
- - - SC34-007 4-0 PROGRAM - - - PRODUCT - - ---- --- ---- - - ---- ---- - • -

- - - SC34-0074-0 PROGRAM - - - PRODUCT - --- --- --- ---- - - ----- - --- - y -

Series/1

Base Program Preparation Facilities

Macro Assembler

Programmer's Guide

Program Number 5719-PA 1

ii SC34-0074

First Edition (October 1976)

Changes are periodically made to the information herein; any such changes will be reported in
subsequent revisions or Technical Newsletters.

Text for this manual has been prepared with the IBM Magnetic Tape Selectric® Composer.

Requests for copies of IBM publications should be made to your IBM representative or the IBM
branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been
removed, send your comments to IBM Corporation, Systems Publications, Department 27T, P.O. Box
1328, Boca Raton, Florida 33432. Comments become the property of IBM.

©Copyright International Business Machines Corporation 1976

Preface v
Chapter 1. Introduction 1-1
Chapter 2. Coding and Structure of the Assembler Language 2-1
Chapter 3. 'Functional Characteristics 3-1
Chapter 4. Machine Instructions 4-1
Chapter 5. Assembler Instructions 5-1
Chapter 6. Macro Language 6-1
Chapter 7. Program Listing and Record Formats 7-1

Contents

Contents iii

iv SC34-0074

Preface

What This Manual Can Do For You

How This Manual Is Organized

This publication is a reference for programmers who use the IBM Series/I assembler
language. It gives specific information about assembler language functions and coding
specifications.

• Chapter I gives a brief introduction to the assembler and its features.
• Chapter 2 discusses the structure of the assembler language. It also explains the coding

rules you must follow in coding an assembler-language program.
• Chapter 3 describes the characteristics of the Series/I processors. It explains

register usage, addressing modes, and other information you should understand to
effectively use the assembler.

• Chapter 4 describes the machine instructions. It explains the function of each
instruction and how to code it. For most instructions, this chapter gives examples to
help you better understand how the instructions work.

• Chapter 5 describes the assembler instructions. It explains what they do and how to
code them, then gives examples of their use.

• Chapter 6 describes the macro language. Programming in macro language simplifies
coding, reduces the chance for making errors, and ensures that standard sequences of
instructions are coded.

• Chapter 7 describes in detail the program listing and record formats produced by the
assembler.

• The appendixes off er conversion tables, a summary of constants, a summary of the
macro language, a priority list for assembler instructions, a summary of assembler
instructions, and a reference aid for coding 1/0 instructions.

Each chapter of this publication is a separate module. This organization allows you to
use the chapters as published or to combine them with information from other sources.

Each chapter has a detailed table of contents. A master index, listing all subjects, is
included at the end of the manual.

What You Should Know Before You Begin

Corequisite Publications

You should be familiar with the concepts of modular programming, and you should be
experienced in assembler-language coding.

IBM Series/I Base Program Preparation Facilities User's Guide, SC34-0072

IBM 4955 Processor and Processor Features Description, GA34-002I

IBM 4953 Processor and Processor Features Description, GA34-0022

Preface v

vi SC34-0074

Section Contents
The Assembler Language 1-3

Machine Instructions 1-3
Assembler Instructions 1-3
Macro Instructions 1-3

The Assembler Program 1-3
Coding Aids 1-5

Symbolic Representation of Program Elements 1-5
Variety of Data Representation 1-5
Relocatability 1-5
Addresses and Addressing 1-5
Register Usage 1-5
Segmenting a Program 1-6
Linkage Between Source Modules 1-6
Program Listing 1-7

Chapter 1. Introduction

Introduction 1-1

This page intentionally left blank.

1-2 SC34-0074

THE ASSEMBLER LANGUAGE

Machine Instructions

Assembler Instructions

Macro Instructions

Assembler language is a symbolic programming language that resembles machine language
in form and content. It is made up of statements that represent instructions and
comments. The instruction statements are the working part of the language and are
divided into three groups:

• Machine instructions
• Assembler instructions
• Macro instructions

A machine instruction is the symbolic representation of a hardware instruction in the
Series/I instruction set. Machine instructions are described in Chapter 4 of this
manual.

An assembler instruction is a request to the assembler program to perform certain
operations during the assembly of a source module; for example, defining data constants,
defining the end of the source module, and reserving storage areas. Except for the
instructions that define constants, the assembler does not translate assembler instructions
into object code. The assembler instructions are described in Chapter 5 of this manual.

A macro instruction is a request to the assembler program to process a predefined
sequence of code called a macro definition. From this definition, the assembler generates
machine and assembler instructions which it then processes as if they were part of the
original input in the source module.

You can prepare macro definitions, then call them by coding the corresponding macro
instructions. A complete description of the macro language, including the macro
definition, the macro instruction, and the conditional assembly language is given in
Chapter 6 of this manual.

THE ASSEMBLER PROGRAM
The assembler program, also referred to as the assembler, processes the machine,
assembler, and macro instructions you have coded in the assembler language and produces
an object module in machine language.

The assembler processes the three types of assembler language instructions at different
times during its processing sequence. You should be aware of this processing sequence in
order to code your program correctly. The following diagram relates the assembler
processing sequence to other times at which your program is processed and executed.

Introduction 1-3

1-4 SC34-007 4

Coding

Assembly

Link-edit

[Source l
program

Macro generation
and conditional
assembly

Assemble to
machine language

Linkage
editor

System

Programmer

Assembler

Execution

The assembler processes instructions at two distinct times. It processes macro
instructions at preassembly time, and it processes machine instructions and assembler
instructions at assembly time.

The assembler also produces information for other programs. The linkage editor uses
such information to combine object modules into load modules. Finally, at execution
time, the Series/I executes the load module.

CODING AIDS
It is normally difficult to write an assembler language program using only machine
instructions. The assembler provides some coding aids that make this task easier. They are
summarized next.

Symbolic Representation of Program Elements
Symbols greatly reduce programming effort and errors. You can define symbols to
represent storage addresses, displacements, constants, registers, and other elements that
make up the assembler language. These elements include operands, operand subfields,
terms, and expressions. Symbols are easier to remember and code than numbers; also,
they are listed in a symbolic cross-reference table which is printed in the program listing.
Thus, you can easily find a symbol when searching for an error in your code.

Variety of Data Representation

Relocatability

Addresses and Addressing

Register Usage

You can use decimal, binary, hexadecimal, or character representation, which the
assembler converts for you into the binary values required by the machine instructions.

The assembler produces an object module that can be relocated from the originally
assigned storage area to any other suitable main storage area without affecting program
execution, The linkage editor does the relocation.

Each byte in main storage is specified by a unique numeric address. When you write a
program, you are essentially telling the computer what addresses are involved in the
operation you want it to perform. You are usually not concerned with the specific main
storage locations, because the assembler keeps track of the location of the statement in
your program (relative to the beginning of your program). The assembler assigns the
proper address to each assembled machine-language instruction.

To keep track of the locations, the assembler uses a location assignment counter. The
counter is set to zero at the beginning of an assembly unless your program specifies
otherwise. The counter is then increased by the number of bytes of main storage that
each instruction needs. In this way, each statement is assigned an address relative to the
beginning of the program. The assembler can then assign the addresses and displacements
that are required when it produces the object program. (A displacement is the difference
between the counter value of one statement and that of another.)

When your program is link-edited, each statement for which storage is allocated takes
on a relocated address, which is equal to the beginning main-storage address of the
program plus the location counter value for that instruction (based on a beginning
location counter value of zero).

To locate data, most machine instructions refer to a storage address. The Series/I
uses a variety of methods (called addressing modes) to find the data you request in your
machine instructions. Addressing modes are described in Chapter 3; how you use them is
discussed in Chapter 4.

Any one of the eight general-purpose registers can be used to hold a value, an address, or
a displacement for manipulating data, maintaining counters, or determining the address of
a particular instruction or storage location.

The instruction address register contains the address of the next instruction to be
executed unless a branch instruction breaks the normal sequence. When a branch occurs,
the contents of the instruction address register change because the program branches to
an instruction not immediately following the current instruction.

Introduction 1-5

Segmenting a Program
You can code a program in sections and later combine the sections into the executable
program. Sections are assembled in any combination, individually or grouped. You
arrange the sections in the order required for proper execution of the program during the
combining process. The combining process is called linking and is performed by the
linkage editor program.

Dividing a large program into several sections and assemblies has certain advantages:

• More than one programmer can code sections of the program. Each can assemble and
debug his sections independently of the others.

• The linking process is much faster in terms of computer time. You can assemble a
section of the program and link the new section to the already assembled program.
This uses less computer time than assembling the entire program.

• Sections that are common to more than one program are assembled only once. You
can then link the common sections to the unique sections of each program. You again
reduce computer time and also have shorter assembly listings that are easier to debug.

• You can configure a program to various main storage requirements much more easily
by linking the sections into different combinations of storage loads or phases. Of
course, you must make provisions for these variations in your program logic.

Two types of program sections can be defined in the assembler language-control
sections and dummy sections. Control sections define the object code, that is, machine
instructions and data definitions. A dummy section describes to the assembler the format
of a control section in another assembly. Dummy sections do not appear in the output
module of an assembly. The linking process combines only control sections.

The following assembler instructions define the beginning and end of the various
sections in your assembly.

• ST ART and CSECT instructions define the beginning of a control section. ST ART is
used only to define the first control section in an assembly.

• The DSECT instruction defines the beginning of a dummy section.
• The end of any type of section is defined when another section is started. The END

instruction defines the end of all sections in an assembly.

Linkage Between Source Modules

1-6 SC34-007 4

You can create symbolic linkages between separately assembled source modules. This
allows you to refer symbolically from one source module to data defined in another
source module. You can also use symbolic addresses to branch between modules.

Combining separately assembled control sections successfully depends on the
techniques for symbolic linkages between the control sections. For example, symbols can
be defined in one module and referred to in another. The linkage editor then completes
the linkage, using the information passed to it by the assembler. Not only is the linkage
symbol defined (used as a name), it must also be identified to the assembler by means of
an ENTRY assembler instruction unless the symbol is the name of a CSECT or START
statement. After a symbol is identified as one that names an entry point, another module
can then use that symbol to bring about a branch operation or a data reference.

A module that refers to a linkage symbol defined in another module must identify it as
an externally defined symbol used to bring about linkage. The EXTRN or WXTRN
assembler instructions identify such symbols.

Symbolic linkage can also be achieved by means of the V-type or W-type address
constant, or by means of the BALX or BX machine instruction. Each constant is an
external reference since it is created from an externally defined symbol that need not be
identified by an EXTRN or WXTRN statement. The V-type or W-type address constant
can be used to branch to other modules or to refer to data in those modules.

Note. In a single assembly, the total number of control sections, dummy sections, unique
symbols in EXTRN and WXTRN statements, V-type address constants, W-type address
constants, BALX instructions, and BX instructions cannot exceed 254.

Program Listing
The assembler produces a listing of your source module, including any generated
statements, and the object code assembled from the source module. You can control the
content of the listing to a certain extent. The assembler also prints messages about actual
errors and warnings about potential errors in your source module. A complete description
of the program listing is given in Chapter 7 of this manual.

Introduction 1-7

1-8 SC34-0074

Chapter 2. Coding and Structure of the Assembler Language

Section Contents
Coding Conventions 2-3

Field Boundaries 2-3
Continuation Lines 2-4
Comments Statement Format 2-4
Instruction Statement Format 2-4

Assembler Language Structure 2-6
Character Set 2-6
Terms 2-6
Symbols 2-7
The Symbol Table 2-7

Restrictions on Symbols 2-8
Location Counter Reference 2-10
Attribute References 2-11
Self-defining Terms 2-11

Expressions 2-12
Absolute Expressions 2-13
Register Expressions 2-13
Relocatable Expressions 2-15
Rules for Coding Expressions 2-16
Evaluation of Expressions 2-16
Parentheses in Instruction Operands 2-17

Coding and Structure of the Assembler Language 2-1

This page intentionally left blank.

2-2 SC34-0074

CODING CONVENTIONS
This chapter describes the coding conventions that you must follow in writing assembler
language programs. Assembler language statements are usually written on a coding form
before they are entered as source statements through some form of input to the system.
You can write assembler language statements on the standard coding form (GX28-6509).
Columns 1-72 of this form correspond to the positions on a source statement entered at
the operator station.

mM 8yltmn/380 AHlmllllr Clllling Parm

PUNCHING GRAPHIC PAGE OF 1------------------.-------f INSTRUCTIONst--------+-+------t-----+--+--------
DATE PUNCH

STATEMENT

1 I 10 14 11 20 21

• A----llM--.11-tor,.,,-....,;,,-•lrvmdlllfGnn. ,_,.,...,.,,,,, __ ,,,..,,,.~------· ___ _....,.,,._,.,1111_,___; __ °"""""""'~ 'Nooff«mlptrpod..., ... lllfd!Y. ,.,.""""''·-
Field Boundaries

Assembler language statements usually occupy one 80-column line on the standard form.
(For statements occupying more than 80 columns, see "Continuation Lines" in this
chapter.) Note that any printable character entered as a position in a source statement is
reproduced in the listing printed by the assembler. Each line of the coding form is divided
into three main fields:

• The statement field. You must write instructions and comments in the statement field
(columns 1-71). Any continuation lines needed must start in column 16 or beyond
and end in column 71 or sooner.

• The continuation indicator field. Column 72 is the continuation indicator field. A
nonblank character in column 72 indicates that the current statement is continued on
the next line. Column 72 must be blank if a statement is completed on the same line;
otherwise the assembler treats the statement that follows on the next line as a
continuation line of the current statement.

• The identification and sequence field. The identification and sequence field (colu"lns
73-80) can contain identification characters or sequence numbers, or both.

Coding and Structure of the Assembler Language 2-3

Continuation Lines

Comments.Statement Format

Instruction Statement Format

2-4 SC34-0074

To continue a statement on another line:

1. Enter a nonblank character in the continuation indicator field (column 72). This
nonblank character must not be part of the statement coding. An operand field can
be continued by coding it up through column 71, or by terminating it with a comma
followed by at least one blank.

2. Continue the statement on the next line, starting in the continue column (column 16
or beyond). Columns 1-15 must be blank.

Only one continuation line is allowed for a single assembler language statement.
However, macro instruction statements and the prototype statement of macro definitions
can have as many continuation lines as needed. When more than one continuation line is
needed, enter a nonblank character in column 72 of each line that is to be continued.

Comments statements are not assembled as part of the object module, but are only
printed on the assembly listing. You can write as many comments statements as you
need, as long as you follow these rules:

1. Comments statements require an asterisk in column 1.

Note. Internal macro definition comments statements require a period in column 1,
followed by an asterisk in column 2 (for details see "Internal Macro Comments
Statements" in this chapter).

2. You can use any characters, including blanks and special characters, of the character
set.

3. Comments statements cannot be continued. Code comments statements in the
statement field (columns 1-71) and do not let them run over into the continuation
indicator field.

4. Comments statements must not appear between an instruction statement and its
continuation lines.

The statement field of an instruction statement must include an operation entry and can
contain one or more of the following entries:

• A name en try
• An operand entry
• A remarks entry

The standard coding form is divided into fields that provide fixed positions for the name,
operation, and operand entries.

1. An 8-character name field starting in column 1
2. A 5-character operation field starting in column 10
3. An operand field that begins in column 16

, :~~~~I(~~ 1~t{I}~~ : .. ; . ·. '.
"'AME. ;§tfJ:~Y, i(lf1 FT'.)"ED : . · .
·.oP:E,MND \EJtfrRY:' lN()t':f~EQlil\'R'ed

· ·:~,,~~N·11 ·~Nt!~r '.o~i~rrp ···· ····· · · · ·· ·

Adherence to these field positions is called fixed format.
It is not necessary to code the operation and operand entries according to the fixed

fields on the standard coding form. Instead, you can write these entries in any position,
called free format, subject to certain formatting specifications.

Whether you use fixed or free format, the following general rules apply when you code
an instruction statement:
• Write the entries in the following order: name, operation, operand, and remarks.
• The entries must be in columns 1-71 of the first line and, if needed, in columns

16-71 of any continuation lines.
• The entries must be separated from each other by one or more blanks.
• If used, the name entry must start in column 1.
• The name and operation entries, each followed by at least one blank, must be in the

first line of an instruction statement.
• The operation entry must start in column 2 or later.

R3,ADCON FIXED FORMAT STATEMENT.

~~El HVW R3,ADCON FREE FORMAT STATEMENT.

LABEL HVW x
R3,ADCON ONLY OPERANDS AND REMARKS ALLOWED HERE.

, H~W R3,ADCON NAME ENTRY OMITTED, COLUMN 1 MUST BE BLA"K•

LABEL HVW R3,
ADC ON

CONTINUE OPERANDS
ON NEXT LINE

x

The name entry identifies an instruction statement. The following rules apply to the
name entry:

• It is usually optional.
• It must be a valid symbol of 1-8 characters at assembly time (after substitution for

variable symbols, if specified on model statements within macro definitions).

The operation entry is the symbolic operation t:ode that specifies the machine,
assembler, or macro instruction to be processed. The following rules apply to the
operation entry:

• It is mandatory.
• For machine and assembler instructions it must be a valid symbol at assembly time

(after substitution for variable symbols, if specified on model statements within macro
definitions). The standard symbolic operation codes are 5 characters or less.

• For macro instructions it can be any valid symbol of 1-8 characters that is not
identical to the operation codes for machine and assembler instructions.

The operand entry has one or more operands that identify and describe the data used
by an instruction. The following rules apply to operands:

• One or more operands are usually required, depending on the instruction.
• Operands must be separated by commas. No blanks are allowed between the operands

and the commas that separate them. When an operand entry is being continued on the
next line, the last operand on the first line can be terminated with a comma followed
by one or more blanks.

• Operands must not contain embedded blanks, because a blank normally indicates the
end of the operand entry. However, blanks are allowed if they are included in
character strings enclosed in apostrophes (for example, C' JN') or in logical expressions
(see "Logical (SETB) Expressions" in Chapter 6).

Coding and Structure of the Assembler Language 2-5

You can use a remarks entry to comment on the current instruction. The following
rules apply to the remarks entry:

• It is optional.
• It can contain any of the 256 characters of the character set, including blanks and

special characters.
• It can follow any operand entry.
• If an entire operand entry is omitted, remarks are allowed if the absence of the

operand entry is indicated by a comma preceded and followed by one or more blanks.

Note. Macro prototype statements and macro instructions without operands cannot
have a remarks entry, even if a comma is coded as described above.

ASSEMBLER LANGUAGE STRUCTURE

Character Set

Terms

2-6 SC34-0074

This section describes the structure of the assembler language (the various statements
allowed in the language and the elements that make up those statements).

A source module is a sequence of instruction and comment statements that make up
the input to the assembler. There are 3 types of instruction statements:

• Machine instructions-symbolic representation of machine language instructions,
which the assembler translates into machine language code

• Assembler instructions-instructions to the assembler program to perform certain
operations during assembly of a source module, such as defining data constants and
reserving storage areas

• Macro instructions-instructions to the assembler program to process predefined
sequences of code called macro definitions (from which the assembler generates
machine and assembler instructions which it then processes as if they were part of the
original input source module)

The operand field of machine instructions is composed of expressions, which are
composed of terms and combinations of terms. Remarks on the instruction statements
and comments statements are composed of character strings. Terms and character strings
are both composed of characters. The following paragraphs define these language
elements.

Terms, expressions, and character strings used to build source statements are written with
the following characters:

• Alphameric characters
- Alphabetic characters A through Z
- Special characters$,#, and@
- Digits 0 through 9

• Special characters
+ - , = . * () ' I & blank

Note. Character strings can contain any of the 256 characters of the character set.

Normally, strings of alphameric characters are used to represent data, and special
characters are used as:

• Arithmetic operators in expressions
• Data or field delimiters
• Indicators to the assembler for specific handling

A term is the smallest element of the assembler language that represents a distinct and
separate value. It can therefore be used alone or in combination with other terms to form
expressions. Terms have absolute or relocatable values that are assigned by the assembler
or are inherent in the terms themselves.

Symbols

The Symbol Table

A term is absolute if its value does not change upon program relocation and is
relocatable if its value can be modified to compensate for a change in program origin.

The types of terms are:

• Symbols-absolute or relocatable; value is assigned by the assembler
• Location counter reference-relocatable; value is assigned by the assembler
• Symbolic parameter attributes-absolute; value is assigned by the assembler
• Self-defining terms-absolute; value is inherent in term

You can use a symbol to represent storage locations or arbitrary values. You can write a
symbol in the name field of an instruction and and then specify this symbol in the
operands of other instructions, thus referring to the former instruction symbolically. This
symbol represents a relocatable address.

You can also assign an absolute value to a symbol by coding it in the name field of an
EQU or EQUR instruction with an operand whose value is absolute. Symbols in the name
field of EQUR instructions can be used in other instruction operands to represent
registers; symbols in the name field of EQU instructions can be used in other instruction
operands as displacements in explicit addresses, immediate data, lengths, and implicit
addresses with absolute values. The advantages of symbolic numeric representation are:

• You can remember symbols more easily than numeric values, thus reducing
programming errors and increasing programming efficiency.

• You can use meaningful symbols to describe the program elements they represent; for
example, INPUT can name a field that is to contain input data, or INDEX can name a
register to be used for indexing.

• You can change the value of one symbol (through an EQU instruction) more easily
than you can change several numeric values in many instructions.

• Symbols are entered into a cross-reference table that the assembler optionally prints in
the program listing.

The symbol cross-reference table helps you to find a symbol in a program listing,
because it lists (1) the number of the statement in which the symbol is defined (that is,
used as the name entry), and (2) the numbers of all the statements in which the symbol is
used in the operands.

The assembler maintains an internal table called a symbol table. When the assembler
processes your source statements for the first time, the assembler assigns an absolute or
relocatable value to every symbol that appears in the name field of an instruction. The
assembler enters this value, which normally reflects the setting of the location counter,
into the symbol table; it also enters the attributes with the data represented by the
symbol. The values of the symbol and its attributes are available later when the assembler
finds this symbol used as a term in an operand or expression.

The assembler recognizes three types of symbols:

• Ordinary symbols-used in the name and operand fields of machine and assembler
instruction statements; written as an alphabetic character followed by 0-7 alphameric
characters (no blanks allowed). For example: BEGIN

• Variable symbols-used only in macro processing conditional assembly instructions;
written as an ampersand followed by an alphabetic character followed by 0-6
alphameric characters (no blanks allowed). For example: &PARAM

• Sequence symbols-used only in macro processing conditional assembly instructions;
written as a period followed by an alphabetic character followed by 0-6 alphameric
characters. For example: .SEQO 1

An ordinary symbol is considered defined when it appears as:

• The name entry in a machine or assembler instruction of the assembler language, or

Coding and Structure of the Assembler Language 2-7

Restrictions on Symbols

Predefined Register Symbols

Unique Definition

2-8 SC34-0074

• One of the operands of the following instructions: BALX, BX, EXTRN, WXTRN.

Ordinary symbols that appear in instructions generated from model statements at
preassembly time are also considered defined.

The assembler assigns a value to the ordinary symbol in the name field as follows.

• According to the address of the leftmost word of the storage area that contains one of
the following:
-Any machine instruction
-A storage area defined by the DS instruction
-Any constant defined by the DC instruction
The address value thus assigned is relocatable, because the object code assembled from
these items is relocatable.

• According to the value of the expression specified in the operand of an EQU
instruction. This expression can have a relocatable or absolute value, which is then
assigned to the ordinary symbol.

• According to the value of the expression specified in the operand of an EQUR
instruction. This expression must have an absolute value in the range 0-7, which is
then assigned to the register symbol.

The value of an ordinary symbol must be representable in 16 bits.

The following symbols are predefined by the assembler and reserved for use only as
register symbols:

• RO (general-purpose register 0)
• RI (general-purpose register I)
• R2 (general-purpose register 2)
• R3 (general-purpose register 3)
• R4 (general-purpose register 4)
• RS (general-purpose register 5)
• R6 (general-purpose register 6)
• R7 (general-purpose register 7)
• FRO (floating-point register O)
• FRI (floating-point register 1)
• FR2 (floating-point register 2)
• FR3 (floating-point register 3)

These symbols are absolute and used only for register reference in machine and assembler
instruction operands. Any other usage causes an error message to be generated.
Predefined register symbols appear in the cross-reference listing.

A symbol must be defined only once in a source module (even a source module that
contains two or more control sections) with the following exceptions:

• You can use a duplicate symbol as the name entry of a START, CSECT, or DSECT
instruction. The first use identifies the beginning of the control section, and
subsequent uses identify continuations of the control section. A symbol used in the
name field of a START or CSECT instruction must not also be used in the name field
of a DSECT instruction.

Previously Defined Symbols

• A symbol can appear more than once in the operands of the following instructions:
-ENTRY
-BALX
-BX
-EXTRN
-WXTRN
-DC for V- or W-type address constants
provided the attributes are not contradictory (that is, the same symbol can be repeated
in an EXTRN and BALX instruction but cannot be repeated in a WXTRN and
EXT RN).

Note. An ordinary symbol that appears in the name field of a TITLE instruction is not
a definition of that symbol. It can therefore be used in the name field of any other
statement in a source module.

The symbols used in the operands of the following instructions must be defined in a
previous instruction:

• EQU
• EQUR
• ORG
• DC and DS (in modifier and duplication factor expressions)

The following sample code indicates the ways symbols can be defined and used:

. SYt410L US·E·D IN NN-\~,: ·~ O,P1E1Mti).,: •

S¥HBOL. IN NAME FlEL.D .. Of: '.DS: •.

. S£CON·D .CONTROL S:EG!i Ult. ;st~RtS: . ~~R,El_.·

The unique symbols, in the order they were defined, are:

FIRST
READER
PRINTER
XR3
INDEX

XR4
ENTRIES
TABLE
SECOND
ADCON

Coding and Structure of the Assembler Language 2-9

Location Counter Reference

B
:

LO CAD DC

l..OC2 DC

*

2-10 SC34-0074

The assembler maintains a location counter to assign storage addresses to your program
statements. You can refer to the current value of the location counter at any place in a
source module by specifying an asterisk as a term in an operand.

As the instructions and constants of a source module are being assembled, the location
counter has a value that indicates a location in storage. The assembler increases the
location counter according to the following rules:

• As each instruction or constant is assembled, the location counter increases by the
length of the assembled item.

• The location counter always points to the first byte of the instruction being
assembled.

• All references to the location counter in the operand field are relative to the first byte
of the instruction being assembled.

• If the statement is named by a symbol, the value of the symbol is the value of the
location counter.

The assembler maintains a location counter for each control section in the source
module. (For complete details about the location counter setting in control sections, see
"Program Sectioning" in Chapter 5.) The assembler maintains the internal location
counter as a 16-bit value. If you specify addresses greater than 65,535, the assembler
issues the error message 'AS205S LOCATION COUNTER ERROR'.

You refer to the location counter reference by coding an asterisk(*). Code an asterisk
as a relocatable term only in the operands .of:

• Machine instructions
• DC and DS il.·~tructions
• EQU, 0 RG, and USING instructions

The value of the location counter reference (*) is the current value of the location
counter when the asterisk is specified as a term. The asterisk has the same value as the
address of the first byte of the instruction being assembled. For the value of the asterisk
in address constants with duplication factors, see "A-type Address Constant" in Chapter
5.

Coding an asterisk in the operand of an assembler language instruction or a machine
instruction (as part of an address) is the same as placing a symbol in the name field of the
same statement and then using that symbol in the operand. Be careful how you use this
technique; inserting or deleting instructions between an instruction and the location it
refers to makes the displacement from the location counter invalid.

* ,.l,Rl

LOCAY'ION:

A(LOCATI ON)

A(*)

. ADDRESS OF AW 1. ·INSTRUCT I ON·

ADDRESS OF LO·c2--SAHE AS CODING:'
LOC2 . DC A (LOC2) .

Attribute References

Self-defining Terms

x~) ... •.
SPAC_E:

Attributes describe the characteristics and structure of the data you define in a program
(for example, the kind of constant you specify or the number of characters you need to
represent a value). These attributes are the type (T), count (K), and number (N)
attributes.

You can refer to these attributes only in macro definition statements; for full details,
see "Data Attributes" in Chapter 6.

A self-defining term lets you specify a value explicitly. With self-defining terms, you can
specify decimal, binary, hexadecimal, or EBCDIC character data. These terms have
absolute values and can be used as absolute terms in expressions to represent bit
configurations, absolute addresses, displacements, length or other modifiers, and
duplication factors.

Self-defining terms:

• Represent machine language binary values
• Are absolute terms; their values do not change upon program relocation
• Are padded on the left with zeros if less than one word

The assembler maintains the values represented by self-defining terms to 16 bits;
self-defining terms are always considered as positive values in the range zero through
65,535.

A decimal selfdefining term is an unsigned decimal number. The assembler allows:

• High-order zeros
• A maximum of five decimal digits
• A range of values from :-:ero through 65,535

Note. A negative number is specified as an expression. For details, see "Expressions" later
in this chapter.·

HJGH.·P~DER .ZERO$.
5 D.1 GI TS IS MAXJ HUH. VALlJE .•

A binary selfdefining term must be coded as the letter B followed by 1-16 binary
digits enclosed in apostrophes. For example:

Binary self- Binary
defining term value

B'lllllOO' 00000000 01111100
B'lOO' 00000000 00000100
B'l' 00000000 00000001

Coding and Structure of the Assembler Language 2-11

EXPRESSIONS

2-12 SC34-007 4

The assembler assembles each binary digit exactly as specified.
A hexadecimal selfdefining term must be coded as the letter X followed by 1-4

hexadecimal digits enclosed in apostrophes. For example:

Hexadecimal
self-defining Binary
term value

X'FFAO' 11111111 10100000
X'F' 00000000 00001111
X'COl' 00001100 00000001
X'7FFF' 01111111 11111111
X'8000' 10000000 00000000
X'O' 00000000 00000000

The assembler assembles each hexadecimal digit into its 4-bit binary equivalent as shown
above, and allows a range of values from X'OOOO' through X'FFFF'.

An EBCDIC character selfdefining term must be coded as the letter C, followed by 1 or
2 characters enclosed in apostrophes. When assembling EBCDIC character constants, the
assembler:

• Allows any of the 256 8-bit combinations as input. This includes the printable
characters, including blanks and special characters.

• Assembles each character into its 8-bit EBCDIC equivalent.
• Requires that two ampersands or two apostrophes be specified in the character

sequence for each ampersand or apostrophe required in the assembled term.

Character Characters Hexadecimal Binary
selfdefining assembled value value
term

C'AB' AB X'C1C2' 11000001 11000010
C'C' c X'C3' 00000000 11000011
C'3' 3 X'F3' 00000000 11110011
C'D2' D2 X'C4F2' 11000100 11110010
C" blank X'40' 00000000 01000000
C'#' # X'7B' 00000000 01111011
C'&&' & X'50' 00000000 01010000
C'''' ' X'7D' 00000000 01111101
C'L''' L' X'D37D' 11010011 01111101
C'S&&' 5& X'F550' 11110101 01010000

The assembler maintains the values represented by self-defining terms as 16 bits. If a term
is used as the operand on a byte immediate instruction, the low-order byte of the term is
placed in the immediate field. The high-order byte must be zero.

You can use an expression to code:

• An address
• An absolute value
• An explicit length
• A length modifier
• A duplication factor
• A complete operand

You can write an expression with a simple term or as an arithmetic combination of terms.
The assembler reduces multiterm expressions to single values. Thus, you do not have to
compute these values. For example, expressions are used in the following instructions as
indicated:

A~D.'RE~S
VALlif

LENGTH
FACTOR
OPERAND

Absolute Expressions

Register Expressions

HVW
HVWI

OS
DS
EQU

R2,DATA+4
5+2,R3

CL(ALPHA-BETA)
(ALPHA-BETA+2)C
LABEL+l

EXPRESSION USED AS AN ADDRESS.
AS AN ABSOLUTE VALUE,

AS AN EXPLICIT LENGTH,
AS A DUPLICATION FACTOR,
OR AS A COMPLETE OPERAND.

Expressions have absolute or relocatable values. Whether an expression is absolute or
relocatable depends on the attributes of the terms it contains. You can use the absolute
or relocatable expressions described in this section in a machine instruction or any
assembler instruction other than a conditional assembly instruction. The assembler
evaluates relocatable and absolute expressions at assembly time. Throughout this manual,
the word "expressions" refers to these types of expressions.

Note. The three types of expressions that you can use in conditional assembly
instructions are arithmetic, logical, and character. They are evaluated at preassembly
time. In this manual they are always referred to by their full names; they are described in
detail in Chapter 6.

An expression is absolute if its value is not changed by program relocation; it is
relocatable if its value is changed upon program relocation.

The assembler reduces an expression to a single absolute value if the expression:

• Is composed of a symbol with these values, a self-defining term, or any arithmetic
combination of absolute terms

• Contains relocatable terms, alone or in combination with absolute terms, and if all
these relocatable terms are paired

An expression can be absolute even though it contains relocatable terms, provided that
all the relocatable terms are paired. The pairing of relocatable terms cancels the effect of
relocation. The assembler reduces paired terms to single absolute terms in the
intermediate stages of evaluation. The assembler considers relocatable terms as paired
under the following conditions:

• The paired terms must be defined in the same control section of a source module (that
is, have the same relocatability attribute).

• The paired terms must have opposite signs after all unary operators are resolved. In an
expression, the paired terms do not have to be contiguous; that is, other terms can
come between the paired terms.

• The value represented by the paired terms is absolute.

You may code register references as expressions by following the rules for coding
absolute expressions. There must be at least one register symbol present in the expression
to give it the register attribute.

Note. You can only use register symbols in register expressions. To ensure accuracy of the
cross reference listing, code the register symbol as the first term of the register expression.

Coding and Structure of the Assembler Language 2-13

FIRST CSE Cf

ABLE . ·DS
BAKE.R OS
CHARLIE OS

LOCREF EQU

ABSA EQ.U
ABSB E.Q.U
ABSC EQ.U

AB,SD EQ.U
AB.SE EQ.U

EXAMPLEl EQ.U
EXAMPLE2 EQ.U
EXAMPLEl EQ.U
EXAMPLE4 EQ.U

SEC ONO CSECT

DELTA DS
EASY i>S
FOX OS

END

2-14 SC34-0074

The following sample code shows some relocatable and absolute terms:

F
F
F

*
x I FF1'/i'
128.
C'AB'

ABLE, BAKER, CHARLIE, AND ~QCREF
ARE RELOCATABLE TERMS. THAT CAN BE
PA I RED IN THE SAME EXPRESSJON •. ·

LOCATION COUNTER REF·ERENCE

ABSA, ABSB, AND ABSC ARE
EQUATED TO ABSOLUTE TERMS.

BAKE·R-ABLE
*-C·HARL IE

ABSD AND .ABSE ARE EQVAT.E D T.O·
PA IJ\EP .RE~OCATABLE TERMS.

ABSA THE OPERANDS OF EXAMPLEl,
15 EXAHPLE2, EXAMPLE), AND
ABSA+ABSC*5 EXAMPLE4 ARE AB.SOLUTE EXPRE$S IONS.
BAKER-ABLE/ ABS B+ABSD

x
x
x

DEL TA, EASY, AND FOX ARE
RELOCATABLE TERMS THAT CAN BE
PAIRED IN THE SAME EXPRESSION.

: J . Examples of valid expressions:

. ~~
Paired relocatable terms

BAKER-ABLE
CHARLIE-ABLE
LOCREF - CHARLIE
DELTA-EASY
FOX-DELTA

Unpaired relocatable terms

BAKER
CHARLIE
LOCREF
DELTA

Absolute expressions

ABLE + ABSA - BAKER
DELTA-EASY+ ABSC
FOX- DELTA+ BAKER - CHARLIE

Relocatable expressions

BAKER+ABSA
CHARLIE + X'FF'
FOX - 5 *(BAKER - CHARLIE)

Relocatable Expressions
A relocatable expression is one whose value changes, for example, by a factor of 100, if
the object module into which it is assembled is relocated 100 bytes away from its
originally assigned storage area. The assembler reduces a relocatable expression to a single
relocatable value if the expression:

• Is composed of a single relocatable term, or
• Contains relocatable terms, alone or in combination with absolute terms, and

- All the relocatable terms but one are paired. Note that the unpaired term gives the
expression a value with the relocatability attribute of that term. The paired
relocatable terms and other absolute terms increase or decrease the value of the
unpaired term.

- The sign preceding the unpaired relocatable term must be positive, after all monadic
operators have been resolved.

Complex Relocatable Expressions. Complex relocatable expressions, unlike relocatable
expressions can contain:

• Two or more unpaired relocatable terms, or
• An unpaired relocatable term preceded by a negative sign.

Complex relocatable expressions can be used only in A-type address constants. (See
"A-type Address Constant" in Chapter 5.)

In the following sample code, EXAMPLE I, EXAMPLE2, EXAMPLE3, and EXAMPLE4
are equated to valid relocatable expressions (that is, they belong to the same control
section and have the same relocatability attribute as the relocatable terms in the
expressions):

FIRST CSE CT

ABLE DC F 12 1 ABLE, BAKER, AND CHARLIE
BAKER DC F 131 ARE RELOCATABLE TERMS.
CHARLIE DC f 14 1

ABSA EQU lj ABSA, ABSB, AND ABSC
ABSB EQ.U *-ABLE ARE ABSOLUTE TERMS.
ABSC EQU 1~* (BAKER-ABLE)

EXAHPLEl EQU ABLE+ABSA+l,S BAKER-ABLE AND CHARLIE•ABLE ARE
EXAHPLE2 EQU BAKER-ABLE+CHARLIE PAIRED RELOCATABLE TERMS
EXAHPLE3 EQU BAKER+2+(CHARLIE-ABLE)

EXTRN EXTERNAL

EXAHPLEZ. DC
*
*

END

A(ABLE•EXTERNAL) COMPLEX RELOCATABLE EXPRESSIONS ARE
VALID IN A-TYPE ADDRESS CONSTANTS
ONLY

Coding and Structure of the Assembler Language 2-15

Rules for Coding Expressions

Evaluation of Expressions

2-16 SC34-0074

The rules for coding an absolute or relocatable expression are:

• An expression must not begin with an operator other than the unary minus or unary
plus, and must not contain two operators in succession.
Unary operators: -, +
Binary operators: +, -, *,I
Valid expressions: -2, INDEX+4
Invalid expressions: /2, A+/2

• An expression must not contain two terms in succession.
Valid expressions: ABLE*BAKER
Invalid expressions: ABLEBAKER, X'FF'(lO* A),C'A'B'lOl'

• No blanks are allowed between an operator and a term.
Valid expression: ABLE*BAKER
Invalid expression: ABLE * BAKER

• An expression can contain up to 16 terms and up to five levels of parentheses. Note
that parentheses that are part of an operand specification do not count toward this
limit (see "Parentheses in Instruction Operands" in this chapter).

• A single relocatable term is not allowed in a multiply or divide operation. Note that
paired relocatable terms have absolute values and can be multiplied and divided if they
are enclosed in parentheses.

• Context determines whether an asterisk (*) is the binary operator for multiplication,
the location counter reference, or the indirect addressing indicator.
Valid expressions: ABSA+*, *+3
Invalid expressions: A*/B, ABSA+*ABSB, *3

The assembler reduces a multiterm expression to a single value as follows:

• It evaluates each term.
• It performs arithmetic operations from left to right; however, multiplication and

division are performed before addition and subtraction.
• In division, it gives an integer result; any fractional portion is dropped. Division by

zero gives a zero result.
• Every expression is computed using 32-bit arithmetic.
• In parenthesized expressions, the assembler evaluates the innermost expressions first

and then considers them as terms in the next outer level of expressions. It continues
this process until the outermost expression is evaluated. It is assumed that the
assembler evaluates paired relocatable terms at each level of expression nesting. The
expression A-(X'FF'*2+B-(C/2*D)) is evaluated in the order:
1. Evaluate C/2*D; call the result result].
2. Evaluate X'FF'*2+B-resultl; call the result result2.
3. Evaluate A-result2.

• Expression values are maintained internally to 32 bits during assembly. Negative
results are carried in twos complement form, and intermediate results can range from
-2 31 through 231 -1. However, the final value of an expression must be in the
allowable range for the instruction. For most instructions, that range is -65,536
through 65,535. The one exception is DC type A with length 4. That instruction
initializes a doubleword value, and therefore can be in the range -2 3 1 to 2 3 1-1.

The following examples indicate the order of evaluation of expressions:

Absolute Assumed Value of
Expression Values Expression

A+ 10/B A= 10, B = 2 15
(A+ 10)/B A= 10, B = 2 10
A/2 A= 10 5
A/2 A= 11 5
A/2 A= 1 0
lO*A/2 A= 1 5
A/O A= 1 0

Parentheses in Instruction Operands
Two types of parentheses may be used in instruction operands:

• Syntactic parentheses delimit the elements of an operand. Whenever the contents of a
register are to be used in an effective address calculation, that register reference is
enclosed in syntactic parentheses. The following operand forms use syntactic
parentheses:

(reg)
(reg)+
(reg)*
(reg,addr)
(reg,addr)*
disp(reg,disp)*
(reg,disp)*
disp(reg)*

See Chapter 4 for an explanation of these forms of addressing.
• Arithmetic parentheses are used to combine the terms of an arithmetic expression.

They may be used in combination with syntactic parentheses subject to the following
rules:
1. Any occurrence of arithmetic parentheses must be preceded or followed by an

arithmetic operator (+ ,-, *,/)or the indirect addressing indicator (*).The following
examples show valid syntactic/arithmetic parentheses combinations:

Example Address Mode

(LOC + 4)• addu
((R2 + 1)*2) (reg)
(Rl + 3)/2 reg
(R2, LOC + (6*D)) (reg, addr)

2. No operand may be completely enclosed in arithmetic parentheses. That is, the
following are invalid:

((ADDRA)*) where ADDRA is an ordinary symbol and the intended addressing
mode is addr*.

((RI +4)-3) where the intended addressing mode is reg; the outer arithmetic
parentheses will be interpreted as syntactic causing address mode (reg) to be
generated.

Coding and Structure of the Assembler Language 2-17

2-18 SC34-007 4

Section Contents
Introduction 3-3
Registers 3-3

Registers Fitted on a Per-Level Basis 3-3
Registers Fitted on a Per-System Basis 3-4

Number Representation 3-5
Indicators 3-6

Other Uses of Indicators 3-8
Storage Addressing 3-8
Effective Address Generation 3-9

Base Register, Word Displacement Short 3-9
Base Register, Word Displacement 3-10
Four-bit Address Argument 3-11
Five-bit Address Argument 3-13
Base Register, Storage Address 3-14

Chapter 3. Functional Characteristics

Instruction Length Variations for Address Arguments 3-14
The Priority Interrupt Structure 3-15
1/0 Status 3-15
Interrupt Masking 3-16

Summary Mask 3-16
Interrup Mask Register (IMR) 3-16
Device Mask 3-16

Class Interrupts 3-17
Program Check 3-1 7
Trace 3-17

Program-Controlled Level Switching 3-18
Supervisor State 3-19
Stack Operations 3-20

Stack Control Block 3-20
Linkage Stacking 3-20

Functional Characteristics 3-1

This page intentionally left blank.

3-2 SC34-0074

INTRODUCTION

REGISTERS

This chapter describes the characteristics of the IBM 4953 Processor and the IBM 4955
Processor. All information in this chapter applies to both processors, unless specifically
noted otherwise. This chapter explains register usage, addressing modes, and other
information you should understand to effectively use the assembler.

Each processor has one Interrupt Mask Register (IMR) and one Processor Status Word
(PSW). Each priority interrupt level has eight general-purpose registers, one Instruction
Address Register (IAR), one Address Key Register (AKR) (4955 Processor only), and one
Level Status Register (LSR). All of the preceding are 16-bit registers. Optionally, each
level can have installed four 64-bit floating-point registers (4955 Processor only).

Registers Fitted on a Per-Level Basis
Each of the four levels on the system has the following registers available to the software:

General registers (RO-R7). Also referred to simply as registers, these are eight 16-bit
general-purpose registers, whose selection is controlled by the R fields in instructions.

Floating-point registers (FRO-FR3) (4955 Processor only). Four 64-bit floating-point
registers are provided with the floating-point optional feature. They are selected by the R
fields in floating-point instructions.

Instruction address register (IAR). The IAR contains the address of the leftmost byte of
the next instruction to be executed.

Functional Characteristics 3-3

Address Key Register (AKR) (4955 Processor only). This 16-bit register contains three
address keys and an address key control bit associated with address space management
and the storage protection mechanism. Separate 3-bit fields contain an address key for (I)
instruction address space, (2) operand! address space, and (3) operand2 address space.
For more information, see Chapter 8 of IBM 4955 Processor and Processor Features
Description, GA34-0021.

Bits Contents

00 Equate operand spaces
01 Not used, always zero
02 Not used, always zero
03 Not used, always zero
04 Not used, always zero
05 Operand 1 key (bit 0)
06 Operand 1 key (bit 1)
07 Operand 1 key (bit 2)
08 Not used, always zero
09 Operand 2 key (bit 0)
10 Operand 2 key (bit 1)
11 Operand 2 key (bit 2)
12 Not used, always zero
13 Instruction space key (bit 0)
14 Instruction space key (bit 1)
15 Instruction space key (bit 2)

Level status register (LSR). This 16-bit register contains information about the status of
an interrupt level. It has this format:

Bit Contents

00 Even indicator
01 Carry indicator
02 Overflow indicator
03 Negative result indicator
04 Zero result indicator
05 Not used, always zero
06 Not used, always zero
07 Not used, always zero
08 Supervisor state
09 In process
10 Trace
11 Summary mask
12 Not used, always zero
13 Not used, always zero
14 Not used, always zero
15 Not used, always zero

Bits not used in the LSR are always zero.

Registers Fitted on a Per-System Basis

3-4 SC34-0074

The registers discussed in this section are addressable through assembler-language
instructions.

Interrupt mask register (IMR). A 16-bit register used for control of interrupts. Bit zero
controls level 0, bit one controls level 1, and so on. A one in bit position N enables
interrupts on level N, while a zero disables level N.

Processor status word (PSW). The PSW is a 16-bit register that reports the specific
condition that caused an exception interrupt (program check, machine check, or soft
exception check). The PSW contains the following:

Type of Interrupt Bit Meaning

00 Specification check
01 Invalid storage address

Program check 02 Privilege violate
03 Protect check

Either program check or 04 Invalid function
soft exception trap

05 Floating-point exception
Soft exception trap 06 Stack exception

07 Not used

08 Storage parity check
09 Not used

Machine check 10 CPU control check
11 I/O check

12 Sequence indicator
Status flags 13 Auto-IPL

14 Translator enabled

Power /Thermal 15 Power /Thermal warning

Bits not used in the PSW are always zero.

Console Data Buffer. A 16-bit register that is accessible with the full-function console.
Issue the CPCON instruction to read this buffer.

NUMBER REPRESENTATION
Operands can be signed or unsigned. An unsigned number is a binary integer in which all
bits contribute to its magnitude. A storage address is an example of an unsigned number.
Signed positive numbers are represented in true binary notation with the sign bit
(high-order) set to zero. Signed negative numbers are represented in twos complement
notation with a one in the sign bit. To get the twos complement of a number, invert each
bit of the number and add a one to the low-order bit position.

When the number is positive, all bits to the left of the most significant bit of the
number, including the sign bit, are zero. When the number is negative, all bits to the left
of the most significant bit of the number, including the sign bit, are set to one.

Twos complement notation does not include a negative zero. The maximum positive
number consists of an all-one integer field with a sign bit of zero (7FFF). The maximum
negative number (the negative number with the greatest absolute value) consists of an
all-zero integer field with a one-bit for sign (8000).

Functional Characteristics 3-5

INDICATORS

3-6 SC34-0074

A single set of add and subtract integer arithmetic operations performs both signed
arithmetic and unsigned (that is, binary or logical) arithmetic. The carry and overflow
indicators are set to reflect the result in both cases.

For signed addition and subtraction, the overflow indicator signals a result that exceeds
the representation capability of the system. When an overflow occurs, the carry indicator
and the contents of the result operand together form a valid result of which the carry
indicator is the sign bit for addition and the complement of the sign bit for subtraction. If
there is no overflow, the carry indicator contains no information about the result.

For unsigned addition and subtraction, the carry indicator signals that:

• On an add instruction, a carry out of the high-order bit position has occurred
• On a subtract operation, a borrow beyond the high-order bit position has occurred

When a carry is indicated on an add operation, the carry indicator and the result
operand together form a valid result of which the carry indicator is the most significant
bit.

When a borrow is signaled on a subtract operation, the result is in twos complement
form. The overflow indicator contains no information about unsigned addition or
subtraction operations.

The following example shows how the processor performs the subtraction, with respect
to the setting of the carry indicator.

Add Complement (Subtract)

+6 0110
-(+7) 1001

1111 ---~ No carry out, carry indicator on

If the same operation were to be done with the binary subtract method, we see that a
borrow out would occur:

Binary Subtract

+6
-(+7)

0 1 10 10
1 10 0 0 10

0 1 0 0
0 1

~ 1 ~--Borrow out of Bit 0,
Carry indicator on

The hardware adds or subtracts a negative and positive number by using the add
complement method. The operations are identical in the hardware, except that the carry
indicator settings are different for add and subtract.

The following examples show how the hardware adds and subtracts numbers that
produce the same result:

Add

+3 0011
+(-4) 1100

1111 No carry out, carry indicator off

Subtract

+3 0011
-(+4) 1100

1111 -----~ No carry out, carry indicator on

The following examples show how the hardware adds and subtracts, with respect to the
overflow indicators. The processor recognizes an overflow condition by observing the
internal carries both into and out of the high-order bit position (the sign bit). If the
carries disagree, an overflow condition exists. If they agree, there is no overflow. There
are four possibilities:

• No carry in and no carry out (carries agree-no overflow)
• Both carry in and carry out (carries agree-no overflow)
• Carry in, but no carry out (carries disagree-overflow)

• Carry out, but no carry in (carries disagree-overflow)

The four possible cases are shown in the following examples. Decimal equivalents are
given for comparison.

E-.,,;ample I - No Overflow

111 11 Carries
+62 0011 1110
+27 0001 1011

+ 89 0101 1001

In this straightforward addition, there is neither a carry into the high-order bit position
nor a carry out; therefore, there is no overflow. The carry indicator is off.

Example 2 - No Overflow

1111 1 ---- Carries
+62 0011 1110
-27 illQ_OlOl

+35 0010 0011

Here there is both a carry in and a carry out; hence, no overflow. The carry indicator is
on.

Example 3 - Overflow

+62
+89

+151

1111 ------- Carries
0011 1110
0101 1001

1001 0111

Here there is a carry into the high-order position, but no carry out. Since the overflow
indicator is on, the result has exceeded the capacity of the system. The result is an
unsigned binary integer, and the carry indicator contains the sign bit. The overflow
condition is also evident from the decimal result 151, which exceeds 127, the maximum
value that can be represented in eight bits.

Example 4 - Overflow

11 ..., ___ Carries

-62 1100 0010
-89 1010 0111

-151 0110 1001

In this example, there is a carry out of the high-order bit position~ but no carry in. This
causes an overflow condition. The carry indicator is on. As in the previous example, the
result is an unsigned binary integer with the carry indicator containing the sign bit. Again,
the presence of overflow is evident from the decimal result.

Functional Characteristics 3-7

Other Uses of Indicators

STORAGE ADDRESSING

3-8 SC34-0074

The even, carry and overflow indicators contain the condition code following an 1/0
instruction or interrupt. The even indicator is bit 0 of the condition code, the carry
indicator is bit I, and the overflow indicator is bit 2. For detailed information about this
use of indicators, refer to the processor description manual for your processor. See IBM
4955 Processor and Processor Features Description, GA34-002I.

The carry indicator is also used to reflect the value of the last bit shifted out of the .
target register on shift left logical operations. The overflow indicator is used in these
operations to indicate whether bit 0 of the shifted register has changed (if bit 0 has
changed, the sign of the number has changed).

The carry indicator is used on shift left logical and count operations to reflect the value
of the last bit shifted out of the register.

A compare operation affects the indicators in the same manner as a subtract operation.
Compare instructions are usually used in conjunction with conditional branches or jumps.
The specified conditions in conditional branches and ~umps are named with respect to the
indicators, so that in all compare instructions the subtracted-from operand is compared
relative to the other operand. For example, in a Compare Word instruction (CW RI ,R2)
where the contents of RI are subtracted from the contents of R2, the indicators reflect
arithmetically less than if the contents of R2 are arithmetically less than the contents of
RI.

The indicators are tested according to a selected condition on a conditional branch or
jump instruction. For a discussion of the conditions set by these indicators, see "Using
Compare Instructions" in Chapter 4.

Multiplication and division always operate on signed numbers. The indicator settings for
these operations are described in Chapter 4.

Since the complement of the maximum representatable negative number is itself not
representable, an attempt to complement this number turns on the overflow indicator.

The result indicators are the zero, negative, and even indicators. A positive result is
indicated when the zero and negative indicators are both zero. These indicators reflect the
result of the last arithmetic or logical operation performed. See the individual instruction
descriptions in Chapter 4 for details of indicator setting.

All indicators are changed by the data associated with the Set Indicators (SEIND) and
Set LSB (SELB) instructions.

lndica tors (carry, overflow, zero, negative and even) are set or reset at the end of each
floating-point instruction. Whether each is set or reset is described in the detailed
instruction descriptions in Chapter 4.

All storage addresses are 16-bit, unsigned, binary integers. The direct address range of the
system is 64KB. The addressable unit of main storage is the byte, and all references to
storage locations are byte addresses. Instructions refer to bits, bytes, words, doublewords,
or fields as data types. Some rules concerning storage addressing are:

• All instructions must start on an even byte boundary. The effective address for all
branching instructions must be on an even byte boundary.

• All word and doubleword operand addresses must be on an even byte boundary.
• In the case of indirect addressing, the address operand must be on an even byte

boundary.
• A stack control block must be on an even byte boundary.
• All byte, word, and doubleword operand addresses point to the leftmost byte in the

operand.
• All bit and field addresses are specified by a byte address and a bit displacement, and

point to the leftmost bit in a field.

• In order to provide maximum addressing range, some instructions refer to an even byte
displacement that is added to the contents of a register. In these cases, the register
must also contain an even byte address to point to a word or doubleword operand.

If one of the above rules is violated, a program check interrupt occurs with specification
check set in the PSW. The instruction is suppressed.

EFFECTIVE ADDRESS GENERATION
For purposes of storage efficiency, certain instructions formulate storage operand
addresses in a specialized manner. These instructions have self-contained fields that the
assembler uses when generating effective addresses. Standard methods for deriving
effective addresses are described in this section.

Base Register, Word Displacement Short
Instruction format:

op code RB I I word disp

0 4 8 9

Base register ----
00 register 0
01 register 1
10 register 2
11 register 3

Word displacement
range 0 - 31 (decimal)

11 15
~

The 5-bit unsigned integer (word disp) is doubled in magnitude to form a byte
displacement, then is added to the contents of the specified base register to form the
effective address.

Example:

op code I RB I I word disp I
9 10 o 1 o o_

0 4 8 9 11 15

(HEX)
Contents of register 1 (RB)
Word displacement doubled
Effective address

0000 0000 0110 0000 0060
+ 0 1000 8
0000 0000 0110 1000 0068

This is coded as shortaddr in the MVWS instruction.

Functional Characteristics 3-9

Base Register, Word Displacement

3-10 SC34-0074

Instruction format:

op code

0 4 5 7 8
'-v-"

Base register J
000 register 0
001 register 1
010 register 2
011 register 3
100 register 4
101 register 5
110 register 6
111 register 7

word disp

Word displacement _____ _,,

range +127 to -128 (decimal)

15

The 8-bit signed integer (word disp) is doubled in magnitude to form a byte displacement,
then is added to the contents of the specified base register to form the effective address.
The word displacement can be either positive or negative; bit 8 of the instruction word is
the sign bit for the displacement value. If this high-order bit of the displacement field is a
0, the displacement is positive with a maximum value of+ 127 (decimal). If the high-order
bit of the displacement field is a 1, the displacement is negative with a maximum value of
-128. A negative displacement is represented in twos complement form.

Example:

op code word disp
1 1 0 1 0 0

0 4 5 7 8 15

Note: This example shows a negative word displacement (-17 hex)
shown in twos complement.

Contents of register 6 (RB)
Word displacement doubled

0000 0000 1000 0110
(HEX)
0086

(Sign bit is propagated left) + 1111 1111 1101 0010 - 28
Effective address 0000 0000 01011000 0058

This is coded as (reg,jdisp) in the BXS instruction.

Four-bit Address Argument
Instruction format:

op code

0 4 8 9 10 11 12 15
"'-v-' "'-v-'

Base register __J
00 register 0

(AM= 00 or AM= 01)
00 no register

(AM= 10 or AM= 11)
01 register 1
10 register 2
11 register 3

Address mode -------'

The address mode has the following significance:

AM=OO. The contents of the base register form the effective address. The equivalent
assembler instruction operand format is (reg0- 3).

AM=Ol. The contents of the selected base register form the effective address. After use,
the base register contents are increased by the number of bytes in the operand.

For certain instructions (SELB, CPLB, LMB, STM, PB, PD, PW, PSB, PSD, and PSW)
the effective address does not point to an operand, but to a control block or other system
parameters. For these instructions, the contents of the specified register are increased by
two.

Example:

op code

0 4 8 9 10 11 12 15

Effective address (HEX)
(Contents of register 1) 0000 0000 1000 0000 0080

Contents of register 1
after instruction execution

Byte operand 0000 0000 1000 0001 0081
Word operand 0000 0000 1000 0010 0082
Doubleword operand 0000 0000 1000 0100 0084

The equivalent assembler instruction operand format is (reg0
-

3)+.

AM= 10. An additional word is appended to the instruction. The word has the following
format.

address

16 31

Functional Characteristics 3-11

3-12 SC34-0074

0

• If RB is zero, the appended word contains the effective address.
• If RB is not zero, the contents of the selected base register and the contents of the

appended word are added to form the effective address.

Example:

op code RB AM address
1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

4 8 9 10 11 12 15 16 31

Contents of register 3 0000 1000 0000 0000
Contents of appended word +0000 0001 0000 0000
Effective address 0000 1001 0000 0000

(HEX)
0800
0100
0900

The equivalent assembler instruction operand formats are addr and (reg1
-

3
, waddr).

AM= 11. An additional word is appended to the instruction.

• If RB is zero, the appended word has the format:

indirect address

16 31

This address points to a main storage location, on an even byte boundary, that
contains the effective address.

Example:

op code RB AM indirect address
00 11 0000 0000 0101 0000

0 4 8 9 10 11 12 15 16 31

(HEX)
Contents of appended word 0000 0000 0101 0000 0050
Effective address equals

contents of storage at
address 0050 (hexadecimal) 0000 0100 0000 00001 0400

• If RB is not zero, the appended word has the format:

disp 1 disp 2

16 23 24 31

Five-bit Address Argu,ment

The two displacements are unsigned 8-bit integers. Displacement 2 is added to the
contents of the selected base register to generate a main storage address. The contents
of this storage location are added to displacement 1, resulting in the effective address.

Example:

op code

0 4 8 9 10 1112

Contents of register 2 0000
Displacement 2 +
Storage address 0000

Contents of storage at 0000
address 05 77 (Hexadecimal)

Displacement 1 +
Effective address 0000

15 16

0101 0011
0100

0101 0111

0100 0001

0010

0100 0011

disp 1
0010 0101

0101
0010

0111

0000

0101

0101

The equivalent assembler instruction operand formats are:

displ (reg1-3, disp2)*
disp(reg1

-
3)*

(reg1-3)*

(reg1
-

3 ,disp)*

Instruction format:

op code

0 4 5 7
'--v--'

Base register _J
000 register 0

(AM= 00 or AM= 01)
000 no register

(AM= 10 or AM= 11)
001 register 1
010 register 2
011 register 3
100 register 4
101 register 5

110 register 6
111 register 7

10 11 12
~

Address mode --------

15

23 24

(HEX)
0535
__il.

0577

0410

~
0435

disp2
0100 0010

31

Operation of this mode is identical to the four-bit argument, but provides additional base
registers.

This is coded as addr 5.

Functional Characteristics 3-13

Base Register, Storage Address
Instruction format:

op code

0 4 8 10 11 12 15· 16
~

Base register ____ ___.I
000 no register
001 register 1
010 register 2
011 register 3
100 register 4
101 register 5

110 register 6
111 register 7

{
0 =direct
1 =indirect

address/displacement

• If RB is zero, the address field contains the effective address.

31'

• If RB is not zero, the contents of the selected base register and the contents of the
address field are added together to form the effective address.

Note. Bit 11, if a one, specifies that the effective addressing is indirect.

Example:

op code RB indirect address
1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

0 4 8 10 11 12 15 16 31

(HEX)
Contents of register 4 0000 0001 0000 0000 0100
Address field + 0000 0100 0001 0000 0410
Storage address 0000 0101 0001 0000 0510

Effective address
Contents of storage at

address 0510 (hexadecimal) 0000 0110 0100 0000 0640

This is coded as longaddr.

Instruction Length Variations for Address Arguments

3-14 SC34-0074

• One-word instructions that contain a single AM field become two words in length if
AM is equal to 10 or 11. The appended word follows the instruction word.

• Two-word instructions that contain a single AM field become three words in length if
AM is equal to 10 or 11. The AM word is appended to the first instruction word. The
data or immediate field then becomes the third word of the instruction.

• One-word instructions that contain two AM fields (AMI and AM2) are one, two, or
three words in length depending on the values of AMI and AM2. The AMI word is
appended first, then the AM2 word.

Examples:

• AMI=OO or AMl=Ol; AM2=00 or AM2=01

instruction word no appended word

0 15

• AMl=lOor AMI=ll;AM2=00 or AM2=01

instruction word AMl appended word

0 15 16 31

• AMI=OO or AMI=Ol; AM2=10 or AM2=11

instruction word AM2 appended word

0 15 16 31

• AMl=lO or AMl=ll; AM2=10 or AM2=11

instruction word AMl appended word AM2 appended word

0 15 16 31 32 47

THE PRIORITY INTERRUPT STRUCTURE

1/0 STATUS

The processor has four preemptive priority interrupt levels. Associated with each level is a
bank of general registers and status registers. Each bank consists of eight general registers
(RO-R7), a Level Status Register (LSR), an Instruction Address Register (IAR), and an
Address Key Register (AKR)(4955 Processor only). When switching between levels, the
hardware automatically preserves the information contained in the interrupted-from level.

The processor uses the device address to find the service routine for a given device; thus,
there are 256 direct interrupt entry points. The IO instruction (prepare command) assigns
an interrupt level to an I/O device.

The processor enters supervisor state when it has accepted all priority interrupts. When
the processor accepts an interrupt on a given level, that level remains active until a level
exit (LEX) instruction is executed. If a higher-priority interrupt is accepted before the
LEX is executed, the processor switches to the higher level, completes execution
(including a LEX) and automatically returns to the interrupted-from level, provided no
other higher priority interrupts are pending. If an interrupt is pending on the currently
active level, it is not accepted until the LEX has been executed. When no levels are active,
and no interrupts are pending, the processor enters the wait state.

I/O status is reported by:

• Condition code
• Interrupt Information Byte (IIB)
• Device-dependent status words

Condition codes are reported to the processor by the I/O device and/or the channel
during the execution of every IO instruction and upon acceptance of every priority
interrupt.

Functional Characteristics 3-15

INTERRUPT MASKING

Summary Mask

Interrupt Mask Register (/MR)

Device Mask

3-16 SC34-0074

When an I/O interrupt is accepted, the device address and Interrupt Information Byte
(IIB) are placed in register 7 of the interrupt-to level. The IIB contains eight bits of device
status information that cannot be indicated to the program through condition codes. The
value of the condition code determines the contents of the IIB. For cc=O, the IIB is 0.
For cc=2 or 6, the IIB is referred to as the Interrupt Status Byte (ISB) and has two fixed
formats-one for direct-program-control devices and one for cycle-steal devices. See
Appendix K for these formats. For all other values of the condition code the contents of
the IIB are device-dependent.

Device-dependent status words are issued only by those devices that require more than
the 8-bit IIB for complete status reporting.

The processor has three types of priority interrupt masking:

• Summary mask
• Interrupt level mask register
• Device mask

When disabled, the summary mask inhibits all priority interrupts on all levels. The
contents of the interrupt level mask register are not changed. The summary mask is
disabled by:

• Execution of the SVC instruction
• Execution of the Disable (DIS) instruction, with bit 1 S a one
• Acceptance of a machine check, soft exception, program check, power/thermal

warning, supervisor call, console interrupt, or trace interrupt
• Execution of set level status block (SELB) instruction with bit 11 of LSR to be loaded

with zero

The summary mask is enabled by:

• Execution of the Enable (EN) instruction, with bit 15 a one
• System reset, power-on reset, or IPL
• Execution of Set Level Status Block (SELB) instruction with bit 11 of LSR to be

loaded with one
• Acceptance of a priority interrupt on the interrupted-to level

When the summary mask is enabled, the summary mask bit in the LSR is equal to one.

The Interrupt Mask Register (IMR) has a I-bit mask for each interrupt level. When a bit is
set to one, the level for that bit is enabled and permits an interrupt on that level. When a
bit is set to zero, the corresponding level is disabled. The interrupt level mask register is
changed by the Set Interrupt Mask Register (SEIMR) instruction and copied by the Copy
Interrupt Mask Register (CPIMR) instruction.

Each interrupting device contains a I-bit device mask. When the mask is set to I, the
device can interrupt. The device mask is changed by the IO instruction (prepare
command).

CLASS INTERRUPTS

Program Check

Trace

A class interrupt alerts the system to an error or exception condition. In addition, it gives
the software a means for identifying the nature of the error or exception. The system can
then recover, while normal processing continues with little disruption. The trace, soft
exception trap, console, and supervisor call class interrupts are not errors; they are
program-controlled exception conditions.

The occurrence of a class interrupt does not change the priority level of the active
software; however, an LSB is stored using the appropriate class interrupt pointer, the
processor enters supervisor state, trace is reset, the summary mask is disabled, and the
AKR is altered based on the type of class interrupt (4955 Processor only). If your
processor has the optional full-function console, machine and program check class
interrupts do not occur if check restart or stop on e"or are selected.

The instruction address contained in the Level Status Block (LSB) for class interrupts
depends on the type of class interrupt. For program check and soft exception, it is the
address of the instruction that caused the class interrupt. For trace, supervisor
call, power/thermal, and console, it is the address of the next instruction. For machine
check, with the sequence indicator off, it is the address of the instruction that caused the
class interrupt. For machine check, with the sequence indicator on, it is the address of the
instruction in execution at the time of the error.

Program check and trace interrupts are discussed next. For an explanation of the other
class interrupts, refer to the processor description manual for your processor. See IBM
4955 Processor and Processor Features Description, GA34-0021.

A program check is caused only by software. If a program check interrupt occurs on one
level, it does not affect software on other levels. A Level Status Block (LSB) is stored
starting at the location in main storage designated by the contents of the program check
LSB pointer (main storage location OOOC hexadecimal). Then, the contents of the
program check Starting Instruction Address (SIA) are loaded into the instruction address
register, becoming the address of the next fetched instruction.

An instruction trace facility is provided for software debugging. Instruction tracing can
occur on any interrupt level and is enabled by LSR bit 10, the trace bit. Instruction trace
occurs whenever bit 10 of the current LSR is on.

When trace is enabled, a trace class interrupt occurs at the beginning of each
instruction. When the interrupt occurs, an LSB is stored, starting at the location in main
storage designated by the contents of the trace LSB pointer (main storage location 0018
hexadecimal). Then, the contents of the trace SIA (main storage location OOlA
hexadecimal) are loaded into the instruction address register, becoming the address of the
next fetched instruction.

After the LSB is stored, and before the next instruction is fetched, supervisor state is
set on (LSR bit 8), trace is turned off (LSR bit 10) and the summary mask is disabled
(LSR bit 11).

Functional Characteristics 3-1 7

PROGRAM-CONTROLLED LEVEL SWITCHING

3-18 SC34-0074

Level switching under program control is done with the Set Level Status Block (SELB)
and Copy Level Status Block (CPLB) instructions.

The Level Status Block (LSB) contains the IAR, registers 0 through 7, the Level Status
Register (LSR), and the Address Key Register (AKR) (4955 Processor only) for the
selected level. The format of the Level Status Block stored is:

Main storage
address
(LSB pointer) Instruction address register

Address key register *
Level status register

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

+14 (Hex) Register 7

0 15

*4955 Processor only

The exact effect on the processor by the execution of the SELB instruction is determined
by three factors:

• The current execution level
• The selected level as specified in the SELB instruction
• The state of the in-process flag (bit 9 of the LSR) contained in the LSB specified by

the effective address in the SELB instruction.

The following table describes these conditions.

Selected Level Lower Selected Level Equal Selected Level Higher
Than Current Level To Current Level Than Current Level

IN-PROCESS FLAG ON

Causes selected level to be Causes selected level to Ca uses selected level to
pending with its LSB become the current with become the current level
defined by the LSB at the its LSB defined by the with its LSB defined by
EA. If no interrupts are LSB at the EA. the LSB at the EA. This
being requested on a level operation is an interrupt
higher than the selected to the higher level, causing
level, execution of a LEX the lower level to be pending.
on the current level
causes the selected level
to become active.

IN-PROCESS FLAG OFF

Ca uses selected level to be Causes current level to Causes higher level's LSB to
not pending, with its LSB be excited in the manner be defined by the LSB at the
defined by the LSB at described by the LEX EA.
the EA. instruction with the

exception that its LSB
is defined by the LSB
at the EA.

SUPERVISOR STATE

Program-controlled level switching is not subject to the summary mask or the interrupt
level mask.

Supervisor state is entered when a Supervisor Call (SVC) instruction is executed.
The contents of the IAR are increased by 2. The current LSB is stored. The new LSR is

set as follows:

• Summary mask disabled
• Supervisor state turned on
• Trace turned off

The AKR (4955 Processor only) is set as follows:

• Equate operand spaces is disabled.
• Operand 1 key is set to the previous operand 2 key.
• Operand 2 key and instruction space key are set to 0.

The parameter field in the instruction is loaded into bits 8-15 of register 1. A branch is
taken to the SVC Start Instruction Address.

The following, which are called privileged instructions, can be executed while the
processor is in supervisor state only. If they are fetched in problem state, a program check
class interrupt occurs, and the privilege violate bit (bit 02) is set in the processor status
word.

