Release exclusive use of the system printer. 

III Wait for TASKI to complete. 

IE Wait for TASK2 to complete. 

IE Define the address of the reentrant instructions as an address constant. 

II Define event control blocks for the two subtasks. 

II Define the data areas to be added. The main task uses these data areas. 

fD Define the data area for the result of the ADD instruction. 

fII Define the address to which the reentrant routine transfers control. 

fB Define the message to be printed. 

Chapter 19. Writing Reentrant Code PG-319 



Writing Reentrant Code 
Examples (continued) 0 

fB TCB PROGRAM START,PARM=1 
til START MOVE A #1,PARM1 

fD ENQT $SYSPRTR 

m DO 100 

fB GOTO ($PARM1 ) 
L1 ENDDO 

m DEQT 
PROGSTOP 
ENDPROG 

fI PARM1 DC F'1 ' 

fI DC F'2' 

II DC F'O' 

Ell DC A(L1 ) 

til TEXT '@ANSWER FROM TASK1 
END 

&I TCB PROGRAM START,PARM=1 
START MOVEA #1,PARM1 

ENQT $SYSPRTR 
DO 100 

GOTO ($PARM1 ) 
L1 ENDDO 

DEQT 
PROGSTOP 
ENDPROG 

Ell PARM1 DC F'1 ' (~---\\ 

Ell DC F'S' '=' Ell DC F'O' 

Ell DC A(L1 ) 

Ell TEXT '@ANSWER FROM TASK2 
END 

o 
PG-320 SC34-0637 



o Examples (continued) 

0 

o 

fI1 Begin TASKI. Identify START as the fir~t instruction to be executed and specify that 
one parameter will be passed to the program (P ARM = 1). The parameter being passed 
is the address of the reentrant routine. 

II Move the address of P ARM 1 to register 1. P ARM 1 contains the numbers the reentrant 
instructions will add, a data area for the result, an address (to which the reentrant 
routine will branch), and a message used to display the result. 

E 

II 

fI 

m 
fI 

II 

III 

E 

III 

Get exclusive use of $SYSPRTR. 

Begin a DO loop. Execute the DO loop 100 times. 

Transfer control to the reentrant routine. 

Release exclusive use of $SYSLOG. 

Define the data areas to be added. 

Define the data area for the result of the ADD instruction. 

Define the address to which the reentrant routine transfers control. 

Define the message to be printed. 

Begin TASK2. Identify START as the first instruction to be executed and specify that 
one parameter will be passed to the program (PARM=I). The parameter being passed 
is the address of the reentrant routine. 

til Define the data areas for T ASK2. 

Chapter 19. Writing Reentrant Code PG-321 



Writing Reentrant Cod~ 
Examples (continued) 

Example 2 

This example consists of three sections. The first section shows instructions that are not 
reentrant. The second section shows the same instructions made reentrant. The third section 
shows one way the reentrant instructions can be executed. 

The Nonreentrant Instructions 

The following instructions produce a random number, add it to itself ten times, and print the 
result. The DO loops and the PRINTEXT and PRINTNUM instructions make the program 
nonreentrant. 

PROG1 PROGRAM STPGM 
COPY TCBEQU .. STPGM DO 10,TIMES 

II MOVE COUNT,O 

II MOVE SUM,O .. MOVE RNBR1 ,0 

II MULTIPLY RNDCON,RNBR2,RESULT=RNBR1,PREC=DSD 

II SHIFTR RNBR1,6,RESULT=COUNT 

II DO 10,TIMES 

II ADD SUM, COUNT 
ENDDO 

II STIMER COUNT,WAIT 
PRINTEXT '@A(TCB) : ' 

IE PRINTNUM PROG1+$TCBVER,MODE=HEX 
PRINTEXT COUNT: ' 

III PRINTNUM COUNT 
PRINTEXT SUM: ' 

IE PRINTNUM SUM 
ENDDO 

II TERMCTRL DISPLAY 
PROGSTOP 

RNDCON DATA D'65539' 
RNBR1 DATA F'O' 
RNBR2 DATA F'9999' 
COUNT DATA F'O' 
SUM DATA F'O' 

ENDPROG 
END 

PG-322 SC34-0637 

o 

(-~ 
~' 

o 



o Examples (continued) 

0 

o 

.. Execute the loop ten times. 

II Initialize COUNT to O. 

II Initialize SUM to O. 

II Initialize RNBRI to O. 

II Generate a random number, using the number 9999 as a "seed." Put the result in 
RNBRI. 

PREC=DSD causes the result to be placed in a two-word (double precision) data area, 
the first word of which is RNBR 1. The rightmost word of the result, however, is placed 
in the next word (RNBR2). The second time this instruction executes, the result is 
different because operand 2 (RNBR2) has changed. 

II Shift the result of the previous MULTIPLY instruction. Put the result in COUNT. This 
instruction takes the result of the MUL TIPL Y instruction and makes the number 
smaller. 

II Execute another loop ten times. 

B Add COUNT to SUM. 

II Tell the system to wait the number of milliseconds contained in COUNT. 

II Print the address of the TCB in hexadecimal (MODE=HEX). 

III Print the random number. 

IE Print the result of the addition. 

II Display the data in the system buffer. 

Note: The instructions that generate the random numbers are used for illustrative purposes 
only. 

Chapter 19. Writing Reentrant Code PG-323 



Writing Reentrant Code 
Examples (continued) 

The Same Instructions Made Reentrant 

The following instructions do exactly the same thing as the previous nonreentrant instructions. 
They produce a random number, add it to itself ten times, and print the result. The DO loops 
and the PRINTEXT and PRINTNUM instructions have been changed to make the instructions 
reentrant. 

PROG1 .. 
II STPGM 

II .. 
II 
II 
II 
II 
II 
IE 
III 
II 
III 
III 
II 
II 
II 

II 
II 
lID 

IE 
fI PRTLINE 

RNDCON 

TWKAREA 
RNDSEED 

II TCBADDR 
fIJ RNBR1 

RNBR2 
COUNT 
SUM 
LCNT1 
LCNT2 

PROGRAM STPGM 
COPY TCBEQU 
TCBGET #1,$TCBVER 
MOVE (+LCNT1,#1),10 
DO WHILE, ((+LCNT1,#1),NE,0) 

SUBTRACT (+LCNT1,#1),1 
MOVE (+COUNT,#1),0 
MOVE (+SUM,#1),0 
MOVE (+RNBR1,#1),0 
MULTIPLY RNDCON, (+RNBR2,#1) ,RESULT=(+RNBR1,#1) ,PREC=DSD 
SHIFTR (+RNBR1,#1) ,6,RESULT=(+COUNT,#1) 
MOVE (+LCNT2,#1),10 
DO WHILE, ((+LCNT2,#1) ,NE,O) 

SUBTRACT (+LCNT1,#1),1 
ADD (+SUM,#1), (+COUNT,#1) 

ENDDO 
STIMER 
ENQ 
PRINTEXT 
PRINTNUM 
PRINTEXT 
PRINTNUM 
PRINTEXT 
PRINTNUM 
DEQ 

ENDDO 

(+COUNT,#1) ,WAIT 
PRTLINE 
'@A(TCB) :' 
(+$TCBVER,#1) , MODE=HEX 
, COUNT: ' 
(+COUNT,#1) 
, SUM:' 
(+SUM,#1 ) 
PRTLINE 

TERMCTRL 
PROGSTOP 

DISPLAY 

QCB 
DATA 
ENDPROG 
DATA 
DATA 
DATA 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
END 

D'65539' 

F'O' 
F'9999' 
4F'0' 

* 
*-PROG1 
RNBR1+2 
RNBR2+2 
COUNT+2 
SUM+2 
LCNT1+2 

.. Copy the task control block (TCB) equates into the program. 

PG-324 SC34-0637 

o 

(r~, 
'-J 

o 



o 

o 

o 

Examples (continued) 

II Put the address of the TCB in register 1. 

EI Initialize the loop counter to 10. 

.. Execute the loop ten times. 

II Subtract 1 from the loop counter. 

II Initialize COUNT to O. 

II Initialize SUM to O. 

II Initialize RNBR1 to O. 

II Generate a random number, using the number 9999 as a "seed." Put the result in 
RNBR1. 

PREC=DSD causes the result to be placed in a two-word (double precision) data area, 
the first word of which is RNBR1. The rightmost word of the result, however, is placed 
in the next word (RNBR2). The second time this instruction executes, the result is 
different because operand 2 (RNBR2) has changed. 

Shift the result of the previous MULTIPLY instruction. Put the result in COUNT. This 
instruction takes the result of the MUL TIPL Y instruction and makes the number 
smaller. 

III Initialize another loop counter. 

IE Execute another loop ten times. 

II Subtract 1 from the loop counter. 

III Add COUNT to SUM. 

II Tell the system to wait the number of milliseconds contained in COUNT. 

lID Gain exclusive control of the next six instructions. This instruction is necessary to avoid 
"interleaving" of output. Interleaving could occur if more than one task executed the six 
instructions at the same time. 

II Print the address of the TCB, COUNT, and SUM. 

m Relinquish control of the resource (the six output instructions). 

II Display the data in the system buffer. 

fI Define a queue control block. 

Chapter 19. Writing Reentrant Code PG-325 



Writing Reentrant Code 
Examples (continued) 

II Point to the task control block. The ENDPROG statement generates a task control 
block. 

E Point to the area immediately preceding the task control block. TWKAREA minus 
TCBADDR produces a negative number. When the program loads the TCB address 
into register 1 and uses RNBRl, RNBR2, COUNT, SUM, LCNTl, or LCNT2 as a 
displacement, the result points to a variable with the unique storage area associated with 
the attaching task. The unique storage area must immediately precede the TCB. 

Note: The instructions that generate the random numbers are used for illustrative purposes 
only. 

Executing a Reentrant Program 

The following instructions show how to execute the reentrant routine from three tasks. The 
reentrant routine begins at label STTSK. 

PROG3 PROGRAM STPGM .. STPGM ATTACH TASK1 

II ATTACH TASK2 

II ATTACH TASK3 

II WAIT EVENT 1 

II WAIT EVENT2 

II WAIT EVENT3 

II TERMCTRL DISPLAY 
PROGSTOP -1 

II TASK1 TASK STTSK, EVENT=EVENT1 

II DATA F'O' 

II DATA F'9999' 

II DATA 4F'O' 

III TASK2 TASK STTSK, EVENT=EVENT2 

IE DATA F'O' 

IE DATA F'9999' 

IE DATA 4F'O' 

111 TASK3 TASK STTSK, EVENT=EVENT3 

'II DATA F'O' 

II DATA F'9999' 

II DATA 4F'O' 

IE RNBR1 EQU *-TASK3 

IE RNBR2 EQU RNBR1+2 

IE COUNT EQU RNBR2+2 

IE SUM EQU COUNT+2 

IE LCNT1 EQU SUM+2 

IE LCNT2 EQU LCNT1+2 

PG-326 SC34-0637 

o 

f--~ 

~J 



o Examples (continued) 

IE STTSK TCBGET #1, $TCBVER 

0 

o 

ENDTASK 
ENDPROG 
END 

The following explanations refer to the numbers in the left margin of the preceding example . .. 
II 

II .. 
II 

II 

II 

II 

II 

IE 

IE 

III 

Attach the first task (TASK 1). 

Attach the second task (T ASK2). 

Attach the third task (T ASK3 ) . 

Wait for the completion of the first task (TASK1). 

Wait for the completion of the second task (TASK2). 

Wait for the completion of the third task (TASK3). 

Display the contents of the buffer. 

Define a task with the label TASK 1. The label of the first instruction to be executed is 
STTSK. Identify EVENT1 as the event to be posted when the task completes. 

Define data areas that are unique to TASK 1. 

Define a task with the label T ASK2. The label of the first instruction to be executed is 
STTSK. Identify EVENT2 as the event to be posted when the task completes. 

Define data areas that are unique to t ASK2. 

Define a task with the label T ASK3. The label of the first instruction to be executed is 
STTSK. Identify EVENT3 as the event to be posted when the task completes. 

III Define data areas that are unique to T ASK3. 

IE Use equates to map the task data areas. 

IE Begin the reentrant code. 

II End the reentrant code. 

Chapter 19. Writing Reentrant Code PG-327 



Notes 

o 

o 
PG-328 SC34-0637 



o 

0 

o 

Appendix A. Tape Labels 

The following is the layout of the VOLI label: 

Field Name Bytes Initialized Contents 

Label identifier 3 VOL 
Volume label number 1 1 
Volume serial 6 XXXXXX 
Volume security 1 a 
Data file directory 10 blanks 
Reserved 10 blanks 
Reserved 10 VOL 
Owner name 10 NAME 
Reserved 29 blanks 

The following is the layout of the HDRllabel: 

Field Name Bytes Initialized Contents 

Label identifier 3 HDR 
File label number 1 1 
File identifier (DSN) 17* Data set name (DSN) 

File serial number 6 XXXXXX 
Volume sequence number 4 0001 
File sequence number 4 OONN 
Generation number 4 blanks 
Generation version number 2 blanks 
Creation date 6 YYDDO 
Expiration date 6 YYDDO 
File security 1 a 
Block count 6 000000 
System code 13 IBMEDX1 
Reserved 7 blanks 

* EDX supports an 8-byte nonblank data set name (DSN). EDX ignores the last 9 bytes of the 
DSN. 

Appendix A. Tape Labels PG-329 



Notes 

o 

o 
PG-330 SC34-0637 



o 

o 

o 

Appendix B. Interrupt Processing 

Interrupts apply to the interaction between a program and a terminal operator. For example, a 
program can wait for an interrupt, such as an operator response to a prompt, or a terminal 
operator can cause an interrupt by pressing a Program Function key. 

When an interrupt occurs, if it is completing an outstanding operation, control is returned to the 
next sequential instruction if there are no errors. If the interrupt was unsolicited (caused by the 
attention key or a PF key), then either the system or user A TTNLIST begins executing as an 
asynchronous task competing for system resources. 

Interrupt Keys 

The keys that can cause interrupts are the attention key, Program Function (PF) keys and the 
enter key. 

The Attention Key 

When the attention key is recognized, the greater than symbol (» is displayed and the operator 
can enter either a system function code (for example, $L) or a program function code defined in 
an ATTNLIST. 

The attention key on the 4978 and 4979 is the key marked ATTN. For teletype terminals, the 
ESC (escape) key is usually the attention key. For the 3101 Display Terminal, the PF8 key is 
the default attention key. 

