
--- ------ ----- ---- - ---- - -----------_ .-

GC34-0102-0

51-20

IBM Series/1

PROGRAM
PRODUCT

Realtime Programming System

Introduction and Planning Guide

Program Number 5719-PC1
0 ~ : cg

II
111

0 ({])

([OlTl 1*.
11

~rr fJ

~~ ~ .i- 0 []) 0 [])

1111111111111111111 ~
0 [(]I

I... 11

[II

10

Z)~

Series/ 1

..............

V

--- ------ - ---- ---- - ---- - - ----------_.-

c

GC34-0102-0

S1-20

IBM Series/1

PROGRAM
PRODUCT

Realtime Programming System

Introduction and Planning Guide

Program Number 5719-PC1

Series/1

This publication is for planning purposes only. The information herein is subject to change before
the products described become available.

First Edition (February 1977)

This manual applies to the IBM Series/l Realtime Programming System, Program Number 5719-PCl.

Significant changes or additions to the contents of this publication will be reported in subsequent
revisions or Technical Newsletters. Requests for copies of IBM publications should be made to your
IBM representative or the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been removed,
send your comments to IBM Corporation, Systems Publications, Department 27T, P.O. Box 1328, Boca
Raton, Florida 33432. Comments become the property of IBM.

©Copyright International Business Machines Corporation 1977

ii GC34-0102

o

c

c

Preface v
How this Book is Organized v
Related Publications v

Programming Publications v
Hardware Publications vi

Chapter 1. The Total System 1-1
The Operating System 1-1

Hardware Requirements and Options 1-1
Partitions, Task Sets, and Tasks 1-2
Operator Interaction 1-3
Input/Output 1-3

Communications 1-4
Utilities 1-4
Program Preparation 1-4
How Programs Flow through the Total System 1-5

Chapter 2. The Operating System: Supervisor Services 2-1
Processor Storage 2-1
Partitions 2-1

Free Primary Storage 2-2
Task Sets 2-2

Creating a Task Set 2-3
Format of a Task Set (in processor storage) 2-6
Reusable Task Sets 2-7
Task Set Execution 2-7
Rollou t/Rollin 2-7
Task Set Termination 2-9

Tasks 2-9
Task Priorities 2-10
Terminating Tasks 2-10

Programs 2-11
Problem Programs 2-11
Supervisor Programs 2-12
Parameter Lists 2-12

Events 2-12
Queues 2-13

Storage Queues 2-14
Disk Queues 2-14

Timers 2-15
Logical Timers 2-15
Time-of-Day and Date Services 2-16

Serially Reusable Resources 2-16
Interrupts 2-16
Errors 2-17

System Reload and Restart 2-18
System Termination 2-18

Related Publication 2-19

Chapter 3. The Operating System: Data Management 3-1
Data Set Management 3-1

Data Set Organizations 3-1
Levels of Access 3-2
Access Methods 3-2

Device Management 3-3
Data-Processing I/O 3-3
Sensor-Based I/O 3-3
Timer I/O 3-3

Related Publication 3-3

Contents

Chapter 4. The Operating System: Communications 4-1
Configuration of a Communications System 4-2
Opening and Closing Communications Data Sets 4-2
Processing Communications I/O Requests 4-2

Communications I/O Operations 4-2
Online Terminal Tests 4-3
Related Publication 4-4

Chapter 5. The Operating System: Utilities 5-1
Stand-Alone Utilities 5-1
System Utilities 5-2
Related Publication 5-5

Chapter 6. Program Preparation 6-1
The Job Stream Processor 6-1
The Text Editor 6-1
The Macro Assembler
The Application Builder
FORTRAN 6-3

6-1
6-2

Mathematical and Functional Subroutine Library (MFSL)
PL/I 6-3
Related Publications 6-4

Appendix A. Summary of System Functions A-I

Appendix B. Glossary 8-1

Appendix C. Debugging Aids C-l

Appendix D. System-Generation Options D-l

Index X-I

6-3

Contents iii

o

iv GC34-0 1 02

c

(

c

Preface

The purpose of this book is to give you an introduction to the software that is
available for the Series/1 and, specifically, to introduce you to the features of
the Realtime Programming System. This book is also intended to give you the
information you need to plan your Series/1 software system. The reader of this
book is assumed to be an experienced programmer who is familiar with realtime
programming.

How this Book is Organized

Related Publications

Programming Publications

Chapter 1. The Total System. This chapter gives an overview of the Series/1
software offering. It briefly describes the program products and how they fit
together to form a total system.

Chapter 2. The Operating System: Supervisor Services. This chapter describes
the supervisor services-the part of the operating system that helps you
organize your programs into an efficient, smooth-running application.

Chapter 3. The Operating System: Data Management. This chapter describes
the data-management services of the operating system, which handle the data
sets and devices used by your application.

Chapter 4. The Operating System: Communications. This chapter discusses the
part of the operating system that directs the transfer of data between your
programs and remote stations.

Chapter 5. The Operating System: Utilities. This chapter lists the stand-alone
and system utilities-a part of the operating system with which you can easily
and efficiently manage data and maintain your system.

Chapter 6. Program Preparation. This chapter describes the
program-preparation facilities and high-level languages with which you code and
prepare the application programs to be run under the operating system.

Appendixes. The Appendixes give (1) a matrix of system functions and the
ways of using them, (2) a glossary of terms, (3) a list of debugging aids, and
(4) a list of the options available during system generation.

These publications, when available, will give more detailed information about
the topics mentioned in this book:

.. IBM Series/l Realtime Programming System: Macro User's
Guide-Supervisor

• IBM Series/l Realtime Programming System: Macro User's Guide-Data
Management

• IBM Series/l Realtime Programming System: Macro User's
Guide-Communications

• IBM Series/l Realtime Programming System: Operator Commands and
Utilities

Preface v

Hardware Publications

vi GC34-0102

• IBM Series/l Realtime Programming System: Generation and Installation
Procedures

• IBM Series/l Realtime Programming System: Macro Reference
• IBM Series/l Realtime P;-ogramming System: Messages and Codes
• IBM Series/l Realtime Programming System: Control Blocks and

Debugging Guide
• IBM Series/l Program Preparation Subsystem: Introduction, GC34-0121 *
• IBM Series/l Program Preparation Subsystem: Batch User's Guide
• IBM Series/l Program Preparation Subsystem: Text Editor User's Guide
• IBM Series/l Program Preparation Subsystem: Macro Assembler User's

Guide, SC34-0124*
• IBM Series/l Program Preparation Subsystem: Macro Assembler Reference

Summary
• IBM Series/l Program Preparation Subsystem: Application Builder User's

Guide
• IBM Series/l Program Preparation Subsystem: Messages and Codes
• IBM Series/l FORTRAN IV: Introduction, GC34-0132*
• IBM Series/l FORTRAN IV: Language Reference, GC34-0133*
• IBM Series/l FORTRAN IV: User's Guide
• IBM Series/l FORTRAN IV: Language Reference Card
• IBM Series/l Mathematical and Functional Subroutine Library: Introduction,

GC34-0138*
• IBM Series/l Mathematical and Functional Subroutine Library:
• IBM Series/l PL/ I: Introduction, GC34-0084*
• IBM Series/l PL/ I: Language Reference Manual
• IBM Series/l PL/ I: User's Guide
• IBM Series/l PL/ I: Messages
• IBM Series/l PL/ I: Installation Guide
*These publications are available now.

The following hardware publications are all available now:

User's Guide

• IBM Series/l Model 5 4955 Processor and Processor Features Description,
GA34-0021

• IBM Series/l Model 3 4953 Processor and Processor Features Description,
GA34-0022

• IBM Series/l 4962 Disk Storage Unit Description and 4964 Diskette Unit
Description, GA34-0024

• IBM Series/l 4973 Printer Description, GA34-0044
• IBM Series/l 4974 Printer Description, GA34-0025
• IBM Series/l 4979 Display Station Description, GA34-0026
• IBM Series/l System Summary, GA34-0035-1

i ,

c

(

c

The Operating System

Chapter 1. The Total System

The total software system for the Series/1 is made up of these program products:

• The IBM Series/1 Realtime Programming System (also referred to as the
operating system), which comprises supervisor services, data management,
communications, and utilities

• The IBM Series/1 Program Preparation Subsystem, which comprises the tools
needed to prepare the programs that run under the operating system

• IBM Series/1 FORTRAN IV
• The IBM Series/l Mathematical and Functional Subroutine Library
• IBM Series/1 PL/I

The operating system is the basic control program upon which applications are
built. It is flexible and is suitable for a wide variety of applications. The
operating system controls and manages system resources-processor storage and
devices. It is a multiprogramming, multitasking, event-driven, disk-based system
that is the environment for both realtime and batch applications:

• Multiprogramming - Processor storage is divided into multiple fixed
partitions; programs execute in partitions based on their priority. Programs in
two or more partitions are processed concurrently.

• Multitasking - The operating system allows multiple concurrent task
operations in the same partitions with synchronization and communication
between them. In addition, single reenterable programs can be used by more
than one task.

• Event-driven - Programs are queued for execution in partitions based on
these types of events:

External (process interrupt)
Time of day
Time interval, either single or repetitive
Operator request
Program request

• Disk-based-The system program library and transients must reside on disk.
Your program libraries and application program overlays can reside on disk or
diskettes.
This chapter discusses the overall function of the operating system-its

individual features are discussed in more detail in Chapters 2, 3, 4, and 5.

Hardware Requirements and Options
The minimum hardware reqUIred to install the operating system is:

• Processor-IBM 4953 Processor or IBM 4955 Processor, with at least 48KB
of processor storage. If you use the Series/1 PL/I compiler with the
operating system, your processor must have at least 64KB of processor
storage.

• Operator Station-either:
An IBM 4979 Display Station
A teletypewriter or other device that is compatible with the Teletypewriter
Adapter Feature. If this type of operator station is chosen, the processor
must be equipped with the Teletypewriter Adapter Feature (#7850).

The Total System 1 - 1

• IPL devices--one IBM 4962 Model I or IF Disk Storage Unit and IBM 4964
Diskette Unit OR one IBM 4962 Model 2 or 2F Disk Storage Unit
(combination disk/diskette unit).

• Hard-copy device--either: ("
The IBM 4973 Line Printer ,
The IBM 4974 Printer
The teletypewriter or other device that is compatible with the Teletypewri­
ter Adapter Feature. If this type of hard-copy device is chosen, the
processor must be equipped with the Teletypewriter Adapter Feature
(#7850).

Note. The operating system permits more than one of all the devices
mentioned in the preceding list, with the exception of the processor.

The optional hardware that is available for use with the operating system is:

• The IBM 4982 Sensor Input/Output Unit, which supports:
Analog input
Analog output

- Digital input
- Digital output

• Integrated Digital Input/Output Non-Isolated (#1560).
• Timers (#7840).
• Communications features for asynchronous (start-stop) and binary synchro­

nous communications:
Asynchronous Communications Single Line Control (# 161 0)
Binary Synchronous Communications Single Line Control (#2074)

- Binary Synchronous Communications Single Line Control-High Speed
(#2075}
Asynchronous Communications 8 Line Control (#2091)
Asynchronous Communications 4 Line Adapter (#2092)
Binary Synchronous Communications 8 Line Control (#2093)
Binary Synchronous Communications 4 Line Adapter (#2094)
Communications Indicator Panel (#2000)

Note. Communications supports two types of terminals-the IBM 2740
Modell Communications Terminal, and the Teletype Model 33/35
(trademark of the Teletype Corporation) or equivalent.

The operating system also supports binary synchronous communications with
an IBM System/370 using OS/VS 1 BT AM in point-to-point connections.

• Floating-point (#3920).

Note. If your system is not equipped with this feature, but you wish to
perform floating-point operations, the operating system has a floating-point
emulator program that you can specify during system generation.

• Programmer console (#5650).
• Battery Backup Unit (#4999).

Partitions, Task Sets, and Tasks

1 - 2 GC34-0102

Processor storage is divided into partitions. There can be as few as 2 partitions,
or as many as 16. The supervisor occupies partition O.

Applications reside in partitions as task sets, and only one task set can occupy
a partition at a time. The operating system does permit exchanging the task set
that is resident in a partition for another task set.

Within a task set there can be one or more units of code called programs. A
task represents a single thread of execution through one or more programs.

The task is logically the basic execution unit under the operating system, and (>

there can be as many tasks and programs as there is storage to execute them. In _ "

(,

Operator Interaction

(

Input/Output

c

addition, tasks can execute either storage-resident or disk-resident programs, and
there can be as many disk-resident programs as there is disk space to hold them.
Tasks can be activated as a result of:

• Process interrupts
• Requests from the operator station
• Programs
• Timer services
• Other tasks

Before a task set can be loaded into a partition for execution, it must reside in
a data set on a disk volume called a task set library. An application program can
use one or more I/O devices or data sets. These devices and data sets are
described symbolically within the program, so that you can specify them
externally from the program. These specifications must be processed and stored
in the task set library before the program refers to the devices or data sets. For
improved performance of your application programs, the operating system has a
method by which you can bind a task set to a partition and to physical devices
before the task set is activated.

A more detailed discussion of tasks and task sets is in Chapter 2.

The operator can control and interact with the operating system while it is
running. The operating system does not require that an operator be present for
the system to operate; however, the application programmer can, if he wishes,
require an operator response to certain requests. Here is a partial list of things an
operator can do with operator commands:

• Cause execution of a task set
• Cancel a task set within a partition
• Reply to requests from programs
• Set devices online and offline
• Alter assignment of device numbers

The operating system has three levels of I/O interface for application programs:

• Basic (EXIO)-access by physical record, with a full range of device control
• Physical (READ/WRITE)-access by block; control is returned to the next

sequential instruction of the application program while the I/O operation is
taking place

• Logical (GET /PUT)-access by logical record; you can optionally request
that control be returned to the next sequential instruction of the application
program while the I/O operation is taking place

The level of I/O interface used depends on the needs of the particular
application program.

For these data processing devices, you can use either a READ/WRITE,
GET /PUT or EXIO interface:

• Disks
• Diskettes
• Printers
• Teletypewriters
• Display stations

Timers are handled through a READ/WRITE or EXIO interface.
Sensor I/O is handled through a READ/WRITE or EXIO interface for both

analog and digital I/O.
For start-stop and binary synchronous communications devices, you use

READ/WRITE.

The Total System 1 - 3

Communications

Utilities

Program Preparation

1 - 4 GC34-0 102

The operating system permits three types of data set organizations:

• Consecutive-records are processed in a sequential, order-of -arrival basis, and
an end-of -data marker is maintained.

• Random---each record is individually addressed, and no end-of -data marker is (-'\
maintained. , ;

• Partitioned-records are organized as a collection of data sets with a directory
that points to each data set or member.

Through message buffering, the application program can send messages to a
printer, communications device, or the operator station and have these messages
intermediately queued on disk.

Details about data management are discussed in Chapter 3.

The operating system has the necessary supervisory routines for applications that
use communications. Communications support directs the transfer of data
between programs and remote stations-a remote station can be either a terminal
or another computer. Communications supports switched (dial-up) or non­
switched point-to-point connections using binary synchronous or start-stop line
control.

For more information about communications, refer to Chapter 4.

The operating system has a set of utilities for installation and maintenance of
application programs and data. There are stand-alone utilities, which are loaded
from diskette, and system utilities, which reside on disk. The system utilities are
invoked at the operator station and can run concurrently with an application
program.

For information about individual utility programs, see Chapter 5.

The program preparation tools are separate program products. With them, you
prepare the programs that run under the operating system. Each program
preparation facility runs as a task set under the operating system in a batch
environment. The program preparation facilities are:

• The Program Preparation Subsystem, which comprises:
The job stream processor
The text editor
The macro assembler
The application builder

• FORTRAN
• The Mathematical and Functional Subroutine Library
• PL/I

An application goes through several stages before it is ready for execution
under the operating system. First, it is coded as a set of programs-individual
source modules in either assembler language, FORTRAN, or PL/I. You then
enter control statements to direct the preparation process. The source programs
are entered into the system through the text editor, then they are assembled or
compiled. Next, the application builder combines the individual object modules
into a single storage load that is executable under the operating system.

For an explanation of each program preparation facility, see Chapter 6.

c

(

c

How Programs Flow through the Total System
Once your programs have been assembled or compiled, they reside on disk or
diskette as object modules, and they must be further processed to create a task
set.

In your instructions to the application builder, you indicate which object
modules are to be grouped together as composite modules, and specify the entry
point of each composite module. You also specify which programs are to be in
rp.~idpnt segments and which ones are to be in overlay sef!ments.

PHASE 1

INCLUDE

INCLUDE

OVERLAY
INCLUDE

INCLUDE

OVERLAY
INCLUDE

ENTRY A
NAMEX

INCLUDE

OVERLAY
INCLUDE

OVERLAY
INCLUDE

ENTRY F
NAME Y

OBJECT MODULES COMPOSITE MODULE

A Resident segment

B B
Overlay segment

c B
D

Overlay segment

I E I
E

COMPOSITE MODULE

Resident segment

G

Overlay segment

H G

Overlay segment

"

The composite modules are an intermediate output of the application builder.
Each composite module consists of a resident segment and any overlay segments
that you have defined for that composite module. The names X and Yare the
names of the data set members that contain the composite modules.

The task set library is the final output of the application builder, and it resides
on disk or diskette. To create the task set library, the application builder
combines all the resident segments (from the composite modules) into an
unbound task set load module, which includes a control module containing
information needed by the operating system. The application builder combines all
the overlay segments into an overlay module. Finally, the application builder adds
a prebind module (optional) and a task set reference table, which also contain
information needed by the operating system.

The Total System 1 - 5

1 - 6 GC34-0102

COMPOSITE MODULE

Resident segment

EB
Overlay segment

EB
Overlay segment

E

COMPOSITE MODULE

Resident segment

F

Overlay segment

G

Overlay segment

I II I

TASK SET LIBRARY

UNBOUND TASK SET
LOAD MODULE

I CONTROL I
MODULE

OVERLAY MODULE

PREBIND MODULE

TASK SET REFERENCE
TABLE

Up to this point you can, if you wish, do program preparation on a system
other than the one on which the task set is to execute. If you do that, you can
now copy the task set library onto a portable medium, such as a diskette, and
restore it on the execution-time system.

