UNCLASSIFIED
T.0. 31P2-2FSQ7-112

THEORY OF PROGRAMMING

FOR

AN/FSQ-7
COMBAT DIRECTION CENTRAL

15 November 1956

The work reported in this document was performed under a government con-
tract; information contained herein is of a proprietary nature. ALL INFOR-
MATION CONTAINED HEREIN SHALL BE KEPT IN CONFIDENCE. No
information shall be divulged to persons other than IBM employees authorized
by the nature of their duties to receive such information or individuals or
organizations who are authorized in writing by the Department of Engineering
or its appointee to receive such information. GOVERNMENT RELEASE MUST
BE OBTAINED THROUGH THE IBM PATENT DEPARTMENT BEFORE
THIS INFORMATION MAY BE USED FOR COMMERCIAL APPLICATIONS.

MILITARY PRODUCTS DIVISION
INTERNATIONAL BUSINESS MACHINES CORPORATION

KINGSTON, NEW YORK

UNCLASSIFIED

COPY NO.

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

Reproduction for non-military use of the information or illustrations contained in this publi-
cation is not permitted without specific approval of the issuing service (BuAer or USAF).
The policy for use of classified publications is established for the Air Force in AFR 205-1
and for the Navy in Navy Regulations, Article 1509.

LIST OF REVISED PAGES
INSERT LATEST REVISED PAGES. DESTROY SUPERSEDED PAGES.

NOTE: The portion of the text affected by the current revision is indicated by a vertical rule in the left margin of a left-hand page
and in the right margin of a right-hand page.

*The asterisk indicates pages revised, added or deleted by the current revision.

USAF

UNCLASSIFIED

PARTS 1 & 2

Heading

PART i

CHAPTER 1 INTRODUCTION
SECTION 1 SCOPE AND CONTENTS

SECTION 2 DIGITAL COMPUTERS

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS

EQUIPMENT INTRODUCTION

2.1 Advantages ...
2.2 Design Requirements ...
221 Basic OPerationscc.oooiiiorimiiiieicie e
222 Coded InStructions ...
2.2.3 Internal Storage ...
2.3 Programming ...
231 Introduction ...
- 232 Program Definition ...
2.3.3 Examples ...
234 Iterative Programming ..o
2.4 Needs of Programmer ...
SECTION 3 AN/FSQ-7 COMBAT DIRECTION CENTRAL ...
3.1 Purpose of Equipment ...
3.1.1 Air Defense Problem ...
3.1.2 Iterative Air Defense Program ...
3.1.3 Sample Program Routine ...
3.2 Equipment Functions ...
32.1 Component SYSEEMmS ...
3.2.2 Central Computer SyStemcooroiiiiiiiicoeececeee e
3.2.2.1 Logical Divisions ...
3222 Element Functions ...
3.2.2.3 System Information Flow ...
3.23 Input System ... OO SRS PE RS R SRS PSPP R
3.24 Drum System ...
3.2.5 Display System ...

UNCLASSIFIED

Contents

Contents

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS (cont‘d)

Heading Page
3.2.6 Output SYSEM ... 10
3.2.7 Warning Light System ... 11
3.3 Duplexing ... 11

CHAPTER 2 NUMBER SYSTEMS ... 13
SECTION 1 GENERAL ... 13
1.1 The Concept of Number ... 13
1.2 Decimal Number System ... 13
121 General Properties ... SO USRI CPPRORRPRPROS .. 13
1.2.2 Positional Notation of Magnitude ... 13
1.2.3 Radix oo 14
1.24 Modulus ..o 14
1.3 General Number System ... 14
SECTION 2 BINARY NUMBER SYSTEM ... 15
2.1 Introductionococooiiiiiiii s 15
22 Conversion from Decimal to Binary Notation 15
221 Conversion by Definition ... 15
222 Systematic CONVELSION ... 15
2.2.2.1 Integral Decimal Numbers ... 15
2.2.2.2 Fractional Decimal Numbers ... 16
2,223 Mixed Decimal Numbers ... 16
2224 Justification ... OSSO PUPS PR 16
2.3 Conversion from Binary to Decimal Notation 16
SECTION 3 BINARY ARITHMETIC ... 17
31 General ... 17
3.2 Arbitrary Limitations ... 17
3.2.1 Design Limitations ... 17
3.2.2 Sign CoNVENtIONcoocoviimiiii e 17
3.2.3 Fixed Binary Point ... 17
3.3 Binary Addition ... 18
34 Binary Subtraction ... 18
3.4.1 Direct Subtraction ... 18
3.4.2 ComPplements ..o 18

UNCLASSIFIED

PARTS 1 & 2

PARTS 1 & 2 UNCLASSIFIED Contents
T.0. 31P2-2FSQ7-112

CONTENTS (cont’d)

Heading Page
3.4.3 Application of Complementsccoovivceinennn. 19
3.4.3.1 Interpretation ... 19
3.4.3.2 Generation ... 19
3.4.3.3 Subtraction Using 2’s Complementcooocoeninnn. 19
3.4.3.4 Subtraction Using 1’s Complementcccovnennirenn. 20
3.4.3.5 Uses of 2’s and 1I’s Complements ..o, 20
344 ZRIO ..o oot 20
3.4.5 OVerflow ...t 20
3.5 Binary Multiplicationcc.ccooomveeeriiioicceeemereeer 21
3.5.1 Direct Multiplicationc.occcoriniiinciiiinirccieeeereas 21
3.5.2 Multiplication by Addition and Shifting21
3.5.3 Shifting ... e 22
3.5.4 Round-Off ... 22
3.6 Binary Division ... 22
3.6.1 Principles ... S SR 22
3.6.2 Direct DiviSIOncccooiiiiiriiiiiiniieeece e 22
3.63 Non-Restoring Method ST 23
3.7 Number Conversion Using Binary Arithmetic 24
SECTION 4 OCTONARY NUMBER SYSTEM ... 25

CHAPTER 3 CENTRAL COMPUTER SYSTEM ... 27
SECTION 1 INTRODUCTION ..., 27
1.1 System Characteristicsccoovorienriociiiccee e 27
1.2 Description of Characteristicsccococoooiiencennniicnnnn. 27
1.2.1 Information Form ..., 27
1.2.2 Handling Methods ... 27
1.2.2.1 Paralle]l Operation ..., 27
1.2.2.2 Dual Operationcccooceeriiiniiiiiii e 27
1.2.2.3 Computer WOrdocccoooooeriecriiensie e 27
123 Internal MemoOry ..., 28
1.24 Instructions ... et 28
1.24.1 Significance ... e 28
1.24.2 Instruction Function ... 28
1243 Single-Address Instruction ... 28

UNCLASSIFIED i

Contents

UNCLASSIFIED
1.0. 31P2-2FSa7-112

CONTENTS (cont’d)

Heading
1.2.5 Programs ...
1.2.6 Real-Time Operation ... e
1.2.7 General Applicability ...
1.3 Duplexing ...
SECTION 2 iNTERNAL MEMORY OPERATION ...
21 Core MEMOTLYcccouiiiiiiiiiioie et
2.1.1 Introductiono.ocoooiiiiii e
2.1.2 Principles of Operation ...
2.1.3 Coincident Current Selection ...
2.1.3.1 Core AITay ...
2.1.3.2 Word Storage ...
2133 Word Reading ...
2.14 Register Addressing ...
2.15 Function of Memory Buffer Register ...
2.1.6 Memory Cycles ...
2.1.6.1 TIming ...
2.1.6.2 Read Cycle ...,
2.1.6.3 Write Cycle ...,
2.2 Test MEMOIY ...t
2.3 Real-Time Clock ...
24 Memory Addresses ...
SECTION 3 SYSTEM OPERATION ...
5.1 IOEPOQUCTIOI o
3.11 General ...
3.1.2 Types of Operations ...
3.1.3 TIMING .o
3.1.3.1 Machine Cycles ...
3.1.3.2 Cycle TIMING ..o
3.1.3.3 Instruction Cycles ...
3.1.4 Operating Units ...
3.14.1 Functional Grouping ...
3.1.4.2 Computing Registers ...
3.14.3 Internal Control Registers ...

UNCLASSIFIED

PARTS 1 & 2

Page

29
29
29
29

PARTS 1 & 2 UNCLASSIFIED Contents
T.0. 31P2-2FSQ7-112

CONTENTS (cont'd)

Heading Page
3.1.44 1O Control Registers ..., 42
3.2 INStructions ... 43
3.2.1 ClassifiCatONocooviiiiiie s 43
3.2.2 Decoding ... 43
3.23 Indexing ... Pt 45
3.3 Add Class InStructionscc.ocuooiiiiriirnicis e 45
3.3.1 Principles of Execution ... SRR 45
3.3.2 Typical INStIUCtON ..o 48
3.3.3 Variations ... 48
3.34 Overflow Control ..., 49
3.4 Multiply Class InStructionscccoooiviciniicncocnnnne, 49
34.1 General ... 49
3.4.2 Multiply ... 49
343 Dividecc.oiiiiiiiiiiiii 51
344 Variations ... 53
3.5 Store Class InStructionsccooceoevieiiioieiie e 53
3.5.1 Principles of Execution ... 53
3.5.2 Typical Instruction ettt e 53
3.5.3 Similar Variations ... 53
3.5.4 Different Variations ... 54
3.54.1 Add One ... 54
3.54.2 Exchange ... 55
3543 DEPOSIE ..ooooocooiiiieeeeeeeeeeeeeeee e 55
36 Shift Class INStrUCHONScccooomvevmmrioreommscrrrserer 56
3.6.1 Principles of Execution ... 56
3.6.2 Typical Instruction ... 58
3.6.3 Shife Variations ..., 58
3.64 Cycle Variations ... 58
3.7 Branch Class Instructionsccoooiiiiiiieeiiiii., 59
3.7.1 Principles of Executioncccccoiiiiiniiiniincn 59
3.7.2 Typical Instruction ... 60
3.7.3 Similar Variations ... 61
3.74 Different Varfationsccooooeiioiiiiiiiciiee e 61
3.7.4.1 Branch on Zero ..o, 61

UNCLASSIFIED v

Contents

vi

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS (cont’'d)

Heading
3.74.2 SEMSE ..o
3.74.3 Branch and Index ...
3.8 IO Class INStructionsccccooviimiemrenonine i
3.8.1 General ...
3.8.2 Variations ... e
3.9 Reset Class InStructions ..o
3.9.1 General ...
3.9.2 Variations ...
3.10 Miscellaneous Class Instructions ..o,
3.10.1 General ...
3.10.2 Program SIOP ...
3.10.3 Extract B
3.10.4 OPEratec.cooiiiiiiiiiie e
3.10.5 Clear and Subtract Word Counter ...,
3.10.6 Shift Left and Round ...
3.10.7 Load B Registers ..ot
SECTION 4 INCLUDED 10 UNITS ...
4.1 Introduction ...
4.2 Punched Cards and Card Forms ..o,
4.2.1 General ..
4.2.2 Instruction Card ...
423 Binary Card ...
4.2.4 Card IIage ..o
43 Card Reader ...
4.3.1 OPELationcoviiiiiiieiiciicie e
4.3.2 Controls and Indicatorscccovriiiiviiiiicc
43.3 Information Transfer ...,
4.4 Card Punch ...
44.1 OPErationoccovoiiiiiiiiiiiice e
44.2 Controls and Indicators ...
443 Information Transfer ...,
4.5 Line Printer ..o
45.1 OPEration ...

UNCLASSIFIED

PARTS 1 & 2

PARTS 1 & 2 UNCLASSIFIED Contents
T.0. 31P2-2FSQ7-112

CONTENTS (cont‘d)

Heading Page
4.5.2 Controls and Indicatorscooooiiiiiiiiii 84
4.5.2.1 Control Panel ..., 84
4522 Manual Controls and Indicators ... 85
4.5.3 Information Transfer ... 86
4.6 Tape Element ..., 87
4.6.1 Introduction ..., 87
4.6.2 Tape Drive Unit ..., 89
4.6.2.1 Manual Operations ..o 89
4.6.2.2 Programmed OPeration ... 90
4.6.3 Tape Adapter Unit ... 91
4.6.4 Programming ... o4
4.64.1 Pertinent Instructions ..o 94
4.64.2 General Rules ... 95
4.64.3 Read OPeration ... 95
4.64.4 Write OPerationccocomimoomiriuoos oo eeneeenes 926
4.64.5 Backspace ... o7
4.64.6 Rewind ..o 97
4.7 TO ReIStEr ..o e 98
SECTION 5 APPLICATIONS ... 100
5.1 Introduction ... 100
5.2 Sttaight-Line Programming ..o 100
5.2.1 Basic Arithmetic Operations ... 100
5.2.1.1 Addition ... 100
5.2.1.2 SUDLIACHION ... 100
5.2.1.3 Multiplication ... e 101
5.2.1.4 DIVISION .ot 102
5.2.2 Combined Operationsccccovviniiriccciniiincecenees 103
5.2.2.1 Co-ordinate Conversion ..., 103
5.2.2.2 Evaluation of a Function ..o 104
5.2.3 Logical Operations ... 105
5.2.4 TO OPerations ... 105
5.3 Iterative Programmingccccocoviocinioiiiiiiiie e 107
5.3.1 General ... 107

UNCLASSIFIED vii

Contents

viii

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS (cont’d)

PARTS 1 & 2

Heading Page
5.3.2 Indexing ... 107
5.3.3 Program Comparisons ... 108
5.3.3.1 Straight-Line Program ..., 108
5.3.3.2 - Non-indexed Iterative Program ... 108
5.3.3.3 Indexed Iterative Program ..., 110
5.3.4 Applications of Indexing ... 111
5.3.4.1 Indexed Number-Sorting Program ..., 111
5.3.4.2 Indexed Function Evaluation Program 113
5.3.5 Program Precautions in Indexing 115
5.3.5.1 Number of Cycles of Iterated Routine 115
5.3.5.2 Use of Zero Address with Indexable Instructions 116
5.4 Program Preparation .. 117
5.4.1 Program Organization ... 117
5.4.1.1 General ... 117
54.1.2 Master Programs ... 117
5.4.1.3 Subroutines ... 117
54.14 Compiler Programs ... 118
5.4.1.5 Utility Programs ... 118
54.1.6 Parameters ... 119
5.4.2 Program Coding ... e . 119
5.4.2.1 Absolute Programming ... 119
5.4.2.2 Symbolic Programming ... i20
54.23 Assembly Program ... 120
5424 Assembly Program Card Punchifif .o, 128
5.4.2.5 Printout of Assembled Program ... 123
5.4.3 Program TeSting ... 123
5.4.3.1 General ..., 123
5.4.3.2 Program Monitoringcoooioiniiiriioiniceoeeecnee e 123
54.3.3 Test Programs ...l 124
54.34 Simulation Programs ... 124

CHAPTER 4 DRUM SYSTEM ... 125
SECTION 1 SYSTEM DESCRIPTIONooccccoomiiiiimercrcsorcins 125
1.1 System Function ... i25

UNCLASSIFIED

PARTS 1 & 2 UNCLASSIFIED Contents
T.0. 31P2-2FSQ7-112

CONTENTS (cont‘d)

Heading Page
1.2 System Data ... 126
1.2.1 Physical Descriptioncccoimnieiiinocneines s 126
1.2.2 Logical DeSCrPtionccooociiuiiiiiiiiniinieceeee e 126
1.2.3 Logical Definitionsc.coccoeeiiinoiioeiiire e 127
124 THOING o e 128
1.3 System LOGICccooiiiiiiiiiiiiiie e 129
SECTION 2 SYSTEM OPERATION ..., 132
2.1 General .. 132
2.2 Time Buffer Operation ..o, 137
2.2.1 WIIHNG ... 137
22,11 SEATUS ..o 138
2.2.1.2 Modified Statusc.ccooeiiiiii [ES RO RRTRRRRROO 138
2.2.1.3 Marker Statusccooiiioiiine 139
2.2.2 Reading ... 139
2221 Status Identification ..., 139
2.2.2.2 Status ..., ' 140
2.3 Auxiliary Memory Operation ..., . 140
2.3.1 WIIHNG ..o 140
2.3.1.1 AddIess ... 140
2.3.1.2 Interleave e 141
2.3.2 Reading ..., 142
2.3.2.1 Address ... 142
2.3.2.2 Interleave ..ot 143
2.3.2.3 Precession ... 143
SECTION 3 INFORMATION FLOWc...ccooccoiiiiiiiiiiiiiiniiicinininn, 145
3.1 OD Information Transfersc.ccccoceviieroiiionieniieeoeene. 145
3.1.1 Input System Information ..., 145
3.1.2 Output System Information ..ot 145
3.1.3 Display System Information ... 145
3.2 CD Information Transferscccocoooviiiiiioiciec e, 147
3.2.1 Auxiliary Memory Information ..o, 147
3.2.2 Input Information ... 148
3.2.3 Output Informationcccooevinetiiirirecncecceens SR 149

UNCLASSIFIED ix.

Contents

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS (cont‘d)

Heading Page
324 Intercommunication Information ... 151
3.3 Test Operations ..., 152
3.3.1 General ... 152
3.3.2 Parity Check ... 153
3.3.3 Computer Tests ... 155
3.3.4 Manual Drum Tests ... 156

CHAPTER 5 INPUT SYSTEM ..o 159
SECTION 1 LONG-RANGE RADAR INPUT ELEMENT ... 159
1.1 Introductionc.ocooiiiiiii e 159
1.2 LRI Element Desctiptioncccoooiiiiiiiiiiiiiiie 160
1.2.1 Element Function ... 160
1.2.2 Element Logic ... 160
1.2.3 LRI Data ... 161
1.2.3.1 Data SOULCES ... 161
1.2.3.2 Data Handling ... 162
1.2.3.3 Data FOIMS ..o 163
1.3 Element Operation ..o 164
1.3.1 General ... 164
1.3.2 Read-In ... 164
1.3.3 CheckS ... 167
1.3.4 Transfer to Drum Field ... 167
1.3.5 Alarm Conditionsccooooiiiiiiiiiie e 168
1.3.6 LRI MODItOLoiiiiiiiiiiiieiiee et 169
1.4 Processed-Data FOrms ..o 169
1.5 Duplexing ... 170
SECTION 2 GAP-FILLER INPUT ELEMENT 173
2.1 Element Description ... 173
2.1.1 Element Function ... 173
2.1.2 Element LOGIC ...t 173
2.1.3 Data SOULCE ...t 173
2.2 Element Operation ..., 175
2.2.1 General e 175

UNCLASSIFIED

PARTS 1 & 2

PARTS 1 & 2 UNCLASSIFIED Contents
T.0. 31P2-2FSQ7-112

CONTENTS (cont’d)

Heading Page
2.2.2 Data Conversion Receivercccocooercnniioveeeie 175
223 Mapper Sectionccccovieiiiiiiiiie e, 175
224 Counter SECtiONcccccoimiiriririiiiiieeeese e 177
225 GFI Common SeCtion ..o 177
2.2.6 GFI MODIEOLc.cooiiiiiiiiirieiieerc e 177
23 Information FOLmc.cocovviniiiiiiice e 178
2.4 Duplexing ..o e 178
SECTION 3 CROSSTELL INPUT ELEMENTcccomoiinneen 181
3.1 Element Descriptionccooiiinciriiiincieecneeeia ... 181
3.1.1 Element Functioncccocoooiiiiiniiioieeeeete e, 181
3.1.2 Element Logicccooviiiiiiiitiiieeccce 181
3.1.3 Data FOrm ..ot 182
3.2 Element OPerationccccovoiiiiiiieiioiosioseeeeececseceeneaes 182
3.2.1 General ... 182
3.2.2 Read-In ..o 182
323 Checks ... 183
3.24 Transfer to Drum Field ... 184
3.2.5 Alarm Conditions ..., 186
3.3 Information FOrm ..o 186
3.4 XTL Duplexingcccocoooiniiiiiiiinienee e, 188
SECTION 4 MANUAL DATA INPUT ELEMENT ... 189
4.1 Drum Entry S€ctionccccccovooiiiriieieiiieece, 189
4.1.1 Introduction ... 189
4.1.2 Section Descriiation .. 189
4.1.2.1 Function ..., 189
4.1.2.2 Computer Entry Punch Data Sources ..., 196
4.1.2.3 Display Data SOUICesccccooooovoiiiiiiiiciionieeseens 191
4.1.3 Section OPerationccccooervrinniiiriiece e 191
4.1.3.1 General ... 191
4.1.3.2 Computer Entry Punch Information Transfer 193
4.1.3.3 Light Gun Information Transfer ..o, 193
4.1.3.4 Area Discriminator Information Transfer ... 193
4.14 Information Forms ..., 194

UNCLASSIFIED Xi

Contents

xii

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS (cont’d)

Heading Page
4.1.5 Duplexingccoocoiiiiiiii e 194
4.2 Direct IO Buffer Entry Section ..., 195
421 Section Description ... 195
4.2.1.1 Function ... 195
4.2.12 Keyboard Messagesccocoooiiiiiiiii e 196
422 Section Operation ... 197
4.2.2.1 Message Insertion ..., 197
4222 Core Matrix ... 198
4223 Transfer to Central Computer Systemcccocooeernrn.. 198
4.2.3 Duplexing ... 199

CHAPTER 6 DISPLAY SYSTEM 201
SECTION 1 SYSTEM DESCRIPTION 201
1.1 System Function ... 201
1.2 System Logic ... 201
1.2.1 Overall ... 201
1.2.2 Duplexing ... 203
13 Display Tubes ... 204
1.3.1 General ... 204
1.3.2 Situation Display Tube ... 204
1.3.3 Digital Display Tube ..., 206
SECTION 2 SITUATION DISPLAY SUBSYSTEM OPERATION .. . 208
2.1 Introduction ... 208
2.2 Situation Display Messages ... 208
2.2.1 Radar Data Messages ... 208
2.2.1.1 Information Contentsooooiiiii i 208
2.2.1.2 Effects of Programming on Display 209
2.2.1.3 Radar Data Message Drum Layout 210
2.2.2 Track Data MeSSAeSscoccoooeiiiiiiiiiiieieice e 210
2.2.21 General ... 210
2.2.2.2 Tabular Messages ..o, 211
2.2.2.3 Tabular Message Drum Layout 214
2224 Vector Messages ... 214

UNCLASSIFIED

PARTS 1 & 2

PARTS 1 & 2 UNCLASSIFIED content;
T.0. 31P2-2FSQ7-112 :

CONTENTS (cont'd)

Heading ~ Page
2225 Vector Message Drum Layoutc.ccoooooooivevoieieeo. 215
2.3 Situation Display Generator Elementccoocooocooooi..... 217
2.3.1 Element Function ..., 217
2.3.2 Situation Display Cyclec..c.cccooooiimeiiionneiee . 218
2.3.3 Element Operation ..o 218
2.4 Situation Display Indicator Element 221
24.1 General ... 221
2.4.2 Display Selectioncccocooivioiiriieininieneienee e 221
243 Expansion and Offcenteringcocoooooiivoriiieo o 222
244 Message Position Addressing ..o, 224
2.5 Situation Display Cameraccccooooooiiioiniee . 225
2.6 Large Board Display Elementc.ccocoocooooioooii . 225
SECTION 3 DIGITAL DISPLAY SUBSYSTEM OPERATION 227
3.1 Introduction ..o s 227
3.2 Digital Data Messagesc.ccccoooeinicnivininiien, 227
3.2.1 General ... 227
3.2.2 Message CONLENLSc.oocuiuvriiiririmiieiee e 227
3.2.3 Drum Layout ..o 230
3.3 Digital Display Generator Elementccccocooeiiiier... 230
3.3.1 Element Function ..., 230
332 Digital Display Cycle ..o e 230
33.3 Element Operation ... 231
34 Digital Display Indicator Elementcc.c..cccocoeerrivinnonnn... 233
3.5 Maintenance Display Consolec.ccccocooeioiiviorcneiion . 234
SECTION 4 INFORMATION FLOW ..., 235
4.1 INtroduction ..o 235
4.2 Relation to Manual Data Input Element 235
4.2.1 Situation Display Subsystemc.cccccoooimmiiniiniirii, 235
4.2.1.1 General ... e 235
4212 Light-Gun Operation ..o 237
4213 Area Discriminator Operationccccocoooovvovieioieiooen oo, 237
422 Digital Display Subsystemcccccocorminiriiriiicnen, 238
4.3 Duplexed Information FIOW ..., 239

UNCLASSIFIED xiii

Contents

Xiv

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS (cont’'d)

Heading Page
CHAPTER 7 OUTPUT SYSTEM ... 241
7.1 System DISCUSSION ... 241
7.1.1 System Function ... 241
7.1.2 System LOGIC ... 241
7.1. Information FOImMS ... 241
7.1.3.1 BUISES ..o 241
7.1.3.2 Output Drum Word ... 243
7.1.3.3 Output MESSAZESocooiiviiiiiiiiie 244
7.2 System OPeration ... 244
7.2.1 Output Control Element ... 244
7.2.1.1 IntrodUCONo 244
7.2.1.2 Checking and Sorting ... 245
7.2.1.3 Output AlArms ... 247
7.2.14 Output Computer SECHION ..o 248
7.2.2 Output Storage Element ... 249
7.2.2.1 Ground-to-Air Output Storage Section ..., 249
7222 Ground-to-Ground Output Storage Element 251
7.2.2.3 Teletype Output Storage Section ... 254
7.2.3 Output Test SECtON ... 255
7.3 Information Flow ... 255
7.3.1 Burst Preparation ... 255
7.3.1.1 Ground-to-Air Bursts ... 255
7.3.1.2 Ground-to-Ground Bursts ... 257
7.3.1.3 Teletype Bursts ... 259
7.3.2 Delivery to Drum System ... 260
CHAPTER 8 WARNING LIGHT SYSTEM ... 263
8.1 System DeSCRPHONoooviiiiiiiss 263
8.1.1 System FunCtion ... 263
8.1.2 System LOIC ..ot 263
8.2 System OPEration ... 263
8.2.1 General ... 263
8.2.2 ADAIYSIS oo . 264
8.3 Information FIOW ... 265

UNCLASSIFIED

PARTS 1 & 2

PARTS 1 & 2 UNCLASSIFIED Contents
T.0. 31P2-2FSQ7-112

CONTENTS (cont’d)

Heading , Page
CHAPTER 9 DUPLEX FACILITIES ... 267
9.1 Equipment Description ... 267
9.1.1 Introduction ...t 267
9.1.2 Duplex Philosophy ..., 267
9.2 SEATUS ..o 269
9.2.1 Active ‘Status OO OO VPO POV UOE TSR UOS PR PERPORUROS 269
9.2.2 Standby Status ... 269
9.2.3 Other ..., O 269
9.2.4 Status Control ..o OOV 269
9.3 Duplex Switching Consoles ... 269
9.3.1 Introduction ... 269
9.3.2 Duplex Switching Controls ..., 270
9.3.2.1 General ... 270
9.3.2.2 Duplex ACTIVE Switch ... 270
9323 INTERLOCK BYPASS SWitchccoovoriiorioiiieiiriien . 270
9.3.24 TEST OPERATE OVERRIDE BYPASS Switch e 270
9.3.3 Duplex Switching Indicators ... 271
9.3.4 Power Switching Controls ..., 271
9.3.4.1 General ... 271
9.3.4.2 Simplex Power ACTIVE Switch ... e 272
9.34.3 INTERLOCK BYPASS Switch ..o 272
9.3.5 Simplex Power Switching Indicators ... 272
9.3.6 Other Facilitiescccoiiiiiiiiiiec e 272
9.4 Unit Status SWItches ... 273
CHAPTER 10 MAINTENANCE FACILITIES ... 274
SECTION 1 INTRODUCTION ... i 274
1.1 General ... 274
1.2 Central Maintenance Facilities ... 274
1.2.1 Duplex Maintenance Consoles ..., 274
1.2.2 Simplex Maintenance COnSoleco.cooorirriveoiiinriiienne 274
1.2.3 Marginal Checking ... 276

UNCLASSIFIED XV

Contents UNCLASSIFIED PARTS 1 & 2
T.0. 31P2-2FSQ7-112

CONTENTS (cont’d)

Heading Page
SECTION 2 DUPLEX MAINTENANCE CONSOLE ... 277
2.1 General ... 277
2.2 Central Scope and Probes Panel ... 277
2.3 Marginal Checking Control Panel ... 277
23.1 General ... 277
2.3.2 POWER GROUP Controls and Indicators ... 278
2.3.3 NOT READY Indicatorsccccocooooiiioomiiiiiiie . 278
2.4 Central Computer System Control Panel ... 279
24.1 General ... 279
242 POWER ALARMS ... 279
24.3 ALARMS Indicators ..o 281
244 Alarm Control Switches ... 281
24.4.1 General ...l C.. 281
24.4.2 Alarm Activation Switches 283
2.44.3 STOP-BRANCH Switch ... 284
2444 Applimﬁons .. 284
24.5 ALARMS Neon GIoupccccocooioiiiiiiiiinioieens 284
24.6 CONDITION LIGHT Neon Group ..., 284
2.4.7 TPD AND CYCLE CONTROL Neon Groupcc.cc....... 284
24.8 INSTRUCTION Neon Group ..., 285
249 DIVIDE TPD Neons Group ... 291
2.4.10 ARITHMETIC Neon GIoup ..., 291
2.4.11 MEMORY 1 and MEMORY 2 Neon Groups 294
2.4.12 DRUMS Neon GIroup ... 294
2413 CARD MACHINES Neon Group ... 294
24.14 MISC SELECTION Neon GIoup ..o, 294
2.4.15 TAPE Neon Group ... 296
2.4.16 Test and SENSE Control Switches 296
2.4.16.1 General ... 296
2.4.16.2 OPERATE COMPUTER-TEST Switch 296
2.4.16.3 SENSE Switches ... 296
2.4.164 UNASSIGN-ASSIGN Switch 296
2.4.16.5 BRANCH NORMAL-BRANCH TO ZERO MEM Switch ... 297
24166 CAMERA INDEX-SUPPRESS Switch TR 297

xvi UNCLASSIFIED

PARTS 1 & 2 UNCLASSIFIED Contents
T.0. 31P2-2FSQ7-112

CONTENTS (cont’'d)

Heading Page
2.416.7 NORMAL-REVERSED Switch ... 297
2.4.17 Loading Preparation Controlscccocoociiin. e 297
24.17.1 General ..., 297
24172 CLEAR MEMORY Pushbutton ... 297
2.417.3 RESET FLIP-FLOPS Pushbuttonc.cccoooooiirinin, 297
24.174 CLEAR ALARMS Pushbuttoncccccoooiiniiiieee 298
2.4.17.5 RESET AUDIBLE ALARM Pushbuttonc.c...ccococoinn. 298
24.17.6 MASTER RESET Pushbutton ST SO SRR 298
2.4.18 Program Loading Controls ..o 299
2.4.18.1 General ... 299
24182 PROGRAM STOP Pushbuttonccooooovniiincre. 299
24.18.3 PROGRAM CONTINUE Pushbuttoncc.cccccoorirmrirrnnns. 299
24184 LOAD FROM CARD READER Pushbuttonc..ccoeun.e. 299
2.418.5 LOAD FROM AM DRUMS Pushbutton ..., 300
2.418.6 START FROM TEST MEMORY Pushbutton ... 300
2.4.19 Program Loading Control and Test Indicators 301
2.4.20 Servicing Controls ... 301
24.20.1 General ... 301
2.420.2 INST STEP Pushbuttoncooocoooiiiioiiiiiieee 301
2.4.20.3 MEMORY CYCLE Pushbutton ..o, 301
24204 SINGLE PULSE Pushbuttomncccoccocooiviiiiiniiics 301
2.4.20.5 COMPLEMENT Pushbutton ..., 302
24.21 Miscellaneous Controls and Indicatorsc....co.... 302
24211 General ... 302
2.4.21.2 AIR COND TROUBLE ACKNOW Pushbutton 302
2.421.3 RESET AIR COND AUD ALARM Pushbutton 302
2.4.21.4 SELECT TEST MEMORY Pushbuttonccocoovviennnn. 302
24.21.5 READY IO UNITS Pushbuttonscc.ccccoooiinineninn. 302
2.4.21.6 START CAMERA MODE 1 and 2 Pushbuttons 302
2.4.22 COMPLEMENT Lever SWitch ... 302
2.4.23 COMPUTER STATUS Indicatorsc.ccccoovrivvrniinrocrinnnns 302
2.4.24 Cyclic Program Controls ..o 303
2.5 Register Neons Panel ... 304
2.6 Test MEMOLYc.ooooviiiicerince e EERPRR 304

UNCLASSIFIED - xvii

Contents UNCLASSIFIED PARTS 1 & 2
T.0. 31P2-2FSQ7-112

CONTENTS (cont’'d)

Heading Page
2.6.1 CaAPACILY ..o 304
2.6.2 Register Characteristics ... 304
2.6.3 Test Memory Reading ... 306
2.6.4 Test Memory Selection and Addressing 307
2.7 Tape Indicators and Controls ... 307
2.8 Main Drum Group Indicator Panel ... 309
2.8.1 General ... 309
2.8.2 COMPUTER TO DRUMS Neons Group ..., 310
2.83 INPUT DRUMS Neon Group ..., 313
2.84 DISPLAY FIELDS Neons Groupococooovovroiiiain. 317
2.8.5 Test Indicators and Controls ..o 318
2.8.5.1 General ... 318
2852 TEST Neon Group ... 318
2.8.5.3 DRUM SELECT Controls and Indicators ... 319
2.9 AUXILIARY DRUMS Indicator Panel ... 320
2.9.1 General ... 320
2.9.2 Test Controls and Indicators ... 321
2.9.3 TEST Neon GIroupcocoooiioiiiiiiiiiiiiiiie e 323
294 COMPUTER TO DRUMS Neon Group ... 323
2.9.5 Auxiliary Drums Test Register Neons 324
2.10 Display Tester Control Panel 325
2.10.1 General ... 325
2.10.2 BIT STORAGE CONTROL Lever Switches 326
2.10.3 Control Switches and Indicators ..., 326
2.10.3.1 USES .ot 326
2.10.3.2 OPERATE-TEST DD Switch ... 326
2.10.3.3 OPERATE-TEST SD Switch SRS PR 326
2.10.3.4 DISP DD CONT-DISP 1 CYC DD Switch 326
2.10.3.5 TD-RD Switch ... 327
2.10.3.6 DISP RD BRIGHT-DISP RD DIM Switch 327
2.10.3.7 STARTER TESTER Pushbutton - 327
2.10.3.8 INAECALOLS ..oooo. oo 327
2.11 Display Generators Indicators ... 328
2.11.1 General ... 328

xviii UNCLASSIFIED

PARTS 1 & 2 UNCLASSIFIED Contents
T.0. 31P2-2FSQ7-112

CONTENTS (cont’'d)

Heading Page
2112 SITUATION DISPLAY GENERATOR Neon Group 328
2.11.3 Display Régisters Neon Group ..o, 329°
2.11.4 DISPLAY TESTER Neon Group ..oooooooooovioooioeeeee, 329
2.11.5 DIGITAL DISPLAY GENERATOR Neon Group 330
2.11.6 CAMERA CONTROL Neon Groupc.ocooceromrerrronnnnnn 332
2.12 WARNING LIGHTS Indicatotsc.cccooeviivvienann.. 332
2.13 MANUAL INPUTS Indicatossc..cc.ccooooovoveirieoieeen. 332
2.14 PHONE LINE INPUTS Indicators and Controls 335
2.14.1 General ..., 335
2.14.2 LRI DUPLEX EQUIPMENT Neons and Control 336
2.14.3 GFI DUPLEX EQUIPMENT Neonsccc.oocooevoeennn.. 337
2.144 XTL DUPLEX EQUIPMENT Neons and Control 337
2.15 OUTPUT SYSTEM Indicatorsc.ccocoooiiieiioien. 338
2.15.1 General ... 338
2.15.2 Counter and Output Parity Generator Neons Group 338
2.15.3 COMMON CONTROLS Neon GIoupoccoocorvrerimnnnnne, 339
2.154 G/A CONTROLS Neon Group ..o, 339
2.15.5 G/G CONTROLS Neon Groupcc.ccccororvmririreinirinnns 341
2.15.6 TTY CONTROLS Neon Groupcccooovermorrroieroeo 342
2.16 OUTPUT TEST CONTROL PANEL 342
2.16.1 General ... 342
2.16.2 OUTPUT ALARMS Neon Groupcccoovervvvorreroenan.. 342
2.16.3 G/A LOOPED TO LRI Controls and Indicators 343
2.16.3.1 General ... 343
2.16.3.2 SELECT G/A Controls and Indicatorsccc.......... 343
2.16.4 SELECT G/G Controls and Indicatorsc...c...cc........... 344
2.16.5 TTY LOOPED TO TTY RCVR Controls and Indicators 344
2.16.6 UNIT LOOP TEST Neon GIoupcccccoorviimrionirnrrnrnnnn. 344
2.16.7 OUTPUT Controls and Indicatorsc...ocoocovenin. 345
2.16.8 G/A, TTY, G/G OUTPUT DATA Neon Groups 346
SECTION 3 SIMPLEX MAINTENANCE CONSOLE ... 347
3.1 General ... 347 .
3.2 ‘Central Scope and Probes Panel ... 347

UNCLASSIFIED xix

Contents

Heading

3.3

3.4

3.5

3.5.1
3.5.2
3.5.3
3.6

3.6.1
3.6.2
3.6.3
3.64
3.6.5
3.6.6
3.6.7
3.7

3.7.1
3.7.2
3.7.3
3.74
3.7.5
3.7.6
3.7.7
3.8

3.8.1
3.8.2
3.83
3.8.4
3.85
3.8.6
3.8.7
3.9

3.9.1
3.9.2
3.9.3

3.9.4

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS (cont‘d)

PARTS 1 & 2

Page
Simplex Marginal Checking Control Panel ... 347
Power Supply Control Panels ..., 347
Computer Entry Punch Panel 350
General ... 350
Air Conditioning Controls ... 350
Computer Entry Punches Indicators ... 351
GFI Channel Control Panels ... 351
General ... 351
GFI ALARMS Control and Indicators ... 351
GFI Unit Status Rotary Switch ... 351
GFI POWER Indicatorsccooooooiiiiiiiiiiiiiieeee 351
GFI DATA CIRCUITS Controls and Indicators 351
CHANNEL SELECTOR Rotary Switch 351
GFI Channel Input Section Neons ... 351
XTL Channel Control Panels ... 351
General ... 351
XTL ALARMS Controls and Indicators ... 355
XTL Unit Status Rotary Switch ... 356
XTL POWER INdicatorsccccccooriiiiiioiiiiiiiiisin 356
XTL DATA CIRCUITS Controls and Indicators 356
Channel Selector Rotary Switch ... 357
XTL Channel Input Section Neons ... 358
LRI Channel Control Panels ... 358
General ... 358
LRI ALARMS Controls and Indicators 358
LRI Unit Status Rotary Switch ... 358
LRI Power Indicatorsccooiiiiiciiiiiiies e 358
LRI DATA CIRCUITS Controls and Indicators 360
Channel Selector Rotary Switch ... 360
LRI Channel Input Section Neons 360
GFI, XTL, LRI Test Pattern Generator Control Panel ... 360
General ... 360
GFI Pattern Generator Controls and Indicators 362
LRI Pattern Generator Controls and Indicators 362
XTL Pattern Generator Controls and Indicators ... 362

UNCLASSIFIED

PARTS 1 & 2 UNCLASSIFIED Contents
T.0. 31P2-2FSQ7-112

CONTENTS (cont'd)

Heading " Page
SECTION 4 MARGINAL CHECKING ... 363
4.1 Organization ...t 363
42 Modes of Operation, Duplex ... SRR 364
4.2.1 Manual Mode ..., S 364
422 Satellite Mode ..o 368
423 Calculator Mode ... 368
4.3 Modes of Operation, Simplex ..o, 370
44 Code ASSIgNmentscoooiiiniiiiiiriies e, 373
44.1 Marginal Checkifgoooovvvoioooioieoeooooeeeeeeeeee 373
442 Circuit Groups and Linesccccocoviiiinninicec e, 373
44.3 Indirect Checkscoooiiiiiriicrec s 374
4.5 Mimic Panel ... 374

PART 2 PrOGRAMMING APPLICATIONS ... 375

CHAPTER 1 OPERATIONAL PROGRAM ORGANIZATION 375
SECTION 1 INTRODUCTION ..., 375
1.1 Purpose ... 375
1.2 Direction Center Functionscccoooioiiiiiiiiiinien 375
1.2.1 General ... 375
1.2.2 Air Surveillance ... 375
1.2.2.1 Overall ... 375
1.2.2.2 Radar Inputs and Mapping ..., 375
1.2.2.3 Track Detection and Initiation SRRSO TTUUPRTOVRURUTON 375
1.2.24 Track MORItOINGo.oooooooooooooieoieo oo 376
1.2.2.5 Crosstelling ... 376
1.2.2.6 Forward-telling ..o 376
1.2.2.7 Height Finding ... 376
1.2.2.8 Identification ..ot s 377
1.2.2.9 Raid Forming ... 377
1.2.3 Weapons DIrection ..o 377
1.2.3.1 Overall ... 377
1.2.3.2 Weapons ASSIZRMENtco.ccovuiiiiiiininienciieeeceneeceans 377
1.2.3.3 Intercept Direction ..., 377

UNCLASSIFIED o

Contents

Xxii

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS (cont’d)

Heading
1.2.34 Antiaircraft Direction ...
1.2.4 Manual Data Inputs ...
1.2.5 Weather ..o
1.2.6 Subsector Command Post ...
127 Training and Battle Simulation ...
1.2.8 Standby Operation ...,
1.2.9 Recording and Analysis ...
1.3 Response Time ...
1.3.1 Introduction ...
1.3.2 Timing and Sequencing of Programs ..o
14 Direction Center Programs ...
14.1 General ...
14.2 Operational Active Program
1.4.3 Operational Standby Program ...
1.4.4 Operational Supporting Program ...
1.4.5 Utility Supporting Programs ...
1.4.6 Maintenance Programs ...
SECTION 2 OPERATIONAL ACTIVE PROGRAM
2.1 Program Design ...
2.1.1 Introduction ...
2.1.2 Central Group Programs
2.1.2.1 Sequence Control Program ...
2.1.2.2 Keyboard Message Interpretation Program Group ...
2.1.2.3 Situation Display Program Group ...
2.1.24 Digital Display Program Group ...,
2.1.2.5 Input-Output Program Group OO
2.1.2.6 Central Bookkeeping Program Group ...,
2.1.3 Operational Program Group ...
2.1.3.1 Tracking Program Group ...
2.1.32 Weapons Direction Program Group ...
2.1.3.3 Miscellaneous Program Group ...
2.2 Program Timing ...
2241 General ...
2.2.2 Program Classes ...

UNCLASSIFIED

PARTS 1 & 2

PARTS 1 & 2 UNCLASSIFIED Contents
T.0. 31P2-2FsQ7-112

CONTENTS (cont'd)

Heading Page
223 Program Sequence ..o 387
2.24 Effect of Program Sequence on Response Times 388
SECTION 3 OPERATIONAL STANDBY PROGRAM ... 389
3.1 Introduction ... 389
3.2 Air Defense Requirementscccoccooovoiriiiiriiisiieean 389
3.21 General ... 389
3.2.2 STATTOVEL ..ot 389
3.2.3 Safe Data Storége ... 389
3.24 Active Computer Monitoringc....co.ooooovoiiiiriienee . 389
3.2.5 Standby Computer Monitoringccccoovvioririoieien. 389
3.3 Maintenance Requirements e 389
3.3.1 General ... 389
332 Standby Modes of Operation ..o, 390
3.3.2.1 Duplex Modeccooooiiiiiiiiiieeeeee e 390
3.3.2.2 Simplex Mode ... 390
3.3.3 Operational Standby Program, Duplex Mode 390
3.3.3.1 Sequence Control Program ..., 390
3332 Duplex Switching Console Programs s -390
3.3.3.3 Active Computer Monitoring Program 390
3.3.34 Safe Data Storage Programc.cccccooviiiimimiieii.n... 390
3.3.3.5 Startover Program ... 390

CHAPTER 2 PROGRAMMING DATAccooooocmmmirmmiiiriorinnin 391
SECTION T INTRODUCTION ..o 391
1.1 General ... 391
1.2 Numbers and Arithmetic ... 391
1.2.1 Representation of Numbers ..o 391
1.2.2 Addition and Subtraction ... 392
1.2.3 OVErfloW ..o e 392
1.24 DiVISION ... et 393
13 Sequence of Instruction Execution ..., 393
1.3.1 Program Counter ... 393
1.3.2 Indexing ... 393

UNCLASSIFIED xxiii

Contents

Xxiv

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS (cont’d)

PARTS 1 & 2

Heading Page
1.4 Internal Memory Addressing ... 393
1.4.1 General ... 393
1.4.2 Core MEMOLYo.iiiiiiiiiii e 394
14.3 Test MEeMOTYo.ooooiiiiiiiiii i 394
1.4.4 Clock RegISter ... 395
SECTION 2 INSTRUCTIONS, 396
2.1 General ... 396
2.2 Miscellaneous Classccocooiiiiiioinii 396
221 Program Stop (HLT) Instruction 396
2.2.2 Extract (ETR) Instruction ..o 396
223 Operate (PER) Instruction ... 396
224 Clear and Subtract Word Counter (CSW) Instruction 397
225 Shift Left and Round (SLR) Instruction 397
2.2.6 Load B Register (LDB) Instruction ... 397
2.3 Add Class ..o 397
2.3.1 Clear and Add (CAD) Instruction ... 397
2.3.2 Add (ADD) InStructioncccccooooiiiiii 397
2.3.3 Twin and Add (TAD) Instruction ... 397
234 Add B Registers to Accumulators (ADB) Instruction 398
2.3.5 Clear and Subtract (CSU) Instruction ... 398
2.3.6 Subtract (SUB) Instruction ... 398
2.3.7 Twin and Subtract (TSU) Instruction ..o, 398
2.3.8 Clear and Add Magnitudes (CAM) Instruction 398
239 Difference in Magnitudes (DIM) Instruction ... 398
2.4 Multiply Class ... 398
24.1 Multiply (MUL)u INSErUCtionocccoooiiiiieii e 398
2.4.2 Twin and Multiply (TMU) Instruction ... 398
24.3 Divide (DVD) Instruction ... 398
244 Twin and Divide (TDV) Instruction ... 398
2.5 Store CLass 399
2.5.1 Store (FST) Instruction ..., 399
2.5.2 Left Store (LST) Instruction ..., 399
2.5.3 Right Store (RST) Instruction ... 399

UNCLASSIFIED

PARTS 1 & 2

Heading

254
2.5.5
2.5.6
25.7
2.6

2.6.1
2.6.2
2.6.3
2.64
2.6.5
2.6.6
2.6.7
2.6.8
2.7

2.7.1
2.7.2
2.7.3
2.74
2.7.5
2.7.6
2.8

2.8.1
2.8.2
2.8.3
2.84

]
\o

DN
NI
N =

293
2.10
2.10.1

2.10.2

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS (cont’'d)

Store Address (STA) lnstraction ...
Add One (AOR) Instruction
Exchange (ECH) Instruction ...,
Deposit (DEP) Instruction ..ot
Shift Class ..o
Shift Left (DSL) Instraction ...
Shift Right (DSR) Instruction ... e
Shift Accumulators Left (ASL) Instruction.....................
Shift Accumulators Right (ASR) Instruction
Left Element Shift Right (SLR) Instruction
Right Element Shift Right (RSR) Instruction
Cycle Left (DCL) Instruction ..o,
Cycle Accumulators Left (FCL) Instruction
Branch Class ...
Branch and Index (BPX) Insttuction
Sense (BSN) Instruction ...
Branch on Zero (BFZ) Instruction ...
Branch on Minus (BFM) Instruction
Branch on Left Minus (BLM) Instruction
Branch on Right Minus (BRM) Instruction ...
TO Class ...,
Load Input-Output Address Counter (LDC) Instruction
Select Drum (SDR) Instruction
Select (SEL) Instruction ...
Read (RDS) Instruction ...

Reset Index Register (XIN) Instruction

Reset Index Register from Right Accumulator (XAC)

Instruction ...
Add Index Register (ADX) Instruction
Illegal Instructions ...
General ...

Illegal Instruction, Type 0 ...,

UNCLASSIFIED

Page

399
399
399
399
399
399
399
400
400
400
400
400

400
401
401
402
402
402
402
403
403
403
406

407

B
&
3

407

407
407
407
407
407

Contents

XXV

Contents

xxvi

SECTION 3 OTHER PERTINENT DATA

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS (cont’'d)

Illegal Instruction, Type 1 ...
Illegal Instruction, Type 2 ...
Illegal Instruction, Type 3
Illegal Instruction, Type 4 ...
Illegal Instruction, Type 5

Illegal Instruction, Type 6 ...
Illegal Instruction, Type 7 ...

31 TO PrOCESSoooviiiiii it
3.1.1 JO Transfersocoooiiiiiiii e
3.1.2 IO Interlock ...
3.1.3 IO Word Counter ...t
3.1.4 IO Address Counter U
3.1.5 Interleave ...
3.2 Alarms and Checks ...
3.2.1 Alarm ACHONS ...
3.2.2 Parity Checking ...
3.3 Miscellaneous Operating Controls
3.3.1 Automatic Branch to Zero ...
3.3.2 Test and Operate Modes ...
333 Duplex Switching
CHAPTER 3 PROGRAMMING TECHNIQUES
SECTION T GENERALoccooooooiiiiiiiiiiiiiiiicieeiee e
1.1 Introduction ...
1.2 Alternate Routine Selection ...
1.2.1 Operational Programs ...
1.2.2 Maintenance Programs ...
1.3 Checking ...
SECTION 2 SCALING ...
2.1 Putpose and Definition ...
2.2 INOEALIOM ...
23 Consideration ...

UNCLASSIFIED

PARTS 1 & 2

PARTS 1 & 2 UNCLASSIFIED Contents
T.0. 31P2-2FSQ7-112

CONTENTS (cont’d)

Heading Page
24 Procedure ... 428
2.5 Examples ... 428
25.1 Multiplication Scalifgcocooovoviiiiinicieee 428
2.5.2 Division Scalifig ..o 428
2.5.3 Accumulation Scaling ... 429
2.5.3.1 General Procedure ... 429
2.5.3.2 Simple Addition ... 429
2.5.3.3 Compound Multiplication and Divisioni ... 429
2.5.3.4 Function Evaluation ... 430

CHAPTER 4 10 PROGRAMMINGccocccoooiiioiiiiiiriieiiniiiree 433
4.1 Introduction ..o 433
4.2 TO UNIES ..o 433
4.2.1 Card Reader ... 433
4.2.2 CardPunch ... 433
4.2.3 Line PrIter ..ottt 433
42.4 TO RegiSter ... 434
4.2.5 Manual Input Matrix ... 434
4.2.6 Warning Lights Registers ... 434
4.2.7 Magnetic Tapes ... 434
4.2.8 Burst Time Counters ... 435
4.3 Drum Fields ... 435
4.3.1 Auxiliary Memory Fields ... 435
432 Time Buffer Fields ... 435
4321 Reading ..., 435
4322 Writing ... e 436
4323 Number of Words Transferred 436

CHADTER 5 INPUT OPERATIONScoooiivneneniicncinreres e 437
5.1 Information Forms ... 437
5.1.1 Introduction ..., 437
5.1.2 LRI Message Word Format ... 437
5.1.2.1 General ... 437
5.1.2.2 Search Radar ... 437
5.1.2.3 TEF 437
5.1.2.4 Height Reply ..., 437

UNCLASSIFIED ~ il

Contents

Xxviii

Heading

5.1.3
5.14
5.1.5
5.1.5.1
5.1.5.2
5.1.5.3
5.1.5.4
5.1.5.5
5.2
5.2.1
5.2.2
5.2.3
5.2.3.1
5.2.3.2
5.2.3.3
5.2.3.4
5.2.4
5.3
5.3.1
5.3.1.1
5.3.1.2
5.3.1.3
5.3.1.4
5.3.1.5
5.3.1.6
5.3.1.7
5.3.2
5.3.2.1
5.3.2.2
5.3.2.3
5.3.24
5.3.2.5
5.3.2.6
5.3.3

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS (cont’'d)

GFI Message Word Format ...
XTL Message Word Formatcccccccoocieiiiiiiinn
MDI Message Word Formats ..o,

General .. e

Track Display Word ...
MDI Matrix Core Assignmentsccccoooiviiiiiaen.
Transfer to Central Computer System
General ...
Reading by Status Identification ...
SOItING ..o
LRI Element Information ...
GFI Element Information ...
XTL Element Information ...,
MDI Drum Entry Section Information ...
Reading by Status ..o
Information Processing ...,
Radar Data Inputs ...
General ...

Mapping ..o
Radar Orientation ...

Correlation ...
Principles of Tracking ...
Search Areas ...
Multiple Radar Coverage ..o,
Track SOCting ...
Crossing Track Situations ...
Smoothing and Prediction ...

XTL Information Processing ...

UNCLASSIFIED

PARTS 1 & 2

PARTS 1 & 2

Heading

5.3.4

5.3.4.1
5.3.4.2
5.3.4.3
5.3.4.4

CHAPTER 6 DISPLAY OPERATIONS

SECTION 1 SITUATION DISPLAYS

1.1

1.2
1.2.1
1.2.2
1.2.3
1.2.3.1
1.2.3.2
1.2.3.3
13
13.1
1.3.2
1.3.3
13.3.1
1.3.3.2
1333
1.3.34
1.3.35

P
b
beg
N

,...
o
S
U

o
W
w
-

1.3.4
1.4

14.1
1.4.2
1.4.3
1.4.4

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS (cont'd)

MDI Information Processingcccccoooeninn.
Automatic Initiation ...,
Manual Initiation ...
Card Processing ...

Light Gun and Keyboard Messages

Introduction ...
Message Types ...,
Major Classifications ...,
Radar Data Messagesc.cocccocooviiinniionnnnn,
Track Display Messagesc.ccocoovernnionnnn,
General ...
Tabular Messagescccoooiiinnniecce .
Vector Messages ...,
Information Contentsccc.cooovrervieircnnnnn,
Radar Data Messagescccoceevicrcucnencennns
Vector Messagesccoocoooviiiniiiiinininecee
Tabular Track Messagesc.c.ccocoovineiiinnann. 4
Point Feature ...
Vector Feature ...
E Feature ...

C Feature ..o

PO

Examples ...,
Tabular Information Messagesccc.........
Message Routing ...
General ...,
Categories ...
Display Assignment Bits ...

Special Test Linesccooiiiiiiiiiininiie,

UNCLASSIFIED

Page

Contents

Xxix

Contents

XXX

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS (cont‘d)

Heading

SECTION 2 DIGITAL DISPLAYS ...,
2.1 General ...
2.2 Character Forming Matrix
2.3 Message Format ...
2.4 Message Distribution ...
2.5 Provisions for Expansion of Display Capacity

CHAPTER 7 OUTPUT OPERATIONS ...
7.1 Information FOrms ...
7.1.1 General
7.1.2 Ground-to-Air Information ...
7.1.3 Ground-to-Ground Information ...
7.14 Teletype Information ...
7.2 Message Preparation ...
7.2.1 General ..
7.22 Section and Register Address ...
7.2.3 Burst Number Assignment ...
7.23.1 General ...
7.2.3.2‘ Number of Stored Bursts ...
7.2.3.3 Writing Time ...
7.3 Message Delivery ...
7.3.1 General ...
7.3.2 Input-Output Transfers to the OQutput Buffer Fields ...

CHAPTER 8 WARNING LIGHTS OPERATION
8.1 General ...
8.2 Warping Lights Programming ...
8.3 Information FIOW

CHAPTER 9 DUPLEX OPERATIONS ...
9.1 INtroduction ..o
9.2 Intercommunication ...
9.3 Other Computer Alarms ...
9.4 Unit Status Evaluation ...
9.5 Switching Console Operation ...

UNCLASSIFIED

PARTS 1 & 2

Page

460

PARTS 1 & 2 UNCLASSIFIED Contents
T.0. 31P2-2FSQ7-112

CONTENTS (cont'd)

Heading Page
CHAPTER 10 MAINTENANCE OPERATIONS 481
SECTION 1 MAINTENANCE PROGRAMS 481
1.1 Introduction ... e 481
1.2 Reliability Programs ... 481
1.2.1 Definition ..o 481
1.2.2 TYPES e 481
123 Interpretation ... 481
1.3 Diagnostic Programscoccoiiii s 481
1.3.1 Definition ..o 481
1.3.2 Diagnostic Techniques ... 482
1.3.2.1 Increasing Area Check ... e 482
1322 Decreasing Area Check ... 482
1.3.2.3 Overlapping Area Check 482
1.324 Large Area Localization ... 482
1.3.2.5 Individual Circuit Check ... 482
1.3.3 Marginal Checking with Diagnostic Programs 482
14 Utility Programs ...t 482
1.5 Maintenance Program Identification Codes 482
SECTION 2 MARGINAL CHECKING ... 484
2.1 Introduction ... s 484
2.1.1 General ... 484
2.1.2 Basic Reliability Testing ..., 484
2,13 Definition of Terms ... 484
2.1.4 Checking for Imminent Failure ... 484
2.2 Calculator-Controlled Marginal Checking 485
221 General . 485
222 Testing SeqUENCe ... 488
2.2.2.1 Basic Reliability Programs ... 488
2222 Reliability Programs with Marginal Checking ._...................... 488
2.2.2.3 Advantages of Programmed Marginal Checking 488
223 Programmed Marginal Checking ... 488
2231 Excursion Application ... 488
2.2.3.2 Excursion Removal ... 489

UNCLASSIFIED Xxxi

Contents

xxxi

Heading

2233
2234
2.2.3.5
22.3.6
2.23.7
2.2.3.8
2.2.39
2.3

24

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

CONTENTS (cont’‘d)

Page
Excursion Detection ..o 489
Use of LS Bit ... 489
RESEALLS ... 489
Time Duration ... 490
Polarity ... 490
Safe LIMIt ... s 490
Excursion Magnitude ... 490
Marginal Checking Breakdown Charts 490
Special Considerations ..., 491

UNCLASSIFIED

PARTS 1 & 2

PARTS 1 & 2 UNCLASSIFIED List of Illustrations
1.0. 31P2-2FSa7-112

LIST OF ILLUSTRATIONS

Figure Title Page
1-1 Radar Co-ordinate Conversion 6
1-2 AN/FSQ-7 (DC-1) Combat Direction Central Information Flow 6
1-3 Central Computer System, Element Block Diagram ... 7
1—4 Internal Information Flow ... 8
1-5 10 Information FIOW ... 8
1-6 Input System Information Flow ... 8
1-7 Drum System Information FIow ... 9
1—-8 Display System Information Flow ... JE 10
1-9 Output System Information Flow ... 10
1-10 Duplexing, Simplified Block Diagram ... 11
1—11 Computer Word ..., 28
1—12 Core Memory Uitc.ooooiiiiiiiiiiicieieec e e 31 |
1—13 Hysteresis Loop of Ferrite Core 32
1—14 Core Memory Plane (55-611)cocooiiiiiiiniiiie e 33
1—15 Core Array, Simplified ... 34
1—-16 Memory Cycles ... 35
1—17 Machine and Instruction Cycles ..., 38
1—18 Arithmetic Element Information Flow ... 39
1-19 Internal Control Information Flow ..., 40
1—20 IO Control Information FIow ..., 42
1—21 Instruction Flow ... 43
1-22 Instruction Decoding ... 44
1-23 Indexed Address Modificationccoooiiiiiiiiioniii e 45
1—24 Adder Circuit ..ottt 46
1—25 Inherent Shift Right 47
1—26 Add Class Execution ... 47
1-27 Difference in Magnitudes (DIM) Execution 48
1-28 Multiply (MUL, TMU) Execution ... 50
1—29 Divide (DVD, TDV) Executioncccccooivuiioiiiniiiir e 52
1—30 Store Class EXeCUtionoc.ooioiiiiiiriiiiii e 54
1—31 Add (AOR) Execution ..., 54

UNCLASSIFIED Xoxxiii

List of llustrations

XXXiv

1-63

1-65

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

LIST OF ILLUSTRATIONS (cont’d)

Title

Exchange (ECH) Execution ...
Deposit (DEP) EXECUtiOncccooiiiiiiiiiioiiiiocnineeees e
Shift Class EX€CUtionccooooiiiiiiiiiie e
Cycle Variations EXeCUtiOncc.oooiiiiniiiiiiiieee e
Branch Class Execution ...
Branch on Zero (BFZ) Executioncc...ococoeiiiiiiiiiiiii,
Sense (BSN) Execution ...
Branch and Index (BPX) Executioncccccocvoivivvaeninn,
IO Class EXeCution ...t
Reset Class EXECUtIONcooiiiiiiiiiiiiin e
Extract (ETR) Execution ...,
Clear and Subtract Word Counter (CSW) Execution
Shift Left and Round (SLR) Execution
Basic IBM Card Showing Hollerith Code Zones
Field Division on Punch Cardscooooiiii
Instruction Card ...
Special Punching on Binary Card ...
Relation of Card Image to IBM Card ...,
Card Reader, Type 713 ...
Card Feed Unit, Card Reader ...
Card Reader Controls and Indicatorsc.cooo
Card Reader Information Flow ...,
Card Punch, Type 723o
Card Feed Unit, Card Punch ...
Card Punch Controls and Indicators ...
Card Punch Information Flow ...
Line Printer, Type 718 ...
Type Wheel, Pictorial Diagram ...
Line Printer Control Panel ...,
Line Printer Controls and Indicators ...
Tape Word Bit Positions ...
Tape Reel Information and Control Units ...
Tape Drive Unit ...

Tape Element Information Flow ...

UNCLASSIFIED

PARTS 1 & 2

PARTS 1 & 2 UNCLASSIFIED List of Hiustrations
T1.0. 31P2-2FSQ7-112

LIST OF ILLUSTRATIONS (cont'd)

Figure Title Page
1—-66 Tape Adapter Unit Information Flow ... 93
1—67 Number Sorting Program, Flow Chart Form ... 105
1-68 Indexed Number Sorting Program, Flow Chart Form 112
1-69 Use of Closed Subroutine in Larger Program ... 118
1—-70 Instruction Card ... ——— 121
1-71 Relation of Drum System to Other Systems 125
1-72 Intercommunication in AN/FSQ-7 Combat Direction Central 126
1-73 The OD and CD Sides of the Drum System ..., 126
1—74 Magnpetic Drum ... 127
1—75 Magnetic Drum and Heads ... 128
1-76 Drum System Information Units e s 129
1-77 Timing Chart, Drum (CD Side) and Central Computer System 130
1—78 Drum System Logical Divisions ... 131
1-79 Drum and Field Selection ... 133
1-80 Writing by Status ... 138
1—81 Reading by Status-Identificationc.oooiiiiiii 139
1-82 Writing by Address ... 141
1-83 Reading by Address ... 142
1—-84 Input System Information Flow (OD Side) ... 146
1-85 Output System Information Flow (OD Side) ... 147
1-86 Display System Information Flow (OD Side) ... 148
1-87 Auxiliary Information Flow ..., 149
1-88 Auxiliary Drum Group Information Flow ... 150
1—-89 Input Information Flow (CD Side) ..., 151
1—90 Output Information Flow (CD Side) ..., 152
1-91 Intercommunication Information Flow ... 153
192 Computer Test ..., 156
1-93 Manual Drum Tester Panel ... 157
1-94 Auxiliary Drum Tester Panel ... 158
1-95 Input System Information Flow ... 159
1—96 LRI Element Information Flow ... 160
1-97 LRI Duplexing ... 160
1—98 P Site Information Flow ... 161
1-99 P Site Data-Handling Equipment ... 163

UNCLASSIFIED XXxv

List of lllustrations UNCLASSIFIED PARTS 1 & 2
T.0. 31P2-2FSQ7-112

LIST OF ILLUSTRATIONS (cont'd)

Figure Title Page
1-100 Height-Range Indicator, Semiautomatic Height-Finder ... 164
1—101 LRI Telephone Line Message Layouts ... 165
1-102 LRI Channel Input Section ... 166
1—103 LRI Common Input Section ... 167
1—104 LRI Monitor Console ... 169
1-105 LRI Message Drum Field Layouts ... 170
1-106 LRI Element, Simplex and Duplex Switching 171
1—107 Gap-Filler Input Element ... 173
1—-108 GFI Element, Duplexing ... 174
1—109 Quantization of GFI Radar Coverage Area, Simplified ... 174
1—110 Video Integration of GFI Radar Data ... 175
1—-111 GFI Mapper Console ... 176
1—-112 GFI Mapper Section, Simplified Diagram 176
1—113 GFI Counter Section, Simplified Diagram ... 177
1—-114 GFI Common Section, Simplified Diagram 177
1—115 GFI Monitor Console ... 178
1-116 GFI Message Drum Field Layout ... 178
1—117 GFI Element, Simplex and Duplex Switching ... 179
1—118 Crosstelling ... 181
l—li9 Crosstell Input Element ... 182
1—-120 Crosstell Duplexing ... 182
1—121 Crosstell Message, Interleaved Telephone Line Layout 183
1—122 XTL Channpel Input Section ... 184
1—123 XTL Common SeCtion ... 185
1—124 Crosstell Message, Drum Field Layout ... 186
1—-125 Crosstell Element, Simplex and Duplex Switching ... 187
1—126 Manual Data Input Element ... 189
1—-127 Computer Entry Punch, Type 026 Modified SRR 190
1—128 MDI Data Card ... 191
1—129 MDI Drum Entry Section ... 192
1—130 MDI Message Drum Field Layouts ... 195
1-131 MDI Keyboard Mounted on Situation Display Console 196
1-132 MDI Keyboard ... 197
1-133 MDI Direct IO Buffer Entry Section 198

v UNCLASSIFIED

PARTS 1 &2 UNCLASSIFIED List of llustrations
T.0. 31P2-2FSQ7-112

LIST OF ILLUSTRATIONS (cont‘d)

Figure Title Page
1-134 MDI Element, Simplex and Duplex Switching ... 199
1-135 Display System, Logical Divisions ..o 201
1-136 Display Console ..ot 202
1-137 Display System Relation to Manual Input Element 203
1-138 Situation Display Console Duplexing ... 204
1—-139 Typical Situation Display ... 205
1-140 Character Matrix, Situation Display Tube ... 206
1-141 Situation Display Tube, Simplified Diagram 206
1-142 Typical Digital Display ... 207
1-143 Character Forming Matrix, Digital Display Tube ... 207
1-144 Digital Display Tube, Simplified Diagram ... 207
1—-145 Typical Radar Data Message Displays ... 210
1-146 Radar Data Message Drum Layout ... 210
1-147 Octonary Character Addressing, Situation Display Tube 211
1-148 Tabular Message Display Format 212
1-149 Typical Tabular Message Displays ... 212
1-150 Tabular Message Drum Layout ... 213
1—151 Effect of Position Bit on Character Format 214
1-152 Vector Message Display Format and Character Positioning 215
1—-153 Typical Vector Message Displays ..o 215
1—-154 Vector Message Drum Layout ... 216
1—155 Situation Display Generator Element ... 220
1-156 Situation Display Indicator Element ... 221
1—-157 8D Console Controlscccooeoioiiiioiiii o 223
1—-158 SD CRT and Subsector Co-ordinate Relations 224
1-159 Situation Display Camera ... 226
1-160 Digital Display Message FOrmat ..o 228
1—-161 Octonary Character Addressing, Digital Display Tube 229
1-162 Digital Data Message Drum Layout ..o, 229
1-163 Digital Display Generator Element ... 231
1—164 Auxiliary Console e, 232
1—165 Maintenance Display Console ... 233
1-166 Maintenance Display Console Input Signal Control Panel ... 234
1-167 Information Return from Display System via Manual Data Input

Element ..., 236
UNCLASSIFIED xooxvii

List of llustrations UNCLASSIFIED PARTS 1 & 2
T.0. 31P2-2FsQ7-112 :

LIST OF ILLUSTRATIONS (cont'd)

Figure Title Page
1—168 Light Gun ... 237
1—169 Area Discriminator Console ... 238
1—170 Display System Duplexed Information Flow ... 239
1—171 Output System, Information Flow 241
1—172 Output System, Element Block Diagram 242
1—173 Output System Duplex Switching ... 242
1—174 Output System Timing ... 243
1—175 Output Drum Word Layout ... 244
1—176 Transmitted G/A Information Block ... 245
1—177 Transmitted G/G Message ... 245
1-178 Teletype Character Composition ... 245
1—179 Transmitted TTY Burst ... 245
1—180 Output Control Element, Simplified ... 246
1—181 Output Computer Section, Simplified 248
1-182 Burst Counts As Read by Central Computer System ... 249
1—183 G/A Output Storage Section, Simplified 250
1-184 G/G Output Storage Section, Simplified ... 252
1—185 TTY Output Storage Section, Simplified 253
1—-186 Teletype Printer with Keyboard Used As TTY Monitor ... 256
1-187 G/A Drum Word Layout ... 257
1—-188 G/G Information Flow ... 257
1—189 Height-Request Message Layout 258
1—190 TTY Information Flow 260
1-191 Warning Light Control and Storage Elements, Simplified Block

DIEaram ... 264
1—192 Duplex and Simplex Switching Facilities ... 268
1—193 Duplex Switching Console e, 269
1—194 Central Maintenance Area Facilities 275
1—195 Duplex Maintenance Console 277
1—196 POWER GROUP and NOT READY Controls and Indicators 277
1-197 Central Computer System Control Panel 279
1—198 POWER ALARMS Indicators ... 280
1—199 ALARMS Indicators 282
1—200 Alarm Activation Switches ... 282

xxxviii UNCLASSIFIED

PARTS 1 & 2 UNCLASSIFIED List of Nlustrations
T.0. 31P2-2FSQ7-112

LIST OF ILLUSTRATIONS (cont'd)

Figure Title Page
1-201 ALARMS and CONDITION LIGHTS Neons 285
1-202 TPD AND CYCLE CONTROL and INSTRUCTION Neons ... 286
1-203 ARITHMETIC NeONSc.ooooioiiiiioiooo e 289
1-204 MEMORY 1 and MEMORY 2 Neons ... 290
1-205 DRUMS, CARD MACHINES, MISC SELECTION and TAPES

INEOMS ... et 291
1—-206 Test and Sense Control Switches ... 297
1-207 Operation Controls and Indicators ... 298
1—208 Register INEOMSccoooiiiiiiiiiiiis e 304
1—209 Test Memory Toggle Switch Registers ... 305
1-210 Test Memory Control Panel ... 306
1—211 - Tape Element Controls and Indicators ... 308
1-212 Main Drum Group Controls and Indicators ... 310
1-213 Auxiliary Drum Group Controls and Indicators 321
1-214 Display Tester Controls and Indicators ..., 325
2—215 Display System INEODSccococoiiiiiiiiiiiieein e 327
1-216 Warning Lights Register Neons ... 333
1-217 Manual Data Input Neons ..., 333
1—218 Common Input System Controls and Indicators ... 335
1—219 Output System Indicators ..., 338
1-220 Output Test Controls and Indicators ... 493, foldout
1-221 Simplex Maintenance Console ... 349
1—222 Power Supply Controls and Indicators ... 350
1-223 Computer Entry Punch Controls and Indicatorsc.cc..... e 350
1-224 GFI Channel Controls and Indicatorscoocooooiiiii 352
1—225 XTL Channel Controls and Indicators ... 356
1-226 LRI Channel Controls and Indicators 359
1—-227 GFL XTL, LRI Pattern Generators Panel ... 362
1-228 Marginal Checking Equipment Divisionscccocooooniioine . 363
1-229 Duplex Marginal Checking Controls and Indicatorscco..... 364
1-230 Simplex Marginal Checking Controls and Indicators 371
2—1 Program Frame Organization and Timing ..., 386
2-2 LRI Element Message Formats 438
2-3 GFI Element Message Format ... 438

UNCLASSIFIED XXXix

List of llustrations

List of Tables

xi

Figure

2—4
2-5
2-6
2—7
2-8
2-9

2—10

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

LIST OF ILLUSTRATIONS (cont'd)

Title

Radar Data Flow Through Input Programs ...
Quality Analysis and Set Status Control Flow Diagram ...
Tabulatr Track Data Message Displays ...
Teletype Message, Word Format ...
Burst Storage Determination ...
Burst Number Determinationcooiiiiiiiiiiniicieee

Probability of Failure Curve ...