Appendix B. Interrupt Processing PG-331 



Interrupt Processing 
Interrupt Keys (continued) 

Program Function (PF) Keys 

Enter Key 

Any program function key on the 4978/4979 and 3101 is recognized by the attention list code 
$PF (except for a PF key defined as the attention key). In addition, individual keys can be 
separately recognized by $PF 1 to $PF254. You can provide separate entry points to the 
application code for particular keys, or a single entry point for all keys or a group of keys for 
rapid response. 

The order of the PF keys in the attention list is significant because it defines the entry points to 
the application code. For example: 

ATTNLIST ($PF1,ENT1,$PFS,ENT2,$PF,ENT3) 

causes the program to be entered atENT3 for all PF keys except PFI and PF5. 

On the 4978/4979, pressing the PF6 key causes the screen image to be printed on any 
designated hard-copy terminal (unless that terminal is a spool device and spool is loaded). This 
is not true for PF6 on the 3101. 

The 3101 keyboard has eight PF keys. EDX supports these keys when the 3101 is operated in 
. both character and block mode. To use the PF keys on the 3101, hold down the ALT key (on 
the lower. right-hand side of the keyboard) while you press the appropriate numeric key. 

The enter key indicates the end of typed input, for example, the end of the operator input for a 
READTEXT instruction. You also use it in conjunction with the WAIT KEY instruction. 

On the 4978 and 4979 keyboards, the enter key is marked ENTER. For the 3101 in block 
mode, the SEND key is the enter key. For the 3101 in character mode, the new line key is the 
enter key. 

Instructions that Process Interrupts 

Instructions that process interrupts are READTEXT, GETV ALUE, WAIT KEY and 
ATTNLIST. 

The READTEXT and GETVALUE Instructions 

PG-332 SC34-0637 

In many cases a program needs to wait for an interrupt, such as an operator response to a 
request for input. This program-wait capability is provided automatically by the READTEXT 
and GETV ALUE instructions. These instructions have an "implied wait." They wait for the 
terminal operator to enter data and press the enter key. 

o 

o 



o 

o 

o 

Instructions that Process Interrupts (continued) 

The WAIT KEY Instruction 

An application program can wait at any point for a 4978/4979 or 3101 terminal operator to 
press the enter or one of the PF keys. This is done by issuing the WAIT KEY instruction. 

When the enter or a PF key is pressed, the program resumes operation, and the key is identified 
to the program in the second task code word at taskname+2. The code value for the enter key 
is O. The value for a PF key is the integer corresponding to the assigned function code; 1 for 
PFl, 2 for PF2, and so on. 

The PF keys do not initiate attention list processing during execution of the WAIT KEY 
instruction. They only cause the WAIT KEY instruction to terminate, allowing subsequent 
instructions to be executed. 

The ATTNLIST Instruction 

The A TTNLIST instruction provides entry to interrupt processing routines. When a PF key is 
pressed, the A TTNLIST task for that key gets control if ATTNLIST was coded in the 
application program. If ATTNLIST was not coded, the system search for a PF key match fails 
and the message "FUNCTION NOT DEFINED" is displayed on the screen. Except for the 
4978/4979 hard-copy print key (normally PF6), the 4978 attention key (normally PFO) and the 
3101 attention key (normally PF8), the PF keys are always matched against user-written 
ATTNLIST(s) as described above. 

When the attention key on a terminal is pressed, the system prompts the operator for a 
command. This command is first matched against the system ATTNLIST and then against 
user-written ATTNLIST(s). 

If the command matches the system ATTNLIST, appropriate system action is taken (for 
example, $D or $L) unless the task is busy. If the command entered was $C, $VARYON or 
$VARYOFF and this task is busy, the message "> NOT ACKNOWLEDGED" is displayed; 
when the task is completed, $C, $V ARYON or $V ARYOFF is then executed. If the command 
entered was $P or $D and this task is busy, the command is ignored. 

If the command matches a user-written ATTNLIST, the corresponding ATTNLIST task gets 
control. The appropriate application program attention routine then tuns under this task. If the 
attention key invoked the ATTNLIST and the task is already busy, the message "> NOT 
ACKNOWLEDGED" is displayed on the terminal. 

If there is no match against any ATTNLIST, the message "FUNCTION NOT DEFINED" is 
displayed. 

When the ATTNLIST task for a PF key gets control, the code for that key is placed in the 
second word of the ATTNLIST task control block. You can obtain the code for an interrupting 
key by coding the TCBGET instruction. 

Appendix B. Interrupt Processing PG-333 



Interrupt Processing 
Advance Input 

As a terminal user, your interaction with an application or utility program is generally conducted 
through prompts which request you to enter data. Once you have become familiar with the 
dialogue sequence, however, prompting becomes less necessary. The READTEXT and 
GETV ALUE instructions include a conditional prompting option which enables you to enter 
data in advance and thereby inhibit the associated prompts. 

Advance input is accomplished by entering more data on a line than has been requested by the 
program. Subsequent input instructions specifying PROMPT=COND will read data from the 
remainder of the buffered line, and issue a prompt only when the pre-entered data has been 
exhausted. If you specify PROMPT = UNCOND with an input instruction, an associated prompt 
is issued and the system waits for input. The prompt causes, as does every output instruction, 
cancellation of any outstanding advance input. 

PG-334 SC34-0637 

o 

(----~ 

'~L=.I 

o 



o 

0,,',1 

o 

Appendix C. Static Screens and Device 
Considerations 

Defining Logical Screens 

A logical screen is a screen defined by margin settings, such as the TOPM, BOTM, LEFTM and 
RIGHTM parameters. Logical screens can be defined either during system generation (using 
the TERMINAL statement) or at the time an ENQT instruction is executed (using the 10CB 
statement). 

Using TERMINAL to Define a Logical Screen 

The following example of using the TERMINAL statement defines a static screen to be used for 
data entry and display. Programs can be loaded from the terminal, but the terminal I/O 
instructions issued will be interpreted for a static screen unless the configuration is changed to 
roll by an 10CB statement. This is a typical definition for a terminal to be used for data entry. 

TERM2 TERMINAL DEVICE=4979,ADDRESS=14,SCREEN=STATIC 

The next example shows a split screen configuration. The roll screen is the bottom 12 lines of 
the screen; the top half can be used for other logical screens defined upon execution of ENQT. 

TERM3 TERMINAL DEVICE=4978,ADDRESS=24,TOPM=12,NHIST=6 

Appendix C. Static Screens and Device Considerations PG-335 



Static Screens and Device Considerations 
Defining Logical Screens (continued) 

The next example defines a roll screen occupying the upper-right quadrant of the screen. In 
general, logical screens with less than an 80-character line size suffer some performance 
disadvantages (such as slower erasure) but can be useful for special applications. Note that 
NHIST is zero here because screen shifting will not be performed; a non-zero value for NHIST 
would merely cause the history area to be unused. 

TERM4 TERMINAL DEVICE=4979,ADDRESS=34,LEFTM=39, 
BOTM=11,NHIST=O 

C 

The final example defines a static screen for the 3101 in block mode. A 3101 can have only a 
single roll or a single static screen. The Multifunction Attachment is used to connect the 
terminal to the Series/I. 

TERMS TERMINAL DEVICE=ACCA,ADDRESS=S9,MODE=3101B, 
SCREEN=STATIC,LMODE=RS422,ADAPTER=MFA 

Using IOCB and ENQT to Define a Logical Screen 

C 

Logical screens can also be defined by the ENQT instruction referencing an lOeB. The lOeB 
statement is used to define many of the "soft" characteristics of a terminal (such as margins, 
page size or line length) and to establish the connection between the ENQT and TERMINAL 

o 

statements at execution time. Using an ENQT instruction which references an lOeB, you can r--"\ 
modify the soft characteristics of a specific terminal defined by the TERMINAL statement. The \,J' 
lOeB statement and its operands are fully described in the Language Reference. 

In the following example, the lOeB labeled TOPHALF defines the top half of the screen (from 
which the program was loaded) as a static screen. If the terminal were defined as in TERM3 on 
the previous page, the program could have been loaded by entering $L program-name in the roll 
screen area (the bottom half of the screen). Since no terminal name is specified on the lOeB 
statement, the ENQT refers to the loading terminal. The program then might display tabular 
information on the static screen, execute DEQT and then end. The information displayed on the 
static screen part of the screen will remain on the screen while the terminal operator performs 
other operations using the roll screen. 

PG-336 SC34-0637 

DISPLAY 
TOPHALF 
BEGIN 

PROGRAM 
IOCB 
ENQT 

DEQT 
PROGSTOP 
ENDPROG 
END 

BEGIN 
BOTM=11,SCREEN=STATIC 
TOPHALF 

o 



o 

o 

o 

Defining Logical Screens (continued) 

The next example shows terminal access by using the symbolic name of the terminal. TERM!, 
TERM2, TERM3, and TERM4 have all been defined with TERMINAL configuration 
statements. The use of a static screen ensures that only physical line 0 of each screen will be 
altered. (LINE=O for roll screens causes a page eject and erasure of information.) 

Note: On a 4979, unprotected fields should be of even length. 

NOTICE 
TERMX 
NAME TAB 

BEGIN 

Structure of the IOCB 

PROGRAM 
IOCB 
DATA 
DATA 
DATA 
DATA 
MOVEA 
DO 

BEGIN 
SCREEN=STATIC 
CL8' TERM 1 ' 
CL8'TERM2' 
CL8'TERM3' 
CL8'TERM4' 
#1,NAMETAB 
4 

MOVE 
ENQT 
PRINTEXT 
DEQT 

TERMX, (0, # 1 ) , (8, BYTES) 
TERMX 
'SYSTEM ACTIVE' ,LINE=O 

ADD 
ENDDO 
PROGSTOP 
ENDPROG 
END 

# 1 ,8 

The structure of the lOeB is given in the following table. The structure may change with future 
versions of the Event Driven Executive. 

Field Name 

Terminal name 

Flags 

Top of working area 

Top margin 

Bottom margin 

Left margin 

Page size 

Line size 

Byte(s) 

0-7 

8 

9 

10 

11 

12 

13 

14-15 

Contents 

EBCDIC, blank filled 

Bit 0 off indicates that the name is the only element of the IOCB. 
Further information on this field can be found in Internal Design. 

Equal to TOPM+NHIST 

TOPM or zero 

BOTM, or X'FF' if unspecified 

LEFTM or zero 

Equal to X'OO' if unspecified 

Equal to X'7FFF' if unspecified 

Appendix C. Static Screens and Device Considerations PG-337 



Static Screens and Device Considerations 
Defining Logical Screens (continued) 

Field Name 

Current line 

Current indent 

Buffer address 

$IMAGE Subroutines 

Byte(s) 

16 

17 

18-19 

Contents 

Initialized to TOPM+NHIST 

Initialized to left margin 

Zero if unspecified 

Formatted screen images can be created and saved in disk or diskette data sets using the 
$IMAGE utility. The $IMAGE subroutines can be used to retrieve and display these images. 
These subroutines provide support for both the 4978/4979 and 3101 in block mode. In 
addition, screen images created on a 4978/4979 can be presented on a 3101 and vice versa with 
use of these subroutines. The intermixing of terminal screen images is also described in the 
Operator Commands and Utilities Reference. 

The $IMAGE subroutines perform screen formatting and input/output operations independent 
of the type of terminal upon which the application runs. The orientation is towards 
writing/ reading all unprotected fields with one operation. In this context the data in 
unprotected fields is of primary concern. 

Static screen applications use the $IMOPEN, $IMDTYPE, $UNPACK, $IMGEN, $IMGEN31, 
$IMGEN49, and $IMGEN3X subroutine packages to process static screens defined using the 
$IMAGE utility. 

PG-338 SC34-0637 

o 

o 



o 

o 

o 

$IMAGE Subroutines (continued) 

$IMDTYPE is required for all static screen applications. In addition, the $IMOPEN and 
$UNP ACK subroutines are also required, plus one of the following: 

• $IMGEN to intermix both 3101 and 4978 images, and to display those images on either 
device 

$IMGEN3X to intermix both 3101 and 4978 images, and to display those images on a 3101 

• $IMGEN31 for 3101 images, and to display those images on a 3101 

$IMGEN49 for 4978 images, and to display those images on a 4978 or 4979. 

During link-edit the $IMxxxx subroutines are included with your application through the use of 
the auto call library. Normally $IMGEN is included. If you want one of the alternate 
($IMGENxx) routines, explicitly INCLUDE that module. 

For formatted screen images presented on a 3101, storage requirements and internal conversion 
time is reduced when you select only the subroutine support that processes 3101 images. 

An EXTRN statement must be coded for each subroutine name that your program references. 
You must link-edit the subroutines with your application program. $AUTO,ASMLIB should be 
specified as the autocalllibrary to automatically include the screen formatting subroutines. See 
Chapter 5, "Preparing an Object Module for Execution"for details on the AUTO CALL feature 
of $EDXLINK. 

The CALL syntax for the subroutines should be coded exactly as shown. Where an address 
argument is required by the subroutine, the label of the variable enclosed in parentheses causes 
the address to the passed (see the CALL instruction in the Language Reference). 

If an error occurs, the terminal 110 return code will be in the first word of the task control block 
(TCB). These errors can come from instructions such as PRINTEXT, READTEXT, and 
TERMCTRL. 

Appendix C. Static Screens and Device Considerations PG-339 



Static Screens and Device Considerations 
$IMAGE Subroutines (continued) 

$IMOPEN Subroutine 

The $IMOPEN subroutine reads the designated image from disk or diskette into your program 
buffer. You can also perform this operation by using the DSOPEN subroutine or defining the 
data set at program load time, and issuing the disk READ instruction. Refer to the section 
"Screen Image Buffer Sizes" on page PG-347 to determine the size of the buffer. $IMOPEN 
updates the index word of the buffer with the number of actual bytes read. To access it code 
buffer-4. 

label 

Required: 
Defaults: 
Indexable: 

Operands 

dsname 

buffer 

type 

Px 

PG-340 SC34-0637 

CALL $IMOPEN,(dsname),(buffer),(type), 
P2=, P3=, P4= 

dsname,buffer 
type=C' 4978' 
none 

Description 

The label of a TEXT statement which contains the name of the screen image 
data set. A volume label can be included, separated from the data set name by a 
comma. 

The label of a BUFFER statement allocating the storage into which the image 
data will be read. The storage should be allocated in bytes, as follows: 

label BUFFER 1024,BYTES 

The label of a DATA statement that reserves a 4-byte area of storage and 
specifies the type of image data set to be read. Specify one of the following 
types: 

C'4978' 

C'3101' 

C' , 

An image data set with a 4978/4979 terminal format is read. If type 
is not specified, C'4978' is the default. 

An image data set with a 3101 terminal format is read. 

