
--- ------ ----- ---- - ---- - - ----------_.-

SC34-0312-2

File No. S1-34

IBM Series/1

Event Driven Executive

System Guide

Program Numbers: 5719-XS1
5719-XX2
5719-UT3
5719-LM5
5740-LM2

LICENSED
PROGRAM

5719-XS2
5719-XX3
5719-UT4
5719-LM6
5740-LM3

5719-MS1
5719-AM3

Series/1

SC34-0312-2

File No. S1-34

IBM Series/1

LICENSED
PROGRAM

Event Driven Executive

System Guide

Program Numbers: 5719-XS1 5719-XS2 5719-MS1
5719-XX2 5719-XX3 5719-AM3
5719-UT3 5719-UT4
5719-LM5 5719-LM6
5740-LM2 5740-LM3

Series/1

Second Edition (April 1980)

It is possible that this material may contain reference to, or
i nformat i on about, IBM products (mach i nes and programs),
programming, or services which are not announced in your coun­
try. Such references or information must not be construed to
mean that IBM intends to announce such IBM products, program­
ming, or services in your country.

Use this publication only for the purpose stated.

Changes are periodically made to the information herein; any
such changes will be reported in subsequent revisions or Tech­
nical Newsletters.

Publications are not stocked at the address given below.
Requests for copies of IBM publications should be made to your
IBM representative or the IBM branch office serving your local­
i ty.

This publication could contain technical inaccuracies or
typographical errors. A form for reader's comments is provided
at the back of this publication. If the form has been removed,
address your comments to IBM Corporation, Systems Publica­
tions, Department 27T, P.O. Box 1328, Boca Raton, Florida
33432. IBM may use and distribute any of the information you
supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

(C) Copyr i ght IBM Corporat i on 1980 (

SUMMARY OF AMENDMENTS

4969 Magnetic Tape Support (Version 2 only)

The following chapters have been modified to include
infor~ation for the IBM Series/l 4969 Magnetic Tape

• Chapter 3 Data Management - Tape functions and stor­
age capacities

• Chapter 4 Operator Commands and Utilities - SVARYOFF
and SVARVON operator commands, STAPEUTI utility

• Chapter 6 System Configuration - The TAPE configura­
tion statement

• Chapter 7 System Generation - Sample configuration
to illustrate including tape support in a system

• Chapter 10 The Session Manager - E'xamples of menus
and options for tape utility

• Chapter 11 Tape
explaining the use
magnetic tapes

organization A new chapter
of, and support provided for,

SC34-0312 iii

Remote Management utility

The following chapters have been modified to include
Remote Management Utility _

• Chapter 6 System Configuration - The BSCLINE and
TERMINAL statements

• Chapter 7 System Generation - Sample configuration
to illustrate BSCLINE and TERMINAL statements

Bibliography

The bibliography lists the books in the Event Driven
Executive library and a recommended reading sequence.
Other publications related to the Event Driven Executive
are also listed.

storage Estimates

Storage estimates for V2.0 supervisor and utility pro­
grams have been added in Appendix A.

Supervisor Module Names

Supervisor Module Names for V2.0 have been updated in
Appendix B.

Program Preparation Example

Appendix D shows a detailed example of how to code and
prepare an interactive terminal program.

iv SC34-0312'

M;scellaneous Changes

This manual has been modified to include new function
and. to improve technical accuracy and clarity. Addi­
tional material and technical changes are indicated by
vertical bars in the left margin.

SC34-0312 v

HOW TO USE THIS BOOK

The material in thi!j section is a guide to the use of this book.
It defines the purpose, audience, andtconfent of the book, as
well as listing aids for using the book and background materi­
als.

PURPOSE

The IBM Ser i es/l Event Dr i ven Execut i ve System Gu ide,
SC34-0312 discusses system concepts and facilities. Examples
of system concepts presented in the book are the generation of
a stat i c system, cross-part i t i on commun i cat i on between
programs, and address translation. Examples of system faci li­
ties discussed are management of system resources, access
methods, device support, and error logging. The System Guide
also presents the details required for coding a tailored super­
visor and advanced app 1 i cat i on top i cs.

AUDIENCE

This book is written primarily for system and application
programmers. It does not include information for remote commu­
nications and advanced terminal applications.

The System Gu ide is intended for use by:

• Progiammers who need a general understanding of the Event
Dr i ven Execut i ve system

• Programmers concerned with coding applications or extend­
i ng the system capab iIi ties

• System programmers respons i ble for generat i ng a customi zed
system

• Programmers who wi 11 use the Indexed Access Method

HOW THIS BOOK IS ORGANIZED

This pUblication is organized in four parts, consisting of an
introductory overv i ew, system gene rat ion
description of the Indexed Access Method,
explaining how to extend system capabi lities.

vi SC34-0312

information, a
and mater i al

Part I. introduces you to the Event Driven Executive system and
its capabilities.

Part II contains system generation and configuration informa­
tion.

Par t I I I con t a ins bot han 0 ve r vie w 0 f the In d ex e d A C'C e ssM e tho d
and the deta i led i nformat i on necessary to wr i te appl i cat ion
programs us i ng the Indexed Access Method.

Part IV describes severa Is ways to extend the capabilities of
your system, such as modifying the session manager, using tape
labels, and using diagnostic aids and facilities.

Append i x A disc usses storage est i mat i ng.

Appendix B lists the supervisor module names (Version 1.1).

Append i x C lists the super v i sor modu Ie names (Vers i on 2).

Appendix D contains an example of how to code and prepare an
interactive terminal program.

The bibliography discusses the Event Driven Executive library
and lists related publications.

The Glossary def i nes terms.

The Common Index includes entries from all books in the Event
Driven Executive library.

In genera I, the System Gu ide is organ i zed accord i ng to the d i f­
ficulty and depth of the information offered. Early material
is overv i ew i nformat ion, fo llowed by more deta"i led i nformat ion
for s p e cia 1 i ze d use.

EXAMPLES AND OTHER AIDS

Throughout this book, both conceptual and coding examples are
used to c lar i fy system concepts and cod i ng techn i ques. Cod i ng
examples are fully executable portions of complete programs
that can be entered as shown. Coding illustrations are non­
executable portions of incomplete programs that show the cor­
rect format of all required parameters on a statement. Missing
code or code you must provide is indicated by a series of three
vertical or horizontal dots.

Several other aids are provided to assist you in using this
book:

SC34-0312 vii

• A Summary of Amendments lists the sign if i'cant changes made
to this publication since the last edition

• A Bibliography:

lists the books in the Event Driven Executive library
along with a brief description of each book and a
recommended.reading sequence

Lists related publications and materials

• A Glossary def i nes terms

• A Common Index which includes entries from each book in the
Event Driven Executive library

References to other manuals are made throughout this manual
using shortened titles. For the full title and order number of
manuals mentioned in the text, refer to the bibliography at the
back of th is book.

RELATED PUBLICATIONS

R e 1 ate d pub 1 i cat i 0, n s are lis ted i nth e bib 1 i 0 g rap h y •

SUBMITTING AN APAR

If you have a problem with the Series/l Event Driven Executive
services, you are encouraged to fill out an authorized program
analysis report (APAR) form as described in the IBM Series/l
Author i zed Program Ana lys is Report (APAR) User's Gu ide,
GC34-0099.

vii i SC34-0312

PART I - INTRODUCTION

Chaptet' 1. Ovet'v; ew
Licensed Program Descriptions

Basic Supervisor and Emulator
Uti lities •••••••••••
Macro Library/Host ••••••
Program Preparation Facility
Macro Library •.•••.•• . •••
FOR T RA N I V Com p i I era n d 0 b j e c t Sup par t Lib r a r y

Mathematical and Functional Subroutine Library
COBOL Compiler and Resident Library, and Transient

CONTENTS

1

3
4
4
5
5
5
6
6
6

L;brary 7
PL/! Camp i ler and Res i dent Library, and Trans i ent

Library ••••••••
Sort/Merge ••••.•
Series/l Macro Assembler
Multiple.Terminal Manager
Indexed Access Method
Series/l Data Collection Interactive PRPQ Support

Program Features ••••••.•
Multiprogramming, Multitasking Supervisor
Event Driven Language
Multiple Terminal Support
Timer Support •..••.•
Sensor Input/Output Support
Storage Requirements
Disk and Diskette Support
Tape Support (Version 2 only)
Binary Synchronous Communications Support
I/O Level Control (EXIO)
Communications Support
Program Preparation
Diagnostic Aids .•.••••

Application Support
Data Interchange

Operating Environment
Minimum Execution System Configuration
Minimum Program Preparation Requirements
Minimum Licensed Program Requirements

Install i ng the System ••••.••.

Chaptet' 2. Supet'v; sot' and Emulatot'
Program/Task Concepts and Structure

The Program •••.•••••••••
The Task ••..•••••..••.•.

• • e,

" .

Task Switching and Supervisor Control Routines
Task Def i nit i on and Contra 1 Funct ions
Sub rout i nes ..•.
Queue Processing
Timers

8
9
9

10
10
11
13
13
13
14
14
15
15
15
16
16
17
17
18
18
2.0
20
22
22
22
23
27

29
29
29
29
30
30
31
32
32

Contents ix

Serial Resource Control
T a s kE r r 0 rEx i t F a c i lit y
Single Task Program ••••
Multiple Task Programs • • • • • •••
An Example of Multiple Programs and Multiple Tasks
Multiple Program Structure ••••
Overlays ••••• • •••
Program Load i ng and Task Execut i on

Storage Management'
Storage and Part it ions

System Control Blocks

Chapter 3. Data Man,agement
I/O Funct ions •••••

. ' .
Terminal Support ••••
Terminals with Special Control Characters
Terminal I/O •••• ••• •• • ••••
Sensor I/O ••••

The EXIO Interface
Direct Access Storage Organization

Sector ••••
Volume
Directory
Data Set
Record
Access

Disk and Diskette Functions
Tape Functions (Version 2 only)
Data Set Nam i ng Convent ions
Storage Capacities

Disk/Diskette ' ••
Ta p e •••••

Defining Volumes
Diskette
Dis k •••••••••
Tape (Version 2 only)

"

Chapter 4. Operator Commands and ut; 1; t; es
Operator Commands •••••
Utilities •••••••••

Data Management utilities
Communication Utilities
Text Editing utilities
Diagnostic Utilities ••••
Graphics Utilities
Terminal Utilities
Program Preparation Utilities
The Job Stream Processor Ut iIi ty

Chspter 5. Program Preparat;on Fac; !;ty
Event Dr i ven Language Comp i ler
Linkage Editor •••••.••••••••

PART II - SYSTEM GENERATION AND CONFIGURATION

x SC34";"0312

. . .' . .

33
33
34
34
36
39
40
41
42
42
43

45
45
45
46
46
48
51
52
52
52
52
53
53
53
54
56
56
58
58
59
59
60
60
62

63
63
64
64
65
66
67
67
68
68
69

71
71
71

73

Chapter 6. System Confi gurati on ••••••
System Conf i gurat i on Statements ••••••

BSCLINE - Define a Binary Synchronous Line
DISK - Define Di rect Access Storage ••••
EXIODEV - Define EXIO Interface Device
HOSTCOMM - Def i ne Host Commun i cat ions Support
SENSORIO - Def i ne Sensor I/O Dev ices
SYSTEM - Def i ne Processor .
TAPE - Define Tape Device (Version 2 only)
TERMINAL - Define Input/Output Terminals
TIMER - Def i ne System Ti mer Features
$SYSCOM - Def i ne opt i ona 1 Common Data Area

Chapter 7. System Generat ion •• ••
Ge n era t·i n 9 the Sup e r vis 0 r • • • •

Step A - Allocate Requ i red Data Sets •••••
Step B - Edit $EDXDEF to Match Hardware Configuration
Step C - Speci fy Object Modules •••••
Step D - Assemble and Link Edit the Supervisor •••••
Step E - Format the Superv i sor •••••••••
Step F - Test the Generated Super v i sor •••••
Step G - Ver i fy the System Generat i on Process

Other Cons i derat ions ••••••••••••••
System Generat i on wi thout the Program Preparat ion
Facility ••••• " •••••••••••••••••••

Program Load i ng from Diskettes •••••••••••••
Automatic Application Initialization and Restart
I n i ,t i a liz i n g Sec 0 n dar y V 0 I u m e s ••• . • • • . •••••
Creating a Supervisor for Another Series/1 ••••
Samp Ie Con f i gurat ions ••••••••••••••••••

PART III - THE INDEXED ACCESS METHOD

Chapter 8. Overvi ew of the Indexed Access Method
Dev ices Supported •••••••••••••
Funct ions ••••••••

I/O Requests ••••• • •••••••••
The $IAMUT1 Utility ••••

Operat i on of the Indexed Access Method
Indexed Data Sets - Overv i ew

Data Set Format •••••••••••
Requesting Records

"-
Preparing to Execute Indexed Applications

Prepar i ng Programs ••••••••••••
Establishing the Data Set ••••••••

A Sample $JOBUTIL Procedure and Link Edit Control
$JOBUTI L Procedure ••••••••••••
Link Edit Control •••••••••••••••••

Chapter 9. Planning and Designing Indexed Applications
Connect i ng and Disconnect i ng the Indexed Data Set ••••
Load i ng Base Records •••••• •••• • •••
Process i ng ••••••••• • •••
Ma i nta i n i ng the Indexed Data Set •••••
Concatenat i ng Data Sets •••••

Contents

75
,75
76
78
82
83
84
86
94
96

112
113

115
115
116
117
118
124
125
126
127
128

128
129
129
132
132
133

143

145
146
146
146
148
148
148
151
154
155
155
156
158
158
158

159
159
160
161
165
167

xi

ALTIAM Subroutine
Handling Errors ••••••

Error Exit Facilities ••••
System Function Return Codes
The Data-Set-Shut-Down Condition
Dead locks and the Long-Lock-Ti me Cond it i on

Resource Contention
The Indexed Data Set

Prepar i ng the Data ••••••
Bu i ld i ng The Indexed Data Set
Data Set Format ••••

Storage and Performance
Storage Requirements
Indexed File Si ze
Performance

PART IV - EXTENDING THE SYSTEM CAPABILITIES

Chapter 10. The Sessi on Manager
Operational Overview •••••
Menus and Procedures ••••.•••

Pr i mary Opt i on Menu
Secondary Opt i on Menus
Procedures ••••••

Allocat i ng and Delet i ng Work Data Sets
Add i ng an Opt i on to the Sess i on Manager

Updat i ng the Pr i mary opt i on Menu ••••
Updat i ng the Procedure ••••••
Bu i ld i ng a $JOBUTI L Procedure

Chapter 11. Tape Organization
External and Internal Labels
Types of Internal Labels •••

Standard Labels ••••••••••
Labeled Tape Layouts
Labeled Tape Label Fields
Non-Labeled Tapes ••.•••••••
Non-Labeled Tape Layouts ••••••
Bypass Label Processing (BLP)

Tape Records ••••••••
Variable Length Records
Undefined Length Records

Tape Log Ent r i es •••••

Chapter 12. Usi ng Parti ti oned Data Sets
Data Set Allocation
Data Set Format
01 rectory Area •••••••••••
Member Area ••••
Display Control Member Format ••••
Us i ng $PDS in Vour"Program •••••
Member Control Block ••••••••
Command Descriptions

Chapter 13. Diagnostic Aids and Facilities

xi 1 SC34-0312

170
177
178
179
179
180
181
182
182
187
192
204
204
205
205

207

209
209
212
218
218
220
222
224
225
226
229

233
233
234
235
236
238
241
242
244
244
244
245
245

247
248
249
249
250
252
259
260
261

265

The Software Trace Table ••• ' ••••••••••
The Task Error Ex i t Fac il i ty •••••••

Check and Trap Handling - An Overview •••••
Us i ng the Ta~k Error Ex i t Fac i 1 i ty in Your Task

I/O Error Logging ••••
Recording the Errors
Printing the Errors

Chapter 14. Inter-Program Communi cati ons
Virtual Terminals •••••• • •••

Creating a Vi rtual Channel ••••
Establishing the Connection ••••
Accessing the Vi rtual Terminal
Loading from a Vi rtual Terminal
Inter-program Dialogue •••••••

Cross Part i t ion Serv ices •••••

.' . . .

Chapter 15. Miscellaneous Terminal I/O Considerations
Mod i fy i ng the IOCB •••••• • •••••
Access i ng a Stat i c Screen •••••
Us i ng Formatted Screen Images ••••
End of Forms on 4973 and 4974 Printers
Reading Modified Data on the 4978 Display

Chapter 16. Advanced Topi cs • • • • • • ••••
Translating Compressed/Noncompressed Byte Strings

$UNPACK Sub rout i ne ••••••••••••••
SPACK Subroutine ••••••••• • •••••

Terminals Connected via Digital I/O
The $DISKUT3 Data Management Ut i 1 i ty

Special Considerations
Input to $DISKUT3
$DISKUT3 Return Codes

DSOPEN Subroutine
SETEOD ••••••••••

Calling Sequence
Process i ng the EOV Cond it ion •••••

Reading End-of-Volume (EOV) Labels
Writing End-of-Volume (EOV) Labels
Console Output for EOV Processing
Input EOV Processing Example

Sample Use of BLP to Access All Label Fields

Append i x A. storage Est i mat i ng
Super v i sor ••••••••
Utility Programs
Application Programs

Appendix B. VI.I Supervisor Module Names (CSECTs)

Appendix C. V2.0 Supervisor Module Names (CSECTs)

Append i x D. Prog ram Preparat i on Example •• ••
Part I • Terminal Pro g r a mC 0 din g Example ••••

Processing the Initial Operator Instructions

Contents

265
268
268
269
270
270
275

279
279
280
280
281
281
282
286

293
295
297
300
307
307

309
309
309
310
312
315
315
316
319
322
324
325
326
326
327
327
329
331

333
333
342
344

347

357

367
369
369

xii i

Formatt i ng the Stat i c Screen Image
Process i ng Operator Input •••••

Part II. Define Formatted Screen Image Using $IMAGE
Creat i ng the Image Data Set ••••
Load i ng $ IMAGE and Enter i ng Commands . "

Creat i ng the Image ••• ' •••••••
Sav i n9 the Image Created •••••• • •••

Part I I I. Prepare Program Us i ng Sess i on Manager
Step 1. Create Source Module Us i ng $FSEDIT
Step 2. Compi Ie Source Module Using $EDXASM
Step 3. Link Edit Object Modules Using $LINK ••••
Step 4. Format Object Modules Using $UPDATE

Part IV. Prepare Program Us i ng $JOBUTI L •••••••

B;bl;ogt'&phy •••••••••••••••
Event Dr i ven Execut i ve Library Summary

Event Driven Executive Library
Summary of Library ••••••••••
Read i ng Sequence •••••••••• • •••

Other Event Driven Executive Programming Publications
Other Series/l Programming Publications •••••••••
Other Programming Publications ••••
Series/l System Library Publications

Glossat'y

Common Index

xiv SC34-0312

373
377
387
388
389
390
395
396
397
397
402
407
408

419
419
419
420
422
423
423
424
424

427

439

LIST OF FIGURES

Figure 1. Si ngle task program structure ••••
Figure 2. Single task application example •••••
Figure 3. Multitasking program structure ••••
Figure 4. Executing multiple programs and multiple tasks
Figure 5. Program overlays •••••••••••••••
Figure 6. Program over lays 'i n Ser i es/1 storage
Figure 7. Sensor dev ice connect ions ••••
Figure 8. DASD logical organization •••••••••
Fig u r e 9. Lib r a r y or i gins ••••••••••
Figure 10. Example of V2.0 Procedure $SUPPREP on ASMLIB
Figure 11. Example of $EDXDEF
Fig u reI 2. E x amp 1 e of $ E D X D E F ••••• • • • • • • •
Figure 13. Example of $EDXDEF ••••• • ••••••
Figure 14. $EDXDEF and Multiple Terminal Manager Volume
Definition •••••.•••••••••••••••••••

Figure 15. Example of $EDXDEF •••••••••••••••
Figure 16. Example of $EDXDEF with date format specified
Figure 17. Example of $EDXDEF ••••
Figure 18. Example of $EDXDEF ••••
Figure 19. Example of $EDXDEF •••••
Figure 20. Examp Ie System Env ironment
Figure 21. Load i ng and Insert i ng Records in an Indexed

Data Set
Figure 22. Protocol for Sequential Updating
Figure 23. Indexed Data Set Block Types
Flgure 24. Example of Primary-Level Index Block
Figure 25. Example of Second-Level Index Block
Figure 26. Example of Higher-Level Index Block
Figure 27. High-Level Index Block Structure
Figure 28. Example of a data block ••••••
Figure 29. Sess i on manager storage usage ••••
Figure 30. Session manager primary and secondary options
Fig u r e, 3 1. (P art 1 0 f 2) Men usa n d Pro c e d u res
Figure 32. (Part 2 of 2) Menus and Procedures
Figure 33. Invok i ng EDXASM • • • • • •••••••
Figure 34. $SMALLOC data set •••••••••
Figure 35. $SMDELET data set •••••••••
Figure 36. Sess i on manager pr i mary opt i on menu •••••
Figure 37. Session manager $FSEDIT primary option menu
Figure 38. $SMPPR 1M opt i on menu with opt i on 10 added

(Part 1 of 2) •••••• • •••••••••••
Figure 39. $SMPPR 1M opt i on menu with opt i on 10 added

(Part 2 of 2) •••••• • •••
Figure 40. Job $DISKUT1 •••••••••••••••
Fi gure 41. Job $SMPPAV ••••••••••••
Figure 42. Software Trace Table Structure
Figure 43. $IMAGE Disk Storage Format
Figure 44. $DISKUT3 return codes •••••
Figure 45. (Part 1 of 3) V1.1 Supervisor Storage

Requ i rements •••••••••••••••••••••
Figure 46. (Part 2 of 3) VI. 1 Superv i sor Storage

List of Figures

34
35
36
37
40
41
50
55
6,1

125
133
134
135

136
137
138
139
140
141
149

150
164
193
196
198
199
199
20'1
211
213
219
220
222
223
224
226
227

228

229
230
230
267
311
319

334

xv

Requirements
Figure 47. (Part 3 of

Requirements
Figure 48. (Part lof

Requirements
Figure 49. (Part 2 of

Requirements
Figure 50. (Part 3 of

3)·V1.1 Supervisor Storage

3) V2.0 Supervisor Storage

3) V2.0 Supervisor Storage

3) V2. 0 Super visor Storage
Requ i rements ••••••••••••••••

Figure 51 •.. F lowchartof program operat ions
Figure 52. Code for lOeB's and attent i on handlers ••••
Figure 53. Code to process initial operator instructions
Figure 54. Screen showing initial operator instructions
Figure 5.5. Stat i c-screen i mage used by program
Figure 56. Cod i ng to read stored screen image
Figure 57. Code to transfer stored i mage to screen
Figure 58. Al ternate cod i ng techn i que •••• • •••
Figure 59. S c r e en, wit hall d a t a entered • • • •
Figure 60. Code to process ENTER key
Figure 61. Screen contents after ENTER key is used
Figure 62. Screen contents after reply of YES to QUESTION
Figure 63. Screen contents after reply of NO to QUESTION
Figure 64. Code to process the PF keys
Figure 65. Screen contents after PF3 is used
Figure 66. ,Complete program (Part 1 of 2)
Figure 67. Comp lete program (Part 2 of 2)
Figure 68. Allocation of screen image data set (VIDE01)
Figure 69. $ IMAGE commands / •••••••••••••••••
Figure 70. $IMAGE PF keYf~'1ctions upon edit mode entry
Figure 71. Sc reen with prot'ected and null fie Ids def i ned
Figure 72. Screen contents after ENTER key use •••••
Figure 73. Screen with unprotected fields defined'
Figure 74. Save screen image created and end $IMAGE
Figure .75. Program preparat i on steps •••••
Figure 76. $EDXASM i nvocat i on •••••••••
Figure 77. Compilation listing (Part 1 of 3).
Figure 78. Compilation listing (Part 2 of 3).
Figure 79. Compilation listing (Part 3 of 3).
Figure 80. $AUTO data set list i ng " •••
Figure 81. Link edit control statements (LINKSTAT)
Figure 82. $LINK invocation ••••• • •••••
Figure 83. Link edit listing ••••••••• • ••••
Figure 84. $UPDATE i nvocat ion ••••••••
Figure 85. Batch Job Processor procedure data
Figure 86. $JOBUTIL Execution Listing (Part 1
Figure 87. $JOBUTIL Execution Listing (Part 2
Figure 88. $JOBUTIL Execution Listing (Part 3

'Figure 89. $JOBUTIL Execution Listing (Part 4

xvi Se34~0312

set
of 4)
of 4)

of 4)

of 4)

.'. .

336

337

338

340

341
368
369
370
371
373
374
376
377
378
379
380
381
382
383
384
385
386
388
389
390
392
393
394
395
396
398
399
400
401
403
404
405
406
407
409
414
415
416
417

PART I - INTRODUCTION

Part I is organized into five chapters which introduce you to
the Event Driven Executive system and its capabi lities.

PART I - INTRODUCTION 1

2 SC34-0312

CHAPTER 1. OVERVIEW

The Event Driven Executive system simplifies the implementa­
tion of application programs on the Series/I. Event driven
implies that the system is activated by interrupts. An inter­
rupt can be, for example, an operator press i ng the ENTER key on
a terminal or an external process interrupt.

The Event Driven Executive consists of the following IBM
Series/1 licensed programs:

• Event Driven Executive Basic Supervisor and Emulator
57I9-XSI or 5719-XS2

• Event Driven Executive Utilities -- 5719-UT3 or 5719-UT4

• Event Driven Executive Macro Library/Host -- 5740-LM2 or
5740-LM3

• System/370 Program Preparation Facilities for Series/I --
5798-NNQ

• Event Dr i ven Execut i ve Host Commun i cat i on Fac i 1 i ty
5796-PGH

• Event Driven Executive Program Preparation Facility
5719-XX2 or 5719-XX3

• Event Driven Executive Macro Library
5719-LM6

5719-LM5 or

• FORTRAN IV Compi ler and Object Support Library -- 5719-F02

• Event Driven Executive Mathematical and Functional Subrou­
tine Library (MFSL) --5719-LM3

• Event Driven Executive COBOL Compiler and Resident Library
-- 5719-CB3, and Event Dr i ven Execut i ve COBOL Trans i ent
Library -- 5719-CB4

• Event Driven Executive PL/! Compiler and Resident Library
-- 5719-PL5, and Event Driven Executive PL/I Transient
Library -- 5719-PL6

• Event Dri ven Executi ve Sort/Merge -- 57I9-SM2

I· Event Dri ven Executi ve Macro Assembler -- 5719-ASA

• Event Driven Executive Multiple
5719-MSI

Terminal Manager

• Event Dri ven Executi ve Indexed Access Method - 5719-AM3

Chapter 1. Overview 3

The Basic Supervisor and Emulator is required for all Series/l
processors (4952, 4953, or 4955) that execute Event Driven
Executive application programs or utilities. You must also
have the licensed ~rograms required for program development.
Pro g ram de vel 0 p m e'n tin c Iud e s b u i I din g ,t h e Ii a sic Sup e r vis 0 ran d
Emulator and developing application programs using either the
Event Driven Language compiler, the Series/I Macro Assembler
and Macro Library, the COBOL Compiler/Resident Library and
Trans i ent Library, the PL/I Comp i ler/Res i dent Library and
Transient Library, or the FORTRAN IV Compiler and Object Sup­
port Library. You can assemble and execute application pro­
grams wh i Ie other programs or ut iii ties are runn i ng on the same
Series/I.

The Basic Supervisor and Emulator allows you to process multi­
pie, independent, concurrent appl i cati on programs wi th Ii mi ted
concern for, or knowledge of, either the superv i sor program or
other application programs that share the same system.

The Event Driven Executive is equally appropriate for:

• A small unattended Series/I, without disk storage, dedi­
cated to a single application

• Multiple large Series/l's, each serving several terminals
and several realtime applications, which can be connected
to a System/370

• Commercial transaction processing and event driven appli­
cations

LICENSED PROGRAM DESCRIPTIONS

Bas;c Superv;sor and Emulator

The control program, or supervisor, manages the resources of
the Series/l and your application programs that execute on the
Ser i es/l. Th is support inc I udes:

• An emulator and instruction set for coding application
programs

• The ability to initiate an application program either
from a terminal or from another application program that
can pass parameters to the new program

• Multitasking within each
preemptive task switching

4 SC34-0312

application program, with

• Interval timing, with timing precision based on require­
ments of the app I i cat ions

• Multiple terminal support allowing terminals to be
dynam i ca 11 y ass i gned to the app 1 i cat i on requ i ring them

• A relocating loader allowing application program to exe­
cute in any ava; lable main storage area

• The ab iIi ty to operate independent I y of a host computer

• Support for a wide range of Ser i es/1 dev ices

I. Support for 4969 tape device - Version 2 only (5719-XS2)

utilities

The system utilities provide interactive support for tailored
supervisor generation, source module preparation, disk
initialization, data set/volume maintenance, program prepara­
t i on, and other system funct ions.

Rem6te Management Utility support is provided in Version 2
(5719-UT4) only.

Macro Library/Host

The Macro Library/Host is a set of libraries and procedures to
be installed on a System/370 to allow Event Driven Language
programs to be comp; led and Ser i.es/1 assemb ler programs to be
assembled on a host machine. The macros support all Event
Dr i ven Execut i ve funct i ens prev i ded by the Program Preparat i on
Facilities for Series/1. This licensed program operates in
conjunction with the System/370 Program Preparation Facility.

Program Preparation Facility

The Program Preparation Facility consis~s of programs that
allow you to compile and link edit Event Driven Language pro­
grams concurrently with the execution of other programs (in­
cluding other Program Preparation Faci lity programs). You can
also reconfigure, assemble, and link edit tailored supervi­
sors.

Chapter 1. Overview 5

If you code only Event Driven Language instructions, all appli­
cat i on program preparat i on can be performed us i ng th is pro­
duct.

Macro Library

Th is macro library, in conj unct ion with the Ser i es/l Macro
Assembler, allows you to assemble application programs having
ami x of Event Dr i ven Language instruct ions and Ser i es/l assem­
bler instructions. This library can also be used to create cus­
tomized supervisors.

FORTRAN IV Compiler and Oblect Support Library

FORTRAN IV is a hig~ level, mathematically oriented language
for manipulating numerical data and formatting input/output
operat ions. You can wr i te FORTRAN IV source programs for
scientific and engineering applications and general problem
solving. The IBM Series/l Event Driven Executive FORTRAN IV
language is based on the American National Standard FORTRAN,
X3.9-l966, with the exception of object time FORMATS, adjusta­
b Ie d i mens ions, COMPLEX data type, G-format spec if i cat ions,
and two-level FORMAT parenthesis.

When the FORTRAN IV compiler is installed on your Series/l,it
transforms FORTRAN IV source programs into machine
instructions. The compiler executes under the Basic Supervi­
sor' and Emulator to produce an object module for the Program
Preparation Facility linkage editor that can then be processed
by the $UPDATE ut iii ty. After $UPDATE process i ng, your program
executes under the Basic Supervisor and Emulator.

Publications:

• IBM Series/l FORTRAN IV Language Reference, GC34-0l33-l

• IBM Ser i es/l Event Dr i ven Execut i ve FORTRAN IV User's
Guide, SC34-03l5

Mathematical and Functional Subroutine Library

The Mathematical and Functional Subroutine Library (MFSL) is a
set of subroutines for IBM Series/l Event Driven Executive
appl i cat i on programs wr i tten in FORTRAN IV, or Event Dr i ven
Language, or Assembler Language. MFSL is a requirement for
Event Driven Executive FORTRAN IV and support is provided for

6 SC34-03l2

funct ions such as:

• Mathematical functions to aid the application programmer,
such as sine, cosine, logarithms and exponentiation func­
tions, maximum and minimum functions, and modular arithme­
tic.

• Conversion routines to convert numeric data from EBCDIC to
a Series/1 internal format suitable for mathematical oper­
ations.

• Error checking.

• Commercial subroutines to provide output formatting, data
conversion, variable-length decimal arithmetic and utili­
ties.

Publications:

• IBM Ser i es/1 Mathemat i cal and
Library User's Gu i de SC34-0139

Functional Subroutine

COBOL Compiler and Resident Library, and Transient Library

COBOL offers a wide range of commercial functions, plus exten­
sive facilities for handling input and output, sorting and
merging data files, accessing indexed data files, structuring
sdurce and object programs, and debugging. Also suppor,ted is
local communication with Series/1 devices.

The COBOL compiler produces an object module which, along with
the required COBOL support routines, is input to the Program
Preparation Facility linkage editor. The linkage editor output
is then processed by the $UPDATE ut iIi ty to produce an executa­
ble relocatable load module. After $UPDATE processing your
program executes under the Basi c Superv i sor and Emulator.

IBM Series/1 Event Driven Executive COBOL is designed accord­
ing to specifications for American National Standard COBOL
X3.23-1974, as understood and interpreted by IBM as of March
1979, with the exception of the RERUN Clause. IBM Series/l
Event Driven Executive COBOL exceeds the Low Intermediate Lev­
el COBOL as defined by FIPS 21-1.

Publications:

• IBM Ser i es/1 COBOL Language Reference, GC34-0234

• IBM Ser i es/l Event Dr i ven Execut i ve COBOL Programmers
Guide, SL23-0014

Chapter 1. Overview 7

I PL/I Compiler and Resident Library, and Transient Library

PL/I allows applications to use the full function capabilities
of the hardware and operating system. The PL/I language is
extensive in function, permitting development of applications
that can be easily modified and maintained. Highlights of the
PL/I offering include:

I, Commun i cat ions support

I. Indexed Access Method support

I. Full-screen support

I· Sort/Merge support

• Commercial programming functions

I. Dynamic allocation and freeing of storage·

I· Optimi zed object code

I· Magnet i c tape support

PL/I's fixed decimal facility allows you to process large and
fract i onal numbers on the IBM Ser i es/l 4952 and 4953 processors
wh i ch do not have the float i ng po i nt feature.

The PL/I compiler produces an object module which, along with
the requ ired PL/I support rout i nes, is input to the Program
Preparation Facility linkage editor. The linkage editor output
is then processed by the $UPDATE uti lity to produce an executa­
ble relocatable load module. After $UPDATE processing your
program wi 11 execute under the Basic Supervisor and Emulator.

IBM Ser i es/l Event Dr i ven Execut i ve PL/I is a subset of the
American National Standard Programming Language PL/I (ANSI
X3.53-1976), as understood and interpreted by IBM as of July
1979, plus multitasking language extensions.

Publications:

8

IBM Series/l Event Driven Executive PL/I Language Refer­
ence, GC34-0147

IBM Series/l Event Driven Executive PL/I User's Guide,
SC34-0148

SC34-0312

Sort/Merge

The Sort/Merge licensed program sorts and merges records from
up to eight input data sets into one output data set in either
ascending or descending order. You can specify one or more
control fields in the records to be sorted. The Sort/Merge
program compares the control fields to determine the relative
sequence of the records.

The Event Driven Executive Sort/Merge program executes under
the Basic Supervisor and Emulator.

Publications:

• IBM Series/l Event Driven Executive Sort/Merge: Program­
mer's Guide, SL23-0016

• IBM Series/l Event Driven Executive Sort/Merge: Specifica­
t ions Sheet Form, GX23-0009

Ser;es/l Macro Assembler

The Macro Assembler converts text data sets containing
machine, assembler, and macro instructions that have been
coded in the Series/l instruction set into object modules. The
object modules can then be processed by the linkage editor.

When the assemb ler is used in conj unct i on with the Macro
Library, applications coded in the Event Driven Language can
also be processed by the Macro Assembler, including customiz­
ing the supervisor. You can also include in the macro library
your own macros for commonly used routines. The Macro Assembler
and the Macro Library can be used in place of the Program Prepa­
ration Facility ($EDXASM).

With the Macro Assembler you can assemble device support mod­
u les or modu les that mod i fy super visor funct ions. You can a Iso
assemble exit routines written in Series/l Macro Assembler
language. The resulting object module is input to the Program
Preparat i on Fac iIi ty linkage ed i tor, together with your app 1 i­
cations generated in Event Driven Language instructions, PL/!,
FORTRAN IV, and/or COBOL. Your program will execute under the
Basic Supervisor and Emulator after it has been processed by
the library update ut i 1 i ty ($UPDATE).

Publications:

• IBM Series/l Event Driven Executive Macro Assembler,
GC34-0317

• IBM Ser i es/1 Macro Assemb ler Reference Summary, SX34-0076

Chapter 1. Overview 9

Multiple Terminal Manager

The IBM Series/l Event Driven Executive Multiple Terminal
Manager provides a set of high level functions that simplify
the design, implementation, and maintenance of
transaction-oriented applications. High level language
programs (COBOL, PL/I, FORTRAN IV, or Event Driven Language)
can execute in an interactive environment, where one or more
applications can run concurrently using one or more display
devices. Addittonal interfaces are provided for indexed or
direct files (access to indexed files requires the Indexed
Access Method) and an operator interface for functions such as
sign on, connect or disconnect, terminal status reports, and
printing the contents of the transaction program library.

Publications: Refer to the Multiple Terminal Manager topics in
the master index of this pUblication.

Indexed Access Method'

The Indexed Access Method provides data management facilities
that support indexed file ope rat ions. It allows you to bu i ld,
access, and maintain records in indexed data sets via a prede­
termined field called a key. An index of keys provides fast
access to records in an indexed data set. The access method
supports a high degree of insert/delete activity, providing
both direct and sequential access to the data from multiple,
concurrently executing programs. Applications that use the
Indexed Access Method can be programmed in the Event Dri ven
Language, PL/I, or in COBOL. It is supported by the Sort/Merge
licensed program, which will accept Indexed A~cess Method data
sets as i n put f i 1 e s • Also pro v ide dis a uti Ii t y to d e fin e
indexed data sets. This uti lity can be invoked from a terminal
or from a program.

The Indexed Access Method provides keyed access to data to
support a var i ety of appl i cat ions, rang i ng from batch process­
i ng to interact i ve appl i cat ions.

The data f i 1 e organ i zat i on prov ides direct and sequent i a 1
processing of files. This is accomplished by using cascading
index techniques for direct processing and by sequence chain­
ing of the data blocks for sequential processing.

The access method supports files which have high add/delete
activity (such as open order files) with nominal performance
degradatio~. This is accomplished by distributing free space
for additions throughout the file, by updating and inserting
additions in place~ and by dynamically reclaiming space after
deletions.

10 SC34-0312

Indexed Access Method supports multiple programs and tasks
shar i ng the same files. In a shared env ironment, data i ntegr i­
ty is maintained by record and block level locking to prevent
a c c e sst 0 are c,o r d w h i lei tis be i n g mo d i fie d •

Publications: Refer to the Indexed Access Method topics in the
master index of this publication.

I Series/l Data Collection Interactive PRPQ Support

The Series/1 Data Collection Interactive PRPQ (P82600)
provides Series/1 programming support for attachment of the
5234,5235,5236 Data Entry Stations. Value Read (5239) is sup­
ported; also the output of up to 8 bytes of data from the
Series/l to the 5235/5236 Data Entry Station displays. These

.I"

bytes can cons i st of any dig it and some alpha characters.

Support is prov i ded for:

1. Personalization functions:

• v i a conso Ie prompt i ng

• transportable and modifiable
nitions

configuration

• Auto IPL, using the last executing configuration

2. IOCS functions:

• Wr i te 4 characters - Ti me-of-Day

defi-

• Write 8 characters - display of any numeric and some
alpha characters

• Initiate online test

• Read 180 byte buffer

• Set audible alarm/contact closure

• Error handling

3. Data Rout i ng/Formatt i ng funct ions:

• Route to storage

• Routt:! to Disk/Diskette

opt i ona 11 y, common data with buffers

Chapter 1. Overview 11

Optionally, sequenced buffers

Single output format per controller

Incomplete transactions written
records

Diskette output 5231-002 compatible

with regular

This product has potential uses in data collection time and
attendance, limited data base inquiry and interaction, and
plant and process control type applications.

Publications

I ·

12

IBM Series/l Data Collection Interactive Programming RPQ
P82600 Users Guide, SC34-1654

SC34-0312

PROGRAM FEATURES

Mult;programm;ng, Mult;task;ng Superv;sor

The Event Driven Executive Supervisor and Emulator controls
the execution of your application programs. It is a multipro­
gramming supervisor that is capable of controlling concurrent
program execution. Some of the design features are:

• Up to 510 task priorities consisting of 255 priorities
within each of two hardware levels

• A storage efficient instruction emulator that is table
driven

• Prov i s i on for i nterprogram commun i cat i on

• Capability for automatic
outage

restart following power

• Storage management support for storage sizes greater than
64K bytes

• The capab i 1 i ty for concurrent execut i on of

Multiple applications

Utilities

Program preparation

Event Dr;ven Language

The Event Dr i ven Language prov ides dynami c control of oper­
ation sequencing, calculations, and decision making. It has
the following features:

• Integer and floating-point calculations

• Logical and shifting functions

• Structured programming functions: IF,
UNTIL, DO WHILE

• Interval timing and time of day functions

• Task control and synchronization

THEN, ELSE, DO

Chapter 1. Overview 13

• Generalized binary synchronous communication capability
modeled after as/BTAM, for basic.read/write to other sys­
tems

• Assembler language subroutines

• Data definition

• Program control

• Graphics

• Queue processing

Mult;ple Term;nal Support

The Event Driven Executive terminal support is as device inde­
pendent as possible. The following devices are supported:

• IBM 4978 Di splay Stat i on

• IBM 4979 Display Station

• IBM 3101 Display Terminal

• IBM 4973 Line Pr inter

• IBM 4974 Matrix Printer

• IBM 2741 Communications Terminal

• Graph i cs term ina I (Tektron i x 1 or equ i va lent)

• Teletype 2 ASR 33/35 (TTY) or equi valent

T;mer Support

The Event Driven Executive supports the following timers:

• IBM Feature #7840 Timer Attachment

• IBM 4952 processor nat i ve timer

1 Reg i stered trademark of the Tektron i x Corporat ion.
2 Registered trademark of the Teletype Corporation.

14 SC34-0312

Sensor Input/Output Support

The Event Dr i ven Execut i ve supports the Ser i es/l sensor I/O
devices. The following functions are avai lable:

• Analog input/output, digital input/output, process
interrupt

• Sequential and random addressing of devices

• External synchronization

• Shar i ng dev ice groups and subgroups between programs

• Relay or solid state multiplexing

• Multi-range analog input

• A program for test i ng your sensor I/O dev ices

storage Requirements

The supervisor occupies at least 12K bytes of storage. lhe
actual amount depends upon the support you requ ire for your
application. Typical supervisor storage requirements are 24K
to 32K bytes. The rema i n i ng storage is ava i lable for your
application programs. Each Event Driven·Language instruction
requ i res an average of six to eight bytes of storage.

Disk and Diskette Support

The following Series/1 disk and diskette units are supported:

• 4964 Dis ke t t e Un i t

• 4966 Dis k et t e Mag a z i n e Un its

• 4962 Disk Storage Unit (Models 1, 1F, 2, 2F, 3, and 4)

• 4963 Disk Subsystem (Models 23A, 238, 29A, 298, 58A, 588,
64A, and 648)

The following disk and diskette functions are avai lable:

• Fixed head support for system and for application pro­
grams (disk only)

Chapter 1. Overview 15

e Multiple logical volumes on a physical disk or in a
diskette magazine unit

e Sequent i a I or random access

e In i t i a I Program load text

Tape Support (Vers;on 2 only)

I The Series/l Event Driven Executive 4969 Magnetic Tape Subsys­
tem supports the fo llow i ng:

I ·
I ·
I ·

Up to four IBM 4969 tape drives attached to each tape con­
troller

9 track tape drives with either vacuum mechanical
take-up arm

Tape drives of 800 BPI NRZI mode, 1600 PE recording mode,
or dual mode

The 4969 supports the following:

I e Standard label tapes (Sl) (DOS/VS compatible)

I e Unlabeled tapes (Nl)

I e Bypass label processing (BlP)

B;nary Synchronous Communications Support

T'h e Eve n t D r i v e n E x e cut i v e has the f 0 1 low i n g bin a r y s y n c h r 0 -

nous communications capabilities:

e Multiple BSe medium speed, single line feature cards
.Feature 2074

eM u 1 tip 1 e B S Chi g h s pee d, sin 9 I eli n e f eat u r e car d s - - F e a -
ture 2075

e Multiple BSe 8-line control feature cards --.Feature 2093
(each with one or two BSe 4-line feature cards -- Feature
2094)

e Point-to-point, leased or switched lines (switched
lines prov i de auto answer and manua 1 d i ali ng)

e Multipoint operation as either master or tributary

16 Se34-0312

(

• Transparent mode of ope rat i on

• Lim i ted conversat i ona 1 mode of operat ion

• Automatic retry

I. Remote Management Uti lity support (Version 2 only)

I/O Level Control (EXIO)

The I/O level control functions CEXIO instructions) allow you
to control, at the device level, any device attached to the
system that meets the standard I/O interface. The EXIO
instructions provide the capability to control devices not
otherwise accessible using the Event Driven Language
instructions. You also may use the-EXIO interface to support
standard dev ices ina non-standard manner.

Communications Support

Communications support enables you to communicate with other
processors. The following functions are available:

• Generalized binary synchronous support for processor-to­
processor communications

• Multiple lines in point-to-point, switched, multi-
po i nt master, or mu I t i po i nt tr i butary

• In conj unct i on with the Host Commun i cat ions Fac iIi ty IUP,
direct read/wr i te access to host files and direct job
submission to a host batch processor over a leased line,
us i ng the s i ngle-l i ne BSC adapter

• Commun i cat ions capab iIi ty with other IBM systems:

Series/1

System/3

System/32

System/34

5110

Chapter 1. Overview 17

System/360

System/370

• Rem 0 t e job e n try cap a b iii t y toR e m'o t e Job E n try f a c iii tie s
on System/370

Program Preparation

Event Driven Executive program preparation support allows you
to assemble and link edit programs while other tasks are exe~
cut i n g , Yo u are not lim i ted . to a p p I i cat i on 'de vel 0 p m e nt • ' Yo u c an
also configure, assemble, and link edit tailored supervisors,
Program preparation support includes:

• The Event Dr i ven Language comp i ler

• The Series/l Macro Assembler

• The Host Preparat ion Fac iii ty

• The linkage ed i tor

• The text e d ito r.s

• The obj ect reformatt i I')g programs
I

The PL/I, FORTRAN IV, COBOL comp i lers and res,i dent Ii brar i es,
the PL/I and COBOL transient libraries, and the Mathematical
and ,Functional Subroutine Library are also avai lable for pro­
gram preparat ion.

Diagnostic Aids

The d i agnost i c aids are a set of programs and ut iii t i,es that
can improve the process of error detection and correction for
both hardware and software errors. Some of these programs are
independently executable utilities; others are resident in the
supervisor.

The hardware-oriented aids provide I/O errorloggi,ng, sensor
I/O test i ng, trac i ng of BSC line act i vi ty, and ut iii ty programs
to format and pr i nt the trace output.

The software-oriented aids provide an interactive application
debugging tool; operator commands to display and patch stor­
age; a program exception trace; and utilities for mdnitoring
exception events, dumping storage to a data set, and printing
the data set.

18 SC34-0312

Depending upon the type of errors your system is encountering
and your application requirements, you can select the appro­
priate diagnostic aids.

The following aids are provided:

• $BSCTRCE - traces the I/O act i vi ties on a. g.i ven BSC line

• $BSCUT1 - formats the $BSCTRCE file·

• $BSCUT2 - ver if i es the system's BSC conf i gurat i on

• $D - displays storage in hexadecimal format

• $DEBUG - prov ides interact i ve program debugg i ng capab i 1 i ty

• $DISKUT2 - formats the data recorded by $LOG

• $DUMP - pr i nts storage dumps taken by' $TRAP

• $IOTEST - tests the operation of sensor I/O devices

• $LOG - records I/O errors

• $P - mod if i es storage

• $TAPEUT1 - general tape uti lity functi·ons (Version 2 only)

$TRAP - detects exception events and dumps storage

• Trace Table - contains data concerning program exceptions

For further information concerning the diagnostic aids, refer
to the common index of this publication.

Chapter 1. Ove r v·i ew 19

APPLICATION SUPPORT

The Event Driven Executive contains a system supervisor that
controls the execution of your applications. The supervisor
controls the execution of multiple tasks so they can operate
concurrently. The Event Driven language is provided for writ­
ing application programs. A key design feature is the support
of multiple independent (time or event driven) applications
with min i mum interact i on imposed by the system.

The fo llow i ng categor i es of app I i cat ions are supported:

• Realtime data acquisition and control

• Data reduct i on and report generat i on

• Program preparat i on and test i ng

• Commercial applications

• Communications applications

The Event Driven Executive via multiprogramming allows multi­
ple application programs within a single computer. The total
number of s i mu I taneous I y ope rat i ng app I i cat ions depends on the
data rates', program complexities, and the hardware configura­
tion.

Data Interchange

The data interchange or exchange funct ion prov ides:
..

• The ability to transmit data to and from a host with BSC
support, and to 1 n 1 t 1 ate host program execut 1 on us i ng
remote job entry support

• The ab i 1 i ty to transm it data to and from a host; to
initiate program execution at the host from a Series/l
terminal or from your program, and to synchronize program
events on the host and Ser i es/l us i ng the Host Commun i­
cat ions Fac i 1 i ty IUP (i nsta lIed user program)

• Support of multiple Series/l Event Driven Executive
systems by a sing Ie host

• Interchange of data through the use of basic data exchange
formatted type diskettes. Th is funct i on prov i des data
transfer capability to and from other systems which read
and wr i te the bas i c data exchange diskette.

20 SC34-0312

• The 4969 Magnetic Tape Subsystem support can be used as a
data exchange method between systems. The following modes
of exchange are possible for 9-track 800/1600 BPI tapes:

Non-labeled

Standard labeled

other logical layouts may be processed by Bypass Label
Processing

Chapter 1. Overview 21

OPERATING~ENVIRONMENT

Minimum Execution System Configuration

For Series/l program execution with full multiprogramming
capability, the minimum hardware requirements are:

• One of the following:

4952 Processor with 32K bytes of storage

4953 or 4955 Processor with 16K bytes of storage

• 4964 Diskette Unit or 4966 Diskette Magazine Unit

The floating-point computational and conversion capabilities
of the Event Driven Executive require the hardware floating­
point feature of the 4955 processor (#3920).

The use of the timer funct ions requ i res the timer feature
(#7840), for processors other than the 4952.

The three-dimensional capability of
Processor Ut i 1 i ty requ i res a 4955
floating-point feature (#3920).

the Graphics Display
processor with the

A limited function (multitasking only) system is also feasible
with a 16K-byte processor and no disks, diskettes, or termi­
nals.

Minimum Program Preparation Requirements

The minimum Series/l configurati,on for preparation of Event
Dr i ven Execut i ve programs is:

• 4953 or 4955 processor with 48K bytes of storage or 4952
processor with 64K bytes of storage

• 4964 0 i skette Un i t or 4966 Diskette Magaz i ne Un it

• 4962 Disk storage Unit or a 4963 Disk Subsystem

• 4973 Line Pr inter or 4974 Matr i x Pr inter

One of the following:

4978 Display Station

2' 2 S C 34- 0 3 1 2

4979 Dis play Stat i on

3101 Display Terminal or equivalent teletypewriter
device

M;n;mum L;censed Program Requ;rements

The programs you require depend upon your application and which
language you will use to code your applications. The choices
are COBOL, FORTRAN IV, PL/I, Event Driven Language, or Macro
Assembler Language.

The first requirement is the Basic Supervisor
Then, based upon your choice of languages and
work, the fo llow i ng can be used as gu ide lines:

• COBOL

and Emulator.
your type of

Program preparation requires the COBOL Compiler and Resi­
dent Library, the Utilities, and the link editor of either
the Program Preparation Facility or the Series/1 Macro
Assembler. It allows you to:

Install the COBOL Compiler and Resident Library and
the COBOL Transient"Library

Allocate data sets

Enter source programs

Compile

Link edit

Format screens

Execution and test require the COBOL Transient Library and
the Ut i lit i es. Dur i ng execut i on and test, you may:

Use d i agnost ic aids

Load programs

Back up and copy data sets

I· P L/ I

Program preparation requires the PL/I Compiler and Resi­
dent Library, the Uti lities, and the link editor of either
the Program Preparation Facility or the Series/l Macro
Assembler; it allows you to:

Chapter 1. Overview

Install the Pl/I Compiler and Resident library and the
Pl/I Transient library

Allocate data sets

Enter source programs

Compile

link edit

Format screens

Execution and test require the Pl/I Transient library and
the utilities. During execution and test, you may:

Use diagnostic aids

load programs

Back up and copy data sets

• FORTRAN IV

Program preparat i on requ i res FORTRAN IV, the Ut iIi ties,
the Mathematical and Functional Subroutine library, and
the link editor of either the Program Preparation Facility
or the Series/l Macro Assembler; it allows you to:

Install FORTRAN IV and the Mathematical and Functional
Subroutine library

Allocate data sets

Enter source programs

Compile

link edit

Format screens

Execution and test require the the Utilities. During exe­
cution and test, you may:

Use diagnostic aids

load programs

Back up and copy data sets

• Event Dr i ven Language

24 SC34-0312

Program preparation requires Utilities and the Program
Preparat i on Fac i 1 i ty; it allows you to:

Insta 11 the Program Preparat i 9n Fac iii ty

Allocate data sets

Enter source programs

Assemble

Link edit

Format screens

Execut i on and test requ ire the Ut i 1 i ties. Dur i ng execut i on
and test, you may:

Use diagnostic aids

Load programs

Back up and COpy data sets

• Macro Assembler Language

Program preparation requires the Utilities, the Series/1
Macro Assembler, and the Macro Library; it allows you to:

Install the Series/1 Macro Assembler and the Macro
Library

Allocate data sets

Enter source programs

Add macros that you have wr i tten

Assemble

Link edit

Format screens

Execution and test require the Utilities. During execution
and test, you may:

Use diagnostic aids

Load programs

Back up and copy data sets

Chapter 1. Overview 25

Any application can use the Indexed Ac6ess Method, Sort/Merge,
or the Mathematical and Functional Subroutine Library. An
indexed data set can be accessed by us i ng instruct ions pro v i ded
by COBOL and PL/I. FORTRAN IV requ i res the Mathemat i ca 1 and
Functi~nal Subroutine Library. FORTRAN, EDL or assembly lan­
guage must be used to interface to MFSL.

If your application calls for transaction processing, the Mul­
tip Ie Term ina 1 Manager can be used.

For link edits you can use the Program Preparation Facility or
the Series/l Macro Assembler since both contain the linkage
editor. The Series/l Macro Assembler allows you to intermix
macro assembler language and Event Driven Language
instructions, although with a loss of assembly time perform­
ance when compared to the Program Preparat i on fac iii ty.

26 SC34-0312

INSTALLING THE SYSTEM

The IBM licensed programs that compr i se the Event Dr i ven Execu­
tive system are shipped on one or more diskettes along with a
document called a Program Directory. The diskettes contain the
programs and source material. The Program Directory provides
additional reference material, including the installation pro­
cedure. This procedure identifies and describes the contents
of each diskette volume and contains the step by step
prompt/reply sequences that are used to install the product.

The installation process is simply a sequence of:

1. initialization

2. copy data sets to disk

3. change diskette($VARYON)

4. repeat steps 2 and 3, until all diskettes are processed

An optional installation verification procedure allows you to
verify that the installation is complete. The Program Directo­
ry conta i ns the step by step instruct ions for execut i ng the
verification procedure.

Chapter 1. Overview 27

28 SC34-0312

CHAPTER 2. SUPERVISOR AND EMULATOR

The superv i sor and emulator prov i des the system serv ices
required to assign processor time to your applications; data
management and device management services; error handling and
record i ng; and ser i ali zat i on log i c. The emu lator executes
Event Driven Language instructions.

PROGRAM/TASK CONCEPTS AND STRUCTURE

In an Event Driven Executive system, system resources are allo­
cated to tasks, accord i ng to the pr i or i ty of the tasks. A task
is a unit of work, defined by the application programmer. A
program is a disk or diskette resident collection of one or
more tasks that can be loaded into storage for execut i on.
Although program and task are sometimes used synonymously, the
basic executable unit for the supervisor is the task; a program
is the un it that is loaded into storage.

The Program

A program is defined by the application programmer. In its
simp lest form, a program cons i sts of a sing Ie task and conta ins
a PROGRAM statement, instructions, an ENDPROG statement, and
an END statement. In its more comp lex form, a program conta ins
more than one task.

One of the operands on the PROGRAM statement defines the ini­
t i a 1 entry po i nt. When the program is brought into storage, the
initial entry point is the place in the program at which exe­
cution will begin. The programmer is responsible for initiat­
i ng other tasks that are conta i ned in the program.

The name of a program is the name of the data set in wh i ch a pro­
gram res ides. A program may be brought into storage either by a
terminal operator or by another program.

The Task

Tasks are formed by combininQ instructions within an applica­
t i on program. Each task is ass i gned a pr i or i ty wh i ch the
supervisor uses to allocate time for execution. An application
program can cons i st of more than one task. Each task wi th i n the
system runs independently, with its own priority, and each com-

Chapter 2. Supervisor and Emulator 29

petes equally for the resources it requests from the system.

Task priority is assigned by the application programmer when
the task is coded. Valid priorities range between 1 and 510,
with 1 being the highest priority, and 510 the lowest. Tasks
wit h p rio r i tie s ran gin g fro mIt 0 255 ex e cut eon h a r d war e I eve 1
2, and tasks wi th pr i or i ties rang i ng from 256 to 510 execute on
hardware level 3. Levels zero and one are reserved for the Bas­
ic Supervisor and Emulator.

Task switching and Supervisor Control Routines

The supervisor always allocates the processor resource to the
h i g h est p rio r i t y t as kwh i chi s rea d y toe x e cut e •

When a higher "pr i ori ty task becomes ready by task act i on or v i a
an external event, the supervisor dispatches the higher prior­
ity task.

In addition, routines under supervisor control support device
and resource queu i ng, sensor I/O, inter va 1 tim i ng, and process
interrupt functions. Services are also provided to manage
storage, host communications, disks, printers, tapes, and ter­
minals.

Task Definition· and Control Functions

You can use the following Event Driven Language instructions to
define tasks and to control which tasks are executing at a giv­
en time:

ATTACH Makes a new task ,ready for execution

ATTNLIST Provides entry to one or more of· your asynchronous
attention interrupt handling routines. ATTNLIST
produces a list of the command names that you have
def i ned and the i r assoc i ated entr.y po i nts

DETACH Removes a task from the ready state

ECB Generates an event control block

ENDATTN Terminates ATTNLIST processing

ENDPROG Def i nes the end of a program

ENDTASK De,f i nes the log i cal end of a task

30 SC34-0312

LOAD

POST

PROGRAM

Loads a main program or program overlay from the
currently executing program

Signals the occurrence of an event

Defines the basic parameters and primary task of a
program

PROGSTOP Terminates execution of all of the tasks in a program
and releases the storage allocated to the program

RESET Places an event in the "not occurred" state

TASK Def i nes and names a task

WAIT

WHERES

Halts task execution pending the occurrence of an
event

Returns the address and address key of a named
program

Subroutines

A funct i on may be requ i red at several po i nts ina program's
execution. Rather than code the sequence of instructions that
performs that- function each time the program needs it, the
function can be coded once and defined as a subroutine. The
subroutine can then be executed from as many points in the
app I i cat ion ·program as requ ired.

The subroutine capability is provided by
instructions:

the following

CALL

RETURN

SUB ROUT

USER

Transfers control to a subrout i ne

Returns control from the subroutine to the calling
program

Def i nes the entry po i nt
subroutine

and parameters of a

Allows inline or subroutine use of instructions
wr i tten in Ser i es/1 assembly language

CALLFORT Transfers control to a FORTRAN program or subroutine
from an Event Dr i ven Language program

Chapter 2. Supervisor and Emulator 31

Queue Pl'ocessing

You can use the Eve~t Driven Language queuJng instructions to
def i ne queues and to access entr i es i n'queues. You must def i ne
the size of a queue by specifying the number of entries it can
hold. The following queuing instructions are provided:

DEFINEQ

LASTQ

FIRSTQ

NEXTQ

Timel's

,Establ i shes a queue

Retrieves entries on a last-in-first-out (LIFO)
basis

Retrieves entries on a first-in-first-out (FIFO)
basis

Adds an entry to a queue

If you have the hardware timer feature installed on your
Series/l 4953 or 4955 processor, or if you have a 4952 process­
or, you can include support in your Event Driven Executive
supervisor providing several timing functions that can be used
by application programs. In addition to maintaining a time of
day clock, the system also provides a time interval (elapsed
time) clock, and has the capability of suspending task exe­
cution (entering the wait state) for specified lengths of time.
The system also provides interrupts at the end of a time inter­
val.

The time-of-day (TOO) clock is maintained in hours, minutes,
and seconds. At initial program load (IPL), the clock is all
zeros and begins running. You can set the actual clock time
using the $T operator command function or with instructions in
an initialization routine that you write, and the system will
maintain clock time from that point on. The'timer-related
instructions are listed below:

GETTIME

INTIME

STIMER

Moves the time of day values into an application pro­
gram

Reads the relative clock value (elapsed time since
IPL) into an appl i cat i on program and computes
elapsed time (since a previous INTIME)

Starts the timer r unn i ng for the spec if i ed time
interval for a specific application task. When the
interval expires, an ECB is posted.

32 SC34-0312

TIMER Defines the timer feature (#7840) address during
system generation

P R I N TDA T E P r i n t s the d ate 0 nth e t e r min a 1

PRINTIME Prints the time of day on the terminal

Serial Resource Control

A resource, a physical or logical entity within the system, can
be a subroutine, a data area within a particular program, or a
data set or I/O device known across the system. A resource can
be shared (u~ed) by more than one task at ~he same time. For
example, a table of constants might be referenced from two or
more asynchronously executing tasks within a program. Since,
by definition, the values in the table are constant (that is,
read only), access to the table (resource) is unrestricted.

Unrestricted access to some shared resources can be undesira­
b Ie. For instance, if a task were updat i ng a disk data set, and
other tasks had free access to the data set, the state of the
data set is unpredictable. In this case, the data set is a
shared seriallY reusable resource -- one that is shared but
should be used by only one task at a time.

With Event Driven language instructions, you can gain exclu­
sive use of a serially reusable shared resource, and retain
control over that resource until explicitly releasing it for
use by other tasks. These· instructions are:

DEQ

ENQ

QCB

Frees the resource and gi ves control of the resource
to the longest waiting task, regardless of priority

Acquires exclusive control' of a shared serially
reusable resource -- one that is shared but should be
used by only one task at a time.

Generates a resource control block

Task Error Exit Facility

D uri n 9 the e x e cut ion 0 fat ask, e x c e p t i 0 ri con d i t ion sma y o,c cur
either in the task itself or in the hardware. The Series/l
signals the Event Driven Executive supervisor when these con­
ditions arise. Then, the supervisor, for most programs, per­
forms a system default action to clear the condition. While
the system response to exceptions is usually desired, it may be
i nappropr i ate for some programs. For these programs, the
superv i sor prov i des a method, the Task Error Ex i t fac iIi ty, for

Chapter 2. Supervisor and Emulator 33

tasks to gain control at a point specified by the task when an
exception occurs. Pertinent stat~s inform~tion is provided to
the error ex it rout i ne so that it may take act i on to correct the
exception and, if possible, continue.

S;ngle Task Program

For most applications, a complex program structure is not
required, and programs will consist of a single task in a sin­
gle program, as shown in Figure 1

PROGA Program as single task
• No execution overlap within program
• Program competes for system resources

with other tasks currently in system

Figure 1. Single task program structure

Figure 2 on page 35 is an example of the type of application
that lends itself to the single task program structure. The
job is basicallY sequential and will be waiting for operator
input most of the time. Si nce there is no requ i rement for asyn­
chronous execution of functions or I/O overlap with process­
ing, nothing can be gained by a more complex structure.

Mult;ple Task Programs

Figure 3 on page 36 illustrates multitasking in a single
program. PROGB, the first task in the program, is started by
the system when the program is loaded, and is called the jni­
t i a 1 task. The other tasks shown in PROGB will not start unt i 1
a command is executed that tells the tasks to begin. The ini­
tial task within a program commences execution when the program
is loaded into storage. Initiation of additional tasks is per­
formed by any other active task; the means of initiation are

34 SC34-0312

UPDATE

Operator request loads
CUSTOMER FILE UPDATE
program

1. GET CUSTOMER NAME FROM TERMINAL
(OPERATOR INPUT)

2. SEARCH CUSTOMER FILE FOR NAME

3. READ CUSTOMER RECORD

4. DISPLAY CUSTOMER RECORD ON TERMINAL

5. ACCEPT UPDATE FROM TERMINAL (OPERATOR
INPUT)

6. WRITE UPDATED RECORD TO CUSTOMER FILE

7. GO BACK TO STEP 1 IF MORE RECORDS TO
UPDATE

8. ELSE, END UPDATE PROGRAM

Figure 2. Single task application example

discussed in the next sect ion.

Once in execution, all tasks within a program compete with one
another for system resources, and with all other tasks active
in the system. The supervisor considers each task as a
discrete un it of work, and ass i gns processor time based on task
priority, regardless of whether a task is the initial task of a
program. All tasks compete equally for resources.

An Example of Multiple Programs and Multiple Tasks

Figure 4 on page 37 explains how the supervisor controls the
execution of multiple tasks.

Chapter 2. Supervisor and Emulator 35

PROGA

TASKX

TASKY

TASKZ

Program made up of multiple tasks
• Concurrent (asynchronous) execution

of tasks within program

• Tasks compete for system resources
with all other tasks currently in system

Figure 3. Multitasking program structure

The figure has the fo llow i ng components:

A The res i dent superv i sor cons i sts of:

B The instruction routine library consisting of the rou­
tines invoked by the emulator for the various applica­
tion program instructions.

CRout i nes to serv i ce interrupts generated by I/O dev ices,
process interrupts, timers, etc.

D I/O operat i on rout i nes, genera I superv i sor funct i on
rout i nes, etc.

E The emulator and dispatcher examine each instruction
def i nit ion in the appl i cat i on programs then pass control
to the appropriate instruction execution routine in B to
perform the specified function. This section also per­
forms the supervisor functions WAIT/POST, ENQ/DEQ, and
ATTACH/DETACH to ensure that the highest priority ready
task is be i ng executed.

F PROGRAM!, an application program, has been loaded into main
storage from disk or diskette by the multiprogramming fea­
ture (not shown) of the supervisor, A. PROGRAM! is composed
of three tasks, each represented by a vertical column of
rectangles. Each rectangle in a column is the string of
constants generated by the assembly of an instruction. The
instructions shown are for illustration purposes only.

G PROGRAM2, another application program, has also been loaded
for execut i on. PROGRAM2 is composed of two tasks shown ina
manner simi lar to PROGRAM!.

36 SC34-0312

Supervisor e

ATTACH/DETACH
WAIT/POST
QUEUE/DEQUEUE

User

tasks

Priority-
State-

Figure 4.

200
Executing
TASK1

Executing

Emulator G
Supervisor /0 ispatcher

~

• •

150 250 225 200
Waiting Ready Ready Waiting

"TASK2 TASK3 TASK4 TASK5

PROGRAM1 PROGRAM2

0 e
multiple programs and multiple tasks

Chapter 2. Supervisor and Emulator 37

Figure 4 shows the following information concerning program
execution:

• Task states

• Names

• Ass i gned task pr i or i ties, each shown at the bottom of each
task .'

TASK! is currently executing (active); only one task at a time
can execute. TASK1 has a priority of 200, which is higher than
the pr i or i ties of the other two tasks' READY for execut ion
--TASK3 with a priority of 250 and TASK4 with a priority of 225.
Priorities allowed are 1 through 510, with 1 being the highest
priority.

TASK1 is, execut i ng a MOVE instruct i on. The emulator has
decoded the instruction and passed control to the MOVE routine
within the supervisor. The dispatcher will allow TASK! to
execute unti lone of the following occurs:

• A task of higher pr i or i ty becomes ready due to the
occurrence of some event such as an external process inter­
rupt or expiration of a time interval.

• The task executing relinquishes control by issuing an
instruction such as WAIT or DETACH, or by beginning an I/O
operation.

• The task executing is canceled or a program check occurs.

TASK2 is in wa it state and not ava i lable for dispatch i ng as the
act i ve task unt i 1 the event for wh i ch it is wa it i ng occurs.

TASK3 and TASK4 are ready for execution but have not been dis­
,p,atched since they are of a lower pr i or i ty than the act i ve
task, TASKl.

TASKS is currently in wait state, waiting for the expiration of
a time interval. When the time interval expires, TASKS will be
placed in the ready state. However, it will not become the
active task if TASK1 is still executing.

When two tasks of equal priority are ready for
first-in-first~out situation exists and the

execution,
first task

a
to

become ready will execute until it relinquishes control. Then
the second task wi 11 gain control and execute.

The possible task states are:

38 SC34-0312

(

Inactive
Waiting

Ready

Active

Executing

Task is detached or is not yet attached
Task is waiting for tbe occurrence

of an event
Task is ready, but is not the highest
priority task

Task is attached and is the highest
priority task on its level

Task is using the processor

A program can consist of one or more tasks. Normally, a program
will· cons i st of on 1 y one task un less its operat ion requ ires
s i mu 1 taneous 1 y act i ve, independent funct ions (tasks).

Mult;ple Program structure

An application program consists of a collection of one or more
tasks. After an application program is prepat"'ed for execution,
it is stored under a un i que name on disk or d i sl<ette. A term i­
nal operator can request that a program be loaded into storage
and placed in execution by entering a request for the supervi­
sor load ut iIi ty ($ L) and spec i fy i ng the program name.

Programs can also be loaded by executing a LOAD instructi~n in
another program that is already in execution. When the super­
visor rece i ves a request to load a program, either from a
terminal or a task already in execution, the supervisor:

1. Finds the program on disk or diskette

2. Finds a sect i on of unused storage large enough to accommo­
date the program

3. Loads the program from disk or diskette

4. Opens any data sets or program over lays

5. Relocates the program into the unused area

6. starts the program's pr i mary task

Programs are dynamically relocated into storage as load
r e que s t s are r e c e i ve,d, sot he s i z e and s t rue t u reo f you r
programs can have an effect on system throughput.

Any program can be loaded by the operator, another program, or
an overlay.

Chapter 2. Supervisor and Emulator 39

Overlays

A program can have several overlay programs that utilize the
same over lay area at different times dur i ng execut i on. An
application that needs to be loaded quickly when requested can
benefit by being implemented as an overlay.

You can specify a program as an overlay in a main program with
the Event Driven language PROGRAM statement. At primary pro­
gram load time, sufficient storage is reserved within the pri­
mary program for the largest overlay. Overlay loads can thus be
performed quickly by the system because the storage has already
been preallocated.

In Figure 5, the application is split into separate programs.
PHASE!, the primary program, loads the overlay programs
(PHASE2, PHASE3, and PHASE4) as requested. When PHASE! is
loaded, the loader recogni zes that overlay programs are refer­
enced. The loader looks at each program that is designated as
an overlay and reserves enough storage to hold PHASE! plus the
largest overlay program (PHASE3) as shown in Figure 6 on page
4!.

PHASE1
application

program ----------1 PHASE1 I
-----------------=--=--=-=.:::::: ---------.

1 PHASE2 I
------------ ~-..:-..:::-::.-:..--=.:=:.

~
~------------ 1"-- ~

L....-____ _~~~~~~~=I PHASE4 I

Figure 5. Program overlays

40 SC34-0312

Space for

PHASE 1 plus {
overlay area
reserved
when PHASE1
is loaded

Series /1 storage

Supervisor

PHASE1
~-------

(Overlay area)

(Available
storage)

}

Overlay area large
enough for PHASE3,
the largest overlay
program

Figure 6. Program overlays in Series/1 storage

PHASE2 is loaded when PHASE1 issues a LOAD statement referenc­
ing PHASE2. The system loadsPHASE2 into the overlay area
already reserved and PHASE2 starts executing. There is no con­
tention for the storage with other applications that are wait­
ing to be loaded in the overlay area because the overlay area is
reserved for the exclusi ve use of PHASE1 overlay programs.

As each overlay program completes execution, PHASE! loads the
next overlay, unti I all requi red programs have run. When
PHASEl terminates execution, the storage reserved for PHASE1
and its overlays is released.

Program Loading and Task Execution

Programs are ready for execution when they are loaded into
storage from disk or diskette. A program wi 11 not execute imme­
diately unless its primary task has a higher priority than the
currently executing task. Programs are loaded when you issue
the $L operator command or when a LOAD instruction is executed
ina task that is in execut ion. In either case, the program to

Chapter 2. Supervisor and Emulator 41

be loaded is referenced by the name under wh i ch it is stored on
disk or diskette.

Multiple copies of the same program can be in storage and
active at the same time. A program can be loaded from one or
more terminals, from one or more programs already executing, or
as an overlay by an executing program.

STORAGE MANAGEMENT

With the address relocation translator feature on your
Series/I, the supervisor can provide storage management sup­
port for ma i n storage sizes up to 256K bytes (I K = 1024 bytes) •

storage and Partitions

You can divide storage not used by the supervisor into parti­
tions. A partition is a contiguous fixed length area of stor­
age which can be used for the execution of disk or diskette
resident programs. You can define up to eight partitions for
the 4955, two partitions for the 4952, and one partition for
the 4953.

Each part it i on can .conta i n more than one program s i mu I taneous­
ly, within the limits of the storage ,assigned to each parti­
tion. Each partition must be defined as an address space in
some multiple of 2K bytes.

You can specify the storage size of the processor, the number
of partitions, the maximum number of programs allowed in each
partition concurrently, and the storage to be assigned to each
partition.

The supervisor is always located in partition one. The storage
you use in part it i on one is lim i ted to 64K bytes minus the num­
ber of bytes occupied by the supervisor. All other partitions
have a maximum size of 64K bytes, within the limits imposed by
the amount of storage available. It is also po~sible to log­
ically prefix part of the supervisor onto each partition using
the mapping capabilities of the address relocation feature.
However, this option limits the size of each of your partitions
to 64K bytes minus the size of the prefixed portion of the
supervisor.

42 SC34-0312

SYSTEM CONTROL BLOCKS

System control blocks are used by the Event Driven Executive
and are not to be altered in your application programs.
Exceptions to this rule can be found in the language Reference
and Communications and Terminal Applications Guide.

Chapter 2. Supervisor and Emulator 43

44 SC34-0312

CHAPTER 3. DATA MANAGEMENT

This chapter discusies data management concepts and proce­
dures. Among the top i cs covered are:

• I/O functions

• Direct access storage dev ices

• Disk and diskette funct ions

• Tape functions

• Data set nami ng convent ions

• Storage capacities

• Volume and library definitions

The chapter first presents specifics of data management, then
discusses the utilities with which you can modify data, and
conc 1 udes with system concepts and app 1 i cat ion requ i rements.

I/O FUNCTIONS

Terminal Support

Terminal support is designed to be device independent. With
few exceptions, you need not be concerned with the type of
device. The same sequence of terminal output instructions, for
instance, can be used to pr i nt data on a matr i x or 1 i ne pr inter,
on a loca 11 y attached Te letype dev i ce, on a remote term ina 1, or
to display the data on an electronic display screen device.

Terminals are defined to the system during system generation.

The high degree of device independence is achieved in part by
treating all terminals as though they were line printers that
differ only in their page sizes (forms length) and margin set­
tings. The multi-terminal support provides instructions
allowing interactive communications between you and your
application programs. Terminals supported are the 4978 and
4979 display stations, the IBM 3101 Display Terminal, 4973 and
4974 printers, 2741 Communications Terminal, other Series/1
computers, the 5100 and 5110, the ,Tektronix #4013 3 DI/DO
Parallel Interface terminals, and teletypewriters and equiv­
alent devices.
J Reg i stered trademark of the Tektron i x Corporat ion.

Chapter 3. Data Management 45

The terminal used by a program is the same terminal that was
used to invoke the program. Therefore, the terminal assigned
can vary from one program i nvocat i on to the next, wi th no
c han get 0 the a p p 1 i oa t ion pro g ram.

Terminals are referenced by symbolic name and accessed through
various instructions. Forms and screen format control can be
dynamically changed within your program and the 4978/4979
d i sp lay screen can be cop i ed to a hard copy term ina 1 at any
po i nt in the program.

Terminals with Special Control Characters

Terminals that have special control characters and/or hardware
capabilities, such as graphics functions, are easily con­
trolled by the terminal instructions.

Graphic terminals which perform point-to-point vector drawing
and comply with the screen coordinate algorithm are supported
by the terminal instructions and a set of graphic control
instructions.

Terminal I/O

When a program is loaded from a terminal, that terminal is
dynamically designated by the system as the terminal to be used
by terminal I/O instructions in the program. Each terminal I/O
instruction has exclusive use of the terminal while executing,
and extended control can be requested for multiple I/O oper­
ations.

If more than one task is using the terminal, terminal oper­
ations from different tasks could become interspersed. When
this is not desirable, you can reserve the terminal for the
exclusive use of a task, thereby preventing other tasks from
using the terminal until the task releases it. You can gain
exclus i ve control of any named termi nal in the system.

Three symbolic terminal names are used by the supervisor for
system ut iIi ty programs:

$SYSLOG Names the system logg i ng dev i ce or operator stat i on,
and must be def i ned in every system. In the starter
supervisor, $SYSLOG defines a 4978 display station.

$SYSLOGA Names the al~ernate system logging device. If unre­
coverable errors prevent use of $SYSLOG, the system
wi 11 use the $SYSLOGA terminal as the system logging
dev ice/operator stat i on. If def i ned, th i s dev i ce

46 SC34-0312

should be a terminal with keyboard capability, not
just a printer. The starter supervisor defines the
$SVSLOGA term; nal as a teletypewr iter dev ice.

$SYSPRTR Names the system printer. If defined, the hard copy
output from some system programs wi 11 be di rected to
this device. The starter supervisor defines a 4974
pr inter as the $SVSPRTR dev ice.

Terminal Definition and Control Functions

ATTNLIST Provides entry to one or more of your asynchronous
attention interrupt handling routines. Produces a
list of command names that you have defined and their
assoc i ated entry po i nts

DEQT Releases a terminal from exclusi ve use

ENQT Acquires exclusive access to a terminal

ERASE Clears des i gnated port ions of STATIC type screens

FORMAT Describes the type of conver~ion to be performed on
data

GETEDIT Moves data frdm a terminal, converting it according
to a FORMAT specification

GETVALUE Reads one or more integer values that are entered by
the terminal operator

IOCB Descr i bes the attr i butes of a termi nal

PRINDATE Pr i nts the date on the term ina 1

PRINTNUM Converts a floating-point variable ori·nteger vari­
able to printable form, and writes it on the terminal
with an optional format specification

P R I NT EXT . W r i t e san alp ham e ric t ext s t r i n g to ate r min a 1

PRINTIME Pr i nts the time of day on the term ina 1

PUTEDIT Moves data from storage to a termi nal, convert i ng it
according to a FORMAT specification

QUESTION Pr i nts a message and quer i es the operator for a V
(yes) or N (no)

RDCURSOR Reads the current cursor pos i t i on

Chapter 3. Data Management 47

READTEXT Reads an alphameric text string from the terminal

TERMCTRL Prov i des support for spec i a I term ina I contro I
features, some of wh i ch are dev ice dependent

TERMINAL Defines each input or output terminal attached to
the system, inc 1 ud i ng' pr inters. Use 'th is statement
on I y dur i ng system gene rat ion.

WAIT Causes the issuing task to wait until the operator
depresses an ENTER key or a PF key. Specified in
assoc i at i on wi th the KEY opt i on

Sensor I/O

Sensor I/O is used in a variety of application areas, including
process control, laboratory automation, and plant automation.
Sensor I/O devices avai lable on the Series/l are as follows:

Digital Input/Output

A un ito f dig ita I sen s 0 r I/O i sap h y sic a I g r 0 up 0 f six tee nco n­
t i guous po i nts. The ent ire group of sixteen po i nts is accessed
as a un it on the I/O instruct ion leve I: programm i ng support
allows logical access down to the single point level.

Digital input (01) is usually used to acquire information from
instruments which present binary encoded output, or to monitor
contact/switch status (open/closed). Digital output (DO) is
used to control electrically operated devices through closing
relay contacts, such as puIs i ng stepp i ng motors.

Process interrupt (PI) is a special form of digital input. If a
point of digital input changes state, and then changes state
again, without an intervening READ operation from the program,
the status change will be undetected. With process interrupt,
a point changing from the off state to on generates a hardware
interrupt, which is then routed through software support to an
interrupt servicing application program that can respond to
the external event which caused the interrupt. Process inter­
rupt is often used for monitoring critical or alarm conditions,
which must be serviced quickly, the occurrence of which must
not go undetected.

48 SC34-0312

Analog Input/Output

A physical unit of analog input (AI) can be a group of eight
points or sixteen points, depending on the type. Analog output
(AD) is installed in groups of two points. Each point of analog
input or analog output is accessed separately.

Analog input is used to monitor devices that produce output
voltages proportional to the physical variable or process
being measured. Examples include laboratory instruments,
strain gauges, temperature sensors, or other non-digitizing
instruments. Digital input was described as monitoring a'n
on/off status; only two conditions were possible. With analog
input, the information is carried in the amplitude of the volt­
age sensed rather than in its presence or absence.

The starter supervisor contains no support for sensor I/O. You
must do a tailored system generation to include the required
support modules in 'your own supervisor.

Figure 7 on page 50 shows how sensor dev ices are connected to a
Series/l through the 4982 sensor I/O unit. The devices (01, DO,
PI, AD, and AI) attach to a controller, which in turn attaches
to the Series/l. The sensor I/O attachment (controller), and
each of the dev ices attach i ng to it, have un i que hardware
addresses. In this figure, the physical connections are there,
and the hardware addresses are assigned (wired in), but the
starter supervisor in storage lacks the support necessary to
operate the dev ices.

Chapter 3. Data Management 49

Series/1

Supervisor
with
sensor I/O
support

Sensor I/O
attachment

Address 68

Figure 7. Sensor device connections

Digital output
group address 70

Digital output

group address 71

Digital input
group address 72

Building a tailored supervisor involves the assembly of a
ser i es of system conf i gurat i on statements that ref lect the I/O
configuration yoU wish to support. For more information on sys­
tem conf i gurat i on statements, refer to "Chapter 6. System
Configuration" on page 75. When programs reference these
dev ices, they use symbol i c references, rather than actual
addresses. The I/O definition statement (IODEF) establishes
the logical link between the addresses defined in the supervi­
sor, and the symbols used to read from and wr i te to the dev ices
at those addresses from an application program.

All sensor-based input/output ope rat ions are performed by exe­
cuting a Sensor Based I/O (SBIO) instruction. The type of oper­
ation is determined by the type of device referenced in the
instruct i on. For more i nformat i on on the SaID statement, refer
to language Reference. The symbolic reference to a logical
device in the SBIO statement is linked to the definition in the
IODEF statement, which relates that device to the hardware
address specified by the system configuration statement at
system gene rat ion time.

50 SC34-0312

Sensor Based I/O Definition and Control Statements

IODEF

S8IO

An Event Driven Language instruction that estab­
lishes the logical link and definition of subgroups
of sensor based I/O devices defined in the supervi­
sor and the symbols used to read from and write to
the subgroups.

An Event Driven Language instruction that performs
analog and digital input/output operations.

SENSORIO A system configuration statement that defines the
hardware device addresses for the supervisor.

SPECPIRT An Event Driven Language instruction that provides
return linkage from the special process interrupt
routines specified in the IODEF instruction.

THE EXIO INTERFACE

The EXIO interface permits you to directly control the oper­
ation of Series/l devices. You supply the immediate device
control blocks (IDCBs) and Device Control Blocks (DCBs) that
are required for I/O operations to be performed. This allows
close control of performance and response time. Any device
meetin~ the standard I/O interface, attached to the Series/l
can be controlled through the EXIO interface. To use the EXIO
interface, the programmer should be familiar with assembler
language coding, I/O programming in general, and the devices
involved in the I/O operations.

Definition and Control Statements

The instructions and statements necessary to use EXIO are:

DCB

EXIO

EXOPEN

EXIODEV

An Event Driven Language instruction that creates a
Device Control Block

An Event Driven Language instruction that requests
execution of an I/O command

An Event Driven Language i'nstruction that specifies
the device addresses to which EXIO commands will be
directed

A system configuration statement that defines the
devices to be supported via the EXIO interface

Chapter 3. Data Management 51

IDCB An Event Dr i ven Language instruct i on that creates an
Immediate Device Control Block

DIRECT ACCESS STORAGE ORGANIZATION

The following definitions are used by the Event Driven Execu­
tive.

Sector

The smallest addressable unit of storage on a disk or diskette
is known as a sector (or a record on the 4963). Sectors on a
4962 disk and records on a 4963 contain 256 bytes of data.
Therefore, a 4962 sector and a 4963 record are equivalent to a
record. Diskette sectors can be either 128, 256, 512, or 1024
bytes long. However, in the Event Dr i ven Execut i ve system t.he
IBM standard for information interchange, 128 bytes, has been
adopted. Therefore, two diskette sectors equal one record.
Th is is hand led with i n the system and you refer on I y to 256 byte
records.

Volume

A volume is a physical direct access storage device, or a
subset of a physical direct access storage device. You can
assign a name, or volume label, to each volume. The volume
label must be 1-6 alphameric characters. A volume begins on a
cyl i nder boundary and conta i ns an integral number of cyl i n­
ders. The maximum volume size in records is 32,767. A fixed
head area, if it exists, is defined as another volume.

Volumes containing programs or macros are usually called
libraries. A library is the collection of data and programs and
the directory used to access them.

D;rectory

A directory is a series of contiguous records at the beginning
of a library. The directory describes the library contents in
terms of allocated data sets, programs, and free space.

52 SC34-0312

Data set

A d a t a set i s 'a g r 0 up 0 f con t i guo us r: e cor d s w hi c h h a v e bee n
allocated -- reserved and assigned collectively. The data set
name consists of 1 to 8 characters. No special restrictions
exist within the system for valid names but the system utility
programs require a name consisting of alphameric ~haracters

for access and a llocat i on.

A data set, or member of a library, can contain either data or
an executable program. These data sets may also be partitioned
data sets when allocated with the $PDS utility. $PDS defines
members as a group of contiguous records within the partitioned
data set which have been allocated and assigned a name.

Recol"d

A record is the basic unit of direct access storage available
to an application program. The records are fixed, unblocked,
and 256 bytes long. Data set records are numbered beg i nn i ng
with one.

Access

Data set access routines are available within the supervisor
for multiple diskettes and disks, with or without fixed head
features. File access is either sequent i a I or direct. Mu It i pIe
logical volumes can be created on any physical disk drive.

Note: A diskette is always a single volume.

When a program is first loaded for execution, all of the
defined data sets ~re opened for access (reading or writing),
beginning with record number 1. Sequential and random access
operations can be mixed. For instance, if five sequential READ
instruct ions of one record each have been issued to a data set,
then the next sequential operation will involve record number
si x. A random access READ could be issued for some· other
record, say record 23, and the next sequential operation would
still take place with record 6.

Volumes on disk devices are defined during system generation,
using the DISK configuration statement. For further informa­
tion on the DISK configuration statement, refer to "Chapter 6.
System Configuration" on page 75. Diskette volumes are defined
with the utility program $INITDSK. Refer to the utilities,
Operator Commands, Program Preparation, Messages and Codes for
a discussion of $INITDSK.

Chapter 3. Data Management 53

DISK AND DISKETTE FUNCTIONS

The following instructions are provided for disk and diskette
functions:

DISK

NOTE

POINT

READ

WRITE

Oef i nes each direct access storage dev ice and the
volumes it contains. Use the OISK statement only
dur i ng system gene rat ion

Saves the next record pointer in a program location
that you def i ne

Sets the next record pointer from a program variable
that you def i ne

Transfers one or more 256-byte records from disk or
diskette to the requester's storage

Transfers one or more 256-byte records from the
requester's storage to disk or diskette

The OSCB statement generates a data set control block (OSCB)
wh i ch prov ides i nformat i on requ i red to access a data set.

The $OISKUT3 data management utility provides execution time
stipport that allows you to allocate, delete, open, and rename
data sets. It also allows you to release space from a data set.

54 SC34-0312

4964/4966

D IEOXV051 . o
I

~:I~hme { ~~~ectory
contains --~~~ data sets

(library)

Two 128 byte
sectors on
diskette
(transparent
to user)

o ~I _-----' .
o
I

Primary
volume

--.......

;:~:~~:~{ EDXV03 ----

EOXV04----

DIRECTORY. OS1

REC1 REC2

One sector
on 4962

DS2

Figure 8. DASD logical organization

4962/4963

OS3 DS4

_o~
One-half
sector on 4963
(transparent
to user)

In addition to the single primary volume required for each disk
storage unit, as many secondary volumes as required can be
defined (within the physical limits of the device). As with
primary volumes, secondary volumes are defined at system
generation using· DISK configuration statements and are
initialized by the $INITDSK utility.

Chapter 3. Data Management 55

Volumes can also eXlst on diskette. Each diskette has a sepa­
rate volume occupying the entire diskette. Diskette volumes
are also initialized using the $INITDSK utility.

TAPE FUNCTIONS (VERSION 2 ONLY)

The following instructions are provided for tape functions:

TAPE

NOTE

POINT

READ

I WRITE

CONTROL

Defines each tape device to be used on the system.
Use the TAPE statement on I y dur i ng system gene rat ion

Saves the next record pointer in a program location
that you def i ne

Sets the next record po inter from a program var i able
that you def i ne

Transfers records of 18 to 32767 bytes in length from
tape to the requester's storage

Transfers records 18 to 32766 bytes in length from
the requester's storage to tape

Allows physical manipulation, such as; forward or
backward spac i ng of records or files and the wr it i ng
of tapemarks.

The DSCB statement generates a data set control block (DSCB)
wh i ch prov ides i nformat i on requ i red to access a data set.

The $TAPEUTI utility allows you to allocate tape data sets and
copy data sets or volumes from disk or diskette to tape, tape to
disk or diskette, or tape to tape. The ut iIi ty a Iso a llows you
to change tape attr i butes.

For information on tape organization see "Chapter 11. Tape
Organ i zat i on" on page 233.