At this point in the discussion, it is necessary for you to understand binding
- the assignment or connection of resources to a task set before the task set is
executed. Binding can be done early (this is also called prebinding) or it can be
done late. If you choose to do early binding, you indicate to the application
builder which items you want bound. This information is stored in the pre bind
module associated with the unbound task set load module. The actual binding
occurs when the task set is installed, at which time the installation process adds a
bound task set load module to the task set library. The task set library can also
contain a table of data set definitions and other data sets required by the task
set.

(

c

(

c

TASK SET UBRARY

UNBOUND TASK SET
LOAD MODULE

CONTROL
MODULE

OVERLA Y MODULE

PREBIND MODULE

TASK SET REFERENCE
TABLE

TASK SET UBRARY

UNBOUND TASK SET
LOAD MODULE

I CONTROL I
MODULE

OVERLA Y MODULE

PREBIND MODULE

TASK SET REFERENCE
TABLE

BOUND TASK SET
LOAD MODULE

I CONTROL I
MODULE

DAT A SET DEFINITION
TABLE

USER DATA SETS

If you choose to do late binding, you need not specify binding information to the
application builder, nor do you need to install the task set. At execution time, the
operating system must assign resources to the unbound task set. Early binding is,
therefore, a way to eliminate the time needed to assign resources during
execution of a task set.

The Total System 1 - 7

1 - 8 GC34-0102

The following diagram expands the contents of the task set library. Here you
can see where the original object modules are located in an executable task set.

TASK SET LIBRARY

UNBOUND TASK SET
LOAD MODULE

I CONTROL I
MODULE J

OVERLA Y MODULE

BOUND TASK SET
LOAD MODULE

,
\

\
\
\

\
\
\
\
\
\
\

\

\

\
\

\
\
\

\
\

\
\ ,

\
\
\

\

\

\
\
\
\
\

\
\
\
\
\
\

TASK SET LOAD MODULE

Primary scgmcnt

A

B

COMMON AREA

OVERLAY AREA

Secondary segment

,1
COMMON AREA

OVERLAY AREA

CONTROL
MODULE

OVERLA Y MODULE

Ovcrlay scgmcn t

c

()

Overlay segment

E

Overlay scgment

Overlay segment

II

(\
\. J

(

c
II

(

c

When a task set is ready for execution, the task set load module is placed into
the specified partition.

TASK SET LOAD MODULE

Primary segment

A

B

COMMON AREA

OVER LA Y AREA

Secondary segment

F

COMMON AREA

OVERLAY AREA

CONTROL MODULE

OVERLA Y MODULE

PARTITION

I ~ I L----I G_LOBALAR----IEA I I

TASK SET
LOAD MODULE

FREE STORAGE

The Total System 1 - 9

I - 10 GC34-0102

Note that the partition also contains a global area (a data area addressable by all
programs in the task set) and some free storage (storage, within the partition,
that is available for use by the task set).

The following illustration shows one of the many possible ways execution can (~
proceed within the task set. \, ~

PRIMARY TASK

Primary program

A

Secondary program

I C

Secondary program

D

Secondary program

B
SECONDARY TASK

Secondary program

E F

Secondary program Secondary program

A H

Secondary program

F

Secondary program

G

Execution proceeds in tasks - threads of execution through programs. The first
task to execute when the task set gains control is called the primary task. The
first program of a task is the primary program. The primary program can start
other programs, which are called secondary programs. Secondary programs can, in
turn, start other secondary programs. A secondary task can be started by any
program in the task set.

The diagram on the following page summarizes the flow of programs through
the total system. It is a combination of all the diagrams shown in the previous
discussion, and it should help you understand how all the steps fit together.

i

(.~

OBJECf MODULES
PHASE 1

INCLUDE

INCLUDE

INCLUDE

OVERLAY
INCLUDE

NAME X

INCLUIH.

OVERLAY
INCLUDE

OVER LA
INCLUDE

ENTRY F
NAME Y

COMPOSITE MODULE

Resident segment

EB
Overlay segment

~
~

Overlay segment

E

COMPOSITE MODULE

Resident segment

D
Overlay segment

D
Overla y segmen t

D

TASK SET LIBRARY

UNBOUND

TASK SET
LOAD MODULE

CONTROL
MODULE

OVERLAY MODULE

PREBIND MODULE

TASK SET
REFERENCE TABLE

TASK SET LIBRARY

r-------------~"
UNBOUND
TASK SET

LOAD MODULE

OVERLAY
MODULE

PREBIND
MODULE

TASK SET
REFERENCE

TAULE

BOUND
TASK SET

LOAD MODULE

DATASET
DEFINITION

TABLE

USER DATA
SETS

\

\
\
\
\

\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\

T ASK SET LOAD MODULE

Primary segment

EB
COMMON

AREA

OVERLAY
AREA

Secondary segment

F

COMMON
AREA

OVERLAY
AREA

CONTROL
MODULI:

OVERLAY MODULE

Overlay segment

EB
Overlay segment

CJ
Overlay segment

I G I
Overlay segment

8

PARTITION

GLOBAL AREA

TASK SET

LOAD MODULE

FREE STO RAG E

PRIMARY TASK

Primary program

I A I
Secondary program

D
Secondary program

D
SECONDARY TASK

Secondary program

G

The Total System 1-11

FOLD THIS PAGE OUT

1-12 GC34-O 102

c

Processor Storage

Partitions

c

Chapter 2. The Operating System: Supervisor Services

Put simply, supervisor services control and distribute the resources of the
system. This chapter describes the services of the supervisor in a top-down
manner. It begins by discussing the management of processor storage - the
fundamental resource of any system. Next follows a discussion of partitions -
divisions of processor storage. This chapter then describes task sets - the code
that executes in partitions, then tasks - single threads of execution through
one or more programs. Programs execute under tasks. Finally, this chapter
describes the individual services (such as queuing, events, and timers) that can
be used by tasks.

Storage management controls primary storage - storage that is within the first
64KB of processor storage. The supervisor does not support storage (if any)
beyond the first 64KB.

The supervisor manages storage for task set execution in partitions. A partition
is a contiguous storage area of fixed size that you specify at system generation.
A partition begins and ends on a 2KB boundary, and each partition has a
unique numeric identifier (0-15). Any storage not allocated to a partition is
called unused primary storage.

You can define 2 to 16 partitions. The minimum configuration is the system
partition (always partition 0) plus one user partition; the maximum
configuration is the system partition plus 15 user partitions.

System partition
(partition 0)

User partition
(partition 1)

User partition
(partition 2)

.::~ ~r
Primary storage

User partition
(partition n)

Unused
primary storage

During system generation, you specify the size of the system partition and the
size, number, and optionally, the location of each user partition.

Note. If you do not specify a location, the next available location (on a 2KB
boundary) after the previously defined partition is assigned.

The Operating System: Supervisor Services 2 - 1

Free Primary Storage

Your specifications are stored in the IPL options data set, and they can be
modified anytime before IPL. To change this information, either repeat the
partition-definition step of system generation, or enter the change into the IPL
options data set through the text editor (see Chapter 6 for a description of the (~
text editor). " }

Within a partition, there can be some free primary storage - free storage that
is available for use by the task set (the program or programs) executing in that
partition. Free primary storage is divided into protected free storage and
unprotected free storage. The supervisor allocates free primary storage in
response to your requests and system requests.

Free
primary storage

Partition n

Resident segment

Control module

{

The program or programs that
are executing in this partition

{

The tables and con trol blocks the
supervisor requires to manage the
task set

r---------

Protected free storage {

t---------I

Part of the control module, this
area contains additional storage
for use by the supervisor

,--_u_n_pr_o_te_c_te_d_f_re_e_s_to_r_ag_e~ {

This area contains storage for
use by any program in the
partition

When two or more blocks of free primary storage are contiguous and of the
same type (protected or unprotected), they are combined to make the largest
possible blocks of free storage available at all times. To keep free storage from
becoming too fragmented, the supervisor satisfies storage requests by allocating
the block of storage that best fits the size requirements, not necessarily the first
block that fits.

("
'\ I

Storage Protection (4955 Processor Only)

Task Sets

2 - 2 GC34-0102

The following can be write-protected by the hardware:

• The entire system task set
• The control module of each task set, which can include a portion of free

storage in each partition

A task set is a named collection of programs, data, control blocks, and work
areas, forming a related set of work.

Only one task set can execute in a partition at a time. Each partition has a
queue of task sets waiting to execute in that partition in first-in-first-out (FIFO)
order within priority. Queue priorities range from 1 to 255; 1 is the highest
priority. When you place a task set in the queue, you specify the queue priority
and the partition in which the task set is to execute. Here is an example:
A task set (lets's call it TSA) is executing in partition 5. TSA has a queue (" ~
priority of 3. Suppose that TSB is queued for partition 5 with a queue priority ,
of 1.

o

Creat;"g a Task Set

c

C= --

Partition 5 TSA
(priority 3)

Partition 5 queue

Priority 1
Priority 2
Priority 3

•

•
•
Priority 255

TSB

When TSA has completed, TSB begins executing in partition 5, because it is the
only task set queued for that partition. Now, suppose that TSC and TSD are
queued with priority 2, TSE and TSG with priority 1, and TSF with priority 3.

Priority 1 TSE TSG
Priority 2 TSC TSD
Priority 3 TSF
•
• TSB (1)
•
•
Priority 255

Assuming that no more task sets are queued for partition 5, the queued task sets
are executed in the order TSE, TSG, TSC, TSD, then TSF.

You create a task set by performing these steps:

1. Code your application programs in assembler language, FORTRAN, or
PL/I.

2. Enter your programs through the text editor, then assemble or compile
them.

3. Through the application builder, identify the programs that belong in a
specified task set, and specify control information for the task set, such as:

The entry point at which the task set is to gain control (the entry point
of the primary program and the primary task)
Control block stack sizes
Sensor I/O information

- Binding information
The primary output of the application builder is a task set load module,
which is placed in a disk data set in a volume called a task set library.

In your specifications to the application builder, you can optionally specify
binding to be performed before the task set executes. Binding is the association
of a task set with the system resources it requires, such as data sets and 1/0
devices. The actual binding occurs when the task set is installed - when you
explicitly request that the task set be loaded and started. Binding a task set
lessens the overhead needed to prepare a task set for execution. Binding:

• Predefines tasks by allocating control blocks and task work stacks
• Predefines queues by allocating control blocks and preopening disk data sets

for disk queues
• Establishes the conditions under which scheduled tasks are to execute, by

updating the system scheduler table
• Pre opens data sets

The Operating System: Supervisor Services 2 - 3

System Task Set

User Task Set

Only those tasks, queues, and data sets that belong to the task set can be
bound; any that belong to the shared task set must be bound to the shared task
set.

A task set must be prepared for a particular partition, because it is not
relocated when it is loaded. A request to execute a task set can be from an
operator request or from another program, and the request must specify the
partition in which the task set is to execute. A task set can be requested to
execute at a specific time or as the result of a process interrupt. At that time,
the requested task set is initiated if the partition is available; otherwise, the
request is queued, by priority, for the partition. When the partition becomes
free, the highest-priority request is initiated and owns the partition until it is
done. There is no priority of task sets based on partitions.

There are three types of task sets: system, user, and shared.

The system task set contains the programs, data, control blocks, and work areas
that make up the supervisor.

The system task set executes in partition 0 and resides in protected storage if
your machine is equipped with storage protection. Programs in the system task
set execute in supervisor state.

A user task set contains the programs, data, control blocks, and work areas that
perform a related set of operations for an application.

A user task set executes in a user partition (partition 1-15), and its control
module resides in protected storage unless you specify otherwise during task set
preparation. The remainder of the task set resides in unprotected storage.

o

Shared Task Set I \.

2 - 4 GC34-0102

A shared task set is a special type of user task set that can contain all the ~ 1

entities of a user task set (such as tasks and programs). It can also contain
events, queues, serially reusable resources, and a global area to be shared across
user task sets. Task sets using the resources of a shared task set must be
resolved against the shared task set by the application builder. You can generate
more than one shared task set, but only one can execute at a time.

Tasks. If any tasks are to be started in the shared task set, a primary task must
have been started at task set initiation. The primary task of the shared task set
terminates only as the result of a request to stop the task set.

Programs. A shared task set need not contain any programs. Programs included
in the shared task set can be called by other programs within the shared task
set. They can also be called by other task sets that have been resolved against
the shared task set by the application builder. A program in the shared task set
cannot call a program outside the shared task set.

Events. You can define events in the shared task set to synchronize tasks in
different task sets. When an event in the shared task set is used by another task
set, the event control block is allocated either in the partition of the task set
that defines it as a permanent event, or in the partition of the task set that
issues the wait request or is being posted when the event is temporary.

For more information about events see "Events," later in this chapter.

Queues. Queues in the shared task set can be defined either by tasks in the
shared task set or by a using task set. The queue control blocks are allocated

(:. from the partition of the shared task set. ,

c

c

Global Area. The task set global area is an optional, variable-length,
uninitialized data area addressable by all programs executing in the shared task
set or by all programs in any task set that is using the shared task set.

Resources. Serially reusable resources can be defined in the shared task set and
can be requested by tasks in a using task set. For more information on this
topic, see "Serially Reusable Resources," later in this chapter.

Note. Timers and data sets cannot be shared, but they can be included in the
shared task set for use by programs executing under tasks in the shared task set
only.

The Operating System: Supervisor Services 2 - 5

Format 0/ a Task Set (in processor storage)

2 - 6 GC34-0102

o

•

Global (Optional) 0
Resident segment

Unprotected free storage

(optional)
Task set load module •

Control module

Protected free storage

(optional) e
Unprotected free storage

(optional) 0

Global. The task set global area is an optional, variable-length data area
addressable by all programs executing in the task set. If a task set issues a
request to link to another task set-to terminate itself and execute another
task set in the same partition-the common global portion is maintained
for the linked-to task set.

Task set load module. The task set load module is in absolute format and
contains:

• The resident segment, which contains the programs and data that remain in
storage for the duration of the task set, plus any overlay areas or subpools
required for the task set.

• Unprotected free storage, if needed to align the control module on a 2KB
boundary. This storage is generated when, in your instructions to the
application builder, you specify the PROTECT option for the control
module. This storage is available as free storage in the partition.

• The control module, which is a set of tables and control blocks required
for managing the task set, including:

The task set control block
Data-set-definition list of data sets that you specify are to be prebound
Preallocated control block stacks
The variable-control-block area, which is an area of storage available
for variable-length control blocks (for the supervisor and data
management)

You specify whether the control module resides in protected or
unprotected storage. If the control module is in unprotected storage, it is
not aligned on a 2KB boundary and is not a multiple of 2KB.

e Protected free storage. This storage follows the control module and is the
storage residue, if any, required to protect the control module. If the
control module is not protected, or if it is a multiple of 2KB, this residue is
not needed. If this storage is needed, it is combined with the
variable-control-block area to be used for additional protected storage.

o Unprotected free storage. This is the storage remaining in the partition
after any protected free storage or after an unprotected control module.

o

(:

Reusable Task Sets

o

Task Set Execution

c

Rollout / Rollin

c

In your instructions to the application builder, you can specify that any task set
is reusable. A task set should be identified as reusable only if all programs in
the task set are either reenterable or reusable.

Note. Reenterable is the attribute of a program that allows the same copy of
the program to be used concurrently by two or more tasks. Reusable is the
attribute of a program that allows the same copy of the routine to be used by
another task after the current use is concluded.

If a reusable task set is encountered at task set termination, and the next task
set ready for execution in that partition is the same task set, the task set being
terminated is restored to its original status (its status when it was loaded into
storage). As a result, the II 0 operations and storage initialization required to
prepare the task set for reexecution are bypassed.

Note. A task set that abnormally terminates is not reusable.

A task set is first queued to a partition, then it is loaded into storage and
executed. This process can be started as a result of:

• A direct request from the system operator or another program in the system
• Scheduling based on the time of day, one or more time intervals, or a process

interrupt

The system scheduler table contains entries that indicate task sets to be
queued for execution based on these types of conditions:

• Time of day-the task set is queued at the specified time of day
• Regular interval-the task set is queued at the specified interval for the

specified number of times
• Process interrupt-the task set is queued at every process interrupt for the

device and bit(s) specified

Each entry in the system scheduler table corresponds to a condition number.
When a condition is satisfied, the task set associated with that condition is
queued for execution. The same task set can be associated with more than one
condition number.

A task set executes until termination unless (1) the partition is identified as a
rollout/rollin partition, (2) the executing task set can be rolled out, and (3)
another task set is queued to the partition with a queue priority higher than that
of the executing task set.

Rollout discontinues execution of a task set and copies its executing
environment to a disk data set. Rollin copies the disk data set back into storage
and resumes executing the task set.

At system generation, you can define one user partition as the rollout/rollin
partition. This information is stored in the IPL options data set. You can change
it either by repeating the partition-definition step of system generation or by
entering the change into the IPL options data set through the text editor. The
rollout/rollin partition is the only partition in which rollout/rollin can occur.

If the task set currently running in a rollout/rollin partition can be rolled out,
and a higher-priority task set is queued to the partition, the current task set is
rolled out. The higher-priority task set executes to completion. The original task
set is rolled back in and resumes executing as soon as there are no
higher-priority task sets queued to the partition.

Note. Once a task set is rolled out, no subsequent rollout can occur until the
rolled-out task set has been rolled back in.

The Operating System: Supervisor Services 2 - 7

Considerations for Using RoUout/RoUin

Foreground/Background

2 - 8 GC34-01 02

During system generation, you identify one partition as the rollout/rollin
partition. Task sets that execute in the rollout/rollin partition must be identified
as rollout/rollin if they are to be rolled out; any user task set except the shared 0 .. ,,"
task set can be designated rollout/rollin. Program preparation facilities and'
system utilities are designated rollout/rollin.