An image data set whose format corresponds with the type of 
terminal enqueued. If neither a 4978/4979 or 3101 is enqueued 
(ENQT), a 4978 image format is assumed. 

Parameter naming operands. See the CALL instruction and chapter 1 in the 
Language Reference. 

o 

(',,-~ -J 

o 



o 

o 

o 

$IMAGE Subroutines (continued) 

The following is an example of $IMOPEN: 

CALL $ IMOPEN, (IMGDS) , (IMGBUFF) , (IMGTYP) 

IMGDS 
IMGBUFF 
IMGTYP 

$IMOPEN Return Codes 

TEXT 
BUFFER 
DATA 

'IMGDS,MYVOL' 
1024,BYTES 
C'3101' 

The following are the return codes (returned in taskname+2) from the $IMOPEN subroutine. 

Code Condition 

-1 Successful completion 
1 Disk I/O error 
2 Invalid data set name 
3 Data set not found 
4 I ncorrect header or data set length 
5 Input buffer too small 
6 Invalid volume name 
7 No 3101 image available 
8 Data set name longer than eight bytes 

Appendix C. Static Screens and Device Considerations PG-341 



Static Screens and Device Considerations 
$IMAGE Subroutines (continued) 

$IMDEFN Subroutine 

The $IMDEFN subroutine is used to construct an IOCB for a formatted screen image. The 
IOCB can also be coded directly, but the use of $IMDEFN allows the image dimensions to be 
modified with the $IMAGE utility without requiring a change to the application program. 
$IMDEFN updates the IOCB to reflect OVFLINE= YES. Refer to the TERMINAL 
configuration statement in the Installation and System Generation Guide for a description of the 
OVFLINE parameter. 

Once an IOCB for the static screen has been defined, the program can then acquire that screen 
through ENQT. Once the screen has been acquired, the program can call the $IMPROT 
subroutine to display the image and the $IMDATA subroutine to display the initial unprotected 
fields. 

label 

Required: 
Defaults: 
Indexable: 

Operands 

iocb 

buffer 

topm 

leftm 

Px 

PG-342 SC34-0637 

CALL $1 M DEFN,{iocb},(buffer}, topm,leftm, 
P2=, P3=, P4=, P5= 

iocb, buffer 
none 
none 

Description 

The label of an IOCB statement defining a static screen. The IOCB need not 
specify the TOPM, BOTM, LEFTM nor RIGHTM parameters; these are "filled 
in" by the subroutine. The following IOCB statement would normally suffice: 

label lOCB terrninal,SCREEN=STATlC 

The label of an area containing the screen image in disk storage format. The 
format is described in the section "Screen Image Buffer Sizes" on page PG-347. 

This parameter indicates the screen position at which line 0 will appear. If its 
value is such that lines would be lost at the bottom of the screen, then it is forced 
to zero. This parameter must equal zero for all 3101 terminal applications. The 
default is also zero. 

This parameter indicates the screen position at which the left edge of the image 
will appear. If its value is such that characters would be lost at the right of the 
screen, then it is forced to zero. This parameter must equal zero for all 3101 
terminal applications. The default is also zero. 

Parameter naming operands. See the CALL instruction and Chapter 1 in the 
Language Reference. 

o 

o 



o $IMAGE Subroutines (continued) 

The following is an example of $IMDEFN: 

ENQT lMGlOCB 

CALL $lMDEFN, (lMGlOCB), (lMGBUFF),O,O 

lMGlOCB lOCB SCREEN=STATlC 
lMGBUFF BUFFER 1024,BYTES 

o 

o 
Appendix C. Static Screens and Device Considerations PG-343 



Static Screens and Device Considerations 
$IMAGE Subroutines (continued) 

$IMPROT Subroutine 

This subroutine uses an image created by the $IMAGE utility to prepare the defined protected 
and blank unprotected fields for display. At the option of the calling program, a field table can 
be constructed. The field table gives the location (LINE and SPACES) and length of each 
unprotected field. 

Upon return from $IMPROT, your program can force the protected fields to be displayed by 
issuing a TERMCTRL DISPLAY. This is not required if a call to $IMDATA follows because 
$IMDAT A inherently forces the display of screen data. 

All or portions of the screen may be protected after $IMPROT executes. Because the operator 
cannot key data into protected fields, subsequent read instructions (such as QUESTION, 
GETV ALUE, and READTEXT) should be directed to unprotected areas of the screen, or the 
protected areas should be erased. 

label 

Required: 
Defaults: 

CALL $1 M PROT,{buffer),{ftab}, P2=, P3= 

buffer, ftab (see note) 
none 

Indexable: none 

buffer The label of an area containing the screen image in disk storage format. The 
format is described in the section "Screen Image Buffer Sizes" on page PG-347. 

ftab The label of a field table constructed by $IMPROT giving the location (lines, 
spaces) and size (characters) of each unprotected data field of the image. 

PG-344 SC34-0637 

Note: The ftab operand is required only if the application executes on a 3101 in 
block mode or if a user buffer is used in $IMDAT A. 

Px Parameter naming operands. See the CALL instruction and Chapter 1 in the 
Language Reference. 

o 

o 



o 

o 

$IMAGE Subroutines (continued) 

The field table has the following form: 

label-4 number of fields 
label-2 number of words 
label line * FIELD 1 (one word) 

spaces (one word) 
size (one word) 

label+6 line * FIELD 2 
spaces 
size 

* 
* 
* 

label+6(n-1 ) line * FIELD n 
spaces 
size 

The field numbers correspond to the following ordering: left to right in the top line, left to right 
in the second line, and so on to the last field in the last line. Storage for the field table should be 
allocated with a BUFFER statement specifying the desired number of words using the WORDS 
parameter. The buffer control word at label-2 will be used to limit the amount of field 
information stored, and the buffer index word at buffer-4 will be set with the number of fields 
for which information was stored, the total number of words being three times that value. If the 
field table is not desired, code zero for this parameter. 

The following is an example of $IMPROT: 

CALL 
PRINTEXT 
READTEXT 

IMGBUFF BUFFER 
FTAB BUFFER 
INPUT TEXT 

$IMPROT Return Codes 

$IMPROT, (IMGBUFF) , (FTAB) 
FTAB,SPACES=FTAB+2 
INPUT,FTAB+3 

1024,BYTES 
3,WORDS 
LENGTH=20 

POSITION CURSOR 
OPERATOR INPUT 

The following are the return codes (returned in taskname+2) from the $IMPROT subroutine. 

Code Condition 

-1 Successful completion 
9 Invalid format in buffer 
10 Ftab truncated due to insufficient buffer 

size 
11 Error in building ftab from 3101 format; 

partial ftab created 

Appendix C. Static Screens and Device Considerations PG-34S 



Static Screens and Device Considerations 
$IMAGE Subroutines (continued) 

$IMDATA Subroutine 

$IMDAT A can be called to display the initial data values for an image which is in disk storage 
format. $IMDATA is used: 

• To display the unprotected data associated with a screen image, if the content of the buffer 
is a screen format retrieved via $IMOPEN. 

• To "scatter write" the contents of a user buffer to the input fields of a displayed screen 
image. 

If the buffer is retrieved with $IMOPEN, the buffer begins with either the characters 'IMAG' or 
'IM31' and the buffer index (buffer-4) equals the data length excluding the characters 'IMxx'. 

A user buffer can be specified containing application-generated data. Set the first four bytes of 
the buffer to 'USER' and set the buffer index (buffer-4) to the data length excluding the 
characters 'USER'. 

All or portions of the screen may be protected after $IMDATA executes. Because the operator 
cannot key data into protected fields, subsequent read instructions (such as QUESTION, 
GETV ALUE, and READTEXT) should be directed to unprotected areas of the screen, or the 
protected areas should be erased. 

label CALL $IMDATA,(buffer),(ftab),P2=,P3= 

Required: buffer, ftab (see note) 
Defaults: none 
Indexable: none 

buffer The label of an area containing the image in disk-storage format. 

ftab The label of a field table constructed by $IMPROT giving the location 
(lines,spaces) and size (characters) of each unprotected data field of the image. 

Px 

PG-346 SC34-0637 

Note: The ftab operand is required only if the application executes on a 3101 in 
block mode or if a user buffer is used in $IMDAT A. 

Parameter naming operands. See the CALL instruction and Chapter 1 in the 
Language Reference. 

o 

o 



o 

o 

o 

$IMAGE Subroutines (continued) 

The following is an example of $IMDATA: 

CALL $IMDATA,(IMGBUFF), (FTAB) 
PRINTEXT FTAB,LINE=FTAB,SPACES=FTAB+2 

IMGBUFF BUFFER 
FTAB BUFFER 

$IMDATA Return Codes 

1024,BYTES 
300, WORD~ 

POSITION CURSOR 

The following are the return codes returned (returned in taskname+2) from the $IMDATA 
subroutine: 

Code Condition 

-1 Successful completion 
9 Invalid format in buffer 

Screen Image Buffer Sizes 

Under normal circumstances the size of the disk buffer can vary between 256 and 3096 bytes. 
Because data compression is used in storing the images, many images will require only 512 
bytes, and 1024 bytes will be adequate for typical applications using 4978/4979 images. 3101 
data stream images are much larger. 

The $IMAGE utility tells you the required buffer sizes for the 4978 and 3101 buffers. If your 
application program will run on either type of terminal, use the larger of the two buffer sizes. 

The display subroutines normally write images to the terminal in line-by-line fashion. 
Performance can be improved by providing a terminal buffer large enough to contain multiple 
lines. Since the display subroutines perform concatenated write operations whenever possible, 
using a larger buffer results in fewer such operations and, therefore, faster generation of the 
display image. 

For example, for a full screen image (24 x 80), a time vs. space trade-off can be made by 
choosing a buffer size that is a multiple of 80 bytes (lline), up to a maximum of 1920 bytes. A 
temporary buffer can be defined by coding the BUFFER= parameter on the lOeB which is 
used to access the screen. This buffer should be unique and should not be confused with the 
disk image buffer. 

Appendix C. Static Screens and Device Considerations PG-347 



Static Screens and Device Considerations 
$IMAGE Subroutines (continued) 

Example of Using $IMAGE Subroutines 

The following program shows the $IMAGE subroutines in a general application program. 
Under direction of the terminal operator, this program displays on a 4978, 4979 or 3101 any 
image stored on disk. For each image, a field table (ftab) is constructed and used to modify 
initial data values. 

In this example, use of the field size from the field table is for illustrative purposes only. Each 
unprotected output operation is terminated by the beginning of the next protected field, unless 
MODE=LINE is coded. 

Additional examples on the use of the $IMAGE subroutines are in the appendix of the Language 
Reference. 

IMDISP 

* 
* 
* 
BEGIN 

* 
* 
* 

PG-348 SC34-0637 

* 
* 
* 

* 
* 
* 

* 
* 
* 

PROGRAM 
EXTRN 

BEGIN 
$IMOPEN,$IMDEFN,$IMPROT,$IMDATA 

GET TERMINAL NAME FOR SCREEN PRINTOUT 

READTEXT IMAGE, 'TERMINAL: ' 

GET IMAGE DATA SET NAME 

READTEXT DSNAME,'DATA SET: ',PROMPT=COND 

OPEN IMAGE DATA SET 

CALL $IMOPEN, (DSNAME), (DISKBFR) 
MOVE CODE,IMDISP+2 * SAVE RETURN CODE 
IF CODE,NE,-1 * CHECK RETURN CODE FOR ERRORS 

PRINTEXT '@OPEN ERROR CODE' 
PRINTNUM CODE * PRINT ERROR CODE 
GOTO NEXT * ASK IF TRY AGAIN 

ENDIF 

CONSTRUCT IOCB 

CALL $IMDEFN, (IMAGE) ,(DISKBFR) ,0,0 
ENQT IMAGE * ACQUIRE STATIC SCREEN 
TERMCTRL BLANK * BLANK SCREEN 

* WRITE PROTECTED FIELDS 

* AND BUILD FIELD TABLE 

* AT FTAB 

o 

o 



o 

0 

o 

$IMAGE Subroutines (continued) 

* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 

NEXT 

DSNAME 

* 
* 
* 
* 
B1 
B2 
REPBFR 

DISKBFR 

IMAGE 
CODE 
FTAB 
LINE 

DISPLAY PROTECTED FIELD DATA ON 
TERMINAL SCREEN 

CALL $IMPROT, (DISKBFR) , (FTAB) 

DISPLAY DEFAULT DATA ON 
TERMINAL SCREEN 

CALL 

PRINTEXT 
TERMCTRL 
DEQT 
WAIT 
ENQT 
TERMCTRL 

$IMDATA, (DISKBFR) , (FTAB) 
* SET CURSOR AT 1ST FIELD 

LINE=FTAB,SPACES=FTAB+2 
DISPLAY * UNBLANK SCREEN 

KEY 
IMAGE 
BLANK 

* RETURN TO THIS TERMINAL 
* WAIT FOR OPERATOR 
* BACK TO TARGET TERMINAL 
* BLANK SCREEN 

DISPLAY #'s IN DATA FIELDS 

ENQT 
CALL 
DEQT 
WAIT 
ENQT 
ERASE 
DEQT 
QUESTION 
PROGSTOP 
TEXT 

IMAGE * ACQUIRE STATIC SCREEN 
$IMDATA, (REPBFR), (FTAB) 

KEY * ALLOW VIEWING TIME 
IMAGE * ACQUIRE STATIC SCREEN 
LINE=O,MODE=SCREEN,TYPE=ALL * ERASE 

* BACK TO ROLL SCREEN 
'ANOTHER IMAGE? ',YES=BEGIN 

LENGTH=16 * DATA SET NAME 

BUILD A BUFFER OF #'S FOR A SECOND DATA 
FIELD DISPLAY 

DC 
DC 
DC 
DC 
DC 
BUFFER 
DC 
IOCB 
DC 
BUFFER 
TEXT 
ENDPROG 
END 

F'72' * B1 AND B2 INDEX REPBFR 
F'76' * THAT HIGHLIGHTS THE DATA 
C'USER' * FIELDS FOR USER 
c'####################################' 
c'####################################' 
1064,BYTES * DISK BUFFER 
X'0808' * TEXT CONTROL FOR NAME 
SCREEN=STATIC * IOCB FOR IMAGE 
F'O' * RETURN CODE 
300 
LENGTH=80 

Appendix C. Static Screens and Device Considerations PG-349 



Static Screens and Device Considerations 
$UNPACK and SPACK Subroutines 

The $UNPACK and $PACK subroutines move and translate compressed/noncompressed byte 
strings. These subroutines are used internally by the $IMPROT and $IMDAT A subroutines as 
well as by the $IMAGE utility. However, they can also be called directly by an application 
program. 