Mnemonic Instruction

CPI MR Copy interrupt mask register
SEIMR Set interrupt mask register
CPI PF Copy in-process flags
CPPSR Copy processor status and reset
CPSR* Copy segmentation register
SESR* Set segmentation register
CPSK* Copy storage key
SESK* Set storage key
CPLB Copy level status block
SELB Set level status block
CPFLB* Copy floating-point level status block
SEFLB* Set floating-point level status block
EN Enable
DIS Disable
DIAG Diagnose
IO Operate 1/0
LEX Level exit
CPCL Copy current level
IOPK Interchange operand keys
SEAKR* Set address key register
SEISK* Set instruction space key
SEOOK* Set operandl key
SEOTK* Set operand2 key
CPAKR* Copy address key register
CPISK* Copy instruction space key
CPOOK* Copy operandl key
CPOTK* Copy operand2 key
SECON Set console data lights
CPCON Copy console data buffer

*4955 Processor only

Functional Characteristics 3-19

STACK OPERATIONS

Stack Control Block

Linkage Stacking

3-20 SC34-0074

Supervisor state is also entered and the summary mask disabled when a console or class
interrupt occurs. Initial Program Load (IPL) or the acceptance of an 1/0 interrupt causes
the machine to enter supervisor state, but the summary mask is not disabled. Supervisor
state is exited by a SELB instruction.

Stacking is a simple efficient mechanism for enqueuing data and/or parameters. Basically,
a stack is a LIFO queue. There are operations that push a data item or parameter into the
stack and pop the top item from the stack. In addition, there are limit-checking facilities,
which test for overflow and underflow of a stack area.

Any contiguous area of storage can be defined as a stack. Each logical stack is defined
by a stack control block in the following format:

Word I Top element address (TEA)
Word 2 High limit address of stack (HLA)
Word 3 Low limit address of stack (LLA)

The size of the stack is equal to HLA minus LLA. When a stack is empty, the top element
address is equal to the high limit address. The HLA must be greater than the LLA.

When an item is pushed to the stack, the address value in the TEA is decreased and
compared against the LLA. If it is less than the LLA, a stack overflow exists. Stack
overflow causes a soft exception interrupt to occur, with stack exception set in the PSW.
The TEA is unchanged. If the stack does not overflow, the TEA is updated and the data
item is moved to the storage location defined by the TEA.

When an item is popped from a stack, the TEA is compared against the HLA. If it is
greater than or equal to the HLA, a stack underflow exists. Stack underflow causes a soft
exception interrupt to occur, with the stack exception bit on in the PSW. If the stack
does not underflow, the data item defined by the current TEA is moved to a specified
register and the address value of the TEA is increased.

Note. It is possible to pop data from beyond the stack boundary if the TEA is less than
the HLA, and the operand size is greater than (HLA-TEA).

Stack operations are register-to-storage for push, and storage-to-register for pop. Bytes,
words, doublewords and register blocks can be stacked. You are responsible for ensuring
that the TEA word of a stack control block contains an even byte address for word,
doubleword, and register block operations. All stack control blocks must be aligned on a
word boundary.

A word stack can be used for subroutine linkage, as a method of saving/restoring caller
status and allocating dynamic word areas. The STM/LMB instruction pair operate using a
stack area. The STM instruction specifies:

• Stack control block address (A)
• Limit register number (R)
• Number of bytes to allocate as dynamic work area (N)

Note. You code this value in bytes, then the assembler converts it to words for use by the
hardware instruction.

When STM is executed, the TEA value is decreased by the size of the area allocated on
the stack before an overflow check is made. The size of that area is N, plus two bytes for
each register saved, plus two bytes for the control word. The link register (R7) and
register 0 through register R are saved sequentially in the stack area and the address of the
dynamic work area is returned to you in register R. If R7 is specified, only R7 is stored.
The value of R and N are also saved as an entry in the stack. When an LMB instruction is
executed, these values (R, N) are retrieved from the stack and are used to control the
reloading of registers and restoring the stack control pointer to its former status. The
contents of R7 are then loaded into the IAR, returning to the calling routine. For
example, if you want to store register 7, then registers 0 through R, in a stack defined by
the stack control block at location A, and you want to allocate N bytes of dynamic work
area:

STM R,A,N

this is how the stack is stored:

Low Storage.

-4----LLA

Unused stack area

~---TEA

Stack Control Word

Dynamic
Work
Area (if any)

t • 0 .;; N.;; 16382 bytes

R7
RO

TEA

HLA
0

LLA • Previously
Stacked
Data (if any)

...,--HLA
First word beyond stack

High Storage

Functional Characteristics 3-21

3-22 SC34-0074

Section Contents
Coding Notes 4-3
Coding The Assembler Language Instructions 4-4
Data Movement Instructions 4-7

Fill Byte Field and Decrement (FFD) 4-7
Fill Byte Field and Increment (FFN) 4-8
Interchange Registers (IR) 4-9
Move Address (MV A) 4-10
Move Byte (MVB) 4-10
Move Byte and Zero (MVBZ) 4-11
Move Byte Field and Decrement (MVFD) 4-12
Move Byte Field and Increment (MVFN) 4-13
Move Byte Immediate (MVBI) 4-14
Move Doubleword (MVD) 4-15
Move Doubleword and Zero (MVDZ) 4-16
Move Word (MVW) 4-16
Move Word and Zero (MVWZ) 4-17
Move Word Immediate (MVWI) 4-17
Move Word Short (MVWS) 4-18

Arithmetic Instructions 4-20
Add Byte (AB) 4-20
Add Byte Immediate (ABI) 4-20
Add Carry Indicator (ACY) 4-21
Add Doubleword (AD) 4-21
Add Word (AW) 4-22
Add Word Immediate (A WI) 4-23
Add Word with Carry (A WCY) 4-24
Subtract Byte (SB) 4-24
Subtract Carry Indicator (SCY) 4-25
Subtract Doubleword (SD) 4-25
Subtract Word (SW) 4-26
Subtract Word Immediate (SWI) 4-27
Subtract Word with Carry (SWCY) 4-28
Multiply Byte (MB) 4-28
Multiply Doubleword (MD) 4-29
Multiply Word (MW) 4-29
Divide Byte (DB) 4-30
Divide Doubleword (DD) 4-30
Divide Word (DW) 4-31
Complement Register (CMR) 4-32

Branching Instructions 4-33
Branch (B) 4-33
Branch and Link (BAL) 4-33
Branch and Link External (BALX) 4-34
Branch and Link Short (BALS) 4-34
Branch External (BX) 4-35
Branch if Mixed (BMIX) 4-36
Branch if Not Mixed (BNMIX) 4-36
Branch If Not Off (BNOFF) 4-37
Branch If Not On (BNON) 4-37
Branch if Off (BOFF) 4-38
Branch if On (BON) 4-38
Branch Indexed Short (BXS) 4-39
Branch on Carry (BCY) 4-39
Branch on Condition (BC) 4-40
Branch on Condition Code (BCC) 4-40
Branch on Equal (BE) 4-41
Branch on Error (BER) 4-42
Branch on Even (BEV) 4-4 2

Chapter 4. Machine Instructions

Branch on Greater Than (BGT) 4-42
Branch on Greater Than or Equal (BGE) 4-43
Branch on Less Than (BLT) 4-43
Branch on Less Than or Equal (BLE) 4-44
Branch on Logically Greater Than (BLGT) 4-44
Branch on Logically Greater Than or Equal (BLGE) 4-45
Branch on Logically Less Than (BLLT) 4-45
Branch on Logically Less Than or Equal (BLLE) 4-46
Branch on Negative (BN) 4-46
Branch on No Carry (BNCY) 4-4 7
Branch on Not Condition (BNC) 4-4 7
Branch on Not Condition Code (BNCC) 4-48
Branch on Not Equal (BNE) 4-49
Branch on Not Error (BNER) 4-49
Branch on Not Even (BNEV) 4-49
Branch on Not Negative (BNN) 4-50
Branch on Not Overflow (BNOV) 4-50
Branch on Not Positive (BNP) 4-51
Branch on Not Zero (BNZ) 4-51
Branch on Overflow (BOV) 4-52
Branch on Positive (BP) 4-5 2
Branch on Zero (BZ) 4-53
No Operation (NOP) 4-5 3
Coding Jump Instructions 4-54
Jump and Link (JAL) 4-54
Jump if Mixed (JMIX) 4-55
Jump If Not Mixed (JNMIX) 4-55
Jump if Not Off (JNOFF) 4-56
Jump if Not On (JNON) 4-56
Jump if Off (JOFF) 4-57
Jump if On (JON) 4-57
Jump on Carry (JCY) 4-58
Jump on Condition (JC) 4-58
Jump on Count (JCT) 4-59
Jump on Equal (JE) 4-60
Jump on Even (JEV) 4-60
Jump on Greater Than (JGT) 4-61
Jump on Greater Than or Equal (JGE) 4-61
Jump on Less Than (JLT) 4-62
Jump on Less Than or Equal (JLE) 4-62
Jump on Logically Greater Than (JLGT) 4-63
Jump on Logically Greater Than or Equal (JLGE) 4-63
Jump on Logically Less Than (JLLT) 4-64
Jump on Logically Less Than or Equal (JLLE) 4-65
Jump on Negative (JN) 4-65
Jump on No Carry (JNCY) 4-66
Jump on Not Condition (JNC) 4-66
Jump on Not Equal (JNE) 4-67
Jump on Not Even (JNEV) 4-67
Jump on Not Negative (JNN) 4-68
Jump on Not Positive (JNP) 4-68
Jump on Not Zero (JNZ) 4-69
Jump on Positive (JP) 4-69
Jump on Zero (JZ) 4-70

Shift Instructions 4-71
Coding Shift Instructions 4-71
Shift Left Circular (SLC) 4-71
Shift Left Circular Double (SLCD) 4-72
Shift Left Logical (SLL) 4-72

Machine Instructions 4-1

Shift Left Logical Double (SLLD) 4-73
Shift Left and Test (SLT) 4-74
Shift Left and Test Double (SLTD) 4-75
Shift Right Arithmetic (SRA) 4-76
Shift Right Arithmetic Double (SRAD) 4-76
Shift Right Logical (SRL) 4-77
Shift Right Logical Double (SRLD) 4-78

Stack Instructions 4-79
Store Multiple (STM) 4-79
Load Multiple and Branch (LMB) 4-80
Coding Pop/Push Instructions 4-80
Pop Byte (PB) 4-80
Pop Doubleword (PD) 4-81
Pop Word (PW) 4-82
Push Byte (PSB) 4-82
Push Doubleword (PSD) 4-83
Push Word (PSW) 4-83

Compare Instructions 4-84
Using Compare Instructions 4-84
Compare Byte (CB) 4-85
Compare Byte Field Equal and Decrement (CFED) 4-85
Compare Byte Field Equal and Increment (CFEN) 4-87
Compare Byte Field Not Equal
and Decrement (CFNED) 4-88

Compare Byte Field Not Equal
and Increment (CFNEN) 4-89

Compare Byte Immediate (CBI) 4-90
Compare Doubleword (CD) 4-91
Compare Word (CW) 4-91
Compare Word Immediate (CWI) 4-92
Scan Byte Field Equal and Decrement (SFED) 4-92
Scan Byte Field Equal and Increment (SFEN) 4-93
Scan Byte Field Not Equal and Decrement (SFNED) 4-94
Scan Byte Field Not Equal and Increment (SFNEN) 4-95

Logical Instructions 4-96
AND Word Immediate (NWI) 4-96
Exclusive OR Byte (XB) 4-96
Exclusive OR Doubleword (XD) 4-97
Exclusive OR Word (XW) 4-98
Exclusive OR Word Immediate (XWI) 4-98
Invert Register (VR) 4-99
OR Byte (OB) 4-100
OR Doubleword (OD) 4-100
OR Word (OW) 4-101
OR Word Immediate (OWi) 4-102
Reset Bits Byte (RBTB) 4-102
Reset Bits Doubleword (RBTD) 4-103
Reset Bits Word (RBTW) 4-104
Reset Bits Word Immediate (RBTWI) 4-104
Test Bit (TBT) 4-105
Test Bit and Invert (TBTV) 4-106
Test Bit and Reset (TBTR) 4-106
Test Bit and Set (TBTS) 4-107
Test Word Immediate (TWI) 4-108

Processor Status Instructions 4-109
Copy Level Status Register (CPLSR) 4-109
Set Indicators (SEIND) 4-109
Stop (STOP) 4-110

4-2 SC34-0074

Supervisor Call (SVC) 4-110
Privileged Instructions 4-111

Copy Address Key Register (CP AKR)
(4955 Processor only) 4-111

Copy Console Data Buffer (CPCON) 4-111
Copy Current Level (CPCL) 4-112
Copy In-Process Flags (CPIPF) 4-112
Copy Instruction Space Key (CPISK)
(4955 Processor only) 4-113

Copy Interrupt Mask Register (CPIMR) 4-113
Copy Level Status Block (CPLB) 4-114
Copy Operandl Key (CPOOK) (4955 Processor only) 4-115
Copy Operand2 Key (CPOTK) (4955 Processor only) 4-116
Copy Processor Status and Reset (CPPSR) 4-116
Copy Segmentation Register (CPSR)
(4955 Processor only) 4-117

Copy Storage Key (CPSK) (4955 Processor only) 4-118
Diagnose (DIAG) 4-118
Disable (DIS) 4-119
Enable (EN) 4-120
Interchange Operand Keys (IOPK)
(4955 Processor only) 4-120

Level Exit (LEX) 4-121
Operate 1/0 (IO) 4-121
Set Address Key Register (SEAKR)
(4955 Processor only) 4-122

Set Console Data Lights (SECON) 4-122
Set Instruction Space Key (SEISK)
(4955 Processor only) 4-123

Set Interrupt Mask Register (SEIMR) 4-123
Set Level Status Block (SELB) 4-124
Set Operand! Key (SEOOK)
(4955 Processor only) 4-125
Set Operand2 Key (SEOTK)
(4955 Processor only) 4-126
Set Segmentation Register (SESR)
(4955 Processor only) 4-126
Set Storage Key (SESK) (4955 Processor only) 4-127

Floating-Point Instructions (4955 Processor only) 4-128
Floating-point Number Representation 4-128
Floating-point Registers and Instructions 4-130
Copy Floating Level Block (CPFLB) 4-130
Floating Add (FA) 4-130
Floating Add Double (FAD) 4-131
Floating Compare (FC) 4-132
Floating Compare Double (FCD) 4-132
Floating Diagnose (FDIAG) 4-133
Floating Divide (FD) 4-133
Floating Divide Double (FDD) 4-134
Floating Move (FMV) 4-134
Floating Move Double (FMVD) 4-135
Floating Move and Convert (FMVC) 4-136
Floating Move and Convert Double (FMVCD) 4-137
Floating Multiply(FM) 4-138
Floating Multiply Double (FMD) 4-138
Floating Subtract (FS) 4-139
Floating Subtract Double (FSD) 4-140
Set Floating Level Block (SEFLB) 4-140

CODING NOTES

Hardware instructions are represented symbolically by assembler-language statements.
Each statement generates one hardware instruction-the actual instruction generated
depends on the operation code and the syntax of the operand.

Each mnemonic operation code specifies the function of an instruction and the type of
data it operates on. For example, the Move Word (MVW) instruction moves (MV) a word
(W) from a register to storage, storage to a register, storage to storage, or a register to a
register, depending on the operands you code. Based on the syntax of the operands, the
assembler generates one of several possible hardware instructions. If more than one
hardware instruction can perform the operation specified by the mnemonic and its
operand, the assembler generates the one that is most efficient in timing and storage
usage.

This chapter discusses the assembler-language machine instructions-how you code
them and what they do.

• Data flow, when it modifies a field, is always from left to right.
• Registers used in effective address calculations are always in parentheses.
• An address specification followed by an asterisk indicates indirect addressing. Here,

the effective address is the contents of the addressed storage location.
• The (reg)+ format indicates that, after use, the contents of the reg are increased by the

number of bytes addressed.

Machine Instructions 4-3

CODING THE ASSEMBLER LANGUAGE INSTRUCTIONS

4-4 SC34-0074

This section explains the symbols that are used as generalized operands in the discussion
of machine instructions. (The discussion of machine instructions comprises the remainder
of this chapter.)

abcnt An absolute value or expression representing the size of a work storage
area to be allocated by the Store Multiple (STM) instruction. The value
you code must be an even number in the range 0-16382.

addr

addr4

An address value. Code an absolute or relocatable expression in the range
0-65535.

An address value that you code in one of the following forms:

(reg0
-

3
) The effective address is the contents of the register

rego-3.

(reg0
-

3)+ The effective address is the contents of the register
reg0

-
3. After an instruction uses it, the contents of

the register are increased by the number of bytes
addressed by the instruction.

addr The effective address is the value of addr, unless the
instruction and addr are within the domain and range
of the same USING statement. If they are, the
assembler computes the effective address as a
displacement (-32768 to +32767 or 0 to 65535)
from the base register, which must be reg1

-
3

•

addr* The effective address is the contents of storage at the
address defined by addr, unless the instruction and
addr are within the domain and range of the same
USING statement. If they are, the assembler
computes the effective address as the contents of
storage at the address defined by a displacement
(0-'-255) from the base register, which must be
reg1-3.

(reg1
-

3 ,waddr) The effective address is the contents of the register
reg1-3, added to the value of waddr.

displ(reg 1
-

3 ,disp2)* The effective address is calculated as follows: The
contents of the register reg1

-
3 are added to the value

of the displacement disp2 to form an address. The
contents of that storage location are added to the

disp(reg 1
- 3)*

(reg1
-

3 ,disp)*

value of displ to form the effective address.

The effective address is the contents of storage at the
address defined by the contents of reg1

-
3 added to

the value of disp.

The effective address is the contents of storage at the
address defined by the contents of reg1

-
3.

The contents of reg1 -3 are added to disp, forming an
address. The contents of storage at that address form
the effective address.

For the byte addressing, the effective address can be even or odd. For
word or doubleword addressing, the effective address must be even.

addrS An address value that you code in one of the following forms:

(reg) The effective address is the contents of the register
reg.

bitdisp

byte

cnt16

cnt31

(reg)+

addr

The effective address is the contents of the register
reg. After an instruction uses it, the contents of the
register are increased by the number of bytes
addressed by the instruction.

The effective address is the value of addr, unless the
instruction and addr are within the domain and range
of the same USING statement. If they are, the
assembler computes the effective address as a
displacement (-32768 to +32767 or 0 to 65535)
from the base register, which must be reg1

-
7

•

addr* The effective address is the contents of storage at the
address defined by addr, unless the instruction and
addr are within the domain and range of the same
USING statement. If they are, the assembler
computes the effective address as the contents of
storage at the address defined by a displacement
(0-255) from the base register, which must be
reg1- 7 •

(reg1- 7 ,waddr) The effective address is the contents of reg1
-

7 ,added
to the value of waddr.

displ(reg1- 7 ,disp2)* The effective address is calculated as
follows: contents of the register reg1

-
7 are added to

the value of the displacement disp2 to form an
address. The contents of that storage location are
added to the value of displ to form the effective
address.

disp(reg1
-

7)* The effective address is the contents of storage at the

(reg1- 7 ,disp)*

address defined by the contents of reg•-7
, added to

the value of disp.

The effective address is the contents of storage at the
address defined by the contents of reg1

-
7

•

The contents of reg1
-

7 are added to disp, forming an
address. The contents of storage at that address form
the effective address.

For byte addressing, the effective address can be even or odd. For word or
doubleword addressing, the effective address must be even.

A displacement into a bit field. Code an absolute value or expression in the
range 0-63.

A byte value. Code an absolute value or expression in the range -128 to
+127 or 0 to 255.
A single word (one register) shift count. Code an absolute value or
expression in the range 0-16.
A doubleword {register pair) shift count. Code an absolute value or
.expr~ssion in the range 0-31.

cond A condition code value. Code an absolute value or expression in the range
0-7.

disp A byte address displacement. Code an absolute value or expression in the
range 0-255.

freg A floating-point register. Code either a predefined floating register symbol
(FRO-FR3) or a symbol that is equated to the desired register number (0,
1, 2, or 3). Symbols are equated with EQUR statements, which must
precede the instruction using the register symbol.

jaddr The address of an instruction that is within -256 to +254 bytes of the
byte following a jump instruction. Code a relocatable expression.

Machine Instructions 4-5

4-6 SC34-0074

jdisp

longaddr

raddr

reg

reg1-3

reg1-1

ubyte

vcon

waddr

wdisp

word

A byte address displacement. Code an even absolute value or expression in
the range -256 to +254.

An address value that you code in one of the following forms:

addr The effective address is the value of addr, unless the
instruction and addr are within the range of the same
USING statement. If they are, the assembler
computes the effective address as a displacement
(-32768 to +32767 or 0 to 65535) from the base
register, which must be reg1

-
7

•

addr* The effective address is the contents of storage at the
address defined by addr, unless the instruction and
addr are within the range of the same USING
statement. If they are, the assembler computes the
effective address as the contents of storage at the
address defined by a displacement (-32768 to
+32767 or 0 to 65535) from the base register, which
must be reg1

-? •

(reg1- 7
, waddr) The effective address is the contents of reg1

-
1

, added
to the value of waddr.

(reg1- 7 ,waddr)* The contents of reg1- 7
, plus waddr, form an address.

The contents of storage at that location form the
effective address.

(reg1- 7
) The effective address is the contents of the register

reg1-1.

(reg1- 7)* The effective address is the contents of storage at the
address defined by the contents of reg1

- 7 •

An address value. Code a relocatable expression in the range 0-63535.

A general-purpose register. Code either a predefined register symbol
(RO-R7) or a symbol that is equated to the desired register number (0, 1,
2, 3, 4, 5, 6, or 7). Symbols are equated with EQUR statements, which
must precede the instruction using the register symbol.

A general-purpose register. Code either a predefined register symbol
(RO-R3) or a symbol that is equated to the desired register number (0, 1,
2, or 3). Symbols are equated with EQUR statements, which must precede
the instruction using the register symbol.

A general-purpose register. Code either a predefined register symbol
(Rl-R3) or a symbol that is equated to the desired register number (1, 2,
or 3). Symbols are equated with EQUR statements, which must precede
the instruction using the register symbol.

A general-purpose register. Code either a predefined register symbol
(Rl-R7) or a symbol that is equated to the desired register number (1, 2,
3, 4, 5, 6, or 7). Symbols are equated with EQUR statements, which must
precede the instructions using the register symbol.

An unsigned byte value or mask. Code an absolute value or expression in
the range 0-255.

An ordinary symbol that is defined externally from the current source
program.

A one-word address value. Code an absolute or relocatable expression in
the range -32768 to +32767 or 0 to 65535.

An even byte address displacement. Code an absolute value or expression
in the range 0-62.

A word value. Code an absolute value or expression in the range -32768 to
+32767 or 0 to 65535.

DATA MOVEMENT INSTRUCTIONS

Fill Byte Field and Decrement (FFD)

Indicators

FFD Example

This instruction fills a field in storage, right-to-left, with a byte from a register.

Name Operation Operand

[label] FFD reg, (reg)

Here is how to use FFD:

1. Before FFD, code an instruction to load register 7 with the size (in bytes) of the
destination field. Note that this is an unsigned value.

2. For reg, code the register from which the byte is moved.
3. For (reg), code the address of the rightmost byte of the destination field.

Here is what FFD does:

1. It moves bits 8-15 of reg to the rightmost byte of the (reg) field.
2. It then moves the same byte from reg to the byte (in the (reg) field) to the left of the

preceding byte.
3. It proceeds to the left, moving one byte at a time from reg to (reg), until it has moved

the number of bytes specified by register 7.

When FFD is finished, register 7 contains 0, reg is unchanged, and (reg) contains the
address of the byte before the leftmost byte in the field. That is, if the leftmost byte is
0207, (reg) points to 0206.

The carry and overflow indicators are unchanged. The remaining indicators reflect the last
byte moved.

FFD RS, (R6)

Assume that:

• Register 7 contains X'0003'-the number of bytes to be moved,
• Register 5 contains X'34A7', and
• Register 6 contains X'0300' -the address of the rightmost byte in the destination field.

As Figure 4-1 shows, FFD moves the value A 7 into:

(1) Byte 0300,
(2) Byte 02FF, then
(3) Byte 02FE.

Machine Instructions 4-7

3 4 Register 5

T
IJEID

02FD 02FE 02FF 0300

Figure 4-1. FFD example.

After FFD:
• Register 7 contains 0,
• Register S contains X'34A 7', and
• Register 6 contains X'02FD'.

Coding Hint
Use this instruction when you want to clear an area-that is, fill it with blanks or zeros.

Fill Byte Field and Increment (FFN)

Indicators

FFN Example

4-8 SC34-007 4

This instruction fills a field in storage, left-to-right, with a byte from a register.

Name Operation Operand

[label] FFN reg, (reg)

Code FFN like FFD, with one difference. For (reg), code the address of the leftmost
byte of the destination field.

FFN does the same thing as FFD, with one exception. The reg byte moves to the
leftmost byte of the (reg) field, and proceeds to the right.

When FFN is finished, register 7 contains 0, reg is unchanged, and (reg) contains the
address of the byte following the rightmost byte in the field. That is, if the rightmost
byte is OlOB, (reg) points to OIOC.

The carry and overflow indicators are unchanged. The remaining indicators reflect the last
byte moved.

FFN RS, (R6)

Assume that:

• Register 7 contains X'0003' -the number of bytes to be moved,
• Register S contains X'34A 7', and
• Register 6 contains X'0600'-the address of the leftmost byte in the destination field.

Coding Hint

Interchange Registers (IR)

Indicators

IR Example

As Figure 4-2 shows, FFN moves the value A7 into:

(1) Byte 0600,
(2) Byte 0601, then
(3) Byte 0602.

0600 0601 0602 0603

Figure 4-2. FFN example.

After FFN:

• Register 7 contains 0,

Register 5

• Register 5 contains X'34A 7', and
• Register 6 contains X'0603 '.

Use this instruction when you want to clear an area-that is, fill it with blanks or zeros.

This instruction interchanges the contents of two registers.

Name Operation Operand

[label] IR reg, reg

The indicators are set to reflect the new contents of the register defined by the second
operand.

IR R4, R 1

Assume that register 4 contains X'1234' and register 1 contains X'5678'. After IR,
register 4 contains X'5678' and register 1 contains X'l234'.

Machine Instructions 4-9

Move Address (MVA)

Indicators

MVA Example

Move Byte (MVB)

Indicators

4-10 SC34-0074

This instruction places an effective address into a register or a storage location.

Name Operation Operand

[label] MVA
addr4, reg
raddr, addr4

Note. The addr or addr* form of the first operand must be coded as a re1ocatable
expression.

The carry and overflow indicators are unchanged. The remaining indicators reflect the
new contents of the second operand.

MVA LOC1,R3

This instruction loads the address of LOC 1 into register 3.

This instruction moves one byte from a register to storage, from storage to a register, or
from storage to storage.

Name Operation Operand

reg, addr4
[label] MVB addr4, reg

addr5, addr4

• In the register-to-storage format, bits 8-15 of reg are moved to addr4.
• In the storage-to-register format, the byte is moved from addr4 to bits 8-15 of the

register. The high-order bit of the moved byte is propagated through bits 0-7 of reg.
• In the storage-to-storage format, the byte moves from addr5 to addr4.

The carry and overflow indicators are unchanged. The remaining indicators reflect the
byte moved.

MVB Examples

Move Byte and Zero (MVBZJ

Indicators

MVBZ Example

MVB R3,(R2)

Bits 8-15 of register 3 are moved to the storage location whose address is in register 2.

MVB 6(R3,4)*,R5

• The contents of register 3, plus 4, form an address.
• The contents of that storage location, plus 6, form the address of the byte to be

moved.
• MVB moves the byte to bits 8-15 of register 5.
• If the high-o~der bit of the moved byte is 0, bits 0-7 of register 5 contain zeros; if the

high-order bit is 1, bits 0-7 contain ones.

MVB THERE,HERE+l

The first byte of storage location THERE is moved to one byte past storage location
HERE.

This instruction moves a byte from storage to a register, then replaces the byte in storage
with zeros.

Name Operation Operand

[label] MVBZ adclr4, reg

MVBZ moves a byte from addr4 to bits 8-15 of reg. The high-order bit of the moved
byte is propagated through bits 0-7 of the register.

After the move, the byte at addr4 is filled with zeros.

The carry and overflow indicators are unchanged. The remaining indicators reflect the
moved byte.

MVBZ LOC4,R3

MVBZ moves the contents of the byte at LOC4 to bits 8-15 of register 3, and propagates
the high-order bit of the byte through bits 0-7 of the register. After MVBZ executes,
LOC4 contains zeros.

Machine Instructions 4-11

Move Byte Field and Decrement (MVFD)

Indicators

MVFD Example

4-12 SC34-007 4

This instruction moves a specified number of bytes, one byte at a time, right-to-left, from
one storage location to another.

Name Operation Operand

[label] MVFD (reg), (reg)

MVFD moves a field between two storage locations. For (reg),(reg) code the registers
that contain the addresses of the rightmost bytes of the source and destination fields.

MVFD assumes that you have loaded register 7 with an unsigned number-the number
of bytes to be moved. If R 7 contains zero, this instruction is treated as a no-operation.

After MVFD:

• Register 7 contains 0,
• The first operand points to the byte before the leftmost byte in the source field, and
• The second operand points to the byte before the leftmost byte in the destination

field.

The carry and overflow indicators are unchanged. The remaining indicators reflect the last
byte moved.

M VF 0 (RS) , (R6)

Assume that:

• Register 5 contains X'0200',
• Register 6 contains X'0300', and
• Register 7 contains X'0003 '.

The address of the rightmost byte of the source field is 0200, and 0300 is the address of
the rightmost byte of the destination field. As Figure 4-3 shows, MVFD moves 3 bytes:

(1) Byte 0200 to byte 0300,
(2) Byte OlFF to byte 02FF, and
(3) Byte 01 FE to byte 02FE.

SOURCE

DESTINATION

Figure 4-3. MVFD example.

When MVFD is finished:

• Register 7 contains X'OOOO',
• Register S contains X'O 1 FD', and
• Register 6 contains X'02FD'.

Move Byte Field and Increment (MVFN)

Indicators

This instruction moves a specified number of bytes, left-to-right, from one storage
location to another.

Name Operation Operand

[label] MVFN (reg), (reg)

MVFN moves a field between two storage locations. For (reg),(reg) code the registers
that contain the addresses of the leftmost bytes of the source and destination fields.

MVFN assumes that you have loaded register 7 with an unsigned number-the number
of bytes to be moved. If R7 contains zero, this instruction is treated as a no-operation.

After MVFN:

• Register 7 contains 0,
• The first operand points to the byte after the rightmost byte in the source field, and
• The second operand points to the byte after the rightmost byte in the destination

field.

The carry and overflow indicators are unchanged. The remaining indicators reflect the last
byte moved.

Machine Instructions 4-13

MVFN Example

Move Byte Immediate (MVBI)

Indicators

4-14 SC34-0074

M V FN (R5) , (R6)

Assume that:

• Register 5 contains X'0200',
• Register 6 contains X'0300', and
• Register 7 contains X'0003'.

The address of the leftmost byte of the source field is 0200, and 0300 is the address of
the leftmost byte of the destination field. As Figure 4-4 shows, MVFN moves 3 bytes:

(1) Byte 0200 to byte 0300,
(2) Byte 0201 to byte 0301, and
(3) Byte 0202 to byte 0302.

SOURCE

DESTINATION

Figure 4-4. MVFN example.

When MVFN is finished:

• Register 7 contains X'OOOO',
• Register 5 contains X'0203', and
• Register 6 contains X'0303'.

This instruction places one byte of immediate data into a register.

Name Operation Operand

[label] MVBI byte, reg

For the byte operand, code an absolute value or expression, -128 to 127 or 0 to 255.
MVBI places this value into bits 8-15 of reg. The high-order bit of the byte value is
propagated through bits 0-7 of reg.

The carry and overflow indicators are unchanged. The remaining indicators reflect the
byte loaded into reg.

MVBI Example

Move Doubleword (MVD)

Indicators

MVD Examples

MVBI -3,R6

This instruction places-3 into bits 8-15 of register 6. Bits 0-7 contain ones.

This instruction moves a doubleword (4 bytes):

• From a register pair to storage,
• From storage to a register pair, or
• From storage to storage.

Name Operation Operand

reg, addr4
[label] MVD addr4, reg

addr5,addr4

For the register-to-storage syntax or the storage-to-register syntax, specify a storage
address and the first register of a register pair.

For the storage-to-storage syntax, specify the addresses of the source and destination of
the doubleword.

The carry and overflow indicators are unchanged. The remaining indicators reflect the
doubleword moved into the second operand.

MVD THERE ,HERE

This instruction moves a doubleword from storage location THERE to storage location
HERE.

MVD R4, (R6)

This instruction moves a doubleword-the contents of registers 4 and 5-to the storage
location indicated by the contents of register 6.

HVO LOC2,R7

This instruction moves a doubleword from storage location LOC2 and places it in
registers 7 and 0.

Machine Instructions 4-15

Move Doubleword and Zero (MVDZJ

Indicators

MVDZ Example

Move Word (MVW)

Indicators

MVW Examples

4-16 SC34-007 4

This instruction moves a doubleword (4 bytes) from storage to a register pair, then
replaces the doubleword in storage with zeros.

Name Operation Operand

[label] MVDZ addr4, reg

When you code MVDZ, specify a storage address and the first register of a register pair.
MVDZ moves a doubleword from addr4 to the register pair.

After the move, the doubleword at addr4 is filled with zeros.

The carry and overflow indicators are unchanged. The remaining indicators reflect the
doubleword moved into the second operand.

MVDZ (R2) ,R3

This instruction moves a doubleword from the address in register 2 to registers 3 and 4.
After the move, the doubleword whose address is in register 2 is filled with zeros.

This instruction moves a word (2 bytes):

• From a register to a register,
• From a register to storage,
• From storage to a register, or
• From storage to storage.

Name Operation Operand

reg, reg
reg, addr4

[label] MVW addr4, reg
longaddr, reg
reg, longaddr
addr5, addr4

The carry and overflow indicators are unchanged. The remaining indicators reflect the
word moved into the second operand.

MVW Rl ,R2

This instruction (coded in reg,reg form) moves a word from register 1 to register 2.

Move Word and Zero (MVWZ)

Indicators

MVWZ Example

MVW (Rl), R2

This instruction (coded in addr4,reg form) moves a word from the storage location
whose address is in register 1 to register 2.

Note. This instruction is also a valid longaddr,reg form. The assembler generates the
addr4,reg form because it is more efficient with respect to speed and storage usage.

MVW (R 1) , (R2)

This instruction (coded in addr5,addr4 form) moves a word from the storage location
whose address is in register 1 to the storage location whose address is in register 2.

This instruction moves a word (2 bytes) from storage to a register, then fills the word in
storage with zeros.

Name Operation Operand

[label] MVWZ addr4, reg

The carry and overflow indicators are unchanged. The remaining indicators reflect the
word moved into the second operand.

MVWZ (R2,DISP5),R6

The address in register 2, plus the value of DISPS, form the address of the word to be
moved. The word is moved to register 6. After the move, the word in storage is filled with
zeros.

Move Word Immediate (MVWI)

Indicators

This instruction moves a one-word (2-byte) absolute value to a storage location or register.

Name Operation Operand

[label] MVWI
word, addr4
word, reg

For the word operand, code an absolute value or expression between -32768 and
65535.

The carry and overflow indicators are unchanged. The remaining indicators reflect the
word moved into the second operand.

Machine Instructions 4-1 7

MVWI Example

Move Word Short (MVWS)

Indicators

4-18 SC34-007 4

HVW 1. ·3488, LOC.3

This instruction moves the value 3488 into the word at storage location LOC3.

This instruction moves a word (2 byte~):

• From a register to storage, or
• From storage to a register.

Name Operation Operand

[label] MVWS reg, shortaddr
shortaddr, reg

The operand shortaddr is an address value that you code in one of the following forms:

(reg0
- 3 ,wdisp) The effective address is the value of wdisp added to

the contents of reg0
-

3
•

(reg0
- 3 ,wdisp)*

(rego-3)

(rego-3)*

addr

The effective address is the contents of storage at the
address defined by the value of wdisp added to the
contents of reg0

-
3

•

The effective address is the contents of (reg0
- 3).

The effective address is the contents of storage at the
address defined by the contents of reg0

-
3

•

To use this form, the instruction and addr must be in
the domain and range of the same USING statement.
The assembler computes a displacement (0-62) and
register combination that references the requested
location.

addr* Same as addr, except the assembler computes the
effective address as the contents of storage at the
address defined by a displacement (0-62) and
register combination.

Note. For addr and addr*, the base register must be reg0
-

3
•

The carry and overflow indicators are unchanged. The remaining indicators reflect the
word moved into the second operand.

MVWS Examples

Coding Hints

KVWS R6, (R2}

This instruction moves the contents of register 6 into the storage location whose address
is in register 2.

MVWS (R3,24}*,R5

• The contents of register 3, plus 24, form an address.
• That storage location contains the address of the word to be moved into register 5.
• MVWS moves this word into register 5.

Use this instruction to move to or from an address that is either:

• The contents of a register with no displacement, or
• The contents of a register plus a displacement of 0 to 62.

The advantage of using MVWS is that it requires only 2 bytes of storage.

Machine Instructions 4-19

ARITHMETIC INSTRUCTIONS

Add Byte (AB)

Indicators

AB Examples

Add Byte Immediate (AB/)

4-20 SC34-0074

This instruction adds:

• A byte in a register to a byte in storage, or
• A byte in storage to a byte in a register.

Name Operation Operand

[label] AB
reg, addr4
addr4, reg

If you code the rf!g,addr4 form, bits 8-15 of reg are added to the byte at addr4.
In the addr4,reg form, the byte at addr4 is added to bits 8-15 of reg. The high-order

byte of reg remains unchanged.

The overflow indicator is cleared. If the addition results in a sum that is less than -2 7 or
greater than + 2 7

- I, the overflow indicator is turned on.
The carry indicator is turned on if the addition results in a carry out of the high-order

bit position of the byte (for a total of 9 bits in the sum). If there is no carry, the carry
indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the sign bit, and the second
operand contains the low-order 8 bits of the sum.

The other indicators change to reflect the 8-bit result.

Assume that VALOI contains X'20', and register 5 contains X'2C83'. AB
adds: 20+83=A3. VALOI remains unchanged, and register 5 now contains X'2CA3'. The
carry indicator and overflow indicator are both off.

AB VAL~2,R5

Assume that V AL02 contains X'30', and register 5 contains X'08FE'. AB
adds: 30+FE= I 2E. V AL02 remains unchanged, and register 5 now contains X'082E'.
The carry indicator is on and the overflow indicator is off.

This instruction adds a I-byte absolute value to a register.

Name Operation Operand

[label] ABI byte, reg

For byte, code an 8-bit value in the range of-128 to +127 or 0 to 255. ABI expands
this value to 16 bits by propagating the sign bit to the left of the byte value. This value is
then added to reg.

Indicators

ABI Example

Add Carry Indicator (A CY)

Indicators

ACY Example

Add Doubleword (AD)

The overflow indicator is cleared. If the addition results in a sum that is less than -21 5 or
greater than +21 5 -1, the overflow indicator is turned on.

The carry indicator is turned on if the addition results in a carry out of the high-order
bit position of the register (for a total of 17 bits in the sum). If there is no carry, the
carry indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the sign bit, and the register
contains the low-order 16 bits of the sum.

The other indicators change to reflect the 16-bit result.

ABI 34,R6

Assume that R6 contains X'OOSO'. ABI expands X'22' (the equivalent of decimal 34) to
16 bits by propagating the sign bit (zero) to the left. ABI then
adds: X'0022'+X'0050'=X'0072'. R6 now contains X'0072' (decimal 114).

This instruction adds the value of the carry indicator to a register.

Name Operation Operand

[label) ACY reg

The overflow indicator is cleared. If the addition results in a sum that is less than -21 5 or
greater than +215 -1, the overflow indicator is turned on.

The carry indicator is turned on if the addition results in a carry out of the high-order
bit position of the register (for a total of 17 bits in the sum). If there is no carry, the
carry indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the sign bit, and the register
contains the low-order 16 bits of the sum.

If the zero indicator is on at the beginning of this instruction, it is set to reflect the
result; if it is off at the beginning, it stays off. The negative indicator reflects the sum, and
the even indicator is unchanged.

ACY R4

Assume that register 4 contains X'0027', and the carry indicator is on. ACY adds 1 to the
contents of R4, and the register now contains X'0028'.

This instruction adds:

• A doubleword (4 bytes) in a register pair to a doubleword in storage,
• A doubleword in storage to a doubleword in a register pair, or
• A doubleword in storage to a doubleword in storage.

Machine Instructions 4-21

Indicators

AD Example

Add Word (AW)

4-22 SC34-0074

Name Operation Operand

reg, addr4
[label] AD addr4, reg

addr5_,_addr4

In either the register-to-storage form or the storage-to-register form, code-for the reg
operand-the first register of a register pair. For example, if you code RS, AD uses
registers 5 and 6. If you code R7, AD uses registers 7 and 0.

AD adds the contents of the doubleword specified by the first operand to the contents
of the doubleword specified by the second operand, placing its result in the second
operand. The first operand remains unchanged.

The overflow indicator is cleared. If the sum is less than-2 31 or greater than +2 31 -1, the
overflow indicator is turned on.

The carry indicator is turned on if the addition results in a carry out of the high-order
bit position of the sum (for a total of 33 bits in the sum). If there is no carry, the carry
indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the sign bit, and the register
pair or doubleword in storage contains the low-order 32 bits of the sum.

The other indicators change to reflect the 32-bit result.

Assume that the register pair R3,R4 contains X'25000000', RI contains X'0300', and the
doubleword at storage address 0300 contains X'lOOOOOOO'. AD
adds: X'25000000'+X'lOOOOOOO'=X'35000000'. Registers 3 and 4 remain unchanged,
and the doubleword at storage address 300 contains X'35000000'.

This instruction adds:

• A word (2 bytes) in a register to a word in a register,
• A word in a register to a word in storage,
• A word in storage to a word in a register, or
• A word in storage to a word in storage.

Name Operation Operand

reg, reg
reg, addr4

[label] AW addr4, reg
longaddr, reg
addrS, addr4

AW adds the contents of the word specified by the first operand to the contents of the
word specified by the second operand. The first operand remains unchanged.

Indicators

AW Example

Add Word lmmedio.te (A WI)

Indicators

AWi Example

The overflow indicator is cleared. If the addition results in a sum that is less than -21 5 or
greater than +215 -1, the overflow indicator is turned on.

The carry indicator is turned on if the addition results in a carry out of the high-order
bit position of the result operand (for a total of 17 bits in the sum). If there is no carry,
the carry indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the sign bit, and the result
operand contains the low-order 16 bits of the sum.

The other indicators change to reflect the 16-bit result.

' ; '

· ~w THER£,tR2)

This instruction adds the word at storage location THERE to the word at the storage
location whose address is in R2.

This instruction adds a 1-word (2-byte) absolute value:

• To a register, or
• To the contents of a storage location.

Name Operation Operand

[label] AWi
word, reg[,reg]
word, addr4

For word, code a 16-bit value in the range -32768 to +32767 or 0 to 65535. AWi adds
this value to the contents of the word specified by the second operand.

In the word,reg[,reg] format there is an optional third operand. If you code a register
for this operand, the result of the addition is placed in that register. If you do not code
the third operand, AWi places the sum in the register specified by the second operand.

The overflow indicator is cleared. If the addition results in a sum that is less than -215 or
greater than +21 5 -1, the overflow indicator is turned on.

The carry indicator is turned on if the addition results in a carry out of the high-order
bit position of the result operand (for a total of 17 bits in the sum). If there is no carry,
the carry indicator is turned off.

Also, if an overflow occti;rs, the carry indicator contains the sign bit, and the result
operand contains the low-order 16 bits of the sum.

The other indicators change to reflect the 16-bit result.

In this example, AWi adds the decimal value 2502 to the contents of R3, and places the
result in Rl. R3 is unchanged.

Machine Instructions 4-23

Add Word with Carry (A WCY)

Indicators

AWCY Example

Subtract Byte (SB)

4-24 SC34-0074

This instruction adds the contents of a specified register, plus the value of the carry
indicator, to another register.

Name Operation Operand

[label] AWCY reg, reg

AWCY places the final sum of the register specified by the first operand, the register
specified by the second operand, and the carry indicator in the register specified by the
second operand. The contents of the first register are unchanged.

The overflow indicator is cleared. If the addition results in a sum than is less than -21 5 or
greater than +21 5 -1, the overflow indicator is turned on.

The carry indicator is turned on if the addition results in a carry out of the high-order
bit position of the word (for a total of 17 bits in the sum). If there is no carry, the carry
indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the sign bit, and the second
operand contains the low-order 16 bits of the sum.

If the zero indicator is on at the beginning of this instruction, it is set to reflect the
result; if it is off at the beginning, it stays off. The negative indicator reflects the sum, and
the even indicator is unchanged.

Assume that the instruction just before this AWCY left the carry indicator on. This
instruction adds the contents of R6, plus 1, to the contents of R4. Register 4 contains the
result, and register 6 remains unchanged.

This instruction subtracts either:

• A byte in a register from a byte in storage, or
• A byte in storage from a byte in a register.

Name Operation Operand

[label] SB reg, addr4
addr4, reg

If you code the reg,addr4 form, bits 8-15 of reg are subtracted from the byte at addr4.
In the addr4,reg form, the byte at addr4 is subtracted from bits 8-15 of reg. The

high-order byte of reg remains unchanged.

Indicators

SB Example

The overflow indicator is cleared. If the subtraction results in a difference that is less than
-27 or greater than +27-1, the overflow indicator is turned on.

The carry indicator is turned on if the subtraction results in a borrow beyond the
high-order bit position of the byte. If there is no borrow, the carry indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the complement of the sign bit,
and the second operand contains the low-order 8 bits of the difference.

The other indicators change to reflect the 8-bit result.

.$8: VAL~ l, RS .

In this example, assume that VALOl contains X'20', and RS contains X'2C83'. SB
subtracts: X'83'-X'20'=X'63'. VALOl remains unchanged, and register 5 now contains
X'2C63'. The carry and overflow indicators are off.

Subtract Carry Indicator (SCY)

Indicators

SCY Example

Subtract Doubleword (SD)

This instruction subtracts the value of the carry indicator from a register.

Name Operation Operand

[label] SCY reg

The overflow indicator is cleared. If the subtraction results in a difference that is less than
-215 or greater than +215 -1, the overflow indicator is turned on.

The carry indicator is turned on if the subtraction results in a borrow beyond the
high-order bit position of the register. If there is no borrow, the carry indicator is turned
off.

Also, if an overflow occurs, the carry indicator contains the complement of the sign bit,
and the register contains the low-order 16 bits of the difference.

If the zero indicator is on at the beginning of this instruction, it is set to reflect the
result; if it is off at the beginning, it stays off. The negative indicator reflects the sum, and
the even indicator is unchanged.

SCY R4

Assume that R4 contains X'0027', and the carry indicator is on. SCY subtracts 1 from
the contents of R4, and the register now contains X'0026'.

This instruction subtracts:

• The contents of a register pair from a doubleword (4 bytes) in storage,
• A doubleword in storage from the contents of a register pair, or
• A doubleword in storage from another doubleword in storage.

Machine Instructions 4-25

Indicators

SD Example

Subtract Word (SW)

4-26 SC34-0074

Name Operation Operand

reg, addr4
[label] SD addr4, reg

addr5, addr4

In either the register-to-storage form or the storage-to-register form, code-for reg-the
first register of a pair. For example, if you code R2, SD uses registers 2 and 3. If you code
R 7, SD uses registers 7 and 0.

SD subtracts the contents of the doubleword specified by the first operand from the
contents of the doubleword specified by the second operand. The first operand remains
unchanged.

The overflow indicator is cleared. If the subtraction results in a difference that is less than
-2 31 or greater than +2 31 -1, the overflow indicator is turned on.

The carry indicator is turned on if the subtraction results in a borrow beyond the
high-order bit position. If there is no borrow, the carry indicator is turned off.

Also, if an overflow occurs, the carry indicator contains the complement of the sign bit,
and the second operand contains the low-order 32 bits of the difference.

The other indicators change to reflect the 32-bit result.

SD R3, (Rl)

In this example, assume that registers 3 and 4 contain X'IOOOOOOO', and register 1
contains X'0300'. The doubleword at storage address 0300 contains X'25000000'. SD
subtracts: X'25000000'-X'IOOOOOOO'=X'15000000'. Registers 3 and 4 remain
unchanged, and the doubleword at storage address 0300 contains X'15000000'.

This instruction subtracts:

• A register from a register,
• A register from a word (2 bytes) in storage,
• A word in storage from a register, or
• A word in storage from a word in storage.

Name Operation Operand

reg, reg
reg, addr4

[label] SW addr4, reg
longaddr, reg
addrS, addr4

SW subtracts the contents of the word specified by the first operand from the contents
of the word specified by the second operand. SW places its result in the second operand.

Indicators

SW Example

The overflow indicator is cleared. If the subtraction results in a difference that is less than
-215 or greater than +21 5 -1, the overflow indicator is turned on.

The carry indicator is turned on if the subtraction results in a borrow beyond the
high-order bit position of the result operand. If there is no borrow, the carry indicator is
turned off.

Also, if an overflow occurs, the carry indicator contains the complement of the sign bit,
and the result operand contains the low-order 16 bits of the difference.

The other indicators change to reflect the 16-bit result.

SW THERE, (R2.)

This instruction subtracts the word at location THERE from the word in storage whose
address is in R2.

Subtract Word Immediate (SW/)

Indicators

SWI Example

This instruction subtracts a 1-word (2-byte) absolute value from a register or from the
contents of a storage location.

Name Operation Operand

[label] SWI
word, reg [,reg]
word, addr4

For word, code a 16-bit value in the range -32768 to +32767 or 0 to 65535. SWI
subtracts this value from the contents of the word specified by the second operand.

In the word,reg[reg] format there is an optional third operand. If you code a register
for this operand, the result of the subtraction is placed in that register. If you do not code
the third operand, SWI places the difference in the register specified by the second
operand.

The overflow indicator is cleared. If the subtraction results in a difference that is less than
-21 5 or greater than +2 1 5 -1, the overflow indicator is turned on.

The carry indicator is turned on if the subtraction results in a borrow beyond the
high-order bit position of the result operand. If there is no borrow, the carry indicator is
turned off.

Also, if an overflow occurs, the carry indicator contains the complement of the sign bit,
and the result operand contains the low-order 16 bits of the difference.

The other indicators change to reflect the 16-bit result.

SWI 2.5;2,R3,R1

In this example, SWI subtracts the decimal value 2502 from the contents of R3, and
places the result in Rl.

Machine Instructions 4-27

Subtract Word with Carry (SWCY)

Indicators

SWCY Example

Multiply Byte (MB)

Indicators

4-28 SC34-0074

This instruction subtracts the contents of one register and the carry indicator from the
contents of another register.

Name Operation Operand

[label] SWCY reg, reg

SWCY subtracts the contents of the first register and the carry indicator from the
contents of the second register. SWCY places the final result in the second register,
leaving the first register unchanged.

The overflow indicator is cleared. If the subtraction results in a difference that is less than
-215 or greater then +215 -1. the overflow indicator is turned on.

The carry indicator is turned on if the subtraction results in a borrow beyond the
high-order bit position of the register. If there is no borrow, the carry indicator is turned
off.

Also, if an overflow occurs, the carry indicator contains the complement of the sign bit,
and the second register contains the low-order 16 bits of the difference.

If the zero indicator is on at the beginning of this instruction, it is set to reflect the
result; if it is off at the beginning, it stays off. The negative indicator reflects the
difference, and the even indicator is unchanged.

SWCY R6,R4

Assume that the instruction just before this SWCY left the carry indicator on. This
instruction subtracts the contents of R6 from R4, then decreases the difference by 1. R4
contains the result, and R6 remains unchanged.

This instruction multiplies the contents of a register by a byte in storage.

Name Operation Operand

(label] MB addr4, reg

MB multiplies the contents of reg by the byte at addr4. The result (1 word) is placed in
reg.

The carry and overflow indicators are cleared. If the product of the multiplication cannot
be represented in 16 bits, the overflow indicator is turned on. If there is an overflow, the
contents of the result register are undefined. The remaining indicators change to reflect
the result.

MB Example

Multiply Doubleword (MD)

Indicators

MD Example

Multiply Word (MW)

KB. (R3,25) ,R6

In this example, assume that R3 contains X'0400' and register 6 contains X'0035'.
MB determines that the address of the byte to be multiplied is X'0419' (25 bytes past

the address in R3). Assume that this byte contains X'l l '.
MB multiplies: X'l l 'xX'0035'=X'0385'. This result is placed in register 6.

This instruction multiplies a word in storage by the contents of a register pair.

Name Operation Operand

[label] MD addr4, reg

For the reg operand, code the fust register of a register pair. For example, if you code
Rl, MD uses registers 1 and 2. If you code R7, MD uses registers 7 and 0.

MD multiplies the word at addr4 by the contents of the register pair specified by reg.
The result (1 doubleword) is placed in the register pair.

The carry and overflow indicators are cleared. If the product of the multiplication cannot
be represented in 32 bits, the overflow indicator is turned on. If there is an overflow, the
contents of the register pair are undefined. The remaining indicators change to reflect the
result.

KO 8{Rl)~,R7

Here is how MD calculates the address of the word to be multiplied:

1. Rl contains the address of a location in storage.
2. The contents of that location are another address.
3. That address value is increased by 8 to form the address of the word to be multiplied.

MD multiplies the contents of registers 7 and 0 by this word, and places the result in
registers 7 and 0.

This instruction multiplies the contents of a register by a word in storage.

Name Operation Operand

[label] MW addr4, reg

MW multiplies the contents of reg by the word at addr4. The result (1 word) is placed
in reg.

Machine Instructions 4-29

Indicators

MW Example

Divide Byte (DB)

Indicators

DB Example

Divide Doubleword (DD)

4-30 SC34-0074

The carry and overflow indicators are cleared. If the product of the multiplication cannot
be represented in 16 bits, the overflow indicator is turned on. If there is an overflow, the
contents of the result register are undefined. The remaining indicators change to reflect
the result.

The contents of storage at address LOC8 are the address of the word to be multiplied.
MW fetches the word and multiplies the contents of R6 by it. The product is in R6.

This instruction divides a byte in storage into the contents of a register.

Name Operation Operand

[label) , DB addr4, reg

DB divides the byte at addr4 into the contents of reg. The quotient is placed in reg, and
the remainder is placed in the register following the one you coded. For example, if you
coded R3, the quotient appears in register 3, and the remainder in register 4. If you coded
R 7, the quotient appears in register 7, and the remainder in register 0.

The overflow indicator is cleared. If you tried to divide by zero, or if the quotient cannot
be represented in 16 bits, the overflow indicator is turned on. If there is an overflow, the
result of the division and the remaining indicators are undefined.

If you tried to divide by zero, the carry indicator is also turned on; otherwise, the carry
indicator is cleared. The other indicators change to reflect the quotient.

. .

:PP .. • (:R l) ,,R6

DB divides the byte whose address is in RI into the contents of R6. The quotient is in R6
and the remainder is in R 7.

This instruction divides a word in storage into the contents of a register pair.

Name Operation Operand

[label] DD addr4, reg

For the reg operand, code the first register of a register pair. For example, if you code
R2, DD uses registers 2 and 3. If you code R7, DD uses registers 7 and 0.

Indicators

DD Example

Divide Word (DW)

Indicators

DWExample

DD divides the word at addr4 into the contents of the register pair specified by reg. The
quotient is placed in the register pair, and the remainder is placed in the register following
the second register of the pair. For example, if you coded R3, the quotient is placed in
registers 3 and 4, and the remainder in register 5.

The overflow indicator is cleared. If you tried to divide by zero, or if the quotient cannot
be represented in 32 bits, the overflow indicator is turned on. If there is an overflow, the
result of the division and the remaining indicators are undefined.

If you tried to divide by zero, the carry indicator is also turned on; otherwise, the carry
indicator is cleared. The other indicators change to reflect the quotient.

In this example, the storage location whose address is in Rl contains the address of the
word to be used. DD divides this word into the doubleword in registers 6 and 7. ·The
quotient is in registers 6 and 7, and the remainder is in register 0.

This instruction divides a word in storage into the contents of a register.

Name Operation Operand

[label] DW addr4, reg

DW divides the word at addr4.into the contents of reg. The quotient is placed in reg,
and the remainder is placed in the register following the one you coded. For example, if
you coded RS, the quotient appears in register 5, and the remainder in register 6. If you
coded R7, the quotient appears in register 7, and the remainder in register 0.

The overflow indicator is cleared. If you tried to divide by zero, or if the quotient cannot
be represented in 16 bits, the overflow indicator is turned on. If there is an overflow, the
result of the division and the remaining indicators are undefined.

If you tried to divide by zero, the carry indicator is also turned on; otherwise, the carry
indicator is cleared. The other indicators change to reflect the quotient.

In this example, the word to be used is 4 bytes past WORDS. DW divides this word into
the contents of R7. R7 contains the quotient, and RO contains the remainder.

Machine Instructions 4-31

Complement Register (CMR)

Indicators

CMR Examples

4-32 SC34-0074

This instruction places the complement (in twos complement form) of the contents of a
register back into the same register or, optionally, into another register.

Name Operation Operand

[Jabel] CMR reg[,reg]

Note the optional second operand. If you code this register, CMR places the
complement of the first register into the second, leaving the ·first operand unchanged.
Otherwise, CMR places the complement back into the source register.

The overflow indicator is cleared. If the number to be complemented is -32768
(X'8000'), the overflow indicator is turned on.

The carry indicator is unchanged. The remaining indicators change to reflect the result.

Assume that RO contains X'0003'. CMR places its complement, X'FFFD', into RO.

Assume that RO contains X'0003'. CMR places its complement, X'FFFD', into R6,
leaving RO unchanged.

BRANCHING INSTRUCTIONS

Branch (B)

Indicators

BExample

Branch and Link (BAL)

Indicators

BAL Example

This instruction causes an unconditional branch to the address specified by longaddr.

Name Operation Operand

[label] B longaddr

All indicators are unchanged.

This instruction branches to the location whose address it calculates as follows:

(1) Register 6 contains an address.
(2) The contents of R6, plus the value of I.DC 1, plus 4, form an address.
(3) The contents of that storage location specify the address that Bis to branch to.

This instruction saves-in a register-the address of the next sequential instruction, then
branches to longaddr.

Name Operation Operand

[label] BAL longaddr, reg

Note. If the same register specified as the second operand is also used as a base register in
longaddr, the initial contents of that register are first used in effective address
computation and then overwritten with the address of the next sequential instruction.

All indicators are unchanged.

~AL ,NEXT.R7

In this example, BAL:

• Determines the address of NEXT,
• Saves (in register 7) the address of the next sequential instruction, and then
• Branches to NEXT.

Machine Instructions 4-33

Branch and Link External (BALX)

Indicators

BALX Example

This instruction causes an unconditional branch to an address in another source module.
It saves-in a register-the address of the instruction that follows the BALX instruction.

Name Operation Operand

[label] BALX vcon, reg

For vcon, code the external symbol that defines the location to be branched to. For
reg, code the register that you want to load with the address of the next sequential
instruction.

Note. You need not code an EXTRN statement to define the external symbol specified
by vcon. The vcon symbol must be a valid entry point in another source module. The
linkage editor will resolve the reference between modules.

All indicators are unchanged.

Branch and Link Short (BALS)

4-34 SC34-0074

This instruction saves-in register 7-the address of the next sequential instruction, then
branches to the specified address.

Name Operation Operand

(reg, jdisp)*
[label] BALS (reg)*

addr*

Code the address of the location whose contents specify the address to be branched to.
If you specify the (reg,jdisp)* form, jdisp must be in the range -256 to 254. The addr*
form can be used only when BALS and the address to be branched to are within the
domain and range of the same USING statement.

If the implied register (register 7) is used as reg in either (reg,jdisp)* or (reg)*, the initial
contents of register 7 are first used in effective address computation and then overwritten
with the address of the next sequential instruction.

Note. BALS is a 2-byte instruction, and uses only indirect addressing.

Indicators

BALS Example

Branch External (BX)

Indicators

BX Example

All indicators are unchanged.

In this example, BAl.S:

• calculates an address as follows:
(1) R3 contains an address.
(2) This address is increased by 28.
(3) The result is the address of the location that contains the address to be branched

to.
• then saves (in register 7) the address of the next sequential instruction, and
• branches to the address calculated.

This instruction causes an unconditional branch to an address in another source module.

Name Operation Operand

[label] BX vcon

For vcon, code the external symbol that defines the location to be branched to.

Note. The vcon symbol must be a valid entry point in another source module. You need
not code an EXTRN statement to define the external symbol specified by vcon. The
linkage editor will resolve the reference between modules.

All indicators are unchanged.

·r~w~p~:~~~I').1,bpµJ.~: ~ •. ·. · .
l l i · ; 1 ENTRY' £NTER2

.,. ;:,,, ·"'~'· .,.,~ .,,,. ., . '""' .. ~ =,
~ ; .

• i

.. ~x
EQU . .

· ENTERl

*
IJ L '. >' .. ; : .•

~'.$PURCE. MODULE B
l: . . , . . ENTRY · ENTERl

~t4f.ERL.. ~QU

BX
*
ENTER2

Machine Instructions 4-35

Branch if Mixed (BMIX)

fudicators

BMIX Example

Branch if Not Mixed (BNMIX)

fudicators

BNMIX Example

4-36 SC34-0074

After a Test Word Immediate {TWI) instruction, BMIX causes a branch if the bits tested
by TWI are a combination of zeros and ones.

Note. BMIX actually tests the zero and negative indicators.

Name Operation Operand

[label] BMIX longaddr

All indicators are unchanged.

Assume that R4 contains X'002B'.

Because the bits tested by TWI are a combination of zeros and ones, BMIX causes a
branch to the address in R2.

After a Test Word Immediate (TWI) instruction, BNMIX causes a branch if the bits tested
by TWI are either all zeros or all ones.

Note. BNMIX actually tests the zero and negative indicators.

Name Operation Operand

[label] BNMIX longaddr

Note. If the first operand {the 1-word mask) of the TWI instruction is all zeros, the
resulting condition is not mixed. In this case, BNMIX causes a branch.

All indicators are unchanged.

Assume that the word whose address is in Rl contains X'OOOF'.

Because the bits tested by TWI are all zeros, BNMIX causes a branch to the location that
is 4 bytes past the address in R6.

Branch If Not Off (BNOFF)

Indicators

BNOFF Example

Branch If Not On (BNON)

Indicators

BNON Example

After a Test Bit (TBT) or Test Word Immediate (TWI) instruction, BNOFF causes a
branch if:

• The bit tested by TBT is on, or
• The bits tested by TWI are either mixed or all on.

Name Operation Operand

[label] BNOFF longaddr

Note. BNOFF actually tests the zero indicator.

All indicators are unchanged.

Assume that the word at location TEST contains X'0246'.

TWI X1j369 1 ,TEST
BNOFF. (R3)

Because the bits tested by TWI are mixed, BNOFF causes a branch to the address in R3.

After a Test Bit (Tiff) or Test Word Immediate (TWI) instruction, BNON causes a branch
if:

• The bit tested by TBT is off, or
• The bits tested by TWI are either mixed or all off.

Note. BNON actually tests the negative indicator.

Name Operation Operand

[label] BNON longaddr

Note. If the first operand (the 1-word mask) of a TWI instruction is all zeros, the resulting
condition is not on. In this case, BNON causes a branch.

All indicators are unchanged.

Assume that the word whose address is in R3 contains X'OOFF'.

T:WI X'j/6F1',(R3)
BNQN LOC4·

Because the bits tested by TWI are all on, BNON does not cause a branch to LOC4.

Machine Instructions 4-37

Branch if Off (BOFF)

Indicators

BOFF Example

Branch if On (BON)

Indicators

4-38 SC34-0074

After a Test Bit (TBT) or Test Word Immdiate (TWI) instruction, BOFF causes a branch
if:

• The bit tested by TBT is off, or
• The bits tested by TWI are all off.

Note. BOFF actually tests the zero indicator.

Name Operation Operand

[label] BOFF longaddr

Note. If the first operand (the 1-word mask) of a TWI instruction is all zeros, the resulting
condition is off. In this case BOFF causes a branch.

All indicators are unchanged.

tr er (R,, 7 >.
:BOFf 'OFF+2

Assume that the byte whose address is in RO contains:

0110 1001

Because the eighth bit is on, BOFF does not cause a branch to the address that is 2 bytes
past location OFF.

After a Test Bit (TBT) or a Test Word Immediate (TWI) instruction, BON causes a branch
if:

• The bit tested by TBT is on, or
• The bits tested by TWI are all on.

Name Operation Operand

[label] BON longaddr

Note. BON actually tests the negative indicator.

All indicators are unchanged.

BON Example

Branch Indexed Short (BXS)

Indicators

BXS Example

Branch on Carry (BCY)

Indicators

Assume that the byte whose address is in R2 contains:

0111 0011

Because the fourth bit is on, BON causes a branch to the address defined by the contents
of the location whose address is in R4.

This instruction causes an unconditional branch to the specified address.

Name Operation Operand

. (reg 1- 7 ,jdisp).
[label] BXS (reg 1-1)

addr

In the (reg1
-

7 ,jdisp) form, jdisp must be in the range -256 to +254. The addr form can
be used only when BXS and the address to be branched to are within the domain and
range of the same USING statement.

Note. BXS is a 2-byte instruction.

All indicators are unchanged.

&;~S' . (IU,2)

In this example, BXS causes a branch to the location that is 2 bytes past the address in
register 2.

This instruction tests the carry indicator. If the indicator is on, BCY branches to
longaddr. If the indicator is off, the branch is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] BCY longaddr

All indicators are unchanged.

Machine Instructions 4-39

BCY Example

Branch on Condition (BC)

Indicators

BC Example

BCY THERE+6

In this example, assume that BCY found the carry indicator on. BCY branches to the
location that is 6 bytes past THERE.

This instruction tests a condition that you specify. If the tested condition is met, BC
causes a branch to longaddr. If the condition is not met, the branch is not taken, and the
next sequential instruction is executed.

Name Operation Operand

[label] BC cond, longaddr

Code BC to test the indicator settings that result from a previous instruction. For the
cond operand, code the value of the condition you want to test:

Condition Value Condition

0 Zero or eq ua1
1 Positive and non-zero
2 Negative
3 Even
4 Arithmetically less than
5 Arithmetically less than or equal
6 Logically less than or equal
7 Logically less than (carry)

All indicators are unchanged.

BC 2,NEG3

In this example, assume that a previous instruction set the negative result indicator on.
BC causes a branch to NEG3.

Branch on Condition Code (BCC)

4-40 SC34-0074

This instruction tests the even, carry, and overflow indicators. If the tested condition
code is met, BCC branches to longaddr. If the condition code is not met, the branch is
not taken, and the next sequential instruction is executed.

Name Operation Operand

[label] BCC cond, longaddr

Indicators

BCC Example

Branch on Equal (BE)

Indicators

BE Example

Code BCC to test the indicator settings that result from a previous instruction. For the
cond operand, specify the condition code you want to test:

Condition Code Indicators

0 E = 0, C = 0, V = 0
1 E = 0, C = 0, V = 1
2 E = 0,.C = 1, V = 0
3 E = 0, C = 1, V = 1
4 E=l,C=O,V=O
5 E=l,C=O,V=l
6 E=l,C=l,V=O
7 E=l,C=l,V=l

Abbreviations used for the indicators are:

• E-even
• C-carry
• V-overflow.

All indicators are unchanged.

In this example, assume that a previous instruction left the even indicator on, and the
carry and overflow indicators off. Because only the even indicator is on, BCC does not
cause a branch to the address in register 3.

This instruction tests the indicator settings that result from a previous instruction, such as
a compare, for an equal condition. If the condition is met, BE causes a branch to
longaddr. If the condition is not met, the branch is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] BE longaddr

Note. This instruction actually tests the zero result indicator.

All indicators are unchanged.

Assume that this BE was preceded by a compare instruction whose result was equal. BE
branches to EQUAL.

Machine Instructions 4-41

Branch on Error (BER)

Indicators

Branch on Even (BEV)

Indicators

BEV Example

This instruction tests the condition code (after an 1/0 operation) for an error condition.
If there is an error, BER causes a branch to longaddr.

Name Operation Operand

[label] BER longaddr

Note. Coding this instruction does the same thing as coding the BNCC instruction to
branch on condition code not 7.

All indicators are unchanged.

This instruction tests the even indicator. If the previous instruction left it on, BEV causes
a branch to longaddr. If the indicator is off, the branch is not taken, and the next
sequential instruction is executed.

Name Operation Operand

[label] BEV longaddr

All indicators are unchanged.

In this example assume that the previous instruction left the even indicator on. BEV
causes a branch to the address in register 4.

Branch on Greater Than (BGT)

4-42 SC34-0074

This instruction tests the indicator settings that result from a previous instruction for an
arithmetically greater than condition. If the condition is met, BGT causes a branch to
longaddr. If the condition is not met, the branch is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] BGT longaddr

Note. This instruction actually tests the negative, overflow, and zero result indicators.

Indicators

BGT Example

All indicators are unchanged.

BGT GREATER+6

In this example, assume that the previous instruction left an arithmetically greater than
condition. BGT causes a branch to the location that is 6 bytes past GREATER.

Branch on Greater Than or Equal (BGE)

Indicators

BGE Example

Branch on Less Than (BLT)

Indicators

This instruction tests the indicator settings that result from previous instruction for an
arithmetically greater than or an equal condition. If either condition is met, BGE causes a
branch to longaddr. If neither condition is met, the branch is not taken, and the next
sequential instruction is executed.

Name Operation Operand

[label] BGE longaddr

Note. This instruction actually tests the negative and overflow indicators.

All indicators are unchanged.

BGE (R3)·

In this example, assume that the previous instruction left a less than condition. BGE does
not cause a branch to the address in register 3.

This instruction tests the indicator settings that result from a previous instruction for an
arithmetically less than condition. If the condition is met, BLT causes a branch to
longaddr. If the condition is not met, the branch is not taken, and the next sequential
instruction is executed. ·

Name Operation Operand

[label] BLT longaddr

Note. This instruction actually tests the negative and overflow indicators.

All indicators are unchanged.

Machine Instructions 4-43

BLT Example

, .BLT LES$+3

In this example, assume that the previous instruction left an arithmetically less than
condition. BLT branches to the location that is 3 bytes past address LESS. Note that
LESS+3 must be an even byte address.

Branch on Less Than or Equal (BLE)

Indicators

BLE Example

This instruction tests the indicator settings that result from a previous instruction for an
arithmetically less than or an equal condition. If either condition is met, BLE causes a
branch to the address specified by longaddr. If neither condition is met, the branch is not
taken, and the next sequential instruction is executed.