DATA SET NAMING CONVENTIONS

Data sets are specified for system use at one of four times:

1. When coding a PROGRAM instruction and completing the DS=
operand

2. When cod i ng a LOAD instruct i on and complet i ng the DS= oper­
and

56 SC34-0312

3. When a program is loaded by the $ L operator command

4. Dur i ng execut i on of some system ut iIi ty programs

A genera I data set spec if i cat i on cons i sts 0 f two parts:

1. The data set name (dsname)

2. An optional volume label (volume) which specifies the vol­
ume on wh i ch the data set res ides

The format for a data set spec if i cat i on 'i s:

dsname,volume

The volume specification is optional and if not specified, the
system assumes that the target data set resides on the primary
volume on the direct access device from which the system was
IPLed.

dsname

volume

An alphameric character string of eight characters.
When fewer than eight characters are spec if i ed,
blanks are added to the string.

An alphameric character string of six characters.
To locate the vo I ume on a disk, it must have been
defined in the VOLSER= parameter of a DISK config­
uration statement in the system I/O definition. To
locate the volume on a diskette or tape, the TAPE or
DISK statement must be in the system I/O definition
and the volume name loaded into the system by issuing
th'e ope rato r command $VARYON, spec i fy i ng the
diskette or tape device address. The diskette must
have,been initialized by SINITDSK. Tapes must be
initiali zed by the $TAPEUTI uti lity. When fewer than
six characters are specified, blanks are added to
the right to comp lete the str i ng.

Two special data set names are known to the system and must be
used with care:

$$EDXVOL Used to obtain absolute record reference to an
entire volume on disk or diskette.

$$EDXLIB Used to obtain absolute
beginning of the volume
diskette within a volume.

record reference to
directory on disk

Chapter 3. Data Management

the
or

57

STORAGE CAPACITIES

Disk/Diskette

The following table summarizes storage capacities of the vari­
o u sSe r i e s / 1 d ire c t a c cess s tor age d e vic e s •

Device Storage
capacity
(records)

Cyl/dev logical
rcds/trk

Trk/cyl Volume max
(cyls)

Single-sided
(type 1)
diskette

Double-sided
(type 2)
diskette

4962 disk
-1
-IF
-2
-2F
-3
-4

4963 disk
-23
-29
-58
-64,

949

1924

36120
36600
36120
36600
54180
54180

92160
114560
229632
252032

303**

360***

13

13

60
60
60
60
60
60

64
64
64
64

1

2

2
2
2
2
3
3

4
5

10
11

* 73 cylinders are available for data (001-073) on
type 1 diskettes. 74 cylinders are available for

73

74

273
273
273
273
182
182

128
102

51
46

data (001-074) on type 2 diskettes. On both types,
2 cylinders are reserved for alte~nate tracks and 1
cylinder is reserved for IPL and volume identification.

** 301 cylinders are available for data (000, 002-301);
cylinder 001 is reserved for alternate sector
assignments; 302 -is reserved for CE use.

*** 358 cylinders are available for data (0-357),
while cylinder 358 is reserved for alternate
sectors and cylinder 359 is reserved for CE use.

58 SC34-0312

I Tape

The fo llow i ng figure summar i zes approx i mate storage capac i ties
for 800, 1200, and 2400 foot tape volumes. The Event Dr i ven
Executive 4969 Magnetic Tape Subsyst'em supports 18 to 32,767
byte records. The record lengths d~picted are used for illus­
trati ve purposes only. These estimates are approximate and are
based on the hardware specifications for the 4969 tape drive.
(Refer to IBM Series/l 4969 Magnetic Tape Subsystem
Description, (GA34-0087) for more detailed information.) Use
these estimates to calculate the si ze of the reel or volume
needed to fu 1 fill your requ i rements.

TAPE CAPACITY

Tape length
800 feet

256 byte records
1024 byte records
8192 byte records

1200 .feet
256 byte records

1024 byte records
8192 byte records

2400 feet
256 byte records

1024 byte records
8192 byte records

DEFINING VOLUMES

NUMBER OF
800 BPI

10,078
5,019

882

15,118
7,529
1,324

30,-236
15,058

2,648

RECORDS
1600 BPI

11,411
7,265
1,654

17,117
10,898

2,482

34,234
21,797
4,964

Vo 1 umes and 1 i brar i es are def i ned at system conf i gurat ion
time. The system handles disks, diskettes and tapes different­
ly, as described below.

Chapter 3. Data Management 59

D;skette

One, and only one, 'volume is defined for 6!ach 4964 diskette
d r i vet 0 b e k now n tot h e sup e r vis 0 r. 'H 0 we v e r , for the 4 9 6 6
Diskette Magazine Unit, up to 23 diskette volumes can be
mounted. The diskette mounted in slot one is considered the
primary volume; the rest of the diskettes are secondary vol­
u me s. Be c a use dis k e t t e s are m 0 un tab I e s to rag e me d i a, the act u -
al volume label, library origin, and library size must be
determined by the system each time a new diskette is mounted.
This is accomplished through the operatOr command $VARVON.
Volume labels are recorded on each diskette in accordance with
IBM Standards for Information Interchange.

At least one volume is def i ned for each 4962 or 4963 disk dr i ve
to be known to the supervisor. Because volume size is limited
to 32,767 records, several volumes must ~e defined per disk to
be able to use the enti re storage capaci ty.

The first defined volume, the primary volume, has its origin at
cyl i nder zero. Because certa i n records and cyl i nders are
reserved for system use, the library associated with a primary
volume cannot begin with the first record.

The library origin of additional volumes, called secondary
volumes, can be the first record in the volume.

For example, addressability of an entire 4962 disk could be
established with the following definitions:

Volume origin Volume size Library origin
(cylinder i) (cylinders) (record i)

Primary 0 153 241
(cylinder 2)

Secondary 153 150 1

Volume labels for all disk volumes are maintained within the
supervisor and are not physically recorded on the device.

The following table summarizes the library origin for primary
and secondary volumes.

60 SC34-0312

Library origin

Primary Secondary
volume volume

Single-sided
Diskette 14 N/A

Double-sided
Diskette 27 N/A

4962 Disk
Models
1 , 2 241 1
1 F , 2F 241 1
3, 4 361 1

4963 Disk
Models
29 129 1
23 129 1
64 129 1
58 129 1

N/A means not applicable.

Figure 9. Library origins

The fixed-head area of a 4962-1F, 4962-2F, 4963-23, or 4963-58
is automatically defined as a secondary volume by the DISK con­
figuration statement; you are required to specify an associ­
ated volume label. Use the FHVOL parameter of the DISK
conf i gurat i on statement to ass i gn the volume label. The fixed
head volumes contain 480 records on the 4962 and 512 records on
the 4963. The library or i gin on both dev ices i s r~cord one.

A fix e d h e a d vol u m e i s t r e a't e din asp e cia 1 man n e r :

• During the disk initialization part of IPL, each data
record is read and rewritten to reduce the probability of
errors.

• If the IPL device is a disk with fixed heads, the system,
during the loader initialization part of IPL, searches the
fixed-head volume for the transient loader routine $LOAD­
ER. If it is found, it is used for program load i ng, thereby
prov i ding the fastest and most constant loader perform­
ance. If $LOADER is not present, the system attempts to

Chapter 3. Data Management 61

locate it ;., the IPL device's primary volume.

I Tape (Vers; on 2 only)

One, and only one, volume is defined for each tape drive known
to the supervisor. Tape volumes are not defined at system
conf i gurat i on time. Because tapes are a mountable storage
medium, the actual volume label is determined by the system
each time a tape 'i s mounted. The operator command $VARVON
causes a tape to be mounted. For more i nformat i on on tape
labels and volumes, refer to "Chapter 11. Tape Organization" on
page 233 •

62 SC34-0312

(

CHAPTER 4. OPERATOR COMMANDS AND UTILITIES

OPERATOR COMMANDS

When the ATTN key on a terminal is pressed, the system responds
with the prompt character, >.

The operator commands that can be entered are:

$A

$B

$C

$CP

$D

$E

$L

$P

$T

$VARYOFF

I $VARYON

$W

Displays the names and load points of
all programs that are active within the
partition to which the requesting ter­
minal is currently assigned

Completely erases (blanks) all pro­
tected and unprotected areas on the
screen of the requesting terminal

Cancels a program and frees the storage
that it occup i ed

Changes
assignment

a terminal's partition

Displays the contents of storage in
hexadecimal

Advances the system printer to the top
of form (performs a page eject)

Loads a program

Patches storage locations

Sets date and time for the 24-hour sys­
tem clock/calendar. It can be used only
from terminals named $SYSLOG or
$SYSLOGA. Operator input is not vali­
dated by the super v i sor.

Places a disk, diskette, or tape in
off line status

Places a disk, diskette, or tape in
online status,

Displays the 24-hour clock and the date

You may add attention interrupt handling routines by using the
ATTNLIST statement. When you code the statement, you provide
your command name and its address. This command name may then
be entered whenever the system issues the> prompt.

Chapter 4. Operator Commands and Utilities 63

UTILITIES

The utilities provide productivity aids for Series/l applica­
t i on program development, program rna i ntenance, and d i str i buted
processing functions with a host System/370. These utilities
are independent program load modules capable of running con­
currently with other application programs or utilities. Types
of utilities are:

• Data Management utilities

• Communication utilities.

• Text editing utilities

• Diagnostic utilities

• Graphics utilities

• Terminal utilities

• Program preparation utilities

Data Management utilities

Data Management utilities can define, patch, dump, delete,
rename, compress, copy, and initialize data sets. The follow­
i ng Data Management ut iii ties are ava i lable:

$COMPRES Compresses libraries

$COPY Cop i es disk or diskette' data sets or vo I urnes

$COPYUTI Cop i es disk or diskette data sets, dynam i ca 11 y
allocat i ng the rece i vi ng data sets

$DASDI Initializes,
diskettes

formats, and verifies disks or

$DISKUTI Allocates and de letes disk or diskette data sets;
1 i sts directory data

$DISKUT2 Patches and dumps disk or diskette data sets; lists
the hardware error log

$IAMUTI Bu ilds and rna i nta i ns Indexed Access Method data sets

$INITDSK Initializes and verifies a direct access storage
volume

64 SC34-0312

$MOVEVOL Transfers volumes of data between systems and
creates backup cop i es of an onl i ne data base

$PDS Manages part i t i oned data sets

$TAPEUTl (Vers; on 2 only) Pr i nts tape records, cop i es data
sets to or from tape, copies tape to tape, initial­
izes tapes, dumps and restores disk devices on tape,
and runs a tape exerciser as a hardware/software
test

Communication utilities

Communication utilities provide options for communicating with
another processor and diagnostic aids' for troubleshooting
teleprocessing lines. Two facilities are available to commu­
nicate with a System/360 or System/370:

• The Host Communications Facility which requires the Host
Communications Facility IUP on the System/360 or
System/370 and provides direct two-directional transfer
between host direct access data sets and Series/l storage.
Also, a job submission capability allows you, through a
terminal on the Series/I, to invoke batch program exe­
cution on the System/360 or System/370 host system. A
point-to-point leased line and the BSC Single Line feature
#2074 is required for Host Communications Facility oper­
ation.

• Host. communications similar to IBM 2780/3780 remote job
entry (RJ E) capab iii ties to host RJ E systems. (Re fer to the
Communications and Terminal Applications Guide for more
information.) Data streams including either transparent or
non-transparent data can be submitted to the host, as can
single card image commands. Printed and/or punched output
from the host can be stored in disk or diskette data sets or
printed on any supported terminal attached to the
Series/I.

These utilities are:

$BSCTRCE Traces I/O act i vi ties on a binary synchronous

$BSCUTl

$BSCUT2

communication line.

Formats binary synchronous trace files for pr i nt i ng.

Checks out the binary· synchronous communications
access method.

Chapter 4. Operator Commands and Utilities 65

$HCFUTl Uses the Host Communications
S e r i e s / 1 t 0 i ,n t era c t wit h the
Fac iii ty on the System/370.

Facility on the
Host Communication

$PRT2780 Pr i nts spool records produced by $RJE2780.

$PRT3780 Prints spool records produced by $RJE3780.

$RJE2780 Allows commun i cat i on between a System/360 or
System/370 and a Ser i es/l by s i mulat i ng an IBM 2780.

$RJE3780 Allows commun i cat i on between a System/360 or
System/370 and a Ser i es/1 by s i mulat i ng an IBM 3780.

$RMU Allows a user written HOST program to
with a remote Series/1 over a binary
communications line. (Version 2 only)

communicate
synchronous

Text Editing utilities

The text editing utilities provide facilities for entering and
ed i t i ng source programs.

$EDITl

$EDITIN

$FSEDIT

A line editor which allows you to enter and edit
source .programs while other programs are executing.
$EDIT 1 provides commands for datacommun i cat ion
us i ng the Host Commun i cat ions Fac iii ty IUP on the
System/370 so program preparation can be controlled
from a Series/1 terminal.

A line editor which allo~s you to enter and edit
source programs. It is the same as SEDIT1 except
that it edits data that resides on Series/1 direct
access volumes.

A fu 11 screen ed i tor for enter i ng and ed it i ng source
programs using a 4978 or 4979 display terminal. The
source may be located either on the Series/lor on a
host processor.

The text editing utilities provide you with a line of the Sys­
tem/370 as/TSO text editing facility in the editors. The full
screen editor provides a subset of functions similar to' the
System/370 Structured Programming Facility (SPF) full screen
editor.

In the full screen editor, functions such as browse, edit, and
merge are provided. Additional commands are offered in both
editors for read/write from or to source data sets on either
the local Series/lor a remote host System/370 with the Host
Communications Facility IUP. This allows full control of pro­
gram development from a Series/l terminal. Full-screen edit-

66 SC34-0312

ing is limited to the 4978 and 4979 display terminals.

The following diagnostic utilities are available:

$DEBUG An interact i ve program debugg i ng aid

$DUMP Formats and displays the data saved by $TRAP on an
error cond it i on

$IOTEST Performs the following functions:

$LOG

$TRAP

• Tests the ope rat i on of sensor based I/O features

• l; sts the hardware conf i gurat i on of the Ser i es/l

• lists the dev ices supported by the superv i sor

• lists volume i nformat i on

logs I/O errors into a data set

Intercepts certain class interrupts and records the
env ironment on a disk or diskette data set

$OEBUG a llows you to stop, mod i fy, trace, and restart an app 1 i­
cation program with no impact on the execution of other pro­
grams.

The sensor I/O test utility ($IOTEST) allows you to exercise
the sensor I/O (AI, AD, 01, DO, PI) devices on a Series/l. You
can perform functions such as read/write di.gital input/output,
wr i te dig i tal output wi th selected time intervals, and
read/write analog. During any exercising function, which can
be selected via a terminal command, trace printing is done to
the terminal for each exercising option.

The following graphics utilities are available:

$DICOMP

$DIINTR

Generates and modifies displays using an online
composer

Uses an interpreter to display and process the data
base

Chapter 4. Operator Commands and Utilities 67

$DIUTIL Ma i nta i ns the resu 1 t i ng data base

Graphics utilities enable you to generate, maintain, and dis­
play two- and three-dimensional fixed graphic backgrounds, and
to store them in files. Access to these background files is
available from your application programs. Realtime data can
also be super imposed over the displayed fixed graph i c back­
grounds.

The following terminal utilities are available:

$FONT Creates and modifies character image tables for 4978
display terminals

$IMAGE Defines formatted screen
display terminals

images for 4978/4979

$PFMAP D i sp lays program funct i on key ass i gnments

$TERMUTl Alters logical device names, address assignments, or
terminal configurations

$ T E RMU T 2 Lo ads con t r 0 1 and i mag est 0 res for a 4 9 78 dis p lay

$TERMUT3 Sends messages from one terminal to another

The screen format builder utility ($IMAGE) enables you .to
des i gn formatted screen i mages for stat i c screens on the
4978/4979 Display Stations. These images are generated inter­
actively on a terminal and can be saved in disk or diskette data
sets for later retrieval and use by application programs.
Images previously stored on the disk or. diskette can be
retrieved and modified.

Program Preparat;on ut;!;t;es

The following program preparation utilities are available:

$COBOL Comp i les COBOL Language programs

$EDXASM Asse.mb les Event Dr i ven Language programs

$EDXLIST Prints $EDXASM listings

$LINK Link edits object modules

68 SC34-0312·

$PL/I Compi les PL/I Language programs (Version 2 only)

$PREFIND A prefind capability for data sets and overlay pro­
grams to shorten program load i ng time

$SlASM

$UPDATE

Assembles Series/l assembler language and Event
Driven Language programs

Converts an object module into an executable program

$UPDATEH Converts a host object module into an executable
program

The Job stream Processor utility

The job stream processor ut i 1 i ty can be used to invoke a prede­
fined sequence of program preparation utilities and pass
parameters to them. $JOBUTIL can be invoked by the Session
Manager.

Chapter 4. Operator Commands and Utilities 69

70 SC34-0312

CHAPTER 5. PROGRAM PREPARAT~ON FACILITY

The Program Preparation Facility consists of an Event Driven
Language assembler, a compilation listing program, and a link­
age editor. The Program Preparation Facility has the following
features:

• Program Preparat ion Fac iIi ty programs can run concurrent I y
wi th other programs.

• Multiple, copies of the assembler, listing program, and
the linkage ed i tor can run concurrent I y.

• Source prog'rams can be stored on disk or diskette.

• All references to programs and files are by symbolic names.

The Program Preparation utilities can be invoked from any ter­
minal and loaded into any available storage. Although any of
the Program Preparation Facility programs can execute from a
dis k e t t e bas e d s y s t em, the lim ita t ion s 0 f f i I e spa c ·e and ace e s s
speed severely restrict the program preparation capabi lity. A
disk-based system is recommended for an efficient, full capa­
b iIi ty deve lopment system.

EVENT DRIVEN LANGUAGE COMPILER

The Event Driven Language assembler assembles programs written
exclusively in the Event Driven Language instruction set. This
includes application programs as well as supervisor system
generation (definition and configuration) statements. If your
program consists of Series/l assembler language instructions
or contains Event Driven Language USER exits, you must assemble
the program wi th the Ser i es/l Macro Assembler.

The assembler uses a set of overlay programs which define and
descr i be each instruct i on in the Event· Dr i ven Language
instruction set. You can add new instructions to the assembler
by wr it i ng add it i ona lover lay programs.

LINKAGE EDITOR

The. output from the Series/l Macro Assembler, the Event Driven
Language assembler, the PL/I compiler, the FORTRAN compiler,
or the COBOL compiler is input to the linkage editor After
processing by the linkage editor, the relocatable object mod­
ule must be converted to an executable program by $UPDATE. The

Chapter 5. Program Preparation Facility 71

a d van ta g e s 0 f lin k age e d i tin gar e' :

• Large programs can be broken into sma ller segments,
improving development productivity and maintainability

• Series/l macro assembler routines can be included in the
program

• Library modules, such as the Mathematical and Functional
Subroutine Library or other object library routines, can
be 1 i nk ed i ted with an Event Dr i ven Language program.

It is possible to bypass the l.ink edit step. A single program
module can be assembled wi th the Event Dr i ven Language comp i ler
if a 11 the cod i ng is done with Event Dr i ven Language
instructions. The resulting output must be converted to an
executable program by the utility $UPDATE, even if the assem­
bled object module contains no external references. However,
when using $SlASM to assemble Event Driven Language and/or
assembler programs, the resulting output must be converted by
$LINK to an acceptable format for input to $UPDATE.

72 SC34-0312

PART II - SYSTEM GENERATION AND CONFIGURATION

The creation of a customized supervisor is a two step process.
Step 1 is a def i nit i on phase. Step 2 is the gene rat i on phase.

In step 1, you def i ne the conf i gurat ion 0 f the system by
preparing configuration statements which describe the attri­
butes of the devices (such as disks, diskettes, and terminals)
you want your system to support. You also define the number and
size of the partitions that will be available in your system.
Configuration statements are described in "Chapter 6. System
Conf i gurat i on" on page 75.

In step 2, you enter your configuration statements and assemble
them. Then you modify the system-supplied INCLUDE file,
$LNKCNTL, ensuring that all the support you require is built
into the supervisor. The linkage editor combines the supervi­
sor definition with the supervisor functions you selected to
create a customi zed supervi sor.

The system gene rat i on process is descr i bed in "Chapter 7. Sys­
tem Generati on" on page 115.

PART II - SYSTEM GENERATION AND CONFIGURATION 73

74 SC34-0312

CHAPTER 6. SYSTEM CONFIGURATION

SYSTEM CONFIGURATION STATEMENTS

The characteristics of your Series/l installation are defined
by configuration statements. They are used in the system gen­
erat i on process on 1 y.

• BSCL INE - De fine a binary synchronous line

• DISK - Def i ne direct access storage dev ices

• EXIODEV - Def i ne EXIO interface dev ices

• HOSTCOMM - Def i ne host commun i cat i on support

• SENSORIO - Define sensor I/O devices

• SYSTEM - Def i ne processor character i st i cs

I· TAPE - Define tape device (Version 2 only)

• TERMINAL - Define terminals

• TIMER - Def i ne system timer feature

Chapter 6. System Configuration 75

BSCLINE

BSCLINE - Def;ne a B;nary Synchronous L;ne

BSCLINE defines the binary synchronous lines to be supported in
the generated system. One BSCLINE statement is required for
eachl"ine to be referenced by programs using the Binary Syn­
chronous Commun i cat ions Access Method. All BSCL INE statements
must be grouped together with the last BSCLINE statement
including an END=VES specification. (Refer to the
Cornmun i cat ions and Term ina 1 App 1 i cat ions Gu i de for a
description of the Binary Synchronous Communications' Access
Method.)

If Remote Management ut iIi ty is to be used, a BSCLINE statement
is necessary.

Syntax

blank BSCLINE. ADDRESS=,TVPE=,RETRIES=,MC=,END=

Required: None
Defaults: ADDRESS=9,TVPE=PT,RETRIES=6,MC=NO,END=NO
Indexable: Not Applicab1e

Operands

ADDRESS=

TVPE=

Description

The hardware address (i n hexadec i mal) of the line.

PT - The line is a point-to-point (non-switched)
line with a single remote station. The adapter
should be jumpered with DTR permanently enabled.

SM - The line is on a switched network and con­
nection will be established manually by the opera­
tor. The adapter shou ld be j umpered for sw itched
line operation and DTR should not be permanently
enabled.

SA - The 1 i ne is on a sw itched network and ca lIs
should be answered automatically by the BSC Access
Method (during BSGOPEN). The adapter should be
jumpered for switched line operation and DTR should
not be permanently enabled.

76 SC34-0312

RETRIES=

MC=

END=

BSCLINE

MC - The Series/l is the controlling st~tion on a
multipoint line. The adapter should be jumpered
with DTR permanently enabled and multipoint line
should not be jumpered.

MT - The Series/l is a tributary station on a multi­
point line. The adapter should be jumpered for
multipoint tributary operation with DTR permanent­
lyenabled.

The number of attempts. which should be made to
recover from common error cond i t ions before post i ng
a permanent error.

NO - The binary synchronous adapter located at the
address spec if i ed in the ADDRESS= operand is either
a med i urn ·speed, single line feature card or a high
speed, single line feature card.

YES - The binary synchronous adapter located at the
address specified in the ADDRESS= operand is part
of a multi-line controller feature configuration.
When generating supervisors using multi-line con­
troller attachments, note the following:

• The character string YES must be
Any other character string will be
to NO.

specified •
equivalent

• All multi-line feature cards must start at a
base address ending with either X'O' or X'8'. A
BSCLINE statement must ex i st for the line at
th i s base address· if any of the other lines of
the multi-line attachment are to be used.

YES, for the last BSCLINE statement in the system
definition module.

Examples:

BSClINE ADDRESS=28,TYPE=PT,RETRIES=10,MC=NO
BSCLINE ADDRESS=30,TYPE=SM,RETRIES=2,MC=VES,END=VES

Chapter 6. System Configuration 77

DISK

DISK - Def;ne D;rect Access Storage

DISK defines the direct access storage devices and logical
vo I urnes to be supported in the generated system. All DISK
statements must be grouped together. The last DISK statement
must include an END=VES specification.

DISK is only needed in the system generat i on process. Refer to
"Chapter 3. Data Management" on page 45 for a general
discussion of direct access storage organization, functions,
and nam i ng convent ions.

Syntax

blank

Required:

DISK DEVICE=,ADDRESS=,VOLSER=,VOLORG=,
VOLSIZE=,VERIFV=,BASEVOL=,FHVOL=,
LIBORG=,END=,TASK=

For 4964, 4966: DEVICE=,ADDRESS=
For 4962, 4963: DEVICE=,ADDRESS=,VOLSER=,VOLSIZE=
For 4962, 4963 (with fixed head): DEVICE=,ADDRESS=

VOLSER=,VOLSIZE,FHVOL=
Defaults: LIBORG=241 for 4962-1 or 4962-2 primary volume

LIBORG=1 for secondary volume

Operands

DEVICE=

LIBORG=361 for 4962-1F or 4962-2F primary vol
LIBORG=129 for 4963-64 or 4963-58 primary vol
LIBORG=129 for 4963-29 or 4963-23 primary volum
END=NO,TASK=NO,VERIFV=VES

Description

4964, to define a 4964 Diskette Drive,

or

one of the following for the six models of· the 4962
disk:

78 SC34-0312

ADDRESS=

VOLSER=

VOLORG=

VOLSIZE=

VERIFY=

DISK

4962-1 for a 9.3 megabyte unit
4962-1F for a 9.3 megabyte unit

with fixed heads
4962-2 for a 9.3 megabyte unit

with a diskette unit
4962-2F for a 9.3 megabyte unit

with fixed heads
and a diskette unit

4962-3 for a 13.9 megabyte unit
4962-4 for a 13.9 megabyte unit

with a diskette unit

or

one of the following for the four models of the 4963
disk:

4963-29 for a 29 megabyte unit
4963-23 for a 23 megabyte unit with fixed heads
4963-64 for a 64 megabyte unit
4963-58 for a 58 megabyte unit with fixed heads

or

4966, to define a 4966 Diskette Magazine Unit.

Note: If 4962 or 4963 is specified, VOLSER= must be
specified; LIBORG= may be specified.

The hexadecimal address of the unit. This parameter
is required for primary volumes only.

Volume label (1-6 characters) to be assigned to the
unit. This operand is required if the DEVICE=4962-
or DEVICE=4963- is spec if i ed. Otherwi se, it is
ignored.

The physical cylinder number of the first cylinder
of the volume. Cylinder numbering begins with zero.
A pr i mary vo I ume must beg i n at cy Ii nder zero. (Re­
fer to Figure 9 on page 58.)

The size of the volume in physical cylinders.
(Refer to Figure 9 on page 58.)

NO, to omit the WRITE-with-verify option. YES, to
cause each WRITE to be ver if i ed. YES is the
default. This parameter is required for primary
volumes only.

Chapter 6. System Configuration 79

DISK

BASEVOL=

FHVOL=

LIBORG=

END=

TASK=

Note: You should choose the VER~FY=YES option for
volumes containing critical data. This causes a
slight performance degradation but improvesreli­
ability. With the YES option, each WRITE is imme­
diately followed by a READ, thus lengthening the
operation by the time it takes the unit to make one
revolution.

The volume label of the primary volume if
secondary volume is be i ng def i ned.

a

The volume label to be assigned to the
automatically generated secondary volume if the
DISK statement is defining a primary volume on any
4962 or 4963 hav i ng fixed heads.

The origin, by number of records, of the directory
on the volume. Defaults are described under 'Syn­
tax'. This operand is only applicable when
DEVICE=4962 or 4963 and ,is intended for special use
when the initial portion of the volume is reserved
for other storage.

YES, for the last DISK statement in the system
defini·tion module.

YES, to cause a new I/O task to be generated. This
task will be used to service I/O requests for this
and subsequent primary volumes until a new DISK
statement with TASK=YES is encountered. NO, or
omit, if a new task is not required. This operand is
valid only for primary volumes and is optional.

Specifying TASK=YES on a primary volume allocat~s a Task Con­
trol Block that is used in servicing READ and WRITE requests
for the group of dev ices be i ng def i ned. The effect is to allow
READ and WRITE requests to proceed in parallel with requests to
other groups of devices. The resulting overlap may signif­
icantly:improve performance when concurrent requests to dif­
ferent groups of devices occur. To achieve maximum flexibility
and- performance, you should specify TASK=YES on each primary
volume. Additional storage required for each TASK=YES is 128
bytes.

80 SC34-0312

DISK

Examp Ie 1: 'One'I/O task for a 11 direct access dr i ves.

DISK DEVICE=4964,ADDRESS=02
DISK DEVICE=4962-1F,ADDRESS=03,VOLSER=EDX002,VOLSIZE=153, C

FHVOL=EDX004
DISK DEVICE=4962-1,VOLSER=EDX003,VOLORG=153,VOLSIZE=150, C

BASEVOL=EDX002
DISK DEVICE=4963-23,ADDRESS=30,VOLSER=EDX005,VOLSIZE=128, C

FHVOL=FH005
DISK DEVICE=4963-23,VOLSER=EDX006,VOLSIZE=128, C

END=YES,VOLORG=128,BASEVOL=EDX005

Example 2: One I/O task for the two 4964s and a second I/O task
for the 4962.

DISK
DISK
DISK

DISK

DEVICE=4964,ADDRESS=02
DEVICE=4964,ADDRESS=12
DEVICE=4962-1F,ADDRESS=03,VOLSER=EDX002,VOLSIZE=153,
FHVOL=EDX004,TASK=YES
DEVICE=4962-1F,VOLSER=EDX003,VOLORG=153,VOLSIZE=150,
BASEVOL=EDX002,END=YES

Chapter 6. System Configuration- 81

C

C

·1 EXIODEV

EXIODEV - Define EXIO Interface Device

EXIODEV defines the devices to be supported via the EXIOi nter­
face in the generated system. All EXIODEV statements must be
g ro upe d to'g e t he r. The I a st EX I ODEV sta tement must inc I ude an
END=YES specification.

Syntax

blank EXIODEV ADDRESS=,END=,MAXDCB=,RSB=

Required: ADDRESS=
Defaults: MAXDCB=O,RSB=O,END=NO
Indexable: Not applicable

Operands

ADDRESS=

END=

MAXDCB=

RSB=

Examples

Description

T~e dev'ice address (two hexadecimal digits).

Specify YES for the last EXIODEV statement in the
system definition module.

The maximum number of chained DCBs 'which will be
used for this device. Must be three or less.

The number of residual status bytes the device wi 11
transfer. Enter zero or an even decimal number
between 4 and 16 inclusi vee

EXIODEV ADDRESS=OO

EXIOD£V ADDRESS=EO,RSB=12,MAXDCB=2,END=YES

Note: Any device defined via EXIODEV should not be defined on
any other statement such as DISK or TERMINAL. Doubly defined
devices will cause unpredictable results when accessed by, for
example, a combination of READ/WRITE and EXIO. You must load
any control store that is required by the device.

82 SC34-0312'

·1 HOSTCOMM

HOSTCOMM - Def;ne Host Commun;cat;ons Support

HOSTCOMM defines the type and address in the generated system
of the device to be used for host communication support. This
support operates in conjunction with Host Communications
Facility IUP.

Syntax

blank HOSTCOMM DEVICE=,ADDRESS=

Required: D~VICE=, ADDRESS=
Defaults: None

Operands

DEVICE=

ADDRESS=

Example

Description

The type of commun i cat i on to be used.

BSCA, for Binary Synchronous Communications Adapt­
er support. This is the only device supported and
must be a single line BSC adapter (feature 2074 or
2075). Only one is allowed.

The hexadec i mal address of the dev i ce.

HOSTCOMM DEVICE=BSCA,ADDRESS=09

Chapter 6. System Configuration 83

SENSORIO

SENSORIO - Def;ne Sensor I/O Dev;ces

SENSORIO defines the sensor I/O devices to be supported in the
generated system. All SENSORIO statements must be grouped
tog e the r wit h the I a s ton e 'i n c Iud i n g a n END = YES s pee i fie a t ion •

Syntax

blank SENSORIO ADDRESS=,DEVICE=,PI=,DI=,DO=,AI=,AO=,
AITYPE=,LEVEL=,END=

Required: DEVICE,ADDRESS
Defaults: AITYPE=RELAY,LEVEL=1,END=NO

Operands

ADDRESS=

DEVICE=

Description

The base address of the device (in hexadecimal).
This is the only required address if DEVICE=IDIO
unless PI is needed on this unit.

1010 - The integrated dig ita I I/O non~ i so lated fea­
ture (feature .1560).

4982 - The sensor I/O unit.

Not e: For the PI, D I, DO, A I , and A 0 par a met e r s , m ul tip Ie
addresses must be included in parentheses.

Operands

01=

PI=

00=

Description

The address or list of addresses of the digital
input group(s) on this device.

PI can be read as 01.

The address or list of addresses of the digital
input group(s) to be used as process interrupt.

The address or list of addresses of the digital
output group (s) on th is dev ice.

AO= The address or list of addresses of the analog out­
put point(s) on this device.

84 SC34-0312

AI=

AITVPE=

LEVEL=

END=

Examples

SENSORIO

The address or 1 i st of addresses of the analog input
multiplexor feature(s) on this device.

The type of AI multiplexer(s). Valid entries are:

• RR or RELAV - for relay

• SS or SOLID - for sol id state
(The names have a one-to-one relationship with
addresses on the AI operand.)

A number (from 0-3) to assign the hardware inter­
rupt level to the device.

Note: Th is ass i gnment is for a 11 features on that
device.

YES, for the last SENSORIO statement in the system
definition module.

SENSORIO DEVICE=IDIO,ADDRESS=68

SENSORIO DEVICE=4982,ADDRESS=60,AO=65,DO=62,DI=64, C
PI=63,AI=61,AITVPE=SS

SENSORIO DEVICE=4982,ADDRESS=70,DI=(70,71)

SENSORIO DEVICE=4982,ADDRESS=60,AI=(62,63), C
AITVPE=(RELAV,SOLID),AO=64,DI=(65,66),DO=67

SENSORIO DEVICE=IDIO,ADDRESS=68,PI=68,END=VES

Chapter 6. System Configuration 85

SYSTEM

SYSTEM - Define Processor

SYSTEM def i nes the character i st i cs of the processor and the
system generat i on opt ions. Th i s statement must be spec if i ed
once.

Syntax

blank

Required:
Defaults:

Operands

STORAGE=

MAXPROG=

SYSTEM STORAGE=,MAXPROG=,PARTS=,DATEFMT=,
IABUF=,COMMON=

STORAGE=
MAXPROG=10,PARTS=32,DATEFMT=MMDDYY
IABUF=20,COMMON=EDXSYS

Description

The size in K bytes (K=1024) of I the Series/l
processor storage. Enter one of the following num­
bers: 16, 32, 48, 64, 80, 96, 112, 128, 160, 192,
224, or 256.

The maximum number of concurrently executing
programs to be allowed in the partition. Add one to
your calculated number for each occurrence of
$JOBUTIl in that partition. Add two for each occur­
rence of the session manager in that partition.
Four words of storage are required in the nucleus
for each program spec if i ed.

If a storage size larger than 64K bytes is speci­
fied, multiple partitions must be defined. You
must spec i fy a list of the max i mum number of concur­
rently executing programs allowed in each parti­
tion.

The number of programs which can run concurrently
in a system is a function of several variables, such
as:

• Processor storage

• Program size

86 SC34-0312

PARTS=

DATEFMT=

SYSTEM

• Processor time requirements

These items vary wi th each i nstallat i on.

The number of 2K (lK=1024 bytes) blocks of storage
to be assigned to each partition. Use only if STOR­
AGE= is specified as greater than 64. Enter a list
showing the maximum size of each partition. Up to
eight partitions can be defined for the 4955, up to
two for the 4952, and one for the 4953. The list
must contain the same number of entries as the list
coded for MAXPROG=.

The method for calculating the maximum size for
partition one is as follows:

Determine the avai lable storage in the first 64K by
subtract i ng the size of the superv i sor from 64K.
See Append i x A to est i mate the superv i sor size.

The size of part i t i on one is determ i ned when you
IPL, by using the smaller of:

• The size you def i ne in the PARTS= parameter

• 64K minus the size of the superv i sor

The maximum value that can be specified is 32; the
minimum is 2. When specifying the size to be
assigned to partition one, you may code 32 rather
than calculating the value, if you wish partition
one to have all storage not used by the supervisor.
Otherw i se, you must ca lcu late the size of part it ion
one.

The Multiple Terminal Manager partition size can be
calculated by using the information in the
Communications and Terminal Applications Guide.

The format to be used when the date is displayed
(P R IN D ATE 0 r $ W) 0 r w hen en t e r i.n g the d ate v i a $ T •
A return code is set in response to a GETTIME
request with the DATE opt ion.

Spec i fy MMDDVV for a date format of month. day. year.
Spec i fy DDMMVV for a date format of day. month. year.
MMDDYY is the default.

Note: Timer support must be included in your
superv i sor in order to have date support.

Chapter 6. System Configuration 87

SYSTEM

IABUF=

COMMON=

Example 1

The maxrmum number of interrupts that may be buf­
fered by the task supervisor. The default value is
adequate for most systems. The value should be
increased if the system could be overloaded by a
large number of interrupts. (The system w j 11 stop
or enter a cant i nuous run loop.) Each increment
increases the superv i sor storage requ i rements by
four bytes.

The label of the last supervisor address to be
mapped in every part i t i on. The va 1 ue will be auto­
matically rounded upward to a 2K byte boundary. To
map the entire supervisor, specify COMMON=START.
To map only the supervisor data areas, specify
COMMON=EDXSVCX. The default, COMMON=EDXSYS,
i mpl i es no inapp i ng. Refer to "$SYSCOM Def i ne
Opt i ana 1 Common Data Area" on page 113 for
additional information.

SYSTEM STORAGE=96,MAXPROG=(3,2,3), C
PARTS=(32,6,10)

This three partition system is possible on a 96KB 4955 and maps
as follows:

PARTITION 1 28KB SUPERVISOR 36KB USER SPACE

PARTITION 2 12KB USER SPACE

PARTITION 3 20KB USER SPACE

1. Part i t i on 1 is 36KB and can execute up to' three programs
concurrently.

2 • Part i t i on 2 i s 12 K B and can ex e c ute up to two pro g ra m s
concurrently.

3. Partition 3 is 20KB and can ,execute UP to three programs
concurrently.

Note: The 28KB supervisor size is used for illustrative pur­
poses only.

Example 2

88 SC34-0312

SYSTEM

SYSTEM STORAGE=64,MAXPROG=5

A map of this single partition system is as follows:

PARTITION 1 I 28KB SUPERVISOR 36KB USER SPACE

Up to fi ve programs can execute concurrently.

Note: The 28KB supervisor size is used for illustrative pur­
poses only.

Example 3

SYSTEM STORAGE=196,MAXPROG=(1,2,1,3,4,1), C
PARTS=(9,12,7,4,20,32)

This six partition system is possible on a 196KB 4955 and maps
as follows:

PARTITION 1 28KB SUPERVISOR 18KB USER SPACE

PARTITION 2 24KB USER SPACE

PARTITION 3 14KB USER SPACE

PARTITION 4 BKB USER SPACE

PARTITION 5 40KB USER SPACE

PARTITION 6 64KB USER SPACE

1. Part it i on 1 is 1BKB and can execute one program at a time.

2. Partition 2 is 24KB and can execute up to two programs
'concurrently.

3. Part it i on 3 is 14KB and can execute one program at a time.

4. Part it ion 4 is 8KB and can execute up to three programs
concurrently.

5. Part i t ion 5 is 40KB and can execute up to two programs
concurrently.

Chapter 6. System Configuration 89

SYSTEM

6. Part i t i on 6 is 64KB and can execute one program at a time
Note: The 28KB supervisor size is used for illustrative pur­
poses only.

Example 4

SYSTEM STORAGE=128,MAXPROG=(10,10,10), C
PARTS=(27,9,23)

This three partition system is possible on a 128KB 4955 and
maps as follows:

PARTITION I 28KB SUPERVISOR 36KB USER SPACE

PARTITION 2 18KB USER SPACE

PARTITION 3 46KB USER SPACE

I . Partition 1 is 36KB and can execute up to ten programs
concurrently.

2 • Partition 2 is 18KB and can execute up to ten programs
concurrently.

3. Partition 3 is 46KB and can execute up to ten programs
concurrently.

Note: The 28KB supervisor size is used for illustrative pur­
poses only.

Example 5

SYSTEM STORAGE=128,MAXPROG=(3,6), C
PARTS=(32,32),COMMON=EDXSVCX

This two partition system is possible on a 128KB 4952 and maps
as follows:

PARTITION I 28KB SUPERVISOR 36KB USER SPACE

PARTITION 2 4KB CONTROL BLOCKS 60KB USER SPACE

1. Partition 1 is 36KB and can execute up to three programs
concurrently.

90 SC34-0312

SYSTEM

2. Part it ion 2 is 60KB and can execute up to six programs
concurrently. The programs all have direct addressability
to supervisor control blocks (for example, the CVT and DVT)
because of the COMMON=EDXSVCX parameter.

3. When the date is displayed, it wi 11 be in month, day, and
year format.

Note: The 30KB supervisor size and the 4KB control block size
are used for i llustrat i ve purposes only.

Example 6

SYSTEM STORAGE=12B,MAXPROG=(4,4), C
PARTS=(32,32),DATEFMT=MMDDYY

This two partition system is possible on a.12BKB 4952 and maps
as follows:

PARTITION 1 30KB SUPERVISOR 34KB USER SPACE

PARTITION 2 64KB USER SPACE

1. Part it i on 1 is 34KB and can execute up to four programs
concurrently.

2. Part it; on 2 is 64KB and can execute up to four programs
concurrently.

3. When the date is displayed, it will be in month, day, and
year format.

Note: The 30KB supervisor size is used for illustrative pur­
poses only.

Example 7

SYSTEM STORAGE=256,
MAXPROG=(3,1,5,2,2,1,1,4),
PARTS=(15,4,21,13,17,11,B,23)

C
C

This eight partition system is possible on a 256KB 4955 and
maps as fo llows:

Chapter 6. System Configuration 91

SYSTEM I.

PARTITION 1 32KB SUPERVISOR 30KB USER SPACE

PARTITION 2 aKB USER SPACE

PARTITION 3 42KB USER SPACE

PARTITION 4 26KB USER SPACE

PARTITION 5 34KB USER SPACE

PARTITION 6 22KB USER SPACE

PARTITION 7 16KB USER SPACE

PARTITION 8 46KB USER SPACE

1. Partition 1 is 30KB and can execute up to three programs
concurrently.

2. Part"i t ion 2 is aKB and can execute one program at a time.

3. Partition 3 i s 42KB and can execute up to five programs
concurrently.

4. Partition 4. is 26KB and can execute up to two programs
concurrently.

5. Partition 5 is 34KB and can execute up to two programs
concurrently.

6. Part i t i on 6 is 22KB and can execute one program at a time.

7. Partition 7 is 16KB and can execute one program at a time

8. Part it i on 8 is 46KB and can execute up to four programs
concurrently.

Note: The 32KB supervisor size is used for illustrative pur­
poses "only.

Example 8

SYSTEM STORAGE=96,MAXPROG=(3,4), C
PARTS=(16,18),COMMON=START

Th is two part it i on system is poss i b Ie on a 96KB 4952 and maps
as follows:

92 SC34-0312

SYSTEM

PARTITION 1 28KB SUPERVISOR 32KB USER SPACE

PARTITION 2 36KB USER SPACE

1. Because COMMON=START was spec if i ed, the superv i sor is
mapped in both partition 1 and partition 2, providing
direct addressability to the supervisor for all programs
that execute on th is system.

2. Partition 1 is 32KB and can execute up to three programs
concurrently.

3. Part it i on 2 is 36KB and can execute up to four programs
concurrently.

Note: The 28KB number for the supervisor is used for illustra­
ti ve purposes only.

Chapter 6. System Configuration 93

TAPE

TAPE - Define Tape Device (Version 2 only)

TAPE defines the tape devices on a system. One TAPE statement
is required for each tape device on the system. It is recom­
mended that you group a 11 DISK statements together, fo llowed by
all the TAPE statements. The last TAPE o~ DISK statement must
include an END=YES specification.

Syntax

blank TAPE DEVICE=,ADDRESS=,DENSITY=,LABEL=,ID=,
TASK=,END=

Required: DEVICE=,ADDRESS=,ID=
Defaults: DENSITY=1600,LABEL=SL,TASK=NO,END=NO

Operands

DEVICE=

ADDRESS=

DENSITY=

LABEL=

ID=

TASK=

I END=

Description

Dev i ce type (4969 to def 1 ne IBM 4969 tape un it)

A two digit hexadecimal number specifying the
address ass i gned to the un i t

Tape density to be
CBOO,1600,DUAL). When
defaults to 1600 BPI.

used
DUAL

for this
is coded,

device
density

Type of process i ng to be done on th i s dey ice. Stand­
ard label CSL), non-label (NL), and bypass label
processing (BLP) are the only types supported.

A one-to six-character name that is assoc i ated wi th
the dey ice. Th is operand is used pr i mar i I y for
spec i fyi ng the dr i ve when NL or BlP is used.

YES, causes a new I/O task to be generated. Th is
task is used to serv i ce I/O request for th i sand
subsequent tapes unti I a new TAPE statement with
TASK=YES is encountered. For best performance,
specify TASK=YES for each tape unit that has a con­
troller.

YES, for the last statement in the DISK/TAPE
sequence.

94 SC34-0312

I Example

TAPE DEVICE=4969,ADDRESS=4C,DENSITY=1600,
LABEL=SL,ID=$TAPEl,'
TASK=VES,END=VES

Note: END=VES is specified only
once for the DISK/TAPE definition statements.

x
X

Chapter 6. System Configuration 95

TERMINAL

TERMINAL - Define Input/Output Terminals

TERMINAL defines each input/output terminal to be supported in
the generated system. Output on 1 y dev ices, such as line
printers, are also specified with TERMINAL statements. All
TERMINAL statements must be grouped together with the last
statement 1 nc I ud i ng an END=YES spec if i cat i on.

A, TERMINAL statement specifying DEVICE=VIRT can be entered in
an application program provided exactly the same statement is
entered in the system conf i gurat i on program. All TERMINAL
statements within the application program are automaticallY
converted to an IOCB statement. The label on the TERMINAL
statement IS used for the label and the operand of the 10CB
statement.

Before prepar 1 ng your TERMINAL statements, you need to know the
characteristics of your terminals, the way they will be
attached to your Ser i es/1, and how you plan to use them in your
application. Review the appropriate h~rdware manuals, the
topic entitled "Terminal I/O" in the Language Reference, and
the appropr i ate top i cs '1 n Commun i cat ions and Term ina I
Applicatjons Guide.

If you use the Remote Management Utility and need the PASSTHRU
function, two virtual terminals are required. For a detailed
description of the PASSTHRU function see the Remote Management
Utility chapter in Communications and Terminal Applications
Guide. See Figure 10 on page 107 for a sample configuration.

96 S'c34-0312

TERMINAL I·

Syntax

label TERMINAL DEVICE=,ADDRESS=,PAGSIZE=,LINSIZE=,
CODTVPE=,TOPM=,BOTM=,NHIST=,LEFTM=,RIGHTM=
OVFLINE=,LINEDEL=,CHARDEL=,CRDELAV=,ECHO=,
BITRATE=,RANGE=,LMODE=,ADAPTER=,COD=,CR=,
LF=,HDCOPV=,ATTN=,PF1=,SVNC=,SCREEN=,PART=
DI=,DO=,PI=,END=,TVPE=

Required: DEVICE= ,and one of the following:

• ADDRESS= except for DI/DO terminals

• DI=,DO=,PI= for DI/DO terminals

Defaults: PART=1,END=NO

Operands

DEVICE=

\

Description

One of the following codes for the
device:

indicated

TTY

4979

4978

4974

4973

2741

4013

A 3101 Display Terminal
Termi nal attached v i a
Adapter (7850)

or other ASCI I
Teletypewriter

4979 display station attached via 3585
Adapter

4978 display station attached via RPQ
D02038

4974 matrix printer attached via 5620
Adapter

4973 line printer attached via 5630
Adapter

2741 communications terminal attached
via 1610 controller

Graphics terminal attached via 1560
adapter (Refer to Commun i cat ions and
Terminal Applications Guide for hardware
considerations.)

Chapter 6. System Configuration 97

TERMINAl

ADDRESS=

PAGSIZE=

CODTYPE=

LINSIZE=

ACCA

PROC

VIRT

A 3101 Display Terminal or other ASCII
terminal attached via 1610 controller or
2091 controller with 2092 adapter or 2095
contro ller with 2096 adapter (Refer to
Communications and Terminal Applications
Guide for hardware considerations.)

Processor-to-processor communication

Inter-program commun i cat ion. (Refer to
"Chapter 14. Inter-Program
Communications" on page 279.)

The address (in hexadecimal) of the device. (Refer
to "Chapter 14. Inter-Program Commun i cat ions" on
page 279 for the, use of th i s parameter in con­
nection with virtual terminal communications.>

The physical page size (form length) of. the I/O
medium. Specify a decimal number between 1 and the
maximum value which is meaningful for the device.
For pr inters, spec i fy the number of lines per page,
or for screen dev ices the size of the screen in
lines. Th is operand is not requ i red for the
4978/4979 display; its value is forced to 24.

The transm iss i on code used by the term ina 1. Spec i fy
either ASCII, EBCDIC, EBCD (PTTC/EBCD), CRSP
(PTTC/correspondence), or EBASC (8 bit data inter­
change code) as in the following table:

DEVICE= TYPE OF ADAPTER

1610 or
7850 2091 w/2092 2095 w/2096

TTY ASCII N/A N/A
(default)

2741 N/A Specify: N/A
EBCD
or
CRSP

ACCA N/A EBASC Specify:
(default) ASCII

The maximum length of an input or output line for
the device. The value of this operand can be less
than the maximum which the device can accommodate

98 SC34-0312,

TOPM=

NHIST=

BOTM=

LEFTM=

RIGHTM=

OVFLINE=

LINEDEL=

CHARDEL=

TERMINAL

(for example, 80 for the 4978/4979 display station
or 132 for the 4974 printer), but the value is then
fixed and cannot be altered dynamically.

The top margin (a decimal number between zero and
PAGSIZE-l) to indicate the top of the logical page
within the physical page for the device.

The number of history lines to be retained when a
page eject is performed on the 4978/4979 display.
The line at TOPM+NHIST corresponds to logical line
zero for purposes of the term ina 1 I/O instruct ions.
When a page eject (LINE=O) is performed, the screen
area from TOPM to TOPM+NHIST-1 will contain lines
from the previous page. This operand is meaningful
for roll screens only. (See the discussion of the
SCREEN operand which follows.)

The bottom margin, the last usable line on a page.
Its value must be between TOPM+NHIST and PAGSIZE-1.
If an output instruction would cause the line num­
ber to increase beyond th i s value, then a page
eject, or wrap to line zero, is performed before the
operation is continued.

The left marg in, the character pos it i on at wh i ch
input or output wi 11 begin. Speci fy a decimal value
between zero and LINSIZE-1.

A value (between LEFTM and LINSIZE-1) that deter­
mines the last usable character position within a
line. Position numbering begins at zero.

YES, if output lines which exceed the right margin
are to be cont i nued on the next line.

A two-digit hexadecimal character that defines the
character the operator will enter when he wishes to
restart an input line. In some cases, input of th is
character causes a repeat of the previous output
message. Usually, this operand is not meaningful
for devices such as the 4979 display station, whose
input is formatted loca 11 y before entry. (For the
ACCA terminals attached via the 1610 or 2091 con­
trollers and the 2092 adapter, code in mi rror
image. Refer below for a descr i pt i on of mi rror
images.)

A two-digit hexadecimal character which indicates
deletion of the previous input character. It is
meaningful only for devices whose mode of trans­
mission is one character at a time, as described in

Chapter 6. System Configuration 99

TERMINAL

CRDELAY=

ECHO=

BITRATE=

RANGE=

LMODE=

ADAPTER=

the LINEDEL operand. For the ACCA terminals
attached via the 1610 or 2091 controllers and the
2092 adapter, enter in mi rror image.

The number of idle times required for a carriage
return to complete for teletypewriter devices. If
printing occurs during the carriage return, CRDELAY
is too small. For interprocessor communications
(DEVICE=PROC), refer to the Communications and
Terminal Applications Guide.

NO, for devices that do not require input charac­
ters to be written,back (echoed) by the processor
for printing.

YES (the default) is appropriate for most devices
connected through the teletypewriter adapter. NO
is requ i red for ACCA. See the LF parameter
descr i pt'i on regard i ng suppress; on of the echo of
the C R c h a r,a c t e r •

The rate (i n bits per second) that th i s term ina 1
wi 11 be operating. (Used, with ACCA, 2741 and PROC
support only.)

Enter HIGH or LOW to match hardware jumper that is
installed on the adapter card., (Used with ACCA,
2741 and PROC support only.)

S WIT C H E D 0 r P T TOP T '. 1ft his 1 i n e i sus e d wit h a
switched connection, then enter SWITCHED. Other­
wise, enter PTTOPT. (Used with ACCA support only.)

One of the following to indic,ate the ACCA type:

SINGLE

TWO

FOUR

SIX

EIGHT

For t h es i n g 1 e line controller

For the eight line controller with up to
two lines acti ve

For the eight line controller with up to
four lines active

For the eight line controller with up to
six lines active

For the eight line controller with up to
eight lines active

100 SC34-0312

COD=

CR=

LF=

HDCOPY=

TERMINAL

All multiple line feature cards must start at a base
address ending with with X'O' or X'8'. A terminal
statement with DEVICE=ACCA.must exist for the line
at the base address.· Furthermore, the terminal
def i ned as the base address must be spec if i ed as the
first terminal for the multiline controller. The
remaining terminals defined on the multiline con­
troller (if any) must immediately follow the base
address terminal and should be in ascending order
by address.

Note: For DEVICE=2741, only SINGLE is allowed.

This should match the jumpers on the controller
cards. (Refer to the Communications and Terminal
App 1 i cat ions Gu i de for hardware cons i derat ions.)

Additional characters, other than the CR=, ATTN=,
and LINEDEL= values, that wil.l terminate a READ
operation. (COD means change of direction, for
example, READ to WRITE.) (Used with ACCA only.)
Code in mirror image as follows:

COD=ll
or
COD=(12,B6,42 •••)

From one to four COD characters may be entered.

The character to be tested to determi ne if a new
line function is to be performed. (Code in mirror
image for ACCA ,terminals attached via the 1610 or
2091 controllers with the 2092 adapter.)

The character to be sent to the terminal when a new
line function is to be performed. Code in mirror
image for ACCA terminals attached via the 1610 or
2091 controllers with the 2092 adapter. If the same
value is coded for LF= as was coded (or defaulted)
for CR= then the CR character which terminates an
input operation wi 11 not be echoed to the terminal;
the terminal is assumed to be an auto-line feed
device.

Support for the 4978/4979 display station includes
a means of printing the contents of the display
screen on a hardcopy device for permanent record.
(For an explanation of the hardcopy feature, refer
to Ut i lit i es, Operator Commands, Program
Preparat i on, Messages and Codes). The hardcopy
function is defined by coding:

Chapter 6. System Configuration 101

TERMINAL

ATTN=

HDCOP~=(terminal name, k~y),'

terminal name The symbolic name of the terminal to
which the hardcopy contents will be
directed

key The code of the program function key
wh i ch is to invoke the funct ion. For
example, HDCOPV=($SVSPRTR,4) desig­
nates $SVSPRTR as the hardcopy
dev i ce and PF4 as the act i vat i ng key.
If the hardcopy terminal name alone
is specified, as for example in
HDCOPV=$SVSPRTR, then the default is
PF6. Note: The terminal specified
(Terminal name) must not be defined
with ATTN=NO.

NO, if the attent i on key and the 4978/4979 PF keys
are to be disabled for the terminal. Such disabling
is then permanent for the generated system. If yoU
do not specify ATTN=, the default is the ATTN key.

LOCAL, to lim it the attent i on funct ions to those
def i ned by ATTNLISTs wi th i n programs loaded from
the termi nal.

NOSVS, to exclude only the system functions ($L,
$C, etc.).

NOGLOB, to exclude only the global ATTNLIST func­
tions. (GLOBAL is the ATTNLIST of all programs in
the same partition at one time.)

Note: This operand can also be entered with a two­
digit hexadecimal character for the attention key
if the system default is not desired.

The at tent i on key can be redef i ned with a two-d i g it
hexadecimal character for the 4978/4979 displays or
ASCI I term ina Is.

For terminals attached via the 1610 or 2091 con­
tro llers and the 2092 adapter, use mirror image.
(Refer to "Mi rror Image" on page 109 for a
discussion of mirror image.)

For the 3101 display terminal, enter X'D9' if the
terminal is attached via the- 1610 or 2091 control­
lers and X' 9B' if it is attached v i a the 2095 con­
troller. You may have the Mark Par i ty Swi tch set on
(refer to the IBM 3101 Display Terminal Description

102 SC34-0312

PF1=

SYNC=

SCREEN=

TERMINAL

GA18-2034, for i nformat ion on sw itch sett i ngs) •

The default for ATTN for ASCII terminals is ASCII
X' IB', the ESC key. The mi rror image of X'lB' is
X'D 8 ' • Note: If the term ina 1 be i n g d e f i ned iss p e c -
ified in the HDCOPY= parameter of an other termi­
nal, do not code ATTN=NO.

For the 4978 display, code the two-digit
hexadec i rna 1 character wh i ch is to be interpreted as
Program Function key 1. Successive values are then
interpreted as PF2 and PF3.

The defaul t for th i s operand is 2.

This keyword applies to virtual terminal
commun i cat ions. Code SYNC=YES if synchron i zat ion
events will be posted:to this virtual terminal.

This means that attempted actions over the virtual
channel wi 11 be indicated in the task control word.
This allows the two terminals to synchronize their
actions so that when one terminal is writing, the
other is read i ng.

SYNC=NO is the default.

One of the following to indicate whether the
termi nal is a hardcopy or screen dev i ce:

YES or ROLL for screens which are to be operated
like a typewriter.

For screen devices which are attached through the
te letypewr iter adapter, th i sind i cates that a pause
will be performed when a screen-full condition
occurs dur i ng cont i nuous output.

NO for hardcopy devices. For 4978 or 4979 devices,
NO results in inhibiting the pause when the screen
fills up ,(the screen acts as a ro 11 screen).

STATIC for a full-screen mode of operation, if this
mode is supported for the dev i ce.

Note: The initial terminal configuration should be
STATIC only if the terminal is reserved for data
display and data entry operations. Normal system
operat ions, such as those directed to $SYSLOG or
those involving the uti lity programs, assume a roll
screen configuration. The application program can
define the static screen configuration by means of

Chapter 6. System Configuration 103

TERMINAL

PART=

END=

TYPE=

the ENQT and IOCB instructions described in the
Language Reference.

A number (1-8) to indicate the partition with which
the term ina 1 is norma 11 y assoc i ated.

This is valid only if the STORAGE= operand of the
SYSTEM statement was specified to be greater than
64. You can change the part i t i on ass i gnment at exe­
cut i on time wi th the $CP Command descr i bed in
Ut i 1 i t'i es, Operator Commands, Program Preparat i on,
Messages and Codes.

YES, for the last TERMINAL statement ina system
definition module.

Specify DSECT to generate a CCB DSECT in your
program. for programs processed by $SIASM. Do not
spec i fy DSECT in programs processed by $EDXASM; use
COPY CCBEQU elsewhere in your program.

The following three'operands are for terminals connected via
digital I/O only:

Operands Description

DI=(address,termaddr)

address The dig i tal input group address.

termaddr The hardware subaddress (0-7) of the
terminal defining the value used to
select the terminal for digital input.

DO=(address,termaddr)

address The dig i ta 1 output group address

termaddr The hardware subaddress (0-7) to define
the dig i tal output subaddress of the ter­
minal

PI=(address,bit)

address

bit

104 SC34-0312

The process interrupt group address.

The bit (0-15) to define the particular
interrupting point assigned to the ter­
minal.

TERMINAL

Terminal support is p~ovided for digital I/O devices such as
the Tektronix 4010 Series of Display Terminals equipped with
the General Purpose Parallel Interface (Tektronix Custom Fea­
ture Number CM021-0109-03) or terminals having equivalent
hardware interfaces. (Refer to the Communications and
Terminal Applications Guide.)

Examples and Defaults

Default values for optional parameters on the TERMINAL state­
ment vary with the device type. In the following examples, the
default assignments for each device support are shown as if
they were explicitly coded in the TERMINAL statement. If a
parameter is not shown, then it is not relevant for the device.
Address assignments are for illustration only.

4978/4979 Display TERMINAL Statement

TERMINAL DEVICE=4978 (or 4979),ADDRESS=04,PAGSIZE=24, C
LINSIZE=80,TOPM=0,NHIST=12,BOTM=23,LEFTM=0, C
RIGHTM=79,SCREEN=ROLL,QVFLINE=NO,ATTN=YES

4974 Matrix Printer or 4973 Line Printer TERMINAL
Statement

TERMINAL DEVICE=4974 (or 4973),ADDRESS=01,PAGSIZE=66, C
LINSIZE=132,TOPM=3,BOTM=63,LEFTM=0, C
RIGHTM=13l,OVFLINE=NO

Chapter 6. System Configuration 105

TERMINAL

ASCII Terminal via 7850 Adapter TERMINAL Statement

TERMINAL DEVICE=TTV,ADDRESS=00,PAGSIZE=35,lINSIZE=80, C
CODTVPE=ASCII,TOPM=0,BOTM=34,lEFTM=0, C
RIGHTM=79,SCREEN=NO,OVFlINE=NO,lINEDEl=7F, C
CHARDEl=08,CRDElAV=0,ECHO=VES,ATTN=VES, C
CR=OD,lF=OA

IBM 2741 Terminal TERMINAL Statement

TERMINAL DEVICE=2741,ADDRESS=08,PAGSIZE=66, . C
lINSIZE=130,CODTVPE=EBCD,TOPM=0,BOTM=65, C
lEFTM=0,RIGHTM=129,SCREEN=NO,OVFlINE=NO, C
lINEDEl=AO,CHARDEl=5D,CRDElAV=0,ECHO=NO, C
CR=5B,lF=5B,BITRATE=134,ADAPTER=SINGlE

..

ASCII Terminal via 1610 Controller TERMINAL Statement

TERMINAL DEVICE=ACCA,ADDRESS=70,PAGSIZE=35, C
lINSIZE=80,CODTVPE=EBASC,TOPM=0, C
BOTM=34,lEFTM=0,RIGHTM=79,SCREEN=NO, C
OVFlINE=NO,CRDElAV=O,ECHO=NO, C
BITRATE=300,RANGE=HIGH,lMODE=PTTOPT, C
ATTN=YES,ADAPTER=SINGlE,lF=5B,CHARDEl=11

PROC (via 1610 Controller) TERMINAL Statement

TERMINAL DEVICE=PROC,ADDRESS=7F,CODTVPE=EBCDIC,
lINSIZE=130,CRDElAV=(PROMPT,30000),
BITRATE=9600,RANGE=HIGH,CR=5B,lF=5B

106 SC34-0312

C
C

TERMINAL

4013 4 (01/00 Parallel Interface) TERMINAL statement

TERMINAL DEVICE=4013,DI=(80,01),DO=(87,01), C
PI=(84,04),PAGSIZE=35,LINSIZE=72, C
CODTVPE=ASCII,TOPM=0,BOTM=34,LEFTM=0, C
RIGHTM=71,SCREEN=NO,QVFLINE=NO, C
LINEDEL=7F,CHAROEL=08,CRDELAV=O,ECHO=VES, C
CR=OO,LF=OA

Remote Management Utility using the
PASSTHRU function - TERMINAL statements

CDRVTA TERMINAL DEVICE=VIRT,ADDRESS=CDRVTB,
SVNC=VES,LINSIZE=132

CDRVTB TERMINAL DEVICE=VIRT,AODRESS=CDRVTA,
SVNC=NO,LINSIZE=132

Note: This example shows a line size of 132. The
maximum line size value is 254.
The names CDRVTA and CDRVTB are required.

C

C

The following statements are coded with values that are not
defaults for parameters PAGSIZE, ATTN, CR, CHARDEL, LINEDEL,
ADAPTER, BOTM, SCREEN, BITRATE, RANGE, and MODE. Use these val­
ues if the IBM 3101 Display Terminal is attached to your sys­
tem. For DEVICE=ACCA, you must set the mark parity switch on
(refer to the IBM 3101 Display Terminal Description,
GA18-2033, for i nformat i on on sw itch sett i ngs) •

4 Reg i stered trademark of the Tektron i x Corporat i on.

Chapter 6. System Configuration 107

TERMINAL

IBM 3101 TERMINAL Statement (via 7850 adapter)

TERMINAL DEVICE=TTV,ADDRESS=00,CRDELAV=4, C
PAGSIZE=24,SCREEN~VES

IBM 3101 TERMINAL Statement (via 2095 controller)

TERMINAL DEVICE=ACCA,ADDRESS=60,BITRATE=110, C
PAGSIZE=24,LINSIZE=80, C
CODTVPE=ASCII,TOPM=0,BOTM=23,LEFTM=0, C
RIGHTM=79,SCREEN=VES,OVFLINE=NO, C
LINEDEL=FF,CHARDEL=88,CRDELAY=0,ECHO=NO,' C
RANGE=LOW,LMODE=PTTOPT, C
CR=8D,LF=OA,ATTN=9B,ADAPTER=FOUR

IBM 3101 TERMINAL Statement
(via 1610 or 2091 controller)

TERMINAL DEVICE=ACCA,ADDRESS=6B,BITRATE=110, C
PAGSIZE=24,LINSIZE=80, C
CODTVPE=EBASC,TOPM=0,BOTM=23,LEFTM=0, C
RIGHTM=79,SCREEN=YES,OVFLINE=NO, C
LINEDEL=FF,CHARDEL=88,CRDELAV=0,ECHO=NO, C
RANGE=LOW,LMODE=SWITCHED, C
CR=B1,LF=50,ATTN=D9,ADAPTER=EIGHT'

108 SC34-0312

IBM 3101 Model 2 (block mode) under Multiple
Terminal Manager TERMINAL Statement
(via 1610 or 2091 controller)

TERMINAL

TERMINAL DEVICE=ACCA,ADDRESS=08,BITRATE=2400, C
PAGSIZE=24,LINSIZE=80, C
CODTYPE=EBASC,TOPM=O,BOTM=23,LEFTM=0, C
RIGHTM=79,SCREEN=YES,OVFLINE=NO, C
LINEDEL=FF,CHARDEL=II,CRDELAY=O,ECHO=NO, C
RANGE=HIGH,LMODE=PTTOPT, C
CR=Bl,LF=50,ATTN=FB,ADAPTER=SINGLE

IBM 3101 Model 2 (block mode) under Multiple
Terminal Manager TERMINAL statement
(via 2095 controller)

TERMINAL DEVICE=ACCA,ADDRESS=61,BITRATE=2400, C
PAGSIZE=24,LINSIZE=80, C
CODTYPE=ASCII,TOPM=0,BOTM=23,LEFTM=0, C
RIGHTM=79,SCREEN=YES,OVFLINE=NO, C
LINEDEL=FF,CHARDEL=88,CRDELAY=0,ECHO=NO, C
RANGE=HIGH,LMODE=PTTOPT, C
CR=8D,LF=OA,ATTN=DF,ADAPTER=FOUR

Mirror Image

Mirror image is used by ASCII terminals. attached via the 1610
or 2091 controllers and the 2092 adapter. Mirror image reverses
the bit pattern for data. For example, the EBCDIC character 1
would look as follows:

X'Fl' EBCDIC

X'3l' ASCII

X'8F' Mirror Image EBCDIC

Chapter 6. System Configuration 109

TERMINAL

X'BC' Mirror Image ASCII

When us 1 ng XlATE=NO on Event Dr i ven language instruct ions
PRINTEXT and READTEXT, the data sent must be in mirror image.
Data r e c e i v e dis i n m i r r 0 r image.

ASCII Terminal Codes

Terminals and other devices equivalent to the Teletype ASR
33/35 are referred to in this document as "ASCII terminals."
These term ina Is may be attached to the Ser i es/l ina var i ety of
ways. Note that while the bit representation of a character
appearing at the terminal is the same for all the attachments,
two different representations for a given character are used
internally.

One representation is ASCII, in which the characters appear in
ma i n storage in ASCI I code. Th i s code is used by features
#7850, #2095, and #2096.

The other representation is the Eight Bit Data Interchange
Code. It is used by the 1610 and 2091 controllers and the 2092
adapter. Th i s representat i on is the mirror image with ina byte
of the ASCI I representat i on. The bits appear swapped
end-for~end wi th i n each' byte.

Note also that ASCII terminals may use even, odd, or no parity.
The parity bit appears as the high order bit in ASCII ~ode and
as the low order bit in Eight Bit Data Interchange Code. You
must incorporate the proper par i ty, if any, wi th in the data
characters. You must also incorporate the proper par i ty, if
any, within the control characters specified by the lINEDEl,
CHARDEl, COD, CR, and lR parameters of the TERMINAL statement.

,Symbolic Reference to Terminals

The optional label on the TERMINAL statement is used to assign
a name to the device for purposes of reference by the applica­
tion program. Three such names have special meaning to the
super visor and should be ass i gned to the appropr i ate dev i ce:

$SYSLOG Names the system logg i ng dev ice or operator stat ion,
and must be def i ned in every system. In the starter
supervisor, $SYSlOG defines a 4978 display station.

110 SC34-0312

TERMINAL

$SYSLOGA Names the alternate system logging device. If unre­
coverableerrors prevent use of $SVSLOG, the system
will use the $SVSLOGA terminal as the system logging
device/operator station. If defined, this device
should be a terminal with keyboard capability, not
just a printer. The starter supervisor defines the
$SVSLOGA term ina 1 as a te letypewr iter dev ice.

$SYSPRTR Names the system printer. If defined, the hard copy
output from some system programs will be directed to
this device. The starter supervisor defines a 4974
matr i x pr inter as the $SVSPRTR dev ice.

$SVSLOG is referred to by the supervisor and the utility pro­
grams and must be def i ned on every system. $SVSLOGA is an
optional assignment which wi 11 be used, if defined, as the out­
put device for $SVSLOG me~sages if $SVSLOG develops an uncor­
rectable error cond i t i on.

$SVSPRTR is an optional specification which, if defined, will
be used as the output device by some of the utility programs.
If $SVSPRTR is not defined, the output will be directed to the
terminal from which the program was invoked.

Assignment of a name to a terminal designates that terminal as
a global resource which can be accessed by any application pro­
gram through use of the ENQT and DEQT instruct ions descr i bed in
the Language Reference.

Chapter 6. System Configuration 111

TIMER

TIMER - Def;ne System T;mer Features

TIMER is used to define the address of the 17840 Timer Feature
to be used as the system timers in the generated system. One of
the two timers on the card wi 11 be used for time of day record­
ing and the other will be used for interval timing.

This statement is used only for defining the #7840 timer. If
the system has a native timer (4952 processor only) that is
used instead of the #7840 timer feature card, it is not neces­
sary to use this or any other statement. The native timer and
the #7840 timer are mutuallY exclusi ve.

Syntax

blank TIMER

Required: ADDRESS=
Defaults: None

ADDRESS=

Operands Description

ADDRESS= The hexadec i mal address of the #7840 Ti mer Feature.

Example

TIMER ADDRESS=40

112 SC34-0312

$SYSCOM

$SYSCOM - Define Optional Common Data Area

$SVSCOM is an opt i ona 1 data area in the superv i sor wh i ch can be
accessed from application programs. If you select this option,
you must map the portion of the supervisor containing $SVSCOM
into each address space.

The common area is referenced indirectly in application
programs through a storage locatiori with the label $SVSCOM.
Th is storage locat i on conta i ns the address of the first word of
the common area. Therefore, in order to reference data in the
common area, the contents of $SVSCOM should be loaded into a
register, such as #1. Data elements can then be referenced by a
displacement from this register.

The common area can contain Event Control Blocks (ECB), Queue
Control Blocks (QCB), or any data blocks that must be accessed
by more than one program. For example, if several programs
perform a fi Ie update that must be performed serially, a QCB is
defined in the common area which is related to this file update

,process. Programs that perform the file update should ENQ on
this QCB before reading the file and DEQ the QCB after writing
the file. Many of the functions available through the use of
$SYSCOM are also provided by the cross partition capabilities
of the Event Driven Language instruction set. (Refer to the
Language Reference and "Chapter 14. Inter-Program
Communications" on page 279 for detai Is.)

You define the size and contents of $SVSCOM. However, since
storage is mapped in 2K byte increments, the minimum common
data area is 2K bytes. For example, a 12K byte partition
requires at least 14K bytes (the PARTS= operand must specify 7
(14KB».

The actua 1 size of the mapped area is rounded up to a 2K bounda­
ry.

If you require a common data area and wish to minimize the stor­
age it occupies in each partition, use the following process:

1 • Prepare a module that
include in the common
should be:

UCOMM
ENTRV UCOMM
EQU *
END

contains the items you wish to
data area. The last statements

2. Name this module USERCOM and store it in ASMLIB.

Chapter 6. System Configuration 113

3.

$SYSCOM

Insert INCLUDE USERCOMM,ASMLIB after INCLUDE
$LNKCNTL. This makes your common data area
module in the nucleus.

4. Enter COMMON=UCOMM on your SYSTEM statement.

EDXSYS in
the second

$SVSCOM then defines the beginning of your common area. The
address of UCOMM, the end of your common area, rounded up to a
2KB boundary, is the size of the mapped area.

Example

Common area, conta i n i ng two QCBs and two ECBs.

$SVSCOM CSECT
QCB
QCB
ECB
ECB

To reference the first QCB from your application, the following
instruct i o'ns can be coded:

MOVE
ENQ

11,SSYSCOM
(0,#1)

perform serial operation

DEQ (0,11)

Sin c e a Q C B i s t en by t e sin I eng t h, the sec 0 n d Q C B i s r e fer en c e d
as follows:

ENQ (10,#1)

I,t may be con v e n i en t to de fin e an e qua t eta b lew h i chi den t i fie s
each element of the common area by a symbolic name. The f!L.!
User's Guide shows how to use and access $SVSCOM as a GLOBAL
communication ~rea.

114 SC34-0312

CHAPTER 7. SYSTEM GENERATION

To generate an Event Dr i ven Execut i ve system, you must have
access to a Ser i es/l capab Ie of prepar i ng the .superv i sor pro­
gram and app 1 i cat i on programs. System generat ion requ i res that
the fo llow i ng 1 i censed programs be i nsta lIed:

• Bas i c Superv i sor and Emu lator

• Event Driven Executive Utilities

• Event Driven Executive Program Preparation Facility

or

Series/l Macro Assembler and. Macro Library

The Program Preparat i on Fac iIi ty enables you to prepare
programs to be executed on any Series/l that has the required
hardware configuration and licenses.

GENERATING THE SUPERVISOR

Creating a supervisor program tailored to your Series/l hard­
ware configuration requires the use of several of the uti lities
and program preparat i on programs; these inc 1 ude:

• Di sk data set management ($DISKUT1)

• Text ed i tor ($EDIT1N)

or

F u 11-s c r e e ned i to r ($ F SED IT)

• Batch job stream processor ($JOBUTIL)

• Event Dri ven Language compi ler ($EDXASM)

• Linkage editor ($LINK)

• Object module conversion ($UPDATE)

You should become familiar with these utilities, especially
·the text editors, before attempting to generate the supervi­
sor. These utilities are described in Utilities, Operator
Commands, Program Preparation, Messages and Codes.

The following major steps are required:

Chapter 7. System Generation 115

• step A. Al focate requ i red data sets.

• Step B. Ed i t $EDXDEF, the system conf i gurat ion file, to
match your hardware conf i gurat ion ••

• Step C. Edit $LNKCNTL, the system-suppl~eq INCLUDE file,
to specify whi6hsup~rvisor program obje6t ~odules are to
be included in your supervisor.

• Step D. Edit $SUPPREP, the system-supplied job stream
processor fi Ie, to use your allocated data sets.

• Step E. Use $JOBUTIL and the procedure file created in
Step D to:

Assemble the supervisor definition module created in
Step B

Lin ked itt her e suI tin gob j e c t mod u lew i t h t h ,e 0 the r
necessary supervisor object m~dules using the link
ed it contro I data set created inStep C.

Using $UPDATE, convert the output of the link edit
process into an executable supervisor, and store it in
a data set named $EDXNUCT.

• Step F. Test the created supervisor on a disk based sys­
tem.

• S t e p G. Ve r i f y the s y s t e m g e n era t ion p r oc e s s (0 p t ion a I) •

step A - Allocate Requ;red Data sets

1. IPL the system from disk volume EDX002.

2 • Load utility program $DISKUTI and use the AL command
allocate the following data sets on volume EDX002.
data sets must be spec if i ed as TVPE=DATA.

Data Set Name

EDITWORK
ASMOBJ
ASMWORK
SUPVLINK
LEWORKI
LEWORK2

Number of Records

200
250
250
450
400
150

116 SC34-0312

to
All

step B - Edit $EDXDEF to Match Hardware Configuration

Ed i t $EDXDEF to match your hardware conf i gurat i on:

1. Load ut iIi ty program $EDITIN or $FSEDIT and spec i fy
EDITWORK as the reply to WORKFILE=.

2. Read the supplied data set $EDXDEF from volume ASMLIB.
Figure 11 on page 133 shows a sample configuration of
$EDXDEF. The supplied configuration can be seen in the Pro­
gram Di rectory.

The first time you use EDITWORK as a work file for the text
editor, you will be asked if you can use the EDITWORK data
set as a work data set; respond YES and cont i nue.

3. Add to or delete from the contents of EDITWORK as necessary
to create a set of system configuration statements. (Sys­
tem configuration statements are described in "Chapter 6.
System Configuration" on page 75.) Some printer on the
Series/l should be designated as $SYSPRTR. When editing
ensure that:

• Cont i nuat ion i nd i cators in co I umn 72 are not removed.

• If required, a continuation character is placed in
column 72 and the statement is continued in column 16
of the next line

• A field does not extend beyond column 71

The editing process consists of the following procedure:

a. Calculate the total amount of storage available, the
number of partitions desired, and the number of 2K
blocks of storage desired for each partition. This
information is inserted into the SYSTEM statement to
define the characteristics of the processor. Refer to
"Chapter 6. System Configuration" on page 75 for a
descr i pt i on of the SYSTEM statement.

b. Def i ne the hardware features to be supported, us i ng
the appropriate system configuration statements (TIM­
ER, SENSORIO, HOSTCOMM, BSCLINE, EXIODEV, DISK, TERMI­
NAL, TAPE).

c. Define the direct access storage devices and logical
volumes to be supported in the generated system, using
the DISK system configuration statement. Sample DISK
configuration statements are supplied for each device
in the $EDXDEF data set on ASMLIB. Refer to "Chapter 3.
Data Management" on page 45 for storage capacities of
the supported direct access storage dev ices. With
this information, you can define your disk volumes.

Chapter 7. System Generation 117

/

def i ne the
(EDX002,
and (2)
library

The only restrictions are (1) that you
required Event Driven Executive volumes
EDX003, ASMLIB) in addition to your volumes
that you follow the rules per t a i n i n g to
origins and maximum volume sizes •

.IiQ.:tg,: Opt i onal software products may requ ire add i­
tional volumes. Volume requirements are supplied with
the product documentation.

d • De fin e the c"h a r act e r i s tic s 0 fall p r i n t e r s, dis pia y s ,
and teletypewriters, using the TERMINAL statement.
Examples of various types of TERMINAL statements are
included in the $EDXDEF data set.

4. Save the final version of the definition statements in the
data set $EDXDEFS on volume EDX002.

step C - Spec;fy Ob,ect Modules

Edit $LNKCNTL to specify which supervisor program object mod­
ules are to be included.

1. Read data set $LNKCNTL from volume ASMLIB. The supplied
con ten t s 0 f $ L N K C N T L are s how n i nth e f 0 I low i n g t a.b 1 e s ;
footnotes are provided on required usage. The $LNKCNTL
data set supplied with Version 1 does not include TAPE sup­
port.

118 SC34-0312

Sample Contents of $LNKCNTl (Version 1.1)

**
* COMMENTS MAY BE INCLUDED BY PUTTING AN '*' IN COLUMN 1. *
* USE THIS TECHNIQUE TO OMIT UNNEEDED MODULES *
**

OUTPUT SUPVLINK,EDX002 ENTRY=$START
**
* SUPERVISOR SUPPORT
**

INCLUDE EDXSYS,XSI002 *0* SYSTEM TABLES AND WORK AREAS
INCLUDE ASMOBJ,EDX002 *0* OUTPUT FROM USER SYSTEM GENERATION

*INCLUDE EDXSVCX,XSI002 *O,K* TASK SUPERVISOR (XL)
INCLUDE EDXSVCXU,XSI002 *O,L* TASK SUPERVISOR (UN-XL)
INCLUDE EDXSTART,XSI002 *0* INITIALIZATION & ERROR HANDLER

*INCLUDE $DBUGNUC,XSI002 *O,G* RESIDENT $DEBUG SUPPORT
INCLUDE EDXALU,XSI002 *0* EDL INSTRUCTION EMULATOR

**
* DEVICE SUPPORT -- DISK(ETTE)S
**

INCLUDE DISKIO,XSI002
INC L U'D E D 4 9 6 2 4 , X S 1 0 0 2
INCLUDE D4963A,XSI002
INCLUDE D4966A,XSI002

M BASIC DISK(ETTE) SUPPORT
M 4962/4964 DISK(ETTE) SUPPORT
M 4963 SUBSYSTEM SUPPORT
M 4966 MAGAZINE SUPPORT

**
* DEVICE SUPPORT -- TERMINALS
**
*INCLUDE

INCLUDE
*INCLUDE

INCLUDE
*INCLUDE

INCLUDE
*INCLUDE

INCLUDE
INCLUDE
INCLUDE

*INCLUDE
*INCLUDE
*INCLUDE

INCLUDE

EDXTIO,XSI002
EDXTIOU,XS1002
EDXTERMQ,XSI002
EDXTRMQU,XSI002
IOS4979,XS1002
IOS4979U,XSI002
IOS4974,XSI002
IOS4974U,XS1002
IOSTERM,XS1002
IOSTTY,XS1002
IOSACCA,X~1002

IOS4013,XS1002
IOS2741,XS1002
IOSVIRT,XSI002

1,K
1,L
1,K
1,L
M,K
M,L
M,K
M,L
2
M
3
M
M
M

BASIC TERMINAL SUPPORT ('XL)
BASIC TERMINAL SUPPORT (UN-XL)
ENQT/DEQT & TERMINAL QING (XL)
ENQT/DEQT & TERMINAL QING (UN-XL)
4978/4979 DISPLAY SUPPORT
4978/4979 DISPLAY SUPPORT
4973/4974 PRINTER SUPPORT
4973/4974 PRINTER SUPPORT
REQD FOR TTY, ACCA, 4013 & 2741
ASR 33/35 TELETYPEWRITER SUPPORT
ASCII ACCA TERMINAL SUPPORT
DIGITAL I/O TERMINAL SUPPORT
2741 TERMINAL SUPPORT
VIRTUAL TERMINAL SUPPORT

**
* DEVICE SUPPORT -- TRANSLATION TABLES
**

INCLUDE TRASCII,XS1002 *4*
~INCLUDE TREBASC,XSI002, *3*
*INCLUDE TREBCD,XS1002 *5*
*INCLUDE TRCR~P,XS1002 *5*

TELETYPEWRITER TRANSLATION
MIRROR IMAGE ASCII TRANSLATION
2741 EBDC TRANSLATION
2741 CORRESPONDENCE TRANSLATION

**
* DEVICE SUPPORT -- TIMERS
**
*INCLUDE EDXTIMER,XS1002 *6* 4953/4955 TIMER (7840) SUPPORT

Chapter 7. System Generation 119

*INCLUDE EDXTIMR2,XSI002 *6* 4952 TIMER SUPPORT
**
* DEVICE SUPPORT -- BINARY SYNCHRONOUS COMMUNICATIONS
**
*INCLUDE BSCAM,XSI002 *7,K* BSC COMM. ACCESS SUPPORT (XL)
*INCLUDE BSCAMU,XSI002 *7,L* BSC COMM. ACCESS SUPPORT (UN-XL)
*INCLUDE TPCOM,XSI002 *8* HOST COMMUNICATION SUPPORT
**
* DEVICE SUPPORT -- SENSOR INPUT/OUTPUT
**
*INCLUDE SBCOM,XSI002 *9* BASIC SENSOR I/O SUPPORT
*INCLUDE IOLOADER,XSI002 *9,K* SENSOR I/O DEVICE OPEN (XL)
*INCLUDE IOLOADRU,XSI002 *9,L* SENSOR I/O DEVICE OPEN (UN-XL)
*~NCLUDE SBAI,XSI002 *M* ANALOG INPUT SUPPORT
*INCLUDE SBAO,XSI002 *M* ANALOG OUTPUT SUPPORT
*INCLUDE SBDIDO,XSI002 *M* DIGITAL INPUT/OUTPUT SUPPORT
*INCLUDE SBPI,XSI002 *M* PROCESS INTERRUPT SUPPORT
**
* DEVICE SUPPORT -- EXIO CONTROL
**
*INCLUDE IOSEXIO,XSI002 *M* EXIO DEVICE CONTROL SUPPORT
**
* SYSTEM SUPPORT -- ERROR LOGGING
**

INCLUDE SYSLOG,XSI002 *A* I/O ERROR LOGGING
*INCLUDE NOSYSLOG,XSI002 *A* NO I/O ERROR LOGGING

INCLUDE CIRCBUFF,XSI002 *B* PROGRAM/MACHINE CHECK LOGGING
**
* OPTIONAL FUNCTION SUPPORT
**************¥***
*INCLUDE RLOADER,XSI002 *C,K* RELOCATING PROGRAM LOADER (XL)

INCLUDE RLOADERU,XSI002 *C,L* RELOCATING PROGRAM LOADER (UN-XL)
*INCLUDE EDXFLOAT,XSI002 *D* FLOATING POINT ARITHMETIC

INCLUDE NOFLOAT,XSI002 *D* FOR SYSTEMS WITHOUT FLOATING POINT
*INCLUDE EBFLCVT,XSI002 *E* EBCDIC/FLOATING PT CONV.

INCLUDE QUEUEIO,XSI002 *F* QUEUE PROCESSING SUPPORT
**
* SYSTEM SUPPORT -- INITIALIZATION
**

INCLUDE EDXINIT,XSI002 *H*
INCLUDE DISKINIT,XSI002 *M*
INCLUDE LOADINIT,XSI002 *C*
INCLUDE RW4963ID,XSI002 *M*
INCLUDE TERMINIT,XSI002 *1*
INCLUDE INIT4978,XSI002 *M*

*INCLUDE INIT4013,XSI002 *M*
*INCLUDE $ACCARAM,XSI002 *3*
*INCLUDE BSCINIT,XSI002 *7*
*INCLUDE $BSCARAM,XSI002 *7*
*INCLUDE TPINIT,XSI002 *8*
*INCLUDE TIMRINIT,XSI002 *6*
*INCLUDE CLOKINIT,XSI002 *6*
*INCLUDE SBIOINIT,XSI002 *M*
*INCLUDE EXIOINIT,XSI002 *M*

120 SC34-0312

SUPERVISOR INITIALIZATION
DISKCETTE) INITIALIZATION
PROGRAM LOADER INITIALIZATION
4963 FIXED HEAD REFRESH SUPPORT
TERMINAL INITIALIZATION
4978 DISPLAY INITIALIZATION
DIGITAL I/O TERMINAL INIT
ACCA MULTI-LINE ADAPTER RAM LOAD
BISYNC (BSCAM) INITIALIZATION
BISYNC MULT-LINE ADAPTER RAM LOAD
HCF CTPCOM) INITIALIZATION
4953/4955 TIMER INITIALIZATION
4952 TIMER INITIALIZATION
SENSOR I/O INITIALIZATION
EXIO INITIALIZATION

Sample Contents of SLNKCNTL (Version 2.0)

**
* COMMENTS MAY BE INCLUDED BY PUTTING AN '*' IN COLUMN 1. *
* USE THIS TECHNIQUE TO OMIT UNNEEDED MODULES *
**

OUTPUT SUPVLINK,EDX002 ENTRY=$START
**
* SUPERVISOR SUPPORT
**

INCLUDE EDXSYS,XS2002 *0* SYSTEM TABLES AND WORK AREAS
INCLUDE ASMOBJ,EDX002 *0* OUTPUT FROM USER SYSTEM GENERATION

*INCLUDE EDXSVCX,XS2002 *O,K* TASK SUPERVISOR (XL)
INCLUDE EDXSVCXU,XS2002 *O,L* TASK SUPERVISOR (UN-XL)
INCLUDE EDXALU,XS2002 *0* EDL INSTRUCTION EMULATOR
INCLUDE EDXSTART,XS2002 *0* INITIALIZATION & ERROR HANDLER

**
* DEVICE SUPPORT -- DISK(ETTE)S
**

INCLUDE DISKIO,XS2002 *M* BASIC DISK(ETTE) SUPPORT
INCLUDE D49624,XS2002 *M* 4962/4964 DISK(ETTE) SUPPORT
INCLUDE D4963A,XS2002 *M* 4963 SUBSYSTEM SUPPORT
INCLUDE D4966A,XS2002 . *M* 4966 MAGAZINE SUPPORT

**
* DEVICE SUPPORT -- TAPES
**
*INCLODE D4969A,XS2002 *M* 4969 TAPE SUPPORT
**
* DEVICE SUPPORT -- TERMINALS
**
*INCLUDE

INCLUDE
*INCLUDE

INCLUDE
*INCLUDE

INCLUDE
*INCLUDE

INCLUDE
INCLUDE
INCLUDE

*INCLUDE
*INCLUDE
*INCLUDE
*INCLUDE

EDXTIO,XS2002
EDXTIOU,XS2002
EDXTERMQ,XS2002
EDXTRMQU,XS2002
IOS4979,XS2002
IOS4979U,XS2002
IOS4974,XS2002
IOS4974U,XS2002
IOSTERM,XS2002
IOSTTY,XS2002
IOSACCA,XS2002
IOS4013,XS2002
IOS2741,XS2002
IOSVIRT,XS2002

1,K
1,L
1,K
1,L
M,K
M,L
M,K
M,L
2
M
3
M
M
M,N

BASIC TERMINAL SUPPORT (XL)
BASIC TERMINAL SUPPORT (UN~XL)
ENQT/DEQT & TERMINAL QING (XL)
ENQT/DEQT & TERMINAL QING (UN-XL)
4978/4979 DISPLAY SUPPORT (XL)
4978/4979 DISPLAY SUPPORT (UN-XL)
4973/4974 PRINTER SUPPORT (XL)
4973/4974 PRINTER SUPPORT (UN-XL)
REQD FOR TTY, ACCA, 4013 & 2741
ASR 33/35 TELETYPEWRITER SUPPORT
ASCII ACCA TERMINAL SUPPORT
DIGITAL I/O TERMINAL SUPPORT
2741 TERMINAL SUPPORT
VIRTUAL TERMINAL SUPPORT

Chapter 7. System Generation 121

** * DEVICE SUPPORT -- TRANSLATION TABLES
**

INCLUDE TRASCII,XS2002 *4* TELETYPEWRITER TRANSLATION
*INCLUDE TREBASC,XS2002 *3* MIRROR IMAGE ASCII TRANSLATION
*INCLUDE TREBCD,XS2002 *5* 2741 EBDC TRANSLATION
*INCLUDE TRCRSP,XS2002 *5* 2741 CORRESPONDENCE TRANSLATION
~***
* DEVICE SUPPORT -- TIMERS
**
*INCLUDE EDXTIMER,XS2002 *6* 4953/4955 TIMER (7840) SUPPORT
*INCLUDE EDXTIMR2,XS2002 *6* 4952 TIMER SUPPORT
**
* DEVICE SUPPORT -- BINARY SYNCHRONOUS COMMUNICATIONS
**
*INCLUDE BSCAM,XS2002 *7,K* BSC COMM. ACCESS SUPPORT (XL)
*INCLUDE BSCAMU,XS2002 *7,L* BSC COMM. ACCESS SUPPORT (UN-XL)
*INCLUDE TPCOM,XS2002 *8* HOST COMMUNICATION SUPPORT
** * DEVICE SUPPORT -- SENSOR INPUT/OUTPUT
**
*INCLUDE SBCOM,XS2002 *9* BASIC SENSOR I/O SUPPORT
*INCLUDE IOLOADER,XS2002 *9,K* SENSOR I/O DEVICE OPEN (XL)
*INCLUDE IOLOADRU,XS2002 *9,L* SENSOR I/O DEVICE OPEN (UN-XL)
*INCLUDE SBAI,XS2002 *M* ANALOG INPUT SUPPORT
*INCLUDE SBAO,XS2002 *M* ANALOG OUTPUT SUPPORT
*INCLUDE SBDIDO,XS2002 *M* DIGITAL INPUT/OUTPUT SUPPORT
*INCLUDE SBPI,XS2002 *M* PROCESS INTERRUPT SUPPORT
**
* DEVICE SUPPORT -- EXIO CONTROL
**
*INCLUDE IOSEXIO,XS2002 *M* EXIO DEVICE CONTROL SUPPORT
** * SYSTEM SUPPORT -- ERROR LOGGING
**

INCLUDE SYSLOG,XS2002 *A* I/O ERROR LOGGING
*INCLUDE NOSYSLOG,XS2002 *A* NO I/O ERROR LOGGING

INCLUDE CIRCBUFF,XS2002 *B* PROGRAM/MACHINE CHECK LOGGING
**
* OPTIONAL FUNCTION SUPPORT
**
*INCLUDE RLOADER,XS2002 *C,K* RELOCATING PROGRAM LOADER (XL)

INCLUDE RLOADERU,XS2002 *C,L* RELOCATING PROGRAM LOADER (UN-XL)
*INCLUDE EDXFLOAT,XS2002 *D* FLOATING POINT ARITHMETIC

INCLUDE NOFLOAT,XS2002 *D* FOR SYSTEMS WITHOUT FLOATING POINT
*INCLUDE EBFLCVT,XS2002 *E* EBCDIC/FLOATING PT CONV.