The program preparation needed for applications calling $UNP ACK and $PACK is similar to 
that needed for the $IMAGE subroutines. An EXTRN statement is required in the application 
and the auto call to $AUTO,ASMLIB is required in the link-control data set (input to 
$EDXLINK). 

$UNPACK Subroutine 

This subroutine moves a series of compressed and noncompressed byte strings and translates the 
byte strings to noncompressed form. 

label 

Required: 
Defaults: 
Indexable: 

source 

dest 

PG-350 SC34-0637 

CALL $U N PACK,source,dest, P2=, P3= 

source,dest 
None 
None 

The label of a fullword containing the address of a compressed byte string. (See 
Figure 10 on page PG-351 for the compressed format.) At completion of the 
operation, this parameter is increased by the length of the compressed string. 

The label of a fullword containing the address at which the expanded string is to 
be placed. The length of the expanded string is placed in the byte preceding this 
location. The $UNPACK subroutine can, therefore, conveniently be used to 
move and expand a compressed byte string into a TEXT buffer. 

o 

o 



o 

Cl 

o 

$UNPACK and $PACK Subroutines (continued) 

• • • Fn X'QQ' 

Each F1 ... Fn is either: 

or 

• • • Cn 
( L is greater than zero and represents 
the length of chars ( C ) that follow) 

( L is less than zero and represents 
L repetitions of C ) 

Land C are one byte in length. 

Figure 10. Compressed Data Format 

The following example shows how to unpack the compressed protected data of a $IMAGE 
screen format. 

MOVEA 
MOVEA 

* 
MOVE 
MOVE 
DO 

CALL 
MOVE 

* 
ADD 

ENDDO 

OUTAREA DATA 

* 
CPO INTER DATA 
LINECNT DATA 
STRGPTR DATA 

* 
STRING TEXT 

* 
CBUF BUFFER 

#1,OUTAREA 
CPOINTER,CBUF+12 

LINECNT,CBUF+4 
MOVELNG,CBUF+6 
LINECNT 

POINT TO EXPAND BUFFER 
POINT TO FIRST BYTE OF 

COMPRESSED DATA 
INIT DO LOOP CTR 
INIT MOVE LENGTH CODE 

$UNPACK,CPOINTER,STRGPTR UNPACK COMPRESSED DATA 
MOVE (0,#1) ,STRING, (O,BYTE) ,P3=MOVELNG 
UNPACKED DATA 

#1,MOVELNG 

CL1920' , WILL CONTAIN ALL OF THE 
UNPACKED DATA 

A'O' POINTER TO COMPRESSED DATA 
F'O' NBR OF FORMAT LINES TO UNPACK 
A(STRING) ADDR OF TEMP LOCATION TO 

RECEIVE UNPACKED DATA 
LENGTH=80 TEMP LOCATION TO RECEIVE 

UNPACKED DATA 
1000,WORDS CONTAINS $IMAGE FORMAT 

WITH PACKED DATA 

Appendix C. Static Screens and Device Considerations PG-3S1 



Static Screens and Device Considerations 
$UNPACK and SPACK Subroutines (continued) 

SPACK Subroutine 

This subroutine moves a byte string and translates it to compressed form. 

label 

Required: 
Defaults: 
Indexable: 

source 

dest 

PG-352 SC34-0637 

CALL $PACK,source,dest,P2=,P3= 

source,dest 
None 
None 

The label of a fullword containing the address of the string to be compressed. 
The length of the string is taken from the byte preceding this location, and the 
string could, therefore, be the contents of a TEXT buffer. 

The label of a fullword containing the address at which the compressed string is 
to be stored. At completion of the operation, this parameter is incremented by 
the length of the compressed string. 

o 

o 



o 

o 

o 

Glossary of Terms and Abbreviations 

This glossary defines terms and abbreviations used in the Series/1 Event Driven Executive software publications. All software and 
hardware terms pertain to EDX. This glossary also serves as a supplement to the IBM Data Processing Glossary, GC20-1699. 

$SYSLOGA, $SYSLOGB. The name of the alternate system 
logging device. This device is optional but, if defined, should be 
a terminal with keyboard capability, not just a printer. 

$SYSLOG. The name of the system logging device or operator 
station; must be defined for every system. It should be a terminal 
with keyboard capability, not just a printer. 

$SYSPRTR. The name of the system printer. 

abend. Abnormal end-of-task. Termination of a task prior to its 
completion because of an error condition that cannot be resolved 
by recovery facilities while the task is executing. 

ACCA. See asynchronous communications control adapter. 

address key. Identifies a set of Series/1 segmentation registers 
and represents an address space. It is one less than the partition 
number. 

address space. The logical storage identified by an address key. 
An address space is the storage for a partition. 

application program manager. The component of the Multiple 
Terminal Manager that provides the program management 
facilities required to process user requests. It controls the 
contents of a program area and the execution of programs within 
the area. 

application program stub. A collection of subroutines that are 
appended to a program by the linkage editor to provide the link 
from the application program to the Multiple Terminal Manager 
facilities. 

asynchronous communications control adapter. An ASCII 
terminal attached via #1610, #2091 with #2092, or #2095 with 
#2096 adapters. 

attention key. The key on the display terminal keyboard that, if 
pressed, tells the operating system that you are entering a 
command. 

attention list. A series of pairs of 1 to 8 byte EBCDIC strings 
and addresses pointing to EDL instructions. When the attention 
key is pressed on the terminal, the operator can enter one of the 
strings to cause the associated EDL instructions to be executed. 

backup. A copy of data to be used in the event the original data 
is lost or damaged. 

base record slots. Space in an indexed file that is reserved for 
based records to be placed. 

base records. Records are placed into an indexed file while in 
load mode or inserted in process mode with a new high key. 

basic exchange format. A standard format for exchanging data 
on diskettes between systems or devices. 

binary synchronous device data block (BSCDDB). A control 
block that provides the information to control one Series/1 
Binary Synchronous Adapter. It determines the line 
characteristics and provides dedicated storage for that line. 

Glossary of Terms and Abbreviations PG-353 



Glossary of Terms and Abbreviations 

block. (1) See data block or index block. (2) In the Indexed 
Method, the unit of space used by the access method to contain 
indexes and data. 

block mode. The transmission mode in which the 3101 Display 
Station transmits a data data stream, which has been edited and 
stored, when the SEND key is pressed. 

BSCAM. See binary synchronous communications access 
method. 

binary synchronous communications access method. A form 
of binary synchronous I/O control used by the Series/1 to 
perform data communications between local or remote stations. 

BSCOOB. See binary synchronous device data block. 

buffer. An area of storage that is temporarily reserved for use in 
performing an input/output operation, into which data is read or 
from which data is written. See input buffer and output buffer. 

bypass label processing. Access of a tape without any label 
processing support. 

CCB. See terminal control block. 

central buffer. The buffer used by the Indexed Access Method 
for all transfers of information between main storage and indexed 
files. 

character image. An alphabetic, numeric, or special character 
defined for an IBM 4978 Display Station. Each character image 
is defined by a dot matrix that is coded into eight bytes. 

character image table. An area containing the 256 character 
images that can be defined for an IBM 4978 Display Station. 
Each character image is coded into eight bytes, the entire table of 
codes requiring 2048 bytes of storage. 

character mode. The transmission mode in which the 3101 
Display Station immediately sends a character when a keyboard 
key is pressed. 

cluster. In an indexed file, a group of data blocks that is pointed 
to from the same primary-level index block, and includes the 
primary-level index block. The data records and blocks 
contained in a cluster are logically contiguous, but are not 
necessarily physically contiguous. 

COO (change of direction). A character used with ACCA 
terminal to indicate a reverse in the direction of data movement. 

cold start. Starting the spool facility by erasing any spooled jobs 
remaining in the spool data set from any previous spool session. 

command. A character string from a source external to the 
system that represents a request for action by the system. 

common area. A user-defined data area that is mapped into the 
partitions specified on the SYSTEM definition statement. It can 

PG-354 SC34-0637 

be used to contain control blocks or data that will be accessed by 
more than one program. 

completion code. An indicator that reflects the status of the 
execution of a program. The completion code is displayed or 
printed on the program's output device. 

constant. A value or address that remains unchanged thoughout 
program execution. 

controller. A device that has the capability of configuring the 
GPIB bus by designating which devices are active, which devices 
are listeners, and which device is the talker. In Series/1 GPIB 
implementation, the Series/1 is always the controller. 

conversion. See update. 

control station. In BSCAM communications, the station that 
supervises a multipoint connection, and performs polling and 
selection of its tributary stations. The status of control station is 
assigned to a BSC line during system generation. 

cross-partition service. A function that accesses data in two 
partitions. 

cross-partition supervisor. A supervisor in which one or more 
supervisor modules reside outside of partition 1 (address space 
0). 

data block. In an indexed file, an area that contains control 
information and data records. These blocks are a multiple of 256 
bytes. 

data record. In an indexed file, the records containing customer 
data. 

data set. A group of records within a volume pointed to by a 
directory member entry in the directory for the volume. 

data set control block (OSCB). A control block that provides 
the information required to access a data set, volume or directory 
using READ and WRITE. 

data set shut down. An indexed data set that has been marked 
(in main storage only) as unusable due to an error. 

OCE. See directory control entry. 

device data block (ODB). A control block that describes a disk 
or diskette volume. 

direct access. (1) The access method used to READ or WRITE 
records on a disk or diskette device by specifying their location 
relative the beginning of the data set or volume. (2) In the 
Indexed Access Method, locating any record via its key without 
respect to the previous operation. (3) A condition in terminal I/O 
where a READTEXT or a PRINTEXT is directed to a buffer which 
was previously enqueued upon by an 10CB. 

o 

f~\ ',J 

o 



o 

o 

o 

directory. (1) A series of contiguous records in a volume that 
describe the contents in terms of allocated data sets and free 
space. (2) A series of contiguous records on a device that 
describe the contents in terms of allocated volumes and free 
space. (3) For the Indexed Access Method Version 2, a data set 
that defines the relationship between primary and secondary 
indexed files (secondary index support). 

directory control entry (DCE). The first 32 bytes of the first 
record of a directory in which a description of the directory is 
stored. 

directory member entry (DME). A 32-byte directory entry 
describing an allocated data set or volume. 

display station. An IBM 4978, 4979, or 3101 display terminal or 
similar terminal with a keyboard and a video display. 

DME. See directory member entry. 

DSCB. See data set control block. 

dynamic storage. An increment of storage that is appended to a 
program when it is loaded. 

end-of-data indicator. A code that signals that the last record of 
a data set has been read or written. End-of-data is determined 
by an end-of-data pointer in the DME or by the physical end of 
the data set. 

ECB. See event control block. 

EDl. See Event Driven Language. 

emulator. The portion of the Event Driven Executive supervisor 
that interprets EDL instructions and performs the function 
specified by each EDL statement. 

end-of-tape (EOT). A reflective marker placed near the end of a 
tape and sensed during output. The marker signals that the tape 
is nearly full. 

enter key. The key on the display terminal keyboard that, if 
pressed, tells the operating system to read the information you 
entered. 

event control block (ECB). A control block used to record the 
status (occurred or not occurred) of an event; often used to 
synchronize the execution of tasks. ECBs are used in conjunction 
with the WAIT and POST instructions. 

Event Driven Language (EDL). The language for input to the 
Event Driven Executive compiler ($EDXASM), or the Macro and 
Host assemblers in conjunction with the Event Driven Executive 
macro libraries. The output is interpreted by the Event Driven 
Executive emulator. 

EXIQ (execute input or output). An EDL facility that provides 
user controlled access to Series/1 input/output devices. 

external label. A label attached to the outside of a tape that 
identifies the tape visually. It usually contains items of 
identification such as file name and number, creation data, 
number of volumes, department number, and so on. 

external name (EXTRN). The 1- to 8-character symbolic 
EBCDIC name for an entry point or data field that is not defined 
within the module that references the name. 

FCA. See file control area. 

FCB. See file control block. 

file. A set of related records treated as a logical unit. Although 
file is often used interchangeably with data set, it usually refers to 
an indexed or a sequential data set. 

file control area (FCA). A Multiple Terminal Manager data area 
that describes a file access request. 

file control block (FCB). The first block of an indexed file. It 
contains descriptive information about the data contained in the 
file. 

file control block extension. The second block of an indexed 
file. It contains the file definition parameters used to define the 
file. 

file manager. A collection of subroutines contained within the 
program manager of the Multiple Terminal Manager that provides 
common support for all disk data transfer operations as needed 
for transaction-oriented application programs. It supports 
indexed and direct files under the control of a single callable 
function. 

floating point. A positive or negative number that can have a 
decimal point. 

formatted screen image. A collection of display elements or 
display groups (such as operator prompts and field input names 
and areas) that are presented together at one time on a display 
device. 

free pool. In an indexed data set, a group of blocks that can be 
used for either data blocks or index blocks. These differ from 
other free blocks in that these are not initially assigned to specific 
logical positions in the file. 

free space. In an indexed file, records blocks that do not 
currently contain data, and are available for use. 

free space entry (FSE). An 8-byte directory entry defining an 
area of free space within a volume or a device. 

FSE. See free space entry. 

general purpose interface bus. The IEEE Standard 488-1975 
that allows various interconnected devices to be attached to the 
GPIB adapter (RPQ 002118). 

Glossary of Terms and Abbreviations PG-355 



Glossary of Terms and Abbreviations 

GPIB. See general purpose interface bus. 

group. A unit of 100 records in the spool data set allocated to a 
spool job. 

H exchange format. A standard format for exchanging data on 
diskettes between systems or devices. 

host assembler. The assembler licensed program that executes 
in a 370 (host) system and produces object output for the 
Series/1. The source input to the host assembler is coded in 
Event Driven Language or Series/1 assembler language. The 
host assembler refers to the System/370 Program Preparation 
Facility (5798-NNQ). 

host system. Any system whose resources are used to perform 
services such as program preparation for a Series/1. It can be 
connected to a Series/1 by a communications link. 

IACB. See indexed access control block. 

IAR. See instruction address register. 

ICB. See indexed access control block. 

liB. See interrupt information byte. 

image store. The area in a 4978 that contains the character 
image table. 

immediate data. A self-defining term used as the operand of an 
instruction. It consists of numbers, messages or values which 
are processed directly by the computer and which do not serve as 
addresses or pointers to other data in storage. 

index. In an indexed file, an ordered collection of pairs of keys 
and pointers, used to sequence and locate records. 

index block. In an indexed file, an area that contains control 
information and index entries. These blocks are a multiple of 256 
bytes. 

indexed access control block (lACB/ICB). The control block 
that relates an application program to an indexed file. 

indexed access method. An access method for direct or 
sequential processing of fixed-length records by use of a 
record's key. 

indexed data set. Synonym for indexed file. 

indexed file. A file specifically created, formatted and used by 
the Indexed Access Method. An indexed file is sometimes called 
an indexed data set. 

index entry. In an indexed file, a key-pointer pair, where the 
pointer is used to locate a lower-level index block or a data block. 

