SC34-0637-0

Event Driven Executive
Language Programming Guide

Version 5.0

Series/1

f 3)
(Library Guide and Installation and Operator Commands
Common Index System Generation and
Guide Utilities Reference
SC34-0645 $C34-0646 SC34-0644 J
N 4 J \
Language Communications Messages and
Reference ‘Guide Codes
$C34-0643 $C34-0638 $C34-0636 J
S _ py
(7 \ g 1
Operation Guide Event Driven Reference
Language Cards
Programming Guide
$C34-0642 SC34-0637 SBOF-1625
4 . = \ ey
(0 (h @)
Problem Customization Internal
Determination Guide Design
Guide
$C34-0639 SC34-0635 J LY34-0354
_ L \& J

SC34-0637-0

Event Driven Executive
Language Programming Guide

Version 5.0

Event Driven
Language
Programming Guide

SC34-0637

First Edition (December 1984)
Use this publication only for the purpose stated in the Preface.

Changes are made periodically to the information herein; any such changes will be
reported in subsequent revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products
{machines and programs), programming, or services that are not announced in your
country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or the IBM branch office
serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form
for readers’ comments is provided at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, Information
Development, 3406, P. O. Box 1328, Boca Raton, Florida 33432. IBM may use or
distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corporation 1984

¢

Summary of Changes for Version 5.0

The following additions and changes have been made to this document:

A new section has been added to Chapter 7, Finding and Fixing Errors, that shows you how
to display unmapped storage.

Chapter 19, Writing Reentrant Code, has been added. It describes how to write reentrant
EDL programs and routines.

Much of the information that was contained in Appendix C, Static Screens and Device

Considerations has been incorporated into Chapter 8, Reading and Writing Data from
Screens.

Summary of Changes for Version 5.0 iii

iv

SC34-0637

¢

O

About This Book

This book contains an introduction to the Event Driven Language.

0} Audience

Chapters 1 through 8 of this book are intended for the application programmer who is coding in
the Event Driven Language for the first time. Readers should be familiar with basic data
processing terminology and concepts, such as input, output, and data sets.

Chapters 9 through 19 are intended for application programmers who need information about
such advanced topics as multitasking, data management from a program, communicating with
other programs, writing reentrant programs, and writing graphics or sensor I/O programs.

This book does not contain a description of all Event Driven Language instructions. For a
description of all Event Driven Language instructions, refer to the Language Reference.

How This Book is Organized

This book contains nineteen chapters and three appendixes:

o Chapter 1. Getting Started describes the steps necessary to develop and run a simple Event
Driven Language (EDL) program.

About This Book Vv

About This Book

How This Book is Organized (continued)

o Chapter 2. Writing a Source Program tells how to use EDL instructions to do such things as
read data, write data, convert data, and manipulate data.

o Chapter 3. Entering a Source Program tells how to use the full-screen editor to enter and
modify a source program.

o Chapter 4. Compiling a Source Program shows how to use the Event Driven Language
compiler to translate a source program to object code.

o Chapter 5. Preparing Object Code for Execution shows how to use the linkage editor to
prepare an object program for execution.

o Chapter 6. Executing a Program describes how to run a program that has been compiled and
link-edited.

o Chapter 7. Finding and Fixing Errors describes a tool you can use to diagnose program logic
errors and exception conditions.

o Chapter 8. Reading and Writing Data from Screens shows how to read and write data from
display terminals. The chapter defines roll screens and static screens and describes how to
write programs that interact with the operator.

o Chapter 9. Designing Complex Programs defines what a program and a task are and describes
multitasking, subroutines, program overlays, segment overlays, and unmapped storage.

o Chapter 10. Performing Data Management from an Application Program describes various
ways to do data management from a program. The chapter describes how to allocate,
delete, rename, and open a data set. In addition, the chapter shows how to set the logical
end of file, add records to a tape data set, and find device type from a program.

o Chapter 11. Coding Programs That Use Tape tells how to read to and write from a magnetic
tape data set.

« Chapter 12. Communicating with Another Program (Cross Partition Services) shows how
programs can interact with each other, either within the same partition or between

partitions.

o Chapter 13. Communicating with Other Programs (Virtual Terminals) shows how one program
can load another program and how the programs can interact with each other.

o Chapter 14. Designing and Coding Sensor I/ O Programs describes digital and analog
input/output and shows how to read and write to sensor I/0 devices.

o Chapter 15. Designing and Coding Graphic Programs shows how to code the instructions that
produce graphic messages and draw curves on a display terminal.

o Chapter 16. Controlling Spooling from a Program describes how a program can control
printed output.

vi SC34-0637

©

03 How This Book is Organized (continued)

o Chapter 17. Creating, Storage and Retrieving Program Messages shows how to save storage
or coding time by creating messages than can be used by more than one program.

o Chapter 18. Queue Processing shows how to create queues, store data in queues, and retrieve
data from queues.

o Chapter 19. Writing Reentrant Code shows how to design and write EDL programs that are
reentrant.

o Appendix A. Tape Labels shows the layout of tape labels.

e Appendix B. Interrupt Processing describes the interrupts that occur when a program interacts
with a terminal.

o Appendix C. Static Screens and Device Considerations provides reference information on

defining logical screens, SIMAGE subroutines, and the §UNPACK and $PACK
subroutines.

Aids in Using This Book

CA\ This book provides the following aids to assist you in using this book:
« A glossary which defines abbreviations and terms

« An index of topics covered in this book.

A Guide to the Library

Refer to the Library Guide and Common Index for information on the design and structure of the
Event Driven Executive library and for a bibliography of related publications.

Contacting IBM about Problems with Event Driven Executive Services

You can inform IBM of any inaccuracies or problems you find when using this book by
completing and mailing the Reader’s Comment Form provided in the back of this book.

If you have a problem with the Series/1 Event Driven Executive services, fill out an authorized
program analysis report (APAR) form as described in the IBM Series/1 Software Service Guide,
GC34-0099.

About This Book Vil

viii ~ $C34-0637

®

C

Contents

Chapter 1. Getting Started PG-1
Designing a Program PG-2
Coding the Program PG-3
Starting the Program PG-3
Defining Your Data PG-4
Retrieving Data PG-4
Processing the Data PG-5
Obtaining the Results PG-5
Ending the Program PG-6
Entering the Source Program into a Data Set PG-7
Compiling Your Source Program PG-13
Checking Your Compiler Listing PG-19
Creating a L.oad Module PG-20
Running Your Program PG-23

Chapter 2. Writing a Source Program PG-27
Beginning the Program PG-28
Defining the Primary Task PG-28
Identifying Data Sets to be Used in Your Program PG-28
Reserving Storage PG-29
Reserving Storage for Integers PG-29
Defining Floating-Point Values PG-30
Defining Character Strings PG-31
Assigning a Value to a Symbol PG-32
Defining an Input/Output Area PG-33
Reading Data into a Data Area PG-34
Reading Data from Disk or Diskette PG-35
Reading Data from Tape PG-36
Reading from a Terminal PG-36

Contents iX

Contents

Moving Data PG-38
Converting Data PG-39
Converting to an EBCDIC Character String PG-39
Converting to Binary PG-40
Converting from Floating Point to Integer PG-42
Converting from Integer to Floating Point PG-42
Checking for Conversion Errors PG-43
Manipulating Data PG-44
Manipulating Integer Data PG-44
Manipulating Floating-Point Data PG-49
Manipulating Logical Data PG-53
Writing Data from a Data Area PG-57
Writing Data to Disk or Diskette PG-57
Writing Data to Tape PG-58
Writing to a Terminal PG-59
Controlling Program Logic PG-60
Relational Operators PG-60
The IF Instruction PG-61
The Program Loop PG-62
Branching to Another Location PG-64
Ending the Program PG-65

Chapter 3. Entering a Source Program PG-67
Invoking the Editor PG-67
Creating a New Data Set PG-68
Saving Your Data Set PG-70
Modifying an Existing Data Set PG-71
Changing a Line PG-71
Inserting a Line PG-72
Deleting a Line PG-73
Moving Lines PG-75

Chapter 4. Compiling a Program PG-77
Allocating Data Sets PG-78
Running the Compilation PG-82
Checking Your Compiler Listing and Correcting Errors PG-84
Rerunning the Compilation PG-86

Chapter 5. Preparing an Object Module for Execution PG-89
Link-Editing a Single Object Module PG-90
Link-Editing More Than One Object Module PG-92
Using Interactive Mode PG-94
Using Noninteractive Mode PG-100
Prefinding Data Sets and Overlays PG-101

Chapter 6. Executing a Program PG-103

Executing a Program with the Session Manager PG-104
Specifying Data Sets PG-105

X SC34-0637

O

Submitting a Program from Another Program PG-107

Chapter 7. Finding and Fixing Errors PG-109
Determining Logic Errors in a Program PG-109
Creating and Running the Program PG-110
Debugging and Fixing the Program PG-111
Displaying Unmapped Storage PG-117
Using Return Codes to Diagnose Problems PG-122
Diagnosing Errors with ACCA Devices PG-123
Task Error Exit Routines PG-124
The System-Supplied Task Error Exit Routine ($$EDXIT) PG-124

Chapter 8. Reading and Writing Data from Screens PG-127
When to Use Roll Screens PG-128
When to Use Static Screens PG-128
Differences Between Static Screens and Roll Screens PG-129
Reading and Writing One Line at a Time PG-130
Reserving Storage for the Data PG-130
Reading a Data Item PG-130
Writing (Displaying) a Data Item PG-131
Example PG-131
Two Ways to Use Static Screens PG-132
Coding the Screen within a Program PG-133
Defining a Screen as Static PG-134
Getting Exclusive Access to the Terminal PG-134
Erasing the Screen PG-134
Reserving Storage PG-135
Prompting the Operator for a Data Item PG-135
Positioning the Cursor PG-135
Waiting for a Response PG-136
Reading a Data Item PG-136
Writing a Data Item PG-136
Example PG-137
Transferring an Entire Screen Image at Once PG-139
Defining Protected and Unprotected Fields PG-139
Defining the Screen PG-140
Erasing the Screen PG-140
Constructing a Screen Image PG-140
Reading a Series of Data Items PG-141
Releasing the Terminal PG-141
Example PG-141
Writing the Screen Image to a Data Set PG-144
Creating a Screen PG-145
Defining the Screen as Static PG-146
Reading the Screen Image into a Buffer PG-147
Getting Exclusive Access to the Terminal PG-148
Displaying the Screen and Positioning the Cursor PG-148
Reserving Storage for Data PG-149

Contents

Contents

Xii SC34-0637

Waiting for a Response PG-149
Reading a Data Item PG-150
Writing a Data Item PG-150
Link-Editing the Program PG-151
Example PG-152
Designing Device-Independent Static Screens PG-154
Compatibility Limitation PG-155
Coding for Device Independence PG-156
Using the $IMAGE Subroutines for Device Independence PG-158
Reading and Writing to a 3101 Display Terminal PG-161
Characteristics of the Terminal PG-162
Design Considerations PG-163
Defining the Format of the Screen PG-164
Enqueuing the Screen PG-165
Changing the Attribute Byte PG-165
Erasing the Screen PG-165
Protecting the First Field PG-166
Creating Unprotected Fields PG-167
Creating Protected Fields PG-167
Writing a Nondisplay Field PG-168
Reading a Data Item PG-168
Writing a Blinking Field PG-169
Erasing an Individual Field PG-169
Blanking a Blinking Field PG-170
Writing More Than One Data Item PG-170
Prompting the Operator for Data PG-171
Changing the Attribute Byte to a Protected Blank PG-171
Displaying a Nondisplay Field PG-172
Creating a New Unprotected Field PG-172
Reading Modified Data PG-172
Erasing to the End of the Screen PG-175
Reading All Unprotected Data PG-175
Writing a Data Item PG-176
Reading a Data Item PG-176
Example PG-177

Chapter 9. Designing Programs PG-183
What Is a Task? PG-183
Initiating a Task PG-184
What Is a Program? PG-185
Creating a Single-Task Program PG-185
Creating a Multitask Program PG-187
Synchronizing Tasks PG-188
Defining and Calling Subroutines PG-189
Defining a Subroutine PG-189
Calling a Subroutine PG-190
Reusing Storage using Overlays PG-193
Using Overlay Segments PG-193

@

Overlay Programs PG-196
Using Large Amounts of Storage (Unmapped Storage) PG-198
What Is Unmapped Storage? PG-198
Setting up Unmapped Storage PG-198
Obtaining Unmapped Storage PG-198
Using an Unmapped Storage Area PG-199
Releasing Unmapped Storage PG-199
Example PG-200

Chapter 10. Performing Data Management from a Program PG-203
Allocating, Deleting, Opening, and Renaming a Data Set PG-204
- When to Use $DISKUT3 PG-205

Allocating a Data Set PG-206

Opening a Data Set PG-208

Deleting a Data Set PG-210

Releasing Unused Space in a Data Set PG-212

Renaming a Data Set PG-214

Setting End-of-Data on a Data Set PG-216

Performing More Than One Operation at Once PG-218
Opening a Data Set (DSOPEN) PG-220

DSOPEN Example PG-222

Coding for Volume Independence PG-226
Setting Logical End of File (SETEOD) PG-228
Finding the Device Type (EXTRACT) PG-230

Chapter 11. Reading and Writing to Tape PG-231
What Is a Standard-Label Tape? PG-231
What Is a Nonlabeled Tape? PG-232
Processing Standard-Label Tapes PG-232
Reading a Standard-Label Tape PG-232
Writing a Standard-Label Tape - PG-233
Closing Standard-Label Tapes PG-234
Bypassing Labels PG-234
Processing a Tape Containing More than One Data Set PG-236
Reading a Multivolume Data Set PG-237
Processing Nonlabeled Tapes PG-238
Defining a Nonlabeled Tape PG-239
Initializing a Nonlabeled Tape PG-240
Reading a Nonlabeled Tape PG-241
Writing a Nonlabeled Tape PG-242
Adding Records to a Tape File (UPDATE) PG-242

Chapter 12. Communicating with Another Program (Cross Partition Services) PG-245
Loading Other Programs PG-246

Finding Other Programs PG-249

Starting Other Tasks PG-250

Sharing Resources with the ENQ/DEQ Instructions PG-252

Synchronizing Tasks in Other Partitions PG-254

Contents

Contents

Moving Data Across Partitions PG-256
Reading Data across Partitions PG-258

Chapter 13. Communicating with Other Programs (Virtual Terminals) PG-261
Defining Virtual Terminals PG-262

Loading from a Virtual Terminal PG-263

Interprogram Dialogue PG-263

Sample Program PG-264

Chapter 14. Designing and Coding Sensor I/0 Programs PG-265
What is Digital Input/Output? PG-265
What is Analog Input/Output? PG-266
What are Sensor-Based I/O Assignments? PG-268
Coding Sensor-Based Instructions PG-269
Providing Addressability IODEF) PG-269
Specifying I/O Operations (SBIO) PG-271

Chapter 15. Designing and Coding Graphic Programs PG-283
Graphics Instructions PG-283

The Plot Control Block PG-285

Example PG-286

Chapter 16. Controlling Spooling from a Program PG-289

What Is Spooling? PG-289 AN

Spooling the Output of a Program PG-290 \‘K)/
The Spool-Control Record PG-290
Executing the Example PG-291

Printing Output That Has Been Spooled PG-295

Stopping Spooling PG-295

Determining Whether Spooling Is Active PG-296

Preventing Spooling PG-297

Chapter 17. Creating, Storing, and Retrieving Program Messages PG-299
Creating a Data Set for Source Messages PG-300

Coding Messages with Variable Fields PG-300

Sample Source Message Data Set PG-302
Formatting and Storing Source Messages (using $SMSGUT1) PG-303
Retrieving Messages PG-304

Defining the Location of a Message Data Set PG-305

The MESSAGE instruction PG-306

The GETVALUE, QUESTION, and READTEXT Instructions PG-307
Sample Program PG-308

Chapter 18. Queue Processing PG-311
Defining a Queue PG-311

Putting Data into a Queue PG-312
Retrieving Data from a Queue PG-312
Example PG-313

Xiv SC34-0637

Chapter 19. Writing Reentrant Code PG-315
When to Use Reentrant Code PG-316
Coding Guidelines PG-316
Examples PG-318

Example 1 PG-318

Example 2 PG-322

Appendix A. Tape Labels PG-329

Appendix B. Interrupt Processing PG-331
Interrupt Keys PG-331
The Attention Key PG-331
Program Function (PF) Keys PG-332
Enter Key PG-332
Instructions that Process Interrupts PG-332
The READTEXT and GETVALUE Instructions PG-332
The WAIT KEY Instruction PG-333
The ATTNLIST Instruction PG-333
Advance Input PG-334

Appendix C. Static Screens and Device Considerations PG-335
Defining Logical Screens PG-335

Using TERMINAL to Define a Logical Screen PG-335

Using IOCB and ENQT to Define a Logical Screen PG-336

Structure of the IOCB PG-337
$IMAGE Subroutines PG-338

$IMOPEN Subroutine PG-340

$IMDEFN Subroutine PG-342

$IMPROT Subroutine PG-344

$IMDATA Subroutine PG-346

Screen Image Buffer Sizes PG-347

Example of Using $IMAGE Subroutines PG-348
$UNPACK and $PACK Subroutines PG-350

$UNPACK Subroutine PG-350

$PACK Subroutine PG-352

Glossary of Terms and Abbreviations PG-353

Index PG-363

Contents

XV

xvi

SC34-0637

®

®

Figures

—

SVENAURA LN

. Single-Task Application Example PG-186
. Multitask Program Structure PG-187

Application Overlay Segments PG-193

. Overlay Segments in Series/1 Storage PG-194

EDL Overlay Programs PG-196

EDL Overlay Programs in Series/1 Storage PG-197
Sensor Device Connections PG-267

Sensor-Based Symbolic I/O Assignment PG-268

. Graphics Program Output PG-288
. Compressed Data Format PG-351

Figures

xvii

xviii

SC34-0637

O

O

Chapter 1. Getting Started

This chapter is intended for people who have never coded an Event Driven Language (EDL)
program. It describes the steps necessary to develop and run a simple program on the Series/1.
Specifically, this chapter shows you how to design, code, enter, compile, link-edit, and execute

an EDL program.

Using a simple example program, we will show you all these steps. You may want to enter and
run this program on your Series/1 to gain hands-on experience.

Each of the major steps in the development and execution of an EDL program are covered in
greater detail later in this book. The following chart describes these steps and shows you where

the material is covered.

Write the source program

Enter the source program

Compile the source program
Link-edit the program
Run the program

Find and fix errors

Write a source program that does such things as read data,
manipulate data, and write data (Chapter 2).

Enter the source program by using the session manager to
build a data set (Chapter 3).

Compile your source program (Chapter 4).

Produce an éxecutable load module (Chapter 5).

Cause your program to run or “execute” (Chapter 6).

Use the $DEBUG utility or a task error exit routine to help

you locate and correct any problems in your program
(Chapter 7).

Chapter 1. Getting Started PG-1

Getting Started

If you are familiar with EDL and the EDX operating system, skip this chapter and go to
Chapter 2.

Designing a Program

The first step in the development of any program is the design of the program. You must be
able to describe what you want the program to accomplish.

Typically, a program reads some data, processes the data, and writes the results. The sample
program we have chosen does all of these things. The program requests that an operator enter a
number at the terminal. That number is added to a storage area ten times, and the results are
displayed on the terminal screen.

Here are some questions you should ask when you plan a program. We have shown how we
answered those questions in our sample program.
Questions In our program

Where is the data coming from and The data is a number that the

what form will it take?* operator enters at the terminal.

What do you want to do with the The number that is entered from the A
data and in what order do you want terminal will be added ten times io a | J
to process the data? storage area that you define. ¥
Where do you print or record the The resuits are displayed on the

results? terminal screen.

In the next section, we will show you how to implement this design in an EDL program.

PG-2 SC34-0637

C

O

Coding the Program

On the next few pages, we will show you how the design of this program was implemented. We
will build the program step by step. We will not describe every possible operand of the
instructions we use. (Operands for every EDL instruction are fully described in the Language
Reference.)

The instructions and statements that make up a program are called the source program. They
have the following general format:

label operation operands

where these terms have the following meanings:

label The name you assign an instruction or statement. You can use this name in your
program to refer to that specific instruction or statement. In most cases, the
label is optional. Labels must begin in column 1; must begin with a letter or one
of the special characters $, #, or @; and must be 1 to 8 characters long.

operation The name of the instruction or statement you are coding. The operation can
begin in column 2 and cannot extend beyond column 71.

operands The data that is required to do an operation, or information on how the system is
to perform the operation.

To continue a line of code on the next line, place any nonblank character in column 72 and

continue the next line in column 16.

Starting the Program

Any EDL program begins with the PROGRAM statement.

A PROGRAM statement defines the address or label of the first instruction to be executed. The
PROGRAM statement also defines the name of the primary task of the program. (EDL
programs may consist of multiple tasks. In our sample program, the primary task is the only task
of the program.)

Our program statement looks like this:

ADD10 PROGRAM STPGM
ADD10 is the task name of the primary (and only) task.

STPGM is the label of the first instruction to be executed.

Chapter 1. Getting Started PG-3

Getting Started

Coding the Program (continued)

Defining Your Data

Retrieving Data

PG-4

SC34-0637

The program needs two data areas: one to hold the input and one to hold the results of the
process. Use the DATA statement to reserve storage for data.

ADD10 PROGRAM STPGM
COUNT DATA F'o’
SUM DATA F'0'

These DATA statements indicate that the reserved areas are type F (for fullword) and that the
initial value of the areas is 0. In the Series/1, a “fullword” contains two bytes (16 bits).

Since DATA statements do not cause any action to occur, place them either before the first
instruction or after the last instruction.

The next step is to get input data into the program. In this program, we use a GETVALUE
instruction to get the data.

ADD10 PROGRAM STPGM

STPGM GETVALUE COUNT, 'ENTER NUMBER: '
COUNT DATA F'Q’

SUM DATA F'0'

When the GETVALUE instruction executes, the message “ENTER NUMBER: ” appears on
the terminal screen. When someone enters a number and presses the ENTER key, the system
stores the number in the data area called COUNT.

C

O

Coding the Program (continued)

Processing the Data

This program is going to add the number that is entered from the terminal to the contents of
storage area SUM. You need an ADD instruction to perform the addition. The number is going
to be added to COUNT ten times. So the ADD instruction is placed inside a DO loop, which
consists of a DO instruction and an ENDDO instruction. The DO instruction indicates how
many times the instructions (in this case, an ADD instruction) is to be executed.

ADD10 PROGRAM
STPGM GETVALUE
LOOP DO
ADD
ENDDO
COUNT DATA
SUM DATA

Obtaining the Results

STPGM

COUNT, 'ENTER NUMBER: '
10, TIMES

SUM, COUNT

F'O'

F'0’

At this point, the program includes instructions to read data and process the data. To print the
results, you use two instructions: PRINTEXT and PRINTNUM.

ADD10 PROGRAM
STPGM GETVALUE
LOOP DO
ADD
ENDDO
PRINTEXT
PRINTNUM
COUNT DATA
SUM DATA

STPGM

COUNT, 'ENTER NUMBER: '
10, TIMES

SUM, COUNT

' QRESULT="

SUM

F'O’

F'0"

The PRINTEXT instruction will print “RESULT="" on the terminal screen. The ‘(@ symbol
will cause “RESULT="" to be printed on a new line on the terminal screen. The PRINTNUM
instruction will print the results of the process, which is stored in the SUM data area.

Chapter 1. Getting Started PG-5

Getting Started

Coding the Program (continued)

Ending the Program

PG-6

SC34-0637

The program needs three more statements to be complete. The PROGSTOP statement stops
the program. You code PROGSTOP after the last executable instruction in the program.

All EDL programs must end with the ENDPROG and END statements.

