

First Edition {March 1990)
This edition of the AIX Calls and Subroutines Reference for IBM RISC System/6000,
Volume 5, Kernel Reference, applies to Version 3.0 of the AIX IBM Base Operating System
and to all subsequent releases of this product until otherwise indicated in new releases or
technical newsletters.
The following paragraph does not apply to the United Kingdom or any country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS MANUAL "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.
Example device driver and device method source code can be found in the
/usr/lpp/bos/samples directory once the Base Development Libraries and Include Files
component of the Base Application Development Toolkit licensed program has been
installed. These source code examples are only intended to assist in the development of a
working sortware program. These examples do not function as written: ADDITIONAL CODE
IS REQUIRED. In addition, the source code examples may not compile and/or bind
successfully as written.
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THE SOURCE
CODE EXAMPLES, BOTH INDIVIDUALLY AND AS ONE OR MORE GROUPS, "AS IS11

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE SOURCE CODE EXAMPLES, BOTH INDIVIDUALLY AND AS
ONE OR MORE GROUPS, IS WITH YOU. SHOULD ANY PART OF THE SOURCE CODE
EXAMPLES PROVE DEFECTIVE, YOU (AND NOT IBM OR AN AUTHORIZED RISC
System/6000 WORKSTATION DEALER) ASSUME THE ENTIRE COST OF ALL
NECESSARY SERVICING, REPAIR, OR CORRECTION.
IBM does not warrant that the contents of the source code examples, whether individually or
as one or more groups, will meet your requirements or that the source code examples are
error-free. ·

The source code examples are subject exclusively to the terms set forth in the Notice to the
Users that is displayed when the examples are installed.
This publication could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time.
It is possible that this publication may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country. Any
reference to an IBM licensed program in this publication is not intended to state or imply that
you can use only IBM's licensed program. You can use any functionally equivalent program
instead.
Requests for copies of this publication and for technical information about IBM products
should be made to your IBM Authorized Dealer or your IBM Marketing Representative.
A reader's comment form is provided at the back of this publication. If the form has been
removed, address comments to IBM Corporation, Department 997, 11400 Burnet Road,
Austin, Texas 78758-3493. IBM may use or distribute whatever information you supply in
any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

Notice to U.S. Government Users - Documentation Related to Restricted Rights - Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract
with IBM Corporation.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this book:

AIX is a trademark of International Business Machines Corporation.

BSC is a trademark of BusiSoft Corporation.

Hayes is a registered trademark of Hayes Microcomputer Products, Inc.

IBM is a registered trademark of International Business Machines Corporation.

Micro Channel is a trademark of International Business Machines Corporation.

POSIX is a trademark of the Institute of Electrical and Electronic Engineers (IEEE).

RISC System/6000 is a trademark of International Business Machines Corporation.

Smartmodem 2400 is a trademark of Hayes Microcomputer Products, Inc.

UNIX was developed and licensed by AT&T and is a registered trademark of AT&T
Corporation.

Trademarks iii

Iv Kernel Reference

About This Book

AIX Calls and Subroutines Reference for IBM RISC System/6000, SC23-2198, is divided
into the following four major sections:

• Volumes 1 and 2, Calls and Subroutines Reference: Base Operating System, contains
reference information about the system calls, subroutines, functions, macros, and
statements associated with AIX base operating system runtime services, communications
services, and device services.

• Volumes 3 and 4, Calls and Subroutines Reference: User Interface, contain reference
information about the AIXwindows widget classes, subroutines, and resource sets; the
AIXwindows Desktop resource sets; the Enhanced X-Windows subroutines, macros,
protocols, extensions, and events; the X-Window toolkit subroutines and macros; and the
curses and extended curses subroutine libraries.

• Volume 5, Calls and Subroutines Reference: Kernel Reference, contains reference
information about kernel services, device driver operations, file system operations,
subroutines, the configuration subsystem, the communications subsystem, the high
function terminal (HFT) subsystem, the logical volume subsystem, the printer subsystem,
and the SCSI subsystem.

• Volume 6, Calls and Subroutines Reference: Graphics, contains reference information
and example programs for the Graphics Library (GL) and the AIXwindows Graphics
Support Library (XGSL) subroutines.

This volume, Calls and Subroutines Reference: Kernel Reference, is a technical reference
detailing all system services available for writing kernel extensions. In particular, this
reference describes existing kernel services and the interfaces needed for programming
kernel extensions. Possible types of kernel extensions include device drivers, system calls,
kernel services or virtual file systems.

This book has a companion volume, Kernel Extensions and Device Support Programming
Concepts, that provides a conceptual introduction to the kernel programming environment
and how to extend it.

Who Should Use This Book
This book is intended for systems programmers wishing to extend the AIX kernel. Readers
should be familiar with operating system concepts and kernel programming. Those wishing a
review of this background should see Kernel Extensions and Device Support Programming
Concepts for an overview.

About This Book V

How to Use This Book

Overview of Contents
The Kernel Reference contains two parts. Part 1 contains information needed to write kernel
extensions. This includes:

• The kernel services provided in the AIX kernel, in alphabetical order.

• Interface requirements for writing device drivers. Extended descriptions of device driver
routines and related data structures are discussed here.

• Interface requirements for writing virtual file systems. Extended descriptions of virtual file
system routines are provided.

Part 2 details the interface requirements for AIX subsystem programming. This information
describes individual device drivers and the use of the device-related subroutines (open,
close, read, write, ioctl) that control them. The AIX subsystems include:

• The communications 1/0 subsystem. This chapter contains information about features
common to all communications device drivers, as well as details about specific adapters.
These include the Ethernet, Token-Ring, X.25, and MPQP adapters.

• The configuration subsystem. This chapter includes a description of the configuration
databases, requirements for writing configuration methods, and a description of existing
configuration routines.

• The high function terminal (HFT) subsystem. This chapter describes the use of
subroutines and structures needed to control the high function terminal.

• The logical volume manager subsystem. This chapter describes the logical volume device
driver and how it accesses the underlying physical devices.

• The printer addition management subsystem. This chapter describes routines needed for
adding a new type of printer to the system.

• The SCSI subsystem. This chapter describes the SCSI tape, disk, and CD-ROM device
drivers.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, keywords, files, directories, and other items whose
names are predefined by the system.

Italics Identifies parameters whose actual names or values are to be supplied by
the user.

Monospace Identifies examples of specific data values, examples of text similar to what
you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.

Vi Kernel Reference

Related Publications
The following books contain information about or related to device drivers and other kernel
extensions.

• AIX Files Reference for IBM RISC System/6000, Order Number SC23-2200.

• AIX General Programming Concepts for IBM RISC System/6000, Order Number
SC23-2205.

• AIX Kernel Extensions and Device Support Programming Concepts for IBM RISC
System/6000, Order Number SC23-2207.

• IBM RISC System/6000 Hardware Technical Reference- 7012 POWERstation and
POWERserver, Order Number SA23-2660.

• IBM RISC System/6000 Hardware Technical Reference- 7013 and 7016 POWERstation
and POWERserver, Order Number SA23-2644.

• IBM RISC System/6000 Hardware Technical Reference - 7015 POWERserver, Order
Number SA23-2645.

• IBM RISC System/6000 POWERstation and POWERserver Hardware Technical
Reference - General Information, Order Number SA23-2643.

• IBM RISC System/6000 POWERstation and POWERserver Hardware Technical
Reference - Options and Devices, Order Number SA23-2646.

• IBM RISC System/6000 Problem Solving Guide, Order Number SC23-2204.

Ordering Additional Copies of This Book
To order additional copies of this book, use Order Number SC23-2198-00.

About This Book VII

Viii Kernel Reference

Table of Contents

Part 1. Programming in the Kernel Environment

Chapter 1. Kernel Services . 1-1
ackque Kernel Service . 1-2
add_arp_iftype Kernel Service . 1-4
add_domain_af Kernel Service . 1-6
add_input_type Kernel Service . 1-8
add_netisr Kernel Service . 1-1 0
add_netopt Macro . 1-11
as_att Kernel Service . 1-12
as_det Kernel Service . 1-14
attach-device Queue Management Routine . 1-16
attchq Kernel Service . 1-17
audit_svcbcopy Kernel Service . 1-20
audit_svcfinis Kernel Service . 1-21
audit_svcstart Kernel Service . 1-22
bawrite Kernel Service . 1-24
bdwrite Kernel Service . 1-25
bflush Kernel Service . 1-26
binval Kernel Service . 1-27
blkflush Kernel Service . 1-28
bread Kernel Service . 1-29
breada Kernel Service . 1-30
brelse Kernel Service . 1-32
bwrite Kernel Service . 1-33
cancel-queue-element Queue Management Routine . 1-34
canclq Kernel Service . 1-35
cfgnadd Kernel Service . 1-36
cfgncb Configuration Notification Control Block . 1-37
cfgndel Kernel Service . 1-39
check-parameters Queue Management Routine . 1-40
clrbuf Kernel Service . 1-42
clrjmpx Kernel Service . 1-43
copyin Kernel Service . 1-44
copyinstr Kernel Service . 1-45
copyout Kernel Service : . 1-46
creatd Kernel Service . 1-47
creatp Kernel Service . 1-49
creatq Kernel Service . 1-50
curtime Kernel Service . 1-52
d_clear Kernel Service . 1-54
d_complete Kernel Service . 1-55
d_init Kernel Service . 1-57
d_mask Kernel Service . 1-59

Table of Contents ix

d_master Kernel Service .. .
d_move Kernel Service
d_slave Kernel Service
d_unmask Kernel Service
del_arp_iftype Kernel Service .. .
del_domain_af Kernel Service
del_input_type Kernel Service .. .
del_netisr Kernel Service
del_netopt Macro
delay Kernel Service
deque Kernel Service .. .
detach-device Queue Management Routine
detchq Kernel Service .. .
devdump Kernel Service .. .
devstrat Kernel Service
devswadd Kernel Service
devswdel Kernel Service .. .
devswqry Kernel Service .. .
dmp_add Kernel Service .. .
dmp_del Kernel Service .. .
dstryd Kernel Service .. .
dstryq Kernel Service .. .
DTOM Macro for mbuf Kernel Services
e_post Kernel Service .. .
e_sleep Kernel Service
e_sleepl Kernel Service .. .
e_wait Kernel Service .. .
e_wakeup Kernel Service
enque Kernel Service .. .
errsave Kernel Service
find_arp_iftype Kernel Service
find_input_type Kernel Service
fp_access Kernel Service
fp_close Kernel Service .. .
fp_fstat Kernel Service
fp_getdevno Kernel Service
fp_getf Kernel Service .. .
fp_hold Kernel Service
fp_ioctl Kernel Service
fp_lseek Kernel Service .. .
fp_open Kernel Service
fp_opendev Kernel Service .. .
fp_poll Kernel Service .. .
fp_read Kernel Service
fp_readv Kernel Service .. .
fp_rwuio Kernel Service .. .
fp_select Kernel Service .. .
fp_write Kernel Service
fp_writev Kernel Service .. .
fubyte Kernel Service .. .
fuword Kernel Service .. .

X Kernel Reference

1-60
1-63
1-65
1-67
1-68
1-69
1-70
1-71
1-72
1-73
1-74
1-77
1-78
1-80
1-82
1-84
1-86
1-88
1-90
1-92
1-93
1-94
1-95
1-96
1-97
1-99

1-101
1-103
1-104
1-106
1-107
1-109
1-111
1-112
1-113
1-114
1-115
1-116
1-117
1-118
1-119
1-121
1-124
1-126
1-128
1-130
1-131
1-135
1-137
1-139
1-140

getadsp Kernel Service
getblk Kernel Service .. .
getc Kernel Service .. .
getcb Kernel Service
getcbp Kernel Service .. .
getcf Kernel Service
getcx Kernel Service
geteblk Kernel Service
geterror Kernel Service
getexcept Kernel Service
getpid Kernel Service .. .
getuerror Kernel Service .. .
gfsadd Kernel Service
gfsdel Kernel Service .. .
i_clear Kernel Service .. .
i_disable Kernel Service .. .
i_enable Kernel Service .. .
i_init Kernel Service
i_mask Kernel Service
i_reset Kernel Service .. .
i_sched Kernel Service .. .
i_unmask Kernel Service
if_attach Kernel Service .. .
if_detach Kernel Service .. .
if _down Kernel Service
if_nostat Kernel Service .. .
ifa_ifwithaddr Kernel Service .. .
ifa_ifwithdstaddr Kernel Service
ifa_ifwithnet Kernel Service .. .
ifunit Kernel Service
init_heap Kernel Service .. .
initp Kernel Service .. .
io_att Kernel Service
io_det Kernel Service .. .
iodone Kernel Service .. .
iostadd Kernel Service
iostdel Kernel Service .. .
iowait Kernel Service .. .
kgethostname Kernel Service .. .
kmod_entrypt Kernel Service .. .
kmod_load Kernel Service .. .
kmod_unload Kernel Service .. .
kmsgctl Kernel Service
kmsgget Kernel Service .. .
kmsgrcv Kernel Service .. .
kmsgsnd Kernel Service .. .
lockl Kernel Service
loifp Kernel Service .. .
longjmpx Kernel Service .. .
lookupvp Kernel Service .. .
looutput Kernel Service

Table of Contents

1-141
1-142
1-143
1-144
1-145
1-146
1-147
1-148
1-149
1-150
1-151
1-152
1-153
1-155
1-156
1-157
1-159
1-160
1-162
1-163
1-164
1-166
1-167
1-168
1-169
1-170
1-171
1-172
1-173
1-174
1-175
1-176
1-178
1-179
1-180
1-182
1-185
1-186
1-187
1-188
1-189
1-193
1-195
1-197
1-199
1-202
1-204
1-206
1-207
1-208
1-210

xi

m_adj Kernel Service .. .
m_cat Kernel Service .. .
m_clget Kernel Service
m_clgetx Kernel Service .. .
m_collapse Kernel Service .. .
m_copy Kernel Service
m_copydata Kernel Service
m_dereg Kernel Service .. .
m_free Kernel Service .. .
m_freem Kernel Service .. .
m_get Kernel Service .. .
m_getclr Kernel Service .. .
m_getclust Kernel Service .. .
M_HASCL Macro for mbuf Kernel Services
m_pullup Kernel Service .. .
m_reg Kernel Service .. .
mbreq Structure for mbuf Kernel Services
mbstat Structure for mbuf Kernel Services
mincnt Routine for the uphysio Kernel Service
MTOCL Macro for mbuf Kernel Services
MTOD Macro for mbuf Kernel Services
net_attach Kernel Service
net_detach Kernel Service .. .
net_error Kernel Service .. .
net_sleep Kernel Service
net_start Kernel Service .. .
net_start_done Kernel Service
net_wakeup Kernel Service .. .
net_xmit Kernel Service .. .
notify Routine for the fp_select Kernel Service
panic Kernel Service
peekq Kernel Service .. .
pfctlinput Kernel Service .. .
pffindproto Kernel Service
pgsignal Kernel Service .. .
pidsig Kernel Service .. .
pin Kernel Service
pincf Kernel Service•.................................
pincode Kernel Service
pinu Kernel Service .. .
pio_assist Kernel Service
Process State-Change Notification Routine
prochadd Kernel Service .. .
prochdel Kernel Service .. .
purblk Kernel Service .. .
putc Kernel Service
putcb Kernel Service
putcbp Kernel Service .. .
putcf Kernel Service
putcfl Kernel Service
putcx Kernel Service

Xii Kernel Reference

1-211
1-212
1-213
1-214
1-216
1-217
1-218
1-219
1-220
1-221
1-222
1-223
1-224
1-225
1-226
1-227
1-228
1-229
1-230
1-231
1-232
1-233
1-234
1-235
1-236
1-237
1-238
1-239
1-240
1-241
1-243
1-244
1-246
1-247
1-248
1-249
1-250
1-252
1-253
1-254
1-256
1-259
1-260
1-262
1-263
1-264
1-265
1-266
1-267
1-268
1-269

qryds Kernel Service
queryd Kernel Service .. .
queryi Kernel Service .. .
queryp Kernel Service .. .
raw_input Kernel Service
raw_usrreq Kernel Service .. .
readq Kernel Service .. .
rqc Kernel Service
rqd Kernel Service .. .
rqgetw Kernel Service .. .
rqputw Kernel Service .. .
rtalloc Kernel Service .. .
rtfree Kernel Service
rtinit Kernel Service .. .
rtredirect Kernel Service .. .
rtrequest Kernel Service .. .
schednetisr Kernel Service .. .
selnotify Kernel Service .. .
setjmpx Kernel Service
setpinit Kernel Service
setuerror Kernel Service .. .
sig_chk Kernel Service
sleep Kernel Service
subyte Kernel Service .. .
suser Kernel Service
suword Kernel Service
talloc Kernel Service
tfree Kernel Service
timeout Kernel Service
timeoutcf Kernel Subroutine
trcgenk Kernel Service
trcgenkt Kernel Service
tstart Kernel Service
tstop Kernel Service
uexadd Kernel Service
uexblock Kernel Service .. .
uexclear Kernel Service .. .
uexdel Kernel Service .. .
uiomove Kernel Service .. .
unlock! Kernel Service
unpin Kernel Service
unpincode Kernel Service
unpinu Kernel Service .. .
untimeout Kernel Service
uphysio Kernel Service
ureadc Kernel Service .. .
User-Mode Exception Handler for the uexadd Kernel Service
uwritec Kernel Service
vec_clear Kernel Service
vec_init Kernel Service
vfsrele Kernel Service .. .

Table of Contents

1-270
1-272
1-273
1-274
1-275
1-276
1-278
1-279
1-281
1-282
1-283
1-284
1-285
1-286
1-287
1-288
1-290
1-291
1-293
1-294
1-295
1-296
1-298
1-300
1-301
1-302
1-303
1-304
1-305
1-307
1-309
1-310
1-311
1-313
1-314
1-315
1-316
1-317
1-318
1-320
1-322
1-323
1-324
1-326
1-327
1-331
1-333
1-335
1-337
1-338
1-340

xiii

virtual-interrupt-handler Queue Management Routine
vm_att Kernel Service .. .
vm_cflush Kernel Service
vm_det Kernel Service
vm_handle Kernel Service .. .
vm_makep Kernel Service .. .
vm_mount Kernel Service
vm_move Kernel Service
vm_protectp Kernel Service
vm_qmodify Kernel Service .. .
vm_release Kernel Service .. .
vm_releasep Kernel Service
vm_umount Kernel Service .. .
vm_write Kernel Service .. .
vm_writep Kernel Service
vms_create Kernel Service .. .
vms_delete Kernel Service .. .
vms_iowait Kernel Service .. .
vn_free Kernel Service
vn_get Kernel Service .. .
w_clear Kernel Service
w_init Kernel Service
w_start Kernel Service
w_stop Kernel Service
waitcfree Kernel Service .. .
waitq Kernel Service
wakeup Kernel Service
Watchdog Timer Function
xmalloc Kernel Service
xmattach Kernel Service .. .
xmdetach Kernel Service
xmemdma Kernel Service
xmemin Kernel Service
xmemout Kernel Service .. .
xmfree Kernel Service .. .

Chapter 2. Device Driver Operations
Guide to Writing Device Driver Entry Points
Character and Block Device Driver Entry Points: Overview
Standard Parameters to Device Driver Entry Points
buf Structure
Character Lists Structure
Device Dependent Structure (DDS)
uio Structure
ddclose Device Driver Entry Point
ddconfig Device Driver Entry Point

CFG_INIT Command Parameter to the ddconfig Routine
CFG_QVPD Command Parameter to the ddconfig Routine
CFG_ TERM Command Parameter to the ddconfig Routine

XiV Kernel Reference

1-341
1-342
1-343
1-344
1-345
1-346
1-347
1-348
1-350
1-352
1-353
1-355
1-357
1-358
1-360
1-361
1-363
1-364
1-365
1-366
1-368
1-369
1-370
1-371
1-372
1-373
1-375
1-376
1-377
1-379
1-381
1-382
1-384
1-386
1-388

2-1
2-2
2-3
2-5
2-6
2-8

2-10
2-12
2-15
2-17
2-19
2-20
2-21

dddump Device Driver Entry Point
Device Driver System Dump Support: Values for the dddump cmd Parameter .

ddioctl Device Driver Entry Point
ddmpx Device Driver Entry Point
ddopen Device Driver Entry Point
ddread Device Driver Entry Point

Select/Poll Logic for the ddread Routine
ddrevoke Device Driver Entry Point
ddselect Device Driver Entry Point
ddstrategy Device Driver Entry Point
ddwrite Device Driver Entry Point

Select/Poll Logic for the ddwrite Routine :

Chapter 3. File System Operations•............•...
vfs_cntl Subroutine .. .
vfs_init Subroutine .. .
vfs_mount Subroutine .. .
vfs_root Subroutine .. .
vfs_statfs Subroutine .. .
vfs_sync Subroutine
vfs_umount Subroutine
vfs_vget Subroutine
vn_access Subroutine .. .
vn_close Subroutine
vn_create Subroutine .. .
vn_fclear Subroutine
vn_fid Subroutine ,.
vn_fsync Subroutine
vn_ftrunc Subroutine
vn_getacl Subroutine .. .
vn_getattr Subroutine .. .
vn_hold Subroutine .. .
vn_ioctl Subroutine .. .
vn_link Subroutine .. .
vn_lockctl Subroutine .. .
vn_lookup Subroutine .. .
vn_map Subroutine .. .
vn_mkdir Subroutine
vn_mknod Subroutine .. .
vn_open Subroutine
vn_rdwr Subroutine .. .
vn_readdir Subroutine .. .
vn_readlink Subroutine
vn_rele Subroutine .. .
vn_remove Subroutine
vn_rename Subroutine
vn_revoke Subroutine .. .
vn_rmdir Subroutine
vn_select Subroutine .. .
vn_setacl Subroutine
vn_setattr Subroutine --........ .

Table of Contents

2-22
2-24
2-26
2-28
2-30
2-32
2-34
2-35
2-37
2-40
2-42
2-44

3-1
3-2
3-3
3-4
3-6
3-7
3-9

3-10
3-12
3-14
3-16
3-17
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-30
3-32
3-34
3-35
3-36
3-37
3-39
3-40
3-41
3-42
3-43
3-45
3-46
3-47
3-48
3-49

xv

vn_strategy Subroutine . 3-51
vn_symlink Subroutine . 3-52
vn_unmap Subroutine . 3-53

Part 2. Extending Device Subsystems

Chapter 4. Configuration Subsystem . • 4-1
Machine Device Driver . 4-2

Device Configuration Commands
bootlist Device Configuration Command . 4-7
nvload Device Configuration Command . 4-11
restbase Device Configuration Command . 4-13
savebase Device Configuration Command . 4-14

Device Configuration Subroutines
attrval Device Configuration Subroutine . 4-15
genmajor Device Configuration Subroutine . 4-16
genminor Device Configuration Subroutine . 4-17
genseq Device Configuration Subroutine . 4-19
getattr Device Configuration Subroutine . 4-20
getminor Device Configuration Subroutine . 4-22
loadext Device Configuration Subroutine . 4-24
putattr Device Configuration Subroutine . 4-26
reldevno Device Configuration Subroutine . 4-27
relmajor Device Configuration Subroutine . 4-28
relseq Device Configuration Subroutine . 4-29

ODM Device Configuration Object Classes
QOM Device Configuration Object Classes . 4-30
Config_Rules Object Class (Configuration Rules) . 4-31
CuAt Object Class (Customized Attribute) . 4-33
CuDep Object Class (Customized Dependency) . 4-35
CuDv Object Class (Customized Devices) . 4-36
CuDvDr Object Class (Customized Device Driver) . 4-40
CuVPD Object Class (Customized VPD) . 4-42
PdAt Object Class (Predefined Attribute) . 4-43

Adapter-Specific Considerations for the PdAt Object Class 4-4 7
PdCn Object Class (Predefined Connection) . 4-50
Predefined Devices (PdDv) Object Class . 4-51

Adapter-Specific Considerations for the PdDv Object Class 4-56

Writing Device Methods
Guide to Writing Device Methods . 4-57
How Device Methods Return Errors . 4-58
Loading a Device Driver . 4-59
Dev.ice Methods for Adapter Cards: Guidelines . 4-60
Writing a Change Method . 4-61
Writing a Configure Method . 4-64
Writing a Define Method . 4-69
Writing an Unconfigure Method.. 4-73
Writing an Undefine Method . 4-76
Writing Optional Start and Stop Methods . 4-78

XVI Kernel Reference

Chapter 5. Communications Subsystem.............................. 5-1

Communications Physical Device Handler Entry Points
ddclose Communications PDH Entry Point............................... 5-2
ddioctl (CIO_GET _STAT) Communications PDH Entry Point 5-3

Status Blocks for Communications Device Handlers . 5-5
CIO_START_DONE Status Block . 5-5
CIO_HALT_DONE Status Block................................... 5-5
CIO_TX_DONE Status Block..................................... 5--6
CIO_NULL_BLK Status Block . 5--6
CIO_LOST _STATUS Status Block . 5-6
CIO_ASYNC_STATUS Status Block . 5-6

ddioctl (CIO_HALT) Communications PDH Entry Point . 5-7
ddioctl (CIO_START) Communications PDH Entry Point . 5-9
ddioctl (CIO_QUERY) Communications PDH Entry Point 5-11
ddopen (Kernel Mode) Communications PDH Entry Point 5-13
ddopen (User Mode) Communications PDH Entry Point . 5-16
ddread Communications PDH Entry Point . 5-18
ddselect Communications PDH Entry Point . 5-20
ddwrite Communications PDH Entry Point . 5-22

Ethernet Device Handler Entry Points
entclose Ethernet Device Handler Entry Point . 5-24
entconfig Ethernet Device Handler Entry Point . 5-25
entioctl Ethernet Device Handler Entry Point . 5-27

CCC_GET _ VPD entioctl Operation (Query Vital Product Data) 5-29
CIO_GET _STAT entioctl Operation (Get Status) . 5-30

Status Blocks for the Ethernet Device Handler . 5-30
CIO_START_DONE Status Block . 5-31
CIO_HALT _DONE Status Block . 5-31

CIO_HALT entioctl Operation (Halt Device) . 5-32
CIO_QUERY entioctl Operation (Query Statistics) . 5-33
CIO_START entioctl Operation (Start Device) . 5-34
ENT_SET_MULTI entioctl Operation (Set Multicast Address) 5-36
IOCINFO entioctl Operation (Describe Device) . 5-37

entmpx Ethernet Device Handler Entry Point . 5-38
entopen Ethernet Device Handler Entry Point . 5-40
entread Ethernet Device Handler Entry Point . 5-42
entselect Ethernet Device Handler Entry Point . 5-44
entwrite Ethernet Device Handler Entry Point . 5-46

Multiprotocol (MPQP) Device Handler Entry Points
mpclose Multiprotocol (MPQP) Device Handler Entry Point 5-48
mpconfig Multiprotocol (MPQP) Device Handler Entry Point 5-50
mpioctl Multiprotocol (MPQP) Device Handler Entry Point 5-51

CIO_GET _STAT mpioctl Operation (Get Status) . 5-53
Status Blocks for the Multiprotocol Device Handler . 5-53

CIO_START _DONE Status Block . 5-53
CIO_HALT_DONE Status Block . 5-54
CIO_ TX_DONE Status Block . 5-54
CIO_ASYNC_STATUS Status Block . 5-55

Table of Contents XVii

MP _RDY _FOR_MAN_DIAL Status Block 5-55
MP _END_OF _AUTO_RESP Status Block 5-55
MP_ THRESH_EXC Status Block 5-56

CIO_HALT mpioctl Operation (Halt Device MPQP) 5-57
CIO_QUERY mpioctl Operation (Query Statistics) 5-59
CIO_START mpioctl Operation (Start Device) 5-61
MP _CHG_PARMS mpioctl Operation (Change Parameters) 5-68
MP _START_AR and MP _STOP _AR mpioctl Operations (Autoresponse) 5-69

mpmpx Multiprotocol (MPQP) Device Handler Entry Point 5-71
mpopen Multiprotocol (MPQP) Device Handler Entry Point 5-72
mpread Multiprotocol (MPQP) Device Handler Entry Point 5-74
mpselect Multiprotocol (MPQP) Device Handler Entry Point 5-76
mpwrite Multiprotocol (MPQP) Device Handler Entry Point 5-77

Token-Ring Device Handler Entry Points
tokclose Token-Ring Device Handler Entry Point 5-79
tokconfig Token-Ring Device Handler Entry Point 5-80
tokioctl Token-Ring Device Handler Entry Point 5-82

CIO_GET_STAT tokioctl Operation (Get Status) 5-84
Status Blocks for the Token-Ring Device Handler 5-84

CIO_START _DONE Status Block 5-84
CIO_HALT_DONE Status Block 5-85
CIO_ TX_DONE Status Block 5-85
CIO_ASYNC_STATUS Status Block 5-86

CIO_HALT tokioctl Operation (Halt Device) 5-89
CIO_QUERY tokioctl Operation (Query Statistics) 5-90
CIO_START (Start Device tokioctl Operation) 5-91
IOCINFO tokioctl Operation (Describe Device) 5-93
TOK_FUNC_ADDR tokioctl Operation (Set Functional Address) 5-94
TOK_GRP _ADDA tokioctl Operation (Set Group Address) 5-95
TOK_QVPD tokioctl Operation (Query Vital Product Data) 5-96
TOK_RING_INFO tokioctl Operation (Query Token-Ring) 5-97

tokmpx Token-Ring Device Handler Entry Point 5-98
tokopen Token-Ring Device Handler Entry Point 5-100
tokread Token-Ring Device Handler Entry Point 5-102 (
tokselect Token-Ring Device Handler Entry Point 5-104
tokwrite Token-Ring Device Handler Entry Point 5-106
X.25 Device Handler Entry Points
x25sclose X.25 Device Handler Entry Point 5-108
x25sioctl X.25 Device Handler Entry Point 5-110

CIO_DNLD x25sioctl (Download Task) Operation 5-112
CIO_GET_STAT x25sioctl Operation (Get Status) 5-113

Status Blocks for the X.25 Device Handler 5-113
CIO_START _DONE Status Block 5-113
CIO_HALT_DONE Status Block 5-114
CIO_TX_DONE Status Block 5-114
CIO_NULL_BLK Status Block 5-114
X25_REJECT _DONE Status Block 5-115

CIO_HALT x25sioctl Operation (Halt Session) 5-116
CIO_QUERY x25sioctl Operation (Query Device) 5-118
CIO_START x25sioctl Operation (Start Session) 5-120

XViii Kernel Reference

IOCINFO x25sioctl Operation (Identify Device)
X25_ADD_ROUTER_ID x25sioctl Operation (Add Router ID)
X25_COUNTER_GET x25sioctl Operation (Get Counter)
X25_COUNTER_READ x25sioctl Operation (Read Counter)
X25_COUNTER_REMOVE x25sioctl Operation (Remove Counter)
X25_COUNTER_WAIT x25sioctl Operation (Wait Counter)
X25_DELETE_ROUTER_ID x25sioctl Operation (Delete Router ID)
X25_DIAG_IO_READ x25sioctl Operation (Read Register)
X25_DIAG_IO_WRITE x25sioctl Operation (Write to Register)
X25_DIAG_MEM_READ x25sioctl Operation (Read Memory)
X25_DIAG_MEM_WRITE x25sioctl Operation (Write Memory)
X25_DIAG_RESET x25sioctl Operation (Reset Adapter)
X25_DIAG_TASK x25sioctl Operation (Download Diagnostics)
X25_LINK_CONNECT x25sioctl Operation (Connect Link)
X25_LINK_DISCONNECT x25sioctl Operation (Disconnect Link)
X25_LINK_STATUS x25sioctl Operation (Link Status)
X25_LOCAL_BUSY x25sioctl Operation (Local Busy)
X25_QUERY _ROUTER_ID x25sioctl Operation (Query Router ID)
X25_QUERY _SESSION x25sioctl Operation (Query Session)
X25_REJECT x25sioctl Operation (Reject Call)

x25smpx X.25 Device Handler Entry Point
x25sopen X.25 Device Handler Entry Point
x25sread X.25 Device Handler Entry Point
x25sselect X.25 Device Handler Entry Point
x25swrite X.25 Device Handler Entry Point

Chapter 6. High Function Terminal (HFT) Subsystem .•.................

ioctl Operations
HFCHGLOC ioctl Operation {Change Locator)
HFCMON ioctl Operation (Exit Monitor Mode)
HFDSOUND ioctl Operation (Disable Sound Signal)
HFESOUND ioctl Operation {Enable Sound Signal)
HFESWKBD ioctl Operation {Enable Software Keyboard)
HFQERROR ioctl Operation (Query 1/0 Error)
HFQUERY ioctl Operation (Query)

HFQUERY ioctl Option: Query Dials
HFQUERY ioctl Option: Query HFT Device
HFQUERY ioctl Option: Query Keyboard Status
HFQUERY ioctl Option: Query Lighted Programmable Function Keys
HFQUERY ioctl Options: Query Mouse and Query Tablet
HFQUERY ioctl Option: Query Physical Device
HFQUERY ioctl Option: Query Physical Display IDs
HFQUERY ioctl Option: Query Presentation Space
HFQUERY ioctl Option: Query Retract Device ID
HFQUERY ioctl Option: Query Software Keyboard

HFSJKBD ioctl Operation (Set Japanese Keyboard)
HFSKBD ioctl Operation (Set Keyboard Map)
HFSMON ioctl Operation (Enter Monitor Mode)
HFTCSMGR ioctl Operation (Control Screen Manager)
HFTGETID ioctl Operation (Get Virtual Terminal ID)

Table of Contents

5-125
5-127
5-129
5-130
5-131
5-132
5-133
5-134
5-135
5-136
5-137
5-138
5-139
5-140
5-141
5-142
5-143
5-144
5-145
5-147
5-149
5-151
5-155
5-158
5-160

6-1

6-2
6-3
6-4
6-5
6-6
6-7

6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-24
6-25
6-26
6-27

xix

HFTQDEV ioctl Operation (Query Device) 6-28
HFTQSMGR ioctl Operation (Query Screen Manager) 6-29
HFTSBREAK ioctl Operation (Set Break Map) 6-30
HFTSECHO ioctl Operation (Set Echo Map) 6-31
read/write Operations
Input Device Report read Operation 6-33
Untranslated Key Control read Operation 6-34
Cancel Sound write Operation 6-35
Change Font Palette write Operation 6-36
Change Physical Display write Operation 6-37
Redefine Cursor Representation write Operation 6-38
Screen Release write Operation 6-39
Screen Request write Operation 6-40
Send Sound write Operation 6-41
Set Dial Granularities write Operation 6-42
Set Keyboard LEDs write Operation 6-43
Set KSR Color Palette write Operation 6-44
Set LPFKs write Operation .. . 6-45
Set Protocol Modes write Operation 6-46
Miscellaneous Operations
Accented Characters 6-47
Echo and Break Map Structure 6-50
Requesting Screen Control and Specifying an Input Ring Buffer 6-52
Requesting Screen Release 6-54
Valid Multibyte Control Codes for Clearing and Setting Tab Controls 6-55
Valid Multibyte Control Codes for Controlling Cursor Movement 6-57
Valid Multibyte Control Codes for Erasing Areas, Displays, Lines, and Fields 6-60
Valid Multibyte Control Codes for Inserting and Deleting Lines and Characters .. . 6-62
Valid Multibyte Control Codes for Performing Miscellaneous Tasks 6-64
Valid Multibyte Control Codes for Scrolling 6-69

Chapter 7. Logical Volume Subsystem .•....................•......•. 7-1
Physical Volumes and the Logical Volume Device Driver
The Logical Volume Device Driver

7-2 (7-6
Logical Volumes and Bad Blocks 7-10

Chapter 8. Printer Subsystem ..••..•...............•.•...•.•.••..••• 8-1
Understanding Embedded References in Printer Attribute Strings 8-2
initialize Subroutine .. . 8-3
lineout Subroutine 8-4
passthru Subroutine 8-6
piocmdout Subroutine .. . 8-7
pioexit Subroutine 8-8
piogetopt Subroutine 8-9
piogetstr Subroutine 8-11
piogetvals Subroutine .. . 8-12
piomsgout Subroutine .. . 8-14
restore Subroutine 8-15
setup Subroutine .. . 8-16

XX Kernel Reference

Chapter 9. SCSI Subsystem . 9-1
CD-ROM SCSI Device Driver . 9-2
rmt SCSI Device Driver . 9-10
scdisk SCSI Device Driver . 9-19
SCSI Adapter Device Driver . 9-29

Managing Dumps . 9-37
SCIODIAG ioctl Operation . 9-38
SCIODNLD ioctl Operation . • 9-40
SCIOHALT ioctl Operation . 9-42
SCIOINQU ioctl Operation . 9-43
SCIORESET ioctl Operation . 9-45
SCIOSTART ioctl Operation . 9-47
SCIOSTOP ioctl Operation . 9-48
SCIOSTUNIT ioctl Operation . 9-49
SCIOTRAM ioctl Operation . 9-51
SCIOTUR ioctl Operation . 9-52

Index . X-1

Table of Contents XXi

XXii Kernel Reference

Part 1. Programming in the Kernel Environment

Programming in the Kernel Environment

Kernel Reference

Chapter 1. Kernel Services

Kernel Services 1-1

ackque

ackque Kernel Service

Purpose

Syntax

Sends an acknowledge device queue element.

#include <sys/types.h>
#include <sys/errno.h>
#include <Sys/deviceq.h>

int ackque (qe, flags, results)
struct ack_qe *qe;
int flags;
int results;

Parameters
qe

flags

results

Description

Specifies the address of the acknowledgment queue element.

Specifies the operation options.

Specifies the operation results for a synchronous request or an interrupt on
error request.

The ackque kernel service is not part of the base kernel but provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The ackque service is called by a device queue server (typically a kernel process) to send
an acknowledgment. The operation option flags and the path type control the sending of an
acknowledgment. Depending on the type of acknowledgment requested, different amounts
of status information are returned.

The acknowledgment is only sent if both the path type and the operation options indicate
that an acknowledgment is to be sent. The deque kernel service has more detailed
information.

There are two types of acknowledgments: solicited acknowledgment and unsolicited
acknowledgment. A solicited acknowledgment is sent in response to a request that was
dequeued with the suppress option. All other acknowledgments are considered unsolicited.

If the suppress option is used with the deque service, the device queue's server is
responsible for explicitly generating the acknowledgment by calling the ackque server. The
original request queue element is unavailable in this case. This is overcome by the server
remembering the operation options and passing them as the flags parameter.

A path to a device queue may be destroyed before the active queue element is totally
processed. If this happens, no acknowledgment is generated when the ackque service is
called. Instead, the queue element is discarded with no error reported.

1-2 Kernel Reference

ackque

Use of Virtual Interrupt Handlers
For compatibility purposes; when an acknowledgment is sent through a path that was set up
with an acknowledgment type of interrupt (INTR_ACK), a registered virtual interrupt handler
is called. The ackque service determines which virtual interrupt handler to call by
determining the sublevel associated with the acknowledge queue element. If the
qe->data[5] field in the acknowledgment queue element is positive (that is, the most
significant bit is a 0), then the sublevel specified when the path was created is used.
Otherwise, the value in the field is used as the sublevel for calling the correct virtual interrupt
handler.

ACKNOWLEDGE TYPE VALUE PARAMETER ONE PARAMETER TWO

None NO_ACK n/a n/a

Short SHORT_ACK Event mask n/a

Long LONG_ACK Acknowledge device queue Queue element priority
identifier

Interrupt INTR_ACK n/a Interrupt level and
sublevel

Virtual interrupt handlers are registered by using the vec_init service. The virtual interrupt
handler is directly called by the ackque service and executes in the process environment of
the caller.

Execution Environment
The ackque kernel service can be called from the process environment only.

Return Value
RC_GOOD Indicates successful completion.

No error is reported if the queue element is discarded.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The deque kernel service, vec_init kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-3

add_arp_iftype

add_arp_iftype Kernel Service

Purpose

Syntax

Adds an interface type to the Network ARP Switch Table Interface (NASTI).

#include <sys/types.h>
#include <sys/errno.h>
#include <net/if .h>

Int add_arp_iftype(it__type, af, ioctl, resolve, whohas, arptfree)
u_short it__type, af;
int (*ioct~();
int (*resolve)();
int (*whohas)();
int (*arptfree)();

Parameters
it__ type

af

ioctl

resolve

who has

arptfree

Uniquely identifies the type of a network interface (for example, Ethernet or
token ring). Interface types are defined in the /usr/include/sys/devinfo.h
file.

Specifies the address family that the specified ARP routines are able to
handle.

Specifies the ARP ioctl handler.

Specifies the ARP resolve handler.

Specifies a function for transmitting ARP request packets.

Specifies a function that frees ARP entries and reclaims resources.

Description

Example

The add_arp_iftype kernel service adds an interface type to the Network ARP Switch Table
Interface {NASTI). (

The add_arp_iftype kernel service is invoked by:

add_arp_iftype(DD_EN, AF_INET, arpioctl, arpresolve);

Return Values
0

EEXIST

ENOS PC

EINVAL

1-4 Kernel Reference

Indicates a successful operation.

Indicates that the type specified by the it__type parameter for the specified
address afhad already been added to the table.

Indicates that no free slots were left in NASTI.

Indicates an error in the input parameters.

add_arp_iftype

Execution Environment
The add_arp_iftype kernel service can be called from either the process or interrupt
environment. The functions specified by the ioctl, resolve, whohas, and arptfree parameters
are can also be called in either the process or interrupt environments.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-5

add_domain_af

add_domain_af Kernel Service

Purpose

Syntax

Adds an address family to the Address Family domain switch table.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/domain.h>

int add_domain_af (domain, af_netmatch, af_hash)
struct domain *domain;
int (*af_netmatch);
int (*af_hash);

Parameters
domain Specifies the domain of the address family.

af_netmatch Specifies a function that the generic routing code calls to determine if two
addresses are on the same network. The function should be of the form:

af_hash

int af_netmatch (s1, s2)
struct sockaddr s1;
struct sockaddr s2;

The af_netmatch parameter should return 1 if the two addresses are on the
same network. Otherwise, it should return a 0 (zero).

Specifies a function that the generic routing code calls to determine routing
hash values. The function should be of the form:

af_hash (sa, hp)
struct sockaddr *sa
struct afhash *hp;

Description
The add_domain_af kernel service adds an address family domain to the Address Family (
domain switch table.

Return Values
0

EEXIST

EINVAL

Indicates that the address family was successfully added.

Indicates that the address family was already added.

Indicates that the address family number to be added is out of range.

Execution Environment

Example

The add_domain_af kernel service can be called from either the process or interrupt
environment.

1. To add an address family to the Address Family domain switch table, invoke the
add_domain_af kernel service as follows:

add_dornain_af(&inetdornain, inet_netrnatch, inet_hash);

In this example, the family to be added is inetdornain.

1-6 Kernel Reference

add_domain_af

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The del_domain_af kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-7

add_input_type

add_input_type Kernel Service

Purpose

Syntax

Adds a new input type to the Network Input table.

#include <sys/types.h>
#include <Sys/errno.h>
#include <net/if .h>
#include <net/netisr.h>

int add_input_type (type, service_level, isr, ifq, a~

u_short type;
u_short service_level;
int (* is1' ();
struct ifq ueue * ifq;
u_short af';

Parameters
type Specifies which type of protocol a packet contains. A value of x'FFFF'

indicates that this input type is a wildcard type and matches all input
packets.

service_level

isr

ifq

af

Description

Determines the processing level at which the protocol input handler is
called. If the service_levelparameter is set to a value of NET_OFF _LEVEL,
the input handler specified by the isr parameter is called directly. Setting the
service_level parameter to a value of NET _KPROC causes a network
dispatch process to be scheduled. This dispatch process calls the
subroutine identified by the isr parameter.

Identifies the routine that is to serve as the input handler for an input packet
type.

Specifies an input queue for holding input buffers. If this parameter has a
non-NULL value, an input buffer (mbuf) is enqueued. This parameter must
be specified if the processing level specified by the service_level parameter
is a value of NET_KPROC. Specifying NULL for this parameter generates a
call to the input handler specified by the isr parameter, as in the following:

(*is1'(CommonPortion,Buffer);

In this example, CommonPortion points to the network common portion
(struct arpcom) of a network interface and Buffer is a pointer to a buffer
(mbuf) containing an input packet.

Specifies the address family of the calling protocol. The af parameter must
be specified if the ifq parameter is not NULL.

To enable the reception of packets, an address family calls the add_input_type kernel
service to register a packet type in the Network Input table. Multiple packet types require
multiple calls to the add_input_type kernel service.

1-8 Kernel Reference

(

\

(
\

add_input_type

Execution Environment
The add_input_type kernel service can be called from either the process or interrupt
environment.

Return Values

Examples

0 Indicates that the type was successfully added.

EEXIST

ENOS PC

EINVAL

Indicates that the type was previously added to the Network Input table.

Indicates that no free slots are left in the table.

Indicates that an error occurred in the input parameters.

1. To register an Internet packet type (TYPE_IP), invoke the add_input_type service as
follows:

add_input_type(TYPE_IP, NET_KPROC, ipintr, ipintrq, AF_INET);

This packet is processed through the network kproc. The input handler is ipintr. The
input queue is ipintrq.

2. To specify the input handler for ARP packets, invoke the add_input_type service as
follows:

add_input_type(TYPE_ARP, NET_OFF_LEVEL, arpinput, NULL, NULL);

Packets are not queued and the arpinput subroutine is called directly.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The del_input_type kernel service, find_input_type kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-9

add_netisr

add_netisr Kernel Service

Purpose

Syntax

Adds a network software interrupt service to the Network Interrupt table.

#include <Sys/types.h>
#include <sys/errno.h>
#include <net/netisr.h>

int add_netisr (soft_intr_level, service_level, isr)
u_short soft_intr_levet,
u_short service_level;
int (*isr)();

Parameters
soft_intr_level Specifies the software interrupt level to add. This parameter must be greater

than or equal to O (zero) and less than a value of NETISR_MAX.

service_level Specifies the processing level of the network software interrupt.

isr Specifies the interrupt service routine to add.

Description
The add_netisr kernel service adds the software-interrupt level specified by the
soft_intr_level parameter to the Network Software Interrupt table.

The processing level of a network software interrupt is specified by the service_level
parameter. If the interrupt level specified by the service_level parameter equals a value of
NET _KPROC, a network interrupt scheduler calls the function specified by the isr parameter.
If you set the service_levelparameter to a value of NET_OFF _LEVEL, the add_netisr
service calls the interrupt service routine directly.

Execution Environment
The add_netisr kernel service can be called from either the process or interrupt
environment.

Return Values
0

EEXIST

EINVAL

Indicates that the interrupt service routine was successfully added.

Indicates that the interrupt service routine was previously added to the table.

Indicates that the value specified for the soft_intr_level parameter is out of
range or at an invalid service level.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The del_netisr kernel service.

1-1 0 Kernel Reference

I

I
\

(

add_netopt Macro

Purpose

Syntax

Adds a network option structure to the list of network options.

#Include <sys/types.h>
#include <sys/errno.h>
#include <net/netopt.h>

add_netopt (option_name_symbol, prinLformaf'J
option_name_symbol;
char *prinLformat",

add_netopt

Parameters
option_name_symbol Specifies the symbol name used to construct the netopt

structure and default names.

print_ format

Description

Specifies the string representing the print format for the network
option.

The add_netopt macro adds a network option to the linked list of network options. The no
command can then be used to show or alter the variable's value.

The add_netopt macro has no return values.

Execution Environment
The add_netopt macro can be called from either the process or interrupt environment.

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

Related Information
The del_netopt macro.

The no command.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-11

as_att

as_att Kernel Service

Purpose

Syntax

Selects, allocates, and maps a region in the specified address space for the specified virtual
memory object.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/addspace.h>

caddr_tas_att(adspacep, vmhandle,offse~
adspace_t*adspacep;
vmhandle_t vmhandle;
caddr_t offset,

Parameters
adspacep Points to the address space structure that defines the address space where

the region for the virtual memory object is to be allocated. This pointer can
be obtained by using the getadsp kernel service.

vmhandle

offset

Description

Describes the virtual memory object that is being made addressable within a
region of the specified address space.

Specifies the offset in the virtual memory object and region that is being
mapped. On the RISC System/6000, the upper 4 bits of this offset are
ignored.

The as_att kernel service:

• Selects an unallocated region within the address space specified by the adspacep
parameter.

• Allocates the region.

• Maps the virtual memory object selected by the vmhandle parameter with the access
permission specified in the handle.

• Constructs the address of the offset specified by the offset parameter in the specified
address space.

If the specified address space is the current address space, the region becomes immediately
addressable. Otherwise, it becomes addressable when the specified address space next
becomes the active address space.

Kernel extensions use the as_att kernel service to manage virtual memory object
addressability within a region of a particular address space. They are also used by base
operating system subroutines such as the shmat and shmdt subroutines.

1-12 Kernel Reference

(

\

as_att

Subroutines executed by a kernel extension may be executing under a process, with a
process address space, or executing under a kernel process, entirely in the current address
space. (The as_att service never switches to a user-mode address space.) The getadsp
kernel service should be used to get the correct address space structure pointer in either
case.

The as_att kernel service assumes an address space model of fixed-size virtual memory
objects and address space regions.

Execution Environment
The as_att kernel service can be called from the process environment only.

Return Values
If successful, the as_att service returns the address of the offset (specified by the offset
parameter) within the region in the specified address space where the virtual memory object
was made addressable.

If there are no more free regions within the specified address space, the as_att service will
not allocate a region and returns a NULL address.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The getadsp kernel service, as_det kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-13

as_det

as_det Kernel Service

Purpose

Syntax

Unmaps and deallocates a region in the specified address space that was mapped with the
as_att kernel service.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <sys/vmuser.h>
#include <Sys/addspace.h>

int as_det(adspacep, eaddl?
adspace_t *adspacep;
caddr _t eaddr,

Parameters
adspacep Points to the address space structure that defines the address space where

the region for the virtual memory object is defined. For the current process,
this pointer can be obtained with the getadsp kernel service.

eaddr

Description

Specifies the effective address within the region to be deallocated in the
specified address space.

The as_det kernel service unmaps the virtual memory object from the region containing the
specified effective address (specified by the eaddr parameter) and deallocates the region
from the address space specified by the adspacep parameter. This region is added to the
free list for the specified address space.

The as_det kernel service assumes an address space model of fixed-size virtual memory
objects and address space regions.

This service should not be used to deallocate a base kernel region, process text, process
private or unallocated region: an EINVAL return code will result. For the RISC System/6000,
the upper 4 bits of the eaddr effective address parameter must never be 0, 1, 2, OxE, or
specify an unallocated region.

Execution Environment
The as_det kernel service can be called from the process environment only.

Return Values
0

EINVAL

The region was successfully unmapped and deallocated.

An attempt was made to deallocate a region that should not have been
deallocated (that is, a base kernel region, process text region, process
private region or unallocated region).

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

1-14 Kernel Reference

I

~

as_det

Related Information
The as_att kernel service, getadsp kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-15

attach-device

attach-device Queue Management Routine

Purpose

Syntax

Provides a means for performing device-specific processing when the attchq kernel service
is called.

#Include <sys/types.h>
#include <Sys/errno.h>
#include <Sys/deviceq.h>

int attach (dev_parms, path_id)
caddr_t dev_parms;
cba_id path_id;

Parameters
dev_parms Passed to the creatd kernel service when the attach routine is defined.

path_id Specifies the path identifier for the queue that is being attached to.

Description
Each device queue can have an attach routine. This routine is optional and must be
specified when the device queue is defined with the creatd kernel service. The attchq
service calls the attach routine each time a new path is created to the owning device queue.
The processing performed by this routine is dependent on the server function.

The attach routine executes under the process under which the attchq kernel service is
called. The kernel does not serialize the execution of this service with the execution of any of
the other server routines.

Execution Environment
The attach-device routine can be called from the process environment only.

Return Values
RC_GOOD

RC_NONE

RC_MAX

Indicates a successful completion.

Indicates that resources such as pinned memory are unavailable.

Indicates that the server already has the maximum number of users that it
supports.

Greater than or equal to RC_DEVICE
Indicates device-specific errors.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-16 Kernel Reference

(

attchq

attchq Kernel Service

Purpose

Syntax

Creates a path to a device queue.

#include csys/types.h>
#include csys/errno.h>
#include csys/deviceq.h>

int attchq (from_id, to_id, ·path_id, pt1'
cba_id from_id;
cba_id to_id;
cba_id * path_id;
struct attchq * ptr;

Parameters
from_id Specifies the identifier of the requester.

to_id

path_id

ptr

Description

Specifies the identifier of the server.

Specifies the address of the returned path identifier.

Specifies the address of the acknowledge parameter structure.

The attchq kernel service is not part of the base kernel but provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The attchq service establishes how a requestor and a server communicate with each other.
For a discussion of the device queue requestor and server model, see Understanding
Device Queues. The · from_id and to_id parameters give the identifiers of the requestor and
the server of the device queue, respectively. These identifiers can be a queue identifier, a
device identifier, or a process identifier. Neither identifier needs to be associated with the
caller of the attchq service.

If a process identifier is specified, a path is established to the oldest device queue served by
the process. If a device identifier is specified, a path is established to the device queue
associated with the device identifier. If a queue identifier is used, then a path is established
to that queue.

The server's attach-device routine is called if an attach-device routine is associated with
the device queue and the to_ id parameter is a device identifier.

The Acknowledgment Parameter Structure
The acknowledgment parameter structure consists of four fields: acknowledge-type,
acknowledge depth-counter, and two other parameters. The latter two (Parameter One and
Parameter Two} contain data whose meaning depends on the acknowledge type.

Kernel Services 1-17

attchq

The Acknowledgment Type and How It Is Used
The acknowledge-type field specifies acknowledgment information returned when the
processing of a queue element is completed. The four type options are:

NO_ACK

SHORT_ACK

LONG_ACK

INTR_ACK

No acknowledgment is to be sent. Parameters One and Two have no
meaning.

Completion is to be acknowledged by posting an event. A short
acknowledgement notifies the requester by sending it an event
notification using the e_post kernel service. Parameter One contains an
event mask to be used as the events parameter for the attchq service.
Parameter Two has no meaning.

Completion is to be acknowledged by sending a queue element. A long
acknowledgment notifies the requester by sending the requestor a queue
element. Parameter One contains an acknowledge device queue
identifier specifying the device queue to which the acknowledgment
queue element is to be sent. If this identifier is NULL_CBA, an
acknowledgement is sent to the first device queue associated with the
from_id parameter. Parameter Two contains the queue element priority,
which is a number from QE_BEST _PRTY to QE_WORST _PRTY. This
priority is described in more detail with the enque service.

Completion is to be acknowledged by sending a virtual interrupt. A virtual
interrupt acknowledgment notifies the requestor by calling its registered
virtual interrupt handler with the acknowledge queue element. The
requester can use the vec_init service to define a virtual interrupt
handler to receive the virtual interrupt queue element.

For this acknowledge type, the virtual interrupt level and sublevel occupy
the last 16 bits of Parameter Two. Of these 16 bits, the first 8 (high-order
byte) are the virtual interrupt level (0 to 7) and the next 8 bits (low-order
byte) are the virtual interrupt sublevel (0 to 255). The virtual interrupt
level is ignored. Virtual interrupts should be used for compatibility
purposes only. Parameter One has no meaning.

The Acknowledgment Depth Counter

Another part of the acknowledgment parameter structure is the acknowledgment depth
counter. This counter places a limit on the number of acknowledgment queue elements that
can be outstanding at any given time. Use of this counter prevents runaway consumption of
queue elements in error situations. If the count is exceeded, the acknowledgment overrun
count is increased. If zero is specified for the counter, it defaults to a value of one. The
largest valid acknowledgment depth count is MAX_ACK_DEPTH.

Note: The kernel may or may not enforce the restriction on the size of the acknowledgment
depth count.

In addition to the return code, the path identifier is also returned in the memory indicated by
the path_id parameter. The path identifier is used by other device queue management
services such as the enque kernel service.

Execution Environment
The attchq kernel service can be called from the process environment only.

1-18 Kernel Reference

I

\

Return Values
RC_GOOD

RC_NONE

RC_MAX

attchq

Indicates a successful operation.

Indicates that resources were unavailable. The path was not created.

Indicates that the maximum number of paths was exceeded. The path was
not created.

All other error values represent errors detected by the server's attach-device routine.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The enque kernel service, vec_init kernel service, e_post kernel service.

The attach-device queue management routine.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-19

audit_svcbcopy

audit_svcbcopy Kernel Service

Purpose

Syntax

Appends event information to the current audit event buffer.

#include <sys/types.h>
#include <sys/errno.h>

int audit_svcbcopy (buf, /en)
char*buf,
int /en;

Parameters
but Specifies the information to append to the current audit event record buffer.

/en Specifies the number of bytes in the buffer.

Description
The audit_svcbcopy kernel service appends the specified buffer to the event-specific
information for the current SVC. System calls should initialize auditing with the
audit_svcstart kernel service, which creates a record buffer for the named event.

The audit_svcbcopy kernel service can then be used to add additional information to that
buffer. This information usually consists of system call parameters that are passed by
reference.

After the record buffer is complete and if auditing is enabled, the information is written by the
audit_svcfinis kernel service.

Execution Environment
The audit_svcbcopy kernel service can be called from the process environment only.

Return Values
0

ENOS PC

EINVAL

Indicates a successful operation.

Indicates that the kernel service is unable to allocate space for the new
buffer.

Indicates that no valid audit record buffer exists.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The audit_svcstart kernel service, audit_svcfinis kernel service.

Security Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-20 Kernel Reference

audit_svcfinis

audit_svcfinis Kernel Service

Purpose

Syntax

Writes an audit record for a kernel service.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/audit.h>

int audit_svcfinis ()
int;

Description
The audit_svcfinis kernel service completes an audit record begun earlier by the
audit_svcstart kernel service and writes it to the kernel audit logger. Any space allocated
for the record and associated buffers is freed.

If the system call terminates without calling the audit_svcfinis service, the SVC handler exit
routine writes the records. This exit routine calls the audit_svcfinis kernel service to
complete the records.

The result code is computed from the current errno value.

Execution Environment
The audit_svcfinis kernel service can be called from the process environment only.

Return Value
The audit_svcfinis kernel service always returns a value of 0.

Implementation Specifics
This kernel service is part of AIX Base Operating System {BOS) Runtime.

Related Information
The audit_svcbcopy kernel service, audit_svcstart kernel service.

Security Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-21

audit_svcstart

audit_svcstart Kernel Service

Purpose

Syntax

Initiates an audit record for a system call.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/audit.h>

int audit_svcstart (eventnam, eventnum, numargs, arg1, arg2 ...)
char * eventnam;
int *eventnum;
int numargs;
int arg1;
int arg2;

Parameters
eventnam Specifies the name of the event. In the current implementation, event

names must be less than 17 characters, including the trailing NULL.
Longer names are truncated.

eventnum

numargs

arg1, arg2, ...

Description

Specifies the number of the event. This is an internal table index
meaningful only to the kernel audit logger. The system call should
initialize this parameter to O. The first time that the audit_svcstart kernel
service is called, this parameter is set to the actual table index. The
system call should not reset it. It should be declared as a static.

Specifies the number of parameters to be included in the buffer for this
record. These parameters are normally O or more of the system call
parameters, although this is not a requirement.

Specifies the parameters to be included in the buffer.

The audit_svcstart kernel service initiates auditing for a system call event. It dynamically
allocates a buffer to contain event information. The arguments to the system call (which
should be specified as parameters to this kernel service) are automatically added to the
buffer, as is the internal number of the event. You can use the audit_svcbcopy service to
add additional information that cannot be passed by value.

The system call commits this record with the audit_svcfinis kernel service. The system call
should call the audit_svcfinis kernel service before calling another system call.

1-22 Kernel Reference

(

Example
1. You can invoke the audit_svcstart service with the following:

svcfoobar(int x, int y, int z)
{

static int eventnum;

audit_svcstart

if (audit_svcstart("fubared", &eventnum, 2, x, y)) {
audit_svcfinis();
}

body of svcfoobar

}

This allocates an audit event record buffer for the event fubared and copies the first and
second arguments into it. The third argument is unnecessary and is not copied.

Execution Environment
The audit_svcstart kernel service can be called from the process environment only.

Return Values
Nonzero

0

Indicates that auditing is on for this routine.

Indicates that auditing is off for this routine.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The audit_svcbcopy kernel service, audit_svcfinis kernel service.

Security Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-23

bawrite

bawrite Kernel Service

Purpose

Syntax

Parameter

Writes the specified buffer's data without waiting for 110 to complete.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/buf.h>

Int bawrite (bp)
struct buf * bp;

bp Specifies the address of the buffer structure for the buffer to be written.

Description
The bawrite kernel service sets the asynchronous flag in the specified buffer and then calls
the bwrite kernel service to write the buffer.

The article entitled Using the Buffer Cache write Services briefly describes how the three
buffer cache write routines work.

Execution Environment
The bawrite kernel service can be called from the process environment only.

Return Values
0

Errno global variable

Implementation Specifics

Indicates successful completion.

Indicates that an 110 error has occurred.

This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The bwrite kernel service.

Block 1/0 Buffer Cache Services: Overview, 1/0 Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-24 Kernel Reference

I

I
\

I

~

bdwrite

bdwrite Kernel Service

Purpose

Syntax

Parameter

Releases the specified buffer after marking it for delayed write.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void bdwrite (bp)
struct buf * bp;

bp Specifies the address of the buffer structure for the buffer to be written.

Description
The bdwrite kernel service marks the specified buffer so that the block is written to the
device when the buffer is stolen. The bdwrite service marks the specified buffer as delayed
write and then releases it (that is, puts the buffer on the free list). When this buffer is
reassigned or reclaimed, it is written to the device.

The bdwrite service has no return values.

Using the Buffer Cache write Services briefly describes how the three buffer cache write
routines work.

Execution Environment
The bdwrite kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The brelse kernel service.

Block 1/0 Buffer Cache Services: Overview, 1/0 Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-25

bf lush

bflush Kernel Service

Purpose

Syntax

Parameter

Flushes all write-behind blocks on the specified device from the buffer cache.

#include <sys/types.ii>
#include <Sys/errno.h>
#include <Sys/buf.h>

void bflush (dev)
dev_t dev;

dev Specifies which device to flush. A value of NODEVICE flushes all devices.

Description
The bflush kernel service runs the free list of buffers. It marks as busy or writing any dirty
buffer whose block is on the specified device. When NODEVICE is specified, the bflush
service flushes all write-behind blocks for all devices. The bflush service has no return
values.

Execution Environment
The bflush kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The bwrite kernel service.

I

\

Block 110 Buffer Cache Services: Overview, 1/0 Kernel Services in Kernel Extensions and
Device Support Programming Concepts. (

1-26 Kernel Reference

binval

binval Kernel Service

Purpose

Syntax

Parameter

Invalidates all of the specified device's blocks in the buffer cache.

#include <Sys/types.h>
#include <sys/errno.h>
#include <Sys/buf.h>

void binval (dev)
dev_t dev;

dev Specifies the device to be purged.

Description
The binval kernel service invalidates, or makes nonreclaimable, all of the specified device's
blocks in the buffer cache. Before removing the device from the system, the binval service
should be called to remove all of a device's blocks from the buffer cache.

All of the device's blocks should have been flushed before calling the binval service.
Typically, these blocks are flushed after the last close of the device.

The binval service has no return values.

Execution Environment
The binval kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The bflush kernel service, blkflush kernel service.

Block 1/0 Buffer Cache Services: Overview, 1/0 Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-27

blkflush

blkflush Kernel Service

Purpose

Syntax

Flushes the specified block if it is in the buffer cache.

#Include <sys/types.h>
#Include <Sys/errno.h>
#include <sys/buf.h>

int blkflush (dev, blkno)
dev_t dev;
daddr_t blkno;

Parameters
dev Specifies the device containing the block to be flushed.

blkno Specifies the block to be flushed.

Description
The blkflush kernel service checks to see if the specified buffer is in the buffer cache. If the
buffer is not in the cache, then the blkflush service returns a value of O. If the buffer is in
the cache but is busy, then the blkflush service calls the e_sleep service to wait until the
buffer is no longer in use. Upon waking, the blkflush service tries again to access the buffer.

If the buffer is in the cache and is not busy but is dirty, then it is removed from the free list.
The buffer is then marked as busy and synchronously written to the device. If the buffer is in
the cache and is neither busy nor dirty (that is, the buffer is already clean and therefore does
not need to be flushed), the blkflush service returns a value of 0.

Execution Environment
The blkflush kernel service can be called from the process environment only.

Return Values
1

0

Indicates that the block was successfully flushed.

Indicates that the block was not flushed. The specified buffer is either not in
the buffer cache or is in the buffer cache but neither busy nor dirty.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The bwrite kernel service.

Block 1/0 Buffer Cache Services: Overview, 1/0 Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-28 Kernel Reference

11

I
'\

bread

bread Kernel Service

Purpose

Syntax

Reads the specified block's data into a buffer.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf .h>

struct buf *bread { dev, blkno}
dev_t dev;
daddr_t blkno;

Parameters
dev Specifies the device containing the block to be read.

blkno Specifies the block to be read.

Description
The bread kernel service assigns a buffer to the given block. If the specified block is
already in the buffer cache, then the block's buffer header is returned. Otherwise, a free
buffer is assigned to the specified block and the block's data is read into the buffer. The
bread service waits for 110 to complete and then returns the buffer header.

The buffer is allocated to the caller and marked as busy.

Managing the Buffer Cache briefly describes how the buffer cache services manage the
block 1/0 buffer cache mechanism.

Execution Environment
The bread kernel service can be called from the process environment only.

Return Value
The bread service returns the address of the selected buffer's header.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The getblk kernel service, iowait kernel service.

Block 1/0 Buffer Cache Services: Overview, 1/0 Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-29

bread a

breada Kernel Service

Purpose

Syntax

Reads in the specified block and then starts 110 on the read-ahead block.

#include <sys/types.h>
#include <sys/errno.h>
#include <Sys/buf .h>

struct buf *breada (dev, blkno, rablkno)
dev_t dev;
daddr _t blkno;
daddr_t rablkno;

Parameters
dev

blkno

rablkno

Description

Specifies the device containing the block to be read.

Specifies the block to be read.

Specifies the read-ahead block to be read.

The breada kernel service assigns a buffer to the given block. If the specified block is
already in the buffer cache, then the bread service is called to:

• Obtain the block

• Return the buffer header.

Otherwise, the getblk service is called to assign a free buffer to the specified block and to
read the block's data into the buffer. The breada service waits for 1/0 to complete and then
returns the buffer header.

1/0 is also started on the specified read-ahead block if the free list is not empty and the block
is not already in the cache. However, the breada service does not wait for 1/0 to complete
on this read-ahead block.

Managing the Buffer Cache summarizes how the getblk, bread, breada, and brelse
services uniquely manage the block 1/0 buffer cache.

Execution Environment
The breada kernel service can be called from the process environment only.

Return Value
The breada service returns the address of the selected buffer's header.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

1-30 Kernel Reference

(

bread a

Related Information
The bread kernel service, iowait kernel service.

The ddstrategy routine.

Block 1/0 Buffer Cache Services: Overview, 1/0 Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-31

brelse

brelse Kernel Service

Purpose

Syntax

Parameter

Frees the specified buffer.

#include <sys/types.h>
#include <sys/errno.h>
#include <Sys/buf .h>

void brelse (bp)
struct buf *bp;

bp Specifies the address of the buf structure to be freed.

Description
The brelse kernel service frees the buffer to which the bp parameter points.

The brelse kernel service awakens any processes waiting for this buffer or for another free
buffer. The buffer is then put on the list of available buffers. The buffer is also marked as not
busy so that it can either be reclaimed or reallocated.

The brelse service has no return values.

Execution Environment
The brelse kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The geteblk kernel service.

The buf structure.

Block 1/0 Buffer Cache Kernel Services: Overview, 110 Kernel Services, The buf Structure in
Kernel Extensions and Device Support Programming Concepts.

1-32 Kernel Reference

I
\

\

(

\

bwrite Kernel Service

. Purpose

Syntax

Parameter

Writes the specified buffer's data.

#Include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

int bwrite {bp)
struct buf * bp;

bwrite

bp Specifies the address of the buffer structure for the buffer to be written.

Description
The bwrite kernel service writes the specified buffer's data. If this is a synchronous request,
the bwrlte service waits for the 1/0 to complete.

The article entitled Using the Buffer Cache write Services briefly describes how the three
buffer cache write routines work.

Return Values
0

Errno global variable

Execution Environment

Indicates a successful operation.

Indicates that an 1/0 error has occurred.

The bwrite kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The brelse kernel service, iowait kernel service.

Block 110 Buffer Cache Services: Overview, 1/0 Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-33

cancel-queue-element

cancel-queue-element Queue Management Routine

Purpose

Syntax

Parameter

Provides a means for performing cleanup of queue element-related resources when a
pending queue element is eliminated from the queue.

#include <sys/types.h>
#include <sys/errno.h>
#include <Sys/deviceq.h>

void cancel (ptt)
struct req_qe *ptr;

ptr Specifies the address of the queue element.

Description
Each device queue can have a cancel-queue-element routine. This routine is optional and
must be specified when the device queue is created with the creatq service.

The cancel-queue-element routine is called by the kernel to clean up resources associated
with a queue element. It is called when a pending queue element is eliminated from the
queue. This occurs when the path is destroyed or when the canclq service is called. The
device manager should unpin any data and detach any cross-memory descriptor.

Any operations started as a result of examining the queue with the peekq service should be
aborted.

The cancel-queue-element routine is also called when a queue is destroyed to get rid of
any pending or active queue elements.

Execution Environment
The cancel-queue-element routine can be called from the process environment only.

Related Information
The creatq kernel service, canclq kernel service, peekq kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-34 Kernel Reference

I

(

"

canclq

canclq Kernel Service

Purpose

Syntax

Parameter

Deletes pending queue elements from a device queue.

#include <sys/types.h>
#include <sys/errno.h>
#include <Sys/deviceq.h>

int canclq (path_id)
cba_id path_id;

path_id Specifies the path identifier.

Description
The canclq kernel service is not part of the base kernel but provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services~

The canclq service is intended for abnormal termination conditions. It allows a process to
discard all pending queue elements on the specified path. The active queue element cannot
be canceled.

Control-type queue elements are posted, and the server's cancel-queue-element queue
management routine is called for each queue element canceled. This allows the server to
abort any preprocessing of the request that the server initiated on a previous peek (using the
peekq service) into the queue. It also allows the server to unpin memory associated with
the request or to detach any cross-memory descriptors as appropriate. For a discussion of
the device queue server and client model, see Understanding Device Queues.

Execution Environment
The canclq kernel service can be called from the process environment only.

Return Value
The canclq service returns the number of canceled queue elements.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The peekq kernel service.

The cancel-queue-element queue management routine.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-35

cfgnadd

cfgnadd Kernel Service

Purpose

Syntax

Parameter

Registers a notification routine to be called when system-configurable variables are
changed.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sysconfig.h>

void cfgnadd (cbp)
struct cfgncb *cbp;

cbp Points to a cfgncb config notification control block.

Description
The cfgnadd kernel service adds a cfgncb control block to the list of cfgncb structures
maintained by the kernel. A cfgncb control block contains the address of a notification
routine (in its cfgncb.func field) to be called when a configurable variable is being changed.

The SYS_SETPARMS sysconfig operation allows a user with sufficient authority to change
the values of configurable system parameters. The cfgnadd service allows kernel routines
and extensions to register the notification routine that is called whenever these configurable
system variables have been changed.

This notification routine is called in a two-pass process. The first pass performs validity
checks on the proposed changes to the system parameters. During the second pass
invocation, the notification routine performs whatever processing is needed to effect the
changes to the parameters. This two-pass procedure ensures that variables used by more
than one kernel extension are correctly handled.

To use the cfgnadd service, the caller must define a cfgncb control block using the
structure found in the <Sys/sysconfig.h> file.

The cfgncb.func notification routine is only called in a process environment.

Execution Environment
The cfgnadd kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The sysconfig subroutine.

The cfgndel kernel service.

The cfgncb configuration notification control block.

Kernel Program/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-36 Kernel Reference

I
I
\

/

\

(

cfgncb Configuration Notification Control Block

Purpose

cfgncb

Contains the address of a notification routine that is invoked each time the sysconfig
subroutine is called with the SYS_SETPARMS command.

Description
The configuration notification control block contains the address of a notification routine.
This structure is intended to be used as a list element in a list of similar control blocks
maintained by the kernel. Each control block has the following definition:

struct cf gncb {
struct cfgncb *cbnext;
struct cfgncb *cbprev;
int (*func)();
} ;

/* next control block on chain*/
/* prev control block on chain*/
/* notification function */

The cfgndel or cfgnadd kernel services can be used to add or delete a cfgncb control
block from the cfgncb list. To use either of these kernel services, the calling routine must
define the cfgncb control block. This definition can be done using the <sys/sysconfig.h>
file.

Notification Routine Calling Syntax
The cfgncb.func notification routine should be declared as follows:

intfunc (cmd, cur, new)

int cmd;

struct var *cur,

struct var *new;

Notification Routine Parameters
cmd Indicates the current operation type. Possible values are CFGV _PREPARE

and CFGV _COMMIT, as defined in the <sys/sysconfig.h> file.

cur

new

Points to a var structure representing the current values of
system-configurable variables.

Points to a var structure representing the new or proposed values of
system-configurable variables.

The cur and new var structures are both in the system address space.

Notification Routine Processing
Every time a SYS_SETPARMS sysconfig command is issued, the sysconfig subroutine
iterates through the kernel's list of cfgncb blocks, invoking each notification routine with a
CFGV _PREPARE command. This call represents the first pass of what is for the notification
routine a two-pass process.

On a CFGV _PREPARE command, the cfgncb.func notification routine should determine if
any values of interest have changed. If any of these values have changed, they should be
checked for validity. If the values are valid, a return code of O should be returned.
Otherwise, a return value indicating the byte offset of the first field in error in the new var
structure should be returned.

Kernel Services 1-37

cfgncb

If all registered notification routines return with a return code of 0, then no value errors have
been detected during validity checking. In this case, the sysconfig subroutine issues its
second pass call to the cfgncb.func routine, sending the same parameters, except that the
cmdparameter contains a value of CFGV_COMMIT. This indicates that the new values are
to go into effect at the earliest opportunity.

An example of notification routine processing might be the following. Suppose the user
wishes to increase the size of the block 1/0 buffer cache. On a CFGV _PREPARE command,
the block 1/0 notification routine verifies that the proposed new size for the cache is legal.
On a CFGV_COMMIT command, the notification routine then makes the additional buffers
available to the user (by chaining more buffers onto the existing list of buffers).

Related Information
The cfgndel kernel service, cfgriadd kernel service.

The SYS_SETPARMS sysconfig Operation.

Kernel Program/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-38 Kernel Reference

/:
I
\

(

cfgndel

cfgndel Kernel Service

Purpose

Syntax

Parameter

Removes a notification routine for receiving broadcasts of changes to system-configurable
variables.

#include <Sys/types.h>
#include <sys/errno.h>
#include <sys/sysconfig.h>

void cfgndel (cbp)

struct cfgncb; *cbp

cbp Points to a cfgncb configuration notification control block.

Description
The cfgndel kernel service removes a previously registered cfgncb control block from the
list of cfgncb structures maintained by the kernel. This service thus allows kernel routines
and extensions to remove their notification routines from the list of those called when a
configurable system variable has been changed.

The address of the cfgncb structure passed to the cfgndel kernel service must be the same
address used to call the cfgnadd service when the structure was originally added to the list.
The sys/sysconfig.h file contains a definition of the cfgncb structure.

The cfgndel service has no return values.

Execution Environment
The cfgndel kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The sysconfig subroutine.

The cfgnadd kernel service.

The cfgncb configuration notification control block.

Kernel Program/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-39

check-parameters

check-parameters Queue Management Routine

Purpose

Syntax

Provides a means for performing device-specific validity checking for parameters included in
request queue elements.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int check (type, ptr, length)
int type;
struct req_ qe * ptr;
int length;

Parameters
type Specifies the type of call. The following values are used when the kernel

calls the check-parameters routine:

ptr

length

Description

CHECK_PARMS + SEND_CMD

CHECK_PARMS + START_IO

CHECK_PARMS + GEN_PURPOSE

Specifies the address of the queue element.

Specifies the length of the queue element.

Send command queue
element.

Start 1/0 CCB queue element.

General purpose queue
element.

,'

\

Each device queue can have a check-parameters routine. This routine is optional and must /
be specified when the device queue is created with the creatq service. The enque service \"
calls the check-parameters routine before a request queue element is put on the device
queue. The kernel uses the routine's return value to determine whether to put the queue
element on the device queue or to abort the request.

The kernel does not call the check-parameters routine when an acknowledgment or control
queue element is sent. Therefore, the check-parameters routine is called only while
executing within a process.

The address of the actual queue element is passed to this routine. In the
check-parameters routine, take care to alter only the fields that were meant to be altered.

This routine typically does not need to be serialized with the rest of the server's routines,
since it is just checking the parameters in the queue element.

The check-parameters routine can check the request before the request's queue element is
placed on the device queue. The advantage of using this routine is that you can filter out
unacceptable commands before they are put on the device queue.

1-40 Kernel Reference

check-parameters

The routine looks at the queue element and returns RC_GOOD if the request is acceptable.
If the return code is not RC_GOOD, the kernel does not place the queue element in a device
queue.

Execution Environment
The check-parameters routine executes under the process environment of the requester.
Therefore, access to data areas must be handled as if the routine were in an interrupt
handler environment. There is, however, no requirement to pin the code and data as in a
normal interrupt handler environment.

Return Values
RC_GOOD Indicates successful completion.

All other return values are device specific.

Related Information
The creatq kernel service, enque kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-41

clrbuf

clrbuf Kernel Service

Purpose

Syntax

Parameter

Sets the memory for the specified buffer structure's buffer to all zeros.

#include <sys/types.h>
#include <sys/errno.h>

void clrbuf (bp)
struct buf * bp;

bp Specifies the address of the buffer structure for the buffer to be cleared.

Description
The clrbuf kernel service clears the buffer associated with the specified buffer structure. The
clrbuf service does this by setting to zeros the memory for the specified buffer structure's
buffer.

The clrbuf service has no return values.

Execution Environment
The clrb~f kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Block 1/0 Buffer Cache Services: Overview, 1/0 Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-42 Kernel Reference

(

(

clrjmpx

clrjmpx Kernel Service

Purpose

Syntax

Parameter

Removes a saved context by popping the most recently saved jump buffer from the list of
saved contexts.

#include <sys/types.h>
#include <sys/errno.h>

void clrjmpx Uump_buffer)
label_t *jump_buffer;

jump_buffer Specifies the address of the caller-supplied jump buffer that was specified
on the call to the setjmpx service.

Description
The clrjmpx kernel service pops the most recent context saved by a call to the setjmpx
kernel service. Since each longjmpx call automatically pops the jump buffer for the context
to be resumed, the clrjmpx kernel service should be called only following:

• A normal return from the setjmpx service when the saved context is no longer needed.

• Any code to be run that requires the saved context to be correct.

The clrjmpx service takes the address of the jump buffer passed in the corresponding the
setjmpx service.

The clrjmpx service has no return values.

Execution Environment
The clrjmpx kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The setjmpx kernel service, longjmpx kernel service.

Exception Processing, Implementing Exception Handlers, Process and Exception
Management Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

Kernel Services 1-43

copyin

copyin Kernel Service

Purpose

Syntax

Copies data between user and kernel memory.

#include <sys/types.h>
#include <sys/errno.h>

int copyin (kaddr, uaddr, count)
char*uaddr,
char * kaddr,
int count;

Parameters
kaddr Specifies the address of kernel data.

uaddr Specifies the address of user data.

count Specifies the number of bytes to copy.

Description
The copyin kernel service copies the specified number of bytes from user memory to kernel
memory. This service is provided so that system calls and device driver top halves can
safely access user data. The copyin service ensures that the user has the appropriate
authority to access the data. It also provides recovery from paging 1/0 errors that would
otherwise cause the system to crash.

The copyin service should be called only while executing in kernel mode in the user
process.

Execution Environment
The copyin kernel service can be called from the process environment only.

Return Values
0

EIO

ENOS PC

EFAULT

Indicates a successful operation.

Indicates that a permanent 1/0 error occurred while referencing data.

Indicates insufficient file system or paging space.

Indicates that the user has insufficient authority to access the data or the
address specified in the uaddr parameter is invalid.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The copyout kernel service, copyinstr kernel service.

Accessing User-Mode Data While in Kernel Mode, Memory Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-44 Kernel Reference

I

i\ij

(
\

I

~

copyinstr

copyinstr Kernel Service

Purpose

Syntax

Copies a character string (including the terminating NULL character) from user to kernel
space.

#include <Sys/types.h>
#include <sys/errno.h>

int copyinstr (from, to, max, actua~
caddt_t from;
caddt_t to;
uint max;
uint actual;

Parameters
from Specifies the address of the character string to copy.

to

max

actual

Description

Specifies the address to which the character string is to be copied.

Specifies the number of characters to be copied.

A parameter, passed by reference, that is updated by the copyinstr service
with the actual number of characters copied.

The copyinstr kernel service permits a user to copy character data from one location to
another. The source location must be in user space or can be in kernel space if the caller is
a kernel process. The destination is in kernel space.

Execution Environment
The copyinstr kernel service can be called from the process environment only.

Return Values
0

E2BIG

EIO

ENOSPC

EFAULT

Indicates a successful operation.

