S5 Series/1

SC34-0312-2 LICENSED
PROGRAM

File No. S1-34

IBM Series/1
Event Driven Executive
System Guide

Program Numbers: 5719-XS1 5719-XS2 5719-MS1
5719-XX2 5719-XX3 5719-AM3
5719-UT3 5719-UT4
5719-LM5 5719-LM6
5740-LM2 5740-LM3

Series/1

. ¥ g
: . sy >

" 4 ey S s

LN, e i € S

08 e

iR Tosian
i 4 4 £
& it S e

e o
LS ie g
s ﬁ;{nw;gg;gygf
R e i
Sy o i

B e

i e
A o s
Yo € Sy 5 gt

S gt

P I

SC34-0312-2 LICENSED
PROGRAM

File No. S1-34

IBM Series/1
Event Driven Executive

System Guide
Program Numbers: 5719-XS1 5719-XS2 5719-MS1
5719-XX2 5719-XX3 5719-AM3
5719-UT3 5719-UT4 ,

5719-LM5 5719-LM6
5740-LM2 5740-LM3 ‘

Second Edition (April 1980)

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs),
programming, or services which are not announced in your coun-
try. Such references or information must not be construed to
mean that IBM intends to announce such IBM products, program-
ming, or services in your country.

Use this publication only for the purpose stated.

Changes are periodically made to the information herein; any
such changes will be reported in subsequent revisions or Tech-
nical Newsletters,

Publications are not stocked at the address given belou.
Requests for copies of IBM publications should be made to your
IBM representative or the IBM branch office serving your local-
ity.

This publication could contain technical 1inaccuracies or
typographical errors. A form for reader's comments is provided
at the back of this publication. If the form has been removed,
address your comments to IBM Corporation, Systems Publica-
tions, Department 27T, P.0O. Box 1328, Boca Raton, Florida
33432. IBM may use and distribute any of the information vou
supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the
information you supply.

(C) Copyright IBM Corporation 1980

SUMMARY OF AMENDMENTS

4969 Magnetic Tape Support (Version 2 only)

The following chapters have been modified to include
information for the IBM Series/1 4969 Maghetic Tape

] Chapter 3 Data Management - Tape functions and stor-
age capacities

. Chapter 4 Operator Commands and Utilities - $VARYOFF
and $VARYON operator commands, $TAPEUT1 utility

. Chapter 6 System Configuration - The TAPE configura-
tion statement

. Chapter 7 System Generation - Sample configuration
to illustrate including tape support in a system

. Chapter 10 The Session Manager - Examples of menus
and options for tape utility

. Chapter 11 Tape organization - A new chapter
explaining the use of, and support provided for,
magnetic tapes

SC34-0312 iii

Remote Management Utility

The following chapters have been modified to include
Remote Management Utility '

. Chapter 6 System Configuration - The BSCLINE and
TERMINAL statements

o Chapter 7 System Generation - Sample configuration
to illustrate BSCLINE and TERMINAL statements

Bibliography

The bibliography lists the books in the Event Driven
Executive library and a recommended reading sequence.
Other publications related to the Event Driven Executive
are also listed.)

Storage Estimates

Storage estimates for V2.0 supervisor and utility pro-
grams have been added in Appendix A.

Supervisor Module Names

Supervisor Module Names for V2.0 have been updated in
Appendix B.

Program Preparation Example

Appendix D shows a detailed example of how to code and
prepare an interactive terminal program.

iv

SC36-0312"

Miscellaneous Changes

This manual has been modified to include new function
and. to improve technical accuracy and clarity. Addi-
tional material and technical changes are indicated by
vertical bars in the left margin.

SC34-0312 v

HOW TO USE THIS BOOK

The material in thig section is a guide to the use of this book.
It defines the purpose, audience, and'content of the book, as
well as listing aids for using the book and background materi-
als.

PURPOSE

The IBM Seriess/1 Event Driven Executive System Guide,
SC34-0312 discusses system concepts and facilities., Examples
of system concepts presented in the book are the generation of
a static system, cross—-partition communication between
programs, and address translation. Examples of system facili-
ties discussed are management of system resources, access
methods, device support, and error logging. The System Guide
also presents the details required for coding a tailored super-—
visor and advanced application topics.

AUDIENCE

This book is uwritten primarily for system and application
programmers. It does not include information for remote commu-
nications and advanced terminal applications.

The System Guide is intended for use by:?

U Programmers who need a general understanding of the Event
Driven Executive system

. Programmers concerned Wwith coding applications or extend-
ing the system capabilities

. System programmers responsible for generating a customized
system
. Programmers who will use.the Indexed Access Method

HOW THIS BOOK IS ORGANIZED

This publication is organized in four parts, consisting of an
introductory overview, system generation information, a
description of the Indexed Access Method, and material
explaining how to extend system capabilities.

vi S5C34-0312

—

Part I. introduces you to the Event Driven Executive system and
its capabilities.

Part II contains system generation and configuration informa-
tion.

Part I1I contains both an overview of the Indexed Access Method
and the detailed information necessary to write application
programs using the Indexed Access Method.

Part IV describes severals ways to extend the capabilities of
your system, such as modifying the session manager, using tape
labels, and using diagnostic aids and facilities.

Appendix A discusses storage estimating.

Appendix B lists the supervisor module names (Version 1.1).

Appendix C lists the supervisor module names (Version 2).

Appendix D contains an example of how to code and prepare an
interactive terminal program.

The bibliography discusses the Event Driven Executive library
and lists related publications.

The Glossary defines terms.

The Common Index includes entries from all books in the Event
Driven Executive library.

In general, the System Guide is organized according to the dif-
ficulty and depth of the information offered. Early material
is overview information, followed by more detailed information
for specialized use.

EXAMPLES AND OTHER AIDS

Throughout this book, both conceptual and coding examples are
used to clarify system concepts and coding techniques. Coding
examples are fully executable portions of complete programs
that can be entered as shown. Coding illustrations are non-
executable portions of incomplete programs that show the cor-
rect format of all required parameters on a statement. Missing
code or code you must provide is indicated by a series of three
vertical or horizontal dots.

Several other aids are provided to assist you in using this
book:

SC34-0312 vii

. A Summary of Amendments lists the significant changes made
to this publication since the last edition

U A Bibliography:

- Lists the books in the Event Driven Executive library
along with a brief description of each book and a
recommended .reading sequence

- Lists related publications and materials

. A Glossary defines terms

. A Common Index which includes entries from each book in the
Event Driven Executive library

References to other manuals are made throughout this manual
using shortened titles. For the full title and order number of
manuals mentioned in the text, refer to the bibliography at the
back of this book.

RELATED PUBLICATIONS

Related publications are listed in the bibliography.

SUBMITTING AN APAR

If you have a problem with the Series/1 Event Driven Executive
services, you are encouraged to fill out an authorized program
analysis report (APAR) form as described in the IBM Series/l1
Authorized Program Analvsis Report (APAR) User's Guide,
GC34-0099.

viii SC34-0312

PART I -~ INTRODUCTION e e e s e v e e e e e e e e

Chapter 1. Overviewu e s e e e e e e e e v e s e
Licensed Program Descriptions e e e e e e e e e

Basic Supervisor and Emulator e e e e 4 e e e

Utilities . e

Macro Library/Host e e e e e s e e e e e e e
Program Preparation Facility e e e e e e e e s
Macro Library c ot et e e e e e e e e e e e e e
FORTRAN IV Compiler and Object Support Library
Mathematical and Functional Subroutine Library

CONTENTS

COBOL Compiler and Resident Library, and Transuent

Library e e e 4 e s e e e e e e e e e e e e e e

PL/I Compiler and Resident Library, and Transient

Library v e e h s e e s e e e e e s e e e e e
Sort/Merge e e e e e e e e e e e e e e e e e e e
Series/1 Macro Assembler e e e s e e e e e e e
Multiple Terminal Manager e s s e s s e s s s
Indexed Access Method e e e e e e e e e e e e

Series/1 Data Collection Interactive PRPQ Support . .

Program Features e e e e e b e e e e e e e e e e

Multiprogramming, Multitasking Supervisor .
Event Driven Language e e e e e e e e e e e e
Multiple Terminal Support e e e e e e e e e
Timer Support e e e e e e e e e e e e e e e e e
Sensor Input/0Qutput Support e e e e e e e e e
Storage Requirements e e e s e e e e e e e e
Disk and Diskette Support e e s e s s e e e e
Tape Support (Version 2 only) e e e e e e e e
Binary Synchronous Communications Support N
I/0 Level Control (EXIO) e v e e e e e e e e e
Communications Support e e e s e e e e e e e e e
Program Preparation C e b e e e e e e e e e
Diagnostic Aids e e e e e e e e e e e e e e e e

Application Support « ¢ o ¢ ¢ ¢ o o o o

Data Interchange s b e e e s e e e e e e e e e

Operating Environment e e e e e e e e e e e e e
Minimum Execution System Configuration .« o

Minimum Program Preparation Requirements . .
Minimum Licensed Program Requirements . o e e

Installing the System e e e e e e e b e e e e e e

Chapter 2. Supervisor and Emulator e e e s e e .
Program/Task Concepts and Structure e o e ol .

The Program e e e e e e s e e e e e e e e e e e
The Task e e s e e e e s e e e e e e e e e e e e
Task Switching and Supervisor Control Routines
Task Definition and Control Functions e e e
Subroutines e e e v s e e e e e e e e e e e e
Queue Processing e s e e e e s e e e e e e e e
Timers e e e ey s e e e s e e e e e e e e e e e

Contents

[

(< S C IR BT, I N S ¥ |

Serial Resource Control * s e+ e e s e e o v s s s
Task Error Exit Facility e et e e e e e e e e e e
Single Task Program s e e s e e e e e e e e e e e e
Multiple Task Programs o e e e e e e e e e e e

An Example of Multiple Programs: and Multipllé Tasks

Multiple Program Structure s e s e e e e e e e e
Overlays . e . e e . e e e e s e s 4 4 e e s
Program Loadlng and Task Executlon e e s e e e e

Storage Management e e e e e e e e e e e e e e e

Storage and Partitions et e e e e e e s e e e e e e

System Control Blocks e e e e e e e e e e e e e e

Chapter 3. Data Management s 8 ¢ 8 s b s s e o s & o
I/0 Functions e h e e s e e e e e e e e e e e e e e e
Terminal Support e e e e e . e e e e e e
Terminals with Special’ Con’crol Characters . e e e
Terminal 170 e e e e s s e s e e s e e s e e e e e e

Sensor I/70 & v ¢ 4t e v e e e e e e e e e e e e e

The EXIO Interface e e e s e e e et e e e e e e e e
Direct Access Storage Organization e e e e e e e e
Sector s e e e b e e e e e e e e e e e e e e e e e e
Volume e e e s e e e e e e e e e e e e e e e e e e e
Directory e
Data Set & & & v it e e e e e e e e e e e e e e e e
Record o s e s s s e s e s v s s s e s s e s s s s
Access . . .o e v e e e e e b e e e e e e
Disk and Dlskette Functlons e s e e e e e e e e e e
Tape Functions (Version 2 only) C s e e e e e e e e
Data Set Naming Conventions e e s e s s s e e s e e

Storage Capacities e e e e e e e e e e e e e e

DiSk/DiSket’te . . o 3

Tape

Defining Volumes

DiSkette . . ¢ o . 3
Disk * e o » . .

Tape (Version 2 only)

Chapter 4. Operator Commands and Ut111t1es e e e
Operator Commands e e e e e e e e e s e s e e e e e
Utilities e e e e e b e e e e e e e e e e e e e e e e

Data Management utilities e e e e e e e e e e e e
Communication Utilities e e e e e e e e e e e e e

Text Editing Utilities e e e e e e e e e e e e e

Diagnostic Utilities .« ¢ v v ¢ ¢ ¢ o ¢ ¢ o o o o o @

Graphics Utilities C e e e e e e e e e e e e e e

Terminal Utilities

Program Preparation Utilities . . « « -0 v o « &

The Job Stream Processor Utility
Chapter 5. Program Preparation Facility e e e e o u
Event Driven Language Compiler e e e e e e e e e e
Linkage Editor e s e e e s s e e b e e e e e e w ee o

PART II - SYSTEM GENERATION AND CONFIGURATION .« . .

x SC34-0312

33
33
34
34
36
39
40
41
42
G2

43

%5
45
45
46
46
48
51
52
52
52
52
53
53
53
54
56
56
58
58
59
59
60
60
62

63
63

. 664

64
65
66
67
67
68
68
69

71
71
71

73

Chapter 6. System Configuration c t s e s s e s s

System Configuration Statements v e e e e e e e e e
BSCLINE - Define a Binary Synchronous Line . . e
DISK — Define Direct Access Storage « e e e e e e
EXIODEV - Define EXIO Interface Device . . o e e
HOSTCOMM — Define Host Communications Support N
SENSORIO - Define Sensor I/0 Devices C e e e e e
SYSTEM - Define Processor =~ o v e
TAPE - Define Tape Device (VerSIOn 2 only) . e e e
TERMINAL — Define Input/0Output Terminals .« v e e
TIMER - Define System Timer Features . e e e e
$SYSCOM — Define Optional Common Data Area . e e e

Chapter 7. System Generation e s s e s e s e e e e s
Generating the Supervisor B T T T
Step A - Allocate Required Data Sets . .
Step
Step
Step

Specify Object Modules e s e e e e e e e
Assemble and Link Edit the Supervisor . e
Step Format the Supervisor e 4 v e e e e e e e
Step Test the Generated Supervisor e e e 4« s
Step G - Verify the System Generation Process .« e
Other Considerations e e e e e e e e e e e e e e e e
System Generation without the Program Preparation
Facility C e e e e s s e s e e et e e e e e e e
Program Loading from Diskettes e s e e e e e e e
Automatic Application Initialization and Restart
Initializing Secondary Volumes v e e s e s s s e s
Creating a Supervisor for Another Series/l1
Sample Configurations o e e e et e e e e e e e e

TMmOoOO W
|

PART III - THE INDEXED ACCESS METHOD e e e e e e

Chapter 8. Overview of the Indexed Access Method .

Devices Supported e e e e e s e e e s e e e e e e e
Functions e v e e e st s e e e e e e e e e e e e e e
I/0 Requests . . e v e e e 4 s e e e e e e e e e
The SIAMUT1 Utlllty e e e e e e c e e e e e e
Operation of the Indexed Access Method e e s e e e
Indexed Data Sets - Overvieuw e e 4 s e e e e e e e e
Data Set Format e s e e o s 4 e s s s s e e e e e e s
Requesting Records s e b e s s e s s s s s e e e e
Preparing to Execute Indexed Applications e e e
Preparing Programs e v s s e e-s e 8 e s e v s v e e
Establishing the Data Set “ e e e . . e o

A Sample $JOBUTIL Procedure and Link Ed\t Control .
$JOBUTIL Procedure e s s e e e s+ 4 s o s e o o o o @
Link Edit Control L] L] L] L] L] L] . . . L] L] . L -

Chapter 9. Planning and Designing Indexed Applications

Connecting and Disconnecting the Indexed Data Set .

Loading Base Records s e e e e e e e e e e e e e
Processing e e e s e s e e e e e e e e e e e e s
Maintaining the Indexed Data Set e e e e e e s e e
Concatenating Data Sets e e s e e e e e e e e e e e

Contents

.

Edit $EDXDEF to Match Hardware Conflguratlon

75
75
76
78
82
83
84
86
94
96
112
113

115
115
116
117
118
124
125
126
127
128

128
129
129
132
132
133

143

145
146
146
146
148
148
148
151
154
155
155
156
158
158
158

159
159
160
161
165
167

X i

ALTIAM Subroutine e e e e e e e e e e e e

Handling Errors e e e s e o s e e v 4 e e e
Error Exit Facilities: C v e e e e e e e
System Function Return Codes e s e e e e

The Data—-Set-Shut-Down Condition . 0 e e
Deadlocks and the Long-Lock-Time Condition
Resource Contention e e h e e e e e e e e e
The Indexed Data Set e e e e e e e e e e e

Preparing the Data . o e e 4 e e e
Building The Indexed Data Set e e e e e e
Data Set Format e e e e e e e et e e e e
Storage and Performance e e e e e e e e e e
Storage Requirements e v e s e s e e e s
Indexed File Size e e s e e s e e e e e
Performance e e e e e s e e s e e e e e e

PART IV - EXTENDING THE SYSTEM CAPABILITIES

Chapter 10. The Session Manager

Operational Overview e 4 s o s s e s

Menus and Procedures B
Primary Option Menu e e e e e e o s e o o o
Secondary Option Menus e s s s 4 e e e
Procedures o e s s e e . . e

Allocating and Deletmg Nork Data Sets . .

Adding an Option to the Session Manager . e
‘Updating the Primary Option Menu e e
Updating the Procedure e e e e s e e e e e
Building a $JOBUTIL Procedure e e e e e

| chapter 11. Tape Organization
External and Internal Labels
Types of Internal Labels e e e e e e e e e
Standard Labels c e s e e s e e s e e e e
Labeled Tape Layouts B T
Labeled Tape Label Fields e e e e e v e s
Non—Labeled Tapes .+ ¢« ¢« « « ¢« « o o ¢« o o &
Non—-Labeled Tape Layouts + . .

" Bypass Label Processing (BLP) v e e s
Tape Records P T
Variable Length Records e e e e e e e e
Undefined Length Records o e e e e e e e
Tape Log Entries e e e e e e e e e e e e e e

Chapter 12. Using Partitioned Data Sets .
Data Set Allocation C e e e e e e e e e e
Data Set Format e e e s e e s e e e e e
Directory Area e e s s e e e e e e e e e
Member Area . . e e e e e e e e e e e
Display Control Member Format e e e e e s
Using $PDS in Your Program e s e e s e e s
Member Control Block e e e e e e e e e e
Command Descriptions v s e e e e e s e e

Chapter 13. Diagnostic Aids and Facilities

'xii SC34-0312

170
177
178
179
179
180
181
182
182
187
192
204
204
205
205

207

209
209
212
218
218
220
222
226
225
226

229

233
233
234
235
236
238
241
262
244
244
264
245

245

247
248
249
249
250
252
259
260
261

265

The Software Trace Table v e e e e
The Task Error Exit Facility e e e

Check and Trap Handling - An Overview

.

3

Using the Task Error Exit Facility in Your

I/0 Error Logging e e e e e e e et
Recording the Errors
Printing the Errors e e b e e e e s

. . . LI . .

Chapter 14.
Virtual Terminals C e s e e e e s e s
Creating a Virtual Channel . v e

Establishing the Connection . e e
Accessing the Virtual Terminal .
Loading from a Virtual Terminal
Inter-program Dialogue e e e e e
Cross Partition Services . e e s e s

Chapter 15. Miscellaneous Terminal I/0

Modifying the I0CB e e e e e e
Accessing a Static Screen v e e e
Using Formatted Screen Images . .

.

.

.

.

End of Forms on 4973 and 4974 Printers

Reading Modified Data on the 4978 Display

Chapter 16. Advanced Topics . e e s

Inter-Program Communications

.

.

.

Translating Compressed/Noncompressed Byte Strings

S$UNPACK Subroutine e e e e e e
$PACK Subroutine . e e v e e e s
Terminals Connected via Dlgltal I/0
The $DISKUT3 Data Management Utility
Special Considerations v e e e e
Input to $DISKUT3 C e e e e e e e
$DISKUT3 Return Codes . . e e s
DSOPEN Subroutine c e e e e e e e e
SETEOD . . e e s e e e e e e
Calling Sequence . e e e e
Processing the EOQOV Cond1t1on . e e e
Reading End-of-Volume (EQV) Labels
Writing End-of-Volume (EOV) Labels
Console Qutput for EOV Processing
Input EQV Processing Example .

.

.

.

Sample Use of BLP to Access All Label Flelds

Appendix A. Storage Estimating . .

Supervisor e e e e s e e e e e e e
Utility Programs s v s e e e s e e
Application Programs e e s e e e e s

Appendix B. V1.1 Supervisor Module Names

Appendix C. V2.0 Supervisor Module Names

Appendix D. Program Preparation Example

Part I. Terminal Program Coding Example

.

. .

(CSECTS)

(CSECTs)

.

.

Processing the Initial Operator Instructions

. .

.

Contents

265
268
268
269
270
270
275

279
279
280
280
281
281
282
286

293
295
297
300
307
307

309
309
309
310
312
315
315
316
319
322
324
325
326
326
327
327
329
331

333
333
342
3644
3647
357
367

369
369

xiii

Formatting the Static Screen Image
Processing Operator Input

Part II. Define Formatted Screen Image Using $IMAGE
Creating the Image Data Set
Loading $IMAGE and Entering Commands
Creating the Image
Saving the Image Created

Prepare Program Using Session Manager

Step 1. Create Source Module Using S$FSEDIT

Part III.

.

.

.

.

.

.

.

.

.

.

.

.

.

Step 2. Compile Source Module Using $EDXASM

Step 3.

Link Edit Object Modules Using $LINK

Step 4. Format Object Modules Using $UPDATE

Part IV. Prepare Program Using $JOBUTIL

Bibliography

Event Driven Executive Library Summary
Event Driven Executive Library
Summary of Library
Reading Sequence

Other Event Driven Executive Programming Publications

.

.

.

Other Series/1 Programming Publications

Other Programming Publications
Series/1 System Library Publications

Glossary . .

Common Index

Xiv

§C34-0312

.

.

.

.

.

373
377
387
388
389
390
395
396
397
397
402
407
408

419
419
419
420
422
423
423
424
4626

427

439

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10,
Figure 11.
Figure 12.
Figure 13.
Figure 14.

Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.

LIST OF FIGURES

Single task program structure e e s e e e e
Single task application example © e s s e e e
Multitasking program structure P . v e e
Executing multiple programs and multlple tasks
Program overlays e s e e e e e e e e e e e
Program overlays 'in Series/1 storage . s e e e
Sensor device connections e e v e e e e e e e e
DASD logical organization e e e s e s e e e e s
Library origins . e . . e .
Example of V2.0 Procedure $SUPPREP on ASMLIB
Example of SEDXDEF o e v e e e e e e e e e e e
Example of $EDXDEF © e e e e e e e e e e e e
Example of SEDXDEF e s e e e e e e e e .
SEDXDEF and Multiple Terminal Manager Volume

Definition . . e . . e v e s e e e e e e e s e e e
Example of SEDXDEF N .
Example of $EDXDEF with date format spec1f1ed
Example of SEDXDEF e et e e e e e e e e e e e
Example of $SEDXDEF e e e e v e e e e e e e e e
Example of SEDXDEF e e s s e e e e e e e e e e
Example System Environment e e e e e e e

Figure 20.
Figure 21.
Data Set
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.

Loading and Inserting Records in an Indexed

¢ e o e o o o & e .

Protocol for Sequential Updating e e e e s &
Indexed Data Set Block Types .« . e e e e e
Example of Primary-Level Index Block . .

Example of Second-Level Index Block e s e e s
Example of Higher—Level Index Block e e e e e

Figure 27. High-Level Index Block Structure e s e e e e
Figure 28. Example of a data block e & o s o s+ v e s o s-a
Figure 29. Session manager storage usage « e e e . e
Figure 30. Session manager primary and secondary optlons
Figure 31. (Part 1 of 2) Menus and Procedures e s e e e e
Figure 32. (Part 2 of 2) Menus and Procedures e e e s e e
Figure 33. Invoking EDXASM . . & & ¢ v ¢ ¢ ¢ o ¢ o o o s o »
Figure 34. $SMALLOC data set . . & v & ¢ ¢« o ¢ o o o o o o o
Figure 35. $SMDELET data set e e e e s e e e et e e e e
Figure 36. Session manager primary option menu o e e e
Figure 37. Session manager $FSEDIT primary option menu
Figure 38. $SMPPRIM option menu with option 10 added
(Part 1 of 2) e e e e e . . e e e e e e e

Figure 39.

$SMPPRIM optlon menu wlth optlon 10 added

(Partzof 2) . . . o o e o e

Figure 40. Job $DISKUT1 e e e e e e e e e e s e e e e e e
Figure 41. Job $SMPPAY e s e s e e e s s e e e e e e e
Figure 42. Softuware Trace Table Structure e e e e e e e e
Figure 43, S$IMAGE Disk Storage Format e v e e e e e e
Figure 44, $DISKUT3 return codes . . e e e e e
Figure 45. (Part 1l of 3) V1.1 Superv1sor Storage
Requirements NN o o s e e e e e e e

Figure 46.

(Part 2 of 3) V1 1 Superv1sor Storage

List of Figures

34
35
36
37
40
41
50
55
61
125
133
134
135

136
137
138
139
140
141
149

150
164
193
196
198
199
199
201
211
213
219
220
222
223
224
226
227

228

229
230
230
267
311
319

334

Xv

Requirements . e e e s e s e s e e s e s s e e e e e
Figure 47. (Part 3 of 3) Vl 1 Supervisor Storage

Requirements . . o« v e e e v e e e e
Figure 48. (Part lof 3) V2 0 Superv150r Storage
Requirements “ e e e . e v e e
Figure 49. (Part 2 of 3) V2 0 Supervnsor Storage
Requirements e e e e . e e e e e e e e e e e
Figure 50. (Part 3 of 3) V2 0 SuperVISOr Storage :
Requirements . e s . e e e e e e s e e e e e e e e
Figure 51. Flouchart of program operatlons . e v e e e

Figure 52. Code for IOCB's and attention handlers e e e s
Figure 53. Code to process initial operator instructions
Figure 54. Screen showing initial operator instructions

Figure 55. Static-screen image used by program e v e e e
Figure 56. Coding to read stored screen image o e e e e,
Figure 57, Code to transfer stored image to screen o« e
Figure 58. Alternate coding technique e e e e e e e e
Figure 59. Screen with all data entered e e e e e e e e e
Figure 60. Code to process ENTER key e e s e 4 e e e e e
Figure 61. Screen contents after ENTER key is used . .

Figure 62. Screen contents after reply of YES to QUESTION
Figure 63. Screen contents after reply of NO to QUESTION

Figure 64. Code to process the PF keys A
Figure 65, Screen contents after PF3 isused
Figure 66. Complete program (Part 1 of 2) h e e e e e s
Figure 67. Complete program (Part 2 of 2) o« v e e e . .
Figure 68. Allocation of screen image data set (VIDEOI)

Figure 69. $IMAGE commands S
Figure 70. $IMAGE PF key fudgtuons upon edit mode entry

Figure 71. Screen with provected and null fields defined

Figure 72. Screen contents after ENTER key use v e e e s
Figure 73. Screen with unprotected fields defined . e e
Figure 74. Save screen image created and end SIMAGE . .

Figure 75. Program preparation steps s e et s e s e e e e
Figure 76. $EDXASHM invocation e v e e e e e e e e e e e
Figure 77. Compilation listing (Part 1 of 3). e e e e e
Figure 78. Compilation listing (Part 2 of 3). e e e e e s
Figure 79. Compilation listing (Part 3 of 3). e s e e e e
Figure 80. $AUTO data set listing . . . o e e e
Figure 81. Link edit control statements (LINKSTAT) .« e

Figure 82. $LINK invocation e e e e e e e e e e e e e e
Figure 83. Link edit listing e e e e e e e e e e e e e e e
Figure 84. SUPDATE invocation . . e e s e e s e e e

Figure 85. Batch Job Processor procedure data set . . .
Figure 86. $JOBUTIL Execution Listing (Part 1 of 4)

Figure 87. $JOBUTIL Execution Listing (Part 2 of 4) .ﬁ..
Figure 88. $JOBUTIL Execution Listing (Part 3 of 4) . . .
"Figure 89. $JOBUTIL Execution Listing (Part 4 of 4) . e
xvi SC34-0312

336

337

338

340

361
368
369
370
371
373
374
376
377
378
379
380
381
382
383
3864
385
386
388
389
390
392
393

394

395

396
398

399
400
401
403
404
405
406
407
409

414

415

416

417

PART I - INTRODUCTION

Part I is organized into five chapters which introduce you to
the Event Driven Executive system and its capabilities.

PART I - INTRODUCTION 1

2 §SC34-0312

CHAPTER 1. OVERVIEW

The Event Driven Executive system simplifies the implementa-
tion of application programs on the Seriess/1. Event driven
implies that the system is activated by interrupts. An inter-
rupt can be, for example, an operator pressing the ENTER key on
a terminal or an external process interrupt. .

The Event Driven Executive consists of the following IBM
Series/1 licensed programs:

. Event Driven Executive Basic Supervisor and Emulator --
5719-XS1 or 5719-XS2

. Event Driven Executive Utilities —— 5719-UT3 or 5719-UT4

. Event Driven Executive Macro Library/Host -- 5740-LM2 or

5740-LM3

. System/370 Program Preparation Facilities for Series/1 —-
5798-NNQ

. Event Driven Executive Host Communication Facility --
5796~PGH

. Event Driven Executive Program Preparation Facility --

5719-XX2 or 5719-XX3

. Event Driven Executive Macro Library -- 5719-LM5 or
5719-LMé6 ’

U FORTRAN IV Compiler and Object Support Library —— 5719-F02

. Event Driven Executive Mathematical and Functional Subrou-
tine Library (MFSL) —=-5719-LM3

] Event Driven Executive COBOL Compiler and Resident Library
-- 5719-CB3, and Event Driven Executive COBOL Transient
Library —— 5719-CB4

. Event Driven Executive PL/I Cohpiler and Resident Library
-- 5719-PL5, and Event Driven Executive PL/I Transient
Library ——- 5719-PL6

. Event Driven Executive Sort/Merge —— 5719-SM2

. Event Driven Executive Macro Assembler —— 5719-ASA
. Event Driven Executive Multiple Terminal Manager -
5719-MS1

. Event Driven Executive Indexed Access Method - 5719-AM3

Chapter 1. Overview 3

The Basic Supervisor and Emulator is required for all Series/1
processors (4952, 4953, or 4955) that execute Event Driven
Executive application programs or utilities. You must also
have the licensed programs required for program development.
Program development includes building'the Basic Supervisor and
Emulator and developing application programs using either the
Event Driven Language compiler, the Series/1 Macro Assembler
and Macro Library, the COBOL Compiler/Resident Library and
Transient Library, the PL/I Compilers/Resident Library and
Transient Library, or the FORTRAN IV Compiler and Object Sup-
port Library. You can assemble and execute application pro-
grams while other programs or utilities are running on the same
Series/1.

The Basic Supervisor and Emulator allows you to process multi-
ple, independent, concurrent application programs with limited
concern for, or knowledge of, either the supervisor program or
other application programs that share the same system.

The Event Driven Executive is equally appropriate for:

. A small unattended Seriess/1, without disk storage, dedi-
cated to a single application

. Multiple large Series/1's, each serving several terminals
and several realtime applications, which can be connected
to a Systems370

. Commercial transaction processing and event driven appli-
cations

LICENSED PROGRAM DESCRIPTIONS

Basic Supervisor and Emulator

The control program, or supervisor, manages the resources of
the Series/1 and your application programs that execute on the
Series/1., This support includes:

. An emulator and instruction set for coding application
programs
. The ability to initiate an application program either

from a terminal or from another application program that
can pass parameters to the new program

o Multitasking within each application program, with
preemptive task switching

4 SC34-0312

. Interval timing, with timing precision based on require-
ments of the applications

o Multiple terminal support allowing terminals to be
dynamically assigned to the application requiring them

. A relocating loader allowing application program to exe-
cute in any available main storage area

. The ability to operate independently of a host computer
. Support for a wide range of Seriess/1 devices

. Support for 4969 tape device — Version 2 only (5719-XS2)

Utilities

The system utilities provide interactive support for tailored
supervisor generation, source module preparation, disk
initialization, data set/volume maintenance, program prepara-
tion, and other system functions.

Remote Management Utility support is provided in Version 2
(5719-UT4) only.

Macro Library/Host

The Macro Library/Host is a set of libraries and procedures to
be installed on a System/370 to allow Event Driven Language
programs to be compiled and Series/l1 assembler programs to be
assembled on a host machine. The macros support all Event
Driven Executive functions provided by the Program Preparation
Facilities for Seriess/1. This licensed program operates in
conjunction with the System/370 Program Preparation Facility.

Program Preparation Facility

The Program Preparation Facility consists of programs that
allow you to compile and link edit Event Driven Language pro-
grams concurrently with the execution of other programs (in-
cluding other Program Preparation Facility programs). You can
also reconfigure, assemble, and link edit tailored supervi-
sors,

Chapter 1. Overview ‘5

If you code only Event Driven Language instructions, all appli-
cation program preparation can be performed qsing this pro-
duct.

Macro Library

This macro library, in conjunction with the Series/1 Macro
Assembler, allows you to assemble application programs having
amix of Event Driven Language instructions and Series/1 assem-
bler instructions. This library can also be used to create cus-
tomized supervisors.

FORTRAN IV Compiler and Object SUbbort Library

FORTRAN IV is a high level, mathematically oriented language
for manipulating numerical data and formatting input/output
operations. You can write FORTRAN IV source programs for
scientific and engineering applications and general problem
solving. The IBM Series/1 Event Driven Executive FORTRAN 1V
language is based on the American National Standard FORTRAN,
X3.9-1966, with the exception of object time FORMATS, adjusta-
ble dimensions, COMPLEX data type, G-format specifications,
and two-level FORMAT parenthesis.

When the FORTRAN IV compiler is installed on your Series/l,it
transforms FORTRAN IV source programs into machine
instructions. The compiler executes under the Basic Supervi-
sor and Emulator to produce an object module for the Program
Preparation Facility linkage editor that can then be processed
by the $UPDATE utility. After $UPDATE processing, your program
executes under the Basic Supervisor and Emulator.

Publicatipns:
. IBM Series/1 FORTRAN IV Language Reference, 6C34-0133-1

] IBM Seriess/1 Event Driven Executive FORTRAN IV User's
Guide, SC34-0315

Mathematical and Functional Subroutine Library

The Mathematical and Functional Subroutine Library (MFSL) is a
set of subroutines for IBM Series/1 Event Driven Executive
application programs Wwritten in FORTRAN IV, or Event Driven
Language, or Assembler Language. MFSL is a requirement for
Event Driven Executive FORTRAN IV and support is provided for

6 SC34-0312

functions such as:

. Mathematical functions to aid the application programmer,
such as sine, cosine, logarithms and exponentiation func-
tions, maximum and minimum functions, and modular arithme-

tic.

. Conversion routines to convert numeric data from EBCDIC to
a Series/1 internal format suitable for mathematical oper-
ations.

. Error checking.

U Commercial subroutines to provide output formatting, data
conversion, variable—-length decimal arithmetic and utili-
ties.

Publications:

U IBM Series/1 Mathematical and Functional Subroutine
Library User's Guide SC34-0139

COBOL Compiler and Resident Library, and Transient Library

COBOL offers a wide range of commercial functions, plus exten-—
sive facilities for handling input and output, sorting and
merging data files, accessing indexed data files, structuring
source and object programs, and debugging. Also supported is
local communication with Series/1 devices,.

The COBOL compiler produces an object module which, along with
the required COBOL support routines, is input to the Program
Preparation Facility linkage editor. The linkage editor output
is then processed by the $UPDATE utility to produce an executa-
ble relocatable load module. After $UPDATE processing your
program executes under the Basic Supervisor and Emulator.

IBM Series/1 Event Driven Executive COBOL is designed accord-
ing to specifications for American National Standard COBOL
X3.23-1974, as understood and interpreted by IBM as of March
1979, with the exception of the RERUN Clause. IBM Series/l
Event Driven Executive COBOL exceeds the Low Intermediate Lev-
el COBOL as defined by FIPS 21-1.

Publications:
. IBM Seriess/1 COBOL Language Reference, GC34-0234

. IBM Series/1 Event Driven Executive COBOL Programmers
Guide, SL23-0014

Chapter 1. Overview 7

PL/I Compiler and Resident Library, and Transient Library

PL/]I allows applications to use the full function capabilities
of the hardware and operating system. The PL/I language is
extensive in function, permitting development of applications
that can be easily modified and maintained. Highlights of the
PL/I offering include:

. Communications support
° Indexed Access Method support
U Full-screen support

. Sort/Merge support

. Commercial programming functions

. Dynamic allocation and freeing of storage:
. Optimized object code

. Magnetic tape support

PL/I's fixed decimal facility allows you to process large and
fractional numbers on the IBM Series/1 4952 and 4953 processors
which do not have the floating point feature.

The PL/I compiler produces an object module which, along with
the required PL/I support routines, is input to the Program
Preparation Facility linkage editor. The linkage editor ocutput
is then processed by the $UPDATE utility to produce an executa-
ble relocatable load module. After S$UPDATE processing your
program will execute under the Basic Supervisor and Emulator.

IBM Series/1 Event Driven Executive PL/I is a subset of the
American National Standard Programming Language PL/I (ANSI
X3.53-1976), as understood and interpreted by IBM as of July
1979, plus multitasking language extensions.

Publications:

. IBM Series/1 Event Driven Executive PL/I Language Refer-
ence, GC34-0147

L IBM Seriess/1 Event Driven Executive PL/I \User's Guide.
SC34-0148

8 6C34-0312

Sort/Merge

The Sort/Merge licensed program sorts and merges records from
up to eight input data sets into one output data set in either
ascending or descending order. You can specify one or more
control fields in the records to be sorted. The Sort/Merge
program compares the control fields to determine the relative
sequence of the records.

The Event Driven Executive Sort/Merge program executes under
the Basic Supervisor and Emulator.

Publications:

. IBM Series/1 Event Driven Executive Sort/Merge: Program-
mer's Guide, SL23-0016

. IBM Series/1 Event Driven Executive Sort/Merge: Specifica-
tions Sheet Form, GX23-0009

Seriess/1 Macro Assembler

The Macro Assembler converts text data sets containing
machine, assembler, and macro instructions that have been
coded in the Series/1 instruction set into object modules. The
object modules can then be processed by the linkage editor.

When the assembler is wused in conjunction with the Macro
Library, applications coded in. . the Event Driven Language can
also be processed by the Macro Assembler, including customiz-
ing the supervisor. You can also include in the macro library
your ouwn macros for commonly used routines. The Macro Assembler
and the Macro Library can be used in place of the Program Prepa-
ration Facility ($EDXASM).

With the Macro Assembler you can assemble device support mod-
ules or modules that modify supervisor functions. You can also
assemble exit routines written in Seriess/1 Macro Assembler
language. The resulting object module is input to the Program
Preparation Facility linkage editor, together with your appli-
cations generated in Event Driven Language instructions, PL/I,
FORTRAN IV, and/or COBOL. Your program will execute under the
Basic Supervisor and Emulator after it has been processed by
the library update utility (SUPDATE).

Publications:

. IBM Seriess/1 Event Driven Executive Macro Assembler,
GC34-0317

U IBM Series/1 Macro Assembler Reference Summary, SX34-0076

Chapter 1. Overview 9

Multiple Terminal Manager

The IBM Series/1 Event Driven Executive Multiple Terminal
Manager provides a set of high level functions that simplify
the design, implementation, and maintenance of
transaction-oriented applications. High level language
programs (COBOL, PL/I, FORTRAN IV, or Event Driven Language)
can execute in an interactive environment, where one or more
applications can run concurrently using one or more display
devices. Additional interfaces are provided for indexed or
direct files (access to indexed files requires the Indexed
Access Method) and an operator interface for functions such as
sign on, connect or disconnect, terminal status reports, and
printing the contents of the transaction program library.

Publications: Refer to the Multiple Terminal Manager topics in
the master index of this publication.

Indexed Access Method

The Indexed Access Method provides data management facilities
that support indexed file operations. It allows you to build,
access, and maintain records in indexed data sets via a prede-
termined field called a key. An index of keys provides fast
access to records in an indexed data set. The access method
supports a high degree of insert/delete activity, providing
both direct and sequential access to the data from multiple,
conhcurrently executing programs. Applications that use the
Indexed Access Method can be programmed in the Event Driven
Language, PL/I, or in COBOL. It is supported by the Sort/Merge
licensed program, which will accept Indexed Access Method data
sets as input files. Also provided is a utility to define
indexed data sets. This utility can be invoked from a terminal
or from a program. :

The Indexed Access Method provides keyed access to data to
support a variety of applications, ranging from batch process-—
ing to interactive appllcatlons. :

The data file organization 'provides direct and sequential
processing of files. This is accomplished by using cascading
index techniques for direct processing and by sequence chain-
ing of the data blocks for sequential processing.

The access method supports files which have high add/delete
activity (such as open order files) with nominal performance
degradation. This is accomplished by distributing free space
for additions throughout the file, by updating and inserting
additions in place;, and by dynamically reclaiming space after
deletions.

10 SC34-0312

Indexed Access Method supports multiple programs and tasks
sharing the same files. In a shared environment, data integri-
ty is maintained by record and block level locking to prevent
access to a regord while it is being modified.