The completed program looks like this:

ADD10 PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER: '
LOOP DO 10, TIMES
ADD SUM, COUNT
ENDDO

PRINTEXT 'QRESULT='
PRINTNUM SUM

PROGSTOP
COUNT DATA F'0!'
SUM DATA F'o!
ENDPROG
END

The next step is to enter your program into a data set. We will show you how to use the session
manager to enter the source program. The session manager provides a series of menus to help
you enter a source program. This section shows you how to enter our sample program. For

more information on entering a source program, see Chapter 3, “Entering a Source Program’ on B
page PG-67. AL

B

C

O

Entering the Source Program into a Data Set

All the steps for entering the source program into a data set are listed below. If you want to
actually enter the sample source program, follow the numbered steps.

To invoke the session manager on your terminal:
1. Press the attention key.
2. Type $L $SMMAIN.

3. Press the enter key.

When you press the enter key, the logon screen appears:

ENTER - h CHAR USER ID :
~ (ENTER LOGOFF T0 EXlT)

ALTERN” E SESSION MENU
(OPTIONAL) k;;

$SMMLOG THIS TERMINAL 1S LOGGED ON TO THE SESSION MANAGER-

To begin a session:

1. Type a unique uvser identification (called a user ID). The user id can be one to four

characters long.

2. Press the enter key.

This chapter uses ABCD as the user ID.

Chapter 1. Getting Started

PG-7

Getting Started

Entering the Source Program into a Data Set (continued)

The Primary Option Menu appears on the screen. To enter a source program into a data set,
select option 1 (TEXT EDITING).

1. Type 1 on the SELECT OPTION line.

2. Press the enter key.

PG-8 sSC34-0637

@ Entering the Source Program into a Data Set (continued)

The $FSEDIT PRIMARY OPTION MENU appears on the screen. Use option 2 (EDIT) to
create a new data set.

O 1. Type 2 on the OPTION line.

2. Press the enter key.

Chapter 1. Getting Started PG-9

Getting Started

Entering the Source Program into a Data Set (continued)

PG-10

SC34-0637

Your data set then appears. This is where you will type the source program.

To enter the source program, do the following:

1. Type the first line of code.
. Press the enter key to cause a blank entry line to appear.
. Type the next line of code.

2
3
4. Press the enter key.
B. Repeat steps 3 and 4 until you have entered the entire source program.
6

. When you finish entering the source program, move the cursor to the COMMAND INPUT N
line and type M (for “menu”). U>

7. Press the enter key.

Entering the Source Program into a Data Set (continued)

The $FSEDIT PRIMARY OPTION MENU appears again.

The next step is to write the data set to a volume. When you write the data set, you copy the
data set from the temporary data set that $FSEDIT has been using. The data set name we have
chosen is ADD10 and the volume name is EDX002. Select option 4 (WRITE) to write the data
set to a volume.

EDIT PRIMARY OPTION MENU

1. Type 4 on the OPTION line.
2. Type ADD10 on the DATASET NAME line.
3. Type EDX002 on the VOLUME NAME line.

4. Press the enter key.

The prompt:

appears on the bottom of the screen. Type Y and press the enter key.

Chapter 1. Getting Started PG-11

Getting Started

Entering the Source Program into a Data Set (continued)

PG-12

SC34-0637

The message:

appears on the bottom of the screen. This message means that your source program is 12 lines
long and has been written to volume EDX002.

Now that you have entered and written the source program to a data set, return to the Session
Manager Primary Option Menu.

1. Type 8 on the OPTION line.

2. Press the enter key.

m
A\ W4

0 Compiling Your Source Program

Now that you have coded and entered the source program into a data set, the next step is to
compile it into object code. Object code is code that the computer can read. To compile the
source program, use $SEDXASM, the EDX compiler. This section shows you how to compile the
sample program. For more information on compiling a source program, see Chapter

4, “Compiling a Program” on page PG-77.

Before you actually begin to compile, you must allocate a data set to hold the output (the object
code). Start by selecting option 3 (DATA MANAGEMENT).

[SSMMPRIM: SESSION MANAGER PRIMARY OPTION MENU —~-4-4———;a-4-4-‘;;!~;4--7 E B
; ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT i
b Lo o t0:b2:07

o seeer 0PT10N*==3~3_;2¢W 10/2&/82

'ABCD.

7_”e:TExT EDITING
‘,PROGRAM PREP

1. Type 3onthe SELECT OPTION line.

2. Press the enter key.

Chapter 1. Getting Started PG-13

Getting Started

Compiling Your Source Program (continued)

The Data Management Option Menu appears on the screen. To allocate your object code data
set, select option 1 ($DISKUT1).

1. Type 1 on the SELECT OPTION line. s

2. Press the enter key.

PG-14 SC34-0637

0 Compiling Your Source Program (continued)

The $DISKUT1 utility prompts you for the command and for information about the data set you
want to create. Use the AL (allocate) command. Call the data set that will hold the object code
ADDOBIJ. Allocate a 25-record data set and use the default data type.

AL
MEMBER NAME: ADDOBJ
~ HOW MANY RECORDS? 25
~DEFAULT TYPE = DATA
- ADDOBJ CREATED

UOMMAND ()

1. Type AL on the COMMAND (?) line.

2. Press the enter key.
3. Type ADDOBJ on the MEMBER NAME line.
C
. 4, Press the enter key.
5. Type 25 next to the HOW MANY RECORDS? prompt.
6. Press the enter key.
7. Type Y nextto the DEFAULT TYPE = DATA - OK (Y/N)? prompt.

8. Press the enter key.

A message appears telling you that the ADDOBJ data set has been created. Enter the EN (end)
command to return to the Data Management Option Menu screen.

1. Type EN next to the COMMAND (?) prompt.

2. Press the enter key.

The next step is to return to the Session Manager Primary Option Menu to begin the compile.
To return to that menu, press the PF3 key.

Chapter 1. Getting Started PG-15

Getting Started

Compiling Your Source Program (continued)

From the Session Manager Primary Option Menu, select option 2 (PROGRAM
PREPARATION) to begin the compile step.

1. Type 2 on the SELECT OPTION line.

2. Press the enter key.

PG-16 SC34-0637

Compiling Your Source Program (continued)

The Program Preparation Option Menu appears on your screen. To compile the source
program, select option 1 ($SEDXASM COMPILER).

fSELECT OPTION ==y peEs
‘-?SEDXASM COMPILER .
~ $SEDXASM/SEDXLINK -
- $ST1ASM ASSEMBLER,
- $COBOL COMPILER -
- $FORT FORTRAN COMPILER
-“$PL1 COMPILER/$SEDXL INK ;
~ $EDXL INK-LINKAGE EDITOR e
- SXPSLINK L INKAGE EDITOR FOR SUPERVISORS
9.~ $SUPDATE ,

10 - SUPDATEH (HOST)
11 - SPREFIND . ; e

12 - $PASCAL COMPILER/SEDXLINK ey

- SEDXASM/SXPSLINK FOR SUPERVISORS e

MSGUT1 MESSAGE SOURCE PROCESSING UTILITY

WO O OV W N
¥

1. Type 1onthe SELECT OPTION line.

2. Press the enter key.

Chapter 1. Getting Started PG-17

Getting Started

Compiling Your Source Program (continued)

PG-18

SC34-0637

The SEDXASM Parameter Input Menu appears on your screen. You must enter the name of
your source program (data set ADD10 on volume EDX002) and your object output (data set
ADDOBIJ on volume EDX002).

1. Type ADD10,EDX002 next to SOURCE INPUT (NAME,VOLUME).
2. Type ADDOBJ,EDX002 next to OBJECT OUTPUT (NAME,VOLUME).

3. Press the enter key.

$EDXASM then compiles the source program into object code and puts the object code into
data set ADDOBJ. This data set is used as input in the next step, “Creating a Load Module.”

The information listed under DEFAULT PARAMETERS means that the compiler will print a
listing of the program on the system printer, $SYSPRTR.

Q Compiling Your Source Program (continued)

As the compilation runs, the following appears on your screen.

(’LOAD|NG SJOBUTIL 4P,11:21:25, LP 0, PART= 1 R s
“REMARK ~ -

ASSEMBLEVADDIO EDX002

DDOBJ,EDX i
R 0B - $EDXASM - ST ‘TED AT 11:21:56 00/00/00
JOB SEDXASM ($SMP0201) USERID=ABCD , i
~ LOADING SEDXASM 78P,11:22: 28, LP= 9800, PART— Towsd

© ASSEMBLY STARTED 1 OVERLAY AREA ACTIVE.
COMPLETION CODE = =1

$EDXASM ENDED AT 11 22 55

% SJOBUTIL ENDED ‘AT 11 22 56

KLDRESS~ENTER*KEY TO:RETURN M‘~ il

If the screen gets filled up before displaying PRESS ENTER KEY TO RETURN, press the
enter key.

A completion code of -1 means that your compilation completed successfully. Any completion
code other than -1 means the program did not compile successfully.

O Checking Your Compiler Listing

The compiler prints a listing that consists of statistics, source code statements and object code,
undefined or external symbols, and a completion code.

If you do not receive a completion code of -1, check your listing for errors, fix them in your
source data set, and rerun the compilation. For information on fixing compiler errors, see
“Checking Your Compiler Listing and Correcting Errors” on page PG-84.

If you receive a completion code of -1, do the following:
1. Press the enter key to return to the $EDXASM Parameter Input Menu.

2. Press the PF3 key to return to the Program Preparation Option Menu.

Chapter 1. Getting Started PG-19

Getting Started

Creating a Load Module O

The last step is creating a ’lgad module. A load module is a program that is ready to run or
“execute” on the system. In this example, we use the linkage editor, SEDXLINK, to create the
load module. $EDXLINK LINKAGE EDITOR is option 7 on the Program Preparation Option
Menu. .

1. Type 7onthe SELECT OPTION line.

£
~ 7

2. Press the enter key.

PG-20 SC34-0637

0 Creating a Load Module (continued)

The $EDXLINK Parameter Input Menu appears on your screen. Enter an asterisk (*) next to
EXECUTION PARM to indicate that you want the system to prompt you for linkage editor
statements.

1. Type an asterisk on the EXECUTION PARM line.

0 2. Press the enter key.

Chapter 1. Getting Started PG-21

Getting Started

Creating a Load Module (continued) q,:'g

PG-22

SC34-0637

$EDXLINK displays the following screen:

Next, enter an INCLUDE statement to indicate which object module to use. (Remember, the
object module is ADDOBIJ.) Then, enter a LINK statement to indicate the name of the output
data set. When you enter the name of this data set (in this case, ADDPGM), the system
allocates the data set.

1. Type INCLUDE ADDOBJ,EDX002 next to STMT (?). Py
2. Press the enter key.
3. Type LINK ADDPGM,EDX002 next to STMT (?).

4. press the enter key.

After the system indicates that the link-edit is successful, return to the Primary Option Menu to
execute your program. To return to the Primary Option Menu:

1. Type EN next to STMT (?).
2. Press the enter key.
3. Press the PF3 key to return to the Program Preparation Option Menu.

4. press the PF3 key again.

0 Running Your Program

To run (or execute) your program, select option 6 (EXEC PROGRAM/UTILITY).

ENTER/SELECT PARAMETEhs
SELECT OPTION ==> 6

- TEXT EDITING -

- PROGRAM PREPARATION

- DATA MANAGEMENT

- TERMINAL UTILITIES

- GRAPHICS UTILITIES

EXEC PROGRAM/UTILITY

- EXEC ‘$JOBUTIL PROC

- COMMUNICATION UTILITIES
- DIAGNOSTIC AIDS)

OWOoON OV WK -
1

Py

.

“$SMMPRIM: SESSION MANAGER PRIMARY 0PTION MENU e ity

- BACKGROUND JOB CONTROL UTILITIES'

- PRESS PF3 TO EXIT

1. Type 6 onthe SELECT OPTION line.

2. Press the enter key.

Chapter 1. Getting Started

PG-23

Getting Started

Running Your Program (continued)

The Execute Program/Utility menu appears. You must enter the program name (ADDPGM)
and volume (EDX002). Then, type asterisks (*) next to the data sets not used.

1. Type ADDPGM,EDX002 next to PROGRAM/UTILITY (NAME,VOLUME).

2. Type an asterisk in the DATA SET 1, DATA SET 2, and DATA SET 3 fields.

>
=4

3. Press the enter key.

PG-24 SC34-0637

O

Running Your Program (continued)

The following text appears on the terminal:

CEXECUTE PROGRAM
k%% JOB. .~ ADDPGM

JOB ADDPGM ($SMF
LOADING ADDPGM

; >, 11:48: 23, Lp= 9800 PART= 1 .
 ENTER NUMBER: ‘

The program displays ENTER NUMBER on the screen and waits for you to enter a number.
(Remember that “ENTER NUMBER” was coded on the GETVALUE instruction.)

1. Type 5 next to ENTER NUMBER.

2. Press the enter key.

The program displays the results of the processing. The program:

1. Stored the number you entered (5) in an area called COUNT.

2. Added the value of COUNT to the value of SUM, which was initialized to O.
3. Added the two values 10 times.

4. Displayed the result (RESULT= 50) on the terminal screen.

The PRINTEXT instruction displayed RESULT=. The PRINTNUM instruction displayed the
value of SUM (50).

Chapter 1. Getting Started PG-25

Notes

PG-26 SC34-0637

Chapter 2. Writing a Source Program

This chapter tells how to use the EDL instructions to handle the basic functions of the language:
reading and writing data, data conversions, and data manipulation (such as moving, adding, and
subtracting.)

This chapter discusses the following topics:

« Beginning the program

o Reserving storage

« Reading data into a data area

« Moving data

« Converting data

¢ Manipulating data

e Writing data from a data area

o Controlling program logic

o Ending the program.

All the instructions are discussed in detail in the Language Reference. This chapter lists the
instructions by function and discusses only a subset of them.

Chapter 2. Writing a Source Program PG-27

Writing a Source Program

Beginning the Program

The first statement in every EDL program must be a PROGRAM statement. The PROGRAM
statement defines several things about the program to the Event Driven Executive, only two of
which are discussed in this section.

Defining the Primary Task

Two important functions of the PROGRAM statement are to define the “primary task” and
provide the label of the first “‘executable instruction.”

The primary task is the first task the system starts when you invoke the program.

An executable instruction causes some action to take place. For example, instructions that read,
write, move, or perform arithmetic operations are executable instructions.

The following example shows a program with task name TASK1. Its first executable instruction
is at location START1.

TASK1 PROGRAM START1

Identifying Data Sets to be Used in Your Program

PG-28

SC34-0637

Another important function of the PROGRAM statement is to identify the data sets that a
program will use.

The DS= keyword operand of the PROGRAM statement allows you to identify up to nine data
sets that the program can use. A keyword operand usually contains an equal (=) sign. The
“keyword” to the left of the equal sign identifies what information you are supplying. The
keyword operand must appear, of course, exactly as the system expects it. For example, if you
code the DS= operand as SD=, the system would not recognize it. The advantage of keyword
operands is that you can code them in any order.

When you specify data set names in the PROGRAM statement, the system opens the data sets
when you load the program.

When the program executes, all data sets must already exist. One way to allocate data sets is
with the $DISKUT1 utility.

If a program uses one data set and the data set resides on the IPL volume, the PROGRAM
statement might look like this:

UPDATE PROGRAM START1,DS=TRANS

The program uses data set TRANS on the IPL volume.

O

0 Beginning the Program (continued)

If a program uses more than one data set and the data sets all reside on the IPL volume, the
DS= operand would contain one set of parentheses as follows:

UPDATE PROGRAM START1,DS=(TRANS,MASTIN,MASTOUT)
The program uses data sets TRANS, MASTIN, and MASTOUT on the IPL volume.

If the data resides on a volume other than the IPL volume, two sets of parentheses are required.
For example:

TASK1 PROGRAM START1,DS=((DATA1,MYVOL) ,MASTER)

The program uses data set DATA1 on volume MYVOL and data set MASTER on the IPL
volume.

Reserving Storage

This section shows how to reserve storage for arithmetic values or character strings.

EDL allows you to define arithmetic values in two ways: as “integer” data or as
“floating-point” data. Integer data consists of positive and negative numbers with no decimal
C point. Floating-point data consists of positive and negative numbers that can have decimal
‘ points.

For example, you can define the number 7 as either a floating-point number or an integer. To
define the number 7.5, however, you must define it as a floating-point number.

Reserving Storage for integers

To reserve storage for an integer, you can use either the DATA or DC statement. The following
DATA statement, for example, defines a storage area for a 2-byte signed integer.

NODOGS DATA F'0O'
NODOGS is the name or label of the storage area. This type of storage area is often called a
variable. The F defines a fullword (two bytes) and ‘0’ assigns an initial value of zero to the

area.

To set up more than one 1-word area in one statement, you can use the duplication factor. The
statement:

FITABLE DATA 15F'0’

reserves fifteen 1-word areas and assigns a zero to each.

Chapter 2. Writing a Source Program PG-29

Writing a Source Program |
Reserving Storage (continued) @

You can use the areas called NODOGS and FITABLE in data manipulation instructions such as
ADD and SUBTRACT.

Assigning an Initial Value
To assign an initial value, enclose the value in apostrophes as follows:

FIM DATA F'5280'

The storage area called FIM will contain the decimal value 5280 throughout the execution of
your program, unless you change it.

You can also assign a hexadecimal value to a storage area. For example:
XFIM DATA X'14A0'
XFIM contains the hexadecimal value ‘14A0’ (decimal 5280).
Defining a Halfword or Doubleword Data Area

You can also define a halfword (1-byte) or doubleword (4-byte) data area. The following
statements reserve storage for halfword integers:

MSIX DATA H'-6'
SHVAR DATA H'O'
MSIX contains the value of minus 6. " ﬁ\»

A\ 4
To reserve four bytes of storage, define a data area as follows:

QTRMIL DATA D'250000'
LNGVAR DATA D'O'

QTRMIL occupies a doubleword (4 bytes) of storage and contains an initial value of 250,000
(decimal). '

Defining Floating-Point Values

To define floating-point values, you can use either the DATA or DC statement. How large the
number is determines how you define the storage. If the number falls between 10-76 and 1076
and contains less than seven significant digits, you can define a single-precision floating-point
data area. Each single-precision floating-point number requires 4 bytes of storage.

The following DATA statement defines a storage area for a single-precision floating-point
number.

NETPAY DATA E'000.00'

NETPAY is the name of the storage area. The E defines a floating-point data area and assigns
it an initial value of zero.

PG-30 SC34-0637

0 Reserving Storage (continued)

To set up more than one floating-point data area, you can use the duplication factor. The
statement

NPTAB DATA 12E'000.00°'

reserves storage for twelve 4-byte floating-point data areas and assigns an initial value of zero to
each.

Assigning an Initial Value

To assign an initial value to a floating point data area, enclose the value in apostrophes as
follows:

PI DATA E'3.14159"
PI contains the decimal value 3.14159.

You can also express the exponent for a floating-point data area as in the following examples:

PIE DATA E'.314159E1'
PIE2 DATA E'314.159E-2"'

Defining an Extended-Precision Data Area

If a floating-point number requires more than 6 and fewer than 15 significant digits, you must
use extended-precision floating point. Each extended-precision floating-point number requires 8

0 bytes of storage.
J‘Y

The following DATA statements define storage areas for extended-precision floating-point
numbers:

MSMNT DATA L'0.000'
MYCELLS DATA L'15063842E12'
Defining Character Strings

To define character strings, you can use either the DATA or DC statement. The following
DATA statement defines a storage area for a 6-byte character string:

NAME DATA C'TILTON'

NAME is the name or label of the storage area. The length of the storage area is the number of
characters inside the apostropkhes.

If you want an area of blanks, you can use the duplication factor:

BLNKS DATA 10C' '

BLNKS is an area of 10 blanks.

Chapter 2. Writing a Source Program PG-31

Writing a Source Program

Reserving Storage (continued)

To set up an area that contains a character string followed by blanks, define the storage area like
this:
DOLCON DATA CL4'$$’

DOLCON contains two dollar signs ($$) followed by two blanks.

Assigning a Value to a Symbol

The EQU statement assigns a value to a symbol. You can use the symbol (the label on the EQU
statement) as an operand in other instructions wherever symbols are allowed. If you use a label
as an operand in an EQU statement, you must have defined it previously.

For example, you cannot code:

ABLE EQU BAKER
unless you have previously defined BAKER.

The following example assigns the word value X’0002’ to A.

A EQU 2

If you refer to the equated value with its label, the system assumes you are referring to a storage
location. For example, if you use A in the following instruction:

MOVE B,A
the system moves the word at address 0002 to B.

If, however, you want to use the equated value as the number 2, you must precede the label with
a plus sign (+) as follows:

MOVE B,+A
This instruction moves 2 to B.

The next example assigns the word value of A to B.

B EQU A

PG-32 SC34-0637

0 Reserving Storage (continued)

The following example shows how you can use the equated symbols in a program:

[1] MOVE C,A
2 | MOVE C,+A
MOVE C,+B
a MOVE C,+a, (1,BYTE)
A EQU 2
[6 2] EQU A
c DATA F
[1] Move the contents of address 0002 to C.
Move X’0002’ to C.
Move X’0002’ to C.
[4 | Move the leftmost byte of the word value X’0002’ (X°00’) to C.
Define A with a word value of X’0002’.

6 | Assign B the value of A (X’0002’).

C

Defining an Input/Output Area

To define an area to read into or to write from, you must know where the data is coming from
or where it is going.

If you are reading or writing data from tape, disk, or diskette, you can define an input/output
area with a BUFFER statement, a DATA statement, or a DC statement.

If you are reading or writing data from a terminal, you can define an input/output area with a
TEXT statement, a DATA statement, or a DC statement.

If you use either a DATA statement or a DC statement, however, you must precede the storage

area with a word (2 bytes) containing the length and count. (Refer to the Language Reference
for information on how the system constructs a storage area defined by a TEXT statement.)

Chapter 2. Writing a Source Program PG-33

Writing a Source Program

Reserving Storage (continued)

Defining a BUFFER Statement

A BUFFER statement defines a data storage area. When you read or write records to disk,
diskette, or tape, you can use the BUFFER statement to define the buffer. To define a
256-byte buffer, use the BUFFER statement as follows:

RDAREA BUFFER 256,BYTES
RDAREA is the name of the buffer.
A buffer consists of an index, a length, and the data storage area. The index and the length each

occupy one word (2 bytes). Therefore, a 256-byte buffer actually occupies 260 bytes of
storage. For more information on the structure of a buffer, refer to the Language Reference.

Defining a TEXT Statement

Use the TEXT statement to define a message or storage area. Use the TEXT statement in
conjunction with the PRINTEXT or READTEXT instructions. The PRINTEXT instruction
prints the message or storage area on a terminal. The READTEXT instruction reads a character
string from a terminal into the storage area defined by the TEXT statement.

When you code a TEXT statement, the system creates an area that consists of a 1-byte length,
1-byte count, and the message or storage area. Therefore, a 24-character message, for example,
requires 26 bytes of storage. The maximum length of a TEXT statement is 254 bytes.

The following example creates the message ENTER YOUR NAME:

MSG1 TEXT '"ENTER YOUR NAME:'

To cause the message to appear on a terminal, code a PRINTEXT instruction that references
MSG1, the name of the TEXT statement.

To define a storage area for data that you will read from a terminal, code the following:

ADDRESS TEXT LENGTH=30

A READTEXT instruction can read data from a terminal into the storage area by referencing
ADDRESS, the name of the TEXT statement.

Reading Data into a Data Area

PG-34

SC34-0637

When you read data into a data area, the instruction you use depends on the kind of data and
where it is coming from.

If the data resides on disk, diskette, or tape, use the READ instruction. If the data is coming
from a terminal, use either the READTEXT or GETVALUE instruction. If the data is

m Reading Data into a Data Area (continued)

alphameric, use READTEXT. If the data consists of one floating-point number or one or more
integers, use GETVALUE.

Reading Data from Disk or Diskette

You can read disk or diskette data sets either sequentially or directly. You always read a
multiple of 256 bytes. In EDX, 256 bytes is called an “EDX record.”

The READ instruction reads a record from one of the data sets you specify in the PROGRAM
statement. The following READ instruction reads a record sequentially from the third data set
defined on the PROGRAM statement.