Indicates insufficient space to complete the copy.

Indicates that a permanent 1/0 error occurred while referencing data.

Indicates insufficient file system or paging space.

Indicates that the user has insufficient authority to access the data or the
address specified in the uaddr parameter is invalid.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Accessing User-Mode Data While in Kernel Mode, Memory Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-45

copyout

copyout Kernel Service

Purpose

Syntax

Copies data between user and kernel memory.

#include <Sys/types.h>
#include <Sys/errno.h>

int copyout (kaddr, uaddr, coun6
char*uaddr;
char*kaddr;
int count;

Parameters
uaddr Specifies the address of user data.

Specifies the address of kernel data. kaddr

count Specifies the number of bytes to copy.

Description
The copyout service copies the specified number of bytes from kernel memory to user
memory. It is provided so that system calls and device driver top halves can safely access
user data. The copyout service ensures that the user has the appropriate authority to
access the data. This service also provides recovery from paging 1/0 errors that would
otherwise cause the system to crash.

The copyout service should be called only while executing in kernel mode in the user
process.

Execution Environment
The copyout kernel service can be called from the process environment only.

Return Values
0

EIO

ENOS PC

EFAULT

Indicates a successful operation.

Indicates that a permanent 1/0 error occurred while referencing data.

Indicates insufficient file system or paging space.

Indicates that the user has insufficient authority to access the data or that
the address specified in the uaddr parameter is invalid.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The copyin kernel service, copyinstr kernel service.

Accessing User-Mode Data While in Kernel Mode, Memory Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-46 Kernel Reference

I
i
~

\

creatd

creatd Kernel Service

Purpose

Syntax

Assigns a global name to a device queue.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

cba_id creatd (iodn, queue_id, attach, detach, ptr, count, dev_parms)
ushort iodn;
cba_id queue_id;
int (*attach)();
int (*detach)();
caddr_t ptr,
int count;
caddr_t dev_parms;

Parameters
iodn Specifies the predetermined global name for the device queue. A value of

DEFIND_PRIVATE indicates that no global name is required and the
queryd service cannot be used to query the device identifier.

queue_id

attach

detach

ptr

count

dev_parms

Specifies the queue identifier of the device queue.

Specifies the function pointer of the server's attach-device routine. The
attchq service calls this routine when a new path to the device queue is
created. This routine can have a NULL value if there is no device
queue-specific processing to perform.

Specifies the function pointer of the server's detach-device routine. The
detchq service calls this routine when a path to the device queue is
invalidated. This routine can have a NULL value if there is no device
queue-specific processing to perform.

Specifies the address of the device-dependent information. The kernel
enforces no format on this structure. The only purpose of this parameter is
so that the qryds service can return a copy of this data to its caller. A NULL
value indicates that there is no device-dependent information. If the count
parameter is NULL, then this parameter must be O (zero)

Specifies the length of the device-dependent information. If the ptr
parameter is NULL, then the count parameter must be 0.

Parameter passed to the device driver's device management routines.

Kernel Services 1-47

creatd

Description
The creatd kernel service is not part of the base kernel but is provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before loading any kernel extensions that reference these services.

The creatd service provides a means of associating a predefined global name (specified by
the iodn parameter) with a device queue. The queue identifier and device identifier cannot
be used for this purpose because their values cannot be predetermined. Additionally, device
queue functions such as the automatic sending of a detach queue element are only
performed if the requestor specified a device identifier when creating the path to the device
queue.

The returned device identifier can be used to query information about the device using the
qryds service. It can also be used to create a path to the associated device queue.

Note: The device being defined is associated with the process that is the server of the
queue specified by the queue_id parameter.

The device queue host and client model is described in Understanding Device Queues.

Execution Environment
The creatd kernel service can be called from the process environment only.

Return Values
Upon successful completion, the creatd service returns the new device identifier. This
device identifier can be used when creating a path to the device queue. A value of
NULL_CBA is returned in the following error cases:

• The value in the iodn parameter is already bound to a device queue.

• The queue identifier specified by the queue_id parameter is invalid.

• A control block could not be allocated.

• An error occurred during the cross-memory attach operation.

• The process was in the midst of termination.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The queryd kernel service, attchq kernel service, detchq kernel service, qryds kernel
service.

The attach-device queue management routine, detach-device queue management routine.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-48 Kernel Reference

I
(

'

creatp

creatp Kernel Service

Purpose

Syntax

Creates a new kernel process.

#include <sys/types.h>
#include <Sys/errno.h>

pid_t creatp()

Description
The creatp kernel service creates a kernel process. It also allocates and initializes a
process block for the new process. Initialization involves these three tasks:

• Assigning the kernel process an identifier.

• Setting the process state to idle.

• Initializing its parent, child, and sibling relationships.

Kernel Process Creation, Execution, and Termination has a more detailed discussion of how
the creatp kernel service creates and initializes kernel processes.

The process calling the creatp service must subsequently call the initp kernel service to
complete the process initialization. The initp service also makes the newly created process
runnable.

Execution Environment
The creatp kernel service can be called from the process environment only.

Return Values
Process Identifier · Indicates a successful operation.

-1 Indicates an error.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The initp kernel service.

Introduction to Kernel Processes, Process and Exception Management Kernel Services in
Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-49

creatq

creatq Kernel Service

Purpose

Syntax

Creates a device queue.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <Sys/deviceq.h>

cba_id creatq (server_id, worst_prty, max_path, max_qe, check, cance~
pid_t server_id;
uchar worst_prty;
uint max_path;
uint max_qe;
int (*check)();
void (* cance~();

Parameters
server_id Specifies the process identifier (PID) of the process that acts as server for

this device queue.

worst_prty

max_path

max_qe

check

cancel

Description

Specifies the least favored queue element priority. The range of valid
values is from QE_BEST_PRTY to QE_WORST_PRTY.

Specifies the maximum number of paths the device queue supports. The
value must be in the range from 0 to MAX_QUEUE_PATH. A value of 1
indicates that only one process at a time can attach to the device queue. A
value of O implies that there is no limit. Typically, this parameter is 1 for
serially reusable devices and O otherwise, although other values can be
specified.

Specifies the maximum number of queue elements the device queue
supports. This is the largest number of queue elements that can be waiting
for service at any point in time. The value must be in the range from O to
MAX_QE_DEPTH.

Specifies the function pointer to the server's check-parameters routine.
This routine is called before a request queue element is placed on the
device queue. A NULL value indicates that the server does not have a
check-parameters routine.

Specifies the function pointer to the server's cancel-queue-element
routine. This routine is called before a queue element is canceled. A NULL
value indicates that the server does not have a cancel routine.

The creatq kernel service is not part of the base kernel but is provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The creatq service can be used by any process to create a device queue. The new device
queue can be served by the creating process or another process.

1-50 Kernel Reference

creatq

Each device queue served by a process has an event bit associated with it. This event bit is
used to notify the process that the device queue is not empty. A unique event bit is assigned
when a device queue served by a process is created. A queue's event bit cannot be used
for any other purpose. The e_post service provides a description of event bit allocation.
The event bit for a device queue can be determined by calling the queryi service.

There are two ways to determine if a device queue is not empty:

• The e_wait service can be called with one or more event bits, thus allowing a process to
wait for input from one of multiple device queues.

• The waitq service can be called with a queue identifier.

Execution Environment
The creatq kernel service can be called from the process environment only.

Return Values
Upon successful completion, the creatq service returns the device queue's identifier. The
queue identifier is used as input to other services, such as the deque kernel service, to
identify the device queue. If the device queue cannot be successfully created, a value of
NULL_CBA is returned rather than the queue identifier.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The e_post kernel service, e_wait kernel service, queryi kernel service, waitq kernel
service.

The check-parameters queue management routine, cancel-queue-element queue
management routine.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-51

curtime

curtime Kernel Service

Purpose

Syntax

Parameter

Reads the current time into a time structure.

#include <Sys/types.h>
#include <sys/errno.h>
#include <sys/time.h>

void curtime {timestruct)
struct timestruc_t *timestruct;

timestruct Points to a timestruc_t time structure defined in the <sys/time.h> file. The
curtime kernel service updates the fields in this structure with the current
time.

Description
The curtime kernel service reads the current time into a time structure defined in the
<sys/time.h> file. This service updates the tv_sec and tv_nsec fields in the time structure,
pointed to by the timestruct parameter, from the hardware real-time clock. The kernel also
maintains and updates a memory-mapped time tod structure. This structure is updated with
each clock tick.

The kernel also maintains two other in-memory time values: the lbolt value and time value.
The three in-memory time values that the kernel maintains (the tod value, lbolt value, and
time value) are available to kernel extensions. The lbolt in-memory time value is the
number of timer ticks that have occurred since the system was booted. This value is updated
once per timer tick. The time in-memory time value is the number of seconds since Epoch.
The kernel updates it once per second.

Note: POSIX 1003.1 defines "seconds since Epoch" as a "value interpreted as the number
of seconds between a specified time and the Epoch". ltfurther specifies that a
"Coordinated Universal Time name specified in terms of seconds (tm_sec), minutes
(tm_min), hours (tm_hou(J, and days since January 1 of the year (tm_yday), and
calendar year minus 1900 (tm_yea(J is related to a time represented as seconds
since the Epoch according to the following expression: tm_sec + tm_min * 60
tm_houl"'3600 + tm_yday* 86400 + (tm_year- 70) * 31536000 ((tm_year- 69) I 4) *
86400 if the year is greater than or equal to 1970, otherwise it is undefined."

The curtime kernel service does not page-fault if a pinned stack and input time structure are
used. Also, accessing the lbolt, time, and tod in-memory time values does not cause a
page fault since they are in pinned memory.

The curtime kernel service has no return values.

1-52 Kernel Reference

curtime

Execution Environment
The curtime kernel service can be called from either the process or interrupt environment.

The tod, time, and lbolt memory-mapped time values can also be read from the process or
interrupt handler environment. The timestruct parameter and the stack must be pinned when
the curtime service is called in an interrupt handler environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Timer and Time-of-Day Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

Kernel Services 1-53

d_clear

d_clear Kernel Service

Purpose

Syntax

Parameter

Frees a Direct Memory Access (OMA) channel.

#include <sys/types.h>
#include <sys/errno.h>
#include <Sys/dma.h>

void d_clear (channel_id)
int channe/_id;

channel_id OMA channel identifier returned by the d_init service.

Description
The d_clear kernel service cleans up a OMA channel. Cleaning up the DMA channel entails:

1. Marking the DMA channel specified by the channel_id parameter as free.

2. Resetting the DMA channel.

The d_clear service is typically called by a device driver in its close routine. It has no return
values.

Warning: The d_clear service, as with all DMA services, should not be called unless the
OMA channel has been successfully allocated with the d_init service. The d_complete
service must have been called to clean up after any DMA transfers. Otherwise, data will be
lost and system integrity compromised.

Execution Environment
The d_clear kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The d_complete kernel service, d_init kernel service.

Direct Memory Access (DMA), 1/0 Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

1-54 Kernel Reference

(

d_complete

d_complete Kernel Service

Purpose

Syntax

Cleans up after a Direct Memory Access (OMA) transfer.

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/dma.h>

#include <sys/xmem.h>

int d_complete (channel_id, flags, baddr, count, dp, daddt}

int channel_id;

int flags;

caddr_t baddr;

size_t count;

struct xmem * dp;

caddr_t daddr;

Parameters
channel_id Specifies the OMA channel identifier returned by the d_init service.

Describes the OMA transfer. The dma.h header file describes these flags.

Designates the address of the memory buffer.

flags

baddr

count

dp

daddr

Description

Specifies the length of the transfer in bytes.

Specifies the address of the cross-memory descriptor.

Designates the address used to program the OMA master. A value of NULL
is specified for OMA slaves.

The d_complete kernel service completes the processing of a OMA transfer. It also
indicates any OMA error detected by the system hardware. The d_complete service must
be called after each OMA transfer.

The d_complete service performs machine-dependent processing, which entails:

• Flushing system OMA buffers.

• Making the OMA buffer accessible to the processor.

Note: When calling the d_master service several times for one or more of the same pages
of memory, the corresponding number of d_complete calls must be made to
successfully unhide the page or pages involved in the OMA transfers. Pages are not
hidden from the processor during the OMA mapping if the DMA_WRITE_ONLY flag
is specified on the call to the d_master service.

OMA Transfer Modes and Block OMA Transfers further describe OMA transfers.

Kernel Services 1-55

d_complete

Execution Environment
The d_complete kernel service can be called from either the process or interrupt
environment.

Return Values
DMA_SUCC Indicates a successful completion.

DMA_INVALID Indicates an operation that is not valid. A load or store that was not valid
was performed to the 1/0 bus.

DMA_LIMIT Indicates a limit check. A load or store to the 110 bus occurred that was not
sufficiently authorized to access the 110 bus address.

DMA_NO_RESPONSE
Indicates no response. No device responded to the 1/0 bus access.

OMA_ CONFLICT
Indicates an address conflict. A daddr parameter was specified to the
d_master service for a system memory transfer, where this transfer
conflicts with the bus memory address of an 1/0 bus device.

OMA_ AUTHORITY
Indicates an authority error. A protection exception occurred while accessing
an 1/0 bus memory address.

DMA_PAGE_FAULT
Indicates a page fault. A reference was made to a page not currently
located in system memory.

DMA_BAD_ADDR
Indicates an address that is not valid. An invalid or unsupported bus
address was used. An invalid daddr parameter was specified to the
d_master service.

DMA_CHECK Indicates a channel check. A channel check was generated during the bus
cycle. This typically occurs when a device detects a data parity error.

DMA_DATA Indicates a data parity error. The system detected a data parity error.

OMA_ ADDRESS
Indicates an address parity error. The system detected an address parity
error.

DMA_EXTRA Indicates an extra request. This typically occurs when the count parameter
was specified incorrectly to the d_slave service.

DMA_SYSTEM Indicates a system error. The system detected an internal error in system
hardware. This is typically a parity error on an internal bus or register.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The d_master kernel service, d_slave kernel service, d_init kernel service.

Direct Memory Access (OMA), 1/0 Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

1-56 Kernel Reference

I
I
~

I

\

(

(

d_init

d_init Kernel Service

Purpose

Syntax

Initializes a Direct Memory Access (OMA) channel.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dma.h>
#include <sys/adspace.h>

int d_init (channel, flags, bus_id)
int channel;
int flags;
vmhandle_t bus_id;

Parameters
channel Specifies the OMA channel number.

flags

bus_id

Description

Specifies the flags that describe how the OMA channel is used. These flags
are described in the <sys/dma.h> file.

Identifies the 1/0 bus that the channel is to be allocated on. This parameter
is normally passed to the device driver in the Device Dependent Structure
(DDS) at driver initialization time.

The d_init kernel service initializes a OMA channel. A device driver must call this service
before using the OMA channel. Initializing the OMA channel consists of:

• Designating the OMA channel specified by the channel parameter as allocated.

• Personalizing the OMA channel as specified by the flags parameter.

The d_init service is typically called by a device driver in its open routine when the device is
not already in the opened state. A device driver must call the d_init service before using the
OMA channel.

Execution Environment
The d_init kernel service can be called from either the process or interrupt environment.

Return Values
channel_id

DMA_FAIL

Indicates a successful operation. This value is used as an input parameter
to the other OMA routines.

Indicates that the OMA channel is not available because it is currently
allocated.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Kernel Services 1-57

d_init

Related Information
The d_clear kernel service.

Direct Memory Access (OMA), 1/0 Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

1-58 Kernel Reference

/
I
"Ii

I

\

d_mask

d_mask Kernel Service

Purpose

Syntax

Parameter

Disables a Direct Memory Access (OMA) channel.

#include <Sys/types.h>
#include <sys/errno.h>
#include <Sys/dma.h>

void d_mask (channe/_id)
int channe/_id;

channel id OMA channel identifier returned by the d_init service.

Description
The d_mask kernel service disables the OMA channel specified by the channe/_id
parameter.

The d_mask kernel service is typically called by a device driver deallocating the resources
associated with its device. Some devices require it to be used during normal device
operation to control OMA requests and avoid spurious OMA operations.

The d_mask service has no return values.

Note: The d_mask service, like all OMA services, should not be called unless the OMA
channel has been allocated with the d_init service.

Execution Environment
The d_mask kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The d_init kernel service, d_unmask kernel service.

Direct Memory Access (OMA), 1/0 Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

Kernel Services 1-59

d_master

d_master Kernel Service

Purpose

Syntax

Initializes a block-mode Direct Memory Access (OMA) transfer for a OMA master.

#include <Sys/types.h>
#include <sys/errno.h>
#include <Sys/dma.h>
#include <sys/xmem.h>

void d_master (channe/_id, flags, baddr, count, dp, daddt}
int channe/_id;
int flags;
caddr_t baddr;
size_t count;
struct xmem * dp;
caddr_t daddr;

Parameters
channe/_id Specifies the OMA channel identifier returned by the d_init service.

Specifies the flags that control the DMA transfer. These flags are described
in the <sys/dma.h> file.

flags

baddr

count

dp

daddr

Designates the address of the memory buffer.

Indicates the length of the transfer in bytes.

Specifies the address of the cross-memory descriptor.

Specifies the address used to program the OMA master.

Description

1-60

The d_master kernel service sets up the OMA channel specified by the channe/_id
parameter to perform a block-mode OMA transfer for a OMA master. The flags parameter
controls the operation of the d_master service. Types of OMA Devices describes OMA (
slaves and masters.

The d_master service does not initiate the OMA transfer. The device initiates all OMA
memory references. The d_master service makes the specified system memory buffer
available to the OMA device. The d_unmask service may need to be called before the OMA
transfer is initiated. The d_master service does not enable or disable the specified OMA
channel.

Kernel Reference

d_master

The d_master service supports three different buffer locations:

1. A transfer between a buffer in user memory and the device. With this type of transfer, the
dp parameter specifies the cross-memory descriptor used with the xmattach service to
attach to the user buffer. The baddr and count parameters must be the same values as
the uaddr and count parameters specified to the xmattach service.

2. A transfer between a global kernel memory buffer and the device. With this type of
transfer, the dp->aspace_id variable has an XMEM_GLOBAL value.

3. A transfer between 1/0 bus memory and the device. The BUS_DMA flag distinguishes
this type of transfer from the other two types. The dp parameter is igno.red with this type
of transfer and should be set to NULL.

The OMA transfer starts at the daddr parameter bus address. The device driver should
allocate only a bus address in the window associated with its OMA channel. The size and
location of the window are assigned to the device during the configuration process.

The d_master service performs any required machine-dependent processing, including the
following tasks:

• Managing processor memory cache

• Updating the referenced and changed bits of memory pages involved in the transfer

• Making the OMA buffer in memory inaccessible to the processor.

If the DMA_WRITE_ONLY flag is set in the flags parameter, the pages involved in the OMA
transfer can be read by the device but cannot be written. In addition, the pages involved in
the transfer are not hidden from the processor and remain accessible while the pages are a
source for OMA.

If the DMA_WRITE_ONLY flag is not set, the pages mapped for the OMA transfer are
hidden from the processor and remain inaccessible to the processor until the corresponding
d_complete service has been issued once the pages are no longer required for OMA
processing.

Note: When calling the d_master service several times for one or more of the same pages
of memory, the corresponding number of d_complete calls must be made to
successfully unhide the page or pages involved in the OMA transfers. Pages are not
hidden from the processor during the OMA mapping if the DMA_WRITE_ONLY flag
is specified on the call to the d_master service.

Note: The memory buffer must remain pinned once the d_master service is called until the
OMA transfer is completed and the d_complete service is called.

Note: The device driver must not access the buffer once the d_master service is called
until the OMA transfer is completed and the d_complete service is called.

Note: The d_master service, as with all OMA services, should not be called unless the
OMA channel has been allocated with the d_init service.

The d_master service has no return values.

Execution Environment
The d_master kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Kernel Services 1-61

d_master

Related Information
The d_complete kernel service, d_init kernel service, d_unmask kernel service, xmattach
kernel service.

Direct Memory Access (OMA), 1/0 Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

1-62 Kernel Reference

(

I

"

(

d_move

d_move Kernel Service

Purpose

Syntax

Provides consistent access to system memory that is accessed asynchronously by a device
and by the processor on a RISC System/6000.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dma.h>

int d_move (channel_id, flags, baddr, count, dp, daddt}
int channel_id;
int flags;
void * baddr;
size_t count;
struct xmem * dp;
void * daddr;

Parameters
channel_id Specifies the DMA channel ID returned by the d_init service.

flags

baddr

count

dp

daddr

Description

Specifies the flags that designate the direction of the move. The flags
parameter should be set to O (zero) if the move is to be a write into system
memory shared by a bus master device. The flags parameter should be set
to DMA_READ if the move is to be a read from system memory shared by a
bus master device. These flag values are defined in the <sys/dma.h> file.

Specifies the address of the nonshared buffer. This buffer is either the
source buffer for a move to the shared buffer or the destination buffer for a
move from the shared buffer. This buffer area must have an associated
cross-memory descriptor attached, which is specified by the dp parameter.

Specifies the length of the transfer in bytes.

Specifies the address of the cross-memory descriptor associated with the
buffer that is not shared by a device. This buffer is the source buffer for a
move to the shared buffer and is the destination buffer for a move from the
shared buffer.

Specifies the address of the system memory buffer that is shared with the
bus master device. A bus address region containing this address (which
consists of the address specified by the daddr parameter plus at least the
number of bytes specified by the count parameter) must have been mapped
for OMA by using the d_master service.

Device handlers can use the d_move kernel service to access a data area in system
memory that is also being accessed by a OMA master. The d_move service uses the same
1/0 controller data buffers that the OMA master does when accessing data from the shared
data area in system memory. Using the same buffer keeps the processor data accesses
and device data access consistent. On the RISC System/6000 platform, this is necessary
since the 1/0 controller provides buffer caching of data accessed by bus master devices.

Kernel Services 1-63

d_move

A cross-memory descriptor, obtained by using the xmattach service, and a buffer address
must be provided for the nonshared buffer involved in the data transfer. The d_move
service moves the data from the nonshared buffer to the shared buffer when the flags
parameter is set to 0 (zero). A move of the data from the shared buffer to the nonshared
buffer is effected if the flags parameter is specified with a value of DMA_READ. Once the
d_move service has returned, a call to the d_complete service with the specified
channeUd parameter ensures that the d_move service has successfully moved the data.

Execution Environment
The d_move kernel service can be called from either the process or interrupt environment.

Return Values
XMEM_SUCC Indicates successful completion.

XMEM_FAIL Indicates one of these six errors:

• The caller does not have appropriate access authority for the
nonshared buffer.

• The nonshared buffer is located in an address range that is not valid.

• The memory region containing the nonshared buffer has been deleted.

• The cross-memory descriptor is not valid.

• A paging 1/0 error occurred while accessing the nonshared buffer.

• An error can also occur when the d_move kernel service executes on
an interrupt level if the nonshared buffer is not in memory.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

The d_move kernel service is available only on the RISC System/6000 product platform.

Related Information

1_-64

The d_init kernel service, d_complete kernel service, d_master kernel service, xmattach
kernel service.

Direct Memory Access (OMA), 1/0 Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

Kernel Reference

(

d slave

d_slave Kernel Service

Purpose

Syntax

Initializes a block-mode Direct Memory Access (OMA) transfer for a OMA slave.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/dma.h>
#include <sys/xmem.h>

void d_slave (channel_id, flags, baddr, count, dp)
int channel_id;
int flags;
caddr _t baddr,
size_t count;
struct xmem * dp;

Parameters
channel_id Specifies the OMA channel identifier returned by the d_init service.

Control the OMA transfer. The <Sys/dma.h> file contains valid values for
these flags.

flags

baddr

count

dp

Description

Designates the address of the memory buffer.

Specifies the length of the transfer in bytes.

Designates the address of the cross-memory descriptor.

The d_slave kernel service sets up the OMA channel specified by the channel_id parameter
to perform a block-mode OMA transfer for a OMA slave. The flags parameter controls the
operation of the d_slave service. Types of OMA Devices describes DMA slaves and
masters.

The d_slave service does not initiate the OMA transfer. The device initiates all DMA memory
references. The d_slave service sets up the system address-generation hardware to
indicate the specified buffer.

The d_slave service supports three different buffer locations:

1. A transfer between a buffer in user memory and the device. With this type of transfer, the
dp parameter specifies the cross memory descriptor used with the xmattach service to
attach to the kernel buffer. The baddr and count parameters must be the same values as
the uaddr and count parameters specified to the xmattach service.

2. A transfer between a global kernel memory buffer and the device. With this type of
transfer, the dp->aspace_id variable has an XMEM_GLOBAL value.

3. A transfer between 1/0 bus memory and the device. The BUS_DMA flag distinguishes
this type of transfer from the other two types. The dp parameter is ignored with this type
of transfer and should be set to NULL.

Kernel Services 1-65

d_slave

The d_unmask and d_mask services typically do not need to be called for the DMA slave
transfers. The DMA channel is automatically enabled by the d_slave service and
automatically disabled by the hardware when the last byte specified by the count parameter
is transferred.

The d_slave service performs machine-dependent processing, including the following tasks:

• Flushing the processor cache

• Updating the referenced and changed bits of memory pages involved in the transfer

• Making the buffer inaccessible to the processor.

Notes:

1. The memory buffer must remain pinned from the time the d_slave service is
called until the DMA transfer is completed and the d_complete service is called.

A
11

~

2. The device driver or device handler must not access the buffer once the d_slave
service is called until the DMA transfer is completed and the d_complete service (
is called.

3. The d_slave service, as with all DMA services, should not be called unless the
DMA channel has been allocated with the d_init service.

The d_slave service has no return values.

Execution Environment
The d_slave kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information

1~66

The d_complete kernel service, d_init kernel service, xmattach kernel service,
d_unmask kernel service, d_mask kernel service.

Direct Memory Access (DMA), 1/0 Kernel Services in Kernel Extensions and Device Support
Programming Concepts. (

Kernel Reference

d unmask

d_unmask Kernel Service

Purpose

Syntax

Parameter

Enables a Direct Memory Access (DMA) channel.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dma.h>

void d_unmask (channe/_id)
int channe/_id

channe/_id The OMA channel identifier returned by the d_init service.

Description
The d_unmask service enables the OMA channel specified by the channe/_id parameter. A
OMA channel must be enabled before a OMA transfer can occur.

The d_unmask kernel service is typically called by a device driver when allocating the
resources associated with its device. Some devices require it to be used during normal
device operation.

The d_unmask service has no return values.

Note: The d_unmask service, as with all OMA services, should not be called unless the
OMA channel has been successfully allocated with the d_init service.

Execution Environment
The d_unmask kernel service can be called from either the process or interrupt
environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The d_complete kernel service, d_init kernel service, d_mask kernel service.

Direct Memory Access (OMA), 1/0 Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

Kernel Services 1-(,7

del_arp_iftype

del_arp_iftype Kernel Service

Purpose

Syntax

Deletes an interface type from the Network ARP Switch Table Interface (NASTI).

#include <sys/types.h>
#include <sys/errno.h>
#include <net/if .h>

int del_arp_iftype(it_type, a~
u_short it_type, af,

Parameters
it_ type

af

Identifies the type of a network interface (for example, Ethernet or Token
Ring). Interface types are defined in the <sys/devinfo.h> file.

Specifies the address family of the ARP routines being deleted.

Description

Example

The del_arp_iftype kernel service deletes an interface type from the Network ARP Switch
Table Interface (NASTI).

1. The del_arp_iftype kernel service is invoked as follows:

del_arp_iftype(DD_EN, AF _INET);

Return Values
0

ENOENT

Indicates that the interface was successfully deleted.

Indicates that the network type was not found for the specified address
family.

Execution Environment
The del_arp_iftype kernel service can be called from either the process or interrupt
environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-68 Kernel Reference

/
\

(

del_af _domain

del_domain_af Kernel Service

Purpose

Syntax

Parameter

Deletes an address family from the Address Family domain switch table.

#include <sys/types.h>
#include <Sys/errno.h>
#include <Sys/domain.h>

int del_domain_af (domain)
struct domain *domain;

domain Specifies the address family.

Description
The del_domain_af kernel service deletes the address family specified by the domain
parameter from the Address Family domain switch table.

Execution Environment
The del_domain_af kernel service can be called from either the process or interrupt
environment.

Return Value
EINVAL Indicates that the specified address is not found in the Address Family

domain switch table.

Example
1. To delete an address family from the Address Family domain switch table, invoke the

del_domain_af kernel service as follows:

del_domain_af(&inetdomain);

In this example, the family to be deleted is inetdomain.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The add_domain_af kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-69

del_input_type

del_input_type Kernel Service

Purpose

Syntax

Parameter

Deletes an input type from the Network Input table.

#include <Sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

int del_input_type (type)
u_short type;

type Specifies which type of protocol the packet contains. This parameter is a
field in a packet.

Description
The del_input_type kernel service deletes an input type from the Network Input table to
disable the reception of the specified packet type.

Execution Environment
The del_input_type kernel service can be called from either the process or interrupt
environment.

Return Values

Examples

0 Indicates that the type was successfully deleted.

ENOENT Indicates that the del_input_type service could not find the type in the
Network Input table.

1. To delete an input type from the Network Input table, invoke the del_input_type kernel
service as follows:

del_input_type(ETHERTYPE_EP);

In this example, ETHERTYPE_IP specifies that Ethernet IP packets should no longer be
processed.

2. To delete an input type from the Network Input table, invoke the del_input_type kernel
service as follows:

del_input_type(ETHERTYPE_ARP);

In this example, ETHERTYPE_ARP specifies that Ethernet ARP packets should no longer
be processed.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The add_input_type kernel service, find_input_type kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-70 Kernel Reference

(

(
~

del_netisr

del_netisr Kernel Service

Purpose

Syntax

Parameter

Deletes a network software interrupt service routine from the Network Interrupt table.

#include <Sys/types.h>
#include <sys/errno.h>
#include <net/netisr.h>

int del_netisr (soft_intr_leve{J
u_short soft_intr_level;

soft_intr_level Specifies the software interrupt service to delete. The value of
soft_intr_level should be greater than or equal to 0 (zero) and less
than a value of NETISR_MAX.

Description
The del_netisr kernel service deletes the network software interrupt service routine
specified by the soft_intr_level parameter from the Network Software Interrupt table.

Execution Environment
The del_netisr kernel service can be called from either the process or interrupt
environment.

Return Values
0 Indicates that the software interrupt service was successfully

deleted.

Example

ENO ENT Indicates that the software interrupt service was not found in the
Network Software Interrupt table.

1. To delete a software interrupt service from the Network Software Interrupt table, invoke
the kernel service as follows:

del_netisr(NETISR_IP);

In this example, the software interrupt routine to be deleted is NETISR_IP.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The add_netisr kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-71

del_netopt

del_netopt Macro

Purpose

Syntax

Parameter

Deletes a network option structure from the list of network options.

#include <sys/types.h>
#include <sys/errno.h>
#include <net/netopt.h>

del_netopt (option_name_symbo~
option_name_symbol;

option_name_symbol Specifies the symbol name used to construct the netopt
structure and default names.

Description
The del_netopt macro deletes a network option from the linked list of network options. After
the del_netopt service is called, the option is no longer available to the no command.

The del_netopt macro has no return values.

Execution Environment
The del_netopt macro can be called from either the process or interrupt environment.

Implementation Specifics
This macro is part of AIX Base Operating System (BOS) Runtime.

Related Information
The add_netopt macro.

The no command.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-72 Kernel Reference

(

delay Kernel Service

Purpose

Syntax

Parameter

Suspends the calling process for the specified number of timer ticks.

#include <sys/types.h>
#include <sys/errno.h>

void delay (ticks)
int ticks;

delay

ticks Specifies the number of timer ticks that must occur before the process is
reactivated. Many timer ticks can occur per second.

Description
The delay kernel service suspends the calling process for the number of timer ticks
specified by the ticks parameter.

The HZ value in the param.h file can be used to determine the number of ticks per second.

The delay service has no return values.

Execution Environment
The delay kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Timer and Time-of-Day Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

Kernel Services 1-73

,deque

deque Kernel Service

Purpose

Syntax

Performs completion processing for the active device queue element.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int deque (queue_id, options, qe, results)
cba_id queue_id;
int options;
struct ack_qe *qe;
int results;

Parameters
queue_id Specifies the identifier of the device queue from which to remove the active

queue element.

options

qe

results

Description

Controls generation of the acknowledgment. The following values are
possible:

SUPPRESS_ACK

OVERRIDE_ VINTR

Suppress acknowledgment.

Override the virtual interrupt sublevel specified
when the path was created.

Specifies the address of the acknowledgment queue element or NULL.

Specifies the operation results for a synchronous request or an interrupt on
error request.

The deque kernel service is not part of the base kernel but provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The deque service is called by a device queue server to tell the kernel that processing for
the active queue element is complete. This service removes the active queue element from
the device queue and conditionally sends an acknowledgment.

The deque service can automatically send an acknowledgment to the requestor if one was
requested when the device queue was attached. Depending on the type of acknowledgment
requested, different amounts of status information are returned. For simple interprocess
communication, the acknowledgment functions are probably not necessary.

To generate an acknowledgment, the server of the device queue provides data in an
acknowledgment queue element. The kernel then uses this data to send the
acknowledgment to the requestor. The only time the acknowledgment queue element can be
omitted is if the path type for the queue element is NO_ACK or SHORT _ACK or the
suppress option SUPPRESS_ACK is selected.

1-7 4 Kernel Reference

deque

The operation options field in the active queue element is examined to determine what
operation the deque service should perform:

SYNC_REQUEST
Indicates that the operation is synchronous. On a SYNC_REQUEST, the
enque routine enqueues the request and then sleeps, waiting for
completion. When the deque service is called, it wakes up the enque
routine and passes the results directly back. The enque service then
passes the results to the caller.

ACK_ COMPLETE
Indicates that an acknowledgment should be generated. If
ACK_COMPLETE is specified, then an acknowledgment is sent each time a
queue element is completed (dequeued) independent of the results.

ACK_ERRORS Indicates that an acknowledgment should be generated only if there has
been an error (the results parameter is not equal to RC_GOOD). If
ACK_ERRORS is specified, the deque service only sends an
acknowledgement on completed queue elements that have a result other
than RC_GOOD.

These three operation flags are mutually exclusive. Therefore, only one should be specified.

If the suppress option is selected, the kernel does not return any information to the sender of
the request. The device queue's server is responsible for explicitly generating the
acknowledgment using the ackque service.

A path to a device queue may be destroyed before the active queue element is totally
processed. If this happens, no acknowledgment is generated when the deque service is
called. Instead, the queue element is discarded with no error reported.

Use of Virtual Interrupt Handlers
When an acknowledgment is sent through a path that was set up with an acknowledgment
type of interrupt (INTR_ACK), then the deque service calls a registered virtual interrupt
handler. This service uses the qe->data[5] field in the acknowledgment queue element to
provide a sublevel specifying which virtual interrupt handler to call. The sublevel specified
when the path was created is used unless the OVERRIDE_ VINTR value is specified in the
options parameter to the deque service. Otherwise, the value in the acknowledgment
queue element is used.

Virtual interrupt handlers can be registered by using the vec_init device queue management
service. This interrupt handler is called in the process environment of the caller of the
deque service. Virtual interrupts should be used for compatibility purposes only.

Execution Environment
The deque kernel service can be called from the process environment only.

Return Values
RC_GOOD

RC_OBJ

Indicates successful completion.

Indicates that there is no active queue element on the specified device
queue.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Kernel Services 1-75

deque

Related Information
The ackque kernel service, vec_init kernel service, enque kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-76 Kernel Reference

detach-device

detach-device Queue Management Routine

Purpose

Syntax

Provides a means for performing device-specific processing when the detchq kernel service
is called.

#include <Sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int detach(dev_parms, path_id)
caddr_t dev_parms;
cba_id path_id;.

Parameters
dev_parms Passed to creatd service when the detach routine is defined.

path_id Specifies the path identifier for the queue that is being detached from.

Description
Each device queue can have a detach routine. This routine is optional and must be
specified when the device queue is defined with the creatd service. The detach routine is
called by the detchq service each time a path to the device queue is removed.

To ensure that the detach routine is not called while a queue element from this client is still
in the device queue, the kernel puts a detach control queue element at the end of the device
queue. The server knows by convention that a detach control queue element signifies
completion of all pending queue elements for that path. The kernel calls the detach routine
after the detach control queue element is processed.

The detach routine executes under the process under which the detchq service is called.
The kernel does not serialize the execution of this service with the execution of any of the
other server routines.

Execution Environment
The detach-device routine can be called from the process environment only.

Return Values
RC_GOOD Indicates successful completion.

A return value other than RC_GOOD indicates a fatal condition and causes the system to
panic.

Related Information
The creatd kernel service, detchq kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-77

detchq

detchq Kernel Service

Purpose

Syntax

Parameter

Invalidates the path to a device queue.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int detchq (path_id)
cba_id path_id;

path_ id Path identifier of the path to be invalidated.

Description
The detchq device queue kernel service is not part of the base kernel but is provided by the
Device Queue Management kernel extension. This queue management kernel extension
must be loaded into the kernel once before the loading of any kernel extensions referencing
these services.

The detchq service invalidates the specified path.

If the to_id field in the path being invalidated is a device identifier, a detach queue element
is placed in the device queue. The detchq service does not continue until the device queue
server calls the deque service for this queue element. At this time, no other queue elements
can be sent using this path. This serializes completion of all pending request for that path
before invalidating the path.

However, this wait can also cause excessive delay for the caller of the detchq service if
lengthy requests have yet to be processed. Device queue interfaces should be designed so
that all 110 activity is finished before the detchq service is called. In addition, device queue
servers must recognize detach queue elements. These detach queue elements are control
queue elements sent by the kernel to detach a server from a path.

The server's detach-device queue routine is called if one is associated with the device
queue. This occurs after the server calls the deque service for the detach queue element
and executes under the caller of detchq process.

For device queues with multiple paths, a detach queue element is sent each time a path is
invalidated.

Execution Environment
The detchq kernel service can be called from the process environment only.

Return Values
RC_GOOD

RC_ID

1-78 Kernel Reference

Indicates successful completion.

Indicates that the path identifier is not valid.

I
\

(

I
l\ii

detchq

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The detach-device queue management routine.

The deque kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-79

devdump

devdump Kernel Service

Purpose

Syntax

Calls a device driver dump-to-device routine.

#include <sys/types.h>
#include <sys/errno.h>

int devdump (devno, uiop, cmd, arg, ext)

dev _t devno;
struct uio *uiop;
int cmd, arg, ext;

Parameters
devno Specifies the major and minor device numbers.

uiop

cmd

arg

ext

Description

Points to the uio structure containing write parameters.

Specifies which dump command to perform.

A parameter or address to a parameter block for the specified command.

The extended system call parameter

The kernel or kernel extension calls the devdump kernel service to initiate a memory dump
to a device when writing dump data and then to terminate the dump to the target device.

The devdump service calls the device driver's dddump routine, which is found in the device
switch tabte for the device driver associated with the specified device number. If the device
number (specified by the devno parameter) is not valid or if the associated device driver
does not have a dddump routine, an ENODEV error code is returned.

If the device number is valid and the specified device driver has a dddump routine, the
routine is called.

If the device driver's dddump routine is successfully called, the return code for the
devdump service is set to the return code provided by the device's dddump routine.

Execution Environment
The devdump kernel service can be called in either the process or interrupt environment, as
described under the conditions described in the dddump routine.

Return Values
0

EN OD EV

Indicates a successful operation.

Indicates that the device number is not valid or that no dddump routine is
registered for this device.

dddump return codes
Return codes provided by the dddump device driver routine.

1-80 Kernel Reference

(
\

(

devdump

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Device Switch Table.

The dddump Device Driver Entry Point.

Device Switch Table, Kernel Program/Device Driver Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-81

devstrat

devstrat Kernel Service

Purpose

Syntax

Parameter

Calls a block device driver's strategy routine.

#include <sys/types.h>
#include <sys/errno.h>

int devstrat (bp)
struct buf * bp;

bp Points to the buf structure specifying the block transfer parameters.

Description
The kernel or kernel extension calls the devstrat kernel service to request a block data
transfer to or from the device with the specified device number. This device number is found
in the buf structure. The devstrat service can only be used for the block class of device
drivers.

The devstrat service calls the device driver's ddstrategy routine. This routine is found in
the device switch table for the device driver associated with the specified device number
found in the b_dev field. The b_dev field is found in the buf structure pointed to by the bp
parameter. The caller of the devstrat service must have an iodone routine specified in the
b_iodone field of the buf structure. Following the return from the device driver's ddstrategy
routine, the devstrat service returns without waiting for the 1/0 to be performed.

If the device major number is not valid or the specified device is not a block device driver,
the devstrat service returns the ENODEV return code. If the device number is valid, the
device driver's ddstrategy routine is called with the pointer to the buf structure (specified by
the bp parameter).

Execution Environment
The devstrat kernel service can be called from either the process or interrupt environment.

Return Values
0

ENODEV

Indicates a successful operation.

Indicates the device number is not valid or that no ddstrategy routine
registered. This value is also returned when the specified device is not a
block device driver. If this error occurs, the devstrat service can cause a
page fault.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

1-82 Kernel Reference

devstrat

Related Information
The iodone kernel service.

The ddstategy routine.

Device Switch Table, The buf Structure, Kernel Program/Device Driver Management Kernel
Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-83

devswadd

devswadd Kernel Service

Purpose

Syntax

Adds a device entry to the device switch table.

#include <sys/types.h>
#include <sys/errno.h>
#include <Sys/device.h>

int devswadd (devno, dswptl)
dev _t devno;
struct devsw * dswptr;

Parameters
devno Specifies the major and minor device numbers to be associated with the

specified entry in the device switch table.

dswptr Points to the device switch structure to be added to the device switch table.

Description
The devswadd kernel service is typically called by a device driver's ddconfig routine to add
or replace the device driver's entry points in the device switch table. The device switch table
is a table of devsw (device switch) structures indexed by the device driver's major device
number. This table of structures is used by the device driver interface services in the kernel
to facilitate calling device driver routines.

The major device number portion of the devno parameter is used to specify the index in the
device switch table where the devswadd service must place the specified device switch
entry. Before the device switch structure is copied into the device switch table, the existing
entry is checked to determine if any opened device is using it. If an opened device is
currently occupying the entry to be replaced, the devswadd service does not perform the
update. Instead, it returns an EEXIST error code. If the update is successful, a value of 0
(zero) is returned. (

Entry points in the device switch structure that are not supported by the device driver must
be handled in one of two ways. If a call to an unsupported entry point should result in the
return of an error code, then the entry point must be set to the nodev routine in the
structure. As a result, any call to this entry point automatically invokes the nodev routine
that returns an ENODEV error code. The kernel provides the nodev routine.

Otherwise, a call to an unsupported entry point should be treated as a no-operation function,
then the corresponding entry point should be set to the nulldev routine. The routine, which
is also provided by the kernel, performs no operation if called and returns a O return code.

All other fields within the structure that are not used should be set to O (zero). Some fields in
the structure are for kernel use and are not copied into the device switch table by the
devswadd service. These fields are documented in the <sys/device.h> file.

Execution Environment
The devswadd kernel service can be called from the process environment only.

1-84 Kernel Reference

Return Values
0

EEXIST

ENOMEM

EINVAL

devswadd

Indicates a successful operation.

Indicates that the specified device switch entry is in use and cannot be
replaced.

Indicates that the entry cannot be pinned due to insufficient real memory.

Indicates that the major device number portion of the devno parameter
exceeds the maximum permitted number of device switch entries.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The devswdel kernel service, devswqry kernel service.

The ddconfig Device Driver Entry Point.

Device Switch Table, Kernel Program/Device Driver Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-85

devswdel

devswdel Kernel Service

Purpose

Syntax

Parameter

Deletes a device driver entry from the device switch table.

#include <sys/types.h>
#include <Sys/errno.h>
#include <Sys/device.h>

int devswdel (devno)
dev_t devno;

devno Specifies the major and minor device numbers of the device to be deleted.

Description
The devswdel kernel service is typically called by a device driver's ddconfig routine on
termination to remove the device driver's entry points from the device switch table. The
device switch table is a table of device switch (devsw) structures indexed by the device
driver's major device number. This table of structures is used by the device driver interface
services in the kernel to facilitate calling device driver routines.

The major device number portion of the devno parameter is used to specify the index into
the device switch table for the entry to be removed. Before the device switch structure is
removed, the existing entry is checked to determine if any opened device is using it.

If an opened device is currently occupying the entry to be removed, the devswdel service
does not perform the update. Instead, it returns an EEXIST return code. If the removal is
successful, a return code of 0 (zero) is set.

The devswdel service removes a device switch structure entry from the table by marking
the entry as undefined and setting all of the entry point fields within the structure to nodev.
As a result, any callers of the removed device driver return an ENODEV error code. If the
specified entry is already marked undefined, the devswdel service returns an ENODEV
error code.

Execution Environment
The devswdel kernel service can be called from the process environment only.

Return Values
0

EEXIST

EN OD EV

EINVAL

1-86 Kernel Reference

Indicates a successful operation.

Indicates that the specified device switch entry is in use and cannot be
removed.

Indicates that the specified device switch entry is not defined.

Indicates that the major device number portion of the devno parameter
exceeds the maximum permitted number of device switch entries.

(
\

devswdel

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The devswadd kernel service, devswqry kernel service.

Device Switch Table, Kernel Program/Device Driver Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-87

devswqry

devswqry Kernel Service

Purpose

Syntax

Checks the status of a device switch entry in the device switch table.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <sys/device.h>

int devswqry {devno, status, dsdptl)
dev_t devno;
uint *status;
caddr_t *dsdptr;

Parameters
devno Specifies the major and minor device numbers of the device to be queried.

Points to the status of the specified device entry in the device switch table.
This parameter is passed by reference.

status

dsdptr Points to device-dependent information for the specified device entry in the
device switch table. This parameter is passed by reference.

Description
The devswqry kernel service returns the status of a specified device entry in the device
switch table. The entry in the table to query is determined by the major portion of the device
number specified in the devno parameter. The status of the entry is returned in the status
parameter that is passed by reference on the call. If this pointer is NULL on entry to the
devswqry service, then the status is not returned to the caller.

The devswqry service also returns the address of device-dependent information for the
specified device entry in the device switch table. This address is taken from the d_dsdptr
field for the entry and returned in the dsdptr parameter, which is passed by reference. If this (
pointer is NULL on entry to the devswqry service, then the address from the d_dsdptr field
is not returned to the caller.

The status Parameter Flags
The status parameter comprises a set of flags that can indicate the following conditions:

DSW_UNDEFINED

DSW_DEFINED

DSW_CREAD

DSW_CWRITE

1-88 Kernel Reference

Device switch entry is not defined.

Device switch entry is defined.

Device driver in this device switch entry is providing a routine for
character reads or raw input. This flag is set when the device driver
has a ddread entry point.

Device driver in this device switch entry is providing a routine for
character writes or raw output. This flag is set when the device
driver has a ddwrite entry point.

DSW_BLOCK

DSW_MPX

DSW_TTY

DSW_SELECT

DSW_DUMP

DSW_TCPATH

DSW_OPENED

devswqry

Device switch entry is defined by a block device driver. This flag is
set when the device driver has a ddstrategy entry point.

Device switch entry is defined by a multiplexed device driver. This
flag is set when the device driver has a ddmpx entry point.

Device switch entry is in use by a tty device driver. This flag is set
when the pointer to the d_ttys structure is not NULL.

Device driver in this device switch entry is providing a routine for
handling the select or poll subroutines. This flag is set when the
device driver has provided a ddselect entry point.

Device driver defined by this device switch entry provides the
capability to support one or more of its devices as targets for a
kernel dump. This flag is set when the device driver has provided a
dddump entry point.

Device driver in this device switch entry supports devices that are
considered to be in the trusted computing path and provide support
for the revoke function. This flag is set when the device driver has
provided a ddrevoke entry point.

Device switch entry is in use and device has outstanding opens.
This flag is set when the device driver has at least one outstanding
open.

The status parameter is set to the DSW_UNDEFINED flag when a device switch entry is not
in use. This is the case if either of the following are true:

• The entry has never been used (no previous call to the devswadd service was made).

• The entry has been used but was later deleted (a call to the devswadd service was
issued, followed by a call to the devswdel service).

No other flags are set when .the DSW_UNDEFINED flag is set.

Execution Environment
The devswqry kernel service can be called from either the process or interrupt environment.

Return Values
0

EINVAL

Indicates a successful operation.

Indicates that the major device number portion of the devno parameter
exceeds the maximum permitted number of device switch entries.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The devswadd kernel service, devswdel kernel service.

Device Switch Table, Kernel Program/Device Driver Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-89

dmp_add

dmp_add Kernel Service

Purpose

Syntax

Parameter

Specifies data to be included in a system dump by adding an entry to the master dump
table.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <Sys/dump.h>

int dmp_add (cdt_func)
struct cdt * ((*cd(_func) ());

cdt_func Specifies a function that returns a pointer to a component dump table entry.
The function and the component dump table entry must reside in pinned
global memory.

Description
Kernel extensions use the dmp_add service to register data areas to be included in a
system dump. The dmp_add service adds an entry to the master dump table. A master
dump table entry is a pointer to a function provided by the kernel extension that will be called
by the kernel dump routine when a system dump occurs. The function must return a pointer
to a component dump table structure.

When a dump occurs, the kernel dump routine calls the function specified by the cdt_func
parameter twice. On the first call, an argument of 1 indicates that the kernel dump routine is
starting to dump the data specified by the component dump table. On the second call, an
argument of 2 indicates that the kernel dump routine has finished dumping the data specified
by the component dump table. Kernel extensions should allocate and pin their component
dump table and call the dmp_add service during initialization. The entries in the component
dump table can be filled in later. The cdt_func routine must not attempt to allocate memory
when it is called.

The Component Dump Table

1-90

The component dump table structure specifies memory areas to be included in the system
dump. The structure type (struct cdt) is defined in the <sys/dump.h> header file. A cdt
structure consists of a fixed-length header (cdt_head structure) and an array of one or more
cdt_entry structures. The cdt_head structure contains a component name field, which
should be filled in with the name of the kernel extension, and the length of the component
dump table. Each cdt_entry structure describes a contiguous data area, giving a pointer to
the data area, its length, a segment register, and a name for the data area. The name
supplied for the data area can be used to refer to it when the crash command formats the
dump.

Kernel Reference

(
\

/
\

dmp_add

Use of the Formatting Routine
Each kernel extension that includes data in the system dump can install a unique formatting
routine in the /usr/adm/ras/dmprtns directory. A formatting routine is a command that is
called by the crash command. The name of the formatting routine must match the
component name field of the corresponding component dump table. The crash command
forks a child process that executes the formatting routines. If a formatting routine is not
present for a component name, the crash command executes the _default_dmp_fmt
default formatting routine, which prints out the data areas in hexadecimal.

The crash command calls the formatting routine as a command, passing the file descriptor
of the open dump image file as a command line argument The syntax for this argument is
-ffile _descriptor.

The dump image file includes a copy of each component dump table used to dump memory.
Before calling a formatting routine, the crash command positions the file pointer for the
dump image file to the beginning of the relevant component dump table copy.

Organization of the Dump Image File
Memory dumped for each kernel extension is laid out as follows in the dump image file. The
component dump table is followed by a bit map for the first data area, then the first data area
itself, then a bit map for the next data area, the next data area itself, and so on.

The bit map for a given data area indicates which pages of the data area are actually
present in the dump image and which are not. Pages that were not in memory when the
dump occurred were not dumped. The least significant bit of the first byte of the bit map is
set to 1 (one) if the first page is present. The next least significant bit indicates the presence
or absence of the second page and so on.

A macro for determining the size of a bit map is provided in the <sys/dump.h> file.

Execution Environment
The dmp_add kernel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

-1 Indicates that the function pointer to be added is already present in the
master dump table.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The dmp_del kernel service.

The crash command, exec command.

RAS Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-91

dmp_del

dmp_del Kernel Service

Purpose

Syntax

Parameter

Deletes an entry from the master dump table.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dump.h>

dmp_del (cdt_func_ptt]
struct cdt * ((*cdt_func_ptt] ());

cdt_func Specifies a function that returns a pointer to a component dump table. The
function and the component dump table must both reside in pinned global
memory.

Description
Kernel extensions use the dmp_del kernel service to unregister data areas previously
registered for inclusion in a system dump. If a kernel extension used the dmp_add service
to register such a data area, it can use the dmp_del service to remove its entry from the
master dump table.

Execution Environment
The dmp_del kernel service can be called from the process environment only.

Return Values
0

-1

Indicates a successful operation.

Indicates that the function pointer to be deleted is not in the master dump
table.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The dmp_add kernel service.

The crash command.

RAS Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-92 Kernel Reference

dstryd

dstryd Kernel Service

Purpose

Syntax

Parameter

Deletes a global name from a device queue.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/deviceq.h>

int dstryd (device_id)
cba_id device_id;

device_id Device identifier of the device queue.

Descripti.on
The dstryd device queue kernel service is not part of the base kernel but is provided by the
Device Queue Management kernel extension. This queue management kernel extension
must be loaded into the kernel once before loading any kernel extensions that reference
these services.

The dstryd service provides a means of deleting a device ID, specified by the device_id
parameter, from a device queue. This device identifier was previously returned by the
creatd device queue management service when the device queue was assigned a global
name.

The device is removed from the global system list of valid devices. The device identifier is
also removed from the process's list of devices. The cross-memory descriptor is then
detached and the device control block is freed.

Execution Environment
The dstryd kernel service can be called from the process environment only.

Return Values
RC_GOOD Indicates that the the ID specified by the device_idparameter is not valid

(that is, no longer exists) or that the operation was successful.

RC_IN_USE Indicates that the device is still being used.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The creatd kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-93

dstryq

dstryq Kernel Service

Purpose

Syntax

Parameter

Destroys the specified device queue.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int dstryq {queue_id)
cba_id queue_id;

queue_id Identifies the device queue to destroy.

Description
The dstryq kernel service is not part of the base kernel but is provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The dstryq service is used to destroy a device queue. Any process can destroy any device
queue.

The queue elements in a device queue, if any, are discarded when the device queue is
destroyed. Acknowledgments are not generated when the queue elements are discarded.
The server of the device queue is not informed that the device queue was destroyed, unless
it was waiting on the device queue. If the process was waiting, it is returned to the ready
state with the event posted. Also, any paths to the device queue are destroyed.

The server's cancel-queue-element routine is called for each queue element, active or
pending, that is discarded from the device queue.

Execution Environment
The dstryq kernel service can be called from the process environment only.

Return Values
RC_GOOD Indicates successful completion.

RC_ID Indicates that the device queue identifier is not valid.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information

1-94

The cancel-queue-element queue management routine.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Reference

(

(

DTOM

DTOM Macro for mbuf Kernel Services

Purpose

Syntax

Parameter

Converts an address anywhere within an mbuf structure to the head of that mbuf structure.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/mbuf .h>

DTOM (bp);

bp Points to an address within an mbuf structure.

Description

Example

The DTOM macro converts an address anywhere within an mbuf structure to the head of
that mbuf structure. This macro can be viewed as the opposite of the MTOD macro, which
converts the address of an mbuf structure into the address of the actual data contained in
the buffer. However, the DTOM macro is more general than this view implies, in that the
input parameter can point to any address within the mbuf structure, not merely the address
of the actual data.

1 . The DTOM macro can be used as in the following example:

char *bp;
struct rnbuf *m;
m = DTOM (bp) ;

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
MTOD macro for mbuf Kernel Services.

1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-95

e_post

e_post Kernel Service

Purpose

Syntax

Notifies a pro~3ss of the occurrence of one or more events.

#include <Sys/types.h>
#include <sys/errno.h>
#include <sys/sleep.h>

void e _post (events, pid)
unsigned long events;
pid_t pid;

Parameters
events Identifies the masks of events to be posted.

pid Specifies the process identifier of the process to be notified.

Description
The e_post kernel service is used to notify a process that one or more events occurred. The
e_post service provides the fastest method of interprocess communication, although only
the event numbers are passed.

The event numbers must be known by the cooperating components, either through
programming convention or the passing of initialization parameters.

The e_post service is performed automatically when sending a request to a device queue
serviced by a process or when sending an acknowledgment.

The EVENT _KERNEL mask defines the event bits reserved for use by the kernel. For
example, a bit with a value of 1 (one) indicates an event bit reserved for the kernel. Kernel
extensions should assign their events starting with the most significant bits and working
down. If processes using the e_post service are also using the device queue management
kernel extensions, care must be taken not to use the event bits registered for device queue
management. ~

The e_wait service does not sleep but returns immediately if a specified event has already
been posted by the e_post service.

The e_post service has no return values.

Execution Environment
The e_post kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-96

The e_wait kernel service.

Understanding Device Queues, Process and Exception Management Kernel Services in
Kernel Extensions and Device Support Programming Concepts.

Kernel Reference

e_sleep

e_sleep Kernel Service

Purpose

Syntax

Forces a process to wait for the occurrence of a shared event.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sleep.h>

int e_sleep (event_word, flags)
int *event_word;
int flags;

Parameters
event_word Specifies the shared event word. The kernel uses the event_word

parameter to anchor the list of processes sleeping on this event. The
event_ word parameter must be initialized to EVENT _NULL before its first
use.

flags Specifies the flags that control action on occurrence of signals. These flags
can be found in the <Sys/sleep.h> file.

Description

Flags

The e_sleep kernel service is used to wait for the specified shared event to occur. The
kernel places the current process on the list anchored by the event_ word parameter. This list
is used by the e_wakeup service to wake up all processes waiting for the event to occur.

The anchor for the event list, the event_ word parameter, must be initialized to
EVENT _NULL before its first use. Kernel extensions must not alter this anchor while it is in
use.

The e_wakeup service does not wake up a process that is not currently sleeping in the
e_sleep function. That is, if an e_wakeup operation for an event is issued before the
process calls e_sleep for the event, the process still sleeps, waiting on the next e_wakeup
for the event. This implies that routines using this capability must ensure that no timing
window exists in which events could be missed due to the e_wakeup service being called
before the e_sleep for the event has been called.

The flags parameter is used to control how signals affect waiting for an event.

EVENT_SIGRET

EVENT_SIGWAKE

EVENT_SIGRET

EVENT_SHORT

Indicates the termination of the wait for the event by an unmasked
signal. The return value is set to EVENT _SIG.

Indicates the termination of the event by an unmasked signal. This
flag results in the transfer of control to the return from the last
setjmpx service with the return value set to EINTR.

Flag overrides the EVENT_SIGWAKE flag.

Prohibits the wait from being terminated by a signal. This flag
should only be used for short, guaranteed-to-wakeup sleeps.

Kernel Services 1-97

e_sleep

Execution Environment
The e_sleep kernel service can be called from the process environment only.

Return Values
EVENT_SUCC

EVENT_SIG

Implementation Specifics

Indicates a successful operation.

Indicates that the EVENT_SIGRET flag is set and the wait is
terminated by a signal.

This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The e_sleepl kernel service, e_wakeup kernel service.

Process and Exception Management Kernel Services in Kernel Extensions and Device
Support Programming Concepts.

1-98 Kernel Reference

(

\

(

e_sleepl

e_sleepl Kernel Service

Purpose

Syntax

Forces a process to wait for the occurrence of a shared event.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sleep.h>

int e_sleepl (lock_word, event_word, flags)
int *lock_ word;
int *event_ word;
int flags;

Parameters
lock_ word Specifies the lock word for a conventional process lock.

event_word Specifies the shared event word. The kernel uses this word to anchor the
list of processes sleeping on this event. This event word must be initialized
to EVENT _NULL before its first use.

flags Specifies the flags that control action on occurrence of a signal. These flags
are found in the <sys/sleep.h> file.

Description

Flags

The e_sleepl kernel service waits for the specified shared event to occur. The kernel places
the current process on the list anchored by the event_ word parameter. The e_wakeup
service wakes up all processes on the list.

The e_wakeup service does not wake up a process that is not currently sleeping in the
e_sleepl function. That is, if an e_wakeup operation for an event is issued before the
process calls e_sleepl for the event, the process still sleeps, waiting on the next e_wakeup
for the event. This implies that routines using this capability must ensure that no timing
window exists in which events could be missed due to the e_wakeup service being called
before the e_sleepl for the event has been called.

The e_sleepl service also unlocks the conventional lock specified by the lock_word
parameter before putting the process to sleep. It also reacquires the lock when the process
wakes up.

The anchor for the event list, specified by the event_ word parameter, must be initialized to
EVENT _NULL before its first use. Kernel extensions must not alter this anchor while it is in
use.

The flags parameter controls how signals affect waiting for an event. There are three flags
available to the e_sleepl service: EVENT_SIGRET, EVENT_SIGWAKE, and
EVENT_SHORT.

EVENT_SIGRET
Indicates the termination of the wait for the event by an unmasked signal.
The return value is set to EVENT_SIG.

Kernel Services 1-99

e_sleepl

EVENT _SIG WAKE
Indicates the termination of the event by an unmasked signal. This flag also
indicates the transfer of control to the return from the last setjmpx service
with the return value set to EINTR.

Note: The EVENT_SIGRET flag overrides the EVENT_SIGWAKE flag.

EVENT_SHORT
Indicates that signals cannot terminate the wait. Use the EVENT_SHORT
flag for only short, guaranteed-to-wakeup sleeps.

Execution Environment
The e_sleepl kernel service can be called from the process environment only.

Return Values
EVENT _SUCC Indicates successful completion.

EVENT _SIG Indicates that the EVENT _SIGRET flag is set and the wait is terminated by
a signal.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The e_sleep kernel service, e_wakeup kernel service.

Process and Exception Management Kernel Services in Kernel Extensions and Device
Support Programming Concepts.

1-100 Kernel Reference

!
I
~

e_wait

e_wait Kernel Service

Purpose

Syntax

Forces a process to wait for the occurrence of an event.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/sleep.h>

ulong e_wait (wait_mask, clear_mask, flags)
ulong wait_mask;
ulong clear_mask;
int flags;

Parameters
wait_ mask

clear_mask

flags

Specifies the mask of events to await.

Specifies the mask of events to clear.

Specifies the flags that control actions on occurrence of a signal.

Description

Flags

With the e_wait kernel service, a process waits for any of one or more specified events. The
wait_mask parameter is a mask, where each bit set equal to 1 (one) represents an event to
wait for.

The clear_mask parameter is a mask of events to clear when the wait is complete.
Subsequent calls to the e_wait service return immediately unless you clear the bits, which
terminates the wait.

The e_wait service can also be used to clear events without waiting for them to occur. This
is accomplished by setting:

• The wait_mask parameter to EVENT _NDELAY

• The bits in the clear_mask parameter that correspond to the events to be cleared to a
value of 1 (one).

This form can also be used to poll the events because an event mask indicating those
events that were actually cleared is returned by the e_wait service.

The flags parameter is used to control how signals affect waiting for an event. There are two
flag values: EVENT_SIGRETand EVENT_SIGWAKE.

EVENT _SIGRET
Causes the wait for the event to be terminated by an unmasked signal and
the return value to be set to EVENT_SIG.

EVENT_SIGWAKE
Causes the event to be terminated by an unmasked signal and control
transferred to the return from the last setjmpx call, with the return value set
to EXSIG.

Kernel Services 1-101

e_wait

Note: The EVENT_SIGRET flag overrides the EVENT_SIGWAKE flag.

Execution Environment
The e_wait kernel service can be called from the process environment only.

Return Values
Upon successful completion, the e_wait service returns an event mask indicating the events
that terminated the wait. If an EVENT _NDELAY value is specified, the returned event mask
indicates the pending events that were cleared by this call.

EVENT_SIG Indicates that the EVENT_SIGRET flag is set and the wait is terminated by
a signal.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The e_post kernel service, setjmpx kernel service.

Process and Exception Management Kernel Services in Kernel Extensions and Device
Support Programming Concepts.

1-1 02 Kernel Reference

(

\

e_wakeup

e_wakeup Kernel Service

Purpose

Syntax

Parameter

Notifies processes waiting on a shared event of the event's occurrence.

#include <sys/types.h>
#include <sys/errno.h>

void e_wakeup (event_word)
int *event_ word;

event_ word Specifies the shared event designator. The kernel uses the event_ word
parameter as the anchor to the list of processes waiting on this shared
event.

Description
The e _wakeup kernel service is used to notify the list of processes anchored by the
event_ word parameter that the event has occurred. The anchor for the event list, specified
by the event_wordparameter, is set to EVENT_NULL by the e_wakeup service.

The e_wakeup service has no return values.

Execution Environment
The e_wakeup kernel service can be called from either the process or interrupt
environment.

When called by an interrupt handler, the event_ word parameter must be located in pinned
memory.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The e_sleep kernel service, e_sleepl kernel service.

Process and Exception Management Kernel Services in Kernel Extensions and Device
Support Programming Concepts.

Kernel Services 1-103

enque

enque Kernel Service

Purpose

Syntax

Parameter

Sends a request queue element to a device queue.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int enque (qe)
struct req_qe *qe;

qe Specifies the address of the request queue element.

Description
The enque kernel service is not part of the base kernel but is provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The enque service places the queue element into a specified device queue. It is used for
simple process-to-process communication within the kernel. The requestor builds a copy of
the queue element, indicated by the qe parameter, and passes this copy to the enque
service. The kernel copies this queue element into a queue element in pinned global
memory and then enqueues it on the target device queue.

The path identifier in the request queue element indicates the device queue into which the
element is placed.

The enque service supports the sending of the following types of queue elements:

SEND_CMD

START_IO

GEN_PURPOSE

Send Command.

Start 1/0.

General Purpose.

For simple interprocess communication, general purpose queue elements are used.

The queue element priority value can range from QE_BEST_PRTY to QE_WORST_PRTY.
This value is limited to the value specified when the queue was created.

The operation options in the queue element control how the queue element is processed.
There are five standard operation options:

ACK_ COMPLETE

ACK_ERRORS

SYNC_REQUEST

CHAINED

CONTROL_OPT

1-104 Kernel Reference

Acknowledge completion in all cases.

Acknowledge completion if the operation results in an error.

Synchronous request.

Chained control blocks.

Kernel control operation.

/
\
\

enque

Note: Only one of ACK_COMPLETE, ACK_ERRORS, or SYNC_REQUEST can be
specified. Also, all of these options are ignored if the path specifies that no
acknowledgment (NO_ACK) should be sent.

With the SYNC_REQUEST synchronous request option control does not return from the
enque service until the request queue element is acknowledged. This performs in one step
what can also be achieved by sending a queue element with the ACK_COMPLETE flag on,
and then calling either the e_wait or waitq kernel services.

The kernel calls the server's check-parameters routine, if one is defined, before a queue
element is placed on the device queue. This routine can abort the operation if it detects an
error.

The kernel notifies the device queue's server, if necessary, after a queue element is placed
on the device queue. This is done by posting the server process (using the e_post kernel
service) with an event control bit.

Execution Environment
The enque kernel service can be called from the process environment only.

Return Values
RC_GOOD

RC_ID

Indicates a successful operation.

Indicates a path identifier that is not valid.

All other error values represent errors returned by the server.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The e_wait kernel service, waitq kernel service, e_post kernel service.

The check-parameters queue management routine.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-105

errsave

errsave Kernel Service

Purpose

Syntax

Allows the kernel and kernel extensions to write to the error log.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/errids.h>

void errsave (but, cnt)
char*buf,
unsigned int cnt;

Parameters
buf Points to a buffer that contains an error record as described in the

sys/err_rec.h file.

cnt

Description

Specifies the number of bytes in the error record contained in the buffer
pointed to by the bufparameter.

The errsave kernel service allows the kernel and kernel extensions to write error log entries
to the error device driver. The error record pointed to by the bufparameter includes the error
ID resource name and detailed data.

The errsave service has no return values.

Execution Environment
The errsave kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime·.

Related Information
RAS Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-106 Kernel Reference

(

find_arp_iftype

find_arp_iftype Kernel Service

Purpose

Syntax

Finds an interface type in the Network ARP Switch Table Interface (NASTI}.

#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

struct nasti_ent *find_arp_iftype (if_type, a~
u_short if_type, af,

Parameters
if_ type

af

Identifies the type of a network interface (for example, Ethernet or token
ring}. Interface types are defined in the /usr/include/sys/devinfo.h file.

Specifies the address family of the ARP routines being deleted.

Description

Example

The find_arp_iftype kernel service finds an interface type in the Network ARP Switch Table
Interface (NASTI}. If successful, a nasti_ent structure is returned that contains the following
fields:

if_type

af

ioctl

resolve

who has

arptfree

Uniquely identifies the type of a network interface (for example, Ethernet or
token ring}. Interface types are defined in the /usr/include/sys/devinfo.h
file.

Specifies the address family that the specified ARP routines are able to
handle.

Points to an ARP ioctl handler.

Points to an ARP resolve handler.

Points to a function for transmitting ARP request packets.

Points to a function that frees ARP entries and reclaims resources.

1. The find_arp_iftype kernel service is invoked as follows:

find_arp_iftype(DD_EN, AF_INET);

Return Values
Pointer to a nasti_ent structure

Indicates that the requested interface type was found.

NULL Indicates that the type of network indicated by the if_type parameter cannot
be found.

Kernel Services 1-107

find_arp_iftype

Execution Environment
The net_wakeup kernel service can be called from either the process or interrupt
environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-1 08 Kernel Reference

I
i\,

find_input_type

find_input_type Kernel Service

Purpose

Syntax

Finds the given packet type in the Network Input Interface switch table and distributes the
input packet according to the table entry for that type.

#include <sys/types.h>
#include <sys/errno.h>
#include <netlif .h>

int find_input_type (type, m, ac, samp_flags, mh);
ushort type;
struct mbuf * m;
struct arpcom * ac;
ulong snmp_flags;
struct mbuf * mh;

Parameters
type Specifies the protocol type.

m

ac

snmp_flags

mh

Description

Points to the mbuf buffer containing the packet to distribute.

Points to the network common portion (arpcom) of the network interface on
which the packet was received. This common portion is defined in the
netinet/in_netarp.h file.

Specifies either the UCAST_TYPE or NUCAST_TYPE flags. This
parameter is set to the NUCAST _TYPE flag if the packet was a broadcast.
Otherwise, the NUCAST _TYPE flag is set.

Points to an mbuf buffer containing the input packet header. Protocols that
ask for packet headers will receive a copy of mh prepended to m.

The find_input_type kernel service finds the given packet type in the Network Input table
and distributes the input packet contained in the mbuf buffer pointed to by the m parameter.
The ac parameter is passed to services that do not have a queued interface.

Execution Environment
The find_input_type kernel service can be called from either the process or interrupt
environment.

Return Values
0

ENO ENT

Indicates that the protocol type was successfully found.

Indicates that the service could not find the type in the Network Input table.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Kernel Services 1-1 09

find_input_type

Related Information
The add_input_type kernel service, del_input_type kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

I

~

1-110 Kernel Reference

fp_access

fp_access Kernel Service

Purpose

Syntax

Checks for access permission to an open file.

#include <sys/types.h>
#include <sys/errno.h>

fp_access {fp, perm)
struct file * fp;
int perm;

Parameters
fp Points to a file structure returned by the fp_open or fp_opendev kernel

services.

perm Indicates which read, write, and execute permissions are to be checked.
The <sys/access.h> file contains pertinent values.

Description
The fp_access kernel service is an internal interface to the function provided by the access
subroutine.

Execution Environment
The fp_access kernel service can be called from the process environment only.

Return Values
0 Indicates that the calling process has the requested permission.

EACCES Indicates all other conditions.

) Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The access subroutine.

Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

Kernel Services 1-111

fp_close

fp_close Kernel Service

Purpose

Syntax

Parameter

Closes a file.

#include <sys/types.h>
#include <sys/errno.h>

fp_close (fp)
struct file *fp;

fp Points to a file structure returned by the fp_open, fp_getf, fp_opendev
kernel service.

Description
The fp_close kernel service is a common service for closing files used by both the file
system and routines outside the file system.

Execution Environment
The fp_close kernel service can be called from the process environment only.

Return-Values
0 Indicates a successful operation.

If an error occurs, one of the values from the <sys/error.h> file is returned.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The close subroutine.

Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

1-112 Kernel Reference

(

fp_fstat

fp_fstat Kernel Service

Purpose

Syntax

Gets the attributes of an open file.

#include <Sys/types.h>
#include <Sys/errno.h>

fp_fstat (fp, statbuf, statsz, segflag)
struct file * fp;
caddr _t statbuf;
unsigned int statsz;
unsigned int segflag;

Parameters
fp

statbuf

statsz

segflag

Description

Points to a file structure returned by the fp_open kernel service.

Points to a buffer defined to be of stat type structure or fullstat structure.
The statsz parameter indicates the buffer type.

Indicates the size of the stat structure to be returned (that is, stat or
fullstat). The <sys/stat.h> file contains information about the stat structure.

Specifies the flag indicating where the information represented by the
statbuf parameter is located:

SYS_ADSPACE Buffer is in kernel memory.
USER_ADSPACE Buffer is in user memory.

The fp_fstat kernel service is an internal interface to the function provided by the fstatx
system call.

Execution Environment
The fp_fstat kernel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

If an error occurs, one of the values from the <sys/errno.h> file is returned.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The fstatx subroutine.

Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

Kernel Services 1-113

fp_getdevno

fp_getdevno Kernel Service

Purpose

Syntax

Gets the device number and/or channel number for a device.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/file.h>

fp_getdevno (fp, devp, chanp)
struct file * fp;
dev_t *devp;
chan_t *chanp;

Parameters
fp Points to a file struct returned by the fp_open or fp_opendev services.

devp

chanp

Description

Points to a location where the device number is to be returned.

Points to a location where the channel number is to be returned.

The fp_getdevno service finds the device number and channel number for an open device
that is associated with the file pointer specified by the fp parameter. If the devp or chanp
parameter is specified as NULL, this service will not attempt to return any value for the
argument.

Execution Environment
The fp_getdevno kernel service can be called from the process environment only.

Return Values
0

EINVAL

Indicates a successful operation.

Indicates that the pointer specified by the fp parameter does not point to a
file struct for an open device.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

1-114 Kernel Reference

/
\

(

fp_getf

fp_getf Kernel Service

Purpose

Syntax

Retrieves a pointer to a file structure.

#include <sys/types.h>
#include <sys/errno.h>

fp _getf (fd, fpp)
int fd;
struct file ** fpp;

Parameters
fd Specifies a file descriptor.

fpp Points to the location where the file structure pointer is to be returned.

Description
The fp_getf kernel service uses the file descriptor as.an index into the process's open file
table. From this table it extracts a pointer to the associated file structure.

A process calls the fp_getf kernel service when it has a file descriptor for an open file but
needs a file pointer to use other Logical File System services.

Execution Environment
The fp_getf kernel service can be called from the process environment only.

Return Values
0

EBADF

Indicates a successful operation.

Indicates that either the file descriptor is out of the range of valid file
descriptors or the file descriptor is not currently used in the process.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

Kernel Services 1-115

fp_hold

fp_hold Kernel Service

Purpose

Syntax

Parameter

Increments the open count for a specified file pointer.

#include <sys/types.h>
#include <sys/errno.h>

int fp_hold (fp)
struct file *fp;

fp Points to a file structure previously obtained by calling the fp_open,
fp_getf, or fp_opendev kernel service.

Description
The fp_hold kernel service increments the use count in the file structure specified by the fp
parameter. This results in the associated file remaining opened even when the original open
is closed.

If this function is used, and access to the file associated with the pointer specified by the fp
parameter is no longer required, the fp_close kernel service should be called to decrement
the use count and close the file as required.

Execution Environment
The fp_hold kernel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

EINVAL Indicates that the fp parameter is not a valid file pointer.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

1-116 Kernel Reference

I

(~

fp_ioctl

fp_ioctl Kernel Service

Purpose

Syntax

Issues a control command to an open device or file.

#include <Sys/types.h>
#include <sys/errno.h>

fp_ioctl (fp, cmd, arg, ext)
struct file * fp;
unsigned int cmd;
caddr_t arg;
int ext;

Parameters
fp Points to a file structure returned by the fp_open or fp_opendev kernel

service.

cmd Specifies the specific control command requested.

arg Indicates the data required for the command.

ext Specifies an extension argument required by some device drivers. Its
content, form, and use are determined by the individual driver.

Description
The fp_ioctl kernel service is an internal interface to the function provided by the ioctl
subroutine.

Execution Environment
The fp_ioctl kernel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

If an error occurs, one of the values from the <sys/errno.h> file is returned. The ioctl
subroutine contains valid errno values.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The ioctl subroutine.

Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

Kernel Services 1-117

fp_lseek

fp_lseek Kernel Service

Purpose

Syntax

Changes the current offset in an open file.

#include <sys/types.h>
#include <sys/errno.h>

fp_lseek (fp, offset, whence)
struct file * fp;
long offset;
unsigned int whence;

Parameters
fp Points to a file structure returned by the fp_open kernel service.

offset

whence

Description

Specifies the number of bytes (positive or negative) to move the file pointer.

Indicates how to use the offset value:

SEEK_SET

SEEK_CUR

SEEK_END

Sets file pointer equal to the number of bytes specified
by the offset parameter.

Adds the number of bytes specified by the offset
parameter to current file pointer.

Adds the number of bytes specified by the offset
parameter to current end of file.

The fp_lseek kernel service is an internal interface to the function provided by the lseek
subroutine.

Execution Environment
The fp_lseek kernel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

If an error occurs, one of the values from the <sys/errno.h> file is returned.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The lseek subroutine.

Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

1-118 Kernel Reference

I

~

fp_open

fp_open Kernel Service

Purpose

Syntax

Opens a regular file or directory.

#include <sys/types.h>
#include <sys/errno.h>

fp_open (path, oflags, cmode, ext, segflag, fpp)
char *path;
unsigned oflags;
unsigned cmode;
int ext;
unsigned segflag;
struct file ** fpp;

Parameters
path

oflags

cm ode

ext

segflag

fpp

Description

Points to the file name of the file to be opened.

Specifies open mode flags as described in the open subroutine.

Specifies the mode (permissions) value to be given to the file if the file is to
be created.

Specifies an extension argument required by some device drivers. Its
content, form, and use are determined by the individual driver.

Specifies the flag indicating where the pointer specified by the path
parameter is located:

SYS_ADSPACE
The pointer specified by the path parameter is stored in
kernel memory.

USER_ADSPACE
The pointer specified by the path parameter is stored in
application memory.

Points to the location where the file structure pointer is to be returned by the
fp_open service.

The fp_open kernel service provides a common service used by the following:

• The file system for the implementation of the open subroutine

• Kernel routines outside the file system that must open files.

Execution Environment
The fp_open kernel service can be called from the process environment only.

Kernel Services 1-119

fp_open

Return Values
0 Indicates a successful operation.

Also, the fpp parameter points to an open file structure that is valid for use with the other
Logical File System services. If an error occurs, one of the values from the <sys/errno.h>
file is returned. The discussion of the open subroutine contains possible errno values.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The open subroutine.

Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

1-120 Kernel Reference

fp_opendev

fp_opendev Kernel Service

Purpose

Syntax

Opens a device special file.

#include <sys/types.h>
#include <sys/errno.h>

fp_opendev (devno, devflag, channame, ext, fpp)
dev_t devno;
int devflag;
char *channame;
int ext;
struct file** fpp;

Parameters
devno Specifies the major and minor device number of device driver to open.

devflag

channame

ext

fpp

Description

Specifies one of the following values:

DREAD

DWRITE

The device is being opened for reading only.

The device is being opened for writing.

DNDELAY The device is being opened in nonblocking mode.

Points to a channel specifying character string or NULL.

Specifies an extension argument required by some device ~rivers. Its
content, form, and use are determined by the individual dr.iver.

Specifies the returned file pointer. This. parameter is passed by reference
and is updated by the fp_opendev service to be the file pointer for this
open instance. This file pointer is used as input to other Logical File System
services to specify the open instance.

The fp_opendev kernel service is called by the kernel or kernel extension to open a device
by specifying its device major and minor number. The fp_opendev kernel service provides
the correct semantics for opening the character or multiplexed class of device drivers.

If the specified device driver is nonmultiplexed:

• An in-core inode is found or created for this device.

• The inode reference count is incremented.

• The device driver's ddopen entry point is called with the devno, devflag, and ext
parameters. The unused chan parameter on the call to the ddopen routine is set to 0
(zero).

If the device driver is a multiplexed character device driver (that is, its ddmpx entry point is
defined), an in-core inode is created for this channel. The device driver's ddmpx routine is
also called with the channame pointer to the channel identification string if non-NULL. If the
channame pointer is NULL, the ddmpx device driver routine is called with the pointer to a
null character string.

Kernel Services 1-121

fp_opendev

If the device driver can allocate the channel, the ddmpx routine returns a channel ID, ~
represented by the chan parameter. If the device driver cannot allocate a channel, the
fp_opendev kernel service returns an ENXIO error code. If successful, the inode reference
count is incremented. The device driver's ddopen routine is also called with the devno,
devflag, chan (provided by ddmpx routine), and ext parameters.

If the return code from the specified device driver's ddopen routine is nonzero, it is returned
as the return code for the fp_opendev kernel service. If the return code from the device
driver's ddopen routine is zero, the file pointer corresponding to this open of the device is
returned.

The fp_opendev kernel service can only be called in the process environment or device
driver top half. Interrupt handlers cannot call it. It is assumed that all arguments to the
fp_opendev kernel service are in kernel space.