LIST OF TABLES

Title

Integral Decimal to Binary Conversion ...
Fractional Decimal to Binary Conversion ...
Rules of Binary Addition ... e
Rules of Direct Binary Subtraction
Rules of Binary Multiplication ...
Binary Multiplication ...
Binary Division ...
Binary-Coded Decimal Numbers ...l
Binary-Coded Octonary Numbers ...
Memory Addresses ...
Instruction ClASSeS
Add Class InStructions ...
Multiply Class Instructions
Deposit Information Changes ...
Store Class INStructions ...
Shift Class INStrUCHIONScccooiiiiiiiiiiiiiiiee et
Branch on Zero Test Operations ...
Sense Unit Selection Codes ...t
Branch Class InStructions ...
Select Unit Codes ...

JO Class INSEIUCHIONS ... oo e

UNCLASSIFIED

PARTS 1 & 2

Page

443
444
453
468
470
471
485

Page

PARTS 1 & 2 UNCLASSIFIED ' List of Tables
1.0. 31P2-2FSQ7-112

LIST OF TABLES (cont'd)

Table Title ‘ Page
1-22 Reset Class InStructionsocooomimiiioneiieee e 68
1-23 Operate Unit Selection Codes ... 69
1—-24 Miscellaneous Class InStructionsocoooviiieionnone, 70
1—25 Hollerith Code for Punched Cards ... 72
1-26 Binary Form of Hollerith Codeccocooooooiii 74
1—27 Card Reader Controls and Indicatorscocoooooiioiiri 77
1—28 Card Reader Programccocooooiiiiioiioiiioiiieeeee e 78
1-29 Card Punch Controls and Indicators ..., 81
1-30 Card Punch Programccooooomiiioiiiioiooeeiee e 81
1-31 Line Printer Controls and Indicators ... 87
1-32 Lime Printer Program ... 87
1-33 Tape Information and Control Units 89
1-34 Tape Driver Unit Operating Specifications 89
1-35 Tape Drive Unit Controlscc.ccooooivoiiiioiiiiieeoeee 90
1-36 Tape Drive Unit Control Light Functions ..., 91
1-37 Tape Drive Unit Operation Timing ... 91
1-38 Ready Versus Not-Ready Conditionsc.cooooooooii 92
1-39 Not-Prepared Conditions ..o 92
1—40 Tape Element Instructionscccocooooiiiiiiiie e 94
1—41 Program for Read Operation ..o, 95
1—42 Program for Write OPerationccc.oocoiooioinriiniioiiiiecsce 96
1-43 Program for Backspace Operation ..., 97
1—44 Program for Rewind Operation after Reading End-of-File"............ 98
1—45 Program to Clear Specific Memory Locations ..., 99
1—46 Program to Completely Clear Core Memoryc.ccocooevriirienninn, 99
1-47 Programmed Addition ... 100
1-48 Programmed Subtraction 101
1—49 Alternate Subtraction Program ... 101
1-50 Multiplication Programccooooiiiiiiiiiice 102
1=51 Division Program ... 102
1-52 Co-ordinate Conversion Program ... 103
1-53 Function Evaluation Programcccooioviiii 104
1-54 Straight-Line Addition ... 108
1-55 Nonindexed Iterative Program ... 109

UNCLASSIFIED xli

List of Tables UNCLASSIFIED PARTS 1 & 2
T.0. 31P2-2FSQ7-112

LIST OF TABLES (cont'd)

Table Title Page
1-56 Indexed Iterative Program ... 110
1-57 Data Storage for Indexed Number Sorting Program 111
1—58 Indexed Function Evaluation Program ... 114
1—59 Control of Loop Iterations ... 116
1—60 Zero Repetition Indexed Routine 116
1—-61 Number Sorting Program, Symbolic Form ... 120
1—-62 Assembly Direction Card Punching ... 122
1—63 Printout of Assembled Program ... 123
1—64 Group, Drum, Field, and Mode Selection Codes 133
1-65 Delays in Drum IO Operation ... 137
1—66 Drum System Information Flow ... 154

1—67 Computer Test Operations Which Utilize Computer Test Element ... 155
1-68 Display System Layout of Situation Display Messages 208
1—69 Display System Instructions ... 209

1—70 Feature and Character Position Nomenclature for Tabular Track Data
MESSAZESoiviiii i 212

1-71 Message Component Nomenclature for Vector Track Data Messages 215

1—72 Control-Bit Functions, Situation Display Messages 217
1-73 Situation Display Cycle Timing 219
1-74 Control Bit Functions, Digital Data Messages 227
1-75 Digital Display Cycle Timing ... 230
1~76 Output Section Address Codes ... 243
1—77 Output Register Address Codes ... 244
1—78 Busst Count Read Program ... 249
1—79 Teletype Code ... 259
1—80 Sample Teletype Message ... 261
1—-81 Warning Light Information Transfer ... 265
1—82 Duplex and Simplex Equipment SRR 267
1—83 Duplex Switch Panel Indicators ... 271
1—84 Simplex Power Switch Panel Indicators ...l 272
1—-85 Power Group Controls and Indicators ... 278
1—86 NOT READY Indicatorscc.ocooviioiniiiiiioii 278
1—87 POWER ALARMS Indicators ..., 280
1—88 ALARMS Indicators ... 282

xlii UNCLASSIFIED

PARTS 1 & 2 UNCLASSIFIED List of Tables
T.0. 31P2-2FSQ7-112

LIST OF TABLES (cont'd)

Table Title Page
1—89 Alarm INEONS ... 283
1-90 TPD AND CYCLE CONTROL N€ODScoco.oooorieiririiiiieiien, 287
1—-91 INSTRUCTION NEOMSccoovmimiiriiiaiiiieitiiei ot 287
1—92 ARITHMETIC NEODSc.ovtiiririiiiiiiiiniceei et 288
1-93 MEMORY 1and MEMORY 2 Neonscccccocoooovrmiioiinee. 290
1—94 DRUMS INEONSocooiiiiiiiiiiiiet e 292
1-95 CARD MACHINES NEONScoccoooiimiiiiiiiiiieeieee e 293
1-96 MISC SELECTION INEOMS -......covuriiiniiiiieieiic e 294
1—97 TAPENEONScoocooooiiiiiiiiiiiiii e e 296
1-98 Assigned Test Memory Addresses ..., 296
1-99 CLEAR MEMORY Pushbutton Equivalent Program 298
1—100 Loading Preparation Controls ...t 299
1-101 LOAD FROM CARD READER Equivalent Program 300
1—-102 Program Loading Controlsccccccooeiriiiiininiiiiien i, 301
1-103 Program Loading Control and Test Indicators ... 301
1-104 Cyclic Program Controls ... 303
1—-105 Register NEOMS ...t 305
1—106 Tape NEONS ..ottt e 308
1—107 Tape Indicator Lights and Controls ... 309
1-108 COMPUTER TO DRUMS NE€ONScc.cocovruriiiiiiieiiiinieieeiieeee 311
1—109 INPUT DRUMS NEOBScooovoioiiiiiiiiiioiiiiint e 313
1—110 DISPLAY FIELDS IN€ODS.ccccooriuiuriiiiiieiniet et 317
1-111 TEST INEOSoooiiiiiiiiiiiieteccee e 318
1-112 DRUM SELECT Controls and Indicators ..o, 319
1-113 AUXILIARY DRUMS Control and Indicator Group 321
1—114 TEST INEODSo.coccooviiiiiiiiiiiiiiii e, e 323
1-115 COMPUTER TO DRUMS NeOSoooviieeie e 323
1-116 Auxiliary Drums Test Register Neonsccccccoooiinininronnnnns. 324
1-117 Display Tester Control Panel Switches and Indicators 326
1-118 SITUATION DISPLAY GENERATOR Neonsccc.ccoonin. 328
1-119 DISPLAY TESTER NEOMScooooiiioiiiiiieiiecetet e 329
1-120 DIGITAL DISPLAY GENERATOR Neonsccccccocooovienin.. 330
1—121 CAMERA CONTROL NEODSccovotoiiiiiiiiiiiieiiiiiieerieee e 332
1—122 MANUAL INPUTS IN€ODScococooriiietiiiiiiiniiniiereeeiieies e 333

UNCLASSIFIED xliii

List of Tables

xliv

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

LIST OF TABLES (cont’'d)

Title

LRI DUPLEX EQUIPMENT Neonscccooooooiiiiincine,
GFI DUPLEX EQUIPMENT INEODSccocooiiiiiiiiincicieeceeecee,
XTL DUPLEX EQUIPMENT Neonsccccooeiienieieeereine

Counter and Output Parity Generator Neons ...,

COMMON CONTROILS Neons

s Y A Y AN AN A N e AN S e

G/A CONTROLS NEOMSocoiiiiiiiiiiiieieet et
G/G CONTROLS NEOMS ..ottt et
TTY CONTROLS NEONScoooiiiiiiiiiioieieiieieeieie e
OUTPUT ALARMS NeODS ..ot

G/A LOOPED TO LRINEONScocoovoiiiiiiiiiiiiie e
UNIT LOOP TEST NEOMS ..ottt
OUTPUT Controls and Indicators ...
G/A, TTY,G/G OUTPUT DATA Neons ...,
Power Supply Controls and Indicators ...
Computer Entry Punch Controls Indicators ...,
GFI ALARMS Controls and Indicators
GFI Unit Status Rotary Switch Positions RSP RS P O
GFI POWER Indicators ...,
GFI DATA CIRCUITS Controls and Indicators
GFI Input Section IN€ODS ...
XTL ALARMS Controls and Indicators ...,
XTL Unit Status Rotary Switch Positions ...
XTL POWER Indicatorsc.ocoooiiiiiiiiiiiiiieieie e
XTL DATA CIRCUITS Controls and Indicatorsc..coe.
XTL Channel Input Section Neons ...
LRI ALARMS Controls and Indicators ...
LRI Unit Status Rotary Switch Positions ...
LRI Power Indicators ...,
LRI DATA CIRCUITS Controls and Indicators
LRI Channel Input Section N€ons ...,
GFI Pattern Generator Controls and Indicators ...,
LRI Pattern Generator Controls and Indicators ...,
XTL Pattern Generator Controls and Indicators

Duplex Marginal Checking Controls and Indicators ...
UNCLASSIFIED

PARTS 1 & 2

PARTS 1 & 2 UNCLASSIFIED List of Tahbles
T.0. 31P2-2FSQ7-112

LIST OF TABLES (cont'd)

Table Title Page
1—-157 Marginal Checking Control Word Bit Assignments 368
1—-158 Simplex Marginal Checking Controls and Indicators 370
1-159 Mimic Panel Indicators ... 374
2-1 Operational Active Programs ... 387
22 Instruction Codes ... 391
2-3 Overflow Alarm Control ... e 392
2—4 Useful Illegal Divisions ... 393
2-5 Selection of Internal Memory Registers ... 394
2—6 Selection of Internal Memory Units ... 394
2—7 Instruction Code Summary ..ot 495, foldout
2-8 Operate Unit Codes ... 396
2-9 Sense Codes ... 401
2—10 Group, Drum, Field, and Mode Selection Codesccc...c..... 403
2—11 IO Unit Selection Codes ... 406
2—12 Programming an IO Transfer ... 409
2—13 Interleave Code ... 410
2—14 Octonary-Decimal Integer Conversion 410
2—15 Alarms Which May Influence Program ... 422
2—16 Card Punch Not-Ready Sensing Routine ..o 434
2—17 Tape Element InStruCtions ... 435
2—18 Light Gun Codes and Core Assignmentscc...cccoeroerin. 439
2—19 Action Bit Core ASSINmENtscc.cocoooivoiiiiiioiiiiiiciiriccee, 440
2—20 Unit Status Core ASSIgOMmMentsoooooiiiiiiiiicieee e, 440
2—21 Information Core ASSIgNMENtsc..coooovoroiioaiiicieic 440
2—22 LRI Site Identification Codescccocooiiiiiiiiiiiiii i 441
2—23 LRI Message Label Codes ..., 442
2—24 GFI Site Identification Codes ... 442
2—25 XTL Site Identification Codescccocooiiiiiii 442
2—26 MDI Message Label Codes ... 442
2—27 E Feature Symbology ... 450
2—28 CFeature Symbology ... e 450
2—29 D, Character Position Symbology ... 450
2—30 D, Character Position Symbology ... 451
2—31 B, and B; Character Position Symbology 451

UNCLASSIFIED xlv

List of Tables

xivi

Table

2—32
2-33
2—-34
2—-35
2—36
2-37
2—-38
2—-39
2—40
2—41
2—42
2—43
2—44
2—45
2—46
2—47
2—48

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

LIST OF TABLES (cont’'d)

Title Page
Track Age Measurementcccooooimiininiiiinni 452
Interceptor Mission Symbology ..o 452
Radar Data Categoriesccccccooocioiioiioiioiiiiieie e 454
Tabular and Vector Message Categoriesccc.ocooovruireencnnn, 455
Display Assignment Bits ... 457
Special Test Lines ... 459
Control Bit Functions, Digital Display Messages 460
DD Slot ASSIgNMENLScoooiioiiiiiiitiiri e 461
G/A Message Types and Values ..., 467
Type of Height-Finder Request ... 468
Burst Number ASSIgnmentcccooooieioiiinnciiincce e, 472
OB Field Writing, Sample Programccooooo i 473
IO Program for Warning Light System ... 475
Loading of Each Bit Position ... 476
Warning Light and Audible Alarm Bit Assignments ... 476
Maintenance Program Identification Codes 483
Marginal Checking Control Word Bit Assignments 486

UNCLASSIFIED

PARTS 1 & 2

PARTS 1 & 2

T.O.
T.O.

T.O.
T.O.
T.O.

T.O.

T.O.
T.O.
T.O.
T.O.

T.O.
T.O.

T.O.

T.O.

T.O.

T.O.

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

LIST OF RELATED MANUALS

Manual

31P2-2FSQ7-1
31P2-2FSQ7-11

31P2-2FSQ7-2

31P2-2FSQ7-12

31P2-2FSQ7-22

31P2-2FSQ7-32

31P2-2FSQ7—42

31P2-2FSQ7-52

31P2—2FSQ7-62

31P2-2FSQ7-72

31P2-2FSQ7-82

31P2-2FSQ7-92

31P2-2FSQ7-102

31P2-2FSQ7-5

31P2-2FSQ7-21

31P2-2FSQ7-122

Contents

Index

THEORY OF OPERATION

Basic Theory of Computers AN/FSQ-7,
Combat Direction Central

Introduction to AN/FSQ-7, Combat
Direction Central

Basic Circuits for AN /FSQ-7, Combat
Direction Central '

Theory of Operation of Central Computer
for AN/FSQ-7, Combat Direction
Central

Theory of Operation of Drum System for
AN/FSQ-7, Combat Direction Central
Theory of Operation of Input System for
AN/FSQ-7, Combat Direction Central

Theory of Operation of Display System for
AN/FSQ-7, Combat Direction Central

Theory of Operation of Output System for
AN/FSQ-7, Combat Direction Central

Theory of Operation of Power Supply
System for AN/FSQ-7, Combat
Direction Central

Theory of Operation of Marginal Checking
for AN/FSQ-7, Combat Direction
Central

Theory of Operation of Warning Light
System for AN/FSQ-7, Combat
Direction Central
INSTALLATION
Installation of AN/FSQ-7, Combat
Direction Central
OPERATING PROCEDURE

Operating Procedure for AN/FSQ-7,
Combat Direction Central

Operating Procedure for Maintenance of
AN/FSQ-7, Combat Direction Central

UNCLASSIFIED

List of Related Manuals

xlvii

List of Related Manuals

xiviii

T.O.

T.O.

T.O.

T.O.

T.O.

T.0.

T.O.

T.O.

T.O.

T.O.

T.O.

T.O.

T.0.

T.O.

T.0.

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

LIST OF RELATED MANUALS (cont’'d)

Manual

31P2-2FSQ7-132

31P2-2FSQ7-142

31P2-2FSQ7-152

31P2-2FSQ7-162

31P2-2FSQ7-172

31P2-2FSQ7-182

31P2-2FSQ7-192

31P2-2FSQ7-202

31P2-2FSQ7-212

31P2-2FSQ7-222

31P2-2FSQ7-232

31P2-2FSQ7-242

31P2-2FSQ7-252

31P2-2FSQ7-262

31P22FSQ7-272

Title

MAINTENANCE

Introduction and Philosophy of Mainte-
nance for AN/FSQ-7, Combat
Direction Central

Maintenance Techniques and Procedures of
Central Computer for AN/FSQ-7,
Combat Direction Central

Maintenance Techniques and Procedures of
Drum System for AN/FSQ-7, Combat
Direction Central

Maintenance Techniques and Procedures of
Input System for AN/FSQ-7, Combat
Direction Central

Maintenance Techniques and Procedures of
Output System for AN/FSQ-7, Combat
Direction Central

Maintenance Techniques and Procedures of
Display System for AN/FSQ-7, Combat
Direction Central

Maintenance Techniques and Procedures of
Power Supply and Marginal Checking
for AN/FSQ-7, Combat Direction
Central

Maintenance Techniques and Procedures of
Warning Light System for AN/FSQ-7,
Combat Direction Central

SCHEMATICS

Schematics for Central Computer of
AN/FSQ-7, Combat Direction Central

Schematics for Drum System of
AN/FSQ-7, Combat Direction Central

Schematics for Input System of
AN/FSQ-7, Combat Direction Central

Schematics for Output System of
AN/FSQ-7, Combat Direction Central

Schematics for Display System of
AN/FSQ-7, Combat Direction Central

Schematics for Power Supply and Marginal
Checking of AN/FSQ-7, Combat
Direction Central

Schematics for Warning Lights of
AN/FSQ-7, Combat Direction Central

UNCLASSIFIED

PARTS 1 & 2

PARTS 1 & 2

T.O.

T.O.

T.O.

T.O.

T.O.
T.O.

T.O.
T.O.
T.O.
T.O.

T.O.
T.O.

T.O.
T.O.

LIST OF RELATED MANUALS (cont'd)

Manual

31P2-2FSQ7-282

31P2-2FSQ7—4

31P2-2FSQ7-31

31P2-2FSQ7-41

31P2-2FSQ7-51
31P2-2FSQ7-61

31P2-2FSQ7-71
31P2-2FSQ7-81
31P2-2FSQ7-91
31P2-2FSQ7-101

31P2-2FSQ7-111
31P2-2FSQ7-121

31P2-2FSQ7-131
31P2-2FSQ7-141

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

PLUGGABLE UNITS

Pluggable Units for AN/FSQ-7,
Combat Direction Central

PARTS CATALOG

List of Related Manuals

Illustrated Parts Catalog for AN/FSQ-7,

Combat Direction Central

SPECIAL TEST EQUIPMENT

Test Set, Memory Driver Panel

(TS-986/FSQ)

Test Set, Plug In Units

(TS-985/FSQ)

Power Supply PP-1581/FSQ
Test Set, Cathode-Ray Tube

(TS-987/FSQ)

Test Set, Amplifier (TS-988/FSQ)
Dummy Load (DA-155/FSQ)

Test Set, Metallic Rectifier (TS-989/FSQ)

Test Set, Diode Semi-conductor Device

(TS-990/FSQ)

Calibrator, Oscilloscope (FR-112/FSQ)

Marginal Check Control, Remote

(C-2022/FSQ)

Test Set, Electron Tube (TV-11/FSQ)
' Distribution Box (J-779/FSQ)

UNCLASSIFIED

xlix

Blank Page UNCLASSIFIED PARTS 1 & 2
T.0. 31P2-2FSQ7-112

! UNCLASSIFIED

PART |

UNCLASSIFIED

Scope and Contents

CH I T.0. 31P2-2FSQ7-112

PART 1
EQUIPMENT INTRODUCTION

CHAPTER 1
INTRODUCTION

SECTION 1
SCOPE AND CONTENTS

This manual presents the information necessary for
understanding the program-controlled operation of
AN/FSQ-7 Combat Direction Central. The manual is
divided into two parts: the first covers information basic
to an understanding of programming; the second sum-
marizes and suggests applicatiions of this information to
the programming of this equipment.

The first two chapters of Part 1 review the meaning
of programming for digital computers and the basic con-
cepts of number systems, with particular emphasis on the
binary number system and the arithmetic of that system.
The purpose and the function of the systems within
AN/FSQ-7 Combat Direction Central are also described
briefly. In Chapter 3, the computer portion of the equip-
ment is described, first in general terms, then in terms of
programmed. operations and some of their applications.
Chapter 4 describes the system through which most infor-
mation passes to enter or leave the computer portion of
the equipment. Each of the remaining chapters of Part 1
describes one of the special systems within AN/FSQ-7
Combat Direction Central on a block diagram level, pro-

viding programmers with a knowledge of the operation
of each system. More detailed descriptions of each sys-
tem’s operation are available in the manuals on these
systems.

Part 2 summarizes all information pertinent to the
programming of AN/FSQ-7 Combat Direction Central
and discusses the approaches that can be used in pro-
gramming many of the required operations. Part 2 can
therefore be used conveniently as a reference source for
the preparation or interpretation of programs. Chapter 1
of Part 2 presents a general description of the overall
program for AN/FSQ-7 Combat ‘Direction Central and
of each major bleck within that program. Chapters 2, 3,
and 4 present (in summary form) the instructions for
the equipment, the techniques and considerations useful
in programming, and the programming for various input-
output equipment. Each of the remaining chapters of
Part 2 ‘investigates a large block of the overall program
and the means of accomplishing the desired result within
each block.

UNCLASSIFIED 1

Advantages UNCLASSIFIED PART |
2.1-23.1 T1.0. 31P2-2FSQ7-112 CH I
SECTION 2

DIGITAL COMPUTERS

2.1 ADVANTAGES

Electronic digital computers are used in military
applications because they offer the advantage of rapid
calculation. A manually controlled calculator is limited
in speed of calculation to the rate at which its operator
can direct its operations. To escape this limitation, an
electronic digital computer must be capable of control-
ling its own operations to achieve a result independent
of manual control.

In order to operate automatically, an electronic
digital computer must be capable of:

a. Performing a relatively small number of simple

operations.

b. Executing the intermediate steps within each
simple operation under its own control, in re-
sponse to a code signal arbitrarily designating
which of the possible operations is to be per-
formed.

c. Storing within itself the series of code signals
that will designate the sequence of simple oper-

ations to accomplish the desired mathematical .

result.

2.2 DESIGN REQUIREMENTS

2.2.1 Basic Operaticons

Most mathematical operations, even those with a
high degree of complexity, can be reduced to a series of
simple arithmetic operations. Therefore, a digital com-
puter that can perform the four basic arithmetic opera-
tions (addition, subtraction, multiplication, and divi-
sion) can soive aimost any mathematicai equation.

2.2.2 Coded Instructions

The use of code signals to direct the digital com-
puter in the solution of a problem is easily accomplished.
For example, a desk calculator is directed to add, sub-
tract, multiply, or divide by the depression of one of
four pushbuttons. The ADD pushbutton directs the
desk calculator to perform an addition. The pushbutton
itself carries no meaning. The calculator is designed to
respond to the depression of that pushbutton by per-
forming an addition. The pushbutton is, in effect, a code
signal to the calculator.

A digital computer can be designed to respond to

each of a set of code signals by performing a different
operation for each signql These signals, known as in-

11 Il cad =S, L AROC Siglinas

structions, must be separately recognizable by the digi-

tal computer. Since the digital computer must be capa-
ble of handling numbers, each instruction can be identi-
fied by assigning it a code number. Code numbers desig-
nating instructions to be performed by the digital com-
puter have no quantitative significance. Instead, the code
numbers identify instructions to the digital computer
in the same manner as telephone numbers identify par-
ticular telephones in a dial telephone system.

2.2.3 Internal Storage

The third feature required for automatic computa-
tion is implicit in the nature of a high-speed digital com-
puter, Without some means of storing internally both
instruction and numbers to be processed, a digital
computer is limited to manual insertion rates. This inter-
nal storage, generally referred to as memory, must be
capable of delivering instructions and operands (num-
bers to be processed) at rates comparable to the rate at
which the digital computer can execute these instruc-
ions. In general, the computation rate of a digital com-
puter is determined by the random access time of its
memory; i.e., the average time requited for a transfer
into or out of a random memory location.

2.3 PROGRAMMING

2.3.1 introduction

Although a digital computer with the features re-
quired for automatic operation may be designed, some
problems arise in its use. A digital computer is limited
to the direct execution of a simple arithmetic operation.
Some specialized knowledge is required in adapting
mathematical expressions for solution in terms of these
operations. Once the solution is developed, it must be
formulated as a program, a series of instructions, for
presentation to the digital computer, Personnel trained
in meeting these needs are called programmers,

A programmer must prepare a program in terms of
possible digital computer operations, guarding against
the possibility that the digital computer will attempt a
meaningless operation within a program, thus rendering
useless the results of the program. For example, if a
problem requires the division of the result of one calcu-
lation by the result of another calculation, the divisor
may be zero, making the division meaningless mathe-
matically. Unless the program provides for some check
on this possibility and for an alternate course of calcula-
ion if the possibility occurs, the digital computer will
execute the division operation and use the result in fur-

2 UNCLASSIFIED

PART | UNCLASSIFIED Needs of Programmer
CH 1 T.0. 31P2-2FSQ7-112 23.1-24
ther calculation. Therefore, the program must direct 1. Bring a from memory.
every operation and every choice of alternatives which 2. Multiply by x.)
the digital computer is to perform. 3. Add b to product.
2.3.2 Program Definition 4. Multiply by x.
A program may be defined as a series of instruc- 5. Add c.

tions, coded in a form recognized by the digital com-
puter, calling for the operations to be performed by the
digital computer in the order necessary to solve a given
problem. Even the solution of a simple arithmetic prob-
lem requires a program, whether the problem is solved
by a digital computer or by a man with pencil and paper.
Although the man can recognize the necessary steps in
a program if the problem is simple enough, the digi-
tal computer must be given step-by-step directions for
the solution of any problem.

2.3.3 Examples

As an example of the solution of a problem, con-
sider the evaluation of the expression

ax? + bx ¢
when a, b, ¢, and x are given. The problem could be
solved manually by performing the following calculation:
1. Multiply x by x,
. Multiply x? by a.
. Multiply x by b.
. Add ax2 to bx .
. Add c to sum of ax? and bx.

W W N

The stéps in this solution are not particularly sim-
ple. A number of intermediate operations would be
required for a digital computer which can usually oper-
ate on only two numbers at a time.

The full sequence of instructions necessary for a
digital computer in solving the problem as it was solved
manually is as follows:

1. Bring x out of memory,

. Multiply by x.
. Multiply x2 by a.
. Store result in memory.

. Bring b out of memory.

A MR W N

. Multiply by x.

7. Bring previous result, ax?, out of memory and
add to bx.

8. Add c to sum of ax? and bx.

An experienced programmer could use a shorter,
and hence faster, series of instructions to accomplish the
same result. By inspection, the expression

ax2 | bx ¢
can be rewritten as
(ax4-b)x 1+ ¢

and evaluated by this series of instructions:

2.3.4 lterative Programming

If the expression ax? + bx - ¢ is to be evaluated
for many different values of x, the digital computer can

~be programmed to repeat its calculations for each value

of x. The program directing the evaluation can simply
repeat the series of instructions necessary for any one
evaluation of x for each value of x to be used. For five
values of x, 25 instructions are required. However, many
digital computers avoid the necessity of writing out and
storing all 25 instructions. Instead, the same five instruc-
tions are repeatedly used, once for each value of x. The
repetitive calculations are controlled by several other
instructions which count the number of repetitions re-
maining to be performed. The repeated series of instruc-
tions is called an iterative loop.

The use of an iterative loop in solving a problem
requiring repetitive operations is highly desirable. The
instructions within a program, as well as the numbers
to be processed by that program, must be stored in mem-
ory. If the number of instructions within a program is
large, the space within memory for operands is small.
Therefore, the number of operations that can be per-
formed before exhausting the supply of operands in
memory is small, and calculation must be interrupted to
place more operands in memory.

It should be noted that an entire program may be
iterative. The last instruction may cause the digital com-
puter to start again with the first instruction in the pro-
gram. An iterative program is used to perform the same
sequenice of operations on each of several sets of num-
bers. One use of an iterative program is discussed in
Section 3.

2.4 NEEDS OF PROGRAMMER

Personnel preparing programs for digital computers
require specialized knowledge in several fields to meet
the requirements of their task, A knowledge of higher
mathematics is mandatory in otder to reduce a mathe-
matical problem to a series of simple operations within
the capabilities of the digital computer, A general fa-
miliarity with digital computer operation is desirable,
both in the task of formulating problems and in
the prior step of learning the operation of the specific
digital computer to be programmed. Included within
this field of general familiarity with digital computer
operations is a knowledge of the number systems used by
and with digital computers and of the method of exe-
cution of the basic arithmetic operations by digital com-
puters.

UNCLASSIFIED 3

Needs of Programmer

UNCLASSIFIED

PART |

24 T.0. 31P2-2FSQ7-112 CH I

In addition to this general background knowledge,
programmers require information in three specific areas:
a. The possible operations of the digital computer
to be programmed and the instructions that call

for these operations.

b. The requirements placed upon the programming
of the digital computer by any special input or
output equipment used with the digital computer.

c. The type of problem to be solved by the digital
computer being programmed.

The progr must know wh I com-
puter can do and what it cannot do. The programmer
must know the features of the digital computer that can
reduce the time required to execute a program, thus
extracting the greatest advantage from the high operat-

The nroeorammer must know what the digita' e

ing speed of the digital computer. To write up a program,
the programmer must know the instructions recognized
by the digital computer; i.e., the machine language.

If the digital computer being programmed uses
special input and output equipment, the programmer
must know what requirements this equipment places
upon programming, Specifically, the programmer must
know how to write a program which can most rapidly
obtain information from the input equipment and then
prepare processed information for presentation to the
output equipment,

A knowledge of the type of problems to be solved
is patently necessary before these problems can be for-
mulated in terms of possible digital computer opera-
tions.

4 UNCLASSIFIED

PART | UNCLASSIFIED Purpose of Equipment
CH1 1.0. 31P2-2FSQ7-112 3.1-3.1.3
SECTION 3

AN/FSQ-7 COMBAT DIRECTION CENTRAL

.1 PURPOSE OF EQUIPMENT

3.1.1 Air Defense Problem
The equipment designated as AN/FSQ-7 Combat
Direction Central is the result of applying automation
techniques to the problem of defense against air attack.
The defense of an area against air attack requires:

a. Compilation of information from many sources
on air movements within the area.

b. Processing of this information for presentation
in a common form.

c. Sorting and presentation of the processed in-
formation to tactical air defense personnel.

d. Provisions for direction of air defense weapons
by ‘tactical personnel on the basis of the- infor-
mation presented.

The operations involved in an air defense problem
can be classified as data simplification operations; i.e.,
operations that reduce a large body of discrete items of
information into a smaller, better-organized, more com-
prehensible body of information,

The operations carried on by AN/FSQ-7 Combat
Direction Central during the processing of an air defense
problem are of several types. Each type of operation is
controlled by a separate subprogram. All the subpro-
grams taken together constitute the air defense pro-
gram.

The air defense program may be divided into two
major blocks, an air surveillance program and a weap-
ons direction program. In general terms, the air surveil-
lance portion of the program compiles and processes in-
formation on air movements, while the weapons direc-
tion portion of the program utilizes this information in
directing the defense of the area.

3.1.2 Iterative Air Defense Program

In order to employ a digital computer, which works
with discrete numbers or measurements, in processing
continuously changing information on airplanes in
flight, a sampling technique must be used. In effect, the
air defense program accepts one report on each airplane
within the defense area during a specific time interval to
produce a still picture of the air movements within the
area. During the next time interval, and during each
succeeding time interval, another still picture of air
movements is assembled, This series of still pictures pro-
vides information on the motion of aircraft within the

defense area in much the same way as a motion picture
camera achieves the illusion of motion by taking a series
of still pictures, called frames, at regular short inter-
vals. To accomplish this sampling, the air defense pro-
gram must be an iterative program, one which is re-
peated during each sampling interval. The sampling in-
terval is called a program frame,

The time allowed for a program frame must be

" long enough to obtain a complete picture of air move-

ments within the entire defense area. This time is related
to the scan rate of the radar sets supplying information
to AN/FSQ-7 Combat Direction Central. The time al-
lowed for one program frame must also be sufficient
to complete one iteration of the air defense program,
which includes an immense number of operations.

3.1.3 Sample Program Routine

As an example of the operations included within
the air defense program, consider the conversion of ra-
dar target reports from different radar sets into a com-
mon form for presentation. Each radar set reports its
targets in polar co-ordinate form; namely, range from
the radar set to the target and the azimuth angle from
radar north clockwise to the radar target line. All re-
ports must be converted into rectangular co-ordinate
form and shifted onto some reference co-ordinate sys-
tem common for all radar sets. While the conversion
cannot,yet be discussed in terms of the operation of this
equipment, it can be followed mathematically. Figure
1—1 shows the conversion to be accomplished,

A radar set furnishes data designated as R, range,
and @, azimuth angle. This polar co-ordinate represen-
tation must first be converted to X, and Y,,, rectangular
co-ordinates based on the radar set. Mathematically, the
conversion is accomplished as follows:

X, =Rsin§ Y, =Rcos ¢ (1)

If the location of the radar set with respect to the com-
mon reference point is known, the target location with
respect to the reference point may be calculated as fol-
lows:

Xt - Xtr + Xr Yt - Ytr + Yr (2)

The time allowed to perform this conversion for all ra-
dar reports and to perform all other operations within
a program frame is approximately 15 seconds.

UNCLASSIFIED 5

Equipment Functions
3.2-3222

N
ETARGET
Yr— — — —-I— —_
T o
YR |

R

YR

-X

COMMON
REFERENCE
POINT

=Y
Figure 1—1. Radar Co-ordinate Conversion

3.2 EQUIPMENT FUNCTIONS

3.2.1 Component Systems
The equipment included in AN/FSQ-7 Combat Di-
rection Central is divided into six operational systems
(as shown in fig, 1—2):

WARNING
OUTPUT LIGHT

SYSTEM SYSTEM

DISPLAY
SYSTEM

r— — 7
TAPES
AND CARD
DRUM | MacHINES |

SYSTEM i
INPUT

CENTRAL
SYSTEM COMPUTER SYSTEM

Figure 1—-2. AN/F5Q-7 (DC-1) Combat Direction
Central Information Flow

. Central Computer System
. Input System

Drum System

. Display System

Output System

o oan TR

Warning Light System.

UNCLASSIFIED
T1.0. 31P2-2FSQ7-112 CH I

PART |

To introduce the programmer to this equipment, a brief
description of each system follows:

3.2.2 Central Computer System

3.2.2.1 Logical Divisions

The Central Computer System performs all data-
processing involved in the air defense problem under
control of the air defense program. As shown in figure
1-3, the Central Computer System is divided ito six
logical elements:

a. Core memory element

b. Arithmetic element

¢. Program element

d. Instruction control element
e. Selection control element

f. Maintenance control element.
3.2.2.2 Element Functions

The core memory element provides internal storage,
for the program followed by the Central Computer Sys-
tem, for raw information and for processed informa-
tion ready for presentation to the output equipment.
The core memory element provides storage for 8,192
binary words (binary numbers of fixed length) with a
random access time for obtaining a given word of 6 mi-
croseconds; ie., 6 microseconds must elapse between
successive transfers into or out of core memory.

The arithmetic element performs the actual process-
ing operations, arithmetic and nonarithmetic, carried on
by the Central Computer System. It receives raw data
from core memory and returns the result of its opera-
tions to core memory for temporary storage prior to
presentation to output equipment, The arithmetic ele-
ment operates on numbers in parallel rather than se-
rially. For example, addition is done by adding the cor-
responding order digits of two numbers simultaneously
in separate circuits rather than sequentially in the same
circuit. This parallel operation, although requiring more
equipment than serial operation, allows higher comput-
ing speeds.

The type of information handled within the proc-
essing of an air defense problem is such that dual oper-
ation (simultaneous manipulation of the two halves of
a polar or rectangular co-ordinate) materially reduces
computation time. The arithmetic element contains two
arithmetic units, each capable of separate, simultaneous
calculation, Thus, the radar co-ordinate conversion, dis-
cussed in 3.1.3, can be handled more rapidly by per-
forming each of the two calculations contained in equa-
tion (1) or in equation (2) simultaneously in the two
arithmetic units.

The step-by-step operations of the arithmetic ele-
ment are directed by commands from the instruction
control element. Each command causes the execution
of one intermediate step in an operation called for by

UNCLASSIFIED

PART | UNCLASSIFIED Information Flow
CH I T.0. 31P2-2FSQ7-112 3.222-3223
ARITHMETIC _ MAINTENANCE | _e PCD
ELEMENT I CONTROL ELEMENT ~* wco
| T
|| |
| l
A I | ¢
- IO UNITS,
PROGRAM CORE || > SELECTION | M
ELEMENT MEMORY ELEMENT T CONTROL ELEMENT SUTPUT
i I SYSTEMS
4 A l A
p | || |
| { v |] |
| R
L_ INSTRUCTION o | |

CONTROL ELEMENT)

Figure 1—3. Ceniral Computer System, Element Block Diagram

an instruction. Thus, the instruction control element re-
ceives a program instruction, -recognizes the operation
to be performed, and generates the series of commands
necessary to execute, in the correct order, all the inter-
mediate steps of that operation.

Instructions are delivered for decoding to the in-
struction control element under the control of the pro-
gram element. The instructions comprising a program
are stored in sequential locations in core memory. As
the operation called for by an instruction is completed,
the program element directs the transfer of the next in-
struction from core memory to the instruction control
element, An operand required for a particular opera-
tion is transferred from core memory to the arithmetic
element as directed by the program element during the
execution of an instruction. Further, the program ele-
ment contains the circuits necessary for the control of
an iterative loop. (Refer to 2.3.4.) In general, the pro-
gram element controls all internal transfers of informa-
tion (transfers between elements of the Central Com-
puter System) and all internal aspects of input-output
(IO) transfers of information.

The external aspects of IO transfers are controlled
by the selection control element. These functions in-
ciude the selection, and mechanical opération if neces-
sary, of a specific unit for an IO transfer. They also
include selection of units for sensing of certain condi-
tions within the Central Computer System. For example,
the selection control element contains provisions for
examining the result of a calculation held in the arith-
metic element. The examination may be used to prevent
a meaningless operation with that calculated result.
(Refer to 2.3.1.)

Included within the Central Computer System are
several units which can supply information to, or receive

information from, the Central Computer System. (See
fig. 1—2.) These units include six magnetic tape units,
a card reader, a card punch, and a line printer. These
units, known generally as included IO units, offer valim-
ited storage space at the expense of long access time.
Therefore, these units are used only for bulk transfers
of information when no time limitation exists. For ex-
ample, programs are usually loaded initially from the
card reader. The line printer may be used to obtain a
printed tabulation of a program or of processed infor-
mation. Generally, none of these units is used during
the execution of an air defense program because of their
low speed of operation,

The maintenance control element is used primarily
in testing the Central Computer System. However, this
element also includes controls used in loading programs
into core memory and in determining the response of the
Central Computer System to certain errors and alarm
conditions,

3.2.2.3 System Information Flow

There are two general classes of information flow
in the Central Computer System, internal information
flow and IO information flow. The internal information
flow paths are shown in figure 1—4. For each operation
performed by the Central Computer System, an instruc-
tion must be obtained from core memory. The program
element specifies the address in core memory from which
the instruction is to be taken. The instruction is trans-
ferred in two parts: one part to the instruction control
element; the other part to the program element. In the
instruction control element, the operation called for by
the instruction is identified, and the necessary commands
are generated, If the operation requires an operand
from core memory, the program element receives a com-

UNCLASSIFIED 1

Information Flow UNCLASSIFIED PART |
3223 T.0. 31P2-2FSQ7-112 CH I
ot
—_—_—
INSTRUCTION LONG~RANGE
CONTROL COMMAND SIGNALS MK X IFF ———>» RADAR INPUT |—>
ELEMENT TO ALL ELEMENTS HEIGHT-FINDER (LRD)
RADARS ————=>|
LOG DRUM
GAP-FILLER
GAP~FILLER
PROGRAM RADARS — "(“3';":‘? —>
ELEMENT (6FT)
CROSSTELL
OPERAND INSTRUCTION MESSAGES CR?SFS'JTEL‘- 3
—_— —>
. INSTRUCTIONS ADDRESSES ADDRESSES OTHER (XTL)
CENTRALS
CORE_MEMORY > MIXD DRUM
ELEMENT MANUAL DATA
INPUT (MDI)
ooy ~ cowuren |
COMPUTER
PROCESSED OBSERVER —————>>| o>
OPERANDS DATA CORPS ENTRY PUNCHES /
REPORTS, ETC L
LIGHT GUNS
ety ———= AND AREA | —>
Syt DISCRIMINATORS CENTRAL
ARITHMETIC ELEMENT | OSVRIVIRATORS COMPUTER
MANUAL INPUT SYSTEM
KEYBOARDS [

Figure 1—4. internal Information Flow

mand causing it to specify the address in core memory
from which the operand is to be taken. The operand is
transferred from core memory to the arithmetic element,
where it is operated on in accordance with the com-
mands generated in the instruction control element.
Upon completion of the operation, the program element
receives a command from the instruction control ele-

PROGRAM
ELEMENT
10 ADDRESSES
CONTROL
SIGNALS
CORE MEMORY CONTROL
ELEMENT SIGNALS
10
WORDS
\

INTERMEDIATE SELECTION
TRANSFER ;;:'f:“ CONTROL
REGISTERS ELEMENT

| 10
WORDS
_ START
~ 1 10 UNIT
e
INPUT-OUTPUT
| UNITS |
L BREAK
REQUEST

Figure 1-5. 10 Information Flow

Figure 1—6. Input System Information Flow

ment to obtain the next instruction from core memory.
It should be noted that instructions may cause the trans-
fer of information from the arithmetic element back to
core memory, or initiate the transfer of information
between core memory and an IO unit,

Input-output operations are generally carried on as
block transfers; i.e., a group of information units is as-
sembled for transfer and then transferred as rapidly as
possible in one programmed operation. Input-output in-
formation flow paths are shown in figure 1—5. Each IO
operation requires a series of preparatory instructions
to perform the following functions:

a. To notify the selection control element which
IO units is to be used

b. To indicate to the program element the first core
memory address to be involved in the IO opera-
tion

c. To specify the direction of transfer and the
amount of information to be transferred.

Upon initiation of the IO operation proper, infor-
mation words are transferred between core memory and
the selected IO unit via intermediate transfer registers
located in the program and arithmetic elements. The 10
units operate slowly enough to allow the processing of
information between steps in an IO transfer. Thus, the
Central Computer System continues to process informa-
tion between successive IO word transfers that bring in

8 UNCLASSIFIED

PART | UNCLASSIFIED Drum System
CH I T.0. 31P2-2FSQ7-112 323-324
INTERCOMMUNICATION
TO OTHER DRUM SYSTEM INPUT DISPLAY OUTPUT
CD ELEMENT SYSTEM SYSTEM SYSTI’EM
OD INTER-
OD INPUT 0D DISPLAY 0D OUTPUT
COMED':%':;E%—ION ELEMENT ELEMENT ELEMENT

1

) oo

MAIN DRUMS (MD)

]co

INTERCOMMUNICATION cb
FROM OTHER DRUM SYSTEM —3» ELEMENT
OD IC ELEMENT
(LA

O AUXILIARY DRUMS {AXD))

AUXILIARY
CD
ELEMENT

]

Y
CENTRAL COMPUTER SYSTEM

Figure 1—7. Drum System Information Flow

raw information or deliver processed information to
other systems.

3.2.3 Input System

All information on air movements is supplied to the
Central Computer System by the Input System. Figure
1—6 shows the four elements of the Input System:

a. Long-range radar input {(LRI)

b. Gap-filler input (GFI)

c. Crosstell (XTL) input

d. Manual data input (MDI).

The bulk of the information supplied to the Cen-
tral Computer System is received by the LRI and the
GFI elements. These two eiements receiver target re-
ports from radar sets, convert them into forms suitable
for use in the Central Computer System, and supply them
to the Drum System. (Refer to 3.2.4.) The Drum System
assembles these randomly received messages for a rapid
block transfer of many reports to the Central Computer
System in one IO operation.

Reports from other Combat Direction Centrals are
received by the XTL input element. These reports are
also assembled in the Drum System for a block IO trans-
fer into the Central Computer System.

The manual data input element handles three dif-
ferent types of information. Verbal messages reporting
aircraft, weather conditions, or any other miscellaneous
information are prepared on punched cards and read
into the Drum System through three computer entry
punches. The other two types of information handled by
the manual data input element are closely related to the
Display System and are discussed with that system.

3.2.4 Drum System

The Drum System performs two functions in AN/
FSQ-7 Combat Direction Central, It acts as a time buffer
between the rapidly operating Central Computer System
and the slower Input, Output, and Display Systems. The
Drum System also provides added memory capacity to
supplement the capacity of the core memory element of
the Central Computer System. Figure 1—7 shows the
operational elements of the Drum System. (Three ele-
ments not shown are used solely for test purposes.)

The two general types of information flow involv-
ing the Drum System comprise CD (Computer System-
Drum System) operations and OD (other than Central
Computer System-Drum System) operations.

Elements on the OD side operate independently of
each other and of elements on the CD side of the drums.
Thus, the OD input element may be receiving data from

UNCLASSIFIED 9

Display System UNCLASSIFIED PART |
3.24-3.25 1.0. 31P2-2FsSQ7-112 CH I
the Input System while the OD display element transfers
data to the Display System, the OD output element sup- GROUND | wESSAGE TO
plies data to the Output System, and the OD intercom- OUTPUT [nTemoom s
munication element transfers data to the other Drum STORAGE
System. (Refer to 3.3.) Simultaneously with all these
operations, one of the CD elements may be handling an
information transfer between the Drum System and the
Central Computer System.
The drums shown pictorially in figure 1—7 are di-
vided physically into two groups of six drums each: OUTPUT GROUND To| MESSAGES To
surFEr _ | OUTRUT GROUND | . OTHER CENTRALS
a. Main drum (MD) group FJEEDDSRSS LEMENT SQ%LZ”GTE ToA 1%%5%“—%535?«
1. LOG drum RADARS
2. MIXD drum
3. Track display (TD) drum
4. Radar data (RD) drum
5. Auxiliary memory A (AM-A)
Auxili B (AM-B TELETYPE| MESSAGES T
6. Auxiliary memory B () BN | AbAsts and

b. Auxiliary drum (AXD) group
. Auxiliary memory C (AM-C)
. Auxiliary memory D (AM-D)
. Auxiliary memory E (AM-E)
. Auxiliary memory F (AM-F)
. Auxiliary memory G (AM-G)
6. Auxiliary memory H (AM-H).

With one exception, each physical drum is divided

into six logical fields. (The RD drum contains nine

fields.) Each field has a storage capacity one-quarter the
capacity of core memory. Total drum storage capacity is

Mo W N

— 77"
| LIGHT GUNS |
s'?sPTL:’-:L -] AND AREA |
! DISCRIMINATORS |
b 1
s
—
——= | siTuaTION
DISPLAY
R I(':DICATORS
LOTTING
TRACK BOARDS)
O | SITUATION)
RADAR DISPLAY > |
ADAS 5| GENERATOR
DRUM
—
——> | DIGITAL
DISPLAY
—=> »|INDICATORS
> | s0aros)
BOARD!
piaimaL DIGITAL
FECD OF > ERATOR >
MIXD DRUM

Figure 1—8. Display System Information Flow

ANTIAIRCRAFT
ARTILLERY
SITES

STORAGE

Figure 1—9. Output System Information Flow

approximately twenty times that of core memory.
The CD average access time for the Drum System is 10
milliseconds, as compared with 6 microseconds for core
memory. However, successive CD information transfers
can occur at 10-microsecond intervals on addressable
drums, almost as rapidly as successive transfers from
core memory (6-microsecond intervals).

Auxiliary memory drums A through H provide
added memory capacity for the Central Computer Sys-
tem. The LOG drum (named from the initial letters of
the logical field names contained thereon) includes two
fields for information from the LRI element, three fields
for information for the Output System, and one field
for information received from the GFI element,

The MIXD drum includes one field of manual data
input element information, one field for supplying in-
formation to the OD intercommunication element, one
field for XTL element information, and one field for
Display System information. The remaining two fields
on this drum are spares and are usable for auxiliary
memory storage. The LOG, MIXD, TD, and RD drums
perform time buffer functions for information transfers
between the Centrai Computer System and the other
systems.

3.2.5 Display System

The Display System provides for visual observation
of the data processed by the Central Computer System.
It receives this information from the Drum System at a

10 UNCLASSIFIED

PART |
CH I

UNCLASSIFIED
T.0. 31P2-2FsQ7-112

r—__—_—————————l
| -
waRNINe DISPLAY OUTPUT l
I SYSTEM SYSTEM SYSTEM |
| !
| |
| DRUM '
| SYSTEM |
CENTRAL I

| COMPUTER
| SYSTEM |
INPUT I
| SYSTEM |
| l
| |
| COMPUTER A ‘
b e o o e e e e o e o J

Duplexing
3.271-33
I_ ————————————— —
| OUTPUT DISPLAY WARNING |
| SYSTEM SYSTEM Rkl |
| I
| DRUM |
! SYSTEM
. CENTRAL |
| COMPUTER
SYSTEM |
| INPUT |
| SYSTEM |
| |
I COMPUTER B I

Figure 1—-10. Duplexing, Simplified Block Diagram

rate that can be handled by the Display System equip-
ment, The Display System generates displays from the
binary information prepared by the Central Computer
System. The blocks shown in figure 1—8 handle dif-
ferent types of information. Situation display handles
air movement information, which requires the displays
to change as the information changes. A situation dis-
play is equivalent to the plotting board display of a
manual air defense center. Digital display handles
statistical information or information summaries that
need not be changed as rapidly as situation displays.
The digital display is equivalent to a tote board display.

The Display System is closely related to the Input
System through the manual data input element. At al-
most every console is a keyboard, part of the manual data
input element. The air defense personnel at a console
may direct the action of the Central Computer System, on
the basis of information displayed, by setting up a mes-
sage on the manual input keyboard. (Sel fig. 1-6.) If a

_specific target is to be reported back to the Central Com-

puter System, information on that target may be trans-
ferred out of the situation display subsystem (by a light
gun or by an area discriminator) through the manual
data input element to the Central Computer System. (See
fig. 1-8.) .

3.2.6 Ovutput System

Among other functions, the programs of the Cen-

tral Computer System make up messages directing the
actions to be taken against hostile aircraft. These mes-
sages are presented to the Qutput System via the output
buffer fields of the Drum System. In the Output System,
shown in figure 1-9, each message is processed for
transmission to a specific receiving station. Three types
of messages are processed by the Output System:

a. Ground-to-air, to airborne interceptors

b. Ground-to-ground, to other centrals

¢. Teletype, to manual centrals, airbases, etc.

3.2.7 Warning Light System

The Warning Light System provides the means for
the Central Computer System to notify operators at
various units in AN/FSQ-7 Combat Direction Central of
situations that require their attention or action. The
Warning Light System controls neon indicators and aud-
ible alarms located at the various consoles of the Display
System and at consoles of the GFI element. As shown
in figure 1—2, the Warning Light System is controlled
directly by the Central Computer System.

3.3 DUPLEXING

The equipment within each system discussed so far
is duplicated in whole or in part within AN/FSQ-7
Combat Direction Central to attain the greatest possible
operational reliability for that equipment. This duplex
equipment is contained in two groups designated com-

UNCLASSIFIED n

Duplexing

UNCLASSIFIED

PART |

33 T.0. 31P2-2FSQ7-112

puter A and computer B, (See fig. 1—10.) Computer A
and computer B each contain an entire Central Com-
puter System, Drum System, Output System, and those
elements of the other three systems whose failure would
render all systems useless if not replaced or repaired.
For example, since the failure of a generator element in
the Display System renders the entire Display System
inoperative and limits the usefulness of the entire equip-
ment, the generator elements are duplex (duplicated in
computer A and computer B). On the other hand, the
failure of one display console will not render the entire
Display System inoperative. Therefore, display consoles
are not duplex. Instead, spare display consoles are avail-
able as substitutes in case of failure of a console. Non-

duplex units are known as simplex equipment and are
not shown in figure 1—10. They are discussed in suc-
ceeding chapters on the systems within AN/FSQ-7 Com-
bat Direction Central,

It should be noted that only one set of duplex
equipment is processing raw air defense data at any one
time, This set, called the active computer, may be either
computer A or computer B. The nonactive computer,
called the standby computer, may be undergoing main-
tenance or, if operative, may be performing supplemen-
tary data-processing operations. The intercommunica-
tion fields of the two Drum Systems allow for inter-
change of information between the active and the
standby computers,

12 UNCLASSIFIED

PART |

UNCLASSIFIED
CH 2 T.0. 31P2-2FsSQ7-112

Concept of Number
1.1-1.22

CHAPTER 2
NUMBER SYSTEMS

SECTION 1
GENERAL

1.1 THE CONCEPT OF NUMBER

There exist two general definitions of number. In
one definition, a number denotes a quantity or amount
of units. For example, the term dozen denotes a quantity
or amount of eggs, rolls, or any other unit items.
Similarly, the symbols 12 and XII denote the same
quantity. These three symbols (dozen, 12, and XII),
although each is from a different system of notation,
all designate the same amount of unit items.

The other general definition describes a number as
a member of an ordered set of symbols. Although the
number in an ordered set of numbers is capable of
denoting quantity, the idea of quantity is unimportant.
For example, a house or telephone number is a'member
of an ordered set of symbols. A house number identifies
the house to which it is assigned and generally locates
that house with respect to other numbered houses. House
number 26 gives no idea of the size of the house or the
quantity of houses. The number does imply that a house,
numbered 26, lies between the houses numbered 24 and
28 on the same street and is distinct from them. The
number 26 gives the address of the house; the address
locates something and asserts its distinction from other
addresses.

A telephone number, like a house number, gives
no indication of quantity but rather distinguishes a
particular telephone from other telephones. A telephone
number, unlike a house number, contains no implication
of location. Thus, while both a house number and a
telephone number belong under the definition of a
number as a member of an ordered set of symbols, only
the house number can properly be called an address.
The telephone number must be called an identification
code, instead. There are, therefore, three applications
of numbers that must be considered:

a. Quantity designators
b. Addresses

c. Identification codes
The application of numbers to the designation of
quantity will be discussed most completely. The demon-
strations using this application are valid in the other
two applications as well.

1.2 DECIMAL NUMBER SYSTEM
1.2.1 General Properties

When the decimal number 333 is read by anyone
familiar with the decimal number system, it is read
as three hundred thirty-three. Although the digits in
each position are identical in appearance, their positions
indicate their relative magnitude. The leftmost 3 is in
the hundreds column, the next 3 in the tens column,
and the last 3 in the units column. Thus the number
333 is an abbreviation of 300 + 30 - 3. The advantage
of using position to represent magnitude becomes
apparent when the Roman numeral designation of the
same quantity, CCCXXXIII, is examined. In this nota-
tion, a different symbol is used for hundreds, still
another for tens, and yet another for units. Further, the
order in which these symbols are written does not indi-
cate their magnitude; rather, the magnitudes of the
symbols determine the order in which the symbols are
written. The Roman numeral system requires a more
unwieldy set of symbols than does a system employing
positional notation of magnitude.

1.2.2 Positional Notation of Magnitude

Pgsitional notation of magnitude in the decimal
number system can be described this way. Each position
to the left of the decimal point represents a different
positive power of 10 with the power increasing by 1
from each position to the next leftward position. The
first position is known as the units position; 10° = 1.
The second position is the tens position; 101 — 10.
Similarly, each position to the right of the decimal
point represents a negative power of 10 with the nega-
tive power increasing in absolute magnitude by I from
each position to the next rightward position. Thus the
number 2,437.923 actually represents the sum of the
terms: 2 x 103 + 4x 102 4+ 3 x 10 + 7 x 10° 4 (.)
9 x 10~ 42 x 10—2 4 3 x 10~3, Decimal numbers
are seldom written out in this form since the convention
of positional notation of magnitude is generally under-
stood. In scientific calculations, use is made of the
convention to abbreviate long numbers. The velocity of
light can be written as 299,800,000 or abbreviated as
2.998 x 10° meters per second.

UNCLASSIFIED 13

General Number System
1.2.3-1.3

1.2.3 Radix

The decimal number system is so called because it
uses the base 10 in counting. In any position in a
decimal number, one of 10 symbols is admissible. These
symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. When counting,
adding a 1 to any number from O through 8 gives the
next number in the series. Add a 1 to 9, however, causes
a return in that position to 0 and the appearance of a 1
in the next higher value position. On every tenth count,
the stepping of the next higher column from 0 to 1 and
the return of the preceding column from 9 to 0 repeats.
The decimal number system thus works with the base
ot radix 10. The term radix denotes both the number of
steps in the counting cycle of each position before a
step to the next higher column is necessary and the
number of symbols from which one symbol may be
chosen to appear in a given position.

The decimal number system uses the same radix in
each position. This is not a necessary feature of a
number system. For example, the English system of
linear measure uses radix 12 in the first (inches) position,
radix 3 in the second (feet) position and radix 1760 in
the third (yards) position, with each radix expressed
decimally. Since a number system using several radices
is not as easy to manipulate as is a system using a single
radix, number systems used in calculations are based on
a single radix.

1.2.4 Modulus

Just as the radix of a number system specifies
certain properties of each digit position, the modulus
specifies certain properties of a given combination of
digit positions. If a list of all the decimal numbers
that can be written in m digit positions is prepared,
it will be found that there are 10m numbers in the list,
ranging in value from 0 to 10™ — 1. This number of
numbers which can be written in a limited number of
digit positions is called the modulus of that number
of digit positions. ‘

For example, the mileage indicator on an automobile
uses the radix 10 in each digit position. Most mileage
indicators provide six digit positions. They are thus
modulo 10% decimal counters. The Iargest number which
such a counter can represent is 999999 or 106 — 1. How-
ever, most mileage indicators place a decimal point to
the left of the last significant digit. The largest distance
the counter can represent is therefore 99,999.9 miles.
The mileage indicator counts in tenths of miles. After
counting 10® tenths of miles, its represented contents
return to 0. Thus, the radix specifies both the number
of counts, R, between 0 and a return to 0 and the largest
count, R—1, in a single digit position, while the
modulus specifies both the number of counts, R™, between
0 and a return to 0 and the maximum count, R® — 1, in
a group of m digit positions. The significance of the

UNCLASSIFIED
T.0. 31P2-2FSa7-112 CH 2

PART |

modulus becomes apparent upon considering the number
represented on a mileage indicator after the automobile
has traveled a distance greater than the modulus. The
distance indicated is the difference between the actual
distance and the modulus. If the distance travelled is
105,000.0 miles, the indicator will show only 5,000.0
miles. More generally stated, a modulo M counter
(where M — R™) cannot recognize the difference
between two numbers which differ in magnitude by
integral multiples of M. Thus, for the mileage indicator
used as an example, the numbers 105,000.0, which is
M 4- 5,000.0, and 5,000.0 are indistinguishable.

1.3 GENERAL NUMBER SYSTEM

The two features of the decimal number system
discussed above, positional notation of magnitude and
radix, are features of most number systems. This dis-
cussion is limited to systems using a constant radix
but, with slight modification, is applicable to other
number systems.

The most general expression of a number, con-
structed in a system employing the two features men-
tioned, is as follows:

N,xRP+ N, —1xR—14+...NyxR(()N_,x
R-14...R_,xR—¢

Where R — radix
N = any integer from 0 through R — 1
(.) = radix point

— most significant position and power of that
P g P
position

q = least significant position and power of that
position

When R is specified, the expression applies to the
number sysiem based on ihe radix. If R is specified as
10 as in the decimal system, N can be replaced by one
of the integers O through 9 and (.) becomes the

decimal point.

If it were desired to construct a number system
using the radix 7 for example, N could be replaced
by one of the integers 0 through 6, (.) would become
the septenary point, and positions would ascend or
descend in significance by powers of 7. The decimal
number 49 would be written in septenary form as 100;
ie, 1 x 72 4+ 0 x 7' 4+ 0 x 7% The two numbers,
49, and 100,, represent the same quantity. (Subscript
indicates radix.) They are different notations of equal
validity, just as twenty in English and vingt in French
are different notations of equal validity for the same
thing.

14 UNCLASSIFIED

PART | UNCLASSIFIED Introduction
CH 2 T.0. 31P2-2FSQ7-112 2.1-22.21
SECTION 2

BINARY NUMBER SYSTEM

2.1 INTRODUCTION

The binary number system is important in the
understanding of digital computers for one simple
reason. The binary number system, with a radix of 2,
utilizes combinations of only two allowable digits to
represent any number. Therefore, a binary numbet can
be represented in a computer by the settings of a group
of two-position switches, by a series of pulses and no-
pulses on a transfer line, or by the settings of a group
of flip-flops with the two possible conditions of each
flip-flop defined, respectively, as 0 and 1.

Some of the mystery of an unfamiliar system of
notation may be resolved by counting binarily from
0 through decimal 10:

Decimal 01 2 3 4 5 6 7 8 9 10

Binary 0 1 10 11 100 101-110 111 1000 1001 1010

The decimal and binary notations for 0 and 1 are
identical. The radix of the binary number system, how-
ever, is expressed binarily just as is the radix of the
decimal system expressed decimally as 10. Similarly,
4 (22) and 8 (2%) are expressed binarily as 100 and
1000 respectively.

In Section 1, a definition for a general number
system is given as equation (1). Limiting this definition
to apply to the binary number system yields:

B,x2r +B, ;x2r-1.L .. Byx204 (.)
B_;x2714...B_,x2-¢ (2)

With the radix specified as decimal 2, B can be either
0 or 1. The radix point (.) becomes the binary point
and, as in any number system, separates positive powers
of the radix from negative powers.

As an example of binary notation, consider binary
101111.01 which is equavalent to decimal 47.25. The
definition of the binary number system, equation (2)
above, can be used to demonstrate the equivalence of
the two notations. Decimal notation is used in this
demonstration.

47.25,, = 101111.01,
=1x2° 4+ 0x2++ 1x23 4 1x22 4 1x2L
+1x2° 4 ()0ox2-1 4 1x2-2
=32404+844+24+1101L1/4
= 4725

2.2 CONVERSION FROM DECIMAL TO BINARY
NOTATION

2.2.1 Conversion by Definition

A decimal number may be converted to binary
notation using the definition given in equation (2).
By inspection, determine the highest power of 2 which
is smaller than or equal to the decimal number. For
example, in converting decimal 26 to binary notation,
inspection reveals that 2* or 16 is the highest power
of 2 which is yet smaller than or equal to 26. There-
fore the binary notation must be of the form, 1———,
The difference between the decimal number and the
decimal value of the power of 2 chosen by inspection
is subjected to the same sort of inspection. In this case
the remainder is 10 (26 — 16). The highest power of
2 smaller than or equal to 10 is 23 or 8. The binary
notation of decimal 26 now has the form, 11———,
The remainder (10 — 8) is equal to 2! or 2. Thus, the
decimal number 26 has the binary notation, 11010.

2.2.2 Systematic Conversion

2.2.2.1 Integral Decimal Numbers

A more systematic method of conversion of integral
decimal numbers to binary notation involves the use
of successive divisions of the decimal number by the
radix of the binary system expressed decimally. Decimal
26 is again used as the example in the procedure shown
in table 1-1.

TABLE 1—1. INTEGRAL DECIMAL TO BINARY

CONVERSION
DECIMAL
NUMBER -+ 2 — QUOTIENT REMAINDER
26 i3 0 (least significant digit)
13 6 1
6 ‘ 3 0
3 1 1
1 0 1 (most significant digit)

The remainders written from right to left in the order
obtained represent the binary notation of the given
decimal number. Thus:

2610 = 110102

UNCLASSIFIED ' 15

Conversion
2222-23

2.2.2.2 Fractional Decimal Numbers

A fractional decimal number may be converted to
binary notation by a process similar to that used for
conversion of integral decimal numbers. Instead of
successive divisions by the binary radix in decimal form,
the decimal fraction is successively multiplied by the
binary radix in decimal form. Each multiplication yields
an integral and a fractional part as the product. The
integral part is taken as the binary digit while the
fractional part is again multiplied by decimal 2. Using
decimal 0.625 as the example, the conversion process
is shown in table 1-2.