INCLUDE QUEUEIO,XS2002 *F* QUEUE PROCESSING SUPPORT
*INCLUDE $DBUGNUC,XS2002 *G* RESIDENT $DEBUG SUPPORT

122 SC34-0312

**
* SYSTEM SUPPORT -- INITIALIZATION
**

INCLUDE EDXINIT,XS2002 *H*
INCLUDE DISKINIT,XS2002 *M*

*INCLUDE TAPEINIT,~S2002 *M*
INCLUDE LOADINIT,XS2002 *C*
INCLUDE RW4963ID,XS2002 *M*
INCLUDE TERMINIT,XS2002 *1*
INCLUDE INIT4978,XS2002 *M*

*INCLUDE INIT4013,XS2002 *M*
*INCLUDE $ACCARAM,XS2002 *3*
*INCLUDE BSCINIT,XS2002 *7*
*INCLUDE $BSCARAM,XS2002 *7*
*INCLUDE TPINIT,XS2002 *8*
*INCLUDE TIMRINIT,XS2002 *6*
*INCLUDE CLOKINIT,XS2002 *6*
*INCLUDE SBIOINIT,XS2002 *M*
*INCLUDE EXIOINIT,XS2002 *M*

NOTES

~UPER~ISOR INITIALIZATION
DISKCETTE) INITIALIZATION
TAPE INITIALIZATION
PROGRAM LOADER INITIALIZATION
4963 FIXED HEAD REFRESH SUPPORT
TERMINAL INITIALIZATION
4978 DISPLAY INITIALIZATION
DIGITAL I/O TERMINAL INIT
ACCA MULTI-LINE ADAPTER RAM LOAD
BISYNC (BSCAM) INITIALIZATION
BISYNC MULT-LINE ADAPTER RAM LOAD
HCF (TPCOM) INITIALIZATION
4953/4955 TIMER INITIALIZATION
4952 TIMER INITIALIZATION
SENSOR I/O INITIALIZATION
EXIO INITIALIZATION

0 Must be included first and in this order
1 Required if any terminals are installed, including 4973
* or 4974
2 Required if 10STTY, 1052741, or IOSACCA is included
3 Req~ired if non-2741 terminals are on ACCA
4 Required if IOSTTY is included
5 Either TREBCD or TRCRSP or both are required if 1052741
* is included, depending on the code used by the 2741
* terminals - correspondence or ASCII
6 Attached TIMERS (feature 7840) and the 4952 native TIMER
* are mutually exclusive. Select the TIMER support
* required for your configuration or none if no TIMER
* support is required.
7 Required for binary synchronous communication using
* BSCREAD/BSCWRITE or Remote Management Utility support.
8 Required for communication to a S/370 with the EDX Host
* Communication Facility
9 Required if any Sensor I/O support is to be used
* CAI,AO,DI,DO, or PI)
A One, but not both, of these modules ;s required
B Required if the in storage program check/machine check
* log is to be kept
C Required if programs are to be loaded from disk(ette).
* If not included, an application program must be link
* edited with the supervisor.
D One, but not both, of these modules is required
E Required for data formatting ,operations (GETEDIT,
* PUTEDIT, FORMAT)
F Required for queueing operations (FIRSTQ, NEXTQ, LASTQ,
* DEFINEQ)
G Required for program debugging ($DEBUG)

Chapter 7. System Generation 123

H Required and must follow all of the previously listed
* modules.
* All other initialization modules must follow EDXINIT.
*J*For starter supervisor use only
K There are two versions of this module. This one is
* for systems that support the address translator
*'feature of the 4952 and 4955 processors. Include this
* version if your system is to support both the function
* the moduie implements and the address translator
* feature. (XL)
L There 'are two versions of this module. This one is
* for systems that do not support the address translator
* feature of the 4952 and 4955 processors. Include this
* version if your system is to support the function
* the module implements, but not the address translator
* feature. (UN-XL)
M Optional module; required if devi'ce or feature is to be
* supported.
N Required if using Remote Management Utility with PASSTHRU
* function.

END

Note: You should include DDBFIX and CCBFIX
system intialization modules if you wixh to
starter system.

wit. h the 0 the r
regenerate the

2. Enter an asterisk (*) in column one (1) of each INCLUDE
statement not requ i red to create your superv i sor. The
asterisk makes the statement a comment and the module with
the asterisk is not included in your supervisor. Be sure
that the systemdef i nit i on statements created in Step B
a g re e wit h the mod u I e s you· inc Iud e i n t hi sst e p •

The modules with note L can be used ·if your generated sys­
tem is to execute either on a Series/1 without the address
translator feature or on a 64KB 4952 processor. These
modules do not support the-address translator. "The'SYSTEM
configuration statement must specify STORAGE as 64 or less
and PARTS may not be spec if i ed.

3. Save the edited version of $LNKCNTL in a data set named
LINKCNTL on EDX002.

step D - Assemble and Link Edit the Supervisor

Edit $SUPPREP to use your allocated d.ata sets.

1. Read the data set $SUPPREP from volume ASMLIB. Figure 10 on
page 125 shows $SUPPREP.

124 SC34-0312

LOG
JOB
REMARK
PAUSE
PROGRAM
NOMSG
PARM
OS
OS
OS
EXEC
JUMP
PROGRAM
NOMSG
PARM
OS
OS
OS
EXEC
JUMP
PROGRAM
NOMSG
PARM
EXEC
LABEL
EOJ

$SYSPRTR
$SUPPREP

ENTER GO AFTER XS2002 HAS BEEN VARIED ONLINE

$EDXASM,ASMLIB

$EDXDEFS,EOX002
ASMWORK,EDX002
ASMOBJ,EDX002

ENDJOB,GT,4
$LINK,ASMLIB

$SYSPRTR
LINKCNTL,EDX002
LEWORK1,EDX002
LEWORK2,EDX002

ENDJOB,GT,4
$UPDATE,EDX002

$SYSPRTR SUPVLINK,EDX002 $EDXNUCT,EDX002 YES

ENDJOB

Figure 10. Example of V2.0 Procedure $SUPPREP on ASMLIB

2. Modify any of the procedure statements, particularly the
DS data set names, and vo 1 urnes to sat i sfy your convent ions.
No changes are necessary for your first supervisor gener­
at i on if you a llocated a 11 the requ i red data sets as
instructed in Step A. $EDXNUCT is automatically allocated
by the $ U P DATE S t epa n d you may w ish to c han get his n arne to
$EDXNUCx ex = any alphameric character) to save different
super.v i sor vers ions in i nd i v i dual data sets. The superv i­
sor name must start with the seven characters $EDXNUC.

3. Save the edited version of $SUPPREP in a data set named
SUPPREPS on EOX002.

step E - Format the Supervisor

When you invoke the procedure SUPPREPS, the job stream assem­
bles and link edits $EOXOEF and formats the supervisor.

Chapter 7. System Generation 125

1. Vary on diskette XSI002 (Version 1.1) .or XS2002 (Version
2) •

2. Load utility program $JOBUTIL. When prompted for the pro­
cedure name, reply SUPPREPS,EDX002.

3. When $JOBUTIL completes execution, examine the output
printed on $SVSPRTR for errors. Errors are usually caused
by incorrect editing of $EDXDEF, $LNKCNTL, or $SUPPREP. If
errors are found, exam i ne your' superv i sor spec if i cat i on
and 1 i nk ed i t statements and then ed it $EDXDEFS, L INKCNTL,
or SUPPREPS as necessary.

When you have corrected the errors, reload $JOBUTIL to
repeat the procedure.

Unresolved WXTRN messages resulting from the execution of
$LINK can occur, and you should examine the' messages to
determine whether the referenced names refer to modules
that you requ ire in your superv i sor.

An unresolved WXTRN of $PROGI will normally occur unless
you link edit an application program with the supervisor,
as is described in "Other Considerations" on page 128.

Unresolved EXTRN messages should not occur .if a valid
supervisor has been created. A complete listing of all
supervisor module section names and entry point labels is
included in Appendix B.

step F - Test the Gene~ated Supe~viso~

Test the generated superv i sor for a disk based system.

1. Load the ut iii ty program $COPV or $COPYUTI to copy $EDXNUCT
into $EDXNUC on EDX002.

NQig: Procedure SUPPREPS stores the created supervisor as
member $EDXNUCT on EDX002.

2. IPL the system from volume EDX002 to load the new supervi­
sor.

Wa i tun til t h.e s y s tern i sin i t i ali zed b e for e loa din g a
program. I f your system has timers, the system is in i t i a 1-
ized when the SET TIME AND DATE USING $T message appears
(or when the time and date are pr i nted). I f your system
does not have timers, the system is initialized when it
enters the wait state after the storage map has been dis­
played.

126 SC34-0312

3. Test the superv i sor by execut i ng ut iIi ty programs that
exercise the various supervisor components (such as disk
I/O, sensor I/O, etc.)

Notes:

1. I f the new super visor fa i Is to operate correct 1 y, you must
restore the original contents of $EDXNUC by IPLing from a
diskette. Use $COPY or $COPYUT1 to copy the starter super­
visor from diskette UT3001 or UT4001 to $EDXNUC on EDX002.

2. If any errors are encountered, repeat Steps B through E of
th is procedure.

3. If you relocated any volumes in a tailored system gener­
ation (particularly EDX002), copy the new supervisor into
the $EDXNUC data set on a copy of the utility diskette
(UT3001 or UT4001) and perform a complete system installa­
tion.

4. The actual addresses of CSECT and ENTRY po i nt labels in the
$EDXNUCT or $EDXNUC modules stored on disk will be X'lOO'
greater than those shown o~ the link edit map. This is
because $UPDATE adds a 256 byte header to all $EDXNUCx mod­
ules.

step G - Verify the System Generation Process

To verify that the system generation has been performed suc­
cessfully:

1. Assemble and execute the sample program CALCSRC.

Note: CALCDEMO source instruct ions are located in the data
set CALCSRC on the disk volume EDX002. To assemble
CALCDEMO, refer to the procedure for program preparation
descr i bed in Ut iIi ties, Operator Commands, Program
Preparation, Messages and Codes.

2. When the assembly is complete, load the test program into
storage for execut i on by us i ng the $ L operator command.

3. When you receive the prompts A= and B=, enter any decimal
integer va 1 ues less than 2 b i 11 i on, fo Ilowed by a carr i age
return or ENTER after each entry.

A samp Ie of the entr i es and resu 1 t i ng output fo llows:

Chapter 7. System Generation 127

> $L CALCDEMO

CALCDEMO 3P,10:59:55, LP= 7FOO
Press ATTENTION and enter CALC or STOP
> CALC

A = 12
B = 52

A + B = 64
A - B = -40
A * B = 624
A / B = 0 REMAINDER = 12
Press ATTENTION and ent'er CALC or STOP
> CALC

OTHER CONSIDERATIONS

System Generation without the Program Preparation Facility

For Series/l systems that do not include the Program Prepara­
tion Facility, installation requires the following general
steps: '

1. Assemble and link edit the supervisor for the target
Ser i es/l on a system that supports program preparat i on.

2. Assemble appl i cat i on programs for the target Ser i es/l on a
system that supports program preparat ion.

3. Use utility program $INITDSK to initialize one or more
diskettes with IPL text, space for the supervisor program,
and a library to conta i n your appl i cat i on programs.

4. Transfer your supervisor to $EDXNUC on disketteCs) with
either $COPY or $COPYUTI.

5. Copy $LOADE'R, any of the utilities, and the application
pro g ram s t hat w ill b ere qui red 0 nth eta r get S e 'r i e s / 1, 0 n t 0

the disketteCs) with $COPYUTI.

6. Install the disketteCs) on
execution. '

128 SC34-0312

the target machine for

Program Load;ng from D;skettes

If multiple diskettes are processed on a single diskette unit,
each diskette must contain the program $LOADER in the same
locat i on. To load a program into storage from diskette, the
diskette containing the program must be online ($VARYON) when
the LOA Din s t r u c t ion o'r the $ L com man dis ex e cut e d •

You can design your system so that your application program(s)
are automatically started following a manual IPL of the system
or an automatic IPL invoked by the restoration of power after a
power outage.

There is no system requirement for operator involvement in the
IPL procedure, other than to insure the IPL mode switch is in
the" AUTO I PL" pos i t i on and to turn on the power for the in it i a I
Series/1 IPL. Any other requirement for operator involvement
(such as for entry of time and date) is a function of your
application.

The automatic application initialization facility allows you
to start an application immediately after the system initial­
ization process has been completed.

Consideration must be given to the type of program control the
Event Driven Executive will be supporting. In a multiprogram­
ming, multitasking system, the relocatable loader loads pro­
grams from disk or diskette to storage. In a single program,
multitasking system, a single application program is link
edited with the Event Driven Executive supervisor and loaded at
IPL time. In either system the program may consist of a primary
task or a pr i mary task and secondary task (s) .

Multiprogramming, Multitasking System

In a multiprogramming, multitasking system, the automatic
application initialization facility requires a system with the
Event Dr i ven Execut i ve program load fac iIi ty and is loaded (v i a
IPL) from disk or diskette. Further, if your system contains
both disk and diskette devices, then the automatic IPL must be
performed with a disk as the IPL source.

The facility works in the following manner. At the end of the
regular system initialization process (when all I/O devices
have been prepared and the system is ready for normal oper­
ation), a LOAD instruction will be issued for your program

Chapter 7. System Generation 129

named $INITIAL which must be located on the IPl volume. If no
such program exists, no further action is taken and programs
must be initiated via $L commands entered at terminals. If
$ I NIT I A L doe sex i s t', i tis loa d e d for e.x e cut ion • The fun c t ion s
which can be performed by $INITIAL, such as data base initial­
ization, data logging, outboard device. initialization, and
loading of other application programs, are entirely under your
control.

$INITIAL is loaded in part i t i on one i mmed i ately after the
super visor. The system attempts to pass to ita one word param­
eter i nd i cat i ng the IPL mode. Zero in th i sword i nd i cates a
manual IPL. A one in this word indicates "Auto IPL". In order
to receive this word, PARM=1 must have been coded in the PRO­
GRAM statement of $INITIAL. If PARM=1 is not coded, the IPL
mode cannot be determ i ned.

One function that $INITIAL can perform differently for manual
versus automatic IPL situations is the setting of the supervi­
sor time and date. In a manual IPL situation the time and date
are normally entered by an operator via the $T command. In an
unattended auto-IPL situation it may be required that $INITIAL
obtain the time and date information from such sources as an
e)(ternal battery operated clock (connected to Series/1 Digital
Input features), a checkpoint file ~aintained on disk or
diskette by the applicati~n program during normal operation,
etc.

Regardless of the source of the time and date information, the
following instructions will move the information from $INITIAL
to the supervisor time and date table. If $INITIAL is to be
assembled by $EDXASM, then the statement COpy PROGEQU must be
included after the PROGRAM statement to define the label
$TIMRTBL. In the followi ng example TIMRDATA is a six word table
within $INITIAL containing the time and date as he)(adecimal
va lues in the sequence hours, minutes, seconds, month, day,
year.

For example, the following code sets the clock to 13:24:05 and
the date to December 25, 1979.

130 SC34-0312

TIMRDATA

MOVE
MOVE

DC
DC
DC
DC
DC
DC

#1,$TIMRTBL
(8,#1),TIMRDATA,6

X'OOOD'
X'OO18'
X'OOO5'
X'OOOC'
X'OO19'
X'OO4F'

$INITIAL can also load additional programs. For example, if
you wish to have automatic initialization of the Multiple
Terminal Manager in partition two, the Indexed Access Method in
parti t i on three, and the Sess i on Manager in part i t i on four,
your $INITIAL program would have the following statements:

LOAD
LOAD
LOAD

$MTM,PART=2,ERROR=NOMTM
$IAM,PART=3,ERROR=NOIAM
$SMMAIN,PART=4,ERROR=NOSESS

NOIAM
N'OSESS
NOMTM

(Routine to handle the error)
(Routine to handle the error)
(Routine to handle the error)

$INITIAL can have data sets and overlay programs defined in its
PROGRAM statement but cannot use the '??' option which implies
data set definition at load time. Note that no program load
logging message is printed out with $INITIAL and if any errors
occur during the load process such as unresolved data set
names, no logging message will be printed. If at any time it is
desired to disable the automatic initialization feature for a
per i od of time, the program $ INITIAL shou ld be renamed.

Single Program, Multitasking System

In a single program, multitasking system,
loader is excluded from your supervisor
diskette is used for data only.

the relocatable
and the disk or

A single application program must be link edited with the
supervisor to form a single load module that can be loaded at
IPL time. This application program must contain a CSECT named

Chapter 7. System Generation 131

$ PRO G 1. I n add i t ion, the PRO G 5 TOP ins t r u c t ion i s not per mit ted
in this program. Therefore, the program source module should
conta j n statements as fo llows:

$PROGI
MAIN

CSECT
PROGRAM START

ENDPROG
END

When the supervisor is loaded at IPL time and the mu,ltiprogram­
m i ng feature is not inc I uded, the above program is automat­
ically started.

,I,

To remove the multiprogramming feature from the Event Driven
Executive supervisor, do not include the module "RLOADER" in
the custom system generation and delete the transient loader
($LOADER) from the system resident disk volum.e (normally
EDX002), if there is a disk on the system.

In;t;al;z;ng Secondary Volumes

If you create a supervisor that defines secondary disk volumes
j n :a d d it ion tot h 0 sed e fin e d asp rim a r y v 0 I u m e s, the add i t i 0 n,a I
sec 0 n dar.y v 0 I u me s m u st· be i nit i a liz e.d be for e the y can be' use d
for data or program 'storage. To initialize a secondary volume,
execute. the ut iii ty program;$INITDSK .and create the directory
for e a c had d i t ion a 1 v 0 I u me d e fin e d. You m u s t ,i nit i a Ii, z e .·a fix e d
head volume before doing an IPL from it •. This allows the system
to search for the program.$LOADERduring .initialization.

Creat;ng a Superv;sor for Another Ser;es/l

You can create a supervisor for another Series/Ion a Series/l
with the Program Preparat ion Fac iIi ty. Fo llow the proced ure
for "Generating the Supervisor" on page 115, but save the edit­
e d cop i e s 0 f $ ED X DE Fan d $ L N K C N T L un d e r d iff ere n t n a m e.s for
each different Series/l hardware configuration. SUPPREPS must
be mod if i ed to support the different data set names •.

132 SC34-0312

The resulting supervisor programs generated would be stored
under different $EDXNUCx names. These can then be copied to
diskette from $EDXNUCx for transfer to the target Ser i es/l. The
diskette must have been initialized previously by the utility
$.1 NIT D S K t 0 inc 1 u del P L t ext and spa c e for a sup e r vis 0 r •

Sample Configurations

The following figures show sample configurations for $EDXDEF.
For actual definitions refer to the Program Di rectory.

SYSTEM STORAGE=96,MAXPROG=(3,2,3),C
PARTS=(32,6,10)

DISK DEVICE=4962-1,ADDRESS=03, C
VOLSER=EDX002,VOLORG=O,VOLSIZE=100, C
LIBORG=241

DISK DEVICE=4962-1,VOLSER=EDX003, C
BASEVOL=EDX002,VOLORG=100, C
VOLSIZE=101,LIBORG=1

DISK DEVICE=4962-1,VOLSER=ASMLIB, C
BASEVOL=EDX002,VOLORG=201, C
VOLSIZE=100,LIBORG=1

DISK DEVICE=4964,ADDRESS=02
DISK DEVICE=4966,ADDRESS=22,END=YES

$SYSLOG TERMINAL DEVICE=4978,ADDRESS=04, C
HDCOPY=$SYSPRTR

$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=OO,CRDELAY=4, C
PAGSIZE=24,BOTM=23,SCREEN=YES

$SYSPRTR TERMINAL DEVICE=4974,ADDRESS=OI,END=YES
ENTRY $EDXPTCH

$EDXPTCH DATA 128F'O' SYSTEM PATCH AREA
END

Figure 11. Example of $EDXDEF: Configuration for 4962-1F
(9.3MB disk)

Chapter 7. System Generation. 133

SYSTEM STORAGE=64,MAXPROG=5
DISK -DEVICE=4962-1F,ADDRESS=03, C

VOLSER=EDX002,VOLORG=O,VOLSIZE=100, C
"LIBORG=241,FHVOL=FHVOL

DISK DEVICE=4962-1F,VOLSER=EDX003, C
BASEVOL=EDX002,VOLORG=100, C
VOLSIZE=101,LIBORG=1

DISK DEVICE=4962-1F,VOLSER=ASMLIB, C
BASEVOL=EDX002,VOLORG=201, C

'VOLSIZE=100,LIBORG=1
DISK DEVICE=4964,ADDRESS=02
DISK DEVICE=4966,ADDRESS=22,END=YES

$SYSLOG TERMINAL DEVICE=4979,ADDRESS=04, C
HDCOPY=$SYSPRTR

$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=OO,CRDELAY=4, C
PAGSIZE=24,BOTM=23,SCREEN=YES

$SYSPRTR TERMINAL DEVICE=4974,ADDRESS=OI,END=YES
ENTRY $EDXPTCH

$EDXPTCH DATA 128F'O' SYSTEM PATCH AREA
END

Figure 12. Example of $EDXDEF: Conf i gurat i on for 4962-1
(9.3MB fixed-head disk)

134 SC34-0312

SYSTEM STORAGE=196,MAXPROG=(1,2,1,3,4,1), C
PARTS=(9,12,7,4,20,32)

DISK DEVICE=4962-3,ADDRESS=03, C
VOLSER=EDX002,VOLORG=O,VOLSIZE=100, C
LIBORG=361

DISK DEVICE=4962-3,VOLSER=EDX003, C
BASEVOL=EDX002,VOLORG=100, C
VOLSIZE=101,LIBORG=1

DISK DEVICE=4962-3,VOLSER=ASMLIB, C
BASEVOL=EDX002,VOLORG=201, C
VOLSIZE=100,LIBORG=1

DISK DEVICE=4964,ADDRESS=02
DISK DEVICE=4966,ADDRESS=22,END=VES

$SVSLOG TERMINAL DEVICE=4979,ADDRESS=04, C
HDCOPV=$SVSPRTR

$SVSLOGA TERMINAL DEVICE=TTV,ADDRESS=OO,CRDELAV=4, C
PAGSIZE=24,BOTM=23,SCREEN=VES

$SVSPRTR TERMINAL DEVICE=4974,ADDRESS=Ol,END=VES
ENTRV $EDXPTCH

$EDXPTCH DATA 128F'O' SYSTEM PATCH AREA
END

Figure 13. Example of $EDXDEF: Configuration for 4962-3 or
4962-4 (13.9MB disk)

Chapter 7. System Generation 135

SYSTEM STORAGE=128,MAXPROG=(10,10,10), C
PARTS=(32,9,23)

DISK DEVICE=4964,ADDRESS=02,TASK=YES
DISK DEVICE=4964,ADDRESS=12,TASK=YES
DISK DEVICE=4963-23,ADDRESS=48, C

VOlSER=EDX002,VOlORG=0,VOlSIZE=100, C
lIBORG=129,FHVOl=FHVOl,TASK=YES

DISK lIBORG=1,VOlSIZE=80,BASEVOl=EDX002, C
VOlSER=ASMlIB,DEVICE=4963~23,VOlORG=100

DISK DEVICE=4963-23,VOlSER=PRGRMS, C
BASEVOl=EDX002,VOlORG=180, C
VOlSIZE=33,lIBORG=1

DISK DEVICE=4963-23,VOlSER=MTMSTR, C
BASEVOl=EDX002,VOlORG=213, C
VOlSIZE=22,lIBORG=1

DISK DEVICE=4963-23,VOlSER=SCRNS, C
BASEVOl=EDX002,VOlORG=235, C
VOlSIZE=12~lIBORG=1

DISK DEVICE=4963-23,VOlSER=EDX003, C
BASEVOl=EDX002,VOlORG=100, C
VOlSIZE=lll,lIBORG=!,END=YES

$SYSlOG TERMINAL DEVICE=4978,ADORESS=2A, C
"HOCOPY=$SYSPRTR,PART=1

$SYSlOGA TERMINAL OEVICE=TTY,AODRESS=00,CROELAY=4, C
PAGSIZE=24,BOTM=23,SCREEN=YES

0497800 TERMINAL DEVICE=4978,ADDRESS=24, C
HDCOPY=lPRINTER,PART=2

D497801 TERMINAL DEVICE=4978,AODRESS=25, C
HDCOPY=$SYSPRTR,PART=3

D497802 TERMINAL DEVICE=4978,ADORESS=26, C
HOCOPY=$SYSPRTR,PART=3

0497803 TERMINAL OEVICE=4978,ADORESS=27, C
HOCOPY=$SYSPRTR,PART=3

0497804 TERMINAL DEVICE=4978,ADDRESS=28, C
HDCOPY=$SYSPRTR,PART=3

0497805 TERMINAL OEVICE=4978,ADDRESS=29, C
HDCOPY=$SYSPRTR,PART=3

$TERMA TERMINAL DEVICE=VIRT,ADDRESS=TERMB,SYNC=YES
$TERMB TERMINAL DEVICE=VIRT,ADORESS=TERMA
$SYSPRTR TERMINAL OEVICE=4974,AOORESS=01
lPRINTER TERMINAL OEVICE=4973,ADDRESS=21,END=YES

BSClINE ADDRESS=19,TYPE=PT,RETRIES=5, C
MC=NO,ENO=YES

TIMER ADDRESS=40
ENTRY $EDXPTCH

$EDXPTCH DATA 128F'0' SYSTEM PATCH AREA
END

Figure 14. $EDXDEF and Multiple Terminal Manager Volume
Definition: Configuration for 4963-23 (23MB disk)

136 SC34-0312

SYSTEM STORAGE=128,MAXPROG=(3,6), C
PARTS=(32,32),COMMO~=EDXSVC

DISK DEVICE=4963-29,ADDRESS=48, C
VOLSER=EDX002,VOLORG=O,VOLSIZE=100, C
LIBORG=129

DISK DEVICE=4963-29,VOLSER=EDX003, C
BASEVOL=EDX002,VOLORG=100, C
VOLSIZE=100,LIBORG=1

DISK DEVICE=4963-29,VOLSER=ASMLIB, C
BASEVOL=EDX002,VOLORG=200, C
VOLSIZE=100,LIBORG=1

DISK DEVICE=4964,ADDRESS=02
DISK DEVICE=4966,ADDRESS=22,END=YES

$SYSLOG TERMINAL DEVICE=4979,ADDRESS=04, C
HDCOPY=$SYSPRTR

$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=OO,CRDELAY=4, C
PAGSIZE=24,BOTM=23,SCREEN=YES

$SYSPRTR TERMINAL DEVICE=4974,ADDRESS=01,END=YES
ENTRY $EDXPTCH

$EDXPTCH DATA 128F'O' SYSTEM PATCH AREA
END

Figure 15. Example of $EDXDEF: Configuration for 4963-29
(29MB disk)

Chapter 7. System Generation 137

SYSTEM ST~RAGE=128,MAXPROG=(4,4), C
PARTS=(32,32),DATEFMT=MMDDYY

DISK DEVICE=4963-23,ADDRESS=48, C
VOLSER=EDX002,VOLORG=O,VOLSIZE=100, C
LIBORG=129,FHVOL=FHVOL

DISK DEVICE=4963-23,VOLSER=EDX003, C
BASEVOL=EDX002,VOLORG=100, C
VOLSIZE=100,LIBORG=1

DISK DEVICE=4963-23,VOLSER=ASMLIB, C
BASEVOL=EDX002,VOLORG=200, C
VOLSIZE=100,LIBORG=1

DISK DEVICE=4964,ADDRESS=02
DISK DEVICE=4966,ADDRESS=22,END=YES

$SYSLOG TERMINAL DEVICE=4979,ADDRESS=04, C
HDCOPY=$SYSPRTR

$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=OO,CRDELAY=4~ C
PAGSIZE=24,BOTM=23,SCREEN=YES

$SYSPRTR TERMINAL DEVICE=4974,ADDRESS=OI,END=YES
ENTRY $EDXPTCH

$EDXPTCH DATA 128F'O' SYSTEM PATCH AREA
END

Fi,gure 16. Example of $EDXDEF with date format
specified: Configuration for 4963-23 (23MB
fixed-head disk)

138 SC34~0312

$SVSLOG

$SVSLOGA

$SVSPRTR

$EDXPTCH

SYSTEM STORAGE=256,
MAXPROG=(3,1,5,2,2,1,1,4),
PARTS=·(15~4,21,13,17,11,8,23)

DISK DEVICE=4963-64,ADDRESS=48,
VOLSER=EDX002,VOLORG=O,VOLSIZE=46,
LIBORG=129

DISK DEVICE=4963-64,VOLSER=EDX003,
BASEVOl=EDX002,VOlORG=46,
VOLSIZE=46,LIBORG=1

DISK DEVICE=4963-64,VOLSER=ASMLIB,
BASEVOL=EDX002,VOlORG=92,
VOLSIZE=46,LIBORG=1

DISK DEVICE=4963-64,VOLSER=EDX004,
BASEVOL=EDX002,VOLORG=138,
VOLSIZE=46,LIBORG=1

DISK DEVICE=4963-64,VOLSER=EDX005,
BASEVOL=EDX002,VOLORG=184,
VOLSIZE=46,LIBORG=1

DISK DEVICE=4963-64,VOLSER=EDX006,
BASEVOL=EDX002,VOLORG=230,
VOLSIZE=46,LIBORG=1

DISK DEVICE=4963-64,VOlSER=EDX007,
BASEVOL=EDX002,VOLORG=276,
VOLSIZE=46,LIBORG=1

DISK DEVICE=4963-64,VOLSER=EDX008,
BASEVOL=EDX002,VOLORG=322,
VOLSIZE=46,lIBORG=1

DISK DEVICE=4964,ADDRESS=02,VERIFV=NO
DISK DEVICE=4966,ADDRESS=22,

VERIFV=NO,END=VES
TERMINAL DEVICE=4979,ADDRESS=04,

HDCOPV=$SVSPRTR
TERMINAL DEVICE=TTV,ADDRESS=OO,CRDELAV=4,

PAGSIZE=24,BOTM=23,SCREEN=VES
TERMINAL DEVICE=4974,ADDRESS=01,END=VES
ENTRV $EDXPTCH
DATA 128F'O' SYSTEM PATCH AREA
END

c
C

C
C

c
C

C
C

c
C

c
C

c
C

c
C

C
C

C

C

C

Figure 17. Example of $EDXDEF: Configuration for 4963-64
(64MB disk) with a mapping of all (358) available
cylinders

Chapter 7. System Generation 139

SYSTEM STORAGE=96,MAXPROG=(3,4), C.
PARTS=(16,18),COMMON=START

DISK DEVICE=4963-58,ADDRESS=48, C
VOLSER=EDXn02,VOLORG=O,VOLSIZ~~46, C
LIBORG=129,FHVOL~FHVOL

DISK DEVICE=4963-58,VOLSER=EDX003, C
BASEVOL=EDX002~VOLORG=46, C
VOLSIZE=4~,LIBORG=1

DISK DEVICE=4963-58,VOLSER=ASMLIB, C
BASEVOL~EDX002,VOLORG=92, C
VOLSIZE=46,LIBORG=1

DISK DEVICE=4964,ADDRESS=02
DISK DEVICE=4966,ADDRESS=22,END=YES

$SYSLOG TERMINAL DEVICE=4979,ADDRESS=04, C
HDCOPV=$SVSPRTR

$SYSLOGA ·TERMINAL DEVICE=TTY,ADDRESS=OO,CRDELAV=4, C
PAGSIZE=24,BOTM=23,SCREEN=YES

$SVSPRTR TERMINAL DEVICE=4974,ADDRESS=OI,END=VES
ENTRY $EDXPTCH

$EDXPTCH DATA 128F'O' SYSTEM PATCH AREA
END

Figure 18. Examp le of $EDXDEF: Conf i gurat i on for 4963-58
(58MB fixed-head disk)

1 40 SC 3 4 ~ 0 3 1 2 :

SYSTEM STORAGE=256,MAXPROG=(5,5,5,S), C
PARTS=(16,32,32,32),

DISK DEVICE=4962-3,ADDRESS=03, C
VOLSER=EDX002,VOLORG=O,VOLSIZE=100, C
LIBORG=361,VERIFY=NO,TASK=YES

DISK DEVICE=4962-3,VOLSER=EDX003, C
BASEVOL=EDX002,VOLORG=100, C
~OLSIZE=S1,LIBORG=1

DISK DEVICE=4962-3,VOLSER=CDRSRC, C
BASEVOL=EDX002,VOLORG=151, C
VOLSIZE=SO,LIBORG=1

DISK DEVICE=4962-3,VOLSER=ASMLIB, C
BASEVOL=EDX002,VOLORG=201, C
VOLSIZE=100,LIBORG=1

DISK DEVICE=4964,ADDRESS=02, C
VERIFY=NO,TASK=YES

TAPE DEVICE=4969,ADDRESS=4C,ID=TAPE01, C
DENSITY=DUAL,LABEL=BLP,TASK=YES

DISK DEVICE=4966,ADDRESS=22, C
VERIFY=NO,TASK=YES,END=YES

CDRVTA TERMINAL DEVICE=VIRT,ADDRESS=CDRVTB, C
LINSIZE=132,SYNC=YES

CDRVTB TERMINAL DEVICE=VIRT,ADDRESS=CDRVTA, C
LINSIZE=132

$SYSLOG TERMINAL DEVICE=4979,ADDRESS=04, C
HDCOPY=$SYSPRTR,PART=2

$SYSLOGA TERMINAL DEVICE=4978,~DDRESS=24, C
HDCOPY=$SYSPRTR,PART=3

$SYSPRTR TERMINAL DEVICE=4974,ADDRESS=01,END=YES
TIMER ADDRESS=40
BSCLINE ADDRESS=68,TYPE=PT,RETRIES=6,MC=YES
BSCLINE ADDRESS=69,TYPE=PT,RETRIES=6,MC=VES
BSCLINE ADDRESS=6A,TVPE=SA,RETRIES=6,MC=VES
BSCLINE ADDRESS=6B,TVPE=SA,RETRIES=6,MC=VES, C

END=VES
ENTRY $EDXPTCH

$EDXPTCH DC 128F'O'
END

Figure 19. Example of $EDXDEF: Configuration for 4969 tape
and Remote Management Utility using the PASSTHRU
function

Chapter 7. System Generation 141

142 SC34-0312

PART III - THE INDEXED ACCESS METHOD

Part I I lis organ i zed into two chapters. "Chapter 8. Overv i ew
of the Indexed Access Method" on page 145 descr; bes the
features, components, and functions that comprise the Indexed
Access Method. It also provides an overview of the indexed
data set, how the Indexed Access Method processes the data set,
how to prepare your appl i cat ions, and how to get your data into
an indexed data set.

"Chapter 9. Planning and Designing Indexed Applications" on
page 159 contains detailed information on how to define, cre­
ate, access, and ma i nta i n an indexed data set and how to hand Ie
·e r r 0 r s • I tal s 0 e x p 1 a ins how i n d e xed d a t a set s are s t r u c t u red
and managed.

PART III - THE INDEXED ACCESS METHOD 143

144 SC34-0312

CHAPTER 8. OVERVIEW OF THE INDEXED ACCESS METHOD

The Indexed Access Method licensed program is a data management
fac i 1 i ty that operates under the Event Dr i ven Execut i ve. It
allows you to build, maintain, and access indexed data sets.
In an indexed data set, each of your records is identified by
the contents of a predefined field called a~. The Indexed
Access Method builds into the data set an index of keys that
prov i des access to your records.

The Indexed Access Method offers the following features:

• Direct and sequential processing. Multiple levels of
i nde xing are used for direct access, and sequence cha i n i ng
of data blocks is used for sequent i a I access.

• Support for high insert and delete activity without sig­
nificant performance degradation. Free space can be dis­
tributed throughout the data set and in a free pool at the
end of the data set so that new records can be inserted.
The space occupied by ~ deleted record is immediately
avai lable for new records.

• Concurrent access to a single data set by several requests.
These requests can be from one or more programs. Data
integrity is maintained by a file, block, and record level
locking system that prevents other programs from accessing
the portion of the file being modified.

• Implementation as a separate task. A single copy of the
Indexed Access Method executes and coordinates all
requests. A buffer pool supports all requests and opti­
mizes the space required for physical I/O; the only buffer
requ ired in an app I i cat i on program is the one for the
record be i ng processed.

• A utility program ($IAMUTl) which allows you to create,
format, load, un load, and reorgan i ze an indexed data set.

• File compat i b iIi ty. Data files created by the Event Dr i ven
Executive Indexed Access Method are compatible with those
created by the IBM Series/l Realtime Programming System
Indexed Access Method licensed program, 5719-AM1, prov i ded
that the block size is a multiple of 256 .•

• Data Protect i on. All input/output operat ions are performed
by system functions. Therefore, all data protection
facilities offered by the system also apply to indexed
files. The following additional data protection is pro­
vided:

Chapter 8. Overview of the Indexed Access Method 145

The exclusive option - specifies that the file is for
the exclusive use of a requester.

Record locking - automaticallY prevents two requests
from access i ng the same data record at the ,same time.

Immed i ate wr i te back - causes a 11 updated records to be
written back to the file immediately.

Accidental key modification is prevented - this helps
ensure that your index matches the correspond i ng data.

DEVICES SUPPORTED

The Indexed Access Method supports indexed data sets on the
following direct access devices:

• 4962 OJ sk storage Un i t

• 4963 Disk Subsystem

• 4964 0 i skette Un i t

• 4966 Diskette Magazine Unit

FUNCTIONS

Functions available include those that can be called from an
application program and a utility to define and maintain an
indexed data set.

I/O Requests

I/O requests allow you to bui ld an indexed data set and to per­
form direct or sequential processing on that data set. Rou­
tines us i ng these funct ions are wr i tten in Event Dr i ven
Language and can be included in programs written in any lan­
guage that supports the calling of Event Driven Executive
Language routines.

You request the services of the Indexed Access Method through
the Event Driven Language CALL instruction in the following
general form:

CALL IAM,(func),iacb,(parm3),(parm4),(parm5)

146 SC34-0312

For information on coding the parameters and functions, refer
to the Language Reference.

The following requests can be invoked:

Operands

PROCESS

LOAD

GET

GETSEQ

PUT

PUTUP

PUTDE

RELEASE

DELETE

ENDSEQ

Description

Builds an Indexed Access Control Block (IACB) and
connects it to an indexed data set. You can then use
the I A C B to iss u ere que s t s tot hat d a t a set to rea d ,
update, insert, and delete records. A program can
issue multiple PROCESS functions to obtain multiple
IACBs for the same data set, enabling the data set
to be accessed by several requests concurrently
with i n the same program.

Similar to PROCESS but used to load or extend the
initial collection of records.

Directly retrieves a single record from the data
set. If you specify the update mode, the record is
locked (made unavailable to other requests) and
held for possible modification or deletion. Use
GET tor e t r i eve a sin g 1 ere cor d f r ,0 m the d a t a set.

Sequentially retrieves a single record from the
data set. If you spec i fy the update mode, the record
is locked (made unavailable to other requests) and
held for possible modification or deletion. Use
GETSEQ when you are performing sequential oper­
ations.

Loads or inserts a new record depending on whether
the data set was opened with the LOAD or PROCESS
request. Use PUT when you are adding records to a
data set.

Replaces a record that is being held for update.
Use PUTUP to mod i fy a record.

Deletes a record that is be i ng held for update. Use
PUTDE to delete a record.

Re leases a record that is be i ng he ld for update.
Use RE LEASE when a record that was retr i eved for
update is not changed.

Deletes a single record, identified by its key,
from the data set. Use DELETE to delete a record;
un like PUTDE, the record cannot have been retr i eved
for update.

Terminates sequential processing.

Chapter 8. Overview of the Indexed Access Method 147

EXTRACT Provides information about the file (from the File
Control Block).

DISCONN Disconnects an IACB from an indexed data
thereby releasing any locks held by that
writes out all buffers associated with the
set; and releases the storage used by the IACB.

The $IAMUTl utility

set,
IACB;
data

The $IAMUT1 utility formats, defines, creates, and writes con­
trol i nformat i on to the indexed data set. Indexed Access Meth­
o d r e que s t s can be use don 1 yon d a t a set s de -f i ned e i the r b y t his
utility or by the Realtime Programming System Indexed Access
Method. $IAMUT1 is described in the Utilities, Operator
Commands, Program Preparation, Messages and Codes manual.)

OPERATION OF THE INDEXED ACCESS METHOD

The Indexed Access Method performs I/O operations by using
standard data management requests.

A sin g'1 e cop y 0 f the I n d e xed A c cess Met hod loa d mod u 1 e $ I AM
serves the entire system. It can be loaded automatically at IPL
time through the automatic ih i t i ali z at i' 0 n cap a b iIi t y (refer to
"Automatic Application Initialization and Restart" on page
129), or it can be loaded manua 11 y by us i ng the $ L operator com­
mand. However, since the link module loads $IAM automatically,
$IAM does not need to be loaded before it is used by any pro­
gram. Once loaded-, the Indexed Access Method rema i ns in storage
until cancelled with the $C operator command.

$ lAM can be loaded into any part it ion, inc 1 ud-i ng part it i on one.
I t can b e i n v 0 ked (t h r 0 ugh the lin k mod 'U 1 e) fro man y par tit ion ,
including the partition it is in. Figure 20 on page 149 shows
an example of a system containing the Indexed Access Method.

INDEXED DATA SETS - OVERVIEW

You can organize a collection of data into an indexed data set
if, the d a t a con sis t s 0 f fix e d - 1 e n 'g t h r e cor d san d i f e a c h r e cor d
can be uniquely identified by the contents bf a single prede­
fined field called the key. In an indexed data set, the records
are arranged in ascending order by key. Reserved space, called
free space, can be distributed throughout the data set so,that
records can be inserted.

148 SC34-0312

Partition 1 Partition 2 Partition 3

Application
program

I link I
Application

program
Control
blocks and
buffer pool
- - -- - - - -

$IAM I link

Application
program Application

Event

I I
program

Driven link

I I Executive link

Each application program contains a copy of the lAM
link module, which provides the interface to $IAM.

Figure 20. Example System Environment

I

An indexed data set contains base records, inserted records, a
multilevel index, and the control information required to use
the index and free space.

Indexed access applications are generally of two types: those
which both read and modify files and those which only read
fi lese The former are called update applications whi Ie the lat­
ter are ca lIed ; "qui ry app I i cat ions.

The Indexed Access Method uses two modes to place records into
an indexed data set:

1 • LOAD mode : records are loaded sequent i all yin ascend i n g
order by key, skipping any free space. The records,loaded
are ca lIed base records. Each record loaded must have a
key higher than any key already in the data set.

Chapter 8. Overview of the Indexed Access Method 149

2. PROCESS mode: records are inserted in the i r proper key
position relative to records already in the data set.
Records are inserted using the free space that was skipped
during loading or, if a record has a new high key, in the
unused space after the last loaded record.

The total number of base records that can be loaded is estab­
lished when the indexed data set is built by the $IAMUTI utili­
ty. It is not necessary, however, to load all the base records
before processing can begin. The data set can be opened for
loading some of the base records, closed and then reopened for
processing (including inserts), and later opened for loading
more base records. Figure 21 illustrates this sequence.

Step 1.
on of Load a porti

the base reco

High key
after step 1

Step 3.
Load more
base records

High key
after step 3

rds

- -

-- -

--

- - -

-- -

-- -

~

.

--
-

- -

- ...
I,

F t record has lowest key Irs

-

Step 2. I nsert new records

- High key
after step 2

Las t record has highest key

Unused space

Figure 21. Loading and Inserting Records in an Indexed Data Set

150 SC34-0312

The total amount of free space for inserts is specified to the
$IAMUTI uti lity when the, indexed data set is bui It. This free
space is d i str,i buted throughout the data set in. the form of
free records within each data bl~ck,'free blocks within each
block grouping, and/or in a free pool at the end of the data
set.

Data Set Format

Indexed data sets cons i st of data blocks wh i ch conta i n records,
indexes (po; nters) to the data blocks, and indexes to the index
blocks. This technique is called a cascading index structure.
The first block in the indexed data set, the file control block
(FCB), descr; bes the attr i butes of the data set.

Each data block has the following format:

HEADER

Data Record

Data Record

Data Record

Free space

Each index block has the following format:

HEADER

RBN KEY

RBN KEY

RBN KEY

UNUSED

Chapter 8. Overview of the Indexed Access Method 151

A set of data blocks is addressed (described) by a single index
block. Each key in the index block is the highest key in the
data block that its accompanying relative block number (RBN)
addresses. A block is addressed by its RBN. Th~ primary-level
index block (PIXB) and the data blocks it describes are called
a cluster.

Data
blocks

PIXB

HEADER

1

RBN

RBN

RBN

RBN

HEADER

High key
in 1

'H i gh key
in 2

High key
in 3

High key
in 4

HEADER HEADER HEADER

2 3

A Sample Cluster

The records in each data block are in ascending order, accord­
i ng to the key fie ld in each record.

Each data block header contains the address of the next sequen­
tial data block, allowing sequential processing.

Each PIXB (or cluster) has an entry in a second-level index
block (SIXB) that contains the address of the PIXB and the
highest key in the cluster. The SIXB has the following struc­
ture:

152 SC34-0312

HEADER

RBN High key
in PIXB1

RBN High key
SIXB i n PIXB2

RBN High key
in PIXB3

RBN High key
i n PIXB4

PIXBl PIXB2 PIXB3 PIXB4

The SIXBs in the data set are descr i bed by an index block in the
same manner as the PIXB describes each cluster. There is, of
course, an index block that" describes the entire data set. The
structure of the fi Ie is as follows:

Chapter 8. Overview of the Indexed Access Method 153

FCB

SIXB SIXB

I I I I I
Data Blocks

Highest level
index points
to index blocks

SIXB
Next
level
points
to
clusters

Note that only the highest key in any data block is found in a
PIXB entry, a SIXB entry contains only the highest key found in
a PIXB, and so on, to the highest index block. This index tech­
nique is called sparse indexing.

REQUESTING RECORDS

When you request a record from your data set, the access method
uses the index to retrieve the data block that contains the
record. The index blocks and data blocks are read, using EDL
READ instructions, into the central buffer. When the requested
record is found, it is moved to the address you specified and
contro lis returned to your program.

154 SC34-0312

To minimize accesses to the disk, the buffer management algo­
rithm tends to keep in the buffer the most frequently refer­
enced blocks (index or data).

PREPARING TO EXECUTE INDEXED APPLICATIONS

The Indexed Access Method consists of the following compo­
nents:

• A load module, $IAM, that supports the execution of the
programs that conta i n your Indexed Access Method requests.

• A set of object modules that you may use to generate a cus­
tomized load module. If you use the supplied load module,
$IAM, you do not need the object modules.

The object module, lAM, is called a link module. You
include lAM with your program to provide the interface to
the Indexed Access Method. This link module is sometimes
called a stub.

• Two copy code modules, IAMEQU and FCBEQU. IAMEQU prov ides
symbolic parameter values for constructing CALL parameter
lists. FCBEQU provides a map of the file control block
(FCB).

• A load module for the Indexed Access Method ut i 1 i ty
$IAMUTI.

Preparing Programs

To prepare an application programs that issues Indexed Access
Method requests, perform the following steps:

1. Enter the source program, us i ng one of the text ed i tors
($FSEDIT, $EDITl, or $EDITIN).

2. Create the $LINK control statements required to combine
your program with lAM (the link module) and any other
object modules you may need in your application. These
statements consist of a _ingle OUTPUT statement, at least
two INCLUDE statements - one for your program and one for
I AM (t he. lin k mod u 1 e), and a sin g leE N D s tat e men t. Use 0 n e
of the text editors to perform this operation.

3. Assemb Ie the source program us i ng:

The EDL comp i ler, $EDXASM, of the Program Preparat i on

Chapter 8. Overview of the Indexed Access Method 155

Facility

or

The S e r i e s /1 m a'c r 0 ass em b I e r, $ S 1 ~ S M, '1 nco n j un c t 1 0 n w 1 t h
the Macro Library

or

The Series/l macro assembler supplied by the System/370
Program Preparation Facility in conjunction with t.he Macro
Library/Host

4. Use the linkage editor, $LINK, to combine the object mod­
ules into a single module, using the control statements

.prepared in step 2.

5. Use the object program converter, $UPDATE or $UPDATEH, to
convert your module to a loadable program.

When the preced i ng steps are comp leted, the program is ready to
be executed.

Establ;sh;ng the Data set

Use the following steps to prepare the input for an indexed
data set:

1. If your data records are 72 bytes or less use one of the
text editors to enter your data or one of the communi­
cat ions ut iii ties to get the data to your system. In
either case, you must know the record format used by the
utility. The utilities put two 80-byte records in each
256-byte EDX record. The first record begins at location
1, and the second record begins at location 129. The
$IAMUTI utility assumes unblocked input. $IAMUTI takes
only one logical record, the size of which was specified on
the RECSIZE prompt, from each EDX record. Any record after
the first logical record in each 256-byte EDX record is
ignored. If you use the text editors, you must enter data
on every other line starting with the first line.

2. If your records have more than 72 bytes of data, you must
create a program that accepts the data records and writes
them to a disk or diskette data set.

The data must be in ascending order, based upon the -field you
use as the key.

156 SC34-0312·

The process of creating an indexed data set from a sequential
data set is:

1. Invoke $IAMUT1.

2. Enter an EC command. Respond to the prompt with a Y. Th is
wi 11 put all further input and output of $IAMUT1 to the
$SYSPRTR device and your terminal.

3. Enter an SE command. You will be prompted for the attri­
butes of your data set. After the prompt/reply sequence
ends, the utility will display your file attributes in
numer i c form. When you are sat i sf i ed wi th the file's struc­
ture (you can repeat SE commands, changing selected val­
ues), performing steps 4 through 8.

4. Enter a CR command to invoke $OISKUT1.

5. Enter a CV command to spec i fy the vo 1 ume. Then enter an AL

6. Enter an AL command followed by the data set name, specify
the space in EOX records, and enter a Y in response to the
data type prompt.

7. Enter an EN command to end $OISKUT1 and return to $ IAMUT1.

8. Enter a OF command to map the file. The OF command also
prompts for the immediate write back option and the data
set and volume names.

9. Enter an LO command. Respond to the prompt for input by
spec i fy i ng your input data set name and vo 1 ume. Respond to
the output. prompt by entering the data set name and volume
specified on the OF command. Your data is then loaded to
the indexed file.

10. Enter an EN command to end $IAMUT1. Your program can then
be loaded and may beg into process the data.

Chapter 8. Overview of the Indexed Access Method 157

A SAMPLE $JOBUTIL PROCEDURE AND LINK EDIT CONTROL

$JOBUTIL Procedure

**
* * THESE STATEMENTS WILL ASSEMBLE, LINK, AND UPDATE THE
* APPLICATION.

*
**
JOB ASSEMBLE
*** ASSEMBLE USERPROG SOURCE ***
LOG $SVSPRTR
PROGRAM $EDXASM,ASMLIB
DS USERPROG,EDX002
DS ASMWORK,EDX002
DS USEROBJ,EDX002
PARM LIST $SVSPRTR
EXEC
JOB
LOG
PROGRAM
DS

* DS
DS
PARM
EXEC

LINKAIAM
$SVSPRTR
$LINK,ASMLIB
LINKCTL,EDX002

LEWORKl,EDX002
LEWORK2,EDX002
$SVSPRTR

PROGRAM $UPDATE

SOURCE MODULE
ASSEMBLER WORK DATA SET
ASSEMBLER OUTPUT

LINKCTL IS NAME OF
LINK-CONTROL DATA SET
LINK WORK DATA SET
LINK WORK DATA SET

* PUT EXECUTABLE LOAD MODULE INTO DATA SET 'ANVNAME'
PARM $SVSPRTR LINKOUT,EDX002 ANVNAME YES
EXEC
LABEL
EOJ

END

Link Edit Control

**
* * LINK EDIT CONTROL DATA SET CLINKCTL)

* **
OUTPUT LINKOUT,EDX002 PUT LINK OUTPUT INTO LINKOUT
INCLUDE USEROBJ,EDX002 INCLUDE APPLICATION PGM OBJECT
INCLUDE IAM,ASMLIB INCLUDE INDEXED ACCESS METHOD
END

158 SC34-0312

CHAPTER 9. PLANNING AND DESIGNING INDEXED APPLICATIONS

This chapter provides information for designing applications
that use the Indexed Access Method. It conta i ns i nformat i on
about:

• Defining programs

Interfacing to SIAM

Ma i nta in i ng indexed data sets

Recovery, backup, and reorganization techniques

Concatenating indexed data sets

• Error handl i ng

How to handle errors

Error exit facilities

Resource contention

• The indexed data set

How to define records

How to def i ne the key

How the data set is structured

How the data set is formatted

Note: The Language Reference contains a detailed description
of the coding syntax of each Indexed Access Method request. You
may wish to refer to it w h i 1 e reading the next several pages.

CONNECTING AND DISCONNECTING THE INDEXED DATA SET

Pr i or to us i ng an indexed file, you must issue either a LOAD or
PROCESS request to connect it to your program. The file must be
defined in your PROGRAM statement or by a DSCB statement. In
the latter case use SDISKUT3 or DSOPEN to open the data set pri­
or to i ssu i ng the LOAD or PROCESS.

A LOAD or PROCESS request builds an indexed access control
block (IACB) that is associated with an indexed data set. The
IACB connects a request to the data set.

Chapter 9. Planning and Designing Indexed Applications 159

When in load mode, records are placed in the fi Ie sequentially.
Free space is skipped. When in process mode, records are placed
in the first available slot in the file and free space is used.

Only one LOAD request can be active for a given data set. Howev­
er, processing can take place concurrently with loading. No
LOAD or PROCESS can be successful until the file has been for­
matted by the $IAMUT1 uti Ii ty.

Multiple IACBs can be associated with the same data set. Data
integrity is maintained by a locking syst~m that allocates
file, record, or block locks to the requesting IACB. This pre­
ve nt's con cur r e n t mod i f i cat ion 0 fin d e x 0 r d a tar e cor d s b y 0 the r
requests.

An IACB can hold only one lock at a time; if your application
requires concurrent execution of functions that obtain locks
(direct update or sequential update - see "Processing" on page
161 for a description of these functions), you must issue mul­
tiple PROCESSes to build multiple IACBs.

A DISCONN disconnects an IACB from the data set, releases the
storage for that IACB, releases locked blocks or records being
held by that IACB, and writes any blocks that are being held in
the buffer. The DISCONN request can be issued at any time dur­
i ng load i ng or process i ng.

There is no automatic DISCONN on task termination. Failure to
disconnect your indexed data sets prior to task termination may
prevent resources that were allocated to your task from being
allocated to other tasks and updated records from be i ng wr i tten
to your data set.

LOADING BASE RECORDS

Base records must be loaded in ascending order by key. If you
are wr it i ng your own program to load the file, use a LOAD
request to load base reco'rds. Then issue a PUT for each record.
When the desired records have been loaded, issue a DISCONN
request to terminate the load procedure. The only requests that
can follow a LOAD request are: PUT, EXTRACT, and DISCONN.

You need not load a 11 base records at one time. A data set that
already contains records can be reconnected to load more
records, but the key of each new record must be higher than any
key already in the data set.

Also, the lim it on base records as spec if i ed on the DEF INE com­
mand of the Indexed Access Method uti lity program ($IAMUTl)
cannot be exceeded. If you attempt to load a record after the
last allocated record area has been fi lIed, an end-of-fi Ie con­
dition occurs.

160 SC34-0312

Only one LOAD request can be issued to a data set at any time.
o the r pro c e s sin g r e que's t s can be mad e to a d a t a set t hat i s
being loaded, but an attempt to retrieve a record from the data
block being loaded can result in a no-record-found condition.

PROCESSING

Initiate general purpose access to an indexed data set with a
PROCESS request. After the PROCESS request has been issued, any
of the following 'functions can be requested:

• Direct reading - Retrieving a single record independently
of any previous request.

• Sequential reading - Retrieving the next logical record
relative to the previous request.

• Direct updating - Retrieving a single record for update;
complete the update by either replacing or deleting the
record.

• Sequential updating - Retrieving the next logical record
for update; complete the update by either replacing or
deleting the record.

• Inserting - Placing a single record, in its logical key
sequence, into the indexed data set.

• Deleting - Removing a single record from the indexed data
set.

• Extract i ng - Extract i ng data that descr i bes the data set.

Note that the update funct ions requ ire more than one request.

When a funct ion is comp lete, another funct i on may be requested,
except that a sequential function may be followed only by
another sequential function. You may terminate processing at
any time by i ssu i ng a DISCONN or ENDSEQ request. An end-of­
data condition also terminates sequential processing.

Direct Reading

Use the GET request to read a record using direct access. The
key parameter is requ i red and must be the address of a fie ld of
full key length regardless of the key length specification.

Chapter 9. Planning and Designing Indexed Applications 161

The record retrieved is the first record in the data set that
sat i sf i es the search argument def i ned by the key and key
rei at ion (k rei) par ,a met e r s • The key fie I dis' up d ate d to
reflect the key contained in the record that satisfied the
search.

If the key length is specified as less than the full key length,
only part of the key field is used for comparison when search­
ing the data set. For example, the keys in a data set are AAA,
AAB, ABA, and ABB, the key field contains ABO, and key relation
is EQ. If key length is zero, the search argument is the full
key ABO (the default) and a record-not-found code is returned.
If the key length specification is 2 and the search argument is
AB, the third record is read. If the key length specification
is 1 and the search argument is A, the first record is read.

Direct Updating

To update a record us i ng direct access:

1. Retrieve the record with a GET request, specifying the key
and key relation (krel) parameters.

2. Mod 1 fy the record in your buffer. Do not change the key
field in the record. Return the updated record to the data
set wi th a PUTUP request.

You can delete the record with a PUTDE request or leave it
unchanged by issuing a RELEASE request.

The key parameter must be specified as the address of a field of
full key length. The key cannot be mod if i ed dur i ng the update.

The only valid requests, other than DISCONN and EXTRACT, that
can follow GET for direct update are PUTUP, PUTDE, and RELEASE.

During t~e update, the subject record is locked (made unavail­
able) to any other request unt,il the update is complete. Even
i f no act ion i s t ak en aft e r the GET r e que s tis iss u ed, the
RELEASE request is required to release the lock on the record.

Sequential Reading

Use the GETSEQ request to read a record sequentially. After a
sequential processing request has been initiated, only sequen­
t i al funct 1 ons can be requested unt i I an end-of-data cond i t 1 on
occurs or an ENDSEQ request is issued. Processing 1S termi­
nated when a DISCONN request is issued or an error or warn i ng is
returned.

162 SC34-0312

To begin sequential access with the first record in a data set,
set the key address to zero. To start with any other record,
speci fy a search argument by speci fying the key and key
relation (krel) parameters.

If you specify a search argument, the key field is modified to
reflect the key of the first record found.

After the first retrieval, a GETSEQ retrieves the next sequen­
tial record regardless of any key or key relation specifica­
tion. Therefore, you can use the same GETSEQ statement to read
all records. A search argument on intermediate retrievals is
ignored and the key field is not modified.

Spec i fy ENDSEQ to stop read i ng before the end of data is
reached. Reading ends automatically at the end of data. The
end-of-data cond it i on occurs when an attempt is made to
retrieve a record after the last record in the data set.

If you specify the EODEXIT parameter on the PROCESS request,
control is transferred to the address specified by the EODEXIT
parameter when the End-of-Data cond it i on occurs.

Sequential Updating

To update a record using sequential access, retrieve the record
with a GETSEQ request, specifying the key and one of the update
key relation parameters. The key is used only on the first
retrieval and is not specified if processing is to begin with
the first record in the data set. Processing is terminated with
an ENDSEQ or an end-of-data condition.

The key in the record cannot be mod if i ed. The record can be
returned to the data set with a PUTUP, deleted with a PUTDE, or
left unchanged by specifying RELEASE. When the update is com­
plete, the next record can be requested.

During sequential updating, the block that contains the record
is locked, making all records in the block unavai lable to other
requesters until the last record of the block is processed or
an ENDSEQ request is issued.

Terminate processing with an ENDSEQ request or a DISCONN
r e que s t e i t he r be for e 0 r aft e r com p let i n g t he u pd ate •
Figure 22 on page 164 summarizes the protocol for sequential
processing.

Chapter 9. Planning and Designing Indexed Applications 163

REQUEST/CONDITION CAN BE FOLLOWED BY:

GET DISCONN
END-OF-DATA CONDITION
ENDSEQ
PUTUP
PUTDE
RELEASE

END-OF-DATACONDITION DISCONN
GET
PUT
DELETE

PUTUP DISCONN
ENDSEQ
GETSEQ

PUTDE DISCONN
ENDSEQ
GETSEQ

RELEASE DISCONN
ENDSEQ
GETSEQ

Figure 22. Protocol for Sequential Updating

Inserting

To insert a new record in a data set, issue a PUT request. The
Indexed Access' Method uses the 'key of the record to insert'the
record into the data set.

The key of the inserted record must be different from any key in
the data set; otherwise, a duplicate key error occu~s. The key
can be higher than any key in the data set.

If no free space exists in the area associated with the insert
or no blocks exist in the free pool, a no-more-space condition
occurs. The no-more-space condition does not necessari ly mean
t he d a t a set i s f u lIb uti t do e sin d i c a te t he nee d for d a t a set
reorganization (refer to "Reorganization" on page 166').

164 SC34-0312

Deleting

Use DELETE to delete a record from the data set. The full key
of the record must be specified. If no record exists with the
specified key, an error is ,indicated.

Deletion can also be performed as part of updating by following
a GET for update with a PUTDE request.

Extracting

The EXTRACT request provides information about a data set from
the file control block (FCB). This includes information such
as key length, key displacement, block size, record size, and
other data regarding the data set structure.

Execution of the EXTRACT request causes the file control block
to be copied to an area that you provide. The data set must
have been connected by'a LOAD or PROCESS request.

The contents of the FCB are described by FCBEQU, a unit of copy
code that is supplied by the access method. Use COPY FCBEQU to
include these equates in your program.

MAINTAINING THE INDEXED DATA SET

The Indexed Access Method does not prov i de spec if i c programs to
perform indexed data set backup and recovery, nor does it
include services to delete the data set or dump it to the print­
er. These procedures are prov i ded by a comb i nat i on of Event
Driven Executive and Indexed Access Method services as sug­
gested below. The Indexed Access Method utility $IAMUT1 does
provide services to help you reorganize your data set as
des c rib e d below,.

Backup and Recovery

To protect against the destruction of data, at regular inter­
vals you should make a copy of the indexed data set (or the log­
ical volume in which the data set exists) using the system
$COPY utility. During the interval between making copies, you
should keep a journal fi Ie of all transactions made against the
indexed data set.

Chapter 9. Planning and Designing Indexed Applications 165

The journal file can be a consecut i ve data set conta i n i ng
records that descr i be the type of transact i on and the pert i nent
data. A damaged ind,exed data set can be recovered by updating
the backup copy from the journal fi Ie.

For example, suppose an indexed data set named REPORT is lost
because of physical damage to the disk. The condition that
caused the error has been repa i red and the data set must be
recovered. Delete REPORT, copy the backup version of REPORT to
the desired volume, and process the journal file to recreate
the data set.

If a data-set-shut-down condition exists, IPL again. Then
issue a PROCESS to the REPORT data set and, using the journal
file, reprocess the transact ions that occurred after the back­
up copy was made.

Recovery Without Backup

If you do not use the backup procedures outlined above and you
encounter a problem with your data set, you sti 11 may be able to
recreate your file. However, the status of requests that were
in process at the time of the problem is uncerta in.

To recreate your data set, follow the steps in "Reorganization"
to reorgan i ze your data set. After recreat i ng the data set,
verify the status of the requests that were in process at the
time the problem occurred.

Reorganization

An indexed data set must be reorgan i zed when a record cannot be
inserted because of lack of space. The lack-of-space condition
does not necessarily mean that there is no more space in the
data set; it means that there is no space in the area where the
record would have been placed. Therefore, you may be able to
reorganize without increasing the size of the data set. Perform
the following steps to reorganize a data set:

1. Ensure that all outstanding requests against the data set
have been completed; issue a DISCONN for every current
IACB.

2. Use the define command (DF) of the $IAMUT1 utility to
def i ne a new indexed data set. Est i mate the number of base
records and the amount a.nd mix of free space in order to
minimize the need for future reorganizations. Refer to
"The Indexed Data Set" on page 182 for guidelines for mak­
i ng these est i mates.

166 SC34-0312

3. Use the reorganize command (RO) of the $IAMUTl utility to
load the new indexed data set from the indexed data set to
be reorgan i zed.

Alternatively, you can use the unload command (UN) of the
$IAMUTl utility to transfer the data from an indexed data
set to a sequent i a I data set, then use the. load command
(LO) to load it back into the indexed data set.

4. Use system ut iii ties to de lete the old data set and rename
the new data set.

Dumping

To print records, use the DP command of the $DISKUT2 utility.
$DISKUT2 produces a hexadecimal dump of the entire data set
including control information, index blocks, and data blocks.
Information on the $DISKUT2 utility can be found in the Utili­
ties, Operator Commands, Program Preparation, Messages and
Codes.

Deleting

Delete an indexed data set the same way you delete any other
data set. From a terminal, use the DE command of the $DISKUTl
utility (refer to Utilities, Operator Commands, Program Prepa­
ration, Messages and Codes), or from a program use the $DISKUT3
data management ut iii ty (refer to "Chapter 16. Advanced
Top i cs" on page 309).

CONCATENATING DATA SETS

The ALTIAM subroutine allows you to concatenate multiple lAM
data sets and to issue normal lAM commands to the concatenated
file. This allows you to have more than 32,767 sectors in an
lAM file or to put parts of a file on different devices to
improve performance. The data sets may reside on the same or
different volumes or devices. The keys of all data sets must
have the same locat i on and length. Each file mllst be loaded
individually and have a unique range of keys, with no overlap
of key ranges between the data sets.

To incorporate this function in your application, transcribe
the ALTIAM subroutine using one of the text editors and modify
it to meet your requirements. Compile it with $EDXASM or the
Series/l Macro Assembler and add the object program to your

Chapter 9. Planning and Designing Indexed Applications 167

object library. Include the object program when you link edit
your appl i cat i on programs wi th the lAM 1 ink module.

Not e: The A L T I AM sub r 0 uti n e i s not com pat i b 1 e wit ,h the M u 1 t i -
pIe Terminal Manager.

The ALTIAM subroutine accepts all Indexed Access Method
requests for single files. A spec i al request, CONCAT, is issued
to concatenate files. Only one set of files may be concat­
enated 'per copy of AL TIAM; when the fi Ie is disconnected,
another set may be concatenated. The parameters to CONCAT are
as follows:

CALL ALTIAM,(CONCAT),IACB,(DSCBTAB),(OPENTAB),(MODE)

• Equate CONCAT to 14.

• IACB, OPENTAB, and MODE are the same as in the PROCESS
request.

• DSCBTAB is the address of ali st of opened data set control
blocks (DSCBs) with the following format:

DSCBTAB DATA
DATA
DATA
DATA

ACDS1)
ACDS2)
ACDS3)
ACBUFFER)

The DSCBs must be in order of increasirig key ranges of of the
corresponding fi lese Three DSCBs is the default but you may
increase or decrease the number. If only two data sets are
needed, word three must be zero. The buffer must be large
enough to hold the largest record in the concatenated fi Ie.

The CONCAT function issues PROCESS requests and reads the low
key of each file. The default maximum key size CSO bytes) may
be changed. The address of the IACB that is returned is used by
ALTIAM to issue processing requests against the concatenated
f i 1 e .

The fo 11 ow i ng requests may be made to a concatenated file:

GET
GETSEQ
PUT
PUTUP

. PUTDE
DELETE
EXTRACT
ENDSEQ
RELEASE
DISCONN

1 6 8 S C3'4 - 0 3 1 2

The parameters for each function are identical to the parame­
ters for requests to non-concatenated files.

You may want to mod i fy the fo 110'" i ng i terns when us i ng the
ALTIAM subroutine:

• maximum number of concatenated data sets

• max i mum key length

• error check i ng

To change the maximum number of data sets, change line 2740 so
that DSCB# is equated to the number of files to be concatenated
(N). Lines 2630 and 2640 allocate space for IACBs and key save
areas. Line 2630 allocates N-l words for IACBs. Line 2640
allocates KS*(N-1) bytes for key save areas, where KS is the
maximum key size.

To change the maximum key size, change line 2600 to allocate
the des i red number of bytes (KS) for a key save area.

The ALTIAM subroutine does not perform the same error checking
that occurs for non-concatenated data sets. You may want to
check for the following errors:

• GETSEQ requests in one file that are
non-sequential requests to another file in
enated data set.

followed by
the cone at-

• PROCESS or LOAD requests be i ng issued aga i nst concatenated
datasets (unpredictable results may occur).

• GET or GETSEQ requests for update in one file followed by
non-update requests (e.g.PUT) to another file in the con­
catenated data set.

The first error may be checked at line 300. If the sequential
flag (ASEQ) is set and the request is a GET, DELETE, PUT, or
EXTRACT, set an er ror code (10).

The second error may also be checked at line 300.
request is PROCESS or LOAD, set an error code (10).

I f the

The third error may be checked by adding an update flag. The
flag should be set at lines 1470 and 1530 if an update request
is mad~. The flag should be reset at line 1180 for ENDSEQ,
RELEASE, PUTUP, and PUTDE requests. The flag should also be
reset at line 1000 in the DISC routine and at line 2440 in the
ALTERR routine. At line 300 the flag should be checked. If the
flag indicates a GET, GETSEQ, PUT, DELETE, or EXTRACT request,
set error (10).

Chapter 9. Planning and Designing Indexed Applications 169

ALTIAM Subroutine

00010 ***
00020 ***
00030 * AlTIAM IS A SUBROUTINE WHICH AllOWS THE USER TO CONCATENATE
00040 * lAM DATA SETS. ALL PARMS AND CALLS ARE THE SAME AS IN lAM.
00050 *
00060 *
00070 *
00080 *
00090 *
00100 *
00110 *
00120 ***

REQUESTS FOR NON-CONCATENATED lAM FILES ARE SIMPLY PASSED THRU
TO lAM. TO OPEN A SET OF DATA SETS ISSUE THE CONCAT REQUEST AND
PASS A TABLE OF DSCB'S. THE KEYS IN ALL FILES MUST BE IN THE
SAME POSITION AND BE THE SAME LENGTH. KEY RANGES CAN NOT OVERLAP.
VALID COMMANDS ARE: GET, GETSEQ, DELETE, PUT, PUTUP, PUTDEl,
RELEASE, ENDSEQ, EXTRACT, DISCONN, AND CONCAT FOR
CONCATENATED FILES.

00130 ***
00140 SPACE 2
00150 SUBROUT AlTIAM,FUNCTION,IACB,PARM3,PARM4,PARM5
00160 ENTRY AlTIAM
00170
00180
00190
00200
00210
00220
00230
00240
00250

MOVE
MOVE

SAVEREGS,#1,2
IFUNC,FUNCTION,5

SAVE USERS REGS
COpy USERS PARMS TO CAll TO lAM

IF (FUNCTION,NE,+CONCAT),AND, NOT THE SPECIAL FUNCTION X
(IACB,NE,+ALTIACB) OR A USE OF CONCAT. lAM DS

MOVE REGA,IACB SAVE CURRENT IACB VALUE
MOVEA IIACB,REGB POINT TO SAVE AREA
CALL CAllIAM JUST PASS THE REQUEST THRU
MOVE IACB,REGB COpy THE IACB BACK TO THE USER
GOTO EXIT RETURN TO USER

00260 ENDIF
00270 SPACE 5
00280 ***
00290 * PROCESS THE SPECIAL CONCATENATED lAM FILE REQUESTS.
00300 ***
00310 GOTO (lAST,lAST,lAST,lAST,INS,lAST,DIR,SEQ,DEl,DISC, X
00320 lAST,LAST,lAST,lAST,CON),FUNCTION
00330 EJECT
00340 CON EQU * PROCESS THE CON. OPEN REQUEST

170 SC34-0312

00350 ***
00360 * LOOP THRU USERS TABLE ISSUING lAM PROCESS REQUEST, EXTRACT
00370, * FeB INFO, SAVE USERS EXIT INFO, AND FIND LOW KEY IN EACH DATA SET.
00380 ***
00390 MOVE ALTIACB,O,C+ALTTSIZE,BYTES) ZERO OUT THE ALT IACB ~

00400 MOVE ~1,PARM3 GET USERS DSCB TABLE POINTER
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520

MOVE BUFF,CBUFFADR,ll)
MOVEA ~2,ALTIACB

MOVEA IKEY,OPENTAB
MOVE IFUNC,+PROCESS
SPACE 2
DO +DSCB~,TIMES

GET POINTER TO USERS BUFFER
POINT AT ALTERNATE IACB
POINT AT OUR OPEN TABLE
SET UP TO DO lAM PROCESS

LOOP THRU THE USERS DSCB TABLE
IF CCO,ll),EQ,0),GOTO,EXIT1
MOVE IBUFF,(0,11) COPY A DSCB ADDR TO lAM CALL
MOVE IIACB,12 POINT AT lACB SAVE ADDRESS
CALL CA~LIAM ISSUE lAM CALL
ADD
ADD

11,2
~2,+AENTSIZE

POINT AT NEXT DSCB
ADD ALT IACB ENTRY SIZE

00530 ENDDO
00540 *
00550 EXIT1 EQU * EXIT FROM DO LOOP
00560 ** EXTRACT THE FCB INFORMATION
00570
00580
00590
00600
00610
00620
00630
00640
00650 *
00660
00670
00680
00690
00700 *
00710 ** 00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860

GET

MOVE
MOVE
MOVE
CALL
MOVE
MOVE

IFUNC,+EXTRACT
IBUFF,BUFF
IKEY,+10
CALLIAM
~l,BUFF

AKPOS,(FCBKEYDP,ll)

SET UP TO DO EXTRACT
POINT TO OUT BUFFER
TRANSFER 10 BYTES OF FCB
ISSUE lAM CALL
SET UP FCB DSECT
SAVE KEY POSITION

MOVE AKSIZE,CFCBKEYLN,#l),BYTE GET THE KEY LENGTH
SHIFTR AKSIZE,8 SHIFT IT INTO POSITION

MOVE
MOVE
MOVE
MOVE

THE LOW
MOVE
MOVE
MOVE
MOVEA
DO

IF
MOVE
MOVE
MOVE
CALL
MOVE
CALL
MOVE
ADD

ENDDO

~1,PARM4

ASYSRC,#l
AERR,(2,#I)
AEOD,(4,#I)

KEY IN EACH DATA SET

PICK UP USERS OPEN TABLE
SAVE SYSRC CELL
SAVE USERS ERROR EXIT ADDR
SAVE USERS END OF DATA EXIT

IKEY,O SET UP DEFAULT 1ST KEY
12,AKPOS POINT AT KEY POSITION
MOVEKEYiAKSIZE SET UP LENGTH OF MOVE
11,ALTIACB+AENTSIZE POINT AT SECOND DATA SET
+DSCBftMl,TIMES LOOP THRU DATA SETS

CCO,ll),EQ,+0),GOTO,EXIT2
IFUNC,+GETSEQ SET UP FUNCTION
IIACB,~l

IOPT,+GE
CALLIAM
IFUNC,+ENDSEQ
CALLIAM

POINT AT IACB
SET UP RELATION
ISSUE lAM GET
SET UP END SEQ REQUEST
ISSUE lAM RELEASE

C-AMAXKEY,#1),(0,12),C1,BYTE),P2=BUFF,P3=MOVEKEY
#1,+AENTSIZE POINT AT NEXT SLOT

Chapter 9. Planning and Designing Indexed Applications 171

00870 *
00880 EXIT2
00890
00900
00910
00920
00930
00940
00950
00960
00970

* EXIT

DISC

EQU
MOVE
MOVEA

EQU
MOVE
MOVE
RETURN
EJECT
EQU

* DO lOOP EXIT
(-AMAXKEY,#1),X'FFFF',(+AMAXKEY,BYTES) HIGH FILL
IACB,ALTIACB RETURN ALT IACB POINTER TO USER

* RETURN TO USER
PARM3,O,3 ZERO OUT LAST THREE PARMS
11,SAVEREGS,2 RESTORE USERS REGISTERS

* PROCESS ALTERNATE DISCONNECT
00980 **
00990 ** DISCONNECT All lAM FILES
01000 **
01010 MOVE ASEQ,O RESET SEQENTIAl SWITCH
01020 MOVE IACB,OZERO OUT USERS IACB POINTER
01030 MOVEA #I,AlTIACB POINT AT lAM IACB TABLE
01040 DO +DSCBI,TIMES DO WHILE THERE ARE IACBS
01050 IF CCO,#1),EQ,O),GOTO,EXIT3 IF EMPTY EXIT
01060 MOVE IIACB,#l POINT AT AN IACB
01070 CAll CAlLIAM ISSUE lAM REQUEST
01080 ADD 11,+AENTSIZE POINT AT NEXT IACB
01090
01100 *
0.1110 EXIT3
01120
01130
01140 LAST

ENDDO

EQU *
GOTO EXIT
SPACE 5
EQU *

RETURN TO USER

01150 **
01160 ** THESE REQUESTS USE THE LAST lACS USED. THEY ARE:' ENDSEQ, RELEASE,
01170 ** EXTRACT, PUTUP, AND PUTDEL.
01180 **
01190
01200
01210
01220
01230
01240
01250

MOVE
IF

MOVE
ENDIF
CALL
GOTO
EJECT

IIACB,ALSTIACB+2
(FUNCTION,EQ,+ENDSEQ)

ASEQ,O

CALLIAM
EXIT'

·USER THE LAST IACB
IF ENDING A SEQUENCE
RESET THE SEQUENTIAL SWITCH

ISSUE lAM REQUEST
RETURN TO USER

01260 **
01270 ** THE NEXT SET OF FUNCTIONS USE THE CHECK ROUTINE TO DETERMINE
01280 ** WHICH lAM FILE TO ISSUE THE REQUEST TO. THESE FUNCTIONS ARE:
01290 ** PUT, DELETE, GET~ AND THE FIRST GETSEQ. THE USER SUPPLIED KEY
01300 ** IS CHECKED AGAINST THE VALUE STORED DURING CONCAT.
01310 **
01320
01330 INS
01340 **
01350
01360
01370
01380

SPACE 2
EQU *

PROCESS INSERT· REQUESTS
~1OVE ~t1,PARM3

ADD
·MOVE
GOTO

#I,AKPOS
COMPLEN,AKSIZE
CHECK

172 SC34-0312

POINT AT USERS KEY
ADD IN KEY OFFSET
FULL KEY SUPPLIED

01390 *
01400 DEL
01410 **
01420
01430
01440
01450 *
01460 SEQ
01470 **
01480
01490
01500 **
01510 *
01520 DIR
01530 **
01540
01550
01560
01570
01580
01590
01600

EQU *
PROCESS DELETE REQUESTS

MOVE
MOVE
GOTO

EQU *

31,PARM3
COMPLEN,AKSIZE
CHECK

PROCESS GET SEQ REQUESTS

POINT AT USERS KEY
FULL KEY SUPPLIED

IF (ASEQ,EQ,j),GOTO,LAST IF NOT FIRST IN SEQUENCE
MOVE ASEQ,1 SIGNAL SEQUENTIAL MODE

PROCESS FIRST SEQUENTIAL AS DIRECT

EQU *
PROCESS GET REQUESTS

IF (PARM4,EQ,O) IF KEY IS NOT SET
MOVEA IIACB,ALTIACB POINT AT FIRST FILE
GOTO INRANGE SKIP CHECKING

ENDIF
MOVE 31,PARM4 GET KEY POINTER
MOVE COMPLEN,(-1,31),BYTE GET KEY LENGTH
SHIFTR COMPLEN,8 GET INTO POSITION

01610 *
01620 CHECK EQU *
01630 **
01640 ** LOOP THRU IACB TABLE COMPRING USERS KEY (31) TO SAVED KEY IN
01650 ** THE TABLE. THE SAVED KEY IS THE LOWEST KEY IN THE NEXT FILE.
01660 **
01670 MOVEA 32,ALTIACB POINT AT IACB TABLE
01680 MOVE REGA,#l SAVE USERS KEY ADDRESS
01690 DO +DSCBft,TIMES LOOP THRU IACBS
01700
01710
01720
01730
01740 *
01750
01760
01770
01780
01790
01800
01810
01820 *
01830 **
01840 **
01850
01851
01852
01860
01870
01880
01890

IF
WE

IF
MOVE
ADD
MOVE

«O,ft2),EQ,0),GOTO,INRANGE EXIT IF NO MORE
IIACB,32 SAVE CURRENT IACB
32,2
COUNT,O

POINT AT SAVED KEY
INITIALIZE STRING COUNTER

DO WHILE,(COUNT,LE~COMPLEH) LOOP THRU STRING
IF «0,ft1),LT,(O,#2),BYTE),GOTO,INRANGE CORRECT IACB
IF «0,31),GT,CO,ft2),BYTE),GOTO,OUTRANGE WRONG IACB
ADD #1,1 INCREMENT POINTERS
ADD
ADD

ENDDO

#2,1
COUNT,!

* IF STRINGS ARE EQUAL

STRINGS ARE EQUAL THEN THE KEY IS IN THE NEXT FILE. UNLESS
ARE USING THE LAST FILE ALREADY.