A file pointer (specified by the fpp parameter) returned by the fp_opendev kernel service is
only valid for use with a subset of the Logical File System services. These nine services can
be called:

• fp_close

• fp_ioctl

• fp_poll

• fp_select

• fp_read

• fp_readv

• fp_rwuio

• fp_write

• fp_writev

Other services return an EINVAL return value if called.

Execution Environment
The fp_opendev kernel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

The *fpp field also points to an open file structure that is valid for use with the other Logical
File System services. If an error occurs, one of the following values from the <sys/errno.h>
file is returned:

EINVAL

ENODEV

EINTR

EN FILE

ENXIO

Indicates that the major portion of the devno parameter exceeds the
maximum number allowed, or the devflags parameter is not valid.

Indicates that the device does not exist.

Indicates that the signal was caught while processing the fp_opendev
request.

Indicates that the system file table is full.

Indicates that the device is multiplexed and unable to allocate the channel.

ddopen return codes
Any nonzero return code returned from a device driver ddopen routine.

1-122 Kernel Reference

I
I
I

\

/

fp_opendev

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

Kernel Services · 1-123

fp_poll

fp_poll Kernel Service

Purpose

Syntax

Checks the 1/0 status of multiple file pointers/descriptors and message queues.

#include <Sys/types.h>
#include <sys/errno.h>
#include <sys/poll.h>

int fp_poll (listptr, nfdsmsgs, timeout, flags)
void * listptr;
unsigned long nfdsmsgs;
long timeout;
uint flags;

Parameters
listptr Points to an array of pollfd or pollmsg structures, or to a single pollist

structure. Each structure specifies a file pointer/descriptor or message
queue ID. The events of interest for this file or message queue are also
specified.

nfdsmsgs

timeout

Specifies the number of files and message queues to check. The low-order
16 bits give the number of elements present in the array of pollfd
structures. The high-order 16 bits give the number of elements present in
the array of pollmsg structures. If either half of the nfdsmsgs parameter is
equal to 0 (zero), then the corresponding array is presumed absent.

Specifies how long the service waits for a specified event to occur. If the
value of this parameter is -1, the fp_poll kernel service does not return until
at least one of the specified events has occurred. If the time-out value is 0
(zero), the fp_poll kernel service does not wait for an event to occur.
Instead, the service returns immediately even if none of the specified events
have occurred. For any other value of the timeout parameter, the fp_poll
kernel service specifies the maximum length of time (in milliseconds) to wait
for at least one of the specified events to occur.

flags Specifies the type of data in the listptr parameter:

POLL_FDMSG Input is a file descriptor and/or message queue.

0 Input is a file pointer.

Description
Note: The fp_poll service applies only to character devices, pipes, message queues, and

sockets. Not all character device drivers support the fp_poll service.

The fp_poll kernel service checks the specified file pointers/descriptors and message
queues to see if they are ready for reading or writing, or if they have an exceptional condition
pending.

1-124 Kernel Reference

(

\

fp_poll

The pollfd, pollmsg, and pollist structures are defined in the <sys/poll.h> file. These are
the same structures described for the poll subroutine. One difference is that the fd field in
the pollfd structure contains a file pointer when the flags parameter on the fp_poll kernel
service equals O (zero). If the flags parameter is set to a POLL_FDMSG value, the field is
taken as a file descriptor in all processed pollfd structures. If either the fd or msgid fields in
their respective structures has a negative value, the processing for that structure is skipped.

When performing a poll operation on both files and message queues, the listptr parameter
points to a pollist structure, which can specify both files and message queues.

To construct a pollist structure, use the POLLIST macro as described in the poll
subroutine.

If the number of pollfd elements in the nfdsmsgs parameter is O (zero), then the listptr
parameter must point to an array of pollmsg structures.

If the number of pollmsg elements in the nfdsmsgs parameter is O (zero), then the listptr
parameter must point to an array of pollfd structures.

If the number of pollmsg and pollfd elements are both nonzero in the nfdsmsgs parameter,
the listptr parameter must point to a pollist structure as previously defined.

Execution Environment
The fp_poll kernel service can be called from the process environment only.

Return Values
Upon successful completion, the fp_poll kernel service returns a value that indicates the
total number of files and message queues that satisfy the selection criteria. The return .value
is similar to the nfdsmsgs parameter in the following ways:

• The low-order 16 bits give the number of files.

• The high-order 16 bits give the number of message queue identifiers that have nonzero
revents values.

Use the NFDS and NMSGS macros to separate these two values from the return value. A
return code of O (zero) indicates that:

• The call has timed out.

• None of the specified files or message queues indicates the presence of an event.

In other words, all revents fields are 0.

When the return code from the fp_poll kernel service is negative, it is set to the following
value:

EINTR Indicates that a signal was caught during the fp_poll kernel service.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The poll subroutine.

Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

Kernel Services 1-125

fp_read

fp_read Kernel Service

Purpose

Syntax

Performs a read on an open file with arguments passed.

#include <Sys/types.h>
#include <Sys/errno.h>

fp_read (fp, buf, nbytes, ext, segflag, countp)
struct file * fp;
char*buf;
int nbytes;
int ext;
int segflag;
int *countp;

Parameters
fp Points to a file structure returned by the fp_open or fp_opendev kernel

service.

buf

nbytes

ext

segflag

countp

Description

Points to the buffer where data read from the file is to be stored.

Specifies the number of bytes to be read from the file into the buffer.

Specifies an extension argument required by some device drivers. Its
content, form, and use are determined by the individual driver.

Indicates in which part of memory the buffer specified by the buf parameter
is located.

SVS_ADSPACE
The buffer specified by the buf parameter is in kernel
memory.

USER_ADSPACE
The buffer specified by the buf parameter is in application
memory.

Points to the location where the count of bytes actually read from the file is
to be returned.

The fp_read kernel service is an internal interface to the function provided by the read
subroutine.

Execution Environment
The fp_read kernel service can be called from the process environment only.

Return Values
0 Indicates successful completion.

If an error occurs, one of the values from the <sys/errno.h> file is returned.

1-126 Kernel Reference

(

\

fp_read

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The read subroutine.

Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

Kernel Services 1-127

fp_readv

fp_readv Kernel Service

Purpose

Syntax

Performs a read operation on an open file with arguments passed in iovec elements.

#include <sys/types.h>
#include <Sys/errno.h>

fp_readv (fp, iov, iovcnt, ext, segflag, countp)
struct file * fp;
char *iov;
int iovcnt;
int ext;
int segflag;
int *countp;

Parameters
fp Points to a file structure returned by the fp_open kernel service.

iov

iovcnt

ext

segflag

countp

Description

Points to array of iovec elements. Each iovec element describes a buffer
where data to be read from the file is to be stored.

Specifies the number of iovec elements in array pointed to by the iov
parameter.

Specifies an extension argument required by some device drivers. Its
content, form, and use are determined by the individual driver.

Indicates in which part of memory the array specified by the iov parameter is
located:

SYS_ADSPACE
The array specified by the iov parameter is in kernel
memory.

USER_ADSPACE
The array specified by the iov parameter is in application
memory.

Points to the location where the count of bytes actually read from the file is
to be returned.

The fp_readv kernel service is an internal interface to the function provided by the readv
subroutine.

Execution Environment
The fp_readv kernel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

If an error occurs, one of the values from the <sys/errno.h> file is returned.

1-128 Kernel Reference

fp_readv

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The readv subroutine.

Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

Kernel Services 1-129

fp_rwuio

fp_rwuio Kernel Service

Purpose

Syntax

Performs read and write operations on an open file with arguments passed in a uio
structure.

#include <sys/types.h>
#include <sys/errno.h>

fp_rwuio {fp, rw, uiop, ext)
struct file * fp;
enum uio_rw rw;
struct uio *uiop;
int ext;

Parameters
fp Points to a file structure returned by the fp_open or fp_opendev kernel

service.

rw

uiop

ext

Description

Indicates whether this is a read operation or a write operation. It has a value
of UIO_READ or UIO_WRITE.

Points to a uio structure, which contains the information such as where to
move data and how much to move.

Specifies an extension argument required by some device drivers. Its
content, form, and use are determined by the individual driver.

The fp_rwuio kernel service is not the preferred interface for read and write operations.
The fp_rwuio kernel service should only be used if the calling routine has been passed a
uio structure. If the calling routine has not been passed a uio structure, it should not attempt
to construct one and call the fp_rwuio kernel service with it. Rather, it should pass the
requisite uio components to the fp_read or fp_write kernel services.

Execution Environment
The fp_rwuio kemel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

If an error occurs, one of the values from the <sys/errno.h> file is returned.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The uio Structure, Logical File System Kernel Services in Kernel Extensions and Device
Support Programming Concepts.

1-130 Kernel Reference

I

~

fp_select

fp_select Kernel Service

Purpose

Syntax

Provides for cascaded, or redirected, support of the select or poll request.

#include <sys/types.h>
#include <sys/errno.h>

int fp_select (fp, events, rtneventp, notify)
struct file *fp;
ushort events;
ushort * rtneventp;
void (*notify)();

Parameters
fp Points to the open instance of the device driver, socket, or pipe for which the

low-level select operation is intended.

events

rtneventp

Identifies the events that are to be checked. There are three standard event
flags defined for the poll and select functions and one informational flag.
The <sys/poll.h> file details the event bit definition. The four basic
indicators are:

POLLIN Input is present for the specified object.

POLLOUT The specified file object is capable of accepting output.

POLLPRI An exception condition has occurred on the specified
object.

POLLSVNC This is a synchronous request only. If none of the requested
events are true, the selected routine should not remember
this request as pending. That is, the routine does not need
to call the selnotify service because of this request.

Indicates the returned events pointer. This parameter, passed by reference,
is used to indicate which selected events are true at the current time. The
returned event bits include the requested events plus an additional error
event indicator:

POLLE RR An error condition was indicated by the object's select
routine. If this flag is set, the nonzero return code from the
specified object's select routine is returned as the return
code from the fp_select kernel service.

notify Points to a routine to be called when the specified object invokes the
selnotify kernel service for an outstanding asynchronous select or poll
event request. If no routine is to be called, this parameter must be NULL.

Kernel Services 1-131

fp_select

Description
The fp_select kernel service is a low-level service used by kernel extensions to perform a
select operation for an open device, socket, or named pipe. The fp_select kernel service
can be used for both synchronous and asynchronous select requests. Synchronous
requests report on the current state of a device and asynchronous requests allow the caller
to be notified of future events on a device.

Invocation from a Device Driver's ddselect Routine
The fp_select kernel service can be called by a device driver's ddselect routine to pass
select/poll requests to other device drivers. The ddselect routine for one device invokes the
fp_select kernel service, which calls the ddselect routine for a second device, and so on.
This is required when event information for the original device depends upon events
occurring on other devices. A cascaded chain of select requests can be initiated that
involves more than two devices, or a single device may issue fp_select calls to several
other devices.

Each ddselect routine should preserve, in its call to the fp_select kernel service, the same
POLLSYNC indicator that it received when previously called by the fp_select kernel service.

Invocation from Outside a Device Driver's ddselect Routine
If the fp_select kernel ~ervice is invoked outside of the device driver's ddselect routine, the
fp_select kernel service sets the POLLSYNC flag, always making the request synchronous.
In this case, no notification of future events for the specified device occurs, nor is a notify
routine called, if specified. The fp_select kernel service can be used in this manner
(unrelated to a poll or select request in progress) to check an object's current status.

Asynchronous Processing and the Use of the notify Routine
For asynchronous requests, the fp_select kernel service allows its callers to register a
notify routine to be called by the kernel when specified events become true. When the
relevant device driver detects that one or more pending events have become true, it invokes
the selnotify kernel service. The selnotify kernel service then calls the notify routine, if one
has been registered. Thus, the notify routine is called at interrupt time and must be
programmed to run in an interrupt environment.

Use of a notify routine affects both the calling sequence at interrupt time and how the
requested information is actually reported. Generalized asynchronous processing entails the
following sequence of events:

1. A select request is initiated on a device and passed on (by multiple fp_select kernel
service invocations) to further devices. Eventually, a device driver's ddselect routine that
is not dependent on other devices for information is reached. This ddselect routine finds
that none of the requested events are true, but remembers the asynchronous request,
and returns to the caller. In this way, the entire chain of calls is backed out, until the
origin of the select request is reached. The kernel then puts the originating process to
sleep.

2. Later, one or more events become true for the device remembering the asynchronous
request. The device driver routine (possibly an interrupt handler) calls the selnotify
kernel service.

1-132 Kernel Reference

;!
i'
·~

(

fp_select

3. If the events are still being waited on, the selnotify kernel service responds in one of two
ways. If no notify routine was registered when the select request was made for the
device, then all processes waiting for events on this device are awakened. If a notify
routine exists for the device, then this routine is called. The notify routine determines
whether the original requested event should be reported as true, and if so, calls the
selnotify kernel service on its own.

The following example details a cascaded scenario involving several devices. Suppose that
a request has been made for Device A, and Device A depends on Device B, which depends
on Device C. When specified events become true at Device C, the selnotify kernel service
called from Device C's device driver performs differently depending on whether a notify
routine was registered at the time of the request.

Cascaded Processing without the Use of notify Routines
If no notify routine was registered from Device 8, then the selnotify kernel service
determines that the specified events are to be considered true for the device driver at the
head of the cascading chain. (The head of the chain, in this case Device A, is the first
device driver to issue the fp_select kernel service from its select routine.) The selnotify
kernel service awakens all processes waiting for events that have occurred on Device A.

It is important to note that when no notify routine is used, any device driver in the calling
chain that reports an event with the selnotify kernel service causes that event to appear
true for the first device in the chain. As a result, any processes waiting for events that have
occurred on that first device are awakened.

Cascaded Processing with notify Routines
If, on the other hand, notify routines have been registered throughout the chain, then each
interrupting device (by calling the selnotify kernel service) invokes the notify routine for the
device above it in the calling chain. Thus in the preceding example, the selnotify kernel
service for Device C calls the notify routine registered when Device B's ddselect routine
invoked the fp_select kernel service. Device B's notify routine must then decide whether to
again call the selnotify kernel service to alert Device A's notify routine. If so, then Device
A's notify routine is called, and makes its own determination whether to call another
selnotify routine. If it does, the selnotify kernel service wakes up all the processes waiting
on occurred events for Device A.

A variation on this scenario involves a cascaded chain in which only some device drivers
have registered notify routines. In this case, the selnotify kernel service at each level calls
the notify routine for the level above, until a level is encountered for which no notify routine
was registered. At this point, all events of interest are determined to be true for the device
driver at the head of the cascading chain. If any notify routines were registered in levels
above the current level, they are never called.

Returning from the fp_select Kernel Service
The fp_select kernel service does not wait for any selected events to become true, but
returns immediately after the call to the object's ddselect routine has completed.

If the object's select routine is successfully called, the return code for the fp_select kernel
service is set to the return code provided by the object's ddselect routine.

Execution Environment
The fp_select kernel service can be called from the process environment only.

Kernel Services 1-133

fp_select

Return Values
0 Indicates successful completion.

EA GAIN

EINVAL

Indicates that the allocation of internal data structures failed. The rtneventp
parameter is not updated.

Indicates that the fp parameter is not a valid file pointer. The rtneventp
parameter has the POLLNVAL flag set.

Nonzero return code from the ddselect routine
Return code provided by the specified object's ddselect routine. The
rtneventp parameter has the POLLERR flag set.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The selnotify kernel service, fp_poll kernel service.

The select subroutine, poll subroutine.

The fp_select notify routine.

Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

1-134 Kernel Reference

;1
I'

~

(

fp_write

fp_write Kernel Service

Purpose

Syntax

Performs a write operation on an open file with arguments passed.

#include <Sys/types.h>
#include <sys/errno.h>

fp_write (fp, buf, nbytes, ext, segflag, countp)
struct file * fp;
char *but,
int nbytes,
int ext;
int segflag;
int *countp;

Parameters
fp Points to a file structure returned by the fp_open or fp_opendev kernel

service.

buf

nbytes

ext

segflag

countp

Description

Points to the buffer where data to be written to a file is located.

Indicates the number of bytes to be written to the file.

Specifies an extension argument required by some device drivers. Its
content, form, and use are determined by the individual driver.

Indicates in which part of memory the buffer specified by the buf parameter
is located:

SYS_ADSPACE

USER_ADSPACE

The buffer specified by the buf parameter is in
kernel memory.

The buffer specified by the buf parameter is in
application memory.

Points to the location where count of bytes actually written to the file is to be
returned.

The fp_write kernel service is an internal interface to the function provided by the write
subroutine.

Execution Environment
The fp_write kernel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

If an error occurs, one of the values from the <sys/errno.h> file is returned.

Kernel Services 1-135

fp_write

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The write subroutine.

Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

1-136 Kernel Reference

/

\

(

fp_writev

fp_writev Kernel Service

Purpose

Syntax

Performs a write operation on an open file with arguments passed in iovec elements.

#include <sys/types.h>
#include <sys/errno.h>

fp_writev (fp, iov, iovcnt, ext, segflag, countp)
struct file *fp;
struct iovec * iov;
int iovcnt;
int ext;
int segflag;
int *countp;

Parameters
fp Points to a file structure returned by the fp_open kernel service.

iov

iovcnt

ext

segflag

countp

Description

Points to an array of iovec elements. Each iovec element describes a
buffer containing data to be written to the file.

Specifies the number of iovec elements in an array pointed to by the iov
parameter.

Specifies an extension argument required by some device drivers. Its
content, form, and use are determined by the individual driver.

Indicates in which part of memory the information designated by the iov
parameter is located:

SYS_ADSPACE

USER_ADSPACE

The information designated by the iov parameter is
in kernel memory.

The information designated by the iov parameter is
in application memory.

Points to the location where the count of bytes actually written to the file is
to be returned.

The fp_writev kernel service is an internal interface to the function provided by the writev
subroutine.

Execution Environment
The fp_writev kernel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

If an error occurs, one of the values from the <Sys/errno.h> file is returned.

Kernel Services 1-137

fp_writev

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The writev subroutine.

Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

1-138 Kernel Reference

(

\

(
I;

fubyte

fubyte Kernel Service

Purpose

Syntax

Parameter

Fetches, or retrieves, a byte of data from user memory.

#include <sys/types.h>
#include <sys/errno.h>

int fubyte (uaddtJ
uchar*uaddr,

uaddr Specifies the address of user data.

Description
The fubyte kernel service fetches, or retrieves, a byte of data from the specified address in
user memory. It is provided so that system calls and device heads can safely access user
data. The fubyte service ensures that the user has the appropriate authority to:

• Access the data

• Protect the operating system from paging 1/0 errors on user data.

The fubyte service should be called only while executing in kernel mode in the user
process.

Execution Environment
The fubyte kernel service can be called from the process environment only.

Return Values
The specified byte Indicates successful completion.

-1 Indicates a uaddr parameter that is invalid.

The access is not valid under the following circumstances:

• The user does not have sufficient authority to access the data.

• The address is not valid.

• An 1/0 error occurs while referencing the user data.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The fuword kernel service, subyte kernel service, suword kernel service.

Accessing User-Mode Data while in Kernel Mode, Memory Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-139

fuword

fuword Kernel Service

Purpose

Syntax

Parameter

Fetches, or retrieves, a word of data from user memory.

#include <sys/types.h>
#include <sys/errno.h>

int fuword {uaddr?
int *uaddr;

uaddr Specifies the address of user data.

Description
The fuword kernel service retrieves a word of data from the specified address in user
memory. It is provided so that system calls and device heads can safely access user data.
The fuword service ensures that the user had the appropriate authority to:

• Access the data

• Protect the operating system from paging 1/0 errors on user data.

The fuword service should be called only while executing in kernel mode in the user
process.

Execution Environment
The fuword kernel service can be called from the process environment only.

Return Values
The specified word Indicates successful completion.

-1 Indicates a uaddr parameter that is not valid.

The access is not valid under the following circumstances:

• The user does not have sufficient authority to access the data.

• The address is not valid.

• An 1/0 error occurs while referencing the user data.

For the fuword service, a retrieved value of -1 and a-1 return code are indistinguishable.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The fubyte kernel service, subyte kernel service, suword kernel service.

Accessing User-Mode Data While in Kernel Mode, Memory Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-140 Kernel Reference

getadsp

getadsp Kernel Service

Purpose

Syntax

Obtains a pointer to the current process's address space structure for use with the as_att
and as_det kernel services.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <sys/vmuser.h>
#include <Sys/addspace.h>

adspace_t *getadsp ()

Description
The getadsp kernel service returns a pointer to the current process's address space
structure for use with the as_att and as_det kernel services. This routine distinguishes
between kernel processes (kprocs) and ordinary processes. It returns the correct address
space pointer for the current process.

Execution Environment
The getadsp kernel service can be called from the process environment only.

Return Value
The getadsp service returns a pointer to the current process's address space structure.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The as_att kernel service, as_det kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-141

getblk

getblk Kernel Service

Purpose

Syntax

Assigns a buffer to the specified block.

#include <Sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

struct buf *getblk { dev, blkno)
dev_t dev,
daddr _t blkno;

Parameters
dev Specifies the device containing the block to be allocated.

blkno Specifies the block to be allocated.

Description
The getblk kernel service first checks whether the specified buffer is in the buffer cache. If
the buffer resides there, but is in use, then the e_sleep service is called to wait until the
buffer is no longer in use. Upon waking, the getblk service tries again to access the buffer.
If the buffer is in the cache and not in use, it is removed from the free list and marked as
busy. Its buffer header is then returned. If the buffer is not in the buffer cache, then another
buffer is taken from the free list and returned.

Managing the Buffer Cache summarizes how the getblk, bread, and brelse services
uniquely manage the block 1/0 buffer cache.

Execution Environment
The getblk kernel service can be called from the process environment only.

Return Value
The getblk service returns a pointer to the buffer header. There are no error codes because
the getblk service waits until a buffer header becomes available.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Block 110 Buffer Cache Services: Overview, 1/0 Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-142 Kernel Reference

\

!'
I

~

getc

getc Kernel Service

Purpose

Syntax

Parameter

Retrieves a character from a character list.

#include <sys/types.h>
#include <sys/errno.h>
#include <Cblock.h>

int getc (headet)
struct clist *header;

header Specifies the address of the clist structure that describes the character list.

Description
The getc kernel service returns the character at the front of the character list. After returning
the last character in the buffer, the getc service frees that buffer.

Warning: The caller of the getc service must ensure that the character list is pinned. This
includes the clist header and all the cblock character buffers. Otherwise, the system may
crash.

Execution Environment
The getc kernel service can be called from either the process or interrupt environment.

Return Value
-1 Indicates that the character list is empty.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
110 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-143

getcb

getcb Kernel Service

Purpose

Syntax

Parameter

Removes the first buffer from a character list and returns the address of the removed buffer.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <Cblock.h>

struct cblock *getcb (headet)
struct clist *header;

header Specifies the address of the clist structure that describes the character list.

Description
The getcb kernel service returns the address of the character buffer at the start of the
character list and removes that buffer from the character list. The user must free the buffer
with the putcf service when finished with it.

Warning: The caller of the getcb service must ensure that the character list is pinned. This
includes the clist header and all the cblock character buffers. Character buffers acquired
from the getcf service are pinned. Otherwise, the system may crash.

Execution Environment
The getcb kernel service can be called from either the process or interrupt environment.

Return Values
NULL address Indicates that the character list is empty.

The getcb service returns the address of the character buffer at the start of the character list /
when the character list is not empty. \~

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
110 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-144 Kernel Reference

\
)

getcbp

getcbp Kernel Service

Purpose

Syntax

Retrieves multiple characters from a character buffer and places them at a designated
address.

#include <cblock.h>

int getcbp (header, dest, n)
struct clist *header,
char *dest;
int n;

Parameters
header Specifies the address of the clist structure that describes the character list.

Specifies the address where the characters obtained from the character list
are to be placed.

de st

n Specifies the number of characters to be read from the character list.

Description
The getcbp kernel service retrieves as many as possible of the n characters requested from
the character buffer at the start of the character list. The getcbp service then places them
at the address pointed to by the dest parameter.

Warning: The caller of the getcbp services must ensure that the character list is pinned.
This includes the clist header and all the cblock character buffers. Character buffers
acquired from the getcf service are pinned. Otherwise, the system may crash.

Execution Environment
The getcbp kernel service can be called from either the process or interrupt environment.

Return Value
The getcbp service returns the number of characters retrieved from the character buffer.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
110 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-145

get cf

getcf Kernel Service

Purpose

Syntax

Retrieves a free character buffer.

#include <sys/types.h>
#include <sys/errno.h>
#include <Cblock.h

struct cblock *getcf ()

Description
The getcf kernel service retrieves a character buffer from the list of available ones and
returns that buffer's address. The returned character buffer is pinned. If you use the getcf
service to get a character buffer, be sure to free the space when you have finished using it.
The buffers received from the getcf service should be freed by using the putcf kernel
service.

Before invoking the getcf service, the caller should request enough clist resources by using
the pincf kernel service. The proper use of the getcf service insures that there are sufficient
pinned buffers available to the caller.

If the getcf service indicates that there is no available character buffer, the waitcfree service
can be called to wait until a character buffer becomes available. \

The getcf service has no parameters.

Execution Environment
The getcf kernel service can be called from either the process or interrupt environment.

Return Values
Upon successful completion, the getcf service returns the address of the allocated character
buffer.

NULL pointer Indicates that no buffers are available.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-146 Kernel Reference

getcx

getcx Kernel Service

Purpose

Syntax

Parameter

Returns the character at the end of a designated list.

#include <sys/types.h>
#include <sys/errno.h>
#include <Cblock.h>

int getcx (headel?
struct clist *header,

header Specifies the address of the clist structure that describes the character list.

Description
The getcx kernel service is identical to the getc service, except that the getcx service
returns the character at the end of the list instead of the character at the front of the list. The
character at the end of the list is the last character in the first buffer, not in the last buffer.

Note: The caller of the getcx service must ensure that the character list is pinned. This
includes the clist header and all the cblock character buffers. Character buffers
acquired from the getcf service are pinned.

Execution Environment
The getcx kernel service can be called from either the process or interrupt environment.

Return Value
The getcx service returns the character at the end of the list instead of the character at the
front of the list.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-147

geteblk

geteblk Kernel Service

Purpose

Syntax

Allocates a free buffer.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

struct buf *geteblk ()

Description
Note: The use of the geteblk service by character device drivers is strongly discouraged.

As an alternative, character device drivers can use the xmalloc service to allocate
the memory space directly, or the character 1/0 kernel services such as the getcb or
getcf services.

The geteblk kernel service allocates a buffer and buffer header and returns the address of
the buffer header. If no free buffers are available, then the geteblk service waits for one to
become available. Block device drivers can retrieve buffers using the geteblk service. For a
comparison of block and character device drivers, see Comparison of Block and Character
Device Drivers.

In the header, the b_forw, b_back, b_flags, b_bcount, b_dev, and b_un fields are used
by the system and cannot be modified by the driver. The av_forw and av_back fields are
available to the user of the geteblk service for keeping a chain of buffers by the user of the
geteblk service. (For example, this user could be the kernel file system or a device driver).
The b_blkno and b_resid fields can be used for any purpose.

The brelse service is used to free this type of buffer.

The geteblk service has no parameters.

Execution Environment
The geteblk kernel service can be called from the process environment only.

Return Values
The geteblk service returns a pointer to the buffer header. There are no error codes
because the geteblk service waits until a buffer header becomes available.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The brelse kernel service, xmalloc kernel service.

Introduction to Kernel Buffers, Block 1/0 Buffer Cache Services: Overview, Physical Device
Support, 110 Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

1-148 Kernel Reference

(

geterror

geterror Kernel Service

Purpose

Syntax

Parameter

Determines the completion status of the buffer.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/buf .h>

int geterror {bp}
struct buf * bp;

bp Specifies the address of the buffer structure whose status is to be checked.

Description
The geterror kernel service checks the specified buffer to see if the B _ERROR flag is set. If
it is not set, the geterror service returns 0 (zero). Otherwise, the nonzero B_ERROR value
or the EIO value (if B_ERROR is 0).

Execution Environment
The geterror kernel service can be called from either the process or interrupt environment.

Return Values
0 Indicates that no 1/0 error occurred on the buffer.

B_ERROR value Indicates that an 1/0 error occurred on the buffer.

EIO Indicates that an unknown 1/0 error occurred on the buffer.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Block 1/0 Buffer Cache Services: Overview, 1/0 Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-149

getexcept

getexcept Kernel Service

Purpose

Syntax

Parameter

Allows kernel exception handlers to retrieve additional exception information.

#include <sys/types.h>
#Include <sys/errno.h>
#include <sys/except.h>

void getexcept (exceptp)
struct except * exceptp;

exceptp Specifies the address of an except structure, as defined in the
sys/except.h header file. The getexcept service copies detailed exception
data from the current machine-state save area into this caller-supplied.
structure.

Description
The getexcept kernel service provides exception handlers the capability to retrieve
additional information concerning the exception from the machine-state save area.

The getexcept service should only be used by exception handlers when called to handle an
exception. The contents of the structure pointed at by the exceptp parameter is
platform-specific, but is described in the sys/except.h header file for each type of exception
that provides additional data. This data is typically included in any error logging data for the
exception. It can be also used to attempt to handle or recover from the exception.

The getexcept service has no return values.

Execution Environment
The getexcept kernel service can be called from either the process or interrupt environment.
It should be called only when handling an exception. (

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Non-Recoverable Hardware 1/0 Errors, Kernel Program/Device Driver Management Kernel
Services in Kernel Extensions and Device Support Programming Concepts.

1-150 Kernel Reference

getpid

getpid Kernel Service

Purpose

Syntax

Gets the process ID of the current process.

#include <sys/types.h>
#include <sys/errno.h>

int getpid {)

Description
The getpid kernel service returns the process ID of the calling process.

The getpid service can also be used to check the environment that the routine is being
executed in. If the caller is executing in the interrupt environment, the getpid service returns
a process ID of-1. If a routine is executing in a process environment, the getpid service
obtains the current process ID.

Execution Environment
The getpid kernel service can be called from either the process or interrupt environment.

Return Values
-1 Indicates that the getpid service was called from an interrupt environment.

The getpid service returns the process ID of the current process if called from a process
environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding Execution Environments, Process and Exception Management Kernel
Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-151

getuerror

getuerror Kernel Service

Purpose

Syntax

Allows kernel extensions to retrieve the current value of the u_error field.

#include <Sys/types.h>
#include <sys/errno.h>

int getuerror ()

Description
The getuerror kernel service allows a kernel extension in a process environment to retrieve
the current value of the current process's u_error field. Kernel extensions can use the
getuerror service when using system calls or other kernel services that return error
information in the u_error field.

For system calls, the system call handler copies the value of the u_error field in the per
process u block to the errno global variable before returning to the caller. However, when
kernel services use available system calls, the system call handler is bypassed. The
getuerror service must then be used to obtain error information.

Execution Environment
The getuerror kernel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

When an error occurs, the getuerror kernel service returns the current value of u_error in
the per process u block. Possible return values for this field are defined in the
<sys/errno.h> header file.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The setuerror kernel service.

Actions of the System Call Handler describes the steps that the system call handler takes
when a system call is invoked in user mode.

Returning Error Information describes how system calls return error information.

Understanding System Call Execution, Returning Error Information from System Calls,
Kernel Program/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-152 Kernel Reference

I
(~

\
i

I

gfsadd

gf sadd Kernel Service

Purpose

Syntax

Adds a file system type to the gfs table.

#include <sys/types.h>
#include <sys/errno.h>

int gfsadd (gfsno, gfsp)
int gfsno;
struct gfs * gfsp;

Parameters
gfsno Specifies the file system number. This is a small integer value, either one of

those defined in the <sys/vmount.h> header file, or a user-defined number
of the same order.

gfsp Points to the file system description structure.

Description
The gfsadd kernel service is used during configuration of a file system. The configuration
routine for a file system invokes the gfsadd kernel service with a gfs structure. This
structure describes the file system type.

The gfs structure type is defined in the <sys/gfs.h> header file. The gfs structure must
have the following fields filled in:

gfs_type

gfs_name

gfs_flags

gfs_ops

gn_ops

Specifies the integer type value. The predefined types are listed in the
<sys/vmount.h> header file.

Specifies the character string name of the file system. The maximum length
of this field is 16 bytes. Shorter names must be null-padded.

Specifies the flags indicating whether the file system uses System V-type
directories and whether it is a distributed file system.

Specifies the array of pointers to vfs operation implementations.

Specifies the array of pointers to vnode operation implementations.

The file system description structure can also specify:

gfs_init

gfs_data

Points to an initialization routine to be called by the gfsadd kernel service.
This field must be NULL if no initialization routine is to be called.

Points to file system private data.

Execution Environment
The gfsadd kernel service can be called from the process environment only.

Kernel Services 1-153

gfsadd

Return Values
0

EBUSV

EINVAL

Indicates successful completion.

Indicates that the file system type has already been installed.

Indicates that the gfsno value is larger than the system-defined maximum.
The system-defined maximum is indicated in the <sys/vmount.h> header
file.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The gfsdel kernel service.

Understanding Data Structures and Header Files for Virtual File Systems, Virtual File
System Overview, Virtual File System Kernel Services in Kernel Extensions and Device
Support Programming Concepts.

1-154 Kernel Reference

(
~

gfsdel

gf sdel Kernel Service

Purpose

Syntax

Parameter

Removes a file system type from the gfs table.

#include <sys/types.h>
#include <Sys/errno.h>

int gfsdel (gfsno)
int gfsno;

gfsno Specifies the file system number. This value identifies the type of the file
system to be deleted.

Description
The gfsdel kernel service is called to delete a file system type. It is invalid to mount any file
system of the given type after that type has been deleted.

Execution Environment
The gfsdel kernel service can be called from the process environment only.

Return Values
0

ENO ENT

EINVAL

EBUSY

Indicates successful completion.

Indicates that the indicated file system type was not installed.

Indicates that the gfsno value is larger than the system-defined maximum.
The system-defined maximum is indicated in the <sys/vmount.h> header
file.

Indicates that there are active vfs structures for the file system type being
deleted.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The gfsadd kernel service.

Virtual File System Overview, Virtual File System Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-155

i_clear

i_clear Kernel Service

Purpose

Syntax

Parameter

Removes an interrupt handler.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

void i_clear (hand/et}
struct intr *handler,

handler Specifies the address of the interrupt handler structure passed to the i_init
service.

Description
The i_clear service removes the interrupt handler specified by the handler parameter from
the set of interrupt handlers that the kernel knows about. Coding an Interrupt Handler
contains a brief description of interrupt handlers.

The i_mask service is called by the i_clear service to disable the interrupt handler's bus

(

\

interrupt level when this is the last interrupt handler for the bus interrupt level. The i_clear (
service removes the interrupt handler structure from the list of interrupt handlers. The kernel
maintains this list for that bus interrupt level.

The i_clear service has no return values.

Execution Environment
The i_clear kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The i_init kernel service.

Processing Interrupts.

Understanding Interrupts, Processing Interrupts, 1/0 Kernel Services in Kernel Extensions
and Device Support Programming Concepts.

1-156 Kernel Reference

i_disable

i_disable Kernel Service

Purpose

Syntax

Parameter

Disables interrupt priorities.

#include <Sys/types.h>
#include <sys/errno.h>
#include <Sys/intr.h>

int i_disable (new)
int new;

new Specifies the new interrupt priority.

Description
The i_disable service sets the interrupt priority to a more favored interrupt priority. The
interrupt priority is used to control which interrupts are allowed.

Note: The i_disable service is very similar to the standard UNIX spl service.

A value of INTMAX is the most favored priority and disables all interrupts. A value of
INTBASE is the least favored and disables only interrupts not in use. The <sys/intr.h>
header file defines the valid interrupt priorities.

The interrupt priority is changed only to serialize code executing in more than one
environment (that is, process and interrupt environments).

For example, a device driver typically links requests in a list while executing under the calling
process. The device driver's interrupt handler typically uses this list to initiate the next
request. Therefore, the device driver must serialize updating this list with device interrupts.
The i_disable and i_enable services provide this ability. Coding an Interrupt Handler
contains a brief description of interrupt handlers.

The i_disable service must always be used with the i_enable service. A routine must
always return with the interrupt priority restored to the value that it had upon entry.

The i_mask service can be used when a routine must disable its device across a return.

Warning: The i_disable service has two side effects that result from the preemptable and
pageable nature of the AIX kernel. First, it prevents process dispatching. Second, it
ensures, within limits, that the caller's stack is in memory. Page faults that occur while the
interrupt priority is not equal to INTBASE crash the system.

Because of these side effects, the caller of the i_disable service should ensure that:

• The reference parameters are pinned.

• The code executed during the disable operation is pinned.

• The amount of stack used during the disable operation is less than 1 Kbyte.

• The called programs use less than 1 Kbyte of stack.

Kernel Services 1-157

i_disable

The caller of the Ldisable service should also call only services that can be called by
interrupt handlers.

The kernel's first-level interrupt handler sets the interrupt priority for an interrupt handler
before calling the interrupt handler. The interrupt priority for a process is set to INTBASE
when the process is created. The interrupt priority is part of each process's state. The
dispatcher sets the interrupt priority to the value associated with the process to be executed.

Execution Environment
The i_disable kernel service can be called from either the process or interrupt environment.

Return Value
The i_disable service returns the current interrupt priority that is used subsequently with the
i_enable service.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The i_enable kernel service, i_mask kernel service.

Processing Interrupts.

Understanding Interrupts, Processing Interrupts, 1/0 Kernel Services in Kernel Extensions
and Device Support Programming Concepts.

1-158 Kernel Reference

(

/
I
~

i_enable

i_enable Kernel Service

Purpose

Syntax

Parameter

Enables interrupt priorities.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <sys/intr.h>

void i_enable (old)
int old;

old Specifies the interrupt priority returned by the i_disable service.

Description
The i_enable service restores the interrupt priority to a less favored value. This value should
be the value that was in effect before the corresponding call to the i_disable service.

The i_enable service has no return values.

Execution Environment
The i_enable kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The i_disable kernel service.

Processing Interrupts.

Understanding Interrupts, Processing Interrupts, 1/0 Kernel Services in Kernel Extensions
and Device Support Programming Concepts.

Kernel Services 1-159

i_init

i_init Kernel Service

Purpose

Syntax

Parameter

Defines an interrupt handler.

#include csys/types.h>
#include csys/errno.h>
#include csys/intr.h>

int i_init (hand/et}
struct intr *handler,

handler Designates the address of the pinned interrupt handler structure.

Description
The i_init service allows device drivers to define an interrupt handler to the kernel. The
interrupt handler intr structure pointed to by the handler parameter describes the interrupt
handler. The caller of the i_init service must initialize all the fields in the intr structure. The
csys/intr.h> header file defines these fields and their valid values.

The i_init service enables interrupts by linking the interrupt handler structure to the end of
the list of interrupt handlers defined for that bus level. If this is the first interrupt handler for
the specified bus interrupt level, the i_init service enables the bus interrupt level by calling
the i_unmask service.

The interrupt handler can be called before the i_init service returns if the following two
conditions are met:

• The caller of the i_init service is executing at a lower interr~pt priority than the one
defined for the interrupt.

• An interrupt for the device or another device on the same bus interrupt level is already
pending.

Warning: The interrupt handler structure must not be altered between the call to the i_init
service to define the interrupt handler and the call to the i_clear service to remove the
interrupt handler. It must also stay pinned. If this structure is altered at those times, a kernel
panic may result.

Coding an Interrupt Handler
The kernel calls the interrupt handler when an enabled interrupt occurs on that bus interrupt
level. The interrupt handler is responsible for determining if the interrupt is from its own
device and then processing the interrupt. The interface to the interrupt handler is as follows:

int interrupt_handler (hand/et}
struct intr *handler,

The handler parameter points to the same interrupt handler structure specified in the call to
the l_init kernel service Note that the device driver can pass additional parameters to its
interrupt handler by declaring the interrupt handler structure to be part of a larger structure
that contains these parameters.

1-160 Kernel Reference

/
\

i_init

The interrupt handler can return one of two return values. A value of INTR_SUCC indicates
that the interrupt handler processed the interrupt and reset the interrupting device. A value
of INTR_FAIL indicates that the interrupt was not from this interrupt handler's device.

Registering Early Power-Off Warning (EPOW) Routines
The i_init kernel service can also be used to register an EPOW (Early Power-Off Warning)
notification routine. More details on this are provided in Early Power-Off Warning discussion
in Processing Interrupts

The return code from the EPOW interrupt handler should be INTR_SUCC, which indicates
that the interrupt was successfully handled. All registered EPOW interrupt handlers are
called when an EPOW interrupt is indicated.

Execution Environment
The i_init kernel service can be called from either the process or interrupt environment.

Return Values
INTR_SUCC Indicates a successful completion.

INTR_FAIL Indicates an unsuccessful completion. The i_init service did not define the
interrupt handler.

An unsuccessful completion occurs when there is a conflict between a shared and a
nonshared bus interrupt level. An unsuccessful completion also occurs when more than one
interrupt priority is assigned to a bus interrupt level.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Processing Interrupts.

Early Power-Off Warning discussion in Processing Interrupts.

Understanding Interrupts, Processing Interrupts, 110 Kernel Services in Kernel Extensions
and Device Support Programming Concepts.

Kernel Services 1-161

i_mask

i_mask Kernel Service

Purpose

Syntax

Parameter

Disables a bus interrupt level.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

void i_mask (handle!?
struct intr *handler,

handler Specifies the address of the interrupt handler structure that was passed to
the i_init service.

Description
The i_mask service disables the bus interrupt level specified by the handler parameter.

The i_disable and i_enable services are used to serialize the execution of various device
driver routines with their device interrupts.

The i_init and i_clear services use the i_mask and i_unmask services internally to
configure bus interrupt levels.

Device drivers can use the i_disable, i_enable, i_mask, and i_unmask services when they
must perform off-level processing with their device interrupts disabled. Device drivers also
use them when they must allow process execution with their device interrupts disabled.

The i_mask service has no return values.

Execution Environment
The i_mask kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The i_unmask kernel service.

Processing Interrupts.

Understanding Interrupts, Processing Interrupts, 1/0 Kernel Services in Kernel Extensions
and Device Support Programming Concepts.

1-162 Kernel Reference

I

\

i_reset

i_reset Kernel Service

Purpose

Syntax

Parameter

Resets a bus interrupt level.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <Sys/intr.h>

void i_reset (hand/et?
struct intr *handler,

handler Specifies the address of an interrupt handler structure passed to the i_inlt
service.

Description
The i_reset service resets the bus interrupt specified by the handler parameter. A device
interrupt handler calls the i_reset service after resetting the interrupt at the device on the
bus. Coding an Interrupt Handler contains a brief description of interrupt handlers.

The i_reset service has no return values.

Execution Environment
The i_reset kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The i_init kernel service.

Processing Interrupts.

Understanding Interrupts, Processing Interrupts, 1/0 Kernel Services in Kernel Extensions
and Device Support Programming Concepts.

Kernel Services 1-163

i_sched

i_sched Kernel Service

Purpose

Syntax

Parameter

Schedules off-level processing.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

void i_sched (handlery
struct intr *handler,

handler Specifies the address of the pinned interrupt handler structure.

Description
The i_sched service allows device drivers to schedule some of their work to be processed
at a less-favored interrupt priority. This capability allows interrupt handlers to run as quickly
as possible, avoiding interrupt-processing delays and overrun conditions. Coding an
Interrupt Handler contains a brief description of interrupt handlers.

Processing can be scheduled off-level in the following situation:

t1
I'
~

• The interrupt handler routine for a device driver must perform time-consuming processing. (

• This work does not need to be performed immediately.

The interrupt handler structure pointed to by the handler parameter describes an off-level
interrupt handler. The caller of the i_sched service must set up all fields in the lntr
structure. The INIT_OFFLn macros in the <sys/intr.h> header file can be used to initialize
the handler parameter. The n value represents the priority class that the off-level handler
should run at. Currently, classes from O to 3 are defined.

Notes:

Return Values

1. The caller cannot alter any fields in the intr structure from the time the i_sched
service is called until the kernel calls the off-level routine. It must also stay pinned.
Otherwise, the system may crash.

2. Off-level interrupt handler path length should not exceed 5,000 instructions. If it
does exceed this number, real-time support is adversely affected.The i_sched
service has no return values.

The i_sched service has no return values.

Execution Environment
The i_sched kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

1-164 Kernel Reference

(
\~

i_sched

Related Information
The i_init kernel service.

Processing Interrupts.

Understanding Interrupts, Processing Interrupts, 1/0 Kernel Services in Kernel Extensions
and Device Support Programming Concepts.

Kernel Services 1-165

i_unmask

i_unmask Kernel Service

Purpose

Syntax

Parameter

Enables a bus interrupt level.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/intr.h>

void i_unmask (hand/et)
struct intr *handler;

handler Specifies the address of the interrupt handler structure that was passed to
the i_init service.

Description
The i_unmask service enables the bus interrupt level specified by the handler parameter.
The i_unmask service has no return values.

Execution Environment

,-11

I·'
'I

\

The i_unmask kernel service can be called from either the process or interrupt environment. (

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The i_init kernel service, i_mask kernel service.

Processing Interrupts.

Understanding Interrupts, Processing Interrupts, 1/0 Kernel Services in Kernel Extensions
and Device Support Programming Concepts.

1-166 Kernel Reference

if_attach

if _attach Kernel Service

Purpose

Syntax

Parameter

Adds a network interface to the network interface list.

#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

if_attach (ifp)
struct if net * ifp;

ifp Points to the interface network (ifnet) structure that defines the network
interface.

Description
The if_attach kernel service registers a Network Interface Driver (NID) in the network
interface list. The if _attach kernel service has no return values.

Execution Environment
The if _attach kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The if_detach kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-167

if_detach

if_detach Kernel Service

Purpose

Syntax

Parameter

Deletes a network interface from the network interface list.

#include <Sys/types.h>
#include <sys/errno.h>
#include <net/if .h>

if _detach (ifp)
struct if net * ifp;

ifp Points to the interface network (ifnet) structure that describes the network
interface to delete.

Description
The if_detach kernel service deletes a Network Interface Driver (NID) entry from the
network interface list.

Execution Environment
The if_detach kernel service can be called from either the process or interrupt environment.

Return Values
0

ENO ENT

Indicates that the network interface was successfully deleted.

Indicates that the if_detach kernel service could not find the NID in the
network interface list.

Implementation Spef;:ifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The if_attach kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-168 Kernel Reference

(

if_down Kernel Service

Purpose

Syntax

Parameter

Marks an interface as down.

#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

void if_down (ifp)
register struct ifnet *ifp;

ifp Specifies the ifnet structure associated with the interface array.

Description
The if_down kernel service:

• Marks an interface as down by setting the ifnet structure flags field as not up

• Notifies the protocols of the transaction

• Flushes the output queue.

if_down

The ifp parameter specifies the ifnet structure associated with the interface to be marked as
down.

The if_down service has no return values.

Execution Environment

Example

The if _down kernel service can be called from either the process or interrupt environment.

To mark an interface as down, invoke the if_down kernel service as follows:

if_down(ifp);

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-169

if_nostat

if_nostat Kernel Service

Purpose

Syntax

Parameter

Zeros statistical elements of the interface array in preparation for an attach operation.

#include <Sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

void if_nostat (ifp)
struct if net * ifp;

ifp Specifies the ifnet structure·associated with the interface array.

Description
The if_nostat kernel service zeros the statistic elements of the ifnet structure for the
interface. The ifp parameter specifies the ifnet structure associated with the interface that is
being attached. The if _nostat service is called from the interface attach routine.

The if_nostat service has no return values.

Execution Environment

Example

The if_nostat kernel service can be called from either the process or interrupt environment.

To zero statistical elements of the interface array in preparation for an attach operation,
invoke the if_nostat kernel service as follows:

if _nos tat (ifp);

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-170 Kernel Reference

)

ifa_ifwithaddr

ifa_ifwithaddr Kernel Service

Purpose

Syntax

Parameter

Locates an interface based on a complete address.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/af.h>

struct ifaddr * ifa_ifwithaddr (addt)
struct sockaddr * addr,

addr Specifies a complete address.

Description
The ifa_ifwithaddr kernel service is passed a complete address and locates the
corresponding interface. If successful, the ifa_withaddr service returns the ifaddr structure
associated with that address.

Execution Environment

Example

The ifa_ifwithaddr kernel service can be called from either the process or interrupt
environment.

1. To locate an interface based on a complete address, invoke the ifa_ifwithaddr kernel
service as follows:

ifa_ifwithaddr((struct sockaddr *)&ipaddr):

Return Values
If successful, the ifa_withaddr service returns the corresponding ifaddr structure
associated with the address it is passed. If no interface is found, the ifa_withaddr service
returns a NULL pointer.

Implementation Specifics
This kernel service is part of AIX Base Operating System {BOS) Runtime.

Related Information
The ifa_ifwithdstaddr kernel service, ifa_ifwithnet kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-171

ifa _ ifwithdstaddr

ifa_ifwithdstaddr Kernel Service

Purpose

Syntax

Parameter

Locates the point-to-point interface with a given destination address.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/socket.h>
#include <net/if .h>

struct ifaddr * ifa_ifwithdstaddr (addl)
struct sockaddr * addr;

addr Specifies a destination address.

Description
The ifa_ifwithdstaddr kernel service searches the list of point-to-point addresses per
interface and locates the connection with the destination address specified by the addr
parameter.

Execution Environment

Example

The ifa_withdstaddr kernel service can be called from either the process or interrupt
environment.

1. To locate the point-to-point interface with a given destination address, invoke the
ifa_ifwithdstaddr kernel service as follows:

ifa_ifwithdstaddr((struct sockaddr *)&ipaddr);

Return Values
If successful, the ifa_ifwithdstaddr service returns the corresponding ifaddr structure
associated with the point-to-point interface. If no interface is found, the ifa_ifwithdstaddr
service returns a NULL pointer.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The ifa_ifwithaddr kernel service, ifa_ifwithnet kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-172 Kernel Reference

(

~.

I
I

\~

(

ifa _ifwith net

ifa_ifwithnet Kernel Service

Purpose

Syntax

Parameter

Locates an interface on a specific network.

#include <sys/types.h>
#Include <sys/errno.h>
#include <sys/socket.h>
#include <net/if.h>

struct ifaddr * ifa_ifwithnet (addt?
register struct sockaddr * addr,

addr Specifies the address.

Description
The ifa_ifwithnet kernel service locates an interface that matches the network specified by
the address it is passed. If more than one interface matches, the ifa_ifwithnet service
returns the first interface found. If successful, the ifa_ifwithnet service returns the ifaddr
structure of the correct interface.

Execution Environment

Example

The ifa_ifwithnet kernel service can be called from either the process or interrupt
environment.

1 . To locate an interface on a specific network, invoke the ifa_ifwithnet kernel service as
follows:

ifa_ifwithnet((struct sockaddr *)&ipaddr);

Return Values
If successful, the ifa_ifwithnet service returns the corresponding ifaddr structure associated
with an interface. If no interface is found, the ifa_ifwithnet service returns a NULL pointer.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The ifa_ifwithaddr kernel service, ifa_ifwithdstaddr kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-173

if unit

ifunit Kernel Service

Purpose

Syntax

Parameter

Returns a pointer to the ifnet structure of the requested interface.

#include <sys/types.h>
#include <sys/errno.h>
#include <net/if .h>

struct ifnet *
ifunit (name)
char *name;

name Specifies the name of an interface (for example, enO).

Description
The ifunit kernel service searches the list of configured interfaces for an interface specified
by the name parameter. If a match is found, the ifunit service returns the address of the
ifnet structure for that interface.

Execution Environment

Example

The ifunit kernel service can be called from either the process or interrupt environment.

1. To return a pointer to the ifnet structure of the requested interface, invoke the ifunit
kernel service as follows:

ifp = ifunit("enO"):

Return Values
The ifunit kernel service returns the address of the ifnet structure associated with the
named interface.

NULL Indicates that the interface was not found.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-17 4 Kernel Reference

(

\

I

\,

in it_ heap

init_heap Kernel Service

Purpose

Syntax

Initializes a new heap to be used with kernel memory management services.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmalloc.h>

heapaddr _t init_heap (area, size, heapp}
caddr_t area;
int size;
heapaddr_t*heapp;

Parameters
area Specifies the virtual memory address used to define the starting memory

area for the heap. This address must be page aligned.

size

heapp

Description

Specifies the size of the heap in bytes. This value must be an integral
number of system pages.

Points to the external heap descriptor. This must have a value of NULL. This
field is used by the base kernel to specify special heap characteristics that
are unavailable to kernel extensions.

The init_heap kernel service is most commonly used by a kernel process to initialize and
manage an area of virtual memory as a private heap. Once a private heap is created with
this service, the returned heapaddr_t value can be used with the xmalloc or xmfree service
to allocate or deallocate memory from the private heap. Heaps can be created within other
heaps, a kernel process private region, or even on a stack.

Few kernel extensions ever require the init_heap service because the exported global
kernel_heap and pinned_heap are normally used for memory allocation within the kernel.
However, kernel processes may use the init_heap service to create private nonglobal heaps
within their process private region for controlling kernel access to the heap and possibly for
performance considerations.

Execution Environment
The init_heap kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The xmalloc kernel service, xmfree kernel service.

Introduction to Kernel Processes, Memory Kernel Services in Kernel Extensions and Device
Support Programming Concepts.

Kernel Services 1-175

initp

initp Kernel Service

Purpose

Syntax

Changes the state of a kernel process from idle to ready.

#include <sys/types.h>
#include <sys/errno.h>

int initp (pid, func, init_parms, parms_length, name)
pid_t pid;
void (func) ()
void * init_parms;
int parms_length;
char *name;

Parameters
pid

func

init_parm

Specifies the process identifier of the process to be initialized.

Specifies the process's initialization routine.

Specifies the pointer to the initialization parameters.

parms_length Specifies the length of the initialization parameters.

name Specifies the process name.

Description
The initp kernel service completes the transition of a kernel process from idle to ready. The
idle state for a process is represented by p_status == SIDL. Before calling the initp service,
the creatp service is called to create the process. The creatp service allocates and
initializes a process table entry.

The initp service creates and initializes the process-private segment. The process is marked
as a kernel process by a bit set in the p_flag field in the process table entry. This bit, the
SKPROC bit, signifies that the process is a kernel process.

The process calling the initp service to initialize a newly created process must be the same
process that called the creatp service to create the new process.

Kernel Process Creation, Execution, and Termination further explains how the initp kernel
service completes the initialization process begun by the creatp service.

Description of Parameters
The pid parameter identifies the process to be initialized. It must be valid and identify a
process in the SIDL state.

The name parameter points to a character string that names the process. The leading
characters of this string are copied to the user structure. The number of characters copied is
implementation-dependent, but at least four are always copied.

The func parameter indicates the main entry point of the process. The new process is made
ready to run this function. If the init_parms parameter is not NULL, it points to data passed to
this routine. The parameter structure must be agreed upon between the initializing and
initialized process. The initp service copies the data specified by the init_parm parameter
(with the exact number of bytes specified by the parms_length parameter) of data to the new
process's stack.

1-176 Kernel Reference

I

\

The subroutine defined by the tune parameter can be declared as follows:

#include <sys/types.h>
#include <Sys/errno.h>

void tune (flag, init_parms, parms_length)
int flag;
void *init_parms;
int parms_length;

initp

Where the flag parameter has a O (zero) value if this subroutine is executed as a result of
initializing a process with the initp service.

Execution Environment
The initp kernel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

ENOMEM

EINVAL

Indicates that there was insufficient memory to initialize the process.

Indicates an invalid pid parameter.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime .

. Related Information
The creatp kernel service.

Introduction to Kernel Processes, Process and Exception Management Kernel Services in
Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-177

io_att

io_att Kernel Service

Purpose

Syntax

Selects, allocates, and maps a region in the current address space for 1/0 access.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>

caddr_t io_att (iohandle, offset)
vmhandle_t iohandle;
caddr_t offset;

Parameters
iohandle Specifies a handle for the 1/0 object to be mapped in the current address

space.

offset

Description

Specifies the address offset in both the 1/0 space and the virtual memory
region to be mapped.

The io_att kernel service performs these four tasks:

• Selects an unallocated virtual memory region

• Allocates it

• Maps the 1/0 address space specified by the iohandle parameter with the access
permission specified in the handle

• Constructs the address specified by the offset parameter in the current address space.

The io_att kernel service assumes an address space model of fixed-size 1/0 objects and
virtual memory address space regions.

Warning: The io_att service will crash the kernel if there are no more free regions.

Return Value
address Indicates the address for offset in the virtual memory address space.

Execution Environment
The io_att kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The io_det kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

1-178 Kernel Reference

(

\

io_det

io_det Kernel Service

Purpose

Syntax

Parameter

Unmaps and deallocates the region in the current address space at the given address.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <sys/vmuser.h>
#include <sys/addspace.h>

void io_det (eaddr)
caddr_t eaddr,

eaddr Specifies the effective address for the virtual memory region that is to be
detached. This address should be the same address that was previously
obtained by using the io_att kernel service to attach the virtual memory
region.

Description
The io_det kernel service unmaps the region containing the address specified by the eaddr
parameter and deallocates the region. This service then adds the region to the free list for
the current address space.

The io_det service assumes an address space model of fixed-size 1/0 objects and address
space regions.

The io_det kernel service has no return values.

Execution Environment
The io_det kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The io_att kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-179

iodone

iodone Kernel Service

Purpose

Syntax

Parameter

Performs block 1/0 completion processing.

#include <Sys/types.h>
#include <sys/errno.h>
#include <sys/buf .h>

void iodone {bp)
struct buf * bp;

bp Specifies the address of the buf structure for the buffer whose 1/0 has
completed.

Description
A device driver calls the iodone kernel service when a block 1/0 request is complete. The
device driver must not reference or alter the buffer header or buffer after calling the iodone
service.

The iodone service takes one of two actions, depending on the current interrupt level.
Either it invokes the caller's individual iodone routine directly, or it schedules 1/0 completion
processing for the buffer to be performed off-level, at the INTIODONE interrupt level. The
interrupt handler for this level then calls the iodone routine for the individual device driver. In
either case, the individual iodone routine is defined by the b_iodone buffer header field in
the buffer header. This iodone routine is set up by the caller of the device's strategy routine.

For example, the file 1/0 system calls set up a routine that performs buffered 1/0 completion
processing. · The uphysio service sets up a routine that performs raw 1/0 completion
processing. Similarly, the pager sets up a routine that performs page-fault completion
processing.

(

(

\

/

Setting up an iodone Routine ~
Under certain circumstances, a device driver can set up an iodone routine. For example, the
logical volume device driver can follow this procedure:

1. Take a request for a logical volume.

2. Allocate a buffer header.

3. Convert the logical volume request into a physical volume request.

4. Update the allocated buffer header with the information about the physical volume
request. This includes setting the b_iodone buffer header field to the address of the
individual iodone routine.

1-180 Kernel Reference

iodone

5. Call the physical volume device driver strategy routine.

Here, the caller of the logical volume strategy routine has set up an iodone routine that is
invoked when the logical volume request is complete. The logical volume strategy
routine in turn sets up an iodone routine that is invoked when the physical volume
request is complete.

The key point of this example is that only the caller of a strategy routine can set up an
iodone routine and even then, this can only be done while setting up the request in the
buffer header.

The interface for the iodone routine is identical to the interface to the iodone service.

Return Values
The iodone service has no return values.

Execution Environment
The iodone kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The lowait kernel service.

The but structure.

Block 110 Processing, Understanding Block 1/0 Device Drivers, The buf Structure,
Understanding Interrupts, 1/0 Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

Kernel Services 1-181

iostadd

iostadd Kernel Service

Purpose

Syntax

Registers an 1/0 statistics structure used for updating 1/0 statistics reported by the iostat
subroutine.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <Sys/iostat.h>
#include <sys/devinfo.h>

int iostadd (devtype, devstatp)
int devtype
union {

struct ttystat *ttystp;
struct dkstat *dkstp;

} devstatp;

Parameters
devtype Specifies the type of device for which 1/0 statistics are kept. The various

device types are defined in the <sys/devinfo.h> header file. Currently, 1/0
statistics are only kept for disks, CDROMs, and TTY devices. Possible
values for this parameter currently are:

devstatp

Description

DD_DISK

DD_CDROM

DD_ TTY

for disks.

for CDROMs.

for TTY devices.

Points to an 1/0 statistics structure for the device type specified by the
devtype parameter. For a devtype parameter of DD_ TTY, the address of a
pinned ttystat structure is returned. For a devtype parameter of DD_DISK
or DD_CDROM, the parameter is an input parameter pointing to a dkstat
structure previously allocated by the caller.

The iostadd kernel service is used to register the 1/0 statistics structure required to maintain
statistics on a device. The iostadd service is typically called by a tty, disk, or CDROM
device driver to provide the statistical information used by the iostat subroutine. The iostat
subroutine displays statistic information for TTY and disk devices on the system. The
iostadd service should be used once for each device configured.

For TTY devices, the devtype parameter has a value of DD_TIY. In this case, the iostadd
service uses the devstatp parameter to return a pointer to a ttystat structure.

For disk or CDROM devices with a devtype value of DD_DISK or DD_CDROM, the caller
must provide a pinned and initialized dkstat structure as an input parameter. This structure
is pointed to by the devstatp parameter on entry to the iostadd kernel service.

If the device driver support for a device is terminated, the dkstat or ttystat structure
registered with the iostadd kernel service should be de-registered by calling the iostdel
kernel service.

1-182 Kernel Reference

ii1
1'1
~

iostadd

1/0 Statistics Structures
The iostadd kernel service uses two structures of interest that are found in the
<Sys/iostat.h> header file. The ttystat structure contains the following TTY-related fields:

rawinch A count of raw characters received by the TTY device.

can inch A count of canonical characters generated from canonical processing.

outch A count of the characters output to a TTY device.

The second structure used by the iostadd kernel service is the dkstat structure, which
contains information about disk devices. This structure contains the following fields:

diskname

dknextp

dk_status

dk_time

A 32-character string name for the disk's logical device.

A pointer to the next dkstat structure in the chain.

dk_bsize

dk_xfers

dk_rblks

dk_wblks

dk_seeks

Disk entry status flags.

The time the disk is active.

The number of bytes in a block.

The number of transfers to or from the disk.

The number of blocks read from the disk.

The number of blocks written to the disk.

The number of seek operations for disks.

TTY Device Driver Support
The rawinch field in the ttystat structure should be incremented by the number of
characters received by the TTY device. The caninch field in the ttystat structure should be
incremented by the number of input characters generated from canonical processing. The
outch field is increased by the number of characters output to TTY devices. These fields
should be incremented by the device driver, but never be cleared.

Disk Device Driver Support
A dis~ device driver must perform these four tasks:

• Allocate and pin a dkstat structure during device initialization

• Update the dkstat.diskname field with the device's logical name

• Update the dkstat.dk_bsize field with the number of bytes in a block on the device

• Set all other fields in the structure to 0 (zero).

If the device supports discrete seek commands, the dkstat.dk_xrate field in the structure
should be set to the transfer rate capability of the device (Kbytes/sec). The device's dkstat
structure should then be registered using the iostadd kernel service.

During drive operation update, the dkstat.dk_status field should show the busy/nonbusy
state of the device. This can be done by setting and resetting the IOST _DK_BUSY flag.
The dkstat.dk_xfers field should be incremented for each transfer initiated to or from the
device. The dkstat.dk_rblks and dkstat.dk_wblks fields should be incremented by the
number of blocks read or written.

Kernel Services 1-183

iostadd

If the device supports discrete seek commands, the dkstat.dk_seek field should be
incremented by the number of seek commands sent to the device. If the device does not
support discrete seek commands, both the dkstat.dk_seek and dkstat.dk_xrate fields
should be left with a value of 0.

The dkstat.dk_nextp and dkstat.dk_time fields are updated by the base kernel and should
not be modified by the device driver after initialization.

Note: The same dkstat structure must not be registered more than once.

Execution Environment
The iostadd kernel service can be called from the process environment only.

Return Values
0

EINVAL

Indicates that no error has been detected.

Indicates that an invalid device type was specified by the devtype
parameter.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The iostdel kernel service.

The iostat command.

Kernel Extension/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-184 Kernel Reference

I
(~

iostdel

iostdel Kernel Service

Purpose

Syntax

Parameter

Removes the registration of an 1/0 statistics structure used for maintaining 1/0 statistics on a
particular device.

#include <sys/types.h>
#include <sys/errno.h>
#include <Sys/iostat.h>

void iostdel (devstatp)
union {

struct ttystat *ttystp;
struct dkstat *dkstp;

} devstatp;

devstatp Points to an 1/0 statistics structure previously registered using the iostadd
kernel service.

Description
The iostdel kernel service removes the registration of an 1/0 statistics structure for a device
being terminated. The device's ttystat or dkstat structure should have previously been
registered using the iostadd kernel service. Following a return from the iostdel service, the
iostat command will no longer display statistics for the device being terminated.

The iostdel service has no return values.

Execution Environment
The iostdel kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The iostadd kernel service.

The iostat command.

Kernel Extension/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-185

iowait

iowait Kernel Service

Purpose

Syntax

Parameter

Waits for block 1/0 completion.

#include <sys/types.h>
#include <Sys/errno.h>
#include <Sys/buf.h>

int iowait {bp)
struct buf *bp;

bp Specifies the address of the buf structure for the buffer with in-process 1/0.

Description
The iowait kernel service causes a process to wait until the 1/0 is complete for the buffer
specified with the bp parameter. Only the caller of the strategy routine can call the iowait
service. The B_ASYNC bit in the buffer's b_flags field should not be set.

The iodone kernel service must be called when the block 1/0 transfer is complete. The buf

;1
I'
·~

structure pointed to by the bp parameter must specify an iodone routine. This routine is /
called by the iodone interrupt handler in response to the call to the iodone kernel service. \
This iodone routine must call the e_wakeup service with the bp->b_events field as the
event. This action awakens all processes waiting on 1/0 completion for the buf structure
using the iowait service.

Execution Environment
The iowait kernel service can be called from the process environment only.

Return Values
The iowait service uses the geterror service to determine which of these two values to
return:

0 Indicates that 1/0 was successful on this buffer.

EIO or the b_error value in the buf header
Indicates that an 1/0 error has occurred.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The iodone kernel service, geterror kernel service.

The buf structure.

Block 1/0 Processing, Understanding Block 1/0 Device Drivers, The buf Structure, 1/0 Kernel
Services in Kernel Extensions and Device Support Programming Concepts.

1-186 Kernel Reference

\
/

kgethostname

kgethostname Kernel Service

Purpose

Syntax

Retrieves the name of the current host.

#include <sys/types.h>
#include <sys/errno.h>

int
kgethostname (name, name/en)
char *name;
int *name/en;

Parameters
name

name/en

Description

Specifies the address of the buffer in which to place the host name.

Specifies the address of a variable in which the length of the host name will
be stored. This parameter should be set to the size of the buffer before the
kgethostname kernel service is called.

The kgethostname kernel service returns the standard name of the current host as set by
the sethostname subroutine. The returned host name is NULL-terminated unless
insufficient space is provided.

Execution Environment
The kgethostname kernel service can be called from either the process or interrupt
environment.

Return Value
0 Indicates successful completion.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The sethostname subroutine.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-187

kmod_entrypt

kmod_entrypt Kernel Service

Purpose

Syntax

Returns a function pointer to a kernel module's entry point.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ldr.h>

void (*(kmod_entrypt (kmid, flags)))()
mid_t kmid;
uint flags;

Parameters
kmid Specifies the kernel module ID of the object file for which the entry point is

requested. This parameter is the kernel module ID returned by the
kmod_load kernel service.

flags Flag specifying entry point options. The following flag is defined:

0

Description

Returns a function pointer to the specified module's entry
point as specified in the module header.

The kmod_entrypt kernel service obtains a function pointer to a specified module's entry
point. This function pointer is typically used to invoke a routine in the module for initializing or
terminating its functions. Initialization and termination occurs after loading and before
unloading. The module for which the entry point is requested is specified by the kernel
module ID represented by the kmid parameter.

Execution Environment
The kmod_entrypt kernel service can be called from the process environment only.

Return Values
non-NULL function pointer Indicates a successful completion. This function pointer

contains the module's entry point.

NULL function pointer Indicates an error.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Kernel Program/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-188 Kernel Reference

I
I
\

I

~

kmod_load

kmod_load Kernel Service

Purpose

Syntax

Loads an object file into the kernel or queries for an object file already loaded.

#include <Sys/ldr.h>
#include <Sys/types.h>
#include <sys/errno.h>

int kmod_load (pathp, flags, libpathp, kmidp)
caddr_t pathp;
uint flags;
caddr _t libpathp;
mid_t * kmidp;

Parameters
pathp Points to a character string containing the path name of the object file to

load or query.

flags Specifies a set of loader flags describing which loader options to invoke.
The following flags are defined:

LD _ USRPATH The character strings pointed to by the pathp and libpathp
parameters are in user address space. If the LD_USRPATH
flag is not set, the character strings are assumed to be in
kernel, or system, space.

LD_KERNELEX
Puts this object file's exported symbols into the /unix name
space. Additional object files loaded due to symbol
resolution for the specified file do not have their exported
symbols placed in kernel name space.

LD_SINGLELOAD
When this flag is set, the object file specified by the pathp
parameter is loaded into the kernel only if an object file with
the same path name has not already been loaded. If an
object file with the same path name has already been
loaded, its module ID is returned (using the kmidp
parameter) and its load count incremented. If the object file
is yet not loaded, this service performs the load as if the flag
were not set.

This option is useful in supporting global kernel routines
where only one copy of the routine and its data can be
present. Typically, routines that export symbols to be added
to kernel name space are of this type.

Note: A path name comparison is done to determine
whether the same object file has already been
loaded. This service will erroneously load a new
copy of the object file into the kernel if the path
name to the object file is expressed differently than it
was on a previous load request.

Kernel Services 1-189

kmod_load

libpathp

kmidp

If neither this flag nor the LD_QUERY flag is set, this
service loads a new copy of the object file into the kernel.
This occurs even if other copies of the object file have
previously been loaded.

LD_QUERY This flag specifies that a query operation will determine if
the object file specified by the pathp parameter is ioaded. If
not loaded, a kernel module ID of 0 is returned using the
kmidp parameter. Otherwise, the kernel module ID assigned
to the object file is returned.

If multiple instances of this file have been loaded into the
kernel, the kernel module ID of the most recently loaded
object file is returned.

The libpathp parameter is not used for thi.s option.

Note: A path-name comparison is done to determine
whether the same object file has been loaded. This
service will erroneously return a not loaded
condition if the path name to the object file is
expressed differently than it was on a previous load
request.

If this flag is set, no object file is loaded and the
LD_SINGLELOAD and LD_KERNELEX flags are ignored,
if set.

Points to a character string containing the search path to use for finding
object files required to complete symbol resolution for this load. If the
parameter is NULL, the libpath is set from the specification in the object file
header for the object file specified by the pathp parameter.

Points to an area where the kernel module ID associated with this load of
the specified module is to be returned. The data in this area is invalid if the
kmod_load service returns a nonzero return code.

Description (
The kmod_load kernel service loads a kernel extension object file specified by a path name ~

into the kernel. This service returns a kernel module ID for that instance of the module.

Flags can be specified to request a single load, which ensures that only one copy of the
object file is loaded into the kernel. An additional option is simply to query for a given object
file (specified by path name). This allows the user to determine if a module is already loaded
and then access its assigned kernel module ID.

The kmod_load service also provides load~time symbol resolution of the loaded module's
imported symbols. The kmod_load service loads additional kernel object modules if
required for symbol resolution.

1-190 Kernel Reference

kmod_load

Loader Symbol Binding Support
Symbols imported from the kernel name space are resolved with symbols that exist in the
kernel name space at the time of the load. (Symbols are imported from the kernel name
space by specifying the #!/unix character string as the first field in an import list at link-edit
time.)

Kernel modules can also import symbols from other kernel object modules. These other
kernel object modules are loaded along with the specified object module if they are needed
to resolve the imported symbols.

Any symbols exported by the specified kernel object module are added to the kernel name
space if the flags parameter has the LD_KERNELEX flag set. This makes the symbols
available to other subsequently loaded kernel object modules. Kernel object modules loaded
on behalf of the specified kernel object module (to resolve imported symbols) do not have
their exported symbols added to the kernel name space.

Kernel export symbols specified (at link-edit time) with the SYSCALL keyword in the primary
module's export list are added to the system call table. These kernel export symbols are
available to application programs as system calls.

Finding Shared Object Modules for Resolving Symbol References
The libpath search string is taken from the module header of the object module specified by
the pathp parameter if the libpathp parameter is NULL. The module header of the object
module specified by the pathp parameter is used.

If the module header contains an unqualified base file name for the symbol (no I (slash)
characters in the name), a libpath search string is used to find the location of the shared
object module required to resolve the import. This libpath search string can be taken from
one of two places. If the libpathp parameter on the call to the kmod_load service is not
NULL, then it points to a character string specifying the libpath to be used. However, if the
libpathp parameter is NULL, then the libpath is to be taken from the module header for the
object module specified by the pathp parameter.

The libpath specification found in object modules loaded to resolve imported symbols is not
used. The kernel loader service does not support deferred symbol resolution. The load of the
kernel module is terminated with an error if any imported symbols cannot be resolved.

Execution Environment
The kmod_load kernel service can be called from the process environment only.

Return Values
If the object file is loaded without error, the module ID is returned in the location pointed to
by the kmidp parameter and the return code is set to 0.

If an error results, the module is not loaded, and no kernel module ID is returned. The return
code is set to one of the following return values.

EA CC ES

EA CC ES

EFAULT

Indicates that an object module to be loaded is not an ordinary file or that
the mode of the object module file denies read-only access.

Search permission is denied on a component of the path prefix.

Indicates that the calling process does not have sufficient authority to
access the data area described by the pathp or libpathp parameters when
the LD_USRPATH flag is set. This error code is also returned if an 1/0 error
occurs when accessing data in this area.

Kernel Services 1-191

kmod_load

ENOEXEC

EINVAL

ENOMEM

ETXTBSY

ENOTDIR

ENOENT

ESTA LE

ELOOP

Indicates that the program file has the appropriate access permission but
has an invalid XCOFF indicator in its header. The kmod_load kernel
service supports loading of XCOFF (Extended Common Object File Format)
object files only. This error code is also returned if the loader is unable to
resolve an imported symbol.

Indicates that the program file has a valid XCOFF indicator in its header, but
the header is either damaged or incorrect for the machine on which the file
is to be loaded.

Indicates that the load requires more kernel memory than allowed by the
system-imposed maximum.

Indicates that the object file is currently open for writing by some process.

Indicates that a component of the path prefix is not a directory.

Indicates that no such file or directory exists or the path name is null.

Indicates that the caller's root or current directory is located in a virtual file
system that has been unmounted.

Indicates that too many symbolic links were encountered in translating the
path or libpathp parameter.

ENAMETOOLONG

EIO

Indicates that a component of a path name exceeded 255 characters, or an
entire path name exceeded 1023 characters.

Indicates that an 1/0 error occurred during the operation.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The kmod_unload kernel service.

Kernel Program/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-192 Kernel Reference

(

\

kmod_unload

kmod_unload Kernel Service

Purpose

Syntax

Unloads a kernel object file.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/ldr.h>

int kmod_unload (kmid, flags)
mid_t kmid;
uint flags;

Parameters
kmid Specifies the kernel module ID of the object file to be unloaded. This kernel

module ID is returned when using the kmod_load kernel service.

flags Flags specifying unload options. The following flags are defined:

0

Description

Unload the object module specified by its kmid parameter
and any object modules that were loaded as a result of
loading the specified object file if this file is not still in use.

The kmod_unload kernel service unloads a previously loaded kernel extension object file.
The object to be unloaded is specified by the kmid parameter. Upon successful completion,
the following objects are unloaded or marked unload pending:

• The specified object file

• Any imported kernel object modules that were loaded as a result of the loading of the
specified module.

Users of these exports or system calls are modules bound to this module's exported
symbols. If there are no users of any of the module's kernel exports or system calls, the
module is immediately unloaded. If there are users of this module, the module is not
unloaded but marked unload pending.

Marking a module unload pending removes the module's exported symbols from the kernel
name space. Any system calls exported by this module are also removed. This prohibits
new users of these symbols. The module is unloaded only when all current users have been
unloaded.

If the unload is successfully completed or marked pending, a value of O is returned. When
an error occurs, the specified module and any imported modules are not unloaded. The
nonzero return value indicates the error.

Execution Environment
The kmod_unload kernel service can be called from the process environment only.

Kernel Services 1-193

kmod_unload

Return Values
0

EINVAL

Indicates successful completion.

Indicates that the kmid parameter, which specifies the kernel module, is
invalid or does not correspond to a currently loaded module.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The kmod_load kernel service.

Kernel Program/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-194 Kernel Reference

(
\

(
~

kmsgctl

kmsgctl Kernel Service

Purpose

Syntax

Provides message-queue control operations.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int kmsgctl (msqid, cmd, but)
int msqid, cmd;
struct msqid_ds *buf,

Parameters
msqid Specifies the message queue ID, which indicates the message queue for

which the control operation is being requested for.

cmd

buf

Description

Specifies which control operation is being requested. There are three valid
commands.

Points to the msqid_ds structure provided by the caller of the kmsgctl
service. Data is obtained either from this structure or from status returned
in this structure, depending on the cmd parameter. The msqid_ds structure
is defined in the <sys/msg.h> header file.

The kmsgctl kernel service provides a variety of message-queue control operations as
specified by the cmd parameter. The kmsgctl kernel service provides the same functions for
user-mode processes in kernel mode as the msgctl subroutine performs for kernel
processes or user-mode processes in user mode. The kmsgctl service can be called by a
user-mode process in kernel mode or by a kernel process. A kernel process can also call the
msgctl subroutine to provide the same function.

\
) The following three commands can be specified with the cmd parameter:

IPC_STAT

IPC_SET

Sets only documented fields. See the msgctl subroutine.

Sets the value of the following members of the data structure associated
with the msqid parameter to the corresponding values found in the structure
pointed to by the buf parameter:

• msg_perm.uid

• msg_perm.gid

• msg_perm.mode (only the low-order 9 bits)

• msg_qbytes.

To perform the IPC_SET operation, the current process must have an
effective user ID equal to the value of the msg_perm.uid or
msg_perm.cuid field in the data structure associated with the msqid
parameter. To raise the value of the msg_qbytes member, the calling
process must have the appropriate system privilege.

Kernel Services 1-195

kmsgctl

IPC_RMID Removes from the system the message-queue identifier specified by the
msqid parameter. This operation also destroys both the message queue and
the data structure associated with it. To perform this operation, the current
process must have an effective user ID equal to the value of the
msg_perm.uid or msg_perm.cuid field in the data structure associated
with the msqid parameter.

Execution Environment
The kmsgctl kernel service can be called from the process environment only.

Return Values
0

EINVAL

EACCES

EPERM

EPERM

Indicates successful completion.

Indicates either that: 1) the identifier specified by the msqid parameter is not
a valid message queue identifier or that 2) the command specified by the
cmd parameter is not _a valid command.

The command specified by the cmd parameter is equal to IPC_STAT and
read permission is denied to the calling process.

The command specified by the cmd parameter is equal to IPC_RMID,
IPC_SET, and the effective user ID of the calling process is not equal to that
of the value of the msg_perm.uid member in the data structure associated
with the msqid parameter.

Indicates the following conditions:

• The command specified by the cmdparameter is equal to IPC_SET.

• An attempt is being made to increase to the value of the msg_qbytes
member, but the calling process does not have the appropriate system
privilege.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The msgctl subroutine.

The User Protection Domain, Kernel Protection Domain, Kernel-Mode Message Kernel
Services in Kernel Extensions and Device Support Programming Concepts.

1-196 Kernel Reference

\

(

\
I

I

kmsgget

kmsgget Kernel Service

Purpose

Syntax

Obtains a message queue identifier.

#include <Sys/types.h>
#include <sys/errno.h>
#include <sys/stat.h>
#include <Sys/ipc.h>
#include <Sys/msg.h>

int kmsgget (key, msgflg, msqid)
key_t key;
int msgflg;
int *msqid;

Parameters
key Specifies either a value of IPC_PRIVATE or an IPC key constructed by the

ftok subroutine (or a similar algorithm).

msgflg

msqid

Specifies that the msgflg parameter is constructed by logically ORing one or
more of these values:

IPC_CREAT

IPC_EXCL

S_IRUSR

S_IWUSR

S_IRGRP

S_IWGRP

S_IROTH

S_IWOTH

Creates the data structure if it does not already exist.

Causes the kmsgget kernel service to fail if IPC_CREAT is
also set and the data structure already exists.

Permits the process that owns the data structure to read it.

Permits the process that owns the data structure to modify
it.

Permits the process group associated with the data
structure to read it.

Permits the process group associated with the data
structure to modify it.

Permits others to read the data structure.

Permits others to modify the data structure.

The values that begin with S_I. .. are defined in the <sys/stat.h> header file.
They are a subset of the access permissions that apply to files.

A reference parameter where a valid message-queue ID is returned if the
kmsgget kernel service is successful.

Kernel Services 1-197

kmsgget

Description
The kmsgget kernel service returns the message-queue identifier specified by the msqid
parameter associated with the specified key parameter value. The kmsgget kernel service
provides the same functions for user-mode processes in kernel mode as the msgget
subroutine performs for kernel processes or user-mode processes in user mode. The
kmsgget service can be called by a user-mode process in kernel mode or by a kernel
process. A kernel process can also call the msgget subroutine to provide the same
function.

Execution Environment
The kmsgget kernel service can be called from the process environment only.

Return Values
0 Indicates successful completion. The msqid parameter is set to a valid

message-queue identifier.