PG-356 SC34-0637 

index register (#1, #2). Two words defined in EDL and 
contained in the task control block for each task. They are used 
to contain data or for address computation. 

input buffer. (1) See buffer. (2) In the Multiple Terminal 
Manager, an area for terminal input and output. 

input output control block (lOCB). A control block containing 
information about a terminal such as the symbolic name, size and 
shape of screen, the size of the forms in a printer, or an optional 
reference to a user provided buffer. 

instruction address register (lAR). The pointer that identifies 
the machine instruction currently being executed. The Series/1 
maintains a hardware IAR to determine the Series/1 assembler 
instruction being executed. It is located in the level status block 
(LSB). 

integer. A positive or negative number that has no decimal 
point. 

interactive. The mode in which a program conducts a 
continuous dialogue between the user and the system. 

internal label. An area on tape used to record identifying 
information (similar to the identifying information placed on an 
external label). Internal labels are checked by the system to 
ensure that the correct volume is mounted. 

interrupt information byte (liB). In the Multiple Terminal 
Manager, a word containing the status of a previous input/ output 
request to or from a terminal. 

invoke. To load and activate a program, utility, procedure, or 
subroutine into storage so it can run. 

job. A collection of related program execution requests 
presented in the form of job control statements, identified to the 
jobstream processor by a JOB statement. 

job control statement. A statement in a job that specifies 
requests for program execution, program parameters, data set 
definitions, sequence of execution, and, in general, describes the 
environment required to execute the program. 

job stream processor. The job processing facility that reads job 
control statements and processes the requests made by these 
statements. The Event Driven Executive job stream processor is 
$JOBUTIL. 

jumper. (1) A wire or pair of wires which are used for the 
arbitrary connection between two circuits or pins in an 
attachment card. (2) To connect wire(s) to an attachment card or 
to connect two circuits. 

key. In the Indexed Access Method, one or more consecutive 
characters used to identify a record and establish its order with 
respect to other records. See also key field. 

() 

o 



o 

o 

o 

key field. A field, located in the same position in each record of 
an indexed file, whose content is used for the key of a record. 

level status block (LSB). A Series/1 hardware data area that 
contains processor status. This area is eleven words in length. 

library. A set of contiguous records within a volume. It contains 
a directory, data sets and/or available space. 

line. A string of characters accepted by the system as a single 
input from a terminal; for example, all characters entered before 
the carriage return on the teletypewriter or the ENTER key on the 
display station is pressed. 

link edit. The process of resolving external symbols in one or 
more object modules. A link edit is performed with $EDXLlNK 
whose output is a loadable program. 

listener. A controller or active device on a GPIB bus that is 
configured to accept information from the bus. 

load mode. In the Indexed Access Method, the mode in which 
records are loaded into base record slots in an indexed file. 

load module. A single module having cross references resolved 
and prepared for loading into storage for execution. The module 
is the output of the $UPDATE or $UPDATEH utility. 

load point. (1) Address in the partition where a program is 
loaded. (2) A reflective marker placed near the beginning of a 
tape to indicate where the first record is written. 

lock. In the Indexed Access Method, a method of indicating that 
a record or block is in use and is not available for another request. 

logical screen. A screen defined by margin settings, such as the 
TOPM, BOTM, LEFTM and RIGHTM parameters of the 
TERMINAL or IOCB statement. 

LSB. See level status block. 

mapped storage. The processor storage that you defined on the 
SYSTEM statement during system generation. 

member. A term used to identify a named portion of a 
partitioned data set (PDS). Sometimes member is also used as a 
synonym for a data set. See data set. 

menu. A formatted screen image containing a list of options. 
The user selects an option to invoke a program. 

menu,driven. The mode of processing in which input consists of 
the responses to prompting from an option menu. 

message. In data communications, the data sent from one 
station to another in a single transmission. Stations 
communication with a series of exchanged messages. 

multifile volume. A unit of recording media, such as tape reel or 
disk pack, that contains more than one data file. 

multiple terminal manager. An Event Driven Executive licensed 
program that provides support for transaction-oriented 
applications on a Series/1. It provides the capability to define 
transactions and manage the programs that support those 
transactions. It also manages multiple terminals as needed to 
support these transactions. 

multivolume file. A data file that, due to its size, requires more 
than one unit of recording media (such as tape reel or disk pack) 
to contain the entire file. 

new high key. A key higher than any other key in an indexed 
file. 

nonlabeled tapes. Tapes that do not contain identifying labels 
(as in standard labeled tapes) and contain only files separated by 
tapemarks. 

null character. A user-defined character used to define the 
unprotected fields of a formatted screen. 

option selection menu. A full screen display used by the 
Session Manager to point to other menus or system functions, 
one of which is to be selected by the operator. (See primary 
option menu and secondary option menu.) 

output buffer. (1) See buffer. (2) In the Multiple Terminal 
Manager, an area used for screen output and to pass data to 
subsequent transaction programs. 

overlay. The technique of reusing a single storage area allocated 
to a program during execution. The storage area can be reused 
by loading it with overlay programs that have been specified in 
the PROGRAM statement of the program or by calling overlay 
segments that have been specified in the OVERLAY statement of 
$EDXLlNK. 

overlay area. A storage area within a program reserved for 
overlay programs specified in the PROGRAM statement or 
overlay segments specified in the OVERLAY statement in 
$EDXLlNK. 

overlay program. A program in which certain control sections 
can use the same storage location at different times during 
execution. An overlay program can execute concurrently as an 
asynchronous task with other programs and is specified in the 
EDL PROGRAM statement in the main program. 

overlay segment. A self-contained portion of a program that is 
called and sequentially executes as a synchronous task. The 
entire program that calls the overlay segment need not be 
maintained in storage while the overlay segment is executing. An 
overlay segment is specified in the OVERLAY statement of 
$EDXLlNK or $XPSLlNK (for initialization modules). 

overlay segment area. A storage area within a program or 
supervisor reserved for overlay segments. An overlay segment 
area is specified with the OVLAREA statement of $EDXLlNK. 

Glossary of Terms and Abbreviations PG-357 



Glossary of Terms and Abbreviations 

parameter selection menu. A full screen display used by the 
Session Manager to indicate the parameters to be passed to a 
program. 

partition. A contiguous fixed-sized area of storage. Each 
partition is a separate address space. 

performance volume. A volume whose name is specified on 
the DISK definition statement so that its address is found during 
IPL, increasing system performance when a program accesses 
the volume. 

physical timer. Synonym for timer (hardware). 

polling. In data communications, the process by which a 
multipoint control station asks a tributary if it can receive 
messages. 

precision. The number of words in storage needed to contain a 
value in an operation. 

prefind. To locate the data sets or overlay programs to be used 
by a program and to store the necessary information so that the 
time required to load the prefound items is reduced. 

primary file. An indexed file containing the data records and 
primary index. 

primary file entry. For the Indexed Access Method Version 2, 
an entry in the directory describing a primary file. 

primary index. The index portion of a primary file. This is used 
to access data records when the primary key is specified. 

primary key. In an indexed file, the key used to uniquely identify 
a data record. 

primary-level index block. In an indexed file, the lowest level 
index block. It contains the relative block numbers (RBNs) and 
high keys of several data blocks. See cluster. 

primary menu. The program selection screen displayed by the 
Multiple Terminal Manager. 

primary option menu. The first full screen display provided by 
the Session Manager. 

primary station. In a Series/1-to-Series/1 Attachment, the 
processor that controls communiaation between the two 
computers. Contrast with secondary station. 

primary task. The first task executed by the supervisor when a 
program is loaded into storage. It is identified by the PROG RAM 
statement. 

priority. A combination of hardware interrupt level priority and a 
software ranking within a level. Both primary and secondary 
tasks will execute asynchronously within the system according to 
the priority assigned to them. 

PG-358 SC34-0637 

process mode. In the Indexed Access Method, the mode in 
which records can be retrieved, updated, inserted, or deleted. 

processor status word (PSW). A 16-bit register used to (1) 
record error or exception conditions that may prevent further 
processing and (2) hold certain flags that aid in error recovery. 

program. A disk- or diskette-resident collection of one or more 
tasks defined by a PROGRAM statement; the unit that is loaded 
into storage. (See primary task and secondary task.) 

program header. The control block found at the beginning of a 
program that identifies the primary task, data sets, storage 
requirements and other resources required by a program. 

program/storage manager. A component of the Multiple 
Terminal Manager that controls the execution and flow of 
application programs within a single program area and contains 
the support needed to allow multiple operations and sharing of 
the program area. 

protected field. A field in which the operator cannot use the 
keyboard to enter, modify, or erase data. 

PSW. See processor status word. 

QCB. See queue control block. 

QO. See queue descriptor. 

QE. See queue element. 

queue control block (QCB). A data area used to serialize access 
to resources that cannot be shared. See serially reusable 
resource. 

queue descriptor (QO). A control block describing a queue built 
by the DEFINEQ instruction. 

queue element (QE). An entry in the queue defined by the 
queue descriptor. 

quiesce. To bring a device or a system to a halt by rejection of 
new requests for work. 

quiesce protocol. A method of communication in one direction 
at a time. When sending node wants to receive, it releases the 
other node from its quiesced state. 

record. (1) The smallest unit of direct access storage that can be 
accessed by an application program on a disk or diskette using 
READ and WRITE. Records are 256 bytes in length. (2) In the 
Indexed Access Method, the logical unit that is transferred 
between $IAM and the user's buffer. The length of the buffer is 
defined by the user. (3) In BSCAM communications, the portions 
of data transmitted in a message. Record length (and, therefore, 
message length) can be variable. 

recovery. The use of backup data to re-create data that has 
been lost or damaged. 

o 

(---",,\ 
\,,-;,' 

o 



o 

o 

o 

reflective marker. A small adhesive marker attached to the 
reverse (nonrecording) surface of a reel of magnetic tape. 
Normally, two reflective markers are used on each reel of tape. 
One indicates the beginning of the recording area on the tape 
(load point), and the other indicates the proximity to the end of 
the recording area (EOT) on the reel. 

relative block address (RBA). The location of a block of data on 
a 4967 disk relative to the start of the device. 

relative record number. An integer value identifying the 
position of a record in a data set relative to the beginning of the 
data set. The first record of a data set is record one, the second 
is record two, the third is record three. 

relocation dictionary (RLD). The part of an object module or 
load module that is used to identify address and name constants 
that must be adjusted by the relocating loader. 

remote management utility control block (RCB). A control 
block that provides information for the execution of remote 
management utility functions. 

reorganize. The process of copying the data in an indexed file to 
another indexed file in a manner that rearranges the data for more 
optimum processing and free space distribution. 

restart. Starting the spool facility w the spool data set contains 
jobs from a previous session. The jobs in the spool data set can 
be either deleted or printed when the spool facility is restarted. 

return code. An indicator that reflects the results of the 
execution of an instruction or subroutine. The return code is 
usually placed in the task code word (at the beginning of the task 
control block). 

roll screen. A display screen which is logically segmented into 
an optional history area and a work area. Output directed to the 
screen starts display at the beginning of the work area and 
continues on down in a line-by-line sequence. When the work 
area gets full, the operator presses ENTER/SEND and its contents 
are shifted into the optional history area and the work area itself 
is erased. Output now starts again at the beginning of the work 
area. 

SBIOCB. See sensor based I/O control block. 

second-level index block. In an indexed data set, the 
second-lowest level index block. It contains the addresses and 
high keys of several primary-level index blocks. 

secondary file. See secondary index. 

secondary index. For the Indexed Access Method Version 2, an 
indexed file used to access data records by their secondary keys. 
Sometimes called a secondary file. 

secondary index entry. For the Indexed Access Method 
Version 2, this an an entry in the directory describing a secondary 
index. 

secondary key. For the Indexed Access Method Version 2, the 
key used to uniquely identify a data record. 

secondary option menu. In the Session Manager, the second in 
a series of predefined procedures grouped together in a 
hierarchical structure of menus. Secondary option menus provide 
a breakdown of the functions available under the session 
manager as specified on the primary option menu. 

secondary task. Any task other than the primary task. A 
secondary task must be attached by a primary task or another 
secondary task. 

secondary station. In a Series/1-to-Series/1 Attachment, the 
processor that is under the control of the primary station. 

sector. The smallest addressable unit of storage on a disk or 
diskette. A sector on a 4962 or 4963 disk is equivalent to an 
Event Driven Executive record. On a 4964 or 4966 diskette, two 
sectors are equivalent to an Event Driven Executive record. 

selection. In data communications, the process by which the 
multipoint control station asks a tributary station if it is ready to 
send messages. 

self-defining term. A decimal, integer, or character that the 
computer treats as a decimal, integer, or character and not as an 
address or pointer to data in storage. 

sensor based I/O control block (SBIOCB). A control block 
containing information related to sensor I/O operations. 

sequential access. The processing of a data set in order of 
occurrence of the records in the data set. (1) In the Indexed 
Access Method, the processing of records in ascending collating 
sequence order of the keys. (2) When using READ/WRITE, the 
processing of records in ascending relative record number 
sequence. 

serially reusable resource (SRR). A resource that can only be 
accessed by one task at a time. Serially reusable resources are 
usually managed via (1) a QCB and ENQ/DEO statements or (2) an 
ECB and WAIT/POST statements. 

service request. A device generated signal used to inform the 
GPIB controller that service is required by the issuing device. 

session manager. A series of predefined procedures grouped 
together as a hierarchical structure of menus from which you 
select the utility functions, program preparation facilities, and 
language processors needed to prepare and execute application 
programs. The menus consist of a primary option menu that 
displays functional groupings and secondary option menus that 
display a breakdown of these functional groupings. 

shared resource. A resource that can be used by more than one 
task at the same time. 

Glossary of Terms and Abbreviations PG-359 



Glossary of Terms and Abbreviations 

shut down. See data set shut down. 

source module/program. A collection of instructions and 
statements that constitute the input to a compiler or assembler. 
Statements may be created or modified using one of the text 
editing facilities. 

spool job. The set of print records generated by a program 
(including any overlays) while engueued to a printer designated as 
a spool device. 

spool session. An invocation and termination of the spool 
facility. 

spooling. The reading of input data streams and the writing of 
output data streams on storage devices, concurrently with job 
execution, in a format convenient for later processing or output 
operations. 