ADD IIACB,+AENTSIZE,RESULT=12 POINT AT NEXT
MOVE DOUBLE1,0
MOVE' DOUBLE2,32
IF (DOUBLEl,LT,+ALSTIACB,DWORD) IF NOT THE LAST IACB

MOVE IIACB,#2 STORE NEW POINTER
ENDIF
GOTO INRANGE FOUND THE CORRECT lACS

Chapter 9. Planning and Designing Indexed Applications 173

01900 *
01910 OUTRANGE EQU *
01920 ** KEY IS NOT IN THIS RANGE. CHECK THE NEXT.
01930 ADD IIACB,+AENTSIZE,RESULT=#2 BUMP THE IACB POINTER
01940 MOVE 11,REGA RESTORE THE USER KEY POINTER
01950 ENDDO
01960 *
01970 INRANGE EQU *
01980 ** KEY IS IN THIS RANGE. ISSUE THE lAM CALL.
01990
02000 *
02010
02020
02021
02030
02031
02040
02050
02060
02070
02080

CALL CALLIAM

IF CREGA,EQ,-58),AND,(PARM5,GT,+UPEQ) NO RECORD FOUND
ADD IIACB,+AENTSIZE POINT AT NEXT IACB
MOVE
MOVE
MOVE

DOUBLE1,0
DOUBLE2,IIACB
11,DOUBLE2

IN A REGISTER

IF (DOUBLE1,LT,+ALSTIACB,DWORD),AND, IN RANGE
(CO,ll),NE,O),GOTO,INRANGE * TRY NEXT FILE

ENDIF
GOTO EXIT
EJECT

02090 ***
02100 ** INVOKE lAM AND SAVE RETURN CODE.
02110 ***
02120 SUBROUT CALlIAM
02130 MOVE AlSTIACB+2,IIACB UPDATE LAST IACB CEll

x

02140 CAll IAM,+PROCESS,IACB,CIACB),CIACB),+EQ,P2=IFUNC, X
02150 P3=IIACB,P4=IBUFF,P5=IKEY,P6=IOPT
02160 MOVEA TCW,$TeBCO-$TCBll OFFSET TO TASK CONTROL WORD
02170 MOVE REGA,#1,P2=TCW PICK UP TASK CONTROL WORD
02180
02190
02200 AlTEOD

RETURN
SPACE 5
EQU *

02210 ***
02220 ** END OF DATA EXIT. IF NOT THE lAST FILE SWITCH TO THE NEXT ONE.
02230 ** IF THE lAST FILE PASS CONTROL TO USERS EOD EXIT.
02240 ***
02250 ADD IIACB,+AENTSIZE POINT TO THE NEXT IACB
02251 MOVE DOUBLEl,O
02252 MOVE DOUBLE2,IIACB IN A REGISTER

11,IIACB 02260
02270
02280
02290
02300
02310
02320 *
02330
02340
02350
02360
02370
02380
02390

MOVE
IF CDOUBLE1,LT,+AlSTIACB,DWORD),AND, IN RANGE

(CO,#1),NE,0)
MOVE IKEY,O
GOTO .INRANGE

ENDIF

MOVE ASEQ,O
IF (AEOD,NE,O)

GO TO (AEOD)
ELSE

GOTO EXIT
ENDIF

SPACE 5

174 SC34-0312

GET FIRST KEY IN NEXT FILE
ISSUE lAM REQUEST

RESET SEQUENTIAL SWITCH
IF END OF DATA EXIT EXISTS
GO TO IT

X

02400 ALTERR EQU *
02410 ***
02420 ** ERROR EXIT. RESET SEQUENTIAL FLAG AND PASS CONTROL TO USERS
02430 ** ERROR EXIT.
02440 ***
02450 MOVE ASEQ,O
02460 MOVE #l,ASYSRC
02470 MOVE (0,#1),OPENTAB
02480 IF (AERR,NE,O)
02490 GOTO CAERR)
02500
02510
02520

ELSE
GOTO

ENDIF
EXIT

GET USERS RETURN CODE LOCATION
COpy SYSTEM RETURN CODE
IF ERROR EXIT EXISTS
GO TO IT

02540 ***
02550 ** DATA AREAS
02560 ***
02570 ALTIACB EQU * START OF ALTERNATE IACB
02580 DATA F'O' IACB POINTER
02590 AIKEY
02600
02610 AENTSIZE
02620 AMAXKEY
02630
02640
02650 ALSTIACB
02651 DOUBLE1
02652 DOUBLE2
02660 AKPOS
02670 AKSIZE
02680 ASYSRC
02690 AERR
02700 AEOD
02710 ASEQ
02720 ALTTSIZE
02740 DSCBtt
02750 *
02760 DSCB#M1
02770 BUFFADR
02780 CONCAT
02790 FCBKEYLN
02800 FCBKEYDP
02810 COMPLEN
02820 COUNT
02830 OPENTAB
o 28(tO
02850
02860 REGA
02870 REGB
02880 SAVEREGS
02890
02900
02910
02920
02930

EQU
DATA
EQU
EQU
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
EQU
EQU

EQU
EQU
EQU
EQU
EQU
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
EJECT
COPY
EJECT
COPY
END

* SOX'O'
*-ALTIACB
*-A1KEY
2F'0'
100X-'0'
D'O'
F'O'
F'O'
F'O'
F'O'
F'O'
F'O'
F'O'
F'O'
*-ALTIACB
3

DSCBI-l
DSCBtt*2
14
1
2
F'O'
F'O'
F'O'
ACALTERR)
A(ALTEOD)
F'O'
F'O'
2F'0'

IAMEQU

TCBEQU

KEY SAVE AREA (MAX LEN=50 BYTES)
SIZE OF ONE ENTRY
MAXIMUM KEY SIZE
EXTRA IACBS
EXTRA KEY AREAS
LAST IACB SAVE AREA
FIRST HALF OF DOUBLE WORD

KEY POSITION
KEY LENGTH
USERS SYSRC CELL
USERS ERROR EXIT
USERS END OF DATA EXIT
SEQUENTIAL MODE SWITCH

NUMBER OF ENTRIES IN DSCB TABLE
* PASSED DURING CONCAT FUNCTION

FCB KEY LENGTH OFFSET
FCB KEY POSITION OFFSET

Chapter 9. Planning and Designing Indexed Applications 175

Sample Program Using AlTIAM

**
* * * SAMPLE PROGRAM USING AlTIAM SUBROUTINE FOR PROCESSING *
* CONCATENATED DATA SETS *
* *
**
* EXTRN AlTIAM
AlTSAMPl PROGRAM START,

DS=((IAMDS1,??),(IAMDS2,??),(IAMDS3,???»
START EQU *

x

**
* OPEN THE INDEXED ACCESS METHOD DATA SETS FOR *
* REQUEST PROCESSING VIA AlTIAM. *
****************~***

CAll AlTIAM,(CONCAT),IACB,(DSCBTAB), X
(OPENTAB),(SHARE)

**
* PERFORM A DIRECT RETRIEVAL OF THE FIRST RECORD *
* WHOSE KEY IS GREATER THAN '332-0000'. THE KEY *
* FIELD WIll BE MODIFIED TO REFLECT THE KEY OF *
* THE RECORD RETRIEVED. THIS RECORD IS lOCATED IN *
* THE FIRST DATA SET. *
**

CAll AlTIAM,(GET),IACB,(BUFF),(KEY1),(GT)
**
* PERFORM A SEQUENTIAL RETRIEVAL OF THE FIRST TWO *
* RECORDS WHOSE KEYS ARE GREATER THAN OR EQUAL TO *
* '587-1134'. THESE RECORDS WILL BE FOUND IN THE *
* SECOND DATA SET. *
**

CALL ALTIAM,(GETSEQ),IACB,(BUFF),(KEY2),(GE)
CALL ALTIAM,(GETSEQ),IACB,(BUFF)

** * DELETE THE RECORD WHOSE KEY IS '701-4320' BY A *
* SEQUENTIAL UPDATE. THIS KEY IS IN THE THIRD INDEXED *
* FILE. *
**

CAL L I AM, (GET SEQ) , I A C B , (B U"F F) , (KEY 3) , (U P E Q)
CALL IAM,(PUTDE),IACB,(BUFF)
CALL IAM,(ENDSEQ),IACB,(BUFF) END SEQ PROCESSING

176 SC34-0312

** * INSERT A NEW RECORD WITH A KEV '370-6543' INTO *
* FIRST DATA SET. *
**

CAL L • I AM, (PUT) , I A C B, (N,E W R E C)
GOTO FINISH

ERROR EQU *
MOVE RTCODE,ALTSAMPL
ENQT
PRINTEXT 'ALTIAM ERROR RT CODE = ',LINE=O
PRINTNUM RTCODE,TVPE=S,FORMAT=(3,0,I)
DEQT

FINISH EQU *
CALL IAM,(DISCONN),IACB
PROGSTOP
EJECT

* *,* * * * * * * * * * * * * * * * * *
* DATA DEFINITION AND STORAGE AREAS *
**
RTCODE DATA F'O' INDEXED ACCESS METHOD RET CODE
OPENTAB DATA F'O' SYSTEM RETURN CODE ADDRESS

DATA A(ERROR) ADDRESS OF ERROR EXIT ROUTINE
DATA F'O' ADDRESS OF END OF DATA ROUTINE

DSCBTAB DATA A(DS1)
DATA A(DS2)
DATA A(DS3)
DATA CL80' , BUFF

NEWREC DATA CL80'370-6543 RECORD FILLER' RECORD TO BE

* KEV1 TEXT '332-0000',LENGTH=28
TEXT '587-1134',LENGTH=28

INSERTED
KEV FROM DS1
KEY FROM DS2
KEY FROM DS3

KEV2
KEV3
lACB
CON CAT

TEXT '701-4320',LENGTH=28
DATA F'Q' ADDR OF IACB PUT HERE
EQU 14
DSCB DS#=DICDSCB,DSNAME=$$EDXVOL
COpy IAMEQU
ENDPROG
END

HANDLING ERRORS

All Indexed Access Method requests return a code in the task
code word of the Task Control Block (TCB). The task code word
is the same name as the task name. The return code reflects the
condition of the requested function. Return codes are grouped
in the following categories:

• -1 - Successful completion

• Positive - Error

• Negat i ve - Warn i ng

Chapter 9. Planning and Designing Indexed Applications 177

Error Exit Facilities

The rea re t h r e e t y pes 0 fer r 0 rex its for yo u rap p 1 i c at i on :

• Task error ex it, prov i ded by the superv i sor

• Err 0 rex it, pro v ide d b y t.h e I n d e xed A c c e ssM e tho d

• The task error exit of the the Indexed Access Method itself

Task Error Exit

You can spec i fy a task er ror ex it rout i ne that will rece i ve
control if your application program causes a soft exception or
i f a mac h -i n e c h e c k 0 c cur s d uri n g the e x e cut ion 0 f you rap p 1 i c a -
tion.

Since your application may have outstanding pending requests
(for example, a record is being held for update or a data set is
being processed sequentially), you should notify the Indexed
Access Method if you choose to terminate your application.
Task error exit allows you to release records, disconnect from
any data set you are connected to, and make your resources
ava i lable to other appl i cat ions. ,Use of the task error ex i t
fac i 1 i ty helps to ensure data i ntegr i ty and allows proper
termination or continuation of your application.

Implement i ng the task error ex i t fac i 1 i ty is descr i bed in
"Chapter 13. D i agnost i c Aids and Fac i lit i es" on page 265.

Error Exit

In PROCESS and LOAD requests, the address of an error exit
routine can be specified by the ERREXIT parameter. If speci­
f i ed, th is rout i ne is executed whenever an Indexed Access Meth­
od request terminates with a positive return code.

If the exit routine is not specified, the next sequential
instruction after the request is executed regardless of the
value of the return code.

$IAM Task Error Exit

The Indexed Access Method itself has a task error exit. If this
error exit is given control by the supervisor, it writes two

178 SC34-0312

messages to the SSYSLOG device: "SIAM HAS INCURRED A SEVERE
ERROR" and "$IAM CENTRAL BUFFER ADDRESS IS n/xxxx" where n is
the partition number and xxx x is the address. SIAM then goes
i n t 0 a non - r e c 0 v e. r a b 1 e wa ita n d w i I I not pro c e s san y a c c e s s
requests. Use the dump faci lity to dump the central buffer and
take appropriate action to quiesce your application. You may
use the recovery and backup procedures to restore the data set,
or you can resume execution of your application. To restart
your application, you can either IPL again or cancel SIAM and
reload it.

If you wish to extend the logic of the error exit, code your own
exit to replace the SIAM task error exit. Then rename CDIERR
(the $IAM task error exit), name your error exit CDIERR, and
rebui ld SIAM.

System Function Return Codes

If a system function called by an Indexed Access Method request
terminates with a positive return code, the return code is
placed in a location named by the SYSRTCD parameter in the
PROCESS or LOAD request. Th is locat i on is used unt i I a DISCONN
is issued.

For example, the GET request uses the supervisor read functiol'l.
If the read terminates with a positive return code, that return
code is saved in the locat i on named by the SYSRTCD parameter in
the PROCESS request associated with the GET request. The GET
request a Iso term i nates with a pos i t i ve return code in the task
control word. The ·positive return code indicates that a read
error has occurred. The cause of the read error can be deter­
mined from examining the location named by the SYSRTCD parame­
ter.

The Data-Set-Shut-Down Condition

Sometimes an I/O error occurs that is not associated with a
spec if i c request. For examp Ie, task A issues a GET on data set
X. To secure ~uffer space to satisfy the request, the Indexed
Access Method attempts to write a block to data set Y and, in
writing the record, an error occurs. Data set Y is damaged but
there is no requesting program to accept an error return code.

The error is indicated by setting the data-set-shut-down con­
d i t i on for data set Y. After th is cond i t i on occurs, no
requests except a DISCONN are accepted for data set Y.

Chapter 9. Planning and Designing Indexed Applications 179

later, if task B issues a GET on data set y, the request is
terminated with a data-set-shut-down return code. Task B
should issue a DISCONN and use recovery and backup procedures
to reconstruct the data set. An initial program load (IPl)
cancels the data-set-shut-down condition.

Deadlocks and the long-Lock-Time Condition

Since the Indexed Access Method uses record and block locks to
preserve file integrity, deadlock and long-lock-time condi­
t ions may occur.

The deadlock condition occurs when two or more tasks interact
in such a way that one or more resources becomes permanently
locked, making further progress impossible. A deadlock can
also occur when two requests from the same task require a lock
on the ~ame record or a lock on the same block in sequential
mode.

A long-lock-time condition occurs when your program acquires a
record for update and does not return the record to $IAM for a
long time.

Application tasks should avoid using the Indexed Access Method
in such a way that a record or block remains locked for a long
period of time, since other tasks may attempt to use the same
record or block. In a terminal oriented system, make every
effort to ensure that a record or block is not locked during
operator "think" time. Specifically, you should attempt to
follow these rules:

• Do not retrieve a record for update, display the record at
the terminal, and wait for the operator to modify it.

• Do not retrieve a record in sequential mode, display the
record at the terminal, and wait for an operator response.

In both of these cases, a record or block is locked during oper­
ator "think" time and could be locked indefinitely.

A deadlock cannot be broken except by freeing the locks (re­
cords) that are be i ng wa i ted on •.

If your application uses more than one IACB, deadlocks are pos­
sib Ie. For e x amp 1 e, 0 n ~ t ask has rea d r e c o· r d A and a t t e m p t s t 0

read record B, whi Ie another task has read record Band
attempts to read record A.· If you are using more than one IACB
per task,' use ENQ/DEQ and inter-program commun i cat ions to
avo i d the deadlocks.

180 SC34-0312

You can avoid the long-lack-time condition by using the follow­
i ng sequence of operat ions:

1. Retrieve the desired record without specifying update.

2. Perform processing in a work area.

3. Retrieve the record, specifying update.

4. Compare the record read in step 1 with the record read in
step 3.

5. If the records are identical, issue a PUTUP request, speci­
fying the address of the copy in the work area. If they are
not identical', issue a RELEASE request for the record read
in Step 3, and repeat steps 1 through 5.

To retr i eve records in sequent i al mode, use the techn i que
described in "Resource Contention."

RESOURCE CONTENTION

Application programs that use the Indexed Access Method are
executed the same as other application programs. Because the
Indexed Access Method and the indexed data sets are resources
avai lable to all tasks, delays can occur under heavy system
usage. When more than one task uses the Indexed Access Method,
contention can occur between tasks for any of the following
resources:

• An en t ire i n d ex e d f i Ie

• An index block in the data set

• A data block in the data set

• A data record in the data set

• Buffer space from the system buffer pool

For example, during the execution of a request from task· A,
some buffer space is required and an index block, data block,
or record is lockedCmade unavailable to other requests). A
request from task B requires more buffer space than is avail­
able or attempts to retrieve a block or record that was locked
by task A. Task B must wa it unt i 1 the requ i red resource becomes
available.

Resources required by the Indexed Access Method are allocated
only for the duration of a request except under the following
circumstances:

Chapter 9. Planning and Designing Indexed Applications 181

• During an update, when control returns to the task after a
GET or GETSEQ for update, the subject record 1 s locked. The
lock is released when the update is completed with a PUTUP,
PUTDE, RELEASE, or DISCONN.

• During sequential processing, when control returns to the
task after a GETSEQ, the block containing the subject
record is locked and held in the buffer.

Subsequent GETSEQ requests pick up records directly from
the buffer. When a GET requires a record from the next
block, the current block and buffer are released. Pending
requests for a buffer area are sat i sf i ed and the next block
is locked and held in the buffer. Except for momentary
release of the buffer area between blocks, a block is
locked while it 1S being processed. Processing is termi­
nate~ by an end-of-data condition, an ENDSEQ r~quest, or a
DISCONN request.

The update should be completed promptly. Use the following
gu i de lines to avo i d resource content ion:

• Disconnect all indexed data sets before task termination.
The DISCONN request releases locked records or blocks and
wr i tes records that have not already been wr i tten.

• With multiple Indexed Access Method applications, use
direct access to retrieve a group of records. A suggested
method is the fa llow i ng:

1. Retr i eve the first record by key.

2. Extract the key from the record and save it for the
next retrieval.

3. Retr i eve the next record us i ng the saved key and a
greater than key relational operator (GT or UPGT).

4. Repeat the second and third steps until processing is.
complete.

THE INDEXED DATA SET

Preparing the Data

The following sections describe how you can design an indexed
data set that uses space efficiently and provides optimum per­
formance.

182 SC34-0312

Defining the Key

Define a single key field by specifying its size and position
in the record when the data set is built by the define command
of the $IAMUTl utility. The longer the key, the larger the
index. The key should not be longer than necessary but long
enough to ensure un i queness.

Ensur;ng Uniqueness of the Key. To identify each record in an
indexed data set, each key must be unique. If key duplication
is poss i b Ie, the key fie ld must be expanded.

For example, customer name is a key which may involve dupli­
cates. To avoid duplication, lengthen the key field to include
other characters such as part of the customer address or the
account number. Since the characters in the key must be con­
tiguous, you may need to rearrange the fields in the record.

Another way to eliminate duplication is to modify new records
dynamically whenever a duplication occurs during loading or
processing. One or more characters at the end of the 'key field
can be reserved for a suffix code. Whenever a duplicate occurs,
add a value to the suffix and make another attempt to add the
record to the data set. The result is a data set that can con­
tain a sequence of keys such as Smith, Smith1, and Smith2. If
you add a suffix, you must use the entire unique key to access a
record.

Prov; d; ng Access by More Than One Key. To prov i de good perform­
ance with both direct and sequential access, each indexed data
set is indexed by a single key. At times, however, it may be
useful to locate records by a secondary key. For example, in a
customer file indexed by account number, you might want to
locate a record by customer name.

One way of providing access by a secondary key is to build a
second indexed data set composed of short records that contain
on I y t he secondary and pr i mary keys. Us i ng the secondary key to
access this data set, the associated primary key can be deter­
mined. The primary key can then be used to locate the desired
record in the first data set.

Where there are multiple keys to a data set, ensure high per­
formance by selecting as the primary key the one that is used
most often or the one with which you plan to do sequential proc­
essing.

Selecting the Block Size

Records can be blocked in an indexed data set. The block size
must be a multiple of 256. Blocking reduces I/O activity and

Chapter 9. Planning and Designing Indexed Applications 183

allows for free space to be interspersed among base records to
provide for inserts. The three kinds of free space are: free
record(s) in a data block, free block(s) at the end of each
b lock group i ng, and free cluster (s) at the end of the data set .

•
Spec1fy record s1ze and block s1ze when building the data set
by the setparms eSE) command of the $IAMUT1 uti lity. Each block
has a 16-byte header. Therefore, the number of records per
block is:

(block size - 16)
record size

The result is truncated; that is, any remainder is dropped. A
remainder represents the number of unused bytes in the block.
Selection of a block size is largely dependent on record size,
but the block size must be a multiple of 256. Other factors to
cons 1 der are 1 nsert act 1 v 1 ty and buffer space.

Insert Activity. Each block contains allocated record areas
into which base records are loaded and free record areas into
which records can be inserted. The ratio of allocated records
to free records in a block should be the ratio of estimated base
records to estimated inserts in the data set. Ideally, block
size should be large enough to accommodate enough records to
approximate this ratio.

Buffer Space. A large block size minimizes read/write activity
but requires more buffer space. Some processing requires a
b u f fer I a r gee n o' ugh for two b 1 0 c k s •

Examples. A data set consists of 1000 base records with an
estimate of 500 records to be inserted and a record size of 70
bytes. Select a block size and a number of free records per
block to bui ld an indexed data set.

1. Selecting a block size of 256 with 1 free record per block
implies (256-16)/70 = 3 records per block, with a remainder
of 30 bytes. The ratio of 2 allocated records and 1 free
record accurately reflects the insert activity. Buffer

.size is minimized. Some space is wasted on the disk (30
bytes per block). Designing 80-byte records and 256-byte
blocks for this data set effecti vely uses these 30 bytes.

2 • S e I e ct i n gab I 0 c k s i z e 0 f 5 1 2 wit h 2 f r e ere cor d s per b I 0 c k
implies (512-16)/70 = 7 records per block, with a remainder
of 6 bytes. The ratio of 5 allocated records to 2 free
records underestimates the insert activity. The larger
block size requires a larger buffer but increases I/O effi­
ciency. Fewer bytes are wasted on the disk (6 bytes in 2
sectors).

184 SC34-0312

Estimating Free Space

Specify free space for inserts using the setparms (SE) command
of the $IAMUT1 utility.

Estimating free space exactly is not necessary. Experience can
be your best gu i de; if the need for file reorgan i zat i on iss i g­
naIled (no space for an insert) before ~ major portion of the
free space is ut iIi zed, you know you must adj ust the mi x of free
records and free blocks, reserve blocks, and reserve index
blocks.

As a general approach, estimate not only the number of inserts
but also their distribution throughout the data set. For exam­
ple, consider a data set with 5 records per block, and 10 data
blocks per cluster. Suppose that the data set consists of 300
base records and 200 inserts.

If the inserts are distributed evenly throughout the data set,
the pattern of inserts is:

Blocks

Inserts • • • • • • • • • • • • • • • • • •
(the bullet indicates an inserted record)

With this kind of distribution you can specify 2 free records
per b lock to absorb the inserts; no free b locks are needed.

Of course inserts do not usually occur in such an even pattern.
Free blocks help to absorb a concentration of inserts. The more
uneven the expected distribution, the greater the free block
specification should be.

Suppose the same number of inserts is distributed in this pat­
tern:

Blocks

Inserts • • • • • ••• • • • •• • • • ••

With this distribution you must specify either 3 free records
per block, or 20% free blocks with 2 free records per block.

Now suppose the d i str i but i on were more uneven:

Chapter 9. Planning and Designing Indexed Applications 185

Blocks

Inserts • • ••• • •
••••
••• •
•••

In this case a satisfactory mix of free space is 1 free record
per block and 40% free blocks.

Note: The next several paragraphs will be clearer if YOU refer
to the def i nit ions in "Data Set Format" on page 192.

If the anticipated insert activity is confined to a,few clus­
ters only, use a ft'ee pool. A free pool is a group of blocks at
the end a fan i n d e xed d a t a set t hat are a v ail a b lew hen eve r they
are needed. However, in order to use b locks from the free poo l,
the data set must be structured so that they can be logically
connected where they are needed. This structure is specified
with the RSVBLK and RSVIX parameters of the define (OF) command
of the $IAMUTI utility.

Use the RSVBLK parameter to indicate the percentage by which a
cluster can grow. If you code the RSVBLK parameter, $IAMUTI
leaves reserve entries in the primary-level index blocks
CP I X B s). The s ere s e r vee n t r i esc a n be use d top a i n t tot h e d a t a
blocks taken from the free pool.

Use the RSVIX parameter to indicate the percentage by which a
cluster grouping can grow. If you code the RSVIX parameter,
$IAMUTI leaves reserve entries in the second-level index
blocks (SIXBs). The reserve entries can be used to point to a
P I X B t a ken fro m the f r e epa a I. The new P I X B can ,g row i n t a a
full-sized cluster as data blocks are taken from the free pool
and added to thi s new cluster.

To ill~strate the advantage of a free pool, assume that a data
set contains 50 clusters of 10 data blocks each and that 40% of
the blocks in the cluster are free blocks. There are 200 free
blocks in the data set. If most of the inserts into the data
set will fall into a relatively small key range and do n9t
normally require more than 50 blocks, 150 blocks are saved by
specifying no free blocks and a 40% RSVBLK.

A 25% FPOOL parameter provides the 50 blocks in the free pool to
be used when inserts are required. The result is that the data
set still accepts all the anticipated inserts and 150 blocks
are saved.

If insert activity into the data set is anticipated to be rela­
tivel~ even, the best response time is achiev~d by reserving
free records and free blocks for inserts.

186 SC34-0312

If insert activity is to be primari ly into one or more areas or
key ranges, however, the space for inserts should be reserved
as reserve blocks and/or reserve indexes. This results in the
most eff i c i ent use of space in the data set.

The space for inserts can be d i vi ded between free records, free
blocks, reserve blocks, and reserve indexes to suit your
requirements.

To determine how many blocks are required for an indexed data
set with a given combination of free records, free blocks,
reserve blocks, reserve index blocks, and free pool size, use
the SE command of the $IAMUT1 ut iii ty.

Building The Indexed Data set

The SE and DF commands of the $IAMUT1 uti lity allow you to spec­
ify the size and format of your indexed data set and to format
the data set. Use the SE command to enter those values that
determ i ne the size of the indexed data set and to rece i ve a d i s­
play of the size calculation information. Use the DF command to
format the data set, using the values previously specified on
the SE command.

Determining Size and Format

The structure of the data set is determined by the following
parameters of the SE command:

• BASEREC - Est i mated number of base records

• BLKSIZE - Block size

• RECSIZE - Record size

• KEVSIZE - Key 5 i ze

• KEVPOS - Key pos i t ion

• FREEREC - Number of free records per block

• FREEBLK - Percentage of free blocks

• RSVBLK - Percentage of reserved data blocks

• RSVIX - Percentage of reserved pr i mary index blocks

• FPOOL - Percentage of free pool

Chapter 9. Planning and Designing Indexed Applications 187

• DEL THR - Percentage delete threshold

The de fine (DF) command fi xes the,s i ze of the data set. There­
fore, BASEREC, FREEREC, FREEBLK, RSVBLK., RSVIX, and FPOOL
should be large enough to accommodate the maximum number of
records planned for the data set. To calculate the size of the
data set for a given combination of the define parameters, use
the SE command.

The DF command allows you to select the immediate write-back
option. If you select this option, modified records are writ­
ten to the file immediately; this contributes to the integrity
of the file; however, response time i ricreases.

Defining and Creating the Indexed Data Set

The setparms (SE) command allows you to review the,size calcu­
lation information without actually formatting the data set.
SIAMUT1 returns to your terminal the size of the data set and
other information. The calculations performed by the SE func­
tion are described .in "Data Set Format" on page 192.

Use the DF command to format the data set. You are prompted for
the volume and data set names and the immediate write-back
option. (Note: the data set must have been previously created
us i ng the CR command of the SIAMUT1 ut iii ty or .the AL command of
the SDISKUT1 utility.) The data set is connected and. then for­
matted by the def i ne funct i on. I f the data set does not conta i n
sufficient space to support the specified format, SIAMUT1
returns the amount of space required. Knowing the available
space and using the SE command, you can vary the define parame­
ters to des i gn a data set that fits.

If the specified data set does not exist, a connect error
occurs and SIAMUT1 gives the option to retry. If you retry, the
utility prompts fo,r the volume and data set names, and the
funct ion is attempted aga in.

Using the SIAMUTI Utility - An Example

A data set is to accommodate 10,000 base records with a record
si ze of 70 bytes. An estimated 5,000 records are to be
inserted.

Selecting a block size of 256 allows three records per block
((256-16)/70)) with a remainder of 30 bytes. If the data set
were created with one free record per block, the ratio of two
base records to one free record would accurately reflect the
insert activity. Buffer size is minimized. Some space (30

188 SC34-0312

bytes per block) is wasted.

Selecting a block size of 512 allows seven records per block
((512-16)/70) with a remainder of six bytes. If the data set
were created with two .free records per block, the ratio of five
base records to two free records would overestimate the insert
activity. The larger block size requires a larger buffer but
increases I/O eff i c i ency. In add i t i on, fewer bytes are wasted
(six bytes).

Assume that the user has entered the DF subcommand to allocate
the file us i ng the spec if i cat ions shown in Examp Ie 2. Name the
fi Ie IDATA and placed it on EDX002.

Example 1

ENTER COMMAND (?) : SE

ENTER BASEREC 10000
ENTER BLKSIZE 256
ENTER RECSIZE 70
ENTER KEYSIZE 10
ENTER KEYPOS 1
ENTER FREEREC 1
ENTER FREEBLK 0
ENTER RSVBLK 0
ENTER RSVIX 0
ENTER FPOOL 0
ENTER DELTHR 0

TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INDEX ENTRY SIZE:
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXBCBLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB:
DELETE THRESHOLD ENTRIES:
INITIAL ALLOCATED DATA BLOCKS:
FREE POOL SIZE IN BLOCKS:
i OF INDEX BLOCKS AT LEVEL 1:
OF INDEX BLOCKS AT LEVEL 2:
OF INDEX BLOCKS AT LEVEL 3:
i OF INDEX BLOCKS AT LEVEL 4:

DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:

3
2

14
17

o
o

17
o

17
1

5000
o

295
18

2
1

5317
-1
-1

Chapter 9. Planning and Designing Indexed Applications 189

Example 2

ENTER COMMAND C ?) : SE

ENTER BASEREC
ENTER BLKSIZE 512
ENTER RECSIZE
ENTER KEYSIZE
ENTER KEYPOS
ENTER FREEREC 2
ENTER FREEBLK
ENTER RSVBLK
ENTER RSVIX
ENTER FPOOL
ENTER DELTHR

TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INDEX ENTRY SIZE:
TOTAL ENTRIES/INDEX BLOCK:
FREE ENTRIES/PIXB:
RESERVE ENTRIES/PIXBCBLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB:
DELETE THRESHOLD ENTRIES:
INITIAL ALLOCATED DATA BLOCKS:
FREE POOL SIZE IN BLOCKS:
OF INDEX BLOCKS AT LEVEL 1:
OF INDEX BLOCKS AT LEVEL 2:
OF INDEX BLOCKS AT LEVEL 3:

DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:

Note: Respond to the prompts

190 SC34-0312

with the values you wish to change.
The utility reuses the values from
previous execution.

7
5

14
35

o
o

35
o

35
1

2000
o

58
2
1

4124
-1
-1

Example 3

ENTER COMMAND (?): DF
DO YOU WANT IMMEDIATE WRITE-BACK? N ,
E NT E R (N A ME, VOL U ME): I D A T A ,.E D X 0 0 2

TOTAL LOGICAL RECORDS/DATA BLOCK:
FULL RECORDS/DATA BLOCK:
INDEX ENTRY SIZE:
TOTAL ENTRIES/INDEX BLOCK:
FREE °ENTRIES/PIXB:
RESERVE ENTRIES/PIXB(BLOCKS):
FULL ENTRIES/PIXB:
RESERVE ENTRIES/SIXB:
FULL ENTRIES/SIXB:
DELETE THRESHOLD ENTRIES:
INITIAL ALLOCATED DATA BLOCKS:
FREE POOL SIZE IN BLOCKS:
OF INDEX BLOCKS AT LEVEL 1:
OF INDEX BLOCKS AT LEVEL 2:
OF INDEX BLOCKS AT LEVEL 3:

DATA SET SIZE IN EDX RECORDS:
INDEXED ACCESS METHOD RETURN CODE:
SYSTEM RETURN CODE:

ENTER COMMAND (?): EN

$IAMUT1 ENDED AT 00:38:47

7
5

14
35
o
o

35
o

35
1

2000
o

58
2
1

4124
-1
-1

The key di fferences between Example 1 and Example 2 are:

• Fewer records (256-byte blocks) are required for Example
2.

• The index in Example 2 is a three-level index, whi Ie in
Example 1 it is a four-level index. This eliminates one
disk access, improving performance slightly.

• Each data block has two free records in Example 2. In exam­
ple 1 each data block has one free record.

Chapter 9. Planning and Designing Indexed Applications 191

Data set Format

The define command of the $IAMUTI utility formats and creates
an indexed data set.

Use the OF command to format the data set. You are prompted for
the volume and data set names and the immediate write-back
option. (Note: the data set must have been previously created
using the CR command of the $IAMUTI uti lity or the AL command of
the $OISKUTI utility.) The data set is connected and then for­
matted by the define function. If the data set does not contain
suff i c i ent space. to support the spec if i ed format, $ IAMUT 1
returns the amount of space required. Knowing the available
space and using the SE The information required to establish
the format and the number of blocks in a data set is provided by
ten parameters of the SE command.

Parameter

BASEREC

BLKSIZE

RECSIZE

KEYSIZE

KEYPOS

FREEREC

FREEBLK

RSVBLK

RSVIX

FPOOL

OELTHR

Blocks

Definition

Number of base records

Block size

Record size

Keysize

Key position

Number of free records per block

Percentage of free blocks

Percentage of reserved blocks

Percentage of reserved index

Percentage of free pool

Percentage of blocks to retain when deleting
records

The indexed data set is composed of a number of fixed length
blocks. The block is the unit of data transferred by the
Indexed Access Method. Block size must be a multiple of 256. A
block is addressed by its relative block number (RBN). The
first block in the data set is located at RBN O.

192 SC34-0312

Note ~hat the RBN is used only in indexed data sets by the
Indexed Access Method. An Indexed Access Method block differs
from an Event Dr i ven Execut i ve record in the fa llow i ng ways:

1. The size of a block is not limited to 256 bytes; its length
can be a multiple of 256.

2. The RBN of the first block in an indexed data set is o. The
record number of the first Event Dr i ven Execut i ve record in
a data set is 1.

The si ze, in 256-byte records, of the data set is calculated by
the define command of the $IAMUTl uti lity.

Three kinds of blocks exist in an indexed data set: a fi Ie con­
trol block (FCB), index blocks, and data blocks. These blocks
are all the same length, as defined by BLKSIZE, but they con­
tain different kinds of information. The FCB contains control
information, index blocks contain index entries, and data
blocks contain data records. The control information is also
contained in block headers; a description of control informa­
tion is contained in Internal Design. Figure 23 also shows
examples of the three block types.

Control
information

Unused

File control block

Header

RBN Key

RBN Key

RBN Key

RBN Key

RBN Key

RBN Key

RBN Key

Unused

Index block

Figure 23. Indexed Data Set Block Types

Header

Data
record

Data
record

Data
record

Data block

Chapter 9. Planning and Designing Indexed Applications 193

The File Control Block

The file control block (FCB) is the first block in the data set
(RBN 0); it contains control information. The field names in
the FeB can be seen by examining a listing of FCBEQU, a copy
code module that is supplied as part of the Indexed Access
Method.

Index Block

An index block contains a header followed by a number of index
entr i es. Each index entry ·cons i sts of a key and a po inter. The
key is the highest key associated with a block; the pointer is
the RBN of that .b lock. The number of entr i es conta i ned in each
index block depends on block size and key size. The header of
the block is 16 bytes. The RBN field in each entry is 4 bytes.
The key field in each entry must be an even number of bytes in
length; if the key field is an odd number of bytes in length,
the field is padded with one byte to .make it even. The number
of index entries in an index block is:

block size - 16
4 + key length

The result is truncated; any remainder represents the number of
unused bytes in the block. For example, if block size is 256 and
key length is 28, then each index entry is 32 bytes, there are 7
entries in a block, and the last 16 bytes of the block are
unused.

Data Block

A data block conta i ns a header followed by a mi n i mum of two
records. The number of records that can be conta i ned ina data
block depends on the si ze of the data block and the si ze of the
record. The header of the block is 16 bytes. The number of
record areas in the block is:

block size - 16
record size

The res u I tis .t run cat e d; any rem a i n d err e pre sen t s the n u m b e r 0 f
unused bytes in the block. For example, if block size is 256 and
record size is 80, the data block can accommodate three records
and there is no unused area. The key field of the last record
slot in an index block is the high key for the data block. If
some records of the data block are not currently used, the key
field of the last record slot is the same as the key field of

194 SC34-0312

the last used record in the block. However, if the last record
of the block has been deleted, the key field of the last record
slot wi 11 contain a key higher than that of any other record in
the block. Deletion of a record does not reduce the key range
for the block.

The Index

The index of an indexed data set is constructed in several lev­
els so that, given a key, there is a single path (one index
block per level) cascading through the index levels that leads
to the data block associated with that key. The index is built
from the bottom up. At the lowest level are the primary-level
index blocks. At the second level are index blocks containing
entries that point to the primary-level index blocks. There are
enough levels so that the highest level consists of a single
index block.

Primary-Level Index Blocks

Entries in a primary-level index block point to data blocks.
Each entry in a primary-level index block is one of three pos­
sible types:

• An allocated entry points to an active data block. The key
portion of the entry is initialized to binary ones by the
$IAMUT1 uti lity. After records have been loaded or written
to a data block, the key portion of the entry which points
to the data block contains the highest key from the data
block.

The pointer portion contains the RBN of the data block.
Allocated entries are the first entries in an index block.
The number of index entries allocated when the indexed data
set is loaded is the total number of entries per index
block, less the number of entries of the other two types
(free block entry and reserve block entry). (Refer to
Figure 24 on page 196 for an example of a primary-level
index block.)

• A free block entry points to a free data block. The key
portion of the entry contains binary zeros. The pointer
portion contains the RBN of the free block. Free block
entries follow the allocated entries in the index block.
The number of index entries formatted as free entries when
the indexed data set is loaded is the specified percentage
(FREEBLK) of the total number of entries, with the result
rounded up if there is a rema i nder.

Chapter 9. Planning and Designing Indexed Applications 195

Header

., RBN Key

RBN Key l
RBN Key > Allocated entries

RBN Key

RBN Key J
RBN 0 Free.block entry

. 0 0 ,R e s e r ve b lac ken try

Unused

Figure 24. Example of Primary-Level Index Block

• A reserve block entry does not poi·nt to a block but is
reserved for later use as a pointer to a data block which
can be taken from the free pool. Both the key and pointer
port ion s a far e s e r v e b lock entry are b i nary zeros • Reser v e
block entries are at the end of the .index block. When a
reserve block entry is converted to a used entry, the index
block is reformatted to move the entry to the allocated
entry area of the block.

The number of index entr.ies.initially formatted as reserve
b lac ken t r i e sis the spec i fie d per c e n t a ge . (R 5 V B L K), oft he
total number of .entries, with the result rounded up if
there is a remainder. However, if the number of free block
entries plus the number of reserve block entries require
all index entries, the number of reserve block entries is
reduced by 1, providing at l.east one allocated entry per
index .block.

To c a I cui ate the n u m be r a f .. p rim a r y - I eve lin d e x b lac k sin an
indexed data set, you must know the initial number of data
blocks allocated in the indexed data set. The initial number of
data blocks is the specified number of base records (·BASEREC)
d i vi ded by the number of allocated reco rds ina data block,
with the result rounded up if there is a remainder. T~e number
of primary-level index blocks. is the initial number of allo­
cated dat~ blocks divided by the ~umber of allocat.ed entries
per p rima r y-l eve lin d ex b lac k, wit h t.h ere sui t r a un d e d up i f up
if there is a remainder.

196 SC34-0312

Second-Level Index Block

Entries in a second-level index block point to primary-level
index blocks. Each entry in a second-level index block is one
a f two pass i b Ie types:

• An allocated entry points to an existing primary-level
index block. The key portion of the entry is initialized
to binary ones by the $IAMUTI utility. After records have
been loaded or written, the key portion of the entry con­
tains the highest key from the primary-level index block,.
The pointer portion contains the RBN of the primary-level
index block. Allocated entries are the first entries in
the index block. The number of index entries allocated
when the indexed data set is loaded is calculated as the
total number of entries per index block, less the number of
reserve index entr i es.

• A reserve index entry does not point to a block but is
res e r v e d for 1 ate r u's e ' a sap a i n t e r t a apr i mar y -1 eve 1
index block that can be taken from the free pool. Both the
key and pointer portions of a reserve index entry are bina­
r y z e r 0 s .' Res e r v e i n'd e x e n t r i e s are a t the end oft h e i n d e x
block. The number of index entries initially formatted as
reserve index entries is the specified percentage (RSVIX)
of the total number of entries, with the result rounded up
if there is a rema i nder. However, if the number of reserve
index entr i es is the same as the total number of entr i es in
an index block, the number of reserve index entries is
reduced by 1, providing at least one allocated entry per
second-level index block.

The number of second-level index blocks is the number of
primary-level index blocks divided by the number of allocated
entries per second-level index block, with the result rounded
up if there is a remainder. (Refer to Figure 25 on page 198 for
an example of a second-level index block.)

Higher-Level Index Block

Entries in a higher-level index block point to index blocks at
the next lower level. All entries in higher-level index blocks
are allocated entries. The key portion of the entry contains
the highest key from the' index block of the next lower level.
The poiriter portion contains the RBN of the next lower level
'index block. T h'e number of blocks at any higher index 1 eve Ii s
the nu~ber of index blocks at the next lower level divided by
the total number of entries per index block, with the result
r a u n d e d u p i f the rei s are m a i n d e r. (R e fer t a Fig u' r e 2 6 a n p age
199 for an example of a higher-level index block.)

Chapter 9. Planning and Designing Indexed Applications 197

Header

RBN ,Key

RBN Key

RBN Key
> Allocated entries

RBN Key

RBN Key

RBN Key

0 0 Reserve index entry

Unused

Figure 25. Example of Second-Level Index Block

If the number of index blocks at any level is one, that level is
the top level of the index. Although the Indexed Access Method
is capable of supporting 17 levels of index, an indexed data
set is formatted with only as many index levels as are required
for the number of records. If an indexed data set has not been
fully loaded and one or more higher index levels have not yet
been required, the unnecessary higher levels are not used, even
though they ex i st in the file structure.

Index Example

Assume that 500 data blocks are allocated to a data set and that
each primary-level index block contains one free block entry,
one reserve block entry, and five allocated entries. There­
fore, the total number of primary-level index blocks is 100.
Each second-level index block contains one reserve index entry
and six allocated entries; therefore, the number of
second-level index blocks is 17. The number of entries in
higher level index blocks is seven, resulting in three index
blocks at the thi rd level and one at the fourth level.

Therefore the data set contains a total of 121 index blocks of
which 100 are primary-level index blocks, 17 are second-level
index blocks, 3 are third-level index blocks, and 1 is a
fourth-level index block. This distincti.on is important
because, as shown later in this chapter, high-level index
blocks are located contiguously at the beginning of the data

198 SC34-0312

Header

RBN Key

RBN Key

RBN Key

RBN Key > Allocated index entries

RBN Key

RBN Key

RBN Key

Unused

Figure 26. Example of Higher-Level Index Block

set (after the FCB), whi Ie primary-level index blocks are scat­
tered throughout the fi Ie with the data blocks. Figure 27 shows
the structure of the higher-level index blocks.

Figure 27. High-Level Index Block Structure

Fourth
(top)
level
index

Third
. level
index

Second
level
index

Chapter 9. Planning and Designing Indexed Applications 199

Cluster

Primary-level index blocks and data blocks are stored together
in the data set in groups called clusters. Each cluster con­
sis t s a f apr i mar y - I eve lin d e x b lac k and as man y d at a b lac k s as
are allocated or free entries in the index block. For example,
if there are seven entries in an index block, there are eight
blocks in a cluster: one primary-level index block and up to 7
data blocks. If reserve blocks have been specified, the blocks
represented by the reserve block entries arenot included unti I
insert activity has taken place and the required blocks have
been obtained from the free pool. For example, if there are
seven entries in an index block and one of theentr i es is a
reserve block entry, the cluster consists of seven blocks (one
index block and six data blocks).

Free Space

When an indexed data set is loaded with data records, free
spa c e i s res e r v e d 'f orr e cor d s t hat may be ins e r ted d uri n g pro c­
essing. There are four kinds of free space: free records, free
blocks, reserve blocks, and reserve index entries.

Free Records: Free records are areas reserved at the end of
e a c hd a t a block. The F R E ERE Cpa ram e t era f d e fin e com man d oft h e
$IAMUT1 utility specifies the number of free records that are
reserved in each data block. The remaining recdrd areas are
called allocated records.

For example, if a block contains three data record areas and
you speci fy one free record per block, then there are two allo­
cated records per block. Refer to Figure 28 on page 201.

When records are loaded, the allocated records are filled, and
the free records are skipped. During processing, a record can
be inserted ina block that conta i ns a free record.

Free Blocks: Free blocks follow the allocated data blocks with­
in each cluster. For example', if the cluster contains six data
blocks and you speci fy 10 as the percentage of free blocks,
then there are fi ve allocated blocks and one free block in each
cluster.

200 SC34-0312

Header

Allocated record

Allocated record

Free record

Figure 28. Examp Ie of a data block

Primary-level index block

Allocated data block

Allocated data block

Alloc,ated data block

Allocated data block

Allocated data block

Free data block

When records are loaded, the allocated record areas in the
allocated data blocks are fi lIed, and the free blocks are
skipped. During processing, as data blocks become full, a free
block provides space for insertions.

Reserve Blocks: Reserve blocks do not ex i st in the cluster.
When all data blocks in a cluster are used and another data
block is needed, a data block can be created from the free pool,
if the primary-level index block contains a reserve block
entry. The reserve block entry in the primary-level index block
points to the block, and the data block becomes an allocated
data block.

Chapter 9. Planning and Designing Indexed Applications 201

Rese~ve Index Ent~;es: Reserve index entries in second-level
index blocks allow the index structure to be expanded by adding
new primary-level index blocks. ·These, in turn, can have data
blocks associated with them" thus forming new clusters. This
process of forming a new cluster is sometimes called a cluster
split.

Calculating Allocated Data Blocks, Clusters, and Free Blocks

The number of allocated data blocks ina data set is the spec i­
fied number of base records (BASEREC) divided by the number of
allocated records per data block, with the result rounded up if
there is a rema j nder.

For example, suppose you intend to load 1000 records in an
indexed data set that is formatted for ,two allocated records
and one free record per block and fi ve allocated blocks and one
free block per cluster. The number of allocated blocks in 'a
data set is:

number of base records
number of allocated records per block

The number of allocated blocks in this example is 1000/2 or 500
blocks.

The number of clusters in a data set is the number of allocated
data blocks divided by the number of allocated entries in each
primary-level index block, with the result rounded up if there
is a remainder.

number of allocated blocks
number of allocated blocks per cluster

The number of clusters in the above example is 500/5 or 100
clusters.

Note that in both calculat ions, if the quat i ent is not an i nte­
ger, it is rounded up (rather than truncated) in order to
accommodate all of the base records.

The number of free blocks in the data set (not including the
free pool) is the number of clusters in the data set multiplied
by the number of free entr i es in each pr i mary-level index
block.

202 SC34-0312

The Last Cluster

The last cluster in the data set may be di fferent from the other
clusters. It contains the same number of free blocks as the
other clusters but only enough allocated blocks to accommodate
the records that you have spec if i ed wi th the parameter BASEREC.
Because rounding occurs in calculating the number of clusters,
a few more allocated records than requ i red may ex i st in the
last allocated block. The last cluster can be a short one
because only the requi red number of blocks are used.

If the number of allocated blocks divided by the number of
allocated b locks per cluster leaves a rema i nder, the rema i nder
represents the number of allocated entries in the
primary-level index block in the last cluster. Unused entries
in the last primary-level index block are treated as reserve
block entr; es.

Sequential Chaining

Data blocks in an indexed data set are chained together by for­
ward pointers located in the headers of data blocks. Only allo­
cated data blocks are included in the sequential chail'l.
Chaining allows sequential processing of the data set with no
need to reference the index. When a free block is converted to
an allocated block, the free block is included in the cha in.

Free Pool

If you specify that you want a free pool (with the FPOOL parame­
ter of the define command of the $IAMUTl uti lity), your indexed
data set contains a pool of free blocks. The fi Ie control block
contains a pointer to the fi rst block of the free pool, and all
blocks in the free pool are chained together by forward point­
ers.

A block can be taken from the free pool to become either a data
block or a primary-level index block. The block is taken from
the beginning of the chain, and its address (RBN) is placed in
the appropriate primary-level index block (if the new block is
to become a data block) or in the second level index block (if
the new block is to become a primary-level index block). Any
block in the free pool can be used as either a data block or as a
primary-level index block.

When a data block becomes empty because of record deletions,
the data block may return to the free pool (depending on the
delete threshold (DELTHR) parameter). If the data block is

Chapter 9. Planning and Designing Indexed Applications 203

returned to the free pool, reference to the block is removed
from the primary-level index block, and the block is placed at
the beginning of the free pool chain. Index blocks are never
returned to the free pool.'

Calculating the initial size of the free pool consists of the
fa llow i ng steps:

• E a c h res e r ve b lac ken try· ina p rim a r y -1 eve lin d e x b lac k
represents a potential data block from the free pool. The
number of data blocks that can be assigned to initial clus­
ters is the number of primary-level index blocks times the
number of reserve block entries .in each primary-level
index block,.

• Each reserve index entry in a second-level index block
represents a potential primary-level index block from the
free pool. The number of primary-level index blocks that
can be assigned from the free pool is the number of
second-level index blocks times the number of reserve
index entries in each second-level index block.

• Each primary-level index block taken from the free pool
consists entirely of empty (reserve block) entries. New
d a tab lac k s can bet a ken fro m the f r e epa a 1 for the e n t r:i e s
·in the new primary-level index block.' The number of data
blocks is the number of entries per index block times. the
number of new primary-level index blocks (calculated in
the prev i ous step) •

• The maximum number of blocks that can be taken from the
free pool is the sum of the above three calculations.

• The actual number of blocks in the. free pool is t.he speci~
fied percentage (FPOOL) of the maximum possible free pool,
with the result rounded up if there is a remainder.

STORAGE AND PERFORMANCE

Stor~ge Requirements

The minimum amount of storage required by the Indexed Access
Method to perform all functions is about 14KB, not including
the link module or any error ex i trout i ne you may 'have wr i tten.
The storage est i mate is based on the fa llow i ng assumpt ions:

• A maximum block size of 256 bytes for any indexed data set.
Since the buffer must be large .enough for two blocks, a
512-byte buffer is required. If your maximum block size is
larger than 256 bytes, the.buffer size is twice your block

204 SC34-0312

size. You 'can improve, performance by making the buffer
larger. The program directory that is shipped with your
PID material contains a description of the size and capaci­
ty of the puffer and information on how to modify it. The
buffer that is defined in SIAM should provide adequate per­
formance for most app I i cat ions.

• One user connected to an indexed file at a time. If more
than one user is connected, add about 625 bytes per user.

The size of the IBM-supplied link module which is included in
your appl i cat i on program is about 250 bytes.

Indexed File Size

The structure of an indexed fi Ie is highly dependent on parame­
ters you spec i fy when you create the file. These parameters are
described in "Data Set Format" on page 192.

Performance

Performance of the Indexed Access Method is primarily deter­
mined by the structure of the indexed data set being used. This
structure is determined by parameters you specify when you
create the data set (refer to "Data Set Format" on page 192).
The following factors affect performance:

• File size. A large file spans more cylinders of the direct
access. device, so the average seek to get the the record
you want is longer.

• Number of index levels. A fi Ie with many index levels
requires more accesses to get to the desired data record,
thus degrading performance. Factors which influence the
number of index levels are:

Number of records in data set.

Amount and type of free space.

Block size.

Key size.

Data record size.

Use the $IAMUT1 uti lity to see the affects of the variciJs
parameters on the fi Ie structure. (Refer to "Using the $IAMUT1
Uti lity - An Example" on page' 188 for an example.)

Chapter 9. Planning and Designing Indexed Applications 205

In addition to file structure, the following factors also
influence performance:

• Buffer size. If you provide a large buffer when you install
the Indexed Access Method, it is more likely that blocks
(especially high-level index blocks) needed are already in
storage and need not be recalled from the data set.

• Contention. If many tasks are using the Indexed Access
Method concurrently, resource contention can result, and
performance is degraded.

206 SC34-0312

PART IV - EXTENDING THE SYSTEM CAPABILITIES

Th i s part gives deta i led i nformat i on on how to extend the capa­
bilities of your system.

PART IV - EXTENDING THE SYSTEM CAPABILITIES 207

208 SC34-0312

CHAPTER 10. THE SESSION MANAGER

The session manager provides access to system functions and
your applications. Full screen images, called menus, and their
associated procedures invoke the functions you request.
Because you control the session manager, you can modify it to
meet your specific needs. You can add new options to an exist­
ing menu or create a new menu.

To add a new opt i on (or ta i lor) the sess i on manager requ i res an
understanding of the one-to-one relationship between menus and
procedures. Once you have acquired this understanding, you
can:

• Use the $IMAGE utility to add a new option to an existing
menu

• Use the $FSEDIT ut iIi ty to add the new opt i on to the proce­
dure associated with the menu

• Build the procedure for the new function, which requests
its execution

OPERATIONAL OVERVIEW

The sess i on manager can be invoked in two ways:

• As part of the IPL procedure

• With the $L (load) facility

As a part of the IPL procedure, a copy of the session manager is
loaded for each active 4978 or 4979 display terminal. To
accomplish this, the program $SMINIT is made a part of the IPL
stream by renaming it to be $INITIAL. The program $INITIAL is
part of the IPL stream and is automatically loaded if it is pre­
sent. $SMINIT ($INITIAL) loads a copy of the session manager's
main program ($SMMAIN) for each terminal that is active. If
only selected terminals are to used with the session manager,
you must load the sess i on manager as requ ired.

The menu processing program, $SMCTL, processes menus and
builds procedures that are passed to the job stream processor,
SJOBUTIL, by the main program SSMMAIN. Copies of all procedures
submitted to the job stream processor are stored on the same
disk volume as the menus, usually EDX002.

$SMCTL reads a copy of the $JOBUTI L procedure into storage, and
adds any parameters that you supply. $SMCTL then returns con­
trol to SSMMAIN, which invokes $JOBUTIL, which executes the

Chapter 10. The Session Manager 209

requested function. Figure 30 on page 213 and the tables below
list all of the session manager menus, the associated proce­
dures, and the funct i on of each procedure.

The session manager requires a minimum partition size of 10K
bytes to process menus and your requests. However, only 2K
bytes remain resident when the requested functions are execut­
ing. A root phase (main program), called $SMMAIN, is resident
in the partition associated with the 4978/4979 display
station. $SMMAIN requires approximately lK bytes of storage
and is res i dent when the funct ions are execut i ng; when invoked,
it loads one of five programs into storage. The list below and
Figure 29 on page 211 illustrate storage usage.

210 SC34-0312

Logon

AllocC)te
data sets

Menu
processing

Invoking a
function

Executing
a function

Remote job
submission

Logoff

Delete
data sets

OKB

$SMMAIN
(lKB)

$SMMAIN
(lKB)

$SMMAIN
(lKB)

$SMMAIN
(lKB)

$SMMAIN
(IKB)

$SMMAIN
(lKB)

$SMMAIN
(lKB)

$SMMAIN
(lKB)

$SMLOG
(7KB)

$SMLOG
(7KB)

$SMCTL
(9KB)

$JOBUTIL
(lKB)

$JOBUTIL
(IKB)

$SMJOBR
(1.25KB)

$SMEND
(2.25KB)

$SMEND
(2.25KB)

l2KB

UNUSED

$DISKUT3
(4KB)

UNUSED

UNUSED

User program
or utility

UNUSED

UNUSED

$DISKUT3 UNUSED
(4KB)

Note: All storage sizes are approximate.

Figure 29. Session manager storage usage

Chapter 10. The Session Manager 211

Program Functions
"

$SMMAIN " Storage resident that pr'ogram
loads programs and invokes
functions

$SMLOG Processes yqur ID and alternate
menu

Allocates dynamic work data sets

$SMCTL Displays menus
Processes the parameters you enter
Builds procedures to invoke functions
Saves parameters

$JOBUTIL Invokes the functions you request

$SMJOBR Submits the control statements that
you build to a host system
with the Host Communication Facility

$SMEND Deallocates ,dynamic work data sets

$SMINIT Loads a copy of the session manager
($SMMAIN) for each active 4978/4979
terminal. It can be renamed $INITIAL
(part of theIPL stream), making
session manager startup automatic,

MENUS. AND PROCEDURES

Menu names begin with the prefix $SMM·and procedures begin with
$SMP. Therefore, any menus and procedures that you create must
use the $SMM and $SMP prefixes. Except for the logon menu,
$SMMLOG, and the primary option menu:, $SMMPRIM, and ,procedure,
$SMPPRIM, the menus and procedures are numbered to indicate the
primary option number and the secondary option' number, when
appropriate. Menu names are always displayed in the upper left
corner of the screen.

Figure 30 on page 213 and the following tables list all of the
session manager menus. Each is listed as a procedure name with
its corresponding function. They are broken down into func­
tional categories.

212 SC34-0312

Primary
options

$SMMPRIM
$SHPPRIM

Option 1 Option 2 Option 3 Option 4 Option 5 Option 6 Option 7 Option 8 Option 9

Secondary
options

10

9

8

7

6

5

4

3

2

1

$PL/I
$ LINK
$UPDATE

$EDXASM
$LINK

$UPDATE

$TAPEUTI
(VERSION

2 ONLY)

$IAMUTI

Figure 30. Sess i on manager pr i mary and secondary opt ions

Chapter 10. The Session Manager 213

PRIMARY MENUS

Procedure Name Function

$SMMLOG LOGON MENU
$SMMPRIM PRIMARY OPTION MENU
$SMPPRIM PRIMARY OPTION DECISION TABLE

PROCEDURE

PROGRAM PREPARATION UTILITIES

Menu/
Procedure

Option Name Function

1 $SMPOI EXECUTE $FSEDIT PROCEDURE
2 $SMM02 PROGRAM PREPARATION SECONDARY

OPTION MENU
$SMP02 PROGRAM PREPARATION DECISION TABLE

2.1 $SMM0201 $EDXASM PARAMETER INPUT MENU
$SMP0201 EXECUTE $EDXASM PROCEDURE

2.2 $SMM0202 $SlASM PARAMETER INPUT MENU
$SMP0202 EXECUTE $SIASM PROCEDURE

2.3 $SMM0203 $COBOL PARAMETER INPUT MENU
$SMP0203 EXECUTE $COBOL PROCEDURE

2.4 $SMM0204 $FORT PARAMETER INPUT MENU
$SMP0204 EXECUTE $FORT PROCEDURE

2.5 $SMM0205 $LINK PARAMETER INPUT MENU
$SMP0205 EXECUTE $LINK PROCEDURE

2.6 $SMM0206 $UPDATE PARAMETER INPUT MENU
$SMP0206 EXECUTE $UPDATE PROCEDURE

2.7 $SMM0207 $UPDATEH PARAMETER INPUT MENU
$SMP0207 EXECUTE $UPDATEH PROCEDURE

2.B $SMM020B $PREFIND PARAMETER INPUT MENU
$SMP020B EXECUTE $PREFIND PROCEDURE

2.9 $SMM0209 $EDXASM/$LINK/$UPDATE PARAMETER
INPUT MENU

$SMP0209 EXECUTE $EDXASM/$LINK/$UPDATE
PROCEDURE

2.10 $SMM0210 $PL/I/$LINK/$UPDATE PARAMETER
INPUT MENU
$SMP0210 EXECUTE $PL/I/$LINK/$UPDATE PROCEDURE

214 SC34-0312

Option

3

3. 1
3.2
3.3
3.4
3.5
3.6
3.7
3.B

3.9
3.10

DATA MANAGEMENT UTILITIES OPTIONS

Menu/
Procedure
Name

$SMM03

$SMP03

$SMP0301
$SMP0302
$SMP0303
$SMP0304
$SMP0305
$SMP0306
$SMP0307
$SMM030B
$SMP0308
$SMP0309
$SMP0310

Function

DATA MANAGEMENT UTILITIES
SECONDARY OPTION MENU
DATA MANAGEMENT UTILITIES
OPTION DECISION
EXECUTE $DISKUTI PROCEDURE
EXECUTE $DISKUT2 PROCEDURE
EXECUTE $COPYUT1 PROCEDURE
EXECUTE $COMPRES PROCEDURE
EXECUTE $COPY PROCEDURE
EXECUTE $DASDI PROCEDURE
EXECUTE $INITDSK PROCEDURE
$MOVEVOL PARAMETER INPUT MENU
EXECUTE $MOVEVOL PROCEDURE
EXECUTE $IAMUT1 PROCEDURE
EXECUTE $TAPEUT1 PROCEDURE
(Version 2 only)

TERMINAL UTILITIES OPTIONS

Menu/
Procedure

Option Name Function

4 $SMM04 TERMINAL UTILITIES SECONDARY OPTION
MENU

$SMP04 TERMINAL UTILITIES OPTION DECISION
TABLE

4.1 $SMP0401 EXECUTE $TERMUT1 PROCEDURE
4.2 $SMP0402 EXECUTE $TERMUT2 PROCEDURE
4.3 $SMP0403 EXECUTE $TERMUT3 PROCEDURE
4.4 $SMP0404 EXECUTE $IMAGE PROCEDURE
4.5 $SMP0405 EXECUTE $FONT PROCEDURE
4.6 $SMP0406 EXECUTE $PFMAP PROCEDURE

Chapter 10. The Session Manager 215

GRAPHIC UTILITIES OPTIONS

Menu/
Procedure

Option Name Function

5 $SMM05 GRAPHIC UTILITIES SECONDARY OPTION
MENU

$SMP05 GRAPHIC UTILITIES OPTION DECISION
TABLE

5.1 $SMM0501 $DIUTIL PARAMETER INPUT MENU
$SMP0501 EXECUTE $DIUTIL PROCEDURE

5.2 $SMM0502 $DICOMP PARAMETER INPUT MENU
$SMP0502 EXECUTE $DICOMP PROCEDURE

5.3 $SMP0503 EXECUTE $DIINTR PROCEDURE

EXECUTE PROGRAM UTILITIES OPTIONS

Menu/
Procedure

Option Name Function

6 $SMM06 EXECUTE PROGRAM PARAMETER INPUT MENU
$SMP06 EXECUTE PROGRAM PROCEDURE

JOB STREAM PROCESSOR UTILITIES OPTIONS

Menu/
Procedure

Option Name Function

7 $SMM07 $JOBUTIL PARAMETER INPUT MENU
$SMP07 EXECUTE $JOBUTIL PROCEDURE

'--'

216 SC34-0312

COMMUNICATIONS UTILITIES OPTIONS

Option

B

B.l

B.2
B.3
B.4
B.5
B.6

B.7

B.B

Menu/
Procedure
Name

SSMMOB

SSMPOB

SSMMOBOI
$SMPOB01
$SMPOB02
$SMPOB03
$SMPOB04
SSMPOB05
$SMMOB06
$SMPOB06
$ SM~10BO 7
$SMPOB07
$SMM0808
$SMPOBOB

Function

COMMUNICATION UTILITIES SECONDARY
OPTION MENU

COMMUNICATION UTILITIES OPTION
DECISION TABLE

$BSCTRACE PARAMETER INPUT MENU
EXECUTE SBSCTRACE PROCEDURE
EXECUTE $BSCUT1 PROCEDURE
EXECUTE $BSCUT2 PROCEDURE
EXECUTE $RJE27BO PROCEDURE
EXECUTE $RJE37BO PROCEDURE
SPRT2780 PARAMETER INPUT MENU
EXECUTE $PRT27BO PROCEDURE
$PRT3780 PARAMETER INPUT MENU
EXECUTE $PRT37BO PROCEDURE
$HCFUTI PARAMETER INPUT MENU
EXECUTE $HCFUTI PROCEDURE

DIAGNOSTIC UTILITIES OPTIONS

Option

9.0

9 • 1

9.2

9.3

9.4
9.5

Menu/
Procedure
Name

$SMM09
$SMP09
$SMM0901
$SMP0901
$SMM0902
$SMP0902
$SMM0903
$SMP0903
$SMP0904
$SMP0905

Function

DIAGNOSTICS SECONDARY OPTION MENU
DIAGNOSTICS DECISION TABLE
$TRAP PARAMETER INPUT MENU
EXECUTE STRAP PROCEDURE
SDUMP PARAMETER INPUT MENU
EXECUTE $OUMP PROCEDURE
$LOG PARAMETER INPUT MENU
EXECUTE $LOG PROCEDURE
EXECUTE $OISKUT2 PROCEDURE
EXECUTE $IOTEST PROCEDURE

Chapter 10. The Session Manager 217

Primary Option Menu

The first screen to appear after the logon menu is a primary
option menu called $SMMPRIM. From this menu you select the
utility or function you wish to use. This selection causes a
secondary opt i on menu to appear.

You may add your applications to the session manager by creat­
ing your own primary option menu. If you create your own prima­
ry option menu, you can specify its 'name on the logon screen as
an alternate session menu. This causes your menu to appear
instead of $SMMPRIM.

Secondary Option Menus

The procedure associated with an option menu is a decision
tab lew h i c h po i n t s to sec 0 n d a ry In e nus and p roc e d u res •
Figure 31 on page 219 illustrates all menus and procedures.

218 SC34-0312

OPTION

1
2
2 • 1
2.2
2 . 3
2.4
2.5
2.6
2.7
2.B
2.9

2.10

3

3. 1
3.2
3.3
3.4
3.5
3.6
3.7
3.B
3.9
3.10
4

4.1
4.2
4.3
4.4
4.5
4.6
5

5. 1
5.2
5.3
6
7

PROCEDURE/
MEN~

$SMP01
$SMM02
$SMM0201
$SMM0202
$SMM0203
$SMM0204
$SMM020S
$SMM0206
$SMM0207
$SMM020B
$SMM0209

$SMM0210

$S~1M03

$SMP0301
$S~1P0302

$SMP0303
$SMP0304
$SMP0305
$SMP0306
$SMP0307
$SMM030B
$SMP0309
$SMM0310
$SMM04

$SMP0401
$SMP0402
$SMP0403
$SMP0404
$SMP0405
$SMP0406
$SMM05

$SMM0501
$SMM0502
$SMP0503
$SMM06
$SMM07

DESCRIPTION

EXECUTE $FSEDIT
PROGRAM PREP SECONDARY OPTION MENU
$EDXASM PARAMETER INPUT MENU
$SlASM PARAMETER INPUT MENU
$COBOL PARAMETER INPUT MENU
$FORT PARAMETER INPUT MENU
$LINK PARAMETER INPUT MENU
$UPDATE PARAMETER INPUT MENU
$UPDATEH PARAMETER INPUT MENU
$PREFIND PARAMETER INPUT MENU
$EDXASM/$LINK/$UPDATE PARAMETER

INPUT MENU
$PL/I/$LINK/$UPDATE PARAMETER
INPUT MENU
DATA MANAGEMENT UTILITIES
SECONDARY OPTION MENU
EXECUTE $DISKUTI
EXECUTE $DISKUT2
EXECUTE $COPYUTI
EXECUTE $COMPRES
EXECUTE $COPY
EXECUTE $DASDI
EXECUTE $INITDSK
$MOVEVOL PARAMETER INPUT MENU
EXECUTE $IAMUT1
EXECUTE $TAPEUTI (Version 2 only)
TERMINAL UTILITIES SECONDARY

OPTION MENU
EXECUTE $TERMUTI
EXECUTE $TERMUT2
EXECUTE $TERMUT3
EXECUTE $IMAGE
EXECUTE $FONT
EXECUTE $PFMAP
GRAPHICS UTILITIES SECONDARY

OPTION MENU
$DIUTIL PARAMETER INPUT MENU
$DICOMP PARAMETER INPUT MENU
EXECUTE $DIINTR
SELECTED PROGRAM PARAMETER INPUT MENU
$JOBUTIL PARAMETER INPUT MENU

Figure 31. (Part 1 of 2) Menus and Procedures

Chapter 10. The Session Manager 219

OPTION

8
8. 1
8.2
8.3
8.4
8.5
8.6
8.7
B.B
9
9 • 1
9 • 2
9.3
9.4
9.5

PROCEDURE/
MENU

$SMM08
$SMMOBOl
$SMP0802
$SMPOB03
$SMP0804
$SMPOBOS
$SMM0806
$SMM0807
$SMM0808
$SMM09
$SNN0901
$SMM0902
$SMM0903
$SMM0904
$SMM090S

DESCRIPTION

COMMUNICATION UTILITIES OPTION MENU
$BSCTRACE PARAMETER INPUT MENU
EXECUTE $BSCUTI
EX E CUT E $ B'S CUT 2
EXECUTE $RJE2780
EXECUTE $RJE3780
$PRT2780 PARAMETER INPUT MENU
$PRT3780 PARAMETER INPUT MENU
$HCFUTI PARAMETER INPUT MENU
DIAGNOSTICS SECONDARY OPTION MENU
$TRAP PARAMETER INPUT MENU
$DUMP PARAMETER INPUT MENU
$LOG PARAMETER INPUT MENU
EXECUTE $DISKUT2
EXECUTE $IOTEST

Figure 32. (Part 2 of 2) Menus and Procedures

If. no further inputs are required, as in the first option, then
a procedure name is listed alongside the option number (such
as, Option l-$SMPOl). If, as in Option 2, the option number is
listed with the name of a menu, then it indicates the name of a
secondary menu (such as, Option 2-$SMM02).

Procedures

Procedures are d i vi ded into two types -- opt i on dec is i on tab les
and procedures passed to $JOBUTIL, the job stream processor, to
invoke the function. The $JOBUTIL procedures can contain two
parts -- the first part saves parameters from session to ses­
s ion; the second part is the actual procedure passed to
$JOBUTIL.

Fi'gure 33 'on page 222 ,is the procedure used to invoke the
assembler $EDXASM. The parameter part begins with the key word
PARAMETER and ends with the first END statement. The PARAMETER
and END keywords are peculiar to the session manager, not part
of the normal $JOBUTIL procedure. Within the procedure, each
parameter variable is assigned a name &PARMnn., where nn is a
positional index associated with an FTAB table built by the
system routine $IMPROT for the menu associated with this proce­
dure (such as, $SMM0201).

220 SC34-0312

The FTAB table provides the screen location (line and spaces)
and size (characters) of each parameter field on the menu, in.
~scending order. The session manager program $SMCTL uses the
FTAB table to retrieve the parameters it uses to replace the
&PARMnn. fields before passing the procedure to $JOBUTIL. The
parameter &PARMOO. always represents your one to four charac­
ter logon ID.

The &SAVEmm fields in the parameter part of the procedure point
to fields in the parameter save data set $SMPnnnn (where nnnn
is the logon ID) where the parameters you enter are saved from
session to session. The two digits, mm, are used to index into
the data set.

Note that multiple &PARMnn. fields between PARAMETER and END
are sequent i al, beg i nn i ng wi th $PARM01.

The following table lists the $SAVEmm fields, the procedure
with which they are associated, and the utility or function
invoked. When assigning values to the index digits (mm) in your
procedure, start with 90 and work backwards to 61.

FIELD i PROCEDURE UTILITY/FUNCTION

$SAVE01-03 .$SMP0201 $EDXASM
$SAVE04-06 $SMP0202 $S1ASM
$SAVE07-13 $SMP0203 $COBOL
$SAVE14-16 $SMP0204 $FORT
$SAVE17-18 $SMP020S $LINK
$SAVEI9-22 $SMP0206 $UPDATE
$SAVE23-24 $SMP020B $PREFIND
$SAVE2S-26 $SMP0308 $MOVEVOL
$SAVE27 $SMP040S $FONT

. $SAVE28 $SMPOSOI $DIUTIL

. $SAVE29 $SMPOS02 $DICOMP
$SAVE30 $SMP0503 $DIINTR
$SAVE31-3S $SMP06 Execute application

program
$SAVE36 $SMP0801 $BSCTRCE
$SAVE37 $SMPOB06 $PRT2780
$SAVE38 $SMP0807 $PRT3780
$SAVE39 $SMP080B $HCFUTI
$SAVE40-4l $SMP0208 $PREFIND
·$SAVE42 $SMP0901 $TRAP
$.SAVE43 $SMP0902 $DUMP
$SAVE44 $SMP0903 $LOG
$SAVE45-49 $SMP0210 $PLI
$SAVE50-60 Reserved

Chapter 10. The Session Manager 221

PARAMETER
&PARM01,&SAVE01
&PARM02,&SAVE02
&PARM03,&SAVE03
END
LOG
REMARK
JOB
PROGRAM
PARM
DS
DS
DS
EXEC
EOJ
END

OFF
~ASSEMBLE &PARM01. TO &PARM02. USERID=&PARMOO.

$SMP0201
$EDXASM,ASMLIB
&PARM03.
&PARM01.
&SM1&PARMOO.,EDX003
&PARM02.

Figure 33. Invoking EDXASM

Parameters that have been saved are retr i eved from the $SMPnnnn
data set according to the relationships in the first part of
the procedure. These parameters are displayed on the terminal.
Then any parameters you enter from the terminal are used to
update the procedure.

ALLOCATING AND DELETING WORK DATA SETS

The session manager allocates work data sets at logon time.
They may be deleted at logoff time with one of the text editors.
Two data sets, $SMALLOC and $SMDELET, are provided which are
used in allocating and deleting data sets. $SMALLOC contains
the data sets to be allocated and $SMDELET contains the data
sets to be deleted. Figure 34 on page 223 lists the contents of
$SMALLOC and Figure 35 on page 224 lists the contents of
$SMDELET.

You may tailor the work data set allocations and deletions by
modifying the $SMALLOC and $SMDELET data sets via the $FSEDIT
utility. Modifications usually consists of changing the size
or volume of a data set. However, you may allocate and delete
up to four additional data sets. By moving the END terminator
below $SM7 (statement 00120), you may allocate data sets $SM4,
$SM5, $SM6, and $SM7. If you modify $SMALLOC, you should also
mod i fy $SMDE LET to be cons i stent.

222 SC34-0312

If the volume name of a work data set is to be changed within
the $SMALLOC and $SMDELET data sets, then all of the Session
Manager procedures which use the work datasets should be modi­
fied to reflect the change as well.

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00260
00270
00230
00270

$SMP
$SMP
$SMW
$SME
$SMI
$SM2
$SM3
END
$SM4
$S~15

$SM6
$S~17

00
30
30
400
400
400
250

100
100
100
100

EDX003
EDX003
EDX003
EDX003
EDX003
EDX003
EDX003

TERMINATOR
EDX003
EDX003
EDX003
EDX003

NAME AND
SIZE AND
SIZE AND
SIZE AND
SIZE AND
SIZE AND
SIZE AND
- END OF
SIZE AND
SIZE AND
SIZE AND
SIZE AND

VOLUME FOR OPEN
VOLUME TO ALLOCATE
VOLUME TO ALLOCATE
VOLUME TO ALLOCATE
VOLUME TO ALLOCATE
VOLUME TO ALLOCATE
VOLUME TO ALLOCATE
ALLOCATED DATA SETS
VOLUME TO ALLOCATE
VOLUME TO ALLOCATE
VOLUME TO ALLOCATE
VOLUME TO ALLOCATE

**
**
** $SMLOG WORK DATA SET PARAMETER VALUES FOR ALLOCATE **
** FUNCTION **
** NOTE: THE DATA SETS $SMW AND $SMP MUST RESIDE ON **
** THE VOLUME EDX003. ALL OTHERS MAY BE **
** REASSIGNED. **
** NOTE: THE FIRST ENTRY IN THIS LIST IS USED TO **
** TEST FOR THE EXISTENCE OF THE $SMP DATA **
**
**

END
**

Figure 34. $SMALLOC data set

Chapter 10. The Session Manager 223

00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00160
00170
00180
00190

$SME
$SM1
$SM2
$SM3
$SMW
END
$SM4
$SM5
$SM6
$SM7

00 EDX003
EDX003
EDX003
EDX003
EDX003

*** TERMINATOR
EDX003
EDX003
EDX003
EDX003

PREFIX NAME AND VOLUME TO DELETE
PREFIX NAME AND VOLUME TO DELETE
PREFIX NAME AND VOLUME TO DELETE
PREFIX NAME AND VOLUME TO DELETE
PREFIX NAME AND VOLUME TO DELETE
- END OF DATA SETS TO BE DELETED
PREFIX NAME AND VOLUME TO DELETE
PREFIX NAME AND VOLUME TO DELETE
PREFIX NAME AND VOLUME TO DELETE
PREFIX NAME AND VOLUME TO DELETE

**
**
** $SMEND WORK DATA SET PARAMETER VALUES FOR DELETE **
** FUNCTION **
**
**

END
**

Figure 35. $SMDE LET data set

ADDING AN OPTION TO THE SESSION MANAGER

The session manager can invoke your programs in the following
ways:

• Under pr i mary opt ion 6 (Execute Program ut i 1 i ties opt ions)

• Through a menu that you have created, that is specified on
the logon menu as an alternate to the primary option menu

• By add i ng a new opt i on to an ex i st i ng sess i on manager menu

In the following example, a new option is added to the primary
option menu. It is to be used to execute a hypothetical e!ppli­
cation program called PAYROLL. No parameters are required and
it can be invoked directly from the primary option menu. The
example illustrates:

• How to update the primary option menu $SMMPRIM, using the
$IMAGE uti lity, to add a new option called PAYROLL

• How to update the associated procedure $SMPPRIM to include
the new option, using the uti lity $FSEDIT

• How to build a new procedure called $SMPPAY, using the
utilities $DISKUT1 and $FSEDIT, that will be submitted to
$JOBUTIL to execute the program PAYROLL.

224 SC34-0312

All of these steps will be done using the session manager.

The same procedure can be used to modify secondary options
menus.

Updating the Primary Option Menu

The following steps add a new option, called PAYROLL, to the
pr i mary opt i on menu:

• Step 1. IPL the Series/1 and load the session manager;
enter your ID on the logon menu.

• Step 2. When the primary option menu is displayed, select
option 4 -- the terminal utilities. When the next menu is
displayed for the terminal utilities, it is the secondary
-ption menu $SMM04.

• Step 3. Select option 4, the screen formatting utility, to
invoke the ut i 1 i ty $ IMAGE. The ut iIi ty gets contro I and
prompts you for a command. The first command entered is to
define a null character. It is entered as follows:

COMMAND(?): NULL @

• Step 4. Edit menu $SMMPRIM. After the next command prompt
enter:

COMMAND(?): EDIT $SMMPRIM,EDX002

The primary option menu, $SMMPRIM, appears next on the ter­
minal screen.

• Step 5. To update the menu, press the PFl key; this causes
the protected fields of menu $SMMPRIM to be displayed as
non-protected, so that they can be redefined. The data
fields now are represented by the null character, @,

defi~ed in Step 3. There must' be eight null characters for
option selection menus. Parameter selection menus may con­
tains field of 1 to 64 characters.

Chapter 10. The Session Manage'r 225

.$SMMPRIM: SESSION MANAGER PRIMARY OPTION MENU-----------
ENTER/SELECT PAR~METERS:· DEPRESS PF3 TO EXIT

SELECT OPTION ==> ~~~~~~~~

1 - TEXT EDITING
2 - PROGRAM PREPARATION
3 - DATA MANAGEMENT UTILITIES
4 - TERMINAL UTILITIES
5 - GRAPHICS UTILITIES
6 - EXEC PROGRAM/UTILITY
7 - EXEC $JOBUTI L PROC I

8 - SENSOR/COMMUNICATION UTILITIES
9 - DIAGNOSTICS AIDS

10 - EXECUTE PAYROLL

Figure 36. Sess i on manager pr i mary opt i on menu

• Step 6. Add the new PAYROLL option,·option 10 EXECUTE
PAYROLL Press the ENTER key to display the newly-defined
menu image (Figure 36).

• step 7. Press the PF3 key to return·to the $IMAGE command
mode. In response to the command prompt, enter:

COMMAND(?): . SAVE $SMMPRIM,EDX002

The menu is saved and is ready to use. Termi nate $IMAGE and the
updated primary option menu wi 11 be displayed.

Updat;ng the Procedure

The· following steps update the procedu~e associated with the.
pr i mary opt i on menu:

• 5 t e p 1. 5 e I e c top t i on 1 (text e d i tin g) on t he p rim a r y
'option menu and press the ENTER key. The utility, $FSEDIT,
is loaded and control is passed to it. The next menu on the
terminal screen is the primary option menu for $FSEDIT.

226 SC34-0312

• step 2. Select option 3 and press the ENTER key to read the
procedure $SNPPRIM. Specify volume EDX002 for the VOLUME
prompt, and $SMPPRIM for the data set prompt as shown in
Figure 37 on page 227.

---------- $FSEDIT PRIMARY OPTION MENU -------------­
SELECT OPTION ===> 3

1
2
3
4
5
6
7
8
9

BROWSE
EDIT
READ
WRITE
SUBMIT
LIST
MERGE
END
HELP

- DISPLAY DATASET
-CREATE OR CHANGE DATASET
- READ DATASET FROM HOST/NATIVE (H/N)
- WRITE DATASET TO HOST/NATIVE (H/N)
- SUBMIT BATCH JOB TO HOST SYSTEM
- PRINT DATASET ON SYSTEM PRINTER
- MERGE DATA FROM A SOURCE DATASET
- TERMINATE $FSEDIT
- DISPLAY TUTORIAL

ENTER DATASET (NAME,VOLUME): $SMPPRIM,EDX002

Figure 37. Session manager $FSEDIT primary option menu

• Step 3. After the utility has read the procedure $SMPPRIM
into your edit work data set, enter option 2 to update the
procedure. At the bottom of the procedure, add the new
option number and the name of the new procedure called
$SMPPAY. Figure 38 on page 228 illustrates how the
procedure should appear after the update has been made.

• step 4. Return to the primary option menu by entering the
word MENU in the command field. Then specify option 4 on
the $FSEDIT primary option menu when it is displayed again
on the screen. Respond YES to the prompt message which
asks if you want the procedure wr i tten back to the same
data set and volume. This places the updated procedure
$S~1PPRIM back on the disk volume EDX002.

• Step 5. Enter option 8 to terminate $FSEDIT and return to
the pr i mary opt i on menu for the sess i on by press i ng ENTER.

Chapter 10. The Session Manager 227

OPTION

1
2
2 • 1
2 • 2
2.3
2.4
2 • 5
2 • 6
2.7
2.8
2.9

2 . 10

3

3. 1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
4

4. 1
4.2
4.3
4.4
4.5
4.6
5

5 . 1
5.2
5.3
6
7

PROCEDURE/
MENU

$SMP01
$Sf1M02
$SMM0201
$SMM0202
$SMM0203
$SNM0204
$SMM0205
$SMM0206
$SNM0207
$St1M0208
$SMf10209

$SMM0210

$SMM03

$SMP0301
$SMP0302
$SMP0303
$SMP0304
$SMP0305
$SMP0306
$SMP0307
$SH~10308

$SMP0309
$Sf1P0310
$SMM04

$SMP0401
$SMP0402
$SMP0403
$SMP0404
$SMP0405
$SMP0406
$SMM05

$SMM0501
$SMM0502
$S~1P0503

$SMM06
$SMM07

DESCRIPTION

EXECUTE $FSEDIT
PROGRAM PREP SECONDARY OPTION MENU
$EDXASM PARAMETER INPUT MENU
$SlASM PARAMETER INPUT MENU
$COBOL PARAMETER INPUT MENU
$FORT PARAMETER INPUT MENU
$LINK PARAMETER INPUT MENU
$UPDATE PARAMETER INPUT MENU
$UPDATEH PARAMETER INPUT .MENU
$PREFIND PARAMETER INPUT MENU
$EDXASM/$LINK/$UPDATE PARAMETER

INPUT MENU
$PL/I/$LINK/$UPDATE PARAMETER

INPUT MENU
DATA MANAGEMENT UTILITIES

SECONDARY OPTION MENU
EXECUTE $DISKUT1
EXECUTE $DISKUT2
EXECUTE $COPYUTI
EXECUTE $COMPRES
EXECUTE $COPY
E X E CUT E $ D A S,D I
EXECUTE $INITDSK
$MOVEVOL PARAMETER INPUT MENU
EXECUTE $IAMUT1
EXECUTE $TAPEUT1 (Version- 2 only)
TERMINAL UTILITIES SECONDARY

OPTION ME~U'

EXEC UTE $ T E R f1 U T 1
EXECUTE $TERMUT2
EXECUTE $TERMUT3
E X E CUT E $ Ir1 AGE
EXECUTE $FONT
EXECUTE $PFMAP
GRAPHICS UTILITIES SECONDARY

OPTION MENU
$DIUTIL PARAMETER INPUT MENU
$DICOMP PARAMETER INPUT MENU
EXECUTE $DIINTR
SELECTED PROGRAM PARAMETER INPUT MENU
$JOBUTIL PARAMETER INPUT MENU

Figure 38. $SMPPRIM option menu with option 10 added (Part lof
2)

228 SC34-0312

OPTION

8
8 • 1
8.2
8.3
8.4
8.5
8.6
B.7
8.8
9
9 • 1
9 • 2
9 • 3
9.4
9.5
10

PROCEDURE/
MENU

$SMM08
$S,.,M080 1
$SMP0802
$SMP0803
$SNPOB04
$SMP0805
$SMM0806
$SMM0807
$SM~10808

$SMM09
$S~1M0901

$SMM0902
$SMM0903
$Sf1M0904
$SMM0905
$SMPPAY

DESCRIPTION

COMMUNICATION UTILITIES OPTION MENU
$BSCTRACE PARAMETER INPUT MENU
EXECUTE $BSCUTI
EXECUTE $BSCUT2
EXECUTE $RJE2780
EXECUTE $RJE3780
$PRT2780 PARAMETER INPUT MENU
$PRT3780 PARAMETER INPUT MENU
$HCFUTI PARAMETER INPUT MENU
DIAGNOSTICS SECONDARY OPTION MENU
$TRAP PARAMETER INPUT MENU
$DUMP PARAMETER INPUT MENU
$LOG PARAMETER INPUT MENU
EXECUTE $DISKUT2
EXECUTE $IOTEST
EXECUTE APPLICATION PROGRAM PAYROLL

Figure 39. $SMPPRIM option menu with option 10 added (Part 2 of
2)

Bu;lding a $JOBUTIL Procedure

A procedure may be created that wi 11 be passed to the job stream
processor uti lity to request execution of the program PAYROLL.

For this example, assume that the program PAYROLL already
exists, requires no parameters, and resides on disk volume
EDX002.

1. From the primary option menu, select both the primary and
secondary options by entering 3.1. This invokes the disk
utility $DISKUTI.

2. In response to the command prompts, enter the responses as
shown in Figure 40 on page 230. This will allocate a data
set called $SMPPAY to hold the new procedure.

Chapter 10. The Session Manager 229

JOB $DISKUTI
USING VOLUME EDX002

COMMAND (?): AL $SMPPAY 10
DEFAULT TYPE = DATA - OK? Y

Figure 40. Job $DISKUTI

3. Enter EN for the next command prompt and the sess i on manag­
er's primary option menu is again displayed on the terminal
screen.

4. Select option 1, text editing, to invoke the $FSEDIT utili­
ty.

5. Select option 2 and create the new procedure as shown in
Figure 41.

PAR.AME T E R
END

OFF LOG
RENARK
JOB
PROGRAM
EXEC

@PAYROLL USERID=&PARMOO.
$SMPPAY
PAYROLL,EDX002

EOJ
END

Figtire 41. Job $SMPPAY

6. ~Jhen the procedure is completely entered, return to the
$FSEDIT pr i mary opt i on menu by enter i ng MENU on the command
line.

7. Select option 4 and write the new procedure. back to the
dis k vol u rn e E 0 X 0 0-2 •

8. Enter the same responses shown in Figure 37 on page 227
with the previcius exception t~at the data set name speci­
fied is $SMPPAY.

9. When control returns, enter option 8 to exit $FSEDIT and
return to the session manager.

230 SC34-0312

Now the session manager is completely tailored. The new option
can be specified on the primary option menu and the program
PAYROLL will execute.

More sophisticated procedures can be built by copying existing
session manager procedures and updating them with the $FSEDIT
utility to invoke different programs and save parameters in
unused fields in the data set $SMPnnnn (nnnn is your 10). The
parameter data set can save up to 90 parameters (three per 256
byte block). The session manager uses the first sixty parame­
ter locations, labeled &SAVE01 through &SAVE60. The remaining
30 parameter fields (&SAVE61 through &SAVE90) are available
for your use. Many procedure formats are used by the session
manager and these should provide you with some valuable guide­
lines for building your own procedures.

Chapter 10. The Session Manager 231

232 SC34-0312

CHAPTER 11. TAPE ORGANIZATION

T his c hap t ere x pIa ins ,t h e t y pes '0 f 1 abe 1 pro c e s sin g pro v ide d
with the IBM 4969 Magnetic Tape Subsystem and the organization
of tape data sets. Figures are included to show the layout,
format, and content of labels supported.

The $TAPEUT1 uti lity allows you to allocate tape data sets,
copy data sets fr'om one medi um to another, and change tape
attributes. For detailed information on the $TAPEUT1 utility
see Utilities, Operator Commands, Program PrepClration,
Messages Clnd Codes.

For detailed information on Tape I/O instructions, see the
LClnguage Reference.

Note: Tapes are supported by Version 2 only.

EXTERNAL AND INTERNAL LABELS

When data records Clre stored on volumes of magnetic tape, those
volumes must be identified (labeled) for future reference to
the data. Two kinds of labeling can be used: external and
internal.

External labels are attached to the outside of the tape to
enable you to identify the tape visually.

Internal labels are written directly on the tape itself and are
read the same way data records are read.

When a volume of tape is first received, it should be assigned a
unique number, a volume serial number. The volume serial num­
ber is the identifying number for the volume. The volume serial
number should be written on an external label, and recorded on
an internal label. Other information contained in external and
internal labels is determined by the files on the tape. This
information usually changes from time to time.

In addition to the volume number, the external label could
conta i n such items of i dent if i cat i on as:

• fi Ie name

• file number

• file creat i on date

Chapter 11. Tape Organization 233

.' number of volumes, if more than one volume is required
(Even though EDX does not support mu I t i -vo I ume process i ng,
an app I i cat i on programmer can imp lement a form of
multi-volume processing.)

• department number
I.

Internal labels usually contain the,same information that is
written on external labels; such as the volume serial number
and the names of the files contained on the volume. Internal
labels can be checked by. t he system when a tape j s mounted,
he I pin g toe n sur e t hat the cor r e c.t v 0 I u m e i s be i n gus e d for
each application.

Control characters called tapemarks are used to separate
files. The arrangement of label records, tapemarks, and data
records is called the volume layout, which is discussed and
illustrated in this chapter.

TYPES OF INTERNAL LABELS

Tape fi les may be either labeled or non-labeled. EDX supports a
subs~t of DOS/VS labels. Tapes created on DOS may be used on
EDX. Label processing may be bypassed, and non-standard, user,
or ANSI labels are not supported.

234 SC34-0312

standard Labels

standard labels are fixed length 80-character records. There
are three types of label records:

• A volume label identifying the tape volume.

• A header label preceding the data records.

• A trai ler label following the data records.

The first four characters of each label type identify the par­
t i cular label record and its log i cal locat ion.

Volume label VOll at the beginning of the volume

Header label HDRI at the beginning of a f i 1 e

Trailer label EOFI at the end of the f i Ie
EOVI at the end of a volume i n a

multivolume f i Ie

If two or more files are written on a single volume, each file
has a header and trailer label. The volume label exists only
once at the beginning of the volume.

Provision is made in the IBM stand~rd label set for additional
standard volume labels (VOL2,VOL8) and additional standard
fi Ie labels (HDR2 HDR8, EOF2 EOF8, and EOV2 EOV8). These
labels are allowed but are not processed. User labels are also
bypassed.

The Event Driven Executive system does not provide EOV process­
ing. However, you may perform EOV processing. See "Processing
the EOV Condition" on page 326 for a detai led example.

In general, the following factors apply to most volume layouts:

• When standard labels are written on a volume, the first
record must be the volume label (VOll).

• When labeled files are written, a header label (HDRl) pre­
cedes each fi Ie and a trai ler label follows each fi Ie (EOFI
orE OV 1) •

Chapter 11. Tape Organization 235

Labeled Tape Layouts

Single File Volume

VOL 1 HDRI TM X DATA RECORDS TM EOFI TM TM

Multi-file -Volume

VOLl HDRI TM X DATA RECORDS TM EOFI TM ->
(FILE 1)

I I .'

-'-> HDRI TM Y DATA RECORDS TM EOFI TM TM
(FILE 2)

I I

Labeled Tape Processing

Labels are processed (checked or written) when fi les are opened
or closed.

On output tapes expiration date checking is done if the system
conta i ns t 1 me-of-day support.

On input or output tapes, an error will occur during file
search if:

• A non-standard label is found

• An non-labeled fi Ie is found

• A spec if i ed data set is not found

236 SC34-0312

~~hen a tape is varied online, the tape unit is defined for
standard labels. The VOll is read and the tape is positioned at
the HDR! for the desired fi Ie number according to the following
formula:

SPACE FILE FORWARD = (n-!)*3

where n is the spec if i ed file number

Note: If the file number being searched for is not on the
volume mounted, the positioning of the tape is unpredictable.

Chapter 11. Tape Organization 237

Labeled Tape Label Fields

The following charts show the layout of the tape label record
and the contents of each after the $TAPEUTI uti lity has written
the label (refer to ut iIi ties, Operator Commands, Program
Preparat i o.!l..LJ1essages and Codes for deta i Is on $TAPEUTI).
These charts also show which fields are verified ($VARYON veri­
fies VOlI, OPEN verifies HDRI) and initialized ($TAPEUTI)
during standard label processing.