If the kmsgget kernel service fails, the msqid parameter is not valid and the return code is
one of these four values:

EA CC ES

ENOENT

ENOS PC

EEXIST

Indicates that a message queue ID exists for the key parameter but
operation permission as specified by the msgflg parameter cannot be
granted.

Indicates that a message queue ID does not exist for the key parameter and
the IPC_CREAT comand is not set.

Indicates that a message queue ID is to be created but the system-imposed
limit on the maximum number of allowed message queue IDs systemwide
will be exceeded.

Indicates that a message queue ID exists for the value specified by the key
parameter, and both the IPC_CREAT and IPC_EXCL commands are set.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The msgget subroutine.

The User Protection Domain, Kernel Protection Domain, Kernel-Mode Message Kernel
Services in Kernel Extensions and Device Support Programming Concepts.

1-198 Kernel Reference

I

\

I
I
\

kmsgrcv

kmsgrcv Kernel Service

Purpose

Syntax

Reads a message from a message queue.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int kmsgrcv (msqid, msgp, msgsz, msgtyp, msgflg, flags, bytes)
int msqid;
struct msgxbuf * msgp;

or struct msgbuf *msgp;
int msgsz;
mtyp_t msgtyp;
int msgflg;
int flags;
int *bytes;

Parameters
msqid Specifies the message queue from which to read.

msgp

msgsz

msgtyp

Points to either an msgxbuf or an msgbuf structure where the message
text is placed. The type of structure pointed to is determined by the values
of the flags parameter. These structures are defined in the sys/msg.h
header file.

Specifies the maximum number of bytes of text to be received from the
message queue. The received message is truncated to the size specified by
the msgsz parameter if the message is longer than this size and
MSG_NOERROR is set in the msgflg parameter. The truncated part of the
message is lost and no indication of the truncation is given to the calling
process.

If the message is longer than the number of bytes specified by the msgsz
parameter bytes but MSG_NOERROR is not set, then the kmsgrcv kernel
service fails and returns an E2BIG return value.

Specifies the type of message requested as follows:

• If the msgtyp parameter is equal to O (zero), the first message on the
queue is received.

• If the msgtyp parameter is greater than 0, the first message of the type
specified by the msgtyp parameter is received.

• If the msgtyp parameter is less than 0, the first message of the lowest
type that is less than or equal to the absolute value of the msgtyp
parameter is received.

Kernel Services 1-199

kmsgrcv

msgflg Specifies a value of O or is constructed by logically ORing one of several
values:

MSG_NOERROR

IPC_NOWAIT

Truncates the message if it is longer than the
number of bytes specified by the msgsz parameter.

Specifies the action to take if a message of the
desired type is not on the queue:

• If IPC_NOWAIT is set, then the kmsgrcv service returns an ENOMSG
value.

• If IPC_NOWAIT is not set, then the calling process suspends execution
until one of the following occurs:

• A message of the desired type is placed on the queue.

• The message queue ID specified by the msqidparameter is removed
from the system. When this occurs, the kmsgrcv service returns an
EIDRM value.

• The calling process receives a signal that is to be caught. In this case, a
message is not received and the kmsgrcv service returns an EINTR
value.

flags Specifies a value of 0 if a normal message receive is to be performed. If an
extended message receive is to be performed, this flag should be set to a
XMSG value. With this flag set, the kmsgrcv service functions as the
msgxrcv subroutine would. Otherwise, the kmsgrcv service functions as
the msgrcv subroutine would.

bytes Specifies a reference parameter. This parameter contains the number of
message-text bytes read from the message queue upon return from the
kmsgrcv service.

Description
The kmsgrcv kernel service reads a message from the queue specified by the msqid
parameter and stores the message into the structure pointed to by the msgp parameter. The (
kmsgrcv kernel service provides the same functions for user-mode processes in kernel \J
mode as the msgrcv and msgxrcv subroutines perform for kernel processes or user-mode
processes in user mode.

The kmsgrcv service can be called by a user-mode process in kernel mode or by a kernel
process. A kernel process can also call the msgrcv and msgxrcv subroutines to provide the
same functions.

Execution Environment
The kmsgrcv kernel service can be called from the process environment only.

1-200 Kernel Reference

:'
/

Return Values
0

EINVAL

EA CC ES

EINVAL

E2BIG

ENOMSG

EINTR

EIDRM

kmsgrcv

Indicates a successful operation.

Indicates that the ID specified by the msqid parameter is not a valid
message queue ID.

Indicates that operation permission is denied to the calling process.

Indicates that the value of the msgsz parameter is less than O (zero).

Indicates that the message text is greater than the maximum length
specified by the msgsz parameter and MSG_NOERROR is not set.

Indicates that the queue does not contain a message of the desired type
and IPC_NOWAIT is set.

Indicates that the kmsgrcv service received a signal.

Indicates that the message queue ID specified by the msqidparameter has
been removed from the system.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The msgrcv subroutine, msgxrcv subroutine.

The User Protection Domain, Kernel Protection Domain, Kernel-Mode Message Kernel
Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-201

kmsgsnd

kmsgsnd Kernel Service

Purpose

Syntax

Sends a message using a previously defined message queue.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int kmsgsnd (msqid, msgp, msgz, msgflg)
int msqid;
struct msgbuf * msgp;
int msgsz, msgflg;

Parameters
msqid Specifies the message queue ID that indicates which message queue the

message is to be sent on.

· msgp

msgz

msgflg

Description

Points to an msgbuf structure containing the message. The msgbuf
structure is defined in the <sys/msg.h> header file.

Specifies the size of the message to be sent in bytes. The msgsz parameter
can range from 0 to a system-imposed maximum.

Specifies the action to be taken if the message cannot be sent for one of
several reasons.

The kmsgsnd kernel service sends a message to the queue specified by the msqid
parameter. The kmsgsnd kernel service provides the same functions for user-mode
processes in kernel mode as the msgsnd subroutine performs for kernel processes or
user-mode processes in user mode. The kmsgsnd service can be called by a user-mode
process in kernel mode or by a kernel process. A kernel process can also call the msgsnd
subroutine to provide the same function.

There are two reasons why the kmsgsnd kernel service cannot send the message:

• The number of bytes already on the queue is equal to the msg_qbytes member.

• The total number of messages on all queues systemwide is equal to a
system-imposed limit.

1-202 Kernel Reference

(
,~

kmsgsnd

There are several actions to take when the kmsgsnd kernel service cannot send the
message:

• If the msgflg parameter is set to IPC_NOWAIT, then the message is not sent, and
the kmsgsnd service fails and returns an EAGAIN value.

• If the msgflg parameter is 0, then the calling process suspends execution until one
of the following occurs:

• The condition responsible for the suspension no longer exists, in which case the
message is sent.

• The message queue ID specified by the msqid parameter is removed from the
system. When this occurs, the kmsgsnd service fails and an EIDRM value is
returned.

• The calling process receives a signal that is to be caught. In this case the message
is not sent and the calling process resumes execution in the manner prescribed in
the sigaction kernel service.

Execution Environment
The kmsgsnd kernel service can be called from the process environment only.

The calling process must have write permission to perform the kmsgsnd operation.

Return Values
0

EINVAL

EA CC ES

EA GAIN

EINVAL

EINTR

EIDRM

ENOMEM

Indicates a successful operation.

Indicates that the msqid parameter is not a valid message queue ID.

Indicates that operation permission is denied to the calling process.

Indicates that the message cannot be sent for one of the reasons stated
previously, and the msgflg parameter is set to IPC_NOWAIT.

Indicates that the msgsz parameter is less than O or greater than the
system-imposed limit.

Indicates that the kmsgsnd service received a signal.

Indicates that the message queue ID specified by the msqid parameter has
been removed from the system.

Indicates that the system does not have enough memory to send the
message.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The msgsnd subroutine.

The User Protection Domain, Kernel Protection Domain, Kernel-Mode Message Kernel
Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-203

lockl

lockl Kernel Service

Purpose

Syntax

Locks a conventional process lock.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/lockl.h>

int lockl (lock_word, flags)
lock_t */ock_word;
int flags;

Parameters
lock word

flags

Specifies the address of the lock word.

Specifies the flags that control waiting for a lock.

Description

Flags

The lockl kernel service locks a conventional lock. The kernel provides conventional locks
as a means of accessing and updating global· memory in a preemptable kernel.

The kernel uses the lockl service to control access to shared memory. The lock word can
also be located in shared memory. It must be in the process's address space when the lockl
or unlockl services are called. The kernel accesses the lock word only while executing
under the caller's process.

The lock_ word parameter is typically part of the data structure that describes the resource
managed by the lock. This variable must be initialized to the LOCK_AVAIL value before the
first call to the lockl service. It must not be altered except by the lockl and unlockl services
while the lock is in use.

The lockl service is nestable. The caller should use the LOCK_SUCC value for determining
when to call the u-nlockl service to unlock the conventional lock.

The lockl service temporarily assigns the owner the process priority of the most favored
waiter for the lock.

A process must release all locks before terminating or leaving kernel mode. Signals are not
delivered to kernel processes while those processes own any lock. Preempting a System
Call discusses how system calls can use the lockl service when accessing global data.

The flags parameter is used to control how signals affect waiting for a lock. There are three
flags: LOCK_SIGRET, LOCK_SIGWAKE, and LOCK_NDELAV.

LOCK_SIGRET Causes the wait for the lock to be terminated by an unmasked
signal.

Note: The LOCK_SIGRET flag overrides the LOCK_SIGWAKE
flag.

1-204 Kernel Reference

(

\

\
I

I

LOCK_SIGWAKE

LOCK_NDELAY

Execution Environment

lockl

Causes the wait for the lock to be terminated by an unmasked
signal and control transferred to the return from the last operation
by the setjmpx kernel service.

Controls whether the caller waits for the lock. Setting the flag
causes the request to be terminated. The lock is assigned to the
caller. Not setting the flag causes the caller to wait until the lock is
not owned by another process before the lock is assigned to the
caller.

The lockl kernel service can be called from the process environment only.

Return Values
LOCK_SUCC

LOCK_NEST

LOCK_FAIL

LOCK_SIG

Indicates that the process does not already own the lock or the lock is
not owned by another process when the flags parameter is set to
LOCK_NDELAV.

Indicates that the process already owns the lock or the lock is not
owned by another process when the flag parameter is set to
LOCK_NDELAY.

Indicates that the lock is owned by another process when the flag
parameter is set to LOCK_NDELAY.

Indicates that the wait is terminated by a signal when the flag
parameter is set to LOCK_SIGWAKE.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The unlockl kernel service.

Pre-empting a System Call, Understanding Locking, Understanding Signal and Exception
Handling, Process and Exception Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-205

loifp

loif p Kernel Service

Purpose

Syntax

Returns the address of the software loopback interface structure.

#include <Sys/types.h>
#include <Sys/errno.h>

struct if net *loif p ()

Description
The loifp kernel service returns the address of the ifnet structure associated with the
software loopback interface. The interface address can be used to examine the interface
flags. This address can also be used to determine whether the looutput kernel service can
be called to send a packet through the loopback interface.

Execution Environment
The loifp kernel service can be called from either the process or interrupt environment.

Return Value
The loifp service returns the address of the ifnet structure describing the software loopback
interface.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The looutput kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-206 Kernel Reference

r'
I
\

/
\,

(

longjmpx

longjmpx Kernel Service

Purpose

Syntax

Allows exception handling by causing execution to resume at the most recently saved
context.

#include <sys/types.h>
#include <sys/errno.h>

int longjmpx (reL va~
int reLval;

label_t *jump_buffer,

Parameters
jump_buffer Specifies the address of the caller-supplied jump buffer that was specified

on the call to the setjmpx service.

reL val Specifies the return value to be supplied on the return from the setjmpx
kernel service for the resumed context. This value normally indicates the
type of exception that has occurred.

Description
The longjmpx kernel service causes the normal execution flow to be modified so that
execution resumes at the most recently saved context. The kernel mode lock is reacquired if
it is necessary. The interrupt priority level is reset to that of the saved context.

The longjmpx service internally calls the clrjmpx service to remove the jump buffer
specified by the jump_buffer parameter from the list of contexts to be resumed. The
longjmpx service always returns a nonzero value when returning to the restored context.
Therefore, if the reL val parameter is 0, the longjmpx service returns an EINTR value to the
restored context.

If there is no saved context to resume, the system crashes.

Execution Environment
The longjmpx kernel service can be called from either the process or interrupt environment.

Return Values
A successful call to the longjmpx service does not return to the caller. Instead, it causes
execution to resume at the return from a previous setjmpx call with the return value of the
reL val parameter.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The setjmpx kernel service, clrjmpx kernel service.

Exception Processing, Implementing Exception Handlers, Process and Exception
Management Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

Kernel Services 1-207

lookupvp

lookupvp Kernel Service

Purpose

Syntax

Retrieves the vnode that corresponds to the named path.

#include <sys/types.h>
#include <Sys/errno.h>

int lookupvp (namep, flags, vpp)
char * namep;
int flags;
struct vnode ** vpp;

Parameters
namep Points to a character string path name.

flags

vpp

Description

Specifies lookup directives, including these six flags:

L_LOC

L_NOFOLLOW

L_NOXMOUNT

L_CRT

L_DEL

The path-name resolution must not cross a mount
point into another file system implementation.

If the final component of the path name resolves to a
symbolic link, the link is not to be traversed.

If the final component of the path name resolves to a
mounted-over object, the mounted-over object, rather
than the root of the next virtual file system, is to be
returned.

The object is to be created.

The object is to be deleted.

L_EROFS An error is to be returned if the object resides in a
read-only file system.

Points to the location where the vnode pointer is to be returned to the calling
routine.

The lookupvp kernel service provides translation of the path name provided by the namep
parameter into a virtual file system node. The lookupvp service provides a flexible interface
to pathname resolution by regarding the flags parameter values as directives to the lookup
process. The lookup process is a cooperative effort between the logical file system and
underlying virtual file systems (VFS). Several vnode and VFS operations are employed to:

• Look up individual name components

• Read symbolic links

• Cross mount points.

1-208 Kernel Reference

~
I

I

lookupvp

The lookupvp kernel service determines the process's current and root directories by
consulting the u_cdir and u_rdir fields in the u structure. Information about the virtual file
system and file system installation for transient vnodes is obtained from each name
component's vfs or gfs structure.

Execution Environment
The lookupvp kernel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

errno Indicates an error. This number is defined in the <sys/errno.h> header file.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding Data Structures and Header Files for Virtual File Systems, Virtual File
System Overview, Virtual File System Kernel Services in Kernel Extensions and Device
Support Programming Concepts.

Kernel Services 1-209

looutput

looutput Kernel Service

Purpose

Syntax

Sends data through a software loopback interface.

#include <sys/types.h>
#include <sys/errno.h>

int looutput (ifp, mo, dst)
struct if net * ifp;
struct mbuf *mo;
struct sockaddr *dst,

Parameters
ifp Specifies the address of an ifnet structure describing the software loopback

interface.

mo Specifies an mbuf chain containing output data.

dst Specifies the address of a sockaddr structure that specifies the destination
for the data.

Description
The looutput kernel service sends data through a software loopback interface. The data in
the mo parameter is passed to the input handler of the protocol specified by the dst
parameter.

Execution Environment
The looutput kernel service can be called from either the process or interrupt environment.

Return Values
0

ENOBUFS

EAFNOSUPPORT

Implementation Specifics

Indicates that the data was successfully sent.

Indicates that resource allocation failed.

Indicates that the address family specified by the dst parameter is
not supported.

This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The loifp kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-210 Kernel Reference

m_adj Kernel Service

Purpose

Syntax

Adjusts the size of an mbuf chain.

#include <Sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

void m_adj (m, diffJ
struct mbuf *m;
int diff;

Parameters
m Specifies the mbuf chain to be adjusted.

Specifies the number of bytes to be removed. diff

Description

m_adj

The m_adj kernel service adjusts the size of an mbuf chain by the number of bytes
specified by the diff parameter. If the number specified by the diff parameter is
non-negative, the bytes are removed from the front of the chain. If this number is negative,
the alteration is done from back to front.

The m_adj service has no return values.

Execution Environment
The m_adj kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-211

m_cat

m_cat Kernel Service

Purpose

Syntax

Appends one mbuf chain to the end of another.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/mbuf.h>

void m_cat (m, n)
struct mbuf m;
struct mbuf n;

Parameters
m

n

Description

Specifies the mbuf chain to be appended to.

Specifies the mbuf chain to append.

The m_cat kernel service appends an mbuf chain specifed by then parameter to the end of
mbuf chain specified by them parameter. Where possible, compaction is performed.

The m_cat service has no return values.

Execution Environment
The m_cat kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts. ·

1-212 Kernel Reference

\
I

/

m_clget Kernel Service

Purpose

Syntax

Parameter

Allocates a page-sized mbuf structure cluster.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

int m_clget (m)
struct mbuf * m;

m_clget

m Specifies the mbuf structure with which the cluster is to be associated.

Description
The m_clget kernel service allocates a page-sized mbuf cluster and attaches it to the given
mbuf structure. If successful, the length of the mbuf structure is set to CLBYTES.

Execution Environment
The m_clget kernel service can be called from either the process or interrupt environment.

Return Values
1

0

Indicates successful completion.

Indicates an error.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The m_get kernel service, m_free kernel service, m_freem kernel service.

110 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-213

m_clgetx

m_clgetx Kernel Service

Purpose

Syntax

Allocates an mbuf structure whose data is owned by someone else.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf .h>

struct mbuf *m_clgetx (fun, arg, addr, /en, wait)
int (*fun)();
int arg;
caddr_t addr;
int /en;
int wait,

Parameters
fun Identifies the address of a function to be called when the mbuf structure is

freed.

arg

addr

/en

Specifies an argument to pass to the function specified by the fun
parameter.

Specifies the address of the external data area.

Specifies the length of the external data area.

wait This flag indicates the action to be taken if no mbuf structures are available.

Description

Possible values are:

M_DONTWAIT

M_WAIT

Called from either an interrupt or process environment

Called from a process environment only. The M_WAIT
flag does not return until the mbuf structure is
available.

The m_clgetx kernel service allocates an mbuf structure and attaches the data specified by
the addr parameter. This data is owned by the caller. The m_off field of the returned mbuf
structure points to the caller's data.

Execution Environment
The m_clgetx kernel service can be called from either the process or interrupt environment.

Return Values
The m_clgetx service returns the address of an allocated mbuf structure. If the wait
parameter is set to M_DONTWAIT and there are no free mbuf structures, the m_clgetx
kernel service returns NULL.

1-214 Kernel Reference

I

~

m_clgetx

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The m_clget kernel service.

1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-215

m_collapse

m_collapse Kernel Service

Purpose

Syntax

Guarantees that an mbuf chain contains no more than a given number of mbuf structures.

#include <sys/types.h>
#include <sys/errno.h>
#include <Sys/mbuf.h>

struct mbuf *m_collapse (m, size)
struct mbuf *m;
int size;

Parameters
m Specifies the mbuf chain to be collapsed.

size Denotes the maximum number of mbuf structures allowed in the chain.

Description
The m_collapse kernel service reduces the number of mbuf structures in an mbuf chain to
the number of mbuf structures specified by the size parameter. The m_collapse service
accomplishes this by copying data into page-sized mbuf structures until the chain is of the
desired length. (If required, more than one page-sized mbuf structure is used.)

Execution Environment
The m_collapse kernel service can be called from either the process or interrupt
environment.

Return Values
If the chain cannot be collapsed into the number of mbuf structures specified by the size
parameter, a value of NULL is returned and the original chain is deallocated. Upon
successful completion, the head of the altered mbuf chain is returned.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-216 Kernel Reference

I
I
\

m_copy

m_copy Kernel Service

Purpose

Syntax

Creates a copy of all or part of a list of mbuf structures.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *m_copy (m, off, /en)
struct mbuf m;
int off;
int /en;

Parameters
m

off

/en

Description

Specifies the mbuf structure, or the head of a list of mbuf structures, to be
copied.

Specifies an offset into data from which copying starts.

Denotes the total number of bytes to copy.

The m_copy kernel service makes a copy of the structure specified by them parameter.
The copy begins at the specified bytes (represented by the off parameter) and continues for
the number of bytes specified by the /en parameter. If the /en parameter is set to
M_COPYALL, the entire mbuf chain is copied.

Execution Environment
The m_copy kernel service can be called from either the process or interrupt environment.

Return Values
Upon successful completion, the address of the copied list (the mbuf structure that heads
the list) is returned. If the copy fails, a value of NULL is returned.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The m_copydata kernel service.

1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-217

m_copydata

m_copydata Kernel Service

Purpose

Syntax

Copies data from an mbuf chain to a specified buffer.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf .h>

void m_copydata (m, off, fen, cp)
struct mbuf * m;
int off;
int fen;
caddr_t cp;

Parameters
m

off

/en

cp

Description

Indicates the mbuf structure, or the head of a list of mbuf structures, to be
copied.

Specifies an offset into data from which copying starts.

Denotes the total number of bytes to copy.

Points to a data buffer into which to copy the mbuf data.

The m_copydata kernel service makes a copy of the structure specified by them
parameter. The copy begins at the specified bytes (represented by the off parameter) and
continues for the number of bytes specified by the /en parameter. The data is copied into
the buffer specified by the cp parameter.

The mcopydata service has no return values.

Execution Environment
The m_copydata kernel service can be called from either the process or interrupt
environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The m_copy kernel service.

1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-218 Kernel Reference

(

/

(...

m_dereg

m_dereg Kernel Service

Purpose

Syntax

Parameter

Deregisters expected mbuf structure usage.

#include <sys/types.h>
#Include <sys/errno.h>
#include <sys/mbuf.h>

void m_dereg (mbp)
struct mbreq *mbp;

mbp Defines the address of an mbreq structure that specifies expected mbuf
usage.

Description
The m_dereg kernel service deregisters requirements previously registered with the m_reg
kernel service. The m_dereg service is mandatory if the m_reg service is called.

The m_dereg service has no return values.

Execution Environment
The m_dereg kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The mbreq Structure for mbuf Kernel Services.

The m_reg kernel service.

1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-219

m_free

m_free Kernel Service

Purpose

Syntax

Parameter

Frees an mbuf structure and any associated external storage area.

#include <sys/types.h>
#include <Sys/errno.h>
#include <Sys/mbuf .h>

struct mbuf *m_free(m)
struct mbuf * m;

m Specifies the mbuf structure to be freed.

Description
The m_free kernel service returns an mbuf structure to the buffer pool. If the mbuf
structure specified by them parameter has an attached cluster (that is, a paged-size mbuf
structure), the m_free kernel service also frees the associated external storage.

Execution Environment
The m_free kernel service can be called from either the process or interrupt environment.

Return Values
If the mbuf structure specified by them parameter is the head of an mbuf chain, the m_free
service returns the next mbuf structure in the chain. A value of NULL is returned if the
structure specified by them parameter is not part of an mbuf chain.

Related Information
The m_get kernel service.

1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-220 Kernel Reference

"' 1
/

m_freem Kernel Service

Purpose

Syntax

Parameter

Frees an entire mbuf chain.

#include <Sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>

void m_free (m)
struct mbuf • m;

m Indicates the head of the mbuf chain to be freed.

Description

m_freem

The m_freem kernel service invokes the m_free kernel service for each mbuf structure in
the chain headed by the head specified by them parameter. The m_freem service has no
return values.

Execution Environment
The m_freem kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The m_get kernel service, m_free kernel service.

1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-221

m_get

m_get Kernel Service

Purpose

Syntax

Allocates a memory buffer from the mbuf pool.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/mbuf.h>

struct mbuf *m_get(wait, type)
int wait;
int type;

Parameters
wait Indicates the action to be taken if there are no free mbuf structures.

Possible values are:

M_DONTWAIT

M_WAIT

Called from either an interrupt or process environment

Called from a process environment

type Specifies a valid mbuf type, as listed in the sys/mbuf.h file.

I

~

Description (
The m_get kernel service allocates an mbuf structure of the specified type. If the buffer
pool is empty and the wait parameter is set to M_WAIT, the m_get kernel service does not
return until an mbuf structure is available.

Execution Environment
The m_get kernel service can be called from either the process or interrupt environment.

An interrupt handler can only specify the wait parameter as M_DONTWAIT.

Return Value
The address of an allocated mbuf structure is returned upon successful completion. If the
wait parameter is set to M_DONTWAIT and there are no free mbuf structures, the m_get
kernel service returns NULL.

Related Information
The m_free kernel service, m_freem kernel service.

110 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-222 Kernel Reference

(

(~

m_getclr

m_getclr Kernel Service

Purpose

Syntax

Allocates and zeros a memory buffer from the mbuf pool.

#include <Sys/types.h>
#include <sys/errno.h>
#include <Sys/mbuf.h>

struct mbuf *m_getclr(wait, type)
int wait;
int type;

Parameters
wait This flag indicates the action to be taken if there are no free mbuf

structures. Possible values are:

M_DONTWAIT

M_WAIT

Called from either an interrupt or process
environment.

Called from a process environment only.

type Specifies a valid mbuf type, as listed in the sys/mbuf.h file.

Description
The m_getclr kernel service allocates an mbuf structure of the specified type. If the buffer
pool is empty and the wait parameter is set to M_WAIT, the m_getclr service does not
return until an mbuf structure is available.

The m_getclr kernel service differs from the m_get kernel service in that the m_getclr
service zeroes the data portion of the allocated mbuf structure.

Execution Environment
The m_getclr kernel service can be called from either the process or interrupt environment.

Return Values
The m_getclr kernel service returns the address of an allocated mbuf structure. If the wait
parameter is set to M_DONTWAIT and there are no free mbufs, the m_getclr kernel service
returns a NULL value.

Related Information
The m_free kernel service, m_freem kernel service, m_get kernel service.

1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-223

m_getclust

m_getclust Kernel Service

Purpose

Syntax

Allocates an mbuf structure from the mbuf buffer pool and attaches a page-sized cluster.

#include csys/types.h>
#include csys/errno.h>
#include csys/mbuf.h>

struct mbuf *m_getclust(wait, type)
int wait;
int type;

Parameters
wait This flag indicates the action to be taken if there are no available mbuf

structures. Possible values are:

M_DONTWAIT

M_WAIT

Called from either an interrupt or process
environment.

Called from a process environment only.

type Specifies a valid mbuf type from the sys/mbuf.h file.

Description
The m_getclust kernel service allocates an mbuf structure of the specified type. If the
allocation succeeds, the m_getclust kernel service then attempts to attach a page-sized
cluster to the structure.

If the buffer pool is empty and the wait parameter is set to M_WAIT, the m_getclust kernel
service does not return until an mbuf structure is available.

Execution Environment
The m_getclust kernel service can be called from either the process or interrupt
environment.

Return Value
The address of an allocated mbuf structure is returned on success. If the wait parameter is
set to M_DONTWAIT and there are no free mbuf structures, the m_getclust kernel service
returns a value of NULL

Related Information
The m_get kernel service, m_clget kernel service, m_free kernel service, m_freem
kernel service.

110 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-224 Kernel Reference

(
I'll

M_HASCL Macro for mbuf Kernel Services

Purpose

Syntax

Parameter

Determines if an mbuf structure has an attached cluster.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <Sys/mbuf .h>

struct mbuf *m;
M_HASCL (m);

m Indicates the address of the mbuf structure in question.

Description

M_HASCL

The M_HASCL macro determines if an mbuf structure has an attached cluster.

The M_HASCL macro can be used as in the following example:

Example
1. The M_HASCL macro can be used as in the following example:

struct mbuf *m;
if (M_HASCL(m))

printf("mbuf has attached cluster");

Execution Environment
The M_HASCL macro can be called from either the process or interrupt environment.

Implementation Specifics
\ This kernel service is part of AIX Base Operating System (BOS) Runtime.
)

Related Information
1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-225

m_pullup

m_pullup Kernel Service

Purpose

Syntax

Adjusts an mbuf chain so that a given number of bytes is in contiguous memory in the data
area of the head mbuf structure.

#include <sys/types.h>
#include <sys/errno.h>
#include <Sys/mbuf.h>

struct mbuf *m_pullup (m, size)
struct mbuf * m;
int size;

Parameters
m

size

Description

Specifies the mbuf chain to be adjusted.

Specifies the number of bytes to be contiguous.

The m_pullup kernel service guarantees that the mbuf structure at the head of a chain has
in contiguous memory within the data area of the mbuf structure at least the number of data
bytes specified by the size parameter. (

Execution Environment
The m_pullup kernel service can be called from either the process or interrupt environment.

Return Values
Upon successful completion, the head structure in the altered mbuf chain is returned.

A value of NULL is returned and the original chain is deallocated under the following
circumstances:

• The size of the chain is less than indicated by the size parameter.

• The number indicated by the size parameter is greater than the data portion of the
head-size mbuf structure.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-226 Kernel Reference

m_reg

m_reg Kernel Service

Purpose

Syntax

Parameter

Registers expected mbuf usage.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/mbuf .h>

void m_reg(mbp)
struct mbreq *mbp;

mbp Defines the address of an mbreq structure that specifies expected mbuf
usage.

Description
The m_reg kernel service lets users of mbuf services specify initial requirements. The
m_reg kernel service also allows the buffer pool low-water and deallocation marks to be
adjusted based on expected usage. Its use is recommended for better control of the buffer
pool.

When the number of free mbuf structures falls below the low-water mark, the total mbuf
pool is expanded. When the number of free mbuf structures rises above the deallocation
mark, the total mbuf pool is contracted and resources are returned to the system.

The m_reg service has no return values.

Execution Environment
The m_reg kernel service can be called from the process environment only.

Related Information
The mbreq Structure for mbuf Kernel Services.

The m_dereg kernel service.

110 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-227

mbreq

mbreq Structure for mbuf Kernel Services

Purpose
Contains mbuf structure registration information for the m_reg and m_dereg kernel
services.

Format
#include <sys/mbuf .h>

struct mbreq {
int low_mbuf; I* mbuf low-water mark

*/
int low_clust; I* page-sized mbuf low-water mark

*I
int initial_mbuf; I* initial allocation of mbufs

*/
int initial_clust; I* initial allocation of page-sized mbufs

*/
}

Description
The mbreq structure specifies the mbuf structure usage expectations for a user of mbuf
kernel services.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The m_reg kernel service, m_dereg kernel service.

1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-228 Kernel Reference

mbstat Structure for mbuf Kernel Services

Purpose
Contains mbuf usage statistics.

Format
#include <sys/mbuf .h>

struct mbstat {
ulong
ulong
ulong
ulong
ulong
ulong
ulong
short
}

Description

m_mbufs;
m_clusters;
m_space;
m_clfree;
m_drops;
m_wait;
m_drain;
m_mtypes[256];

I* number of mbufs allocated *I
/*number of clusters allocated */
I* number of interface pages *I
/* number of free clusters *I
I* times failed to find space *I
I* times waited for space *I
/* times drained protocols for space *I
I* type-specific mbuf allocations*/

mbstat

The mbstat structure provides usage information for the mbuf services. Statistics can be
viewed through the -m option of the netstat command.

Related Information
The netstat command.

1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-229

mincnt

mincnt Routine for the uphysio Kernel Service

Purpose

Syntax

Tailors a buf data transfer request to device-dependent requirements.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf .h>

int mincnt {bp, minparms)
struct buf * bp;
void * minparms;

Parameters
bp Points to the buf structure to be tailored.

minparms Points to parameters.

Description
Only the following fields in the buf header sent to the routine specified by the mincnt
parameter can be modified by that routine:

• b_bcount

• b_work

• b_options.

No other fields can be modified by the mincnt routine without the risk of error. If the mincnt
routine determines that the buf header cannot be supported by the target device, the routine
should return a nonzero return code. This stops the buf header and any additional buf
headers from being sent to the strategy routine.

The uphysio kernel service waits for all buf headers already sent to the strategy routine to
complete and then returns with the return code from the mincnt routine.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The uphysio kernel service.

1/0 Kernel Services, Processing by the uphysio Kernel Service in Kernel Extensions and
Device Support Programming Concepts.

1-230 Kernel Reference

(

MTOCL Macro

MTOCL Macro for mbuf Kernel Services

Purpose

Syntax

Parameter

Converts a pointer to an mbuf structure to a pointer to the head of an attached cluster.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf .h>

struct mbuf * m;
MTOCL (m);

m Indicates the address of the mbuf structure in question.

Description
The MTOCL macro converts a pointer to an mbuf structure to a pointer to the head of an
attached cluster.

The MTOCL macro can be used as in the following example:

caddr_t attcls;
struct mbuf *rn;
attcls = (caddr_t) MTOCL(rn);

Execution Environment
The MTOCL macro can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
M_HASCL macro for mbuf Kernel Services.

110 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-231

MTOD Macro

MTOD Macro for mbuf Kernel Services

Purpose

Syntax

Converts a pointer to an mbuf structure to a pointer to the data stored in that mbuf
structure.

#include <sys/types.h>
#include <sys/errno.h>
#include <Sys/mbuf.h>

MTOD{m, type);

Parameters
m Identifies the address of an mbuf structure.

type Indicates the type to which the resulting pointer should be cast.

Description

Example

The MTOD macro converts a pointer to an mbuf structure into a pointer to the data stored in
the mbuf structure. This macro can be used as in the following example:

1. The MTOD macro can be used as in the following example:

char *bufp;

bufp = MTOD(m, char*);

Execution Environment
The MTOD macro can be called from either the process or interrupt environment.

Related Information
DTOM macro for mbuf Kernel Services.

1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-232 Kernel Reference

(
I
\

net_ attach

net_attach Kernel Service

Purpose

Syntax

Opens an AIX communications 1/0 device handler.

#include <sys/types.h>
#include <sys/errno.h>
#include <&ixif/net if.h>
#include <sys/comio.h>

int net_attach (kopen_ext, device_req, netid, netfpp)
struct kopen_ext *kopen_ext;
struct device_req *device_req;
struct netid_list * netid;
struct file ** netfpp;

Parameters
kopen_ext Specifies the device handler kernel open extension.

Indicates the address of the device description structure. device_req

netid Indicates the address of the network ID list.

netfpp Address of the variable that will hold the returned file pointer.

Description
The net_attach kernel service opens the device handler specified by the device_req
parameter and then starts all the network IDs listed in the address specified by the netid
parameter. The net_attach service then sleeps and waits for the asynchronous start
completion notifications from the net_start_done kernel service.

Execution Environment
The net_attach kernel service can be called from the process environment only.

Return Values
Upon success, the value O is returned and a file pointer is stored in the address specified by
the netfpp parameter. Upon failure, the net_attach service returns either the error codes
received from the fp_opendev or fp_ioctl kernel service, or the value ETIMEDOUT. The
latter value is returned when an open operation times out.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The net_detach kernel service, net_start kernel service, net_start_done kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-233

net_ detach

net_detach Kernel Service

Purpose

Syntax

Parameter

Closes an AIX communications 1/0 device handler.

#include <sys/types.h>
#include <sys/errno.h>
#include <aixif/net_if.h>

int net_detach (netfp)
struct file * netfp;

netfp Points an open file structure obtained from the net_attach kernel service.

Description
The net_detach kernel service closes the device handler associated with the file pointer
specified by the netfp parameter.

Execution Environment
The net_detach kernel service can be called from the process environment only.

Return Value
The net_detach service returns the value it obtains from the fp_close service.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The fp_close kernel service, net_attach kernel service.

/
I~

(

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts. (

1-234 Kernel Reference

net_error Kernel Service

Purpose

Syntax

Handles errors for AIX communication network interface drivers.

#include <sys/types.h>
#include <Sys/errno.h>
#include <net/if.h>
#include <sys/comio.h>

net_error (ifp, error_code, netfp)
struct if net * ifp;
int error_code;
struct file * netfp;

net_ error

Parameters
ifp

error_code

Specifies the address of the ifnet structure for the device with an error.

Specifies the error code listed in the comlo.h header file.

netfp Specifies the file pointer for the device with an error.

Description
The net_error kernel service provides generic error handling for AIX communications
network interface (if) drivers. Network interface (if) kernel extensions call this service to trace
errors and, in some instances, perform error recovery.

Errors traced are of the following types:

• Errors received from the communications adapter drivers

• Errors occurring during input and output packet processing.

The net_error service has no return values.

Execution Environment
The net_error kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The net_attach kernel service, net_detach kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-235

net_ sleep

net_sleep Kernel Service

Purpose

Syntax

Sleeps on the specified wait channel.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <Sys/pri.h>

net_sleep (chan, flags)
int chan;
int flags;

Parameters
chan Specifies the wait channel to sleep upon.

flags Sleep flags described in the sleep kernel service.

Description
The net_sleep kernel service puts the caller to sleep waiting on the specified wait channel. If
the caller holds the network lock, the net_sleep kernel service releases the lock before
sleeping and reacquires the lock when the caller is awakened.

Execution Environment
The net_sreep kernel service can be called from the process environment only.

Return Values
1

0

Indicates that the sleeper was awakened by a signal.

Indicates that the sleeping process was not awakened by a signal.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The net_wakeup kernel service, sleep kernel service.

Understanding Locking, Network Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

1-236 Kernel Reference

net_ start

net_start Kernel Service

Purpose

Syntax

Starts network IDs on an AIX communications 1/0 device handler.

#include <sys/types.h>
#include <sys/errno.h>
#include <aixif/net if .h>
#include <sys/comio.h>

struct file *net_start (netfp, netidJ
struct file * netfp;
struct netid_list * netid;

Parameters
netfp Specifies the file pointer of the device handler.

netid Specifies the address of the network ID list.

Description
The net_start kernel service starts all the network IDs listed in the list specified by the netid
parameter. This service then waits for the asynchronous notification of completion of starts.

Execution Environment
The net_start kernel service can be called from the process environment only.

Return Values
The net_start service uses the return value returned from a call to the fp_ioctl operation
requesting the CIO_START operation.

ETIMEDOUT Indicates that the start for at least one network ID timed out waiting for
start-done notifications from the device handler.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The net_start_done kernel service, net_attach kernel service, fp_ioctl kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-237

net_ start_ done

net_start_done Kernel Service

Purpose

Syntax

Starts the done notification handler for AIX communications 1/0 device handlers.

#include <sys/types.h>
#include <sys/errno.h>
#include <aixif/net_if .h>
#include <sys/comio.h>

void net_start_done (netid, sbp)
struct netid_list * netid;
struct status~block *sbp;

Parameters
netid Specifies the address of the network ID list for the device being started.

sbp Specifies the status block pointer returned from the device handler.

Description
The net_start_done kernel service is used to mark the completion of a network ID start
operation. When all the network IDs listed in the netid parameter have been started, the
net_attach kernel service returns to the caller. The net_start_done service should be (
called when a CIO_START_DONE status block is received from the device handler. If the
status block indicates an error, the start process is immediately aborted.

The net_start_done service has no return values.

Execution Environment
The net_start_done kernel service can be called from either the process or interrupt
environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The net_attach kernel service, net_start kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-238 Kernel Reference

net_wakeup Kernel Service

Purpose

Syntax

Parameter

Wakes up all sleepers waiting on the specified wait channel.

#include <sys/types.h>
#include <sys/errno.h>

net_ wakeup (chan)
int chan;

chan Specifies the wait channel.

Description

net_ wakeup

The net_wakeup service wakes up all network processes sleeping on the specified wait
channel.

The net_wakeup service has no return values.

Execution Environment
The net_wakeup kernel service can be called from either the process or interrupt
environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The net_sleep kernel service, wakeup kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-239

net_xmit

net_xmit Kernel Service

Purpose

Syntax

Transmits data using an AIX communications device handler.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <aixif/net_if .h>

int net_xmit (ifp, m, netfp, lngth, m_ext)
struct ifnet * ifp;

struct mbuf * m;

struct fi.le * netfp;
int lngth;
struct mbuf *m_ext;

Parameters
ifp Indicates an address of the ifnet structure for this interface.

m

netfp

lngth

m_ext

Description

Specifies the address of an mbuf structure containing the data to transmit.

Indicates the open file pointer obtained from the net_attach kernel service.

Indicates the total length of the buffer being transmitted.

Indicates the address of an mbuf structure containing a write extension.

The net_xmit kernel service builds a uio structure and then invokes the fp_rwuio service to
transmit a packet.

Execution Environment
The net_xmit kernel service can be called from either the process or interrupt environment.

Return Values
0

ENOBUFS

Indicates that the packet was transmitted successfully.

Indicates that buffer resources were not available.

Values returned from the fp_rwuio service
Indicates that an error occurred during the call to the fp_rwuio service.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The fp_rwuio kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-240 Kernel Reference

/
\

notify Routine for the fp_select Kernel Service

Description

notify

The fp_select kernel service notify routine is registered by the caller of the fp_select kernel
service to be called by the kernel when specified events become true. The option to register
this notify routine is available in a cascaded environment. The notify routine can be called
at interrupt time.

The entry point for the notify routine must be declared as follows:

#include <sys/types.h>
#Include <sys/errno.h>

void notify (id, sub_id, rtnevents, pid)
int id;
int sub_id;
ushort rtnevents;
pid_t pid;

Parameters
The parameters for the notify routine must be the following:

id Indicates the selected function ID specified by the routine that made the call
to the selnotify kernel service to indicate the occurrence of an outstanding
event. For device drivers, this parameter is equivalent to the devno (device
major and minor number) parameter.

sub_id Indicates the unique ID specified by the routine that made the call to the
selnotify kernel service to indicate the occurrence of an outstanding event.
For device drivers, this parameter is equivalent to the chan (channel for
multiplexed drivers; O (zero) for nonmultiplexed drivers) parameter.

rtnevents

pid

Specifies the rtnevents parameter supplied by the routine that made the call
to the selnotify service indicating which events are designated as true.

Specifies the process ID of a process waiting for the event corresponding to
this call of the notify routine.

When a notify routine is provided for a cascaded function, the selnotify kernel service calls
the specified notify routine instead of posting the process that was waiting on the event. It
is up to this notify routine to determine if another selnotify call should be made to notify the
waiting process of an event.

The notify routine is not called if the request is synchronous (that is, if the POLLSYNC flag
is set in the events parameter) or if the original poll or select request is no longer
outstanding.

Note: When more than one process has requested notification of an event and the
fp_select kernel service is used with a notify routine specified, the notification of the
event causes the notify routine to be called once for each process that is currently
waiting on one or more of the occurring events.

Kernel Services 1-241

notify

Execution Environment
The fp_select kernel service notify routine can be called from either the process or interrupt
environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The fp_select kernel service, selnotify kernel service.

Logical File System Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

1-242 Kernel Reference

c

panic

panic Kernel Service

Purpose

Syntax

Parameter

Crashes the system.

#include <sys/types.h>
#include <sys/errno.h>

panic (s)
char *s;

s Points to a character string to be written to the error log.

Description
The panic kernel service is called when a catastrophic error occurs and the system can no
longer continue to operate. The panic service performs these two actions:

• Writes the character string pointed to by the s parameter to the error log.

• Performs a system dump.

The system halts after the dump. You should wait for the dump to complete, reboot the
system, and then save and analyze the dump.

The panic kernel service has no return values.

Execution Environment
The panic kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
RAS Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-243

peekq

peekq Kernel Service

Purpose

Syntax

Returns a pending queue element in the device queue.

#include <sys/types.h>
#include <Sys/errno.h>
#include <Sys/deviceq.h>

struct req_qe *peekq (queue_id, offset)
cba_id queue_id;
int offset;

Parameters
queue_id Specifies the queue identifier.

offset

Description

Specifies the offset of the queue element from the top of the device queue.
The offset must be in the range from 1 to QE_MAX_ OFFSET.

The peekq kernel service is not part of the base kernel but provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

A device queue server can use the peekq kernel service to browse the contents of any but
the active queue element in a device queue. This service does not remove the queue
element from the device queue when it browses. Use the readq service to browse the
active queue element in a device queue.

An offset value of 1 returns the most favored pending queue element.

The queue element includes the path identifier used to send the queue element. This value
can be used with the queryp service to determine the process that sent the queue element.

Although most device queues process queue elements in first-in-first-out (FIFO) order, some
device queues do not. Note that, for device queues not processed in FIFO order, the order
of the queue elements can change after a queue element has been read at a particular
offset. A device queue that does not process queue elements in FIFO order is one that has
multiple priorities.

Pending queue elements can be deleted from the queue at any time. When using the
peekq service to find elements on which requests are to be initiated, the caller must define a
cancel-queue-element routine (with the creatq service) for his device queue.

Warning: The server must not alter any fields in the queue element or the system may
crash.

Execution Environment
The peekq kernel service can be called from either the process or interrupt environment.

1-244 Kernel Reference

' I

\

peekq

Return Values
Upon successful completion, the peekq service returns the address of the pending queue
element. A value of NULL is returned when the queue identifier (specified by the queue_id
parameter) is invalid or when there is no queue element at the specified offset.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The readq kernel service, queryp kernel service, creatq kernel service.

The cancel-queue-element queue management routine.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-245

pfctlinput

pfctlinput Kernel Service

Purpose

Syntax

Invokes the ctlinput function for each configured protocol.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/domain.h>

void pfctlinput (cmd, sa)
int cmd;
struct sockaddr *sa;

Parameters
cmd Specifies the command to pass on to protocols.

sa Indicates the address of a sockaddr structure that is passed on to the
protocols.

Description
The pfctlinput kernel service searches through the protocol switch table of each configured
domain and invokes the protocol ctlinput function if defined. Both the cmd and sa
parameters are passed as parameters to the protocol function.

The pfctlinput service has no return values.

Execution Environment
The pfctlinput kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Understanding Socket Header Files in Communications Programming Concepts .

1-246 Kernel Reference

(

pffindproto

pffindproto Kernel Service

Purpose

Syntax

Returns the address of a protocol switch table entry.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/domain.h>

struct protosw *pffindproto (family, protocol, type)
int family;
int protocol;
int type;

Parameters
family

protocol

Specifies the address family for which to search.

Indicates the protocol within the address family.

type Specifies the type of socket (for example, SOCK_RAW).

Description
The pffindproto kernel service first searches the domain switch table for the address family
specified by the family parameter. If found, the pffindproto service then searches the
protocol switch table for that domain and checks for matches with the type and protocol
parameters.

If a match is found, the pffindproto service returns the address of the protocol switch table
entry. If the type parameter is set to SOCK_RAW, the pffindproto service returns the first
entry it finds with protocol equal to O (zero) and type equal to SOCK_RAW.

Execution Environment
The pffindproto kernel service can be called from either the process or interrupt
environment.

Return Values
The pffindproto service returns a NULL value if a protocol switch table entry was not found
for the given search criteria. Upon success, the pffindproto service returns the address of a
protocol switch table entry.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Understanding Socket Header Files in Communications Programming Concepts .

Kernel Services 1-247

pgsignal

pgsignal Kernel Service

Purpose

Syntax

Sends a signal to a process group.

#include <sys/types.h>
#include <sys/errno.h>

void pidsignal (pid, sig)
pid_t pid;
int sig;

Parameter~
pid Specifies the process ID of a process in the group of processes to receive

the signal.

sig Specifies the signal to send.

Description
The pgsignal kernel service sends a signal to each member in the process group to which
the process identified by the pid parameter belongs. The pid parameter must be the process
identifier of the process to be sent the signal. The sig parameter specifies which signal to
send.

Device drivers can get the value for the pid parameter by using the getpid kernel service.
This value is the process identifier for the currently executing process.

The sigaction subroutine contains a list of the valid signals.

The pgsignal service has no return values.

Execution Environment
The pgsignal kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The pidsig kernel service, getpid kernel service.

Understanding Signal and Exception Handling.

The sigaction subroutine.

Understanding Signal and Exception Handling, Process and Exception Management Kernel
Services in Kernel Extensions and Device Support Programming Concepts.

1-248 Kernel Reference

I

\

\
I

/

pidsig

pidsig Kernel Service

Purpose

Syntax

Sends a signal to a process.

#include <sys/types.h>
#include <sys/errno.h>

void pidsig (pid, sig)
pid_t pid;
int sig;

Parameters
pid The process ID of the receiving process.

Specifies the signal to send. sig

Description
The pidsig kernel service sends a signal to a process. The pid parameter must be the
process identifier of the process to be sent the signal. The sig parameter specifies the
signal to send.

Device drivers can get the value for the pid parameter by using the getpid kernel service.
This value is the process identifier for the currently executing process.

See the sigaction subroutine for a list of the valid signals.

The pidsig kernel service can be called from an interrupt handler execution environment if
the process ID is known. The pidsig service has no return values.

Execution Environment
The pidsig kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The pgsignal kernel service, getpid kernel service.

The sigaction subroutine.

Understanding Signal and Exception Handling.

Understanding Signal and Exception Handling, Process and Exception Management Kernel
Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-249

pin

pin Kernel Service

Purpose

Syntax

Pins the address range in the system (kernel) space.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int pin (addr, length)
caddr addr,
int length;

Parameters
addr Specifies the address of the first byte to pin.

Specifies the number of bytes to pin. length

Description
The pin service pins the real memory pages touched by the address range specified by the
addr and length parameters in the system (kernel) address space. It pins the real- memory
pages to ensure that page faults do not occur for memory references in this address range.
The pin service increments the pin count for each real-memory page. While the pin count is
nonzero, the page cannot be paged out of real memory.

The pin routine pins either the entire address range or none of it. Only a limited number of
pages can be pinned in the system. If there are not enough unpinned pages in the system,
the pin service returns an error code.

Note: If the requested range is not aligned on a page boundary, then memory outside this
range is also pinned. This is because the operating system pins only whole pages at
a time.

The pin service can only be called for addresses within the system (kernel) address space.
The pinu service should be used for addresses within kernel or user space.

Execution Environment
The pin kernel service can be called from the process environment only.

Return Values
0

EINVAL

ENOMEM

1-250 Kernel Reference

Indicates successful completion.

Indicates that the length parameter has a negative value. Otherwise, the
area of memory beginning at the address of the first byte to pin (the addr
parameter) and extending for the number of bytes specified by the length
parameter is not defined.

Indicates that the pin service was unable to pin due to insufficient real
memory or exceeding the systemwide pin count.

/

\~

pin

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The unpin kernel service.

Understanding Execution Environments, Memory Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-251

pin cf

pincf Kernel Service

Purpose

Syntax

Parameter

Manages the list of free character buffers.

#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

int pincf (delta)
int delta;

delta Specifies the amount by which to change the number of free pinned
character buffers.

Description
The pincf kernel service manages two lists of free character buffers. One list, which
contains free unpinned character buffers, is used to allocate a character buffer when
executing under a process. This allocation typically occurs during output operations.

The second list contains free pinned character buffers and is used to allocate a character
buffer when executing on an interrupt level. This typically happens during input operations.

The pincf service is used to control the size of the list of free pinned character buffers. A
positive value for the delta parameter increases the size of this list, while a negative value
decreases the size.

A device driver calls the pincf service, typically during its ddopen routine, to tell the kernel
how many character buffers the device driver intends to allocate from an interrupt level. A
device driver also frees allocated clist resources by calling the pincf service with a delta
parameter having a negative value. This happens typically during the device driver's
ddclose routine.

Execution Environment
The pincf kernel service can be called in the process environment if the delta parameter has
a positive value.

It can be called in either the process or interrupt environment if the delta parameter has a
negative value.

Return Value
The pincf service returns a value representing the amount by which the service changed the
number of free pinned character buffers.

1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

1-252 Kernel Reference

/
I
\

pin code

pincode Kernel Service

Purpose

Syntax

Parameter

Pins the code and data associated with an object file.

#include <Sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int pincode (func)
int (*func) ();

tune Specifies the function in the object file to be pinned.

Description
The pincode service uses the pin service to pin the specified object file. The loader entry
for the object file is used to determine the size of both the code and data.

Execution Environment
The pincode kernel service can be called from the process environment only.

Return Values
0

EINVAL

ENOMEM

Indicates successful completion.

Indicates that the func parameter is not a valid pointer to the function.

Indicates that the pincode service was unable to pin due to insufficient real
memory.

When an error occurs, the pincode service returns without pinning any pages.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The pin kernel service.

Understanding Execution Environments, Memory Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-253

pi nu

pinu Kernel Service

Purpose

Syntax

Pins the specified address range in user or system memory.

#include <sys/types.h>
#include <Sys/errno.h>
#include <Sys/uio.h>

int pinu (base, /en, segflg)
caddr_t base;
int /en;
short segflg;

Parameters
base Specifies the address of the first byte to pin.

Indicates the number of bytes to pin. /en

segflg

Description

Specifies whether the data to pin is in user space or system space. The
values for this flag are defined in the <sys/uio.h> header file. This value
can be one of the following:

UIO_SYSSPACE The region is mapped into the kernel address space.

UIO_USERSPACE The region is mapped into the user address space.

The pinu service is used to pin pages backing a specified memory region that is defined in
either system or user address space. Pinning a memory region prohibits the pager from
stealing pages from the pages backing the pinned memory region. Once a memory region is
pinned, accessing that region does not result in a page fault until the region is subsequently
unpinned.

Execution Environment
The pinu kernel service can be called from the process environment only.

Return Values
0

EFAULT

EINVAL

ENOMEM

1-254 Kernel Reference

Indicates successful completion.

Indicates that the memory region as specified by the base and /en
parameters is not within the address space specified by the segflg
parameter.

Indicates that the length parameter is negative. Otherwise, the area of
memory beginning at the byte specified by the base parameter and
extending for the number of bytes specified by the ten parameter is not
defined.

Indicates that the pinu service is unable to pin the region due to insufficient
real memory or from exceeding the systemwide pin count.

I

(~

I

~

pi nu

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The unpinu kernel service, pin kernel service.

Understanding Execution Environments, Memory Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-255

pio_assist

pio_assist Kernel Service

Purpose

Syntax

Provides a standardized programmed 1/0 exception handling mechanism for all routines
performing programmed 1/0.

#include <Sys/types.h>
#include <sys/errno.h>

int pio_assist (ioparms, iofunc, iorecov)
caddr_t ioparms;
int (*iofunc)();
int (*iorecov)();

Parameters
ioparms Points to parameters for the 1/0 routine.

Specifies the 1/0 routine function pointer. iofunc

iorecov Specifies the 1/0 recovery routine function pointer.

Description
The pio_assist kernel service assists in handling exceptions caused by programmed 1/0.
Use of the pio_assist service standardizes the programmed 1/0 exception handling for all
routines performing programmed 1/0. The pio_assist service is built upon other kernel
services that routines access to provide their own exception handling where the use of the
pio_assist service is contra-indicated due to efficiency and structure considerations.

Using the pio_assist Kernel Service
To use the pio_assist service, the device handler writer must provide a callable routine that
performs the 1/0 operation, and optionally a routine that can recover and log 1/0 errors. The
mainline device handler code would then call the pio_assist service with the following as (
parameters: ~

• A pointer to the parameters needed by the 1/0 routine

• The function pointer for the routine performing 1/0

• A pointer for the 1/0 recovery routine (or a NULL pointer, if there is no 1/0 recovery
routine)

If the pointer for the 1/0 recovery routine is NULL, the iofunc routine is recalled to recover
from 1/0 exceptions. This re-use of the 1/0 routine for error retry should only be used if the
1/0 routine can handle being recalled in the case of an error, and if the sequence of 1/0
instructions can be reissued to recover from typical bus errors.

The ioparms parameter points to the parameters needed by the 1/0 routine. It is passed to
the 1/0 routine when the pio_assist service calls the 1/0 routine. It is also passed to the 1/0
recovery routine when the 1/0 recovery routine is invoked by the pio_assist service. If any
of the parameters found in the structure pointed to by ioparms are modified by the iofunc
routine and needed by the iorecov or recalled iofunc routine, they must be declared as
volatile.

1-256 Kernel Reference

pio_assist

Requirements for Coding the Caller-Provided 1/0 Routine
The iofunc parameter is a function pointer to the routine performing the actual 1/0. It is
called by the pio_assist service with the following parameters:

int iofunc (ioparms)
caddr_t ioparms; I* pointer to parameters*/

The ioparms parameter points to the parameters used by the 1/0 routine that was provided
on the call to the pio_assist kernel service.

If the pio_assist kernel service is used with a NULL pointer to the iorecov 110 recovery
routine, the iofunc 1/0 routine is called to retry all programmed 1/0 exceptions. This is useful
for devices that have 1/0 operations that can be sent over again without concern for
hardware state synchronization problems.

Upon return from the 1/0, the return code should be 0 (zero) if no error was encountered by
the 1/0 routine itself. If a nonzero return code is presented, it is used as the return code
from the pio_assist kernel service.

Requirements for Coding the Caller-Provided 1/0 Recovery Routine
The iorecov parameter is a function pointer to the device handler's 1/0 recovery routine. This
iorecov routine is responsible for logging error information (if required) and performing the
necessary recovery operations to complete the 1/0 (if possible). This may in fact include
calling the original 1/0 routine. The iorecov routine is called with the following parameters
when an exception is detected during execution of the 1/0 routine:

int iorecov (parms, action, infop)
caddr_t parms; I* pointer to parameters originally passed to iofunc*I
int action; I* action indicator*/
struct pio_except *infop; I* pointer to exception info*/

The parms parameter points to the parameters used by the 1/0 routine that was provided on
the call to the pio_assist service.

The action parameter is an operation code set by the pio_assist kernel service to one of the
following:

PIO_RETRY

PIO_NO_RETRV

Log error and retry 1/0 operations, if possible.

Log error but do not retry the 1/0 operation.

The pio_except structure containing the exception information is platform-specific and is
defined in the <sys/except.h> header file. The fields in this structure define the type of
error that occurred, the bus address on which the error occurred, and additional
platform-specific information to assist in the handling of the exception.

The iorecov routine should return with a return code of O if the exception is a type that the
routine can handle. A return code of EXCEPT_NOT_HANDLED signals that the exception
is a type not handled by the iorecov routine. This return code causes the pio_assist kernel
service to invoke the next exception handler on the stack of exception handlers. Any other
nonzero return code signals that the iorecov routine handled the exception but could not
successfully recover the 1/0. This error code is returned as the return code from the
pio_assist kernel service.

Kernel Services 1-257

pio_assist

Return Codes by the pio_assist Kernel Service
The pio_assist kernel service returns a return code of O if no errors are indicated by the
iofunc 110 routine, or if programmed 1/0 exceptions did occur but were successfully handled
by the iorecov 110 recovery routine. If an 1/0 exception occurs during execution of the iofunc
or iorecov routines and the exception count has not exceeded the maximum value, the
iorecov routine is called with an op value of PIO_RETRY.

If the number of exceptions that occurred during this operation exceeds the maximum
number of retries set by the platform-specific value of PIO_RETRY _COUNT, the pio_assist
kernel service calls the iorecov routine with an op value of PIO_NO_RETRY. This indicates
that the 1/0 operation should not be retried. In this case, the pio_assist service returns a
return code value of EIO indicating failure of the 1/0 operation.

If the exception is not an 1/0-related exception or if the iorecov routine returns with the return
code of EXCEPT _NOT _HANDLED (indicating that it could not handle the exception), the
pio_assist kernel service does not return to the caller. Instead it invokes the next exception
handler on the stack of exception handlers for the current process or interrupt handler. If no
other exception handlers are on the stack, the default exception handler is invoked. The
normal action of the default exception handler is to cause a system crash.

Execution Environment
The pio_assist kernel service can be called from either the process or interrupt
environment. "

Return Values
0

EIO

Indicates successful completion: either no errors were encountered, or PIO
errors were encountered and successfully handled.

Indicates the failure of the 10 operation: the maximum number of 10 retry
operations was exceeded.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information (
Device Handler Error Recovery, Handling User-Mode Exceptions, Kernel-Mode Exception ~
Handling, Kernel Extension/Device Driver Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-258 Kernel Reference

Process State-Change

Process State-Change Notification Routine

Purpose

Syntax

Allows kernel extensions to be notified of major process state transitions.

The notification routine is called by the kernel as follows:

void handler (term, type, pid)
struct proch *term;
int type;
pid_t pid;

Parameters
term Points to a proch structure used in the prochadd call.

type Defines the process's state transition: initialization, termination, swap in, or
swap out. These four values, defined in the <sys/proc.h> file, are as
follows:

PROCH_INITIALIZE (Process is initializing.)

PROCH_ TERMINATE (Process is terminating.)

PROCH_SWAPIN (Process has been swapped in.)

PROCH_SWAPOUT (Process is about to be swapped out.)

pid Specifies the process ID of the process.

Description
For process initialization, the notification routine is called in the execution environment of a
parent process for the initialization of a newly created child process. For kernel processes,
the notification routine is called when the initp kernel service is called to complete
initialization.

For process termination, the notification routines are called before default termination
procedures are handled by the kernel. They are called in a LIFO order. The routines must
be written so as not to allocate any resources under the terminating process. The
notification routine is called under the process image of the terminating process.

The notification routine is activated for a swap in when a process has just been swapped in
and is about to be put on the ready-to-run queue. At the point of call to the notification
routine, the process's u block has been pinned.

The notification routine is activated for a swapout when a process is about to be swapped
out. At the point of call to the notification routine, the process's u block has not yet been
unpinned.

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The prochadd kernel service, prochdel kernel service.

Kernel Program/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-259

prochadd

prochadd Kernel Service

Purpose

Syntax

Parameter

Adds a systemwide process state-change notification routine.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/proc.h>

void prochadd (term)
struct proch *term;

term Points to a proch structure containing a notification routine to be added
from the chain of systemwide notification routines.

Description
The prochadd kernel service allows kernel extensions to register for notification of major
process state transitions. The prochadd service allows the caller to be notified when a
process:

• Has just been created

• Is about to be terminated

• Is about to be swapped out

• Has just been swapped in.

The prochadd service is typically used to allow recovery or reassignment of resources when
processes undergo major state changes.

The caller should allocate a proch structure and update the proch.handler field with the
entry point of a caller-supplied notification routine before calling the prochadd kernel
service. This notification routine is called once for each process in the system that is
undergoing a major state change.

The proch structure has the following form:

struct proch
{

struct proch *next
void *handler ();

}

Execution Environment
The prochadd kernel service can be called from the process environment only.

1-260 Kernel Reference

!
\

(

(

\

prochadd

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The prochdel kernel service.

Kernel Program/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-261

prochdel

prochdel Kernel Service

Purpose

Syntax

Deletes a process state change notification routine.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/proc.h>

void prochdel (term)
struct proch *term;

Parameters
term Points to a proch structure containing a notification routine to be removed

from the chain of systemwide notification routines. This structure was
previously registered by using the prochadd kernel service.

Description
The prochdel kernel service removes a process change notification routine from the chain
of systemwide notification routines. The registered notification routine defined by the
handler field in the proch structure is no longer to be called by the kernel when major
process state changes occur.

If the proch structure pointed to by the term parameter is not found in the chain of
structures, the prochdel service performs no operation.

Execution Environment
The prochdel kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The prochadd kernel service.

Kernel Program/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-262 Kernel Reference

/

/
i
"l

purblk Kernel Service

Purpose

Syntax

Purges the specified block from the buffer cache.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf .h>

void purblk (dev, blkno)
dev_t dev-,
daddr_t blkno;

Parameters
dev Specifies the device containing the block to be purged.

blkno Specifies the block to be purged.

Description

purblk

The purblk kernel service purges (that is, makes unreclaimable by marking the block as
STALE) the specified block from the buffer cache. The purblk service has no return values.

Execution Environment
The purblk kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The geteblk kernel service, brelse kernel service.

Block 1/0 Buffer Cache Services: Overview, 1/0 Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-263

putc

putc Kernel Service

Purpose

Syntax

Places a character at the end of a character list.

#include <sys/types.h>
#include <sys/errno.h>
#include <Cblock.h>

int putc (c, header)
char c;
struct clist *header,

Parameters
c Specifies the character to place on the character list.

header Address of the clist structure that describes the character list.

Description
The putc kernel service puts the character specified by the c parameter at the end of the
character list pointed to by the header parameter.

If the putc service indicates that there are no more buffers available, then the waitcfree
service can be used to wait until a character block is available.

Warning: The caller of the putc service must ensure that the character list is pinned. This
includes the clist header and all the cblock character buffers. Character blocks acquired
from the getcf service are also pinned. Otherwise, the system may crash.

Execution Environment
The putc kernel service can be called from either the process or interrupt environment.

Return Values
0

-1

Indicates successful completion.

Indicates that the character list is full and no more buffers are available.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The getcb kernel service, getcf kernel service, pincf kernel service, putcf kernel service,
putcfl kernel service, waitcfree kernel service.

1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-264 Kernel Reference

(

putcb

putcb Kernel Service

Purpose

Syntax

Places a character buffer at the end of a character list.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <Cblock.h>

void putcb (p, heade~
struct cblock * p;
struct clist *header,

Parameters
p Specifies the address of the character buffer to place on the character list.

Specifies the address of the clist structure that describes the character list. header

Description
The putcb kernel service places the character buffer pointed to by the p parameter on the
end of the character list specified by the header parameter. Before calling the putcb
service, you must load this new buffer with characters and set the c_first and c_last fields in
the cblock structure. The p parameter is the address returned by either the getcf or the
getcb service.

Warning: The caller of the putcb service must ensure that the character list is pinned. This
includes the clist header and all the cblock character buffers. Character blocks acquired
from the getcf service are pinned. Otherwise, the system may crash.

Execution Environment
The putcb kernel service can be called from either the process or interrupt environment.

Return Values
0

-1

Indicates successful completion.

Indicates that the character list is full and no more buffers are available.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The getcb kernel service, getcf kernel service, pincf kernel service, putcf kernel service,
putcfl kernel service, waitcfree kernel service.

1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-265

putcbp

putcbp Kernel Service

Purpose

Syntax

Places several characters at the end of a character list.

#include <sys/types.h>
#include <sys/errno.h>
#include <cblock.h>

int putcbp (header, source, n)
struct clist *header;
char *source;
int n;

Parameters
header Specifies the address of the clist structure that describes the character list.

Specifies the address from which characters are read to be placed on the
character list.

source

n Specifies the number of characters to be placed on the character list.

Description
The putcbp kernel service operates on the characters specified by the n parameter starting
at the address pointed to by the source parameter. This service places these characters at
the end of the character list pointed to by the header parameter. The putcbp service next
returns the number of characters added to the character list. If the character list is full and
no more buffers are available, then the putcbp service returns a 0. Otherwise, it returns the
number of characters written.

Warning: The caller of the putcbp service must ensure that the character list is pinned. This
includes the clist header and all of the cblock character buffers. Character blocks acquired
from the getcf service are pinned. Otherwise, the system may crash.

Execution Environment
The putcbp kernel service can be called from either the process or interrupt environment.

Return Values
The putcbp service returns the number of characters written, or a value of O if the character
list is full and no more buffers are available.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The getcb kernel service, getcf kernel service, pincf kernel service, putcf kernel service,
putcfl kernel service, waitcfree kernel service.

110 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-266 Kernel Reference

I

I

"'

(

\~

putcf Kernel Service

Purpose

Syntax

Parameter

Frees a specified buffer.

#include <sys/types.h>
#include <Sys/errno.h>
#include <Cblock.h>

void putcf (p)
struct cblock * p;

p Identifies which character buffer to free.

Description
The putcf kernel service unpins the indicated character buffer.

putcf

The putcf service returns the specified buffer to the list of free character buffers. The putcf
service has no return values.

Execution Environment
The putcf kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-267

putcfl

putcfl Kernel Service

Purpose

Syntax

Parameter

Frees the specified list of buffers.

#include <Sys/types.h>
#include <sys/errno.h>
#include <Cblock.h>

void putcfl (header?
struct clist *header;

header Identifies which list of character buffers to free.

Description
The putcfl kernel service returns the specified list of buffers to the list of free character
buffers. The putcfl service unpins the indicated character buffer.

Note: The caller of the putcfl service must ensure that the header and clist structure are
pinned.

The putcfl service has no return values.

Execution Environment
The putcfl kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
110 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-268 Kernel Reference

I

!
\i

putcx

putcx Kernel Service

Purpose

Syntax

Places a character on a character list.

#include <sys/types.h>
#include <sys/errno.h>
#include <Cblock.h>

int putcx (c, headel)
char c;
struct clist *header;

Parameters
c Specifies the character to place at the front of the character list.

header Specifies the address of the clist structure that describes the character list.

Description
The putcx kernel service puts the character specified by the c parameter at the front of the
character list pointed to by the header parameter. The putcx service is identical to the putc
service, except that it puts the character at the front of the list instead of at the end.

If the putcx service indicates that there are no more buffers available, then the waitcfree
service can be used to wait until a character buffer is available.

Note: The caller of the putcx service must ensure that the character list is pinned. This
includes the clist header and all the cblock character buffers. Character blocks
acquired from the getcf service are pinned.

Execution Environment
The putcx kernel service can be called from either the process or interrupt environment.

Return Values
0

-1

Indicates successful completion.

Indicates that the character list is full and no more buffers are available.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The getcb kernel service, getcf kernel service, pincf kernel service, putcf kernel service,
putcfl kernel service, waitcfree kernel service.

110 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-269

qryds

qryds Kernel Service

Purpose

Syntax

Returns information about the device associated with a device queue.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int qryds (device_id, ptr, count)
cba_id device_id;
caddr_t ptr,
int count;

Parameters
device_id Specifies the device identifier.

ptr

count

Description

Specifies the address of the buffer into which the device-dependent
information is to be copied.

Specifies the size of the buffer in which to place the device-dependent
information.

The qryds kernel service is not part of the base kernel but is provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The qryds service returns the device information for the specified device. The service simply
copies the data from the buffer (specified with the creatd service) into the caller's buffer.

A kernel extension should not return this data directly to the user application. It should
simply extract selected fields as required and return only those fields. The kernel extension ('
is responsible for ensuring that the information that it returns to the user does not constitute \
a security exposure.

The caller can specify a buffer size of O (indicated by the count parameter) to query only the
size of the device-dependent information for the device (device-dependent information is not
copied to the buffer).

Note: The qryds service is not serialized with respect to updates to the device-dependent
information by the device manager. (That is, this is not an atomic operation.)
Therefore, results may be unreliable.

Execution Environment
The qryds kernel service can be called from the process environment only.

Return Values
The qryds service returns the size of the device-dependent information for the device, if
successful. It returns a value of RC_NONE if an error was encountered accessing the
device-dependent information or caller's buffer. The caller can use this to determine how
much of the device-dependent information was returned.

1-270 Kernel Reference

\
/

qryds

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The creatd kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-271

queryd

queryd Kernel Service

Purpose

Syntax

Parameter

Returns the device identifier associated with the specified IODN.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

cba_id queryd (iodn)
ushort iodn;

iodn Predetermined global name for a device queue.

Description
The queryd kernel service is not part of the base kernel but is provided by the Device
Queue Management kernel extension. This queue management kernel extension must be
loaded into the kernel once before the loading of any kernel extensions referencing these
services.

The queryd service returns the device identifier that corresponds to thep redetermined (
global name specified by the iodn parameter. The name specified by the iodn parameter is \
associated with a device identifier and a device queue by the creatd service.

Execution Environment
The queryd kernel service can be called from the process environment only.

Return Values
Upon successful completion, the queryd service returns the device identifier. A value of
NULL_CBA is returned if the name specified by the iodn parameter is not currently assigned (
to a device queue. ~

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The creatd kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-272 Kernel Reference

queryi

queryi Kernel Service

Purpose

Syntax

Provides information about device queues.

#include <Sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int queryi (query_id, queue_ids, size)
cba_id query_id;
struct queryi queue_ids;
int size;

Parameters
query_id

queue_ids

size

Description

Specifies the identifier associated with a device queue.

Specifies the address of the array in which the device queue information is
returned.

Specifes the number of elements in the array specifies by the queue_ids
parameter.

The queryi kernel service is not part of the base kernel but provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The queryi service returns information about the device queues associated with the
query_id parameter. The query_id parameter can specify a process identifier, a queue
identifier, or a device identifier. The information returned is the device queue's identifier and
event mask.

The queue_ids parameter is an array because a process can serve more than one device
queue at a time.

Execution Environment
The queryi kernel service can be called from the process environment only.

Return Values
The queryi service returns the number of entries inserted into the queue_ids array.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-273

queryp

queryp Kernel Service

Purpose

Syntax

Parameter

Indicates whether a path exists to a device queue.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int queryp (ptr?
struct queryp *ptr,

ptr Specifies the address of the query path structure.

Description
The queryp kernel service is not part of the base kernel but provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The queryp service determines whether a path established by the attchq service exists and
returns information about the path.

There are two ways to use the queryp service:

• To query the path identifier, the from-identifier and to-identifier must be filled in and the
path identifier set to NULL_CBA. The from-identifier and the to-identifier can be a queue
identifier, a device identifier, or a process identifier.

• To query the from-identifier and to-identifier, the path identifier must be filled in and the
from-identifier and to-identifier set to NULL_CBA.

Other returned information concerning the path includes the acknowledgment type
information and the server queue identifier. The attchq kernel service provides more details
about these parameters. f

Execution Environment
The queryp kernel service can be called from the process environment only.

Return Values
RC_GOOD

RC_OBJ

Indicates successful completion.

Indicates that the path was not found. This can occur if the path does not
exist or any of the input identifiers are invalid.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The attchq kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-27 4 Kernel Reference

\

raw_input

raw_input Kernel Service

Purpose

Syntax

Builds a raw_header structure for a packet and sends both to the raw protocol handler.

#include <Sys/types.h>
#include <sys/errno.h>

void raw_input (mO, proto, src, ds~
struct mbuf *mO;
struct sockproto *pro to;
struct sockaddr *src;
struct sockaddr *dst;

Parameters
mo Specifies the address of an mbuf structure containing input data.

proto Specifies the protocol definition of data.

src Identifies the sockaddr structure indicating where data is from.

dst Identifies the sockaddr structure indicating the destination of the data.

Description
The raw_input kernel service accepts an input packet, builds a raw_header structure (as
defined in the <net/raw_cb.h> header file) and passes both on to the raw protocol input
handler.

The raw_input service has no return values.

Execution Environment
The raw_input kernel service can be called from either the process or interrupt
environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-275

raw_usrreq

raw_usrreq Kernel Service

Purpose

Syntax

Implements user requests for raw protocols.

#include <sys/types.h>
#include <sys/errno.h>

void raw_usrreq (so, req, m, nam, rights)
struct socket *so;
int req;
struct mbuf * m;
struct mbuf * nam;
struct mbuf *rights;

Parameters
so Identifies the address of a raw socket.

req Specifies the request command.

m Specifies the address of an mbuf structure containing data.

nam Specifies the address of an mbuf structure containing the sockaddr
structure.

rights This parameter should be set to NULL.

Description
The raw_usrreq kernel service implements user requests for the raw protocol.

The raw_usrreq service supports the following commands:

PRU_ATTACH PRU_DETACH

PRU_CONNECT PRU_PEERADDR

PRU_BIND PRU_DISCONNECT

PRU_SHUTDOWN PRU_SEND

PRU_ABORT PRU_SENSE

PRU_SOCKADDR

PRU_CONTROL PRU_CONNECT2

PRU_RCVOOB PRU_RCVD

PRU_LISTEN PRU_ACCEPT

PRU_SENDOOB

Any unrecognized command causes the panic kernel service to be called.

Execution Environment
The raw_userreq kernel service can be called from either the process or interrupt
environment.

1-276 Kernel Reference

(

/
I
\

Return Values
EOPNOTSUPP Indicates an unsupported command.

Indicates a parameter error.

Indicates insufficient authority for PRU_ATTACH.

Indicates an attempt to detach when not attached.

raw_usrreq

EINVAL

EACCESS

ENOTCONN

EISCONN Indicates that the caller tried to connect while already connected.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The panic kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-277

readq

readq Kernel Service

Purpose

Syntax

Parameter

Returns the active queue element in the device queue.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <Sys/deviceq.h>

struct req_qe *readq (queue_id)
cba_id queue_id;

queue_id Specifies the device queue identifier.

Description
The readq kernel service is not part of the base kernel but provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The readq kernel service returns the address of the active queue element in the device
queue without actually removing the element from the queue. If there is currently no active
queue element, the readq service makes the most favored queue element the active one.

Subsequent readq calls by the server return the same address until that queue element is
removed from the device queue. Any queue elements placed on the device queue after the
call to the readq service must wait for the active queue element to be removed from the
device queue before being processed. This is true even if these queue elements have a
more favored priority.

The path identifier in the queue element can be used as input to the queryp service to
determine who sent the queue element.

Warning: The server must not alter any fields in the queue element or the system may
crash.

Execution Environment
The readq kernel service can be called from the process environment only.

Return Values
Upon successful completion, the readq service returns the address of the active queue
element in the device queue. A value of NULL is returned when the device queue is empty.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The queryp kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-278 Kernel Reference

rqc

rqc Kernel Service

Purpose

Syntax

Creates a ring queue in the kernel heap.

#include <Sys/types.h>
#include <sys/errno.h>
#include <Sys/types.h>

caddr_t rqc (depth, event, pid, fune)
int depth;
unsigned long event;
unsigned int pid;
void(*tune)();

Parameters
depth Indicates the requested number of elements in the queue.

Indicates the event mask. event

pid

tune

Description

Specifies the ID of the process that will get data from the queue.

Points to a function to be used for notifying the process when the queue
becomes non-empty. If this pointer is NULL, the process is to be posted.

The rqc kernel service, along with the other ring queue services, is not part of the base
kernel but is provided by the Device Queue Management kernel extension. This queue
management kernel extension must be loaded into the kernel once before the loading of any
kernel extensions referencing these services.

The rqc service creates a ring queue in the kernel heap. The ring queue contains ring
queue private data followed by an array of elements of type caddr _t.

If the tune parameter has a value of NULL, the event parameter is interpreted as an event
mask and the process is posted. If the fune parameter is non-NULL, it points to a special
function that handles acknowledging that the queue is no longer empty. To differentiate
between an empty and full queue, an extra, unused element is necessary. As a result, the
depth parameter should be one more than actually needed.

Execution Environment
The rqc kernel service can be called from the process environment only.

Return Values
The rqc service returns the address of the newly created ring queue or NULL if there is
insufficient memory.

Kernel Services 1-279

rqc

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
Understanding Device Queues, Understanding Ring Queue Kernel Services, Device Queue
Management Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

1-280 Kernel Reference

rqd

rqd Kernel Service

Purpose

Syntax

Parameter

Deletes a ring queue from the kernel heap.

#include <Sys/types.h>
#include <sys/errno.h>
#include <Sys/types.h>

void rqd (rqpointet?
caddr_t rqpointer,

rqpointer Specifies the ring queue to be deleted.

Description
The rqd kernel service, along with the other ring queue services, is not part of the base
kernel but is provided by the Device Queue Management kernel extension. This queue
management kernel extension must be loaded into the kernel once before the loading of any
kernel extensions referencing these services.

The rqd kernel service deletes a ring queue that was previously created with the rqc kernel
service. The rqd service has no return values.

Execution Environment
The rqd kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The rqc kernel service.

Understanding Device Queues, Understanding Ring Queue Kernel Services, Device Queue
Management Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

Kernel Services 1-281

rqgetw

rqgetw Kernel Service

Purp~se

Syntax

Parameter

Returns the next element from the specified queue.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/types.h>

caddr_t rqgetw (rqpointer)
caddr_t rqpointer,

rqpointer Specifies the ring queue from which the next element is to be returned.

Description
The rqgetw kernel service, along with the other ring queue services, is not part of the base
kernel but is provided by the Device Queue Management kernel extension. This queue
management kernel extension must be loaded into the kernel once before the loading of any
kernel extensions referencing these services.

The rqgetw service gets the next element from the specified queue.

Execution Environment
The rqgetw kernel service can be called from the process environment only.

Return Values
The rqgetw service returns the oldest element (of type caddr_t) in the queue, or NULL if the
ring queue was empty.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
Understanding Device Queues, Understanding Ring Queue Kernel Services, Device Queue
Management Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

1-282 Kernel Reference

(

rqputw

rqputw Kernel Service

Purpose

Syntax

Puts the specified element on the specified ring queue.

#include <sys/types.h>
#include <sys/errno.h>

int rqputw (rqpointer, data)
caddr_t rqpointer,
caddr _t data;

Parameters
rqpointer Specifies the ring queue that is to receive the new element.

data Indicates the data to place in the queue. (This cannot be a value of-1.)

Description
The rqputw kernel service, along with the other ring queue services, is not part of the base
kernel but is provided by the Device Queue Management kernel extension. This queue
management kernel extension must be loaded into the kernel once before the loading of any
kernel extensions referencing these services.

The rqputw service puts the specified element on the specified ring queue. If the ring queue
was empty, the waiting process is notified that data is now available. If the ring queue was
created with a non-NULL function pointer, then the notification is sent by calling the function.
Otherwise, the notification is a pasting of the event that was set up.

Execution Environment
The rqputw kernel service can be called from the process environment only.

Return Values
0

-1

Indicates successful completion.

Indicates that the ring queue is full.

Implementation Specifics
This kernel service is part of-the Device Queue Management AIX kernel extension.

Related Information
The rqc kernel service.

Understanding Device Queues, Understanding Ring Queue Kernel Services, Device Queue
Management Kernel Services in Kernel Extensions and Device Support Programming
Concepts.

Kernel Services 1-283

rtalloc

rtalloc Kernel Service

Purpose

Syntax

Parameter

Allocates a route.

#include <sys/types.h>
#include <sys/errno.h>
#include <net/route.h>

void rtalloc (ro)
register struct route * ro;

ro Specifies the route.

Description
The rtalloc kernel service allocates a route, which consists of a destination address and a
reference to a routing entry.

The rtalloc service has no return values.

Execution Environment
The rtalloc kernel service can be called from either the process or interrupt environment.