Publications: Refer to the Indexed Access Method topics in the
master index of this publication.

| seriess/1l Data Collection Interactive PRPQ Support

The Series/1 Data Collection Interactive PRPQ (P82600)
provides Series/1 programming support for attachment of the
5234, 5235, 5236 Data Entry Stations. Value Read (5239) is sup-—
ported; also the output of up to 8 bytes of data from the
Series/1 to the 5235/5236 Data Entry Station displays. These
bytes can consist of any digit and some alpha characters.

| Support is provided for:

| 1. Personalization functions:

| * via console prompting
. transportable and modifiable configuration defi-
nitions
| ° Auto IPL, using the last executing configuration

| 2. 10CS functions:
| . Write 4 characters - Time-of-Day

U Write 8 characters - display of any numeric and some
alpha characters

| e Initiate online test

| * Read 180 byte buffer

| . Set audible alarm/contact closure
| . Error handling

| 3. Data Routing/Formatting functions:

| ° Route to storage

| * Route to Disk/Diskette

| - Optionally, common data with buffers

Chapter 1. Overview 11

| : - Optionally, sequenced buffers
| - Single output format per controller

- Incomplete transactions written with regular
records

| - Diskette output 5231-002 compatible
This product has potential uses in data collection time and

attendance, limited data base inquiry and interaction, and
plant and process control type applications.

| Publications

. IBM Seriess/]1 Data Collection Interactive Programming RPQ
P82600 Users Guide, SC34-1654

12 SC34-0312

PROGRAM FEATURES

Multiprogramming, Multitasking Supervisor

The Event Driven Executive Supervisor and Emulator controls
the execution of your application programs. It is a multipro-
gramming supervisor that is capable of controlling concurrent
program execution. Some of the design features are:

. Up to 510 task priorities consisting of 255 priorities
within each of two harduare levels

. A storage efficient instruction emulator that is table
driven

. Provision for interprogram communication

. Capability for automatic restart following a power
outage

. Storage management support for storage sizes greater than
64K bytes

. The capability for concurrent execution of

- Multiple applications
- Utilities

- Program preparation

Event Driven Language

The Event Driven Language provides dynamic control of oper-
ation sequencing, calculations, and decision making. It has
the following features:

° Integer and floating-point calculations

. Logical and shifting functions

. Structured programming functions: IF, THEN, ELSE, DO
UNTIL, DO WHILE

. Interval timing and time of day functions

. Task control and synchronization

Chapter 1. Overview 13

. Generalized binary synchronous communication capability
modeled after O0S/BTAM, for basic read/urite to other sys-

tems
J Assembler language subroutines
. Data definition
. Program control
i Graphics
. Queue processing

Multiple Terminal Support

The Event Driven Executive terminal support is as device inde-
pendent as possible. The following devices are supported:

d IBM 4978 Display Station |

d IBM 4979 Display Station

. IBM 3101 Display Terminal

e IBM 4973 Line Printer

o IBM 4974 Matrix Printer

° IBM 2741 Communications Terminal

i Graphics terminal (Tektronix! or equivalent)

. Teletype? ASR 33735 (TTY) or equivalent

Timer Support

The Event Driven Executive supports the following timers:?

. IBM Feature #7840 Timer Attachment

. IBM 4952 processor native timer
1 Registered trademark of the Tektronix Corporation.
2 Registered trademark of the Teletype Corporation.

14 SC34-0312

Sensor Input/Output Support
The Event Driven Executive supports the Series/1 sensor 1I/0
devices. The following functions are available:

. Analog input/output, digital input/output, process
interrupt

. Sequential and random addressing of devices

. External synchronization

J Sharing device groups and subgroups betueen programs
. Relay or solid state multiplexing

. Multi-range analog input

* A program for testing your sensor 1/0 dévices

Storage Requirements

The supervisor occupies at least 12K bytes of storage. The
actual amount depends upon the support you require for your
application. Typical supervisor storade requirements are 24K
to 32K bytes. The remaining storage is available for your
application programs. Each Event Driven Language instruction
requires an average of six to eight bytes of storage.

Disk and Diskette Support

The following Series/1 disk and diskette units are supported:
. 4964 Diskette Unit

. 4966 Diskette Magazine Units

. 4962 Disk Storage Unit (Models 1, 1F, 2, 2F, 3, and 4)

. 4963 Disk Subsystem (Models 23A, 23B, 29A, 29B, 58A, 58B,
64A, and 64B)

The following disk and diskette functions are available:

. Fixed head support for system and: for application pro-
grams (disk only)

Chapter 1. Overview 15

L Multiple logical volumes on a physical disk or in a
diskette magazine unit

] Sequential or random access

U Initial Program Load text

| Tape Support (Version 2 only)
The Series/1 Event Driven Executive 4969 Magnetic Tape Subsys-
tem supports the following:

. Up to four IBM 4969 tape drives attached to each tape con-
troller

. 9 track tape drives with either vacuum or mechanical
take—-up arm

. Tape drives of 800 BPI NRZI mode, 1600 PE recording mode,
or dual mode

| The 4969 supports the following:
| . Standard label tapes (SL) (DOS/VS compatible)
| » Unlabeled tapes (NL)

| . Bypass label processing (BLP)

Binary Synchronous Communications Support

The Event Driven Executive has the following binary synchro-
nous communications capabilities?

. Multiple BSC medium speed, single line feature cards --
Feature 2074

. Multiple BSC high speed, single line feature cards —— Fea-

ture 2075

. Multiple BSC 8-line control feature cards —-—- Feature 2093
(each with one or two BSC 6¢-line feature cards -- Feature
2094)

. Point-to-point, leased or switched 1lines (switched

lines provide auto answer and manual dialing)

. Multipoint operation as either master or tributary

16 6SC34-0312

. Transparent mode of operation
. Limited conversational mode of operation
. Automatic retry

. Remote Management Utility support (Version 2 only)

I/0 Level Control (EXIO)

The I/0 level control functions (EXIO instructions) allow you
to control, at the device level, any device attached to the
system that meets the standard I/70 interface. The EXIO
instructions provide the capability to control devices not
otherwise accessible using the Event Driven Language
instructions. You also may use the EXIO interface to support
standard devices in a non-standard manner.

Communications Support
Communications support enables you to communicate with other
processors. The following functions are available:

. Generalized binary synchronous support for processor-to-
processor communications '

. Multiple lines in point-to-point, switched, multi-
point master, or multipoint tributary

U In conjunction with the Host Communications Facility IUP,
direct read/uwrite access to host files and direct Jjob
submission to a host batch processor over a leased line,
using the single-line BSC adapter

. Communications capability with other IBM systems:

- Series/1
- System/3
- Systems/32
- System/34
- 5100

- 5110

Chapter 1. Overview 17

- Systems/360

- System/370
' .
. Remote job entry capability to Remote Job Entry facilities
on System/370

Program Preparation

Event Driven Executive program preparation support allows you
to assemble and link edit programs while other tasks are exe-
cuting. You are not limited to application development. You can
also configure, assemble, and link edit tailored supervisors.
Program preparation support includes: .

. The EventvDriven Language compile}
. The Series/]1 Macro Assembler

. The Host Preparation Facility

. The linkage editor

* - The text editors

. The obJect reformatting programs

The PL/I, FORTRAN IV, COBOL compilers and resident libraries,
the PL/I and COBOL transient libraries, and the Mathematical
and 'Functional Subroutine Library are also available for pro-
gram preparation., :

Diagndstic Aids

The diagnostic aids are a set of programs and utilities that
can improve the process of error detection and correction for
both hardware and software errors. Some of these programs are
independently executable utilities; others are re51dent in the
supervisor.

The hardware—-oriented aids provide 1I/0 error logging, sensor
I/0 testing, tracing of BSC line activity, and utlllty programs
to format and print the trace output.

The software-oriented aids provide an interactive application
debugging tool; operator commands to display and patch stor-
age; a program exception trace; and utilities for monitoring
exception events, dumping storage to a data set, and printing
the data set.

18 SC34-0312

Depending upon the type of errors your system is encountering
and your application requirements, you can select the appro-
priate diagnostic aids.

The following aids are provided:

$BSCTRCE - traées fﬁe I/0 activities on évgivén B$CM1ine
$BSCUTL - formats the $BSCTRCE file. -
$BSCUT2 - verifies the systém's BSC configuration

$D -ldisplays.stérage in he*adécimal format

$DEBUG ~ provides intéractiﬁe program debugging capability
$DISKUTZ2 - formats the déta recorded b& SLOG

$DUMP - prints storage dumps taken by $TRAP

$IOTEST - tests the operation of sensor I/0 devices

$LOG - records 170 errors |

$P - modifies storage

$TAPEUT1 - general tape'utflity function5 (Version 2 oﬁly)
$TRAP - detects exception events and dumps storage

Trace Table — contains data concerning program exceptions

For further information concerning the diagnostic aids, refer
to the common index of this publication.

Chapter 1. Overview 19

APPLICATION SUPPORT

The Event Driven Executive contains a system supervisor that
controls the execution of your applications. The supervisor
controls the execution of multiple tasks so they can operate
concurrently. The Event Driven Language is provided for writ-
ing application programs. A key design feature is the support
of multiple independent (time or event driven) applications
with minimum interaction imposed by the system.

The following categories of applications are supported:

. Realtime data acquisition and control
. Data reduction and report generation
. Program preparation and testing

1 Commercial applications

. Communications applications

The Event Driven Executive via multiprogramming allows multi-
ple application programs within a single computer. The total
number of simultaneously operating applications depends on the
data rates, program complexities, and the hardware configura-
tion. '

Data Interchange

The data interchange or exchange function provides:

. The ability to transmit data to and from a host with BSC
support, and to initiate host program execution using
remote job entry support

. The ability to transmit data to and from a host; to
initiate program execution at +the host from a Series/l
terminal or from your program, and to synchronize program
events on the host and Series/1 using the Host Communi-
cations Facility IUP (installed user program)

. Support of multiple Seriess/l1 Event Driven Executive
systems by a single host

. Interchange of data through the use of basic data exchange
formatted type diskettes. This function provides data
transfer capability to and from other systems which read
and write the basic data exchange diskette.

20 SC34-0312

—

The 4969 Magnetic Tape Subsystem support can be used as a
data exchange method between systems. The following modes
of exchange are possible for 9-track 800/1600 BPI tapes:

- Non—labeled

- Standard labeled

- Other logical layouts may be processed by Bypass Label
Processing

Chapter 1. Overview 21

OPERATING. ENVIRONMENT

Minimum Execution System Configuration
For Series/1 program execution with ‘fuil multiprogramming
capability, the minimum hardware requirements are:
. One of the following:
- 4952 Processor with 32K bytes of storage
- 4953 or 4955 Processor with 16K bytes of storage
. 4964 Diskette Unit or 4966 Diskette Magazine Unit
The floating-point computational and conversion capabilfties
of the Event Driven Executive require the hardware floating-

point feature of the 4955 processor (#3920).

The use of the timer functions requires the timer feature
(#7840), for processors other than the 4952.

The three-dimensional capability of the Graphics Display
Processor Utility requires a 4955 processor with the
floating-point feature (#3920).

A limited function (multitasking only) system is also feasible

with a 16K-byte processor and no disks, diskettes, or termi-
nals.

Minimum Program Preparation Requirements
The minimum Series/1 configuration for preparation of Event
Driven Executive programs is?

U 4953 or 4955 processor with 48K bytes of storage or 4952
processor with 64K bytes of storage

o 4966 Diskette Unit or 4966 Diskette Magazine Unit
. 4962 Disk Storage Unit or a 4963 Disk Subsystem
. 4973 Line Printer or 4974 Matrix Printer

- One of the following:

- 4978 Display Station

22 SC34-0312

- 4979 Display Station

- 3101 Display Terminal or egquivalent teletypewriter
device ‘ o

Minimum Licensed Program Requirements

The programs you require depend upon vour application and which
language you will use to code your applications. The choices
are C0OBOL, FORTRAN IV, PL/I, Event Driven Language, or Macro
Assembler Language. -
The first requirement is the Basic Supervisor and Emulator.
Then, based upon your choice of languages and vyour type of
work, the following can be used as guidelines:
. COBOL
Program preparation requires the COBOL Compiler and Resi-
dent Library, the Utilities, and the link editor of either
the Program Preparation Facility or the Seriess/1 Macro
Assembler. It allows you to: ’

- Install the COBOL Compiler and Resident Library and
the COBOL Transient-Library '

- Allocate data sets

- Enter source programs
- Compile

- Link edit

- Format screens

Execution and test require the COBOL Transient Library and
the Utilities. During execution and test, you may:

- Use diagnostic aids -
- Load programs
- Back up and copy data sets
J PL/1
Program preparation requires the PL/I Compiler and Resi-
dent Library, the Utilities, and the link editor of either

the Program Preparation Facility or the Series/1 Macro
Assembler; it allows you to:

Chapter 1. Overview 23

24

Install the PL/I Compiler and Resident Library and the
PL/I Transient Library '

Allocate data sets
Enter source programs
Compile

Link edit

Format screens

Execution and test require the PL/I Transient Library and
the Utilities. During execution and test, you may:

Use diaghostic aids
Load programs

Back up and copy data sets

FORTRAN IV

Program preparation requires FORTRAN IV, the Utilities,
the Mathematical and Functional Subroutine Library, and
the link editor of either the Program Preparation Facility
or the Series/1 Macro Assembler; it allows you to?

Install FORTRAN IV and the Mathematical and Functional
Subroutine Library

Allocate data sets
Enter source programs
Compile

Link edit

‘Format screens

Execution and test require the the Utilities. During exe-
cution and test, you may:

-—

Use diagnostic aids
Load programs

Back up and copy data sets

Event Driven Language

§C34-0312

Program preparation requires Utilities and the Program
Preparation Facility; it allows you to:

- Install the Program Preparation Facility
- Allocate data sets

- Enter source programs

- Assemble

- Link edit

- Format screens

Execution and test require the Utilities. During execution
and test, you may:

- Use diagnostic aids

- Load programs

- Back up and copy data sets
Macro Assembler Language

Program preparation requires the Utilities, the Series/1
Macro Assembler, and the Macro Library; it allows you to:

- Install the Series/1 Macro Assembler and the Macro
Library
- Allocate data sets

- Enter source programs

- Add macros that you have written
- Assemble

- Link edit

- Format screens

Execution and test require the Utilities. During execution
and test, you may:

- Use diagnostic aids
- lLoad programs

- Back up and copy data sets

Chapter 1. Overview 25

Any application can use the Indexed Access Method, Sort/Merge,
or the Mathematical and Functional Subroutine Library. An
indexed data set can be accessed by using instructions provided
by COBOL and PL/I. FORTRAN IV requires the Mathematical and
Functional Subroutine Library. FORTRAN, EDL or assembly lan-
guage must be used to interface to MFSL.

If your application calls for transaction processing, the Mul-
tiple Terminal Manager can be used.

For link edits you can use the Program Preparation Facility or
the Series/1 Macro Assembler since both contain the linkage
editor. The Seriess/1 Macro Assembler allows you to intermix
macro assembler language and Event Driven Language
instructions, although with a loss of assembly time perform-
ance when compared to the Program Preparation facility.

26 SC34-0312

INSTALLING THE SYSTEM

The IBM licensed programs that comprise the Event Driven Execu-
tive system are shipped on one or more diskettes along with a
document called a Program Directory. The diskettes contain the
programs and source material. The Program Directory provides
additional reference material, including the installation pro-
cedure. This procedure identifies and describes the contents
of each diskette volume and contains the step by step
prompt/reply sequences that are used to install the product.

The installation process is simply a sequence of:

1. initialization

2. copy data sets to disk

3. ~change diskette($VARYON)

4. repeat steps 2 and 3, until all diskettes are processed

An optional installation verification procedure allouws you to
verify that the installation is complete. The Program Directo-

ry contains the step by step instructions for executing the
verification procedure.

Chapter 1. Overview 27

28 SC34-0312

CHAPTER 2. SUPERVISOR AND EMULATOR

The supervisor and emulator provides the system services
required to assign processor time to your applications; data
management and device management services; error handling and
recording; and serialization 1logic. The emulator executes
Event Driven Language instructions.

PROGRAM/TASK CONCEPTS AND STRUCTURE

In an Event Driven Executive system, system resources are allo-
cated to tasks, according to the priority of the tasks. A task
is a unit of work, defined by the application programmer. A
program is a disk or diskette resident collection of one or
more tasks that can be loaded into storage for execution.
Although program and task are sometimes used synonymously, the
basic executable unit for the supervisor is the task; a proaram
is the unit that is loaded into storage.

The Program

A program is defined by the application programmer. In its
simplest form, a programconsists of a single task and contains
a PROGRAM statement, instructions, an ENDPROG statement, and
an END statement. In its more complex form, a program contains
more than one task.

One of the operands on the PROGRAM statement defines the ini-
tial entry point. When the program is brought into storage, the
initial entry point is the place in the program at which exe-
cution will begin. The programmer is responsible for initiat-
ing other tasks that are contained in the program.

The name of a program is the name of the data set in which a pro-
gram resides. A program may be brought into storage either by a
terminal operator or by another program.

The Task

Tasks are formed by combining instructions within an applica-
tion program. Each task is assigned a priority which the
supervisor uses to allocate time for execution. An application
program can consist of more than one task. Each task within the
system runs independently, with its own priority, and each com-

Chapter 2. Supervisor and Emulator 29

petes equally for the resources it requests from the system.

Task priority is assigned by the application programmer when
the task is coded. Valid priorities range between 1 and 510,
with 1 being the highest priority, and 510 the lowest. Tasks
with priorities ranging from 1l to 255 execute on harduare level
2y, and tasks with priorities ranging from 256 to 510 execute on
hardware level 3. Levels zero and one are reserved for the Bas-
ic Supervisor and Emulator.

Task Switching and Supervisor Control Routines

The supervisor always allocates the processor resource to the
highest priority task which is ready to execute.

When a higher priority task becomes ready by task action or via
an external event, the supervisor dispatches the higher prior-
ity task.

In addition, routines under supervisor control support device
and resource queuing, sensor I/0, interval timing, and process
interrupt functions. Services are also provided to manage

storage, host communications, disks, printers, tapes, and ter-
minals.

Task Definition and Control Functions

You cén usé the following Event Driven Languagé instructions to

define tasks and to control which tasks are executing at a giv-

en time: :) : .

ATTACH . Makes a new task ready for execution

ATTNLIST Prévides entry to one or moré of~youf asynchrondus
attention interrupt handling routines. ATTNLIST
produces a list of the command names that you have
defined and their associated entry points

DETACH Removes a task from the ready state

ECB Generates an event control block

ENDATTN Terminates ATTNLIST processing

ENDPROG Defines the end of a program

ENDTASK Defines the logical end of a task

30 SC34-0312

LOAD Loads a main program or program overlay from the
currently executing program

POST Signals the occurrence of an event

PROGRAM Defines the basic parameters and primary task of a
program

PROGSTOP Terminates execution of all of the tasks in a program
and releases the storage allocated to the program

RESET Places an event in the "not occurred™ state

TASK Defines and names a task

WAIT Halts task execution pending the occurrence of an
event

WHERES Returns the address and address key of a named
program

Subroutines

A function may be required at several points in a program's
execution. Rather than code the sequence of instructions that
performs that function each time the program needs it, the
function can be coded once and defined as a subroutine. The
subroutine can then be executed from as many points in the
application program as required.

The subroutine capability is provided by the following
instructions: . :

CALL Transfers control to a subroutine
RETURN Returns control from the subroutine to the calling
program

SUBROUT Defines the entry point and parameters of a
subroutine

USER Allows inline or subroutine use of instructions
: written in Series/1 assembly language '

CALLFORT Transfers control to a FORTRAN program or subroutine
from an Event Driven Language program

Chapter 2. Supervisor and Emulator 31

Queue Processing

You can use the Event Driven Language queuing instructions to
define queues and to access entries in‘queues. You must define
the size of a queue by specifying the number of entries it can
hold. The following queuing instructions are provided:

DEFINEQ Establishes a queue

LASTQ Retrieves entries on a last-in-first-out (LIFO)
basis '

FIRSTQ Retrieves entries on a first-in-first-out (FIFO)
basis

NEXTQ Adds an entry to a queue

Timers

If you have the hardware timer feature installed on vyour
Series/1 4953 or 4955 processor, or if you have a 4952 process-
or, you can include support in your Event Driven Executive
supervisor providing several timing functions that can be used
by application programs. In addition to maintaining a time of
day clock, the system also provides a time interval (elapsed
time) clock, and has the capability of suspending task exe-
cution (entering the wait state) for specified lengths of time.
The system also provides interrupts at the end of a time inter-
val.

The time—-of—-day (TOD) clock is maintained in hours, minutes,
and seconds. At initial program load (IPL), the clock is all
zeros and begins running. You can set the actual clock time
using the $T operator command function or with instructions in .
an initialization routine that you write, and the system will
maintain clock time from that point on. The timer-related
instructions are listed below:

GETTIME Moves the time of day values into an application pro-
gram

INTIME Reads the relative clock value (elapsed time since
IPL) into an application program and computes
elapsed time (since a previous INTIME)

STIMER Starts the timer running for the specified time

interval for a specific application task. MWhen the
interval expires, an ECB is posted.

32 SC34-0312

TIMER Defines the timer feature (#7840) address during
system generation

PRINTDATE Prints the date on the terminal

PRINTIME Prints the time of day on the terminal

Serial Resource Control

A resource, a physical or logical entity within the system, can
be a subroutine, a data area within a particular program, or a
data set or I/0 device known across the system. A resource can
be shared (used) by more than one task at the same time. For
example, a table of constants might be referenced from two or
more asynchronously executing tasks within a program. Since,
by definition, the values in the table are constant (that is,
read only), access to the table (resource) is unrestricted.

Unrestricted access to some shared resources can be undesira-
ble. For instance, if a task were updating a disk data set, and
other tasks had free access to the data set, the state of the
data set is unpredictable. In this case, the data set is a
shared serially reusable resource -- one that is shared but
should be used by only one task at a time.

With Event Driven Language instructions, you can gain exclu-
sive use of a serially reusable shared resource, and retain
control over that resource until explicitly releasing it for
use by other tasks. These instructions are: '

DEQ Frees the resource and gives control of the resource
to the longest waiting task, regardless of priority

ENQ Acqguires exclusive control of a shared serially
reusable resource —— one that is shared but should be
used by only one task at a time.

QCB Generates a resource control block

Task Error ExXxit Facility

During the execution of a task, exception conditions may occur
either in the task itself or in the hardware. The Series/1
signals the Event Driven Executive supervisor when these con-
ditions arise. Then, the supervisor, for most programs, per-
forms a system default action to clear the condition. While
the system response to exceptions is usually desired, it may be
inappropriate for some programs. For these programs, the
supervisor provides a method, the Task Error Exit facility, for

Chapter 2. Supervisor and Emulator 33

tasks to gain control at a point specified by the task when an
exception occurs. Pertinent status information is provided to
the error exit routine so that it may take actlon to correct the
exception and, if possible, continue.

Single Task Program

For most applications, a complex program structure is not
required, and programs will consist of a single task in a sin-
gle program, as shown in Figure 1

PROGA ngmmasmpmetmk o

® No execution overlap within program

® Program competes for system resources
with other tasks currently in system

Figure 1. Single task program structure

Figure 2 on page 35 is an example of the type of application
that lends itself to the single task program structure. The
job is basically sequential and will be waiting for operator
input most of the time. Since there is no requirement for asyn-
chronous execution of functions or I/0 overlap with process-
ing, nothing can be gained by a more complex structure.

Multiple Task Programs

Figure 3 on page 36 illustrates multitasking in a single
program. PROGB, the first task in the program, is started by
the system when the program is loaded, and is called the ini-
tial task. The other tasks shown in PROGB will not start until
a command is executed that tells the tasks to begin. The ini-
tial task within a program commences execution when the program
is loaded into storage. Initiation of additional tasks is per-
formed by any other active task; the means of initiation are

34 SC34-0312

Operator request loads
CUSTOMER FILE UPDATE
program

UPDATE

1. GET CUSTOMER NAME FROM TERMINAL
(OPERATOR INPUT)

SEARCH CUSTOMER FILE FOR NAME
READ CUSTOMER RECORD
DISPLAY CUSTOMER RECORD ON TERMINAL

ACCEPT UPDATE FROM TERMINAL (OPERATOR
INPUT)

WRITE UPDATED RECORD TO CUSTOMER FILE

GO BACK TO STEP 1 IF MORE RECORDS TO
UPDATE

8. ELSE, END UPDATE PROGRAM

- T

Figure 2. Single task application example

o s LN

o

discussed in the next section.

Once in execution, all tasks within a program compete with one
another for system resources, and with all other tasks active
in the system. The supervisor considers each task as a
discrete unit of work, and assigns processor time based on task
priority, regardless of whether a task is the initial task of a
program. All tasks compete equally for resources.

An Example of Multiple Programs and Multiple Tasks

Figure 4 on page 37 explains how the supervisor controls the
execution of multiple tasks.

Chapter 2. Supervisor and Emulator 35

PROGA Program made up of multiple tasks

e Concurrent (asynchronous) execution
- of tasks within program

® Tasks compete for system resources

TASKX with all other tasks currently in system

TASKY

TASKZ

Figure 3. Multitasking program structure

The figure has the following components:

A

36

The resident supervisor consists of:

B The instruction routine library consisting of the rou-
tines invoked by the emulator for the various applica-
tion program instructions.

€ Routines to service interrupts generated by I/0 devices,
process interrupts, timers, etc.

D I/0 operation routines, general supervisor function
routines, etc.

E The emulator and dispatcher examine each instruction
definition in the application programs then pass control
to the appropriate instruction execution routine in B to
perform the specified function. This section also per-
forms the supervisor functions WAIT/POST, ENQ/DEQ, and
ATTACH/DETACH to ensure that the highest priority ready
task is being executed.

PROGRAML1, an application program, has been loaded into main
storage from disk or diskette by the multiprogramming fea-
ture (nhot shown) of the supervisor, A. PROGRAMI] is composed
of three tasks, each represented by a vertical column of
rectangles. Each rectangle in a column is the string of
constants generated by the assembly of an instruction. The
instructions shown are for illustration purposes only.

PROGRAMZ2, another application program, has also been loaded

for execution. PROGRAMZ is composed of two tasks shown in a
manner similar to PROGRAM1.

SC34-0312

Chapter 2.

Supervisor and Emulator

{
& G
0’;}0 GO@»
© L4
s %
N %,
Qb (-3
<&@ G Q)
‘QQ\' O&,)
X ®,
6) .
Supervisor o Applications instruction routines
ADD WAIT MOVE | POST ATTACH
'/e
S i i
ATTACH/DETACH ./-/./‘ upervisor/Dispatcher
WAIT/POST S
QUEUE/DEQUEUE § e Waiting Ready § ® o
\
glaop Ag| WAIT CALL S) ATTACH | STIMER
k5
2
o
Z]IF AGT,B DO 5,TIMES WAIT WAIT
! \ \ \
ta::srl MOVE AOlewel| AND 1}l M| GoTO 4 | M 7 BN
/ | POST /
PROGSTOP| DETACH
Priority— 200 150 250 225 200
State— Executing ~Waiting Ready _Ready Waiting
TASK1 TASK?2 TASK3 TASK4 TASKS
PROGRAM1 PROGRAM?2
Figure 4. Executing multiple programs and multiple tasks

37

Figure 4 shows the following information concerning program
execution:

. Task states

U Names

. Assigned task priorities, each shown at the bottom of each
task.

TASK]l is currently executing (active); only one task at a time
can execute. TASKl has a priority of 200, which is higher than
the priorities of the other two tasks READY for execution
-—-TASK3 with a priority of 250 and TASK4 with a priority of 225.
Priorities allowed are 1 through 510, with 1 being the highest
priority.

TASK1l is executing a MOVE instruction. The emulator has
decoded the instruction and passed control to the MOVE routine
within the supervisor. The dispatcher will allow TASK1l to
execute until one of the following occurs:

. A task of higher priority becomes ready due to the
occurrence of some event such as an external process inter-
rupt or expiration of a time interval.

. The task executing relinquishes control by issuing an
instruction such as WAIT or DETACH, or by beginning an 170
operation.

. The task executing is canceled or a program check occurs.

TASK2 is in wait state and not available for dispatching as the
active task until the event for which it is waiting occurs.

TASK3 and TASK4 érE‘ready for execution but have not been dis-
patched since they are of a lower priority than the active
task, TASK!L.

TASKS5 is currently in wait state, waiting for the expiration of
a time interval. MWhen the time interval expires, TASK5 will be
placed in the ready state. However, it will not become the
active task if TASK] is still executing.

When two tasks of equal priority are ready for execution, a
first-in-first-out situation exists and the first task to
become ready will execute until it relinquishes control. Then
the second task will gain control and execute.

The possible task states are?

38 SC34-0312

Inactive Task is detached or is not yet attached

Waiting Task is wWwaiting for the occurrence
of an event

Ready Task is ready, but is not the highest
priority task

Active Task is attached and is the highest
priority task on its level

Executing Task is using the processor

A program can consist of one or more tasks. Normally, a program
Wwill consist of only one task unless its operation requires
simultaneously active, independent functions (tasks).

Multiple Program Structure

An application program consists of a collection of one or more
tasks. After an application program is prepared for execution,
it is stored under a unique name on disk or diskette. A termi-
nal operator can request that a program be loaded into storage
and placed in execution by entering a request for the supervi-
sor load utility ($L) and specifying the program name.

Programs can also be loaded by executing a LOAD instruction in
another program that is already in execution. When the super-
visor receives a request to load a program, either from a
terminal or a task already in execution, the supervisor:

1. Finds the program on disk or diskette

2. Finds a section of unused storage large enough to accommo-
date the program

3. Loads the program from disk or diskette

G, Opens any data sets or program overlays

5. Relocates the program into the unused area

6. Starts the program's primary task

Programs are dynamically relocated into storage as load
requests are received, so the size and structure of your

programs can have an effect on system throughput.

Any program can be loaded by the operator, another program, or
an overlay.

Chapter 2. Supervisor and Emulator 39

Overlays

A program can have several overlay programs that utilize the
same overlay area at different times during execution. An
application that needs to be loaded quickly when requested can
benefit by being implemented as an overlay.

You can specify a program as an overlay in a main program wWwith
the Event Driven Language PROGRAM statement. At primary pro-
gram load time, sufficient storage is reserved within the pri-
mary program for the largest overlay. Overlay loads can thus be
performed quickly by the system because the storage has already
been preallocated.

In Figure 5, the application is split into separate programs.
PHASEl, the primary program, loads the overlay programs
(PHASEZ2, PHASE3, and PHASE4) as requested, When PHASEl is
loaded, the loader recognizes that overlay programs are refer-
enced. The loader looks at each program that is designated as
an overlay and reserves enough storage to hold PHASELl plus the
largest overlay program (PHASE3) as shown in Figure 6 on page
61,

PHASE1
application
program
_____ PHASE1
PHASE2
PHASE3
\\\\\ PHASE4

Figure 5. Program overlays

40 SC36-0312

Series /1 storage

Supervisor
Space for
PHASE1 plus PHASE1 |
overlayarea [~ """~ Overlay area large
reserved (Overlay area) enough for PHASES3,
when PHASE1 the largest overlay
is loaded program

(Available
storage)

Figure 6. Program overlays in Series/l1 storage

PHASE2 is loaded when PHASEl issues a LOAD statement referenc-
ing PHASE2. The system loads PHASE2 into the overlay area
already reserved and PHASE2 starts executing. There is no con-
tention for the storage with other applications that are wait-
ing to be loaded in the overlay area because the overlay area is
reserved for the exclusive use of PHASEl overlay programs.

As each overlay program completes execution, PHASE1l loads the
next overlay, until all required programs have run. When
PHASEl terminates execution, the storage reserved for PHASE1l
and its overlays is released.

Program Loading and Task Execution

Programs are ready for execution when they are loaded into
storage from disk or diskette. A program will not execute imme-
diately unless its primary task has a higher priority than the
currently executing task. Programs are loaded when you issue
the $L operator command or when a LOAD instruction is executed
in a task that is in execution. In either case, the program to

Chapter 2. Supervisor and Emulator 41

be loaded is referenced by the name under which it is stored on
disk or diskette.

Multiple copies of the same program can be in storage and
active at the same time. A program can be loaded from one or
more terminals, from one or more programs already executing, or
as an overlay by an executing program,

STORAGE MANAGEMENT‘

With the address relocation translator feature on your
Seriess/1l, the supervisor can provide storage management sup-
port for main storage sizes up to 256K bytes (1K = 10246 bytes).

Storage and Partitions

You can divide storage not used by the supervisor into parti-
tions. A partition is a contiguous fixed length area of stor-
age which can be used for the execution of disk or diskette
resident programs. You can define up to eight partitions for
the 4955, two partitions for the 4952, and one partition for
the 4953,

Each partition can contain more than one program simultaneous-
ly, within the limits of the storage assigned to each parti-
tion. Each partition must be defined as an address space in
some multiple of 2K bytes. :

You can specify the storage size of the processor, the number
of partitions, the maximum number of programs allowed in each
partition concurrently, and the storage to be assigned to each
partition. : :

The supervisor is always located in partition one. The storage
you use in partition one is limited to 64K bytes minus the num-
ber of bytes occupied by the supervisor. All other partitions
have a maximum size of 64K bytes, within the limits imposed by
the amount of storage available. It is also possible to log-
ically prefix part of the supervisor onto each partition using
the mapping capabilities of the address relocation feature.
Houwever, this option limits the size of each of your partitions
to 64K bytes minus the size of the prefixed portion of the
supervisor. . : ‘

42 SC36~-0312

SYSTEM CONTROL BLOCKS

System control blocks are used by the Event Driven Executive
and are not to be altered in your application programs.
Exceptions to this rule can be found in the Language Reference
and Communications and Terminal Applications Guide.

Chapter 2. Supervisor and Emulator 43

44 SC34-0312

CHAPTER 3. DATA MANAGEMENT

This chapter discusses data management concepts and proce-
dures. Among the topics covered are:

. I/0 functions

. Direct access storage devices
. Disk and diskette functions

. Tape functions

. Data set naming conventions

. Storage capacities

. Volume and library definitions

The chapter first presents specifics of data management, then
discusses the utilities with which you can modify data, and
concludes with system concepts and application requirements.

I/0 FUNCTIONS

Terminal Support

Terminal support is designed to be device independent. With
few exceptions, you need not be concerned with the type of
device. The same sequence of terminal output instructions, for
instance, can be used to print data on a matrix or line printer,
on a locally attached Teletype device, on a remote terminal, or
to display the data on an electronic display screen device.

Terminals are defined to the system during system generation.

The high degree of device indepéndence is achieved in part by
treating all terminals as though they were line printers that
differ only in their page sizes (forms length) and margin set-
tings. The multi-terminal support provides instructions
allowing interactive communications between vyou and vyour
application programs. Terminals supported are the 4978 and
4979 display stations, the IBM 3101 Display Terminal, 4973 and
4974 printers, 2741 Communications Terminal, other Series/l
computers, the 5100 and 5110, the Tektronix #40133 DI/DO
Parallel Interface terminals, and teletypewriters and equiv-
alent devices.

3 Registered trademark of the Tektronix Corporation.

Chapter 3. Data Management 45

The terminal used by a program is the same terminal that was
used to invoke the program. Therefore, the terminal assigned
can vary from one program invocation to the next, with no
change to the application program.

Terminals are referenced by symbolic name and accessed through
various instructions. Forms and screen format control can be
dynamically changed within your program and the 64978/6979
display screen can be copied to a hard copy terminal at any
point in the program. : :

Terminals with Special Control Characters

Terminals that have special control characters and/or harduware
capabilities, such as graphics functions, are easily con-
trolled by the terminal instructions.

Graphic terminals which perform point—-to-point vector drawing
and comply with the screen coordinate algorithm are supported
by the terminal instructions and a set of graphic control
instructions.

Terminal I/0

When a program is loaded from a terminal, that terminal is
dynamically designated by the system as the terminal to be used
by terminal I/0 instructions in the program. Each terminal I/0
instruction has exclusive use of the terminal while executing,
and extended control can be requested for multiple I/0 oper-
ations.

If more than one task is using the terminal, terminal oper-
ations from different tasks could become interspersed. MWhen
this is not desirable, you can reserve the terminal for the
exclusive use of a task, thereby preventing other tasks from
using the terminal until the task releases it. You can gain
exclusive control of any named terminal in the system,

Three symbolic terminal names are used by the supervisor for
system utility programs:

SSYSLOG Names the system logging device or operator station,
and must be defined in every system. In the starter
supervisor, $SYSLOG defines a 4978 display station.

$SYSLOGA Names the alternate system logging device. If unre-
- coverable errors prevent use of $SYSL0OG, the system

will use the $SYSLOGA terminal as the system logging
device/operator station. If defined, this device

46 SC34-0312

$SYSPRTR

should be a terminal with keyboard capability, not
just a printer. The starter supervisor defines the
$SYSLOGA terminal as a teletypeuwriter device.

Names the system printer. If defined, the hard copy
output from some system programs will be directed to
this device. The starter supervisor defines a 4974
printer as the $SYSPRTR device.

Terminal Definition and Control Functions:

ATTNLIST

DEQT
ENQT
ERASE

FORMAT

GETEDIT

GETVALUE

IoCcB
PRINDATE

PRINTNUM

PRINTEXT

PRINTIME

PUTEDIT

QUESTION

RDCURSOR

Provides entry to one or more of your asynchronous
attention interrupt handling routines. Produces a
list of command names that you have defined and their
associated entry points

Releases a terminal from exclusive use
Acquires exclusive access to a terminal
Clears designated portions of STATIC type screens

Describes the type of convefSion to be performed on
data '
it according

Moves data from a terminal, converting

to a FORMAT specification

Reads one or more integer values that are entered by
the terminal operator

Describes the attributes of a terminal
Prints the date on the terminal
Converts a floating—-point variable or ‘integer vari-

able to printable form, and writes it on the terminal
with an optional format specification

‘Writes an alphameric text string to a terminal

Prints the time of day on the terminal

Moves data from storage to a terminal, converting it
according to a FORMAT specification

Prints a message and queries the operator for a Y
(yes) or N (no)

Reads the current cursor position

Chapter 3. Data Management 47

READTEXT Reads an alphameric text string from the terminal

TERMCTRL Provides support for special termiﬁal control
features, some of which are device dependent

TERMINAL Defines each input or output terminal attached to
the system, including printers. Use this statement
only during system generation.

WAIT Causés the issuing task to wait until the operator
depresses an ENTER key or a PF key. Specified in
association with the KEY option '

Sensor I/0

Sensor I/0 is used in a variety of application areas, including
process control, laboratory automation, and plant automation.
Sensor I/0 devices available on the Series/1 are as follows:

Digital Inputs/0utput

Aunit of digital sensor I/0 is a physical group of sixteen con-
tiguous points. The entire group of sixteen points is accessed
as a unit on the I/70 instruction level: programming support
allows logical access down to the single point level.

Digital input (DI) is usually used to acquire information from
instruments which present binary encoded output, or to monitor
contact/suwitch status (open/closed). Digital output (DO) is
used to control electrically operated devices through closing
relay contacts, such as pulsing stepping motors.

Process interrupt (PI) is a special formof digital input. If a
point of digital input changes state, and then changes state
again, without an intervening READ operation from the program,
the status change will be undetected. With process interrupt,
a point changing from the off state to on generates a hardware
interrupt, which is then routed through software support to an
interrupt servicing application program that can respond to
the external event which caused the interrupt. Process inter-
rupt is often used for monitoring critical or alarm conditions,
which must be serviced quickly, the occurrence of which must
not go undetected.

48 SC34-0312

Analog Input/Output

A physical unit of analog input (AI) can be a group of eight
points or sixteen points, depending on the type. Analog output
(A0) is installed in groups of two points. Each point of analog
input or analog output is accessed separately.

Analog input is used to monitor devices that produce output
voltages proportional to the physical variable or process
being measured. Examples include laboratory instruments,
strain gauges, temperature sensors, or other non-digitizing
instruments. Digital input was described as monitoring an
on/off status; only two conditions were possible. With analog
input, the information is carried in the amplitude of the volt-
age sensed rather than in its presence or absence.

The starter supervisor contains no support for sensor I/0. You
must do a tailored system generation to include the required
support modules in your own supervisor.

Figure 7 on page 50 shows how sensor devices are connected to a
Series/1 through the 4982 sensor I/0 unit. The devices (DI, DO,
PI, AO, and AI) attach to a controller, which in turn attaches
to the Seriess/1. The sensor I/0 attachment (controller), and
each of the devices attaching to it, have unique hardware
addresses. In this figure, the physical connections are there,
and the hardware addresses are assigned (wired in), but the
starter supervisor in storage lacks the support necessary to
operate the devices.