READ DS3,DISKBUFF, 1,0,ERROR=RDERROR, END=NOTFOUND

DISKBUFF BUFFER 256,BYTES

The system reads one record (indicated by 1 in the third operand) sequentially (indicated by 0 in
the fourth operand) into DISKBUFF. If no more records exist on the data set, the program
branches to NOTFOUND. If an I/O error occurs, the program branches to RDERROR.
Otherwise, the system places the data in the 256-byte buffer DISKBUFF.

O To read a data set directly, code the fourth operand with an integer greater than zero as follows:

READ DS2,BUFR,1,52,ERROR=RDERR, END=ALLOVER

BUFR BUFFER 512,BYTES

The system reads the 52nd record (indicated by 52 in the fourth operand) into BUFR. If the
data set does not contain 52 records, the program branches to ALLOVER. If an I/O error
occurs, the program branches to RDERR. Otherwise, the system places one record (indicated
by 1 in the third operand) into the 512-byte buffer BUFR.

Chapter 2. Writing a Source Program PG-35

Writing a Source Program

Reading Data into a Data Area (continued)

Reading Data from Tape

You can read tape data sets sequentially only. A tape READ retrieves a record from 18 to
32,767 bytes long.

The following READ instruction reads a record from a tape.

READ DS1,BUFF,1,327,END=END1, ERROR=ERR,WAIT=YES

BUFF BUFFER 327,BYTES

The system reads one record (indicated by 1 in the third operand). The size of the record is 327
bytes (indicated by 327 in the fourth operand). If no more records exists on the data set,
control transfers to END1. If an error occurs, control transfers to ERR. The system waits for
the operation to complete before continuing (WAIT=YES). The buffer BUFF is 327 bytes
long.

The following READ instruction reads 2 records into buffer BUFF2.

READ DS1,BUFF2,2,327,END=END1, ERROR=ERR, WAIT=YES

BUFF2 BUFFER 654,BYTES

&

The system reads two records (indicated by 2 in the third operand). The size of each record is
327 bytes (indicated by 327 in the fourth operand). If no more records exists on the data set,
control transfers to END1. If an error occurs, control transfers to ERR. The system waits for
the operation to complete before continuing (WAIT=YES). The buffer BUFF2 is 654 bytes
long. v

Reading from a Terminal

PG-36

SC34-0637

To read data that an operator enters on a terminal, you can use either the READTEXT or
GETVALUE instruction. The READTEXT instruction allows you to read alphameric data
(alphabetic characters, numbers, and special characters). With the GETVALUE instruction,
you can read numbers (both integer and floating-point) only.

O

C

Reading Data into a Data Area (continued)

Reading Alphameric Data

To read an alphameric data item into a storage area, use the READTEXT instruction as follows:

READTEXT COUNTY, 'ENTER YOUR COUNTY: ',6SKIP=1,MODE=LINE

COUNTY TEXT LENGTH=20

The instruction displays the prompt ENTER YOUR COUNTY: and the system waits for a
response. When the operator enters a name and presses the enter key, the system stores the text
string in an area called COUNTY.

The operand SKIP=1 causes the system to skip one line before displaying the prompt. The
operand MODE=LINE allows blanks in the response.

Unless you know how the system constructs a storage area defined by a TEXT statement, you
should read into an area defined by a TEXT statement.

For more information on reading alphameric data from terminals, see Chapter 8, “Reading and
Writing Data from Screens” on page PG-127.

Reading Numeric Data

The GETVALUE instruction allows you to read either a single floating-point value or more than
one integer from a terminal. The following instruction reads a floating-point number:

GETVALUE BASAL, 'ENTER YOUR BASE SALARY: ', c
TYPE=F,FORMAT= (6, 2,F)

BASAL DATA E'0.00'
The instruction prompts the operator, waits for a response, reads the response, and stores the
number in BASAL. You must have defined BASAL as a floating-point variable. The operand
TYPE=F means that the number will be a single-precision floating-point number.
The operand FORMAT=(6,2,F) says that the number will occupy six positions on the screen
(including the decimal point), that the number will contain two digits to the right of the decimal

point, and that the number will be an “F-type”” number such as 325.78.

To read more than one integer, code a third operand on the instruction as follows:

GETVALUE HEIGHTS, 'ENTER FIVE HEIGHTS (IN INCHES): ',5

The instruction assumes that you have defined HEIGHTS as follows:

HEIGHTS DATA 5F'0O'

Chapter 2. Writing a Source Program PG-37

Writing a Source Program

Moving Data

PG-38

SC34-0637

O

You can move data from one place in storage to another with the MOVE instruction. Unless
you specify otherwise, the system moves one word (two bytes).

For example, the instruction

MOVE OLDDATA ,NEWDATA

OLDDATA DATA F'O'
NEWDATA DATA F'O'

moves the word at NEWDATA to OLDDATA. Note that whatever OLDDATA contained
before the instruction was executed has been overlaid by the data in NEWDATA.

To move more than one word, you must code a third operand. For example, the following
instruction moves 12 words from NEWNAME to OLDNAME:

MOVE OLDNAME,NEWNAME, 12

OLDNAME DATA F'O'
NEWNAME DATA F'O'

To move bytes, code the third operand like this:

MOVE OLDADDR,NEWADDR, (15,BYTE)

OLDADDR TEXT LENGTH=15
NEWADDR TEXT LENGTH=15

c

This instruction moves the 15 bytes at NEWADDR to OLDADDR.
To move doublewords, code the third operand as follows:

MOVE OLDDESC,NEWDESC, (10,DWORD)

OLDDESC DATA 10D'O’
NEWDESC DATA 10D'0Q’

This instruction moves the 10 doublewords at NEWDESC to OLDDESC.

To move floating-point values, you must specify FLOAT (for single-precision) or DFLOAT (for
extended-precision).

MOVE TEMPS,MSMNTS, (4,FLOAT)

TEMPS DATA 4E'0.0'
MSMNTS DATA 4E'0.0'

This instruction moves the four single-precision floating-point values at MSMNTS to TEMPS.

O

Converting Data

EDL allows you to do two types of conversion: from binary to an EBCDIC character string and
from an EBCDIC character string to binary. The CONVTB instruction converts from binary to
an EBCDIC character string, while the CONVTD instruction converts from an EBCDIC
character string to binary.

Converting to an EBCDIC Character String

If a number has been stored as a binary number, you must convert it to an EBCDIC character
string if, for example, you want to display the number with the PRINTEXT instruction.

A binary number is any variable you have defined as single-precision integer, double-precision
integer, single-precision floating point, extended-precision floating point, or hexadecimal.
You must convert any of the following data items before you can display them:

NODOGS DATA F'0O'
POPKANS DATA D'O'

PI DATA E'0.0'
FINMEAS DATA L'0.0'
XTRAS DATA X'O'

The following example converts a single-precision integer to an EBCDIC character string.
CONVTB DOGS,NODOGS, PREC=S, FORMAT=(5,0,I)

DOGS TEXT LENGTH=5
NODOGS DATA F'o'

The instruction converts the single-precision integer (indicated by PREC=S) in NODOGS and
puts the result in DOGS. The FORMAT operand says that you want the converted output to be
5 digits long, contain 0 digits to the right of the decimal point, and be an integer (I).

To convert a double-precision integer, code the CONVTB instruction as follows:
CONVTB POP,POPKANS , PREC=D, FORMAT=(8,0,1)

POP TEXT LENGTH=8
POPKANS DATA D'0’

The instruction converts the double-precision integer (indicated by PREC=D) in POPKANS
and puts the result of the conversion in POP. The FORMAT operand says that you want the
converted output to be 8 digits long, contain O digits to the right of the decimal point, and be an
integer (I).

Chapter 2. Writing a Source Program PG-39

Writing a Source Program

Converting Data (continued)

The following instruction converts a single-precision floating-point variable:

CONVTB PIOP,PI,PREC=F,FORMAT=(15,4,F)

PIOP TEXT LENGTH=16
PI DATA E'0.0000'

The instruction converts the single-precision floating-point variable (indicated by PREC=F) in
PI and puts the result of the conversion in PIOP. The FORMAT operand says that you want
the converted output to be 15 digits long, contain 4 digits to the right of the decimal point, and
be a floating-point numeric (F).

To convert an extended-precision floating-point variable:
CONVTB FLOP,OP,PREC=L,FORMAT=(17,3,E)

FLOP TEXT LENGTH=24
OoP DATA L

The instruction converts the extended-precision floating-point variable (indicated by PREC=L)
in OP and puts the result of the conversion in FLOP. The FORMAT operand says that you
want the converted output to be 17 digits long, contain 3 digits to the right of the decimal point,
and be expressed in exponent notation (E).

Converting to Binary

PG-40

SC34-0637

If you read a number with the READTEXT instruction, you must convert it to binary before
you can add, subtract, multiply, or divide.

The CONVTD instruction converts a character string to a binary number. You can convert a
character string that contains a number to a single-precision integer, a double-precision integer,
single-precision floating point, or extended-precision floating point.

The following CONVTD instruction converts a single-precision integer to binary:

CONVTD GNUS,NOGNUS, PREC=S,FORMAT=(5,0,1I)

GNUS DATA F'O!
NOGNUS TEXT LENGTH=5

The instruction converts the EBCDIC character string in NOGNUS and puts the result in
GNUS, a single-precision integer variable (indicated by PREC=S).

The FORMAT operand says that the data to be converted is 5 digits long, contains 0 digits to
the right of the decimal point, and is an integer(I).

O Converting Data (continued)

To convert a number that is greater than 32,767, you must convert it to a double-precision
integer as follows:

CONVTD FLEAS,NOFLEAS,PREC=D,FORMAT=(9,0,I)

FLEAS DATA D'0O’
NOFLEAS TEXT LENGTH=9

The instruction converts the EBCDIC character string in NOFLEAS and puts the result in
FLEAS, a double-precision integer variable (indicated by PREC=D).

The FORMAT operand says that the data to be converted is 9 digits long, contains O digits to
the right of the decimal point, and is an integer(I).

To convert to single-precision floating point, code the instruction as follows:

CONVTD AVTEMP, TEMP, PREC=F,FORMAT=(8,2,F)

AVTEMP DATA E'0.0"'
TEMP TEXT LENGTH=9

The instruction converts the EBCDIC character string in TEMP and puts the result in
AVTEMP, a single-precision floating-point variable (indicated by PREC=F).

O The FORMAT operand says that the data to be converted is 8 digits long, contains 2 digits to
the right of the decimal point, and is a floating-point number (F).

To convert to extended-precision floating point, code the instruction as follows:

CONVTD AVCOST,COST,PREC=L,FORMAT=(15,3,E)

AVCOST DATA L'0.00"
COST TEXT LENGTH=20

The instruction converts the EBCDIC character string in COST and puts the result in AVCOST,
an extended-precision floating-point variable (indicated by PREC=L).

The FORMAT operand says that the data to be converted is 15 digits long, contains 3 digits to
the right of the decimal point, and is expressed in exponent notation (E).

Chapter 2. Writing a Source Program PG-41

Writing a Source Program

Converting Data (continued) @

Converting from Floating Point to Integer

If you want to manipulate data, both operands in the operation must be either floating point or
integer.

To convert a single-precision floating-point number to integer, code the FPCONYV instruction as
follows:

FPCONV INTNUM, FPNUM,PREC=SF

INTNUM DATA F'0"'
FPNUM DATA E'0.0'

The instruction converts the single-precision floating-point number in FPNUM and puts the
result in INTNUM, a single-precision integer variable. The PREC operand indicates that
INTNUM is a single-precision integer (S) and that FPNUM is a single-precision floating-point
number (F).

To convert an extended-precision floating-point number to double-precision integer, code the
FPCONY instruction as follows:

FPCONV INTDBL, FPEXT,PREC=DL

INTDBL DATA D'O’

FPEXT DATA L'0.0°' O

The instruction converts the extended-precision floating-point number in FPEXT and puts the
result in INTDBL, a double-precision integer variable. The PREC operand indicates that
INTDBL is a double-precision integer (D) and that FPEXT is an extended-precision
floating-point number (L).

Note: When you convert from floating point to integer, remember that the system truncates all
data to the right of the decimal point.

Converting from Integer to Floating Point

PG-42

SC34-0637

To convert a single-precision integer to floating-point, code the FPCONYV instruction as follows:

FPCONV FPNUM, INTNUM, PREC=FS

INTNUM DATA F'0'
FPNUM DATA E'0.0'

The instruction converts the single-precision integer INTNUM and puts the result in FPNUM, a
single-precision floating-point variable. The first letter in the PREC operand (F) indicates that
FPNUM is a single-precision floating-point variable. The second letter (S) indicates that
INTNUM is a single-precision integer.

O

Converting Data (continued)

To convert a double-precision integer to floating-point:

FPCONV FPEXT, INTDBL, PREC=LD

INTDBL DATA D'O’
FPEXT DATA L'0.0"'

The instruction converts the double-precision integer INTDBL and puts the result in FPEXT, an
extended-precision floating-point variable. The first letter in the PREC operand (L) indicates
that FPEXT is an extended-precision floating-point variable. The second letter (D) indicates
that INTDBL is a double-precision integer.

Checking for Conversion Errors

Each time you execute an instruction that converts data, the system expects the data to be
numeric. If you try to convert a character other than a number, a conversion error occurs.

If, for example, a program prompts an operator for a number and he or she enters a letter, the
system places a return code in the task code word. You can check for a conversion error as
follows:

BEGIN PROGRAM START

CONVTD GNUS, NOGNUS , PREC=S, FORMAT= (5,0, I)
ERRTEST MOVE TASKRC, BEGIN
IF (TASKRC,NE, -1) ,GOTO, CHECK

ENDIF

CHECK PRINTEXT 'CONVERSION ERROR',SKIP=1
PRINTNUM TASKRC

GOTO END
END PROGSTOP
TASKRC DATA F'O’
GNUS DATA F'O’
NOGNUS TEXT LENGTH=5
ENDPROG
END

The instructions at label ERRTEST compare the return code of the CONVTD instruction with
the successful return code (-1). IF NOGNUS contains a nonnumeric character, the system
branches to CHECK.

You must test the return code before executing any other instruction because the system may
overlay the task code word with the return code of the next instruction.

/ Chapter 2. Writing a Source Program PG-43

Writing a Source Program

Manipulating Data

The data manipulation instructions perform arithmetic operations on single- or double-precision
integers and single- or extended-precision floating-point numbers. You can also manipulate two
bit-strings with logical instructions such as inclusive-OR and exclusive-OR.

Manipulating Integer Data

Adding Integers

PG-44

SC34-0637

The instructions that manipulate integers add, subtract, multiply, or divide two integers. If two
numbers are floating-point numbers, you must use floating-point instructions.

If one number is a floating-point number and the other is an integer, use the FPCONV
instruction to convert one of the numbers to match the form of the other.

The instructions have the following general form:

operation operandl,operand?2
The flow of data is from operand? to operandl.

The ADD instruction adds the data in operand?2 to the data in operandl and places the results in
operandl.

The SUBTRACT instruction subtracts the data in operand2 from the data in operandl and places
the results in operandl.

The DIVIDE and MULTIPLY instructions multiply or divide the data in operandl by the data in
operand?2 and store the results in operand|.

The ADD instruction adds two integers. If A and B are integers, you can add A to B with the
following instruction:

ADD B,A
The result of the addition replaces B. The value in A remains unchanged.

To add two integers without altering the first operand, use the RESULT operand as follows:

ADD CAT,DOG,RESULT=GIRAFFE

The instruction adds DOG to CAT and places the result in GIRAFFE. The values in DOG and
CAT remain unchanged.

O

Manipulating Data (continued)

Adding Double-Precision Integers
Unless you specify otherwise, EDL assumes that the integers are single-precision (1-word)
integers. To add two double-precision (2-word) integers, specify the PREC operand as follows:

ADD TOTVEG,BEETS,PREC=DD
The operand PREC=DD says that both TOTVEG and BEETS are double-precision integers.

If only one of the operands is a double-precision integer, it must be the first operand. In
addition, if you specify the RESULT operand, it must be a double-precision variable. For
example:

ADD GHANA,CHAD,RESULT=TOTPOP,PREC=D

The operand PREC=D says that GHANA and TOTPOP are double-precision integers. The
absence of the second letter (D or S) on the PREC operand means that CHAD is a
single-precision integer.

Adding Consecutive Integers

To add more than one set of integers, you can specify the number of integers you want to add.
For example:

ADD NEWTOTS,OLDTOTS, 10

The instruction adds the 1-word integer at OLDTOTS to NEWTOTS. Then the instruction
adds the word in OLDTOTS+2 to the word at NEWTOTS+2. The instruction continues to add
until it adds the word at OLDTOTS+18 to the word at NEWTOTS+18. This instruction, then,
adds the 10 consecutive words at OLDTOTS to the 10 consecutive words at NEWTOTS. You
can specify up to 32,767 consecutive additions.

Subtracting Integers

The SUBTRACT instruction subtracts one integer from another. If QUERY and ANSWER are
integers, you can subtract ANSWER from QUERY with the following instruction:

SUBTRACT QUERY,ANSWER
The result of the subtraction replaces QUERY. The value in ANSWER remains unchanged.

To subtract two integers without altering the first operand, use the RESULT operand as follows:

SUBTRACT POOLS, STREAMS , RESULT=LAKES

The instruction subtracts STREAMS from POOLS and places the resuit in LAKES. The values
in POOLS and STREAMS remain unchanged.

Chapter 2. Writing a Source Program PG-45

Writing a Source Program

Manipulating Data (continued) 0)

Subtracting Double-Precision Integers

Unless you specify otherwise, EDL assumes that the integers are single-precision (1-word)
integers. To subtract two double-precision (2-word) integers, specify the PREC operand as
follows:

SUBTRACT TOTFRUT , PRUNES , RESULT=REST , PREC=DD

The instruction subtracts PRUNES from TOTFRUT and places the result in REST. The
operand PREC=DD says that TOTFRUT, PRUNES, and REST are all double-precision
integers.

If only one of the operands is a double-precision integer, it must be the first operand. In
addition, if you specify the RESULT operand, it must be a double-precision variable. For
example:

SUBTRACT ATTEND, MALES,RESULT=FEMALES , PREC=D

The instruction subtracts MALES from ATTEND and places the result in FEMALES. The
operand PREC=D says that ATTEND and FEMALES are double-precision integers. The
absence of the second letter (D or S) on the PREC operand means that MALES is a
single-precision integer.

Subtracting Consecutive Integers

To subtract more than one set of integers, you can specify the number of integers you want to
subtract. For example:

SUBTRACT NEWTOTS,OLDTOTS, 6

The instruction subtracts the 1-word integer at OLDTOTS from NEWTOTS. Then the
instruction subtracts the word in OLDTOTS+2 from the word at NEWTOTS+2. The
instruction continues to subtract until it subtracts the word at OLDTOTS+ 10 from the word at
NEWTOTS+10. This instruction, then, subtracts the 6 consecutive words at OLDTOTS from
the 6 consecutive words at NEWTOTS. You can specify up to 32,767 consecutive subtractions.

Multiplying Integers

The MULTIPLY instruction multiplies one integer by another.

If M and N are single-precision integers, you can multiply M by N as follows:

MULTIPLY M,N

The result of the multiplication replaces M.

PG-46 SC34-0637

O

Manipulating Data (continued)

You can also multiply an integer by a constant. The following instruction multiplies FEET by
the constant 12:

MULTIPLY FEET, 12
The result of the multiplication replaces FEET.

To multiply two integers without altering the first operand, use the RESULT operand as follows:

MULTIPLY BOXES,WEIGHT,RESULT=TOTWGT

The instruction multiplies BOXES by WEIGHT and places the result in TOTWGT. The values
in BOXES and WEIGHT do not change.

Multiplying Double-Precision Integers

Unless you specify otherwise, EDL assumes that integers are single-precision (1-word) integers.
To multiply two double-precision (2-word) integers, specify the PREC operand as follows:

MULTIPLY GRAPES,PITS,RESULT=TOTPITS, PREC=DD

The instruction multiplies GRAPES by PITS and places the result in TOTPITS. The operand
PREC=DD says that GRAPES, PITS, and TOTPITS are all double-precision integers.

If only one of the operands is a double-precision integer, it must be the first operand. In
addition, if you specify the RESULT operand, it must be a double-precision variable. For
example:

MULTIPLY ATTEND,GAMES,RESULT=TOTATT, PREC=D

The instruction multiplies ATTEND by GAMES and places the result in TOTATT. The
operand PREC=D says that ATTEND and GAMES are double-precision integers. The absence
of the second letter (D or S) on the PREC operand means that GAMES is a single-precision
integer.

Multiplying Consecutive Integers

To multiply more than one set of integers, you can specify the number of integers you want to
multiply. For example:

MULTIPLY SALRIES,RATES, 400

The instruction multiplies the 1-word integer at RATES by SALRIES and stores the result in
SALRIES. Then the instruction multiplies the word in RATES+2 by the word at SALRIES+2.
The instruction continues to multiply until it multiplies the word at RATES+798 by the word at
SALRIES+798. This instruction, then, multiplies the 400 consecutive words at RATES by the
400 consecutive words at SALRIES. You can specify up to 32,767 consecutive multiplications.

Chapter 2. Writing a Source Program PG-47

Writing a Source Program

Manipulating Data (continued)

Dividing Integers

PG-48

SC34-0637

The DIVIDE instruction divides one integer by another. The system places the remainder in the
first word of the task control block (TCB).

If P and Q are single-precision integers, you can divide P by Q as follows:

DIVIDE P,Q
The result of the division replaces P.

You can also divide an integer by a constant. The following instruction divides FEET by the
constant 3:

DIVIDE FEET, 3
The result of the division replaces FEET.

To divide two integers without altering the first operand, use the RESULT operand as follows:

DIVIDE TOTWGT,BOXES,RESULT=BOXWGT

The instruction divides TOTWGT by BOXES and places the result in BOXWGT. The values in
TOTWGT and BOXES do not change.

Dividing Double-Precision Integers A ™
Unless you specify otherwise, EDL assumes that integers are single-precision (1-word) integers.
To divide double-precision (2-word) integers, specify the PREC operand as follows:

DIVIDE TOTSAL,NOEMPS,RESULT=AVESAL, PREC=DD

The instruction divides TOTSAL by NOEMPS and places the result in AVESAL. The operand
PREC=DD says that TOTSAL, NOEMPS, and AVESAL are all double-precision integers.

If only one of the operands is a double-precision integer, it must be the first operand. In
addition, if you specify the RESULT operand, it must be a double-precision variable. For
example:

DIVIDE TOTATT,GAMES, RESULT=AVEATT, PREC=D
The instruction divides TOTATT by GAMES and places the result in AVEATT. The operand

PREC=D says that TOTATT and AVEATT are double-precision integers. The absence of the
second letter (D or S) on the PREC operand means that GAMES is a single-precision integer.

O

C

Manipulating Data (continued)

Dividing Consecutive Integers

To divide more than one set of integers, you can specify the number of integers you want to
divide. For example:

DIVIDE RATES,SALRIES, 100

The instruction divides the 1-word integer at RATES by SALRIES. Then the instruction divides
the word in RATES+2 by the word at SALRIES+2. The instruction continues to divide until it
divides the word at RATES+198 by the word at SALRIES+198. This instruction, then, divides
the 100 consecutive words at RATES by the 100 consecutive words at SALRIES. You can
specify up to 32,767 consecutive divisions.

Accessing the Remainder

One way to access the remainder is to use the TCBGET instruction as in the following example:

DIVIDE RATES,SALRIES
TCBGET REMAIN, $TCBCO

REMAIN DATA F'O'

The instruction puts the first word of the task control block, containing the remainder, into
REMAIN.

Manipulating Floating-Point Data

EDL allows you to add, subtract, multiply, and divide floating-point numbers. Floating-point
numbers are positive and negative numbers that can have decimal points.

To use floating-point instructions, you must:
« Have the hardware floating-point feature installed on your system.
« Include floating-point support in the supervisor when it is generated.

« Specify FLOAT=YES on both the PROGRAM and TASK statements whenever you use
floating-point instructions in any task within a program.

« Define the variables you are manipulating as floating-point variables.