VOLI

INITIALIZED
NAME BYTES CONTENTS VERIFIED

LABEL IDENTIFIER 3 'VOL' YES
VOL LABEL NUMBER I ' I ' YES
VOLUME SERIAL 6 'XXXXXX' YES
VOLUME SECURITY 1 ' 0 ' NO
DATA FILE DIRECTORY 10 BLANKS NO
RESERVED 10 BLANKS NO
RESERVED 10 BLANKS NO
OWNER, NAME 10 NAME NO
RESERVED 29 BLANKS NO

238 SC34-0312

HDR1

INITIALIZED
NAME BYTES CONTENTS VERIFIED

LABEL IDENTIFIER 3 'HDR' YES
FILE LABEL NUMBER 1 ' 1 ' YES
FILE IDENTIFIER (DSN) 17* DATASET NAME (DSN) YES
FILE SERIAL NUMBER 6 'XXXXXX' NO
VOLUME SEQUENCE NUMBER 4 '0001' NO
FILE SEQUENCE NUMBER 4 'OONN' NO
GENERATION NUMBER 4 BLANKS NO
GENERATION VERSION

NUMBER 2 BLANKS NO
CREATION DATE 6 YYDDD NO
EXPIRATION DATE 6 YYDDD YES
FILE SECURITY 1 ' 0 ' NO
BLOCK COUNT 6 '000000' NO
SYSTEM CODE 13 'IBMEDXS1' NO
RESERVED 7 BLANKS NO

EOF1

INITIALIZED
NAME BYTES CONTENTS VERIFIED

LABEL IDENTIFIER 3 'EOF' YES
FILE LABEL NUMBER 1 ' 1 ' YES
FILE IDENTIFIER (DSN) 17* DATASET NAME (DSN) YES
FILE SERIAL NUMBER 6 'NNNNNN' NO
VOLUME SEQUENCE NUMBER 4 '0001' NO
FILE SEQUENCE NUMBER 4 'OONN' NO
GENERATION NUMBER 4 BLANKS NO
GENERATION VERSION

NUMBER 2 BLANKS NO
CREATION DATE 6 BLANKS NO
EXPIRATION DATE 6 BLANKS YES
FILE SECURITY 1 ' 0 ' NO
BLOCK COUNT 6 'NNNNNN' NO
SYSTEM CODE 13 'IBMEDXS1' NO
RESERVED 7 BLANKS NO

* EDX supports an eight byte non-blank DSN. The remalnlng
nine bytes of the DSN field are not supported by EDX.

Chapter 11. Tape Organization 239

EOVl

INIT~ALIZED
NAME BYTES 'CONTENTS VERIFIED

LABEL IDENTIFIER 3 'EOV' YES
FILE LABEL NUMBER 1 ' 1 ' YES
FILE IDENTIFIER (DSN) 17* DATASET NAME (DSN) NO
FILE SERIAL NUMBER 6 'NNNNNN' NO
VOLUME SEQUENCE NUMBER 4 '0001' NO
FILE SEQUENCE NUMBER 4 '~ONN' NO
GENERATION NUMBER 4 BLANKS NO
GENERATION VERSION

NUMBER 2 BLANKS NO
CREATION DATE 6 BLANKS NO
EXPIRATION DATE 6 BLANKS NO
FILE SECURITY 1 ' a ' NO
BLOCK COUNT 6 'NNNNNN' NO
SYSTEM CODE 13 'IBMEDXS1' NO
RESERVED 7 BLANKS NO

* EDX supports an eight byte non-blank DSN. The remalnlng
nine bytes of the DSN field are not supported by EDX.

240 SC34-0312

Non-Labeled Tapes

Non-labeled tape volumes consist of fi les separated by
tapemarks. An additional tapemark may be placed at the begin­
ning of the tape.

Non-labeled tapes allow the exchange of tapes with unknown
configuration. The disadvantages of using non-labeled tapes
are loss of control and the difficulty of maintaining data
security. The following illustrations depict the non-labeled
tape layouts that are supported.

Chapter 11. Tape Organization 241

Non-labeled Tape Layouts

tapemark before the data records (one file)

TM X DATA RECORDS TM TM

no tapemark before the data records (one file)

X DATA RECORDS TM TM

tapemark before the data records (multiple files)

TM X DATA RECORDS TM Y DATA RECORDS TM TM
(FILE 1) (FILE 2)

I I I I

no tapemark before the data records (multiple files)

X DATA RECORDS TM y DATA RECORDS TM TM
(FILE 1) (FILE 2)

I I I I

242 SC34-0312

Non-labeled Tape Processing

The tape is checked to verify that it is not a standard labeled
tape. The tape support positions the tape to the requested
fi le sequence. If the volume starts with a tapemark, the tape
is positioned after the tapemark. In all cases, the tape is
pos it i oned at the first data record in the file.

When a tape drive with the non-labeled attribute is varied
online, the first record is examined. If the record is a VOl1,
the $VARYON wi 11 fai 1. If the record is not a VOl1 or a
tapemark, the tape is backspaced. If you specify a fi Ie number
greater than 1, the tape is positioned according to the formu-
1 a :

SPACE FILE FORWARD = n-1

where n is the spec if i ed f i Ie number.

Note: If the fi Ie number being searched for is not on the
volume mounted, the positioning of the tape is unpredictable.

Chapter 11. Tape Organization 243

Bypass Label Processing (BLP)

U~e the bypass label processing option when you want to access
the tape but do not want the labels to be processed by EDX.
When the tape unit is defined for BlP, no initial tape motion
occurs. The appl i cat i on program must move the tape to the first
data record. Recognizing and processing labels and tape marks
is the responsibility of the application program. Event Driven
E x e c.u t i ve sup p or t s imp I y t ran s fer s r e cor d s; no 0 the r pro c e s s -
i ng is performed.

When a tape unit defined for bypass label processing (BlP) is
var i ed onl i ne, no tape mot i on occurs. If a file number greater
than 1 is specified, the tape is positioned according to the
formula:

SPACE FILE FORWARD = n-l

where n is the spec if i ed file number.

Note: If the· fi Ie number being searched for is' not on the
volume mounted, the positioning of the tape is unpredictable.

For an example of BlP processing see "Sample Use of BlP to
Access All label Fields" on page 331.

TAPE RECORDS

Tape data sets may contain records of differing sizes, called
var; able length records and undefi ned length records. App I i ca­
tion programs can write variable length records by specifing
the si ze of each record on the WRITE statement and can read them
by specifing the maximum size record on the READ statement.
After the READ statement is complete, the TCB contains the
actual size of the record.

The $TAPEUTI utility also processes va·riable length records.

Variable Length Records

The first four bytes of each variable length record contains a
two-byte hexadecimal value defining the actual length of the
record followed by two bytes of zeros (reserved for future
use). The length value includes the four- byte header. These
records are written and read as described in "Tape Records."
The application program can obtain the length of the record
read from the record itself. You are responsible for placing
the header value in each record when it is wr i tten.

244 SC34';"0312

Undefined Length Records

Each undefinied length record can be of a different size up to
some maximum established by mutual agreement among the appli­
cations which must process the data. Processing is the same as
described in "Tape Records" on page 244.

TAPE LOG ENTRIES

The error log entry for the 4969 tape device is similar to all
other I/O device log entries except for seven words of depen­
dent information:

• VOll - The VOll of the standard label tape or the ID for a
no-label or BlP tape (3 words).

• ID - the ID, ass i gned by system gene rat i on, of the tape
device (3 words).

• Flags - A one-word entry whose bits are defined as follows:

BIT

o
1
2
3
4-5

6-7

8-15

CONTENTS

Ignore expiration date (1 = Yes, 0 = no)
~1ust be zero
Data set expiration (1 = no, 0 = yes)
Output has occurred (1 = yes, 0 = no)
Density (defined by system generation):

00 = Undefined
01 = 800 BPI only
10 = 1600 BPI only
11 = Dual density

label type:
00 = Undefined
01 = Standard label
10 = Bypass label processing
11 = No label

logical file number that was open at the
time of the error

Chapter 11. Tape Organization· 245

'246 SC34-0312
•

CHAPTER 12. USING PARTITIONED DATA SETS

The display processor utility program uses a utility program,
$PDS, to make partitioned data sets available for its use.
Your programs can also use $PDS to access these members (for
example, report data members and realtime data members). $PDS
can also be used by your programs for all ava; lable functions.

Execution of $PDS by your program is through the use of the LOAD
instruction. $PDS can be used as an overlay program as well as
a normally loaded extension of an application program. $PDS
allows you to:

• Open a member

• Allocate a member for a fixed number of records

• Allocate a member for the max i mum number of records

• Release unused space from a member

• Delete a member

• Store the next record

• Store a record

• Fetch a record

Members can be created by these methods:

1. Use $DIUTIL program

• Data member, member codes 4,5,6

• User data members, member codes 7,8,9

. • User def i ned members, member codes 10 and up

• Member codes 1,2,3 cannot be created by $DIUTI L

2. Use $DICOMP program

• Report member, member code 1

• Graph i c member, member code 2

• Graph i c 3D member, member code 3

3. Use $PDS

• All member types

Chapter 12. Using Partitioned Data Sets 247

Member codes are ass i gned as follows:

1
2
3
4
5
6

7,8,9
10-n

Report member.
Graphic member
Graphic member 3D
Report data member
Plot curve data member
Realtime data member
User defined data members
User defined

Member types 1,2,3 store commands that will be used by $DIINTR
to create a display. Member types 4,5,6 contain data that is
saved by your application program. Member types 7,8,9 have the
same format as member types 4,5,6 but are for use by applica­
tion programs. Member types 10 and up are for use by applica­
t ions programs.

Member types 4 through 9 are spec i al members because they
contain multiple records with a length of 1 to 32767 bytes.
This feature allows the application program to Fetch and Store
data by record number wi th ina member. Th is techn i que could be
used by an application program to update data members defined
with the Display Uti lity Program Set.

Data Set Allocation

A data set that is to be used by $PDS must be allocated using
$DISKUTI. Records should be allocated for the di rectory as well
as members. Each record can conta i n eight directory entr i es
except the first record which can contain seven. For example,
if space is required for 40 members each with five records of
space, you should allocate 206 records, 200 for members and six
for the directory.

After a data set has been defined by $DISKUTl, it'must be for­
matted for use by $PDS. $DIUTIl functions IN (Initialize), Al
(Allocate), and BU (Build Data) are used for this purpose.
$PDS can also be used to allocate members. Once members are
allocated, they can be used by the application program. The
$DIUTI L program is used to ma i nta i n of the data set.

248 SC34~0312

Data Set Format

The data set to be used with $PDS consists of:

• Di rectory area

• Member area

D;rectory Area

The fir s t e.n try i nth e d ire c tor y des c rib est he d a t a set and has
,the following format:

Byte

0-1

2-3

4-5

6-7

8-15

Usage

Next available record number for member

Total size of data set in records

Number of next directory entry

Total available directory entries
(allocated and unallocated)

Unused space

Each succeeding directory entry is 16 bytes with the following
format:

Chapter 12. Using Partitioned Data Sets 249

Byte

0-7
8-9

10-11
12-13
14-15

Usage

EBCDIC member name
First record number (relative to start of
data set)
Number of records in member
Member code
User code or clear screen indicator

Member Code (bytes 12-13)

-1
o
1
2
3
4
5
6

7-9
10-n

Deleted member
Available space
Report member
Graphic member
Reserved
Report data member
Plot curve data member
Realtime data member
User defined data member
User defined members

Users code (bytes 14-15)
Defined by you and stored by $PDS allocate
or value of 1 if clear screen (ESC,FF) is not
to be sent on $DIINTR invocation.

$DIUTIL can be used to display this data for reference.

Member Area

Each member type has a un i que format.

Member types 1-3 Display Control Member

No specific format is defined. The data is freeform,
generated by the $DICOMP Utility Program.
See Display Control Member format for information
as to content of these members.

250 SC34-0312

Member Type 4 Report Data Member

Byte Usage

0-7 Unused
8-9 Number of records

10-11 Record length i n bytes (1-132)
12-13 Number of records available
14-15 Unused
16-n Data Area

Member Type 5 Plot Curve Data Member

Byte Usage

0-1 X Axis Range
2-3 V Axis Range
4-5 X Base Line Value
6-7 y Base Line Value
8-9 Number of records

10-11 Record length i n bytes (1-32767)
12-13 Number of records available
14-15 Unused
16-n Data Area

Note: Each record can be larger than 4 bytes, however relative
bytes 0,1 must contain the X-coordinate value and bytes 2,3
must contain the V-coordinate value.

Member Type 6 Realtime Data Member

Byte Usage

0-7 Unused
8-9 Number of records

10-11 Record length i n bytes (must be 16)
12-13 Number of records available
14-15 Unused
16-n Data Area

Chapter 12. Using Partitioned Data Sets 251

Member Type 7,8,9 User Defined Data Member

Byte Usage

0-7 Unused
8-9 Number of records

10-11 Record length in bytes (1-32767)
12-13 Number of records available
14-15 Unused
16-n Data Area

j Member type lO-n User Defined Member

Display Control Member Format

Each of the,display profile elements contained in the control
members, type codes (1,2,3), is shown in this section. You may
wish to use $PDS to access a control member. The application
program could then generate a display profile command string
and use $DIINTR to display the results. Following is the for­
mat of each of the display profi Ie elements.

LB Display Characters

Byte Bits Value Content

0 0-3 1 Display characters code
o· 4-7 0 Unused
1 0-7 1-72 Number of characters to

display
2-n 0-7 EBCDIC EBCDIC data to display

252 SC34-0312

MP Move Position

Byte Bits Value Content

0 0-3 2 Move Pos it i on 'Code
0-1 4-7/0-7 0-1023 X Coordinate Value
2-3 . 0-7 0-1023 Y Coordinate Value

For 3D Members:

Byte Bits Value Content

0 0-3 2 Move Position Code
0-1 4-15 0 Unused
2-3 0-15 -32768 - +32767 X Coordinate Value
4-5 0-15 -32768 - +32767 Y Coordinate Value
6-7 0-15 -32768 - +32767 Z Coordinate Value

LI Draw Line

Byte Bits Value . Content

0 0-3 3 Draw Line Code
0-1 4-7/0-7 0-1023 X Coordinate Value
2-3 0-7 0-1023 V Coordinate Value

Chapter 12. Using Partitioned Data Sets 253

For 3D Members:

Byte Bits Value Content

0 0-3 I 3 Move Position Code
0-1 4-15 0 Unused
2-3 0-15 -32768 - +32767 X Coordinate Value
4-5 0-15 -32768 - +32767 y Coordinate Value
6-7 0-15 -32768 - +32767 Z Coordinate Value

DR Draw Symbol

Byte Bits Value Content

0 0-3 4 Draw Symbol Code
0 4-7 1-15 Symbo I ID
1 0-7 0-255 Symbol Modifier
2-3 0-7 0-32767 Users Symbol Number

OR

2 0-5 0 Unused
2 6 0-1 Start ,top (0) or bottom (1)

for Arc
2-3 7/0-7 0-508 # of Y units i n Arc

VA Display Variable

Byte Bits Value Content

0 0-3 5 Display Variable Code
0 4-7 0-7 Word Number within record
1 0-3 0-15 Function Code
1 4-7 0-3 Type Code
2-3 0-7 1-32767 Record number in Realtime

Data Member
4 0-7 1-40 Field Width
5 0-7 0-39 Number of Decimals

254 SC34-0312

JP Jump

Byte Bits Value Content

0 0-3 6 Jump Code
0 4-7 0-7 Word number within record
1 0-7 0.-2 Jump Modifier

O=Unconditional
l=Zero

.- 2=Non Zero
2-3 0-7 1-32767 Record number i n Realtime

Data Member
4-5 0-7 0-32767 Jump to Address (offset in

Words from beginning of
Control Member)

DI Direct Output to Another Device

Byte Bits Value Content

0 0-3 8 Direct Output Code
0 4-7 0 Unused
1 0-7 0 Unused
2-9 0-7 EBCDIC 8 characta..r name of output

device. Refer to ENQT
Instruction

PC Plot Curve from Plot Curve Data Member

Byte· Bits Value Content

0 0-3 9 Plot .Curve Code
0 4-7 0 Unused
1 0-7 0 or EBCDIC EBCDIC character for plot

i f character plot
2-9 0-7 EBCDIC 8 character member name of

a plot data member

Chapter 12. Using Partitioned Data Sets 255

** Display Report Line Items

Byte Bits Value Content

0 0-3 10 Display Report Line Items
0 4-7 0 Unused
1 0-7 0 Unused
2-9 0-7 EBCDIC 8 character member name of

a report data member

AD Advance X,V

Byte Bits Value Content

0 0-3 11 Advance X,V code
0-1 4-7/0-7 0-1023 X advance value (adjusted

by +512)
2-3 0-7 0-1023 V advance value (adjusted

by +512)

For 3D Members:

Byte Bits Value Content

0 0-3 11 Advance X,V,Z Code
0-1 4-7/0-7 0-1023 X Advance Value (adjusted

by +512)
2-3 0-7 0-1023 V Advance Value (adjusted

by +512)
4-5 0-7 0-1023 Z Advance Value (adjusted

by +512)

256 SC34-0312

1M Insert Member'

Byte Bits Value Content

0 0-3 12 Insert Member Code
0 4-7 0 Unused
1 0-7 0 Unused
2-9 0-7 EBCDIC 8 character member name of

a central member

LR Draw Line Relative

Byte Bits Value Content

0 0-3 13 Draw Line relative code
0-1' 4-7/0-7 0-1023 Delta X Value (adjusted by

+512)
2-3 0-7 0-1023 Delta Y Value (adjusted by

+512)

For 3D Members:

Byte Bits Value Content

0 0-3 13 Dr aL-J Line Relative Code
0-1 4-7/0-7 0-1023 Delta X Value (adjusted by

+512)
2-3 0-7 0-1023 Delta Y Value (adjusted by

+512)
4-5 0-7 0-1023 Delta Z Value (adjusted by

+512)

Chapter 12. Using Partitioned Data Sets 257

RT Change Realtime Data Member Name

Byte Bits Value Content

0 0-3 14 Change Realtime Data Member
Code

0 4-7 0 Unused
1 0-7 0 Unused
2-9 0-7 EBCDIC 8 character member name of

a new realtime data member
(for VA and +P codes)

TD Display Time and Data

Byte Bits Value Content

0 0-3 15 Display time and data code
0 4-7 0 Unused
1 0-7 0 Unused

258 SC34-0312

Using SPDS in Your Program

Access to the $PDS ut iIi ty is through a LOAD instruct i on in
your application program. The following example shows how to
open a member.

XYZ

START

PROGRAM

EQU

READTEXT

LOAD

WAIT
IF

START, DS=C??)

*

#MCB,'ENTER MEMBER NAME@'.

$PDS,$MCB,DS=CDSl),EVENT=iPDS,
LOGMSG=NO

:!tPDS
C:!tPDS,NE,-l),GOTO,ERROR

C

* NORMAL PROCESSING OF OPENED MEMBER *

BUFF
$MCB

:!tMCB
:!tMCBCND
#MCBDSA

READ

WRITE

PROGSTOP

DATA
DATA

TEXT
DATA
DATA

MBR,BUFF

MBR,BUFF

128F'O'
AC:!tMCB)

LENGTH=8
F ' 1 '
ACMBR)

DISK I/O BUFFER
POINTER TO MEMBER CONTROL
BLOCK

MEMBER NAME
$PDS COMMANDCOPEN)
ADDRESS OF DSCB

Chapter 12. Using P~rtitioned Dat~ Sets 259

iMCBDTO
iMCBDTl
#MCBDT2
#MCBDT3

DATA
DATA
DATA
DATA

DSCB

ENDPROG
END

F ' 0 '
F ' 0 '
F ' 0 '
F ' 0 '

Data Field 0
Data Field 1
Data Field 2
Data Field 3

DS#=MBR,DSNAME=DUMMY,VOLSER=DUMMY,

Member Control Block

The member control block that is passed to the $PDS uti lity
program by the use of the PARM faci lity is a 20 byte field. This
member control block (MCB) is filled in by your application
program. The format of the MCB is as follows:

Byte

0-7
8-9
10-11
12-19

$PDS

Command

1
2
3
4
5
6
7
8

Usage

EBCDIC Member Name
$PDS Command (see below)
Address of Callers DSCB
Data field 0 through 3 (see below)

Commands (bytes 8-9)

Function

Open Member
Allocate Member
Allocate Member (Maximum Space)
Release Space
Delete Member
store Next Record
Store Record
Fetch Record

260 SC34-0312

Command Descriptions

Open Member

The member specified in bytes 0-7
located and the DseB specified in
filled into point to the member.

Allocate Member

of the MeB
bytes 10-11

i s
i s

The member spec if i ed in bytes 0-7 of the MeB is
dynamically allocated with the parameter specified
in bytes 14-19.

Allocate Member (maxi mum space)

The member spec if i ed in bytes 0-7 of the MeB is
dynamically allocated with the parameter specified
in bytes 16-19. Max i mum space is allocated.

Release Space

The member spec if i ed in bytes 0-7 of the MeB is
located and unused space is returned to the avail­
able space in the data set. Bytes 14-15 must contain
the number of records that the member wi 11 contain.

Delete Member

The member spec if i ed in bytes 0-7 of the MeB is
located and marked for deletion. Note: the space
occupied by the deleted member is NOT returned to the
available space in the data set. Use the utility
$DIUTIL to reclaim deleted space.

Store Next Record

The member spec if i ed in bytes 0-7 of the MeB is
located. The member header is used to determine
which record is next and data is stored in that
record. Your data buffer address is located in bytes
14-15 of the MeB.

store Record

The member spec if i ed in bytes 0-7 of the MeB is
located. The record specified in bytes 12-13 is
located and the data is stored in that record. Your
data buffer address is located in bytes 14-15 of the
MCB.

Fetch Record

The member spec if i ed in bytes 0-7 of the MeB is

Chapter 12. Using Partitioned Data Sets 261

located. The record specified in bytes 12-13 is
located. All the data is retr j eved and stored j n
your data buffer. The data buffer address is located
in bytes 14-15 of the MeB.

Data Field 0 through Data Field 3 must contain modifier infor­
mation for the various SPDS commands. Also, these areas con­
tain data following the action taken by the $PDS program. The
following table shows the data required prior to the execution
of SPDS and the data returned following the execution of SPDS.

Before Execution of $PDS:

DATA WORDS
0 1 2 3

COMMAND

I-Open N/A N/A N/A N/A

2-Allocate N/A Records Member User
Type Code Code

3-Allocate Max N/A N/A Member User
Type Code Code

4-Release N/A Records N/A N/A

5-Delete N/A N/A N/A N/A

6-Store Next N/A Data Buffer N/A N/A
Address

7-Store Record Data Buffer N/A N/A
Address

8-Fetch Record Data Buffer N/A N/A
Address

Note: N/A = Not Appl i cable

262 SC34-0312

After Execution of $PDS:

DATA WORDS
0 1 2 3

CO~1MAND

I-Open 1st Record Records Member User
Type Code Code

2-Allocate 1st Record Records Member User
Type Code Code

3-Allocate Max 1st Record Records ~lember User
Type Code Code

4-Release N/A N/A N/A N/A

5-Delete N/A N/A N/A N/A

6-Store Next Record Data Buffer Records N/A
Address In f1ember

7-Store Record Data Buffer Records N/A
Address In Member

8-Fetch Record Data Buffer Records N/A

Note: N/A = Not Applicable

Chapter 12. Using Partitioned Data Sets 263

264 SC34-0312

CHAPTER 13. DIAGNOSTIC AIDS AND FACILITIES

THE SOFTWARE TRACE TABLE

An analysis of the software trace table is the first step in the
determination of a software problem. This table contains pro­
gram check, soft exception, and machine check trace data, and
offers information on the types of errors that have been occur­
ring. This information may lead to more efficient utilization
of other prob lem determ i nat i on aids such as a $TRAP, $OUMP,
$DEBUG, $D, and the hardware error log. The structure of this
table' is seen in Figure 42 on page 267.

When an errors occurs, an entry is placed into the next avail­
able trace table slot. This entry includes a state variable,
the TCB address, the Processor Status Word (PSW), the Storage
Address Register (SAR), and the level Status Block (lSB). After
the table is filled, the oldest entry is overlaid by the new
entry. The second word of the control table points to the old­
est entry. Hence the newest entry precedes the oldest.

Software trace table support is included at system generation
time by adding an INCLUDE CIRCBUFF entry to the link control
data set ($lNKCNTl). The default trace table has room for
eight fifteen word ertries. This number may be modified if
you:

• Alter the replication factor on the CIRESTR variable (in
CIRCBUFF source module) by a multiple .of the entry size to
reflect the new trace entry space desi red

• Reassemble CIRCBUFF module

• Relink the supervisor

The $0 operator command may be used 'to obtain a dump of the
software trace table information. Upon issuing the $D Command,
you wi 11 be prompted for:

1. Origin. ENTER O.

2. The beg i nn i ng address of the trace tab Ie. Enter the
CIRCBUFF entr~ point from the system generation link list­
i n g •

3. Number of addresses to be displayed. This value is:

Chapter 13. Diagnostic Aids and Facilities 265

(10 + (30n»/2

Where n equals the number of entry spaces that
you have allowed for. The default for n equals 8.
Therefore, the default number of addresses equals:

(10 + (30x8»/2 = 250/2 = 125

Example: The first entry in the trace table stora~e dump below
ref 1 e c t s the f 0 11 ow 1 n'g pro 9 ram c he c kin for mat ion as dis pIa ye d
on the console:

PGM CHECK:
PLP TCB PSW LSB
6800 0138 8002 1E6A 0000 8800 6C30 687E 6C38 6C31 6C32 005C 0088 00

> $0
ENTER ORIGIN: 0
ENTER ADDRESS,COUNT: 62EE,125

62EE: 62F8 6370 63E8 0004 ODIE 0100 0138 8002
62FE: 6C31 1E6A 0000 8800 6C30 687E 6C38 6C31
630E: 6C32 005C 0088 0000 0100 0138 8002 6C31
631E: 1E6A 0000 8800 6C30 687E 6C38 6C31 6C32
632E: 005C 0088 0000 0100 0138 8002 6C31 1E6A
633E: 0000 8800 6C30 6B7E 6C38 6C31 6C32 005C

634E: 0088 0000 0100 0138 8002 6C31 1E6A 0000
635E: 8800 6C30 687E 6C38 6C31 6C32 005C 0088
636E: 0000 0000 0000 0000 0000 0000 0000 0000
637E: 0000 0000 0000 0000 0000 0000 0000 0000
638E: 0000 0000 0000 0000 0000 0000 0000 0000
639E: 0000 0000 0000 0000 0000 0000 0000 0000
63AE: 0000 0000 00-00 0000 0000 0000 0000 0000
638E: 0000 0000 0000 0000 0000 0000 0000 0000
63CE: 0000 0000 0000 0000 0000 0000 0000 0000
63DE: 0000 0000 0000 0000 0000

ANOTHER DISPLAY?

266 SC34-0312

ADDRESS CONTENT~ VALUE

62EE through
62F5

Control table 62F8
6370
63E8
0004
OOIE

62F8 through
6315

A trace entry 01

6316 through 6333 A trace entry
6334 through 6651 A trace entry
6352 through 636F A trace entry

* STATE VARIABLE VALUES:

00
0138
8002
6C31
1E6A
0000
8800
6C30
6B7E
6C38
6C31
6C32
005e
00B8
0000

o = no interupt in process

DESCRIPTION

Address of first entry
Address of next entry
Address of end of table
Use count
Size of each entry
State variable
Address key
TCB address
PSW
SAR
IAR
AKR
LSR
GPRO
GPRI
GPR2
GPR3
GPR4
GPR5
GPR6
GPR7

1 = standard (default) processing
2 = now processing task error exit
3 = undefined

Figure 42. Software Trace Table Structure

Chapter 13. Diagnostic Aids and Facilities 267

THE TASK ERROR EXIT FACILITY

Check and Trap Handl;ng ~ An Overv;ew

Our i ng the execut i on of a task, except i on cond it ions may ari se
either in the task itself or in the Series/l hardware. These
conditions are known as machine checks (indicating a hardware
malfunction such as a storage parity check), program checks
(indicating a software malfunction such as a specification
check), and soft exception traps (indicating an unusual, but
generally recoverable, software condition such as a floating­
point exception). When any of ,these exceptions occurs, the
processor saves its state in an area of storage set aside for
that purpose by the supervisor and gives control to the super­
visor through special entry points, one for each type of
exception. For detai Is of the hardware handling of exceptions,
see the processor description manuals.

The major goal of the supervisor in handling exceptions is to
keep the system running. The usual response to program and
machine check exceptions is to cancel the /program that the
offending task is a· part of.' The response for soft exception
traps is to resume processing at the instruction following the
one that caused the except i on.

The super visor approac h to except i on hand 1 i rig, wh i Ie appropr i­
ate for a large number of programs, is sometimes inadequate.
For example, if your task shares resources (e.g. QCBs or ECBs)
with a task in another program, when an error is encountered
the supervisor will not release the resources. If your task
were unable to continue because of the error, it may be neces­
sary to release the resources and inform the other task of the
error.

Whenever an exception occurs in a task with a task error exit,
the supervisor, instead of processing the exception in the usu­
al way, stores the hardware status at the time of the exception
in a block of storage designated by the task. It then passes
control to the task at its task error exit entry point. The
task's error routine is then in control and must interrogate
the stored hardware status to make an appropr i ate response.

Note that a task error exit routine is a part of the task it
serves - the supervisor passes control to it at the task level;
it is not a subroutine of the supervisor's error handler.
There are important ramifications of this fact. The registers
(including the EOL software registers, #1 and #2) used by the
error exit routine are those normally used by the task. To
resume executing the task following corrective action by task
error exit, simply branch (if in Series/l instruction mode) or
GOTO (if in EOL mode) the appropriate location. If the error
exit is unable to recover from the exception, it should issue a

268 SC34-0312

PROGSTOP instruction.

Using the Task Error Exit Facility in Your Task

Linkage Conventions

To make use of the Task Error Exit facility in your task, you
must code a small control block and the error exit routine. In
addition, you must set aside the block of storage that will be
fi lIed with the hardware status when an exception occurs.

The control block, called the task error exit control block
(TEECB), provides the linkage between the supervisor and your
error ex it. The TEECB must be al i gned on a fullword boundary.

To allow the supervisor to find your TEECB, you should code its
address as the' value of the ERRXIT keyword parameter of the
PROGRAM or TASK EDL statement that defines your task.

T he for m'a t 0 f t he TEE C B i s as follows:

TEECB
TEECTL
TEESIA
TEEHSA

DS OF
DC X'0002'
DC A(XITRTN)
DC A(HSA)

TASK ERROR EXIT CONTROL BLOCK

______ 0 _______ 1 ______ 2 ____ _
___________ SI A ____________ _
___________ HSA __________ __

In the of irs t word (T E E C T L) , bits 0- 7 are reserved and must be
zero. Bits 8-15 state the number of data words that follow.
This value must be two. The second word (TEESIA) contains the
address of the starting instruction of your Error Exit routine.
The last word (TEEHSA) contains the address of the block of
storage you have reserved to receive the hardware status when
an exception occurs. This block is called the Hardware Status
Area (HSA) and is 24 bytes long.

The format of the HSA is:

* HSA
HSAPSW
HSALSB
HSAAKR
HSAIAR
HSALSR
HSAREGS

HARDWARE
DS
DS
EQU
DS
DS
DS
DS

STATUS AREA
OF ALIGN ON FULL WORD BOUNDARY
IF PROGRAM STATUS WORD
* LEVEL STATUS BLOCK
IF ADDRESS KEY REGISTER
IF INSTRUCTION ADDRESS REGISTER
IF LEVEL STATUS REGISTER
8F GENERAL REGISTERS 0 - 7

The contents of the various HSA locations (PSW,AKR,Etc,) will
contain, at entry to your error exit routine, the values that
were in the correspond i ng hardware reg i sters at the time of the

Chapter 13. Diagnostic Aids and Facilities 269

exception. Upon entry to your error routine, general registers
1 and 2 wi 11 have been set to the SIA of your routine and to the
address of your task's TCB, respectively.

Since entry to your error exit routine is made at the Event
Driven Language level, the contents of the remaining general
reg i sters is dependent upon what instruct ions are executed.

What Happens When an Exception Occurs

If an exception (machine check, program check or soft exception
trap) occurs during the execution of your task and you have
specified a task error exit, as outlined above, the supervisor
locates your TEECB. It then uses the TEEHSA pointer to locate
your HSA and stores the hardware status information in it.
Next, it retrieves the TEESIA pointer and sets it to zero to
prevent recursive exceptions. Finally, it starts your task at
the address it retrieved if that address is non-zero. If the
TEESIA is zero or an exception occurs during any of this proc­
essing (if, ·for example, the TEECB is invalid), the supervisor
treats the error as though no task Error Exit had been speci­
fied. Note that even if the TEESIA is zero, the supervisor
st ill attempts to store the hardware status.

Since the supervisor zeroes TEESIA prior to starting your task,
your error exit routine only gets control on the first
exception that occurs, unless your routine restores TEESIA to
its original condition. Zeroing TEESIA allows the supervisor
to handle exceptions that occur in error exit routines, thus
preventing recursion in the error handling process. When you
implement a task error exit, do not restore TEESIA until the
error exit routine has completed.

I/O ERROR LOGGING

The Event Driven Executive provides the capability to record
dev i ce I/O errors into a log data set on disk or diskette and to
display the log data set. The support is provided with a set of
utilities and subroutines.

Recording the Errors

To activate I/O logging, the utility $LOG is loaded into any
part it i on. The logg i ng funct i on can be deact i vated, react i­
vated, and terminated after it becomes acti vee

270 SC34-0312

The logging function is performed in three steps. First, the
d~vice handler gathers all the pertinent information required
by the LOG interface. Among the requi red parameters is the
address of the log data. This parameter points to the device
data block (DDB) coritaining the lDCB, DCBs, and device status
to be logged. Optionally, you may provide the default log
record format or a control block containing all the necessary
information. Second, control is passed to the logging subrou­
tines which build a log record by copying the DDB and other
parameters into a buffer. The log record is then placed on the
log queue, and control is returned to the caller after the log­
ging utility is posted. Last, the utility SLOG, having been
posted, receives the log entry from the queue and writes it to
the log data set.

The I/O error logging function can be called by both system and
application programs. If a program requires logging but is not
link- edited with the system, then the modules SDEVLOG and
$$RETURN must be link- edited with the program. There are two
interfaces to perform logging. The LOG macro is provided for
programs that are assembled with $S1ASM. A similar interface
using the USER instruction is provided for use with Event Driv­
en Language and is not available to programs link-edited with
the system. The interfaces available for perfotming I/O error
logging are described below.

The LOG Macro

The LOG macro is used to generate a BAL instruction (using R7)
to the routines that perform the logging function. The macro
also expands a parameter list which can be modified at exe­
cution time by using a set of equates. The equates are gener­
ated by coding the LOG macro with the TVPE=EQUATES parameter
specified. Before a call is made to the LOG function from a
task, the OPl key must have the storage key value of the TCB and
the OP2 key must be equal to the ISK key. If the LOG function is
called from as the result of an interrupt, then the OP2 key must
have a zero value. The caller's registers, except R7, are
restored when control is returned to the calling program.

Syntax

Chapter 13. Diagnostic Aids and Facilities 271"

Label LOG

Required:
Defaults:

logtype,datatype,dataaddr,
datakey, devaddr, i i b, i ntcc,
REQTVPE=,TVPE=.RETURN=,Pl=,P2=,
P3=,P4=,P5=,P6=,P7=

logtype,datatype,dataaddr,datakey,devaddr
None

Indexable: None

Operands

logtype

datatype

Description

Indicator of the type of log record.· Use one of the
following values:

• SSE - Soft error (device recoverable)

• $HE - Hard (unrecoverable) error

• $RE - Software recoverable error

PI names a byte field which can be modified at exe­
cution time using the above values.

Indicator of the type of control block data being
logged. The following values are used by the Event
Driven Executive supervisor.

• $LTERM :- For terminal control block

• $49789 For terminal control block

• $49734 For ·terminal control block

• $LDISK For disk and diskette contra 1 block

• $LDISKI For, disk and diskette control block

• $L4969 For tape control block (Version 2.0
only)

• $LBSe For sse control block

• SLDFLT For the default log data format

P2 names a byte field which can be modified at exe­
cution time using the above values. The values 128
to 255 are reserved for your control blocks.

272 SC34-0312

devaddr

i i b

intcc

REQTVPE=

TYPE=

RETURN=

The address of the log data. P3 names a two-byte
field which can be modified at execution time.

The add res ssp a 'c eke y (0 - 7) 0 f the log d a t a add res s •
P4 names a one-byte field which can be modified at
execution time.

The device address. PS names a byte field which can
be modified at execution time.

The interrupt information byte. This is an
optional parameter which should be specified only
if the IIB is not found in the log data. P6 names a
byte field which can be modified at execution time.

The condition code presented by the hardware when
the I/O interrupt was accepted. This is an optional
parameter which should be specified only if the
cond i t i on code is not found in the log data. P7
names a byte field which can be modified at exe­
cution time.

The caller's execution state

• IA i nd i cates that the call was made as the
result of an interrupt.

• TASK indicates that the call was made from a
task.

Specify EQUATES to indicate that only the list of
equates for setting the various parameter values is
pro v i ded. Spec i fy DSECT to generate both the
equates and a DSECT.

Specify a label which is assigned to the location in
the log parameter list conta i n i ng the return
address. The two-byte return address is initialized
wi th the address of the location following the
parameter list. The return address may be modified
at execut i on time by mov i ng the des i red return
address into the location addressed by the label
spec if i ed for th is parameter.

Passing Control to the Log Routines

To allow the log function to be called from the Event Driven
Language, the USER instruction can be used to pass control to
the log routines. In the calling sequence you must pass cer­
tain parameters which are similar to those specified in the LOG
macro. ~lhen a spec if i c equate va lue must be coded for a parame­
ter, generate the equates by cod i ng COpy LOGEQU or LOG

Chapter 13. Diagnostic Aids and Facilities 273

TYPE=EQUATES. As with the LOG macro, the parameters may be
modifi~d at execution time. Note that all parameters are two­
byte fields, unlike the parameters in the LOG macro.

Operands

logtype

datatype

dataaddr

datakey

devaddr

USER $USRLOG,PARM=(logtype,datatype, C
dataaddr,datakeY,devaddr)

Description

Indicator of the type of log record. Use one of the
following values:

1. $SE - Soft error (device recoverable)

2. $HE - Hard (unrecoverable) error

3. $RE - Software recoverable error

Indicator of the type of control block data being
logged. The following values are used by the Event
Driven Executive.

• $L TERM For termi nal control block

• $ LD! SK For d 1sk and diskette contra 1 block

• $LHSTCOM - For HOSTCOMM control block

• $LBSC For BSC control block

• $L TIMER - For timer control block

• $LPI For PI control block

• $LDI For digital input control block

• $LDO For digital output control block

• $4969 For tape control block (Version 2.0
only)

The address of the log data.

The address space key of the log data address.

The dev i ce address.

274 SC34-0312

I

In order to make the invocation of the log function reentrant,
you may need to disable the system whi Ie your program is modi­
fying the parameter list. Note that the logging routine disa­
bles the syst~m for a small period of time immediately after
logging is invoked. Control is passed back to the caller with
the system enabled.

Printing the Errors

The I/O error log data set contains unformatted log records
which the system I/O device handlers, through $lOG, have writ­
ten to the log data set. These unformatted data records are
interpreted, formatted, and printed by the $OISKUT2 utility.
$DI SKUT2 processes the log records of the fo llow i ng I/O
devices:

• 4962 and 4963 disks

• 4964 and 4966 diskettes

• 4973 and 4974 printers

• 4978 and 4979 displays

• BSCA

• 4969 tapes (Version 2.0 only)

$DISKUT2, upon recognition of the lIST lOG command, reads the
log data set control record and verifies that the log data set
is valid. Using pointers in the control record, it determines
whether the data set has wrapped around and the number of
records in the log.

The first record of the log data set is a control record which
contains the device table and initialization data. It also
conta i ns the size of the log data set and the number of the next
r e cor d t 0 be w r itt en. I nit i all y, the n ext r e cor d t 0 b e w r itt e n
is set to "3". If the size of the data set is ten records and
the tenth record has been written, the next record to be writ­
ten is set to "3" and the data set is said to have "wrapped
around". When th i s occurs, a message is pr i nted.

The second record is a set of 256 one-byte counters (one byte
per dev ice address). Each time an error occurs, the appropr i­
ate counter is incremented. For example, an error at device
address 4 causes byte 4 to be incremented. The counters cannot
be incremented past hex' 7F' •

Each record conta ins a dev ice address and a "pseudo" dev i ce
type at a fixed locat i on. Depend i ng upon the opt ions you
select, the device address determines whether to process the

Chapter 13. Diagnostic Aids and Facilities 275

record, and the pseudo device type determines how to process
the record.

Pseudo device types X'O!' thru X'7E' are reserved for system
I/O devices. If any of these values are present, $DISKUT2 wi 11
load the overlay program $LOGUTOO which interprets the log
record and moves critical information into a format buffer.
$LOGUTOO then returns to $DISKUT2 which prints the information
from the format buffer. Refer to utilities, Operator Commands,
Program Preparation, Messages and Codes' for further
i nformat i on on us i ng DISKUT2.

Log records with a pseudo types of X'7F' contain already for­
matted log data; no overlay program is called. The data is
pr i nted direct 1 y from the log record.

Log records with pseudo types X'80' thru X'FF' are is consid­
ered alien device log records. You must supply an overlay pro­
gram to format alien device log record into printable format.
The overlay program must be located in the IPL volume and must
begin with the characters "$LOGUT". The last two characters are
located through the device table (bytes 2 and 3 of the entry).
Note that the pseudo type is used only to look up the table
entry and need not be the same as the overlay name suffi x.

The Device Table

The log control record (the first record of the log data set)
contains a table of up to 30 entries (8 bytes per entry). This
table must be patched with the alien device pseudo type, the
si ze of the DDB (data block to be logged), and the two­
character overlay program suffi x.

The device table is provided so that devices other than system
dev ices (such as program products and RPQs) can be supported by
error logging with no change to the supervisor. The device han­
dler logs a pseudo type of X'80' through X'FF' and patches"this
information into the device table.

Note that it is the task which initializes the $LOG data set
that should be patched, and not the log data set. The procedure
for patch i ng is as fo llows:

1. Dump the fi rst two records of $LOG (512 bytes).

2. Locate the characters "DEVICE TABLE". Immediately follow­
ing these characters are 240 bytes of the alien device
table.

3. Patch in the above data as requ ired.

276 SC34-0312

The format of an entry is as follows:
byte 0 = pseudo type (X'BO' thru X'FF')

1 = data block S1 ze in bytes
2-3 = overlay suffix characters.
4-7 = reserved - do not use.

The pseudo type is the indicator of the type of control block
being logged (the datatype parameter on the LOG macro).

The next IPL of the system causes the log data set to be updated
with the new device table entries.

Display Program

$DISKUT2 uses the overlay suffix in the device table to load
the overlay program to format the log r~cord. If the program
cannot be loaded, the 256-byte record is dumped in hexadec i mal.
If an error is returned by the overlay program, the record is
dumped in hexadecimal.

A check is made to see if the overlay program requested is
already in storage. If it is not in storage, a LOAD instruction
is executed to bring it into storage. A WAIT for the end event
of the loaded program is then executed. The overlay program
should not issue a PROGSTOP. The overlay program should end
with a DETACH followed by a branch to the first executable
instruction of the overlay program.

If the required overlay program is already in storage, its main
task is attached and a WAIT is issued for the task end event.
This technique minimi zes disk access. Since a fresh copy of the
overlay program is not loaded for every invocation, the overlay
program must be reusable, making it important to initialize
data areas upon entry.

Chapter 13. Diagnostic Aids and Facilities 277

A suggested sequence follows:

PGM
INIT

GO

PROGRAM
EQU
USER
DETACH
GOTO
EQU
MVW
MVW
MVW

INIT,300,PARMS=3

* GO

INIT

* Rl,SAVERl
$PARMl,Rl
$PARM2,R3

* SAVE Rl
* ACRAW BUFFER)
* ACFORMAT)

* PROCESS DEVICE DEPENDENT DATA

SAVERl

MVW
MVWI
MVW
B
DC
ENDPROG
END

LOG Macro Equates

$PARM3,Rl
O,(Rl)
SAVERl,Rl
RETURN
A(*-*)

* ACSTATUS)
* SET STATUS OK
* RESTORE Rl
* RETURN TO DETACH

Coding LOG TVPE=ALL provides a listing of all equated symbols
associated with logging. Symbols beginning with $LGC define
the control record, and symbols beginning with $LOG define the
log record. $LOGEQU through $LOGDDBA are placed into the log
record by $LOG and are moved to the formatted record by
$DISKUT2 before calling the overlay program. The overlay
program must fill in the data defined by $LOGDDB through
$LOGDEP.

278 SC34-0312

CHAPTER 14. INTER-PROGRAM COMMUNICATIONS

A program may communicate with a terminal operator or with
another program. There are severa 1 ways to commun i cate:

• Pass i ng parameter s, us i ng the LOAD instruct ion.

• Communicating with a terminal operator.

• Communicating with another program.

For a descr i pt i on of the LOAD instruct ion, refer to the
Language Reference.

To communicate with a terminal operator, use the PRINTEXT and
READTEXT instructions. For a description of the PRINTEXT and
READTEXT instruct ions, refer to the Language Reference.

To communicate with another program, you may use either:

• Virtual terminal support in conjunction with the PRINTEXT
and READTEXT instructions.

• Cross part it ion serv ices.

Virtual terminal support uses the PRINTEXT/READTEXT
instructions to allow programs to communicate with each other.
It requ i res two TERMINAL conf i gurat i on statements and the
sup e r vis 0 r mod u leI OS V I R T • Ref e r to" A p p e n'd i x A • 5 tor a g.e
Estimating" on page 333 to estimate the storage required. Vir­
tual terminal support provides synchronization logic.

Cross partition services are general purpose services that
requ ire synchron i zat i on log i c in your programs but no add i­
tiona 1 storage in your super visor.

Communication is possible between two programs within the same
part it i on and between programs in different part i t ions.

VIRTUAL TERMINALS

The virtual terminal mechanism allows programs to communicate
across partitions as well as within the same partition.

Chapter 14. Inter-Program Communications 279

Creating a Virtual Channel

In the discussion of the TERMINAL statement in Chapter 2, it
was noted that the comb i nat i on

DEVICE=VIRT,ADDRESS=label

referred to a virtual device, and that the device could be
def i ned by another TERMINAL statement referenced by the
ADDRESS parameter. A virtual channel cons i sts of two such vi r­
tual devices, each referencing the other.

For example,

A TERMINAL DEVICE=VIRT,ADDRESS=B,SYNC=YES

and

B TERMINAL DEVICE=VIRT,ADDRESS=A

constitute a virtual channel. The SYNC parameter on terminal A
designates that terminal as the one to which 'synchronization'
events will be posted. The synchronization mechanism will be
discussed in "Inter-program Dialogue" on page 282.

A TERMINAL statement specifying DEVICE=VIRT can be entered in
an application program provided exactly the same statement is
entered in the system conf i gurat i on program. All TER~1INAL

statements within the application program are automaticallY
converted to an IOCB statement. The label on the TERMINAL
statement is used for the label and the operand of the IOCB
statement.

Establishing the Connection

Each program connects to its side of the channel in a way which
is analogous to the way in which real terminals are accessed,

280 SC34-0312

i.e., the program can be 'loaded' from a virtual device, or it
can acqu ire the dev i ce by i ssu i ng the ENQT instruct ion.

Accessing the Virtual Terminal

The application program can acquire a virtual terminal through
an 10CB simply by issuing

ENQT 101

101 IOCB VCHAN1

Loading from a Virtual Terminal

When an Event Driven Executive program is loaded from a real
t e r m i .n a l, t hat t e r min alb e com e sit s ' p rim a r y , com m u n i cat ion
port. When one program loads another, the current terminal of
the first program i Sl, '·passed' and becomes the pr i mary term; nal
of the second. It is this convention which allows a new program
to establish a virtual terminal as the primary port for the
loaded program. This is done with the following sequence:

Definition contained in supervisor system generation:

A
B

TERMINAL
TERMINAL

DEVICE=VIRT,ADDRESS=B,SYNC=YES
DEVICE=VIRT,ADDRESS=A,END=YES

Chapter 14. Inter-Program Communications 281

Program execution:

A
B

ENQT
LOAD
ENQT

loeB
IOCB

B
$TERMUTl,LOGMSG=NO,END=ENDWAIT
A

A
B

After this sequence, $TERMUTI has B (the 'other' end
channel) as its primary port, and the loading program
('this' end of the channel) as its current port.

Inter-program Dialogue

of the
has A

Once the two commun i cat i ng programs have connected to the i r
respect i ve ends of the channel, the normal termi nal I/O
instruct ions can be used to send and rece i ve data. These
instructions include PRINTEXT, READTEXT, PRINTNUM and
GET V A L U E. A Iso, at ten t ion OJ n t err up t s can beg e n era ted by mea n s
of the TERMCTRL PF instruction described in the Language
Reference. The usual conventions with respect to output
buffering and advance input apply. There are some questions of
commun i cat i on protoco I (such as knowi ng when a program is ready
for input, has ended, etc.) wh i ch need not be made exp 1 i cit for
dialogue with a human operator with a real terminal but which,
for virtual terminals, req~ire the condition to be explicitly
communicated through the task code word. The relevant code
word values are listed below along with their meanings.

Value Transmit Receive

X'BFnn' NA LINE=nn received
X'BEnn' NA SKIP=nn received

-2 NA Line received (no CR)
-1 Normal completion New line received

1 Not attached Not attached
5 Disconnect Disconnect
B Break Break

2B2 SC34-0312

LINE=nn (X'SFnn')

SKIP=nn (X'SEnn')

Line Received (-2)

Th is code is posted for READTEXT or
GETVALUE instructions if the other side
sent the LINE forms control operation;
it is transmitted so that the receiving
program can reproduce on a real terminal
(for printer spooling applications for
example) the output format intended by
the send i ng program.

The sending program transmitted
SKIP=nn.

This code indicated that the sending
program did not send a new-line indica­
tor, but that the line was transmitted
because of execution of a control oper­
at i on or a trans i t i on to the read state.
This is how, for example, a prompt mes­
sage is uSlially transmitted with
READTEXT or GETVALUE.

New Line Received (-1) This code indicates transmission of the
carriage return at the end of the data.
The d i st i nct i on between a new-l i ne
indicator and a simple line indicator is
made only to allow preservation of the
original output for~at.

Not attached (1)

Disconnect (5)

Break (8)

If the vi rtual terminal accessed for the
operation does not reference another
virtual terminal, then this code is
returned.

This code value corresponds to the not
ready indication for real terminals;
its specific meaning for virtual termi­
nals is that the program at the other
end of the channel terminated either
through PROGSTOP or operator inter­
vention.

The break code indicates that the other
side of the channel is ina state
(transmit or receive) which is incom­
pat i b Ie with the attempted ope rat ion.
If only one end of the channel is
defined with SYNC=YES, then the task on
that end will always receive the break
code, whether or not it attempted the
operation first. If both ends are
defined with SYNC=VES, then the cede
will be posted to the task which last
attempted the operat i on. The break code
can thus be understood as fo llows: when
read i ng (READTEXT or GETVALUE), the

Chapter 14. Inter-Program Communications 283

other program has stopped send i ng and. is
waiting for input; when writing
(PRINTEXT or PRINTNUM), the other
program is also attempting to write.
Note that current Event Dr i ven Execu­
tive programs, or future programs which
do not interpret the break code, must
always communicate through a vi rtual
terminal which is defined with SYNC=NO
(the ,default).

Example: The following program exhibits virtual terminal
com m u n i cat ion sin age n era 1 way. I ts fun c t ion i s t 0 loa d apr 0 -

gram designated by the operator, communicate with that program
through a vi rtual channel and relay messages between it and the
real termi nal.

284 SC34-0312

VIRTCHAN PROGRAM BEGIN
*---
*
*
*
*
*
*
*
*

THIS EXAMPLE EXHIBITS VIRTUAL TERMINAL
IN A GENERAL WAY. ITS FUNCTION IS TO
LOAD A PROGRAM DESIGNATED BY THE OPERATOR,
COMMUNICATE WITH THE PROGRAM THROUGH A
VIRTUAL CHANNEL, AND RELAY MESSAGES BETWEEN
IT AND THE REAL TERMINAL.

*---
A
B
DEND
RETCODE
LINE

*

COpy PROGEQU (REQUIRED IF USING $EDXASM)
TERMINAL DEVICE=VIRT,ADDRESS=B,SYNC=YES
TERMINAL DEVICE=VIRT,ADDRESS=A,END=YES
ECB
DC
TEXT

F ' 0 '
LENGTH=80

BEGIN READTEXT LINE,'UTILITY:' * GET PGM NAME
IF (LINE,EQ,C' ',BYTE),GOTO,END
MOVE LOAD+10,LINE,(14,BYTES) * TO LOAD INSTR
ENQT B * GET END B

LOAD LOAD DUMMY,LOGMSG=NO,EVENT=DEND,ERROR=NEXTPROG
ENQT A * GET END A

NEXTREAD READTEXT LINE,MODE=LINE "* NEXT LINE FROM PGM
MOVE RETCODE,VIRTCHAN * GET RETURN CODE
DEQT * DEQUEUE FROM CHANNEL
IF (RETCODE,EQ,S),GOTO,ENDWAIT * IF END
IF RETCODE,NE,8 * IF NOT END OF OUTPUT

IF (RETCODE,EQ,-1),OR,(RETCODE,EQ,-2)
PRINTEXT LINE,MODE=LINE * TO TERMINAL
IF RETCODE,EQ,-1 * IF NEWLINE

PRINTEXT SKIP=1 * THEN DO NEWLINE
. ENDIF

ELSE
IF (RETCODE,EQ,X'8F',BYTE) * IF LINE=

AND RETCODE,X'OOFF' * THEN DO IT
PRINTEXT LINE=RETCODE * ON TERMINAL

ELSE
IF (RETCODE,EQ,X'8E',BYTE) * IF SKIP=

AND RETCODE,X'OOFF' * ETC.
PRINTEXT SKIP=RETCODE

ENDIF
ENDIF

ENDIF
ENQT A * RETURN TO CHANNEL

Chapter 14. Inter-Program Communications 285

ELSE
READTEXT
ENQT
PRINTEXT
PRINTEXT

ENDIF

LINE,MODE=LINE
A
LINE,MODE=LINE
SKIP=!

* IF BREAK, READ LINE
* RETURN TO CHANNEL
* SEND LINE

ENDWAIT
NEXTPROG

GO TO
WAIT
DEQT
GOTO
PROGSTOP
ENDPROG
END

NEXTREAD
DEND

* GO GET NEXT LINE
* WAIT FOR END EVENT
* DEQUEUE FR CHANNEL
* GO GET NEXT PGM BEGIN

END

CROSS PARTITION SERVICES

Cross partition services permit asynchronous but coordinated
execution of application programs running in different parti­
tions.

These services can be used when interrelated programs and tasks
in your application cannot be accommodated in a single parti­
tion.

When your task is attached, its TCB ($TCBADS) is updated to
contain the number of the address space in which it is execut­
ing. The address space value (the partition number minus one)
is also known as the hardware address key. This key, along with
an address you supply, is used to calculate the target address
used in cross partition services. For some functions, you put
the address key of the target part it ion in $TCBADS.

Cross partition services provide the following:

• Loading other programs via the LOAD instruction (using the
PART= operand).

PROGA

START

PROGRAM
COPY
COPY
LOAD
WAIT

PROGBEND ECB
PARMLI DATA

286 SC34-0312

o

START,DS=DATASETI
PROGEQU
TCBEQU
PROGB,PARMLl,EVENT=PROGBEND,PART=2
PROGBEND

F ' 0 '
DEFINE ECB W/VALUE OF ZERO
(AS REQUIRED)

In this example, PROGB is loaded into partition two and the
parameters at PARML! are passed to it. When PROGB termi­
nat e s, the sup e r vis 0 r w ill p 0 5 t the E C Bat P R OG BEN D ,
signa ling PROGA that PROGB has ended.

$TCBADS is not modified by the LOAD instruction.

Note: In this and the following examples, the same data
areas are referenced to show interrelationships.

• Finding other programs via the WHERES instruction which
returns the address key and the load point of a program

•

PROGB
ADDRB
KEYB

WHERES PROGB,ADDRB,KEY=KEYB

DATA
DATA
DATA

C'PROGB
F ' 0 '
F ' 0 '

PROGRAM NAME
FOR PGM HDR ADDRESS
FOR PGM ADDRESS KEY

The above instruction .causes the address key and program
header address of PROGB to be placed into KEYB and ADDRB.

$TCBADS is not mod ~ f i ed by the WHERES instruct i on.

Data movement v i a the MOVE i ~struct ions us i ng the FKEY=
TKEY= operands. FKEY designates the address key of
partition containing the "from" address (operand2 of
MOVE instruct ion). TKEY des i gnates the address key of
partition containing the "to" address (operand! of
MOVE instruction).

MOVE :ft:2,ADDRB ADDRESS OF HEADER

* * GET TCB ADDRESS FROM PROGB HEADER

*
MOVE

TASKADDR DATA
TASKADDR,($PRGTCB,#2),FKEY=KEYB
F'O' PROGB'S PRIMARY TCB

and
the
the
the
the

Using the address and address key obtained from the WHERES
instruction in the previous example, the above cross­
part it i on MOVE instruct i on obta ins the pr i mary TCB address
from a program in another partition.

• Starting other tasks via the ATTACH instruction. $TCBADS
and the supplied task name are used to calculate the parti­
t i on and address of the task to be attached.

Assume that PROGB's primary task does not terminate but
iss u e saD ETA CHi n s t r u c t ion • P ~~ G A can c a use the p rim a r y
task of PROGB to become active by issuing an ATTACH, speci­
fying the address key and the address of the TCB as fol­
lows:

Chapter !4. Inter-Program Communications 287

*

MOVE
MOVE

KEYSAV,$TCBADS+PROGA
$TCBADS+PROGA,KEYB

SAVE MY KEY
SET UP KEY VAL

* REATTACH PROGB'S PRIMARY TASK

* ATTACH *,500,CODE=-5,Pl=TASKADDR
MOVE $TCBADS+PROGA,KEYSAV RESTORE MY KEY

KEYSAV DATA F'O' KEY SAVE AREA

Th i s sequence of instruct ions saves the address space key,
replaces it wilh the key of PROGB, and issues an ATTACH
instruction to reactivate PROGB's primary TCB. In the
above example, TASKADDR is set to the appropriate TCB
address.

• Shar i ng resources v i a the ENQ/DEQ instruct ions. $TCBADS
and the QCB address are used to calculate the partition and
the address of the resource to be enqueued or dequeued.

Assume that PROGA has passed to PROGB the address of two
QCBs and that PROGB has saved these addresses in RES! and
RES2 respectively. Sharing these resources can be accom­
plished as follows:

MOVE
MOVE
r10VE
ENQ
MOVE

SAVKEY,$TCBADS+PROGB SAVE KEY
RESNAME,RESI RESOURCE ADDRESS
$TCBADS+PROGB,PROGAKEY SET KEY TO PROGA
*,BUSY=CANTHAVE,Pl=RESNAME ISSUE ENQ
$TCBADS+PROGB,SAVKEY RESTORE MY KEY

CANTHAVE DATA F'O'

*
ROUTINE TO:

1. RESET $TCBADS FROM SAVKEY

*
*

RES!
RES2
SAVKEY

DATA F'O'
DATA F'O'
DATA F'O'

2. HANDLE NON-AVAILABLE
RESOURCE

RESOURCE ONE ADDRESS
RESOURCE TWO ADDRESS
SLOT FOR KEY SAVE AREA

This example acquires exclusive use of the resource
defined as RES!. If the resource is not available,
execution of PROGB resumes at location CANTHAVE. It is
also possible to wait for PROGA to free (dequeue) RES!. In
this case, a BUSY keyword is not entered, causing PROGB to
be suspended unti I PROGA issues a DEQ for the resource.

A DEQ instruct i on is set up in an i dent i ca 1 manner.

• Synchronizing tasks via the WAIT/POST instructions.
$TCBADS and the ECB address are used to calculate the
part i t i on number and the address of the ECB to be wa i ted on

288 SC34-0312

or posted.

Assume that PROGA has passed parameters to PROGB, among
them an EOB address and the key of PROGA. The parameters
are saved in PROGAECB and PROGAKEY respecti vely. PROGB can
signa 1 (post) PROGA as fo llows:

MOVE
MOVE
MOVE
POST
MOVE

KEYHOLD DATA
PROGAECB DATA
PROGAKEY DATA

KEYHOLD,$TCBADS+PROGB SAVE $TCBADS
PROGA,PROGAECB SET ADDR OF ECB
$TCBADS+PROGB,PROGAKEY SET PROGA'S KEY
*,-1,P1=PROGA POST PROGA
$TCBADS+PROGB,KEYHOLD RESTORE $TCBADS

F ' 0 '
F ' 0 '
F ' 0 '

SAVE AREA FOR KEY
ECB ADDR IN PROGA
PROGA'S KEY

In this example, PROGB saves its key, inserts the address
of PROGA's ECB, set $TCBADS to the key of PROGA, issues a
POST to PROGA, and restores its $TCBADS, using the value
saved.

A WAIT instruction is set up in an identical manner.

• I/O serv ices v i a the READ/WRITE or BSCREAD/BSCWRITE
instructions. $TCBADS is used to calculate the partition
and address to/from whi ch data wi 11 be transferred.

Assume that PROGB had STG=1024 on its PROGRAM statement.
This causes a 1024 byte area of storage to be acquired for
PROGB when it is loaded. The address of this area is in
PROGB's program header (at $PRGSTG). PROGA can acquire
th is 'address as fo llows:

*
MOVE PROGBBUF,($PRGSTG,#2),FKEY=KEYB #2 HAS

THE ADDRESS OF PROGB'S HEADER

PROGBBUF DATA F'O' ADDR OF PROGB'S DYNAMIC AREA

Chapter 14. Inter-Program Communications 289

PROGA can then read data directly into PROGB's storage as
follows:

*

MOVE
MOVE
MOVE
MOVE

SAVAKEY,$TCBADS+PROGA SAVE $TCBADS
BUFAD,PROGBBUF PROGB BUFFER
RELREC,RECN START WITH REC 1
$TCBADS+PROGA,KEYB SET PROGB KEY

* READ FROM DSl INTO PROGB'S BUFFER

* READ DSl,*,4,*,END=EOD,ERROR=RDERR,
P2=BUFAD,P4=RELREC

* * RESTORE PROGA'S KEY

*

EOD

*
*

RDERR

*
*

RECN

MOVE $TCBADS+PROGA,SAVAKEY

DATA F'Q' ROUTINE TO:
1. RESET $TCBADS
2. HANDLE END OF DATA

DATA F'O' ROUTINE TO:
1. RESET $TCBADS
2. HANDLE ERROR CONDITIONS

DATA F'I' RELATIVE RECORD NUMBER

C

In this example, four 256-byte records are transferred
(from the data set described by OS! in PROGA's program
header) to the storage address obtained from PROGB's head­
er.

Notes:

1. After i ssu i ng the cross part 1 t i on serv i ce request, $TCBADS
was immediately ,restored to its original value. It is
recommended that th i s pract i ce be i rnplemented in your
application. Doing so will preclude unexpected or unpre­
dictable results such as overlaying other applications
with data or waiting indefinitely because of ECBs that were
never posted or DEQs that were never issued.

2 • In the READ example, only the LOC operand
instruction (or the BUFFER operand of
instruct i on) is affected by $TCBADS. All

of
the

other

the READ
BSCIOCB
operand

values or addresses are contained in the address space of
the i ssu i ng program. Therefore, the END operand spec j f i es
a rout i ne in your program wh i ch j s to be invoked if an end­
of-data cond i t ion occ urs.

290 SC34-03l2

3. When an ATTACH instruction is executed, the default termi­
nal address or the currently active terminal address of the
tC1sk issuing the ATTACH is placed into $TCBCCB. This
address is a CCB address.

4. When a LOAD instruction is executed for an overlay or
non-overlay program, the default terminal address or the
currently active terminal address of the program issuing
the LOAD is placed in the program header of the loaded pro­
gram. This address is taken from $PRGCCB in the issuing
program's program header and placed into $PRGCCB of the
loaded program's program header. This address is a CCB
address.

Chapter 14. Inter-Program Communications 291

292 SC34-0312

CHAPTER 15. MISCELLANEOUS TERMINAL I/O CONSIDERATIONS .

Log i cal screens can bedef i ned either during system generation
or at the time an ENQT instruction is 'executed. Examples of the
TERMINAL statement for the 4978/4979 Display are gi ven below.

TERMl TERMINAL DEVICE=4979,ADDRESS=04

Defines the default configuration, to be used for general pur­
pose program loading and execution. The entire screen simu­
lates a typewriter terminal.

TERM2 TERMINAL DEVICE=4979,ADDRESS=14,SCREEN=STATIC

Defines a full screen static configuration to be used for data
entry and display. Programs can be loaded from the terminal,
but the terminal' I/O instructions issued will be interpreted
for a STATIC screen unless the configuration is changed to ROLL
by a n 10 C B . T h i's con fig u rat ion w 0 u 1 d nor mall y be use d w hen the
terminal is to be used only as Cl data entry device.

TERM3 TERMINAL DEVICE=4978,ADDRESS=24,TOPM=12,NHIST=6

This represents a split screen configuration. The area of roll
screen operation will be limited to the bottom 12 lines of the
screen, leaving the top half for other logical screens to be
defined upon execution of ENQT.

TERM4 TERMINAL DEVICE=4979,ADDRESS=34,LEFTM=39, C
BOTM=11,NHIST=O

Chapter 15. Miscellaneous Terminal I/O Considerations 293

This statement defines a roll screen occupying the upper right
quadrant of the screen. In general, logical screens with less
than an aD-character line size suffer some performance disad­
vantages (such as slower erasure) but can be useful for special
app Ii cat ions.. Note that NH 1ST is zero here because screen
shifting will not be performed; a non-zero value for NHIST
would merely cause the history area to be unused.

Logical screens can also be established by the ENQT instruction
referenc i ng an IOCB. Examp les fo llo.w.

DISPLAY
TOPHALF
BEGIN

PROGRAM
IOCB
ENQT

DEQT
PROGSTOP
ENDPROG
END

BEGIN
BOTM=ll,SCREEN=STATIC
TOPHALF

The IOCB labeled TOPHAlF defines the top half of the screen
from which the program was loaded as astatic screen. If, for
example, the terminal was configured as in TERM3 on the previ­
ous page, the program could have been loaded by entry of $L
(program name) in the roll screen area on the bottom half of the
screen. Since no term ina I name is spec if i ed on the IOCB state­
ment, the ENQT refers to the loading terminal. The program
then might display tabular information on the static screen,
execute DEQT and then end. The resul t of th i sis that the
information displayed can remain on the screen whi Ie the termi­
na 1 operator per forms other ope rat ions us i ng the ro 11 screen.

294 SC34-0312

NOTICE
TERMX
NAMETAB

BEGIN

PROGRAM
IOCB
DATA
DATA
DATA
DATA
MOVEA
DO
MOVE
ENQT
PRINTEXT
DEQT
ADD
ENDDO
PROGSTOP
ENDPROG
END

BEGIN
SCREEN=STATIC
CL8'TERMl'
CL8'TERM2'
CL8'TERM3'
CL8'TERM4'
il,NAMETAB
4
TERMX,(O,il),(8,BYTES)
TERMX
'SYSTEM ACTIVE',LINE=O

#1,8

This example illustrates terminal access by using the name of
the terminal. TERM1, TERM2, TERM3, and TERM4 must have been
defined on a TERMINAL configuration statement. The use of the
static screen mode insures that only physical line 0 of each
screen wi 11 be altered. (LINE=O for roll screens causes a page
eject and erasure of information.)

Elements of the IOCB which may be modified by an application
program are the terminal name, roll to static, and NHIST. The
structure given here is provided for those special applica­
tions in which other elements may need to be modified; note
that the structure may change with future versions of the Event
Driven Executive.

Chapter 15. Miscellaneous Terminal I/O Considerations 295

BYTECS) ELEMENT COMMENTS
.a

0-7 Terminal Name EBCDIC, blank filled

8 Flags #CCBFLGS i s described i n
the Internal Des;gn
manual under "Terminal
I/O".
Bit 0 off indicates that
the name i s the only element
of the IOCB.

9 Top of working Equal to TOPM+NHIST
area

10 Top margin TOPM or zero

11 Bottom margin BOTM, or X'FF' i f
unspecified

12 Le ft margin LEFTM or zero

13 Page size Equal to X'OO' i f
unspecified

14-15 Line size Equal to X'7FFF' i f
unspecified

16 Current line Initialized to TOPM+NHIST

17 Current indent Left margin included

18-19 Buffer. address Zero i f unspecified

296 SC34-0312

Accessing a Static Screen

Line-or i en ted input/output instruct ions prov i de the most
straightforward means for const~ucting and reading data from
s tat i c s c r e ens. Howe ve r , w hen i n d i vi d u aId a t a fie 1 d s are
accessed frequently, excessive screen flicker can result. This
problem can be eliminated by transferring an entire screen
image to the display device with one I/O operation. The follow­
ing program wi 11 illustrate this procedure as well as some oth­
er important points relating to programming for static
screens.

DISPLAY PROGRAM BEGIN
SCREEN IOCB SCREEN=STATIC,BOTM=5, C

BUFFER=BUFF,RIGHTM=479
I DATA F ' 0 '
BUFF BUFFER 480,BYTES

DATA X'0202'
NULLS DATA X'OOOO'
NUMS DATA 48F'0'
VALS TEXT LENGTH=254
BEGIN ENQT SCREEN

TERMCTRL BLANK
PRINTEXT LINE=O

* * THIS DO LOOP PLACES THE WORD "FIELD" AND THE VALUE
* OF "I" INTO THE TERMINAL BUFFER 48 TIMES. THE
* ACTUAL CONTENTS OF THE TERMINAL BUFFER IS PRINTED
* WHEN THE "TERMCTRL DISPLAY'" STATEMENT IS REACHED.

* 48,INDEX=I
'FIELD',PROTECT=YES
FORMATl,VALS,((I»,PROTECT=YES
, ',PROTECT=YES
NULLS,PROTECT=YES

2

5
6
7
8
9

10
11
12

13
14
15
16
17

DO
PRINTEXT
PUTEDIT
PRINTEXT
PRINTEXT
ENDDO
PRINTEXT
PUTEDIT

LINE=O
FORMATl,VALS,((NUMS,48»,
ACTION=STG
VALS,MODE=LINE,LINE=O
LINE=O,SPACES=8

19
C 20

FORMATI

DISPLAY

PRINTEXT
PRINTEXT
TER~1CTR L
DEQT
PROGSTOP
FORMAT (12)
ENDPROG
END

22
23
24
25

Th i s program accesses the top six lines of the screen in stat i c
mode and initially formats it with a sequence of protected
fields. An array of integers is displayed on lines 0-5 and a
pause is executed to allow the operator to enter a new set of
values in corresponding positions of lines 6-11. The new
values are then displayed on lines 0-5.

Chapter 15. Miscellaneous Terminal I/O Considerations 297

Numbers refer to lines in the preceding example program.

2

5

6 and 7

8 and 9

10 to 12

13

14

15

16

17

19

Def 1 ne the stat; c screen w; th the term; nal I/O
buffer to be in·the application program at BUFF, with
a length of 480 bytes (one-quarter of the 4979 dis­
play screen).

Aliocate storage for the buffer. Note that in this
program the buffer is never accessed directly; the
space is merely allocated here for use by the super­
visor.

Define a TEXT message consisting of
characters (EBCDIC code X' 00').

two null

Define the array of integers (initially zero) and
the TEXT buf fer wh i ch will be used 'for; nput and out­
put of the data in EBCDIC form.

Acquire the terminal, erase all data and establish
the screen position for the first I/O operation.
Since several text strings will be concatenated to·
form the first output line, the screen position must
be establ i shed in advance.

Beg ina DO loop to construct the in it 1 al screen
image. This will consist of 48 protected fields of
the form FIELDxx, where xx is a sequential field num­
ber, each followed by ·one protected blank and two
unprotected data positions. Note here the condi­
tions required for forming a concat~nated line; the
protection mode of the PRINTEXT instructions must
not change (either all PROTECT=VES or all
PROTECT=NO), and no intervening forms control oper­
at j ons can be executed.

Write 'FIELD' to the buffer.

Convert the sequence number to two EBCDIC characters
and wr i te it to the buffer.

Wr i te a protected separat i on character.

Write the two null characters to define the data
positions. Null characters will always generate
unprotected positions on the screen; PROTECT=VES is
nevertheless required here in order to maintain con­
catenat i on. '

Write the concatenated line to the
convenient line control· operation
instruction will accomplish this.

display.
or the

Any
DEQT

298 SC34-0312

20

22

23

24

25

Convert the integer array to two-character EBCDIC
values and store the resulting line in the TEXT buff­
er VALSe

Wr i te the va lues into success i ve unprotected
positions of the display beginning at
LINE=O, SPACES=O. Th is' scatter wr i te' mode . is
defined by MODE=LINE; without MODE=LINE the pro­
tected fields of the display would be overwritten.

Define the cursor to be at the first unprotected
position.

Display the cursor at its defined position.

Release the terminal. The buffer designated in the
IOCB will be released and the screen configuration
restored to that def i ned by the TERMINAL statement.

In the program descr i bed above, the termi nal I/O operat ions
were all conveniently performed through the concatenation of
TEXT strings. If the application requires more complex format­
ting of the screen image, or if input of more than .254 bytes at
a time is necessary, then direct access to the buffer is appro­
pr i ate. See PRINTEXT and READTEXT.

Chapter 15. Miscellaneous Terminal I/O Considerations 299

UsirigFormatted Screen Images·

Formatted screen images can be created and saved in disk or
diskette data sets .with the uti·li.ty program $lMAGE. The
retrieval and display of such images can be simplified by
employing a set of subroutines~ ·An EXTRN statement must be
coded for eC:1ch subroutine name which is referenced, and
AUT 0 = $ AUT 0 , AS M LIB 10 U s t· b e coded on the· 0 U T PUT statement of the
1 i nk-ed it contro 1 data set.

I nth e calli n g for m C:1 t s g i v e n below, a r gum e n·t s w h i c h rep res e n t
add res s est 0 be pas s·e d to a sub r 0 uti n emu s t bee n c los e d wit h i n
parentheses as shown. If the desi red address 1S contained
within a variable, then the name of that variable must be writ­
ten without par~ntheses.

$IMOPEN Subroutine

T his sub r out i n e reads t h ed e s j g nat e d image fro m d 1 s k 0 r
dis k e t t e i n t'o yo u r' b u f fer. Yo u c C:1n a Is 0 per for m t his ope rat ion
by using DSOPEN or defining the data set at program load time,
C:1nd issuing the disk READ instruction. Refer to the format
descr i pt i on at the end of th is sect i on for data set size deter­
mination.

Syntax

Required:
DefClults:

CALL $IMOPEN,(dsname,volume),(buffer),P2=,P3=

dSl1ame,buffer
None

Indexable: None

Operands

dsname

buffer

Description

The address of a TEXT statement which contains the
name of the data set. A volume label can be
included, separated from the name by a comma.

The address of a BUFFER statement allocating the
storage into wh i c h the i mage data will be read. The
storage should be allocated in bytes, as in the fol­
lowing example:

300 SC34-0312

label BUFFER 256,BYTES

Error Codes (Returned in taskname +2)

-1
1
2
3
4
5
6

Successful completion
Disk I/O error
Invalid data set name
Data set not found
Incorrect header or data set length
Input buffer too small
Invalid volume name

$IMDEFN Subroutine

Sub r o·u tin e $ I M D E F N i sus edt 0 con 5 t r u c tan laC B for a for mat ted
screen image. The IOCB can also be coded directly, but the use
of $IMDEFN allows the image dimensions to be modified with $IM­
AGE without requiring a change to the application program.

Syntax

label CALL $IMDEFN,(iocb),(buffer),topm,leftm,
P2=,P3=,P4=,P5=

Required: iocb,buffer
Defaults: None
Indexable: None

Operands Description

iocb The address of an IOCB statement defining a static
screen. The lOeB need not specify the TOPM, BOTM,
LEFTM nor RIGHTM parameters; these are ~filled in'
by the subroutine. The following IOCB would
normally suffice:

Chapter 15. Miscellaneous Terminal I/O Considerations 301

label IOCB terminal,SCREEN=STATIC

buffer

topm

leftm

The address of an area containing the screen image
in disk storage format. (The format is descr i bed at
the end of this section.)

This parameter indicates the screen position at
which line 0 will appear. If its value is such that
lines would be lost 'at the bottom of the screen,
then it is forced to zero.

This parameter; indicates the screen position at
which the left edge of the image will appear. If
its value is, such that characters would be lost at
the right of the screen, then it is forced to zero.

Once an IOCB for the static screen area has been defined, the
program can then acquire that screen through ENQT and call one
or both of the following subroutines in order to display the
image.

$IMPROT Subroutine

This subroutine displays the protected and null fields of an
imClge ~Jhich is in disk-storage format. A field table giving
the location (line,spaces) and size of each data field of the
i mage can a Iso be constructed at the opt i on of the call i ng pro­
gram.

Syntax

label CALL $IMPROT,(buffer),(ftab),P2=,P3=

Required: buffer,ftab
Defaults: None
Indexable: None

Operands Desc ... i p't i on

302 SC34-031-2

buffer

ftab

The address of an area containing the screen image
in disk storage format. The format is descr i bed at
the end of this section •

.
The address of a tab Ie to be constructed g i vi ng the
location (Iines,spaces) and size (characters) of
each data fie Id of the image.

The table has the following form:

label line
spaces
size

label+6 line
spaces
size

label+6(n-1) line
spaces
size

** field 1

** field 2

** field n

The field numbers correspond to the following ordering: left
to right in the top line, left to right in the second line, and
so on to the last field in the last line. Storage for the field
table should be allocated with a BUFFER statement specifying
the desired number of words. The buffer control word at
label-2 will be used to limit the amount of field information
stored, and the buffer index word at buffer-4 will be set with
the number of fields for which information was stored, the
total number of words being three times that value. If the
field table is not desired, code zero for this parameter.

$IMDATA Subroutine

$IMDATA can be called to display the initial data values for Cln
image wh i ch is in disk storage format.

SyntClx

Chapter 15. Miscellaneous Terminal I/O Considerations 303

label

Required:
Defaults:

CAll $IMDATA,(buffer),P2=

buffer
None

Indexable: None

Operands

buffer

Description

The address of an area conta i n i ng the image in
disk-storage format.

Example: Formatted Screen Images

The following program illustrates use of the image generation
subroutines in a general application. Under direction of the
terminal operator, this program displays any image stored on
disk, at any (4978 or 4979) terminal, and at any screen coordi­
na'tes. For each image, a field table is constructed and used to
modify the initial data values.

304 SC34-0312

IMDISP PROGRAM BEGIN
*---
*
*
*
*
*
*
*
*

THIS IS AN EXAMPLE OF THE USE OF
IMAGE GENERATION SUBROUTINES.
UNDER DIRECTION OF THE TERMINAL
OPERATOR, THIS PROGRAM DISPLAYS
ANY IMAGE STORED ON DISK AT ANY
4978· OR 4979 TERMINAL.

*---
EXTRN $IMOPEN,$IMDEFN,$IMPROT,$IMDATA

* ** Terminal name to IOCB
BEGIN READTEXT IMAGE,'TERMINAL: '
* ** Get data set name

*
READTEXT DSNAME,'DATA SET: ',PROMPT=COND

** Get origin values
GETVALUE ORG, 'ORIGIN(LINE,SPACES): ',2,

PROMPT=COND
* ** Open image data set

CALL $IMOPEN,(DSNAME),(DISKBFR)
* ** If open is unsuccessful,
* ** Print error code and query

IF IMDISP+2,NE,-1
MOVE CODE,IMDISP+2
PRINTEXT '@OPEN ERROR CODE'
PRINTNUM CODE
GOTO NEXT

ENDIF
* ** Construct IOCB

CALL $IMDEFN,(IMAGE),(DISKBFR),ORG,ORG+2
ENQT IMAGE ** Acquire static screen
TERMCTRL BLANK ** Blank screen

* ** Write protected fields
* ** and build field table
* ** at FTAB

CALL $IMPROT,(DISKBFR),(FTAB)
CALL $IMDATA,(DISKBFR) ** Write data fields

* ** Set cursor at first field
PRINTEXT LINE=FTAB,SPACES=FTAB+2
TERMCTRL DISPLAY ** Unblank screen
DEQT ** Return to this terminal
WAIT KEY ** WAIT for operator
ENQT IMAGE ** Back to target terminal
TERMCTRL BLANK ** Blank screen
MOVEA 11,FTAB ** Point 11 to field table

* ** Build line of @S
MOVE LINE,C'@',(80,BYTES)
DO FTAB-4 ** DO NR of fields

* ** Field size to text size
MOVE ·LINE-l,(S,ll),BYTE

Chapter 15. Miscellaneous Terminal I/O Considerations 305

C

*

NEXT

DSNAME
DISKBFR

IMAGE
CODE
ORG
FTAB
lINE

** Print @S
PRINTEXT
ADD

ENDDO
TERMCTRl
DEQT
WAIT
ENQT
ERASE
DEQT
QUESTION
PROGSTOP
TEXT
BUFFER
DC
IOCB
DC
DC
BUFFER
TEXT
ENDPROG
END

in field
lINE,lINE=(0,#1),SPACES=(2,#1)
#1,6 ** Next field

DISPLAY ** Unblank screen
** Back to this terminal

KEY ** Allow viewing time
IMAGE ** Acquire target image
lINE=O,MODE=SCREEN,TYPE=All ** Erase

** Back to roll screen
'ANOTHER IMAGE? ',YES=BEGIN

lENGTH=16 ** Data set name
512,BYTES ** Disk buffer
X'0808' ** Text control for
SCREEN=STATIC ** IOCB for image
F ' 0 ' ** Return code

name

2 F ' 0 ' ** Origin (lINE,SPACES)
300
lENGTH=80

In the above example, use of the field size from the field table
is for illustrative purposes only. Each non-protected output
operation is terminated by the beginning of the next protected
field, unless MODE=lINE is coded.

The si ze of the disk buffer can vary between 256 bytes and 2048
bytes. Because of the data compression used in storage of the
images, many images will require only 256 bytes (1 sector), and
512 bytes (2 sectors) will be adequate for typical applica­
tions.

The display subrout"ines normally write "images to the terminal
in line-by-line fashion. If a defined image consists of 80-byte
lines, however, then ape r for" man c e improvement can be obtained
by providing a terminal buffer large enough to contain more
t han one lin e. Sin c e t he dis p I a y sub r 0 uti n e s w l' I I pe r form con­
catenated write operations whenever possible, la~ger buffers
result in fewer such operations and, therefore, faster gener­
ation of the display image. For a full screen image, for exam­
ple, a time for space trade-off can be obtained by choosing a
buffer size between 80 bytes (1 line) and 1920 bytes (24
1 i nes). A temporary buffer can be def i ned by cod i ng the BUFFER=
parameter on the IOCB which is used to access the screen.

306 SC34-0312

End of Forms on 4973 and 4974 Printers

Terminal I/O goes into a wait state trying to print when one of
the following situations occurs:

• The printer is in DISABLE (4973) or WAIT (4974) mode.

I· The pr inter is out of paper.

I· T h 'e pap e r i s jam me din the p r i n t e r •

You can correct this problem, by doing the following:

• If in DISABLE or WAIT mode, set the switch to ENABLE (on
4973) or to PRINT (on 4974) to resume printing.

• If the printer is out of paper or the paper is jammed, set
the mode switch to DISABLE or WAIT, add new paper or fix
paper jam, and reset the mode swi tch to ENABLE or PRINT.

I Reading Modified Data on the 4978 Display

Both protected and unprotected fields on the 4978 are defined
as a set of contiguous characters that may span line bounda­
ries. A protected field ends when an unprotected field is
encountered. Similarly, an unprotected field ends when a pro­
tected field is encountered. Ne i ther an unprotected nor a pro­
tected field necessari ly ends at an EDX partial screen
boundary.

An unprotected field is considered a modified field when any
character within the field is modified by the operator. The
field may be read by the Event Driven Language READTEXT
ins t r u c t ion wit h T Y P E = MOD 0 A T A. Rea din g the fie .1 die a v e sit s
modified status unchanged. A modified field becomes an unmodi­
fied field by either writing or erasing all the chara~ters in
the field. For additional information, refer to IBM Series/1
4978-1 Display Station (RPQ 002055) and Attachment (RPQ
D02038), General Information, GA34-1550.

Chapter 15. Miscellaneous Terminal I/O Considerations 307

308 SC34-0312'

CHAPTER 16. ADVANCED TOPICS

TRANSLATING COMPRESSED/NONCOMPRESSED BYTE STRINGS

The following two subroutines are used internally by $IMPROT
and $IMDATA as well as by the uti lity program $IMAGE. They can
also, however, be called directly by an application program and
are described here because of their general utility.

$UNPACK Subroutine

This subroutine moves a compressed byte 'string and translates
it to noncompressed form.

Syntax

label CALL $UNPACK,(source),(dest),P2=,P3=

Required: source,dest
Defaults: None
Indexable: None

Operands

source

dest

Description

The address of a compressed byte string. (See
Figure 43 on page 311 for the compressed format.)
At completion of the operation, this parameter is
incremented by the length of the compressed string.

The address at which the expanded string is to be
placed. The length of the expanded str i ng is placed
in the byte preced i ng th i s locat ion. The $UNPACK
subroutine can, therefore, conveniently be used to
move Clnd expand a compressed byte string into a TEXT
buffer.

SPACK Subroutine

This subroutine moves a byte string and translates it to com­
pressed form.

Chapter 16. Advanced Topics 309

Syntax

label

Required:
Defaults:

CALL $PACK,(source),(dest),P2=,P3=

source,dest
None

Indexable: None

Operands

source

dest

Description

The address of the str i ng to be compressed. The
length of the str i ng is taken from the byte preced­
i n 9 t his 10 cat ion, and the 5 t r i n 9 co u ld, the ref 0 r e ,
be the contents of a TEXT buffer.

The address at which the compressed string is to be
stored. At complet i on of the ope rat i on, th j s
parameter is incremented by the length of the com­
pressed str i ng.

310 SC34-0312

r-

2 bytes ----

Code -

Lines (L)

Width (W)

Total length (T)

Protect length (P)

Compressed protected
lines, including nulls.

Compressed data
lines.

IMAG (if image)

O<L~24

O<W~80

T

T+267
Total length of data set = T +12 bytes, or 256

Compressed line format:

• • •

Each Fi is either: ...--- \ \ --- \ ---
• • •

or

L< 0 (represents - L repetitions of C)

Where Land Ci are bytes.

F 1 gure 43. $ IMAGE D 1 sk storage Format

Chapter 16. Advanced Topics 311

TERMI/NALS CONNECTED VIA DIGITAL I/O

Terminal support is provided for digital I/O devices such as
the Tektronix S 4010 Series of Display Terminals equipped with
the General Purpose Parallel Interface (Tektroni x Custom
Feature Number CM021-0109-03) or terminals having equivalent
hardware interfaces. The software provides addressing logic
such that up to eight terminals may be shared 'on one digital
input group and one digital output group, with one process
interrupt bit for each terminal.

The parallel interface is intended to connect directly to the
integrated dig i tal input/output feature or the 4982 non i so­
l ate d dig i tal input/output features. T his interface cons is t s
of a driver and a receiver card, each of which has several
selectable options. These "patch options" allow you to custom­
ize the interface to the requirements. You must refer to the
manufacturer's manuals for detailed install~tion procedures.
The following description is intended only to supplement those
manuals and guide you in the use of the Event Driven Executive
terminal support 011 the Series/I. The following options should
be selected:

Receiver Card

INTR (interrupt)

ADDRESS

PERM ADD

PARITY

DELAY

LOGIC SENSE (3)
HANDSHAKE
CONTROL
DATA

THRESHOLD

MASTER OPTION

PROG

000(0)-111(7) to match
TERMINAL definition

OFF

EVEN

3.5-18 (depends on distance)

+2 volts

None

5 Reg i stered trademark of the Tektron i x Corporat ion.

312 SC34-0312

Driver Card

LOGIC SENSE (4)
STATUS
HANDSHAKE
INTERRUPT
DATA

INTERRUPT CHANNEL

AUX TSUP

ECHO

PARITY

Set all to HIGH.

Use INTR

OUT

OUT

EVEN, BIT 8 IN
AB to A, CD to 0

Before the terminal may be used with the computer, some other
cons i derat ions are necessary. As noted above, the common
interrupt line (INTR) should be used. It is recommended that
you select the interrupt line (0 - 7) corresponding to the
terminal address. If fewer than eight terminals are attached,
some of the interrupt lines wi 11 not be used. All digital input
and process interrupt lines must be terminated for proper oper­
ation. If only one terminal is used, the DI terminations may
have been installed by the manufacturer. With multiple termi­
nals, all DI lines and PI lines should be terminated at the com­
puter. A IOOO-ohm resistor across the DI and PI inputs is
recommended.

When the terminal is powered on, it may be necessary to reset
the terminal. The procedure is to put the LOCAL/LINE switch to
LOCAL, back to LINE, and simultaneously depress the SHIFT and
RESET keys. If the terminal does not respond during normal
ope rat i on, it may be necessary to perform th i s sequence to
reset the internal c i rcu i ts.

Since all Event Driven Executive terminal input/output is done
with upper case ASCII character codes, the TTY LOCK key should
be activated when using the terminal with the Series/I. The
last items which merit special discussion are the GIN mode and
the PAGE FULL BREAK strap options on the terminal control card
(TC-2). The GIN termination should be set to NONE. Thus, when
GIN mode is used, you must strike the appropriate key followed
by carriage return (CR). The PAGE FULL BREAK termination may
be set to either OUT or IN, depending on your preference. If it
is IN, the terminal will always stop when a full page condition
is reached. You must hit the PAGE RESET key in order to cant i n­
ue. If it is OUT, the terminal will automaticallY go to the

Chapter 16. Advanced Topics 313

home address and cant i nue pr i nt i ng without eras i ng the screen.

314 SC34-0312

THE $DISKUT3 DATA MANAGEMENT UTILITY

$DISKUT3 provides certain data management functions for disks
and diskettes. I t must be invoked from app 1 i cat i on programs.

$DISKUT3 performs the following functions:

• Allocates new data set C s)

• Opens existing data setCs)

• Deletes existing data setcs)

• Releases unused space in existing data setCs)

• Renames existing data setcs)

I. Sets end of data on ex i st i ng data set C s)

Any combination of these basic functions may be performed in
one invocation of $DISKUT3. For example, it is more,efficient
to open two data sets and allocate two other data sets in one
invocation of the program. It is quicker to perform multiple
functions with one invocation of the program than to use sepa­
rate invocations. This eliminates extra program load oper­
ations.

Note: $DISKUT3 may be invoked only by the LOAD Event Driven
Language instruction. If it is invoked by use of the $L opera­
tor command, $DISKUT3 immediately terminates.