Chapter 3. Data Management 49

Series/1
St.uz]erwsor Digital output
wit Sensor 1/0 group address 70
sensor 1/0 attachment
support

Digital output
' group address 71
Address 68 Digital input

group address 72

Figure 7. Sensor device connections

Building a tailored supervisor involves the assembly of a
series of system configuration statements that reflect the I/0
configuration you wish to support. For more information on sys-
tem configuration statements, refer to "Chapter 6. System
Configuration" on page 75. When programs reference these
devices, they use symbolic references, rather than actual
addresses. The I/0 definition statement (IODEF) establishes
the logical link between the addresses defined in the supervi-
sor, and the symbols used to read from and write to the devices
at those addresses from an application program.

All sensor-based input/output operations are performed by exe-
cuting a Sensor Based I/0 (SBIO) instruction. The type of oper-
ation is determined by the type of device referenced in the
instruction. For more information on the SBIO statement, refer
to Language Reference. The symbolic reference to a logical
device in the SBID statement is linked to the definition in the
IODEF statement, which relates that device to the hardware
address specified by the system configuration statement at
system generation time.

50 SC36-0312

N

ensor Based I/0 Definition and Control Statements

IODEF An Event Driven Language instruction that estab-
lishes the logical link and definition of subgroups
of sensor based 1I/0 devices defined in the supervi-
sor and the symbols used to read from and write to
the subgroups.

SBIO An Event Driven Language instruction that performs
analog and digital input/output operations.

SENSORIO A system configuration statement that defines the
harduware device addresses for the supervisor.

SPECPIRT An Event Driven Language instruction that provides
return linkage from the special process interrupt
routines specified in the IODEF instruction.

THE EXIO INTERFACE

The EXIO interface permits you to directly control the oper-
ation of Series/1 devices. VYou supply the immediate device
control blocks (IDCBs) and Device Control Blocks (DCBs) that
are required for 1/0 operations to be performed. This allows
close control of performance and response time. Any device
meeting the standard I/0 interface, attached to the Series/l
can be controlled through the EXIO interface. To use the EXIO
interface, the programmer should be familiar with assembler
language coding, I/0 programming in general, and the devices
involved in the I/70 operations.

Definition and Control Statements

The instructions and statements necessary to use EXIO are:

DCB An Event Driven Language instruction that creates a
Device Control Block

EXIO An Event Driven Language instruction that requests
execution of an I/0 command

EXOPEN An Event Driven Language instruction that specifies
the device addresses to which EXIO commands Will be
directed

EXIODEV A system configuration statement that defines the
devices to be supported via the EXIO interface

Chapter 3. Data Management 51

IDCB An Event Driven Language instruction that creates an
Immediate Device Control Block

DIRECT ACCESS STORAGE ORGANIZATION

The following definitions are used by the Event Driven Execu-
tive.

Sectonr

The smallest addressable unit of storage on a disk or diskette
is known as a sector (or a record on the 4963). Sectors on a
4962 disk and records on a 4963 contain 256 bytes of data.
Therefore, a 4962 sector and a 4963 record are equivalent to a
record. Diskette sectors can be either 128, 256, 512, or 1024
bytes long. However, in the Event Driven Executive system the
IBM standard for information interchange, 128 bytes, has been
adopted. Therefore, two diskette sectors equal one record.
This is handled within the system and you refer only to 256 byte
records.

Volume

A volume is a physical direct access storage device, or a
. subset of a physical direct access storage device. You can
assign a name, or volume label, to each volume. The volume
label must be 1-6 alphameric characters. A volume begins on a
cylinder boundary and contains an integral number of cylin-
ders, The maximum volume size in records is 32,767. A fixed
head area, if it exists, is defined as another volune.

Volumes containing programs or macros are usually called

libraries. A library is the collection of data and programs and
the directory used to access them.

Directory

A directory is a series of contiguous records at the beginning
of a library. The directory describes the library contents in
terms of allocated data sets, programs, and free space.

52 SC34-0312

Data Set

A data set is *a group of contiguous records which have been
allocated -- reserved and assigned collectively. The data set
name consists of 1 to 8 characters. No special restrictions
exist within the system for valid names but the system utility
programs require a name consisting of alphameric characters
for access and allocation.

A data set, or member of a library, can contain either data or
an executable program. These data sets may also be partitioned
data sets when allocated with the $PDS utility. $PDS defines
members as a group of contiguous records within the partitioned
data set which have been allocated and assigned a name.

Record

A record is the basic unit of direct access storage available
to an application program. The records are fixed, unblocked,
and 256 bytes long. Data set records are numbered beginning
with one.

Access

Data set access routines are available within the supervisor
for multiple diskettes and disks, with or without fixed head
features. File access is either sequential or direct. Multiple
logical volumes can be created on any physical disk drive.

Note: A diskette is always a single volume.

When a program is first loaded for execution, all of the
defined data sets are opened for access (reading or writing),
beginning with record number 1. Sequential and random access
operations can be mixed. For instance, if five sequential READ
instructions of one record each have been issued to a data set,
then the next sequential operation will involve record number
six. A random access READ could be issued for some other
record, say record 23, and the next sequential operation would
still take place with record 6.

Volumes on disk devices are defined during system generation,
using the DISK configuration statement. For further informa-
tion on the DISK configuration statement, refer to "Chapter 6.
System Configuration” on page 75. Diskette volumes are defined
with the utility program $INITDSK. Refer to the Utilities,
Operator Commands, Program Preparation, Messages and Codes for
a discussion of S$INITDSK.

Chapter 3. Data Management 53

DISK AND DISKETTE FUNCTIONS

The following instructions are provided for disk and diskette

functions:

DISK

NOTE

POINT

READ

WRITE

Defines each direct access storage device and the
volumes it contains. Use the DISK statement only
during system generation

Saves the next record pointer in a program location
that you define

Sets the next record pointer from a program variable
that you define

Transfers one or more 256-byte records from disk or
diskette to the requester's storage

Transfers one or more 256-byte records from the
requester's storage to disk or diskette

The DSCB statement generates a data set control block (DSCB)
which provides information required to access a data set.

The $DISKUT3 data management utility provides execution time
support that allows you to allocate, delete, open, and rename

data sets.

It also allows you to release space from a data set.

54 SC34-0312

4962/4963

Primary A

4964/4966 volume > EDXVO1 \

O : EDXVO2~—___ {
Secondary i

: volumes—>4 EDXV03 ——

Each Directory : | o R
volume and e— | DIRECTORY-| DS1 [. DS2 DS3 | DSs4

contains ! data sets
L (library)

REC1 | REC2 . REC3 REC4 RE

Data set contains ___//
256 byte records

e [BE9) 2D

sectors on .

diskette O One sector

(transparent on 4962 One-half

to user) I : sector on 4963
(transparent
to user)

Figure 8. DASD logical organization

In addition to the single primary volume required for each disk
storage unit, as many secondary volumes as required can be
defined (within the physical limits of the device). As with
primary volumes, secondary volumes are defined at system
generation wusing DISK configuration statements and are
initialized by the $INITDSK utility.

Chapter 3. Data Management 55

Volumes can also exist on diskette. Each diskette has a sepa-
rate volume occupying the entire diskette. Diskette volumes
are also initialized using the $INITDSK utility. '

TAPE FUNCTIONS (VERSION 2 ONLY)

The following instructions are provided for tape functions?

TAPE Defines each tape device to be used on the system.
Use the TAPE statement only during system generation

NOTE Saves the next record pbinter in a program location
that you define

POINT Sets the next record pointer from a program variable
that you define

READ Transfers records of 18 to 32767 bytes in length from
tape to the requester's storage

WRITE Transfers records 18 to 32766 bytes in length from
the requester's storage to tape

CONTROL Allows physical manipulation, such as; forward or
backward spacing of records or files and the writing
of tapemarks.

The DSCB statement generates a data set control block (DSCB)
which provides information required to access a data set.

The $TAPEUT1 utility allows you to allocate tape data sets and
copy data sets or volumes from disk or diskette to tape, tape to
disk or diskette, or tape to tape. The utility also allows you
to change tape attributes. .

For information on tape organization see "Chapter 11. Tape
Organization” on page 233.

DATA SET NAMING CONVENTIONS

Data sets are specified for system use at one of four times:

1. When coding a PROGRAM instruction and completing the DS=
operand

2. When coding a LOAD instruction and completing the DS= oper-
and

56 SC34-0312

3. When a program is loaded by the $L operator command

4., During execution of some system utility programs

A general data set specification consists of two parts:

1. The data set name (dsname)

2. An optional volume label (volume) which specifies the vol-
ume on which the data set resides

The format for a data set specification is:

dsname,volume

The volume specification is optional and if not specified, the
system assumes that the target data set resides on the primary
volume on the direct access device from which the system was

IPLed.

dsname

volume

An alphameric character string of eight characters.
When fewer than eight characters are specified,
blanks are added to the string.

An alphameric character string of six characters.
To locate the volume on a disk, it must have been
defined in the VOLSER= parameter of a DISK config-
uration statement in the system I/0 definition. To
locate the volume on a diskette or tape, the TAPE or
DISK statement must be in the system I/0 definition
and the volume name loaded into the system by issuing
the operator command SVARYON, specifying the
diskette or tape device address. The diskette must
have . been initialized by $INITDSK. Tapes must be
initialized by the $TAPEUTL utility. When fewer than
six characters are specified, blanks are added to
the right to complete the string.

Two special data set names are knouwn to the system and must be
used with care:

SSEDXVOL

$SEDXLIB

Used to obtain absolute record reference to an
entire volume on disk or diskette.

Used to obtain absolute record reference to the

beginning of the volume directory on disk or
diskette within a volume.

Chapter 3. Data Management 57

STORAGE CAPACITIES

Di

sk/Diskette

The following table summarizes storage capacities of the vari-

ous Series/1 direct access storage devices.

Device Storage Cylsdev|Logical |Trk/cyl|Volume max
capacity rcds/trk (cyls)
(records)

Single-sided

(type 1)

diskette 949 77 % 13 1 73

Double-sided

(type 2) ‘

diskette 1924 77% 13 2 74

4962 disk 303%x%

-1 36120 : 60 2 273

-1F 36600 60 2 273

-2 36120 60 2 273

-2F 36600 60 2 273

-3 54180 60 3 182

-4 54180 60 3 182

4963 disk 360%%% :

-23 92160 66 4 128

-29 114560 64 5 102

-58. 229632 64 10 51

-66 - 252032 64 11 46

type 1 diskettes.
data (001-074) on type 2 diskettes.
2 cylinders are reserved for alternate tracks and 1

cylinder

% %

cylinder 001
assignments;

¥ %%

while cylinder 358
sectors and cylinder 359

is reserved for IPL and volume

302

. % 73 cylinders are available for data (001-073) on
74 cylinders are available for

On both types,

301 cvlinders are available for data (000,
is reserved for alternate sector
is reserved for CE use.

identification.

002-301);

358 cylinders are available for data (0-357),
is reserved for alternate
is reserved for CE use.

58

$C34-0312

Tape

The following figure summarizes approximate storage capacities
for 800, 1200, and 2400 foot tape volumes. The Event Driven
Executive 4969 Magnetic Tape Subsystem supports 18 to 32,767
byte records. The record lengths depicted are used for illus-
trative purposes only. These estimates are approximate and are
based on the hardware specifications for the 4969 tape drive.
(Refer to IBM Series/1 4969 Magnetic Tape Subsystem
Description, (GA34-0087) for more detailed information.) Use
these estimates to calculate the size of the reel or volume
needed to fulfill your requirements.

TAPE CAPACITY
NUMBER OF RECORDS
800 BPI 1600 BPI
Tape length
800 feet -

256 byte records 10,078 11,411
1024 byte records 5,019 7,265
8192 byte records 882 1,654

1200 feet

256 byte records 15,118 17,117
1024 byte records 7,529 10,898
8192 byte records 1,324 2,482

2400 feet ‘

256 byte records 30,236 34,234
1024 byte records 15,058 21,797
8192 byte records 2,648 4,964

DEFINING VOLUMES

Volumes and libraries are defined at system configuration
time. The system handles disks, diskettes and tapes different-
ly, as described below.

Chapter 3. Data Management 5%

Diskette

One, and only one, *volume is defined for each 4964 diskette
drive to be known to the supervisor. Houwever, for the 64966
Diskette Magazine Unit, up to 23 diskette volumes can be
mounted. The diskette mounted in slot one is considered the
primary volume; the rest of the diskettes are secondary vol-
umes. Because diskettes are mountable storage media, the actu-
al volume label, library origin, and library size must be
determined by the system each time a new diskette is mounted.
This is accomplished through the operator command $VARYON.
Volume labels are recorded on each diskette in accordance with
IBM Standards for Information Interchange.

Disk

At least one volume is defined for each 4962 or 4963 disk drive
to be known to the supervisor. Because volume size is limited
to 32,767 records, several volumes must be defined per disk to
be able to use the entire storage capacity.

The first defined volume, the primary volume, has its origin at
cylinder zero. Because certain records and cylinders are
reserved for system use, the library associated with a primary
volume cannot begin with the first record.

The library origin of additional volumes, called secondary
volumes, can be the first record in the volume.

For example, addressability of an entire 4962 disk could be
established with the following definitions:

Volume origin Volume size Library origin
(cylinder #) (cylinders) (record #)
Primary 0 153 241

(cylinder 2)

Secondary 153 150 1

Volume labels for all disk volumes are maintained within the
supervisor and are not physically recorded on the device.

The following table summarizes the library origin for primary
and secondary volumes.

60 SC34-0312

Library origin
Primary Secondary
volume volume
Single-sided i
Diskette 14 NZA
Double-sided
Diskette 27 N/7A
4962 Disk
Models
1, 2 2641 1
1F, 2F 241 1
3, 4 361 1
4963 Disk
Models
29 129 1
23 129 1
64 129 1
58 129 1
N/A means not applicable.

Figure 9. Library origins

The fixed-head area of a 4962-1F, 4962-2F, 4963-23, or 4963-58
is automatically defined as a secondary volume by the DISK con-
figuration statement; you are required to specify an associ-
ated volume 1label. Use the FHVOL parameter of the DISK
configuration statement to assign the volume label. The fixed
head volumes contain 480 records on the 4962 and 512 records on
the 4963. The library origin on both devices is record one.

A fixed head volume is treated in a special manner:

. During the disk initialization part of IPL, each data
record is read and reuwritten to reduce the probability of
errors.,

. If the IPL device is a disk with fixed heads, the system,
during the loader initialization part of IPL, searches the
fixed-head volume for the transient loader routine $LOAD-
ER. If it is found, it is used for program loading, thereby
providing the fastest and most constant loader perform-
ance, If $LOADER is not present, the system attempts to

Chapter 3. Data Management 61

locate it in the IPL device's primary volume.

Tape (Version 2 only)

One, and only one, volume is defined for each tape drive knhoun
to the supervisor. Tape volumes are not defined at system
configuration time. Because tapes are a mountable storage
medium, the actual volume label is determined by the systemn
each time a tape is mounted. The operator command $VARYON
causes a tape to be mounted. For more information on tape
labels and volumes, refer to "Chapter 11. Tape Organization" on
page 233 .

62 SC34-0312

CHAPTER 4. OPERATOR COMMANDS AND UTILITIES

OPERATOR COMMANDS

When the ATTN key on a terminal is pressed, the system responds
with the prompt character, >.

The operator commands that can be entered are:

SA Displays the names and load points of
all programs that are active within the
partition to which the requesting ter-
minal is currently assigned

SB Completely erases (blanks) all pro-
tected and unprotected areas on the
screen of the requesting terminal

sC Cancels a program and frees the storage
that it occupied

SCP Changes a terminal's partition
assignment

sD Displays the contents of storage in
hexadecimal

SE Advances the system printer to the top
of form (performs a page eject)

SL Loads a program

SP : Patches storage locations

ST Sets date and time for the 24-hour sys-
tem clock/calendar. It can be used only
from terminals named $SYSLOG or

$SYSLOGA. Operator input is not vali-
dated by the supervisor.

SVARYOFF Places a disk, diskette, or tape in
offline status

SVARYON * Places a disk, diskette, or tape in
online status:

SKW Displays the 24—-hour clock and the date
You may add attention interrupt handling routines by using the
ATTNLIST statement. MWhen you code the statement, you provide

your command name and its address. This command name may then
be entered whenever the system issues the > prompt.

Chapter 4. Operator Commands and Utilities 63

UTILITIES

The utilities provide productivity aids for Series/1 applica-
tion program development, program maintenance, and distributed
processing functions with a host Systems/370. These utilities
are independent program load modules capable of running con-
currently with other application programs or utilities. Types
of utilities are: .

. Data Management utilities
U Communication utilities.

. Text editing utilities

. Diagnostic utilities

. Graphics utilities

. Terminal utilities

. Program preparation utilities

Data Management utilities

Data Management utilities can define, patch, dump, delete,
rename, compress, copy, and initialize data sets. The follow-
ing Data Management utilities are available:

SCOMPRES Compresses libraries

SCOPY Copies disk or disketteldata sets or volumes

SCOPYUT1l Copies disk or diskette data sets, dynamically
allocating the receiving data sets

SDASDI Initializes, formats, and verifies disks or
diskettes

SDISKUT1l Allocates and deletes disk or diskette data sets;
lists directory data '

SDISKUT2 Patches and dumps disk or diskette data sets; lists
: the hardware error log

SIAMUTI Builds and maintains Indexed Access Method data sets

SINITDSK Initializes and verifies a direct access storage
volume

64 5C34-0312

SMOVEVOL Transfers volumes of data between systems and
creates backup copies of an online data base

$SPDS Manages partitioned data sets

STAPEUT1 (Version 2 only) Prints tape records, copies data
sets to or from tape, copies tape to tape, initial-
izes tapes, dumps and restores disk devices on tape,
and runs a tape exerciser as a hardware/softuare
test :

Communication Utilities

Communication utilities provide options for communicating with
another processor and diagnostic aids for troubleshooting
teleprocessing lines. Two facilities are available to commu-
nicate with a System/360 or System/370:

. The Host Communications Facility which requires the Host
Communications Facility IUpP on the System/360 or
System/370 and provides direct two-directional transfer
between host direct access data sets and Series/1 storage.
Also, a job submission capability allows you, through a
terminal on the Series/1, to invoke batch program exe-
cution on the Systems/360 or System/370 host system. A
point-to-point leased line and the BSC Single Line feature
#2074 is required for Host Communications Facility oper-
ation.

. Host. communications similar to IBM 278073780 remote job
entry (RJE) capabilities to host RJE systems. (Refer to the
Communications and Terminal Applications Guide for more
information.) Data streams including either transparent or
non—-transparent data can be submitted to the host, as can
single card image commands. Printed and/or punched output
from the host can be stored in disk or diskette data sets or
printed on any supported terminal attached to the
Series/1.

These utilities are:

SBSCTRCE Traces 1I/0 activities on a binary synchronous
: communication line.

SBSCUT1 Formats binary synchronous trace files for printing.

SBSCUTZ2 Checks out the binary synchronous communications
access method.

Chapter 4. Operator Commands and Utilities 65

SHCFUT1 Uses the Host Communications Facility on the
Series/1 to interact with the Host Communication
Facility on the System/370.

SPRT2780 Prints spool records produced by $RJE2780.
SPRT3780 Prints spool records produced by $RJE3780.

SRJE2780 Allous communication betheen " a Systems/360 or
System/370 and a Series/1 by simulating an IBM 2780.

SRJE3780 Allows communication between a Systems360 or
System/370 and a Series/1 by simulating an IBM 3780.

SRMU Allows a user written HOST program to communicate
: with a remote Series/l1 over a binary synchronous
communications line. (Version 2 only)

Text Editing Utilities

The text editing utilities provide facilities for entering and
editing source programs.

SEDIT1 A line editor which allows you to enter and edit
source programs while other programs are executing.
$EDIT1 provides commands for data communication
using the Host Communications Facility IUP on the
System/370 so program preparation can be controlled
from a Series/1 terminal.

SEDITIN A line editor which allows you to enter and edit
source programs. It is the same as $EDIT1 except
that it edits data that resides on Series/l direct
access volumes.

SFSEDIT A full screen editor for entering and editing source
programs using a 4978 or 4979 display terminal. The
source may be located either on the Series/1 or on a
host processor.

The text editing utilities provide you with a line of the Sys-
tems/7370 0S/TSO text editing facility in the editors. The full
screen editor provides a subset of functions similar to the
Systems7370 Structured Programming Facility (SPF) full screen
editor.

In the full screen editor, functions such as browse, edit, and
merge are provided. Additional commands are offered in both
editors for read/write from or to source data sets on either
the local Series/l1 or a remote host System/370 with the Host
Communications Facility IUP. This allows full control of pro-
gram development from a Series/1 terminal. Full-screen edit-

66 SC34-0312

ing is limited to the 4978 and 4979 display terminals,

Diagnostic Utilities

The following diagnostic utilities are available:
SDEBUG An interactive program debugging aid

SDUMP Formats and displays the data saved by $TRAP on an
error condition

SIOTEST Performs the following functions:

o Tests the operation of sensor based I/0 features
. Lists the hardware configuration of the Series/1
. Lists the devices sﬁpporfed by the supervisor
. Lists volume information
$LOG Logs I/0 errors into a data sgt
STRAP Intercepts certain class interrupts and records the

environment on a disk or diskette data set

$DEBUG allows you to stop, modify, trace, and restart an appli-
cation program with no impact on the execution of other pro-
grams.

The sensor I/0 test utility ($IOTEST) allows you to exercise
the sensor 170 (AI, A0, DI, DO, PI) devices on a Series/1, You
can perform functions such as read/urite digital input/output,
write digital output with selected time intervals, and
read/write analog. During any exercising function, which can
be selected via a terminal command, trace printing is done to
the terminal for each exercising option.

Graphics Utilities

The following graphics utilities are available:

SDICOMP Generates and modifies displays using an online
composer

SDIINTR Uses an interpreter to display and process the data
base

Chapter 4. Operator Commands and Utilities 67

$DIUTIL

Graphics utilities enable you to generate,

Maintains the resulting data base

maintain, and dis-

play two- and three-dimensional fixed graphic backgrounds, and

to store them
available from your application programs.
also be superimposed over the displayed fixed graphic

grounds.

Access to these background files is
Realtime data can
back-

in files.

Terminal Utilities

The following terminal utilities are available:

SFONT

$IMAGE

$PFMAP

STERMUT1

STERMUTZ2

STERMUT3

The scréen formaf builder
design formatted screen

Creates and modifies character image tables for 4978
display terminals
for 4978764979

Défines formatted images

display terminals

screen

Displays program function key assignments

Alters logical device names, address assignments, or
terminal configurations

Loads control and image stores for a 4978 display
Sends messages from one terminal to another

enables

utility (SIMAGE) you to
images for static screens on the
497876979 Display Stations. These images are generated inter-

actively on a terminal and can be saved in disk or diskette data

sets for later retrieval
Images previously
retrieved and modified.

and use by application programs.

stored on the disk or diskette can be

Program Preparation Utilities

The following program preparation utilities are available:

$COBOL
SEDXASM
SEDXLIST

SLINK

Compiles COBOL Language programs
Assembles Event Driven Language programs
Prints SEDXASM listings

Link edits object modules

68 SC34-0312"

SPL/I Compiles PL/I Language programs (Version 2 only)

SPREFIND A prefind capability for data sets and overlay pro-
grams to shorten program loading time

SS1ASM Assembles Series/1 assembler language and Event
Driven Language programs

SUPDATE Converts an object module into an executable program

SUPDATEH Converts a host object module into an executable
program

The Job Stream Processor Utility

The job stream processor utility can be used to invoke a prede-
fined sequence of program preparation wutilities and pass
parameters to them. $JOBUTIL can be invoked by the Session
Manager.

Chapter 4. Operator Commands and Utilities 69

70 SC34-0312

CHAPTER 5. PROGRAM PREPARATION FACILITY

The Program Preparation Facility consists of an Event Driven
Language assembler, a compilation listing program, and a link-
age editor. The Program Preparation Facility has the follouwing
features:

® - Program Preparation Facility programs can run concurrently
with other programs.

U Multiple: copies of the assembler, listing program, and
the linkage editor can run concurrently.

. Source programs can be stored on disk or diskette.
U All references to programs and files are by symbolic names.

The Program Preparation utilities can be invoked from any ter-
minal and loaded into any available storage. Although any of
the Program Preparation Facility programs can execute from a
diskette based system, the limitations of file space and access
speed severely restrict the program preparation capability. A
disk-based system is recommended for an efficient, full capa-
bility development system.

EVENT DRIVEN LANGUAGE COMPILER

The Event Driven Language assembler assembles programs written
exclusively in the Event Driven Language instruction set. This
includes application programs as well as supervisor system
generation (definition and configuration) statements. If your
program consists of Series/1 assembler language instructions
or contains Event Driven Language USER exits, you must assemble
the program with the Series/1 Macro Assembler.

The assembler uses a set of overlay programs which define and
describe each instruction in the Event: Driven Language
instruction set. You can add new instructions to the assembler
by writing additional overlay programs.

LINKAGE EDITOR

The output from the Series/1 Macro Assembler, the Event Driven
Language assembler, the PL/I compiler, the FORTRAN compiler,
or the COBOL compiler is input to the linkage editor After
processing by the linkage editor, the relocatable object mod-
ule must be converted to an executable program by $UPDATE. The

Chapter 5. Program Preparation Facility 71

advantages of linkage editing are:

. Large programs can be broken into smaller segments,
improving development productivity and maintainability

. Series/1 macro assembler routines can be included in the
program : :
] Library modules, such as the Mathematical and Functional

Subroutine Library or other object library routines, can
be link edited with an Event Driven Language progranm.

It is possible to bypass the link edit step. A single program
module can be assembled with the Event Driven Language compiler
if all the coding is done with Event Driven Language
instructions. The resulting ocutput must be converted to an
executable program by the utility $UPDATE, even if the assem-—
bled object module contains no external references. However,
when using $S1ASM to assemble Event Driven Language and/or
assembler programs, the resulting output must be converted by
$LINK to an acceptable format for input to $UPDATE.

72 SC34-0312

PART ITI -~ SYSTEM GENERATION AND CONFIGURATION

The creation of a customized supervisor is a two step process.
Step 1l is a definition phase. Step 2 is the generation phase.

In step 1, you define the configuration of the system by
preparing configuration statements which describe the attri-
butes of the devices (such as disks, diskettes, and terminals)
you want your system to support. You also define the number and
size of the partitions that will be available in your system.
Configuration statements are described in "Chapter 6. System
Configuration™ on page 75.

In step 2, you enter your configuration statements and assenble
them. Then you modify the system—-supplied INCLUDE file,
$LNKCNTL, ensuring that all the support you require is built
into the supervisor. The linkage editor combines the supervi-
sor definition with the supervisor functions you selected to
create a customized supervisor.

The system generation process is described in "Chapter 7. Sys-
tem Generation"” on page 115.

PART II - SYSTEM GENERATION AND CONFIGURATION 73

76 SC34-0312

CHAPTER 6. SYSTEM CONFIGURATION

SYSTEM CONFIGURATION STATEMENTS

The characteristics of your Series/1 installation are defined
by configuration statements. They are used in the system gen-
eration process only.

. BSCLINE - Define a binary synchronous line

o DISK - Define direct access storage devices

o EXIODEV - Define EXIO interface devices

. HOSTCOMM - Define host communication support

* SENSORIO - Define sensor 1/0 devices

e SYSTEM - Define processor chéracteristics

. TAPE - Define tape device (Version 2 only)

. TERMINAL - Define terminals

. TIMER - Define system timer feature

Chapter 6. System Configuration 75

BSCLINE

BSCLINE - Define a Binary Synchronous Line

BSCLINE defines the binary synchronous lines to be supported in
the generated system. One BSCLINE statement is required for
each line to be referenced by programs using the Binary Syn-
chronous Communications Access Method. All BSCLINE statements
must be grouped together with the 1last BSCLINE statement
including an END=YES specification, . . (Refer to the
Communications and Terminal Applications Guide for a
description of the Binary Synchronous Communications Access
Method.)

If Remote Management Utllwty is to be used, a BSCLINE statement
is necessary. ‘

Syntax

blank BSCLINE. ABDRESS=,TYPE=,RETRIES=,MC=,END=

Required: None
Defaults: ADDRESS=9,TYPE=PT,RETRIES=6,MC= NO,END NO
Indexable: Not Appllcable

Operands Descriontion
ADDRESS= The hardware address (in hexadecimal) of the line.
TYPE= PT - The line is a point-to-point (non-switched)

line with a single remote station. The adapter
should be jumpered with DTR permanently enabled.

SM - The line is on a switched network and con-
nection will be established manually by the opera-
tor. The adapter should be jumpered for switched
line operation and DTR should not be permanently
enabled.

SA - The line is on a switched network and calls
should be answered automatically by the BSC Access
Method (during BSCOPEN). The adapter should be
jumpered for switched line operation and DTR should
not be permanently enabled.

76 SC34-0312

RETRIES=

MC

END=

Examples:

BSCLINE

MC - The Series/1 is the controlling station on a
multipoint line. The adapter should be Jjumpered
with DTR permanently enabled and multipoint line
should not be jumpered.

MT - The Series/1 is a tributary station on a multi-
point line. The adapter should be jumpered for
multipoint tributary operation with DTR permanent-
ly enabled. ‘ ‘

The number of attempts .which should be made to
recover from common error conditions before posting
a permanent error.

NO - The binary synchronous adapter located at the
address specified in the ADDRESS= operand is either
a medium -speed, single line feature card or a high
speed, single line feature card.

YES - The binary synchronous adapter located at the
address specified in the ADDRESS= operand is part
of a multi-line controller feature configuration.
When generating supervisors using multi-line con-
troller attachments, note the following:

. The character string YES must be specified.
Any other character string will be equivalent
to NO.

. All multi-line feature cards must start at a

base address ending with either X'0" or X'8'. A
BSCLINE statement must exist for the 1line at
this base address if any of the other lines of
the multi-line attachment are to be used.

YES, for the last BSCLINE statement in the system
definition module.

BSCLINE ADDRESS=28,TYPE=PT,RETRIES=10,MC=NO
BSCLINE ADDRESS=30,TYPE=SM,RETRIES=2,MC=YES,END=YES

Chapter 6. System Configuration 77

DISK

DISK - Defihe Direct Access Storage

DISK defines the direct access storage devices and logical
volumes to be supported in the generated system. All DISK
statements must be grouped together. The last DISK statement
must include an END=YES specification.

DISK is only needed in the system generation process. Refer to
"Chapter 3. Data Management" on page 45 for a general
discussion of direct access storage organization, functions,
and naming conventions.

Syntax
blank DISK DEVICE=, ADDRESS=,VOLSER=,VOLORG=,
VOLSIZE=,VERIFY=,BASEVOL=,FHVOL=,
LIBORG=,END=, TASK=
Required:

For 4964, 4966: DEVICE=,ADDRESS=

For 4962, 4963: DEVICE=,ADDRESS=,VOLSER=,VOLSIZE=

For 4962, 4963 (with fixed head): DEVICE=,ADDRESS=

VOLSER=,VOLSIZE,FHVOL=
Defaults: LIBORG=241 for 4962-1 or 4962-2 primary volume

LIBORG=1 for secondary volume
LIBORG=361 for 6962-1F or 6962-2F primary vol
LIBORG=129 for 4963-64 or 4963-58 primary vol
LIBORG=129 for 4963-29 or 4963-23 primary volum
END=NO, TASK=NO,VERIFY=YES

Operands Description
DEVICE= 4964, to define a 4964 Diskette Drive,
or

one of the following for the six models of the 6962
disk:

78 SC34-0312

ADDRESS=

VOLSER=

VOLORG=

VOLSIZE=

VERIFY=

DISK

4962-1 for a 9.3 megabyte unit
4962-1F for a 9.3 megabyte unit
' with fixed heads
6962-2 for a 9.3 megabyte unit

with a diskette unit
4962-2F for a 9.3 megabyte unit

with fixed heads

and a diskette unit
4962-3 for a 13.9 megabyte unit
4962-4 for a 13.9 megabyte unit

with a diskette unit

or

one of the following for the four models of the 4963
disk:

4963-29 for
4963-23 for
4963-64 for
4963-58 for

29 megabyte unit

64 megabyte unit

oy oY

or
4966, to define a 4966 Diékette Magazine Unit.

Note: If 4962 or 4963 is specified, VOLSER= must be
specified; LIBORG= may be specified.

The hexadecimal address of the unit. This parameter
is required for primary volumes only.

Volume label (1-6 characters) to be assigned to the
unit. This operand is required if the DEVICE=4962-
or DEVICE=4963—- 1is specified. Otheruwise, it is
ignored.

The physical cylinder number of the first cylinder
of the volume. Cylinder numbering begins with zero.
A primary volume must begin at cylinder zero. (Ke-
fer to Figure 9 on page 58.)

The size of the volume in physical cylinders.
(Refer to Figure 9 on page 58.)

NO, to omit the WRITE-with-verify option. YES, to
cause each MWRITE to be verified. YES is the
default,., This parameter is required for primary
volumes only.

Chapter 6. System Configuration 79

23 megabyte unit with fixed heads

58 megabyte unit with fixed heads

DISK

Note: You should choose the VERIFY=YES option for
volumes containing critical data. This causes a
slight performance degradation but improves reli-
ability. With the YES option, each WRITE is imme-
diately followed by a READ, thus lengthening the
operation by the time it takes the unit to make one
revolution. -

BASEVOL= The volume label of the primary volume if a
secondary volume is being defined.

FHvVOL= The volume label to be assigned to the
automatically generated secondary volume if the
DISK statement is defining a primary volume on any
4962 or 4963 having fixed heads.

LIBORG= The origin, by number of records, of the directory
on the volume. Defaults are described under 'Syn-
tax"'. This operand is only applicable when
DEVICE=4962 or 4963 and .is intended for special use
when the initial portion of the volume is reserved
for other storage.

END= YES, for the last DISK statement in the system
definition module.

TASK= YES, to cause a neWw I/0 task to be generated. This .
task will be used to service I/0 requests for this
and subsequent primary volumes until a new DISK
statement with TASK=YES is encountered. NO, or
omit, if a new task is not required. This operand is
valid only for primary volumes and is optional.

Specifying TASK=YES on a primary volume allocates a Task Con-
trol Block that is used in servicing READ and WRITE requests
for the group of devices being defined. The effect is to allow
READ and WRITE requests to proceed in parallel with requests to
other ‘groups of devices. The resulting overlap may signif-
icantly improve performance when concurrent requests to dif-
ferent groups of devices occur. To achieve maximum flexibility
and performance, you should specify TASK=YES on each primary
volume. Additional storage required for each TASK=YES is 128
bytes. :

‘80 S5C34-0312

DISK

Example 1: One’I/0 task for all direct access drives.

DISK
DISK

DISK

DISK

DISK

DEVICE=64964, ADDRESS=02

DEVICE=64962-1F, ADDRESS=03,VOLSER=EDX002,VOLSIZE=153,
FHVOL=EDX004
DEVICE=4962-1,VOLSER=EDX003,VOLORG=153,VOLSIZE=150,
BASEVOL=EDX002 ,

DEVICE=4963-23, ADDRESS=30,VOLSER=EDX005,VOLSIZE=128,
FHVOL=FHOO5
DEVICE=6963-23,VOLSER=EDX006,VOLSIZE=128,
END=YES,VOLORG=128, BASEVOL=EDX005

Example 2: 0One I/70 task for the two 4964s and a second I/0 task
for the 4962.

DISK
DISK
DISK

DISK

DEVICE=4964,ADDRESS=02

DEVICE=64964, ADDRESS=12

DEVICE=4962-1F, ADDRESS=03,VOLSER=EDX002,VOLSIZE=153,
FHVOL=EDX004, TASK=YES
DEVICE=4962-1F,VOLSER=EDX003,VOLORG=153,VOLSIZE=150,
BASEVOL=EDX002,END=YES

Chapter 6. System Configuration: 81

EXIODEV

EXIODEV - Daefine EXIO Interface Device

EXIODEV defines the devices to be supported via the EXIO inter-
face in the generated system. All EXIODEV statements must be
grouped together. The last EXIODEV statement must include an
END=YES specification. . :

Syntax

blank EXIODEV ADDRESS=,END=,MAXDCB=,RSB=

Required: ADDRESS=
Defaults: MAXDCB=0,RSB=0,END=NO
Indexable: Not applicable

Ogerands Description
ADDRESS= Tﬂe device address (two hexadecimal digits).
END= Specify YES for the last EXIODEV statement in the

system definition module.

MAXDCB= The maximum number of chained DCBs which will be
used for this device. Must be three or less.

RSB= The number of residual status bytes the device will

transfer. Enter zero or an even decimal number
between 4 and 16 inclusive.

Examples

EXIODEV ADDRESS=00
EXIODEV ADDRESS=EO0,RSB=12,MAXDCB=2,END=YES

Note: Any device defined via EXIODEV should not be defined on
any other statement such as DISK or TERMINAL. Doubly defined
devices Wwill cause unpredictable results when accessed by, for
example, a combination of READ/WRITE and EXIO. You must load
any control store that is required by the device.

82 SC34-0312"

HOSTCOMM

HOSTCOMM =~ Define Host Communications Support

HOSTCOMM defines the type and address in the generated system
of the device to be used for host communication support. This

support operates in conjunction with Host Communications
Facility IUP.

Syntax

blank | HOSTCOMM DEVICE=,ADDRESS=

Required: DEVICE=, ADDRESS=
Defaults: None

Operands Description
DEVICE= The type of communication to be used.

BSCA, for Binary Synchronous Communications Adapt-
er support. This is the only device supported and
must be a single line BSC adapter (feature 2074 or
2075). Only one is allowed.

ADDRESS= The hexadecimal address of the device.

Example

HOSTCOMM DEVICE=BSCA,ADDRESS=09

Chapter 6. System Configuration 83

SENSORIO

SENSORIO - Define Sensor I/0 Devices

SENSORIO defines the sensor I/0 devices to be supported in the
generated system. All SENSORIO statements must be grouped
together with the last one including an END=YES specification.

Syntax

blank SENSORIO ADDRESS=,DEVICE=,PI=,DI=,D0=,AI=,A0=,
AITYPE=, LEVEL=,END=

Required: DEVICE,ADDRESS
Defaults: AITYPE=RELAY,LEVEL=1,END=NO

Operands Description

ADDRESS= The base address of the device (in hexadecimal).
This is the only required address if DEVICE=IDIO
unless PI is needed on this unit.

DEVICE= IDIO - The integrated digital I/0 non-isolated fea-
ture (feature #1560).

4982 - The sensor I/0 unit.

Note: For the PI, DI, DO, AI, and A0 parameters, multiple
addresses must be included in parentheses.

Operands Description
DI= The address or list of addresses of the digital

input group(s) on this device.
PI can be read as DI.

PI= The address or list of addresses of the digital
input group(s) to be used as process interrupt.

DO= The address or list of addresses of the digital
output group(s) on this device.

AO

The address or list of addresses of the analog out-
put point(s) on this device.

84 SC34-0312

Al=

AITYPE=

LEVEL=

END=

Examples

SENSORIO

SENSORIO

SENSORIO

SENSORIO

SENSORIO

SENSORIO

The address or list of addresses of the analog input
multiplexor feature(s) on this device.

The type of AI multiplexer(s). Valid entries are:

] RR or RELAY - for relay

. SS or SOLID - for solid state

(The names have a one-to-one relationship with

addresses on the AI operand.)

A number (from 0-3) to assign the harduware inter-
rupt level to the device.

Note: This assignment is for all features on that
device. '

YES, for the last SENSORIO statement in the system
definition module.

DEVICE=IDIO,ADDRESS=68

DEVICE=4982, ADDRESS=60,A0=65,D0=62,D1=64, c
PI=63,AI=61,AITYPE=SS

DEVICE=4982, ADDRESS=70,DI=(70,71)

DEVICE=4982, ADDRESS=60,AI=(62,63), c
AITYPE=(RELAY,SOLID),A0=64,DI=(65,66),D0=67

DEVICE=IDIO,ADDRESS=68,P1=68,END=YES

Chapter 6. System Configuration 85

SYSTEM

SYSTEM - Define Processor

SYSTEM defi

nes the characteristics of the processor and the

system generation options. This statement must be specified

once.

Syntax

blank

Required:
Defaults:

SYSTEM STORAGE=,MAXPROG=,PARTS=,DATEFMT=,
IABUF=,COMMON=

STORAGE= : :
MAXPROG=10,PARTS=32,DATEFMT=MMDDYY
IABUF=20,COMMON=EDXSYS

Operands

STORAGE=

MAXPROG=

Description

The size in K bytes (K=1024) of, the Series/l
processor storage. Enter one of the following num-
bers: 16, 32, 48, 64, 80, 96, 112, 128, 160, 192,
226, or 256.

The maximum number of concurrently executing
programs to be allowed in the partition. Add one to
your calculated number for each occurrence of
$JOBUTIL in that partition. Add two for each occur-
rence of the session manager in that partition.
Four words of storage are required in the nucleus
for each program specified.