TABLE 1—-2. FRACTIONAL DECIMAL TO BINARY

CONVERSION
DECIMAL PRODUCT
NUMBER x 2 — INTEGRAL FRACTION
0.625 1 25
0.25 0 .50
0.50 1 .00

The result of the conversion is obtained by writing
the integral parts from left to right after the binary
point in the order obtained. Thus:

0.62 510 panemy 0.1012

2.2.2.3 Mixed Decimal Numbers

A mixed decimal number (containing an integral
and a fractional part) is converted to binary notation
by treating the two parts independently, Thus, to convert
26.625;, to binary notation, the procedures shown in
tables 1—1 and 1-2 are followed, yielding:

26.625,, = 11010.101,

2.2.2.2 Jystification

These systematic methods of conversion from
decimal to binary notation are based on this principle:
Given a mixed number (containing an integral and a
fractional part) expressed in both notations, both

UNCLASSIFIED
T.0. 31P2-2FSQ7-112 CH 2

PART |

notations for the integral part are equal to each other
and both notations for the fractional part are equal to
each other. Thus, using the example just given:

26.62510 = 11010.1012
26, = 11010,
.62510 = .1012

When the integral part of the decimal number is
divided by 2, a mixed number results. This mixed
number is the integral quotient and a remainder of the
value 1/2 or 0/2. The remainder must equal the
fractional part of the binary number produced by
dividing it by 2. For example:

26 +2=1340/2
11010, +— 2 = 1101, } .0,
0/2 == .02

Division of the integral quotient by 2 will yield the
least significant bit of its binary equivalent, and so forth.

When a decimal fraction is multiplied by 2, the
result is a mixed number containing an integral part,
equal to 1 or 0, and a fractional part. The integral part
must equal the integral part resulting from multiplica-
tion of the binary equivalent by 2. For example:

625 x2=1 4 .25
.1012x 2= 12 —I— .012
1:12

Multiplication of the remaining fraction by 2 will again
yield the most significant bit of the binary equivalent
of the remaining fraction, and so forth,

2.3 CONVERSION FROM BINARY TO DECIMAL
NOTATION

It has been shown that a number in binary notation
may be converted to decimal notation using equation
(2). Conversion using this method empioys decimal
arithmetic. It is also possible to convert from binary
to decimal notation using binary arithmetic. This con-
version follows the pattern used in conversion from
decimal to binary notation described in 2.2.

16 UNCLASSIFIED

PART | UNCLASSIFIED Arbitrary Limitations
CH 2 T.0. 31P2-2FSQ7-112 3.1-3.23
SECTION 3

BINARY ARITHMETIC

3.1 GENERAL

Binary arithmetic is identical in principle to decimal
arithmetic. The procedures of binary arithmetic however
are unlike those of decimal arithmetic to the extent
that binary notation differs from decimal notation. This
Section is devoted to descriptions of the four basic
arithmetic operations, addition, subtraction, multiplica-
tion, and division, as they are performed binarily.
Although no special attempt is made in this Section to
describe these operations exactly as they are performed
in AN/FSQ-7 Combat Direction Central, it is desirable
to describe these operations within the limitations
imposed upon their execution by the design of that
equipment. The description of these operations as per-
formed by AN/FSQ-7 Combat Direction Central is
presented in Chapter 3.

3.2 ARBITRARY LIMITATIONS

3.2.1 Design Limitations

The design of the Central Computer System of
AN/FSQ-7 Combat Direction Central imposes certain
limitations upon the execution of basic arithmetic
operations. The physical size of the computing elements
of the Central Computer System places a limit upon
the number of significant figures within a binary number.
The limit is set at 16 bits (binary digits) and each 16-bit
group is designated a half-word. (The designation, word,
is reserved for a 32-bit group which contains two half-
words, one half-word for each half of the dual arithmetic
element of the Central Computer System.)

3.2.2 Sign Convention

Although 16 bits are available in each half-word
for binary notation of a quantity-designating number,
only 15 bits are used for the representation of the
magnitude of the number (modulo 21%). One bit, called
the sign bir, is reserved for the representation of the
sign of the number. By convention, a 0 in the sign bit
position indicates the number is positive; a 1 in that
position indicates the number is negative. This con-
vention is not entirely arbitrary as will be seen in 3.4.3.1.

3.2.3 Fixed Binary Point
The sign bit is distinguished from the remaining
bits in a half-word by fixing the position of the binary
point between the sign bit and the remaining bits in
the half-word. Since the sign bit is placed in the leftmost
position in the half-word, the magnitude of the number

designated by the half-word is restricted to fractional
values lying between decimal 41 and —1. The form
of the half-word is thus:

14 15
2-14 2-15

Bit position: S .1 2 3 4
Significance: Sign bit 2-1 2-2 2-3 2+

One advantage of fixed binary point operation
appears when contrasted with floating point operation.
Floating point operation requires the use of some bits
within the half-word to indicate the position of the point,
thus reducing the number of bits in the half-word avail-
able for representation of significant figures. Thus, given
the same size for the half-word, fixed point operation
allows greater precision than does floating point
operation.

An advantage resulting from the restriction of
numerical values within the range of decimal 1 to —1
becomes apparent upon consideration of ‘the multiplica-
tion operation. Since multiplication of two fractional
numbers yields a fractional result smaller than either
of the original terms, no special programming pre-
cautions are necessary to prevent the result from exceed-
ing the capacity of the computing elements as would
be the case in working with integers.

No difficulty is encountered in converting into
fractions the numbers on which the Central Computer
System is to operate. Each physical measurement can
be presented to the Central Computer System as the
ratio of that measurement to the maximum possible
measurement. For example, when the measurement of
the distance between two points is presented to the
Central Computer System, that measurement can be
interpreted as the ratio of the distance measured to the
maximum distance of which the Central Computer
System is cognizant.

Another point to be considered in regard to the
scaling of all numbers down to fractional values is this;
all numbers are represented in the Central Computer
System as integral multiples of 1/32,768, or 215, This
fractional conversion factor can be eliminated from any
calculation performed by the Central Computer System
with no significant change in the results,

In effect, the Central Computer System converts all
numbers supplied to it, whether constants or measure-
ments of variables, into fractional form by multiplying
those numbers by 2-15, then reconverts the results into
integral form by multiplying by 215,

UNCLASSIFIED 17

Binary Addition and Subtraction
33-34.2

3.3 BINARY ADDITION

The basic rules of binary addition are shown in
table 1-—3.

TABLE 1-3. RULES OF BINARY ADDITION

ADDEND + AUGEND = SUM
0 0 0
1 0 1
0 i 4
1 1 #(1)0

*Carry of 1 to higher order column.
As an example of binary addition, consider the follow-
ing, using 5-bit binary numbers for convenience:

5/16 0.0101 3/16 0.0011
+9/16 +0.1001 +1/16 +0.0001

14/16 0.1110 4/16

0.0100

One difficulty, known as an overflow, may occur in
addition if the sum of the two numbers added equals
or exceeds unity:

0.1001 9/16
+0.1001 +9/16
1.0010 18/16

In this case, although the binary number representing
the sum is correct, the sign convention will cause its
interpretation to be incorrect. If the magnitude bits are
read directly and the sign convention is observed, the
sum of 9/16 and 9/16 will be interpreted as —2/16.
Overflow is discussed further in 3.4.5.

3.4 BINARY SUBTRACTION

3.4.1 Direct Subtraction

The rules of direct binary subtraction are shown
in table 1—4,

TABLE 1—4. RULES OF DIRECT BINARY

SUBTRACTION
MINUEND — SUBTRAHEND = DIFFERENCE
0 0 0
1 0 1
1 1 0
*(1)0 1 1

*Borrow of 1 from bigher order column.

UNCLASSIFIED
T1.0. 31P2-2FSQ7-112 CH 2

PART |

As an example of direct binary subtraction, consider
the following:

0.1101 9/16
—0.0101 —5/16

0.1110 14/16
—0.1001 —9/16

0.0100 4/16 0.1001 5/16

Although direct subtraction is possible, certain dis-
advantages in its execution make alternative methods of
subtraction attractive. For example, direct subtraction of
a number from another number smaller than the first

yields an incorrect resuli:

0.0101 5/16
—0.1001 —9/16
1.1100 = —4/16

The binary number recorded as the result, if the
magnitude bits are read directly and the sign conven-
tion is observed, is —12/16.

The difficulty encountered with negative results
and the problem of mechanically providing for borrows
is elminiated by converting the subtraction process to
an addition process using negative numbers expressed
in what is known as the complement form. Subtraction
by addition of complements offers the further advantage
of using the same computing elements as are used for
addition.

3.4.2 Complements

The use of complements in performing subtraction
by addition of a negative number is based upon the
fact that computing elements of fixed modulus (due
to fixed capacity) are unable to recognize the difference
between two numbers which differ in magnitude by
an integral multiple of the modulus. In the equipment
under consideration, the computing elements are
restricted in size to 16-bit positions and are, therefore,
modulo 2'% devices. (Refer to 1.2.4.) It follows that
the equation m — s — d (where m represents minuend,
s represents subtrahend, and d represents difference) is
equivalent in final results to the equation m | 2"
— s = d + 278 since the computing elements recognize
d + 216 as d. The term (216 — s) is called the com-
plement of s.

It would appear that, although the original sub-
traction has been converted to an addition process, 2
subtraction must still be performed to obtain the com-
plement of a number. This subtraction to generate the
complement of a number is rendered unnecessary, how-
ever, by an adventitious feature of the bimary number
system. If a binary number is rewritten, substituting a
1 in the rewritten number wherever the original number
contains a 0 and substituting a 0 in the rewritten
number wherever the original number coatains a 1, the

18 UNCLASSIFIED

PART |

rewritten number represents the difference between the
original number and the modulus less 1. For example:

original number: 001010 111111
(modulus less 1)
—001010
(original number)
rewritten number: 110101 — 110101

(rewritten number)

This process called complementing a number, of writing
1 for 0 and 0 for 1 in the number, is accomplished
readily by computing devices. Further, if the complement
of the original number with respect to the modulus
rather than with respect to the modulus less 1 is desired,
it can be obtained by adding a 1 to the least significant
bit position of the rewritten number. Subtraction can
therefore be performed binarily by a combination of
complementing and addition.

3.4.3 Application of Complements

3.4.3.1 Interpretation -

When a positive binary number is complemented,
its sign bit changes from 0 to 1. Thus numbers in com-
plement form, as representations of negative numbers,
agree with the sign convention stated in 3.2.2. The
magnitude bits of 2 number in complement form cannot
be interpreted directly, however, since the results are
misleading. In general, a number in complement form
is recomplemented when the absolute magnitude of the
number is desired.

3.4.3.2 Generation -

Two forms of complements are used in the Central
Computer System of AN/FSQ-7 Combat Direction
Central. One, with respect to the modulus, is called the
2’s complement. The other, with respect to the modulus
less 1, is called the 1's complement. Given the binary
number representing decimal 9/16, the two forms of
complements are generated mathematically as follows:

2’s complement 1’s complement

10.0000
— 0.1001 9/16

1.1111
—0.1001 9/16

1.0111 1.0110

Physically, the 1’s complement of a number is
generated by reversing the condition of each bit posi-
tion. The 2’s complement is generated physically by
first generating the 1’s complement, then adding a 1
into the least significant bit position. Thus:

1.0110 —9/16 (1’s complement)
+ 1 .
1.0111 —9%/16 (2’s complement)

UNCLASSIFIED
CH 2 T.0. 31P2-2FSQ7-112

Application of Complements
34.2-3433

Generating the 1’s complement of a number requires one
step. Generating the 2’s complement of a number re-
quires two steps.

To interpret the magnitude of a number in com-
plement form (sign bit — 1), the number must be re-
complemented following the same procedure as was used
to generate the original complement. This recomple-
menting yields the absolute magnitude of the number
in compiement form which must be prefixed by a minus
sign to show that the number so processed was negative
(sign bit = 1). Again, recomplementing a number in
1’s complement form requires one step while a number
in 2’s complement form requires two steps.

3.4.3.3 Subtraction Using 2’s Complement -

When the 2’s complement is used in subtraction, the
result is obtained in one step. For example, consider
the subtraction of 9/16 from 14/16:

0.1110 14/16
410111 — 9/16
(1) 0.0101 5/16

-~

The actual result obtained mathematically is 10.010fi,
which is larger than the desired result by the modulus,

the amount by which decimal 9/16 was increased when

it was complemented. Since the computing element which
holds the result cannot contain the sixth significant fig-
ure (shown in parentheses), that figure drops out, thus
reducing the result to the correct value. In effect, neg-
lecting the carry-out of 1 is equivalent to subtraction
of 10,000 from the actual result. The carry-out of 1 does
indicate that the result is positive but it is unnecessary

~ mathematically, since the sign bit of the result indicates

the sign of the result.

Use of complements in subtraction eliminates the
problem encountered in direct subtraction when the sub-
trahend is larger than the minuend. For example, con-
sider the subtraction of 9/16 from 5/16:

0.0101 5/16
+1.0111 —9/16
1.1100 —4/16 (2’s complement)

Note that, when the result of the subtraction is negative,
the sign bit of the result is a 1 and no carry-out is gen-
erated.

To show that 1.1100 is the 2’s complement of 4/16,
its absolute magnitude can be determined by recomple-
menting as follows:

1.1100 —4/16 (2’s complement)
—0.0001

1.1011 —4/16 (1’s complement)

0.0100 4/16 (recomplemented)

UNCLASSIFIED 19

Overflow
3.4.34-345

3.4.3.4 Subtraction Using 1’s Complement

The subtraction of 9/16 from 14/16 can also be
performed, using the 1’s complement:

0.1110 14/16

+1.0110 — 9/16
(1) 0.0100
-+-0.0001

0.0101 5/16

The actual result of the first addition is 10.01 00, which

< LWS/AL VL LT LSt aWGii0il 15 iv.us Yy Lillxd

is larger than the desired result by the modulus less 1
or by 1.1111, the amount by which decimal 9/16 was
increased when it was complemented. The fixed size of
the computing element will eliminate the carry-out as
was the case in using the 2’s complement. However,
neglecting the carry-out when using the 1’s complement
reduces the actual result by 10.0000, which is too large
a reduction by the amount of 0.0001. The problem is
resolved by adding the carry-out into the least significant
digit position. This process yields the following result:

0.1110 14/16
4+ 1.0110 — 9/16
10.0100 actual result
— 10.0000 remove carry-out
-+ 0.0001 end-carry
_— It (5/1
0.0101 correct result (5/16)

The process of removing the carry-out and adding it
into the less significant bit position is called the end-
around-carry or, more simply, the end-carry.

It can be seen that the use of the 1’s complement
in subtraction requires two steps, the addition and the
end-carry, in comparison to the one step required when
the 2’s complement is used. The two-step process is
required with the 1’s complement only when the result
is positive (sign bit — 0, with carry out of 1). For
example, consider the subtraction of 9/16 from 5/16
using 1’s complements:

0.0101 5/16
4 1.0110 —9/16
1.1011 — 4/16 (1’s complement)

No carry-out is produced and, therefore, no end-carry
is necessary. To show that 1.1011 is the 1’s complement
of 4/16, it can be recomplemented by inspection to yield
0.0100, which equals decimal 4/16 in magnitude.

3.4.3.5 Uses of 2’'s and 1’s Complements

The choice of complement form to be used in calcu-
lation is dependent upon the relative importance of speed
in generation to speed in calculation. It has been shown
that the 1’s complement is generated or recomplemented

UNCLASSIFIED
T.0. 31P2-2FSQ7-112 CH 2

PART |

in one step but may require two steps when used in the
subtraction process. On the other hand, the 2’s comple-
ment requires two steps for generation or recomplemen-
tation while its use in subtraction requires only one step.
The convenience of conversion into and out of the 1’s
complement form has dictated the use of that form in
almost all applications within the Central Computer
System. All negative numbers are handled and stored in
the Central Computer System in 1’s complement form.
The 2’s complement form is used in binary division (dis-
cussed in 3.6) and in certain control functions (discussed
in Chapter 3).

3.4.4 Zero

The use of the 1’s complement for the representa-
tion of negative numbers introduces the anomaly of a
negative zero. The binary number 0.0000 represents deci-
mal 0; its 1’s complement, 1.1111, also represents decimal
0 but in negative form. The two numbers, positive 0
(0.0000) and negative 0 (1.1111), are arbitrarily defined
as identical. Both numbers are recognized by the Central
Computer System as 0. The result of adding a binary
number (other than zero) to its complement is negative
zero.

3.4.5 Overflow

If the result of a binary addition or subtraction
equals or exceeds unity, an overflow is said to have oc-
curred; it cannot be interpreted meaningfully by the
Central Computer System. The overflow condition was
mentioned briefly in 3.3. The example given there is the
addition of 9/16 and 9/16:

0.1001 9/16
+0.1001 9/16
1.0010 £ 18/16

=~ —13/16 (1’s complement)

A similar result is obtained if 9/16 is subtracted from
—9/16 or if —9/16 is added to —9/16:

1.0110 —9/16
+1.0110 —9/16
(1) 0.1100
(1)
0.1101 < —18/16
~ 13/16

In both cases, the results exceed unity in the positive or
negative direction and can not be interpreted meaning-
fully by the Central Computer System. The indication of
an overflow may be seen from these two examples: the
two numbers being added (whether in the addition or
the subtraction process) are of the same sign whereas the
sign of the result differs from the sign of the two num-
bers. This indication is used by the Central Computer
System in detecting the occurrence of an overflow.

20 UNCLASSIFIED

PART |

When addition of numbers in complement form is
executed, it is possible that an overflow condition will be
indicated at the completion of the first step and that the
end-carry will remove the indication of overflow. This
condition, known as a false overthrow, can be demon-
strated in the subtraction of 8/16 from —7/16:

1.1000 —7/16
+1.0111 —8/16
(1) 0.1111 (false overflow)
(1)
1.0000 —15/16

The possibility of treating a false overflow as an error
must be avoided.

3.5 BINARY MULTIPLICATION

3.5.1 Direct Multiplication
The rules of binary multiplication are given in
table 1—5.

TABLE 1-5. RULES OF BINARY MULTIPLICATION

MULTIPLIER x MULTIPLICAND = PRODUCT
0 0 0
0 1 0
1 0 0
1 _ 1 | 1

Binary multiplication can be accomplished in the
same manner as that used in decimal multiplication; i.e.,
the product of each multiplier digit times the multipli-
cand is written with the least significant bit of each par-
tial product aligned under the corresponding bit of the
multiplier, then added to yield the product. For example,
the multiplication of 9/16 by 5/16 is accomplished .as
follows:

0.1001 or 9/16
x 0.0101 x 5/16

(multiplicand)
(multiplier)

01001
00000
01001 (partial products)
00000
00000

0.00101101 45/256 (product)

Since the allowable digits in the binary number system
are 1 and 0, each partial product will be either the mult-
plicand or a number containing all zeros, The change in
order of each partial product can be accomplished by
shifting the multiplicand left before recording it as a
partial product or by shifting all earlier partial products

UNCLASSIFIED
CH 2 T.0. 31P2-2FSQ7-112

Binary Multiplication
34.5-35.2

right before recording a new partial product. Further, it
is not necessary to record each partial product. Instead,
as each partial product is generated, it can be added to
the sum of the previously obtained partial products. Mul-
tiplication can thus be reduced to a series of additions
and shifts. Further, since the sign of the product can be
determined by the rule of signs, the multiplication can be
performed with the absolute magnitudes of the operands,

thus eliminating the problem of recognizing the magni-

tude indicated by a number in complement form.

3.5.2 Multiplication by Addition and Shifting
A binary multiplication operation can be executed
as a series of additions and shifts in accordance with the
following rules:

i. Determine sign of product by rule of signs, then
obtain absolute magnitude representations of
multiplier and multiplicand by recomplementing
if negative.

2. Form partial product:

a. Examine least significant bit of multiplier not
already examined; if 1, add multiplicand to
partial product; if 0, take no action.

b. Shift new partial product right one position;
fill vacated positions with 0’s.

3. Repeat step 2 for each significant bit position of
multiplier (not for sign bit of multiplier).

4. After last repetition of step 2, correct sign of
product according to sign determined in step 1.

Using these rules, the multiplication of 9/16 x 5/16

is accomplished as shown in table 1—6.

TABLE 1—6. BINARY MULTIPLICATION

PARTIAL
STEP MULTIPLIER PRODUCT MULTIPLICAND
A 0.0101 0.0000 0.1001
B1 0.0101 0.1001
B2 0.1001
B1 0.0101 0.01001
B2 0.001001
B1 0.0101 0.1001
0.101101
B 2 0.0101101
B1 0.0101
B2 0.00101101 (product)

The method of multiplication as executed in the
Central Computer System, is shown in table 1—6 and
discussed in Chapter 3.

UNCLASSIFIED 21

Binary Division
35.3-36.2

3.5.3 Shifting

Shifting the bits of a binary number with respect
to the binary point is equivalent to multiplication of
the binary number by decimal 2 or some power of
decimal 2. It is thus analogous to multiplication of a
decimal number by 10 or a power of 10 by the expedient
of moving the decimal point. In the binary system
number, it is convenient to think of the binary point
as fixed, with the bits of the binary number shifting.
For example, if the binary number 0.0101 is shifted left
to appear as 0.1010, the original binary number has
been multiplied by decimal 2. As another example,
consider the binary number 0.0011 shifted left two
places to appear as 0.1100. The shift of two places is
equivalent to multiplication by decimal 4.

3.5.4 Round-Off

The product of two fractional binary numbers is
a binary number, smaller in magnitude than either of
the original numbers, but expressed with more significant
figures. This precision of expression of the product is
generally excessive. The excess precision and excess
length in terms of bit positions of the product is
corrected by a process known as round-off.

When a positive binary number is rounded off, a
1 is added to the least significant bit being retained
if the most significant bit being dropped is a 1. Using
the product of 9/16 and 5/16 as an example, if this
number is to be rounded off to four significant bits,
the following process results:

0.00101101
0.0010 1101
0.0011

For a negative binary number, a 1 is added to the
least signifiant bit retained if the most significant bit
being dropped is a 0. The round-off process is generally
preceded by a shift left. The combined shift left and
round-off allows the scaling up to representable size,
with properly corrected precision, of a product which
is smaller than the smallest binary number representable
within the Central Computer System. If the product to
be rounded off were 0.00000101, the result would be
zero unless a shift left preceded the round-off.

3.6 BINARY DIVISION

3.6.1 Principles
. Binary division is greatly simplified, in comparison
to decimal division, by the fact that only 0 and 1 may
appear as digits in the quotient. A 1 is written in the
quotient if the divisor can be subtracted from the
dividend leaving a positive remainder, while a 0 is
written in the quotient if the remainder is negative.
Binary division is, therefore, reduced to a series of

UNCLASSIFIED
T.0. 31P2-2FSQ7-112 CH 2

PART |

trial subtractions. One limitation is placed on binary
division; the divisor must exceed the dividend in
magnitude to yield a quotient of value less than unity.
Violation of this limitation leads to results which will
be interpreted incorrectly by the Central Computer
System. In effect, the result of a division which does not
observe the limitation is similar to an overflow condition.

3.6.2 Direct Division

The binary division process makes use of the 2’s
complement described in 3.4.3. The 2’s complement is
to execute each trial subtraction. Use of the 1’s com-
plement would require added time for end-catries.
Further, since the sign of the quotient can be deter-
mined by rule of signs from the signs of the divisor
and dividend, no sign bit for the quotient is calculated.
Instead, division is performed using the absolute
magnitudes of the divisor and dividend, then the proper
sign is affixed to the quotient and remainder, if any.

Direct binary division can be described best through
the use of an example. Consider the division of 45/256
by 5/16:

(divisor) .10010

(2s comple- 0.0101 [0.001011010 (dividend)
ment) 1.1011 11011

1 000001010 (current remainder)
11011

011100010

~ 00101 (restoration)

(1) 00001010 (current remainder)
11011

01110110

700101 (restoration)

(1) 0001010 (current remainder)
11011

1000000 (final remainder)

Since both divisor and dividend are positive, the sign
of the quotient is positive and the absolute magnitudes
of the operands are as shown. The first step in the
division process is the trial subtraction of the divisor
from the dividend shifted left one position (the divi-
dend is smaller than the divisor in magnitude by con-
vention and a trial subtraction without shifting would
be unsuccessful). The trial subtraction is successful
(indicated by the 1 carry-out and by the 0 as the most
significant bit of the remainder). A 1 is therefore
written into the quotient. For the next trial subtraction,
either the divisor must be shifted right or the current
remainder shifted left one position. Consider the current
remainder shifted left. The next trial subtraction is

2 UNCLASSIFIED

PART |

unsuccessful (0 carry-out and 1 as most significant bit
of remainder). Therefore a 0 is written in the quotient.

To continue the trial subtraction process, the nega-
tive remainder is restored (made positive) by adding
the divisor. The carry-out produced by this addition
is ignored. The restored current remainder is shifted
left one position and another subtraction attempted.
A negative remainder results. Another 0 is written in
the quotient and the negative remainder again restored.
The restored current remainder is shifted left one posi-
tion and another subtraction attempted. The carry-out
of 1 indicates that the subtraction is succesful. There-
fore, a 1 is written in the quotient. The final remainder
is 0.

The direct or restoring method of division just de-
scribed is effective but is not too rapid. In the example
given, six additions are performed, four for trial sub-
tractions and two for restoring current remainders. If the
restoration steps are eliminated, only four addition steps
are required for the division of a number by another num-
ber with four significant bits.

3.6.3 Non-Restoring Method

The effect of the restoration step can be analyzed as
follows: given a current remainder x, this current re-
mainder is doubled and the divisor d subtracted from
it to perform a trial subtraction, giving 2x —d as the
new current remainder. If this remainder is negative, a
restoration step is carried out before the next trial sub-
traction. The divisor is added to the negative remainder,

- the result is doubled, and the divisor is subtracted from it:

2x —d4+d=2x
2(2x) —d=4x—d

The restoring step can be eliminated as follows. If
the remainder after a trial subtraction, 2x — d, is nega-
tive, this remainder can be doubled and the divisor d
added to it to accomplish another trial subtraction with-
out an intervening restoration step:

22x—d) +d=4x—d

The non-restoring method thus accomplishes the same
result as does the restoring method but saves one step for
each negative remainder.

Binary division, using the non-restoring method,
can be executed as a series of subtractions (addition of
complements) and shifts in accordance with the follow-
ing rules:

1. Determine sign of quotient by rule of signs, then
make divisor and dividend positive to allow cal-
culation with absolute magnitudes.

2. Perform a trial subtraction:

a. Make sign of divisor unlike sign of current
remainder (dividend for first trial subtraction)

UNCLASSIFIED
CH 2 T.0. 31P2-2FSQ7-112

Non-Restoring Method
36.2-36.3

by complementing divisor (2’s complement)
and shift remainder left one place.

b. Add divisor (or 2’s complement of divisor)
to shifted current remainder; if new remainder
is positive (carry-out of 1), write a 1 in quo-
tient; if new remainder is negative (carry-out
of 0), write a 0 in quotient.

W

. Repeat step 2 once for each divisor bit, including
sign bit.

4. If, after last repetition of step 2, divisor and re-
mainder are both negative, complement divisor
and add to remainder to restore it to positive
form. Ignore carry-out. Correct sign of quotient
and remainder in accordance with stored sign.

The rules of binary division using the non-retsoring
method applied to the division of 45/256 by 5/16 is
shown in table 1-7.

TABLE 1-7. BINARY DIVISION

CURRENT

STEP DIVISOR REMAINDER QUOTIENT

A 0.0101 0.001011010 (dividend)
B1 1.1011 0.01011010
2 1.1011
10.00001010 1
B1 1.1011 0.00601610
2 1.1011
1.1100010 .10
B1 0.0101 1.100010
2 0.0101
1.110110 .100
B1 0.0101 1.10110
2 0.0101
_1_0.00000 .1001
B1 1.1011 0.0000
2 1.1011
1.1011 .10010
D 0.0101 1.1011 0.10010
0.0101

1 0.0000

UNCLASSIFIED 23

Number Conversion UNCLASSIFIED PART |
36.3-3.7 T.0. 31P2-2FSQ7-112 CH 2

This method of division, as executed in the Central TABLE 1—8. BINARY-CODED DECIMAL NUMBERS
Computer System, is discussed in Chapter 3.

3.7 NUMBER CONVERSION USING BINARY
ARITHMETIC

DECIMAL BINARY CODE DECIMAL BINARY CODE

0 0000 20 0010 0000
. Convers.ions from bir'lary to decir.nal and .decimz.ll to 1 0001 21 0010 0001
binary notations are possible using binary arithmetic in
exactly the same manner as described in Section 2. One 2 0010 22 0010 0010
added feature is required to allow the handling of deci- 3 0011 23 0010 0011
mal numbers by a bit.1a1:y m.achine; binary coding of deci- 4 0100 24 0010 0100
mal numbers. A distinction must be made between
a binary-coded decimal number and a decimal number 5 0101 25 0010 0101
expressed binarily. The decimal number 33 is expressed 6 0110 30 0011 0000
binarily.as .100001; the same decin.lal number catf be 7 0111 45 0100 0101
coded binarily as 0011 0011. The binary-coded decimal
number is written by representing each decimal digit 8 1000 60 0110 0000
in binary form. The binary codes for the decimal digits 9 1001 75 0111 0101
0 through 9 and for several other decimal numbers are 10 0001 0000 99 1001 1001

given in table 1-8.

24 UNCLASSIFIED

PART | , UNCLASSIFIED Octonary Number System
CH 2 T.0. 31P2-2FSQ7-112
SECTION 4

OCTONARY NUMBER SYSTEM

The octonary number system is useful in connection
with digital computers as a form of shorthand for binary
notation. Its radix, expressed decimally, is 8, and the
allowable digits in octonaty notation are 0, 1, 2, 3, 4, 5,
6, and 7. It can be seen from table 1—9 that each octonary
digit can be represented binarily by three bits and, further,
that every combination of three binary bits has a corre-
sponding octonary digit.

TABLE 1-9. BINARY-CODED OCTONARY NUMBERS

OCTONARY BINARY OCTONARY BINARY
0 000 4 100
1 001 5 101
2 010 6 110
3 011 7 111

Just as is the case for a decimal number, an octonary
number can be expressed in binary-coded form. (Refer
to 3.7.) Unlike a binary-coded decimal number, however,
a binary-coded octonary number is identical to the binary
notation of the quantity represented by the octonary
number. For example, decimal 47 is expressed octonarily
as 575 (5 x 81 | 7 x 8%). The octonary number 575 can
be binarily coded as 101 111. The binary number repre-
senting decimal 47 is 101111. Thus, an octonary number
can be translated into its true binary equivalent by trans-
lating each octonary digit into the corresponding three
binary bits. The converse is also true; a binary number
can be translated into its true octonary equivalent by
replacing each successive group of three binary bits
(starting from the binary point) with its corresponding
octonary digit.

The justification for this direct translation between
binary and octonary notation can be demonstrated by
the following reasoning. The modulus of a group of
three binary bits is 23 or 8. By definition, the radix of
the octonary system is 8. The maximum count repre-
sentable by three binary bits is 23 — 1 or 7, which cor-
responds exactly to the value of the maximum allowable
octonary digit, 7. These statements indicate that there
is a point-to-point correspondence between each com-
bination of three binary bits and some octonary digit.
More generally, each value of the 3-bit binary number

byb;b, can be equated to a value of the octonary digit e.
Expressed decimally:

by X 224 by X214 by X 2°=¢e X 8° (3)
where b = 0 or 1
e=20,1,2...6,7

The equation just given states the equality of the
first three bits to the left of the binary point with the
first octonary digit to the left of its radix point. The
equation can be generalized to cover the equality for
any position:

2% (by X 22 4 by X 2! 4 by X 20) = 2% (e X 8°) (4)

where p — position of digit or bit group with respect
to radix point. The generalized equation given as (4£)
describes the equivalence for corresponding positions of
octonary digits and 3-bit binary groups. Since equals
added to equals are equal, it follows that, if each
octonary digit is equal in value (including magnitude
represented by position) to each 3-bit binary group in
a larger number, the octonary number is equal to the
binary number.

The utility of the octonary number system to
programmers falls into two categories:

a. Octonary notation is briefer than binary notation.

b. Conversion between octonary and binary notation
can be performed by inspection.

A 16-bit binary number may be written in 6 octopary
digits. For example:

0.010100111011110 — 0.247364

It is obvious that the octonary notation is briefer than
the binary notation. Further, the octonary notation gives
a rough idea of the magnitude of the number in binaty
notation. The only other means of obtaining a rough
approximation of magnitude is the rather tedious process
of conversion to decimal notation.

Conversion between octonary and binary notation
is performed by inspecting the notation to be converted
and substituting on the basis of one octonary digit
per three binary bits. In the example just given,
0.010100111011110 is grouped:

0.010 100 111 011 110

The sign bit is written as a 0 and each remaining group

UNCLASSIFIED 25

Octonary Number System

UNCLASSIFIED

PART |

T.0. 31P2-2FSQ7-112 CH 2

of three bits is replaced by the equivalent octonary digit
as shown in table 1—9. The resulting octonary number
is 0.247364.

A binary number in complement form may also be
represented octonarily. The octonary digit preceding the
radix point represents the sign of the number represented
just as is the case in binary notation; a 0 indicates a
positive number while a 1 indicates that the number
is negative and in complement form. For example,
the complement of the binary number just given,
1.101 011 000 100 001, is represented octonarily as
1.530415. It should be noted that the significant bits
of the octonary notation of the complemented number
appear as a 7's complement of the direct octonary digits.

The choice of the octonary system as a shorthand
for binary numbers is determined by three factors. First,
only a number system whose radix is a power of 2
offers the advantage of direct translation. A binary
number can be translated directly into a number system

based on 4, for example. However, translation of a
binary number into the notation based on 9, for
example, involves the same difficulties as those encoun-
tered in translation into decimal notation without the
advantage of familiarity offered by decimal notation.
Second, the higher the power of 2 used as radix for
the shorthand notation, the greater the economy offered.
Thus, the number system based on 4 offers a saving
of only one digit for each two bits rather than the
one digit for three bits of octonary notation. Finally,
any numbet system of radix greater than 10 introduces
the problem of recognizable single symbols for values
greater than decimal 9. For example, the number 11
in the sexa-decimal system (radix — 16,,) can be
interpreted as 11, or as 17, unless some added
symbolism is used to eliminate the ambiguity. Therefore,
the octonary number system offers the greatest economy
without ambiguity as a shorthand notation of binary
numbers.

26 UNCLASSIFIED

PART |

UNCLASSIFIED
CH 3 T.0. 31P2-2FSQ7-112

Characteristics
1.1-1.223

CHAPTER 3
CENTRAL COMPUTER SYSTEM

SECTION 1
INTRODUCTION

1.1 SYSTEM CHARACTERISTICS.

Stated generally, the characteristics of the Central
Computer System include:

a. Computation with fractional binary nmumbers of
fixed binary point

b. Parallel operation rather than serial
c. Dual arithmetic operation

d. Automatic sequence stored program of single-
address instructions

e. Real-time operation
f. General applicability

A knowledge of the significance of these characteristics
is useful in introducing the operation of the Central
Computer System. Accordingly, these characteristics are
discussed in the remainder of this Section.

1.2 DESCRIPTION OF CHARACTERISTICS

1.2.1 Information Form

All data in the Central Computer System are han-
dled as 16-bit binary numbers with a fixed binary point
between the first (sign) bit and the remaining 15 magni-
tude bits. With negative numbers stored internally in
1’s complement form, any information number n falls
within the limits +1>n>—1.

The physical size of this information unit allows
sufficiently precise computation within the precision lim-
itations imposed by the measurements generating air
defense data, The Central Computer System, with an
inherent precision of one part in 32,768, can handle this
data without degrading its precision,

The use of a fixed binary point, although it intro-
duces scaling problems if maximum precision is desired,
avoids the need for order-indicating bits as used in
scientific notation and for space within words for these
bits. The placement of the binary point, separating the
sign bit from the magnitude bits of the number, allows
simplification of some of the logical operations of the
Central Computer System.

1.2.2 Handling Methods

1.2.2.1 Parallel Operation

The Central Computer System uses parallel rather
than serial operation to gain the advantage of higher
operating speeds in spite of greater equipment require-
ments. The transfer of a 16-bit number in parallel re-
quires the use of 16 lines in comparison to the one line
needed for a serial transfer, However, the serial transfer
takes 16 times as long as the parallel transfer, since all
bits are transferred simultaneously in the parallel oper-
ation while each bit is transferred sequentially in the
serial operation. Similarly, parallel addition of two 16-
bit numbers requires 16 adder circuits to add each pair
of corresponding order bits simultaneously; this is in
contrast to serial addition, which needs only one adder
circuit. However, the time-saving aspect of parallel oper-
ation makes up for the additional equipment require-
ment in the Central Computer System.

1.2.2.2 Dual Operation

The operation speeds attained with parallel oper-
ation are increased in the Central Computer System by
dual operation in two arithmetic elements, In general,
the information handled by the Central Computer Sys-
tem consists of point designations in polar or rectangu-
lar co-ordinate form. The dual arithmetic elements ai-
low simultaneous manipulation of the two halves of the
co-ordinate pair, thus halving the calculation time for
each pair. The dual arithmetic elements each handle
one 16-bit number, generally in the same manner at the
same time.

19972 famesmadan \'Al‘sr-l

1.2.2.3 Computer Word

To meet the requirements of dual arithmetic oper-
ation, the basic information unit of the Central Com-
puter System is modified in that two 16-bit numbers are
handled as a single unit, known as a word. The two num-
bers are contained in half-words, designated the left and
right half-words corresponding with the designations
of each half of the dual arithmetic element. (See fig.
1—-11, B12.) All information is handled within the Cen-
tral Computer System as a word, In general, the left
half-word is processed by the left arithmetic element

UNCLASSIFIED 21

Instructions
1.2.2.3-1243

UNCLASSIFIED
T1.0. 31P2-2FSa7-112

PART |
CH 3

LS|LI |L2{L3 L4 (LS| L7 L8 |LS|LIO|LII [LI2|LI3|LI4 LIS

RS |RI [R2 |{R3 | R4|R5|R6 |R7 | R8 | RO {RIO |RII [RI2 [RI3|RI4|RIS

LEFT HALF WORD

< RIGHT HALF WORD

Figure 1-11. Computer Word

while the right half-word is processed by the right
arithmetic element.
1.2.3 iniernal Memory

The information on which the Central Computer
System operates, and the instructions that direct these
operations, are stored as words in the core memory
element. Processed information is returned to core mem-
ory before transfer to the other systems of AN/FSQ-7
Combat Direction Central. Core memory can store only
8192 words. However, total data storage capacity is sup-
plemented by the Drum System. (Refer to Chapter 4.)

The computational speed of the Central Computer
System is largely determined by the operational speed
of core memory. Successive words (whether they con-
tain instructions or data) can be obtained from core
memory at G-microsecond intervals, Therefore, an in-
struction which does not require an operand from core
memory is allowed 6 microseconds for its execution,
while an instruction requiring an operand is allowed 12
microseconds for its execution. The controlling aspect
of core memory operation requires discussion prior to a
detailed discussion of overall Central Computer System
operation. Accordingly, core memory operation is de-
scribed in Section 2, and system operation in Section 3.

i.2.4 Instructions

1.2.4.1 Significance

As stored in core memory, an instruction word and
an information word are indistinguishable; both appear
as groups of binary bits. However, instruction words
direct the operation of the Central Computer System
upon information words. An instruction word differs
drastically in significance from an information word,
which can be read as two binary numbers having only
quantitative significance. The significance of the binary
bits within an instruction word can be understood best
after examining the function of an instruction.

1.2.4.2 Instruction Functions

A given arithmetic operation, such as addition of
two numbers, can be performed by an automatic digital
computer only if the following control information is
supplied by the program:

a. Identification of the operation

b. Addresses in memory at which the two operands

may be found

c. Address in memory for storagé of the result
d. Address from which the next program opera-

.
'S
tion information may be obtained.

If one instruction is to supply all this information, it
must contain four addresses in addition to the code sig-
nal identifying the operation. Such a four-address in-
struction is feasible only if internal memory is small.
For the Central Computer System, a four-address in-
struction would be extremely unwieldy. Each binary ad-
dress of a word in core memory must be at least 13 bits
in length (modulo 2'3 — 8192), requiring 52 bits for
the four addresses alone,

A four-address instruction can be simplified in
accordance with the following reasoning. The address
specifying the next program operation storage location
can be eliminated by storing program instructions se-
quentially in core memory in the order in which they
are to be performed. If this is done, a counter can be
used to obtain instruction words in the proper order.
The address for storage of the operation result can be
eliminated by dividing the arithmetic operation into a
computation and a storage operation, with separate in-
structions for each, Using similar reasoning, the arith-
metic operation may be divided into two operations,
each one controlling the transfer of one operand from
core memory. The end result is the use of several
single-address instructions in place of the unwieldy four-
address instruction,

1.2.4.3 Single-Address Instruction

In the single-address instructions used by the Cen-
tral Computer System, the left half of each instruction
word is reserved for identification of the operation to be
performed and for other control functions. This half-
word is called the operation half-word. The right half
of an instruction word contains an address when neces-
sary and is called the address half-word. Although 16
bits are available in the operation half-word, only bits
L4 through L10 are used to identify the operation to be
performed. These bits comprise the operation code. The
functions of the remaining bits in the operation half-
word are discussed in Section 3,

The address half-word generally specifies the ad-
dress of an operand which is to be manipulated by the
instruction. If no operand is required, the address half-
word may be meaningless or may have quantitative

28 UNCLASSIFIED

PART |

significance. The functions of the address half-word are
also discussed in Section 3.

1.2.5 Programs
Although the instructions used with the Central
Computer System are few in number, they may be as-
sembled into a much larger number of programs, These
may be divided into three major classes: operational,
utility, and maintenance programs.

Operational programs are those programs directly
concerned with the processing of air defense data. Ultility
programs are those which perform operations needed
in many other programs. Instead of containing the in-
structions of the utility program within themselves, these
other programs refer to the utility programs to perform
the operation required. For example, if a number of
other programs require translations from decimal to
binary notation, a utility program for this translation
might be prepared for use by the other programs. Main-
tenance programs used with AN/FSQ-7 Combat Direc-
tion Central fall into two types, reliability and diagnos-
tic programs. The former check its operation to discover
malfunctions; the latter are used to localize the cause
of these malfunctions.

1.2.6 Real-Time Operation

‘The Central Computer System approximates real-
time operation in two ways, The passage of real-time
as recorded by a clock is taken into account in calculat-
ing the velocities of moving objects. In addition, these
calculations are performed rapidly enough to be of use

UNCLASSIFIED
CH 3 T.0. 31P2-2FSQ7-112

Duplexing
1.243-13

in controlling a real-time situation. The latter consider-
ation has dictated the adoption of various design features
which increase speed of computation, such as parallel
operation and dual arithmetic operation.

1.2.7 General Applicability

Although it is seldom stressed, the Central Com-
puter System is capable of general application. The
features included within it for rapid processing of air
defense data are applicablé to the handling of any type
of data; even the fixed word length used in the Central
Computer System offers no serious difficulties. It is pos-
sible to program double-precision calculations to utilize
the full word length of the Central Computer System.
An extension of the same principles allows multiple-
precision calculation at the expense of speed. These
techniques are not often used in air defense data process-
ing, but their availability makes the Central Computer
System a highly versatile digital computer,

1.3 DUPLEXING

Since failure of the Central Computer System would
render inoperative all the equipment contained in AN/
FSQ-7 Combat Direction Central, two Central Computer
Systems are included in the equipment; one in the du-
plex group is called Computer A and the other in the
group is termed Computer B. (Refer to 3.3, Ch 1; Sec 3.) -
The duplication of the entire Central Computer System
in each duplex group eliminates any need for special
switching circuits other than those required for switch-
ing between the entire Computer A and the entire Com-
puter B.

UNCLASSIFIED 28

Core Memory UNCLASSIFIED PART |
21-213.2 T.0. 31P2-2FSQ7-112 CH 3
SECTION 2

INTERNAL MEMORY OPERATION

2.1 CORE MEMORY

2.1.1 Introduction

Internal memory of the Central Computer System
consists principally of two magnetic core memory units.
Each unit has a storage capacity for 4096 words, giving a
total capacity of 8192 words. Random access time for a
single word in core memory is 6 microseconds. That is,
6 microseconds must elapse between successive word
“transfers,

The storage component of each core memory unit
is a three-dimensional array of 135,168 ferrite cores,
arranged to provide 4096 storage locations for 33-bit
words. Specific registers (word storage locations) within
the storage atray are selected for reading and writing,
using a coincident-current method by circuits within
each unit. (See fig. 1—12.) Core memory is compact,
requires no periodic regeneration, is nonvolatile (stored
information is retained through a normal power off-on
sequence), and is suited to parallel operation.

2.1.2 Principles of Operation

Ferrites, the materials of which the cores in core
memory are made, are magnetizable ceramic-like mate-
rials whose magnetic state can be switched at high speeds.
A ring-shaped ferrite core can be magnetized in one of
two directions and can, therefore, store a binary bit if
one direction is defined as binary 1 and the other direc-
tion defined as binary 0.

Figure 1—13 shows the hysteresis loop of a ferrite
core with variation in magnetic state plotted along the
vertical axis against the variation in magnetizing current
plotted along the horizontal axis, A core is said to con-
tain a 0 when its magnetic state is at point A or a 1
when its magnetic state is at point E. To change the
state of a core from 0 to 1, a current of amplitude —I
is applied to a magnetizing winding on the core, causing
the magnetic state to change from point A along the
path ABCDE to point E, If a current of —I is applied
to a core containing a 1, the core state shifts along the
line EDC until the current ends, allowing the core state
to return to point E. Thus, after an application of a cur-
rent of —I, known as a write cuttent, to a core, that
core is left in the 1 state.

A core is switched from the 1 to the 0 state by
applying a current of amplitude 4-I to the magnetizing
winding. When the current is applied, the magnetic
state of the core shifts along the line EFGHA to point

A. If a current of I is applied to a core in the O state,
then the magnetic state shifts from A along AHG until
the current is removed, allowing the magnetic state to

return to point A. Thus, after an anplication of a current
return o point A, 1nus, after an appiication of a current

of | I, known as a read current, to a core, the core is
Ieft in the O state,

The rectangularity of the core hysteresis loop indi-
cates that the core is relatively insensitive to half-read
or half-write currents. A half-read or half-write current,
once applied and removed from a core, produces no
appreciable net change in the magnetic state of the
core. A means exists, therefore, for selecting a given
core within an array of cores for reading or writing.

2.1.3 Coincident Current Selection

2.1.3.1 Core Array

The core array of each core memory unit contains
33 planes, with each plane containing 4096 cores in a
64 by 64 matrix. (See fig. 1—14.) Each core in a given
plane is supported by two wires at right angles to each
other, called the X and the Y windings, respectively.
There are 64 X and 64 Y windings to support all the
cores in the plane, The location of each core can be
specified by identifying the X and the Y winding inter-
secting at that core, just as a point‘in a plane may be
identified by specifying the X and Y co-ordinate of the
point. The 33 plahes in a core array are stacked verti-
cally, with each plane lying horizontal. A word is stored
with one bit in each plane of the core atray. The cores
containing a given word (a core register) lie along a
vertical Z line running perpendicular to the 33 X, Y
planes. (See fig. 1—15.) A given register can be identi-
fied by specifying one X and Y winding, since the cor-
responding windings in each of the 33 planes are wired
together.

2.1.3.2 Word Storage

If half-write currents are applied to both an X and
a Y winding, those cores through which only one of
these windings pass will feel only a half-write current
and will be unaffected, However, the coincidence of the
two half-write currents at the intersections of the pulsed
X and Y windings will apply a full-write cutrent to the
cores at those intersections. Thus, the cores in the regis-
ter specified by the X and Y winding will all be switched
to the 1 state; all other cores in each plane will remain
in their original states,

30 UNCLASSIFIED

PART 1
CH 3 UNCLASSIFIED
T.0. 31P2-2FSQ7-112 Fig. 1-12

e e s
[S B i
e dmt,;’,,, ‘ o, ,,ir,qnuh’?w! e A i e
v o o S B B 3
Ay e e i e R e
i e e i q«.«««vw« Bk R A R
" e :’x,"’(e
i 3 S
i . - .x‘“ e
: s o

fomi
e i N i
i . s na L g ’“‘C‘ i e Ay
e m,w.«vw«,\ L S i i s oy L e s i
ey S i SN wwwm
i nq:‘(:‘((m;!,’i{g R ;L, g ",E,: i »mj;“ S v«igmw i Mg e :mm}»mémx u :
e A «,‘Ilm‘;t,:::,f s A N s e R s o
Lo e . e L : ““;:‘gx;«i S = i
. o £ : (,» - Eor i KL,»Wmm i i wm
i g i i 4 o
iy i D

,‘,m-mx AT) v i
- e tan el ;-

e
i
il

¢
e

X, e
e

”,‘ i ",”Z‘ W s s m/,w »g:’s:&:{w L

L il'L.%n, ::::t;,,ff “:,gst e G :
“,mx«» U i 1 ; e s .

h e e o ;" x«u‘kf‘*x"z'z*;;;

e 0 55
e g

e
aisom LU e
; . 7 . T e
2R o ,@,;-w S)
s i i i

e L L ;
2 et F i i 2
M ot Sl
mxvr;sw“,“ i
n;xw
an ‘w.n
e

G
e “ L;‘,;«,{t';,w b
e ,;,, b s m;‘”;zy e e ? S L :
e s # : 2 g o A
3 NS o et i il o i
SR e ; ‘e o . e e - B
: y ,,,»,».,“;;x;w. e L
e . : . » WNM,X,
e e

i
o oy

o i
S i e s
o i
. i s »,_xmma -
e
L
i e
S
Gt
yxm,,uw»}m - 3 oty

G L “”“iw
<

gl i ,Q o
"&zqnfxx m,;éng;sw ‘o M - 1 ¢ 3
G a m,;,,mw : HLA R o Y ¢ 5 .
b ““"”"«&;%J‘«n,u . : ¢ Y of =y 3 1 i 2 g s o S g ; L B M&*‘,ﬁ mxm"x J
s obr . 1 - o i e E
- L RN i A e Sy ; -
P nm ' A SR i .
b S a L

1
e
e
S e
e

. o §I§’I"“‘“&“\"mm i
- ”"“"’Iiﬁi e Shin ;
Lh G it o
e : ! ‘ |
Mmsz BN Ga f«f'r‘m},.
g o e ey
oo R
i et
e

E
=

, Al S
TR e
i S i
7 ‘e ‘F‘m‘m
. R
e ,’9 . ..
e e
o o e
2{30’??%& *, o

o i
D ; mi ;hju i‘”fﬁ"?lifﬂ’
o

e
=

.

S
e

L

.
o
.

i i

mu, S s

Al e : ’“,Li,mf‘,
i o

£

L

-
-

i

.
m»x e

e
L
_iens

i a
,,,,(;m,r» e % S o S
e e
s m?% . ‘ S i . x»:”«mx
M‘%x@“ e ;u’w
f i o p
. e w e sr"?fi‘.nwx,x i e
i e s
5

T

S
e

st
S

e
=

4

e
i 3

i

-

S

S
g
J'm‘w«um
s
e

o
waan
.

o i
SR i
Sy ““Ii},‘ ue;ﬁ;

i .
i) ! .
,»m;»;,«,w |
.8 e i
; e r -

i 5 i 3
- o . i & 2 L W,wm,xx@s -
Qm«mm i s = %ﬁxi e bt e i

N i

T

&

HRA

ol
e
i
B

.
=
i
s
i i
i

(,,V,mwww-n i als -
L | | ; e, < . 3
| 4 - e e
L

.
-
’*"‘fﬁ‘:l:’%’ e :
- e ”»v L e
. L 32 5o
i i v b ool il “ § a
,,,‘,,“.fing,m.m H e b e v ,r“'“““,;fz“ T 2 S R A
. MW‘ i . G MW«:(““M)'x i *“%‘&”’axﬁ”" ¢ B e g f oY ot i i ok . i e .
g WE I e e i s x 4 e R y . it ; ‘x i -
i W,m,,mm,,<,,«.,m»,»,, L it e e g,,,w : it 13 v 1 i T R %“(m,,mx,,,,,,ng.n
ho ok o Gl 1 : » i o oe 3 e et e 'M' s
- v o : ﬁ ':; ‘”"”‘;"“", ",‘.’fafzmi‘
y i x .

i
i
i

i e
i i3 e
W.m,mw.w«,k it E i i

rxx St A mwxvxm«x‘»i:.n

» r i W i S 5 S M
,“ E 4 e ot m,,,«k,,;, i sa . 3 e ¥ . 4 ;
g e i i . i 3 tey ! g m L ,_, e | o L
I e ’ . 3 { ; %wi Ao e . i
M o m‘ i L > - gt f e www e i G S
,“,,,em,wj;,,h, s i Gl 1 St % - 5 e ity
| Y o % 140 . i J"‘ L i 7 % ,u‘» i
M:z,:;‘*‘;:;:.,A,»,w«pz,.,“.u,w‘ 3 ,,“;,m,x; G e - . .
o - : - ; s 1 -
e g e . . . 3 e xmmxmmmmq i
;,;(,H,W,,,ﬁ i wf?&«m,,,, i . i s . - - e e o = e "'Wi‘m:r“fi e
& i e g : o i ,“,,,,xw‘,,,x wmmnuc r«;]»u -) She b s
s e ““”‘m i i i rs:v'Wv**‘"-,"“iz B w- L i i e ;‘,x?» me
o ,M ki ».w‘ «Ix'«xm S ke m,, : - 4 . X 2 i "QJ;;;‘;;}M e o i e
il RN L “‘"zwu« U e fet
. rﬁ:ﬂ::mz;“"*‘z;:“s*zz:« n o ; dh i
o el e e o wgw»r;w,mgm;m;:;L:’:k;‘;r;zmmim i el e ‘“w Lo
S e L P R e s e o
e Gl e el ! . i 4 v et
rn:&;;ff,’m e e A i o Bme - L o] e w,[,xf,,,u,;,,:y,(m, Wit e
(,’, i mtw«,.,iv,q’r i bl o % ¢ . }«, i‘kﬁb"m‘x; ‘”,j,gz‘ ok
i " vl o o w*x,mxx b F il ’« x&x;mmm:(! et szi i
e i : - £ . ﬂ""““;‘.‘i :
W,«u @,u,vywm,mmmr;);ﬂ ﬂ v : : e a mcm.wt,?&ﬁ"’m
i s '4(bl et 2 Srigi 5 £ ty.“m“wmv i S SSS i
o e o e _ . E ;a,zz:::;x;fw}‘,.,, zz;‘t:,‘«
e MW,_w,,,,um,« . E JW L
i i m,a, ‘,((,L,Ww x{xxmxx“;::;;':w x . . B mwma m@m
o 2 *m £y i 2 : g (Sk Pl o mxmsmw . B
“ o o i : 0 ; Y Vi e o
,m vx»«»xwm > I3 it i x P
%4 - xxxd xw&wm« st irio Al i
¢ s eyl B bl e i < «,; it mimﬂxxm 9
w‘*zzfzw,m>f;'w<m-, o - i "“’q«‘ ‘3?55wwwﬁ“éxf;‘<ﬂg;&(;‘:&“mﬁ%‘:ﬁii;"’“
e , : o : : ’““’&‘“‘*ﬂ%ﬁ‘,&”w mi
; . ‘ o ¢¢ L ~** zs -
= w o i ik
i (f,ﬁ“,,xm‘xm ‘ - Lﬁw‘; quwﬁss»
e
T8 ,uﬁs s;{::g*mxwng;m,
!%“ i - x
wwi‘ﬁsm, - , o G e
T ””‘J‘ﬁ: . Rt g i
s e Www - m«;,,.»:g;;x i

o

o ‘?;«w
e

§§§3 £
3&15& :

.

;»l
S
i

S

i e i

g il

2 i S e
;. s
i ,m,,uw,m“ | o

o e

i

e

3?5‘
o

Pri
S
S

s]
et

e

-

e
.

i
ﬁmmu i o
h -

33

‘,m,m 5 4| ¢
.xwz i fie
ey

5

Lo
L

S
e ?’EI L
“ e ,*WW Gy
e ‘«,,,,ﬁMﬁ)ﬁ;;’:y~i Hey Gt >,vmxmxxxxm»\
R i

s

38‘

i
.
& i i i i g2

e

=

i
999 B

e &m«s 5xm i e i
(,:;::»;zzmiw W;”M(;‘:‘,X;L . . e L w,:fﬁ:ﬂ;?‘.liaf ‘Rﬁs , g,,u,x.k .
w 2 M‘i,,w L L “;:ii?"i‘:;;t'itti,:ﬁ:l . - ' e ”f"‘ . ‘”“”‘““‘*"’!""‘“"""”’ix‘x“"“‘i : P
e e e e m::;:f«:a;*z:;a;::,;W,W.,),w.,,(< i oot ;x,z;:;m % ‘x““iﬁ“"‘f’?««?&séi“‘ﬁx P m e
“WW”M e w: c e - o s i nmmw e aae . x%m: e
e & Fo JA,,,E“A;;a-ww - s i L ,,,‘,xwu., msm el o m,«mm,m,y.w‘ ey v
¢ i ; m e e il - e " - Friy ws P o L e i
PRl et NS iy s i ,“mmmmm,,g«.,nu ; : i b e w« ? i e el e
x’,,n,:,’,; «Iwml» Mxm i i 54 ;Hummk'\vm mcm‘mr ,m,», s o .W e o o “’,‘l.-w m **»""“”"’*”“"‘i‘é" ’27"",“
» M i e %&5” ,,m,,,d‘«ws; s e W L;M it o *;w,‘“’,
i x,,,,w.q,us . R
G e
e W? e wa

— R NN .
B o s;,,w,wm S

:

Rt x é

“,») nmw«,»myn,mm«» i

) ‘»’ i 3 i -
SRR i A A s s g
5 -‘s».»vmmw ,s,wwm e

¥ x,, i :‘ - sty ot ’7 e o 8 i ‘m,,‘ ,‘,uwm.»,
e SR g e A e m:m i
ke e s f T *’“‘::;:;:ziitizs‘::t;*.i;,.:*:,::"z,:‘::pt:,«:» e R e
;zi‘,‘i{ﬁﬁ,«fl“t;?"“? " oy S Py e «-«»«tt:rt:‘*::, i Wm:z;;ffu’;;f't e i
i e s g "’”3 it . gt »'«'mw ORI SR i e S
e e «, S e mww"“‘v’ i S ‘t:, e b u.mwn i u»,x,,.;;.,,x g ,(,,,,,,,,,
~~<x.m..m,« o8 s »M,m»« st 3 , T M i i i S e el o et A ,m" o 'W“
oy i, i 4 g S b 1 g R e, SRR B
o ”"ixs;;’i,"iﬁw, R e gl ¥ e ,»,»n:u5**;;:;«3»"*:% Gt sl fidien «.' D . ,,,",,u,mwrrnqz‘;;w ;‘m e i
e S0 G i B L & m A ! (fu ! vm.“,,\,,, e S e i e
L m»m AR I e e
i sy b b ““I"‘

sy b &
5 .

:;,;;;"’;t,,il pa o ,‘“‘ b o

A

LT R -
y e o ;u‘, «,‘;K;”;‘») i i i um, i g e o Sty
Oy v:((; et e ,W,,“,f,,u,x,‘,,,k iy w%g‘g ;H ey L;L««gzgwt;p(;; v th m;y':;, ,,,,M e ‘,, r;g»‘qg«;’, ‘,(,‘,‘:,tmw AN TS it e T ;
A . e .“*“’,f:t e e b B e e b A Sl »‘"
i i 0 i s N % i e i S T S . e
o L e R i g G e it S G i i w»m G
e R S . HW“'»» ”'“'“‘" ‘”"”“ S e e e p
o ST s S B G s B ‘,,u iy e .,,x‘r R e w«») i
S e : s i ,WWM o i o R St § , S s e "‘, e
e ww(i AR s e S R ,(,,m,«ww D e ‘,w ‘» Gy i (’ s : i UM i
| s e "'*““’:;«&::;,; “{“I;,t(b);1 :tzm,,.,,mw» s, R b R o »~t,.:x¢ﬂ 2
S e «*”‘!“”"‘(ftt‘* ,t, ‘:t;* (5;:" e o Mm«xx»wm«,, b
ENAER I o A o nts T
S S

e Ft o

fu
paNSTE
b

i g 3 e 'm e i i
i e w; ,x g 0
o A x(;g,

,,r,,,;g, S e e ',:,'*z:, i S
T S e (M««,L,»,,N S e '
iy i o); K R g ,w,,w e A AR «,»,n,‘,mw T i
D g)m”w .:m« s e R «,»«»aww\-w w;«w N e
o L M«‘,,,,,W sy drar v e G e e
e S S *’
i Sl Dol
i e ’:?3;3&5‘“ .

Figure 1—12. Core Memory Unit

UNCLASSIFIED
31

Word Reading
213.2-214

0

Figure 1—13. Hysteresis Loop of Ferrite Core

When a word is stored in a register, it is necessary
to duplicate a given pattern of 1’s and 0’s in the cores
of that register corresponding to the pattern of 1’s and
0’s in the word. Applying half-write currents to an X
and Y winding will switch a register to all 1’s. Some
means is needed to prevent the writing of a 1 in a core
which should contain a 0. This is accomplished by pro-
viding an extra winding in each plane, called the inhibit
winding, which passes through every core in the plane.
In order to duplicate a word in a core register, the
register is first cleared (the cores are read to the 0 state).
A half-write current is applied to the X and Y winding
specifying the desired core register. Simultaneously,
those bits of the word to be stored which contain a 0
cause the application of a half-read current on the in-
hibit winding of the planes in which those 0 bits are to
be stored. A core in the register which is to remain at
0 thus feels two half-write currents and a half-read
current, The net effect, a half-write current, is insuf-
ficient to switch the core to the 1 state. All cores in the
register that do not feel a half-read current on the in-
hibit windings of their planes are switched to the 1
state. Thus, in one parallel operation, the pattern of
1’s and 0’s representing a word is duplicated in the
cores of the register.

2.1.3.3 Word Reading

The reading of a word from a core register is based
upon this principle: switching of a core in the 1 state
to the 0 state generates a large flux change, while no
appreciable flux change is generated when an attempt is
made to switch a core in the 0 state to 0. The flux change
produced in switching a core from the 1 to the 0 state
can generate a relatively large voltage pulse in a wire
threaded through the core being switched. Accordingly,

UNCLASSIFIED
T.0. 31P2-2FSQ7-112 CH 3

PART |

there is a winding in each plane, called the sense wind-
ing, which is used solely for reading. The sense winding,
like the inhibit winding, passes through each core in
the plane. Unlike the inhibit winding, no current is
applied to sense winding. Since each bit of a word stored
in a core register is stored in a separate plane, the word
can be read out in parallel on the 33 sense windings of
the core array.

In reading a word out of a core register, the pat-
tern of cores in the 1 and 0 states is transformed into a
pattern of pulses (1’s) and lack of pulses (0’s) on the
sense windings for transmission to a flip-fiop register
where the pattern of 1’s and 0’s is represented by the
states of the flip-flops. The reading is accomplished by
applying half-read currents to the X and Y windings
designating the desired core register. All cores in the
selected register thereby feel a full-read current, thus
switching them to the O state. A core which originally
contained a 0 produces very little flux change and con-
sequently no appreciable pulse on the sense winding of
that plane, A core which originally contained a 1 pro-
duces a large flux change during the switching and
induces an output pulse on the sense winding of its
plane, Reading of a word from a core register destroys
the contents of that core register and leaves the cores
cleared. The pulses produced by the reading are sup-
plied to the memory buffer register, a flip-flop register
with a 33-bit capacity, setting the contents of that regis-
ter to duplicate the original contents of the core register
just read.

Reading a core register destroys the contents of
that register. To retain the word in core memory, it
must be restored in the core register. The word is held
in the memory buffer register for this purpose. Those
bits in the memory buffer register which are 0’s cause
the application of the half-read currents on the neces-
sary inhibit windings. The use of the memory buffer
register in controlling restoration of the read-out word
to the core register in no way impedes or delays any
transfer of that word from the memory buffer register
to another register. The contents of a flip-flop register
can be transferred to another register without disturb-
ing the contents of the first register. Thus, the memory
buffer register allows the transfer of a word read out
of core memory to another element of the Central Com-
puter System while that word is still being rewritten in
core memory.

2.1.4 Register Addressing
A register in core memory is selected by specifying
the X and Y windings that intersect at the cores of that
register. The number of combinations of X and Y wind-
ings is the same as the number of cores in a plane or
the number of registers in the array (4096). Each com-
bination of X and Y windings that selects a register is

32 UNCLASSIFIED

g s - i

W Bz iR

& = Pt Wit
il i e . ,,
W i z A i i

| ‘sm‘ L 1 : L “w S
s e Mx,, ‘ - o
i xmxw o

. u <.,,W,M -
;, mﬁ‘x' Xft’ & a s it oL s
S i st

e

'w ’Lxmm i

il
5 e

e
s g o
x'u,f,“m ;: i

i
i
e

L ;
.

el ,x

-
.
e
el
o ,zvsmgﬁtw;«hém
% et Al
s

mfuzzxxm
b

‘!“""2;§§m i
N i 4

e A vsx

*%»'ﬁ(,h)::;(xs;ws»,‘

-

. i -
7 - xgavﬁupjmm;; 5
Al

e
i
i ,m
s
msu .
N

it
X s

’172«;;;" i

ug.(.;,x,'i“&t

/‘*w e

e
.

it

i

o
;;Msixz:;:z:,,z,f::*a

G
vwmw% 5 !

W
i

i i

L S
e ;y; ¢
R ::;g;yid,.g%; i
e - A
B um uf e i

x.
! S

kg M ¥ i 5
G
S g

;i“‘ ;x: .
< mm‘ﬁ’{‘}"f‘jm o
i

i
o

G e
W
s "«m,,,,,, (‘
o ii“w

,,A,‘.t:“::yxr o
G
L
s,xi“‘t;“ it
S

g
s

ot i
L,
e

i
A

i tg;;y
o
C N’,,, i
o ““"’vs e
vimu‘ ’ b
yssi o

e

o
e,
igs

.
<*M,Kf§h xs
it S

s 4,%;‘: e C
Wl i
wo&ﬂnii““‘ o

i

i M«xm,m

s,,, ww L i ,‘,; e
e e < / - e ti&irugt@;”r
i T i, o 'i’a;ff"”;;i uaf'ﬁf‘,“f,!;;“"
i
i

e
G

i
- "

e
g
B
e mx«m,
s

i
i
S
i L

S s Bl
i

- ity

e s&w
e i

o

ey
i
:

%‘?) «,W

,«m
N
w;;) e
i e
w«uwp
fie
S

v
e B
S

gt e,
TRt
e

e e
G I e A
e i i B

o .
.

iy x«m..,“m;‘r;ug,,»,, ggcp,w f"i»xﬁ‘“m
u&” gl e R TR
Sl %“g LT
i

% ;;y ;u o

,m.,,vm Mm,;(:
T i e i g L
A ;us»xf’ g o *xmm», e 3
S ol
o «’I‘ft e
Sl S
Hrani ”

sl ol
P

s fin

e

R
B
iy M‘

i o

) e
e

i

i Xg,%“,, .
M

mm'm”’Nv,m>!xan<»

L i

w;:@, £
A

‘xxm,xy,(;“« Lt
sm o i >tw>,‘¢

M,J ,: 3»; .
U‘!u ,’ B

A
i g *,w

7

e
S “mu
i
G,
i e
oy
e

R
e i

g B
\,5 e
L
e i

e L kb
N: mw

T
S
Sl i
e O
i

«"n:;w,« i
i

i

s;\»;:;;

'i e 4
i (Mmm,
-

i ‘,,
@
,m

Y
,«;‘Kf,\,::»gm» i
o e

; .;,”’; s
”"ib«qu 4
et

(,v‘;s i
i i,
’»«»v iidi,
o
S 2 fib
T i
'm;w””'“ s va :tm,;,w,‘

mm ,{‘* 5 (nziw A
mm,m'w Rttt
i o
A,
e wﬁ;&:‘:i:’“

i
s «}w et
i e, é ity
e
e w«m
L w«w B
i e “
i
e

u»«,, yik: ; 3 i i i
ey ,’!‘ : S

P o
e s ’v X
R Rt
G o m»:.?:« =

«m g

ity
,:x ki ,fiu,“f

M B

. i

i S

o ‘Iifi“m.,‘,,ﬂvﬂm 3 i
s rvw»tm;,(,“w g x,um,:;f' ﬁ"»»m»:»”ﬁ :;I:,yn

st b
SRS T

w’l” i
i
x»mu: “;w sy
S

t;;:‘ i
R

&x mst;««»nm,.» ; i
o i
i w’«i s :«mmm
e <<..»«w“,2 i
A i A L

i e o

,i‘,;, e
G e R
e L

e

ot
7::;‘1!9 i
i

Ao (,f}” »é,‘&‘,“ it mx(,\ SRR
S ey

,,‘?3{‘ N S o
o e “,u(,m,x fie

B e

m S

el

‘ i m,::;j;;‘;p oy

Figure 1—14. Core Mem

assigned an address which uniquely identifies that pair
of windings and, hence, that core register. These ad-
dresses range in numerical value from decimal 0 through
4095. Twelve binary bits are required to represent this
range of values in binary form.