SRQ. See service request. 

stand-alone dump. An image of processor storage written to a 
diskette. 

stand-alone dump diskette. A diskette supplied by IBM or 
created by the $DASDI utility. 

standard labels. Fixed length aO-character records on tape 
containing specific fields of information (a volume label 
identifying the tape volume, a header label preceding the data 
records, and a trailer label following the data records). 

static screen. A display screen formatted with predetermined 
protected and unprotected areas. Areas defined as operator 
prompts or input field names are protected to prevent accidental 
overlay by input data. Areas defined as input areas are not 
protected and are usually filled in by an operator. The entire 
screen is treated as a page of information. 

station. In BSGAM communications, a BSG line attached to the 
Series/1 and functioning in a point-to-point or multipoint 
connection. Also, any other terminal or processor with which the 
Series/1 communicates. 

subroutine. A sequence of instructions that may be accessed 
from one or more points in a program. 

supervisor. The component of the Event Driven Executive 
capable of controlling execution of both system and application 
programs. 

system configuration. The process of defining devices and 
features attached to the Series/1. 

SYSGEN. See system generation. 

system generation. The processing of defining I/O devices and 
selecting software options to create a supervisor tailored to the 
needs of a specific Series/1 hardware configuration and 
a ppl ication. 

PG-360 SC34-0637 

system partition. The partition that contains the root segment 
of the supervisor (partition number 1, address space 0). 

talker. A controller or active device on a GPIB bus that is 
configured to be the source of information (the sender) on the 
bus. 

tape device data block (TOB). A resident supervisor control 
block which describes a tape volume. 

tapemark. A control character recorded on tape used to 
separate files. 

task. The basic executable unit of work for the supervisor. Each 
task is assigned its own priority and processor time is allocated 
according to this priority. Tasks run independently of each other 
and compete for the system resources. The first task of a 
program is the primary task. All tasks attached by the primary 
task are secondary tasks. 

task code word. The first two words (32 bits) of a task's TGB; 
used by the emulator to pass information from system to task 
regarding the outcome of various operations, such as event 
completion or arithmetic operations. 

task control block (TCB). A control block that contains 
information for a task. The information consists of pointers, save 
areas, work areas, and indicators required by the supervisor for 
controlling execution of a task. 

task supervisor. The portion of the Event Driven Executive that 
manages the dispatching and switching of tasks. 

TCB. See task control block. 

terminal. A physical device defined to the EDX system using the 
TERMINAL configuration statement. EDX terminals include 
directly attached IBM displays, printers and devices that 
communicate with the Series/1 in an asynchronous manner. 

terminal control block (CCB). A control block that defines the 
device characteristics, provides temporary storage, and contains 
links to other system control blocks for a particular terminal. 

terminal environment block (TEB). A control block that 
contains information on a terminal's attributes and the program 
manager operating under the Multiple Terminal Manager. It is 
used for processing requests between the terminal servers and 
the program manager. 

terminal screen manager. The component of the Multiple 
Terminal Manager that controls the presentation of screens and 
communications between terminals and transaction programs. 

terminal server. A group of programs that perform all the 
input/ output and interrupt handling functions for terminal devices 
under control of the Multiple Terminal Manager. 

o 

o 



o 

o 

o 

terminal support. The support provided by EDX to manage and 
control terminals. See terminal. 

timer. The timer features available with the Series/1 processors. 
Specifically, the 7840 Timer Feature card (4955 only) or the native 
timer (4952, 4954, and 4956). Only one or the other is supported 
by the Event Driven Executive. 

trace range. A specified number of instruction addresses within 
which the flow of execution can be traced. 

transaction oriented applications. Program execution driven by 
operator actions, such as responses to prompts from the system. 
Specifically, applications executed under control of the Multiple 
Terminal Manager. 

transaction program. See transaction-oriented applications. 

transaction selection menu. A Multiple Terminal Manager 
display screen (menu) offering the user a choice of functions, 
such as reading from a data file, displaying data on a terminal, or 
waiting for a response. Based upon the choice of option, the 
application program performs the requested processing 
operation. 

tributary station. In BSCAM communications, the stations 
under the supervision of a control station in a multipoint 
connection. They respond to the control station's polling and 
selection. 

unmapped storage. The processor storage in your processor 
that you did not define on the SYSTEM statement during system 
generation. 

unprotected field. A field in which the operator can use the 
keyboard to enter, modify or erase data. Also called 
non-protected field. 

update. (1) To alter the contents of storage or a data set. (2) To 
convert object modules, produced as the output of an assembly 
or compilation, or the output of the linkage editor, into a form that 
can be loaded into storage for program execution and to update 
the directory of the volume on which the loadable program is 
stored. 

user exit. (1) Assembly language instructions included as part of 
an EDL program and invoked via the USER instruction. (2) A 
point in an IBM-supplied program where a user written routine 
can be given control. 

variable. An area in storage, referred to by a label, that can 
contain any value during program execution. 

vary offline. (1) To change the status of a device from online to 
offline. When a device is offline, no data set can be accessed on 
that device. (2) To place a disk or diskette in a state where it is 
unknown by the system. 

vary online. To place a device in a state where it is available for 
use by the system. 

vector. An ordered set or string of numbers. 

volume. A disk, diskette, or tape subdivision defined using 
$INITDSK or $TAPEUT1. 

volume descriptor entry (VDE). A resident supervisor control 
block that describes a volume on a disk or diskette. 

volume label. A label that uniquely identifies a single unit of 
storage media. 

Glossary of Terms and Abbreviations PG-361 



o 

o 
PG-362 SC34-0637 



o 

c 

o 

Index 

The following index contains entries for this book only. See the Library Guide and Common Index for a Common 
Index to all Event Driven Executive books. 

Special Characters 

$$EDXIT task error exit routine 
description PG-124 
output example PG -125 
using PG-125 

$DEBUG utility 
change 

storage PG-110 
commands PG-112 
description PG -109 
display 

unmapped storage PG-117 
ending PG-117 
finding errors PG-114 
list 

registers PG -109 
storage location PG -114 

loading PG-111 
patching a program PG-115 
restarting a program PG-110 
set 

breakpoints PG-113 
trace ranges PG-109 

$DISKUT1 utility 
allocating data set for compiler PG-78 
allocating object data set PG -15 

$DISKUT3 program 
allocating a data set PG-206 
deleting a data set PG-210 
description PG-203 
opening a data set PG-208 

performing more than one operation PG - 218 
releasing unused space PG-212 
renaming a data set PG-214 
setting end-of-data PG-216 

$EDXASM Event Driven Language compiler 
checking the listing PG-19 
correcting compiler errors PG-84 
description PG-77 
listing example PG-88 
overview PG-77 
parameter input menu PG-18 

$EDXLlNK utility 
autocall feature PG-98 
control statements PG-91 

AUTOCALL PG-98 
INCLUDE PG-95 
LINK PG-96 
OVERLAY PG-97 

creating a load module PG-20 
creating overlay segments PG-195 
invoke using 

$L interactive PG-90, PG-94 
$L noninteractive PG-100 

link-editing a single object module PG-90 
link-editing more than one object module PG-92 
overview PG-89 
parameter input menu PG-21 
primary control statement data set 

example PG-100 
required for PUTEDIT PG-98 

$FSEDIT utility 
creating primary control data set PG -100 

Index PG-363 



Index 

overview PG-67 
$IMAGE utility 

description PG-338 
example PG-348 
use for device independencerPG-158 

$1 M DATA subroutine 
description PG-346 
example PG-159, PG-347, PG-348 
return codes PG-347 

$IMDEFN subroutine 
description PG-342 
example PG-343, PG-348 

$IMOPEN subroutine 
description PG-340 
example PG-158, PG-341, PG-348 
reading a screen image PG-147 
return codes PG-341 

$IMPROT subroutine 
description PG-344 
example PG-158, PG-345, PG-348 
return codes PG-345 

$JOBUTIL utility 
submitting a program from a program PG-l07, PG-l08 

$MSGUTl utility 
examples PG-303 
format messages PG-303 
store messages PG-303 

$PACK subroutine 
description PG-352 

$PREFIND utility 
overview PG-l0l 

$SMM02 secondary option menu PG-13 
$SUBMITP program 

example PG-l07 
sample job stream processor commands PG-l08 
submitting a program from a program PG-l07 

$TAPEUTl utility 
change 

label processing attributes PG-239 
$UNPACK subroutine 

description PG-350 
example PG-351 

$VARYON - set device online 

A/I 

processing a tape containing more than one data 
set PG-236 

A 

See analog input 
A/a 

See analog output 
ACCA 

diagnosing errors PG-123 
add 

consecutive integers PG-45 
double-precision integers PG-45 
extended-precision floating point PG-50 
floating point PG-50 

PG-364 SC34-0637 

integer data PG-44 
records to a tape file PG-242 

ADD instruction 
adding consecutive integers PG-45 
adding double-precision integers PG-45 
adding integer data PG-44 
coding example PG-44 

advance input PG-334 
AI 

See analog input 
allocate 

data set 
for compiler PG-78 
for object code PG -14 
from a program PG-206 

alphameric data 
reading PG-37 
writing PG-59 

analog input 
description PG-266 
example PG-272 
10DEF statement PG-269 
sample PG-276, PG-277 
SBIO instruction PG-271 

analog output 
description PG - 266 
10DEF statement PG-269 
SBIO instruction PG-271 

AN D instruction 
comparing bit strings PG-56 

arithmetic 
comparison PG-61 
operations PG-44 
values, defining PG-29, PG-30 

ASCII terminal 
used in graphics application PG-283 

assign 
sensor I/O addresses PG - 268 

ATTACH instruction 
synchronizing tasks PG -188 

attention key PG-331 
ATTN LIST statement 

use in terminal support PG-333 
attribute characters, 3101 PG-155, PG-162 
autocall feature 

example PG-98 
including task error exit routine PG-125 
invoking PG-98 
with static screen program PG -151 

B 

background job, submitting PG-l04 
binary 

converting to PG-40 
to EBCDIC PG-39 

blanks, defining PG-31 
blinking field PG-168 
branch 

o 

o 



o 

o 

o 

to another location PG-64 
breakpoint and trace range 

settings PG-113 
buffer 

contents of PG-34 
defining PG-33, PG-34 
index PG-34 

BUFFER statement 
coding PG-34 

bypassing standard labels, tape PG-234 

c 
CALL instruction 

calling a subroutine PG-190 
loading an overlay segment PG-195 
overview PG -189 

change 
attri bute byte PG -1 71 
line of data set PG-71 
screen attribute PG-165 
storage locations PG -110 

character string 
converting to PG-39 
defining PG-31 

close 
standard-label tape PG-234 

code 
a program PG-3 
reentrant routine PG-315 

comparing bit-strings 
AND instruction PG-56 
exclusive-OR PG-53 
inclusive-OR PG-55 

comparing storage 
arithmetically PG-61 
logically PG-62 

compile 
a program PG-13, PG-77 

compiler 
See $EDXASM Event Driven Language compiler 

compiler errors, correcting PG-84 
compressed byte string PG-352 
CONCAT instruction 

overview PG-284 
continuation line PG-3 
CONTROL instruction 

closing a standard-label tape PG-234 
conventions, data set PG-105 
convert 

checking for conversion errors PG-43 
data PG-39 
floating point to integer PG-42 
integer to floating point PG-42 
source messages PG-303 
to binary PG-40 
to EBCDIC PG-39 
4978 screens PG-160 

CONVTB instruction 

converting to EBCDIC PG-39 
CONVTD instruction 

converting to binary PG-40 
create 

data entry field PG -172 
data set for program messages PG-300 
load module PG-20 
source data set PG-68 
static screen PG -145 
unprotected fields PG -167 

cross-partition services 

0/1 

finding a program PG-249 
introduction PG-245 
loading a program PG-246 
moving data across partitions PG-256 
reading data across partitions PG-258 
sharing resources PG-252 
starting a task PG-250 
synchronizing tasks PG-254 

D 

See digital input 
0/0 

data 
See digital output 

adding PG-44 
alphameric, reading PG-37 
alphameric, writing PG-59 
comparing PG-61 
converting PG-39 
defining PG-4 
logical PG-53 
manipulating PG-44 
manipulating floating point PG-49 
manipulating logical PG-53 
moving PG-38 
moving across partitions PG-256 
numeric, reading PG-37 
numeric, writing PG-59 
processing PG-5 
reading PG-34 

across partitions PG-258 
from a static screen PG-136 
from disk/diskette PG-35 
from tape PG-36 
from terminal PG-36 

retrieving PG-4 
writing PG-57 

to disk/ diskette PG-57 
to static screen PG -136 
to tape PG-58 
to terminal PG-59 

data management from a program PG-204 
data set 

allocate 
for compiler PG - 78 
from a program PG-206 

Index PG-365 



Index 

with $DISKUT3 PG-203 
creating PG-68 
delete 

from a program PG-210 
entering a program into PG-7 
format PG -1 06 
identifying in a program PG-28 
locating before loading a program PG-101 
modifying PG-71 
name, defined PG-106 
naming conventions PG-105 
open from a program PG-208 
release unused space PG-212 
rename from program PG-214 
saving PG-70 
saving screen image PG-144 
set end-of-data PG-216 
specifying PG-105 
volume, defined PG-106 

data set control block (DSCB) 
allocating a data set from a program PG-206 
opening a data set from a program PG-208 

DATA statement 
assigning an initial value PG-30 
character strings, defining PG-31 
defining a doubleword PG-30 
defining a halfword PG-30 
defining floating point PG-30 
duplication factor PG-29 
reading from static screen PG-150 
reserving storage for integers PG-29 
writing to static screen PG -150 

data storage area, coding PG-34 
DC statement 

defining character strings PG-31 
defining floating point PG-30 
reserving storage for integers PG-29 

debugging utility 
See $DEBUG utility 

decimal arithmetic operations PG-44 
define 

character strings PG-31 
data PG -4, PG - 29 
floating-point values PG-30 
input/ output area PG-33 
location of message data set PG-305 
primary task PG-28 
static screen PG -134 
subroutine PG -189 
TEXT statement PG-34 
virtual terminals PG-262 

definition statement format PG-29 
delete 

delete 
from a program PG-210 

line from data set PG-73 
more than one line PG-74 

PG-366 SC34-0637 

design 
a program PG-2 

DETACH instruction 
synchronizing tasks PG-188 

device independence 
between 4978,4979, or 4980 and 3101 PG-154 
coding EDL instructions PG-156 
for static screens PG -154 
using the $1 MAG E subroutines PG -158 

device type, finding PG-230 
DI 

See digital input 
digital input 

description PG-265 
example PG-273, PG-280 
10DEF statement PG-269 
SBIO instruction PG-271 

digital output 
description PG-265 
example PG-274 
10DEF statement PG-269 
SBIO instruction PG-271 

directory member entry (DME) 
updated by SETEOD PG-228 

display 
protected data PG -1 58 
unmapped storage PG-117 
unprotected data PG -158 

divide 
accessing the remainder PG-49 
consecutive integers PG -49 
double-precision integers PG-48 
extended-precision floating point PG-53 
floating-point numbers PG-52 
integers PG-48 