Name Operation Operand

[label] BLE longaddr

Note. This instruction actually tests the negative, overflow, and zero result indicators.

All indicators are unchanged.

BLE !f HERE~4

In this example, assume that the previous instruction left an equal condition. BLE causes
a branch to the location that is 4 bytes before address THERE.

Branch on Logically Greater Than (BLGTJ

Indicators

4-44 SC34-007 4

This instruction tests the indicator settings that result from a previous instruction, such as
a compare, for a logically greater than condition. If the condition is met, BLGT causes a
branch to longaddr. If the condition is not met, the branch is not taken, and the next
sequential instruction is executed.

Name Operation Operand

[label] BLGT longaddr

Note. This instruction actually tests the carry and zero indicators. If both are off, the
branch is taken. For more information about how the indicators are set, see "Compare
Instructions."

All indicators are unchanged.

BLGT Example

~~GT (R2)

In this example, assume that the previous instruction was a compare instruction whose
result was logically greater than. BLGT causes a branch to the address in register 2.

Branch on Logically Greater Than or Equal (BLGE)

Indicators

BLGE Example

This instruction tests the indicator settings that result from a previous instruction, such as
a compare, for a logically greater than or equal condition. If either condition is met,
BLGE causes a branch to longaddr. If neither condition is met, the branch is not taken,
and the next sequential instruction is executed.

Name Operation Operand

[label] BLGE longaddr

Note. This instruction actually tests the carry indicator; if it is off, the branch is taken.
For more infor_mation about how the indicator is set, see "Compare Instructions."

All indicators are unchanged.

BLGE (R2,LOC1)

In this example, assume that the previous instruction set a condition of equal. BLGE
·causes a branch to the location whose address is the contents of register 2, increased by
the value of LOCI.

Branch on Logically Less Than (BLLT)

Indicators

This instruction tests the indicator settings that result from a previous instruction, such as
a compare, for a logically less than condition. If the condition is met, BLLT causes a
branch to longaddr. If the condition is not met, the branch is not taken, and the next
sequential instruction is executed.

Name Operation Operand

[label] BLLT longaddr

Note. This instruction actually tests the carry indicator; if it is on, the branch is taken.
For more information about how the indicator is set, see "Compare Instructions."

All indicators are unchanged.

Machine Instructions 4-45

BLLT Example

f i

~ :)~\.~;: ~:£~:s: ,

In this example, assume that the previous instruction set a condition of equal. BLLT does
not cause a branch to LESS.

Branch on Logically Less Than or Equal (BLLE)

Indicators

BLLE Example

Branch on Negative (BNJ

Indicators

4-46 SC34~007 4

This instruction tests the indicator settings that result from a previous instruction, such as
a compare, for a logically less than or equal condition. If either condition is met, BLLE
causes a branch to longaddr. If neither condition is met, the branch is not taken, and the
next sequential instruction is executed.

Name Operation Operand

[label] BLLE longaddr

Note. This instruction actually tests the carry and zero indicators. For more information
about how the indicators are set, see "Compare Instructions."

All indicators are unchanged.

r ~~~~L;(1~t>~ ,
x i i i i ~

In this example, assume that the previous instruction set a condition of logically less than.
BLLE branches to the address defined by the contents of the storage location whose
address is in register 6.

This instruction tests the negative result indicator. If it is on, BN causes a branch to
longaddr. If the indicator is off, the branch is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] BN longaddr

All indicators are unchanged.

BNExample

Branch on No Ca"Y (BNCY)

Indicators

BNCY Example

In this example, assume that the previous instruction turned off the negative result
indicator. BN does not cause a branch to the location that is 6 bytes past LOC3.

This instruction tests the carry indicator. If it is off, BNCY causes a branch to longaddr.
If the indicator is on, the branch is not taken, and the next sequential instruction is
executed.

Name Operation Operand

[label] BNCY longaddr

All indicators are unchanged.

In this example, assume that the previous instruction left the carry indicator off. BNCY
causes a branch to NOCARRY.

Branch on Not Condition (BNC)
This instruction tests a condition that you specify. If the condition is met, BNC causes a
branch to longaddr. If the condition is not met, the branch is not taken, and the next
sequential instruction is executed.

Name Operation Operand

[label] BNC cond, longaddr

Code BNC to test the indicator settings that result from a previous instruction. For the
cond operand, code the value of the condition you w"Mlt to test:

Condition Value Condition

0 Non-zero or non-equal
1 Not positive
2 Not negative
3 Not even
4 Arithmetically greater than or equal
5 Arithmetically greater than
6 Logically greater than
7 Logically greater than or equal (no carry)

Machine Instructions 4-4 7

Indicators

BNC Example

All indicators are unchanged.

BNC] 1LESS

In this example, assume that the previous instruction set an equal condition. BNC does
not cause a branch to LESS.

Branch on Not Condition Code (BNCC)

Indicators

BNCC Example

4-48 SC34-0074

This instruction tests the even, carry, and overflow indicators. If the tested condition
code is not met, BNCC causes a branch to longaddr. If the condition code is met, the
branch is not taken, and the next sequential instruction is executed.

Name Operation Operand

[label] BNCC cond, longaddr

Code BNCC to test the indicator settings that result from a previous instruction. For
the cond operand, specify the condition code you want to test:

Condition Code Indicators

0 E = 0, C = 0, V = 0
1 E = 0, C = 0, V = 1
2 E=O,C=l,V=O
3 E = 0, C = 1, V = 1
4 E = l, C = 0, V = 0
5 E = l, C = 0, V = 1
6 E=l,C=l,V=O
7 E = l, C = 1, V = 1

The abbreviations used for the indicators are:

• E-even
• C-carry
• V-overflow

All indicators are unchanged.

In this example, assume that the previous instruction left the even and carry indicators
off. BNCC causes a branch to the address in register 3.

Branch on Not Equal (BNE)

Indicators

BNE Example

Branch on Not Error (BNER)

Indicators

Branch on Not Even (BNEV)

Indicators

This instruction tests the indicator settings that result from a previous instruction, such as
a compare, for an equal condition. If the condition is not met, BNE causes a branch to
longaddr. If the condition is met, the branch is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] BNE longaddr

Note. This instruction actually tests the zero indicator.

All indicators are unchanged.

BNE. UNEQUAL

In this example, assume that the previous instruction left an equal condition. BNE does
not cause a branch to UNEQUAL.

This instruction tests the condition code (after an 1/0 operation) for an error condition.
If there is no error, BNER causes a branch to longaddr.

Name Operation Operand

[label] BNER longaddr

Note. Coding this instruction does the same thing as coding the BCC instruction to
branch on condition code 7.

All indicators are unchanged.

This instruction tests the even result indicator. If a previous instruction left it off, BNEV
causes a branch to longaddr. If the indicator is on, the branch is not taken, and th next
sequential instruction is executed.

Name Operation Operand

[label] BNEV longaddr

All indicators are unchanged.

Machine Instructions 4-49

BNEV Example

BNEV (R6) *

In this example, assume that BNEV found the even indicator off. BNEV causes a branch
to the address defined by the contents of the location whose address is in register 6.

Branch on Not Negative (BNN)

Indicators

BNN Example

This instruction tests the negative result indicator. If it is off, BNN causes a branch to
longaddr. If the indicator is on, the branch is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] BNN longaddr

All indicators are unchanged.

In this example, assume that the previous instruction turned off the negative indicator.
BNN causes a branch to the location that is 6 bytes past LOC3.

Branch on Not Overflow (BNO VJ

Indicators

BNOV Example

4-50 SC34-0074

This instruction tests the overflow indicator. If it is off, BNOV causes a branch to
longaddr. If the indicator is on, the branch is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] BNOV longaddr

All indicators are unchanged.

:~OV .CR2)

In this example, assume that the previous instruction turned on the overflow indicator.
BNOV does not cause a branch to the address in register 2.

Branch on Not Positive (BNP)

Indicators

BNP Example

Branch on Not Zero (BNZ)

Indicators

BNZ Example

This instruction tests the indicator settings that result from a previous instruction for a
positive condition. If the condition is not met, BNP causes a branch to longaddr. If the
condition is met, the branch is not taken, and the next sequential instruction is executed.

Name Operation Operand

[label] BNP longaddr

Note. This instruction actually tests the negative and zero result indicators.

All indicators are unchanged.

In this example, assume that the previous instruction turned on the negative indicator.
BNP causes a branch to the location that is 8 bytes before LOCS.

This instruction tests the zero result indicator. If it is off, BNZ causes a branch to
longaddr. If the indicator is on, the branch is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] BNZ longaddr

All indicators are unchanged.

In this example, assume that the previous instruction turned off the zero indicator. BNZ
causes a branch to the address defined by the contents of the location whose address is in
register 5.

Machine Instructions 4-51

Branch on Overflow (BOV)

Indicators

BOY Example

Branch on Positive (BP)

Indicators

BP Example

4-52 SC34-0074

This instruction tests the overflow indicator~ If it is on, BOV causes a branch to longaddr.
If it is off, the branch is not taken, and the next sequential instruction is executed.

Name Operation Operand

[label] BOV longaddr

All indicators are unchanged.

In this example, assume that the previous instruction turned on the overflow indicator.
BOY causes a branch to OVER.

This instruction tests the indicator settings that result from a previous instruction for a
positive condition. If the condition is met, BP causes a branch to longaddr. If the
condition is not met, the branch is not taken, and the next sequential instruction is
executed.

Name Operation Operand

[label] BP longaddr

Note. This instruction actually tests the negative and zero result indicators.

All indicators are unchanged.

In this example, assume that the previous instruction turned on the negative indicator. BP
does not cause a branch to the location that is 4 bytes before LOCS.

Branch on Zero (BZ)

Indicators

BZ Example

No Operation (NOP)

Indicators

This instruction tests the zero result indicator. If it is on, BZ causes a branch to longaddr.
If the indicator is off, the branch is not taken, and the next sequential instruction is
executed.

Name Operation Operand

[label] BZ longaddr

All indicators are unchanged.

In this example, assume that the previous instruction turned off the zero indicator. BZ
does not cause a branch to ZERO.

This instruction causes an unconditional branch to the next sequential instruction.

Name Operation Operand

[label] NOP

All indicators are unchanged.

Machine Instructions 4-53

Coding Jump Instructions

Jump (J)

Indicators

J Example

Jump and Link (JAL)

Indicators

4-54 SC34-0074

You can jump to locations that are within the same CSECT as the jump instruction. For
all jump instructions, code either the jdisp or jaddr operand to specify the address to be
jumped to. This address must be within -256 to 254 bytes of the byte following the jump
instruction.

If you use the jdisp form, code-as an even absolute value or expression-a displacement
from the byte following the jump instruction.

If you use the jaddr form, code-as a relocatable expression-the even byte address you
want to jump to.

Note. The IAR points to the byte following the jump instruction; therefore, jdisp is
actually a displacement from the IAR. Jump instructions are the only JAR-relative
instructions.

This instruction causes an unconditional jump to the specified address.

Name Operation Operand

[label) J
jdisp
jaddr

All indicators are unchanged.

This instruction causes a jump to the location THERE.

This instruction saves-in a register-the address of the next sequential instruction, then
causes a jump to the specified location.

Name Operation Operand

[label] JAL
jdisp,reg
jaddr,reg

For reg specify the register in which you want to save the address of the next sequential
instruction.

All indicators are unchanged.

JAL Example

Jump if Mixed (JM/X)

Indicators

JMIX Example

Jump If Not Mixed (JNMIX)

Indicators

Lt:~.~.~~:~~?
~ ~ '

In this example, JAL saves-in register 7-the address of the instruction that follows this
JAL. This instruction then causes a jump to the location that is 8 bytes past the byte that
follows this JAL instruction.

After a Test Word Immediate (TWI) instruction, JMIX causes a jump if the bits tested by
TWI are a combination of zeros and ones.

Name Operation Operand

[label] JMIX
jdisp
jaddr

Note. JMIX actually tests the zero and negative indicators.

All indicators are unchanged.

Assume that the word at location TEST contains X'0369'.

TWI
JMIX

X'9J369' ,TEST
MIXED

Because the bits tested by TWI are all ones, JMIX does not cause a jump to location
MIXED.

After a Test Word Immediate (TWI) instruction, JNMIX causes a jump if the bits tested
by TWI are either all zeros or all ones.

Note. JNMIX actually tests the zero and negative indicators.

Name Operation Operand

[label] JN MIX
jdisp
jaddr

Note. If the first operand (the 1-word mask) of the TWI instruction is all zeros, the
resulting condition is not mixed. In this case, JNMIX causes a jump.

All indicators are unchanged.

Machine Instructions 4-55

JNMIX Example

Jump if Not Off (JNOFF)

Indicators

JNOFF Example

Jump if Not On (JNON)

Indicators

4-56 SC34-0074

Assume that R4 contains X'OOOO,.

TWI X 1 ~_0FF 1 ,R4
JNMIX 14

Because the bits tested by TWI are all zeros, JNMIX causes a jump to the location that is
14 bytes past the byte following this JNMIX.

After a Test Bit (TBT) or Test Word Immediate (TWI) instruction, JNOFF causes a jump
if:

• The bit tested by TBT is on, or
• The bits tested by TWI are either mixed or all on.

Name Operation Operand

[label] JNOFF
jdisp
jaddr

Note. JNOFF actually tests the zero indicator.

All indicators are unchanged.

Assume that the word whose address is in R3 contains X'03AC'.

TW.1 X' /a'C53' , (R3)
JNOFF 36

Because the tested bits are all off, JNOFF does not cause a jump to the location that is 36
bytes past the byte following this JNOFF.

After a Test Bit (TBT) or Test Word Immediate (TWI) instruction, JNON causes a jump ,
~ .

• The bit tested by TBT is off, or
• The bits tested by TWI are either mixed or all off.

Note. JNON actually tests the negative indicator.

Name Operation Operand

[label] JNON
jdisp
jaddr

Note. If the first operand (the 1-word mask) of a TWI instruction is all zeros, the resulting
condition is not on. In this case, JNON causes a jump.

All indicators are unchanged.

JNON Example

Jump if Off (JOFF)

Indicators

JOFF Example

Jump if On (JON)

Indicators

Assume that the word in R7 contains X'0123'.

TWI
JNON

x•a321 1 R7
-6"' '

Because the tested bits are mixed, JNON causes a jump to the location that is 6 bytes
before the byte following this JNON.

After a Test Bit (TBT) or Test Word Immediate (TWI) instruction, JOFF causes a jump
if:

• The bit tested by TBT is off, or
• The bits tested by TWI are all off.

Note. JOFF actually tests the zero indicator.

Name Operation Operand

[label] JOFF
jdisp
jaddr

Note. If the first operand (the I-word mask) of a TWI instruction is all zeros, the resulting
condition is off. In this case, JOFF causes a jump.

All indicators are unchanged.

TBT
JOFF

(R6 ,5)
OFF

Assume that the byte whose address is in R6 contains:

1111 0000

Because the sixth bit is off, JOFF causes a jump to location OFF.

After a Test Bit (TBT) or Test Word Immediate (TWI) instruction, JON causes a jump if:

• The bit tested by TBT is on, or
• The bits tested by TWI are all on.

I

Name Operation Operand

[label] JON
jdisp
jaddr

Note. JON actually tests the negative indicator.

All indicators are unchanged.

Machine Instructions 4-57

JON Example

Jump on Carry (ICY)

Indicators

JCY Example

Jump on Condition (JC)

4-58 SC34-0074

< -~

tST (I\ l, ,Sil
JON ON+4

Assume that the byte whose address is in RI contains:

0000 1111

Because the first bit is off, JON does not cause a jump to the address that is 4 bytes past
location ON.

This instruction tests the carry indicator. If the indicator is on, JCY jumps to the
specified location. If the indicator is off, the jump is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[Jabel] JCY
jdisp
jaddr

All indicators are unchanged.

In this example, assume that JCY found the carry indicator on. JCY jumps to the
location that is 4 bytes before the address CARRY.

This instruction tests a condition that you specify. If the tested condition is met, JC
causes a jump to the specified location. If the condition is not met, the jump is not taken,
and the next sequential instruction is executed.

Name Operation Operand

[Jabel] JC
cond,jdisp
cond,jaddr

Indicators

JC Example

Jump on Count (JCT)

Code the JC instruction to test the indicator settings that result from a previous
instruction. For the cond operand, code the value of the condition you want to test:

Condition Value Condition

0 Zero or equal
1 Positive and non-zero
2 Negative
3 Even
4 Arithmetically less than
5 Arithmetically less than or equal
6 Logically less than or equal
7 Logically less than (carry)

All indicators are unchanged.

In this example assume that a previous instruction set the negative result indicator on. JC
causes a jump to the location that is 10 bytes past the byte following this JC instruction.

This instruction tests the contents of the specified register. If the contents of the register
are not zero, 'JCT decreases the register by 1. If the contents are still not zero, JCT causes
a jump to the specified location.

Subtract 1
from reg

JUMP

NO JUMP

NO JUMP

Machine Instructions 4-59

Indicators

JCT Example

Jump on Equal (JE)

Indicators

JE Example

Jump on Even (JEV)

Indicators

4-60 SC34-0074

Name Operation Operand

[label] JCT
jdisp, reg
jaddr, reg

All indicators are unchanged.

JCT ZERO,R3

Assume that R3 (before the decrement) contains X'0025'. JCT decreases R3 by 1, leaving
X'0024', and causes a jump to ZERO.

This instruction tests the result of a previous instruction, such as a compare, for an equal
condition. If the condition is met, JE causes a jump to the specified location. If the
condition is not met, no jump is taken, and the next sequential instruction is executed.

Name Operation Operand

[label] JE
jdisp
jaddr

Note. This instruction actually tests the zero result indicator.

All indicators are unchanged.

Assume that this JE was preceded by a compare instruction whose result was equal. JE
causes a jump to EQUAL.

This instruction tests the even indicator. If a previous instruction left it on, JEV causes a
jump to the specified location. If the indicator is off, the jump is not taken, and the next
sequential instruction is executed.

Name Operation Operand

[label] JEV
jdisp
jaddr

All indicators are unchanged.

JEV Example

Jump on Greater Than (JGT)

Indicators

JGT Example

In this example assume that the previous instruction left the even indicator on. JEV
·causes a jump to the location that is 26 bytes past the byte following this JEV.

This instruction tests the result of a logical instruction for an arithmetically greater than
condition. If the condition is met, JGT causes a jump to the specified location. If the
condition is not met, the jump is not taken, and the next sequential instruction is
executed.

Name Operation Operand

[label] JGT
jdisp
jaddr

Note. This instruction actually tests the negative, overflow, and zero result indicators.

All indicators are unchanged.

J;GT GREATER+6

In this example, assume that the previous instruction left a greater than condition. JGT
causes a jump to the location that is 6 bytes past GREATER.

Jump on Greater Than or Equal (JGE)

Indicators

This instruction tests the result of a logical instruction for an arithmetically greater than
or an equal condition. If either condition is met, JGE causes a jump to the specified
location. If neither condition is met, the jump is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] JGE
jdisp
jaddr

Note. This instruction actually tests the negative and overflow indicators.

All indicators are unchanged.

Machine Instructions 4-61

JGE Example

Jump on Less Than (JLT)

Indicators

JLT Example

.; ~

!:],/JtQi:~,:
~ J l I ' ! j ;. ~ ~

In this example, assume that the previous instruction left a less than condition. JGE does
not cause a jump to the location that is 84 bytes past the byte that follows this JGE
instruction.

This instruction tests the result of a logical instruction for an arithmetically less than
condition. If the condition is met, JLT causes a jump to the specified location. If the
condition is not met, the jump is not taken, and the next sequential instruction is
executed.

Name Operation Operand

[label] JLT
jd!sp
jaddr

Note. This instruction actually tests the negative and overflow indicators.

All indicators are unchanged.

In this example, assume that the previous instruction left a less than condition. JLT
causes a jump to the location that is 2 bytes past LESS.

Jump on Less Than or Equal (JLE)

Indicators

4-62 SC34-0074

This instruction tests the result of a logical instruction for an arithmetically less than or
an equal condition. If either condition is met, JLE causes a jump to the specified
location. If neither condition is met, the jump is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] JLE
jdisp
jaddr

Note. This instruction actually tests the overflow, negative, and zero result indicators.

All indicators are unchanged.

JLE Example

In this example, assume that the previous instruction left an equal condition. JLE causes
a jump to the location that is 4 bytes before address THERE.

Jump on Logically Greater Than (JLGT)

Indicators

JLGT Example

This instruction tests the result of a logical instruction, such as a compare, for a logically
greater than condition. If the condition is met, JLGT causes a jump to the specified
location. If the condition is not met, the jump is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] JLGT
jdisp
jaddr

Note. This instruction actually tests the carry and zero indicators. If both indicators are
off, the jump is taken. For more information about how the indicators are set, see
"Logical Instructions."

All indicators are unchanged.

In this example, assume that the previous instruction was a compare instruction whose
result was logically greater than. JLGT causes a jump to location THERE.

Jump on Logically Greater Than or Equal (J LGE)

Indicators

This instruction tests the result of a logical or arithmetic instruction, such as a compare or
subtract, for a logically greater than or logically equal condition. If either condition is
met, JLGE causes a jump to the specified location. If neither condition is met, the jump
is not taken, and the next sequential instruction is executed.

Name Operation Operand

[label) JLGE
jdisp
jaddr

Note. This instruction actually tests the carry indicator; if it is off, the jump is taken. For
more information about how the indicator is set, see "Logical Instructions" and
"Arithmetic Instructions."

All indicators are unchanged.

Machine Instructions 4-63

JLGE Example

Assume that this JLGE appears in this piece of code:

X HVWI 14 ,R2
HVA LOC,Rl
CW R3,Rl+
JLGE ·12
CHR Rl ,R2

If CW R3,R4 set a condition of logically greater than or equal, JLGE-12 causes a jump
to MVWI 14,R2. (JLGE X would do the same thing.)

Jump on Logically Less Than (JLLT)

Indicators

JLLT Example

4-64 SC34-0074

This instruction tests the result of a logical instruction, such as a compare, for a logi.cally
less than condition. If the condition is met, JLLT causes a jump to the specified location.
If the condition is not met, the jump is not taken, and the next sequential instruction is
executed.

Name Operation Operand

[label] JLLT
jdisp
jaddr

Note. This instruction actually tests the carry indicator-if it is on, the jump is taken. For
more information about how the indicator is set, see "Logical Instructions."

All indicators are unchanged.

In this example assume that the previous instruction set a condition of equal. JLLT does
not cause a jump to LESS.

Jump on Logically Less Than or Equal (J LLE)

Indicators

JLLE Example

Jump on Negative (JN)

Indicators

JN Example

This instruction tests the result of a logical instruction, such as a compare, for a logi.cally
less than or equal condition. If either condition is met, JLLE causes a jump to the
specified location. If neither condition is met, the jump is not taken, and the next
sequential instruction is executed.

Name Operation Operand

(label] JLLE
jdisp
jaddr

Note. This instruction actually tests the carry and zero indicators. Both indicators must
be on for the jump to be taken. For more information about how the indicators are set,
see "Logical Instructions."

All indicators are unchanged.

In this example, assume that the previous instruction set a condition of logically less than.
JLLE causes a jump to LESS.

This instruction tests the negative result indicator. If it is on, JN causes a jump to the
specified location. If the indicator is off, the jump is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] JN
jdisp
jaddr

All indicators are unchanged.

In this example, assume that the previous instruction turned off the negative result
indicator. JN does not cause a jump to the location that is 6 bytes past LOC3.

Machine Instructions 4-65

Jump on No Ca"y (JNCY)

Indicators

JNCY Example

Jump on Not Condition (INC)

Indicators

4-66 SC34-0074

This instruction tests the carry indicator. If it is off, JNCY causes a jump to the specified
location. If the indicator is on, the jump is not taken, and the next sequential instruction
is executed.

Name Operation Operand

[label] JNCY
jdisp
jaddr

All indicators are unchanged.

In this example assume that the previous instruction left the carry indicator off. JNCY
causes a jump to NOCARRY.

This instruction tests a condition that you specify. If the condition is met, JNC causes a
jump to the specified location. If the condition is not met, the jump is not taken, and the
next sequential instruction is executed.

Name Operation Operand

[label] JNC
cond,jdisp
cond,jaddr

Code JNC to test the result of a previous instruction. For the cond operand, code the
value of the condition you want to test:

Condition Value Condition

0 Non-zero or non-equal
1 Not positive
2 Not negative
3 Not even
4 Arithmetically greater than or equal
5 Arithmetically greater than
6 Logically greater than
7 Logically greater than or equal (no carry)

All indicators are unchanged.

JNC Example

Jump on Not Equo.l (JNE)

Indicators

JNE Example

Jump on Not Even (JNEV)

Indicators

JNEV Example

JNC 6,-12

In this example, assume that the previous instruction set a logi,cally equal condition. JNC
does not cause a jump to the location that is 12 bytes before the byte that follows the
JNC instruction.

This instruction tests the result of a previous instruction, such as a compare, for an equal
condition. If the condition is not met, JNE causes a jump to the specified location. If the
condition is met, the jump is not taken, and the. next sequential instruction is executed.

Name Operation Operand

[label] JNE
jdisp
jaddr

Note. This instruction actually tests the zero result indicator.

All indicators are unchanged.

JNE UNEQUAL • ,

In this example, assume that the previous instruction left an equal condition. JNE does
not cause a jump to UNEQUAL.

This instruction tests the even result indicator. If a previous instruction left it off, JNEV
causes a jump to the specified location. If the indicator is on, the jump is not taken, and
the next sequential instruction is executed.

Name Operation Operand

(label] JNEV
jdisp
jaddr

All indicators are unchanged.

JNEV 6

In this example, assume that JNEV found the even indicator off. JNEV causes a jump to
the location that is 6 bytes past the byte following this JNEV instruction.

Machine Instructions 4-67

Jump on Not Negative (JNN)

Indicators

JNN Example

Jump on Not Positive (JNP)

Indicators

JNP Example

4-68 SC34-0074

This instruction tests the negative result indicator. If it is off, JNN causes a jump to the
specified location. If the indicator is on, the jump is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label) JNN
jdisp
jaddr

All indicators are unchanged.

JNN LOC3-6

In this example assume that the previous instruction turned off the negative indicator.
JNN causes a jump to the location that is 6 bytes before LOC3.

This instruction tests the result of a previous instruction for a positive condition. If the
condition is not met, JNP causes a jump to the specified location. If the condition is met,
the jump is not taken, and the next sequential instruction is executed.

Name Operation Operand

[label) JNP
jdisp
jaddr

Note. This instruction actually tests the negative and zero result indicators.

All indicators are unchanged.

JNP THERE

In this example assume that the previous instruction turned off the negative and zero
indicators (leaving a positive condition). JNP does not cause a jump to THERE.

Jump on Not Zero (JNZ)

Indicators

JNZ Example

Jump on Positive (JP)

Indicators

JP Example

This instruction tests the zero result indicator. If it is off, JNZ causes a jump to the
specified location. If the indicator is on, the jump is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] JNZ
jdisp
jaddr

All indicators are unchanged.

JNZ -4

In this example assume that the previous instruction turned off the zero indicator. JNZ
causes a jump to the location that is 4 bytes before the byte following this JNZ
instruction.

This instruction tests the result of a previous instruction for a positive condition. If the
condition is met, JP causes a jump to the specified location. If the condition is not met,
the jump is not taken, and the next sequential instruction is executed.

Name Operation Operand

[label] JP
jdisp
jaddr

Note. This instruction actually tests the negative and zero result indicators.

All indicators are unchanged.

JP LOC5·12

In this example assume that the previous instruction turned on the negative indicator. JP
does not cause a jump to the location that is 12 bytes before LOCS.

Machine Instructions 4-69

Jump on Zero (JZJ

Indicators

JZ Example

4-70 SC34-0074

This instruction tests the zero result indicator. If it is on, JZ causes a jump to the
specified location. If the indicator is off, the jump is not taken, and the next sequential
instruction is executed.

Name Operation Operand

[label] JZ
jdisp
jaddr

All indicators are unchanged.

JZ ZERO

In this example, assume that the previous instruction turned off the zero indicator. JZ
does not cause a jump to ZERO.

SHIFT INSTRUCTIONS

Coding Shift Instructions

Shift Left Circular (SLC)

Indicators

SLC Example

The shift instructions all have the same basic syntax. The first operand is always the shift
count, and the second is always the register to be shifted.

You can code shift count as an absolute value or expression, or you can code it in
register form, where bits 8-1 S of the register contain the count. If the shift count is in a
register, that register is not altered by the shift instruction, unless the instruction is SLT
or SLTD, or the same register is also specified as the register to be shifted.

Note. For SLT and SLTD, code the shift count in register form only.
If you code a shift count value, it can be in the range 0-16 (for cntl6) or 0-31 (for

cnt31). You may code a value greater than 16 for cntl6, however, it will be flagged with
a warning message. When the instruction is executed, a shift count greater than 16 will
lengthen the execution time. If you code a register that contains the shift count, the
count can be in the range 0-2SS. Note that if you code a shift count of 0, the register is
not shifted.

The second operand is the register to be shifted. In the case of double shift instructions,
the register you code here is the fust register of a register pair. For example, if you code
RS, the instruction shifts the pair RS ,R6. If you code R 7, the instruction shifts the pair
R7,RO.

This instruction shifts the contents of a register to the left by a specified number of bits.
The bits shifted out of the high-order bit (bit 0) reenter in the low-order bit (bit 15).

Name Operation Operand

[label] SLC
cntl6, reg
reg, reg

The carry and overflow indicators are unchanged. The remaining indicators reflect the
final contents of the register.

SLC 3,R6

Before the shift, register 6 contains:

r-- Jfttih 0010 1111 0000 I
I "1···················.-.: -
I o 15

L------------------1
After the shift, register 6 contains: I

I
1001 0111 1000 o@.iUll+- - - .J

0 15

Machine Instructions 4-71

Shift Left Circular Double (SLCD)

Indicators

SLCD Example

Shift Left Logical (SLL)

Indicators

4-72 SC34-0074

This instruction shifts the contents of a register pair to the left by a specified number of
bits. The bits shifted out of the high-order bit (bit 0) reenter in the low-order bit (bit 31).

Name Operation Operand

[label] SLCD cnt31, reg
reg, reg

The carry and overflow indicators are unchanged. The remaining indicators reflect the
final contents of the register pair.

SLCO 4 ,RI

Before the shift, the register pair Rl, R2 contains:

Rl R2

r-1tt•t 0000 0000 0000 I 0000 1111 1010 1111
I
I 0 31

L-----------------------------1
After the shift, the register pair Rl, R2 contains: I

I
Rl R2 I

0000 0000 0000 0000 11111 101 o 1111 ~jimnn·+ --_J

0 31

This instruction shifts the contents of a register to the left by a specified number of bits.
The vacated low-order bits are filled with zeros.

Name Operation Operand

[label) SLL cnt16, reg
reg, reg

The overflow indicator is first reset, then set to 1 if the most significant bit in the register
changed during the shift. The carry indicator reflects the last bit shifted out of bit 0. The
remaining indicators reflect the final contents of the register.

SLLExample

SLL _I ~R7

Before the shift, register 7 contains:

0 lS

Shift Left Logical Double (SLLD)

Indicators

SLLD Example

This instruction shifts the contents of a register pair to the left by a specified number of
bits. The vacated low-order bits are filled with zeros.

Name Operation Operand

[label] SLLD
cnt31, reg
reg, reg

The overflow indicator is first reset, then set to I if the most significant bit in the register
pair changed during the shift. The carry indicator reflects the last bit shifted out of bit 0.
The remaining indicators reflect the final contents of the register pair.

SLLD R7,R4

Assume that register 7 contains X'OOOC'.
Before the shift, the register pair R4, RS contains:

R4 RS

~111000~

After the shift, the register pair R4, RS contains:

~-··00000000
0 31

Machine Instructions 4-73

Shift Left and Test (SLT)

Indicators

SLT Example

4-7 4 SC34-007 4

This instruction shifts the contents of a register to the left. It continues shifting until it
has:

• Shifted the number of bits specified as a shift count, or
• Shifted a 1-bit out of bit zero.

The vacated low-order bits are filled with zeros.

Name Operation Operand

[label) SLT reg, reg

If SLT shifts a 1-bit out of bit zero before it has shifted the number of bits you
specified, the remaining shift count is loaded into bits 8-15 of the register you coded for
the first operand.

The overflow and carry indicator are first reset. Then the overflow indicator is set to 1 if
the most significant bit in the register changed during the shift. The carry indicator
reflects the last bit shifted out of bit 0. The remaining indicators reflect the contents of
the register you coded for the first operand.

SLT R5,R2

In this example, assume that register 5 contains X'OOOC'.
Before the shift, register 2 contains:

· 1 0000 0000 ~.l!l1!1!11~~~!1~1j1j11
0

... ::::::1lllllllllll~liliiliiiiiiiliiiiiii1i1llllllllllfl:··
After the shift, register 2 contains:

l\1illiiiiil;~::·· 0000 0000

0 15

and register 5 contains X'0003\ the shift count that remained after SLT shifted a 1-bit
out of the high-order bit of the register.

Shift Left and Test Double (SLTD)

Indicators

SLTD Example

This instruction shifts the contents of a register pair to the left. It continues shifting until
it has:

• Shifted the number of bits specified as a shift count, OR
• Shifted a I-bit out of bit zero of the first register in the pair.
The vacated low-order bits are filled with zeros.

Name Operation Operand

[label] SLTD reg, reg

If SLTD shifts a I-bit out of bit zero before it has shifted the number of bits you
specified, the remaining shift count is loaded into bits 8-15 of the register you coded for
the first operand.

The carry and overflow indicators are first reset. Then the overflow indicator is set to 1 if
the most significant bit in the register pair changed during the shift. The carry indicator
reflects the last bit shifted out of bit 0. The remaining indicators reflect the contents of
the register you coded for the first operand.

SLTD Rt ,R2

In this example, assume that register 1 contains X'0003'.
Before the shift, register pair R2, R3 contains:

R2 R3

~~~iiifililliilli;' 
After the shift, register pair R2, R3 contains: 

.:~~j\j\]l1\1l1\1lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll11ll1lljjjjjjjjjjj)jlllllll1lllllllllllllllljljlllllllllll\lll\jjjjjjjjjjjjjjll1~lljfR3 
l:!:!:!:!:~~~~=~=·=·=·=~=~:t==·=·=·~"=~s=======:t=¥1:1:=:t==i=:nr···~~=:1~=!===!~M~=!=!=!~~=~;;~;!:!:!:~::-i 
~=~=~=1=~=~~~=~:1:~:1:~m:~:1:1:1~~=~:;:;::~~~?-':lf~~~l~fl~~~=1:1:1~~=~1f.1:1:1:~ 

0 31 

and Rl contains 0. 

Machine Instructions 4-7 5 



Shift Right Arithmetic (SRA) 

Indicators 

SRA Example 

This instruction shifts the contents of a register to the right by a specified number of bits. 
The original high-order bit of the register is propagated through the vacated high-order 
bits. 

Name Operation Operand 

[label] SRA 
cntl6, reg 
reg, reg 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
final contents of the register. 

.SRA 2,RS 

Before the shift, register 5 contains: 

MliiMl~l®f:MIH~fl~fto1 

'\~l!ilililili!i!ili!i!l!illllllllilll!llllllllillll!lllllllllllllllllll!lllll!lll~;f:. 
After the shift, register 5 contains: 

1=~~;;iiiii;;;;i;i;;i.1.~i1i1i!1.i~i11i1i!l!~1 
0 15 

Shift Right Arithmetic Double (SRAD) 

Indicators 

4-76 SC34-0074 

This instruction shifts the contents of a register pair to the right by a specified number of 
bits. The original high-order bit of the register pair is propagated through the vacated 
high-order bits. 

Name Operation Operand 

[label] SRAD 
cnt31, reg 
reg, reg 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
final contents of the register pair. 



SRAD Example 

Shift Right Logical (SRL) 

fudicators 

SRLExample 

SRAO RI ,R7 

Assume that register 1 contains X'0018'. 
Before the shift, the register pair R7, RO contains: 

R7 RO 

0000 1010 1010 

31 

After the shift, the register pair R7, RO contains: 

R 7 . ··:·::::::::::3jj~j~{1~1~l~l~11!!!!l!llllllllll~lll~l~l~~~~~l~~~~~~~~~~~~~~:~::::::::.:·.·. 
0000 0000 0000 0000 I 0000 0000 tM®.tlt.UtM 
0 31 

This instruction shifts the contents of a register to the right by a specified number of bits. 
The vacated high-order bits of the register are filled with zeros. 

Name Operation Operand 

[label] SRL cnt16, reg 
reg, reg 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
final contents of the register. 

SRL 2,R5 

Before the shift, register 5 contains: 

-I 
After the shift, register 5 contains: 

0~1;;;;;;~;;;;;;;;;i;i;i;;;;;;i;;;;;*1 
0 15 

Machine Instructions 4-77 



Shift Right Logical Double (SRLD) 

Indicators 

SRLD Example 

4-78 SC34-0074 

This instruction shifts the contents of a register pair to the right by a specified number of 
bits. The vacated high-order bits of the register pair are filled with zeros. 

Name Operation Operand 

[label] SRLD 
cnt31, reg 
reg, reg 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
final contents of the register pair. 

In this example, assume that register 1 contains X'0018'. 
Before the shift, the register pair R 7, RO contains: 

R7 RO 

1111 

31 

After the shift, the register pair! contains: 

:::oo 0000 0000 0000·~:~ 
0 31 



STACK INSTRUCTIONS 

Store Multiple ( STM) 

Indicators 

STM Example 

STM saves the contents of one or more general-purpose registers from your main routine. 
Code it at the beginning of a subroutine. 

Name Operation Operand 

(label] STM reg, addr4(,abcnt] 

In the first operand, code a register n. STM stores register 7, then registers 0 through n. 
For example, if you code register 2, STM stores registers 7, 0, 1, and 2. If you code 
register 7, STM stores register 7 only. 

In the second operand, specify the address of the stack control block that points to the 
stack where you want the registers stored. 

Use the optional third operand to define the size, in bytes, of a work storage area 
within the stack. For abcnt, code the size of the work area. That amount must be an even 
number in the range 0-16382. 

After it stores the registers and reserves the work area, STM loads reg (the first operand) 
with the address of the low-storage end of the element just placed on the stack-the value 
of the new Top Element Address, plus 2. 

All indicators are unchanged. 

STM Rlt,(Rl),32 

• Rl contains the address of a stack control block. 
• The stack now contains 32 bytes of work storage and a 2-byte control word, in 

addition to the 12 bytes required for the registers. 

STM stores registers 7, 0, 1, 2, 3, and 4 in the specified stack, then loads register 4 with 
the address of the stack control word. The address of the first word of the work 
storage area is contained in register 4. 

Machine Instructions 4-79 



Load Multiple and Branch ( LMB) 

Indicators 

LMB Example 

Coding Pop /Push Instructions 

Pop Byte (PB) 

Indicators 

4-80 SC34-0074 

This instruction is useful when a subroutine passes control back to your main program. 
At the end of the subroutine, LMB reloads the registers from a stack, then branches to 
the address in register 7. 

Name Operation Operand 

[label] LMB addr4 

Before it gave control to the subroutine, the main program loaded register 7 with the 
address that will gain control when the subroutine finishes. This address is usually the 
address of the next sequential instruction following the branch to the subroutine. 

After the main program passed control to the subroutine, the subroutine saved the 
contents of the index registers in a stack (with a STM instruction). 

All indicators are unchanged. 

LMB (RJ) 

Assume that register 1 contains the address of the stack control block that points to the 
stack where the registers are stored. LMB reloads the registers from the stack, and passes 
control to the address in register 7. 

In general, a push instruction moves an element from a register to a stack, and a pop 
instruction moves an element from a stack to a register. 

For the stack operand (addr4) in a push or pop instruction, code the address of the 
stack control block that points to the stack you want to use. 

For the register operand (reg) in a push or pop instruction, code the register you want 
to use. If you code a doubleword instruction (PD or PSD), the register you code is the 
first register of a pair. Note that if you code register 7 as the first register of a pair, the 
instruction uses registers 7 and 0. 

This instruction moves a byte from a stack and places it into a register. 

Name Operation Operand 

[label] PB addr4, reg 

PB moves the top byte in the stack into bits 8-15 of reg. Bits 0-7 of reg are unchanged. 
After PB executes, the Top Element Address pointer in the stack control block points 

to the next byte to be popped from the stack. 

All indicators are unchanged. 



PB Example 

Pop Doubleword (PD) 

Indicators 

PD Example 

PB (Rl) ,R3 

In this example, register 1 contains the address of a stack control block. PB moves the top 
byte from the stack into bits 8-15 of register 3. Bits 0-7 of register 3 are unchanged. 
After this PB executes, the Top Element Address pointer is updated and points to the 
next byte to be popped. 

This instruction moves a doubleword from a stack and places it into a pair of registers. 

Name Operation Operand 

[label] PD addr4, reg 

PD moves the top doubleword in the stack into the register pair specified by reg. 
After PD executes, the Top Element Address pointer in the stack control block points 

to the next doubleword to be popped from the stack. 

All indicators are unchanged. 

PD (Rl), R3 

In this example, register 1 contains the address of a stack control block. PD moves the 
top doubleword from the stack into registers 3 and 4. After PD executes, the Top 
Element Address pointer is updated and points to the next doubleword to be popped. 

PD STACKJl,R7 

In this example, STACKOl is the address of a stack control block. PD moves the top 
doubleword from the stack into registers 7 and 0. After PD executes, the Top Element 
Address pointer is updated and points to the next doubleword to be popped. 

Machine Instructions 4-81 



Pop Word (PW) 

Indicators 

PW Example 

Push Byte ( PSB) 

Indicators 

PSB Example 

4-82 SC34-0074 

This instruction moves a word from a stack and places it into a register. 

Name Operation Operand 

[label] PW addr4, reg 

PW moves the top word in the stack into reg. 
After PW executes, the Top Element Address pointer in the stack control block points 

to the next word to be popped from the stack. 

All indicators are unchanged. 

PW (RI) ,RS 

In this example, register 1 contains the address of a stack control block. PW moves the 
top word from the stack into register 5. After this PW executes, the Top Element Address 
pointer is updated and points to the next word to be popped. 

This instruction moves a byte from a register and places it into a stack. 

Name Operation Operand 

[label] PSB reg, addr4 

PSB moves bits 8-15 from the reg into the stack; reg is unchanged. 
After PSB executes, the Top Element Address pointer in the stack control block points 

to the byte just pushed into the stack. 

All indicators are unchanged. 

PS8 R2, (RJ) 

In this example, RI contains the address of a stack control block. PSB pushes bits 8-15 
from R2 into the stack. After this PSB executes, the Top Element Address pointer is 
updated, and points to the byte just pushed into the stack. R2 is unchanged. 



Push Doubleword ( PSD) 

Indicators 

PSD Example 

Push Word (PSW) 

Indicators 

PSW Example 

This instruction moves a doubleword from a register pair and places it into a stack. 

Name Operation Operand 

[label) PSD reg, addr4 

After PSD executes, the Top Element Address pointer in the stack control block points 
to the doubleword just pushed into the stack. The register pair is unchanged. 

All indicators are unchanged. 

PSD RS,(Rl) 

In this example, Rl contains the address of a stack control block. PSD pushes the 
contents of registers 5 and 6 into the stack. After this PSD executes, the Top Element 
Address pointer is updated, and points to the doubleword just pushed into the stack. RS 
and R6 are unchanged. 

This instruction moves a word from a register and places it into a stack. 

Name Operation Operand 

[label) PSW reg, addr4 

After PSW executes, the Top Element Address pointer in the stack control block points 
to the word just pushed into the stack. The register is unchanged. 

All indicators are unchanged. 

PSW R4, (Rl) 

In this example, Rl contains the address of a stack control block. PSW pushes the 
contents of R4 into the stack. After this PSW executes, the Top Element Address pointer 
is updated, and points to the word just pushed into the stack. R4 is unchanged. 

Machine Instructions 4-83 



COMPARE INSTRUCTIONS 

Using Compare Instructions 

4-84 SC34-0074 

For a compare instruction, you code two operands. The operands are compared, and 
indicators are set to reflect the result. Results of the compare can be tested arithmetically 
or logically. Both operands remain unchanged. 

Note. A compare operation actually subtracts the first operand from the second, then sets 
indicators to reflect the result. Both operands are unchanged. The result is expressed in 
terms of the second operand relative to the first; for example, arithmetically greater than 
means that the second operand is greater than the first. 

An arithmetic test looks at the value of each openmd, while a logical test looks for the 
operand with the most significant bit ON. For example, code a compare with the 
operands A,B. Assume that the value of A is -31, and.the value of Bis +57. An arithmetic 
test would look at the values and determine that B<A. A logical test would look at the 
individual bits: 

-31=1110 0001 

+57 = 0011 1001 

Because -31 (the A value) has its most significant bits ON, the logical test determines that 
B<A. 

You can interpret a compare instruction as either arithmetic or logical, depending on 
the indicators you test after it executes. For example, if the operands on a compare 
instruction are A,B, here is how the indicators are set: 

If the result of compare A, Bis These indicators are set 

(Arithmetic) 
B=A Z=l 
B:#=A Z=O 
B<A (N = 1, V = 0) or (N = 0, V = 1) 
B<;A (N = 1, V = 0) or (N = 0, V = 1) or Z = 1 
B>A [(N = 1, V = 1) or (N = 0, V = 0)) and Z = 0 
B ;o,A (N = 1, V = 1) or (N = 0, V = 0) 

(Logical) 
B>A (C = 0, Z = 0) 
B;;;i.A C=O 
B<A C=l 
B<;A C=lorZ=l 

The abbreviations used for the indicators are: 

• Z-zero 
• N-negative 
• V-overflow 
• C-carry. 



Compare Byte (CB) 

Indicators 

CB Example 

This instructions compares: 

• A byte in a register (bits 8-15) to a byte in storage, or 
• A byte in storage to a byte in storage, 

and sets indicators to reflect the result. 

Name Operation Operand 

[label] CB 
addr4, reg 
addr5, addr4 

See "Using Compare Instructions" for a description of the indicator settings. 

CB BYTE+3,R4 

Assume that the byte at location BYTE+3 contains X'02' and bits 8-15 of register 4 
contain X'FD'. CB compares the two values, and sets arithmetically less than and logically 
greater than conditions. 

Compare Byte Field Equal and Decrement (CFED) 
This instruction compares successive (right-to-left) bytes in one field to corresponding 
bytes in another field. It compares two bytes at a time until it finds an equal condition 
OR until it has exhausted the length count. 

Name Operation Operand 

[label] CFED (reg), (reg) 

Before coding CFED, code an instruction to load register 7 with the number of bytes in 
each field. Both fields are the same size. (If register 7 contains 0, CFED is treated as a 
no-operation.) 

CFED compares the rightmost byte in the second field to the rightmost byte in the first 
field, and sets indicators to reflect the result. The contents of both registers are decreased 
by 1, and now point to the bytes to the left of the ones just compared. If the two bytes 
were equal, CFED is finished. If they were not equal, the contents of R7 are decreased by 
1, and the next bytes to the left are compared. 

Machine Instructions 4-85 



Indicators 

4-86 SC34-007 4 

When CFED is finished: 

• R 7 contains 0 (if CFED found no equal condition) or the number of byte pairs not 
compared, plus 1 (if it found an equal condition). 

• The first operand (reg) points to the byte to the left of the last byte compared in the 
first field. 

• The second operand (reg) points to the byte to the left of the last byte compared in 
the second field. 

Compare bytes 
and set indicators 

Decrease 
addresses of 
byte fields 

Subtract 1 
from R7 

Yes 
End of CFED 

Yes 
End of CFED 

When CFED is finished, the indicators reflect the result of the last compare. See "Using 
Compare Instructions" for a description of the indicator settings. 



CFED Example 

CFED (R3), (l\i) 

Assume that: 

• R7 contains X'0003'. 
• The field whose starting address is in R3 contains, in hexadecimal: 

21 21 21 

{R3 points to the rightmost byte). 

• The field whose starting address is in RO contains, in hexadecimal: 

22 23 24 

{RO points to the rightmost byte, X'24'). 

CFED compares the rightmost byte in the second field, X'24', to the rightmost byte in 
the first field, X'21 '. RO and R3 are decreased by 1, and now point to the next bytes to 
the left {RO points to X'23' and R3 points to X'21 '). Because the two bytes were not 
equal, register 7 is decreased by 1, and CFED compares X'23' to X'21 '. Because there will 
be no equal condition, CFED continues until register 7 contains 0. When CFED is 
finished, RO points to the byte to the left of X'22', and R3 points to the byte to the left 
of the leftmost X'21 '. 

Compare Byte Field Equal and Increment (CFEN) 

Indicators 

This instruction compares successive {left-to-right) bytes in one field with corresponding 
bytes in another field. It compares one byte pair at a time until it finds an equal 
condition OR until it has exhausted the length count. 

Name Operation Operand 

[label] CFEN (reg), (reg) 

Code CFEN like CFED, with one exception. Load the registers with the addresses of 
the leftmost bytes in the fields. 

CFEN compares the leftmost byte in the second field to the leftmost byte in the first 
field, and sets indicators to reflect the result. Both registers are increased by 1, and now 
point to the bytes to the right of the ones just compared. If the two bytes were equal, 
CFEN is finished. If they were not equal, register 7 is decreased by 1, and the next bytes 
to the right are compared. When CFEN is finished: 

• R7 contains 0 {if CFEN found no equal condition) or the number of byte pairs not 
compared, plus 1, (if it found an equal condition). 

• The first operand (reg) points to the byte to the right of the last byte compared in the 
first field. 

• The second operand (reg) points to the byte to the right of the last byte compared in 
the second field. 

When CFEN is finished, the indicators reflect the result of the last compare. See "Using 
Compare Instructions" for a description of the indicator settings. 

Machine Instructions 4-87 



CFEN Example 

Assume that: 

• R7 contains X'OOOS'. 
• The field whose starting address is in R4 contains, in hexadecimal: 

Fl F3 FS F7 F9 

(R4 points to the leftmost byte, X'Fl '). 

• The field whose starting address is in R3 contains, in hexadecimal: 

Fl F2 F3 F4 FS 

(R3 points to the leftmost byte, X'Fl '). 

CFEN compares the leftmost byte in the second field, X'Fl ', to the leftmost byte in 
the first field, X'Fl '. R3 and R4 are increased by 1, and now point to the next bytes to 
the right (R3 points to X'F2' and R4 points to X'F3'). Because the two bytes were equal, 
CFEN is finished. R7 contains X'OOOS', R4 points to X'F3' in the second field, and R3 
points to X'F2' in the first field. 

Compare Byte Field Not Equal and Decrement (CFNED) 

Indicators 

4-88 SC34-0074 

This instruction compares successive (right-to-left) bytes in one field with corresponding 
bytes in another field. It compares one byte pair at a time until it finds a not equal 
condition OR until it has exhausted the length count. 

Name Operation Operand 

[label] CF NED (reg), (reg) 

Code CFNED exactly like CFED. 
CFNED compares the rightmost byte in the second field to the rightmost byte in the 

first field, and sets indicators to reflect the result. Both registers are decreased by 1, and 
now point to the bytes to the left of the ones just compared. If the two bytes were not 
equal, CFNED is finished. If they were equal, register 7 is decreased by 1, and the next 
bytes to the left are compared. When CFNED is finished: 

• R7 contains 0 (if CFNED did not find a not equal condition) or the number of byte 
pairs not compared, plus 1 (if it found a not equal condition). 

• The first operand (reg) points to the byte to the left of the last byte compared in the 
first field. 

• The second operand (reg) points to the byte to the left of the last byte compared in 
the second field. 

When CFNED is finished, the indicators reflect the result of the last compare. See "Using 
Compare Instructions" for a description of the indicator settings. 



CFNED Example 

. CFN£D (RS),(Rl) 

Assume that: 

• R7 contains X'0008'. 
• The field whose starting address is in RS contains, in hexadecimal: 

02 24 46 68 8A AC CE EO 

(RS points to the rightmost byte, X'EO'). 

• The field whose starting address is in Rl contains, in hexadecimal: 

00 00 00 00 00 AC CE EO 

(Rl points to the rightmost byte, X'EO'). 

CFNED compares the rightmost byte in the second field, X'EO', to the rightmost byte 
in the first field, also X'EO'. RS and RI are decreased by 1, and now point to the next 
byte pair to the left. Because the two bytes were equal, register 7 is decreased by 1, and 
CFNED compares the next bytes in the field. CFNED continues until it compares X'OO' 
(in the second field) to X'8A' (in the first field). RS and Rl are decreased by 1, and point 
to the next pair to the left. Because the two compared bytes were not equal, CFNED is 
finished. R7 contains X'OOOS', RS points to X'68' in the first field, and Rl points to 
X'OO' in the second field. 

Compare Byte Field Not Equal and Increment (CFNEN) 

Indicators 

This instruction compares successive (left-to-right) bytes in one field with corresponding 
bytes in another field. It compares one byte pair at a time until it finds a not equal 
condition OR until it has exhausted the length count. 

Name Operation Operand 

[label] CFNEN (reg), (reg) 

Code CFNEN exactly like CFEN. 
CFNEN compares the leftmost byte in the second field to the leftmost byte in the first 

field, and sets indicators to reflect the result. Both registers are increased by 1, and now 
point to the bytes to the right of the ones just compared. If the two bytes were not equal, 
CFNEN is finished. If they were equal, register 7 is decreased by 1, and the next bytes to 
the right are compared. When CFNEN is finished: 
• R7 contains 0 (if CFNEN did not find a not equal condition) or the number of byte 

pairs not compared, plus 1 (if it found a not equal condition). 
• The first operand (reg) points to the byte to the right of the last byte compared in the 

first field. 
• The second operand (reg) points to the byte to the right of the last byte compared in 

the second field. 

When CFNEN is finished, the indicators reflect the result of the last compare. See "Using 
Compare Instructions" for a description of the indicator settings. 

Machine Instructions 4-89 



CFNEN Example 

CFNEN (R4) • (fU) 

Assume that: 

• R 7 contains X'OOOD'. 
• The field whose starting address is in R4 contains, in hexadecimal: 

FF FF FF I2 I2 I2 I2 I2 I2 I2 I2 I2 I2 

(R4 points to the leftmost byte,X'FF'). 

• The field whose starting address is in RI contains, in hexadecimal: 

I2 FF FF FF FF FF FF FF FF FF FF FF FF 

(RI points to the leftmost byte, X'I2'). 

CFNEN compares the leftmost byte in the second field, X'I2', to the leftmost byte in 
the first field, X'FF'. R4 and RI are increased by I, and now point to the next bytes to 
the right. Because the two bytes were not equal, CFNEN is finished. R7 contains 
X'OOOD', RI and R4 point to the bytes to the right of the ones just compared. 

Compare Byte lmmedittte (CBI) 

Indicators 

CBI Example 

4-90 SC34-0074 

This instruction compares a specified register to a I-byte absolute value or expression, 
and sets indicators to reflect the result. 

Name Operation Operand 

[label] CBI byte, reg 

For byte, code an 8-bit value in the range-I28 to I27 (arithmetic) or 0 to 255 (logical). 
CBI expands this value to I 6 bits by propagating the sign bit to the left of the byte value. 
This value is then used in the comparison. 

See "Using Compare Instructions" for a description of the indicator settings. 

~Bl 12S,R7 

Assume that R7 contains X'02A6'. CBI expands X'7D' (the equivalent of decimal I25) to 
I 6 bits by propagating the sign bit (zero) to the left. CBI then compares X'02A6' to 
X'007D', and sets arithmetically greater than and logically greater than conditions. 



Compare Doubleword (CD) 

Indicators 

CD Example 

Compare Word (CW) 

Indicators 

CW Example 

This instruction compares: 

• A doubleword in a register pair to a doubleword in storage, or 
• A doubleword in storage to a doubleword in storage, 

and sets indicators to reflect the result. 

Name Operation Operand 

[label] CD 
addr4, reg 
addr5, addr4 

See "Using Compare Instructions" for a description of the indicator settings. 

Cl>. OWQRD • R2 

Assume that: 

• DWORD contains X'OOE4E1CO', and 
• The register pair R2,R3 contains X'058F3A66'. 

CD compares the two values, and sets arithmetically greater than and logically greater 
than conditions. 

This instruction compares: 

• A word in a register to a word in a register, 
• A word in a register to a word in storage, or 
• A word in storage to a word in storage, 

and sets indicators to reflect the result. 

Name Operation Operand 

reg, reg 
[label] cw addr4, reg 

addr5, addr4 

See "Using Compare Instructions" for a description of the indicator settings. 

Assume that WORD contains X'369C' and register 3 contains X'OD02'. CW compares the 
two values, and sets arithmetically less than and logically less than conditions. 

Machine Instructions 4-91 



Compare Word Immediate (CW/) 

Indicators 

CWI Example 

This instruction compares: 

• A word in a register to a I-word absolute value or expression, or 
• A word in storage to a I-word absolute value or expression, 

and sets indicators to reflect the result. 

Name Operation Operand 

[label] CWI 
word, reg 
word, addr4 

See "Using Compare Instructions" for a description of the indicator settings. 

The immediate word value is equal to X'FD02'. Assume that register 0 contains X'369C'. 
CWI compares the values, and sets arithmetically greater than and logically less than 
conditions. 

Scan Byte Field Equal and Decrement (SFED) 

Indicators 

4-92 SC34-0074 

This instruction compares successive bytes in a field (right-to-left) to a byte in a register 
until it either finds an equal condition or exhausts the length count. 

Name Operation Operand 

[label] SFED reg, (reg) 

Before coding SFED, code instructions to: 

• Load register 7 with the number of bytes in the field to be scanned. 
• Load reg so that bits 8-IS of the register contain the byte that the field, is to be 

scanned for. 
• Load the (reg) register with the address of the rightmost byte in the field to be 

scanned. 

SFED compares the rightmost byte in the field to the reg byte, and sets indicators to 
reflect the result. The (reg) register is decreased by I, and now points to the byte to the 
left of the one just compared. If the two bytes were equal, SFED is finished. If they were 
not equal, register 7 is decreased by I, and the next byte is compared. 

When SFED is finished, the indicators reflect the result of the last compare. See "Using 
Compare Instructions" for a description of the indicator settings. 



SFED Example 

.. SFED R2,(R4) 

Assume that: 

• Register 7 contains X'0003', the size of the byte field to be scanned. 
• Bits 8-15 of register 2 contain X'6D', the byte to be compared to the field. 
• The contents of the byte field defined by register 4 are, in hexadecimal: 

A4 6D 53 

where R4 points to the rightmost byte in the field (X'53'). 

SPED compares X'53' to X'6D', then decreases R4 by 1. Because the two bytes were 
not equal, SPED decreases R 7 by 1. Now, R4 points to the next byte to the left of the 
one just compared, and R7 contains X'0002', the number of bytes yet to be compared. 
SPED compares the byte in the field (X'6D') to the R2 byte (X'6D'), and again decreases 
R4 by 1. Because the two bytes were equal, SPED is done. R4 points to X'A4', and R7 
contains X'0002'. 

Scan Byte Field Equal and Increment (SFENJ 

Indicators 

SFEN Example 

This instruction compares successive bytes in a field (left-to-right) to a byte in a register 
until it either finds an equal condition or exhausts the length count. 

Name Operation Operand 

[label] SFEN reg, (reg) 

Before coding SPEN, code instructions to: 

• Load register 7 with the number of bytes in the field. 
• Load reg so that bits 8-15 of the register contain the byte that the field is to be 

scanned for. 
• Load the (reg) register with the address of the leftmost byte in the field. 

SPEN compares the leftmost byte in the field to the reg byte, and sets indicators to 
reflect the result. The (reg) register is increased by 1, and now points to the byte to the 
right of the one just compared. If the two bytes were equal, SFEN is finished. If they 
were not equal, register 7 is decreased by 1, and the next byte is compared. 

When SFEN is finished, the indicators reflect the result of the last compare. See "Using 
Compare Instructions" for a description of the indicator settings. 

SFEN RS, (Rl) 

Assume that: 

• Register 7 contains X'0005', the size of the byte field to be scanned. 
• Bits 8-15 of register 5 contain X'OO', the byte to be compared to the field. 
• The contents of the byte field defined by register 1 are, in hexadecimal: 

10 83 BS 4A FF 

where Rl points to the leftmost byte in the field (10). 

Machine Instructions 4-93 



SFEN compares X'lO' to X'OO\ then increases RI by 1. Because the two bytes were 
not equal, SFEN decreases R7 by 1. Now, RI points to the next byte to the right of the 
one just compared, and R7 contains X'0004', the number of bytes yet to be compared. 
Because no byte in the field is equal to the byte in RS, SFEN compares until it exhausts 
the field. When SFEN is finished, RI points to the byte to the right of X'FF'. R7 
contains X'OOOO'. 

Scan Byte Field Not Equal and Decrement (SFNED) 

Indicators 

SFNED Example 

4-94 SC34-0074 

This instruction compares successive bytes in a field (right-to-left) to a byte in a register 
until it either finds a not equal condition or exhausts the length count. 

Name Operation Operand 

[label] SF NED reg, (reg) 

Code SFNED exactly like SPED. 
SFNED compares the rightmost byte in the field to the reg byte, and sets indicators to 

reflect the result. The (reg) register is decreased by 1, and now points to the byte to the 
left of the one just compared. If the two bytes were not equal, SFNED is finished. If they 
were equal, register 7 is decreased by I, and the next byte is compared. 

When SFNED is finished, the indicators reflect the result of the last compare. See "Using 
Compare Instructions,, for a description of the indicator settings. 

SFNED R3,(R6) 

Assume that: 

• Register 7 contains X'0009', the size of the byte field to be scanned. 
• Bits 8-15 of register 3 contain X'FF', the byte to be compared to the field. 
• The contents of the field defined by register 6 are, in hexadecimal: 

FF FF 00 FF FF FF FF FF FF 

where R6 points to the rightmost byte in the field. 

SFNED compares the rightmost byte in the field to the reg byte, then decreases R6 by 
1. Because the two bytes were equal, SFNED decreases R7 by I, and compares the next 
byte to the left. SFNED continues until it reaches the byte X'OO'. It compares the reg 
byte to X'OO', decreases R6 by 1, and, because the two bytes were unequal, SFNED is 
finished. R7 contains x'0003'. 



Scan Byte Field Not Equal and Increment (SFNEN) 

Indicators 

SFNEN Example 

This instruction compares successive bytes in a field (left-to-right) with a byte in a register 
until it either finds a not equal condition or exhausts the length count. 

Name Operation Operand 

[label] SFNEN reg, (reg) 

Code SFNEN exactly like SFEN. 
SFNEN compares the leftmost byte in the field to the reg byte, and sets indicators to 

reflect the result. The (reg) register is increased by 1, and now points to the byte to the 
right of the one just compared. If the two bytes were not equal, SFNEN is finished. If 
they were equal, register 7 is decreased by 1, and the next byte is compared. 

When SFNEN is finished, the indicators reflect the result of the last compare. See "Using 
Compare Instructions" for a description of the indicator settings. 

SFNEN Rj/, (Rl) 

Assume that: 

• Register 7 contains X'0004'. 
• Bits 8-15 of RO contain X'OO'. 
• The byte field defined by Rl contains: 

00 00 00 00 

where Rl points to the leftmost byte. 

Because the reg byte is equal to every byte in the field, SFNEN compares until R 7 
contains X'OOOO'. When SFNEN is finished, Rl points to the right of the last byte 
compared. 

Machine Instructions 4-95 



LOGICAL INSTRUCTIONS 

AND Word Immediate (NW/) 

Indicators 

NWI Example 

Exclusive OR Byte (XB) 

Indicators 

4-96 SC34-0074 

This instruction performs an AND operation between an immediate word value and a 
register. 

Name Operation Operand 

[label] NWI word, reg[,reg] 

Note the optional third operand. If you code this third operand, NWI places its result 
into that register, leaving the second operand unchanged. Otherwise, the result is placed 
in the register specified by the second operand. In either case, the word operand remains 
unchanged. 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
result. 

\ 

NW I x I 1 3A l' II R6 II R3 

In this example, the immediate value looks like this: 

0001 0011 1010 0001 

Assume that register 6 contains: 

0101 1101 1110 0111 

The result that NWI places in register 3 is: 

0001 0001 1010 0001 

This instruction performs an exclusive OR between a byte in a register and a byte in 
storage. 

Name Operation Operand 

[label] XB 
reg, addr4 
addr4, reg 

If you code the reg,addr4 form, XB exclusive ORs bits 8-15 of reg and the byte at 
addr4, placing the result at addr4. The register is unchanged. 

In the addr4,reg form, XB places the result in bits 8-15 of reg, leaving bits 0-7 
unchanged. The byte at addr4 is not altered. 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
8-bit result. 



XB Example 

Assume that the byte at BYTE6 contains: 

0001 1101 

and bits 8-15 of register 3 contain: 

0110 0110 

The result that XB places in bits 8-15 of R3 is: 

0111 1011 

Exclusive OR Doubleword ( XD) 

Indicators 

XD Example 

This instruction performs an exclusive OR between a doubleword in a register pair and a 
doubleword in storage. 

Name Operation Operand 

[label] XD 
reg, addr4 
addr4, reg 

For the reg operand, code the fust register of a pair. If you code R3, for example, XD 
uses the register pair R3,R4. If you code R7, XD uses the pair R7 ,RO. 

XD exclusive ORs the first operand to the second, and places the result in the second 
operand. The first operand remains unchanged. 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
32-bit result. 

XD DWORD,R7 

Assume that the doubleword at DWORD contains: 

0111 1011 0001 1101 0110 0110 0111 1011 
and the register pair R7 ,RO contains: 

0001 1101 0110 0110 0111 1011 1011 1100 
The result that XD places in R7 ,RO is: 

0110 0110 0111 1011 0001 1101 1100 0111 

Machine Instructions 4-97 



Exclusive OR Word (XW) 

Indicators 

:XW Example 

':;.· 

This instruction performs an exclusive OR between: 

• A register and a register, or 
• A register and a word in storage. 

Name Operation Operand 

reg, reg 

[label] xw reg, addr4 
addr4, reg 
longaddr, reg 

XW exclusive ORs the first operand to the second, placing the result in the second 
operand. The first operand remains unchanged. 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
16-bit result. 

In this example (coded in longaddr,reg form), the first operand is the word whose address 
is the contents of storage at the location defined by register 6. Assume that this word 
contains: 

0110 0111 0001 1100 

and register 0 contains: 

0111 1011 0001 1101 
The result that XW places in RO is: 

0001 1100 0000 0001 

Exclusive OR Word Immediate ( XWI) 

Indicators 

4-98 SC34-0074 

This instruction performs an exclusive OR between a I-word absolute expression and a 
register. 

Name Operation Operand 

[label] XWI word, reg[,reg] 

Note that there is an optional third operand. If you code it, XWI places the result in 
this register, leaving the second operand unchanged. Otherwise, the result is placed in the 
register defined by the second operand. In either case, the word operand remains 
unchanged. 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
16-bit result. 



XWI Example 

Invert Register (VR) 

Indicators 

YR Example 

The immediate value, X'06BD', looks like this: 

0000 0110 1011 1101 

Assume that RI contains: 

0110 1001 1000 0001 

The value that XWI places in RS is: 

0110 1111 0011 1100 

This instruction produces the ones complement of the contents of the specified register. 

Name Operation Operand 

[label] VR reg(,reg] 

Note the optional second operand. If you code this register, VR places the result (in 
ones complement form) in that register, leaving the first operand unchanged. If you don't 
code the second operand, VR places the complement back into the source register. 

The carry indicator and overflow indicators are unchanged. The other indicators are 
changed to reflect the result. 

VJ\ R3 ,Rlt 

Assume that register 3 contains: 

I 0011 0100 0101 0110 I 
0 15 

After execution of YR, register 4 contains: 

11100 1011 1010 1001] 
0 15 

Register 3 is unchanged. 

Machine Instructions 4-99 



OR Byte(OB) 

Indicators 

OB Example 

OR Doubleword (OD) 

4-100 SC34-0074 

This instruction performs an OR operation between: 

• A byte in a register and a byte in storage, or 
• A byte in storage and another byte in storage. 

Name Operation Operand 

reg, addr4 
[label] OB addr4, reg 

addr5, addr4 

If you code the reg,addr4 form, OB ORs bits 8-15 of reg.and the byte at addr4, placing 
the result at addr4. The register is unchanged. 

In the addr4,reg form, OB places the result in bits 8-15 of reg, leaving bits 0-7 
unchanged. The byte at addr4 is not altered. 

If you code addr5,addr4, the result is placed at addr4, leaving addr5 unchanged. 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
8-bit result. 

OB (RS)*, (R2)* 

In this example (coded in addr5,addr4 form), the first operand is the byte in storage 
whose address is the contents of storage at the location defined by register 5. Assume that 
this byte contains: 

0111 0001 

The second operand is the byte in storage whose address is the contents of storage at 
the location defined by register 2. Assume that this byte contains: 

0001 0100 

The result that OB places in the byte specified by the second operand is: 

0111 0101 

This instruction performs an OR operation between: 

• A doubleword in a register pair and a doubleword in storage, or 
• A doubleword in storage and another doubleword in storage. 

Name Operation Operand 

reg, addr4 
[label] OD addr4, reg 

addr5, addr4 

For the reg operand, code the first register of a pair. If you code R3, for example, OD 
uses registers 3 and 4. If you code R7, OD uses the pair R7 ,RO. 

OD ORs the first operand to the second, and places the result in the second operand. 
The first operand remains unchanged. 



Indicators 

OD Example 

OR Word(OW) 

Indicators 

OW Example 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
32-bit result. 

OD, (Rl), (Rl) 

In this example (coded in addr5,addr4 form), the first operand is the doubleword in 
storage whose address is in register 7. Assume that this doubleword contains: 

0110 0110 0111 1011 0001 1101 1100 0111 
The second operand is the doubleword in storage whose address is the contents of 

register 1. Assume that this doubleword contains: 

0111 1011 0001 1101 0110 0110 0111 1011 
The result that OD places in the doubleword defined by the second operand is: 

0111 1111 0111 1111 0111 1111 1111 1111 

This instruction performs an OR operation between: 

• A register and a register, 
• A register and a word in storage, or 
• A word in storage and another word in storage. 

Name Operation Operand 

reg, reg 
reg, addr4 

[label] ow addr4, reg 
longaddr, reg 
addr5, addr4 

OW ORs the first operand to the second, and places the result in the second operand. 
The first operand remains unchanged. 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
result. 

OW (R5,3),R4 

In this example (coded in longaddr,reg form), the first operand is the word in storage that 
is 3 bytes past the address specified by register 5. Assume that this word contains: 

0111 1011 0001 1101 
and register 4 contains: 

0001 1100 0000 0001 
The result that OW places in register 4 is: 

0111 1111 0001 1101 

Machine Instructions 4-101 



OR Word Immediate (OW/) 

Indicators 

OWi Example 

Reset Bits Byte (RBTB) 

Indicators 

4-102 SC34-007 4 

This instruction performs an OR operation between: 

• A 1-word absolute expression and a register, or 
• A 1-word absolute expression and a word in storage. 

Name Operation Operand 

[label) OWi 
word, reg[,reg] 
word,addr4 

Note the optional third operand in the word,reg,[regj form. If you code this third 
operand, the result of the OR is placed in the register you code, leaving the second 
operand unchanged. Otherwise, OWi places the result in the register specified for the 
second operand. In either case, the word operand remains unchanged. 

If you code the word,addr4 form, the result is placed in addr4, leaving the word 
operand unchanged. 

Note. The word operand is an absolute value or expression in the range -32768 to 
+32767 or 0 to 65535. 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
result. 

ow:1 X:' I 3A1 • , WORD 

In this example (coded in word,addr4 form), the immediate value looks like this: 

0001 0011 1010 0001 

Assume that the word at storage location WORD is: 

0100 0101 0110 0111 

The result that OWi places in WORD is: 

0101 0111 1110 0111 

This instruction operates on a byte, setting specified bits to zero. 

Name Operation Operand 

reg, addr4 
[label] RBTB addr4, reg 

addr5, addr4 

RBTB finds the bits that are on in the byte defined by the first operand. It then turns 
off the corresponding bits in the byte defined by the second operand. The first operand is 
unchanged. 

If you code the reg,addr4 form or the addr4,reg form, RBTB uses bits 8-15 of reg, 
leaving bits 0-7 unchanged. 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
8-bit result. 



RBTB Example 

RBTB R3,BYTES 

In this example (coded in reg,addr4 form), assume that bits 8-15 of R3 contain: 
0111 0010 

and the byte at BYTES contains: 

0010 1111 

Because the 1, 2, 3, and 6 bits of the R3 byte are on, RBTB turns off the corresponding 
bits in BYTES: 

0000 1101 

Reset Bits Doubleword ( RBTD) 

Indicators 

RBTD Example 

This instruction operates on a doubleword, setting specified bits to zero. 

Name Operation Operand 

reg, addr4 
[label] RBTD addr4, reg 

addr5, addr4 

RBTD finds the bits that are on in the doubleword defined by the first operand. It then 
turns off the corresponding bits in the doubleword defined by the second operand. The 
first operand is unchanged. 

For reg, code the first register of a pair. For example, if you code RS, RBTD uses 
registers Sand 6. If you code R7, RBTD uses the pair R7 ,RO. 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
result. 

RBTD 4(R3,48)*,R6 

In this example (coded in addr4,reg form), the location of the doubleword defined by 
addr4 is computed as follows: The contents of R3, added to 48, form an address. The 
contents of storage at that location are added to 4, forming the address of the 
doubleword. Assume that this doubleword contains: 

0011 0101 0110 0111 1111 1110 1101 1100 

and the register pair R6,R 7 contains: 

0000 0010 0100 0110 1000 1100 1110 1111 

RBTD finds the bits that are on in the first operand, and sets the corresponding bits off 
in the second operand. The result that RBTD leaves in R6,R7 is: 

0000 0010 0000 0000 0000 0000 0010 0011 

Machine Instructions 4-103 



Reset Bits Word (RBTW) 

Indicators 

RBTW Example 

This instruction operates on a word, setting specified bits to zero. 

Name Operation Operand 

reg, reg 
reg, addr4 

[label] RBTW addr4, reg 
longaddr, reg 
addr5, addr4 

RBTW finds the bits that are on in the word defined by the first operand. It then turns 
off the corresponding bits in the word defined by the second operand. The first operand 
is unchanged. 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
result. 

, RBifW ( R6 I 36) * I (R2) + 

In this example (coded in addr5,addr4 form), the location of the word defined by addr5 
is computed as follows: The contents of R6, plus 36, form an address. The contents of 
storage at that location are the address of the word. Assume that this word contains: 

0000 0100 0101 0111 
The second word is at the address defined by the contents of R2. (After RBTW, R2 is 

increased by 2, the number of bytes addressed by this instruction.) Assume that this word 
contains: 

1100 1111 1011 0001 
The result that RBTW leaves in the second operand is: 

1100 1011 1010 0000 

Reset Bits Word Immediate (RBTWI) 

4-104 SC34-007 4 

This instruction operates on a word, setting to zero the bits specified by an immediate 
value. 

Name Operation Operand 

[label] RBTWI 
word, addr4 
word, reg[,reg] 

RBTWI finds the bits that are on in the immediate value defined by the word operand. 
It then turns off the corresponding bits in the word defined by the second operand. The 
first operand remains unchanged. 

Note the optional third operand in the word,reg[,reg] form. If you code this register, 
RBTWI places the result there, leaving the second operand unchanged. If you do not code 
the third operand, the result is placed in the second operand. 



Indicators 

RBTWI Example 

Test Bit (TBT) 

Indicators 

TBT Example 

The carry and overflow indicators are unchanged. The remaining indicators reflect the 
result. 

RBTWI X'4567',R/l',R1 

In this example (coded in word,reg[,reg] form), the immediate word value looks like this: 
0100 0101 0110 0111 

Assume that RO contains: 

0111 0110 0101 0100 

The result that RBTWI places in Rl is: 

0011 0010 0001 0000 

The immediate value and RO are unchanged. 

This instruction tests a single bit, and sets an indicator to reflect the result. 

Name Operation Operand 

[label] TBT (reg, bitdisp) 

To find the bit to be tested, TBT uses the contents of reg as a byte address, and the 
value of bitdisp as a displacement from the byte address. 

Note. Bitdisp must be in the range 0-63. 

Here is what TBT does: 

• It turns off the zero and negative indicators, then 
• It tests the specified bit. 
• If the bit is zero, TBT turns on the zero indicator; if the bit is one, TBT turns on the 

negative indicator. 

The zero and negative indicators reflect the result of the test. The remaining indicators 
are unchanged. 

TBT (R7 ,3) 

Assume that: 

• R7 contains X'0420'. 
• The byte at address 0420 contains: 

0000 1111 

TBT turns off the zero and negative indicators, then tests bit number 3 (the fourth bit 
in the byte). Because the bit is zero, TBT turns on the zero indicator. 

Machine Instructions 4-105 



Test Bit and Invert (TBTV) 

Indicators 

TBTV Example 

Test Bit and Reset (TBTR) 

Indicators 

4-106 SC34-0074 

This instruction tests a single bit, and sets an indicator to reflect the result. After setting 
the appropriate indicator, TBTV unconditionally inverts the tested bit. 

Name Operation Operand 

[label] TBTV (reg, bitdisp) 

TBTV computes the address of the bit in the same way as TBT, and follows the same 
procedure for testing the bit and setting the indicator. 

The zero and negative indicators reflect the result of the test. The remaining indicators 
are unchanged. 

TBTV (R7 ,3) 

Assume that: 

• R7 contains X'0420'. 
• The byte at address 0420 contains: 

0000 1111 

TBTV turns off the zero and negative indicators, then tests bit number 3 (the fourth bit 
in the byte). Because the bit is zero, TBTV turns on the zero indicator. TBTV inverts the 
tested bit, and the byte now looks like this: 

0001 1111 

This instruction tests a single bit, and sets an indicator to reflect the result. After setting 
the appropriate indicator, TBTR unconditionally sets the tested bit to zero. 

Name Operation Operand 

[label] TBTR (reg, bitdisp) 

TBTR computes the address of the bit in the same way as TBT, and follows the same 
procedure for testing the bit and setting the indicator. 

The zero and negative indicators reflect the result of the test. The remaining indicators 
are unchanged. 



TBTR Example 

Test Bit and Set (TBTS) 

Indicators 

TBTS Example 

TBTR (R2,fi) 

Assume that: 

• R2 contains X'0348'. 
• The byte at address 0348 contains: 

1010 1110 

TBTR turns off the zero and negative indicators, then tests bit number 0 (the first bit in 
the byte). Because the bit is one, TBTR turns on the negative indicator. TBTR sets the 
tested bit to zero, and the byte now looks like this: 

0010 1110 

This instruction tests a single bit, and sets an indicator to reflect the result. After setting 
the appropriate indicator, TBTS unconditionally sets the tested bit to one. 

Name Operation Operand 

[label] TBTS (reg, bitdisp) 

TBTS computes the address of the bit in the same way as TBT, and follows the same 
procedure for testing the bit and setting the indicator. 

The zero and negative indicators reflect the result of the test. The remaining indicators 
are unchanged. 

TBTS (R3,5) 

Assume that: 

• R3 contains X'8680'. 
• The byte at address 8680 contains: 

1101 0010 
TBTS turns off the zero and negative indicators, then tests bit number 5 (the sixth bit 

in the byte). Because the bit is zero, TBTS turns on the zero indicator. TBTS sets the 
tested bit to one, and the byte now looks like this: 

1101 0110 

Machine Instructions 4-107 



Test Word Immediate (TWI) 

Indicators 

TWI Example 

4-108 SC34-0074 

This instruction tests specified bits within a word, and sets an indicator to reflect the 
result. 

Name Operation Operand 

[label] TWI 
word, reg 
word, addr4 

For the word operand, code a I-word mask. TWI finds the bits that are on in the mask 
and tests the corresponding bits in the word defined by the second operand. TWI clears 
the zero and negative result indicators, then sets them as follows: 

• If the mask bits OR all of the tested bits are zeros, TWI turns on the zero indicator. 
• If all the tested bits are ones, TWI turns on the negative indicator. 
• If the tested bits are a combination of zeros and ones, TWI sets no indicators (sets a 

positive condition). 

The even, carry, and overflow indicators are unchanged. The remaining indicators reflect 
the result. 

rw1 x• 13A1 • ,R4 

The word mask looks like this: 

0001 0011 1010 0001 
Assume that R4 contains: 

1011 0111 1110 0001 
Because all the tested bits are ones, TWI turns on the negative indicator. 



PROCESSOR STATUS INSTRUCTIONS 

Copy Level Status Register (CPLSR) 

Indicators 

CPLSR Example 

Set Indicators (SE/ND) 

Indicators 

This instruction loads the contents of the current Level Status Register (LSR) into a 
specified register. 

Name Operation Operand 

[label] CPLSR reg 

Note. For information about the contents of the LSR see Chapter 3 of this manual. 

All indicators are unchanged. 

CPLSR RS 

The contents of the LSR are placed in RS, and the LSR remains unchanged. 

This instruction stores the contents of bits 0-4 of a specified register into the result 
indicators in the Level Status Register (bits 0-4). 

Name Operation Operand 

[label] SE IND reg 

SEIND stores bits 0-4 of reg into the even, carry, overflow, negative, and zero 
indicators. Bits 5-15 of the Level Status Register are unchanged. Bits 5-15 of the 
register are ignored. 

The indicators contain the values specified by bits 0-7 of reg. 

Machine Instructions 4-109 



SEIND Example 

Stop (STOP) 

Indicators 

Supervisor Call (SVC) 

Indicators 

4-110 SC34-0074 

SEIND Rl 

Assume that register I contains: 

IlOI 0000 IIOl OIIO 

The result that SEIND places into bits 0-4 of the Level Status Register is: 

Bit 0 even=l 
Bit I carry=l 
Bit 2 overflow=O 
Bit 3 negative=! 
Bit 4 zero=O 

This instruction causes the processor to enter the stop state. 

Name Operation Operand 

[label] STOP (ubyte] 

For the ubyte operand, you can optionally code a I-byte unsigned absolute value or 
expression. The processor ignores this value, so you can use it for a flag or indicator. 

For STOP to stop the processor, the processor must have a full-function console, and 
the auto-IPL switch must be in the "Diagnostic Mode" position. Otherwise, STOP is 
executed as a no-operation instruction, causing a branch to the next sequential 
instruction. 

All indicators are unchanged. 

This instruction interrupts the program being executed, then passes control to your 
supervisor or control program routine whose address is in main storage location X'OOl 2'. 

Name Operation Operand 

[label] SVC (ubyte] 

For the ubyte operand, you can optionally code a I-byte unsigned absolute value or 
expression. The value is loaded into the low-order byte of Rl. The high-order byte of Rl 
is set to zero. Control is passed to the address that is in location X'OOI 2'. For more 
information about supervisor state, see Chapter 3 of this manual or refer to the processor 
description manual for your processor. 

All indicators are unchanged. 



PRIVILEGED INSTRUCTIONS 

Copy Address Key Register (CPAKR) (4955 Processor only) 

Indicators 

CPAKR Example 

This instruction copies the value in bits 0-15 from the Address Key Register(AKR) into 
a storage location or a register. 

Name Operation Operand 

[label) CPAKR 
addr4 
reg 

If you code the addr4 operand, CPAKR copies the contents of the AKR into bits 0-15 
of this word. 

If you code the reg operand, the contents of the AKR are copied into bits 0-15 of the 
specified register. 

All indicators are unchanged. 

CPARR R6 

The contents of the AKR are stored in R6, and the AKR remains unchanged. 

Copy Console Data Buffer (CPCON) 

Indicators 

CPCON Example 

This instruction places the contents of the console data buffer into a specified register. 

Name Operation Operand 

[label] CPCON reg 

Notes. 

• If your processor does not have the full-function console, the contents of the register 
are undefined. 

• For information about the console data buffer, refer to the processor description 
manual for your processor. See the Preface of this manual for titles and order 
numbers. 

All indicators are unchanged. 

CPCON RS 

The contents of the console data buffer are placed in RS, and the console data buffer 
remains unchanged. 

Machine Instructions 4-111 



Copy Current Level (CPCL) 

Indicators 

CPCL Example 

Copy In-Process Flags (CP/PF) 

Indicators 

CPIPF Example 

4-112 SC34-0074 

The Copy Current Level (CPCL) instruction loads the current level into the specified 
register. 

Name Operation Operand 

[label] CPCL reg 

All indicators are unchanged. 

. CPCL R3 

Assume that your program is currently running on level 1. The value that CPCL places in 
register 3 is X'OOOl '. 

This instruction places the value of the in-process flag for each level (bit 9 of each Level 
Status Register) into a word in storage. 

Name Operation Operand 

[label] CPIPF addr4 

For addr4, code the address of the word in storage where the in-process flags are to be 
stored. Each bit in the word then corresponds to an interrupt level's in-process flag. For 
example, bit 0 of the word corresponds to level 0-if the in-process flag for level 0 is on, 
CPIPF places a 1 in bit 0 of addr4; if the flag is off, CPIPF places a 0 in bit 0 of addr4. Bit 
1 of addr4 corresponds to level 1, bit 2 corresponds to level 2, and so on. 

Bits corresponding to nonexistent levels are set to zero, and the in-process flags remain 
unchanged. 

All indicators are unchanged. 

· CPI PF (Rl) 

Assume that the in-process flags for each level are: 

Level 0 Flag=O 
Level 1 Flag=O 
Level 2 Flag= 1 
Level 3 Flag=O 

The result that CPIPF leaves in the word (whose address is in register 1) is: 

0010 0000 0000 0000 



Copy Instruction Space Key (CPISK) (4955 Processor only) 

Indicators 

CPISK Example 

This instruction copies the instruction space key field (bits 13-15) within the Address 
Key Register (AKR) into bits 13-15 of either a word in storage or a register. Bits 0-12 
are set to zero. 

Name Operation Operand 

[label] CPI SK 
addr4 
reg 

If you code the addr4 operand, CPISK copies the contents of bits 13-15 from the AKR 
into bits 13-15 of a word in storage defined by addr4. 
If you code the reg operand, CPISK copies the contents of bits 13-15 into the specified 

register. 

All indicators are unchanged. 

CPISK R4 

Assume the AKR contains X'0112': 

I 0000 0001 0001 0010 I 
0 15 

After execution of CPISK register 4 contains: 

I 0000 0000 0000 oo 1 o I 
0 15 

The instruction space key field is copied into bits 13-15, and bits 0-12 are set to zero. 
The AKR remains unchanged. 

Copy Interrupt Mask Register (CPIMR) 

Indicators 

This instruction places the contents of the Interrupt Mask Register into a word in storage. 

Name Operation Operand 

[label] CPIMR addr4 

Each bit of the Interrupt Mask Register corresponds to an interrupt level; for example, 
bit 3 corresponds to level 3. Bits corresponding to nonexistent levels are always zero. 

CPIMR leaves the Interrupt Mask Register unchanged. 

All indicators are unchanged. 

Machine Instructions 4-113 



CPIMR Example 

. CPtHR ( R3) * 

In this example, CPIMR places the contents of the Interrupt Mask Register into the word 
whose address is the contents of storage at the location defined by register 3. 

Copy Level Status Block ( CPLB) . 

Indicators 

4-114 SC34-0074 

This instruction places the contents of a specified Level Status Block into a 22-byte 
storage area that you define. 

Name Operation Operand 

[label] CPLB reg, addr4 

The reg operand defines the interrupt level whose Level Status Block is to be copied. 
Load this register so that the level is specified in bits 12-15, with bits 0-11 containing 
zeros. CPLB ignores bits corresponding to nonexistent levels. 

The addr4 operand defines the first word of a 22-byte (I I-word) storage area where the 
Level Status Block is to be stored. CPLB stores the Level Status Block in the following 
format: 

Main storage 
address 
(LSB pointer) Instruction address register 

Address key register * 
Level status register 

Register 0 

Register 1 

Register 2 

Register 3 

Register 4 

Register 5 

Register 6 

+14 (Hex) Register 7 

0 15 

*4955 Processor only 

The Level Status Block remains unchanged. 

All indicators are unchanged. 



CPLB Example 

CP~B R6,BLOCK2 I 

Assume that register 6 contains X'0002'. CPLB places the Level Status Block for 
interrupt level 2 into the 22-byte storage area that begins at BLOCK2. 

Copy Operandi Key (CPOOK) (4955 Processor only) 

Indicators 

CPOOK Example 

This instruction copies the operand 1 key field (bits 5-7) within the Address Key 
Register (AKR) to bits 13-15 of either a word in storage or a register. 

Name Operation Operand 

[label] CPOOK 
addr4 
reg 

If you code the addr4 operand, CPOOK copies the contents of bits 5-7 from the AKR 
into bits 13-15 of the word defined by addr4. 

If you code the reg operand, CPOOK copies the contents of bits 5-7 from the AKR 
into bits 13-15 of the specified register. 

All indicators are unchanged. 

Assume that the AKR contains X'Ol20': 

I 0000 0001 0010 0000 I 
0 15 

After execution of CPOOK, register 4 contains: 

I 0000 0000 0000 0001 I 
0 15 

The operand 1 key field has been copied into bits 13-15 while bits 0-12 have been set 
to zero. The AKR remains unchanged. 

Machine Instructions 4-115 



Copy Operand2 Key (CPOTK) (4955 Processor only) 

Indicators 

CPOTK Example 

This instruction copies the operand 2 key field (bits 9-11) within the Address Key 
Register (AKR) into bits 13-15 of either a word in storage or a register. 

Name Operation Operand 

[label) CPOTK addr4 
reg 

If you code the addr4 operand, CPOTK copies the contents of bits 9-11 from the AKR 
into bits 13-15 of the word defined by addr4. 

If you code the reg operand, CPOTK copies the contents of bits 9-11 from the AKR 
into bits 13-15 of the specified register. 

All indicators are unchanged. 

.. CPOTK R4 

Assume that the AKR contains X'Ol20': 

I 0000 ooo 1 oo 10 0000 I 
0 15 

After execution of CPOTK register 4 contains: 

I 0000 0000 0000 oo 1 o I 
0 15 

The operand 2 key field has been copied into bits 3-15 while bits 0-12 have been set to 
zero. The AKR remains unchanged. 

Copy Processor Status and Reset (CPPSR) 

4-116 SC34-0074 

This instruction places the contents of the Processor Status Word into a specified word in 
storage. 

Name Operation Operand 

[label] CPPSR addr4 

CPPSR stores the Processor Status Word in the address specified by addr4. (For the 
format of the Processor Status Word, see "Registers" in Chapter 3.) 

CPPSR resets bits 0-12 of the PSW, leaving bits 13-15 unchanged. 



Indicators 

CPPSR Example 

All indicators are unchanged. 

CPPSR. 12,e'(R2,64)* 

In this example, here is how the address is calculated: The contents of register 2, plus 64, 
form an address. The contents of storage at that location, plus 120, form the address 
where the Processor Status Word is to be stored. 

Copy Segmentation Register (CPSR) (4955 Processor only) 

Indicators 

CPSR Example 

This instruction places the contents of a specified segmentation register into a 
doubleword in storage. 

Name Operation Operand 

[label] CPSR reg, addr4 

For reg, code the register that defines-in the following form-the segmentation register 
whose contents you want to store: 

Bits 0-4 the 5 high-order bits of the logical storage address 
Bits 5-7 the address key 
Bits 8-15 zeros 

For addr4, code the address of the doubleword into which the segmentation register is 
to be stored. CPSR copies the register into the doubleword in the following form: 

Bits 0-12 physical segment address 
Bit 13 if 1, the contents of the segmentation register are valid; if 0, any attempt 

to use this register results in program check. 
Bit 14 if 1, the block is read-only; any attempt to write into the block while the 

processor is in problem state results in program check. Bit 14 is ignored 
when the processor is in supervisor state or during a cycle-steal access. 

Bits 15-31 zeros 

CPSR leaves the segmentation register unchanged. 

All indicators are unchanged. 

CPS R.· R), DWORD 

Assume that register 3 contains: 

0110 1100 0000 0000 

and segmentation register 108 contains: 

1110 0001 1101 0000 
CPSR places the following result into the doubleword at DWORD: 

1110 0001 1101 0000 0000 0000 0000 0000 

Machine Instructions 4-117 



Copy Storage Key (CPSK), (4955 Processor only) 

Indicators 

CPSK Example 

Diagnose (D/AG) 

4-118 SC34-007 4 

This instruction places the contents of a specified storage key into a byte in storage. 

Name Operation Operand 

[label] CPSK reg, addr4 

For protection purposes, storage is divided into blocks of 2048 bytes. Each block has 
associated with it a storage key register. 

The reg operand defines the general purpose register that contains, in the following 
form, the number of the storage key register to be copied: 

Bits 0-4 the block number in main storage (0-31) 
Bits 5-15 zeros 

CPSK places the storage key into the byte at addr4, in the following form: 

Bits 0-3 zeros 
Bits 4-6 the value of the storage key 
Bit 7 read-only bit 

The storage key remains unchanged. 

All indicators are unchanged. 

CPSK R4,KEY 

Assume that R4 contains: 

1010 1000 0000 0000 

Because bits 0-4 of R4 contain X'l5', CPSK copies the storage key register for block 21. 
Assume that the value of this key is 4 and the read-only bit is on. CPSK places X'05' into 
the byte at KEY. 

The storage key register and register 4 remain unchanged. 

This machine-dependent instruction controls and tests various hardware functions. It is 
not intended for use in problem programs or supervisor programs. 

Name Operation Operand 

[label] DIAG ubyte 

For the specific meaning of the ubyte field, and for a discussion of the instruction's 
diagnostic functions, refer to the processor description manual for your processor. See 
the Preface of this manual for titles and order num hers. 



Disable (DIS) 

Indicators 

DIS Example 

This instruction disables: 

• Storage protection, 
• Equate operand spaces, 
• Address translator, or 
• Summary mask, 

depending on the value you specify for a I-byte mask. 

Name Operation Operand 

[label] DIS ubyte 

The mask has the following format: 

Bits 0-3 unused, must be coded as zeros 
Bit 4 storage protection 
Bit 5 equate operand spaces 
Bit 6 address translator-this bit is ignored if the translator is not fitted on your 

system. 
Bit 7 summary mask 

Notes. 

• On the 4953 Processor, bits 0-6 of the mask are not used. 
• This instruction is not interruptible. 

All indicators are unchanged. 

In this example, bits 4 and 7 of the DIS mask are ON; storage protection and the 
summary mask are disabled. 

Machine Instructions 4-119 



Enable (EN) 

htdicators 

EN Example 

The Enable {EN) instruction enables: 

• Storage protection, 
• Equate operand spaces, 
• Address translator, or 
• Summary mask, 

depending on the value you specify for a I-byte mask. 

Name Operation Operand 

[label] EN ubyte 

The mask has the following format: 

Bits 0-3 unused, must be coded as zeros 
Bit 4 storage protection 
Bit 5 equate operand spaces 
Bit 6 address translator-this bit is ignored if the translator is not fitted on your 

system. 
Bit 7 summary mask 

Note. On the.4953 Processor, bits 0-6 of the mask are not used. 

All indicators are unchanged. 

EN. x• Jt'+ • 

In this example, bit 5 of the EN mask is ON; equate operand spaces is enabled. 

Interchange Operand Keys (JOPK)'(4955 Processor only) 

Indicators 

IOPK Example 

4-120 SC34-007 4 

This instruction interchanges the contents of operand 1 key and operand 2 key in the 
Address Key Register. 

Name Operation Operand 

[label] IOPK 

Note. For information about the contents of the Address Key Register see "IBM.4955 
Processor and Processor Features Description," GA34-0021. 

All indicators are unchanged. 

Assume that the AKR contains X'0120'. After execution of IOPK, the AKR would 
contain X'021 O'. 



Level Exit (LEX) 

Indicators 

LEX Example 

Operate 1/0 (10) 

Indicators 

This instruction causes the processor to exit the current level. 

Name Operation Operand 

[label] LEX [ubyte] 

For the ubyte operand, you can optionally code a 1-byte unsigned absolute value or 
expression. The processor ignores this value, so you can use it for a flag or indicator. 

LEX does one of two things: 

• If no interrupts are pending, it places the processor into wait state. 
• If there are interrupts waiting, the one with the highest priority is given control. 

All indicators are unchanged. 

~EX 175 

Assume that the processor encountered this LEX while it was running on level 0, and 
there are interrupts waiting on levels 1 and 3. The processor exits level 0, and begins 
servicing the first interrupt for level 1. 

This instruction initiates input/output operations from the processor. 

Name Operation Operand 

[label] IO longaddr 

For the longaddr operand, code the address of the Immediate Device Control Block 
(IDCB) that defines the I/O operation you want to perform. 

Appendix K of this manual is a reference aid for coding the IO instruction. For a 
detailed discussion of the IDCB, refer to the processor description manual for your 
processor. See the Preface of this manual for titles and order numbers. 

This instruction sets a condition code using the even, carry, and overflow indicators. See 
"Other Uses of Indicators" in Chapter 3 of this manual. 

Machine Instructions 4-121 



Set Address Key Register (SEAKR) (4955 Processor only) 

Indicators 

SEAKR Example 

This instruction sets a specified value in the Address Key Register (AKR) (bits 0-15) 
from a storage location or a register. 

Name Operation Operand 

[label] SEA.KR 
addr4 
reg 

If you code the addr4 operand the SEAKR instruction loads the contents of this word 
into bits 0-15 of the AKR. 

If you code the reg operand the contents of the specified register are placed in bits 
0-15 of the AKR. 

All indicators are unchanged. 

Assume that R2 contains X'l 030': 

I 0001 0000 0011 0000 I 
0 15 

After execution of SEAKR the AKR contains: 

1 0001 0000 0011 0000 I 
0 15 

Register 2 remains unchanged. 

Set Console Data Lights (SECON) 

Indicators 

4-122 SC34-0074 

This instruction places the contents of a specified register into the console data lights. 

Name Operation Operand 

[label] SECON reg 

Note. If your processor does not have the full-function console, SECON is treated as a 
no-operation. 

All indicators are unchanged. 



Set Instruction Space Key (SE/SK) (4955 Processor only) 

Indicators 

SEISK Example 

This instruction sets the instruction space key field (bits 13-15) within the Address Key 
Register (AKR) from the contents of the word (bits 13-15) defined by the addr4 or reg 
operand. 

Name Operation Operand 

(label] SEISK 
addr4 
reg 

If you code the addr4 operand the SEISK instruction loads bits 13-15 of this word into 
bits 13-15 of the AKR. 

If you code the reg operand bits 13-15 of the specified register are placed in bits 
13-15 of the AKR. 

All indicators are unchanged. 

SEISK R4 

Assume that R4 contains X'0002': 

I 0000 0000 0000 oo 1 o I 
0 15 

After execution of SEISK bits 13-15 of the AKR contain: 

I xxxx xxxx xxxx xOlO I 
0 15 

Bits 0-12 remain unchanged. Register 4 also remains unchanged. 

Set Interrupt Mask Register (SE/MR) 
This instruction loads the Interrupt Level Mask Register from a word in storage. 

Name Operation Operand 

[label) SEIMR addr4 

For addr4, code the address of the location that contains the value to be loaded into 
the Interrupt Level Mask Register. 

Each bit in the register corresponds to an interrupt level-bit 0 corresponds to level 0, 
bit 1 corresponds to level 1, and so on. If the bit for a given level is 1, that level is enabled 
and can accept interrupts. 

SEIMR leaves the word in storage unchanged. 

Note. Set to zero any bits that correspond to nonexistent interrupt levels. 

Machine Instructions 4-123 



Indicators 

SEIMR Example 

Set Level Status Block (SELB) 

4-124 SC34-0074 

All indicators are unchanged. 

SEIHR (R2) 

In this example, assume that the word whose address is in R2 contains: 

1011 0000 0000 0000 

SEIMR loads this value into the Mask Register, leaving the word in storage unchanged. 
Now levels 0, 2, and 3 can accept interrupts. All other levels are disabled. 

This instruction loads a specified Level Status Block from a 22-byte storage area that you 
define. 

Name Operation Operand 

[label] SELB reg, addr4 

The reg operand defines the interrupt level whose Level Status Block is to be loaded. 
Load reg so that the level is specified in bits 12 through IS, with bits 1-11 containing 
zeros. Bit 0 is the inhibit-trace-interrupt bit. SELB ignores bits that correspond to 
nonexistent levels. 

The addr4 operand defines the first word of a 22-byte (II-word) storage area that is to 
be loaded into the Level Status Block. The storage area has the following format: 

Main storage 
address 
(LSB pointer) Instruction address register 

Address key register * 
Level status register 

Register 0 

Register 1 

Register 2 

Register 3 

Register 4 

Register 5 

Register 6 

+14 (Hex) Register 7 

0 15 

*4955 Processor only 

The 22-byte storage area remains unchanged. 

Note. If this instruction turns off bit 8 of the Level Status Register, the processor leaves 
supervisor state. This instruction is the only way to exit supervisor state. 



Indicators 

SELB Example 

The indicators reflect the contents of the LSR that this instruction loaded into word 2 of 
the Level Status Block. 

S~LB R4,BLOCK3 

Assume that R4 contains X'0003'. SELB places the contents of the 22-byte storage area 
that begins at BLOCK3 into the Level Status Block for level 3. If, in the LSB, the LSR 
trace bit is on, trace interrupts can occur after SELB has executed. 

Set Operand] Key (SEOOK) (4955'Processor only) 

Indicators 

SEOOK Example 

This instruction sets the operand 1 key field (bits 5-7) within the Address Key Register 
(AKR) from the contents of the word (bits 13-15) defined by the addr4 or reg operand. 

Name Operation Operand 

[label] SEOOK 
addr4 
reg 

If you code the addr4 operand the SEOOK instruction loads bits 13-15 of this word into 
bits 5-7 of the AKR. 

If you code the reg operand bits 13-15 of the specified register are placed in bits 5-7 
of the AKR. 

All indicators are unchanged. 

· SEOOK R3 

Assume R3 contains X'0002': 

I 0000 0000 0000 oo 1 o I 
0 15 

After execution of SEOOK bits 5-7 of the AKR contain: 

I xxxx xO 10 xxxx xxxx I 
0 15 

Bits 0-4 and 8-15 remain unchanged. Register 3 also remains unchanged. 

Machine Instructions 4-125 



Set Operand2 Key (SEOTK)(4955 Processor only) 

Indicators 

SEOTK Example 

This instruction sets the operand 2 key field {bits 9-11) within the Address Key Register 
(AKR) from the contents of the word {bits 13-15) defined by the addr4 or reg operand. 

Name Operation Operand 

[label] SEOTK addr4 
reg 

If you code the addr4 operand the SEOTK instruction loads bits 13-15 of this word into 
bits 9-11 of the AKR. 

If you code the reg operand, bits 13-15 of the specified register are placed in bits 9-11 
of the AKR. 

-All indicators are unchanged. 

SEOTK R4 

Assume register 4 contains X'OOOl ': 

I 0000 0000 0000 ooo 1 I 
0 15 

After execution of SEOTK bits 9-11 of the AKR contain: 

I xxxx xxxx xOO 1 xxxx 
0 15 

Bits 0-8 and 12-15 remain unchanged. Register 4 also remains unchanged. 

Set Segmentation Register (SESR) (4955 Processor only) 

4-126 SC34-0074 

This instruction places the contents of a doubleword in storage into a specified 
segmentation register. 

Name Operation Operand 

[label] SESR reg, addr4 

For reg, code the register that defines the segmentation register you want to load. See 
CPSR for the form of this register. 

For addr4, code the address of the doubleword whose contents are to be loaded into 
the segmentation register. See CPSR for the form of this doubleword. · 

SESR loads the first 16 bits of the doubleword into the segmentation register, leaving 
the doubleword unchanged. 



Indicators 

SESR Example 

All indicators are unchanged. 

SESR R5, (R3) 

Assume that register 5 contains: 

1100 0011 0000 0000 
and doubleword whose address is in register 3 contains: 

0010 1111 0010 0000 0000 0000 0000 0000 
SESR places the following result into segmentation register 195: 
0010 1111 0010 0000 0000 0000 0000 0000 

Set Storage Key (SESK) (4955 Processor only) 

Indicators 

SESK Example 

This instruction places a specified value into a storage key. 

Name Operation Operand 

[label] SESK reg, addr4 

The reg operand defines the general purpose register that contains, in the following 
form, the number of the storage key register to be loaded: 

Bits 0-9 the block number in main storage (0-31) 
Bits 10-15 zeros 

The value that SESK loads into the storage key is in the following form: 

Bits 0-3 zeros 
Bits 4-6 the value of the storage key 
Bit 7 read-only bit 

The contents of reg and addr4 remain unchanged. 

All indicators are unchanged. 

SESK R7, (Rl) 

Assume that register 7 contains: 

1101 1000 0000 0000 
Because bits 0-4 of R7 contain decimal 27, SESK loads the storage key register 27. 
Assume that the byte whose address is in register 1 contains X'07'. SESK loads this 8-bit 
value into storage key 27. The contents of R 7, Rl, and the byte in storage remain 
unchanged. 

Machine Instructions 4-12 7 



FLOATING-POINT INSTRUCTIONS (4955 PROCESSOR ONLY) 

Floating-point Number Representation 

4-128 SC34-007 4 

Each floating-point number is represented as a combination of two items: a numeric 
fraction and a power of 16 by which the fraction is multiplied. The power of 16 is called 
the characteristic, by analogy with logarithms. For instance, the number 1 is represented 
by 1/16 x 161. The 1/16 is stored as a hexadecimal fraction: 0.1 16 = 1/16. The 
characteristic is written in excess 64 notation, which means that every characteristic is 
641 0 greater than the power actually represented. Thus, the characteristic + 1 is 
represented as: 

=1+64= 6510 = 4116 

The characteristic -1 becomes: 

-1+64= 63 10 = 3F16 

The excess 64 method is used to avoid the need of a sign for the characteristic. 
The processor permits two types of floating-point numbers, called single-precision and 

double-precision. In each, the excess 64 exponent is contained in bits 1-7 of the first 
byte (bit 0 is the sign of the number). In a single-precision number, the fractional part 
consists of six hexadecimal digits contained in the next three bytes. 

Fraction 

s 
i Charac-
g teristic 
n 

In a double-precision number, the fractional part consists of 14 hexadecimal digits 
contained in the next seven bytes. 

Fraction 

A single-precision number, therefore, occupies two words, and a double-precision 
number four words. 

The number +3 would be represented as 4130 0000 in (single-precision) floating point, 
and would be stored as: 

4 1 3 0 0 0 0 0 

100 0001 0011 0000 0000 0000 0000 0000 

Fraction (3 bytes) 



The number -3 would be represented as C130 0000 0000 0000 in (double-precision) 
floating point, and would be stored as: 

c 1 3 0 0 0 0 0 

Characteristic Fraction (7 bytes) 

Sign 

Here are examples of some single-precision floating-point representations: 

Decimal Floating-Point 

0 0000 0000 
1 4110 0000 
9 4190 0000 

16 4210 0000 
4096 4410 0000 

-1 CllO 0000 
-15 ClFO 0000 
0.5 4080 0000 

0.001 3E41 8937 

And here are some double-precision numbers: 

Decimal Floating-Point 

0 0000 0000 0000 0000 
2 4120 0000 0000 0000 

12345678912345 4BB3 A73C E5B5 9000 
0.1 4019 9999 9999 999A 

-15 Cl FO 0000 0000 0000 

When a floating-point number has no leading hexadecimal zeros in its fraction, it is said 
to be normalized. Note that a normalized floating-point number might have as many as 
three leading binary zeros in its fraction. For example, the floating-point number 
4120 0000 is normalized, because the first hexadecimal digit of the fraction (200000) is 
not zero. The binary representation of the first digit of the fraction, however, is 0010, 
which has two leading binary zeros. Define Constant (DC) entries in assembler language 
are always converted to normalized form, and floating-point numbers in storage are 
assumed to be normalized. 

Floating-point representation can express decimal values ranging from about 5.4 x 
1(}-79 to about 7.2 x 1075

• 

Machine Instructions 4-129 



Floating-point Registers and Instructions 
Each interrupt level has four 64-bit floating-point registers, numbered 0, 1, 2, and 3. All 
floating-point arithmetic and compare instructions use at least one of these registers, 
placing results (from arithmetic instructions) in the register defined by the second 
operand. 

The entire set of floating-point instructions is available for both single-precision and 
double-precision operands. When you code a single-precision arithmetic instruction-FA, 
FD, or FS-all operands and results are 32-bit floating-point values. The rightmost 32 bits 
of the floating-point registers do not participate and are unchanged. The product in 
Floating Multiply (FM) is 64 bits, and occupies a full register. When you code a 
single-precision move instruction-FMV or FMVC-the rightmost 32 bits of the 
floating-point register are set to zero. When you code a double-precision instruction-such 
as FAD, FDD, or FSD-all operands and results occupy 64 bits. 

Copy Floating Level Block (CPFLB) 

Indicators 

CPFLB Example 

Floating Add (FA) 

4-130 SC34-0074 

This instruction places the contents of the floating-point registers for a specified level into 
a 32-byte storage area. This is a privileged instruction. 

Name Operation Operand 

[label] CPFLB reg, addr4 

For reg, code the general-purpose register that contains, in bits 12-15, the interrupt 
level whose floating-point registers you want to store. Bits 0-11 of reg must contain 
zeros. 

For addr4, code the address of the first byte of the 32-byte storage area where the 
registers are to be stored. 

The floating-point registers and reg are unchanged. 

All indicators are unchanged. 

CPFLB R6,FREGS 

Assume that R6 contains X'OOOl '. CPFLB copies the contents of the floating-point 
registers for level 1 into the 32-byte storage area that begins at FREGS. 

This instruction adds two single-precision floating-point values, and places the normalized 
result into a floating-point register. 

Name Operation Operand 

[label] FA addr4, freg 
freg, freg 

The floating-point value specified by the first operand is added to the contents of the 
[reg specified by the second operand. The first operand is unchanged. 



Indicators 

FA Example 

Floating Add Double (FAD) 

Indicators 

FAD Example 

The even, carry, and overflow indicators are reset. The overflow indicator is turned on if 
an underflow or overflow occurs. If there is an underflow, the even indicator is also 
turned on. The carry indicator is reset, and the remaining indicators reflect the result. 

FA FR3,FR/i 

Assume that: 

• Bits 0-31 of FR3 contain 4150 0000 (the floating-point hexadecimal representation 
of decimal 5). 

• Bits 0-31 of FRO contain 41CO 0000 (the floating-point hexadecimal representation 
of decimal 12). 

FA adds the two values, and places 4211 0000 (the floating-point hexadecimal 
representation of decimal 17) into FRO. FR3 is unchanged, and bits 32-63 of FRO 
contain zeros. 

This instruction adds two double-precision floating-point numbers, and places the 
normalized result into a floating-point register. 

Name Operation Operand 

[label] FAD 
addr4, freg 
freg, freg 

,_____ 

The floating-point value specified by the first operand is added to the contents of the 
[reg specified by the second operand. The first operand is unchanged. 

The even, carry, and overflow indicators are reset. The overflow indicator is turned on if 
an underflow or overflow occurs. If there is an underflow, the even indicator is also 
turned on. The carry indicator is reset, and the remaining indicators reflect the result. 

FAD FLOAT,FR2 

Assume that: 
• The 64 bits at FLOAT contain 41CO 0000 0000 0000 (the double-precision, 

floating-point, hexadecimal representation of decimal 12). 
• The 64 bits in FR2 contain 422F 0000 0000 0000 (the double-precision, 

floating-point, hexadecimal representation of decimal 47). 

FAD adds the two values, and places 423B 0000 0000 0000 (the double-precision, 
floating-point, hexadecimal representation of decimal 59) into FR2. FWAT is 