The selection of a core register in a core memory
unit is accomplished by a 12-bit flip-flop register in the
unit, This register, called the memory address register,
drives two decoding matrices which select one X and
one Y winding in accordance with the contents of the

UNCLASSIFIED

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

i‘wimm(

D 2
S wwdmfﬁﬁu :
i

ik
it
i

e w
bl e
e

i e .,H‘ 9 54 SR
G Seg¥rai B
i 3 ¥ I ‘

Lo

E«»us
Bk

Fig. 1-14

Nt e

s

o

iy S
“ G
@

e
i

R S
i o

i
oy

i —_ “‘;g«; i
B ,,Jf,,’m";
ML G

i e,

W
e
s L;m
iy

e
o e "‘;:x :
it v,igw*x»m;w,,,‘f i
e

m,‘ ¥
i)

,%m& o
e
" iy «,m“‘ g
‘!K xm;,,,m 14
i
i

S x

M sy w

i
i
;i“ H e mmx x; i
,»xwl"“ Ce
zx‘ i 5«1’“ "
L
n i i i i i S
S»ma» N ””‘"“ “ o X : : . o
@,wf e s i
. i - b;‘ﬂ;lw;x}dm«w»:x
g

0
St
o §;»

o L
i, i

i
e e
i
T
e
i, xﬂlm,ﬁ 5

o e g
o x«xxx§w o

o

i f?‘?‘;ﬁ;xwg;sm vy ;-};f;h;xy,ﬁ;},w e

L
s e
i

G

i
ol 8 .
o i ,: e u‘v

A "
b L
mm»m» i
e o

L

. G

K/rix;,(gt

i «Utnq o

& ‘»,w i bt

i

i mm e
el

Lol
xV’Sx"cw i
0 ..,u,,,,g;g i fa :
‘,,MMW,M,W,W
S

e e
o "\iyxxx,~ 2 ,W%;:%

Mjg

poe
il ’xmx i 5 ‘
i

:w i
fiont
o

g
i x(i o

i]
o R v
Iy i LR
o W‘ b G . 3 um’lh’}&' il
S ‘;f‘“"x»xm»,‘ - e

“W’%“kung -

e e
i oy e Sl
gﬂxs i ¢
gl
iiniain X

e e
St

4\3“ £ ;

Wl m el Ww

‘* ’S“Mm e Mi o o 95;";“»&»

G um%{i?}?%} :

26 mmgri'
4o

-

u 3ist m;li”‘ i
kz(. i
Biips:
mxll’ i

.mqu“,“ e

et s . o -
i

\nnw

e
KW ey

:u ks m,w,u,,,
Mk;zk?ﬁ, b e
aff ﬁLW i fi\vs a
s
Bk e

i
Sovgay
aei s G
s P "mx ik
e

5 L
b . kol xw.%
R
S
L

:
s

*«»\m i H‘N

i

o
i

iy

S

ST

i
S
i Jd 3
i
Ms« % o
2
e

G

by ol
L D
A i wmm i
3 g s e

Gl i 6,‘;3‘5
K w,”“ ey
R
e (,,,X,ﬁ,,,.\,w
&w;; a«c»mm ‘;;' %
i

v
oty i

*«m

i

e

% e
=
i

it
.

RN
>w iy i
i

Ui

| o If“&"‘ Sl

3 e
u;«,

e

% s
- .

i
e

bon
e
e
Gk

a

il
;(;, s svoxx.«;:.;;g;*
w“n&é“' g
Ty ;,, L S
it a’,t»
ey

m»x it

w.x&‘“ i
e

ey o
mr i
«;y i
e

B8 mm«tt’(:::,

e
s
L
e
xnm»g Ll

Mfg e

i
;, wx,»«m; 4 Pas
o . ‘“N\“i yr hu i
T i s
m,kﬂ,::*“*fﬂ R

Loed
S
i

s "”"uim
.m,, "
.

S 5
wwq,,“,x B e
e D]

Yo
R

cwml o

fitw Sy i sl TS

w»? oy S i i

f S e

: . L;L;:;x S

i::x el m,«,,“‘;w (e s
Rt ;.

okl e
SR

L ;W o

T Y

4% st

e i
w i g i
E
Ci i
«x«m if?f,& Gty
e
o 1
%

4 %‘

g

L

b «M,‘ xi o gmh 31';,

i i s
x ,}; ‘T

Aiieg
Wm 8 1 uu x‘ ““mu»«’v ‘~ A
s :;1,.,(,. e

o b »"‘H s
:x,:;: iy w ”‘

s ,,(,"“ %
MSM ey ,“»’m,w i 57 ""ti‘,’
«Hm«m, i

G qii""
a(::(vm{’ o
e
i
i mﬂ;w G
ixx A

b e A ,t:'
Sl n T G
i z (e |
i ,m::u S
-

g S b
SR mwx e
,m ki o o
b i

-

60 % e i .“
o

i ,m
Y

;‘i*‘xi"« i

, wih e
S
i

w o

i a2

i 2 35

G
e
,W;

il 4
e e g
e T i

N
’It‘ G

x«m,s ;,“-;p»g Wi ”

e e
b s Ry &
it ,[;‘«2;3“' i
Faieta
e A -r'w‘,,.f it
s
a0

m il
i

‘:‘,\,w w?wwti;jz*?

i f‘i‘ %

S
i il

i

i ;% o s 5

Tr» el r" i it
i
gmrm A i ‘;\;’L’;ﬁ‘ -

e

i
I

T S AL

;"g B
i W,,

ory Plane (55-611)

S x,> i

SRR i R

memory address register. Only one core register may be
selected by the memory address register at any one time.
Thus, although the sense windings and the inhibit wind-
ings of each plane are common to all cotes in that
plane, they sense or control only the core in that plane
selected by the memory address register.

2.1.5 Function of Memory Buffer Register
The memory buffer register, a 33-bit flip-flop regis-
ter located in the arithmetic element, performs the fol-

33

Memory Cycles
2.1.5-2.163

SELECTED Y WINDING

VERTICAL LINE OF
33 SELECTED CORES

SELECTED X WINDING

DIGIT - PLANE OR
INHIBIT WINDING,
NOTE!

PUSH-PULL SENSE
WINDING NOT SHOWN
FOR SIMPLICITY

INHIBITED CORE

Figure 1—15. Core Array, Simplified

lowing functions in conjunction with the core memory
element:

a. Provides temporary storage and control for a

word being written into core memory

b. Receives each word read from memory and al-

lows its transfer to other elements while restor-
ing is done

c. Assigns parity bit to words being stored and

checks parity of words read out

The function of the memory buffer register in con-
nection with reading and writing is similar to the func-
tion of any buffer register. A buffer register provides
temporary word storage during transfer operations to
free the source or the recipient in the transfer operation
from the transfer operation as rapidly as possible. For
example, in the writing of a word into core memory,
the transfer of the word to the memory buffer register
from the originating register frees the originating regis-
ter for other use,

The memory buffer register includes circuits which
provide checks on the accuracy of transfers into and out
of core memory. The accuracy checks are based on a re-
dundancy principle; a 33rd bit is added to each word
written into core memory. This 33rd bit, called a parity

UNCLASSIFIED
T.0. 31P2-2FsQ7-112 CH 3

PART |

bit, performs no function except in the accuracy check.
The content of the parity bit makes the total number of
1 bits in the 33-bit word odd. As each word is read out
of core memory, the number of 1’s in the word is
counted. If this number is even, an error has occurred.
If the number of 1’s is odd, there may have been no
error or there may have been two errors, The likelihood
of two errors occurring in one transfer is small enough
to be ignored.

An error detected through the use of the parity bit
is called a parity error and results in an alarm indication
which may be used to stop the operations of the Central
Computer System or to branch program control to take
account of the parity error.

2.1.6 Memory Cycles

2.1.6.1 Timing

The operation of core memory is organized into
cycles of 6-microsecond duration, Two types of cycles are
possible, read or write. During a read cycle, a word is
read from core memory and placed in the memory buffer
register where it is available for transfer to other regis-
ters in the Central Computer System. Within the same
read cycle, the word is rewritten in core memory. During
a write cycle, a core register is cleared and a word previ-
ously placed in the memory buffer register is written
into the cleared core register. Either cycle requires 6
microseconds for execution. Figure 1—16 shows the tim-
ing of the events which occur in both types of memory
cycles. Once a memory cycle is started and the type of
cycle is specified, the core memory unit performs a pre-
scribed series of steps through the end of the cycle.

2.1.6.2 Read Cycle

Only one word may be read from core memory in a
single read cycle. The read cycle is started by the com-
mand from the instruction control element that trans-
fers a core register address into the memory address
register. The read-out portion of the read cycle is per-
formed as described in 2.1.3.3 and the word in the se-
lected core register is duplicated in the memory buffer
register in 3 microseconds, That word can thus be trans-
ferred to another element 3 microseconds after the start
of the memory cycle.

The remaining 3 microseconds of the read cycle
are consumed in rewriting the read-out word in the core
register and in clearing the control circuits of the core
memory unit. The flux changes produced during the
restoration step have no effect on the contents of the
memory buffer register, since the sense windings are
disconnected from that register during the restoration
step.

2.1.6.3 Write Cycle

Only one word may be placed in core memory
during a single write cycle. The write cycle is started

34 UNCLASSIFIED

PART |
CH3

TIME USEC,
o | 2

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

Test Memory
2.1.6.3-23

CLEAR MEM —1

ADDRESS REG
SET MEM

ADDRESS REG

CLEAR MBR

neEAR - I [
READ,WRITE ! !

CURRENT

SET MBR FROM

[

SENSE WINDINGS

INHIBIT

RE-WRITE 4
|
Y

|

l |

o | 2
TIME PULSES

o —+—l—\— 11—+

TIME USEC.
o | 2

€

‘D‘_‘_\-‘— —/—

- — - —

READ CYCLE

CLEAR MEM -I

ADDRESS REG l
SET MEM

ADDRESS REG

CLEAR MBR

INHIBIT SAMPLE

SET MBR TO WORD l

BEING STORED l |

READ,WRITE

CURRENT

INHIBIT N

l
| l |
) | 2 3
TIME PULSES

|
|
|
|
t
|
|
g

WRITE CYCLE

B.

Figure 1—16. Memory Cycles

by the command from the instruction control element
that transfers the core register address into the memory
address register. The read-out portion of the write cycle
is performed just as in a read cycle with one exception;
the sense windings are disconnected from the memory
buffer register for the entire duration of the memory
cycle by a command, inhibit sample, from the instruction
control element. Therefore, the original contents of the
selected core register, although impressed on the sense
windings as in a read cycle, are not duplicated in the
memory buffer register but are lost instead. The read-
out portion of a write cycle only clears the selected core
register,

Since the sense windings are disconnected from the
memory buffer register throughout the write cycle, the
word to be written into core memory can be placed in
the memory buffer register at any time within the first

UNCLASSIFIED

3 microseconds of the memory cycle. During the second
3-microsecond interval, the word in the memory buffer
register is written into the selected core register in the
same manner as that used to rewrite a word just read
from core memory.

2.2 TEST MEMORY

Test memory provides storage for a relatively small
number of words for various special purposes, The pri-
mary use made of test memory is in testing core memory
and in storing short test programs or parameters for
core memotry programs. The capacity of test memory is
16 words and its access time is identical to that core
memory. Test memory is discussed in Chapter 10.

2.3 REAL-TIME CLOCK

The real-time clock provides accurate incremental
real-time information for all systems within AN/FSQ-7

35

Memory Addresses
23-24

Combat Direction Central. The real-time clock consists
of a fixed-frequency pulse generator and a 16-bit flip-
flop counting register called the clock register. Clock
pulses are generated at a 32-pulse-per-second rate: The
real-time clock thus allows the determination of time
within an interval of 2048 seconds (34.13 minutes) to a
precision of 1/32 second.

The real-time clock supplies its basic timing fre-
quency of 32 pulses per second to the Output System
and also supplies selected timing pulses at 14- and
8-second intervals to the Input and Drum Systems. These
supplied timing puises and the ability of the Centrai
Computer System to read the clock register allows the
use of real-time increments in calculation. This use is
discussed further in Chapters 5 and 7.

2.4 MEMORY ADDRESSES

Both the unit to be used and the address within
that unit must be given in order to read or write a

UNCLASSIFIED
1.0. 31P2-2FSQ7-112 CH 3

PART |

specific location in internal core memory. The address
half of an instruction word can contain this informa-
tion. Of the 16 bits available within the half-word for
addressing, the sign bit is not generally used; this
leaves 15 bits for effective addressing. Twelve bits are
reserved for selection of a specific register in one of the
core memory units, leaving 3 bits for the selection of a
memory unit. Table 1—10 shows the form of the ad-
dress half-word for selection of each memory unit reg-
ister,

The register address is supplied either to the mem-
ory address register in one of the core memory units or
to the test memory address register, in accordance with
the selection of memory unit by the unit code. No regis-
ter address is applicable for the clock register, since
there is only one clock register for reading. In addition,
the memory unit addresses of core memory No. 1 and
No. 2 may be interchanged for test purposes by means
of a switch on the duplex maintenance console,

TABLE 1-—-10. MEMORY ADDRESSES

SELECTION CODE

OCTONARY
MEMORY UNIT UNIT CODE R1 R2 R3 REGISTER ADDRESS
Core memory No. 1 0, 4 - 0 0 R4 through R15
Core memory No. 2 1, 5 -] 1 R4 through R15
Test memory 2, 3 0 1 - R12 through R15
Clock register 6, 7 1 1 - Meaningless

36 UNCLASSIFIED

PART | UNCLASSIFIED Introduction
CH3 T.0. 31P2-2FSQ7-112 3.1-3.13.2
SECTION 3

SYSTEM OPERATION

3.1 INTRODUCTION

3.1.1 General

In terms of programming, the operation of the Cen-
tral Computer System begins with instructions and ends
with the results accomplished by the execution of those
instructions, However, instruction execution cannot be
discussed meaningfully without some prior discussion
of the equipment performing the required actions and
the modes of operation of that equipment. One part
of the equipment, internal memory, has been discussed
in Section 2, This section of text therefore describes the
remaining operating units and the timing of their oper-
ations before describing the execution of specific instruc-
tions.

3.1.2 Types of Operations

Operations of the Central Computer System fall
into two distinct categories: internal and IO operations.
. Internal operations process information obtained from
core memory and return the results to core memory.
IO operations transfer information between core mem-
ory and units external to the Central Computer System.
The distinction between these two categories of oper-
ations arises from the difference in their functions and
from differences in the equipment performing the oper-
ations, Further, internal and IO operations are per-
formed within the same time interval (although not
simultaneously) by separate portions of the operating
equipment within the Central Computer System.

3.1.3 Timing

3.1.3.1 Machine Cycles

Since almost all Central Computer System oper-
ations are dependent upon the operation of core mem-
ory, these operations are organized into machine cycles
corresponding in occurrence and duration with memory
cycies. {Refer to 2.i.6, Sec 2.) Internai operations are
executed within two types of machine cycles: program
time (PT) and operate time (OT). A program time
cycle is defined as the machine cycle executed during
the memory cycle in which an instruction is obtained
from core memory. An operate time cycle is defined as
the machine cycle executed during the memory cycle in
which an operand is obtained from or returned to core
memory. There are two types of operate time cycles,
OT A and OT B. During an OT A cycle, an operand is
_obtained from core memory; during an OT B cycle, a

word is stored in core memory. Thus, there are three
types of machine cycles during which internal opera-
tions are performed; PT, OT A, and OT B. For those
operations of variable execution time which do not,
however, require the execution of a memory cycle, an
acyclic mode of Central Computer System operation is
available. This acyclic mode, called an arithmetic pause,
is required in the execution of instructions involving
repetition of certain basic steps without reference to
core memory. The use of the arithmetic pause is dis-
cussed in 3.4 and 3.6

Just as internal operations are organized into ma-
chine cycles, so are IO operations. The execution of a
memory cycle is required for each word transferred dur-
ing an IO operation. During the execution of a memory
cycle for an IO word transfer, internal operations are
suspended while the Central Computer System executes a
machine action called a break cycle. A word supplied by
an IO unit is written into core memory during a break-
in (BI) cycle. Conversely, a word is read out of core
memory and delivered to an IO unit during a break-out
(BO) cycle.

Break cycles are executed upon request from an
IO unit, This break request is usually received during
the execution of an internal machine cycle. As soon as
this internal machine cycle is completed, a break cycle is
executed instead of an internal machine cycle. (One ex-
ception exists: a break cycle can be executed during an
arithmetic pause.) Upon completion of the break cycle,
the Central Computer System returns to the execution
of internal machine cycles until another break cycle is
requested.

3.1.3.2 Cycle Timing

The events within a machine cycle are initiated and
timed by two series of pulses with a basic recurrence

A
rate of 2 meg’“‘y‘"“. Within the C'LAMLLOBCCGH duration

of a machine cycle, twelve 2-megacycle pulses can occur.
Each pulse is numbered from 0 through 11,,. Thus, a
specific time within a machine cycle can be identified
in terms of the type of cycle and the pulse number;
e.g., PT 6, OT A-4, BI 8, etc.

The basic 2-megacycle pulses are sorted onto two
sets of 12 lines to generate time pulses (TP) and in-
struction pulses (IP) for control of Central Computer
System operation. The latter are used to generate com-
mands during the execution of internal machine cycles.

UNCLASSIFIED 3

Fig. 1-17

INTERNAL
MACHINE
CYCLES

CORRESPONDING
MEMORY CYCLES

i

I0
MACHINE
CYCLES

CORRESPONDING
MEMORY CYCLES

38

PT O PT 7

UNCLASSIFIED
T1.0. 31P2-2FSQ7-112

PT IIJOTA O

OTA 1I|OTB O

oTB II

PROGRAM TIME *

OPERATE TIME A

OPERATE TIME B

PART |
CH 3

READ. READ WRITE
(INSTRUGTION) . (OPERAND) (OPERAND OR RESULT)
4———— 6 USEC: ‘!‘- 6 USEC: =I=‘ 6 USEC. =!
PT 7 PT, 6
I CYCLE NEXT
INSTRUCTION PT PTo INSTRUCTION
CYCLE CYCLE
6 USEC. |
_ PT 7 pT nloT o oT ulPTz 0 PT6
2 CYCLE NEXT
INSTRUCTION PT OT A (OR B) PT, INSTRUGTION
CYCLE CYCLE
12 USEC.
|PT 7 PT loTA O ota nloTte o ote i|PT20 PT, s|
3 CYCLE NEXT
INSTRUCTION PT 0TA oTB PT, INSTRUCTION }
CYCLE CYCLE
fe 18 USEC.
I I |
pr7 eruloto ot ul 2-MC [PT20 PTp 8]

2 CYCLE NEXT
AR PT oTA PAUSE PT, INSTRUGTION
LE WITH 2 GYCLE

PAUSE R R o VA L
lrf VARIABLE
B8O 0 801l 8I 0 BI Il
MAY INTERVENE
- BETWEEN INTERNAL .
BREAK- OUT e I Ter, BREAK-IN
OR DURING PAUSES
READ WRITE
1 |
lq—— 6 USEC. — ¥ l— 6 ussc.———-i
1

Figure 1—-17. Machine and Instruction Cycles

UNCLASSI

FIED

PART 1
CH3

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

Fig. 1-18

OPERANDS AND RESULTS TO
AND FROM MEMORY ELEMENT

~

|

P LEFT MEMORY BUFFER

RIGHT MEMORY BUFFER

LEFT A REGISTER

y

LEFT ADDER

LEFT ACCUMULATOR

LEFT B REGISTER

\

LEFT ARITHMETIC ELEMENT

-— =

RIGHT A REGISTER

1

y

RIGHT ADDER

/

\

RIGHT ACCUMULATOR.

> RIGHT B REGISTER

RIGHT ARITHMETIC ELEMENT

—— — —— —— — — . —

NOTE .
COMMANDS NOT SHOWN

Figure 1—18. Arithmetic Element Information Flow

Time pulses (TP) are used to generate common com-
mands for the execution of internal machine cycles and
to generate all commands necessary for the execution
of break cycles. The suspension of internal operations
during a break cycle is accomplished by shutting off the
instruction pulses (IP), thus preventing the generation
of commands for the execution of internal machine
cycles.

The execution of an arithmetic pause requires
neither time pulses (TP) nor instruction pulses (IP). In-
stead, 2-megacycle pulses are used for the generation
of commands, allowing the generation of a specific com-
mand at 14-microsecond intervals rather than at 6-micro-

UNCLASSIFIED

second intervals, as is the case when a specific IP is used
to generate the command. During an arithmetic pause,
time pulses may be turned on to execute a break cycle.
Instruction pulses must remain off during an arithmetic
pause, since they might interfere with the use of 2-mega-
cycle pulses in command generation,

3.1.3.3 Instruction Cycles

An instruction cycle is defined as the time interval
allotted for the execution of an instruction, This time
interval begins with the decoding of the instruction to
be executed. Therefore, an instruction cycle begins at
the instant the instruction is available for decoding, at

39

Operating Units
3133-34.12

PT 7. The period within the program time cycle from
PT 0 through PT 6, the 3 microseconds in which the
instruction is read from cote memory, cannot be con-
sidered to be within the interval allotted for the execu-
tion of the instruction being obtained from core mem-
ory during that program time cycle. Rather, it is included
in the preceding instruction cycle. In like manner, a
given instruction cycle ends at PT, 6 of the program
time cycle in which the following instruction is read
from core memory.

Figure 1—17 shows the sequence of machine cycles
possible in different instruction cycles. As can be seen
from the figure, a given instruction cycle runs from PT,
7 of one program time cycle through PT, 6 of the next
program time cycle. The number and type of machine
cycles within a given instruction cycle are determined
by the operation called for by the instruction. An in-
struction which calls for no operand from core memory
is executed without any OT cycle between the two halves
of the PT cycles. An instruction which does call for an
operand requires an OT cycle between the two PT
cycles.

3.1.4 Operating Units

3.1.4.1 Functional Grouping

Although logical division of the Central Computer
System into elements is made, it is more convenient in
programming to ignore the element divisions and con-
sider the Central Computer System as a group of flip-

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

PART |
CH 3

flop registers, These registers fall into three functional
types:

a. Computing registers

b. Control registers

c. Buffer registers

Computing registers are those registers directly involved
in the arithmetic and logical processing of information.
Control registers perform control functions either in
internal or IO operations of the Central Computer Sys-
tem. Buffer registers are intermediate storage registers
that allow more rapid transfer of information between
other units. The memory address register is an example
of a control register. (Refer to 2.1.4.) The memory
buffer register is primarily a buffer register, although it
petforms other functions as well. (Refer to 2.1.5.) The
other buffer registers, the IO and IO buffer registers,
do not require any extended discussion.

3.1.4.2 Computing Registers

The three computing registers in each half of the
arithmetic element include the A register, the accumu-
lator register, and the B register. A simplified diagram
of the information flow paths between these registers
and the memory buffer register is given in figure 1—18.
Also shown on the diagram is a group of circuits called
an adder.

The arithmetic process of addition (by which the
other three arithmetic processes are performed) is exe-

MEMORY ELEMENT
A
— N
INSTRUCTION INSTRUCTION REGISTER
SELECTION
P L MBR R MBR MAR
OPERATION INDEX ADDRESS
CODE INTERVAL HALF OPERAND INSTRUCTION
AUDRESS ADURESS
OPERATION INDEX ADDRESS PROGRAM
INTERVAL REGISTER
REGISTER REGISTER COUNTER
NUMBER OF
REPETITIONS
INDEX
REGISTERS
STEP PRESET
COUNTER

Figure 1—19. Internal Control Information Flow

UNCLASSIFIED

PART |

cuted by the adder circuits together with the A register
and the accumulator. Initially, the augend is in the ac-
cumulator while the addend is in the A register. The
state of each flip-flop in the two registers is indicated
to the adder circuits by pairs. When the adder circuits
are pulsed, the sum is generated and placed in the
accumulator register, replacing the augend. The addend
remains in the A register. (This description applies to
both halves of the arithmetic element. Therefore, two
pairs of numbers are added, one pair in each half.)
The same general procedure is followed in subtraction;
however, the subtrahend in the A register is comple-
mented before addition to the minuend in the accumu-
lator. The difference appears in the accumulator, replac-
ing the minuend.

The B register is used in multiplication and divi-
sion. Essentially, the B register extends the capacity of
the accumulator in these operations. The 30-bit plus
sign product resulting from the multiplication of two
numbers appears in the combined accumulator-B regis-
ters. Similarly, in division, the combined accumulator-B
registers hold the dividend and the remainder. The extra
capacity is needed to continue the division process until
a 16-bit quotient is obtained. (Both multiplication and
division are performed in the two halves of the arith-
metic element, processing two pairs of numbers simul-
taneously.)

3.1.4.3 Internal Control Registers

The control registers connected with internal oper-
ations, shown in figure 1—19, include:

a. Program counter

. Operation register

Index interval register

. Address register

Memory address register (discussed in Section 2)

-Vl -

Index registers

g- Step counter
The program counter controls the sequence of execution
of instructions. At the start of each program time cycle,
the contents of the program counter are transferred to
the selected memory address register to obtain the in-
struction to be performed from core memory. The con-
tents of the program counter are then increased by 1 to
specify the address of the instruction to be obtained in
the next program time cycle.

The operation part of an instruction, bits L1
through L10, is transferred during a program time cycle
from the memory buffer register to the operation regis-
ter, which drives three decoding matrices to identify the
instruction and any modifications necessary for iterative
routines.

The index interval register is similar to the oper-
ation register in that both registers receive part of an

UNCLASSIFIED
CH 3 T.0. 31P2-2FSQ7-112

Internal Control Registers
3.1.42-3.143

instruction word to drive decoding matrices. The index
interval register receives bits L10 through L15 of each
instruction word. Although bit L10 is duplicated in the
operation and the index interval registers, no difficulty
results, since for an instruction using the index interval,
bit L10 is assigned no meaning in the operation register.
The function of the index interval varies with the in-
struction containing it. The index interval is named
from its use in controlling iterative loops. It may also
select an IO unit or some other type of unit, a mode of
Drum System operation, or the response to overflow in
those instructions which may cause an overflow. These
functions are discussed separately with the instructions
using them. :

The address register stores the address half of an
instruction word from PT 7 through OT 1 for those
instructions using an operate time cycle in their execu-
tion. At OT 1, the core register address part of the ad-
dress register contents are transferred to the memory
address register selected by the unit selection part of the
address register contents. (Refer to 2.4.) This storage
period makes possible the modification of the address
part of an instruction being executed while in the ad-
dress register without changing the address part of the
instruction as stored in core memory. Modifications are
made when an instruction is indexed in performing
iterative loops. The address register also functions in
branch operations (which change the sequence in which
instructions are performed by changing the contents of
the program counter).

.- The index registers are used to modify the address
half of an instruction while it is stored in the address
register. The contents of a selected index register may
be added to the address part of an instruction stored in
the address register. This process is called indexing.
Four index registers are available for use in controlling
iterative loops. In addition, the right accumulator regis-
ter may be used to index an instruction. Indexing is
described in 3.2.3 and in Section 5.

The step counter is a 6-bit binary counting register
provided to regulate the length of arithmetic pauses.
The step counter counts the number of 2-megacycle
pulses provided to execute a particular operation involv-
ing repetitions. When such an operation is called for by
an instruction, the step counter is set to the number of
repetitions specified by bits R10 through R15 of the
address part of the instruction. The operation is exe-
cuted with the step counter contents reduced by 1 for
each repetition. The 2-megacycle operation is usually
ended when the step counter steps to 0. If the number
of repetitions is inherent in the nature of the operation,
the step counter is preset to the requited number by 2
specific command without reference to the address half
of the instruction.

UNCLASSIFIED 1

10 Central Registers o UNCLASSIFIED PART |

3.144 o T.0. 31P2-2FsQ7-112 CH 3
MEMORY ELEMENT
A
e N
([STORAGE 'f,ngUCT'ONS INSTRUCTIONS
ADDRESS AND
INFORMATION INFORMATION
LEFT I0 RIGHT 10 P LEFT MEMORY RIGHT MEMORY
f REGISTER REGISTER BUFFER BUFFER
HALF -WORD
TRANSFERRED
HALF-WORD
TRANSFERRED
I
uNITS)
INSTRUCTION INSTRUCTION
OPERATION ADDRESS
OPERATION ADDRESS
P I0 BUFFER REGISTER REGISTER REGISTER
\ |
1\ COMMANDS
COMPARE NUMBER OF
WORDS TO
TRANSFER
DRUM CONTROL 10 ADDRESS IO WORD
REGISTER COUNTER COUNTER
[
CONTROL FIRST MEMORY
INFORMATION ADDRESS

Figure 1—-20. 10 Control Information Flow

3.1.4.4 10 Control Registers

The control registers connected with IO operations,
shown in figure 1-20, include the IO address counter,
the IO word counter, and the drum control register.
The 10 address counter controls the selection of regis-
ters in core memory to be affected by an IO operation.
Initially, the IO address counter is set to the address
of the first core memory register to which or from which
a word is to be transferred. At the start of the first break
cycle, this address is transferred to the memory address
register and the contents of the IO address counter are
increased by 1. In effect, the IO address counter functions

for IO operations as the program counter does for in-
ternal operations.

The 10 word counter controls the number of words
transferred during a given IO operation. The IO word
counter is initially loaded with the 1’s complement of
the number of words to be transferred, and a 1 is added
to it. As each break cycle is executed, another 1 is added
to the IO word counter. Thus, at each point in the IO
operation, the I0 word counter contains the 1’s comple-
ment of one less than the number of words remaining
to be transferred. As the last word is transferred, a
carry-out is generated by the IO word counter. This
carry-out pulse ends the IO operation.

42 UNCLASSIFIED

PART |
Cd 3

The drum control register controls certain aspects
of 10 transfers involving the Drum System. Its func-
tions are discussed in connection with that system in
Chapter 4.

3.2 INSTRUCTIONS

3.2.1 Classification

Each one of the 48 instructions recognied by the
Central Computer System is indicated to that system
as one of 16 possible variations within one of 8 possible
classes. In general, all instructions within a given class
are executed similarly and are variations within that
class. Although an instruction word can indicate any
one of the 128 class and variation combinations (8 times
16), only 48 of these are considered legal instructions;
the remaining combinations are termed illegal instruc-
tions.

The operation code of an instruction word (L4
through L10) is divided into two parts, as shown in
figure 1—21:

a. Class indicator, L4 through L6 (one octonary

digit)

b. Variation indicator, L7 through L10 (two octo-

nary digits)

TABLE 1—11. INSTRUCTION CLASSES

NUMBER OF

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

Instructions
3.144-3.22

Each class, its class indicator, and the number of legal
illegal variations are listed in table 1—11.

The remaining parts of the left half of an instruc-
tion word are the branch control bit, LS; the index
indicator, L1 through L3 (one octonary digit); and the
index interval, L10 through L15 (two octonary digits).
The index indicator controls the indexing of an instruc-
tion. If an instruction is indexable, the index indicator

the index register whose contents are to Be
added to the address part of the instruction. (Refer to
3.2.3.)

The index interval can perform control functions
in some instructions; it is meaningless in others. It is
used in controlling indexing to change the contents of a
selected index register by a prescribed amount after
each repetition of an iterative loop. The other control
functions of the index interval are discussed in connec-
tion with specific instructions.

Each legal instruction has a name descriptive of
the operation it initiates. In addition, a 3-letter mnemonic
code is assigned to each instruction. In general, once
the mnemonic code for an instruction is given, the code
is used in all subsequent references to the instruction.
When reference is made to the actual contents of part
of an instruction word, octonary notation is used for the
sake of brevity. In references to the address half of an
instruction, the letter x is used to designate a core mem-

Al

specifies

CLASS INDICATOR VARIATIONS ory address while the letter » indicates an address half
with quantitative significance.
CLASS BINARY OCTONARY LEGAL ILLEGAL
3.2.2 Decoding
Add oo1 1 9 7 All instructions are decoded in precisely the same
Multiply 010 2 4 12 manner. Figure 1—22 shows the control units which
Store 011 3 7 function to obtain an instruction from core memory
Shift 100 4 3 and to decode that instruction. Each instruction is ob-
tained from the address in core memory specified by the
Branch 101 > 6 contents of the program counter. The contents of the
10 110 6 5 program counter are transferred to the selected memory
Reset 111 7 3 13 address register at PT 1 of the preceding instruction
Miscellaneous 000 0 6 9 cycle, initiating the memory cycle in which the instruc-
" tion is read from core memory. The preceding instruc-
3
g
=5 AR —
5 CLASS NDE NOT .
g “m'&%%cn‘l‘ INDICATOR ™ INTERVAL usenT" MONT ADDRESS
m
Ls |u L3|L4 L6 |L7 L9 |Lio]Lu LS| RS |RI R3 |R4 RIS
e OPERATION HALF—WORD N ADDRESS HALF —WORD
Figure 1—21. Instruction Flow
UNCLASSIFIED 3

Decoding UNCLASSIFIED PART. i
322 T.0. 31P2-2FsQ7-112 CH3
MEMORY UNIT DECODING
CORE MEMORY SELECTION MATRIX
/
INSTRUCTION (oT) (PT)
(PT 6)
L. MBR R MBR MAR
OPERATION INDEX ADDRESS (PTT) OPERAND INSTRUCTION
CODE INTERVAL (PTT) R10 THRU ADDRESS ADDRESS
(PT 7) (PT 7) RS THRU RIS (0T 1) (PT 1)
LI THRU LIO LIO THRU LIS RIS R4 THRU RIS
\
OPERATION ‘N_I',’é%EV’;L ADDRESS PROGRAM
REGISTER REGISTER REGISTER COUNTER
ADD |
(PTT7)
INDEX
INTERVAL
L10 THRU LIS STEP
COUNTER
OPERATE,
PER SEL BSN SELECT,
MATRIX OR
SENSE
UNITS
VARIATION
INDICATOR VARIATION -
L7 THRU L0 o MATRIX
COMMAND
GENERATORS
CLASS
I{NDICATOR CLASS R
L4 THRU L7 MATRIX e
INDEX
INDICATOR INDEX REmﬁ;E;(ﬂ
L1 THRU L3 e SE,L'S,-CR-{)I(ON SELECTION
NOTE:
——== [NDICATES TRANSFERS

WITH TIME SHOWN IN PARENTHESES.
—® |INDICATES CONTROL LEVEL
APPLICATION.

Figure 1—22. Instruction Decoding

tion cycle is completed by PT 6 and the instruction to
be decoded is in the memory buffer register.
The instruction cycle during which the instruction

is executed begins at PT 7 with four events. The instruc-
tion is transferred in four parts from the memory buffer
register to four other registers; the operation part (L1
through L10) is transferred to the operation register;
the index interval (L10 through L15) is transferred to

the index interval register; the address half-word is

transferred to the address register; and R10 through
R15 are transferred to the step counter. At the same
time, the contents of the program counter are increased
by 1. Thus, for the duration of the instruction cycle,
the program counter contains the address of th
instruction to be executed.

The operation register drives three decoding mat-
rices for the duration of the instruction cycle; these
are the index selection matrix, the class matrix, and the

noavt
iicac

44 UNCLASSIFIED

PART |

variation matrix. Similarly, the index interval register
drives a decoding matrix whose output is or is not used,
in accordance with the instruction containing the index
interval. In certain cases, the output of the index interval
decoding matrix is meaningless. The function of the in-
dex selection matrix is discussed in 3.2.3.

The class matrix and variation matrix determine
the generation of the commands necessary to execute
the indicated instruction. These commands are actually
instruction pulses gated onto appropriate lines by con-
ditioning levels from the class and variation matrices.
The time sequence of the commands is established by
using appropriate instruction pulses. In general, the
class matrix also determines the length of the instruc-
tion cycle, in accordance with the type of instruction
to be executed.

The time within the instruction cycle from PT 7
through PT 11 may be used for instruction execution
in a2 one-memory-cycle instruction. For a two-memory-
cycle instruction, the time is available for indexing. Dur-
ing this period, the address half of the instruction is
retained in the address register. At OT 1, the memory
address (R4 through R15) is transferred from the ad-
dress register to the memory address register, thus initi-
ating a second memory cycle within the instruction cy-
cle. The operand so obtained is available for opetation
at OT 7. The instruction cycle continues through to
PT 6, at which time the operation register is cleared in
preparation for the next instruction cycle.

3.2.3 indexing

During the interval from PT 7 to OT 1, in which
the address part of the instruction is held in the address
register, that address may be modified by a process
known as indexing. If an instruction is indexed, the
instruction obtains the operand from core memory loca-
tion x-} i (where i is the number contained in the se-
lected index register) rather than the operand at loca-
tion x. Before the address is transferred to the memory
address register, the contents of the selected index regis-
ter can be added to the contents of the address register.
If i can be changed before each indexed repetition of
the instruction, then the instruction can process many

At ngersam

Figure 1-23 shows the units involved in the index-
ing of an instruction. The index indicator (L1 through
L3) of the instruction word selects the index register
whose contents are to be added to the address half of
the instruction. If the index indicator is Og, no indexing
occurs, If the index indicator is 1, 2, 4, or 5g, then the
contents of the corresponding index register are added
to the address register at PT 9. The indexed address is
transferred to the memory address register at OT 1. An
index indicator of 34 selects the right accumulator for

UNCLASSIFIED
CH 3 T.0. 31P2-2FsQ7-112

Add Class Instructions
3.2.2-33.1

MEMORY
ADDRESS
R MBR REGISTER

RS THRU RIS [D]
(PT7)

ADDRESS REGISTER

OPERATION
REGISTER

INDEX
INDICATOR
LI THRU L3

INDEX
SELECTION
MATRIX

-

k]

P
©

e

010 INDEX
2% | | REGISTER

|
I
I
I
[
I
|
[

RIGHT . ACCUMULATOR
REGISTER
(PT9) (INDEX REGISTER 3)

— ——— — — —— —— —— — — — —]

L 100, INDEX
—— Fra > REGISTER

101 INDEX
L "2 REGISTER

Figure 1—23. Indexed Address Modification

addition to the address register. Indexing is discussed
in greater detail in Section 5.

3.3 ADD CLASS INSTRUCTIONS

~ onow

3.3.1 Principies of Execution

The add class includes nine separate instructions,
all performed in the same basic manner. The basic cit-
cuit in addition is the adder circuit. (See fig. 1—24.)

The basic adder circuit produces a sum term and a
carry term from a pair of binary bits and a carry from a
preceding adder. An adder circuit is connected between
corresponding flip-flops of the A register and the accu-
mulator. The bit contents of a particular pair of flip-
flops determine which of the four AND circuits is con-
ditioned. No output is produced until a pulse is applied

UNCLASSIFIED 45

Fig. 1-24 UNCLASSIFIED PART |
7.0. 31P2-2FSQ7-112 CH 3
A REG BIT N FF
s A N
N =0 N=1
1,
& 8 -
]
@ 8
& OR
0,0
a
NI N=0 R) - CARRY O
GT GT GT
ACC BIT N FF BAED"E;'
CARRY |
GT 6T 6T
CARRY 0
- OR
BIT N~I e [
ADDER
CARRY | B
L< OR |=
)
OR OR
SUM =0 I SUM =1
ACCFF N+1

Figure 1—24. Adder Circuit

on one of the incoming carry lines. The incoming carry
pulse is gated onto one of the output sum lines and
onto one of the output carry lines. The carry-out indi-
cates the addition process in the next adder, while the
sum line is used to set a flip-flop in the accumulator to
the state appropriate to represent that term of the sum.

The sum outputs of each adder are connected to
produce a shift right of one position in storing the sum
in the accumulator. (See fig. 1—25.) The B register sign
flip-flop is used for temporary storage of the least sig-
nificant sum term. The inherent shift right is incorpo-
rated into the adder circuits to reduce the time required
for multiplication but has no material effect upon the
execution time of addition. The inherent shift right is

45

corrected for by a correctional shift left which is exe-
cuted automatically during an addition operation. If a
carry-out of 1 from the sign bit adder is produced, the
carry is stored in a flip-flop until the correctional shift
left is completed. The end-carry is then completed by
pulsing the carry 1 line into the bit 15 adder, followed
by another correctional shift left.

In general, the add class of instructions is executed
by placing an operand in the A register and then pulsing
the carry 0 line of the bit 15 adder to add this operand
to the word already in the accumulator. The sum genet-
ated is stored in the accumulator (shifted right one
position). The cotrection shift left is executed, followed
by the end-carry (if any) and another correctional shift

UNCLASSIFIED

Figs. 1-25, 1-26

PART | UNCLASSIFIED
CH 3 T.0. 31P2-2FSQ7-112
A REG FF FF A REG FF A REG
SIGN | | o g. | o|BIT 14 | o|BIT 15
2
w
o
CARRY 0 — — CARRY 0 — CARRY 0
CA
RRY | s BIT BT 14 CARRY | BIT 15 CARRY |
I ADDER [:) ADDER ADDER
ACC [0 ACC [0 ACC [0 B REG[1 [7)
SIGN| FF BIT 14| FF BIT 15| FF SIBN | FF
SUM= SUM=) | sum=i
SUM=0 SUM=0 SUM=0)
Figure 1—25. Inherent Shift Right
CORE MEMORY
OPERAND
{oT 8
LEFT MEMORY RIGHT MEMORY
BUFFER REGISTER BUFFER REGISTER
e . CLEAR
OT 0
LS THRU LI5S TWIN RS THRU RIS
T 7) o T 7)
7__ CLEAR
- - - (OT 1, P2 1
LEFT A RIGHT A
REGISTER REGISTER
— e - — — _—_ __ __COMPLEMENT
(0T 9 SUB)
ADDEND ADDEND
LEFT CARRY | RIGHT CARRY |
END - CARRY ADDER Ph 2) END-CARRY ADDER % 2
CARRY O CARRY 0
L - - (oT 10)
AUGEND SUM SUM AUGEND SUM SUM
LS THRU LI14 LIS RS THRU RI4 RI5
e _SMIFT LEFT_
(PT I, 5)
LEFT RIGHT
ACCUMULATOR LBS ACCUMULATOR RBS
™ -7
f |
- - e e _CLEAR
(OT 6, CAD, CSU)
LEGEND
INFORMATION
— — — — COMMANDS

Figure 1—26. Add Class Execution

UNCLASSIFIED

47

Add Class Instruction
3.3.1-3.3.3

left (if required). A single addition requires 1 micro-
second (maximum) and a correctional shift left requires
15 microsecond. Therefore, the time required for an
addition with end-carry is approximately 3 microseconds,
while an interval of 6 microseconds is available between
the time the operand is available and the end of the
instruction cycle. Therefore, the extra time required to
execute the correctional shifts left is negligible.

3.3.2 Typical Instruction
The Add (ADD) instruction is perhaps the most
typical instruction in the add class; figure 1—26 shows
the registers involved in its execution. The instruction,
like all instructions of the add class, requires a two-
memory-cycle instruction cycle of 12 microseconds and

is indexable. (Refer to 3.2.3.)

An ADD instruction is decoded in a manner similar
to any other instruction. Since an operand from core
memory is required, execution of the instruction proper
is delayed until the operand is available. The operand
is available for transfer out of the memory buffer regis-
ter at OT 7 to the A register. At OT 10, the carry 0 line
into the adder is pulsed. The initial sum, shifted right,
appears in the accumulator-B sign register by PT, 0. At
PT. 1, the correctional shift left is executed and the A
register is cleared. At PT, 2, if an end-carry is necessary,
the carry 1 line is pulsed, followed by a correctional
shift left at PT, 5. At the completion of the instruction
cycle, the sum remains in the accumulator register, while
the memory buffer and A registers are cleared. (The A
register is cleared before the end-carry is started to
prevent reading its contents into the accumulator.)

3.3.3 Variations

The variations within the add class are of several
types. The Clear and Add (CAD) instruction, by clear-
ing the accumulator before adding the operand, places
the operand unchanged in the accumulator. The Clear
and Subtract (CSU) instruction is identical with the
CAD instruction except that the complement of the
operand is placed in the accumulator. The Subtract
(SUB) instruction differs from ADD only in the com-
plementing of the A register before adding its contents
to the accumulator, thus subtracting the operand from
the accumulator.

The twin variations, Twin and Add (TAD) and
Twin and Subtract (TSU), differ from ADD and SUB
(respectively) in their use of the twin transfer path
shown in figure 1—26. The twin transfer path causes
the use of the left half-word in both the left and right
arithmetic elements; the right half-word of the operand
is not used.

The Add B Registers to Accumulators (ADB) in-
struction requires no operand from core memory. In-
stead, the contents of the B registers are added to the

UNCLASSIFIED
T.0. 31P2-2FSQ7-112 CH3

PART |

accumulators via the A registers as if they had been read
from core memory. The address half of the ADB in-
struction is meaningless, thus making indexing of the
instruction also meaningless. The Clear and Add Magni-
tudes (CAM) instruction clears the accumulator and
then places the positive absolute magnitude of the oper-
and in the accumulator. The CAM instruction is thus
equivalent to CAD for a positive operand or to CSU
for a negative operand. The Difference Magnitudes
(DIM) instruction generates the difference in absolute
magnitude between two numbers in this manner. (See
fig. 1—27.) The accumulator contents are first duplicated
in the B register. The accumulator contents, if negative,
are then complemented. The operand from core memory
is placed in the A register, made positive to insure a
known starting condition, and then complemented and
added to the accumulator. The result of the instruction
is that the original contents of the accumulator are in
the B register while the accumulator contains the dif-
ference in absolute magnitude between that original

CORE MEMORY

OPERAND
l(or 6)
LEFT MEMORY
BUFFER «— — — _ ___ CLEAR
REGISTER o7 1)
OPERAND
MAKE (T 7
POSITIVE
(o7 _8)
LEFT A CLEAR
REGISTER N N)
— — ==
COMPLE-
MENT
(0T 9
4
LEFT CARRY 0
ADDER T T T TTerwe
}
DIFFERENCE
_MAKE__ | LEFT LEFT B | CLEAR
POSITIVE ACCUMULATOR REGISTER (0T ©)
©T 9
ORIGINAL
CONTENTS
©T 8

NOTE:

DUPLICATED IN RIGHT
ARITHMETIC ELEMENT

Figure 1—27. Difference in Magnitudes
(DIM) Execution

48 UNCLASSIFIED

PART 1
CH 3

value and the operand from core memory. If the accu-
mulator contents are positive, then the operand was
smaller than the original contents of the accumulator.

3.3.4 Overfiow Control

Five instructions of the add class may cause an
overflow. (Refer to 3.4.5, Chapter 2.) These include
ADD, TAD, ABD, SUB, and TSU. The occurrence of an
overflow in either half of the arithmetic element causes
the setting of a flip-flop called an overflow sense unit.
Either the right or the left overflow sense unit may be
examined by a Sense (BSN) instruction, modifying the
program of the Central Computer System if an overflow
has occurred. In addition, each instruction that may
cause an overflow can be written to generate an overflow
alarm which can be used to take immediate action upon
detection of an overflow. (The exact action taken in
response to an overflow alarm, when generated, is deter-
mined by switch settings on the duplex maintenance
console.) Bits L14 and L15 of the index interval within
the instruction word specify what overflow conditions
will generate an overflow alarm. The contents of these
two bit positions (given binarily as well as with the
octonary representation of the entire index interval)
have the following significance:

a. 00 — no alarm generation

b. 01 — generate alarm on right overflow only
. 10 — generate alarm on left overflow only
d. 11 — generate alarm on either overflow

When the index interval is used to control response to
an overflow, its use is indicated generically by the use of
the ietter (0); e.g., ADD (o) x. The appearance of this

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

Multiply Class Instructions
33.3-34.2

letter after the mnemonic code for an instruction thus
indicates that the instruction is capable of causing over-
flow.

Table 1—12 provides a summary of information
on the add class of instructions.

3.4 MULTIPLY CLASS INSTRUCTIONS

3.4.1 General

No truly typical instruction can be chosen from
among the four instructions in the multiply class. The
class contains two basic instructions, Multiply (MUL)
and Divide (DVD), and their twin variations. Since
each instruction requires the execution of repeated addi-
tions or subtractions, an arithmetic pause is provided
to extend the execution time allowed for the operation.
The inherent shift right provided by the wiring of the
adders significantly reduces the required execution time
of the MUL instruction. On the other hand, the inherent
shift right extends the time requirements for the DVD
instruction. All multiply class instructions are indexable.

3.4.2 Multiply

Execution of a Multiply (MUL) instructions pro-
duces, in each half of the arithmetic element, the product
of two signed 15-bit binary numbers. Such a product
contains 30 significant bits plus a sign bit. To contain
this product, the accumulator and B registers are com-
bined into a 32-bit register. Only the registers of the
left arithmetic element involved in the execution of a
MUL instruction are described since the actions per-
formed in the right half are identical. A MUL instruc-
tion is decoded in the same manner as used for all
other instructions. (Refer to 3.2.2.) The address half

TABLE 1-12. ADD CLASS INSTRUCTIONS

CODES
EXECUTION

INSTRUCTION NAME MNEMONIC OCTONARY (MICROSECONDS) INDEXABLE
Clear and Add CAD x 100 12 Yes
Add ADD (o) x 104 12 Yes
Twin and Add TAD (o) x 110 12 Yes
Add B Registers to ABD (o) - 114 12 Meaningless

Accumulators
Clear and Subtract csU x 130 12 Yes
Subtract SUB (o) x 134 12 Yes
Twin and Subtract TSU (o) x 140 12 Yes
Clear and Add CAM x 160 12 Yes

Magnitudes
Difference Magnitudes DIM x 164 12 Yes

UNCLASSIFIED 49

Multiply UNCLASSIFIED PART |
34.2 T.0. 31P2-2FSQ7-112 CH 3
CORE MEMORY
MULTIPLICAND
(0T 6)
LEFT MEMORY . CLEAR
BUFFER REGISTER {oT I, Pl i)
MULTIPLICAND TWIN RIGHT A
LS THRU LIS OT 7 REGISTER
T 7)
LEAR
_MAKE POSITIVE LEFT A REGISTER . . GEAR
(0T 8) [(e2N)}]
MULTIPLICAND
SIGN (OT 8) MULTIPLICAND
RESTORE
PRODUCT SIGN LEFT ADD ATO BIS o SWITCH ke— —2MC
[Sen | CONTROL ADDER ACCUMULATOR] ADD OR
| (PT> 6) | SHIFT RIGHT
l q [NEW PARTIAL | !
NEW PRODUCT L '
l MULTIPLIER PARTIAL PARTIAL '
l SIGN (0T 7) PRODUCT PRODUCT Séi"iéﬁi B I | SR:‘GI::;
CLEAR LEFT |
—m ACCUMULATOR LEFT B REGISTER < JI
MAKE POSITIVE . _J MULTIPLIER
(OoT7) (0T 8)

Figure 1-28. Multiply (MUL, TMU) Execution

of the instruction which specifies the multiplicand to be
obtained from core memory may be modified by index-
ing. The multiplier is ieft in the accumulator by a previ-
ous instruction. Multiplication is executed as described
mathematically in 3.5.2, Chapter 2. The procedure of
multiplication by addition and shifting, set forth there,
is as follows:

1. Determine the sign of the product by the rule
of signs, then obtain absolute magnitudes of the
multiplier and multiplicand by complementing
if negative.

2. Form partial product:

a. Examine the least significant bit of the multi-
plier not already examined; if 1, add the multi-
plicand to the partial product; if 0, take no
action.

b. Shift the new partial product right one posi-
tion.
3. Repeat step 2 for each significant bit positicn of
the multiplier (not for sign bit).
4. After the last repetition of step 2, correct the
sign of the product according to the sign of
product determined in step 1.

Calculation following these rules begins with the
obtaining of the multiplicand from core memory at OT
7. (See fig. 1—28.) At the same time, the multiplier is
made positive (complemented if negative) and its origi-
nal sign is stored in the sign control fiip-fiop. At OT 8,
the multiplier is shifted into the B register, the accumu-
lator is cleared, and the multiplicand in the A register is
made positive. The step counter (not shown in figure
1—28) is also set at OT 8 to 15, to control the number
of 2-megacycle pulses used to execute the actual multi-
plication.

50 UNCLASSIFIED

PART 1

The multiplication process is executed using 2-mega-
cycle pulses to initiate the additions and shifting re-
quired to form the product. Each 2-megacycle pulse is
applied to a switching circuit conditioned by the con-
tents of B15. If this bit (least significant multiplier bit
not yet examined) is 1, the carry O line to the adder
is pulsed, adding the multiplicand to the accumulator,
and the B register is shifted right one position. (The
inherent shift right from the adder eliminates the need
to shift the accumulator to the right.) The shift right
of the B register eliminates the already examined bit of
the multiplier and moves the next significant bit into the
B15 position. If the bit examined by the 2-megacycle
pulse is a 0, the combined accumulator-B register is
shifted right one position without adding the multipli-
cand. Thus, each 2-megacycle pulse causes the execution
of step 2 of the previously noted multiplication proce-
dure. After 15 pulses have been applied, the multiplica-
tion is complete except for the restoration of sign.

The instruction cycle for multiplication is shortened
by allowing the operate time (OT) cycle to be com-
pleted during 2-megacycle operation. Similarly, the fol-
lowing program time (PT) cycle is begun when the step
counter reaches 5. Thus, by PT, 5, the 2-megacycle oper-
ation is complete, allowing the restoration of sign at
PT, 6 .The total instruction cycle runs 17 = 0.5 micro-
seconds instead of the 19.5 microseconds required for a
two-memory-cycle instruction cycle (12 usec) plus the
15 repeated 2-megacycle operations (7.5 usec). (The
0.5-microsecond variable time allows for delay in syn-
chronization of 2-megacycle pulses.)

The bit in position 15 of the B register is not a
significant bit of the product. It must be 0 before re-
storation of sign, since the 15th shift of the multiplier
(made positive at the start of multiplication) places the
sign bit of the multiplier in the B15 position. After sign
restoration, this bit is identical in content to the sign
of the product.

3.4.3 Divide

Execution of a Divide (DVD) instruction produces,
in each half of the arithmetic element, the quotient of a
signed 15-bit divisor and a signed dividend of up to 31
significant bits. The resulting quotient is an unsigned
binary number of 16 significant bits. The dividend is
held initially in the combined accumulator-B register,
the divisor in the A register. The quotient appears un-
signed in the B register while any remainder and the
sign of quotient and remainder is left in the accumulator.
Although only the operation of the left arithmetic ele-
ment is described, it should be remembered that an
identical operation is performed in the right arithmetic
element.

A DVD instruction is decoded in the same manner
as that used for all other instructions. (Refer to 3.2.2.)

UNCLASSIFIED Divide
CH 3 T.0. 31P2-2FsQ7-112

34.2-343

The address half of the instruction may be modified by
indexing, thus obtaining a divisor other than the one
specified by the original address half of the instruction.
The dividend is placed in the accumulator (or accumu-
lator-B register) by a preceding instruction. The mathe-
matical description of division as performed in the Cen-
tral Computer System was given in 3.6.3, Chapter 2.
The procedure of nonrestoring division, set forth there,
is as follows:

1. Determine the sign of the quotient by rule of
signs, then make divisor and dividend positive
to allow calculation with absolute magnitudes.

2. Perform a trial subtraction:

a. Make the sign of divisor unlike the sign of
current remainder (dividend for first trial sub-
traction) by complementing the divisor and
shift the remainder left one position.

b. Add the divisor if positive, or 2’s complement
of the divisor if negative, to the shifted cur-
rent remainder; write a 1 in the quotient if
the new remainder is positive (carry-out of
1) or a 0 in the quotient if the new remainder
is negative (carry-out of 0).

3. Repeat step 2 once for each bit of the divisor
including the sign bit.

4. If, after last repetition of step 2, the divisor and
remainder are both mnegative, complement the
divisor and add to the remainder, restoring the
remainder to positive form. Ignore carry-out.
Correct the sign of the quotient and remainder
in accordance with the stored sign as determined
in step 1.

Calculation following this procedure begins with
the obtaining of the divisor from core memory. (See
fig. 1-29.) At OT 7, the divisor is placed in the A reg-
ister, the dividend is made positive (complemented if
negative), and its original sign is stored in the sign
control flip-flop. At the same time, the step counter
(not shown in figure 1—29) is set to 17 to control the
number of trial subtractions being performed. At OT 8,
the divisor is made positive, and its original sign is
stored in the sign control flip-flop. The sign control
fiip-fiop is thus set to the correct quotient sign by the
signs of the dividend and the divisor. Command gen-
eration with 2-megacycle pulses is called for at OT 8
and started at OT 9.

Since a trial subtraction cannot be performed with
one command, 2-megacycle pulses cannot be used directly
for the generation of commands to execute the DVD
instruction. Instead, the 2-megacycle pulses are divided
into a repetitive series of five pulses numbered from 0
through 4, called divide time pulses (DVTP). Each
DVTP cycle causes the execution of one trial subtrac-

UNCLASSIFIED 51

Divide UNCLASSIFIED PART |
343 T.0. 31P2-2FSQ7-112 CH 3
CORE MEMORY
DIVISOR
(oT 6)
LEFT MEMORY
BUFFER pe— — & __
REGISTER (0T 1,PTo 1)
TWIN RIGHT A
I ©T N REGISTER
MAKE !
POSITIVE | DIVISOR
ore | (0T 7)
LEFT A CLEAR
INITIAL <~ —rn
DIVISOR REGISTER (oT 1
SIGN
(0T 8)
PO DIVISOR
| DIVISOR
MAKE SIGNS 4‘ | StoN
UNLIKE . a COMPLEMENT])
(DVTP O,PTp 1) égAF\'_RY_g_ | - Stevre)
3
LEFT
ADDER | _ CARRY I__| SWITCH _ADDW__
DIVISOR POSITIVE
REMAINDER y (PT, 2)
s SIGN QUOTIENT BIT
IGN ~
CONTROL (CARRY-0UT)
PARTIAL NEW PARTIAL
| REMAINDER REMAINDER
| NEW PARTIAL
DIVIDEND L _|_ _RESTORE SIGN__ REMAINDER
SIGN (PT 6)
(o1 7) LEFT LEFT B
ACCUMULATOR REGISTER
—— SHIFT LEFT__ _ __
Q‘ {DVTP 0,4)
MAKE |
o _Postnve _ o1 o
(ot 7)

Figure 1—29. Divide (DVD, TDV) Execution

tion. DVTP 0 executes step 2-a of the rules of binary
division (makes the divisor unlike in sigo to the partial
remainder and shifts the partial remainder left). DVTP
1 executes step 2-b (adds either the divisor by pulsing
the carry O line or the 2’s complement of the divisor
by pulsing the carry 1 line when the divisor is in 1’s
complement form in the A register). DVIP 2 and 3
are not used in the arithmetic element and provide for a
delay in that element sufficient to complete the addi-
tion. However, DVTP 3 does reduce the contents of the
step counter by 1, indicating the completion of a trial
subtraction, DVTP 4 produces a shift left to correct for
the inherent shift right from the adder.

The sign of each partial remainder generated is in-
dicated by the carry-out from the sign bit adder. This

52

carry-out is used, in each DVTP cycle, to set bit 15 of
the B register to 1 or 0. In effect, each carry-out is
stored as the quotient bit generated by ‘that trial sub-
traction. Since the accumulator-B registers are shifted
left (at DVTP 0) before each quotient bit is generated,
the quotient is built up, bit by bit, in the B register
until all 16 bits contain significant bits of the quotient.
To generate 16 quotient bits, 16 trial subtractions are
required. Although the step counter is set to 17 at the
start of 2-megacycle operation, only 16 DVTP cycles are
performed. As the step counter is stepped from 2 to 1
at DVTP 3 of the 16th trial subtraction, the 2-mega-
cycle pulses are shut off, allowing only the generation
of DVTP 4 to complete the 16th trial subtraction. At
the same time, the next program time (PT) cycle is

UNCLASSIFIED

PART |

started. If the remainder in the accumulator is negative,
the restoration called for in step 4 of the rules of division
is executed, using instruction pulses for command gen-
eration.

The restoration of the remainder is accomplished
in a manner identical with the procedure of a trial
subtraction. The carry-out is ignored, since the connec-
tion from the sign bit adder to B15 is disconnected at
PT. 1, before the addition at PT, 2. Finally, at PT. 6,
the sign of the remainder and quotient is corrected, if
necessary, in accordance with the contents of the sign
control flip-flop. The total DV D instruction cycle has a
duration of 51.5 =+ 0.5 microseconds, 12 microseconds
within the required two memory cycles plus an arith-
metic pause of 39.5 == 0.5 microseconds between OT 11
and PT, 0. The DV D instruction thus produces, in each
half of the arithmetic element, a 15-bit remainder (held
in the accumulator, positions 1 through 15), and un-
signed 16-bit quotient (held in the B register), and
the sign bit of both the quotient and remainder (held
in the accumulator sign bit position). In order to store
the quotient in a standard half-word, it must be pro-
cessed by a Shift Left and Round (SLR) instruction.
(Refer to 3.10.6.)

3.4.4 Variations
Of the four instructions within the multiply class,
two are twin variations on the instructions already de-
scribed. Thus, Twin and Multiply (TMU) is simply a
twin variation of MUL. A TMU instruction causes the
left half-word brought from core memory to be used as
multiplicand in both the left and right arithmetic ele-
ments. Similarly, the Twin and Divide (TDV) instruc-
tion causes the left half-word to be used as divisor in
both the left and right arithmetic elements. Table 1—13
provides a summary of information on the multiply class
of instructions.
3.5 STORE CLASS INSTRUCTIONS
3.5.1 Principles of Execution
The seven instructions within the store class are

basically transfer instructions. Most of the instructions
within the class transfer information from the arith-

UNCLASSIFIED
CH 3 T.0. 31P2-2FSQ7-112

Store Class Instructions
3.43-35.3

metic element to the memory element for storage there-
in. Since many of the instructions require the storage of
only half a word without destroying the half-word al-
ready in core memory, two OT cycles are required for
their execution. In general, therefore, store class instruc-
tions require three-memory-cycle instruction cycles, or
18 microseconds. All instructions in the store class are
indexable.

3.5.Z Typical instruction

An instruction typical of the store class is the Left
Store (LST) instruction. The LST instruction places the
contents of the left accumulator in the left half-word
positions -of a selected core memory register without
changing the contents of the right half-word positions
in the register. The accumulators are unchanged by this
instruction. '

The LST instruction is decoded in the same manner
as are other instructions. (Refer to 3.2.2.) The address
half of the LST instruction may be modified by indexing
during the interval from PT 7 through OT A-1. At OT
A-1, the address of the location to be affected is trans-
ferred to the memory address register from the address
register. Since a word cannot be read out, changed, and
rewritten into core memory in one memory cycle, two
OT cycles must be executed. (Refer to 2.1.6.3.) The OT

A cycle for the LST instruction obtains the right half- -

werd from core memory for temporary storage in the
right A register. (See fig. 1—30.) The OT B cycle trans-
fers the desired pair of half-words to the memory buffer
registers to be written into the selected register in core
memory. The total execution time for an LST instruc-
tion is 18 microseconds.

3.5.3 Similar Variations

The Right Store (RST) instruction differs from the
LST insttuction in that the contents of the right accamu-
lator register replace the right half-word in the selected
memory regiser, The Store Address (STA) instruction
is similar to the RST instruction with the exception that
the ST A instruction stores the contents of the right A
register rather than those of the right accumulator. The
Full Store (FST) instruction places the contents of the

TABLE 1-13. MULTIPLY CLASS INSTRUCTICNS
CODES
EXECUTION
INSTRUCTION NAME MNEMONIC OCTONARY (MICROSECONDS) INDEXABLE
Maultiply MUL x 250 17 == 05 Yes
Twin and Multiply TMU x 254 17 + 05 Yes
Divide DVD x 260 51.5 =+ 0.5 Yes
Twin and Divide TDV x 264 51.5 =+ 0.5 Yes

UNCLASSIFIED 33

Different Variations
3.5.3-3.5.4.1

CORE MEMORY

A
r N

T8 3) (o718 3) 0TA 6)

LEFT MEMORY RIGHT MEMORY
BUFFER BUFFER | CLEAR
REGISTER REGISTER | ‘dray

(oTB 2) (0TB 2) (OTA 7)

LEFT RIGHT A CLEAR

e —"'— —
ACCUMULATOR REGISTER oTa

LST

CORE MEMORY
A

g \
(0TA Sl\l T(OTB 3) T (0TB 3)

- LEFT MEMORY RIGHT MEMORY
BUFFER BUFFER SLear
REGISTER | ReGISTER | oty
PTy i}
(0TA T) {oT8 2) ot 2)
CLEAR LEFT A RIGHT
oD REGISTER ACCUMULATOR
OTA)
RST
CORE MEMORY
A
e N
T(OTB 3) ?(OTB 3)
LEFT MEMORY RIGHT MEMORY
BUFFER BUFFER CLEAR
REGISTER REGISTER | (oTa|,
T \ PTo0
{0TB 2} {oTB 2)
LS THRU LIS RS THRU RIS
LEFT RIGHT
ACCUMULATOR ACCUMULATOR
FST
CORE MEMORY
A
{ N
(0TA 6) L (oTB 3) T(OTB 3)
LEFT MEMORY RIGHT MEMORY| . ..o
BUFFER BUFFER S5
REGISTER REGISTER | ‘ot
R PTo
gg;’RESS
©oTan (0TB 2) {OTB 2)
_CLEAR _| LEFT A RIGHT A
(0TA 6) REGISTER REGISTER

STA

Figure 1—-30. Store Class Execution

PT, 1)

UNCLASSIFIED PART |
T.0. 31P2-2FSQ7-112 CH 3

left and right accumulators, as a full word, in a selected
register in core memory. (See fig. 1—30.) Since no read-
ing from core memory is required, only one OT cycle is
required for the execution of the FST instruction, re-
ducing its execution time to 12 microseconds, in com-
patison to the 18 microseconds required by each other
instruction of the store class. The remaining three in-
structions of the store class differ sufficiently from the
typical instruction to require separate descriptions.

3.5.4 Different Variations

3.5.4.1 Add One

The Add One (AOR) instruction removes a full
word from core memory, adds a 1 to the least significant
bit position of the right half-word, and replaces the
modified word in its original location in core memory.
(See fig. 1-31.) The original word is read from core
memory and placed in the A registers by OT A-7. The
right accumulator has been cleared at OT A-6. Thus,
when the carry 1 line to the right adder is pulsed, the
right half-word is increased by 1 and placed in the
right accumulator, (The inherent shift right and correc-
tion are not shown.) The OT B cycle returns the modi-
fied word to its core memory location. The AOR in-
struction can cause a right overflow. (Refer to 3.3.4.)

CORE MEMORY
A
Y
{0TB 3) (OTA 6) (OTA 6) {oTe 3)
L MEMORY R MEMORY
BUFFER BUFFER
REGISTER REGISTER
cLEaR
-0 (018 1)
(0TB 2) (OTA 7) (OTA 7)
(0TB 2)
LEFT A RIGHT A
REGISTER REGISTER
4
RIGHT | CARRY |
ADDER {(0TA 8)
RIGHT
ACCUMULATOR
CLEAR_
(0TA 8)

Figure 1-31. Add One (AOR) Execution

54 UNCLASSIFIED

PART | UNCLASSIFIED Deposit
CH 3 T.0. 31P2-2FSQ7-112 3.54.2-3543
CORE MEMORY word must be placed in the B registers, The contents
. A of the control word determine which bits of the stored
word are to be changed; each bit position in the B
N =l = register containing a 1 causes the replacement of the
il I = - corresponding bit in the stored word by that bit in the
5l & el e accumulator.
The DEP instruction is decoded in the same man-
T MEMORY RIGHT MEMORY ner as are other instructions. (Refer to 3.2.2.) The ad-
BUFFER BUFFER dress half of the instruction, which selects the word in
REGISTER REGISTER CLEAR core memory to be modified, may be changed by index-
- (o8 1) ing prior to the modification operation. Although the
(OTAT) ©TA7) operation is described only for the left half of the
arithmetic element, corresponding actions are performed
(T8 2) in the right half.