DIVIDE instruction 

DO 

accessing the remainder PG-49 
dividing consecutive integers PG-49 
dividing double-precision integers PG-48 
dividing integers PG-48 

See digital output 
DO instruction 

DO UNTIL PG-63 
DO WHILE PG-63 
executing code repetitively PG-62 
nested DO loop PG-63 
nested IF instruction PG-64 
overview PG-60 
simple DO PG-62 

DSOPEN subroutine 
considerations PG-221 
description PG - 220 
error exits PG - 220 
example PG-222 

duplication factor PG-30 

o 

r--"'\ ,.,# 

o 



o 

o 

o 

E 

EBCDIC 
converting to PG-39 

EBCDIC-to-binary conversion PG-40 
EDL programming 

basic functions PG-27 
coding PG-3 
compiling PG-13, PG-77 
correcting compiler errors PG-84 
creating a load module PG-20 
designing PG-2 
entering PG - 7 
executing PG-23, PG-103 
running PG-23, PG-103 

EDX record, defined PG-35 
ELSE instruction 

overview PG-60 
end 

a program PG-6, PG-65 
END statement 

overview PG - 65 
end-of-file, indicating with SETEOD PG-228 
EN 000 instruction 

overview PG-60 
ENDIF instruction 

overview PG-60 
ENDPROG statement 

overview PG-65 
ENOT instruction 

getting exclusive access to a terminal PG-148 
use with logical screens PG-336 
use with static screen PG -134 

enqueue 
static screen PG-165 

enter 
advance input PG-334 
program into a data set PG-7 

EOR instruction 
comparing bit strings PG-53 

EO (equal) PG-60 
EOU statement 

coding PG-32 
coding example PG-32 
used to generate labels PG-65 

erase 
individual field PG-169 
static screen PG -134, PG -165 
to end of static screen PG-175 

ERASE instruGtion 
erasi ng a static screen PG -134, PG -165 
erasing an individual field PG-169 
erasing to end of static screen PG-175 

error codes 
See return codes 

error handling 
checking for conversion errors PG-43 
DSOPEN PG-220 
system-supplied PG-124 
task error exit PG -1 24 

errors 
compiler PG-84 
finding program PG-109 

Event Driven Language (EDL) 
See EDL programming 

exclusive-OR PG-53 
executable instruction, defined PG-28 
execute 

program 
with session manager PG-23, PG-104 

exit 
error (DSOPEN) PG-220 

extended-precision 
floating-point arithmetic PG-49 

EXTRACT copy code routine PG-?30 

F 

FADD instruction 
adding extended-precision floating point PG-50 
adding floating point PG-50 

FDIVD instruction 
dividing extended-precision floating point PG-53 
dividing floating point PG-52 

field table (FTAB) 

file 

find 

$1 M DATA subroutine PG-346 
$IMPROT subroutine PG-345 
format of PG -345 

See data set 

device type PG - 230 
logic errors in a program PG-114 
program PG-249 

FIRSTQ instruction 
retrieving data from a queue PG -312 

floating- point 
addition PG-50 
assigning an initial value PG-31 
converting integer to PG-42 
converting to binary PG-41 
converting to EBCDIC PG-39 
converting to integer PG-42 
defined PG-29 
defining PG-30 
defining more than one data area PG-30 
extended-precision PG-31 
manipulating PG-49 
requirements to use instructions PG-49 
single-precision PG-30 

FM U L T instruction 
multiplying extended-precision floating point PG-52 
multiplying floating-point data PG-51 

formatted screen subroutines 
constructing an IOCB PG-342 
display initial data values PG-346 
preparing fields for display PG-344 
reading the image PG-340 

FPCONV instruction 

Index PG-367 



Index 

converting from floating point to integer PG-42 
converting from integer to floating point PG-42 

FREESTG instruction 
releasing unmapped storage PG-199 

FSU B instruction 
subtracting extended-precision floating point PG-51 
subtracting floating-point data PG-50 

full-screen text editor ($FSEDIT) PG-67 

G 

gather read operation PG -139, PG -156, PG -159 
GE (greater than or equal) PG-60 
GETSTG instruction 

obtaining unmapped storage PG-198 
GETVALUE instruction 

processing interrupts PG-332 
reading numeric data PG-37 
retrieving prompts from a data set PG-307 

GIN instruction 
coding description PG-284 
overview PG - 284 

GOTO instruction 
overview PG-60 
transfer to another location PG-64 

graphics 
functions overview PG - 283 
hardware considerations PG-283 
instructions 

CONCAT PG-284 
GIN PG-284 
PLOTGIN PG-284 
XYPLOT PG-284 
YTPLOT PG-284 

programming example PG-286 
requirements PG-283 

GT (greater than) PG-60 

H 

hexadecimal, defining PG-30 

I 

identify 
data sets in a program PG-28 

I F instruction 
comparing areas of storage PG-61 
overview PG - 60 

image, formatted screen 
See screen 

INCLUDE control statement ($EDXLlNK) PG-95 
inclusive-OR PG-55 
independence, volume PG-226 
index, part of standard buffer PG-34 
initial value, assigning PG-30 

PG-368 SC34-0637 

initialize 
nonlabeled tape PG-240 

input 
area, defining PG-33 
reading from disk PG-35 
reading from diskette PG-35 
reading from tape PG-36 
reading from terminal PG-36 

input menu 
compiler PG-18 
linkage editor PG-21, PG-93 

input/ output control block 
See IOCB instruction 

insert 
line in data set PG-72 

integer 
adding PG-44 
assigning an initial value PG-30 
converting floating-point to PG-42 
converting to binary PG-40 
converting to EBCDIC PG-39 
converting to floating-point PG-42 
defined PG - 29 
doubleword, defining PG-30 
halfword, defining PG-30 
manipulating PG-44 
reserving storage for PG-29 

interactive debugging PG -109 
interrupt 

servicing 
instructions PG-332 

types 
types PG-331 

interrupt keys 
attention key PG-331 
enter key PG-332 
program function (PF) keys PG-332 

interrupt status byte (lSB) 
diagnosing errors from ACCA device PG -123 

invoke 
session manager PG-7 
text editor PG-67 

IOCB instruction 
defining logical screen PG-336 
defining static screen PG -146 
structure PG-337 

IODEF statement 
function PG-269 
SPECPI process interrupt user routine PG-270 

lOR instruction 
comparing bit strings PG-55 

J 

job, background PG-104 
job, submitting from a program PG-107 

o 

f ... j '.J 

o 



o 

o 

o 

K 

keyword operand 
definition of PG-28 

L 

label 
definition PG-3 
generating PG-65 

labels, tape PG-329 
LE (less than or equal) PG-60 
LINK control statement ($EDXLlNK) PG-96 
link-edit 

a program PG-20 
a single object module PG-90 
creating segment overlay structure PG-195 
program that uses $IMAGE subroutines PG-98 
required for GETEDIT PG-98 
static screen program PG-151 

linkage editor 
See $EDXLlNK utility 

list 
registers PG -109 
storage location PG-114 

load 
programs 

from a program PG-246 
from a virtual terminal PG-263 
with the session manager PG-23, PG-103 

LOAD instruction 
submitting a job from a program PG-107 
used with overlays PG -197 

load module 
creating PG-20, PG-89 
executing PG-103 

locate 
data set before loading a program PG-101 
logic errors in a program PG-109 

logical comparison 
AND instruction PG-56 
exclusive-OR instruction PG-53 
IF instruction PG-62 
inclusive-OR instruction PG-55 

logical end-of-file on disk PG-228 
logical screen 

examples PG-336, PG-337 
using IOCB and ENQT to define PG-336 
using TERMINAL to define PG-335 

logon menu, session manager PG-7 
loops PG-62 
LT (less than) PG-60 

M 

magnetic tape 
See tape 

manipulating data PG-44 
message 

defining PG-34 
M ESSAG E instruction 

example PG-306 
retrieving a message from a data set PG-306 

messages, program 
coding PG-300 
creating 

coding variable fields PG-300 
data set for PG-300 

define location of message text PG-305 
formatting PG-303 
retrieving PG-304 
sample program PG -308 
sample source message data set PG-302 
storing PG-303 

modified data 
reading from the 3101 PG-174 
3101 considerations PG -172 
3101 example PG -173 

modified data tag PG-172, PG-173 
modify 

existing data set PG-71 
move 

data PG-38 
data across partitions PG-256 
lines in a data set PG-75 

MOVE instruction 
moving data PG-38 
moving data across partitions PG-256 

multiply 
consecutive integers PG-47 
double-precision integers PG-47 
extended-precision floating point PG-52 
floating point PG-51 
integers PG-46 

M U L TI PLY instruction 
multiplying consecutive integers PG-47 
multiplying double-precision integers PG-47 
multiplying integers PG-46 

N 

naming conventions, data set PG-105 
NE (not equal) PG-60 
N EXTQ instruction 

putting data into a queue PG-312 
noncom pressed byte string PG-350 
nondisplay field PG-167 
nonlabeled tapes 

defined PG-232 
defining PG-239 
initializing PG-240 
reading PG-241 

Index PG-369 



Index 

writing PG-242 
numbers, defining PG-29, PG-30 
numeric data, reading PG-37 
numeric data, writing PG-59 

o 

object module 
creating PG - 77 
link-editing PG-90, PG-92 

open 
data set PG - 220 
data set from a program PG-208 

operand 
definition PG-3 

operation 
definition PG-3 

option menu 
data management PG-14 
program preparation PG -15 
text editing PG-8 

output 
area, defining PG-33 
compiler PG-88 
printing spooled output PG-295 
writing to a terminal PG-59 
writing to disk PG-57 
writing to diskette PG-57 
writing to tape PG-58 

overlay 
area PG-196 
creating PG-195 
defined PG-193 
example PG -195 
overlay program 

defined PG -193 
described PG-196 

overlay segment 
link-editing PG-97 
structu re PG -193 

specifying PG-196 
OVERLAY control statement ($EDXLlNK) PG-97 

p 

parameter passing 
to a subroutine PG -190 

passing parameters 
using virtual terminals PG-263 

patch 
program PG-115 

PF keys 
See program function (PF) keys 

PI 
See process interrupt 

plot control block (graphics) PG-284 
PLOTeB control block PG-284 
PLOTGIN instruction 

PG-370 SC34-0637 

overview PG-284 
POST instruction 

synchronizing tasks PG -188 
synchronizing tasks in other partitions PG-254 

precision 
floating-point arithmetic PG-49 

preparing object modules for execution 
link-editing PG-90 
link-editing more than one object module PG-92 
predefining data sets PG-101 

primary option menu, session manager 
defined PG-8 

primary program PG-261 
primary task 

defined PG-28 
primary-control-statement data set PG -100 
print 

See write 
PRI NTEXT instruction . 

positioning the cursor PG -135, PG -148 
printing a message buffer PG-34 
prompting for data PG -135 
use in terminal support 

changing individual fields PG-156 
using on 3101 terminals PG-160 

writing to a roll screen PG-131 
writing to a static screen PG -136 
writing to a terminal PG-59 

PRINTNUM instruction 
writing numeric data to a terminal PG-59 
writing to a terminal PG-59 

priority 
assigned to tasks PG -183 

process interrupt 
description PG-265 
IODEF statement PG-269 
user routine PG - 270 

program 
beginning PG-3, PG-28 
communication PG-245 
compiling PG-15, PG-77 
concepts PG -183 
creating a multitask program PG-187 
data management from PG - 204 
definition PG-185 
ending PG-6, PG-65 
entering PG-7, PG-67 
execute 

with session manager PG-104 
finding PG-249 
from a program PG-246 
from a virtual terminal PG-263 
load 
logic, controlling PG-60 
modifying PG-71 
multitask PG-187 
name PG-187 
opening a data set PG-220 
overlay PG -196 
repetitive loops PG-62 

o 

o 



o 

o 

sequencing functions PG-60 
single-task PG-185 
source PG-6 
spooling output PG-290 
structure PG-185 
task error exit routine· PG -125 

program function (PF) keys 
use in terminal support PG-332 
use with attention lists PG-333 

program messages 
See messages, program 

program preparation 
See $EDXASM Event Driven Language compiler 

PROG RAM statement 
example PG-28 
identifying data sets PG-28 
simplest form PG-28 
specifying overlay program PG -196 
starting a program PG-3 

PROGSTOP instruction 
overview PG-65 

protected field 
defined PG-128 
displaying PG-158 
writing PG-167 

pulse digital output PG-275 

Q 

queue processing 
description PG-311 
example PG-313 
putting data into a queue PG-312 
retrieving data from a queue PG-312 

queue, job PG-107 

read 

R 

all unprotected fields PG-175 
alphameric data from a terminal PG-37 
analog input PG-272 
data 

across partitions PG - 258 
from a terminal PG-36 
from disk PG -35 
from diskette PG-35 
from tape PG-36 
into data area PG-34 

data across partitions PG-258 
digital input PG-273 
directly PG-35 
from a roll screen PG-130 
from a static screen PG-136 
mod ified data PG -173 
multivolume tape data set PG-237 
nonlabeled tape PG-241 

one line from a terminal PG-130 
sequentially PG-35, PG-36 
standard-label tape PG-232 
tape PG-231 

READ instruction 
reading a multivolume tape data set PG-237 
reading a nonlabeled tape PG-241 
reading a standard-label tape PG-232 
reading data across partitions PG-258 

READTEXT instruction 
gather read operations PG -1 56 
processing interrupts PG-332 
reading a character string PG-34 
reading data from a static screen PG-136, PG-150 
reading unprotected data PG-157, PG-159 
retrieving prompts from a data set PG-307 
using on 3101 terminals PG-160 

records 
defined PG-35 

reentrant code 
coding guidelines PG-316 
definition PG-315 
examples PG-318 
when to use PG-316 
writing PG-315 

relational statements PG-60 
release 

data set from a program PG-212 
rename 

data set from a program PG-214 
repetitive loops PG-62 
resources 

sharing PG-252 
restart 

a program PG-110 
retrieve 

data PG-4 
data from a queue PG-312 
program messages PG-304 
screen format PG -158 
unprotected data PG-159 

return codes 
$IMDATA subroutine PG-347 
$IMOPEN subroutine PG-341 
$IMPROT subroutine PG-345 
defi ned PG -122 
using to diagnose problems PG -122 