If a storage size larger than 64K bytes is speci-
fied, multiple partitions must be defined. You
must specify a list of the maximum number of concur-
rently executing programs allowed in each parti-
tion. ,

The number of programs which can run concurrently
in a system is a function of several variables, such
as:?

. Processor storage

. Program size

86 SC34-0312

PARTS=

DATEFMT=

SYSTEM

. Processor time requirements

These items vary with each installation.

" The number of 2K (1K=1024 bytes) blocks of storage

to be assigned to each partition. Use only if STOR-
AGE= is specified as greater than 64. Enter a list
showing the maximum size of each partition. Up to
eight partitions can be defined for the 4955, up to
two for the 4952, and one for the 4953. The list
must contain the same number of entries as the list
coded for MAXPROG=,

The method for calculating the maximum size for
partition one is as follouws:

Determine the available storage in the first 64K by
subtracting the size of the supervisor from 64K.
See Appendix A to estimate the supervisor'size.

The size of partition one is determinéd when you
IPL, by using the smaller of:

. The size you define in the PARTS= parameter
U 64K minus the size of the supervisor

The maximum value that can be specified is 32; the
minimum is 2. When specifying the s5ize to be
assigned to partition one, you may code 32 rather
than calculating the value, if you wish partition
one to have all storage not used by the supervisor.
Otherwise, you must calculate the size of partition
one.

The Multiple Terminal Manager partition size can be
calculated by using the information in the
Communications and Terminal Applications Guide.

The format to be used when the date is displayed
(PRINDATE or $W) or when entering the date via $T.
A return code is set in response to a GETTIME
request with the DATE option. ‘

Specify MMDDYY for a date format of month.day.year.
Specify DDMMYY for a date format of day.month.year.
MMDDYY is the default.

Note: Timer support must be included in your
supervisor in order to have date support.

Chapter 6. System Configuration 87

SYSTEM

IABUF=

COMMON=

Example 1

The maximum number of interrupts that may be buf-
fered by the task supervisor. The default value is
adequate for most systems. The value should be
increased if the system could be overloaded by a
large number of interrupts. (The system will stop
or enter a continuous run loop.) Each increment
increases the supervisor storage requirements by
four bytes. :

The label of the last supervisor address to be
mapped in every partition. The value will be auto-
matically rounded upward to a 2K byte boundary. To
map the entire supervisor, specify COMMON=START.
To map only the supervisor data areas, specify
COMMON=EDXSVCX. The default, COMMON=EDXSYS,
implies no mapping. Refer to "$SYSCOM -~ Define
Optional Common Data Area" on page 113 for
additional information.

SYSTEM STORAGE=96 ,MAXPROG=(3,2,3), c
PARTS=(32,6,10)

This three partition system is possible on a 96KB 4955 and maps

as follows:
PARTITION 1
PARTITION 2
PARTITION 3
1. Partiti

concurr

2. Partiti
concurr

3. Partiti
concurr

Note: The 2
poses only.

Example 2

88 SC34-03

28KB SUPERVISOR 36KB USER SPACE

12KB USER SPACE

20KB USER SPACE

on 1 is 36KB and can execute up to three programs
ently. :

on 2 is 12KB and can execute up to two programs
ently.

on 3 is 20KB and can execute up to three programs
ently.

8KB supervisor size is used for illustrative pur-

12

SYSTEM

SYSTEM STORAGE=64, MAXPROG=5

A map of this single partition system is as follous?

PARTITION 1 28KB SUPERVISOR 36KB USER SPACE

Up to five programs can execute concurrently.

Note: The 28KB supervisor size is used for illustrative pur-
poses only.

Example 3

SYSTEM STORAGE=196,MAXPROG=(1,2,1,3,4,1), c
PARTS=(9%,12,7,4,20,32)

This six partition system is possible on a 196KB 4955 and maps
as follows:

PARTITION 1 28KB SUPERVISOR 18KB USER SPACE
PARTITION 2 24KB USER SPACE
PARTITION 3 14KB USER SPACE
PARTITION 4 8KB USER SPACE
PARTITION 5 40KB USER SPACE
PARTITION 6 64KB USER SPACE

1. Partition 1 is 18KB and can execute one program at a time.

2. Partition 2 is 24KB and can execute up to two programs
‘concurrently.

3. Partition 3 is 14KB and can execute one program at a time.

4, Partition 4 is 8KB and can execute up to three programs
concurrently.

5. Partition 5 is 40KB and can execute up to two programs
concurrently.

Chapter 6. System Configuration 89

SYSTEM

6. Partition 6 is 64KB and can execute one program at a time
Note: The 28KB supervisor size is used for jllustrative pur-
poses only.

Example 4

SYSTEM STORAGE=128,MAXPROG=(10,10,10), c
' PARTS=(27,9,23)

This three partition system is possible on a 128KB 4955 and
maps as follows:

PARTITION 1 28KB SUPERVISOR 36KB USER SPACE
PARTITION 2 18KB USER SPACE
PARTITION 3 46KB USER SPACE

1. Partition 1 is 36KB and can execute up to ten programs
concurrently.

2. Partition 2 is 18KB and can execute up to fen programs
concurrently.

3. Partition 3 is 46KB and can execute up to ten programs
concurrently.

Note: The 28KB supervisor size is used for illustrative pur-
poses only.

Example 5

SYSTEM STORAGE=128,MAXPROG=(3,6), c
PARTS=(32,32),COMMON=EDXSVCX

This two partition system is possible on a 128KB 4952 and maps
as follows:

PARTITION 1 | 28ks SUPERVISOR 36KB USER SPACE

PARTITION 2 4KB CONTROL BLOCKS 60KB USER SPACE

1. Partition 1 is 36KB and can execute up to three programs
concurrently.

90 SC34-0312

SYSTEM

2. Partition 2 is 60KB and can execute up to six programs
concurrently. The programs all have direct addressability
to supervisor control blocks (for example, the CVT and DVT)
because of the COMMON=EDXSVCX parameter.

3. 'Nhen the date is displayed, it will be in month, day, and
vear format.

Note: The 30KB supervisor size and the 4KB control block size
are used for illustrative purposes only.

Example 6

SYSTEM STORAGE=128,MAXPROG=(4,4), c
PARTS=(32,32),DATEFMT=MMDDYY

This two partition system is possible on a 128KB 4952 and maps
as followus:

PARTITION 1 30KB SUPERVISOR 34KB USER SPACE

PARTITION 2 64KB USER SPACE

1. Partition 1 is 34KB and can execute up to four programs
concurrently.

2. Partition 2 is 64KB and can execute up to four programs
concurrently.

3. When the date is displayed, it will be in month, day, and
vear format.

Note: The 30KB supervisor size is used for illustrative pur-
poses ohly.

Example 7

SYSTEM STORAGE=256, c
MAXPROG=(3,1,5,2,2,1,1,4), c
PARTS=(15,4,21,13,17,11,8,23)

This eight partition system is possible on a 256KB 64955 and
maps as follows:

Chapter 6. System Configuration 91

SYSTEM

PARTITION 1 32KB SUPERVISOR 30KB USER SPACE

PARTITiONHZ 8KB USER SPACE

PARTITION 3 42KB USER SPACE

PARTITION 4 26KB USER SPACE

PARTITION 5 34KB USER SPACE

PARTITION 6 22KB USER SPACE

PARTITION 7 16KB USER SPACE

PARTITION 8 46KB USER SPACE

-1, Partition 1 is 30KB and can execute up to three programs
concurrently.

2. Partition 2 is 8KB and can execute one program at a time.

3. Partition 3 is 42KB and can éxécufe up to five programs
concurrently.

4. Partition 4 is 26KB and can execute up to two programs
concurrently.

5. Partition 5 is 34KB and can execute up to two programs
concurrently. .

6. Partition 6 is 22KB and can execute one program at a time,

7. Partition 7 is 16KB and can execute one progrém at a fime

8. Partition 8 is 46KB and can executé up to four progréms

concurrently.

Note: The 32KB supervisor size is used for illustrative pur-
poses only.

Example 8

SYSTEM STORAGE=96,MAXPROG=(3,4), c
PARTS=(16,18),COMMON=START

This two partition system is possible on a 96KB 4952 and maps

as follows:

92

SC34-0312

SYSTEM

PARTITION 1 28KB SUPERVISOR 32KB USER SPACE
PARTITION 2 36KB USER SPACE
1. Because COMMON=START was specified, the supervisor is

2.

3'

mapped in both partition 1 and partition 2, providing
direct addressability to the supervisor for all programs
that execute on this systen. '

Partition 1 is 32KB and can execute up to three programs
concurrently.

Partition 2 is 36KB and can execute up to four programs
concurrently.

Note: The 28KB number for the supervisor is used for illustra-
tive purposes only. :

Chapter 6. System Configuration 93

TAPE

TAPE - Define TapeVDevice (Version 2 only)

TAPE defines the tape devices on a system. One TAPE statement
is required for each tape device on the system. It is recom-
mended that you group all DISK statements together, followed by
all the TAPE statements. The last TAPE or DISK statement must
include an END=YES specification.

| Syntax

blank TAPE DEVICE=, ADDRESS=,DENSITY=,LABEL=,ID=,
' TASK=,END=
Required: DEVICE=,ADDRESS=,1ID=
Defaults: DENSITY=1600,LABEL=SL,TASK=NO,END=NO

| Operands Description

DEVICE= Device type (4969 to define IBM 4969 tape unit)

ADDRESS= A two digit hexadecimal number specifying the
address assigned to the unit

DENSITY= Tape density to be used for this device
(800,1600,DUAL). When DUAL is coded, density
defaults to 1600 BPI.

LABEL= Type.of processing to be done on this device. Stand-
ard label (SL), non-label (NL), and bypass label
processing (BLP) are the only types supported.

ID= A one-to six-character name that is associated with
the device. This operand is used primarily for
specifying the drive when NL or BLP is used.

TASK= YES, causes a new I/0 task to be generated. This
task is used to service I/0 request for this and
subsequent tapes until a new TAPE statement wWith
TASK=YES 1is encountered. For best performance,
specify TASK=YES for each tape unit that has a con-
troller.

END= YES, for the last statement in the DISK/TAPE

sequence.

94 S5C34-0312

TAPE

| Example

TAPE DEVICE=4969,ADDRESS=4C,DENSITY=1600, X
LABEL=SL,ID=S$TAPELl, X
TASK=YES,END=YES :

Note: END=YES is specified only
once for the DISK/TAPE definition statements.

Chapter 6. System Configuration 95

TERMINAL

TERMINAL - Define Input/Output Terminals

TERMINAL defines each input/output terminal to be supported in
the generated system. OQutput only devices, such as line
printers, are also specified with TERMINAL statements. All
TERMINAL statements must be grouped together with the last
statement including an END=YES specification.

A TERMINAL statement specifying DEVICE=VIRT can be entered in
an application program provided exactly the same statement is
entered in the system configuration program. All TERMINAL
statements within the application program are automatically
converted to an IOCB statement. The 1label on the TERMINAL
statement is used for the label and the operand of the IOCB
statement.

Before preparing your TERMINAL statements, you need to know the
characteristics of your terminals, the way they will be
attached to your Series/1, and how you plan to use them in your
application. Review the appropriate hardware manuals, the
topic entitled "Terminal I/0" in the Language Reference, and
the appropriate topics in Communications _and Terminal

Applications Guide.

If you use the Remote Management Utility and need the PASSTHRU
function, two virtual terminals are required. For a detailed
description of the PASSTHRU function see the Remote Management
Utility chapter in Communications and Terminal Applications
Guide. See Figure 10 on page 107 for a sample configuration.

96 SC34-0312

TERMINAL

Syntax

label TERMINAL DEVICE=,ADDRESS=,PAGSIZE=,LINSIZE=,
CODTYPE=,TOPM=,BOTM=,NHIST=,LEFTM=,RIGHTM=
OVFLINE=, LINEDEL=,CHARDEL=,CRDELAY=,ECHO=,
BITRATE=,RANGE=, LMODE=,ADAPTER=,C0D=,CR=,
LF=,HDCOPY=,ATTN=,PF1=,SYNC=,SCREEN=,PART=
DI=’D0=’PI=}END=’TYPE=F '

Required: DEVICE= ,and one of the following:
. ADDRESS= except for DI/D0O terminals
. DI=,D0=,PI= for DI/D0O terminals

Defaults: PART=1,END=NO

Operands Description

DEVICE= One of the following codes for the indicated
device:
TTY A 3101 Display Terminal or other ASCII

Terminal attached via Teletypeuwriter
Adapter (7850)

4979 4979 display station attached via 3585
Adapter

4978 4978 display station attached via RPQ
00203&

49746 4974 matrix printer attached via 5620
Adapter '

6973 4973 1line printer attached via 5630
Adapter

2741 2741 communications terminal attached

via 1610 controller

4013 Graphics terminal attached via 1560
adapter (Refer to Communications and
Terminal Applications Guide for hardware

\ considerations.)

Chapter 6. System Configuration 97

TERMINAL

ADDRESS=

PAGSIZE=

CODTYPE=

LINSIZE=

ACCA A 3101 Display Terminal or other ASCII
terminal attached via 1610 controller or
2091 controller with 2092 adapter or 2095
controller with 2096 adapter (Refer to
Communications and Terminal Applications

Guide for hardware considerations.)

PROC Processor—-to—-processor communication

VIRT Inter-program communication. (Refer to
"Chapter 14, Inter-Program
Communications"™ on page 279.)

The address (in hexadecimal) of the device. (Refer
to "Chapter 14. Inter-Program Communications"™ on
page 279 for the use of this parameter in con-
nection with virtual terminal communications.)

The physical page size (form length) of the I/0
medium. Specify a decimal number between 1 and the
maximum value which is meaningful for the device.
For printers, specify the number of lines per page,
or for screen devices the size of the screen in
lines. This operand is not required for the
4978764979 display; its value is forced to 24.

The transmission code used by the terminal. Specify
either ASCII, EBCDIC, EBCD (PTTC/EBCD), CRSP
(PTTC/correspondence), or EBASC (8 bit data inter-
change code) as in the following table:

DEVICE= TYPE OF ADAPTER
1610 or
7850 2091 wrs/2092 2095 ws2096
TTY ASCII N7A NZA
(default)
2741 N7A Specify: N/A
EBCD
or
CRSP
ACCA N/A EBASC Specify:
(default) ASCII

-The maximum length of an input or output line for

the device. The value of this operand can be less
than the maximum which the device can accommodate

98 SC34-0312

TOPM=

NHIST=

BOTM=

LEFTM=

RIGHTM=

OVFLINE=

LINEDEL=

CHARDEL=

TERMINAL

(for example, 80 for the 497874979 display station
or 132 for the 4974 printer), but the value is then
fixed and cannot be altered dynamically.

The top margin (a decimal number between zeroc and
PAGSIZE-1) to indicate the top of the logical page
within the physical page for the device.

The number of history lines to be retained when a
page eject is performed on the 497874979 display.
The line at TOPM+NHIST corresponds to logical line
zero for purposes of the terminal I/0 instructions.
When a page eject (LINE=0) is performed, the screen
area from TOPM to TOPM+NHIST-1 will contain lines
from the previous page. This operand is meaningful
for roll screens only. (See the discussion of the
SCREEN operand which follows.)

The bottom margin, the last usable line on a page.
Its value must be between TOPM+NHIST and PAGSIZE-1.
If an output instruction would cause the line num-
ber to increase beyond this value, then a page
eject, or wrap to line zero, is performed before the
operation is continued.

The left margin, the character position at which
input or output will begin. Specify a decimal value
between zero and LINSIZE-1.

A value (between LEFTM and LINSIZE-1) that deter-
mines the last usable character position wWwithin a
line. Position numbering begins at zero.

YES, if output lines which exceed the right margin
are to be continued on the next line.

A two-digit hexadecimal character that defines the
character the operator will enter when he wishes to
restart an input line. In some cases, input of this
character causes a repeat of the previous output
message. Usually, this operand is not meaningful
for devices such as the 4979 display station, whose
input is formatted locally before entry. (For the
ACCA terminals attached via the 1610 or 2091 con-
trollers and the 2092 adapter, code in mirror
image., Refer below for a description of mirror
images.)

A tuwo-digit hexadecimal character which indicates
deletion of the previous input character. It is
meaningful only for devices whose mode of trans-
mission is one character at a time, as described in

Chapter 6. System Configuration 99

TERMINAL

CRDELAY=

ECHO= -

BITRATE=
RANGE=
LMODE=

ADAPTER=

the LINEDEL operand. For the ACCA terminals
attached via the 1610 or 2091 controllers and the
2092 atlapter, enter in mirror image.

The number of idle times required for a carriage

.return to complete for teletypeuwriter devices. If

printing occurs during the carriage return, CRDELAY
is too small. For interprocessor communications
(DEVICE=PROC), refer to the Communications and

. TJerminal Applications Guide.

NO, for devices that do not require input charac-—
ters to be written back (echoed) by the processor
for printing.

YES (the default) is appropriate for most devices
connected through the teletypewriter adapter. NO
is required for ACCA. See the LF parameter:
description regarding suppression of the echo of
the CR character. o o

The rate (in bits per second) that this terminal
will be operating. (Used with ACCA, 2741 and PROC
support only.)

Enter HIGH or LOW to match hardware jumper that is
installed on the adapter card. (Used with ACCA,
2761 and PROC support only.)

SWITCHED or PTTOPT. If this liné is uéed with a
switched connection, then enter SWITCHED. Other-
wise, enter PTTOPT. (Used with ACCA support only.)
One of the following to indicate the ACCA type:
SINGLE For the single line controller

TWO For the eight line controller with up to
two lines active .

FOUR For the eight line controller with up to
four lines active

SIX For the eight line controller with up to
: : six lines active o

EIGHT For the eight line controller with up to
eight lines active

100 SC34-0312

COD=

CR

LF

HDCOPY=

TERMINAL

All multiple line feature cards must start at a base
address ending with with X'0' or X'8'. A terminal
statement with DEVICE=ACCA must exist for the line
at the base address.. Furthermore, the terminal
defined as the base address must be specified as the
first terminal for the multiline controller. The
remaining terminals defined on the multiline con-
troller (if_any) must immediately follow the base
address terminal and should be in ascending order
by address.

ote: For DEVICE=2741, only SINGLE is allowed.
This should match the jumpers on the controller

cards. (Refer to the Communications and Terminal
Applications Guide for hardware considerations.)

Additional characters, other than the CR=, ATTN=,
and LINEDEL= values, that will terminate a READ
operation. (COD means change of direction, for
example, READ to WRITE.) (Used with ACCA only.)
Code in mirror image as follows:

coD=11
or .
coD=(12,B6,42...)

From one to four COD characters may be entered.

The character to be tested to determine if a new
line function is to be performed. (Code in mirror
image for ACCA terminals attached via the 1610 or
2091 controllers with the 2092 adapter.)

The character to be sent to the terminal when a new
line function is to be performed. Code in mirror
image for ACCA terminals attached via the 1610 or
2091 controllers with the 2092 adapter. If the same
value is coded for LF= as was coded (or defaulted)
for CR= then the CR character which terminates an
input operation will not be echoed to the terminal;
the terminal is assumed to be an auto-line feed
device,

Support for the 497874979 display station includes
a means of printing the contents of the display
screen on a hardcopy device for permanent record.
(For an explanation of the hardcopy feature, refer
to Utilities, Operator Commands, Program
Preparation, Messages and Codes). The hardcopy
function is defined by coding:

Chapter 6. System Configuration 101

TERMINAL

ATTN=

HDCOPY=(terminal name, key), -

terminal name The symbolic name of the terminal to
which the hardcopy contents will be
directed

key The code of the program function key
which is to invoke the function. For
example, HDCOPY=($SYSPRTR,4) desig-
nates $SYSPRTR as the hardcopy
device and PF4 as the activating key.
If the hardcopy terminal name alone
is specified, as for example in
HDCOPY=$SYSPRTR, then the default is
PF6. Note: The terminal specified
(Terminal name) must not be defined
with ATTN=NO.

NO, if the attention key and the 497874979 PF keys
are to be disabled for the terminal. Such disabling
is then permanent for the generated system. If you
do not specify ATTN=, the default is the ATTN key.

LOCAL, to limit the attention functions to those
defined by ATTNLISTs within programs loaded from
the terminal. -

NOSYS, to exclude only the system functions ($L,

$C, etc.).

NOGLOB, to exclude only the global ATTNLIST func-
tions. (GLOBAL is the ATTNLIST of all programs in
the same partition at one time.)

Note: This operand can also be entered with a two-
digit hexadecimal character for the attention key
if the system default is not desired.

The attention key can be redefined with a two—-digit
hexadecimal character for the 4978/74979 displays or
ASCII terminals.

For terminals attached via the 1610 or 2091 con-
trollers and the 2092 adapter, use mirror image.
(Refer to "Mirror Image" on page 109 for a
discussion of mirror image.)

"For the 3101 display terminal, enter X'D9' if the

terminal is attached via the 1610 or 2091 control-
lers and X'9B' if it is attached via the 2095 con-
troller. You may have the Mark Parity Switch set on
(refer to the IBM 3101 Display Terminal Description

102 SC34-0312

PF1=

SYNC=

SCREEN=

TERMINAL

GA18-2034, for information on suitch settﬁngs).

The default for ATTN for ASCII terminals is ASCII
X'"1B', the ESC key. The mirror image of X'1B' is
X'D8'., Note: If the terminal being defined is spec-—
ified in the HDCOPY= parameter of an other termi-
nal, do not code ATTN=NO.

For the 4978 display, code the two-digit
hexadecimal character which is to be interpreted as
Program Function key 1. Successive values are then
interpreted as PF2 and PF3.

The default for this operand is 2.

This keyword applies to virtual terminal
communications. Code SYNC=YES if synchronization
events will be posted to this virtual terminal.

This means that attempted actions over the virtual
channel will be indicated in the task control word.
This allows the two terminals to synchronize their
actions so that when one terminal is writing, the
other is reading.

SYNC=NQO is the default.

One of the following to indicate whether the
terminal is a hardcopy or screen device:

YES or ROLL for screens which are to be operated
like a typeuriter.

For screen devices which are attached through the
teletypewriter adapter, this indicates that a pause
Wwill be performed when a screen-full condition
occurs during continuous output.

NO for hardcopy devices. For 4978 or 6979 devices,
NO results in inhibiting the pause when the screen
fills up (the screen acts as a-roll screen).

STATIC for a full-screen mode of operation, if this
mode is supported for the device.

Note: The initial terminal configuration should be
STATIC only if the terminal is reserved for data
display and data entry operations. Normal system
operations, such as those directed to $SYSLOG or
those involving the utility programs, assume a roll.
screen configuration. The application program can
define the static screen configuration by means of

Chapter 6. System Configuration 103

TERMINAL

PART=

END=

TYPE=

the ENQT and IOCB instructions described in the
Language Reference.

A number (1-8) to indicate the partition with which
the terminal is normally associated.

This is valid only if the STORAGE= operand of the
SYSTEM statement was specified to be greater than
64. You can change the partition assignment at exe-
cution time with the $CP Command described in
Utilities, Operator Commands, Program Preparation,
Messages and Codes.

YES, for the last TERMINAL statement in a system
definition module.

Specify DSECT to generate a CCB DSECT in your
program. for programs processed by $S1ASM. Do not
specify DSECT in programs processed by SEDXASM; use
COPY CCBEQU elsewhere in your program.

The following three:operands are for terminals connected via
digital I/0 only:

Operands

Description

DI=(address,termaddr)

address The digital input group address.

termaddr The hardware subaddress (0-7) of the
terminal defining the value used to
select the terminal for digital input.

DO=(address, termaddr)

address The digital output group address

termaddr The harduware subaddress (0-7) tb define
the digital output subaddress of the ter-

PI=(address,bit)

minal

address The process interrupt group address.

bit The bit (0-15) to define the particular
interrupting point assigned to the ter-
minal.

1064 SC34-0312

TERMINAL

Terminal support is provided for digital I/0 devices such as
the Tektronix 4010 Series of Display Terminals equipped with
the General Purpose Parallel Interface (Tektronix Custom Fea-
ture Number CM021-0109-03) or terminals having equivalent
hardware interfaces. (Refer to the Communications and

Terminal Applications Guide.)

Examples and Defaults

Default values for optional parameters on the TERMINAL state-
ment vary with the device type. In the following examples, the
default assignments for each device support are shouwn as if
they were explicitly coded in the TERMINAL statement. If a
parameter is not shown, then it is not relevant for the device.
Address assignments are for illustration only.

497874979 Display TERMINAL Statement

TERMINAL DEVICE=4978 (or 4979),ADDRESS=04,PAGSIZE=24, C
LINSIZE=80,TOPM=0,NHIST=12,B0TM=23,LEFTM=0, c
RIGHTM=79, SCREEN=ROLL,0OVFLINE=NO,ATTN=YES

G976 Matrix Printer or 4973 Line Printer TERMINAL
Statement

TERMINAL DEVICE=4974 (or 4973),ADDRESS=01,PAGSIZE=66, C
LINSIZE=132,TOPM=3,B0TM=63,LEFTM=0, : c
RIGHTM=131,0VFLINE=NO

Chapter 6. System Configuration 105

TERMINAL

ASCII Terminal vfa 7850 Adapter TERMINAL Statement

TERMINAL DEVICE=TTY,ADDRESS=00,PAGSIZE=35,LINSIZE=80,
CODTYPE=ASCII,TOPM=0,B0OTM=34,LEFTM=0,
RIGHTM=79,SCREEN=NO,QOVFLINE=NO, LINEDEL=7F,
CHARDEL=08,CRDELAY=0,ECHO=YES, ATTN=YES,
CR=0D,LF=0A

OO0

IBM 2741 Terminal TERMINAL Statement

TERMINAL DEVICE=2741,ADDRESS=08,PAGSIZE=66,
LINSIZE=130,CODTYPE=EBCD, TOPM=0,B0TM=65,
LEFTM=0,RIGHTM=129,SCREEN=NO,OVFLINE=NO,
LINEDEL=AO,CHARDEL=5D,CRDELAY=0, ECHO=NO,
CR=5B,LF=5B,BITRATE=134, ADAPTER=SINGLE

OO0

ASCII Terminal via 1610 Controller TERMINAL Statement

TERMINAL DEVICE=ACCA,ADDRESS=70,PAGSIZE=35,
LINSIZE=80,CODTYPE=EBASC, TOPM=0,
BOTM=34,LEFTM=0,RIGHTM=79, SCREEN=NO,
OVFLINE=NO,CRDELAY=0,ECHO=NO,
BITRATE=300,RANGE=HIGH, LMODE=PTTOPT,
ATTN=YES, ADAPTER=SINGLE,LF=5B,CHARDEL=11

OO0

PROC (via 1610 Controller) TERMINAL Statement

TERMINAL DEVICE=PROC,ADDRESS=7F,CODTYPE=EBCDIC,
LINSIZE=130,CRDELAY=(PROMPT, 30000),
BITRATE=9600,RANGE=HIGH,CR=5B, LF=5B

106 SC34-0312

TERMINAL

40134 (DI/DO Parallel Interface) TERMINAL Statement

TERMINAL DEVICE=4013,DI=(80,01),D0=(87,01),
PI=(84,064),PAGSIZE=35,LINSIZE=72,
CODTYPE=ASCII,TOPM=0,B0OTM=34, LEFTM=0,
RIGHTM=71,SCREEN=NO,OVFLINE=NO,
LINEDEL=7F,CHARDEL=08,CRDELAY=0,ECHO=YES,
CR=0D,LF=0A

GOOO0

Remote Management Utility using the
PASSTHRU function - TERMINAL Statements

CDRVTA TERMINAL DEVICE=VIRT, ADDRESS=CDRVTB, c
SYNC=YES, LINSIZE=132

CDRVTB TERMINAL DEVICE=VIRT,ADDRESS=CDRVTA, c
SYNC=NO,LINSIZE=132

Note: This example shouws a line size of 132. The
maximum line size value is 254.
The names CDRVTA and CDRVTB are required.

The following statements are coded with values that are not
defaults for parameters PAGSIZE, ATTN, CR, CHARDEL, LINEDEL,
ADAPTER, BOTM, SCREEN, BITRATE, RANGE, and MODE. Use these val-
ues if the IBM 3101 Display Terminal is attached to your sys-
tem. For DEVICE=ACCA, vou must set the mark parity suitch on
(refer to the IBM 3101 Display Terminal Description,
GA18-2033, for information on sWwitch settings).)

4 Registered trademark of the Tektronix Corporation.

Chapter 6. System Configuration 107

- TERMINAL

IBM 3101 TERMINAL Statement (via 7850 adapter)

TERMINAL

DEVICE=TTY,ADDRESS=00,CRDELAY=4,
PAGSIZE=24,SCREEN=YES

IBM 3101 TERMINAL Statement (via 2095 controller)

TERMINAL

DEVICE=ACCA, ADDRESS=60,BITRATE=110,
PAGSIZE=24,LINSIZE=80,
CODTYPE=ASCII,TOPM=0,B0TM=23,LEFTM=0,
RIGHTM=79,SCREEN=YES,OVFLINE=NO,

LINEDEL=FF,CHARDEL=88,CRDELAY=0,ECHO=NO,

RANGE=LOW, LMODE=PTTOPT,
CR=8D, LF=0A,ATTN=9B,ADAPTER=FOUR

OO0

IBM 3101 TERMINAL Statement
(via 1610 or 2091 controller)

TERMINAL

DEVICE=ACCA, ADDRESS=6B,BITRATE=110,
PAGSIZE=24,LINSIZE=80,
CODTYPE=EBASC,TOPM=0,BOTM=23, LEFTM=0,
RIGHTM=79,SCREEN=YES,O0VFLINE=NO,
LINEDEL=FF,CHARDEL=88,CRDELAY=0,ECHO=NO,
RANGE=LOW, LMODE=SWITCHED,
CR=B1,LF=50,ATTN=D9,ADAPTER=EIGHT -

COOOOO

108 SC34-0312

TERMINAL

IBM 3101 Model 2 (block mode) under Multiple
Terminal Manager TERMINAL Statement
(via 1610 or 2091 controller)

TERMINAL

DEVICE=ACCA,ADDRESS=08,BITRATE=2400,
PAGSIZE=24,LINSIZE=80,
CODTYPE=EBASC,TOPM=0,B0TM=23, LEFTM=0,
RIGHTM=79,SCREEN=YES,OVFLINE=NO,
LINEDEL=FF,CHARDEL=11,CRDELAY=0,ECHO=NO,
RANGE=HIGH, LMODE=PTTOPT,
CR=B1,LF=50,ATTN=FB, ADAPTER=SINGLE

OO0

IBM 3101 Model 2 (block mode) under Multiple
Terminal Manager TERMINAL Statement
(via 2095 controller)

TERMINAL

DEVICE=ACCA,ADDRESS=61,BITRATE=2400,
PAGSIZE=24,LINSIZE=80,
CODTYPE=ASCII,TOPM=0,BO0TM=23,LEFTM=0,
RIGHTM=79,SCREEN=YES,OVFLINE=NO,
LINEDEL=FF,CHARDEL=88,CRDELAY=0,ECHO=NO,
RANGE=HIGH, LMODE=PTTOPT,
CR=8D,LF=0A, ATTN=DF, ADAPTER=FOUR

OOOOO00

Mirror Image

Mirror

X'F1?
XT31'

X'8F"

image

is used by ASCII terminals attached via the 1610
or 2091 controllers and the 2092 adapter. Mirror image reverses
the bit pattern for data. For example, the EBCDIC character 1
would look as follows:

EBCDIC

ASCII

Mi

rror Image EBCDIC

Chapter 6. System Configuration

109

TERMINAL

Xr8c? Mirror Image ASCII

When using XLATE=NO on Event Driven language instructions
PRINTEXT and READTEXT, the data sent must be in mirror image.
Data received is in mirror image.

ASCII Terminal Codes

Terminals and other devices equivalent to the Teletype ASR
33735 are referred to in this document as "ASCII terminals."”
These terminals may be attached to the Series/l in a variety of
ways. Note that while the bit representation of a character
appearing at the terminal is the same for all the attachments,
two different representations for a given character are used
internally.

One representation is ASCII, in which the characters appear in
main storage in ASCII code. This code is used by features
#7850, #2095, and #2096.

The other representation is the Eight Bit Data Interchange
Code. It is used by the 1610 and 2091 controllers and the 2092
adapter. This representation is the mirror image within a byte
of the ASCII representation. The bits appear swapped
end-for-end within each byte.

Note also that ASCII terminals may use even, odd, or no parity.
The parity bit appears as the high order bit in ASCII code and
as the louw order bit in Eight Bit Data Interchange Code. You
must incorporate the proper parity, if any, within the data
characters. You must also incorporate the proper parity, if
any, within the control characters specified by the LINEDEL,
CHARDEL, COD, CR, and LR parameters of the TERMINAL statement.

Symbolic Reference to Terminals

The optional label on the TERMINAL statement is used to assign
a name to the device for purposes of reference by the applica-
tion program. Three such names have special meaning to the
supervisor and should be assigned to the appropriate device:

SSYSLOG Names the system logging device or operator station,

and must be defined in every system. In the starter
supervisor, $SYSLOG defines a 4978 display station.

110 SC34-0312

TERMINAL

$SYSLOGA Names the alternate system logging device. If unre-
coverable errors prevent use of $SYSLOG, the system
will use the $SYSLOGA terminal as the system logging
device/operator station. If defined, this device
should be a terminal with keyboard capability, not
just a printer. The starter supervisor defines the
$SYSLOGA terminal as a teletypeuriter device.

SSYSPRTR Names the system printer. If defined, the hard copy
output from some system programs will be directed to
this device. The starter supervisor defines a 4974
matrix printer as the $SYSPRTR device.

$SYSLOG is referred to by the supervisor and the utility pro-
grams and must be defined on every system. $SYSLOGA is an
optional assignment which will be used, if defined, as the out-
put device for $SYSLOG messages if $SYSLOG develops an uncor-
rectable error condition.

$SYSPRTR is an optional specification which, if defined, will
be used as the output device by some of the utility programs.
If $SYSPRTR is not defined, the output will be directed to the
terminal from which the program was invoked.

Assignment of a name to a terminal designates that terminal as
"a global resource which can be accessed by any application pro-
gram through use of the ENQT and DEQT instructions described in
the Language Reference.

Chapter 6. System Configuration 111

TIMER

TIMER - Define System Timer Features

TIMER is used to define the address of the #7840 Timer Feature
to be used as the system timers in the generated system. One of
the two timers on the card will be used for time of day record-
ing and the other will be used for interval timing.

This statement is used only for defining the #7840 timer. If
the system has a native timer (4952 processor only) that is
used instead of the #7840 timer feature card, it is not neces-
sary to use this or any other statement. The native timer and
the #7840 timer are mutually exclusive.

Syntax

blank TIMER ADDRESS=

Required: ADDRESS=
Defaults: None

Operands Description
ADDRESS= The hexadecimal address of the #7840 Timer Feature.
Example m\

TIMER ADDRESS=40

112 SC34-0312

$SYSCOM

SSYSCOM - Define Optional Common Data Area

$SYSCOM is an optional data area in the supervisor which can be
accessed from application programs. If you select this option,
you must map the portion of the supervisor containing $SYSCOM
into each address space.

The common area 1is referenced indirectly in application
programs through a storage location with the label $SYSCOM.
This storage location contains the address of the first word of
the common area. Therefore, in order to reference data in the
common area, the contents of $SYSCOM should be loaded into a
register, such as #1. Data elements can then be referenced by a
displacement from this register.

The common area can contain Event Control Blocks (ECB), Queue
Control Blocks (QCB), or any data blocks that must be accessed
by more than one program. For example, if several programs
perform a file update that must be performed serially, a QCB is
defined in the common area which is related to this file update
Process. Programs that perform the file update should ENQ on
this QCB before reading the file and DEQ the QCB after writing
the file. Many of the functions available through the use of
$SYSCOM are also provided by the cross partition capabilities
of the Event Driven Language instruction set. (Refer to the
Language Reference and "Chapter 14, Inter-Program
Communications™ on page 279 for details.)

You define the size and contents of $SYSCOM. Houwever, since
storage is mapped in 2K byte increments, the minimum common
data area is 2K bytes. For example, a 12K byte partition
requires at least 14K bytes (the PARTS= operand must specify 7
(14KB)).

The actual size of the mapped area is rounded up to a 2K bounda-
ry.

If you require a common data area and wish to minimize the stor-
age it occupies in each partition, use the following process:

1. Prepare a module that contains the items vyou wish to
include in the common data area. The last statements
should be: B

. ENTRY UCOMM
UCOMM EQU *
END

2. Name this module USERCOM and store it in ASMLIB.

Chapter 6. System Configuration 113

$SYSCOM

3. Insert INCLUDE USERCOMM,ASMLIB after INCLUDE EDXSYS in
$LNKCNTL. This makes your common data area the second
module in the nucleus.

4, Enter COMMON=UCOMM on your SYSTEM statement.

$SYSCOM then defines the beginning of your common area. The
address of UCOMM, the end of your common area, rounded up to a
2KB boundary, is the size of the mapped area.

xam e

Common area, containing two QCBs and two ECBs.

$SYSCOM CSECT
QCB
QCB
ECB
ECB

To reference the first QCB from your application, the follouwing
instructions can be coded:

- MOVE #1,$SYSCOM
ENQ (0,#1)

. perform serial operation
DEQ (0,%#1)

Since a QCB is ten bytes in length, the second QCB is referenced
as follows:

ENQ (10,#1)
It may be convenient to define an equate table which identifies
each element of the common area by a symbolic name. The PL/I

User's Guide shows how to use and access $SYSCOM as a GLOBAL
communication area.

114 SC34-0312

CHAPTER 7. SYSTEM GENERATION

To generate an Event Driven Executive system, you must have
access to a Series/1 capable of preparing the .supervisor pro-
gram and application programs. System generation requires that
the following licensed programs be installed:

. Basic Supervisor and Emulator

. Event Driven Executive Utilities

. Event Driven Executive Program Preparation Facility
or

Series/1 Macro Assembler and Macro Library
The Program Preparation Facility enébles you to prepare

programs to be executed on any Series/1 that has the required
hardware configuration and licenses.

GENERATING THE SUPERVISOR

Creating a supervisor program tailored to your Series/1 hard-
ware configuration requires the use of several of the utilities
and program preparation programs; these include:
. Disk data set management (SDISKUTI)
. Text editor (SEDITI1IN)
or
Full-screen editor ($FSEDIT)
. Batch job stream processor ($JOBUTIL)
d Event Driven Language compiler ($EDXASM)
. Linkage editor ($LINK)
. Object module conversion ($UPDATE)
You should become familiar with these utilities, especially

"the text editors, before attempting to generate the supervi-
sor. These utilities are described in Utilities, Operator

Commands, Program Preparation, Messages and Codes.

The following major steps are required:

Chapter 7. System Generation 115

. Step A. Allocate required data sets.

Step B. Edit $EDXDEF, the system configuration file, to
match your hardware configuration..

Step C. Edit SLNKCNTL. the system-supplied INCLUDE file,
to specify which superv:sor program obJect modules are to
be included in your supervisor.

Step D. Edit $SUPPREP, the syﬁtem—suﬁplied job stream
processor file, to use your allocated data sets.

Step E. Use SJOBUTIL and the procedure file created in
Step D to: ’ '

- Assemble the supervisor definition module created in
Step B

- Link edit the resulting object module with the other
necessary supervisor object modules using the link
edit control data set created in Step C.

- Using $UPDATE, convert the output of the 1link edit
process into an executable supervisor, and store it in
a data set named SEDXNUCT.

Step F. Test the created supervisor on a disk based sys-
tem.

Step G. Vefify the system generation process (optional).

Step A - Allocate Required Data Sets

1. IPL the system from disk volume EDX002.

2. Load utility program $DISKUT1 and use the AL command to
allocate the following data sets on volume EDX002. All
data sets must be specified as TYPE=DATA.

Data Set Name Number of Records
EDITWORK 200
ASMOBJ 250
ASMWORK 250
SUPVLINK 450
LEWORK1 . ' 400
LEWORK?2 ~ 150
116 SC34-0312

step B - Edit SEDXDEF to Match Harduare Configuration

Edit $SEDXDEF to match your hardware configuration:

1.

2.

Load wutility program $EDITIN or $FSEDIT and specify
EDITWORK as the reply to WORKFILE=.

Read the supplied data set S$EDXDEF from volume ASMLIB.
Figure 11 on page 133 shows a sample configuration of
$EDXDEF. The supplied configuration can be seen in the Pro-
gram Directory.

The first time you use EDITWORK as a work file for the text
editor, you Wwill be asked if you can use the EDITWORK data
set as a work data set; respond YES and continue.

Add to or delete from the contents of EDITWORK as necessary
to create a set of system configuration statements. (Sys-
tem configuration statements are described in "Chapter 6.
System Configuration™ on page 75.) Some printer on the
Series/1 should be designated as $SYSPRTR. When editing
ensure that:

. Continuation indicators in column 72 are not removed.