Example
1. To allocate a route, invoke the rtalloc kernel service as follows:

rtalloc(ro);

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-284 Kernel Reference

(

(

rtfree

·rtfree Kernel Service

Purpose

Syntax

Parameter

Frees the routing table entry.

#include <Sys/types.h>
#include <sys/errno.h>
#include <net/route.h>

int rtfree (rt)
register struct rtentry *rt;

rt Specifies the routing table entry.

Description
The rtfree kernel service frees the entry it is passed from the routing table. If the route does
not exist, the panic service is called. Otherwise, the rtfree service frees the mbuf structure
that contains the route and decrements the routing reference counters.

The rtfree kernel service has no return values.

Execution Environment

Example

The rtfree kernel service can be called from either the process or interrupt environment.

1. To free a routing table entry, invoke the rtfree kernel service as follows:

rt free (rt);

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The panic kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-285

rtinit

rtinit Kernel Service

Purpose

Syntax

Sets up a routing table entry, typically for a network interface.

#include <sys/types.h>
#include <Sys/errno.h>
#include <Sys/socket.h>
#include <net/route.h>

int rtinit (dst, gateway, cmd, flags)
struct sockaddr *dst, *gateway
int cmd, flags;

Parameters
dst

gateway

cmd

flags

Specifies the destination address.

Identifies the gateway address.

Specifies a request to add or delete route entry.

Identifies routing flags, as defined in the <net/route.h> header file.

Description
The rtinit kernel service creates a routing table entry for an interface. It builds an rtentry
structure using the values in the dst, gateway, and flags parameters.

The rtinit service then calls the rtrequest kernel service, passing it the cmd parameter and
the rtentry structure, to process the request. The cmd parameter contains either the value
SIOCADDRT (a request to add the route entry) or the value SIOCDELRT (delete the route
entry). Valid routing flags to set are defined in the <net.route.h> header file.

The rtinit kernel service has no return values.

Execution Environment

Example

. The rtinit kernel service can be called from either the process or interrupt environment.

1. To set up a routing table entry, invoke the rtinit kernel service as follows:

rtinit(dst, gateway, (int)SIOCADDRT, flags I RTF_DYNAMIC)

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The rtrequest kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1--286 Kernel Reference

(

rt redirect

rtredirect Kernel Service

Purpose

Syntax

Forces a routing table entry with the specified destination to go through the given gateway.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/mbuf.h>
#include <net/route.h>

rtredirect (dst, gateway, flags, src)
struct sockaddr *dst, *gateway, *src;
int flags;

Parameters
dst

gateway

flags

src

Specifies the destination address.

Specifies the gateway address.

Routing flags as defined in the <net/route.h> header file.

Identifies the source of the redirect request.

Description
The rtredirect kernel service forces a routing table entry for the specified destination to go
through the given gateway. Typically, the rtredirect service is called as a result of a routing
redirect message from the network layer. The dst, gateway, and flags parameters are
passed to the rtinit kernel service to process the request.

Execution Environment

Example

The rtredirect kernel service can be called from either the process or interrupt environment.

1 . To force a routing table entry with the specified destination to go through the given
gateway, invoke the rtredirect kernel service:

rtredirect(dst, gateway, flags, src);

Return Values
0 Indicates a successful operation.

If a bad redirect request is received, the routing statistics counter for bad redirects is
incremented.

Implementation Specifics
This kernel service is part of AIX Base Operating System {BOS) Runtime.

Related Information
The rtinit kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-287

rtrequest

rtrequest Kernel Service

Purpose

Syntax

Carries out a request to change the routing table.

#include <sys/types.h>
#include <Sys/errno.h>
#include <Sys/mbuf.h>
#include <net/if .h>
#include <net/at .h>
#include <net/route.h>

int rtrequest (req, entry)
int req;
register struct rtentry *entry;

Parameters
req Specifies a request to add or delete a route.

entry Specifies the routing table entry.

Description
The rtrequest kernel service carries out a request to change the routing table. Interfaces
call the rtrequest service at boot time to make their local routes known for routing table ioctl
operations. Interfaces also call the rtrequest service as the result of routing redirects. The
request is either to add (if the req parameter has the value SIOCADDRT) or delete (the req
parameter is SIOCDELRT) the route specified by the entry parameter.

Execution Environment

Example

The rtrequest kernel service can be called from either the process or interrupt environment.

1. To carry out a request to change the routing table, invoke the rtrequest kernel service as
follows:

rtrequest(cmd, &route);

Return Values
O Indicates a successful operation.

ESRCH Indicates that the route was not there to delete.

EEXIST Indicates that the entry the rtrequest service tried to add already
exists.

ENETUNREACH Indicates that the rtrequest service cannot find the interface for the
route.

ENOBUFS

1-288 Kernel Reference

Indicates that the rtrequest service cannot get an mbuf structure to
add an entry.

I

~

/

\

rt request

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The rtlnlt kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-289

schednetisr

schednetisr Kernel Service

Purpose

Syntax

Parameter

Schedules or invokes a network software interrupt service routine.

#include <sys/types.h>
#include <sys/errno.h>
#include <net/netisr.h>

int
schednetisr (anisr)
int anisr;

anisr Specifies the software interrupt number to issue.

Description
The schednetisr kernel service schedules or calls a network interrupt service routine.
Interrupt service routines are established by the add_netisr kernel service. If the service
was added with a service level of NET _OFF _LEVEL, the interrupt service routine is called
directly from the schednetisr kernel service. If the service level was NET _KPROC, a
network kernel process is notified to call the interrupt service routine.

Execution Environment
The schednetisr kernel service can be called from either the process or interrupt
environment.

Return Values
EFAULT

EINVAL

Indicates that a network interrupt service routine does not exist for the
specified interrupt number.

Indicates that the anisr parameter is out of range.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The add_netisr kernel service, del_netisr kernel service.

Network Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-290 Kernel Reference

selnotify

selnotify Kernel Service

Purpose

Syntax

Wakes up processes waiting in a poll or select subroutine or in the fp_poll kernel service.

#include <sys/types.h>
#include <Sys/errno.h>

void selnotify (id, subid, rtnevents)
int id;
int subid;
ushort rtnevents;

Parameters
id Primary resource identification value. This value along with the subidentifier

(specified by the subid parameter) is used by the kernel to notify the
appropriate processes of the occurrence of the indicated events. If the
resource on which the event has occurred is a device driver, this parameter
must be the device major/minor number (that is, a dev_t structure that has
been cast to an int). The kernel has reserved values for the id parameter
that do not conflict with possible device major or minor numbers for sockets,
message queues, and named pipes.

subid

rtnevents

Description

This subidentification parameter is used in conjunction with the primary
resource identifier, id, to identify to the kernel the resource on which the
event has occurred. For a multiplexed device driver, this is the number of
the channel on which the requested events occurred. If the device driver is
nonmultiplexed, then the subid parameter must be set to O (zero).

Returned events parameter. This parameter consists of a set of bits
indicating the requested events that have occurred on the specified device
or channel. These flags have the same definition as the event flags that
were provided by the events parameter on the unsatisfied call to the object's
select routine.

Use of the selnotify Kernel Service
The selnotify kernel service should be used by device drivers that support select or poll
operations. It is also used by the kernel to support select or poll requests to sockets, named
pipes, and message queues.

The selnotify kernel service wakes up processes waiting on a select or poll subroutine.
The processes to be awakened are those specifying the given device and one or more of the
events that have occurred on the specified device. The select and poll subroutines allow a
process to request information about one or more events on a particular device. If none of
the requested events have yet happened, the process is put to sleep and reawakened later
when the events actually happen.

Kernel Services 1-291

selnotify

The selnotify service should be called whenever a previous call to the device driver's
ddselect entry point returns and both of the following conditions apply:

• The status of all requested events was false.

• Asynchronous notification of the events was requested.

The selnotify service can be called for other than these conditions but performs no
operation.

Sequence of Events for Asynchronous Notification
The device driver must store information about the events requested while in the driver's
ddselect routine under the following conditions:

• None of the requested events are true (at the time of the call).

• The POLLSYNC flag is not set in the events parameter.

The POLLSYNC flag, when not set, indicates that asynchronous notification is desired. In
this case, the selnotify service should be called when one or more of the requested events \
later becomes true for that device and channel.

When the device driver finds that it can satisfy a select request, (perhaps due to new input
data) and an unsatisfied request for that event is still pending, the selnotify service is called
with the following items:

• Device major and minor number specified by the id parameter

• Channel number specified by the subid parameter

• Occurred events specified by the rtnevents parameter.

These parameters describe the device instance and requested events that have occurred on
that device. The notifying device driver then resets its requested-events flags for the events
that have occurred for that device and channel. The reset flags thus indicate that those
events are no longer requested.

If rtnevents, the returned events parameter indicated by the call to the selnotify service, is
no longer being waited on, no processes are awakened.

The selnotify service has no return values.
(

Execution Environment ~
The selnotify kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The ddselect device driver entry point.

The fp_select kernel service, fp_poll kernel service.

The select subroutine, poll subroutine.

Select and Poll Support in Understanding Character 1/0 Device Drivers, Kernel
Extension/Device Driver Management Kernel Services in Kernel Extensions and Device
Support Programming Concepts.

1-292 Kernel Reference

setjmpx

setjmpx Kernel Service

Purpose

Syntax

Parameter

Allows saving the current execution state or context.

#include <sys/types.h>
#include <sys/errno.h>

int setjmpx Uump_buffet}
label_t *jump_buffer,

jump_buffer Specifies the address of the caller-supplied jump buffer that was specified
on the call to the setjmpx service.

Description
The setjmpx kernel service saves the current execution state, or context, so that a
subsequent longjmpx call can cause an immediate return from the setjmpx service. The
setjmpx service saves the context with the necessary state information including:

• The current interrupt priority

• Whether the process currently owns the kernel mode lock.

Other state variables include the nonvolatile general purpose registers, the current
program's table of contents and stack pointers, and the return address.

Calls to the setjmpx service can be nested. Each call to the setjmpx service causes the
context at this point to be pushed to the top of the stack of saved contexts.

Execution Environment
The setjmpx kernel service can be called from either the process or interrupt environment.

Return Values
Nonzero value Indicates that a longjmpx call caused the setjmpx service to return.

0 Indicates any other circumstances.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The longjmpx kernel service, clrjmpx kernel service.

Stacking Saved Contexts for Nested setjmpx Calls, Exception Processing, Implementing
Exception Handlers, Process and Exception Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-293

setpinit

setpinit Kernel Service

Purpose

Syntax

Sets the parent of the current kernel process to the init process.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>

int setpinit()

Description
The setpinit kernel service can be called by a kernel process to set its parent process to the
init process. This is done to redirect the death of child signal for the termination of the kernel
process. As a result, the init process is allowed to perform its default zombie process
cleanup.

The setpinit service is used by a kernel process that can terminate, but does not want, the
user-mode process under which it was created to receive a death of child process
notification.

Execution Environment
The setpinit kernel service can be called from the process environment only.

Return Values
0

EINVAL

Indicates a successful operation.

Indicates that the current process is not a kernel process.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Using Kernel Processes, Process and Exception Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-294 Kernel Reference

(

setuerror

setuerror Kernel Service

Purpose

Syntax

Parameter

Allows kernel extensions to set the u_error field in the u area.

#include <sys/types.h>
#include <sys/errno.h>

void setuerror (errno)
int errno;

errno Contains a value found in the sys/errno.h header file that is to be copied to
the current process's u_error field.

Description
The setuerror kernel service allows a kernel extension in a process environment to set the
u_error field in the current process's u area. Kernel extensions providing system calls
available to user-mode applications typically use this service. For system calls, the value of
the u_error field in the per process u area is copied to the global variable errno by the
system call handler before returning to the caller.

The setuerror service has no return values.

Execution Environment
The setuerror kernel service can be called from the process environment only.

Implementation Specifics
This. kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The getuerror kernel service.

Actions of the System Call Handler describes the steps that the system call handler takes
when a system call is invoked in user mode.

Returning Error Information describes how system calls return error information.

Understanding System Call Execution, Returning Error Information from System Calls,
Kernel Program/Device Driver Management Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-295

sig_chk

sig_chk Kernel Service

Purpose

Syntax

Provides a kernel process the ability to poll for receipt of signals.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/signal.h>

int sig_chk ()

Description
The sig_chk kernel service can be called by a kernel process to determine if any unmasked
signals have been received. Signals do not preempt kernel processes because serialization
of critical data areas would be lost. Instead, kernel processes must poll for signals, either
periodically or after a long sleep has been interrupted by a signal.

The sig_chk service checks for any pending signal that has a specified signal catch or
default action. If one is found, the service returns the signal number as its return code. The
signal is also removed from the pending signal mask. If no signal is found, this service will
return a value of 0 {zero). Signals that are blocked or ignored will not be returned by this
service.

The kernel does not take default action for signals delivered to kernel processes, but instead
treats them as caught signals. The sig_chk service returns both caught and default signals.
It is the responsibility of the kernel process to handle the signal appropriately. Unlike user
processes, kernel processes do not have signal handlers automatically invoked by the kernel
in response to caught signals.

Programming Kernel Processes provides details on the actions that the kernel takes when a
signal is generated and delivered to a kernel process.

Warning: A system crash will occur if the sig_chk service is called by other than a kernel (
process.

Execution Environment
The sig_chk kernel service can be called from the process environment only.

Return Value
Upon completion, the sig_chk service returns a return code of O {zero) if no pending
unmasked signal is found. Otherwise, a nonzero signal value is returned indicating the
number of the highest priority signal that is pending. Signal values are defined in the
<sys/signal.h> file.

Implementation Specifics
This kernel service is part of AIX Base Operating System {BOS) Runtime.

1-296 Kernel Reference

sig_chk

Related Information
Introduction to Kernel Processes, Kernel Process Signal and Exception Handling, Process
and Exception Management Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

Kernel Services 1-297

sleep

sleep Kernel Service

Purpose

Syntax

Forces the calling process to wait on a specified channel.

#include <Sys/types.h>
#include <sys/errno.h>
#include <Sys/pri.h>
#include <Sys/proc.h>

int sleep (chan, priflags)
void *chan;
int priflags;

Parameters
ch an

priflags

Description

Specifies the channel number. For the sleep service, this parameter
identifies the channel to wait for {sleep on).

Specifies two conditions:

• The priority at which the process is to run when it is reactivated

• Flags indicating how a signal is to be handled by the sleep kernel
service.

The valid flags and priority values are defined in the <Sys/pri.h> file.

The sleep kernel service is provided for compatibility only and should not be invoked by new
code. The e_sleep, e_sleepl, or e_wait kernel service should be used when writing new
code.

The sleep service puts the calling process to sleep, causing it to wait for a wakeup to be
issued for the channel specified by the chan parameter. When the process is awakened
again, it runs with the priority specified in the priflags parameter. The new priority is effective
until the process returns to user mode.

All processes that are waiting on the channel are restarted at once, causing a race condition
to occur between the activated processes. Thus, after returning from the sleep service,
each process should check whether it needs to sleep again.

The channel specified by the chan parameter is simply an address that by convention
identifies some event to wait for. When the kernel or kernel extension detects such an
event, the wakeup service is called with the corresponding chan value to start up all the
processes that are waiting on that channel. The channel identifier must be unique
systemwide. The address of an external kernel variable {which can be defined in a device
driver) is generally used for this value.

If the SWAKEONSIG flag is not set in the priflags parameter, then signals do not terminate
the sleep. If the SWAKEONSIG flag is set and the PCATCH flag is not set, the kernel calls
the longjmpx kernel service to resume the context saved by the last setjmpx call if a signal
interrupts the sleep. Therefore, any system call {such as those calling device driver ddopen,
ddread, and ddwrite routines) or kernel process that does an interruptible sleep without the
PCATCH flag set must have set up a context using the setjmpx kernel service. This allows
the sleep to resume in case a signal is sent to the sleeping process.

1-298 Kernel Reference

sleep

Warning: The caller of the sleep service must own the kernel-mode lock specified by the
kerne/_/ock parameter. The sleep service does not provide a compatible level of
serialization if the kernel lock is not owned by the caller of the sleep service.

Execution Environment
The sleep kernel service can be called from the process environment only.

Return Values
0

1

Indicates successful completion.

Indicates that a signal has interrupted a sleep with both the PCATCH and
SWAKEONSIG flags set in the priflags parameter.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Locking Strategy in Kernel Mode, Understanding Signal and Exception Handling, Process
and Exception Management Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

Kernel Services . 1-299

subyte

subyte Kernel Service

Purpose

Syntax

Stores a byte of data in user memory.

#include <sys/types.h>
#include <sys/errno.h>

int subyte (uaddr, c)
uchar*uaddr;
uchar c;

Parameters
uaddr Specifies the address of user data.

c Specifies the character to store.

Description
The subyte kernel service stores a byte of data at the specified address in user memory. It
is provided so that system calls and device heads can safely access user data. The subyte
service ensures that the user had the appropriate authority to:

• Access the data

• Protect the operating system from paging 1/0 errors on user data.

The subyte service should only be called while executing in kernel mode in the user
process.

Execution Environment
The subyte kernel service can be called from the process environment only.

Return Values
0

-1

Indicates successful completion.

Indicates a uaddr parameter that is not valid for one of the following
reasons:

• The user does not have sufficient authority to access the data.

• The address is not valid.

• An 110 error occurs when the user data is referenced.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The suword kernel service, fubyte kernel service, fuword kernel service.

Accessing User-Mode Data While in Kernel Mode, Memory Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-300 Kernel Reference

suser

suser Kernel Service

Purpose

Syntax

Parameter

Determines the privilege state of a process.

#include <sys/types.h>
#include <Sys/errno.h>

int suser (ep)
char *ep;

ep Points to a character variable where EPERM is stored on failure.

Description
The suser kernel service checks whether a process has any effective privilege (that is,
whether the process's uid field equals 0 (zero)).

Note: The suser kernel service is supported for compatibility only and should not be called
by new code.

Execution Environment
The suser kernel service can be called from the process environment only.

Return Values
0

Nonzero value

Indicates failure. The character pointed to by the ep parameter is set to
the value of EPERM. This indicates that the calling process does not
have any effective privilege.

Indicates success (that is, the process has the specified privilege).

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Security Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-301

suword

suword Kernel Service

Purpose

Syntax

Stores a word of data in user memory.

#include <sys/types.h>
#include <sys/errno.h>

int suword (uaddr, w)
int *uaddr;
int w;

Parameters
uaddr Specifies the address of user data.

w Specifies the word to store.

Description
The suword kernel service stores a word of data at the specified address in user memory. It
is provided so that system calls and device heads can safely access user data. The suword
service ensures that the user had the appropriate authority to:

• Access the data

• Protect the operating system from paging 1/0 errors on user data.

The suword service should only be called while executing in kernel mode in the user
process.

Execution Environment
The suword kernel service can be called from the process environment only.

Return Values
0

-1

Indicates successful completion.

Indicates a uaddr parameter that is not valid for one of these reasons:

• The user does not have sufficient authority to access the data.

• The address is not valid.

• An 1/0 error occurs when the user data is referenced.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The subyte kernel service, fubyte kernel service, fuword kernel service.

Accessing User-Mdde Data While in Kernel Mode, Memory Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-302 Kernel Reference

(
\.

I

\

talloc

talloc Kernel Service

Purpose

Syntax

Allocates a timer request block before starting a timer request.

#include <sys/types.h>
#include <sys/errno.h>
#include <Sys/timer.h>

struct trb *talloc()

Description
The talloc kernel service allocates a timer request block. It must be called by the user
before starting a timer request with the tstart kernel service. If successful, the talloc service
returns a pointer to a pinned timer request block.

Execution Environment
The talloc kernel service can be called from the process environment only.

Return Values
The talloc service returns a pointer to a timer request block upon successful allocation of a
trb structure. Upon failure, a NULL value is returned.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The tstart kernel service,-tstop kernel service, tfree kernel service.

Timer and Time-of-Day Kernel Services, Using Timer Services and Structures in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-303

tfree

tf ree Kernel Service

Purpose

Syntax

Parameter

Deallocates a timer request block.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <Sys/timer.h>

void tfree (~
struct trb *t;

t Points to the timer request structure to be freed.

Description
The tfree kernel service deallocates a timer request block that was previously allocated with
a call to the talloc kernel service. The caller of the tfree service must first cancel any
pending timer request associated with the timer request block being freed before attempting
to free the request block. Canceling the timer request block can be done using the tstop
kernel service.

The tfree service has no return values.

Execution Environment
The tfree kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The tstart kernel service, tstop kernel service, talloc kernel service.

Timer and Time-of-Day Kernel Services, Using Timer Services and Structures in Kernel
Extensions and Device Support Programming Concepts.

1-304 Kernel Reference

II

~

timeout

timeout Kernel Service

Purpose

Syntax

Schedules a function to be called after a specified interval.

#include <Sys/types.h>
#include <Sys/errno.h>

void timeout (func, arg, ticks)
void (*func)();
caddr_t *arg;
int ticks;

Parameters
func Indicates the function to be called.

The function specified by the func parameter should be declared as follows:

void func (arg)
void *arg;

arg Indicates the parameter to supply to the function specified by the func
parameter.

ticks Specifies the number of timer ticks that must occur before the function
specified by the func parameter is called. Many timer ticks can occur per
second.

Description
The timeout service is not part of the kernel. However, it is a compatibility service provided
in the libsys.a library. To use the timeout service, a kernel extension must be pinned and
be link-edited with the libsys.a library. This service and the associated timeoutcf subroutine
and untimeout service disable interrupts for serialization and therefore must be included in
the pinned part of the kernel extension or in the bottom half of the device driver.

The timeout service schedules the function pointed to by the func parameter to be called
with the arg parameter after the number of timer ticks specified by the ticks parameter. Use
the timeoutcf routine to allocate enough callout elements for the maximum number of
simultaneous active time outs that you expect.

Note: The timeoutcf routine must be called before calling the timeout service.

Calling the timeout service without allocating a sufficient number of callout table entries can
result in a kernel panic because of a lack of pinned callout table elements. The value of a
timer tick depends on the hardware's capability. The HZ label found in the <sys/param.h>
file can be used to determine the number of ticks per second

Multiple pending timeout requests with the same func and arg parameters are not allowed.

The timeout service has no return values.

Kernel Services 1-305

timeout

Execution Environment
The timeout kernel service can be called from either the process or interrupt environment.

The function specified by the tune parameter is called in the interrupt environment.
Therefore, it must follow the conventions for interrupt handlers.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The untimeout kernel service.

The timeoutcf kernel subroutine.

Timer and Time-of-Day Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

1-306 Kernel Reference

(

timeoutcf

timeoutcf Kernel Subroutine

Purpose

Syntax

Parameter

Allocates or deallocates callout table entries for use with the timeout kernel service.

#include <sys/types.h>
#include <sys/errno.h>

int timeoutcf (cocnt)
int cocnt;

cocnt Specifies the callout count. This value indicates the number of callout
elements by which to increase or decrease the current allocation. If this
number is positive, the number of callout entries for use with the timeout
service is increased. If this number is negative, the number of elements is
decreased by the amount specified.

Description
The timeoutcf subroutine is not part of the kernel. It is a compatibility service provided in
the libsys.a library. To use the timeoutcf subroutine, a kernel extension must be pinned
and be link-edited with the libsys.a library. This subroutine and the associated untimeout
and timeout kernel services disable interrupts for serialization and therefore must be
included in the pinned part of the kernel extension or in the bottom half of the device driver.

The timeoutcf subroutine registers an increase or decrease in the number of callout table
entries available for the timeout service to use. Before a subroutine can use the timeout
service, the timeoutcf subroutine must increase the number of callout table entries available
to the timeout service. It increases this number by the maximum number of outstanding
time outs that the routine can have pending at one time.

The timeoutcf subroutine should be used to decrease the amount of callout table entries by
the amount it was increased under the following conditions:

• The routine using the timeout service has finished using it.

• The calling routine has no more outstanding time-out requests pending.

Typically the timeoutcf subroutine is called in a device driver's open and close routine. It is
called to allocate and deallocate sufficient elements for the maximum expected use of the
timeout service for that instance of the open device.

Warning: A kernel panic results under either of these circumstances:

• A request to decrease the callout table allocation is made that is greater than the number
of unused callout table entries.

• The timeoutcf subroutine is called in an interrupt environment.

Kernel Services 1-307

timeoutcf

Execution Environment
The timeoutcf kernel service can be called from the process environment only.

Return Values
0

-1

Indicates a successful allocation or deallocation of the requested callout
table entries.

Indicates an unsuccessful operation.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The timeout kernel service.

Timer and Time-of-Day Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

1-308 Kernel Reference

trcgenk

trcgenk Kernel Service

Purpose

Syntax

Records a trace event for a generic trace channel.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <sys/trchkid.h>

void trcgenk (chan, hk_word, data_word, /en, buf)
unsigned int chan, hk_word, data_word, /en;
char*buf,

Parameters
ch an

hk_word

data_ word

/en

but

Description

Specifies the channel number for the trace session. This number is
obtained from the trcstart subroutine.

An integer containing a hook ID and a hook type.

hk_id A hook identifier is a 12-bit value. For user programs, the
hook ID can be a value from Ox010 to OxOEF.

hk_type A 4-bit hook type. The trcgenk service automatically records
this information.

A word of user-defined data.

Specifies the length in bytes of the buffer specified by the but parameter.

Points to a buffer of trace data.

The trcgenk kernel service records a trace event if a trace session is active for the specified
trace channel. If a trace session is not active, the trcgenk service simply returns. The
trcgenk kernel service is located in pinned kernel memory.

The trcgenk service is used to record a trace entry consisting of an hk_word entry, a
data_ word entry, and a variable number of bytes of trace data.

The trcgenk service has no return values.

Execution Environment
The trcgenk kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The trace command.

The trcstart subroutine, trcstop subroutine, trcon subroutine, trcoff subroutine, trchk
subroutine, trcgen subroutine, trcgent subroutine.

RAS Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-309

trcgenkt

trcgenkt Kernel Service

Purpose

Syntax

Records a trace event, including a time stamp, for a generic trace channel.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/trchkid.h>

void trcgenkt (chan, hk_word, data_word, /en, bufJ
unsigned int chan, hk_word, data_word, /en;
char*buf;

Parameters
ch an

hk_word

data_ word

Jen

but

Description

Specifies the channel number for the trace session. This number is
obtained from the trcstart subroutine.

An integer containing a hook ID and a hook type.

hk_id A hook identifier is a 12-bit value. For user programs, the
hook ID can be a value from Ox010 to OxOEF.

hk_type A 4-bit hook type. The trcgenkt service automatically records
this information.

Specifies a word of user-defined data.

Specifies the length in bytes of the buffer identified by the but parameter.

Points to a buffer of trace data.

The trcgenkt kernel service records a trace event if a trace session is active for the
specified trace channel. If a trace session is not active, the trcgenkt service simply returns.
The trcgenkt kernel service is located in pinned kernel memory.

The trcgenkt service is used to record a trace entry consisting of an hk_ word entry, a
data_ word entry, a variable number of bytes of trace data, and a time stamp.

The trcgenkt service has no return values.

Execution Environment
The trcgenkt kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The trace command.

The trcgenk kernel service.

The trcstart subroutine, trcstop subroutine, trcon subroutine, trcoff subroutine, trchk
subroutine, trcgen subroutine, trcgent subroutine.

RAS Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-310 Kernel Reference

(
\

I

\

(

tstart

tstart Kernel Service

Purpose

Syntax

Parameter

Submits a timer request.

#include <sys/types.h>
#include <sys/errno.h>
#include <Sys/timer.h>

void tstart (t)
struct trb * t;

t Points to a timer request structure.

Description
The tstart kernel service submits a timer request with the timer request block specified by
the t parameter as input. The caller of the tstart service must first call the talloc kernel
service to allocate the timer request structure. It must then initialize the structure's fields
before calling the tstart service.

Once the request has been submitted, the kernel calls the t->func timer function when the
amount of time specified by t->timeout.it value has elapsed. The t->func timer function is
called on an interrupt level. Therefore, code for this routine must follow conventions for
interrupt handlers.

The tstart service examines the t->flags field to determine if the timer request being
submitted represents an absolute request or an incremental one. An absolute request is a
request for a time out at the time represented in the it_value structure. An incremental
request is a request for a time out at the time represented by now plus the time in the
it_value structure.

The caller should place time information for both absolute and incremental timers in the
itimerstruc_t t.it value substructure. The T _ABSOLUTE absolute request flag is defined in
the <sys/timer.h> file and should be ORed into the t->flag field if an absolute timer request
is desired.

Modifications to the system time are added to incremental timer requests, but not to absolute
ones. Consider the user who has submitted an absolute timer request for noon on 12/25/88.
If a privileged user then modifies the system time by adding four hours to it, then the timer
request submitted by the user still occurs at noon on 12/25/88.

By contrast, suppose it is presently 1200 (noon) and a user submits an incremental timer
request for 6 hours from now (to occur at 6:00 pm). If, before the timer expires, the
privileged user modifies the system time by adding four hours to it, the user's timer request
then expires at 2200 (10:00 pm).

The tstart service has no return values.

Execution Environment
The tstart kernel service can be called from either the process or interrupt environment.

Kernel Services 1-311

tstart

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The talloc kernel service, tstop kernel service, tfree kernel service.

Timer and Time-of-Day Kernel Services, Using Timer Services and Structures in Kernel
Extensions and Device Support Programming Concepts.

1-312 Kernel Reference

tstop Kernel Service

Purpose

Syntax

Parameter

Cancels a pending timer request.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/timer.h>

void tstop (t)
struct trb * t;

Specifies the pending timer request to cancel.

Description

ts top

The tstop kernel service cancels a pending timer request. The tstop service must be called
before a timer request block can be freed with the tfree kernel service.

The tstop service has no return values.

Execution Environment
The tstop kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The tstart kernel service, talloc kernel service, tfree kernel service.

Timer and Time-of-Day Kernel Services, Using Timer Services and Structures in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-313

uexadd

uexadd Kernel Service

Purpose

Syntax

Parameter

Adds a systemwide exception handler for catching user-mode process exceptions.

#include <sys/types.h>
#include <sys/errno.h>
#include <Sys/except.h>

void uexadd (exp)
struct uexcepth *exp;

exp Points to an exception handler structure. This structure must be pinned and
is used for registering user-mode process exception handlers. The
uexcepth structure is defined in the <Sys/except.h> file.

Description
The uexadd kernel service is typically used to install a systemwide exception handler to
catch exceptions occurring during execution of a process in user mode. The uexadd service
adds the exception handler structure specified by the exp parameter, to the chain of
exception handlers to be called if an exception occurs while a process is executing in user
mode. The last exception handler registered is the first exception handler called for a
user-mode exception.

The uexcepth structure has:

• A chain element used by the kernel to chain the registered user exception handlers

• A function pointer defining the entry point of the exception handler being added.

Additional exception handler-dependent information can be added to the end of the
structure, but must be pinned.

Warning: The uexcepth structure must be pinned when the uexadd service is called. It
must remain pinned and unmodified until after the call to the uexdel service to delete the
specified exception handler. Otherwise, the system may crash.

The uexadd service has.no return values.

Execution Environment
The uexadd kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The uexdel kernel service.

The User-Mode Exception Handler for the uexadd Kernel Service.

User-Mode Exception Handling Overview, Kernel Extension/Device Driver Management
Services in Kernel Extensions and Device Support Programming Concepts.

1-314 Kernel Reference

uexblock

uexblock Kernel Service

Purpose

Syntax

Parameter

Makes the currently active process non-runnable when called from a user-mode exception
handler.

#include <Sys/types.h>
#include <sys/errno.h>
#include <sys/except.h>

void uexblock (pid)
pid_t *pid;

pid Specifies the process ID of the currently active process to be put into a wait state.

Description
Warning: The system will crash if the uexblock service is called in an interrupt handler
environment or in a process environment that is not the process to be blocked.

The uexblock kernel service puts a currently active process specified by the pid parameter
into a wait state until the uexclear kernel service is used to make the process runnable
again.

The uexblock service can be used to lazily control user-mode process access to a shared
serially usable resource. A serially used resource is usable by more than one process, but
only by one at a time. When a process attempts to access the resource but does not have
access, a user-mode exception can be set up to occur. This gives control to an exception
handler registered by the uexadd kernel service. This exception handler can then block the
process using the uexblock service until the resource is made available. At this time, the
uexclear kernel service can be used to make the blocked process runnable.

The uexblock service has no return values.

Execution Environment
The uexblock kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The uexclear kernel service.

User-Mode Exception Handling Overview, Kernel Extension/Device Driver Management
Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-315

uexclear

uexclear Kernel Service

Purpose

Syntax

Parameter

Makes a process blocked by the uexblock service runnable again.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/except.h>

void uexclear (pid)
pid_t *pid;

pid Specifies the process ID of the process to be put into a runnable state.

Description
The uexclear kernel service puts a process specified by the pid parameter back into a
runnable state after it was made nonrunnable by the uexblock kernel service. A process
that has been sent a SIGSTOP stop signal is made runnable again when it receives the
SIGCONT continuation signal.

The uexclear service can be used to lazily control user-mode process access to a shared
serially usable resource. A serially used resource is usable by more than one process, but
only by one at a time. When a process attempts to access the resource but does not have
access, a user-mode exception can be setup to occur.

This setup gives control to an exception handler registered by the uexadd kernel service.
Using the uexblock kernel service, this exception handler can then block the process until
the resource is later made available. At that time, the uexclear service can be used to make
the blocked process runnable.

The uexclear service has no return values.

Execution Environment
The uexclear kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The uexblock kernel service.

User-Mode Exception Handling Overview, Kernel Extension/Device Driver Management
Services in Kernel Extensions and Device Support Programming Concepts.

1-316 Kernel Reference

(

uexdel

uexdel Kernel Service

Purpose

Syntax

Parameter

Deletes a previously added systemwide user-mode exception handler.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/except.h>

void uexdel (exp)
struct uexcepth •exp;

exp Points to the exception handler structure used to add the exception handler with
the uexadd kernel service.

Description
The uexdel kernel service removes a user-mode exception handler from the systemwide list
of exception handlers maintained by the kernel's exception handler.

The uexdel service removes the exception handler structure specified by the exp parameter
from the chain of exception handlers to be called if an exception occurs while a process is
executing in user mode. Once the uexdel service has completed, the specified exception
handler is no longer called. In addition, the uexcepth structure can be modified, freed, or
unpinned.

The uexdel service has no return values.

Execution Environment
The uexdel kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The uexadd kernel service.

User-Mode Exception Handling Overview, Kernel Extension/Device Driver Management
Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-317

uiomove

uiomove Kernel Service

Purpose

Syntax

Moves a block of data between kernel space and a space defined by a uio structure.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

int uiomove (cp, n, rw, uiop)
caddr_t cp;
int n;
uio_rw rw;
struct uio * uiop;

Parameters
cp Specifies the address in kernel memory to or from which data is moved.

Specifies the number of bytes to move. n

rw

uiop

Description

Indicates the direction of the move:

UIO_READ Copies data from kernel space to space described by the
uio structure.

UIO_WRITE Copies data from space described by the uio structure to
kernel space.

Points to a uio structure describing the buffer used in the data transfer.

The uiomove kernel service moves the specified number of bytes of data between kernel
space and a space described by a uio structure. Device driver top halves, especially
character device drivers, frequently use the uiomove service to transfer data into or out of a
user area. The uio_resid and uio_iovcnt fields in the uio structure describing the data area
must be greater than O (zero) or an error is returned.

The uiomove service moves the number of bytes of data specified by either the n or
uio_resid parameter, whichever is less. If either the nor uio_resid parameter is O (zero), no
data is moved. The uio_segflg field in the uio structure is used to indicate if the move is
accessing a user or kernel data area, or if the caller requires cross-memory operations and
has provided the required cross-memory descriptors. If a cross-memory operation is
indicated, there must be a cross-memory descriptor in the uio_xmem array for each iovec
element.

If the move is successful, the following fields in the uio structure are updated:

uio_iov Specifies the address of current iovec element to use.

uio_xmem Specifies the address of the current xmem element to use.

uio_iovcnt Specifies the number of remaining iovec elements.

uio_iovdcnt Specifies the number of already processed iovec elements.

uio_offset Specifies the character offset on the device performing the 1/0.

1 ~318 Kernel Reference

(

\

uio_resid

iov_base

iov_len

uiomove

Specifies the total number of characters remaining in the data area
described by the uio structure.

Specifies the address of the data area described by the current iovec
element.

Specifies the length of remaining data area in the buffer described by the
current iovec element.

Execution Environment
The uiomove kernel service can be called from the process environment only.

Return Values
0

ENOMEM

EIO

ENOS PC

EFAULT

-1

Indicates successful completion.

Indicates that there was no room in the buffer.

Indicates a permanent 1/0 error file space.

Out of file-space blocks.

Indicates a user location is not valid.

Indicates that an error occurred for one of the following conditions:

• The user does not have the appropriate access authority for the user
buffer.

• The user buffer is located in an address range that is not valid.

• The segment containing the user buffer has been deleted.

• The cross-memory descriptor is not valid.

• A paging 1/0 error occurred while accessing the user buffer.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The ureadc kernel service, uwritec kernel service, uphysio kernel service.

Moving Large Numbers of Characters at a Time, The uio Structure, Memory Kernel Services
in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-319

unlockl

unlockl Kernel Service

Purpose

Syntax

Parameter

Unlocks a conventional process lock.

#include <sys/types.h>
#include <sys/errno.h>

void unlockl (lock_word)
lock_t *lock_word;

lock_ word · Specifies the address of the lock word.

Description

Example

The unlockl kernel service unlocks a conventional lock. Only the owner of a lock can unlock
it. Once a lock is unlocked, all processes waiting for the lock are made runnable and
allowed to recompete again for the lock. If there was at least one process waiting for the
lock, the priority of the caller is recomputed. Preempting a System Call discusses how
system calls can use the unlockl service when accessing global data.

The lockl and unlockl services do not maintain a nesting level count. A single call to the
unlockl service unlocks the lock for the caller. The return code from the lockl service should
be used to determine when to unlock the lock.

The unlockl service has no return values.

1 . A call to the unlockl service can be coded as follows:

*/

int lock_ret; /*return code from lockl() */
extern int lock_word; /* lock word that is external

and was initialized to LOCK_AVAIL

/* get lock before using resource */
lock_ret = lockl(lock_word, LOCK_SHORT)
if (lock_ret == LOCK_FAIL)
{

}
else
{

}

/* handle lock error */

/* use resource for which lock was obtained */

/* release lock if this was not a nested use */
if (lock_ret I= LOCK_NEST)

unlockl(lock_word);

1-320 Kernel Reference

i'
\
\

(

\

unlockl

Execution Environment
The unlockl kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The lockl kernel service.

Preempting a System Call, Understanding Locking, Process and Exception Management
Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-321

-unpin

unpin Kernel Service

Purpose

Syntax

Unpins the address range in system (kernel) address space.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int unpin (addr, length)
caddr addr,
int length;

Parameters
addr Specifies the address of the first byte to unpin in the system (kernel)

address space.

length Specifies the number of bytes to unpin.

Description
The unpin kernel service decreases the pin count of each page in the address range. When
the pin count is O (zero), the page is not pinned and can be paged out of real memory. Upon
finding an unpinned page, the unpin service returns the EINVAL error code and leaves any
remaining pinned pages still pinned.

The unpin service can only be called with addresses in the system (kernel) address space.
The unpinu service should be used where the address space might be in either user or
kernel space.

Execution Environment
The unpin kernel service can be called from either the process or interrupt environment.

Return Values
0

EINVAL

Related Information

Indicates successful completion.

Indicates that the length parameter is negative. Otherwise, the area of
memory beginning at the byte specified by the base parameter and
extending for the number of bytes specified by the Jen parameter is not
defined. If neither cause is responsible, an unpinned page was specified.

The pin kernel service, pinu kernel service, unpinu kernel service.

Understanding Execution Environments, Memory Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-322 Kernel Reference

(
\

(

\

unpincode

unpincode Kernel Service

Purpose

Syntax

Parameter

Unpins the code and data associated with an object file.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/pin.h>

int unpincode (func)
int (*func) ();

func Specifies the function in the object file to be unpinned.

Description
The unpincode kernel service uses the unpin kernel service to decrement the pin count for
the pages associated with the following items:

• Code associated with the object file

• Data area of the object file that contains the function specified by the func parameter.

The loader entry for the module is used to determine the size of both the code and the data
area.

Execution Environment
The unpincode kernel service can be called from the process environment only.

Return Values
0

EINVAL

EFAULT

EINVAL

Indicates successful completion.

Indicates that the func parameter is not a valid pointer to the function.

Indicates that the calling process does not have access to the area of
memory that is associated with the module.

Indicates that one or more pages are not pinned.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The unpin kernel service.

Understanding Execution Environments, Memory Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-323

unpinu

unpinu Kernel Service

Purpose

Syntax

Unpins the specified address range in user or system memory.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

int unpinu (base, /en, segflg)
caddr_t base;
int /en;
short segflg;

Parameters
base Specifies the address of the first byte to unpin.

Indicates the number of bytes to unpin. /en

segflg

Description

Specifies whether the data to unpin is in user space or system space. The
values for this flag are defined in the <sys/uio.h> file. This value can be
one of the following:

UIO_SYSSPACE The region is mapped into the kernel address space.

UIO_USERSPACE The region is mapped into the user address space.

The unpinu service unpins a region of memory previously pinned by the pinu kernel
service. When the pin count is O (zero), the page is not pinned and can be paged out of real
memory. Upon finding an unpinned page, the unpinu service returns the EINVAL error code
and leaves any remaining pinned pages still pinned. ·

The unpinu service can only be called with addresses in the system (kernel) address space.
The unpinu service should be used where the address space might be in either user or
kernel space.

Execution Environment
Process environment when unpinning data that is in either user space or system space.

Interrupt environment only when unpinning data that is in system space.

Return Values
0

EFAULT

EINVAL

1-324 Kernel Reference

Indicates successful completion.

Indicates that the memory region as specified by the base and /en
parameters is not within the address specified by the segflg value.

Indicates that the length parameter is negative. Otherwise, the area of
memory beginning at the byte specified by the base parameter and
extending for the number of bytes specified by the /en parameter is not
defined. If neither cause is responsible, an unpinned page was specified.

;1
I,

~

unpinu

) Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The unpin kernel service, pinu kernel service, pin kernel service.

Understanding Execution Environments, Memory Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-325

untimeout

untimeout Kernel Service

Purpose

Syntax

Cancels a pending timer request.

#include <sys/types.h>
#include <sys/errno.h>

void untimeout (tune, arg)
void (*tune)();
caddr_t *arg;

Parameters
func Function associated with the timer to be canceled.

arg Function argument associated with the timer to be canceled.

Description .
The untimeout service is not part of the kernel. However, it is a compatibility service
provided in the libsys.a library. To use the untimeout service, a kernel extension must be
pinned and be link-edited with the libsys.a library. This service and the associated
timeoutcf subroutine and timeout service disable interrupts for serialization and therefore

(

\

must be included in the pinned part of the kernel extension or in the bottom half of the device f

drive~ ~

The untimeout service cancels a specific request made with the timeout service. The func
and arg parameters must match those used in the timeout service request that is to be
canceled.

Upon return, the specified timer request is canceled, if found. If no timer request matching
tune and arg is found, no operation is performed.

The untimeout service has no return values.

Execution Environment
The untimeout kernel service can be called from either the process or interrupt
environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The timeout kernel service.

Timer and Time-of-Day Kernel Services in Kernel Extensions and Device Support
Programming Concepts.

1-326 Kernel Reference

\

uphysio

uphysio Kernel Service

Purpose

Syntax

Performs character 1/0 for a block device using a uio structure.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>
#include <sys/uio.h>

int uphysio (uiop, rw, buf_cnt, devno, strat, mincnt, minparms)
struct uio * uiop;
int rw;
uint buf_cnt;
dev t devno;
int (*strat)();
int (*mincnt)();
void * minparms;

Parameters
uiop Points to the uio structure describing the buffer of data to transfer using

character-to-block 1/0.

rw

buf_cnt

devno

strat

mincnt

minparms

Indicates either a read or write operation. A value of B_READ for this flag
indicates a read operation. A value of B_WRITE for this flag indicates a
write operation.

Specifies the maximum number of buf structures to use when calling the
strategy routine specified by the strat parameter. This parameter is used to
indicate the maximum amount of concurrency the device can support and
minimize the 1/0 redrive time. The value of the buf_cnt parameter can range
from 1 to 9.

Specifies the major and minor device numbers. With the uphysio service,
this parameter specifies the device number to be placed in the buf structure
before calling the strategy routine specified by the strat parameter.

Represents the function pointer to the ddstrategy routine for the device.

Represents the function pointer to a routine used to reduce the data transfer
size specified in the buf structure, as required by the device before the
strategy routine is invoked. The routine can also be used to update
extended parameter information in the buf structure before the information
is passed to the strategy routine.

Points to parameters to be used by the mincnt routine.

Kernel Services 1-327

uphysio

Description
Introduction

The uphysio service performs character 1/0 for a block device. The uphysio service
attempts to send to the specified strategy routine the number of buf headers specified by the
buf_cnt parameter. These buf structures are constructed with data from the uio structure
specified by the uiop parameter.

The uphysio service initially transfers data area descriptions from each iovec element
found in the uio structure into individual buf headers. These headers are later sent to the
strategy routine. The uphysio service tries to process as many data areas as the number of
buf headers permits. It then invokes the strategy routine with the list of buf headers.

Preparing Individual buf Headers
The routine specified by the mincnt parameter is called before the buf header, built from an
iovec element, is added to the list of buf headers to be sent to the strategy routine. The
mincnt routine is passed a pointer to the buf header along with the minparms pointer. This
arrangement allows the mincnt routine to tailor the length of the data transfer described by
the buf header as required by the device performing the 1/0. The mincnt routine can also
optionally modify certain device-dependent fields in the buf header.

When the mincnt routine returns with no error, an attempt is made to pin the data buffer
described by the buf header. If the pin operation fails due to insufficient memory, the data
area described by the buf header is reduced by half. The buf header is again passed to the
mincnt routine for modification before trying to pin the reduced data area.

This process of downsizing the transfer specified by the buf header is repeated until one of
the three following conditions occurs:

• The pin operation succeeds.

• The mincnt routine indicates an error.

• The data area size is reduced to O (zero).

When insufficient memory indicates a failed pin operation, the number of buf headers used
for the remainder of the operation is reduced to 1 (one). This is because trying to pin multiple
data areas simultaneously under these conditions is not desirable.

If the user has not already obtained cross-memory descriptors, further processing is
required. (The uio_segflg field in the uio structure indicates whether the user has already
initialized the cross-memory descriptors. The <sys/uio.h> file contains information on
possible values for this flag.)

When the data area described by the buf header has been successfully pinned, the
uphysio service verifies user access authority for the data area. A cross-memory descriptor
is also obtained to allow the device driver interrupt handler some access to the data area.

Calling the Strategy Routine
This buf header is then put on a list of buf headers to be sent to the strategy routine
specified by the strat parameter.

The strategy routine specified by the strat parameter is called with the list of buf headers
when:

• The list reaches the number of buf structures specified by the buf_cnt parameter.

• The data area described by the uio structure has been completely described by buf
headers.

1-328 Kernel Reference

(
\

. (
\

uphysio

The buf headers in the list are chained together using the av_back and av_forw fields
before they are sent to the strategy routine.

Waiting for buf Completion
When all available buf headers have been sent to the strategy routine, the uphysio service
waits for one or more of the buf headers to be marked complete. The IODONE handler is
used to wake up the uphysio service when it is waiting for completed buf headers from the
strategy routine.

When the uphysio service is notified of a completed buf header, the associated data buffer
is unpinned and the cross-memory descriptor is freed. (However, the cross-memory
descriptor is freed only if the user had not already obtained it.) An error is detected on the
data transfer under the following conditions:

• The completed buf header has a nonzero b_resid field.

• The b_flags field has the B_ERROR flag set.

When an error is detected by the uphysio service, no new buf headers are sent to the
strategy routine.

The uphysio service waits for any buf headers already sent to the strategy routine to be
completed and then returns an error code to the caller. If no errors are detected, the buf
header and any other completed buf headers are again used to send more data transfer
requests to the strategy routine as they become available. This process continues until all
data described in the uio structure has been transferred or until an error has been detected.

The uphysio service returns to the caller when:

• All buf headers have been marked complete by the strategy routine.

• All data specified by the uio structure has been transferred.

The uphysio service also returns an error code to the caller if an error is detected.

Error Detection by the uphysio Kernel Service
In the case of error detection, the uphysio service reports the error that was detected for the
uio structure closest to the start of the data area described by the uio structure. Once an
error is detected by the uphysio service, no additional buf headers are sent to the strategy
routine. The uphysio service waits for all buf headers sent to the strategy routine to be
marked complete.

However, additional buf headers may have been sent to the strategy routine between the
following two points in time:

• After the strategy routine detects the error

• Before the uphysio service is notified of the error condition in the completed buf header.

When errors occur, various fields in the returned uio structure may or may not reflect this.
The uio_iov and uio_iovcnt fields are not updated and contain their original values.

The uio_resid and uio_offset fields in the returned uio structure indicate the number of
bytes transferred by the strategy routine according to the sum of all (the b_bcount field
minus the b_resid fields) fields in the buf headers processed by the strategy routine. These
headers include the buf header indicating the error nearest the start of the data area
described by the original uio structure. Any data counts in buf headers completed after the
detection of the error are not reflected in the returned uio structure.

Execution Environment
The uphysio kernel service can be called from the process environment only.

Kernel Services 1-329

uphysio

Return Values
0

ENOMEM

EA GAIN

Indicates successful completion.

Indicates that no memory is available for the required buf headers.

Indicates that the operation fails due to a temporary insufficient resource
condition.

EFAULT Indicates that the uio_segflg field indicated user space and the user does
not have authority to access the buffer.

EIO or the b_error field in a buf header
Indicates an 1/0 error in a buf header processed by the strategy routine.

Return code from the mincnt parameter
Indicates that the return code from the mincnt routine if the routine returned
with a nonzero return code.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The ddstrategy device driver entry point.

The iodone kernel service, geterror kernel service.

The mincnt routine.

Processing by the uphysio Kernel Service, Block 1/0 Processing, The uio Structure, The buf
Structure, Understanding Block 1/0 Device Drivers, 1/0 Kernel Services in Kernel Extensions
and Device Support Programming Concepts.

1-330 Kernel Reference

/

ureadc

ureadc Kernel Service

Purpose

Syntax

Writes a character to a buffer described by a uio structure.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

int ureadc {c, uiop}
int c;
struct uio *uiop;

Parameters
c Specifies a character to be written to the buffer.

uiop Points to a uio structure describing the buffer in which to place a character.

Description
The ureadc kernel service writes a character to a buffer described by a uio structure.
Device driver top halves, especially character device drivers, frequently use the ureadc
service to transfer data into a user area.

The uio_resid and uio_iovcnt fields in the uio structure describing the data area must be
greater than O (zero). If these fields are not greater than 0, an error is returned. The
uio_segflg field in the uio structure is used to indicate whether the data is being written to a
user or kernel data area. It is also used to indicate if the caller requires cross-memory
operations and has provided the required cross-memory descriptors. The values for the flag
are defined in the <sys/uio.h> file.

If the data is successfully written, the following fields in the uio structure are updated:

uio_iov Specifies the address of current iovec element to use.

uio_xmem Specifies the address of current xmem element to use (used for
cross-memory copy).

uio_iovcnt Specifies the number of remaining iovec elements.

uio_iovdcnt Specifies the number of iovec elements already processed.

uio_offset Specifies the character offset on the device from which data is read.

uio_resid Specifies the total number of characters remaining in the data area
described by the uio structure.

iov _base Specifies the address of the next available character in the the data area
described by the current iovec element.

iov _len Specifies the length of remaining data area in the buffer described by the
current iovec element.

Kernel Services 1-331

ureadc

Execution Environment
The ureadc kernel service can be called from the process environment only.

Return Values
0

ENOMEM

EFAULT

Indicates successful completion.

Indicates that there is no room in the buffer.

Indicates that the user location is not valid for one of these reasons:

• The uio_segflg field indicates user space and the base address
(iov_base field) points to a location outside of the user address space.

• The user does not have sufficient authority to access the location.

• An 110 error occurs while accessing the location.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The uwritec kernel service, uiomove kernel service, uphysio kernel service.

Reading One Character at a Time, The uio Structure, Memory Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1-332 Kernel Reference

~
I'

\t

\

ii\,

User-Mode Exception Handler

User-Mode Exception Handler for the uexadd Kernel Service

Purpose

Syntax

Handles exceptions that occur while a process is executing in user mode.

#include <sys/types.h>
#include <sys/errno.h>

int tune (exp, type, pid, mst)
struct excepth *exp;
int type;
pid_t pid;
struct mstsave * mst;

Parameters
exp Points to the excepth structure used to register this exception handler.

type

pid

mst

Description

Denotes the type of exception that has occurred. This type value is
platform-specific. Specific values are defined in the <sys/except.h> file.

Specifies the process ID of the user process that was executing at the time
of the exception.

Points to the current mstsave area for the process. This pointer can be
used to access the mstsave area to obtain additional information about the
exception.

The user-mode exception handler (exp->func) is called for synchronous exceptions that are
detected while a process is executing in user mode. The kernel exception handler saves
exception information in the mstsave area. For user-mode exceptions, it calls the first
exception handler found on the user exception handler list. The exception handler executes
in an interrupt environment at the priority level of either INTPAGER or INTIODONE.

If the registered exception handler returns a return code indicating that the exception was
handled, the kernel exits from the exception handler without calling additional exception
handlers from the list. If the exception handler returns a return code indicating that the
exception was not handled, the kernel invokes the next exception handler on the list. The
last in the list is the default handler. This is typically signalling the process.

The exception handler must not page fault. It should also register an exception handler using
the setjmpx kernel service if any exception-handling activity can result in an exception. This
is important particularly if 1/0 is being performed by the exception handler. If the exception
was not handled by the exception handler, the return code should be set to the
EXCEPT _NOT _HANDLED value for user-mode exception handling.

Execution Environment
The user-mode exception handler for the uexadd kernel service is called in the interrupt
environment at the INTPAGER or INTIODONE priority level.

Kernel Services 1-333

User-Mode Exception Handler

Return Values
EXCEPT _HANDLED

EXCEPT_NOT_HANDLED

Implementation Specifics

Indicates that the exception was successfully handled.

Indicates that the exception was not handled.

This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The uexadd kernel service.

User-Mode Exception Handling Overview, Kernel Extension/Device Driver Management
Services in Kernel Extensions and Device Support Programming Concepts.

1-334 Kernel Reference

;4
I

uwritec

uwritec Kernel Service

Purpose

Syntax

Parameter

Retrieves a character from a buffer described by a uio structure.

#include <Sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

int uwritec (uiop)
struct uio * uiop;

uiop Points to a uio structure describing the buffer from which to read a
character.

Description
The uwritec kernel service reads a character from a buffer described by a uio structure.
Device driver top halves, especially character device drivers, frequently use the uwritec
service to transfer data out of a user area. The uio_resid and uio_iovcnt fields in the uio
structure must be greater than 0 (zero) or an error is returned.

The uio_segflg field in the uio structure indicates whether the data is being read out of a
user or kernel data area. This field also indicates whether the caller requires cross-memory
operations and has provided the required cross-memory descriptors. The values for this flag
are defined in the <sys/uio.h> file.

If the data is successfully read, the following fields in the uio structure are updated:

uio_iov Specifies the address of the current iovec element to use.

uio_xmem Specifies the address of the current xmem element to use (used for
cross-memory copy}.

uio_iovcnt Specifies the number of remaining iovec elements.

uio_iovdcnt Specifies the number of iovec elements already processed.

uio_offset Specifies the character offset on the device to which data is written.

uio_resid Specifies the total number of characters remaining in the data area
described by the uio structure.

iov_base Specifies the address of the next available character in the data area
described by the current iovec element.

iov _len Specifies the length of the remaining data in the buffer described by the
current iovec element.

Kernel Services 1-335

uwritec

Execution Environment
The uwritec kernel service can be called from the process environment only.

Return Values
Upon successful completion, the uwritec service returns the character it was sent to
retrieve.

-1 Indicates that the buffer is empty or the user location is not valid for one of
these three reasons:

• The uio_segflg field indicates user space and the base address
(iov_base field) points to a location outside of the user address space.

• The user does not have sufficient authority to access the location.

• An 1/0 error occured while the location was being accessed.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The ureadc kernel service, uiomove kernel service, uphysio kernel service.

Writing One Character at a Time, Memory Kernel Services in Kernel Extensions and Device
Support Programming Concepts.

1-336 Kernel Reference

I

\

vec_clear

vec_clear Kernel Service

Purpose

Syntax

Parameter

Removes a virtual interrupt handler.

#include <sys/types.h>
#include <Sys/errno.h>

void vec_clear (levsublev)
int levsublev-,

levsublev Represents the value returned by vec_init service when the virtual interrupt
handler was defined.

Description
The vec_clear kernel service is not part of the base kernel but is provided by the Device
Queue Management kernel extension. This queue management kernel extension must be
loaded into the kernel once before the loading of any kernel extensions referencing these
services.

The vec_clear service removes the association between a virtual interrupt handler and the
virtual interrupt level and sublevel that was assigned by the vec_init service. The virtual
interrupt handler at the sublevel specified by the levsublev parameter will no longer be
registered upon return from this routine.

Execution Environment
The vec_clear kernel service can be called from the process environment only.

Return Values
The vec_clear service has no return codes. If no virtual interrupt handler is registered at the
specified sublevel, no operation is performed.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Related Information
The vec_init kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-337

vec_init

vec_init Kernel Service

Purpose

Syntax

Defines a virtual interrupt handler.

#include <Sys/types.h>
#include <Sys/errno.h>

int vec_init (level, routine, arg)
int level;
void (*routine) ();
int arg;

Parameters
level Specifies the virtual interrupt level. This level value is not used by the

vec_init service and implies no relative priority. However, it is returned with
the sublevel assigned for the registered virtual interrupt handler.

routine

arg

Description

Identifies the routine to call when a virtual interrupt occurs on a given
interrupt sublevel.

Specifies a value that is passed to the virtual interrupt handler.

The vec_init kernel service is not part of the base kernel but provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The vec_init service associates a virtual interrupt handler with a level and sublevel. This
service searches the available sublevels to find the first unused one. The routine and arg
parameters are used to initialize the open sublevel. The level and assigned sublevel are
then returned by the vec_init service.

There is a maximum number of available sublevels. If this number is exceeded, the vec_init
service crashes the system. This service should be called to initialize a virtual interrupt (
before any device queues using the virtual interrupt are created.

The level parameter is not used by the vec_init service. It is provided for compatibility
reasons only. However, its value is passed back intact with the sublevel.

Execution Environment
The vec_init kernel service can be called from the process environment only.

Return Values
The vec_init service returns a value that identifies the virtual interrupt level and sublevel
assigned. The low-order 8 bits of this value specify the sublevel, and the high-order 8 bits
specify the level. This is the same format used by the attchq service. This level value is the
same value as that supplied by the level parameter.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

1-338 Kernel Reference

vec_init

Related Information
The attchq kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-339

vf srele

vfsrele Kernel Service

Purpose

Syntax

Parameter

Releases all resources associated with a virtual file system.

#include <sys/types.h>
#include <Sys/errno.h>

int vfsrele { vfsp)
struct vfs * vfsp;

vfsp Points to a virtual file system structure.

Description
The vfsrele kernel service releases all resources associated with a virtual file system.

When a file system is unmounted, the VFS_UNMOUNTING flag is set in the vfs structure,
indicating that it is no longer valid to do pathname-related operations within the file system.
When this flag is set and a VN_RELE vnode operation releases the last active vnode within
the file system, the VN_RELE vnode implementation must call the vfsrele kernel service to
complete the deallocation of the vfs structure.

Execution Environment
The vfsrele kernel service can be called from the process environment only.

Return Value
The vfsrele service always returns a value of O (zero).

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Understanding Virtual Nodes (vnode), Virtual File System Overview, Virtual File System
Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-340 Kernel Reference

(
\~

vi rtual-i nterru pt-handler

virtual-interrupt-handler Queue Management Routine

Purpose

Syntax

Provides a means for notifying requesters when a request has completed.

#include <sys/types.h>
#include <Sys/errno.h>
#include <Sys/deviceq.h>

void vintrh (arg, qe)
int arg;
struct ack_qe *qe;

Parameters
arg Specifies a virtual interrupt handler argument provided on the call to

vec_init kernel service to register the virtual interrupt handler.

qe

Description

Specifies the address of the acknowledge queue element supplied on the
call to the ackque or deque kernel service.

The virtual-interrupt-handler routine is called to notify the requester of the completion of a
request. This routine is called when the deque or ackque service is called for a queue
element that had a virtual interrupt acknowledgement specified. Understanding Device
Queues describes device queue elements.

This routine is registered by calling the vec_init service, and is assigned an available
sublevel. This sublevel can then be specified when creating a path to the queue using the
attchq service when a virtual interrupt acknowledge is specified. A different sublevel can be
specified in the queue element to override the one specified during an attchq call when
using the deque service to dequeue the element and send the acknowledgement.

This routine is called from the ackque and deque services when a virtual interrupt
acknowledgement has been specified. This routine runs in the process environment of the
caller of the ackque and deque services. It is passed the arg parameter supplied when the
virtual interrupt handler was initialized and a pointer to the acknowledge queue element
provided on the call to the ackque and deque services.

Execution Environment
The virtual-interrupt-handler routine runs in the process environment of the server but is
typically established by the requester. Therefore access to data areas must be handled as if
the routine is executed in the interrupt environment. However, it is not necessary to pin the
data and code since the routine is executed in the process environment.

Related Information
The ackque kernel service, deque kernel service, vec_init kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-341

vm_att

vm att Kernel Service

Purpose

Syntax

Maps a specified virtual memory object to a region in the current address space.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

caddr_t vm_att (vmhandle, offset)
vmhandle_t vmhandle;
caddr_t offset;

Parameters
vmhandle Specifies the handle for the virtual memory object to be mapped.

Specifies the offset in the virtual memory object and region. offset

Description
The vm_att kernel service performs the following tasks:

• Selects an unallocated region in the current address space and allocates it.

• Maps the virtual memory object specified by the vmhandle parameter with the access
permission specified in the handle.

• Constructs the address in the current address space corresponding to the offset in the
virtual memory object and region.

The vm_att service assumes an address space model of fixed-size virtual memory objects
and address space regions.

Warning: If there are no more free regions, this call cannot complete and calls the panic
service.

Execution Environment
The vm_att kernel service can be called from either the process or interrupt environment.

Return Values
The vm_att service returns the address that corresponds to the offset parameter in the
address space.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The vm_det kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

1-342 Kernel Reference

(

vm_cflush

vm_cflush Kernel Service

Purpose

Syntax

Flushes the processor's cache for a specified address range.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <Sys/vmuser.h>

void vm_cflush (eaddr, nbytes)
caddr_t eaddr,
int nbytes;

Parameters
eaddr Specifies the starting address of the specified range.

nbytes Specifies the number of bytes in the address range. If this parameter is
negative or zero, no lines are invalidated.

Description
The vm_cflush kernel service writes to memory all modified cache lines that intersect the
address range [eaddr, eaddr + nbytes-1]. The eaddrparameter may have any alignment in
a page.

The vm_cflush kernel service has no return values.

Execution Environment
The vm_cflush kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-343

vm_det

vm_det Kernel Service

Purpose

Syntax

Parameter

Unmaps and deallocates the region in the current address space that contains a given
address.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <Sys/vmuser.h>

void vm_det (eadd(J
caddr_t eaddr,

eaddr Specifies the effective address in the current address space. The region
containing this address is to be unmapped and deallocated.

Description
The vm_det kernel service unmaps the region containing the eaddr parameter and
deallocates the region, adding it to the free list for the current address space.

The vm_det service assumes an address space model of fixed-size virtual memory objects
and address space regions.

Warning: If the region is not mapped, or a system region is referenced, a system crash
occurs.

Execution Environment
The vm_det kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The vm_att kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

1-344 Kernel Reference

(

vm_handle

vm_handle Kernel Service

Purpose

Syntax·

Constructs a virtual memory handle for mapping a virtual memory object with a specified
access level.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/vmuser.h>

vmhandle_t vm_handle (vmid, key)
vmid_t vmid;
int key;

Parameters
vmid Specifies a virtual memory object identifier, as returned by the vms_create

kernel service.

key Specifies an access key. This parameter has a O value for limited access
and a 1 value for unlimited access, respectively.

Description
The vm_handle kernel service constructs a virtual memory handle for use by the vm_att
kernel service. The handle identifies the virtual memory object specified by the vmid
parameter and contains the access key specified by the key parameter.

A virtual memory handle is used with the vm_att service to map a virtual memory object into
the current address space.

The vm_handle service assumes an address space model of fixed·size virtual memory
objects and address space regions.

Execution Environment
The vm_handle kernel service can be called from the process environment only.

Return Value
The vm_handle service returns a virtual memory handle type.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The vms_create kernel service, vm_att kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-345

vm_makep

vm_makep Kernel Service

Purpose

Syntax

Makes a page in client storage.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_makep (vmid, pno)
vmid_t vmid;
int pno;

Parameters
vmid Specifies the ID of the virtual memory object.

pno Specifies the page number in the virtual memory object.

Description
The vm_makep kernel service makes the page specified by the pno parameter addressable
in the virtual memory object without requiring a page-in operation. The vm_makep service
is restricted to client storage. -

The page is not initialized to any particular value. It is assumed that the page is completely
overwritten. If the page is already in memory, a value of O (indicating a successful
operation) is returned.

Execution Environment
The vm_makep kernel service can be called from the process environment only.

Return Values
0

EINVAL

EFBIG

Indicates a successful operation.

Indicates an invalid virtual memory object type or invalid page number.

Indicates that the page number exceeds the file-size limit.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

1-346 Kernel Reference

(
I~

vm_mount

vm_mount Kernel Service

Purpose

Syntax

Adds a file system to the paging device table.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/vmuser.h>

int vm_mount (type, ptr, nbufstr?
int type;
int (*ptr?();
int nbufstr;

Parameters
type Specifies the type of device. The type parameter must have a value of

D_REMOTE.

ptr

nbufstr

Description

Points to the file system's strategy routine.

Specifies the number of buf structures to use.

The vm_mount kernel service allocates an entry in the paging device table for the file
system. This service also allocates the number of buf structures specified by the nbufstr
parameter for the calls to the strategy routine.

Execution Environment
The vm_mount kernel service can be called from the process environment only.

Return Values
0

ENOMEM

EINVAL

Indicates a successful operation.

Indicates that there is no memory for the buf structures.

Indicates that the file system strategy pointer is already in the paging device
table.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The vm_umount kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-347

vm_move

vm_move Kernel Service

Purpose

Syntax

Moves data between a virtual memory object and a buffer specified in the uio structure.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/uio.h>

int vm_move(vmid, offset, limit, rw, uio)
vmid_t vmid;
caddr_t offset,
int limit,
enum uio_rw rw;
struct uio * uio;

Parameters
vmid Specifies the virtual memory object ID.

offset Specifies the offset in the virtual memory object.

limit

rw

uio

Description

Indicates the limit on the transfer length. If this parameter is negative or
zero, no bytes are transferred.

Specifies a read/write flag that gives the direction of the move. The possible
values for this flag (UIO_READ, UIO_WRITE) are defined in the sys/uio.h
header file.

Points to the uio structure.

The vm_move kernel service moves data between virtual memory object and the buffer
specified in a uio structure.

This service determines the virtual addressing required for the data movement according to
the offset in the object.

The vm_move service is similar to the uiomove service, but the address for the trusted
buffer is specified by the vmid and offset parameters instead of as a caddr_t address. The
offset size is also limited to the size of a caddr_t address since virtual memory objects must
be smaller than this size.

Note: The vm_move service does not support use of cross memory descriptors.

110 errors for paging space and a lack of paging space are reported as signals.

Return Values
0 Indicates a successful operation.

EFAULT Indicates a bad address.

ENOMEM Indicates insufficient memory.

1-348 Kernel Reference

!

'~

(

(

ENOS PC

EIO

Indicates insufficient disk space.

Indicates an 1/0 error.

Execution Environment

vm_move

The vm_move kernel service can be called from the process environment only.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-349

vm_protectp

vm_protectp Kernel Service

Purpose

Syntax

Sets the page protection key for a page range.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/vmuser.h>

int vm_protectp (vmid, pfirst, npages, key)
vmid t vmid;
int pfirsf",
int npages;
int key;

Parameters
vmid Specifies the identifier for the virtual memory object for which the page

protection key is to be set.

pfirst

npages

key

Description

Specifies the first page number in the designated page range.

Specifies the number of pages in the designated page range.

Specifies the value to be used in setting the page protection key for the
designated page range.

The vm_protectp kernel service is called to set the storage protect key for a given page
range. The key parameter specifies the value to which the page protection key is set. The
protection key is set for all pages touched by the specified page range that are resident in
memory. The vm_protectp kernel service applies only to client storage.

If a page is not in memory, no state information is saved from a particular call to the
vm_protectp service. If the page is later paged in, it receives the default page protection
key.

Execution Environment
The vm_protectp kernel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

EINVAL Indicates one of the following five errors:

• Invalid virtual memory object ID.

• The starting page in the designated page range is negative.

• The number of pages in the page range is negative.

• The designated page range exceeds the size of virtual memory object.

~ The target page range doas not exist.

1-350 Kernel Reference

/
I
~

)

vm_protectp

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-351

vm_qmodify

vm_qmodify Kernel Service

Purpose

Syntax

Parameter

Determines whether a mapped file has been changed.

#include <sys/types.h>
#include <sys/errno.h>
#include <Sys/vmuser.h>

int vm_qmodify (vmid)
vmid_t vmid;

vmid Specifies the ID of the virtual memory object to check.

Description
The vm_qmodify kernel service performs two tests to determine if a mapped file has been
changed:

• The vm_qmodify kernel service first checks the virtual memory object modified bit, which
is set whenever a page is written out.

(
'

• If the modified bit is 0 (zero), the list of page frames holding pages for this virtual memory (
object are examined to see if any page frame has been modified.

If both tests are false, the vm_qmodify kernel service returns a value of FALSE. Otherwise,
this service returns a value of TRUE.

If the virtual memory object modified bit was set, it is reset to 0. The page frame modified
bits are not changed.

Execution Environment
The vm_qmodify kernel service can be called from the process environment only.

Return Values
FALSE

TRUE

Indicates that the virtual memory object has not been modified.

Indicates that the virtual memory object has been modified.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

1-352 Kernel Reference

/
(
"Ill

vm_release

vm_release Kernel Service

Purpose

Syntax

Releases virtual memory resources for the specified address range.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_release (vaddr, nbytes)
caddr_t vaddr;
int nbytes;

Parameters
vaddr Specifes the address of the first byte in the address range to be released.

Specifies the number of bytes to be released. nbytes

Description
The vm_release kernel service releases pages that intersect the specified address range
from the vaddr parameter to the vaddr parameter plus the number of bytes specified by the
nbytes parameter. The value in the nbytes parameter must be nonnegative and the caller
must have write access to the pages specified by the address range.

Each page that intersects the byte range is logically reset to zero, and any page frame is
discarded. A page frame in 1/0 state is marked for discard at 1/0 completion. That is, the
page frame is placed on the free list when the 1/0 operation completes.

Note: All of the pages to be released must be in the same virtual memory object.

Execution Environment
The vm_release kernel service can be called from the process environment only.

Return Values
0

EACCES

EINVAL

Indicates successful completion.

Indicates that the caller does not have write access to the specified pages.

Indicates one of the following four errors:

• The specified region is not mapped.

• The specified region is an 1/0 region.

• The length specified in the nbytes parameter is negative.

• The specified address range crosses a virtual memory object boundary.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Kernel Services 1-353

vm_release

Related Information
The vm_releasep kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

1-354 Kernel Reference

(

vm_releasep

vm_releasep Kernel Service

Purpose

Syntax

Releases virtual memory resources for the specified page range.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_releasep (vmid, pfirst, npages)
vmid_t vmid;
int pfirst;
int npages;

Parameters
vmid

pfirst

npages

Description

Specifies the virtual memory object identifier.

Specifies the first page number in the specified page range.

Specifes the number of pages in the specified page range.

The vm_releasep kernel service releases pages for the specified page range in the virtual
memory object. The values in the pfirst and npages parameters must be non-negative.

Each page of the virtual memory object that intersects the page range (pfirst, pfirst + npages
- 1) is logically reset to O (zero), and any page frame is discarded. A page frame in the 1/0
state is marked for discard at 1/0 completion.

For working storage, paging space disk blocks are freed and the storage protect key is reset
to the default value.

Note: All of the pages to be released must be in the same virtual memory object.

Execution Environment
The vm_releasep kernel service can be called from the process environment only.

Return Values
0

EINVAL

Indicates a successful operation.

Indicates one of these four errors:

• An invalid virtual memory object ID.

• The starting page is negative.

• Number of pages is negative.

• Page range crosses a virtual memory object boundary.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Kernel Services 1-355

vm_releasep

Related Information
The vm_release kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

1-356 Kernel Reference

I

\

(
\::

vm_umount

vm_umount Kernel Service

Purpose

Syntax

Removes a file system from the paging device table.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_umount (type, ptt?
int type;
int (*pttJ();

Parameters
type Specifies the type of device. The type parameter must have a value of

D_REMOTE.

ptr Points to the strategy routine.

Description
The vm_umount kernel service waits for all 1/0 for the device scheduled by the pager to
finish. This service then frees the entry in the paging device table. The associated buf
structures are also freed.

Execution Environment
The vm_umount kernel service can be called from the process environment only.

Return Values
0

EINVAL

Indicates successful completion.

Indicates that a file system with the strategy routine designated by the ptr
parameter is not in the paging device table.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The vm_mount kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-357

vm_write

vm_write Kernel Service

Purpose

Syntax

Initiates page-out for a page range in the address space.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_write (vaddr, nbytes, force)
int vaddr;
int nbytes;
int force;

Parameters
vaddr Specifies the address of the first byte of the page range for which a pageout

is desired.

nbytes

force

Description

Specifies the number of bytes starting at the byte specified by the vaddr
parameter. This parameter must be nonnegative. All of the bytes must be in
the same virtual memory object.

Flag indicating that a modified page is to be written regardless of when it
was last written.

The vm_write kernel service initiates page-out for pages that intersect the address range
(vaddr, vaddr + nbytes).

If the force parameter is nonzero, modified pages are written to disk regardless of how
recently they have been written.

Page-out is initiated for each modified page. An unchanged page is left in memory with its /
reference bit set to 0 (zero). This makes the unchanged page a candidate for the page \
replacement algorithm.

The caller must have write access to the specified pages.

The initiated 1/0 is asynchronous. The vms_iowait kernel service can be called to wait for
1/0 completion.

Execution Environment
The vm_write kernel service can be called from the process environment only.

1-358 Kernel Reference

Return Values
0

EINVAL

Indicates a successful completion

Indicates one of these four errors:

• A region is not defined.

• A region is an 1/0 region.

• The length specified by the nbytes parameter is negative.

vm write

• The address range crosses a virtual memory object boundary.

EA CC ES

EIO

Indicates that access does not permit writing.

Indicates a permanent 1/0 error.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The vms_iowait kernel service, vm_writep kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-359

vm_writep

vm_writep Kernel Service

Purpose

Syntax

Initiates page-out for a page range in a virtual memory object.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vm_writep (vmid, pfirst, npages)
vmid_t vmid;
int pfirst,
int npages;

Parameters
vmid

pfirst

npages

Description

Specifies the identifier for the virtual memory object.

Specifies the first page number at which page-out is to begin.

Specifies the number of pages for which the page-out operation is to be
performed.

The vm_writep kernel service initiates page-out for the specified page range in the virtual
memory object. 1/0 is initiated for modified pages only. Unchanged pages are left in
memory, but their reference bits are set to 0 (zero).

The caller can wait for the completion of 1/0 initiated by this and prior calls by calling the
vms_iowait kernel service.

Execution Environment
The vm_writep kernel service can be called from the process environment only.

Return Value
0

EINVAL

Indicates successful completion.

Indicates any one of these four errors:

• An invalid virtual memory object ID.

• The starting page is negative.

• The number of pages is negative.

• The page range exceeds the size of virtual memory object.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The vm_write kernel service, vms_iowait kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

1-360 Kernel RefE)rence

(

vms_create

vms_create Kernel Service

Purpose

Syntax

Creates a virtual memory object of the type and size and limits specified.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vms_create (vmid, type, gn, size, uplim, downlim)
vmid_t *vmid;
int type;
struct gnode *gn;
int size;
int uplim;
int downlim;

Parameters
vmid Points to the variable in which the virtual memory object identifier is to be

stored.

type

gn

size

uplim

downlim

Description

Specifies the virtual memory object type and options as an OR of bits. The
type field must have the value of V_CLIENT. The V_INTRSEG flag specifies
if the process can be interrupted from a page wait on this object.

Specifies the address of the gnode for client storage.

Specifies the current size of the file. This can be any valid file size.

This parameter is ignored. The enforcement of file size limits is done by
comparing with the u_limit value in the u block.

This parameter is ignored.

The vms_create kernel service creates a virtual memory object. The resulting virtual
memory object identifier is passed back by reference in the vmid parameter.

The size parameter is used to determine the size in units of bytes of the virtual memory
object to be created. This parameter sets an internal variable that determines the virtual
memory range to be processed when the virtual memory object is deleted.

An entry for the file system is required in the paging device table when the vms_create
kernel service is called.

Execution Environment
The vms_create kernel service can be called from the process environment only.

Kernel Services 1-361

vms_create

Return Values
0

ENOMEM

ENODEV

EINVAL

Indicates a successful operation.

Indicates that no space is available for the virtual memory object.

Indicates no entry for the file system in the paging device table.

Indicates incompatible or bad parameters.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The vms_delete kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

1-362 Kernel Reference

I

\

I

I

vms_delete

vms_delete Kernel Service

Purpos.e

Syntax

Parameter

Deletes a virtual memory object.

#include <Sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>

int vms_delete(vmid)
vmid_t vmid;

vmid Specifies the ID of the virtual memory object to be deleted.

Description
The vms_delete kernel service deallocates the temporary resources held by the virtual
memory object specified by the vmid parameter and then frees the control block. This delete
operation can complete a~wnchronously, but the caller receives a synchronous return code
indicating success or failure.

Releasing Resources
The completion of the delete operation can be delayed if paging 110 is still occurring for
pages attached to the object. All page frames not in 1/0 state are released.

If there are page frames in the 1/0 state, they are marked for discard at 110 completion and
the virtual memory object is placed in the iodelete state. When an 1/0 completion occurs for
the last page attached to a virtual memory object in the iodelete state, the virtual memory
object is placed on the free list.

Execution Environment
The vms_delete kernel service can be called from the process environment only.

Return Values
0 Indicates a successful operation.

EINVAL Indicates that the vmid parameter is not valid.

Implementation Specifics .
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The vms_create kernel service.

Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

Kernel Services 1-363

vms_iowait

vms_iowait Kernel Service

Purpose

Syntax

Parameter

Waits for the completion of all page-out operations for pages in the virtual memory ·object.

#include <sys/types.h>
#include <Sys/errno.h>
#include <sys/vmuser.h>

int vms_iowait (vmid)
vmid_t vmid;

vmid Identifies the virtual memory object for which to wait.

Description
The vms_iowait kernel service performs two tasks. First, it determines the 1/0 level at
which all currently scheduled page-outs are complete for the virtual memory object specified
by the vmid parameter. Then, the vms_iowait service places the current process in a wait
state until this 1/0 level has been reached.

The 110 level value is a count of page-out operations kept for each virtual memory object.

The 1/0 level accounts for out-of-order processing by not incrementing the 1/0 level for new
page-out requests until all previous requests are complete. Because of this, processes
waiting on different 1/0 levels can be awakened after a single page-out operation completes.

If the caller holds the kernel lock, the vms_ iowait service releases the kernel lock before
waiting and reacquires it afterwards.

Execution Environment
The vms_iowait kernel service can be called from the process environment only.

Return Values
0

EIO

Indicates that the page-out operations completed.

Indicates that an error occurred while performing 1/0.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Memory Kernel Services, Understanding Virtual Memory Manager Interfaces in Kernel
Extensions and Device Support Programming Concepts.

1-364 Kernel Reference

(

vn_free

vn_free Kernel Service

Purpose

Syntax

Parameter

Frees a vnode previously allocated by the vn_get kernel service.

#include <sys/types.h>
#include <sys/errno.h>

int vn_free {vp)
struct vnode * vp;

vp Points to the vnode to be deallocated.

Description
The vn_free kernel service provides the only acceptable mechanism for deallocation of
vnode objects used within the AIX virtual file system. The vnode specified by the vp
parameter is removed from the linked list of vnodes belonging to the owning virtual file
system. The vnode is then returned to the free pool of vnodes for re-use.

Execution Environment
The vn_free kernel service can be called from the process environment only.

Return Value
The vn_free service always returns O (zero).

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The vn_get kernel service.

Virtual File System Overview, Virtual File System Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-365

vn_get

vn~get Kernel Service

Purpose

Syntax

Allocates a virtual node and inserts it into the list of vnodes for the designated virtual file
system.

#include <sys/types.h>
#include <sys/errno.h>

int vn_get (vfsp, gnp, vpp)
struct vfs * vfsp;
struct gnode *gnp;
struct vnode **vpp;

Parameters
vfsp Points to a vfs structure describing the virtual file system that is to contain

the vnode. Any returned vnode belongs to this virtual file system.

gnp

vpp

Description

Points to the gnode for the object. This pointer is stored in the returned
vnode. The new vnode is added to the list of vnodes in the gnode.