Even if a task set is designated rollout/rollin, you can temporarily prohibit
rollout/ rollin. While rollout/rollin is allowed the rollout/rollin task set cannot:

• Use timer services-if timer services are in use when the task set is rolled
out, the task set is abnormally terminated.

• Connect to interrupts-if the task set is connected to interrupts when the
task set is rolled out, the task set is abnormally terminated.

• Pass addresses or names to other task sets that might attempt to gain access
to or modify the contents of the partition while the task set is rolled out;
violations could produce unpredictable results in the preempting task set
before the preempted task set is rolled back in.

If a task set that uses the shared task set can be rolled out, you must prohibit
rollout:

• When the rollout/rollin task set is waiting on an event in the shared task set
that is to be posted by another task set

• When the rollout/rollin task set is either defining a queue that resides in the
shared task set or processing such a queue by:

Waiting for addition of a queue element
- Locating a queue element
- Removing a queue element

Note. It is not necessary to prohibit rollout to add an element to a queue
in the shared task set as long as the COPY option is specified to copy the
element to the shared task set partition.

• When requesting a serially reusable resource that resides in the shared task
set-rollout must be inhibited until the resource is released

A task set is not rolled out until all outstanding I/O requests have completed,
even if you have not prohibited rollout.

A possible use for the rollout/rollin partition is to create a
foreground/background situation-run both background (or batch) programs
and foreground (or realtime) programs in the rollout/rollin partition.

Possible background programs are the program preparation facilities:

• Text editor
• Macro assembler
• Application builder
• FOR TRAN compiler
• PL/I compiler

Program preparation can run concurrently with realtime applications. If the
background partition is needed for a realtime task set, the background task set
is rolled out, the realtime task set executes to completion, then the background
task set is rolled back in and continues execution. Here is an example: Partition
4, in this example, is the rollout/rollin partition, and the assembler is running as
a rollout/rollin task set (with queue priority 10) in partition 4. A realtime
application task set (with queue priority 2) is queued for execution in partition
4.

I "

o

Task Set Termination

Tasks

c

Partition 4
(rollout/rollin)

Assembler
(queue priority=10)

Partition 4 queue

Realtime application
task set

(queue priority =2)

Because the realtime application task set has a higher priority, the assembler
task set is discontinued and is rolled out to a disk data set. The realtime task set
is loaded into partition 4 and executes to completion.

Realtime
application
task set
(queue priority =2)

-----~

When the application task set has completed, the assembler task set is rolled
back into partition 4 and continues executing, provided there are no
higher-priority task sets queued for execution in partition 4.

Assembler

A task set terminates in one of two ways. It can terminate normally, when the
primary task terminates normally, or it can terminate abnormally, as the result
of either:

• An explicit request to terminate the task set abnormally. In this case, a
storage dump is taken if specified on the task set termination request.

• Abnormal termination of the primary task. In this case, a storage dump is
taken only if requested as a result of primary task termination.

A task is a single thread of execution through one or more programs. It is
defined at execution time, when either the supervisor or a program in the task
set issues a request to start another program (or programs) executing
concurrently as a task. For example:

Partition n contains a task set. The task set contains three
programs-PROGA, PROGB, and PROGC. T ASKA has been previously
defined as the primary task (with PROGA as the primary program), so it
receives control when the task set is loaded (the primary task is the one that is
started automatically when the task set is started).

The Operating System: Supervisor Services 2 - 9

Task Priorities

Terminating Tasks

2 - 10 GC34-0102

Task set

PROGA PROGB PROGC

In this example, suppose that PROGA issues a request to start TASKB (with
PROGB as the primary program) executing as a secondary task (a secondary
task is one that is started by a request from another task).

l TASKA I
I

PROGA

Start task
PROGB

PROGB FROGC

PROGB begins executing concurrently with PROGA. Now suppose that
PROGB issues a CALL to PROGC.

II TASKA I
PROGA PROGB PROGC

I TASKB I
Begm

Start task
PROGB •

•
End

PROGC immediately gains control, executes to completion, then returns
control to PROGB.

In your request to start a task, you also specify its software priority within the
interrupt level. In that way, you can control the order in which tasks are
dispatched, or prepared for execution. Within each hardware interrupt level,
there are 255 priority levels (numbered 1 through 255; 1 is the highest). This
means that if, on a certain interrupt level, two or more tasks are requested
simultaneously, the one with the highest priority is dispatched and executed
first.

A task can terminate in one of three ways:

• Normally, when the initial program in the task returns control to the
supervisor

• Abnormally, as the result of either an explicit request from the same task or
another task, or termination of the task set

('
" J

f ~ ,

• Abnormally, as the result of a program check or soft exception (:

o
Normal Termination

Abnormal Termination

C Programs

Problem Programs

c

Note. When the primary task terminates, the task set automatically
terminates.

The termination process occurs under the terminating task, and therefore has
the same priority as the terminating task.

During normal task termination, the system automatically:

• Closes data sets not closed by the task
• Deletes timers, events, and queues not deleted by the task
• Relinquishes control of resources owned by and requested by the task
• Frees storage allocated for the work stack and floating-point-register save

area
• Deallocates the task control block and execution request blocks
• Disconnects interrupts

If the terminating task is prebound, the task control block, the
floating-point-register save area, and the work stack are not deleted in case a
request is issued to start the task again.

During abnormal task termination, the system executes the error-exit
subprogram, if one is active for the task. If the error-exit subprogram returns
with the option to resume execution, the task resumes at the instruction
indicated.

If task execution does not resume, and a storage dump is requested, primary
storage is copied to the dump data set, and normal termination processing is
invoked.

Program management controls two types of programs-problem programs and
supervisor programs.

Problem programs can be either (1) storage-resident programs, which remain in
storage from the time the task set is loaded until task set termination, or (2)
overlay programs, which reside on disk or diskette until loaded into an overlay
area within the partition. In your instructions to the application builder, you
specify whether a program is storage-resident or an overlay.

There are two types of problem programs:

• Primary program-the first program of a task
• Secondary program-called by another program

At the beginning of a primary program, you must indicate its
attributes-whether it is reenterable, reusable, or nonreusable. Reuse of these
programs is managed by the supervisor, based on the attributes you specify. The
primary program is storage-resident, and it can call overlays. When the primary
program terminates, the task terminates.

The request to execute a secondary program does not indicate whether the
program resides in storage or on disk; if the program is an overlay, the request
to execute causes the program to be loaded into a predefined overlay area.
Requests to execute secondary programs can pass parameters to the requested
program.

A secondary program can be storage-resident, or it can be an overlay that,
when called, is loaded into the overlay area of the primary program. A
secondary program that is an overlay cannot call another overlay.

The Operating System: Supervisor Services 2 - t t

Supervisor Programs

Parameter Lists

Events

2 - 12 GC34-0102

The supervisor does not manage the reusability of a secondary program if the
program is resident, because resident programs are assumed to be reenterable.
However, if the program is an overlay, the overlay manager reuses the overlay
program if it receives a request for an overlay program that is already in the
overlay area. O"verlay programs are assumed to be reusable.

A supervisor program can be either storage-resident or a disk-resident transient.
The request to execute a supervisor program does not indicate whether the
program resides in storage or on disk.

Each supervisor program has a prolog that identifies the entry point, program
work space requirements and number of parameters to be passed to the
program. Supervisor program management automatically resolves the addresses
of parameters specified when a supervisor program is invoked; a list of these
addresses is built in a dynamic area to allow the supervisor program to be
reenterable.

When a supervisor program is invoked, the environment (for example, the
general-purpose registers) is automatically saved upon entry, then is restored
before a return is made to the invoking program. A return code can be returned
to the invoking program.

A transient program can be loaded into either a fixed or a dynamic transient
area. It can be loaded into a fixed transient area when it is invoked, then
deleted upon completion if no other requests for the transient are unsatisfied. A
transient program can be loaded into a dynamically allocated transient area
before it is invoked, and it can remain in storage until (1) an explicit request is
made to delete it, and (2) all requests to execute the transient have been
satisfied.

Transient programs must be refreshable. At system generation, within
system-established limits, you can specify what is transient or resident; however,
you cannot specify whether transient programs are loaded into a fixeu or
dynamic load area-that is determined by the system. Supervisor programs can
be invoked explicitly or as the result of an SVC.

Although IBM provides most supervisor routines, you can, if you wish, write
your own supervisor routines. All supervisor programs operate in supervisor
state.

Parameter lists pass information between programs. There are two types of
parameter lists, and the type you choose depends on the types of programs that
are to use it:

• Basic parameter lists are for problem programs, and for supervisor programs
that are invoked by CALL instructions.

• Extended parameter lists are for supervisor programs and for any routines
that are invoked by supervisor call (SVC).

You can synchronize the execution of tasks by (1) identifying events that are of
significance to the tasks, (2) specifying the points where execution cannot
continue until an event occurs (waiting on the event), and (3) signalling the
waiting task when the event occurs (when the event has been posted the
specified number of times).

An event is controlled through an event control block (ECB), which contains

o

such information as the name of the event, whether it is being waited on, how (::

o

Queues

c

many times it must be posted for the event to complete, and how many times it
has actually been posted. Here is an example of an ECB in use:

Your program first issues a WAIT instruction for event ABC, causing the
ECB for that event to indicate that a task is waiting for event ABC. Each
occurence of event ABC issues a POST to the ECB. When the ECB has been
posted the specified number of times, your program resumes at the next
instruction after the WAIT.

Your program

•
•
•
Wait on event ABC --.-­
Next instruction

•

ECB

•
•
•
• event name = ABC
• a task is waiting on

this event
• number of posts

required = 3
• number of actual
posts=n~

(when n=3, control
returns to your
program at the
next instruction.)

Event ABC

An event can consist of from 1 to 255 posts, depending on how you define
it. For example, an event can indicate that:

• An 110 operation is complete
• A task has reached a certain point in its processing
• An element has been added to a queue
• An occurrence has happened a specified number of times

Each event is known by its name. The meaning of an event name is
determined by the event definition and its use by the communicating tasks. An
event must be referred to by the same name by all tasks that either wait on the
event or post the event. Events can be defined as:

• Permanent events, which means that the ECB exists until explicitly deleted or
until termination of the task

• Temporary events, which means that the ECB is allocated when it is referred
to and exists until the event is complete

A task can suspend execution until the completion of either one specific event
or anyone of a list of events. If a list of events is specified, the task is notified
which event in that list completed to cause the task to resume execution.

When an event completes it is automatically reset; that is, the ECB is set to
not waiting, and the post count is reset.

You can define two types of data queues:

• Storage queues-they reside completely in main storage
• Disk queues-definitions of these queues reside in main storage; control

information and data elements reside either in main storage or in a
direct-access data set, depending on the priority of the element.

Storage queues and disk queues can be defined as either public or private. A
private queue is associated with the task that defined it. Only the task that
owns a private queue can locate elements on the queue or remove elements
from the queue. A public queue can be processed by any task in the task set.

The Operating System: Supervisor Services 2 - 13

Storage Qllelles

Z - 14 GC34-01OZ

The task that processes a public queue is responsible for serializing access to the
queue.

The size of each queue element is specified when the element is added to the
queue, and a queue can contain elements of varying sizes. If requested, an event (.,
is posted when an element is added to a queue. \ .1

The maximum number of elements for a storage queue can be specified when
the queue is defined, or the queue can be defined to use whatever storage is
available. When the queue is full, any attempt to add an element is unsuccessful.

Elements in a storage queue are maintained in FIFO sequence within priority.
Each element has apriority, which is specified when the element is added to the
queue.

A disk queue is a member of a partitioned data set (PDS); the queue name is
the member name. One or more queues can reside in the same PDS, and a
system can contain one or more PDSs that contain queues. A header of control
information is kept with each queue in its appropriate member. This control
information is updated on disk whenever the queue is updated (each time an
element is added or deleted) and whenever an element is located.

The disk queue header contains sufficient information to restart the disk
queue at the latest point of processing. When defining the queue, you also
define the type of restart capability you want:

• Warm restart-the queue is restarted containing any elements it contained
when it was last used

• Cold restart-the queue is restarted containing no elements
There are two types of disk queue elements-normal and priority. Normal

queue elements are maintained on disk in a FIFO sequence. When the queue
becomes full, there is a wraparound option that allows a new element to be
written over the oldest element on the queue. Priority queue elements are
maintained in main storage in FIFO sequence within priority.

In your definition of a disk queue, you include the maximum size of an
element to be added to the queue and the name of the PDS member to contain
the queue. Elements processed into and out of the queue can be of variable
length, but records written to the queue data set are all the size of the maximum
element. The queue element and its related control information are written to
the data set.

(.•. '
..II

o

Timers

Logical Timers

c

Partitioned data set (PDS)

Table of contents

Queue I member

Queue 2 member

•
•
•
•
•
•

Queue n member

\
\
\
\
\
\
\
\
\
\
\
\
\
\

Queue 1 Member

Header

Queue element I

Queue element 2

•
•
•
•
•
•

Queue element n

I
I

I

, ,

I

I
I

I

Queue Header
I

Pointer to first
queue element

Pointer to last
queue element

Pointer to next
element or process

,
Other control

I
I

I
Ii

, , ,

, , , information

Queue Element n

/ Control information
I

I

Data

, , , ,

You must create the PDS for a disk queue before you define the queue. The
attributes of a data set member are:

• The member name is the queue name.
• The record format is either fixed or fixed blocked.
• The record length is the same as the maximum element size that you

specified when you defined the queue, plus the length of the control
inf ormation.

• The number of records in the data set must be greater than or equal to the
maximum number of elements defined for the queue, plus one.

All queues in a single PDS must have the same maximum element size.
When you process a disk queue, you must first locate an element, then gain

access to it. Only the last element located can be processed.

The services of timer management control logical timers, the time of day
(maintained in the system), and the date (also maintained in the system). These
services are needed for time- or date-dependent operations.

There are two physical timers in a hardware timer attachment. All logical
timers use one physical timer-the other physical timer in the hardware
attachment is used for time-of-day services.

The supervisor timer services (optional) require a dedicated timer attachment.
Your applications can use other timers by means of data management functions.

A logical timer is the software interface to a physical timer. There are two
categories of logical timers:

• Asynchronous timers-normally used for timeouts, these timers run
concurrently with the tasks that use them.

• Synchronous timers-normally used for delay operations, these timers cause
the tasks that use them to wait for a specified time interval.

The Operating System: Supervisor Services 2 - 15

Time-of-Day alld Date Services
The time of day and the date are maintained in the system; you c.an gain access
to them through your program or operator commands.

The system maintains the time of day in a physical timer unless, during (-."'J~
system generation, you specify that time-of -day services are to be omitted. Time
of day is available in hours, minutes, seconds, tenths of seconds, and
milliseconds. Time references are the time since midnight. The supervisor
compensates for drift in the physical timer by adding a compensation factor
while maintaining the time of day.

If you do not use the physical timer, you can supply a program to maintain
the time of day by means of any periodically interrupting source. The resolution
of time of day then depends on the accuracy of the interrupting source.

The date is available in either Julian or Gregorian format. If you choose
Gregorian, you must specify which format you prefer-MMDDYY or
YYMMDD.

Serially Reusable Resources

Interrupts

110 Interrupts

Class Interrupts

2 - 16 GC34-0102

A serially reusable resource is that which can be serially reused by numerous
requesters; for example, programs, events, queues, and data sets can be
considered serially reusable resources.

You request that the supervisor serialize access to logical resources that can
be requested asynchronously from different tasks. To do this, you designate
each resource as a serially reusable resource and assign it a symbolic name.
Each access to the resource is preceded by a request for that resource name,
then followed by a release of that resource name.

When a task requests access to a serially reusable resource, the resource is
marked busy and subsequent requests from other tasks are not granted until the
resource is released from the task that first requested it. Requesting tasks wait .,),
until the resource is no longer busy. ,

Interrupt management processes I/O interrupts (data-processing, timer, and
sensor-based process interrupts) and class interrupts.

The supervisor processes priority interrupts from data-processing I/O devices,
timer I/O devices, and sensor I/O devices. When an I/O interrupt occurs, it
activates the appropriate device interrupt service task. An interrupt service task
can be associated with more than one device.

Interrupt service tasks are dispatched in supervisor state and are part of the
system task set. All control blocks generated and used by I/O interrupt
management are within the system task set.

Class interrupt handlers are storage-resident routines that process the interrupts
that result from error or except jon conditions detected by the hardware. They
handle these types of interrupts:

• Machine check
• Program check
• Power/thermal warning
• Programmer console
• Trace
• Soft exception (:

o

Errors

(

Error Logging and Reporting

c

• SVC
A class interrupt automatically disables all priority interrupts. Also,

programmer-console and power/thermal interrupts are disabled after a class
interrupt. The class interrupt handlers enable interrupts as quickly as possible.

Class interrupt handlers always run under a task. If no task is active on the
level when a machine check, power/thermal warning, or programmer-console
interrupt occurs, the supervisor uses a dummy system task. If another class
interrupt occurs, with no active task, while the dummy task is in use, the second
interrupt is ignored. The exception to this procedure is the SVC interrupt, which
is valid only when a task is active.

The supervisor intercepts all class interrupts. When you generate your system,
you might want to include your own programs, which are invoked after the
system has handled these interrupts:

• Machine check
• Power/thermal warning
• Programmer console
• Trace

Your program resides in the system partition and gains control in supervisor
state. The supervisor passes some status information to your program, and
enables all interrupts. Your program has no restrictions as to system functions
available to it. It might prepare for system shutdown, or it might attempt to
reload and restart.

Error management services assist in the determination and correction of errors
detected by hardware and software. Error management comprises:

• Error logging and reporting
• Abnormal termination of a task
• Copying primary storage to a data set for later retrieval
• Task error exit
• Displaying and patching storage
• Attended/unattended status indicator
• System reload and restart
• System termination

There can be up to 16 error logs defined during system generation or execution.
Each log has an ID of 0-15, with 0 reserved for the system error log. During
system generation, you specify the maximum number of error logs.