Special Considerations

Some spec i al cons i derat ions when us i ng $DISKUT3 are:

• An attempt to delete a data set wh i ch does not ex i st is con­
s i dered to be a successful operat ion

• An attempt to allocate an existing data set is considered
to be a successful operation if the following conditions
are met:

The type attr i bute of the ex i st i ng data set is the same
as the a llocat i on request, and

The size of the existing data set is the same as the
allocation request

• If an allocation request is set for an existing data set
and the type attr i butes match but the sizes do not, a
return code is set i nd i cat i ng whether the data set is

Chapter 16. Advanced Topics 315

smaller or larger than that reque~ted. Refer to "$DISKUT3
Return Codes" on page 319 for the return codes and their
meanings.

• $DISKUT3 requ ires 4352 bytes of storage.

Input to $DISKUT3

Input to $DISKUT3 consists of the following:

Initial Parameter

An initial parameter is passed to $DISKUT3 when it is loaded.'
It is the address of a list of request block addresses. The end
of the request block addr~~s list is indicated· by a word of
zero.

The following diagram .shows the ·relationship between the
$DISKUT3 input parameters:

~ILIST ADDRESsl

~>rREQUEST BLOCK ADDRESS

REQUEST BLOCK ADDRESS

END OF LIST (0)

'3 1.6 S C 34- 0 3 1 2 .

REQUEST BLOCK 1

---> WORD 1

t~ORD 2

WORD 3

WORD 4

> REQUEST BLOCK 2

Request Block Contents

A request b loclt is four words.'

Word 1: The first word contains a binary value which indicates
the funct i on to be performed as follows:

Code Function

F ' 1 ' Open a data set

F ' 2 ' Allocate a new data set

F ' 3 ' Rename a data set

F ' 4 ' Delete a data set

F'S' Release unused space in a data set

F ' 6 ' Set end of data ina data set

Word 2: The second word contains the address of the associated
Data Set Control, Block (DSCB). The OSCB describes the volume
and data set be i ng referenced.

A DSCB must be specified for each function requested. The data
set name ($DSCBNAM) and va I ume ($DSCBVOL) fie Ids must be filled
in.

Chapter 16. Advanced Topics 317

Word 3: The content of the third word varies according to the
funct i on requested as follows:

Function Code Contents

ALLOCATE F'nr' The data set size i n records
DELETE F ' 0 ' Unused
OPEN F ' 0 ' Unused
RELEASE F ' n r ' The new size of the· data set in records

must be less than the current data
RENAME ACNEWNAME) The address of an eight-byte field

containing the new data set name
*SETEOD F'nb' The number of bytes i n the last record

(nr=value in the range of 0 to 32,767)

Cnb=number of bytes)

NEWNAME=address of a 1- to 8-character data set name

* For SETEOD, $DISKUT3 assumes that the last record written or
read is the end of data·, that is, DSCB po i nts to the next ava i 1-
able record in the data set.

Word 4: The fourth word .specifies the data set type attribute.
The types that may be spec if i ed are:

Code Type

F ' 0 ' Undefined

F ' 1 ' Data

F ' 3 ' Program

F ' -1 ' Unspecified

For an ALLOCATE request, th i sis the type attr i bute to be
assigned to the data set. For OPEN, RENAME, DELETE and RELEASE,
code a -1. Th i s causes $DISKUT3 to return the type attr i bute in
word 4. Upon return from $DISKUT3, word 4 is set to 0, 1, or 3,
depending upon the attribute type of the data set specified. If
this word is set to any value other than -1, $DISKUT3 compares
the type attribute specified with the type attribute specified
where the data set was allocated. If they do not match, a return
code of 17 is set and $DISKUT3 terminates. In all cases except
DELETE, the DSCB is returned in an open condition. Therefore,
the ALLOCATE function need not be accompanied by an OPEN param­
eter 1 i st or followed by a DSOPEN.

318 SC34-0312

$DISKUT3 Return Codes

The first word of the DSCB is posted wi th a return code to i nd i­
cate whether the function was performed successfully (-1) or
unsuccessfully. When a list of more than one function is speci­
f i ed, each funct i on requested is processed in the sequence pre­
sented. A return code is posted for each funct i on attempted.

Caut;on: If more than one function which references the same
DSCB is requested on a single $DISKUT3 invocation, the return
cod e set ref Ie c t S' 0 n I y the res u Its 0 f the I as t fun c t ion
attempted using that DSCB.

The return codes set by $DISKUT3 and their meanings are as fol­
lows:

Code

1
2
4
5
6

7
8

9

10
11

12

13
14
15
16
17

18

19
20
21

Condition

Invalid request code (not 1-5)
Volume does not exist (All functions)
Insufficient space in library (ALLOCATE)
Insufficient space in directory (ALLOCATE)
Data set already exists - smaller than the
requested allocation
Insufficient contiguous space (ALLOCATE)
Disallowed data set name, eg,. $EDXVOL or
$EDXLIB (All functions)
Data set not found
(DELETE, RENAME, RELEASE, OPEN)
New name pointer is zero (RENAME)
Disk is busy
(ALLOCATE, DELETE, RENAME, RELEASE)
I/O error writing to disk
(ALLOCATE, DELETE, RENAME, RELEASE)
I/O error reading from disk (All functions)
Data set name is all blanks (ALLOCATE, RENAME)
Invalid size specification (ALLOCATE)
Invalid size specification (RELEASE)
Mismatched data set type
'(OPEN, RENAME, DELETE, RELEASE)
Data set already exists - larger than the
requested allocation
SETEOD only valid for data set of type 'data'
Load of $DISKUT3 failed ($RMU only)
Tape data sets not supported

Figure 44. $DISKUT3 return codes

Chapter 16. Advanced Topics 319

Example: The following example illustrates the use of
$DISKUT3. The use of all fi ve functions COPEN, ALLOCATE,
RENAME, DELETE, and RELEASE) is shown.

TASK PROGRAM GO,C(DS1,EDX002),CDS2,EDX003»
COpy DSCBEQU

GO EQU *

* LOAD $DISKUT3 IN THE 'NON-OVERLAY' MODE, TO OPEN
* DATA SET 'DSY', ALLOCATE A NEW DATA SET 'DSX', AND
* RENAME AN EXISTING DATA SET 'DS1'

* LOAD $DISKUT3,LISTPTR1,EVENT=$DISKUT3
WAIT $DISKUT3

* COMPUTE CURRENT SIZE OF THE DATA SET AND USE IT AS A
* CALLING PARAMETER FOR A 'RELEASE' RECORDS CALL TO
* $DISKUT3.
* THE ASSUMPTION IS THAT THE DATA SET HAS BEEN WRITTEN
* SEQUENTIALLY. THEREFORE '$DSCBNXT' POINTS TO THE NEXT
* RECORD TO BE USED IN THE DATA SET AND $DSCBNXT-1 IS
* THE NUMBER OF RECORDS CURRENTLY IN USE.

* SUBTRACT DSX+$DSCBNXT,1,RESULT=REQUEST5+4

* LOAD $DISKUT3, DELETE DATA SET 'DS2',
* AND RELEASE THE UNUSED SPACE IN 'DSX'.

* LOAD $DISKUT3,LISTPTR2,EVENT=$DISKUT3,PART=ANY
WAIT $DISKUT3

PROGSTOP

$DISKUT3 ECB

* LISTPTRI DC

* LISTPTR2 DC

*

320 SC34-0312

o

ACLISTl)

ACLIST2)

SET INITIAL STATE TO ZERO

POINTER TO LIST OF REQUEST
BLOCK POINTERS

POINTER TO ANOTHER LIST OF
REQUEST BLOCK POINTERS

$DISKUT3 Use Example (Continued)

LIST1 DC A(REQUEST1)
DC A(REQUEST2)
DC A(REQUEST3)
DC F ' 0 ' END OF LIST FLAG

* LIST2 DC ACREQUEST4)
DC A(REQUEST5)
DC F ' 0 ' END OF LIST FLAG

* REQUESTl DC F ' 1 ' REQUEST IS FOR AN 'OPEN'
DC ACDSY) DSCB IS 'DSY'
DC F ' 0 ' UNUSED FOR OPEN REQUESTS
DC F ' 0 ' UNUSED FOR OPEN REQUESTS

* REQUEST2 DC F ' 2 ' REQUEST IS FOR AN 'ALLOCATE'
DC ACDSX) DSCB IS 'DSX'
DC F ' 50' ALLOCATE 50 RECORDS
DC F ' 1 ' DATA SET TYPE IS 'DATA'

* REQUEST3 DC F ' 3 ' REQUEST IS FOR A 'RENAME'
DC ACDS1) DSCB IS 'DS 1 '
DC A(NEWNAME) ADDRESS OF NEW DATA SET NAME
DC F ' -1 ' FOR RENAME REQUESTS

* REQUEST4 DC F ' 4 ' REQUEST IS TO 'DELETE'
DC A(DS2) DSCB IS 'DS2'
DC F ' 0 ' UNUSED FOR DE L ETE REQUESTS
DC F ' -1 ' FOR DELETE REQUESTS

*
REQUESTS DC F ' 5 ' REQUEST IS TO 'RELEASE' SPACE

DC ACDSX) DSCB IS 'DSX'
DC AC*-*) NE~J SIZE OF DATA SET
DC F '-1 ' FOR RELEASE REQUESTS

* DSCB DS#=DSY,DSNAME=DSY

* DSCB DS#=DSX,DSNAME=DSX

NEWNAME DC CL8'RENAMED' NEW DATA SET NAME
ENDPROG
END

Chapter 16. Advanced Topics 321

DSOPEN SUBROUTINE

DSOPEN is a subrout i ne that can be cop i ed i n'to your program. It
opens a disk, diskette, or tape data set for input and/or out­
put operations by initializing a DSCB. Only one DSCB can be
open to a tape at a time. I f a tape has been opened, a c lose must
be issued before another open can be requested. The results of
DSOPEN processing are identical to the implicit open performed
by $L or LOAD for data sets spec if i ed in the PROGRAM statement.

Use DSOPEN to open a data set after the program has begun exe­
cution.

The following functions are performed:

• Verifies that the specified volume is online

• Verifies that the specified data set is in the volume

• Initializes the DSCB

Using DSOPEN adds 1056 bytes to the size of your program.

To use DSOPEN, you must first copy the source code into your
program by cod i ng:

COpy
COpy
COpy

COpy

PROGEQU
DDBEQU
DSCBEQU

DSOPEN

Dur i ng execut i on, DSOPEN is invoked v i a the CALL instruct i on as
follows:

CALL DSOPEN,(dscb)

Four optional parameters are also available. Three are error
return addresses and the fourth is the address of an area in
which DSOPEN saves a directory control entry (DCE) and the
first directory member entry (DME).

322 SC34-0312

The three error ex it addresses are:

1. Data set not found

2. Invalid VOLSER

3. I/O error

Since the exit addresses and the area address lie within your
program, they must be initialized by your progrClm before it
calls DSOPEN. DSOPEN automatically sets them to zero. The
labels of these fields can be found in the beginning of the
DSOPEN copy code. Since the four parameters Clre addresses
within your program, you must insert (move) them to the begin­
n i ng of the DSOPEN rout i ne before ca 11 i ng it.

You must have a 256-byte work area labeled DISKBUFR in your
program. The DSCB to be opened can be DSI-DS9 or a DSCB def i ned
in your program v i a the DSCB statement. The DSCB must be
initialized with a 6-character volume name in $DSCBVOL and an
8-character data set name in $DSCBNAM. Other fie Ids are
ignored. The volume name can be specified as 6 blanks, which
causes the IPL volume to be searched for the data set.

After DSOPEN processing, #1 contains the number of the directo­
ry record conta i n i ng the member entry and #2 conta ins the d i 5-

placement within DISKBUFR to the member entry. The fields
$DSCBR3 and $DSCBR4 contain the next available logical record
data, if any, placed in the directory by SETEOD. Refer to the
comments in the DSOPEN copy-code for add it i onal deta i Is.

Chapter 16. Advanced Topics 323

SETEOD

SETEOO is a copy code rout i ne that upda.tes t-he directory member
entry COME) of a disk directory to reflect, the last record
accessed up to the po i nt in time SETEOO is invoked. Informat i on
on the OME can be found in Internal Desion. 'The value in
$DSCBNXT (relative record number to be used for next sequential
R.EAD or WRITE) is placed in the next avai lable ,logical record
fie 1 d of the D ME, so ,that i t, can b er e t r i eve d by, subsequent
calls of ,DSOPEN.

If the value of $OSCBNXT is 1 when .SETEOO is performed, the OME
is set to indicate that the data set is empty. Subsequent calls
to OSOPEN cause $OSCBEOO to beset to X~FFFF', indicating that
the data set is empty. If $OSCBEOO is zero, the length of the
data set'($OSCBLEN) is used as the end-of-data CEOO) value.

SET E 00 is used to i n d i c a te a log i cal end 0 f f i 1 e on dis k • I f
your program does not SETEOO when creating or, overwriting, a
file, the REAO end of d~t~ exception will occur at either the
phys i cal end, or the log i cal end'set by some prev i ous use- of the
data set.

SETEOO, can be used before, dur i ng or at the end of either, input
,or 0 u t put • ltd 0 e s not i n h i bit fu r the r I /0 and can b e use d m 0 r e
than once. The only requirement, is that the OSCBpassed as
input must have been pr.evi,ously opened.

The POINT function ~odifies the $OSCBNXT field. ,If SETEOO is
used after a POINT, the relati ve record number pointed to
becomes the value placed in the directory by SETEOO.

SETEOO requires that the OSOPEN copy code, PROGEQU, and TCBEQU
be included in your program. SETEOO uses the 256-byte OISKBUFR
that is also used by DSOPEN. You invoke SETEOD as a subroutine
through the Event Oriven Language CALL statement, passing the
OSCB and an I/O error exit routine pointer as parameters.

Using SETEOO adds 318 bytes to the si ze of your program.

To use SETEOO, you must first copy the source code into your
program by cod i ng:

324 SC34-0312

COpy
COpy
COpy
COpy

COpy
COpy

Calling Sequence

CAll

where

PROGEQU
TCBEQU
DDBEQU
DSCBEQU

DSOPEN
SETEOD

SETEOD, (OS!), (IOERROR)

OSl Names a previously opened OSCB

IOERROR . Names the I/O error exit routine

Chapter 16. Advanced Topics 325

I PROCESSING THE EOV CONDITION

I Reading End-of-Volume (EOV) Labels

The Event Dr i ven Execut i ve does not prov i de EOV process i ng.
However, you may elect to add EOV processing to your applica­
tion. To read a multi-volume data set the following steps can
be used:

1. Vary the tape online (specifying the SL option).

2. Execute the program, read i ng and process i ng data records.

5.

6 .

7.

When the end of the data set is reached, the END= exit rou­
tine of the READ statement will be entered. (If you do not
use the END opt i on, check for return code 10.)

Perform a CONTROL CLSOFF operat i on in the END= ex i t or when
return code 10 is encountered.

If the return code from the CONTROL operation is a +33 (EOV
encountered), then the c lose process i ng has detected an
EOVI label. This means more data is contained on another
reel. The CONTROL completes by rewinding the tape and set­
ting it offline.

Issue a message (PRINTEXT) telling the operator to enter
the volume serial number of the next tape.

Read (READTEXT) the volume .serial number supplied by the
operator from the terminal and place it in the $DSCBVOL
field or the DSCB lIsed to READ the data set.

Issue a message (PRINTEXT) telling the operator to place
the next volume on an available tape drive and vary it
online using $VARYON.

After the new tape has been varied online, call the DSOPEN
subrout i ne to ready the data set for READ process i ng.

Note: The new volume must be online ($VARYON) before DSOPEN
is called.

8. Resume read i ng and process i ng as soon as the tape is opened

For a sample of the operator console sheet for the reading EOV
process, see "Console Output for EOV Processing" on page 327
For a sample of a program to process an EOV condition while
reading, see "Input EOV Processing Example" on page 329.

326 SC34-0312

Writing End-of-Volume (EOV) Labels

To write EOV labels for multi-volume data sets the following
steps can be used.

1. Allocate or in.itialize a Sl tape.

2. Vary the initialized tape online using BlP and,the proper
file number to position the tape at the beginning of the
data set (not the header label).

I 3. Wr i te data records to the tape.

When the en~ of tape (EDT) is sensed (return code 24 dur i ng
a WRITE operation), the ENrr= exit specified on the WRITE
s tat e men tis en t ere d • I f you don 0 t wi s h to use a nE N D
ex it, check for return code 24.

4. Create the tra i ler labe lin the END= ex it code of your
app I i cat ion. (See "Chapter 11. Tape Organ i zat i on" on page
233 for the format of the EOV label.)

• Write one tapemark (CONTROL WTM).

• Write an aD-byte EOVI record (WRITE).

• Wr i te two more tapemarks (CONTROL WTM).

• Rew i nd the tape (CONTROL ROFF).

• Prompt the operator to mount and vary the tape online
($VARYON).

The next tape must have been Sl initialized with a dif­
ferent volume name and the same data set name as previ­
ous tape.

5. Use DSOPEN to open tape.

6. Resume wr it i ng data records.

I Console Output for EOV Process;ng

The following is the console listing seen by the operator dur­
ing EOV reading processing, as performed by the sample program
"Input EOV Processing Example" on page 329.

Chapter 16. Advanced Topics 327

> $VARYON 4C
123456 ONLINE
> $L TESTEOV

INPUTDS (NAME,VOLUME): MYDATA,123456
TESTEOV 8P,11:29:52, LP=OOOO

BEGIN EOV· TEST PROGRAM

EOV ENCOUNTERED - ENTER VOL1 OF NEXT VOLUM~

654321

REPLY Y WHEN THE VOLUME IS MOUNTED AND ONLINE
?
> $VARYON 4C
654321 ONLINE
?Y

END EOV TEST PROGRAM

TESTEOV ENDED AT 11:34:14

328 SC34-0312

Input EOV Process;ng Example

The following example illustrates input EOV processing:

PROGX
START

LOOP

*
**

PROGRAM START,DS=«INPUTDS,??»
EQU *
PRINTEXT '~BEGIN EOV TEST PROGRAM~'

EQU *
READ DS1,BUFFER,1,80,ERROR=ERR1,END=CHKEND

*** PROCESS THE DATA RECORD
**
*
ENDIT

*
**

GOTO
EQU
PRINTEXT
PROGSTOP

LOOP GET NEXT RECORD

*
'~END EOV TEST PROGRAM~'

*** CHECK FOR REAL END OF DATA OR ONLY END OF VOLUME (EOV)

**
* CHKEND EQU *

CONTROL DS1,CLSOFF
IF (DSl,EQ,33) IF CLOSE FOUND AN EOV

PRINTEXT '@EOV ENCOUNTERED - ENTER VOL1 OF NEXT VOLUME~'
READTEXT NEWVOL
MOVEA #1,DS1
MOVE ($DSCBVOL,#1),NEWVOL,(3,WORD)

* SET DSQPEN ERROR EXITS
MOVEA $DSNFND,ERRDSN
MOVEA $DSBIODA,ERRIODA
MOVEA $DSBVOL,ERRVOL
MOVEA $DSIOERR,ERRIO

* OPEN THE NEXT VOLUME
PRINTEXT '@REPLY Y WHEN THE NEXT VOLUME IS MOUNTED AND ONLINE@'

X READTEXT REPLY,'?'
IF (REPLY-1,EQ=O,BYTE),GOTO,X
IF (REPLY,NE,C'Y'),GOTO,ENDIT
CALL DSOPEN,(DS1)
GOTO LOOP RESUME PROCESSING DATA

ENDIF
GOTO ENDIT

Chapter 16. Advanced Topics 329

*
** DSOPEN ERROR

* ERRDSN

ERRIODA

ERRVOL

ERRIO

ERRMSG

MSG!
MSG2
MSG3
MSG4

*
**

**
* ERR!

* BUFFER
NEWVOL
REPLY

EQU
MOVEA
GOTO
EQU
MOVEA
GOTO
EQU
MOVEA
GO TO
EQU
MOVEA
EQU
PRINTEXT
PRINTEXT
PRINTEXT
GOTO
TEXT
TEXT
TEXT
TEXT

DATA AREA

EQU
PRINTEXT
PRINTNUM
GOTO

DATA
TEXT
TEXT
COPY
'COpy
COpy
COpy

DISKBUFR DC
ENDPROG
END

330 SC34-0312

EXITS

* MSGX,MSGI
ERRMSG

* MSGX,MSG2
ERRMSG

* MSGX,MSG3
ERRMSG

* MSGX,MSG4

* 'o)DSOPEN ERROR -0)'
MSG!,P!=MSGX
SKIP=!
ENDIT
'DATA SET NOT FOUND'
'INVALID IODA'
'VOLUME NOT FOUND'
'I/O. ERROR'

* READ ERROR EXIT
'o)READ ERROR - RC='
DS!
ENDIT

40F'0'
LENGTH=6
LENGTH=2
DSOPEN
DSCBEQU
PROGEQU
DDBEQU
!28F'0'

80 BYTE BUFFER
HOLDS NEW VOLUME i

SAMPLE USE OF BLP TO ACCESS ALL LABEL FIELDS

The following 'is an example of ,using BlP to access label
fields.

The program reads the VOl1, HDR!, and EOFI labels of a standard
label tape. The comments in the following example show where
code to process labels can be inserted if desired. The sample
program reads and ignores labels.

* THE TAPE IS MOUNTED ON A BlP DRIVE WITH ID=TAPE01 *

PROG8 PROGRAM START,DS=((XYZ,TAPEO!»
START EQU *
*** * READ THE VOll lABEL (80 BYTES) INTO THE BUFFER *
* WHERE IT CAN BE PROCESSED *

**
**
**

READ DS1,BUFFER,1,80,ERROR=ERR1

INTERPRET THE Vall ,RECORDS FIELDS AS
DESIRED FOR THE APPLICATION

**
*** * READ THE HDRl lABEL (80 BYTES) INTO THE BUFFER *
* WHERE IT CAN BE PROCESSED *

**
**

**

**

READ DSl,BUFFER,1,80,ERROR=ERRl

INTERPRET THE HDRl RECORDS FIELDS AS
DESIRED FOR THE APPLICATION

Chapter 16. Advanced Topics 331

* SKIP OVER ANY REMAINING BLOCKS IN THE HEADER *
* GROUP AND THE TAPEMARK. THIS ALLOWS THE DATA *
* TO BE ACCESSED *

**
**

CONTROL DSl,FSF
**
**
*** * PROCESS THE APPLICATION DATA ON TAPE *

**
** LOOP EQU

READ
GO TO

ALLDONE EQU

* DS!,BUFFER,!,50,ERROR=ERR2,END=ALLDONE
LOOP

*
.*** * PROCESS THE TRAILER LABEL GROUP *

**
** READ DSl,BUFFER,1,80,ERROR=ERRl

** *** INTERPRET THE TRAILER LABELS
*** AS DESIRED FOR THE APPLICATION
**
ENDIT EQU *

* ERR!

ERR2

*

PROGSTOP

EQU
PRINTEXT
PRINTNUM
GOTO
EQU
PRINTEXT
PRINTNUM
QUESTION

* '@LABEL ERROR - RC= '
DS!
ENDIT

* '@READ ERROR - RC= ,
DS!
'@DO YOU WANT TO CONTINUE? '
YES=LOOP,NO=ENDIT

BUFFER DATA 40F'O'
ENDPROG
END

332 SC34-0312

x

'APPENDIX A. STORAGE ESTIMATING

To calculate Series/l storage requirements, you must estimate'
storage requ i red for:

• The superv i sor

• The ut iIi ty programs

• Your appl i cat i on programs

SUPERVISOR

The supervisor requires storage for each of the items listed in
Figure 45 on page 334, Figure 46 on page 336, and Figure 47 on,
page 337 for VI.O or items listed in Figure 48 on page 338,
Figure 49 on page 340, and Figure 50 on page 341 for V2.0. All
numbers are in dec i ma 1 notat i on and the un it is bytes. The num­
bers in the left column are the resident program sizes. The
numbers in the right column are initialization routines used
on 1 y. a t" I P L t i In e . The to ta 1 0 f t he s e 1 e c ted 1 eft col u m n n u In -

bers, when rounded upward to the next multiple of 256, repres­
ent the size of the superv i sor program that wi 11 res i de in
storage during system execution. You should allow from three
to five per cent more storage than that calculate~ ·to p~ovide
for error correction. These calculations will be reasonably
close to your actual configuration; to get the actual size,
perform a system generation of your supervisor.: The actual
size is the address (in hexadecimal) of EDXINIT as contained in
the $LINK output.

Appendix A. Storage Esttmating 333

Support for Resident Initialization

Basic Supervisor
with Address Translator 6696 212
without Address Translator 5866
+8*(sum of MAXPROG values) ()

Disk or Diskette
DiskCette) Basic 1182 1424
4962/4964 Support 1176
4963 Support 336
4963 Fixed Head Support 550
4966 Support 1374
+178 per unit ()

+ 32 per secondary logical
volume ()

+128 per I/O task defined ()

Terminals
Bas i c '

With Addr Translator 5636 488
Without Addr Translator 4656 488

4979/4978
With Addr Translator 2164 1634*
Without Addr Translator 2038 1634*
+468 per 4979 or 4978 ()

4973/4974
With Addr Translator 716
Without Addr Translator 640
+530 per 4973 or 4974 ()

4013 type devices 480
+438 per device ()

Virtual Terminals 504
+426 per terminal ()

Basic for
any TTY, 2741/PROC,ACCA 534

Teletypewriter 938
+446 per teletypewriter ()

2741/PROC 1446
+57 l • per 2741/PROC ()

+512 i f Correspondence code ()

+512 i f EBCD code ()

ACCA ASCII Terminals 1626 500
+498 per terminal ()

* 4978 only

Figure 45. (Part 1 of 3) Vl.1 Supervisor Storage Requirements

334 SC34-0312

Notes:

1. The above numbers include 128 bytes per terminal for the
optional Keyboard Task (ATTN=YES).

2. Basic ASCII support is required for teletypewriter,. ACCA,
2741, and 4013 terminals.

Appendix A. storage Estimating 335

Support for: Resident Initialization

Timers
4953/4955 1080 342
{t952 1048 180

Binary Synchronous Access Method
With Addr Translator 3284 570
Without Addr Translator 303 l t 570
+136 per line of any type ()

+ 22 per multi-line
controller ()

multi-controller ()

Host Communication Facility 1910 362

Sensor Based Input/Output
Basic

With Addr Translator 1050 180
Without Addr Translator 876 180

Analog Input 610
+48 for first AI group ()

+16 for each
additional group ()

Analog Output 66
+16 per AD ()

Digital Input and Output 892
+38 per DI group ()

+16 per DO group i n 4982 ()

+38 per DO group in 1010 ()

Process Interrupt 164
+156 per PI group ()

EXIO Control
Basic 686 64
+(32+x(16+n» per device ()

Cx=maxlmum number of DCBs,
n=number of residual status
bytes transferred)

Error Logging
Included 330
Not Included 20

Figure 46. (Part 2 of 3) V!.! Supervisor Storage Requirements

336 SC34-0312

Support for: Resident Initialization

Program/Machine Check Log 250

Relocating Loader
With Addr Translator 4004 2250
Without Addr Translator 3044 2250

Floating Point Support
Included 610
Not Included 4

SUPport of GETEDIT/PUTEDIT
With Addr Translator 1402
Without Addr Translator 1330

Queue Processing Support 258

$DEBUG Support 384

Supervisor Patch Area 256

Figure 47. (Part 3 of 3) V1.1 Supervisor Storage Requirements

Note: The trans i ent program loader requ i res an area
of 3840 bytes which will be overlaid by the loaded
programs.

Appendix A. Storage Estimating 337

Version 2.0,5719-XS2)

Support for Res i d.ent Initialization

Basic Supervisor
with Address Translator 6700 228
without Address Translator 5862
+8*Csum of MAXPROG values) ()

Disk or Diskette
DiskCette) Basic 1298 1432
4962/4964 Support 1176
4963 Support 430
4963 Fixed Head Support 550
+178 per unit ()

+ 32 per secondary volume C)

4966 Support 1374
4966 Tape Support 4362 384
+130 per unit ()

+128 per I/O task defined ()

Terminals
Basic

With Addr Translator 5638 616
Without Addr Translator 4656 616

4979/4978
With Addr Translator 2202 1634*
Without Addr Translator 2076 1634*
+468 per 4979 or 4978 ()

4973/4974
With Addr Translator 716
Without Addr Translator 640
+530 per 4973 or 4974 ()

4013 type devices 480
+438 per device ()

Virtual Terminals 504
+426 per terminal ()

Basic for
any TTY, 2741/PROC,ACCA 536

Teletypewriter 438
+446 per teletypewriter ()

2741/PROC 1446
+574 per 2741/PROC ()

+512 i f Correspondence code ()

+512 i f EBCD code ()

ACCA ASCII Terminals 1114 500
+506 per terminal ()

* 4978 only

Figure 48. (Part 1 of 3) V2. 0 Superv i sor Storage Requ i rements

338 SC34-0312

Notes:

The above numbers include 128 bytes per terminal for the
optional Keyboard Task (ATTN=YES).

Basic ASCII support is required for teletypewriter, ACCA,
2741, and 4013 terminals.

Appendix A. Storage Estimating 339

Support for: Resident Initialization

Timers
4953/4955 ·1078 342
4952 1038 : 180

Binary Synchronous Access Method
With Addr Translator 3282 570
Without Addr Translator 3032 570
+136 per line of any type ()

+ 22 per multi-line
controller ()

multi-controller ()

Host Communication Faci lity 1928 362

Sensor Based Input/Output
Basic

With Addr Translator 1050 178
Without Addr Translator 876 178

Analog Input 610
+48 for first AI group ()

+16 for each
additional group ()

Analog Output 66
+16 per AO ()

Digital Input and Output 932
+38 per DI group ()

+16 per DO group in 4982 ()

+38 per DO group in IDIO ()

Process Interrupt 164
+156 per PI group ()

EXIO Control
Basic 698 64
+(32+x(16+n» per device ()

(x=maximum number of DCBs,
n=number of residual status
bytes transferred)

Error Logging
Included 352
Not Included 20

I· Figure 49. (Part 2 of 3) V2.0 Supervisor Storage Requirements

340 SC34-0312

Support for: Resident Initialization

Program/f1ach i ne Check Log 250

Relocating Loader
Wi th Addr Translator 4016 2352
Without Addr Translator 3068 2352

Floating Point Support
Included 610
Not Included 4

Support of GETEDIT/PUTEDIT
With Addr Translator 1602
Without Addr Translator 1330

Queue Processing Support 258

$DEBUG Support 384

Supervisor Patch Area 256

I Figure 50. (Part 3 of 3) V2. 0 Super v i sor Storage Requ i rements

Note: The trans i ent program loader requ i res an area
of 3840 bytes which will be overlaid by the loaded
programs.

Appendix A. Storage Estimating 341

I UTILITY PROGRAMS

The storage (in bytes rounded UP to the next
256 byte increment) required by the Event Driven
Executive
.$BSCTRCE
$BSCUTI
$BSCUT2
$COMPRES
$COPY
$COPYUTI
$DASDI
$DEBUG
$DICOMP
$DIINTR
$DISKUTI
$DISKUT2
$DIUTIL
$DUMP
$EDITI
$EDITIN
$EDXASM

$EDXLIST
$FONT
$FSEDIT
$HCFUTI
$IAMUTI
$IMAGE
$INITDSK
$IOTEST
$JOBUTIL
$LINK
$LOG
$MOVEVOL
$PDS
$PFMAP
$PREFIND
$PRT2780
$PRT3780
$RJE2780
$RJE3780
$TERf1UTI
$TERMUT2
$TERMUT3
$TRAP
$UPDATE
$UPDATEH

utility programs:
1792
4864

19712
3584
9216
9984

25600
6912

11264
9728
7680
9728 (+1280 if printing error log)
9216
5888
9728

11776
18944 (+5632 when assembling

TERMINAL statements)
6144
5632

22528
2304

12648
9728
6656
8960
5376

18688
5632
6144
1792

512
6144
2304
2560
9728
9984
3072
8192

768
5376
7936
6400

342 SC34-0312

Storage requirements for Version 2 utilities are the sa~e as
above except for the addition of the following:

$RMU
$TAPEUT1

option

EX
CD
MT
DP
ST
RT
IT
TA

7680
5632 (plus size of option)

additional storage

5632
3584 (+ additional space requested)
1280
1792 (+ additional space requested)

21248
20480

2560
1792

Appendix A. Storage Estimating 343

APPLICATION PROGRAMS

A reasonable estimate of the storage required, in bytes, for a
program can be made by tot a ling the fo llow i ng:

1. Number of source statements * 10 = ()

2 •

Includes operation code and parameters instruction plus
incid~ntal tables and buffers. This estimate was deter­
mined from examination of the utility programs,
wr i tten in Event Dr i ven Execut i ve instruct ions.

large tables and buffers = ()

3. Graph i cs instruct i on cause subrout i nes to be added to
your program. Add the following for the fi rst occurrence
of each instruct i on.

CONCAT 286
GIN 158
PLOTCB 16
PlOTGIN 186 (+GIN i f not already used)
SCREEN 474
XVPLOT 368 (+SCREEN and CONCAT i f

not already used)
VTPlOT 368 (+SCREEN if not already used)

Graph i cs subrout i nes =)

4. Data formatting instructions cause subroutines to be
included in your program. Add the number indicated for
each first occurrences of the following specification
included in a FORMAT statement referenced in the
instructions.

344 SC34-0312

INSTRUCTION •
GETEDIT,PUTEDIT or FORMAT
GETEDIT
GETEDIT
GETEDIT
PUTEDIT
PUTEDIT
PUTEDIT
PUTEDIT
GETEDIT or PUTEDIT

Formatting subroutines =

SPECIFICATION

any
alphameric
float.pt. For E
integer
alphameric
float.pt. F
float.pt. E
integer
any parenthetical
expression

)

BYTES

886
208

86
80
18
88
72
66
22

5. Data formatting instructions cause data areas to be
inserted in your program. Add B bytes for each occur­
rence of the following instructions:

GETEDIT
B=16+(4*V)+A
where V=the number of variables in list

A=6 if ACTION+IO, else A=O

PUTEDIT
B=16+(4*V)+A
where V=number of variables in list

A=4 if ACTION=IO, else A=O

FORMAT
B=24+(4*L)
where L=number of elements in FORMAT list

Appendix A. Storage Estimating 345

Formatting instructions = . ()

6. When the formatted screen image subroutines are included,
program size is increased as fo llows:

Module Size (Bytes)

$IMOPEN (includes DSOPEN) 1702

$IMGEN (entry points
$IMDEFN
$IMPROT 1030
$IMDATA
SPACK
$UNPACK)

Total () .

7. Programs us i ng assembler language code wi 11 requ ire one of
more of the following subroutines to be included in the
program:

Module Size (Bytes)

$$RETURN(entry point RETURN) 38

$$SVC(entry point SVC) 64

$EDXATSR(entry points) 40
SETBUSY,
SUPEXIT

Total ()

8. When a local or a global (or both) ATTNLIST is coded, an
extra TCB is generated. The size of this TCB is 128 bytes.

346 SC34-0312

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY

APPENDIX B. V!.! SUPERVISOR MODULE NAMES (CSECTS)

EDXSYS
SSTART
RETURN
$DISKDDB
SIPLVOL
STIMRTBL
STESTADR
STPDDB
$BSCADDR
EOXFLAGS
SVCFLAGS
SSBPITAB
LCBA
SVCBFIN
SVCBFOUT
SVCRTRN
SVCLI
SVCLT
SVCL2
SVCL3
SVCLSB
SVCIAR
SVCAKR
SVCLSR
SVCRO
SVCRI
SVCR2
SVCR3
SVCR4
SVCR5
SVCR6
SVCR7
SVCIIAR
SVCILSB
SVCIAKR
SVCILSR
SVCIRO
SVCIRI
SVCIR2
SVCIR3
SVCIR4
SVCIR5
SVCIR6
SVCIR7
UNCHAKRI
UNCHSAV6
SYCPARMS
CMOTABLE
EDXSVCX
SVC
SVCA

Appendix B. VI.! Supervisor Module Names (CSECTs) 347

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTY

SETBUSY
SVCI
WAIT
ENQ
DEQ
POST
ATTACHX
ATTACH
DETACH
SUPEXIT
SUPEXTRL
SUPLVLXO
SATTACH
SDETACH
SC~JAIT

SWAIT
SPOST
SRESETEV
SENQ
SDEQ
STPTASKI
STPTASK2
UNCHAIN
$CP
LPGMXPI
LPGMXP2
$DBUGNUC
$TESTCOM
STESTIN
STESTOUT
$TRCSIA
$TRCLSB
EDXALU
$EXEC
#NOP
CMDSETUP
CMD$TEST
#IFB
#IFW
#IFDW
#IFTEST
$COMPE
$COMPNE
$FINDE
$FINDNE
CGOTO
BRANCH
SDOLOOP
SCONTINU
SAV222CR
SAV424CF
SAV444CR
SAV224CR
SAX222
SA222C

3l't8 SC34-0312

ENTRY SA222
ENTRY SSX222
ENTRY S5222C
ENTRY S5222
ENTRY SM222
ENTRY 5M222C
ENTRY 5D222
ENTRY 5D222C
ENTRY GETPAR3
ENTRY GETCNT
ENTRY SA424
ENTRY 5A424C
ENTRY SS424
ENTRY S5424C
ENTRY 5M424
ENTRY SM424C
ENTRY 5D424
ENTRY SD424C
ENTRY SX444
ENTRY SX444C
ENTRY 5X224R
ENTRY 5X224CR
ENTRY 5D422R
ENTRY 5D422CR
ENTRY MOVI
ENTRY MOVIC
ENTRY ANDI
ENTRY ANDIXX
ENTRY IORI
ENTRY IORIXX
ENTRY EORI
ENTRY EORIXX
ENTRY 5HRI
ENTRY SHRIXX
ENTRY SHLI
ENTRY 5HLIXX
ENTRY MOV2
ENTRY MOV2C
ENTRY AND2
ENTRY AND2XX
ENTRY IOR2
ENTRY IOR2XX
ENTRY EOR2
ENTRY EOR2XX
ENTRY 5HR2
ENTRY SHR2XX
ENTRY SHL2
ENTRY SHL2XX
ENTRY MOV4
ENTRY MOV4C
ENTRY AND4
ENTRY AND4XX
ENTRY IOR4
ENTRY IOR4XX
ENTRY EOR4

Appendix B. VI.I Supervisor Module Names. (CSECTs) 349

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY.
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

EOR4XX
SHR4
SHR4XX
SHL4
SHL4XX
MOVEXP
SCALL
SRETURN
BFRCK
USER
DISKIO
DISKRW
DISKIOOO
DISKER09
DCBRETRN
DISKFLIH
DFLIH04
DISKERRI
DISKERR2
DISKERR3
DISKERR5
DISKER6B
DISKERR7
DISKPOST
VARYON
VARVOFF
VARVWORD
VARYQCB
VARYDSCB
D49624
D49624AT
D4962IHl
DFLIH50
DISKATTN
DATTNOO
D4963A
D4963AT
CNTLBU5Y
D4963IHl
CNTLEND
D4963ATN
D4963ATl
D4966A
D4966AT
04966B
D4966ATN
D4969A
VRV4966
RLOAOER
LOADPGM
LPGf1XPA
LOADPGMO
LOADEXIT
LPGMXPB
ENDCODE

350 SC34-0312

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY

LOADQCB
LOADORG
LCMDKEY
LCMDTGT
GETMAIN
FREEMAIN
$ACTIVE
GOTOTABL
$CANCEL
STOP
STOPTASK
IOLOADER
IOLOAD
IOUNLOAD
IOSEXIO
EXOPEN
EXIO
EXFLIH
EXIOCLEN
EDXTIO
$DPEND
PRSKSP
CURCTL
CTLXFER
PRTEXT
NXTCOMD
NXTCOMD1
RDTEXTL
RDTEXT
QUESTION
PRTNUM2S
PRTNUM2
PRTNUM45
PRTNUM4
GETVAL2
GETVAL4
KBTASK
ENDATTN
TERMOUT
TER~lINT

DECSCAN
FLDCLEAR
BDCWORD
DCBWORD
EBBICVT
EDXTERMQ
ENQDEQT
QUTERMIN
QUTERM
DQTERM
DQTERMIN
DQTERMB
DEQTERMS
EDXFLOAT (NOFLOAT has same entry points)
FADD010

Appendix B. V1.! Supervisor Module Names (CSECTs) 351

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY

FADDOOO
FADDIOO
FADDOOl
FADDOll
FADDIOl
FADDII0
FADDlll
FSUBOOO
FSUBIOO
FSUBOOl
FSUBOIO
FSUBOll
FSUBIOI
FSUBII0
FSUBlll
FLOATERR
FMPYOOO
FMPYOOl
FMPYOIO
FMPYOll
F~1PYlIO

FMPYIOO
FMPYlll
FMPYIOI
FD1VOOO
FDIVOOl.
FD1VOIO
FD1VOll
FD,IVIIO
FDIVIOO
FD1Vlll
FDIVIOI
FLTCONV
MOVFP4
MOVFP8
IFFLOAT
1FFLOATL
EDXFLEND
EBFLCVY
EBFLDBL
EBFLSTD
FLEBDBL
FLEB5TD
I05TTY
WRTTY
RDTTY
lATTY
1054979
104979
104978
1A4979
IA4978
1054974
104974
104973

352 5C34-03l2

ENTRY
Et~TRY

CSECT
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY

CSECT
ENTRY

CSECT
ENTRY

CSECT
ENTRY

CSECT
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY

lA4974
IA4973
lOSVIRT
IOVIRT
1AV1RT
1054013
~~R4013

RD4013
IA4013
1052741
~JR2741

RD2741
IA2741
lAPROC
lOSTERM
10TERM
ASC1ITAB
TRASClI
EBASClI
TREBASC
EBCDTAB
TREBCD
CRSPTAB
TRCRSP
EDXTIMER
TlMEROIA
TlMERlIA
SETlMER
WAITIMER
I NT I ~1E X
INTIME
GTIMDATE
PRINTINE
WHAT1ME
SETCLOCK
EDXT1NR2
TINEROIa
TIMRLSB
SETlNER
WAITI~1ER

INTI~1EX

lNTIME
GTIMDATE
PRINTIr1E
WHATINE
SETCLOCK
BSCAM
BSCENTRY
BSCIA
DEQBSC
IOSACCA
~J R A C C A
RDACCA
IAACCA
ACCALS

Appendix B. VI.I Supervisor Module Names (CSECTs) 353

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY

CSECT
CSECT

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
CSECT

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT

SBAI
SAl
SAIA
SAIX
SAIS
AlIA
SBAO
SAO
SAOA
SAOX
SBDIOO
SOl
SOIA
SDIX
SDlS
SDO
SOOA
SDOX
SDOS
SOOP
OIIA
DOIA
SBPI
PIIALEX
PIIAG17
PIIABIT
SBCOM
SBERR
GETDDB
CKEXIT
QIO
TPCOM
STP
$TPIA
$TPDOBI
TPSTATS
IOCBSCSS
IDCBRES
IOCBSIO
SYSLOG
LCD
$LOGIA
$LOGTSK
$SLOGIA
$SLOGTSK
$SLOGPRM
NOSYSLOG
CIRCBUFF
CIRSTR
CIRIN
CIRENO
CIRCNT
CIRESIZ
CIRESTR
EDXSTART

354 SC34-0312

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY

CSECT
ENTRY

CSECT
CSECT
CSECT
CSECT
CSECT
CSECT

ENTRY
ENTRY
ENTRY

CSECT
CSECT
CSECT
CSECT
CSECT

ENTRY

INITTASK
PCHKSIA
PCHKLSB
SFTKSIA
STARTPGM
EDXINIT
START
$EDXINIT
INITEXIT
DISKINIT
DISKBUFR
DSKPREP2
PREPIDCB
DSKINITI
D66INIT
RW4963ID
ID4963IH
TERMINIT
TERMERRX
INIT4978
BSCINIT
$BSCARAM
$ACCARA~1

INIT l t013
LOADINIT
$DSNFND
$DSIOERR
DSOPEN
SBIOINIT
TPINIT
TIMRINIT
EXIOINIT
CLOKINIT
TIMRINIT

Appendix B. Vl.1 Supervisor Module Names (CSECTs) 355

-, 356 5 C 34- 0 3 1 2

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY.
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY

APPENDIX C. V2.0 SUPERVISOR MODULE NAMES (CSECTS)

EDXSYS
$START
RETURN
$DISKDDB
SIPLVOL
$TIMRTBL
$TESTADR
$TPDDB
$BSCADDR
EDXFLAGS
SVCFLAGS
SSBPITAB
LCBA
SVCBFIN
SVCBFOUT
SUPRTRN
SVCLI
SVCLT
SVCLT2
SVCL3
SVCLSB
SVCIAR
SVCAKR
SVCLSR
SVCRO
SVCRI
SVCR2
SVCR3
SVCR4
SVCR5
SVCR6
SVCR7
SVCIIAR
SVCILSB
SVCIAKR
SVCILSR
SVCIRO
SVCIRI
SVCIR2
SVCIR3
SVCIR4
SVCIR5
SVCIR6
SVCIR7
UNCHAKRI
UNCHSAV6
SYCPARMS
CMDTABLE
EDXSVCX
SVC
SVCA

Appendix C. vt.O Supervisor Module Names (CSECTs) 357

ENTRY SETBUSY
ENTRY SVCI
ENTRY WAIT
ENTRY ENQ
ENTRY DEQ
ENTRY POST
ENTRY ATTACHX
ENTRY ATTACH
ENTRY DETACH
ENTRY SUPEXIT
ENTRY SUPEXTRL
ENTRY SUPlVLXO
ENTRY SATTACH
ENTRY SDETACH
ENTRY SCWAIT
ENTRY SWAIT
ENTRY SPOST
ENTRY SRESETEV
ENTRY SENQ
ENTRY SDEQ
ENTRY STPTASKI
ENTRY STPTASK2
ENTRY UNCHAIN
ENTRY $CP
ENTRY LPGMXPI
ENTRY lPGMXP2

CSECT EDXALU
ENTRY :ft:IFB
ENTRY :ft:IFDW
ENTRY tIFW
ENTRY iIFTEST
ENTRY $COMPE
ENTRY $COMPNE
ENTRY $FINDE
ENTRY $FINDNE
ENTRY CGOTO
ENTRY BRANCH
ENTRY $EXEC
ENTRY tNOP
ENTRY CMDSETUP
ENTRY CMD$TEST
ENTRY SDOLOOP
ENTRY SCONTINU
ENTRY SAV222CR
ENTRY SAV424CF
ENTRY SAV444CR
ENTRY SAV224CR
ENTRY SAX222
ENTY SA222C
ENTRY SA222
ENTRY SSX222
ENTRY SS222C
ENTRY S5222
ENTRY sr12 2 2
ENTRY SM222C

358 SC34-0312

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

5D222
5D222C
GETPAR3 • GETCNT
5A424
5A424C
55424
SS424C
5M424
SM424C
5D424
5D424C
SX444
SX444C
SX224R
5X224CR
SD422R
SD422CR
MOVI
MOVIC
ANDI
ANDIXX
IORI
IORIXX
EORI
EORIXX
5HRI
SHRIXX
SHLI
SHLIXX
MOV2
MOV2C
AND2
AND2XX
IOR2
IOR2XX
EOR2
EOR2XX
SHR2
SHR2XX
SHL2
SHL2XX
MOV4
MOV4C
AND4
AND4XX
IOR4
IOR4XX
EOR4
EOR4XX
SHR4
5HR4XX
SHL4
SHL4XX
MOVEXP

Appendix C. V2.0 Supervisor Module Names (C5ECTs) 359

ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY

SCALL
SRETURN
BFRCK
USER
EDXSTART
INITTASK
PCHKSIA
PCHKLSB
SFTKSIA
STARTPGM
DISKIO
DISKRW
DISKRWOS
TAPE060
DISKIOOO
DISKER09
DCBRETRN
DISKFLIH
DFLIH04
DISKERRI
DISKERR2
DISKERR3
DISKERRS
DISKER6B
DISKERR7
D~SKPOST

VARYON
VARYOFF
VARYWORD
VARYQCB
VARYDSCB
D49624
D49624AT
D4962IHl
DFLIHSO
DFLIHS4
DISKATTN
DATTNOO
D4963A
D4963AT
CNTLBUSY
D4963IHl
CNTLEND
D4963ATN
D4963ATl
D4966A
D4966AT
D4966B
D4966ATN
VRY4966
D4969A
D69DHPT
TAPEIO
TAPEIOOO
TSOPEN

360 SC34-0312

ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
EN1RY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY

CSECT
ENTRY

ACLOSE
OPNCLS
VRY4969
IOSEX10
EXOPEN
EXIO
EXFL1H
EX10CLEN
EDXT10
$DPEND
PRSKSP
CURCTL
CTLXFER
PRTEXT
NXTCOMD
NXTCOMD1
RDTEXTL
RDTEXT
QUESTION
PRTNUM2S
PRTNUM2
PRTNUM4S
PRTNUM4
GETVAL2
GETVAL4
KBTASK
ENDATTN
TERMOUT
TERM1NT
DECSCAN
FLDCLEAR
DBCWORD
EBBICVT
EDXTERMQ
ENQDEQT
QUTERMIN
QUTERM
DQTERM
DQTERMIN
DQTERMB
DEQTERMS
1054979
104979
104978
IA4979
1A4978
10S4974
104974
104973
IA4974
1A4973
10STERM
10TERM
10STTY
WRTTY

Appendix C. V2.0 Supervisor Module Names (CSECTs) 361

ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY

CSECT
ENTRY

CSECT
ENTRY

CSECT
ENTRY

CSECT
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT.
ENTRY
ENTRY
ENTRY

CSECT
ENTRY

RDTTY
lATTY
rOSACCA
L.JRACCA
RDACCA
IAACCA
ACCALS
IOS4013
WR4013
RD4013
IA4013
1052741
WR2741
RD2741
IA2741
IAPROC
IOSVIRT
10VIRT
IAVIRT
ASCIITAB
TRASCII
EBASCII
TREBASC
EBCDTAB
TREBCD
CRSPTAB
TRCRSP
EDXTIMER
TIMEROIA
TIMERIIA
SETIMER
WA1TIMER
WAITI~1ER

INTIME
GT I ~1DA TE
PRINTIME
WHATIME
SETCLOCK
EDXTIMR2
TIMEROIA
TIMRLSB
SETIMER
WAITlt'1ER
INTIMEX
INTIME
GTIMDATE
PRINTIME
WHATIME
SETCLOCK
BSCAM
BSCENTRY
BSCIA
DEQBSC
TPCOM
STP

362 SC34-0312

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY

$TPIA
$TPDDBl
TPSTATS
IDCBSCSS
IDCBRES
IDCBSIO
SBCOM
SBERR
GETDDB
CKEXIT
IOLOADER
IOLOAD
IOUNLOAD
SBAI
SAl
SAIA
SAIX
SAIS
AlIA
SBAO
SAO
SAOA
SAOX
SBDlDO
SOl
SDAI
SDrx
SOlS
SDO
SDOA
SDOX
SDOS
SOOP
DllA
DOIA
SBPI
PIlALEX
PIIAG17
PIIABIT
SYSLOG
LCB
$LOGIA
$LOGTSK
$SLOGIA
$SLOGTSK
$SLOGPRM
NOSYSLOG
$LOGTSK
$LOGIA
$SLOGTSK
$SLOGIA
$SLOGPRM
CIRCBUFF
CIRSTR
CIRIN

Appendix C. V2.0 Supervisor Module Names (CSECTs) 363

ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CIREND
CIRCNT
CIRESIZ
CIRESTR
RlOADER
lOADPGM
lPGMXPA
lOADPGMO
lOADEXIT
LPGMXPB
ENDCODE
lOADQCB
lOADORG
lCMDKEY
LCMDTGT
GETMAIN
FREE~1AIN

$ACTIVE
GOTOTABl
$CANCEL
STOP
STOPTASK
EDXFlOAT
FADDOIO
FADDOOO
FADDIOO
FADDOOI
FADDOll
FADDIOI
FADDIIO
FADDlll
FSUBOOO
FSUBIOO
FSUBOOI
FSUBOI0
FSUBOll
FSUBI01
FSUBII0
FSUBlll
FLOATERR
FMPYOOO
FMPYOOI
FMPYOIO
FMPYOll
FMPYII0
FMPYIOO
FMPYl11
FMPYI01
FDIVOOO
FDIVOOI
FDIVOIO
FDIVOll
FDIVII0
FDIVIOO
FDIVl11

364 SC34-0312

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
CSECT

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
CSECT
CSECT

ENTRY
ENTRY
ENTRY

CSECT
ENTRY

CSECT
ENTRY
ENTRY

CSECT
CSECT
CSECT
CSECT
CSECT
CSECT
CSECT
CSECT
CSECT
CSECT

FDIVIOl
FLTCONV
MOVFP4
MOVFP8
IFFLOAT
IFFLOATL
EDXFLEND
EBFLCVY
EBFLDBL,
EBFLSTDD
FLEBDBL
FLEBSTD
QIO
$DBUGNUC
$TESTCOM
STESTIN
STESTOUT
$TRCSIA
$TRCLSB
EDXINIT
START
$EDXINIT
INITEXIT
DISKINIT
DISKBUFR
DSKPREP2
PREPIDCB
DSKINITI
D66INIT
D69INIT
TAPEINIT
LOADINIT
$DSNFND
$DSIOERR
DSOPEN
RW4963ID
ID4963IH
TERMINIT
CCBFIXRT
TERMERRX
INIT4978
INIT4013
$ACCARAM
BSCINIT
$BSCARAM
TPINIT
TIMRINIT
SBIOINIT
EXIOINIT
CLOKINIT

Appendix C. V2.0 Supervisor Module Names (CSECTs) 365

366 SC34-0312

APPENDIX D. PROGRAM PREPARATION EXAMPLE

Th is four-part append 1 x conta 1 ns a deta,i'led examp Ie of how to
code and prepare an ; nteract; ve term; nal program.

1. Part I shows the development of an Event Driven Language
program. The program displays a terminal screen generated
by the $ IMAGE ut i I; ty and accepts operator input.

2. Part II shows the full screen 1mage being defined and
stored ina data set us i ng the $ IMAGE ut; Ii ty program.

3. Part I I I shows the program be i ng prepared for execut i on
using the session manager to invoke the program prepara­
tion utilities. The program is compiled, listed, link­
e d i ted wit h t he s y s t e m - s up p 1 i e d sub r out i n e s, and con v e r ted
t 0 a n e x e cut ab 1 e loa d mod u Ie.

4. Part IV sh~ws a batch job stream procedure being used to
prepare the program for execut i on. Th i s step dup 1 i cates
the process i ng done in part I I I for; llustrat i ve purposes.

Appendix D. Program Preparation Example 367

start

START <-------.

Displ<1Y Initi<11
Oper<1tor

,Instruct ions

CHECK

W<1H For
Oper<1tor
Response

END!T

PROGSTOP

GETIMAGE

Displ<1Y
St<1tlc
Screen

WAITONE <:---------------------------------,
W<11t For
Oper<1tor
Response

CLEANUP

Er<1se
Entire
Screen

Er<1se
Corresponding
Student D<1ta

Er<1se Prompt
Are<1 And All
Student D<1ta

Figure 51. Flowchart of program ope rat ions

368 SC34-0312

PART I. TERMINAL PROGRAM CODING EXAMPLE

In this part of the appendix, a sample program 1S developed.
The program formats the display screen of the terminal used to
load it and accepts data entered onto the screen by the opera­
tor. Figure 51 on page 368 depicts the operations performed by
the program.

Processing the Initial Operator Instructions

The initial portion of the program displays instructions
requiring the operator to (1) end the program, or (2) bring UP
the data entry screen (static-screen) and proceed. To obtain
the operator's decision, the program uses the ATTNLIST facili­
ty, so an ATTNLIST statement is required.

This portion of the program operates the terminal in roll­
screen mode, with no history lines defined (NHIST=O). The rest
of the program uses the terminal in static-screen mode. A sepa­
rate IOCB is required for each mode. Figure 52 shows the two
IOCB statements, the ATTNLIST statement, and the associated
attention routines.

XMPLSTAT PROGRAM START
IOCBI IOCB NHIST=O
IOCB2 IOCB SCREEN=STATIC

ATTHLIST (EHO,OUT,$PF,STATIC)
START

OUT POST ATTNECB,l
ENOATTN

STATIC POST ATTNECB,-l
ENDATTN

ENDPROG
E~

Figure 52. Code for IOCB's and attention handlers

Appendix D. Program Preparation Example 369

Displaying the Initial Operator Instructions

The portion of the ~rogram that processes the initial operator
instruct ions is shown in Figure 53: Execut i on beg i ns at
location START. The ENQT directed to IOCBI changes NHIST=12 to
NHIST=O (the terminal is assumed to be a 4979 with NHIST=12
no r ma 11 yin e f feet) •

Note: Because no terminal name is specified in the IOCB, the
terminal enqueued defaults to the terminal used to load the
program.

The five PRINTEXT statements following the ENQT statement dis­
play the program title 'and initial operator instructions on the
screen. Because operator control has been defined through an
ATTNLIST, and ATTNLIST is inhibited while the terminal is
enqueued, the last PRINTEXT is followed by a DEQT, whichrees­
tablishes the ATTNLIST.

XMPLSTAT PROGRAM START
IOCBl IOCB NHIST=O
IOCB2 IOCB SCREEN=STATIC

ATTN LIST (END,OUT,$PF,STATIC)
START ENQT IOCBl

PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=15,LINE=O
PRINTEXT 'HIT "ATTN" AND ENTER "END" TO END',SKIP=2
PRINTEXT ' THE PROGRAM'
PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
PRINTEXT ' BRING UP THE ENTRY SCREEN'
DEQT

CHECK WAIT ATTNECB,RESET
IF (ATTNECB,EQ,I),GOTO,ENDIT

ENDIT PROGSTOP

OUT POST ATTNECB,l
ENDATTN

STATIC POST ATTNECB,-l
ENDATTN

ATTNECB ECB

Figure 53. Code to process initial operator instructions

370 SC34-0312

Waiting for an Operator Response

The ECB at location ATTNECB compiles with an initial value in
the first word of -1, i nd i cat i ng "event comp lete". The WAIT at
location CHECK is coded with a RESET operand, which resets the
first word of the ECB at ATTNECB to zero before the WAIT is exe­
cuted. A zero in the first word of an ECB i nd i cates "event not
occurred", so the WAIT at CHECK suspends task XMPLSTAT, wa it i ng
on event ATTNECB.

~: If the WAIT had been coded without the RESET operand, it
wou ld have executed as a no ope rat ion.

After the program title and initial operator instructions have
been written to the terminal (while the program is waiting at
CHECK for the operator response), the screen looks like
Figure 54.

LINE
NUMBER

o CLASS ROSTER PROGRAM
1
2 HIT 'ATTN' AND ENTER 'END' TO END THE PROGRAM
3
4 HIT ANY PROGRAM FUNCTION KEY TO BRING UP THE ENTRY SCREEN
5
6

7

8
9

10
11
12
13
14
15

16
17
18
19
20
21
22
23

CHAR 00000000011111111112222222222333333333344444444445555555555666666666677777777778
POS 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 54. Screen showing initial operator instructions

Appendix D. Program Preparation Example 371

Processing the Operator Response

If the operator presses the ATTN key, enters "END" and presses
the ENTER key, the attention routine at OUT executes, posting
the first word of the ECB at ATTNECB with a +1. Because a value
other'than zero in the first word of the ECB indicates ·"event
complete", the WAIT operation terminates. Execution continues
with the IF statement following the WAIT, which transfers con­
trol to location ENDIT.

If the operator wants to proceed with the CLASS ROSTER PROGRAM
and presses a PF key, the attention routine at STATIC posts
ATTNECB with a value of -1. The WAIT terminates, the IF that
follows d6es not transfer control to ENDIT (because ATTNECB is·
not = +1), and execution continues with the static-screen
portion of the program.

372 SC34-0312

Formatting the Static Screen Image

Figure 55 shows the static-screen image that is used by the
program.

LINE
NUMBER

o
1 ENTER KEY = PAGE COMPLETE
2 PF3 = DELETE ENTRY 3
3

4

5

CLASS NAME:

6. NAME:
7

8

9

10
11 NAME:
12
13
14
15
16 NAME:
17
18
19
20
21 NAME:
22
23

PFI = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

INSTRUCTOR NAME:

STREET:
CITY
STATE :

STREET:
CITY
STATE :

STREET:
CITY

. STATE:

STREET:
CITY
STATE :

PF2 = DELETE ENTRY 2

CHAR 00000000011111111112222222222333333333344444444445555555555666666666677777777778
POS 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 55. Stat i c-screen i mage used by program

Note: The image is def i ned and saved ina data set in part I I.

The statements required to access the stored screen image are
exp la i ned in the fo llow i ng pages.

Appendix D. Program Preparation Example 373

Reading the Stored Screen Image ($IMOPEN Subroutine)

Refer to Figure 56 for the following discussion.

The first step in using a stored screen image is to read the
image data set into the application program. The $IMOPEN sub­
routine reads the data set into the buffer at IMAGEBUF. The
name of the data set and volume is specified in a TEXT state­
ment, and the label of the TEXT statement is passed to $IMOPEN
as the first parameter in the CAll. The second parameter is the
label of the buffer which is to receive the image. Both parame­
ters must be enclosed in parentheses. The buffer is defined by
a BUFFER statement. Data set VIDEOI will be two records in
length, so IMAGEBUF is defined as 512 bytes.

$IMOPEN returns a code in "taskname+2". The application pro­
gram has the responsibility to check for proper completion (-1
return code). The example program includes a completion code
check and error routine.

GETIMAGE CALL $IMOPEN,(DSETNA~E),(IMAGEBUF)

IF (XMPLSTAT+2,NE,-1)
MOVE ERRCODE,XMPLSTAT+2
PRINTEXT '~IMAGE OPEN ERROR, CODE ='
PRINTNUM ERRCODE
QUESTION '~RETRY OPEN? ',YES=GETIMAGE,NO=ENDIT

ENDIF

ERRCODE DATA F'O'
IHAGEBUF BUFFER 512,BYTES
DSETNAHE TEXT 'VIDEOl,EDX002'

Figure 56. Coding to read stored screen image

374 SC34-0312

Setting IOCB Dimensions ($IMDEFN Subroutine)

Figure 57 on page 376 shows a CALL to subroutine $IMDEFN which
fills in the specified IOCB with the dimensions of the screen
image in the buffer. The CALL to $IMDEFN is not a required func­
tion; the IOCB may be enqueued without first calling the sub­
routine. By calling $IMDEFN, you are assured that the IOCB has
the proper dimensions for the screen in the buffer. This ena­
bles you to change the dimensions in the stored screen image
(us i ng $ IMAGE) without hav i ng to change the program.

Transferring the Stored Image to the Screen ($IMPROT/$IMDATA
Subroutines)

Refer to Figure 57 on page 376 for the following discussion.

Before the screen can be d i sp layed, the term ina 1 must be
enqueued as a static-screen device. The ENQT IOCB2 instruction
accomplishes that.

Now that the terminal is enqueued, the screen image in the
buffer can be displayed. The TERMCTRL BLANK following the ENQT
blanks the screen, preventing flicker while the image is writ­
ten. The CALL of subroutine $IMPROT transfers all the protected
data from the image buffer to the screen, and the call to
$IMDATA transfers the unprotected data.

Note: If a screen image consists of all protected or all
unprotected data, on 1 y the appropr i ate sub rout i ne need be
called.

The PRINTEXT following the last CALL positions the cursor at
the first data entry field, and TERMCTRLDISPLAV displays the
screen.

Appendix D. Program Preparation Example 375

IOCB2
EXTRN
IOCB

$IMOPEN,$IMDEFN,$IMPROT,$IMDATA
SCREEN=STATIC

GETIMAGE CALL $IMOPEN,(DSETNAME),(IMAGEBUF)
IF (XMPlSTAT+2,NE,-1)

MOVE ERRCODE,XMPLSTAT+2
PRINTEXT '~IMAGE OPEN ERROR, CODE ='
PRINTNUM ERRCODE
QUESTION '~RETRY OPEN? ',YES=GETIMAGE,NO=ENDIT

ENDIF
CALL $IMDEFN,(IOCB2),(IMAGEBUF)
ENQT IOCB2
TERMCTRL BLANK
CALL $IMPROT,(IMAGEBUF),O
CALL $IMDATA,(IMAGEBUF)
PRINTEXT lINE=4,SPACES=12
TERMCTRL DISPLAY

ERRCODE DATA F'O'
IMAGEBUF BUFFER 512,BYTES
DSETNAME TEXT 'VIDEOl,EDX002'

Figure 57. Code to transfer stored· i mage to screen

The second parameter of the CALL $IMPROT statement (Figure 57)
is coded as o. This could be coded as the label of a. BUFFER
statement, in wh i ch case the $ IMPROT subrout i ne bu i Ids a tab Ie
of the location and sizes of all unprotected (data entry)
fields on the screen. Each table entry is three words long. The
first word conta i ns the 1 i ne number, and the second, the start­
ing position of the field within the line (spaces from left
margin of screen). The third word contains the length of the
field. These entries can be used to read or write data entry
fields'on the screen.

For example, in Figure 58 on page 377, FIELDS contains the
line, spaces, and size of the first data entry field. PRINTEXT
positions the cursor, and TERMCTRL displays it at the first
field, just as did the PRINTEXT/TERMCTRL pair in Figure 57. If
the starting point of the first data entry field is changed
($IMAGE used to redefine the screen image), the program shown
in Figure 57 would have to be changed, or the cursor would not
be positioned properly. The program in Figure 58 on page 377
wotild pick up the new starting field location without any pro­
gram modification required.

376 SC34-0312

CALL
PRINTEXT
TERMCTRL.

$IMPROT,(IMAGEBUF),(FIELDS)
LINE=FIELDS,SPACES=FIELDS+2
DISPLAY

FIELDS BUFFER 3

Figure 58. Alternate coding technique

Usjng the Image Formatting Subroutines

The "$IM" subroutines are supplied as object modules on
diskette XSIOOI or XS2001. They are normally loaded into the
volume ASMLIB.

Because they are object modules, they are combined with the
rna in program dur i ng the 1 i nk ed it step, not dur i ng comp i lat i 0'1.

They must therefore be declared as external references in an
EXTRN statement in the main program as shown in Figure 57 on
page 376.

P~ocess;ng Operator Input

Acceptjng Operator Input

The operator may position the cursor and enter data in any
unprotected area of the screen. The program, by pos it i on i ng the
cursor at LINE=4, SPACES=12 (with the PRINTEXT following the
CALL $IMDATA), provides a convenience to the operator, not a
requ ired funct i on - the operator cou ld have used the cursor
pos i t ion i ng keys to move the cursor to the same pos i t ion.

The tab right key is useful in controlling cursor movement.
Assume that the operator enters "SERIES/l HARDWARE" in the
space following the protected "CLASS NAME:" message, and then
presses the tab right key (--> I). The cur'sor automat i ca 11 y
skips over the protected "INSTRUCTOR NAME:" field, and posi­
t ions i tse 1 f at the beg i nn i ng of the unprotected area wh i ch
follows.

Appendix D. Program Preparation ~xample 377

If the operator presses the tab right key after entering the
instructor name, the cursor moves to accept the first student
name en try. E a c h t i me t he 0 per at 0 r pre sse s the tab key, the
cursor moves to the beginning of the next unprotected area on
the screen. The cursor success i vely tabs to "NAME:",
"STREET:", "CITY:", and "STATE:", and then down to the "NAME:"
in the next data entry area.

Without program interaction, the operator can enter an entire
screen of i nformat i on and transfer it at one time. Th is is what
is meant by stat i c-screen ope rat i on, in contrast to the
transactional prompt/reply dialogue typical of roll-screen
operation.

A completed input screen is shown in Figure 59. The screen is
now at the po i nt where the program must be signa lIed to process
the data entered.

LINE
NUMBER

o
1 ENTER KEY = PAGE COMPLETE
2 PF3 = DELETE ENTRY 3

PFI = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

PF2 = DELETE ENTRY 2

3 --
4 CLASS NAME: SERIES/I HARDWARE INSTRUCTOR NAME: JOHN JONES

5 --
6 NAME: AL BROWN
7

8

9

10
11 NAME: BILL SMITH
12
13
14
15
16 NAME: JOE STANTON
17
18
19
20
21 NAME: LINDA GREEN
22
23

STREET:
CITY
STATE :

STREET:
CITY
STATE :

STREET:
CITY
STATE :

STREET:
CITY
STATE :

III GRANT AVENUE
ENDICOTT
NEW YORK 13760

255 ALHAMBRA CIRCLE
CORAL GABLES
FLORIDA 33135

140 EAST TOWN STREET
COLUMBUS
OHIO 43215

6216 WASHINTON AVENUE
RACINE
WISCONSIN 53406 -

CHAR 00000000011111111112222222222333333333344444444445555555555666666666677777777778
POS 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 59. Screen with all data entered

378 SC34-0312

In Figure 60, the WAIT KEY instruction at WAITONE terminates
when the operator presses the ENTER key or a PF key. The com­
puted GOTO following the WAIT KEY transfers control to various
entry points, depending on the return code in "t~skname+2". A
return code of zero results from use of the ENTER key, caus i ng a
transfer to location READ. PFI through PF4 return codes of 1
through 4, and result in transfers to El through E4, respec­
tively (not shown). With the GOTO coded as shown, a PF key high­
er than PF4 causes a transfer to READ, because the the return
code is outside the valid range of index values 1-4. The zero
returned by the ENTER key is a Iso outs i de that range, and
results in a transfer to READ.

Assume that the operator presses the ENTER key, which signals
the program that the page is complete and transfers control to
READ. In an actua 1 app 1 i cat i on program, the rout i ne at locat i on
READ would contain the READTEXT instructions necessary to read
all the data entered on the screen. The data would presumably
be collected and used to print a class roster for the "SERIES/l
HARDWARE" course taught by "JOHN JONES" •

XMPLSTAT PROGRAM START

START

WAITOHE WAIT
GOTO

READ

CLEAHUP

QUESTION
ERASE
ERASE
PRIHTEXT
TERMCTRL
GOTO
ERASE
DEQT
GOTO

EHDPROG
END

IOCBl

KEY
(READ,El,E2,E3,E4),XMPLSTAT+2

'MORE ENTRIES ?',LIHE=2,SPACES=55,NO=CLEAHUP
MODE=LIHE,LIHE=2,SPACES=55,TYPE=DATA
MODE=SCREEH,LIHE=6
LIHE=6,SPACES=6
DISPLAY
WAITOHE
MODE=SCREEH,TYPE=ALL

START

Figure 60. Code to process ENTER key

Appendix D. Program Preparation Example 379

Determining if More Data js to.be Entered

Assuming that the contents of the screen has been read, the
QUESTION instrtiction at READ displays the prompt message "MORE
ENTRIES 1" in the· operator prompt area at the upper right of the
screen, as shown in Figure 61.

LINE
NUMBER

o
1 ENTER KEY = PAGE COMPLETE
2

3'

PF3 = DELETE ENTRY 3
PFI = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

PF2 = DELETE ENTRY 2
.MORE ENTRIES 1_

4 CLASS NAME: SERIES/l HARDWARE INSTRUCTOR NAME: JOHN JONES

·5 --
6 NAME: AL BROWN
7

8

9

10
11 NAME: BILL SMITH
12
13
14
15
16 NAME: JOE STANTON
17
18
19
20
21 NAME: LINDA GREEN
22

23

STREET:
CITY
STATE

STREET:
CITY
STATE :

STREET:
CITY
STATE :

STREET:
CITY
STATE :

111 GRANT AVENUE
ENDICOTT
NEW YORK 13760

255 ALHAMBRA CIRCLE
CORAL GABLES
FLORIDA 33135

140 EAST TOWN STREET
COLUMBUS
OHIO· 43215

6216 WASHINTON AVENUE
RACINE
WISCONSIN 53406

CHAR 00000000011111111112222222222333333333344444444445555555555666666666677777777778
POS 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 61. Screen contents after ENTER key is used

The "MORE ENTRIES 1" query is asking the operator, "Are there
more students to add to this roster, or are the students just
read from the the current screen the last ones at th i s time 1"

380 SC34-0312

Processing jf More Data is to be Entered

Refer to Figure 60 on page 379 for the following discussion .
. Assume that more students are to be enro,lled and "YES" is t~e
response. Because YES= is not'coded on the QUESTION stat~ment,
a response of "YES" results in execution of the ERASE
instruction following the QUESTION. The first ERASE following
the QUESTION clears the prompt and reply from the operator
prompt area, and the second ERASE clears all unprotected data
from the four data entry areas in lines 6 through 23. The "SE­
RIES/1 HARDWARE" and "JOHN JONES" entries in the header area
are left undisturbed, because the student names and addresses
to be entered are still for the same class. The PRINTEXT fol­
low i ng the second ERASE pos i t ions the cursor at the first
unprotected entry field for the first data entry area. The
TERMCTRL DISPLAY that follows displays the cursor, resulting
in the screen shown in Figure 62.

LINE
NUMBER

o
1 ENTER KEY = PAGE COMPLETE

PF3 = DELETE ENTRY 3

PFI = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

PF2 = DELETE ENTRY 2
2

3

4
5

CLASS NAME: SERIES/I HARDWARE INSTRUCTOR NAME: JOHN JONES

6 NAME:
7

8

9

10
11 NAME:
12
13
14
15
16 NAME:
17
18
19
20
21 NAME:
22
23

STREET:,
CITY
STATE :

STREET:
CITY
STATE :

STREET:
CITY
STATE :

STREET:
CITY
STATE :

CHAR 00000000011111111112222222222333333333344444444445555555555666666666677777777778
POS 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 62. Screen contents after rep I y of YES to QUESTION

Appendix D. Program Preparation Example 381

processjng if No More Data is to be Entered

1ft here are no more students to ente r for th is roste r.' and the
response to the "MORE ENTRIES 1" prompt is "NO", the QUESTION
statement (Figure 60 on page 379) transfers control to
locat i on CLEANUP. There, the program erases both protected and
unprotected areas of the entire screen, dequeues the terminal,
and goes back to the beginning of the program (START), bringing
up the roll-screen with the initial operator instructions, as
shown in Figure 63.

LINE
NUMBER

o CLASS ROSTER PROGRAM
1
2 HIT 'ATTN' AND ENTER lEND' TO END THE PROGRAM
3

4 HIT ANY PROGRAM FUNCTION KEY TO BRING UP THE ENTRY SCREEN
5

6

7

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

CHAR 00000000011111111112222222222333333333344444444445555555555666666666677777777778
POS 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 63. Screen contents after reply of NO to QUESTION

382 SC34-0312

Processing the Program Function Keys

In Figure 64, assume the program is aga i n suspended by the WAIT
KEY at WAITONE, with the complete screen depicted in Figure 59
on page 378. The transfer to locat i on READ and the "MORE
ENTRIES ?" prompt from the QUESTION statement resulted from the
operator press i ng the ENTER key.

However, the WAIT KEY instruction may also be terminated by a
PF key. No PF key functions are preassigned other than the
hardcopy facility (PF6). Therefore, the purpose of a partic­
ular PF key in any program is def i ned by the instruct ions coded
in the routine to which control is transferred when that PF key
is pressed.

The PFI through PF4 keys have been assigned by this program as
delete functions for the four data entry areas, as shown by the
operator prompts at the top of the screen (see Figure 59 on
page 378).

XMPLSTAT PROGRAM START

WAITONE WAIT KEY
GOTO (READ,El,E2,E3,E4),XMPLSTAT+2

El MOVE LINENBR,6
GOTO DELETE

E2 MOVE LINENBR,11
GOTO DELETE

E3 MOVE LINENBR,16
GOTO DELETE

E4 MOVE LINENBR,21
DELETE ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR

ADD LINENBR,1
ERASE MODE=LINE ,TYPE=DATA, LINE=LINENBR
ADD LINEt-IBR, 1
ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR
SUBTRACT LINENBR,2·
PRINTEXT LINE=LINENBR,SPACES=6
TERMCTRL DISPLAY
GOTO WAITONE

LINENBR DATA F'O'
ENDPROG
END

Figure 64. Code to process the PF keys

Appendix D. Program Preparation Example 383

Assume that for some reason, the student "JOE STANTON", the
third entry on the screen, is not supposed to be on the class
roster; the operator, therefore, presses PF3.

In Figure 64 on page 383, the PF key terminates the WAIT KEY
instruction, and the computed GOTO transfers control to E3.
The MOVE at E3 initializes the LINENBR variable to 16, which is
the top line of the third data entry area. Control· is then
transferred to DELETE, where successive ERASE operations and
adjustments of the LINENBR variable result in erasure of the
unprotected porti ons of the th i rd data entry area. Before
returning to the WAIT KEY, the cursor is positioned and dis­
played at the first entry field of the erased data area, as
shpwn in Figure 65.

LINE
NUMBER

o
1 ENTER KEY = PAGE COMPLETE
2 PF3 = DELETE ENTRY 3

PFI = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

PF2 = DELETE ENTRY 2

3 --
4 CLASS NAME: SERIES/l HARDWARE INSTRUCTOR NAME: JOHN JONES

5 --
6 NA~1E: AL BROWN
7

8

9

10
11 NAME: BILL SMITH
12
13
14
15
16 NAME:
17
18
19
20
21 NAME: LINDA GREEN
22
23

STREET: 111 GRANT AVENUE
CITY ENDICOTT
STATE : NEW YORK 13760

STREET: 255 ALHA~tBRA CIRCLE
CITY CORAL GABLES
STATE : FLORIDA 33135

STREET:
CITY
STATE :

STREET: 6216 WASHINTON AVENUE
CITY RACINE
STATE : WISCONSIN 53406

CHAR 00000000011111111112222222222333333333344444444445555555555666666666677777777778
POS 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 65. Screen contents after PF 3 is used

The program preparation descriptions in part III and part IV
assume that this program is stored in the data set STATSRC in
volume EDX002.

384 SC34-0312

Figure 66 and Figure 67 on page 386 are a listing of the com­
plete program.

XMPLSTAT PROGRAM START

IOCBI
IOCBe

START

CHECK

EXTRN
IOCB
IOCB
ATTN LIST
ENQT
PRINTEXT
PRINTEXT
PRINTEXT
PRINTEXT
PRINT EXT
DEQT
WAIT

$IMOPEN,$IMDEFN,$IHPROT,$IMDATA
NUIST=O
SCREEN=STATIC
(END,OUT,$PF,STATIC)
IOCBI
'CLASS ROSTER PROGRAM',SPACES=15,LINE=O
'HIT' 'ATTN" AND ENTER' 'END" TO END' ,SKIP=2
• THE PROGRAM'
'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
, BRING UP THE ENTRY SCREEN'

IF
GETIHAGE CALL

IF

ATTNECB,RESET
(ATTNECB,EQ,I),GOTO,ENDIT
$IHOPEN,(DSETNAHE),(IHAGEBUF)
(XMPLSTAT+2,NE,-1)

MOVE ERRCODE,XMPLSTAT+2
PRINTEXT '~IHAGE OPEN ERROR,CODE ='
PRINTNUM ERRCOOE
QUESTION '~RETRY OPEN? ',YES=GETIMAGE,NO=ENDIT

ENDIF
CALL$IHDEFN,(IOCBe),(IMAGEBUF)
ENQT IOCB2
TERHCTRL BLANK
CALL $IHPROT,(IMAGEBUF),O
CALL $IHDATA,(IHAGEBUF)
PRINTEXT LINE=4,SPACES=12
TERHCTRL DISPLAY

WAITONE WAIT KEY
GOTO

El HOVE
GOTO

E2 HOVE
GOTO

E3 HOVE
GOTO

E4 HOVE
DELETE ERASE

ADD
ERASE
ADD
ERASE

(READ,El,E2,E3,E4),XMPLSTAT+2
lUIENBR,6
DELETE
LINENBR,11
DELETE
LINENBR,16
DELETE
LINENBR,21
HODE=LINE,TYPE=DATA,LINE=LINENBR
LINENBR,l
HODE=LINE,TYPE=DATA,LINE=LINENBR
LINEN8R,1
MODE=LINE,TYPE=DATA,LINE=LINENBR

Figure 66. Complete program (Part 1 of 2)

Appendix D. Program Preparation Example 385

SUBTRACT
PRIHTEXT
TERMCTRL
GO TO

READ QUESTIOH
ERASE
ERASE
PRIHTEXT
TERMCTRL
GO TO

CLEANUP ERASE
DEQT
GOTO

EHDIT PROGSTOP
OUT POST

EHDATTH
STATIC POST

EHDATTH
ATTHECB ECB
LIHEHBR DATA
ERRCODE DATA
IMAGEBUF BUFFER
DSETHAME TEXT

EHDPROG
EHD

LINENBR,2
LINE=LINEHBR,SPACES=6
DISPLAY
WAITONE
'MORE ENTRIES ?',LIHE=2,SPACES=SS,HO=CLEANUP
MODE=LIHE,LIHE=2,SPACES=55,TVPE=DATA
MODE=SCREEH,LIHE=6
LINE=6,SPACES=6
DISPLAY
WAITONE
MODE=SCREEH,TVPE=ALL

START

ATTHECB,l

ATTHECB,-l

F'O'
F'O'
512,BYTES
'VIDEOl,EDX002'

Figure 67. Complete program (Part 2 of 2)

386 SC34-0312

PART II. DEFINE FORMATTED SCREEN IMAGE USING $IMAGE

Part I of this appendix showed the development of a sample ter­
minal program which formatted a static-screen using
system-supplied subroutines to access the screen image defined
using the $IMAGE utility.

This part of the appendix is a description of the $IMAGE utili­
ty session in which the static-screen image used by the example
program is created and stored in a data set. The screen image
that is created in this utility session is shown in Figure 55
on page 373 with the exception that the cursor does not appear
on the screen defined using $IMAGE: it is displayed by the
application program.

$IMAGE is used to create formatted screen images for use with
terminals that support static screen functions. The image
(formatted screens) is stored in a disk or diskette data set
for later retrieval by application programs. $IMAGE can also
retrieve stored images for modification.

Appendix D. Program Preparation Example 387

Creating the Image Data Set

Vo.u must allocate a disk or diskette data set to store the
formatted screen i mage created by $IMAGE. The forma.tt i ng
information and· text are stored in a special packed format to
con s e r ve spa c e • A s tor e d s c r e e n may be an' y s i z e fro m 0 n e c h a r -
acter position up to an entire physical screen, and therefore
the amount of space on disk or diskette requ i red to store a 9 i v­
en scr.een image var i es. For most stored screens, a data set two
records in length is adequate.

Because the screen image to be created encompasses an entire
physical screen and contains several lines of ' text, a data set
two records in length is requ i red to store it.·

Be for e beg inn i n 9 the $ I MAG E uti 1 i t y s e s s ion, a d a t a s e.t two
records long,. named VIDEOl is created us i ng $DISKUTI.
Figure 68 shows the data set ·creat i on sequence.

> $L $DISKUTI
$DISKUTI 26P,OO:32:06, LP= 5FOO

USING VOLUME EDX002
COMMAND (?): AL VIDEOI 2
DEFAULT TYPE = DATA - OK? YES
VIDEDOI CREATED

COMMAND (?): END
DISKUTI ENDED AT 00:32:33

Figure 68. Allocat i on of screen i mage data set (VIDEOl)

388 SC34-0312

Loading $IMAGE and Entering Commands

Now the $IMAGE utility can be loaded, and the utility session
begun. Figure 69 shows the commands used. Entering a "1" in
response to the "COMMAND (?):" prompt results in a display of
the avai lable $IMAGE commands'.

> $L $IMAGE
$IMAGE

COMMAND (1): 1

37P,OO:32:06, LP= 5FOO

DIMS -- DEFINE IMAGE DIMENSIONS
HTAB -- DEFINE HORIZONTAL TAB SETTINGS
VTAB -- DEFINE VERTICAL TAB SETTINGS
NULL -- DEFINE NUll REPRESENTATIION
EDIT -- ENTER EDIT MODE
KEYS PROGRAM FUNCTION KEYS
SAVE SAVE IMAGE ON DISK
END -- END PROGRAM

COMMAND (?): DIMS 24 80
COMMAND (?): HTAB 1 31
COt1MAND (?): NULLL
COMMAND (?): EDIT

F i 'g u r e 6 9. $ I MAG E com man d s

All of the commands listed in Figure ,69 may be entered in com­
mand mode only. They are not ava i lable in ed it mode.

The DIMS command allows you to define the dimensions of the
logical screen you are creating. The example shows a logical
screen of 24 lines and 80 characters specified, which is equal
to the entire physical screen.

HTAB is the horizontal tab settings you wish to have in effect
while you are creating the screen. If not entered, HTAB
defaults to 10,20,30,40,50,60,70. The example defines horizon­
tal tab settings of 1 and 31. Those tab settings allow you to
position the cursor to the corresponding display positions
with the PFI key inedit mode.

VTAB defines vertical tabs. The default is one vert,jcal line
for each vertical tab key usage. Since VTAB is not entered in
this example, one-line vertical tabs will be in effect. The
edit mode vertical tab key (PF2) moves the cursor down and to
the column position of the last horizontal tab used.

The NULL command allows you to define the null character. When

Appendix D. Program Preparation Example 389

in edit mode, you enter a null character in each character
position in which you want to display unprotected data, or
which is to accept data entered by the operator. The example
defines the null character to be a slash (/).

The KEYS command lists the functions of PFl, PF2, and PF3 imme­
d i ately after ed i t mode is entered. Refer to Figure 70.

PFl-define protected f;elds
PF2-define data f;elds (unprotected)
PF3-return to command mode

Figure 70. $ IMAGE PF key funct ions upon ed it mode entry

Creating the Image

Entering edit mode

The last command entered is EDIT, which places the $IMAGE uti 1-
ity in edit mode. If an existing screen image were to be edit­
ed, the data set name and volume containing that image would be
entered with the EDIT command. Because this $IMAGE session is
creating a new screen, EDIT is entered without reference to a
data set. Before press i ng any of the PF keys, the screen is
ent i rely blank, and the cursor is in the lower left corner.

Protected and Unprotected Fields

The screen being created in this example contains both
protected and unprotected data. The operator prompts on lines
1 and 2 are unprotected, and the rest of the fields are pro­
tected (see Figure 55 on page 373.)

Note: When the completed screen is displayed, the unprotected
areas appear brighter than those that are protected, high­
light i ng the prompts at the top of the screen.

390 SC34-0312

Defining the Protected Fields

When both protected and unprotected text is to appear on a
s c r e e ncr eat e d b y $ I MAG E, you m u's ten t e r the pro t e c ted d a t a
first. Therefore press PFI to signal the utility that protected
fields are to be defined. The cursor moves to the first avai 1-
able character position, which is line 0, space 0, in this
example.

As soon as either PFI or PF2 is pressed, after entering edit
mode, the function of PFI and PF2 is redefined. PFI is then used
as the horizontal taL key and PF2 as the vertical tab key.
Since no text appears on line 0, press the vertical tab key PF2
to move the cursor down to the first pos it i on of 1 i ne 1.

When you define the protected areas of a screen image, all
characters. entered, other than the nu 11 character, are pro­
tected data. All areas of the screen not containing null char­
acters will be protected when the screen is completed. The
operator prompts on lines 1 and 2 are supposed to be unpro­
tected. Therefore, the actual text of the prompts cannot be
entered until the unprotected data definition portion of this
utility session, which occurs after all protected fields have
been defined. However, since these areas of the screen will
contain unprotected text, null character fields must be
entered; this allows the text entered to be accepted when the
unprotected data de fin it i on is done.

Now format the rest of the screen. Note that any field meant to
receive operator input when the screen is used. must be defined
us i ng the nu 11 character.

Appendix D. Program Preparation Example 391

Figure 71 shows the screen contents after all protected fields
have been def i ned.

LINES

o
1 11111111111111111/1111111
2 11111111/11111111/11
3

4
5

CLASS NAME: 1111111111111111

11111111111111111111
11111111111111111111

11111111111111111111
11111111111111111

INSTRUCTOR NAME: 11111111111111111111111111

6

7

8

9

NAME: 1111111111111111111111 STREET:' 1111111111111111111111111111111111111
CITY 1111111111111111111111111/11111111111
STATE : 1111111111111111111111111111111111111

10
11 NAME: 11/1111111111111111111 STREET: 1111111111111111111111111111111111111
12 CITY 1111111111111111111111111111111111111
13 STATE : IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!II
14
15
16 NAME: 11111111111/1111111111 STREET: 111111111111111111111111111111111111/
17 CITY 1/111111111111111111111/1111/111/1///
18 STATE : //////11111//1111111111111111/11/111/
19
20
21 NAME: 1/11/1/11/1111/1/11111 STREET: /1111///111111/1111111111/11111//111/
22

23
CITY 11/1111111111111/1/11111/111/111/1111
STATE : 11111/111/1111111111111111111111/1111

CHAR 00000000011111111112222222222333333333344444444445555555555666666666677777777778
POS 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 71. Screen with protected and null fields defined

Press the ENTER key to take the utility out of protected field
definition, (back to the situation as it was before a define
protected field or define unprotected field decision was
made). PFI and PF2 again have the meanings printed out by the
KEYS command (refer to Figure 70 on page 390).

392 SC34-0312

The ENTER key also causes the protected areas of the screen
defined up to this point to be displayed as shown in Figure 72.

LINES

o
1

2

3 --
4 CLASS NAME: INSTRUCTOR NAME:

5 --
6 NAME:
7

6

9

10
11 NAME:
12

13

14

15
16 NAME:
17

16

19
20
21 NAME:
22

23

STREET:
CITY
STATE :

STREET:
CITY
STATE :

STREET:
CITY
STATE :

STREET:
CITY
STATE :

CHAR 00000000011111111112222222222333333333344444444445555555555666666666677777777776
pas 12345678901234567890123456789012345678901234567890123456789012345~78901234567890

Figure 72. Screen contents after ENTER key use

Entering the Unprotected Output Fields

If the desired screen image were now complete, you would press
PF3 to reenter command mode, so that the image could be saved.
In this example, however, there is sti 11 unprotected data to be
defined (on lines one and two), so press PF2. Pressing PF2
allows unprotected fields to be entered and brings back the
same screen image as in Figure 71 on page 392, with the unpro­
tected fields def i ned as null characters.

Now fill in the unprotected null fields in the operator prompt
area at the top of the screen. The other null fields are input
fields that will be used by the application program, so they
are left undisturbed.

Appendix D. Program Preparation Example 393

After all unprotected text is defined, the screen looks like
that shown in Figure 73.