Chapter 2. Writing a Source Program PG-49

Writing a Source Program

Manipulating Data (continued)

Adding Floating-Point Data

The FADD instruction adds two floating-point numbers. If A and B are floating-point numbers,
you can add A to B with the following instruction:

FADD B,A
The result of the addition replaces B. The value in A remains unchanged.

To add two floating-point numbers without altering the first operand, use the RESULT operand
as follows:

FADD MYSAL, YOURSAL, RESULT=0URSALS

The instruction adds MYSAL to YOURSAL and places the result in OURSALS. The values in
MYSAL and YOURSAL remain unchanged.

Adding Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumes that the floating-point numbers are single-precision
(2-word) floating-point numbers. To add two extended-precision (4-word) floating-point
numbers, specify the PREC operand as follows:

FADD TOTSAL, PRESAL, PREC=LL

)

The operand PREC=LL says that both TOTSAL and PRESAL are extended-precision
floating-point numbers.

C

If only one of the operands is an extended-precision floating-point number, the PREC operand
must reflect the precision. In the following example:

FADD MSMNT1,MSMNT2, RESULT=MSMTS, PREC=LFL

The operand PREC=LFL says that MSMNT1 and MSMTS are extended-precision
floating-point numbers and MSMNT?2 is a single-precision floating-point number.

Subtracting Floating-Point Numbers

PG-50

SC34-0637

The FSUB instruction subtracts one floating-point number from another. If OCTEMP and
NOVTEMP are floating-point numbers, you can subtract NOVTEMP from OCTEMP with the
following instruction:

FSUB OCTEMP , NOVTEMP

The result of the subtraction replaces OCTEMP. The value in NOVTEMP remains unchanged.

O

Manipulating Data (continued)

To subtract two floating-point numbers without altering the first operand, use the RESULT
operand as follows:

FSUB SAL,DEDUCS , RESULT=NET

The instruction subtracts DEDUCS from SAL and places the result in NET. The values in SAL
and DEDUCS remain unchanged.

Subtracting Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumes that the floating-point numbers are single-precision
(2-word) floating-point numbers. To subtract two extended-precision (4-word) floating-point
numbers, specify the PREC operand as follows:

FSUB TOTSAL, TOTDUCS , RESULT=TOTNP, PREC=LLL

The instruction subtracts TOTDUCS from TOTSAL and places the result in TOTNP. The
operand PREC=LLL says that TOTSAL, TOTDUCS, and TOTNP are all extended-precision
floating-point numbers.

If only one of the operands is an extended-precision floating-point number, the PREC operand
should reflect the precision. In the following example:

FSUB SMALL,LARGE,RESULT=MINUS, PREC=FLF
The instruction subtracts LARGE from SMALL and places the result in MINUS. The operand

PREC=FLF says that SMALL and MINUS are single-precision and that LARGE is an
extended-precision floating-point number.

Multiplying Floating-Point Numbers

The FMULT instruction multiplies one floating-point number by another.

If M and N are single-precision floating-point numbers, you can multiply M by N as follows:

FMULT M,N
The result of the multiplication replaces M.

You can also multiply a floating-point number by an integer constant. The following instruction
multiplies FEET by the integer constant 12:

FMULT FEET, 12

The result of the multiplication replaces FEET.

Chapter 2. Writing a Source Program PG-51

Writing a Source Program

Manipulating Data (continued) @

To multiply two floating-point numbers without altering the first operand, use the RESULT
operand as follows:

FMULT LENGTH, WIDTH, RESULT=AREA

The instruction multiplies LENGTH by WIDTH and places the result in AREA. The values in
LENGTH and WIDTH do not change.

Multiplying Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumes that floating-point numbers are single-precision
(2-word) floating-point numbers. To multiply two extended-precision (4-word) floating-point
numbers, specify the PREC operand as follows:

FMULT PI,DIAM,RESULT=CIRCUM,PREC=LLL

The instruction multiplies PI by DIAM and places the result in CIRCUM. The operand
PREC=LLL says that PI, DIAM, and CIRCUM are all extended-precision floating-point
numbers.

If only one of the operands is a double-precision floating-point number, the PREC operand
must reflect the precision. The following example:

FMULT BASEAREA,HEIGHT, RESULT=VOLUME, PREC=LFL
multiplies BASEAREA by HEIGHT and places the result in VOLUME. The operand Cz\

PREC=LFL says that BASEAREA and VOLUME are extended-precision floating-point
numbers and that HEIGHT is a single-precision floating-point number.

Dividing Floating-Point Numbers

PG-52

SC34-0637

The FDIVD instruction divides one floating-point number by another. The system places the
remainder in the first word of the task control block (TCB).

If P and Q are single-precision floating-point numbers, you can divide P by Q as follows:

FDIVD P,0Q
The result of the division replaces P.

You can also divide a floating-point number by a constant. The following instruction divides
FEET by the integer constant 3:

FDIVD FEET, 3

The result of the division replaces FEET.

0 Manipulating Data (continued)

To divide two floating-point numbers without altering the first operand, use the RESULT
operand as follows:

FDIVD TOTWGT, BOXES, RESULT=BOXWGT

The instruction divides TOTWGT by BOXES and places the result in BOXWGT. The values in
TOTWGT and BOXES do not change.

Dividing Extended-Precision Floating-Point Numbers

Unless you specify otherwise, EDL assumes that floating-point numbers are single-precision
(2-word) floating-point numbers. To divide two extended-precision (4-word) floating-point
numbers, specify the PREC operand as follows:

FDIVD CUBICFT,BASEAREA,RESULT=HEIGHT, PREC=LLL

The instruction divides CUBICFT by BASEAREA and places the result in HEIGHT. The
operand PREC=LLL says that CUBICFT, BASEAREA, and HEIGHT are all
extended-precision floating-point numbers.

If only one of the operands is an extended-precision floating-point number, the PREC operand
must reflect the precision. The following example:

FDIVD TOTSAL,NOEMPS,RESULT=AVESAL, PREC=LFL

‘) divides TOTSAL by NOEMPS and places the result in AVESAL. The operand PREC=LFL
says that TOTSAL and AVESAL are extended-precision floating-point numbers and that
NOEMPS is a single-precision floating-point number.

Manipulating Logical Data

The instructions that manipulate logical data make a bit-by-bit comparison of two bit strings.
The result of the comparison depends on the instruction.

The Exclusive-OR Instruction

The exclusive-OR instruction (EOR) compares two bit strings and produces a third bit string,
called the resulting field.

The instruction compares the two bit strings one bit at a time. If the bits are the same, the
instruction sets a bit in the resulting field to 0. If the bits are not the same, the instructions sets

a bit in the resulting field to 1.

If the bit strings are identical, the resulting field contains all 0’s. If one or more bits differ, the
resulting field contains a mixture of 0’s and 1’s.

Chapter 2. Writing a Source Program PG-53

Writing a Source Program

Manipulating Data (continued)

PG-54

SC34-0637

The following example compares PHI to CHI and places the result in PHI.

EOR PHI,CHI

The following table shows PHI and CHI before and after the instruction executes.

Data Item Hex Binary

#HI (before) 049C 0000 0100 1001 1100
CHI 56AB 0101 0110 1010 1011
PHI (after) 5237 0101 00100011 0111

To compare a variable to a constant, code operand? as follows:

EOR MU,X'5280'

The following table shows MU before and after the instruction executes.

Data Item Hex Binary

MU (before) FOFO 1111 0000 1111 0000
constant 5280 0101 0010 1000 0000
MU (after) A270 1010 0010 0111 0000

To compare two bit strings without altering the first operand, use the RESULT operand as
follows:

EOR SIGMA,DELTA, RESULT=THETA

The instruction compares SIGMA and DELTA and places the resulting field in THETA.
SIGMA and DELTA do not change.

Unless you specify otherwise, EDL assumes that the bit strings you specify are one-word
(2-byte) variables. To compare a byte or more than two bytes, specify the number of
consecutive units (bytes, words, or doublewords) that you want to compare. For example:

EOR CAIN,ABEL, (3,BYTE) ,RESULT=SETH

CAIN [.)ATA X'12A4E6'
ABEL DATA X'0101'
SETH DATA X'000000'

The instruction compares three bytes at CAIN with ABEL and places the result in SETH.

O

O

Manipulating Data (continued)

The Inclusive-OR Instruction

The inclusive-OR instruction (IOR) compares two bit strings and produces a third bit string,
called the resulting field.

The instruction compares the two bit strings one bit at a time. If either or both bits are 1, the
instruction sets a bit in the resulting field to 1. If neither bit is 1, the instruction sets a bit in the

resulting field to 0.

The following example compares ETA to RHO and places the result in ETA.

IOR ETA,RHO

The following table shows ETA and RHO before and after the instruction executes.

Data item Hex Binary

ETA (before) 049C 0000 0100 1001 1100
RHO 56AB 0101 0110 1010 1011
ETA (after) 56BF 0101 0110 1011 1111

To compare a variable to a constant, code operand? as follows:

IOR XI,X'5280"

The following table shows XI before and after the instruction executes.

Data Item Hex Binary

Xl {before) FOFO 1111 0000 1111 0000
constant 5280 0101 0010 1000 0000
Xl (after) F2F0 1111 0010 1111 0000

To compare two bit strings without altering the first operand, use the RESULT operand as
follows:

IOR PETER, PAUL, RESULT=MARY

The instruction compares PETER and PAUL and places the resulting field in MARY. PETER
and PAUL do not change.

Chapter 2. Writing a Source Program PG-55

Writing a Source Program
Manipulating Data (continued) @

Unless you specify otherwise, EDL assumes that the bit strings you specify are one-word
(2-byte) variables. To compare a byte or more than two bytes, specify the number of
consecutive units (bytes, words, or doublewords) that you want to compare. For example:

IOR PIG,COW, (4,DWORD) ,RESULT=POW

The instruction compares the first doubleword at PIG with the four doublewords at COW and
places the resulting field in POW.

The AND Instruction

The AND instruction (AND) compares two bit strings and produces a third bit string, called the
resulting field.

The instruction compares the two bit strings one bit at a time. If both bits are 1, the instruction
sets a bit in the resulting field to 1. If either or both bits are 0, the instruction sets a bit in the

resulting field to O.

The following example compares BETA to THETA and places the result in BETA.

AND BETA, THETA

The following table shows BETA both before and after the instruction executes.

Data Item Hex Binary

BETA (before) 049C 0000 0100 1001 1100 Q)
THETA 56AB 0101 0110 1010 1011

BETA (after) 0488 0000 0100 1000 1000

To compare a variable to a constant, code operand? as follows:

AND LAMBDA,X'5280"

The following table shows LAMBDA both before and after the instruction executes.

Data Item Hex Binary

LAMBDA (before) FOFO 1111 0000 1111 0000
constant 5280 0101 0010 1000 0000
LAMBDA (after) 5080 0101 0000 1000 0000

PG-56 5C34-0637

0 Manipulating Data (continued)

To compare two bit strings without altering the first operand, use the RESULT operand as
follows:

AND CEMENT, STONE, RESULT=WALL

The instruction compares CEMENT and STONE and places the resulting field in WALL.
CEMENT and STONE do not change.

Unless you specify otherwise, EDL assumes that the bit strings you specify are one-word
(2-byte) variables. To compare a byte or more than two words, specify the number of
consecutive units (bytes, words, or doublewords) that you want to compare. For example:

AND WALL,CEILING, (2,WORD) ,RESULT=ROOM

The instruction compares the first word at CEILING with the two words at WALL and places
the resuiting field in ROOM.

Writing Data from a Data Area

When you write data from a data area, the instruction you use depends on the kind of data and
where you write it.

O To write data to disk, diskette, or tape, use the WRITE instruction. To write data to a terminal,
use either the PRINTEXT or PRINTNUM instruction. If the data is alphameric, use
PRINTEXT. If the data consists of either one floating-point number or one or more integers,
use PRINTNUM.

Writing Data to Disk or Diskette

You can write disk or diskette data sets either sequentially or directly. You always write 256
bytes, an “EDX record.”

The following WRITE instruction writes a record sequentially:

WRITE DS3,DISKBUFF, 1,0, ERROR=WRITERR

DISKBUFF BUFFER 256,BYTES

The instruction writes a record to the third data set defined on the PROGRAM statement
(DS3). The system writes one record (indicated by 1 in the third operand) sequentially
(indicated by 0 in the fourth operand) into DISKBUFF. If an I/O error occurs, the program
branches to WRITERR. Otherwise, the system writes the 256-byte buffer DISKBUFF to the
data set.

Chapter 2. Writing a Source Program PG-57

Writing a Source Program

Writing Data from a Data Area (continued) «.ﬂp

The following WRITE instruction writes a record directly:

WRITE DS5,BUFR,1,RECNO, ERROR=BADWRIT

BUFR BUFFER 256,BYTES
RECNO DATA F

The instruction writes a record to the fifth data set defined on the PROGRAM statement (DS5).
The system writes one record (indicated by 1 in the third operand) directly (indicated by the
presence of the label RECNO in the fourth operand) into BUFR. Where the system writes the
record depends on the contents of RECNO. For example, if RECNO contains 150, the system
writes the 150th record.

If an I/0O error occurs, the program branches to BADWRIT. Otherwise, the system writes
BUPFR to the data set.

Writing Data to Tape

PG-58

SC34-0637

You can write tape data sets sequentially only. A tape WRITE writes a record from 18 to
32,767 bytes long.

The following WRITE instruction writes a record to a tape:

WRITE DS1,BUFF,1,328,ERROR=ERR, WAIT=YES /f"\

BUFF BUFFER 328,BYTES

The system writes one record (indicated by 1 in the third operand). The size of the record is
328 bytes (indicated by 328 in the fourth operand). If an error occurs, control transfers to
ERR. The system waits for the write operation to complete before continuing execution
(WAIT=YES).

0 Writing Data from a Data Area (continued)

The following WRITE instruction writes 2 records from buffer BUFF2:

WRITE DS1,BUFF2, 2,328, ERROR=ERR,WAIT=YES

BUFF2 BUFFER 656 ,BYTES

The system writes two records (indicated by 2 in the third operand). The size of each record is
328 bytes (indicated by 328 in the fourth operand). If an error occurs, control transfers to
ERR. The system waits for the operation to complete before continuing (WAIT=YES).

Writing to a Terminal

Two of the instructions that write data to a terminal are the PRINTEXT and PRINTNUM
instructions. The PRINTEXT instruction allows you to write alphameric data (alphabetic
characters, numbers, and special characters). With the PRINTNUM instruction, you can write
numbers (both integer and floating-point) only.

Writing Alphameric Data

To write alphameric data to a terminal, use the PRINTEXT instruction as follows:

PRINTEXT DESC,SKIP=3

0 DESC TEXT 'NOW IS THE TIME FOR ALL GOOD MEN'

The instruction writes (or displays) the 25 alphameric characters in DESC. The operand
SKIP=3 causes the system to skip three lines before displaying DESC.

Unless you know how the system constructs a storage area defined by a TEXT statement, you
should write from an area defined by a TEXT statement.

For information on writing alphameric data to screens, see Chapter 8, “Reading and Writing
Data from Screens” on page PG-127.

Writing Numeric Data

The PRINTNUM instruction allows you to write either a single floating-point value or more
than one integer to a terminal. The following instruction writes a floating-point number:

PRINTNUM BASAL,TYPE=F,FORMAT=(6,2,F)

The instruction writes the number contained in the variable BASAL. The operand TYPE=F
means that BASAL is a single-precision floating-point number. The operand
FORMAT=(6,2,F) tells the system to display the number in 6 positions on the screen (including
the decimal point), to display 2 digits to the right of the decimal point, and to display it as an
“F-type” number such as 436.32.

Chapter 2. Writing a Source Program PG-59

Writing a Source Program

Writing Data from a Data Area (continued)

To write more than one integer, code a second operand on the instruction as follows:

PRINTNUM WEIGHTS, 7
The instruction displays the 7 one-word values starting at location WEIGHTS.

The instruction assumes that you have defined WEIGHTS as follows:

WEIGHTS DATA 7F'0'

Controlling Program Logic

This section discusses the EDL instructions used to control the logic or execution of instructions.

The following instructions are the primary means of controlling program logic: .
o DO - initializes a loop

« ENDDO - ends a loop

« IF - tests a condition

« ELSE - specifies the action for a false condition

« ENDIF - ends an IF-ELSE structure

¢« GOTO - branches to another location.

Relational Operators
The IF and DO statements involve the use of the following relational operators:
+ EQ --equal
+ NE -- not equal
* GT -- greater than
o LT --less than
¢ GE -- greater than or equal

* LE -- less than or equal.

PG-60 SC34-0637

P

O

Controlling Program Logic (continued)

The IF Instruction

The IF instruction allows you to compare two areas of storage. You can compare data in two
ways: arithmetically or logically.

When you compare data arithmetically, the system interprets each number as a positive or
negative value. The system, for example, interprets X‘OFFF’ as 4095. It interprets X‘FFFD’,
however, as a -3. Though X‘FFFD’ seems to be a larger hexadecimal number than X‘OFFF’,
the system recognizes X‘FFFD’ as a negative number and X‘OFFF’ as a positive number.
X‘FFFD’ is a negative number to the system because the leftmost bit is “on.”

When you compare data logically, the system compares the data byte-by-byte. The system
interprets X‘FFFF’ as 2 bytes with all bits “on.”

Comparing Data Arithmetically

The form of the arithmetic comparison is:
IF (datal,operator,data2,width)
If datal has the relationship indicated by operator to data2, the next sequential instruction

executes. Width indicates the length of the data to be compared and must be BYTE, WORD
(the default), DWORD, FLOAT, or DFLOAT.

The true portion of the IF-ELSE-ENDIF structure is usually an arithmetic comparison. For
example:
IF (A,EQ, B,WORD)
PRINTNUM A
ELSE

PRINTNUM B
ENDIF

ELSE is an optional part of the structure. The instructions following it are called the false part
of the structure. Therefore, in the preceding example, the instruction following the ELSE
instruction executes if A is not equal to B. If ELSE is not coded and the condition is false,
control passes to the instruction following the ENDIF.

You can test more than two conditions in a single IF statement.

IF (ALPHA,LT,BETA) ,AND, (GAMMA,NE,DELTA)

If ALPHA is less than BETA and GAMMA is not equal to DELTA, the next sequential
instruction executes.

You can also execute the next sequential instruction if either test produces a true condition.

IF (PI,GE,PSI),OR, (CHI,NE,OMEGA)

If PI is greater than or equal to PSI or CHI is not equal to OMEGA, the next sequential
instruction executes.

Chapter 2. Writing a Source Program PG-61

Writing a Source Program
Controlling Program Logic (continued) @

To compare a variable to a constant, code the constant as data2 as follows:

IF (FEET,EQ, 5280)

If FEET equals 5280 (decimal), the next sequential instruction executes.
Comparing Data Logically

The form of the logical comparison is:

IF (datal,operator,data2,width)

If datal has the relationship indicated by operator to data2, the next sequential instruction
executes. Width indicates the length of the data to be compared and must be an integer.

For example:

IF (A,GE,B,4)
PRINTNUM A
ELSE
PRINTNUM B
ENDIF

The instruction(s) that follow the IF instruction is (are) called the true portion of the
IF-ELSE-ENDIF structure. If the 4 bytes in A are greater than or equal to the 4 bytes in B, the
next sequential instruction executes.

The instruction(s) following the ELSE instruction is (are) called the false part of the structure. A\ g
ELSE is an optional part of the structure. If the 4 bytes in A are not greater than or equal to
the 4 bytes in B, the instruction following the ELSE instruction executes.

If the ELSE instruction is not coded and the condition is false, control passes to the instruction
following the ENDIF.

The Program Loop

The DO instruction allows you to execute the same code repetitively. The DO instruction starts
a DO loop and the ENDDO instruction ends the loop. The loop consists of the instructions
between the DO and ENDDO. The following sections show the different forms of the DO loop.

The Simple DO
The loop executes a specified number of times.
DO 100,TIMES
GETVALUE PSI,PROMPT3

ADD COUNT, PSIT
ENDDO

The GETVALUE and ADD instruction execute 100 times.

PG-62 SC34-0637

Controlling Program Logic (continued)

The DO UNTIL

The loop executes until the condition occurs. (The loop always executes at least once.)

DO UNTIL, (CDED,GT, 1000,FLOAT)
GETVALUE OMICRON, OMPRMPT
FSUB CDED, OMICRON

ENDDO

The GETVALUE and FSUB instructions execute until CDED is greater than 1000.
The DO WHILE

The loop executes as long as the condition exists.

DO WHILE, (B,NE,C)
GETVALUE B, 'ENTER B'
GETVALUE C, 'ENTER C'

ENDDO

The GETVALUE instructions execute as long as B does not equal C.
The Nested DO Loop

A DO loop can contain other DO loops. For example:

DO UNTIL, (ALPHA,LT,BETA,DFLOAT) ,OR, (#1,EQ, 1000)
GETVALUE ALPHA, 'ENTER ALPHA',TYPE=L,FORMAT=(12,3,E)
GETVALUE BETA,'ENTER BETA',TYPE=L,FORMAT=(12,3,E)
MOVE #1,BETA, (1,DFLOAT)

DO 10,TIMES
FADD GAMMA,ALPHA,PREC=LLL
ENDDO
ENDDO

The FADD statement contained in the inner DO executes 10 times for each execution of the
outer DO.

Chapter 2. Writing a Source Program PG-63

Writing a Source Program

Controlling Program Logic (continued)

The Nested IF Instruction
A DO loop can also contain IF statements. For example:
READTEXT CHAR, 'ENTER A CHARACTER'
GETVALUE A, 'ENTER A'
GETVALUE B, 'ENTER B'
DO WHILE, (A,GT,B)

IF (CHAR,EQ,C'A',BYTE)
DO 40,TIMES

ENDDO
ELSE

ENDIF

GETVALUE A, 'ENTER A'

GETVALUE B, 'ENTER B'
ENDDO

The outer DO loop executes as long as A is greater than B. The inner DO loop executes 40
times if CHAR equals the letter A.

Branching to Another Location

The GOTO instruction allows you to transfer control to another location within a program. For
example, the following instruction transfers control to the instruction at label LOCI:

GOTO LOC1

To branch to an address defined by a label, enclose the label in parentheses as follows:

GOTO (CALC)

This instruction branches to the address contained in CALC. You must define CALC as an
address variable as in the following DATA statement:

CALC DATA A(RTNO1)

To branch to a location that is based on the contents of a variable, code the GOTO statement
like this:

GOTO (ERR,L1,L2),I
The instruction branches to L1 if I equals 1, to L2 if I equals 2, and to ERR for any other value

of I. The system branches to the first label in parentheses if the variable is less than 1 or greater
than the number of labels minus 1.

PG-64 5C34-0637

0 Controlling Program Logic (continued)

Referring to a Storage (Program) Location

You can use the EQU statement to refer to the next available storage location in a program.
You can use it to generate labels in your program. For example:

CALLA EQU *
MOVE C,+A, (1,BYTE)

GOTO CALLA

Ending the Program

Ending a program requires three statements: PROGSTOP, ENDPROG, and END.

The PROGSTOP statement ends the program and releases any storage that it used. It also
signals the end of the executable instructions.

The ENDPROG statement follows the statements that define storage areas and precedes the
END statement.

0 The END statement follows the ENDPROG statement. It tells the compiler that the program
contains no more statements.

The following example shows the position of the three statements and the general structure of a

program.
PRINT PROGRAM START
START EQU *
PROGSTOP
FIELD1 DATA F'0'
ENDPROG
END

Chapter 2. Writing a Source Program PG-65

Notes

PG-66 SC34-0637

Chapter 3. Entering a Source Program

After you code a source program, you must enter it into a data set. The data set can be on
either disk, diskette, or tape.

This chapter shows how to use the text editor called the $FSEDIT utility. The chapter describes

the commands you need to enter a new source program or change an existing source program.
For a complete list of $FSEDIT commands, refer to Operator Commands and Utilities Reference.

Invoking the Editor

You can invoke the editor in one of two ways. You can load it directly using the $L. command.
Or, you can invoke it using the session manager.

This chapter discusses how to invoke the editor with the session manager. For information on
how to invoke $FSEDIT with the $L. command, refer to Operator Commands and Utilities

Reference.