The purpose of the system error log is to record processor and I/O errors for
the devices supported by the supervisor. Software errors or other information
can also be recorded in the system log or in another log in the system. Error
logging and reporting:

• Records certain hardware status information
• Builds a printable error record
• Prints the error record at the operator station
• Writes the error record to the error log

The system error log is optional. If it is not defined and activated, requests to
write to the system log are ignored; however, error log messages directed to the
operator station are always printed.

An error log resides either on disk or in storage. You can use a utility to get a
hexadecimal dump of an error log. The individual records in a log can be
retrieved through your program.

The Operating System: Supervisor Services 2 - 17

Abnormal Termination of a Task

A task can terminate abnormally as the result of either supervisor action or your
request. A request to terminate a task is always considered an abnormal
termination unless otherwise specified. The termination request can optionally ()
request that a storage dump be taken. If the termination is the result of a \ }
supervisor action, a dump is always taken.

If a task is using the shared task set, it can terminate any task in the shared
task set. If it is not using the shared task set, a request to terminate another
task can be made only within the same task set. If the terminating task is the
primary 'task within the task set, the task set is terminated.

Abnormal termination can pass control to a task-error-exit routine, if you
have specified one. This routine can optionally indicate that the task resume
execution unless (1) the task is terminating as a result of a machine check or
program check, or (2) the task set in which the task is active is abnormally
terminating.

Copying Primary Storage (Storage Dump)

Task Error Exits

Displaying and Patching Storage

When a task or task set terminates abnormally, all of primary storage can be
dumped to a data set. The dump data set can later be retrieved, formatted, and
printed with a utility program.

You can specify a task error exit at any point during task execution, indicating a
subprogram to gain control if the task terminates abnormally. The subprogram
has the option of resuming the task or continuing the termination process.

You supply the task-error-exit subprograms. In your instructions to the
application builder you must include these subprograms with the other programs
in the task set when the task set is created.

The operator can display up to 56 bytes of contiguous storage and patch up to
20 bytes of contiguous storage.

Attended/Unattended Status Indicator
This indicator reflects whether an operator and a system console are present.
The error processing routines check this indicator to determine whether operator
intervention can be expected.

System Reload and Restart

System Termination

2 - 18 GC34-0102

The system-restart process terminates the current supervisor and loads the
restart supervisor, then starts the system initialization process. The
system-restart process is primarily used to restore the operating system after a
serious error has made the current system unable to continue. Restart can,
however, be issued at any time to load the restart supervisor.

System termination handles system error conditions (such as supervisor or
hardware failures) that make continued operation of the system impossible.

When the system termination routine gains control, it attempts to write to the
system error log. Then, a termination exit program is invoked, if one is
available, and it is passed the completion code indicating the cause of failure.
The exit routine can then either return control to the routine in error, restart the
system, or terminate the system.

You supply the termination exit program, and it must reside in the system (-, _:
task set. It must be included during system generation. '

0 ... ···· ~
~:

c

c

Related Publication
When it is available, the IBM Series/l Realtime Programming System: Macro
User's Guide-Supervisor will deal with the topics in this chapter at the
assembler-language level.

The Operating System: Supervisor Services 2 - 19

()

c

o

Data Set Management

Data Set Organizatiolls

c

Chapter 3. The Operating System: Data Management

Data management moves information between processor storage and external
devices, maintains the data on those devices, and controls those devices. Data
management is divided into two categories--data set management and device
management.

Data set management handles data sets, which are named collections of data
residing on a device. It has:

• Three levels of access-basic, physical, and logical
• Two access methods-sequential and direct
• Three data set organizations--consecutive, random, and partitioned

Access levels, access methods, and data set organizations are discussed later in
this chapter.

Device management handles physical devices, and handles errors and interrupts
from them. Device management is described later in this chapter.

Data set management maintains permanent data sets and gains access to all data
sets on all devices. All access to data sets or devices (except for basic access) is
through the data set definition (DSD), which describes the data set or device and
how a program can gain access to it. A DSD might be in the using program or in
a DSD table data set in the task set library. You can change a data set's
attributes in the DSD through a utility or a job stream processor statement,
thereby avoiding the need to change any code in your program.

Direct-access sets can be of two formats-basic exchange format and extended
format. A basic exchange data set is one that is formatted to certain standardized
specifications so that the same data set can be used with other computer systems.
(For the specifications of a basic exchange data set, refer to the IBM Series/l
Realtime Programming System: Macro User's Guide-Data Management.) Basic
exchange data sets can be on diskette only, while extended format data sets can
be on disk or diskette. In defining an extended-format data set, you can specify
up to four levels of qualification--device, volume, data set, and member. A disk
or diskette using the extended format can contain one or more logical volumes,
each of which can contain several data sets, which might contain members.

When you want to use a data set or device, you must first open it. Opening a
data set or device supplies data set management and device management with the
information they need for access to that data set or device. When access to a
data set is complete, a close request breaks the connection between the data set
and the requesting task.

There are three types of data set organization-consecutive, random, and
partitioned. These organizations are available at the physical and the logical
access levels. Random and partitioned organizations are available on direct-access
devices only. Consecutive organization is available for any device. The data set
organization for a data set is determined when the data set is created or opened.
You choose the type of organization, depending on the application of the data
set.

The Operating System: Data Management 3 - 1

Levels 0/ Access

Access Metltods

3 - 2 GC34-0102

Consecutive Organization. In a data set that has consecutive organization, a
program has serial access to blocks and logical records. Records in these data sets
can be either fixed- or variable-length. Individual records can be grouped to form
blocks, and records can span blocks. A program can use the sequential access 0
method to retrieve records in a consecutive data set, or it can use the direct
access method if the data set resides on a direct-access device or display station
and the records are fixed-length.

Random Organization. In a data set that has random organization, a program
can retrieve blocks and logical records in any order. Only direct -access devices
(such as disks and diskettes) can use random organization. Random data sets
have fixed-length records. Individual records can be grouped to form blocks, and
records can span blocks. A program can use either the sequential or the direct
access method to retrieve records.

Partitioned Organization. A partitioned data set contains data sets and has a
table of contents that describes and locates the data sets within it. A subsidiary
data set is called a member. A member need not have the same attributes as the
other members. A partitioned data set can be on a direct-access device only.

The table of contents of a partitioned data set describes the members of the
data set. It contains indexes, which contain the names of the members and the
attributes of the members.

There are three levels of access to a data set-basic, physical, and logical The
level chosen is determined by the instruction used to gain access to the data set.

Basic (EXIO). Through the basic level, you have access to data on a device by
physical record. This type of access is device-dependent and is done at the
hardware instruction level. With the basic access level, you have access to any ! '
operation the device can perform. ,

Physical (READ/WRITE). Through the physical level, you have access to data
on a device by block, which can consist of one or more physical records. This
type of access is valid for any of the three data set organizations.

Logical (GET/PUT). Through the logical level, you have access to data by
logical record, with automatic blocking and buffer management. This type of
access is device-independent, unless you specify certain device-dependent
controls. Logical access is valid for any of the three data set organizations.

Data set management has two access methods-sequential and direct. The access
method is determined when the data set is opened. Both access methods can be
used at the physical or logical access level. Any I/O device can use sequential
processing, but only a direct-access device, such as a disk, diskette, or display
station, can use direct processing. You choose the access method to be used
depending on the application of the data set.

Sequential Access Method. With the sequential access method, access to data is
from the beginning of the data set to the end-of-data indicator. Sequential access
is valid for all three data set organizations. Access can be through either the
physical or the logical level. Sequential records can be either fixed- or
variable-length, and can be blocked and spanned; however, fixed-length and
variable-length records cannot be mixed within a data set. For unit-record
devices, sequential records can be fixed-length only.

o
Device Management

Data-Process;., I/O

Sensor-Based I/O

Timer I/O

Related PubHcation

c

Direct Access Method. With the direct access method, access to data can be
anywhere in the data set. The records must be consecutive and fixed-length, and
they can be blocked and spanned. Direct access is valid for all three data set
organizations, and can be at the physical or logical level. The data set must be on
a direct-access device or a display station.

Device management handles (1) requests to transfer data to or from an I/O
device, and (2) interrupts from I/O devices. To do these things, device
management uses a set of device handlers, which are part of the system task set.
Device handlers can be started when the system is loaded, or you can start them
when you issue the request to start a device.

The following sections briefly discuss the devices handled by device
management. You can write your own device handlers and add them to the
system task set. For information on doing this, and for information on device
handlers for devices other than those supported by device management, see the
IBM Series/l Realtime Programming System: Macro User's Guide-Data
Management.

The data-processing I/O portion of device management controls these devices
through either a READ/WRITE, GET/PUT, or EXIO interface:

• Operator station (teletypewriter)
• Display station
• Matrix printer
• Line printer
• Diskette unit
• Fixed-disk storage unit
• Timers (other than those used by the supervisor for time-of-day and logical

timer services)

The sensor-based I/O portion of device management controls these devices
through either a READ/WRITE or an EXIO interface:

• Digital input
• Digital output
• Analog input
• Analog output

Access to timers is through either a READ/WRITE or an EXIO interface.

The IBM Series/l Realtime Programming System: Macro User's Guide-Data
Management will, when available, give detailed information about the topics
covered in this chapter.

The Operating System: Data Management 3 - 3

34 GC34-0102

()
\ J

t ,
, 1

o

c

Chapter 4. The Operating System: Communications

Communications is the part of the operating system that directs the transfer of
data between your programs and remote stations. A remote station is either a
terminal or another computer. Communications handles point-to-point
connections between stations that use start-stop and binary synchronous
communications (BSC) line control. The following example illustrates a possible
communications system.

System/370

OS/VSl

BSC B
T~-~

A
M

(Switched and
nonswitched
point-to-point)

Series/l

Realtime
Programming
System

Start-stop

2740 Communications Terminals
(Switched point-to-point)

Start-stop

2740 Communications Terminals
(Nonswitched point-to-point)

The communications portion of the operating system:

• Establishes, terminates, and controls access between your programs and
remote stations

• Transfers data between your programs and remote stations on point-to-point
lines

You can also, through services of the operating system, translate from one
transmission code to another, such as from EBCDIC to ASCII.

The stations used by start/stop communications are (1) the 2740
Communications Terminal Model 1 (switched and nonswitched), and (2) the
Teletype Model 33/35 (trademark of the Teletype Corporation) or equivalent,
nonswitched.

Communications between a Series/l and a System/370 using OS/VSl BTAM
is supported through BSC line control in point-to-point connections.

During system generation, you supply the information needed to tailor the BSC
and start/stop communications system to your requirements.

The Operating System: Communications 4 - 1

Configuration of a Communications System
You must describe the configuration of your communications system to the
operating system. This includes defining the remote stations with which you
intend to communicate and the characteristics of those stations. The operating
system treats a remote station as a temporary data set-a data set in which the
contents are not saved after transmission.

Opening and Closing Communications Data Sets
Opening a communications data set establishes a connection between your
program and a remote station. This connection must be established before you
can communicate with that station. Opening a data set:

• Associates the remote station (specified by you) with the line
• Verifies that the current line definition is compatible with the remote station

attributes given in the data-set-descriptor control block
• Connects the issuing task to the remote station

A communications data set remains open until you issue the instruction to
close it. Closing a data set breaks the connection that was established when the
data set was opened. Closing a data set:

• Terminates the connection between the task and the remote station
• Deallocates or disconnects the line from your data set

Processing Communications I/O Requests
Reading from and writing to remote stations (through the READ/WRITE
interface) is handled through events. When a read or write operation is issued,
the task waits for its completion. When the operation completes, the event is
posted.

Before issuing an I/O request, you must define the physical buffer from which
or to which the data is to be transferred. The address of the buffer is made
available to the operating system when the I/O request is issued.

All data transfers are made directly from the storage buffer to the remote
station and from the remote station to the storage buffer. You are responsible for
ensuring that the buffers are properly managed. The output buffer must be filled
before a write request can be honored.

Support for the Model 33/35 is limited to making and maintaining half-duplex
line connections, transmitting user-furnished buffers on the line, receiving data
from the line and filling user-furnished buffers, and recognizing user-supplied
change-of -direction characters on receive as end of data.

You are responsible for inserting and deleting terminal control characters (such
as, for start/stop, carriage return and line feed). On a read operation, data is
placed in the storage buffer exactly as it comes across the line, including all the
control characters used by the remote station to transmit the message.

CO"'IIIIl1ficatiolls I/O Operations

4 - 2 GC34-0102

Using read and write instructions, you can do these communications I/O
operations:

fl ,)

f ..

(~

o

c

Online TenDinai Tests

c

OPERATION BSC START/STOP

Transmit X X

Receive X X

Transmit Interspersed with Receive X

Receive Interspersed with Transmit X

Transmit with Conversational Reply X

Receive with Conversational Reply X

Transmit Reply X

Transmit EOT X

Transmit Acknowledgement X

Transmit Interrupt X

Transmit. The transmit operation sends data to a remote station.

Receive. The receive operation requests data from a remote station.

Transmit Interspersed with Receive. This operation is initiated when, while you
are transmitting data, a remote processor issues a request to send a high-priority
message to you. The remote processor issues a reverse-interrupt request. After
the data is received from the remote processor, transmission resumes.

Receive Interspersed with Transmit. This operation is initiated when, while
receiving data, you wish to send a high-priority message to the remote processor.
You issue the reverse-interrupt request. After the data is transmitted to the
remote processor, you can resume receiving.

Transmit with Conversational Reply. With this operation, the remote station
responds to your transmissions with either a positive acknowledgement or data. If
the remote station sends a positive acknowledgement, the transmit operation is
posted with normal completion, and another transmission can be issued. If the
remote station responds with data, the transmit operation is posted with a
completion code indicating that data was received and must be processed.

Receive with Conversational Reply. With this operation, you respond to
transmissions from the remote station by sending data. After sending the data,
you either transmit another message or wait for a reply from the remote station.

Transmit Delay. With this operation, you can send a delay sequence instead of
the next operation.

Transmit EOT. This operation lets you send an end-of -transmission character.

Transmit Acknowledgement. This operation lets you transmit positive or negative
acknowledgements. These acknowledgements interrupt the transmission of
multiple blocks of data from a terminal to the processor.

Transmit Interrupt. This operation writes a continuous space signal to a remote
station and turns the line around. With this operation, you can initialize a remote
station.

With online terminal tests, an operator can test start/stop terminals concurrently
with normal operations. The test does not interfere with normal operations. By
entering a request from the terminal, the operator can transmit a record to the
Series/1 and have it transmitted back to the terminal a specified number of times

The Operating System: Communications 4 - 3

Related Publication

4 - 4 GC34-0102

to verify that messages are being transmitted and received intact. This type of
test, commonly called an echo test, is available for the 2740 Modell
communications terminal.

Online terminal testing is optional - you specify it during system generation.

The IBM Series/l Realtime Programming System: Macro User's
Guide-Communications will, when available, give detailed information about
communications.

o

c

Stand-Alone Utilities

Chapter 5. The Operating System: Utilities

The Series/1 utilities are part of the operating system. They are IBM-supplied
application programs with which you can easily and efficiently manage data and
maintain your system.

Series/1 utilities can be divided into two categories-stand-alone and system
utilities. The stand-alone utilities are loaded into storage from diskette, whereas
the system utilities require a disk as the system-resident volume.

The following sections briefly describe the utilities that are available. For
details on what they do, how to use them, and how they work, refer to IBM
Series/l Realtime Programming System: Operator Commands and Utilities.

The stand-alone utilities are a processor-storage-to-diskette dump, disk
initialization, and system build. You load the stand-alone utilities from diskette,
and no other program can execute concurrently with them.

The processor-storage-to-diskette dump utility resides by itself on a diskette,
and runs on any Series/1 with a diskette unit and at least 16K bytes of storage.

The disk initialization and system build utilities are supplied on a diskette along
with a stand-alone utility monitor. You load this diskette to invoke utilities
running under the stand-alone monitor.

The disk initialization utility initializes your disk for use with Series/1 and
must be invoked before the system-build utility is executed for a new disk device.

Processor-Storage-to-Diskette Dump

Disk Initialization

System Build

This dump utility takes a stand-alone dump of processor storage and registers
onto diskette with minimal loss of storage contents. The dump is taken onto the
diskette from which the utility was loaded. Only 256 bytes of processor
storage-addresses 0 through 255-are lost when this utility executes.

Disk initialization has two initialization types-primary initialization and alternate
sector assignment.

Use primary initialization for complete initialization when the disk is installed,
or when complete reinitialization is necessary. The utility first verifies and
corrects sector IDs, then analyzes the disk surface to find defective sectors.
When it finds a defective sector, it assigns an alternate sector on cylinder 1, and
prints a message at the operator station.

Alternate sector assignment lets you assign alternate sectors for those found to
be defective. It also attempts to recover the data from the defective sector and
move it to the alternate.

This utility is the first program to be executed during installation of the operating
system, because it builds your disk in preparation for executing system utilities or
for system generation.

This utility copies to disk the starter system diskettes shipped from IBM. These
diskettes contain libraries needed to load the starter system from the disk and to
either begin the system-generation process or execute system utilities. This utility

The Operating System: Utilities 5 - 1

System Utilities

Compress

Copy

5 - 2 GC34-0t02

can also be used to restore the starter system and system utilities, and make the
system suitable for loading.

The system utilities run under the operating system, and they require a disk as
the system-resident volume. When you invoke the system utilities, they are
loaded as a task set into a user partition.

System utility commands can be entered by way of an interactive device (such
as an operator station) or a noninteractive device (such as a disk). You can enter
system utility programs in one of two modes-single-line and prompt/reply. If
you are familiar with the format of a particular command, enter it in single-line
mode---enter all the required information in a single statement. However, if you
are not familiar with a certain command's format, use the prompt/reply mode.
That mode leads you step-by-step through the procedure. If necessary, you can
switch from one mode to another between commands.

The system utilities have some special features that make them easier to use:

• Hexadecimal or decimal numerics-You can enter a value in any numeric
field using either decimal or hexadecimal notation.