. If required, a continuation character is placed in
column 72 and the statement is continued in column 16
of the next line

e A field does not extend beyond column 71
The editing process consists of the following procedure?:

a. Calculate the total amount of storage available, the
number of partitions desired, and the number of 2K
blocks of storage desired for each partition. This
information is inserted into the SYSTEM statement to
define the characteristics of the processor. Refer to
"Chapter 6. System Configuration™ on page 75 for a
description of the SYSTEM statement.

b. Define the hardware features to be supported, using
the appropriate system configuration statements (TIM-
ER, SENSORIO, HOSTCOMM, BSCLINE, EXIODEV, DISK, TERMI-
NAL, TAPE).

c. Define the direct access storage devices and logical
volumes to be supported in the generated system, using
the DISK system configuration statement. Sample DISK
configuration statements are supplied for each device
in the $EDXDEF data set on ASMLIB. Refer to "Chapter 3.
Data Management" on page 45 for storage capacities of
the supported direct access storage devices. With
this information, you can define your disk volumes.

Chapter 7. System Generation 117

The only restrictions are (1) that you define the
required Event Driven Executive volumes (EDX002,
EDX003, ASMLIB) in addition to your volumes and (2)
that you follow the rules pertaining to library
origins and maximum volume sizes.

Note: Optional software products may require addi-
tional volumes. Volume requirements are supplied with
the product documentation.

Define the characteristics of all printers, displays,
and teletypewriters, using the TERMINAL statement.
Examples of various types of TERMINAL statements are
included in the $EDXDEF data set.

4. Save the final version of the definition statements in the
data set $EDXDEFS on volume EDXO002.

step C ~ Specify Objiect Modules

Edit SLNKCNTL to specify which supervisor program object mod—-
ules are to be included.

1.

Read data set SLNKCNTL from volume ASMLIB. The supplied

contents of $LNKCNTL are shown in the following tables:;
footnotes are provided on required usage. The SLNKCNTL
data set supplied with Version 1 does not include TAPE sup-
port.

118 5C34-0312

Sample Contents of SLNKCNTL (Version 1.1)

336 36 36 36 6 3 26 I 36 6 36 36 36 3 3 X 36 I 3K 56 26 3 I 3 6 36 26 I 36 36 96 I I 3 I 36 2 3 36 36 3 I I 3K I K I I I H I K I N KW H ¥
¥ COMMENTS MAY BE INCLUDED BY PUTTING AN 'x' IN COLUMN 1., ¥

¥ USE THIS TECHNIQUE TO OMIT UNNEEDED MODULES 3*
336 3 26 36 2 3 36 K 3 K 2 2 36 3 I 3 26 I 9 36 3 3 K 36 36 3 I I 36 3 K I3 3 I I K I I K K I3 I I 3 K K I I K I 3¢ 3 ¢
OUTPUT SUPVLINK,EDX002 ENTRY=$START

1333333333333 3333333333333 3322222 222 2222222222 TR 22 2
¥ SUPERVISOR SUPPORT
t3323323333333333332323333333 332332222 ELLLELESESE S LSS LTSI
INCLUDE EDXSYS,XS1002 %0% SYSTEM TABLES AND WORK AREAS
INCLUDE ASMOBJ,EDX002 ¥0% OUTPUT FROM USER SYSTEM GENERATION
*INCLUDE EDXSVCX,XS1002 *0,K* TASK SUPERVISOR (XL)
INCLUDE EDXSVCXU,XS1002 %0,L* TASK SUPERVISOR (UN-XL)
INCLUDE EDXSTART,XS1002 0% INITIALIZATION & ERROR HANDLER
*INCLUDE $DBUGNUC,XS1002 *0,6% RESIDENT $DEBUG SUPPORT
INCLUDE EDXALU,XS1002 ¥0% EDL INSTRUCTION EMULATOR
36 36 36 36 3 3 6 3 3 3 K 3 2 I 36 26 3 3 3 I 3 2 I 3 I 3 I I K I 6 I K I, K K K K I I3 I I 3 I3 I I KK K K K
% DEVICE SUPPORT -- DISK(ETTE)S
12 322.2.3.3333333.3.32333333 3333333333333 3333333883332 82 E.X.2.2.5.5.]
INCLUDE DISKIO,XS1002 ¥Mx BASIC DISK(ETTE) SUPPORT
INCLUDE D49624,X51002 =~ *M* 4962/4964 DISK(ETTE) SUPPORT
INCLUDE D64963A,XS1002 *¥M* 4963 SUBSYSTEM SUPPORT
INCLUDE D4966A,XS1002 *¥M%x 6966 MAGAZINE SUPPORT
33 K I I KKK KK I K I I K I I I I I M I I I W I I IE I I I I K I K I KK K I K KK I KK
¥ DEVICE SUPPORT -- TERMINALS
2K K KKK, K KK I K I KKK I KKK K I K I I K I 3K 3 I I I I I I I K I K I K I K K K K I 36K 3¢ 3¢
INCLUDE EDXTIO,XS1002 ¥1,K BASIC TERMINAL SUPPORT (XL)
INCLUDE EDXTIOU,XS1002 *1,L* BASIC TERMINAL SUPPORT (UN-XL)
*INCLUDE EDXTERMQ,XS1002 *1,K* ENQT/DEQT & TERMINAL QING (XL)
INCLUDE EDXTRMQU,XS51002 *1,Lx* ENQT/DEQT & TERMINAL QING (UN-XL)
*INCLUDE 10S4979,XS1002 *M,K% 4978/4979 DISPLAY SUPPORT
INCLUDE I0S4979U,XS1002 *M,L* 497874979 DISPLAY SUPPORT
*INCLUDE I0S6974,XS1002 *M,K* 4973764974 PRINTER SUPPORT
INCLUDE 1I0S4974U,XS1002 *M,L* 4973/74976 PRINTER SUPPORT
INCLUDE IOSTERM,XS1002 %*2% REQD FOR TTY, ACCA, 4013 & 2741
INCLUDE IODSTTY,XS1002 *Mx ASR 33/35 TELETYPEWRITER SUPPORT
*INCLUDE IOSACCA,XS1002 %*3% ASCII ACCA TERMINAL SUPPORT
*INCLUDE 10S4013,X51002 *M% DIGITAL I/0 TERMINAL SUPPORT
*INCLUDE I0S2741,XS1002 *Mx 2741 TERMINAL SUPPORT
INCLUDE IOSVIRT,XS1002 *Mx VIRTUAL TERMINAL SUPPORT
36 36 36 2 I I I I I I I I I, I I I, I I, I K I I I I I I K I K KK I K K¢
¥ DEVICE SUPPORT -- TRANSLATION TABLES
3 36 3 3 3 K 3 2 I I K I 3 K I I 3 I I3 3 I I K I K K I K I K 3K K K, K K I I I K I I I K I I HHKHH
INCLUDE TRASCII,XS1002 6% TELETYPEWRITER TRANSLATION
*INCLUDE TREBASC,XS1002 %*3% MIRROR IMAGE ASCII TRANSLATION
*INCLUDE TREBCD,XS1002 *5% 2741 EBDC TRANSLATION
*INCLUDE TRCRSP,XS1002 *5% 2741 CORRESPONDENCE TRANSLATION
2 I I I I I I I I A I A I K KA I K FH I K I I K I I I I I I I K I I I I I I I I I I I I I I IE I I I I KKK
% DEVICE SUPPORT -- TIMERS
3 3 3 I 3 I I K I I I I K I I K KKK KK I K K I K IE K I I K I K I I I IE I IE I I I I KKK HHH KK KRHH
*INCLUDE EDXTIMER,XS1002 %*6% 495374955 TIMER (7840) SUPPORT

Chapter 7. System Generation 119

¥*INCLUDE EDXTIMR2,XS1002 *6% 4952 TIMER SUPPORT

3696 36 3 3K 3 I 3 I I I 6 3 I I I I K I I I I I KK KK KK K I KKK KKK KX
¥ DEVICE SUPPORT =—-- BINARY SYNCHRONOUS COMMUNICATIONS

3 36 36 36 3 36 3 3 36 3 3 36 36 36 36 36 3 36 36 36 I 36 96 I 36 I 26 36 2 3 3 X H K H K K K KK H K KKK KKK KKK KKK KKK KK
*INCLUDE BSCAM,XS1002 *7,Kx BSC COMM. ACCESS SUPPORT (XL)
*INCLUDE BSCAMU,XS1002 *7,L% BSC COMM. ACCESS SUPPORT (UN-XL)
*INCLUDE TPCOM,XS1002 %8 * HOST COMMUNICATION SUPPORT

36 96 3 36 36 36 3 3 36 3 H 36 3 26 96 3 I 26 3 K I H I I I I I KK I K K I N K I NI KK KKK KKK KKK KKK
¥ DEVICE SUPPORT -- SENSOR INPUT/0UTPUT

3 36 3 36 3 3 3 3 3 3 3 3 3 I 36 K 3 K 3 3 I 36 3 36 6 I I I I I I 6 6 3K 36 3 I I K I K K K 3 3 363K 3 H K K K K K K H KKK
*INCLUDE SBCOM,XS1002 *9 % BASIC SENSOR I/0 SUPPORT
*INCLUDE IOLOADER,XS1002 *9,K* SENSOR I/0 DEVICE OPEN (XL)
*INCLUDE IOLOADRU,XS1002 %9,L% SENSOR I/0O DEVICE OPEN (UN-XL)

*INCLUDE SBAI,XS1002 *Mx ANALOG INPUT SUPPORT

*INCLUDE SBAO,XS1002 %*Mx ANALOG OUTPUT SUPPORT
INCLUDE SBDIDO,XS1002 % M % DIGITAL INPUT/0OUTPUT SUPPORT
*INCLUDE SBPI,XS1002 *Mx PROCESS INTERRUPT SUPPORT

3 3 I I I I 36 K I H I I K I M H K I I I I I I I H A I I I H K I I K I I I I I I I K I K I I I I N I A AK NN AN
¥ DEVICE SUPPORT —-- EXIO CONTROL

336 X 36 56 I I I I I I 3 K K I 3 I I I K, K I K K I K I K KNI KKK NN KK KK
*INCLUDE IOSEXIO,XS1002 xMx EXIO DEVICE CONTROL SUPPORT
3 36 3 3 3 I I K I I 3 I N I I AN NN KKK
¥ SYSTEM SUPPORT -- ERROR LOGGING
3 36 I I 3 3 I H I K I H X H I I H I I I I I I I I I I K I I I I I I I I I I I I I I I IR HHNHHHK
INCLUDE SYSLOG,XSl002 *Ax% I/0 ERROR LOGGING
*INCLUDE NOSYSLOG,XS1002 xAx NO I/0 ERROR LOGGING
INCLUDE CIRCBUFF,XS1002 *Bx PROGRAM/MACHINE CHECK LOGGING
L3RI I I I IR I EE 3232333333333 s Rt
% OPTIONAL FUNCTION SUPPORT
**
¥INCLUDE RLOADER,XS1002 *C,Kx RELOCATING PROGRAM LOADER (XL)
INCLUDE RLOADERU,XS1002 *C,L* RELOCATING PROGRAM LOADER (UN-XL)
¥*INCLUDE EDXFLOAT,XS1002 *Dx FLOATING POINT ARITHMETIC
INCLUDE NOFLOAT,XS1002 *Dx FOR SYSTEMS WITHOUT FLOATING POINT
*INCLUDE EBFLCVT,XS1002 xEx EBCDIC/FLOATING PT CONV.
INCLUDE QUEUEIO,XS1002 xF=* QUEUE PROCESSING SUPPORT
3636 96 3 3 36 3 3 2 X 36 3 I I I K K K K H K3 K I K I K KK K I K KKK H KKK, KKK KKK KKK K
¥ SYSTEM SUPPORT -- INITIALIZATION
3 3 % 36 56 3 3 5 I € 3 36 3 3 I 3 3 I 3 3 2 36 36 I 3 I 3 I H I K H 3 3 I K 3 I K H O I H K K H I K H K K K H KK
INCLUDE EDXINIT,XS1002 *Hx* SUPERVISOR INITIALIZATION
INCLUDE DISKINIT,XS1002 x*Mx DISKC(ETTE) INITIALIZATION
INCLUDE LOADINIT,XS1002 x*Cx PROGRAM LOADER INITIALIZATION
INCLUDE RW6963ID,XS1002 *Mx 4963 FIXED HEAD REFRESH SUPPORT
INCLUDE TERMINIT,XS1002 %1% TERMINAL INITIALIZATION
INCLUDE INIT4978,XS1002 *Mx* 4978 DISPLAY INITIALIZATION
¥INCLUDE INIT4013,XS1002 *Mx DIGITAL I/0 TERMINAL INIT
¥*INCLUDE $ACCARAM,XS1002 *3x ACCA MULTI-LINE ADAPTER RAM LOAD
¥INCLUDE BSCINIT,XS1002 %7 BISYNC (BSCAM) INITIALIZATION
*INCLUDE $BSCARAM,XS1002 7% BISYNC MULT-LINE ADAPTER RAM LOAD
*INCLUDE TPINIT,XS1002 *8 % HCF (TPCOM) INITIALIZATION
*INCLUDE TIMRINIT,XS1002 *6% 495374955 TIMER INITIALIZATION
¥*INCLUDE CLOKINIT,XS1002 %6 4952 TIMER INITIALIZATION
*INCLUDE SBIOINIT,XS1002 %*Mx SENSOR I/0 INITIALIZATION
¥INCLUDE EXIOINIT,XS1002 *Mx EXIO INITIALIZATION

120 SC34-0312

Sample Contents of SLNKCNTL (Version 2.0)

2636 36 36 K 36 36 36 2 I I 3K 36 2 I I3 3 I I I 3 3 I I IE 3 K K I IEIE 3 I I I I I 66 I I I KK KW KKK
¥ COMMENTS MAY BE INCLUDED BY PUTTING AN '"%' IN COLUMN 1., *

¥ USE THIS TECHNIQUE TO OMIT UNNEEDED MODULES *
3636 2 3 336 3 I K I I I I 2 9 I I K I K I I IE K K K I K I 3K I K I I IE I K I I K KKK KKK
OUTPUT SUPVLINK,EDXO002 ENTRY=6START

3 I I I I I I I K K I I I, A A H I K I I I H A I I I K I I I I I I I I I I I I HK I I I I I K I H I H I I I K A KKK

¥ SUPERVISOR SUPPORT
963636 363 K I3 K36 J K H I I H I KKK I KK I K I J I I J I I K I MK KKK KK

INCLUDE EDXSYS,XS2002 0% SYSTEM TABLES AND WORK AREAS

INCLUDE ASMOBJ,EDX002 ¥0% OUTPUT FROM USER SYSTEM GENERATION

*INCLUDE EDXSVCX,X52002 *0,K¥ TASK SUPERVISOR (XL)
INCLUDE EDXSVCXU,XS2002 *0,L* TASK SUPERVISOR (UN-XL)
INCLUDE EDXALU,XS2002 0% EDL INSTRUCTION EMULATOR
INCLUDE EDXSTART,XS2002 %0 INITIALIZATION & ERROR HANDLER
36 6 36 9 3 36 36 36 I 3 I 3 36 3 3 I 3 2 I3 36 K2 I I K I KK I I I I I I I 3 I I I I I I I I K I K K H I K K ¥ %
¥ DEVICE SUPPORT -- DISKC(ETTE)S
36363 2 3 3636 3 K K I 3 I I I I I KK I K I KK I I K K I I K I I K I I KK I I KKK K

INCLUDE
INCLUDE
INCLUDE
INCLUDE

DISKIO, XS2002
D49624,X52002
D4963A,XS52002
D4966A,X52002

M BASIC DISK(ETTE) SUPPORT

*¥M%¥ 6962764964 DISK(ETTE) SUPPORT

*¥M% 4963 SUBSYSTEM SUPPORT

- %M* 6966 MAGAZINE SUPPORT

36 K I I I I K I I I I I K I NI I I I I K I I I I I I I I I I I I I A I K K I I I I I I I I H NI RNKNNRNNK

¥ DEVICE SUPPORT =-- TAPES
3 96 3 3 I 3 3 K 3 3 3 I 36 2 I 3K K I I I I I I K K I 3 3 K H I K I K I3 K I K K H I I I 3K K K I I K KK %

¥*INCLUDE D4969A,XS2002 ¥M* 4969 TAPE SUPPORT
K I, KKK I KNI KW KKK MK KK I KN HK NN K I KKK IHHHNKKRHHK

¥ DEVICE SUPPORT -- TERMINALS
336 3 3 3 3 36 3 2 2 3 3 36 36 2K I 3 3 I I 5636 K I 2 3 I 3 I K I3 KK I 3 J K I I K I KK KKK

*INCLUDE
INCLUDE
*INCLUDE
INCLUDE
*INCLUDE
INCLUDE
*INCLUDE
INCLUDE
INCLUDE
INCLUDE

EDXTIO,XS2002
EDXTIOU, XS52002
EDXTERMQ, XS52002
EDXTRMQU, XS2002
1054979,X52002
1054979U,XS2002
1054974,X52002
I10S4974U,X52002
IOSTERM, XS52002
I0STTY,XS2002

¥1,K
¥1,L
1,Kx
*¥1,Lx
M, Kx
M, L
%M, K*
M, L
*2 %

*M»

BASIC TERMINAL SUPPORT (XL)
BASIC TERMINAL SUPPORT (UN-XL)

ENQT/DEQT
ENQT/DEQT
4978/4979
497874979
497374974
4973/764976

& TERMINAL QING
& TERMINAL QING
DISPLAY SUPPORT
DISPLAY SUPPORT
PRINTER SUPPORT
PRINTER SUPPORT

(XL)
(UN=-XL)
(XL
(UN-XL)
(XL)
(UN-XL)

REQD FOR TTY, ACCA, 4013 & 2741
ASR 33/35 TELETYPEWRITER SUPPORT

*INCLUDE IOSACCA,XS2002 *3x% ASCII ACCA TERMINAL SUPPORT
*INCLUDE I0S4013,XS2002 *Mx DIGITAL I/0 TERMINAL SUPPORT
*INCLUDE I10S2741,XS2002 *Mx 2761 TERMINAL SUPPORT
*INCLUDE IOSVIRT,XS52002 *M,Nx VIRTUAL TERMINAL SUPPORT

Chapter 7. SYSfem Generation 121

36 96 36 36 36 26 3 36 36 36 I 3 36 36 I I I IE 36 I I I 636 36 I I I 36 36 I I3 2K I3 I I I I K I I KK H I K KK KK
¥ DEVICE SUPPORT -- TRANSLATION TABLES
36 3 36 36 36 3 3 3 I 36 6 J6 36 I 36 36 I I 3K 36 36 I 3 I 3 3 I I H I 3 I H 3 3 I I H K I I H I I I I I I K K K H K K K K K
INCLUDE TRASCII,XS2002 %46% TELETYPEWRITER TRANSLATION
*INCLUDE TREBASC,XS2002 %3x MIRROR IMAGE ASCII TRANSLATION
*INCLUDE TREBCD,XS2002 *5% 2741 EBDC TRANSLATION
*INCLUDE TRCRSP,XS52002 * 5% 2741 CORRESPONDENCE TRANSLATION
36 36 3 6 € 36 36 36 3 36 36 36 I 36 6 36 I I 3 36 36 I6 3 I 36 96 K 36 36 I I H 3 I I I3 I I I 3 I KK H K KKK K KK
¥ DEVICE SUPPORT -- TIMERS
3636 36 3 % 3 K I H KK KKK KK KKK H KK I K K K I I I H I I I 3 H K X X K K I I I I I 9 36 ¢ 2
*INCLUDE EDXTIMER,XS2002 %*6% 495374955 TIMER (7840) SUPPORT
*INCLUDE EDXTIMR2,XS2002 *6%x 4952 TIMER SUPPORT
3636 36 36 36 3 3 3 36 36 36 36 6 36 3 3 I I 36 3 I I 6 6 I I I I 36 I I I I I K I X K K H K X K K K I K¢ KK
¥ DEVICE SUPPORT -~ BINARY SYNCHRONOUS COMMUNICATIONS
3 36 36 3 3 3 I K I K I 3 3 36 36 3 36 3 I I I I H I I I I 3 3 3 3 K K H H I I I H 3 H H K H 3 K K K K K H K K ¢
*INCLUDE BSCAM,XS2002 ¥7,Kx BSC COMM. ACCESS SUPPORT (XL)
*¥INCLUDE BSCAMU,XS2002 ®7,Lx BSC COMM. ACCESS SUPPORT (UN-XL)
*INCLUDE TPCOM,XS2002 *8 % HOST COMMUNICATION SUPPORT
336 36 3 36 36 36 3 3 6 36 36 3 3 36 36 I 2 K I 3 3 2 3 I 36 3 K K I 363 K 36 I K I K I K I KK KK K K WK KK ¥
¥ DEVICE SUPPORT =- SENSOR INPUT/0UTPUT :
3 36 36 3 3 36 3 3 K I 56 I 3 I 36 I I I I 3 I I3 3 3 I K I K I I I3 K I I3 K I I H I K K H K KK I H K K K K
*INCLUDE SBCOM,XS2002 *9 % BASIC SENSOR I/0 SUPPORT
INCLUDE IOLOADER,XS2002 %9,K SENSOR I-0 DEVICE GPEN (XL)
*INCLUDE IOLOADRU,XS2002 %*9,L* SENSOR I/ 0 DEVICE OPEN (UN-XL)

*INCLUDE SBAI,XS2002 *Mx* ANALOG INPUT SUPPORT

*INCLUDE S5BAO,XS2002 *M* ANALOG OUTPUT SUPPORT
*INCLUDE SBDIDO,XS52002 *Mx DIGITAL INPUT/CUTPUT SUPPORT
*INCLUDE SBPI,XS52002 * M * PROCESS INTERRUPT SUPPORT

33 3 36 H K3 K I I I I I K I K I I KK K I K I KK I K I KK KN K KKK KKK MK K KKK KK H
¥ DEVICE SUPPORT -- EXIO CONTROL

3 96 36 3 36 36 36 36 36 36 96 3 3 26 3K 3 36 K 3 36 6 3 36 36 36 3 3 639632 I I K 3 3 I KK I KK KKK KK H KK KKK KKK
*INCLUDE IOSEXIO,XS2002 xMx EXIO DEVICE CONTROL SUPPORT
36 36 9 3 36 36 3 K 3 I 3 I 3 3 3 I I IE I 3 K K 3 I 3 3 K I I 3 I I I I I I K K H I K K K K K K I I K K KKK
¥ SYSTEM SUPPORT -- ERROR LOGGING
36 36 3 26 3 36 3 K I 36 36 K I I 3 I K I I I KK H I KK K I I K K I I I I I K H KK K K I K K KKK KKK
INCLUDE SYSLOG,XS2002 *A% I/0 ERROR LOGGING
¥*INCLUDE NOSYSLOG,XS2002 xAx NO I/0 ERROR LOGGING :
INCLUDE CIRCBUFF,XS2002 xBx PROGRAM/MACHINE CHECK LOGGING
3636 36 36 3 36 3 3 I 3 3 36 36 3 3 3 3 3 3 I H H 3 H 3 3 36 36 3 K I I K K H K K K 2 3 2K K K K K H KKK
¥ OPTIONAL FUNCTION SUPPORT
993363 K K I 6 KNI 3K I I I K I I K I I IE I I K IE I KKK I I KK I K KKK KKK
*INCLUDE RLOADER,XS2002 *C,K* RELOCATING PROGRAM LOADER (XL)
INCLUDE RLOADERU,XS52002 %C,Lx* RELOCATING PROGRAM LOADER (UN-XL)
*INCLUDE EDXFLOAT,XS2002 %Dx FLOATING POINT ARITHMETIC
INCLUDE NOFLOAT,XS2002 %Dx FOR SYSTEMS WITHOUT FLOATING POINT
*INCLUDE EBFLCVT,XS2002 xEx EBCDIC/FLOATING PT CONV.
INCLUDE QUEUEIQO,XS2002 *Fx QUEUE PROCESSING SUPPORT
*INCLUDE $DBUGNUC, XS2002 %G RESIDENT $DEBUG SUPPORT

122 SC34-0312

3636 56 3 3 3 I I I I I I I I I I I I I I H I I I I I K I H I I I I I I I I K I I I I I I I K A K I I I A KA K

¥ SYSTEM SUPPORT =-- INITIALIZATION
366 36 3 3 3 26 26 H 5 6 2 3 2 I H I X 2 I 36 I H I I I I I3 K K2 I I K I K H I K K I I KK MM KKK

INCLUDE EDXINIT,XS2002 xHx
INCLUDE DISKINIT,XS2002 x*xMx
*INCLUDE TAPEINIT,XS2002 xMx
INCLUDE LOADINIT,XS52002 x*Cx
INCLUDE RW4963ID,XS52002 xMx
INCLUDE TERMINIT,XS2002 *1x
INCLUDE INIT4978,XS2002 xMx
*INCLUDE INIT4013,XS2002 x*Mx
*INCLUDE $ACCARAM,XS2002 %*3%
*INCLUDE BSCINIT,XS2002 x7x%
*INCLUDE $BSCARAM,XS2002 7%
*INCLUDE TPINIT,XS2002 %8
¥*INCLUDE TIMRINIT,XS2002 x6%
*INCLUDE CLOKINIT,XS2002 x6%
*INCLUDE SBIOINIT,XS2002 *Mx*
INCLUDE EXIOINIT,XS2002 xM

SUPERVISOR INITIALIZATION
DISKCETTE) INITIALIZATION

TAPE INITIALIZATION

PROGRAM LOADER INITIALIZATION
4963 FIXED HEAD REFRESH SUPPORT
TERMINAL INITIALIZATION

4978 DISPLAY INITIALIZATION
DIGITAL I/0 TERMINAL INIT

ACCA MULTI-LINE ADAPTER RAM LOAD
BISYNC (BSCAM) INITIALIZATION
BISYNC MULT-LINE ADAPTER RAM LOAD
HCF (TPCOM) INITIALIZATION
4953/74955 TIMER INITIALIZATION
6952 TIMER INITIALIZATION

SENSOR I/0 INITIALIZATION

EXIO INITIALIZATION

NOTES

%0 % Must be included first and in this order

%1% Required if any terminals are installed, including 4973
* or 4974

*2 % Required if IOSTTY, I0S2741, or IOSACCA is included

* 3% Required if non-2741 terminals are on ACCA

%G % Required if IOSTTY is included

% 5% Either TREBCD or TRCRSP or both are required if 1052741
* is included, depending on the code used by the 2741

* terminals - correspondence or ASCII

*6% Attached TIMERS (feature 7840) and the 4952 native TIMER
* are mutually exclusive. Select the TIMER support

% required for your configuration or none if no TIMER

* support is required.

*®7 % Required for binary synchronous communication using

%* BSCREAD/BSCHRITE or Remote Management Utility support.
%8 x* Required for communication to a S/370 with the EDX Host
* Communication Facility

%9 % Required if any Sensor I/0 support is to be used

%* (AI,AOQ0,DI,DO, or PI)

*Ax One, but not both, of these modules is required

*¥B % Required if the in storage program check/machine check
»* log is to be kept

*C % Required if programs are to be loaded from disk(ette).
* If not included, an application program must be link

* edited with the supervisor.

D One, but not both, of these modules is required

*E % Required for data formatting operations (GETEDIT,

* PUTEDIT, FORMAT) '

*F % Required for queueing operations (FIRSTQ, NEXTQ, LASTQ,
* DEFINEQ)

G Required for program debugging ($DEBUG)

Chapter 7. System Generation 123

¥H Required and must follow all of the previously listed
* modules.

* All other initialization modules must follow EDXINIT
*J % "For starter supervisor use only
* K% There are two versions of this module. This one is
%* for systems that support the address translator
* ‘feature of the 4952 and 4955 processors. Include this
* version if your system is to support both the function
* the module implements and the address translator
* feature. (XL)
*Lx There ‘are two versions of this module. This one is
* for systems that do not support the address translator
* feature of the 4952 and 4955 processors. Include this
* version if your system is to support the function
* the module implements, but not the address translator
* feature. (UN-XL) ,
¥M - Optional module; required if device or feature is to be
* supported.
Nx Required if using Remote Management Utility with PASSTHRU
%* function.

END

Note: You should include DDBFIX and CCBFIX with the other
system intialization modules if you wixh to regenerate the
starter system.

2. Enter an asterisk (%) in column one (1) of each INCLUDE
statement not required to create your supervisor. The
asterisk makes the statement a comment and the module with
the asterisk is not included in your supervisor. Be sure
that the system definition statements created in Step B
agree with the modules you include in this step.

The modules with note L can be used if your generated sys-
tem is to execute either on a Series/1 without the address
translator feature or on a 64KB 64952 processor. These
modules do not support the address translator. "The SYSTEM
configuration statement must specify STORAGE as 64 or less
and PARTS may not be specified.

3. Save the edited version of SLNKCNTL in a data set named
LINKCNTL on EDX0O02.

Step D - Assémble and Link Edit the Supervisor
Edit $SUPPREP to use yoUr allocated data sets.

1, Read the data set $SUPPREP from volume ASMLIB. Figure 10 oh
page 125 shows $SUPPREP.

124 SC34-0312

LOG $SYSPRTR

JOB $SUPPREP o
REMARK %*ENTER GO AFTER XS2002 HAS BEEN VARIED ONLINE**
PAUSE

PROGRAM $EDXASM,ASMLIB

NOMSG

PARM

DS $EDXDEFS,EDX002

DS ASMHWORK,EDX002

DS ASMOBJ,EDX002

EXEC

JUMP ENDJOB,GT, 4

PROGRAM $LINK,ASMLIB

NOMSG

PARM $SYSPRTR

DS LINKCNTL,EDXOO2

DS LEWORK1,EDX002

DS LEWORK2,EDX002

EXEC

JUMP ENDJOB,GT, 4

PROGRAM $UPDATE,EDX002

NOMSG

PARM $SYSPRTR SUPVLINK,EDX002 $EDXNUCT,EDX002 YES
EXEC

LABEL - ENDJOB

EOJ

Figure 10. Example of V2.0 Procedure $SUPPREP on ASMLIB

2'

Modify any of the procedure statements, particularly the
DS data set names, and volumes to satisfy your conventions.
No changes are necessary for your first supervisor gener-—
ation if you allocated all the required data sets as
instructed in Step A. $EDXNUCT is automatically allocated
by the $UPDATE Step and you may wish to change this name to
$EDXNUCx (x = any alphameric character) to save different
supervisor versions in individual data sets. The supervi-
sor name must start with the seven characters $EDXNUC.

Save the edited version of $SUPPREP in a data set named
SUPPREPS on EDXO0O02.

Step E - Format the Supervisor

When you invoke thé procedure SUPPREPS, the job stream assem-
bles and link edits $EDXDEF and formats the supervisor.

Chapter 7. System Generation 125

Vary on diskette XS1002 (Version 1.1) or XS2002 (Version
2). ‘

Load utility program $JOBUTIL. When prompted for the pro-
cedure name, reply SUPPREPS,EDX002.

When $JOBUTIL completes execution, examine the output
printed on $SYSPRTR for errors. Errors are usually caused
by incorrect editing of $EDXDEF, $LNKCNTL, or $SUPPREP. If
errors are found, examine your supervisor specification
and link edit statements and then edit $EDXDEFS, LINKCNTL,
or SUPPREPS as necessary. ‘

When you have corrected the errors, reload $JOBUTIL +to
repeat the procedure.

Unresolved WXTRN messages resulting from the execution of
S$LINK can occur, and you should examine the messages to
determine whether the referenced names refer to modules
that you require in your supervisor.

An unresolved WXTRN of $PROG1 will normally occur unless
you link edit an application program with the supervisor,
as is described in "Other Considerations” on page 128.

Unresolved EXTRN messages should not occur if a valid
supervisor has been created. A complete listing of all
supervisor module section names and entry point labels is
included in Appendix B. '

Step F - Test the Generated Supervisor

Test the generated supervisor for a disk based system.

1.

126

Load the utility program $COPY or $COPYUT1 to copy SEDXNUCT
into $SEDXNUC on EDX0OZ2.

Note: Procedure SUPPREPS stores the created supervisor as
member $EDXNUCT on EDX002.

IPL the system from volume EDX002 to load the new supervi-
sor.

Wait until the system is initialized before loading a
program. If your system has timers, the system is initial-
ized when the SET TIME AND DATE USING $T message appears
(or when the time and date are printed). If your system
does not have timers, the system is initialized when it
enters the wait state after the storage map has been dis-
played.

SC34-0312

3.

Test the supervisor by executing utility programs that
exercise the various supervisor components (such as disk
I1/0, sensor 1/0, etc.)}

Notes:

1'

If the new supervisor fails to operate correctly, you must
restore the original contents of $EDXNUC by IPLing from a
diskette. Use $COPY or $COPYUT1 to copy the starter super-
visor from diskette UT3001 or UT4001 to $EDXNUC on EDXO0O02.

If any errors are encountered, repeat Steps B through E of
this procedure.

If you relocated any volumes in a tailored system gener-
ation (particularly EDX002), copy the new supervisor into
the $EDXNUC data set on a copy of the utility diskette
(UT3001 or UT4001) and perform a complete system installa-
tion.

The actual addresses of CSECT and ENTRY point labels in the
SEDXNUCT or $EDXNUC modules stored on disk will be X'100"
greater than those shown on the link edit map. This is
because $UPDATE adds a 256 byte header to all $EDXNUCx mod-
ules.

Step G - Verify the System Generation Process

To verify that the system genera{ion has been performed suc-
cessfully:

1.

Assemble and execute the sample program CALCSRC.

Note: CALCDEﬂO source instructions are located in the data
set CALCSRC on the disk volume EDX002. To assemble
CALCDEMO, refer to the procedure for program preparation

described - in Utilities, Operator Commands, Program
Preparation, Messages and Codes.

When the assembly is complete, load the test program into
storage for execution by using the $L operator command.

When you receive the prompts A= and B=, enter any decimal
integer values less than 2 billion, followed by a carriage
return or ENTER after each entry.

A sample of the entries and resulting output follows:

Chapter 7. System Generation 127

> $L CALCDEMO

CALCDEMO 3P,10:59:55, LP= 7F00
Press ATTENTION and enter CALC or STOP
> CALC

A =12

B = 52

A+ B = 64

A - B = -40

A % B = 624

A/ B = 0 REMAINDER = 12
Press ATTENTION and enter CALC or STOP
> CALC ' :

OTHER CONSIDERATIONS

System Generation without the Program Preparation Facility

For Series/1 systems that do not include the Program Prepara-
tion Faciljty, installation requires the following general
steps:

1. Assemble and link edit the supervisor for the target

2.

128

Series/1 on a system that supports program preparation.

Assemble application programs for the target Series/1 on a
system that supports program preparation.

Use utility program $INITDSK to initialize one or more
diskettes with IPL text, space for the supervisor program,
and a library to contain your application programs.

Transfer your supervisor to $EDXNUC on diskette(s) with
either $COPY or $COPYUTL. ’

Copy $LOADER, any of the utilities, and the application
programs that will be required on the target Series/1, onto
the diskette(s) with sCOPYUTL.

Install the diskette(s) on the target machine for
execution.: ’

$C34-0312

Program Loading from Diskettes

If multiple diskettes are processed on a single diskette unit,
each diskette must contain the program $LOADER in the same
location. To load a program into storage from diskette, the
diskette containing the program must be online ($VARYON) when
the LOAD instruction or the $L command is executed.

Automatic Application Initialization and Restart

You can design your system so that your application program(s)
are automatically started following a manual IPL of the system
or an automatic IPL invoked by the restoration of power after a
power outage. ' '

There is no system requirement for operator involvement in the
IPL procedure, other than to insure the IPL mode switch is in
the "AUTO IPL" position and to turn on the power for the initial
Series/1 IPL. Any other requirement for operator involvement
(such as for entry of time and date) is a function of vyour
application. ‘

The automatic application initialization facility allows you
to start an application immediately after the system initial-
ization process has been completed.

Consideration must be given to the type of program control the
Event Driven Executive will be supporting. In a multiprogram-
ming, multitasking system, the relocatable loader loads pro-
grams from disk or diskette to storage. In a single progranm,
multitasking system, a single application program is link
edited with the Event Driven Executive supervisor and loaded at
IPL time. In either system the program may consist of a primary
task or a primary task and secondary task(s).

Multiprogramming, Multitasking Svystem

In a multiprogramming, multitasking system, the automatic
application initialization facility requires a system with the
Event Driven Executive program load facility and is loaded (via
IPL) from disk or diskette. Further, if your system contains
both disk and diskette devices, then the automatic IPL must be
performed with a disk as the IPL source.

The facility works in the following manner. At the end of the
regular system initialization process (when all I/0 devices
have been prepared and the system is ready for normal oper-
ation), a LOAD instruction will be issued for vyour program

Chapter 7. System Generation 129

named S$INITIAL which must be located on the IPL volume. If no
such program exists, no further action is taken and programs
must be initiated wia $L commands entered at terminals. If
$INITIAL does exist, it is loaded for execution. The functions
which can be performed by $INITIAL, such as data base initial-
ization, data logging, outboard device initialization, and
loading of other application programs, are entirely under your
control. :

S$INITIAL is loaded in partition one immediately after the
supervisor. The system attempts to pass to it a one word param-
eter indicating the IPL mode. Zero in this word indicates a
manual IPL. A one in this word indicates "Auto IPL". In order
to receive this word, PARM=1 must have been coded in the PRO-
GRAM statement of S$INITIAL. If PARM=1 is not coded, the 1IPL
mode cannot be determined.

One function that $INITIAL can perform differently for manual
versus automatic IPL situations is the setting of the supervi-
sor time and date. In a manual IPL situation the time and date
are normally entered by an operator via the $T command. In an
unattended auto-IPL situation it may be required that $INITIAL
obtain the time and date information from such sources as an
external battery operated clock (connected to Seriess/1 Digital
Input features), a checkpoint file maintained on disk or
diskette by the application program during normal operation,
etc. :

Regardless of the source of the time and date information, the
~following instructions will move the information from $INITIAL
to the supervisor time and date table. If S$INITIAL is to be
assembled by $EDXASM, then the statement COPY PROGEQU must be
included after the PROGRAM statement to define the label
$STIMRTBL. In the following example TIMRDATA is a six word table
within S$INITIAL containing the time and date as hexadecimal
values in the sequence hours, minutes, seconds, month, day,
year.

For example, the following code sets the clock to 13:24:05 and
the date to December 25, 1979.

130 SC34-0312

MOVE #1,$TIMRTBL
MOVE (8,#1),TIMRDATA,S6

TIMRDATA DC X'000D"
bDC X'0018"
DC X'0005"

DC Xxroooc’
DC X'0019°
DC X'004F"

$INITIAL can also load additional programs. For example, if
you wish to have automatic initialization of the Multiple
Terminal Manager in partition two, the Indexed Access Method in
partition three, and the Session Manager in partition four,
your $INITIAL program would have the following statements:

LOAD S$MTM,PART=2,ERROR=NOMTM
LOAD $IAM,PART=3,ERROR=NOIAM
LOAD $SMMAIN,PART=4,ERROR=NOSESS

NOIAM (Routine to handle the error)
NOSESS (Routine to handle the error)
NOMTM (Routine to handle the error)

SINITIAL can have data sets and overlay programs defined in its
PROGRAM statement but cannot use the "??2' option which implies
data set definition at load time. Note that no program load
logging message is printed out with $INITIAL and if any errors
occur during the load process such as unresolved data set
names, no logging message will be printed. If at any time it is
desired to disable the automatic initialization feature for a
period of time, the program $INITIAL should be renamed.

Single Program, Multitasking System

In a single program, multitasking system, the relocatable
loader is excluded from your supervisor and the disk or
diskette is used for data only.

A single application program must be 1link edited with the

supervisor to form a single load module that can be loaded at
IPL time. This application program must contain a CSECT named

Chapter 7. System Generation 131

$PROG1. In addition, the PROGSTOP instruction is not permitted
in this program. Therefore, the program source module should
contain statements as follous:

$PROG1 CSECT
MAIN PROGRAM START

ENDPROG
END

When the supervisor is loaded at IPL time and the multiprogram-
ming feature is not included, the above program is automat-
ically started. , .

To remove the multlprogrammlng feature from the Event Driven
Executive supervisor, do not include the module "RLOADER" in
the custom system generation and delete the transient loader
($LOADER) from the system resident disk volume (normally
EDX002), if there is a disk on the system. :

Initializing Secondary Volumes

If you create a supervisor that defines secondary disk volumes
inaddition to those defined as primary volumes, the additional
secondary volumes must be initialized before they can be used
for data or program storage. To initialize a secondary volume,
execute the utility program $INITDSK and create the directory
for each additional volume defined. You must initialize a fixed
head volume before doing an IPL from it. This allows the system
to search for the program $LOADER durlng initialization.