As you learned in Chapter 1 of this book, you load the session manager by pressing the
attention key, typing $L. $SMMAIN, and pressing the enter key.

At this point, enter a one to four character ID and press the enter key.

The Session Manager Primary Option Menu appears. From this menu, select option 1 (TEXT
EDITING). The session manager displays the $FSEDIT Primary Option Menu.

Chapter 3. Entering a Source Program PG-67

Entering a Source Program
Creating a New Data Set @

The session manager allocates data sets automatically when you log on. One of these data sets,
a work data set used by $FSEDIT, is named $SMExxxx, where xxxx is the ID you entered when
you logged on to the session manager. For example, if you entered ABCD when you logged on,
the work data set is $SSMEABCD.

Use option 2 (EDIT) to put your source program into the work data set.

An empty data set appears on your screen. The name of the data set and the volume on which it
resides are shown at the top of the screen.

The cursor is located at the first input line. After you finish typing text on this line, press the
enter key.

PG-68 SC34-0637

O

Creating a New Data Set (continued)

The following example shows how the screen looks after you enter the first line of a source
program. (We have used the source program described in Chapter 1 of this book.) The editor
automatically numbers each line and presents a new blank line.

Continue to type each line of your source program. When you finish, press the enter key on a
blank line.

Chapter 3. Entering a Source Program PG-69

Entering a Source Program

Saving Your Data Set O

PG-70

SC34-0637

The next step is to save your data set. Return to the $FSEDIT Primary Option Menu by typing
M (for “menu”’) on the COMMAND INPUT line.

Select option 4 (WRITE) to save the data set. Type the name next on the DATASET NAME
line. (In this example, we named the data set ADD10. Type the volume on the VOLUME
NAME line. (In this example, the volume is EDX002.) Then press the enter key.

N
w ¥

Next, the system prompts you as follows:

Type Y and press the enter key.

Then you see a message on your screen indicating that the data set has been written to the
volume. In the example shown above, the following message would appear:

This message means that the source program is 12 records long and has been written to volume
EDXO002.

0 Modifying an Existing Data Set
You have seen how to enter a source program into a new data set. You can also modify an
existing data set.

You must first read the data set you want to modify into the work data set. Select option 3
(READ) from the $FSEDIT Primary Options Menu. On the menu, you specify which data set
you want to read.

Nezxt, you select option 2 (EDIT) to modify the data set.

The data set appears on your screen.

= COLUMNS 001 072

SCROLL ==> HAL]|
****+¢¢w*+*¢**+

(réonT ===-ADD10 f',”Eonoz',f 12(1089)
~ COMMAND INPUT ===> . : R
Kkkkk kkkkhk TOP OF ‘DA:TA'*:':9::‘c*‘*a’n’c:‘é'f:*k;‘c*s‘k****:‘:****’*k*****.
100010 ADD1O
00020 STPGM
00030 LOOP
00040

- 00050 .

- 00060
lﬁooo7o

; COUNT 'ENTER UMBER

S RE AR A AR L LLR

”*****;'~; e i

Changing a Line

To change a line, move the cursor to the line and type in the correction. For example, suppose
you wanted to change 10 to 15 in the DO instruction. Move the cursor to the 0 and type a 5.

Or, suppose you wanted to delete the = character in the PRINTEXT instruction. You would
move the cursor to the = character and press the delete key.

Chapter 3. Entering a Source Program PG-71

Entering a Source Program
Modifying an Existing Data Set (continued)

Inserting a Line

You can insert a new line into your data set. You insert a line by typing an I in the line number
after which you want to insert.

For example, suppose you want to insert another instruction before PROGSTOP. Type thel as
follows:

You could now enter your new line of text at the position of the cursor. After you press enter,
the editor assigns a line number to your new line of text. A new blank input line also appears.

You can continue to insert lines or you can press the enter key again to indicate that you have
finished inserting.

PG-72 SC34-0637

0 Modifying an Existing Data Set (continued)

Deleting a Line

You can delete a line or series of lines from your data set.

To delete a single line, enter a Din the line number you want deleted and press the enter key.

00020 STPGM
| 00030 LOOP.

After you press the enter key, the editor deletes the line.

Chapter 3. Entering a Source Program PG-73

Entering a Source Program B
Modifying an Existing Data Set (continued) 0

You can also delete more than one line.

For example, suppose you want to delete lines 80 through 120 in the following program. Type
DD in line 80 and another DD in line 120.

After you press the enter key, your program looks like this: (‘u

The editor deletes the lines.

PG-74 SC34-0637

O

Modifying an Existing Data Set (continued)

Moving Lines

You can move a line or series of lines from one part of your data set to another.

For example, suppose you want to move lines 110 through 130. First type MM in both 110 and
130:

If you want to move these lines after line 10, place an A (for “after”’) on line 10 and press the
enter key.

When you press the enter key, the editor moves the lines to the position after line 10.

Chapter 3. Entering a Source Program PG-75

Entering a Source Program

Modifying an Existing Data Set (continued)

PG-76

SC34-0637

After you make changes to your data set, return to the $FSEDIT Primary Options Menu.
Return to that menu by typing M (for “menu’’) on the COMMAND INPUT line. To save the
changes, select option 4 and press the enter key.

You have seen how you can change lines in your programs. You have also seen how to insert
and delete lines and move a series of lines. The session manager was used to invoke $FSEDIT

and to allocate the necessary data sets.

The next chapter explains how to compile your programs using $SEDXASM, the EDX compiler.

AN

s

Chapter 4. Compiling a Program

After you design, code, and enter your source program into a data set, you have to compile the
source program into an object module. This chapter shows you how to compile your source
program using the Event Driven Language Compiler, SEDXASM.

The chapter also shows a step-by-step example of compiling a source program that contains
some syntax errors. The chapter then shows how to correct the errors so that the compilation is

successful.

You can invoke $SEDXASM in one of three ways. You can load $EDXASM directly using the
$L command. You can use the $JOBUTIL utility to invoke $EDXASM. Or, you can run your
compilation under control of the session manager.

This chapter describes how to compile a program using the session manager.

For information on using the $L. command or the $JOBUTIL utility, see Operator Commands
and Utilities Reference.

Chapter 4. Compiling a Program PG-77

Compiling a Program
Allocating Data Sets

O

When you use SEDXASM under control of the session manager, you must provide two data
sets. The first data set is the actual source program to be compiled. You must have entered the
source program on a disk, diskette, or tape data set. Chapter 3, “Entering a Source Program”
on page PG-67 describes how to use the $FSEDIT utility to enter your source programs.

The output of the compiler is a data set that contains an object module. You can allocate this
data set by selecting option 3 (DATA MANAGEMENT) from the Session Manager Primary
Option Menu.

Note: This example assumes that you logged on to the Session Manager with an ID of ABCD. s

PG-78 5C34-0637

0 Allocating Data Sets (continued)

The Data Management Option Menu appears on the screen. To allocate your object code data
set, select option 1 ($DISKUT1).

The session manager loads the $DISKUT1 utility and prompts for the command you want to

O use.

Notice the USING VOLUME EDX002 message. Unless you change volumes, $DISKUT1
allocates your data set on EDX002.

Chapter 4. Compiling a Program PG-79

Compiling a Program

Allocating Data Sets (continued) @

PG-80

SC34-0637

To change the default volume, enter a CV command.

To change the default volume to MYVOL, enter the following CV command:

The system responds with:

Use the CV command only when you do ror want to use the default volume.

Use the AL command to allocate your data set.

The system then prompts you for the name of the data set. In this example, the data set name is
OBJECT. k‘{

Next, the system prompts for the number of records you want to allocate. A 25- to 50-record
data set should be large enough for most programs. This example defines a 25-record data set.

O

Allocating Data Sets (continued)

Finally, the system prompts for the type of information to be contained in the data set. The
default is DATA. Because this data set will contain data, enter a Y.

l\;DEFAULT TYPE = DATA - OK(Y/N)7 Y

The system responds with:

OBJECT CREATED

COMMAND (?7):

Once the data set has been created, enter an EN (for ““end”) to return to the Data Management
Option Menu screen.

~ COMMAND (7): EN

~ $DISKUTT ENDED 08:30:24

———

Return to the Session Manager Primary Option Menu to begin the compilation by pressing the
PF3 key.

Chapter 4. Compiling a Program PG-81

Compiling a Program

Running the Compilation

O

Once you have allocated the data set to hold the output, you are ready to begin compiling the
source program. The following is a listing of the source program to be compiled:

PROGRAM
STPGM GETVALUE
LOOP DO
ADD
ENDDO
PRINTEXT
PRINTNUM
PROGSTOP
COUNT DATA
SUM DATA
ENDPROG
END

STPGM

COUNT, 'ENTER NUMBER: '
10,TIMES

SUM,COUNT

'RESULT='
SUM

FIOI
Flot

This program is similar to the examples we used in Chapter 1 and Chapter 3 of this book.
However, we have included two errors in this source program.

From the Session Manager Primary Option Menu, select option 2 (PROGRAM
PREPARATION) to begin the compile step.

€
™ s

The Program Preparation Option Menu appears on your screen. To compile the program, select
option 1 ($SEDXASM COMPILER).

PG-82 SC34-0637

@ Running the Compilation (continued)

$SMMO2 SESSION MANAGER PROGRAM PREPARATION OPTION MENU : -
-ENTER/SELECT PARAMETERS : PRESS PF3 To~_
‘kSELECT OPTION : >;1
l‘f,sEDXASM COMPILER ,
2 - SEDXASM/SEDXLINK
3 = $S1ASM ASSEMBLER
4 - SCOBOL COMPILER
L~ SFORT FORTRAN COMPILER - =
6 - $PLI COMPILER/SEDXLINK
7 = SEDXLINK LINKAGE EDITOR
8.~ $XPSLINK LINKAGE EDITOR FOR SUPERVISORS
9 - SUPDATE -
10 - SUPDATEH" (HOST)
“11°= SPREFIND . - .
12~ SPASCAL COMPILER/$EDXLINK
: 13 - SEDXASM/$XPSLINK FOR SUPERVISORS B
s ;Wlk;;2$MSGUT1 'MESSAGE souacz PROCESSING iy

The $EDXASM Parameter Input Menu appears on your screen. Enter the name of your source
input (in this example, ADD10 on volume EDX002). Also enter the name of your object output
(in this example, data set OBJECT on volume MYVOL).

You could enter something on the OPTIONAL PARAMETERS line if you want to change one
of the parameters listed on the DEFAULT PARAMETERS line. In this example, we are using
the defaults.

Chapter 4. Compiling a Program PG-83

Compiling a Program
Running the Compilation (continued) @

Checking Your Compiler Listing and Correcting Errors

The output of the compiler prints on your printer. The listing consists of statistics, source code
statements and object code, undefined or external symbols, and a completion code.

The following is an example of the output listing generated by the compile example being run.

EDX ASSEMBLER STATISTICS

SOURCE INPUT - ADD10,EDX002
WORK DATA SET - WORK1,MYVOL
OBJECT MODULE - OBJECT,MYVOL
DATE: 10/24/82 AT 19:56:18

ASSEMBLY TIME: 4 SECONDS
STATEMENTS PROCESSED - 12
4 STATEMENTS FLAGGED
_ PAGE 1
LOC +0 +2 +4 +6 +8 SOURCE STATEMENT ADD10 ,EDX002 (5719
PROGRAM STPGM
08 *** TASK NAME NOT SPECIFIED $EDXL 12
0000 802C 0000 000A 0001 OEOE STPGM GETVALUE COUNT, 'ENTER NUMBER: '
000A C5D5 E3C5 D940 D5E4 D4C2
0014 C5D5 7A40
08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED $EDXL 3
0018 809C 0024 000A LOOP DO 10, TIMES N
001E 0032 0040 0000 ADD SUM, COUNT Wy
08 *%% ONE OR MORE UNDEFINED LABELS WERE REFERENCED $EDXL 3
0024 009D 0000 0001 ENDDO
002A 8026 0808 D9C5 E2E4 D3E3 PRINTEXT 'RESULT="
0034 7E40 PRINTNUM SUM
003C 0022 FFFF PROGSTOP
COUNT DATA F'0'
08 #%* INVALID OR UNDEFINED OPERATION CODE $EDXL 11
0040 0000 SUM DATA F'0"
0042 ENDPROG
0042 END

EXTERNAL/UNDEFINED SYMBOLS
COUNT UNDEFINED

COMPLETION CODE = 8

The previous example shows that the compile did not run successfully. The completion code
expected is a -1. The completion code received is an 8.

PG-84 SC34-0637

O

Running the Compilation (continued)

The listing shows the compilation errors. They are:

« 08 *** TASK NAME NOT SPECIFIED

« 08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED
+ 08 *** INVALID OR UNDEFINED OPERATION CODE

To fix these errors, you must understand what caused them. Look the errors up in Messages and
Codes. :

The first message, 08 *** TASK NAME NOT SPECIFIED, is a result of not having a task name
coded on the PROGRAM statement.

The second message, 08 *** ONE OR MORE UNDEFINED LABELS WERE
REFERENCED, means that one of the labels referenced in the instruction has not been defined
to the program. If you check the listing for undefined symbols, you will see that COUNT is
undefined.

The third message, 08 *** INVALID OR UNDEFINED OPERATION CODE, means that
something is wrong with the COUNT definition statement. If you check the statement, you will
see.that the label, COUNT, starts in column two. The label must start in column one.

After isolating the errors, you must go back to the source data set and correct them. Use
$FSEDIT as explained in Chapter 3, “Entering a Source Program” on page PG-67 to make the
corrections. After you make the corrections, the source data set looks as follows:

PROG1T PROGRAM STPGM
STPGM GETVALUE COUNT, '"ENTER NUMBER: '
Loop DO 10, TIMES
ADD SUM,COUNT
ENDDO
PRINTEXT "@RESULT='
PRINTNUM SUM
PROGSTOP
COUNT DATA F'o'
SUM DATA F'o'
ENDPROG
END

Chapter 4. Compiling a Program PG-85

Compiling a Program
Rerunning the Compilation @

To rerun the compilation, return to the Session Manager Primary Option Menu.

From the Session Manager Primary Option Menu, select option 2 (PROGRAM
PREPARATION).

The Program Preparation Option Menu appears on your screen. Select option 1 ($SEDXASM
COMPILER).

f/(ﬂ ‘\\)
AW 4

PG-86 SC34-0637

w Rerunning the Compilation (continued)

The $EDXASM Parameter Input Menu appears on your screen. Again, enter the name of your
source input (in this example, ADD10). Also enter the name of your object output (in this
example, data set OBJECT on volume MYVOL).

$SMM0201: SESSION MANAGER $EDXASM PARAMETER ANPUT MENU--: ‘
ENTER/SELECT PARAMETERS: ~ PRESS PF3 T0 RETURN
SOURCE INPUT (NAME,VOLUME) ==> ADD10,EDX002
OBJECT OUTPUT (NAME,VOLUME) ==> OBJECT,MYVOL
OPTIONAL PARAMETERS ==>
(SELECT FROM THE LIST BELOW)
FOREGROUND OR BACKGROUND (F/B) ==>
(DEFAULT 1S FOREGROUND)
AVAILABLE PARAMETERS: ABBREVIATION: ‘ DESCRIPTION: '
NOLIST NO USED TO SUPPRESS LISTING
L1ST TERMINAL-NAME L1 TERMINAL-NAME . USE LIST * FOR THIS TERMINAL
ERRORS TERMINAL-NAME ER TERM!NAL-NAME USE ERRORS * FOR THIS TERMINAL
CONTROL DATA SET,VOLUME ~ CO DATA SET, VOLUME ~ $EDXASM LANGUAGE CONTROL DATASET
OVERLAY # ov #) #1s NUMBER OF AREAS FROM 1 T0 6
DEFAULT PARAMETERS:
O _ LIST $SYSPRTR CONTROL $EDXL,ASMLIB OVERLAY &)

Chapter 4. Compiling a Program PG-87

Compiling a Program

Rerunning the Compilation (continued)

The following is an example of the output listing generated by the compiler.

EDX ASSEMBLER STATISTICS

SOURCE INPUT - ADD10,EDX002
WORK DATA SET - $SM1ABCD,EDX002
OBJECT MODULE - OBJECT,MYVOL
DATE: 10/24/82 AT 20:06:18
ASSEMBLY TIME: 4 SECONDS
STATEMENTS PROCESSED - 12

NO STATEMENTS FLAGGED

LoC +0 +2 +4 +6 +8 SOURCE STATEMENT ADD10 ,EDX002 (5719
0000 0008 D7D9 D6D7 D9C1 D440 PROG1 PROGRAM STPGM
0034 802C 0074 OO3E 0001 OEOE STPGM GETVALUE COUNT, 'ENTER NUMBER: '

O003E C5D5 E3C5 D940 D5E4 D4C2
0048 C5D9 7A40

004cC 809C 0058 000A LOOP DO 10, TIMES
0052 0032 0076 0074 ADD SUM, COUNT
0058 009D 0000 0001 ENDDO

OO05E 8026 0808 D9C5 E2E4 D3E3 PRINTEXT 'RESULT="
0068 TE40

006A 0028 0076 0001 PRINTNUM SUM

0070 0022 FFFF PROGSTOP

0074 0000 COUNT DATA F'o’

0076 0000 SUM DATA F'0’
0078 0000 0000 0000 0234 0000 ENDPROG

O0FA 0000 6000 0000 0000 0000
010E 0000
0110 END

EXTERNAL/UNDEFINED SYMBOLS
SVC WXTRN
SUPEXIT WXTRN
SETBUSY WXTRN

COMPLETION CODE = -1

»

The -1 completion code tells you that the compile was successful. The next step is to link-edit
the object module into program data that can be executed. See the next chapter, Chapter
5, “Preparing an Object Module for Execution” on page PG-89, for details.

PG-88 $C34-0637

O

Chapter 5. Preparing an Object Module for
Execution

So far in this book, you have learned how to code and enter a source program into a data set.
You have also learned how to compile the source program.

The next step is to prepare your object modules for execution. In this chapter, we will show you
how to use the linkage editor $EDXLINK to prepare your object modules to run on an EDX
system. $SEDXLINK links together any separately assembled object modules that make up your
program. $EDXLINK also produces a load module that is ready for execution.

In this chapter, we will show you how to prepare a single object module for execution. We will
also show you an example of link-editing more than one object module.

You can invoke $EDXLINK in one of three ways. You can load $EDXLINK directly using the
$L command. You can use the $JOBUTIL utility to invoke $SEDXLINK or use $EDXLINK
under control of the session manager.

This chapter describes how to use $EDXLINK under control of the session manager. For

information on using the $L. command or the $JOBUTIL utility, refer to Operator Commands
and Utilities Reference.

Chapter 5. Preparing an Object Module for Execution =~ PG-89

Preparing an Object Module for Execution

Link-Editing a Single Object Module

This section shows how to link-edit a single object module.

$EDXLINK LINKAGE EDITOR is option 7 of the Session Manager Program Preparation
Option menu.

When you select option 7 and press the enter key, the $EDXLINK Parameter Input Menu
appears on your screen.

You can run $EDXLINK in interactive mode. If you choose interactive mode, the system
prompts you for information about the object module you want to link-edit. To choose
interactive mode, enter an asterisk (*) on the EXECUTION PARM line.

PG-90 SC34-0637

O

Link-Editing a Single Object Module (continued)

$EDXLINK then displays the following screen:

(Lomvine JOBUTIL 49,18}27§16, LP 'shoo,‘PART= g e)

" REMARK S
“SEDXLINK *- .
**%JOB - $EDXLINK - STARTED AT 18: 28 42 03/15/83 ke
JOB $EDXLINK ($SMP0207) USER I D=ABCD gy
:SLOADING $EDXL|NK ‘ 89P 18: 28 he, LP— 9800 PART—

SEDXLINK - EDX~ LINKAGE EDITOR

[- $EDXLINK INTERACTIVE MODE
DEFAULT VOLUME .= EDXOOZ

. STMT. (7)

$EDXLINK prompts you for a control statement. Control statements are the instructions
$EDXLINK uses to convert the object modules into load modules.

When using interactive mode, you enter the control statements one at a time. (As you will see
later in this chapter, you can write the control statements to a link control data set for execution
in noninteractive mode.)

To link-edit a single object module, use the INCLUDE and LINK statements. (You will learn
about some of the other control statements later in this chapter.)

The INCLUDE statement indicates which object module to use. (Remember that the objéct
module is the output from $EDXASM, the compiler.) In this example, the object module is
OBJECT. This is the only module name you enter next to the INCLUDE statement.

Chapter 5. Preparing an Object Module for Execution ~PG-91

Preparing an Object Module for Execution
Link-Editing a Single Object Module (continued) @

Use the LINK statement to name the data set that is the output of SEDXLINK. When you
enter the name of this data set, SEDXILINK allocates it. In the following example, the data set
is named ADDPGM. It will reside on volume EDX002. The word REPLACE says to replace
the program if it already exists on volume EDX002. END tells SEDXLINK not to expect any
more statements.

The system produces a data set (ADDPGM) that can now be executed on the system. In this Y
example, we link-edited only one object module (OBJECT). The next section shows how to w
link-edit more than one object module. i

If the system indicates (by returning a -1 completion code) that the link-edit was successful,
return to the Primary Option Menu to execute your program.

Link-Editing More Than One Object Module

This section shows how to specify that a load module consists of more than one object module.
If you divide a large program into modules, those modules can be compiled separately. If you
need to make a change to one of the modules, you need to recompile only that module. When
you are ready to run the program, you can link-edit the individual modules.

You might also have a function that is common to many of your programs. By making this
function a separate module, you could include it wherever needed in your programs.

This section shows how to use both interactive and noninteractive mode to link-edit the
modules. All examples show $SEDXLINK being used under control of the session manager.

PG-92 sC34-0637

O

Link-Editing More Than One Object Module (continued)

As you learned earlier in this chapter, SEDXLINK LINKAGE EDITOR is option 7 of the
Session Manager Program Preparation Option menu.

(

$SMMO2 SESSION MANAGER PROGRAM PREPARATION OPTION MENU-
ENTER/SELECT PARAMETERS: : :

SELECT OPTION ==> 7

1 - $EDXASM COMPILER
2 - SEDXASM/$EDXLINK
3 - $S1ASM ASSEMBLER
L - $COBOL COMPILER
5 - $FORT FORTRAN COMPILER
6 - SPLI COMP.ILER/$SEDXLINK
7 - SEDXLINK LINKAGE -EDITOR
8 - $XPSLINK LINKAGE EDITOR FOR SUPERVlSORS
9 - SUPDATE
10 - $SUPDATEH (HOST)
11. - $PREFIND

12 - $PASCAL COMP]LER/SEDXLINK :
13 - SEDXASM/SXPSLINK FOR SUPERVISORS
1k - $MSGUT1 MESSAGE SOURCE PROCESSING UTILITY

\

When you select option 7, the SEDXLINK Parameter Input Menu appears on your screen.

$SMM0207: SESSHON MANAGER $EDXLINK PARAMETER INPUT MENU—-—--—-----* --------

;:Q:EXECUTiON!PAR

ENTER/SELECT PARAMETERS: i ;- PRESS PF3 TO RETURN

Chapter 5. Preparing an Object Module for Execution

PG-93

Preparing an Object Module for Execution

Link-Editing More Than One Object Module (continued)

Using Interactive Mode

You can choose interactive mode or noninteractive mode.

When you choose interactive mode, $EDXLINK displays the following screen:

PG-94 sC34-0637

@ Link-Editing More Than One Object Module (continued)

Including Individual Object Modules

With the INCLUDE statement, you indicate which object modules to use. If the modules reside
on the same volume, you can list them on one INCLUDE statement. In the example shown
below, the first INCLUDE statement includes four object modules from volume EDX003. The
second INCLUDE statement includes two object modules from volume MYVOL.

LOADING $JOBUTIL’ MP,07:27:16, LP= 9400, PART= 1 .

REMARK ~

SEDXLINK * , .