• Cancel-You can cancel the currently requested utility any time that you are
allowed to enter a reply. You can then restart the cancelled utility, start a new
one, or end the utility session.

• Comments-You can enter comment records, which are not processed as
commands or data. This feature is used when commands are being entered
from a disk data set.

• Line continuation-In single-line format you can, if necessary, continue a
command on the next line.

• Error recovery-This depends on the mode you are using:
In prompt/reply mode, a syntax error is reported immediately-before the
next prompt. The utility tells you the reason for the error, then repeats the
prompt.
In single-line mode on an interactive device, your error is reported, and the
utility requests that you correct and reenter the entire command. On a
noninteractive device, the error is reported and the utility session
terminates.

This utility consolidates all available free space into one contiguous area within
the specified partitioned data set or volume. It lets you compress in-place any
partitioned data set or volume that contains 500 or fewer table of contents
entries. The specified data set is opened by the utility for exclusive use only.

Note. If you do not wish to compress in-place, or if you have more than 500
members in the data set to be compressed, use the COpy UNIT utility.

This utility transfers an image from one location to another. The locations can be
on the same or a different device or device type. For example, you can copy a
data set from a disk to a diskette. If the member you are copying to does not
currently exist and space is available, the member is created for you, using the
attributes of the member that you are copying from. This utility has four
subfunctions:

• UNIT-You can copy an entire volume, data set or member, or device (disk
or diskette) by specifying the unit to be copied. You have the option of
compressing the target data set or volume.

n
\J

t ~ ,

o

Def"me

c

• ADD-You can add records to the end of an existing consecutive data set.
• MULT-By specifying a volume, data set, or member prefix, you can copy all

elements that begin with the prefix to a target data set; or, you can copy all
elements without this prefix to the target data set

• DISKETTE-You can copy the entire physical contents of one diskette to
another diskette.

Notes.

1. Unique diskette information is not copied.
2. This copy feature uses either:

- Two or more diskette units (if your hardware configuration has them) or
- A diskette and a disk (if you have only one diskette unit).

This is a multifunction utility-the following list briefly discusses what it can do:

Def"me an Extended-Format Disk or Diskette. With this option you can define an
extended-format disk or diskette containing logical volumes. This utility must
precede your actually creating the logical volume on the device.

Create a Consecutive or Random Data Set or Member. This option creates a
consecutive or direct data set or member on an extended-format disk or diskette
or on a basic-exchange diskette.

Create a Partitioned Data Set. This option creates a partitioned data set in a
logical volume on the specified disk or diskette.

Create a Logical Volume. This option creates a logical volume on the specified
extended-format disk or diskette.

Delete a Logical Volume, Data Set, or Member. This option removes the
specified logical volume, data set, or member from the directory of the device,
volume, or data set in which it resides. The space is therefore free and available
for reallocation.

Delete Multiple Selected Logical Volumes, Data Sets, or Members. This option
removes the specified logical volumes, data sets, or members from the
appropriate directory.

Rename a Data Set, Member, or Logical Volume. This option replaces the name
of a specified data set, member, or logical volume with a specified new name.

Rename a Volume. This option replaces the name of a specified volume with a
specified new name.

Build a Communications Data Set Definition. This option creates a
communications DSD in the specified task set library on the specified device.

Build a Direct-Access Data Set Definition. This option creates a DSD for a disk
or diskette in the specified task set library on the specified device.

Build a Display Station Data Set Definition. This option creates a DSD for a
display station in the specified task set library on the specified device.

Build an Operator Station Data Set Definition. This option creates a DSD for an
operator station in the specified task set library on the specified device.

Build a Printer Data Set Definition. This option creates a printer DSD in the
specified task set library on the specified device.

Build a Sensor I/O Data Set Definition. This option creates a sensor-I/O DSD
in the specified task set library on the specified device.

The Operating System: Utilities 5 - 3

Initialize

IPLmaint

Merge

Patch

Report

5 - 4 GC34-0102

Build a Timer Data Set Def"mition. This option creates a timer DSD in the
specified task set library on the specified device.

Delete a Data Set Definition. This option deletes a DSD from a DSD table in
the specified task set library.

This utility formats a diskette as either basic-exchange format or extended
format. (Basic-exchange format has 128-byte sectors, and extended format has
either 256- or 512-byte sectors.)

The utility checks and flags defective cylinders, then initializes the volume label
and header labels.

Use this utility command to either:

• Prepare a diskette for IPL of the stand-alone processor-storage-to-diskette
dump utility

• Change the name of the system to be loaded by the next IPL sequence, and
specify whether the system to be loaded is the primary or alternate system

Use this utility command to combine two partitioned data sets or volumes into a
third partitioned data set or volume. After the merge, you still have the two
original data sets plus the target data set that contains the combined entries.

Use this utility to modify information stored on a disk or diskette device, volume,
data set, or member. The input for this utility comes from either the operator
station or from a disk or diskette data set or member.

This utility is different from the others, in that it prompts you at two times.
Once you have described the source of the input records, and the devices,
volume, data set, or member to be patched, you are prompted again. In your
reply, you specify whether you want to patch the data or just display it.

If you choose to patch, you have a further option of verifying the current data
before the patch is applied.

This utility generates these reports:

• Directory (or table of contents)-This is a listing of a device, volume, or data
set directory. The directory for the source device, volume or data set is
formatted and written to the target device, volume, data set or member
specified. You can select (1) a listing of all volumes on a disk or diskette, (2)
a listing of all data sets within a volume, or (3) a listing of all members within
a data set.

• Data Dump-This is a hexadecimal dump of data contained in a device,
volume, data set, or member. The data from the source device, volume, data
set, or member is formatted and written to the specified target device, volume
or data set. The data dump starts at the location specified by the relative
record and relative byte, and it continues for the number of records or bytes
specified by the record count and byte count. If you do not specify these
parameters, the dump continues until the end of data is reached. The output
can be printed on a hard-copy device. Valid EBCDIC characters are also
printed.

• Storage Image Dump-This listing is a previously acquired storage dump on a
disk or diskette that is converted to printable form. The dump can be

()

{ "
\

(''''

.p

o
Related Publication

c

generated by either the Series/l abend processor or the stand-alone
processor-storage-to-diskette-dump utility. You can produce a full or partial
hexadecimal dump, which can be printed on a hard-copy device. Valid
EBCDIC characters are also printed. In addition, abend information, registers,
storage keys, and Series/l control blocks can be printed.

IBM Series/l Realtime Programming System: Operator Commands and Utilities

The Operating System: Utilities 5 - 5

(:
5-6 GC34-0102

o

Chapter 6. Program Preparation

The Series/l program preparation facilities consist of four program products that
are separate from the operating system:

• The Program Preparation Subsystem (also referred to as the subsystem), which
comprises:

The job stream processor
The text editor
The macro assembler
The application builder

• FORTRAN
• Mathematical and Functional Subroutine Library
• PL/I
These program products prepare the application programs that run under the
operating system. In addition, each program product runs under the operating
system in a batch environment.

The Job Stream Processor

The Text Editor

The Macro Assembler

The job stream processor is the part of the subsystem that controls the execution
of the other programs in the subsystem, as well as your own batch programs. It
has a control language for invoking programs and defining the data sets they use.
The job stream processor reads the control statements (such as JOB, EXEC,
PARM) , analyzes the parameters you supply, and processes your requests for
executing programs.

The job stream processor is your interface to the text editor, assembler,
application builder, FORTRAN, PL/I, and your own batch programs. It manages
the data sets and devices used by the programs and handles the automatic
job-to-job, step-by-step transition during batch job input stream processing.

The text editor is a part of the subsystem. With it, you can create, modify, list,
and save text modules. You can use the editor in an interactive mode, entering
text and commands from an operator station, or you can use it in a
noninteractive mode by defining a disk or diskette data set as the command input
source.

Using the editor, you can create a new text module or retrieve an existing text
module and update it. The editor has 15 commands that have a variety of editing
capabilities. The output from the text editor is a newly-created or updated text
module that can be saved in a disk or diskette data set and later used as input to
the macro assembler, FORTRAN, PL/I, or another program.

The macro assembler translates macro, machine, and assembler instructions into
one or more relocatable object modules and generates a program listing. Source
statements are read in from a data set in the input stream or from a library data
set.

Program Preparation 6 - 1

The Application Builder

6 - 2 GC34-0to2

The object modules produced by the assembler consist of object code and
information that the application builder uses for building relocatable modules and
resolving external symbols.

The assembler also produces various types of listings:

• Source statements and macro expansions
• External symbol dictionary and relocation dictionary
• Cross-reference table
• Error messages and statistics

You can control the types of listings the assembler generates by the options you
specify.

The application builder handles the final steps in program
preparation-processing the object modules produced by the assembler or
another language translator. The application builder does this processing in three
phases:

Phase t. This phase can create a load module in absolute format or a composite
module in relocatable format. Absolute load modules are not executable under
the realtime programming system. A composite module, in relocatable format, is
used as input to phase 3 processing. A composite module is made up of object
modules (programs) structured into a resident segment and optional overlay
segments.

Phase 2. This phase builds control modules and pre bind modules. The control
module, which is required by the operating system, contains the tables and
control blocks that the system needs to execute the functions requested by the

o

task set (data management, queuing, and tasking, for example). The prebind I ,
module, which is optional, allows you to specify the information needed for , 1

binding the required resources to an application task set when it is installed
rather than at execution time. This pre binding of resources allows a task set to
start execution faster.

Phase 3. This phase creates task sets that are executable under the realtime
programming system.

To create an application program that can execute in the realtime programming
system environment, you must use phases 1, 2, and 3 of the application builder.
Phases 1 and 2 create modules that are the input to phase 3, which combines
them into a task set and writes that task set to a task set library. A task set
library is a volume containing all the modules and tables associated with a single
task set.

In phase 3, you must supply partition information. A task set must be prepared
for a specific partition because it is not relocated when it is loaded.

A task set can have a simple structure, where all segments are resident during
execution, or it can have a complex structure (overlay), where some segments
reside on disk. In overlay structure, a storage-resident segment of code can
request that the system retrieve a unit of code from disk and pass control to it.
The specific structure and characteristics of the task set are defined by the
information you supply on control statements as input to the application builder.

The printed output from the application builder is:

• Module map listings (for either composite modules or absolute load modules) (......... ~
• Task set map listings . ,
• Diagnostic messages and control statement listings

o

c

FORTRAN
FORTRAN is a high-level, mathematically oriented language designed to
manipulate numeric data and format input/output operations. The language
increases programming productivity because it requires less coding than assembler
language. FORTRAN for the Series/l consists of a compiler, a subroutine
library, and an optional system support library.

The FORTRAN compiler automatically produces code with emphasis on
compact storage and execution speed. With FORTRAN and your Series/I, you
can:

• Perform calculations and make decisions
• Read information from sensor devices and send commands back to controlling

devices
• Schedule programs and input/output operations
• Create reports and disk data sets

The FORTRAN subroutine library consists of routines for mathematical
calculations, data conversion, error handling, and input/output operations. Only
the library routines that you need are included in your program; your program
need not contain any unnecessary code. Because each routine is reenterable, it is
included only once in a storage load, resulting in further storage savings.

Series/l also offers an optional FORTRAN system support library as a
separate program product. This library includes process I/O, system service
interface, time-of-day, and date subroutines.

Mathematical and Functional Subroutine Library (MFSL)

PL/I

MFSL is a set of subroutines for application programming on the Series/I. It has
mathematical, conversion, error-checking, and service subroutines that can be
used by application programs written in Series/l FORTRAN or assembler
language.

Series/l PL/I is a high-level, general-purpose language. It can increase
programming productivity in such areas as:

• Realtime applications
• Scientific and problem-solving applications
• Traditional data processing
• Transaction processing

Highlights of Series/l PL/I are:

• Language extensions (ANS PL/I subset plus realtime and sensor I/O
support)

• Extensive I/O capability
• Multiple data types and organizations
• Data manipulation features
• Extensive execution-time error-handling with a programmable error-handling

capability (ON-handling language)
• Program modularity (PL/I block structure and scope rules)
• Storage efficiency (reenterable code, automatic storage allocation, and

transient functions

The PL/I product consists of a compiler and a resident execution-support
subroutine library, and a separately priced transient execution-support subroutine
library.

Program Preparation 6 - 3

Related Publications

6 - 4 GC34-0102

For more information about program preparation, FORTRAN, MFSL and PL/I,
refer to the following publications:

• IBM Series/l Program Preparation Subsystem: Introduction, GC34-0121 *
• IBM Series/l Program Preparation Subsystem: Batch User's Guide
• IBM Series/l Program Preparation Subsystem: Text Editor User's Guide
• IBM Series/l Program Preparation Subsystem: Macro Assembler User's

Guide, SC34-0124*
• IBM Series/l Program Preparation Subsystem: Macro Assembler Reference

Summary
• IBM Series/l Program Preparation Subsystem: Application Builder User's

Guide
• IBM Series/l Program Preparation Subsystem: Messages and Codes
• IBM Series/l FORTRAN IV: Introduction GC34-0132*
• IBM Series/l FORTRAN IV: Language Reference, GC34-0133*
• IBM Series/l FORTRAN IV: User's Guide
• IBM Series/l FORTRAN IV: Language Reference Card
• IBM Series/l Mathematical and Functional Subroutine Library: Introduction,

GC34-0138*
• IBM Series/l Mathematical and Functional Subroutine Library: User's Guide
• IBM Series/l PL/ I: Introduction, GC34-0084*
• IBM Series/l PL/ I: Language Reference Manual
• IBM Series/l PL/ I: User's Guide
• IBM Series/l PL/ I: Messages
*These publications are available now.

t " ,

Appendix A. Summary of System Functions

0
The following chart lists the functions supported by the operating system and
the various ways to request them from a program-through macros, PL/I, and
FORTRAN.

System Function Macro PL/I FORTRAN

Storage management

Free dynamic storage in FREEMAIN automatic automatic
user partition

Free subpool segment FREESEG

Allocate dynamic storage GETMAIN automatic automatic
in user partition

Allocate subpool segment GETSEG

Define subpool SUBPOOL

Task set management

Get completion code GETCC

Request task set IDENTIFY automatic automatic
identification

Terminate requesting LlNKTS TRANSFER TO INVOKE statement
task set and start new statement
task set

(~~
Queue task set to a QUETS RUN statement CALL$TSQUE
partition

AI ter rollou t/rollin status SETROLL CALL SETROLL CALL $SETRL

Terminate a task set STOPTS STOP statement or CALL $TSSTP
STOP statement with
ACTN option

Update system scheduler UPDSST RUN statement with CALL $MDSST,
table AT, AFTER EVERY, CALL START, or

or SOURCE option, CALLTRNON
or UNSCHEDULE
statement

Update system task set UPDSTST automatic CALL $MDSTT
table

Task management

Resume execution of a RESUME automatic CALL START,
suspended task CALL TRNON, or

CALL WAIT

Create or start a new STARTASK RUN statement CALL$ATACH
task

Terminate a task STOPTASK STOP statement with CALL$DTACH
ACTN option

Suspend execution of SUSPEND automatic CALL WAIT
a task

Program management

Request program CALL CALL statement CALL statement

C
execution

Define program entry PROGRAM PROCEDURE PROGRAM statement
statement with TASK
option

Summary of System Functions A-I

A - 2 GC34-0 102

System Function

Return from program
(restore registers)

Save registers and return
address

Event management

Defme an event

Delete an event

Post a completed event

Reset an event

Wait for an event

Generate a list of
events

Queue management

Defme a queue

Delete a queue

Locate a queue
element

Remove an element
from a queue

Add an element to a
queue

Timer management

Convert time to different
format

Define a timer

Wait on a timer

Delete a timer

Increase time of day

Read time-of-day or
date

Change time-of-day or
date

Stop a timer

Start a timer

Management of serially
reusable resources

Define a request control
block

Delete a request control
block

Relinquish control of a
logical resource

Provide serial access to
a logical resource

Macro

RETURN

SAVE

DEFEVENT

DELEVENT

POST

RESETEV

WAIT

WAITLIST

DEFQUE

DELQUE

RECEIVE

REMOVE

SEND

CNVTIME

DEFTlMR

DELAY

DELTlMR

INCRTOD

READTOD

SETTOD

STOPTIMR

STRTTIMR

DEFRESC

DELRESC

RELEASE

REQUEST

PL/I

RETURN or END
statement

automatic

DECLARE statement
with event attribute

automatic

POST statement

COMPLETION

WAIT statement

WAIT on mUltiple
events

OPEN statement with
TRANSIENT attribute

CLOSE statement with
TRANSIENT attribute

READ statement for
transient file

READ statement for
transient file

WRITE statement for
transient file

automatic

DECLARE statement
with AT attribute

DELA Y statement

automatic

CALLINCRTOD

TIME, DATE, DAYNO
built-in functions

CALL SETTlME,
CALL SETDA TE, or
CALLSETDAYNO

DISCONNECT
statement

WAIT, CONNECT, or
RUN statement

automatic

automatic

UNLOCK statement

LOCK statement

FORTRAN

RETURN statement

automatic

CALL$DFNEV

CALL$DLTEV

CALL $POST

CALL $name with
event parameter

CALL $AWAIT

EXTERNAL;
EVENT(s)

CALL$DFNQU

CALL$DLTQU

CALL$DEQUE

CALL$DEQUE

CALL$ENQUE

automatic

automatic

CALL WAIT

automatic

automatic

CALL $RDTOD,
CALL TIME, or
CALL DATE

CALL$WRTOD

CALL START
CALLTRNON

CALL START
CALL TRNON

CALL $DFNRS

CALL $DLTRS

CALL $RELRS

CALL $REQRS

System Function Macro PL/! FORTRAN

0
Class interrupt management

Read programmer-console READFFC
data buffer

Write to the programmer- WRITEFFC
console data buffer

I/O interrupt management

Connect to a PI interrupt CONNECT CONNECT statement CALL$CON
for PI type EVENT

Disconnect from a PI DISCONN DISCONNECT CALL $DISCN
interrupt statement for PI type

EVENT

Error management

Check operator mode CHKOMS
switch

Copy primary storage DUMP CALL DUMP

Return error-exit status ERRET ON-handling CALL $name with
return code parameter

Format and route a MSG Print execution- Print execution-time
message time messages messages

Reset disk-resident data RESETEOD
set or member

Reload and restart RESTART CALL RELOAD
supervisor

Retrieve record from RETRIEVE

(,
error log

Activate task error exit SETERXIT automatic automatic

Write to error log WTL

Operator interface

Write to operator station WTC DISPLA Y statement PAUSE

Write to operator station WTCR DISPLA Y statement PAUSE with
with reply with REPLY option interrupt

Data management

Build an immediate device BLDIDCB automatic automatic
control block

Build a device control BLDDCB automatic automatic
block

Execute I/O EXIO automatic automatic

Data set management

Build a data set definition BLDDSD ENVIRONMENT

Build an I/O queue BLDIOQE
element

Complete an asynchronous CHECK WAIT statement CALL WAIT

GET /PUT request

Oose a data set CLOSE CLOSE statement CLOSE statement

Oose a prefound member CLOSEM ENVIRONMENT

Request device-dependent CONTROL ENVIRONMENT

functions

C Convert variables to and CONVERT Conversion routine Uses MFSL

from EBCDIC in PL/I library routines

End-of-volume EOV READ (,EOF=,ERR=)

processing
Summary of System Functions A - 3

System Function Macro PL/I FORTRAN

Extract data management EXTRACT
information ,)
Get input from a device GET READ or GET READ statement \ }

statement

Locate a PDS member LOCATE automatic automatic
or members

Relate the current (-1) NOTE
data set position

Open a data set OPEN OPEN statement automatic

Open a prefound member OPENM ENVIRONMENT

Read input from a data READ READ statement READ statement
set

Reposition a data set POINT READ statement
with IGNORE
option

Send a logical record PUT WRITE or PUT WRITE statement
to a data set or device statement

Set end of data SETEODS READ/WRITE
with EOF

Translate a data area TRANSLATE automatic automatic

Write output to a data WRITE PUT, WRITE, or WRITE statement
set REWRITE statement

Read analog input READ READ statement CALL AIRDW or
CALLAISQW

Write analog input WRITE WRITE statement CALLAOW

Read digital input READ READ statement CALLDIW
f " Write digital output WRITE WRITE statement CALL DOLWor

CALL DOMW " J

Communications

Define switched-line SWLlST
answer list

A - 4 GC34-0102

o

o

These functions are available to assembler-language programmers for writing
code to execute in supervisor state and for performing operations not usually
done in application programs.