unchanged. 

Machine Instructions 4-131 



Floating Compare (FC) 

Indicators 

FCExample 

This instruction compares two single-precision numbers, and sets indicators to reflect the 
result. 

Name Operation Operand 

[label] FC freg, freg 

FC compares bits 0-31 of the two registers. See "Compare Instructions" for a 
discussion of the compare process. FC leaves both operands unchanged. 

The even, carry, and overflow indicators are reset. If an underflow or overflow occurs, the 
overflow indicator is turned on. If there is an underflow, the even indicator is also turned 
on. The remaining indicators reflect the result. 

FC FR1,FR1 

Assume that: 

• Bits 0-3I of FRO contain 4IFO 0000, the floating-point equivalent of decimal IS. 
• Bits 0-31 of FRI contain ClFO 0000, the floating-point equivalent of decimal-IS. 

FC compares the two values, and sets an arithmetically less than condition. 

Floating Compare Double ( FCD) 

Indicators 

FCD Example 

4-132 SC34-0074 

This instruction compares two double-precision floating-point numbers, and sets 
indicators to reflect the result. 

Name Operation Operand 

[label] FCD freg, freg 

FCD compares the two registers. See "Compare Instructions" for a discussion of the 
compare process. FCD leaves both operands unchanged. 

The even, carry, and overflow indicators are reset. If an underflow or overflow occurs, the 
overflow indicator is turned on. If there is an underflow, the even indicator is also turned 
on. The remaining indicators reflect the result. 

Assume that: 

• FR3 contains 42I I 0000 0000 0000, the floating-point equivalent of decimal I 7. 
• FR2 contains 4I I I 9999 9999 999A, the floating-point equivalent of decimal I .I. 

FCD compares the two values, and sets an arithmetically less than condition. 



Floating Diagnose (FD/AG) 

Floating Divide (FD) 

Indicators 

FD Example 

This instruction tests various functions of the floating-point hardware. It is not intended 
for use in problem programs or supervisor programs. 

Name Operation Operand 

[label] FDIAG 

For a discussion of the instruction's diagnostic functions, see IBM 4955 Processor and 
Processor Features Description, G A34-0021. 

This instruction divides one single-precision floating-point number into another. 

Name Operation Operand 

[label] FD 
addr4, freg 
freg, freg 

Bits 0-31 of the [reg defined by the second operand are divided by the 32-bit value 
defined by the first operand. FD places the result into bits 0-31 of the second operand, 
leaving the first operand unchanged. Bits 32-63 of the second operand are unchanged. 
FD saves no remainder. 

Note. If you try to divide by zero, neither operand is altered. 

The even, carry, and overflow indicators .are reset, then: 

If this occurs: These indicators are turned on: 

Overflow Overflow 
Underflow Overflow & Even 
Attempt to divide by zero Carry & Overflow 

The remaining indicators are set to reflect the result. 

Assume that: 

• Bits 0-31 of FR2 contain 4310 2000, the floating-point equivalent of decimal 258. 
• The 32 bits at Fl.DAT contain 4256 0000, the floating-point equivalent of decimal 

86. 
FD divides: 4310 2000 divided by 4256 0000 = 4130 0000 

(in decimal it would be 258 divided by 86 = 3), and places the result into bits 0-31 of 
FR2. Bits 32-63 of FR2 are unchanged. 

Machine Instructions 4-133 



Floating Divide Double (FDD) 

Indicators 

FDDExample 

Floating Move (FMV) 

Indicators 

4-134 SC34-007 4 

This instruction divides one double-precision floating-point number into another. 

Name Operation Operand 

[label] FDD 
addr4, freg 
freg, freg 

The contents of the freg defined by the second operand are divided by the 64-bit value 
defined by the first operand. FDD places the result into the second operand, leaving the 
first operand unchanged. FDD saves no remainder. 

Note. If you try to divide by zero, neither operand is altered. 

See "Indicators" under FD. 

Assume that: 
• FRO contains 4421 C500 0000 0000, the floating-point equivalent of decimal 8645. 
• FR3 contains 472B 2D30 9000 0000, the floating-point equivalent of decimal 

45,273,865. 
FDD divides: 472B 2D30 9000 0000 divided by 4421 C500 0000 0000 = 
4414 7500 0000 0000 
(in decimal it would be 45,273,865 divided by 8645 = 5237), and places the result into 
FR3. 

This instruction moves a single-precision floating-point number: 
• From storage to bits 0-31 of a floating-point register (setting bits 32-63 to zero), 
• From bits 0-31 of one floating-point register to bits 0-31 of another (setting bits 

32-63 of the destination to zero), or 
• From bits 0-31 of a floating-point register to a 4-byte storage location. 

Name Operation Operand 

addr4, freg 
[label] FMV freg, freg 

freg, addr4 

The even, carry, and overflow indicators are reset. The remaining indicators reflect the 
new contents of the second operand. 



FMVExample 

Assume that: 

• FLOAT contains 450I 3C76. 
• Bits 0-3I of FRI contain 3F3B 249D. 
FMV moves the contents of FLOAT to bits 0-3I of FRI. After FMV, both operands 
contain 4501 3C76. Bits 32-63 of FRI contain zeros. 

Floating Move Double (FMVD) 

Indicators 

FMVD Example 

This instruction moves a double-precision floating-point number: 

• From storage to a floating-point register, 
• From one floating-point register to another, or 
• From a floating-point register to an 8-byte storage location. 

Name Operation Operand 

addr4, freg 
(label] FMVD freg, freg 

freg, addr4 

The even, carry, and overflow indicators are reset. The remaining indicators reflect the 
new contents of the second operand. 

Assume that: 

• FR3 contains 4I I 2 5CE2 3010 0000. 
• FLOAT contains 4200 3458 CDFI 2000. 

FMVD moves the contents of FR3 to FLOAT. After FMVD, both operands contain 
4II2 5CE2 30IO 0000. 

Machine Instructions 4-135 



Floating Move and Convert (FMVCJ 

Indicators 

FMVC Examples 

4-136 SC34-007 4 

This instruction does one of the following: 

• Converts an integer to a single-precision floating-point number, loading it into bits 
0-31 of a floating-point register. 

• Converts a single-precision floating-point number to an integer, placing it into a 1-word 
storage location. 

Name Operation Operand 

[label] FMVC 
addr4, freg 
freg, addr4 

If you code the addr4,freg form, FMVC converts the signed, 2-byte integer at addr4 to 
a 32-bit floating-point number, then places it into bits 0-31 of freg. Bits 32-63 of freg 
are set to zero. 

If you code the freg,addr4 form, FMVC converts bits 0-31 of the floating-point 
number in freg to a signed 2-byte integer, then stores it at addr4. Any fractional portion 
of the floating-point number is truncated. 

The first operand is unchanged. 

The even, carry, and overflow indicators are reset. If you coded addr4,freg, the remaining 
indicators are set to reflect the new contents of the second operand. If you specified the 
freg,addr4 form, the indicators are set as follows: If the converted number is larger than 
+21 5 -1 or less than -21 5

, the carry indicator is turned on. In this case, the value stored is 
either the largest (+2 1 5 -1) or the smallest (-21 5

) representable number. The remaining 
indicators reflect the new contents of the second operand. 

Assume that the word whose address is in RS contains X'OOl 8' (the eqbivalent of decimal 
24). FMVC converts this value to floating-point 4218 0000, and places it into bits 0-31 
of FR2. Bits 32-63 of FR2 contain zeros. 

Assume that FRO contains 41 CO 0000. FMVC converts this value to X'OOOC' (the 
equivalent of decimal 12), and places it into the word that is 2 bytes past INT. 



Floating Move and Convert Double ( FMVCD) 

htdicators 

FMVCD Examples 

This instruction does one of the following: 

• Converts an integer to a double-precision floating-point number, loading it into a 
floating-point register. 

• Converts a double-precision floating-point number to an integer, placing it into a 
doubleword storage location. 

Name Operation Operand 

[label] FMVCD addr4, freg 
freg, addr4 

If you code the addr4,freg form, FMVCD converts the signed, 4-byte integer at addr4 
to a 64-bit floating-point number, then places it into freg. 

If you code the freg,addr4 form, FMVCD converts the 64-bit floating-point number in 
freg to a signed 4-byte integer, then stores it at addr4. Any fractional portion of the 
floating-point number is truncated. 

The first operand is unchanged. 

The even, carry, and overflow indicators are reset. If you coded addr4,freg, the remaining 
indicators are set to reflect the new contents of the second operand. If you specified the 
freg,addr4 form, the indicators are set as follows: If the converted number is larger than 
+2 31 -1 or less than -231

, the carry indicator is turned on. In this case the value stored is 
either the largest (+2 31 -1) or the smallest (-2 31

) representable number. The remaining 
indicators reflect the new contents of the second operand. 

R3 contains the address of a storage location. Assume that the doubleword whose address 
is in that location contains X'FFFF EFFF' {the equivalent of decimal -4097). FMVCD 
converts this value to floating-point C410 0000 0000 000, placing it in FR3. 

Assume that FRO contains 42FF 0000 0000 0000. FMVCD converts this value to 
X'OOFF' {the equivalent of decimal 255), placing it into the storage location whose 
address is in R6. 

Machine Instructions 4-13 7 



Floating Multiply (FM) 

Indicators 

FM Example 

This instruction multiplies one single-precision floating-point number by another. 

Name Operation Operand 

[label] FM addr4, freg 
freg, freg 

The 32-bit value defined by the first operand is multiplied by bits 0-31 of the [reg 
defined by the second operand. FM places the result into bits 0-63 of the second 
operand, leaving the first operand unchanged. 

The even, carry, and overflow indicators are reset. The overflow indicator is turrted on if 
an overflow or underflow occurs. If there is an underflow, the even indicator is also 
turned on. The remaining indicators are set to reflect the result. 

Assume that: 

• Bits 0-3 I of FRI contain 4 I 20 0000, the floating-point equivalent of decimal 2. 
• Bits 0-31 of FR3 contain 4160 0000, the floating-point equivalent of decimal 6. 

FM multiplies the two values, placing the result, 4ICO 0000 0000 0000 (the 
floating-point equivalent of decimal I 2), in all 64 bits of FR3. FRI is unchanged. 

Floating Multiply Double ( FMD) 

Indicators 

4-138 SC34-0074 

This instruction multiplies one double-precision floating-point number by another. 

Name Operation Operand 

[label] FMD addr4, freg 
freg, freg 

The 64-bit value defined by the first operand is multiplied by the [reg defined by the 
second operand. FMD places the result into the second operand, leaving the first operand 
unchanged. 

The even, carry, and overflow indicators are reset. The overflow indicator is turned on if 
an overflow or underflow occurs. If there is an underflow, the even indicator is turned on. 
The remaining indicators are set to reflect the result. 



FMD Example 

Floating Subtract (FS) 

Indicators 

FS Example 

Assume that: 

• The 64 bits at FLOAT+4 contain 42I 9 0000 0000 0000, the floating-point 
equivalent of decimal 25. 

• FR2 contains 4I40 0000 0000 0000, the floating-point equivalent of decimal 4. 

FM multiplies the two values, placing the result, 4264 0000 0000 0000 (the 
floating-point equivalent of decimal 100), into FR2. The 64 bits at FLOAT+4 are 
unchanged. 

This instruction subtracts one single-precision floating-point number from another. 

Name Operation Operand 

[label] FS 
addr4, freg 
freg, freg 

The 32-bit value specified by the first operand is subtracted from bits 0-3 I of the freg 
defined by the second operand. FS places the normalized result into bits 0-3I of the 
second operand, leaving the first operand unchanged. Bits 32-63 of the second operand 
are set to zero. 

The even, carry, and overflow indicators are reset. If an underflow or overflow occurs, the 
overflow indicator is turned on. If there is an underflow, the even indicator is also turned 
on. The remaining indicators reflect the result. 

Assume that: 

• Bits 0-3I of FRI contain 4I50 0000, the floating-point equivalent of decimal 5. 
• Bits 0-3I of FR2 contain 42I I 0000, the floating-point equivalent of decimal I 7. 

FS .subtracts FRI from FR2, leaving 4I CO 0000 (the floating-point equivalent of 
decimal I 2) in FR2. Bits 32-63 of FR2 are unchanged, as is FRI. 

Machine Instructions 4-139 



Floating Subtract Double ( FSD) 

Indicators 

FSD Example 

This instruction subtracts one double-precision floating-point number from another. 

Name Operation Operand 

[label] FSD 
addr4, freg 
freg, freg 

The 64-bit value specified by the first operand is subtracted from the [reg defined by 
the second operand. FSD places the normalized result into the second operand, leaving 
the first operand unchanged. 

The even, carry, and overflow indicators are reset. If an underflow or overflow occurs, the 
overflow indicator is turned on. If there is an underflow, the even indicator is also turned 
on. The remaining indicators reflect the result. 

Assume that: 

• FRl contains 4310 0000 0000 0000, the floating-point equivalent of decimal 256. 
• FR3 contains 4210 0000 0000 0000, the floating-point equivalent of decimal 16. 

FSD subtracts FRI from FR3, leaving 42FO 0000 0000 0000 (the floating-point 
equivalent of decimal 240) in FR3. FRI is unchanged. 

Set Floating Level Block (SEFLB) 

4-140 SC34-0074 

This instruction loads the floating-point registers for a specified level from a 32-byte 
storage area. This is a privileged instruction. 

Name Operation Operand 

[label] SEFLB reg, addr4 

For reg, code the general-purpose register that contains, in bits 12-15, the interrupt 
level whose floating-point registers you want to load. Bits 0-I I of reg must contain 
zeros. 

For addr4, code the address of the first byte of the 32-byte storage area that the 
registers are to be loaded from. The contents of the storage location and reg are 
unchanged. 



Indicators 

SEFLB Example 

All indicators are unchanged. 

Assume that RO contains X'0003'. SEFLB loads the floating-point registers for level 3 
from the 32-byte storage area whose starting address is in register 1. 

Machine Instructions 4-141 



4-142 SC34-0074 



Section Contents 
Establishing Symbolic Representation 5-3 

Assigning Values to Symbols 5-3 
Defining Data 5-5 

Program Sectioning 5-30 
Communication Between Program Parts 5-30 
The Source Module 5-30 
General Information About Control Sections 5-31 
Defining a Control Section 5-35 

Symbolic Addressing Within Source Modules -
Establishing Addressability 5-3 8 
Symbolic Addressing Between Source Modules -
Symbolic Linkage 5-4 7 

To Refer to External Data 5-49 
To Branch to an External Address 5-50 

Controlling The Assembler Program 5-5 3 
Listing Format and Output 5-55 

Chapter 5. Assembler Instructions 

Assembler Instructions 5-1 



This page intentionally left blank. 

5-2 SC34-0074 



ESTABLISHING SYMBOLIC REPRESENTATION 

Assigning Values to Symbols 

EQU-Equate Symbol 

By assigning an absolute value to a symbol and then using that symbol to represent the 
absolute value, you can code machine instructions entirely in symbolic form. 

Some symbols represent absolute values, while others represent relocatable address 
values. Relocatable addresses are associated with: 

• Instructions 
• Constants 
• Storage areas 

You can use these defined symbols in the operand fields of instruction statements to refer 
to the instruction, constant, or area represented by the symbol. 

The EQU and EQUR instructions assign values to symbols: 

• EQU-for symbols other than registers 
• EQUR-for symbols that represent registers 

EQU assigns absolute or relocatable values to symbols. You can use it for the following 
purposes: 

• To assign single absolute values to symbols. 
• To assign the values of previously defined symbols or expressions to new symbols, thus 

allowing you to use different symbolic names for different purposes. 
• To compute expressions whose values are unknown at coding time or difficult to 

calculate. The value of the expression is then assigned to a symbol. 

You can code the EQU instruction anywhere in a source module after any source macro 
definitions you have specified. Note, however, that the EQU instruction initiates an 
unnamed control section (private code) if you code it before the first control section 
(initiated by a START or CSECT instruction). 

The format of the EQU instruction statement is: 

Name Operation Operand 

symbol EQU expression 

Assembler Instructions 5-3 



SECT A 

FULL 
AREA 
TO 
FROM 

ADCONS 

A 
B 
c 
D 
E 
F 
G 
H 
I 

EQUR-Equate Register 

5-4 SC34-0074 

The label field can contain any ordinary symbol. Expression represents a value. It must 
always be specified and can have a relocatable or absolute value in the range -65536 
through +65535. The assembler maintains this value internally as a signed 32-bit number. 
Only the rightmost 16 bits are used in assembled instructions, or printed in hexadecimal 
notation in the location column of your program listing. 

You must define all symbols appearing in the expressions in previously coded 
instructions-instructions that physically precede this EQU in the source module. 

The assembler assigns an absolute or relocatable value to the symbol in the name field 
(the label) of the EQU instruction. 

The following examples indicate valid EQU statements and the value (absolute or 
relocatable) assigned to the symbol in the label field of each: 

START ; 

DC 
OS 
OS 
OS 

DC 

EQU 
EQU 
EQU 
EQU 
EQU 
EQ.U 
EQU 
EQU 
EQU 

END 

F'33' 
XL2jfl 
CL24jf 
CL8/I 

A(X,Y,Z) 

X'FF' ABSOLUTE 
*+4 RELOCATABLE 
A*lJ' ABSOLUTE 
FULL RELOCATABLE 
AREA+l~; RELOCATABLE 
TO RELOCATABLE 
FROM-TO ABSOLUTE 
ADCONS RELOCATABLE 
SECT A RELOCATABLE 

EQUR defines a register symbol (symbol to be used instead of the predefined register 
names) by assigning to the symbol the value of an absolute expression. You can code the 
EQUR instruction anywhere in a source module after the start of the program control 
section and after any other statement that defines symbols used in the absolute 
expression on the EQUR instruction. The EQUR instruction must precede all assembler 
and machine instructions that use the register symbol. 

The format of the EQUR instruction is: 

Name Operation Operand 

symbol EQUR absolute expression 



Defining Data 

;REGl 
1REG2 
:REG3, 
1RE,6~: 

DC-Define Constant 

where symbol is an ordinary symbol given the value of the absolute expression (value 
must be in the range 0-7). Any symbols in the absolute expression must be previously 
defined (defined in statements coded prior to the EQUR instruction). The symbol is 
absolute. 

Note. All register specifications in machine instructions must contain a register symbol, 
which is either one of the predefined register symbols or has been defined in a preceding 
EQUR instruction. These register symbols may only appear in machine or assembler 
instructions as a register specification. 

The following examples indicate valid EQUR instructions: 

EQUR 1 
, ;E,QUR 2 

EQUR 3 
EQOR A+B (ASSUMING A•3 AND B•l, REG4•4.) 

This section describes DC and DS instructions, used to define data constants and reserve 
main storage. You can code a label for these instructions and then refer to the data 
constant or storage area symbolically in the operands of machine and assembler 
instructions. The symbol used as a label represents the address of the constant or storage 
area-do not confuse it with the assembled object code for the constant or contents of 
the storage area. This data is generated, and storage is reserved at assembly time and used 
by the machine instructions at execution time. 

DC defines data constants needed for program execution. The DC instruction causes the 
assembler to generate (at assembly time) the binary representation of the data constant 
you specify, storing that value in a particular location in the assembled object module. 
One DC statement can generate a maximum of 256 bytes of data. 

The DC instruction can generate the following types of constants: 

• Binary constants, which define bit patterns 
• Character constants (EBCDIC, ASCII, or PTTC/EBCD), which define character strings 

or messages 
• Hexadecimal constants, which define large bit patterns 
• Fixed-point constants, which define fixed-point numeric values 
• Floating-point constants, which define floating-point numeric values 
• Address constants, which define addresses or values resulting from expression 

evaluation. 

The format of the DC instruction is: 

Name Operation Operand 

[label] DC [talue'\] (dup)type[mods) (value) [,opnd2) ... 

Assembler Instructions 5-5 



5-6 SC34-007 4 

The symbol in the name field represents the address of the first word of the assembled 
constant. The operand in a DC instruction consists of 4 subfields. The first 3 subfields 
describe the constant, and the fourth subfield specifies the nominal value of the constant 
to be generated. 

Subfield Contents 

1 Duplication factor (optional) 
2 Constant type (required) 
3 Modifiers (optional) 
4 Nominal value or values (required) 

Rules for the DC Operand. 
• The type subfield and the nominal value must always be specified. 
• The duplication factor and modifier subfields are optional. 
• When multiple operands are specified, they can be of different types. 
• When multiple nominal values are specified in the fourth subfield, they must be 

separated by commas and be of the same type. The descriptive subfields apply to all 
the nominal values. 

Note. Separate constants are generated for each separate nominal value specified. 

No blanks are allowed in the DC instruction: 

• Between subfields 
• Between multiple operands 
• Within any subfields, unless they occur as part of the nominal value of a C-, P-, or 

S-type character constant, or as part of a character self-defining term in a modifier 
expression or in the duplication factor subfield 

Constants defined by the DC instruction are assembled into an object module at the 
location where the DC instruction is coded. The value of the symbol that names the DC 
instruction is the address of the leftmost byte of the constant. For example, the 
instruction 

HEXCON DC XL6 1AD 1 



Padding and Truncating Constants 

causes the assembler to generate the 6-byte constant 

0000 0000 OOAD 

and assign the address of the leftmost byte to the symbol HEXCON. The following table 
shows some sample DC instructions for the various constant types: 

Type Implicit length DC Instruction Alignment 
(Bytes) (If explicit length not 

specified) 

B as needed DC B'lOl' Byte 
c as needed DC C'ABCD' Byte 
p as needed DC P'ABCD' Byte 
s as needed DC S'ABCD' Byte 
x as needed DC X'FFFF' Byte 
F 2 DC F'2' Word 
H 1 DC H'2' Byte 
D 4 DC D'2' Word 
E 4 DC E'l.414' Word 
L 8 DC L'l.414' Word 
A 2 DC A (TABLE) Word 
v 2 DC V (EXTDATA) Word 
w 2 DC W (WEAKDATA) Word 

The nominal values specified for constants are assembled into storage. The amount of 
space available for the nominal value of a constant is determined: 

• By the explicit length specified in the second subfield of the operand,, or 
• If no explicit length is specified, by the implicit length according to the type of 

constant defined (see preceding table) 

If more space is available than is needed to hold the binary representation of the 
nominal value, the extra space is padded: 

• With binary zeros on the left for the binary (B), hexadecimal (X), fixed-point (F, H, 
and D), address (A) constants 

• With binary zeros on the right for floating-point (E and L) constants 
• With blank character codes on the right for the character (C, P, and S) constants 

Note. Binary zeros are always assembled for V- and W-type constants. 

The following examples indicate the results of padding the different type data constants: 

Constant definition Value assembled (Hex) 

DC B'lOl' 05 
DC X'F' OF 
DC XL4'C4F' OOOOOC4F 
DC F'255' OOFF 
DC H'6' 06 
DC D'202010' 0003151A 
DC E'575E2' 44B09COO 
DC L'73E4' 45B23900 
DC AL2(512) 0200 
DC CL6'ABCD' ClC2C3C44040 
DC SL4'A' 41202020 
DC P'ABC' E2E4E7 

Assembler Instructions 5-7 



If less space is available than is needed to hold the nominal value, the nominal value is 
truncated and part of the constant is lost or the value is assembled as zero. Truncation of 
the nominal value is: 

• On the left for binary (B) and hexadecimal {X) constants 
• On the right for character (C, P, and S) constants 

The following types of constants are not truncated: 

• Fixed-point (F, H, and D) constants are rounded if necessary. If the value exceeds the 
allowable range, zeros are assembled into the field. 

• Floating-point (E and L) constants are rounded. 
• Address (A) constants are not truncated. If the nominal value cannot be represented in 

the space available, the constant is flagged and assembled as zero. 

The following examples indicate the results of truncating the different type data 
constants: 

Constant definition Value assembled (Hex) 

DC BL2'01111000011110000' FOFO 
DC XL4 'FFCOOFFC8' FCOOFFC8 
DC A(65535+1) 0000 (*ERROR*) 
DC CL2'ABCD' C1C2 
DC SL2'ABC' 4142 
DC F'32770' 0000 (*ERROR*) 
DC F'l.2' 0001 
DC H'-160' 00 (*ERROR*) 

DC Operand Subfield 1 : Duplication Factor 

5-8 SC34-0074 

The duplication factor, if specified, causes the nominal value or multiple nominal values 
specified in a constant to be generated the number of times indicated by the factor. It is 
applied after the nominal value or values are assembled into one constant. 

The factor can be specified by an unsigned decimal self-defining term or by an absolute 
expression enclosed in parentheses. The expression should have a positive value or be 
equal to zero. Any symbols used in the expression must have been previously defined. 

The following examples indicate the results of specifying a duplication factor in the 
constant definition: 

Constant definition Value assembled (Hex) 

DC 3F'240' OOFOOOFOOOFO 
DC 2F'3,4' 0003000400030004 

A EQU 5 
DC (A-3) F'5' 00050005 



DC Operand Subfield 2: Type 

Notes. 
1. A duplication factor of zero is permitted with the following results: 

a. No value is assembled. 
b. If the zero duplication factor is used on an F-, D-, E-, L-, A-, W-, or V-type 

constant, the location counter is forced to a word boundary. A byte of zeros is 
placed in the object text. 

2. If duplication is specified for an address constant containing a location counter 
reference, the value of the location counter reference is not increased until after 
the DC instruction is completely processed. Therefore, 

generates 2 words, each containing the address of X. 

The type subfield must be coded. It defines the type of constant to be generated and is 
specified by a single letter code as shown below. 

The type specification indicates to the assembler: 

1. How the nominal value (or values) coded in subfield 4 is to be assembled; that is, 
which binary representation or machine format the object code of the constant must 
have. 

2. How much storage the constant is to occupy, according to the implicit length of the 
constant if no explicit length specification is present. (For details see "Padding and 
Truncating Constants.") 

Code Type of Constant Machine formats 

c EBCDIC 8-bit code for each character 

s ASCII 8-bit code for each character 

p P'ITC/EBCD 8-bit code for each character 

x Hexadecimal 4-bit code for each digit 

B Binary 1-bit for each digit 

F Fixed-point Signed, Fixed-point binary; normally 2 bytes (can be 1-2 bytes) 

H Fixed-point Signed, Fixed-point binary; always 1 byte 

D Fixed-point Signed, Fixed-point binary; normally 4 bytes (can be 1-4 bytes) 

F Floating-point Floating-point binary; normally 4 bytes (can be 2-4 bytes) 

L Floating-point Floating-point binary; normally 8 bytes (can be 2-8 bytes) 

A Address Value of address or expression; 1-4 bytes 

v Address Space reserved for external address; always one word 

w Address Space reserved for external address; always one word 

Assembler Instructions 5-9 



') 
I : '.' j r " ' c , 

~! ~ri#~Jx~P~~a· 
. ; tDC S'ASCll 1 

. :oc. X' FFFA' . 

. De , 8 1~1-1 1 

,DC F1l2..5 1 

D(. ! • ff':-3:1 
~· • .~I l2;3flJ$ I 
DC, , . E~ 12.5' 

, . ; D~ . L'•12..5 1 

D~ . A (ADDRESS) 
I>:~ V fEXT'ERNAL) 

~--- - -.--- ...- : --. ~ ~ ......... ..,.......'. ... - . ~--..,,.----·-

· D.C W(WEAK) 

DC Operand Subfield 3: Modifiers 

Length Modifier 

5-10 SC34-0074 

The 3 modifiers you can code to describe a constant are: 

• The length modifier (L), which explicitly defines the length in bytes desired for a 
constant. 

• The scale modifier (S), which is only used with the fixed-point or floating-point 
constants (for details see "Scale Modifier"). 

• The exponent modifier (E), which is only used with fixed-point or floating-point 
constants, and indicates the power of 10 by which the constant is to be multiplied 
before conversion to its internal binary format. 

If multiple modifiers are used, they must appear in the sequence: length, scale, 
exponent. 

The length modifier indicates the explicit number of bytes into which the constant is to 
be assembled. You code it as Ln, where n is either of the following: 

• A decimal self-defining term. For example, 

SDTERM DC Xl3 1FF 1 

• An absolute expression enclosed in parentheses. It must have a positive value and any 
symbols it contains must have been previously defined; that is, in an instruction that 
physically precedes this DC in the source module. For example, 

A EQ.U 6 

.DC XL(A+4) I FF' 



Scale Modifier 

When you specify the length modifier: 

• Its value determines the number of bytes allocated to a constant. It therefore 
determines whether the nominal value of a constant must be padded or truncated to 
fit into the space allocated. (See "Padding and Truncating Constants.") 

• Any boundary alignment normally implied by the constant type is lost. The constant 
assembles starting with the next available byte. 

• Its value must not exceed the maximum length allowed. (For the allowable range of 
length modifiers, see the specifications for the individual constants and areas in this 
chapter.) 

The scale modifier specifies the amount of scaling (shifting) desired for fixed-point or 
floating-point constants. The scale modifier specifies a shifting count of: 

• Binary digits for fixed-point {F, H, and D) constants 
• Hexadecimal digits for floating-point (E and L) constants 

The scale modifier is written as Sn, where n is either: 

• A decimal self-defining term or 
• An absolute expression enclosed in parentheses. Any symbols used in the expression 

must have been previously defined; that is, in an instruction that physically precedes 
this DC in the source module. 

Both types of specifications can be preceded by a plus or minus sign; if no sign is 
present, a plus sign is assumed. 

Assembler Instructions 5-11 



5-12 SC34-0074 

Scale Modifier for Fixed-point Constants. The scale modifier for fixed-point constants 
specifies the power of 2 by which the fixed-point constant is to be multiplied after its 
nominal value has been converted to a binary representation, but before it is assembled in 
its final scaled form. Scaling causes the binary point to move from its assumed fixed 
position at the right of the rightmost bit position. 

Object code (binary) 

;..;. . ,, ......•. _ .. ; 

00000000 0000100l 

0000000 o 00000~ ~si~} .. ~:~. 
i ! ! 

Notes. 
1. When the scale modifier has a positive ·value, it indicates the number of binary 

positions to be occupied by the fractional portion of the binary number. 
2. When the scale modifier has a negatlve value, it indicates the number of binary 

positions to be deleted from the integer portion of the binary number. 
3. When positions are lost because of scaling (or lack of scaling), rounding occurs in the 

leftmost bit of the lost portion. The rounding is reflected in the rightmost position 
retained. 

4. Scaling must not cause a value overflow condition, nor is it permitted that all 
significant bits be lost. 

5. The assembler must be able to internally maintain the fixed point number prior to 
scaling. The integer portion must be represented in 32 bits. 



DC 

DC 

DC 

DC 

Converted to binary representation 

Assembled constant 

Converted to binary representation 

Assembled constant 

Converted to binary representation 

Assembled constant 

Converted to binary representation 

Object code 

Binary digits ------e Binary 
point 

------• Binary 
point 

00000000 00000010 00 

Binary 
point 

_____ A_ss_em_b_le_d_c_on_s_ta_n_t--./ 00000000 00001001 11 

Assembler Instructions 5-13 



DC 

DC 

DC 

ROUND DC 

ERROR DC 

5-14 SC34-0074 

Scale Modifier for Floating-point Constants. The scale modifier for floating-point 
constants must have a positive value. It specifies the number of hexadecimal positions 
that the fractional portion (mantissa) of the binary representation of a floating-point 
constant is to be shifted to the right. The hexadecimal point is assumed to be fixed at the 
left of the leftmost position in the fractional field. When scaling is specified, it causes an 
unnormalized hexadecimal fraction to be assembled. (A number is unnormalized when 
the leftmost positions of the fraction contain hexadecimal zeros). The magnitude of the 
constant is retained because the exponent in the characteristic portion of the constant is 
adjusted upward accordingly. When hexadecimal positions are lost, rounding occurs in the 
leftmost hexadecimal position of the lost portion. The rounding is reflected in the 
rightmost position retained. Scaling must not cause all significant mantissa digits to be 
lost. 

E'4' 

ES2 14 1 

E'3.3' 

ES2 13.3 1 

, object code 

--------, . t in hex . .! 

~
' - -'~1[~l ---- --

- I , Normalized 
fraction 

l 431tbil~Ji 
I . ·1 Unn~rmalized !·.· ! 

. _ fraction ., 
? , , , , , , I J' 

l 41 l34CCCD J 

] 4~ l?~l 02 .. 

....... -~L~--
Error condition; 
all significance is lost 
because of length 

.modifier . ' 



Exponent Modifier 

A 
8 

EQ.U 

The exponent modifier specifies the power of 10 by which the nominal value of a 
constant is multiplied before being converted to its internal binary representation. You 
can only use it with the fixed-point (F, H, and D) and floating-point (E and L) constants. 
You code the exponent modifier as En, where n is either: 

• A decimal self-defining term or 
• An absolute expression enclosed in parentheses. Any symbols used in the expression 

must be previously defined, that is, in an instruction that physically precedes this DC 
in the source module. 

You can precede the decimal self-defining term or the expression with a sign; if no sign 
is present, a plus sign is assumed. The range for the exponent modifier is -85 through 
+75. 

Deeimal value Object code 
before conver-
sion to binary (Binary digits) 
form 

5 
EQ.U 1 i 

DC F141 4 [ 00-000000 I oooooioo I ; 

DC FE2 14 1 400 i ooo~oooi] 10010000) 

DC FE(A-8*3)'4' 400 loooooooi_I 10010000 I 
DC FE-2 14/lJI' 4 1'00000000 I oc)oooioo l 

Assembler Instructions 5-15 



DC 

DC 

DC 

DC 

5-16 SC34-0074 

Notes. 

1. Do not confuse the exponent modifier with the exponent you specify in the nominal 
value subfield of fixed-point and floating-point constants. 

The exponent modifier affects each nominal value in the operand, whereas the 
exponent you code as part of the nominal value subfield affects only that nominal 
value. If both types of exponent specification are present in a DC operand, their 
values are algebraically added together before the nominal value is converted to 
binary form. However, this sum must be within the permissible range of -85 through 
+75. 

2. The value of the constant, after exponents are applied, must be contained in the 
implicit or explicitly specified length of the constant. Also, significance must not be 
permitted to be completely lost. 

E 12 .• 25E+2,2.25,225E-2 1 

(VI. ·~ 
I~! 1'··1· 

Values assembled 
in decimal 

. 225,· 2.25, 2.25 

225,225,22500 

Storage Requirements for Constants. The total amount of storage required to assemble a 
DC instruction operand is any bytes skipped for alignment, plus the product of: 

• The length (implicit or explicit), and 
• The duplication factor (if specified) 

The maximum amount of storage allowed for a constant is 256 bytes. 



DC Operand Subfield 4: Nominal Value 
You must code the nominal value subfield in a DC instruction. It defines the value of the 
constant (or constants) described and affected by the subfields that precede it. It is this 
value that assembles into the internal binary representation of the constant. 

Only one nominal value is allowed for C-, S-, P-, B-, and X-type constants. How nominal 
values are specified and interpreted by the assembler is explained in the sections that 
describe each individual constant. The formats for specifying nominal values are described 
in the following table. 

Format of nominal value subfields 

Constant Single Multiple 
type 

c 
p· 

s 'value' Not allowed 
B 
x 
F 'value' 'value,value,. .. , value' 
H y D 
E separated by commas 
L 

··'-A ~ v (value) (value,value, ... , value) 
w 

Assembler Instructions 5-17 



EBCDIC Character Constant {C) 

5-18 SC34-0074 

This character constant specifies character strings that the assembler converts into their 
internal EBCDIC representation. 

The maximum number of bytes generated by one DC statement is 256. Each character 
specified in the nominal value subfield assembles into one byte. 

Multiple nominal values are not allowed; the assembler considers the comma as a valid 
string character. Scale and exponent modifiers are not allowed. 

Note. When ampersands or apostrophes are to be included in the assembled constant, 
double ampersands or double apostrophes must be specified; they are assembled as a 
single ampersand or single apostrophe. 

The contents of the subfields defining a character constant are described by the 
following examples: 

* DC INSTRUCTION 

* 
DESCRIPTION 

DUP 

LENGTH 

RANGE 

VALUE 

ENC LOS 

* 
MULTI 

PAD 

TRUNC 

DC 

DC 

DC 

DC 
DC 
DC 
DC 

DC 

DC 

DC 

DC 

lfjlc I I 

C'ABCD' 

CL256' I 

C'AB12#$ 1 

CI I I I 

C'&&' 
CI, I 

c• 

C'AB,C I 

CL2 1A 1 

Cll 'ABC' 

DUPLICATION FACTOR IS ALLOWED. 

I MPL IC IT LENGTH AS NEEDED 

RANGE FOR LENGTH IS l to 256 JJYTES,. 

VALUE REPRESENTED BY CHARACTERS 
TWO APOSTROPHES ASSEMBLE ,AS ON£ . 
TWO. AMPERSANDS ASSEMBLE AS ONE· 
COMMA ASSEMBLES AS COMMA 

NOMINAL VALUE ENCLOSED BY 
APOSTROPHES 

MULTIPLE NOMINAL VALUES.,JfOT.POSSJBLE: 

PADDED WITH EBCDIC 81.ANKS .A1:UGHt. 

TRUNCATION OF VALUE AT R~GH'l . 



ASCII Character Constant (S) 

This character constant specifies character strings, such as message text, that the 
assembler converts into their internal ASCII representation. ASCII code is generated as a 
7-bit character code with the high-order bit of zero. 

The maximum number of bytes generated by one DC statement is 256. Each character 
specified in the nominal value subfield assembles into one byte. 

Multiple nominal values are not allowed; the assembler considers the comma as a valid 
string character. 

Note. Specify double ampersands or double apostrophes for each single ampersand or 
single apostrophe you want assembled into the constant. See Appendix B for valid ASCII 
characters. 

* DC INSTRUCTION DESCRIPTION 
* DUP DC 4J'S' I DUPLICATION FACTOR IS ALLOWED 

LENGTH DC S'ABCD' IMPLICIT LENGTH AS NEEDED 

RANGE DC SL256 I I RANGE FOR LENGTH IS 1 to 256 BYTES 

VALUE DC S'AB12#$ 1 VALUE REPRESENTED BY CHARACTERS 
DC SI II I TWO APOSTROPHES ASSEMBLE AS ONE 
DC S'&&' TWO AMPERSANDS ASSEMBLE AS ONE 
DC S' t I COMMA ASSEMBLES AS COMMA 

ENC LOS DC s• NOMINAL VALUE ENCLOSED BY 
* APOSTROPHES 

MULTI DC · S'AB,C' MULTIPLE NOMINAL VALUES NOT POSSIBLE 

PAD DC SL2 1 A' PADDED WITH ASCII BLANKS AT RIGHT 

TRUNC DC SLl'ABC' TRUNCATION OF VALUE AT RIGHT 

Assembler Instructions 5-19 



PITC/EBCD Character Constant (P) 

5-20 SC34-0074 

DUP DC 

LENGTH DC 

RANGE DC 
* 

This character constant specifies character strings that the assembler converts into their 
internal PTTC/EBCD representation. See Appendix C for valid PTTC/EBCD characters. 

The maximum number of bytes generated by one DC statement is 256. Each character 
you code in the nominal value subfield assembles into one byte. 

Multiple nominal values are not allowed; the assembler considers the comma as a valid 
string character. 

Note. Specify double apostrophes or ampersands for each single apostrophe or ampersand 
you want assembled into the constant. 

4j/P I I DUPLICATION FACTOR IS ALLOWED. 

P'ABCD' IMPLICIT LENGTH AS NEEDED. 

PL256 1 I RANGE FOR LENGTH IS 1 THROUGH .,2i~~ 
t .. - - - - • ~ ,. ; J~ xu:_s_~:" 

* SCALE MODIFIER AND EXPONENT MODIFIER ARE NOT ALLOWED. 

VALUE 

ENCL OS 

* 

DC 
DC 
DC 
DC 

DC 

P1AB12#$ 1 

P"" 
P'&&' 
p I' I 

p• 

VALUE REPRESENTED BY CHARACTERS. 
2 APOSTROPHES ASSEMBLE AS ONE. 
2 AMPERSANDS ASSEMBLE AS ONE. 
COMMA ASSEMBLES AS COMMA. 

NOMINAL VALUE ENCLOSED BY 
APOSTROPHES. 

* EXPONENT NOT ALLOWED IN NOMINAL VALUE SUBFIELD. 

ttJLTI DC P'AB,C' MULTIPLE NOMINAL VALUES NOT 
* POSSIBLE. 

PAD DC P'A' PADDED WITH PTTC/EBCD BLANKS AT 
* RIGHT. 

TRUNC DC PLl 'ABC' TRUNCATION OF VALUE OF RIGHT. 



Hexadecimal Constant (X) 

You can use hexadecimal constants to generate large bit patterns more conveniently than 
with binary constants. Also, the hexadecimal values you specify in a source module allow 
you to compare them directly with the hexadecimal values generated for the object code 
and address locations printed in the program listing. 

Each hexadecimal digit specified in the nominal value subfield is assembled into 4 bits. 
The implicit length in bytes of a hexadecimal constant is then one-half the number of 
hexadecimal digits specified (assuming that the number of digits is a multiple of 2). 

The contents of the subfields defining a hexadecimal constant are described by the 
following examples: 

* DC INSTRUCT I ON DESCRIPTION 
'.*' 
DUP DC 

LENGTH DC 

RANGE DC 

VALUE DC 

* 
ENC LOS DC 
* 

PAD DC 

TRUNC DC 

Binary Constant (B) 

2x•;• 

X'FFFF' 

XL256'/I' 

x•;9AF' 

X'FFFF' 

X'F' 

XL1 1 FFFFF 1 

DUPLICATION FACTOR IS ALLOW~D 

IMPLICIT LENGTH AS NEEDED 

RANGE FOR LENGTH IS 1 to 256 BVTES 

VALUE REPRESENTED BY 
HEXADECIMAL DIGITS 

NOH I NAL VALUE ENCLOSED ;_BY: 
APOSTROPHES 

PADDED WITH BINARY ZEROS AT LEFT 

TRUNCATION OF VALUE AT LEFT 

The binary constant specifies the precise bit pattern you want to assemble into storage. 
Each binary constant assembles into the integral number of bytes required to contain the 
bits specified. 

The contents of the subfields defining a binary constant are described by the following 
examples: 

* DC I NS TRUCTI ON DESCRIPTION 

DUPLICATION FACTOR DUP 

,LENGTH 

RANGE 

~ALUE 

ENCL OS 

* 
PAD 

TRUNC 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

28 1 1jf1 1 

BI 11 

BL256 1j 1 

8 1 1;1;1;1 

e·~· 

8 I 1111111 1 

IMPLICIT LENGTH AS NElEQ~O_ 

NOMINAL VALUE ENCLOSED :BV 
APOSTROPHES 

PADDED WITH BINARY ZSRQ,S '.ArT~gftr, 
TRUNCATION OF VALUE !AT-~eFT 

Assembler Instructions 5-21 



Fixed-point Constant (F) 

A fixed-point constant is written as a decimal number and can be followed by a decimal 
exponent. The number can be an integer, a fraction, or a mixed number (one with 
integral and fractional portions). The format of the constant is as follows: 

• The number is written as a signed or unsigned decimal value. The decimal point can be 
placed before, within, or after the number. If it is omitted, the number is assumed to 
be an integer. A positive sign is assumed if an unsigned number is specified. 

• The exponent is optional. If specified, it is written immediately after the number as 
En, where n is an optionally signed decimal value specifying the exponent of the factor 
10. The exponent must be in the range -85 to +75. If an unsigned exponent is 
specified, a plus sign is assumed. 

The number is converted to binary, the exponent and scale factor (if any) are applied, 
the number is rounded and assembled into the proper field, according to the specified or 
implied length. An implied length of 2 bytes is assumed if a length is not specified. The 
resulting number does not differ from the exact value by more than one in the last binary 
position. If the value of the number exceeds the allowable range (-32768 to 32767), the 
statement is flagged and a zero is assembled into the whole field. Any duplication factor 
that is present is applied after the constant is assembled. A,negative number is carried in 
twos complement form. 

*DC INSTRUCT I ON DESCRIPTION 
* DUP DC 4F 1 11 DUPLICATION FACTOR IS ALLOWED 

LENGTH DC F1 lf/fl' IMPLICIT LENGTH IS ALWAYS 2 BYTES 

RANGE DC Fl 1' lflfl' LENGTH MODIFIER MUST BE 1 OR 2, 
* IF USED 

VALUE DC , F'32767' VALUE REPRESENTED BY DECIMAL DIGITS 

ENCLOSE DC F' -1 1 NOMINAL VALUE ENCLOSED BY 
* APOSTROPHES 

EXPVAL DC F'1.414E2 1 EXPONENT ALLOWED IN NOMINAL VALUE; 
* RANGE FOR EXPONENT IS -85 TO +75 

PAD DC F' 2$1' PADDED WITH BINARY ZEROS AT LEFT 

MULTI DC F'l,2,3 1 ttJLTIPLE NOMINAL VALUES ALLOWED 

SCALE DC FS6'-25.46' RANGE FOR SCALE IS -187 TO +346 

EXP ON DC FE2'46415' RANGE FOR EXPONENT IS -as TO +75 

Note. Truncation of F-type constants is not allowed. 

5-22 SC34-0074 



Fixed-Point Constant (H) 

An H-type (halfword) fixed-point constant is identical to an F-type constant, except that 
the H-type constant is assembled as a 1-byte field on a byte boundary. The maximum 
range of an H-type constant is -128 to 127. 

* Oc INSTRUCTION OESCRIPTI ON 
* DUP . DC 

LENGTH DC 

RANGE DC 

VALUE DC 

EN CLOS DC 
* 
EXPVAL DC 

* 
PAD DC 

Fixed-Point Constant (D) 

4H' 11 DUPLICATION FACTOR IS ALLOWED 

HI 11t• IMPLICIT LENGTH IS ALWAYS 1 BYTE 

HL 11 lf/1 LENGTH MODIFIER HUST BE 1, IF USED 

H'35' VALUE REPRESENTED BY DECIMAL DIGITS 

H' -1 1 NOMINAL VALUE ENCLOSED BY 
APOSTROPHES 

H121E-1 1 EXPONENT ALLOWED IN NOMINAL VALUES; 
RANGE FOR EXPONENT IS -85 to +75 

H121 PADDED WITH BINARY ZEROS AT LEFT 

Note. Truncation of H-type constants is not allowed. 

A D-type (doubleword) fixed-point constant is identical to an F-type constant, except 
that the D-type constant is assembled as a 4-byte field on a word boundary. The 
maximum range of a D-type constant is -2 31 to 231 -1. 

* DC INSTRUCT I ON DES CR I PTI ON 

* DUP DC 40 1 11 DUPLICATION FACTOR IS ALLOWED 

LENGTH DC D' •-J'J'Ji' IMPLICIT LENGTH IS ALWAYS 4 BYTES 

RANGE DC DL4' 1Jl/iJIJi• LENGTH MODIFIER HUST BE 1, 2, 3 or 

* 4, IF USED 

VALUE DC 0166 1 VALUE REPRESENTED BY DECIMAL DIGITS 

ENCL OS DC 0 1 -1 1 NOMINAL VALUE ENCLOSED BY 
* APOSTROPHES 

EXPVAL DC D1231.62E-2 1 EXPONENT ALLOWED IN NOMINAL VALUE; 
* RANGE FOR EXPONENT IS ·85 to +75 

PAD DC D1 1jl}i1 PADDED WI TH BIN.ARY ZEROS AT LEFT 

Note. Truncation of D-type constants is not allowed. 

Assembler Instructions 5-23 



Floating-Point Constant (E) 

5-24 SC34-0074 

An E-type (single-precision) floating-point constant is written as a decimal number and 
can be followed by a decimal exponent. The number can be an integer, a fraction, or a 
mixed number (one with integral and fractional portions). The format of the constant is 
as follows: 

• The number is written as a signed or unsigned decimal value. The decimal point can be 
placed before, within, or after the number. If it is omitted, the number is assumed to 
be an integer. A positive sign is assumed if an unsigned number is specified. 

• The exponent is optional. If specified, it is written immediately after the number as 
En, where n is an optionally signed decimal value specifying the exponent of the factor 
10. The exponent must be in the range -85 to +75. If an unsigned exponent is 
specified, a plug sign is assumed. 

The external format for a floating-point number has 2 parts: the portion containing the 
exponent, which is sometimes called the characteristic, followed by the portion 
containing the fraction, which is sometimes called the mantissa. Therefore, the number 
specified as a floating-point constant must be converted to a fraction before it can be 
translated into the proper format. 

For example, the constant 27.35E2 represents the number 27.35 times 102
• 

Represented as a fraction, 27.35E2 would be 0.2735 times 104
, the exponent having 

been modified to reflect the shifting of the decimal point. Thus, the exponent is also 
altered before being translated into machine format. 

In machine format, a floating-point number also has 2 parts, the signed exponent and 
signed fraction. The quantity expressed by this number is the product of the fraction and 
the number 16 raised to the power of the exponent. 

The exponent is translated into its binary equivalent in excess 64 binary notation and 
the fraction is converted to a binary number. Leading hexadecimal zeros are removed. 
Rounding of the fraction is then performed according to the specified or implied length, 
and the number is stored in the proper field. The resulting number does not differ from 
the exact value by more than one in the last place. 

The maximum range of the magnitude of an E-type constant is approximately 1 <T 7 ~ to 
107 6

• If this range is exceeded, the DC instruction is flagged and a zero is assembled into 
the whole field. 

Within the portion of the floating-point field allocated to the fraction, the hexadecimal 
point is assumed to be to the left of the leftmost hexadecimal digit, and the fraction 
occupies the leftmost portion of the field. Negative fractions are carried in true 
representation, not in the twos complement form. 

As an example, the machine representation of the floating-point constant E'55 .125' 
would be: 

Bit Portion of constant Contents 

0 Sign bit of mantissa 0 
1-7 Exponent X'42' 
8-31 Mantissa X'372000' 



* DC INSTRUCTION 
* DUP DC 4E I .;;,25 I 

LENGTH DC 

RANGE DC 

* 
VALUE DC 

ENCLOS DC 
* 
EXPVAL DC 
* 
PAD DC 

TRUNC DC 

SCALE DC 

EX PON DC 

Floating-Point Constant (L) 

E'l.315' 

EL4 1 1. 111 1 

£ 11.41416 1 

E 1 11 

E 1 1 E-8Jt1 

E1Sj1 

E1-123.4567a9• 

ES6 1 l,0''' 

EE-aS 1 l 1 

DESCRIPTION 

DUPLICATION FACTOR IS ALLOWED 

IMPLICIT LENGTH IS ALWAYS 4 BYTES 

LENGTH MODIFIER HUST BE 2, 3, OR 4, 
IF USED 

VALUE REPRESENTED BY DECIMAL DIGITS· 

NOMINAL VALUE ENCLOSED BY 
APOSTROPHES 

EXPONENT ALLOWED IN NOMINAL VALUE; 
RANGE FOR EXPONENT IS -as TO +75 

PADDED WITH BINARY ZEROS AT RIGHT 

VALUE IS ROUNDED 

RANGE FOR SCALE IS JI THROUGH 6 

RANGE FOR EXPONENT IS ·85 TO +75 

An L-type (double-precision) floating point constant is identical to an E-type constant 
except that the L-type constant is assembled as an 8-byte field on a word boundary. The 
resulting constant consists of a I-byte sign and exponent plus a 7-byte hexadecimal 
fraction. 

* DC INSTRUCT I ON 
* 
DUP . DC 

LENGTH DC 

RANGE DC 
* 
VALUE DC 

ENCLOS DC 

* 
EXPVAL DC 

* 
PAD DC 

L'l.315' 

LLa 1 1.315 1 

L'l.41416 1 

LI 11 

L'lE-~1 

L'SJ/' 

DESCRIPTION 

DUPL I CAT I ON FACTOR tS ALLOW~D 

IHPLI CIT LENGTH IS ALWAYS a BYTE:S 

LENGTH MODIFIER MUST BE 2, 3, 4, '.5,. 
6, 7, OR a, IF USED 

VALUE REPRESENTED BY DECIMAL DIGITS 

NOMINAL VALUE ENCLOSED BY 
APOSTROPHES 

EXPONENT ALLOWED IN NOMINAL VALUE; 
RANGE FOR EXPONENT IS -as TO +75 

PADDED WITH BINARY ZEROS AT RIGHT 

Assembler Instructions 5-25 



A-Type Address Constant 
This section and the two following sections describe how the different types of address 
constants assemble from expressions that usually represent storage addresses, and how 
you use the constants for addressing within and between source modules. 

In the A-type address constant, you can specify any of the three types of assembly-time 
expressions (see "Expressions" in Chapter 2), whose value the assembler then computes 
and assembles into object code. You use this expression computation as follows: 

• Relocatable expressions for addressing 
• Absolute expressions for addressing and value computation 
• Complex relocatable expressions to relate addresses in different source modules. 

The value of the location counter reference (*) when specified in an address constant 
does not vary from constant to constant if a duplication factor, multiple nominal values, 
or multiple operands are specified. 

The contents of the subfields defining the A-type address constants are described by the 
following examples. 

* DC INSTRUCTION DESCRIPTION 
* DUP DC 

LENGTH DC 

RANGE DC 

* 
* 
* 
VALUE DC 

ENCL OS DC 
* 
MULTI DC . . 
PAD DC 

5-26 SC34-0074 

4A(*) DUPLICATION FACTOR ALLOWED 

A( LABEL) IMPLICIT LENGTH IS ALWAYS 2 BYTES 

AL 1 (LABEL) LENGTH MODIFIER CAN BE FROM 1 TO 4· , 
ONLY LENGTH 2 IS VALID FOR A 
RELOCATABLE VALUE·-LENGTHS 1, 3, AND 
4 ttJST BE FOR ABSOLUTE VALUES 

A(LABEL+2) VALUE REPRESENTED BY ANY EXPRESSION 

A(*-*) NOMINAL VALUE ENCLOSED BY 
PARENTHESES 

A(LABEL,SYMBOL) MULTIPLE NOMINAL VALUES ALLOWED 

A( 1) PADDED WITH BINARY ZEROS AT LEFT 

Note. Truncation of A-type constants is not allowed; if the value is too large, a zero is 
assembled and the statement is flagged as an error. 



V-Type Address Constant 

The V-type address constant reserves storage for the address of a location in another 
source module. You can use the V-type address constant to branch to the external 
address. (There are other ways to branch to external addresses, as described in "Symbolic 
Addressing Between Source Modules-Symbolic Linkage" later in this chapter.) 

When you specify a symbol in a V-type address constant, the assembler assumes that it 
is an external symbol. A value of zero is assembled into the space reserved for the V-type 
constant; the correct relocated value of the address is inserted into this space by the 
linkage editor. The symbol specified in the nominal value subfield does not constitute a 
definition of the symbol for the source module in which the V-type address constant 
appears. 

The contents of the subfields defining the V-type address constants are described in the 
following examples. 

* DC INSTRUCT I ON DES CR I PTI ON 
* DUP DC 4V(EXTERNAL) DUPLICATION FACTOR IS ALLOWED 

LENGTH DC V(EXTERNAL) IMPLICIT LENGTH IS ALWAYS 2 BYTES 

RANGE DC VL2 (EXTERNAL) LENGTH MODIFIER HUST BE 2, IF USED 

VALUE DC V(EXTERNAL) VALUE REPRESENTED BY SINGLE 
* RELOCTABLE SYMBOL 

ENCLOS DC V(EXTERNAL) NOMINAL VALUE ENCLOSED BY 
* PARENTHESES 

MULTI DC V(EXTl ,EXT2) MULTIPLE NOMINAL VALUES ALLOWED 

Note. Truncation of V-type constants is not applicable. 

Assembler Instructions 5-27 



W-Type Address Constant 
Specified as one relocatable symbol, the W-type address constant reserves storage for the 
address of a weak external symbol that refers to other source modules. For unresolved 
symbols defined in a W-type constant, the linkage editor issues warning messages rather 
than error messages. The implied length of a W-type address constant is 2 bytes. 
Specifying a symbol as the operand of the constant does not constitute a definition of the 
symbol. 

* DC INSTRUCTION DES CR I PTI ON 
* DUP DC 

LENGTH DC 

RANGE DC 

VALUE DC 
* 
ENCLOS DC 
* 
MULTI DC 

The DS instruction 

5-28 SC34-0074 

4W(WEAK) DUPLICATION FACTOR IS ALLOWED 

W(WEAK) IMPLICIT LENGTH IS ALWAYS 2 BYTES 

WL2(WEAK) LENGTH MODIFIER MUST BE 2, IF USED 

W(WEAK) VALUE REPRESENTED BY SINGLE 
RELOCATABLE SYMBOL 

W(WEAK) NOMINAL VALUE ENCLOSED BY 
PARENTHESES 

W(WXT 1,WXT2) MULTIPLE NOMINAL VALUES ALLOWED 

Note. Truncation of W-type constants is not applicable. 

The DS instruction allows you to: 

• Reserve areas of storage 
• Provide labels for these areas 
• Use these areas by referring to the symbols defined as labels 

The format of the DS instruction is like that of the DC instruction: 

Name Operation Operand 

[label) DS [\ ~alue' !] (dup] type[mods] (value) [,opnd 2] ... 

where operand consists of the same 4 subfields as the DC statement. However, with the 
DS instruction no data is assembled and the nominal value subfield is therefore optional. 

The subfields for the DS instruction operand are: 

Subfield Contents 

1 duplication factor (optional) 
2 data type (required) 
3 modifiers (optional) 
4 nominal value or values (optional) 



The maximum length that can be specified in a DS operand is 65 ,535 bytes rather than 
the DC instruction limit of 256 bytes. 

The label of a DS instruction, like the label of a DC instruction, has an address value of 
the leftmost byte of the area reserved. 

If the DS instruction is specified with more than one nominal value, the label addresses 
the area reserved for the field that corresponds to the first nominal value. 

Using the DS instruction to reserve storage. The DS instruction is the best way to 
symbolically define storage for work areas and 1/0 buffers. If you wish to take advantage 
of implicit length calculation, do not supply a length modifier in your operand 
specification. Specify a type subfield that corresponds to the type of area you need. 

~, ps ;INSTRUCTlON 

* fAREA DS F 
XAREA DS X 
DUPFAC DS SF 
EAREA OS 3E 

STORAGE RESERVED 

2 BYTES 
2 BYTES 
16 BYTES 
12 BYTES 

To reserve large areas, you can use a duplication factor. You can also use character (C 
and S) or hexadecimal (X) field types to specify large areas using the length modifier. 

Although the nominal value is optional for a DS instruction, you can put it to good use 
by letting the assembler compute the length of areas for the B-, C-, S-, and X- type areas. 
You achieve this by specifying the general format of the data that will be placed in the 
area at execution time. 

You can force the location counter to a word boundary by using the appropriate data 
type with a duplication factor of zero. This method ensures a boundary alignment that 
you would otherwise not have. 

Assembler Instructions 5-29 



PROGRAM SECTIONING 

Using the DS instruction to name fields of an area. Using a duplication factor of zero in a 
DS instruction allows you to provide a label for an area of storage without actually 
reserving the area. You can use DS or DC instructions to reserve storage for and assign 
labels to fields within the area. These fields can then be addressed symbolically. (You can 
also do this with DSECTs as described later in this chapter.) 

Nothing is assembled into the storage area reserved by a DS instruction. No assumption 
should be made as to the initial contents of the reserved area at execution time. 

The size of a storage area that can be reserved by a DS instruction is limited by the 
maximum value of the location counter (65,535). 

This section explains how you can subdivide a large program into smaller parts so that 
they are easier to understand and maintain. It also shows how you can divide these 
smaller parts into convenient sections; for example, one section to contain your 
executable instructions and another section to contain your data constants and areas. 

You should consider two distinct subdivisions when writing an assembler language 
program: 

• Dividing the program into source modules 
• Dividing the program into control sections 

You can divide a program into two or more source modules. Each source module is 
assembled into a separate object module. You then use the linkage editor to combine the 
object modules into a load module, forming an executable program. 

You can also divide a source module into two or more control sections. Each control 
section of a full assembly is assembled as part of the object module. The linkage editor 
processes these control sections, producing a load module with contiguous storage 
addresses. 

Communication Between Program Parts 

The Source Module 

The Beginning of a Source Module 

5-30 SC34-0074 

You must be able to communicate between the parts of your program; that is, be able to 
refer to data in a different part or be able to branch to another part: 

• To communicate between 2 or more source modules, you must symbolically link them 
together; symbolic linkage is described in "Symbolic Addressing Between Source 
Modules-Symbolic Linkage" in this chapter. 

• To communicate between control sections within a source module, you must establish 
the addressability of each control section; establishing addressability is described in 
"Symbolic Addressing Within Source Modules-Establishing Addressability" in this 
chapter. 

A source module is composed of source statements in the assembler language. Write them 
on a coding form and then use the text editor to enter them as input onto a diskette. 

The first statement of a source module can be any assembler language statement 
described in this manual (except MEND, MEXIT, or END). You should initiate the first 
control section of a source module with the START or CSECT instruction. However, you 
can, or in some cases must, write source statements before the beginning of the first 
control section. (For a list of these statements see "First Control Section" in this 
chapter.) 



The End of a Source Module 

END-End Assembly 

PROG 

ENTER 

The END instruction marks the end of a source module. Only one END instruction is 
allowed. The assembler does not process any instruction that follows the END 
instruction. 

The END instruction marks the end of a source module. It indicates to the assembler 
where to stop assembly processing. 

You can also supply on the END instruction the address of the location in your 
program where execution must start. This location is quite often the address of the first 
executable instruction in the source module. In this case leave the operand blank. Later, 
if you wish, you can override this location in your response to the ENTRY= linkage 
editor prompt. 

Note. The entry address you specify in response to the linkage editor ENTRY= prompt 
must be a CSECT name or a name defined in an assembler ENTRY instruction. The entry 
address in an END instruction can be any name defined in your source module. 

The format of the END instruction statement is: 

Name Operation Operand 

blank END relocatable expression OR blank 

If specified, the relocatable expression must meet one of the following conditions: 

• It must be a relocatable expression representing an address in the source module 
delimited by the END instruction, or 

• If it contains an external symbol, that symbol must be the only term in the expression, 
or the remaining terms in the expression must reduce to zero. 

The following example indicates the use of the END instruction: 

START 

. EQU . . * 
END ENTER 

General Information About Control Sections 
A control section is the smallest subdivision of a program that can be relocated as a unit. 
The assembled control sections contain the object code for machine instructions and 
data. 

Control Sections at Different Processing Times 

Consider the concept of a control section at different processing times: 

At coding time. You create a control section when you write the instructions it contains. 
In addition, you establish the addressability of each control section within the source 
module, and provide any symbolic linkages between control sections that are in different 
source modules. 

Assembler Instructions 5-31 



At a~mbly time. The assembler translates the source statements in the control section 
into object code. Each source module is assembled into one object module. The entire 
object module and each of the control sections it contains is relocatable. 

At link-edit time. Based on your responses to linkage editor INCLUDE= prompts, the 
linkage editor combines the object code of one or more control sections into one load 
module. It also calculates the linkage addresses necessary for communication between 
two or more control ·sections from different object modules. By responding to the 
ENTRY= prompt, you can specify the entry point address in your program where 
execution is to start. 

Types of Control Sections 

An executable control section begins with the START or CSECT instructions and is 
assembled into object code. At execution time, an executable control section contains the 
binary data assembled from your coded instructions and constants. 

Note. An executable control section is usually named. You can also initiate an executable 
control section as "private code" when you omit the START or CSECT instruction, or 
when you specify an unnamed START or CSECT instruction. (See "Unnamed Control 
Section" in this chapter.) 

A reference control section begins with the DSECT instruction and is not assembled 
into object code. You can use reference control sections to describe the contents of data 
areas to your executable control sections (CSECT). 

Location Counter Setting 

5-32 SC34-0074 

The assembler maintains a separate internal location counter for each control section so 
that they can be intermixed in your source module. The location counter for each control 
section is set to zero at the beginning of that control section. The location values assigned 
to the instructions and other data in a control section are relative to the beginning of that 
control section. 

You can continue a control section that has been discontinued by another control 
section and thereby intersperse code sequences from different control sections. Note that 
the location values that appear in the listings for a control section, divided into segments, 
follow from the end of one segment to the beginning of the subsequent segment. 

"; 

* SOURCE. STATEHE.NTS 

* 
LISTED LOCATION 

ONE START 128 

lWO CSE CT 

THREE CSE CT 

.TWO CSE CT 
: 

END 

~;s

J 2, 3 
-~; 

~Al+3 
'11*'1 
-C#: 
-Al+4 

;e;1 



First Control Section 

The following specifications apply only to the first executable control section, and not to 
a reference control section: 

Instruction that establish the first control section. Any instruction that affects the 
location counter or uses its current value establishes the beginning of the first executable 
control section. The instructions that establish the first control section are: 

All machine instructions 
CSECT 
DC 
DROP 
DS 
END 
EQU 
EQUR 
ORG 
START 
USING 

These instructions are always considered a part of the control section in which they 
appear. The DSECT instruction initiates reference control sections and does not establish 
the first executable control section. 

What must come before the first control section. Source macro definitions, if specified, 
must appear before the first control section. (See Chapter 5.) 

What can optionally come before the first control section. The instructions or groups of 
instructions that can optionally be specified before the first control section are: 

Macro definitions (must precede first control section) 
EJECT instruction 
ENTRY instruction 
EXTRN instruction 
PRINT instruction 
SP ACE instruction 
TITLE instruction 
WXTRN instruction 
Comments statements 
Dummy control sections 
Macro call (depends on expanded body of macro) 

Notes. 

1. These instructions belong to a source module, but are not considered as part of an 
executable control section. 

2. TITLE, PRINT, SPACE, EJECT, and comment statements can precede or appear 
between source macro definitions. All other instructions in your source module must 
follow any source macro definitions. 

3. These instructions can all be coded within a control section. 

Any instructions generated with a macro call before the first control section must 
belong to one of the preceding groups of instructions. 

Assembler Instructions 5-33 



Unnamed Control Section 
Each source module can have only one unnamed control section. An unnamed control 
section is an executable control section you initiate in one of the following two ways: 

• By coding a START or CSECT instruction without a name entry 
• By coding any instruction (other than the START or CSECT instruction) that initiates 

the first executable control section 

The unnamed control section is aJso referred to as private code. You should name all 
control sections so that you can refer to them symbolically: 

• Within a source module 
• In EXTRN and WXTRN instructions, for linkage between source modules 

External Symbol Dictionary Entries 

5-34 SC34-0074 

The assembler keeps a record of each control section and prints the following information 
about them in the external symbol dictionary: 

• Symbolic name, if one is specified 
• Type code 
• ESD identification number 
• Starting address 
• Length in bytes 

The following table lists: 

• The assembler instructions that define control sections and dummy control sections, 
or identify entry and external symbols, and 

• The type code that the assembler assigns to the control sections or dummy control 
sections, and to the entry and external symbols. 

Instruction Instruction Type code entered into external 
label symbol dictionary 

Optional START SD if label is present 
PC if label is omitted 

Optional CSECT SD if label is present 
PC if label is omitted 

Optional Any instruction that PC 
initiates the unnamed 
control section 

Mandatory DSECT None 

Blank ENTRY LD 

Blank ENTRN ER 

Blank WXTRN wx 
Optional DC ER 

(V type address 
constant) 

Optional DC wx 
(W type address 
constant) 

Optional BX and BALX ER 

Note. The maximum number of external symbol dictionary entries (control sections, 
dummy control sections, and external symbols) allowed is 254. 



Defining a Control Section 

START-Start Assembly 

You must use the START, CSECT, and DSECT instructions to indicate to the assembler: 

• Where a control section begins, and 
• What type of control section is being defined 

The START instruction can initiate only the first executable control section in your 
source module. You should use the START instruction for this purpose, because it allows 
you to: 

• Determine exactly where the first control section begins, thereby avoiding the 
accidental initiation of the first control section by some other instruction. 

• Give a symbolic name to the first control section, so you can distinguish it from the 
other control sections listed in the external symbol dictionary. 

• Specify the initial setting of the location counter for the first or only control section. 

The START instruction, when used, must be the first instruction of the first executable 
control section in your source module. You must not precede it with any instruction that 
affects the location counter and thereby causes the first control section to be initiated. 

The format of the START instruction statement is: 

Name Operation Operand 

[label] START self-defining term OR blank 

The symbol in the label of the START instruction identifies the first control section. 
You use the same symbol in the label of any CSECT instruction that resumes the first 
control section. This symbol represents the address of the first word in the control 
section. The assembler uses the value of the self-defining term you specify on the START 
instruction, to set the location counter initial value. The value of the operand must be 
aligned to a doubleword (divisible by 4 ). If you omit the operand entry, the assembler sets 
the location counter to zero. For example: 

* SOURCE STATEMENTS 
* 

LISTED LOCATION (HEXADECIMAL) 

j1jft FIRST START 256 

Jill D 
SECOND CSE CT 

__ ,,_ 
~31'; 

FIRST CSECT 
jtll E 

/1228 
END 

Assembler Instructions 5-35 



The source statements that follow the START instruction are assembled into the first 
control section. If a CSECT instruction indicates a continuation of the first control 
section, the source statements that follow this CSECT instruction are also assembled into 
the first control section. 

Any instruction that defines a new or continued control section marks the end of the 
preceding control section or part.of a control section. The END instruction marks the end 
of the last control section. For example: 

'FTRST ·.START. 1 
S~COt'O CSECT 

1~rf: OSECT 

flRST .. · CSECT 

END 

CSECT-Start or Resume a Control Section 

5-36 SC34-0074 

With the CSECT instruction, you initiate an executable control section or indicate the 
continuation of an executable control section. 

You can use the CSECT instruction anywhere in a source module after your source 
macro definitions, if you have them. If you use CSECT to initiate the first executable 
control section, you must not precede it with any instruction that affects the location 
counter and thereby causes the first control section to be initiated. 

The format of the CSECT instruction statement is: 

Name Operation Operand 

[label] CSECT blank 

The symbol you specify in the label of the CSECT instruction identifies the control 
section. If you have several CSECT instructions within your source module with the same 
symbol in the name field, the first occurrence initiates the control section and the rest 
indicate the continuation of the same control section. If you initiate the first control 
section with a ST ART instruction, use the symbol in its label to indicate a continuation 
of the first control section. 

Note. Coding a CSECT instruction with a blank label either initiates or indicates the 
continuation of the unnamed control section. There can be only one unnamed control 
section in a source module. 

The symbol in the label of the CSECT instruction represents the first word in the 
control section. The source statements following a CSECT instruction assemble into the 
object code of the control section identified by that CSECT instruction. The end of a 
control section, or part of a control section, is marked by: 

• Any instruction that defines a new or continued control section, or 
• The END instruction 



DSECT-Start or Resume Dummy Section 

The DSECT instruction begins a dummy control section or indicates its continuation. A 
dummy control section is a reference control section that allows you to write a sequence 
of assembler language statements to describe the layout of data located elsewhere in your 
program. The assembler produces no object code for statements in a dummy control 
section and it reserves no main storage. Rather, the dummy section provides a symbolic 
format for a data area in storage. The assembler assigns location values to the symbols 
you define in a dummy section, relative to the beginning of that dummy section. 

Therefore, to use a dummy section you must: 

• Reserve a storage area for the data in an executable control section of the same or 
another source module. 

• Ensure that the data is in the area at execution time. 
• Ensure that the locations of the symbols in the dummy section actually correspond to 

the locations of data in the area. 
• Establish the addressability for the DSECT in combination with the storage area. 

You can then refer to the data symbolically by using the symbols defined in the DSECT. 
The symbol you specify in the label of the DSECT instruction identifies the dummy 

section. If you have several DSECT instructions within your source module with the same 
symbol in the name field, the first occurrence initiates the dummy section and the rest 
indicate the continuation of that dummy section. 

The symbol in the label of the DSECT instruction represents the first location described 
in the dummy section. The location counter for a dummy section has an initial value of 
zero. However, the continuation of a dummy section begins at the next available location 
in that dummy section. 

The format of the DSECT instruction statement is: 

Name Operation Operand 

label DSECT blank 

Assembler Instructions 5-37 



The label of the DSECT instruction can be any ordinary symbol. The source statements 
that follow a DSECT instruction belong to the dummy section identified by that DSECT 
instruction. Assembler language statements that appear in a dummy control section do 
not assemble into object code. 

When you establish addressability for a dummy section, the symbol in the label of the 
DSECT instruction, or any symbol defined in the dummy section can be specified in a 
USING instruction. 

A symbol defined in a dummy section can be specified in an address constant only if 
the symbol is paired with another symbol from the same dummy section, and if the 
symbols have the opposite sign. For example: 

* INSTRUCTIONS DESCRIPTION 
* HYPROG 

AD CON 

DUMMY 

TO 
F~OM 

START 
EXTRN DATA 
HVA DATA,R7 
US ING DUMMY ,R7 

DC A( FROM-TO) 

DSECT 

DS CL2j 
DS CL6fl 
END 

ESTABLISH ADDRESSABILITY 
NAME FIELD OF A DSECT STATEMENT 

PAIRED SYMBOLS DEFINED IN DSECT 

FIELDS NOT ASSEMBLED INTO 
OBJECT CODE 

SYMBOLIC ADDRESSING WITHIN SOURCE MODULES-ESTABLISHING 
ADDRESSABILITY 

5-38 SC34-0074 

The assembler must be able to establish addressability for all machine instructions that 
reference a storage location. You can consider these instructions to belong to one of four 
groups: 

• Instructions that reference a location using a register as a base, such as BALX, MVWS, 
and BXS. 

• Instructions that reference a location by its effective address or by using a register as a 
base; this group includes all instructions with addr4, addr5, and longaddr formats, such 
as MVW, B, CW, and BAL. These instructions can reference any location within the 
range of the assembler's location counter (65535). You do not have to establish 
addressability for these instructions, even if the referenced location is not in the same 
control section as the instruction. 

Note. When you use the addr form of these instruction formats, the assembler 
generates RLD items which must be processed by the linkage editor. The base 
register-displacement format is self-relocating and does not need to be relocated by the 
linkage editor. 

• Jump instructions that can only reference a location using the IAR as a base, such as J, 
JAL, and JCT. For this group, the referenced location must be relocatable and within 
the range -256 to 254 bytes of the byte following the jump instruction, and also 
within the same control section. You manually establish addressability for these 
instructions by ensuring that the referenced location is within IAR range. If the 
location is not within range, the assembler will flag the jump instruction. 

• Instructions that refer to a location specified as the contents of a register. You do not 
have to establish addressability for these instructions. 



You can establish addressability for the first two types of instructions in either of two 
ways: 

• You can code an explicit address by coding the register-displacement form of the 
operand. This method requires that you develop absolute displacements from a 
location whose address you load into the register at execution time. Using EQU 
instructions permits you to develop symbolic displacements. 

• You can let the assembler compute a displacement and index register combination that 
is suitable for referencing the required location. 

Letting the assembler compute displacements has certain advantages over other 
methods of establishing addressability: 

• All data constants and 1/0 buffers can be grouped together and separated from 
machine instruction logic at the end of your control section or they can be assembled 
as a separate control section. 

• Fields can be symbolically referenced, thus improving code readability. 

For the assembler to compute displacements from a register, you must, at coding time: 

• Specify a base address from which the assembler can compute the displacements 
• Assign a register to contain this base address 
• Write the instruction that loads the register with the base address 

At assembly time, the address operands you code are converted into their 
register-displacement form. Then they are assembled into the object code of the machine 
instructions in which you coded them. 

At execution time, the base address must be loaded into the register and should remain 
there throughout execution of the code that depends on that address to locate the subject 
data locations. 

The following example indicates the use of a base register to establish addressability. 

* INSTRUCTIONS DESCRIPTION 
* MVP ROG 

* 

DATA 
FIELDl 
FIELD2 
FIELD3 

START 

MVA DATA,R2 
USING DATA,R2 

MVW FIELD1,R3 
AW FIELD2,R3 
MVW R3,FIELD3 

DSECT 
DS F'/I' 
OS F'2' 
OS F 

END 

LOAD BASE ADDRESS INTO REGISTER 
SPECIFY BASE ADDRESS AND 
ASSIGN REG I STER 

Assembler Instructions 5-39 



USING-Use Base Address Register 

5-40 SC34-0074 

The USING instruction allows you to specify a base address and assign a register. If you 
also load the register with the base address, you have established addressability for data 
located within, as a maximum, -32767 to +65535 bytes of the base address. To use the 
USING instruction correctly, you should: 

• Know which locations in a control section are made addressable by the USING 
instruction. 

• Know which instructions can use these addresses as operands. 
• Know which instructions can use the specified register as a base register. 

The range of a USING instruction (called the USING range) is a maximum of-32767 
to +65535 bytes from the base address specified in the USING instruction. The range 
does not extend beyond the boundaries of the executable or reference control section in 
which the base address is defined. The assembler can convert only addresses that are 
within a USING range to their register-displacement form; those outside the USING range 
cannot be converted. 

The USING range does not depend upon the position of the USING instruction in the 
source module; rather, it depends upon the location of the base address specified in the 
USING instruction. 