RIEEF;;T@R RRI!Z%lIgTEAR Execution of the DEP instruction begins at OT A-2
_ CLEAR _ when the contents of the accumulator are coniplemented.
(om8 2) .(:?rTf)G‘ (See fig. 1—.33 and table 1-14.) At OT A'-4, the control
half-word is transferred from the B register to the A
¢ —_—— CARRY O __ register. At OT A-5, the accumulator contents are logi-
LEFT RIGHT (078 103 cally multiplied by the contents of the A register. The
ADDER ADDER logical multiply step clears those bits of the accumulator
whose positions correspond to bit positions in the con-
(PT,0) PT,0) trol half-word containing 0. In effect, the bits in the

OMUCATOR. ACCUMULATOR ENORY

ACCUMULATOR o aow
(o186}

Figure 1—32. Exchange (ECH) Execution

3.5.4.2 Exchange

The Exchange (ECH) instruction interchanges the
word held in the left and right accumulators with a
word held in a selected core memory register. (See fig.
1—-32.) During the OT A cycle, the word in core mem-
ory is transferred into the A registers. At OT B-2, the
contents of the accumulators are transferred to the mem-
ory buffer registers to be placed in the core memory
register just read. At OT B-6, the accumulators are
cleared in preparation for the transfer of the word read
from core memory into the accumulators as performed
by a CAD instruction.

3.5.4.3 Deposit

The Deposit (DEP) instruction is unique within
the store class in that it allows replacement of part of a
word in core memory with the corresponding part in
the accumulators on a bit-by-bit basis rather than by
half-word or full word. The DEP instruction can cause
replacement of only one bit of the word in core memory
or of as much as the entire word. Before the DEP in-
struction can be given, the bits to be placed in the
stored word must be in the accumulators and a control

(oTB 3) \l/(OTA 6)

LEFT MEMORY

BUFFER < T — — — —
REGISTER (0TA 1, OTB I, PT,2)

LOGICAL
ADD
(OTAT)

LEFT A CLEAR
=
REGISTER (OTA 1)

CONTROL
HALF - WORD

(0TA4)

RESULT
(oTB 2)

LOGICAL
MULTIPLY

tQTA 5’ 9)

(SO

LEFT B
REGISTER

__GOMPLEMENT LEFT
(0TA 2,7) ACCUMULATOR

NOTE ©

OPERATION DUPLICATED
IN RIGHT ARITHMETIC
ELEMENT

Figure 1—33. Deposit (DEP) Execution

UNCLASSIFIED ' 35

Shift Class Instructions UNCLASSIFIED PART |
3.5.4.3-36.1 T.0. 31P2-2FSQ7-112 CH 3
TABLE 1—14. DEPOSIT INFORMATION CHANGES
TIME ACCUMULATOR A REGISTER MEMORY BUFFER REGISTER

OT A1 ' 0.000 010 001 110 010 Clear Clear

OT A 2 1.111 101 110 001 101 Unchanged Unchanged

OT A 4 Unchanged 0.000 111 000 111 000 Unchanged

OT A5 0.000 101 000 001 000 Unchanged Unchanged

OT A 6 Unchanged Unchanged 0.101 I01 110 000 110
OT A 7 1.111 010 111 110 111 0.101 111 110 111 110 Unchanged

OT A9 0.101 010 110 110 110 Unchanged Unchanged

OT B 1 Unchahged Unchanged Clear

OT B 2 Unchanged Unchanged 0.101 010 110 110 110

accumulator which are not to be placed in core memory
are erased. At OT A-7, the accumulator is again com-
plemented and the selected word from core memory is
logically added to the control half-word in the A regis-
ter. The logical add step sets to 1 those bits of the
selected word which are to be replaced and leaves un-
changed the remaining bits of the word brought from
core memory. At OT A-9, the accumulator is again
logically multiplied by the contents of the A register,
leaving the new half-word in the accumulator, At OT
B-2, this half-word is transferred to the memory buffer
register to be written into core memory.

A summary of information concerning store class
instructions is given in table 1—15,

3.6 SHIFT CLASS INSTRUCTIONS

3.6.1 Principles of Execution

The instructions within the shift class are transfer
instructions which affect only the accumulator and B

registers. (Refer to 3.5.3, Chapter 2.) The bits within
various combinations of these registers can be shifted
left or right. The number of shifts performed is speci-
fied by the address half of the shift class instruction.
To differentiate this use of the right half-word of an
instruction as a numerical constant rather than as a core
memory address, it is designated generically as n,

The basic operation performed in response to a
shift class instruction is the simultaneous shift of each
bit in a selected register one place to the right or to the
left. The basic operation requires the transfer of a bit
from each flip-flop to the next flip-flop within the same
register. This basic operation is repeated as many times
as necessary to accomplish the desired displacement of
the bits being shifted.

Two basic variations exist within the shift class.
Shift instructions proper affect all bits of the selected
registers except the sign bit of the accumulator. Cycle
instructions, on the other hand, affect all bits, including

TABLE 1-15. STORE CLASS INSTRUCTIONS

CODES EXECUTION
INSTRUCTION NAME MNEMONIC OCTONARY (MICROSECONDS) INDEXABLE
Full Store FST x 324 12 Yes
Left Store LST x 330 18 Yes
Right Store RST x 334 18 Yes
Store Address STA x 340 18 Yes
Add One AOR (o) x 344 18 Yes
Exchange ECH x 350 18 Yes
Deposit DEP x 360 i8 Yes

96 UNCLASSIFIED

PART | UNCLASSIFIED _ Fig. 1-34

CH 3 T.0. 31P2-2FSQ7-112
LEFT LEFT B RIGHT RIGHT B
ACCUMULATOR REGISTER ACCUMULATOR REGISTER
* = * &
s L LIS s |ri RIS
LOST LOST
SHIFT LEFT (DSL)
A
* *
s LIS—=> LOST s— RIS|—=-LOST
SHIFT RIGHT (DSR)
B.
NOT AFFECTED
*
s LISF—= LOST RIS
LEFT ELEMENT SHIFT RIGHT (LSR)
C.
NOT AFFECTED
* , ,
LIS s RI5—=> LOST
RIGHT ELEMENT SHIFT RIGHT (RSR)
0.
* * 15
< R
Ls|ui L RS [RI "~
Lost LosT
SHIFT ACCUMULATORS LEFT (ASL)
E.
Lo LI5|—= LosT * L RISF—>L0ST
LS RS
SHIFT ACCUMULATORS RIGHT (ASR)
F. NOTE :
% REMAINS UNCHANGED
Figure 1—34. Shift Class Execution
the accumulator sign bit. Neither type of shift class The execution time for a shift class instruction
instruction makes reference to core memory, and there- varies with the number of shifts called for by the in-
fore none of the instructions in the shift class are index- struction. Each basic shift operation (one place left or
able, right) is initiated by 2-megacycle pulses rather than

UNCLASSIFIED 57

Typical Instruction
36.1-3.64

instruction pulses (IP). Thus, successive shifts can be
executed at 1/5-microsecond intervals. Since 2-megacycle
operation can start at PT 11, up to 6 shifts may be exe-
cuted within the minimum instruction cycle of 6 micro-
seconds. Thus, for » shifts where » — < 6, execution
time for a shift class instruction is 6 microseconds.
Where # > 6, execution time is 6 4 0.5 (z—4) = 0.5
microseconds, A limit on the maximum number of shifts
which may be performed is established by the step coun-
ter, a modulo 1003 counter which counts out the re-
quired number of 2-megacycle pulses to execute the re-
quired number of shifts, Since the step counter is a
modulo 64 counter, » is interpreted modulo 64. There-
fore, a maximum of 63 or 77; shifts may be performed,
and the maximum execution time is 35.5 =+ 0.5 micro-
seconds. (The 0.5-microsecond variation is caused by
the variable time required for synchronization of 2-mega-
cycle pulses.) If # is assigned a value greater than 77, in
a shift class instruction, it is interpreted modulo 100g.
Thus, for » — 107;, only 7 shifts are executed. The
execution time when # — 1074 is the same as for n — 7
and therefore less than for n — 77,.

3.6.2 Typical Instruction

The Shift Left (DSL) instruction is typical of the
shift class. The DSL instruction combines the accumu-
lator and B registers in each half of the arithmetic ele-
ment into two 32-bit shifting registers. (See fig. 1—34.)
With each shift, the content of the accumulator sign bit
is duplicated in the bit 15 flip-flop of the B register,
while the content of the accumulator bit 1 flip-flop is
lost, The content of the accumulator sign bit flip-flop
remains unchanged.

The DSL instruction is decoded in a manner simi-
lar to that used for all other instructions. As is done for

UNCLASSIFIED
T1.0. 31P2-2FSQ7-112 CH 3

PART |

all instructions, bits R10 through R15 of the instruction
word are placed in the step counter as well as in the
address register. At PT 9, 2-megacycle operation is initi-
ated, At PT 10, a pause is called for if # is greater than
6. When the step counter contents are reduced to 5,
the arithmetic pause is ended, since the completion of
the shifts will not interfere with the operations between
PT, 0 and PT, 6 for termination of the instruction
cycle. As can be seen from figure 1—34, if » — > 31 or
37, then all significant bits of the accumulator and all
bits of the B register are made identical to the sign bit
of the accurnulator,

3.6.3 Shift Variations
The variations of the DSL instruction are relatively
close variations. The Shift Right (DSR) instruction shifts
the combined accumulator-B register in each half of the
arithmetic element to the right. (See fig. 1—34.) Again,
for » = > 37, the accumulator sign is duplicated in all
remaining bit positions of the accumulator-B register.
The Left Elemen:t Shift Right (LSR) instruction
and the Right Element Shift Right (RSR) instructions
are similar to the DSR instruction, with the exception
that the LSR instruction affects only the left half of the
arithmetic element while the RSR instruction affects only
the right half. The Shift Accumulators Left (ASL) in-
struction and the Shift Accumulators Right (ASR) shift
the contents of each bit position (except the sign bits)
within the accumulator. For these two instructions, if
n = > 174, all bits of the accumulator are made identi-

cal to the sign bit content.

3.6.4 Cycle Variations

Two instructions within the shift class are known as
cycle instructions, They differ from the shift instructions

LEFT LEFT B RIGHT RIGHT B
ACCUMULATOR REGISTER ACCUMULATOR REGISTER
S |Li S |RI
CYCLE LEFT (DCL)
A.
s it S [Ri

CYCLE ACCUMULATORS LEFT (FCL)

Figure 1—35. Cycle Variations Execution

58 UNCLASSIFIED

PART |
CH 3

just described in that they treat the sign bit of the
accumulator register just as all other bits are treated.

The Cycle Left (DCL) instruction forms the accu-
mulator and B register of each half of the arithmetic
element into 32-bit cycling registers. (See fig. 1—35.)
Unlike the DSL instruction, the DCL instruction can-
not lose any bits but can move the accumulator sign
bit. Where # — 16 or 205, a DCL # instruction inter-
changes the contents of the accumuliator and B regis-
ters, Where 7 — 40g, the final result of the DCL instruc-
tion is equivalent to no shifting at all, since 32 shifts
bring the bits back to their original positions. The
effect of a DCL instruction where #z > 32 is that of a
DCL instruction calling for a number of shifts equal to
the difference between the number of shifts specified
by # minus 32. Thus, a DCL 44 instruction takes longer
to execute but is equivalent in effect to a DCL 4, instruc-
tion,

The Cycle Accumulators Left (FCL) instruction dif-
fers from the DCL instruction in that it combines the
two accumulator registers into a 32-bit cycling register
without affecting the B registers. The FCL instruction
can thus shift the positions of_ the bits within a full
word. Where # = 16 or 20;, the contents of the left
and right half-words are interchanged. If » — 40;, the
FCL instruction has no net effect on the contents of the
accumulators, A summary of information concerning
shift class instructions is given in table 1—16,

3.7 BRANCH CLASS INSTRUCTIONS

3.7.1 Principles of Execution

The instructions within the branch class allow modi-
fications of the sequence in which a program is executed

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

Branch Class Instructions
3.6.4-3.7.1

in response to selected conditions resulting from Cen-
tral Computer System operation. A branch class instruc-
tion can be used to prevent a meaningless operation,; i.e.,
an operation using an intermediate result of a calcula-
tion in further calculation which would be meaningless
if the actual intermediate result were used. For exam-
ple, dividing a number into 0 can be avoided through
the use of a branch class instruction.

A branch of progi'am control is executed by a
branch class instruction if the condition specified by the
instruction is satisfied. The branch is performed as
shown in figure 1—36. At PT 11, the address contained
in the program counter is transferred to the right A -
register and the program counter is cleared. At PT, 0

b

R MBR MAR
BRANCH
ADDRESS~HALF ADDRESS
{PT 7) (PTo1)
ADDRESS PROGRAM __CLEAR
REGISTER COUNTER S~ —(gr
1
BRANCH REPLACED
ADDRESS
RIGHT A CLEAR
REGISTER [~ —Frg

Figure 1—-36. Branch Class Execution

TABLE 1-16. SHIFT CLASS INSTRUCTIONS

CODES

EXECUTION
INSTRUCTION NAME MNEMONIC OCTONARY (MICROSECONDS) INDEXABLE
Shift Left DSL n 400 ® No
Shift Right DSR n 404 * No
Shift Accumulators Left ASL ”n 420 * No
Shift Accumulators Right ASR n 424 ® No
Left Element Shift Right LSR n 440 ® No
Right Element Shift Right RSR n 444 * No
Cycle Left DCL n 460 ® No
Cycle Accumulators Left FCL n 470 ® No

*Execution time variable with ». Expressed decimally, when 7 < 6, execution time is 6 microseconds; when # > 6, execution
time is 6 4 0.5 (# — 4) =% 0.5 microseconds; # is interpreted modulo 64, making maximum execution time 35.5 =+ 0.5

microseconds.

UNCLASSIFIED 59

Branch Class Instruction UNCLASSIFIED PART |
3.7.1-3.1.2 T.0. 31P2-2FSQ7-112 CH 3

the address half of the branch class instruction is trans-
ferred from the address register to the program coun-
ter. Thus, if the address from which the branch class
instruction was obtained is identified as x, while the
address half of the instruction itself is identified as x,,
then the branch of program control causes the program
to execute the instruction at memory address x, rather
than the instruction at x; - 1 that would normally
follow the branch class instruction. If the condition
specified by the branch instruction is not satisfied, then
the instruction at memory address x; - 1 is executed in
normal sequence immediately after the branch class in-
struction.

Execution of a branch class instruction may be modi-
fied by the BRANCH NORMAL-BRANCH ZERO
switch on the duplex maintenance console when the
Central Computer System is in test mode of operation.
When this switch is in BRANCH NORMAL position,
branches are executed as described. When it is in the
BRANCH ZERO position and the condition for branch
of a branch class instruction is satisfied, the command
at PT, 0 which transfers the contents of the address
register to the cleared program counter is not generated
unless the LS bit of the branch instruction being exe-
cuted contains a 1, If the LS bit is 0, the program coun-
ter is left cleared, causing the next instruction to be
taken from core memory location zero. If the LS bit of
the branch instruction is 1, the instruction is executed
normally; the position of the switch thus has no effect
upon branch class instructions whose LS bit is 1. Bit LS
therefore has a function only when the Central Com-
puter System is in test mode and the branch control
switch is in BRANCH ZERO position.

The memory address x; - 1 stored in the right A
register when a branch of program is executed can be
used to return to the program sequence that was inter-
rupted by the branch. For example, if the program
sequence starting at address x, includes seven instruc-
tions necessary to its execution, two more instructions
can be added to return to the instruction at x; -} 1 upon
completion of the branch sequence. The last instruction
of the branch sequence is stored at memory address
x5 4+ 8. The instruction at address x, can be STA x,
-+ 8, which places x; 4+ 1 in the address half of the
instruction stored at x, | 8. If the instruction at x,
+ 8 is a branch class instruction which calls for an
unconditional branch, the program will execute the in-
structions stored at the following addresses in the fol-
lowing order: xy, x3, xo + 1...%3 -} 8, %y + 1, %, 4 2,
and so on. The sequence of instructions from x, through
x5 -- 8 is called a closed routine, since upon its comple-
tion the program returns to the instruction sequence
interrupted by that routine.

3.7.2 Typical Instruction

The Branch on Minus (BFM) instruction is typical
of the branch class. The instruction is decoded in a
manner similar to that used for all other instructions.
At PT 9, the contents of the left and right accumulator
sign flip-flops are sensed. If both flip-flops contain 1
(both accumulators are negative), the BFM branch con-
dition is satisfied and the branch is executed. The BFM
instruction is executed within one memory cycle, 6 micro-
seconds, and is not indexable. It should be noted that
negative zero is treated as a negative number by the
BFM instruction.

LEFT RIGHT
ADDER ADDER CARRY (
- T T ors.ore
COMPLEMENT o
(ov2, oT7) -1 =T
| LEFT | RIGHT
l ACCUMULATOR | | ACCUMULATOR
MAKE POSITIVE
TN I T T 7 T 1‘
SIGN I SIGN A |
RESTORE SIGN CONTROL CONTROL
(PT, 6)
LS=1 RS=1
TEST FOR | BRANCH
R -
(0T &

Figure 1-37. Branch on

Zero (BFZ) Execution

60 UNCLASSIFIED

PART |

3.7.3 Similar Variations

Only two of the other five instructions within the
branch class have enough similarity to the BFM instruc-
tion to allow their discussions as variations. These two
instructions, Branch on Left Minus (BLM) and Branch
on Right Minus (BRM), cause a branch of program
control if the specified accumulator sign is 1; execution
time is 6 microseconds.

3.7.4 Different Variations

3.7.4.1 Branch on Zero

The Branch on Zero (BFZ) instruction causes a
branch of program control only if both accumulators
contain zero, Since both positive and negative zero must
be recognized as zero, the instruction must test for the
presence of either positive or negative zero or a combina-
tion of these in the accumulatots and then restore their
original contents, The testing and restoration require
more time than is available in a one-memory-cycle in-
struction cycle. Therefore, an OT cycle is included with-
in the BFZ instruction cycle. (A word is read from core
memory into the memory buffer registers during the OT
cycle, but no use is made of this word, nor is the BFZ
instruction indexable.)

Figure 1—37 illustrates the registers involved in
execution of the BFZ instruction, and table 1—17 shows
the results of this execution on the contents of one
accumulator (abbreviated to five significant bits) when
starting from each of the three possible contents of the
accumulator, positive zero, negative zero, or not zero.

UNCLASSIFIED
CH 3 T.0. 31P2-2FSQ7-112

Different Variations
3.1.3-3.14.2

along with the accumulator to maintain a record of its
original sign.) At OT 2, both accumulators and the
sign control flip-flops are unconditionally complemented.
At OT 3, a 1 is added to both accumulators (carzy 1 line
is pulsed with A registers cleared), ignoring any end-
carry generated. At OT 7 (after the correctional shift
left which is not shown in figure 1—37), the accumu-
lators and sign control flip-flops are again complemented.
After this step, the sign bit flip-flop of each accumulator
contains a 1 if that accumulator had contained either
positive or negative zero at the start. Thus, at OT 8,
the condition for branch is tested and, if it satisfied,
a branch of program control is called for.

The restoration of the accumulator contents begins
at OT 8 with a subtraction of 1 from the accumulator
contents (carry 1 while accumulators are complemented
with respect to previous addition of 1); any end-carry
generated is ignored, The branch of program control is
executed if the conditioning for branch is satisfied at
OT 8, with the exception that the branch operation
proper begins at OT 11 rather than at PT 11. (See fig.
1—-36.) The restoration of accumulator contents is com-
pleted at PT, 6 with the complementing of each accu-
mulator if its sign control flip-flop contains a 1.

3.7.4.2 Sense

The Sense (BSN) instruction provides for a branch
of program control if a selected condition is satisfied.

L MBR R MBR MAR
LIO THRU LIS RS THRU lCLEAR BRANCH
TABLE 1-17. BRANCH ON ZERO TEST (PT T} FPI{'" " I(PTZO) {\g_tr)RlE)ss
OPERATIONS | 2
' |
INDEX
NOT ADDRESS PROGRAM CLEAR
POSITIVE NEGATIVE o INTERVAL REGISTER [<~ | COUNTER (0T 0
TIME ZERO ZERO ZERO REGISTER
Initial 0.0000 1.1111 1.0010 ADDRESS
BRANCH BR
OT 1 0.0000 0.0000 0.1101 ADDRESS
{PT,0)
OT 2 1.1111 1.1111 1.0010 PER SEL BSN RIGHT A CLEAR
MATRIX REGISTER <‘(—0-‘7' 9
OT 3 1<-0.0000 1<-0.0000 1.0011
OoT 7 1.1111 11111 0.1100
olg 778
OT 8 1<-0.0000 1<-0.0000 0.1101 ¢ l'\
EXECUTE
PT, 6 0.0000 1.1111 1.0010 8 R—l | BRANCH
L
& OR & GT
The sequence of operations necessary to execute 4\
the BFZ instruction begins with the complementing of i gs;‘f‘%HFOR
either or both accumulators if they are negative at OT 1. olg 77 ‘(OT 9)
Thus, the contents of both accumulators ate now known (LI
SENSE UNITS

to be positive, (If either accumulator had been negative,
the sign control flip-flop would have been complemented

Figure 1—38. Sense (BSN) Execution

UNCLASSIFIED 61

Table 1-18

UNCLASSIFIED

PART 1

T.0. 31P2-2FSQ7-112 CH 3

The index interval (L10 through L15) of the BSN in-
struction selects the condition which permits or pre-
vents the execution of the branch. This use of the
index interval is denoted by the symbol (#). Each con-
dition which may be sensed for execution of a branch is
indicated by a sense unit. If the sense unit selected
by he index interval of the BSN instruction is on, a
branch of program control is executed.

The execution of a BSN () instruction requires
two memory cycles to provide time for the establish-
ment of selection levels. Thus, as the case for a BFZ
instruction, an OT cycle is executed with its accompany-

ing memory cycle, although no net effect on core mem-.

ory or the memory buffer registers results. Therefore,
the BSN () instruction is not indexable,

The execution of the BSN (%) instruction requires
the decoding of its index interval, (See fig. 1—38.) This
is performed by the PER SEL BSN matrix, conditioning
one output line as selected by the contents of the index
interval. (Although only two outputs are shown for the
PER SEL BSN matrix, there are 63 outputs separately
selectable by the index interval, with values ranging

from 003 through 77,.) The index interval register is
loaded to begin decoding at PT 7. The selection line
from the matrix and the condition indicating line from
the corresponding sense unit are applied to an AND
circuit whose output conditions a gate which is sensed
at OT 9. If the selected sense unit is on, the gate is
conditioned and the command to execute a branch of
program control is generated. Thereafter, the branch is
executed as shown in figure 1—38. If the selected sense
unit were not on, no branch would result, since the
command to execute the branch would not be generated
and the next instruction in the program sequence would
be executed.

As an example of a BSN () instruction, consider
the Sense (left overflow on) instruction, The index in-
terval of the instruction contains 12, specifying the left
overflow sense unit. If an overflow has occurred in the
left arithmetic element prior to the execution of the
BSN (123) instruction, the left overflow sense unit is
on. The execution of the BSN (123) instruction causes
a branch and clears the left overflow sense unit. The
sense units are listed in table 1—18.

TABLE 1—18. SENSE UNIT SELECTION CODES

CONDITION CODE UNIT OFF
SENSE UNIT FOR BRANCH INDEX INTERVAL BSN TURNS
Condition lights 1-4 On 01-04 _ Yes
Selected tape unit Not prepared 10 No
Selected IO unit Not ready 11 No
Left overflow On 12 Yes
Right overflow On 13 Yes
10 interlock On 14 ‘ No
Memory parity error On 15 Yes
Drum parity error On 16 Yes
Tape parity error On 17 Yes
Marginal checking excursion On 20 No
Sense switches 1-4 On 21-24 No
Duplex switch Active 30 No
Printer sense 1,2 Energized 31,32 No
Output alarm ' On 33 Yes
GFI range signal On 34 Yes
SD camera Taking picture 35 No
Display System Displaying track data 37 No

62 UNCLASSIFIED

PART 1 UNCLASSIFIED 10 Class Instructions
CH 3 T.0. 31P2-2FSQ7-112 3.74.3-3.8.1
TABLE 1-18. SENSE UNIT SELECTION CODES (cont'd)

CONDITION CODE UNIT OFF
SENSE UNIT FOR BRANCH INDEX INTERVAL BSN TURNS
Other Computer alarms 1,2 On 41,42 Yes
Other Computer intercom- On 43-46 Yes
munication 1-4
GFI north or azimuth ‘ On 47 Yes
Output alarms: |
Nonsearch compare On 50 Yes
Drum parity error On 51 Yes
Illegal selection or register address On 52 Yes
Defective transmission On 53 Yes

3.7.4.3 Branch and Index

The Branch and Index (BPX) instruction provides
for a conditional branch of program control with the
index indicator (L1 through L3) of the instruction word
designating the condition upon which the branch is
dependent. In addition, the BPX instructions can re-
duce the contents of an index register by the amount
specified by the index interval (L10 through L15) of
the instruction word. This use of the index interval is
designated by the symbol (s). Through the use of the
BPX (s) instruction, a series of indexable instructions
can be repeated a fixed number of times to process a
series of similar information items by indexing the
igerated instructions differently for each iteration. A
detailed discussion of the BPX (s) application is pro-
vided in Section 5.

The BPX (’s) instruction causes a conditional branch
only if the index indicator specifies an index register
other than the right accumulator. (Refer to 3.2.3) Thus,
if the index indicator is Og or 3g, ('s) is meaningless and
the branch is unconditionally executed. Howevet, if one
of the index registers is selected, the branch is executed
and (s) is subtracted from the index register only if the
sign of the selected index register is 0; ie., the index
register contains a positive number. If the contents of
the selected index register are negative (sign = 1), no
branch results.

Execution of the BPX (s) instruction is accom-
plished in one memory cycle. (See fig. 1—39.) The in-
struction word is transferred from the memory buffer
registers at PT 7 and decoded as are all other instruc-
tions. If the index indicator is O3 or 35, a branch is
executed unconditionally. (Refer to 3.7.1.) The condi-
tion for branch is satisfied at PT 9, and the branch is
executed. If the index indicator selects one of the index

registers, the condition for branch is satisfied only if the
sign of the selected index register = 0. '

Although the sensing of index registers 2 and 4 is
not shown in figure 1—39, the sensing is identical to
that shown for registers 1 and 5. Assuming an index
indicator of 14, if index register 1 contains a positive
number, a branch of program control is called for at
PT 9 and, in addition, the contents of index register
1 -must be reduced by the amount specified by (s). The
branch is executed as described in 3.7.1. The reduction
of the index register contents starts with the clearing
of the address register at PT, 0. At PT, 1, the comple-
ment of (s) is placed in the cleared address register. At
PT, 2, the contents of index register 1 are added to the
address register and the result appears in the address
register. At PT, 4, the selected index register is cleared
and, at PT, 6, its new contents are transferred from the
address register to the index register. The net effect
of these steps is the subtraction of the index interval
from the selected index register. An index interval of 1
subtracted from an index register containing 1 leaves
negative zero in the index register. A summary of infor-
mation concerning branch class instructions is given. in
table 1—19,

3.8 10 CLASS INSTRUCTIONS
3.8.1 General

IO class instructions perform the preparatory steps
necessary for the initiation of an IO operation. These
instructions select an IO unit for operation and set the
initial conditions in those registers that control each
IO operation. (Refer to 3.1.4.4.) Since the execution of
an IO class instruction while an IO operation is in
progress will disrupt that IO operation, execution of an
IO class instruction is conditional upon the state of the

UNCLASSIFIED 63

Fig. 1-39 UNCLASSIFIED PART 1
T.0. 31P2-2FSQ7-112 CH 3
L MBR R MBR MAR
e A)} |
LS THRU LIO LIO THRU LIS rs THRU RIS | cLEAR
(;PTT7) (PT7) (PT 7) | (PT20) (PT21)
|
_J
OPERAT ION T ADDRESS [PROGRAM
REGISTER REGISTER REGISTER COUNTER
A
INDEX INDEX INTERVAL BRANCH '
INDICATOR COMPLEMENT ADDRESS | cear
LI THRU L3 (P10 (PT,0) | (FTI
4
INDEX ORIGINAL NEW ADDRESS
S| |G e
MATRIX (PT52) (PT26) (PT 11)
IX =lg o & SIGN =0
IX =2g
* INDEX RIGHT
REGISTER GIASTER
IX =45 <" RE
. |
oo Jotore 5 [
IX =0g | |
| |
IX =3)
8 OR
PR { EXECUTE
R
— — e 8T Terawen
(PT 9)
Figure 1-39. Branch and Index (BPX) Execution
TABLE 1-19. BRANCH CLASS INSTRUCTIONS
CODES
EXECUTION
INSTRUCTION NAME MNEMONIC OCTONARY (MICROSECONDS) INDEXABLE
Branch and Index Ix BPX (s) x 51— 6 No
Sense — BSN (u) x 52— 12 No
Branch on Zero — BFZ — x 540 12 No
Branch on Minus — BFM — «x 544 No
Branch on Left Minus — BLM — «x 550 6 No
Branch on Right Minus — BRM — «x 554 6 No

IO interlock. If the IO interlock is on, indicating that
an IO operation is in progress, instructions of the 10

class cannot be executed.

All instructions of the IO class are indexable. (Refer
to 3.2.3.) Howevet, in the case of one instruction in the

64

class, indexing is meaningless, since the address half
of that instruction is not used. Execution time for three

instructions in the IO class is 6 microseconds; for the
other two, execution time is 12 microseconds. Each in-

UNCLASSIFIED

struction of the IO class is discussed separately in the
following text.

PART 1
CH 3

3.8.2 Variations

The registers associated with the execution of IO
class instructions are shown in figure 1—40. The Load
10 Address Counter (LDC) instruction prepares the 10
address counter for an IO operation by loading into this
register the address of the first core memory register to
be affected by an IO operation. The address half of the

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

Fig. 1-40

LDC instruction can be modified by indexing Execution
ime is 6 microseconds.

The Select (SEL) instruction chooses an IO unit
other than a drum field for an IO operation. The index
interval of the SEL instruction, designated as (), is
decoded by the PERSELBSN matrix to select the IO
unit. A given SEL (u) instruction deselects all other IO

L MBR

LIO THRU LIS
(PT7)

R MBR MAR
RS THRURIS I0 MEMORY
(PTT7) ADDRESS
(BI)
CLEAR_ _
ADDRESS I0 (PT,2)
REGISTER COONTER |<_ADDL _
(82)
FIRST 10
INDEX MEMORY
ADDRESS
REGISTER
CONTENTS (PT23)
(PT9)
LoC
A.
L MBR R MBR
LIO THRU LIS RS THRU RIS
(PT 7) (PT 7)
INDEX ADDRESS
INTERVAL REGISTER
REGISTER
DRUM ADDRESS
LI0 THRU LIS | OR IDENTITY CODE
PT25
orom | (PT25) (PT23)
SYSTEM
_Ri=l
woexen | | omm
CLEAR
CONTENTS CONTROL — -
(PT 9) REGISTER (PT22)
SDR
C.

INDEX
INTERVAL
REGISTER
PER SEL BSN
MATRIX
—oeaLeoT
(PT21)
seeer ST _|eT |
(PT,5) ‘ > l \l,
\ ~ J
UNIT SELECTION
LINES Oig-21g
SEL
B.
L MBR R MBR
LIO THRU LIS RS THRU RIS
(PTT) (PT 7)
INDEX ADDRESS
INTERVAL REGISTER
REGISTER
INTERLEAVE COMPLEMENT
ON DRUMS OF n
(PT6) (PTp2)
nnDuRJ-JRM“ P I0 WORD CLEAR
CONTROL = iNDEX pal AN
REGISTER REGISTER COUNTER (PT21N
?ONTQE)NTS
PT
B
: R
(PT23
END-CARRY AND B82)
CLEAR IO
INTERLOCK
RDS OR WRT
D.

Figure 1—40. IO Class Execution

UNCLASSIFIED

65

Variations

UNCLASSIFIED

PART 1

38.2 T.0. 31P2-2FSQ7-112 CH 3

units when the unit designated by (#) is selected. The
IO unit selected remains so until a different unit is
selected. The address half of the SEL (u) instruction is

meaningless, thus rendering indexing also meaningless.
Execution time for the SEL (%) instruction is 12 micro--

seconds. The IO units selectable by the SEL () instruc-
tion are listed in table 1—20. Several of them are de-
scribed in Section 4.

TABLE 1-—20. SELECT UNIT CODES

SELECTION
CODE*
(OCTONARY

10 UNIT L10-L15) OPERATION
Card Reader 01 Read
Card Punch 02 Write
Printer 03 Write
IO register, cleared 04 Read
Manual input matrix 06 Read
‘Warning Light System 10 Write
Magnetic tapes 1-6 11-16 Read, write
Burst time Counters 21 Read

*Codes not listed are spares, not used at present.

The Select Drum (SDR) instruction chooses a drum
field for use in an IO operation. The index interval of
the SDR instruction, designated as (z), selects a drum
field within the group of drum fields selected by bit R1
of the address half of the SDR (%) instruction. If
R1 — 0, the index interval selects a field within the
main drum (MD) group (AM A, AM B, LOG, MIXD,
TD, or RD). If R1 — 1, the index interval selects a
field within the auxiliary drum (AXD) group (AM C
through AM H). Unlike the SEL (%) instructions, the
PerSelBsn matrix does not decode the index interval of

the SDR’' (u) instruction. Instead, the index interval of
the SDR instruction is supplied to the Drum System for
decoding therein. Those bits of the address half of the
SDR () instruction other than R1 may be meaningless,
may specify an address on a drum field (bits R4 through

" R15), or may contain an identity code. Indexing of the

SDR (u) instruction is possible, thus changing the con-
tents of the address half-word. Execution time for the
instruction is 12 microseconds. (The uses of the SDR
instruction are discussed in Chapter 4.)

The Read (RDS) and Write (WRT) instructions

are basically quite similar in their execution. The execu-
tion of either instruction turns on the IO interlock and
starts the word transfers which make up an IO opera-
tion. Further, the address half of the instruction word
specifies the number of words to be transferred. Thus,
an RDS » instruction calls for an IO operation in which
n words are read from a previously selected IO unit
into core memory. Conversely, a WRT = instruction
calls for an IO operation in which » words are written
onto the storage medium of some IO unit from core
memory. If the IO unit selected is a drum field which
is written and read by address, the index interval of
either an RDS # or a WRT n instruction may specify
an interleaving pattern on the drum field. (Refer to
Chapter 4.) This use of the index interval is designated
(i).

As shown in figure 1—40, the RDS » or WRT n
instruction causes the loading of the complement of 2
into the IO word counter. At PT, 3, a 1 is added to the
IO word counter, thus converting the contents of the
counter into a number which is the complement of
n — 1. The contents of the IO word counter are thus
reduced before any word transfers occur to allow the
generation of a dynamic end-carry from the counter at
the transfer of the nth word. This end-carry is used to
clear the IO interlock and terminate the IO operation.
Execution time for either of these instructions is 6
microseconds. A summary of information concerning 10
class instructions is given in table 1-21.

TABLE 1—21. 10 CLASS INSTRUCTIONS

CODES
EXECUTION
INSTRUCTION NAME MNEMONIC OCTONARY (MICROSECONDS) INDEXABLE
Load 10 Address Counter LDC x 600 6 Yes
Select Drum SDR (u) r* 61— i2 Yes
Select SEL (u) — 62— 12 Meaningiess
Read RDS (i) = 670 6+ Yes
Write WRT (i) » 674 6+ Yes

*Significance dependent upon mode of operation chosen by ().

66 UNCLASSIFIED

PART 1

3.9 RESET CLASS INSTRUCTIONS

3.9.1 General

The reset class of instructions allow the setting of
an index register to a given value or the examination
of the contents of an index register. None of the instruc-
tions within the reset class can utilize the right accumu-
lator as an index register. Reset class instructions are
not themselves indexable. Execution time for each in-
struction within the class is 6 microseconds.

3.9.2 Variations

The registers involved in execution of reset class
instructions are shown in figure 1—41. The Reset Index
Register (XIN) instruction replaces the right half of
the instruction word in the index register selected by
the index indicator of the instruction word. Thus, the
XIN » instruction sets the selected index register to .

The Reset Index Register from Right Accumulator
(XAC) sets the selected index register to the number
contained in the right accumulator. The address half
of this instruction is meaningless. The Add Index Regis-
ter (ADX) instruction adds the contents of the selected
index register to the address half of the instruction and
then transfers the result of the addition to the right A
register. It may be seen that if the address half of the
ADX instruction is 0, the contents of the selected index
register are placed unchanged in the right A register.
A summary of information concerning the reset class
instructions is given in table 1—22.

3.10 MISCELLANEOUS CLASS INSTRUCTIONS

3.10.1 General
The instructions within the miscellaneous class are
those which do not fall into any consistent class and
are so diverse that no general principles of execution
can begiven. Instead, each instruction of this class is

discussed separately.

3.10.2 Program Stop
The Program Stop (HLT) instruction, upon execu-
tion, stops- all internal operations but allows any 10
operation in progress to be completed before stopping
the Central Computer System. The HLT instruction
stops the Central Computer System by halting the in-
struction pulses which generate commands. The binary
coding for the HLT instruction is an instruction word
containing all zeroes in the operation code part. Thus,
an empty register contains an HLT instruction, and, if
read to obtain an instruction, will cause the Central

Computer System to stop.

3.10.3 Extract

- The Extract (ETR) instruction changes the contents
of the accumulator registers in accordance with a con-
trol word read from core memory. Each bit position
of the control word which contains a 0 clears the cor-

UNCLASSIFIED
CH 3 T.0. 31P2-2FSQ7-112

Class Instructions
3.9-3.10.3
R MBR

RS THRU RIS
(PTT)

ADDRESS
REGISTER

RS THRU RIS
{PT26)

INDEX
SELECTION SELECTION o INDEX
REGISTER

CLEAR
MATRIX LINE Tt el

(PT, 4)

XIN

ADDRESS CLEAR
REGISTER [— T3

RS THRU RIS
(PT 10)

RS THRU RI5
(PT26)

RIGHT
ACCUMULATOR

INDEX
SELECTION SELECTION

MATRIX LINE

INDEX CLEAR
V1 REGISTER P~ —

R MBR

RS THRU RIS
(PT 7)

ADDRESS
REGISTER

RS THRU RIS
(PT25) ADD INDEX REG
TO ADDRESS REG

(PT9)

RIGHT
REGISTER

CLEAR

Ty T

INDEX
SELECTION SELECTION

MATRIX LINE

INDEX
REGISTER

Figure 1—41. Reset Class Execution

UNCLASSIFIED 67

UNCLASSIFIED

Class Instructions PART 1
3.10.3-3.10.6 T.0. 31P2-2FSQ7-112 CH 3
TABLE 1-—22. RESET CLASS INSTRUCTIONS

CODES
EXECUTION
INSTRUCTION NAME MNEMONIC OCTONARY (MICROSECONDS) INDEXABLE
Reset Index Register Ix XIN n 754 6 No
Reset Index Register from Ix XAC — 764 6 No
Right Accumulator
Add Index Register Ix ADX n 770 6 No

responding bit position in the accumulator. The ETR
instruction is decoded in a manner similar to that used
for all other instructions. The address half of the in-
struction word may be modified by indexing. At OT 7,
the control word is transferred from the memory buffer
registers to the A registers. (See fig. 1—42.) At OT 9,

CORE MEMORY
(0T 6
LEFT MEMORY CLEAR __
BUFFER REGISTER TN
CONTROL
WORD
(0T 7)
LEFT A CLEAR
REGISTER- <—orn
LOGICAL
MULTIPLY
(0T 9)
1
LEFT NOTE:
ACCUMULATOR DUPLICATED IN
' RIGHT ARITHMETIC
ELEMENT

Figure 1—-42. Extract {ETR) Execution

the contents of the accumulators are logically multiplied
by the control word in the A registers. The logical multi-
plication sets to 0 those bit positions in the accumulators
whose corresponding bits in the control word are 0,
leaving unchanged those accumulator bit positions which
correspond to bits containing 1 in the control word. It
is worthwhile for the reader to compare this action with
that of Deposit (DEP) instruction. (Refer to 3.5.4.3)
The ETR instruction can be used to clear unnecessary
portions of 2 word in the accumulators without affecting

the remaining portions of the word. Execution time is
12 microseconds.

3.10.4 Operate

The Operate (PER) instruction is used to initiate
or execute a wide variety of miscellaneous actions. The-
choice is made possible by using the index interval of
the instruction word to select the desired action. The
index of the PER (u) instruction is decoded by the
PerSelBsn matrix, which allows the transmission of a
pulse to a unit selected by the index interval. The func-
tion of the pulse is dependent upon the unit selected.
Execution time for PER (%) is 12 microseconds. The
various uses of the PER instruction are listed in table
1-23,

3.10.5 Ciear and Subiract Word Counter

The Clear and Subtract Word Counter (CSW) in-
struction transfers the contents of the IO word counter
into the right accumulator register without changing
the contents of the word counter or of any other register
except the right accumulator. (See fig. 1—43.) The CSW
instruction allows the program to determine the number
of words yet to be transferred by an IO operation. The
number piaced in the right accumulator is the 1I's com-
plement of one less than the number of words remain-
ing to be transferred. Execution time for the CSW in-
struction is 6 microseconds.

3.10.6 Shift Left and Round

The Shift Left and Round (SLR) instruction pro-
vides the means for scaling a small number up in mag-
nitude and for rounding off that number to 15 magni-

WO RIGHT CLEAR
COUNTER ACCUMULATOR (PT 9)

WORD COUNTER
CONTENTS

(PT,1 OR 5)

Figure 1-43, Clear and Subtract. Word Counter
(CSW) Execution

68 UNCLASSIFIED

PART 1
CH 3

UNCLASSIFIED
T.0. 31P2-2FsQ7-112

Unit Selection Codes
3.10.6

TABLE 1—-23. OPERATE UNIT SELECTION CODES

INDEX INTERVAL

OPERATE UNIT ACTION CODE
Condition lights 1-4 Turn on 01-04
Intercommunication indicators 1-4 Turn on in other computer 10-13
Area discriminator Turn on for cycle beginning with radar data 20
Marginal checking: Start excursion 21

Stop duplex excursion 22

Stop simplex excursion 23

IO interlock Clear 27

SD camera: Start mode 1 31

Start mode 2 32

Digital display Start at slot 0, 1st section 35

_ Start at slot 107, 2nd section 36

.Printer operate hubs 1-10 Energize 51-62
- Input System testing: Start LRI and XTL pattern generator; start GFI continuous

pattern generator 63

Connect GFI pattern generator 64

Start GFI azimuth 65

Start GFI target 66

Selected tape unit: Set prepared 67

Backspace 70

Rewind 71

Write end-of-file 72

Card punch Punch columns 17-32 in columns 1-16 on card 73

Gang punch 1-16 74

10 address counter Lock at current address until IO interlock is cleared 75

Scan counter: Setto 0 76

Step by 1 77

tude bits if it is represented with excess precision. The
SLR instruction shifts the bits in the combined accumu-
lator-B register to the left by the number of positions
specified by the address half of the instruction, then
rounds off the half-word in each accumulator register
in accordance with the contents of the B register sign
flip-flop (the 16th and least significant bit). The shifting
operation called for by the SLR instruction is identical
with the shift executed in response to a DSL # instruc-
tion. (Refer to 3.6.2.) The address half of the SLR
instruction, designated as #, is interpreted modulo 64.

if » = 31, all significant bits in the accumulator reg-
ister are replaced by bits that agree with the accumulator
sign bit. The result of the round-off is dependent upon
the sign of the number and the content of the 16th
significant bit. If the number is positive, a 1 in the 16th
bit causes the addition of a 1 to the 15th bit. If the
number is negative, a 0 in the 16th bit causes the sub-
traction of a 1 from the 15th bit. Since the SLR instruc-
tion can cause an overflow, the index interval of the
instruction can cause a response to overflow. (Refer to
3.34.)

UNCLASSIFIED 69

Class Instructions UNCLASSIFIED PART 1
3.10.6-3.10.7 T.0. 31P2-2FSQ7-112 CH 3
LEFT ADDER CARRY | | ____ __ ROUND_
< -— GT |j=— (nzz)
)
BS=1
CLEAR .
LEFT ACCUMULATOR R'E-(EIFS.I}EBR he—— FI‘Z—ST —_—
_— SHIFT LEFT _ _
LS=1 * T T (2-MC)
- |
e Y et | |
__POSITIVE __‘3_0_?'-_._517_.__>+__ - e
(PT,1) -1 |
|
|

RESTORE_SIGN SIGN

CONTROL

NOTE:

DUPLICATED IN RIGHT
ARITHMETIC ELEMENT

Figure 1—44. Shift Left and Round (SLR) Execution

The SLR (0) 2 instruction is decoded in a manner
similar to that used for all other instructions. The shifts
called for by # are executed at a 2-megacycle rate. Upon
completion of all shifts, the round-off step begins. (See
fig. 1—44.) At PT, 1, the combined accumulator-B reg-
ister is complemented if negative with its original sign
- stored in the sign control flip-flop. At PT, 2, the carry
1 line to the adder is pulsed if the B sign flip-flop con-
tains 1. Since the A register is cleared before this step,
pulsing the carry 1 line results in the addition of a 1
to the bit 15 position of the accumulator. At PT; 6, the
accumulator sign is restored and the B register is cleared.
Execution time for the SLR (o) » instruction is depend-
ent upon the value of ». If » = 2, execution time is 6
microseconds. If » < 2, execution time is 6 microseconds.
If » > 2, execution time is 6 + 0.5 (# 4 1) =+ 05
microseconds.

As an example of the use of the SLR (o) 7 instruc-
tion, consider the result of a DVD instruction. The
sign bit and a 15-bit remainder are held in the accumu-
lator register while the quotient, unsigned and expressed
in 16 significant bits, is held in the B register. Execution
of the instruction SLR 17; shifts the most significant
bit of the quotient to the bit 1 position in the accumu-
lator and utilizes the 16th quotient bit in rounding off
the quotient to 15 significant bits.

3.10.7 Louad B Registers

The Load B Registers (LDB) instruction transfers
a word from the core memory location specified by the
address half of the instruction into the B registers. The
instruction is indexable and requires 12 microseconds for
execution. A summary of miscellaneous class instruc-
tions is given in table 1—24.

TABLE 1-24. MISCELLANEOUS CLASS INSTRUCTIONS

CODES EXECUTION
INSTRUCTION NAME MNEMONIC OCTONARY (MICROSECONDS) INDEXABLE
Program Stop HLT 000 6 No
Extract ETR 004 12 Yes
Operate PER (u) 01— 12 No
Clear and Subtract cSwW 020 6 No
Word Counter
Shift Left and Round SLR (o) 024 * No
Load B Registers LDB 030 12 Yes

*Execution time is variable with »; if » < 2, time is 6 microseconds; if » > 2, time is 64-0.5 (#24-1) ==0.5 microseconds.

10

UNCLASSIFIED

PART 1 UNCLASSIFIED 10 Units
CH3 , T.0. 31P2-2FSQ7-112 41-421
SECTION 4

INCLUDED 10 UNITS

4.1 INTRODUCTION

There are several 10 units logically included within
and connected to the Central Computer System. These
units include:

a. Card reader (IBM type 713)
b. Card punch (IBM type 723)
. Line printer (IBM type 718)
d. Tape element

(2]

e. 1O register (used as an IO unit)

The first three units listed, generally known as card
machines, are used primarily for the initial preparation,
insertion, and testing of programs. These card machines
provide unlimited memory capacity at the expense of
random access time, which is very long for all three
machines.

The magnetic tape element provides storage capacity
for large blocks of information in a very small space;
one reel of magnetic tape can contain about 1.2 million
words. Although the random access time for information
stored on tape is comparable to that for information on
punched cards, the rate of information transfer to or
from tape is faster than the rate of transfer to or from
cards. The last 1O unit, the IO register, can be used
for partial or complete erasure of core memory.

4.2 PUNCHED CARDS AND CARD FORMS
4.2.1 General

The basic IBM punch card contains 80 vertical col-
umns of 12 rows each. (See fig. 1—45.) Any informa-
tion punched on such a card is binary in form since the
presence or absence of a punch in a particular position
is equivalent to a 1 or a 0 in that position. Although an
IBM card can hold 960 binary bits (80 x 12), its use
in storing purely binary information has assumed imp-
portance only with the advent of binary digital com-
puters. The card was originally designed for storage of
decimal and alphabetical information. The designations
of the rows as numeric or zone rows are derived from
this original use of the card. For example, a decimal
digit can be stored in each column of the card by
placing a punch in the numeric row of that column
corresponding in value to the value of the decimal digit
to be recorded (or in the 0 row if a 0 is to be recorded).
In effect, the decimal digit is represented within the
column by using a vertical positional notation of its
magnitude; i.e., a 6 can be stored in column 10 of the
card by punching the 6-row of column 10.

Alphabetical characters are stored on an IBM card
with two punches per column; one punch in a zone row

/

12 ROW /
ZONE J 1) row
ROWS
O ROW gnoooooo000000000000000000000D00000000000000000000008000006000000000G0000000000600600
123456718 9lﬂ‘llllﬁ"ﬁll"ll‘!mmﬂﬂz‘ZSZEZ?Z!ZB”N32333(ﬁxﬂﬁnwlluﬂ“ﬁﬁﬂuﬂsﬂﬂ5153545556515359‘05‘5253“55“575'58707]7213"7515771119”
- |IRR EERERERR AR
22
33323333333333
NUMERIC Q4444444444 444444484444844840444488444448484440048844444444444442488448448444444440444444
ROWS 3 55555555559955

8
\ 999499
1234

5 WNI12I3UI5EI7IB8182020
1B

99
513
M 5081

66
1711711177117 77110 0000000000011 7777771707910000071000070111302 10000770017 1771711111111
88888885388588888888888088885888888880888088868888888883338886638888888888888888888
929999999999;9?2589999999999999559999999999999999!959999999999999999999999

BABXBNB80NRNABBITBBON2L8UE5 64748495051 5255545556 57 58596061 52634566708 W M N 2 B UB KT BN &

NOTE: CORNER NOTCH INDICATES
CARD THICKNESS.

Figure 1—45. Basic IBM Card Showing Hollerith Code Zones

UNCLASSIFIED : 1l

Hollerith Code
421-422

to indicate selection of one-third of the alphabet and
one punch in a numeric row to indicate which letter
within that third is represented. Thus, the letter A is
indicated by a punch in the 12-row and the 1-row, the
letter N by a punch in the 11-row and 5-row, and the
letter T by a punch in the 0-row and 3-row. In addition
to letters, 14 special characters are indicated by either
a single punch in a zone row or by a zone row punch

TABLE 1—25. HOLLERITH CODE FOR PUNCHED

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

PART 1
CH 3

plus two numeric row punches. The coding for all of
these symbols, known as the Hollerith code, is shown
in table 1—25,

Using Hollerith code, up to 80 alpha-numeric char-
acters may be represented on a single card with one
character per column. The card machine associated with
the Central Computer System can utilize only 64 col-
umns on each card for storage of information intro-
duced into, or received from, that system. Specifically,
columns 17 through 80 of each card are used for this
purpose. (See fig. 1—46.) Column 1 through 16, while
not normally available to the Central Computer System,
are used for card identification which allows processing
of punched cards by card machines independent of the
Central Computer System. In general, the information
field of a card is further subdivided in accordance with
the type of information presented on it. The subdivisions
of the information field are discussed in connection with
each of the two basic card forms:

a. Instruction card

b. Binary card

4.2.2 Instruction Card

The card form on which most programs are pre-
pated for initial insertion into the Central Computer
System is the instruction card. (See fig. 1—47.) Each
instruction card may contain one instruction in alpha-
numeric form plus comments to clarify the function of
that instruction within a program. The location field on
the card specifies the storage location of the instruction.
The instruction field contains the operation code in mne-
monic code form and the index indicator and index

INFORMATION FIELD
A

CARDS
NUMERIC ZONE ROW
ROW NONE 12 11 0
None -+ - 0
1 1 A) /
2 2 B K S
3 3 C L T
4 4 D M U
5 5 E N Vv
6 6 F o) w
7 7 G P X
8 8 H Q Y
9 9 I R z
8&3 + . $ >
8&4 — O * %
IDENTIFICATION
FIELD
r A \ 7

/

5
1BM SOB7]

0000000000000000[0000000000000000000000060000000000000000000000.600000000000000000
1234567 88RNRZEIMBEIEBE AZANSBNARNN VNS RTARBARAUERINENSI VU ST RDDIROUSHTBANNITHETI BN
IR R R AR R R R R RN R IR R R R R R R R R R AR R R R AR SRR R RN R AR R AR R R R R R R R R R RS R R RRRRRRRRRRRERY.
2227122
33$3333333333333|333533333323333333333333333333333335335333333333333333333333331333
AA44444 4008444084440 40444444404404044444440444444444444404200 0000000004080 44
5555%555555555555/55
6666665666666666/66
1117111011210 1 1101110111000 T11 9901119000111 17107901000773911171171177117711177
388808888086883838(66068888088838388¢6883888388380838588898808088808008888838885368888884888

9999999999999999/99999999999999999999999999938999999999999999999989999999959998998
17224

5789 UND N RANBRTBININNHERTBALNCOHSKTAORNNILNAFRTINARKNRVMSRTBENNIZNWERTANN

Figure 1—46. Field Division on Punch Cards
12 7 UNCLASSIFIED

PART 1
CH3

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

Binary Card
422-423

+ +
INSTRUCTION| ADDRESS

LOCATION

poopoooo000000000

12345678 910112131415 16}

-
of
&
b=
z|
9
o
0
1

|
22222222222222222)212222202122212 2)2

93999959999999999“99999&
1234567881010 121314151

1M 836487

ootocuaotaootschie0t ot ottetetsetsesssersntentinnensnses
IIIIIIIIlll1111111PIIIllhllpllﬂllllllllllllIII1I|1IIlllllIllllllill]lllll]]lll]l
22222222222222222222222227222222222222222222222222 3
333333333333333333333333h33ﬁ33“3333333333233333333333333333333333333333333333333
444444444444444444“44444?44?44%444z
555555555555555555:555555:555:555:55s
GEEEGGBSSSG866686GFE566%GGGmGGPBBBSGGGGGSBGB888666666655SGGSGGBEBBGSSBBSESGBGSEG
777771711177777777W77771h77ﬂ7Tﬂ7777777777777771777171777777777777777777777777777
888888888888888888%8B38488qs8#88888888888833888888888888888888888888888883888888

999/99/9l99999/999899

hilehs 2 21 2 Bluls s A BN R NUBBTBBOM QUG

~

COMMENTS

01LONYU LS

v

999999999999999999999999999999999999999
GUEAEATHBANS 255 B0

Sl 5595655758 5960616263646566676809707I RT3 MUTSHTITB Y

LA

INDEX
INDICATOR INDEX
OPERATION INTERVAL
CODE

Figure 1—47. Instruction Card

interval in octonary form. The address field specifies
the contents of the address half of the instruction. The
identification field contains program identification and
the preparation date.

The location field and the address field of an in-
struction card may not specify actual storage locations
in core memory. Instead, a symbolic location or a sym-
bolic address may be given. A symbolic location or ad-
dress is an arbitrary identification of the location or
address assigned by the programmer when making up
a program. In general, a program is presented to the
Central Computer System in symbolic form for assembly
into actual form by that system. In this manner, the
programmer is relieved of much of the detail work
attendant upon preparation of a program. A detailed
discussion of this subject is given in Section 5.

It should be noted that a program presented on
instruction cards cannot be executed directly by the
Central Computer System. Even if actual locations are
given on the instruction cards, the program must be
translated from its alpha-numeric form into binary form
before it can be executed. (The translation process is
discussed in connection with symbolic programming in
Section 5.) Once the program is translated, it may either
be executed and discarded or prepared for reintroduction
to the Central Computer System in binary form. When
the latter is done, the program is prepared on binary
cards.

4.2.3 Binary Card
The binary card utilizes the binary nature of
punched cards in storing information. The identification

field, whose contents are identical with the identification
field of the instruction card, is the only field on a binary
card containing information in Hollerith code. All in-
formation on the information field of the binary card
is in binary form. (See fig. 1—48.)

Since there are 64 columns within the information
field of the binary card, each row contains two Central
Computer System words. To distinguish between the
two words in a single row, the word in columns 17
through 48 is called the left word while the word in
columns 49 through 80 is called the right word. An-
other convenient terminology describes the former as
the word in N-row left and the latter as the word in
N-row right where N specifies the row in which the
two words are found.

For certain applications, two rows within the infor-
mation field on a binary card ate reserved for control
information. Therefore, only 20 program words con-
taining instructions or constants can be stored on a
binary card with all control information. These words
are located in the 8-row through the 11_row with the
first word in 8-row left and the last word in 11-row right.
The 12-row, columns 37 through 80, contains the pro-
gram identification information contained in columns
1 through 8 of the information field, coded in binary
form. This binary form of Hollerith code requires 6
bits for an alphabetic character, two for zone, and four
for numeric row; a decimal digit requires only the four
bits for designation of the number. This binary abbrevi-
ation of Hollerith code is given in table 1—26.

As an example of the use of this binary-coded
Hollerith code, the letter D is represented as 010100

UNCLASSIFIED) 3

Binary Card UNCLASSIFIED PART 1
423-424 T.0. 31P2-2FSQ7-112 CH 3
PROGRAM
IDENTIFICATION BINARY CODED
AND DATE IN
HOEL‘éR.$H CODE QDENTIFICATION LAST WORD
4 N\

|000|000,00G‘00Il,llll[h*[ﬂﬂl)DDO.UDO&UNHJO 000,000,000,000,000+000,000,000,000000)

slrzapssle slmnmmuss 123las

monmonmonmanmnnhknnmuomunmnoPno+msomuomne?unmuannomouPuuuunmun
| 1 |]
unuoonouoonnooou+monmuomoamnomouhhunmnnmooPooPnu+munmoomnomsumuurmuomoomnnmnu?un
| I I
IREERERRRRERRREE! hnumnnmﬂnMnuMnnpmunmnnmuuwuumon+nuumnomnomocmnu +000I000000I000000
S123{4586|18 slonlsumsh 2 3less)rs SO TIP3 MISS 12 314 5 6f7 8 3jun xz||31u5s|| 2345 8|7 B oM
2222222222222222 pnomnomoamuewoo+Punmonmnomuomoo+PnnPnuPuomoumuu:Puu#unmuuwnuwnn
o o |
3333333333333333+moomuomoumoopuoumuumunmonmuopuo+monPuumnuPnuPuuhmnumoamnuPnnPnu
I | |
4444444444444444+muomuomoumunmounhunPnnPnuPnnmnu+nuuPoumuomuumunﬁmnnmonmuupnnpno
b | i
5555555555555555:+/000,00010001000/000,+/000/000000000/000+ %uamucmoumuumuuhauuMuumunmunmnu
slr o sponuwisumnsisitzslaselr s shon 1213 1415)S 1 2 s §]7 8 90 23S

5liBEBli6BﬁBG56665+l000|000|000:000|000| |0l1ll|l‘0l]=l]ﬂﬂlﬂﬂllml)0+}000:000;000:000"10ﬂ|*:ﬂ00=000:000:0Uﬂ:ﬂﬂll

| |

1T171711117171111111 |000]000!000")00:000:+|000:0Ill]:ﬂllll|ﬂl]0:0ll!!
|

2 3dAL QYYD ANVNIS

*:0 oolooeloooioo 0:0 ochkloo 0;0 0 ﬂ;ﬂ 00100 l]:l] 00
| | |

| |
88883888888888886¢00010 lI] ﬂﬂﬂDﬂﬂﬂ*ﬂﬂOlﬂﬂDﬂO!ﬂlﬁﬂﬂ[ﬂﬂ"lll[II]IﬂDOlUDU'ﬂ00:000|+|ﬂ|10:000|00m000;000
! I I | | | |
9999 9*'000000000‘00000+|oull|ﬂl]ﬂ|l]ﬂll‘ll

9999999999
123456 789100012135 60718 19 20121 2 2024 75 %127 28 23 an:nu:s:sﬂ:l:lhnuluuts % u 9150
M B36468

| |

FIRST WORD /MEMORY
LOCATION
FOR FIRST
WORD

/NUMBER OF

/COMPLEMENT OF

WORDS ON CARD CHECK SUM

Figure 1—48. Special Punching on Binary Card

TABLE 1—26. BINARY FORM OF HOLLERITH CODE

CODE BITS CONTENT MEANING
First two 00 No zone punched
01 12 zone
10 11 zone
11 0 zone
Last four 0001 1-row
0010 2-row
0011 3- row
0100 4-row
0101 5-row
0110 6-row
0111 7-row
1000 8-row
1001 9-row

while the digit 7 appears as 0111 if the position it is
contained in is known to contain a number rather than
a letter; i.e., the 00 indicating no zone is understood.

The control information shown in 9-row left of
the binary card may include specification of the memory
location for the first word contained on the card (col-
umns 20 through 32) and the number of words on the
card (columns 44 through 48). In addition to these
items, the word in 9-row left may specify that the pro-
gram words are to be stored on a drum (column 33),
the drum field (columns 37 through 42), and the inter-
leave if any {columns 18 and 19).

The word in 9-row right may contain the comple-
ment of a number called the check sum. The check sum,
a form of redundancy check on informadon transfer,
is the sum of all words on the card except the words in
the 12-row and 9-row. With the check sum is comple-
ment form on the binary card, the Central Computer
System can check for any errors in reading the words
on the card by adding these words to the check sum; a
zero result indicates that no error has occurred.

4.2.4 Card Image

When the contents of an IBM card are transferred
into the Central Computer System, they appear therein
in a form known as a card image. Figure 1—49 shows
the relafionship between the words on a card and the
words in a card image. In effect, the card image in
memory contains the words from the card in the order
9-row through 12-row, with the word from the left
half of each row preceding the word from the right

14 UNCLASSIFIED

PART 1 - UNCLASSIFIED Fig. 1-49

CH 3 T.0. 31P2-2FSQ7-112

[12-ROW_LEFT | 12-ROW RIGHT]

[II—ROW LEFT I I-ROW RIGHT]

| O-ROW_LEFT | 0-ROW RIGHT]

[[-ROW LEFT I [-ROW_RIGHT 1

1 2-ROW LEFT [2-ROW RIGHT]

[3-ROW LEFT | , 3-ROW RIGHT]

[4-ROW LEFT I 4-ROW RIGHT]

[5-ROW LEFT | 5-ROW RIGHT]

[6-ROW LEFT T 6-ROW_RIGHT]

| 7-ROW LEFT | 7-ROW_RIGHT |

! 8-ROW LEFT] 8- ROW RIGHT |

{ S-ROW LEFT I 9-ROW RIGHT]

IBM CARD
MEMORY LOCATION x [9-ROW LEFT |
X+ | 3-ROW RIGHT]
x+2 | 8-ROW LEFT]
x+43 | 8-ROW RIGHT]
x+a | 7-ROW LEFT]
X+5 | ' 7-ROW_RIGHT]
x+6 | 6-ROW_LEFT |
x+1 [6-ROW RIGHT]
x+8 | ‘ 5-ROW LEFT]
x+9 | 5-ROW RIGHT]
x+10 | 4-ROW LEFT |
X+ 4-ROW_RIGHT il
x+2 | 3-ROW LEFT]
X+13 | 3-ROW RIGHT i
x+14 | 2-ROW LEFT]
X+I5 | 2-ROW RIGHT 1
X+16 | |-ROW_LEFT]
x+17 | [-ROW RIGHT J
X+18 | 0—ROW. LEFT]
x+i9 [0-ROW _RIGHT]
x+20 [[I-ROW _LEFT]
x+21 [| I-ROW RIGHT]
x+22] ' i2-ROW LEFT]
X+23] 12-ROW_RIGHT]
CARD IMAGE

Figure 1—49. Relation of Card Image to IBM Card

UNCLASSIFIED 15

Card Reader

UNCLASSIFIED

PART 1

424 T.0. 31P2-2FSQ7-112 CH 3

Figure 1—50. Card Reader, Type 713

- half of that row. The form of the card image is deter-
mined by the modes of operation of the card machines
and the Central Computer System; i.e., the card machines
can handle 64 bits at a time while the Central Computer
System can handle only 32 bits at a time. Since the card
image can contain aii the information from a card in
a known pattern, it is possible to program the Central
Computer System to interpret this information just as
if the information were still in the pattern present on
the card itself.

It is important to realize that programmed inter-
pretation of the information in a card image requires a
prior knowledge of the form of that information on
the card from which the card image was obtained. If the
character A is presented in Hollerith code in column
26 of an instruction card, the card image of that card
will contain a 1 in bit L9 of the word from 12-row left
and a 1 in bit L9 of the word from 1-row left. A trans-
lation program must take account of the relationship
between these bits in what would be unrelated words

16 UNCLASSIFIED

PART 1

if not part of a card image. Similarly, a program for
the preparation of a card image for delivery to a card
machine must be written with the requirements of the
card image kept in mind.

4.3 CARD READER

4.3.1 Operation

The card reader (IBM type 713) shown in figure
1-5¢ allows the insertion of information from punched
cards directly into the Central Computer System. The
card reader reads a card a row at a time within a
cycle of 400 milliseconds, with a maximum reading rate
of 150 cards per minute. Only columns 17 through 80
of each row are read, allowing the storage of the in-
formation from one row within two Central Computer
System words. The reading of a card 9-row first pro-
duces the card image in core memory described in 4.2.4.
Approximately 15 milliseconds elapse between the read-
ing of successive rows on a card. The remaining time
within the card reader cycle (400 — 11 X 15 milli-
seconds) is used to move the card into and out of the
reading section of the card reader.

['HOPPER

READ BRUSHES —\
CONTACT ROLLER—\

Z CARD A

T
READ STATION

The cards to be read are placed in the card reader
hopper face down and 9-row to the rear. When the
reading of a card is called for by the Central Computer
System program, the card is moved bottom edge first,
between the read brushes and the contact roller. (See
fig. 1—51.) A punch in a particular column of the card
row being read is sensed by the brush in that column
making contact with the roller. As each row in read,
the card is advanced to place the next row under the

UNCLASSIFIED
CH 3 T.0. 31P2-2FsSQ7-112

Card Reader
424-43.2

read brushes. After all rows on the card have been read,
the card is eventually placed in the stacker to be dis-
carded or stored for later reuse.

4.3.2 Contirols and Indicators

The controls and indicators on the card reader are
shown in figure 1—52. Their functions are listed in
table 1—27.

CARD
NOT POWER
START | STOP | FEED | piry | READ | FEED |PONER | FuSE

|O— PUSHBUTTONS J[: LIGHTS >!

Figure 1-52. Card Reader Conirols and Indicators

TABLE 1-27. CARD READER CONTROLS AND

INDICATORS
CONTROL OR
INDICATOR FUNCTION
START push- If not already done, feeds card
button from hopper to read station,
turns off NOT READY light,
and transfers control to Cen-
tral Computer System; inopera-
tive while card reader is under
program control.

STOP pushbutton Returns card reader to manual

. control and turns on NOT
READY light; action is de-
layed if pressed during card
cycle.

FEED pushbutton =~ Advances cards through card
feed unit while pressed; in-
operative unless NOT READY
light is on.

NOT READY On if card reader is not ready;

indicator i.e,, not under program con-
trol, no card at read station,
stacker is full, improper power
is applied, or fuse is blown.

READ indicator On while information is being
transferred to Central Com-
puter System.

CARD FEED On if a card feed failure has

STOP indicator occurred.

POWER ON On if a-c power is applizd.

indicator

FUSE indicator On for blown fuse if 40-volt a-c

power is applied.

UNCLASSIFIED n

Information Transfer

UNCLASSIFIED

PART 1

433 T1.0. 31P2-2FSQ7-112 CH3

TABLE 1-28. CARD READER PROGRAM

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENT
1 SEL (01), — Selects card reader for use in all subsequent IO opera-
- : tions until another 10O unit is selected.

2 LDC x Places in IO address counter the address of the first
memory location to receive a word from card
reader.

3 BSN (11)4 ¥y Senses for not ready condition at selected IO unit;
branches if not ready to instruction at address jy.

4 RDS n Reads » words from card reader.

5 Next program

4.3.3 Information Transfer

Before the catd reader can be used to insert informa-
tion into the Central Computer System, it must be placed
in the ready condition; a deck of cards must be placed
in the hopper; and the START pushbutton pressed. A

program of the form given in table 1—28 then brings ’

information from the card reader into the Central Com-
puter System.

The Sense (IO unit not ready) instruction is
included within the program to prevent hanging up
the Central Computer System on.an impossible 10
operation. The branch of program control may be either
to a Program Stop instruction to call attention to the
card reader or to another program which will return

" to this program in the expectation that the card reader
will be readied before the return.

The RDS # instruction actually initiates the reading
operation of the card reader. If » — 24 or 304, all the
words on one card are read and transferred to the
Central Computer System. If » > 24, all the words on
one card and as many words as specified are read from
succeeding cards. When the number of words to be
read is fewer than the number of words on the card,
only the specified number of words is transferred to
the Central Computer System although the entire card
is passed by the read brushes of the card reader. The
remaining words on that card cannot be read unless the
card is manually repositioned for another pass through
the card reader. An RDS O instruction thus moves one
card past the read brushes without transferring any
information. In effect, the card is skipped.