Points to the place in which to return the vnode pointer. This is set by the
vn_g~t service to point to the newly allocated vnode.

The vn_get service provides the only acceptable mechanism for allocating vnode objects for
use within the AIX virtual file system environment. A vnode is first allocated from an
effectively infinite pool of available vnodes. It is then inserted on the linked list of vnodes
currently active for the virtual file system specified by the vfsp parameter.

Upon successful return from the vn_get service, the pointer to the vnode pointer provided
(specified by the vpp parameter) has been set to the address of the newly allocated vnode.

The fields in this vnode have been initialized as follows:

v_count

v_vfsp

v_gnode

v_vfsnext

v_vfsprev

Set to 1 (one).

Set to the value in the vfsp parameter.

Set to the value in the gnp parameter.

Specifies a forward pointer to a vnode that belongs to the same virtual file
system.

Specifies a backward pointer to a vnode that belongs to the same virtual file
system.

All other fields in the vnode are zeroed.

Execution Environment
The vn_get kernel service can be called from the process environment only.

1-366 Kernel Reference

Return Values
0

ENOMEM

vn_get

Indicates successful completion.

Indicates that the vn_get service could not allocate memory for the vnode.
(This is a highly unlikely occurrence.)

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The vn_free kernel service.

Virtual File System Overview, Virtual File System Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-367

w_clear

w_clear Kernel Service

Purpose

Syntax

Parameter

Removes a watchdog timer from the list of watchdog timers known to the kernel.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/watchdog.h>

void w_clear {w)
struct watchdog * w;

w Specifies the watchdog timer structure.

Description
The watchdog timer services, including the w_clear kernel service, are typically used to
verify that an 1/0 operation completes in a reasonable time.

When the w_clear service removes the watchdog timer, the w->count watchdog count is
no longer decremented. In addition, the w->func watchdog timer function is no longer
called.

The w_clear service has no return values.

Execution Environment
The w_clear kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The w_init kernel service, w_start kernel service, w_stop kernel service.

Timer and Time-of-Day Kernel Services, The Watchdog Timer Function in Kernel Extensions
and Device Support Programming Concepts.

1-368 Kernel Reference

I

\

w_init

w_init Kernel Service

Purpose

Syntax

Parameter

Registers a watchdog timer with the kernel.

#include <sys/types.h>
#include <Sys/errno.h>
#include <Sys/watchdog.h>

void w _init (w)
struct watchdog *w;

w Specifies the watchdog timer structure.

Description
The watchdog timer services, including the w_init kernel service, are typically used to verify
that an 1/0 operation completes in a reasonable time. The watchdog timer is initialized to the
stopped state and must be started using the w_start service.

The w_init service has no return values.

Warning: The watchdog structure must be pinned when the w_init service is called. It must
remain pinned until after the call to the w_clear service. During this time, the watchdog
structure must not be altered except by the watchdog services.

Execution Environment
The w_init kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The w_clear kernel service, w_start kernel service, w_stop kernel service.

Timer and Time-of-Day Kernel Services, The Watchdog Timer Function in Kernel Extensions
and Device Support Programming Concepts.

Kernel Services 1-369

w_start

w_start Kernel Service

Purpose

Syntax

Parameter

Starts a watchdog timer.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/watchdog.h>

void w_start (w)
struct watchdog * w;

w Specifies the watchdog timer structure.

Description
The watchdog timers, including the w_start kernel service, are typically used to verify that
an 1/0 operation completes in a reasonable time. The w_start and w_stop services are
designed to allow the timer to be started and stopped efficiently. The kernel decrements the
w->count watchdog count every second. The kernel calls the w->func watchdog timer
function when the w->count watchdog count reaches O (zero). A watchdog timer is ignored
when the w->count watchdog count is less than or equal to 0.

The w_start service sets the W->count watchdog count to a value of w->restart.

The w_start service has no return values.

Warning: The watchdog structure must be pinned when the w_start service is called. It
must remain pinned until after the call to the w_clear service. During this time, the watchdog
structure must not be altered except by the watchdog services.

Execution Environment
The w_start kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The w_init kernel service, w_clear kernel service, w_stop kernel service.

Timer and Time-of-Day Kernel Services, The Watchdog Timer Function in Kernel Extensions
and Device Support Programming Concepts.

1-370 Kernel Reference

I
(
\

w_stop

w_stop Kernel Service

Purpose

Syntax

Parameter

Stops a watchdog timer.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/watchdog.h>

void w_stop (w)
struct watchdog * w;

w Specifies the watchdog timer structure.

Description
The watchdog timer services, including the w_stop kernel service, are typically used to
verify that an 1/0 operation completes in a reasonable time. The w_start and w_stop
services are designed to allow the timer to be started and stopped efficiently. The kernel
decrements the w->count watchdog count every second. The kernel calls the w->func
watchdog timer function when the w->count watchdog count reaches O (zero). A watchdog
timer is ignored when w->count is less than or equal to 0.

The w_stop service has no return values.

Warning: The watchdog structure must be pinned when the w_stop service is called. It
must remain pinned until after the call to the w_clear service. During this time, the
watchdog structure must not be altered except by the watchdog services.

Execution Environment
The w_stop kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The w_init kernel service, w_clear kernel service, w_start kernel service.

Timer and Time-of-Day Kernel Services, The Watchdog Timer Function in Kernel Extensions
and Device Support Programming Concepts.

Kernel Services 1-371

waitcfree

waitcfree Kernel Service

Purpose

Syntax

Checks the availability of a free character buffer.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <Sys/cblock.h>
#include <Sys/sleep.h>

int waitcfree ()

Description
The waitcfree kernel service checks whether there is an available free character buffer. If
one is not available, the waitcfree service waits until either a character buffer becomes
available or a signal is received.

The waitcfree service has no parameters.

Execution Environment
The waitfree kernel service can be called from the process environment only.

Return Values
EVENT_SUCC

EVENT_SIG

Implementation Specifics

Indicates a successful operation.

Indicates that the wait was terminated by a signal.

This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The putc kernel service, putcb kernel service, putcbp kernel service, putcx kernel service,
putcf kernel service, putcfl kernel service.

1/0 Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-372 Kernel Reference

(

waitq

waitq Kernel Service

Purpose

Syntax

Parameter

Waits for a queue element to be placed on a device queue.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

struct req_qe *waitq (queue_id)
cba_id queue_id;

queue_id Specifies the device queue identifier.

Description
The waitq kernel service is not part of the base kernel but provided by the Device Queue
Management kernel extension. This queue management kernel extension must be loaded
into the kernel once before the loading of any kernel extensions referencing these services.

The waitq service waits for a queue element to be placed on the device queue specified by
the queue_id parameter. This service performs these two actions only:

• Waits on the event mask associated with the device queue

• Calls the readq service to make the most favored queue element the active one.

Processes can only use the waitq service to wait for a single device queue. Use the e_wait
service to wait on the occurrence of more than one event, such as multiple device queues.

The waitq service uses the EVENT _SHORT form of the e_wait service. Therefore a signal
does not terminate the wait. Use the e_wait service if you want a signal to terminate the
wait.

The readq service can be used to read the active queue element from a queue. It does not
wait for a queue element if there is none in the queue.

Warning: The server must not alter any fields in the queue element or the system may
crash.

Execution Environment
The waitq kernel service can be called from the process environment only.

Return Values
The waitq service returns the address of the active queue element in the device queue.

Implementation Specifics
This kernel service is part of the Device Queue Management AIX kernel extension.

Kernel Services 1-373

waitq

Related Information
The readq kernel service, e_wait kernel service.

Understanding Device Queues, Device Queue Management Kernel Services in Kernel
Extensions and Device Support Programming Concepts.

1_;'J74 Kernel Reference

wakeup

wakeup Kernel Service

Purpose

Syntax

Parameter

Activates processes sleeping on the specified channel.

#include <sys/types.h>
#include <sys/errno.h>

void wakeup (chan)
int chan;

chan Specifies the channel number. For the wakeup service, this parameter
identifies the event that the processes are waiting for.

Description
Note: The wakeup kernel service is provided for compatibility only. Either the e_wakeup or

e_post service should be used instead.

The wakeup kernel service readies suspended processes for execution. It affects all
processes that were suspended by using the sleep service on the channel specified by the
chan parameter. The processes do not begin to execute until the current process
relinquishes control of the processor or returns to user mode.

A race condition occurs when all processes that are waiting on the channel are restarted.
Thus, after returning from the sleep service, each process should check to see whether it
needs to sleep again.

Note: The possible existence of a race condition indicates that all processes whose sleep
channel hashes to the same value are awakened together, not just those with the
equivalent channel values.

The channel specified by the chan parameter is a value that identifies an event to wait for or
to sleep on. This value is passed to the wakeup service to start all of the processes that are
waiting for the event. The channel identifier must be unique on a systemwide basis. As a
result, the address of an external kernel variable (which can be defined in a kernel
extension) is generally used for this value.

The wakeup service has no return values.

Execution Environment
The wakeup kernel service can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Process and Exception Management Kernel Services in Kernel Extensions and Device
Support Programming Concepts.

Kernel Services 1-375

Watchdog Timer

Watchdog Timer Function

Description
The watchdog timer services support the watchdog timer function. The ~>func watchdog
timer function should be declared as follows:

void func (w)
struct watchdog * w;

The kernel calls the watchdog timer function when the watchdog timer is decremented to 0
(zero).

Execution Environment
The watchdog timer function can be called from either the process or interrupt environment.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The w_init kernel service, w_clear kernel service, w_start kernel service, w_stop kernel
service.

Timer and Time-of-Day Kernel Services, The Watchdog Timer Function in Kernel Extensions
and Device Support Programming Concepts.

1-376 Kernel Reference

/
\

(

xmalloc

xmalloc Kernel Service

Purpose

Syntax

Allocates memory.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/malloc.h>

caddr_t xmalloc (size, align, heap)
int size;
int align;
caddr_t heap;

Parameters
size Specifies the number of bytes to allocate.

align Specifies the alignment characteristics for the allocated memory.

heap Specifies the address of the heap from which the memory is to be allocated.

Description
The xmalloc kernel service allocates an area of memory out of the heap specified by the
heap parameter. This area is the number of bytes in length specified by the size parameter
and is aligned on the byte boundary specified by the align parameter. The align parameter is
actually the log base 2 of the desired address boundary. For example, an align value of 4
requests that the allocated area be aligned on a 2"4 (16) byte boundary.

Two heaps are provided in the kernel segment for use by kernel extensions. The kernel
extensions should use kernel_heap when allocating memory that is not pinned. They
should also use pinned_heap when allocating memory that is not pinned. When allocating
memory that is to be always pinned (or pinned for long periods of time), the pinned_heap
should be specified. The memory is pinned upon successful return from the xmalloc
service. When allocating memory that can be pageable (or only pinned for short periods of
time), the kernel_heap should be specified. The pin and unpin kernel services should be
used to pin and unpin memory from the heap when required.

Kernel extensions can use these services to allocate memory out of the kernel heaps. For
example, the xmalloc service (128, 3, kernel_heap) allocates a 128-byte double word
aligned area out of the kernel heap.

A kernel extension must use the xmfree service to free the allocated memory. If it does not,
subsequent allocations eventually fail.

xmalloc Compatibility Interfaces: malloc and palloc
The following additional interfaces to the xmalloc kernel service are provided:

• malloc (size) is equivalent to xmalloc (size, 3, kernel_heap).

• palloc (size, align) is equivalent to xmalloc (size, align, kernel_heap).

Kernel Services 1-377

xmalloc

Execution Environment
The xmalloc kernel service can be called from the process environment only.

The xmalloc routines are part of AIX Base Operating System (BOS) Runtime.

Return Values
Upon successful completion, the xmalloc kernel service returns the address of the allocated
area. A NULL pointer is returned under the following two circumstances:

• The requested memory cannot be allocated.

• The heap has not been initialized for memory allocation.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The xmfree kernel service.

Memory Kernel Services in Kernel Extensions and Device Support Programming Concepts.

1-378 Kernel Reference

I
I~

(

I~

xmattach

xmattach Kernel Service

Purpose

Syntax

Attaches to a user buffer for cross-memory operations.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

int xmattach {addr, count, dp, segflag)
char*addr,
int count;
struct xmem *dp;
int segflag;

Parameters
addr Specifies the address of the user buffer to be accessed in a cross-memory

operation.

count

dp

segflag

Description

Indicates the size of the us~r buffer to be accessed in a cross-memory
operation.

Cross-memory descriptor. The dp->aspace_id variable must be set to a
value of XMEM_INVAL.

Segment flag. This flag is used to determine the address space of the
memory that the cross-memory descriptor applies to. The valid values for
this flag can be found in the xmem.h header file.

The xmattach kernel service prepares the user buffer so that a device driver can access it
without executing under the process that requested the 110 operation. A device top-half
routine calls the xmattach service. The xmattach service allows a kernel process or device
bottom-half routine to access the user buffer with the xmemin or xmemout services. The
device driver must use the xmdetach service to inform the kernel when it has finished
accessing the user buffer.

The kernel remembers which segments are attached for cross-memory operations.
Resources associated with these segments cannot be freed until all cross-memory
descriptors have been detached. Using Cross-Memory Kernel Services describes how the
cross-memory kernel services use cross-memory descriptors.

Note: When the xmattach service remaps user memory containing the cross-memory
buffer, the effects are machine-dependent. Also, cross-memory descriptors are not
inherited by a child process.

Execution Environment
The xmattach kernel service can be called from the process environment only.

Kernel Services 1-379

xmattach

Return Values
XMEM_SUCC Indicates a successful operation.

XMEM_FAIL Indicates one of these four errors:

• The buffer crosses a segment boundary.

• The buffer size indicated by the count parameter is less than or
equal to 0 (zero).

• The cross-memory descriptor is in use (dp->aspace_id !=
XMEM_INVAL).

• The area of memory indicated by the addr and count parameters is
not defined.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The uphysio kernel service, xmdetach kernel service, xmemin kernel service, xmemout
kernel service.

Using Cross-Memory Kernel Services, Memory Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

1-380 Kernel Reference

xmdetach

xmdetach Kernel Service

Purpose

Syntax

Parameter

Detaches from a user buffer used for cross-memory operations.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

int xmdetach (dp)
struct xmem *dp;

dp Points to a cross-memory descriptor initialized by the xmattach service.

Description
The xmdetach kernel service informs the kernel that a user buffer can no longer be
accessed. This means that some previous caller, typically a device driver bottom half or a
kernel process, is no longer permitted to do cross-memory operations on this buffer.
Subsequent calls to either the xmemin or xmemout kernel service using this cross-memory
descriptor result in an error return. The cross-memory descriptor is set to dp->aspace_id =
XMEM_INVAL so that the descriptor can be re-used. Using Cross-Memory Kernel Services
describes how the cross-memory kernel services use cross-memory descriptors.

Execution Environment
The xmdetach kernel service can be called from either the process or interrupt environment.

Return Values
XMEM_SUCC Indicates successful completion.

XMEM_FAIL Indicates that the descriptor was invalid or the buffer was not defined.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The xmemin kernel service, xmemout kernel service, xmattach kernel service.

Using Cross-Memory Kernel Services, Memory Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-381

xmemdma

xmemdma Kernel Service

Purpose

Syntax

Prepares a page for DMA 1/0 or processes a page after OMA 1/0 is complete.

#include <Sys/types.h>
#include <Sys/errno.h>
#include <Sys/xmem.h>

int xmemdma (xp, xaddr, flag)
struct xmem * xp;
caddr_t xaddr,
int flag;

Parameters
xp Specifies a cross-memory descriptor.

xaddr

flag

Description

Identifies the address specifying the page for transfer.

Specifies whether to prepare a page for OMA 1/0 or process it after OMA
1/0 is complete. Possible values are:

XMEM_HIDE

XMEM_UNHIDE

Prepare the page for OMA 1/0. This hides the page
by making it not accessible.

Process the page after OMA 1/0. This unhides the
page, which is the default.

The xmemdma kernel service operates on the page specified by the xaddr parameter in the
region specified by the cross-memory descriptor. If the cross-memory descriptor is for the
kernel, the xaddr parameter specifies a kernel address. Otherwise, the xaddr parameter

(

specifies the offset in the region described in the cross-memory descriptor. (

The xmemdma service is provided for machines that have processor-memory caches but
that do not perform OMA 1/0 through the cache. Device handlers for Micro Channel OMA
devices use the d_master service and d_complete service instead of the xmemdma
service.

If the flag parameter has an XMEM_HIDE value and this is the first hide for the page, the
page is prepared for OMA 1/0 by flushing the cache and making the page not valid. When
the flag parameter has the value XMEMUNHIDE and this is the last unhide for the page, the
following three events take place:

1. The page is made valid.

If the page is not in pager 1/0 state:

2. Any processes waiting on the page are readied.

3. The modified bit for the page is set unless the page has a read-only storage key.

1-382 Kernel Reference

xmemdma

The page is made not valid during OMA operations so that it is not addressable with any
virtual address. This prevents any process from reading or loading any part of the page into
the cache during the DMA operation.

The page specified must be in memory and must be pinned.

Execution Environment
The xmemdma kernel service can be called from either the process or interrupt
environment.

Return Values
On successful completion, the xmemdma service returns the real address corresponding to
the xaddr and xp parameters.

XMEMFAIL Indicates that the descriptor was not valid, or the page specified by the
xaddr or dp parameter is invalid, or the page was not pinned.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
Direct Memory Access (DMA).

Using Cross-Memory Kernel Services, Direct Memory Access (OMA), Memory Kernel
Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-383

xmemim

xmemin Kernel Service

Purpose

Syntax

Performs a cross-memory move by copying data from the specified address space to kernel
global memory.

#include <sys/types.h>
#include <Sys/errno.h>
#include <Sys/xmem.h>

int xmemin (uaddr, kaddr, count, dp)
caddr_t *uaddr,
caddr_t *kaddr,
int count;
struct xmem *dp;

Parameters
uaddr Specifies the address in memory specified by a cross-memory descriptor.

kaddr

count

dp

Description

Specifies the address in kernel memory.

Specifies the number of bytes to copy.

Specifies the cross-memory descriptor.

The xmemin kernel service performs a cross-memory move. A cross-memory move occurs
when data is moved to or from an address space other than the address space that the
program is executing in. The xmemin service copies data from the specified address space
to kernel global memory.

The xmemin service is provided so that kernel processes and interrupt handlers can safely
access a buffer within a user process. Calling the xmattach service prepares the user buffer
for the cross-memory move.

The xmemin service differs from the copyin and copyout services in that it is used to
access a user buffer when not executing under the user process. In contrast, the copyin
and copyout services are only used to access a user buffer while executing under the user
process.

Execution Environment
The xmemin kernel service can be called from either the process or interrupt environment.

Return Values
XMEM_SUCC

XMEM_FAIL

1-384 Kernel Reference

Indicates successful completion.

Indicates one of these five errors:

• The user does not have the appropriate access authority for the user
buffer.

• The user buffer is located in an invalid address range.

/
\

xmemin

• The segment containing the user buffer has been deleted.

• The cross-memory descriptor is invalid.

• A paging 1/0 error occurred while the user buffer was being accessed.

If the user buffer is not in memory, the xmemin service also returns an XMEM_FAIL error
code when executing on an interrupt level.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The xmattach kernel service, xmdetach kernel service, xmemout kernel service.

Using Cross-Memory Kernel Services, Memory Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-385

xmemout

xmemout Kernel Service

Purpose

Syntax

Performs a cross-memory move by copying data from kernel global memory to a specified
address space.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/xmem.h>

int xmemout (kaddr, uaddr, count, dp)
caddr_t *kaddr,
caddr_t *uaddr,
int count;
struct xmem * dp;

Parameters
uaddr Specifies the address in memory specified by a cross-memory descriptor.

Specifies the address in kernel memory. kaddr

count Specifies the number of bytes to copy.

dp Specifies the cross-memory descriptor.

Description
The xmemout kernel service performs a cross-memory move. A cross-memory move
occurs when data is moved to or from an address space other than the address space that
the program is executing in. The xmemout service copies data from kernel global memory
to the specified address space.

The xmemout service is provided so that kernel processes and interrupt handlers can safely
access a buffer within a user process. Calling the xmattach service prepares the user
buffer for the cross-memory move.

The xmemout service differs from the copyin and copyout services in that it is used to
access a user buffer when not executing under the user process. In contrast, the copyin
and copyout services are only used to access a user buffer while executing under the user
process.

Execution Environment
The xmemout kernel service can be called from the process environment only.

Return Values
XMEM_SUCC Indicates successful completion.

XMEM_FAIL Indicates one of these five errors:

1-386 Kernel Reference

• The user does not have the appropriate access authority for the user
buffer.

• The usei buffei is located in an invalid addiess iange.

(
\

xmemout

• The segment containing the user buffer has been deleted.

• The cross-memory descriptor is invalid.

• A paging 1/0 error occurred while the user buffer was being accessed.

If the user buffer is not in memory, the xmattach service also returns an XMEM_FAIL error
code when executing on an interrupt level.

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The xmattach kernel service, xmdetach kernel service, xmemin kernel service.

Using Cross-Memory Kernel Services, Memory Kernel Services in Kernel Extensions and
Device Support Programming Concepts.

Kernel Services 1-387

xmfree

xmfree Kernel Service

Purpose

Syntax

Frees allocated memory.

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/malloc.h>

int xmfree (ptr, heap)
caddr_t ptr,
caddr_t heap;

Parameters
ptr Specifies the address of the area in memory to free.

heap Specifies the address of the heap from which the memory was allocated.

Description
The xmfree kernel service frees the area of memory pointed to by the ptr parameter in the
heap specified by the heap parameter. This area of memory must be allocated with the
xmalloc service. In addition, the ptr pointer must be the pointer returned from the
corresponding xmalloc call.

For example, the xmfree (ptr, kernel_heap) service frees the area in the kernel heap
allocated by ptr=xmalloc (size, align, kernel_heap).

A kernel extension must explicitly free any memory it allocates. If it does not, subsequent
allocations eventually fail. Pinned memory must also be unpinned before it is freed if
allocated from the kernel_heap. The kernel does not keep track of which kernel extension
owns various allocated areas in the heap. Therefore, the kernel never automatically frees
these allocated areas on process termination or device close.

xmfree Compatibility Interface: free
The following additional interface to the xmfree kernel service is provided:

• free (ptry is equivalent to xmfree (ptr, kernel_heap).

Execution Environment
The xmfree kernel service can be called from the process environment only.

The free routine is part of AIX Base Operating System (BOS) Runtime.

Return Values
0

-1

1-388 Kernel Reference

Indicates successful completion.

Indicates one of these two errors:

• The area to be freed was not allocated with the xmalloc service.

• The heap was not initialized for memory allocation.

(

(
~

xmfree

Implementation Specifics
This kernel service is part of AIX Base Operating System (BOS) Runtime.

Related Information
The xmalloc kernel service.

xmfree Compatibility Interface: free.

Memory Kernel Services in Kernel Extensions and Device Support Programming Concepts.

Kernel Services 1-389

xmfree

(

1-390 Kernel Reference

Chapter 2. Device Driver Operations

Device Driver Operations 2-1

G.uide to Writing Device Driver Entry Points
The following articles are provided as guidance for programming the major routines of a
device driver.

Prerequisite Information
Introduction to Block and Character Device Driver Entry Points

Parameters Common to Most Device Driver Entry Points.

Structures for Device Driver Entry Points
The buf Structure

Character Lists Structure

Device Dependent Structure (DDS)

The uio Structure.

Requirements for Individual Device Driver Entry Points
The ddconfig Device Driver Entry Point

The ddopen Device Driver Entry Point

The ddclose Device Driver Entry Point

The ddioctl Device Driver Entry Point

The dddump Device Driver Entry Point

The ddread Device Driver Entry Point

The ddwrite Device Driver Entry Point

The ddselect Device Driver Entry Point

The ddmpx Device Driver Entry Point

The ddrevoke Device Driver Entry Point

The ddstrategy Device Driver Entry Point.

2-2 Kernel Reference

I

\

Character and Block Device Driver Entry Points: Overview

Introduction
Each device driver providing a device head role is invoked by the kernel using standard
entry points, also called interface routines. Each major device number has a corresponding
set of entry points named ddconfig, ddopen, ddclose, ddioctl, ddread, ddwrite,
ddstrategy, ddselect, ddmpx, ddrevoke, and dddump. By convention, the prefix dd
uniquely identifies a particular device driver.

Device Driver Requirements for Individual Entry Points
All device drivers require the ddconfig, ddopen and ddclose entry points.

Both block and character class device drivers can have a ddioctl entry point to provide
special control functions. Character device drivers and block device drivers providing raw
110 access to their devices can have ddread and ddwrite routines.

Only the block class of device driver can have a ddstrategy routine for performing block 1/0.

Only the character class of device driver can have a ddselect routine for notifying
applications of requested events while the ddmpx routine is only provided by multiplexed
character device drivers for allocating and de-allocating channels.

The ddrevoke routine needs to be provided only by device drivers in the Trusted Computing
Path for a user in order to terminate processes currently waiting in the device driver. The
dddump entry point is provided by device drivers when their respective devices can be
selected as an output device for system dump data.

Functions of the Individual Entry Points
Entry Points Common to Character and Block Class Device Drivers

ddconfig Called typically during the system start-up procedures to configure or
unconfigure the device driver. Also called during runtime when devices are
added or removed from the system.

ddopen

ddclose

ddioctl

dddump

Called when the device is opened with an open or creat subroutine call to
get the device ready to transfer data. This entry point provides access to a
device instance for its calling program. Where necessary, this access can
be exclusive to the opener.

Called when the device is to be closed. Puts the device in a known idle
state. This entry point removes access to a device instance.

Called when a user program invokes the ioctl subroutine. Decodes
commands for special functions.

Called to write system dump data to the device. This must be serviced by a
bottom-half routine.

Entry Points for Character Device Drivers and Raw Access Block Drivers
ddread Called when the user program issues a read subroutine call to a character

device.

ddwrite Called when the user program issues a character device write subroutine.

Device Driver Operations 2-3

Entry Points for Character Device Drivers Only
ddselect Called when the user program issues a select or poll subroutine call to a

character device.

ddmpx Required for multiplexed device drivers to provide allocation and
deallocation of a channel.

Entry Points for Block Device Drivers Only
ddstrategy Called to schedule a read or write to a block device. Performs block data

transfer to or from the device.

Entry Points for Trusted Computing Path Device Drivers
ddrevoke Provided by character device drivers in the Trusted Computing Path to a

user's terminal. This routine is typically invoked when the Secure Attention
Key (SAK) is detected to insure that a secure path to the user's terminal is
being provided.

Using Examples of Device Driver Source Code
Warning: These device driver source code examples are only intended to assist in the
development of a working software program. These examples do not function as written.
Additional code is required.

Related Information
The close subroutine, ioctl subroutine, lseek subroutine, open subroutine, poll subroutine,
read subroutine, select subroutine, write subroutine.

Device Driver Classes, Device Driver Roles, Device Driver Structure in Kernel Extensions
and Device Support Programming Concepts.

Multiplexed Support For Character Device Drivers, Trusted Computing Path Support For
Character Device Drivers in Kernel Extensions and Device Support Programming Concepts.

Understanding Block 1/0 Device Drivers, Understanding Character 1/0 Device Driver,
Understanding Major and Minor Numbers For A Special File, Understanding Raw 1/0 Access
to Block Devices in Kernel Extensions and Device Support Programming Concepts.

2-4 Kernel Reference

(
·~

Standard Parameters

Standard Parameters to Device Driver Entry Points
Three of the parameters passed to device driver entry points always have the same
meanings. These three parameters are described here.

The devno Parameter
This value, defined to be of type dev_t, specifies the device or subdevice to which the
operation is directed. For convenience and portability, the <sys/sysmacros.h> header file
defines the following macros for manipulating device numbers:

major(devno)

minor(devno)

makedev(maj, min)

Returns the major device number.

Returns the minor device number.

Constructs a composite device number in the format of devno
from the major and minor device numbers given.

The chan Parameter
This value, defined to be of type chan_t, is the channel ID for a multiplexed device driver. If
the device driver is not multiplexed, chan has the value of 0 (zero). If the driver is
multiplexed, then chan is the chan_t value returned from the device driver's ddmpx routine.

The ext Parameter

File

The ext parameter, which is the extension parameter, is defined to be of type int and is
meaningful only with calls to such extended subroutines as the openx, readx, writex, and
ioctlx subroutines. These subroutines allow applications to pass an extra, device-specific
parameter to the device driver. This parameter is then passed to the ddopen, ddread,
ddwrite, and ddioctl device driver entry points as the ext parameter. If the application uses
one of the non-extended subroutines (for example read, instead of readx), then the ext
parameter has a value of 0.

Note: Using the ext parameter is highly discouraged because doing so makes an
application program less portable to other operating systems.

sys/sysmacros.h

Related Information
The ddioctl device driver entry point, ddmpx device driver entry point, ddopen device
driver entry point, ddread device driver entry point, ddwrite device driver entry point.

The close subroutine, ioctl subroutine, lseek subroutine, open subroutine, read subroutine,
write subroutine.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment,
Understanding 1/0 Access to Special Files, Understanding Major and Minor Numbers For a
Special File in Kernel Extensions and Device Support Programming Concepts.

Device Driver Operations 2-5

buf

buf Structure

Introduction to Kernel Buffers
For block devices, kernel buffers are used to buffer data transfers between a program and
the peripheral device. These buffers are allocated in blocks of 4096 bytes. At any given
time, each memory block is a member of one of the following linked lists that the device
driver and the kernel maintain:

Available buffer queue (avlist) A list of all buffers available for use. These buffers do not
contain data waiting to be transferred to or from a device.

Busy buffer queue (blist) A list of all buffers that contain data waiting to be
transferred to or from a device.

Each buffer has an associated buffer header called the buf structure pointing to it. Each
buffer header has several parts:

• Information about the block

• Flags to show status information

• Busy list forward and backward pointers

• Available list forward and backward pointers.

The device driver maintains the av_forw and av_back pointers (for the available blocks),
while the kernel maintains the b_forw and b_back pointers (for the busy blocks).

buf Structure Variables for Block 1/0
The buf structure, which is defined in the <sys/buf.h> header file, includes the following
fields:

b_flags

2-6 Kernel Reference

Flag bits. The value of this field is constructed by logically OR-ing 0 (zero)
or more of the following values:

B_WRITE

B_READ

B_DONE

This operation is a write operation.

This operation is a read data operation, rather than write.

110 on the buffer has been done, so the buffer information is
more current than other versions.

B_ERROR A transfer error has occurred and the transaction has
aborted.

B_BUSY The block is not on the free list.

B_INFLIGHT This 1/0 request has been sent to the physical device driver
for processing.

B_WANTED The e_wakeup kernel service should be called when the
block is released.

B_AGE The data is not likely to be reused soon, so prefer this
buffer for reuse. This flag suggests that the buffer goes at
the head of the free list rather than at the end.

B_ASYNC Asynchronous 1/0 is being performed on this block. When
110 is done, release the block.

(

b_forw

b_back

av_forw

av_back

b_iodone

b_dev

b_bcount

B_DELWRI

B_STALE

buf

The contents of this buffer still need to be written out before
the buffer can be reused, even though this block may be on
the free list. This is used by the write subroutine when the
system expects another write to the same block to occur
soon.

The data conflicts with the data on disk because of an 1/0
error.

B_REMOTE This block is associated with a remote file.

The forward busy block pointer.

The backward busy block pointer.

The forward pointer for a driver request queue.

The backward pointer for a driver request queue.

Anyone calling the strategy routine must set this field to point to their 1/0
done routine. This routine is called on the INTIODONE interrupt level when
1/0 is complete.

The major and minor device number.

The byte count for the data transfer.

b_un.b_addr The memory address of the data buffer.

b_blkno

b_resid

b_event

b_xmemd

Related Information

The block number on the device.

Amount of data not transferred after error.

Anchor for event list.

Cross memory descriptor.

The ddstrategy device driver entry point.

The write subroutine.

Cross Memory Kernel Services, Device Driver Classes, Device Driver Roles, Processing
Interrupts, Providing Raw 1/0 Access in a Block Device Driver, Providing Raw 1/0 Support,
Understanding Block 1/0 Device Drivers, Understanding Interrupts, Understanding Major and
Minor Numbers for a Special File in Kernel Extensions and Device Support Programming
Concepts.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

Device Driver Operations 2-7

Character Lists

Character Lists Structure
Character device drivers, and other character-oriented support that can perform
character-at-a-time 1/0, can be implemented by using a common set of services and data
buffers to handle characters in the form of character lists. A character list is a list or queue
of characters. Some routines put characters in a list, and others remove the characters from
the list.

Character lists, known as clists, contain a clist header and a chain of one or more data
buffers know as character blocks. Putting characters on a queue allocates space (character
blocks) from the common pool and links the character block into the data structure defining
the character queue. Obtaining characters from a queue returns the corresponding space
back to the pool.

A character list can be used to communicate between a character device driver top and
bottom half. The clist header and the character blocks that are used by these routines must
be pinned in memory, since they are accessed in the interrupt environment.

Users of the character list services must register (typically in the device driver ddopen
routine) the number of character blocks to be used at any one time. This allows the kernel
to manage the number of pinned character blocks in the character block pool. Similarly,
when usage terminates (for example, when the device driver is closed), the using routine
should remove its registration of character blocks. Registration for character block usage is
provided by the pincf kernel service.

The kernel provides four services for obtaining characters or character blocks from a
character list: the getc, getcb, getcbp, and getcx services. Four services are also provided
that add characters or character blocks to character lists: the putc, putcb, putcbp, and
putcx services. The getcf services allocates a free character block while the putcf service
returns a character block to the free list. Additionally, the putcfl service returns a list of
character buffers to the free list. The waitcfree service determines if any character blocks
are on the free list, and wait for one if none are available.

Using a clist
For each character list that you use, you must allocate a clist header structure. This clist
structure is defined in the cblock.h header file.

You do not need to be concerned with maintaining the fields in the clist header, as the
character list services do this for you. However, you should initialize the c_cc count field to
0 (zero), and both character block pointers, c_cf and c_cl, to NULL before using the clist
header for the first time. These fields are all defined by the clist structure.

Each buffer in the character list is a cblock structure, which is also defined in the cblock.h
header file.

A character block data area does not need to be completely filled with characters. The fields
c_first and c_last are zero-based offsets within the c_data array, which actually contains
the data.

The amount of memory available for character buffers is limited. AU character drivers share
this pool of buffers. Therefore, you must limit the number of characters in your character list
to a few hundred. When the device is closed, the device driver should make certain that all
of its character lists are flushed so that the buffers are returned to the list of free buffers.

2-8 Kernel Reference

I
\

Character Lists

File
cblock.h

Related Information
The getc kernel service, getcb kernel service, getcbp kernel service, getcf kernel service,
getcx kernel service, pincf kernel service, putc kernel service, putcb kernel service,
putcbp kernel service, putcf kernel service, putcfl kernel service, putcx kernel service,
waitcfree kernel service.

Character 1/0 Device Drivers, Device Driver Classes, Device Driver Roles, Device Drivers
Kernel Extension Overview, Execution Environments, Programming In the Kernel
Environment in Kernel Extensions and Device Support Programming Concepts.

Device Driver Operations 2-9

DDS

Device Dependent Structure (DDS)

Description
A Device Dependent Structure (DDS) contains information that describes a device instance
to the device driver. It typically contains information about device-dependent attributes as
well as other information the driver needs to communicate with the device. In many cases,
information about a device's parent is included. For instance, a driver needs information
about the adapter, and the bus the adapter is plugged into, to communicate with a device
connected to an adapter.

A device's DDS is built each time the device is configured. The Configure method can fill in
the DDS with fixed values, computed values, and information from the Configuration
database. Most of the information from the Configuration database usually comes from the
attributes for the device in the Customized Attribute (CuAt) object class, but can come from
any of the object classes. Information from the database for the device's parent device or
parent's parent device can also be included. The DDS is passed to the device driver with the
SYS_CFGDD option of the sysconfig subroutine, which calls the device driver's ddconfig
routine with the CFG_INIT command.

How the Change Method Updates the DDS
The Change method is invoked when changing the configuration of a device. The Change
method must ensure consistency between the Configuration database and the view that any
device driver may have of the device. This is accomplished by:

1. Not allowing the configuration to be changed if the device has configured children, that is,
children in either the Available or Stopped states. This ensures that a DDS that has been
built using information in the database about a parent device will remain valid because
the parent cannot be changed.

2. If a device has a device driver and the device is in either the Available or Stopped states,
the Change method must communicate to the device driver any changes that would
affect the DDS. This may be accomplished with ioctl operations, if the device driver
provides the support to do so. It can also be accomplished by taking the following steps:

a. Terminating the device instance by calling sysconfig subroutine with the
SYS_CFGDD option. The SYS_CFGDD operation calls the device driver's ddconfig /
routine with the CFG_ TERM command. \~

b. Rebuilding the DDS using the changed information.

c. Passing the new DDS to the device driver by calling the sysconfig SYS_CFGDD
operation. This operation then calls the ddconfig routine with the CFG_INIT
command.

Many Change methods simply invoke the device's Unconfigure method, apply changes to
the database, then invoke the device's Configure method. This process ensures the two
stipulated conditions since the Unconfigure method, and thus the change, will fail, if the
device has Available or Stopped children. Also, if the device has a device driver, its
Unconfigure method terminates the device instance. Its Configure method also rebuilds the
DDS and passes it to the driver.

Guidelines for DDS Structure
There is no single defined DDS format. Writers of device drivers and device methods must ~
agree upon a particular device's DDS format. When obtaining information about a parent ~
device, you may want to group that information together in the DDS.

2-1 0 Kernel Reference

DDS

When building a DDS for a device connected to an adapter card, you will typically need to
pick up the following adapter information:

slot number Obtained from the connwhere descriptor of the adapter's Customized
Device (CuDv) object.

bus resources Obtained from attributes for the adapter in the Customized Attribute (CuAt)
or Predefined Attribute (PdAt) object classes. These include attributes for
bus interrupt levels, interrupt priorities, bus memory addressed, bus 1/0
addresses, and OMA arbitration levels.

These two attributes must be obtained for the adapter's parent bus device:

bus_id Identifies the 1/0 bus. This field is needed by the device driver to access the
1/0 bus.

bus_type Identifies the type of bus such as a Micro Channel bus or a PC AT bus.

Note: The getattr device configuration subroutine should be used whenever attributes are
obtained from the Configuration Database. This routine returns the Customized
attribute value if the attribute is represented in the Customized Attribute object class.
Otherwise, it returns the default value from the Predefined Attribute object class.

Finally, a DDS generally includes the device's logical name. This is used by the device driver
to identify the device when logging an error for the device.

Example of DDS
/* Device DDS */
struct device dds {

/* Bus information */
ulong bus_id;
ushort bus_type;

};

/* I/O bus id */
/* Bus type, i.e. BUS_MICRO_CHANNEL */

/* Adapter information */
int slot_num;
ulong io_addr_base;
int bus_intr_lvl;
int intr_priority;
int dma_lvl;

/* Slot number */
/* Base bus i/o address */
/* bus interrupt level */
/* System interrupt priority */
/* OMA arbitration level */

/* Device specific information */
int block_size; /* Size of block in bytes */
int abc_attr; /* The abc attribute */
int xyz_attr; /* The xyz attribute */
char resource_name[l6]; /*Device logical name */

Related Information
The ddconfig device driver entry point.

The getattr subroutine, ioctl subroutine, sysconfig subroutine.

The SYS_CFGDD sysconfig operation.

ODM Device Configuration Object Classes, Writing a Change Method, Writing a Configure
Method.

Basic Device Configuration Procedures Overview, Writing A Device Method in Kernel
Extensions and Device Support Programming Concepts.

Device Driver Operations 2-11

uio

uio Structure

Introduction
The user 1/0 or uio structure is a data structure describing a memory buffer to be used in a
data transfer. The uio structure is most commonly used in the read and write interfaces to
device drivers supporting character or raw 1/0. It is also useful in other instances in which
an input or output buffer can exist in different kinds of address spaces, and in which the
buffer is not contiguous in virtual memory.

The uio structure is defined in the <Sys/uio.h> header file.

Description
The uio structure describes a buffer that is not contiguous in virtual memory. It also indicates
the address space in which the buffer is defined. When used in the character device read
and write interface, it also contains the device open-mode flags, along with the device
read/write offset.

Kernel services are provided that access data using a uio structure. The ureadc, uwritec,
uiomove, and uphysio kernel services all perform data transfers into or out of a data buffer
described by a uio structure. The ureadc service writes a character into the buffer
described by the uio structure. The uwritec service reads a character from the buffer.
Thus, these two services have names opposite from what one would expect, since they are
named for the user action initiating the operation. A read on the part of the user thus results
in a device driver writing to the buffer, while a write results in a driver reading from the buffer.

The uiomove service copies data to or from a buffer described by a uio structure from or to
a buffer in the system address space. The uphysio service is used primarily by block
device drivers providing raw 1/0 support. The uphysio service converts the character read
or write request into a block read or write request and sends it to the ddstrategy routine.

The buffer described by the uio structure can consist of multiple non-contiguous areas of
virtual memory of different lengths. This is achieved by describing the data buffer with an
array of elements, each of which consists of a virtual memory address and a byte length.
Each element is defined as an iovec element. The uio structure also contains a field
specifying the total number of bytes in the data buffer described by the structure.

Another field in the uio structure describes the address space of the data buffer, which can
either be system space, user space, or cross-memory space. If the address space is
defined as cross-memory, an additional array of cross-memory descriptors is specified in the
uio structure to match the array of iovec elements.

The called routine (device driver) is permitted to modify fields in the uio and iovec structures
as the data transfer progresses. The final uio_resid count is in fact used to determine how
much data was transferred. Therefore this count must be decremented, with each
operation, by the number of bytes actually copied.

2-12 Kernel Reference

(

!

I-.

uio

The following fields are contained in the uio structure:

uio_iov

uio_xmem

uio_iovcnt

uio_iovdcnt

uio_offset

uio_segflg

uio_fmode

uio_resid

iovec structure

iov_base

iov_len

A pointer to an array of iovec structures describing the user buffer for
the data transfer.

A pointer to an array of xmem structures containing the cross-memory
descriptors for the iovec array.

The number of yet-to-be-processed iovec structures in the array
pointed to by the uio_iov pointer. The count must be at least 1. If the
count is greater than 1, then a scatter-gather of the data is to be
performed into or out of the areas described by the iovec structures.

The number of already-processed iovec structures in the iovec array.

The file offset established by a previous lseek subroutine call. Most
character devices ignore this variable, but some, such as the
/dev/mem pseudo-device, use and maintain it.

A flag indicating the type of buffer being described by the uio
structure. This flag typically describes whether the data area is in user
or kernel space or is in cross-memory. Refer to the <sys/uio.h>
header file for a description of the possible values of this flag and their
meanings.

The value of the file mode that was specified on opening the file or
modified by the fcntl subroutine. This flag describes the file control
parameters. The <sys/fcntl.h> header file contains specific values for
this flag.

The byte count for the data transfer. It must not exceed the sum of all
the iov_len values in the array of iovec structures. Initially, this field
contains the total byte count, and when the operation completes, the
value must be decremented by the actual number of bytes transferred.

A structure containing the starting address and length of a contiguous
data area to be used in a data transfer. The iovec structure is the
element type in an array pointed to by the uio_iov field in the uio
structure. This array may contain any number of iovec structures,
each of which describes a single unit of contiguous storage. Taken
together, these units represent the total area into which, or from which,
data is to be transferred. The number of iovec structures in the array
is given by the uio_iovcnt field.

A variable in the iovec structure containing the base address of the
contiguous data area in the address space specified by the
uio_segflag field. The length of the contiguous data area is specified
by the iov_len field.

A variable in the iovec structure containing the byte length of the data
area starting at the address given in the iov_base variable.

Device Driver Operations 2-13

uio

Files
sys/uio.h

sys/fcntl.h

sys/xmem.h

Related Information
The ddread device driver entry point and ddwrite device driver entry point.

The uiomove kernel service, uphysio kernel service, ureadc kernel service, uwritec kernel
service.

The fcntl subroutine, lseek subroutine.

Accessing Data from a Kernel Process, Accessing User-Mode Data While in Kernel Mode,
The Cross Memory Kernel Services, Providing Raw 1/0 Access in a Block Device Driver,
Understanding Block 1/0 Device Drivers in Kernel Extensions and Device Support
Programming Concepts.

Device Drivers Kernel Extension Overview, Programming In the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

2-14 Kernel Reference

(

ddclose

ddclose Device Driver Entry Point

Purpose

Syntax

Closes a previously open device instance.

#include <sys/device.h>
#include <sys/types.h>

int ddclose (devno, chan)
dev_t devno;
chan_t chan;

Parameters
devno Specifies the major and minor device numbers of the device instance to

close.

ch an Specifies the channel number.

Description
The ddclose entry point is called when a previously opened device instance is closed by the
close subroutine or fp_close kernel service. The kernel calls the routine under different
circumstances for non-multiplexed and multiplexed device drivers.

For non-multiplexed device drivers, the ddclose routine is called by the kernel when the last
process having the device instance open closes it. This causes the gnode reference count to
be decremented to 0 (zero), and the gnode to be de-allocated.

For multiplexed device drivers, the ddclose routine is called for each close associated with
an explicit open. In other words, the device driver's ddclose routine is invoked once for each
time its ddopen routine was invoked for the channel.

In some instances, data buffers should be written to the device before returning from the
ddclose routine. These are buffers containing data to be written to the device that have
been queued by the device driver but not yet written.

Non-multiplexed device drivers should reset the associated device to an idle state and
change the devic~ driver device state to closed. This can involve calling the fp_close kernel
service to issue a close to an associated open device handler for the device. Returning the
device to an idle state prevents the device from generating any more interrupt or OMA
requests. OMA channels and interrupt levels allocated for this device should be freed, until
the device is re-opened, to release critical system resources used by this device.

Multiplexed device drivers should provide the same device quiescing, but not in the ddclose
routine. Returning the device to the idle state and freeing its resources should be delayed
until the ddmpx routine is called to de-allocate the last channel allocated on the device.

In all cases, the device instance is considered closed once the ddclose routine has returned
to the caller, even if a non-zero return code is returned.

Execution Environment
The ddclose routine is executed only in the process environment. It should provide the
required serialization of its data structures by using the locking kernel services in conjunction
with a private lock word defined in the driver.

Device Driver Operations 2-15

ddclose

Return Values
The ddclose entry point can indicate an error condition to the user-mode application
program by returning a nonzero return code. This causes the subroutine call to return a
value of-1. It also makes the return code available to the user-mode application in the
errno external variable. The return code used should be one of the values defined in the
<sys/errno.h> header file.

The device is always considered closed even if a nonzero return code is returned.

When applicable, the return values defined in the POSIX 1003.1 standard for the close
subroutine should be used.

Related Information
The ddopen device driver entry point.

The fp_close kernel service, i_clear kernel service, i_disable kernel service.

The close subroutine, open subroutine.

Device Driver Classes, Device Driver Roles, Multiplexed Support in a Character Device
Driver, Non-Multiplexed Support in a Character Device Driver, Processing Interrupts,
Providing Raw 1/0 Access in a Block Device Driver, Providing Raw 1/0 Support,
Understanding Block 1/0 Device Drivers, Understanding Character 1/0 Device Drivers,
Understanding Direct Memory Access, Understanding Interrupts, Understanding Locking in
Kernel Extensions and Device Support Programming Concepts.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

2-16 Kernel Reference

ddconfig

ddconfig Device Driver Entry Point

Purpose

Syntax

Performs configuration functions for a device driver.

#include <sys/device.h>
#include <sys/types.h>

int ddconfig (devno, cmd, uiop)
dev_t devno;
int cmd;
struct uio *uiop;

Parameters
devno Specifies the major and minor device numbers.

cmd

uiop

Description

Specifies the function to be performed by the ddconfig routine.

Points to a uio structure describing the relevant data area for configuration
information.

The ddconfig entry point is used to configure a device driver. It can be called to do the
following tasks:

• Initialize the device driver.

• Terminate the device driver.

• Request configuration data for the supported device.

• Perform other device-specific configuration functions.

The ddconfig routine is called by the device's Configure, Unconfigure, or Change method.
Typically, it is called once for each device number (major and minor) to be supported. This
is, however, device-dependent and is determined by the specific device method and
ddconfig routine.

Additional device-specific functions relating to configuration can also be provided by the
ddconfig routine, such as returning device vital product data (VPD). The ddconfig routine
is usually invoked through the sysconfig subroutine by the device-specific Configure
method.

The values for the cmd parameter typically supported by device drivers and their methods
are:

CFG_INIT

CFG_TERM

CFG_QVPD

Initialize the device driver and internal data areas.

Terminate the device driver associated with the specified device number,
devno.

Query device-specific VPD.

Device Driver Operations 2-17

ddconfig

The data area pointed at by the uiop parameter has two different purposes, depending on
the cmdfunction. If the CFG_INIT command has been requested, the uiop structure
describes the location and length of the device-dependent data structure (DDS) from which
to read the information. If the CFG_QVPD command has been requested, the uiop structure
describes the area in which to write vital product data information. The content and format of
this information is established by the specific device methods in conjunction with the device
driver.

The uiomove kernel service may be used to facilitate the copying of information into or out
of this data area. The format of the uio structure is defined in the <Sys/uio.h> header file
and described further in the uio Structure.

Execution Environment
The ddconfig routine and its operations are called in the process environment only.

Return Values

Files

The ddconfig routine sets the return code to O (zero) if no errors are detected for the
operation specified. If an error is to be returned to the caller, a nonzero return code should
be provided. The return code used should be one of the values defined in the
<sys/errno.h> header file.

If this routine was invoked by a sysconfig subroutine call, the return code is passed to its
caller (typically a device method). It is passed by presenting the error code in the errno
external variable and providing a -1 return code to the subroutine.

sys/uio.h

sys/errno.h

Related Information
The uiomove kernel service.

The sysconfig subroutine.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

2-18 Kernel Reference

(

ddconfig

CFG_INIT Command Parameter to the ddconfig Routine
Purpose

Description

The CFG_INIT value is one of three common values for the cmd parameter to the ddconfig
device driver entry point. The CFG_INIT value requests initialization of a particular device
driver and device.

This command type is used to specify that the ddconfig routine is to perform an initialization
function, which typically involves checking the minor number in devno for validity. The
device driver's ddconfig routine also installs the device driver's entry points in the device
switch table, if this was the first time called (for the specified major number). This can be
accomplished by using the devswadd kernel service along with a devsw structure to add
the device driver's entry points to the device switch table for the major device number
supplied in the devno parameter.

The CFG_INIT code should also copy the device-dependent information (found in the
device-dependent structure provided by the caller) into a static or dynamically allocated save
area for the specified device. This information should be used when the ddopen routine is
later called.

The device-dependent structure's address and length are described in the uio structure
pointed to by the uiop parameter. The uiomove kernel service can be used to copy the
device-dependent structure into the device driver's data area.

When the ddopen routine is called, the device driver passes device-dependent information
to the routines or other device drivers providing the device handler role in order to initialize
the device. The delay in initializing the device until the ddopen call is received is useful in
order to delay the use of valuable system resources (such as DMA channels and interrupt
levels) until the device is actually needed.

Execution Environment
This routine is called in the process environment only.

Related Information
The CFG_QVPD command parameter, CFG_TERM command parameter.

The ddconfig device driver entry point, ddopen device driver entry point.

The uiomove kernel service, devswadd kernel service.

The uio structure.

Understanding the Device Switch iable, Understanding Major and Minor Numbers for a
Special File in Kernel Extensions and Device Support Programming Concepts.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

Device Driver Operations 2-19

ddconfig

CFG_QVPD Command Parameter to the ddconfig Routine
Purpose

Description

The CFG_QVPD value is one of three common values for the cmdparameter to the
ddconfig device driver entry point. The CFG_ QVPD value queries for device-specific vital
product data (VPD). ·

The CFG_ QVPD command is an optional ddconfig function called from the device's
Configure method. It is usually used for diagnostic purposes.

For this function, the calling routine sets up a uio structure pointed at by the uiop parameter
to the ddconfig routine. This uio structure defines an area in the caller's storage in which
the ddconfig routine is to write the VPD. The uiomove kernel service can be used to
provide the data copy operation.

Execution Environment
This routine is called in the process environment only.

Related Information
The CFG_INIT command parameter, CFG_ TERM command parameter.

The ddconfig device driver entry point.

The uiomove kernel service.

The uio structure.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

2-20 Kernel Reference

\
I

/

ddconfig

CFG_ TERM Command Parameter to the ddconfig Routine
Purpose

Description

The CFG_ TERM command option is one of three common values for the cmd parameter to
the ddconfig device driver entry point. The CFG_ TERM value requests termination of a
particular device driver.

The CFG_ TERM command type is typically used by a device's Unconfigure or Change
method through the sysconfig subroutine to remove resources and system access for a
specific device. The ddconfig routine should determine if any opens are outstanding on the
specified devno. If none 'are, the CFG_ TERM command processing should mark the device
as terminated, disallowing any subsequent opens to the device. All dynamically allocated
data areas associated with the specified device number should be freed.

If this termination removes the last minor number supported by the device driver from use,
the devswdel kernel service should be called to remove the device driver's entry points from
the device switch table for the specified devno.

If opens are outstanding on the specified device, the terminate operation should be rejected
with an appropriate error code returned. The Unconfigure method can subsequently unload
the device driver if all uses of it have been terminated.

To determine if all the uses of the device driver have been terminated, a device method can
make a sysconfig subroutine call. By using the sysconfig SYS_QDVSW operation, the
device method may learn whether or not the device driver has removed itself from the device
switch table.

Execution Environment
This routine is called in the process environment only.

Related Information
The CFG_INIT command parameter, CFG_QVPD command parameter.

The ddconfig device driver entry point.

The devswdel kernel service.

The SYS_QDVSW sysconfig operation.

The sysconfig subroutine.

Understanding the Device Switch Table, Understanding Major and Minor Numbers for a
Special File in Kernel Extensions and Device Support Programming Concepts.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

Device Driver Operations 2-21

dddump

dddump Device Driver Entry Point

Purpose

Syntax

Writes system dump data to a device.

#include <Sys/device.h>

int dddump (devno, uiop, cmd, arg, chan, ext)
dev_t devno;
struct uio * uiop;
int cmd, arg;
chan_t chan;
int ext;

Parameters
devno Specifies the major and minor device numbers.

uiop

cmd

arg

Points to the uio structure describing the data area or areas to be dumped.

The parameter from the kernel dump function that specifies the operation to
be performed

The parameter from the caller that specifies the address of a parameter
block associated with the kernel dump command.

chan ·Specifies the channel number.

ext Specifies the extension parameter.

Description
The dddump entry point is called by the kernel dump routine to set up and send dump
requests to the device. The dddump routine is optional for a device driver. It is required
only when the device driver supports a device as a target for a possible kernel dump.

If this is the case, it is important that the system state change as little as possible when
performing the dump. As a result, the dddump routine should use the minimal amount of
services in writing the dump data to the device.

The cmd parameter can specify any of the following dump commands:

DUMPINIT

DUMPQUERY

DUMPSTART

DUMPWRITE

OUM PEND

DUMPTERM

2-22 Kernel Reference

Initialization in preparation for supporting a system dump.

Query minimum and maximum data transfer sizes.

Device setup in preparation for doing a system dump.

Write dump data to the device.

Cleanup of the device state after completing dump.

Release resources allocated for dump support.

I
I

\

dddump

Return Value
The dddump entry point indicates an error condition to the caller by returning a nonzero
return code.

Execution Environment
The DUMPINIT dddump operation is called in the process environment only. The
DUMPQUERY, DUMPSTART, DUMPWRITE, DUMPEND, and DUMPTERM dddump
operations can be called in both the process environment and interrupt environment.

Related Information
The devdump kernel service, dmp_add kernel service, dmp_del kernel service.

The dump special file.

Possible Values for the Cmd Parameter to the dddump Device Driver Entry Point.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

Device Or_iver Operations 2-23

dddump

Device Driver System Dump Support: Possible Values for the dddump ~
cmd Parameter
Introduction

The cmd parameter to the dddump device driver entry point takes six possible values:
DUMPINIT, DUMPQUERV, DUMPSTART, DUMPWRITE, DUMPEND, and DUMPTERM,
as defined in the <sys/devide.h> header file.

The DUMPINIT cmd Value
The DUMPINIT command is sent when this device has been selected as the target dump
device for the kernel. The specified device instance must have previously been opened.

The dddump routine should pin all code and data that the device driver uses to support
dump writing. This is required to prevent a page fault when actually performing a write of
the dump data. (Pinned code should include the dddump routine.) The pin or pincode
kernel service can be used for this purpose.

The DUMPQUERY cmd Value
The DUMPQUERY command is sent by the kernel dump function to determine the maximum
and minimum number of bytes that can be transferred to the device in one DUMPWRITE
command. For this command, the uiop parameter is not used and is NULL. The arg·
parameter is a pointer to a dmp_query structure, as defined in the <Sys/device.h> header
file. This structure contains the following fields:

min_tsize Minimum transfer size (in bytes)

max_tsize Maximum transfer size (in bytes).

The DUMPQUERY command returns the data transfer size information in the dmp_query
structure pointed to by the arg parameter. The kernel dump function will then use a buffer
between the minimum and maximum transfer sizes (inclusively) when writing dump data.

If the buffer is not the size found in the max_tsize field, then its size must be a multiple of
the value in the min_tsize field. The min_tsize field and the max_tsize field may specify
the same value.

The DUMPSTART cmd Value
In response to the DUMPSTART command, the dddump routine must suspend current
device activity and provide whatever setup of the device is needed before receiving a
DUMPWRITE command.

The DUMPWRITE cmd Value
The DUMPWRITE command is sent to write dump data to the target device. The uio
structure pointed to by the uiop parameter specifies the data area or areas to be written to
the device and the starting device offset. Code for the DUMPWRITE command should
minimize its reliance on system services, process dispatching, and such interrupt services as
the INTIODONE interrupt priority or device hardware interrupts.

Note: The DUMPWRITE command must never cause a page fault. This will have been
ensured on the part of the caller, since the data areas to be dumped have been
determined to be in memory. The device driver must ensure that all of its code, data
and stack accesses are to pinned memory during its DUMPINIT command
processing.

2-24 Kernel Reference

(

dddump

The DUMPEND cmd Value
The DUMPEND command is sent to indicate that the kernel dump has been completed. Any
cleanup of the device state should be done at this time.

The DUMPTERM cmd Value
The DUMPTERM command is sent to indicate that the specified device is no longer a
selected dump target device. If no other devices supported by this dddump routine have a
DUMPINIT command outstanding, the DUMPTERM code should unpin any resources
pinned when it received the DUMPINIT command. (The unpin kernel service is available
for unpinning memory.) The DUMPTERM command is received before the device is closed.

Execution Environment
The DUMPINIT dddump operation is called in the process environment only. The
DUMPQUERY, DUMPSTART, DUMPWRITE, DUMPEND, and DUMPTERM dddump
operations can be called in both the process environment and interrupt environment.

Related Information
The dddump device driver entry point.

The pin kernel service, pincode kernel service, unpin kernel service.

The uio structure.

Understanding Interrupts, Processing Interrupts in Kernel Extensions and Device Support
Programming Concepts.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

Device Driver Operations 2-25

ddioctl

ddioctl Device Driver Entry Point

Purpose

Syntax

Performs the special 1/0 operations requested in an ioctl or ioctlx subroutine call.

#include <sys/device.h>

int ddioctl (devno, cmd, arg, devflag, chan, ext)
dev _t devno;
int cmd, arg;
ulong devflag;
chan_t chan;
int ext;

Parameters
devno Specifies the major and minor device numbers.

cmd

arg

devflag

ch an

ext

Description

The parameter from the ioctl subroutine call that specifies the operation to
be performed.

The parameter from the ioctl subroutine call that specifies an additional
argument for the cmd operation.

Specifies the device open or file control flags.

Specifies the channel number.

Specifies the extension parameter.

When a program issues an ioctl subroutine call, the kernel calls the ddioctl routine of the
specified device driver. The ddioctl routine is responsible for performing whatever functions
are requested. In addition, it must return whatever control information has been specified by (
the original caller of the ioctl subroutine. The cmd parameter contains the name of the
operation to be performed.

Most ioctl operations depend on the specific device involved. However, all ioctl routines
must respond to the following command:

IOCINFO Returns a devinfo structure (defined in the <sys/devinfo.h> header file)
that describes the device. (Refer to the description of the special file for a
particular device in the AIX Application Programming Interface.) Only the
first two fields of the data structure need to be returned if the remaining
fields of the structure do not apply to the device.

The devflag parameter indicates one of several types of information. It can give conditions
in which the device was opened. (These conditions can subsequently be changed by the
fcntl subroutine call.) Alternatively, it can tell which of two ways the entry point was invoked:

• By the file system on behalf of a using application

• Directly by a kernel routine using the fp_ioctl kernel service.

2-26 Kernel Reference

ddioctl

Thus flags in the devflag parameter have the following definitions, as defined in the
<Sys/device.h> file:

DKERNEL

DREAD

DWRITE

DAPPEND

DNDELAY

Entry point called by kernel routine using the fp_ioctl service.

Open for reading.

Open for writing.

Open for appending.

Device open in non-blocking mode.

Execution Environment
The ddioctl routine is executed only in the process environment. It should provide the
required serialization of its data structures by using the locking kernel services in conjunction
with a private lock word defined in the driver.

Return Values

File

The ddioctl entry point can indicate an error condition to the user-mode application program
by returning a nonzero return code. This causes the ioctl subroutine to return a value of -1
and makes the return code available to the user-mode application in the errno external
variable. The error code used should be one of the values defined in the <sys/errno.h>
header file.

When applicable, the return values defined in the POSIX 1003.1 standard for the ioctl
subroutine should be used.

/sys/device. h

Related Information
The fp_ioctl kernel service.

The fcntl subroutine, ioctl subroutine, ioctlx subroutine, open subroutine.

Special Files Overview in Files Reference.

Device Drivers Kernel Extension Overview, File System Overview, Programming in the
Kernel Environment, Understanding Locking in Kernel Extensions and Device Support
Programming Concepts.

Device Driver Operations 2-27

ddmpx

ddmpx Device Driver Entry Point

Purpose

Syntax

Allocates or deallocates a channel for a multiplexed device driver.

#include <Sys/device.h>
#include <sys/types.h>

int ddmpx (devno, chanp, channame)
dev_t devno;
chan_t *chanp;
char * channame;

Parameters
devno Specifies the major and minor device numbers.

chanp Specifies the channel ID, passed by reference.

channame Points to the pathname extension for the channel to be allocated.

Description
Only multiplexed character class device drivers may provide the ddmpx routine, and every
multiplexed driver must do so. The ddmpx routine may not be provided by block device
drivers even when providing raw read/write access.

A multiplexed device driver is a character class device driver that supports the assignment of
channels to provide finer access control to a device or virtual subdevice. This type of device
driver has the capability to decode special channel-related information appended to the end
of the pathname of the special file for the device. This pathname extension is used to identify
a logical or virtual subdevice or channel.

I
~

When an open or creat subroutine call is issued to a device instance supported by a
multiplexed device driver, the kernel calls the device driver's ddmpx routine to allocate a
channel. \

The ddmpx routine is called by the kernel when a channel is to be allocated or deallocated.
Upon allocation, the kernel dynamically creates gnodes (in-core inodes) for channels on a
multiplexed device to allow the protection attributes to be different for various channels.

To allocate a channel, the ddmpx routine is called with a channame pointer to the pathname
extension. The pathname extension starts after the first/ (slash) character that follows the
special file name in the pathname. The ddmpx routine should perform the following actions:

• Parse this pathname extension.

• Allocate the corresponding channel.

• Return the channel ID through the chanp parameter.

If no pathname extension exists, the channame pointer points to a null character string. In
this case, an available channel should be allocated and its channel ID returned through the
chanp parameter.

2-28 Kernel Reference

ddmpx

If no error is returned from the ddmpx routine, the returned channel ID is used to determine
if the channel was already allocated. If already allocated, the gnode for the associated
channel has its reference count incremented. If the channel was not already allocated, a
new gnode is created for the channel. In either case, the device driver's ddopen routine is
called with the channel number assigned by the ddmpx routine. If a nonzero return code is·
returned by the ddmpx routine, the channel is assumed not to have been allocated, and the
device driver's ddopen routine is not called.

If a close of a channel is requested so that the channel is no longer used, (as determined by
the channel's gnode reference count going to zero), the kernel calls the ddmpx routine. The
ddmpx routine deallocates the channel after the ddclose routine was called to close the last
use of the channel. If a nonzero return code is returned by the ddclose routine, the ddmpx
routine is still called to deallocate the channel. The ddclose routine's return code is saved,
to be returned to the caller. If the ddclose routine returned no error, but a nonzero return
code was returned by the ddmpx routine, the channel is assumed to be deallocated,
although the return code is returned to the caller.

To deallocate a channel, the ddmpx routine is called with a NULL channame pointer and the
channel ID passed by reference in the chanp parameter. If the channel gnode reference
count has gone to O (zero), the kernel calls the ddmpx routine to deallocate the channel
after invoking the ddclose routine to close it. The ddclose routine should not itself
deallocate the channel.

Return Value
If the allocation or de-allocation of a channel is successful, the ddmpx routine should return
a return code of 0. If an error occurs on allocation or de-allocation, a nonzero return code
should be returned.

The return code should conform to the return codes described for the open and close
subroutines in the POSIX 1003.1 standard, where applicable. Otherwise, the return code
should be one defined in the <sys/errno.h> header file.

Execution Environment
This routine is called in the process environment only.

Related Information
The ddclose device driver entry point, ddopen device driver entry point.

The close subroutine, creat subroutine, open subroutine.

Special Files Overview in Files Reference.

Device Driver Classes, Device Driver Roles, Multiplexed Support in a Character Device
Driver, Non-Multiplexed Support in a Character Device Driver, Providing Raw 1/0 Access in a
Block Device Driver, Providing Raw 1/0 Support, Understanding Block 1/0 Device Drivers,
Understanding Character 1/0 Device Drivers, Understanding Generic lnodes (Gnodes),
Understanding 1/0 Access to Device Drivers in Kernel Extensions and Device Support
Programming Concepts.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

Device Driver Operations 2-29

ddopen

ddopen Device Driver Entry Point

Purpose

Syntax

Prepares a device for reading, writing, or control functions.

#include <sys/device.h>

intddopen{devno,devflag, chan,ex~
dev_t devno;
ulong devflag;
chan_t chan ext;
int ext;

Parameters
devno Indicates major and minor device numbers.

Specifies open file control flags. devflag

ch an

ext

Description

Specifies the channel number.

Specifies the extension parameter.

The kernel calls the ddopen routine of a device driver when a program issues an open or
creat subroutine call. It can also be called when a system call, kernel process, or other
device driver uses the fp_opendev or fp_open kernel service to use the device.

The ddopen routine must first ensure exclusive access to the device, if necessary. Many
character devices, such as printers and plotters, should be opened by only one process at a
time. The ddopen routine can enforce this by maintaining a static flag variable, which is set
to 1 if the device is open and O if not.

Each time the ddopen routine is called, it checks the value of the flag. If the value is other
than zero, the ddopen routine returns with a return code of EBUSY to indicate that the
device is already open. Otherwise, the routine sets the flag and return·s normally. The (.
ddclose entry point later clears the flag when the device is closed. ~

Since most block devices can be used by several processes at once, a block driver should
not try to enforce opening by a single user.

The ddopen routine must initialize the device if this is the first open that has occurred.
Initialization involves the following steps:

1. The ddopen routine should allocate the required system resources to the device (such
as DMA channels, and interrupt levels, and priorities). It should, if necessary, register its
device interrupt handler for the interrupt level required to support the target device. {The
i_init and d_init kernel services are available for initializing these resources.)

2. If this device driver is providing the head role for a device and another device driver is
providing the handler role, the ddopen routine should open the device handler by using
the fp_opendev kernel service.

Note: The fp_opendev kernel service requires a devno parameter to identify which
device handler to open. This devno value, taken from the appropriate device
dependent structure (DDS), should have been stored in a special save area when
this device driver's ddconfig routine was ca!!ed.

2-30 Kernel Reference

ddopen

Flags Defined for the devflag Parameter
The flag word devflag has the following flags, as defined in the <sys/devide.h> header file:

DKERNEL Entry point called by kernel routine using the fp_opendev or fp_open
kernel service.

DREAD

DWRITE

DAPPEND

DNDELAY

Open for reading.

Open for writing.

Open for appending.

Device open in non-blocking mode.

Execution Environment
The ddopen routine is executed only in the process environment. It should provide the
required serialization of its data structures by using the locking kernel services in conjunction
with a private lock word defined in the driver.

Return Values

File

The ddopen entry point can indicate an error condition to the user mode application
program by returning a nonzero return code. Returning a nonzero return code causes the
open or creat subroutines to return a value of -1 and makes the return code available to the
user-mode application in the errno external variable. The return code used should be one
of the values defined in the errno.h header file.

If a nonzero return code is returned by the ddopen routine, the open request is considered
to have failed. No access to the device instance is available to the caller as a result. In
addition, for non-multiplexed drivers, if the failed open was the first open of the device
instance, the kernel calls the driver's ddclose entry point to allow resources and device
driver state to be cleaned up. If the driver was multiplexed, the kernel does not call the
ddclose entry point on an open failure.

When applicable, the return values defined in the POSIX 1003.1 standard for the open
subroutine should be used.

/usr/include/errno.h

Related Information
The ddclose device driver entry point, ddconfig device driver entry point.

The d_init kernel service, fp_open kernel service, fp_opendev kernel service, i_enable
kernel service, i_init kernel service.

The close subroutine, creat subroutine, open subroutine.

Device Driver Classes, Device Driver Roles, Multiplexed Support in a Character Device
Driver, Non-Multiplexed Support in a Character Device Driver, Processing Interrupts,
Providing Raw 1/0 Access in a Block Device Driver, Providing Raw 1/0 Support,
Understanding Block 1/0 Device Drivers, Understanding Character 1/0 Device Drivers,
Understanding Direct Memory Access, Understanding Interrupts in Kernel Extensions and
Device Support Programming Concepts.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

Device Driver Operations 2-31

ddread

ddread Device Driver Entry Point

Purpose

Syntax

Reads in data from a character device.

#include <sys/device.h>
#include <sys/types.h>

int ddread (devno, uiop, chan, ext)
dev_t devno;
struct uio * uiop;
chan_t chan;
int ext;

Parameters
devno Specifies the major and minor device numbers.

uiop

ch an

ext

Description

Points to a uio structure describing the data area or areas in which to be
written.

Specifies the channel number.

Specifies the extension parameter.

When a program issues a read or readx subroutine call or when the fp_rwuio kernel
service is used, the kernel calls the ddread entry point.

This entry point receives a pointer to a uio structure that provides variables used to specify
the data transfer operation.

Character device drivers can use the ureadc and uiomove kernel services to transfer data
into and out of the user buffer area during a read subroutine call. These services receive a (
pointer to the uio structure and update the fields in the structure by the number of bytes ,
transferred. The only fields in the· uio structure that cannot be modified by the data transfer
are the uio_fmode and uio_segflg fields.

For most devices, the ddread routine sends the request to the device handler and then
waits for it to finish. The waiting can be accomplished by calling the e_sleep kernel service.
This service suspends the driver and the process that called it, and permits other processes
to run until a specified event occurs.

When the 1/0 operation completes, the device usually issues an interrupt, causing the device
driver's interrupt handler to be called. The interrupt handler then calls the e_wakeup kernel
service specifying the awaited event, thus allowing the ddread routine to resume.

The uio_resid field initially contains the total number of bytes to read from the device. If the
device driver supports it, the uio_offset field indicates the byte offset on the device from
which point the read should start.

If no error occurs, the uio_resid field should be zero on return from the ddread routine to
indicate that all requested bytes were read. If an error occurs, this field should. contain the
number oi bytes remaining to be read when ihe error occurred.

2-32 Kernel Reference

ddread

If a read request starts at a valid device offset but extends past the end of the device's
capabilities, no error should be returned. However, the uio_resid field should indicate the
number of bytes not transferred. If the read starts at the end of the device's capabilities, no
error should be returned. However, the uio_resid field should not be modified, indicating
that no bytes were transferred. If the read starts past the end of the device's capabilities, an
ENXIO return code should be returned, without modifying the uio_resid field.

When the ddread entry point is provided for raw 1/0 to a block device, this routine usually
translates requests into block 1/0 requests using the uphysio kernel service.

Execution Environment
The ddread routine is executed only in the process environment. It should provide the
required serialization of its data structures by using the locking kernel services in conjunction
with a private lock word defined in the driver.

Return Values
The ddread entry point can indicate an error condition to the caller by returning a nonzero
return code. This causes the subroutine call to return a value of-1. It also makes the return
code available to the user mode program in the errno external variable. The error code
used should be one of the values defined in the <sys/errno.h> header file.

When applicable, the return values defined in the POSIX 1003.1 standard for the read
subroutine should be used.

Related Information
The ddwrite device driver entry point.

The fp_rwuio kernel service, e_sleep kernel service, e_wakeup kernel service, uphysio
kernel service, ureadc kernel service, uiomove kernel service.

Select/Poll Logic for the ddread Routine.

The uio structure.

The read, readx subroutines.

Interfacing to the Hardware, Processing Interrupts, Providing Raw 1/0 Access in a Block
Device Driver, Providing Raw 1/0 Support, Understanding Block 1/0 Device Drivers,
Understanding Character 1/0 Device Drivers, Understanding Interrupts, Understanding
Locking in Kernel Extensions and DeviC<!J Support Programming Concepts.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

Device.Driver Operations 2-33

ddread

Select/Poll Logic for the ddread Routine
Description

The ddread entry point requires logic to support the select and poll operations. Depending
on how the device driver is written, the interrupt routine may also need to include this logic
as well.

The select/poll logic is required wherever code checks on the occurrence of desired events.
At each point where one of the selection criteria is found to be true, the device driver should
check whether a notification is due for that selection. If so, it should call the selnotify kernel
service to notify the kernel of the event.

The devno, chan, and revents parameters are passed to the selnotify kernel service to
indicate which device and which events have become true.

Related Information
The ddread device driver entry point, ddselect device driver entry point.

The selnotify kernel service.

The poll subroutine, select subroutine.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

2-34 Kernel Reference

(

ddrevoke

ddrevoke Device Driver Entry Point

Purpose

Syntax

Ensures that a secure path to a terminal is being provided.

#include <sys/device.h>
#include <sys/types.h>

int ddrevoke (devno, chan, flag)
dev _t devno;
chan_t chan;
int flag;

Parameters
devno Specifies the major and minor device numbers.

ch an

flag

Specifies the channel number. For a multiplexed device driver, a value of
-1 in this parameter means access to all channels is to be revoked.

Currently defined to have the value of 0. (Reserved for future extensions.)

Description
The ddrevoke entry point can be provided only by character class device drivers. It cannot
be provided by block device drivers even when providing raw read/write access. A
ddrevoke entry point is required only by device drivers supporting devices in the Trusted
Computing Path to a terminal (for example, by /dev/hft and /dev/tty for the high function
terminal and teletype device drivers). The ddrevoke routine is called by the frevoke and
revoke subroutines.

The ddrevoke routine revokes access to a specific device or channel (if the device driver is
multiplexed). When called, the ddrevoke routine should kill all processes waiting in the
device driver while accessing the specified device or channel. It should kill the processes by
sending a SIGKILL signal to all processes currently waiting for a specified device or channel
data transfer. The current process is not to be killed.

If the device driver is multiplexed and the channel ID in the chan parameter has the value
-1, all channels are to be revoked.

The purpose of this function is to ensure that no "Trojan horses" exist in the Trusted
Computing Path to the user.

Execution Environment
The ddrevoke routine is called in the process environment only.

Return Values

Files

This routine should return a value of O for successful completion, or a value from the errno.h
header file on error.

/dev/hft

/dev/tty

sys/device.h

Device Driver Operations 2-35

ddrevoke

Related Information
The frevoke subroutine, revoke subroutine.

Device Driver Classes, Device Driver Roles, Multiplexed Support in a Character Device
Driver, Providing Raw 1/0 in a Block Device Driver, Understanding Block 110 Device Drivers,
Understanding Character 1/0 Device Drivers, Understanding Locking, Understanding
Trusted Computing Path Support in Kernel Extensions and Device Support Programming
Concepts.

Device Drivers Kernel Extension Overview, HFT Subsystem Conceptual Introduction,
Programming in the Kernel Environment, TTY Subsystem Overview in Kernel Extensions
and Device Support Programming Concepts.

2-36 Kernel Reference

(

ddselect

ddselect Device Driver Entry Point

Purpose

Syntax

Checks to see if one or more events has occurred on the device.

#include <sys/device.h>
#include <sys/poll.h>

int ddselect (devno, events, reventp, chan)
dev_t devno;
ushort events;
ushort * reventp;
int chan;

Parameters
devno

events

reventp

ch an

Description

Specifies the major and minor device numbers.

Specifies the events to be checked.

Returned events pointer. This parameter, passed by reference, is used by
the ddselect routine to indicate which of the selected events are true at the
time of the call. The returned events location pointed to by the reventp
parameter is set to O before entering this routine.

Specifies the channel number.

The ddselect entry point is called when the select or poll subroutine is used, or when the
fp_select kernel service is invoked. It determines whether a specified event or events have
occurred on the device.

The ddselect routine can be provided only by character class device drivers. It cannot be
provided by block device drivers even when providing raw read/write access.

Requests for Information on Events
Possible events to check for are represented as flags (bits) in the events parameter. There
are three basic events defined for the select and poll subroutines, when applied to devices
supporting select or poll operations:

POLLIN

POLLO UT

Input is present on the device.

The device is capable of output.

POLLPRI An exceptional condition has occurred on the device.

A fourth event flag is used to indicate whether the ddselect routine should record this
request for later notification of the event using the selnotify kernel service. This flag can be
set in the events parameter if the device driver is not required to provide asychronous
notification of the requested events:

POLLSYNC This request is a synchronous request only. The routine need not call the
selnotify service for this request even if the events later occur.

Additional event flags in the events parameter are left for device-specific events on the poll
subroutine call.

Device Driver Operations 2-37

ddselect

Select Processing
If one or more events specified in the events parameter are in fact true, the ddselect routine
should indicate this by setting the corresponding bits in the reventp parameter. Note that the
returned events parameter·reventp is passed by reference.

If none of the requested events are true, then the ddselect routine sets the returned events
parameter to O (passed by reference through the reventp parameter). It also checks the
POLLSYNC flag in the events parameter. If this flag is true, the ddselect routine should
simply return, since the event request was a synchronous request only.

However, if the POLLSYNC flag is false, the ddselect routine needs to notify the kernel
when one or more of the specified events later happen. For this purpose, the routine should
set separate internal flags for each event requested in the events parameter.

When any of these events become true, the device driver routine should use the selnotify
service to notify the kernel. The corresponding internal flags should then be reset to prevent
renotification of the event.

Sometimes the device can be in a state in which a supported event or events can never be
satisfied (such as when a communication line is not operational). In this case, the ddselect
routine should simply set the corresponding reventp flags to 1 . This prevents the select or
poll subroutine from waiting indefinitely. As a result however, the caller will not in this case
be able to distinguish between satisfied events and unsatisfiable ones. Only when a later
request with an NDELAY option fails will the error be detected.

Note: Other device driver routines (such as the ddread, ddwrite routines) may require
logic to support select or poll operations.

Execution Environment
The ddselect routine is executed only in the process environment. It should provide the
required serialization of its data structures by using the locking kernel services in conjunction
with a private lock word defined in the driver.

Return Values
The ddselect routine should return with a return code of O (zero) if the select/poll operation
requested is valid for the resource specified. Requested operations are invalid, however, if
either of the following is true:

1. The device driver does not support a requested event.

2. The device is in a state in which poll and select operations are not accepted.

In these cases, the ddselect routine should return with a nonzero return code (typically
EINVAL), and without setting the relevant reventp flags to 1. This causes the poll
subroutine to return to the caller with the POLLERR flag set in the returned events
parameter associated with this resource. The select subroutine indicates to the caller that
all requested events are true for this resource.

When applicable, the return values defined in the POSIX 1003.1 standard for the select
subroutine should be used.

2-38 Kernel Reference

/:
I~

(

ddselect

Related Information
The ddread device driver entry point, ddwrlte device driver entry point.

The fp_select kernel service, selnotify kernel service.

The select subroutine, poll subroutine.

Device Driver Classes, Device Driver Roles, Providing Raw 1/0 in a Block Device Driver,
Understanding Block 1/0 Device Drivers, Understanding Character 1/0 Device Drivers,
Understanding Locking in Kernel Extensions and Device Support Programming Concepts.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

Device Driver Operations 2-39

ddstrategy

ddstrategy Device Driver Entry Point

Purpose

Syntax

Parameter

Performs block-oriented 1/0 by scheduling a read or write to a block device.

void ddstrategy (bp)
struct buf * bp;

bp Points to a buf structure describing all information needed to perform the
data transfer.

Description
When the kernel needs a block 1/0 transfer, it calls the ddstrategy strategy routine of the
device driver for that device. The strategy routine schedules the 1/0 to the device. This
typically requires the following actions:

• The request or requests must be added on the list of 110 requests that need to be
processed by the device.

• If the request list was empty before the above additions, the device's start 1/0 routine
must be called.