Note. The USING range is the range of addresses within a control section that is 
associated with the register specified in the USING instruction. 

The range of the USING instruction and the valid base registers vary according to 
individual instruction formats, as follows: 

• All instructions with addr4 operand formats: 

Resulting register 
Coded format displacement format USING range 

addr (reg 1
- 3 , waddr) -32767 to +65535 

addr* (reg1
- 3 , disp)* 0 to 255 

• All instructions with addr5 operand formats: 

Resulting register 
Coded format displacement format USING range 

addr (reg1
- 7 , waddr) -32767 to +65535 

addr* (reg 1
- 7 , disp)* 0 to 255 

• All instructions with longaddr operand formats: 

Resulting register 
Coded format displacement format USING range 

addr (reg1- 7 , waddr) -32767 to +65535 
addr* (reg1- 7 , waddr)* -327 67 to +655 35 

• The MVWS instruction: 

Resulting register 
Coded format displacement format USING range 

addr (reg0 - 3 , wdisp) 0 to 62 
addr* (reg0

-
3

, wdisp)* 0 to 62 



• The BALS instruction: 

Resulting register 
Coded format displacement format USING range 

addr* (reg,jdisp)* -256 to +254 

• The BXS instruction: 

Resulting register 
Coded format displacement format USING range 

addr (reg1
-

7 ,jdisp) -256 to +254 

Here is some sample code that illustrates the range of the USING instruction: 

* INSTRUCTION DESCRIPTION 
* MVP ROG START . . 

HVA DATA,R2 LOAD BASE ADDRESS INTO REGISTER 
US ING DATA,R2 SPECIFY BASE ADDRESS AND ASSIGN 

* REGISTER 

HVWS Fl ELDl, Rl FIELDl WITHIN USING RANGE SO 
* ADDRESS CONVERTS PROPERLY 

HVW FIELD2,R6 CANNOT CONVERT ADDRESS EVEN THOUGH 
* FIELD2 IS WITHIN 65535 BYTES OF DATA 
* BECAUSE FIELD2 IS NOT IN THE SAHE 
* CONTROL SECT I ON 

DATA CSECT US ING RANGE STARTS HERE AND IS 65535 
*- BYTES OR LESS, DEPENDING ON THE 
* BOUNDARIES OF THE CONTROL SECTION 
* AND THE INSTRUCTIONS CODED 
FIELDl OS F 

SECOND CSE CT 
FIELD2 DS F 

END 

Assembler Instructions 5-41 



5-42 SC34-0074 

The domain of a USING instruction (called the USING domain) begins where the 
USING instruction appears in a source module and continues to the end of the source 
module. (Exceptions are discussed later in this chapter in "Notes About the Using 
Domain.") The assembler converts addresses in instructions into register-displacement 
form only when: 

• The instructions appear in the domain of a USING instruction, and 
• The addresses referred to are within the range of the same USING instruction. 

The USING domain depends on the position of the USING instruction in the source 
module after macro expansion, if any, occurred. 

* INSTRUCTIONS DESCRIPTION 
* MVP ROG 

DATA 
FIELD 

START 

MVA DATA,R2 
MVW FIELD,R6 CANNOT CONVERT ADDRESS 

USING DATA,R2 USING DOMAIN STARTS HERE 
MVW Fl ELD ,RS CAN CONVERT ADDRESS 

CSE CT 
DC 

END 

X' 1!' 

USING DOMAIN ENDS HERE 

You should specify your USING instructions so that: 

• As many data items as possible are grouped within a USING range, and 
• All the instructions that refer to these data locations are within the corresponding 

USING domain. 

You should therefore place USING instructions at the beginning of your coded 
instruction sequences and specify a base address in each USING instruction for each 
USING range you require. You can use the same register in multiple USING instructions 
so long as you load the register each time the required address changes. 



For executable control sections. The next example shows a way to establish 
addressability for an executable control section. The USING domain starts with the 
USING instruction and continues to the END instruction; the USING range (maximum) 
is from 32767 bytes before the EQU instruction to 65535 bytes after the EQU 
instruction. 

* INSTRUCT I ONS DESCRIPTION 
:* 

* 

DATA 

: 
MVA DATA,R2 
US ING DATA,R2 

LOAD BASE ADDRESS INTO REGISTER 
SPECIFY BASE ADDRESS AND ASSIGN 
REGISTER 

EQ.U 

END 
* 

MACHINE INSTRUCTIONS HERE 

DATA ITEMS HERE 

For reference control sections. The next example shows how to establish addressability 
for a dummy section (a reference control section defined by a DSECT instruction). The 
address you load into the register at execution time must be the base address specified in 
the USING instruction. Note that the assembler assumes you are referring to the symbolic 
addresses in the dummy section, and it computes displacements accordingly. However, at 
execution time, the assembled addresses refer to the location of real data in the storage 
area. The USING range in the next example is the reference control section-from the 
DSECT instruction to the END instruction. The USING domain is from the USING 
instruction to the END instruction. 

* INSTRUCTIONS DESCRIPTION 
* 

HVW ADCON,Rl LOAD BASE ADDRESS INTO REGISTER 
USING DUMMY ,Rl SPECIFY BASE ADDRESS AND ASSIGN 

* REGISTER 

AD CON DC V (EXTERNAL) 
• • 
HVW Fl ELD,R6 

DUMMY DSECT USING RANGE STARTS HERE 
FIELD DS F 

END USING RANGE ENDS HERE 

Assembler Instructions 5-43 



USING Instruction Format 

DATA 

DATA 

5-44 SC34-0074 

The format of the USING instruction is: 

Name Operation Operand 

blank USING addr, reg 

The name field of the USING instruction must be blank. The address specifies a base 
address, which must be a relocatable expression. The value of the expression must be in 
the range 0-65535. The register can be specified by an absolute register expression whose 
value is in the range 0-7. The assembler assumes that the register contains the base 
address at execution time (the USING instruction does not load the address into the 
register). 

Coding Note. If you use the MY A instruction to load the base register, code it before the 
USING instruction. That prevents the following error: 

USING DATA,Rl 
HVA DATA,Rl 

EQU * 
In this example, the MYA is in the domain of the USING, so the assembler computes a 
displacement of 0 for DATA, then generates the equivalent of: 

MY A (RI ,O)RI 

Since RI does not already contain the address of DATA, unpredictable results will 
occur at execution time whenever RI is used as a base register. Code this instead: 

HVA DATA,Rl 
USING DATA,Rl 

EQU * 



Notes About the USING Domain. The domain of a USING instruction continues until the 
end of a source module except when: 

• A subsequent DROP instruction specifies the same register assigned by the USING 
instruction. 

• A subsequent USING instruction specifies the same register assigned by the preceding 
USING instruction. 

In the following example, instructions cannot be converted to register-displacement 
form between the DROP instruction and the second USING instruction. 

* INSTRUCTIONS DESCRIPTION 
* 

DATA 

DATA2 

* 

USING DATA,R 1 FIRST USING DOMAIN STARTS HERE 

EQ.U * 
DROP Rl FIRST USING DOMAIN ENDS HERE 

EQ.U * . . 
USING DATA,R2 SECOND USING DOMAIN STARTS HERE . • 
USING DATA2,R2 SECOND USING DOMAIN ENDS HERE, AND 

END 

THIRD USING DOMAIN STARTS HERE 

THIRD USING DOMAIN ENDS HERE 

Notes About the USING Range. Two USING ranges coincide when the same base address 
is specified in two different USING instructions, even though the registers are different. 
When two USING ranges coincide, the assembler uses the lower numbered register for 
assembling the addresses within the common USING range. (The first USING domain 
terminates at the second USING instruction.) 

* INSTRUCTIONS DESCRIPTION 
* CO I NCI DE START . . 

USING DATA,R2 
: INSTRUCTIONS HERE USE R2 AS 
: A BASE REG I STER 
USING DATA,Rl 

INSTRUCTIONS HERE USE Rl AS 
A BASE REGISTER 

DATA EQ.U * INSTRUCTIONS HERE USE Rl AS 
A BASE REGISTER 

END 

Assembler Instructions 5-45 



Two USING ranges overlap when the range of one USING instruction is within the 
range of another USING instruction. When two ranges overlap, the assembler computes 
displacements from the base address using the lower-numbered register when it assembles 
the addresses within the range overlap. This applies only to instructions that appear after 
the second USING instruction. 

DROP-Drop Base Register 

5-46 SC34-0074 

The DROP instruction terminates the USING domain for one or more registers. Use the 
DROP instruction to: 

• Free registers for other purposes. 
• Ensure that the assembler uses the base register desired in a particular coding situation 

(as when two USING ranges overlap or coincide, as described in "Notes About the 
Using Range.") 

The format of the DROP instruction is: 

Name Operation Operand 

blank DROP 1-8 absolute register expressions, separated by commas 

The name field of the DROP instruction must be blank. Up to 8 register expressions can 
be specified on one DROP instruction; the expressions must be absolute with a value in 
the range 0-7. 

After a DROP instruction, the assembler no longer uses the dropped register as a base 
register. A register made unavailable as a base register by a DROP instruction can be 
reassigned as a base register with a subsequent USING instruction. For example: 

* INSTRUCTIONS 

* 
DES CR I PTI ON 

US ING DATA,R2 

DROP R2 

USING DATA,R2 

DATA EQU * 
END 

R2 AVAILABLE FOR USE AS A 
BASE REGISTER HERE 

R2 UNAVAILABLE FOR USE 
AS A BASE REGISTER HERE 

R2 AVAILABLE FOR USE AS A 
BASE REGISTER HERE 



You need not use a DROP instruction: 

• If you reassign a register in a new USING instruction (however, you must load the new 
base address into the register). 

• At the end of a source module. 

* INSTRUCTIONS DESCRIPTION 
* 

MVA 
USING 

* 
HVA 
USING 

* 
DATA EQ.U 

DATA2 EQ.U 

END 

DATA,Rl 
DATA,Rl 

DATA2,Rl 
DATA2 ,Rl 

* 
* 

LOAD BASE ADDRESS INTO REGISTER 
SPECIFY BASE ADDRESS AND 
ASSIGN REG I STER 

LOAD NEW BASE ADDRESS INTO REGISTER 
SPECIFY NEW BASE ADDRESS AND 
ASSIGN REGISTER 

SYMBOLIC ADDRESSING BETWEEN SOURCE 
MODULES-SYMBOLIC LINKAGE 

This section describes symbolic linkage; that is, using symbols to communicate between 
different source modules that are separately assembled and then linked together by the 
linkage editor. 

To establish symbolic linkage with an external source module: 

1. You must identify the symbols that are not defined in your source module. These 
symbols are called external symbols, because they are defined in another (external) 
source module. You can identify external symbols: 
- Explicitly with the EXTRN or WXTRN instruction 
- Implicitly with the V- or W-type address constants 
- With the BALX and BX machine instructions 

2. You must provide the A-, V-, or W-type address constants so the assembler can reserve 
storage for the addresses of the external symbols. When you use a BALX or BX 
instruction you do not provide an address constant; the address area is part of the 
instruction. 

3. To resolve linkages, you must identify the symbols in the external source modules 
where you have them defined. These symbols are called entry symbols because they 
provide points of entry to a source module. You identify entry symbols with the 
ENTRY, CSECT, or START instruction. 

Assembler Instructions 5-4 7 



The assembler places information about entry and external symbols in the external 
symbol dictionary. The linkage editor uses this information in conjunction with the 
relocation dictionary to resolve the linkages. 

The following example illustrates symbolic linkage between three source modules: 

* INSTRUCTIONS DESCRIPTION 
* REFERX START START OF FIRST SOURCE MODULE 

EXT RN ONE, TWO 
WXTRN THREE 

BALX FOUR,R7 

AD CONS EQ.U * DC A(ONE ,TWO, THREE) 
DC V(FIVE) 
DC W(S IX) 
: 
END ONE END OF FIRST SOURCE MODULE 

DEFINE START START OF SECOND SOURCE HODULE 
ENTRY ONE,TWO,THREE,FOUR 

ONE EQ.U * 
TWO EQ.U * 
THREE EQ.U * 
FOUR EQ.U * 

END ENO OF SECOND SOURCE MODULE 

DEFINE2 START START OF THIRD SOURCE MODULE 
ENTRY FIVE,SIX 

FIVE EQ.U * 
SIX EQ.U * 

END END OF THIRD SOURCE MODULE 

5-48 SC34-0074 



To Refer to External Data 
You should use the EXTRN instruction to identify the external symbol that represents 
data in an external source module, if you wish to refer to this data symbolically. 

For example, you can identify the address of a data area in an external source module 
as an external symbol and load the address constant for this symbol into a register. Then 
you may use this register when establishing the addressability of a dummy section 
(DSECT) that defines this external data area. You can now refer symbolically to data in 
the external area. You must also identify, in the source module that contains the data 
area, the same relative address of the data as an entry symbol. 

In the following example, FIELD3 is assembled as part of the DEFINE source module 
(second source module); a dummy section in the REFERX source module (first source 
module) is used to refer to FIELD3; and, after link-editing the two source modules 
together, both source modules can access FIELD3. 

* I NST·RUCT I ONS DESCRIPTION 
* REFERX START 

EXTRN DATA 
HVW ADCON,R2 
USING DUKMY,R2 

HVW R3,FIELD3 

AO CON DC A(DATA) 

DUMMY DSECT 
OS 2F 

FIELD3 OS F 

END 

DEFINE START 
ENTRY DATA 

DATA EQ.U 
fl ELD-1 DC 
FIELD2 DC 
FIELD) DC 

END 

* 
F'l' 
X' FF~j6 1 

F'-' 

FIRST SOURCE MODULE STARTS HEl\E: 

FIELD3 REFERRED TO HERE 

DUMMY SECT I ON STARTS 'HERE· 

FIELD3 DEFtNED HERE 

SECOND SOURCE MODULE STARTS HERE 

FIELD3 ASSEMBLED HERE 

SECOND SOURCE MODULE ENDS HERE 

Assembler Instructions 5-49 



To Branch to an External Address 
You can use the BALX or BX machine instruction to branch to a location in an external 
source module. Code the external symbol as an operand in these instruction types. 

You can also use the V-type address constant to identify the external symbol. For 
example, you can branch to an external address by branching indirectly with the V-type 
address constant. For the specifications of the V-type address constant, see "Defining 
Data" in this chapter. 

If the external symbol is the label of a START or CSECT instruction in the other 
source module, and thus names an executable control section, it is automatically 
identified as an entry symbol. If the symbol represents an address in the middle of a 
control section, you must, however, identify it as an entry symbol in the external source 
module. For example: 

* INSTRUCTIONS DESCRIPTION 

* RE FE RX 

AD CON 

HOD2 

SUBRTN 

START START OF FIRST SOURCE MODULE 

BX 

B 
DC 

SUBRTN 

AD CON* 
V(HOD2) 

BRANCH TO EXECUTE SUB ROUT I NE 

BRANCH TO EXE.CUTE HOD2 
ADDRESS OF HOD2 

END END OF FIRST SOURCE MOQULE 

START START OF SECOND SOURCE MODULE 
ENTRY SUBRTN 

EQU * 
END END OF SECOND SOURCE MODULE 

You can also use a combination of an EXTRN instruction to identify, and an A-type 
address constant to contain the external branch address. However, the external branch 
instruction, or the V- or W-type address constants, is more convenient because you do not 
have to code an EXTRN instruction. With external branch instructions, you also do not 
code an address constant. · 

The assembler does not consider the symbol in a V-type or W-type constant, as defined 
in the source module. Therefore, you can use the same symbol as the name entry for any 
statement in the same source module, even the DC statement defining the V-type or 
W-type constant. 

ENTRY-Identify Entry Point Symbol 

5-50 SC34-0074 

ENTRY identifies symbols defined in the source module containing the ENTRY 
instruction so that you can refer to them in another source module. These symbols define 
locations that are called entry points. 

The format of the ENTRY instruction is: 

Name Operation Operand 

blank ENTRY 
one or more relocatable symbols 
(entry symbols), separated by.commas 



FIRST 

SU BT RN 

The label of an ENTRY instruction must be blank. 
The following rules apply to entry symbols: 

• They must be valid symbols. 
• You must define them in an executable control section within the current assembly. A 

symbol can appear on multiple ENTRY statements within an assembly. 

A symbol used as the label of a START or CSECT instruction is also automatically 
considered as an entry point and does not have to be identified by an ENTRY 
instruction. Thus, in the following example, the two entry points are FIRST and 
SUBRTN. 

START 
ENTRY SUBTRN 

EQU * 
END 

The assembler lists each entry symbol in the external symbol dictionary, along with 
other entries for external symbols. 

EXTRN-Identify External Symbol 
EXTRN identifies symbols referred to in the source module containing the EXTRN 
instruction but defined in another source module. These symbols are called external 
symbols. 

The format of the EXTRN instruction is: 

Name Operation Operand 

one or more relocatable symbols 
blank EXTRN (external symbols), separated by commas 

The label of an EXTRN instruction must be blank. 
The following rules apply to the external symbols: 

• They must be valid symbols. 
• You must not use them as the name entry of any source statement in the same source 

module. 
• You must use them alone and not pair them in an expression, except within A-type 

address constants. 

The assembler lists each external symbol in the external symbol dictionary, along with 
entries for entry symbols. The maximum number of external symbol dictionary entries 
you can have in one source module (excluding ENTRY symbols) is 255. 

Assembler Instructions 5-51 



FIRST 

EXTADl 
EXTAD2 
EXTAD3 

SECOND 

THIRD 

FOURTH 

Note. Symbols you specify in V-type address constants and external branch instructions 
are implicitly identified as external symbols and count toward the maximum of 254. 

The following example indicates the relationship of ENTRY and EXTRN statements. 
Note that FOURTH need not be specified in an EXTRN statement since it is a V-type 
address constant in FIRST, and that SECOND need not be specified on an ENTRY 
statement since it is the label on the START statement. 

START 
EXTRN SECOND, TH I RD . • 
DC A(SECOND) 
DC A(TH I RD) 
DC V(FOURTH) 

END 

START 
ENTRY THIRD,FOURTH 

EQ.U * 
EQ.U * 
END 

WXTRN-Identify Weak External Symbol 

5-5 2 SC34-007 4 

WXTRN identifies symbols in the source module containing the WXTRN instruction but 
defined in another source module. As with the EXTRN instruction, the linkage editor can 
resolve the linkage addresses only if the external symbols in the WXTRN operand field 
are defined in a module that is linked to your object module by way of linkage editor 
INCLUDE statements 

The format of the WXTRN instruction statement is: 

Name Operation Operand 

blank WXTRN 
one or more relocatable symbols (weak external 
symbols), separated by commas 

The label of a WXTRN instruction must be blank. 
To the assembler, the external symbols identified by a WXTRN instruction have the 

same properties as the external symbols identified by the EXTRN instruction. However, 
the type code assigned to these external symbols in the external symbol dictionary is 
different. If the linkage editor cannot resolve a weak external symbol, it prints a warning 
message rather than an error message. 



If you specify a symbol in a V-type address constant and also in a WXTRN instruction 
in the same source module, the symbol is processed as a weak external reference. If you 
specify an external symbol by both an EXTRN and WXTRN instruction in the same 
source module, the first declaration takes precedence, and subsequent declarations are 
flagged with error messages. You may use the same symbol in multiple EXTRN and 
external branch instructions. You may also duplicate a symbol in WXTRN instructions. 

P~$CRI PT I ON ~'n1 ~~~~~c~,, pti~: 
~· i ! ; ; ' ' 

FtRsf· srART ESD TYPE FOR FIRST IS SD 
ESO TYPE FOR OUT IS ER 
ESD TYPE FOR A IS ER * 

VCON 

EXTRN OUT,A 

~XTRN: B,OUT 
WXTRN WOUT 
WXTRN A 

.. DC . V (WOUT) 

END 

ESO TYPE fOR B IS ER 
ESO TYPE FOR WOUT IS WX 
***ERROR*** 
REMAINS TYPE WX 

CONTROLLING THE ASSEMBLER PROGRAM 

ORG-Set Location Counter 

The ORG instruction alters the setting of the location counter and thus controls the 
structure of the current control section. This allows you to redefine pa(tS of a control 
section. ' 

The ORG instruction can cause the location counter to point to any part of a control 
section, where you can assemble desired data. It can also cause the location counter to 
point back to the next available location so that your program can continue to be 
assembled in a sequential fashion. 

The format of the ORG instruction is: 

Name Operation Operand 

blank ORG relocatable expression OR blank 

Assembler Instructions 5-53 



The label of an ORG instruction must be blank. The symbols in the relocatable 
expression must be previously defined in the source module. If the expression contains an 
unpaired relocatable term, you must define that term in the same control section in 
which the ORG statement appears. The location counter is set to the value of the 
relocatable expression. If the expression is omitted, the location counter is set to the next 
available location for the current control section. The following sample code illustrates 
the setting of the location counter with the ORG instruction: 

~: ;INST,RUCTI ONS LI $T;EO ,LOCAT rQN (tiEXAQQOf HAL.): * ;·, 
~VP:ROG START J1Jifl 

'BAL 

B 
~UFFER: .OS' 

INITIAL,R7 

CONTINUE 
CL4j iHIA 

11132 
f ljA 

OS.; 
. ORG 

'IN,ITIAL EQU 

F 
BUFFER 
* 

BXS (R7) 
. ORG 

CPNT'I NU.E EQU. * 
END 

JIJA 

. -l2C 
J134 
,134 

You must not specify an expression on an ORG instruction for a location that precedes 
the beginning of the control section in which the ORG appears. In the next example, the 
ORG instruction is invalid if it appears less than 100 bytes from the beginning of its 
control section. This is because the resulting ,expression would be negative and therefore 
invalid. 

5-54 SC34-007 4 

·START 

ORG *·1--. • 
END 



ADDR 

CHAR 

Listing Format and Output 

PRINT-Print Optional Data 

Note. Using the ORG instruction to insert data at the same location as earlier data does 
not always work. In the next example, it appears as if the character constant overlays the 
address constant. However, after the linkage editor places the character constant into the 
same location as the address constant, it adds the relocation factor required for the 
address constant to the value of the constant. This sum is the object code that resides in 
the word ADDR. 

DC 
ORG 
DC 

A(LOC) 
*-2 
C1 BE 1 

You will experience unpredictable results when you code an ORG statement to insert 
data in any relocatable machine instruction. 

The PRINT, TITLE, EJECT, and SPACE instructions request the assembler to produce 
listings and identify records in the object module according to your special needs. They 
allow you to determine printing and page formatting options other than the ones the 
assembler program assumes by default. Among other things, you can introduce your own 
page headings, control line spacing, and suppress unwanted detail. 

PRINT controls the amount of detail you want printed in the listing of your program. 
The three options that you can set are given in the following table. They are listed in 
hierarchic order; if OFF is specified, GEN and DATA do not apply. If NOGEN is 
specified, DATA does not apply to the constants in generated statements. The standard 
options inherent in the assembler program are ON, GEN, and NODATA. 

Hierarchy PRINT options Description 

1 ON A listing is printed 

1 OFF No listing is printed 

2 GEN All statements generated by the processing of a macro 
instruction are printed 

2 NOGEN Statements generated by the processing of a macro 
instruction are not printed. (Note. the MNOTE 
instruction always causes a message to be printed) 

3 DATA Constants are printed in full in the listing 

3 NODATA Only the leftmost 12 bytes of constants are printed 
in the listing 

The format of the PRINT instruction is: 

Name Operation Operand 

blank PRINT 
ON GEN DATA 
OFF NOGEN NO DATA 

The label of the PRINT instruction must be blank. At least one of the print options 
must be specified, and at most one of the options from each group. If more than one 
option is specified, they must be separated by commas. 

Assembler Instructions 5-55 



TITLE-Identify Assembly Output 

EJECT-Start New Page 

5-56 SC34-0074 

The options can be specified in any order. The PRINT instruction can be specified any 
number of times in a source module. At assembly time, all options are in force until the 
assembler encounters a new and opposite option in a PRINT instruction. 

Note. The option specified in a PRINT instruction takes effect after the PRINT 
instruction. If PRINT OFF is specified, the PRINT instruction itself is printed, but not 
the statements that follow it. 

TITLE provides headings for each page of the assembly listing. 
The format of the TITLE instruction is: 

Name Operation Operand 

id 
TITLE 

character string up to 100 characters, enclosed in 
characters apostrophes 

The label field of the first TITLE instruction in a program can contain identification 
characters. Up to four identification characters are placed in the object module starting in 
column 73, and are printed in the top left-hand corner of every page of the listing. 
Specifying a valid ordinary symbol in this field does not constitute a definition of that 
symbol for the source module. 

The character string on the TITLE instruction is printed as a heading at the top of each 
page of the assembly listing. The heading is printed beginning on the page in the listing 
following the page on which the TITLE instruction is specified. A new heading is printed 
when a subsequent TITLE instruction appears in the source module. 

Any printable character specified will appear in the heading, including blanks. However, 
the following rules apply to apostrophes: 

• A single apostrophe followed by one or more blanks simply terminates the heading 
prematurely. If a nonblank character follows a single apostrophe, the assembler issues 
an error message and does not print a heading. 

• Double ampersands or apostrpphes print as a single ampersand or apostrophe in the 
heading. 

1 

Only the characters printed in the heading count toward the maximum of 100 
characters allowed. 

Note. The TITLE statement itself is not printed in an assembly listing. 

EJECT stops the printing of the assembly listing on the current page and continues the 
printing on the next page. 

The format of the EJECT instruction is: 

Name Operation Operand 

blank FJECT blank 

The label on an EJECT instruction must be blank. The EJECT instruction causes the 
next line of the assembly listing to be printed at the top of a new page. If the line before 
the EJECT instruction appears at the bottom of a page, the EJECT instruction has no 
effect. 

Note. The EJECT instruction is not printed in the listing. 



SPACE-Space Listing 

SPACE inserts one or more blank lines in the listing of a source module. This allows you 
to separate sections of code on the listing page. 

The format of the SP ACE instruction is: 

Name Operation Operand 

blank ~PACE decimal value from 1 to 255 OR blank 

The label on a SP ACE instruction must be blank. 
The decimal value on the SP ACE instruction specifies the number of lines to be left 

blank. A blank causes one blank line to be inserted. If the value specified is greater than 
the number of lines remaining on the listing page, the instruction has the same effect as 
an EJECT statement. 

Note. The SPACE instruction is not printed in the listing. 

Assembler Instructions 5-5 7 



5-5 8 SC34-007 4 



Section Contents 
Overview of Creating Macros 6-4 

Contents of a Macro Definition 6-5 
Where To Place a Macro Definition in the Source Module 6-6 
Parts of a Macro Definition 6-6 
Symbolic Parameters 6-8 
Model Statements 6-12 
Processing Statements 6-15 
Comment Statements In Macro Definitions 6-18 
System Variable Symbols 6-19 

Using the Calling Macro Instruction 6-23 
Macro Instruction Operands 6-25 

Chapter 6. Macro Language 

Sublists in the Macro Instruction Operand 6-28 
Values in Macro Instruction Parameters 6-30 
Nesting Macro Definitions 6-32 

Conditional Assembly Language 6-35 
SET Symbols 6-35 
Data Attributes 6-37 
Sequency Symbols 6-39 
Declaring SET Symbols 6-40 
Assigning Values to Set Symbols 6-44 
Using Expressions in SET Instructions 6-4 7 
Selecting Characters From a String-Substring Notation 6-56 
Branching 6-56 

f'dacro Language 6-1 



This page intentionally left blank. 

6-2 SC34-0074 



Macros are used mainly to insert defined groups of assembler language statements into a 
source program. The defined group of statements is a macro definition; the statements are 
either stored in a source file or placed at the beginning of the source module. This chapter 
explains how to prepare macro definitions as the first portion of your source module. 

The statements contained in the macro definition are called by macro instructions in 
your source program; the macro instruction is coded at the point you would otherwise 
include the statements contained in the macro definition. The calling macro instruction 
can specify parameters which change the statements contained in the macro definition. 
The assembler inserts the macro definition statements, as modified by the parameters on 
the calling macro instruction, immediately after the calling macro instruction. The 
process of inserting the text of the macro definition is called macro generation or macro 
expansion The expansion occurs for each macro instruction that calls the macro 
definition. 

The assembler processes the source module in two phases: 

• First, preassembly; during this phase the assembler expands macro calls by inserting 
text from macro definitions inline after the calling macro instructions. The statements 
contained in the macro definition can be modified during preassembly by assembler 
action as follows: 

Processing symbolic parameters specified on the calling macro instruction to 
modify the statements in a macro definition which contain the same symbolic 
parameters. 
Processing conditional assembly instructions contained within a macro definition; 
these instructions declare and assign values to SET symbols (symbols used to write 
source statements that can be modified during expansion) and allow for branching 
and loop control within a macro expansion. With conditional assembly language 
instructions, you can select and reorder the statements generated each time a macro 
is expanded. 
Processing MNOTE instructions, which produce error messages that you provide. 
Processing system variable symbols; these symbols can be used in macro definitions 
to cause the assembler to perform specific actions (for example, to count the 
number of symbolic parameters on a calling macro instruction so that the number 
can be used to determine further expansion of the macro). 

• Then, assembly; during this phase the assembler processes the source module (known 
as open code) and the statements generated during macro expansion at preassembly 
time, to produce the object module. 

By using the macro language you reduce programming effort, because: 

• You write and test the code for a macro definition only once. You and other 
programmers can then use the same code as of ten as you like by calling the definition; 
this means that you do not have to reconstruct the coding logic each time you use the 
code. 

• You need write only one macro instruction to call for the generation of many 
assembler language statements from the macro definition. 

When you are designing and writing large assembler language programs, the above 
features allow you to: 

• Change the code in one place when updating or making corrections, that is, in the 
macro definition. Each call gets the latest version automatically, thus providing 
standard coding conventions and interfaces. 

• Describe the functions of a complete macro definition rather than the function of each 
individual statement it contains, thus providing more comprehensible documentation 
for your source module. 

Macro Language 6-3 



OVERVIEW OF CREATING MACROS 

OPEN. 

6-4 SC34-007 4 

You can create a macro definition by enclosing any sequence of assembler language 
statements between MACRO and MEND statements, and by writing a prototype 
statement in which you give your definition a name. This name is then the operation code 
that you must use in the macro call. 

When you code a macro call in your source module, you tell the assembler to process a 
particular macro definition. The assembler generates assembler language statements from 
this macro definition for each occurrence of the macro call; if you code four calls to the 
macro MYMACRO, four sets of assembler language statements are generated. The 
statements generated can be: 

• Copied directly from the definition 
• Modified by parameter values before generation 
• Manipulated by internal macro processing to change the sequence in which they are 

generated 
• Selectively chosen or discarded in groups 

You can define your own macro definitions in which any combination of these 
processes can occur. Some macro definitions do not generate assembler language 
statements, but perform only internal processing. 

The MACRO and MEND instructions establish the boundaries of a macro definition. 
The prototype statement establishes the name of the macro and declares its parameters. 
In the operand field of the calling macro instruction, you can assign values to the 
parameters declared for the called macro definltion. The body of a macro definition 
contains the statements th'.at will be generated when you call the macro. These statements 
are called model statements; they are usually interspersed with conditional assembly 
statements or other processing statements. 

You can include a macro definition at the beginning of a source module. This type of 
definition is called an inline macro definition. You can also insert a macro definition in a 
macro source file (located on a fixed disk). This type of definition is called a source file 
macro definition. 

The following example indicates the general format of a macro definition within a 
source module: 

MACRO tfACRO HEAD.ER . 
MAC ID &PARAH:l , &PARAH2 

. . 
MEND 
.START . • 
HACID OPERAND1,0PERAN:D2 

.HACID OPERAND3,0PERAND4 

END 

P·ROTOTYPE STATE"ENT 

MACRO. TRAILER 
START OF OPE;N CODE 

MACRO CALL 

MACRO CALL 

You can call an inline macro definition only from the source module in which it is 
included. You can call a source file macro definition from any source module. You can 
code a calling instruction anywhere in a source module, except before or between any 
inline macro definitions contained in that source module. You can also call a macro 
definition from within another macro definition. This type of call is an inner macro call; 
it is said to be nested in the macro definition. 



Contents of a Macro Definition 

Model Statements 

Processing Statements 

Comment Statements 

The body of a macro definition can contain a combination of model statements, 
processing statements, and comment statements. 

Model statements are assembler or machine instructions. As model statements, these 
instructions can use variable symbols as points of substitution. The macro assembler 
substitutes character string values in place of the variable symbols each time the macro is 
called. 

The assembler processes the generated statements, with or without value substitution, 
at assembly time. 

The 3 types of variable symbols in the assembler language are: 

• Symbolic parameters, which are declared in the prototype statement 
• System variable symbols 
• SET symbols, which are part of the conditional assembly language 

Processing statements perform functions at preassembly time when macros are expanded, 
but they are not themselves generated for further processing at assembly time. The 
processing statements are: 

• Conditional assembly instructions 
• Inner macro calls 
• MNOTE instructions 
• MEXIT instructions 

The MNOTE instruction allows you to generate an error message with an error 
condition code attached, or to generate comments in which you can display the results of 
preassembly operations. 

The MEXIT instruction tells the assembler to stop processing a macro definition. The 
MEXIT instruction provides an exit from the middle of a macro definition. The MEND 
instruction not only delimits the contents of a macro definition, but also provides an exit 
from the definition. 

The conditonal assembly language provides: 

• Variables 
• Data attributes 
• Expression computation 
• Assignment instructions 
• Labels for branching 
• Branching instructions 
• Substring operators that select characters from a string 

You can use the conditional assembly language in a macro definition to operate on 
input from a calling macro instruction. You can use the functions of the conditional 
assembly language (1) to select statements for generation, (2) to determine their order of 
generation, (3) to perform computations that affect the content of the generated 
statements, and ( 4) to produce preassembly messages through the MNOTE instruction. 
The conditional assembly language is fully described in this chapter. 

Note. Conditional assembly instructions can be used only within macro definitions. 

A macro definition can contain two types of comment statements-one type describes 
preassembly operations and is not generated when the macro is expanded; the other type 
describes assembly operations and is generated. For details, see "Comment Statements in 
Macro Definitions." When a macro definition is called, the assembler generates assembler 
language statements. 

Macro Language 6-5 



Where To Place a Macro Definition in the Source Module 

Parts of a Macro Definition 

6-6 SC34-0074 

A macro definition within a source module must be at the beginning of that source 
module. 

Open code is that part of a source module that is outside of and after any inline macro 
definition. Open code is initiated by any statement of the assembler language that appears 
outside of a macro definition, except the EJECT, PRINT, SPACE, or TITLE instructions 
or a comment statement. Statements that do not start open code and comment 
statements can appear at the beginning of a source module: 

• Before all macro definitions 
• Between macro definitions 
• After macro definitions and before open code 

All other statements of the assembler language must appear after any inline macro 
definitions that are specified. 

A macro definition consists of a header, prototype statement, body, and trailer. 

Macro header. The MACRO instruction is the macro definition header; it must be the first 
statement of every macro definition. Its format is: 

Name Operation Operand 

blank MACRO blank 

Prototype statement. The prototype statement in a macro definition serves as a model 
(prototype) of a macro instruction used to call the macro definition. The prototype 
statement must be the second statement in every macro definition. It comes immediately 
after the MACRO instruction. The format of the prototype statement is: 

Name Operation Operand 

macro 
[label] name zero to 100 symbolic parameters, separated by commas 

where label can be a symbolic parameter or blank. 

Body of macro. The machine instructions generated during macro expansion are 
determined by the machine, assembler, and conditional assembly instructions coded 
between the prototype statement and macro trailer. 

Macro trailer. The MEND instruction indicates the end of a macro definition. It also 
provides an exit when it is processed during macro expansion. Its format is: 

Name Operation Operand 

[label] MEND blank 

where label can be a symbolic parameter or blank. 



Coding the Prototype Statement 

If no parameters are specified on the prototype statement, remarks are not allowed. 
Remarks are allowed after parameters, if preceded by at least one blank. To intersperse 
remarks with parameters (for example, a remark for each parameter), use continuation 
lines as shown below. Any number of continuation lines is allowed. However, each 
continuation line must be indicated by a nonblank character in column 72 on the 
preceding input record. For each continuation line, the symbolic parameters must begin 
in column 16; otherwise, the whole line and any lines that follow are considered to 
contain remarks. For example: 

HOVE &TO, REMARKS 
&FROM, REMARKS 
&LENGTH, REMARKS 
&PARAH,&PARAH2,&PARAH3, REMARKS 

&PARAH15 REMARKS 

Prototype label. You can write a parameter, similar to a symbolic parameter, as the label 
of a macro prototype statement. You can then assign a value to this parameter from the 
name entry in the calling macro instruction. If used, the label must be a variable symbol. 
If this parameter also appears in the body of a macro, it is given the value assigned to the 
parameter in the label of the corresponding macro instruction. For example: 

* INSTRUCTIONS DES CR I PTI ON 

* 
&NAME 

&NAME 

HERE 

MACRO 
INTRCHG &TO,&FROH 

HVW Rl,SAVE 
HVW &FROH,Rl 
HVW &TO,&FROH 
HVW Rl ,&TO 
HVW SAVE, Rl 

MEND 
START 

INTRCKG RESULT,DATA 

END 

PROTOTYPE STATEMENT 

MACRO CALL THAT GENERATES 
FOLLOWING STATEMENTS: 

HERE MVW Rl ,SAVE 
HVW DATA,Rl 
HVW RESULT 1 DATA 
HVW Rl,RESULT 
MVW SAVE ,RI 

Note that the value assigned to the label parameter on the prototype statement has 
special restrictions that are listed in this chapter under "Using the Calling Macro 
Instruction." 

Macro Language 6-7 



The Body of a Macro Definition 

Symbolic Parameters 

6-8 SC34-0074 

Prototype macro name. The macro name is a symbol that identifies the macro definition. 
When you specify it in the operation field of a source instruction, the appropriate macro 
definition is called and processed by the assembler. The operation code specified in the 
prototype statement (prototype macro name) must not be the same as that specified in: 

1. Any machine instruction. 
2. Any assembler instruction other than the macro call. 
3. The prototype statement of any other inline (or source file) macro definition. (If the 

name of a source file macro definition matches the name of one of your inline macro 
definitions, the assembler uses the inline definition.) 

Prototype symbolic parameters. The operand entry in a prototype statement can contain 
positional or keyword symbolic parameters. These parameters represent the values passed 
from the calling macro instruction to the statements within the body of a macro 
definition. (See "Symbolic Parameters" in this chapter.) 

Note. The operands must be symbolic parameters; parameters in sublists are not allowed. 
For a discussion of sublists in macro instruction operands, see "Sublists in Operands" in 
this chapter. 

The body of a macro definition contains the sequence of statements that are the working 
part of a macro, including: 

• Model statements to be generated 
• Processing statements that, for example, can alter the content and sequence of the 

statements generated or issue error messages 
• Comment statements, some of which are generated and others which are not 
• Conditional assembly instructions to compute results to be displayed in the message 

created by the MNOTE instruction, without causing any assembler language 
statements to be generated 

The statements in the body of a macro definition must appear between the macro 
prototype statement and the MEND statement. 

Symbolic parameters (recognized by an ampersand as initial character) are declared in the 
macro prototype statement and serve as points of substitution in the body of the macro 
definition. During macro expansion, they are replaced by the values assigned to them by 
the calling macro instruction. By using symbolic parameters with meaningful names, you 
can indicate the purpose for the parameters (or substituted values). 

Symbolic parameters must be valid variable symbols, consisting of an ampersand 
followed by an alphabetic character, followed by 0-6 alphameric characters (maximum 
of 8 characters total). They have a local scope; that is, the value they are assigned only 
applies to the macro definition in which they have been declared. The value of the 
parameter remains constant throughout each processing of the containing macro 
definition, changing with each call to the macro definition based on values assigned by 
each macro call. 

Note. Symbolic parameters must not be defined in duplicate or be identical to any other 
variable symbols within the given local scope. (This applies to system variable symbols, 
and local and global SET symbols described later in this chapter.) 



There are 2 kinds of symbolic parameters: 

• Positional parameters; for example: 

Prototype: MYMAC &PARM1,&PARM2 
Calling macro: MYMAC FIELDA,FIELDB 

• Keyword parameters; for example: 

Prototype: MYMAC2 &TO=,&FROM= 
Calling macro: MYMAC2 TO=FIELDA,FROM=FIELDB 

The two types of symbolic parameters may be mixed; for example: 
Prototype: MYMAC &PARAMl ,&FROM= 
Calling macro: MYMAC FIELDA,FROM=FIELDB 

All positional parameters must precede any keyword parameters, if the two kinds are 
mixed on a prototype statement. 

If a parameter is positional on the prototype statement, it must be positional on the 
calling macro instruction; likewise, if keywords are used on the prototype statement, they 
must also be used on the calling macro instruction. Positional parameters on the calling 
macro instruction must appear in the same sequence as corresponding positional 
parameters on the prototype statement. Keyword parameters on the calling macro 
instruction do not have to appear in the same sequence as specified on the prototype 
statement, but must follow any positional parameters on the same calling macro 
instruction. 

Which kind of parameters should you use-positional or keyword? There are advantages 
to each: 

Positional. You should use a positional parameter if the value of the parameter changes 
with each calling macro instruction. Less coding is required to supply the value for a 
positional parameter than for a keyword parameter, since you code only the value; with 
keyword parameters, you must also code the keyword and equal sign. 

Keyword. You should use keyword parameters if you have a large number of parameters. 
The keywords make it easier to identify which values are being assigned to which 
parameters on the calling macro instruction in any order. You should also use a keyword 
parameter if the value changes infrequently. Keyword parameters can be initialized to 
default values in the prototype statement; then if the calling macro instruction does not 
change that default value, it need not contain that parameter. For example: 

Prototype: MYMAC &TO=FIELDA,&FROM=FIELDB 
Calling macro: MYMAC TO=FIELDC 

Macro Language 6-9 



6-10 SC34-0074 

Values are assigned to keyword parameters as follows: 

• If the corresponding keyword appears on the calling macro instruction, the value after 
the equal sign is the value for the parameter in that macro expansion. 

• If the corresponding keyword does not appear on the calling macro instruction, the 
default value from the prototype statement is the value for the parameter in that 
macro expansion. 

* INSTRUCTIONS DESCRIPTION 
* MACRO 

KEYS &KEY1•ABC,&KEY2•(A,B,C) PROTOTYPE STATEMENT 

MEND 
START 

KEYS MACRO CALL THAT GENERATES CODE 
us·1 NG THE FOLLOW I NG VALUES; ,, 

&KEYl•ABC 
&KEY2• (A, B,C) 

KEYS KEY1•DEF,KEY2•(D,E,F) MACRO CALL THAT GENERATES COQE 
USING THE FOLlOWiNG VALUE~: 

END 

&KEYl•DEF 
&KEY2•(D,E,F) 

Note. A null character string can be specified as the default value of a keyword parameter 
and will be generated if the corresponding keyword operand is omitted. 



* INSTRUCTIONS 
* 

DESCRIPTION 

MACRO 
FXDPT.&TYPE•,&REG•R3 PROTOTYPE STATEMENT••NULL CHARACTER 

STRING DEFAULT VALUE FOR &TYPE 

BAL&TYPE ADDR,&REG 

B&TYPE ADDRESS 
MEND 

OPEN START 

FXDPT MACRO CALL THAT GENERATES 
THE FOLLOWING CODE: . . 

BAL ADDR,R3 

B ADDRESS 

FXDPT TYPE•X MACRO CALL THAT GENERATES 
THE FOLLOWING CODE: 

END 

Subscripted Symbolic Parameters 

BALX ADDR,R3 

BX ADDRESS 

Symbolic parameters may have several values expressed as a sublist rather than a single 
value. In this case, the symbolic parameter is written with a subscript, in the following 
format: 

&P ARAM( subscript) 

where &PARAM is a valid variable symbol and subscript is an arithmetic expression (as 
described later in this chapter under "Arithmetic (SETA) Expressions"). The subscripted 
arithmetic expression can contain other subscripted variable symbols; nesting of 
subscripted variable symbols is allowed for up to five levels. The value of the subscript 
must be greater than or equal to 1. 

The subscript on the prototype statement indicates the number of entries in the value 
sublist. The subscript in the body of the macro definition (when the symbolic parameter 
is used on a model statement) indicates the position of one entry in the sublist; if a 
symbolic parameter is subscripted on the prototype statement and nonsubscripted on a 
model statement, the model statement refers to the entire sublist (all entries). Sublists as 
values in calling macro instructions are fully described later in this chapter under 
"Sublists in the Macro Instruction Operand." 

~aero Language 6-11 



Model Statements 
Assembler language instructions are generated from model statements at preassembly 
time. By specifying variable symbols as points of substitution in a model statement, you 
can vary the content of the instruction generated from that model statement. 

A model statement consists of the same fields as an ordinary assembler language 
statement: name, operation, operand, and remarks. You cannot generate the 
identification and sequence field from a model statement. Model statements must have an 
entry in the operation field, in order to generate valid assembler language instructions. 
Each field or subfield can consist of: 

• An ordinary character string 
• A variable symbol as a point of substitution 
• Any combination of ordinary character strings and variable symbols to form a 

concatenated string. 

The statements generated at preassembly time from model statements must be valid 
machine or assembler instructions, and must not be conditional assembly instructions. 
They must obey the coding rules described in Chapter 2 or they will be flagged as errors 
at assembly time. Generated statements are always printed in standard statement format. 
Because of this, a generated statement can occupy up to two continuation lines on the 
listing, unlike source statements, which are restricted to one continuation line. 

Variable Symbols as Points of Substitution 

6-12 SC34-007 4 

Values can be substituted for variable symbols that appear in the name, operation, and 
operand fields of model statements; thus, variable symbols represent points of 
substitution. The three main types of variable symbols are: 

• Symbolic parameters (positional and keyword) 
• System variable symbols (&SYSLIST, &SYSNDX, and &SYSPARM) 
• SET symbols (global SETA, SETB, SETC and local SETA, SETB,SETC) 

Symbolic parameters, SET symbols, and the system variable symbol &SYSLIST can all 
be subscripted. The remaining system variable symbols &SYSNDX and &SYSPARM cannot 
be subscripted. 

When values are substituted for variable symbols, the generated fields begin in standard 
columns, if possible. 



Rules for Concatenation 
When variable symbols are concatenated to ordinary character strings the following rules 
apply to the use of the concatenation character (a period). 

• The concatenation character is mandatory when: 
An alphameric character is to follow a variable symbol 
A left parenthesis that does not enclose a subscript is to follow a variable symbol. 
A period (.) is to be generated. Two periods must be specified in the concatenated 
string following a variable symbol. 

• The concatenation character is not necessary when: 
An ordinary character string precedes a variable symbol 

- A special character, except left parenthesis or period, follows a variable symbol 
- A variable symbol follows another variable symbol. 

The concatenation character must not be used between a variable symbol and its 
subscript; otherwise, the characters will be considered a concatenated string and not a 
subscripted variable symbol. 

Following are examples of concatenated strings and the resulting generated code: 

Concatenated string Substituted values Generated result 

&FIELD.A &FIELD: AREA AREAA 

&FIELD A &FIELDA: SUM SUM 

&DISP.(&BASE) &DISP: 100 100 (10) 
&BASE: 10 

DC F'INT .. &FPACT' &INT: 99 DC F'99.88' 
&FRACT: 88 

DC F'&INT&FRACT' &INT: 99 DC F'9988' 
&FRACT: 88 

DC F'&INT .&FRACT' &INT: 99 DC F'9988' 
&FRACT: 88 

FIELD&A &A: A FIELDA 

&A+ &B* 3 -D &A: A A+ B* 3 - D 

&B: B 
&A&B &A: A AB 

&B: B 

&SYM(&SUBSCR) &SUBSCR: 10 ENTRY 
&SYM (10): ENTRY 

Macro Language 6-13 



Contents of Model Statement Name Field 

The entries allowed in the name field of a model statement are: 

• Blank 
• Ordinary symbol 
• Sequence symbol 
• Variable symbol 
• Any combination of variable symbols and other character strings concatenated 

The name field of the generated statement must contain a valid ordinary symbol or 
blank. Variable symbols must not be used to generate comment statement indicators (an 
asterisk in the "begin" column). 

Note. Restrictions on the name entry are further specified where each individual 
assembler language instruction is described in this manual. 

Contents of Model Statement Operation Field 

6-14 SC34-0074 

The entries allowed and not allowed in the operation field of a model statement are: 

Allowed Not allowed 

• An ordinary symbol that represents the operation • Blank 

code for: • The assembler operation codes: 
-any machine instruction 
-a macro instruction MACRO 
-the following assembler instructions: END 

CSE CT ENTRY START 
DC EQU TITLE 
DROP EQUR USING 
DS EXT RN WXTRN 
DSECT ORG PRINT 
EJECT SPACE 

• A variable symbol 

• A combination of variable symbols and other 
character strings concatenated together 

As a result, the entries allowed and not allowed in the operation field of the generated 
statements are: 

Allowed Not allowed 

• An ordinary symbol that represents the operation • Blank 
code for: • Macro instruction operation code 
-any machine instruction 
-the following assembler instructions: • A conditional assembly operation 

code: 
CSE CT ENTRY START ACTR LCLA 
DC EQU SPACE AGO LCLB 
DROP EXT RN TITLE AIF LCLC 
DS ORG USING ANOP SETA 
DSECT PRINT WXTRN GBLA SETB 
EJECT EQUR MNOTE GBLB SETC 

GBLC 

• The following assembler 
operation codes: 

MACRO MEND 
END MEX IT 



The MACRO and MEND operation codes are not allowed in model statements; they are 
used only for delimiting macro definitions. The END operation code is not allowed inside 
a macro definition. 

Note. The MNOTE and MEXIT statements are not model statements. The MNOTE 
operation code can, however, be created by substitution. 

Contents of Model Statement Operand Field 

The entries allowed in the operand field of a model statement are: 

• Blank (if valid) 
• An ordinary symbol 
• A character string combining alphameric and special characters (but not variable 

symbols) 
• A variable symbol 
• A combination of variable symbols and other character strings concatenated 

The generated statement operand field must contain a blank or character string that 
represents a valid assembler or machine instruction operand. 

Contents of Model Statement Remarks Field 

Any combination of characters can be specified in the remarks field of a model 
statement. No values are substituted into variable symbols in this field. 

Examples of Model Statements 

FT"('"~ y. ·;·Y·' ~·-- ~··· \.~·.\ « '.: .. ;«-~- T '· .. ; 

Model: r~1·~ f.l ~;,;: ·~~BG,,&AODR 

.Generated: b~~~:t·rrr JW"': • ~3,.~DCQN 
Note. Value~ n'ot ~ub~tituted. iD ·ien1~1cs:fieid: · 

Madel: 

l;CLP 
SETC . 
•; 

&ADDR 
'ADCON HA' 

REMARKS GREG 

REMARKS ·&REG 

Generated: : ,, .. .. . . .... NI/ . . R3, ADCON . HA REMARKS 
Note. Space between Al;>CoN ·~ti itA.'ill ihe sE:i'c model statem~nt cau8e's MA t~ ·.,e generated ~s· pa~t· 
·of the operand field (not remarks field) and will cause an operand error. .. . ..... ... . ..... .... · 

~- ···· ··~·· ·-~-.. ,. .... :Lccc··· ,~ ·--·-·-· ·- ·--~ · .. ·· 

Model: 

~~· 
§P. 

IJCLC &&C 
SETA 3 
S:ETC I R&A &A' 

. CMR &C IS REGISTER COMPLEMENTED 

Generated: .. CHR R3 3 IS REG I STER COMPLEMENTED 
Note. Gener~ted'r~~~rks·~~ ~o~bln~d ~th~ ~pe~~nd fl~ld ~f ~~dei ~t~t~~~ritas in the example above. 

Model: 

&,STHT, 
,,STl1T 

' ' ' ~ 9t ~ < • ' :-¥ . ~· • < O I I < > > j • ~ ' < 0 J ¥ I ' < _ ' 

~ETC 'A · CHR · R3 1 

Generated: ~*ERROR** 
. , ' 

Note. The genera~ed stateme(lt has np operation field. 

Macro Language 6-15 



Processing Statements 

Conditional Assembly Instructions 

Inner Macro Instructions 

MNOTE Instruction 

6-16 SC34-0074 

The processing statements are: 

• Conditional assembly instructions 
• Inner macro instructions 
• MNOTE instructions 
• MEXIT instructions 

Conditional assembly instructions allow you to control at preassembly time the contents 
of the generated statements and the sequence in which they are generated. The 
instructions and their functions are: 

Conditional assembly instruction Function 

GBLA,GBLB,GBLC Declaration of initial value, type, and array dimensions 
LCLA,LCLB,LCLC for variable symbols (global and local SET symbols) 

SET A, SETB, SETC Assignment of values to variable symbols (SET symbols) 

AIF Conditional branch (based on logical test) 

AGO Unconditional branch 

ANOP Branch to next sequential instruction (no operation) 

ACTR Set loop counter 

Macro instructions can be nested inside macro definitions, allowing you to call other 
macros from within your own definitions. Nesting of macro instructions is fully described 
in "Nesting in Macro Definitions" in this chapter. 

You can use the MNOTE instruction to generate your own error messages or display 
intermediate values of variable symbols computed at preassembly time. 

The MNOTE instruction is used inside macro definitions and its operation code can be 
created by substitution. The MNOTE instruction causes the generation of a message 
which is given a statement number in the printed listing. 

The format of the MNOTE instruction statement is: 

Name Operation Operand 

[label] MNOTE message specification 

The name field can contain a sequence symbol or blank. The message specification is 1 
of 4 options: 

Message specification Message produced 

n'message' error message, severity n(O - 255) 
, 'message' error message, severity 0 
'message' error message, severity 0 
*, 'message' comments, severity 0 



The n stands for a severity code. The rules for specifying the contents of the severity 
code subfield are as follows: 

• The severity code can be specified as a decimal self-defining term, or as a variable 
symbol representing a decimal self-defining term. The self-defining term must have a 
value in the range 0-255. 

• If the severity code is omitted, with or without the comma, the assembler assigns a 
default value of 0 as the severity code. 

• An asterisk in the severity code subfield causes the message and the asterisk to be 
generated as a comment statement. 

The following examples show the four options for MNOTE operands: 

• MNOTE 2,'ERROR IN SYNTAX' 
Generates severity 2 diagnostic error message. 

• MNOTE ,'MISSING OPERAND' 
Generates severity 1 diagnostic error message. 

• MNOTE 'INV AUD PARAMETER' 
Generates severity 0 diagnostic error message. 

• MNOTE *,'DEFAULT IODA TAKEN' 
Generates comments. 

An MNOTE instruction causes a message to be printed if the current PRINT option 
is ON, even if the PRINT NOGEN option is specified. 

Any combination of characters enclosed in apostrophes can be specified in the 
message subfield. The rules that apply to this character string are: 

• Variable symbols are allowed (variable symbols can have a value that includes even the 
enclosing apostrophes). 

• Double ampersands or double apostrophes are needed to generate one ampersand or 
one apostrophe. If variable symbols have ampersands or apostrophes as values, the 
values must have double ampersands or apostrophes. 

• Any remarks for the MNOTE instruction statement must be separated from the 
apostrophe that ends the message by one or more blanks. 

• Single apostrophes substituted or specified cause message generation to stop where the 
single apostrophe appears. If a single apostrophe is substituted in a position 
immediately after the closing apostrophe of the MNOTE instruction, then the 
apostrophe is printed. An error message is issued because a closing apostrophe cannot 
be found. 

The following examples indicate the results generated during preassembly processing of 
MNOTE instructions: 

MNOTE instruction Generated result 

MNOTE 3, 'TIDS IS A MESSAGE' 3, THIS IS A MESSAGE 

MNOTE 3, &PARAM 3, ERROR 
(&PARAM ='ERROR') 

MNOTE 3, 'VALUE OF &&A IS &A' 3, VALUE OF &A IS 10 
(&A= 10) 

MNOTE 3, 'DOUBLE &AMPS' 3,DOUBLE& 
(&AMPS=&&) 

MNOTE 3, 'DOUBLE &APOS' 3, DOUBLE' 
(&APOS = '') 

MNOTE 3, 'MESSAGE STOP' RMRKS 3, MESSAGE STOP RMRKS 

M:acro Language 6-17 



MEXIT Instruction 
The MEXIT instruction causes the assembler to exit from a macro definition to the next 
sequential instruction after the calling macro instruction. (This also applies to nested 
macro instructions.) Its format is: 

Name Operation Operand 

[label] MEXIT blank 

where name is either a sequence symbol or blank. 

Comment Statements In Macro Definitions 

6-18 SC34-0074 

Macro definitions can contain two kinds of comment statements: 

• Internal macro comments-used to describe operations performed at preassembly time; 
not generated in the macro expansion 

• Ordinary comments-used to describe operations performed at assembly time; 
generated in macro expansion 

No values are substituted for variable symbols specified in either internal or ordinary 
comments. 

The format of an internal macro comment is: 

Column Contents 

1 period (.) 
2 asterisk (*) 
3-72 text of comment (any character string) 

For example: 

.*THIS IS AN INTERNAL MACRO COMMENT 

The format for an ordinary comment statement within a macro definition is the same as 
for comment statements in open code (described in Chapter 2). 



System Variable Symbols 
There are three variable symbols whose values are set by the assembler according to 
specific rules; these are the system variable symbols: 

• &SYSLIST-to refer to positional parameter or sublist in the calling macro instruction 
when there is no corresponding parameter or sublist in the prototype statement and to 
count the number of positional parameters or items in a positional parameter sublist. 

• &SYSNDX-to generate unique symbols for each expansion of a macro definition, by 
concatenating to the symbol a suffix whose value changes for each expansion 

• &SYSPARM-to refer to a parameter specified in the assembler options list 

You can use these symbols as points of substitution in model statements and 
conditional assembly instructions. All system variable symbols are subject to the same 
rules of concatenation and substitution as other variable symbols (see "Model 
Statements"). System variable symbols must not be used as symbolic parameters in the 
macro prototype statement. Also, they must not be declared as SET symbols. The 
assembler assigns read-only values to system variable symbols; they cannot be changed by 
using the SETA, SETB, or SETC instructions (see "Declaring SET Symbols"). 

The system variable symbols &SYSLIST and &SYSNDX are assigned a read-only value 
each time a macro is called and have that value only within that expansion of the macro. 
The system variable symbol &SYSP ARM is assigned a read-only value for an entire source 
module. 

&SYSLIST-Refer to Positional Parameters and Sublists 

By varying the subscripts attached to &SYSLIST, you can refer to any positional 
parameter or sublist entry in a calling macro instruction. &SYSLIST can refer to 
positional parameters that have no corresponding positional parameter in the macro 
prototype statement. &SYSLIST can also count the number of positional parameters or 
entries in a positional sublist that were given on the calling macro instruction. 

The assembler assigns read-only values to &SYSLIST each time a macro definition is 
called, applicable to that expansion of the macro only. &SYSLIST refers to the complete 
list of positional parameters in a calling macro instruction; &SYSLIST does not refer to 
keyword parameters. 

When used as a point of substitution within the macro definition, one of 2 forms of 
&SYSLIST must be used: 

• To refer to a positional parameter 

Calling macro instruction: 

MACLST Pl ,P2 , ... ,Pn, .... 

Point of substitution: 

&SYSLIST(n) 

• To refer to a sublist entry in a positional parameter 

Calling macro instruction: 

MACSUB Pl ,P2, .... ,(Pnl ,Pn2, .... ), ... 

Point of substitution: 

&SYSLIST(n,m) 
The subscript n indicates the position of the parameter referred to. The subscript m, if 

specified, indicates the position of an entry in a sublist. The subscripts n and m can both 
be any arithmetic expression allowed in the operand of a SET A instruction; they must be 
greater than or equal to one. 

~aero Language 6-19 



6-20 SC34-0074 

If n refers to an omitted parameter or refers past the end of the complete list of 
positional parameters the null character string is substituted for &SYSLIST(n). If m refers 
to an omitted entry or refers past the end of the sublist, the null character string is 
substituted for &SYSLIST(n,m). Further, if the nth positional parameter is not a sublist, 
&SYSLIST(n, 1) refers to the nth parameter and &SYSLIST(n,m) causes the null 
character string to be substituted if m is greater than one. 

As an example of values substituted for &SYSLIST, consider the calling macro 
instruction: 

MACALL ONE,TW0,(3,4,,6),,EIGHT 

This results in the following value substitutions: 

Point of substitution Value 
in macro definition substituted 

&SYSLIST (2) TWO 
&SYSLIST (3, 2) 4 
&SYSLIST (4) Null 
&SYSLIST (9) Null 
&SYSLIST (3, 3) Null 
&SYSLIST (3, 5) Null 
&SYSLIST (2, 1) TWO 
&SYSLIST (2, 2) Null 
&SYSLIST (3) (3, 4,' 6) 

The attributes of the previously described forms of &SYSLIST are the attributes 
inherent in the positional parameter or sublist entry referred to. 

There are two forms of &SYSLIST: 

• To indicate the number of positional parameters in a macro call, use the form: 

N'&SYSLIST 

• To indicate the number of sublist entries in a positional parameter, use the form: 

N'&SYSLIST(n) 

where n indicates the positional parameter. 

For N'&SYSLIST, positional parameters are counted if specifically omitted (by 
specifying the comma that would normally have followed the omitted parameter). A 
sublist is counted as one parameter. 

For N'&SYSLIST(n), sublist entries are counted if specifically omitted (by specifying 
the comma that would normally have followed the omitted entry). If the nth parameter is 
not a sublist, the value of N'&SYSLIST(n) is one; if the nth parameter is omitted, the 
value of N'&SYSLIST(n) is zero. 

The following examples show values for N'&SYSLIST: 

Macro instruction Value of N'&SYSLIST 

MACLST 1, 2, 3, 4 4 
MACLST A,B,,D,E 5 
MACLST ,A,B,C,D 5 
MACLST (A, B, C) , (D, E, F) 2 
MACLST 0 
MACLST KEYl = A, KEY2 = B 0 
MACLST A, B, KEYl = C 2 



The following examples show values for N'&SYSLIST(n): 

Macro instruction Value of N'&SYSLIST (2) 

MAC SUB A, (1, 2, 3, 4, 5), B 5 
MAC SUB A, (1, , 3, , 5), B 5 
MACSUB A,(, 2, 3, 4, 5) , B 5 
MAC SUB A,B,C 1 
MAC SUB A,,C 0 
MAC SUB A, KEY = (A, B, C) 0 
MACSUB 0 

&SYSNDX-Generate Unique Symbols for Multiple Expansions 
To generate a unique suffix for a symbol used in a macro definition for each expansion of 
that macro, concatenate &SYSNDX to the symbol. Although the same symbol is 
generated by two or more expansions (two or more calling macro instructions), the suffix 
provided by &SYSNDX produces unique symbols. 

The assembler assigns &SYSNDX a read-only value each time a macro definition is 
expanded (for each calling macro instruction); this value is a 4-digit number, starting at 
0001 for the first macro call and increased by 1 for each subsequent macro call (including 
nested macro calls). 

&SYSNDX alone does not generate a valid symbol. It must be concatenated as the 
suffix to another symbol, and that symbol must not contain more than 4 characters (for a 
total of not more than 8 characters). For example, ITEM&SYSNDX. If &SYSNDX is 
concatenated to a variable symbol, the parameter assigned to that variable symbol must 
not contain more than 4 characters. For example, if the parameter THREE is substituted 
for the variable symbol &PRM&SYSNDX, the result would be THREEnnnn, which 
exceeds the length maximum for symbol names. 

The type attribute of &SYSNDX, when used as a parameter on an inner macro call, is 
always N, and the count attribute is always 4. 

Macro Language 6-21 



The following example indicates the results of using &SYSNDX in naming DC and DS 
instructions. 

* SOURCE CODE GENERATED CODE 

MACRO 
CONST &P 1 , &P2 

&Pl&SYSNDX DC F1&P2 1 

AREA&SVSNDX DS F 
MEND 

OPEN• START 

CONST TW0,2 

. 
CONST THREE,31¢ 
: . . 

Example notes. 

TWOp'/691 
AltEAlfftl· 

TWOfll~2 
AREAfJll2 

DC F. 1 21 

DS f 

THREEf19J13 DC F'J*J' 
AREA1Jflf63 DS. F 

1. TWOOOOl and TW00002 are two different symbols, and thus are not multiply defined. 
2. THREE0003 exceeds eight characters in length, causing an error. 

&SYSPARM-System Parameter for Conditional Assembly 

6-22 SC34-0074 

The system parameter &SYSPARM allows you to control conditional assembly flow and 
source code generation through the use of a parameter specified in the assembler options 
list. Thus, you can modify the output of an assembly without changing the source code 
itself. 

The system parameter behaves like a global SETC symbol except that its value can be 
set only through the assembler options list. &SYSP ARM cannot be modified during 
assembly and can only be coded inside macro definitions. 

The system parameter contains the value of a character string within quotes, which 
must be zero to 8 characters long. It may consist of any combination of EBCDIC 
characters. A single quote in the string must be represented by two quotes. If no 
&SYSPARM value is specified, the value of the system parameter is a null string. 



USING THE CALLING MACRO INSTRUCTION 
The calling macro instruction (or macro call) provides the assembler with the name of a 
macro definition and the information or values you want passed to that macro definition. 
This information is the input to a macro definition. The assembler uses the information 
either in processing the macro definition or for substituting values into model statements 
during macro expansion. The output from a macro definition, called by a macro 
instruction, can be: 

• A sequence of source statements generated from the model statements in the macro 
definition (macro expansion) 

• Values assigned to global SET symbols, for use in other macro definitions 

You can code a macro call anywhere in the open code part of your source module. 
However, the statements generated from the called macro definition must be valid 
assembler language instructions and allowed where the calling macro instruction appears. 
A macro call is not allowed before or between your inline macro definitions, but you can 
nest them inside a macro definition. 

The format of a macro call statement is: 

Name Operation Operand 

[label] 
macro 

zero to 100 operands, separated by commas 
name 

where the name field can contain any ordinary symbol or blank, and macro name 
identifies the macro definition to be expanded. The assembler allows up to 100 operands 
in the operand field. Your entries in the name, operation, and operand fields correspond 
to entries in the prototype statement of the called macro definition. 

If you code no operands, remarks are not allowed. You can specify remarks on a macro 
instruction with operands in any of three ways: 

1. The normal way, with all operands preceding all remarks; for example: 

HACNORH PARH1,PARH2,PARM3, ••••••••••••••••••••••••••••••••••• ,X 
PARMN REMARKS 

2. The alternate way, allowing remarks for each operand, with continuation lines used to 
pair remarks with parameters; for example: 

HA CAL T PARM 1 , 
PARM2, 
PARM3, 

PARHN 

REMARKS ABOUT PARMl 
REMARKS ABOUT PARM2 
REMARKS ABOUT PARH3 

REMARKS ABOUT PARHN 

3. A combination of the first two ways; for example: 

MACOMB PARH1,PARH2,PARH3, REMARKS 
PARH4,PARM5, HORE REMARKS 

PARHN HORE REMARKS 

K 
x 
)(: 

Macro Language 6-23 



Macro Instruction Name Field 

* SOURCE 

* 
&NAM 

&NAM 

OPEN 

HERE 

THERE 

You are allowed any number of continuation lines. However, you must identify each 
continuation line with a nonblank character in column 72 of the previous statement line. 
Operands on continuation lines must begin in column 16 or beyond. If, in continuation 
lines, you make any entries in the columns preceding column 16, the assembler issues an 
error message and does not process the entire statement. 

The name field on a macro call can be used to generate an assembly-time label for a 
machine or assembler instruction. To accomplish this, a symbolic parameter must appear 
in the name field of the macro prototype statement and also in the name field of a model 
statement within the macro definition. Macro expansion will result in the name field of the 
model statement containing the name field entry from the calling macro instruction. For 
example: 

CODE GENERATED CODE 

MACRO 
MACNAM 

HVWS R6, (R2) 

MEND 
START 

MACNAH 

HERE HVWS R6, (R2) 

MACNAH 

THERE HVWS R6, (R2) 

END 

Macro Instruction Operation Field 

Macro Instruction Operand Field 

6-24 SC34-0074 

The symbolic operation code identifies the macro definition that you want the assembler 
to process. The operation entry for a macro instruction must be a valid symbol that is 
identical to the operation code in the prototype statement of the macro definition you 
want to call. 

Note. If one of your inline macro definitions has the same name as a source file macro 
definition, the assembler processes the inline macro definition. 

You use the operand entry in a macro instruction to pass values (parameters) to the called 
macro definition. These values can be passed through: 

• The symbolic parameters you have specified in the macro prototype, or 
• The system variable symbol &SYSLIST, if it is specified in the body of the macro 

definition. 



Macro Instruction Operands 
The assembler allows two types of parameters in a macro instruction operand; positional 
and keyword. You can specify a sublist with multiple values in both types of parameters. 
"Symbolic Parameters" earlier in this chapter explains the advantages of each type. 
Special rules for the various values passed in parameters are given in "Values in Macro 
Instruction Parameters" in this chapter. 

Positional Parameters on the Macro Instruction 
Use a positional parameter on the macro call to pass a value to a macro definition through 
the corresponding positional parameter declared on the prototype statement or to pass a 
value to the system variable symbol &SYSLIST. 

If you specify &SYSLIST with appropriate subscripts in a macro definition, you do not 
need to declare positional parameters in the prototype statement. You can thus use 
&SYSLIST to refer to any positional parameter. And, &SYSLIST allows you to vary the 
number of parameters passed with each calling macro instruction. 

If &SYSLIST is not used, you must code the positional parameters on the calling macro 
instruction in the same order and quantity as the positional parameters declared in the 
macro definition prototype statement. Otherwise: 

• If the number of positional parameters on the calling macro instruction is greater than 
the number of positional parameters on the macro definition prototype statement, the 
excess parameters are meaningless. 

• If the number of positional parameters on the calling macro instruction is less than the 
number of positional parameters on the macro definition prototype statement, the 
omitted parameters pass null character string values to corresponding parameters. 

You must ensure that the nth parameter on the calling macro instruction and the nth 
parameter on the macro definition prototype statement are appropriately paired; omitted 
parameters on the calling macro instruction must be indicated specifically by coding the 
comma that would normally follow the omitted parameter, to maintain proper 
correspondence of subsequent parameters. For example: 

* INSTRUCTIONS 

* 
DESCRIPTION 

MACRO 
OMIT 
DC 

MEND 
START 

&P 1 ,&P2 ,&P3 
.&Pl&P2'ALWAYS &P3' 

OMIT ,C,HERE 

END 

PROTOTYPE STATEMENT 
HODEL STATEMENT USING 
SYMBOLIC PARAMETERS 

CALLING MACRO INSTRUCTION THAT 
GENERATES THE FOLLOW I N.G I N.STRUCTI ON: 

DC c I ALWAYS HERE I 

Macro Language 6-25 



Keyword Parameters on the Macro Instruction 

6-26 SC34-0074 

Use a keyword parameter on the macro call to pass a value through a keyword parameter 
into a macro definition. To override the default value assigned to a keyword parameter on 
the prototype statement, code the corresponding keyword parameter on the macro 
instruction. 

Any keyword parameter you specify in a macro instruction must correspond to a 
keyword parameter in the prototype statement. However, you do not have to code 
keyword parameters in any particular order. 

You must code a keyword operand in the format keyword=value. The keyword coded 
on the calling macro instruction has up to seven characters and is not preceded by an 
ampersand; the corresponding keyword on the macro prototype statement consists of the 
same characters preceded by an ampersand. The value coded on the calling macro 
instruction can be up to 127 characters long. The value you specify overrides the default 
value in the prototype statement. The default value has the same rules as a value in a 
keyword parameter. 

The following examples describe ( 1) the relationship between keyword operands and 
keyword parameters, and (2) the values that the assembler assigns to these parameters 
under different conditions. 

* INSTRUCTIONS 
* MACRO 

MAC 

DES CR I PTI ON 

&KEY1•DEFAULT,&KEY2• PROTOTYPE STATEMENT··DEFAULT VALUE 
FOR &KEY2 IS A NULL CHARACTER STRING 

SHOW DC C1 &KEY1&KEY2 1 

MEND 
OPEN START 

MAC KEY1=0VERRIDE,KEY2•1 CALLING MACRO INSTRUCTION THAT 
GENERATES: 

MAC KEYl•OVERRIDE 

MAC KEY2•1 

MAC 

END 

SHOW DC C'OVERRIDE1 1 

CALLING MACRO INSTRUCTION THAT 
GENERATES: 
SHOW DC C1 0VERRIDE 1 

CALLING MACRO INSTRUCTION THAT 
GENERATES: 
SHOW DC C1 DEFAULT1 1 

CALLING MACRO INSTRUCTION THAT 
GENERATES: 
SHOW DC C'DEFAULT' 

The assembler issues an error message when the keyword of the calling macro 
instruction does not correspond to any keyword on the prototype statement. 

You can specify the null character string as the value for a keyword parameter either as 
a default value on the prototype statement or on the calling macro instruction by coding 
&keyword= or keyword=, respectively, with no value following the equal sign. If another 
keyword parameter follows, the equal sign would be followed by a comma with no 
intervening blanks. 



Combining Positional and Keyword Parameters 

You can use a combination of positional and keyword parameters in the same macro 
instruction. For example: 

* INSTRUCTIONS 

* MACRO 

DESCRIPTION 

MIXED &P1,&P2,&P3=16,&P4=NO 

MEND 
START 

Ml XED 1,0', YES 

. . 
MIXED P3=1,e',P4=YES 

Ml XED 1,0 ,P4=VES 

MIXED 

END 

CALLING MACRO INSTRUCTION THAT 
USES POSITIONAL PARAMETERS 

CALLING MACRO INSTRUCTION THAT 
USES KEYWORD PARAMETERS 

CALLING MACRO INSTRUCTION THAT 
USES BOTH POSITIONAL AND 
KEYWORD PARAMETERS 

CALLING MACRO INSTRUCTION WITH NO 
PARAMETERS--USING DEFAULT VALUES 

All positional parameters on the calling macro instruction must precede all keyword 
parameters on that instruction. The list of positional parameters must correspond to the 
positional parameters on the macro definition prototype statement as described under 
"Positional Parameters on the Macro Instruction." 

M:acro Language 6-27 



Sublists in the Macro Instruction Operand 

6-28 SC34-0074 

You can use a sublist in a positional or keyword parameter on the calling macro 
instruction to specify several values. A sublist is one or more entries separated by commas 
and enclosed in parentheses. The sublist, including parentheses, must not exceed 127 
characters. 

In a macro definition, you can refer to the value of each entry by coding: 

• The corresponding symbolic parameter with an appropriate subscript, or 
• The system variable symbol &SYSLIST with appropriate subscripts, the first to refer 

to the positional parameter and the second to refer to the sublist entry in the operand. 

These rules apply to sublists in macro instructions: 

• &SYSLIST can refer only to sublists in positional parameters. 
• The value in a positional or keyword parameter can be a sublist. 
• A symbolic parameter as used within the macro definition can refer to the entire 

sublist or to an individual entry of the sublist. To refer to an individual entry, the 
symbolic parameter must have a subscript whose value indicates the position of the 
entry in the sublist. The subscript must have a value greater than or equal to one. 

* INSTRUCTIONS DESCRIPTION 

* MACRO 
MAC &P1,&P2,&KEY•(F,/i) PROTOTYPE STATEMENT WITH SUBLIST 

DEFAULT VALUE FOR KEYWORD PARAMETER 

KEY DC &KEY(1) 1 &KEY(2) 1 HODEL STATEHENT--SUBSCRIPTS REFER TO 