Creating a Supervisor for Another Series/l

You can create a supervisor for another Series/l on a Series/l
with the Program Preparation Facility. Follow the procedure
for "Generating the Supervisor™ on page 115, but save the edit~-
ed copies of SEDXDEF and $LNKCNTL under different names for
each different Series/1 hardware configuration. SUPPREPS must
be modified to support the different data set names. .

132 SC34-0312

The resulting supervisor programs generated would be stored
under different $EDXNUCx names. These can then be copied to
diskette from $EDXNUCx for transfer to the target Seriess/1. The
diskette must have been initialized previously by the utility
SINITDSK to include IPL text and space for a supervisor.

Sample Configurations

The following figures show sample configurations for $EDXDEF.
For actual definitions refer to the Program Directory.

SYSTEM STORAGE=96,MAXPROG=(3,2,3), .C
PARTS=(32,6,10)
DISK DEVICE=64962~1,ADDRESS=03, c
VOLSER=EDX002,VOLORG=0,VOLSIZE=100, c
LIBORG=241
DISK DEVICE=64962-1,VOLSER=EDX003, c
BASEVOL=EDX002,VOLORG=100, c
VOLSIZE=101,LIBORG=1
DISK - DEVICE=64962-1,VOLSER=ASMLIB, C
BASEVOL=EDX002,VOLORG=201, Cc
VOLSIZE=100, LIBORG=1
DISK DEVICE=64964, ADDRESS=02
DISK DEVICE=64966, ADDRESS=22,END=YES
$SYSLOG TERMINAL DEVICE=4978, ADDRESS=04, c
HDCOPY=$SYSPRTR
$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=00,CRDELAY=4, c
PAGSIZE=24,BO0TM=23,SCREEN=YES
$SYSPRTR TERMINAL DEVICE=4974,ADDRESS=01,END=YES
ENTRY S$EDXPTCH
SEDXPTCH DATA 128F'0" SYSTEM PATCH AREA
END

Figure 11. Example of SEDXDEF: Configuration for 4962-1F
(9.3MB disk)

Chapter 7. System Generation 133

SYSTEM STORAGE=64,MAXPROG=5
DISK "DEVICE=6962-1F,ADDRESS=03, c
VOLSER=EDX002,VOLORG=0,VOLSIZE=100, c
‘LIBORG=241,FHVOL=FHVOL
DISK DEVICE=6962-1F,VOLSER=EDX003, c
BASEVOL=EDX002,VOLORG=100, c
VOLSIZE=101,LIBORG=1
DISK DEVICE=6962-1F,VOLSER=ASMLIB, c
BASEVOL=EDX002,VOLORG=201, c
"VOLSIZE=100,LIBORG=1
DISK DEVICE=4964, ADDRESS=02
DISK DEVICE=4966, ADDRESS=22,END= YES
$SYSLOG TERMINAL DEVICE=4979,ADDRESS=04, c
HDCOPY=$SYSPRTR
$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=00,CRDELAY=4, c
PAGSIZE=24,B0OTM=23,SCREEN=YES
$SYSPRTR TERMINAL DEVICE=4974,ADDRESS=01,END=YES
ENTRY $EDXPTCH
SEDXPTCH DATA 128F'0"’ SYSTEM PATCH AREA
END

Figure 12. Example of $EDXDEF: Configuration for 4962-1
(9.3MB fixed—-head disk)

134 SC34-0312

$SYSLOG
$SYSLOGA
$SYSPRTR

SEDXPTCH

SYSTEM STORAGE=196,MAXPROG=(1,2,1,3,4,1),
PARTS=(9,12,7,4,20,32)

DISK DEVICE=4962-3, ADDRESS=03,
VOLSER=EDX002,VOLORG=0,VOLSIZE=100,
LIBORG=361

DISK DEVICE=4962-3,VOLSER=EDX003,

BASEVOL=EDX002,VOLORG=100,
VOLSIZE=101, LIBORG=1

DISK DEVICE=4962-3,VOLSER=ASMLIB,
BASEVOL=EDX002,VOLORG=201,
VOLSIZE=100,LIBORG=1

DISK DEVICE=4964, ADDRESS=02

DISK DEVICE=4966, ADDRESS=22,END=YES

TERMINAL DEVICE=4979,ADDRESS=04,
HDCOPY=$SYSPRTR

TERMINAL DEVICE=TTY,ADDRESS=00,CRDELAY=4,
PAGSIZE=264,B0TM=23,SCREEN=YES

TERMINAL DEVICE=4974,ADDRESS=01,END=YES

ENTRY $EDXPTCH

DATA 128F'0" SYSTEM PATCH AREA

END

Figure 13,

Example of SEDXDEF: Configuration for 4962-3 or

6962~4 (13.9MB disk)

Chapter 7. System Generation

135

QSYSLbG
$SYSLOGA
D497800
D497801
D497802
D497803
D497804
D497805
$TERMA
STERMB

$SYSPRTR
LPRINTER

SEDXPTCH

SYSTEM STORAGE=128,MAXPROG=(10,10,10), c
PARTS=(32,9,23) '

DISK DEVICE=4964,ADDRESS=02, TASK=YES

DISK DEVICE=4964, ADDRESS=12, TASK=YES

DISK DEVICE=4963-23,ADDRESS=48, c
VOLSER=EDX002,VOLORG=0,VOLSIZE=100, c
LIBORG=129,FHVOL=FHVOL, TASK=YES

DISK LIBORG=1,VOLSIZE=80,BASEVOL=EDX002, C
VOLSER=ASMLIB,DEVICE=4963-23,VOLORG=100

DISK DEVICE=4963-23,VOLSER=PRGRMS, c
BASEVOL=EDX002,VOLORG=180, c
VOLSIZE=33,LIBORG=1

DISK DEVICE=4963-23,VOLSER=MTMSTR, c
BASEVOL=EDX002,VOLORG=213, c
VOLSIZE=22,LIBORG=1 A

DISK DEVICE=4963-23,VOLSER=SCRNS, c
BASEVOL=EDX002,VOLORG=235, c
VOLSIZE=12, LIBORG=1

DISK DEVICE=64963-23,VOLSER=EDX003, c
BASEVOL=EDX002,VOLORG=100, C
VOLSIZE=111,LIBORG=1,END=YES

TERMINAL DEVICE=4978,ADDRESS=2A, c
"HDCOPY=$SYSPRTR, PART=1

TERMINAL DEVICE=TTY,ADDRESS=00,CRDELAY=4, c
PAGSIZE=24,B0TM=23,SCREEN=YES

TERMINAL DEVICE=4978,ADDRESS=24, c
HDCOPY=LPRINTER,PART=2

TERMINAL DEVICE=4978,ADDRESS=25, c
HDCOPY=$¢SYSPRTR,PART=3

TERMINAL DEVICE=4978,ADDRESS=26, c
HDCOPY=$¢SYSPRTR, PART=3

TERMINAL DEVICE=4978,ADDRESS=27, €
HDCOPY=$¢SYSPRTR, PART=3

TERMINAL DEVICE=4978,ADDRESS=28, c
HDCOPY=$SYSPRTR,PART=3

TERMINAL DEVICE=4978,ADDRESS=29, c
HDCOPY=$¢SYSPRTR,PART=3

TERMINAL DEVICE=VIRT,ADDRESS=TERMB,SYNC=YES

TERMINAL DEVICE=VIRT,ADDRESS=TERMA

TERMINAL DEVICE=4974,ADDRESS=01

TERMINAL DEVICE=4973,ADDRESS=21,END=YES

BSCLINE ADDRESS=19,TYPE=PT,RETRIES=5, C
MC=NO,END=YES

TIMER ADDRESS=40

ENTRY $EDXPTCH

DATA 128F'0" SYSTEM PATCH AREA

END

Figure 14,

SEDXDEF and Multiple Terminal Manager Volume

Definition:

136 SC34-0312

Configuration for 4963~-23 (23MB disk)

SYSTEM STORAGE=128, MAXPROG=(3,6), c
PARTS=(32,32),COMMON=EDXSVC

DISK DEVICE=4963-29, ADDRESS=48, c
VOLSER=EDX002,VOLORG=0,VOLSIZE=100, c
LIBORG=129
DISK DEVICE=4963-29,VOLSER=EDX003, c
BASEVOL=EDX002,VOLORG=100, c
VOLSIZE=100, LIBORG=1
DISK DEVICE=4963-29,VOLSER=ASMLIB, c
BASEVOL=EDX002,VOLORG=200, C
VOLSIZE=100,LIBORG=1
DISK DEVICE=4964,ADDRESS=02
DISK DEVICE=4966,ADDRESS=22,END=YES
$SYSLOG TERMINAL DEVICE=4979,ADDRESS=04, c
HDCOPY=$SYSPRTR
$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=00,CRDELAY=4, c

PAGSIZE=24,B0TM=23,SCREEN=YES
$SYSPRTR TERMINAL DEVICE=49764,ADDRESS=01,END=YES

ENTRY $EDXPTCH
$EDXPTCH DATA 128F'0" SYSTEM PATCH AREA
END

Figure 15, Example of $EDXDEF: Configuration for 4963-29
(29MB disk)

Chapter 7. System Generation 137

SYSTEM STORAGE=128,MAXPROG=(4,4), C
PARTS=(32,32),DATEFMT=MMDDYY
DISK DEVICE=64963-23,ADDRESS=48, c
‘ VOLSER=EDX002,VOLORG=0,VOLSIZE=100, (o
LIBORG=129,FHVOL=FHVOL
DISK DEVICE=4963-23,VOLSER=EDX003, Cc
BASEVOL=EDX002,VOLORG=100, Cc
VOLSIZE=100,LIBORG=1 ,
DISK DEVICE=4963-23,VOLSER=ASMLIB, C
BASEVOL=EDX002,VOLORG=200, Cc
VOLSIZE=100, LIBORG=1
DISK DEVICE=4964, ADDRESS=02
DISK DEVICE=4966,ADDRESS=22,END=YES
$SYSLOG TERMINAL DEVICE=4979,ADDRESS=04, C
HDCOPY=$SYSPRTR
$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=00,CRDELAY=4, - C
PAGSIZE=24,B0TM=23,SCREEN=YES
$SYSPRTR TERMINAL DEVICE=64974,ADDRESS=01,END=YES
ENTRY $EDXPTCH
SEDXPTCH DATA 128F'0" SYSTEM PATCH AREA
END
Figure 16, Example of SEDXDEF with date format
specified: Configuration for 4963-23 (23MB

fixed—head disk)

138 SC34-0312

SYSTEM STORAGE=256, C
MAXPROG=(3,1,5,2,2,1,1,4), c
PARTS=(15,4,21,13,17,11,8,23)

DISK DEVICE=4963-64, ADDRESS=48, C
VOLSER=EDX002,VOLORG=0,VOLSIZE=46, C
LIBORG=129

DISK DEVICE=4963-64,VOLSER=EDX003, Cc
BASEVOL=EDX002,VOLORG=46, Cc
VOLSIZE=46,LIBORG=1

DISK DEVICE=4963-64,VOLSER=ASMLIB, o
BASEVOL=EDX002,VOLORG=92, C
VOLSIZE=46, LIBORG=1

DISK DEVICE=4963-64,VOLSER=EDX004, C
BASEVOL=EDX002,VOLORG=138, C
VOLSIZE=46, LIBORG=1

DISK DEVICE=4963-64,VOLSER=EDX005, C
BASEVOL=EDX002,VOLORG=184%, C
VOLSIZE=46,LIBORG=1

DISK DEVICE=64963-64,VOLSER=EDX006, C
BASEVOL=EDXO002,VOLORG=230, C
VOLSIZE=46,LIBORG=1

DISK DEVICE=4963-64,VOLSER=EDXO007, C
BASEVOL=EDX002,VOLORG=276, C
VOLSIZE=46,LIBORG=1 ‘

DISK DEVICE=4963-64,VOLSER=EDX008, C
BASEVOL=EDX002,VOLORG=322, C
VOLSIZE=46,LIBORG=1

DISK DEVICE=4964, ADDRESS=02,VERIFY=NO

DISK DEVICE=4966, ADDRESS=22, C
VERIFY=NO,END=YES

$SYSLOG TERMINAL DEVICE=4979,ADDRESS=04, Cc
HDCOPY=$SYSPRTR
$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=00,CRDELAY=4, C
PAGSIZE=24,B0TM=23,SCREEN=YES
$SYSPRTR TERMINAL DEVICE=4974,ADDRESS=01,END=YES
ENTRY $EDXPTCH
$EDXPTCH DATA 128F'0" SYSTEM PATCH AREA
END
Figure 17. Example of S$EDXDEF: Configuration for 4963-64

(64MB disk) with a mapping of all (358) available

cylinders

Chapter 7. System Generation

139

SYSTEM STORAGE=96,MAXPROG=(3,4), c .
PARTS=(16,18),COMMON=START

DISK DEVICE=64963~-58, ADDRESS=48, c
VOLSER=EDX002,VOLORG=0,VOLSIZE=46, c
‘ LIBORG=129,FHVOL=FHVOL
DISK DEVICE=64963~58,VOLSER=EDX003, c
BASEVOL=EDX002,VOLORG=46, ‘ c
VOLSIZE=66, LIBORG=1
DISK DEVICE=4963-58, VOLSER=ASMLIB, c
© . BASEVOL=EDX002,VOLORG= 92, c
VOLSIZE=46, LIBORG=1
DISK DEVICE=4964, ADDRESS=02
DISK DEVICE=4966,ADDRESS=22,END=YES
$SYSLOG TERMINAL DEVICE=4979,ADDRESS= 04, c
HDCOPY=$SYSPRTR
$SYSLOGA TERMINAL DEVICE=TTY,ADDRESS=00,CRDELAY=4, c

PAGSIZE=24,B0OTM=23,SCREEN=YES
SSYSPRTR TERMINAL DEVICE=4974,ADDRESS=01,END=YES
ENTRY $EDXPTCH
SEDXPTCH DATA - 128F'0’ ' SYSTEM PATCH AREA
END -

Figure 18. Example of $EDXDEF: Configuration for 4963-58
(58MB fixed-head disk)

140 SC34-0312

CDRVTA

CDRVTB

$SYSLOG

$SYSLOGA

$SYSPRTR

SEDXPTCH

SYSTEM

STORAGE=256,MAXPROG=(5,5,5,5),
PARTS=(16,32,32,32),

DISK DEVICE=4962-3, ADDRESS=03,
VOLSER=EDX002,VOLORG=0,VOLSIZE=100,
LIBORG=361,VERIFY=NO, TASK=YES

DISK DEVICE=64962-3,VOLSER=EDX003,
BASEVOL=EDX002,VOLORG=100,
VOLSIZE=51,LIBORG=1

DISK DEVICE=4962-3, VOLSER=CDRSRC,
BASEVOL=EDX002,VOLORG=151,
VOLSIZE=50, LIBORG=1

DISK DEVICE=4962-3,VOLSER=ASMLIB,
BASEVOL=EDX002,VOLORG=201,
VOLSIZE=100, LIBORG=1

DISK DEVICE=4964, ADDRESS=02,
VERIFY=NO,TASK=YES

TAPE DEVICE=4969, ADDRESS=4C, ID=TAPEO1,

DENSITY=DUAL,LABEL=BLP,TASK=YES

DISK DEVICE=4966,ADDRESS=22,

VERIFY=NO, TASK=YES,END=YES

TERMINAL DEVICE=VIRT,ADDRESS=CDRVTB,
LINSIZE=132,SYNC=YES

TERMINAL DEVICE=VIRT,ADDRESS=CDRVTA,
LINSIZE=132

TERMINAL DEVICE=4979,ADDRESS=04,
HDCOPY=$SYSPRTR, PART=2

TERMINAL DEVICE=4978,ADDRESS=24,
HDCOPY=$SYSPRTR, PART=3

TERMINAL DEVICE=64974,ADDRESS=01,END=YES

TIMER ADDRESS=40

BSCLINE ADDRESS=68,TYPE=PT,RETRIES=6,MC=YES
BSCLINE ADDRESS=69,TYPE=PT,RETRIES=6,MC=YES
BSCLINE ADDRESS=6A,TYPE=SA,RETRIES=6,MC=YES
BSCLINE ADDRESS=6B,TYPE=SA,RETRIES=6,MC=YES, C

END=YES
ENTRY SEDXPTCH
DC 128F'0"

END

Figure 19.

Example of $EDXDEF: Configuration for
and Remote Management Utility using the

function

4969 tape
PASSTHRU

Chapter 7. System Generation 141

142 SC34-0312

PART III — THE INDEXED ACCESS METHOD

Part III is organized into two chapters. "Chapter 8. Overview
of the Indexed Access Method" on page 145 describes the
features, components, and functions that comprise the Indexed
Access Method. It also provides an overview of the indexed
data set, how the Indexed Access Method processes the data set,
how to prepare your applications, and how to get your data into
an indexed data set.

"Chapter 9. Planning and Designing Indexed Applications™ on
page 159 contains detailed information on how to define, cre-
ate, access, and maintain an indexed data set and how to handle
errors. It also explains how indexed data sets are structured
and managed.

PART III - THE INDEXED ACCESS METHOD 143

144 SC34-0312

CHAPTER 8. OVERVIEW OF THE INDEXED ACCESS METHOD

The Indexed Access Method licensed program is a data management
facility that operates under the Event Driven Executive. It
allows you to build, maintain, and access indexed data sets.
In an indexed data set, each of your records is identified by
the contents of a predefined field called a key. The Indexed
Access Method builds into the data set an index of keys that
provides access to your records.

The Indexed Access Method offers the following features:

. Direct and sequential processing. Multiple levels of
indexing are used for direct access, and sequence chaining
of data blocks is used for sequential access.

. Support for high insert and delete activity without sig-
nificant performance degradation. Free space can be dis-—
tributed throughout the data set and in a free pool at the
end of the data set so that new records can be inserted.
The space occupied by a deleted record is immediately
available for new records.

. Concurrent access to a single data set by several requests.
These requests can be from one or more programs. Data
integrity is maintained by a file, block, and record level
locking system that prevents other programs from accessing
the portion of the file being modified.

. Implementation as a separate task. A single copy of the
Indexed Access Method executes and coordinates all
requests. A buffer pool supports all requests and opti-
mizes the space required for physical I/70; the only buffer
required in an application program is the one for the
record being processed.

. A utility program ($IAMUT1) which allows you to create,
format, load, unload, and reorganize an indexed data set.

. File compatibility. Data files created by the Event Driven
Executive Indexed Access Method are compatible with those
created by the IBM Series/l1 Realtime Programming System
Indexed Access Method licensed program, 5719-AM1l, provided
that the block size is a multiple of 256.

° Data Protection. All input/output operations are performed
by system functions. Therefore, all data protection
facilities offered by the system also apply to indexed
files. The following additional data protection is pro-
vided: 0

Chapter 8. Overview of the Indexed Access Method 145

- The exclusive option — specifies that the file is for
the exclusive use of a requester.

- Record locking - automatically prevents two requests
from accessing the same data record at the same time.

- Immediate write back — causes all updated records to be
written back to the file immediately.

- Accidental key modification is prevented ~ this helps
ensure that your index matches the corresponding data.

DEVICES SUPPORTED

The Indexed Access Method supports indexed data sets on the
following direct access devices:

. 4962 Disk Storage Unit

. 4963 Disk Subsystem

. 4964 Diskette Unit

. 4966 Diskette Magazine Unit

FUNCTIONS

Functions available include those that can be called from an
application program and a utility to define and maintain an
indexed data set.

I/0 Requests

I/0 requests allouw you to build an indexed data set and to per-
form direct or sequential processing on that data set. Rou-
tines using these functions are written in Event Driven
Language and can be included in programs written in any lan-
guage that supports the calling of Event Driven Executive
Language routines.

You request the services of the Indexed Access Method through
the Event Driven Language CALL instruction in the following
general form: .

CALL IAM,(func),iacb,(parm3),(parm4),(parm5)

146 SC34-0312

For information on coding the parameters and functions, refer
to the Language Reference.

The following requests can be invoked:

Operands

PROCESS

LOAD

GET

GETSEQ

PUT

PUTUP

PUTDE

RELEASE

DELETE

ENDSEQ

Description

Builds an Indexed Access Control Block (IACB) and
connects it to an indexed data set. You can then use
the IACB to issue requests to that data set to read,
update, insert, and delete records. A program can
issue multiple PROCESS functions to obtain multiple
IACBs for the same data set, enabling the data set
to be accessed by several requests concurrently
within the same program.

Similar to PROCESS but used to load or extend the
initial collection of records.

Directly retrieves a single record from the data
set. If you specify the update mode, the record is
locked (made unavailable to other requests) and
held for possible modification or deletion. Use
GET to retrieve a single record from the data set.

Sequentially retrieves a single record from the
data set. If you specify the update mode, the record
is locked (made unavailable to other requests) and
held for possible modification or deletion. Use
GETSEQ when you are performing sequential oper-
ations.

Loads or inserts a new record depending on whether
the data set was opened with the LOAD or PROCESS
request. Use PUT when you are adding records to a
data set.

Replaces a record that is being held for update.
Use PUTUP to modify a record.

Deletes'a record that is being held for update. Use
PUTDE to delete a record.

Releases a record that is being held for update.
Use RELEASE when a record that was retrieved for
update is not changed.

Deletes a single record, identified by its key,
from the data set. Use DELETE to delete a record;
unlike PUTDE, the record cannot have been retrieved
for update.

Terminates sequential processing.

Chapter 8. Overview of the Indexed Access Method 147

EXTRACT Provides information about the file (from the File
Control Block). . , Co

DISCONN Disconnects an IACB from an indexed data set,
thereby releasing any locks held by that IACB;
writes out all buffers associated with the data
set; and releases the storage used by the IACB. .-

The SIAMUT1 Utility

The $IAMUT1 utility formats, defines, creates, and writes con-
trol information to the indexed data set. Indexed Access Meth-
od requests can be used only on data sets defined either by this
utility or by the Realtime Programming System Indexed Access
Method. $IAMUT1l is described in the Utilities, Operator
Commands, Program Preparation, Messages and Codes manual.)

OPERATION OF THE INDEXED ACCESS METHOD -

The Indexed Access Method performs I/0 operations by using
standard data management requests. : B

A single copy of the Indexed Access Method load module $IAM
serves the entire system. It can be loaded automatically at IPL
time through the automatic initialization capability (refer to
"Automatic Application Initialization and Restart" on page
129), or it can be loaded manually by using the $L operator com-
mand. However, since the link module loads $IAM automatically,
$IAM does not need to be loaded before it is used by any pro-
gram, Once loaded, the Indexed Access Method remains in storage
until cancelled with the $C operator command.

$IAM can be loaded into any partition, including partition one.
It can be invoked (through the link module) from any partition,
including the partition it is in. Figure 20 on page 149 shous
an example of a system containing the Indexed Access Method.

INDEXED DATA SETS = OVERVIEW

You can organize a collection of data into an indexed data set
if the data consists of fixed-length records and if each record
can be uniquely identified by the contents of a single prede-
fined field called the key. In an indexed data set, the records
are arranged in ascending order by key. Reserved space, called
free space, can be distributed throughout the data set so that
records can be inserted.

148 SC34-0312

Partition 1 Partition 2 Partition 3

Application
program
link
Application
program
Control
blocks and
buffer pool
SIAM link
Application
program Application
Event program
Driven link :
Executive link

Each application program contains a copy of the IAM
link module, which provides the interface to $IAM.

Figure 20. Example System Environment

An indexed data set contains base records, inserted records, a
multilevel index, and the control information required to use
the index and free space.

Indexed access applications are generally of two types: those
which both read and modify files and those which only read
files., The former are called update applications while the lat-
ter are called inquiry applications.

The Indexed Access Method uses two modes to place records into
an indexed data set: :

1, LOAD mode: records are loaded sequentially in ascending
order by key, skipping any free space. The records loaded
are called base records. Each record loaded must have a
key higher than any key already in the data set.

Chapter 8. Overview of the Indexed Access Method 149

2. PROCESS mode: records are inserted in their proper key
position relative to records already in the data set.
Records are inserted using the free space that was skipped
during loading or, if a record has a new high key, in the
unused space after the last loaded record.

The total number of base records that can be loaded is estab-
lished when the indexed data set is built by the $IAMUT1 utili-
ty. It is not necessary, however, to load all the base records
before processing can begin. The data set can be opened for
loading some of the base records, closed and then reopened for
processing (including inserts), and later opened for loading
more base records. Figure 21 illustrates this sequence.

, - First record has lowest key
-
-—
Step 1.
Load a portion of <
——

the base records

~¢————— Step 2. Insert new records

e

Highkey ———bF — — — — — —
after step 1 . -y

_______ — High key

after step 2

Step 3.
Load more
base records

High key ~—————ppt- — ~— —— — —— —— |— Last record has highest key
after step 3

Unused space

Figure 21. Loading and Inserting Records in an Indexed Data Set

150 SC34-0312

The total amount of free space for inserts is specified to the
$IAMUT1 utility when the indexed data set is built. This free
space is distributed throughout the data set in the form of
free records within each data block, free blocks within each
block grouping, and/or in a free pool at the end of the data
set.

Data Set Format

Indexed data sets consist of data blocks which contain records,
indexes (pointers) to the data blocks, and indexes to the index
blocks. This technique is called a cascading index structure.
The first block in the indexed data set, the file control block
(FCB), describes the attributes of the data set.

Each data block has the following format:

HEADER

Data Record

Data Record

Data Record

Freehspace

Each index block has the following format:

HEADER

RBN KEY

RBN .| KEY

RBN KEY

UNUSED

Chapter 8. Overview of the Indexed Access Method 151

A set of data blocks is addressed (described) by a single index
block. Each key in the index block is the highest key in the
data block that its accompanying relative block number (RBN)
addresses. A block is addressed by its RBN. The primary-level
index block (PIXB) and the data blocks it describes are called
a cluster.

HEADER

RBN High key
in 1

RBN | 'High key
PIXB in 2

RBN High key
in 3

RBN High key
in 4

HEADER HEADER HEADER HEADER

Data
blocks

1 2 3 G

A Sample Clus{er

The records in each data block are in ascending order, accord-
ing to the key field in each record.

Each data block header contains the address of the next sequen~
tial data block, allowing sequential processing.

Each PIXB (or cluster) has an entry in a second-level index
block (SIXB) that contains the address of the PIXB and the

highest key in the cluster. The SIXB has the following struc-—
ture:

152 SC34-0312

SIXB

PIXB1

HEADER
RBN High key
in PIXB1
RBN High key
in PIXB2
RBN High key
in PIXB3
RBN High key
in PIXB4
PIXB2

PIXB3

PIXB4

The SIXBs in the data set are described by an index block in the

same manner as the PIXB describes each cluster,

There is, of

course, an index block that describes the entire data set. The

structure of the file is as follows:

Chapter 8.

Overview of the Indexed Access Method 153

FCB

Highest level
index points
to index blocks

Next
SIXB SIXB SIXB level

.o points
to
clusters

PIXB {...|PIXB PIXB |{...|PIXB PIXB‘ ..«|PIXB

Data Blocks

Note that only the highest key in any data block is found in a
PIXB entry, a SIXB entry contains only the highest key found in
a PIXB, and so on, to the highest index block. This index tech-
nique is called sparse indexing.

REQUESTING RECORDS

When you request a record from your data set, the access method
uses the index to retrieve the data block that contains the
record. The index blocks and data blocks are read, using EDL
READ instructions, into the central buffer. When the requested
record is found, it is moved to the address you specified and
control is returned to your program.

156 $SC34-0312

To minimize accesses to the disk, the buffer management algo-
rithm tends to keep in the buffer the most frequently refer-
enced blocks (index or data).

PREPARING TO EXECUTE INDEXED APPLICATIONS

The Indexed Access Method consists of the following compo-
nents:

. A load module, $IAM, that supports the execution of the
programs that contain your Indexed Access Method requests.

] A set of object modules that you may use to generate a cus-
tomized load module. If you use the supplied load module,
$IAM, you do not need the object modules.

The object module, IAM, is called a link module. You
include IAM with your program to provide the interface to
the Indexed Access Method. This link module is sometimes
called a stub.

. Two copy code modules, IAMEQU and FCBEQU. IAMEQU provides
symbolic parameter values for constructing CALL parameter
lists. FCBEQU provides a map of the file control block
(FCB).

. A load module for the Indexed Access Method utility
S$IAMUTL.

Preparing Programs

To prepare an application programs that issues Indexed Access
Method requests, perform the following steps:

1. Enter the source program, using one of the text editors
(SFSEDIT, $EDIT1l, or $SEDIT1N).

2. Create the $LINK control statements required to combine
your program with IAM (the 1link module) and any other
object modules you may need in your application. These
statements consist of a single OUTPUT statement, at least
two INCLUDE statements - one for your program and one for
IAM (the link module), and a single END statement. Use one
of the text editors to perform this operation.

3. Assemble the source program using:?

The EDL compiler, $EDXASM, of the Program Preparation

Chapter 8. Overview of the Indexed Access Method 155

Facility
or

The Series/1 ma'cro assembler, $S1ASM, in conjunction with
the Macro Library

or

The Series/1 macro assembler supplied by the Systems/370
Program Preparation Facility in conjunction with the Macro
Library/Host

4. Use the linkage editor, $LINK, to combine the object mod-
ules into a single module, using the control statements
prepared in Step 2.

5. Use the object program converter, $UPDATE or $UPDATEH, to
convert your module to a loadable program.

When the precedlng steps are completed the program is ready to
be executed.

Establishing the Data Set

Use the following steps to prepare the input for an indexed
data set:

1. If your data records are 72 bytes or less use one of the
text editors to enter your data or one of the communi-
cations utilities to get the data to your system. In
either case, you must know the record format used by the
utility. The utilities put two 80-byte records in each
256-byte EDX record. The first record begins at location
1, and the second record begins at location 129. The
$IAMUTI utility assumes unblocked input. $IAMUT1 takes
only one logical record, the size of which was specified on
the RECSIZE prompt, from each EDX record. Any record after
the first logical record in each 256-byte EDX record is
ignored. If you use the text editors, you must enter data
on every other line starting with the first line.

2. If yourﬂrecords have more than 72 bytes of data, you must
create a program that accepts the data records and writes
them to a disk or diskette data set.

The data must bé in ascending order, based upon'the~fie1d you
use as the key.

156 SC34-0312

The process of creating an indexed data set from a sequential
data set is:

1.

2.

10,

Invoke $IAMUTI.

Enter an EC command. Respond to the prompt with a Y. This
Wwill put all further input and output of $IAMUT1 +to the
$SYSPRTR device and your terminal.

Enter an SE command. You will be prompted for the attri-
butes of your data set. After the prompt/reply sequence
ends, the utility will display your file attributes in
numeric form. When you are satisfied with the file's struc-
ture (you can repeat SE commands, changing selected val-
ues), performing steps 4 through 8.

Enter a CR command to invoke $DISKUT1.
Enter a CV command to specify the volume. Then enter an AL

Enter an AL command followed by the data set néme. specify
the space in EDX records, and enter a Y in response to the
data type prompt,

Enter an EN command to end $DISKUT1 and return to $IAMUTI.

Enter a DF command to map the file. The DF command also
prompts for the immediate uwrite back option and the data
set and volume names.

Enter an LO command. Respond to the prompt for input by
specifying your input data set name and volume. Respond to
the output prompt by entering the data set name and volume
specified on the DF command. VYour data is then loaded to
the indexed file.

Enter an EN command to end $IAMUT1. Your program can then
be loaded and may begin to process the data.

Chapter 8. Overview of the Indexed Access Method 157

A SAMPLE $JOBUTIL PROCEDURE AND LINK EDIT CONTROL

SJOBUTIL Procedure

36 36 36 36 36 3 3 3 36 36 36 3 3 36 3 36 2 I I 36 36 I 3 36 36 I I K I 36 3 K K 36 I I 2 H 3 K I 3 I K ;KK K I KKK KK
*

% THESE STATEMENTS WILL ASSEMBLE, LINK, AND UPDATE THE

¥ APPLICATION.

¥* .
3636 36 36 36 3 3 3 3 3 I 36 36 36 36 36 36 36 36 3 3 I I I 3 I I I 3K 6 36 36 36 36 3 96 36 I K I H I 3 3 I K K K K KKK ¥

JOB ASSEMBLE

* % % ASSEMBLE USERPROG SOURCE %%

LOG SSYSPRTR

PROGRAM $EDXASM,ASMLIB

DS USERPROG,EDX002 SOURCE MODULE

DS ASMWORK,EDX002 ASSEMBLER WORK DATA SET
DS USEROBJ,EDX0D2 ASSEMBLER OUTPUT

PARM LIST SSYSPRTR

EXEC

JOB LINKAIAM

LOG $SYSPRTR

PROGRAM $LINK,ASMLIB

DS LINKCTL,EDXGO2 LINKCTL IS NAME OF

* LINK-CONTROL DATA SET
DS ' LEWORK1,EDX002 ‘ LINK WORK DATA SET

DS LEWORK2,EDX002 LINK WORK DATA SET
PARM SSYSPRTR

EXEC

-PROGRAM SUPDATE

* PUT EXECUTABLE LOAD MODULE INTO DATA SET 'ANYNAME'
PARM $SYSPRTR LINKOUT,EDX002 ANYNAME YES
EXEC

LABEL END

EOJ

Link Edit Control

3 3 336 3 I I I I 3 K I K 3 I I I I K I I I I M I I I I I I H I I I KKK M I KM H N KKK KKK KN
*

¥ LINK EDIT CONTROL DATA SET (LINKCTL)

*

3 36 3 9 36 3 I 3 3 36 I I I 36 3 36 36 K I 3 3 K I 3 5 3 I I K 3 3 I I I I I I I I 3 I I I KW K K K MK KKK KK

ouUTPUT LINKOUT,EDX002 PUT LINK OQUTPUT INTO LINKOUT
INCLUDE USEROBJ,EDX002 INCLUDE APPLICATION PGM OBJECT
INCLUDE IAM,ASMLIB INCLUDE INDEXED ACCESS METHOD
END

158 SC34-0312

CHAPTER 9. PLANNING AND DESIGNING INDEXED APPLICATIONS

This chapter provides information for designing applications
that use the Indexed Access Method. It contains information
about: '

. Defining programs

Interfacing to $IAM

- Maintaining indexed data sets

Recovery, backup, and reorganization techniques

Concatenating indexed data sets
. Error handling
- How to handle errors

- Error exit facilities

- Resource contention
. The indexed data set
- How to define records

- How to define the key
- How the data set is structured
- How the data set is formatted
Notet: The Language Reference contains a detailed description

of the coding syntax of each Indexed Access Method request. You
may wish to refer to it while reading the next several pages.

CONNECTING AND DISCONNECTING THE INDEXED DATA SET

Prior to using an indexed file, you must issue either a LOAD or
PROCESS request to connect it to your program. The file must be
defined in your PROGRAM statement or by a DSCB statement. In
the latter case use $DISKUT3 or DSOPEN to open the data set pri-
or to issuing the LOAD or PROCESS.

A LOAD or PROCESS request builds an indexed access control

block (IACB) that is associated with an indexed data set. The
IACB connects a request to the data set.

Chapter 9. Planning and Designing Indexed Applications 159

When in load mode, records are placed in the file sequentially.
Free space is skipped. When in process mode, records are placed
in the first available slot in the file and free space is used.

Only one LOAD request can be active for a given data set. Howev-—
er, processing can take place concurrently with loading. No
LOAD or PROCESS can be successful until the file has been for-
matted by the $IAMUT1 utility.

Multiple IACBs can be associated with the same data set. Data
integrity is maintained by a locking system that allocates
file, record, or block locks to the requesting IACB. This pre-
vents concurrent modification of index or data records by other
requests.

An IACB can hold only one lock at a time; if your application
requires concurrent execution of functions that obtain locks
(direct update or sequential update - see "Processing" on page
161 for a description of these functions), you must issue mul-
tiple PROCESSes to build multiple IACBs.

A DISCONN disconnects an IACB from the data set, releases the
storage for that IACB, releases locked blocks or records being
held by that IACB, and writes any blocks that are being held in
the buffer. The DISCONN request can be issued at any time dur-
ing loading or processing.

There is no automatic DISCONN on task termination. Failure to
disconnect your indexed data sets prior to task termination may
prevent resources that were allocated to your task from being
allocated to other tasks and updated records from being written
to your data set.

LOADING BASE RECORDS

Base records must be loaded in ascending order by key. If you
are writing your ouwn program to load the file, use a LOAD
request to load base records. Then issue a PUT for each record.
When the desired records have been loaded, issue a DISCONN
request to terminate the load procedure. The only requests that
can follow a LOAD request are: PUT, EXTRACT, and DISCONN.

You need not load all base records at one time. A data set that
already contains records can be reconnected to load more
records, but the key of each new record must be higher than any
key already in the data set. ‘

Also, the limit on base records as specified on the DEFINE com-
mand of the Indexed Access Method utility program ($IAMUTI1)
cannot be exceeded. If you attempt to load a record after the
last allocated record area has been filled, an end-of-file con-
dition occurs.

160 SC34-0312

Only one LOAD request can be issued to a data set at any time.
Other processing requests can be made to a data set that is
being loaded, but an attempt to retrieve a record from the data
block being loaded can result in a no-record-found condition.

PROCESSING

Initiate general purpose access to an indexed data set with a
PROCESS request. After the PROCESS request has been issued, any
of the following functions can be requested:

° Direct reading — Retrieving a single record independently
of any previous request.

. Sequential reading - Retrieving the next logical record
relative to the previous request.

. Direct updating - Retrieving a single record for update;
complete the update by either replacing or deleting the
record.

. Sequential updating - Retrieving the next logical record

for update; complete the update by either replacing or
deleting the record.» -

. Inserting - Placing a single record, in its logical key
sequence, into the indexed data set.

. Deleting - Removing a single record from the indexed data
set,

. Extracting — Extracting data that describes the data set.
Note that the update functions require more than one request.
When a function is complete, another function may be requested,
except that a sequential function may be followed only by
another sequential function. You may terminate processing at

any time by issuing a DISCONN or ENDSEQ request. An end-of-
data condition also terminates sequential processing.

Direct Reading

Use the GET request to read a record using direct access. The
key parameter is required and must be the address of a field of
full key length regardless of the key length specification.

Chapter 9. Planning and Designing Indexed Applications 161

The record retrieved is the first record in the data set that
satisfies the search argument defined by the key and key
relation (krel) parameters. The key field is wupdated to
reflect the key contained in the record that satisfied the
search.

If the key length is specified as less than the full key length,
only part of the key field is used for comparison when search-
ing the data set. For example, the keys in a data set are AAA,
AAB, ABA, and ABB, the key field contains ABO, and key relation
is EQ. If key length is zero, the search argument is the full
key ABO (the default) and a record-not-found code is returned.
If the key length specification is 2 and the search argument is
AB, the third record is read. If the key length specification
is 1 and the search argument is A, the first record is read.

Direct Updating

To update a record using direct access:

1. Retrieve the record with a GET request, specifying the key
and key relation (krel) parameters.

2. Modify the record in your buffer. Do not change the key
field in the record. Return the updated record to the data
set with a PUTUP request.

You can delete the record with a PUTDE request or leave it
unchanged by issuing a RELEASE request. :

The key parameter must be specified as the address of a field of
full key length. The key cannot be modified during the update.

The only valid requests, other than DISCONN and EXTRACT, that
can follow GET for direct update are PUTUP, PUTDE, and RELEASE.

During the update, the subject record is locked (made unavail-
able) to any other request until the update is complete. Even
if no action is taken after the GET request is issued, the
RELEASE request is required to release the lock on the record.

Sequential Reading

Use the GETSEQ request to read a record sequentially. After a
sequential processing request has been initiated, only sequen-
tial functions can be requested until an end-of-data condition
occurs or an ENDSEQ request is issued. Processing is termi-
nated when a DISCONN request is issued or an error or warning is
returned.

162 SC34-0312

To begin sequential access with the first record in a data set,
set the key address to zero. To start with any other record,
specify a search argument by specifying the key and key
relation (krel) parameters.

If you specify a search argument, the key field is modified to
reflect the key of the first record found.

After the first retrieval, a GETSEQ retrieves the next sequen-
tial record regardless of any key or key relation specifica-
tion. Therefore, you can use the same GETSEQ statement to read
all records. A search argument on intermediate retrievals is
ignored and the key field is not modified.

Specify ENDSEQ to stop reading before the end of data is
reached. Reading ends automatically at the end of data. The
end-of-data condition occurs when an attempt is made to
retrieve a record after the last record in the data set.

If you specify the EODEXIT parameter on the PROCESS request,

control is transferred to the address specified by the EODEXIT
parameter when the End-of-Data condition occurs.

Sequential Updating

To update a record using sequential access, retrieve the record
with a GETSEQ request, specifying the key and one of the update
key relation parameters. The key is used only on the first
retrieval and is not specified if processing is to begin with
the first record in the data set. Processing is terminated with
an ENDSEQ or an end-of-data condition.