% joB - $EDXLINK - STARTED AT 07:27:16 00/00/00 *
- JOB $EDXLINK ($SMP0207) USERID=ABCD

LOADING SEDXLINK '89P,07:27:18, LP= 9800, PART= 1

- SEDXLINK - EDX LINKAGE EDITOR

SEDXLINK INTERACTIVE MODE
DEFAULT VOLUME = EDX002

STMT (7): INCLUDE 0BJ12,0BJ13,0BJ14,08J15,EDX003

STMT (?): INCLUDE SQRT,STDEV,MYVOL

l)

‘ ', After you enter the first INCLUDE statement, SEDXLINK prompts you for another statement.
Enter the second INCLUDE statement.

Chapter 5. Preparing an Object Module for Execution ~PG-95

Preparing an Object Module for Execution
Link-Editing More Than One Object Module (continued) Q“.{

The LINK statement tells the linkage editor what to call the load module and where to put it. In
this example, the output object data set will be named PGM1. It will reside on volume
EDXO003. The word REPLACE says to replace the program if it already exists on volume
EDX003. END tells $SEDXLINK not to expect any more statements.

Once you enter these statements, SEDXLINK produces a load module (PGM1) that is ready for
execution. PGMI1 consists of six object modules: OBJ12, OBJ13, OBJ14, OBJ15, SQRT, and
STDEV. (™

PG-96 5C34-0637

@ Link-Editing More Than One Object Module (continued)

Including Overlay Segments

Your program may include overlay segments. (Overlay segments are described in detail in
“Reusing Storage using Overlays” on page PG-193.) You use the OVERLAY statement to
identify these segments to SEDXLINK.

For example, suppose you had a program made up of a resident segment and two overlays.
Assume the name of the resident segment is TESTROOT and the overlays are named
TESTSUB1 and TESTSUB2. Your control statements would look like this:

$EDXLINK INTERACTIVE MODE : \
DEFAULT VOLUME = EDX002 i

STMT (7): INCLUDE TESTROOT,EDX003
STMT {(7): OVERLAY
STMT (?): INCLUDE TESTSUB1,EDX003

CSTMT (7): OVERLAY

STMT (7): INCLUDE TESTSUB2,EDX003
| STMT (7): LINK TEST,EDX003 REPLACE END
SEDXLINK EXECUTION STARTED
) TEST ,EDX003 STORED
| PROGRAM DATA SET SIZE = 26
| COMPLETION CODE = -1

 SEDXLINK ENDED AT 04:05:35 i
k o [P RS S) SR)
The first INCLUDE statement identifies the resident (or root) portion of the program. The
INCLUDE statement following the first OVERLAY statement identifies the first overlay

segment. The INCLUDE statement following the second OVERLAY statement identifies the
second overlay segment.

The LINK statement identifies the object output data set.

Chapter 5. Preparing an Object Module for Execution ~PG-97

Preparing an Object Module for Execution

Link-Editing More Than One Object Module (continued) O

Using the Autocall Feature

PG-98

SC34-0637

You can use the AUTOCALL control statement to invoke the autocall feature. You can include
up to three autocall data set names on the AUTOCALL statement. Autocall data sets contain a
list of object module names and volumes, along with their entry points. Use the autocall option
to include modules not explicitly included via the INCLUDE statement.

You need to use autocall data sets if, for example, you are link-editing a program that uses
$IMAGE subroutines. Some instructions, such as GETEDIT and PUTEDIT, also require that
you link-edit with the autocall option.

The following is an example of an autocall data set.

PGM1,EDX003 ENTER
PGM2,EDX40 START
PGM3,MYVOL CALC

**END

PGM1, PGM2, and PGM3 are object modules on EDX003, EDX40, and MYVOL. ENTER,
START, and CALC are the entry points for the modules. The module names must begin in
column one and end with a **END statement.

Enter the AUTOCALL statement just before the LINK statement. This example specifies two

autocall data sets: the system-supplied autocall data set (SAUTO on volume ASMLIB) and data

set MYAUTO on volume MYVOL. N
\

If you specify more than one AUTOCALL statement, the linkage editor uses the last one. r

Suppose you wanted to add an AUTOCALL statement to the previous example. You would
enter it like this:

O

Link-Editing More Than One Object Module (continued)

The system would respond as follows:

$EDXL INK EXECUTION STARTED
TEST ,EDX003 STORED
PROGRAM DATA SET SIZE = . 26
COMPLETION CODE = -1

$EDXL INK ENDED AT O4:05:35

The linkage editor also prints, on the system printer, the names of the object modules it

included. For example:

INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE

$IMOPEN ,ASMLIB
$IMGEN ,ASMLIB
$GPLIST ,ASMLIB
$GEER ,ASMLIB
$GEAC ,ASMLIB
$IMDTYPE,ASMLIB
$$RETURN, ASMLIB
$UNPACK ,ASMLIB

FROM
FROM
FROM
FROM
FROM
FROM
FROM
FROM

$AUTO
$AUTO
$AUTO
$AUTO
$AUTO
$AUTO
$AUTO
$AUTO

Chapter 5. Preparing an Object Module for Execution

,ASMLIB
,ASMLIB
,ASMLIB
,ASMLIB
,ASMLIB
,ASMLIB
,ASMLIB
,ASMLIB

VIA
VIA
VIA
VIA
VIA
VIA
VIA
VIA

AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL
AUTOCALL

PG-99

Preparing an Object Module for Execution

Link-Editing More Than One Object Module (continued)

Using Noninteractive Mode

Using noninteractive mode means that you do not have to enter control statements each time
you link-edit a program.

When you use noninteractive mode, you must enter the name of a primary control data set on
the $EDXLINK Parameter Input Menu. The primary control data set contains the control
statements to be used by SEDXLINK.

You can create the primary control data set using $SFSEDIT. Then enter control statements into
the data set.

The following is an example of a primary control data set. Control statements must begin in
column 1. This data set includes comment statements. A comment statement begins with an
asterisk (*).

*¥ PLOT PROGRAM INCLUDES
*

INCLUDE PLOTXY,MYVOL
INCLUDE PLOTXX,MYVOL
INCLUDE PLOTYY,MYVOL
INCLUDE PLOTYX,MYVOL

*

* PERFORM AUTOCALL PROCESSING USING:
*

AUTOCALL MYAUTO,MYVOL $AUTO,ASMLIB
*

*¥ PERFORM THE LINK
E

LINK PLOT,MYVOL REPLACE END

After entering these statements into the data set, you would then specify the name of this data
set next to “EXECUTION PARM?” on the $EDXLINK Parameter Input Menu. In this
example, the data set is LINK1 on volume EDX003.

PG-100 SC34-0637

C

Link-Editing More Than One Object Module (continued)

The primary control data set may also refer to a secondary control data set. The secondary
control data set contains additional control statements. These control statements can be
common control statements that are used frequently for many different link-edits. You use the
COPY control statement to refer to these secondary data sets. For example:

INCLUDE ASMOBJ,EDX003
COPY CTRL,EDX40
LINK PGM3,EDX40 REPLACE END

The linkage editor includes object module ASMOBJ on volume EDX003, copies additional
control statements from data set CTRL on volume EDX40, gives the load module the name
PGM3, and puts it on volume EDX40.

For more information on specifying primary and secondary control statement data sets, refer to
Operator Commands and Utilities Reference.

Prefinding Data Sets and Overlays

You can locate data sets and overlay programs before you load a program by using the
$PREFIND utility. You can improve program performance by using $PREFIND.

You should use $PREFIND if:

o The program uses a large number of data sets.
« The program loads several overlay programs.
e You load the program frequently.

For information on how to use the $PREFIND utility, refer to Operator Commands and Utilities
Reference.

Chapter 5. Preparing an Object Module for Execution PG-101

Notes

PG-102 sC34-0637

Chapter 6. Executing a Program

After you have compiled and link-edited a program, you are ready to run (or execute) it.

This chapter shows how to execute a program. You can execute a program in any of the
following ways:

You can load the program with the $L operator commahd.
You can use the $JOBUTIL utility.

You can use the session manager.

You can submit the program from another program.

You can use the SSUBMIT utility.

This chapter describes how to use the session manager to execute a program and how to submit
a program from another program. For information on how to use the $L operator command or
the $JOBUTIL utility or the $SUBMIT utility, refer to Operator Commands and Utilities
Reference.

Chapter 6. Executing a Program PG-103

Executing a Program

Executing a Program with the Session Manager

ot
=3

To execute your program, select option 6 (EXEC PROGRAM/UTILITY) on the Primary
Option Menu.

The Execute Program/Utility menu appears. Enter the program name (ADDPGM) and volume
(EDX002) next to PROGRAM/UTILITY (NAME,VOLUME). Then type an asterisk in the
DATA SET 1, DATA SET 2, and DATA SET 3 fields and press the enter key.

Putting asterisks in the DATA SET fields means either of two things. Either the program does
. not use any data sets or the program specifies the data sets with the DS operand. For example,
the PROGRAM for program ADDPGM might look like this:

BEGIN PROGRAM ST

or this:

BEGIN PROGRAM ST,DS=((MASTER,EDX003), (UPDATES,MYVOL) , (NEWMAST,EDX40))

C

PG-104 SC34-0637

O

Executing a Program with the Session Manager (continued)

If you want the program to execute in the background, enter B next to FOREGROUND OR
BACKGROUND (F/B). Otherwise, the system executes the program in the foreground.

After you press the enter key, the following screen appears on the terminal:

; LOADING $JOBUTIL hP 11 us 21, LP- 9400 PART— 1
| REMARK g
~hEXECUTE PROGRAM/UTILITY ADDPGM L

v g ‘DPGM - STARTED AT 11: hs 22 00/00/00 Kxk

| JOB ADDPGM (ssnpoe) USERID—ABCD G
'LOADING ADDPGM ~ 2P,11: 48.23, LP—'9800 PART- 1
 ENTER NUMBER: S o

Specifying Data Sets
You can specify data sets in one of six ways:
1. Inthe DS= operand of a PROGRAM instruction
2. In the DS= operand of a LOAD instruction
3. With the $L operator command
4. During execution of some system utility programs
5. On the Execute Program/Utility menu
6. With the DS command of the $JOBUTIL utility.
You identify a data set by specifying:
1. The data set name (dsname)

2. An optional volume label (volume) which specifies the volume on which the data set resides.

Chapter 6. Executing a Program PG-105

Executing a Program

Executing a Program with the Session Manager (continued) 11.0;

The format for a data set specification is:

dsname,volume

Volume is optional. If you omit volume, the system assumes that the data set resides on the
volume from which you performed an IPL. Definitions of dsname and volume are:

dsname An alphameric character string of eight characters. When you specify fewer than
eight characters, the system adds blanks to the right to complete the string.

volume An alphameric character string of six characters. To locate the volume, the
appropriate TAPE or DISK statement must be in the system I/O definition. You
must initialize the disk or diskette with the $INITDSK utility and tapes with the
$TAPEUT]1 utility. When you specify fewer than six characters, the system adds
blanks to the right to complete the string.

To specify up to three data sets on the Execute Program/Utility menu, enter the data set name
and volume as in the following example:

The PROGRAM statement for program ADDPGM might look like this:

BEGIN PROGRAM ST,DS=(??,?7?,?7?)

If a program requires less than three data sets, enter an asterisk (*) next to the data set(s) not
used.

PG-106 SC34-0637

O

Submitting a Program from Another Program

A program can submit one or more programs to the EDX job processor. The job queue processor
executes the programs independently of the program that submitted them.

The following example shows how one program can submit programs CALC on volume
EDXO003 and UPDATE on volume MYVOL.

BEGIN PROGRAM START
START EQU *
B LOAD $SUBMITP, SUBPARM1, LOGMSG=NO, EVENT=SUBEND
WAIT SUBEND
IF (SUBEND,NE, - 1)
PRINTEXT 'ERROR LOADING CALC',SKIP=1
ENDIF
a LOAD $SUBMITP, SUBPARM2 , LOGMSG=NO, EVENT=SUBEND
WAIT SUBEND
IF (SUBEND, NE, - 1)
PRINTEXT 'ERROR LOADING UPDATE',SKIP=1
ENDIF
PROGSTOP
SUBEND ECB
SUBPARM1 EQU *
DATA c'sJg’
6 | DATA X'0002"
DATA CL8'JOBO1"
B DATA CL6'EDX40'
o | DATA A (JOBNO)
SUBPARM2 EQU *
DATA c'sJ’
DATA X'0002"
DATA CL8'JORO02'
DATA CL6'EDX40"
DATA A (JOBNO)
[} oJoBNO DATA F'0’
ENDPROG
END
Submit a job to the job queue. Point to a parameter list called SUBPARMI1, and identify
the event to be posted when the job has been submitted (EVENT=SUBEND).
Wait for the job to be submitted to the job queue.
Test for successful completion (-1) of the submit.
a Submit a job to the job queue. Point to a parameter list called SUBPARM?2, and identify
the event to be posted when the job has been submitted (EVENT=SUBEND).
Specify that the job is to be submitted (SJ).

Chapter 6. Executing a Program PG-107

Executing a Program

Submitting a Program from Another Program (continued)

PG-108

SC34-0637

6 | Specify the priority of the job (0002).

Identify the name of the data set that contains the job stream processor commands
(JOBO1).

B Specify the volume that contains JOB01 (EDX40).
B Specify the address of the field in which the system will put the job number (JOBNO).
10) Reserve storage for the system to put the job number.

The data set called JOBO1 contains job stream processor commands. It might look like the
following:

JOB JOBO1

PROGRAM CALC,EDX003
EXEC

EOJ

The PROGRAM command refers to a program called CALC on volume EDX003.

The data set called JOBO2 contains job stream processor commands. It might look like the
following:

JOB JOBO2

PROGRAM UPDATE, MYVOL
EXEC

EOJ

The PROGRAM command refers to a program called UPDATE on volume MYVOL.

O

Chapter 7. Finding and Fixing Errors

Up to this point, you have written, compiled, and link-edited your program. However, the
program may not run as you expect it to. Steps may be out of sequence or the program may
come up with the wrong answers. In other words, you have problems with your program’s logic.

The program also may not run to a successful conclusion. An exception condition may occur
that interrupts the execution of a program.

The $DEBUG utility assists you in determining logic errors. The task error exit routine is one of
the tools you can use to diagnose exception conditions.

Determining Logic Errors in a Program

This section tells you how to locate and fix logic errors in your program by using the $DEBUG
utility. $DEBUG can work from terminals; you do not have to use the console. $DEBUG has
commands that allow you to:

« Stop execution at one or more specific places in a program. The places where you choose to
stop a program are called breakpoints.

-« Set up a trace routine. A trace routine allows you to step through program instructions one
at a time. You must specify one or more parts of the program you wish to trace (called a
trace range). Each time the program executes an instruction within any of the specified
trace ranges, the terminal displays a message identifying the task name and the instruction

address just executed. You can stop program execution after each instruction executes
within a trace range. :

Chapter 7. Finding and Fixing Errors PG-109

Finding and Fixing Errors

Detemmining Logic Errors in a Program (continued)

« List additional registers and storage location contents while the program is stopped at a
breakpoint or at an instruction within a trace range.

« Change the contents of storage locations, registers, data, or instructions.

« Restart program execution. You can restart execution at the breakpoint or trace range
address where it is currently stopped or you may specify another instruction address.

Creating and Running the Program

PG-110

This section shows an EDL program that has a logic error in it. It shows briefly how to enter,
compile, link-edit, and run (execute) the program.

Perform the following steps using the session manager. Give the program the name ADD10.

1. Enter the following program on your terminal exactly as shown.

ADD10 PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER: '
LOOP DO 10, TIMES
ADD COUNT, SUM
ENDDO
PRINTEXT 'RESULT="'
PRINTNUM SUM
PROGSTOP
COUNT DATA F'O'
SUM DATA F'0'
ENDPROG
END

This program is supposed to take a number entered on a terminal and add it to itself 10
times. For example, if you enter the number 10, you should get the response:
RESULT=100. However, because of a program logic error, you will not get the expected
answer when you run the program.

2. Now compile the program. If you have any problems, see Chapter 4, ‘‘Compiling a

Program.” Save the compiler listing. You will need it when you run $DEBUG.

3. Next, link-edit your program. If you have any problems, see Chapter 5, “Preparing an

Object Module for Execution.”

4. Run the program. If you have any problems, see Chapter 6, ‘“Executing a Program.”

SC34-0637

@ Determining Logic Errors in a Program (continued)

When the prompt ENTER NUMBER appears, enter the number 10.

3 o

Because this program has a logic error, the answer returned is 0. The expected result was 100.

Debugging and Fixing the Program

This section describes how to use $DEBUG to find and correct a logic error.

Loading $DEBUG

To start debugging the program, do the following;:

1. End the session manager. You cannot run $DEBUG while the session manager is active.
One way to load $DEBUG is with the $L operator command.

2. Enter the following:

C

The following message appears, telling you that $DEBUG is being loaded.

3. Then $DEBUG asks for the name of the program to be debugged. Respond as follows:

4. The utility then prompts for a partition number and a terminal name:

If you press enter after each of the prompts, the system uses the current partition and
terminal.

Chapter 7. Finding and Fixing Errors PG-111

Finding and Fixing Errors

Detemining Logic Errors in a Program (continued)

$DEBUG then displays the following information:

These messages tell you:

« The load point (L.LP=) of the program
« The partition where SDEBUG loaded the program

« That $DEBUG set a breakpoint and stopped the program at address 0034, which is the first
executable instruction.

Note that you can also enter HELP to see a list of the available $DEBUG commands.

$DEBUG Commands

PG-112

SC34-0637

Both $DEBUG and the program have been loaded into partition 1. The program has stopped
and $DEBUG is waiting for a command. To see a list of the $DEBUG commands:

1. Press the attention key.

2. Enter HELP. N

The list of $SDEBUG commands appears on the screen.

AVA

O

Detemining Logic Errors in a Program (continued)

Use the $DEBUG commands to:

» List $DEBUG commands (HELP).

- Display the current status of each task (WHERE).

« Display storage or register contents (LIST).

« Change storage or register contents (PATCH).

« Change the base address (QUALIFY).

« Set breakpoints and trace ranges (AT).

« Remove breakpoints and trace ranges (OFF).

« Restart a stopped task (GO).

o Start a task waiting for an event or process interrupt (POST).
« Direct output to another terminal (PRINT).

« List breakpoints and trace ranges (BP).

o Restart a stopped task at a different instruction (GOTO).

¢ Close a spool job that was created by $DEBUG (CLOSE).
« End $DEBUG (END).

You can enter any of the commands by pressing the attention key and entering the command
name. $DEBUG then prompts for the command parameters. For example, if you want to set a
breakpoint, enter the AT command. $DEBUG then prompts for the parameters as shown
below.

This command sets a breakpoint at address 4C. It requests that $DEBUG print the contents of
register 1 (one word) in hexadecimal. STOP tells $DEBUG to stop at address 4C.

For detailed syntax descriptions, refer to each individual command in the Operator Commands
and Utilities Reference.

You can also enter a command and its parameters without going through the prompts. For
example

gives you the same results.

Chapter 7. Finding and Fixing Errors PG-113

Finding and Fixing Errors ,

Determmining Logic Errors in a Program (continued)

Finding the Errors

PG-114

Now that you have loaded $SDEBUG, specified your program name, and reviewed the $DEBUG
commands, you are ready to start finding the logic errors in your program. You should have a
listing of the program before you start. Then follow these steps:

1. Use the AT command to set a breakpoint to stop the program after the GETVALUE
executes (address 004C). Respond to the prompts as follows:

The breakpoint to stop after the GETVALUE instruction executes is now set.

2. Enter a GO command and, when prompted, enter the number 10.

Program execution has stopped at the instruction labeled LOOP. The GETVALUE
instruction has executed.

To check to see if the program read the data correctly, use the LIST command to display
data field COUNT at address 0074.

3. Enter a LIST command and respond as follows:

The LIST command shows that 0074 contains 10, the correct input. This indicates proper
logic to this point.

The next set of instructions is the DO loop. Set another breakpomt to stop the program
after execution of the DO loop at address 005E.

SC34-0637

0 Determining Logic Errors in a Program (continued)

4. Enter an AT command and respond as follows:

”'OPTION(*/ADDR/TASK/ALL) ADDR Soniie
BREAKPOINT ADDR: ooss s ;
LIST/NOLIST: NGLlST :

STOP/NOSTOP: STOP i ’

: 1 BREAKPOINT(S) SET :

The breakpoint to stop after the DO loop instructions executes is now set.

B. Enter a GO command and the following occurs:

£y BREAKPO 1 NT(S) : ACT | VATED

At this point, the data field SUM at address 0076 should contain the number 100.

To check to see if the data field SUM contains the proper number, use the LIST command
to display data field SUM at address 0076.

0 6. Enter a LIST command and respond as follows:

The LIST command shows that this field contains zero. This means that the DO loop or

the ADD instruction in the DO loop is incorrect. If you examine these instructions, you will
see that the DO loop is correct. However, The ADD instruction has a logic error. In order
to receive the proper answer, the COUNT field should be added to the SUM field. The
operands are backwards. The DO loop executes the ADD instruction 10 times but is adding
SUM to COUNT, causing the SUM field to remain 0.

Fixing the Problem

To verify that this is the problem without having to recompile and link-edit the program, you can
use the PATCH command of $DEBUG for a temporary fix. This fix is good only for one
execution of the program. PATCH only fixes the copy of the program loaded by $SDEBUG. It
does not fix the program on your volume. Once you have verified that the fix is correct, you can
then change the program on your volume.

Chapter 7. Finding and Fixing Errors PG-115

Finding and Fixing Errors

Determining Logic Errors in a Program (continued)

To verify that the problem is the ADD instruction, do the following:

1. Find address 0052 on your compiler listing. This line contains the ADD instruction. The
entire line looks like this:

0052 0032 0074 0076 ADD COUNT, SUM

The address of the instruction is 0052. The operation code (0032) does not change. The
next two words, 0074 and 0076, are the addresses of data fields COUNT and SUM.

To fix the logic error, change the instruction to look as follows:

0052 0032 0076 0074

2. Enter a PATCH command and respond to the prompts as follows:

The program is now patched. When it executes, it will add COUNT to SUM to arrive at
the expected result. You can test the change by reexecuting the program.

To reexecute the program, you have to know two things: the address where the program is

currently stopped (005E) and the address of the first executable instruction (0034). Then
you can use the GOTO command to restart the program at the first executable instruction.

3. Enter a GOTO command as shown:

PG-116 SC34-0637

C

Determining Logic Errors in a Program (continued)

4. The program is now at the beginning. To test it, set all the breakpoints off so that the
program will run to completion.

Enter the following:

This time you received the expected result of 100. You have verified that the logic error
was the ADD instruction.

Ending $DEBUG

Now that you have found and fixed the logic error in your program, use the END command to
terminate $DEBUG. Enter the following:

When $DEBUG ends, your program remains in storage with all of its tasks active and operating
if it has not already ended. In our example, however, the program has ended.

To make the fix permanent, change your source program (see Chapter 3, “Entering a Source
Program” on page PG-67), recompile it (seeChapter 4, “Compiling a Program” on page
PG-77), and link-edit your object code module (see Chapter 5, “Preparing an Object Module
for Execution” on page PG-89).

Displaying Unmapped Storage
If you write a program that uses unmapped storage, you may want to display portions of
unmapped storage. Displaying unmapped storage may be necessary to determine whether or not

a program is processing correctly.

This section shows how to display a portion of unmapped storage. The program example used
in this section is shown in “Sample Program” on page PG-120.

The program moves mortality rates to the unmapped storage areas. To find out if the rates are
being moved properly, you can display an unmapped storage area as follows:

Chapter 7. Finding and Fixing Errors PG-117

Finding and Fixing Errors

Detemining Logic Errors in a Program (continued) @

1. Load $DEBUG and specify your program name:

The following message appears; telling you that the system is loading $DEBUG.