The path followed by information from the card
reader is shown in figure 1—-53. As each row of a card
passes under the read brushes, two words are read.
The word from the left half of the row (columns 17
through 48) is placed in the IO register; the word from

the right half of the row (columns 49 through 80) is
placed in the IO buffer register. A break request is
generated by the card reader and sent to the Central
Computer System. At the first convenient point, the
Central Computer System executes a break cycle trans-
ferring the first word into core memory. (Refer to
3.1.3.1.) During this break cycle, the second word is
transferred into the IO register. A second break cycle
is initiated by the Central Computer System immediately
following the first to place the second word in core
memory. The Central Computer System then returns to
internal operations until two more words and another
break request are received from the card reader, causing
the process to repeat.

The IO operation involving the card reader con-
tinues until the IO word counter is stepped to zero. At
this time, 1 signal is sent to the card reader stopping
the transfer of information but not stopping the card
reader read cycle. When the read cycle is completed,
the card reader sends a disconnect signal to the Central
Computer System, clearing the IO interlock and ter-
minating that IO operation. Thus, although the IO word
counter may step to zero after the first word from a
card is stored in core memory, no IO class instructions
may be performed until the card reader completes its
read cycle. Use can be made of this fact to delay the
execution of subsequent instructions if these subsequent
instructions, are to process the information being read
by the card reader. The next program referred to in
table 128 can be preceded by a SEL (01) instruction.
This instruction cannot be executed while the 1O inter-
lock it on. Therefore, the instructions following it will
not be executed until the YO interlock is cleared.
Although the program delay may be excessive in the
case of reading less than a full card, it is a sure means
of delaying a program until the information needed
by the program is available in core memory.

8 UNCLASSIFIED

PART 1 UNCLASSIFIED Card Punch
CH 3 T.0. 31P2-2FSQ7-112 44-44.3
CORE MEMORY
- A Al
FIRST SECOND STORAGE
WORD WORD ADDRESSES
IO ADDRESS
I0 REGISTER COUNTER
[FIRST WORD FROM SECOND
READ BRUSHES 17 THRU 48 WORD
I0 BUFFER REGISTER
SECCND WORC FROM
CARD READ BRUSHES 49 THRU 80
READER WORD COUNTER=0 10 WORD
COUNTER
_ ADDI AFTER EACH
WORD TRANSFERRED SELECTION
CLEAR IO INTERLOCK S ELECTIC
ELEMENT
BREAK REQUEST

Figure 1—53. Card Reader Information Flow

4.4 CARD PUNCH

4.4.1' Operation
The card punch (IBM type 723) shown in figure

1-54 allows the Central Computer System to present:

processed information in punched card form. The card
punch has an operating cycle of 600-millisecond duration,
allowing a maximum punching rate of 100 cards per
minute. Since the card punch normally punches only
columns 17 through 80 of each row, the Central Com-
puter System must supply two words for each row. The
order in which the card punch handles a card, a row
at a time and 9-row first, requires the preparation of
a card image in core memory in order to have punched
information appear correctly on a card. (Refer to 4.2.4.)
Approximately 31 milliseconds elapse between the punch-
ing of successive rows on a card. The remaining time
within the card punch cycle (600 — 11x31 milliseconds)
is utilized in moving the card into and out of the
punching section of the card punch.

Unpunched cards of the desired type are placed
in the card punch hopper face down and 9-row to the
right. When the punching of a card is called for by
the Central Computer System progr;m, the card is
moved, bottom edge first, between the punches and the
dies. There is one punch per column (See fig. 1—55).
The card is punched in a particular column of the row
under the punches if the words from the Central Com-
puter System contain a 1 in the bit position correspond-
ing to that column.

After the card passes through the punching station,
it goes to a reading station. The card punch can, under
program control, connect the punch brushes reading
columns 1 through 16 to the punch magnets over the
corresponding columns. With this provision, the infor-
mation in columns 1 through 16 of a card just punched
can be duplicated on the card passing through the punch
station by gang punching. A programming provision
also exists for switching the inputs for the punch mag-
nets over columns 17 through 32 to the punch magnets
over columns 1 through 16. Thus, the Central Computer
System can place information in the identification field
of one card, then have this information gang punched
on each succeeding card. After a card has been punched
and read by the punch brushes, it is placed in the stacker
from which it may be removed for storage or for rein-
sertion into the Central Computer System through the
card reader.

4.4.2 Controls and Indicators
The controls and indicators on the card punch are
shown in figure 1—56. Their functions are listed in
table 1—29.

4.4.3 Information Transfer
Before the card punch can receive information from
the Central Computer System, it must be placed in the
ready condition; a deck of blank cards must be placed
in the hopper, the various interlocks around the punch-
ing station must be in place, and the START push-

UNCLASSIFIED 19

Information Transfer

UNCLASSIFIED

443 T.0. 31P2-2FSQ7-112 CH 3

"
)
L

Figure 1—54. Card Punch, Type 723

button pressed. A program of the form given in table
1~30 then brings information from the Central Com-
puter System to the card punch. '

The WRT # instruction actually initiates the writ-
ing operation of the card punch. If #,—= 24 or 304, the
complete card image is transferred to one punched card.

If » > 24, one card is completely punched for each

group of 24 words while any remaining group of words
less than 24 is punched on one card and that card is
passed by the punching station. No more words can be
punched on this last card unless the card is manually
repositioned for another pass through the card punch.
A WRT O instruction thus passes one card through the

N W e T

punching station without transferring any_information

. e

—to-the tard, 'in effect, skipping the card,

80 UNCLASSIFIED

PART 1
CH 3

UNCLASSIFIED Card Punch Controls
T.0. 31P2-2FSQ7-112 443

TABLE 1-29. CARD PUNCH CONTROLS AND INDICATORS

CONTROL OR INDICATOR

FUNCTION

START pushbutton If not already done, feeds card from hopper to punch station, turns off NOT
READY light, and transfers contro} to Central Computer System; inoperative
while card punch is under program control.

STOP pushbutton Returns card punch to manual control and turns on NOT READY light; action is
delayed if pressed during card cycie.

FEED pushbutton Advances card through card feed unit while pressed; inoperative unless NOT
READY light is on.

NOT READY indicator On if card punch is not ready; i.e., not under program control, no card at punch
station, stacker is full, improper power applied, or fuse is blown.

WRITE indicator On while information is being transferred from Central Computer System.

CARD FEED STOP indicator On if a card feed failure has occurred.

POWER ON indicator On if a-c power is applied.

FUSE indicator On for blown fuse if 40-volt a-c power is applied.

TABLE 1—30. CARD PUNCH PROGRAM
INSTRUCTION
LOCATION OPERATION ADDRESS COMMENT

1 SEL (02), - Selects card punch for use in subsequent IO opera-
tions until another IO unit is selected.

2 LDC x Places in IO address counter the core memory address
of first word of first card image.

3 BSN (11)4 ¥ Seases for not ready condition at selected IO unit;
branches if not ready to instruction at address y.

4 WRT n Writes 7 words at card punch.

5 SEL (02)4 - Delays next program.

6

Next program.

FEED HOPPER
PUNCHES
\ MAGNETS

avmina

I

——

(=4, 4

NOT | CARD |poweR
roaby |WRITE | FEED [POWER | £yse

STOP

START | STOP | FEED

CONTACT .
R°""ER F—-wsuaunons =|[= LIGHTS —.I

Figure 1—-56. Card Punch Controls and Indicators

T T~ o
The path followed by information to the card punch
DIE _/ is shown in figure 1—57. The WRT » instruction starts
PUNCH BRUSHES)
FOR GANG the punch cycle of the card punch, moving a blank
PUNCHING card into position so that its 9-row is under the punches.
N At this instant, a break request is sent to the Central
STACKER : .
- Computer System, causing the execution of two break
Figure 1—55, Card Feed Unit, Card Punch cycles in sequence to supply two words to the card punch.

UNCLASSIFIED 81

Line Printer UNCLASSIFIED PART 1
44.3-4.5.1 T.0. 31P2-2FSQ7-112 CH 3
CORE MEMORY
A
r\L T‘
10 ADDRESS
10 REGISTER COUNTER.
- _FIRST WORD TO
PUNCH MAGNETS I7 THRU 48
_ SECOND WORD TO
PUNCH MAGNETS 49 THRU 80
WORD COUNTER=0 10 WORD
COUNTER
ADD | AFTER EACH
Fﬁ?ﬁgn h WORD TRANSFERRED
CLEAR 10 INTERLOCK sékﬁ?ﬁ'&"
‘ ELEMENT
BREAK REQUEST
PUNCH INFORMATION FROM COLUMNS
I7 THRU 32 IN | THRU I6, PER (73]g PER SELBSN
DUPLICATE COLUMNS | THRU 16 OF MATRIX

~ PREVIOUS CARD ON THIS CARD,
PER (74)8

Figure 1—57. Card Punch Information Flow

(Refer to 3.1.3.1.) The first word is normally applied
to the punch magnets over columns 17 through 48 while
the second word is applied to those over columns 49
through 80. The Central Computer System returns to
internal operations after supplying the two words until
the card punch moves the next row of the card under
the punches, causing the generation of another break
request and a repetition of the transfer process.

The IO operation involving the card punch con-
tinues until the IO word counter is stepped to zero.
When this occurs, a signal is sent to the card punch
stopping the transfer of information but not stopping
the card punch card cycle. When the punch cycle is com-
pleted, the card punch sends a disconnect signal to the
Central Computer System to clear the IO interlock and
end the IO operation.

In order to prepare a program on a deck of binary
cards, it is necessary to have information which would
normally be punched within the information field of
the card punched in the indentification field instead.
The instruction PER (73); following the WRT instruc-
tion causes the information normally placed in columns
17 through 32 to be punched in columns 1 through 16.
Thus, a card can be punched bearing identification in-
formation. This information can be duplicated on each
subsequent card by programming a PER (74)s instruc-
tion just after the WRT 305 instruction which initiates
the punching of that card. The PER (74); instruction
causes gang punching of the information from columns

1 through 16 of the card just punched into the corre-
sponding columns of the card being punched during the
current card cycle. In order to maintain this gang punch-
ing for each card, the PER (74);g instruction must be
given for each card cycle.

4.5 LINE PRINTER

4.5.1 Operation

The line printer (IBM type 718) shown in figure
1—58 provides the means for the Central Computer Sys-
tem to prepare information in printed alpha-numeric
form. The line printer prints a line at a time by the
simultaneous positioning of as many of its 120 type
wheels as is possible within one card cycle of 400 milli-
seconds. The normal printing rate of the line printer is
150 lines of 64 characters each per minute. The Central
Computer System must normally supply a full card
image for each line of 64 characters. A type wheel is
shown in figure 1—59. As can be seen, all characters
selectable by Hollerith code are arranged on the type
wheel numeric sectors with the four characters within
each sector selectable by the zone indication.

At the start of a print cycle, all 120 wheels are
lined up with the character 0 in printing position. All
the wheels begin rotating as information is supplied
to their positioning controls. The information applied
to the positioning controls of each type wheel arrives
in the order used in reading one column on a punched
card; i.e., 9-row, 8-row, etc., then 0-row, 11-row, and

82 UNCLASSIFIED

PART 1 UNCLASSIFIED Line Printer
CH 3 T.0. 31P2-2FSQ7-112 4.5.1

i) B S e e »
I ok ‘“'”“s\? Ttk ,‘“”,»,;Mr,x i

St g i 't' i
e, e 4 ,,,,,Mn,, »)«(¢ g >> A it i ,x (S i w3 S«&mxyn m o ot ,,W i ¢ «g« uq ume& ”u“‘ m‘v’ o ""‘ “‘ “' : x»u»« s w“ B
«* "“' Sk ‘Mw G W,ww,:,w g s Y i * E N

i >,, ¥ Bl e iy he p G

I O SR s e v A e v e >;mm i i

e o e

SR N e

i e e i & 4 G ,‘iﬁ'w v
B w“ o b e i : o G
% RN m»«»w; " et s “ e v i

g g
ot St A

G o o i i
: i i i ; it R AR § e

e i u o, A0 o
k2 : L @ E i E e
i i i i
pra

i
% M w,,,(,“,dm«
. e i 5 i LR L L e M:‘”

R A e i b B ¥ g - sl

A R § .

i L
i o : 8 St i i u s . £ e N
S T : b : m;w . *w (i r»fkskwx’;yfﬁ)m an Dmm‘ - e e 3
s il i : i 2 e o il Mt el x:*f,’,im e e smasn ; LA < e o A0 A G
”t‘,;:‘:; PASEEE , el . Lanteh *::t,w;*f::i;:‘::m::;t e :
L

S S
e ’jfig::;;’;:t;, L
, i i s S Sy KWWW\, s
gy . AR it ! S
o S0 ol ;;;;ﬂs ; M*;:‘fi;qj};g' i e oy o R
S e mzv; b
o

i <:f S S
P “ » E
i i o = e G
L i . L i i i ! WM,M s
A g - 5 i xow;mv«xmixfn ‘ i s) o " e o o
e ,.x,u,:&.‘,,u‘;,,« o . e . e e ‘@‘@Qg,xmm el i

- . ‘

|
| o
(i imv» G il . Nl “ i . ; = ‘f ’{’I%?ii‘f?iikkxs
L e T e S
i e e it e
- ,’si,m,,mw L i i
“(&Muq)rb“ﬂ(kuﬂ ‘x‘ i m»m x! o
: L

W
i A
e : >m;xw r

e
k.
Ly
i

x«m il

w,,u i
g
i s s
’ Ly " i Bt i i, . 4 i e
GoamE R G . L m ,r ,W, :.,Mmms A By b 5"““m' o
oty «,‘u,,m i : : i e 16; oo s ! by » .
B e B sg;; St e i i o i
N L e i : - 5% i i ,,;‘;inm,xm ;gﬂ i ’
s T ! i i ke 124 ; Wi e s TR
: ‘*‘ ““”““ " ggg i g;,i:;quwx«mlm‘m o wr s “’“ ok b e e ,xm e e
: SN ”“‘i‘ii ?zn;xﬂq;’v‘;‘:‘\‘ s L,,x,fxs.m,n».s,.,,uw s A ffmx«
gl AR R “vg s -
i gy i o “sw'“x)_‘w,fr*, s ,M,,‘x,%zé\,c U:Man iy a A
e A o s S . s
gz;:w:;wxw P mieae V; i S e é‘zww, ey
..“-nms»;mwm o i “‘im(n i mm xmxw,m
xx

e

b

i i S ”‘é*“’”““""““‘* e |
e ; e ety g s

)
W»sm*w ST s it o i i
. Bl . M,m,‘,‘“,x,‘, sl . e
Wﬁ‘:‘,z,“gg x»fi;iiﬁjk«xmﬁ«&msmss%‘rx e w,,xm,mv;;:,g‘:,;;; 2 i vﬁ s o
i wm i R i ‘ : ;s
g . , e | , s i i SR e s g
! 4 o . e

12
S
-

-

o

: i
i Mcmﬂ;m;xmx«m o
Bl xy;(!«‘mvﬁmxx!mmnﬁmo«!x T e

e L ;wmxmmxmw
BN e N mzswwﬂ«
ShGE A TR s

5
. e e
e e«mwsmxx;wnwwmm Slmnisn e : i
B sl St B o S Ia ﬁs;qv

A m
. i o s e i o L
il il ;gn L swxmmmw é‘”i"‘&; “«:" . e
Newa b : e . i e x_
i e A 7 i i il i 0 aipetia A
G o , ~ s s S e
.
L $MI

&

o g
S
C

s
L

.

A s . : i
gl g e 0 T " ; e " . i e] Dot
R > & 7 e ~ “ i x i . fiy ity L

& ; " % A et

3 e v
N
”u» e gieponm by o w -
R S g

& sw S W

T ‘(w «, ,L,m,y« o e g o0 it 7« e i (,x S it

u;» K e ,-Lss» b oy e e

‘ - ’?* - i « i i B N «mu mmm‘,‘r

e o AR e - s ® i #
IS e

FERE RS LY iy SN
.«L ‘ i G ":Uf.xl e
e G g it o
R o S

b £ T I; v 8 i
g B s«w,m,r,« »“t;‘,,w,k,w, i o
et e Mx, m“‘«»« s

s ,m s
v B Y y sttty
(e 8 s foryen i

B ‘, i n o

St i i Mw,x o ot
& e i S e S W g b
e B2 L e e S T ‘)

. . o : |

2 e .
e : iy A
I e L sidren e 0 g e i, G Sy : . el e S o

B e : o &
st v *“‘”";[B S e e e i L.

x 5 W «x Ty it i me ;»w

- . ;
R Gl
o

e wE AU i e i & s 1 Pl W . ” b
x,,r, i 3 i S LRI i A w . iy g ; :

. s b b fo R .,U«m ,‘,, et e Bhrories S \;),“ i R A sk o fae ol B AN e R v e i
"“'I i ,,W.,’,,j,«:m“,,,..,mmc, e B e O o i lf ‘f’x« 5 ; Tl G A e i

G B Lt i i s I A m,,,‘w i R RAEANGAAY : . g P SRR EAN SR AN S Y it hm

s P ,*“» iy »«ilf..'i P 8 e Gay viRuL bl i S g 'iq,w(,t’w,‘ o

(R i «,,» W Ry . e p e daniy P s , g Tl

o e p o
B i S e e i e s o A S

i e

Figure 1-58. Line Printer, Type 718

12-row. A bit arriving at a time corresponding to the in that position if a 0-zone bit is received or advanced
reading of a given numeric row stops the wheel with to the 11-zone character if no 0-zone bit is applied.
the 0-zone character of that numeric sector in printing Again, the wheel is advanced one character for each
position. (A double numeric punch, 8-3 or 8-4, selects subsequent missed zone bit until 12-zone time. If no
the 0-zone character within the indicated sector.) When 12-zone bit is applied, the wheel advances to the no
the zone bits are applied, the type wheel is allowed to zone character, 7, and locks. Just after 12-zone time,
advance one character position for each nonpresent zone those print wheels which are energized strike the paper
bit or locked when a zone bit is supplied. Thus, a type to print out the information supplied to the line printer.
wheel positioned at the 0-zone character of the 7-row It should be noted that, in normal opération, the paper
sector by a bit received at 7-row time is either locked form is spaced while the print wheels are being posi-

UNCLASSIFIED 83

Control Panel
45.1-45.2.1

He8ZRrR, COMMA
N /—

$ /—DECNAL

0 lg “
wi| -

ZERO
s(In} ﬂ. (START)

Figure 1—59. Type Wheel, Pictorial Diagram

tioned. Thus, the printed line remains under the print
wheels until the next print cycle is begun.

This discussion of the normal operation of the line
printer is based on the assumption that the wiring of
the line printer control panel is of the simplest nature.
Overall operation of the line printer is extremely flex-
ible when the control panel is taken into account.

4.5.2 Controls and Indicators

4.5.2.1 Control Panel

The control panel for the line printer is shown in
figure 1—60. As shown on the right half of that panel,
the information from the Central Computer System
appears at the CALC EXIT hubs. The ODD WORDS
exit hubs receive the bits of the words corresponding to
the left half of a card image while the EVEN WORDS
hubs receive the words corresponding to the right half
of a card image. For normal printing of 64 characters
per line with no variations, these CALC EXIT hubs are
wired to the PRINT ENTRY hubs. There are 120 PRINT
ENTRY hubs, one for each print wheel. The informa-
tion from the Central Computer System can be applied
to any 64 of the 120 hubs, thus allowing printout with
any number of characters per printed column and in any
desired order within each line. If it is desired to insert
a character in a particular column, the exit hubs within
the box labelled CHARACTER EMITTER can be used
for that purpose. Each hub within this group emits
pulses at the correct times to generate the designated
characters. For example, the L emitter provides a pulse
at 3-time and at 11-time. The BUS hubs shown on both
halves of the panel are provided for multiple connec-
tions, each bus is a set of four hubs wired together. The
FILTER hubs are simply one-way circuits, usable for
isolation purposes.

The CO-SELECTORS 1 through 32 are relay-con-
trolled transfer switches. Each CO-SELECTOR provides

UNCLASSIFIED
1.0. 31P2-2FSQ7-112 CH 3

PART 1

five single-pole double-throw transfer circuits. The five
hubs in the C row are the switch arms, the hubs in the
N row are the normal connections, and the hubs in the
T row are the transfer connections. Each CO-SELECTOR
is controlled by a CO-SELECTOR PICKUP (shown on
the left half of the panel). By applying a pulse to a
given CO-SELECTOR PICKUP, all five switches of the
corresponding CO-SELECTOR transfer, breaking their
C-N connections and making their C-T connections.
The PILOT SELECTORS 1 through 10, top and
bottom group and their corresponding PILOT SELEC-
TOR PICKUPS allow the transfer of two single-pole
double-throw relay contacts. These PILOT SELECTORS
can be used to control a group of CO-SELECTORS
simultaneously. The PILOT SEL COUPLING EXITS
provide a d-c level at each hub when the corresponding
PILOT SELECTOR PICKUP is energized. The PILOT
SEL COUPLING EXITS can thus be used in place of
the original pickup signal to avoid overloading its source.
An interlock is provided on the control panel in
the hubs labelled PR ON. Unless these two hubs are
connected, the line printer is inoperative. Certain hubs
provide pulses at specified times for control purposes.
The PRINT CYCLES hubs are energized once each print
cycle. ALTER hubs 1 through 4 are energized at the
same time as the PRINT CYCLES hubs, providing that
the corresponding ALTERATION switch is on. The
SPLIT COLUMN CONTROL hubs are energized se-
quentially during a print cycle in such 2 manner that
a hub between two numbers on the panel is energized
between the times of reception of the rows designated
by those numbers. The OPERATE EXITS are energized
when the corresponding PER (%) instruction is executed
by the Central Computer System. Similarly, an impulse
wired to SENSE ENTRY hubs 1 or 2 can be detected
by the appropriate BSN (u) instruction. OPERATE
EXITS 1 through 10 correspond to PER (51), through
PER (62)y and SENSE ENTRY hubs 1 and 2 are ex-
amined by BSN (31), and BSN (32), respectively.
The hubs that have not been described are all used
in controlling paper feed through the carriage of the
line printer. The SHORT SKIP hubs on the right half
of the control panel may be wired to skip up to seven
lines on a form without delaying printing. If more than
seven lines are to be skipped, a separate cycle is required
to allow time for the paper feeding through the car-
riage. Normal spacing is provided by wiring SPACE
hubs 1 or 2 for a single or double space between each
line. If the EXTRA hubs are plugged, the effect of the
SPACE hubs is doubled. The SUP hubs, if impulsed
during a print cycle, suppress all normal spacing during
that print cycle, thus allowing printing of more than
64 characters per line. The SEL hub provides for selec-
tive spacing under control of a paper tape on the printer
carriage. This control tape contains 12 columns, each

84 UNCLASSIFIED

PART 1

@%@&%%_@%&@‘ ‘@’%

%@m@@@@@&@&@aw@ww&@ﬂ
=&%%@@@%&®@W@&a@m@@@®@a
’@@
xxr . X
o0 %@a%@@'&%@@%&&&b@g&
8000 »g@@&é@&@&@ﬁ@@%
' SY T FY)
& ﬁ“@ ©-6-6-0-0-0-00°0

FELTER

w@&w&mw&w&@&@@&w%m@wwq
o0 @-m»»aw«@ Eﬁw-@»»@«a &-5-8-9-8) 02&

&@%%W@%&ﬁ%

&@@@a&a%aaw@»sﬁwamaﬁsa
3 gww%&am@%@wgﬁ
@@@@ﬁmm@%s ©0600000609

@@ﬁ@%@&%&#@@ﬂ

-B-0-6-¢ 0-0-6-0-6 -0-6-9-9 B- &«&»@%&@%
9696 60660 260869 @«@v%@ﬁ@ ﬂs
,‘3@4%%@@%&@%@@%@@%@%@%‘@%

@&%&@@&@%&@ﬁ@@@&@%@@

|

)

Figure 1-80. Line

sensed for punches by a separate brush. If the SEL hub
is impulsed, the carriage advances the paper until a
punch is sensed in column 11 of the control tape. Simi-
larly, CARRIAGE SKIP hubs 1 through 10, when im-
pulsed, advance the paper form until a punch is sensed
in the corresponding column on the control tape. In
addition, a punch is placed in column 12 to correspond
to a position just short of the end of a paper form.
When this punch is sensed, the OVFL hubs are energized
to indicate that printing is about to overflow the end
of the form. A signal from the OVFL hubs can be used

UNCLASSIFIED
CH 3 T1.0. 31P2-2FSQ7-112

Control Panel
452.1-452.2

ag»g@»w@mgwam@@%

Printer Control Panel

to initiate a carriage skip to the beginning of the next
paper form. Some provision must be made to prevent
printing if the carriage skip exceeds seven lines. Al-
though the NP hubs will suppress printing during the
print cycle in which they are energized, they will also
suppress spacing and cannot, therefore, be used to pre-
vent printing during a long skip.

4.5.2.2 Manvual Controls and Indicators

The controls and indicators on the line printer are
listed in table 1—31 and shown in figure 1—61.

UNCLASSIFIED 85

Information Transfer
4522-453

UNCLASSIFIED
T.0. 31P2-2FSQ7-112 CH 3

PART 1

Figure 1—61. Line Printer Controls and Indicators

More complete information on the line printer is
available in the IBM Manual of Instruction for the Ac-
counting Machine, Type 407.

4.5.3 Information Transfer

Before the line printer can receive information from
the Central Computer System, it must be placed in the
ready condition; the paper forms must be fed into the
carriage, the control panel must be properly wired and
in place, and the START pushbutton pressed. A pro-

gram of the form given in table 1—32 then brings in-
formation from the Central Computer System to the line
printer,

The basic program for use of the line printer may
be much modified depending upon the degree of com-
plexity of control panel wiring. The only limitation upon
the programming of this unit is the level of ingenuity
applied by the programmer. For this reason, no detailed
description of line printer information transfer is offered.

86 UNCLASSIFIED

PART 1
CH3

Tape Element
46-4.56.1

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

TABLE 1-31. LINE PRINTER CONTROLS AND INDICATORS

CONTROL OR INDICATOR

FUNCTION

START pushbutton

STOP pushbutton
PRINT CYCLE pushbutton

NOT READY indicator

WRITE indicator

FUSE indicator
FORM STOP switch

FORM STOP indicator

TEST switch

STOP BEFORE PRINTING
switch

If line printer is in ready condition, transfers control to Central Computer Sys-
tem and turns off NOT READY indicator.

Returns line printer to manual control and turns on NOT READY indicator.

Causes the line printer to print one line; inoperative unless NOT READY light is
on and TEST switch is on.

On if line printer is not ready; i.e., fuse is blown, control panel not in place, d-c
power not applied, paper form not in place, or line printer not under program
control.

On during a print cycle intiated by Central Computer System.
On when fuse is blown.

Controls stopping of line printer when out of paper; if off, form stop feature
inoperative. '

When FORM STOP switch is on, indicator goes on and line printer is rendered
inoperative by end of paper form in carriage; cleared by feeding additional forms
into line printer.

Equivalent in action to STOP pushbutton.

If TEST switch is off, this switch can suppress printing without removing the
printer from program control.

ALTERATION switches When on, an impulse is available during each print cycle at the corresponding
ALTER hub. ’
TABLE 1-32. LINE PRINTER PROGRAM
INSTRUCTION
LOCATION OPERATION ADDRESS COMMENT
1 SEL (03)y - - Selects line printer for use in subsequent IO opera-
tions until another IO unit is selected.
2 LDC x Places in 1O address counter the core memory address
of first word of card image.
3 BSN (11)4 ¥y Senses for not ready condition.
4 WRT » Writes # words at line printer.
5 SEL {03)s - Delays next program.
6 Next program.

4.6 TAPE ELEMENT
4.6.1 Introduction
The storage medium handled by the tape elements
is 1/2-inch oxide-coated plastic tape, similar to that
used in sound tape recorders. Information is recorded
on the tape in the form of small magnetized areas,
each area containing one binary bit. A character, a group

of seven bits on a line perpendicular to the direction
of tape travel, is the smallest unit of information handled
by the element. A complete character is written or read
as a unit by the recording heads of a tape drive unit.
Only six of the seven bits in a character contain informa-
tion; the middle bit is a synchronizing bit used to
ensure correct tape reading.

UNCLASSIFIED 87

Tape Element

UNCLASSIFIED

PART 1

4.6.1 T.0. 31P2-2FSQ7-112 CH 3

The next larger unit of tape imformation, known
as a word, corresponds in capacity to a Central Com-
puter System word, holding 32 bits plus a parity bit.
(See fig. 1—62.) Each tape word includes six characters,
five full ones and one (the first character) containing
only three information bits, Each word nominally
occupies 0.0242 inch of tape, thus allowing storage of
41.3 words per inch. One reel (the physical unit) of
tape, 2400 feet long, can hold about 1.2 million words.

A group of words written consecutively on a tape
in one IO operation is known as a record. The end-of-
record is indicated by a 3/4-inch blank space on the
tape (produced by erasing the tape that far beyond
the last word in a record). 4f a number of IO transfers
is carried out on one tape producing a number of records
written consecutively on the tape, the group of records
is known as a file. The end-of-file is indicated by a
one-word last record in which the three bit positions,
normally left blank, are written. (See fig. 1—63.)

TAPE TRAVEL

sy b WORD
r A Y
CHARACTER
[

tsfl sl vell Rl rel] musf] i

ull vl wll r] Rl wisf

tz] e} vuvafl reff wiof] | /2"
1 1 1 8 1 1

sl ol usf rsfl R 0

Laf] voll rsf ref] Rz} [t Fuee

s ull =l /A Rl O

—’i 0.004" iﬂ— T

SYNCHRONIZING
CHANNEL
——

OO . ..

je———————— 0.0242"

Figure 1—62. Tape Word Bit Positions

In addition to its information content, each tape
reel carries two types of control markings in the form
of reflective spots on the tape. The spots are sensed
by a photoelectric cell in the tape drive unit. One
spot, the load point, is placed 10 feet from the beginning
of the tape. The length of tape between the load point
and an end-of-file mark is designated as the file area.
The second spot, the end-of-tape mark, is normally 14
feet from the end of the reel but may be placed any-
where on the tape. Reading or writing a tape starts
from the load point. Although a
file area if the end-of-tape mark passes the photoelectric
cell during a writing or reading operation, that operation
may continue for another 4000 words if there are 14
feet of tape beyond the mark. However, a new writing
or reading operation cannot be started past the end-of-
tape mark. A summary of tape information and control
units is given in table 1—33.

tape is outside the

The three major components of the tape element
are:

a. The tape power supply unit
b. The tape drive units
c. The tape adapter unit

The tape power supply unit provides the non-
standard voltages required by the other two com-
ponents of the tape element.
logical function.

It performs no other

Six tape drive units are provided for in the tape
element. (See fig. 1—64.) Each unit includes read, write,
and erase circuits, tape speed control circuits, a tape
transport mechanism, and photoelectric cell sensing
circuits. The operating specifications of the tape drive
unit are summarized in table 1-34.

& FILE AREA »
x
.4
<
=
w w a Q. -
= 2 8 g z
[~ e o ° °
w o W o 'S a
' o o |O OTHER ok RECORD
— 14 —0' o —oi o O
L 4
% g lg 3 RECORDS g B ONE OR MORE WORDS g
w W jwox we -

END OF

G D0 CODD -
L

FILE BITS
2400’

N
¥

Figure 1—63. Tape Reel Information and Control Units

88 UNCLASSIFIED

PART 1 UNCLASSIFIED Tape Drive Unit
CH 3 T.0. 31P2-2FSQ7-112 46.1-46.2.1

TABLE 1—-33. TAPE INFORMATICN AND
CONTROL UNITS

UNIT DESCRIPTION
Character Six information bits and one synchronizing bit written in one line across the
width of the tape.
Word A group of six consecutive characters, five full and on;e containing only three in-
formation bits.
Record A group of consecutively written words.
End-of-record Blank space on tape 3/ inch long.
File ' A group of consecutively written records.
End-of-file Special one-word record indicating the end of a file.
Load point Reflective spot at beginning of usable tape.
End-of-tape mark Reflective spot near end of tape.
Reel Physical tape unit containing 2,400 feet of tape.
TABLE 1-34. TAPE DRIVE UNIT OPERATING
SPECIFICATIONS
CHARACTERISTIC SPECIFICATION
Maximum reading or writing rate 3,125 words per second LYY i /in
Character density 248 characters per inch (e

Word density
Tape speed
Rewind speed
Reel change time

Reel capacity

A3 i)
eDC i 193 ssk b“k/s

41.3 words per inch 2oeh kil 1 4o

75 inches per second
500 inches per second (average)
1 minute (average)

2,400 feet

Tape speed across the recording heads is main-
tained by a special motor drive that is independent of
the reel drive system. On either side of the recording
heads, the tape is fed into vacuum columns which main-
tain constant tension on the tape. Rotation of the feed
reel and take-up reel is controlled by the depths of
the tape loops in the vacuum columns.

The tape adapter unit connects the tape drive units
with the remainder of the Centrai Computer System.
Functionally, the tape adapter unit receives and interprets
command signals from the Central Computer System and,
in a sense, performs the change in information form
necessary between the tape drive units and the Central
Computer System.

4.6.2 Tape Drive Unit

4.6.2.1 Manual Operations

Although mechanical operation of a tape drive unit
is normally under control of the Central Computer

System, an operator at the unit may assume manual
control when necessary. For example, to change tape
reels, the operator takes control of the unit by pressing
the RESET pushbutton. The tape is rewound completely
onto the feed reel when the operator presses the LOAD
REWIND pushbutton. Pressing the UNLOAD push-
button then unloads the tape from the transport
mechanism. The operator may then remove the feed
reel and replace it with another reel of tape. To aliow
the reels to turn freely while threading the new tape
through the transport mechanism, the operator presses
the REEL RELEASE switches, When threading is com-
pleted, the operator releases the REEL RELEASE
switches and presses the LOAD REWIND pushbutton
which winds the tape to the load point. Before the
LOAD REWIND pushbutton is pressed, the load point
must be wound onto the take-up reel and beyond the
photoelectric sensing unit. Otherwise, when the LOAD
REWIND pushbutton is pressed, the load point will

UNCLASSIFIED 89

Programmed Operation
46.2.1-4.6.2.2

Figure 1—64. Tape Drive Unit

not be sensed to stop rewind and the tape will be torn
off the take-up reel. The reel change is now completed.
The operator returns control of the tape drive unit to

UNCLASSIFIED
T.0. 31P2-2FSQ7-112 CH 3

PART 1

the Central Computer System by pressing the START
pushbutton.

If the operator wishes to protect the contents of
the new reel from accidental writing or erasure, the
file protection interlock may be energized by removing
a special ring from the inner side of the reel. A file
protection interlock sensing pin on the tape drive unit
slips into the resulting groove, thus preventing writing
on that reel. A summary of controls on the tape drive
unit and their functions is contained in table 1—35.

In addition to the controls on the tape drive unit,
a number of control lights indicate the status of the
unit. The control lights are described in table 1—36.

4.6.2.2 Programmed Operation

Three mechanical operations of the tape drive unit,
selectable by the program of the Central Computer
System, are:

a. Move tape forward (read or write)
b. Backspace
c. Rewind.

The tape must be accelerated to the correct speed
before either writing or reading can begin. A normal
delay of 10 milliseconds is allowed (with an additional
40-millisecond delay allowed if writing or reading begins
from the load point). Reading each word requires 320
microseconds with a 150-microsecond delay after the
last word of a record. Writing requires an extra 150
microseconds, totalling to 300 microseconds after the
last word. This time which includes the time taken by
the tape in coasting to a stop, produces the blank space
denoting the end of the record.

A backspace operation moves the tape back over
one record, stopping the tape at the beginning of that
record. If the tape is in write status when the backspace
is given, the tape will move forward for 6 milliseconds
and take another 25 milliseconds to shift into reverse
before moving backward. The record is read backward
but is not sent to the Central Computer System. Only
the synchronizing track is read to sense the beginning
of the record. When the beginning of the record is

TABLE 1-35. TAPE DRIVE UNIT CONTROLS

CONTROL FUNCTION
START pushbutton Places unit under program control.
RESET pushbutton Places unit under manual control.
LOAD REWIND pushbutton Loads tape onto transport mechanism, then rewinds to load point.
UNLOAD pushbutton Unloads tape from transport mechanism.

REEL RELEASE pushbutton

File protection interlock

Frees tape reels for loading.

Prevents accidental writing on permanent tape records.

90 UNCLASSIFIED

PART 1 UNCLASSIFIED Tape Adapter Unit
CH 3 ~ T1.0. 31P2-2FSQ7-112 46.22-46.3
TABLE 1-36. TAPE DRIVE UNIT CONTROL
LIGHT FUNCTIONS

LIGHT INDICATION
SELECT Unit selected for reading or writing by the Central Computer System.
NOT READY Unit mechanically unready for use.

FILE PROTECTION
NOT IN FILE AREA

Write circuit locked out of use.

Tape beyond end-of-tape mark or end-of-file mark has been read or written; tape

heads not over usable area of tape.

reached, 1 millisecond elapses before the stop-tape signal
is generated, and 2 milliseconds elapse before the
mechanism shifts into forward. Twenty-five milliseconds
are required to complete the shift.

The rewind operation causes the tape to rewind
onto the feed reel until the photoelectric cell senses
the load point. The tape stops, then shifts to forward
status. The timing of each operation is shown in table
1-37.

A tape drive unit must satisfy both physical and
program requirements before it can be operated under
Central Computer System control. If the physical
requirements listed in table 1—38 are satisfied, the tape
drive unit is said to be ready. Each tape drive unit,
if ready, sends a ready signal to the tape adapter unit.

If the program requirements are met by a tape drive
unit, it is said to be prepared. The tape unit must be
ready before it can be used by the Central Computer

System. If not prepared, it can be made prepared by
the program. The conditions which can cause a tape
drive unit to be not-prepared are shown in table 1—39.

A not-prepared condition due to the not-in-file-
area condition is determined by the status of the not-
in-file-area flip-flop. If this flip-flop is cleared, although
the tape unit is not-prepared during rewind, the tape
unit becomes prepared when rewind is completed. If
the tape unit is not-prepared because the not-in-file-area
flip-flop is set, it is still not-prepared after a rewind
operation. A backspace operation, however, clears the
not-in-file-area flip-flop, moves the tape back over one

record, and leaves the tape drive unit in the prepared -

condition.

4.6.3 Tape Adapter Unit

The tape adapter units acts as an intermediary
between the tape drive units and the Central Computer

TABLE 1-37. TAPE DRIVE UNIT OPERATION TIMING

TIME
OPERATION STEP (MILLISECONDS) (MICROSECONDS)
Read or write; or write end-
of-file: 1. Delay from load mark. 40
2. Delay from other than load mark. 10
3. Read or write each word. 320
4. Delay after iast word. 150
5. Write end-of-record delay. 150
(plus above 150)
6. Minimum total, one word. 10,620
Backspace; maximum total
elapsed time to first word: 1. If in write status 73.9
2. If in read status. 619 -
Rewind Variable

UNCLASSIFIED g1

Fig. 1-65

UNCLASSIFIED PART 1
T.0. 31P2-2FSQ7-112 CH 3

TABLE 1-38. READY VERSUS NOT-READY CONDITIONS

READY

DESCRIPTION NOT-READY

START pushbutton pressed.

Unit, if ready, under Central Computer RESET pushbotton pressed.
System control.

Tape in both vacuum columns. Transport mechanism Joaded. Tape not in both vacuum columns.

Tape intact. Tape is complete through transport mech- Tape broken.
anism.

Sensing light on. Light for photoelectric sensing of reflective Sensing light off.
spots.

Power on. Unit power switch on. Power off.

A-c fuse OK. Primary power applied. A-c fuse blown.

D-c fuse OK. Power applied to unit. D-c fuse blown. -

Door closed. A-cinterlock complete. Door open.

TABLE 1-39. NOT-PREPARED CONDITIONS
CONDITION CAUSE
During rewind. Tape not yet rewound to load point.

Not-in-file-area.

End-of-tape mark senses or end-of-file mark just read or written.

CORE MEMORY
A

WORD MEMORY
ADDRESS
m 1
SELECTION IO ADDRESS
I0 REGISTER I CONTROL | COUNTER
L —J
h
WORD PLUS CONTROL | CONTROL
PARITY SIGNALS| SIGNALS END - CARRY 10 WORD
LS-R-15, P COUNTER
ADD | AFTER EACH WCRD TRANSFERREC
TAPE ADAPTER
TAPE TAPE TAPE TAPE
DRIVE DRIVE DRIVE DRIVE
1 2 3 L}

92

Figure 1—65. Tape Element Information Flow

UNCLASSIFIED

PART 1 UNCLASSIFIED Tape Unit
CH 3 T.0. 31P2-2FSQ7-112 463
SELECTION
10 REGISTER CONTROL
4 s N —r—
A
s 3 3
WORD WORD =
ReAD (33 33) WRITTEN 3 ’g E
o T =
o O
A
WORD REGISTER o >
o o
__ o
1t | =
P-4
o
<o
& <
INFORMATION
BITS
N READ WORD WRITE WORD
— — SWITCH SWITCH
s:] s]
WORD RING
CLOCK AND TIME
PULSE
DISTRIBUTOR
CONTROL
CHARACTER | SYNC BIT - AND
REGISTER . SELECTION
7 cne b b
TAPE CONTROL CONTROL (7 TAPE 5«7 s
READ INFORMATION SIGNALS WRITE
BUS BUS
AN V 7 /

—~
TAPE DRIVE UNITS

Figure 1—66. Tape Adapter Unit Information Flow

System, (See fig. 1—65.) Its operation may be considered signal to the tape adapter unit. The tape adapter unit

in two parts, the execution of Central Computer System
commands and the transfer of information to or from
the Central Computer System.

In order to have any other instruction affect the
tape element directly, the Central Computer System
must first select the tape drive unit to be used. A SEL ()
instruction (where # specifies a tape drive unit) causes
the selection and IO control element to send a select

then allows all subsequent instructions to affect only the
selected tape drive unit until a new Select instruction
deselects that unit. The asignment of unit addresses is
accomplished by a patch panel in the tape adapter unit.
All other tape element instructions cause the selection
and IO control element to supply commands to the tape
adapter unit, which in turn initiates and controls the
operation of the selected tape drive unit.

UNCLASSIFIED 93

Programming
46.3-46.4.1

Information transferred between the tape element
and the Central Computer System passes between the IO
register and the word register. Both registers can hold
32 bits plus a parity bit. Since the tape drive units handle
only six information bits at a time, the word register
must supply them with only six bits at a time during
writing. The write word switch accomplishes this by
splitting the contents of the word register into 6-bit
characters and supplying the tape drive unit with one
character at a time. (See fig. 1—66.) The clock and time
pulse distributor section pulses the word ring which
sequences the entire writing operation, The word ring
causes the write word switch to gate bits R14 and R15
and the parity bit out of the word register first, then
bits R8 through R13, bits R2 through R7, and so on,
at the proper intervals for writing each character on the
tape. After the bits of the last character are read from
the word register, a break request starts the transfer
of the next word from core memory to the word register
via the IO register.

The reading operation of the tape adapter units is
very similar to its writing operation. Each character

UNCLASSIFIED
T.0. 31P2-2Fsa7-112 CH 3

. PART 1

(six bits plus a synchronizing bit) read from the tape
passes through shaping circuits into the character register.
The sync bit is sent to the tape control and selection
secion and causes that section to start the clock and time
pulse distributor section. This section pulses the word
ring to gate the character bits through the read word
switch into the word register. Again, the parity bit
and bits R14 and R15 are read first. Each character is
read into the word register by the same process, the
word ring determining its correct placement in the word
register. After the word is finally assembled in the word
register, a break request initiates its transfer into core
memory via the 1O register.

4.6.4 Programming

4.6.4.1 Pertinent Instructions

Those instructions of direct pertinence to the tape
element are listed in table 1—40. :

The conditions listed in tables 1—38 and 1—39
determine the status of the selected tape drive unit.
Each tape drive unit supplies the tape adapter unit
with control information signals reflecting its status.

TABLE 1—40. TAPE ELEMENT INSTRUCTIONS

INSTRUC-

TION CODE INSTRUCTION REMARKS

SEL (11)4 - Select (tape drive unit) Deselects previously selected units.

through

SEL (16)s -

BSN (10)4 x Sense (tapes not prepared) ... Branch if not prepared.

BSN (11)4 x Sense (10 unit not ready) Branch if not ready.

BSN (17); x Sense (tape parity) Branch if incorrect.

RDS ” Read Reads # words into memory; sets IO interlock which
is cleared at end-of-record pause; skips one record
if n—0.

WRT 2 Write Writes » words from memory; sets I0 interlock which
is cleared at end-of-record delay; WRT 0 illegal,
can cause hangup. ’

PER (67)s - Operate (set prepared tapes) Refer to 4.6.4.6.

PER (70)4 — Operate (backspace) Backs up one record; sets IO interlock which is cleared
when beginning of record is reached and places unit
in prepared condition.

PER (71)4 - Operate (rewind) Backs up to load point; IO interlock is on for 60

PER (72), - Operate (write end-of-file)

milliseconds; unit then not-prepared until end of
rewind.

Writes end-of-file mark; IO interlock set until com-
pleted.

9 ' - UNCLASSIFIED

PART 1

(See fig. 1—66.) The variations of the Sense instruction
can interrogate the tape adapter unit concerning the
status of the selected tape drive unit. If that unit is
prepared and ready, a reply is given and the next
instruction is executed. If, however, that unit is not-
prepared or not-ready, no signal is returned to the
selection and IO control element which initiates a branch
of program control.

The Sense (tapes not prepared) instruction, BSN
(10)g, senses for the conditions of tapes not-prepared.
Th Sense (IO unit not ready) instruction, BSN (11)s,
is a precautionary operation used to prevent hanging up
the Central Computer System in an impossible IO opera-
tion involving a not-ready unit. Since a not-ready
condition requires operator intervention to clear the
condition, the Sezse (IO unit not ready) instruction
could branch program control to a Program Stop (HLT)
instruction, calling attention to the not-ready condition
and allowing the operator to clear it. The Sense (tape
parity) instruction, BSN (15), will check the parity of
information transferred either to or from the tape
element. If the parity is incorrect, the program should
branch to take cognizance of the incorrect information
transfer.

The RDS = instruction starts the reading ptocess
Information transfer continues until either the number
of words specified in the instruction is transferred or
until an end-of-record gap is reached. In either case,
the tape continues to move past the reading heads until
the end-of-record gap is reached, stopping the tape
drive unit and sending a disconnect signal to the selec-
tion and IO control element.

The WRT = instruction starts the writing process.
After the nth word has been written, the end-of-record
gap is produced as the tape stops and .a disconnect
signal is returned to the selection and IO control

UNCLASSIFIED
CH 3 T.0. 31P2-2FSQ7-112

Instructions
46.4.1-4643

element. Each Write instruction produces a_separate
record on the tape. Writing normally starts from' the

load point. A write operation can continue past . the
end-of-tape mark. However, after the #th word of that
operation is written, the tape drive unit becomes not-
prepared, preventing a new writing operation from
starting, A WRT 0 instruction is illegal. The four codes
for the Operate instruction in table 1—40 are discussed
in specific programs.

4.6.4.2 General Rules

If the contents of a reel of tape are to be preserved,
the file protectlon mterlock should be acnvated by

w.mem md»ef»&l&-epe&aaem

L)s The.. raoch.. pro..‘vxde“quoqldﬁ
be to a Program Stop (HLT) instruction, thereby allow-
LK LN R Gk
e Sense (tapes not prepared) instruction, BSN
(10)s, permits a branch of program control after an
end-of-file mark has been written or read, or the end-
of-tape matk reached. In either case, some operation to
prepare that tape unit is required before it can be

programmed for reading or writing. If, after reading™ -

a complete file, the reel is to be rewound and then used
for writing, the Sense (tapes not prepared) instruction
may be used with a branch back to itself to delay the
transfer of information to the tape until the rewind
is completed. A read operation may not follow a write
operation without special programming precautions.

4.6.4.3 Read Operation
The program sequence required for a read operation
is shown in table 1—41.

TABLE 1—41. PROGRAM FOR READ OPERATION

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENT
1 SEL (u) - Specifies which unit is to be used.
2 LDC x Loads IO address counter with address x in core
‘ memory to which first word is transferred.
3 BSN (11); y Branches to location y if not ready.
4 BSN (10)s Branches to location z if sensing end-of-file or end-of-
tape.
5 RDS n Reads either » words or one record from tape.
¥y HLT - Allows operator to ready tape unit.
z Branch program depends on whether sensing for end-

of-file ot end-of-tape (refer to table 1—44).

UNCLASSIFIED 95

Read Operation
464.3-4644

The first two instructions of table 1—41 must be
given in the sequence shown to allow settling before
sensing for not-ready. Steps 3, 4, and 5 must be given
consecutively. Step 5, the Read instruction, turns on the
IO interlock, which remains on until the end-of-record
gap is read. Each Read instruction will therefore pass
one record through the reading station. If # is greater
than the number of words in the record, the IO word
counter will not contain 0 when the read operation
ends. If # is less than the number of words in the
record, only » words will be transferred to core memory
although the entire record passes the reading heads; the
words beyond the nth word in the record being read
are lost. If n is 0, a record is skipped. The IO interlock
is cleared and tape movement is stopped only when the
end-of-record gap is read by the tape heads whereas
the break requests which initiate word transfers to core
memory are not honored after the IO word counter
reaches 0. If » specified in the Read instruction is less
than the number of words in the record being read as
the result of a program error, that error can be rectified
by backspacing through the record, then executing
another Read instruction with » equal to, or greater
than, the number of words in the record.

A second Read instruction may follow step 5 with
out any intervening instructions, The execution of the
second Read instruction will be delayed by the IO
interlock until the first Read instruction is completed.
A complete file can be read from the tape by program-
ming the sequence of instructions shown in table 1—41
and including as many Read instructions as there are
records within the file.

If accuracy of transfer is important during tape
reading, two methods of detecting tape parity errors
are available. One method uses the TAPE PARITY

UNCLASSIFIED
T.0. 31P2-2FSQ7-112 : CH 3

PART 1

switch on the duplex maintenance console. With this
switch in the ACTIVE position, the occurrence of a
parity error during tape reading can halt both the
Central Computer System and the tape unit, generally not
at an end-of-record gap. To reread the record in which
the parity error occurred, a backspace operation must
be executed before the Read instruction which initiates
rereading.

The second method of detecting parity errors during
tape reading makes use of the Semse (tape parity)
instruction, BSN (17)s. This instruction can be used
to provide a branch of program control if a parity error
is detected. The manner in which the branch is used is
at the discretion of the programmer. The branch might
provide for a backspace operation, then a read operation
to reread the record in which the parity error was
detected. The branch might also provide for a cumulative
count of parity errors detected, with a resultant branch
to a Program Stop (HLT) instruction if the number of
parity errors exceeds some arbitrary number.

4.6.4.4 Write Operation

The program sequence required for a write operation
is shown in table 1—42.

Writing on a reel of tape should start at load
point. Therefore, the first write operation should be
preceded by a rewind operation if it is possible that
the reel is not at load point.

Each Write instruction causes the writing of a
record containing # words onto the tape. The 10 word
counter steps to 0 as the #th word is written, sending
a stop signal to the tape drive unit. However, the tape
drive unit continues erasing for 300 microseconds after
the nth word is written, producing the end-of-record
gap and clearing the IO interlock.

TABLE 1—42. PROGRAM FOR WRITE OPERATION

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENT

1 ' SEL (u) - Specifies which tape unit is to be used.

2 LDC x Loads IO address counter with address x in core mem-
ory from which first word is transferred.

3 BSN (11)g ¥y Branches to location y if not-ready.

4 BSN (10)s z Branches to location z if sensing end-of-file or end-of-
tape.

5 WRT n Writes 2 words in one record on tape.

y HLT - Allows operator to ready tape unit.

Branch program depends on wheth 1sing for end-

of-file or end-of-tape.

9% UNCLASSIFIED

PART 1

UNCLASSIFIED
CH 3 T1.0. 31P2-2FsQ7-112

Write Operation
46.4.4-46.46

TABLE 1—43. PROGRAM FOR BACKSPACE OPERATION

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENT
1 BSN (14)4 1 Branch to self, if on, to delay next instruction.
2 PER (70)¢ - Move tape backward over one record.
3 As program requires, generally read or write opera-

tion.

It is possible but not desirable for two Write
instructions to be programmed with no intervening
instructions since the second instruction is not executed
until the first is completed and the 10 interlock cleared.
However, since the first Write instruction may carry
writing beyond the end-of-tape mark, making the tape
unit not-prepared, the second write instruction (and
each succeeding Write instruction) should be preceded
by the instruction listed as step 4 in table 1—42. The
Central Computer System will then not be hung up on
an impossible IO operation.

Parity checking may be performed during a writing
operation but is useful only during reliability or
diagnostic programs that test core memory. Accordingly,
it is not discussed in this Section.

The last record on a reel of tape should be followed
by an end-of-file word unless the end-of-tape mark has
been passed. The end-of-file word is written by an
Operate (write end-of-file instruction, PER (72),, which
writes the three end-of-file bits in a one-word record.
Since execution of the Operate (write end-of-file) instruc-
tion is not delayed by the IO interlock being on, it is
imperative that this instruction be preceded by a Sense
(10 interlock) instruction, BSN (14)s, which can branch
back to itself to delay the write end-of-file operation
until the IO interlock is cleared. The Operate (write
end-of-file) instruction sets the IO interlock until the
end-of-file word is written, then puts the tape drive
unit in the not-prepared condition, Writing an end-of-
file word (if the tape has been stopped) requires
approximately 10.6 milliseconds. A rewind operation
generally follows the reading or writing of an end-
of-file word.

4.6.4.5 Backspace

If it is desired to read a record just written or, for
example, to rewrite the last record written because of
a parity error, a backspace operation can be performed.
The programming sequence required for a backspace
operation is shown in table 1—43.

Since the execution of the Operate (backspace)
instruction is not delayed by the setting of the IO
interlock, the IO interlock must be sensed to prevent

the backspace operation from interfering with an IO
operation in progress. The Operate (backspace) instruc-
tion initiates three actions. In addition to backspacing
the tape over one record, the instruction sets the IO
interlock while the backspace operation is being executed
and puts the tape drive unit in the prepared condition
if it was not-prepared before the backspace operation
was executed. Thus, the backspace operation need not
be followed by the set prepared tapes operation when
it is desired to write more records into a file by back-
spacing after reading the end-of-file or to read a just-
written record which carried past the end-of-tape mark
by backspacing and then reading the record.

Although reading or writing an end-of-file or sensing
the end-of-tape mark puts the tape drive unit in the not-
prepared condition by setting the not-in-file-area flip-
flop, the backspace operation clears this flip-flop and
thus puts the unit in the prepared condition.

4.6.4.6 Rewind

A rewind operation moves the tape back to the
load point. Since its execution is not affected by the
setting of the IO interlock, the IO interlock should be
sensed before the instruction to rewind is given, thus
preventing interference with an IO operation in progress.
The Operate (rewind) instruction holds the IO interlock
on only long enough to switch the relays necessary to
initiate rewind (approximately 60 milliseconds), At the
end of the 60 milliseconds, the IO interlock is cleared,
but the tape unit becomes not-prepared during rewind.
Unlike the backspace operation, the rewind operation
does not clear the not-in-file-area flip-flop. If an end-
of-file word was read or written or an end-of-tape mark
was read before the rewind operation, that operation
must be followed by the Operate (set prepared tapes)
instruction, PER (67)s, to clear the not-in-file-area flip-
flop. If this instruction is programmed along with the
rewind, the tape unit will be in the prepared condition
when rewind is completed.

If all the information on a reel of tape is read,
using an jterative version of the program sequence given
in table 1—41, and if it is desired to use the same tape
reel to write new information, then, when program

UNCLASSIFIED 9_7'

10 Register UNCLASSIFIED . PART 1
46.4.6-4.7 1.0. 31P2-2FSQ7-112 CH 3
TABLE 1-—-44. PROGRAM FOR REWIND OPERATION AFTER
READING END-OF-FILE

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENT

1 BSN (14); 1 Prevents interrupting 10 operation.

2 PER (71)4 - Moves tape back to load point, sets IO interlock for
60 milliseconds.

3 LDC x Loads counter with address x in core memory from
which first word will be transferred and delays sub-
sequent steps for 60 milliseconds.

4 PER (67)s - Clears not-in-file-area flip-flop set by reading end-of-
file.

5 BSN (10); 5 Branches to self until rewind completed and tape unit
prepared.

6 WRT n Writes # words starting at load point.

step 4 of that sequence senses the end-of-file, the program
could branch to a sequence of instructions similar to
that of table 1—44.

Step 5 is used to delay the writing operation until the
rewind is completed. The Write instruction would not
be delayed by the IO interlock, which remains on only
for 60 milliseconds after the rewind operation is
initiated. The Semse (tapes not prepared) instruction
branching back on itself will provide for the necessary
delay of subsequent program steps until the tape reaches
the load point. However, the Semse (tapes not pre-
pared) instruction will not cause a branch if programmed
immediately after the Operafe (rewind) instruction,
since the tape unit does not become not-prepared until
shortly before the IO interlock is cleared (60 milli-
seconds after the rewind operation is initiated). The
program given in table 1—44 meets this problem by
including the LDC instruction to delay the succeeding
program steps until the IO interlock is cleared. A rewind
operation should generally be programmed before a
reel change and prior to the start of opefation with a
tape drive unit.

4.7 10 REGISTER

The IO register may be used as a miscellaneous IO
unit for the purpose of clearing registers in core memory.
Essentially, this clearing action is accomplished by load-
ing the IO register with positive zero (0.00000); and
then executing a series of break-in cycles. During these
break-in cycles, the O’s in the IO register are transferred
to the memory buffer register and written into specified
locations in core memory. By this means, all or a specific
portion of the memory locations in core memory may
be cleared of extraneous information.

The program shown in table 1—45 will clear a
specific number of memory locations in core memory
by utilizing the IO register as an IO unit. This program
will clear a number of memory locations starting with
the address given by the LDC instruction. Thus, if #
memory locations are to be cleared and the IO address
counter is loaded with the address x, the Central Com-
puter System will proceed to clear core memory locations
x through x 4 #—1.

A break is requested during the second program
time (PT, 0 through 6) cycle of the Read instruction.
As a result, the Central Computer System will stop its
arithmetic operations at the end of this PT cycle and
institute a break-in cycle. During this break-in cycle,
the IO register is cleared and its contents transferred
to the memory buffer register for storage in the memory
location specified by the LDC instruction. Since the 10
register is cleared, this stores positive zero {0.00000), in
this memory location, thus effectively clearing it. A con-
tinuous series of these break-in cycles will be executed
until the number of memory locations specified by the
Read instruction have been cleared. At this time, the
IO interlock, which was turned on by the Reed instruc-
tion, is turned off and the Central Computer System
proceeds with the execution of its program,

Although core memory is usually completely cleared
of all information by depression of the CLEAR
MEMORY pushbutton on the duplex maintenance con-
sole, the clearing of all 8,192 memory locations may
also be accomplished by the program given in table
1—46. Execution of this program by the Central Com-
puter System will result in the execution of 8,192 break-
in cycles, which, transfer all 0’s to the memory locations

98 UNCLASSIFIED

PART 1 UNCLASSIFIED Programs

CH3 T.0. 31P2-2FsQ7-112 41
of core memory. A final Select instruction after the Read the next instruction will be a Program Stop instruction,
instruction holds up subsequent instructions until all causing the Central Computer System to halt uncondi-
of the 8,192 break-in cycles are completed. Since all tionally. Thus, this program completely clears core
memory locations are now cleared (unless this program memory of all information and then causes the Central
is in test memory and contains further instructions), Computer System to halt.

TABLE 1-45. PROGRAM TO CLEAR SPECIFIC MEMORY LOCATIONS

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENT
1 LDC x Loads IO address counter with address x of first memory
’ location to be cleared.
2 SEL (04)¢ - Selects IO register.
3 RDS n Clears » memory locations in 7 break-in cycles; requests

break cycle.

TABLE 1-46. PROGRAM TO COMPLETELY CLEAR CORE MEMORY

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENT
1) LDC 0.000004 Places first core memory address in IO address counter.
2 SEL (04)5 — Selects IO register.
3 RDS 0.20000¢ Clears all 8,192;, memory locations.
4 SEL (») - Holds up subsequent instructions.

UNCLASSIFIED 99

Introduction UNCLASSIFIED PART 1
5.1-5.2.1.2 T.0. 31P2-2FSQ7-112 CH 3
SECTION 5
APPLICATIONS

5.1 INTRODUCTION

This Section discusses some programs for a number
of operations that the Central Computer System can
perform. The first few examples are relatively simple.
They serve to clarify basic operations. Each sample
program is preceded by a brief discussion of the opera-
tion to be performed. The sample programs themselves
are given in the normal form of a printed-out program,
specifying the location of each instruction and the
storage locations for initial data and for the result of
the program.

In a program involving arithmetic operations, the
arithmetic element limits an operation to the manipula-
tion of only two operand words at a time; one operand
word is held in the accumulators and the other is
brought from memory by the instruction designating
the nature of the operation. However, to satisfy the
dual nature of the arithmetic element, each operand
word contains two separate numbers, one in each half
of the operand word. Therefore, an arithmetic operation
manipulates two pairs of numbers, a left pair and a
right pair; this is done simultaneously without any
necessary relation between the two pairs,

5.2 STRAIGHT-LINE PROGRAMMING
5.2.1 Basic Arithmetic Operations

5.2.1.1 Addition
The addition of two operands requires two distinct

steps. First, one operand containing two numbers is
placed in the accumulators. Then, the other operand
is added to the first, leaving the sums of the numbers

accumulators for immediate manipulation by a sub-
sequent program or may be stored in core memory for
later use. Mathematically, the addition may be described
as follows:

First operand: n, n,
Second operand: m, m,
n1+ m, nr+mr

The program and the initial storage and result storage
locations for this addition operation are given in
table 1—47,

If more than two operands were to be added, another
ADD instruction would be required for each extra
operand before the FST instruction. Numerous other
variations are possible, but this example is sufficient
to demonstrate the basic program for addition.

5.2.1.2 Subtraction

The subtraction of one operand from another with
both operands initially in core memory may be accom-
plished in one of two ways. The second operand may
be subtracted from the first or the first operand may be
made negative and the second operand added to it.

TABLE T--47. PROGRAMMED ADDITION

INSTRUCTION
LOCATION OPERATION | ADDRESS COMMENTS

1 CAD 10 Places ny, n, in accumulators.
2 ADD 11 Adds m,, m, to contents of accumulators.
3 FST 12 Stores sums at location 12.
4 | HLT - End of program.

10 n o, Initial data storage.

11 m, m,

12 Result storage.

100 UNCLASSIFIED

PART 1

The first method appears mathematically as follows:

First operand: n, n,
Second operand: m, m,

n, —m n, — me

The program for this operation is shown in table 1—48.

Note that the results stored at 12 are n; — m,, n, — m,.
Comparison of this result with that produced by the
program shown in table 1—49 reveals a significant
difference.

This second subtraction program yields m;, — my
m, — n, as the result stored in location 12. It should
be apparent from the comparison of these two sub-

UNCLASSIFIED
CH 3 T.0. 31P2-2FSQ7-112

Multiplication
52.1.2-52.13

traction programs that the order in which operations
are performed is sometimes significant to the result.

5.2.1.3 Multiplication

The multiplication of two operands is performed
in two steps. However, the products so obtained must
be further processed before they can be stored in core
memory. Multiplication of two half-words yields a
signed product of 30 significant bits, smaller in absolute
value than either the multiplier or the multiplicand.
(Refer to 3.4.2.) Further, two such products ate obtained
in the dual arithmetic element. In order to store such
a result in core memoty, the products must be rounded
off to 15 significant bits and, in some cases, scaled up

TABLE 1-48. PROGRAMMED SUBTRACTION

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENT
1 CAD 10 Places n,, n, in accumulators
2 _ SUB 11 Subtracts m;, m, from assumulators
3 FST 12 Stores result
4 HLT - End of program
10 n; n, Initial data storage
11 my m,
12 Result storage
TABLE 1-49. ALTERNATE SUBTRACTION PROGRAM
INSTRUCTION
LOCATION OPERATION ADDRESS COMMENT
1 cSU 10 Places n,, n, in accumulators
2 ADD ii Adds m;, m, to accumulators
3 EST 12 Stores result
4 HLT - End of program
10 o n, Initial data storage
11 my m,
12 Result storage

UNCLASSIFIED 101

Division
5.213-5.2.14
in value to retain sufficient precision. Thus, a multiplica-
tion operation is accomplished by a program of the
type shown in table 1—50.

The factor by which the SLR # instruction may
scale up the magnitude of the products obtained by
multiplication can be determined if the range of values
of multiplier and multiplicand are known. A rough
calculation with those values yielding the largest
product indicates the largest scale factor that will not
destroy the significance of the product. For example,
if n < 2-8 and m <« 2-5, then nm =< 2-13 and can
be scaled up in magnitude by a maximum factor of 212,
However, certain other facts must be considered when
deciding upon a scale factor. The scale factor may be
modified to include the effect of a prior or subsequent
operation on the numbers. In addition, the size of the
scale factor may be limited by the desired scale for
presentation of the final result of calculation. In general,

UNCLASSIFIED
T.0. 31P2-2FSQ7-112 CH 3

PART 1

the choice of scale factor is determined by these three
considerations:

a. The desire to preserve maximum precision at a
given point in a calculation

b. The effect of prior or subsequent operations on
the scale of the number

c. The desired scale factor of the final result

5.2.1.4 Division

The division of two operands requires two instruc-
tions, as do all other arithmetic operations. As in the
case of multiplication, further processing is required
after the quotients are obtained to put them in a form
suitable for storage in core memory. In addition, the
dividends may require manipulation prior to the division
operation proper to meet the requirement that the
dividend be smaller in absolute magnitude than the
divisor, If this restriction is observed, the DVD x

TABLE 1-50. MULTIPLICATION PROGRAM

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENTS
CAD 10 Places —n,, —n, in accamulators
MUL 11 Multiplies m; by n, and m, by n,
3 SLR n Scales products up in magnitude by 2° and rounds
them off to 15 significant bits
4 FST 12 Stores products
5 HLT - End of program
10 n; n,
Initial data storage
11 my m,
12 Result storage
TABLE 1-51. DIVISION PROGRAM
INSTRUCTION
LOCATION OPERATION ADDRESS COMMENTS
CAD 10 Places n,, n, in accumulators
2 DSR n Scales dividends down to magnitude smaller than
divisors
3 DVD 11 Divides scaled n, by m,, scaled n, by m,
SLR 15 Moves quotients into accumulators and rounds
them off to 15 significant bits
5 FST 12 Stores result
HLT - End of program
10 m n, Initial data storage
11 my m,
12 Result

102 UNCLASSIFIED

PART 1

instruction leaves an unsigned 16-bit quotient in each
of the B registers and a signed 15-bit remainder in each
of the accumulators. (Refer to 3.4.3.) If the quotients
are to be stored, they must be shifted into the
accumulators to join their sign bits and rounded off to
15 significant bits. The program shown in table 1—51
accomplishes this result.

As shown, scaling in division should be done prior
to the DVD instruction. An attempt to use the SLR
instruction requires an extra step, clearing the bits of
the remainders from the accumulators to prevent their
interpretation as significant bits of the quotients. In
general, the amount of scaling to be done on the divi-
dends can be determined by making a rough calculation
with the limits on the values of divisor and dividend.
The same overall considerations apply to scaling within
a division operation as were described in connection
with multiplication.

5.2.2 Combined Operations

5.2.2.1 Co-ordinate Conversion

An example of a combined operation can be given
in terms of the radar co-ordinate conversion discussed
mathematically in Chapter 1, 3.1.3. The equations set
forth there for the conversion of a radar report on a

target from polar co-ordinate form based on the radar -

UNCLASSIFIED
CH 3 ' T.0. 31P2-2FsQ7-112

Combined Operations
5.2.1.4-5.2.2.1

set to rectangular co-ordinate form based on some refer-
ence axes common to all radar sets are as follows:

X, =Rsin g + X, Y. =Rcosd+} Y,
Where R — range from radar set to target

6 = angle, measured clockwise, between
radar north line and radar target line

, = X component of radar location meas-
ured on common reference

Y, =Y component of radar location meas-
ured on common reference

X; =X component of target location
Y; =Y component of target location

The problem of finding sin § and cos § when 6 is
given is considerably simplified by preparing a table of
sines and cosines in core memory arranged so that
adding the represented value of § to the address of the
location in which sin 0, cos 0 is stored produces the
address of the location containing sin 6, cos 4. Such a
table can be prepared in advance if the minimum incre-
ment of measurement of § is known. In addition, the
problem of scaling can be eliminated if the scale factors
for R and X, Y, are suitably chosen. If these two
assumptions are granted, the program for co-ordinate
conversion can be written as shown in table 1—52.