Note. Macros marked with an asterisk are for use in supervisor state only.

System Function

Storage management

Allocate storage from any partition

Task set management

Change I/O usage count

Program management

Execute system program

Return from system program

Load transient

Generate parameter list

Generate resolved parameter list

Remove transient from storage

Event management

Post device service task

Reset a device service task event

Device service task wait

Management of serially reusable resources

Request use of a gate control block

Relinquish use of a gate control block

I/O interrupt management

Define an interrupt

Delete an interrupt

Wait for an interrupt

Error management

Define and activate an error log

Delete and deactivate an error log

Record error status

Set operator mode switch

Terminate system operation or system function

Operator interface

Start a system command reader

Stop a command reader

Data management

Display trace variables

Inhibit I/O tracing

Trace I/O request

Resume I/O tracing

Start I/O tracing

Stop I/O tracing

Macro

GETSTG*

UPIOC*

EXEC*

EXIT*

LOAD

PARMLIST

RESOLVE*

UNLOAD

DSTPOST*

DSTRESET*

DSTWAIT*

GATE*

UNGATE*

DEFINT*

DELINT*

INTWAIT*

DEFLOG

DELLOG

LOG*

SETOMS

SYSTERM*

STARTCR*

STOPCR*

TRCDIS

TRCINH

TRelO

TRCRES

TRCSTR

TRCSTOP

Summary of System Functions A - 5

A - 6 GC34-0102

System Function

Device management

Connect a logical device number to a physical device address

Build a device descriptor block

Build a device handler program list

Build a device I/O control block

Build a device handler program list control block

Remove a physical volume

Mount a physical volume

Start a device

Stop a device

Switch between a device and an alternate

System execute I/O

Take a device offline

Bring a device online

Data set management

Create a direct-access data set

Define, change, or read data set defmition

Delete a DSD entry

Delete a direct-access data set

Rename a volume, data set, or member

Macro

ASSIGN

BLDDDB

BLDDHPL

BLDIOCB

BLDPLCB

DEMOUNT

MOUNT

STARTDEV

STOPDEV

SWITCH

SYSIO*

VARYOFF

VARYON

CREATE

DEFDSD

DELDSD

DELETE

RENAME

I \

t

o

(.c

c

Appendix B. Glossary

The following reference symbols are used in this glossary:

Contrast with. This refers to term that has an opposed or substantively different
meaning.

Synonym for. This indicates that the term has the same meaning as another
term, which. is defined.

Synonymous with. This identifies terms that are synonyms for the term being
defined.

See. This refers to multiple-word terms that have the same last word and are
defined.

See also. This refers to related terms that have a similar, but not synonymous,
meaning.

Glossary B-1

8 - 2 GC34-0 102

absolute task set. A task set which executes in a specific partition and has address
constants adjusted according to the partition origin storage address. An output of
the application builder.

ACB. Access control block.

access level. Three techniques available for accessing data: basic, logical, and
physical. See also basic access level, logical access level, physical access level.

ACT. Abend control table.

active state. A software state in which a previously started task is in contention
with other tasks in the system for control of the processor. There may be a
maximum of four simultaneously active tasks (one per level); however, only one
task at a time will have control of the processor.

addressing 10. The unique identifying character or characters associated with a
communications station when writing to that station.

address space. The range of main storage (0 to 64KB) addressable 'by a single
user.

allocated storage. See storage.

alternate device. A device assigned as a backup unit to another device. Requests
may be manually switched from a device to its assigned alternate. Contrast with
primary device.

answer list. A list of switched-line station IDs with any required control
information. This list is used to insure that the switched line is connected to an
authorized user.

application build. See application builder.

application builder. The program preparation facility (operating in conjunction
with the job stream processor under control of the realtime programming system
supervisor) that prepares the object module output of language translators for
execution. To create output that is executable in a user-provided environment, it
can be used to create an absolute load module (an output of phase 1 processing).
To create output that is executable under the realtime programming system, it
can be used to create a task set (the final output from processing performed in
phases 1, 2, and 3).

asynchronous data transfer. A physical transfer of data to or from a device that
occurs without a regular or predictable time relationship following the execution
of an I/O request. Contrast with synchronous data transfer.

asynchronous timer. A logical timer which runs concurrently with the task that
caused its creation. Asnychronous timers are normally used for timeouts.

attended mode. A system operating mode indicating that an operator is present at
the system and a system console is included at the system.

auto-call library. Disk resident load module library used by the application builder
to obtain composite modules that contain a program that can resolve a
reference from another program in a task set.

auxiliary storage. See storage.

basic access level. A supervisor interface that provides access to data on a device
by physical record through execution of requests (EXIO) for hardware I/O
operations.

batch execution. Program execution initiated by the job stream processor in
response to job control statements.

o

(~

o

c

batch partition. The user partition that is being used by and managed by the job
stream processor.

batch program. Any program preparation facility or user task set running under
the control of the job stream processor.

BCB. Buffer control block.

binding. The assignment or connection of resources or objects to a task set. This
occurs before task set execution.

block. The portion of a data set accessed at the physical level (READ/WRITE).
A block may contain one or more physical records and may be contained in one
or more physical records.

bound task set load module. A task set load module which has been bound to its
execution environment. The bound task set load module contains the image of
the partition at the completion of task set installation. See unbound task set load
module, task set load module.

buffered device. A device which has I/O elements queued to a direct access
device before being written.

CCCB. Completion code control block.

CDC. TP device control block.

COT. Command definition table.

CIDC. Close interrupt control table.

class interrupt. A hardware interrupt from an SVC instruction, program check,
full-function console, trace, power/terminal check, or machine check.

CM. Control module.

command. A character string which represents a request for action within the
system from a source external to the system.

command processor. A system task which processes a set of commands from a
queue.

command reader. A system task which reads commands from an input data set
and routes each command to the command processor. A maximum of two
command readers may be active at the same time.

common control section. A type of control section that reserves an area of
storage. It can be referred to by resident and overlay segments within a task set.

composite module. Object modules (programs) structured into a resident segment
and optional overlay segments. A composite module is in relocatable format, that
is, its address constants can be modified to compensate for a change in its origin.

consecutive data set. A collection of data having a consecutive arrangement to
which the system has access.

consecutive data set organization. Blocks and records are physically consecutive
from the beginning of the data set to the end-of-data indicator. Data is processed
by accessing the block or record which follows the last block or record accessed.
End-of -data need not coincide with the end of the data set. All data sets on
serial devices have consecutive organization. Data sets on direct access devices
may have consecutive organization.

consecutive organization. See consecutive data set organization.

control module (CM). A set of tables and control blocks that contain control and

Glossary B-3

B - 4 GC34-0to2

parameter information pertaining to the task set. It is one of the modules
produced by the application builder and subsequently included in the task set
load module.

cycle steal. A hardware condition that occurs when an 110 device shares
processor storage cycles with the processor.

data set. A named collection of data which resides on a device. See consecutive
data set, direct data set, partitioned data set.

data set control block (DSCB). Each level of a data set is described by a DSCB
while the data set is open.

data set def"mition (DSD). Describes and locates a data set being used by a task
set. The DSD exists in the using program or in a DSD table data set in the task
set library. The DSD is accessed when the data set is opened.

data set def"mition name (DSD name). The external name of a DSD table entry
used within a task set to reference the data set described by that entry.

data set definition statement (DSD statement). A job stream processor control
statement that allows the user to establish a connection between a data set or
device and a DSD name used in a program.

data set definition table (DSD table). A table that contains parameters for data
sets.

data set name (DS name). The term or phrase used to identify a data set. It is
contained in the data set definition table of each task set referencing that data
set.

nCB. Device control block.

nCT. Dispatcher control table.

DDB. Device descriptor block.

device. A piece of mechanical, electrical, or electronic equipment used to contain
data that is input to or output from the processor.

device address. Physical device address recognized by the hardware.

device backup. Pertaining to the assignment of alternate devices. See manual
device backup.

device dependent program. A program that must consider the characteristics of a
specific type of 110 device when processing an 110 request.

device descriptor module (DDM). A program unit containing needed information
required to manage a device by a device service task. Device descriptors are
located in the resident load module or in a data set in the task set library of the
system task set.

device handler. A combination of a device service task and an interrupt service
task.

device-independent program. A program that does not consider the characteristics
of a specific type of input I output device when processing an input I output
request.

device line. The actual number of characters that can be displayed on one print
line of the device. For example, the operator station line length is 72 characters,
the display station line length is 80 characters.

device name. The logical name assigned to a device.

device number. The logical device identifier used by device service tasks to

(-)
'. j

o

c

reference a device address.

device service task. A queue-driven task that processes requests for data transfer
and performs the I/O operations necessary to effect the requested functions on a
specific device.

DICB. Data integrity control block.

DIOCB. Device I/O control block.

direct access device. See direct access storage device (DASD).

direct data set. A data set whose records are in random order on a direct access
volume. Each record is stored or retrieved according to its actual address or its
address relative to the beginning of the data set.

direct organization. The organization of records in a data set created by the direct
access method.

disk queue. A queue which has its elements on a direct access device. Contrast
with storage queue.

dispatch. The act of allocating the processor to a task so that it can execute
instructions on behalf of the task.

DQCB. Disk queue control block.

DSD. Data set descriptor.

DSD environment. See environment.

DSD name. See data set definition name.

DSD statement. See data set definition statement.

DSDT or DSD table. See data set definition table.

DVT. Device vector table.

dynamic storage. (1) A device storing data in a manner that permits the data to
move or vary with such that the specified data are not always available for
recovery. (2) The available storage left within the partition after the task set is
loaded.

ECB. Event control block. A control block used to manage events.

editing session. A period of time beginning when the editor is invoked and ending
when the editor has completed processing.

end-of-data indicator. A code which signals that the last record of a consecutive
data set has been read.

environment (of a data set). The data set definitions that are in effect at any point
in time during a batch session.

environment list. A data set (or member) containing a group of data set
definitions which comprise an environment.

ERB. Execution request block. A control block that contains registers and data
for execution of a supervisor program.

external name. The symbolic EBCDIC name for a resource.

first level interrupt handler (FLIH). A system-provided subroutine resident in the
system task set. A FLIH fields a particular type hardware interrupt.

nxed-line number. The line number assigned to a text record and associated with

Glossary B - 5

B - 6 GC 34-0 102

that text record for the duration of the editing work session (unless specifically
altered by the user).

fIXed partition. A partition having a predefined beginning and ending storage
address.

FLIH. First level interrupt handler.

free storage. See storage.

FSCR. Free storage control block.

gate. (a) A request for access to a serially reusable object. (b) To control access
to a serially reusable resource.

GCR. Gate control block. A control block used to manage supervisor requests for
a serially reusable resource.

generation input stream. An input stream created by the generation program
which, when executed, produces a system tailored to the user responses to system
generation questions.

global area. An uninitialized portion of a partition accessible by any program of a
task set in the partition at a given time. The same area may be used by other
task sets that execute in the same partition. The size of the GLOBAL area is
determined by the collective sizes for the largest uniquely named (or unnamed)
GLOBAL section definitions. These definitions are declared by programs that
make up a task set.

global control section. A type of control section that reserves an area of storage.
It can be referred to by any primary or secondary program and their associated
overlays within a task set. See also global area.

global object. An object, such as a queue, which may be shared by all task sets in
the system.

global parameter buffer. A buffer in the global portion of the partition, accessible
to batch programs, where the job stream processor stores the PARM statement
parameter string.

GPR. General purpose register.

ICR. Interrupt control block.

ICDS. Input command data set.

IDCR. Immediate device control block.

input command data set (lCDS). A consecutive data set from which a command
reader or command processor may obtain commands or data.

interactive. A realtime interface between a user and a program system.

internal name. A 16-bit binary value assigned as a result of an NeON, which is
used to represent an EBCDIC external name within the system. See name
constant.

interrupt service task (1ST). A user or system-supplied task which is connected to
an I/O interrupt and is dispatched by a first level interrupt handler (FLIH) on
occurrence of the interrupt.

o

o

c

c

IOQE. I/O queue element.

1ST. Interrupt service task.

job. A collection of related problem programs, identified in the input stream by a
JOB statement followed by one or more EXEC and data set definition
statements.

job stream. See input stream.

job stream processor. A component that reads and interprets job control
statements and satisfies requests made by those statements.

KB. Kilobytes.

LeT. Log control table.

LDT. Logical device table.

level of access. See access level.

line. A string of characters accepted by the system as a single block of input
from an operator station; for example, all characters entered before the carriage
return key or the ENTER key is pressed. For the text editor, it represents the
line number plus the text line.

line display range. That portion of a line to be displayed when the text editor lists
a line.

line length. Logical record length of lines being edited by the text editor.

logical data transfer. The transfer of a logical record to or from a buffer which
mayor may not cause one or more asynchronous I/O data transfers to take
place.

logical resource. An entity which represents the use of physical resources for a
particular function, for example, a program, event, queue, or data set. This entity
is assigned, and referred to by, an object name.

logical timer. A software logic element representing the usage of a hardware
timer.

logical volume. A portion of a physical volume which is viewed by the system as a
volume. See volume.

LPB. Load program block.

manual device backup. A feature that allows the operator to switch subsequent

Glossary B - 7

B - 8 GC34-0102

1/ 0 request to an alternate device or to switch from the alternate device back to
the primary device.

message buffering facility. Facility which allows messages to overflow and backup
into a disk data set; the messages are written as the I/O queue empties. 0
MIOCD. Master 110 control block.

MTRCD. Master timer control block.

multithreading. Pertaining to the concurrent operation of more than one path of
execution within a computer.

name constant. A data type which specifies that the variable is the internal name
of an object. Synonymous with NCON.

NCON. See name constant and internal name.

non-interactive. An indirect interface between a user and a program system. (For
example, through a disk or diskette data set.)

non-storage device. A device not having the ability to retain data transferred to
or from it for subsequent retrieval.

non-switched point-to-point line. A single communications line that contains one
permanently connected communications station.

nucleus. (1) A task set load module for the system task set that contains machine
interface data, the system communication table, master control blocks, SVC
routines, and system tasks and programs, and is write-protected from user task
sets. (2) The task set load module that is brought into main storage by the
bootstrap loader following IPL.

null record. A record containing a null character string used to format space on t ~

the direct access device when a direct data set is created. 1

object. A logical resource which is managed by the supervisor. Each object is
assigned a name so that it can be referenced by both the user and the supervisor.
It may imply the use of one or more physical resources.

object code compability. (1) Pertaining to a system where changes to the system
do not require recompilation or assembly of user programs. (2) Contrast with
source code compatibility.

object definition. (1) The set of information required to create and manage an
object. (2) The creation of a control block for an object. It also defines the
object as available to the user.

object module. The output of a single assembly or compilation containing one or
more control sections-CSECTs. An object module is equivalent to a program.

object module data sets. Disk resident data sets that contain object modules.

object program. That part of an object module that constitutes a control section.
It also is the output of the macro assembler.

ocns. Output command data set.

OEM. Original equipment manufacturer.

operator station. The device used for primary interactions between the user and
the software. It can be either a teletypewriter or a display station.