2. When $DEBUG asks for the name of the program to be debugged, respond as follows:

3. The utility then prompts for a partition number and a terminal name:

If you press enter after each of the prompts, the system uses the current partition and PN
terminal. W

4. Use the AT command to set a breakpoint to stop the program after the ENDIF statement
that follows the two MOVE instructions that move the rates to the unmapped storage area
(address 152). Respond to the prompts as follows:

PG-118 SC34-0637

m Determining Logic Errors in a Program (continued)

5. Enter a GO command.

1 BREAKPOINT(S) ACTIVATED
INSURE STOPPED ‘AT - 0152

Program execution has stopped at the ENDIF statement. One of the MOVE instructions
has executed.

6. To see if the program moved data correctly, first find the number of the unmapped storage
area. CNTRYC (address 02AE) contains the number of the unmapped storage area
obtained with the SWAP instruction.

> LIST : , PETTR
OPTION(* /ADDR/RO .R7/#1/#2/1AR/TCODE/UNMAP) :
ADDRESS: -02AE .
LENGTH: 1
MODE(X/F/D/A/C)
. 02AE X' 0003’

The SWAP instruction obtained unmapped storage area number 3.

‘ j Then display storage in unmapped storage area number 3, using the LIST command as
follows:

s LIST 5 , ;: o
OPTION(*/ADDR/RO R7/#1/#2/IAR/TCODE/U ‘
- STORBLK ADDRESS (o TO CANCEL LIST) 048
 SWAP#: 3. :
f;DISPLACEMENT 0
LENGTH: 20
MODE(X/F/D/A/C) ‘ fe
oooo C 0001ooozooo3ooo3oooh'~~

;Ji;)

This LIST command shows the contents of the unmapped storage area. It contains five sets
of four-digit numbers that could be mortality rates. Check the input data to determine if the
program moved them properly.

Chapter 7. Finding and Fixing Errors PG-119

Finding and Fixing Errors

Determining Logic Errors in a Program (continued)

Sample Program

The program:
LOC +0 +2 +4 +6 +8
0000 0008 D7D9 D6C7 DO9C1 D440 INSURE
OOB8 ST
00BS8 00B9 04B4 0000 0000 0101
00cC2 805C 02A8 0001
00cs 035C 0000 04cOo
O0CE 809C OOEC 000A
00D4 00B9 04B4 02A8 O1E4 0300
OODE 8158 0000 4000 0320
O0E®6 8032 02A8 0001
00EC 009D 00060 0001
OO0F2 8020 O4FA 0001 0000 220E READ
00FC 0032 0156
0100 O0OB1 02AE O4FA 0002 0080
010A 035C 0000 04cO
0110 O0OB9 04B4 02AE O1E4 0300
011Aa 00B1 02AC 04FC 0002 0080
0124 035C 0002 02AC
012A 8338 0002 0004
0130 OF32 0000 0002
0136 O0A3 0502 02a6 014A
013E 015B 0000 O4FE 0004
0146 00A0 0152
014A 015B 0190 O4FE 0004
0152
0152 00AO0 OO0F2
0156 STOP
0156 805C 02A8 0001
015C 035C 0000 04cO0
0162 809C 01A8 000A
0168 O0B9 04B4 02A8 01E4 0300
0172 045B 02B4 0000 0190
017A 8020 02B4 0002 0000 3110
0184 0072 01B2 0274
018A 045B 02B4 0190 0190
0192 8020 02B4 0002 0000 3110
019C 0074 01B2 0274
01A2 8032 02A8 0001
01A8 009D 0000 0001
01AE 00A0 02A2
PG-120 SC34-0637

SOURCE STATEMENT

PROGRAM

COPY
EQU
GETSTG
MOVE
MOVE
DO
SWAP
MOVE
ADD
ENDDO
READ

CONVTD
MOVE
SWAP
CONVTD
MOVE
MULT
ADD
IF
MOVE
ELSE
MOVE
ENDIF
GOTO
EQU
MOVE
MOVE
DO
SWAP
MOVE
WRITE

MOVE
WRITE

ADD
ENDDO
GOTO

ADD10 ,EDX002

ST,DS=((ACTTAB,EDX40) , (ACTOUT,EDX40))

STOREQU
*

HOLD, TYPE=ALL

USANO, 1

#1, HOLD+$ STORMAP

10
HOLD, USANO, ERROR=SWAPERR
(+MENTBL, #1) ,C' ', (800,BYTE)
USANO, 1

DS1,MORTAL, 1, END=STOP

CNTRYC,CNTRY , PREC=S, FORMAT=(2,0,I)
#1,HOLD+$STORMAP

HOLD, CNTRYC , ERROR=SWAPERR
AGEC,AGE, PREC=S,FORMAT=(2,0,1I)

#2,AGEC

#2,4

#1,42

(SEX,EQ,ONE,BYTE) /(‘N
(+MENTBL, #1) ,RATE, (4,BYTES) LW 4

(+WMNTBL, #1) ,RATE, (4,BYTES)

READ
*
USANO, 1
#1,HOLD+$STORMAP
10
HOLD, USANO, ERROR=SWAPERR
OUTAREA, (+MENTBL, #1) , (400,BYTES)
DS2,0UTAREA, 2,0, END=EOFILE, ERROR=WRERR

OUTAREA, (+WMNTBL, #1), (400,BYTES)
DS2,0UTAREA, 2,0, END=EOFILE, ERROR=WRERR

USANO, 1

END

Determining Logic Errors in a Program (continued)

01B2
01B2

01EO
O1E4
O1E4
O1EA
01F2

021A
021A
0222

0244
0244
024cC

0270
0270
0274
0274

029E
02A2
02a2
02Rn6
02A7
02A8
02AA
02AacC
02AE
02BO
02BA
O4AE
04B4

0000
0000
04F6
0500
O4FA
O4FC
O4FE
0502
O5FA
0692

8026

00R0

005C
80A2
8026

802A
8026

80A2
8026

00AO

8026

000

0022
F1

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000

0000

2A2A

02Aa2
02AA

02AA
2423

02AA
1E1D

02AA
201F

02A2

2626

02A2

FFFF

0200
0000
0000
c1ci

0100
0000

0000

7C5C

O5FA
021a
7C5C

0002
7C5C

0064
7C5C

7C5¢C

0000
0000
0000
0000

0000
0000

0000

5C40

5C40

0244
5C40

0270
5C40

5C40

0000
0000

0000

0000
0000

0234

C1C3

C9D5

E2E6

D5D6

c4c9

0000
0000

0000

0000
0000

0000

EOFILE

SWAPERR

WRERR

END

ONE

USANO
TASKRC
AGEC
CNTRYC
OUTAREA

HOLD

MENTBL
WMNTBL
MORTAL

CNTRY
AGE
RATE
SEX

EQU *
PRINTEXT 'a** ACTUARIAL FILE HAS EXCEEDED

GOTO END

EQU *

MOVE TASKRC, INSURE
IF (TASKRC,EQ, 1)

PRINTEXT '@** INVALID UNMAPPED STORAGE

ENDIF
IF (TASKRC,EQ, 2)
PRINTEXT '@%% SWAP AREA NOT INITIALIZED'

ENDIF
IF (TASKRC,EQ, 100)
PRINTEXT '@%* NO UNMAPPED STORAGE SUPPORT'

ENDIF
GOTO END
EQU *

PRINTEXT '@** DISK WRITE ERROR ON ACTUARIAL

GOTO END
EQU *
PROGSTOP
DATA crye
DATA F'0'
DATA F'0'
DATA F'0'
DATA F'0'

BUFFER 512,BYTES

STORBLK TWOKBLK=1,MAX=10

EQU 0

EQU MENTBL+300
BUFFER 256,BYTES
EQU MORTAL
EQU MORTALA+2
EQU MORTAL+4
EQU MORTAL+8
ENDPROG

END

Chapter 7. Finding and Fixing Errors PG-121

Finding and Fixing Errors
Using Return Codes to Diagnose Problems

This section describes how to use the return codes to diagnose problems.

Many EDL instructions return a code to indicate whether or not they execute successfully. Each
time EDX executes one of these instructions, it stores a code, called a return code, in the first
two words, called task code words, of the task control block (TCB). You can access the TCB by
referencing the task name.

In the following example, the instructions at label ERRTEST compare the return code of the
READTEXT instruction with the successful return code (-1).

BEGIN PROGRAM START

.

READTEXT NAME,'ENTER NAME: ',SKIP=4,MODE=LINE
ERRTEST MOVE TASKRC, BEGIN

IF (TASKRC,NE,-1) ,GOTO, CHECK

ENDIF

CHECK PRINTEXT 'ERROR IN READING NAME',SKIP=1
PRINTNUM TASKRC

GOTO END
END PROGSTOP
TASKRC DATA F'O’

ENDPROG

END

You must test the return code before executing any other instruction because the system may
overlay the task code word with the return code of the next instruction.

PG-122 SC34-0637

C

Using Return Codes to Diagnose Problems (continued)

Diagnosing Errors with ACCA Devices

To diagnose an error that occurs after you read or write to an ACCA device, you can use the
following instructions to obtain the return code and three cycle steal status words.

(]~

1
2]

TEST

TERROR

RETCD
CCSs

PROGRAM START, TERMERR=TERROR

COPY

TCBGET
TCBGET
MOVE

DATA
DATA

CCBEQU

RETCD, $TCBCO
#1,$TCBCCB
CCS, ($CCBSTWO, #1) ,3,FKEY=0

F'o’
3F'0'

Obtain the return code from the first word of the TCB.

Obtain the address of the CCB (terminal control block).

Move the three cycle steal status words to CCS.

If the return code is not -1, the task code word contains the following information:

Bit
0

12

13

14-15

Description

Unused

ISB of last operation (I/O complete)

Unused

"1" if a write or control operation (I/O

complete)

Read operation (1/0 complete)

Unused

Condition code +1 after |/0O start or
condition code after /O complete

Refer to the appropriate hardware description manual for a description of the cycle steal status
words and the interrupt status byte (ISB) condition codes.

Chapter 7. Finding and Fixing Errors

PG-123

Finding and Fixing Errors

Task Error Exit Routines
This section describes the facilities provided by the system in the event that an exception occurs.
These are the supervisor facility and the system-supplied task error exit routine.
When an exception occurs, the supervisor takes certain actions. What action it takes depends on
whether or not you have coded a task error exit routine in your program. If your program does
not have a task error exit routine, the supervisor simply writes a program check message on

$SYSLOG, and terminates the program. If your program has a task error exit routine, either the
one supplied by the system or your own, the supervisor does the following:

1. Stores the hardware status at the time of the exception in a block of storage designated by
the task.

2. Passes control to the task at its task error exit entry point.

At this point, the task error exit routine gains control. The next section discusses only the
system-supplied routine. However, remember that, if necessary, you can substitute your own
routine. (For information on writing your own task error exit routine, refer to Customization
Guide.)

Notes:

1. A task error exit routine is a part of the task it serves. The supervisor passes control to it at
the task level; it is not a subroutine of the supervisor’s error handler.

2. The registers (including the EDL software registers, #1 and #2) used by the error exit
routine are those normally used by the task.

3. To resume executing the task following corrective action by task error exit, branch (if in
Series/1 instruction mode) or GOTO (if in EDL mode) the appropriate location.

4. If the error exit is unable to recover from the exception, it should issue a PROGSTOP
instruction.

The System-Supplied Task Error Exit Routine ($$EDXIT)

A task error exit routine named $$EDXIT is available on volume ASMLIB. This routine:

« Captures relevant data from the program header, task control block, and hardware status
area when an exception occurs \

« Formats and prints this data on $SYSLOG and $SYSPRTR

« Displays an error message on the loading terminal.

PG-124 SC34-0637

#
N

O

Using $$EDXIT

Task Error Exit Routines (continued)

To use the supplied routine, you must:

« Code $$EDXIT as the value of the ERRXIT keyword parameter of each PROGRAM and
TASK statement in your program. For example:

AB PROGRAM ..

CD TASK

.« ;ERRXIT=$$EDXIT

«e..,ERRXIT=$$EDXIT

o Declare the label $$EDXIT to be an EXTRN.

EXTRN $$EDXIT

The task error exit routine is included in the autocall list $AUTO on volume ASMLIB. It is
automatically included when you link-edit any program that references $$EDXIT. A separate
INCLUDE statement is not required for $$EDXIT in the LNKCTRL data set. All you need to

do is code SAUTO,ASMLIB as the autocall data set on the AUTOCALL statement of

$EDXLINK.

The following example shows what $$EDXIT prints on $SYSLOG and $SYSPRTR. It shows
that a program check has occurred in an application program named PCHECK. The numbers to
the left of both columns correspond to the explanations that follows the example.

O

1]
2]
a

a

kA kA h bbb r b e e ek ok ook ok

* WARNING!! AN EXCEPTION HAS OCCURRED!! *

o sk g st o sk sk ot sk sl st e s o sb ok sk gl sbe e sk s st s s sk s e b sl b sk sk b e b ook S
FeA Ok Aokt o ok ot e et o i e e s ek s e e e

PROGRAM NAME = PCHECK
PROGRAM VOLUME = EDXWRK
PROGRAM LOAD POINT = 0000
ADDRESS OF ACTIVE TCB = 016C
ADDRESS OF CCB = 1802
NUMBER OF DATA SETS = 1
NUMBER OF OVERLAYS = 0
$TCBADS = 0004
ADDRESS OF FAILURE

(REL. TO PGM LOAD POINT = OQOE7
DUMP OF FAIL ADDRESS

00E6: 0000 0028 0028 3635

$TCBCO = -1 DEC; FFFF HEX
$TCBO2 = 0 DEC; 0000 HEX

PSW ANALYSIS:

SPECIFICATION CHECK
TRANSLATOR ENABLED

B Psw= 8002

IAR = 3124
AKR = 04ko
LSR = 00DO

RO (WORK REGISTER) = 0096
B R1 (EDL INSTR ADDR) = OOE7
R2 (EDL TCB ADDR) = 016C

R3 (EDL OP1 ADDR) = OOE7
R4 (EDL OP2 ADDR) = 00B2
R5 (EDL COMMAND) = 0000
R6 (WORK REGISTER) = 0000
R7 (WORK REGISTER) = 0000
#1 = 0000
#2 = 0000

Chapter 7. Finding and Fixing Errors

PG-125

Finding and Fixing Errors

Task Error Exit Routines (continued)

PG-126

Explanation:

H

Name of the active program

[~

Name of the volume where the program resides

a

The load point of the program

Address of the active TCB when the exception occurred

B o

Address of the CCB (terminal that loaded the program)

Address key where program is loaded if not doing cross-partition move or the target
address key if doing a cross-partition move

Address of the instruction that caused the program check

B B

Dump of the instruction that caused the program check

Indicates the type of exception that occurred

—_
O

Usually points to the EDL instruction address

Usually contains the EDL TCB address

Usually contains the operation code of the EDL instruction that was being executed

The following message appears on the loading terminal when the program check occurs:

A MALFUNCTION HAS OCCURRED -- CALL SYSTEM PROGRAMMER

Notes:

1. If you are executing either a combination of EDL instructions and Series/1 instructions or
all Series/1 instructions, the registers may not contain this information.

2. You can restart the program by writing your own error exit routine to reload it.
$SEDXIT provides you with information about the program, task, and hardware status when an
exception occurs. You can extend the capabilities of $$EDXIT so that it will also evaluate the

information and make an appropriate response. For more information on writing your own task
error exit routine, refer to Customization Guide.

SC34-0637

Chapter 8. Reading and Writing Data from
Screens

The Event Driven Executive allows you to read and write data from a screen that appears on a
terminal. A person at a terminal can supply data to a program and the program can display
information on the terminal screen.

EDX allows you to use two types of screens: roll screens and static screens.

This chapter describes:

« When to use roll screens

« When to use static screens

« Differences between static screens and roll screens

« Reading from and writing to roll screens

« Reading from and writing to static screens

» Designing device-independent static screens

« Reading from and writing to a 3101 Display Terminal.

The chapter shows how to write a program to read five data items from a screen and write them
back to the screen. The chapter shows how to use each kind of screen (roll and static).

You can generally code terminal programs using either roll or static screens. However, each
screen offers distinct advantages for certain types of programs. ‘

Chapter 8. Reading and Writing Data from Screens PG-127

Reading and Writing Data from Screens

When to Use Roll Screens @)

A roll screen is similar to a typewriter. The system reads or writes data line-by-line, starting with
line O at the top of the screen and ending with line 23 at the bottom of the screen. You can use
roll screens to read or write a single data item.

A program that uses roll screens usually prompts the operator for data, waits for an operator
response, and checks the validity of the input data. Roll screens are best suited for application
programs in which:

+ A simple question-and-answer dialogue occurs between program and operator.

« A single line is sufficient for each response.

» An incorrect response requires only a reprompt.

« You want to use a minimum of processor storage.

In addition, the terminal may support roll screens only.

Roll screen dialogue is relatively easy to code and requires little program preparation. You can
code prompts in a tree structure where the choice of the next prompt depends on the reply to

past prompts.

You can print more than one line of text to introduce a prompt. For example, you might want to

offer the choice of several programs to be loaded, each of which may choose to continue the v)
dialogue at the same terminal. You can also display more than one line of text in a program k
reply.

When to Use Static Screens

PG-128

A static screen represents a page of information. The system reads or writes an entire screen at
once. A static screen allows a terminal operator to modify an entire screen image before
entering the data. You can use static screens to read or write several data items at one time.

Programming for static screens involves managing the entire screen as a series of protected and
unprotected fields.

A protected field is an area that contains an operator prompt or an input field name. Itis
protected from being accidentally changed by the operator.

An unprotected field is an area that is to be filled in by the operator.
Static screens are best suited for programs in which:

« The dialogue involves a series of full screens.

SC34-0637

@ When to Use Static Screens (continued)

« More than one line of response may be required.

« You need to determine cursor position or manipulate the cursor.
¢ You need to write protected fields.

e You need attribute characters such as blinking and non-display.

o The unprotected fields may be scattered across the screen and interspersed with the
protected fields.

« Many related data fields are to be entered at one time.

« Medium to large amounts of data accompany each prompt, operator response, or program
reply:

You can manage static screens most easily by using the $IMAGE utility to define your screens.
$IMAGE places the screens on direct access storage. The program then can read them into
processor storage. $IMAGE subroutines and terminal I/O statements allow you to read the
screen into the application program, display it at the terminal, position the cursor, scatter read or
write unprotected fields, and wait for a response.

O Differences Between Static Screens and Roll Screens

Static screens differ from roll screens in the following ways:

« Forms-control operations that would cause a page-eject for roll screens simply wrap around
to the top for static screens. ' :

« On static screens, the system performs no automatic erasure.

« Input operations directed to static screens normally are executed immediately. This allows
the program to read selected fields from the screen after the operator modifies the entire
display. A program can issue the WAIT KEY instruction to wait for the operator to
respond. The operator can signal the program with the program function (PF) keys.

« To allow convenient operator/program interaction, QUESTION, READTEXT, and
GETVALUE instructions which include prompt messages are executed as if they were

directed to a roll screen (automatic task suspension for input).

» On static screens, the “at sign” character @ is a data character. On roll screens it indicates
a new line.

Chapter 8. Reading and Writing Data from Screens PG-129

Reading and Writing Data from Screens

Reading and Writing One Line at a Time @

Reading and writing a single line from a terminal screen involves reading the data item from a
roll screen and writing or displaying the data item on the screen.

To read and write to a roll screen:
1. Reserve storage for data.
2. Read a data item.

3. Write a-data item.

Reserving Storage for the Data

To reserve storage for a data item that you will read, you must know its maximum length. To
reserve storage for a text string of 30 characters, use the TEXT statement as follows:

NAME TEXT LENGTH=30

The name of the storage is NAME. The next section describes how to put a data item into
NAME.

O
A\ 3

Reading a Data Item

PG-130

SC34-0637

To read a data item from a roll screen, you can use either the READTEXT or GETVALUE
instruction. The READTEXT instruction allows you to read a text string. The GETVALUE
instruction allows you to read one or more numbers.

To read a data item into a storage area, use the READTEXT instruction as follows:

READTEXT NAME, 'NAME:',SKIP=1,MODE=LINE

The instruction displays the prompt NAME: and the system waits for a response. When the
operator enters a name and presses the enter key, the system stores the text string in an area
called NAME.

The operand SKIP=1 causes the system to skip one line before displaying the prompt. The
operand MODE=LINE allows blanks in the response. Since most names contain at least one
blank, you must code MODE=LINE to read the entire name.

O Reading and Writing One Line at a Time (continued)

Writing (Displaying) a Data Item

Example

Writing (or displaying) a data item involves transferring the data item from storage to the
terminal screen. You can use either the PRINTNUM or PRINTEXT instruction to transfer data
to the terminal screen. The PRINTNUM instruction transfers one or more numbers. The
PRINTEXT instruction transfers a text string.

To display the data item called NAME, use the PRINTEXT instruction as follows:

PRINTEXT NAME, SKIP=3

The operand SKIP=3 causes the system to skip three lines before displaying NAME.

Prompt the operator for five data items: name, address, city, state, and zip code. Then display
the five data items. Read from and write to the terminal that loaded the program.

4]

TEST
BEG

NAME
ADDR
CITY

ZIPp

PROGRAM
EQU
READTEXT

READTEXT
READTEXT
READTEXT
READTEXT

PRINTEXT

PRINTEXT
PRINTEXT

PRINTEXT
PRINTEXT
PROGSTOP
TEXT
TEXT
TEXT
TEXT
TEXT
ENDPROG
END

BEG

*

NAME, ' NAME: ',SKIP=1,MODE=LINE
ADDR, ' ADDRESS: ' ,MODE=LINE

CITY," CITY:',MODE=LINE

ST, STATE: '

ZIP,"' ZIP:'

NAME, SKIP=3

ADDR, SKIP=1
CITY,SKIP=1

ST, SPACES=1
ZIP,SPACES=2

LENGTH=30
LENGTH=30
LENGTH=30
LENGTH=2
LENGTH=5

Begin the program and execute the instruction at label BEG.

Prompt the operator for name and read the operator’s response. Allow spaces in the
name (MODE=LINE), skip one line (SKIP=1), and store the response in NAME.

Prompt the operator for address and read the operator’s response. Allow spaces in the
name (MODE=LINE) and store the response in ADDRESS. Because the program
writes to a roll screen, the prompt appears one line below the prompt for name.

Display the data item in NAME. Skip three lines before displaying (SKIP=3).

Chapter 8. Reading and Writing Data from Screens PG-131

Reading and Writing Data from Screens

Reading and Writing One Line at a Time (continued)

Display the data item in ADDR. Skip to the beginning of the next line before displaying
(SKIP=1).

6 | Display the data item in ST. Leave one blank space to the right before displaying
(SPACES=1).

Executing the Example

If you entered, compiled, link-edited, and loaded the example, the system would issue a prompt
for each data item. After entering each data item, press the enter key. After you enter the last
data item (zip code) and press enter, the system displays the data items.

After you enter all five data items, the screen might look like this:

When you press the enter key, the program displays the name and address as follows:

Note: Even though CITY is 30 characters long, the system displays only the actual length of the
data.

Two Ways to Use Static Screens

Reading and writing an entire screen at once involves using static screens. The Event Driven
Executive provides two methods to define static screens.

The first method requires that the format of the screen be defined within the program. Any
change to the screen requires a change to the program.

In addition, programs that use this method are usually rot device independent. In other words, a
program that contains instructions that define a static screen may execute successfully on a 4978

or 4979 terminal and not execute on a 3101 terminal.

The sections called “Coding the Screen within a Program” on page PG-133 and ‘‘Transferring
an Entire Screen Image at Once” on page PG-139 describe the first method.

PG-132 SC34-0637

>

0 Two Ways to Use Static Screens (continued)

The second method for defining screens involves defining the screen with the $SIMAGE utility
and saving it in a data set. This method allows more than one program to use the same screen.
In addition, a change to the screen does not necessarily require a change to each program that
uses it.

Finally, you can write programs that are device independent. You can write programs that
execute successfully on 4978, 4979, 4980, or 3101 terminals. For information on designing
static screens that you can use on a 4978, 4979, 4980, or a 3101, see ‘“Designing
Device-Independent Static Screens” on page PG-154.

The section called “Writing the Screen Image to a Data Set” on page PG-144 describes the
second method.

For more information on coding static screens, see Appendix C, “Static Screens and Device
Considerations” on page PG-335.