TABLE 1-52. CO-ORDINATE CONVERSION PROGRAM

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENTS
1 CAD 30 Places 6 in right accumulator (and R in left
accumulator)
2 3 CAD 100 Places sin 6, cos 6 in accumulators by a table look-up
procedure
3 MU 30 Multiplies sin 4 and cos § by R
4 SLR 0 Rounds off products to 15 significant bits
5 ADD 20 Adds X, to R sin § and Y, to R cos §
6 FST 30 Replaces R, ¢ in memory with X, Y,
7 HLT - End of program
20 X, Y, Initial constant data storage
30 R 0 Initial data, then final result storage
100 sin 0 cos 0
through Sine, cosine table
100 + N sinN cos N :

UNCLASSIFIED 103

Evaluation
522.1-5.2.22

The table look-up procedure accomplished by the
instructions at locations 1 and 2 is dependent upon the
presence of the table of sines and cosines in locations
100 through 100 + N. The instruction at location 1
places ¢ in the right accumulator for use in indexing
the instruction at location 2. This second instruction,
3 CAD 100, obtains the sine and cosine of 0 if not
modified by indexing. The indexing of this instruction
causes the transfer of the word at location 100 + ¢
which, by prearrangement, contains sin 6, cos 4. (Refer

to 3.2.3.)
The TMU 30 instructHon allows the simultanecous

generation of R sin § and R cos ¢ in the two accumulators.
It is followed by the SLR 0 instruction to round off the
product to 15 significant bits. This instruction could
also be used to scale the products, if that were necessary.
After the addition of X,, Y,, the result is stored in
the location from which R, § was taken. This procedure
can be used if R, 4 is no longer needed for subsequent
<alculations and if it is desired to save space in core
memory.

5.2.2.2 Evaluation of a Function
The evaluation of the function y — ax2 4 bx + ¢

UNCLASSIFIED
T1.0. 31P2-2Fsa7-1i2 CH 3

PART 1

can be used as another example of an operation requiting
the use of several basic operations. The programming
of such an operation requires some investigation of the
scaling to be performed as well as of the arithmetic
operations required. The specific scaling operations will
be pointed out in this discussion without being explained
in detail. However, some mention must be made of one
basic rule of scaling: two numbers to be combined by
addition or subtraction must be scaled identically if the
results are to be valid. In addition, the end result of
scaling, the retention of maximum precision information
after processing of that information, must always be
kept in mind.

The equation to be evaluated, y — ax?> 4 bx -+ ¢,
can be rewritten to facilitate coding in the form
y = x(ax 4 b) -+ c. The calculation must therefore
generate the following terms: ax, ax 4 b, x(ax 4 b),
and finally x(ax 4+ b) 4 c. The coded program for
this calculation is given in table 1—53. For convenience
in following this program, only the left half of the
arithmetic element is considered.

This program could be modified to use the right
arithmetic element in evaluating y for another value

TABLE 1-53. FUNCTION EVALUATION PROGRAM

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENTS
1 CAD 20 Places a in accumulator
2 MUL 23 Multiplies a by x
3 DSR n Scales ax in accumulator-B register down by 2—" to
match scale of b
4 SLR 0 Rounds off scaled product to 15 significant bits
5 ADD 21 Adds b to properly scaled ax
6 MUL 23 Muitipiies sum by x
7 SLR m Scales second product up by 2™ to match scale of
¢ and rounds off to 15 significant bits
10 ADD 22 Adds c to properly scaied second product, yielding y
11 FST 30 Stores result y
12 HLT - End of program
20 a -
2 b -
- . 3 Initial data storage
23 X - 5
30 Result storage

104 UNCLASSIFIED

PART 1 UNCLASSIFIED Operations
CH 3 ‘ T.0. 31P2-2FSQ7-112 5.22.2-524
of x, thus performing two evaluations simuitaneously. OBTAIN Ny AND COMPARE
In addition, the program could be repeated without this No TO1T
modification to calculate the value of y for each of :'2 g’;g g?
several values of x. 3 BLM 5
5.2.3 Logi ; [o7t
2.3 Logical Operations =
As an example of a logical operation (that is, a RESTORE N, FROM B REG. OBTAIN Ny IN ACC
nonarithmetic operation), consider the problem of find-
ing the number of largest absolute magnitude in a group 15 CAD 31
of four numbers. The program shown in figure 1-67 4 ber 208 16 oBrx 5
will accomplish this result. Each comparison is made by
the DIM x instruction. (Refer to 3.3.3.) In the program COMPARE N3 TO ACC
given, only the left arithmetic element is used.
The number sorting program is designed to provide 5 OIM 3
two alternatives after each comparison, the choice of 6 BLM 17
an alternative being determined by the result of the T Ns¥No.
comparison. The program can be modified to obtain OBTAN NW A
the smallest rather than the largest number in the RESTORE NO. FROM B REG. 3
group simply by interchanging the alternatives; i:e., by 7 cap 3
interchanging the DCL 205 and CAD x instruction in 7 DcL 20g 18 O BPX 10
the parallel paths of the program.
This type of program, although it uses arithmetic
operations, is described as a logical operation in the COMPARE N4 TO ACC
sense that its objective is logical rather than arithmetic.
The result of this program, finding the largest number :? gm 2?
within a group, differs from the result of an arithmetic T Na7NO.
program wherein a product or the value of a function v
is found. RESTORE NO. FROM B REG. OBTAIN Ng IN ACC
5.2.4 10 Operations 21 CAD 33
An examination of the programs given in Section 4 2 beL 208 22 08px 13
reveals a basic pattern in all IO programs; every 10
program uses the instructions SEL (u) or SDR (u) r, STORE RESULT
LDC x, and RDS (i) n or WRT (i) » to set up a block
transfer of words between a single IO unit and the 13 LST 40
Central Computer System. However, these instructions 14 HLT --
do not comprise the IO program proper. Instead, they
set parameters with the basic IO program designed into
the Central Computer System. Once these parameters DATA STORAGE
are set and the IO program initiated, the IO operation
is completed without any need for further programmed glo :'2 -
instructions. The 1O operation has priority over internal 22 N3 --
program operations in that a break cycle is performed 33 Na -
rather than an internal machine cycle whenever a choice 40 RESULT

exists. In this way, internai machine operations can be
continued within the interval in which an IO operation
is performed. The internal machine operations are inter-
rupted only when an IO word transfer is executed and
then only for one machine cycle at any one time. In
addition, provision is made to prevent changing the
parameters of the IO program while an IO operation
is in progress; this is done by making the execution of
any IO class instruction dependent upon the setting of
the IO interlock. The IO interlock is turned on by
the RDS or WRT instruction which initiates a given

Figure 1—67. Number Sorting Prograhi;
Flow Chart Form

IO operation and is turned off by the completion of the
IO operation.

The parameters which must be set to execute an
IO operation include the selection of the IO unit (either
those discussed in Section 4 or the drum fields whose
operation is described in Chapter 4), the designation
of the register in core memory which is to receive or

UNCLASSIFIED 105

Operations

UNCLASSIFIED

PART 1

5.24 T.0. 31P2-2FSQ7-112 CH 3

supply the first word to be transferred in the 10 opera-
tion, and the specification of the direction of transfer
and of the number of words to be transferred. The
exact sequence in which the first two parameters are
set is not usually important. However, their setting must

precede the RDS or WRT instruction which sets the

last two parameters and initiates the IO operation.
Initiation of the IO operation sets the IO interlock until
completion of the operation. No IO class instructions
can be performed while the IO interlock is set. Further,
the programming of an IO class instruction while the
IC interlock is on will prevent the execution of amy
instructions until the IO interlock is cleared and the
programmed IO class instruction is executed.

The IO interlock is turned on by an RDS or WRT
instruction. It is normally cleared either by the 10 word
counter stepping to zero (indicating the transfer of all
n words) or by a disconnect signal from the IO unit
indicating that all available words have been read or
all available registers have been written However, the
IO interlock will never be turned off automatically if
any of the following conditions exist:

a. A nonexistent IO unit is selected.

b. The selected IO unit is unable to deliver or
accept words due to lack of power, failure of
any component, ot inoperative condition caused
by a previous operation.

c. The direction of transfer specified by an RDS
or WRT instruction is impossible for the selected
IO unit (for example, reading from the line
printer or writing at the card reader).

If one of these conditions does exist, the Central
Computer System will hang up on the next IO class
instruction.

Hangups can be guarded against by including, in
each 10 program, instructions which check the readiness
or preparedness of the selected IO unit. The instructions
Sense (IO unit not ready), BSN (11)g x, and Semse
(tapes not prepared), BSN (10); x, can be used where
appropriate. (Refer to Sec. 4.) In addition, the IO inter-
fock can be sensed by a BSN (14); x instruction which
causes a branch of program control if the IO interlock
is on. A program which can hang up the Central Com-
puter System may contain provision for sensing the 10
interlock and branching, if it is on, to an Operate
(clear IO interlock) instruction, PER (27)s. The PER
(27)4 instruction is intended for use only when the
IO interiock is not likely to be cleared automatically;
its execution during an IO operation may produce
results which are both unpredictable and undesirable.

The number of words to be transferred in any one
IO operation is determined by the contents of the right
half-word of the RDS or WRT instruction which
initiates the operation after the right half-word is modi-

fied by indexing of the instruction, if any. This right
half-word must be interpreted as a 16-bit binary integer
rather than as a signed 15-bit binary fraction. If, for
example, the right half-word after any indexing is
1.777775 (negative zero), the number of words to be
transferred is 177,7775 or 65,535;, words, considerably
more than the capacity of core memory. At the start of
a transfer, the right half-word of the RDS or WRIT
instruction is indexed, if this is called for, and placed
in the IO word counter in complement form. A 1 is
immediately added to the least significant bit position
to sense for an RDS 6 or WRT ¢ instruction. At this
point, before any words have been transferred, the IO
word counter contains a 16-bit integer in 1’s complement
form with negative sign understood; this integer is
the 1’s complement of a number 1 less than the number
of words specified for transfer by the instruction which
loaded the IO word counter. Stated mathematically, the
IO word counter contains — »# - 1 just before the
first word is transferred.

As each word is transferred during an IO operation,
a 1 is added to the least significant bit of the I0 word
counter, making its contents less negative by 1 after
each transfer. After all words except the last word
have been transferred (» — 1), the I0 word counter
contains negative zero; any number added to its com-
plement produces negative zero as the result. As the
last word is transferred, the IO word counter generates
a disconnect pulse which, in most cases, terminates the
IO operation. _

In certain cases, such as reading from a drum field
by status or status identification, reading a magnetic
tape record, or writing on a drum field by status, the
number of words to be transferred is limited either by
the number of words available for reading or by the
number of drum registers available for writing. In these
cases, the IO unit generates a disconnect pulse when
it has supplied all the words it has available or when
it has accepted all the words it has space to write. If
t words are transferred in such an operation and t < »,
then the IO word counter will contain the quantity
— n 4+ t 4 1 when the 10 operation is terminated.
The number of words already transferred, t, can be
found by adding » — 1 to the contents of the IO word
counter. This is made possible by the CSW instruction,
which places the contents of the IO word counter in
the right accumulator register.

Certain special considerations are necessary when
attempting to compute the number of words written
onto a drum field using the CSW instruction after the

requires two break-out cycles to move two words into
writing position before any word is actually written
onto the drum field. However, the IO word counter is
not stepped for these two break cycles. For this reason,

106 UNCLASSIFIED

PART 1

the IO word counter contains — # 4 1 just before
the first transfer is completed. Similarly, at the end of
a writing operation in which t words are actually
written onto a drum field, the IO word counter contains
7 4 t 4 1. In addition, if an IO transfer is interrupted
by an alarm, the contents of the IO word counter may
have no predictable relation to the number of words
transferred and, therefore, cannot be used tc determine
that pumber.

Like the IO word counter, the IO address counter
is stepped by 1 as each word is transferred in an IO
operation. At any point in an IO operation, the 10
address counter contains the core memory address from
which or into which the next word is to be transferred.
At the end of an IO operation, the IO address counter
contains an address one higher than the last address
involved in the IO operation. In the case of writing
onto a drum field, the address in the counter is three
higher than the address of the last word written onto
the drum field; two words are in writing position but
are not written onto the drum field.

The IO address counter contains 16 flip-flops con-
nected so that only bit positions R2 through R15 operate
as a counter. The IO address counter thus counts modulo
40,0005. In any transfer of more than 20,0005 (8,192,,)
words, the transfer will be to or from core memory
and test memory alternately. The IO address counter
can be stepped beyond the memoty unit selection code
for core memory to the code for test memory and from
test memory will step back to core memory. However,
the IO address counter cannot be stepped beyond the
test memory code to select the clock register nor, if the
clock register selection code is placed in the IO address
counter by an LDC x instruction, can it be stepped from
the clock register code back to core or test memory.
(Refer to 2.4.)

In certain applications, it may be desirable to execute
a transfer to or from a single register in core or test
memory. This can be done by executing the Operate
(lock address counter) instruction, PER (75)s, before
the RDS or WRT instruction which initiates the IO
operation. The IO address counter is not stepped during
the operation; therefore, the same memory register is
used for each transfer executed during the IO operation.
The IO address counter is unlocked when the IO inter-
lock is cleared at the end of the IO operation. The
PER (75)s instruction is not to be given during an 10
operation; i.e., while the IO intetlock is on.

5.3 ITERATIVE PROGRAMMING

5.3.1 General
The programming examples discussed so far have
all been straight-line programs; i.., programs which
proceeded in a straight line to accomplish a given result
with a single item, or limited block, of data. If any

UNCLASSIFIED
CH 3 T.0. 31P2-2FsQ7-112

Programming
5.24-532

of these programs were to be used in processing more
data in a straight-line manner, the programs would
have to be lengthened. Those instructions which refer
to data in core memory would be rewritten with new
address halves and added to the original program. For
example, in order to use the function evaluation program
given in table 1—53 to evaluate the function for a
second value of x, all nine instructions of the program
would be written out again, changing only the address
halves of those instructions referring to the value of
x used in the calculation and those referring to the
storage location for the result. The use of straight-line
programming in this type of operation is inefficient in
terms of memory space.

A digital computer capable of performing a branch
of program control can be programmed iteratively as
well as in a straight line. Iterative programming reuses
a small group of instructions for each datum to be pro-
cessed in the same manner by changing the address half
of each instruction referring to the datum before that
instruction is reused. The Central Computer System not
only meets the requirement for iterative programming
but exceeds it, having facilities for indexing and auto-
matic address modification.

5.3.2 Indexing

The Central Computer System contains four registers
(index registers 1, 2, 4, and 5) used solely for address
modification in iterative programs. In addition, the right
accumulator register can be used in certain types of ad-
dress modification such as table look-up procedures.
(Refer to 5.2.2.1.) When so used, the right accumulator
register is identified as index register 3.

An indexable instruction (one whose address half can
be modified by the contents of an index register) is
indexed if its index indicator bits, L1 through L3, con-
tain the binary equivalent of one of the octonary num-
bers from 1 through 5; when the instruction is executed,
the contents of the index register whose number corres-
ponds to the index indicator of the instruction is added
to the address half of the instruction in the address regis-
ter before the address half is used either to obtain an
operand or to set a control register. (Refer to 3.2.3.) If
the index indicator of an indexable instruction is 0, no
address modification is performed.

The contents of index register 1, 2, 4, or 5 can be set
by either of two instructions, XIN » ot XAC. (The right
accumulator register contents can be set or modified by
so many instructions that no special instruction is neces-
sary to set it for indexing purposes.) The XIN # instruc-
tion sets the index register specified by its index indicator
to the value n#. For example, 4 XIN 12304, sets index
register 4 to the value 123045 This instruction is most
useful in setting an index register to a value known at the
time the program is written or to a value calculated by a

UNCLASSIFIED 107

Program Comparisons
5.3.2-53.3.2

previous program and left in core memory. The XAC
instruction sets the index register specified by its index
indicator to the value contained in the right accumulator
register at the time the instruction is executed. For ex-
ample, 2 XAC sets index register 2 to the value in the
right accumulator register. This instruction is most useful
in setting an index register to a value obtained as the
result of some calculation. Neither of these instructions
can be used to set the right accumulator register; ie., an
index indicator of 3 in either of these instructions in-
validates them.

Once the contents of an index register are set, the index
register may be used to modify the address halves of in-
structions referring to operands or storage locations as
these instructions are executed in a program routine
processing one item of data. When the processing of that
item is completed, the contents of the index register may
be reduced by an appropriate amount and a branch of
program control executed to repeat the program routine
for a new item of data by the use of a BPX (’s) x instruc-
tion whose index indicator specifies the index register
being used in the routine. (Refer to 3.7.4.3.) Since the
BPX (s) x instruction causes a branch of program con-
trol each time it is executed until the specified index
register becomes negative (because of the successive sub-

UNCLASSIFIED
T.0. 31P2-2FsQ7-112 Ch 3

PART 1

tractions of s from its contents), the number originally
placed in the index register controls the number of
repetitions of the iterative loop processing the several
items of data.

The advantages of iterative programming over straight-
line programming and the simplifications possible
through thg use of the indexing facilities available in
the Central Computer System are shown by three differ-
ent programs that can be written to perform the same
operation.

5.3.3 Program Comparisons

5.3.3.1 Straight-Line Program

A straight-line program to find the sum of 10 numbers
can be written as shown in table 1—54. The program uses
12 instructions in all.
The entire program can be executed in 248 microseconds
(exclusive of the time required to load the program and
the data to be processed). If more than 10 numbers are to
be added, an ADD x instruction must be added for each
extra number to be added. Therefore, if more than 10
numbers are to be added by a straight-line program, more
memory space is required to store the program.

5.3.3.2 Nonindexed Hterative Program
A nonindexed iterative program can be written to add

TABLE 1-54. STRAIGHT-LINE ADDITION

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENTS
1 CAD 30 Places first number in accumulator.
2 ADD 31 Adds second number to first number.
3 ADD 32 A
4 ADD 33
5 ADD 34
6 ADD 35 Adds succeeding numbers to sum of previous num-
7 ADD 36 bers in accumulator.
10 ADD 37
11 ADD 40
12 ADD 41 J
13 FST 150 Stores result.
14 HLT - End of program.
30 n; my
through Initial data storage.
41 Di5 m;,
150 Result storage.

108 UNCLASSIFIED

PART 1

10 numbers. A program of this type requires fewer in-
structions but more execution time to duplicate the results
of an equivalent straight-line program. However, the
iterative program shown in table 1—55 can be used
without requiring more instructions to add more than
10 numbers.

This program takes 678 microseconds to find the sum of
10 numbers. However, if more than 10 numbers are to
be added, only the right half-word in iocation 147 need
be changed to contain the address of the last number to
be added.

Explanation of this program follows. The first in-
struction simply places the first number in the accumu-
lator. The 0 BPX 4 instruction causes the program to
enter the iterative loop contained in location 3 through
104 at the addition step. The first partial sum is produced
by the ADD instruction and is stored temporarily by the
FST instruction while the operations necessary to make
the loop iterative are performed. The AOR 4 instruction
modified the contents of location 4 by adding a 1 in the
least significant position of the right half-word. There-
fore, after the first execution of the AOR instruction,

UNCLASSIFIED
CH 3 T.0. 31P2-2FSQ7-112

Nonindexed Interative Program
5332

the word in location 4 contains ADD 32. Thus, when the
ADD instruction is repeated, ‘it will obtain the third
number from core memory rather than the second.

The AOR instruction leaves a duplicate of the right
half-word in location 4 in the right accumulator. The
SUB 147 instruction subtracts the last address from the
right accumulator. (The operation of the left arithmetic
element resulting from this instruction is unimportant
since the next instruction ignores the left accumulator.)
The BRM 3 instruction tests the sign of the right ac-
cumulator; if negative, a branch of program control to
location 3 results. The CAD 150 instruction at location
3 takes the partial sum from temporary storage and re-
places it in the accumulator in preparation for the next
addition. (This instruction was bypassed by the 0 BPX
instruction on the first iteration since it was unnecessary.)
The iterative loop then executes the next addition and
test as described, repeating itself until all of the additions
are completed. The program then halts with the result
in the proper storage location.

As the next to the last pass through the iterative loop
is started, the ADD instruction contains 40 as its address

TABLE 1-55. NONINDEXED ITERATIVE PROGRAM

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENTS

1 CAD 30 Places first number in accumulator.

2 0 BPX 4 Unconditionally branches to first addition.

3 CAD 150 Places last partial sum in accumulator.

4 ADD 31 Adds next number to partial sum (or to first number
in first iteration).

5 EST 150 Places partial sum (or final sum in Jast iteration) into
storage.

6 AOR 4 Adds 1 to address half of ADD instruction in loca-
tion 4 and leaves modified address half in right ac-
cumulator.

7 SUB 147 Compares new address half to final data address.

10 BRM 3 Tests for completion of addition; if not complete,
branches to repeat addition sequence with next
number.

11 HLT - End of program.

30 n,; m,

through Initial data storage.
41 Nye myo
147 - 41 Address of last number to be added.
150 Temporary and final result storage.

UNCLASSIFIED 109

indexed Iterative Program
5.3.3.2-53.33

half. After the addition is performed and the partial
result stored, the address half of the ADD instruction
is changed to 41 by the AOR instruction. When the SUB
instruction is executed, the result in the right accumulator
is negative zero (1.77777g) since any number added to its
complement gives negative zero as the result. The BRM
instruction recognizes the result as negative and there-
fore causes another repetition of the iterative loop. The
last addition is performed and the final sum is stored in
location 150. The AOR instruction changes the address
half of the ADD instruction to 42. When the SUB in-
struction is executed, the result in the right accuamulator
is 0.00001g, a positive number. Therefore, the BRM in-
struction does not cause a branch and thus allows execu-
tion of the HLT instruction which ends the program.

5.3.3.3 Indexed lterative Program

An indexed iterative program can also be written to

add 10 numbers. (Refer to table 1—56.) This type of pro-
gram requires only 6 instructions which, with repetition,
takes 204 microseconds to produce the desired result.
Thus, this program is shorter and faster than either of the
other two programs.
This iterative program can be used in processing more
than 10 numbers with the same number of instructions;
only the right balf of the XIN instruction must be
changed. A description of the entire program follows for
changed. Adescription of the entire program follows for
an understanding of the exact significance of this right
half-word.

The 1 XIN 104 instruction sets index register 1 to the

UNCLASSIFIED
T.0. 31P2-2FSQ7-112 CH 3

PART 1

decimal value 8, one less than the necessary number of
repetitions of the ADD instruction. The CAD instruction
moves the first number into the accumulator. The 1 ADD
314 adds a number to the contents of the accumulator.
However, this instruction does not initially obtain the
number at location 31. Instead, the indeking of this in-

. struction causes it to obtain the number at location

313-}10g which is the number at 41, the last number in
the group of 10. The 1 BPX (01) 3 instruction tests
the sign of index register 1. If the sign is positive (a 0
bit), the program branches to location 3 and the contents
of the index register are reduced by 1. Index register 1
now contains 7g; therefore, the second execution of the 1
ADD 314 instruction will add the number at location
40 (313-}75) to the contents of the accumulator. The
next execution of the 1 BPX (01) 3 instruction reduces
the contents of index register 1 to 65 and branches back
to location 3. The third execution of the 1 ADD 31 in-
struction obtains the number in location 37 (315-}-6;).

On the next to the last pass through the iterative
loop made up of the instructions at locations 3 and 4,
index register 1 contains 1. The 1 ADD 31 instruction
adds the number at location 32 (313-}-1) to the contents
of the accumulator. The 1 BPX (01) 3 instruction senses
the sign of index register 1; finding it positive, the in-
struction causes the program to branch again to location
3. Before the branch is completed, the contents of index
register 1 are again reduced by 1. This operation causes
the contents of index register 1 to change from 1 to
negative zero (the addition of a number to its comple-

TABLE 1-56. INDEXED ITERATIVE PROGRAM

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENTS
1 1 XIN 0.000104 Sets index register 1 to decimal 8.
2 CAD 30 Places first number in accumulator.
3 1 ADD 31 Adds number at location 31 - contents of index
register 1 to accamulator.
4 1 BPX (01) 3 Branches back to location 3 if index register 1 is posi-
tive and subtracts index interval from contents of
index register 1.
5 EST 150 Stores result.
6 HLT - End of program.
O iy iy
through Initial data storage.
41 Ny my,
150 Result storage.

110 UNCLASSIFIED

PART 1

ment yielding negative zero as its result). When the
branch is executed, the 1 ADD 31 obtains the number at
location 31; the addition of negative zero to the address
leaves the address unchanged. Thus, this execution of the
ADD instruction obtains the last number to be added,
completing the addition; the result remains in the accum-
ulator. The 1 BPX (01) 3 instruction detects the negative
sign of index register 1 and therefore does not execute
a branch of program controi. The program proceeds to
the FST instruction to place the result in storage and
then halts.

Some justification is necessary for the initial loading
of index register 1 with the number decimal 8. In the
addition of 10 numbers, 9 additions must be performed;
the first operation of placing a number in the accumulator
is not itself an addition operation. The last execution
of the iterative loop in the program of table 1—56 is
performed while the index register is negative; i.e., the
loop controlled by the index register is repeated one time
more than the number set into the index register. There-
fore, in order to repeat the loop 9 times, the index reg-
ister is set to decimal 8 or 10.

The indexed iterative program offers several advan-
tages over both the straight-line program and the intera-
tive program without indexing. The program with
indexing is much simpler to set up than is the nonindexed
iterative program, although both programs offer advan-
tages over the straight-line program if more than 10
numbers are to be added. The indexed iterative program
is also shorter (in terms of memory space) and faster
(in terms of time of execution) than either the straight-
line program or the nonindexed iterative program. Fin-
ally, the indexed iterative program may be reused on
another group of numbers without any special precau-
tions, whereas the nonindexed iterative program must
have the address half of the ADD instruction changed
back to its original value before the program can be re-
used in processing a new set of numbers put into the
original data storage locations. Indexing does not change
the instruction words stored in core memory, whereas
the nonindexed iterative program does alter them.

UNCLASSIFIED
CH 3 T.0. 31P2-2FSQ7-112

Indexing Applications
5.3.3.3-5.34.1

5.3.4 Applications of Indexing
5.3.4.1 Indexed Number-Sorting Program

An indexed number-sorting program can be written
to check through a block of numbers to find the largest
number in that block. In addition, a program of this type

.can check for the existence of at least one other number

as large as the largest number found, (See fig. 1—68.)
The indexed number-sorting program can be compared
with the straight-line number-sorting program given in
figure 1—67. Table 1—57 shows initial data storage for
the program.

The first block within the indexed number-sorting
program sets index register 1 to a value two less than the
amount of numbers to be sorted. This value is one less
than the number of iterative comparisons to be per-
formed, as required by the operation of an index register
in controlling the number of repetitions. The value is two
less than the amount of numbers to be sorted, since the
number of comparisons to be performed is one less than
the total of numbers. The second instruction within the
first program block places the first number in the left
accumulator. (For convenience, only the numbers in the
left half-words are considered. All right half-wotds con-
tain zero.)

The next block within the program compares a sec-
ond number (IN’) to the number in the left accumulator
(N). The left accumulator will be positive if N>N’; it
will be negative if N'’=N. When N>N/, the program
continues to the instruction at location S, which restores
N from the left B register to the left accumulator. When
N’z=N, the program branches to the instruction at loca-
tion 12, which tests for N—=N. If they are not equal,
N’>N; therefore, N’ is placed in the left accumulator
by the imstruction at location 13. This instruction, 1 CAD
101, obtains the same number from core memory as does
the 1 DIM 101 instruction, since the index register con-
tents have not yet been changed; i.e., the program is still
executing the same pass through the iterative routine.
When N=IN’, the program branches to the instruction
sequence starting with location 15. The first instruction

TABLE 1-57. DATA STORAGE FOR INDEXED NUMBER-SORTING PROGRAM

LOCATION CONTENTS COMMENTS
21 CAD x x is address of number equal to largest number found
if CONDITION LIGHT 1 is on at end of pro-
gram.
40 0 Storage for largest number found.
100 N, 0
through Initial data.
n-499 N, 0

UNCLASSIFIED m

Number-Sorting Program UNCLASSIFIED PART 1
5.3.4.1 T1.0. 31P2-2FSQ7-112 CH 3
SET INDEX REGISTER AND
OBTAIN FIRST NUMBER
EQUAL?
i i XIN (n2)
2 CAD 100 12 BFZ 15
YES NO
COMPARE ANOTHER NUMBER N’ ET INDICATOR. STORE RESTORE N’ TO ACCUM
TO NUMBER N IN ACCUM s ADrIgRESS OF N’
13 1 CAD or
3 | DIM 101 15 PER O / - i 0 BPX 5}
4 BLM 12 16 I ADX 101
17 STA 21
’ N> N
N>N = 20 0 BPX 5
RESTORE N TO ACCUM
5 DCL 208
COMPARISONS COMPLETED ?
6 { BPX (01 3
TEST EQUALITY
NO YES
21 CAD
40
STORE LARGEST NUMBER gg g',_!"z 25
AND CHECK FOR EQUAL
NOT
EQUAL EQUAL
7 LST 40
10 BSN (01} 21 BRANCH TO NOT EQUAL
PROGRAM END
NO EQuUAL
EquaL INDICATED 24 0 BPX " RESET INDICATOR AND END
PROGRAM, TWO NUMBERS

SINGLE NUMBER
PROGRAM END

1] HLT ot

28 PER {0} -=
26 HLT --

Figure 1—68. Indexed Number-Sorting Program., Flow Chart Form

in this sequence, PER (01),, tutns on CONDITION
LIGHT 1 to indicate that a number has been found equal
to the largest number discovered so far in the program.
The next instruction, 1 ADX 101, places the address of
N’ in the right A register; i.e., the instruction places in
the right A register the sum of the address half of the
instruction, 101, and the contents of index register 1;
this sum designates the address from which N’ was taken,
The instruction at location 17 stores this address as the

right half-word in location 21. (Location 21 contains an
instruction which will be used in a terminal routine to
test the equality of the largest number found and the last
equal number found.) The prograimn then branches to
restore IN to the left accumulator. Thus, when N=N’, N
is retained for the next comparison while the address of
N’ is stored.

The first pass through the iterative portion of the
program is performed in one of the three ways just de-

12 UNCLASSIFIED

PART 1

scribed, depending upon whether N>N/, N=N’, or
NN If either of the first two paths is followed, the
number restored to the left accumulatot is N; if the third
path is followed, N’ is placed in the accumulator in prep-
aration for the next comparison. In any case, the number
found to be larger is left in the left accumulator for the
next comparison.

The block of the program containing the check for
completion of comparisons is simply a 1 BPX (01)s 3
instruction. If the comparisons are not completed, the
program branches back to location 3 to begin another
pass through the iterative routine. A new number is
obtained to compare with the largest number found in
preceding passes, since the index register is reduced by
1 by the 1 BPX (01)43 instruction,

After the last number comparison is completed, the
program stores the Iargest number in location 40. The
program then checks for the indication that a number
was found which was equal to the largest number found
by the program at some particular point in its execution.
This check is performed by the Sense (CONDITION
LIGHT 1) instruction, BSN (01)y; this instruction causes
a branch of program control if CONDITION LIGHT 1
is on and turns off the CONDITION LIGHT. If the
CONDITION LIGHT is off when this instruction is
executed, the program proceeds to the HLT instruction
at location 11. Thus, if no number equal to the largest
number is found, the Central Computer System stops
with the largest number stored in location 40, CONDI-
TION LIGHT 1 off, and the program counter contain-
ing the address 12.

If CONDITION LIGHT 1 is on when the BSN
(01)g 21 instruction is executed, the CONDITION
LIGHT is turned off and the program branches to the
sequence starting at location 21. This terminal routine
tests the equality of the number whose address is stored
as the right half-word in location 21 and the largest
number stored in location 40, This test is necessary, since
the number which was equaled by the number whose
address was stored may have been rejected by the pro-
gram if a larger number were found in a later compari-
son. The program changes the contents of the address
half of location 21 each time a number is found which
is equal to the number retained in the left accumulator
register; this address is not removed if another number
is found which is larger than the number previously re-

UNCLASSIFIED
CH 3 T.0. 31P2-2FSQ7-112

Number-Sorting Program
5.3.4.1-5.3.4.2

tained in the left accumulator. Thus, the number whose
address is stored in location 21 after all comparisons
have been completed is the last number equal to the larg-
est number found up to that point in the program.

The terminal routine starting at location 21 com-
pares the magnitude of the largest pumber (in location
40) with the magnitude of the number whose address
has been stored in Iocation 21. If the two numbers are
not equal, the program branches to the program end
that indicates no equal number. If the two numbers are
equal, CONDITION LIGHT 1 (turned off by the Sense
instruction in location 10) is turned on again and the
program halts the Central Computer System. Thus, if at
least one number equal to the largest number is found,
the Central Computer System stops with the largest num-
ber stored in location 40, address of the equal number in
location 21, CONDITION LIGHT 1 on, and the pro-
gram counter containing the address 27, Therefore, there
are two indications of the result of the program; either
the state of the CONDITION LIGHT or the contents
of the prograni counter can be examined to discover
whether an equal number was found.

Interpretation of a program result by examining the
contents of the program counter after the Central Com-
puter System halts is particularly important in main-
tenance programs. A program halt caused by detection
of an error is identified by determining where in the
program the halt occurred. The use of the two program
terminations in the indexed number-sorting program is
not critically important since CONDITION LIGHT 1
also indicates the result of the program.

5.3.4.2 Indexed Function Evaluation Program

The function evaluation program given in table
1—53 and described in 5.2.2.2 can be modified by the ad-
dition of indexing facilities to evaluate the function y =
ax2 4 bx J-c for several discrete values of x. In addition,
by using a second index register, the program can evalu-
ate the function for each value of x with a series of dif-
ferent values for a, b, and c¢. This indexed function
evaluation program must use one index register to con-
trol the iterative routine which determines the value of y
for each value of x with a single set of values for
a, b, and c. The second index register controls iterations
of the indexed iterative routine using different values of
a, b, and c. Table 1—58 presents this indexed function
evaluation program.

UNCLASSIFIED 113

Table 1-58 UNCLASSIFIED PART 1
T1.0. 31P2-2FSQ7-112 CH 3

TABLE 1-58. INDEXED FUNCTION EVALUATION PROGRAM

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENTS
1 2 XIN 3(K-1) Sets index register 2 to a value 3 (K-1), where K is
the number of sets of a, b, and c.
2 1 XIN (1) Sets index register 1 to a value L, which is the num-
ber of values of x to be used in evaluating y for
each set of a, b, and c.
3 i BPX (01) 4 Reduces contents of index register 1 by 1.
4 2 CAD 200 Places value of a selected by indexing in left ac-
cumulator.
5 1 MUL 100 Multiplies a by x.
6 DSR n Scales product down by 2—" to match scale of b.
7 SLR 0 Rounds off product to 15 significant bits.
10 2 ADD 201 Adds value of b selected by indexing to scaled pro-
duct.
11 1 MUL 100 Multiplies sum by x.
12 SLR m Scales product up by 2™ to match scale of ¢ and
rounds off to 15 significant bits.
13 2 ADD 202 Adds value of c selected by indexing to second scaled
product.
14 1 LST 377+4L(K-1) Stores y.
15 1 BPX (01) 4 Has y been evaluated for all values of x with one set
of values for a, b, and ¢? If so, continue with next
step; if not, evaluate y for next value of x.
16 CAD 14 Places first storage address of last storage block in
right accumulator.
17 SUB 2 Subtracts number of items in block of storage from
first storage address of last block.
20 RST 14 Places new starting storage address in instruction
word in location 14.
21 2 BPX (03) 2 Has y been evaluated for all sets of a, b, and c? If so,
continue to next program; if not, repeat iterative
evaluations with next set of a, b, and c.
22 Next program.
100 % -
through Storage for values of x.
77+L Xy, -
200 a -
201 b, -
202 [-
through Storage for sets of values of a, b, and c.
1774+K axg -
200+K bk -
2014+-K Cx -
400 -
through Resuit storage locations.
3774KL -
14 UNCLASSIFIED

PART 1
CH 3

This indexed function evaluation program actually
contains two iterative routines, one within the other. The
routine contained in locations 4 through 15 is an iterative
version of the program given in table 1—53; it is indexed
and controlled by index register 1 to evaluate y for all
values of x, using one set of values for the constants a, b,
and c. This routine is contained within an indexed itera-
tive routine which repeats this routine once for each set
of values of a, b, and ¢, and changes the storage location
for each iteration of the included iterative routine. The
program thus develops a set of values for y, one for each
value of x, using one set of values for a, b, and c; then
develops another set of values for y, one for each value
of x, using another set of values for the three constants;
and so on.

The first step in the indexed function evaluation pro-
gram sets index register 2 to control the larger iterative
routine. The value to which this register is set is three
times a number which is one less than the number of sets
of values of a, b, and c to be used in the program. The
multiple of three is required since the values of a, b, and
c are stored in successive locations in core memory with
successive values of a (for example) spaced three registers
apart in one table of values. In effect, the values of a, b,
and c are stored in three tables interleaved by three to
comprise one table. If three different tables, one for each
constant, were used in this program, the value set into
index register 2 would not be three times the number of
sets less one.

The second instruction in the program sets index
register 1 to the number of values of x to be used with each
set of constants in evaluating y. This value is reduced by
the third instruction, 1 BPX (01)4, to the proper value
for controlling the number of iterations of the included
evaluation routine. This third instruction could be elim-
inated by changing the value of the right half-word in the
1 XIN instruction; however, this value is used in modify-
ing the storage address later in the program.

Each evaluation is performed by the routine contained
in locations 4 through 13. The instruction 2 CAD 200 is
indexed by the contents of index register 2 to obtain the
value of a stored in the highest memory location, 177
+ K. The next instruction multiplies this value of a by
the value of x in location 77 4- L. The instruction in loca-
tion 10 adds the value of b stored in memory location
200 -+ K; although this instruction is indexed by the
same amount as was the instruction in location 4, this
instruction obtains a value of b, since its address half is
one larger than that of the instruction in location 4.
Similar reasoning applies to the instruction at location
13, which obtain the value of ¢ in location 201 - K.

The procedure used in storing the result of each ite-
ration deserves some special comment. The entire index-
ed function evaluation program will produce K tables,
each containing L values of y. It has been noted that the

UNCLASSIFIED

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

Program Precautions
53.4.2-5.3.5.1

program first produces the value of y for the last value
of x with the last set of values of a, b, and c. This value
of y can be stored in the Lth position in the Kth table
by writing the LST instruction with the address half speci-
fying the first address of the Kth table and indexing the
instruction by index register 1. Since index register 1 is
reduced by 1 after each iteration of the included evalua-
tion routine, each value of y obtained with the Kth set
of values for a, b, and ¢ is stored in a memoty location
whose address is one lower in value than the address of
the preceding storage location; i.e., the values of y are
stored in an order which corresponds to the order of
storage of values of x used in calculating them. When a
new set of values for a, b, and c is selected by stepping

index register 2, the starting storage address for the

next table of values of y must be changed. If the K-1
table of values is to be stored (physically) before the Kth
table, the address half of the instruction in location 14
must be reduced by the value L when index register 2
is stepped to obtain a new set of constants. In this way,
the order of storage of the K tables of values corres-
ponds to the order of storage of the sets of constants.
The same order of storage could be attained by
using a third index register to control the LST instruc-
tion. This third index register would be set initially to the

KL-1 and reduced by one after the storage of each result-— - -

The LST instruction would then have the value 400 as
its address half. The resulting program using three index
registers would be shorter by two instructions than the
program given in table 1—58.

5.3.5 Program Precautions in Indexing

5.3.5.1 Number of Cycles of lterated Routine

In general, the number of repetitions of an indexed
iterative routine which will be performed is one greater
than the value contained in the controlling index regis-
ter at the start of the first iteration. This is true if the
Branch and Index instruction controlling the loop is
placed at the end of the loop; the loop is repeated once
after the index register is stepped negative. In this situa-
tion, the minimum number of repetitions of the loop is 1.
Table 1—59 lists the number of repetitions of an iterative
loop for different starting values in the controlling index
register when the 1 BPX (s) instruction is placed at the
end of the iterative loop and (s) equals 1.

If only one pass through the loop is required, the
controlling index register must be loaded with negative
zero (1.77777g) rather than positive zero. If the index
register is loaded with positive zero and (s) equals 1, the
index register will be positive at the end of the first pass
causing the program to branch and perform a second pass
through the routine. At the end of the second pass, since
the index register contains 1.777765, no branch is ex-
ecuted.

115

Use of Zero Address
5.3.5.1-5.3.5.2

TABLE 1—-59. CONTROL OF LOOP ITERATIONS

UNCLASSIFIED
T.0. 31P2-2FSQ7-112 CH 3

INITIAL VALUE IN
INDEX REGISTER

NUMBER OF
LOOP REPETITIONS

N N+41

2 3

1 2
+0 2
—0 i

If a program must be written to allow for the possi-
bility that no iterations of an indexed loop are needed on
some runs through a program, the requirement can be
met by placing the BPX instruction controlling the itera-
tion of the loop apart from the loop and using an uncon-
ditional branch at the end of the loop to the controlling
instruction. Table 1—G60 gives an example of this type of
program.

With an iterative program of the form given in table
1—60, the number of passes through the routine is equal
to the value 2 set into the controlling index register. If
n equals negative zero, no passes are made through the
iterative loop. Again, positive zero is a special case; if »
equals positive zero, the program will make one pass
through the iterative loop.

5.3.5.2 Use of Zero Address with Indexable
Instructions
When an indexed instruction is to obtain the word in
memory location 0.00000; on the last pass through an
iterative routine, it would appear that the instruction
should be written with an address half which is 0.000005.

PART 1

No difficulty is encountered with this value of address
half until the last iteration of the loop. At that point, the
index register used in controlling the loop contains nega-
tive zero (1.777775). When negative zero is added to
positive zero, the result is negative zero. Thus, the mod-
ified address half of the indexed instruction will refer
not to the first address in core memory but rather to the
clock register.

The indexing etror resulting from use of an indexed
instruction with a zero address half can be avoided by
writing the zero address half as 1.000005. When the last
iteration of the program loop is performed, the indexed
address half of the instruction is still 1.000004 since the
addition of negative zero to a number (other than posi-
tive zero) leaves the number unchanged. Therefore, the
instruction will obtain the word in the first core memory
location rather than the contents of the clock register.

When IO class instructions are to be indexed and a
zero address half is desired as part of the instruction,
similar precautions are required. The SDR instruction
must have a zero address half with the value 1.00000y;
otherwise, when indexed by negative zero, the drum con-
trol register will be loaded with 0.03777 rather than the
desired 0.00000;, Similarly, a zero address half for the
LDC instruction must be of the form 1.00000; or, after
indexing by negative zero, the instruction will load the
10 address counter with 0.600000;, selecting the clock
register as the source or destination of an IO transfer. In
the latter case if reading the words read from an IO unit
will be lost; if writing, all positive zeros will be supplied
to the IO unit.

When an RDS or WRT instruction is to be indexed,
it must be remembred that th number of words to be
transferred in the IO operation initiated by one of these
instructions is specified by the address half of the instruc-

TABLE 1—60. ZERO REPETITION INDEXED ROUTINE

INSTRUCTION
LOCATION OPERATION ADDRESS COMMENTS
1 1 XIN n Sets index register 1 to value 2.
2 1 BPX (01) 4 Controls number of repetitions of loop starting at
location 4.
3 0 BPX ¥ Branches to next progrz{m.
4 Interative loop.
through
44k
5+k 0 BPX 2 Unconditionally branches to controlling instruction

at location 2.

116 UNCLASSIFIED

PART 1

tion after indexing interpreted as a 16-bit binary integer;

i.e., the sign bit of the address half is interpreted as the
most significant bit rather than as a sign bit. Therefore,
if the address half of one of these instructions is negative
zero (1.77777g) after indexing, the transfer of 1.77,777
wortds is called for. Further, an RDS 0 or WRT 0 instruc-
tion (where the address half is positive zero) may be
illegal for the IO unit involved. (Refer to 5.2.4.)

5.4 PROGRAM PREPARATION
5.4.1 Program Organization

5.4.1.1 General

A program may be considered simply as a series of
instructions which accomplishes a given function. How-
ever, when a long or complicated program is to be handl-
ed, it is often desirable to consider this program as a
series of blocks of instructions wherein each block per-
forms a single function subordinate but necessary to the
accomplishment of the function of the entire program.
Each block of instructions within the larger program is
called a subprogram, routine, or subroutine of the larger
program. These terms are variously used, since what is
called a program in one application may be only a sub-
routine of a still larger program.

" In order to plan a program efficiently, it is often
necessary to prepare a flow chart of the program being
prepared. The flow chart should show the logical blocks
and their functions as well as the branches of program
control, whether unconditional or conditional, upon the
results of preceding operations. With this flow chart, it
is possible to recognize the existence of equivalent rou-
tines within a program and to thus eliminate duplication
within the final program.

The degree of detail shown within a flow chart can
vary from the extreme of one block for each instruction
to the other extreme wherein a block represents what
will eventually be a subroutine long enough to be called
a program in its own right. While the degree of detail
can be determined anywhere between these two extremes,
no simplification results if a block is presented for each
instruction. On the other hand, a flow chart showing the
entire program as a single box is simplified to the point
of uselessness.

If figure 1—68 were redrawn and the instructions
omitted, the figure would represent a reasonable flow
chart for use in writing the indexed number-sorting pro-
gram. (The presentation of the written program in flow
chart form makes it easier to follow than presentation in
tabular form.) However, if the entire indexed number-
sorting program were to be used as a subroutine within
a larger program, the flow chart for that larger pro-
gram might show the number-sorting routine as a single
box.

UNCLASSIFIED
CH 3 T.0. 31P2-2FSQ7-112

Program Preparation
5.3.5.2-5.4.13

5.4.1.2 Master Programs

A large program may be made up of several smaller
programs, each performing a portion of the overall
function of the large program. In some cases, the large
program does not properly contain these smaller pro-
grams; instead, the large program selects each smaller
program in the proper order to perform necessary data
processing without performing any data processing it-
self. A program of this type, which controls other pro-
grams without doing any processing itself, is called
either a master program, an executive routine, or a
sequence selection program. In effect, a master program
can do no processing except through the use of other
programs which cannot perform the entire processing
task without having the master program to control the
sequence in which they are performed.

The smaller processing programs may themselves
contain blocks of instructions which can be called pro-
grams or routines. For example, if a given program re-
quires the performance of a particular operation, a
routine may be written to perform that operation and
placed in core memory with the processing program. The
processing program may then be written to refer to the
routine whenever the operation performed by that
routine is required by the processing program.

5.4.1.3 Subroutines

A subroutine is a group of instructions which per-
form a distinct function and it may be written in one of
two ways; the subroutine may be open or closed.

An open subroutine is a sequence of instructions per-
forming a particular function but with no special pro-
vision for incorporation into a longer program. Any of
the programs discussed up to this point can be considered
open subroutines since they end either with an HLT
instruction or at the point where the next program or
subroutine may begin. Open subroutines are useful in as-
sembling a long program; if subroutines are already
written for each function to be performed in a program,
it is more efficient to assemble these routines as required
into a complete program rather than to write new rou-
tines to accomplish the same functions. In addition, a
program assembled from previously written subroutines
is more reliable. A written subroutine has usually been
tested before being placed in a program library and can
therefore be depended upon to perform its assigned func-
tion. One caution must be observed when using library
routines in a program: the restrictions on data magnitude
and location established by the subroutine must be satis-
fied by the program containing the subroutine. In many
cases, two or more subroutines exist which perform very
similar functions, They may differ in their time of ex-
ecution or storage space requirement, in the precision with
which they produce results, or in the number of para-
meters which can be varied. The choice of a particular

UNCLASSIFIED 17

Programs
5.4.13-54.15

subroutine for use in a specific program can be made only
after consideration of all these factors in terms of the over-
all program requirement.

Some difficulties are encountered when a program
must use a particular subroutine several times but can-
not employ indexing; i.e., when the subroutine is not
used iteratively. If an open subroutine is to be used in this
case, it is necessary to copy the open subroutine into the
program at each point of use in the larger program. As
in the case of straight-line programming, needless repeti-
tion of instruction sequences should be avoided.

The repeated copying of an open subroutine into a
program at each point of use can be eliminated by mak-
ing the subroutine a closed one. The subroutine is placed
in memory apart from the program and provided with a
return provision while a leave provision is inserted in the
main program at each point of use of the subroutine.
(See fig. 1—69.) The leave provision is simply a 0 BPX S
instruction which causes an unconditional branch to the
address of the first register containing the closed sub-
routine. The return provision within the closed routine
consists of the instructions at addresses S and T. The
instruction at location S stores, as the address half of the
instruction at location T, the address of the instruction in

MAIN PROGRAM
UP TO POINT OF USE
OF SUBROUTINE

LEAVE PROVISION

X ©0 BPX S

!

CLOSED SUBROUTINE

s STA T
h

S%i
THRL?OPEN SUBROUTINE
T-1

T 0 BPX -

|

{

REMAINDER OF MAIN
PROGRAM

A+
THRU
END

Figure 1—89. Use of Closed Subroutine
in Larger Program

UNCLASSIFIED
T.0. 31P2-2FSQ7-112 CH 3

PART 1

the main program from which the branch was performed
and to which program control should return after com-
pletion of the subroutine. The instruction at location T
performs the branch of program control to the main pro-
gram. The 0 BPX § instruction which calls the closed
subroutine into use can be considered as a pseudo-instruc-
tion code for the operation performed by the closed sub-
routine. For example, if the closed subroutine starting at
location § extracts the square root of the number it finds
in the accumulators and leaves the square root in the
accumulators, the 0 BPX § instruction is a pseudo-instruc-
tion code for an extract-square-root operation. In effect,
the 0 BPX § instruction is a new instruction which can
be used just as are the other 48 instructions. Since any
open subroutine can be converted into a closed sub-
routine by the addition of the return provision, the use
of closed subroutines can greatly simplify the program-
ming of a complex operation.

The only limitations on the use of subroutines are
that the initial requirements of the subroutines must
be satisfied before the subroutine is called into use and
that the locations in core memory needed for storage of
the subroutine must not be used for any other purpose
while the subroutine is to be used or stored for later use.
A section of core memory is usually reserved for stor-
age of subroutines required by the program being ex-
ecuted.

5.4.1.4 Compiler Programs

When a number of standard subroutines exist and can
be made accessible to the Central Computer System,
programs can be written using pseudo-instruction codes
calling for particular operations. A program of pseudo-
instruction codes can be presented to the Central Com-
puter System for preparation as a conventional program
of instructions by a special program known as a compiler.
The compiler recognizes the pseudo-instruction codes,
selects the appropriate subroutines from storage, and pre-
pares a program which accomplishes the desired final
result, By using a compiler, the programmer is reiieved
of the job of mechanically assembling standard routines
in punched card form into program decks or of rewriting
these routines with addresses appropriate for the over-
all program. In effect, a compiler routine enables the
Central Computer System to respond to more complex ia-
structions than the 48 basic instructions built into it.

5.4.1.5 Utility Programs

Utility programs are essentially large closed sub-
routines which are handled as programs in their own
right. The primary distinction between a utility program
and a closed subroutine, other than size, is that a utility
program performs some function for several other pro-
grams, whereas a closed subroutine performs a particular
function for only one program. Closed subroutines are
generally loaded into core memory with the program that

118 UNCLASSIFIED

PART 1

will use them. Utility programs are usually loaded into
core memory and left there while different programs are
loaded and executed. Thus, the utility programs will
usually occupy a particular block of registers in core
memory throughout the execution of an entire series of
programs which make use of the utility programs.

An example of a utility program is one which trans-
lates information from Hollerith code stored in a card
image to binary form. A program of this type might
be of use to more than one program and might there-
fore be placed in core memory as a utility program.
Another utility program might be one which took binary
information and converted it into Hollerith code in
card image form for delivery to the line printer. A
utility program of this type would be useful in the first
running of any program to debug that program. The
printout utility program might be called for at several
points in the program under test to provide a printout
of the contents of all computing registers for use in
analysis of the program under test.

5.4.1.6 Parameters

If a subroutine or utility program is to be of wide
possible use, it must be written with provisions for chang-
ing the parameters within the subroutine or utility pro-
gram. Parameters may be those numerical constants used
in processing other data or the locations of data to be
processed. For example, a routine which can translate a
block of binary information into octonary card image
form and have this information printed out on the line
printer may have as parameters the number of words in
the block to be translated and the address of the first
word in the block. If these parameters can be changed,
the storage locations used for the subroutine can be
changed, if necessary, to facilitate storage of the main
program. Similarly, a main program can be written with
unassigned values for parameters which may change
from day to day or from problem to problem; the values
for these parameters can then be set in manually before
the program is to be run. Thus, any program, subroutine,
or utility program can be made more versatile by writing
it with parameters which may be reset for each run of the
program.

Several means exist for setting the values of para-
meters in a program or routine. If the parameters can
be set for the routine and left with these values, a para-
meter card (a punched card containing identification of
the parameter and the value it is to have) can be loaded
along with the cards containing the routine. A routine
whose parameters are set in this way is said to have
preset parameters, since they are preset when the routine
is loaded. In some cases, program parameters may be
set manually into test memory with the program written

to refer to test memory when a parameter is called for.
" Finally, a subroutine can be written whose parameters are

UNCLASSIFIED
CH 3 T.0. 31P2-2FSQ7-112

Parameters
54.1.5-54.2.2

set by the using program before it calls the subroutine
into use. In effect, the using program would set the
parameters in the subroutine by storing the proper values
in appropriate locations in the subroutine and then
calling the subroutine into use. Precautions are re-
quired within the using program to insure its setting
the proper parameters into the subroutine before each
use of the subroutine.

5.4.2 Program Coding

5.4.2.1 Absolute Programming

The programs and routines given as examples up to
this point have been presented in a variety of forms.
Instruction locations and address halves appear as octon-
ary numbers or as symbolic addresses whose actual values
depend upon other addresses which are program par-
ameters. No difficulty is encountered in following these
programs, since they are rather short. Similarly, no
difficulty is encountered in writing a short program using
absolute addresses; i.e., locations and address halves,
perhaps abbreviated in octonary notation, describing
actual memory addresses or values of numerical con-
stants. In a short program, it is relatively simple to keep
track of these addresses used in the program. Further,
the insertion of an extra instruction which requires

changing the storage locations of succeeding-instructions - - -

and the address halves of branch class instructions is not
difficult.

In the writing of a long program, manipulation of
absolute addresses becomes difficult. Further, if an extra
instruction must be inserted early in the program, the
job of changing storage locations and instruction ad-
dress halves becomes almost impossible. To avoid the
tedious work required in absolute programming, a pro-
cedure known as symbolic programming can be used.

5.4.2.2 Symbolic Programming

When a long program is to be prepared, it is first
divided into blocks of operations with each block of con-
venient size for manipulation. As each block is written,
it can be tested, revised, and reviewed before its incor-
poration into the final program. Since the instructions
within each block must not be-assigned absolute addresses
until after the blocks have been assembled into a com-
plete program, an arbitrary or symbolic address can be
used to facilitate both the writing of each block and the
assembly of the entire program.

A symbolic address is written with up to six alpha-
numeric symbols; the first three symbols are usually
alphabetical and the last three are numerical. A symbolic
address notation thus would look like this: AB.C12.3.
The first two letters generally identify the overall pro-
gram which will contain the block being written. The
third letter identifies the block itself, thus allowing the
division of a program into 26 blocks. If more blocks are

UNCLASSIFIED 119

Assembly Program
54.22-5.4.24

necessary, the overall program may be assigned two or
more combinations of letters for the program identifica-
tion position. The first two digits allow the identifica-
tion of up to 100 addresses within each program block,
or 2,600 addresses per program. The last digit is gen-
erally used only for insertion of instructions after the
block is initially written.

It is important to realize that a symbolic address
has no inherent numerical significance. Although not
strictly necessary, consecutive instructions are usually
assigned consecutive symbolic locations to simplify sort-
ing of the instruction steps into their proper order. Sym-
bolic addresses need be assigned only to the location of
the first instruction in a sequence and to those instruc-
tions whose locations are referred to in the address halves
of other instructions. Further, not all addresses within
the program need be indicated in symbolic form. If an
actual address is known for a particular operand or oper-
ation, it can be written into the program and is usually
indicated by enclosing the actual address in parentheses.
Similarly, those instructions whose address halves should
contain numerical constants (such as shift class instruc-
tions) can be written with the absolute value in octonary
form and be indicated as absolute by their inclusion in
parentheses. Table 1—61 shows the nonindexed number-
sorting program given in figure 1—67 as it might be
written in symbolic form.

The notations used in table 1—61 do not include any
6-digit symbolic addresses simply because no inserted
instructions were necessary and because not all instruc-
tions are assigned specific symbolic addresses. If all of
the instructions had been assigned symbolic locations,
any added instructions would be assigned symbolic loca-
tions whose first five symbols match the symbols as-
signed to the instruction, after which the added instruc-
tions would be inserted, with the added instructions
numbered sequentially in the sixth symbol position.

5.4.2.3 Assembly Program

Once a program is written in symbolic form, the
task of translating it into absolute form can be per-
formed by the Central Computer System under control
of a utility program called an assembly program. The
assembly program accepts a symbolic program pre-
sented on instruction cards. (Refer to 4.2.2.) An absolute
location is assigned to each instruction with the locations
assigned in the same order in which the instructions of
the program are presented. The assembly program then
makes another pass through the program being assembled
to complete the assignment of absolute equivalents for
all symbolic addresses and to translate all information in
the program itself into binary form. (Since symbolic
addresses are not translated, they can be written deci-
mally without introducing any difficulties. The assembly
program simply provides a one-to-one correspondence of

UNCLASSIFIED
T.0. 31P2-2FSQ7-112 CH 3

PART 1

symbolic addresses to absolute addresses.) The assembly
program will also punch a deck of binary cards fro—
which the assembled program may be inserted and exe-
cuted, together with a printout of the program, listing
all comments, symbolic locations, constants, assigned
storage locations and their contents in octonary form,
and the initial and final drum storage locations, if any.
The binary deck is prepared as described in 4.2.3.

In order to submit a program in symbolic form for
assembly, not only must the instructions be prepared on
punched cards but certain control information must also
be prepared on punched cards.

5.4.2.4 Assembly Program Card Punching

Each instruction within a symbolically coded pro-
gram is prepared on a separate instruction card. (See
fig. 1~70.) The location field should be symbolically
coded or may be blank if no symbolic tag is necessary for
the location of that instruction. In the instruction field,

TABLE 1—61. NUMBER-SORTING PROGRAM,
SYMBOLIC FORM

INSTRUCTION
LOCATION OPERATION ADDRESS
AB A00 cAD AB A30
DIM 31
BLM AB A10
DCL (00020)
AB A01 DIM AB A32
BLM AB Al1
DCL (00020)
AB A02 DIM AB A33
BLM AB A12
DCL (00020)
AB A03 LST AB A40
HLT
AB A10 CAD AB A31
BPX AB A0I
AB A1l CAD AB A32
BPX AB A02
AB A12 CAD AB A33
BPX AB A03
AB A30 N,
AB A31 N,
AB A32 N,
AB A33 N,
AB A40 Result

120 UNCLASSIFIED

PART 1 UNCLASSIFIED Card Punching
CH 3 T.0. 31P2-2FS@7-112 5424
column 24 is reserved for the index indicator punched

octonarily, columns 25 through 27 for the operation

code punched alphabetically, and columns 28 and 29 SymBouie /T ALPHANUER(C

for the index interval punched octonarily, if used. The
address field may contain the address half of the in-
struction in symbolic or absolute form; an absolute
address is identified by the lack of punching in column
30 and by the restriction to octomary punching in col-
umns 31 through 35. If the address haif is symbolic,
columns 30 through 32 are alpha-numerically punched,
and columns 33 through 35 are punched decimally. The
comment field, columns 36 through 80, may be punched
on an instruction card if a comment is necessary with the
instruction.

A constant card is used to insert numerical con-
stants in their address halves. Numerical constants may
also be addresses, thus requiring the facility for insert-
ing symbolic -addresses on constant cards. The location
field of a constant card need not contain an address if no
symbolic tag has been used to refer to the location of the
constant in the program. When both half-words inserted
by the card are constants, they are punched in octonary
form in the instruction and address fields, preceded by
punches in the sign positions in columns 24 and 30; the
control column, 17, is left blank. If the right half-word is
symbolic, a 1 is punched in column 17. If the left half-
word is symbolic, a 2 is punched in column 17. If both
half-words are symbolic, a 3 is punched in column 17.
For a constant card containing an instruction with a
numerical constant as its address half, a 4 is punched in
the control column. These control column punches direct
the assembly program in its handling of the data on the
constant card and allow the punching of both octonary
and decimal information on a single card without con-
fusing the assembly program.

Assignment cards perform the function of assigning
absolute equivalents of symbolic addresses in symbolic
programs. There are four types of assignment cards:
location assignment cards, address assignment cards,
drum location assignment cards, and temporary storage
assignment cards. A location assignment card specifies
the actual storage location for the word read from the
next card read by the assembly program. Successive words
read after this word are then assigned sequential storage
locations; thus, the order in which instractions are sub-
mitted to the assembly program after the reading of a
location assignment card determines their storage loca-
tions and eliminates the need for symbolic location codes
for each word.

An address assignment card is used to supply an
absolute address half for a word in the program being
assembled whose symbolic location is given on the ad-
dress assignment card. This type of assignment card is
used to supply an address half for a word when the ad-
dress half of that word cannot initially be assigned a sym-

SYMBOL'C—\ F[OR ACTUAL
1 1
[\
Locamion].] aooeess| comients

Ill|Il‘lllIlllllIEOWlllllf!I.Vlllllllllllll.Glllﬂﬂlllll|llll.lﬂlllllllllllllllllll!llll
l.Iz:;;;l,:;l.;.ll!'llll'1|ll||!|II:!‘II|Il‘l|l1||III‘IIll|Ill|1|||11|l|11|l|||l|||||llllIlll
221211Z11222211211[121212’22"2 2:212212121122121II2Z2IZ1122121121221221221222121222%
33!S!333!13!!33331:!31333|ﬂ!I:J12:1331!311133i'!31331311313!3333333333333il)!!!yl!l!!!é
lll‘llllllll‘llllmlll414:4l(‘ll4;(Il(llllll‘l444144444l14llllli#lll‘llll((lllll(lll§
555555555555555555}5555555551555:55555555555555555555!55555555555555555!55555555555"’

B:E‘ﬁiilliiS;G(G:IGG‘EEii‘ii“ﬂﬁiiSiEi‘5665555‘5“‘555“555‘5‘5iiﬁi

CECESEREEEEEEREE
77I111711!771:177|771711177117111'!71”'l7111111111177771”77171177”7
+

6l

1111111771117 17
I

lllill‘ll!llllllfllllllgjll:!ll:lllllllllllllllll‘lllllllll!llllllllllllll!lilllll

99999839399993389gla999 5'59!|!!!'S!!!9!!9!!!!!!!!9!!!9!!!!!!!!!!!!Q!!!l’?!!!i!!!!l!
134568 enauus sneana » -

(il g iy

INDEX K
INDICATOR, \
INDEX
OCTONARY _/ INTERVAL,
OPERATION OCTONARY

CODE,
ALPHABETIC

Figure 1—70. Instruction Card

bolic code; this condition may arise when instructions
with symbolic addresses refer to data storage locations or
to locations in sections of the program which are not
being assembled at this time. Address assignment cards
may be inserted at any point in a deck of program cards.

If a portion of a program is to be stored on a drum

field after assembly, the starting drum storage- address -

and drum interleave (if any) can be specified by a
drum location assignment card. The drum location
assignment card assigns a drum storage location to the
word on the next card read by the assembly program. It
should be noted that the drum storage location (if any)
for the first word on each binary card is punched on that
card to allow loading the appropriate portion of the
assembled program into drum storage. The drum location
assignment card indicates, to the assembly program, the
starting drum storage location, allowing it to assign
starting drum storage locations to each binary card con-
taining the assembled program.

A temporary storage assignment card reserves blocks
of actual addresses for storage purposes within the as-
sembled program. The card itself contains two symbolic
addresses, the first and last in the block of storage; it may
reserve either core memory addresses or drum storage
addresses. Use of a temporary storage address assign-
ment card eliminates the need for an address assignment
card for each register to be reserved for storage.

Control or assembly control cards direct the opera-
tion of the assembly progtam. A restore card, identified
by a 5 punched in the control column, causes the assembly
program to operate the line printer carriage feed, feed-
ing the printout form up to the first line of the next
page. By inserting restore cards at appropriate points in
the symbolic program, the printout of the assembled
program can be divided by routine or program block to

UNCLASSIFIED 121

Card Punching
54.24

facilitate interpretation of the printed program. A drum
termination card, identified by a 6 punched in the control
column, stops the assignment of drum storage locations
to words in the program begun by a drum location
assignment card. A termination card, identified by a 9
punched in the control column, informs the assembly
program that the entire symbolic deck has been read and
is ready for processing. The termination card also con-
tains the starting location of the program in its address
field with the starting location given either in symbolic
or absolute form. The assembly program uses this in-
formation to prepare a branch control card which is used
in loading the assembled program from binary cards.
Comment cards, containing only information in the
comment field, can be placed in a symbolic program deck

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

PART 1
CH 3

to insert long comments on the printed listing of the
assembled program. In addition, an identification card
may be inserted along with the symbolic program deck
for use in the punch identification section of the assembly
program. This type of card bears information in columns
33 through 48 which will be punched in the identifica-
tion fields of all binary cards prepared by the assembly
program. If the identification card has a 9 punched in
column 49, the assembly program will convert the in-
formation in columns 33 through 40 into binary form
and punch this binary information in the 12 row of each
binary card prepared by the assembly program. The
punching of all these special cards is summarized in
table 1—62.

TABLE 1—62. ASSEMBLY DIRECTION CARD PUNCHING

CARD TYPE FIELD OR COLUMN
MAJOR VARIATIONS CONTROL LOCATION INSTRUCTION ADDRESS
17 18 1920 21-23 24 25-27 28-29 30 31-32 33-35
Instrucdon Absolute address - AN AN D -0 A -0 - -0 -0
Symbolic address - AN AN D O A -0 AN AN D
Constant Both halves
constant — AN AN D S O O § O (¢}
Right half
symbolic 1 AN AN D S 0] O AN AN D
Left half
symbolic 2 AN AN D AN AN D S o o
Both halves
symbolic 3 AN AN D AN AN D AN D AN
Operation code
and constant 4 AN AN D -0 A -0 S O (0]
Assignment Location - - O o - - - - - -
Address _— AN AN D - - - - 0 O
Drum location - O O O O - — - - —_
Temporary storage - AN AN D - - - AN AN D
Restore 5 - - - - - - - - -
Drum termination 6 - - - - - - - - -
Termination with
symbolic address 9 - - - - - — AN AN D
Termination with
absolute address 9 - - - - - - - -0 -0
Comment Punched only in comment field columns 36-80
122 UNCLASSIFIED

PART 1 UNCLASSIFIED Program Testing
CH 3 T.0. 31P2-2FSQ7-112 5.4.24-54.3.2
Key: — no punching through a properly operating computer and observing
the results of the program at various points in its execu-
O octonary . -
tion. If the program is used to calculate the outcome of
D decimal a problem whose result is already known, the end result
.. of the program execution can simply be compared with
A alphabetical the known correct result. If the problem handled by the
S octonary sign program is unsolved, other tests may be required. (Even

AN alpha-numerical
—O empty or octonary

Digits indicate punch in corresponding row of card.

5.4.2.5 Printout of Assembled Program

An assembly program produces two forms of an
assembled symbolic program submitted to it. The as-
sembled program is prepared on binary cards for rein-
sertion and execution of the program. In addition, a
printout of the assembled program is produced on the
line printer. The printout of a portion of a program
might resemble the example given in table 1—63.