Required Processing
The ddstrategy routine may receive a single request with multiple buf structures, and is
required to process these blocks in sequential order. However, it is not required to process
requests in their arrival order.

The strategy routine can be passed a list of operations to perform. The av _forw field in the
buf header describes this null-terminated list of buf headers. This list is not doubly linked:
the av_back field is undefined.

Block device drivers must be able to perform multiple block transfers. If the device cannot
do multiple block transfers, or can only do multiple block transfers under certain conditions,
then the device driver must transfer the data with more than one device operation.

Kernel Buffers and Using the buf Structure
An area of memory is set aside within the kernel memory space for buffering data transfers
between a program and the peripheral device. Each kernel buffer has a header, the buf
structure, which contains all necessary information for performing the data transfer. The
ddstrategy routine is responsible for updating fields in this header as part of the transfer.

The caller of the strategy routine should set the b_iodone field to point to the caller's 1/0
done routine. When an 1/0 operation is complete, the device driver calls the iodone kernel
service, which then calls the 1/0 done routine specified in the b_iodone field. The iodone
kernel service makes this call from the INTIODONE interrupt level.

The value of the b_flags field is constructed by logically ORing zero or more possible
b_flags flag values.

Warning: Do not modify any of the following fields of the buf structure passed to the
ddstrategy entry point: the b_forw, b_back, b_dev, b_un, or b_blkno field. Modifying
these fields can cause unpredictable and disastrous results.

2-40 Kernel Reference

(

I

\

ddstrategy

Warning: Do not modify any of the following fields of a but structure acquired with the
geteblk service: the b_tlags, b_forw, b_back, b_dev, b_count, or b_un field. Modifying
these fields can cause unpredictable and disastrous results.

Execution Environment
The ddstrategy routine must be coded to execute in an interrupt handler execution
environment (device driver bottom half). That is, the routine may neither touch user storage,
nor page fault, nor sleep.

Return Values
The ddstrategy routine, unlike other device driver routines, does not return a return code.
Any error information is returned in the appropriate fields within the but structure pointed to
by the bp parameter.

When applicable, the return values defined in the POSIX 1003.1 standard for the read and
write subroutines should be used.

Related Information
The geteblk kernel service, iodone kernel service.

The but Structure.

The read subroutine, write subroutine.

The Buffer Cache kernel services, Device Driver Classes, Device Driver Structure,
Understanding Block 1/0 Device Drivers in Kernel Extensions and Device Support
Programming Concepts.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

Device Driver Operations 2-41

ddwrite

ddwrite Device Driver Entry Point

Purpose

Syntax

Writes out data to a character device.

#include <Sys/device.h>
#include <Sys/types.h>

int ddwrite (devno, uiop, chan, ext)
dev_t devno;
struct uio * uiop;
chan_t chan;
int ext;

Parameters
devno Specifies the major and minor device numbers.

uiop

ch an

ext

Description

Points to a uio structure describing the data area or areas from which to be
written.

Specifies the channel number.

Specifies the extension parameter.

When a program issues a write or writex subroutine call or when the fp_rwuio kernel
service is used, the kernel calls the ddwrite entry point.

This entry point receives a pointer to a uio structure, which provides variables used to
specify the data transfer operation.

Character device drivers can use the uwritec and uiomove kernel services to transfer data
into and out of the user buffer area during a write subroutine call. These services are
passed a pointer to the uio structure. They update the fields in the structure by the number
of bytes transferred. The only fields in the uio structure that are not potentially modified by
the data transfer are the uio_fmode and uio_segflg fields.

For most devices, the ddwrite routine queues the request to the device handler and then
waits for it to finish. The waiting is typically accomplished by calling the e_sleep kernel
service to wait for an event. The e_sleep service suspends the driver and the process that
called it and permits other processes to run.

When the 1/0 operation is completed, the device usually causes an interrupt, causing the
device driver's interrupt handler to be called. The interrupt handler then calls the e_wakeup
kernel service specifying the awaited event, thus allowing the ddwrite routine to resume.

The uio_resid field initially contains the total number of bytes to write to the device. If the
device driver supports it, the uio_offset field indicates the byte offset on the device from
which point the write should start.

If no error occurs, the uio_resid field should be zero on return from the ddwrite routine to
indicate that all requested bytes were written. If an error occurs, this field should contain the
number of bytes remaining to be written when the error occurred.

2-42 Kernel Reference

(

('-<

ddwrite

If a write request starts at a valid device offset but extends past the end of the device's
capabilities, no error should be returned. However, the uio_resid field should indicate the
number of bytes not transferred. If the write starts at or past the end of the device's
capabilities, no data should be transferred. An error code of ENXIO should be returned, and
the uio_resid field should not be modified.

When the ddwrite entry point is provided for raw 1/0 to a block device, this routine usually
translates requests into block 1/0 requests using the uphysio kernel service.

Execution Environment
The ddwrite routine is executed only in the process environment. It should provide the
required serialization of its data structures by using the locking kernel services in conjunction
with a private lock word defined in the driver.

Return Value
The ddwrite entry point can indicate an error condition to the caller by returning a nonzero
return code. This causes the subroutine to return a value of-1. It also makes the return
code available to the user-mode program in the errno external variable. The error code
used should be one of the values defined in the <Sys/errno.h> header file.

When applicable, the return values defined in the POSIX 1003.1 standard for the write
subroutine should be used.

Related Information
The ddread device driver entry point.

Select/Poll Logic for the ddwrite Routine.

The uio structure.

The write subroutine, writex subroutine.

The e_sleep kernel service, e_wakeup kernel service, fp_rwuio kernel service, uiomove
kernel service, uphysio kernel service, uwritec kernel service.

Interfacing to the Hardware, Processing Interrupts, Providing Raw 1/0 Access in a Block
Device Driver, Providing Raw 1/0 Support, Understanding Block 1/0 Device Drivers,
Understanding Character 1/0 Device Drivers, Understanding Interrupts, Understanding
Locking in Kernel Extensions and Device Support Programming Concepts.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

Device Driver Operations 2-43

ddwrite

Select/Poll Logic for the ddwrite Routine
Description

The ddwrite entry point requires logic to support the select and poll operations. Depending
on how the device driver is written, the interrupt routine may also need to include this logic
as well.

The select/poll logic is required wherever code checks on the occurrence of desired events.
At each point where one of the selection criteria is found to be true, the device driver should
check whether a notification is due for that selection. If so, it should call the selnotify kernel
service to notify the kernel of the event.

The devno, chan, and revents parameters are passed to the selnotify kernel service to
indicate which device and which events have become true.

Related Information
The ddselect device driver entry point, ddwrite device driver entry point.

The selnotify kernel service.

The poll subroutine, select subroutine.

Device Drivers Kernel Extension Overview, Programming in the Kernel Environment in
Kernel Extensions and Device Support Programming Concepts.

2-44 Kernel Reference

I

\

Chapter 3. File System Operations

File System Operations 3-1

vfs_cntl

vfs_cntl Subroutine

Purpose

Syntax

Issues control operations for a file system.

int vfs_cntl (vfsp, cmd, arg, argsize)
struct vfs * vfsp;
int cmd;
caddr_t arg;
unsigned long argsize;

Parameters
vfsp Points to the file system for which the control operation is to be issued.

Specifies which control operation to perform. cmds

arg Identifies data specific to the control operation.

argsize Identifies the length of the data specified by the arg parameter.

Description
The vfs_cntl subroutine issues control operations for a file system. A file system
implementation can define file system-specific cmd parameter values and corresponding
control functions. The cmd parameter for these functions should have a minimum value of
32768. These control functions can be issued with the fscntl subroutine.

Note: The only system-supported control operation is FS_EXTENDFS. This operation
increases the file system size and accepts an arg parameter that specifies the new
size. The FS_EXTENDFS operation has no argsize parameter.

Execution Environment
The vfs_cntl subroutine can be called from the process environment only.

Return Values
0

EINVAL

EACCESS

ERRNO

Related Information

Success.

The cmd parameter is not a supported control, or the arg parameter is an
invalid argument for the command.

The cmd parameter requires a privilege that the current process does not
have.

Error number from the <sys/errno.h> file on failure.

The fscntl subroutine.

File System Overview, List of Virtual File System Operations, Understanding Virtual Nodes
(Vnodes) in Kernel Extensions and Device Support Programming Concepts.

3-2 Kernel Reference

vfs_init

vfs_init Subroutine

Purpose

Syntax

Parameter

Initializes a virtual file system.

int vfs_init {gfsp)
struct gfs *gfsp;

gfsp Points to a file system's attribute structure.

Description
The vfs_init subroutine initializes a virtual file system. It is called when a file system
implementation is loaded to perform file system-specific initialization.

The vfs_init subroutine is not called through the virtual file system switch. Instead, it is
called indirectly by the gfsadd kernel service when the vfs_init subroutine address is stored
in the gfs structure passed to the gfsadd kernel service as a parameter. (The vfs_init
address is placed in the gfs_init field of the gfs structure.) The gfs structure is defined in
the <sys/gfs.h> file.

Note: The return value for the vfs_init subroutine is passed back as the return value from
the gfsadd kernel service.

Execution Environment
The vfs_init subroutine can be called from the process environment only.

Return Values
0

ERR NO

Related Information

Success.

Error number from the <sys/errno.h> file on failure.

The gfsadd kernel service.

File System Overview, List of Virtual File System Operations, Understanding Data Structures
and Header Files for Virtual File Systems, The Virtual File System Kernel Services, Virtual
File System Overview in Kernel Extensions and Device Support Programming Concepts.

File System Operations 3-3

vfs_mount

vfs_mount Subroutine

Purpose

Syntax

Mounts a virtual file system.

int vfs_mount (vfsp)
struct vfs * vfsp;

Parameters
vfsp Points to the newly created vfs structure.

Description
The vfs_mount subroutine mounts a virtual file system. This subroutine is called after the
vfs structure is allocated and initialized. Before this structure is passed to the vfs_mount
subroutine, the logical file system does the following:

• Guarantees the syntax of the vmount or mount subroutines.

• Allocates the vfs structure.

• Resolves the stub to a virtual node (vnode). This is the vfs_mntdover field in the vfs
structure.

• Initializes the following virtual file system information:

vfs_flags

vfs_type

vfs_ops

vfs_mntdover

vfs_date

vfs_number

vfs_mdata

3-4 Kernel Reference

Initialized depending on the type of mount. This field takes the
following values:

VFS_MOUNTOK

VFS_SUSER

The user has write permission in the stub's
parent directory and is the owner of stub.

The user has root user authority.

Initialized to the I (root) file system type when the mount subroutine
is used. If the vmount subroutine is used, the vfs_type field is set
to the type parameter supplied by the user. The logical file system
verifies the existence of the type parameter.

Initialized according to the vfs_type field.

Identifies the vnode that refers to the stub path argument. This
argument is supplied by the mount or vmount subroutine.

Holds the time stamp. The time stamp specifies the time to initialize
the virtual file system.

The unique number sequence representing this virtual file system.

This field is initialized with the vmount structure supplied by the
user. The virtual file system data is detailed in the <sys/vmount.h>
header file. All arguments indicated by this field are copied to
kernel space.

I

I
\

vfs_mount

Execution Environment
The vfs_mount subroutine can be called from the process environment only.

Return Values
0 Success.

ERR NO Error number from the <sys/errno.h> file on failure.

Files
/usr/include/sys/vfs.h Defines the vfs structure.

/usr/include/sys/vmount.h Defines types of virtual file systems.

Related Information
The mount subroutine, vmount subroutine.

File System Overview, Logical File System Overview, List of Virtual File System Operations,
Understanding Data Structures and Header Files for Virtual File Systems, Understanding
Virtual Nodes (Vnodes), Virtual File System Overview in Kernel Extensions and Device
Support Programming Concepts.

File System Operations 3-5

vfs_root

vfs_root Subroutine

Purpose

Syntax

Finds the root of a virtual file system (VFS).

int vfs_root (vfsp, vpp)
struct vfs * vfsp;
struct vnode **vpp;

Parameters
vfsp Points to the vfs structure.

vpp Points to the place to return the vnode pointer.

Description
The vfs_root subroutine finds the root of a virtual file system. When successful, the vpp
parameter points to the root virtual node (vnode) and the vnode hold count is incremented.

Execution Environment
The vfs_root subroutine can be called from the process environment only.

Return Values
0 Success

Files

ERR NO Error number from the <Sys/errno.h> file on failure.

/usr/incl ude/sys/vfs. h

/usr/i ncl ude/sys/vnode.h

Defines the vfs structure.

Defines the vnode structure and vnode operations.

Related Information
File System Overview, List of Virtual File System Operations, Understanding Data Structures
and Header Files for Virtual File Systems, Understanding Virtual Nodes (Vnodes), Virtual
File System Overview in Kernel Extensions and Device Support Programming Concepts.

3-6 Kernel Reference

(
I,

~

vfs_statfs

vfs_statfs Subroutine

Purpose

Syntax

Obtains virtual file system statistics.

int vfs_stafs (vfsp, statfsp)
struct vfs * vfsp;
struct statfs * stafsp;

Parameters
vfsp Points to the vfs structure being queried. This structure is defined in the

<sys/vfs.h> file.

stafsp Points to a statfs structure. This structure is defined in the <sys/statfs.h>
file.

Description
The vfs_stafs subroutine is used to return information specific to the virtual file system.
When completed successfully, this subroutine fills in the following fields of the statfs
structure:

f_blocks

f_files

f_bsize

f_bfree

f_ffree

f_fname

f_fpac~

Number of blocks.

Total number of file system objects.

File system block size.

Number of free blocks.

Number of free file system objects.

A 32-byte string specifying the file system name.

A 32-byte string specifying a pack ID.

f_name_max The maximum length of an object name.

Fields for which a vfs structure has no values are set to O (zero).

Execution Environment
The vfs_statfs subroutine can be called from the process environment only.

Return Values

Files

0 Success

ERRNO Error number from the <sys/errno.h> file on failure.

/usr/include/sys/vfs.h

/usr/include/sys/statfs.h

/usr/include/sys/vnode.h

Defines the vfs structure.

Defines the statfs structure.

Defines the vnode structure and vnode operations.

File System Operations 3-7

vfs_statfs

Related Information
The statfs subroutine.

File System Overview, List of Virtual File System Operations, Understanding Data Structures
and Header Files for Virtual File Systems, Virtual File System Overview in Kernel Extensions
and Device Support Programming Concepts.

3-8 Kernel Reference

!
\~

vfs_sync

vfs_sync Subroutine

Purpose
Forces a virtual file system (VFS) update to permanent storage.

Syntax
int vfs_sync ()

Description
The vfs_sync subroutine forces all data associated with a particular virtual file system type
to be written to its storage. This subroutine is used to establish a known consistent state of
the data.

Note: Unlike all the other VFS-related operations, the vfs_sync subroutine does not apply
to a particular virtual file system, but rather to the generic file system (GFS) type.

Execution Environment
The vfs_sync subroutine can be called from the process environment only.

Return Values
0 Success

ERR NO Error number from the <Sys/errno.h> file on failure.

File
/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
The sync subroutine.

File System Overview, List of Virtual File System Operations, Virtual File System Overview
in Kernel Extensions and Device Support Programming Concepts.

File System Operations 3-9

vfs_umount

vfs_umount Subroutine

Purpose

Syntax

Parameter

Unmounts a virtual file system.

int vfs_umount (vfsp)
struct vfs * vfsp;

vfsp Points to the vfs structure being unmounted. This structure is defined in the
<Sys/vfs.h> file.

Description
The vfs_umount subroutine unmounts a virtual file system. The logical file system
performs services independent of the virtual file system that initiate the unmounting. The
logical file system services do the following:

• Guarantee the syntax of the vumount subroutine.

• Perform permission checks:

- If the vfsp parameter refers to a device mount, then the user must have root user
authority to perform the operation.

- If the vfsp parameter does not refer to a device mount, then the user must have root
user authority or write permission in the parent directory of the mounted-over virtual
node (vnode), as well as write permission to the file represented by the mounted-over
vnode.

• Ensure that the virtual file system being unmounted contains no mount points for other
virtual file systems. ·

• Ensure that the root vnode is not in use except for the mount. The root vnode is also
referred to as the mounted vnode.

• Clear the v _mvfsp field in the stub vnode. This prevents lookup operations already in
progress from traversing the soon-to-be unmounted mount point.

The logical file system assumes that, if necessary, successful vfs_umount subroutine calls
free the root vnode. An error return from the vfs_umount subroutine causes the mount point
to be re_established. A 0 (zero) returned from the vfs_umount subroutine indicates the
routine was successful and that the vfs structure was released.

Execution Environment
The vfs_umount subroutine can be called from the process environment only.

Return Values
0

ERR NO

3-1 0 Kernel Reference

Success.

Error number from the <sys/errno.h> file on failure.

I
I

\

Files
/usr/include/sys/vmount.h

/usr/include/sys/vnode.h

vfs_umount

Describes types of file systems for the vmount subroutine.

Defines the vnode structure and vnode operations.

Related Information
The umount subroutine.

File System Overview, List of Virtual File System Operations, Logical File System Overview,
Understanding Data Structures and Header Files for Virtual File Systems, Understanding
Virtual Nodes (Vnodes), Virtual File System Overview in Kernel Extensions and Device
Support Programming Concepts.

File System Operations 3-11

vfs_vget

vfs_vget Subroutine

Purpose

Syntax

Converts a file identifier into a virtual node (vnode).

int vfs_vget (vfsp, vpp, fidp)
struct vfs * vfsp;
struct vnode ** vpp;
struct fileid * fidp;

Parameters
vfsp Points to the virtual file system that is to contain the vnode. Any returned

vnode should belong to this virtual file system.

vpp

fidp

Description

Points to the place to return the vnode pointer. This is set to point to the
new vnode. The fields in this vnode should be set as follows:

v_vntype

v_count

v_pdata

The type of vnode dependent on private data.

Set to at least 1 (one).

If a new file, set to the private data for this file system.

If the fidp parameter is invalid, the vpp parameter should be set to NULL by
the vfs_vget subroutine.

Points to a file identifier. This is a file system-specific file identifier that must
conform to the fileid structure.

The vfs_vget subroutine converts a file identifier into a vnode. This subroutine uses
information in the vfsp and fidp parameters to create a vnode or attach to an existing vnode.
This vnode represents, logically, the same file system object as the file identified by the fidp
parameter.

If the vnode already exists, successful operation of this subroutine increments the vnode use
coun.t and returns a pointer to the vnode. If the vnode does not exist, the vfs_vget
subroutine creates it using the vn_get kernel service and returns a pointer to the new vnode.

Execution Environment
The vfs_vget subroutine can be called from the process environment only.

Return Values
0

ERR NO

EINVAL

3-12 Kernel Reference

Success.

Error number from the <Sys/errno.h> file on failure.

Indicates that the remote virtual file system specified by the vfsp parameter
does not support chained mounts.

(
\

\
I

/

vfs_vget

Related Information
The vn_get kernel service.

File System Overview, List of Virtual File System Operations, Understanding Virtual Nodes
(Vnodes), The Virtual File System Kernel Services, Virtual File System Overview in Kernel
Extensions and Device Support Programming Concepts.

File System Operations 3-13

vn_access

vn_access Subroutine

Purpose

Syntax

Validates user access to a virtual node (vnode).

int vn_access (vp, mode, who)
struct vnode * vp;
int mode;
int who;

Parameters
vp Points to the vnode.

mode Identifies the access mode.

who Specifies what ID to check the access against. This parameter should be
one of the following values which are defined in the <sys/access.h> file:

ACC_SELF

ACC_ANY

ACC_OTHERS

ACC_ALL

Description

Determines if access is permitted for the current
process. The effective user and group IDs, and the
concurrent group set of the current process are
used for the calculation.

Determines if the specified access is permitted for
any user including the object owner. The mode
parameter must contain only one of the valid
modes.

Determines if the specified access is permitted for
any user excluding the owner. The mode
parameter must contain only one of the valid
modes.

Determines if the specified access is permitted for
all users. (This is a useful check to make when
files are to be written blindly across networks.) The
mode parameter must contain only one of the valid
modes.

The vn_access subroutine validates user access to a vnode. This subroutine is used to
implement the access subroutine. The vnode is held for the duration of the vn_access
subroutine. The vnode count is unchanged by this subroutine.

In addition, the vn_access subroutine is used for permissions checks from within the file
system implementation. The valid types of access are listed in the <sys/access.h> file.
Current modes are read, write, execute, and existence check.

Note: The vn_access subroutine must ensure that write access is not requested on a
read-only file system.

3-14 Kernel Reference

(

vn access

Execution Environment
The vn_access subroutine can be called from the process environment only.

Return Values

Files

0 Success.

EACCESS

ERR NO

No access is allowed.

Error number from <Sys/errno.h> file on failure.

/usr/include/access.h Lists the valid types of access.

/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
The access subroutine.

File System Overview, List of Virtual File System Operations, Understanding Virtual Nodes
(Vnodes), Virtual File System Overview in Kernel Extensions and Device Support
Programming Concepts.

File System Operations 3-15

vn_close

vn_close Subroutine

Purpose

Syntax

Releases the resources associated with an open virtual node (vnode).

int vn_close (vp, flag, vinfo)
struct vnode * vp;
int flag;
caddr_t vinfo;

Parameters
vp Points to the vnode.

flag Identifies the flag word from the file pointer.

vinfo Specifies file system-specific information for the vnode.

Description
The vn_close subroutine releases the resources associated with an open vnode. Any file
system-specific close operations are also performed. Normally, the actual release of
resources is reserved till the last close of the vnode. The release of resources is handled in
the vn_rele subroutine.

A vn_close subroutine is called only when the use count of an associated file structure entry
goes to zero.

Note: The vnode is held over the duration of the vn_close subroutine.

Execution Environment
The vn_close subroutine can be called from the process environment only.

Return Values
Close errors are file system dependent.

Related Information
The close subroutine, vn_open subroutine, vn_rele subroutine.

File System Overview, List of-Virtual File System Operations, Understanding Virtual Nodes
(Vnodes), Virtual File System Overview in Kernel Extensions and Device Support
Programming Concepts.

3-16 Kernel Reference

(

vn create

vn_create Subroutine

Purpose

Syntax

Creates a new file.

int vn_create (dp, vpp, flag, pname, mode, vinfop)
struct vnode * dp;
struct vnode **vpp;
int flag;
char *pname;
int mode;
caddr_t *vinfop;

Parameters
dp Points to the virtual node (vnode) of the parent directory.

vpp

flag

pname

mode

vinfop

Description

Points to the place in which the pointer to a vnode for the newly created file
is returned.

Specifies an integer flag word. This parameter is used by the vn_create
subroutine to open the file.

Points to the name of the new file.

Specifies the mode for the new file.

Records information about the open procedure for the file system
implementation. This information is supplied to subsequent vnode
operations and is file system-specific.

The vn_create subroutine creates a VREG type of vnode in the directory specified by the dp
parameter. (Other vnode operations create directories and special files.) Virtual node types
are defined in the <sys/vnode.h> file. The vnode of the parent directory is held during the
processing of the vn_create subroutine.

To create a file, the vn_create subroutine does the following:

• Opens the newly created file.

• Checks that the file system associated with the directory is not read-only.

Note: The logical file system calls the vn_lookup subroutine before calling the vn_create
subroutine.

Execution Environment
The vn_create subroutine can be called from the process environment only.

Return Values
0 Success.

ERRNO Error number from the <sys/errno.h> file on failure.

File System Operations 3-17

vn_create

File
/usr/I ncl ude/sys/vnode. h Defines node operations and structures.

Related Information
The vn_lookup subroutine.

Special Files Overview in Files Reference.

File System Overview, List of Virtual File System Operations, Logical File System Overview,
Understanding Virtual Nodes (Vnodes), Virtual File System Overview in Kernel Extensions
and Device Support Programming Concepts.

3-18 Kernel Reference

\

vn_fclear

vn_fclear Subroutine

Purpose

Syntax

Releases portions of a file.

int vn_fclear (vp, flags, offset, Jen, vinfo)
struct vnode * vp;
int flags;
off _t offset;
ulong Jen;
caddr_t vinfo;

Parameters
vp Points to the virtual node (vnode) of the file.

flags Identifies the flags from the open file structure.

offset Indicates where to start clearing in the file. This parameter is updated to
reflect the number of bytes cleared.

Jen Specifies the length of the area to be cleared.

vinfo Indicates data from the open file structure specific to the virtual file system.

Description
The vn_fclear subroutine clears bytes in a file, returning whole free blocks to the underlying
file system. This subroutine performs the clear regardless of whether the file is mapped.

Execution Environment
The vn_fclear subroutine can be called from the process environment only.

Return Values
0 Success.

ERRNO Error number from the <sys/errno.h> file on failure.

File
/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
The fclear subroutine.

File System Overview, List of Virtual File System Operations, Understanding Virtual Nodes
(Vnodes), Virtual File System Overview in Kernel Extensions and Device Support
Programming Concepts.

File System Operations 3-19

vn_fid

vn_fid Subroutine

Purpose
Builds a file identifier for a virtual node (vnode).

Syntax
int vn_fid (vp, fidp)
struct vnode * vp;
struct fileid *fidp;

Parameters
vp Points to the vnode that requires the file identifier.

Points to where to return the file identifier. fidp

Description
The vn_fid subroutine builds a file identifier for a vnode.

Execution Environment
The vn_fid subroutine can be called from the process environment only.

Return Values
0 Success.

ERR NO Error number from the <sys/errno.h> file on failure.

File
/usr/i ncl ude/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
File System Overview, List of Virtual File System Operations, Understanding Virtual Nodes
(Vnodes), Virtual File System Overview in Kernel Extensions and Device Support
Programming Concepts.

3-20 Kernel Reference

/
I
~

vn_fsync

vn_fsync Subroutine

Purpose

Syntax

Flushes information in memory and data to disk.

int vn_fsync (vp, flags)
struct vnode * vp;
int flags;

Parameters
vp Points to the virtual node (vnode) of the file.

flags Identifies flags from the open file.

Description
The vn_fsync subroutine flushes information in memory and data about the file to
permanent storage.

Execution Environment
The vn_fsync subroutine can be called from the process environment only.

Return Values

File

0

ERRNO

Success.

Error number from the <Sys/errno.h> file on failure. Possible errors are
specific to the virtual file system.

/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
The fsync subroutine.

File System Overview, List of Virtual File System Operations, Understanding Virtual Nodes
(Vnodes), Virtual File System Overview in Kernel Extensions and Device Support
Programming Concepts.

File System Operations 3-21

vn_ftrunc

vn_ftrunc Subroutine

Purpose
Truncates a file.

Syntax
int vn_ftrunc (vp, flags, length, vinfo)
struct vnode * vp;
int flags;
ulong length;
caddr_t vinfo;

Parameters
vp

flags

length

vinfo

Description

Points to the virtual node (vnode) of the file.

Identifies flags from the open file structure.

Specifies the length to which the file should be truncated.

Contains data from the open file structure specific to the virtual file system.
This data is used as specified by the file system.

A
1-1
~

I
\

The vn_ftrunc subroutine decreases the length of a file by truncating it. This operation fails (
if any process other than the caller has locked a portion of the file past the specified offset.

Execution Environment
The vn_ftrunc subroutine can be called from the process environment only.

Return Values
0 Success.

ERR NO Error number from the <sys/errno.h> file on failure.

File
/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
The ftruncate subroutine.

File System Overview, List of Virtual File System Operations, Understanding Virtual Nodes
(Vnodes), Virtual File System Overview in Kernel Extensions and Device Support
Programming Concepts.

3-22 Kernel Reference

/'
i
''I

vn_getacl

vn_getacl Subroutine

Purpose

Syntax

Retrieves the access control list (ACL) for a file.

#include <sys/acl.h>

int vn_getacl (vp, uiop)
struct vnode *vp;
struct uio *uiop;

Parameters
vp Specifies the virtual node (vnode) of the file system object.

uiop Specifies the uio structure that defines the storage for the ACL.

Description
The vn_getacl subroutine retrieves the ACL.

Execution Environment
The vn_getacl subroutine can be called from the process environment only.

Return Values
0 Indicates a successful operation.

File

ENOS PC Indicates that the buffer size specified in the uiop parameter was not large
enough to hold the ACL. If this is the case, then the first word of the user's
buffer (data in the uio structure specified by the uiop parameter) is set to
the appropriate size.

/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
The accessx subroutine, chacl subroutine, chmod subroutine, chown subroutine, statacl
subroutine.

The iaccess kernel service, iowner kernel service.

File System Overview, List of Virtual File System Operations, Understanding the uio
Structure, Understanding Virtual Nodes (Vnodes), Virtual File System Overview in Kernel
Extensions and Device Support Programming Concepts.

File System Operations 3-23

vn_getattr

vn_getattr Subroutine

Purpose

Syntax

Gets the attributes of a file.

int vn_getattr (vp, vap)
struct vnode * vp;
struct vattr *vap;

Parameters
vp Points to the virtual node (vnode) for the file.

vap Points to a vattr structure.

Description
The vn_getattr subroutine fills in the vattr structure. If this subroutine succeeds, the vattr
structure indicated by the vap parameter contains all the relevant attributes of the file. The
vattr structure is defined in the <sys/vattr.h> file.

Note: The indicated vnode is held for the duration of the vn_getattr subroutine.

Execution Environment
The vn_getattr subroutine can be called from the process environment only.

Return Values
0 Success

Files

ERR NO Error number from the <sys/errno.h> file on failure.

/usr/include/sys/vattr.h

/usr/include/sys/vnode.h

Describes the attributes of files across all types of
supported file systems.

Defines the vnode structure and vnode operations.

Related Information
The statx subroutine.

File System Overview, List of Virtual File System Operations, Understanding Virtual Nodes
(Vnodes), Virtual File System Overview in Kernel Extensions and Device Support
Programming Concepts.

3-24 Kernel Reference

vn_hold

vn_hold Subroutine

Purpose

Syntax

Parameter

Assures that a virtual node (vnode) is not destroyed.

int vn_hold (vp)
struct vnode * vp;

vp Points to the vnode.

Description
The vn_hold subroutine increments the v_count field, the hold count on the vnode, and the
vnode's underlying gnode (generic node). This incrementation assures that the vnode is not
deallocated.

Execution Environment
The vn_hold subroutine can be called from the process environment only.

Return Values
0 Success

ERR NO Error number from the <sys/errno.h> file on failure.

File
/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
File System Overview, List of Virtual File System Operations, Understanding Generic lnodes
(Gnodes), Understanding Virtual Nodes (Vnodes), Virtual File System Overview in Kernel
Extensions and Device Support Programming Concepts.

File System Operations 3-25

vn_ioctl

vn_ioctl Subroutine

Purpose

Syntax

Performs miscellaneous operations on special files.

int vn_ioctl (vp, cmd, arg, flags, ext)
struct vnode * vp;
int cmd;
caddr_t arg;
int flags;
int ext;

Parameters
vp Points to the virtual node (vnode) on which to perform the operation.

flags Identifies flags from the open file structure.

cmd Identifies the specific command. Common operations for the ioctl
subroutine are defined in the <sys/ioctl.h> header file. The file system
implementation can define other ioctl operations.

arg Defines a command-specific argument. This parameter can be a single
word or a pointer to an argument (or result structure).

ext Specifies the extended parameter passed by the ioctl subroutine. The ioctl
subroutine always sets the ext parameter to O (zero).

Description
The vn_ioctl subroutine performs miscellaneous operations on special files. These files are
usually devices, but no restrictions (besides those specific to virtual file systems) are placed
on the type of files the vn_ioctl subroutine can be applied to.

Execution Environment
The vn_ioctl subroutine can be called from the process environment only.

Return Values
0 Success.

Files

ERR NO

EINVAL

Error number from the <Sys/errno.h> file on failure.

The file system does not support the subroutine.

/usr/include/sys/ioctl.h

/usr/include/sys/vnode.h

Contains ioctl definitions.

Defines the vnode structure and vnode operations.

Related Information
The ioctl subroutine.

Special Files Overview in Files Reference.

File System Overview, List of Virtual File System Operations, Understanding Virtual Nodes
(Vnodes), Virtual File System Overview in Kernel Extensions and Device Support
Programming Concepts.

3-26 Kernel Reference

4
/!'
'~

(
I,~

I

/

vn link

vn_link Subroutine

Purpose

Syntax

Creates a hard link to a file.

int vn_link (vp, dp, name)
struct vnode * vp;
struct vnode * dp;
caddr_t *name;

Parameters
vp Points to the virtual node (vnode) to link to. This vnode is held for the

duration of the linking process.

dp Points to the vnode for the directory in which the link is created. This vnode
is held for the duration of the linking process.

name Identifies the new name of the entry.

Description
The vn_link subroutine creates a hard link to a file. The logical file system ensures that the
dp and vp parameters reside in the same virtual file system and that it is not a read-only file
system.

Execution Environment
The vn_link subroutine can be called from the process environment only.

Return Values
0 Success.

ERR NO Error number from the <sys/errno.h> file on failure.

File
/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
File System Overview, List of Virtual File System Operations, Logical File System Overview,
Understanding Virtual Nodes (Vnodes), Virtual File System Overview in Kernel Extensions
and Device Support Programming Concepts.

File System Operations 3-27

vn_lockctl

vn_lockctl Subroutine

Purpose

Syntax

Sets, checks, and queries locks.

int vn_lockctl (vp, offset, lckdat, cmd, retry_fn, retry_id)
struct vnode * vp;
off _t offfset;
struct flock * lckdat;
int cmd;
int (*retry_fn)();
caddr_t retry_id;

Parameters
vp

offset

lckdat

cmd

retry_fn

retry_id

Description

Points to the file's virtual node (vnode).

Indicates the file offset from the open file structure. This parameter is used
to establish where the lock region begins.

Points to the vlock structure. This structure describes the lock operation to
perform.

Identifies the type of lock operation the vn_lockctl subroutine is to perform.
It is a bit mask that takes the following lock-control values:

SETFLCK

SLPFLCK

If set, perform a lock set or clear. If clear, return the lock
information. The l_type field in the flock structure indicates
whether a lock is set or cleared.

If the lock is unavailable immediately, wait for it. This is only
valid when the SETFLCK flag is set.

Points to a subroutine that is called when a lock is retried. This subroutine is
not used if the lock is granted immediately.

Note: If the retry_fn parameter is not NULL, the vn_lockctl routine will not
sleep, regardless of the SLPFLCK flag.

Points to the location where a value can be stored. This value can be used
to correlate a retry operation with a specific lock or set of locks. The retry
value is only used in conjunction with the retry_fn parameter.

Note: This value is an opaque value and should not be used by the caller
for any purpose other than a lock correlation. (This value should not
be used as a pointer.)

The vn_lockctl subroutine implements record locking. This subroutine uses the information
in the flock structure to implement record locking.

If a requested lock is blocked by an existing lock, the vn_lockctl subroutine should establish
a sleeping lock with the retry subroutine address (specified by the retry_fn parameter) stored

I

\
\

(

in the subroutine. The vn_lockctl subroutine then returns a correlating ID value to the caller ~
(in the retry_id parameter), along with an exit value of EAGAIN. When the sleeping lock is ~
later awakened, the retry subroutine is called with the retry_id parameter as its argument.

3-28 Kernel Reference

vn_lockctl

flock Structure
The flock structure is defined in the <sys/flock.h> file and includes the following fields:

l_type Type of lock. This field takes the following values:

l_whence

l_start

l_len

l_vfs

I_ sys id

l_pid

F_RDLCK

F_WRLCK

F_UNLCK

Read lock.

Write lock.

Unlock this record. A value of F _UNLCK starting at 0 (zero)
till O for a length of O means unlock all locks on this file.
Unlocking is done automatically when a file is closed.

Location that the l_start field offsets.

Offset from the l_whence field.

Length of record. If this field is O then the remainder of the file is specified.

Virtual file system that contains the file.

Value that uniquely identifies the host for a given virtual file system. This
field must be filled in before the call to the vn_lockctl subroutine.

Process ID (PIO) of the lock owner. This field must be filled before the call to
the vn_lockctl subroutine.

Execution Environment
The vn_lockctl subroutine can be called from the process environment only.

Return Values
0 Success.

Files

EA GAIN

ERR NO

A blocking lock exists and the caller did not use the SLPFLCK flag to
request that the operation sleep .

Error number from the <sys/errno.h> file on failure.

/usr/include/sys/flock.h

/usr/include/sys/vnode.h

Identifies the data type of the file segment-locking set.

Defines the vnode structure and vnode operations.

Related Information
File System Overview, List of Virtual File System Operations, Understanding Virtual Nodes
(Vnodes), Virtual File System Overview in Kernel Extensions and Device Support
Programming Concepts.

File System Operations 3-29

vn_lookup

vn_lookup Subroutine

Purpose

Syntax

Finds an object by name in a directory.

int vn_lookup (dvp, vpp, name, flags)
struct vnode * dvp;
struct vnode ** vpp;
char *name
int flags;

Parameters
dvp Points to the virtual node (vnode) of the directory to be searched. The

logical file system verifies that this vnode is of type VDIR.

flags Specifies lookup directives, including these three flags:

L_CRT

L_DEL

L_EROFS

The object is to be created.

The object is to be deleted.

An error is to be returned if the object resides in a read-only
file system.

vpp Points to the place to which to return the vnode pointer, if the pointer is
found. Otherwise, NULL should be placed in this memory location.

name Points to a null-terminated character string containing the file name to look
up.

Description
The vn_lookup vnode operation is used to find a vnode, given a name in a known directory.
This routine returns the vnode specified into the indicated directory.

The use count in the dvp vnode is incremented for this operation, and it is not decremented
by the file system implementation.

If the name is found, a pointer to the desired vnode is placed in the memory location
specified by the vpp parameter, and the vnode's hold count is incremented. (In this case, this
routine returns 0.) If the file name is not found, NULL is placed in the vpp parameter, and the
function returns ENOENT. Errors are reported with a return code from the <sys/errno.h>
file. Possible errors are usually specific to the particular virtual file system involved.

Execution Environment
The vn_lookup subroutine can be called from the process environment only.

Return Values
0

ERR NO

3-30 Kernel Reference

Success.

Error number from the sys/errno.h file on failure.

(
I

\

vn_lookup

File
/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
File System Overview, List of Virtual File System Operations, Logical File System Overview,
Understanding Virtual Nodes (Vnodes), Virtual File System Overview in Kernel Extensions
and Device Support Programming Concepts.

File System Operations 3-31

vn_map

vn_map Subroutine

Purpose

Syntax

Performs file system-specific operations when a file is mapped.

int vn_map (vp, addr, length, offset, flags)
struct vnode * vp;
caddr_t addr,
uint offset;
uint length;
uint flags;

Parameters
vp

addr

length

offset

flags

Description

Points to the virtual node (vnode) of the file.

Identifies the location within the process's address space where the
mapping is to begin.

Specifies the maximum size to be mapped.

Specifies the location within the file where the mapping is to begin.

Identifies what type of mapping to perform. This value is composed of bit
values defined in the <sys/shm.h> file. The following masks are of
particular interest to file system implementations:

SHM_RDONLY

SHM_COPY

The virtual memory object is read-only.

The virtual memory object is copy-on-write. If this
mask is set, updates to the segment are deferred until
a fsync operation is performed on the file. If the file is
closed without an fsync operation, the modifications
are discarded. The application that called the vn_map
subroutine is also responsible for calling the vn_fsync
subroutine.

Note: Mapped segments do not reflect modifications
made to a copy-on-write segment.

The vn_map subroutine performs file system-specific operations when a file is mapped. The
logical file system creates the virtual memory object (if it does not already exist) and
increments the object's use count.

Execution Environment
The vn_map subroutine can be called from the process environment only.

Return Values
0

ERR NO

3-32 Kernel Reference

Success.

Error number from the <Sys/errno.h> file on failure.

I

~

(
~

Files
/usr/include/sys/shm.h

/usr/include/sys/vnode.h

vn_map

Defines !PC-shared memory segments.

Defines the vnode structure and vnode operations.

Related Information
The shmat subroutine, vn_fsync subroutine.

File System Overview, List of Virtual File System Operations, Logical File System Overview,
Understanding Virtual Nodes {Vnodes), Virtual File System Overview in Kernel Extensions
and Device Support Programming Concepts.

File System Operations 3-33

vn_mkdir

vn_mkdir Subroutine

Purpose

Syntax

Creates a directory.

int vn_mkdir (dp, name, mode)
struct vnode *dp;
caddr_t name;
int mode;

Parameters
dp Points to the virtual node (vnode) of the new directory's parent directory.

This vnode is held for the duration of the subroutine.

name Specifies the name of the new directory.

mode Specifies the permission modes of the new directory.

Description
The vn_mkdir subroutine creates a new directory. The logical file system ensures that the
dp parameter does not reside on a read-only file system.

Execution Environment
The vn_mkdir subroutine can be called from the process environment only.

Return Values
0 Success.

ERR NO Error number from the <Sys/errno.h> file on failure.

File
/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
The mkdir subroutine.

File System Overview, List of Virtual File System Operations, Logical File System Overview,
Understanding Virtual Nodes (Vnodes), Virtual File System Overview in Kernel Extensions
and Device Support Programming Concepts.

3-34 Kernel Reference

(

\

vn mknod

vn_mknod Subroutine

Purpose

Syntax

Creates any type of file.

int vn_mknod (dvp, name, mode, dev)
struct vnode *dvp;
caddr_t *name;
int mode;
dev_t dev;

Parameters
dvp Points to the virtual node (vnode) for the directory to contain the new file.

This vnode is held for the duration of the vn_mknod subroutine.

name Specifies the name of the new file.

mode Identifies the integer mode that indicates the type of file and its permissions.

dev Identifies an integer device number.

Description
The vn_mknod subroutine creates any type of file. The file is created with the specified
mode parameter. If this is a special file, the device number is as specified by the dev
parameter.

The logical file system verifies that the dvp parameter does not reside in a read-only file
system.

Return Values
0

ERR NO

Related Information

Success.

Error number from the <sys/errno.h> file on failure.

The mknod subroutine.

File System Overview, List of Virtual File System Operations, Logical File System Overview,
Understanding Virtual Nodes (Vnodes), Virtual File System Overview in Kernel Extensions
and Device Support Programming Concepts.

File System Operations 3-35

vn_open

vn_open Subroutine

Purpose

Syntax

Opens a file for reading or writing.

int vn_open (vp, flag, ext, vinfop)
struct vnode * vp;
int flag;
caddr_t ext;
caddr_t vinfop;

Parameters
vp Points to the virtual node (vnode) associated with the desired file. The

vnode is held for the duration of the open process.

flag

ext

vinfop

Specifies the type of access. Access modes are defined in the <fcntl.h>
file.

Note: The vn_open subroutine does not use the FCREAT mode.

Points to external data. This parameter is used if the subroutine is opening a
device.

May be used to record information about the open process. The information
recorded by this parameter is supplied to subsequent vnode operations.

Description
The vn_open subroutine initiates a process's access to a vnode (virtual node) and its
underlying file system object. The operation of the vn_ open subroutine varies between
virtual file system (VFS) implementations. A successful vn_open subroutine must leave a
vnode count of at least 1 (one).

The logical file system ensures that the process is not requesting write access (with the
FWRITE or FTRUNC mode) to a read-only file system.

Execution Environment
The vn_open subroutine can be called from the process environment only.

Return Values

Files

0 Success.

ERRNO Error number from the <sys/errno.h> file on failure.

/usr/include/sys/vnode.h

/usr/include/sys/fcntl.h

Defines the vnode structure and vnode operations.

Defines access modes.

Related Information
The open subroutine, vn_close subroutine.

File System Overview, List of Virtual File System Operations, Logical File System Overview,
Understanding Virtual Nodes (Vnodes), Virtual File System Overview in Kernel Extensions
and Device Support Programming Concepts.

3-36 Kernel Reference

(

~

vn_rdwr

vn_rdwr Subroutine

Purpose

Syntax

Performs file 1/0.

int vn_rdwr (vp, op, flags, uiop, ext, vinfo)
struct vnode *vp;
enum uio_rw op;
int flags;
struct uio * uiop;
int ext;
caddr_t vinfo;

Parameters
vp Points to the file's virtual node {vnode).

op Specifies an enum that indicates a read or write operation. This parameter
takes the following values:

• UIO_READ

• UIO_WRITE.

These values are found in the <sys/uio.h> file.

flags Identifies flags from the open file structure.

uiop Points to a uio structure. This structure describes the count, data buffer,
and other 1/0 information.

ext Provides an extension for special purposes. Its use and meaning are
specific to virtual file systems, and it is usually ignored except for devices.

vinfo Contains file system-specific data from the open file structure. This
information is stored by a vn_open or vn_create subroutine. The use of
this data is determined by the file system implementation.

Description
The vn_rdwr subroutine reads or writes data from or to an object represented by a vnode.
The vn_rdwr subroutine does the indicated data transfer and sets the number of bytes not
transferred in the uio_resid field. This field is O {zero) on successful completion.

Execution Environment

Files

The vn_rdwr subroutine can be called from the process environment only.

/usr/include/sys/uio.h

/usr/include/sys/vnode.h

Describes the desired data transfer.

Defines the vnode structure and vnode operations.

File System Operations 3-37

vn_rdwr

Return Values
0

ERR NO

Related Information

Success.

Error number from the <sys/errno.h> file on failure.

The read subroutine, vn_create subroutine, vn_open subroutine, write subroutine.

File System Overview, List of Virtual File System Operations, Understanding the uio
StructureUnderstanding Virtual Nodes (Vnodes), Virtual File System Overview in Kernel
Extensions and Device Support Programming Concepts.

3-38 Kernel Reference

(
\

vn_readdir

vn_readdir Subroutine

Purpose

Syntax

Reads directory entries in standard format.

int vn_readdir (vp, uiop)
struct vnode * vp;
struct uio * uiop;

Parameters
vp

uiop

Points to the directory's virtual node (vnode).

Points to the uio structure that describes the data area into which to put the
block of dirent structures. The starting directory offset is found in the
uiop->uio_offset field and the size of the buffer area is found in the
uiop->uio_resid field.

Description
The vn_readdir subroutine is used to access directory entries in a standard way. These
directories should be returned as an array of dirent structures. The <sys/dir.h> file contains
the definition of a dirent structure.

The vn_readdir subroutine does the following:

• Copies a block of directory entries into the buffer specified by the uiop parameter.

• Sets the uiop->uio_resid field to indicate the number of bytes read.

End-of-file should be indicated by not reading any bytes (not by a partial read). This provides
directories with the ability to have some hidden information in each block.

The virtual file system-specific implementation is also responsible for setting the uio_offset
field to the offset of the next whole block to be read.

Execution Environment
The vn_readdir subroutine can be called from the process environment only.

Return Values

File

0

ERRNO

Success.

Error number from the <sys/errno.h> file on failure. Possible errors are
specific to the virtual file system.

/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
The readdir subroutine.

File System Overview, List of Virtual File System Operations, Understanding the uio
Structure, Understanding Virtual Nodes (Vnodes), Virtual File System Overview in Kernel
Extensions and Device Support Programming Concepts.

File System Operations 3-39

vn_readlink

vn_readlink Subroutine

Purpose

Syntax

Reads the contents of a symbolic link.

int vn_readlink (vp, uio)
struct vnode * vp;
struct uio *uio;

Parameters
vp Points to a virtual node (vnode) structure. The vn_readlink subroutine

holds this vnode for the duration of the routine.

uio Points to a uio structure. This structure contains the information required to
read the link. In addition, it contains the return buffer for the vn_readlink
subroutine.

Description
The vn_readlink subroutine reads and returns the contents of a symbolic link. The logical
file system finds the vnode for the symbolic link, so this routine simply reads the data blocks
for the symbol link.

Execution Environment
The vn_readlink subroutine can be called from the process environment only.

Return Values
0 Success.

ERR NO Error number from the <sys/errno.h> file on failure.

File
/usr/i ncl ude/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
File System Overview, List of Virtual File System Operations, Logical File System Overview,
Understanding the uio Structure, Understanding Virtual Nodes (Vnodes), Virtual File System
Overview in Kernel Extensions and Device Support Programming Concepts.

3-40 Kernel Reference

/

vn_rele

vn_rele Subroutine

Purpose

Syntax

Parameter

Releases a virtual node (vnode).

int vn_rele (vp)
struct vnode * vp;

vp Points to the vnode.

Description
The vn_rele subroutine releases the object associated with a vnode. If the object was the
last reference to the vnode, the vn_rele subroutine then calls the vn_free kernel service to
deallocate the vnode.

If the virtual file system (VFS) was unmounted while there were open files, the logical file
system sets the VFS_UNMOUNTING flag in the vfs structure. If the flag is set and the
vnode to be released is the last vnode on the chain of the vfs structure, then the virtual file
system must be deallocated with the vn_rele subroutine.

Execution Environment
The vn_rele subroutine can be called from the process environment only.

Return Values
0 Success.

ERRNO Error number from the <sys/errno.h> file on failure.

Related Information
The vn_free kernel service.

File System Overview, List of Virtual File System Operations, Logical File System Overview,
Understanding the uio Structure, Understanding Virtual Nodes (Vnodes), Virtual File System
Overview in Kernel Ex.tensions and Device Support Programming Concepts.

File System Operations 3-41

vn_remove

vn_remove Subroutine

Purpose

Syntax

Removes a file or directory.

int vn_remove (vp, dvp, name)
struct vnode * vp;
struct vnode * dvp;
char *name;

Parameters
vp Points to a virtual node (vnode). The vnode indicates which file to remove

and is held over the duration of the vn_remove subroutine.

dvp Points to the vnode of the parent directory. This directory contains the file to
be removed. The directory's vnode is held for the duration of the
vn_remove subroutine.

name Identifies the name of the file.

Description
The vn_remove subroutine removes an entry (or link) for a file from a directory.

The logical file system assumes that the vn_remove subroutine calls the vn_rele
subroutine. If the link is the last reference to the file in the file system, the disk resources that
the file is using are released.

The logical file system ensures that the directory specified by the dvp parameter does not
reside in a read-only file system.

Execution Environment
The vn_remove subroutine can be called from the process environment only.

Return Values
0 Success.

ERR NO Error number from the csys/errno.h> file on failure.

File
/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
The unlink subroutine, vn_rele subroutine.

File System Overview, List of Virtual File System Operations, Logical File System Overview,
Understanding the uio Structure, Understanding Virtual Nodes (Vnodes), Virtual File System
Overview in Kernel Extensions and Device Support Programming Concepts.

3-42 Kernel Reference

vn_rename

vn_rename Subroutine

Purpose

Syntax

Renames a file or directory.

int vn_rename (srcvp, srcdvp, oldname, destvp, destdvp, newname)
struct vnode * srcvp;
struct vnode * srdcvp;
char * oldname;
struct vnode * destvp;
struct vnode * desdvp;
char * newname;

Parameters
srcvp Points to the virtual node (vnode) of the object to rename.

srcdvp

old name

destvp

destdvp

newname

Description

Points to the vnode of the directory where the srcvp parameter resides. The
parent directory for the old and new object can be the same.

Identifies the old name of the object.

Points to the vnode of the new object. This pointer is used only if the new
object exists. Otherwise, this parameter is NULL.

Points to the parent directory of the new object. The parent directory for the
new and old objects can be the same.

Points to the new name of the object.

The vn_rename subroutine renames a file or directory. This routine provides for the
following actions:

• Renames an old object to a new object that exists in a different parent directory.

• Renames an old object to a new object that doesn't yet exist in a different parent
directory.

• Renames an old object to a new object that exists in the same parent directory.

• Renames an old objec to a new object that doesn't yet exist in the same parent directory.

To ensure that this routine executes correctly, the logical file system guarantees the
following:

• File names are not renamed across file systems.

• The old and new object (if specified) are not the same.

• The old and new parent directories are of the same type of vnode.

File System Operations 3-43

vn_rename

Execution Environment
The vn_rename subroutine can be called from the process environment only.

Return Values
0 Success.

ERR NO Error number from the <Sys/errno.h> file on failure.

File
/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
The rename subroutine.

File System Overview, List of Virtual File System Operations, Understanding Virtual Nodes
(Vnodes), Logical File System Overview in Kernel Extensions and Device Support
Programming Concepts.

3-44 Kernel Reference

(

I

I
\

I
;\4

vn revoke

vn_revoke Subroutine

Purpose

Syntax

Revokes all access to an object.

int vn_revoke (vp, cmd, flag, vinfop)
struct vnode * vp;
int cmd;
int flag;
caddr _t vinfop;

Parameters
vp Points to the virtual node {vnode) containing the object.

cmd Indicates whether the calling process holds the file open. This parameter
takes the following values:

0 The process did not have the file open.

1 The process had the file open.

2 The process had the file open and the reference count in the file
structure was greater than 1 {one).

flag Identifies the flags from the file structure.

vinfop Contains file system-specific information from the file structure.

Description
The vn_revoke subroutine revokes further access to an object.

Execution Environment
The vn_revoke subroutine can be called from the process environment only.

Return Values
0 Success.

ERR NO Error number from the <sys/errno.h> file on failure.

File
/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
The frevoke subroutine, revoke subroutine.

File System Overview, List of Virtual File System Operations, Understanding Virtual Nodes
(Vnodes), Virtual File System Overview in Kernel Extensions and Device Support
Programming Concepts.

File System Operations 3-45

vn_rmdir

vn_rmdir Subroutine

Purpose

Syntax

Removes a directory.

int vn_rmdir (yp,JJp, name)
struct vnode * vp;
struct vnode * dp;
char *pname;

Parameters
vp Points to the vnode of the directory.

dp

pname

Points to the parent of the directory to remove.

Points to the name of the directory to remove.

Description
The vn_rmdir subroutine removes a directory object. To remove a directory, the directory
must be empty except for the. (current) and .. (parent) directories. Before removing the
directory, the logical file system ensures the following:

• The vp parameter is a directory.

• The vp parameter is not the root of a virtual file system.

• The vp parameter is not the current directory.

• The dp parameter does not reside on a read-only file system.

Note: The vp and dp parameters' vnodes (virtual nodes) are held for the duration of the
routine.

Execution Environment
The vn_rmdir subroutine can be called from the process environment only.

Return Values
0 Success.

ERR NO Error number from the <sys/errno.h> file on failure.

File
/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
The rmdir subroutine.

File System Overview, List of Virtual File System Operations, Logical File System Overview,
Understanding Virtual Nodes (Vnodes), Virtual File System Overview in Kernel Extensions
and Device Support Programming Concepts.

3-46 Kernel Reference

vn select

vn_select Subroutine

Purpose

Syntax

Polls a virtual node (vnode) for immediate 1/0.

int vn_select (vp, carrel, e, re, notify, vinfo)
struct vnode * vp;
int carrel;
int e;
int re;
int (*notify)();
caddr _t vinfo;

Parameters
vp Points to the vnode to be polled.

carrel Specifies the ID used for correlation in the selnotify kernel service.

re Returns an events list. If the vnode is ready for immediate 1/0, this field
should be set to indicate the requested event is ready.

e Identifies the requested event.

notify Specifies the subroutine to call when the event occurs. This parameter is for
nested polls.

vinfo Identifies file system-specific information from the file structure.

Description
The vn_select subroutine polls a vnode to determine if it is immediately ready for 1/0. This
subroutine implements the select and poll subroutines.

File system implementations can support constructs, such as devices or pipes that support
the select sematics. The fp_select kernel service provides more information about select
and poll requests.

Execution Environment
The vn_select subroutine can be called from the process environment only.

Return Values
0 Success

ERR NO Error number from the <sys/errno.h> on failure.

File
/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
The poll subroutine, select subroutine.

The fp_select kernel service, selnotify kernel service.

File System Overview, List of Virtual File System Operations, Understanding Virtual Nodes
(Vnodes), Virtual File System Overview in Kernel Extensions and Device Support
Programming Concepts.

File System Operations 3-47

vn_setacl

vn_setacl Subroutine

Purpose

Syntax

Sets the access control list for a file.

#include <sys/acl.h>

int vn_setacl (vp, uiop)
struct vnode * vp;
struct uio * uiop;

Parameters
vp Specifies the virtual node (vnode} of the file system object.

uiop Specifies the uio structure that defines the storage for the call arguments.

Description
The vn_setacl subroutine sets the access control list.

Execution Environment
The vn_setacl subroutine can be called from the process environment only.

Return Values
0 Indicates a successful operation.

File

ENOS PC

EPERM

Indicates that the space cannot be allocated to hold the new ACL
information.

Indicates that the effective user ID of the process is not the owner of the file
and the process is not privileged.

/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
The accessx subroutine, chacl subroutine, chmod subroutine, chown subroutine, statacl
subroutine.

The iaccess kernel service, iowner kernel service.

File System Overview, List of Virtual File System Operations, Understanding the uio
Structure, Understanding Virtual Nodes (Vnodes} in Kernel Extensions and Device Support
Programming Concepts.

3-48 Kernel Reference

;1
I

'\j

/
I

\

vn_setattr

vn_setattr Subroutine

Purpose

Syntax

Sets attributes of a file.

int vn_setattr (vp, cmd, arg1, arg2, arg3)
struct vnode * vp;

int cmd;
int arg1;
int arg2;
int arg3;

Parameters
vp

cmd

Points to the vnode (virtual node) of the file.

Defines the setting operation. This parameter takes the following values:

V_OWN

V_UTIME

V_MODE

Sets the UID and GID to the UID and GID values of the
new file owner.

Sets the access and modification time for the new file.

Sets the file mode.

The <sys/vattr.h> file contains the definitions for the three command
values.

arg1, arg2,arg3 Specify the command arguments. The values of the command arguments
depend on which command the vn_setattr subroutine is called.

Description
The vn_setattr subroutine sets the attributes of a file. This subroutine is used to implement
the chmodx, chownx, and utime subroutines.

The values that the arg parameters take depend on the cmd parameter with which the
vn_setattr subroutine is called. The vn_setattr subroutine accepts the following cmdvalues
and arg parameters:

Possible cmd Values for the vn_setattr Routine

Command V_OWN V_UTIME V_MODE

arg1 int flag; int flag; int mode;

arg2 int uid; time_t atime; Unused

arg3 int gid; time_t mtime; Unused

File System Operations 3-49

vn_setattr

V_OWN

V_UTIME

V_MODE

Sets the UID and GID to the values of the new file owner. The flag argument
indicates which ID is affected.

Sets the access and modification time for the new file. A flag value of
T _SETTIME indicates that specific values have not been provided and the
access and modification times of the object should beset to current system
time. If T _SETTIME is not specified, the values are specified by the atime
and mtime variables.

Sets the file mode.

Execution Environment
The vn_setattr subroutine can be called from the process environment only.

Return Values
0 Success.

ERR NO Error number from <Sys/errno.h> on failure.

File
/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
The chmodx subroutine, chownx subroutine, utime subroutine.

File System Overview, Understanding Virtual Nodes (Vnodes) in Kernel Extensions and
Device Support Programming Concepts.

3-50 Kernel Reference

'~ 11
"4

/
\

vn_strategy Subroutine

Purpose

Syntax

Accesses blocks of a file.

int vn_strategy (vp, bp)
struct vnode * vp;
struct buf * bp;

Parameters
vp Points to the virtual node (vnode) of the file.

Points to a buf structure that describes the buffer. bp

Description

vn_strategy

The vn_strategy subroutine accesses blocks of a file. This subroutine is intended to provide
a block-oriented interface for servers for efficiency in paging.

Return Values
0

ERR NO

Related Information

Success

Error number from the <sys/errno.h> file on failure. Possible errors are
specific to the virtual file system.

File System Overview, List of Virtual File System Operations, Understanding the uio
Structure, Understanding Virtual Nodes (Vnodes), Virtual File System Overview in Kernel
Extensions and Device Support Programming Concepts.

File System Operations 3-51

vn_symlink

vn_symlink Subroutine

Purpose

Syntax

Creates a symbolic link.

int vn_symlink (vp, linkname, targen
struct vnode * vp;
char * linkname;
char *target;

Parameters
dp Points to the virtual node (vnode) of the parent directory where the link is

created.

linkname

target

Description

Points to the name of the new symbolic link. The logical file system
guarantees that the new link does not already exit.

Points to the name of the object to which the symbolic link points. This
name need not be a fully qualified path name or even an existing object.

The vn_symlink subroutine creates a symbolic link. The path name specified by the
linkname parameter is the name of the new symbolic link. This symbolic link points to the
object named by the target parameter.

Execution Environment
The vn_symlink subroutine can be called from the process environment only.

Return Values
0

ERR NO

Related Information

Success.irtual

Error number from the <sys/errno.h> file on failure.

The symlink subroutine.

File System Overview, List of Virtual File System Operations, Understanding Virtual Nodes
(Vnodes), Virtual File System Overview in Kernel Extensions and Device Support
Programming Concepts.

3-52 Kernel Reference

(
I~

vn_unmap

vn_unmap Subroutine

Purpose

Syntax

Unmaps a file.

int vn_unmap (vp, flag)
struct vnode * vp;
ulong flag;

Parameters
vp Points to the file's virtual node (vnode).

flag Indicates how the file was mapped. This flag takes the following values:

• SHM_RDONLY

• SHM_COPY.

Description
The vn_unmap subroutine unmaps a file. When this routine completes successfully, the use
count for the memory object should be decremented and (if the use count went to 0) the
memory object should be destroyed. The file system implementation is required to do only
those operations that are unique to the file system. The logical file system handles
virtual-memory management operations.

Execution Environment
The vn_unmap subroutine can be called from the process environment only.

Return Values

File

0

ERRNO

Success.

Error number from the csys/errno.h> file on failure. Possible errors are
specific to the virtual file system implementation.

/usr/include/sys/vnode.h Defines the vnode structure and vnode operations.

Related Information
File System Overview, List of Virtual File System Operations, Logical File System Overview,
Understanding Virtual Nodes (Vnodes), Virtual File System Overview in Kernel Extensions
and Device Support Programming Concepts.

File System Operations 3-53

vn_unmap

3-54 Kernel Reference

Part 2. Extending Device Subsystems

Extending Device Subsystems

Kernel Reference

Chapter 4. Configuration Subsystem

Configuration Subsystem 4-1

Machine Device Driver

Machine Device Driver

Description
The machine device driver provides an interface to platform-specific hardware for the AIX
configuration and RAS subsystems. The machine device driver supports two special files for
accessing this hardware from user mode: /dev/nvram/n and /dev/busO. The /dev/nvram
special file provides access to special nonvolatile RAM or ROS for the purposes of storing or
retrieving error information and system boot information. The /dev/busO special file provides
access to the 110 bus for system configuration and diagnostic purposes. The presence and
use of this device driver and its associated special files are platform-specific and should not
be used by general applications.

Programs attempting to open the /dev/nvram or /dev/busO special file must have the
appropriate privilege.

Driver Initialization and Termination
There are no special initialization and termination requirements for the machine device
driver. This driver is statically bound with the AIX Operating System kernel and is initialized
during kernel initialization. This device driver does not support termination and may not be
unloaded.

/dev/nvram Special File Support
The open and close Subroutines

The machine device driver supports the /dev/nvram special file as a multiplexed character
special file. This special file and the support for NVRAM is provided only on the RISC
System/6000 hardware platform to support the AIX configuration and RAS subsystems.
These subsystems open the /dev/nvram/n special file with a channel name n specifying the
data area to be accessed. An exception is channel 0, which does not access a data area.
Instead, it provides access to general NVRAM control functions and the LED display on the
RISC System/6000 front panel. Channels 1 to 99 are supported for system boot,
configuration, and RAS subsystems.

The following two channels are handled as a special case by the machine device driver
during a close operation:

n:1 Custom Boot Device Driver #1 code area

n=2 Custom Boot Device Driver #2 code area.

These two channels are used to support the extendable boot device function provided by the
RISC System/6000 boot ROS. This function allows a custom boot driver to be placed in
NVRAM in order to boot from a device not originally supported by the system ROS. A
custom boot device header must also be created in NVRAM so that the ROS can identify
and validity-check the custom boot driver before loading and executing the code. This
header must define the location, length, and CRC (cyclic redundancy code) value for the
boot driver.

The machine device driver automatically generates this header whenever a close
subroutine call has been issued to either channel 1 or 2. The machine device driver also
verifies that the NVRAM data area for channel 1 and 2 is contiguous storage since the
custom boot driver code is required (by the ROS) to be in contiguous NVRAM storage. If this
is not the case, the close operation returns an error.

4-2 Kernel Reference

Machine Device Driver

A special channel name of pcbios can be used to read the compressed PCAT BIOS code
stored in nonvolatile memory on the RISC System/6000 platform. This compressed PCAT
BIOS code may be uncompressed and used by an application program to assist in providing
PC simulation on the RISC System/6000 platform.

A special channel name of base can be used to read the base customize information stored
as part of the boot record. This information was originally copied to the disk by the
savebase command and is only copied by the driver at boot time. Therefore, the base
customize information does not change after subsequent invocations to the savebase
routine.

Multiple concurrent opens to the same channel are not supported by the machine device
driver and will return with an error.

The read and write Subroutines
The read and write subroutines are supported after a successful open of the /dev/nvram/n
special file for channel number n greater than 0. The read subroutine is also supported after
a successful open of the pcbios and base channel. The read and write operations transfer
data to and from the data area in NVRAM associated with the specified channel. The
transfer starts at the offset (within the channel's data area) specified by the offset field
associated with the file pointer used on the subroutine call.

On a read, if the end of the data area is reached before the transfer count is reached, the
number of bytes read before the end of the data area was reached is returned. If the read
starts at the end of the data area, zero bytes are read. If the read starts after the end of the
data area, an error of ENXIO is returned by the driver.

For writes past the current end of data, additional NVRAM is allocated as necessary. If
additional NVRAM cannot be allocated, an error of ENXIO is placed in the errno global
variable and the number of bytes written before this condition occurred is returned. The
lseek subroutine can be used to change the starting NVRAM data area offset to be used on
a subsequent read or write call.

The ioctl Subroutine
The following ioctl operations can be issued to the machine device driver after a successful
open of any channel using the /dev/nvram special file:

MIOIPLCB

MIONVLED

Returns the contents of the boot control block. The arg parameter is set to
point to a mach_dd_io structure, which describes the data area where the
boot control block has been placed. The format of this control block is
specified in the <sys/ioctl.h> header file and the mach_dd_io structure is
defined in the <sys/mdio.h> header file. This ioctl operation uses the
following fields in the mach_dd_io structure:

• The md_data field points to a buffer at least the size of the value in the
md_size field.

• The md_size field specifies the size (in bytes) of the buffer pointed to by
the ,md_data field.

Writes the value found in the arg parameter to the RISC System/6000
system front panel LED display. On this panel, three digits are available and
the arg parameter value can range from O to hex FFF. An explanation of the
LED codes can be found in the <sys/mdio.h> header file.

Configuration Subsystem 4-3

Machine Device Driver

MIONVALLOC Allocates the specified amount of NVRAM storage to the specified channel. ~

MIONVFREE

The channel number and amount of NVRAM to be allocated are defined in
the mach_dd_io structure pointed to by the arg parameter. This structure is
defined in the <sys/mdio.h> header file. The following fields are used by
this command:

• The md_type field specifies the channel number for which the storage is
to be allocated.

• The md_size field specifies the number of bytes of NVRAM storage to be
added to the data area for the specified channel.

The MIONVALLOC operation can be used to add storage to an existing data
area. However, that data area will not typically be contiguous in NVRAM
storage. This has no effect on data accessed through the read and write
operations, but does affect data areas defined by channels 1 and 2. These
channels define data areas accessed by system ROS and must be in
contiguous NVRAM. The storage allocated by this operation is guaranteed \
to be contiguous in NVRAM.

This operation can be used in conjunction with the MIONVFREE operation
to ensure that the data areas defined by channel 1 or 2 are in contiguous
NVRAM.

Frees all NVRAM storage associated with the channel specified by the arg
parameter. If the value of the arg parameter is 0, the NVRAM storage
associated with the channel specified on the open subroutine is freed. This
operation is typically used to create or update custom boot driver code in
channel 1 or 2. This might be done to free an old area before allocating a
new contiguous data area with the MIONVALLOC ioctl operation.

MIONVGET Reads data from a NVRAM address and returns data in the buffer provided
by the caller. This is useful for reading the ROS area of NV RAM. A
structure defining this area is in the <sys/mdio.h> header file.

MIONVPUT Writes data to a NVRAM address from the buffer provided by the caller.

IOCINFO

4-4 Kernel Reference

This operation is used only to update the ROS area of NVRAM and only by (
system commands. Use of this operation in other areas of NVRAM can
cause unpredictable results to occur. If the NVRAM address provided is
within the ROS area, a new cyclic redundancy code (CRC) for the ROS
area is generated.

Returns machine device driver information in the caller's devinfo structure
(pointed at by the arg parameter). This structure is defined in the
<sys/devinfo.h> header file. The device type for this device driver is
DD_PSEU.

Machine Device Driver

Error Conditions
The following error conditions may be returned when accessing the machine device driver
via the /dev/nvram special file:

ENO ENT

EBUSY

EIO

EFAULT

EINVAL

ENXIO

ENO DEV

ENOMEM

An open for read access was requested for a channel that has not been
allocated. This error code is also possible when a read was attempted to
channel 0.

An open was requested for a channel already open.

A close was requested for channel 1 or 2 with a non-contiguous data area
or the machine device driver was unable to build the custom boot device
header required by system ROS.

A buffer specified by the caller was invalid on a read, write, or ioctl
subroutine call.

Either a MIONVFREE ioctl operation was issued specifying an invalid
channel or a write was attempted to channel 0.

A read was attempted past the end of the data area specified by the
channel or a write was unable to complete due to insufficient NVRAM
storage.

A write was attempted to the read-only pcbios channel.

A request was made with a user-supplied buffer that is too small for the
requested data.

/dev/buso Special File Support
The open and close Subroutines

The machine device driver supports the /dev/busO special file as a character special file.
This special file and support for access to the 1/0 bus and controller are provided on the
RISC System/6000 hardware platform only to support the AIX configuration and diagnostic
subsystems. The configuration subsystem accesses the 1/0 bus and controller through the
machine device driver to determine the 1/0 configuration of the system. This driver can also
be used to configure the 1/0 controller and devices as required for proper system operation.
If the system diagnostics are unable to access a device through the diagnostic functions
provided by the device's device driver, they may use the machine device driver to attempt
further failure isolation.

The read and write Subroutines
The read and write subroutines are not supported by the machine device driver through the
/dev/busO special file and return an EINVAL return code in the errno global variable, if
called.

Configuration Subsystem 4-5

Machine Device Driver

The ioctl Subroutine
The /dev/busO ioctl operations allow transfers of data between the system 1/0 controller or
the system 1/0 bus and a caller-supplied data area. Because these ioctl operations use the
mach_dd_io structure, the arg parameter on the ioctl subroutine must point to such a
structure. The bus address, pointer to the caller's buffer and the length of the transfer is
specified in the mach_dd_io structure. The mach_dd_io structure is defined in the
<sys/mdio.h> header file and provides the following information:

• The md_addr field contains an 1/0 controller or 1/0 bus address.

• The md_data field points to a buffer at least the size of the value in the md_size field.

• The md_size field contains the number of bytes to be transferred.

The following co'!lmands can be issued to the machine device driver after a successful open
of the /dev/buso special file.

MIOBUSGET Reads data from the 1/0 bus and returns it in a caller-provided buffer.

MIOBUSPUT Writes data supplied in the caller's buffer to the 1/0 bus.

MIOCCGET Reads data from the 1/0 controller and returns it in a caller-provided buffer.

MIOCCPUT Writes data supplied in the caller's buffer to the 1/0 controller.

IOCINFO Returns machine device driver information in the caller's devinfo structure,
as specified by the arg parameter. This structure is defined in the
<sys/devinfo.h> header file. The device type for this device driver is
DD_PSEU.

Error Conditions

Files

EFAULT A buffer specified by the caller was invalid on an ioctl call.

EIO An unrecoverable 1/0 error occurred on the requested data transfer.

ENOMEM No memory could be allocated by the machine device driver for use in the
data transfer.

/dev/busO

/dev/nvram/O, /dev/nvram/1, ... /dev/nvram/n

Related Information
The savebase device configuration command.

The bus special file, nvram special file.

The close subroutine, ioctl subroutine, lseek subroutine, open subroutine, read subroutine,
write subroutine.

4-6 Kernel Reference

bootlist

bootlist Device Configuration Command

Purpose

Syntax

Alters the list of boot devices (or the ordering of these devices in the list) available to the
system.

- bootlist - _/
Description

The bootlist command allows the user to alter the list of boot devices available for system
boot. This command can alter the contents of the battery-backed-up RAM boot device list
and the choice of boot device used on the next and subsequent system boots. This
command supports updating of the following:

• Service boot list. The service list designates possible boot devices when the front panel
keylock switch is in the SERVICE position.

• Normal boot list. The normal list is used when the keylock is in the NORMAL position.

• Previous boot device entry. Retained in battery-backed-up RAM on the system unit.

The bootlist command supports the specification of generic device types as well as specific
devices for boot candidates. Possible device names are listed either on the command line or
in a file. Devices in the boot device list occur in the same order as devices listed on the
invocation of this command.

It is strongly recommended that if more than one device is to be entered into the device list,
the -f file flag be used. This makes an alterable record of the boot devices available for
reference or future update. When the -f flag is used, the list of devices is taken from the file
specified by the file variable. Devices from this list are then placed in the boot list in the
order found in the file.

If the device list is not used, the system remembers the device previously used to boot the
system (if it was not a diskette drive). If an additional boot device is added to the system,
and no device list is used, the previous boot device may be invalidated by using this
command. This forces the next re-boot to search for a boot device instead of using the
previous boot device.

The selection of the boot device list to alter is made with the -m mode flag, where the mode
variable is one of the keywords: service, normal, both or prevboot. If the prevboot
keyword is specified, only the -i (invalidate) flag may be specified. If the both keyword is
specified, then the service list and the normal list will contain exactly the same information.
The -I flag invalidates the device list specified by the -m flag. The -f file flag can be used to
specify device names in a file. Use of this option allows for future querying and updating of
the devices listed in the file.

Configuration Subsystem 4-7

bootlist

Device Choices
The device name specified on the command line (or in a file) can occur in one of two
different forms:

• It can indicate a specific device by its device logical name.

• It can indicate a generic or special device type by keyword. The following generic device
keywords are supported:

fd Any standard 1/0 attached floppy diskette drives

scdisk Any SCSI attached disk

badisk

cd

rmt

Any direct bus attached disks (Model 320 only)

Any SCSI attached CD-ROM

Any SCSI attached tape device.

The following special device keywords specify the use of a loadable boot device driver. This
driver must have been previously loaded into the battery-backed-up RAM by the nvload
command:

nvload1

nvload2

NVRAM boot loader #1

NVRAM boot loader #2.

When a specific device is to be included in the device list, the device's logical name (used
with system management commands) must be specified. This logical name is made up of a
prefix and a suffix. The suffix is generally a number and designates the specific device. The
specified device must be in the AVAILABLE state. If it is not, the update to the device list is
rejected and this command fails. The following devices and their associated logical names
are supported (where the bold type is the prefix and the xx variable is the device-specific
suffix):

fdxx

hdiskxx

cdxx

rmtxx

Floppy diskette device logical names

Physical volume device logical names

SCSI CD-ROM device logical names

Magnetic tape device logical names.

File Format When Using the -f Flag
The file specified by the file variable should contain device names separated by white space:

hdiskO hdiskl cdl

or one device per line:

hdiskO
hdiskl
cdl

Warning: Care must be taken in specifying the possible boot devices. A future reboot in
NORMAL mode may fail if the devices specified in the device list become unbootable. A
diskette boot is always available when the keylock is in the SERVICE position.

Warning: The system must not be powered off or reset during the operation of the bootlist
command. If the system is reset, or power fails at a critical point in the execution of this
command, a checksum error can cause the system setup information in battery-backed-up
RAM to be lost.

4-8 Kernel Reference

(
\

bootlist

Error Handling

Flags

Examples

If this command returns with an error, the device lists are not altered. The following device
list errors are possible:

• If the user attempts to add too many devices to the boot list, the command fails indicating
that too many devices were requested. The number of devices supported varies
depending on the device selection.

• If an invalid keyword, invalid flag, or unknown device is specified, the command fails with
the appropriate error message.

• If a specified device is not in the AVAILABLE state, the command fails with the
appropriate error message.

device Provides the names of the specific or generic devices to include in the boot
list.

-f file Indicates that the device information is to be read from the specified file
name.

-i Indicates that the device list specified by the -m option should be
invalidated.

-m mode Specifies which boot list to alter. Possible values for the mode variable are
normal, service, both, or prevboot.

-r Indicates that a hex dump of the specified device list in non-volatile RAM
should be output after any specified alteration is performed. (This is
normally used for problem determination.)

1. To invalidate the SERVICE mode boot list, enter:

bootlist -m service -i

2. To make a boot list for NORMAL mode with devices listed on the command line, enter:

bootlist -m normal hdiskO hdiskl rmtO nvloadl fd

3. To make a boot list for NORMAL mode with a device list from a file, enter:

bootlist -m normal -£ /bootlist.norm

where /bootlist.norm is a file containing device names to be placed in the boot list for
NORMAL mode. The device names in /bootlist.norm must comply with the described
format.

4. To invalidate the previous boot device entry, enter:

bootlist -m prevboot

Configuration Subsystem 4-9

bootlist

Implementation Specifics
The bootlist command allows the user to alter the list of boot devices scanned by ROS
(read-only storage) when the system is booted. Two device lists are stored in
battery-backed-up RAM (NVRAM). One is for use when the front panel keylock is in the
NORMAL position and the other when the keylock is in the SERVICE position. The bootlist
command allows the user to update one or both of these lists.

Each list is a maximum of 84 bytes long. When searching for a boot device, the system ROS
selects the first device in the list and determines if it is bootable. If no boot file system is
detected on the first device, ROS moves on to the next device in the list. As a result, the
ordering of devices in the device lists is extremely important.

If no device list has been supplied, or if it was empty, the ROS attempts to boot from the
boot device used on a previous boot. (This assumes that the previous boot device was not a
diskette drive.) If this boot device is unavailable or not bootable, the system ROS starts
searching the 1/0 bus for the first device from which it can boot.

Related Information
The nvload command.

The nvram special file.

Device Configuration Commands.

Machine Device Driver, SCSI Subsytem: Programming Introduction in Kernel Extensions
and Device Support Programming Concepts.

4-1 0 Kernel Reference

(
\

nvload

nvload Device Configuration Command

Purpose

Syntax

Loads a device driver into a section of NVRAM by reading an input device or the specified
file or files.

-t

-f -n section
- nvload

-f file -f file

Description

Flags

Examples

When no parameters are specified, the nvload command uses the tar command to get the
file to load. The /dev/rfdO device is the default device.

The specified file is loaded into NVRAM with the -f flag. If the -n flag is also used, then the
specified file is loaded into the specified section of NVR.AM.

If the -f flag occurs without the -n flag, then the NVRAM section used is dependent upon
the order of the items on the command line in the following way. The first file variable
specified with the -f flag is loaded into the first NVRAM section dedicated to device drivers.
The second file variable is loaded into the second section.

This order also applies to the values in the -t flag when there is more than one file from the
tar command. If there is only one file from tar, then the -n flag can be used.

-f file

-n section

-t string

Loads the specified file into NVRAM.

Specifies NVRAM section into which to load the specified file. Valid values
for the section variable are 1 and 2.

Use the string variable as a string of tar command options. The string must
include the -xv flags.

1. To load device drivers from the /dev/rfdO file using the tar command, enter:

nvload

2. To load a specified driver from a specific device into a specific section of NVRAM, enter:

nvload -t '-xvf/dev/rfdl/driver' -n 2

3. To load a specific file, enter:

nvload -f driver

4. To load two drivers, enter:

nvload -f /trnp/driverl -f /u/guest/driver2

Configuration Subsystem 4-11

nvload

Related Information
The tar command.

The nvram special file.

Device Configuration Commands.

4-12 Kernel Reference

rest base

restbase Device Configuration Command

Purpose
Reads the base customized information from the boot image and restores it in the ODM.

Syntax

- restbase -1

Description
The restbase command reads the base customized information from the boot image. This
command requires no operands and no output.

Related Information
The savebase command.

Device Configuration Commands.

Object Data Manager (ODM) Overview in General Programming Concepts.

Device Configuration Subsystem: Programming Introduction in Kernel Extensions and
Device Support Programming Concepts.

Configuration Subsystem 4-13

save base

savebase Device Configuration Command

Purpose
Saves information about base customized devices in the ODM onto the boot device.

Syntax

- savebase -1

Description
The savebase command backs up all of the information for base devices from the ODM
onto the boot device. This command requires no operands and no output.

Related Information
The restbase command.

Device Configuration Commands.

Object Data Manager (ODM) Overview in General Programming Concepts.

4-14 Kernel Reference

(
I
\

(

(

attrval

attrval Device Configuration Subroutine

Purpose

Syntax

Verifies that attribute values are within range.

int attrval (uniquetype, pattr, errattt?
char *uniquetype, *pattr, **errattr;

Parameters
uniquetype Identifies the predefined device object, which is a pointer to a character

string of the form class/subclass/type.

pattr

errattr

Points to a character string containing the attribute-value pairs to be
validated, in the form attrl=vall attr2=val2 •...

Points to a pointer to a null-terminated character string. On return from the
attrval subroutine, this string will contain the names of invalid attributes, if
any are found. Each attribute name is separated from the next by spaces.

Description

File

The attrval subroutine is used to validate each of a list of input attribute values against the
legal range. If no illegal values are found, this subroutine returns a value of O. Otherwise, it
returns the number of incorrect attributes.