The key in the record cannot be modified. The record can be
returned to the data set with a PUTUP, deleted with a PUTDE, or
left unchanged by specifying RELEASE. When the update is com-—-
plete, the next record can be requested.

During sequential updating, the block that contains the record
is locked, making all records in the block unavailable to other
requesters until the last record of the block is processed or
an ENDSEQ request is issued.

Terminate processing with an ENDSEQ request or a DISCONN
request either before or after completing the update.
Figure 22 on page 164 summarizes the protocol for sequential
processing.

Chapter 9. Planning and Designing Indexed Applications 163

REQUEST/CONDITION CAN BE FOLLOWED BY:

GET DISCONN
END-OF-DATA CONDITION
ENDSEQ
PUTUP
PUTDE
RELEASE

END-OF-DATA 'CONDITION DISCONN
GET
PUT
DELETE

PUTUP DISCONN.
ENDSEQ
GETSEQ

PUTDE DISCONN
ENDSEQ
GETSEQ

RELEASE DISCONN
ENDSEQ
GETSEQ

Figure 22. Protocol for Sequential Updating

Inserting

To insert a new record in a data set, issue a PUT request. The
Indexed Access Method uses the key of the record to insert the
record into the data set. ‘

The key of the inserted record must be different from any key in
the data set; otherwise, a duplicate key error occurs. The key
can be higher than any key in the data set.

If no free space exists in the area associated with the insert
or no blocks exist in the free pool, a no-more-space condition
occurs. The no—-more—-space condition does not necessarily mean
the data set is full but it does indicate the need for data set
reorganization (refer to "Reorganization" on page 166).

164 SC34-0312

Deleting

Use DELETE to delete a record frdm the data set. The full key
of the record must be specified. If no record exists with the
specified key, an error is .indicated.

Deletion can also be performed as part of updéting by following
a GET for update with a PUTDE request.

Extracting

The EXTRACT request provides information about a data set from
the file control block (FCB). This includes information such
as key length, key displacement, block size, record size, and
other data regarding the data set structure.

Execution of the EXTRACT request causes the file control block
to be copied to an area that you provide. The data set must
have been connected by a LOAD or PROCESS request.

The contents of the FCB are described by FCBEQU, a unit of copy
code that is supplied by the access method. Use COPY FCBEQU to
include these equates in your progranm.

MAINTAINING THE INDEXED DATA SET

The Indexed Access Method does not provide specific programs to
perform indexed data set backup and recovery, nor does it
include services to delete the data set or dump it to the print-
er. These procedures are provided by a combination of Event
Driven Executive and. Indexed Access Method services as sug-
gested below. The Indexed Access Method utility $IAMUT1 does
provide services to help vyou reorganize your data set as
described belou.

Backup and Recovery

To protect against the destruction of data, at regular inter-
vals you should make a copy of the indexed data set (or the log-
ical volume in which the data set exists) using the system
$COPY utility. During the interval between making copies, you
should keep a journal file of all transactions made against the
indexed data set.

Chapter 9. Planning and Designing Indexed Applications 165

The journal file can be a consecutive data set containing
records that describe the type of transaction and the pertinent
data. A damaged indexed data set can be recovered by updating
the backup copy from the journal file.

For example, suppose an indexed data set named REPORT is lost
because of physical damage to the disk. The condition that
caused the error has been repaired and the data set must be
recovered. Delete REPORT, copy the backup version of REPORT to
the desired volume, and process the journal file to recreate
the data set.

If a data-set-shut-down condition exists, IPL again. Then
issue a PROCESS to the REPORT data set and, using the journal
file, reprocess the transactions that occurred after the back-
up copy was made.

Recovery Without Backup

If you do not use the backup procedures outlined above and you
encounter a problem with your data set, you still may be able to
recreate your file. However, the status of requests that were
in process at the time of the problem is uncertain.

To recreate your data set, follow the steps in "Reorganization"”
to reorganize your data set. After recreating the data set,
verify the status of the requests that were in process at the
time the problem occurred.

Reorganization

An indexed data set must be reorganized when a record cannot be
inserted because of lack of space. The lack~-of-space condition
does not necessarily mean that there is nho more space in the
data set; it means that there is no space in the area where the
record would have been placed. Therefore, you may be able to
reorganize without increasing the size of the data set. Perform
the following steps to reorganize a data set:

1. Ensure that all outstanding requests against the data set
have been completed; issue a DISCONN for every current
IACB.

2. Use the define command (DF) of the S$IAMUT]1 utility to
define a new indexed data set. Estimate the number of base
records and the amount and mix of free space in order to
minimize the need for future reorganizations. Refer to
"The Indexed Data Set"™ on page 182 for guidelines for mak-
ing these estimates.

166 SC34-0312

3. Use the reorganize command (RO) of the $IAMUT1 utility to
load the new indexed data set from the indexed data set to
be reorganized.

Alternatively, you can use the unload command (UN) of the
$IAMUTL utility to transfer the data from an indexed data
set to a sequential data set, then use the. load command
(LO) to load it back into the indexed data set.

. Use system utilities to delete the old data set and rename
the new data set.

Dumping

To print records, use the DP command of the $DISKUT2 utility.
$DISKUT2 produces a hexadecimal dump of the entire data set
including control information, index blocks, and data blocks.
Information on the $DISKUT2 utility can be found in the Utijlj-
ties, Operator Commands, Program Preparation, Messages and
Codes.

Deleting

Delete an indexed data set the same way you delete any other
data set. From a terminal, use the DE command of the $DISKUT1
utility (refer to Utilities, Operator Commands, Program Prepa-—
ration, Messages and Codes), or from a program use the $DISKUT3
data management utility (refer to "Chapter 16. Advanced
Topics" on page 309).

CONCATENATING DATA SETS

The ALTIAM subroutine allows you to concatenate multiple IAM
data sets and to issue normal IAM commands to the concatenated
file. This allows you to have more than 32,767 sectors in an
IAM file or to put parts of a file on different devices to
improve performance. The data sets may reside on the same or
different volumes or devices. The keys of all data sets must
have the same location and length. Each file must be loaded
individually and have a unique range of keys, with no overlap
of key ranges between the data sets.

To incorporate this function in your application, transcribe
the ALTIAM subroutine using one of the text editors and modify
it to meet your requirements. Compile it with $EDXASM or the
Series/1 Macro Assembler and add the object program to your

Chapter 9. Planning and Designing Indexed Applications 167

object library. Include the object program when you link edit
vour application programs with the IAM link module.

Note: The ALTIAM subroutine is not compatible with the Multi-
ple Terminal Manager.

The ALTIAM subroutine accepts all Indexed Access Method
requests for single files. A special request, CONCAT, is issued
to concatenate files. Only one set of files may be concat-
enated per copy of ALTIAM; when the file is disconnected,
another set may be concatenated. The parameters to CONCAT are
as follows:

CALL ALTIAM, (CONCAT),IACB, (DSCBTAB), (OPENTAB), (MODE)
. Equate CONCAT to 14.

. IACB, OPENTAB, and MODE are the same as in the PROCESS
request.

e . DSCBTAB is the address of a list of opened data set control
blocks (DSCBs) with the following format:

DSCBTAB DATA A(DS1)
DATA A(DS2)
DATA A(DS3)
DATA A(BUFFER)

The DSCBs must be in order of increasing key ranges of of the
corresponding files. Three DSCBs is the default but you may
increase or decrease the number. If only two data sets are
needed, word three must be zero. The buffer must be large
enough to hold the largest record in the concatenated file.

The CONCAT function issues PROCESS requests and reads the lowu
key of each file. The default maximum key size (50 bytes) may
be changed. The address of the IACB that is returned is used by
ALTIAM to issue processing requests against the concatenated
file.

The following requests may be made to a concatenated file:

GET
GETSEQ
PUT
PUTUP
"PUTDE
DELETE
EXTRACT
ENDSEQ
RELEASE
DISCONN

168 SC36-0312

The parameters for each function are identical to the parame-
ters for requests to non-concatenated files.

You may want to modify the following items when using the
ALTIAM subroutine:

. maximum number of concatenated data sets
. maximum key length
. error checking

To change the maximum number of data sets, change line 2740 so
that DSCB# is equated to the number of files to be concatenated
(N). Lines 2630 and 2640 allocate space for IACBs and key save
areas. Line 2630 allocates N-1 words for IACBs. Line 2640
allocates KS*¥(N-1) bytes for key save areas, where KS is the
maximum key size.

To change the maximum key size, change line 2600 to allocate
the desired number of bytes (KS) for a key save area.

The ALTIAM subroutine does not perform the same error checking
that occurs for non—-concatenated data sets. You may want to
check for the following errors:

. GETSEQ requests in one file that are followed by
non-sequential requests to another file in +the concat-
enated data set.

U PROCESS or LOAD requests being issued against concatenated
datasets (unpredictable results may occur).

. GET or GETSEQ requests for update in one file followed by
non—-update requests (e.g.PUT) to another file in the con-
catenated data set.

The first error may be checked at line 300. If the sequential
flag (ASEQ) is set and the request is a GET, DELETE, PUT, or
EXTRACT, set an error code (10).

The second error may also be checked at 1line 300. If the
request is PROCESS or LOAD, set an error code (10).

The third error may be checked by adding an update flag. The
flag should be set at lines 1470 and 1530 if an update request
is made. The flag should be reset at line 1180 for ENDSEQ,
RELEASE, PUTUP, and PUTDE requests. The flag should also be
reset at line 1000 in the DISC routine and at line 2440 in the
ALTERR routine. At line 300 the flag should be checked. If the
flag indicates a GET, GETSEQ, PUT, DELETE, or EXTRACT request,
set error (10).

Chapter 9. Planning and Designing Indexed Applications 169

ALTIAM Subroutine

00010
60020
00030
000840
00050
00060
00070
60080
00090
00100
00110
00120
00130
00140
00150
00160
60170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340

170

3333333333233 3 332833333332 3.33 332333338333 3233333.323333338333.383.33.333.2.3]
%X

ALTIAM IS A SUBROUTINE WHICH ALLOWS THE USER TO CONCATENATE

IAM DATA SETS. ALL PARMS AND CALLS ARE THE SAME AS IN IAM.
REQUESTS FOR NON-CONCATENATED IAM FILES ARE SIMPLY PASSED THRU

TO IAM. TO OPEN A SET OF DATA SETS ISSUE THE CONCAT REQUEST AND
PASS A TABLE OF DSCB'S. THE KEYS IN ALL FILES MUST BE IN THE
SAME POSITION AND BE THE SAME LENGTH. KEY RANGES CAN NOT OVERLAP.
VALID COMMANDS ARE: GET, GETSEQ, DELETE, PUT, PUTUP, PUTDEL,
RELEASE, ENDSEQ, EXTRACT, DISCONN, AND CONCAT FOR

CONCATENATED FILES.

XK K X K K X X X

%%
336 36 336 36 36 36 36 36 3636 36 3 6 2 I K I H IR KKK K M KNI M MM K M NN MMM H I N MR NN MMM NKKR KN K
SPACE 2
SUBROUT ALTIAM,FUNCTION,IACB,PARM3,PARM4,PARM5
ENTRY ALTIAM
MOVE SAVEREGS,#1,2 SAVE USERS REGS
MOVE IFUNC,FUNCTION,5 COPY USERS PARMS TO CALL TO IAM
IF (FUNCTION,NE,+CONCAT),AND, NOT THE SPECIAL FUNCTION X
(IACB,NE,+ALTIACB) - OR A USE OF CONCAT. IAM DS
MOVE REGA,IACB SAVE CURRENT TIACB VALUE
MOVEA IIACB,REGB POINT TO SAVE AREA
CALL CALLIAM JUST PASS THE REQUEST THRU
MOVE IACB,REGB COPY THE IACB BACK TO THE USER
GOTO EXIT RETURN TO USER
ENDIF
SPACE 5
3696 36 36 36 36 36 36 36 36 3 3 26 36 3636 36 36 6 36 6 36 3 36 I 3K 3 3 363 3 26 2 36 36 36 3 3 36 36 3 56 3 56 3 3 36 3 3 36 36 3 2 3 9 6 X 2 3 3 ¢ % ¢
¥ PROCESS THE SPECIAL CONCATENATED IAM FILE REQUESTS.
396969633 36 33 36 36 23 K 36 36 63633 3 5 3 3 H 26 J6 36336 3 3 3 3 H 3K 3 3 X 36 3 96 36 3 3 3 3 5 3 2 96 26 36 3 3 3 3 6 36 X % %
GOTO C(LAST,LAST,LAST,LAST,INS,LAST,DIR,SEQ,DEL,DISC, X

LAST,LAST,LAST,LAST,CON),FUNCTION
EJECT
CON EQU * PROCESS THE CON. OPEN REQUEST
SC34-0312

B OIS0 363 363 J3 I 3 56 33 I 3 3 363 3 3 2 I 3 36 3 3 3 96 3K 36 3 3 2 J 3 96 96 2 96 36 2 3 36 296 2 36 3 2 2 3 HHHHHH K
00360 % LOOP THRU USERS TABLE ISSUING IAM PROCESS REQUEST, EXTRACT

00370 % FCB INFO, SAVE USERS EXIT INFO, AND FIND LOW KEY IN EACH DATA SET.
00380 3606 H 3 533 H 3 H 3K 5 36 2 2 3 363 36 56 36 36 26 K 3 56 36 36 26 2 J6 26 2626 36 236 36 3 2 26 36 366 6 K M H K KK HHHK K

00390 MOVE ALTIACB,0,(+ALTTSIZE,BYTES) ZERO OUT THE ALT IACB 3
00400 MOVE #1,PARM3 GET USERS DSCB TABLE POINTER
00410 MOVE BUFF, (BUFFADR, #1) GET POINTER TO USERS BUFFER
00420 MOVEA #2,ALTIACB POINT AT ALTERNATE IACB
00430 MOVEA IKEY,OPENTAB POINT AT OUR OPEN TABLE
00440 MOVE IFUNC, +PROCESS SET UP TO DO IAM PROCESS
00450 SPACE 2

00460 DO +DSCB#, TIMES LOOP THRU THE USERS DSCB TABLE
00470 IF (C0,#1),EQ,0),GO0TO,EXITL

00480 MOVE IBUFF, (0, #1) COPY A DSCB ADDR TO IAM CALL
00490 MOVE IIACB, #2 POINT AT IACB SAVE ADDRESS
00500 CALL CALLIAM ISSUE IAM CALL

00510 _ ADD #1,2 POINT AT NEXT DSCB

00520 ADD #2,+AENTSIZE ADD ALT IACB ENTRY SIZE
00530 ENDDO

00540 *

00550 EXIT1 EQU * EXIT FROM DO LOOP

00560 %% EXTRACT THE FCB INFORMATION

00570 MOVE IFUNC, +EXTRACT SET UP TO DO EXTRACT

00580 MOVE IBUFF,BUFF POINT TO OUT BUFFER

00590 MOVE IKEY,+10 TRANSFER 10 BYTES OF FCB
00600 CALL CALLIAM ISSUE IAM CALL

00610 MOVE #1,BUFF SET UP FCB DSECT

00620 MOVE AKPOS, (FCBKEYDP, #1) SAVE KEY POSITION

00630 MOVE AKSIZE, (FCBKEYLN, #1),BYTE GET THE KEY LENGTH
00640 SHIFTR AKSIZE,8 SHIFT IT INTO POSITION

00650 *

00660 MOVE #1,PARMG PICK UP USERS OPEN TABLE
00670 MOVE ASYSRC, #1 SAVE SYSRC CELL

00680 MOVE AERR, (2, #1) SAVE USERS ERROR EXIT ADDR
00690 MOVE AEOD, (4, #1) SAVE USERS END OF DATA EXIT
00700 x

00710 %% GET THE LOW KEY IN EACH DATA SET

00720 MOVE IKEY, 0 SET UP DEFAULT 15T KEY

00730 MOVE #2, AKPOS POINT AT KEY POSITION

00740 MOVE MOVEKEY ,AKSIZE SET UP LENGTH OF MOVE

00750 MOVEA $#1,ALTIACB+AENTSIZE POINT AT SECOND DATA SET
00760 DO +DSCB#M1, TIMES LOOP THRU DATA SETS

00770 IF ((0,#1),EQ,+0),G0T0,EXIT2

00730 MOVE IFUNC, +GETSEQ SET UP FUNCTION

00790 MOVE IIACB,#1 POINT AT IACB

00800 MOVE I0PT,+GE SET UP RELATION

00810 CALL CALLIAM ISSUE IAM GET

00820 MOVE IFUNC, +ENDSEQ SET UP END SEQ REQUEST

00830 CALL CALLIAM ISSUE IAM RELEASE

00840 MOVE (-AMAXKEY, #1),(0, #2),(1,BYTE),P2=BUFF, P3=MOVEKEY
00850 ADD #1,+AENTSIZE POINT AT NEXT SLOT

00860 ENDDO

Chapter 9. Planning and Designing Indexed Applications 171

00870

003880
00890
00900
60910
00920
00930
00940
00950
00960
00970
00980
00990
01000
61010
01020
01630
01040
01050
01060
01070
01080
61090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
61270
01280
01290
01300
61310
01320
01330
01340
01350
01360
01370
013380

172

*

EXIT2 EQU x ' : DO LOOP EXIT :
MOVE (-AMAXKEY, #1),X'FFFF', (+AMAXKEY,BYTES) HIGH FILL
MOVEA IACB,ALTIACB RETURN ALT IACB POINTER TO USER
% ‘
EXIT EQU ¥ ‘ RETURN TO USER
MOVE PARM3,0,3 ZERO OUT LAST THREE PARMS
MOVE #1,SAVEREGS,2 RESTORE USERS REGISTERS
RETURN
EJECT
DISC EQU x PROCESS ALTERNATE DISCONNECT
HIEH I I I I NI HHEHE KKK HK KKK KKK KKK KKK KKK KKK I I N I I M KKK KKK KK X

*¥% DISCONNECT ALL IAM FILES
FEHH RN KNI HIHHRIRHHHHHKHHHHNRKHKRK KKK KKK KN KK KK IR N HHHHNH KK HKR KK KK KKK HK

MOVE ASEQ, 0 RESET SEQENTIAL SWITCH
MOVE IACB,O0 -ZERO OUT USERS IACB POINTER
MOVEA #1,ALTIACB POINT AT IAM IACB TABLE
DO +DSCB#, TIMES : DO WHILE THERE ARE IACBS
IF ((0,#1),EQ,0),G0T0,EXIT3 IF EMPTY EXIT
MOVE IIACB, #1 POINT AT AN IACB
CALL CALLIAM ISSUE IAM REQUEST
ADD #1,+AENTSIZE POINT AT NEXT IACB
ENDDO ’
*
EXIT3 EQU ¥
GOTO EXIT RETURN TO USER
SPACE 5
LAST - EQU * :
L3333 335333333 3.3.33.00333.33.3.0.3333.3333.3.33.2.3.3.8.3.333.3.00882233¢.38

X% THESE REQUESTS USE THE LAST IACB USED. THEY ARE: ENDSEQ, RELEASE,
%% EXTRACT, PUTUP, AND PUTDEL.
263636 36 96 36 36 56 36 36 36 36 3 36 2 3K 3 6 3 36 3 3 369 36 3656 3 336 96 3 36 33 3636 36 3 36 36 36 363 3 3 I 36 36 36 26 3 56 336 6 36 336 36 6 3 36 36 2 % % %

MOVE IIACB,ALSTIACB+2 ‘USER THE LAST IACB
IF (FUNCTION, EQ,+ENDSEQ) IF ENDING A SEQUENCE
MOVE ASEQ,0 RESET THE SEQUENTIAL SWITCH
ENDIF
CALL CALLIAM ISSUE IAM REQUEST
GOTO EXIT RETURN TO USER
EJECT

b330 3323323333332 3232383222333 3333333333333 333.23.3.33.23.333.3.33.333.3]
%¥¥ THE NEXT SET OF FUNCTIONS USE THE CHECK ROUTINE TO DETERMINE

%% WHICH IAM FILE TO ISSUE THE REQUEST TO. THESE FUNCTIONS ARE:

%% PUT, DELETE, GET, AND THE FIRST GETSEQ. THE USER SUPPLIED KEY

%% IS CHECKED AGAINST THE VALUE STORED DURING CONCAT.

3636 36 3 36 2636 56 36 336 2 26 6 36 36 36 3 3 3 3 6 56 3 36 36 2 K 2 3 36 3 36 56 36 3 K 2 36 2 56 56 3 3 K9 36 36 326 I 3 6 ¢ K 56 36 3 3 2 3 ¥ 2 2 3 3% % %
SPACE 2 ' :
INS EQU
%% PROCESS INSERT-REQUESTS
MOVE #1,PARM3 POINT AT USERS KEY
ADD #1,AKPOS ‘ ADD IN KEY OFFSET
--MOVE COMPLEN,AKSIZE FULL KEY SUPPLIED
GOTO CHECK

SC34-0312

01390
01400
01410
01420
01430
01440
01450
01460
01470
01480
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
61600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01800
061810
01820
01830
01840
01350
01851
01852
01860
01870
01880
01890

*

DEL EQU ®

%% PROCESS DELETE REQUESTS
MOVE #1,PARM3 POINT AT USERS KEY
MOVE COMPLEN,AKSIZE FULL KEY SUPPLIED
GOTO CHECK

*

SEQ EQU *

%% PROCESS GET SEQ REQUESTS
IF (ASEQ,EQ,1),GO0TO,LAST IF NOT FIRST IN SEQUENCE
MOVE ASEQ,1 SIGNAL SEQUENTIAL MODE

%% PROCESS FIRST SEQUENTIAL AS DIRECT

*

DIR EQU *

%% PROCESS GET REQUESTS
IF (PARM4,EQ,0) IF KEY IS NOT SET

MOVEA TIIACB,ALTIACB POINT AT FIRST FILE
GOTO INRANGE SKIP CHECKING

ENDIF
MOVE #1,PARMG GET KEY POINTER
MOVE COMPLEN, (-1, #1),BYTE GET KEY LENGTH
SHIFTR COMPLEN,S8 GET INTO POSITION

*

CHECK EQU ¥

33K 36 3 2 36 36 3 36 36 2 2 36 26 36 3626 2 2626 3K H 3 33 3K 3 3 H 26 6 J 2 3 26 96 2 3 36 36 3 6 3 36 3 36 3 K 3 26 2 X 3 36 3 3 96 3 3¢ 3 26 2 3 36 6 36 3¢ 3¢
%% LOOP THRU IACB TABLE COMPRING USERS KEY (#1) TO SAVED KEY IN

¥% THE TABLE. THE SAVED KEY IS THE LOWEST KEY IN THE NEXT FILE.
X 3636 06 06 36 3K 06 36 36 3 36 26 36 26 3 36 36 36 36 06 36 36 36 36 26 36 36 36 36 36 36 36 36 36 36 26 56 36 36 36 36 36 36 36 36 36 336 26 2 36 36 36 36 36 36 36 36 36 36 6 3 3 36 3 3 I 3¢ ¢

MOVEA #2,ALTIACB POINT AT IACB TABLE
MOVE REGA, #1 ‘ SAVE USERS KEY ADDRESS
DO +DSCB#, TIMES LOOP THRU IACBS
IF ((0,%#2),EQ,0),G0T0, INRANGE EXIT IF NO MORE
MOVE IIACB, #2 SAVE CURRENT IACB
ADD #2,2 POINT AT SAVED KEY
MOVE COUNT, 0 INITIALIZE STRING COUNTER
%*
DO WHILE, (COUNT, LE, COMPLEN) LOOP THRU STRING

IF (C0,#1),LT,(0, #2),BYTE),GOTO, INRANGE CORRECT IACB
IF ((0,#1),GT,(0,#2),BYTE),GOTO, OUTRANGE WRONG IACB

ADD #1,1 INCREMENT POINTERS

ADD 82,1 ¥ IF STRINGS ARE EQUAL
* ADD COUNT,1
ENDDO

* o
%% IF STRINGS ARE EQUAL THEN THE KEY IS IN THE NEXT FILE. UNLESS
%% WE ARE USING THE LAST FILE ALREADY.

ADD IIACB,+AENTSIZE,RESULT=%#2 POINT AT NEXT

MOVE DOUBLEL, O

MOVE - DOUBLEZ, #2

IF (DOUBLEL,LT,+ALSTIACB,DWORD) IF NOT THE LAST IACB
MOVE IIACB, %2 STORE NEW POINTER

ENDIF

GOTO INRANGE FOUND THE CORRECT IACB

Chapter 9. Planning and Designing Indexed Applications 173

01900 x
01910 OQOUTRANGE EQU %
01920 %% KEY IS NOT IN THIS RANGE. CHECK THE NEXT.

01930 ADD IIACB,+AENTSIZE,RESULT=#2 BUMP THE IACB POINTER
01940 MOVE #1,REGA RESTORE THE USER KEY POINTER
01950 ENDDO

01960 x

01970 INRANGE EQU *
019380 %% KEY IS IN THIS RANGE. ISSUE THE IAM CALL.

01990 CALL CALLIAM

02000 *

02010 IF (REGA,EQ,-58),AND, (PARM5,GT,+UPEQ) NO RECGRD FOUND
02020 ADD IIACB,+AENTSIZE POINT AT NEXT IACB
02021 MOVE DOUBLEL, 0

02030 MOVE DOUBLE2, IIACB IN A REGISTER

02031 MOVE #1,DOUBLE2

02040 IF (DOUBLEL,LT,+ALSTIACB,DWORD),AND, IN RANGE
02050 ((0,#1),NE,0),G0TO0, INRANGE ¥ TRY NEXT FILE
02060 ENDIF

02070 GOTO EXIT

02080 EJECT

02090 363636 336 3 3 3 33339 36 3 2 36 333 6 3 3 H 2 2 3 36 3 36 X 36 36 2 3 3 K 2 36 36 36 36 36 36 96 3 36 36 6 36 3 36 6 36 3 I 36 36 36 36 K 2 36 X ¥ %
02100 ** INVOKE IAM AND SAVE RETURN CODE.

D21 10 53696 3 3336 3 3 3 36 X 3 36 36 36 3 3 3 36 3 36 36 36 X 36 36 6 363 3 36 3 3 3 36 3 3 3 3 36 56 3 36 3 3 36 3 36 36 3¢ 3 3 I 3¢ 3 3 3 3 3 2 36 36 36 3 36 3 2 %
02120 SUBROUT CALLIAM

02130 MOVE ALSTIACB+2,IIACB UPDATE LAST IACB CELL
02140 CALL IAM,+PROCESS, IACB, (IACB), (IACB),+EQ,P2=IFUNC,
02150 P3=IIACB,P4=IBUFF,P5=IKEY,P6=I0PT

02160 MOVEA TCW,$TCBCO-$TCB#1 OFFSET TO TASK CONTROL WORD
02170 MOVE REGA, #1,P2=TCW PICK UP TASK CONTROL WORD
02180 RETURN ‘

62190 SPACE 5

02200 ALTEOD EQU X

O 2210 3326336 36 36 336 2636 3 56 36 36 6 36 3 36 36 26 36 6 336 3 2 36 26 6 6 56 36 3 36 3 36 6 3 9 3 3 36 36 26 3 3 6 36 K K 36 36 2 6 56 3 3 3 3 6 3¢ 3 3 3 3 36 3¢ %¢
02220 %% END OF DATA EXIT. IF NOT THE LAST FILE SWITCH TO THE NEXT ONE.
02230 %% .IF THE LAST FILE PASS CONTROL TO USERS EOD EXIT.

D226 0 333963 5 2 3 5 3 2 H 36 236 3 3 336 36 36 K 36 3 3 3 36 K 96 6 36 36 3 3 3 3 3 3¢ 3 3 5 3 36 3 3 36 3 3 3 3 36 36 6 I 2 36 3 3 3 3 3¢ 3¢ 2 X 6 % X X

02250 ADD IIACB,+AENTSIZE POINT TO THE NEXT IACB
02251 MOVE DOUBLEL,0 ,

062252 MOVE DOUBLEZ2,IIACB IN A REGISTER

02260 MOVE #1,IIACB

02270 IF (DOUBLEL,LT,+ALSTIACB,DWORD),AND, IN RANGE

02280 (C0,#1),NE,0)

02290 MOVE IKEY,0 GET FIRST KEY IN NEXT FILE
02300 GOTO . INRANGE ISSUE IAM REQUEST

02310 ENDIF

02320 %

02330 MOVE ASEQ,0 RESET SEQUENTIAL SWITCH
02360 IF (AEOD,NE, 0) IF END OF DATA EXIT EXISTS
02350 GOTO (AEOD) . GO TO IT

02360 ELSE ‘

02370 GOTO EXIT

02380 ENDIF

02390 SPACE 5

174 SC34-0312

02400
02410
02420
02430
02440
02450
02460
02470
02430
02490
02500
02510
02520
02540
02550
02560
02570
82580
62590
02600
g2610
82620
02630
82640
02650
02651
02652
02660
02670
02680
02690
02700
02710
02720
02740
02750
02760
02770
02780
02790
02800
02810
02820
02830
02840
02850
02860
02870
02880
02890
02900
62910
62920
02930

Chapter 9.

ALTERR

EQU x

33636626 26 36 36 563626 3 98 3K 56 36 26 36 36 36 32 3 56 36 36 36 36 96 26 26 3 36 36 3 3 K 36 36 36 96 36 2 36 36K I 56 2 36 3 36 36 9 2 6 3 3 3 K WK M X %
%% ERROR EXIT. RESET SEQUENTIAL FLAG AND PASS CONTROL TO USERS

¥% ERROR EXIT.
2696 36 36 36 26 36 26 56 36 36 6 R 36 36 3636 26 36 26 36 36 36 36 26 3 I 3 36 26 36 36 36 36 2 2 265 236 36 2 32 6 26 3 3 36 3 36 3 3 36 3 26 36 36 6 36 2 3 3 % %

MOVE
MOVE
MOVE
IF
GOTO
ELSE
GOTO
ENDIF

ASEQ, 0

#1,ASYSRC
(0,#1),0PENTAB
(AERR,HNE,0)

(AERR)

EXIT

GET USERS RETURN CODE LOCATION
COPY SYSTEM RETURN CODE

IF ERROR EXIT EXISTS

GO TO IT

i3 i333.3.33.333.33. 333,333 333 303.32.33.3.0.33.22.3333.033.33.33.3333 23323 333 ¢

¥% DATA AREAS
2626 36 36 63 26 26 36 6 36 3 3626 36 36 96 2 36 36 36 36 2 36 36 26 3¢ 3636 36 36 36 3 2 36 3 3 I 2 36 26 6 56 2 3 I 9 36 4 36 36 2 3 J6 36 36 36 56 3 36 3 3¢ 34 36 3%

ALTIACB

AlKEY

AENTSIZE
AMAXKEY

ALSTIACB
DOUBLEL
DOUBLEZ2
AKPOS
AKSIZE
ASYSRC
AERR
AEOD
ASEQ
ALTTSIZE
DSCB#

*
DSCB#M1
BUFFADR
CONCAT
FCBKEYLN
FCBKEYDP
COMPLEN
COUNT
OPENTAB

REGA
REGB
SAVEREGS

EQU
DATA
EQU
DATA
EQU
EQU
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
EQU
EQU

EQU
EQU
EQU
EQU
EQU
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
EJECT
COPY
EJECT
copPy
END

*

Flol

*

50X'0"
%-ALTIACB
*-A1KEY
2F'0"
100X"0°"
DIO'

F'UI

F'O'

FQOI

F'O'

F'ol

F!o'

F'o‘

F'O'
*-ALTIACB
3

DSCB#-1
DSCB #x2
14

1

2

Fror

Fror

Fror
ACALTERR)
ACALTEOD)
Fror

F10'
2F10"

IAMEQU

TCBEQU

START OF ALTERNATE IACB
IACB POINTER

KEY SAVE AREA (MAX LEN=50 BYTES)
SIZE OF ONE ENTRY

MAXIMUM KEY SIZE

EXTRA IACBS

EXTRA KEY AREAS

LAST IACB SAVE AREA

FIRST HALF OF DOUBLE WORD

KEY POSITION

KEY LENGTH

USERS SYSRC CELL

USERS ERROR EXIT

USERS END OF DATA EXIT
SEQUENTIAL MODE SWITCH

NUMBER OF ENTRIES IN DSCB TABLE
¥ PASSED DURING CONCAT FUNCTION

FCB KEY LENGTH OFFSET
FCB KEY POSITION OFFSET

Planning and Designing Indexed Applications 175

Sample Program Using ALTIAM

322 TSRS LT LTSS T LSS S S ST LSS ST ST LT ETE L L ST TS

* : *
* SAMPLE PROGRAM USING ALTIAM SUBROUTINE FOR PROCESSING
* CONCATENATED DATA SETS *
* *

2 I I I I 3 I I I H H K H H I I I I K H H I A H I I I K I K I H I K I K I I I I K I I I I N H I KK K H KKK
%

EXTRN ALTIAM

ALTSAMPL PROGRAM START, Co X
DS=((IAMDS1,?2?2),(IAMDS2,??2), (IAMDS3,22?))

START EQU * .

3€ 963 3 3 3 3 I H KK H MMM N M I N H M IR HIHHH NN IN N KKK KKK HHHH NN KRN KRKKNKNKNKNK

* OPEN THE INDEXED ACCESS METHOD DATA SETS FOR . %

* REQUEST PROCESSING VIA ALTIAM, T *

33 3 3 6 6 3 3 2 K H H 3 H H 2 H X K 5 3 3 K K K K K K H I X 3 H 3 3 3 K K K K KKK MK KKK KKK KK
CALL ALTIAM, (CONCAT),IACB,(DSCBTAB), X

. (OPENTAB), (SHARE)
336 36 3 3 3 3 K I 3 K I I 56 K KKK I K I I K K I K KK KK K I KKK H I I K I K KKK KKK
* PERFORM A DIRECT RETRIEVAL OF THE FIRST RECORD
* WHOSE KEY IS GREATER THAN '332-0000'. THE KEY
* FIELD WILL BE MODIFIED TO REFLECT THE KEY OF
* THE RECORD RETRIEVED. THIS RECORD IS LOCATED IN
* THE FIRST DATA SET.
3 36 3 H 36 3 3 36 36 36 36 H 3 H 3 K K K K 3 3 K K 3 K I K K H H K K K KK K H KK K H M K KKK KKK
CALL ALTIAM,(GET),IACB,(BUFF), (KEY1),(GT)
356 36 3 3 3 3 K H K K 3K K KK K KKK K K KK KK KK H KKK KKK KKK KKK K H KKK KK KK KK

X XK X X X

* PERFORM A SEQUENTIAL RETRIEVAL OF THE FIRST THWO , *
% RECORDS WHOSE KEYS ARE GREATER THAN OR EQUAL TO *
* '587-1134"., THESE RECORDS WILL BE FOUND IN THE . 3
* SECOND DATA SET. %

3636 36 3 3 56 36 3 I 3 6 3 K I 3636 K K H K 363 I K 336 K I3 K I IE K KK K I KKK MK KK N K KKK
CALL ALTIAM,(GETSEQ),IACB, (BUFF),(KEY2),(GE)

CALL ALTIAM,(GETSEQ),IACB, (BUFF)
3636 36 3 3 3 2 K K K K K 63636 KKK 3636363 3603 KK K K K KKK KKK K KKK KK

* DELETE THE RECORD WHOSE KEY IS '701-4320' BY A ‘ *
* SEQUENTIAL UPDATE. THIS KEY IS IN THE THIRD INDEXED *
* FILE. *

HEREKKRKKERRKXRHKKRKEREHHKHHRKKX KKK RKR KRR HHK KKK KKK KR KKK KKK KRR X
CALL IAM,(GETSEQ),IACB, (BUFF),(KEY3),(UPEQ)
CALL IAM,(PUTDE),IACB, (BUFF)
CALL TIAM, (ENDSEQ),IACB, (BUFF) END SEQ PROCESSING

176 SC34-0312

3636 3 I 3 36 36 I I I 3 3 I 3 3 K K I I K K I 36 3 K I I 3 I I I I 3 K K K I I K I IE I K I K I I K I K X
¥ INSERT A NEW RECORD WITH A KEY '370-6543' INTO *
¥ FIRST DATA SET. *
33636 36 36 36 3 3 I K 6 KK KKK I MK NI I K KKK KK KKK KKK KKK, KKK
CALL ' IAM,(PUT),IACB, (NEWREC)
GOTO FINISH

ERROR EQU *
MOVE RTCODE,ALTSAMPL
ENQT

PRINTEXT 'ALTIAM ERROR RT CODE = ',LINE=0
PRINTNUM RTCODE,TYPE=S,FORMAT=(3,0,1)
DEQT

FINISH EQU *
CALL TIAM,(DISCONN),IACB

PROGSTOP
EJECT
3 3 3 363 3 3 3K 3 3 I3 K 33 K I3 K H I K I I K I I K KK K H I I I K I KK H KKK KK
* DATA DEFINITION AND STORAGE AREAS *
3636 2 K I KK I3 K K I I KK KK K K I I I K KKK KK KKK KKK KKK KK I KKK KKK
RTCODE DATA F'0? INDEXED ACCESS METHOD RET CODE
OPENTAB DATA F'0’ SYSTEM RETURN CODE ADDRESS
DATA ACERROR) ADDRESS OF ERROR EXIT ROUTINE
DATA F'0°’ ADDRESS OF END OF DATA ROUTINE

DSCBTAB DATA A(DS1)
DATA A(DS2)
DATA A(DS3)

BUFF DATA CL80"' °

NEWREC DATA CL80'370-6543 RECORD FILLER?' RECORD TO BE
*) INSERTED
KEY1 TEXT '332-0000',LENGTH=28 KEY FROM DS1

KEY2 TEXT '587-1134',LENGTH=28 KEY FROM DS2

KEY3 TEXT '701-4320',LENGTH=28 KEY FROM DS3

IACB DATA F'0’ ADDR OF IACB PUT HERE

CONCAT EQU 14
DSCB DS#=DICDSCB,DSNAME=$SEDXVOL
COPY IAMEQU
ENDPROG
END

HANDLING ERRORS

All Indexed Access Method requests return a code in the task
code word of the Task Control Block (TCB). The task code word
is the same name as the task name. The return code reflects the
condition of the requested function. Return codes are grouped
in the following categories:

. -1 - Successful completion
. Positive - Error
. Negative - Warning

Chapter 9. Planning and Designing Indexed Applications 177

Error Exit Facilities

There are three types of error exits for your application:
. Task error exit, provided by the supervisor
. Error exit, provided by the Indexed Access Method

. The task error exit of the the Indexed Access Method itself

Task Error Exit

You can specify a task error exit routine that will receive
control if your application program causes a soft exception or
if a machine check occurs during the execution of your applica-
tion.

Since your application may have outstanding pending requests
(for example, a record is being held for update or a data set is
being processed sequentially), you should notify the Indexed
Access Method if you choose to terminate your application.
Task error exit allows you to release records, disconnect from
any data set you are connected to, and make your resources
available to other applications. Use of the task error exit
facility helps to ensure data integrity and allows proper
termination or continuation of your application.

Implementing the task error exit facility 1is described in
"Chapter 13. Diagnostic Aids and Facilities" on page 265.

Error Exit

In PROCESS and LOAD requests, the address of an error exit
routine can be specified by the ERREXIT parameter. If speci-
fied, this routine is executed whenever an Indexed Access Meth-
od request terminates with a positive return code.

If the exit routine is not specified, the next sequential

instruction after the request is executed regardless of the
value of the return code.

$TAM Task Error Exit

The Indexed Access Method itself has a task error exit. If this
error exit is given control by the supervisor, it writes tuwo

178 SC34-0312

messages to the $SYSLOG device: "$IAM HAS INCURRED A SEVERE
ERROR"™ and "$IAM CENTRAL BUFFER ADDRESS IS n/xxxx" where n is
the partition number and xxxx is the address. $IAM then goes
into a non-recoverable wait and will not process any access
requests. Use the dump facility to dump the central buffer and
take appropriate action to quiesce your application. You may
use the recovery and backup procedures to restore the data set,
or you can resume execution of your application. To restart
your application, you can either IPL again or cancel $IAM and
reload it.

If you wish to extend the logic of the error exit, code your oun
exit to replace the $IAM task error exit. Then rename CDIERR
(the $IAM task error exit), name your error exit CDIERR, and
rebuild $IAM.

System Function Return Codes

If a system function called by an Indexed Access Method request
terminates with a positive return code, the return code |is
placed in a location named by the SYSRTCD parameter in the
PROCESS or LOAD request. This location is used until a DISCONN
is issued.

For example, the GET request uses the supervisor read function.
If the read terminates with a positive return code, that return
code is saved in the location named by the SYSRTCD parameter in
the PROCESS request associated with the GET request. The GET
request also terminates with a positive return code in the task
control word. The positive return code indicates that a read
error has occurred. The cause of the read error can be deter-
mined from examining the location named by the SYSRTCD parame-
ter.,

The Data—-Set-Shut-Doun Condition

Sometimes an I1/0 error occurs that is not associated with a
specific request. For example, task A issues a GET on data set
X. To secure buffer space to satisfy the request, the Indexed
Access Method attempts to write a block to data set Y and, in
writing the record, an error occurs. Data set Y is damaged but
there is no requesting program to accept an error return code.