RETURN instruction 
overview PG-189 

roll screen 
defined PG-128 
displaying data PG-131 
example PG-131 
reading data PG-130 
writing data PG-131 

running programs 
methods PG -103 
with session manager PG-23 

Index PG-371 



Index 

s 
save 

data set PG - 70 
S810 instruction 

description PG-271 
function PG-269 

scatter write 
coding for device independence PG-156 
defined PG-139 
displaying unprotected data PG-159 
simulating PG-170 

screen 
format 

for 3101 PG-164 
for 4978, 4979, or 4980 PG-139 
retrieving PG-158 

images 
buffer sizes PG-347 
retrieving and displaying PG-158 
using $IMAGE subroutines PG-338 

reading PG-127 
roll 

See roll screen 
static screen 

See static screen 
writing PG-127 

SCREEN instruction 
overview PG - 284 
coding description PG-284 

secondary program PG-261 
secondary-control-statement data set PG-100 
segment, overlay 

defined PG-193 
link-editing PG-97 

send 
data to virtual terminal PG-263 

sensor-based I/O 
assignments PG - 268 
statement overview PG - 269 

SENSORIO statement 
relationship with instructions PG-268 

sequencing instructions, program PG-60 
serially reusable resource (SRR) 

description PG-252 
session manager 

set 

background option PG-104 
data management menu PG-14 
entering user I D PG - 7 
executing a program PG-23, PG-104 
executing a program in the background PG-104 
invoking PG-7 
program preparation PG-15 
text editing menu PG-8 

breakpoint PG-113 
end-of-data from a program PG-216 

SETEOD subroutine PG-228 
sharing resources PG-252 
single-task program PG-185 

PG-372 SC34-0637 

source program 
compiling PG-13 
creating a new data set PG-68 
defined PG-6 
entering into a data set PG-7, PG-67 
modifying PG-71 

changing a line PG-71 
deleting a line PG-73 
deleting more than one line PG-74 
inserting a line PG-72 
moving lines PG - 75 

saving a data set PG-70 
spaces, defining PG-31 
specify 

data set PG -1 05 
SPEC PI process interrupt routine PG-270 
SPECPIRT instruction 

coding description PG-275 
function PG-269 

spooling 
controlling from a program 
description PG - 289 
finding if spooling is active PG-296 
output of a program PG-290 
preventing spooling PG-297 
printing spooled output PG-295 
reasons for using PG-289 
spool control record 

example PG-291 
format PG - 290 
functions PG-290 

stopping spooling PG-295 
standard labels, tape 

bypassing PG - 234 
closing PG - 234 
defined PG-231 
reading PG-232 
writing PG - 233 

start 
task PG-184 
task from a program PG-250 

static screen 
blanking a blinking field PG-169 
change attribute byte PG-171 
changing attribute PG-165 
creating a screen PG-145 
creating data entry field PG -172 
creating unprotected fields PG-167 
defined PG -128 
defining a screen PG-146 
defining a static screen PG -134 
designing for device independence PG -154 
displaying a static screen PG -148 
enqueuing PG-165 
erasing individual fields PG-169 
erasing the screen PG-134, PG-165 
erasing to end of screen PG -175 
example PG-137, PG-152 
getting exclusive access PG-134, PG-148 
link-editing a program PG-151 

o 

o 



o 

o 

o 

stop 

positioning the cursor PG-135, PG-148 
prompting for data PG -135 
reading a screen image PG-147 
reading all unprotected fields PG-175 
reading data PG-150 
reading modified data PG -173 
sample program (4978, 4979, or 4980) PG-141 
scatter write PG -170 
two ways to define PG -132 
waiting for a response PG-136, PG-149 
writing blinking fields PG-168 
writing data PG-150 
writing nondisplay fields PG -167 
writing protected fields PG -167 
3101 sample program PG-177 

program PG -109 
storage 

comparing PG-61 
reading data into PG-34 
reserving PG-29 
unmapped PG-198 
writing data from PG-57 

STORBLK statement 
setting up unmapped storage PG-198 

store 
program messages PG-303 

strings, character PG-31 
submit 

program from a program PG-107 
SUBROUT statement 

overview PG -189 
subroutines 

$DISKUT3 PG-203 
$IMAGE PG-338 
calling PG-189, PG-190, PG-191 
defining PG-189 
DSOPEN PG-220 
examples PG-190, PG-191 
passing parameters PG-190 
program PG -189 
SETEOD PG-228 

subtract 
consecutive integers PG -46 
double-precision integers PG-46 
extended-precision floating point PG-51 
floating-point data PG-50 
integers PG-45 

SUBTRACT instruction 
subtracting consecutive integers PG-46 
subtracting double-precision integers PG-46 
subtracting integers PG-45 

supervisor 
states PG -184 

SWAP instruction 
accessing unmapped storage PG-199 

symbol 
assign a value to PG-32 

synchronizing tasks PG-254 

tape 

T 

adding records to a file PG-242 
labels PG-231, PG-329 
nonlabeled 

defined PG-232 
defi ni ng PG - 239 
initializing PG-240 
reading PG-241 
when to use PG - 232 
writing PG-242 

processing a tape containing more than one data 
set PG-236 

reading a multivolume data set PG-237 
standard-label 

bypassing PG-234 
closing PG-234 
defined PG-231 
reading PG-232 
when to use PG-232 
writing PG-233 

tapemark PG-231 
task 

basic executable unit PG -185 
concepts PG -183 
defining PG-28 
definition PG -183 
initiating PG -184 
multitask program PG-187 
overview PG -183 
primary task PG -187 
priority PG -1 83 
single-task program PG-185 
starting PG-184 
starting from a program PG-250 
states PG -184 
structure PG -183 
synchronizing PG-188, PG-254 

task code word 
accessing PG-122 
defined PG-122 
diagnosing errors with ACCA devices PG-123 

task error exit routine 
description PG-124 
example PG-125 
including in a program PG-125 
system-supplied PG-124 

TCBGET instruction 
accessing remainder of divide PG-49 

TERMCTRL instruction 
displa'{inga static screen PG-148 
posifio-ning the cursor PG-135 
use on 3101 terminals PG-160 

terminal 
read 

alphameric data PG-37 
write alphameric data PG-59 

Index PG-373 



Index 

write numeric data PG-59 
terminal I/O 

advance input PG-334 
sample static screen program (4978, 4979, 4980) PG-141 

TERMINAL statement 
defining virtual terminals PG-262 

text buffers, defining PG-34 
text editing utilities 

full-screen editor PG-67 
text messages, defining PG-34 
TEXT statement 

defining buffers PG-34 
defining messages PG-34 
structure PG-34 

trace 
program execution PG -1 09 

u 

unmapped storage 
accessing PG-199 
defined PG-198 
displaying PG-117 
example PG-200 
obtaining PG-198 
overview PG -198 
releasing PG-199 
setting up PG-198 

unprotected field 
defined PG-128 
displaying PG -158 
reading from static screen PG-150 
retrieving PG -159 

UPDTAPE routine PG-242 

v 

variable fields in program messages PG-300 
vary 

processing a tape containing more than one data 
set PG-236 

virtual terminals 
defining PG-262 
definition of PG-261 
examples of use PG-261 
interprogram dialogue PG-263 
loading from a virtual terminal PG-263 
sample programs PG-264 

volume 
independence PG-226 

volume serial, tape PG-232 

PG-374 SC34-0637 

w 

WAIT instruction 
synchronizing tasks PG-188 
synchronizing tasks in other partitions PG-254 
use of WAIT KEY in terminal support PG-333 
waiting for operator response PG-136, PG-149, PG-333 

WHERES instruction 
finding a program PG-249 

write 
alphameric data to a terminal PG-59 
analog output PG - 273 
blinking field PG-168 
digital output PG-274 
directly PG-57 
from a data area PG-57 
nondisplay field PG-167 
non labeled tape PG-242 
numeric data to a terminal PG-59 
protected fields PG -167 
sequentially PG-57, PG-58 
source data set PG-11 
standard-label tape PG-233 
tape PG-231 
to disk PG-57 
to diskette PG-57 
to static screen PG -136, PG -1 50 
to tape PG-58 
to terminal PG-59 

WRITE instruction 
reentrant code PG-315 
writing a nonlabeled tape PG-242 
writing a standard-label tape PG-233 
writing to disk PG-57 
writing to diskette PG-57 
writing to tape PG-58 

x 
XYPLOT instruction 

overview PG-284 

y 

YTPLOT instruction 
coding description PG - 284 
overview PG-284 

o 

1"--"\ 
(,~.) 

o 



o 

o 

3 

3101 Display Terminal 
attribute characters PG -162 
changing the attribute byte PG-165 
compatibility limitation PG-155 
converting 4978 screens PG -160 
data stream PG -162 
defining screen format PG-164 
device independence PG -154 
erasing the screen PG -165 
PFkeysupport PG-332 
protecting the first field PG-166 
reading modified data PG-172, PG-174 

sample static screen program PG-177 
transmitting data from PG -162 

4 

4978 Display Station 
device independence PG -154 
static screen sample program PG-141 

4979 Display Station 
device independence PG -154 
static screen sample program PG-141 

Index PG-37S 



() 

o 
PG-376 SC34-0637 



--------

O E: :i'f~ Series/1 Event Driven Executive 
. ~~~~----~~------------­Publications Order Form 

o 

o 

Instructions: 

1. Complete the order form. supplying all of the 
requested information. (Please print or type.) 

2. If you are placing the order by phone. dial 
1-S00-IBM-246S. 

3. If you are mailing your order. fold the order 
form as indicated. seal with tape. and mail. 
We pay the postage. 

Ship to: 

Name: 

Address: 

City: 

State: Zip: 

Bill to: 

Customer number: 

Name: 

Address: 

City: 

State: Zip: 

Your Purchase Order No.: 

Phone: ( 

Signature: 

Date: 

Order: 

Description 

Reference books: 

Set·o f thel~Howing$i'(boOks;. To ~o rder 
i Ilqividuafcopies;u$~ thefoUowing .or<ier 
numbers. 

Communications Guide 

Extended Address Mode and 
Performance Analyzer User Guide 

Installation and System Generation Guide 

Language Reference 

Library Guide and Common Index 

Messages and Codes 

Operator Commands and Utilities Reference 

Guides and reference cards: 

Set •. of'the:f~r6Wj,?9.foor:book~·andiref~rence 
c~rds;:To·.~,l~d~r·i~(jblidU~ICQPi~Si .. uset'he·.· 

.•. .f() Ilovitiflg.·or({efrj~nl.be~S:l 

Customization Guide 

Event Driven Language .Programming Guide 

Operation Guide 

Problem Determination Guide 

Language Reference Card 

Operator Commands and Utilities 
Reference Card 

Conversion Charts Reference Card 

Reference Card Envelope 

Binders: 

3-ring easel binder with 1 inch rings 

3-ring easel binder with 2 inch rings 

Standard 3-ring binder with 1 inch rings 

Standard 3-ring binder with 1 1/2 inch rings 

Standard 3-ring binder with 2 inch rings 

Diskette binder (Holds eight 8-inch diskettes.) 

Order 
number 

SC34-0638 

SC34-0591 

SC34-0646 

SC34-0643 

SC34-0645 

SC34-0636 

SC34-0644 

saoF~t628 

SC34-0635 

SC34-0637 

SC34-0642 

SC34-0639 

SX34-0165 

SX34-0164 

SX34-0163 

SX34-0166 

SR30-0324 

SR30-0327 

SR30-0329 

SR30-0330 

SR30-0331 

S830-0479 

Oty. 

, ~~ 



Publications Order Form 

Fold and tape Please Do Not Staple Fold and tape 

I 
I 
I 
~ 
c: .. 
~ 

.................................................................................................................................................................................... ~ 

"' " , 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

IBM Corporation 
1 Culver Road 
Dayton, New Jersey 08810 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

() 

.................................................................................................................................................................................... J 
Fold and tape Please Do Not Staple Fold and tape 

--------- - ---- --- - ---- - - ----------_.-
® 

International Business Machines Corporation 

() 
I . 
I 
I 
I 
I 
I 
I 



o 

....; 
c 
Cl) 

E 
Q. 

·s 
0-
Cl) 

OJ 
C . .;:::; 
0 
(J) 

ro 
E 

""0 
Cl) 
+-' 
ro 
E 
0 
+-' 
:::l 

0 
ro 
..c 
+-' 
.~ 

(J) 

E 
Cl) 

..D 
0 
Q. 
Cl) 
(J) 

:::l 
ro 
c..> 
c 
ro 
c..> 
(J) 

Cl) 

0. 
ro 
+-' 
(/) 

Cl) 
+-' 
0 

Z 

o 

E 
0 

'+-

.~ 

..c 
+-' 

co 
Cl) 
(J) 

0 
+-' 
Cl) 
Q. 
ro 
+-' 

""0 
Cl) 

E 
E 
:::l 
OJ 
.... 
Cl) 

..c 
+-' 
0 

0 
Cl) 

> . .;:::; 
·Vi 
C 
Cl) 
(J) 

~ 
:::l 
(J) 
(J) 

Cl) 

Q. 
Cl) 
(J) 

:::l 
Cl) 
(J) 

ro 
Cl) 

c::: 

IBM Series/1 Event Driven Executive 
Even t Driven Language Programming Guide 

Order No. SC34-0637-0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and 
operators of IBM systems. You may use this form to communicate your comments about this publication, 
its organization, or subject matter, with the understan"ding that IBM may use or distribute whatever 
information you supply in any way it believes appropriate without incurring any obligation to you. 
Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies ofpublications, or for assistance in using your IBM system, to 
your IBAf representative or to the IBM branch office serving your locality . 

Thank you for your cooperation" No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM 
office or representative will be happy to forward your comments or you may mail directly to the address 
in the Edition Notice on the back of the title page.) 



SC34-0637 -0 
Printed in U.S.A. 

Reader's Comment Form 

Fold and tape 

Fold and tape 

--------- - -------- - ---- - - ----------_.-
® 

Please Do Not Staple 

'''''' 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE Will BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Information Development, Department 28B 
P. O. Box 1328 
Boca Raton, Florida 33432 

Please Do Not Staple 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

. 
I 
I 
I 
I 
h 
c 

~ 

" o 
c: 
~ 
o 
::J 

1.0 

r 
3' 
(!) 

o 

o 

o 



--------- - ------- - ---- - - ----------_ . -
<I> 

International Business Machines Corporation 

SC34-0637 -0 
Program Numbers: 5719-XS5,5719-XX6 

File Number : S1-20 
Pr in ted in U .S.A . 

., 

SC34-0637-0 