LINES

o
1 ENTER KEY = PAGE COMPLETE
2 PF3 = DELETE ENTRY 3
3

4
5
6

7

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

CLASS NAME: /111111111111111

NAME: 1111111111111111111111

NAME: /11////11///1111///111

NAME: /111111////111/1/11111

NAME: 1/111111111111/1111111

PFI = DELETE ENTRY 1
PF4 = DELETE ENTRY 4

PF2 = DELETE ENTRY 2
1111/11//11/11/11

INSTRUCTOR NAME: 1/1/11111//11111/111/111/1

STREET: 1111111111111111111111111111111111111
CITY /1//1/111111111111111111111111/111111
STATE : 111111111111111111111111111111111111/

STREET: 1111111///1//1/111111////11/111//11/1
CITY 1111111111111111111111111/11/11111111
STATE : 111//111111/11111/11111111/111/111111

STREET: 1/1111/1////11111//1111111/1/11111/1/
CITY 1111/11111//11111/1/1111111/111/11111
STATE : 11///1111111111//1111111/1/11111/111/

STREET: 1/1/11111/1/1//1////////1/1//1111/111
CITY 111/1/1/111/111111///11111//111//1/11
STATE : 111111111/1/11111/111111111//11///111

CHAR 00000000011111111112222222222333333333344444444445555555555666666666677777777778
POS 12345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 73. Screen with unprotected fields defined

After you have entered the unprotected prompts on lines one and
two, press the ENTER key. The comp I eted screen is then d i s­
played (see Figure 55 on page 373) If you want to make any
changes to the screen, press PFI to allow protected field entry
or PF2 to allow unprotected field entry.

394 SC34-0312

s~v;ng the Image Created

Assuming that the image is correct, press PF3 to return to com­
mand mode. The screen is blanked and you are prompted for a com­
mand. Enter the SAVE command followed by the name of the data
set that was allocated for this purpose. The $IMAGE utility
session is ended.

COMMAND (?): SAVE VIDEOl
SAVED (2 RECORDS)

COMMAND (1): END

Figure 74. Save screen image created and end $IMAGE

Appendix D. Program Preparation Example 395

PART III. PREPARE PROGRAM USING SESSION MANAGER

In part· I, a program 'was developed incorporating
system-supplied subroutines to fo~mat the'static-scr.en image
used.

In part II, the $IMAGE screen formatting utility was used to
create the screen, and save it ina screen i mage data set named
VIDEOI.

I nth i spa r t 0 f the a p pen d ix, the pro g ram d eve lop' e din par t I j s
com p i led, lin k - e d i ted, and for mat ted. E a c h s t e pis' don e us i n g
the session manager to invoke the various program preparation
utilities.

Figure 75 shows a graph i c overv i ew of the progr'am 'preparat i on
process.

$EDITlN

$FSEDIT

Step 1: Create source module

'------> $EDXASM

step 2: Compile source module into
object module (listing optional)

$lINK Step 3: link edit
object modules
(if required)

L--_____ > (AS REQUIRED)

L--______________ I _______ :I $UPDATE I
Step 4: Format object module into
relocatable load module
(executable program)

Figure 75. Program preparation steps

396 SC34-0312

Step I. 'Create Source Module Using $FSEDIT

The program to be prepared is shown in Figure 66 on page 385 and
Figure 67 on page 386. The source program is assumed to be in a
data set named STATSRC on volume EDX002.

Step 2. Compile Source Module Using $EDXASM

The names of the data sets' and the volumes conta i n i ng them that
are used in the comp i lat i on step are:

DATA SET NAME VOLUME NAME

INPUT DATA SET STATSRC EDXOO2

OUTPUT DATA SET ASMOBJ EDXOO2

Note: You must allocate ASMOBJ if it does not already exist. It
must be a data type member. A size of 100 records is adequate.

Figure 76 on page 398 shows the session manager display screen
used to invoke the comp i ler.

Be c a use n 0 0 p t i on s are 5 e 1 e c te d, $ E D X A 5 M pro d u c e s a f u I I com p i -
lation listing on the system printer. When the compiler fin­
ishes, it stores the resulting object module in ASMOBJ on
volume EDX002. $EDXASM then loads $EDXLIST to produce the com­
pilation listing.

Appendix D. Program Preparation Exam~le 397

$SMM0201: SESSION MANAGER $EDXASM PARAMETER INPUT MENU-------------------------­
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

SOURCE INPUT (NAME,VOLUME) ==> STATSRC,EDX002

OBJECT OUTPUT (NAME,VOLUME) ==> ASMOBJ,EDX002

ENTER OPTIONAL PARAMETERS BY POSITION ==>
1--------2---------
LIST PRINTER NAME
NOLIST
ERRORS

DEFAULTS ARE: LIST $SYSPRTR

Figure 76. $EDXASM invocation

The compilation listing produced is shown in Figure 77 on page
399, Figure 78 on page 400, and Figure 79 on page 401.

398 SC34-0312

EOX ASSEMBLER STATISTICS

SOURCE INPUT - STATSRC ,EOXOO2
WORK DATA SET - SSMIUSER,EOX003
OBJECT MODULE - ASMOBJ ,EOX002
DATE: 02/21/60 AT 16:24:57
ASSEMBL Y TI"lE: 26 SECONDS
STATEMENTS PROCESSED - 70

NO STATEMENTS FLAGGED

0000 0006 0709 06C7 09Cl 0440 XMPLSTAT PROGRA~ START
OOOA 0000 0404 0052 0000 0000
0014 0506 0000 0000 0000 0100
DOlE 0504 0000 0000 0000 0554
0026 0000

EXTRN SIMOPEN,SIMOEFN,SIMPROT,SIMOATA
002A 4040 4040 4040 4040 6000 IOCBl 10CB NHIST=O
0034 OOFF 0000 7FFF 0000 0000
003E 4040 4040 4040 4040 6600 IOCB2 10CB SCREEN=STATIC
0046 DOFF 0000 7FFF 0000 0000
0052 0002 0403 C505 C440 02A6 ATTNLI ST (ENO,OUT,SPF,STATIC)
005C 0403 5B07 C640 02AE
0064 1025 002A START ENOT IOCBl
0066 B02A 0000 OOOF 6026 1414 PRINTEXT 'CLASS ROSTER PROGRAM',SPACES=lS,LINE=O
0072 C303 CIE2 E240 0906 E2E3
007C C509 4007 0906 C709 CI04
0066 902A 0002 0000 6026 2221 PRINTEXT 'HIT "ATTN" AND E~TER "END" TO ENO',SKIP=2
0090 CSC9 E340 70Cl E3E3 0570
'009A 40Cl OSC4 40C5 05E3 C509
00A4 4070 C505 C470 40E3 0640
OOAE C505 C440
00B2 6026 OCOC 40E3 C6C5 4007 PR INTEXT ' THE PROGRAM'
OOBC 0906 C709 CI04
00C2 902A 0002 0000 6026 201F PRINTEXT 'HIT ANY PROGRAM FUNCTION KEY TO',SKIP=2
OOCC C8C9 E340 C105 E840 0709
0006 06C7 09C1 0440 C6E4 05C3
OOEO E3C9 0605 4002 C5E8 40E3
OOEA 0640
OOEC 8026 lAIA 40C2 09C9 05C7 PRINTEXT ' BRING UP THE ENTRY SCREEN'
00F6 40~4 0740 E3CB C540 CS05
0100 E309 E840 E2C3 09C5 C505
010A 6025 OeQT
010C 0016 02B6 CHECK WAIT ATTNE:S,RESET
0110 AOA2 02B6 0001 0250 IF (ATTNECO,EO,l),GOTO,ENOIT
0116 C29E 0000 04C6 02C4 GETIMAGE CALL SIMOPEN,(DSETNAME),(IMAGEBUF)
0120 AOA2 0406 FFFF 0168 IF (XMPLSTAT+2,NE,-1)
0128 OOSC 02SE 04D6 MOVE ERRCOOE,XMPLSTAT+2
012E 6026 1616 7CC9 04C 1 C7C5 PRINTEXT '@IMAGE OPEN ERROR,COOE ='
0138 4006 07C5 0540 (:509 0906
0142 096S C306 C4C5 407E
014A 0026 02SE 0001 PRINTNUM ERRCOOE
0150 C026 OEOE 7C09 C5E3 09E8 QUESTION '@RETRY OPEN ? ',YES=GETIMAGE,NO=~NnlT
015A 4006 07C5 0540 6F40 C02E
0164 0116 0250

Figure 77. Compilation listing (Part 1 of 3)

Appendix D. Program Preparation Example 399

ENDIF
0168 C29E 0000 003E 02C4 CALL SIMDEFN,(IDCB2),(IMAGEBUF)
0170 102S 003E ENOT IDCB2
0174 1430 TERMCTRL BLANK
0176 C29E 0000 02C4 0000 CALL SIMPRDT,(IMAGEBUF),O
017E 819E 0000 02C4 CALL SIMDATA,(IMAGEBUF)
0184 B02A 0004 OOOC PRINTEXT LINE=4, S PACES=12
018A 1C30 TERMCTRL DISPLAY
018C 2030 WAITDNE WAIT KEY
018E 00A1 0406 0004 0204 019E GOTO (REAo,E1,E2,E3,E4),XMPLSTAT+2
019B OlAa 01B2 01BC
019E 80SC 02BC 0006 E1 MOVE LINENBR,6
OlA4 OOAO 01C2 GOTO DELETE
OlA8 BOSC 02BC OOOB E2 MOVE LINENBR,11
OlAE OOAO 01C2 GOTO DELETE
01B2 BOSC 02BC 0010 E3 MOVE LINENBR,16
01BB OOAO 01C2 GOTO DELETE
01ac BOSC 02BC 001S E4 MOVE LINENBR,21
01C2 E02A 02BC 0000 F030 0004 DELETE ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR
01CC 2000
01CE 8032 02BC 0001 ADO LINENBR,l
0104 E02A 02BC 0000 F03D 0004 ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR
OlOE 2000
DIED 8032 026C 0001 ADD LINENBR,l
01E6 E02A 02SC 0000 F03D 0004 E"RASE MODE=LINE,TYPE=DATA,LINE=LINENBR
01FO 2000
01F2 803S 02BC 0002 SUBTRACT LINENBR,2
01F8 A02A OZBC 0006 PRINTEXT LINE=LINENSR,SPACES=6
OlFE lC30 TERMCTRL DISPLAY
0200 OOAO OlBC GOTO WAITDNE
0204 F02A 0002 0037 C026 OEOE READ QUESTID"I 'MORE ENTRIES ?',LINE=2,SPACES=SS,NO=CLEANUP
020E 0406 09CS 40CS DSE3 D9C9
0218 CSE2 406F 80ZE 0244
0220 F02A 0002 0037 F030 0004 ERASE MODE=LINE,LINE=2,SPACES=Ss,IYPE=OATA
022A 2000
022C F02A 0006 0000 F030 0000 ERASE MODE=SCREEN,LINE=6
0236 2000
0238 B02A 0006 0006 PRINTEXT LI NE=6, SPACE S=6
023E 1C30 TERMCTRL DISPLAY
0240 OOAO 018C GOTD WAITDNE
0244 F030 0001 2000 CLEANUP ERASE MODE=SCREEN,TYPE=ALL
024A 802S DEOT
024C OOAO 0064 GOTD START
02S0 0022 FFFF ENDIT PROGSTOP
02S4 SOSO DATA X'SOSO'
02S6 6060 6060 6060 6060 6060 DASHES DATA BOC '-'
02A6 0019 02B6 0001 OUT POST ATTNECBtl
02AC 0010 ENDATTN
02AE 0019 0266 FFFF STATIC POST ATTNECB,-l
02B4 0010 ENDATTN
02B6 FFFF 0000 0000 ATTNECB ECB
02BC 0000 LINENBR DATA F'O'
02BE 0000 ERR CODE DATA F'O'
02CO 0000 0200 0000 0000 0000 IMAGEBUF BUFFER 512,BYTES
02CA 0000 0000 0000 0000 0000
04BE 0000 0000 0000
04C4 DEaD E5C9 C4CS D6F1 6BCS DSETNAME TEXT 'VIDE!J1,EOX002'
04CE C4E7 FOFO F240

Figure 78. Compilation listing (Part 2 of 3)

400 SC34-0312

0404 0000 0000 0000 0234 0000 ENOPROG
040E 0000 0000 0064 0404 0000
04E8 0000 0000 0000 0000 0000
04F2 0002 0096 0000 0000 FFFF
04FC 0000 0000 0500 0000 0000
0506 0502 E104 0103 E2E3 C1E3
0510 0000 0000 0000 0000 0000
05lA 0000 0000 FFFF 0000 0000
0524 0000 0000 0000 0404 0000
052E 0000 0000 0000 0000 0000
054C 0000 0000 0404 0080 0000
0556 0000 0000 0234 0000 0000
0560 0000 0000 0554 0000 0000
056A 0000 0000 0000 0000 0001
0514 OOOA 0000 0000 FFFF 0000
051E 0000 0580 0000 0000 0582
0588 5BC1 E3E3 C1E2 0240 0000
0592 0000 0000 0000 0000 0000
059C 0000 FFFF 0000 0000 0000
05A6 0000 0000 04D4 0000 0000
05BO 0000 0000 0000 0000 0000
05CE 0000 0554 0080 0000 0000
0508 0000 0000 0000 0000 0000
05E2 0000 0000 0000 0000

END

SVC WXTRN
SUPEXIT WXTRN
SETBUSY WXTRN
SlMOPEN EXTRN
SlMOEFN EXTRN
SIMPROT EXTRN
SlMOATA EXTRN

Figure 79. Compilation listing (Part 3 of 3)

Appendix D. Program Preparation Example 401

step 3. Link Edit Object Modules Using $LINK

The static-screen image formatting subroutines ($IMOPEN,
$IMDEFN, $IMDATA, $IMPROT) used by the source program are dis­
tributed in the form of object modules, which normally become
res i dent in ASML IB.

To include these subroutines in the program, the object module
output of the compilation (data set ASMOBJ) must be linked with
the screen formatting support object modules using $LINK.

The names of the data sets and the volumes containing them that
are used in the 1 i nk-ed it step are:

DATA SET NAME VOLUME NAME

INPUT DATA SETS ASMOBJ EDXOO2
$AUTO ASMLIB
$IMGEN ASMLIB
$IMOPEN ASMLIB

CONTROL DATA SET LINKSTAT EDXOO2

OUTPUT DATA SET LINK OUT EDXOO2

Note: You must allocate LINKOUT if it is not already allocated.
It must be a data type member. A size of 100 records is ade­
quate.

402 SC34-0312

Using the Autocall Data Set

The INCLUDE control records for the screen formatting object
modules are predefined in the system autocall data set $AUTO;
they may be included using the autocall option. When you use
the autocall option to include object modules, you need not
speci fy those module names on INCLUDE control records.

Figure 80 is a listing of $AUTO, the system autocall data set.
The screen formatt i ng support modu les are spec if i ed in
autoca 11 de fin it i on statements 220 and 230.

00010 $GPLIST,ASMLIB $GPLIST
00020 $PUHC,ASMLIB $PUHC
00030 $GEPM, ASMLIB $GEPM
00040 $GEAC,ASMLIB $GEAC
00050 $$GIN,ASMUB $$GIN
00060 $PUFC,ASMLIB $PUFC
00070 $PUXC,ASNLIB $PUXC
00080 $GEER,ASNLIB $GEER
00090 $GEXC, ASt1LIB $GEXC
00100 $$SCREEN,ASMLIB $$SCREEN
00110 $PUIC,ASMLIB $PUIC
00120 $PUSC ,ASMUB $PUSC
00130 $GESC,ASMLIB $GESC
00140 $GEFC, ASMLIB $GEFC
00150 $PUAC,ASNLIB $PUAC
00160 $PUEC, ASMUB $PUEC
00170 $GEIC,ASNLIB $GEIC
00180 $$PGIN,ASMLIB $$PGIN
00190 $$CONCAT,ASMLIB $$COHCAT
00200 $$XYPLOT, ASMLIB $$XYPLOT
00210 $MFSL, ASMUB $MFSL
00220 $IMGEN,ASMLIB $IMDEFN $IMPROT $IMDATA $ PACK $UNPACK
00230 $IHOPEN,ASHLIB $IMOPEN DSOPEN
00240 $$RETURN,ASNLIB RETURN
00250 $$SVC,ASMLIB SVC
00260 $$EDXATSR,ASMLIB SETBUSY SUPEXIT **END

Figure 80. $AUTO data set 1 i st i ng

If you wish to have your own autocall definitions, you can add
them to this data set, and continue to use the system autocall
data set $AUTO, or build your own autocall data set. In either
case, the last statement in the data .set must conta i n the
" * * END " text, i n d i cat i n g the end of the aut 0 call data set.

Appendix D. Program Preparation Example 403

Usjng the Link Control Data Set

The names of the output'object ~odule ~ata set, the aut6call
data set (if required), and the obj~ct module data sets to be
lin ked are pas sed tot h eli n k a g, e e d ito r i nth e, lin k con t r 0 1
data set. The link control dataset used for this example is
named LINKSTAT. In Figure 81, the link control statements
required for this link-edit are listed, along with some preced-
1, n g comment lin e sex p I a i ni n g the i r, fun c t i on •

00010 * THIS LINK EDIT CONTROL DATA SET SPECIFIES:
00020 *
00030 *

1) THE LINKED OUTPUT OBJECT MODULE WILL
BE STORED IN 'LINKOUT' ON EDX002

00040 * 2) THE AUTOCALL DATA SET IS '$AUTO' ON
00050 * VOLUME ASMLIB (SYSTEM SUPPLIED)
00060 * 3) 'ASMOBJ' ON EDX002 IS THE ONLY INPUT
00070 * OBJECT MODULE TO BE INCLUDED EXPLICITLY
00080 *
00090 OUTPUT LINKOUT AUTO=$AUTO,ASMLIB
00100 INCLUDE ASMOBJ
00110 END

Figure 81. Link edit control statements (LINKSTAT)

Use $FSEDIT to create this control statement data set and'store
it in LINKSTAT using the WRITE function at the end of the,text
edit session.

Invoking $LINK

At SLINK load time, supply the name of the I ink control data set
and the name of the device fo which linkage-editor messages are
to be directed. The linkage editor, 'using the LINKSTAT link
control data set, links the compiled object module in ASMOBJ
(specified on the INCLUDE control statement) with the screen
formatting object modules in ASMLIB, found through autocall
def i nit ions in SAUTO; the linked obj ect modu Ie is stored in
LINKOUT (specified on the OUTPUT control stateme~t). Required
error or i nformat i on messages are read from the system link
message data set, SLEMSG.

404 SC34-0312

Figure 82 shows the session manager display screen used to
invoke $LINK.

$SHH0205: SESSION MANAGER $LINK PARAMETER INPUT MENU --------------------------­
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

LINK CONTROL (NAME,VOLUME) ==> LINKSTAT,EDX002

OUTPUT DEVICE (DEFAULTS TO TERMINAL) ==> $SYSPRTR

Figure 82. $LINK invocation

Appendix D. Program Preparation Example 405

Figure 83 shows
link-edit.

the $SVSPRTR

SLINK EXECUTION CONTROL RECORDS
440000 FROM LINKSTAT,EDX002

OUTPUT LINKOUT AUTO=SAUTO,ASMLIB
000210INCLUDE ASMOBJ
0002Z0 INCLUDE SIMDPEN,ASMLIB

INCLUDE SIMGEN,ASMLIB
INCLUDE SSRETURN,ASMLIB
END

VIA 4UTOCALL
VIA 4UTOCALL
VIA AUTOCALL

***** UNRESOLVED EXTERNAL ~EFERENCES
410000 WXTRN SVC

WXTRN SUPEXIT
WXTRN SETBUSY

OUTPUT NAME= LINKOUT
ESD TYPE LABEL ADDR LENGTH

430000 CSECT 0000 OSEA
CSECT OSEA 076A

ENTRY SIMOPEN OSEC
ENTRY OSOPEN 090E

CSECT 0054 03EO
ENTRY SIMDEFN 0056
ENTRY SIMPROT ODF2
ENTRY SIMDATA OF38
ENTRY SPACK 1018
ENTRY SUNPACK 1088

CSECT 1134 0026
ENTRY RETURN 1134

MODULE TEXT LENGTH= lISA, ~LD COUNT= 424
LINKOUT ADDED TO EDXOOZ

SLINK COMPLETION CODE= -1
AT 16:28:55 ON 02/21/80

SLINK ENDED 4T 16:28:55

Fig u r e 8 3. lin ked i t Ii's tin 9

406 SC34-0312

output resulting from this

step 4. Format Object Modules Using $UPDATE

Before a linked (or compi led) object module can be executed, it
must be processed by $UPDATE to format the object module into a
relocatable load module acceptable to the system loader.

The names of the data sets and the volumes containing them that
are used in the $UPDATE step are:

DATA SET NAME VOLUME NAME

INPUT DATA SET LINKOUT EDXOO2

OUTPUT DATA SET STATPROG EDXOO2

Figure 84 shows the session manager display screen used to
invoke $UPDATE.

$SHH0206: SESSION MANAGER $UPDATE PARAMETER INPUT MENU -------------------------
ENTER/SELECT PARAMETERS: DEPRESS PF3 TO RETURN

OBJECT INPUT (NAME,VOLUHE) =============> LINKOUT,EDX002

PROGRAM OUTPUT (NAME,VOLUME) ============> STATPROG,EDX002

REPLACE (ENTER YES IF PROGRAM EXISTS) ===> YES

LISTING (TERMINAL NAME / *) =============> $SYSPRTR

NOTE: THE OBJECT INPUT, PROGRAM OUTPUT AND LISTING TERMINAL NAME ARE
REQUIRED PARAMETERS AND MUST BE ENTERED.
AN '*' MAY BE USED TO SPECIFY THIS TERMINAL AS THE LISTING TERMINAL

Figure 84. $UPDATE invocation

If data set STATPROG does not exist, $UPDATE creates it. The
program STATPROG can be loaded and executed when this step is
completed.

Appendix D. Program Preparation Example 407

PART IV. PREPARE PROGRAM USING $JOBUTIl

An alternative way to prepare a program for execution is to run
the steps involved as a batch job under control of the batch job
processor ut iii ty ($JOBUTI L). Th i s part of the append i x demon­
strates the use of this method to prepare the example program
for execut ion.

The procedure to be used requires the use of work data sets to
pass to $EDXASM and $LINK. The procedure also uses the same
input, control, and output data sets used in part I I I.

The requi red work data sets are as follows:

PROGRAM DATA SET NAME VOLUME NAME SIZE

$EDXASM ASMWORK EDXOO2 250

$LINK LEWORKI EDXOO2 400
LEWORK2 EDX002 150

Note: You must allocate the work data sets if they are not
avai lable. They are normally allocated during system installa­
tion.

Figure 85 on page 409 is a listing of the $JOBUTIL procedure
data set used to prepare the example program. The statements in
a procedure data set are created using $FSEDIT, and saved in a
data set.

In this example, the procedure data set is STATPROC on EDX002.·

408 SC34-0312

00010 JOB
00020 LOG
00030 *

STATIC
$SYSPRTR

00040 PROGRAM $EDXASM,ASMLIB
00050 REMARK COMPILE OF 'STATSRC' STARTED
00060 OS STATSRC
00070 OS
00080 OS
00090 PARM
00100 NOMSG
00110 EXEC
00120 JUMP
00130 *

ASMWORK
ASMOBJ
LIST $SYSPRTR

BADASM,NE,-I

00140 * THIS LINK INCLUDES THE '1M' SUBROUTUINE SUPPORT BY
00150 * USE OF THE AUTOCALL OPTION. THE AUTOCALL DEFINITION
00160 * STATEMENTS FOR THE '1M' SUPPORT ARE IN THE SYSTEM
00170 * SUPPLIED AUTOCALL DATA SET '$AUTO' ON ASMLIB.
00180 *
00190 PROGRAM $LINK,ASMLIB
00200 REMARK LINK EDIT OF 'ASMOBJ' OBJECT MODULE·STARTED
00210 REMARK NAHE OF LINK CONTROL DATA SET?
00220 PAUSE
00230 DS
00240 OS
00250 PARM
00260 NOMSG
00270 EXEC
00280 JUMP
00290 *
00300 PROC
00310 *
00320 JUMP
00330 REtlARK
00340 JUMP
00350 LABEL
00360 REMARK
00370 JUMP
00380 LABEL
00390 REMARK
00400 LABEL
00410 EOJ

LEWORKI
LEWORK2
$SYSPRTR

BADLINK,NE,-I

FORMPROC,EDX002

END,EQ,-I
FORMAT STEP FAILED
END
BADASM
COMPILE STEP FAILED
END
BAD LINK
LINK EDIT STEP FAILED
END

Figure 85. Bate h Job Processor procedure data set

Appendix D. Program Preparation Example 409

Invoking $JOBUTIL

When you load $JOBUTIL, you are prompted for the name of the
procedure data set to be used to direct the batch job. Enter the
data set name - STATPROC.

In Figure 85 on page 409, the JOB command at statement 10
'causes the display of a "job started" message on the loading
terminal as follows:

> $L $JOBUTIL
$JOBUTIL 3P,00:05:32, LP= 5FOO

OS! (NAME,VOLUME): STATPROC
*** JOB - STATIC - STARTED AT 00:05:55 00/00/00 ***

JOB STATIC

$EDXASM Step Invocation Under $JOBUTIL

The LOG command at statement 20 in Figure 85 on page 409 causes
the procedure data set statements (other than internal com­
ments) to print on the system printer. Statements 40 through
110 load and execute the compiler. The source, work, and output
data sets are spec if i ed in the DS commands. The PARM command at
statement 90 directs the comp i ler list i ng to the system pr i nt­
ere The,NOMSG command following the PARM prevents the $EDXASM
load message from being displayed on the loading terminal, but
the REMARK at statement 50 does appear:

> $L $JOBUTIL
$JOBUTIL 3P,OO:05:32, LP= 5FOO

OS! (NAME,VOLUME): STATPROC
*** JOB - STATIC - STARTED AT 00:05:55 00/00/00 ***

JOB
REMARK

STATIC
COMPILE OF 'STATSRC' STARTED

The normal completion code for an error-free compi lation is -1.
The JUMP command (statement 120) tests the compiler completion
code. If it is not equal to -1, the JUMP transfers control to
the label BADASM, which is defined by the LABEL command at
statement 350. The REMARK at 360 would be displayed on the
loading terminal, and the JUMP at 370 would transfer to label
END, ending the job.

410 SC34-0312

$LINK step Invocation Under $JOBUTIL

Assuming normal compiler operation, $JOBUTIL continues with
the link-edit step.

Through the PAUSE command, $JOBUTIL allows the operator to
enter job control commands. To illustrate this capability, the
link contro I data set is not spec if i ed ina OS command.
Instead, the PAUSE at statement 220 allows the operator to
enter the link control data set name. When the link procedure
is entered, the two REMARK statements preceding the PAUSE are
displayed, along with the PAUSE operator instructions, and
$JOBUTIL waits for the operator to press the ATTN key and enter
a command:

> $L $JOBUTIL
$JOBUTIL 3P,00:05:32, LP= 5FOO
DSl (NAME,VOLUME): STATPROC

*** JOB - STATIC - STARTED AT 00:05:55 00/00/00 ***

JOB
REMARK
REMARK
REMARK

STATIC
COMPILE OF 'STATSRC' STARTED
LINK EDIT OF 'ASMOBJ' OBJECT MODULE STARTED
NAME OF LINK CONTROL DATA SET ?

PAUSE-*-ATTN:GO/ENTER/ABORT

PAUSE

You can continue (GO), enter a job control command (ENTER), or
abort the job stream processor and end the job (ABORT). In thi s
example, the link control data set is to be specified, so enter
"ENTER".

You are prompted for the command to be entered. Enter "OS" to
indicate that a data set is to be specified.

You are prompted for the command operand to be entered. Enter
"LINKSTAT" to speci fy the link control data set.

You are prompted for the next command to be entered. Enter "GO"
to di rect $JOBUTIL to continue.

The $JOBUTIL prompts and operator responses entered are shown
as follows:

Appendix o. Program Preparation EXample 411

> $L $JOBUTIL
$JOBUTIL 3P,00:47:17, LP= 5FOO

DSI (NAME,VOLUME): STATPROC
*** JOB - STATIC - STARTED AT 00:47:26 00/00/00 ***

JOB STATIC
REMARK COMPILE OF 'STATSRC' STARTED
REMARK LINK EDIT OF 'ASMOBJ' OBJECT MODULE STARTED
REMARK . NAME OF LINK CONTROL DATA SET?

PAUSE-*-ATTN:GO/ENTER/ABORT

PAUSE
> S1:iIT!l
ENTER COMMAND OS
ENTER OPERAND LINKSTAT .
ENTER COMMAND GO

SUPDATE Step Invocation Under SJOBUTIL (Nested Procedure)

SJOBUTIL allows secondary (nested) procedures to be invoked
from a primary procedure. To illustrate, the following SUPDATE
(formatting) step SJOBUTIL control statements have been
def i ned as a nested procedure, stored in data set FORMPROC.

00010 **
00020 * THIS IS A "NESTED" PROCEDURE, INVOKED FROM
00030 * 'STATPROC' BY THE 'PROt' COMMAND. $JOBUTIL
00040 * SUPPORTS ONE LEVEL OF NESTING.
00050 *
00060 REMARK FORMATTING OF 'LINKOUT' STARTED
00070 PROGRAM $UPDATE
00080 PARM $SYSPRTR LINKOUT
00090 NOMSG
00100 EXEC
00110 EOP

STATPROG YES

After test i ng for a successfu I Ii nk-ed it (JUMP command at
statement 280) the primary procedure used in Figure 85 on page
409 invokes the nested, procedure FORMPROC by the PROC command
at statement 300. At the cone I us ion 0 f the for matt i ng step,
control is returned to the primary procedure at statement 320.
If SUPDATE executed properly, the job is ended without display­
i ng the error message (REMARK at 330).

The SJOBUTIl display at the end of the job is shown as follows:

412 SC34-0312

> $l $JOBUTIL
DSl (NAME,VOlUME): STATPROC

*** JOB - STATIC - STARTED AT 00:05:55 00/00/00 ***

JOB
REMARK
REMARK
REMARK

STATIC
COMPILE OF I STATSRC I STARTED
LINK EDIT OF I ASMOBJI OBJECT MODULE STARTED
NAME OF LINK CONTROL DATA SET ?

PAUSE-*-ATTN:GO/ENTER/ABORT

PAUSE
> ENTER
ENTER COMMAND OS
ENTER OPERAND LINKSTAT
ENTER COMMAND GO
REMARK FORMATTING OF 'LINKOUT' STARTED

$JOBUTIL ENDED AT 00:10:18

Figure 86 on page 414, Figure 87 on page 415, Figure 88 on page
416, and Figure 89 on page 417 are the $SYSPRTR output result­
ing from execution of the $JOBUTIL procedure data set STATPROC.

The program (STATPROG on volume EDX002) may now be loaded and
executed by either the $L operator command or the session man­
ager pr i mary opt i on menu.

Appendix D. Program Preparation Example 413

LOG
PROGRAM
OS
OS
OS

SSYSPRTR
SEOXASM,ASMLIB
STATSRC
ASMWORK
ASMOBJ

PARM
NOMSG
EXEC

LIST SSYSPRTR

EoX ASSEMBLER STATI STICS

SOURCE INPUT - STATSRC ,EDX002
WORK DATA SET - ASMWORK ,EOXOO2
OBJECT MODULE - ASMOBJ ,EOX002
DATE: .02/21/80 AT 16:19:17
ASSEPIIBL Y TIME: 25 SECONDS
STATEMENTS PROCESSED - 70

NO STATEMENTS FLAGGED

0000 0008 0709 06C7 O9C1 0440
OOOA 0000 0404 0052 0000 0000
0014 0506 0000 0000 0000 0100
OOlE 0504 0000 0000 0000 0554
0028 0000

002A 4040 4040 4040 4040 8000
0034 OOFF 0000 7FFF 0000 0000
003E 4040 4040 4040 4040 8800
0048 OOFF 0000 7FFF 0000 0000
0052 0002 0403 C505 C440 02A6
005C 0403 5B07 C640 02AE
0064 1025 002A
0068 B02A 0000 OOOF 8026 1414
0072 C303 C1E2 E240 0906 E2E3
007C C509 4007 0906 C709 C104
0086 902A 0002 0000 8026 2221
0090 C8C9 E340 70C 1 E3E3 0570
009A 40C1 05C4 40C5 05E3 C509
00A4 4070 C505 C470 40E3 0640
OOAE C505 C440
00B2 8026 OCOC 40E3 C8C5 4007
OOBC 0906 C709 C104
00C2 902A 0002 0000 8026 201F
OOCC C8C9 E340 C105 E840 0709
0006 06C7 09Cl 0440 C6E4 05C3
OOEO E3C9 0605 4002 C5E8 40E3
OOEA 0640
OOEC 8026 1A1A 40C2 09C9 05C7
00F6 40E4 0740 E3C8 C540 C505
0100 E309 E840 E2C3 09C5 C505
OlOA 8025
010C 0018 02B6
0110 AOA2 0286 0001 0250
0118 C29E 0000 04C6 02C4
0120 AOA2 0406 FFFF 01bA
0128 005C 02BE 0406
012E 8026 1818 7CC9 O4C1 C7C5
0138 4006 07C5 0540 C509 0906
0142 0968 C306 C4C5 407E
014A 0028 02AE 0001
0150 C026 OEOE 7C09 C5E3 09E8
015A 4006 O7C5 0540 6F40 C02E
0164 0118 0250

XMPLSTAT PROGRAM START

EXTRN SI~OPEN,SIMOEFN,SIMPROT,SIMOATA

IOCBl IOCB NHIST=O

IOCB2 IOCB SCREEN=STATIC

A TTNLI ST (ENO,OUT,SPF,STATIC)

START ENOT IOCBl
PRINTEXT 'CLASS ~OSTER PROGRAM',SPACES=15,LI~E=0

PR INTEXT 'HIT "ATTN" A~O E~TER "END" TO f:No',SKIP=2

PRINTEXT ' THE PROGRAM'

PRINTEXT 'HIT ANY PR:JGRAI1 FUNCTION KEY TO',SKIP=2

PR INTEXT ' BRING UP THE ENTRY SCREEN'

OEOT
CHECK WAIT ATTNECB,RESET

IF (ATTNEC9,EQ,1),GOTO,ENoIT
GETI~AGE CALL SIMOPEN,(OSETNAME),(IMAGEBUF)

IF (XMPLSTAT+2,NE,-1)
MOVE ERRCOoE,XMPLSTAT+2
PRINTEXT '@II1AGE OPEN ERROR,COOE ='

PRINTNUM ERRCOOE
QUESTION '@RETRY OPEN ? ',YES=GETIMAGE,NO=ENQIT

Figure 86. $JOBUTIL Execution Listing (Part 1 of 4)

414 SC34-0312

ENDIF
0168 Cl9E 0000 003E OlC4 CALL :IMDEFN, (IOCBl), (IMAGEBUF)
0170 1015 003E ENOT IOCBl
0114 1430 TERMCTRL BLANK
0116 Cl9E 0000 02C4 0000 CALL SIMPROT,(IMAGEBUF),O
017E 819E 0000 02C4 CALL SIMDATA,(IMAGEBUF)
0184 B02A 0004 OOOC PRINTEXT LlNE=4,SPACES=12
018A lC30 TERMCTRL DISPLAY
018C 2030 WAITONE WAIT KEY
018E OOAl 0406 0004 0204 019E GOTO (REAO,El,E2,E3,E4),XMPLSTAT+2
0198 01A8 01B2 OlBC
019E 805C 02BC 0006 El MOVE LlNENBR,6
01A4 OOAO 01C2 GOTO DELETE
OLA8 805C OlBC OOOB E2 MOVE LlNENBR,ll
DIAE OOAO OlCl GOTO DELETE
01B2 B05C 02BC 0010 E3 MOVE LlNENBR,16
01B8 OOAO 01Cl GOTO DELETE
D1BC B05C OlBC 0015 E4 MOVE LlNENBR,21
01C2 EOlA OlBC 0000 F030 0004 DELET E ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR
OlCC 2000
OlCE B03l OlBC 0001 ADD LI NENBR, 1
0104 E02A OlSC 0000 F030 0004 ERASE MODE=LI~E,TYPE=~ATA,LINE=LINENBR

D1DE lOOO
OLEO B032 OlBC 0001 ADD LlNENBRtl
01E6 EOlA OlSC 0000 F030 0004 ERASE MODE=LINE,TYPE=DATA,LINE=LINENBR
OlFO 2000
01F2 B035 02BC 0002 SUBTRACT LlNENBR,2

·OlFB A02A OlBC 0006 PRINTEXT LINE=LI~ENBR,SPACES=6

OlFE lC30 TERMCTRL DISPLAY
0200 OOAO 018C GOTO WAITDNE
0204 F02A OOOl 0031 C026 OEOE READ QUESTION 'MORE ENTRIES ?',LINE=2,SPACES=SS,NO=CLEANUP
020E 0406 09CS 40C5 OSE3 09C9
0218 C5E2 406F 80l'= 0244
0210 FOlA 0002 0037 F030 0004 ERASE MODE=LINE,LINE=2,SPACES=5S,TYPE=DATA
OllA lOOO
022C FOZA 0006 0000 F030 0000 ERASE MODE=SCREEN,LINE=6
Ol36 2000
0238 B02A 0006 0006 PRINTEXT LINE=6,SP~CES=6

Ol3E lC30 TERMC TRL DISPLAY
0240 OOAO 018C GOTO WAITONE
Ol44 F030 0001 2000 CLEANUP ERASE MODE=SCREEN,TYPE=ALL
024A 8015 DEOT
Ol4C OOAO 0064 GO TO START
0250 0022 FFFF ENDIT PROGSTOP
02S4 50 SO D~TA X'SOSO'
0256 6060 6060 6060 6060 6060 DASHES DATA 80C'-'
OlA6 0019 OlB6 0001 OUT POST ATTNECB,l
02AC 0010 ENDATTN
02AE 0019 02B6 FFFF STATIC POST ATTNECB,-l
OlB4 0010 ENDATTN
Ol86 FFFF 0000 0000 ATTNECB ECB
OlBC 0000 LINENBR DATA F'O'
OlBE 0000 ERRCODE DATA F'O'
02CO 0000 0200 0000 0000 0000 IMAGEBUF BUFFER 512,BYTES
02CA 0000 0000 0000 0000 0000
04BE 0000 0000 0000
04C4 OEOD ESC9 C4CS D6Fl 6BC5 DSETNAME TEXT 'VIDEOl,EOXOO2'
04CE C4E7 FOFO F240

Figure 87. $JOBUTIL Execution Listing (Part 2 of 4)

Appendix D. Program Preparation Example 415

0404 0000 0000 0000 0234
040E 0000 0000 0064 0404
04E8 0000 0000 0000 0000
04F2 0002 0096 0000 0000
04FC 0000 0000 0500 0000
0506 0502 E704 0703 E2E3
0510 0000 0000 0000 0000
051A 0000 0000 FFFF 0000
0524 0000 0000 0000 0404
052E 0000 0000 0000 0000
054C 0000 0000 0404 0080
0556 0000 0000 0234 0000
0560 0000 0000 0554 0000
056A 0000 0000 0000 0000
0574 OOOA 0000 0000 FFFF
057E 0000 0580 0000 0000
0580 56Cl E3E3 CIE2 0240
0592 0000 0000 0000 0000
059C 0000 FFFF 0000 0000
05A6 0000 0000 0404 0000
05S0 0000 0000 0000 0000
05CE 0000 0554 0080 0000
0508 0000 0000 0000 0000
05E2 0000 0000 0000 0000

SVC WXTRN
SUPEXIT WXTRN
SETBUSY WXTRN
$IMOPEN EXTRN
SIMOEFN EXTR~

SIMPROT EXTRN
SIMDATA EXTRN

COMPLETION CODE = -1

SEOXASM
JUMP
PROGRAM
OS
OS
OS
PARM
NOMSG
EXEC

ENDED AT 16:19:50
BADASM,NE,-1
SLINK,ASMLI6
LINKST AT
LEWORKI
LEWORK2
SSYSPRTR

0000 ENOPROG
0000
0000
FFFF
0000
CIE3
0000
0000
0000
0000
0000
0000
0000
0001
0000
0582
0000
0000
0000
0000
0000
0000
0000

END

Figure 88. $JOBUTI L Execut i on List i ng (Part 3 of 4)

416 SC34-0312

SLINK EXECUTION CONTROL RECORDS
440000 FROM LINKSTAT,EDX002

OUTPUT LINKOUT AUTO=~AUTO,ASMLIB
000210INCLUDE ASMOBJ
000220 INCLUDE SIMOPEN,AS~LIB

INCLUDE SIMGEN,ASMLIB
INCLUDE SSRETURN,ASMLIB
END

VIA AUTOCALL
VIA AUTOCALL
VIA AUTOCALL

*f.:::::::¢ UNRESOLVED EXTERNAL REFERENCES
410000 WXTRN SVC

WXTRN SUPEXIT
WXTRN SETBUSY

OUTPUT NAME= LINKOUT
ESD TYPE LABEL ADDR

430000 CSECT 0000
CSECT 05EA

ENTRY SIMOPEN 05EC
ENTRY DSOPEN 090E

CSECT 0054
ENTRY SIMDEFN 0056
ENTRY SIMPROT ODF2
E~TRY SIMDATA OF38
Er-.JTRY SPACK 1018
ENTRY SUNPACK 1088

CSECT 1134
ENTRY RETURN 1134

MODULE TEXT LE~GTH= llSA, RLD
LINKOUT ADDEO TO EDX002

SLINK COMPLETION CODE= -1
AT 16:22:07 ON 02/21/80

SLINK
JUMP
PROC
PROGRAM

ENDED AT 16:22:08
BADllNK,NE,-l
FORMPROC,EDX002
SUPDATE

LENGTH

05EA
076A

03EO

0026

COUNT=

PARM
NOMSG
EXEC

SSYSPRTR LINKOUT STATPROG YES

STATPROG STORED

SUPDATE
JUMP
LABEL

ENDED AT 16:22:18
END,EQ,-l
END

424

Figure 89. $JOBUTI L Execut ion List i ng (Part 4 of 4)

Appendix D. Program Preparation Example 417

418 SC34-0312

BIBLIOGRAPHY

EVENT DRIVEN EXECUTIVE LIBRARY SUMMARY

The library summary is a guide to the Event Driven Executive
library. By briefly listing the content of each book and
providing a suggested reading sequence for the library, it
should assist you in using the library as a whole as well as
direct you to the i nd i vi dua I books you requ ire.

Event Driven Executive Library

The IBM Series/1 Event Driven Executive
consist of five full-sized books, a quick
book, and a set of tabs:

library materials
reference pocket

• IBM Series/l Event Driven Executive System Guide (or
System Guide), SC34-0312

• IBM Series/l Event Driven Executive Utilities, Operator
Commands, Progr;}m Preparation, MessClges and Codes (or
Utilities),SC34-0313

• IBM Series/l Event Driven Executive language Reference (or
language Reference), SC34-0314

• IBM Series/l Event Driven Executive Communications and
Terminal Application Guide (or CommunicCltions Guide),
SC34-0316

• IBM Series/l Event Driven Executive InternClI Design (or
Internal Design), LY34-0168

• IBM Series/l Event Driven Executive Multiple Terminal MCln­
arler Internal Design (or Nultiple TerminClI Manager
Internal Design), LY34-0190

• IBM Series/l Event Driven Executive Indexed Access Method
Internal Desi gn (or Indexed Access ~1ethod Internal
Design), lY34-0189

• IBM Series/l Event Driven Executive Reference Summary (or
Reference Summary), SX34-0101

• l.J:\M Series/l Event Driven Executive Tabs (or Tabs),
SX34-0030

Bibliography 419

Summary of Library

System Guide

The SYstem Guide introduces the -concepts and capabilities of
the Event Driven Executive system. It discusses multi-tasking,
program and' task structure, program overlays, s,torage manage­
ment, and data management.

Planning aids include hardware and software requirements,
along with guidelines for storage estimating.

The SYstem Guide also presents step-by-step procedures ,for
generating a supervisor tailored to your Series/l hardware
conf i gurat i on and software needs.

The descr i pt i on of the Indexed Access Method conta ins the
information on how to write applications that use indexed data
sets.

The description of the session manager includes 'a procedure for
modifying the session manager to include application programs
in the primary option menu so that,you can execute them under

, .
the session manager. You can also add a procedure to compile,
link, and update programs.

Informat i on is a Iso prov i ded concern i ng part it i oned data sets,
tape data organization, diagnostic aids, inter-program commu­
n i cat i on, log i ca I screens, and dynam i c data set a llocat i on.

Utilities

Utilities describes:

• Event Dr i ven Execut i ve ut iIi ty programs

• Operator commands

• Procedures to prepare and execute system and application
programs

• The sess~on manager -- a menu-driven interface program
,that wi 11 invoke the programs requ.ired for program devel­
opment

0,

• Messages and codes issued by the Event Dr i ven Execut i ve
system

420 SC34-0312

The operator commands, program preparation facilities, and
sess i on manager are grouped by funct i on and discuss ions
include detailed syntax and explanations. The utilities are
presented in alphabetical order.

language Reference

The lanfll!age Reference familiarizes you 'tJith the Event Driven
Language by first grouping the instructions into functional
categories. Then the instructions are listed alphabetically,
with complete syntax and an explanation of each operand.

The final section of the languaqe Reference contains examples
of using the Event Driven language for applications such as:

• Program loading

• User exit routine

• Graphics

• 1/,0 I eve I con t r 0 I pro g ram

• Indexing and hardware register usage

Communications Guide

The Communications Guide introduces the Event Driven Executive
communications support -- binary synchronous communications,
asynchronous communications, and the Host Communications
Facility.

The Communications.Guide contains coding details for all util­
ities and Event Driven language instructions needed for commu­
nications support and advanced terminal applications.

Internal Design

Internal Design describes the internal logic flow and specifi­
cations of the Event Driven Executive system so that you can
understand how the system interfaces with application pro­
grams. It familiarizes you with the design and implementation
by descr i bing the purpose, fUrlct i on, and operat i on of the var i­
ous Event Dr i ven Execut i ve system programs.

Bibliography 421

Multiple Terminal Manager Internal Design and Indexed Access
Method Internal Design describe the internal logic flow and
spec if i cat ions of these programs.

Unlike the other manuals in the libra~y, the Internal Design
books contain material that is the licensed property of IBM and
they are available only to licensed users of the Event Driven
Executive system.

Reference Summary

The Reference Summary is a pocket-sized booklet to be used for
qu i ck reference. It lists the Event Dr i ven language
instruct ions wi th the i r syntax, the ut iIi ty and program prepa­
ration commands, and the completion codes.

The tabs package must be ordered separately. The package con~
tains 33 index tabs by subject, with additional blank tabs.
These extended tabular pages can be inserted at the front of
various sections of the library. The tabs are color coded
according to the major library topics.

Read;ng Sequence

All readers of the Event Driven Executive library should begin
wi th the first three chapters of the ~li.!11 Gu ide
("Introduction," "The Supervisor and Emulator," and "Data Man­
agement") for an overview of the Event Driven Executive con­
cepts and facilities.

Readers responsible for installing and preparing the system
should then continue in the System Guide with "System Config­
urat i on" and "System Generat ion."

All readers should review the Utilities
become familiar with the utility functions
Event Dri ven Executi ve system. Then you can
sections for particular utilities, operator
gram preparat ion fac iIi ties.

"Introduction" to
available for the
read more spec if i c
commands, and pro-

After you have a basic understanding of the Event Dr.i ven Execu­
tive system and how you can best use the system for your appli­
cations, you should re"d the language Reference
"Introduction." This will familiarize you with the potential

422 SC34-0312

of the Event Driven Language and prepare you to start coding
application programs.

If you have communications support for your Event Driven Execu­
tive system, you should read the Communications Guide, which is
an extension of the System Guide, Utilities, and the Language
Reference.

After you know the functions of the various Event Driven
Language instruct ions, ut iIi ties, and program preparat i on
faci lities, you may wish to refer only to the Reference Summary
for correct syntax wh i Ie cod i ng your appi i cat ions.

Only readers responsible for the support or modification of the
Event Driven Executive system need to read Internal Design.

OTHER EVENT DRIVEN EXECUTIVE PROGRAMMING PUBLICATIONS

• IBM Ser i es/l Event Dr i ven Execut i ve FORTRAN IV User's
Guide, SC34-0315.

• IBM S e r i e s / 1 E v ,g:..;..n.:...t~--:D::...:...r..,:..1 ...;:;v...;:;e::;..;:n,-,---,E=-.:.:.x..=e,-"c;....;u:::..t.=....:..i -"v-=e=--~P...;:;L::..;/--=-I ___ L=-=-a..:..:n:....;g~u=-a~g-=e
Reference, GC34-0147.

• IBM Series/l Event Driven Executive PL/I User's Guide,
GC34-0148.

• IBM Series/l Event Driven Executive COBOL Programmer's
Guide, SL23-0014.

• IBM Series/l Event Dri ven Executi ve Sort/Merge Program­
mer's Guide, SL23-0016

• IBM Series/l Event Dr; ven Executi ve Macro Assembler
Reference,GC34-0317.

• IBM Ser i es/l Event Driven Execut i ve Study Guide,
SR30-0436.

OTHER SERIES/! PROGRAMMING PUBLICATIONS

• IBM Series/l Programming System Summary, GC34-0285.

• IBM Ser i es/l COBOL Language Reference, GC34-0234.

• IBM Series/l FORTRAN IV language Reference, GC34-0133.

Bibliography 423

• IBM S e r i e s / 1 H 0 s t Com m I,J n,~i..;::c~a=-t.::.....;...i =o~n~s,,----:..F....:a=-c;...;...i-=l....:i_t=-y,,--_...;.P--,r __ o=...-.g-,-r....:a~m
Description Manual, SH20-1819.

• IBM Series/l Mathematical and Functional Subroutine
Library User's Guide, SC34-0139.

• IBM Ser i es/l Macro Assembler Reference Summary, SX34-0128

• IBM Series/l Data Collection Interactive Programming RPQ
P82600 User's Guide, SC34-1654.

OTHER PROGRAMMING PUBLICATIONS

• IBM Data Processing Glossary, GC20-1699.

• IBM Series/l Graphic Bibliography, GA34~0055.

• IBM OS/VS Basic Telecommunications Access Method (BTAM),
GC27-6980.

• General Information
GA27-3004.

Binary Synchronous Communications,

• IBM System/370 Program Preparation Facility, 5B30-1072.

SERIES/! SYSTEM LIBRARY PUBLICATIONS

• IBM 5eries/l 4952 Processor and Processor Features
Description, GA34-0084.

• IBM Series/l 4953 Processor and Processor Features
.Description, GA34-0022 •

• I B ~1 Series/l 4955 Processor and Processor Features
Description, GA34-0021.

• IBM Series/l Communications Features Description, GA34
-0028.

• IBM Series/l 3101 Display Terminal Description, GA34-2034.

• IBM Series/l 4962 Disk Storage Unit and 4964 Diskette Unit
Description, GA34-0024.

• IBM Series/l 4963 Disk Subsystem Description, GA34-0051.

• IBM Series/l 4966 Diskette Magazine Unit Description,
GA34-0052.

424 SC34-0312

• IBM Series/l 4969 M~gnetic Tape Subsystem Description,
GA34-0087.

• IBM Series/l 4973 line Printer Description, GA34-0044.

• IBM Series/l 4974 Printer Description, GA34-0025.

• IBM Series/l 4978-1 Display Station (RPQ D02055) and
Attachment (RPQ D02038) General Information, GA34-1550

• IBM Series/l 4978-1 Display Station, Keyboard (RPQ D02056)
General Inform~tion, GA34-1551

• IBM Series/l 4978-1 Display Station, Keyboard (RPQ D02057)
General Information, GA34-1552

• IBM Series/l 4978-1 Display Station Keyboards (RPQ D02064
and D02065) General Information, GA34-1553

• IBM Series/l 4979 Display Station Description, GA34-0026

• IBM Series/l 4982 Sensor Input/Output Unit Description,
GA34-0027

• IBM Series/l Data Collection Interactive RPQs D02312,
D02313, and 002314 Custom Feature, GA34-1567

Bibliography 425

426 SC34-0312

GLOSSARY

This glossary contains terms that are·used 'in the Series/l Event Driven
Executive software publications. All software and hardware terms are
Series/l oriented. This glossary defines terms used in this library and
serves as a supplement to the IBM Data Processing Glossary (GC20-1699).

$SYSLDGA. The name of the
alternate system logging device.
This device is optional but, if
defined, should be a terminal with
keyboard capability, not just a
printer.

the Multiple Terminal Manager
facilities.

asynchronous commun;cations con­
trol adapter. An ASCII terminal
attached via 11610, 12091 with
12092, or #2095 with #2096 adapt-

$SYSLDG. The name of the system ers.
logging device or operator
station; must be defined for every
system. It should be a terminal
with keyboard capability, not just
a printer.

$SYSPRTR. The name of the system
printer.

ACCA, See asynchronous
communications control adapter.

address key. Identifies a set of
Series/l segmentation registers
and represents an address space.
It is one less than the partition
number.

address space. The logical
storage identified by an address
key. An address space is the
storage for a partition.

application program m~nager. The
component of the Multiple Terminal
Manager that provides the program
management facilities required to
process user requests. It con­
trols the contents of a program
area and the execution of programs
within the area.

application p~ogram stUb. A
collection of subroutines that are
appended to a program by the link­
age editor to provide the link
from the application program to

attention list. A series of pairs
of 1 to 8 byte EBCDIC strings and
addresses pointing to EDL
instructions. When the attention
key is pressed on the terminal,
the operator can enter one of the
strings to cause the associated
EDL instructions to be executed.

backup. A copy of data to be used
in the event the original data is
lost or damaged.

base records. Records that have
been placed into an indexed data
set while in load mode.

basic exchange format. A standard
format for exchanging data on
diskettes between systems or
devices.

binary synchronous device data
block (BSCDDB). A control block
that provides the information to
control one Series/l Binary Syn­
chronous Adapter. It determines
the line characteristics and pro­
vides dedicated storage for that
line.

block. (1) See data block or
index block. (2) In the Indexed
Method, the unit of space used by
the access method to contain
indexes and data.

Glossary 427

BSCDDB. See binary synchronous
device data block.

buffer. An area of storage that
is temporarily reserved~for use in
performing an input/outputoper­
ation, into which data is read or
from wh i ch . data is wr i tten., See
input buffer and output buffer.

bypass label processing. Access
of a tape without any label proc­
essing support.

CCB. See terminal control block.
" ,

character> ; mage. An alphabetic,
numeric, or special character
defined for an IBM 4978 Display
Station. Each character image is
defined by a dot matrix that is
coded into eight bytes.

character image table. An area
containing the 256 character
images that can be defined for an
IBM 4978 Display Station. Each
character image is coded into
ei ght bytes" the enti re table of
codes requiring 2048 bytes of
storage.

cluster. In an indexed file, a
group of data blocks that is·
pointed to from the same
primary-level index block, and
includes the primary-level. index
block. The data records and
blocks contained in a cluster ,are
logically contiguous, but are not
necessarily physically contiguous.

COD (change of direction). A
character used with ACCA terminal
to indicate a reverse in the
direction of data movement.

command. A .character string from
a source external to the system
that represents a request for
action by the system.

common area. A user-defined data
area that is mapped into every
partition at the same address. It

428 SC34-0312

can be used to contain control
blocks or data that will be
accessed by more than one program.

completion code. 'An indicator
that reflects the status of the
execution of a program. The com­
pletion code .is displayed or
printed on the program's output
device.

conversion. See update.

cross partition service. A
function that accesses data in two
partitions.

data block~ In an indexed file,
an area that contains control
information and data records.
These blocks are a multiple of 256
bytes.

data set. A group of contiguous
records within a volume pointed to
by a directory member entry in the
directory for the volume.

data set control block (DSCB). A
control block that provides the
information required to access a
data set, volume or directory
using READ and WRITE. '

data set shut down. An indexed
data set that has been marked (in
main storage only) as unusable due
to an error.

DCE. See directory control entry.

DDB. See disk data block.

direct access. (1) The access
method used to READ or'WRITE
records on a disk or diskette
device by specifying their
location relative the beginning of
the data set or volume. (2) In
the Indexed Access Method, locat­
ing any record via its key without
respect to the previous operation.

directory.- A series of contiguous
records in a volume that describe
the contents in terms of allocated
data 'sets and free spaces.

directory control entry
(DCE). The first 32 bytes of the
first record of a directory in
which a description of the direc­
tory is stored.

directory member entry (DNE). A
32-byte directory entry describing
an allocated data set.

disk data block (DDBl. A control
block that describes a direct
access volume.

display station. An IBM 4978 or
4979 display terminal or similar
terminal with a keyboard and a
video display.

ONE. See directory member entry.

DSCB. See data set control block.

dynamic storage. An increment of
storage that is appended to a pro­
gram when it is loaded.

end-of-data indicator. A code
that signals that the last record
of a data set has been read or
written. End-of-data is deter­
mined by an end-of-data pointer in
the DME or by the physical end of
the data set.

ECB. See event control block.

EDL. See Event Driven Language.

emulator. The portion of the
Event Driven Executive supervisor
that interprets EDL instructions
and performs the function speci­
fied by each EDL statement.

end-of-tape (EDTl. A reflective
marker placed near the end of a
tape and sensed during output.
The marker signals that the tape
is nearly full.

event control block (ECB). 'A
control block used to record the
status (occurred or not occurred)
of an event; often used to syn­
chronize the execution of tasks.
ECBs are used in conjunction with
the WAIT and POST instructions.

event driven language (EDL). The
language for input to the Event
Driven Executive compiler
($EDXASM), or the Macro and Host
assemblers in conjunction with the
Event Driven Executive macro
libraries. The output is inter­
preted by the Event Driven Execu­
tive-emulator.

EXIO (execute input or
output). An EDL facility that
provides user controlled access to
Series/1 input/output devices.

external label. A label attached
to the outside of a tape that
identifies the tape visually. It
usually contains items of iden­
tification such as file name and
number, creation data, number of
volumes, department number, and so
on.

external name (EXTRN). The 1- to
8-character symbolic EBCDIC name
for an entry point or data field
that is not defined within the
module that references the name.

FCA. See file control area.

FeB. See file control block.

file control area (FCAl. A
Multiple Terminal Manager data
area that describes a file access
request.

file control block (FeB). In an
indexed data set, the'first block
of the data set. It contains
descriptive information about the
data contained in the data set.

Glossary 429

file manager. A collection of
subroutines contained within the
program manager of the Multiple
Terminal Manager that provides
common support for all disk data
transfer operations as needed for
transaction-oriented application
programs. It supports indexed and
direct files under the control of
a single callable function.

formatted screen image. A
collection of display elements or
display groups (such as operator
prompts and field input names and
areas) that are presented together
at one time on a display device.

free pool. In an indexed data
set, a group of blocks that can be
used as either a data block or an
index block. These differ from
other free blocks in that these
are not initially assigned to spe­
cific logical positions in the
data set.

free space. In the Indexed Access
Method, record spaces or blocks
that do not currently contain
data, and are available for use.

free space entry (FSE1. A 4-byte
directory entry defining an area
of free space within a volume.

FSE. See free space entry.

hardware timer. The timer
features available with the
Series/l processors. Specif­
ically, the 7840 Timer Feature
card or the native timer (4952
only). Only one or the other is
supported by the Event Driven
Executive.

host assembler. The assembler
licensed program that executes in
a 370 (host) system and produces
object output for the Series/I.
The source input to the host
assembler is coded in Event Driven
Language or Series/l assembler
language. The host assembler

430 SC34~0312

refers to the System/370 Program
Preparation Facility (5798-NNQ).

host system. Any system whose
resources are used to perform
services such as program prepara­
tion for a Series!l. It can be
connected to a Series/l by a com­
munications link.

IACB. See indexed access control
block.

IAR. See instruction address
register.

ICB. See indexed access control
block.

lIB. See interrupt information
byte.

image store. The area in a 4978
that contains the character image
table.

index. In the Indexed Access
Method, an ordered collection of
pairs, each consisting of a key
and a pointer, used to sequence
and locate the records in an
Indexed Access Method data set.

index block. In an indexed file,
an area that contains control
information and index entries.
These blocks are a multiple of 256
bytes.

indexed access control block
(IACB/ICBl. The control block
that relates an application pro­
gram to an indexed data set.

indexed ascess method. An access
method for direct or sequential
processing of fixed-length records
by use of a record is key.

indexed data set. A data set
specifically created, formatted
and used by the Indexed Access
Method. An indexed data set may
also be called an indexed file.

indexed file. Synonym for indexed
data set.

index entry. In an indexed file,
a key-pointer pair, where the
pointer is be used to locate a
lower-level index block or a data
block.

index register (11, 12). Two
words defined in EDL and contained
in the task control block for each
task. They are used to contain
data or for address computation.

input buffer. (1) See buffer.
(2) In the Multiple Terminal Man­
ager, an area for terminal input
and output.

input output control black
(IOCB). A control block contain­
ing information about a terminal
such as the symbolic name, size
and shap.e of screen, the si ze of
the forms in a printer.

instruction address register
(IAR). The pointer that identi­
fies the instruction currently
being executed. The Series/1
maintains a hardware IAR to deter­
mine the Series/l assembler
instruction being executed. It is
located in the level status block
(LSB).

interactive. The mode in which a
program conducts a continuous
dialogue between the user and the
system.

internal label. An area on tape
used to record identifying infor­
mation (similar to the identifying
information placed on an external
label). Internal labels are
checked by the system to ensure
that the correct volume is
mounted.

interrupt information byte
(lIB). In the Multiple Terminal
Manager, a word containing the
status of a previous input/output

request to or from a terminal.

jab. A collection of related
program execution requests pre­
sented in the form of job control
statements, identified to the
jobstream processor by a JOB
statement.

job control statement. A
statement in a job that specifies
requests for program execution,
program parameters, data set defi­
nitions, sequence of execution,
arid, in general, describes the
environment required to execute
the program.

jab stream processor. The job
processing facility that reads job
control statements and processes
the requests made by these state­
ments. The Event Driven Executive
job stream processor is $JOBUTIL.

key. In the Indexed Access
Method, one or more consecutive
characters in a data record, used
to identify the record and estab­
lish its order with respect to
other records. See also key
field.

key field. A field, located in
the same position in each record
of an Indexed Access Method data
set, whose content is used for the
key of a record.

level status black (LSB). A
Series/1 hardware data area that
contains processor status.

library. A set of contiguous
records within a volume. It con­
tains a directory, data sets
and/or available space.

line. A string of characters
accepted by the system as a single
input from a terminal; for exam­
ple, all characters entered before
the carriage return on the tele­
typewriter or the ENTER key on the
display station is pressed.

Glossary 431

link edit. The process of
resolving symbols in one or more
object modules to produce another
single module that is the input to
the update process.

load mode. In the Indexed Access
Method, the mode in which records
are initially placed in an indexed
file.

load module. A single module
having cross references resolved
and prepared for loading into
storage for execution. The module
is the output of the $UPOATE or
$UPDATEH utility.

load point. A reflective marker
placed near the beginning of a
tape to indicate where the first
record is written.

lock. In the Indexed Access
~ethod, a method of indicating
that a record or block is in use
and is not ,available for another
request.

LSB. See level status block.

member. A term used to identify a
named portion of a partitioned
data set (POS). Sometimes member
is also used as a synonym for a
data set. See data set.

menu. A formatted screen image
containing a list of options. The
user selects an option to invoke a
program.

manu-driven. The mode of
processing in which input consists
of the responses to prompting from
an option menu.

multifile volume. A unit of
recording media, such as tape reel
or disk pack, that contains more
than one data file.

multiple terminal manager. ,An
Event Driven Executive licensed
program that provides support for

432 SC34-0312

transaction-oriented applications
on a Series/1. It provides the
capability to define transactions
and manage the programs that sup­
port those transactions. It also
manages multiple terminals as
needed to support these trans­
actions.

multivolume file. A data file
that, due to its size, requires
more than one unit of recording
media (such as tape reel or disk
pack) to contain the entire file.

non-labeled tapes. Tapes that do
not contain identifying labels (as
in standard labeled tapes) and
contain only files separated by
tapemarks.

null character. A user-defined
character used to define the
unprotected fields of a formatted
screen.

option selection menu. A full
screen display used by the Session
Manager to point to other menus or
system functions, one of which is
to be selected by the operator.
(See primary option menu and sec­
ondary option menu.)

output buffer. (1) See buffer.
(2) In the Multiple Terminal Man­
ager, an area used for screen
output and to pass data to subse­
quent transaction programs.

overlay. The technique of reusing
a single storage area allocated to
a program during execution. The
storage area can be reused by
loading it with overlay programs
that have been specified in the
PROGRAM statement of the program.

overlay area. A storage area
within a program reserved for
overlay programs specified in the
PROGRAM statement.

parameter selection menu. A full
screen display used by the Sess;on
Manager to indicate the parameters
to be passed to a program.

partition. A contiguous
fixed-sized area of storage. Each
partition is a separate address
space.

physical timer. Synonym for
hardware timer.

prefind. To locate the data sets
or overlay programs to be used by
a program and to store the neces­
sary information so that the time
required to load the prefound
items is reduced.

primary-level index block. In an
indexed data set, the lowest level
index block. It contains the rel­
ative block numbers (RBNs) and
high keys of several data blocks.
See cluster.

primary menu. The program
selection screen displayed by the
Multiple Terminal Manager.

primary option menu. The f;rst
full screen display provided by
the Session Manager.

primary task. The first task
executed by the supervisor when a
program is loaded into storage.
Itis identified by the PROGRAM
statement.

priority. A combination of
hardware interrupt level priority
and a software ranking within a
level. Both primar9 and secondary
tasks will execute asynchronously
within the system according to the
priority assigned to them.

process mode. In the Indexed
Access Method, the mode in which
records may be retrieved, updated,
inserted or deleted.

processor status word (PSWJ. A
16-bit register used to (1) record
error or exception conditions that
may prevent further processing and
(2) hold certain flags that aid in
error recovery.

program. A disk- or
diskette-resident collection of
one or more tasks defined by a
PROGRAM statement; the unit that
is loaded into storage. (See pri­
mary task and secondary task.)

program header. The control block
found at the beginning of a
program that identifies the prima­
ry task, data sets, storage
requirements and other resources
required by a program.

program/storage manager. A
component of the Multiple Terminal
Manager that controls the
execution and flow of application
programs within a single program
area and contains the support
needed to allow multiple oper­
ations and sharing of the program
area.

protected field. On a display
device, a field in which the oper­
ator cannot enter, modify, or
erase data from the keyboard. It
can contain text that the user can
read.

PSW. See processor status word.

QCB. See queue control block.

QD. See queue descriptor.

QE. See queue element.

queue control block (QCBJ. A data
area used to serialize access to
resources that cannot be shared.
See serially reusable resource.

queue descriptor (QDJ. A control
block describing a queue built by
the DEFINEQ instruction.

Glossary 433

queue element (QE). An entry in
the queue defined by the queue
descriptor.

record. (1) The smallest unit of
direct access storage that can be
accessed by an application program
on a disk or diskette using READ
and WRITE. Records are 256 bytes'
in length. (2) In the Indexed
Access Method, the logical unit
that is transferred between $IAM
and the user's buffer. The length
of the buffer is defined by the
user.

recovery. The use of backup data
to recreate data that has been
lost or damaged.

reflective marker. A small
adhesive marker attached to the
reverse (nonrecording) surface of
a reel of magnetic tape.
Normally, two reflective markers
are used on each reel of tape.
One indicates the beginning of the
recording area on the tape (load
point), and the other indicates
the proximity to the end of the
recording area (EOT) on the reel.

relative record number. An
integer value identifying the
position of a record in a data set
relative to the beginning of the
data set. The first record of a
data set is record one, the second
is record two, the third is record
three.

reorganize. For an indexed data
set, the copying of the data to a
new indexed data set in a manner
that rearranges the data for more
optimum processing and free space
distribution.

return code. An indicator that
reflects the results of the exe­
cution of an instruction or sub­
routine. The return code is
placed in the task code word (at
the beginning of the task control
block).

434 SC34-0312

roll screen. A display screen on
which data is displayed 24 lines
at a time or data is entered line
by line, beginning with line 0 at
the to~ of fhe screen and continu­
ing through line 23 at the bottom
of the screen. When a roll screen
device's screen is full (all 24
lines used), an attempt to display
the next line results in removal
of the old screen (screen is
erased) and the new line on line 0
is displayed at the top of the
screen.

SBIOCB. See sensor based I/O
control block.

second-level index block. In an
indexed data set, the
second-lowest level index block.
It contains the addresses and high
keys of several primary-level
index blocks.

secondary option menu. In the
Session Manager, the second in a
series of predefined procedures
grouped together in a hierarchical
structure of menus·. Secondary
option menus provide a breakdown
of the functions available under
the session manager as specified
on the primary option menu.

secondary task. Any task other
than the primary task. A second­
ary task must be attached by a
primary task or another secondary
task.

sector. The smallest addressable
unit of storage on a disk or
diskette. A sector on a 4962 or
4963 disk is equivalent to an
Event Driven Executive record. On
a 4964 or 4966 diskette, two sec­
tors are equivalent to an Event
Driven Executive record.

sensor based I/O control block
(SBIOCB1. A control block con­
taining information related to
sensor I/O operations.

sequential access. The processing
of a data set in order of occur­
rence of the records in the data
set. (1) In the Indexed Access
Method, the processing of records
in ascending collating sequence
order of the keys. (2) When using
READ/WRITE, the processing of
records in ascending relative
record number sequence.

serially reusable resource
(SRR1. A resource that can only
be accessed by one task at a time.
Serially reusable resources are
usually managed via (1) a QCB and
EHQ/DEQ statements or (2) an ECB
and WAIT/POST statements.

session manager. A series of
predefined procedures grouped
together as a hierarchical struc­
ture of menus from which you
select the utility functions, pro­
gram preparation facilities, and
language processors needed to pre­
pare and execute application pro­
grams. The menus consist of a
primary option menu that displays
functional groupings and secondary
option menus that display a break­
down of these functional
groupings.

shared resource. A resource that
can be used by more than one task
at the same time.

shut down. See data set shut
down.

source module/program. A
collection of instructions and
statements that constitute the
input to a compiler"or assembler.
Statements may be created or modi­
fied using one of the text editing
facilities.

standard labels. Fixed length
80-character records on tape con­
taining specific fields of infor­
mation (a volume label identifying
the tape volume, a header label
preceding the data records, and a

trailer label following the data
records).

static screen. A display screen
formatted with predetermined
protected and unprotected areas.
Areas defined as operator prompts
or input field names are protected
to prevent accidental overlay by
input data. Areas defined as
input areas are not protected and
are usually filled in by an opera­
tor. The entire screen is treated
as a page of information.

subroutine. A sequence of
instructions that may be accessed
from one or more points in a pro­
gram.

supervisor. The component of the
Event Driven Executive capable of
controlling execution of both sys­
tem and application programs.

system configuration. The process
of defining devices and features
attached to the Series/I.

SYSGEN. See system generation.

system generation. The processing
of user selected options to create
a supervisor tailored to the needs
of a specific Series/l configura­
tion.

system partition. The partition
that contains the supervisor (par­
tition number 1, address space 0).

tapemark. A control character
recorded on tape used to separate
files.

task. The basic executable unit
of work for the supervisor. Each
task is assigned its own priority
and processor time is allocated
according to this priority. Tasks
run independently of each other
and compete for the system
resources. The first task of a
program is the primary task. All
tasks attached by the primary task

Glossary 435

are secondary tasks.

task code word. The first two
words (32 bits) of a task's TCB;
used by the emulator to pass
information from system to task
regarding the outcome of various
operations, such .as event com­
pletion or arithmetic operations.

task control block (TCBl. A
control block that contains infor­
mation for a task. The informa­
tion consists of pointers, save
areas, work areas, and indicators
required by the supervisor for
controlling execution of a task.

task supervisor. The portion of
the Event Driven Executive that
manages the dispatching and
switching of tasks.

TCB. See task control block.

terminal. A display station,
teletypewriter or printer.

terminal control block (CCBl. A
control block that defines the
device characteristics, provides
temporary storage, and contains'
links to other system control
blocks for a particular terminal.

terminal environment block
(TEBl. A control block that con­
tains information on a terminal's
attributes and the program manager
operating under the Multiple Ter­
minal Manager. It is used for
processing requests between the
terminal servers and the program
manager.

terminal screen manager. The
component of the Multiple Terminal
Manager that controls the presen­
tation of screens and communi­
cations between terminals and
transaction programs.

terminal server. A group of
programs that perform all the
input/output and interrupt handl-

436 SC34-0312

ing functions for terminal devices
under control of the Multipl~ Ter­
minal Manager.

trace range. A specified number
of instruction addresses within
which the flow of execution can be
traced.

transaction oriented
applications. Program execution
driven by operator actions, such
as responses to prompts from the
system. Specifically, applica­
tions executed under control of
the Multiple Terminal Manager.

transaction pr09ram. See
transaction-oriented applications.

transaction selection menu. A
Multiple Terminal Manager display
screen (menu) offering the user a
choice of functions, such as read­
ing ,from a data file, displaying
data on a terminal, or waiting for
a response. Based upon the choice
of option, the application program
performs the requested processing
operation.

unprotected field. On a display
device, a field in which the user
can enter, modify, or erase data
using the keyboard. Unprotected
fields on a static screen are
defined by the null character.

update~ (1) To alter the contents
of storage or a data set. (2) To
convert object modules, produced
as the output of an asse~bly or
compilation, or. the output of the
linkage editor, into a form that
can be loaded,into storage for
program execution and to update
the directory of the volume on
whi ch the loadable program i,s
stored.

user exit. (1) Assembly language
instructions included as part of
an EDLprogram and invoked via the
USER .instruction. (2) A point in
an IBM-supplied program where a

user written routine can be given
control.

vary offl;ne. (1) To change the
status of a device from online to
offline. When a device is off­
line, no data set can be accessed
on that device. (2) To place a
disk or diskette in a state where
it is not available for use by the
system; however, it will still be
available for executing I/O at the
basic access level (EXIO).

vary onl;ne. To restore a device
to a state where it is available
for use by the system.

volume. A disk or diskette
subdivision defined during system
configu~ation. A volume may con­
tain up to 32,767 records. As
many volumes may be defined for a
disk as will physically fit. A
diskette is limited to one volume.

volume label. A. label that
uniquelY identifies a single unit
of storage media.

Glossary 437

438 SC34-0312

COMMON INDEX

This index is common to the Event Driven Executive library. The index
includes entries from the seven publications listed below. (The Glossary
is not indexed~) Each publication has a copy of the index, which provides
a cross-reference between the publications.

Each page number entry contains a single letter prefix which identifies
the pUblication where the listed subject can be found. The letter pre­
fixes have the following meanings:

• C = Communications and Terminal Application Guide

• I = Internal Design

• L = Language Reference

• 5 = 5ystem Guide

• U = Utilities, Operator Commands, Program Preparation, Messages and
Codes

• M = Multiple Terminal Manager Internal Design

• A = Indexed Access Method Internal Design

Spec;al Characters

$$EDXLIB system name L-228, 5-57
$$EDXVOL system name L-228, 5-57
$A display active programs,
operator command 5-63, U-11

$ATTA5K special task control
block L-61

$AUTO link edit auto call data
set 5-403, U-401

$B blank (clear) screen, operator
command 5-63, U-12

$BSCTRCE trace utility for BSC
lines C-61

$BSCUT1 trace printing utility for
S5C C-62

$BSCUT2 test utility for BSC
lines C-64

$C cancel a program, operator
command S-63, U-13

$COMPRES library compress 5-64,
U-57

$COPY copy data sets S-64, U-59
$COPYUT1 copy data sets with
allocation S-64, U-64

$CP change terminal's partition
assignment command

overview 1-73, 5-63
syntax U-14

$D dump storage, operator command
S-63, U-15

$DASDI format disk or diskette
S-64, U-68

$DnUGNUC debug module description
1-77

$DEBUG debugging tool U-82
$DICOMP display composer

command description U-106
create partitioned data set

member S-247
invoking U-105
overv i el..J 5-67

$DIINTR display interpreter U-150

$DISKUT1 allocate/delete, list
directory data

$JOBUTIL procedure S-229
allocate partitioned data set

S-248
command descriptions U-135
overview S-64

$DISKUT2 patch, dump, or clear
member

description U-142
overview 5-64
printing I/O error logs S-275
syntax U-143

$DISKUT3 data management utility
description 5-315
input to S-316
request block contents S-317
return codes 5-319, U-444

$DIUTIL display data base utility
5-248, U-150

$DUMP dump saved storage and
registers utility U-163

$E eject printer page, operator
command S-63, U-16

$EDIT1/$EDIT1N text editors
command syntax

EDIT U-174
EDIT mode subcommands

U-182
END U-175
LIST U-176
READ U-177
5UBMIT U-179
WRITE U-180

control keys U-172
data set requirements U-169
line editing commands U-203
overview 5-66, U-169
summary of commands and

subcommands U-171
$EDXASM Event Driven Language

compiler
features supported U-361
internal overview 1-5, 1-211
invoking

with $JOBUTIL U-368

Common Index 439

with $L U-370
with session manager

U-369
listing program ($EDXLIST)

U-370
options U-358
output U-359
overlay program example 1-244
overview S-71, U-356
programming considerations

U-361
arithmetic expression
operators U-365

ATTNLIST U-365
COpy statements U-362
ECB and QCB U-362
EQU U-365
GETEDIT and PUTEDIT U-365
instructions requiring
support modules U-365

IODEF statement placement
U-364

multiple declarations on
DATA/DC U-363

source line continuation
U-361

required data sets U-357
usage example S-397
using the compiler U-356

$EDXATSR supervisor interface
routine 1-48

$EDXDEF hardware configuration
editing to match hardware con­
figuration S-117

overview 1-5, 1-6
storage map 1-7

$EDXL language control data set of
$EDXASM 1-221, U-357

$EDXLIST compiler listing program
U-370

$EDXNUC supervisor data set
in system generation S-126
overview 1-5
with $LINK utility U-399

$EDXNUC supervisor data sets
U-399

$EXEC language emulator linkage
1-279, 1-313

$EXEC session manager option
S-216, U-41

$FONT 4978 character image tables
utility S-68, U-205

$FSEDIT full-screen editor, host
and native

data set requirements U-209
options

BROWSE U-213
EDIT U-214
END U-218
READ U-216
SUBMIT U-217
WRITE U-216

overview S-66, U-209
primary commands U-218
program function (PF) keys

U-211 I

scrolling U-210
summary of options and

commands U-212
$HCFUT1 Host Communications
Facility utility C-107

$IAM Indexed Access Method load
module S-155

$IAM task error exit S-178

440 SC34-0312

$IAMUTI Indexed Access Method
utility S-148, U-235

$IDEF $EDXASM instruction
definition

description 1-241
instruction format 1-226

$IMAGE define screen image
utility S-68, U-250

usage example S-387
$IMDATA subroutine S-303

usage example S-375
$IMDEFN subroutine 5-301

usage example 5-375
$IMOPEN subroutine S-300

usage example S-374
$IMPROT subroutine S-302

usage example S-375
$INDEX subroutine, $EDXASM 1-233
$INITDSK initialize or verify

volume S-64, U-256
$IN1T1AL automatic initialization
and restart

description S-129
with session manager S-209,

U-28
$IOTEST test sensor I/O, list con­
figuration S-67, U-263

$JOBUTIL job stream processor
S-69, U-271

commands U-272
set up procedure U-271
usage example S-408, U-290

$L load program, operator command
internals 1-23
overview S-63
syntax U-17

$LEMSG $LINK message data set
U-401

$LINK linkage editor
data set requirements U-400
description U-390
in system generation 1-5
invoking

with $JOBUT1L U-405
with $L U-405
with session manager
U-406

overview S-71
usage example S-402

$LNKCNTL data set S-118
$LOADER 1-19, 1-22

module description 1-78
$LOG I/O error logging utility

description S-270, U-292
overview S-67

·$LPARSE subroutine 1-240
$MOVEVOL disk volume dump/restore

5-65, U-294
$P patch storage, operator

command 5-63, U-18
$PACK/$UNPACK subroutines S-309
$PDS partitioned data set utility

in a program 5-259
overview S-65

$PFMAP identify 4978 program
function keys S-68, U-301

$PREFIND prefind data sets and
overlays 5-69, U-302

$PRT2780 spooled print utility
C-72

$PRT3780 spooled print utility
C-72

$RJE2780 remote ~ob entry utility
C-73, S-66

$RJE3780 remote job entry utility
C-73, 5-66
$RMU (see Remote Management Util­
ity)

$5MCTL session manager program
5-209, 5-212

$5MEND session manager program
5-212

$5MJOBR session manager program
5-212

$5MLOG session manager program
5-212

$5MMAIN session manager program
5-210, S-212, U-28

$SMMLOG, logon menu for session
manager 5-212

$SMMPRIM, primary option menu for
session manager 5-212, U-27,
U-35

$SMM02, program preparation sec­
ondary option menu 5-214, U-37

$SMM03, data management secondary
option menu 5-215, U-39

$SMM04, terminal utilities
secondary option menu 5-215,
U-41

$SMM05, graphics utilities second­
ary option menu 5-216, U-41

$SMM06, execute program utilities
secondary option 5-216

$5MM07, job stream processor
utilities secondary option 5-216

$5MM08, communications utilities
option 5-217, U-43

$SMM09, diagnostic utilities
S-217, U-44

$START supervisor entry point
1-279, 1-313

$STOREMAP example 1-27
$SYSCOM data area 1-12, 1-279,

1-313, S-113
$SYSLOG system logging device

overview S-110
$SYSLOGA alternate system logging
device

overview S-111
$SYSPRTR system printer

overview S-111
$51ASM Series/1 macro assembler

description U-372
internals 1-5, 1-253
overview S-9
storage map, general 1-256

$T set date/time, operator
command S-63, U-19

$TAPEUT1 tape management utility
U-311

$TCBCCB (ATTACH) L-59
$TERMUT1 change terminal
parameters S-68, U-334

$TERMUT2
process 4978 image or control
store S-68, U-339

restore 4974 image U-339
$TERMUT3 send message to a
terminal S-68, U-344

$TRAP class interrupt trap
utility S-67, U-348

$UNPACK/$PACK subroutines S-309
$UPDATE object program converter

description U-408
in system generation 1-5
overview S-69
usage example S-407

$UPDATEH object program converter
(host) S-69, U-418

$VARYOFF set disk, diskette, or
tape offline S-63, U-20

$VARYON set disk, diskette, or
tape online S-63, U-22

with standard labeled tape
S-237

$W display date/time, operator
command S-63, U-25

#1 index register 1 L-6
#2 index register 2 L-6

A after, $FSEDIT line command
U-226

A-conversion L-153
A/I (see analog input)
A/O (see analog output)
abort task level (SVC abend) 1-49
ACCA terminal C-7, L-295
Access Method, Indexed

(see Indexed Access Method)
ACTION, Multiple Terminal Manager

CALL
coding description C-130,

L-360
internals M-9
overview C-117, L-29

activate

AD

add

error logging, $LOG utility
U-293

realtime data member, RT
$DICOMP subcommand U-124

stopped task, GO $DEBUG
command U-93

task supervisor execution
state 1-43

TRAP function of storage dump,
$TRAP utility U-348

add member, $DICOMP command
U-106

advance, $DICOMP subcommand
U-111

advance X,Y CPDS) S-255
assign define key, $TERMUT2

command U-342

add member, AD $DICOMp'com­
mand U-106

null data set on tape volume,
TA $TAPEUT1 command U-330

options to the session
manager S-224

support for new I/O terminals
1-117

calling conventions 1-118
code translation tables

1-118
linkage conventions 1-119
terminal instruction
modification 1-119

ADD data manipulation instruction
coding description L-52
overview L-19
precision table L-53

address relocation translator
1-71, S-42

addressing indexing feature L-6

Common Index 441

ADDV data manipulation
instruction

coding description L-54
index register use L-55
overview L-19
precision table L-55

advance, AD $DICOMP subcom~and
U-111

advance and prompting input, ter­
minal I/O L-46

AI (see analog input)
AL .

allocate
command

allocate
command

allocate
command

data member, $DIUTIL
U-151

data set, $DISKUTI
U-137

data set, $JOBUTIL
U-273

allocate member, $DICOMP
command U-I07

allocate
data set

$JOBUTIL command U-273
AL $DISKUT1 command U-137
ALLOCATE function C-214
tape, TA $TAPEUTI command

U-333
member

$DICOMP command U-I07
$DIUTIL command U-151
$PDS S-261

ALLOCATE function C-216, 1-166,
1-174

allowable precision table L-20
alter member AL $DICOMP command

U-107
alter terminal configuration,

$TERMUTI U-334
alternate system logging device

($SYSLOGA) S-47
alternate tracks 5-58, U-73, U-78
ALTIAM Indexed Access Method

subroutine 5-167
analog input 5-49

AI $IOTEST command U-268
control block 1-129
IODEF statement L-187
overview S-49
SBIO instruction L-263
SEN50RIO configuration

statement L-39
analog output

AO $IOTE5T command U-264
control block 1-129
description S-49
IODEF statement L-186
5BIO instruction L-264
5EN50RIO configuration

statement L-39, S-84
AND data manipulation instruction

coding description L-57
overview L-19

AO (see analog output)
application program

automatic initialization and
restart S-129

indexed access S-149
introduction L-1
manager C-119
preparation U-351
size estimating S-344
structure L-8
support 5-20

ASCII terminals
codes 5-110

442 SC34-0312

configuring S-96
devices supported C-6, S-14
graphics L-26, 5-46
TERMINAL statement examples

5-106
ASMERROR, $EDXASM instruction

1-230
assembler

(see $EDXA5M)
(see $51A5M)
(see host assembler)

assign
alternate for defective 4963
sector, $DASDI utility U-78

DEFINE key in '4978 control
store, AD $TERMUT2 command
U-341

asynchronous communications con­
trol adapter (see ACCA)

AT set breakpoints and trace
ranges, $DEBUG command U-90

ATTACH task control instruction
coding description L-59
internals 1-44
overview L-42, S-34

attention handling, terminal I/O
1-108, L-47, 5-63

attention keys, terminal I/O L-47
attention list (see ATTNLIST)
ATTN key (see attention handling)
ATTNLI5T task control statement

$ATTA5K L-61
coding description L-61
overview L-42, 5-30

attribute character, 3101 C-122
autocall

option, $LINK U-401
AUTOCALL statement requirement

(WXTRN) L-323
automatic

application initialization
5-13, S-129

application restart S-13,
5-129

B before, $F5EDIT line command
U-226

backup disk or disk volume on
tape, ST $TAPEUT1 command U-330

backup dump restore utility,
$~1OV EVO L U-294

base records, indexed data set
definition 5-149
loading S-160

basic exchange
diskette data set copy utili­
ty, $COPY U-59

basic supervisor and emulator (see
supervisor/emulator)

batch job processing (see
$JOBUTIL)

BEEP, Multiple Terminal Manager
CALL

coding description C-137,
L-361

internals M-9
overview C-117, L-29

binary synchronous communications
automatic retry 5-17
BSCAM/B5CAMU module

descriptions I-80
BSCLINE configuration state­

ment C-42, S-76
control flow (BSCAM) I-147
device data block (BSCDDB)

I-133
features C-35, S-16
Host Communications Facility
protocol I-156

instruction formats C-38,
I-144

multipoint operation C-36,
S-16

overview S-16
point-to-point lines S-16
Remote Management Utility

requirements C-208
sample programs C-59
special labels for,
description I-149

system internal design I-133
test utility, $BSCUT2 C-64
trace printing routine,

$BSCUT1 C-62
trace routine, $BSCTRCE C-61

blank screen, $B operator command
S-63, U-12

BLANK TERMCTRL function L-288
BLDTXT subroutine, $EDXASM I-237
BLINK TERMCTRL function L-288
BLP (see bypass label processing)
BOT (beginning-of-tape) L-40
BOTTOM reposition line pointer,

$EDIT1/N editor subcommand U-183
boundary requirement, full-word

DO L-34
IF L-34
PROGRAr1 L-225

BP list breakpoints and trace
ranges, $DEBUG command U-92

breakpoints and trace setting, AT
$DEBUG command U-90

BROWSE display data set, $FSEDIT
option U-213

BSC (see binary synchronous
communications)

BSCAM (see binary synchronous com­
munications)

BSCCLOSE BSC statement I-144,
I-148

coding description C-38
BSCDDB binary synchronous device
data block

description of I-133
equates I-291

BSCEQU L-11
BSCIA immediate action routine

(BSC) I-148
BSCIOCB BSC statement C-39, I-144
BSCLINE configuration statement

C-42, S-76
BSCOPEN BSC statement C-44,

I-145, I-148
BSCREAD BSC statement C-45,

I-145, I-148
BSCWRITE BSC statement C-49,
I-146, I-148

BSF (backward space file) L-75
BSR (backward space record) L-75
BTE, buffer table entry A-20
BU build data member, $DIUTIL

command U-153
buffer

table entry
definition A-20

description A-31
terminal I/O buffer

management I-109
BUFFER data definition statement

coding description L-65
overvi eloJ L-17

build data member, BU $DIUTIL
command U-153

building an indexed data set
U-247

burst output with electronic dis­
play screens L-46

bypass label processing U-311
description S-244

C
change a key definition,

$TERMUT2 command U-342
copy line, $FSEDIT line

command U-226
CA cancel

assembly, $EDXASM attention
request U-358

copy, $COPYUT1 attention
request U-64

list option, $FSEDIT attention
request U-217

listing, $EDXLIST attention
request U-358

CAD copy all data' members,
$COPYUT1 command U-64

CALL
copy all members, $COPYUT1

command U-64
program control instruction

coding description L-68
Indexed Access Method
syntax S-146

Multiple Terminal Manager
syntax L-359

overview L-32, 5-31
program L-68
subroutine L-68

callable routines L-30
CALLFORT program control

instruction
coding description L-70
overview L-32

cancel
$C operator command U-13
assembly, CA $EDXASM attention

request U-358
copy, CA $COPYUT1 attention
request U-64

dump, CA $DUMP command U-165
list option, CA $F5EDIT
attention request U-217

listing, CA $EDIT/H attention
request U-172

CAP copy all programs, $COPYUT1
command U-64

CC copy block, $FSEDIT line
command U-226

CCB
equate table 1-292
internals I-lOS, 1-119
interprocessor communications

C-30
use in terminal I/O support

1-113

Common Index 443

CCBEQU L-11
CD

clear data set, $DI5KUT2 com­
mand U-144

copy data set, $COPY command
U-61

copy data set, $TAPEUT1·
command U-313

CDATA, Multiple Terminal Manager
CALL

coding description C-139,
L-362

internals M-9
overview L-29

CDRRM equates C-292
CG copy all members (generic)