OPICT. Operator interface control block. (~

o

o

output command data set (OCDS). A consecutive data set to which a command
reader or command processor may write information concerning the processing of
commands or input data.

overlay. (a) A segment of a program that is not permanently located in storage
during task set execution. (b) The technique of repeatedly using the same areas
of a task set during execution of a program.

overlay area. An area within the task set load module of a task set used for the
execution of overlay segmentss which are not permanently located in storage. An
overlay area is associated with a resident segment during application build.

overlay module. A structure that contains all overlay segments in a single task set.
It is one of the modules produced by the application builder as part of a task set
library.

overlay segment. A segment that resides on secondary storage and is loaded into
the overlay area associated with its resident segment. All overlay segments in a
composite module are assoicated with the resident segment in that composite
module. A program in an overlay segment can call a program within the same
overlay segment or a program in any resident segment.

partition. A segment of physical and addressable storage which may contain one
task set at a time. A partition begins and ends on a 2KB boundary and has a
unique numeric ID from 0 to 15. See also fixed partition; system partition; user
partition.

partitioned data set. A data set in direct access storage that is divided into
partitions, called members, each of which can contain a program, part of a
program, or data.

PCD. Partition control descriptor.

PCT. Partition control table.

permanent object. An object which is defined to the supervisor by an explicit
request. The object's control block is not deallocated until deletion is explicitly
requested or the task or task set terminates.

PHB. Program header block.

physical access level. (1) A supervisor interface that transfers one or more
physical records, called a block, to or from a device, through execution of
WRITE or READ functions. A block may contain all or part of one or more
logical records. (2) Access to a data set by block, which may consist of one or
more physical records.

physical record. The portion of a data set transferred at the basic level of access
(EXIO). The size of a physical record is determined by the hardware device
unless the device supports variable-length records, in which case, the physical
record size equals the block size of the data set using the device.

physical resource. Any facility of the computer available to do work, such as, the
CPU, main storage, or an I/O device.

physical timer. Synonym for hardware timer.

PLeBe Program list control block.

PMCT. Program management control table.

polling ID. The unique character or characters associated with a particular station
when reading from that station.

PQEL. Partition queue element.

Glossary B - 9

B - 10 GC34-0102

prebinding. The connection of task sets, control blocks and resources before task
set execution. See also binding.

prebind module. A module that contains the specifications used during task set
installation to create the bound task set load module. It is one of the modules 0.· J'.
produced by the application builder as part of a task set library. "-

primary device. Pertaining to a device that has an alternate device assigned to it.
Contrast with alternate device.

primary program. The first program executed under a task. A primary program
has a single entry point and must have a program header. A primary program is
either reenterable, serially-reusable, or nonreusable and is only invoked by a start
task request. Contrast with secondary program.

primary segment. The resident segment that contains the initial entry point of a
task set. The entry point of a task set must be a primary program within the
primary segment.

primary storage. See storage.

primary task. The first task activated when a task set begins execution. The
primary task is started by the supervisor.

priority. Priority consists of the hardware level and the software priority within
the level.

problem program state. See problem state.

processor. (1) In hardware, the resource required to execute an instruction
stream. (2) In software, a synonym for processing program.

processor storage. The storage provided by one or more processing units. This
term pertains to physical locations in hardware devices.

program. (1) a named sequence of instructions that operates under the auspices
of a task. (2) A program is the output of a single assembly or compilation
containing one or more control sections-CSECTS. A program is equivalent to
an object module.

program management. That portion of the supervisor which manages requests for
program execution.

program preparation facilities. The components used to create user task sets.
Specifically, the text editor, macro assembler, and application builder.

protected free storage. See storage.

QCB. Queue control block. A control block used to manage queues.

QECB. Queue element control block.

question file. A file containing information which may be used to produce
question forms for batch input or to allow questions to be asked interactively.
The questions are organized in a series of specification levels. Response to higher
specification levels may generate or ignore questions at lower specification levels.

queue data set. A data set on a direct access device used to contain one or more
queues.

queue-driven task. A task whose unit of work is represented by an element in a
queue.

queue element. (1) A block of data in a queue. (2) One item in a queue.

,

o

c

c

random data set. See direct data set.

ReB. Request control block. A control block used to manage user requests for a
serially reusable resource.

ready state. Software state in which the task is ready to be activated and is
contending for processor execution time.

record. The portion of a data set accessed at the logical level (GET/PUT).

refresbable program. A program that can at any time be replaced with a new
copy without changing either the sequence or results of processing.

relative block number. A number that identifies the location of a block expressed
as a difference with respect to a base address. The relative block number is used
to retrieve that block from the data set.

relative-record number. A number that indicates the location of a logical record,
expressed as a difference with respect to a base address. The relative record
number is used to retrieve that logical record from the data set.

resident. Pertaining to that portion of a task set which is permanently located in
storage for the duration of the task set execution.

resident load module (RLM). A module within the task set load module. It is
made up of the programs of a task set which remain resident in storage for the
duration of the task set. See also task set load module.

resident segment. A segment that remains in primary storage for the duration of
task set execution. A program in a resident segment may call a program in one of
its overlay segments or a program in another resident segment.

return code. A code used to influence the execution of succeeding steps in a job
in the input stream. An indicator, which is passed from a batch program to the
job stream processor, that reflects the status of the batch program at the time of
its termination.

RLD. Relocation dictionary.

roD in. Restoring a partition to the task set that was previously rolled out. Roll in
occurs when the rolled out task set has the highest queue priority in the partition
queue. See also rollout/rollin.

roll out. To transfer to task set out of a partition and replace the task set with a
task set which has a higher queue priority. No subsequent roll out will occur until
a roll in restores the partition. The shared task set may not be rolled out. See
also rollout/rollin.

rollout/rollin. An optional facility specified at system generation that allows the
temporary reassignment of a partition from one task set to another of a higher
priority. The contents of the partition is placed on a disk storage device. A single
fixed partition is designed as the rollout/rollin partition at system generation or
IPL time. See also roll in; roll out.

root segment. A segment of a program that is permanently located in storage for
the duration of task set execution. See also resident segment.

RQE. Reply queue element.

scheduler task. A queue-driven task in the system task set which manages the

Glossary B - 11

8 - 12 GC34-0102

scheduling of task sets.

scheduling. The ability to request that a task set should be started at a particular
time of day or after a specified time interval or on occurrence of a specified PI
interrupt.

SCT. System communication table.

secondary program. Any program other than the primary program of a task. A
secondary program may have mUltiple entry points and mayor may not have a
program header. Secondary programs are invoked by a call request or by direct
linkages, such as, assembler branch instructions. See also primary program.

secondary segment. Any resident segment other than the primary segment of a
task set.

secondary task. Any task other than the primary task in a task set. A secondary
task is started by a program executing under either the primary or another
secondary task.

segment. A structure containing one or more programs, which is a portion of a
composite module or a task set load module.

sequential access method. An access method where: (a) Data is processed by
accessing the block or record previously accessed. Either consecutive or random
data sets may be accessed using the sequential access method. The user
establishes the order of the records when he creates the data set. (b) Blocks and
records are accessed sequentially. Access can begin at any record in the data set
and can be forward (until the end of data is reached) or backward (until the
beginning of the data set is reached).

sequential organization. Synonym for consecutive organization.

serially reusable resource (SRR). A logical resource or an object which can be
accessed by one task at a time.

shared task set. A special type of user task set that contains tasks, programs,
event definitions, queues, timers, and data sets to be shared among user task sets.

SICB. Sub-interrupt control block.

SLIH. Second level interrupt handler.

source code compatibility. (1) Pertaining to a system where changes to the system
do not require changes to a user's source code, but may require a recompile or
assembly of the source code. (2) Contrast with object code compatibility.

source module. A collection of source statements which constitute the input to a
language translator for a particular translation. These source statements may be
created, modified, and listed using the text editor.

spanned record. A record that is contained in more than one block.

split screen. The division into sections of a display screen in a manner which
allows two or more programs to use the display screen concurrently.

SRR. Serially reusable resource.

SSA. Status save area.

SST. System scheduler table.

starter system. A system task set (supervisor) in IPL format which supports the
system generation process.

step. A request to the job stream processor to execute a program and, optionally,
to define data sets used by the program. Related programs are commonly
executed by a series of steps within a job.

storage. The first 64KB of processor storage is known as primary storage.

a

(:.

o

c

c

Secondary storage is processor storage beyond the first 64KB. Primary storage
consists of allocated storage (allocated to a partition) and unused primary storage
(not allocated to a partition). Free primary storage is storage, in a partition that
is not allocated to a task set. This type of storage is dynamically allocated by the
supervisor in response to system or user requests. Free primary storage consists
of protected free storage and unprotected free storage. Protected free storage is
for system use, such as control blocks and save areas. Unprotected free storage is
available to the user or the supervisor for any requests.

storage queue. (I) A queue which has all its elements resident in main storage.
(2) Contrast with disk queue.

STST. System task set table.

subprocessor. A program preparation facility or a user program.

subroutine. A sequence of instructions which is internal to a program and is not
known to, or controlled by, the supervisor.

supervisor services. A general term for all functions in the supervisor that are
available to the user through a supervisor interface.

suspended state. A software state in which the task will not be dispatched by the
system and is not contending for the processor. In Series/I, if a suspended task
is resumed, it returns to the state it had prior to being suspended.

SVT. System variable table.

switched line. A single communications facility with only one station. The station
may be disconnected when the facility is not in use. While connected, this facility
is identical to a point-to-point line.

symbolic priority. See priority.

synchronous data transfer. A physical transfer of data to or from a device that has
a predictable time relationship with the execution of an I/O request.

synchronous timer. A logical timer used to place the task that created it in the
wait state for a specified time interval. Synchronous timers are used for delay
operations.

SYSGEN. System generation.

System generation. The processing of options to create a supervisor tailored to
the user's needs.

system nucleus. See nucleus.

system partition. A partition containing the system task set. Its partition number is
o.
system services. A general term for all services made available to the user by the
system, including supervisor services.

system task set. (1) A task set that provides system services. (2) That portion of
a supervisor which may be totally or partially resident. (3) A collection of tasks,
programs, and data sets required for the supervisor. See also task set.

system timer task. In the realtime programming system, that portion of the
supervisor that manages the hardware timers used for timer services and/or time
of day services.

table of contents (TOC). The directory of a permanent data set which describes
and locates the subsidiary data sets contained within that data set.

TACT. Transient area control table. A table used to manage transient areas.

TAD. Transient area descriptor. A control block that describes a transient area

Glossary B - 13

B - 14 GC34-0102

and its contents.

task. The dispatchable entity used by the supervisor to establish and track
concurrent program execution within the system. Each task represents a single ,)
thread of execution through a program or set of programs. The first program \ J
executed under each task is a primary program. All others are secondary
programs.

task error exit routine. An optional user-written program which is given control
when the task abnormally terminates.

task set. A named collection of programs, data, and control blocks designed to
execute within a partition. The programs of a task set perform a related set of
work and execute under one or more tasks.

task set 6brary. A logical volume containing all of the data sets associated with a
single task set. A task set library may also contain user data sets.

task set load module. A structure that contains all resident segments, their
associated common and overlay areas, and the control module, for a single task
set. A task set load module is loaded from a consecutive data set in the task set
library into a partition when the request for the task set becomes the highest
priority element in the partition queue. It remains in primary storage for the
duration of task set execution. A task set load module is in absolute format, that
is, its origin cannot be changed. See bound task set load module, unbound task
set load module.

task start. The creation of a new task in the system.

task states. The states of execution status of a task relative to the processor;
active state, ready state, suspended state, and wait state.

task switch. (1) Allocation of the processor to another task, for example, a ready
or active task of higher priority than the current task in execution. (2) A change
in the task that is in control of the processor. The new task's state changes from
ready to active and the current task is placed in a state other than active.

TCB. Task control block.

text compression. An attribute of a permanent data set which specifies that
strings of the same character are stored in a compressed form to reduce the
space required for the data set.

text editor. The program preparation facility that is used to create, modify, and
list text modules. Text prepared using the text editor may be in the form of
source modules, which may be input to the macro assembler, or text data, which
may be input to a user program or one of the program preparation subsystem
programs.

text module. A term used by the text editor to indicate the data (text) that may
be created and maintained using the facilities of the text editor. This data is
usually in the form of printable characters (for example, source modules, data
input to a user program).

timer. A mechanism for defining an interval of time. See asychronous timer,
logical timer, physical timer, synchronous timer.

TOC. Table of contents.

TPT. Transient program table. A table that contains the disk address of transient
programs.

transient area. A main storage area used for temporary storage of transient
programs.

transient program. Self -relocating, refreshable program permanently stored in the (cc ".

o

o

task set library and loaded into a transient area or into dynamic storage when
needed for execution.

TRE. Timer request element.

TSCD. Task set control block.

TWSD. Task work stack descriptor.

unattended mode. No operator present at system or no operator station included
at system generation.

unbound task set load module. A task set load module which has not been bound
to its execution environment. It is one of the modules produced by the
application builder as part of a task set library. The unbound task set load
module may be loaded into a partition without being pre bound or it may be used
as input to task set installation to create a bound task set load module. See
bound task set load module, task set load module.

use count. A dynamic count of users kept for objects which may be used by
multiple tasks.

user partition. A partition that contains a user task sets when in execution. The
partition number can be from 1 to 15.

user task set. A collection of tasks, programs, and data sets required to perform a
related set of operations for a user application. This task set executes (in problem
program state) in a user partition. See also task set.

vary offline. (1) To change the status of a device from online to offline. When a
device is offline, no data set may be opened on that device. (2) To place a
device in a state where it is not available for use by the system; however, it is
still available for executing I/O.

vary online. To restore a device to a state where it is available for use by the
system.

VeDA. Variable control block area. Protected storage within the partition used
by the supervisor for variable-length control blocks. It exists within the control
module.

VDS. Volume control block/data set control block.

volume. (1) that portion of a single unit of storage which is accessible to a single
read/ write mechanism, for example, a drum, a disk pack, or part of a disk
storage module. (2) A recording medium that is mounted and demounted as a
unit, for example, a reel of magnetic tape, a disk pack, a data coil. (3) See logical
volume.

work data sets. The data sets and data set members used by the program
preparation facilities as temporary work areas.

work ides. A data set or member used by the program preparation facilities as a
temporary work area.

work stack. (1) A list that is constructed and maintained so that the next
information to be retrieved is the most recently stored information in the list,
that is, a last-in-first-out (LIFO) or pushdown list. (2) An area of unprotected

Glossary B - 15

B - 16 GC34-0102

main storage allocated to each task and used by the programs executed by that
task.

wrap count. The number of times that the auto poll facility cycles through a
polling list before it returns an end-of-list condition to the user.

write protection. A feature which prevents storage from being modified by a
program running in problem state. Protected storage may be modified by a task
running in supervisor state or by a cycle steal operation.

zero correction. See zero offset.

zero offset. An option of analog input. This option automatically compensates
analog input to the ambient temperature.

(

o

c

Debugging aid:

Display storage (DISP)
operator command

Patch storage (PTCH)
operator command

Report utilitiy

Appendix C. Debugging Aids

What it does:

Displays small areas of processor storage at the
operator station.

Patches small areas of processor storage through the
operator station.

Dumps storage, data sets, or directories in formatted
reports.

Hardware saving the level When a class interrupt occurs, the hardware saves
status block (LSB) the LSB. The operating system chains the LSB as an

execution request block off the interrupted task
control block.

Patch utility

EXTRACT macro

Trace I/O (TRCE)
operator command

Online terminal testing

Log define and log delete
(LOG) operator
commands

RETRIEVE macro

Stand-alone
processor-storage-to­
diskette dump

Patches data within data sets.

Extracts data management information from a data
set's control blocks.

Traces all I/O operations on both communications
and noncommunications devices.

A background program is invoked to test the active
2740 Modell terminal.

All I/O errors and class interrupts can be recorded
in a system error log through an operator command.
You can write error records into a user error log
through an operator command by setting up an
error-exit routine.

Error records can be examined through either the
RETRIEVE macro or the REPORT utility.

Dumps processor storage to a diskette.

For detailed information about debugging aids, refer to the IBM Series/l
Realtime Programming System: Control Blocks and Debugging Guide.

Debugging Aids C - 1

C-2 GC34-0102

o

IPL Options

c Initialization Commands

Processor Options

Configuration Options

c

Appendix D. System-Generation Options

This appendix is a list of the options available to you during system generation.
For a detailed explanation of the options and the system-generation procedures,
refer to the IBM Series I 1 Realtime Programming System: Generation and
Installation Procedures.

System-generation options fall into five categories:

• IPL options
• Initialization commands
• Processor options
• Configuration options
• Service aids and error-handling options

Partition Definition. With this option, you specify:

• The size of the system partition
• For each user partition, the partition number, size, maximum number of

entries in the partition queue, and, optionally, partition origin
• The rollout I rollin partition, if required

Automatic Device Start. With this option, you specify which 110 devices are to
be started automatically at IPL time.

With this option, you specify the system commands and user commands that are
to perform initialization activities such as starting task sets and defining logs.

Programmer Console. With this option, you specify whether your machine is
equipped with a programmer console.

Timers. In this option, you specify whether hardware timers are part of the 1/0
configuration. If time-of-day support is required, you must specify the software
support, as well as the precision for time-of-day and the format for the date.

110 Configuring. You must identify the devices used by the system, by defining
their device addresses and device names.

Operator Station. With this option, you specify the 110 device to be used as the
operator station.

Transient/Resident Selection. With this option, you can specify which supervisor
programs are to be transient and which ones are to be storage-resident.

User-Supplied Supervisor Programs. Through this option, you specify whether
you want to include your own supervisor programs.

Rollout/Rollin. You must specify whether you need rollout/rollin. If so, you
must also define a rollout I rollin data set.

Scheduler. With this option, you specify whether you wish to schedule task sets.

System-Generation Options 0 - 1

Task. Set Binding. You can specify the maximum number of task set libraries in
the system task set table.

System Control Blocks. You must specify the number of execution request
blocks required for operation of the generated system.

Floating Point. You must specify whether you wish to use the floating-point
emulator.

System Command Selection. With this option, you can select the system
commands to be associated with the system command processor.

ABEND Dump Option. In this option, you specify whether you want ABEND
dump included in the system.

Online Terminal Testing. With this option, you can invoke a background
program to test the active 2740 Modell Terminal.