POSITIONS WITHIN SUBLIST VALUE FOR 
&KEY 

&Pl(l) DC &Pl (2) I &Pl (3) I HODEL STATEHENT·-SUBSCRIPTS REFER TO 
POSITIONS WITHIN SUBLIST VALUE TO BE 
PASSED AS POSITIONAL PARAMETER ON 
MACRO CALL 

DC A&P2 

MEND 
START 

MAC (POS,F,2,ijt),{A,B,C) MACRO CALL THAT GENERATES: 
KEY DC F'/1' 

POS DC F 1 2/i}t' . . 
DC A(A,B,C) 

END 



The following table shows the relationship between subscripted parameters and sublist 
entries when: 

• A sublist entry is omitted. 
• The subscript refers past the end of the sublist. 
• The value of the operand is not a sublist. 
• The parameter is not subscripted. 

Paratneterin tnacro Sublist in Value generated 
definition tnacro call 

&PAR (3) (1, 2,, 4) Null character string 
&PAR (5) (1, 2, 3, 4) Null character string 
&PAR A A 
&PAR (1) A A 
&PAR (2) A Null character string 
&PAR (A) (A) 

See Note 1 below. 
&PAR (1) (A) A 

See Note 1 below. 
&PAR (2) (A) Null character string 

See Note 1 below. 
&PAR () () 

See Note 2 below. 
&PAR (1) () () 

See Note 2 below. 
&PAR (3) () Null character string 

See Note 2 below. 
&PAR (2) (A, ,C,D) Nothing 

See Note 3 below. 
&PAR (1) ( ) Nothing 

See Note 4 below. 

Note 1. Because the single value A is enclosed in parentheses, it is considered a sublist 
with one entry. 

Note 2. The value of the operand is not a sublist. It is considered to be a character 
string. 

Note 3. The blank between commas on the calling macro instruction indicates end of 
the operand field; thus instead of a null character string value being passed to the macro 
definition, no value is pa.ssed. In addition, an error message is generated because the 
assembler considers this an unmatched left parenthesis. 

Note 4. The blank following the left parenthesis indicates end of the operand field; thus 
instead of a null character string value being passed to the macro definition, no value is 
passed. In addition, an error message is generated because the assembler considers this an 
unmatched left parenthesis. 

The macro definition can also use &SYSLIST to refer to sublist entries in positional 
parameters. For example, given the sublist 

A,(1,2,3,4) 

&SYSLIST(2,3) would have the value 3. 

M:acro Language 6-29 



Values in Macro Instruction Parameters 

6-30 SC34-0074 

You can use a macro instruction parameter to pass values to a macro definition. The two 
types of values you can pass are: 

• Explicit values, or the actual character strings you specify in the operand of the calling 
macro instruction 

• Implicit values, or the attributes inherent to the data represented by the explicit values 

The explicit value of a macro instruction parameter is a character string that must not 
exceed a length of 127 characters (including any sublists). If the macro call is contained 
within a macro definition (a nested macro call), the explicit value of the parameter may 
contain: 

• Variable symbols 
• Any of the symbolic parameters specified in the prototype statement of the containing 

macro definition 
• Any SET symbols declared in the containing macro definition 
• The system variable symbols 

If the macro call is in open code, it cannot contain the above symbols. 
The assembler assigns the character string value, including sublist entries, to the 

corresponding parameter declared in the prototype statement. A sublist entry is assigned 
to the corresponding subscripted parameter. When you omit a keyword parameter on the 
calling macro instruction, the assembler assigns the default value specified for the 
corresponding keyword parameter on the prototype statement. When you omit a 
positional parameter or sublist entry, on the calling macro instruction, the assembler 
assigns the null character string to the parameter. Any of the 256 characters of the 
EBCDIC character set can appear in a macro instruction parameter (or sublist entry). 
However, the following characters require special consideration: 

Ampersands. In macro calls nested within macro definitions a single ampersand indicates 
the presence of a variable symbol. The assembler substitutes the value .of the variable 
symbol into the character string specified in a macro instruction parameter. The resultant 
string is then the value passed into the macro definition. If the variable symbol is 
undefined, the assembler issues an error message. You must specify double ampersands if 
they are to be passed without substitution to the macro definition. 

Value specified on Value of variable Character string 
macro call symbols values passed 

&VAR XYZ XYZ 

&A + &B + 3 + &C* 10 &A= 2 · 2+X+3+COUNT*10 
&B=X 
&C=COUNT 

'&MESSAGE' BLANK BETWEEN 'BLANK BETWEEN' 
(see Quoted Strings in 
this list.) 

&&REGISTER &&REGISTER 

NOTE&&&& NOTE&&&& 

Apostrophes. A single apostrophe indicates the beginning and end of a quoted string. 



Quoted Strings. A quoted string is any sequence of characters that begins and ends with a 
single apostrophe (compare with conditional assembly character expressions). You must 
specify double apostrophes inside each quoted string to result in a single apostrophe 
value. This includes substituted apostrophes. Macro instruction parameters can have 
values that include one or more quoted strings. Each quoted string can be separated from 
the following quoted string by one or more characters, and each must contain an even 
number of apostrophes. Quoted strings can contain variable symbols only on macro calls 
nested within macro definitions. The following examples indicate the values passed for 
quoted strings: 

Value on macro call Value of variable Value passed 
symbol 

'&&NOTATIOW '&&NOTATION' 
'&MESSAGE' &MESSAGE = OK 'OK' 
'' '' 
'&QUOTES' &QUOTES='' '' ''' ''' 
'QUOTE!' AND 'QUOTE2' 'QUOTE!' AND 'Q_UOTE2' 
'QUOTE!' 'QUOTE2" 'QUOTE!' 'QUOTE2' 

Parentheses. In macro instruction operand values, there must be an equal number of left 
and right parentheses. They must be paired; that is, to each left parenthesis belongs a 
following right parenthesis at the same level of nesting. An unpaired (single) left or right 
parenthesis can appear only in a quoted string. 

Blanks. One or more blanks outside a quoted string indicates the end of the entire 
operand field in a macro instruction. Thus, blanks should be used only inside quoted 
strings. 

Commas. A comma outside a quoted string indicates the end of a parameter value or 
sublist entry. Commas that do not delimit values can appear inside quoted strings or 
inside paired parentheses that do not enclose sublists. A comma must not follow the final 
parameter specification. 

Equal Signs. An equal sign can appear in the value of a macro instruction parameter 
sublist entry (1) inside quoted strings, or (2) between paired parentheses. For example: 

HACCALL A'•'B,C(A•B) 

Where '=' is a quoted string and C(A=B) is a character string. 

Macro Language 6-31 



Nesting Macro Definitions 

OPEN 

Levels of Nesting 

6-32 SC34-0074 

Periods. A period can appear in the value of a parameter or sublist entry. It will be passed 
as a period. However, if you use a period immediately after a variable symbol (valid only 
on macro calls from within macro definitions), it becomes a concatenation character. In 
this case, you must code two periods if one is to be passed as a character. 

Character string on Value of variable Value passed 
macro call symbol 

3.4 3.4 

(3.4, 3.5' 3.6) (3.4, 3.5' 3.6) 

&A.1 FIELD FIELDl 

&A.1 3 31 

&A .. 1 3 3.1 

&A&B &A=AREA AREA200 
&B = 200 

&A.&B &A= AREA AREA200 
&B = 200 

&DISP. (&BASE) &DISP = 1000 1000 (10) 
&BASE= 10 

A nested macro instruction is a macro instruction specified as one of the statements in 
the body of a macro definition. The assembler allows the expansion of a macro definition 
from within another macro definition. Any macro instruction in the open code of a 
source module is an outer macro call. Any macro instruction that appears within a macro 
definition is an inner macro call. For example: 

MACRO 
OUTER PROTOTYPE STATEMENT 

INNER INNER MACRO CALL 

MEND 
MACRO 
INNER PROTOTYPE STATEMENT 

MEND 
START j1 

OUTER OUTER MACRO CALL 

END 

The code generated by a macro definition called by an inner macro call is nested inside 
the code generated by the macro definition that contains the inner macro call. In the 
macro definition called by an inner macro call, you can include a macro call to another 
macro definition. Thus, you can nest macro calls at different levels. 

The zero level includes outer macro calls that appear in open code; the first level of 
nesting includes inner macro calls that appear inside macro definitions called from the 
zero level; the second level of nesting includes inner macro calls inside macro definitions 
that are called from the first level, etc. 



You can also call a macro definition recursively-the body of a macro definition can 
contain an inner macro call to that same macro definition. In other words, a macro can 
call itself. This allows you to define macros to process recursive functions. 

When macro instructions appear inside macro definitions, the assembler substitutes 
values in the same way as it does for the model statements in the containing macro 
definition. The assembler processes the called macro definition, passing to it the operand 
values (after substitution) from the inner macro instruction. 

The number of nesting levels permitted depends on the complexity and size of the 
macros at the different levels: the number of operands you specify, the number of local 
and global SET symbols you declare, and the number of sequence symbols you use. 

Exits taken from the different levels of nesting when a MEXIT or MEND instruction is 
encountered are as follows: 

• From the expansion of a macro definition called by an inner macro call, the exit is to 
the next sequential instruction after the inner macro call. 

• From the expansion of a macro definition called by an outer macro, the exit is to the 
next sequential instruction after the outer macro call in your open code. 

You can pass a parameter value in an outer macro instruction through one or more 
levels of nesting. However, the value you specify in the inner macro instructions must be 
identical to the corresponding symbolic parameter declared in the prototype statement. 
Thus, you can pass and refer to a sublist in the macro definition called by the inner macro 
call. Also, all symbols carry their inherent attribute values through the nesting levels. You 
can pass values from open code through several levels of macro nesting if you specify 
inner macro calls at each level with symbolic parameters as parameter values. For 
example: 

* INSTRUCTIONS 
* 

DESCRIPTION 

MACRO 
OUTER &P 

INNER &P 

MEND 
MACRO 
INNER &Q 

HVW &Q(l) ,Rt 
PM &Q(2),Rl 
HVW RI, &Q( 3) . . 
HEND 
START fl 
OUTER (AREA,F2,9,9,SUH) 

. • 

. . . . 
END 

PROTOTYPE STATEMENT FOR OUTER 

NESTED MACRO CALL 

PROTOTYPE STATEMENT FOR INNER 

START OF OPEN CODE 

MACRO CALL IN OPEN CODE PRODUCES THE 
FOLLOWING NESTED MACRO CALL: 

INNER (AREA, F2/lrf, SUM) 
WHICH PRODUCES THE FOLLOWING: 

MVW AREA,RI 
AW F2J,d,Rl 
HVW RI ,SUH 

Macro Language 6-3 3 



6-34 SC34-0074 

Note. If a symbolic parameter is only a part of the value in an inner macro instruction, 
only the character string value given to the parameter by an outer call passes through the 
nesting level. Inner sublist entries and attributes of symbols are not available for reference 
in the inner macro. 

* I NS TRUCT IONS 
* 

DESCRIPTION 

MACRO 
OUTER &P,&Q PROTOTYPE STATEMENT FOR OUTER 

INNER (ABC,&P,DEF),&Q+3 
MEND 

NESTED MACRO .CALL 

MACRO 
PROTOTYPE STATEMENT FOR· I NNei·, INNER &R,&S 

DC 
DS 

A&R(2) 
XL(&S) 

MEND 
START fl START OF OPEN CODE 

OUTER (ADX,ADY,ADZ),TWOJt' 

ENO 

MACRO CALL FROM OPEN CODE PRODUCES. 
THE FOLLOWING NESTED MACRO CALLi 

INNER (ABC' (ADX ,ADY ,ADZ) .DEF) ;rvo,8'+1 i 
WHICH RESULTS IN: 

DC A(ADX,ADY,ADZ) 
OS XL (TWO,s'+ 3) 

The assembler gives system variable symbols local read-only values that depend on the 
position of your macro call and the parameter value specified on the macro call. 

&SYSLIST. If you specify &SYSLIST in a macro definition called by an inner macro 
instruction, then &SYSLIST refers to the positional operands of the inner macro 
instruction. 

&SYSNDX. The assembler increases the value of &SYSNDX by one each time it 
encounters a macro call. It retains the increased value throughout the expansion of the 
macro definition that is called; that is, within the local scope of the nesting level. For 
example, if open code contains a macro call to the macro INNER I, and INNER I contains 
a call to the macro INNER2, and the value of &SYSNDX is 0001 when the call to INNER 
1 is executed, then &SYSNDX will have the value 0002 throughout the expansion of 
INNER I except for the· portion of code included from INNER2 at the point of the call 
from INNERI to INNER2 (for that portion &SYSNDX will have the value 0003); note 
that the value of &SYSNDX is 0002 for all code expanded from INNER! after the 
portion inserted from INNER2. 

&SYSP ARM. The nesting of macros does not affect &SYSP ARM. 



CONDITIONAL ASSEMBLY LANGUAGE 

SET Symbols 

This section describes the conditional assembly language used to interact with symbolic 
parameters and system variable symbols inside a macro definition. With the conditional 
assembly language, you can perform general arithmetic and logical computations as well 
as many of the other functions you can perform with any other programming language. 
By combining conditional assembly instructions with assembler and machine instructions, 
you can: 

• Select sequences of model statements, from which the assembler generates machine 
and assembler instructions 

• Vary the contents of these model statements during generation 

The assembler processes the instructions and expressions of the conditional assembly 
language at preassembly time. Then, at assembly time, it processes the generated model 
statements. Conditional assembly instructions, however, are not processed after 
preassembly time. 

The elements of the conditional assembly language are: 

• SET symbols that represent data 
• Attributes that represent different characteristics of data 
• Sequence symbols that act as labels for branching to statements at preassembly time 

The functions of the conditional assembly language are: 

• Declaring SET symbols as variables for use by the conditional assembly language in its 
computations 

• Assigning values to the declared SET symbols 
• Evaluating conditional assembly expressions used as values for substitution, as 

subscripts for variable symbols, or as condition tests for branch instructions 
• Selecting characters from strings, for substitution in and concatenation with other 

strings, or for inspection in condition tests 
• Branching and exiting from conditional assembly loops 

SET symbols are variable symbols that provide arithmetic, binary, or character data, 
whose values you can vary at preassembly time. 

You can use SET symbols as: 

• Terms in conditional assembly expressions 
• Counters, switches, and character strings 
• Subscripts for variable symbols 
• Values for substitution 

Thus, SET symbols allow you to control your conditional assembly logic and to 
generate many different statements from the same model statements. 

You can use a SET symbol to represent an array of many values. You can then refer to 
any one of the values in this array by subscripting the SET symbol. 

You must declare a SET symbol before you can use it. If you declare a SET symbol to 
have a local scope, you can use it only in the statements that are part of the same macro 
definition. If you declare a SET symbol to have a global scope, you can use it in 
statements that are part of: 

• The same macro definition 
• Any other macro definition 

You must, however, declare the SET symbol as global in each macro definition where 
you use it. You can change the value you previously assigned to a SET symbol without 
affecting the scope of the symbol. 

Note. A symbolic parameter has a local scope. You can use it only in the statements that 
are part of the macro definition where you declare the parameter in the prototype 
statement. The values of &SYSNDX and &SYSLIST are local to each individual macro 
definition. The value of &SYSPARM is global-the same within all macro definitions. 

Macro Language 6-35 



6-36 SC34-0074 

Three types of SET symbols are used in model statements and conditional assembly 
instructions: 

• SETA (arithmetic data) 
• SETB (binary data) 
• SETC (character data) 

You must declare a SET symbol, to determine its scope and type, before you can use it. 
The declaration instructions for SET symbols are: 

Instruction SET symbol type Scope of SET symbol 

LCLA &symbol SETA Local 
LCLB &symbol SETB Local 
LCLC &symbol SETC Local 
GBLA &symbol SETA Global 
GBLB &symbol SETB Global 
GBLC &symbol SETC Global 

where &symbol indicates the name of the SET symbol declared. 

Once a SET symbol has been declared, you can change the value of that symbol with 
the SETA, SETB or SETC instruction anywhere within the declared scope of the SET 
symbol. Values of symbolic parameters and system variable symbols, in contrast, remain 
fixed throughout their scope. Wherever a SET symbol appears in a statement, the 
assembler replaces the symbol with the last value assigned to the symbol. 

The features of SET symbols are compared with those of symbolic parameters and 
system variable symbols in the following table. 

SET symbols Symbolic parameters System variable symbols 

Local scope yes yes yes 

Global scope yes no no-&SYSNDX, &SYSLIST 
yes-&SYSPARM 

Values can yes no no 
change within 
scope 

Note. You can use SET symbols in the name and operand fields of inner macro calls; 
however, the assembler considers the value. thus passed through a symbolic parameter into 
a macro definition to be a character string and generates it as such. 

A subscripted SET symbol is written as: 

&symbol( subscript) 

where &symbol is a valid SET symbol name and the subscript is an arithmetic expression 
with a value greater than zero. You can use a subscripted SET symbol anywhere an 
unsubscripted SET symbol is allowed. However, you must declare subscripted SET 
symbols as dimensioned in a previous local or global declaration instruction. The 
subscript refers to one of the many positions in an array of values identified by the SET 
symbol. The value of the subscript must not exceed the dimension declared for the array 
in the corresponding local or global declaration instruction. For example: 

LCLA &ARRAY(2~) 

&ARRAY(S) SETA 5 

DECLARE ARRAY OF 2/J ELEMENTS 

RE FER TO FIFTH ELEMENT 

Note. A subscript can be a subscripted SET symbol. Five levels of subscript nesting ar~ 
allowed. 



Data Attributes 
Macro instruction operands can be described in terms of: 

• Type, which distinguishes numeric data and identifies missing operands. 
• Count, which gives the number of characters required to represent data in a macro 

instruction operand. 
• Number, which gives the number of operands in a macro instruction or the number of 

sublist entries in an operand. 
These three characteristics are called data attributes. The assembler assigns attribute 

values to the symbolic parameters and &SYSLIST that represent the operands. 
Specifying attributes in conditional assembly instructions allows you to control 

conditional assembly logic, which in turn can control the sequence and contents of the 
statements generated from model statements. The specific purpose for which you use an 
attribute depends on the kind of attribute being considered. The attributes and their main 
uses are listed in the following table. 

Attribute Purpose 

Type Gives a letter that identifies 
type of data represented 

Count Gives the number of 
characters required to 
represent data 

Number Gives the number of 
sublist entries in operand 
sublist or number of 
operands in a macro 
instruction 

The format for an attribute reference is: 

code 'symbol 

Main uses 

-In tests to distinguish numeric 
data 
-To discover missing operands 

-For scanning and decomposing 
of character strings 
-As indexes in sub-string notation 

-For scanning sublists 
-As counter to test for end of 
sublist 

where code is one of the three attribute codes (T for type, K for count, or N for number) 
and symbol is a variable symbol; the apostrophe between code and symbol must be 
present. 

The attribute notation indicates the attribute whose value you desire. The variable 
symbol represents the data that has the attribute. The assembler substitues the value of 
the attribute for the attribute reference. The attribute reference can appear only in 
conditional assembly instructions. Thus, their values are available only at preassembly 
time. 
Note. You can use the system variable symbol &SYSLIST in an attribute reference to 
refer to a macro instruction operand. 

Macro Language 6-37 



Type Attribute (T) 

Count Attribute (K) 

Number Attribute (N) 

6-38 SC34-0074 

The type attribute has a value of a single alphabetic character that indicates the type of 
data represented by a macro instruction operand. If the operand is a sublist, the entire 
sublist and each entry in the sublist can possess the type attribute. 

Type attribute codes Data characterized by type attribute code 

N A self-defining term used as macro instruction operand 

0 Omitted macro instruction operand (has a value of a null 
character string) 

u Non-numeric macro instruction operand 

You can use a type attribute reference only in the SETC instruction or as one of the 
comparison values in a SETB or AIF instruction. 

The count attribute applies only to macro instruction operands. It has a numeric value 
equal to the total number of characters in a macro instruction operand. You can use a 
count attribute reference only in arithmetic expressions. The count attribute for an 
omitted operand is zero. For example: 

Macro instruction operands Value of count attribute 

ALPHA 5 
(SUB, LIST, ALL) 14 
2 (10, 12) 8 
'A''B' 6 
' ' blank 3 
'' null character string 2 

(omitted operand) 0 

The number attribute applies only to the operands of macro instructions. It has a numeric 
value that is equal to the number of sublist entries. in an operand ( 1 + the number of 
commas separating the entries). 

You can use a number attribute reference only in arithmetic expressions. N'&SYSLIST 
refers to the total number of positional parameters in a macro instruction, and 
N'&SYSLIST(m) refers to the number of sublist entries in the mth parameter. If the mth 
parameter is not a sublist, the value of N'&SYSLIST(m) is 1. For example: 

Macro instruction operand sublist Value of number attribute 

(A, B, C, D) 4 
(A,, B, C, D, E) 6 
(, B, C, D) 4 
(A) 1 
A 1 

(No operands) 0 



-Sequence Symbols 
You can use a sequence symbol in the name field of a statement to branch to that 
statement at preassembly time, thus altering the sequence in which the assembler 
processes your conditional assembly and macro instructions. You can select the model 
statements from which the assembler generates assembler language statements. 

A sequence symbol is written as a period followed by an alphabetic character, followed 
by 0-6 alphameric characters (for a total of 2-8 characters). For example: 

.SEQ 

.Al234 

.#924 
You can specify sequence symbols in the name field of any model statements in a 

macro definition, except instructions that already contain ordinary or variable symbols in 
the name field. You cannot specify a sequence symbol in the name field of the macro 
prototype statement. 

You can specify sequence symbols in the operand field of an AIF or AGO instruction 
to branch to a statement with the same sequence symbol in its name field. Sequence 
symbols have a local scope. Thus, if you code a sequence symbol in an AIF or AGO 
instruction, you must define that sequence symbol as a label in the same macro 
definition. And, since the scope for sequence symbols is local, you can use the same 
sequence symbol in several macro definitions, without conflict. For example: 

MACRO 
-HACONE 
: 
AGO · .GENERAT 
• . 
. • 
MEND 
.MACRO. 
·HACTWO .. • 

. • $-ENE-RAT ANOP 

AGO .GENERAT 

MEND 
START . .. 
. ,, 

E;ND 

Note. The assembler does not substitute a sequence symbol from the name field of an 
inner macro call for the parameter in the name field of the corresponding prototype 
statement. 

Macro Language 6-3 9 



Declaring SET Symbols 
You must declare a SET symbol before you can use it. In the declaration, you specify 
whether it is to have a global or local scope. The assembler assigns an initial value to a 
SET symbol at its point of declaration. All global declarations must immediately follow 
the macro prototype statement; local declarations must immediately follow any global 
declarations. 

LCLA, LCLB, and LCLC Instructions 

:Of:E.N: 

6-40 SC34-0074 

The LCLA, LCLB, and LCLC instructions declare local SETA, SETB, and SETC symbols. 
The format of the LCLA, LCLB, and LCLC instructions is: 

Name Operation Operand 

LCLA 
blank LCLB one or more variable symbols to be used as SET symbols, 

LCLC separated by commas 

The name field of the LCLA, LCLB, and LCLC instructions must be blank. These 
instructions must appear immediately following any GBLA, GBLB, or GBLC instructions. 
Any variable symbols declared in the operand field have a local scope. You can use them 
as SET symbols anywhere after the pertinent LCLA, LCLB, or LCLC instructions, but 
only within the declared local scope. The following example indicates the scope of several 
local SET symbols: 

MACRO 
Mtl 
LCLA 
LCLC 

HEND 
MACRO 
HAC2 
LCLA 
LCLC . •. 
MEND 
'START 

HACl 

.. HAC2 

.. 'EH:I> 

&Al 
&Cl 

&AZ 
&C2 

SCOPE OF &A 1 STARTS HERE 
SCOPE OF &Cl STARTS HERE 

SCOPE OF &Al AND &Cl ENOS HERE 

SCOPE OF &A2 STARTS .HERE 
SCOPE OF &C2 STARTS HERE . 

The assembler assigns initial values to local SET symbols as follows: 

Instruction Initial value assigned to SET symbols 

LCLA 0 
LCLB 0 
LCLC Null character string 



A local SET variable symbol declared by the LCLA, LCLB, or LCLC instruction must 
not be identical to any other variable symbol within the same local scope. The following 
rules apply to a local SET variable symbol: 

• It must not be the same as any symbolic parameter declared in the prototype 
statement. 

• It must not be the same as any global variable symbol declared within the same local 
scope. 

• The same variable symbol must not be declared or used as 2 different types of SET 
symbols, for example, as a SETA and a SETB symbol, within the same local scope. 

Note. A local SET symbol should not begin with the characters &SYS; this prefix is 
reserved for system variable symbols. 

You declare a subscripted local SET symbol with the LCLA, LCLB, or LCLC 
instruction by following the subject name with dimension information enclosed in 
parentheses. For example: 

LCLA &ARRAY ( lf') 

The dimension must be an unsigned decimal self-defining term not equal to zero. The 
maximum dimension allowed is 255. The dimension indicates the number of SET 
variables associated with the subscripted SET symbol. The assembler assigns an initial 
value to every variable in the array (the same initial value as for nonsubscripted local SET 
symbols). You can use a subscripted local SET symbol only if the declaration has a 
subscript, which represents a dimension. You can use a nonsubscripted local SET symbol 
only if the declaration has no subscript. 

GBLA, GBLB, and GBLC Instructions 

GBLA, GBLB, and GBLC instructions declare global SETA, SETB, and SETC symbols. 
The format of the GBLA, GBLB, and GBLC instruction statements is: 

Name Operation Operand 

GBLA 
blank GBLB one or more variable symbols to be used as SET symbols, 

GBLC separated by commas 

The name field of the GBLA, GBLB, and GBLC instructions must be blank. 
The GBLA, GBLB, and GBLC instructions must appear immediately following the 

macro prototype statement. Any variable symbols declared in the operand fields of these 
instructions have a global scope. You can use them as SET symbols anywhere after the 
pertinent GBLA, GBLB, or GBLC instructions; note that they can be used only in those 
macro definitions which contain the global declarations. Global scope means the value 
can be passed from one macro definition to another, as opposed to local scope which 
means the value is initialized for each macro definition. 

Macro Language 6-41 



OPEN 

6-42 SC34-0074 

For example, in the following code, values can pass between the macro definitions 
MACl and MAC2 through the global SET symbols &Band &C; the value of &A in MACl 
is unknown to MAC2, and the value of &A in MAC2 is unknown to MACl since &A is a 
local SET symbol. 

MACRO 
HACl 
GBLB &B 
GBLC &C 
LCLA &A 

MEND 
MACRO 
HAC2 
GBLB &B 
GBLC &C 
LCLA &A 

MEND 
START 

HACl 

MAC2 

END 

The assembler assigns an initial value to a global SET symbol when processing the first 
GBLA, GBLB, or GBLC instruction containing the symbol (in the first macro definition 
which declares the symbol to be a global SET symbol); initial values are not reassigned 
when the global SET symbol is subsequently declared in other macro definitions. The 
initial values assigned to global SET symbols are: 

Instruction Initial value assigned to SET symbols 

GBLA 0 
GBLB 0 
GBLC Null character string 



OPEN 

The following example shows the values of a global SET symbol: 

MACRO 
FIRST 
GBLA &A &A INITIALIZED TO ' . . 
MEND 
MACRO 
SECOND 
GBLA &A 

MEND 
START 

FIRST . . 
SECOND &A•VALUE DETERMINED BY Fl RST 
: 
FIRST &A•VALUE DETERMINED BY SECOND 

ENO 

A global SET symbol declared by the GBLA, GBLB, or GBLC instruction must not be 
identical to any other variable symbol used within the same macro definition. The 
following rules apply to a global SET symbol: 

• It must not be the same as any symbolic parameter declared in the prototype 
statement. 

• It must not be the same as any local variable symbol declared within the same macro 
definition. 

• The same variable symbol must not be declared or used as 2 different types of global 
SET symbol, for example, as SETA and SETB symbols. 

Note. A global SET symbol should not begin with the characters &SYS; this prefix is 
reserved for system variable symbols. 

You declare a subscripted global SET symbol with the GBLA, GBLB, or GBLC 
instruction by following the symbol name with dimension information enclosed in 
parentheses. For example: 

GBLA &ARRAY(l_;) 

The dimension must be an unsigned decimal self-defining term not equal to zero. The 
maximum dimension allowed is 255. The dimension indicates the number of SET 
variables associated with the subscripted SET symbol. The assembler assigns an initial 
value to every variable in the array (the same initial value as for nonsubscripted global 
SET symbols). You can use a subscripted global SET symbol only if the declaration has a 
subscript, which represents a dimension. You can use a nonsubscripted global SET 
symbol only if the declaration has no subscript. Wherever you declare a particular global 
SET symbol with a dimension as a subscript, the dimension must be the same in each 
declaration. 

Macro Language 6-4 3 



Assigning Values to Set Symbols 

SETA--Assign Arithmetic Value 

SET A assigns an arithmetic value to a SETA symbol. You can specify a single value or an 
arithmetic expression; the assembler will compute the value of the expression. Since you 
can change the value of a SETA symbol by assigning arithmetic expressions, you can use 
SETA symbols as counters, indexes, or for other repeated computations that require 
varying values. 

The format of the SET A instruction is: 

Name Operation Operand 

symbol SETA arithmetic expression 

The symbol in the name field must have been previously declared as a SETA symbol in 
a GBLA or LCLA instruction. The assembler evaluates the arithmetic expression in the 
operand field as a signed 32-bit arithmetic value and assigns this value to the SETA 
symbol in the name field. The SETA symbol in the name field can be subscripted, but 
only if the same SETA symbol is declared with an allowable dimension. If the symbol in 
the name field is subscripted, the assembler assigns the value of the expression in the 
operand field to the position in the declared array given by the value of the subscript. The 
subscript expression must not (1) be zero, (2) have a negative value, or (3) exceed the 
dimension you specified in the declaration. 

* INSTRUCTIONS 

* 
DESCRIPTION 

LCLA 
LCLA 

&A 
&SUBA(9,0') 

&SUBA (2,) SET A 21f/4/1 
: 

&A SETA &SUBA(2~) 

~SUBA(99) SETA 1/4,0',0' 
.: 

DECLARE 9/4-ELEHENT ARRAY 

SET 2/4TH ELEHENT•2~,0'f4 

SET &A•2~TH ELEMENT (•2/1Jtfl) 

**ERROR** ONLY 9f4 ELEMENTS 

SETC-Assign Character Value 

6-44 SC34-007 4 

SETC assigns a character string value to a SETC symbol. You can assign whole character 
strings or concatenate several smaller strings. The assembler assigns the composite string 
to your SETC symbol. A maximum of 8 characters is allowed in the composite character 
string. You can also assign parts of a character string to a SETC symbol by using substring 
notation. 

You can change the character value assigned to a SETC symbol. This allows you to use 
the same SETC symbol with different values for character comparisons in several places 
or for substituting different values into the same model statement. 

The format of the SETC instruction is: 

Name Operation Operand 

symbol SETC one of 4 options 



* 
* 

The variable symbol in the name field must have been previously declared as a SETC 
symbol in GBLC or LCLC instruction. The four options you can specify in the operand 
field are: 

• A type attribute reference 
• A character expression 
• A substring notation 
• A concatenation of substring notations, character expressions or both 

The assembler assigns the first 8 characters of the character string in the operand field 
to the SETC symbol in the name field. 

Note. When you code a SETA or SETB symbol in a character expression, the unsigned 
decimal value of the symbol (with leading zeros removed) is the character value given to 
the symbol. 

Value of Value of 

SETC Instruction variable symbol SET symbol 

&Cl SETC T'&DATA &DATA-RST u 
&C2 SETC 'ABC' ABC 
&C3 SETC 'ABCDE' (1,3) ABC 
&C4 SETC 'ABC' . 'DEF' ABCDEF 
&CS SETC '&A' &A= 200 200 
&C6 SETC '&A' &A= 00200 200 
&C7 SETC '&A' &A= 200 200 
&C8 SETC '-200' -200 
&C9 SETC '&A' &A=O 0 
&ClO SETC '00200' 00200 
&Cll SETC '&A+ll' &A= 30 30 + 11 
&C12 SETC '1 - &A' &A= 30 1-30 

The SETC symbol in the name field can be subscripted, but only if the same SETC 
symbol has been previously declared in a GBLC or LCLC instruction with an allowable 
dimension. If the symbol in the name field is subscripted, the assembler assigns the 
character value represented by the operand field to the position in the declared array 
given by the value of the subscript. The subscript expression must not (1) be zero, (2) 
have a negative value, or (3) exceed the dimension you specified in the declaration. 

INSTRUCTIONS DES CR I PTI ON 

. . 
LCLC &C 
LCLC &SUBC(2Ji} . . 

&SUBC ( 1,s') SETC 1ABC 1 

DECLARE 2-·ELEHENT ARRAY 

SETS TENTH ELEHENT•ABC 

&C SETC 

&SUBC(25) SETC 

&SUBC ( 1,0) 

I DEF' 

SETS &C•TENTH ELEMENT(•ABC) 

**ERROR** ONLY 2,s' ELEMENTS 

Macro Language 6-45 



SETH-Assign Binary Value 

* SETS 

* &81 
&82 
&83 
&84 

6-46 SC34-0074 

SETB assigns a binary bit value to a SETB symbol. You can assign bit values zero or one 
to a SETB symbol directly and use it as a switch. If you specify a logical expression in the 
operand field, the assembler evaluates this expression to determine whether it is true or 
false and then assigns the values one or zero, respectively. You can use the computed 
value in condition tests or for substitution. 

The format of the SETB instruction is: 

Name Operation Operand 

variable 
SETB one of 3 options 

symbol 

The symbol in the name field must have been previously declared as a SETB symbol in 
a GBLB or LCLB instruction. The 3 options you can specify in the operand field are: 

• A binary value, 0 or I 
• A binary value enclosed in parentheses, (0) or (I) 
• A logical expression enclosed in parentheses 

The assembler evaluates a logical expression and determines if it is true or false. If it is 
true, it is given a value of I; if it is false, a value of 0. The assembler assigns the explicitly 
specified binary value (0 or 1) or the computed logical value (0 or 1) to the SETB symbol 
in the name field. For example: 

INSTRUCT I ON VALUE ASSIGNED 

SETS /4 • SETB (1) 1 
SETI (2 GT 3) ; 
SETS (2 LT 3) 1 



The SETB symbol in the name field can be subscripted, but only if the same SETB 
symbol has been previously declared in a GBLB or LCLB instruction with an allowable 
dimension. If the symbol in the name field is subscripted, the assembler assigns the binary 
value explicitly specified or implicit in the logical expression to the position in the 
declared array given by the value of the subscript. The subscript expression must not (1) 
be zero, (2) have a negative value, or (3) exceed the dimension specified in the 
declaration. For example: 

* INSTRUCTIONS 
* 

DESCRIPTION 

LCLB 
LCLB 

&B 
&SUBSCR(S;) 

&SUBS CR ( UO SETS 1 

&8 SETB &SUBSCR(l,fa') 

&SUBSCR(72) SETB 1 
: 

Using Expressions in SET Instructions 

DECLARES 5,8-ELEMENT ARRAY 

SETS TENTH ELEMENT•) 

SETS &B•TENTH ELEMEMT (• l) 

**ERROR** ONLY 5- ELEMENTS : 

You can use three types of expressions in conditional assembly instructions: arithmetic, 
character, and logical. The assembler evaluates these conditional assembly expressions at 
preassembly time. 

Do not confuse the conditional assembly expressions with the absolute or relocatable 
expressions used in other assembler language instructions. The assembler evaluates 
absolute and relocatable expressions at assembly time. 

Macro Language 6-4 7 



Arithmetic (SET A) Expressions 

6-48 SC34-0074 

You can use an arithmetic expression to assign an arithmetic value to a SET A symbol, or 
to provide subscripting values during conditional assembly processing. 

An arithmetic expression can contain one or more SET symbols. This allows you to use 
arithmetic expressions wherever you wish to specify varying values, for example as: 

• Subscripts for SET symbols 
• Subscripts for symbolic parameters 
• Subscripts for &SYSLIST 
• Substring notation 

Thus you can control loops, vary the results of computations, and produce different 
values for substitution into the same model statement. 

Arithmetic expressions can be used as shown below: 

Can be used in Uses as Example 

SETA instruction operand &Al SETA &Al +2 

AIF instruction comparand in AIF (&A *10 GT 30) .A 
or arithmetic 
SETB instruction relation 

Subscripted SET subscript &SETSYM(&A+lO-&C) 
symbols 

Substring notation subscript '&STRING' (&A *2, &A - 1) 

Sublist notation subscript Sublist: (A, B, C, D) 
When &A = 1 the value of 
&PARAM (&A+ 1) is B. 

&SYSLIST subscript &SYSLIST (&M + 1, &N - 2) 
&SYSLIST (N '&SYSLIST) 

SETC instruction character &C SET_C '5-lO*&A' 
string in If &A= 10 then 
operand &C = 5 -10*10. 

Note. When an arithmetic expression is used in the operand field of a SETC instruction, 
the assembler assigns the character string representing the arithmetic expression to the 
SETC symbol, after substituting values into any variable symbols. It does not evaluate the 
arithmetic expression. 



An arithmetic expression consists of one or more arithmetic terms combined with the 
arithmetic operators + (addition), - (subtraction), * (multiplication), and / (division). An 
arithmetic term can be any of the following: 

• self-defining term 
• count or number attribute reference 
• variable symbol as follows 

Variable symbols allowed as terms in an arithmetic expression are: 

Variable symbol Restriction Example 
Value of 
example 

SETA None ---- ----
SETB None ---- ----
SETC Value must be an unsigned &C 123 

decimal self-defining term 

Symbolic parameters Value must be a self- &PARAM X'Al' 
defining term 

&SYSLIST (n) Corresponding operand &SYSLIST(3) 24 
or or sublist entry must be 
&SYSLIST (n, m) a self-defining term &SYSLIST (3,2) B'lOl' 

&SY~NDX None ---- ----

Codbtg Conditional Assembly Arithmetic Expressions 

The following is a summary of coding rules for arithmetic expressions: 

• Only binary operators are allowed in arithmetic expressions. 
• An arithmetic expression must not begin with an operator, and it must not contain · 

two operators in succession. 
• An arithmetic expression must not contain two terms in succession. 
• An arithmetic expression must not have blanks between an operator and a term. 
• An arithmetic expression can contain up to 16 terms and up to five levels of 

parentheses. The parentheses required for sublist, substring, and subscript notation 
count toward this limit. 

Macro Language 6-49 



Evaluation of Arithmetic Expre~ions 

6-50 SC34-0074 

The assembler evaluates arithmetic expressions at preassembly time as follows. 

• It evaluates each arithmetic term. 
• It performs arithmetic operations from left to right; however, it performs the 

operations of multiplication and division before the operations of addition and 
subtraction. 

• In division, it gives an integer result; any fractional portion is dropped. Division by 
zero gives a zero result. 

• In parenthesized arithmetic expressions, the assembler evaluates the innermost 
expressions first and then considers them as arithmetic terms in the next outer level of 
expressions. It continues this process until the outermost expression is evaluated. 

• The computed result, including intermediate values, must be in the range -231 

through +2 31 -1. 

For example, the expression 

&A+(X'FF'*2+&B-(&C/2+K'&AREA)) 

would be evaluated in the order: 

(1) evaluate &C 
(2) evaluate &C/2 
(3) evaluate K'&AREA 
( 4) evaluate result of (2) + result of (3) 
(5) evaluate X'FF'*2 
(6) evaluate &B 
(7) evaluate result of (5) +result of (6) 
(8) evaluate result of (7) - result of ( 4) 
(9) evaluate &A 
(10) evaluate result of (9)+ result of (8) 

Note. Self-defining terms are limited by assembly-time constraints; they must be in the 
range -216 through +216-1. 

The performance time of the assembler may be affected by the way SET A expressions 
are coded if large values are being used. The timing on multiply operations will be 
improved if the larger of the two values is placed first in the expression. When possible, 
write the expression so that the partial results of division operations will be small values. 
For example, the expression 600/300*10 gives the same result as 10*600/300, but the 
first expression will be evaluated in less time than the second. However, loss of precision 
must be considered when using divide because fractional integers, in partial results, are 
dropped. For example: 2*9/6 gives a result of 3, while 9/6*2 gives a result of 2. 

Arithmetic expression Value of variable symbol Value of expression 

&A+ 10/&B &A= 10; &B = 2 15 
(&A+ 10) /&B &A= 10; &B = 2 10 
&A/2 &A= 10 5 
&A/2 &A:= 11 5 
&A/2 &A= 1 0 
lO*&A/2 &A= 1 5 



Character (SETC) Expressions 

The main purpose of a character expression is to assign a character value to a SETC 
symbol. You can then use the SETC symbol to substitute the character string into a 
model statement. You can also use a character expression as a value for comparison in 
condition tests and logical expressions. In addition, a character expression provides the 
string from which you can select characters with substring notation. 

Substitution of one or more character values into a character expression allows you to 
use the character expression wherever you need to vary values for substitution or to 
control loops. 

You can use character (SETC) expressions in conditional assembly instructions only as 
follows: 

• In SETC instruction as an operand; for example: 

&C SETC 'STRINGO' 

• In AIF or SETB instructions as a character string in character relation; for example: 
AIF ('&C' EQ 'STRING I ').B 

• In substring notation as the first part of the notation; for example: 

'SELECT'(2,5) 

where 'SELECT' is a character expression 

A character expression consists of any combination of characters enclosed in 
apostrophes. Variable symbols are allowed. The assembler substitutes the representation 
of their values as character strings into the character expression before evaluating the 
expression. 

Note. Up to 127 characters are allowed in a character expression. Attribute references are 
not allowed in character expressions. 

Variable symbols used in character expressions are subject to the following restrictions: 

Variable symbol Restrictions Example Value substituted 

SETA Sign and leading &A SETA 0-201 -201 
zeros are &CSETC'&A' 201 
suppressed; stand- &D SETC 0105 105 
alone zero is used &ZEROSETAO 0 

SETB Must be 0 or 1 &BSETB 1 1 
&CSETC'&B' 1 

SETC None &Cl SETC 'ABC' ABC 
&C2 SETC '&Cl' ABC 

Symbolic None & Cl SETC '&PARAM' (ABC) 
if &P ARAM is (ABC) 

System None &NUM SETC '&SYSNDX' 0201 
variable if &SYSNDX = 0201 
symbols Note. Leading zeros are 

not suppressed 

Macro Language 6-51 



Evaluation of Character Expressions 

Logical (SETB) Expressions 

The value of a character expression is the character string within the enclosing 
apostrophes, after the assembler performs any substitution for variable symbols. 
Character expressions can be concatenated with each other or with substring notations in 
any order. You can then use the concatenated string in the operand field of a SETC 
instruction or as a value for comparison in a logical expression. The resultant string is the 
value of the expression used in conditional assembly operations: for example, the value 
assigned to a SETC symbol. Only the first 8 characters of the resultant string are assigned 
to a SETC symbol. You must code a double apostrophe to generate a single apostrophe as 
part of the value of a character expression. A double ampersand generates a double 
ampersand as part of the value of a character expression. To generate a single ampersand 
in a character expression, use the substring notation: for example ('&&'(1,1)). To 
generate a period following a variable symbol, either you must code 2 periods or the 
variable symbol must have a period as part of its value. You must code the concatenation 
character (a period) to separate the apostrophe that ends one character expression from 
the apostrophe that begins the next. For example: 

Example Value of variable Value of character 
symbols used expression 

'ABC' ABC 
'&PARAM' &PARAM =SYMBOL SYMBOL 
'&A+ 10' &A= 10 10+10 
'&A&A' &A= 10 1010 
'&C.&C' &C= DEF DEFDEF 
'&C. ABC' &C=DEF DEF ABC 
'ABC&D' &D=. ABC. 
'&E' &E =null null character 

string 
'ABC&D. DEF' &D =null ABCDEF 
'&C .. 505' &C= 2 2.505 
'&C.505' &C= 2. 2.505 
'ABC'. 'DEF' ABCDEF 
'ABC'.'ABCDEF' (4, 3) ABCDEF 
'&C' (4, 3). 'DEF' &C=ABCDEF DEFDEF 
'&C' (4, 3) 'DEF' &C= ABCDEF DEFDEF 
'ABC'. '&C'. 'DEF' &C =null ABCDEF 
'ABC'. ' ' . 'DEF' ABCDEF 

You can use logical (Boolean) expressions to assign the binary value 1 or 0 to a SETB 
symbol. You can also use a logical expression to represent the condition test in an AIF 
instruction. This allows you to code a logical expression whose value (O or 1) will vary 
according to the values substituted into the expression and thereby determine whether or 
not a preassembly branch is taken. 

You can code logical (SETB) expressions in conditional assembly instructions only as 
follows: 

• In SETB instructions as the operand; for example: 

&Bl SETS (&82 OR 8 GT 3) 

• In AIF instructions as the condition test part of the operand; example: 

AIF (NOT &Bl OR 8 EQ 3).A 

6-52 SC34-0074 



A logical expression consists of one or more logical terms connected by the logical 
operators: 

• OR-addition 
• AND-multiplication 
• NOT-negation 

The logical operators OR and AND must connect two logical terms; the logical operator 
NOT is a unary operator-it precedes a single logical term to indicate the negation of that 
term. 

A logical term can be either: 
• A SETB variable symbol, or 
• A logical relation, which is one of the following: 

An arithmetic relation: 2 arithmetic expressions separated by a relational operator 
- A character relation: 2 character strings (character expression, substring notation, 

type attribute reference, or concatenation of character expression and substring 
notation) separated by a relational operator 

The relational operators are: 

EQ (equal) 
NE (not equal) 
LE (less than or equal) 
LT (less than) 
GE (greater than or equal) 
GT (greater than) 

Macro Language 6-5 3 



Rules for Coding Logical Expressions 

6-54 SC34-0074 

A summary of coding rules for logical expressions follows: 

• A logical expression must be enclosed in parentheses. 
• A logical expression must not contain two logical terms in succession. 
• A logical expression can begin with the logical operator NOT. 
• A logical expression can contain two logical operators in succession; however, the only 

combinations allowed are: OR NOT or AND NOT. The two operators must be 
separated from each other by one or more blanks. 

• Any logical term, relation, or inner logical expression can be optionally enclosed in 
parentheses. 

• Relational and logical operators must be immediately preceded by a right parenthesis, 
a single quote, or at least one blank. 

• Relational and logical operators must be immediately followed by an ampersand, a left 
parenthesis, a single quote, or at least one blank. 

• A logical expression can contain up to 16 terms and up to five levels of parentheses. 

Following are examples of logical expressions: 

Examples of logical expressions 

(&A GT 100 OR '&C' EQ 'F') 

(NOT &B OR (NOT (&A. GT iOo) ) ) 

(NOT ('&C' EQ 'F') ) 

(NOT (&B) OR (&A GE 10 AND &A LE 0) ) 

(NOT &B OR &A GE 10 AND &A LE 0) 

(' &C' EQ 'ALLOC') 

('&C'EQ' ALLOC') 

(&A NE 10) 

~ blank mandatory 



Evaluation of Logical Expressions 

The assembler evaluates logical expressions as follows. 

1. It evaluates each logical term, and assigns a binary value of 0 or 1. 
2. If the logical term is an arithmetic or character relation, the assembler evaluates: 

a. The arithmetic or character expression specified as values for comparison, and 
then 

b. The arithmetic or character relations, and finally 
c. The logical term, which is the result of the relation. If the relation is true, the 

logical term it represents is given a value of 1; if the relation is false, the term is 
given the value of 0. 

Note. If two comparands in a character relation have character values of unequal 
length, the assembler always takes the shorter character value to be less than the 
longer one. 

3. The assembler performs logical operations from left to right. However: 
a. It performs logical NOTs before logical ANDs and ORs, 

and 
b. It performs logical ANDs before logical ORs. 

4. In parenthesized logical expressions, the assembler evaluates the innermost 
expressions first and then considers them as logical terms in the next outer level of 
expressions. It continues this process until the outermost expression is evaluated. For 
example, the expression 

(NOT (&Bl OR (&B2 AND ('&C' EQ 'X' OR &B3)))) 

would be evaluated in the order: 

(1) evaluate '&C' EQ 'X' 
(2) evaluate the result of (1) OR &B3 
(3) evaluate &B2 AND the result of (2) 
(4) evaluate &Bl OR the result of (3) 
(5) evaluate NOT the result of ( 4) 

Following are examples of logical expressions: 

Examples of logical expressions 

((&A NE 100) OR T'&AREA EQ '&PARAM'(3,4)) 

('ABC' LT 'ABCD') (Always true) 

(&B AND NOT (5 GT 3)) 

(&BAND (NOT (5 GT 3))) 

(&B OR &A AND ('&C EQ 'B')) 

I:::l 
(&B OR (&A AND ('&C' EQ 'B')) 

Macro Language 6-55 



Selecting Characters From a String-Substring Notation 

Branching 

6-56 SC34-0074 

The substring notation allows you to refer to one or more characters within a character 
string. You can select characters from the string and use them for substitution or testing. 
By concatenating substrings with other substrings or character strings, you can rearrange 
and build your own strings. -

Substring notation can be used only in the following conditional assembly instructions: 

• SETC instruction as an operand or part of an operand; for example: 
- &Cl SETC 'ABC'(l ,3) 

assigns the value ABC to &Cl 
- &C2 SETC '&Cl'(l,2).'DEF' 

assigns the value ABDEF to &C2, based on &Cl=ABC 
• SETB and AIF instructions as a character value in the comparand of a character 

relation comprising part of a logical expression; for example: 
- AIF ('&STRING'(l ,4) EQ 'AREA').SEQ 
- &B SETB ('&STRING'(l,4).'9' EQ 'FULL9') 

Substring notation has the following format: 

'character string'( el ,e2) 

where the character string must be a valid character expression with a length N in the 
range 1-127 characters, and the subscripts e 1 and e2 are arithmetic expressions. The first 
subscript, el, indicates the first character that is extracted from the character string; the 
second subscript, e2, indicates the number of characters extracted (or the length of the 
substring). Substring notation is replaced by a value that depends on the 3 elements N, 
el, and e2 as follows: 

• When e 1 has a value of zero or a negative value, the assembler issues an error message. 
• When the value of el exceeds N, the assembler issues a warning message, and a null 

character string is generated. 
• When e2 has a value of zero, the assembler generates a null character string. Note that 

if e2 is negative, the assembler issues an error message. 
• When e2 indexes past the end of the character expression (that is, el +e2 is greater than 

N+l), the assembler issues a warning message and generates a substring that includes 
only the characters up to the end of the character expression ( e2 must be less than or 
equal to 8). 

The following examples indicate the results of valid and invalid substring notation: 

• 'ABCDEF'(2,5) 
Valid; results in character value of BCDEF 

e 'ABCDEF'(0,5) 
Invalid because el=O; results in null character value 

• 'ABCDEF'(7 ,5) 
Invalid because e I is greater than N; results in null character value 

• 'ABCDEF'(3,0) 
Invalid because e2=0; results in null character value 

• 'ABCDEF'(3,5) 
Valid, but produces a warning message because e2 indexes past end of string; results in 
character value of CDEF (only 4 characters long) 

• 'ABCDEF'(3 ,4) 
Valid; results in character value of CDEF 

There are four conditional assembly instructions that control the sequence of execution 
of statements within a macro definition: 

• AIF-Conditional branch 
• AGO-Unconditional branch 
• ACTR-Loop control counter 
• ANOP-No Operation 



Alf-Conditional Branch 

.BACK 

AIF is used to: 

• Branch according to the result of a condition test 
• Provide loop control for conditional assembly processing 
• Check for error conditions and branch to an appropriate MNOTE instruction 

Code the AIF instruction as follows: 

Name Operation Operand 

sequence logical expression enclosed in parentheses, immediately 
symbol or AIF followed by a sequence symbol with no intervening 
blank blanks 

The assembler evaluates the logical expression in the AIF operand field at preassembly 
time. If the logical expression is true (logical value=l ), the next statement processed by 
the assembler is the statement identified by the sequence symbol in the operand field of 
the AIF instruction; if the logical expression is false (logical value=O), the next sequential 
statement is processed next. The sequence symbol in the operand field is a conditional 
assembly label {the name field of a model statement or another conditional assembly 
instruction) that represents a location at preassembly time; the label can appear before or 
after the AIF instruction, within the same macro definition as the corresponding AIF 
instruction. 

The following example indicates the use of the AIF instruction: 

MACRO 
HACAIF 

Alf (
1 &C 1 EQ 1 F1 ).FORWARD 

Al F (&A GT 5) .BACK 
'•FORWARD ANOP 

AGO-Unconditional Branch 

MEND 

AGO is used to branch unconditionally. This provides you with final exits from 
conditional assembly loops. 

Code the AGO instruction as follows: 

Name Operation Operand 

sequence 
symbol AGO sequence symbol 
or blank 

Macro Language 6-5 7 



The statement identified by the sequence symbol in the AGO instruction operand can 
appear before or after the AGO instruction, within the same macro definition as the 
corresponding AGO instruction. 

The following example indicates the use of the AGO instruction: 

MCRO 
.MAC:AGO . . 
AGO .FORWAR.D 

AHOP 

AGP .BACK . 
~ . ; , ' ... 

~fQ~WARD'ANOP . .. 
HEND 

ACTR-Assembly Loop Counter 

6-5 8 SC34-007 4 

ACTR is used to set a conditional assembly loop counter. Each time the assembler 
processes an AIF or AGO branching instruction, the loop counter for that macro 
definition is decreased by one. When the number of conditional assembly branches taken 
reaches the value assigned by the ACTR instruction, the assembler exits from the macro 
definition. 

By using the ACTR instruction, you avoid excessive looping during conditional 
assembly processing at preassembly time (in case of errors). 

The format of the ACTR instruction statement is: 

Name Operation Operand 

blank ACTR any valid SET A expression 

The ACTR instruction, if used, must be the first statement following global and local 
declarations for the macro definition. 

A conditional assembly loop counter is set to the value of the arithmetic expression in 
the operand field. The loop counter has a local scope; its value is decreased only by AGO 
and AIF instructions (if the branch is taken). The loop counter is reset each time the 
macro is called. The nesting of macros has no effect on the setting of individual loop 
counters. 

The assembler sets its own internal loop counter for each macro definition that does 
not contain an ACTR instruction. The assembler assigns a standard value of 150 to each 
of these internal loop counters. 

Within the local scope of a particular loop counter (including the internal counters run 
by the assembler), the following rules apply. 

• Each time the assembler executes an AGO or AIF branch, it checks the loop counter 
for a zero value. 

• If the count is not zero, it is decreased by one. 
• If the count is zero, before decreasing the counter value, the assembler terminates the 

expansion of the entire nest of macro definitions and processes the next sequential 
instruction after the outer macro call. 



ANOP-Assembly No Operation 

,$EQ. 
&A 

. . 
AGO 
: 

You can specify a sequence symbol in the name field of an ANOP instruction, and use the 
symbol as a label for branching purposes. The ANOP instruction performs no operation 
itself. Instead, if you branch to an ANOP instruction, the assembler processes the next 
sequential instruction. You use it preceding an instruction that already has a symbol in its 
name field. For example, if you wanted to branch to a SETC instruction, which requires a 
variable symbol in the name field, you would insert a labeled ANOP instruction 
immediately before the SETC instruction. By branching to the ANOP instruction with an 
AIF or AGO instruction, you would, in effect, be branching to the SETC instruction. 

The format of the ANOP instruction statement is: 

Name Operation Operand 

sequence 
ANOP blank 

symbol 

For example: 

.• SEQ 

ANOP 
SETA ·-• ihi . 

Macro Language 6-59 



6-60 SC34-0074 



Chapter 7. Program Listing and Record Formats 

Section Contents 
Assembler Program Listing 7-3 

External Symbol Dictionary (ESD) 7-3 
Source and Object Program 7-4 
Relocation Dictionary 7-7 
Cross-reference 7-7 
Diagnostics 7-8 
Statistics 7-8 

Record Formats 7-9 
External Symbol Dictionary (ESD) Record Format 7-9 
Text (TXT) Record Format 7-10 
Relocation List Dictionary (RLD) Record Format 7-11 
End Record Format 7-12 

Program Listing and Record Formats 7-1 



This page intentionally left blank. 

7-2 SC34-0074 



ASSEMBLER PROGRAM LISTING 
The assembler listing consists of six sections ordered as follows: 

• External symbol dictionary 
• Source and object program 
• Relocation dictionary 
• Symbol cross-reference table 
• Diagnostic messages 
• Statistics 

The contents of the listing are controlled by the assembler options list. For a discussion 
of the options, see Chapter 3 of IBM Series/I Base Program Preparation Facilities 
User's Guide, SC34-0072. 

External Symbol Dictionary (ESD) 
This section of the listing contains the external symbol dictionary information passed to 
the linkage editor in the object module. The entries describe the control sections, external 
references, and entry points in the source module. Six types of entries with their 
associated fields are shown in the following chart. The circled numbers refer to the 
corresponding heading in the sample program listing. The Xs indicate entries 
accompanying the designator for each type. 

o. 
8 

0 

0 

8 
0 

0 8 0 0 8 0 
SYMBOL TYPE ID ADDR LENGTH LD ID 

x SD x x x -

x LD - x - x 

x ER x - - -

- PC x x x -

x wx x - - -

This column contains the name of every control section, entry point, and external 
symbol. 
This column contains the type designator for the entry, as shown in the table. The 
type designators are defined as: 

SD Section definition. The symbol appears in the field of a CSECT or START 
statement. 

LD Label definition. The symbol appears as the operand of the ENTRY 
statement. 

ER External reference. The symbol appears as the operand of the EXTRN 
statement or is defined as a V-type address constant, or an external branch 
instruction; for example, BALX. 

PC Private code. Unnamed control section definition. 
WX Weak external reference. The symbol appears as the operand of WXTRN 

statement, or is defined as a W-type address constant. 
This column contains the external symbol dictionary identification number (ESDID), 
a unique 2-digit hexadecimal number identifying the entry. It is also used in an LD 
entry and in the relocation dictionary for cross-referencing the ESD. The assembler 
assigns this number in seqeunce as the items are encountered in your source program. 
This column contains the address of the symbol (hexadecimal notation) for SD and 
LD type entries, and is blank for ER and WX entries. For PC and SD entries, it 
indicates the starting address of the control section. 
This column contains the assembled length, in bytes, of the control section 
(hexadecimal notation). 
This column contains, for LD entries only, the ESDID assigned to the control section 
that defines the entry symbol. 

Program Listing and Record Formats 7-3 



7-4 SC34-0074 

EXAM EXTERNAL SYMBOL DICTIONARY PAGEl 

8 0 
PGMID 

0 0 0 0 CD 
SYMBOL TYPE ID ADDR LENGTH LD ID 

SECT A SD 01 0000 002E 
GAMMA ER 02 
ENTA LD 0118 01 
ALPHA ER 03 
PROCZ wx 04 

0 
EXAM 8 SAMPLE ASSEMBLY LISTING 0 PAGEl 

G) G 4D 
LOC OBJECT CODE STMT 

0100 2 
3 
4 

0000 5 
0002 6 
0007 7 
0100 D020 0120 8 
0104 6F03 0000 9 
0108 D028 0124 10 
OlOC 6808 0000 11 
***ERROR*** 
0110 6F03 0000 12 
0114 680D 012A 13 
0118 14 
0118 6A08 012C 15 
OllC 6842 0000 16 

17 
18 
19 

0120 OOOOOOOA 20 
0124 21 
0128 OOlE 22 
***ERROR*** 
012A 23 
012C 0000 24 
0000 25 

EXAM e fDRELOCAT~ON DICTIONARY 

G)REL. ID. POS. ID. FLAGS AIRESS REL. ID. POS. ID. 

01 01 00 0102 02 01 
01 01 00 OlOA 03 01 
01 01 00 0116 01 01 
04 01 10 012C 

4D 
PGMIDCD 

SOURCE STATEMENT 

SECT A START X'OlOO' 
EXTRN GAMMA 
ENTRY ENTA 

REGO EQUR 0 
REG2 EQUR 2 
REG7 EQUR 7 

MVD OPNDl,REGO 
BAL GAMMA,REG7 
MVD REGO,RESULT 
MVW OPND2,REGO 

BALX ALPHA,REG7 
MVW REGO,RESULT2 

ENTA EQU * 
MVW ADDRZ,REG2 
B (REG2) 

* 
* DATAAREA 
* 
OPNDl DC 
RESULT DS 
OPNDl DC 

RESULT2 DS 
ADDRZ DC 

END 

FLAGS ADDRESS 

10 0106 
10 0110 
00 OllA 

D'lO' 
D 
F'30' 

F 
W(PROCZ) 

PAGE 1 
PGMID 

CD 

I-



EXAM CROSS-REFERENCE LISTING PAGE 1 
PGM ID 

G) fl G fJ fl) e 
SYMBOL ES DID LEN VALUE DEFN REFERENCES 

ADDRZ 00 0002 0000 00024 00015 
ALPHA 03 0002 0000 00012 
ENTA 00 0001 0118 00014 00004 
GAMMA 02 0001 0000 00003 00009 
OPNDl 00 0004 0120 00020 00008 
OPNDl ***DUPLICATE*** 00022 
OPND2 ***UNDEFINED*** 00011 
PROCZ 04 0001 0000 00024 
REGO RG 0001 0000 00005 00008 00010 

00011 00013 
REG2 RG 0001 0002 00006 00015 00016 
REG7 RG 0001 0007 00007 00009 00012 
RESULT 00 0004 0124 00021 00010 
RESULT2 00 0002 012A 00023 00013 
SECT A 01 0001 0100 00002 

...-
EXAM DIAGNOSTICS PAGE 1 

fl) e G e PGM ID 

STMT MACRO ERROR CODE MESSAGE 

11 AS220E UNDEFINED SYMBOL 
22 AS219E PREVIOUSLY DEFINED NAME 

1---' 

EXAM STATISTICS PAGE 1 
PGM ID 

2 STATEMENT(S) FLAGGED IN THIS ASSEMBLY fD 
8 WAS HIGHEST SYSTEM SEVERITY CODE EI!) 
0 WAS HIGHEST MACRO SEVERITY CODE 

**OPTIONS IN EFFECT** 
LIST 
OBJECT 
ESD 
TEXT 

fD RLD 
XREF 
NO MACRO 

**SPECIFICATIONS IN EFFECT** 
SYSPARM = 'FP' 

25 SOURCE RECORDS READ 

G 0 MACRO FILE RECORDS READ 
5 OBJECT RECORDS OUTPUT 

79 PRINTED LINES 

OBJECT MODULE EXTENTS - 250001, 250005 G 

Program Listing and Record Formats 7-5 



Source and Object Program 

This section of the listing documents the source statements and the resulting object code. 

8 

7-6 SC34-0074 

This is the 4-character object module identification. It is the symbol that appears in 
the name field of the first TITLE statement. The assembler prints the object module 
identification and program identification (item 14) on every page of the listing. 
This is the information taken from the operand field of a TITLE statement. 

Note. TITLE, SP ACE, and EJECT statements do not appear in the source listing. 

This is the listing page number. Each section of the listing starts with page 1. 
This column contains the location counter value (hexadecimal notation) of the object 
code. For EQU instructions, this column contains the assembled value of the operand 
field. 
This column contains the object code assembled from source statements. The entries 
are always left-justified. The notation is hexadecimal. Entries are either machine 
instructions or data constants. Machine instructions are printed in full with a blank 
inserted after every 4 digits (one word). Constants might be only partially printed, 
depending on the PRINT option in effect. 
This column contains the statement number. A plus sign (+) to the right of the 
number indicates that the statement was generated as the result of expanding a macro 
instruction. 
This column contains the source program statement. The following items apply to 
this section of the listing: 

Source statements are listed, including macro definitions submitted in the source 
module. 
Listing control instructions are not printed, with one exception. PRINT is listed 
when PRINT ON is in effect. 
The statements generated as the result of a macro instruction follow the macro 
instruction in the listing unless PRINT NOGEN is in effect. 
Diagnostic messages are not listed inline in the source and object program section. 
An error indicator, ***ERROR***, follows the statement in error, and appears 
inline when errors occur during macro definition expansion in NOGEN mode. 
(One or more of these indicators appear following the macro call, depending on 
the number of definition statements in error.) The message appears in the 
diagnostic section of the listing. 
MNOTE messages are listed inline in the source and object program section. They 
are printed even if the NOGEN option is in effect. An MNOTE indicator appears in 
the diagnostic section of the listing for MNOTE statements other than MNOTE *. 
The MNOTE message format is severity code, followed by message text. 
The MNOTE * form of the MNOTE statement results in an inline message only. 
An MNOTE indicator does not appear in the diagnostic section of the listing. 

- When an error is found in a source macro definition, it is treated the same as any 
other assembly error: the error indication appears after the statement in error, and 
a diagnostic is placed in the list of diagnostics. An error encountered during the 
expansion of a macro instruction is indicated at the point of error in the expansion 
and the associated diagnostic message is placed in the list of diagnostics. Errors 
occuring in a macro expansion (print NOGEN mode) are flagged inline with the 
macro call. 

- If the END statement contains an operand, the transfer address appears in the 
location column (LOC). 
In the case of CSECT and DSECT statements, the location field contains the 
starting address of these control sections. 
In the case of EXTRN, WXTRN, and ENTRY instructions, the location field and 
object code field are blank. 
For a USING statement, the location field contains the value of the first operand. 
For ORG statements, the location field contains the address value of the ORG 
operand. 



Relocation Dictionary 

Ooss-ref erence 

For an EQU or EQUR statement, the location field contains the value assigned to 
the symbol in the name field. 
Generated statements always print in standard statement format. Because of this, a 
generated statement can occupy two continuation lines on the listing, unlike 
source statements, which are restricted to one continuation line. 

4D Program identification. The assembler supplies this information, which identifies 
the assembler program. 

This section of the listing contains the relocation dictionary information passed to the 
linkage editor in the object module. Each line of the listing contains up to three 
relocation dictionary entries. The entries describe all address constants in the source 
module that are affected by relocation. 

G) This column contains the ESDID number assigned to the ESD entry for the control 
section in which the referenced symbol is defined, or the ESDID number assigned to 
an ER item in the ESD. 

CD This column contains the ESDID number assigned to the ESD entry that describes the 
control section in which the address constant is used as an operand. 

4D The 2-digit hexadecimal number in this column is interpreted as follows: 
First digit. A 0 indicates that the entry describes an A-type address constant. A 1 
indicates that entry describes a V-type address constant. 
Second digit. A 0 indicates that the relocation factor must be added to this item. A 2 
indicates that the relocation factor must be subtracted. 

8 This column contains the location counter value of the address constant in the source 
module. 

This section of the listing contains all symbolic names used in the source module as well 
as certain information corresponding to the use of each symbolic name. 
G) This column contains the symbolic names in alphabetic order. 
fJ This column specifies the external symbol dictionary identifier (ESDID) in 

hexadecimal notation for the symbolic name. For register symbols, this field contains 
RG. Register symbols are absolute. An ESDID of X'OO' specifies that the symbol 
value is absolute. An ESDID other than X'OO' specifies that the symbol value is 
relocatable and is associated with that identifier. 

fD This column states the length attribute (decimal notation) assigned to the symbol. 
f.D This column contains either the address the symbol represents, or a value to which 

the symbol is equated (hexadecimal notation). 
fJ This column contains the number of the statement in which the symbol is defined 

(decimal notation). Predefined register symbols will have statement number 0000. 
fD This column contains, from left to right, in ascending order, the numbers (decimal 

notation) of all statements in which the symbol appears in an operand. 

Notes. 

1. A PRINT OFF listing control instruction does not affect the printing of the 
cross-reference section of the listing. 

2. In the case of an undefined symbol, the assembler fills columns 20, 21, 22, and 23 
with the message: 

***UNDEFINED*** 

3. In the case of duplicate symbols, the assembler fills columns 20, 21, and 22 with the 
message: 

***DUPLICATE*** 
4. Symbols appearing in V- or W- type address constants do not appear in the cross

reference listing. 

Program Listing and Record Formats 7-7 



Diagnostics 

Statistics 

7-8 SC34-0074 

This section of the listing contains the diagnostic messages issued as a result of error 
conditions encountered in the program. For actual messages, see Appendix M of the IBM 
Series/1 Base Program Preparation Facilities User's Guide, SC34-0072. 

fl) This column contains the number of the statement in error. 
fD This column contains the name of a macro definition whenever certain errors 

associated with that macro definition are encountered. 
fD This column contains the message identification-assembler identifier, message 

number, and severity. 
fl) This column contains the message text. In many cases, the assembler indicates the 

vicinity of the error with a near operand column pointer. 

An MNOTE indicator of the form SEVERITY CODE xxx-MNOTE STATEMENT 
appears in the "Diagnostics" section if an MNOTE statement other than MNOTE * is 
issued by a macro instruction. xxx is the severity code associated with the statement 
flagged. The MNOTE statement itself is inline in the source and object program section of 
the listing. The operand field of an MNOTE * is printed as a comment but does not 
appear in the "Diagnostics" section of the listing. 

Note. Editing errors in macro definitions from the macro source file are discovered when 
the macro definitions are read from the macro file. This occurs after the END statement 
has been read. They are therefore flagged after the END statement. The assembler lists 
the names of macro definitions along with error messages associated with those 
definitions. 

This section of the listing contains these statistical messages: 

fJ) This is the number of statements flagged. The statements in error are printed in the 
"Diagnostics" listing. 

G This is the highest assembler severity code encountered, if not zero. Your macro 
severity code is also printed. 

Code Message suffix Meaning 

* Informational message; no effect on execution 
0 I Informational message; normal execution is expected 
4 w Warning message; successful execution is probable 
8 E Error; execution may fail 
12 s Serious error; successful execution is improbable 
20 T Assembler program terminated abnormally 

fD This is a list of the assembler options in effect. Options are discussed in Chapter 3 of 
the IBM Series/1 Base Program Preparation Facilities User's Guide, SC34-0072. 
Note that the MACRO option is printed if the assembly required macro processing; 
that is, if inline macro definitions or macro instructions were coded. 

ED This is the number of source records processed. 
@These are the extents of the object module, if one was created. 



RECORD FORMATS 

External Symbol Dictionary (ESD) Record Format 
The external symbol dictionary contains all external symbol and storage assignments for 
an object module. The ESD has assignments for: 

• All symbols defined in a module that can be referred to by another module. 
• All symbols defined as external to a module. 

External Symbol Dictionary (ESD) Record 

Bytes and 
Offset bit pattern Field name Description 

0 (0) 1 CODE X'02' 

1 (1) 3 ID Record ID; contains C'ESD' 

4 (4) 6 !Contains blanks 

10 (A) 2 LENGTH Number of bytes of ESD information in this 
record. The number is either 16 (X'lO'), 
32 (X'20'), or 48 (X'30') for 1 item, 2 items, 
or 3 items, respectively. 

12 (C) 2 Contains blanks 

14 (E) 2 ESDID The ESDID number assigned to the first SD, 
PC, ER, or WX item in this record. For 
example, the field would contain X'OOOl' 
for an ESDID number of 01. This ESDID 
number associates the SD, PC, ER, or WX 
item to a particular control section. This 
field contains blanks (X'4040 ') if all ESD 
items in this record are LD items. 

16 (10) 48 ESDs ESD items. A maximum of three 16-bytes 
ESD entries. 

n (48) 4 Module identification field 

76 (4C) 4 Module sequence field 

Program Listing and Record Formats 7-9 



Text (TXTJ Record Format 

Text (TXT) Record 

7-10 SC34-0074 

The format of a 16-byte ESD item in the preceding record is: 

Bytes and 
Offset bit pattern Field name Description 

0 (0) 8 SYMBOL Symbolic name field. This field contains the 
symbolic name, in EBCDIC, for all SD, LD, 
ER, and WX items. The field contains blanks 
for PC items. 

8 (8) 1 TYPE Type code: 
X'OO' SD (section defintion) 
X'Ol' LD (label definition) 
X'02' ER (external reference) 
X'04' PC (private code) 
X'OA' WX (weak external reference) 

9 (9) 3 ADDRESS The assembled byte address assigned to this 
item -blanks if the type is ER or WX 

12 (C) 1 Must contain a blank 

13 (D) 3 For ER and WX items, this field contains 
blanks (X'4040'). 

For LD items, this field contains the 
ESDID number of the control section (SD 
item) containing the symbolic name. 

For SD and PC items, this field contains the 
hexadecimal length of the control section. This 
length is expressed in bytes. 

The text records contain the instructions and data words that are to be incorporated by 
the linkage editor into a load module. Each text record contains the origin address of the 
instructions or data included in the record and also the count of the number of bytes 
contained in the record. A reference to the control section in which this information 
occurs is included in the text record to permit the proper relocation factor to be applied. 

Bytes and 
Offset bit pattern Field name Description 

0 (0) 1 CODE X'02' 

1 (1) 3 ID Record ID; contains C'TXT' 

4 (4) 2 Unused; contains blanks 

5 (5) 2 ADDRESS The 24-bit address of the text data in this 
record 

8 (8) 2 Unused; contains blanks 

10 (A) 2 LENGTH The number of bytes of text data iti this 
record 

12 (C) 2 Unused; contains blanks 

14 (E) 2· ESDID ESDID of the control section containing 
the data in this record 

16 (10) 56 DATA Text data; a maximum of 56 bytes (28 
sixteen-bit words) of text data 

72 (48) 4 Module identification field 

76 (4C) 4 Module sequence field 



Relocation List Dictionary (RLD) Record Format 
The relocation list dictionary records identify portions of the text that must be modified 
because of relocation. RLD records are generated by relocatable address constants in a 
source module. 

Relocation Dictionary (RLD) Record 

Bytes and 
Offset bit pattern Field name Description 

0 (0) 1 CODE X'02' 

1 (1) 3 ID Record ID; contains C'RLD' 

4 (4) 6 Unused; contains blanks 

10 (A) 2 LENGTH The number of bytes RLD data in this 
record. The maximum number is X'38'. 

12 (C) 4 Unused; contains blanks 

16 (10) 56 RLDs RLD items. These items are either 4 or 8 
bytes long. The first item in each RLD 
record is always 8 bytes long. 

72 (48) 4 Module identification field 

76 (4C) 4 Module sequence field 

The format of an RLD item in the preceding record is: 

Bytes and 
Offset bit pattern Field name Description 

0 (0) 2 REL.ID Relocation pointer (R-pointer); the ESDID number of the control section 
containing the referenced symbol 

2 (2) 2 POS.ID Position pointer (P-pointer); the ESDID number of the control section 
containing the address constant reference 
I 

4 (4) 1 FLAGS When byte format is xxxxLLST, 
xxxx specifies the type of this RLD item (address constant). 

0000 - non-branch type address constant 
0001 - branch type address constant 
0010 - *** reserved *** 
0011 - *** reserved *** 

LL specifies the length of the address constant. 
01 - two bytes (note. only value supported) 
10 - *** reserved *** 
11 - *** reserved *** 

S specifies the direction of relocation. 
0 - positive (+)relocation 
1 - negative ( - ) relocation 

T specifies the type of the next RLD item. 
0 - the following RLD item has a different R and/or P 

pointer and occupies 8 bytes. 
1 - the following RLD item has the same R and P pointers 

and occupies 4 bytes. 

5 (5) 3 ADDRESS The assembled byte address of the reference. This address is within the 
control section referenced by the P-pointer field. 

Program Listing and Record Formats 7-11 



End Record Format 

End (END) Record 

7-12 SC34-0074 

The END record indicates the end of an object module to the linkage editor. This record 
can also contain the control section length if it was not previously specified in the ESD 
SD item. 

The END record of the object module has the following format: 

Bytes and 
Offset bit pattern Field name Description 

0 (0) 1 CODE X'02' 

1 (1) 3 ID Record ID; contains C'END' 

4 (4) 1 Unused; contains blanks 

5 (5) 3 ENT.PT This field contains the assembled entry 
point to this module, if specified in the 
END assembler source statement. The entry 
point is expressed as a byte address. If the 
entry is not specified in the END statement, 
this field contains blanks. 

8 (8) 6 Unused; contains blanks 

14 (E) 2 ESDID ESDID number of the control section con-
taining the entry point specified in bytes 5, 
6, and 7. If no entry point is specified in the 
END assembler source statement, this field 
contains blanks (X'4040'). 

16 (10) 56 Unused; contains blanks 

72 (48) 4 Module identification field 

76 (4C) 4 Module sequence field 



Appendix A. Decimal/Binary /Hexadecimal Conversions 

DECIMAL TO BINARY CONVERSION 

Several methods exist for converting binary numbers to decimal numbers. The method 
used here is repetitive division. To find the binary equivalent of a decimal number: 

1. Divide the decimal number by 2. 
2. Save the remainder (0 or 1). 
3. Divide the quotient by 2. 
4. Repeat steps 2 and 3 until the quotient can no longer be divided. The last quotient is 

the last remainder. 

Example: Convert decimal 236 to binary. 