Coding the Screen within a Program

This section describes reading data from and writing data to a static screen. Instructions in the
program create the static screen.

(D For more information on static screens, refer to Appendix C, “Static Screens and Device
Considerations” on page PG-335.

This section describes one way to code a static screen within a program. For another way to
define a screen within a program, refer to “Transferring an Entire Screen Image at Once” on
page PG-139.

This section focuses on a sample program, describing the instructions in the same sequence that
they appear in the program.

The sample program:

1. Defines the screen as static

2. Gets exclusive access to the terminal
3. Erases the screen

4. Reserves storage for data

5. Prompts the operator for a data item

Chapter 8. Reading and Writing Data from Screens PG-133

Reading and Writing Data from Screens
Coding the Screen within a Program (continued) @

6. Positions the cursor
7. Waits for a response
8. Reads a data item

9. Writes a data item.

Defining a Screen as Static

To define a screen as a static screen, use the IOCB statement as follows:

TERM IOCB SCREEN=STATIC

This statement defines the loading terminal as a static screen. The label TERM defines the
name you will use in other instructions in the program.

For information on defining logical screens, see Appendix C, ““Static Screens and Device
Considerations” on page PG-335.

£
~ 7

Getting Exclusive Access to the Terminal

Before you can use a terminal as a static screen, you must get exclusive access to it. Use the
ENQT instruction as follows:

ENQT TERM

The operand TERM is the name you used to define the terminal in an IOCB instruction.

Erasing the Screen

Before you code instructions that prompt the operator for data, you should erase the screen. To
erase the screen, use the ERASE instruction as follows:

ERASE MODE=SCREEN, TYPE=ALL, LINE=0

The operand LINE=0 tells the system to begin erasing on line O (the first line) of the screen.
The operand MODE=SCREEN causes the system to erase to the end of the screen. The
operand TYPE=ALL allows the system to erase both protected and unprotected data.

PG-134 SC34-0637

Coding the Screen within a Program (continued)

Reserving Storage

To reserve storage for a data item that you read, you must know its maximum length. To
reserve storage for a text string of 30 characters, use the TEXT statement as follows:

NAME TEXT LENGTH=30

The name of the storage is NAME. The READTEXT instruction transfers the data item
containing the name into this area of storage.

Prompting the Operator for a Data Item

One way you can display information on a static screen is by issuing PRINTEXT instructions.
For example, to prompt the operator for a name, use the PRINTEXT instruction as follows:

PRINTEXT 'NAME: ',LINE=1,PROTECT=YES

The instruction displays the prompt NAME:. The operand LINE=1 causes the system to
display the prompt on the second line of the screen. (The lines on a screen are numbered 0-23
and the columns are numbered 0-79.) The operand PROTECT=YES causes the prompt
NAME: to be protected. A protected field cannot be changed by the operator.

Positioning the Cursor

If you use PRINTEXT instructions to prompt the operator for several data items, you would
probably want to position the cursor after the first prompt. To position the cursor, you need
two instructions: a PRINTEXT instruction and a TERMCTRL instruction:

PRINTEXT LINE=1,SPACES=13
TERMCTRL DISPLAY

The operands LINE=1 and SPACES=13 cause the system to position the cursor on the
fourteenth space of line 1 (the second line). (The lines of a screen are numbered 0 through 23.)

Since the PRINTEXT instruction actually accumulates output in the system buffer, the
TERMCTRL instruction is required to cause the cursor to be positioned.

Chapter 8. Reading and Writing Data from Screens PG-135

Reading and Writing Data from Screens

Coding the Screen within a Program (continued)

Waiting for a Response

After you issue all the prompts, you must wait for the operator to respond. To wait for a
response, use the WAIT instruction as follows:

WAIT KEY

The operand KEY means that the program will wait until the operator presses either the enter
key or one of the Program Function (PF) keys.

Reading a Data Item

Reading a data item involves issuing a READTEXT instruction for each data item you want to
read. The READTEXT instruction might look like this:

READTEXT NAME,LINE=1,SPACES=13,MODE=LINE

The instruction reads the data item into the storage area called NAME. The operands LINE=1
and SPACES=13 cause the system to look for the data starting in the fourteenth position of the
second line of the screen. The operand MODE=LINE allows the data to contain blanks.

Writing a Data Item

Writing a data item means transferring a data item from a storage area to the screen. A
PRINTEXT instruction might look like this:

PRINTEXT NAME,LINE=11
The instruction writes the data item from the storage area called NAME. The operand
LINE=11 causes the system to display the data starting in the first position of the twelfth line of

the screen.

If you want to display another data item on the next line, you can use the SKIP operand as
follows:

PRINTEXT ADDR,SKIP=1
The SKIP=1 causes the system to skip to the first position of the next line.

To leave spaces between one data item and another, use the SPACES operand as follows:

PRINTEXT CITY,SPACES=2

The SPACES=2 operand causes the system to leave two blanks between the previous data item
and CITY.

PG-136 $C34-0637

O

Coding the Screen within a Program (continued)

O

Example
Prompt the operator for five data items: name, address, city, state, and zip code. Then display
the five data items.
TEST PROGRAM BEG
TERM I0CB SCREEN=STATIC
BEG ENQT TERM
ERASE MODE=SCREEN, TYPE=ALL, LINE=0
PRINTEXT ' NAME: ',LINE=1, PROTECT=YES
6 | PRINTEXT ' ADDRESS: ', SKIP=1,PROTECT=YES
PRINTEXT ' CITY:',SKIP=1,PROTECT=YES
PRINTEXT ' STATE:',SKIP=1,PROTECT=YES
PRINTEXT ' ZIP:',SKIP=1,PROTECT=YES
PRINTEXT LINE=1,SPACES=13
6 | TERMCTRL DISPLAY
B WAIT KEY
[10] READTEXT NAME,LINE=1,SPACES=13,MODE=LINE
READTEXT ADDR,LINE=2,SPACES=13,MODE=LINE
READTEXT CITY,LINE=3,SPACES=13,MODE=LINE
READTEXT ST,LINE=4,SPACES=13
READTEXT ZIP,LINE=5,SPACES=13
PRINTEXT NAME,LINE=11
PRINTEXT ADDR,SKIP=1
PRINTEXT CITY,SKIP=1
14] PRINTEXT ST,SPACES=1
0 PRINTEXT ZIP,SPACES=2
TERMCTRL DISPLAY
16} DEQT
PROGSTOP ,
NAME TEXT LENGTH=30
ADDR TEXT LENGTH=30
CITY TEXT LENGTH=30
ST TEXT LENGTH=2
ZIP TEXT LENGTH=5
ENDPROG
END
Begin the program and execute the instruction at label BEG.
B Define the screen as static.
Get exclusive use of the terminal.
4] Erase the screen. Erase the entire screen (MODE=SCREEN), including protected and
unprotected fields (TYPE=ALL), and begin on the first line of the screen (LINE=0).
Prompt the operator for name. Display the prompt on the second line of the screen

(LINE=1) and prevent the operator from overlaying the prompt (PROTECT=YES).

Chapter 8. Reading and Writing Data from Screens PG-137

Reading and Writing Data from Screens

Coding the Screen within a Program (continued)

PG-138

[~

=
fd

SC34-0637

Prompt the operator for address. Display the prompt one line below the previous
prompt (SKIP=1) and prevent the operator from overlaying the prompt
(PROTECT=YES).

Position the cursor on the fourteenth space (SPACES=13) of the second line of the
screen (LINE=1).

Cause the cursor to be positioned (the previous PRINTEXT instruction accumulates
output in the system buffer).

Wait for the operator to respond to the prompts. Resume execution when the operator
presses either the enter key or one of the Program Function keys.

Read the first data item. Look for the data in the fourteenth space (SPACES=13) of
the second line of the screen (LINE=1) and allow blanks in the data (MODE=LINE).

Read the second data item (address). Look for the data in the fourteenth space
(SPACES=13) of the third line of the screen (LINE=2) and allow blanks in the data
(MODE=LINE).

Display the data item NAME. Begin displaying the data on the first position of the
twelfth line of the screen (LINE=11).

Display the data item ADDR. Begin displaying the data on the first position of the next
line (SKIP=1). (In this example, ADDR would appear on the thirteenth line of the
screen.)

Display the data item ST. Begin displaying the data after leaving one space
(SPACES=1). (In this example, data item ST would appear one space to the right of
data item CITY.)

Cause the data in ZIP to be displayed. (The data in ZIP remains in the system buffer
until you issue this instruction or end the program with a PROGSTOP.)

Relinquish exclusive use of the terminal.

O

Transferring an Entire Screen Image at Once

This section describes a technique for transferring an entire screen to the display in one I/O
operation.

This section shows how to:

1. Define protected and unprotected fields.
2. Define the screen.

3. Erase the screen.

4. Construct a screen image.

B. Read a series of data items.

6. Release the terminal.

Defining Protected and Unprotected Fields

The format of a 4978, 4979, or 4980 screen is defined as each character is written to the
terminal. Fields are defined as follows:

o Each character or group of characters written with PROTECT=YES defines a protected
field.

« Each character or group of characters written without PROTECT=YES defines an
unprotected field.

e Null characters (X‘00’) can never be protected, so both protected and unprotected fields can
be defined by writing data with interspersed nulls with PROTECT=YES.

Once the fields of a screen have been defined, the 4978, 4979, or 4980 knows internally
whether each of the 1920 positions on the screen is protected or unprotected; this is transparent
to the user.

On the 4978, 4979, or 4980 there are two ways to write and read unprotected fields. The first
is to read/write all the unprotected fields with one input/output operation. All the unprotected
fields can be filled with data by one “scatter write” operation (PRINTEXT MODE=LINE).
The unprotected fields can be read using one “gather read” operation (READTEXT
MODE=LINE). The other way is to read or write individual fields by specifying screen
coordinates (the LINE= and SPACES= parameters).

Chapter 8. Reading and Writing Data from Screens PG-139

Reading and Writing Data from Screens

Transferring an Entire Screen Image at Once (continued) O

Defining the Screen

To define a screen as static, use the IOCB statement as follows:

SCREEN IOCB SCREEN=STATIC,BOTM=11, C
BUFFER=BUFF , RIGHTM=959

This statement defines the loading terminal as a static screen. The label SCREEN is the name
you will use in other instructions in the program. The operand BOTM=11 defines the last
usable line on the page as line eleven (the twelfth line). The operand RIGHTM=959 defines
the last usable character position on the screen as the 959th position. The number 959 is the
size of the buffer (BUFF is 960 bytes long) minus one.

Erasing the Screen

Before you code instructions that prompt the operator for data, you should erase the screen.
Use the ERASE instruction as follows:

ERASE TYPE=ALL, LINE=0

The operand TYPE=ALL tells the system to erase both protected and unprotected data. The
operand LINE=0 tells the system to begin erasing on line O (the first line) of the screen. A

Constructing a Screen Image

To construct a screen image that minimizes screen flicker, you can concatenate a series of
protected fields. The following instructions display an array of integers on the first six lines of
the screen (lines 0-5).

DO 96, INDEX=1
PRINTEXT 'FIELD',PROTECT=YES
PUTEDIT FORMAT1,VALS, ((I)),PROTECT=YES
PRINTEXT ' ',PROTECT=YES
PRINTEXT NULLS,PROTECT=YES
ENDDO

PRINTEXT LINE=0

Begin a DO loop to construct the screen image. The screen image consists of 96
protected fields of the form FIELDxx, where xx is a sequential field number, each
followed by one protected blank and two unprotected data positions.

Put the literal FIELD in the buffer.

Convert the sequence number to two EBCDIC characters and write it to the buffer.

|

C

PG-140 sC34-0637

0 Transferring an Entire Screen Image at Once (continued)

[4 | Insert a protected separation character.

Define the data position with two null characters. Null characters generate unprotected
fields. The operand PROTECT=YES is necessary to preserve concatenation. (You can
concatenate a series of fields only if the fields are all protected (PROTECT=YES) or all
unprotected (PROTECT=NO).)

6 | Write the concatenated line to the screen. (Any line control character causes the system
to display the concatenated fields.)

Reading a Series of Data ltems

To read a series of data items, use the READTEXT instruction as follows:

READTEXT VALS,MODE=LINE,LINE=6

The instruction does a ‘‘gather read,” reading all the values beginning on line 6 (the seventh
line) of the screen into VALS. The operand MODE=LINE indicates the gather read.

Releasing the Terminal

C

Example

To release the terminal, use the DEQT instruction:

DEQT

The instruction releases the buffer designated in the IOCB statement and restores the
configuration to that defined by the TERMINAL statement.

Line-oriented input/output instructions provide a straightforward way to construct and read
data from static screens. However, when individual data fields on the 4978, 4979, or 4980 are
accessed frequently, excessive screen flicker can result. This problem can be eliminated by
transferring an entire screen image to the display with one 1/0 operation. The following
program shows this technique.

The program accesses the top six lines of a static screen and initially formats the screen with a
sequence of protected fields. An array of integers is displayed on lines 0—5 of the screen and a
pause is executed to allow the operator to enter a new set of values in corresponding positions of
lines 6—11. The new values are then displayed on lines 0—5 of the screen.

In this program, terminal I/O operations are performed through concatenation of TEXT strings.
If the application requires more complex formatting of the screen image, or if input of more than

Chapter 8. Reading and Writing Data from Screens PG-141

Reading and Writing Data from Screens

Transferring an Entire Screen Image at Once (continued)

254 bytes at a time is necessary, then direct access to the buffer is appropriate. See the
PRINTEXT and READTEXT instructions in the Language Reference for details.

DISPLAY PROGRAM BEGIN

Bl SCREEN I0OCB SCREEN=STATIC,BOTM=11, c
BUFFER=BUFF , RIGHTM=959
I DATA F'O"
BUFF BUFFER 960,BYTES
6 | DATA X'0202"
}d NULLS DATA X'0000"
NUMS DATA 48F'0"
VALS TEXT LENGTH=254
BEGIN ENQT SCREEN
ERASE TYPE=ALL, LINE=0
DO 96, INDEX=I

PRINTEXT 'FIELD',PROTECT=YES
PUTEDIT FORMAT1,VALS, ((I)),PROTECT=YES

B
B
1 5} PRINTEXT ' ',PROTECT=YES
16| PRINTEXT NULLS, PROTECT=YES

ENDDO
13} PRINTEXT LINE=0
B wrITE PUTEDIT FORMAT1,VALS, ((NUMS,48)), C

ACTION=STG

2 1] PRINTEXT VALS,MODE=LINE, LINE=0

PRINTEXT LINE=6,SPACES=8 -
TERMCTRL DISPLAY . N
24} WAIT KEY N
2 5] GOTO (TRANSFER, QUIT) ,DISPLAY+2
Hj TRANSFER READTEXT VALS,MODE=LINE,LINE=6
27] GETEDIT FORMAT1,VALS, ((NUMS,48)), c

ACTION=STG

29 ERASE LINE=6,MODE=SCREEN, TYPE=DATA
GOTO WRITE
QUIT DEQT

PROGSTOP

FORMAT1 FORMAT (I2)
ENDPROG
END

The following numbers refer to lines (in the left margin) of the preceding figure:

Define the static screen with the terminal 1/0 buffer to be in the application program at
BUFF, with a length of 960 bytes (half of the 4979 display screen).

Allocate storage for the buffer. Note that in this program the buffer is never accessed
directly; the space is merely allocated here for use by the supervisor.

6} Define a TEXT message consisting of two null characters (EBCDIC code X‘00°).

PG-142 SC34-0637

C

Transferring an Entire Screen Image at Once (continued)

K

=y =y
U1 W

N
-

N
N

N
(=

N
U1

Define the array of integers (initially zero) and the TEXT buffer that will be used for
output of the data in EBCDIC form.

Acquire the terminal, erase all data and establish the screen position for the first I/O
operation. Since several text strings will be concatenated to form the first output line,
the screen position must be established in advance.

Begin a DO loop to construct the initial screen image. This will consist of 96 protected
fields of the form FIELDxx, where xx is a sequential field number, each followed by one
protected blank and two unprotected data positions. Note the conditions required for
forming a concatenated line: the protect mode of the PRINTEXT instructions must not
change (either all PROTECT=YES or all PROTECT=NO), and no intervening forms
control operations can be executed. The TERMCTRL DISPLAY instruction prints the
contents of the terminal buffer.

Write ‘FIELD’ to the buffer.

Convert the sequence number to two EBCDIC characters and write it to the buffer.
Write a protected separation character.

Write the two null characters to define the data positions. Null characters always
generate unprotected positions on the screen; PROTECT=YES is nevertheless required

here in order to maintain concatenation.

Write the concatenated line to the display. Any convenient line control operation or the
DEQT instruction will accomplish this.

Convert the integer array to two-character EBCDIC values and store the resulting line in
the TEXT buffer VALS.

Write the values into successive unprotected positions of the display beginning at
LINE=0,SPACES=0. This “scatter write” operation is defined by MODE=LINE;
without MODE=LINE the protected fields of the display would be overwritten.
Define the cursor to be at the first unprotected position.

Display the cursor at its defined position.

Wait for the operator to press an interrupt key.

Go to QUIT if PF1 was pressed. Go to TRANSFER if the ENTER key or any key other
than PF1 was pressed.

Read the updated values entered by the operator in lines 6—11. MODE=LINE
indicates a “‘scatter read.”

Chapter 8. Reading and Writing Data from Screens PG-143

Reading and Writing Data from Screens

Transferring an Entire Screen Image at Once (continued)

w w
— (=]

Convert the EBCDIC representations to binary and store the binary values in the array
NUMS.

Erase the unprotected (data) fields in lines 6—11 of the screen.
Repeat.

Release the terminal. The buffer designated in the IOCB will be released and the screen
configuration restored to that defined by the TERMINAL statement.

Writing the Screen Image to a Data Set

PG-144

This section shows how to create a screen image and use it in a program. The approach assumes
that you want to write a program that can execute on either a 4978, 4979, 4980, or 3101
Display Terminal.

For information on writing terminal-independent static screens, see “Designing
Device-Independent Static Screens” on page PG-154.

For more information on writing a screen image to a data set, see Appendix C, “Static Screens
and Device Considerations” on page PG-335.

Writing a screen to a data set and using it in a program requires that you do the following things:

1.

SC34-0637

© © N O o A W N

Create the screen.

Define the screen as static.

Read the screen into a buffer.

Get exclusive access to the terminal.

Display the screen and position the cursor.

Reserve storage for data.

Wait for a response.

Read a data item.

Write a data item.

0 Writing the Screen Image to a Data Set (continued)

10. Link-edit the program.

Creating a Screen

To create a screen image, use the $IMAGE utility as follows:

1. From the session manager, select option 4 (TERMINAL UTILITIES) from the primary
option menu.

2. Then select option 4 ($IMAGE). This option loads the $IMAGE utility.

3. Define a null character when the COMMAND(?) prompt appears by by entering:
k COMMAND (kf.')': NULL e

You will use the null character to define unprotected fields. Unprotected fields are the fields
in which the operator will enter data.

O 4. Define the screen dimensions as 24 by 80 (full screen) by entering:
/

5. Enter the command EDIT. A blank screen appears.

Press the PF1 key to enter define mode. While in define mode, you can define the screen.

. Enter the text for your screen image. Enter the fixed part of the screen exactly as you want

it to appear on the screen. The fixed fields are called protected fields. Use the null character
(@) to define the unprotected data fields.

The screen looks as follows:

Chapter 8. Reading and Writing Data from Screens PG-145

Reading and Writing Data from Screens

Writing the Screen Image to a Data Set (continued) @

8. Press the enter key after you complete the design of your screen image. The enter key takes
you out of define mode.

9. Press the PF3 key to return to the $IMAGE command mode.

10. save your new screen image in data set APO8CSCR on volume EDX002 by entering:

"

M. In response to the message:

reply N. (You would reply Y if you coded attributes (such as blinking or nondisplay) that
are available on the 3101 Display Terminal.)

At this point, the system saves the screen. Use the EN command to end the $IMAGE utility.

For more information on creating a screen image, refer to Language Reference.

“'v‘\
Defining the Screen as Static (J‘”

PG-146

SC34-0637

To define a screen as static, use the IOCB statement as follows:

TERM IOCB SCREEN=STATIC,
BUFFER=IOBUF,
OVFLINE=YES,
LEFTM=0,
RIGHTM=1919,
TOPM=0,
BOTM=23

DD N XX

This statement defines the loading terminal as a static screen. The label TERM defines the
name you will use in other instructions in the program. The BUFFER operand identifies IOBUF
as the buffer that will be associated with the screen. The OVFLINE operand tells the system to
continue a line that exceeds the right margin on the next line. The next four operands (LEFTM,
RIGHTM, TOPM, and BOTM) define the static screen as the entire physical screen (lines 0-23
and columns 0-79).

Note: Remember that to continue a line, the continued line must begin in column 16.

For information on defining logical screens, see Appendix C, ‘“Static Screens and Device
Considerations” on page PG-335.

O

Writing the Screen Image to a Data Set (continued)

Reading the Screen Image into a Buffer

To read the screen you have created, you need to do the following things:

1. Code the name and volume of the screen in a TEXT statement:

DSNAME TEXT 'APO8BCSCR,EDX002'

This TEXT statement refers to data set APOSCSCR on volume EDX002. This data set
contains the screen you saved when you used the $IMAGE utility.

2. Reserve storage for the screen with a BUFFER statement:

DISKBFR BUFFER 1024,BYTES

The amount of storage you reserve depends on how many bytes $SIMAGE used to store the
screen image. For example, if SIMAGE used 900 bytes to store a screen image, use 1024
bytes (the next highest 256-byte increment).

3. Specify the type of image data set you have created:

TERMTYPE DATA C'4978'

The type of image data set refers to the way you stored the data set. Since you answered N
to the “SHOULD THE 3101 DATASTREAM BE SAVED?” prompt, the system saved the
data set as a 4978 image.

4. Use the CALL instruction to read the screen:

CALL $IMOPEN, (DSNAME) , (DISKBFR) , (TERMTYPE)

The $IMOPEN subroutine reads the screen from the data set defined by DSNAME and
puts the screen into DISKBFR. TERMTYPE refers to the DATA statement that defines
the type of image data set.

Chapter 8. Reading and Writing Data from Screens PG-147

Reading and Writing Data from Screens

Writing the Screen Image to a Data Set (continued)

Getting Exclusive Access to the Terminal

Before you can use a terminal as a static screen, you must get exclusive access to it. Use the
ENQT instruction as follows:

ENQT TERM

The operand TERM is the name you used to define the terminal in the IOCB instruction.

Displaying the Screen and Positioning the Cursor

PG-148

Displaying the screen and positioning the cursor involves three instructions.

The first instruction, the CALL $IMPROT instruction, prepares the protected fields for display:

CALL $IMPROT, (DISKBFR) , (FTABLE)

The presence of the third operand (in this case, FTABLE) causes the instruction to construct
what is called a field table. A field table shows the location and length of each unprotected field
on the screen. Define the field table as follows:

FTABLE BUFFER 15,WORDS ‘(’ y
The field table requires 3 words for each unprotected field.
The second instruction positions the cursor after the first prompt:

PRINTEXT LINE=1,SPACES=9

Finally, the third instruction displays the screen:

TERMCTRL DISPLAY

SC34-0637

O

Writing the Screen Image to a Data Set (continued)

Reserving Storage for Data

To reserve storage for a data item that you read, you must know its maximum length. To
reserve storage for a text string of 5 characters, use the TEXT statement as follows:

ZIP TEXT LENGTH=5

The name of the storage is ZIP. This storage area will eventually contain five bytes of data (the
zip code).

Waiting for a Response

After you issue the prompts, you must wait for the operator to respond. To wait for a response,
use the WAIT instruction as follows:

WAIT KEY

The operand KEY means that the program will wait until the operator presses either the enter
key or one of the Program Function (PF) keys.

Chapter 8. Reading and Writing Data from Screens PG-149

Reading and Writing Data from Screens

Writing the Screen Image to a Data Set (continued) @

Reading a Data Item

Reading a data item involves reading all unprotected data from the screen. Use the
READTEXT instruction as in the following example:

READTEXT <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>