Service Aids and Error-Handling Options

D - 2 GC34-0102

Battery Backup. This option lets you identify battery backup in case of a power
failure.

Error Logging. With this option, you specify whether you want a system error
log and user error logs. In addition, you must specify the number of error logs,
their sizes, and where they are to reside (in storage or on disk).

Exit Routines. This option lets you specify your own exit routines for class
interrupts and abnormal termination. In addition, you can supply a routine to set
the time-of -day and date during IPL.

System Dump Data Set. You must specify the data-set-definition name of a data
set to be used for storage dump.

I/O Trace. With this option, you must specify whether your system is to have
I/O tracing.

Task Error Exit. Through this option, you specify whether you want to include
task-error-exit subprograms that you have written.

Patch/Display. With this option, you specify whether you will want to display
storage (up to 56 bytes) and patch storage (up to 20 bytes).

System Reload/Restart. Through this option, you specify whether you will want
the system reloaded and restarted after a serious error has made the current
system unable to continue.

(.) .J

c

o

c

ABEND dump D-2
abnormal termination of a task 2-11, 2-18
access level B-2
access methods 3-2

direct access method 3-3
sequential access method 3-2

analog input 1-2, 3-3
analog output 1-2,3-3
application builder B-2, 1-4,2-3,6-2
assembler language (see also macro assembler) 2-3
asynchronous communications 4-1
asynchronous timer B-2, 2-15

basic access level B-2, 3-2
basic-exchange data set 3-1
basic-exchange diskette format 5-4
ba tch facilities 6-1
binary synchronous communications (BSC) 4-1
binding B-3, D-2, 1-6,2-3
BSC, binary synchronous communications 4-1

class interrupts 2-16
FORTRAN statements for A-3
macros for A-3
PL/I statements for A-3

communications 1-4,4-1
binary synchronous communications (BSC) 4-1
communications data sets 4-2
communications features 1-2
communications I/O requests 4-2
configuration of a communications system 4-2
macro for A-4
online terminal tests 4-3
start-stop communications 4-1
System/370, communications with 4-1
Teletype Model 33/35 terminal 1-2,4-1
2740 communications terminal 1-2,4-1

communications features 1-2
compress utility 5-2
consecutive data set B-3, 3-2
control module B-3, 1-5, 2-2, 2-6
copy utility 5-2

data management 3-1
data set management 3-1

access methods 3-2
data set organizations 3-1
FORTRAN statements for A-3
levels of access 3-2
macros for A-3, A-6
PL/I statements for A-3

device management 3-3
data-processing I/O 3-3
macros for A-6
sensor-based I/O 3-3

data management (continued)
macros for A-3, A-5

data-processing I/O 3-3
data set definition (DSD) 3-1
data set management 3-1

access methods 3-2
direct access method 3-3
sequential access method 3-2

basic (EXIO) 3-2
logical (GET/PUT) 3-2
physical (READ/WRITE) 3-2

data set organizations 3-1
consecutive organization 3-2
partitioned organization 3-2
random organization 3-2

FORTRAN statements for A-3
levels of access 3-2
macros for A-3, A-6
PL/I statements for A-3

data sets 2-5
data sets, communications 4-2
debugging aids C-l
define utility 5-3
device management 3-3

data-processing I/O 3-3
macros for A-6
sensor-based I/O 1-2,3-3

digital input 1-2, 3-3
digital output 1-2,3-3
direct access method 3-2
direct data set B-5
disk-based 1-1
disk initialization utility 5-1
disk queues B-5,2-14

partitioned data set (PDS) 2-14
disk storage unit 1-2, 3-3
diskette unit 1-2, 3-3
display station 1-1, 3-3
displaying and patching storage 2-18
DSD, data set definition 3-1
dump, ABEND D-2
dump utility, processor storage to diskette 5-1

ECB, event control block 2-12
echo test of communications terminals 4-3
error logging D-2
errors 2-17

abnormal termination of a task 2-18
attended/unattended status indicator 2-18
copying primary storage (storage dump) 2-18
displaying and patching storage 2-18
error logging and reporting 2-17
macros for A-3, A-5
system reload and restart 2-19
system termination 2-19
task error exits 2-18

event control block (ECB) 2-12

Index

Index X-I

event-driven 1-1
events 2-4, 2-12

event control block (ECB) 2-12
FORTRAN statements for A-2
macros for A-2, A-5
PLjl statements for A-2
WAIT/POST technique 2-12

EXIO (basic) access level 3-2
extended format 5-4
extended-format data set 3-1

floating-point D-2, 1-2
floating-point emulator D-2, 1-2
foreground/background 2-8
FORTRAN A-I, 1-4,2-3,6-3
free primary storage 2-2

protected free storage 2-2
unprotected free storage 2-2

GET/PUT (logical) access level 3-2
global area of a task set 2-5, 2-6
glossary B-1

hardware requirements and options 1-1

I/O interrupts 2-16
FORTRAN statements for A-3
macros for A-3, A-5
PL/I statements for A-3

I/O requests, communications 4-2
initialize utility 5-4
input/output (see also data management) 1-3

access levels 1-3
basic (EXIO) 1-3
logical (GET/PUT) 1-3
physical (READ/WRITE) 1-3

data processing devices 1-3
data set organizations 1-4

consecutive 1-4
direct 1-4
partitioned 1-4

message buffering 1-4
sensor I/O devices 1-3

interrupts 2-16
class in terru pts 2-16

FORTRAN statements for A-3
macros for A-3, A-5
PL/I statements for A-3

I/O interrupts 2-16
FORTRAN statements for A-3
macros for A-3, A-5
PL/I statements for A-3

IPLmaint utility 5-4

job stream processor

line printer
load module

1-2,3-3
B-7,6-2

X-2 GC34-0102

1-4,6-1

logical access level 3-2
logical timers 2-15

machine check 2-16
macro assembler 1-4, 6-1
macros A-I
mathematical and functional subroutine library

(MFSL) 1-4, 6-3
matrix printer 1-2, 3-3
member of a partitioned data set 3-2
merge utility 5-4
message buffering B-8, 1-4
MFSL, mathematical and functional subroutine library 6-3
multiprogramming 1-1
multitasking 1-1

normal termination of a task 2-11

object module B-8, 1-5,6-1,6-2
online terminal testing D-2, 4-3
operating system 1-1
operator commands 1-3
operator interaction 1-3

macros A-5
macros for A-3
PL/I statements for A-7

operator station B-8, D-l, 1-1,3-3
optional hardware 1-2

parameter lists 2-12
partition definition D-l
partitioned data set B-9,3-2
partitioned data set, compress utility 5-2
partitions B-9, 1-2,2-1

free primary storage 2-2
protected free storage 2-2
unprotected free storage 2-2

specifying partitions 2-1
system partition 2-1
unused primary storage 2-1
user partition 2-1

patch utility 5-4
patching storage 2-18
PDS, partitioned data set 2-14
physical access level B-9, 3-2
physical timers B-9, 2-15
PL/I A-I, 1-4,2-3,6-3
power/thermal warning 2-16
primary program B-I0, 1-10,2-3,2-11
primary storage B-IO,2-1
primary task B-I0, 1-10, 2-3, 2-9
printer 1-2
priorities 2-2

of task sets 2-2
of tasks 2-10

problem programs 2-11
process interrupt 2-7, 3-3
processor B-I0,1-1
processor storage B-I0, 2-1

primary storage 2-1 (,

C:· ~

processor storage (continued)
storage protection 2-2
unused primary storage 2-1

processor-storage-to-diskette dump utility 5-1
program B-1 °
program check 2-16
program preparation B-I0, 1-4,6-1

application builder .6-2
batch facilities 6-1
FORTRAN 6-3
job stream processor 6-1
macro assembler 6-1
mathematical and functional subroutine library

(MFSL) 6-3
PL/I 6-3
text editor 6-1

programmer console D-l,I-2
programmer-console interrupt 2-16
programs 1-2,2-4,2-11

FORTRAN statements for A-I
macros for A-I, A-5
parameter lists 2-12
PL/I statements for A-I
primary program 2-11
problem programs 2-11
secondary program 2-11
supervisor programs 2-12

prompt/reply mode 5-2
protected free storage 2-2, 2-6

queues 2-4, 2-13
disk queues 2-14
FORTRAN statements for A-2
macros for A-2
PL/I statements for A-2
storage queues 2-14

random data set 3-2
READ/WRITE (physical) access level 3-2
READ/WRITE for communications 4-2
realtime operating system 1-1

disk-based 1-1
event-driven 1-1
multiprogramming 1-1
multitasking 1-1

reenterable 2-7
reloading and restarting the system
report utility 5-4
required hardware
resident load module
resources 2-5

1-1
B-11, 2-2, 2-6

resources, serially reusable 2-16
reusable 2-7
rollout/rollin B-11, D-l, 2-7

secondary program B-12, 1-10, 2-11
secondary task B-12, 1-10, 2-1 °
sensor-based I/O 1-2, 3-3
sequential access method B-12,3-2

2-19

serially reusable resources B-12, 2-5, 2-16
FORTRAN statements for A-2
macros for A-2, A-5
PL/I statements for A-2

shared task set B-12
single-line mode 5-2
soft-exception check
stand-alone utilities

disk initialization

2-16
5-1

5-1
processor-storage-to-diskette dump 5-1
system build 5-1

start-stop communications 4-1
storage dump 2-18
storage management 2-1

macros for A-5
macros for A-I

storage protection 2-2
storage queues 2-14
storage-resident supervisor programs 2-12
supervisor programs 2-12
supervisor services 2-1

errors 2-17
abnormal termination of a task 2-18
attended/unattended status indicator 2-18
copying primary storage (storage dump) 2-18
displaying and patching storage 2-18
error logging and reporting 2-17
macros for A-3, A-5
system reload and restart 2-19
system termination 2-19
task error exits 2-18

events 2-12
event control block (ECB) 2-12
FORTRAN statements for A-2
macros for A-2, A-5
PL/I statements for A-2
WAIT/POST technique 2-12

interrupts 2-16
class interrupts 2-16
I/O interru pts 2-16

parti tions 2-1
system partition 2-1
unused primary storage 2-1
user partition 2-1

processor storage 2-1
primary storage 2-1
storage protection 2-2
unused primary storage 2-1

programs 2-11
FORTRAN statements for A-I
macros for A-I, A-5
parameter lists 2-12
PL/I statements for A-I
problem programs 2-11
Sil pervisor program s 2-12

queues 2-13
disk queues 2-14
FORTRAN statements for A-2
macros for A-2
PL/I statements for A-2
stora1!e queues 2-14

Index X-3

supervisor services (continued)
serially reusable resources 2-16

FORTRAN statements for A-2
macros for A-2, A-5
PL/I statements for A-2

task sets 2-2
creating a task set 2-3,6-2
format of a task set 2-7
FORTRAN statements for A-2
macros for A-I, A-5
PL/I statements for A-I
queues of task sets 2-2
reusable task sets 2-6
rollout/rollin 2-7
shared task set 2-4
system task set 2-4
task set execution 2-7
task set termination 2-9
user task set 2-4

tasks 2-9
FORTRAN statements for A-I
macros for A-I
PL/I statements for A-I
primary task 2-9
secondary task 2-10
task priorities 2-10
terminating tasks 2-10

timers 2-15
FORTRAN statements for A-2
logical timers 2-16
macros for A-2
physical timers 2-15
PL/I statements for A-2
time-of-day and date services 2-16

SVC interrupt 2-17
synchronous timer B-13,2-15
system-build utility 5-1
system-generation options D-l
system partition B-13
system reload and restart 2-19
system task set B-13
system termination 2-19
system utilities 5-2

compress 5-2
copy 5-2
define 5-3
initialize 5-4
IPLmaint 5-4
merge 5-4
patch 5-4
prompt/reply mode 5-2
report 5-4
single-line mode 5-2

System/370, communications with 4-1

table of contents of a partitioned data set B-13,3-2
task set global area 2-6
task set library B-14, 1-3, 1-5, 2-3
task set load module B-14, 1-5, 2-6
task sets B-14, 1-2,2-2

creating a task set 2-3,6-2
format of a task set 2-7
FORTRAN statements for A-I

X-4 GC34-0102

task sets (continued)
macros for A-I, A-5
PL/I statements for A-I
queues of task sets 2-2
reusable task sets 2-7
rollout/rollin 2-7
shared task set 2-4
system task set 2-4
task set execution 2-7
task set termination 2-9
user task set 2-4

tasks B-14, 1-2, 1-10, 2-4, 2-9
FORTRAN statements for A-I
macros for A-I
PL/I statements for A-I
primary task 2-9
secondary task 2-10
task priorities 2-10
terminating tasks 2-10

Teletype Model 33/35 terminal 1-2,4-1
terminals, communications 1-2,4-1
terminals, online testing 4-3
testing communications terminals 4-3
text editor 1-4,2-3,6-1
time-of-day and date services 2-16
timers B-14, D-l, 1-2,2-5,2-15,3-3

FORTRAN statements for A-2
logical timers 2-15
macros for A-2
physical timers 2-15
PL/I statements for A-2
time-of-day and date services 2-16

trace interrupt 2-16
transient programs 2-12
transient/resident selection D-l

unprotected free storage 2-2, 2-6
user partition B-15
user task set B-15
utilities 1-4,5-1

stand-alone utilities 5-1
disk initialization 5-1
processor-storage-to-diskette dump 5-1
system build 5-1

system utilities 5-2
compress 5-2
copy 5-2
define 5-3
initialize 5-4
IPLmaint 5-4
merge 5-4
patch 5-4
prompt/reply mode 5-2
report 5-4
single-line mode 5-2

2740 communications terminal D-2, 1-2,4-1

(~
, J

(')

s
0 ..,

" 0
0:
~
0"

(~
::J
(0

!:
::J
CO

c

Realtime Programming System:

Introduction and Planning Guide

GC34-0102-0

YOUR COMMENTS, PLEASE . ..

Your comments assist us in improving the usefulness of our publications; they are an

important part of the input used in preparing updates to the publications. All comments

and suggestions become the property of 18M.

Please do not use this form for technical questions about the system or for requests

for additional publications; this only delays the response. Instead, direct your

inquiries or requests to your I BM representative or to the I BM branch office serving
your locality.

Corrections or clarification s needed:

Page Comment

READER'S
COMMENT
FORM

What isyouroccupation? __ _

Number of latest Technical Newsletter (if any) concerning this publication: _____________ . ___ _

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

GC34-0102-0

Your comments, please ...

This manual is part of a library that serves as a ref~rence source for IBM systems.
Your comments on the other side of this form will be carefully reviewed by the
persons responsible for writing and publishing this material. All comments and
suggestions become the property of IBM.

Fold Fold

Fold

--- ------ - ---- ---- - ---- - - --------___ 0-

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

I BM Corporation
Systems Pu bl ications, Dept 27T
P. O. Box 1328
Boca Raton, Florida 33432

International Business Machines Corporation
General Systems Division
57750 Glenridge Drive N.E.
P.O. Box 2150, Atlanta, Georgia 30301
(U.S.A. only)

First Class
Permit 40
Armonk
New York

Fold

-'-

CD s:
(J)

~
CD'

~
JJ

~
3'
(1)

"'C a
to
~
3
3
:;'
to
(J)
-<
~
(1)

3 t ~

~ ~

a
a.
c
~
0'
::J
III
::J
a.
"'C
iii'
::J
::J
:;'
to

G>
c
0.:
(1)

~
~'
(1)

a.
:;'
c
en
):.

G>
(')
w
~

~
0
I\,)

6

()

(")

s
0
i1
0
a::
»
0"

C
::l
to

C
::l
en

o

Realtime Programming System:
I ntroduction and Planning Guide

GC34-0102-0

YOUR COMMENTS, PLEASE ...

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. All comments
and suggestions become the property of IBM.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your I BM representative or to the I BM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

READER'S
COMMENT
FORM

What is your occupation? _______________________________ _

Number of latest Technical Newsletter (if any) concerning this publication: ____________ _
Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

GC34-0102-0

Your comments, please ...

This manual is part of a library that serves as a reference source for IBM systems.
Your comments on the other side of this form will be carefully reviewed by the
persons responsible for writing and publishing this material. All comments and
suggestions become the property of IBM.

Fold Fold

Fold

--- ------ ----- ---- - ---- - - ----------_.-

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

I BM Corporation
Systems Pu bl ications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

International Business Machines Corporation
General Systems Division
57750 Glenridge Drive N.E.
P.O. Box 2150, Atlanta, Georgia 30301
(U.S.A. only)

First Class
Permit 40
Armonk
New York

Fold

o
S
l:­
ei
;,
co
r
5'
CD

()

CD s:
(J)

~
iii'
~
::xl
III
;::;:
~f
CD

"'tI
0
cc
Ql
3
3 ::;.
cc
(J)

~
CD
3 (\

:;- , ,
a c.
c:
~ o·
;,
III
;,
C.
"'tI
iii
;,
;,
::;'
cc
G)
c:
c:
CD

~
§'
CD c.
::;'
c
en
~
G)
(')
w
~

~
0
"-l
6

--- ------ ----- ---- - ---- - - ----------- ' -

• •
~-..

International Business Machines Corporation

.General Systems Div ision
57750 Glenridge Drive N.E ..
P. 0 : Box 2150 :
Atlanta, .Georgij3 30301
·(U.S.A. only)

.. . .

GC34-0102-0

/ ' .

-'

"

','

., \

, " "'. 1

,\

.'

'. < .-

~

.;-.
-, f ,
}

:;.
• ;fe • .,.<

,'"
::;:
~.~

-,..

II!
~
VI
!!l
~'
!!?.

::0
<II
II>
;:;
3'
<II

" (3
cc
OJ
3
3
:;'
cc
VI
< en ...
<II

;!;.

::J ...
a! ~
a.
c:
n ... o·
::J
II>
::J
a.

" iii'
::J
::J
:;'
cc
C)
c:
a.
<II

~
;:!
<II
a.
:;'
c
en
~
C)
()
w
~

~
0
"-l

6