118 R=O 
2/236 

59 R=O 
2/118 

29 R=l 
2/59 

14 R=l 
2/29 

7 R=O 
2/14 

3 R=l 
2/7 

I R= I 
2/3 

R=l Last quotient 

To represent this binary number in a byte: first, assign the units position of the binary 
number the value 1, the tens position the value 2, and the hundreds position the value 4. 
Doubling the value each time, assign values to all bit positions through the high-order bit 
as shown in the following example: 

Bit position 

Decimal 
assigned values 

0 

128 64 

2 3 

32 16 

4 5 6 7 

8 4 2 

Decimal/Binary/Hexadecimal Conversions A-1 



Second, take the remainders you obtained in the division process and place them in each 
bit position. Place the first remainder in bit position 7. Fill all unused high-order bits with 
0. 

Bit position 0 1 2 3 4 5 6 7 

Decimal 
assigned value 128 64 32 16 8 4 2 1 

Binary 

value of 236 
1 1 1 0 1 1 0 0 

BINARY TO DECIMAL CONVERSION 

To convert from binary to decimal: add the decimal equivalent of each bit position that 
contains 1. In this example, binary 1110 1100 = 128 + 64 + 32 + 8 + 4 = 236 decimal. 

BINARY TO HEXADECIMAL CONVERSION 

A-2 SC34-0074 

Hexadecimal numbering is similar to decimal numbering. However, since the hexadecimal 
base is 16, numbers greater than 9 are assigned alphabetic equivalents, as follows: 

Decimal Hexadecimal 

0 0 
1 

2 2 

3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 
10 A 
11 B 
12 c 
13 D 
14 E 
15 F 



Four binary bits represent a hexadecimal number. 

Binary Hexadecimal 

0000 0 
0001 1 
0010 2 
0011 3 
0100 4 
0101 5 
0110 6 
0111 7 
1000 8 
1001 9 
1010 A 
1011 B 
1100 c 
1101 D 
1110 E 
1111 F 

Two hexadecimal numbers are represented in a byte. Bit positions 0-3 represent the first 
hexadecimal character, and bit positions 4-7 represent the second hexadecimal character. 
The following examples show the hexadecimal equivalents of one-byte binary numbers. 

One-byte binary number Hexadecimal equivalent 

First Second 
character character 

Bit position 0 1 2 3 4 5 6 7 

0 0 0 1 1 0 0 0 1 8 

0 0 1 0 0 0 0 0 2 0 

Examples 0 0 1 1 0 0 1 0 3 2 

0 1 0 0 1 1 0 0 4 c 

1 1 1 1 1 1 1 0 F E 

Figure A-1 gives the binary, decimal, and hexadecimal equivalents from 0 to 25 5. Where 
applicable, equivalent printer graphics are also shown. 

Decimal/Binary /Hexadecimal Conversions A-3 



Binary Binary 

First Second First Second 
half byte half byte half byte half byte 
128 Printer 

Decimal 
Hexa-

164 
graphic decimal 

!f~216 
8421 8421 

128 Printer 
Decimal Hexa-

r graphic decimal 

(I~16 
8421 8421 

0000 0000 0 00 0100 0001 65 41 
0000 0001 1 01 0100 0010 66 42 
0000 0010 2 02 0100 0011 67 43 
0000 0011 3 03 0100 0100 68 44 
0000 0100 4 04 0100 0101 69 45 
0000 0101 5 05 0100 0110 70 46 
0000 0110 6 06 0100 0111 71 47 
0000 0111 7 07 0100 1000 72 48 
0000 1000 8 08 0100 1001 73 49 
0000 1001 9 09 0100 1010 74 4A 
0000 1010 10 QA 0100 1011 . (period) 75 48 
0000 1011 11 OB 0100 1100 < 76 4C 
0000 1100 12 oc 0100 1101 ( 77 40 
0000 1101 13 OD 0100 1110 + 78 4E 
0000 1110 14 OE 0100 1111 79 4F 
0000 1111 15 OF 0101 0000 & 80 50 
0001 0000 16 10 0101 0001 81 51 
0001 0001 17 11 0101 0010 82 52 
0001 0010 18 12 0101 0011 83 53 
0001 0011 19 13 0101 0100 84 54 
0001 0100 20 14 0101 0101 85 55 
0001 0101 21 15 0101 0110 86 56 
0001 0110 22 16 0101 0111 87 57 
0001 0111 23 17 0101 1000 88 58 
0001 1000 24 18 0101 1001 89 59 
0001 1001 25 19 0101 1010 90 5A 
0001 1010 26 1A 0101 1011 $ 91 58 
0001 1011 27 18 0101 1100 92 SC 
0001 1100 28 1C 0101 1101 93 50 
0001 1101 29 10 0101 1110 94 5E 
0001 1110 30 1E 0101 1111 95 5F 
0001 1111 31 1F 0110 0000 96 60 
0010 0000 32 20 0110 0001 97 61 
0010 0001 33 21 0110 0010 98 62 
0010 0010 34 22 0110 0011 99 63 
0010 0011 35 23 0110 0100 100 64 
0010 0100 36 24 0110 0101 101 65 
0010 0101 37 25 0110 0110 102 66 
0010 0110 38 26 0110 0111 103 67 
0010 0111 39 27 0110 1000 104 68 
0010 1000 40 28 0110 1001 105 69 
0010 1001 41 29 0110 1010 106 6A 
0010 1010 42 2A 0110 1011 , 107 68 
0010 1011 43 28 0110 1100 % 108 6C 
0010 1100 44 2C 0110 1101 109 60 
0010 1101 45 20 0110 1110 110 6E 
0010 1110 46 2E 0110 1111 111 6F 
0010 1111 47 2F 0111 0000 112 70 
0011 0000 48 30 0111 0001 113 71 
0011 0001 49 31 0111 0010 114 72 
0011 0010 50 32 0111 0011 115 73 
0011 0011 51 33 0111 0100 116 74 
0011 0100 52 34 0111 0101 117 75 
0011 0101 53 35 0111 0110 118 76 
0011 0110 54 36 0111 0111 119 77 
0011 0111 55 37 0111 1000 120 78 
0011 1000 56 38 0111 1001 121 79 
0011 1001 57 39 0111 1010 122 7A 
0011 1010 58 3A 0111 1011 fl 123 78 
0011 1011 59 38 0111 1100 @ 124 7C 
0011 1100 60 3C 0111 1101 125 70 
0011 1101 61 30 0111 1110 126 7E 
0011 1110 62 3E 0111 1111 127 7F 
0011 1111 63 3F 1000 0000 128 80 
0100 0000 blank 64 40 1000 0001 a 129 81 

Figure A-1 (Part 1 of 2). EBCDIC, hexadecimal, decimal table 

A-4 SC34-0074 



Binary Binary 

First Second First Second 
half byte half byte half byte half byte 
128 Printer 

Decimal 
Hex a-

1rr~16 
graphic decimal 

128 Printer 
Decimal 

Hex a-

1~16 
graphic decimal 

S421 S421 8421 8421 

1000 0010 b 130 S2 1100 0001 A 193 C1 
1000 0011 c 131 83 1100 0010 B 194 C2 
1000 0100 d 132 S4 1100 0011 c 195 C3 
1000 0101 e 133 S5 1100 0100 D 196 C4 
1000 0110 f 134 86 1100 0101 E 197 C5 
1000 0111 g 135 S7 1100 0110 F 198 C6 
1000 1000 h 136 SS 1100 0111 G 199 C7 
1000 1001 137 89 1100 1000 H 200 cs 
1000 1010 138 SA 1100 1001 I 201 C9 
1000 1011 139 SB 1100 1010 202 CA 
1000 1100 140 SC 1100 1011 203 CB 
1000 1101 141 80 1100 1100 204 cc 
1000 1110 142 SE 1100 1101 205 co 
1000 1111 143 SF 1100 1110 206 CE 
1001 0000 144 90 1100 1111 207 CF 
1001 0001 j 145 91 1101 0000 208 DO 
1001 0010 k 146 92 1101 0001 J 209 01 
1001 0011 I 147 93 1101 0010 K 210 02 
1001 0100 m 148 94 1101 0011 L 211 03 
1001 0101 n 149 95 1101 0100 M 212 04 
1001 0110 0 150 96 1101 0101 N 213 05 
1001 0111 p 151 97 1101 0110 0 214 06 
1001 1000 q 152 98 1101 0111 p 215 07 
1001 1001 r 153 99 1101 1000 a 216 OS 
1001 1010 154 9A 1101 1001 R 217 09 
1001 1011 155 9B 1101 1010 218 DA 
1001 1100 156 9C 1101 1011 219 DB 
1001 1101 157 90 1101 1100 220 DC 
1001 1110 15S 9E 1101 1101 221 DD 
1001 1111 159 9F 1101 1110 222 DE 
1010 0000 160 AO 1101 1111 223 OF 
1010 0001 161 A1 1110 0000 224 EO 
1010 0010 162 A2 1110 0001 225 E1 
1010 0011 163 A3 1110 0010 s 226 E2 
1010 0100 u 164 A4 1110 0011 T 227 E3 
1010 0101 v 165 A5 1110 0100 u 228 E4 
1010 0110 w 166 A6 1110 0101 v 229 E5 
1010 0111 x 167 A7 1110 0110 w 230 E6 
1010 1000 y 168 AS 1110 0111 x 231 E7 
1010 1001 z 169 A9 1110 1000 y 232 ES 
1010 1010 170 AA 1110 1001 z 233 E9 
1010 1011 171 AB 1110 1010 234 EA 
1010 1100 172 AC 1110 1011 235 EB 
1010 1101 173 AD 1110 1100 236 EC 
1010 1110 174 AE 1110 1101 237 ED 
1010 1111 175 AF 1110 1110 238 EE 
1011 0000 176 BO 1110 1111 239 EF 
1011 0001 177 B1 1111 0000 0 240 FO 
1011 0010 178 B2 1111 0001 1 241 F1 
1011 0011 179 B3 1111 0010 2 242 F2 
1011 0100 180 B4 1111 0011 3 243 F3 
1011 0101 181 85 1111 0100 4 244 F4 
1011 0110 182 86 1111 0101 5 245 FS 
1011 0111 183 B7 1111 0110 6 246 F6 
1011 1000 184 BB 1111 0111 7 247 F7 
1011 1001 1S5 B9 1111 1000 8 248 FS 
1011 1010 186 BA 1111 1001 9 249 F9 
1011 1011 187 BB 1111 1010 250 FA 
1011 1100 18S BC 1111 1011 251 FB 
1011 1101 189 BO 1111 1100 252 FC 
1011 1110 190 BE 1111 1101 253 FD 
1011 1111 191 BF 1111 1110 254 FE 
1100 0000 192 co 1111 1111 255 FF 

FigureA-1 (Part 2 of 2). EBCDIC, hexadecimal, decimal table 

Decimal/Binary /Hexadecimal Conversions A-5 



Hexadecimal/Decimal Conversion 

DECIMAL TO HEXADECIMAL 

HEXADECIMAL TO DECIMAL 

A-6 SC34-0074 

FigureA-2 provides direct conversion of decimal and hexadecimal numbers in these ranges: 

Hexadecimal Decimal 

000 to FFF 0000 to 4095 

Decimal numbers are within the table. The first two hexadecimal characters are in the 
left column of the table; the third hexadecimal character (x) is arranged across the top of 
the table. 

For numbers outside the range of the table, add the following values to the table figures. 

Hexadecimal Decimal 

1000 4096 
2000 8192 
3000 12288 
4000 16384 
5000 20480 
6000 24576 
7000 28672 
8000 32768 
9000 36864 
AOOO 40960 
BOOO 45056 
cooo 49152 
DOOO 53248 
EOOO 57344 
FOOO 61440 

To convert from decimal to hexadecimal using Figure A-2: 

1. Find the decimal number in the table. 
2. Determine the hexadecimal number. 

a. Locate the hexadecimal characters in the left column. 
b. Substitute the value for x (the character in the top column above the decimal number). 

Example: Decimal 1 23 is equivalent to hexadecimal 07B; decimal 14 78 is equivalent to 
hexadecimal 5C6. 

To find the decimal equivalent of a hexadecimal number using Figure A-2: 

1. Find the first two hexadecimal characters in the left column. 
2. Scan across this row until you find the column containing the last hexadecimal charac

ter. Here is the decimal number. 

Example: Find decimal equivalent of hexadecimal OC9. Find OC in the left column. Look 
under column 9. The decimal number is 0201. 



l x = 0 1 2 3 4 5 6 7 8 9 A B c D E F 

OOx 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 0015 
01x 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031 
02x 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 0045 0046 0047 
03x 0048 0049 0050 0051 0052 0063 0054 0055 0056 0067 0058 0069 0060 0061 0062 0063 

04x 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 
05x 0000 ~1 0002 0083 0004 ~5 0006 0087 0088 0089 0090 0091 0092 0093 0094 0095 
06x 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 
07x 0112 0113 0114 0115 0116 0117 0118 0119 0120 0121 0122 0123 0124 0125 0126 0127 

08x 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143 
09x 0144 0145 0146 0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 
OAx 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170 0171 0172 0173 0174 0175 
OBx 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0190 0191 

OCx 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 0204 0205 0206 0207 
ODx 0208 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0220 0221 0222 0223 
OEx 0224 0225 0226 0227 0228 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 
OFx 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0250 0251 0252 0253 0254 0255 

10x 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 
11x 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287 
12x 0288 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 
13x 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 

14x 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 0334 0335 
15x 0336 0337 0338 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0350 0351 
16x 0352 0353 0354 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367 
17x 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383 

18x 0384 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 
19x 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 0414 0415 
1Ax 0416 0417 0418 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 
1Bx 0432 0433 0434 0435 0436 0437 0438 0439 0440 0441 0442 0443 0444 0445 0446 0447 

1Cx 0448 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0460 0461 0462 0463 
1Dx 0464 0465 0466 0467 0468 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0479 
1Ex 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0490 0491 0492 0493 0494 0495 
1Fx 0496 0497 0498 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0510 0511 

20x 0512 0513 0514 0515 0516 0517 0518 0519 0620 0521 0622 0523 0524 0525 0626 0527 
21x 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543 
22x 0544 0545 0546 0547 0548 0549 0650 0551 0552 0553 0654 0555 0656 0557 0658 0559 
23x 0660 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575 

24x 0576 0577 0578 0579 0580 0581 0682 0583 0684 0585 0686 0587 0688 0589 0690 0591 
25x 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 
26x 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0169 0620 0621 0622 0623 
27x 0624 0625 0626 0627 0628 0269 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 

28x 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655 
29x 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671 
2Ax 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 0684 0685 0686 0687 
2Bx 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703 

2Cx 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 
2Dx 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735 
2Ex 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751 
2Fx 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767 

30x 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783 
31x 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 
32x 0800 0801 0802 0803 0004 0805 0806 0807 0008 0809 0010 0811 0012 0813 0014 0815 
33x 0816 0817 0818 0819 0820 0821 0822 0823 0024 0825 0026 0827 0028 0829 0030 0831 

34x 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847 
35x 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863 
36x 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879 
37x 0880 0881 0882 0883 0884 0085 0886 0887 0888 0889 0090 0891 0892 0893 0094 0895 

38x 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911 
39x 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927 
3Ax 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943 
3Bx 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959 

3Cx 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975 
3Dx 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991 
3Ex 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007 
3Fx 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 

Figure A-2 (Part 1 of 4). Hexadecimal/decimal conversion table 

Decimal/Binary /Hexadecimal Conversions A-7 



rx = 0 1 2 3 4 5 6 7 8 9 A B c D E F 

40x 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 
41x 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1061 1052 1053 1054 1055 
42x 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 
43x 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 

44x 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 
45x 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 
46x 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 
47x 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 

48x 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 
49x 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 
4Ax 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 
4Bx 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 

4Cx 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 
4Dx 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 
4Ex 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 
4Fx 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 

50x 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 
51x 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 
52x 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 
53x 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 

54x 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 
55x 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 
56x 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 
57x 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 

58x 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 
59x 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 
5Ax 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 
5Bx 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 

5Cx 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 
5Dx 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 
5Ex 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 
5Fx 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 

60x 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 
61x 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 
62x 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 
63x 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 

64x 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 
65x 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 
66x 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 
67x 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 

68x 1664 1665 1666 1667 1668 1699 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 
69x 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 
6Ax 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 
6Bx 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 

6Cx 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 
6Dx 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 
6Ex 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 
6Fx 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 

70x 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 
71x 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 
72x 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 
73x 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 

74x 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 
75x 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 
76x 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 
77x 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 

78x 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 
79x 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 
7Ax 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1976 
7Bx 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 

7Cx 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
7Dx 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 
7Ex 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029. 2030 2031 
7Fx 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 

Figure A-2 (Part 2 of 4 ). Hexadecimal/decimal conversion table 

A-8 SC34-0074 



l x = 0 1 2 3 4 5 6 7 8 9 A B c D E F 

80x 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 
81x 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 
82x 2000 2001 2002 2083 2004 2005 2006 2007 2008 2009 2090 2091 2092 2093 2094 2095 
83x 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2100 2109 2110 2111 

84x 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 
85x 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 
86x 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 
87x 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 

88x 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 
89x 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 
8Ax 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 
8Bx 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 

8Cx 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 
8Dx 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 
8Ex 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 
8Fx 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 

90x 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 
91x 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 
92x 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 
93x 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 

94x 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 
95x 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 
96x 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 
97x 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 

98x 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 
99x 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2471 2462 2463 
9Ax 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 
9Bx 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 

9Cx 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 
9Dx 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 
9Ex 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 
9Fx 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 

A Ox 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 
A1x 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 
A2x 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 
A3x 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 

A4x 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 
A5x 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 
A6x 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2699 2670 2671 
A7x 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 

A8x 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 
A9x 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 
AAx 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 
ABx 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 

ACx 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 
A Ox 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 
AEx 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 
AFx 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 

BOx 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 
B1x 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 
B2x 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 
B3x 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 

B4x 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 
85x 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 
B6x 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 
87x 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 

B8x 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 
89x 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 
BAx 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 
BBx 2992 2993 2994 2995 2~96 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 

BCx 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3019· 3019 3020 3021 3022 3023 
BDx 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 
BEx 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 
BFx 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069· 3070 3071 

Figure A-2 (Part 3 of 4). Hexadecimal/decimal conversion table 

Decimal/Binary /Hexadecimal Conversions A-9 



l x = 0 1 2 3 4 5 6 7 8 9 A B c D E F 

cox 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 
C1x 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 
C2x 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 
C3x 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 

C4x 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 
C5x 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 
C6x 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 
C7x 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 

C8x 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 
C9x 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 
CAx 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 
CBx 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 

CCx 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 
cox 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 
CEx 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 
CFx 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 

DOx 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 
D1x 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 
D2x 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 
D3x 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 

D4x 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 
D5x 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 
D6x 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 
D7x 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 

D8x 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 
D9x 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 
DAx 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 
DBx 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 

DCx 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 
DDx 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 
DEx 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 
DFx 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 

EOx 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 
E1x 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 
E2x 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 
E3x 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 

E4x 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 
E5x 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 
E6x 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 
E7x 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 

E8x 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 
E9x 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 
EAx 3744 3745 3746 3747 3748 3749 3550 3751 3752 3753 3754 3755 3756 3757 3758 3759 
EBx 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 

ECx 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 
EDx 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 
EEx 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 
EFx 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 

FOx 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 
F1x 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 
F2x 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 
F3x 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 

F4x 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 
F5x 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 
F6x 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 
F7x 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 

F8x 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 
F9x 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 
FAx 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 
FBx 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 

FCx 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 
FDx 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 
FEx 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 
FFx 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 

Figure A-2 (Part 4 of 4). Hexadecimal/decimal conversion table 

A-10 SC34-0074 



Bit position 0-3 

4-7 Hex 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

1000 8 

1001 9 

1010 A 

1011 B 

1100 c 
1101 D 

1110 E 

1111 F 

Appendix B. American National Standard Code 
for Information Interchange (ASCII) 

0000 0001 0010 0011 0100 0101 0110 0111 

0 1 2 3 4 5 6 7 

NUL OLE 0 @ p ' p 

SOH DC1 ! 1 A a a q 

STX DC2 ,, 2 B R b r 

ETX DC3 # 3 c s c s 

EOT DC4 $ 4 D T d t 

ENO NAK % 5 E u e u 

ACK SYN & 6 F v f v 

BEL ETB I 7 G w g w 

BS CAN ( 8 H x h .X 

HT EM ) 9 I y i y 

LF SUB * : J z j z 

VT ESC + ; K [ k { 
FF FS < L .......... I I 

I 

CR GS - = M 1 m } 
so RS > N I n 'V 

SI us I ? 0 - 0 DEL 

American National Standard Code for Information Interchange (ASCII) B-1 



B-2 SC34-0074 



Appendix C. Perforated Tape Transmission Code/Extended 
Binary Coded Decimal (PTTC/EBCD) 

:1;:~'!1':~:''' (S,~},8) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

ii!i4.7 t{Hex 7>::::::: ::::::::,::::::::::Vj::::1::::::;::?psf>::::::: :::::::,.;:::~::::::: .. 7····· 8 ...... g ... 17 ~:::::::::g::::: D E F 

''(4,2,1,C) L .. ........... ..... . ... ... .. ············ L£2::1:::~Ld .......... 2L:J::;:::::;: :: <::::::;:: 

0000 

0001 

0010 

0011 

0100 

0101 

0110 
.. 

0111 

1000 

1001 

1010 < 
::: 

1011 

•••. 1100 

" 
1101 

1110 
... 

< 

1111 ••• 
) 

:.:. 0 

2 

Ii.ii 4 

5 

7 ---::: 
:: 

A 

B 

E : 

Space 

2 

3 

4 

5 

6 

7 

8 

9 

0 

Up
shift 

© 
EOT 

@ 

u 

v 

w 

x 

y 

z 

'® 
SOA 

LF see 
note 

1 

® 
EOB 

® 
NAK 

k 

m 

n 

0 

p 

q 

$ 

NL see 
note 

2 

Back 
space 

IDLE 

& 

a 

b 

c 

d 

e 

g 

h 

(2) 
YAK 

Horiz 
tab 

Down
shift 

DEL 

Space 

< 

% 

> 

Up
shift 

s 

T 

u 

v 

w 

x 

y 

z 

LF see 
note 

1 

® 
EOB 

J 

K 

L 

M 

N 

0 

p 

Q 

R 

NL see 
note 

2 

Back 
space 

IDLE 

+ 

A 

B 

c 

D 

E 

F 

G 

H 

Horiz 
tab 

Down
shift 

DEL 

.... , ,..,_ ______ Lower Case _______ .,,..,. _______ Upper Case 

0 2 3 4 5 6 7 Bits 

s B A 8 4 2 c Terminal code 
structure 

I Start B A 8 4 2 c I Stop I 
C is odd parity check bit for S, B, A, 8, 4, 2, 1. 
On receiving operation, start and stop bits are deleted. 

On transmitting operation, start and stop bits are added. 

Transmitted and 
received character 

Shift (S) bit position 0 (lower case) 
or 1 (upper case) inserted on receive 
operations. Insertion/deletion is 
performed by equipment 

Notes: 
1. Line feed (LF) performs the indexing 

function 
2. New line (NL) performs the carrier 

return and line feed function 
3. Similar terms: 

downshift = lower·c~se 

upshift = upper case 

Perforated Tape Transmission Code/Extended Binary Coded Decimal (PTTC/EBCD) C-1 



C-2 SC34-0074 



Appendix D. Pseudobinary PTTC/EBCD Conversion 

If a host computer transmits or receives binary data, it must be in EBCDIC 
pseudobinary code. Also, two down shift characters (X'7C7C') must immediately 
precede the binary data. These two characters identify the data as binary. 

Figure D-1 is a conversion table for pseudobinary data. Use the portion of the table that 
corresponds to your access method. 

Character to transmit Transmitted PTTC/EBCD Character 

EBCDIC lowercase characters* Hexadecimal characters** 

Hexadecimal Binary 
Non-end-of-word End-of-word Non-end-of-word I 
character character character 

0 0000 8 (9) 

1 0001 2 (3) 

2 0010 4 (5) 

3 0011 6 (7) 

4 0100 y (z) 

5 0101 s (t) 

6 0110 u (v) 

7 0111 w (x) 

8 1000 q (r) 

9 1001 k (I) 

A 1010 rn (n) 

B 1011 0 (p) 

c 1100 h (i) 

D 1101 b (c) 

E 1110 d (e) 

F 1111 f (g) 

*This column contains the graphic representation of the pseudobinary 
characters that must be passed to host telecommunications access 
methods that perform EBCDIC to PTTC/EBCD conversion. 

**This column contains the pseudobinary hexadecimal data that must 
be passed to the host access methods that do not convert data. 

Figure D-1. Pseudobinary conversion table 

10 

04 

08 

OD 

31 

25 

29 

2C 

51 

45 

49 

4C 

70 

64 

68 

GD 

End-of-word 
character 

(13) 

(07) 

(OB) 

(OE) 

(32) 

(26) 

(2A) 

(2F) 

(52) 

(46) 

(4A) 

(4F) 

(73) 

(67) 

(6B) 

(6E) 

Pseudobinary PTTC/EBCD Conversion D-1 



D-2 SC34-0074 

Hex 

digit First Last 

Convert each hexadecimal digit starting from the low-order 0 F8 F9 
position of the word (right to left). Each digit has 1 F2 F3 
corresponding hexadecimal values in the table. If the digit 2 F4 F5 
is the most significant digit in the high order positionof 3 F6 F7 
the word (that is, only zeros precede it to the left), then 4 A8 A9 
take its corresponding pseudobinary value from the :,':;last" 5 A2 A3 
column in the table. If the digit is not the high-order 6 A4 A5 
significant digit, take its corresponding value from the 7 A6 A7 
"first" column in the table. Place the pseudobinary values 

8 98 99 in the output record from left to right, or in the reverse 
order of the unconverted digits. Do not convert zeros to 9 92 93 

the left of rhe most significant digit. For example, you A 94 95 

would convert a word containing X'05F2' to X'F486A3'. B 96 97 

c 88 89 
D 82 83 
E 84 85 
F 86 87 

• If the host Telecommunications Access Method performs an EBCDIC to PTTC/EBCD 
conversion, pseudobinary data must be passed to this access method in the EBCDIC 
lowercase form shown in Figure D-1. 

• If the access method only performs data transfer, pseudobinary data must be passed to 
the access method in the hexadecimal form shown in Figure D-1. For both methods, an 
end-of-word indicator is required. The value in parentheses (see Figure D-1) represents 
the most significant four bits of a word. These bits contain the pseudo binary value of 

the fast hexadecimal character in the word plus the end-of-word bit. 

The conversion to pseudobinary must be performed on a word from right to left. To 
illustrate this conversion process, assume binary data, equivalent to hexadecimal 8910, 
is transmitted from System/7 to a host system. Using Figure D-1, 8910 becomes: 

8 9 1 0 

8 or hex 10 

2 or hex 04 

----1~ k or hex 45 

----~ r or hex 52 (end-of-word indicator) 



These 4 characters 82kr are then transmitted serially (hex 10044552) in PTTC/EBCD. 
When the message is received by the host system, a program must strip out the 4 
significant data bits (BA42). This procedure is illustrated below. 

SBA8421C r End-of-word bit 

• • 
PTTC/EBCD 0 1 0 1 0 0 1 0 0 10 0 01 01 

Pseudo
binary 
PTTC/EBCD 

• Hexadecimal 

10 

8 

Transmitting Leading Zeros 

00 10 01 

9 

0 00 0 01 00 0 00 00 00 

00 01 00 00 

0 

Leading hexadecimal zeros need not be transmitted, thus reducing the number of trans
mitted bits. For example, assume hexadecimal 0018 is to be transmitted. Using Figure 
D-1 

8 becomes q or hex 51 
1becomes3 or hex 07 (end-of-word indicator) 

0018 is then transmitted serially in PTTC/EBCD code as q3 {hex 5107). The following 
process occurs on the receiving end. 

1. Work area is cleared. I o 0 0 0 

2. q is received and is 
right-adjusted in I o o@I work area. 0 

3. 3 is received and is 
right-adjusted in work I o o@ area. 

Since 3 carries the 
end-of-word indicator, 
transmission for hex 
0018 is complete. 

4. Processing continues. 

Pseudobinary PTTC/EBCD Conversion D-3 



D-4 SC34-0074 

Conversion examples 

Word 

1A37 

04FC 

EBCDIC lowercase 

w6m3 

hfz 

Relationships of various codes 

PTTC/EBCD Hex 

2COD4907 

706032 

Figure D-2 shows the relationships of the various code formats. The only meaningful bits 
transmitted are B, A, 4, and 2. 

Hexadecimal 0 1 2 3 
bit positions 

Binary terminal s B A B 
code structure 

Pseudo binary B A 
conversion bits 

Pseudo data 0 D D 
transmission 
format 

Example: - 0 0 -
transmitted 
hex 2 l 

Legend: 

D data bits 

E end-of-word indicator 

bits required for transmission, but 
aren't used to represent transmitted 
binary bits , 

4 5 6 7 

4 2 1 c 

4 2 

D D E 

1 0 - -

Figure D-2. Relationship of pseudobinary PTTC/EBCD to hexadecimal and binary PTTC/EBCD 



Appendix E. Priority List for Assembler Instructions 

TITLE 

l EJECT any place 
PRINT 
SPACE 

MACRO before first CSECT 

GBL after macro prototype 
LCL follows globals 
ACTR follows locals 

AIF 
AGO 
SETA 
SETB within macro definitions,..anywhere 
SETC between ACTR and MEND 
ANOP 
MEX IT 
MNOTE 

MEND must be last statement of 
a macro definition 

ENTRY 

l WXTRN anywhere after macro defmitions 
EXT RN 
DSECT 

START after macro definitions 

CSECT after macro definitions 

EQU 
if there is a ST ART or CSECT EQUR 

DC statement, anywhere after it. If 

DS there is no START or CSECT, 

ORG any of these instructions can 

USING begin a nameless CSECT. 

DROP 

END must be last statement of an assembly 

Priority List for Assembler Instructions E-1 



Fr2 SC34-0074 



Appendix F. Summary of Constants 

Length 
Implied modifier Number of 
length range constants per Exponent Truncation/ Padding 

Type (bytes) (bytes) Specified by operand range Scale range padding side character 

c as Q) 1-256 characters one right blank 
s needed CD p 

x as 0 1-256 hexadecimal one left 0 
needed 0 digits 

B as 0 1-256 binary one left 0 
needed digits 

F 2 1-2 decimal several -85 to -187 left 0 
digits +75 to 

+346 

E 4 2-4 decimal several -85 to 0-14 right 0 
digits +75 

A 2 1-4 any several left 0 
expression 

v 2 2 relocatable several assembled 
symbol as X'OOOO' 

w 2 2 relocatable several assembled 
symbol as X'OOOO' 

H 1 1 decimal several -85 to left 0 
digits +75 

D 4 1-4 decimal several -85 to -187 to left 0 
digits +75 +346 

L 8 2-8 decimal several -85 to 0-14 right 0 
digits +75 

Q) In DS assembler instructions, C, S, P, and X type constants can have length specification to 65535. 

Q) In DS assembler instruction types C, S, P, X, and B, the implied length is 1 when a length modifier and a constant value 
are not specified. 

Summary of Constants F-1 



f-2 SC34-0074 



Expression 

May contain 

Operators are 

Range of 
values 

Maybe 
used in 

Appendix G. Macro Language Summary 

The 4 figures in this appendix summarize the macro language described in Chapter 6 
of this publication. 

Figure G-1 is a summary of the expressions that may be used in macro instruction 
statements. 

Figure G-2 indicates which macro language elements may be used in the name and 
operand entries of each statement. 

Figure G-3 is a summary of the attributes that may be used in each expression. 
Figure G4 is a summary of the variable symbols that may be used in each expression. 

Arithmetic expressions Character expressions Logical exp~essions 

1. Self-defining terms 1. Any combination of 1. SETB symbols 
2. Count and number attributes characters enclosed in 2. Arithmetic relations1 

3. SETA and SETB symbols apostrophes 3. Character relations2 

4. SETC symbols whose value 2. Any variable symbol 4. SETA expression4 

is 1-8 decimal digits enclosed in apostrophes 
5. Symbolic parameters if the 3. A concatenation of 

corresponding operand is variable symbols and 
a self-defining term other characters enclosed 

6. &SYSLIST (n) if the cor- in apostrophes 
responding operand is a 4. A request for a type 
self-defining term attribute 

7. &SYSLIST (n,m) if the 
corresponding operand 
is a self-defining term 

8. &SYSNDX 
9. &SYSPARM whose value is 

1-8 decimal digits 

+, -, *,and I concatenation, with a AND, OR, and NOT 
parentheses permitted period(.) parentheses permitted 

-23 1 to +23 1 -1 0 through 127 characters 0 (false) or 
1 (true) 

1. SETA operands 1. SETC operands3 1. SETB operands 
2. Arithmetic relations 2. Character relations2 2. AIF operands 
3. Subscripted SET symbols 3. SET A operands (if 
4. A subscript of &SYSLIST 1-8 decimal digits) 
s. Substring notation 
6. Sublist notations 
7. SETC operands 
8. ACTR operands 

1 An arithmetic relation consists of two arithmetic expressions related by the operator GT, LT, EQ, NE, GE, or LE. 
:;i A character relation consists of two character expressions related by the operator GT, LT, EQ, NE, GE, or LE. The 

type attribute notation and the substring notation may also be used in character relations. The maximum size of the 
character expressions that can be compared is 127. characters. If the two character expressions are of unequal size, 
then the smaller one will always compare less than the larger. 

3 Maximum of eight characters will be assigned. 
4. The expression must be a valid SET A expression which resolves to 0 or 1. 

Figure G-1. Expressions for conditional assembly 

Macro Language Summary G-1 



Variable Symbols 

Global SET Symbols Local SET Symbols System Variable Symbols 

Symbolic 
Statement Parameter SETA SETB SETC SETA SETB !::J"ETC &SYSNDX &SYSLIST &SYSPARM 

MACRO 

Prototype Name 
Statement Operand 

GBLA Operand 

GBLB Operand 

GBLC Operand 

LCLA Operand 

LCLB Operand 

LCLC Operand 

Model Name Name Name Name Name Name Name Name Name Name 
Statement Operation Operation Operation Operation Operation Operation Operation Operation Operation Operation 

Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand 

SETA Operand2 Name Operand 3 Operand7 Name Operand3 Operand7 Operand Operand2 Operand7 

Operand Operand 

SETB Operand4 Operand4 Name Operand4 Operand4 Name Operand4 Operand4 Operand4 Operand4 

Operand Operand 

SETC Operand Operands Operand6 Name Operands Operand6 Name Operand Operand Operand 
Operand Operand 

AIF Operand4 Operand4 Operand Operand4 Operand4 Operand Operand4 Operand4 Operand4 Operand4 

AGO 

ACTR Operand2 Operand Operand3 Operand2 Operand Operand3 Operand2 Operand Operand2 Operand2 

ANOP 

MEXIT 

MNOTE Operation Operand Operand Operation Operand Operand Operation Operand Operation Operation 

MEND 

Outer Name Name Name Name Name Name Name 
Macro Operand Operand Operand Operand Operand Operand Operand 

Inner Name Name Name Name Name Name Name Name Name Name 
Macro Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand 

Assembler Name Name Name Name Name Name Name 
Language Operation Operation Operation Operation Operation Operation Operation 
Statement Operand Operand Operand Operand Operand Operand Operand 

1 Variable symbols in macro instructions are replaced by their values before processing. 
2 Only if value is self-defining term. 
3 Converted to arithmetic +l or +O. 
4 Only in arithmetic or character relations. 
s Converted to unsigned ~umber. 
6 Converted to character 1 or 0. 
7 Only if one to eight decimal digits. 

Figure G-2. (Part 1 of 2). Macro language elements 

G-2 SC34-0074 



Attributes 

Sequence 
Statement Type Count Number symbol 

MACRO 

Prototype 
Statement 

GBLA 

GBLB 

GBLC 

LCLA 

LCLB 

LCLC 

Model Name 
Statement 

SETA Operand Operand 

SETB Operand1 Operand2 Operand2 

SETC Operand 

AIF Operand1 Operand2 Operand2 Name 
Operand 

AGO Name 
Operand 

ACTR Operand Operand 

ANOP Name 

MEXIT Name 

MNOTE Name 

MEND Name 

Outer Name 
Macro 

Inner Name 
Macro 

Assembler Name 
Language 
Statement 

l Only in character relations. 
2 Only in arithmetic relations. 

Figure G-2. (Part 2 of 2). Macro language elements 

Macro Language Summary G-3 



Attribute Notation May be used with: May be used in:* 

Type T' Symbolic parameters, 1. SETC operand fields 
&SYSLIST (n), and 2. Character relations 
&SYSLIST (n,m) 
inside macro 
definitions 

Count K' Symbolic parameters Arithmetic expressions 
corresponding to 
macro instruction 
operands, &SYSLIST, 
and &SYSLIST (n) 
inside macro 
definitions 

Number N' Symbolic parameters, Arithmetic expressions 
&SYSLIST, and 
&SYSLIST (n) inside 
macro definitions 

*Note. There are definite restrictions in the use of these attributes. Refer to Chapter 6. 

Figure G-3. Attributes of macro-instruction operands 

G-4 SC34-0074 



Variable Initialized, Value changed 
symbol Defined by: or set to: by: May be used in: 

Symbolic1 Prototype Corresponding (Constant 1. Arithmetic expressions 
parameter statement macro instruc- throughout if operand is self-

tion operand definition) defining term 
2. Character expressions 

SETA LCLA orGBLA 0 SETA 1. Arithmetic expressions 
instruction instruction 2. Character expressions 

SETB LCLB orGBLB 0 SETB 1. Arithmetic expressions 
instruction instruction 2. Character expressions 

3. Logical expressions 

SETC LCLCroGBLC Null character SETC 1. Arithmetic expressions 
instruction value instruction if value is self-

defining term 
2. Character expressions 

&SYSNDX1 The assembler Macro instruc- (Constant 1. Arithmetic expressions 
tion index throughout 2. Character expressions 

definition; 
unique for 
each macro 
instruction) 

&SYSLIST1 The assembler Not applicable Not applicable N' &SYSLIST in 
arithmetic expressions 

&SYSLIST (n)1 The assembler Corresponding (Constant 1. Arithmetic expressions 
&SYSLIST (n,m)1 macro instruc- throughout if operand is self-

tion operand definition) defining term 
2. Character expressions 

&SYSPARM1 You, in response Value specified (Constant 1. Arithmetic expressions 
to OPTIONS= in a job control throughout if value is 1-8 decimal 
prompt at the statement (null assembly) digits 
operator station character value 2. Character expressions 

if not specified) 

1 All may only be used in macro definitions. 

Figure G-4. Variable symbols 

Macro Language Summary G-5 



G-6 SC34-0074 



Appendix H. Assembler Instruction Summary 

Name field Mnemonic Operand field Notes 

[label] CSECT blank 

[label] DC [ dup] type [mods] {vfilue' } (value) (,opnd2] ... 

blank DROP 1-8 absolute register expressions, 2 
separated by commas 

[label) DS [dup] type [mods] [{'Value' } ] [ dZ] 
(value) opn ' ... 

label DSECT blank 

blank EJECT blank 

blank END relocatable expression OR blank 3 

blank ENTRY one·or more relocatable symbols 
(entry symbols), separated by 
commas 

symbol EQU expression 4 

symbol EQUR absolute expression 7 

blank EXT RN one or more relocatable symbols 
(external symbols), separated by 
commas 

blank ORG relocatable expression OR blank 

blank PRINT ON GEN DATA 
OFF NOGEN NODA TA 

blank SPACE decimal value from 1-255 OR 5 
blank 

[label) START self-defining term OR blank 6 

id char TITLE character string up to 100 
characters, enclosed in apostrophes 

blank USING addr, reg 1,2 

blank WXTRN one or more relocatable symbols 
(weak external symbols), 
separated by commas 

Assembler Instruction Summary H-1 



H-2 SC34-0074 

Notes. 

1. Code any absolute or relocatable expression for the addr operand. Usually, you code either a 
single relocatable symbol or a self-defining term. 

2. For a register operand, code any register expression that has a value of 0 through 7. 

3. If you choose to code the operand in this instruction, you usually code a single relocatable symbol 
or a location counter reference. 

4. Code any relocatable or absolute expression. Usually, you code a decimal or hexadecimal self
defining term, or a combination of a previously defined symbol and a self-defining term. 

5. If you choose to code the operand in this instruction, you must code a decimal self-defining term. 

6. If you choose to code the operand in this instruction, you usually code a hexadecumal self· 
defining term. 

7. Code any absolute expression that has a value of 0 through 7. 



Appendix J. Macro Language Instruction Summary 

Name field Mnemonic Operand field Notes 

(calling instruction) [label] macro name zero to 100 operands, separated 
by commas 

(prototype statement) [label] macro name zero to 100 symbolic parameters, 
separated by commas 

blank ACTR any valid SET A expression 1 

sequence symbol or blank AGO sequence symbol 

sequence symbol or blank AIF logical expression enclosed in 2 
parentheses, immediately followed 
by a sequence symbol with no 
intervening blanks 

sequence symbol ANOP blank 

blank GBLA one or more variable symbols to 
be used as SET symbols, separated 
by commas 

blank GBLB one or more variable symbols to be 
used as SET symbols, separated by 
commas 

blank GBLC one or more variable symbols to be 
used as SET symbols, separated by 
commas 

blank LCLA one or more variable symbols to be 
used as SET symbols, separated by 
commas 

blank LCLB one or more variable symbols to be 
used as SET symbols, separated by 
commas 

blank LCLC one or more variable symbols to be 
used as SET symbols, separated by 
commas 

blank MACRO blank 

[label] MEND blank 

[label] MEXIT blank 

[label] MNOTE message specification 

symbol SETA arithmetic expression 1 

symbol SETB one of 3 options 

symbol SETC one of 4 options 

Macro Language Instruetion Summary J-1 



J-2 SC34-0074 

Notes. 

1. Normally, you code this operand as a decimal self-defining term. 

2. Logical expressions contain combinations of variable symbols, logical and relational operators, 
and arithmetic and character expressions. Normally, you code this operand in the form: 

(variable-symbol relational-operator self-defining term) or 
( varia ble-sym bo 1 relational-opera tor 'character-string'). 



Appendix K. Reference Aid for Coding 1/0 Instructions 

Immediate device control block (IDCB) format 
0 7 8 15 

EA Command Device address 
EA+ 1 Data word/DCB address 

16 31 

Command field (Bits 0-7) 

I Channel I Read/Write I Function I Modifier I 
0 1 2 3 4 7 

Command descriptions 

Field format Meaning 

0 1 0 0 x x x x Write 

0 1 0 1 x x x x Write 

0 1 1 0 x x x x Control 

0 1 1 0 0 0 0 0 Prepare 

0 1 1 0 1 1 1 1 Device reset 

0 1 1 1 x xx x Start 

0 1 1 1 1 1 1 1 Start cycle steal status 

0 0 0 0 x x x x Read 

0 0 0 1 x xx x Read 

0 0 1 0 xx xx Read status 

0 0 1 0 0 0 0 0 Read ID 

1 1 1 1 0 0 0 0 Halt 1/0 

Reference Aid for Coding 1/0 Instructions K-1 



Device control block (DCB) format 
0 15 

Control word 

Device Parameter 1 

Device Parameter 2 

Device Parameter 3 

Device Parameter 4 

Device Parameter 5 

Count 

Data address 

Control word format 

K-2 SC34-0074 



IO instruction condition code settings (LSR bits 0, 1, 2) 

Value Meaning 

0 Device not attached 
1 Busy 
2 Busy after reset 
3 Command reject 
4 Intervention required 
5 Interface data check (parity) 
6 Controller busy 
7 Satisfactory 

Device interrupt condition code settings (LSR bits 0, 1, 2) 

Value Meaning 

0 Controller end 
1 Program-controlled interrupt (PCI) 
2 Exception 
3 Device end 
4 Attention 
5 Attention and PCI 
6 Attention and exception 
7 Attention and device end 

Interrupt status byte (ISB) (presented with device interrupt CC= 2 or 6) 

DPCISB 

Bit 0 
Bit 1 
Bits 2-7 

Cycle Steal /SB 

Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit 4 
Bit 5 
Bit 6 
Bit 7 

Device-dependent status available 
Delayed command reject 
Device-dependent 

Device-dependent status available 
Delayed command reject 
Record is incorrect length 
DCB specification check 
Storage data check 
Invalid storage address 
Protect check 
Interface data check 

Reference Aid for Coding 1/0 Instructions K-3 



K-4 SC34-0074 



&SYSLIST 6-19 
&SYSNDX 6-21 
&SYSPARM 6-22 

A-type address constant 5-26 
AB, add byte 4-20 
abcnt 4-4 
ABI, add byte immediate 4-20 
absolute expressions 2-13 
ACTR-assembly loop counter 6-58 
ACY, add carry indicator 4-21 
AD, add doubleword 4-21 
add instructions (see arithmetic instructions) 
addition, unsigned 3-6 
addr 4-4 
address argument, five-bit 3-13 
address argument, four-bit 3-11 
address arguments, instruction length 3-14 
address key register (AKR) 3-4 
addresses and addressing 1-5 
addr4 4-4 
addr5 4-4 
AGO-unconditional branch 6-57 
AIF-conditional branch 6-57 
AKR, address key register 3-4 
alphameric characters 2-6 
AND word immediate 4-96 
ANOP-assembly no operation 6-59 
arithmetic (SETA) expressions 6-50 
arithmetic instructions 4-20 

add byte (AB) 4-20 
add carry indicator (ACY) 4-21 
add doubleword (AD) 4-21 
add word (AW) 4-22 
add word immediate (AWi) 4-23 
add word with carry (AWCY) 4-24 
complement register (CMR) 4~32 
divide byte (DB) 4-30 
divide doubleword (DD) 4-30 
divide word (DW) 4-31 
multiply byte (MB) 4-28 
multiply doubleword (MD) 4-29 
multiply word (MW) 4-29 
subtract byte (SB) 4-24 
subtract carry indicator (SCY) 4-25 
subtract doubleword (SD) 4-25 
subtract word (SW) 4-26 
subtract word immediate (SWI) 4-27 
subtract word with carry (SWCY) 4-28 

arithmetic parentheses 2-1 7 
arithmetic value, SETA 6-44 
ASCII B-1 
ASCII character constant (S) 5-19 
assembler instruction summary H-1 

assembler instructions 5-1 
CSECT-control section 5-36 
DC-define constant 5-5 
DROP-drop base register 5-46 
DS instruction 5-28 
DSECT-dummy section 5-37 
EJECT-start new page 5-56 
END-end assembly 5-31 
ENTRY-identify entry point symbol 5-50 
EQU-equate symbol 5-3 
EQUR-equate register 5-4 
EXTRN-identify external symbol 5-51 
ORG-set location counter 5-53 
PRINT-print optional data 5-55 
SPACE-space listing 5-57 
START-start assembly 5-35 
TITLE-identify assembly output 5-56 
USING instruction format 5-44 
WXTRN-identify weak external symbol 5-52 

assembler language, definition of 1-3 
assembler instructions 1-3 
machine instructions 1-3 
macro instructions 1-3 

assembler language operand symbols 4-4 
abcnt 4-4 
addr 4-4 
addr4 4-4 
addr5 4-4 
bitdisp 4-5 
byte 4-5 
cnt16 4-5 
cnt31 4-5 
cond 4-5 
disp 4-5 
freg 4-5 
jaddr 4-5 
jdisp 4-6 
longaddr 4-6 
reg 4-6 
reg0 - 3 4-6 
reg1

-
3 4-6 

reg1 - 7 4-6 
ubyte 4-6 
vcon 4-6 
waddr 4-6 
wdisp 4-6 
word 4-6 

assembler language structure 2-6 
attribute references 2-11 
character set 2-6 
location counter reference 2-10 
machine instructions 2-6 
macro instructions 2-6 
restrictions on symbols 2-8 
self-defining terms 2-11 
source module 2-6 
special characters 2-6 

Index 

Index X-1 



assembler language structure (continued) 
symbol table 2-7 
symbols 2-7 
terms 2-6 

assembler program 1-3 
definition of 1-3 
diagram 1-4 

assembler program listing 7-3 
cross-reference 7-7 
diagnostics 7-8 
external symbol dictionary 7-3 
relocation dictionary 7-7 
source and object program 7-6 
statistics 7-8 

assembly language, conditional 6-35 
assembly loop counter, ACTR 6-58 
assembly no operation, ANOP 6-59 
attribute references 2-11 

binary self-defining term 2-11 
decimal self-defining term 2-11 
EBCDIC character self-defining term 2-12 
hexadecimal self-defining term 2-12 

AW, add word 4-22 
AWCY, add word with carry 4-24 
AWi, add word immediate 4-23 

B, branch 4-33 
BAL, branch and link 4-33 
BALS, branch and link short 4-34 
BALX, branch and link external 4-34 
base register, storage address 3-14 
base register, word displacement 3-10 
base register, word displacement short 3-9 
BC, branch on condition 4-40 
BCC, branch on condition code 4-40 
BCY, branch on carry 4-39 
BE, branch on equal 4-41 
BER, branch on error 4-42 
BEV, branch on even 4-42 
BGE, branch on arithmetically greater than or equal 4-43 
BGT, branch on arithmetically greater than 4-42 
binary constant (B) 5-21 
binary self-defining term 2-11 
binary subtract 3-6 
binary to decimal conversion A-2 
binary to hexadecimal conversion A-2 
binary value, SETB 6-46 
bitdisp 4-5 
BLE, branch on arithmetically less than or equal 4-44 
BLGE, branch on logically greater than or equal 4-45 
BLGT, branch on logically greater than 4-44 
BLLE, branch on logically less than or equal 4-46 
BLLT, branch on logically less than 4-45 
BLT, branch on arithmetically less than 4-43 
BMIX, branch if mixed 4-36 
BN, branch on negative 4-46 
BNC, branch on not condition 4-4 7 
BNCC, branch on not condition code 4-48 
BNCY, branch on no carry 4-47 
BNE, branch on not equal 4-49 
BNER, branch on not error 4-49 

X-2 SC34-0074 

BNEV, branch on not even 4-49 
BNMIX, branch if not mixed 4-36 
BNN, branch on not negative 4-50 
BNOFF, branch if not off 4-37 
BNON, branch if not on 4-37 
BNOV, branch on not overflow 4-50 
BNP, branch on not positive 4-51 
BNZ, branch on not zero 4-51 
BOFF, branch if off 4-38 
BON, branch if on 4-38 
boundaries, field 2-3 
BOV, branch on overflow 4-5 2 
BP, branch on positive 4-52 
branching 6-56 

ACTR-assembly loop counter 6-58 
AGO-unconditional branch 6-57 
Alf-conditional branch 6-57 
ANOP-assembly no operation 6-59 

branching instructions 4-33 
branch (B) 4-33 
branch and link (BAL) 4-33 
branch and link external (BALX) 4-34 
branch and link short (BALS) 4-34 
branch external (BX) 4-35 
brapch if mixed (BMIX) 4-36 
branch if not mixed (BNMIX) 4-36 
branch if not off (BNOFF) 4-37 
branch if not on (BNON) 4-37 
branch if off (BOFF) 4-38 
branch if on (BON) 4-38 
branch indexed short (BXS) 4-39 
branch on arithmetically greater than (BGT) 4-42 
branch on arithmetically greater than or equal 

(BGE) 4-43 
branch on arithmetically less than (BLT) 4-43 
branch on arithmetically less than or equal (BLE) 4-44 
branch on carry (BCY) 4-39 
branch on condition (BC) 4-40 
branch on condition code (BCC) 4-40 
branch on equal (BE) 4-41 
branch on error (BER) 4-42 
branch on even (BEV) 4-42 
branch on logically greater than (BLGT) 4-44 
branch on logically greater than or equal (BLGE) 4-45 
branch on logically less than (BLLT) 4-45 
branch on logically less than or equal (BLLE) 4-46 
branch on negative (BN) 4-46 
branch on no carry (BNCY) 4-4 7 
branch on not condition (BNC) 4-4 7 
branch on not condition code (BNCC) 4-48 
branch on not equal (BNE) 4-49 
branch on not error (BNER) 4-49 
branch on not even (BNEV) 4-49 
branch on not negative (BNN) 4-50 
branch on not overflow (BNOV) 4-50 
branch on not positive (BNP) 4-51 
branch on not zero (BNZ) 4-51 
branch on overflow (BOV) 4-52 
branch on positive (BP) 4-52 
branch on zero (BZ) 4-5 3 
no operation (NOP) 4-5 3 

BX, branch external 4-35 



BXS, branch indexed short 4-39 
byte 4-5 
BZ, branch on zero 4-53 

calling macro instruction 6-23 
keyword parameters 6-26 
name field 6-24 
operands 6-24 
operation field 6-24 
positional parameters 6-25 

carry indicator 3-8 
CB, compare byte 4-85 
CBI, compare byte immediate 4-90 
CD, compare doubleword 4-91 
CFED, compare byte field equal and decrement 4-85 
CFEN, compare byte field equal and increment 4-87 
CFNED, compare byte field not equal and decrement 4-88 
CFNEN, compare byte field not equal and increment 4-89 
character (SETC) expressions 6-51 
character set 2-6 
character strings 2-6 
character value, SETC 644 
class interrupts 3-17 
CMR, complement register 4-32 
cnt16 4-5 
cnt31 4-5 
coding aids 1-5 

addresses and addressing 1-5 
data representation 1-5 
linkage between source modules 1-6 
program listing 1-7 
register usage 1-5 
relocatability 1-5 
segmenting a program 1-6 
symbolic representation 1-5 

coding assembler language instructions 44 
coding conventions 2-3 

coding form (GX28-6509) 2-3 
comments statement format 2-4 
continuation lines 24 
field boundaries 2-3 

continuation indicator field 2-3 
identification and sequence field 2-3 
statement field 2-3 

instruction statement format 24 
fixed format 2-5 
free format 2-5 
name entry 2-5 
operand entry 2-5 
operation entry 2-5 
remarks entry 2-6 

coding form (GX28-6S09) 2-1 
coding notes 4-3 
comment statements 6-5 
comments statement format 24 
compare instructions 4-84 

compare byte (CB) 4-85 
compare byte field equal and decrement (CFED) 4-85 
compare byte field equal and increment (CFEN) 4-87 
compare byte field not equal and decrement 

(CFNED) 4-88 

compare instructions (continued) 
compare byte field not equal and increment 

(CFNEN) 4-89 
compare byte immediate (CBI) 4-90 
compare doubleword (CD) 4-91 
compare word (CW) 4-91 
compare word immediate (CWI) 4-92 
scan byte field equal and decrement (SFED) 4-92 
scan byte field equal and increment (SFEN) 4-93 
scan byte field not equal and decrement (SFNED) 4-94 
scan byte field not equal and increment (SFNEN) 4-95 

complex relocatable expressions 2-15 
concatenation 6-13 
cond 4-5 
conditional assembly language 6-35 

data attributes 6-37 
count attribute (K) 6-38 
number attribute (N) 6-38 
type attribute (T) 6-38 

sequence symbols 6-39 
SET symbols 6-35 

conditional branch, AIF 6-57 
constants, summary of F-1 
continuation indicator field 2-3 
continuation lines 24 
control sections 5-31 

CSECT-control section 5-36 
defining 5-35 
DSECT-dummy section 5-37 
first control section 5-33 
location counter setting 5-32 
START-start assembly 5-35 
types of 5-32 
unnamed control section 5-34 

conventions, coding 2-3 
coding form (GX28-6509) 2-3 
comments statement format 24 
continuation lines 24 
field boundaries 2-3 

continuation indicator field 2-3 
identification and sequence field 2-3 
statement field 2-3 

instruction statement format 24 
fixed format 2-5 
free format 2-5 
name entry 2-5 
operand entry 2-5 
operation entry 2-5 
remarks entry 2-6 

copy address key register (CPAKR) 4-111 
copy console data buffer (CPCON) 4-111 
copy current level (CPCL) 4-112 
copy floating level block (CPFLB) 4-130 
copy in-process flags (CPIPF) 4-112 
copy instruction space key (CPISK) 4-113 
copy interrupt mask register (CPIMR) 4-113 
copy level status block (CPLB) 4-114 
copy level status register (CPLSR) 4-109 
copy operandi key (CPOOK) (4955 processor only) 4-115 
copy operand2 key (CPOTK) (4955 processor only) 4-116 
copy processor status and reset (CPPSR) 4-116 
copy segmentation register (CPSR) (4955 processor 

only) 4-117 

Index X-3 



copy storage key (CPSK) (4955 processor only) 4-118 
CPA.KR, copy address key register 4-111 
CPCL, copy current level 4-112 
CPCON, copy console data buffer 4-111 
CPFLB, copy floating level block 4-130 
CPIMR, copy interrupt mask register 4-113 
CPIPF, copy in-process flags 4-112 
CPISK, copy instruction space key 4-113 
CPLB, copy level status block 4-114 
CPLSR, copy level status register 4-109 
CPOOK (4955 processor only), copy operandl key 4-115 
CPOTK (4955 processor only), copy operand2 key 4-116 
CPPSR, copy processor status and reset 4-116 
CPSK (4955 processor only), copy storage key 4-118 
CPSR (4955 processor only), copy segmentation 
register 4-11 7 

creating macros 6-4 
cross-reference listing, sample 7-5 
CSECT-control section 5-36 
CW, compare word 4-91 
CWI, compare word immediate 4-92 

data movement instructions 4-7 
add byte immediate (ABI) 4-20 
fill byte field and decrement (FFD) 4-7 
interchange registers (IR) 4-9 
move address (MV A) 4-10 
move byte (MVB) 4-10 
move byte and zero (MVBZ) 4-11 
move byte field and decrement (MVFD) 4-12 
move byte field and increment (MVFN) 4-13 
move byte immediate (MVBI) 4-14 
move doubleword (MVD) 4-15 
move doubleword and zero (MVDZ) 4-16 
move word (MVW) 4-16 
move word and zero (MVWZ) 4-17 
move word immediate (MVWI) 4-17 
move word short (MVWS) 4-18 

data representation 1-5 
data stacks 3-20 
DB, divide byte 4-30 
DC-define constant 5-5 
DC operand rules 5-6 
DC operand subfield 5-8 

duplication factor 5-8 
exponent modidifer 5-15 
length modifier 5-10 
modifiers 5-10 
nominal value 5-17 
scale modifier 5-11 
type 5-9 

DD, divide doubleword 4-30 
decimal self-defining term 2-11 
decimal to binary conversion A-1 
decimal to hexadecimal conversion A-6 
defining data 5-5 

A-type address constant 5-26 
ASCII character constant (S) 5-19 
binary constant (B) 5-21 
DC-define constant 5-5 
DS instruction 5-28 
EBCDIC character constant (C) 5-18 

X-4 SC34-0074 

defining data (continued) 
exponent modifier 5-15 
fixed-point constant (D) 5-23 
fixed-point constant (F) 5-22 
fixed-point constant (H) 5-23 
floating-point constant (E) 5-24 
floating-point constant (L) 5-25 
hexadecimal constant (X) 5-21 
padding constants 5-7 
PTTC/EBCD character constant (P) 5-20 
truncating constants 5-7 
V-type address constant 5-27 
W-type address constant 5-28 

device control block (DCB) format K-2 
device mask 3-16 
DIAG, diagnose 4-118 
diagnostics listing, sample 7-5 
DIS, disable 4-119 
disp 4-5 
divide instructions (see arithmetic instructions) 
DROP-drop base register 5-46 
DS instruction 5-28 
DSECT-dummy section 5-37 
dummy sections 1-6 
DW, divide word 4-31 

EBCDIC character constant (C) 5-18 
EBCDIC character self-defining term 2-12 
effective address generation 3-9 

base register, storage address 3-14 
base register, word displacement short 3-9 
base register word displacement 3-1 O 
five-bit address argument 3-13 
four-bit address argument 3-11 

EJECT-start new page 5-56 
EN, enable 4-120 
END-end assembly 5-31 
ENTRY-identify entry point symbol 5-50 
EQU-equate symbol 2-7, 5-3 
EQUR-equate register 2-7, 5-4 
error, location counter 2-10 
establishing addressability 5-38 
evaluation of expressions 2-16 
exclusive OR byte (XB) 4-96 
exclusive OR doubleword (XD) 4-97 
exclusive OR word (:XW) 4-98 
exclusive OR word immediate (XWI) 4-98 
exponent modifier 5-15 
expressions 2-12 

absolute expressions 2-13 
sample code 2-14 

complex relocatable expressions 2-15 
evaluation of 2-16 
example of 2-12 
parentheses in instruction operands 2-17 
relocatable 2-15 
rules for coding 2-16 

expressions, arithmetic (SETA) 6-50 
expressions, character (SETC) 6-51 
expressions, logical (SETB) 6-52 
external symbol dictionary 7-3 
external symbol dictionary entries 5-34 
EXTRN-identify external symbol 5-51 



FA, floating add 4-130 
FAD, floating add double 4-131 
FC, floating compare 4-132 
FCD, floating compare double 4-132 
FD, floating divide 4-133 
FDD, floating divide double 4-134 
FDIAG floating diagnose 4-133 
FFD, fill byte field and decrement 4-7 
FFN, fill byte field and increment 4-8 
field boundaries 2-3 
five-bit address argument 3-13 
fixed format 2-5 
fixed-point constant (D) 5-23 
fixed-point constant (F) 5-22 
fixed-point constant (H) 5-23 
fixed-point constants 5-12 
floating-point constant (E) 5-24 
floating-point constant (L) 5-25 
floating-point constants 4-14, 5-14 
floating-point instructions (4955 processor only) 4-128 

copy floating level block (CPFLB) 4-130 
floating add (FA) 4-130 
floating add double (FAD) 4-131 
floating compare (FC) 4-132 
floating compare double (FCD) 4-132 
floating diagnose (FDIAG) 4-133 
floating divide (FD) 4-133 
floating divide double (FDD) 4-134 
floating move (FMV) 4-134 
floating move and convert (FMVC) 4-136 
floating move and convert double (FMVCD) 4-137 
floating move double (FMVD) 4-135 
floating multiply (FM) 4-138 
floating multiply double (FMD) 4-138 
floating subtract (FS) 4-139 
floating subtract double (FSD) 4-140 
set floating level block (SEFLB) 4-140 

floating-point number representation 4-128 
double-precision 4-128 
single-precision 4-128 

floating-point registers 3-3 
FM, floating multiply 4-138 
FMD, floating multiply double 4-138 
FMV, floating move 4-134 
FMVC, floating move and convert 4-136 
FMVCD, floating move and convert double 4-137 
FMVD, floating move double 4-135 
form (GX28-6509), coding 2-3 
four-bit address argument 3-11 
free format 2-5 
freg 4-5 
FS, floating subtract 4-139 
FSD, floating subtract double 4-140 
functional characteristics 3-1 

indicators 3-6 
number representation 3-5 

GBLA, GBLB, and GBLC instructions 6-41 
general registers 3-3 
GX28-6509, coding form 2-3 

hardware adds or subtracts 3-6 
hexadecimal constant (X) 5-21 
hexadecimal self-defining term 2-12 
hexadecimal to decimal conversion A-6 

I/O instruction (IO) 4-121 
I/O status 3-15 
IAR, instruction address register 3-3 
identification and sequence field 2-3 
IIB, interrupt information byte 3-15 
IMR, interrupt mask register 3-4 
indicators 3-6 

carry 3-6 
other uses of 3-8 
overflow 3-6 

instruction address register (IAR) 3-3 
instruction length address arguments 3-14 
instruction statement format 2-4 
instructions, assembler 1-3, 2-6, 5-3 
instructions, machine 1-3, 2-6, 4-4 
instructions, macro 1-3, 2-6 
interchange operand keys (IOPK) (4955 processor 
only) 4-120 

interchange registers (IR) 4-9 
interrupt mask register (IMR) 3-4 
interrupt masking 3-16 

device mask 3-16 
interrupt mask register (IMR) 3-16 
summary mask 3-16 

interrupts, class 3-17 
invert register (VR) 4-99 
IO, operate I/O 4-121 
IOPK (4955 processor only) interchange operand 
keys 4-120 

IR, interchange registers 4-9 

J,jump 4-54 
jaddr 4-5 
JAL, jump and link 4-54 
JC, jump on condition 4-58 
JCT, jump on count 4-59 
JCY,jump on carry 4-58 
jdisp 4-6 
JE, jump on equal 4-60 
JEV, jump on even 4-60 
JGE, jump on greater than or equal 4-61 
JGT,jump on greater than 4-61 
JLE, jump on less than or equal 4-62 
JLGE, jump on logically greater than or equal 4-63 
JLGT, jump on logically greater than 4-63 
JLLE,jump on logically less than or equal 4-65 
JLLT,jump on logically less than 4-64 
JLT, jump on less than 4-62 
JMIX, jump if mixed 4-55 
JN,jump on negative 4-65 
JNC, jump on not condition 4-66 
JNCY, jump on no carry 4-66 
JNE, jump on not equal 4-67 
JNEV,jump on not even 4-67 
JNMIX, jump if not mixed 4-5 5 

Index X-5 



JNN, jump on not negative 4-68 
JNOFF, jump if not off 4-56 
JNON, jump if not on 4-56 
JNP, jump on not positive 4-68 
JNZ, jump on not zero 4-69 
JOFF,jump ifoff 4-57 
JON, jump if on 4-57 
JP, jump on positive 4-69 
jump instructions 4-54 

jump (J) 4-54 
jump and link (JAL) 4-54 
jump if mixed (JMIX) 4-55 
jump if not mixed (JNMIX) 4-55 
jump if not off (JNOFF) 4-56 
jump if not on (JNON) 4-56 
jump if off (JOFF) 4-57 
jump if on (JON) 4-57 
jump on carry (JCY) 4-58 
jump on condition (JC) 4-58 
jump on count (JCT) 4-59 
jump on equal (JE) 4-60 
jump on even (JEV) 4-60 
jump on greater than (JGT) 4-61 
jump on greater than or equal (JGE) 4-61 
jump on less than (JLT) 4-62 
jump on less than or equal (JLE) 4-62 
jump on logically greater than (JLGT) 4-63 
jump on logically greater than or equal (JLGE) 4-63 
jump on logically less than (JLLT) 4-64 
jump on logically less than or equal (JLLE) 4-65 
jump on negative (JN) 4-65 
jump on no carry (JNCY) 4-66 
jump on not condition (JNC) 4-66 
jump on not equal (JNE) 4-67 
jump on not even (JNEV) 4-67 
jump on not negative (JNN) 4-68 
jump on not positive (JNP) 4-68 
jump on not zero (JNZ) 4-69 
jump on positive (JP) 4-69 
jump on zero (JZ) 4-70 

JZ,jump on zero 4-70 

language, assembler 1-3 
LCLA, LCLB, and LCLC instructions 6-40 
length modifier 5-10 
level exit (LEX) 4-121 
level status register (LSR) 3-4 
level switching, program-controlled 3-18 
LEX, level exit 4-121 
linkage between source modules 1-6 
linkage stacking 3-20 
LMB, load multiple and branch 4-80 
location counter error 2-10 
location counter reference 2-7, 2-10 
location counter set, ORG 5-53 
logical (SETB) expressions 6-52 
logical instructions 4-96 

AND word immediate (NWI) 4-96 
exclusive OR byte (XB) 4-96 
exclusive OR doubleword (XD) 4-97 
exclusive OR word (XW) 4-98 

X-6 SC34-0074 

logical instructions (continued) 
exclusive or word immediate (XWI) 4-98 
invert register (VR) 4-99 
OR byte, (OB) 4-100 
OR doubleword (OD) 4-100 
OR word (OW) 4-101 
OR word immediate (OWi) 4-102 
reset bits byte (RBTB) 4-102 
reset bits doubleword (RBTD) 4-103 
reset bits word (RB1W) 4-104 
reset bits word immediate (RBTWI) 4-104 
test bit (TBT) 4-105 
test bit and invert (TBTV) 4-106 
test bit and reset (TBTR) 4-106 
test bit and set (TBTS) 4-107 
test word immediate (TWI) 4-108 

longaddr 4-6 
LSR, level status register 3-4 

machine instructions 1-3, 2-6, 4-4 
macro instructions 1-3, 2-6 
macro language 6-1 

&SYSLIST 6-19 
&SYSNDX 6-21 
&SYSPARM 6-22 
calling macro instruction 6-23 
comment statements 6-5 
concatenation 6-13 
creating macros 6-4 
MEXIT instruction 6-18 
MNOTE instruction 6-16 
model statements 6-5, 6-12 
processing statements 6-19 
symbolic parameters 6-8 
system variable symbols 6-19 

macro language instruction summary J-1 
marco language summary G-1 
mask, device 3-16 
mask, summary 3-16 
masking, interrupt 3-16 
MB, multiply byte 4-28 
MD, multiply doubleword 4-29 
MEXIT instruction 6-18 
MNOTE instruction 6-16 
model statements 6-5, 6-12 
modules, processor 3-3 
move instructions, (see data movement instructions) 
multiply instructions (see arithmetic instructions) 
MVA, move address 4-10 
MVB, move byte 4-10 
MVBI, move byte immediate 4-14 
MVBZ, move byte and zero 4-11 
MVD, move doubleword 4-15 
MVDZ, move doubleword and zero 4-16 
MVFD, move byte field and decrement 4-12 
MVFN, move byte field and increment 4-13 
MVW, move word 4-16 
MVWI, move word immediate 4-17 
MVWS, move word short 4-18 
MVWZ, move word and zero 4-1 7 
MW, multiply word 4-29 



name entry rules 2-5 
no operation (NOP) 4-5 3 
NOP, no operation 4-5 3 
number representation 3-5 

signed number 3-5 
unsigned number 3-5 

NWI, AND word immediate 4-96 

OB, OR byte 4-100 
OD, OR doubleword 4-100 
operand entry rules 2-5 
operands, parentheses in 2-17 
operate 1/0 (IO) 4-121 
operation entry rules 2-5 
ordinary symbols 2-7 
ORG-set location counter 5-53 
overflow indicator 3-8 
OW, OR word 4-101 
OWi, OR word immediate 4-102 

padding constants 5-7 
examples of 5-7 

parentheses, arithmetic 2-1 7 
parentheses, syntactic 2-1 7 
parentheses in instruction operands 2-17 
PB, pop byte 4-80 
PD, pop doubleword 4-81 
perforated tape transmission code/extended binary coded 

decimal (PITC/EBCD) C-1 
pop/push instructions 4-80 

pop byte (PB) 4-80 
pop doubleword (PD) 4-81 
pop word (PW) 4-8 2 
push byte (PSB) 4-82 
push doubleword (PSD) 4-83 
push word (PSW) 4-8 3 

predefined register symbols 2-8 
previously defined symbols 2-9 
PRINT-print optional data 5-55 
priority interrupt structure 3-15 
priority list for assembler instructions E-1 
privileged instructions 4-111 

copy address key register (CPAKR) 4-111 
copy console data buff er (CPCON) 4-111 
copy current level (CPCL) 4-112 
copy in-process flags (CPIPF) 4-112 
copy instruction space key (CPISK) 4-113 
copy interrupt mask register (CPIMR) 4-113 
copy level status block (CPLB) 4-114 
copy operandl key (CPOOK) (4955 processor only) 4-115 
copy operand2 key (CPOTK) (4955 processor only) 4-116 
copy processor status and reset (CPPSR) 4-116 
copy segmentation register (CPSR) (4955 processor 

only) 4-117 
copy storage key (CPSK) (4955 processor only) 4-118 
diagnose (DIAG) 4-118 
disable (DIS) 4-119 
enable (EN) 4-120 
interchange operand keys (IOPK) (4955 processor 

only) 4-120 

privileged instructions (continued) 
level exit (LEX) 4-121 
operate 1/0 (10) 4-121 
set address key register (SEAKR) (4955 processor 

only) 4-122 
set console data lights (SECON) 4-122 
set instruction space key (SEISK) (4955 processor 

only) 4-123 
set interrupt mask register (SEIMR) 4-123 
set level status block (SELB) 4-124 
set operandl key (SEOOK) 4-125 
set operand2 key (SEOTK) (4955 processor call) 4-126 
set segmentation register (SESR) (4955 processor 

call) 4-126 
set storage key (SESK) 4-127 

processing statements 6-5, 6-16 
processor, 4953 3-3 
processor, 4955 3-3 
processor modules 3-3 
processor status instructions 4-109 

copy level status register (CPLSR) 4-109 
set indicators (SEIND) 4-109 
stop (STOP) 4-110 
supervisor call (SVC) 4-110 

processor status word (PSW) 3-5 
program, assembler 1-3 

definition of 1-3 
diagram 1-4 

program check 3-1 7 
program-controlled level switching 3-18 
program listing 1-7 
program sectioning 5-30 

control sections 5-31 
CSECT-control section 5-36 
DSECT-dummy section 5-37 
END-end assembly 5-31 
source module 5-30 
ST ART-start assembly 5-35 

PSB, push byte 4-82 
PSD, push doubleword 4-83 
pseudobinary PTTC/EBCD conversion D-1 
PSW, processor status word 3-5 
PSW, push word 4-83 
PTTC/EBCD character constant (P) 5-20 
PW, pop word 4-82 

RBTB, reset bits byte 4-102 
RBTD, reset bits doubleword 4-103 
RBTW, reset bits word 4-104 
RBTWI, reset bits word immediate 4-104 
record formats 7-9 

end (END) record 7-12 
external symbol dictionary (ESD) 7-9 
relocation list dictionary (RLD) 7-11 
text (TXT) record 7-10 

reference aid for coding 1/0 instructions K-1 
reg 4-6 
register, predefined symbols 2-8 
register usage 1-S 
registers 3-3 

address key register (AKR) 3-4 
floating-point registers 3-3 

Index X-7 



registers (continued) 
general registers 3-3 
instruction address register (JAR) 3-3 
interrupt mask register (IMR) 3-4 
level status register (LSR) 3-4 
processor status word (PSW) 3-5 

reg0 - 3 4-6 
reg 1- 3 4-6 
reg1 - 7 4-6 
reloca ta bility 1-5 
relocatable expressions 2-15 
relocation dictionary 7-7 
remarks entry 2-6 
reset bits byte (RBTB) 4-102 
reset bits doubleword (RBTD) 4-103 
reset bits word (RBTW) 4-104 
reset bits word immediate (RBTWI) 4-104 
restrictions on symbols 2-8 

predefined register symbols 2-8 
previously defined symbols 2-9 
sample code 2-14 
unique definition 2-8 

rules for coding expressions 2-16 

SB, subtract byte 4-24 
scale modifier 5-11 

fixed-point constants 5-12 
floating-point constants 5-14 

scan byte field equal and increment (SFEN) 4-93 
scan byte field not equal and decrement (SFNED) 4-94 
scan byte field not equal and increment (SFNEN) 4-95 
SCY, subtract carry indicator 4-25 
SD, subtract doubleword 4-25 
SEAKR (4955 processor only), set address key 
register 4-122 

SECON, set console data lights 4-122 
SEFLB, set floating level block 4-140 
segmenting a program 1-6 
SEIMR, set interrupt mask register 4-123 
SEIND, set indicators 4-109 
SEISK (4955 processor only), set instruction space 
key 4-123 

SELB, set level status block 4-124 
self-defining terms 2-11 
SEOOK, set operandi key 4-125 
SEOTK (4955 processor only), set operand2 key 4-126 
sequence symbols 2-7 
SESK, set storage key 4-127 
SESR (4955 processor only), set segmentation 
register 4-126 

set address key register (SEAKR) (4955 processor 
only) 4-122 

set console data lights (SECON) 4-122 
set floating level block (SEFLB) 4-140 
set indicators (SEIND) 4-109 
set instruction space key (SEISK) (4955 processor 
only) 4-123 

set interrupt mask register (SEIMR) 4-123 
set level status block (SELB) 4-124 
set operand! key (SEOOK) 4-125 
set operand2 key (SEOTK) (4955 processor only) 4-126 

X-8 SC34-007 4 

set segmentation register (SESR) (4955 processor 
only) 4-126 

set storage key (SESK) 4-127 
SETA-assign arithmetic value 6-44 
SETB-assign binary value 6-46 
SETC-assign character value 6-44 
SFED, scan byte field equal and decrement 4-92 
SFEN, scan byte field equal and increment 4-93 
SFNED, scan byte field not equal and decrement 4-94 
SFNEN, scan byte field not equal and increment 4-95 
shift instructions 4-71 

shift left and test (SLT) 4-74 
shift left and test double (SLTD) 4-75 
shift left circular (SLC) 4-71 
shift left circular double (SLCD) 4-72 
shift left logical (SLL) 4-72 
shift left logical double (SLLD) 4-73 
shift right arithmetic (SRA) 4-76 
shift right arithmetic double (SRAD) 4-76 
shift right logical (SRL) 4-77 
shift right logical double (SRLD) 4-78 

signed number 3-5 
SLC, shift left circular 4-71 
SLCD, shift left circular double 4-72 
SLL, shift left logical 4-72 
SLLD, shift left logical double 4-73 
SLT, shift left and test 4-74 
SLTD, shift left and test double 4-75 
source module 2-6, 5-30 
SPACE-space listing 5-57 
special characters 2-6 
SRA, shift right arithmetic 4-76 
SRAD, shift right arithmetic double 4-76 
SRL, shift right logical 4-77 
SRLD, shift right logical double 4-78 
stack instructions 4-79 

load mu_ltiple and branch (LMB) 4-80 
pop byte (PB) 4-80 
pop doubleword (PD) 4-81 
pop word (PW) 4-82 
push byte (PSB) 4-82 
push doubleword (PSD) 4-83 
push word (PSW) 4-83 
store multiple (STM) 4-79 

stack operations 3-20 
data stacks 3-20 
linkage stacking 3-20 

START-start assembly 5-35 
statement field 2-3 
statistics listing, sample 7-5 
STM, store multiple 4-79 
stop (STOP) 4-110 
storage addressing, rules for 3-8 
store multiple (STM) 4-79 
structure, assembler-language 2-6 

alphameric characters 2-6 
assembler instructions 2-6 
attribute references 2-11 
character set 2-6 
location counter reference 2-10 
machine instructions 2-6 
macro instructions 2-6 



structure, assembler-language (continued) 
self-defining terms 2-11 
source module 2-6 
special characters 2-6 
symbols 2-7 
symbols table 2-7 
terms 2-6 

subtract, binary 3-6 
subtract instructions (see arithmetic instructions) 
subtraction, unsigned 3-6 
summary mask 3-16 
summary of constants F-1 
supervisor call (SVC) 3-19, 4-110 
supervisor state 3-19 
SVC, supervisor call 3-19, 4-110 
SW, subtract word 4-26 
SWCY, subtract word with carry 4-28 
SWI, subtract word immediate 4-27 
symbol cross-reference table 2-7 
symbol definition sample 2-9 
symbol table 2-7 
symbolic addressing 5-38 

establishing addressability 5-38 
· DROP-drop base register 5-46 

USING-use base address register 5-40 
symbolic linkage 5-4 7 

ENTRY-identify entry point symbol 5-50 
EXTRN-identify external symbol 5-51 
WXTRN-identify weak external symbol 5-52 

symbolic parameter attributes 2-7 
symbolic parameters 6-8 
symbolic representation 5-3 
symbols 2-7 

predefined register 2-8 
previously defined 2-9 
restrictions on symbols 2-8 

symbols, system variable 6-19 
syntactic parentheses 2-1 7 
system variable symbols 6-19 

&SYSLIST 6-19 
&SYSNDX 6-21 
&SYSPARM 6-22 

TBT, test bit 4-105 
TBTR, test bit and reset 4-106 
TBTS, test bit and set 4-107 
TBTV, test bit and invert 4-106 
terms 2-6 
test instructions (see logical instructions) 
TITLE-identify assembly output 5-56 
trace 3-17 
truncating constants 5-7 

examples of 5-8 
TWI, test word immediate 4-108 

ubyte 4-6 
unconditional branch, AGO 6-57 
unsigned addition 3-6 
unsigned number 3-5 
unsigned subtraction 3-6 

USING-use base address register 540 
USING instruction format 544 

V-type address constant 5-27 
variable symbols 2-7 
vcon 4-6 
VR, invert register 4-99 

W-type address constant 5-28 
waddr 4-6 
wdisp 4-6 
word 4-6 
word displacement, base register 3-10 
word displacement short, base register 3-9 
WXTRN-identify weak external symbol 5-52 

XB, exclusive OR byte 4-96 
XD, exclusive OR doubleword 4-97 
XW, exclusive OR word 4-98 
XWI, exclusive OR word immediate 4-98 

4953 processor 3-3 
4955 processor 3-3 

Index X-9 



X-10 SC34-007 4 



Series/ 1 Base Program Preparation Facilities 
Macro Assembler Programmer's Guide 

SC34-007 4-0 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such requests, please contact your 
IBM representative or the IBM Branch Office serJJing your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Index Figures Examples Legibility 

What is your occupation? 

Number of latest Technical Newsletter (if any) concerning this publication: 

Please indicate your name and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, 
an IBM office or representative will be happy to forward your comments.) 

READER'S 
COMMENT 
FORM 



SC34-0074-0 

Your comments, please . . . 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

Fold Fold 

Fold 

Tirn~ 
® 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

IBM Corporation 
Systems Publications, Dept 27T 
P.O. Box 1328 
Boca Raton, Florida 33432 

International Business Machines Corporation 

General Systems Division 
55750 Glenridge Drive N.E. 
P.O. Box 2150 
Atlanta, Georgia 30301 
(U.S.A. only) 

First Class 
Permit 40 
Armonk 
New York 

Fold 



--..- ------- - ---- _.. --- -.. ---- - - ------ ---~-·-® 

International Business Machines Corporation 

General Systems Division 
55750 Glenridge Drive N. E. 
P.O. Box 2150 
Atlanta, Georgia 30301 
(U.S.A. only) 

SC34-007 4-0 

CJ 
Q) 

~ 
"C 

0 
(C 

Cl 
3 
~ 
CD 
"C 
~ 
Q) 

!::!. 
0 
:J 

"Tl 
Q) 

Q; 
;::;: 
(D' 
(II 

"C 

0 
~ 
Q) 

3 
3 
~ 
(II. 

G) 
c: 
0.: 
CD 

(I) 
(") 
w 
~ 

6 
0 
....i 
~ 
6 


	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-001
	4-002
	4-003
	4-004
	4-005
	4-006
	4-007
	4-008
	4-009
	4-010
	4-011
	4-012
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-066
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	4-075
	4-076
	4-077
	4-078
	4-079
	4-080
	4-081
	4-082
	4-083
	4-084
	4-085
	4-086
	4-087
	4-088
	4-089
	4-090
	4-091
	4-092
	4-093
	4-094
	4-095
	4-096
	4-097
	4-098
	4-099
	4-100
	4-101
	4-102
	4-103
	4-104
	4-105
	4-106
	4-107
	4-108
	4-109
	4-110
	4-111
	4-112
	4-113
	4-114
	4-115
	4-116
	4-117
	4-118
	4-119
	4-120
	4-121
	4-122
	4-123
	4-124
	4-125
	4-126
	4-127
	4-128
	4-129
	4-130
	4-131
	4-132
	4-133
	4-134
	4-135
	4-136
	4-137
	4-138
	4-139
	4-140
	4-141
	4-142
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	F-01
	F-02
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	H-01
	H-02
	J-0
	J-02
	K-01
	K-02
	K-03
	K-04
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	replyA
	replyB
	xBack