This fragment of a printed out program can be com-

pared with the symbolic program given in table 1—61, of .

which this is the printout. The left half of the printout
is usually the absolute program, with one exception: the
operation code for instructions is the alphanumeric repre-
sentation. The absolute coding for the operation halves
of the instructions is printed with the symbolic addresses.
By transposing these two columns before printing, the
absolute program can be followed more easily than if the
instruction codes were also shown in octonary form. The
positioning of information on the printout of an as-
sembled program is determined by the wiring of the line
printer control panel. (Refer to 4.5.2.1.)

5.4.3 Program Testing

5.4.3.1 General

When a program has been completed, it should
theoretically be able to perform its intended function.
However, the possibility of errors in the program exists
until the program has been tested. In general, program
testing (or debugging) involves running the program

after successful comparison with a known result, the
program may still contain errors which must be located
by other means.)

5.4.3.2 Pregram Monitoring

A program may be tested by monitoring its execu-
tion to insure that each sequence in its operation is cor-
rect. The program may be advanced a memory cycle or
instruction cycle at a time, manually, while observing
indicator lights showing the contents of all computing
and control registers in the Central Computer System.
This single-step procedure is quite time-consuming and
is therefore impossible in a long program. An alternative
to single-step operation is the temporary insertion of
HLT instructions at critical points in the program. Again,
analysis of the register indicators is necessary to decide
whether or not the program has operated correctly up
to that point. The disadvantage of this method is the

lack of information about the contents of core memory.

Selection of proper stopping points can minimize this dis-
advantage but the method is still quite time-consuming.

Most properly written programs contain checking
provisions within themselves to determine the existence
of incorrect results. In most cases, these checking provi-
sions can be used to cause a program stop, at least during
testing. When a program is stopped by the detection of
an error, the error is located somewhere between the
last ersor halt provision which did not stop the program
and the error halt provision which did. That portion of
the program can then be run on a step-by-step basis to
discover the exact cause of the error. The physical facil-
ities used in maintaining AN/FSQ-7 Combat Direction
Central (discussed in Chapter 10) can also be used in
debugging programs.

TABLE 1—63. PRINTOUT OF ASSEMBLED PROGRAM

INSTRUCTION INSTRUCTION
LOCATION OPERATION ADDRESS COMMENTS LOCATION OPERATION ADDRESS
00400 CAD 0.00430 OBTAIN FIRST NO. AB A00 0.01000 AB A30
00401 DIM 0.00431 COMPARE SECOND NO. 0.01640 AB A31
00402 BILM 0.00415 TEST 0.05500 AB A10
00403 DCL 0.00020 RESTORE FIRST NO. 0.04600 00020
00404 DIM 0.00432 COMPARE THIRD NO. AB Ao1 0.01640 AB A32

UNCLASSIFIED 123

Test Programs
54.3.3-54.34

5.4.3.3 Test Programs

Various programmed facilities can be used in test-
ing a new program. These include trace routines, post-
mortem routines, and trap routines. A trace routine
prints out the contents of selected registers after the
completion of each step in the program under test. In
effect, the trace routine is an executive program which
alternately allows performance of one program step in
the program being tested, then a printout routine, then
another step of the program being tested, and so on.

A post-mortem routine, sometimes called a dump
routine, causes the printout of all core memory registers
or of selected core memory registers, The post-mortem
routine thus provides a complete picture of the result of
a program which cannot be obtained simply by examining
the contents of the computing and control registers,
Further, a post-mortem routine can be prepared to print
out only those core memory registers which contain some-
thing other than zero.

A trap routine provides a printout of core memory
contents for selected portions of a program being tested.

UNCLASSIFIED
1.0. 31P2-2FSQ7-112 CH 3

PART 1

The portion of the program to be trapped is usually
specified by control cards or by manual insertion.

5.4.3.4 Simulation Programs

It is possible to test programs written for one digital
computer on another digital computer by using an exec-
utive routine which causes the digital computer being
used to test the program to operate as the digital com-
puter for which the program was written. The advantage
of using a different computer for testing programs is de-
pendent upon the state of the computer for which the
program has been written. If construction of a new digi-
tal computer is nearing completion, it is desirable to have
tested reliability programs available for use in testing
the new computer. Since that computer may not be re-
liable immediately upon completion, the computer can-
not be used to test programs which will later be used in
testing the computer. In addition, simulation programs
enable the use of a relatively inactive digital computer to
test programs written for another computer whose oper-
ating time is taken up by other requirements. This is
particularly advantageous in program testing, which is
generally a very long process.

124 UNCLASSIFIED

PART 1

UNCLASSIFIED

System Function

CH 4 T.0. 31P2-2FSQ7-112 1.1

CHAPTER 4
DRUM SYSTEM

SECTION 1
SYSTEM DESCRIPTION

1.1 SYSTEM FUNCTION

AN/FSQ-7 Combat Direction Central stores infor-
mation by means of the Central Computer System inter-
nal core memory, cards and tapes external to the Cen-
tral Computer System, and a system of magnetic drums.
This Chapter describes the functions and operations of
the Drum System of the equipment as it applies to pro-
gramming, Unless otherwise specified, reference to the
direction central applies to both computers A and B of
the duplexed central. (Refer to Chap. 1, 2. 3.)

The capacity of the Drum System enables it to ful-
fill storage requirements not satisfied by the Central
Computer System internal core meémory, while its speed
enables it to fulfill requirements not satisfied by cards
and tapes. The speed of a system is dependent upon its
information access time; thus, the smaller the access
time, the faster the system. The average access time of
the Drum System is considerably greater than that of
internal core memory (10.3 versus 3.0 microseconds, re-
spectively); cards and tapes are much slower than
either. However, successive transfers of words by the
Drum System can occur at 10-microsecond intervals.

The Drum System performs two principal func-
tions: as a time buffer, and as an auxiliary memory
device. It acts as a time buffer between the Central Com-
puter System and the Input, Output, and Display Sys-
tems. The Drum System also serves as an auxiliary mem-
ory device in that it stores information that must be
reused from time to time. (See fig. 1—71.)

As a time buffer, the Drum System accepts informa-
tion from the Input System at comparatively slow, in-
termittent rates. Periodically, at intervals prescribed by
the Central Computer System program, this information
is transferred to the Central Computer System at speeds
up to the Drum System maximum speed (one word every
10.0 microseconds). Similarly, processed data for the
“Output and Display Systems is received by the Drum
System from the Central Computer System at intervals
prescribed by the Central Computer System program

and at speeds up to the Drum System maximum speed.
The Drum System then transfers the processed informa-
tion to the Output and Display Systems and to the Drum
System of the other computer in AN/FSQ-7 Combat Di-
rection Central. (See fig. 1—72.) The transfers from the
Drum System to the Display and Output Systems are at
speeds which are slower than Drum System maximum

speed.

As an auxiliary memory device, the Drum System
supplements the Central Computer System internal core
memory. The storage capacity of the entire Drum System
is about 19 times that of internal core memory (153,000

versus 8,192 words); the storage capacity of cards and

tapes is larger than either.

About 64 percent of the Drum System capacity is
reserved exclusively for the storage of information such
as subprograms, mathematical values, and constants.
This auxiliary memory portion of the Drum System
alone, with a storage capacity of 98,304 words, has 12
times the capacity of the Central Computer System in-
ternal core memory. Additional storage space is ob-
tained through the use of that section of the Drum Sys-

DISPLAY
SYSTEM

INPUT DRUM
SYSTEM SYSTEM

OUTPUT
SYSTEM

CENTRAL
COMPUTER
SYSTEM

Figure 1—71. Relation of Drum System
to Other Systems

UNCLASSIFIED 125

System Data UNCLASSIFIED PART 1
1.1-1.2.2 T.0. 31P2-2FSQ7-112 CH 4
ouTPUT DISPLAY DISPLAY ouTPUT I
SYSTEM SYSTEM ‘ SYSTEM SYSTEM
! (SEE NOTE 1) | l
CENTRAL DRUM | ' DRUM CENTRAL
COMPUTER SYSTEM SYSTEM COMPUTER I
i (SEE NOTE 2) l
| COMPUTER INPUT WPUT COMPUTER I
| A SYSTEM | I SYSTEM B |
L=

NOTES!.
L. FROM IC FIELD B TO CD ELEMENT A
UNDER COMPUTER A PROGRAM CONTROL.
2.FROM IC FIELD A TO CD ELEMENT
B UNDER COMPUTER B PROGRAM CONTROL.

Figure 1—72. Intercommunication in AN/FSQ-7 Combat Direction Central

tem which is used as a time buffer between the Central
Computer System and the Display System.

The transfer of information to and from the Drum
System is logically divided into two categories: outside-
to/from-drum (OD), and computer-to/from-drum (CD).
(See fig. 1—73.) The OD and CD sides of the Drum
System operate independently of each other.

1.2 SYSTEM DATA

1.2.1 Physical Description

There are 12 identical drums in each Drum System.
A drum is a metal cylinder 12.6 inches in length with a
diameter of 10.7 inches and a weight of 85 pounds.

INPUT DISPLAY OUTPUT
SYSTEM SYSTEM SYSTEM
WRITING READING
©0) (00) R iNG
__ oosoE_ | DRuM | oosmE
D SIDE SYSTEM D SIDE
READING WRITING
(co) it
CENTRAL
COMPUTER
SYSTEM

Figure 1—73. The OD and CD Sides
of the Drum System

Each drum is individually mounted along its longitudi-
nal axis on a fixed shaft, as shown in figure 1—74, and
each is driven by a synchronous motor through a
toothed belt at a speed of 2,914 revolutions per minute.
The cylindrical surface of each drum is plated with a
0.0005-inch layer of a magnetic nickel-cobalt alloy.

As a drum rotates, fixed magnetic heads transfer
information to and from its surface by recording (writ-
ing) binary information in the form of small electromag-
netic flux patterns and later detecting (reading) these
patterns. The fixed magnetic heads are mounted with a
small air gap of critical tolerance between them and the
drum surface. Since readingon one side of a drum
(OD or CD) and writing on the other side often occur
concurrently, two sets of heads are required, except in
the case of the auxiliary memory drums where reading
and writing occur only on the CD side.

Magnetic heads for reading or writing are held
rigidly in place by bars which are parallel to the longi-
tudinal axis of the drums. (See fig, 1—75.) Six pairs of
these bars are arranged axially around each drum (each
bar can support up to 40 magnetic heads). One bar of
each pair supports the heads for OD operations, and
the other bar supports the heads for CD operations.

1.2.2 Logical Description

Each drum in the Drum System is logically divided
into sections, called fields. There are 75 fields in the
Drum System. Eleven of the 12 drums contain six fields
each; the 12th (the radar data drum) contains nine.
Each of the six pairs of longitudinal bars arranged
axially about a drum is associated with a field of the

126 UNCLASSIFIED

PART 1
CH 4

drum, One bar of each pair supports the heads which
perform OD operations. A unique arrangernent is made
to accommodate the nine fields of the radar data drum.

A drum field stores a particular type of information
and is named to correspond with the type of informa-
tion stored. Each drum derives its name from the names

of the fields it contains; e.g., both the LOG and MIXD
the

l“f! 1m the

el il

abbreviated names of the fields each contains.

s derive their names from the first letter of
Figure

iyl i i o
N T
s wm, !ng g

e

i
B w:‘u’ e

ey i) By
o

ke S8
ww;«s‘ i
fa i

[o

B
i uf‘a»
i m%w‘
i N Sy o e
i ’n;«;;;«; nm,,;;w s s
“,,um,,,,, s s g et

PG g st gl
e s e
(v ST T
e «,fﬁ::’ i o

E)

e

m‘,‘”v i 5 »m,k,,,‘x“«“, s ,u ¥
T

s .m w v

S
o i
il e

B
7Mwwuxwm
.

i L,;;‘txz

i ,,W
&n ey e : >w,‘
e *

5

o '”i'mx 5,

Gl b

R e ‘“"N s
N o

i

s s
i

n*"»f/,.,. i
s o
g it b

i
o
Pimac e,

v

UNCLASSIFIED
T.0. 31P2-2FSQ7-112

i
s

Logical Description
1.22-1.23

1—-76 is a pictorial representation of the logical divi-
sions of each drum, In this figure and all subsequent
figures, drum fields are shown a< subdivisions of a drum.
This convenient logical conver ion is used for illustra-
tive purposes only and is not to be accepted as a true
physical relationship.

1.2.3 Logical Definitions
The elligence that can be written

on or read from a drum is called a bit. (See fig. 1-76.) If

.
2 0n 4
pyvas

Qe

smallest unit of

i

s
e

g L,«um,\m»mwMM,A,“M : s s
el Wﬁ;:gm;,mn;; e faG e e i ‘; i %:sA : i i
;g«,«s i e X i mfxi‘;,é‘”’m i
g ‘em
e u:»,,;,,,‘ e
b

P “‘E“’fiz i »,,"‘,"’5‘3‘“” s
S NM; i % e
o

T
ﬂx%
B
i
wwpu
S

i

B g
24 .

iy

e
i fo,ui;i:
b
‘o) ,&ﬁnw«
A

i

-
o e
. Yl
o : .
i o
e i

. S m.x,w i
b dﬁ xxw e
M sy
Dl
':i"m S e o
;«s» M "“‘q&tvsw?‘%»m”‘ N
W i ﬂm@,“*w °”’“‘“*)?»m°
. i

‘x x»"«s“xvxm,,
i, i g,
. o i o

ity
“*m i

5 M
iy !mxm
B
i r&!s
e

'
sl
i
o
i

i - ol m.f’ %
::m;m e iy i ,fp E
b

i R
h,,“j;yx«m,,

w,

i
«mé”“‘wf G
. m,‘ss“ﬁzzwmuﬂ i
. e

'xx . h‘

i
S

m;;jy” w«:«, w i »u
W
mmwx

S

w

I g
7 i

mw@s”www .
il S

i

ru‘,“ s b M e h s i
. s i ey
e G «»«W, N*\“v,m g L,f Pa

i P :) ’
S i P o Wi
e N e ‘r«’» W.M,»,,,
O : -
e (\;xm, Sl Sy ; i
e 2f§’, S : f ,()«wm,’ “s S it
: RN ; e e PG St it v
i A S e S
u,‘\;«w i .x,,,@,m o
ot m, . e
. AN
oA S S
i e [v R
m [kx“,‘ Sy o sl v),ww‘w“
5 mn,) . ,‘:x;n ER A B 3
e
S e
b : g sk

Al R0y
fh e

G S

e
e xx.,,,«,) e

g o 'Im
A
giy
“wmpmm
e

N,
oyt

i

e,

LN o

g

ol o g

R *:
il

m; e ‘;‘*;,

it o S ;,;y« “,g*» »uz,«g;ﬂ

o

-
i

o

i
L

rnmm
i i,

G e M
o S s
i ’Wmn, (i i aty
e

e 2 i
g e il L i
SR f«u, i

e

“ . G

i

.
i
it wm(x ""‘“wn i
SRR
”Wxx«h i »m,,
o e

o o w»,,,' o
S ey oy
i g fiew

: =l
E i g
‘u,, “)‘”Ikm m, »nq B T
S

Mv x!m f ps “"xmmm
i “Km e
iy

twn, 0 R
el

g iy,

<,‘

F Ly G
L ,;“: i».x "«m;«

g
5,
o]

i

o ;

M B]

v WM s

S e
LTy
m.‘x i v‘,";’

i
e ”; .

S

N
i >m);
«

R e,

it E

EE N ;

S

i el oy i

,I:‘ iy
S

FORNE
s e
o Fan i

g

P v
w Al e

b G L sl
e IS

o
i,
g

g
i

- ,"""‘rvm F g *fou
i o xx,‘ sl
oot
i e
i

Sl
i

o S e ‘ i 5 e % i
r»ww gLt o s
s »z,&f?’vxw» i f; ,mi,,é,‘“ e
a ‘f::: a2 ww i N“‘
- et
&

St
S

.
o
i
i
)

vl M.,,,

e o mw 1
i o i

! i r"‘
m L i iy # iy
A G ,,w, e
i i)
i um i ,* i o e i g;* w,n,
s Jh
b

g i
i
» G
e
i

i

S ,
e s

i

R

i

WW,,,,,;;;rr«.mm, :

b A

i xx?,!” sl
i

i
e i i
s . mm,%i,“il“w G
S
W 0 i Al e
i ’x; Sl ‘,’ na »
¥ S&

s
0 ,«h,}n ‘(;;w;x,
i, ,Ltu:*:‘m

e 5

S
e cmli-‘,ut"m«i,
L
v
;

"ESSKJ

i :

i
me
“!’tﬂ ‘
i :
el A
«»«x‘,,< i
uw *x m
2 i)
ain 0 a ‘!‘mm{,;s i
i . e m,x,,mx
gt o S
»nm e
R e K T N
m,«,,,,(;g«s;u,x)xg‘;ixﬁ,w“7 Lo
e
e
.

S
S
o o
ot

o
ik e A s
il i
xfx(i
mﬁ»l,,“

L

- - m
G i
G o
G
s
i

a5

u;s
i
. MW i
o, ‘“Nm
wi LT i
i
N .u,&“, s
e i ‘
e
i
”»;ii’;;;’-m” - u,ssww
e
w!!;, i rm,.
M &
P i

S ey

ik

e
et
G m],

, i 1
i mq

S
‘L g

n,.i,\‘ o
i “*“”«m;x“;‘,‘
e L
R S
i 4 ;‘; ot (W, T s§ i
e o

L i
B
Sy
it
s i’m -

Ml
i

e :
i

e Mm,
e m,w o
i

e fee

o
" vwl’f:w

i

i

e
.

Byt
xmwvm,. :

e

o

w,
i

.

o
S
S
o s i
e i wm,, ‘mxu;,.m
s
i ,,(xg“ 1%

iy iy S

i m, .
]

ol

v w s
P

i i
G e “:,m b

‘u«wm,, 'm»xc.,» A
i

e i
i D et
o, i “ i

i
i 5
i, 1

i,
d

Wi

s, w e
e gt
i w,f i «, PR
e |
i
pae
m«‘,ﬁ‘ ity

iy
i ,g, v
: e
3 i Y 3
e W . e
i . i .

o R
S

»‘,ﬁ i
A B,

g M,‘ i

e

Figure 1—74. Magnetic Drum

CLASSIFIED

Timing
1.2.3-1.24

UNCLASSIFIED
1.0. 31P2-2FSQ7-112 CH 4

PART 1

it

el

Figure 1—75. Magnetic Drum and Heads

the small electromagnetic flux pattern is positive, the
bit is a binary 1; if the flux pattern is negative, it is a
binary 0. Once written, a bit is stored on a drum until
another bit is written over it or it is deliberately erased.
Reading from a drum does not in any way alter the bits
recorded on the drum surface.

As a drum rotates, closed circumferential bands of
drum surface, called drum channels, pass under the mag-
netic heads (each channel is written or read by one
head on the CD side or one head on the OD side).
Since there can be as many as 40 magnetic heads on a
bar, there can also be as many as 40 channels in a drum
field. The rotational velocity of a drum and the timing
of its reading and writing operations are such that each
magnetic head can read or write 2,048 bits in each chan-
nel of a drum field,

Thirty-two drum channels of a field contain infor-
mation bits, except on the radar data drum where only
24 of the channels in a field contain information bits.
Each axial line of bits in a field is a drum register. Some
fields have control channels, such as parity, marker
status, and status channels, In addition, each drum has a
timing channel and an index channel which are common
to all fields on the drum.

During Drum System reading and writing opera-
tions, information is transferred to or from all bit posi-
tions in a drum register simultaneously by the 32 mag-
netic heads on one bar (which corresponds to the 32 in-
formation channels). The 32 bits which are transferred
constitute a Drum System word. In addition to the 32-bit
information word, a drum register also contains the con-
trol bits for the word. The times at which the control
bits are transferred between the control channels and

their magnetic heads do not necessarily correspond to
the times at which the words are transferred.

A number of words making up an organized piece
of information are known as a message. One drum
register or a group of consecutive drum registers con-
taining the word or words of a complete message is
called a slot, The term slot refers to the physical group-
ing of registers on a drum, while the term message refers
to the logical grouping of words on the drum.

1.2.4 Timing

Each of the 12 drums of the Drum System is
driven by its own synchronous motor at an individually
regulated speed of 2,914 revolutions per minute. A
drum therefore rotates completely once every 20.6 milli-
seconds. Drum System access time is the time required
to locate and transfer information to and from a se-
lected drum register. The length of time required for a
seiected drum register to come under the set of mag-
netic heads of its particular field can be anywhere from
0.0 to 20.6 miiiiseconds. Therefore, average access time
is 10.3 milliseconds,

The radar data and track display drums are timed
so that 2,060 registers are established in each field. The
first 12 registers of each field cannot be used to store
information; thus, the period between the midpoints of
successive registers on these two drums is reduced to
10.0 microseconds.

With the exception of one circuit in the OD IC ele-
ment, the circuits that develop timing information for
use in Drum System operations are contained in the CD
element, Circuits that develop timing information pro-
duce four standard pulses as each drum register passes

128 UNCLASSIFIED

PART 1

under the fixed magnetic heads. These pulses are called
drum timing pulses; one series of four drum timing
pulses constitutes a drum operation cycle. For simplicity,
a drum operation cycle is considered as being of 10.0
microseconds duration for all drums, and the interval
between successive drum timing pulses is therefore 2.5
microseconds. '

When drum timing pulses are used to time the oper-
ations of the CD element, they are called CD 1, CD 2,
CD 3, and CD 4 pulses. When drum timing pulses are
used to time the operations of any of the OD elements,
they are called OD 1, OD 2, OD 3, and OD 4 pulses.

Transfers to the drum are coincident with drum
timing pulse 3, and transfers from the drum are coinci-
dent with drum timing pulse 1. Drum timing pulses 2
and 4 are used for control functions. In addition to their
uses in the Drum System, the timing pulses are sent to
all systems except the Central Computer System. In
these other systems, timing pulses are used to control
and time operations. The fact that other systems use the
Drum System timing cycle automatically synchronizes
their operations with the operations of the Drum System.

The relationship between the CD drum timing
pulses of the Drum System and the Central Computer
System is shown in figure 1—77; an understanding. of
this relationship is fundamental to comprehension
of CD operations. It is to be noted particularly that the
two timing sequences are independent of each other. -

A Drum System CD operation cycle is of 10.0-
microsecond nominal duration and contains four CD
timing pulses at 2.5-microsecond .intervals. A Central
Computer System memory cycle is 6 microseconds long.
Timing pulses occur at 0.5-microsecond intervals, and
only 12 Central Computer System timing pulses, or 6
microseconds, are required to complete a Central Com-
puter System machine cycle.

Normally, there are 2,048 drum operation cycles per
drum revolution. There are also 2,048 drum operation
cycles for the track display and.radar data drums, since
no reading or writing is performed during the first 12 of
their 2,060 timing cycles.

A single 1 bit written in the index channel under
the control of the Drum System manual control panel
establishes the reference point for the addressing of all
registers and for the counting of all revolutions of the
drum during subsequent operations. For all but the aux-
iliary memory drums, the index channel is read by two
magnetic heads, one on the OD side and one on the CD
side. Since the auxiliary memory drums are written and
read from the CD side only, the index channel on each
of the auxiliary memory drums need be read by only one
magnetic head. Therefore, there is an OD index pulse

UNCLASSIFIED
CH 4 T.0. 31P2-2FSQ7-112

System Logic
12413

and a CD index pulse for each drum except the auxiliary
memory drums. On the CD side, the index channel is
read at CD 1 time, and the drum register in which the 1
bit occurs is number 0000. The other drum registers are
numbered consecutively to 2,047. On the OD side, the
index channel is read at OD 3 time, and the drum regis-
ter in which the 1 bit occurs is number 2,047.

1.3 SYSTEM LOGIC
The Drum System is logically divided into the OD

[]

BIT
4
3 2 «
= " n
E L g EEFgZ
z b (] E 2o =
g 4 « w n FZ -
P{Ls|Li|L2 } LialLis |Rs |Ri [R2 } glmlms s|s|m|ix|Tc
WORD (REGISTER)
BIT—\
j WORDS
/ \ (REGISTERS)
)
MESSAGE (SLOT)
MAGNETIC :
HEAD\ ?
CHANNEL E][j BAR
2048 ——
T I PiLs REGISTER PiLs)
[P P
sLoT]

. 77

LOGICAL
FIELD

DRUM

Figure 1-76. Drum System Information Units

UNCLASSIFIED 129

System Logic
13

input element, OD display element, OD output element,
OD intercommunication element, CD element, auxiliary
CD element, and the maintenance elements. (See fig.
1-78.)

The OD input element transfers input data from
the Input System to the Drum System completely free of
program control. This data is in relatively large quanti-
ties, at random time intervals, and at different rates.

The OD display element takes display data that has
been stored on the dispiay fieids of the Drum System by
the CD element and transfers this data to the Display
System, The OD display element reduces the rate of
transfer of display data so that the Display System can
accommodate it.

The OD output element takes output data that has
been stored on the output buffer fields of the LOG drum
by the CD element and transfers the data to the Output

UNCLASSIFIED
T.0. 31P2-2Fsa7-112

PART 1
CH 4

System, The OD output element transfers output data
from the drum at a rate that the Output System can ac-
commodate.

The OD intercommunication (IC) element provides
a means of transferring information from one Central
Computer System to the other. The information is writ-
ten on the CD side of the IC field under program control
of the transmitting Central Computer System. The infor-
mation is read subsequently by the OD IC element un-
der program control of the receiving Central Computer
System. Since there is an IC field and an OD IC ele-
ment in the Drum Systems of computer A and computer
B, information transfer can take place in either direction.
The CD element transfers information in both directions
between the Central Computer System and the main drum
group. The CD element also receives IC information dir-
ectly from the OD IC element of the other computer. The
auxiliary CD element is used during normal operation to

¢———————— 10 USEC. ———————H)
0 ! 2
DRUM openmon
é cD4 cD1 cb2 cD3 chD 4 cDli ch 2 ch3 cb 4 cDli ch2
DRUM TIMING
PULSES ‘ | | l I l
{
25
[+ USEC. ¥
—all le— 0.5 USEC.
{ 012345678910110123456789I0l1 o] o])
13 1] 13 a 2 3 2 13 B
COMPUTER TIMING
T H Ill”ll lll H“l | /
9] | 2 3 4
COMPUTER MACHINE
CYCLES (PT OR OT)
1)
k—— & USEC. »

Figure 1-77. Timing Chart, Drum {CD Side) and Central Computer
UNCLASSIFIED

130

System

PART 1 UNCLASSIFIED System Logic
CH 4 T.0. 31P2-2FSa7-112 . 13
INTERCOMMUNICATION
TO OTHER DRUM SYSTEM INPUT DISPLAY OUTPUT
CD ELEMENT SYSTEM SYSTEM SYSTEM
\
OD INTER- 0D INPUT 0D DISPLAY 0D OUTPUT
COMEAB?&%QON ELEMENT ELEMENT ELEMENT

MAIN DRUM GROUP (MD)

INTERCOMMUNICATION
FROM OTHER DRUM SYSTEM ——

0D IC ELEMENT

CD
ELEMENT

O AUXILIARY DRUM GROUP (AXD))

AUXILIARY
CcD
ELEMENT

v
CENTRAL COMPUTER SYSTEM

Figure 1—78. Drum System Logical Divisions

transfer information from the auxiliary drum group to
the Central Computer System. The auxiliary drum group
does not receive information during normal operation.
The computer test element provides the Central
Computer System with a means of performing tests on
other Drum System elements to detect any alteration of

data. The manual drum tester element enables mainte-
nance personnel to exercise manual conttol over the
main drum group operations for performance checking.
The auxiliary manual drum tester provides a means for
checking the operation of the auxiliary drum group and
auxiliary CD element.

UNCLASSIFIED 131

General UNCLASSIFIED PART 1
2.1 T.0. 31P2-2FSQ7-112 CH 4
SECTION 2

SYSTEM OPERATION

2.1 GENERAL

The CD and OD operations of the Drum System are
independent of each other. All CD operations are con-
trolled by the program of the Central Computer System;
OD operations are independent of program control and
are predetermined by the design of the equipment.
Those fields of the Drum System that are read or written
on the OD side as well as on the CD side act as time
buffers, whereas those fields that are read or written
only on the CD side serve as auxiliary memory. Certain
fields actually fulfill both functions.

As a time buffer, the Drum System serves to change
rates of information transfer. For example, the Drum
System collects and stores information arriving at ran-
dom intervals from the Input System for rapid, periodic
transfer to the Central Computer System under pro-
gram control. Similarly, processed information is sup-
plied to the Drum System by the Central Computer Sys-
tem at a rapid rate. The Drum System then transfers
this processed information to the Output and Display
Systems at a slower rate.

As an auxiliary memory device, the Drum System
stores information such as processed data, subprograms,
mathematical values, and constants to which the Central
Computer System can refer. Information stored in the
Drum System for transfer to the Display System must be
compared at times to new information received by the
Ceniral Computer System. In such instances, that part
of the Drum System devoted to display information
serves as both a time buffer and auxiliary memory.

At any given time, the Central Computer Sys-
tem may require only a portion of the information stored
in an auxiliary memory field. The required portion can
- be obtained by the Central Computer System if it has been
written in a particular location in the field and that loca-
tion in the field can be specifically selected for reading.
To do this, each drum register in an auxiliary memory
field is assigned an address which is used in selecting a
specific drum register to be read or written. The mode
of reading or writing on the CD side in a field whose
drum registers have addresses is known as the address
mode.

A field which serves solely as a time buffer need
only store a word between the time of its writing on
one side of the Drum System and the time of its reading
on the other side, Since in this case a given word need
be read only once, its location on the field is unimpor-
tant. Instead, provision must be made to prevent either
writing a word over another word not yet read or read-
ing a word twice. This is done by using two extra bits
for each drum register on a field which is solely a time
buffer. The two extra bits denote the status of the
drum register. One bit indicates to the writing side of
the field whether 2 word can be written into the drum
register without destroying an unread word. in that
register. The other bit indicates to the reading side
whether the drum register contains a word to be read.
This mode of reading and writing is known as status
mode.

Each drum field which receives or delivers informa-
tion on the OD side is permanently connected to a given
system. The mode of operation of each field is deter-
mined by the function it performs for the system to
which it is connected. A field which is used solely as a
time buffer uses the status mode, 2 field used solely as
auxiliary memory uses the address mode, and a field
which must be used as both a time buffer and auxiliary
memory uses the address mode. A field written on the
OD side cannot be read on the OD side. Conversely, a
field read on the OD side cannot be written on that side.
Thus, no selection of fields, mode of operation, or direc-
tion of transfer is necessary on the OD side.

In contrast to the OD side, only one drum field can
be used in a CD operation at one time. Consequently,
the Central Computer System program must select the
drum group (main or auxiliary), the drum, and the field.
No selection of address or status mode is necessary be-
cause the mode of operation of each field is determined
by the function of that field, The selection of a field
therefore implies selection of the mode of operation of
that field.

The SDR () instruction selects the drum group,
the drum, and the field. Bit R1 determines whether (),
the index interval which selects the drum and field, is
supplied to the CD element or the auxiliary CD element.

132 UNCLASSIFIED

PART 1 UNCLASSIFIED Fig. 1-19
CH 4 T.0. 31P2-2FSQ7-112
SELECT
FIELD FIELD CcD MAGNETIC HEADS
—e| SELECTION TEver ® DIODE - & IN SELECTED
ENCODERS SWITCH FIELD ONLY
SELECTION
68— o REGISTERS
. AND
aporess __RI=! N/
REGISTER ENCODERS SELECT
DRUM ORUN CD TIMING
6 —®1 SELECTION — or PULSE
ENCODERS LEVEL ' DISTRIBUTOR
pDEX _INDEX_ | AUXILIARY CD ELEMENT
REGISTER ~ INTERVAL—""
, DRUM oeue’ | oo TiMNG
6 — SELECTION EVEL PULSE
ENCODERS DISTRIBUTOR
s |
ERS
REGISTER ENCODERS CONTROL
, FIELD CIRCUITS
e SELECTION
CENTRAL ENCODERS SELECT
COMPUTER FIELD D%%E MAGNETIC HEADS
SYSTEM LEVEL SWITCH FIELD ONLY
CD ELEMENT

Figure 1—79. Drum and Field Selection

Thus, R1 effectively chooses the main or the auxiliary
drum group. (See fig. 1—79.) When the index interval
is received, a select-drum level and a select-field level
are generated, The select-drum level enables the timing
pulse distributor of the selected drum to supply the tim-
ing pulses which control the CD operation, The select-

NOTE:

LEVEL PRESENT ONLY
WHEN CHOOSING A FIELD
WRITTEN AND READ BY
STATUS

field level enables reading or writing by the magnetic
heads only in the selected field. When a field written

 and read by status is chosen (in the main drum group
only), a level is generated by the field selection encoder
which conditions the CD status control circuits. (Re-
fer to table 1—64.)

TABLE 1-64. GROUP, DRUM, FIELD, AND MODE SELECTION CODES

OCTONARY CODE

R1, L10-15 DRUM FIELD MODE OPERATIONS
0 02 Auxiiiary memory 1 Address Read, write
0 03 Auxiltary memory 2 Address Read, write
0 04 Auxiliary memory 3 Address Read, write
0 05 Auxiliary memory 4 Address Read, write
0 06 Auxiliary memory 5 Address Read, write
0 07 Auxiliary memory 6 Address Read, write
0 10 Auxiliary memory 7 Address Read, .write

UNCLASSIFIED

133

Table 1-64 UNCLASSIFIED PART 1
T1.0. 31P2-2FSQ7-112 CH 4
TABLE 1—-64. GROUP, DRUM, FIELD, AND MODE SELECTION CODES (cont'd)

OCTONARY CODE

R1, L10-15 DRUM FIELD MODE OPERATIONS
0 11 Auxiliary memory 8 Address Read, write
0 12 Auxiliary memory 9 Address Read, write
0 13 Auxiliary memory 10 Address Read, write
0 14 Auxiliary memory 11 Address Read, write
0 15 Auxiliary memory 12 Address Read, write
1 41 Auxiliary memory 13 Address Read, write®
1 42 Auxiliary memory 14 Address Read, write*
1 43 Auxiliary memory 15 Address Read, write*®
1 44 Auxiliary memory 16 Address Read, write*
1 45 Auxiliary memory 17 Address Read, write®
1 46 Auxiliary memory 18 Address ‘Read, write*
1 51 Auxiliary memory 19 Address Read, write*
1 52 Auxiliary memory 20 Address Read, write*
1 53 Auxiliary memory 21 Address Read, write*
1 54 Auxiliary memory 22 Address Read, write®
1 55 Auxiliary memory 23 Address Read, write*
1 56 Auxiliary memory 24 Address Read, write*
1 61 Auxiliary memory 25 Address Read, write*
1 62 Auxiliary memory 26 Address Read, write*
1 63 Auxiliary memory 27 Address Read, write®
1 64 Auxiliary memory 28 Address Read, write*
1 65 Auxiliary memory 29 Address Read, write®
1 66 Auxiliary memory 30 Address Read, write*®
i 71 Auxiliary memory 31 Address Read, write®
1 72 Auxiliary memory 32 Address Read, write®
1 - 73 Auxiliary memory 33 Address Read, write*®
1 74 Auxiliary memory 34 Address Read, write*®
1 75 Auxiliary memory 35 Address Read, write*
1 76 Auxiliary memory 36 Address Read, write*®
1 02 Auxiliary memory 37 Address Read, write®
1 03 Auxiliary memory 38 Address Read, write®
1 04 Auxiliary memory 39 Address Read, write*
1 05 Auxiliary memory 40 Address Read, write*

*Write only if write interlock switch on duplex maintenance console is unlocked.

134

UNCLASSIFIED

PART 1 UNCLASSIFIED Tahle 1-64
CH 4 T.0. 31P2-2FsQ7-112
TABLE 1—64. GROUP, DRUM, FIELD, AND MODE SELECTION CODES (cont'd)
OCTONARY CODE
R1, L10-15 DRUM FIELD MODE OPERATIONS

1 06 Auxiliary memory 41 Address Read, write*®

1 07 Auxiliary memory 42 Address Read, write®

1 10 Auxiliary memory 43 Address Read, write*

1 11 Auxiliary memory 44 Address Read, write¥

1 12 Auxiliary memory 45 Address Read, write*

1 13 Auxiliary memory 46 Address Read, write*

1 i4 Auxiliary memory 47 Address Read, write®

1 15 Auxiliary memory 48 Address Read, write*®

0 24 Crosstelling input Status Read, test write

0 25 Crosstelling input Identity Read
(R11-R-15)

0 40 Crosstelling marker (single channel) Address Write (conténts

of LS only)

0 27 Digital display Address Read, write

0 17 Digital display Identity Test read
(R14-R15)

0 32 Gap-filler input Status Read, test write

] 33 Gap-filler input 1dentity Read
(R11-R15)

0 16 Intercommunication (other) Address Read

0 26 Intercommunication (own) Address Read, write

0 76 Intercommunication (own) Address Test read

1] 34 Long-range radar input 1 Status Read, test write

0 35 Long-range radar input 1 Identity Read
(R12-R15)

0 50 Long-range radar input 1 Identity Read
(R7-R15)

0 36 Long-range radar input 2 Status Read, test write

0 37 Long-range radar input 2 Identity Read

A (R12-R15)

0 51 Long-range radar input 2 Identity Read
(R7-R15)

0 22 Manual input Status Read, test write

0 23 Manual input Identity Read
(R14-R15)

*Write only if write interlock switch on duplex maintenance console is unlocked.

UNCLASSIFIED

135

Table 1-64 UNCLASSIFIED PART 1
T.0. 31P2-2FSQ7-112 CH 4
TABLE 1—-64. GROUP, DRUM, FIELD, AND MODE SELECTION CODES (cont'd)
OCTONARY CODE
R1, L10-15 DRUM FIELD MODE OPERATIONS
0 30 Output buffer odd Status Write
0 31 Output buffer even Status Write
0 30 Output buffer Identity Test read
(R14-R15)
0 31 Output buffer Status Test read
0 60 Radar data 1 Address Read, write
0 61 Radar data 2 Address Read, write
0 62 Radar data 3 Address Read, write
0 63 Radar data 4 Address Read, write
0 64 Radar data 5 Address Read, write
0 65 Radar data 6 Address Read, write
0 66 Radar data 7 Address Read, write
0 67 Radar data 8 Address Read, write
i] 70 Radar data 9 Address Read, write
0 47 Situation display Identity Test read
(R5-R10)
0 20 Spare 1 Address Read, write
0 21 Spare 2 Address Read, write
0 41 Track display 1 Address Read, write
0 42 Track display 2 Address Read, write
0 43 Track display 3 Address Read, write
0 44 Track diéplay 4 Address Read, write
0 45 . Track display 5 Address Read, write
0 46 Track display 6 Address Read, write

#Write only if write interlock switch on duplex maintenance console is unlocked.

Execution of the SDR (u) instruction introduces a
120-microsecond delay before any transfer of informa-
tion is started to allow the reading and writing circuits
to settle. The delay is started by the deselect pulse gen-
erated upon execution of the SDR () instruction to de-
select the IO unit involved in the previous IO opera-
tion. A subsequent RDS n or WRT =# instruction is
needed to start the CD operation and may introduce
another delay if it changes the previously selected direc-
tion of transfer. »

Since an SDR instruction always selects reading as
the direction of transfer, a WRT instruction following

SDR introduces another delay to allow switching of the
magnetic heads to a write condition. However, if an RDS
instruction follows SDR, it is not necessary to introduce
another delay because the magnetic heads are already
conditioned to read. Table 1—65 presents the possible
combinations of SDR, RDS, and WRT instructions and
the minimum delay introduced in each case.

In cases 4 through 7, it must be assumed that an
SDR instruction is given some time prior to the instruc-
tion sequence listed, and that no SDR instruction is
inserted between the two instructions in each case. If an
SDR instruction is given between the two instructions,
then case 1 or 2 applies,

136 ' UNCLASSIFIED

PART 1

When the SDR () instruction chooses an addres-
sable field, the following RDS n or WRT = instruction
specifies the exact number of words to be transferred.
After all of the words have been transferred, the IO

word counter produces a computer-disconnect pulse ’

which clears the IO interlock and ends the IO operation.
However, the number of words to be read from a time
buffer field using status mode cannot be determined
prior to the execution of the RDS # instruction, ner can
the number of drum registers which are available for
writing be ascertained in a field using status mode prior
to the execution of the WRT # instruction.

To prevent a continuous searching of the selected
field until the required number of words has been
transferred, the Drum System makes use of a disconnect
counter in the CD element. The disconnect counter in-
sures that each drum register in the selected field is ex-
amined only once for each IO operation. Execution of the
RDS n or WRT = instruction starts the disconnect
counter counting the CD 4 pulse associated with each
drum register. If the IO word counter has not generated
a disconnect pulse after all drum registers in the selected
field have been examined, the disconnect counter pro-
duces a drum-disconnect pulse which clears the IO in-
terlock and ends the IO operation. The IO word counter
must be set to a number greater than 2,048 by the RDS »
or WRT = instruction to prevent generating a computer-
disconnect pulse before all drum registers have been
searched.

2.2 TIME BUFFER OPERATION
2.2.1 Writing

2.2.1.1 Status

Writing by status mode enables a drum field to
receive data from a number of input sources at random
intervals and different repetition rates, with a maximum
probability of storing all available information. On
drums containing status controlled input fields, the OD
and CD status channels are added to the word channels
needed for storing information, The OD status channel
is written on the CD side and read on the OD side. Con-
versely, the CD status channel is written on the OD side
and read on the CD side. The contents of the OD status
channel indicate whether drum registers are avaiiabie
for storing input words. The contents of the CD status
channel denote whether individual drum registers con-
tain words that can be read into the Central Computer
System under program control when requested.

An OD status control circuit associated with each of
the fields written by status reads the contents of the OD
status channel. A 0 bit in the OD status channel indi-
cates that the register with which it is associated is either
empty or contains a word that has already been read by
the Central Computer System. A 1 bit in the OD status

UNCLASSIFIED
CH 4 1.0. 31P2-2FSQ7-112

Time Buffer Operation
2.1-2.2.1.1

TABLE 1—65. DELAYS IN DRUM 10 OPERATION

MINIMUM
DELAY AMOUNT
INSTRUCTION MEASURED OF DELAY
SEQUENCE FROM (microseconds)
1. SDR SDR 120
2. SDR WRT 120
WRT
3. SDR SDR 120
RDS
4 RDS WRT 120
WRT
5. WRT RDS 120
RDS
6. RDS 0
RDS
7. WRT 0
WRT

channel indicates that the register contains a word that

has been written duting a previous drum revolution and
has not yet been read by the Central Computer System.
When a 0 bit is detected in the OD status channel, the
OD status control circuit allows a word to be written
(if available) into the drum register associated with the

" bit. At the same time, a 1 bit is written in the CD status

channel. If no information to be written on the drum is
available at this time, the OD status control circuit
writes a 0 bit in the CD status channel, notifying the CD
side of the drum that the register contains no informa-
tion. ‘

The logical operation of all fields using the status
mode of writing is nearly identical. (See fig. 1—80.) The
magnetic head that reads the OD status channel of a
field is physically offset ahead of the heads that write in
the field by an amount 2qual to the distance traveled by
a drum register in 10.0 microseconds. Thus, the OD input
element knows the status of an input field register 10.0
microseconds before that register starts to pass under
the heads which write in it.

As an illustration of input information writing, as-
sume that a register of a particular field is empty. At OD,
1 time, the magnetic head on the OD side which reads
the OD status channel detects a O bit.

At OD;, 3 time, the OD status control circuit sends
a demand pulse to the Input System, requesting informa-
tion. If no information is available, there is no response.
However, if information is available, the Input System

UNCLASSIFIED 137

Time Buffer Operation UNCLASSIFIED PART 1
221.1-2213 1.0. 31P2-2FsSQ7-112 CH 4
the CD status control circuit, the CD read circuit reads
COMPUTER the word. If the word is accepted by the Central Com-
SYSTEM puter System, a 0 bit is written in the OD status channel
READ 8Y by the CD status control circuit. This notifies the OD
33 status control circuit that the information in that par-
ticular register has been accepted by the Central Com-
GD READ STRus puter System, and new information can be written in the
READ |eREAD_ | i
circurr [sampiE | GONTROL register.
If the word is not accepted by the Central Com-
puter System, a 1 bit is written in the OD status channel.
= O=EMPTY . - . . .
DEARCRD This notifies the OD status control circuit that the in-
V4
FIELD (39 @ - WORD - FILLED formation in that particular drum register has not yet
SELECTION NOT READ) been accepted by the Central Computer System, and the
DRUM A drum register cannot be rewritten. All reading opera-
TIMING FIELD \ tions on the CD side are performed under program con-
€0 | __ PULSE—- — e — trol by the Central Computer System. The transfer of
oD
DISTRIBUTOR . . o1 - .
information on the CD side is covered more fully in the
/ [~ . . . - . y
00 STATUS o Status discussion on status identification. (Refer to 2.2.2.1.)
CHANNEL CHANNEL S
2.2.1.2 Modified Status
0=EMPTY 0=NO WORD A modification of the status mode is used when
WRITE 33) WRITTEN
?:;"’SL;E i= FILLED writing messages which contain two words. In this mode
2 oD EN of writing, the OD status control circuit will inspect
every other status bit in the OD status channel. This
R T . P . .
= oD effectively divides the field into slots of two registers
0D (0D, 4) STATUS
WRITE CONTROL each.
CIRCUIT | wriTE GIRGUIT . .
PULSE - When a 0 bit is detected in the OD status channel
Ol . ss e .
(0031 by the OD status control circuit, is signifies the first reg-
INEORMATION DEMAND DATA ister of an empty slot. The OD status control circuit ttfen
2 PULSE BeLAnLE sends a demand pulse to the Input System to determine
5 ! P2 whether a message is available for writing in the empty
slot. If a message is available, the Input System returns
| J

~—
INPUT ELEMENT

Figure 1—80. Writing by Status

delays until OD, 1 time, and then sends a data-available
pulse to the OD status control circuit. At the same time
{OD ; 1), an information word is transferred to the OD
write circuit.

At OD, 3 time, after the 0 bit in the OD status chan-
nel is detected, the status control circuit sends a write
pulse to the OD write circuit. This write pulise transfers
the information word from the write circuit to the mag-
netic heads and into the selected drum register during the
period of the write-sample pulse from the timing circuit.
At the same time (OD, 3), the status control circuit
causes a 1 bit to be written in the CD status channei. At
OD, 4 time, a reset ulse prepares the write circuit for the
receipt of the next information word.

The 1 bit written in the CD status channel provides
the means of notifying the CD side of the drum that
information is available in that particular register.
When the 1 bit in the CD status channel is detected by

two data-available pulses, at 10.0—microsecond inter-
vals, each in conjunction with a word of the message.
The data-available pulses cause the writing of each word
in the drum registers and the writing of 1 bits in the
associated CD status channel. The CD element reads a
field by modified status in the same manner in which it
is written; ie., only the status bit associated with the
first register of each slot is inspected.

2.2.1.3 Marker Status

Messages that are three words in length are writ-
ten on a drum field by a modification of the status mode
known as marker status. In addition to the OD and CD
status channels, a third channel, called the marker status
channel, is provided. The marker status channel is writ-
ten before the start of normal drum operation by the
CD element under program control of the Central Com-
puter System. A 1 bit, called a marker, is written in
the marker status channel adjacent to every third regis-
ter. The markers in the channel indicate to the OD
marker status control circuit the drum register in which
the first word of a three-word message is to be written,
The remaining two words are written in the two regis-

138 UNCLASSIFIED

PART 1

ters immediately following the register associated with
the marker bit.

As the drum rotates, the marker and OD status
channels are read continuously. When a 0 is read in the
OD status channel (empty register) at the same time
that a marker is read in the marker status channel (first
register of a slot), the marker status contrel circuit pro-
duces a demand pulse. The demand pulse determines
whether a three-word message is available to be written
on the drum. If a message is available, the OD input ele-
ment receives three consecutive data-available pulses
at 10.0-microsecond intervals. Simultaneous with each
data-available pulse, the OD input element transfers a
word of the three-word message to the OD write citcuit.
Each data-available pulse produces a write pulse which
causes the writing of an individual word into a drum
register. At the same time, 1 bits are written in the CD
status channel next to each of the three drum registers.

2.2.2 Reading

2.2.2.1 Status ldentification

The source of type of information written by status
on the OD side of the Drum System is indicated by iden-
tity bits contained within the message. By reading all
messages which contain the same identity bits, the mes-
sages-can be assembled by the-Central - Computer-System
into tables, each capable of being processed by an iter-
ative program. In this way, the Drum System acts as a
sorting device as well as a storage medium,

To read information from a particular source ot of
a particular type, a modification of reading by status is
used; this is called reading by status identification.
Reading by status identification compares the identity
bits contained within a message with identity bits speci-
fied by the Central Computer System, The identity bits
specified by the Central Computer System are contained
in the right half-word of the SDR instruction. When the
SDR instruction is executed, the identity bits are loaded
into the drum control register and a 120-microsecond
delay is introduced. (Refer to 2.1.) Messages will be
accepted by the Central Computer System only if the
identity bits within the message cotrespond to those in
the drum control register. If they do not compare, the
message is not accepted by the Central Computer Sys-
tem.

A 1 bit detected in the CD status channel indicates
the presence of a word in the associated drum register
that has not been read. This causes the CD status control
circuit to send a read-sample pulse to the CD read-write
control circuit (See fig. 1—81.) The read-sample pulse
is supplied to the CD read circuit as a read-sample pulse
and to the comparison circuit as a compare pulse. The CD
read circuit then transfers the word in the drum register
to the IO buffer register.

.

UNCLASSIFIED
CH 4 T.0. 31P2-2FSQ7-112

Reading
2213-2221

TRAL SELECTION
CgE#'UTER AND CONTROL
SYSTEM ELEMENT

IDENTITY
BITS

COMPARISON
CIRCUIT

DRUM
CONTROL

Keo

I0 BUFFER REG

NO-COMPARE
CENTRAL COMPUTER
SYSTEM

COMPARE

DRUM SYSTEM

RERD |READ __ | READ R&RITE TIMING E'L'}"L"é‘é
ciReurr [sawRE | CONLSRE TPULSES | oisTRIBUTOR

READ NO-COMPARE /r
SAMPLE

DRUM
CcD SELECTION
TR
STATUS CIRCUIT

A

O=EMPTY- -
I=FILLED

INFORMATION
iszﬁ WORD

FIELD

I= WORD NOT READ

DRUM [
OD STATUS
CHANNEL

CD STATUS
CHANNEL

Figure 1—81. Reading by Status-ldentification

The compare pulse requests the Central Computer
System to compare the identity bits in the word now in
the IO buffer register with the identification bits in the
drum control register. If the comparison fails, the Cen-
tral Computer System rejects the word by sending a no-
compare pulse to the CD status control circuit via the
CD read-write control circuit. Upon receipt of the no-
compare pulse, the CD status control circuit causes a 1
bit to be written in the OD status channel to prevent
a new word from being written in that drum register
on the OD side.

If the comparison is successful, the word in the IO
buffer register is accepted and transferred to the IO reg-
ister for storage in core memory. The no-compare pulse is
not sent to the Drum System, The CD status control

. UNCLASSIFIED 139

-+-0-=-WORD-READ- e

Auxiliary Memory Operation
2221-23.1.1

circuit then writes a 0 bit in the OD status channel to
permit a new word to be written on the OD side in
the drum register that has just been read. When read-
ing messages which contain more than one word (writ-
ten on the OD side by modified or marker status), only
the first word contains identity bits. If the Central Com-
puter System accepts the first word, the remaining words
in the message are accepted automatically.

2.2.2.2 Status

When desired, it is possible to transfer unsorted
blocks of information from the Drum System to the
Central Computer System by reading the information by
status. In this mode of reading, the Central Computer
System accepts all information written in those regis-
ters associated with a 1 bit in the CD status channel. The
CD element transfers each word to the IO buffer register
in the same manner as that used in reading by status
identification, but the no-compare pulse is suppressed
by the Central Computer System. Thus, each word is
accepted as it is read.

In addition to specifying the field to be read, the
index interval in the SDR instruction also specifies the
mode of reading; i.e., status or status identification. The
RDS instruction requests more words to be read than
expected to be in the field. In this way, the disconnect
pulse will be generated by the disconnect counter in
the Drum System after all the words in the field have
been read.

2.3 AUXILIARY MEMORY OPERATION
2.3.1 Writing
2.3.1.1 Address
Status control techniques for the transfer of data
between the Drum System and the Centrai Computer
System are satisfactory for reading or writing randomly

occurring data that is read only once. However, these
methods are unsatisfactory when specific data must be

referred to from time to time, Specific items of program

data such as subprograms, mathematical tables, constants,
or processed information which is temporarily stored
outside of core memory must be available for reference
whenever needed. To be accessible for reference this
information must be stored in a specific order in specific
locations in the Drum System. Writing by address con-
trol satisfies this requirement.

In writing by address control, the Central Com-
puter System specifies the particular drum field in
which a message is to be written, the particular register
in which writing is to begin, and the number of words
to be written. This is done by programming three 10
class instructions: LDC x, SDR () r, and WRT ». The
right half-word of the LDC instruction, x, specifies the
first address in core memory from which information
is to be transferred to the Drum System. The SDR (%) r

UNCLASSIFIED
T1.0. 31P2-2FSQ7-112 CH 4

PART 1

instruction designates the drum, the field, and the spe-
cific register in which writing is to begin. (Refer to 2.1.)
Bits L10 through L15, designated as (), indicate the
drum and field, while bits R5 through R15, designated
as r, indicate the specific register. Since 11 bits can rep-
resent any binary number whose decimal equivalent is
0 to 2,047, bits R5 through R15 (11 bits) can represent
the address of any one of 2,048 registers.

A drum register address actually represents the an-
gular displacement of the register from a reference loca-
tion called the index point. The address is determined by
a counter, called the angular position counter (APC),
which is stepped by 1 as each register in the field passes
the writing position. Since the counter is reset by the
index pulse which occurs once per revolution, each
drum register of an addressable field has an assigned
address within the range of 0 to 2,047. For the same
reasons that the status channel read heads are physically
offset 10.0 microseconds ahead of the reading and writ-
ing heads, the APC is set 10.0 microseconds (one drum
register) ahead of the drum register whose address it
contains. Thus, the APC contains the address of a regis-
ter 10.0 microseconds before the particular drum reg-
ister passes under the read or white heads. By supplying
the contents of the APC to the Central Computer Sys-
tem, the Central Computer System can compare the ad-
dress of the register about to come into writing position
with the drum register address specified by the SDR (%)
r instruction. If the comparison is successful, the first
word is written in the drum register and the remaining
words are written into consecutive drum registers with-
out further address comparison.

With the execution of the WRT instruction, the
Central Computer System sends a start-write pulse to the
Drum System and initiates two break cycles, During the
first break cycle, the first word to be written is trans-
ferred from core memory to the IO register. During the
second break cycle, the first word is transferred from the
IO register to the write circuit, and the second word o
be written is transferred from core memory to the IO
register. When the first word is transferred to the wiite
circuit, the Central Computer System sends an IO-
register-to-write-register pulse to the read-write con-
trol circuit. (See fig. 1—82.) The IO-register-to-write-
register pulse notifies the read-write control circuit that
a word has been transferred to the write circuit,

The start-write pulse (generated during the execu-
tion of the WRT instruction) conditions the read-write
control circuit to send a start-compare level to the tim-
ing pulse distributor after a 120-microsecond delay
which allows the field and drum selection circuits to set-
tle. (Refer to 2.1.) The timing pulse distributor receives
the start-compare level and generates a read-out—
angular-position-counter pulse. This pulse transfers the

140 UNCLASSIFIED

PART 1

TIMING
DRUM CHANNELS

ADRESSABLE FIELD

TIMING
PULSES

G?D TIMING e

CIRCUIT | \NDpEX

READ-
FIELD WRITE TIMING

SELECTION SWITCH PULSES

TIMING READ
DRUM PULSE ouT
SELECTION DISTRIBUTOR APC

®
START

COMPARE

COMPARE
ADDRESS

RESET

READ-WRITE

CONTROL
CIRCUIT

ANGULAR

POSITION
COUNTER

WRITE
CIRCUIT| wrITE

DRUM ég

_SYSTEM

CENTRAL
COMPUTER
SYSTEM

DRUM
REGISTER
ADDRESS

R I0 BUFF REG

NO-COMPARE

COMPARISON
CIRCUIT

COMPARE ADDRESS

| 10 REGISTER |

(BREAK REQUEST)

|DRUM CONTROL REG|

m
W
COMPUTER DISCONNECT
10 REG TO WRITE REG
WORD DEMAN
START WRITE

Ne—’
SELECTION
AND CONTROL
ELEMENT

STARTING
ADORESS

MEMORY
BUFFER
REGISTER

IO WORD
COUNTER

Figure 1-82. Writing by Address

contents of the angular position counter to the right 10
buffer register. The same pulse is also sent to the read-
write control circuit as a compare-address pulse. The
compare-address pulse is then sent from the read-write
control circuit to the comparison circuit to effect com-
parison of the contents of the right IO buffer register
with the contents of the drum control register. The
drum control register now contains the drum register
address specified by the SDR () r instruction.

When comparison between the right 10 buffer reg-
ister and the drum control register is unsuccessful, a no-

UNCLASSIFIED
CH 4 T.0. 31P2-2FsQ7-112

Interleave
23.1.1-2.3.1.2

compare pulse is returned to the Drum System by the
comparison circuits in the Central Computer System.
The no-compare pulse prevents the generation of the
write pulse in the read-write control circuit, Until ad-
dress comparison is successful, the comparison circuit
returns a no—compare pulse for each compare pulse
received.

A successful comparison between the right IO buffer
register and the drum control register suppresses the
no-compare pulse, permitting genetation in the read-
write control circuit of the write pulse. The write pulse
causes the word in the write circuit to be written on the
drum in the specified register. After the word is written,
a reset pulse from the read-write control circuit prepares
the write circuit to receive the next word. At the same
time, a word-demand pulse is sent to the Central Com-
puter System. Upon receipt of the word-demand pulse,
the Central Computer System executes the third break
cycle in the writing operation. During the execution of
this break cycle, the word in the IO register is transferred
to the write circuit, and a new word is transferred from
core. memory to the IO register. An IO-register-to-write-
register pulse notifies the read-write control circuit
that a2 new word has been placed in the write circuit.
The remaining number of words are then written in con-
secutive registers following the first specified register
without further address comparison. When all of the
words are written, the Central Computer System sends a
disconnect pulse which clears the read-write control cir-
cuit and causes the generation of the reset pulse which
clears the write circuit. No further writing can take
place until a new start-write pulse conditions the read-
write control circuit,

2.3.1.2 Inferleave

A modification of writing by address is known as
writing by address with interleave. In writing with inter-
leave, a prescribed number of drum registers are skipped
between the writing of specific drum registers. The in-
terleave pattern is selected by bits L13 through L15 of
the WRT instruction; words can be written in every 8th,
16th, or G4th register, as selected. The drum control
register, which initially contains the address of the first
pattern after the transfer of each word. Comparison of
the angular position counter (APC) contents and the
address in the drum control register is made for each
word and must be successful for each word written.

The maximum number of words which can be writ-
ten by interleave in a single IO operation is determined
by the selected interleave pattern. If the interleave pat-
tern specifies the skipping of 16 registers between each
word written, the maximum number of words which can
be written is 128 words (2,048 divided by 16). In order
to completely fill the drum field being written with this

UNCLASSIFIED 141

Fig. 1-83

UNCLASSIFIED
T1.0. 31P2-2FSQ7-112

PART 1
CH 4

10 SELECTION

STARTING WORD AND CONTROL
10 REG ADDRESS COUNTER ELEMENT
4 A -
i
DRUM
CONTROL REG
®
&
g 2
[—————>{COMPARISON gl 9
CIRCUIT gl o
10 BUFFER REGISTER 8l 12
@ Wi wi
W w w wia
("4 4 - w
CENTRAL R 2| B|&
COMPUTER od| 3 3 of2
SYSTEM 29 © o M@
DRUM
SYSTEM (33? QI)
READ-SAMPLE
READ READ - WRITE
CIRCUIT READ CONTROL CIRCUIT
COMPARE START
ADDRESS COMPARE
(33> ANGULAR | peap our apc| TIMING | pgum
POSITION PULSE SELECTION
COUNTER DISTRIBUTOR]
cD 3| INDEX
FIELD SSIATDE— TIMING TIMING PULSES
SELECTION SWITCH CIRCUIT

33) INFORMATION

WORD

TIMING
PULSES

ADDRESSABLE FIELD)

)

DRUM

TIMING CHANNELS

Figure 1—83. Reading by Address

particular interleave pattern, 16 IO operations must be
scheduled. Writing by address with interleave can take
place only on the CD side of the Drum System.

2.3.2 Reading

2.3.2.1 Address

The logical concept of full and empty drum regis-
ters employed in status mode is not applicable to read-
ing by address where the same words can be read to the
Central Computer System many times during normal

operaticn
.

Three IO class instructions are required in read-
ing by address: LDC x, SDR (u) r, and RDS n. The

142

right half-word of the LDC instruction, designated as
x, specifies the first address in core memory into which
information is transferred from the Drum System. The
SDR (%) r instruction designates the drum, the field,
and the specific drum register in which reading is to
begin. (Refer to 2.1.) As in writing by address, a suc-
cessful comparison of the contents of the APC and the
drum register address specified by the SDR (%) r instruc-
tion must be made before the first word is transferred
from the Drum System to the Central Computer System.
If the comparison is successful, the first word is read to
the Central Computer System, The remaining words are
then read from consecutive registers without further ad-

UNCLASSIFIED

PART 1

dress comparison until the number of words specified by
RDS 7 have been tead,

In reading by address, the 120-microsecond delay
which allows the field and drum selection circuits to set-
tle is initiated by the execution of the SDR (u) r in-
struction. With the execution of the RDS # instruction,
the Central Computer System sends a start-read pulse
to condition the read-write control circuit. (See fig.
1-83.) At the end of the 120-microsecond delay, the
read-write control circuit produces a read level which
conditions the read circuit and sends a start-compare
level to the timing pulse distributor. The timing pulse
distributor then produces a readout-APC pulse and a
compare—address pulse. The read out-APC pulse trans-
fers the contents of the APC to the right IO buffer regis-
ter. The compare-address pulse is then sent to the com-
parison circuit via the read-write control circuit to effect
comparison of the contents of the right IO buffer regis-
ter with the contents of the drum control register. The
drum control register now contains the drum register
address specified by the SDR () r instruction and the
right IO buffer register contains the address of the drum
register coming under the read heads.

When comparison between these two addresses is
unsuccessful, a no-compare pulse is generated by the
comparison circuit. The no-compare pulse prevents the
generation of the read-sample pulse in the read-write
control circuit. Until address comparison is successful,
the comparison circuit returns a no-compare pulse for
each compare pulse received.

A successful address comparison between the right
IO buffer register and the drum control register sup-
presses the no-compare pulse, permitting the generation
in the read-write control circuit of the read-sample pulse.
This pulse causes the word under the read heads to be
transferred to the IO buffer register. The right IO buffer
register is cleared after the address comparison is made,
thereby allowing receipt of the first word. The read-
sample pulse also generates an IO-buffer-loading pulse
which notifies the Central Computer System that the
first word is in the IO buffer register. The word in the
IO buffer register is automatically transferred to the IO
register and a break cycle is then initiated to transfer the
word to core memory.

Each of the remaining number of words to be read
is transferred to the IO buffer register as it comes under
the read heads. When all of the words have been read,
the Central Computer System sends a disconnect pulse
which clears the read-write control circuit. No further
reading can take place until a new start-read pulse con-
ditions the read-write control circuit,

2.3.2.2 Interleave

Reading of an addressable field on the CD side can
also be performed by interleave. The interleave pattern is

UNCLASSIFIED
CH 4 T.0. 31P2-2FsQ7-112

Precession
23.21-23.23

selected and the operation is carried out in the same man-
ner as that employed in writing by interleave. (Refer
to 2.3.1.2.)

2.3.2.3 Precession

Those fields used as a time buffer between the Cen-
tral Computer System and the Display System are also
used as auxiliary storage by the Central Computer Sys-
tem and are therefore written and read on the CD side
by address. If these fields were read by address on the
OD side, the maximum rate of transfer of information
would exceed the capacity of the Display System to accept
the information. Therefore, a method of reading is used
which slows the rate of transfer of information on the OD
side and reads all of the information in the field in one
continuous operation. The modification of reading by ad-
dress necessary to fulfill these requirements on the OD side
is known as precession. Precession is_the process of
reading words from an addressable drum field whereby

_every nth reglster or slot 1s read until a all of the Wgrds

in_the field have been read (necess1tat1ng a number of

drum revolunons) For the following dlscussmn of pre-

ceéssion, con51der an addressable field whete, on the OD
i S A RS,

“Side, 63 1 registers are skipped between successive read-

ings of single registers,

Reading by precession must start from the index
point. At the start of a reading operation, a scale-of-64
counter in the Drum System is conditioned by the index
pulse which, on the OD side, occurs at OD 3 time. The
counter then counts each drum register (starting from
the first register) as it passes under the read heads by
counting the OD 2 pulses associated with each drum reg-
ister. When the 63rd drum register is counted, the con-
tents of the next drum register to pass under the read
heads are transferred at OD 1 time, to the Display
System and the register counter is returned to 0. The
register counter again counts the drum registers as they
pass under the read heads, and again the 64th register
is read. In this manper, 63 drum reglsters are skipped,
the 64th is read, 63 are skipped again, the 128th read,
and so on in the same reading pattern. In one drum
revolution, therefore, 32 words are read (2,048 divided
by 64),

If the same pattern is used for the second drum rev-
olution, the same registers would be read again. This is
avoided by counting the index pulse as well as the OD
2 pulse during the 2,048 register. This means that the
register counter will reach the count of 63 one count
sooner than on the previous revolution, and that the
63rd drum register from the index point will be read on
the second drum revolution.

The register counter is then stepped normally for
the rest of the revolution, and each register read during
this revolution immediately precedes each register read
during the previous revolution. For each succeeding

UNCLASSIFIED 143

Precession
2323

revolution, the reading pattern is moved back one regis-
ter. At the end of the 64th revolution, the index pulse
coincides with the maximum count (63) in the register
counter. This condition produces a pulse which ends the
reading operation,

In some applications, reading by precession in-
volves the skipping of a prescribed number of slots and
then the reading of a specified slot which contains more

UNCLASSIFIED
T.0. 31P2-2FsQ7-112 CH 4

PART 1

than one register., In order to avoid overlapping the
previous reading pattern, the reading pattern is pre-
cessed by the number of registers in a slot at the start of
the second drum revolution and at the start of each
successive revolution, If more than one field is to be
read, field switching is performed when one field is com-
pletely read. Reading of the next field by precession
begins automatically.

144 UNCLASSIFIED

PART 1 ~ UNCLASSIFIED 0D Information Transfers
CH 4 T.0. 31P2-2FSQ7-112 3.1-3.13
SECTION 3

INFORMATION FLOW

3.1 OD INFORMATION TRANSFERS
3.1.1 Input System Information

Information supplied by the Input System is of four
types, each from a separate element of the Input System:

a. Manual input data from the manual input (MI)
element

b. Crosstelling data from the crosstell (XTL) in-
put element

c. Long-range radar data from the long-range ra-
dar input (LRI) element

d. Gap-filler data from the gap-filler input (GFI)
element

The information from each element is written onto
a separate drum field by an independent writing circuit
in the OD input element. The flow of input data through
the Drum System is shown in figure 1—84.

Manual input data, which includes information pre-
pared for insertion via punched cards and information
gated out of the Display System, passes through the OD
input element to be written on the manual input field
by status mode. (Refer to 2.2.1.1.) It should be noted
that no parity bit accompanies a manual input drum
word, However, each manual input word contains a
number of bits identifying the type of information it
contains and the source of that information.

Crosstelling data, which comprises messages re-
ceived from adjacent centrals, passes through the OD
input element to be written onto the XTL input field.
Since each XTL message requires three drum words,
XTL information is written by the marker status mode.
(Refer to 2.2.1.3.) The first word of each XTL message
contains bits indicating the time at which the message is
written onto the XTL field and bits identifying the
source of the message.

Long-range radar data, which includes either range
and. azimuth reports on targets or height-above-ground
reports on targets, passes through the OD input ele-
ment to be written onto one of the two LRI fields, The
choice of the LRI field is made by the LRI element of
the Input System. Since each LRI message is two drum
words in length, it is written by the modified status
mode. (Refer to 2.2.1.2.) Both words contain bits indi-
cating both the time at which they are written and the
source of the message.

Gap-filler data, which comprises range and azi-
muth reports on targets, is written onto the GFI field
by the OD input element by status mode. Each drum
word containing a message also contains bits indicating
the time of message writing onto