$COPYUT1 command U-64
CH

change hardcopy device~
$BSCUT2 command C-70

change host library, $UPDATEH
command U-420

chain, ECB/QCB/TCB I-55
CHAIN supervisor service routine

I-54
CHAIND supervisor service routine

I-54
CHAINE supervisor service routine

I-54
chaining L-27
CHAINP supervisor service routine

I-54
change

address assignment of termi­
nal, RA $TERMUT1 command
U-336

base address, QUALIFY $DEBUG
command U-lOl

character string, CHANGE
$EDITI/N editor subcommand
U-184

character string, change
$F5EDIT primary command
U-219

execution sequence, GOTO $DE­
BUG command U-94

graphics or report display
profile, $DICOM~ utility
U-1 05 .

hardcopy dev·i ce, CH $BSCUT2
command C-70

hardcopy'device, RH$TERMUT1
command U-338

host library, CH $UPDATEH
command U-420

key definition in 4978 control
store, C $TERMUT2 U-342

name of logical device, RE
$TERMUTI command U-337

o~tput volume, CV $UPDATE
command U-409

page formatting parameters of
a terminal, CT $TERMUT1
U-335

partition assignment, $CP
operator command U-14

realtime data member name RT
($PD5) S-258

tape label support U-322
volume

CV $BSCUTI commandC-62
CV $COPYUTI command U-64
CV $DISKUTI command U-137
CV $DI5KUT2 command U-143
CV $UPDATEH command U-418

444 5C34-0312

character constants L-89
character image table U-205
CHGPAN, Multiple Terminal Manager

CALL
coding description C-135,

L-364
internals M-9
overview C-124, L-29

CL clear work data set, $F5EDIT
primary command U-221

class interrupt vector table
1-10, 1-277

class interrupts, intercepting,
$TRAP utility U-348

clear
data set, CD $DI5KUT2 command

U-144
screen, $B operator command

U-12
CLOSE Host Communications Facili-
ty, TP operand C-90

CLSRU (close tape data set) L-75
cluster, indexed data set S-200
CM copy member

$COPYUT1command U-64
$DIUTIL command U-155

CMDEQU L-12
CMDSETUP 1-13, 1-67
CNG copy all members

(non-generic),$COPYUTl command
U-64

CO command, $RJE2780/$RJE3780
C-76

COBOL
execution requirements 5-23
link editing 5-71
overview 5-7
program preparation

requirements 5-23
use with Multiple Terminal
~1anager C-193

code translation
new support tables 1-111
terminal I/O layer 2 1-109

code words, task L-8
COLS di splay columns, ,$FSEDIT line

command U-228
command area, $EDXA5M 1-214
command descriptions U-235
COMMAND send to host,

$RJE2780/$RJE3780 C~75
command table 1-68, ,I~282, 1-301
common data area (see $SYSCOM)
common emulator setup routine

command table 1-13, 1-282,
1-301

operating conventions 1-67
communication error function

1-166
communications 'utilities

$BSCTRCE C-61
$BSCUT1 C-62
$BSCUT2 C-64
$HFCUT1 C-107
$PRT2780 C-72
$PRT3780C~72,
$RJE2780 C-73
$RJE3780 C~73
$R~1U C-282

communications utilities (session
manager) 5-217, U-42

communications vector table 1-11,
1-278, 1-313

compiler (see $EDXASM)

completion codes (see return
codes)

$EDXASM U-436
$IAMUT1 U-437
$JOBUTIL U-439
$LINK U-440
$UPDATE U-443

compress
data base, CP $DIUTIL command

U-154
library, $COMPRE5 utility

U-57
compressed byte string S-309
CONCAT graphics instruction

coding description L-72
overview L-26

concatenating indexed data sets
5-167

concurrent access L-27
concurrent execution L-42
configuration statements 5-75
configure terminal CT $TERMUT1

command U-335
connecting an indexed data set

S-159
continuation, source program line,

$EDXASM U-361
control, device instruction level

L-24
control block (see D5CB)
control block and parameter
tables

BSCEQU 1-133, 1-291, L-11
CCBEQU (see also CCB) L-l1
CMDEQU (see also emulator

command table) L-12
DDBEQU 1-92, 1-308, L-12
DSCBEQU (see also D5CB) L-12
ERRORDEF L-12
FCBEQU A-20, L-12
IAMEQU L-12
PROGEQU 1-312, L-13
referencing 1-289
TCBEQU (see also TCB) L-13

control block module (A5MOBJ)
description 1-76

CONTROL IDCB command L-175
control keys for text editors

U-172
control records, $LINK U-396
control statements, program

listing L-28
task L-42
terminal I/O forms control

L-45
CONTROL tape instruction L-74
conversion

algorithm for graphics 1-201
alphameric data L-152
definition
EBFLCVT module description

1-80 .
floating point/binary 1-205
numeric data L-148
program modules by $UPDATE/H

U-418
terminal I/O binary/EBCDIC

1-110
CONVTB data formatting

instruction
coding description L-79
internals 1-207
overv i e~..J L -18

CONVTD data formatting
instruction

coding description L-82
internals 1-:-207
overview L-18

copy
block of text, CC $F5EDIT line

command U-226
data memberst all, CAD

$COPYUTI command U-64
data set, CD $COPY command

U-61
data sets with allocation,

$COPYUT1 utility U-64
line of text, C $F5EDIT line

command U-226
member

CM $COPYUTI command U-64
CM $DIUT1L command U-155

members
all, CALL $COPYUTI com­

mand U-64
generic, CG $COPYUTI

command U-64
non-generic, CNG $COPYUTI

command U-64
programs, all, CAP $COPYUTI

command U-64
text, $EDIT1/N editor

subcommand U-186
volume, CV $COPY command U-62

copy code library, instruction
parsing ($EDXA5M) 1-222

COpy instruction
coding description L-86
overview L-33

Count record C-256
CP compress data base, $DIUT1L

command U-154
CR invoke $DISKUTl, $IAMUTI

command U-236
create

character image tables, $FONT
U-205

source data set, $F5EDIT
U-214

supervisor for another
Series/1 5-132

unique labels, $5Y5NDX
($EDXA5Ml 1-242

create indexed data set 5-156
cross partition instructions 1-71
cross partition services 5-286
CSECT list, supervisor

Version 1.1 5-347
Version 2 5-357

C5ECT program module sectioning
statement

CT

CV

coding description L-87
overview L-33

change tape drive attributes,
$TAPEUT1 command U-315

configure terminal, $TERMUT1
command U-335

change output volume U-409
$UPDATE command U~409
$UPDATEH command U-418

change volume
$B5CUTI command C-62
$COPYUT1 command U-64
$DISKUT1 command U-137
$DI5KUT2 command U-143

copy volume, $COPY command
U-59

Common Index 445

CYCLE
coding description C-132,

L-365
internals M-9
overview C-116, L-29

cylinder 5-60
cylinder track sector (CTS) U-135

D delete line, $FSEDIT line com-
mand U-228

D/I (see digital input)
D/O (see digital output)
data

conversion (see conversion)
conversion specifications (see
also conversion) L-146

definition statements L-17
files for $SlASM 1-254
floating-point arithmetic

instructions L-20
formatting functions L-18
formatting instructions L-18
integer and logical
instructions L-19

length of transmitted, host
communications 1-159

management 5-45
management system, Indexed

Access Method L-27
manipulation instructions

L-19
record contents, text editor
1-325

representation L-20
floating-point L-20
integer L-19
terminal input L-45
terminal output L-45

transfer initialization,
terminal I/O support 1-112

transfer rates, Host
Communications Facility C-84

transfer ready, (DTR) BSCOPEN
1-148

Data Collection Interactive 5-11
DATA data definition statement

coding description L-88
overview L-17

data management utilities
$COMPRES 5-64, U-57
$COPY 5-64, U-59
$COPYUT1 5-64, U-64
$DASDI 5-64, U-68
$DISKUT1 5-64, U-135
$DI5KUT2 5-64, U-142
$DI5KUT3 5-315
$IAMUTI 5-148, U-235
$INITDSK 5-64, U-256
$MOVEVOL 5-65, U-294
$PD5 5-247
$TAPEUT1 U-311
session manager 5~215, U-38

data manipulation, vector L-19
data manipulation instructions

L-19
Data record C-257
data representation, terminal I/O

L-45
data set

allocation/deletion

446 5C34-0312

$DI5KUT1 U-137
$DI5KUT3 5-315
$JOBUTIL U-273
$PD5 5-248
session manager U-29

characteristics, HCF C-83
format

$FSEDIT U-210
$PD5 5-249
$PRT2780 C-72
$PRT3780 C-72

naming conventions C-82, 5-56
transfer

RECEIVE function C-243
5END function C-247

utilities (see data management
utilities)

data set naming conventions, Host
Communications Facility C-82

data-set-shut-down condition
5-179

date/time
display, $W operator command

U-25
set, $T operator command U-19

DC data definition statement
coding description L-88
overvie~oJ L-17

DCB EXIO control statement
coding description L-91
overv i moJ L -24

DCE directory control entry
format 1-88

DCI (Data Collection Interactive)
5-11

DD block delete, $F5EDIT line
command U-228

DDB disk data block
description 1-92
equate table 1-308

DDBEQU l-12
DE delete member

$DI5KUT1 command U-137
$DIUTIL command U-156
delete data set,$JOBUTIl

command U-274
deadlocks C-238, 5-180
debug

$EDXA5M overlay programs
1-248

aids (see also diagnostic
aids) 5-18

facility, $DEBUG utility U-82
define

horizontal tabs, HTAB $IMAGE
command U-252

image dimensions,DIM5 $IMAGE
command U-251

indexed data set, DF· $IAMUT1
command U-237

null representation, NULL
$IMAGE command U-253

vertical tabs, VTAB $IMAGE
command U-254

DEFINEQ queue processing
statement

coding description L-94
overview l-37

definition statements, data L-17
delete

data set
$JOBUTIL command U-274
DELETE function C-216
tape data set, TA $TAPEUT1

command U-333

elements, IN $DICOMP command
U-107

member

text

$PD5 5-261
DE $DI5KUT1 command U-137
DE $DIUTIl command U-156

$EDIT1(N) editor subcom­
mand U-188

line, D $F5EDIT line
command U-228

with $PREFIND U-305
DELETE function C-216, 1-166,

1-174
DELETE instruction

coding description l-329
overview l-27, 5-147
return codes l-330

DEQ task control instruction
coding description l-95
internals I-59
overview l-42, 5-33
supervisor function 1-46

DEQB5C dequeue BSC DDB routine
1-149

DEQT terminal I/O instruction
coding description L-97
overview L-44, 5-47

DETACH task control instruction
coding description L-98
internals 1-45
overview l-42, 5-30

detached, task supervisor
execution state 1-43

device
busy (EXOPEN) l-129
data block description, EXIO

1-123
instruction level control

L-24
interrupt handling, EXIO
1-125

test utility, $10TE5T U-263
vector table I-II, 1-278

DF define indexed file, $IAMUTI
command U-237

D1 (see digital input)
diagnostic

aids 5-265
summarized 5-18

utilities
$DEBUG U-82
$DU~jP U-163
$IOTE5T U-263
$LOG U-292
$TRAP U-348
with session manager

5-217, U-38
digital input

$IOTEST command U-266
digital I/O control block

1-129
direct output,$DICOMP subcom­

mand U-112
direct output to another

device ($PD5) 5-255
display parameters, $IAMUTI

command U-239
external sync, XI $IOTE5T

command U-266'
10DEF statement L-186
overview 5-48
5BIO instruction l-265
5ENSORIO configuration

statement 5-84

digital output
digital I/O control block

1-129
DO $IOTE5T command U-265
external sync, XO $IOTE5T

command U-266
IODEF statement L-186
overview 5-48
SBIO instruction l-267
SENSORIO configuration
statement L-84

DIMS define image dimensions,
$IMAGE command U-251

direct access common I/O module,
DISKIO, description 1-77

direct access storage device
organi~ation 5-52

direct output, DI $DICOMP
subcommand U-112

directory
control entry (DCE) 1-88
entries 5-249
member entry (DME) 1-89

disaster recovery from tape, RT
$TAPEUTI command U-326

DI5CONN Indexed'Access Method
CALL

coding description l-332
overview L-27, 5-148
return codes L-333

DISCONNECT Multiple Terminal
Manager utility C-119, C-159

disconnecting an indexed data set
5-159

DISK configuration statement 5-78
disk/diskette

capacity 5-58
data block (DDB) 1-92
fixed-head 5-15, 5-61
I/O task 1-95
IPL 5-16, 5-61
primary volume 5-60
resident loading code 1-19
secondary volume 5-60
symbolic addressing L-I0
utilities

$COMPRE5 5-64, U-57
$COPY 5-64, U-59
$COPYUTI5-64, U-64
$DASDI 5-64, U-68
$DISKUTI 5-64, U-135
$DISKUT2 5-64, U-142
$DI5KUT3 5-315
$IAMUT1 5-148, U-235
$INITDSK 5-64, U-256
SMOVEVOl 5-65, U-294
$PDS 5-247

utility function table U-49
volume 5-16, S-52

disk I/O instructions L-22
DI5KIO direct access common I/O

module description 1-77
display (see also l'ist)

character image tables, DI5P
$FONT command U-205

contents of storage or
registers, LIST $DEBUG com­
mand U-95

control member ($PD5) 5-250
control member format ($PD5)

5-252
initial data values for image
5-303

processor composer, $DICOMP
U-I05

Common Index 447

processor interpreter,
$DIINTR U-150

processor utility, $DIUTIL
U-150

processor utility, general
description U-105

profile elements ($PD5) 5-252
protected and null fields of

an image 5-302
report line items ($PD5)
5-255

status of all tasks, WHERE
$DEBUG command U-102

storage, $0 operator command
5-63, U-15

time and data, TO ($PD5)
5-258

time and date, $W operator
command 5-63, U-25

utility program set ($PD5)
5-248

variable, VA($PD5) 5-254
4978 program function keys,

$PFMAP utility U-301
DI5PLAY TERMCTRL function L-288
DIVIDE data manipulation
instruction

coding description L-99
o v e r vi etoJ L -19
precision table L-100

DME directory member entry
format 1-89

DO
updated by 5ETEOD 5-324

digital output (see digital
output)

program sequencing
instruction

coding description L-101
overview L-34

double-precision L-19
floating-point arithmetic

L-21
integer and logical L-19

DOWN move line poiner, $EDIT1/N
editor subcommand U-189

DP
dump to printer

$DI5KUT2 command U-144
$TAPEUT1 command U-317

print trace file, $B5CUTl
command C-62

DR draw symbol, $DICOMP
subcommand U-112

DR draw symbol ($PDS) 5-254
draw

line, LI $DICOMP subcommand
U-120

line relative LR ($PD5) 5-257
symbol, DR $DICOMP subcommand

U-112
05 data set identifier, $JOBUTIL

command U-275
D5CB data set control block

statement
coding description L-105
equate table, DSCBEQU 1-311
for tape, internals 1-99
internals 1-92
overview L-22

DSCBEQU L-12
DSECT (see control block and
parameter equate tables) L-l1

D50PEN subroutine
description S-322

448 SC34-0312

DSR data set ready in BSCOPEN
1-148

DTR data transfer ready in
BSCOPEN 1-148

DU

dump

dump on terminal, $DI5KUT2
command U-144

dump trace file on terminal,
$BSCUT1 command C-62

restore volume utility
$r10V EVOL U-294

storage partition, DUMP
function C-218

to printer
$DUMP utility U-163
DP $DISKUT2 command U-143
DP $TAPEUT1 command U-317
PR $DICOMP command U-108

to terminal
$DUMP utility U-163
DP $TAPEUT1 command U-317
DU $DI5KUT2 command U-143
PR $DICOMP command U-108

trace file on printer, DP
$BSCUT1 command C-62

trace file on terminal, DU
$BSCUT1 command C-62

DUMP function C-218, 1-166, 1-175
D4969, tape device handler module
description 1-82

E-conversion (Ew.d) L-150
EBFLCVT, EBDIC to floating-point
conversion 1-205

module description 1-80
EC control echo mode, $IAMUT1

command U-240
ECB task control statement

coding description L-107
internals I-55

EDIT

overview L-42, 5-30
with SBIOCB 1-128

begin editing source data,
$EDITI/N command U-174

create or change data set,
$F5EDIT option U-214

enter edit mode, $FONT
command U-205

enter edit mode, $IMAGE
command U-251

edit data set subroutine examples,
text editor 1-326

editor subcommands, $EDIT1/N
U-182

EDL (see Event Driven Language)
compiler ($EDXASM) U-356
instruction format 1-67
interpreter, EDXALU, module
description 1-77

operation codes 1-67
EDXALU Event Driven Language
interpreter description 1-5,
1-77

EDXFLOAT floating-point operations
module description 1-79

EDXINIT supervisor initialization
control module 1-15

description 1-81

EDXLI5T host listing formatter
U-383

EDX5TART supervisor initialization
task module description 1-81

EDX5VCX/EDX5VCXU task supervisor
addr. trans. support desc 1-5,
1-76

EDX5Y5 system data tables,
description 1-75

EDXTIMER 7840 timer feature card
module description 1-80

EDXTIMR2 4952 timer module
description 1-80

EDXTIO terminal I/O
EDXTIO/EDXTIOU module
description 1-78

internals 1-105
EJECT listing control statement

coding description L-109
overv i e~.J L -28

eject printer page
$E operator command U-16

ELSE program sequencing
instruction

coding description L-110,
L-178

overview L-34
emulator (see
supervisor/emulator)

emulator command table 1-13,
1-282, 1-301

emulator functional flow 1-69
emulator setup routine 1-67

command table 1-13, 1-282,
1-301

EN end program, $1AMUTI command
U-235

END
$LINK control record U-396
option selection, $EDXA5M

command U-358
option selection, $EDXLI5T

command U-371
option selection, $51A5M

U-378
primary command input, $F5EDIT

primary command U-221
task control statement

coding description L-111
overv i el.J L-42

end display, EP $DICOMP
subcommand U-118

end-of-file, indicating with
5ETEOD 5-324

ENDATTH task control instruction
coding description L-112
overview L-42, 5-30

ENDDO program sequencing
instruction

coding description L-103,
L-113

overview L-34
ENDIF program sequencing
instruction

coding description L-114,
L-178

overview L-34
ENDPROG task control statement

coding description L-115
overview L-42, 5-30

EHD5EQ Indexed Access Method CALL
coding description L-334
overview L-27, 5-147
return codes L-335

END5POOL switch spool to print,
$RJE2780/$RJE3780 C-75

ENDTA5K task control instruction
coding description L-116
overview L-42, 5-30

ENQ task control instruction
coding description L-117
internals 1-60
overview L-42, 5-33
supervisor function 1-45

ENQT terminal I/O instruction
5-293

coding description L-119
overview L-44, 5-47

enqueue, task supervisor function
(see ENQ)

entering and editing source state­
ments 5-66, U-192

entry points, supervisor
Version 1.1 5-347
Version 2 5-357

ENTRY program module sectioning
statement

coding description L-121
overvi el.J L-33

EOF (end-of-file) L-74
EOJ end of job, $JOBUTIL command

U-276
EOP end of nested procedure,

$JOBUTIL command U-276
EOR data manipulation instruction

coding description L-122
overview L-19

EOT (end-of-tape) L-41
EP end display, $DICOMP

subcommand U-118
EQ (equal) L-34
EQU data definition instruction

coding description L-124
overview L-17

equate tables
$EDXA5M compiler common area

1-214
B5CDDB, B5C line control

block 1-291
CCB, terminal control block

1-292
DDB, disk/diskette control

block 1-308
DDB for sensor I/O 1-309
D5CB, data set control block

1-311
emulator command table 1-282,

1-301
Indexed Access Method A-19
parameter and control block
L-ll

program header 1-312
referencing 1-30

supervisor 1-279, 1-313
TCB, task control block 1-314

ERASE terminal I/O instruction
coding description L-126
overview L-44, 5-47

error codes (see return codes)
error handling

I/O error logging 5-270
Indexed Access Method error
exit 5-178

Remote Management Utility
C-277

software trace 5-265
task error exit 5-33, 5-268
terminal I/O L-44

ERRORDEF L-12

Common Index 449

ERROR5 list error option
$EDXA5M command U-358
$EDXLI5T command U-370

estimating storage (see storage
estimating)

event control block (see ECB)
Event Driven Language (see EDL)
EX exercise tape, $TAPEUT1 com-

mand U-319
EXEC function C-220, 1-166, 1-178
EXEC load and execute program,

$JOBUTIL command U-277
execute pro~ram

EXEC function C-220
PASSTHRU function C-225
SHUTDOWN function C-251
utilities (session manager)

S-216
executing, task supervisor exe­
cution state 1-43

exercise tape, EX $TAPEUT1
command U-319

EXFL1H command start 1-125
EXIO control instruction

coding description L-128
EXIODDB device data block
description 1-123

internals 1-125
overview L-24, S-51

EXIOCLEN, EXIO termination module
1-126

EXIODEV configuration statement
S-82

EXIOINIT, system initialization
1-125

EXOPEN EXIO control instruction
coding description L-129
internals 1-125
interrupt codes L-132
overview L-24
return codes L-131

external sync Dl/DO, XI/XO $IOTE5T
command U-266

EXTRACT, Indexed Access Method
CALL

coding description L-336
overview L-26, 5-148
return codes L-337

EXTRN program module sectioning
statement

coding description L-134
overview L-33

F-conversion (Fw.d) L-149
FADD data manipulation
instruction

coding description L-135
overview L-19
return codes L-136

FAN, Multiple Terminal Manager
CALL

coding description C-139,
L-366

overview L-31
FCA file control area, Multiple
Terminal Manager C-143

FCB file control block for Indexed
Access Method

definition A-9, A-20
description A-II, A-21, 5-194

450 5C34-0312

location A-20
map provided by FCBEQU 5-155

FCBEQU Indexed Access Method copy
code module L-12, 5-155

FDIVD data manipulation
instruction

coding description L-137
overviet.J L-19
return codes l-138

FETCH Host Communications
Facility, TP operand C-92

fetch record ($PD5) 5-261
fetch status, FE $HCFUTI command

C-110
file l-75

backward space file (B5F)
L-75

control area (see FCA)
control block (see FCB)
definition L-40
forward space file (FSF) l-75
manager, Multiple Terminal

Manager M-8
tape control commands l-75

FIlEIO, Multiple Terminal Manager
CAll

FIND

coding description C-141,
L-367

internals M-9
overview C-118, L-29

editor commands
character string, $EDITI/N

subcommand U-191
character string, $F5EDIT

primary command U-222
program sequencing

instruction
coding description L-139
overv i et'" L -34

FINDNOT program sequencing
instruction

coding description L-141
overview L-34

F1R5TQ queue processing
instruction

coding description L-143
overview L-37, 5-32

fixed-head devices 5-61
fixed storage area, contents 1-9
floating-point

arithmetic instr~ction
equates 1-283, 1-303

arithmetic instructions L-20
binary conversions 1-205
command entries module,

NOFLOAT, description 1-79
operations module, EDXFLOAT,
description 1-79

return codes L-21
FMULT data manipUlation
instruction

coding description L-144
overvieL.J L-19
return codes L-145

format
illustrated L-5
instruction (general) L-3

FORMAT data formatting statement
'A' conversion L-153
'E' conversion l-150
'F' conversion L-149
'H' conversion L-152
'I' conversion L-148
coding description L-146

conversion of alphameric data
L-153

conversion of numeric data
L-148

data conversion specifica-
tions L-146

module names L-18
multiple field format L-155
overview L-18
repetitive specification

L-155
using multipliers L-155
X-type format L-154

formatted screen images S-300,
U-250

formatting instructions, data
L-18

forms control
burst output with electronic
display screens L-46

forms interpretation L-46
output line buffering L-46
parameters, terminal I/O L-44
terminal I/O L-45

FORTRAN IV
execution requirements S-24
link editing S-71
overview S-6
program preparation

requirements S-24
use with Multiple Terminal

Manager C-197
FPCONV data manipulation
instruction

coding description L-157
overvie~oJ L-19

free pool in Indexed Access
Method L-27

free space
definition S-148
estimating S-168
in Indexed Access Method L-27

free space entry 1-90
FREEMAIN storage allocation
function 1-25

FSE free space entry 1-90
FSR (forward space record) L-75
F5UB data manipulation
instruction

coding description L-159
index registers L-160
overvi e!.oJ L-19
return codes L-160

FTAB, Multiple Terminal Manager
CALL

coding description C-138,
L-372

overview C-124, L-31
return codes L-373

full-screen static configuration
5-293

full-screen text editor host and
native, $F5EDIT U-209

full-word boundary requirement
DO L-34
IF L-34
PROGRAM L-225

function process overlays 1-162
function process subroutines

1-162, 1-170
new subroutines 1-187

function table I-164, I-167

GE (greater than or equal) L-34
general instruction format L-3
generating the supervisor S-115
GENxxxx macro 1-120
GET Indexed Access Method CALL

coding description L-338
overview L-27, S-147
return codes L-340

GETEDIT data formatting
instruction

coding description L-162
overview L-18

GETMAIN storage allocation
instruction 1-25

GETPAR3 1-69
GET5EQ Indexed Access Method CALL

coding description L-342
overview L-27, S-147
return codes L-343

GET5TORE TERMCTRL function L-288
GETT1ME timing instruction

coding description L-167
overview L-50, 5-32

GETVAL subroutine, $EDXA5M 1-234
GETVALUE terminal I/O instruction

coding description L-169
overview L-44, 5-47

GIN graphics instruction
coding description L-172
overview L-26

global area, $EDXA5M 1-224
GLOBAL ATTNL15T L-61
GO activate stopped task, $DEBUG

command U-93
GOTO

change execution sequence,
$DEBUG command U-94

coding sequencing instruction
coding description L-173
overview L-34

graphics
conversion algorithm 1-201
functions overview L-26
hardware considerations C-6,

C-300
instructions L-26

CONCAT L-72
GIN L-172
PLOTG1N L-210
SCREEN L-270
XYPLOT L-324
YTPLOT L-325

requirements L-26
terminals 5-46
utilities

$D1COMP U-I05
$DIINTR U-127
$D1UT1L U-150
session manager S-216,

U-40
summarized 5-64, U-5

GT (greater than) L-34

Common Index 451

H-converslon L-152
hardcopy function for terminals

PF6 1-114, U-7
hardware levels 5-30
HCF (see Host Communications
Facility)

HDR1 tape label 5-239
header labels, tape 5~235
header record

Remote Management Vtility
C-209

header record format, text editor
1-323

HELP list debug commands, $DEBUG
command U-94

higher-level index block 5-197
horizontal tabs, defining with

$IMAGE U-252
host assembler U-382
Host Communications Facility

C-81, 1-153
data set naming conventions

C-82
Program Preparation

5ystem/370 1-153, U-382
TPCOM module description 1-81
utility program, $HCUTI C-I07

host program, Remote Management
Utility C-205

host system considerations C-83
H05TCOMM configuration statement

5-83
HX display hex words, $DICOMP

subcommand U-118

I
initialization, $INITD5K com­
mand U-257

insert line, $F5EDIT line
command U-229

I-conversion (Iw) L-148
I/O device instruction level L-24
I/O error logging

data set list utility,
$DI5KUT2 U-142

device table 5-276
invoking 5-273, U-292
log control record 5-276
log data set U-292
LOG macro

equates 5-278
syntax 5-272

printing the errors 5-275
recording the errors' 5-270
tape log entries ,5-245
utility, $LOG U-292

I/O functions
disk/diskette I~95, L-22

summarized 5-46
EXIO control 1-123, L-24

summarized 5-51
H05TCOMM configuration
statement L-39, 5-83

overview 5-45
sensor 1-127

summarized 5-51

452 5C34-0312

tape L-40, l-75 .
terminal 5-46
timers L-50, 5-32

I/O instructions
disk L-22
diskette L-22
tape L-40

IACB indexed access control block
built by connecting data set

5-159
definition A-20
description A-35
location A-14

lAM Indexed Access Method link
module 5-155

IAMEQU Indexed Access Method copy
code module L-12, 5-155

IDCB EXIO control statement
coding description L-175
overview L-24

IDCHECK function C-223, 1-166,
1-177

identification, verify
host system C-223
IDCHECK function C-223
remote system C-223

IF program sequence instruction
coding description L-177
overview L-34

II insert block, $F5EDIT line
command U-231

lIB interrupt information byte,
Multiple Terminal Manager C-128

1M insert member
$DICOMP subcommand U-118
$PD5 5-257

image dimensions, define, DIM5
$IMAGE command U-251

image store U-205
immediate action routines 1-46

binary synchronous access
method 1-149

specifying maximum number
5-88

task supervisor 1-48
immediate data L-4
IN

initialize data base, $DIUTIL
command U-157

insert or delete elements,
$DICOMP command U-107

INCLUDE $LINK control record
U-398

INCLUDE ,statement requirement
(EXTRN) L-134

index block A-20, A-33
overview 5-151

index entry A-12
index record contents, text
editor 1-323

index registers
floating-point operations

using L-21
integer operations using L-19
software introduction L-6

indexed access control block (see
IACB/ICB)

Indexed Access Method l-26, l-327
$IAM load module 5-155
$IAMUTI utility U-235

overview 5-148
parameters 5-187
used in data set

reorganization 5-166
application program

preparation
$JOBUTIL procedure 5-158
link edit control 5-158

CALL instruction syntax L-68,
5-146

CALL processing A-4
coding instructions L-327
control block linkages A-15
control flow A-3
data block location
calculation A-9

devices supported by 5-146
diagnostic aids A-I0
I/O requests

DELETE L-329, 5-147
DI5CONH L-332, 5-148
END5EQ L-334, 5-147
EXTRACT L-336, 5-148
GET L-338, 5-147
GET5EQ L-341, 5-147
LOAD L-344, 5-147
PROCE55 L-347, 5-147
PUT L-350, 5-147
PUTDE L-352, 5-147
PUTUP L-354, 5-147
RELEA5E L-356, 5-147

lAM link module 5-155
operation 5-148
overview L-27, 5-145
performance 5-205
program preparation procedure

5-155
record processing A-6
request processing A-5
request verification A-I0
storage requirements 5-204

indexed applications, planning and
designing

connecting and disconnecting
data sets 5-159

handling errors
data-set-shut-down condi­
tion 5-179

deadlocks 5-180
error exit facilities

5-178
long-lack-time condition

5-180
system function return
codes 5-179

loading base records 5-160
processing indexed data sets

delete 5-165
direct read 5-161
direct update 5-162
extract 5-165
insert 5-146
sequential read 5-162
sequential update 5-146

resource contention 5-181
indexed data set

base records 5-149
building U-247
concatenating with ALTIAM

subroutine 5-167
control block arrangement A-8
creation with $IAMUT1 utility

U-236
formatting 5-187
procedure 5-156

design A-7
determining size and format

U-247
format

blocks 5-192

cluster 5-200
data block 5-194
file control block (FCB)
5-151, 5-194

free blocks 5-200
free pool 5-203
free records 5-200
free space 5-184
higher-level index block

5-197
index 5-195
index block 5-194
introduction 5-151
last cluster 5-203
primary-level index block

(PIXB) 5-152, 5-195
relative block number

(RBN) 5-152
reserve blocks 5-201
res~rve index entries
5-202

second-level index block
(5IXB) 5-152, 5-197

sequential chaining 5-203
loading and inserting records
5-150 .

maintenance
backup and recovery 5-165
deleting 5-167
dumping 5-167
recovery without backup
5-166

reorganization 5-166
overvi eLoJ 5-148
physical arrangement A-8
preparing the data

defining the key 5-166
estimating free space

5-168
selecting the block size

5-167
putting records into 5-149
RBN, relative block number

A-7, A-12
record locking 5-146, 5-160
verification A~11

indexed data set, defining U~237
indexed file (see Indexed Access
Method)

indexing, address feature L-6
initial program load (see also

IPL) 1-15
initialization

automatic application 5-129
disk (4962) U-68, U-73
disk (4963) U-68, U-78
diskette (4964,4966) U-68
libraries, $IHITD5K utility

U-256
modules 1-16
nucleus I-IS
Remote Management Utility,

internals 1-166, 1-171
tape, $TAPEUTI utility U-322
task 1-15

initialize data base, IN $DIUTIL
command U-157

initializing secondary volumes
5-132

INITMOD5, initialization modules
1-16

INITTA5K, initialization task
1-15

input, terminal I/O L-46

Common Index 453

Input Buffer, Multiple Terminal
Manager C-116

contents during 4978/4979/3101
buffer operation C-129

description C-116
input data parsing, description
of 1-218

Input Error function 1-166, 1-182
input/output (see I/O)
input output control block (see

IOCB) .
INPUT switch to input mode,

$EDIT1/N editor subcommand U-192
insert

block, II $F5EDIT line com­
mand U-231

elements, IN $DICOMP command
U-I07

line, I $F5EDIT line command
U-229

member, 1M $DICOMP subcommand
U-118

instruction address register (see
IAR)

lnstruction and statements - over­
view L-15

instruction definition and
checking ($EDXA5M) 1-241

instruction format, Event Driven
Language 1-67, L-3

instruction format, general L-3
instruction operands L-3
integer and logical instructions

L-19
interactive program debugging
5-67, U-82

interface routines, supervisor
1-61

interprocessor communications
C-29

interprogram dialogue 5-282
interrupt, from EXIO device 1-125
interrupt information byte (see
lIB)

interrupt line 5-313
interrupt servicing 1-46, 1-113
INTIME timing instruction

coding description L-181
overview L-50, 5-32

intr~duction to EDL l-l
invoking the loader 1-23
invoking the session manager U-27
invoking the utilities U-47
IOCB terminal I/O instruction

coding description L-183
constructing, for formatted

screen ($IMDEFN) 5-301
overview l-44, 5-47
structure 5-296
terminal I/O instruction

L-183
TERMINAL statement converted
to 5-96

IODEF sensor based I/O statement
U-364

coding description L-185
overview L-39, 5-51
5PECPI - process interrupt

user routine L-189
IOlOADER, function of 1-127
IOLOADER/IOLOADRU sensor based I/O
init. module desc. 1-78

lOR data manipUlation instruction
coding description L-191
overview L-19

454 5C34-0312

IPl
automatic application initial­

ization and restart 5-129
messages U-421

date and time U-425
IPL operation U-421
load utility location

U-424
sensor I/O status check

U-424
storage map generation

U-423
tape initialization U-423
volume initialization

U-422
procedure U-421

IPL5CRN, Multiple Terminal
Manager C-125

job U-278
job control statement U-278
JOB job identifier, $JOBUTIL

command U-278
job stream processor, $JOBUTIL
5-69, U-271

job stream processor utilities
(session manager) 5-216

JP
jump ($PD5) 5-255
to address, $DICOMP

subcommand U-118
JR jump reference, $DICOMP

subcommand U-118
JUMP, $JOBUTIL command U-279
jump reference, JR $DICOMP

subcommand U-118
jump to address, JP $DICOMP

subcommand U-118

key (see program function (PF)
keys

keyboard and ATTNLI5T tasks, ter­
minal I/O L-47

keyboard define utility for 4978,
$TERMUT2 U-339

KEY5 list program function keys
$IMAGE command U-253

keyword operand L-5

LA
display directory, $DIUTIL

command U-158
list all members, $DI5KUT1

command U-135, U-136
list terminal assignment,

$TERMUT1 command U-336
label L-3

field l-3
syntax description l-4

LABEL end jump, SJOBUTIL command
U-280

labels, tape (see tape)
LABELS subroutine, SEDXASM 1-238
LACTS list all members CTS mode,

SDISKUT1 command U-135
language control data set,

SEDXASM 1-221, U-357
LASTQ queue processing
instruction

coding description L-191
overview L-37, 5-32

layers, terminal I/O 1-108
LB display characters

.SDICOMP display character sub~
command U-1l9

SPDS 5-252
LC load control store, STERMUT2

command U-342
LD

list all hardware devices,
SIOTEST command U-269

list data members, SDISKUTI
command U-138

LDCTS list data members CTS mode,
SDISKUTI command U-135

LE (less than or equal) L-34
level status block (see LSB)
LEWORK1 work data set for SLINK

U-400
LEWORK2 work data set for SLINK

U-400
LH display member header, SDIUTIL

command U-159
LI

draw line SDICOMP subcommand
U-120

draw line SPDS 5-253
load image store, STERMUT2

command U-342
library

definition 5-52
directory, disk or diskette

1-87
origin S-60

line
commands, SFSEDIT U-229
continuation, source
statement L-4

editing, SEDITI/N U-203
pointer reposition (see move
line pointer)

source line continuation
U-361

LINK, Multiple Terminal Manager
CALL

coding description C-131,
L-374

internals M-9
overview C-115, L-29

link edit process, SLINK U-394
autocall option U-393
building an EDX supervisor

U-394 .
combining program modules

U-392
control records U-396
elimination of duplication
control sections U-393

formatting modules for
SUPDATE U-392

input to SLINK U-396
multiple control sections

U-392
object module record format

U-407
output from $LINK U-403
storage map U-393

link edit program object modules
U-390

link module, Indexed Access
Method 5-155 '

linkage editor 5-71, U-353
LINKON, Multiple Terminal. Manager

CALL

list

coding description C-132,
L-376

internals M-9
overview C-115, L-29

active programs, $A operator
command U-11

breakpoints and trace ranges,
BP SDEBUG command U-92

characters, LB SDICOMP
subcommand U-119

data members, LD SDISKUTI
command U-138

data members, LDCTS SDISKUTI
command U-135

data set
BROWSE $FSEDIT option

U-213
LP $DISKUT2 command U-143
LU $DISKUT2 command U-146
status, ST $DIUTIL

command U-162
date/time, SW operator

command U-25
date/time, TD SDICOMP

subcommand U-124
devices, LD SIOTEST command

U-269
end, EP $DICOMP subcommand

U-117
error specification, ERRORS

SEDXASM command U-358
hardware configuration, LD

$IOTEST command U-264
insert mask, MASK '$FSEDIT line

command U-232
member, LM $DISKUTI command

U-138
member, PR $DICOMP command

U-108
member header, LH $DIUTIL com­

mand U-159
members, all

LA SDISKUTI command U-135
LA $DIUTIL command U-158
LACTS $DISKUT1 command

U-135
processor program, SEDXLIST

U-370
program function

SPFMAP utility
program function

SIMAGE command
program members,

command U-139

key codes,
U-30l
keys, KEYS
U-253
LP SDISKUTI

program members, LPCTS
SDISKUTI command U-135

status of all tasks, WHERE
$DEBUG command U-I02

storage, SD operator command
U-15

terminal
names/types/addresses, LA
STERMUTl command U-335

variables, VA $DICOMP

Common Index 455

subcommand U-125
volume information, VI $IOTEST

command U-270
LIST commands

data set
LIST $EDITI/N command

U-193
LIST $FSEDIT option U-217

display lines of text,
$EDITI/N editor subcommand
U-193

display storage or registers,
$DEBUG command U-95

lines of text, LIST $EDIT1/N
editor command U-176

list device option, $EDXASM
command U-358

list device option, $EDXLIST
command U-370

obtain full listing, LIST
$EDXASM command U-358

print data set, $EDITI/N
command U-176

print data set, $FSEDIT
option U-217

registers, LIST $DEBUG
command U-95

storage, LIST $DEBUG command
U-95

listing control functions U-29
listing control instructions

EJECT L-109
overview L-28
PRINT L-216
SPACE L-275
TITLE L-308

LISTP list to $SYSPRTR, $DISKUT1 .
command U-135

LISTT list to terminal, $DISKUT1
command U-135

LL' list log data set, $DISKUT2
command U-145

LM list member, $DISKUT1 command
U-138

LO load indexed file, $IAMUT1
command U-241

LOAD
Indexed Access Method CALL

coding description L-344
connect file S-159
overview L-27, S-146
return codes L-346

task control instruction
coding description L-194
internals 1-24
overview L-42
return codes L-199

used with automatic
initialization S-129

used with overlays S-40
load mode S-149
load point defined L-40
load program

$L operator command 1-23,
U-17

automatic initialization
S-129

EXEC $JOBUTIL command U-277
loading overlays 1-22
loading programs 1-19
locate data sets and overlay
programs, $PREFIND U-302

LOCATE locate requested line
number $FSEDIT primary comman
U-223

456 SC34.-0 312

location dictionary 1-250
lock

locks, block and record A-16
locks, file A-17
record S-146

LOCK TERMCTRL function L-288
lOG

I/O error logging macro S-271
job processor commands,

$JOBUTIL command U-281
log data set for I/O errors U-292
logical end-of-file on disk S-324
logical screens 5-293
logon menu for session manager

S-212, U-27
long-lock-time condition S-180
low storage

during IPL 1-16
during p~ogram load 1-20

LP
list data set on printer,

$DISKUT2 command U-144
list program members, $DISKUT1

command U-139
LPCTS list program members CTS

mode, $DISKUT1 command U-135
LR draw line relative

LS

$DICOMP subcommand U-121
$PDS S-257

list space, $DISKUTI command
U-140

list supervisor configuration,
$IOTEST command U-270

LSB level status block I-52,
U-427

LT (less than) L-34
LU list data set on console,

$DISKUT2 command U-146
LV list through volumes, $DISKUTI

U-141

M move line, $FSEDIT line command
U-233

macro assembler
internal overview $S1ASM
1-253

overview S-9
macro library S-6
macro library/host 5-5
magazine diskette (see 4966
diskette magazine unit)

magnetic tape (see tape)
MASK display insert mask, $FSEDIT
line command U-232

master control block (see MCB)
Mathematical and Functional Sub­

routine Library S-6
MCB master control block

$PDS S-260
definition A-20
description A-28

MD move data base, $DIUTIL
command U-160

member area 5-250
member control block (MCB) S-260
MENU

Multiple Terminal Manager
CALL

coding description C-137,

L-377
internals M-9
overview C-116, L-29

return to primary option,
$FSEDIT U-223

menu-driven U-2
menus

(see option selection menu)
(see parameter selection
menu)

(see primary menu)
(see primary option menu)
(see secondary option menu)
(see session manager, menus)
(see transaction selection
menu)

MENUSCRN, Multiple Terminal Manag­
er C-126

MERGE merge data, $FSEDIT option
U-217

message, PRINTEXT instruction
L-217

message sending utility, $TERMUT3
U-344

messages U-421
error U-427

$DUMP U-431
$LOG U-432
$RMU U-433
$TRAP U-435
program check U-427
system program check

U-429
IPL (see IPL messages)
Multiple Terminal Manager

C-178
Remote Management Utility

C-279
minimum execution system config­
uration S-22

minimum program preparation
requirements S-22

mirror image
description C-7, S-109
in TERMINAL configuration
statement S-101

mixed precision combinations L-20
MM move block, $FSEDIT line
- command U-233
modified data S-307
modify character image tables

U-339
modify character string, CHANGE

$EDITI/N editor subcommand
U-184

$FSEDIT primary command U-219
modlfy default storage allocation,

$DISKUT2 U-149
modifying an existing data set,

$FSEDIT U-215 .
modifying TERMINAL statement for

new I/O terminal 1-119
module descriptions

$SIASM 1-269
supervisor 1-75

module names and entry points,
supervisor

move

Version 1.1 S-347
Version 2 S-357

block, MM $FSEDIT line com­
mand U-233

line pointer
BOTTOM $EDIT1/N editor

subcommand U-183

DOWN $EDITI/N editor
subcommand U-189

TOP $EDIT1/N editor
subcommand U-200

UP'$EDITI/N editor
subcommand U-201

tape U-324
text

$EDIT1/N editor subcom­
mand U-195

$FSED1T line command
U-233

volumes on disk or diskette,
$MOVEVOL utility U-294

MOVE data manipulation
instruction

coding description L-201
overview L-19

MOVEA data manipulation
instruction

coding description L-204
overview L-19

MOVEBYTE subroutine, $EDXASM
1-236

MP
move beam, $D1COMP subcommand

U-121 ,
move position ($PDS) S-253

MT move tape, $TAPEUT1 command
U-324

MTMSTORE file, Multiple Terminal
Manager C-120, C-171, M-12'

MTMSTR, Multiple Terminal Manager
C-169, C-170, M-12

multiple field format L-155
multiple program execution 1-36
multiple program structure S-26
multiple-task programs 1-33
Multiple Terminal Manager

accessing the terminal envi­
ronment block C-139, M-22

application program C-116
application program languages

L-30
application program manager

C-119, M-4
automatic OPEN/CLOSE C-140,
~1-8

CALL
ACTION C-130, L-360
BEEP C-137, L-361
CDATA C-139, L-362
CHGPAN C-135, L-364
CYCLE C-132, L-365
FAN C-139, L-366
FILEIO C-141, L-367
FTAB C-138, L-372
LINK C-131, L-374
LINKON C-132, L-376
MENU C-137, L-377
SETCUR C-137, L-378
SETPAN C-134, L-379
WRITE C-133, L-381

coding instructions L-359
components C-123, M-4
considerations for 3101
terminal C-122

data files C-120
MTMSTORE file C-120,

C-171, M-12
PRGRMS volume C-120,

C-173
SCRNS volume C-120, C-173
TERMINAL volume C-120,

C-171

Common Index 457

direct file request types
C-144, L-370

disk file support C-140
distribution and installation

C-161
dynamic screen modification

and creation C-136
file control area C-142
file I/O considerations (Event

Driven Executive) C-146
file management C-118, M-8
FILEIO, disk file support

C-140
FILEIO Indexed Access Method
considerations C-148

fixed screen formats C-125
functions (callable routines)

C-117, C-124
indexed file request types
C-144, L-369

indexed file support C-140,
L-367

initialization programs
C-119, C-158, M-4, M-6

Input Buffer C-116, C-127
Input Buffer Address C-116
Input Buffer during

4978/4979/3101 buffer oper­
ation C-127

interrupt information byte
C-128

messages C-178
module list M-4
operation C-115
Output Buffer C-116
Output Buffer Address C-127
Output Buffer during

4978/4979/3101 buffer oper­
ation C-128

overview L-29, S-10
program management C-115, M-4
program preparation

COBOL C-166
Event Driven Language

C-164
FORTRAN C-165
PL/I C-167

programming considerations
COBOL C-153
Event Driven Language

C-151 .
FORTRAN C-152
PL/I C-155

return codes (FILEIO) C-145,
L-371

screen definition C-121
screen formats C-125

IPLSCRN C-125
MENUSCRN C-126
SCRNSREP C-126
SIGNONSC C-126

screen panel manager M-7
SIGNON/SIGNOFF C-156

SIGHOHFL C-174
storage requirements C-168
swap out data set C-116
system generation
considerations C-169

data set requirements
C-171, C-175

volume requirements C-169
terminal environment block

(TEB) C-128, M-13
TERMINAL file C-124, C-172
terminal manager C-121

458 5C34-0312

terminal/screen management
C-117

terminal server C-119, M-7
terminal support C-114, C-126

'transaction oriented
applications C-121

user application programs
C-124

utilities C-159
DISCONNECT turn off
specified terminals
C-159 .

programs report C-159
RECONNECT, turn on
specified terminals
C-159

screens report C-160
terminal activity report

C-159
work areas, control blocks and
tables M-11

buffer areas M-15, M-29
common area M-11, M-25
file table M-15, M-27
MTMSTORE data set M-12.
program table M-14, M-21
screen table M-14, M-21
terminal environment block

(TEB) M-13, M-22
terminal table M-13, M-21

MULTIPLY data manipUlation
instruction

coding description L-205
overvimoJ L-19
precision table L-206

multiprogramming
automatic application initial­

ization S-129
design feature 5-13

multitasking 1-42

HE (not equal) L-34
newline subroutine, terminal I/O

1-112
NEXTQ queue processing
instruction

coding description L-207
overview L-37, 5-32

HOFLOAT floating-point command
entries module description 1-79

NOLIST no list option, $EDXA5M
command U-358

NOMSG message suppression,
$JOBUTIL command U-282

non-compressed byte string 5-309
non-labeled tapes

description 5-241
layout S-242
processing S-243

NOTE disk/tape I/O instruction
coding description L-209
overview L-22

notify of an event (see P05T)
NQ reset prompt mode, $COPYUT1

command U-64
nucleus initialization I-15
null character U-253
NULL define null representation

$IMAGE command U-253

null representation, defining
U-253

number representation conversion
(see conversion)

object data set for $EDXA5M U-357
object module record format,

$L1HK U-407
object text elements, format of,

$EDXASM I-215
OFF (set tape offline) L-75
OFF remove breakpoints and trace

ranges, $DEBUG command U-97
OLE operand list element, $EDXA5M

format of I-216
in instruction parsing

($EDXA5M) I-220
used in $1DEF 1-241

online debug aids 5-67
op (operation field) L-3
OPCHECK subroutine, $EDXA5M I-232
opcode table, instruction parsing

($EDXA5M) I-220, 1-223
open a data set

disk or diskette 1-90
tape I-99

open EXIO device, EXOPEN 1-125
open member ($PD5) 5-261
OPEH1H Host Communications
Facility, TP operand C-93

OPENOUT Host Communications
Facility, TP operand C-94

operands
defined L-3
keyword L-5
parameter naming (Px) L-8

operating conventions, supervisor
program 1-67

operating environment 5-22
operation code, instruction
parsing ($EDXA5M) 1-220

operation codes, Event Driven
Language 1-68

operations using index registers
L-20

operator commands 5-63, U-9
operator signals, terminal I/O

L-49
option selection menu U-33
optional features support L-15
OTE define object text element

$EDXA5M instruction 1-227
OUTPUT $LIHK control record U-399
Output Buffer, Multiple Terminal

Manager C-116, C-128
contents during 4978/4979/3101
buffer operation C-129

definition M-29
overflow L-20
overlay function processor table

I-167, I-220
overlay program 5-40

instructions, $EDXA5M 1-259
loading 1-22
locating, $PREFIND U-302
subroutines, $EDXA5M 1-231
user 1-38

overlay program execution 1-38
overlay selection, instruction
parsing ($EDXA5M) 1-223

overlay table 1-167, 1-220
overview

data definition statements
L-17

data formatting instructions
L-18

data format module names
L-18

data manipulation
instructions L-19

data representation L-19
mixed-precision

operations L-20
operations using index
registers L-20

overflow L-20
vector L-19

disk I/O instructions L-22
EXIO control instructions

L-24
floating-point arithmetic

L-20
floating-point arithmetic

instructions L-20
data representation L-21
operations using index
registers L-21

return codes L-21
graphics instructions L-26
Indexed Access Method
instructions L-27

instructions and statements
L-15

integer and logical
instructions L-19

listing control statements
L-28

Multiple Terminal Manager
instructions L-29

program control statements
L-32

program module sectioning
statements L-33

program sequencing
instructions L-34

queue processing L-37
sensor-based I/O statements

L-39
single-precision L-19
system configuration
statements L-39

tape I/O instructions L-40
task control instructions

L-42
terminal I/O instructions

L-44
timing instructions L-50

P/! (see process interrupt)
PA patch, $DI5KUT2 command U-147
page eject 5-63, U-16
parameter equate tables L-11
parameter naming operands in the

instruction format L-8
parameter passing~ Remote

Management Utility C-212
parameter selection menu U-33
parameter tables, control block

and L-11

Common Index 459

PARM program parameter passing,
$JOBUTIL command U-283

parsing, input data ($EDXASM)
1-218,

partition assignment changing, $CP
operator command U-14

partitioned data sets S-247
partitions S-42
PASSTHRU function

conducting a session C-227
establishing a session C-225
internals I-166~ 1-179
overview C-225
programming considerations

C-237
sample program C-265
types of records C-232
virtual terminalsC-239

Passthru record C-209
patch

disk/diskette, PA $DISKUT2
command U-147

Remote Management Utility
defaults C-283

storage, $P operator command
S-63, U-18

storage or registers, PATCH
$DEBUG command U-98

PATCH modify storage or registers,
$DEBUG, command U-98

PAUSE operator intervention,
$JOBUTIl command U-284

PC plot curve
$DICOMP subcommand U-119
from plot curve data member

($PDS) S-255
PD pulse DO, $IOTEST command

U-265
PF,code TERMCTRL function l-288
PF keys (see program function

keys)
phase execution and loading,

$SIASM 1-255
PI process interrupt (see'process

interrupt) U-267
PID program directory S-27
PIXB (see primary-level index

block)
Pl/I

execution requirements S-24
link editing S-71
overview S-8
program preparation

requirements S-23
supported by Multiple Terminal
~1anager C-20 0

Pl plot data, $DICOMP subcommand
U-122

plot control block (see PlOTCB)
plot curve data member ($PDS)

S-251
PlOTCB graphics plot control

block l-210
PLOTGIN graphics instruction

coding description L-210
overv i ew' L -26

POINT
disk/tape instruction

coding description L-212
overview L-22, 5-54

point-to-point (BSC) S-65
point-to-point vector drawing

S-46
POST

post an event, $DEBUG command

460 SC34-0312

U-IOO
task control instruction

coding description L-213
internals I-58
overview L-42, S-34
supervisor function 1-46

power outage, restoring after
5-129

PR print member, $DICOMP command
U-108

preC1S10n L-19
floating-point arithmetic

L-21
integer and logical l-19
precision combinations,
allo~oJed L-20

precision table
ADD L-53
ADDV L-54
DIVIDE, L-lOl
MULTIPLY L-206
overvie~oJ L-20
SUBTRACT L-284

prefind U-302
PREPARE IDCB command L-175
PRGRMS volume, Multiple Terminal

Manager C-120, C-173
primary

commands, $FSEDIT U-218
option menu, $FSEDIT U-213
option menu, session manager
S-2l8, U-35

task
internals 1-29
overv i eLoJ S-29

volume S-60
primary-level index block

description S-195
overview 5-151

PRINDATE terminal I/O instruction
coding description L-2l5
overview L-44, S-47
timer-related instruction

S-33
PRINT listing control statement

coding description L-216
overview L-28

print member, PR $DICOMP command
U-l08 .

PRINTEXT terminal I/O instruction
coding description L-217
overview L-44, S-47
return codes L-219

PRINTIME terminal I/O instruction
coding description L-221
ove~view L-44, L-50, S-47
timer-related instruction
S-33

PRINTNUM terminal I/O instruction
coding description L-222
overview L-44, S-47

PRINTON define terminal name,
$RJE2780/$RJE3780 C-75

priority
assigned to tasks S-29
design feature S-13
illustrated S-38
internals 1-31
task L-226, L-286

PROC identify nested procedure,
$JOBUTIL command U-286

procedures, session manager (see
session manager)

PROCESS Indexed Access Method
CALL

coding description L-347
overview L-27, 5-147
return codes L-349

process interrupt
control block (5BIOCB) 1-128
description 5-48
IODEF statement L-189
IOTE5T command U-267
supported by sensor I/O 5-15
user routine (SPECPI) L-189

process mode
definition 5-150

processing compiler output with
$LINK or $UPDATE U-360

processor status word (see P5W)
PROGEQU L-13
program

equates 1-312
assembly/compilation U-352
control L-32
disabling 5-102
entry (see $F5EDIT, $EDIT1/N)
function (PF) keys L-47

internals 1-108
listing, KEYS $IMAGE

command U-253
listing 4978, $PFMAP
utility U-301

when using $FONT edit
mode U-206

when using $F5EDIT U-211
when using $IMAGE edit

mode U-255
when using session

manager U-28
header 1-30
identifier, $JOBUTIL command

U-287
internal processing 1-30
library update (see $UPDATE)
load process, $PREFIND U-302
loading (see also LOAD) 1-19
module sectioning functions

L-33
organization S-29
sequencing functions L-34
structure 5-29
termination, EXIO 1-126
types 1-32

program check error messages
U-427

program execution via Remote Man-
agement Utility

EXEC function C-220
PA55THRU function C-225
SHUTDOWN function C-251

PROGRAM identifier, $JOBUTIL
command U-287

program preparation
$EDXA5M 1-211, U-356
$51A5M 1-253, U-372
host assembler U-382
of Remote Management Utility

1':"184
summary 5-18
usage example 5-367

Program Preparation Facility
description 5-71
overview 5-5

program preparation utilities
U-351

program preparation utilities
(session manager) OU-36, S-214

program/storage manager, Multiple
Terminal Manager M-4

program structure S-36
internals 1-33

program/task concepts 1-29, 5-29
PROGRAM task control instruction

coding description L-225
internals 1-30
overview L-42, 5-31

PROG5TOP task control statement
coding description L-234
overview L-42, 5-31

prompting and advance input,
terminal I/O L-46

protected field 5-307, U-253
protocol, BSC transmission 1-156
P5W processor status word U-430
PU PUNCHO/PUNCH5 function,

$RJE2780/$RJE3780 reset type
C-76

pulse a digital output address, PD
$IOTEST command U-264

PUNCHO/PUNCHS define output file,
$RJE2780/$RJE3780 C-75

purpose of EDL L-1
PUT Indexed Access Method CALL

coding description L-350
overview L-27
return codes L-351

PUTDE Indexed Access Method CALL
coding description L-352
overview L-27
return codes L-353

PUTEDIT data formatting
instruction

coding description L-236
overvi eL.J L-18
return codes L-238

PUT5TORE TERMCTRL function L-288
PUTUP Indexed Access Method CALL

coding description L-354
overv i eL.J L -27
return codes L-355

Px L-8

QCB task control statement 5-33
coding description L-240
overview L-42
queue control block 1-45,

I-54
QD queue descriptor 1-64, L-37
QE queue entry

functions 1-64
overview L-37
processing 5-32

QUALIFY modify base address,
$DEBUG command U-101

QUESTION terminal I/O instruction
coding description L-242
overview L-44, 5-47

queuable resource S-33
queue control block (see QCB)
queue descriptor (see QD)
queue entry (see QE)
queue processing 1-64
queue processing instructions

L-37
queue processing support module,

QUEUEIO, description 1-81
QUEUEIO queue processing support

module description 1-81

Common Index 461

RA reassign address, $TERMUT1 com­
mand U-336

random access S-53
random work file operation,

$S1A5M 1-260
RCB (see Remote Management
Utility, control block)

RDCURSOR terminal I/O instruction
coding description L-244
overview L-44, 5-47

RE

read

copy from basic exchange data
set, $COPY command U-59

rename, $TERMUT1 command
U-337

rename member, $DI5KUT1 com­
mand U-135, U-136

rename member, $DIUTIL
command U-161

reset parameters, $IAMUT1
command U-243

restore 4974 to standard
character set, $TERMUT2
U-339

analog input, AI $IOTEST
U-268

character image table from
4978, GET $FONT U-206

data set into work file
$EDIT1 U-177
$EDITIN U-176
$F5EDIT U-216

digital input, 01 $IOTEST
command U-266

digital input using external
sync U-266

Host Communications Facility,
TP operand C-95

IDCB command L-175
operations (BSC) 1-157
program, RP command

$UPDATE U-410
$UPDATEH U-419

READ instruction
disk/diskette return codes

L-249, U-455
disk/diskette/tape I/O

instruction
coding description L-245
overview L-22

tape return codes L-249,
U-456

READDATA read data from host,
$HCFUT1 command C-108

READID IDCB command L-175
READOBJ read object module,

$HCFUT1 command C-109
READTEXT terminal I/O instruction

coding description L-251
overview L-44, 5-48
return codes L-255
return codes, virtual terminal
communications L-256

ready a task supervisor execution
state 1-43

READ1 IDCB command L-175
READ80 read 80 byte,records,

$HCFUTI command C-109
real image ACCA terminals C-7

462 SC34-0312

realtime data member
$PDS S-251
RT $DICOMP subcommand U-124

RECEIVE function
overv i eloJ C-243
sample program C-262

RECONNECT Multiple Terminal
Manager utility C-120, C-159

record
blocking, Remote Management
Utility C-211

definition S-53
exchange, Remote Management
Utility C-208

format for object module,
$LINK U-407

header, Remote Management
Utility C-209

sizes, Host Communications
Facility C-83

reformat diskettes U-68
register, index L-6
register, software L-6
register conventions

$S1A5M 1-257
B5CAM processing I-147
common emulator setup routine

I-68
EBCDIC to floating-point
conversion 1-205

summary chart $51A5M 1-258
terminal I/O support I-106

REL release a status record,
$HCFUT1 command C-110

relational statements L-180
RELEASE

Host Communications Facility,
TP operand C-96

Indexed Access Method CALL
S-147

coding description L-356
overview L-27, S-147
return codes L-357

release a status record, REL
$HCFUTI command C-110

release space ($PDS) S-261
relocating program loader I-19
relocation dictionary, $EDXASM

1-250
REMARK operator comment, $JOBUTIL

command U-288
remote job entry to host,

$RJE2780/$RJE3780 C-73
Remote Management Utility

CDRRM equates C-292
control block (RCB)

description 1-164, I-169
equate tables C-292,

1-295
use in problem determi-
nation 1-190

defaults C-283
error handling C-277
function table- 1-164, 1-167
functions C-206, 1-166
installation C-281
interface C-207 .
internals 1-216
logic flow 1-170
messages C-279
modifying defaults C-283
module descriptions 1-191
module list I-186
operation C-213
overlay function processor

table 1-167, 1-220
overlay table 1-167, 1-220
overVlew C-205
program preparation 1-184
requirements C-207
sample host programs C-259
system generation
considerations C-281

TERMINAL statement example
S-107

terminating C-251
remote system (see Remote
Management Utility) C-205

remove breakpoints and trace
ranges, OFF $DEBUG command U-97

rename member
RE $DISKUT1 command U-135,

U-136
RE $DIUTIL command U-161

RENUM renumber lines
$EDIT1/N subcommand U-196
$FSEDIT primary command U-224

reorganize an indexed data set
U-242

procedure S-166
report data member ($PDS) S-251
reposition line pointer (see move
line pointer)

Request record C-209
reserved labels L-4
reset

function, $RJE2780/$RJE3780
attention request C-76

IDCB command l-176
Indexed Access ,Method

ECHO mode, EC $IAMUT1 com­
mand U-240

SE command parameters, RE
$IAMUT1 command U-243

line command, $FSEDIT primary
command U-225

RESET task control instruction
coding description L-258
overview L-42, S-31

resident assembler routines 1-256
resolution, enhanced 1-201
resolution, standard graphics

1-201
resource control, supervisor I-54
restart, automatic S-129
restore

disk or disk volume from tape,
RT $TAPEUT1 command U-326

dump volume utility, $MOVEVOL
U-294

4974 to standard character
set, RE $TERMUT2 command
U-343

resulting field (EOR) L-122
return codes (see also completion
codes)

$DISKUT3 S-319, U-444
$PDS U-445
BSC C-57, U-446
CONVTB L-80
CONVTD L-83
data formatting instructions

U-447
DELETE L-330
DISCONN L-333
EHDSEQ L-335
EXIO U-448
EXIO instruction L-131
EXIO interrupt L-132
EXTRACT L-337

FADD L-136
FDIVD L-138
FILEI0 C-145
floating point instruction

U-4S0
FMULT L-145
formatted screen image U-450
FSUB L-160
FTAB C-138, L-373
GET L-340
GETSEQ L-343
in Remote Management Utility
control block 1-190

Indexed Access Method U-451
LOAD L-199, U-452
LOAD (Indexed Access Method)

L-346
Multiple Terminal Manager

U-453
PRINTEXT L-219
PROCESS L-349
PUT L-351
PUTDE L-353
PUT EDIT L-238
PUTUP L-355
READ disk/diskette L-249,

U-455
READ tape L-250, U-456
READTEXT L-255
RELEASE L-357
SBI0 U-457
SBIO instruction L-262
SETPAN C-135
tape L-77
TERMCTRL L-288
terminal I/O L-255, U-458

ACCA U-459
interprocessor
communications C-31,
U-460

virtual terminal L-256,
U-461

TP (Host Communications Facil­
ity) C-102, U-463

WHERES L-316
WRITE disk/diskette L-320,

U-455
WRITE tape L-320, U-456

return from immediate action
routine (SUPEXIT) 1-49

return from task level (SUPRTURN)
1-49

RETURN program control
instruction

coding description L-259
overview L-32, S-31
supervisor entry point 1-279,

1-313
supervisor interface 1-62

REW (rewind tape) L-75
rewind tape, MT $TAPEUT1 command

U-324
RH reassign hardcopy, $TERMUT1

command U-338
RI read
transparent/non-transparent,
$BSCUT2 command C-68

RJE (see Remote Job Entry)
RLOADER 1-19, 1-22

RLOADER/RLOADRU module
description 1-78

RO reorganize indexed file,
$IAMUT1 command U-242

ROFF (rewind offline) L-75

Common Index 463

roll screen, terminal I/O L-48,
S-293

RP read program
$UPOATE command U-410
$UPOATEH command U-419

RPQ 00203B, 4978 display station
attachment C-6, S-97

different device
configurations C-8

RSTATUS IOCB command L-175
RT

activate realtime data member,
$OICOMP subcommand U-124

change realtime data member
name ($POS) S-258

disk or disk volume from tape,
$TAPEUT1 utility U-326

RWI read/write non-transparent,
$BSCUT2 command C-58

RWIV read/write non-transparent
conversational, $BSCUT2 C-71

RWIVX read/write transparent
conversational, $BSCUT2 C-70

RWIX read/write transparent,
$BSCUT2 command C-67

RWIXMP read/write multidrop
transparent, $BSCUT2 command
C-60

SA save data, $OICOMP subcommand
U-124

SAVE
data set on disk, $IMAGE com­

mand U-254
work data set, $EOIT1/N

subcommand U-197
save current task status

(TASKSAVE) I-54
save data, SA $OICOMP subcommand

U-124
save disk or disk volume on tape,

$TAPEUT1 utility U-330
save storage and registers, $TRAP
utility U-34B

5B special PI bit, $IOTEST
command U-267

5BAI sensor based I/O support
module description I-BO

SBAO sensor based I/O support
module description I-BO

SBCOM sensor based I/O support
module description I-BO

SBDIOO sensor based I/O support
module description I-BO

5BIO sensor based I/O instruction
coding description L-260
control block (5BIOCB) 1-127
overview L-39, S-51
return codes L-262

SBIOCB sensor based I/O control
block 1-127

SBP! sensor based I/O support
module description I-BO

SC save control store, $TERMUT2
command U-343

screen format builder utility,
$IMAGE S-68, U-250

SCREEN graphics instruction
coding description L-270
overv i e~... L -26

464 SC34-0312

screen image, format building
U-250

screen images, retrieving and dis­
playing S-300

screen management, terminal I/O
L-4B

SCRNS volume, Multiple Terminal
Manager C-120, C-173

SCRNSREP, Multiple Terminal
Manager C-125

scrolling, $FSEDIT U-210
SCSS IOCB command L-176
SE set parameters, $IAMUT1

command U-244
SE set status, $HCFUT1 command

C-110
second-level index block

description S-197
overview S-153

secondary
disk volumes S-132
volumes S-60

secondary option menus S-218,
U-36 '

(see session manager)
sectioning of program modules

L-33
sector 5-52
self-defining terms L-4
send

data, HX $OICOMP subcommand
U-118

data set, SEND function C-247
message to another terminal,

$TERMUT3 utility U-344
SENO function

internals 1-166, 1-172
overview C-247
sample program C-274

sensor based I/O
assignment L-188
I/O control block (5BIOCB)

1-127
modules (IOLOAOER/IOLOADRU)

I-7B
statement overview L-39
support module descriptions

1-81
symbolic L-9

SENSORIO configuration statement
S-51, S-84

sequence chaining L-27
sequencing instructions, program

L-34
sequentia1 access

in Indexed Access Method
S-145

overview S-53
sequential work file operations

($S1ASM) 1-259
serially reusable resource (SRR)
I-59, S-33

session, PASSTHRU
conducting C-227
establishing C-225
logic flow diagram C-230
using $OEBUG utility C-272

session manager U-27
$SMALLOC data set allocation
control data set S-222, U-30

$SMOELET data set deletion
control data set. S-222, U-32

adding an option S-209, S-224
communications utilities U-42

communications utilities

5-217
data management 5-215
diagnostic utilities

5-217
disk utilities (see data

management)
execute program utilities

5-216
graphics utilities 5-216
job stream processor
utilities 5-216

logon menu U-27
primary 5-218, U-35
program preparation
utilities 5-214

secondary 5-218, U-36
summary of 5-213
terminal utilities 5-215
updating primary option

5-224
creating a new menu 5-224
data management U-38
data set deletion U-32
data sets creation U-29
diagnostic utilities U-43
execute program utilities

U-41
graphics utilities U-40
invoking U-27
invoking a $JOBUTIL procedure
5-229

job stream processor
utilities U-42

menus U-33
minimum partition size

required U-27
operational overview 5-209
primary option menu, $5MMPRIM
5-218, U-35

procedures
communications utilities

5-217
data management utilities

5-215
diagnostic utilities

5-217
execute program utilities

5-216
graphics utilities S-216
job stream processor
utilities 5-216

overview S-220
program preparation
utilities 5-214

terminal utilities S-215
updating S-225

program function keys U-28
program preparation utilities

U-36
secondary option menus S-218,

U-36 .
storage usage 5-211
terminal utilities U-40
text editing utilities U-36
utilities not supported U-46

SET,ATTN TERMCTRL function L-288
set breakpoints and trace ranges,

AT $DEBUG command U-90
set date and time, $T operator

command 5-63, U-19
5ET Host Communications Facility

TP operand C-97
SET,LPI TERMCTRL function L-288
set status, SE $HCFUTI command

C-I10

set tape offline, MT $TAPEUTI com­
mand U-324

set time, $T operator command
U-19

SETBUSY supervisor busy routine
1-48, 1-63

SETCUR, Multiple Terminal Manager
CALL

coding description C-137,
L-378

internals M-9
overview C-117, L-29

SETEOD subroutine S-324
SETPAN, Multiple Terminal Manager

CALL
coding description C-134,

L-379
internals M-9
overview C-117, L-29
return codes L-380

setup procedure for $JOBUTIL
U-271

SG special PI group, $IOTEST com­
mand U-267

SHIFTL data manipulation
instruction

coding description L-271
overview L-19

SHIFTR data manipulation
instruction

coding description L-273
overview L-19

SHUTDOWN function C-251, 1-166,
1-181

SI save image store, $TERMUT2 com­
mand U-341

SIGNON/SIGNOFF, Multiple Terminal
Manager C-156

5IGNOHFL C-174
single program execution 1-35
single-task program 1-33
single task program S-34
SIXB (see second-level index
block)

SLE sublist element, $EDXASM
format of 1-217
in instruction parsing

($EDXASM) 1-220
instruction description and
format 1-229

used in $IDEF 1-241
software register L-6
software trace table S-265
sort/merge 5-9
source program compiling 5-71
source program entry and editing
S-66, U-351

source program line continuation
using $EDXASM L-4, U-361

source statements, $EDXASM overlay
generated 1-243

SP spool function,
$RJE2780/$RJE3780 reset type
C-76

SPACE listing control statement
coding description L-275
overview L-28

special control characters S-46
special PI

bit, SB $IOTEST command U-267
group, SG $10TEST command

U-267
specifications, data conversion

L-146

Common Index 465

5PECPI define special process
interrupt l-189

5PECPIRT instruction
coding description l-276
overview L-39

split screen configuration 5-293
5POOl define spool file,

$RJE2780/$RJE3780 C-76
5Q set prompt made, $COPYUTI

command U-64
5QRT data manipulation
instruction

coding description l-277
overview L-19

55 set program storage parameter,
$DI5KUT2 command U-149

5T
display data set status,

$DIUTIL command U-162
save disk or disk volume on
tape, $TAPEUTI command U-330

standard labels, tape
EOF1 5-240
EOV1 5-239
fields 5-238
HDRI 5-239
header label 5-235
layouts 5-236
processing 5-236
trailer label 5-235
volume label 5-235
VOll 5-238

5TART
IDCB command l-176
PROGRAM statement operand

l-225
start and termination procedure,

$DEBUG U-85
5TARTPGM 1-16
statement label L-4
static screen, terminal I/O

accessing example 5-297
overview L-48

status, set, 5E $HCFUT1 command
C-110

5TATU5 data definition statement
coding description L-278
overview l-17

status data set, system Host
Communications Facility 'C-85

5tatus record C-258
5TIMER timing instruction

coding description L-280
overview l-50, 5-32
with PA55THRU function C-238

storage estimating
application program size

5-344
supervisor size 5-333
utility program size 5-342

storage management
address relocation translator

1-71, 5-42
allocating 1-25
description 5-42
design feature 5-13

storage map, resident loader 1-26
storage map ($51A5M) phase to
phase 1-262

storage resident loader, RLOADER
1-19

storage usage during program load
1-20

store next record ($PD5) 5-261
store record ($PD5) 5-261

466 5C34-0312

strings, relational statement
L-180

5U
submit (X) function,

$RJE2780/$RJE3780 reset type
C-77

submit job to host, $HCFUT1
command C-111

5UBMIT
Host Communications Facility,

TP operand C-98
send data stream to host,

$RJE2780/$RJE3780 C-77
submit job to host, $EDIT1

command U-179
submit job to host, $F5EDIT
option U-217

5UBMITX send transparent,
$RJE2780/$RJE3780 C-77

5UBROUT program control statement
coding description l-281
overview L-32, 5-31

subroutines
$IMDATA 5-303
$INDEFN 5-301
$I~10PEN 5-300
$IMPROT 5-302
AlTIAM concatenation 5-167
D50PEN 5-322
overview 5-31
5ETEOD 5-324

5UBTRACT data manipulation
instruction

coding description L-283
overview l-19
precision table L-284

suggested utility usage U-48
supervisor/emulator

class interrupt vector table
1-10, 1-277

communications vector table
1-11, 1-278, 1-313

control block pointers 1-11
design features 5-13
device vector table 1-11,

1-278
emulator command table 1-13,

1-282, 1-301
entry routines 1-47
equate table 1-279, 1-313
exit routines I-49
features 5-13
fixed storage area 1-9
functions 1-44

calling 1-60
generation 1-5, 5-115
initialization control module,

EDX1N1T, description 1-81
initialization task module,

EDX5TART, description 1-81
interface routines 1-61
introduction 1-5
module names ~nd entry points

5-309
module summary 1-8
overview 5-29
PA55THRU session with C-225
referencing storage locations

in 1-12
service routines I-53
size, estimating 5-333
task supervisor work area
1-13, 1-280

utility functions (see
operator commands)

with the address translator
support 1-72

5UPEXIT supervisor exit routine
1-49, 1-63

support for optional features
L-15

5UPRTURN supervisor exit routine
1-49

surface analysis of tape, $TAPEUT1
utility U-319

5VC supervisor entry routine
1-47, 1-62

5VCABEND supervisor exit routine
1-49

5VCBUF supervisor request buffer
1-48

5VCI supervisor entry routine
1-48

symbol dictionary, $EDXA5M 1-250
symbol table types, $EDXA5M 1-216
symbolic L-10

address (disk,tape) L-10
disk/tape I/O assignments

L-10
diskette L-10
reference to terminals 5-110
sensor I/O addresses L-9
terminal I/O L-10

symbols (EXTRN) L-134
symbols (WXTRN) L-323
syntactical coding rules L-4
syntax checking in instruction
parsing ($EDXA5M) 1-221

syntax rules L-4
5Y5GEN (see system generation)
system

alternate logging device
5-46, 5-111

class interrupt vector table
1-10, 1-277

commands (see operator
commands)

common area 1-12
communications vector table
1-11, 1-278, 1-313

control blocks, referencing
1-289

data tables, EDX5Y5, module
description 1-75

device vector table 1-11,
1-278

emulator command table I-13,
1-282, 1-301

generation
procedure 5-115'

host/remote C-205
logging device 5-46, 5-110
operational and error
messages U-421

printer 5-46, 5-110
program check and error
messages U-427

task supervisor work area
1-13, 1-280

5Y5TEM configuration statement
L-39, 5-86

system configuration statements
5-75

system control blocks 5-42
system reserved labels L-4

TA allocate tape data set,
$TAPEUT1 command U-333

tables, parameter equate L-11
tabs

HTAB $IMAGE command U-252
TAB5ET $EDIT1/N subcommand

U-198
VTAB $IMAGE command U-254

TAB5ET establish tab values
$EDIT1/N editor subcommand U-198

tape
bypass label processing 5-244
control L-74
data set L-40
defining volumes 5-62
definitions for data sets

L-40
end-of-tape (EOT) L-41
I/O instructions L-40
internals 1-97
labels

external 5-233
internal 5-233

load point (BOT) L-40
non-label

layout 5-242
processing 5-243
support 5-241

record L-40
return codes L-77, U-455
standard label

fields 5-238
layout 5-236
processing 5-236
support 5-235

storage capacity 5-59
symbolic addressing L-10
utility, $TAPEUT1 5-233,

U-311
volume L-40

TAPE configuration statement 5-94
tape data set control block 1-99
tape device data block (see TDB)
TAPEINIT, tape initialization mod-

ule description 1-82
tapemark L-74
task

active/ready level table I-50
concepts 1-29
control 1-42
control block (see TCB)
definition and control func-
tions

dispatching I-52
error exit facility

check and trap handling
5-268

linkage conventions 5-269
execution states 1-43, 5-39
internals 1-42
multiple-task program 1-33,

5-34
overview L-42, 5-29
priority (see priority, task
execution)

single-task program 1-33,
5-34

states 5-39
status display, WHERE $DEBUG

command U-102
structure 5-29

Common Index 467

supervisor 1-42
superVlsor address translator
support module 1-76

supervisor functions 1-44
supervisor work area 1-13,

1-280
switching I-51, 5-30
synchronization and control
I-54, 5-30

task code words L-8
TA5K task control statement

coding description L-285
overview L-42, 5-31

TA5K5AVE supervisor service
routine I-54

TCB task control block 1-32,
1-43, 1-49, I-56, 1-314

TCBEQU L-13
TD

display line and data ($PDS)
5-258

display time and date, $DICOMP
subcommand U-124

test display, $DICOMP command
U-I08

TDB, tape device data block
description 1-97
equate listing 1-316

TEB terminal environment block
C-128, M-13

Tektronix C-6
devices supported 5-14, 5-45
support for digital I/O 5-312

teleprocessing (see TP)
teletypewriter adapter C-7, C-21
TERMCTRL terminal I/O instruction

coding description L-288
overview L-44
return codes L-301

TERMERR L-44
terminal

#7850 teletypewriter adapter
C-21

ACCA support C-7, L-295
A5CII C-7
assignment list, LA $TERMUTI

command U-336
attention handling L-47
attention keys L-47
code types C-303
configuration utility,

$TERMUTI U-334
connected via digital I/O

5-312
control block (see CCB)
data representation L-46
definition and control
functions 5-47

device configurations C-8
EDXTIO/EDXTIOU module
description 1-78

environment block (see TEB)
error handling L-44
forms control L-46
forms interpretation for
display screens L-46

functions
data formatting C-16
definition C-16
interrupt processing C-17

hardware jumpers C-18
I/O L-46

attention handling L-47
data representation L-45
error handling L-44

468 5C34-0312

forms control L-45
prompting and advance

input L-46
screen management L-48

I/O internal design 1-105
I/O support layer 3 1-112
input L-46
keyboard and ATTNLI5T tasks

L-47
message sending utility,
$TER~'UT3 U-344

new I/O terminal support
1-117

operations C-14
operator signals L-49
output L-46
output line buffering L-46
program function keys L-47
prompting and advance input

L-46
return codes C-20, L-219,

L-255, U-458
roll screens L-48
sample terminal support

program C-26
screen management L-48
server, Multiple Terminal
Manager C-119, M-7

session manager (see session
manager)

special considerations for
attachments of devices

via #1610 or #2091 with
#2092 adapters C-17

via #2095 with #2096
adapters C-21

special control characters
5-46

static screensL-48
supported devices and
features C-6

terminal I/O L-47
terminology for supported
terminals C-7

transmission protocol C-31
utilities (session manager)

5-215, U-40
virtual I/O 1-115

TERMINAL configuration statement
defaults 5-105
definition 5-96
overview 5-48

TERMINAL volume, Multiple Terminal
Manager C-120, C-171

terminate

test

logging, $LOG utility U-292
Remote Management Utility

C-251

BSC lines, $B5CUT2 utility
C-64

generated report or graphics
profile member U-108

label types, $TAPEUT1 utility
U-319

process interrupt for
occurrence of event,·$IOTEST
U-267

TEXT data definition statement
coding description L-305
overview L-17

text editing utilities
edit dataset subroutine exam­
ples 1-326

full screen-editor $FSEDIT

U-209
line editors, $EDITI/N U-169
overview S-66
work data set, format of

1-321
text wrapping, WRAP function

C-254
time/date

display, $W operator command
U-25

set, $T operator command U-19
set, automatic initialization
facility S-130

time of day
GETTIME instruction L-167

TIMEDATE Host Communications
Facility, TP operand C-100

TIMER configuration statement
S-33, S-112

timer control L-50
timer module descriptions

(EDXTIMER, EDXTIMR2) 1-80
timing instructions L-50, S-32
TITLE listing control statement

coding description L-308
overview L-28

TONE TERMCTRL function L-288
TOP repostiton line pointer,

$EDITI/N editor subcommand U-200
TP host communication instruction
description

coding description C-90
internals 1-153
subcommand operations 1-157

TPCOM host communications support
module description 1-81

trace printing routine for BSC,
$BSCUT1 C-62, S-65

trace ranges and breakpoints
setting, oAT $DEBUG command U-90

trace routine for BSC, $BSCTRCE
C-61

trace table, software S-265
transaction program, Multiple

Terminal Manager
functions L-28
Multiple Terminal Manager

C-121
transfer data set to host

SEND function C-247
WR $HCFUTI command C-112
WRITE $EDIT1 command U-180
WRITE $FSEDIT option U-216

transfer rates for data, Host
Communications Facility C-84

transient program loader 1-19
transmission codes S-98
transmission protocol, host

communications 1-156
transmitted data, length of, host

communications 1-159
TRAPDUMP force trap dump, $TRAP
attention command U-349

TRAPEHD end $TRAP use, $TRAP
attention command U-349

TRAPOFF deactivate error trap,
$TRAP attention command U-349

TRAPOH activate error trap, $TRAP
attention command U-349

UN unload indexed file, $IAMUTl
command U-246

UNBLIHK TERMCTRL function L-288
undefined length records, tape

S-245
UNLOCK TERMCTRL function L-288
unprotected field S-307, U-253
UP move line pointer, $EDIT1/N
editor subcommand U-201

update utility
$UPDATE convert object program
to disk U-408

$UPDATEH convert host object
program to disk U-418

updating a menu for the session
manager S-224

user defined data member ($PDS)
S-252

user exit routine L-310
requires Macro Assembler S-71

user initialization modules 1-17
USER program control instruction

coding description L-310
overview L-32

utilities U-47
BSC communications C-61
invoking U-2
listed by type S-64, U-3
overview S-5

utilities not supported by session
manager menu U~46

utility program size S-342
utility usage U-48

V verify, $INITDSK command U-260
VA

display, variable, $DICOMP
subcommand U-125

display variable ($PDS) 5-254
variable length record, Host

Communications Facility C-84
variable length records, tape

S-244
variable names L-4
vary disk, diskette, or tape
offline, $VARYOFF U-20

vary disk, diskette, or tape
online, $VARYON U-22

vector
addition L-19, L-54
data manipulation L-19

vector addition (ADDV)
coding description L-54
overview L-19

verify
disk or diskette data set, V

$INITDSK U-260
tape executing correctly, EX

$TAPEUTI command U-319
tape surface free of defects,

EX $TAPEUTI command U-319
verify and initialize disk or
diskette library, $INITDSK U-256

verify identification
host system C-223
remote system C-223

Common Index 469

VERIFY verify changes, $EDIT1/H
editor subcommand U-202

vertical tabs, defining U-254
VI list volume information,

$IOTEST command U-270
virtual terminal communications

accessing the virtual termi­
nal S-281

creating a virtual channel
5-280

establishing the connection
S-280

inter-program dialogue 5-282
internals 1-115
loading from a virtual
terminal S-281

Remote Management Utility
requirements C-281

volume
definitions (disk/diskette>

L-22, S-52
dump restore utility,

$MOVEVOL U-294
labels S-60

VTAB define vertical tab setting,
$IMAGE command U-254

WAIT program sequencing statement
coding description L-313
overview L-42, 5-31
supervisor function 1-45,

I-58
wait state, put program in, WS

$IOTE5T command U-264
waiting, task execution state

1-43
WE copy to basic exchange diskette

data set, $COPY command U-63
WHERE display status of all tasks,

$DEBUG command U-102
WHERE5 task control function

coding description L-315
overview L-42, 5-287
return codes L-316

WI write non-transparent, $BSCUT2
command C-69

WIX write transparent, $B5CUT2
command C-69

word boundary requirement
DO L-34
IF L-34
PROGRAM L-225

work data set
$EDXA5M 1-249
$LINK U-400
$SlA5M 1-258

work files, $SlA5M, how used
1-258

WR write a data set to host,
$HCFUT1 command C-112

WRAP function C-254, 1-166, 1-176
WRITE

disk/diskette I/O instruction
coding description L-317
overview L-22
return codes L-320, U-455

Host Communications Facility,
TP operand C-l01

IDCB command L-175
Multiple Terminal Manager

470 SC34-0312

CALL
coding description C-133,

L-381
internals M-9
overview C-118, L-29

save work data set
$EDITI command U-180
$EDIT1N command U-181
$FSEDIT primary option

U-216
tape I/O instruction

coding description L-317
overview L-22
return codes L-320, U-456

write data set to host, WR $HCFUT1
command C-112

write operations, HCF 1-156
WRITEI IDCB command L-175
W5 put program in wait state,

$IOTE5T command U-264
WTM (write tape mark) L-75
WXTRN program module sectioning

statement
coding description L-323
overview L-33

X-type format L-154
XI external sync 01, $IOTEST

command U-266
XO external sync DO, $IOTEST

command U-266
XYPLOT graphics instruction

coding description L-324
overview L-26

YTPLOT graphics instruction
coding descrition L-325
overview l-26

ZCOR, sensor I/O L-189

Numeric Subjects

1560 integrated digital
input/output non-isolated fea­
ture C-6

different device
configurations C-8

use with different terminals
C-7

1610 asynchronous communications
single line controller C-6

considerations for attachment
of devices C-17

different device
configurations C-8

for interprocessor
communications C-29

to a single line controller
S-99

use with different terminals
C-7

2091 asynchronous communications
eight line controller C-6, 5-99

considerations for attachment
of devices C-17

different device
configurations C-8

use with different terminals

C-7
2092 asynchronous communications
four line adapter C-6

considerations for attachment
of devices C-17

different device
configurations C-8

to attach ACCA terminal S-99
use with different terminals

C-7
2095 feature programmable eight
line controller C-6

considerations for attachment
of devices C-21

different device
configurations C-8

use with different terminals
C-7

2096 feature programmable four
line adapter C-6

considerations for attachment
of devices C-21

different device
configurations C-8

use with different terminals
C-7

2741 Communications Terminal
supported S-45
TERMINAL statement example

S-106
3101 Display Terminal

attribute character C-122
block mode considerations

C-25
character mode considerations

C-22
interface with Multiple
Terminal Manager C-121, L-29

TERMINAL configuration
statement examples S-108

3585 4979 display station
attachment C-6, S-97

4952 Processor
partitions on S-42
timer feature installed on

S-32
4953 Processor

partitions on S-42
timer feature installed on

S-32
4955 Processor

partitions on S-42
timer feature installed on

S-32
4962 Disk Storage Unit

storage capacity S-58
supported by Indexed Access
Method S-146

4963 Disk Subsystem
storage capacity S-58
supported by Indexed Access
Method S-146

4964 Diskette Storage Unit
part of minimum system config-
uration S-22 l

required for progr~~
preparation S-22

supported by Indexed Access
Method S-146

4966 Diskette Magazine Unit
part of minimum system config­
uration S-22

required for program
preparation S-22

supported by Indexed Access
Method S-146

4969 Magnetic Tape Subsystem
S-233

4973 Line Printer
defined in TERMINAL configura­
tion statement S-96

end of forms S-307
TERMINAL statement example

5-105
4974 Matrix Printer

defined in TERMINAL configura­
tion statement S-96

end of forms S-307
restore to standard character
set, RE $TERMUT2 U-339

TERMINAL statement example
5-105

4978 Display Station
defined in TERMINAL configura­
tion statement. S-96

part of minimum system
configuration S-22

reading modified data S-307
required for program
preparation S-22

TERMINAL statement example
5-105

4979 Display Station
defined in TERMINAL configura­
tion statement 5-96

part of minimum system
configuration S-22

required for program
preparation S-23

TERMINAL statement example
S-105

4982 sensor I/O unit S-84
5230 Data Collection Interactive

S-11
5620 4974 matrix printer
attachment C-6

defined in TERMINAL statement
5-97

different device
configurations C-8

5630 4973 line printer attachment
C-6

defined in TERMINAL statement
S-97

5719-AM3 (see Indexed Access
Method)

5719-ASA (see Macro Assembler)
5719-CB3 (see COBOL)
5719-CB4 (see COBOL)
5719-F02 (see FORTRAN IV)
5719-LM3 (see
Mathematical/Functional Subrou­
tine Library)

5719-LM5 (see Macro Library)
5719-MS1 (see Multiple Terminal

Manager)
5719-SM2 (see Sort/Merge)
5719-UT3 (see Utilities)
5719-UT4 (see Utilities)
5719-XS1 (see Basic Supervisor and

Emulator)
5719-XX2 (see Program Preparation
Facility)

5740-LM2 (see Macro Library/Host)
5799-TDE (see Data Collection
Interactive)

7850 teletypewriter adapter C-6,
C-21

Common Index 471

472 SC34-0312

(")
c: ...
o .,
"T1 o
c:
:l>
6"
::l
cc
r
5°
CD

READER'S COMMENT FORM

IBM Series/1 Event Driven Executive
System Guide

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. I BM may
use and distribute any of the information you supply in any way it believes appro­
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your I BM representative or the I BM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

SC34-0312-2

Reader's Comment Form

Fold and tape

Fold and tape

Please Do Not Staple

I III

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
Systems Pu bl ications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

SC34-0312-2
Printed in U.S.A.

n
S
l>
o
:J
co
r
:i"
~

--- ------ ----- ---- - ---- - - ----------_ .-

SC34-031 2-2

Pri nted in U.S.A.