The error is indicated by setting the data-set-shut-down con-

dition for data set Y. After this condition occurs, no
requests except a DISCONN are accepted for data set Y.

Chapter 9. Planning and Designing Indexed Applications 179

Later, if task B issues a GET on data set Y, the request is
terminated with a data-set-shut-down return code. Task B
should issue a DISCONN and use recovery and backup procedures
to reconstruct the data set. An initial program load (IPL)
cancels the data-set-shut-down condition.

Deadlocks and the Long—-Lock~Time Condition

Since the Indexed Access Method uses record and block locks to
preserve file integrity, deadlock and long-lock-time condi-
tions may occur.

The deadlock condition occurs when two or more tasks interact
in such a way that one or more resources becomes permanently
locked, making further progress impossible. A deadlock can
also occur when two requests from the same task require a lock
on the same record or a lock on the same block in sequential
mode.

A long-lock-time condition occurs when your program acquires a
record for update and does not return the record to $IAM for a
long time. ‘

Application tasks should avoid using the Indexed Access Method
in such a way that a record or block remains locked for-a long
period of time, since other tasks may attempt to use the same
record or block. In a terminal oriented system, make every
effort to ensure that a record or block is not locked during
operator "think" time. Specifically, you should attempt to
follow these rules: ‘

. Do not retrieve a record for update, display the record at
the terminal, and wait for the operator to modify it.

. Do not retrieve a record in sequential mode, display the
record at the terminal, and wait for an operator response,

In both of these cases, a record or block is locked during oper-
ator "think"” time and could be locked indefinitely.

A deadlock cannot be broken except by freeing the locks (re-
cords) that are being waited on.’

If your application uses more than one IACB, deadlocks are pos~-
sible. For example, onec task has read record A and attempts to
read record B, wuwhile another task has read record B and
attempts to read record A. - If you are using more than one IACB
per task, use ENQ/DEQ and inter-program communications to
avoid the deadlocks. . :

180 SC34-0312

You can avoid the long-lock—-time condition by using the follow-
ing sequence of operations:

1. Retrieve the desired record without specifying update.
2. Perform processing in a work area.
3. Retrieve the record, specifying update.

4, Compare the record read in Step 1 with the record read in
Step 3.

5. If the records are identical, issue a PUTUP request, speci-
fying the address of the copy in the work area. If they are
not identical, issue a RELEASE request for the record read
in Step 3, and repeat Steps 1 through 5.

To retrieve records in sequential mode, use the technique
described in "Resource Contention.”

RESOURCE CONTENTION

Application programs that use the Indexed Access Method are
executed the same as other application programs. Because the
Indexed Access Method and the indexed data sets are resources
available to all tasks, delays can occur under heavy system
usage. When more than one task uses the Indexed Access Method,
contention can occur between tasks for any of the following
resources:

. An entire indexed file

. An index block in the data set

. A data block in the data set

. A data record in the data set

. Buffer space from the system buffer pool

For example, during the execution of a request from ¢task A,
some buffer space is required and an index block, data block,
or record is locked: {made unavailable to other requests). A
request from task B requires more buffer space than is avail-
able or attempts to retrieve a block or record that was locked
by task A. Task B must wait until the required resource becomes
available.

Resources required by the Indexed Access Method are allocated

only for the duration of a request except under the following
circumstances:

Chapter 9. Planning and Designing Indexed Applications 181

The

During an update, when control returns to the task after a
GET or GETSEQ for update, the subject record is locked. The
lock is released when the update is completed with a PUTUP,
PUTDE, RELEASE, or DISCONN.

During sequential processing, when control returns to the
task after a GETSEQ, the block containing the subject
record is locked and held in the buffer.

Subsequent GETSEQ requests pick up records directly from
the buffer. When a GET requires a record from the next
block, the current block and buffer are released. Pending
requests for a buffer area are satisfied and the next block
is locked and held in the buffer. Except for momentary
release of the buffer area between blocks, a block is
locked while it is being processed. Processing is termi-
nated by an end-of-data condition, an ENDSEQ request, or a
DISCONN request.

update should be completed promptly. Use the follouwing

guidelines to avoid resource contention:

THE

Disconnect all indexed data sets before task termination.
The DISCONN request releases locked records or blocks and
writes records that have not already been written.

With multiple Indexed Access Method applications, use
direct access to retrieve a group of records. A suggested
method is the following:

1. Retrieve the first record by key.

2. Extract the key from the record and save it for the
next retrieval.

3. Retrieve the next record using the saved key and a
greater than key relational operator (GT or UPGT).

4, Repeat the second and third steps until processing is.
complete.

INDEXED DATA SET

Preparing the Data

The

following sections describe how you can design an indexed

data set that uses space efficiently and provides optimum per-
formance.

182

$SC34-0312

Defining_ the Key

Define a single key field by specifying its size and position
in the record when the data set is built by the define command
of the $IAMUT! utility. The longer the key, the larger the
index. The key should not be longer than necessary but long
enough to ensure uniqueness.

Ensuring Uniqueness of the Key. To identify each record in an
indexed data set, each key must be unique. If key duplication
is possible, the key field must be expanded.

For example, customer name is a key which may involve dupli-
cates. To avoid duplication, lengthen the key field to include
other characters such as part of the customer address or the
account number. Since the characters in the key must be con-
tiguous, you may need to rearrange the fields in the record.

Another way to eliminate duplication is to modify new records
dynamically whenever a duplication occurs during loading or
processing. One or more characters at the end of the key field
can be reserved for a suffix code. Whenever a duplicate occurs,
add a value to the suffix and make another attempt to add the
record to the data set. The result is a data set that can con-
tain a sequence of keys such as Smith, Smithl, and Smith2. If
you add a suffix, vyou must use the entire unique key to access a
record.

Providing Access by More Than One Key. To provide good perform-
ance with both direct and sequential access, each indexed data
set is indexed by a single key. At times, however, it may be
useful to locate records by a secondary key. For example, in a
customer file indexed by account number, you might want to
locate a record by customer name.

One way of providing access by a secondary key is to build a
second indexed data set composed of short records that contain
only the secondary and primary keys. Using the secondary key to
access this data set, the associated primary key can be deter-
mined. The primary key can then be used to locate the desired
record in the first data set.

Where there are multiple keys to a data set, ensure high ber—
formance by selecting as the primary key the one that is used

most often or the one with which you plan to do sequential proc-
essing.

Selecting the Block Size

Records can be blocked in an indexed data set. The block size
must be a multiple of 256. Blocking reduces I/0 activity and

Chapter 9. Planning and Designing Indexed Applications 183

allows for free space to be Iinterspersed among base records to
provide for inserts. The three kinds of free space are: free
record(s) in a data block, free block(s) at the end of each
block grouping, and‘free cluster(s) at the end of the data set.

Specify record size and block size when building the data set
by the setparms (SE) command of the $IAMUTI utility. Each block
has a l6-byte header. Therefore, the number of records per
block is:

(block size — 16)
record size

The result is truncated; that is, any remainder is dropped. A
remainder represents the number of unused bytes in the block.
Selection of a block size is largely dependent on record size,
but the block size must be a multiple of 256. Other factors to
consider are insert activity and buffer space.

Insert Activity. Each block contains allocated record areas
into which base records are loaded and free record areas into
which records can be inserted. The ratio of allocated records
to free records in a block should be the ratio of estimated base
records to estimated inserts in the data set. Ideally, block
size should be large enough to accommodate enough records to
approximate this ratio.

Buffer Space. A large block size minimizes read/write activity
but requires more buffer space. Some processing requires a
buffer large enough for two blocks.

Examples. A data set consists of 1000 base records with an
estimate of 500 records to be inserted and a record size of 70
bytes. Select a block size and a number of free records per
block to build an indexed data set.

1. Selecting a block size of 256 with 1 free record per block
implies (256-16)/70 = 3 records per block, with a remainder
of 30 bytes. The ratio of 2 allocated records and 1 free
record accurately reflects the insert activity. Buffer
.size is minimized. Some space is wasted on the disk (30
bytes per block). Designing 80-byte records and 256-byte
blocks for this data set effectively uses these 30 bytes.

2. Selecting a block size of 512 with 2 free records per block
implies (512-16)770 = 7 records per block, with a remainder
of 6 bytes. The ratio of 5 allocated records to 2 free
records underestimates the insert activity. The larger
block size requires a larger buffer but increases I/0 effi-
ciency. Fewer bytes are wasted on the disk (6 bytes in 2
sectors).

184 SC34-0312

Estimating Free Space

Specify free space for inserts using the setparms (SE) command
of the $IAMUTI utility.

Estimating free space exactly is not necessary. Experience can
be your best guide; if the need for file reorganization is sig-
nalled (no space for an insert) before a major portion of the
free space is utilized, you know you must adjust the mix of free
records and free blocks, reserve blocks, and reserve index
blocks.

As a general approach, estimate not only the number of inserts
but also their distribution throughout the data set. For exam-
ple, consider a data set with 5 records per block, and 10 data
blocks per cluster. Suppose that the data set consists of 300
base records and 200 inserts.

If the inserts are distributed evenly throughout the data set,
the pattern of inserts is:

Blocks

Inserts o o o o e o e e o o * o o o ¢ o o o

(the bullet indicates an inserted record)

With this kind of distribution you can specify 2 free records
per block to absorb the inserts; no free blocks are needed.

Of course inserts do not usually occur in such an even pattern.
Free blocks help to absorb a concentration of inserts. The more
uneven the expected distribution, the greater the free block
specification should be,

Suppose the same number of inserts is distributed in this pat-
tern:

Blocks

Inserts eo0e . LR o0 [X X (X . X

With this distribution vyou must specify either 3 free records
per block, or 20% free blocks with 2 free records per block.

Now suppose the distribution were more uneven:

Chapter 9. Planning and Designing Indexed Applications 185

Blocks

Inserts . sene . .
L NN]

In this case a satisfactory mix of free space is 1 free record
per block and 40% free blocks.

Note: The next several paragraphs will be clearer if yvyou refer
to the definitions in "Data Set Format" on page 192.

If the anticipated insert activity is confined to a few clus-
ters only, use a free pool. A free pool is a group of blocks at
the end of an indexed data set that are available whenever they
are needed. However, in order to use blocks from the free pool,
the data set must be structured so that they can be logically
connected where they are needed. This structure is specified
with the RSVBLK and RSVIX parameters of the define (DF) command
of the $IAMUT1 utility.

Use the RSVBLK parameter to indicate the percentage by which a
cluster can grow. If you code the RSVBLK parameter, S$IAMUTI1
leaves reserve entries in the primary-level 1index blocks
(PIXBs)., These reserve entries can be used to point to the data
blocks taken from the free pool.

Use the RSVIX parameter to indicate the percentage by which a
cluster grouping can grow. If you code the RSVIX parameter,
$IAMUT]1l leaves reserve entries in the second-level index
blocks (SIXBs). The reserve entries can be used to point to a
PIXB taken from the free pool. The new PIXB can grow into a
full-sized cluster as data blocks are taken from the free pool
and added to this new cluster.

To illustrate the advantage of a free pool, assume that a data
set contains 50 clusters of 10 data blocks each and that 40% of
the blocks in the cluster are free blocks. There are 200 free
blocks in the data set. If most of the inserts into the data
set will fall into a relatively small key range and do not
normally require more than 50 blocks, 150 blocks are saved by
specifying no free blocks and a 40% RSVBLK.

A 25% FPOOL parameter provides the 50 blocks in the free pool to
be used when inserts are required. The result is that the data
set still accepts all the anticipated inserts and 150 blocks
are saved.

If insert activity into the data set is anticipated to be rela-

tively even, the best response time is achieved by reserving
free records and free blocks for inserts.

186 SC34-0312

If insert activity is to be primarily into one or more areas or
key ranges, however, the space for inserts should be reserved
as reserve blocks and/or reserve indexes. This results in the
most efficient use of space in the data set.

The space for inserts can be divided hetween free records, free
blocks, reserve blocks, and reserve indexes ¢to suit vyour
requirements.

To determine how many blocks are required for an indexed data
set with a given combination of free records, free blocks,
reserve blocks, reserve index blocks, and free pool size, use
the SE command of the $IAMUT1 utility.

Building The Indexed Data Set

The SE and DF commands of the $IAMUT1 utility allow you to spec-
ify the size and format of your indexed data set and to format
the data set. Use the SE command to enter those values that
determine the size of the indexed data set and to receive a dis-
play of the size calculation information. Use the DF command to
format the data set, using the values previously specified on
the SE command.

Determining Size and Format

The structure of the data set is determined by the following
parameters of the SE command:

N BASEREC

Estimated number of base records

. BLKSIZE

Block size

] RECSIZE Record size

. KEYSIZE

Key size

. KEYPOS - Key position

. FREEREC - Number of free records per block

. FREEBLK - Percentage of free blocks

o RSVBLK - Percentage of reserved data blocks

. RSVIX =— Percentage of reserved primary index blocks

U FPOOL - Percentage of free pool

Chapter 9. Planning and Designing Indexed Applications 187

. DELTHR - Percentage delete threshold

The define (DF) command fixes the size of the data set. There-
fore, BASEREC, FREEREC, FREEBLK, RSVBLK, RSVIX, and FPOOL
should be large enough to accommodate the maximum number of
records planned for the data set. To calculate the size of the
data set for a given combination of the define parameters, use
the SE command.

The DF command allows you to select the immediate write-back
option. If you select this option, modified records are writ-
ten to the file immediately; this contributes to the integrity
of the file; however, response time increases.

Defining and Creating the Indexed Data Set

The setparms (SE) command allows you to review the size calcu-
lation information without actually formatting the data set,.
SIAMUTL returns to your terminal the size of the data set and
other information. The calculations performed by the SE func-
tion are described.in "Data Set Format"™ on page 192.

Use the DF command to format the data set. You are prompted for
the volume and data set names and the immediate write-back
option. (Note: the data set must have been previously created
using the CR command of the $IAMUT] utility or the AL command of
the $DISKUT1 utility.) The data set is connected and then for-
matted by the define function. If the data set does not contain
sufficient space to support the specified format, S$IAMUT1
‘returns the amount of space required. Knowing the available
space and using the SE command, you can vary the define parame-
ters to design a data set that fits.

If the specified data set does not exist, a connect error
occurs and $IAMUT1 gives the option to retry. If you retry, the
utility prompts for the volume and data set names, and the
function is attempted again.

Using the $TAMUTI1 Utility - An Example

A data set is to accommodate 10,000 base records with a record
size of 70 bytes. An estimated 5,000 records are to be
inserted.

Selecting a block size of 256 allows three records per block
((256-16)/70)) with a remainder of 30 bytes. If the data set
were created with one free record per block, the ratio of tuwo
base records to one free record would accurately reflect the
insert activity. Buffer size is minimized. Some space (30

188 SC34-0312

bytes per block) is wasted.

Selecting a block size of 512 allows seven records per block
((512-16)770) with a remainder of six bytes. If the data set
were created with two .free records per block, the ratio of five
base records to two free records would overestimate the insert
activity. The larger block size requires a larger buffer but
increases I/0 efficiency. In addition, fewer bytes are wasted
(six bytes).

Assume that the user has entered the DF subcommand to allocate
the file using the specifications shown in Example 2. Name the
file IDATA and placed it on EDX00O2.

Example 1
ENTER COMMAND (?): SE

ENTER BASEREC 10000
ENTER BLKSIZE 256
ENTER RECSIZE 70
ENTER KEYSIZE 10
ENTER KEYPOS 1
ENTER FREEREC 1
ENTER FREEBLK 0
ENTER RSVBLK O
ENTER RSVIX 0
ENTER FPOOL 0
ENTER DELTHR O

TOTAL LOGICAL RECORDS/DATA BLOCK: 3
FULL RECORDS/DATA BLOCK: 2
INDEX ENTRY SIZE: 14
TOTAL ENTRIES/INDEX BLOCK: 17
FREE ENTRIES/PIXB: 0
RESERVE ENTRIES/PIXB(BLOCKS): 0
FULL ENTRIES/PIXB: 17
RESERVE ENTRIES/SIXB: 0
FULL ENTRIES/SIXB: ' 17
DELETE THRESHOLD ENTRIES: _ 1
INITIAL ALLOCATED DATA BLOCKS: 5000
FREE PCOL SIZE IN BLOCKS: 0
OF INDEX BLOCKS AT LEVEL 1: 295
OF INDEX BLOCKS AT LEVEL 2: 18
OF INDEX BLOCKS AT LEVEL 3: 2
OF INDEX BLOCKS AT LEVEL 43 1
DATA SET SIZE IN EDX RECORDS: 5317
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: -1

Chapter 9. Planning and Designing Indexed Applications 189

Example 2
ENTER COMMAND (?2): SE

ENTER BASEREC
ENTER BLKSIZE 512
ENTER RECSIZE
ENTER KEYSIZE
ENTER KEYPOS
ENTER FREEREC 2
ENTER FREEBLK
ENTER RSVBLK

- ENTER RSVIX
ENTER FPOOL
ENTER DELTHR

TOTAL LOGICAL RECORDS/DATA BLOCK: 7
FULL RECORDS/DATA BLOCK: 5
INDEX ENTRY SIZE: 14
TOTAL ENTRIES/INDEX BLOCK: 35
FREE ENTRIES/PIXB: 0
RESERVE ENTRIES/PIXB(BLOCKS): 0
FULL ENTRIES/PIXB: 35
RESERVE ENTRIES/SIXB: 0
FULL ENTRIES/SIXB: 35
DELETE THRESHOLD ENTRIES: 1
INITIAL ALLOCATED DATA BLOCKS: 2000
FREE POOL SIZE IN BLOCKS: 0
OF INDEX BLOCKS AT LEVEL 1: 58
OF INDEX BLOCKS AT LEVEL 2: 2
OF INDEX BLOCKS AT LEVEL 3 1
DATA SET SIZE IN EDX RECORDS: 4124
INDEXED ACCESS METHOD RETURN CODE: -1

SYSTEM RETURN CODE: -1

Note: Respond to the prompts
with the values you wish to change.
The utility reuses the values from
previous execution.

190 SC34-0312

Example 3

ENTER COMMAND (?): DF
DO YOU WANT IMMEDIATE WRITE-BACK? N
ENTER (NAME,VOLUME): IDATA,EDX002

TOTAL LOGICAL RECORDS/DATA BLOCK: 7
FULL RECORDS/DATA BLOCK: 5
INDEX ENTRY SIZE: 14
TOTAL ENTRIES/INDEX BLOCK: 35
FREE ENTRIES/PIXB: 0
RESERVE ENTRIES/PIXB(BLOCKS): : 0
FULL ENTRIES/PIXB: 35
RESERVE ENTRIES/SIXB: 0
FULL ENTRIES/SIXB: 35
DELETE THRESHOLD ENTRIES: 1
INITIAL ALLOCATED DATA BLOCKS: 2000
FREE POOL SIZE IN BLOCKS: 0
OF INDEX BLOCKS AT LEVEL 1: 58
OF INDEX BLOCKS AT LEVEL 2: 2
OF INDEX BLOCKS AT LEVEL 31 1
DATA SET SIZE IN EDX RECORDS: 4126
INDEXED ACCESS METHOD RETURN CODE: -1
SYSTEM RETURN CODE: =1

ENTER COMMAND (?2): EN

$IAMUT1 ENDED AT 00:38:47

The key differences between Example 1 and Example 2 are:

. Fewer records (256-byte blocks) are required for Example

2.
. The index in Example 2 is a three-level index, while in

Example 1 it is a four-level index. This eliminates one
disk access, improving performance slightly.

. Each data block has two free records in Example 2. In exam-—
ple 1 each data block has one free record.

Chapter 9. Planning and Designing Indexed Applications 191

Data Set Format

The define command of the $IAMUT1 utility formats and creates
an indexed data set.

Use the DF command to format the data set. You are prompted for
the volume and data set names and the immediate write-back
option. (Note: the data set must have been previously created"
using the CR command of the $IAMUT1 utility or the AL command of
the $DISKUTL utility.) The data set is connected and then for-
matted by the define function. If the data set does not contain
sufficient space to support the specified format, $IAMUTI
returns the amount of space required. Knowing the available
space and using the SE The information required to establish
the format and the number of blocks in a data set is provided by
ten parameters of the SE command.

Parameter Definition

BASEREC Number of base records

BLKSIZE Block size

RECSIZE Record size

KEYSIZE Key size

KEYPOS Key position

FREEREC Number of free records per block

FREEBLK Percentage of free blocks

RSVBLK Percentage of reserved blocks

RSVIX Percentage of reserved index

FPOOL Percentage of free pool

DELTHR Percentage of blocks to retain when deleting
records

Blocks

The indexed data set is composed of a number of fixed length
blocks. The block is the unit of data transferred by the
Indexed Access Method. Block size must be a multiple of 256. A
block is addressed by its relative block number (RBN). The
first block in the data set is located at RBN 0.

192 SC34-0312

Note that the RBN is used only in indexed data sets by the
Indexed Access Method. An Indexed Access Method block differs
from an Event Driven Executive record in the following ways:

1. The size of a block is not limited to 256 bytes; its length
- can be a multiple of 256.

2. The RBN of the first block in an indexed data set is 0. The
record number of the first Event Driven Executive record in
a data set is 1.

The size, in 256-byte records, of the data set is calculated by
the define command of the $IAMUTI1 utility.

Three kinds of blocks exist in an indexed data set: a file con-
trol block (FCB), index blocks, and data blocks. These blocks
are all the same length, as defined by BLKSIZE, but they con-
tain different kinds of information. The FCB contains control
information, index blocks contain index entries, and data
blocks contain data records. The control information is also
contained in block headers; a description of control informa-
tion is contained in Internal Design. Figure 23 also shous
examples of the three block types.

Header Header
Control RBN Key
information Data
: RBN Key record
RBN Key
RBN Key Data
record
RBN Key
Unused
RBN Key
Data
RBN Key record
Unused
File control block Index block Data block

Figure 23. Indexed Data Set Block Types

Chapter 9. Planning and Designing Indexed Applications 193

The File Control Block

The file control block (FCB) is the first block in the data set
(RBN 0); it contains control information. The field names in
the FCB can be seen by examining a listing of FCBEQU, a copy
code module that is supplied as part of the Indexed Access
Method.

Index Block

An index block contains a header followed by a number of index
entries. Each index entry consists of a key and a pointer. The
key is the highest key associated with a block; the pointer is
the RBN of that block. The number of entries contained in each
index block depends on block size and key size. The header of
the block is 16 bytes. The RBN field in each entry is 4 bytes.
The key field in each entry must be an even number of bytes in
length; if the key field is an odd number of bytes in length,
the field is padded with one byte to make it even. 'The number
of index entries in an index block is:

block size - 16
4 + key length

The result is truncated; any remainder represents the number of
unused bytes in the block. For example, if block size is 256 and
key length is 28, then each index entry is 32 bytes, there are 7
entries in a block, and the last 16 bytes of the block are
unused.

Data Block

A data block contains a header followed by a minimum of tuwo
records. The number of records that can be contained in a data
block depends on the size of the data block and the size of the
record. The header of the block is 16 bytes. The number of
record areas in the block is:

block s5ize —= 16
record size

The result is truncated; any remainder represents the number of
unused bytes in the block. For example, if block size is 256 and
record size is 80, the data block can accommodate three records
and there is no unused area. The key field of the last record
slot in an index block is the high key for the data block. If
some records of the data block are not currently used, the key
field of the last record slot is the same as the key field of

196 SC34-0312

the last used record in the block. However, if the last record
of the block has been deleted, the key field of the last record
slot will contain a key higher than that of any other record in
the block. Deletion of a record does not reduce the key range
for the block.

The Index

The index of an indexed data set is constructed in several lev-
els so that, given a key, there is a single path (one index
block per level) cascading through the index levels that leads
to the data block associated with that key. The index is built
from the bottom up. At the lowest level are the primary-level
index blocks. At the second level are index blocks containing
entries that point to the primary-level index blocks. There are
enough levels so that the highest level consists of a single
index block.

Primarv—-lLevel Index Blocks

Entries in a primary-level index block point to data blocks.
Each entry in a primary—level index block is one of three pos-
sible types:

. An allocated entry points to an active data block. The key
portion of the entry is initialized to binary ones by the
SIAMUT] utility. After records have been loaded or written
to a data block, the key portion of the entry which points
to the data block contains the highest key from the data
block.

The pointer portion contains the RBN of the data block.
Allocated entries are the first entries in an index block.
The number of index entries allocated when the indexed data
set is loaded is the total number of entries per index
block, less the number of entries of the other two types
(free block entry and reserve block entry). (Refer to
Figure 24 on page 196 for an example of a primary-level
index block.)

. A free block entry points to a free data block. The key
portion of the entry contains binary zeros. The pointer
portion contains the RBN of the free block. Free block
entries follow the allocated entries in the index block.
The number of index entries formatted as free entries when
the indexed data set is loaded is the specified percentage
(FREEBLK) of the total number of entries, with the result
rounded up if there is a remainder.

Chapter 9. Planning and Designing Indexed Applications 195

Header
+ RBN Key
RBN Key
RBN Key > Allocated entries
RBN Key o
RBN Key
REN | 0 Free block entry
-0 -0 - .| Reserve block éntf;
Unused B

Figure 24, Example of Primary—-Level Index Block

. A reserve block entry does not point to a block but is
reserved for later use as a pointer to a data block which
can be taken from the free pool. Both the key and pointer
portions of a reserve block entry are binary zeros. Reserve
block entries are at the end of the index block. When a
reserve block entry is converted to a used entry, the index
block is reformatted to move the entry to the allocated
entry area of the block. 4

The number of index entries initially formatted as reserve
block entries is the specified percentage (RSVBLK) of the
total number of .entries, with the result rounded up |if
there is a remainder. However, if the number of free block
entries plus the number of reserve block entries require
all index entries, the number of reserve block entries is
.reduced by 1, providing at least one allocated entry per
.index block.

To calculate the number of .primary-level index blocks in an
indexed data set, you must know the initial number of data
blocks allocated in the indexed data set. The initial number of
data blocks is the specified number of base records (BASEREC)
divided by the number of allocated records in a data block,
with the result rounded up if there is a remainder. The number
of primary—-level index blocks is the initial number of allo-
cated data blocks divided by the number of allocated entries
per primary-level index block, with the result rounded up if up
if there is a remainder., »

196 SC34-0312

Second—-level Tndex Block

Entries in a second-level index block point to primary-level
index blocks. Each entry in a second-level index block is one
of two possible types:

. An allocated entry points to an existing primary-level
index block. The key portion of the entry is initialized
to binary ones by the $IAMUT] utility. After records have
been loaded or written, the key portion of the entry con-
tains the highest key from the primary-level index block.
The pointer portion contains the RBN of the primary-level
index block. Allocated entries are the first entries 1in
the index block. The number of index entries allocated
when the indexed data set is loaded is calculated as the
total number of entries per index block, less the number of
reserve index entries.

. A reserve index entry does not point to a block but 1is
reserved for later use as a pointer to a primary-level
index block that can be taken from the free pool. Both the
key and pointer portions of a reserve index entry are bina-
ry zeros. Reserve index entries are at the end of the index
block. The number of index entries initially formatted as
reserve index entries is the specified percentage (RSVIX)
of the total number of entries, with the result rounded up
if there is a remainder. However, if the number of reserve
index entries is the same as the total number of entries in
an index block, the number of reserve index entries is
reduced by 1, providing at least one allocated entry per
second—-level index block.

The number of second-level index blocks is the number of
primary—-level index blocks divided by the number of allocated
entries per second-level index block, with the result rounded
up if there is a remainder. (Refer to Figure 25 on page 198 for
an example of a second-level index block.)

Higher—-Level Index Block

Entries in a higher-level index block point to index blocks at
the next lower level. All entries in higher—-level index blocks
are allocated entries. The key portion of the entry contains
the highest key from the index block of the next lower level,.
The pointer portion contains the RBN of the next lower level
‘index block. The number of blocks at any higher index level is
the number of index blocks at the next lower level divided by
the total number of entries per index block, with the result
rounded up if there is a remainder. (Refer to Figure 26 on page
199 for an example of a higher-level index block.)

Chapter 9. Planning and Designing Indexed Applications 197

Header
RBN | Key
RBN Key .
RBN Key
> Allocated entries
RBN Key
RBN Key
RBN Key
0 0 Reserve index entry
Unused

Figure 25. Example of Second—-Level Index Block

If the number of index blocks at any level is one, that level is
the top level of the index. Although the Indexed Access Method
is capable of supporting 17 levels of index, an indexed data
set is formatted with only as many index levels as are required
for the number of records. If an indexed data set has not been
fully loaded and one or more higher index levels have not yet
been required, the unnecessary higher levels are not used, even
though they exist in the file structure.

Index Example

Assume that 500 data blocks are allocated to a data set and that
each primary-level index block contains one free block entry,
one reserve block entry, and five allocated entries. There-
fore, the total number of primary-level index blocks is 100.
Each second-level index block contains one reserve index entry
and six allocated entries; therefore, the number of
second-level index blocks is 17. The number of entries in
higher level index blocks is seven, resulting in three index
blocks at the third level and one at the fourth level.

Therefore the data set contains a total of 121 index blocks of
which 100 are primary-level index blocks, 17 are second-level
index blocks, 3 are third-level index blocks, and 1 is a
fourth-level index block. This distinction is important
because, as shouwn later in this chapter, high-level index
blocks are located contiguously at the beginning of the data

198 SC34-0312

> Allocated

Header
RBN Key
RBN Key
RBN Key
RBN Key
RBN Key
RBN Key
RBN Key

Unused

Figure 26. Example of Higher—~Level Index Block

index entries

set (after the FCB), while primary—-level index blocks are scat—
tered throughout the file with the data blocks. Figure 27 shous
the structure of the higher—-level index blocks.

i

Fourth
(top)
level
index

]

]

Third
[J "level
index

Figure 27. High-Level Index Block Structure

L0 GRS

Chapter 9. Planning and Designing Indexed Applications 199

Cluster

Primary-level index blocks and data blocks are stored together
in the data set in groups called clusters. Each cluster con-
sists of a primary—-level index block and as many data blocks as
are allocated or free entries in the index block. For example,
if there are seven entries in an index block, there are eight
blocks in a cluster: one primary-level index block and up to 7
data blocks. If reserve blocks have been specified, the blocks
represented by the reserve block entries are not included until
insert activity has taken place and the required blocks have
been obtained from the free pool. For example, if there are
seven entries in an index block and one of the ‘entries is a
reserve block entry, the cluster consists of seven blocks (one
index block and six data blocks).

Free Space

When an indexed data set is loaded with data records, free
space is reserved for records that may be inserted during proc-
essing., There are four kinds of free space: free records, free
blocks, reserve blocks, and reserve index entries.

Free Records: Free records are areas reserved at the end of
each data block. The FREEREC parameter of define command of the
$IAMUTL utility specifies the number of free records that are
reserved in each data block. The remaining record areas are
called allocated records.

For example, if a block contains three data record areas and
you specify one free record per block, then there are two allo-
cated records per block. Refer to Figure 28 on page 201.

then records are loaded, the allocated records are filled, and
the free records are skipped. During processing, a record can
be inserted in a block that contains a free record.

Free Blocks: Free blocks follow the allocated data blocks with-
in each cluster. For example, if the cluster contains six data
blocks and you specify 10 as the percentage of free blocks,
then there are five allocated blocks and one free block in each
cluster. :

200 SC34-0312

Header

Allocated record

Allocated record

Free record

Figure 28. Example of a data block

Primary—level index block

Allocated data block

Allocated data block

Allocated data block

Allocated data block

Allocated data block

Free data block

When records are loaded, the allocated record areas . in the
allocated data blocks are filled, and the free blocks are
skipped. During processing, as data blocks become full, a free
block provides space for insertions.

Reserve Blocks: Reserve blocks do not exist in the cluster.
When all data blocks in a cluster are used and another data
block is needed, a data block can be created from the free pool,
if the primary—-level index block contains a reserve block
entry. The reserve block entry in the primary-level index block
points to the block, and the data block becomes an allocated
data block.

Chapter 9. Planning and Designing Indexed Applications 201

Reserve Index Entries: Reserve index entries in second-level
index blocks allow the index structure to be expanded by adding
new primary—level index blocks. These, in turn, can have data
blocks associated with them, thus forming new clusters. This
process of forming a new cluster is sometimes called a cluster

split.

Calculating Allocated Data Blocks, Clusters, and Free Blocks

The number of allocated data blocks in a data set is the speci-
fied number of base records (BASEREC) divided by the number of
allocated records per data block, with the result rounded up if
there is a remainder.

For example, suppose you intend to load 1000 records in an
indexed data set that is formatted for two allocated records
and one free record per block and five allocated blocks and one
free block per cluster. The number of allocated blocks in a
data set is:

number of base records
number of allocated records per block

The number of allocated blocks in this example is 1000/2 or 500
blocks. :

The number of clusters in a data set is the number of allocated
data blocks divided by the number of allocated entries in each
primary—-level index block, with the result rounded up if there
is a remainder. :

number of allocated blocks
number of allocated blocks per cluster

The number of clusters in the above example is 500/5 or 100
clusters.

Note that in both calculations, if the quotient is not an inte-
ger, it is rounded up (rather than truncated) in order to
accommodate all of the base records.

The number of free blocks in the data set (not ‘including the
free pool) is the number of clusters in the data set multiplied
by the number of free entries in each primary-level index
block.

202 SC34-0312

The Last Cluster

The last cluster in the data set may be different from the other
clusters. It contains the same number of free blocks as the
other clusters but only enough allocated blocks to accommodate
the records that you have specified with the parameter BASEREC.
Because rounding occurs in calculating the number of clusters,
a few more allocated records than required may exist in the
last allocated block. The last cluster can be a short one
because only the required number of blocks are used.

If the number of allocated blocks divided by the number of
allocated blocks per cluster leaves a remainder, the remainder
represents the number of allocated entries in the
primary-level index block in the last cluster. Unused entries
in the last primary-level index block are treated as reserve
block entries.,

Sequential Chaining

Data blocks in an indexed data set are chained together by for-
ward pointers located in the headers of data blocks. Only allo-
cated data blocks are included in the sequential chain.
Chaining allows sequential processing of the data set with no
need to reference the index. When a free block is converted to
an allocated block, the free block is included in the chain.

Free Pool

If you specify that you want a free pool (with the FPOOL parame-
ter of the define command of the $IAMUT1 utility), your indexed
data set contains a pool of free blocks., The file control block
contains a pointer to the first block of the free pool, and all
blocks in the free pool are chained together by forward point—
ers,

A block can be taken from the free pool to become either a data
block or a primary—level index block. The block is taken from
the beginning of the chain, and its address (RBN) is placed in
the appropriate primary-level index block (if the new block is
to become a data block) or in the second level index block (if
the new block is to become a primary-level index block). Any
block in the free pool can be used as either a data block or as a
primary—-level index block.

When a data block becomes empty because of record deletions,

the data block may return to the free pool (depending on the
delete threshold (DELTHR) parameter). If the data block is

Chapter 9. Planning and Designing Indexed Applications 203

returned to the free pool, reference to the block is removed
from the primary—level index block, and the block is placed at
the beginning of the free pool chain. Index blocks are never
returned to the free pool.

Calculating the initial size of the free pool consists of the
following steps:

. Each reserve block entry in a primary-level index block
represents a potential data block from the free pool. The
number of data blocks that can be assigned to initial clus-
ters is the number of primary-level index blocks times the
number of reserve block entries in each primary-level
index block-. ‘ :

. Each reserve index entry in a second—-level index block
represents a potential primary-level index block from the
free pool. The number of primary-level index blocks that
can be assigned from the free pool 1is the number of
second-level index blocks times the number of reserve
index entries in each second-level index block.

° Each primary-level index block taken from the free pool
consists entirely of empty (reserve block) entries. New
data blocks can be taken from the free pool for the entries
‘in the new primary-level index block. The number of data
blocks is the number of entries per index block times. the
number of new primary-level index blocks (calculated in
the previous step). ‘

. The maximum number of blocks that can be taken from the
free pool is the sum of the above three calculations.

d The actual number of blocks in the free pool is the speci-
fied percentage (FPOOL) of the maximum possible free pool,
with the result rounded up if there is a remainder.

STORAGE AND PERFORMANCE

Storage Requirements

The minimum amount of storage required by the Indexed Access.
Method to perform all functions is about 14KB, not including
the link module or any error exit routine you may'have written.
The storage estimate is based on the following assumptions:

. A maximum block size of 256 bytes for any indexed data set.
: Since the buffer must be large .enough for two blocks, a
512-byte buffer is required. If your maximum block size is
larger than 256 bytes, the.buffer size is tuwice your block

204 SC34-0312

size. You 'can improve . performance by making the buffer
larger. The program directory that is shipped with your
PID material contains a description of the size and capaci-
ty of the puffer and information on how to modify it. The
buffer that is defined in $IAM should provide adequate per-—
formance for most applications. :

. One user connected to an indexed file at a timé. If more
than one user is connected, add about 625 bytes per user.

The size of the IBM-supplied link module which is included in
your application program is about 250 bytes.

Indexed File Size

The structure of an indexed file is highly dependent on parame-
ters you specify when you create the file. These parameters are
described in "Data Set Format" on page 192.

Performance

Performance of the Indexed Access Method is primarily deter-
mined by the structure of the indexed data set being used. This
structure is determined by parameters you specify when you
create the data set (refer to "Data Set Format"™ on page 192).
The following factors affect performance:

. File size. A large file spans more cylinders of the direct
access. device, so the average seek to get the the record
you want is longer.

. Number of index levels. A file with many index levels
requires more accesses to get to the desired data record,
thus degrading performance. Factors which influence the
number of index levels are:

- Number of records in data set.
- Amount and type of free space.
- Block size.
- Key size.
- Data record size.
Use the $IAMUT1 utility to see the affects of the varicus

parameters on the file structure. (Refer to "Using the $IAMUT1
Utility - An Example"”™ on page 188 for an example.)

Chapter 9. Planning and Designing Indexed Applications 205

In addition to file structure, the following factors also
influence performance:

206

Buffer size. If you provide a large buffer when you install
the Indexed Access Method, it is more likely that blocks
(especially high-level index blocks) needed are already in
storage and need not be recalled from the data set.

Contention. If many tasks are using the Indexed Access

Method concurrently, resource contention can result, and
performance is degraded.

SC34-0312

PART IV - EXTENDING THE SYSTEM CAPABILITIES

This part gives detailed information on how to extend the capa-
bilities of your system.

PART IV - EXTENDING THE SYSTEM CAPABILITIES 207

208 SC34-0312

CHAPTER 10. THE SESSION MANAGER

The session manager provides access to system functions and
your applications. Full screen images,; called menus, and their
associated procedures invoke the functions you request.
Because you control the session manager, you can modify it to
meet your specific needs. You can add new options to an exist-
ing menu or create a new menu.

To add a new option (or tailor) the session manager requires an
understanding of the one—-to-one relationship between menus and
procedures. Once you have acquired this understanding, you
can:

* Use the $IMAGE utility to add a new option to an existing
menu

. Use the $FSEDIT utility to add the new option to the proce-
dure associated with the menu

. Build the procedure for the new function, which requests
its execution

OPERATIONAL OVERVIEW

The session manager can be invoked in two ways:
. As part of the IPL procedure
. With the $L (load) facility

As a part of the IPL procedure, a copy of the session manager is
loaded for each active 4978 or 64979 display terminal. To
accomplish this, the program $SMINIT is made a part of the IPL
stream by renaming it to be $INITIAL. The program $INITIAL is
part of the IPL stream and is automatically loaded if it is pre-
sent., S$SMINIT (S$INITIAL) loads a copy of the session manager's
main program ($SMMAIN) for each terminal that is active. If
only selected terminals are to used with the session manager,
you must load the session manager as required.

The menu processing program, $SMCTL, processes menus and
builds procedures that are passed to the job stream processor,
$JOBUTIL, by the main program $SMMAIN. Copies of all procedures
submitted to the job stream processor are stored on the same
disk volume as the menus, usually EDXG02.

$SMCTL reads a copy of the $JOBUTIL procedure into storage, and

adds any parameters that you supply. $SMCTL then returns con-
trol to $SMMAIN, which invokes $JOBUTIL, which executes the

Chapter 10. The Session Manager 209

requested function. Figure 30 on page 213 and the tables below
list all of the session manager menus, the associated proce-
dures, and the function of each procedure.

The session manager requires a minimum partition size of 10K
bytes to process menus and your requests. However, only 2K
bytes remain resident when the requested functions are execut-
ing. A root phase (main program), called $SMMAIN, is resident
in the partition associated with the 497874979 display
station. $SMMAIN requires approximately 1K bytes