If any of the attributes values are invalid, a pointer to a string containing a list of the names
of the invalid attributes is returned in the errattr parameter. These attributes are separated
by spaces.

Allocation of the error buffer is done in the attrval subroutine. However, a character pointer
(for example, char *errorb;) must be declared in the calling routine. Thereafter, the address
of that pointer is passed to the attrval subroutine (for example,
attrval (•.. , &errorb) ;) as one of the parameters.

/lib/libcfg.a

Return Values
0 Indicates that all values are valid.

Nonzero Indicates the number of erroneous attributes.

Related Information
Predefined Attribute Object Class, Customized Attribute Object Class, Predefined Devices
Object Class.

Object Data Manager (QOM) Overview in General Programming Concepts.

Device Configuration Subroutines in Kernel Extensions and Device Support Programming
Concepts.

Configuration Subsystem 4-15

gen major

genmajor Device Configuration Subroutine

Purpose

Syntax

Parameter

Generates the next available major number for a device driver instance.

long genmajor (device_driver_instance_name)
char *device_driver_instance_name;

device_ driver_instance_name Points to a character string containing the device driver
instance name.

Description

File

The genmajor device configuration subroutine is one of the routines designated for
accessing the Customized Device Driver object class. If a major number already exists for
the given device driver instance, then this major number is returned. Otherwise, a new
major number is generated.

The genmajor subroutine creates an entry (object) in the Customized Device Driver object
class for the major number information. The lowest available major number or the major
number that has already been allocated is returned. The Customized Device Driver object
class is locked exclusively by this routine until its completion.

/lib/libcfg.a

Return Values
If the genmajor subroutine executes successfully, a major number is returned. This major
number is either the lowest available major number or the major number that has already
been allocated to the device instance.

A value of -1 is returned if the genmajor subroutine fails.

Related Information
The reldevno device configuration subroutine, relmajor device configuration subroutine.

Customized Device Driver object class.

List of ODM Subroutines, Device Configuration Subroutines, Understanding Major and Minor
Numbers in Kernel Extensions and Device Support Programming Concepts.

Object Data Manager (ODM) Overview in General Programming Concepts.

4-16 Kernel Reference

(
I

\

gen minor

genminor Device Configuration Subroutine

Purpose

Syntax

Generates either the smallest unused minor number available for a device, a preferred minor
number if it is available, or a set of unused minor numbers for a device.

long *genminor {device_instance, major_no, preferred_minor, minors_in_grp,
inc_within_grp, inc_btwn_grp)

char *device_instance;
long major_no;
int preferred_minor;
int minors_in_grp;
int inc_ within_grp;
int inc_btwn_grp;

Parameters
device_instance Points to a character string containing the device instance name.

major_no

preferred_ minor

minors_in_grp

inc_ within_grp

inc_btwn_grp

Description

Contains the major number of the device instance.

Contains a single preferred minor number or a starting minor number
for generating a set of numbers. In the latter case, the genminor
subroutine can be used to get a set of minor numbers in a single call.

Indicates how many minor numbers are to be allocated.

Indicates the interval between minor numbers.

Indicates the interval between groups of minor numbers.

The genminor device configuration subroutine is one of the designated routines for
accessing the Customized Device Driver object class. To ensure that unique numbers are
generated, the object class is locked by this routine until its completion.

If only a single preferred minor number needs to be allocated, then it should be given in the
preferred_minor parameter. In this case, the other parameters should contain an integer
value of 1. If the desired number is available, it is returned. Otherwise, a NULL pointer is
returned, indicating that the requested number is in use.

If the caller has no preference and only requires one minor number, this should be indicated
by passing a value of -1 in the preferred_minor parameter. The other parameters should all
contain the integer value of 1. In this case, the genminor subroutine returns the lowest
available minor number.

If a set of numbers is desired, then every number in the designated set must be available.
An unavailable number is one which has already been assigned. To get a specific set of
minor numbers allocated, the preferred_minor parameter contains the starting minor
number. If this set has a minor number that is unavailable, then the genminor subroutine
returns a NULL pointer indicating failure.

Configuration Subsystem 4-17

genminor

rt
If the set of minor numbers needs to be allocated with the first number beginning on a ~

File

particular boundary (that is, a set beginning on a multiple of 8), then the value -1 should be
passed in the preferred_ minor parameter. The inc_btwn_grp parameter should be set to the
multiple desired. The genminor subroutine uses the inc_btwn_grp parameter to find the first
complete set of available minor numbers.

If a list of minor numbers is to be returned, the return value points to the first in a list of
preferred minor numbers. This pointer can then be incremented to move through the list to
access each minor number. The minor numbers are returned in ascending sorted order.

/lib/libcfg.a

Return Values
In the case of failure, a NULL pointer is returned. If the genminor subroutine succeeds, a
pointer to the lowest available minor number or list of minor numbers is returned.

Related Information
The genmajor device configuration subroutine, getminor device configuration subroutine,
reldevno device configuration subroutine.

Customized Device Driver object class.

List of ODM Subroutines, Device Configuration Subroutines, Understanding Major and Minor
Numbers in Kernel Extensions and Device Support Programming Concepts.

Object Data Manager (QOM) Overview in General Programming Concepts.

4-18 Kernel Reference

(

\

(

\

gen seq

genseq Device Configuration Subroutine

Purpose

Syntax

Parameter

Generates a unique sequence number for creating a device's logical name.

int genseq (prefix)
char *prefix;

prefix Points to the character string containing the prefix name of the device.

Description

File

The genseq device configuration subroutine generates a unique sequence number to be
concatenated with the device's prefix name. The device name in the Customized Devices
object class is the concatenation of the prefix name and the sequence number.

The rules for generating sequence numbers are as follows:

1. A sequence number is a non-negative integer. The smallest sequence number is
therefore 0 (zero).

2. When deriving a device instance logical name, the next available sequence number
(relative to a given prefix name) is allocated. This next available sequence number is
defined to be the smallest sequence number not yet allocated to device instances using
the same prefix name.

3. Whether a sequence number is allocated or not is determined by the device instances in
the Customized Devices object class. If an entry exists in this class using the desired
prefix, then the sequence number for that entry has already been allocated.

It is up to the application to convert this sequence number to character format so that it can
be concatenated to the prefix to form the device name.

/Ii b/li bcf g .a

Return Values
If the genseq subroutine succeeds, it returns the generated sequence number in integer
format. If the routine fails, it returns a value of -1.

Related Information
Customized Devices object class.

Device Configuration Subroutines, List of ODM Subroutines in Kernel Extensions and
Device Support Programming Concepts.

Object Data Manager (ODM) Overview in General Programming Concepts.

Configuration Subsystem 4-19

getattr

getattr Device Configuration Subroutine

Purpose

Syntax

Returns the current value of an attribute object or a list of current values of attribute objects
from either the Customized Attribute object class or the Predefined Attribute object class.

struct CuAt *getattr {devname, attrname, getall, how_many)
char * devname;
char * attrname;
int getall;
int * how_many;

Parameters
devname Specifies the device logical name.

Specifies the attribute name. attrname

getall

how_many

A Boolean flag that, when set to TRUE, indicates that a list of attributes is to
be returned to the calling routine.

Points to how many attributes the getattr subroutine has found.

Description

File

The getattr device configuration subroutine queries the Customized Attribute object class for
the attribute object matching the device logical name and the attribute name. It is the
application's responsibility to lock the Device Configuration object classes.

To get a single attribute, the getall parameter should be set to FALSE. If the object exists in
the Customized Attribute object class, a pointer to this structure is returned to the calling
routine.

However, if the object is not found, then the getattr subroutine assumes that the attribute
takes the default value found in the Predefined Attribute object class. In this case, the
Predefined Attribute object class is queried for the attribute information. If this information is
found, the relevant attribute values {that is, default value, flag information, and the NLS
index) are copied into a Customized Attribute structure. This structure is then returned to the
calling routine. Otherwise, a NULL pointer is returned indicating an error.

To get all the customized attributes for the device name, the getall parameter should be set
to TRUE. In this case, the attrname parameter is ignored. The Predefined and Customized
Attribute object classes are queried and a list of Customized Attribute structures is returned.
The Predefined Attribute objects are copied to Customized Attribute structures so that one
list may be returned.

/lib/libcfg.a

Return Values
Upon successful completion, the getattr subroutine returns a pointer to a list of Customized
Attribute structures. If the operation is unsuccessful, a NULL pointer is returned.

4-20 Kernel Reference

Related Information
The putattr device configuration subroutine.

Predefined Attribute object class, Customized Attribute object class.

Understanding ODM Locking in General Concepts and Procedures.

getattr

Device Configuration Subroutines, ODM Device Configuration Object Classes: Summary in
Kernel Extensions and Device Support Programming Concepts.

Configuration Subsystem 4-21

getminor

getminor Device Configuration Subroutine

Purpose

Syntax

Gets the minor numbers associated with a major number from the Customized Device Driver
object class.

long *getminor (major_no, how_many, device_instance)
long major_no;
int *how_many;
char * device_instance;

Parameters
major_no Specifies the major number for which the corresponding minor number or

numbers is desired.

how_many Points to the number of minor numbers found corresponding to the
major_no parameter.

device_instanceSpecifies a device instance name to use when searching for minor
numbers. This parameter is used in conjunction with the major_no
parameter.

Description

File

The getminor device configuration subroutine is one of the designated routines for
accessing the Customized Device Driver object class. This subroutine queries the
Customized Device Driver object class for the minor numbers associated with the given
major number and/or device instance.

If the device_instance parameter is NULL, then only the major_no parameter should be used
to obtain the minor numbers. Otherwise, both the major_no and device_instance parameters
should be used. The number of minor numbers found in the query is returned in the
how_many parameter.

The Customized Device Driver object class is locked exclusively by the getminor subroutine /
for the duration of the routine. \

The return value pointer points to a list that contains the minor numbers associated with the
major number. This pointer is then used to move through the list to access each minor
number. The minor numbers are returned in ascending sorted order.

The getminor subroutine also returns to the calling routi~e, in the how_many parameter, the
number of minor numbers in the list.

/lib/libcfg.a

Return Values
If the getminor routine fails, a NULL pointer is returned.

If the getminor subroutine succeeds, one of two possible values is returned. If no minor
numbers are found, a NULL pointer is returned. In this case, the how_many parameter
points to an integer value O. However, if minor numbers are found, then a pointer to a list of
minor numbers is returned. The minor numbers are returned in ascending sorted order. In
the lattai case, the how_many paiameier poinis io the number of minor numbers found.

4-22 Kernel Reference

getminor

Related Information
The genmajor device configuration subroutine, genminor device configuration subroutine,
reldevno device configuration subroutine.

Customized Device Driver object class.

Object Data Manager (QOM) Overview in General Programming Concepts.

Device Configuration Subroutines, Understanding Major and Minor Numbers in Kernel
Extensions and Device Support Programming Concepts.

Configuration Subsystem 4-23

loadext

loadext Device Configuration Subroutine

Purpose

Syntax

Loads or unloads kernel extensions, or queries for kernel extensions in the kernel.

#include <sys/types.h>

mid_t loadext (dd_name, load, query)
char *dd_name;
int load;
int query;

Parameters
dd_name Specifies the name of the kernel extension to be loaded, unloaded, or

queried.

load

query

Specifies whether the loadext subroutine should load the kernel extension.

Specifies whether a query of the kernel extension should be performed.

Description

File

The loadext device configuration subroutine provides the capability to load or unload kernel
extensions. It can also be used to obtain the kernel module identifier (kmid) of a previously
loaded object file. The kernel extension name passed in the dd_name parameter can either
be the base name of the object file or can contain directory path information. If the kernel
extension path name supplied in the dd_name parameter has no leading.! (dot, slash) or . .!
(double-dot, slash) or I (slash) characters, then the loadext subroutine concatenates
together /etc/drivers/ and the base name passed in the dd_name parameter to arrive at an
absolute path name. Otherwise, the path name provided in the dd_name parameter is used
unmodified.

If the load parameter has a value of TRUE, then the specified kernel extension is loaded and
its kernel module identifier returned. If the specified object file has already been loaded into
the kernel, its load count is incremented and a new copy is not loaded.

If the load parameter has a value of FALSE, then the action taken depends on the value of
the query parameter. If query is FALSE, then the loadext routine requests an unload of the
specified kernel extension. This causes the kernel to decrement the load count associated
with the object file. If the load count and use count of the object file become 0, the kernel
unloads the object file. If the query parameter is TRUE, then the loadext subroutine queries
the kernel for the kernel module ID of the specified object file. This kmid is then returned to
the caller.

If both the load and query parameters have a value of TRUE, then the load function is
performed.

/Ii b/li bcfg .a

Return Values
Upon successful completion, the loadext subroutine returns the kernel module ID. Upon
error or if the queried object file is not loaded, the routine returns a value of NULL.

4-24 Kernel Reference

loadext

Related Information
The sysconfig subroutine.

Device Configuration Subroutines, Programming in the Kernel Environment, Understanding
Kernel Extension Binding in Kernel Extensions and Device Support Programming Concepts.

Configuration Subsystem 4-25

putattr

putattr Device Configuration Subroutine

Purpose

Syntax

Parameter

Updates attribute information in the Customized Attribute object class, creates a new object
for the attribute information, or deletes an object from the Customized Attribute object class.

int putattr (cuobJ)
struct CuAt *cuobj;

cuobj Specifies the attribute object.

Description

File

The putattr device configuration subroutine either updates an old attribute object, creates a
new one in the Customized Attribute object class, or deletes an existing object. The
subroutine queries the Customized Attribute object class to determine whether an object
already exists with the device name and attribute name specified in the cuobj parameter.

If the attribute is found in the Customized Attribute object class and its value (as given in the
cuobj parameter) is to be changed back to the default value for this attribute, the customized
object is deleted. Otherwise, the customized object is simply updated.

If the attribute object does not already exist and its attribute value is being changed to a
non-default value, a new object is added to the Customized Attribute object class with the
information given in the cuobj parameter.

/lib/libcfg.a

Return Values
0 Indicates a successful operation.

Indicates a failed operation. -1

Related Information
The getattr device configuration library routine.

Customized Attribute object class.

Object Data Manager (ODM) Overview in General Programming Concepts.

Device Configuration Subroutines in Kernel Extensions and Device Support Programming
Concepts.

4-26 Kernel Reference

~
'1
~I

reldevno

reldevno Device Configuration Subroutine

Purpose

Syntax

Releases the minor number or major number, or both, for a device instance.

int
reldevno (device_instance_name, release)
char *device_instance_name;
int release;

Parameters
device_instance_name Points to the character string containing the device instance name.

release Specifies whether the major number should be released. A value
of TRUE releases the major number. A value of FALSE does not
release the major number.

Description

File

The reldevno device configuration subroutine is one of the designated access routines to
the Customized Device Driver object class. This object class is locked exclusively by this
routine until its completion. All minor numbers associated with the device instance name are
deleted from the Customized Device Driver object class. That is, each object is deleted from
the class. This releases the minor numbers for re-use.

The major number is released for re-use if the following two conditions exist:

• The object to be deleted contains the last minor number for a major number.

• The release parameter is set to TRUE.

If you would rather explicitly release the major number yourself, then the relmajor device
configuration subroutine can be called. In this case, you should also set the release
parameter to FALSE. All special files, including symbolically linked special files,
corresponding to the deleted objects are deleted from the file system.

/lib/libcfg.a

Return Values
0 Indicates successful completion.

-1 Indicates a failure to release the minor number and major number, or both.

Related Information
The genmajor device configuration subroutine, genminor device configuration subroutine,
relmajor device configuration subroutine.

Customized Device Driver object class.

Special File Overview in Files Reference.

Object Data Manager (ODM) Overview in General Programming Concepts.

Device Configuration Subroutines, Understanding Major and Minor Numbers in Kernel
Extensions and Device Support Programming Concepts.

Configuration Subsystem 4-27

rel major

relmajor Device Configuration Subroutine

Purpose

Syntax

Parameter

Releases the major number associated with the specified device driver instance name.

int relmajor (device_driver_instance_name)
char *device_driver_instance_name;

device_driver_instance_name Points to a character string containing the device
driver instance name.

Description

File

The relmajor device configuration subroutine is one of the designated access routines to the
Customized Device Driver object class. To ensure that unique major numbers are
generated, the Customized Device Driver object class is locked exclusively by this routine
until the major number has been released.

The relmajor routine deletes the object containing the major number for the device driver
instance name.

/lib/libcfg.a

Return Values
0 Indicates successful completion.

-1 Indicates a failure to release the major number.

Related Information
The genmajor device configuration subroutine, reldevno device configuration subroutine.

Customized Device Driver object class.

Object Data Manager (ODM) Overview in General Programming Concepts.

Device Configuration Subroutines, Understanding Major and Minor Numbers in Kernel
Extensions and Device Support Programming Concepts.

4-28 Kernel Reference

(
\

(

~
I

/

rel seq

relseq Device Configuration Subroutine

Purpose

Syntax

Releases the unique sequence number associated with the device's logical name.

int relseq {prefix, seqno)
char *prefix;
int seqno;

Parameters
prefix Specifies a pointer to the character string containing the prefix name.

Specifies the sequence number. seq no

Description

File

The relseq device configuration subroutine releases the sequence number associated with
the prefix name. The Customized Device Driver object class is locked exclusively by the
relseq subroutine until its completion. The object containing the sequence number is then
deleted from the Customized Device Driver object class.

/Ii b/li bcf g .a

Return Values
0 Indicates a successful completion.

-1 Indicates a failure to release the sequence number.

Related Information
The genseq device configuration subroutine.

Customized Device Driver object class.

Device Configuration Subroutines in Kernel Extensions and Device Support Programming
Concepts.

Object Data Manager (ODM) Overview in General Programming Concepts.

Configuration Subsystem 4-29

ODM Device Configuration Object Classes
The following is a list of the Device Configuration Database object classes:

Config_Rules Configuration Rules

CuAt Customized Attribute

CuDep Customized Dependency

CuDv Customized Devices

CuDvDr Customized Device Driver

CuVPD Customized Vital Product Data.

Pd At Predefined Attribute

PdCn Predefined Connection

PdDv Predefined Devices

Related Information
Device Configuration Subsystem: Programming Introduction, Writing a Device Method
Overview in Kernel Extensions and Device Support Programming Concepts.

Object Data Manager (ODM) Overview in General Programming Concepts.

4-30 Kernel Reference

I
\,

(

\

Config_Rules

Config_Rules Object Class (Configuration Rules)
The Configuration Rules (Config_Rules) object class contains the configuration rules used
by the Configuration Manager. The Configuration Manager runs in two phases during system
boot. The first phase is responsible for configuring the base devices so that the real root
device can be configured and made ready for operation. The second phase configures the
rest of the devices in the system after the root file system is up and running. The
Configuration Manager can also be invoked at runtime. The Configuration Manager routine
is driven by the rules in the Config_Rules object class.

The Config_Rules object class is preloaded with predefined configuration rules when the
system is delivered. You can use the ODM Object Editor to add, remove, change, and show
new or existing configuration rules in this object class to customize the behavior of the
Configuration Manager. However, any changes to a rule must be written to the boot file
system to be effective. This is done with the bosboot command.

All logical and physical devices in the system are organized in clusters of tree structures
called nodes. For information on nodes or tree structures, see the Device Configuration
Manager Overview. The rules in the Config_Rules object class specify program names that
the Configuration Manager executes. Usually, these programs are the configuration
programs for the top of the nodes. When these programs are invoked, the names of the next
lower-level devices that need to be configured are returned in standard output.

The Configuration Manager configures the next lower-level devices by invoking the
Configure method for those devices. In turn, those devices return a list of device names to
be configured. This process is repeated until no more device names are returned. All
devices in the same node are configured in a transverse order. There are three types of
rules: phase 1, phase 2, and service.

The second phase of system boot requires two sets of rules: phase 2 and service. The
position of the key on the front panel determines which set of rules is used. The service rules
are used when the key is in the service position. If the key is in any other position, the phase
2 rules are used. Different modes of rules are indicated in the Configuration Manager Phase
descriptor of this object class.

Configuration Rules Object Class
The Config_Rules object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status

ODM_SHORT phase Configuration manager Required
phase

ODM_SHORT seq Sequence value Required

ODM_VCHAR rule_value[RULESIZE] Rule value Required

Configuration Subsystem 4-31

Config_Rules

These fields are described as follows:

Cfgmgr Phase This field indicates which phase a rule should be executed under: Phase 1,
Phase 2, or Phase 2 service.

1 Indicates that the rule should be executed in Phase 1.

2 Indicates that the rule should be executed in Phase 2.

3 Indicates that the rule should be executed in Phase 2 service mode.

Sequence Value

Rule Value

Related Information

In relation to the other rules of this phase, seq indicates the order in which
to execute this program. In general, the lower the seq number, the higher
the priority. For example, a rule with a seq number of 2 is executed before
a rule with a seq number of 5. There is one exception to this: a value of 0
indicates a DON'T_CARE condition, and any rule with a seq number of 0
will be executed last.

This is the full path name of the program to be invoked. The Rule Value
descriptor may also contain any options that should be passed to that
program. However, options must follow the program name, as the whole
string will be executed as if it has been typed in on the command line. Note
that there is one rule for each program to execute. If multiple programs are
needed, then multiple rules must be added.

Rule Values

Phase Sequence Rule Value

1 1 /etc/methods/defsys

1 5 /etc/methods/deflvm

2 1 /etc/methods/defsys

2 5 /etc/methods/ptynode

2 10 /etc/methods/starthft

2 15 /etc/methods/starttty

2 20 /etc/methods/netstart.sh

3 1 /etc/methods/def sys

3 5 /etc/methods/ptynode

3 10 /etc/methods/starthft

3 15 /etc/methods/starttty

The bosboot command.

Writing a Configure Method, Writing A Device Method.

The Device Configuration Manager Overview, Understanding System Boot Processing,
Device Configuration Subsystem: Programming Introduction in Kernel Extensions and
Device Support Programming Concepts.

Object Data Manager (ODM) Overview, Understanding ODM Object Classes and Objects,
Understanding ODM Descriptors in General Programming Concepts.

4-32 Kernel Reference

/

\

Cu At

CuAt Object Class (Customized Attribute)
The Customized Attribute (CuAt) object class contains customized device-specific attribute
information.

Device instances represented in the Customized Devices (CuDv) object class have
attributes found in either the Predefined Attribute (PdAt) object class or the CuAt object
class. There is an entry in the CuAt object class for attributes that take non-default values.
Attributes taking the default value are found in the PdAt object class. Each entry describes
the current value of the attribute.

When changing the value of an attribute, the Predefined Attribute object class must be
referenced to determine other possible attribute values.

Both attribute object classes must be queried to get a complete set of current values for a
particular device's attributes. Use the getattr and putattr routines to retrieve or modify
customized attributes.

Customized Attribute Object Class
The Customized Attribute object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR name[NAM ESIZE] Device name Required

ODM_CHAR attribute[ATTRNAMESIZE] Attribute name Required

ODM_VCHAR value[ATTRVALSIZE] Attribute value Required

ODM_CHAR type[FLAGSIZE] Attribute type Required

ODM_CHAR generic[FLAGSIZE] Generic Optional
attribute flags

ODM_CHAR rep[FLAGS IZE] Attribute Required
representation flags

ODM_SHORT nls_index NLS index Optional

These fields are described as follows:

Device Name Identifies the logical name of the device instance to which this attribute is
associated.

Attribute Name Identifies the name of a customized device attribute.

Attribute Value Identifies a customized value associated with the corresponding Attribute
Name. This value is a non-default value.

Attribute Type Identifies the Attribute Type associated with the Attribute Name. This field
is copied from the Attribute Type descriptor in the corresponding PdAt
object when the CuAt object is created.

Generic Attribute Flags
Identifies the Generic Attribute flag or flags associated with the Attribute
Name. This field is copied from the Generic Attribute flags descriptor in
the corresponding PdAt object when the CuAt object is created.

Configuration Subsystem 4-33

Cu At

Attribute Representation Flags

NLSlndex

Identifies the Attribute Value's representation. This field is copied from
the Attribute Representation flags descriptor in the corresponding PdAt
object when the CuAt object is created.

Identifies the message number in the NLS message catalogue that
contains a textual description of the attribute. This field is copied from the
NLS Index descriptor in the corresponding PdAt object when the CuAt
object is created.

Related Information
The getattr device configuration subroutine, putattr device configuration subroutine.

Customized Devices object class, Predefined Attribute object class.

Object Data Manager (QOM) Overview, Understanding ODM Object Classes and Objects,
Understanding ODM Descriptors in General Programming Concepts.

Device Configuration Subroutines in Kernel Extensions and Device Support Programming
Concepts.

4-34 Kernel Reference

CuDep

CuDep Object Class (Customized Dependency)
The Customized Dependency (CuDep) object class describes device instances that depend
on other device instances. Dependency does not imply a physical connection. This object
class describes the dependence links between logical devices and physical devices as well
as dependence links between logical devices. Physical dependencies of one device on
another device are recorded in the Customized Device (CuDev) object class.

The Devices Graph diagram demonstrates instances of dependency and connection
between devices.

Customized Dependency Object Class
The CuDep object class contains the following descriptors:

ODM Type

ODM_CHAR

ODM_CHAR

Descriptor Name

name[NAM ESIZE]

dependency(NAM ESIZE]

Description

Device name

Dependency (device
logical name)

Descriptor Status

Required

Required

These descriptors are defined as follows:

Device Name

Dependency

Related Information

Identifies the logical name of the device having a dependency.

Identifies the logical name of the device instance on which there is a
dependency. For example, a mouse, keyboard, and display might all be
dependencies of a device instance of hftO.

Customized Device object class.

Object Data Manager (ODM) Overview, Understanding ODM Object Classes and Objects,
Understanding ODM Descriptors in General Programming Concepts.

Device Configuration Manager Overview in Kernel Extensions and Device Support
Programming Concepts.

Configuration Subsystem 4-35

CuDv

CuDv Object Class (Customized Devices)
The Customized Devices (CuDv) object class contains entries for all device instances
defined in the system. As the name implies, a defined device object is an object that a
Define method has created in the CuDv object class. A defined device instance may or may
not have a corresponding actual device attached to the system.

A CuDv object contains attributes and connections specific to the device instance. Each
device instance, distinguished by a unique logical name, is represented by an object in the
CuDv object class. The Customized database is updated twice, during system boot and at
runtime, to define new devices, remove undefined devices, or update the information for a
device whose attributes have been changed.

Customized Devices Object Class
The CuDv object class contains the following fields:

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR name[NAMESIZE] Device name Required

ODM_SHORT status Device status flag Required

ODM_SHORT chg status Change status flag Required

ODM_CHAR ddins[TYPESIZE] Device driver instance Optional

ODM_CHAR location[LOCSIZE] Location code Optional

ODM_CHAR parent[NAMESIZE] Parent device logical Optional
name

ODM_CHAR connwhere[LOCSIZE] Location where Optional
device is connected

ODM_LINK PdDvln LINK to Predefined Required
Devices object class

These fields have the following descriptions:

Device Name A Customized Device object for a device instance is assigned a unique
logical name to distinguish the instance from other device instances. The
device logical name of a device instance is derived during Define method
processing. The rules for deriving a device logical name are:

4-36 Kernel Reference

1. The name should start with a prefix name pre-assigned to the device
instance's associated device type. The prefix name can be retrieved from
the Prefix Name descriptor in the Predefined Device object associated
with the device type.

2. To complete the logical device name, a sequence number is usually
appended to the prefix name. This sequence number is unique among all
defined device instances using the same prefix name. Use the following
subrules when generating sequence numbers:

a. A sequence number is a non-negative integer represented
in character format. Therefore, the smallest available sequence
number is O (zero}.

(

~I
y

CuDv

b. The next available sequence number relative to a given prefix name
should be allocated when deriving a device instance logical name.

c. The next available sequence number relative to a given prefix name
is defined to be the smallest sequence number not yet allocated to
defined device instances using the same prefix name.

Device Status Flag

For example, if ttyO, ttyl, tty3, ttys and tty6 are currently
assigned to defined device instances, then the next available
sequence number for a device instance with the tty prefix name is 2.
This results in a logical device name of tty2.

The genseq subroutine can be used by a Define method to obtain the
next available sequence number.

Identifies the current status of the device instance. The device methods are
responsible for setting the Device Status flags of device instances. When
the Define method defines a device instance, the device's device status is
set to defined. When the Configure method configures a device instance,
the device's device status is typically set to available. The Configure
method takes a device to the Stopped state only if the device supports the
Stopped state.

When the Start method starts a device instance, its device status is changed
from the Stopped state to the Available state. Applying a Stop method on a
started device instance changes the device status from the Available state
to the Stopped state. Applying an Unconfigure method on a configured
device instance changes the device status from the Available state to the
Defined state. If the device supports the Stopped state, the Unconfigure
method takes the device from the Stopped state to the Defined state.

Understanding Device States provides more information about the
Available, Defined, and Stopped states.

The possible status values are:

DEFINED Identifies a device instance in the Defined state.

AVAILABLE Identifies a device instance in the Available state.

STOPPED Identifies a device instance in the Stopped state.

Change Status Flag
This flag tells whether the device instance has been altered since the last
system boot. The diagnostics facility uses this flag to validate system
configuration. The flag can take on these values:

NEW Specifies whether the device instance is new to the current
system boot.

DONT_CARE Identifies the device as one whose presence or uniqueness
cannot be determined. For these devices, the new, same,
and missing states have no meaning.

SAME Specifies whether the device instance was known to the
system prior to the current system boot.

MISSING Specifies whether the device instance is missing. This is
true if the device is in the CuDv object class, but is not
physically present.

Configuration Subsystem 4-37

CuDv

11
Device Driver Instance ~

This field typically contains the same value as the Device Driver Name
descriptor in the Predefined Devices (PdDv) object class if the device driver
supports only one major number. For a driver that uses multiple major
numbers (for example, the logical volume device driver), unique instance
names must be generated for each major number. Since the logical volume
uses a different major number for each volume group, the volume group
logical names would serve this purpose. This field is filled in with a null
string if the device instance does not have a corresponding device driver.

Location Code Identifies the location code of the device. This field provides a means of
identifying physical devices. The location code format is defined as
AB·CD-EF-GH where:

AB

CD

Is the drawer ID used to identify the CPU and Async drawers.

Is the slot ID used to identify the location of an adapter, memory
card, or SLA (Serial Link Adapter).

EF Is the connector ID used to identify the adapter connector that
something is attached to.

GH Is the port or device or FRU ID used to identify a port, device, or
FRU, respectively.

For more information on the location code format, see Understanding
Location Codes in Devices Overview for System Management.

Parent Device Logical Name
Identifies the logical name of the parent device instance. In the case of a
real device, this indicates the logical name of the parent device to which this
device is connected. More generally, the specified parent device is the
device whose Configure method is responsible for returning the logical
name of this device to the Configuration Manager for configuring this device.
This field is filled in with a null string for a node device.

Location Where Device Is Connected
Identifies the specific location on the parent device instance where this
device is connected. The term location is used in a generic sense. For some
device instances such as the AIX bus, location indicates a slot on the bus.
For device instances such as the SCSI adapter, the term indicates a logical
port (that is, a SCSI ID and Logical Unit Number combination).

For example, for a bus device, the location can refer to a specific slot on the
bus, with values 1 , 2, 3 For a multiport serial adapter device, the
location can refer to a specific port on the adapter, with values 0, 1 ,

LINK to Predefined Devices Object Class {PdDvLn)

4-38 Kernel Reference

Provides a link to the device instance's predefined information through the
Unique Type descriptor in the PdDv object class.

/

(

\'<j

CuDv

Related Information
The Define device configuration method, Configure configuration method, Change
configuration method, Undefine configuration method, Unconfigure configuration method,
Start and Stop configuration method.

Predefined Devices (PdDv) object class.

The genseq subroutine.

The SCSI Adapter Device Driver, Physical Volumes and the Logical Volume Device Driver.

Devices Overview for System Management, Object Data Manager (ODM) Overview,
Understanding Location Codes, Understanding ODM Object Classes and Objects,
Understanding ODM Descriptors in General Programming Concepts.

Understanding Major and Minor Numbers for a Special File, Understanding Device States,
Device Configuration Subsystem: Programming Introduction, Configuration Manager
Overview in Kernel Extensions and Device Support Programming Concepts.

Configuration Subsystem 4-39

CuDvDr

CuDvDr Object Class (Customized Device Driver)
The Customized Device Driver (CuDvDr) object class stores information about critical
resources that need concurrency management through the use of the Device Configuration
Library routines. You should only access this object class through these five Device
Configuration Library routines: the genmajor, genminor, relmajor, reldevno, and
getminor routines. ·

These routines exclusively lock this class so that accesses to it are serialized. The
genmajor and genminor routines return the major and minor number to the calling method.
Similarly, the reldevno or relmajor routine releases the major or minor number from this
object class.

Customized Device Driver Object Class
The CuDvDr object class contains the following fields:

QOM Type Descriptor Name Description Descriptor Status

ODM_CHAR resource[RESOURCESIZE] Resource Name Required

ODM_CHAR value1 [VALUESIZE] Value1 Required

ODM_CHAR value2[VALUESIZE] Value2 Required

ODM_CHAR value3[VALUESIZE] Value3 Required

r'

'

/

(

"

The Resource descriptor determines the nature of the values in the Value1, Value2, and ~
Value3 descriptors. Possible values for the Resource descriptor are the strings devno and
ddins.

The following table specifies the contents of the Value1, Value2, and Value3 descriptors,
depending on the contents of the Resource descriptor.

Resource Value1

devno

ddins

Major number

Dd instance name

Value2

Minor number

Major number

Value3

Device instance name

Null string

When the resource field contains the devno string, the Value1 field contains the device
major number, Value2 the device minor number, and Value3 the device instance name.
These value fields are filled in by the genminor subroutine, which takes a major number and
device instance name as input, and generates the minor number and resulting devno
Customized Device Driver object.

When the resource field contains the ddins string, the Value1 field contains the device driver
instance name. This is typically the device driver name obtained from the Device Driver
Name descriptor of the Predefined Device object. However, this name can be any unique
string and is used by device methods to obtain the device driver major number. The Value2
field contains the device major number and the Value3 field is not used. These value fields
are set by the genmajor subroutine, which takes a device instance name as input, and
generates the corresponding major number, and resulting ddins Customized Device Driver
object.

4-40 Kernel Reference

CuDvDr

) Related Information
Predefined Device object class.

The genmajor device configuration subroutine, genminor device configuration subroutine,
relmajor device configuration subroutine, reldevno device configuration subroutine, and
getminor device configuration subroutine.

Object Data Manager (ODM) Overview, Understanding ODM Object Classes and Objects,
Understanding ODM Descriptors in General Programming Concepts.

Device Driver Introduction, List of Device Configuration Subroutines, Understanding Major
and Minor Numbers for a Special File in Kernel Extensions and Device Support
Programming Concepts.

Configuration Subsystem 4-41

CuVPD

CuVPD Object Class (Customized VPD)

Description
The Customized VPD (CuVPD) object class contains the Vital Product Data (VPD) for
customized devices. VPD can be either machine-readable VPD or manually-entered user
VPD information.

The CuVPD object class contains the following descriptors:

Customized Vital Product Data Object Class

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR name[NAMESIZE] Device name

VPD type

VPD

Required

Required

Required

ODM_SHORT vpd_type

ODM_LONGCHAR vpd[VPDSIZE]

These fields are described as follows:

Device Name

VPD Type

VPD

Related Information

Identifies the device logical name to which this VPD information belongs.

Identifies the VPD as either machine-readable or manually entered. The
possible values:

HW_VPD

USER_VPD

Identifies machine-readable VPD.

Identifies manually entered VPD.

Identifies the Vital Product Data for the device. For machine-readable
VPD, an entry in this field might include such information as serial
numbers, engineering change levels, and part numbers.

Manually-entered VPD is intended for accounting purposes. For example,
the user may want the name of the individual responsible for the device
as well as his or her office number.

Object Data Manager (ODM) Overview, Understanding ODM Object Classes and Objects,
Understanding ODM Descriptors in General Programming Concepts.

The RISC System/6000 Hardware Technical Reference provides more details on the VPD.

4-42 Kernel Reference

(

(

\

(

\

Pd At

PdAt Object Class (Predefined Attribute)
The Predefined Attribute (PdAt) object class contains an entry for each existing attribute for
each device represented in the Predefined Devices object class. An attribute, in this sense,
is any device-dependent information not represented in the PdDv object class. This includes
information such as interrupt levels, bus 1/0 address ranges, baud rates, parity settings,
block sizes, and microcode file names.

Each object in this object class represents a particular attribute belonging to a particular
device class-subclass-type. Each object contains the attribute name, default value, list or
range of all possible values, width, flags, and an NLS description. The flags provide further
information to describe an attribute.

Note: For a device being defined or configured, only the attributes that take a nondefault
value are copied into the Customized Attribute (CuAt) object class. In other words,
for a device being customized, if its attribute value is the default value in the PdDv
object class, then there will not be an entry for the attribute in the CuAt object class.

Types of Attributes
There are three types of attributes. Most are regular attributes, which typically describe a
specific attribute of a device. The group attribute type provides a grouping of regular
attributes. The shared attribute type identifies devices that must all share the given attribute.

A shared attribute identifies another regular attribute as one that must be shared. This
attribute is always a bus resource. Other regular attributes (for example, bus interrupt levels)
can be shared by devices but are not themselves shared attributes. Shared attributes
require that the relevant devices have the same values for this attribute. The Attribute
Value descriptor for the shared attribute gives the name of the regular attribute that must be
shared.

A group attribute specifies a set of other attributes whose values are chosen as a group, as
well as a group attribute number used to choose the default values. Each attribute listed
within a group has an associated list of possible values it can take. These values must be
represented as a list, not as a range. For each attribute within the group, the list of possible
values must also have the same number of choices. For example, if the possible number of
values is n, the group attribute number itself can range from O to n--1. The particular value
chosen for the group indicates the value to pick for each of the attributes in the group. For
example, if the group attribute number is 0, then the value for each of the attributes in the
group is the first value from their respective lists.

Predefined Attribute Object Class Descriptors
The Predefined Attribute object class contains the following fields:

Predefined Attribute Object Class Fields Part 1 of 2

ODM Type Descriptor Name Description Status

ODM_CHAR uniquetype[UN IOU ESIZE] Unique type Required

ODM_CHAR attribute[ATTA NAM ESIZE] Attribute name Required

ODM_VCHAR deflt[DEFAULTSIZE] Default value Required

ODM_VCHAR values[ATTRVALSIZE] Attribute values Required

Configuration Subsystem 4-43

Pd At

Predefined Attribute Object Class Fields Part 2 of 2

ODM Type Descriptor Name Description Status

ODM_CHAR width[WIDTHSIZE] Width Optional

ODM_CHAR type[FLAGSIZE] Attribute type flags Required

ODM_CHAR generic[FLAGSIZE] Generic attribute flags Optional

ODM_CHAR rep[FLAGSIZE] Attribute representation flags Required

ODM_SHORT nls_index NLS index Optional

These fields are described as follows:

Unique Type Identifies the class-subclass-type name of the device to which this
attribute is associated. This descriptor is the same as the Unique Type
descriptor in the PdDv object class.

Attribute Name Identifies the name of the device attribute. This is the name that can be

Default Value

passed to the mkdev and chdev configuration commands and device \,
methods in the attribute-name and attribute-value pairs.

If there are several choices or even if there is only one choice for the
attribute value, the default is the value that the attribute is normally set to.
For groups, the default value is the group attribute number. For example,
if the possible number of choices in a group is n, the group attribute
number is a number between O and n-1. For shared attributes, the
default value is set to a null string.

When a device is defined in the system, attributes that take nondefault /
values are found in the CuAt object class. Attributes that take the default ~
value are found in this object class. Attributes that take on the default
value are not copied over to the CuAt object class. Therefore, both
attribute object classes must be queried to get a complete set of
customized attributes for a particular device.

Possible Values Identifies the possible values that can be associated with the attribute
name. The format of the value is determined by the Attribute
Representation flags. For regular attributes, the possible values can be
represented as a string, hexadecimal, octal, or decimal. In addition, they /
can be represented as a range or an enumerated list. If there is only one ~
possible value, then the value can be represented either as a single value
or as an enumerated list with one entry. The latter is recommended, since
the use of enumerated lists allows the attrval subroutine, to check that a
given value is in fact a possible values.

If the value is hexadecimal, then it is prefixed with the Ox notation. If the
- value is octal, the value is prefixed with a leading zero. If the value is
decimal, the value is its significant digits. If the value is a string, the string
itself should not have embedded commas since commas are used as
separators of items in an enumerated list.

4-44 Kernel Reference

Pd At

A range is represented as a triplet of values: lowerlimit-upperlimit,
increment value. The lowerlimit variable indicates the value of the first
possible choice. The upperlimit variable indicates the value of the last
possible choice. The lowerlimit and upperlimit values are separated by a -
(hyphen). Values between the lowerlimit and upperlimit values are
obtained by adding multiples of the increment value variable to the
lowerlimit variable. The upperlimit and increment value variables are
separated by a , (comma).

Only numeric values are used for ranges. Also, discontinuous ranges (for
example, 1 to 3, 6 to 8) are disallowed. A combination of list and ranges
is not allowed.

An enumerated list contains values that are comma-separated.

If the attribute is a group, the Possible Values descriptor contains a list of
attributes composing the group, separated by commas.

If the attribute is shared, the Possible Values descriptor contains the
name of the bus resource regular attribute that must be shared with
another device.

Width If the attribute is a regular attribute, the Width descriptor identifies the
amount of resource used by the attribute. For example, if the attribute
indicates the starting bus memory address for an adapter card, this field
indicates the range of bus memory that must be allocated to the adapter.
Width only applies to attributes with the M (bus memory address) and the
0 (bus 1/0 address) Attribute Types. For all other attributes, a null string
is used to fill in this field.

Attribute Type Identifies the attribute type. Only one Attribute Type must be specified.
The characters A, M, I, 0, and P represent bus resources that are regular
attributes.

For regular attributes, the following Attribute Types are defined:

R Indicates a regular attribute that is not a bus resource.

The following are the bus resources types for regular attributes:

A Indicates OMA arbitration level.

M Indicates bus memory address.

Indicates bus interrupt level.

0 Indicates bus 1/0 address.

P Indicates priority class.

For non-regular attributes, the following Attribute Types are defined:

G Indicates a group.

S Indicates a shared attribute.

Configuration Subsystem 4-45

Pd At

Generic Attribute Flags ~
Identifies the flags that can apply to any regular attribute. Any ~
combination, one, both, or none, of these flags is valid. This descriptor
should be a null string for group and shared attributes.

These are the defined Generic Attribute flags:

D Indicates a displayable attribute. The lsattr command displays
only attributes with this flag.

U Indicates an attribute whose value can be set by the user.

Attribute Representation Flags
Indicates the representation of the regular attribute values. For group and
shared attributes, which have no associated attribute representation, this
descriptor is set to a null string. Either then ors flag, both of which
indicate value representation, must be specified.

The rand I flags indicate, respectively, a range and an enumerated list, /
and are optional. If neither r nor I is specified, then the attrval subroutine \,

NLS Index

Related Information

will not verify that the value falls within the range or the list.

These are the defined Attribute Representation flags:

n Indicates that the attribute value is numeric, either decimal,
hex, or octal.

s Indicates that the attribute value is a character string.

r Indicates that the attribute value is a range of the form:
lowerlimit-upperlimit, increment value.

Indicates that the attribute value is an enumerated list of
values.

Identifies the message number in the NLS message catalog of the
message containing a textual description of the attribute. Only
displayable attributes, as identified by the Generic Attribute flags
descriptor, need an NLS message. If the attribute is not displayable, the
NLS Index can be set to a value of 0. The catalog file name and the set
number associated with the message number are stored in the PdDv
object class.

The lsattr command, mkdev command, chdev command.

Predefined Devices object class, Customized Attribute object class.

The attrval subroutine.

Writing A Device Method.

Object Data Manager (ODM) Overview, Understanding ODM Object Classes and Objects,
Understanding ODM Descriptors in General Programming Concepts.

Device Configuration Subsystem: Programming Introduction in Kernel Extensions and
Device Support Programming Concepts.

4-46 Kernel Reference

!

\

(

Pd At

Adapter-Specific Considerations for the PdAt Object Class
The various bus resources required by an adapter card are represented as attributes in the
Predefined Attribute (PdAt) object class. The current values assigned, if different from the
default values, are represented in the Customized Attribute (CuAt) object class just like all
other device attributes. To assign bus resources, the Bus Configurator obtains the bus
resource attributes for an adapter from both the PdAt and CuAt object classes. It also
updates the CuAt object class, as necessary, to resolve any bus resource conflicts.

The following additional guidelines apply to bus resource attributes:

The Attribute Type descriptor must indicate the type of bus resource. The values are as
follows:

A Indicates OMA arbitration level.

M Indicates bus memory address.

Indicates bus interrupt level.

0 Indicates bus 1/0 address.

P Indicates interrupt priority class.

G Indicates a group.

S Indicates an attribute that must be shared with another adapter.

For bus memory and bus 1/0 addresses, the Width descriptor must identify the amount of
address space to be assigned. The Width descriptor for all other attributes should be set to
a null string.

The last two attribute types, G and S, are special-purpose types that the Bus Configurator
recognizes. If an adapter has resources whose values cannot be assigned independently of
each other, a group attribute will identify them to the Bus Configurator. For example, an
adapter card might have an interrupt level that depends on the bus memory address
assigned. Suppose that interrupt level 3 must be used with bus memory address
Ox1000000, while interrupt level 4 must be used with bus memory address Ox2000000. This
relationship can be described using the group attribute as discussed in PdAt Object Class.

Occasionally, all cards of a particular type ·or types must use the same bus resource when
present in the system. This is especially true of interrupt levels. Although most adapter's
resources can be assigned completely independent of other adapters, even those of the
same type, it is not uncommon to find adapters that need to be tied together. An adapter
card having a bus resource that must be shared with another adapter needs an attribute of
type S to describe the relationship.

PdAt Descriptors for Type S Attributes
The PdAt descriptors for an attribute of type S should be set as follows:

Unique Type Indicates the unique type of the adapter.

Attribute Name Specifies the name assigned to this attribute.

Default Value Set to a null string.

Possible Values Contains the name of the attribute that must be shared with another
adapter or adapters.

Width Set to a null string.

Attribute Type Set to s.

Configuration Subsystem 4-47

Pd At

Generic Attribute Flags
Set to a null string. This attribute must neither be displayed nor set by the
user.

Attribute Representation Flags
Set to sl, indicating an enumerated list of strings, even though the list
consists of only one item.

NLS Index Set too since the attribute is not displayable.

The type S attribute identifies a bus resource attribute that must be shared. The other
adapters are identifiable by attributes of type S with the same attribute name. The attribute
name for the type S attribute serves as a key to identify all the adapters.

For an example, suppose an adapter with unique type adapter /mca/x must share its
interrupt level with an adapter of unique type adapter /mca/Y. The following attributes
describe such a relationship:

The attributes for x's interrupt level:

• Attribute Name= int_level

• Default Value = 3

• Possible Values = 2 -9, 1

• Width = null string

• Unique Type = adapter/mca/X

• Attribute Type = I

• Generic Attribute Flags= D (displayable but not user-setable)

• Attribute Representation Flags = nr

• NLS Index = 12 (message number for text description).

The attribute describing x's shared interrupt level:

• Unique Type= adapter/mca/X

• Attribute Name = shared_intr

• Default Value= null string

• Possible Values = 11int_level"

• Width= null string

• Attribute Type = S

• Generic Attribute Flags = null string

• Attribute Representation Flags = sl

• NLS Index = 0.

4-48 Kernel Reference

I
I

\

I

v

The attribute for Y's interrupt level:

• Unique Type = adapter/mca/Y

• Attribute Name = interrupt

• Default Value = 7

• Possible Values= 2,3,4,5,7,9

• Width = null string

• Attribute Type = I

• Generic Attribute Flags= D (displayable but not user-setable)

• Attribute Representation Flags = nl

• NLS Index= 6 (message number for text description).

The attribute describing Y's shared interrupt level:

• Unique Type = adapter/mca/Y

• Attribute Name = shared_intr

• Default Value = null string

• Possible Values = "interrupt"

• Width= null string

• Attribute Type= S

• Generic Attribute Flags= null string

• Attribute Representation Flags = sl

• NLS Index= 0.

Pd At

Note that the two adapters have quite different attributes describing their interrupt levels.
The attribute name is also different. However, their attributes describing what must be
shared have the same name: shared_intr.

Adapter bus resource attributes can be displayed, but not set, by the user. In other words,
the Generic Attribute Flags descriptor can either be a null string or the character D, but
cannot be u or ou. The Bus Configurator has total control over the assignment of bus
resources. These resources cannot be changed to user-supplied values by the Change
method.

Note: This does not apply to any other attribute the adapter may have with attribute type R.

Related Information
Writing a Change Method.

Customized Attributes (CuAt) Cbject Class, Predefined Attribute (PdAt) Object Class.

Adapter-Specific Considerations for the Predefined Devices (PdDv) Object Class.

Configuration Subsystem 4-49

PdCn

PdCn Object Class (Predefined Connection)
The Predefined Connection (PdCn) object class contains connection information for
intermediate devices. This object class also includes predefined dependency information.
For each connection location, there are one or more objects describing the subclasses of
devices that can be connected. This information is useful, for example, in verifying whether a
device instance to be defined and configured can be connected to a given device.

Predefined Connection Object Class
The PdCn object class contains the following descriptors:

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR uniquetype[UNIQUESIZE] Unique type

ODM_CHAR connkey[KEYSIZE] Connection key

Connection location

Required

Required

Required ODM_CHAR connwhere[LOCSIZE]

These fields are described as follows:

Unique Type Identifies the intermediate device's class-subclass-type name. For a device
with dependency information, this descriptor identifies the unique type of the
device on which there is a dependency. This descriptor contains the same
information as in the Unique Type descriptor in the Predefined Devices ('
(PdDv) object class.

Connection Key
Identifies a subclass of devices that can connect to the intermediate device
at the specified location. For a device with dependency information, this
descriptor serves to identify the device indicated by the Unique Type field to
the devices that depend on it.

Connection Location

Related Information

Identifies a specific location on the intermediate device where a child device
can be connected. For a device with dependency information, this /
descriptor is not always required and consequently may be filled in with a ~
null string.

The term location is used in a generic sense. For example, for a bus device,
the location can refer to a specific slot on the bus, with values 1, 2, 3 .. . For
a multiport serial adapter device, the location can refer to a specific port on
the adapter with values 0, 1,

Predefined Devices (PdDv) object class.

Object Data Manager (ODM) Overview, Understanding ODM Object Classes and Objects,
Understanding ODM Descriptors in General Programming Concepts.

Device Configuration Subsystem: Programming Introduction in Kernel Extensions and
Device Support Programming Concepts.

4-50 Kernel Reference

PdDv

Predefined Devices {PdDv) Object Class
The Predefined Devices (PdDv) object class contains entries for all known device types
supported by the system. The term devices is used in the general sense in this context.
Devices include intermediate devices (for example, adapters) and terminal devices (for
example, disks, printers, display terminals, and keyboards). Pseudo-devices, including
pseudo terminals, logical volumes, and TCP/IP, are also included under devices.
Pseudo-devices can either be intermediate or terminal devices.

Each device type, as determined by class-subclass-type information, is represented by an
object in the PdDv object class. These objects contain basic information about the devices,
such as device method names and how to access information contained in other object
classes. The PdDv object class is referenced by the Customized Devices (CuDv) object
class by a link that keys into the Unique Type descriptor. This descriptor is uniquely identified
by the class-subclass-type information.

Typically, the Predefined database is consulted but never modified during system boot or
runtime. One exception occurs when a new device is to be added to the Predefined
database. In this case, the predefined information for the new device must be added into the
Predefined database.

You build a Predefined Device object by defining the objects in a file in stanza format and
then processing the file with the odmadd command or the odm_add_obj subroutine. See
the odmadd command or the odm_add_obj subroutine for information on creating the input
file and compiling the object definitions into objects.

Note: When coding an object in this object class, set unused empty strings to "'' (two
double quotation marks with no separating space) and unused integer fields to O
(zero).

Predefined Devices Object Class
Each Predefined Devices object corresponds to an instance of the PdDv object class. The
descriptors for the PdDv object class are:

Predefined Devices Object Class Fields Part 1 of 2

ODM Type Descriptor Name Description Descriptor Status

ODM_CHAR type[TYPESIZE] Device type Required

ODM_CHAR class[CLASSIZE] Device class Required

ODM_CHAR subclass[CLASSIZE] Device subclass Required

ODM_CHAR prefix[PREFIXSIZE] Prefix name Required

ODM_CHAR devid[DEVIDSIZE] Device ID Optional

ODM_SHORT base Base device flag Requir~d

ODM_SHORT has_vpd VPD flag Required

ODM_SHORT detectable Detectable/non- Required
detectable flag

ODM_SHORT chg status Change status flag Required

ODM_SHORT bus_ ext Bus extender flag Required

ODM_SHORT inventory_only Inventory only flag Required

ODM_SHORT fru FRU flag Required

Configuration Subsystem 4-51

PdDv

Predefined Devices Object Class Fields Part 2 of 2

ODM Type Descriptor Name Description Descriptor Status

ODM_SHORT led LED value Required

ODM_SHORT set no Set number Required

ODM_SHORT msgno Message number Required

ODM_VCHAR catalog[CATSIZE] Catalog file name Required

ODM_CHAR DvDr[DDNAMESIZE] Device driver name Optional

ODM_METHOD Define Define method Required

ODM_METHOD Configure Configure method Required

ODM_METHOD Change Change Method Required

ODM_METHOD Unconfigure Unconfigure method Optional*

ODM_METHOD Undefine Undefine method Optional*

ODM_METHOD Start Start method Optional

ODM_METHOD Stop Stop method Optional

ODM_CHAR uniquetype[UN IOU ESIZE] Unique type Required

These fields have the following descriptions:

Device Type

Device Class

Device Subclass

Prefix Name

The Device Type descriptor is derived from the product name or
model number. For example, IBM 3812-2 Model 2 Page printer and
IBM 4201 Proprinter II are two types of printer device types. Each
device type supported by the system should have an entry in the
PdDv object class.

Associated functional class name. A Functional class is a group of
device instances sharing the same high-level function. For example,
printer is a functional class name representing all devices that
generate hardcopy output.

Identifies the device subclass associated with the device type. A
device class can be partitioned into a set of device subclasses
whose members share the same interface and typically are
managed by the same device driver. For example, parallel and
serial printers form two subclasses within the class of printer
devices.

The configuration process uses the subclass to determine valid
parent-child connections. For example, an rs232 8 port adapter has
information that indicates that each of its eight ports only supports
devices whose subclass is rs232. Also, the subclass for one device
class can be a subclass for a different device class. In other words,
several device classes can have the same device subclass.

The Assigned Prefix in the Customized database, used to derive the
device instance name and /dev name. For example, tty is a Prefix
Name assigned to the tty port device type. Names of tty port
instances would then look like ttyo, ttyl, or tty2. The rules for
generating device instance names are given in the Customized
Devices object class under the Device Name desciiptoi.

4-52 Kernel Reference

(

/'
I

\~

Device ID

Base Device Flag

VPD Flag

PdDv

Device ID describes card IDs for microchannel adapter cards.
These card IDs are read from POS registers and uniquely identify
the card type. The bus Configure method obtains the card IDs from
the microchannel adapter cards and uses this descriptor to find the
predefined information corresponding to the cards. The format is
OxAABB where AA identifies the POS(O) value and BB the POS(1)
value.

A base device is any device that forms part of a minimal base
system. During the first phase of system boot, a minimal base
system is configured to permit access to the root volume group and
hence to the root file system.This minimal base system can include,
for example, the standard 1/0 diskette adapter and a SCSI hard
drive.

This flag is not used to determine which devices are to be
configured in the first phase of system boot. It serves only to identify
at runtime which devices need to be updated in the boot image
when configuration changes are made. A value of TRUE means that
the device is a base device, and a value of FALSE that it is not.

Certain devices contain Vital Product Data (VPD) that can be
retrieved from the device itself. This attribute specifies whether
device instances belonging to the device type contain extractable
VPD or not. A value of TRUE means that the device has
extractable VPD, and a value of FALSE that it does not.

Detectable/Nondetectable Flag
Specifies whether the device instance is detectable or
nondetectable. A device whose presence and type can be
electronically determined, once it is actually powered on and
attached to the system, is said to be detectable. A value of TRUE
means that the device is detectable, and a value of FALSE that it is
not.

Change Status Flag Indicates the initial value of the Change Status flag to be used in the
Customized Devices (CuDv) object class. Refer to the
corresponding descriptor in the CdDv object class for a complete
description of this flag. A value of NEW means that the device is to
be flagged as new, and a value of FALSE that it is to be flagged as
don't care.

Bus Extender Flag Indicates that the device is a bus extender. The Bus Configurator
uses the Bus Extender Flag descriptor to determine whether it
should directly invoke the device's Configure method. A value of
TRUE means that the device is a bus extender, and a value of
FALSE that it is not a bus extender.

This flag is further described in Device Methods for Adapter Cards.

Configuration Subsystem 4-53

PdDv

Inventory Only Flag Distinguishes devices that are represented solely for their
replacement algorithm from those that actually manage the system.
There are several devices that are represented solely for inventory
or diagnostic purposes. Racks, drawers, and planars represent such
devices. A value of TRUE means that the device is used solely for
inventory or diagnostic purposes, and a value of FALSE that it is not
used solely for diagnostic or inventory purposes.

FRU Flag

LED Value

Catalog File Name

Set Number

Identifies the type of FRU (Field Replaceable Unit) for the device.
The three possible values for this field are:

NO_FRU

SELF_FRU

Indicates that there is no FRU (for
pseudo-devices).

Indicates that the device is its own FRU.

PARENT_FRU Indicates that the FRU is the parent.

Indicates the hex value to be displayed on the LEDs when the
Configure method executes. Refer to RISC System/6000 System
Problem-Solving Guide for a list of valid LED values.

Identifies the file name of the NLS message catalog that contains all
messages pertaining to this device. This includes the device
description and its attribute descriptions. All NLS messages are
identified by a catalog file name, set number, and message number.

Identifies the set number that contains all the messages for this
device in the specified NLS message catalog. This includes the
device description and its attribute descriptions.

Message Number Identifies the message number in the specified set of the NLS
message catalog. The message corresponding to the message
number contains the textual description of the device.

Device Driver Name Identifies the base name of the device driver associated with all
device instances belonging to the device type. For example, a
device driver name for a keyboard could be ktsdd. For the tape
device driver, the name could be tapedd. The Device Driver Name
can be passed as a parameter to the loadext routine to load the
device driver, if the device driver is located in the /etc/drivers
directory. If the driver is located in a different directory, the full path
must be appended in front of the Device Driver Name before
passing it as a parameter to the loadext subroutine.

Define Method

Configure Method

Change Method

Name of the Define method associated with the device type. All
Define method names start with the prefix def.

Name of the Configure method associated with the device type. All
Configure method names start with the prefix cfg.

Name of the Change method associated with the device type. All
Change method names start with the prefix chg.

4-54 Kernel Reference

/
l

"

(
\

/
' \~

PdDv

Unconfigure Method Name of the Unconfigure method associated with the device type.

Undefine Method

Start Method

Stop Method

Unique Type

Related Information
The odmadd command.

All Unconfigure method names start with the prefix ucfg.

Note: The Optional* descriptor status indicates that this field is
optional for those devices (for example, the bus) that are
never unconfigured or undefined. For all other devices, this
descriptor is required.

Name of the Undefine method associated with the device type. All
Undefine method names start with the prefix udef.

Note: The Optional* descriptor status indicates that this field is
optional for those devices (for example, the bus) that are
never unconfigured or undefined. For all other devices, this
descriptor is required.

Name of the Start method associated with the device type. All Start
method names start with the prefix stt. The Start method is optional
and only applies to devices that support the Stopped device state.

Name of the Stop method associated with the device type. All Stop
method names start with the prefix stp. The Stop method is optional
and only applies to devices that support the Stopped device state.

A key that is referenced by the PdDvln link in CdDv object class.
The key is a concatenation of the Device Class, Device Subclass,
and Device Type values with a I (backslash) used as a separator.
For example, for a class of disk, a subclass of scsi, and a type of
6 7 Omb, the Unique Type is disk/scsi/670mb.

This descriptor is needed so that a device instance's object in the
CdDv object class can have a link to its corresponding PdDv object.
Other object classes in both the Predefined and Customized
databases also use the information contained in this descriptor.

Customized Devices (CuDv) object class.

The odm_add_obj subroutine, loadext subroutine.

Writing a Define Method, Writing a Configure Method, Writing a Change Method, Writing an
Undefine Method, Writing an Unconfigure Method, Writing Start and Stop Methods.

Object Data Manager (ODM) Overview, Understanding ODM Object Classes and Objects,
Understanding ODM Descriptors in General Programming Concepts.

RISC System/6000 System Problem-Solving Guide.

Configuration Subsystem 4-55

PdDv

Adapter-Specific Considerations for the PdDv Object Class
The information to be populated into the Predefined Devices Object Class is described in the
Predefined Device (PdDv) object class. The following descriptors should be set as indicated:

Device Class

Device Subclass

Device ID

Bus Extender Flag

Set to adapter.

Set to rnca, which identifies it as an adapter card that can be
plugged into the Microchannel bus.

Must identify the values that are obtained from the POS(O) and
POS(1) registers on the adapter card. The format is OxAABB,

where AA is the hexadecimal value obtained from POS(O) and BB

the value from POS(1). This descriptor is used by the Bus
Configurator to match up the physical device with its corresponding
information in the Configuration database.

Usually set to FALSE, which indicates that the adapter card is not a
bus extender. This descriptor is set to TRUE for a multi-adapter
card requiring different sets of bus resources assigned to each
adapter. The Standard 1/0 Planar is an example of such a card.

The Bus Configurator behaves slightly differently for cards that are bus extenders. Typically,
it finds an adapter card and returns the name of the adapter to the Configuration Manager so
that it can be configured.

However, for a bus extender, the Bus Configurator directly invokes the device's Configure
method. The bus extender's Configure method defines the various adapters on the card as
separate devices (each needing its own Predefined information and device methods), and
writes the names to standard output for the Bus Configurator to intercept. The Bus
Configurator adds these names to the list of device names for which it is to assign bus
resources.

An example of a type of adapter card that would be a bus extender is one which allows an
expansion box with additional card slots to be connected to the system.

Related Information
Predefined Devices (PdDv) Object Class.

Adapter-Specific Considerations for the PdAt Object Class.

Writing a Configure Method.

4-56 Kernel Reference

(
~

Guide to Writing Device Methods
The following articles are provided as guidance for writing device methods.

Warning: These device method source code examples are only intended to assist in the
development of a working software program. These examples do not function as written.
Additional code is required.

General Information for Writing Device Methods
Returning Errors from Device Methods.

Loading a Device Driver.

Device Methods for Adapter Cards: Guidelines.

Adapter-Specific Considerations for the Predefined Devices (PdDv) Object Class.

Adapter-Specific Considerations for the Predefined Attributes (PdAt) Object Class.

Requirements for Individual Device Methods
Writing a Change Method.

Writing a Configure Method.

Writing a Define Method.

Writing a Unconfigure Method.

Writing a Undefine Method.

Writing Optional Stop and Start Methods.

Configuration Subsystem 4-57

How Device Methods Return Errors

How Device Methods Return Errors

Description
Device methods indicate errors to the Configuration Manager and runtime configuration
commands by exiting with a nonzero exit code. The Configuration Manager and
configuration commands can understand only the exit codes defined in the cf.h file.

Often more than one error code can describe any given error. This is because many exit
codes correspond to highly specific errors, while others are more general. Whenever
possible, use the most specific error code possible.

For example, if your Configure method obtains an attribute from the Customized Attributes
(CuAt) object class for filling in the Device Dependent Structure (DDS) but the value is
invalid (possibly due to a corrupted database), you might exit with the E_BADATTR error.
On the other hand, you might choose the E_DDS exit code due to some other error
condition while building the DDS.

Related Information
The Customized Attributes (CuAt) object class.

The Device Dependent Structure (DDS).

Writing a Device Method.

Adding an Unsupported Device to the System, Device Configuration Subsystem:
Programming Introduction, Object Data Manager (ODM) Overview, Understanding Device
Methods Interfaces in Kernel Extensions and Device Support Programming Concepts.

4-58 Kernel Reference

Loading a Device Driver

Description

Loading a Device Driver

The loadext subroutine is used to load and unload device drivers. The name of the device
driver is passed as a parameter to the loadext routine. If the device driver is located in the
/etc/drivers directory, just the device driver name without path information can be specified
to the loadext subroutine. If the device driver is located in another directory, the fully
qualified path name of the device driver must be specified.

The Device Driver Name descriptor of Predefined Devices (PdDv) object class objects is
intended to contain only the device driver name and not the fully qualified path name. For
device drivers located in the /etc/drivers directory, a Configure method can obtain the name
of the driver from the Device Driver Name descriptor to pass to the loadext routine. This is
convenient since most drivers are located in the /etc/drivers directory.

If a device driver is located in a directory other than /etc/drivers, the path name must be
handled differently. The Configure method could be coded to assume a particular path
name, or, for more flexibility, the path name could be stored as an attribute in the Predefined
Attribute (PdAt) object class. The Configure method is responsible for knowing how to
obtain the fully qualified path name to pass to the loadext subroutine.

Related Information
The loadext subroutine.

Writing a Configure Method.

Predefined Devices (PdDv) object class, Predefined Attribute (PdAt) object class.

Configuration Subsystem 4-59

Adapter Cards Guidelines

Device Methods for Adapter Cards: Guidelines

Description
The device methods for an adapter card are essentially the same as for any other device.
They need to perform roughly the same tasks as those described in Writing A Device
Method. However, there is one additional important consideration. The Bus Configure
method, or Bus Configurator, is responsible for discovering the adapter cards present in the
system and for assigning bus resources to each of the adapters. These resources include
interrupt levels, OMA arbitration levels, bus memory, and bus 1/0 space.

Adapters are typically defined and configured at boot time. However, if an adapter is not
configured due to unresolvable bus resource conflicts, or if an adapter is unconfigured at run
time with the rmdev command, an attempt to configure an adapter at run time may occur.

If an attempt is made, the Configure method for the adapter must take these steps to ensure
system integrity:

1. Make sure that the card is actually present in the system by reading POS(O) and POS(1)
from the slot that is supposed to contain the card and comparing the values with what
they are supposed to be for the card.

2. Invoke the busresolve routine to ensure that the adapters bus resource attributes, as
represented in the database, do not conflict with any of the configured adapters.

Additional guidelines must be followed when adding support for a new adapter card. They
are discussed in:

• Adapter-Specific Considerations for the PdDv Object Class

• Adapter-Specific Considerations for the PdAt Object Class.

Related Information
The rmdev command.

Writing a Configure Method.

Adapter-Specific Considerations for the PdAt Object Class, Adapter-Specific Considerations
for the PdDv Object Class.

4-60 Kernel Reference

/
I

(

/

Writing a Change Method

Writing a Change Method

Syntax

Flags

chg dev-1 name [-p parent] [-w connection] [-P I -T]
[-a attr= value [-a attr= value] ...]

-1 name

-p parent

-w connection

-P

-T

-a attr= value

Identifies the logical name of the device to be changed.

Identifies the logical name of a new parent for the device. This flag is
used to move a device from one parent to another.

Identifies a new connection location for the device. This flag either
identifies a new connection location on the device's existing parent, or
if the -p option is also used, it identifies the connection location on the
new parent device.

Indicates that the changes are to be recorded in the Customized
database without those changes being applied to the actual device.
This is a useful flag for a device which is usually kept open by the
system such that it can not be changed. Changes made to the
database with this flag are later applied to the device when it is
configured at system reboot.

Indicates that the changes are to be applied only to the actual device
and not recorded in the database. This is a useful flag for allowing
temporary configuration changes that will not apply once the system is
rebooted.

Identifies an attribute to be changed and the value to which it should
be changed.

Description
The Change method is responsible for applying configuration changes to a device. If the
device is in the Defined state, the changes are simply recorded in the Customized database.
If the device is in the Available state, the Change method must also apply the changes to the
actual device by reconfiguring it.

Your Change method does not need to support all the flags described for Change methods.
For instance, if your device is a pseudo-devices with no parent, it need not support parent
and connection changes. Even for devices that have parents, it may be desirable to disallow
parent and connection changes. For a printer, such changes may make sense since a
printer is easily moved from one port to another. An adapter card, by contrast, is not usually
moved without first shutting off the system. It is then automatically configured at its new
location when the system is rebooted. Consequently, there may not be a need for a Change
method to support parent and connection changes.

In deciding whether to support the -T and -P flags, remember that these flags will allow a
device's configuration to get out of sync with the configuration database. The -P flag can
often be useful for devices that are typically kept open by the system. The Change methods
for most IBM-supported devices do not support the -T flag.

Configuration Subsystem 4-61

Writing a Change Method

In applying changes to a device in the Available state, your Change method could terminate
the device from the driver, rebuild the device-dependent structure (DDS) using the new
information, and define the device again to the driver using the new DDS. Your method may
also need to reload adapter software or perform other device-specific operations. An
alternative is to simply invoke the device's Unconfigure method, update the Customized
database, and invoke the device's Configure method.

By convention, the first three characters of the name of the Change method should be chg.
The remainder of the name can be any characters, subject to AIX file-name restrictions, that
identify the device or group of devices which use the method.

Guidelines for Writing a Change Method
Note: This list of tasks is meant to serve as a guideline for writing a Change method. In

writing a method for a specific device, you may be able to leave out some of the
tasks. For instance, if your device does not support the changing of parent or
connection, there is no need to include those tasks. You may also find that your
device has special needs that are not listed in these tasks.

If your Change method is written to invoke the Unconfigure and Configure methods, it must:

1. Validate the input parameters. The -1 flag must be supplied to identify the device that is
to be undefined. You may want to exit with an error if options that your method does not
support are specified.

2. Initialize the Object Data Manager (ODM) using the odm_initialize subroutine and lock
the configuration database using the odm_lock subroutine. See Writing a Define
Method for an example.

3. Retrieve the Customized Device (CuDv) object for the device to be changed by getting
the CuDv object whose Device Name descriptor matches the name supplied with the -1
option. If no object is found with the specified name, exit with an error.

4. Validate all attributes being changed. Make sure that the attributes apply to the specified
device, that they can be set by the user, and that they are being set to valid values. The
attrval subroutine can be used for this purpose. If you have attributes whose values
depend on each other, you need to write the code to cross check them. If invalid
attributes are found, your method needs to write information to standard error describing
them. See Handling Invalid Attributes.

5. If a new parent device has been specified, find out whether it exists by querying the
CuDv object class for an object whose Device Name descriptor matches the new parent
name. If no match is found, exit with an error.

6. If a new connection has been specified, validate that this device can be connected there.
Do this by querying the Predefined Connection (PdCn) object class for an object whose
UniqueType descriptor matches the Link to the Predefined Devices Object Class
descriptor of the parent's CuDv object, whose Connection Key descriptor matches the
subclass name of the device being changed, and whose Connection Location descriptor
matches the new connection value. If no match is found, exit with an error.

If a match is found, the new connection is valid. If the device is currently available, then
it should still be available after being moved to the new connection. Since only one
device can be available at a particular connection, the Change method will need to check
for other available devices already at that connection. If one is found, exit with an error.

4-62 Kernel Reference

I

("

Writing a Change Method

7. If the device state is Available and the -P flag was not specified, invoke the device's
Unconfigure method using the odm_run_method command. This fails if the device has
available children, which is why the Change method does not need to check explicitly for
children.

8. Record new attribute values in the database. If parent or connection changed, update
the Parent Device Logical Name, Location Where Connected on Parent Device, and
Location Code descriptors of the device's CuDv object.

9. If the device state was Available before being unconfigured, invoke the device's
Configure method via the odm_run_method command. If this returns in error leaving
the device unconfigured, you may want your Change method to restore the Customized
database for the device to its pre-change state.

10.Ensure that all object classes are closed and terminate the ODM. Exit with an exit code
of O (zero) if there were no errors.

Handling Invalid Attributes
If the Change method detects attributes that are in error, it must write information to the
stderr file to identify them. This consists of writing the attribute name followed by the
attribute description. Only one attribute and its description is to be written per line. If an
attribute name was mistyped so that it does not match any of the device's attributes, write
the attribute name supplied on a line by itself.

The mkdev and chdev configuration commands intercept the information written to standard
error by the Change method. They in turn write it out following an error message describing
that there were invalid attributes. Both the attribute name and attribute description are
needed to identify the attribute. If you invoked the mkdev or chdev command directly, you
can recognize the attributes by attribute name. If you are using SMIT, these comands
recognize attributes by description.

The attribute description is obtained from the appropriate message catalog. A message is
identified by catalog name, set number, and message number. The catalog name and set
number are obtained from the device's Predefined Device (PdDv) object. The message
number is obtained from the NLS Index descriptor in either the Predefined Attribute (PdAt) or
Customized Attribute (CuAt) object corresponding to the attribute .

. Related Information
The chdev command, mkdev command, rmdev command.

Customized Devices object class, Predefined Devices object class, Predefined Connection
object class, Predefined Attribute object class, Customized Attribute object class.

Writing a Device Method.

The Unconfigure method Configure method .

The attrval subroutine, odm_run_method subroutine.

The Device Dependent Structure (DDS) Overview.

Object Data Manager (ODM) Overview in General Programming Concepts.

ODM Device Configuration Object Classes, Understanding Pseudo-Device Drivers,
Understanding Device Dependencies and Child Devices in Kernel Extensions and Device
Support Programming Concepts.

Configuration Subsystem 4-63

Writing a Configure Method

Writing a Configure Method

Syntax

Flags

cfgdev-1 name [-1 /-2]

-1 name

-1

-2

Identifies the logical name of the device to be configured.

Specifies that the device will be configured in phase 1 of system boot. This
flag cannot be specified with the -2 option. If neither the -1 nor the -2 flags
are specified, the Configure method is invoked at runtime.

Specifies that the device will be configured in phase 2 of system boot. This
flag cannot be specified with the -1 option. If neither the -1 nor the -2 flags
are specified, the Configure method is invoked at runtime.

Description
The Configure method is responsible for configuring a device, that is, making it available for
use in the system. It changes a device's state from Defined to Available. If the device has a
device driver, the Configure method is responsible for loading the device driver into the
kernel and describing the device characteristics to the driver. For an intermediate device (for
example, a SCSI bus adapter), this method also determines which attached children are to
be configured and writes their logical names to standard output.

The Configure method is invoked by either the mkdev configuration command or by the
Configuration Manager. Because the Configuration Manager runs a second time in phase 2
system boot and can also be invoked repeatedly at runtime, a device's Configure method
can be invoked to configure an already available device. This is not an error condition. In
the case of an intermediate device, the Configure method should check again for the
presence of child devices. If the device is not an intermediate device, the method simply
returns.

By convention, the first three characters of the name of the Configure method should be cfg.
The remainder of the name can be any characters, subject to AIX file-name restrictions, that ~
identify the device or group of devices that use the method.

In general, the Configure method obtains all the information it needs about the device from
the Configuration database. The options specifying the phase of system boot can be used
to limit certain functions to specific phases.

If the device has a parent device, the parent must be configured first. The Configure method
for a device should fail if its parent is not already in the Available state.

Guidelines for Writing a Configure Method
Note: This list of tasks is meant to serve as a guideline for writing a Configure method. In

writing a method for a specific device, you may be able to leave out some of the
tasks. For instance, if your device is not an intermediate device or does not have a
device driver, your method can be written accordingly. You may also find that your
device has special needs that are not listed in these tasks.

4-64 Kernel Reference

Writing a Configure Method

Your Configure method must:

1. Validate the input parameters. The -I logical name option must be supplied to identify
the device that is to be configured. The -1 and -2 options cannot be supplied at the
same time.

2. Initialize the Object Data Manager (ODM) using the odm_initialize subroutine and lock
the Configuration database using the odm_lock subroutine. See Writing a Define
Method for an example.

3. Retrieve the Customized Devices (CuDv) object for the device to be configured. This is
done by getting the CuDv object whose Device Name descriptor matches the name
supplied with the -I logical name option. If no object is found with the specified name,
exit with an error.

4. Retrieve the Predefined Devices (PdDv) object for the device to be configured by getting
the PdDv object whose Uniquetype descriptor matches the Link to Predefined Devices
Object Class descriptor of the device's CuDv object.

5. If either the -1 or -2 option is specified, the Configure method should obtain the LED
Value descriptor of the device's PdDv object and display the value on the system LEDs
using the setleds subroutine. This specifies when the Configure method will execute at
boot time. If the system hangs during configuration at boot time, the displayed LED value
indicates which Configure method the hang occurred in.

6. If the device is already configured (that is, the Device State descriptor of the device's
CuDv object indicates that the device is in the Available state), and is an intermediate
device, the Configure method should skip to the task of detecting children devices. If the
device is configured but is not an intermediate device, the Configure method should
simply exit with no error.

7. If the device is still in the Defined state, the following tasks should be performed:

a. If the device has a parent, the Configure method must ensure that the parent device
exists and is in the available state. The method can look at the Parent Device Logical
Name descriptor of the device's CuDv object to obtain the parent name. If the device
does not have a parent, this descriptor should be a null string.

Assuming that the device does have a parent, the Configure method should obtain the
parent device's CuDv object and check the Device State descriptor. If the object does
not exist or is not in the Available state, exit with an error.

Another check must be made if the device has a parent device. The Configure
method must make sure that no other device connected to the same parent at the
same connection location has been configured. This case could arise, for example,
when different printers are connected to the same port using a switch box. Each of
the printers would have the same parent and connection, but only one could be
configured at any given time.

The Configure method can make this check by querying the CuDv object class for
objects whose Device State descriptor is set to available and whose Parent Device
Logical Name and Location Where Connected on Parent Device descriptors match
those for the device being configured. If a match is found, exit with an error.

Configuration Subsystem 4-65

Writing a Configure Method

b. If the device is an adapter card and the Configure method has been invoked at run
time (indicated by the absence of both the -1 and -2 options), the Configure method
should ensure that the adapter card is actually present. This can be done by reading
POS registers from the card. This is essential, because if the card is present, the
Configure method must invoke the busresolve library routine to assign bus resources
to the card and ensure that bus resources for the adapter do not conflict with other
adapter cards in the system. If the card is not present or the busresolve routine fails
to resolve bus resources, exit with an error.

The POS registers are obtained by opening and accessing the /dev/busO special file.

c. Determine whether or not the device has a device driver. The Configure method
obtains the name of the device driver from the Device Driver Name descriptor of the
device's PdDv object. If this descriptor is a null string, the device does not have a
device driver.

d. If the device has a device driver, the Configure method will need to perform the
following tasks:

• First, load the device driver. The loadext subroutine can be used to do this.
Loading a Device Driver has more information on loading the device driver.

• Determine the device's major number using the genmajor subroutine. See
Understanding Device Major and Minor Numbers for a Special File for more details.

• Determine the device's minor number, possibly by using the getminor and
genminor subroutines.

• Create the device special files in the /dev directory if they do not already exist.
Special files are created with the mknod subroutine.

• Build the device-dependent structure (DDS) for the device. This structure contains
the information that describes the device's characteristics to the device driver. The
information is usually obtained from the device's attributes in the Configuration
database. You may need to refer to the appropriate device driver information to
determine what the device driver expects the DDS to look like. The Device
Dependent Structure (DDS) Overview describes the DDS structure.

• Use the sysconfig subroutine to initialize and pass the DDS to the device driver.

(

• If there is code to be downloaded to the device, read in the required file and pass G
the code to the device through the interface provided by the device driver. The file
to be downloaded might possibly be identified by a Predefined Attribute (PdAt) or
Customized Attribute (CuAt) object. By convention, microcode files should be in the
/etc/microcode directory while downloaded adapter software should be the
/etc/asw directory.

e. After the tasks relating to the device driver are complete, or if the device did not have
a device driver, the Configure method should determine if it needs to obtain vital
product data (VPD) from the device. The VPD Flag descriptor of the device's PdDv
object specifies whether or not it has VPD. See Handling Device Vital Product Data
(VPD) for more details.

f. At this point, if no errors have been encountered, the device is configured. The
Configure method should update the Device Status descriptor of the device's CuDv
object to indicate that it is available.

4-66 Kernel Reference

Writing a Configure Method

8. If the device being configured is an intermediate device, the Configure method has one
final task to perform. If the child devices actually attached can be detected, the
Configure method is responsible for defining any new children not currently represented
in the CuDv object class. This is accomplished by invoking the Define method for each
new child device. For each detected child device that is already in the CuDv object class,
the Configure method must look at the child device's CuDv Change Status Flag
descriptor to see if it needs to be updated. If the descriptor's value is DONT _CARE,
nothing needs to be done. If it has any other value, it must be set to SAME and the child
device's CuDv object must be updated. The Change Status Flag descriptor is used by
the system to indicate configuration changes.

If the device is an intermediate device but cannot detect attached children, it can query
the CuDv object class for children. The value of the Change Status Flag descriptor for
these child devices should be DONT_CARE since the parent device cannot detect them.
Sometimes a child device has an attribute specifying to the Configure method whether
the child is to be configured. The autoconfig attribute of TTY devices is an example of
this type of attribute.

Regardless of whether the child devices are detectable, the Configure method should
write the device logical names of the children to be configured to standard output,
separated by space characters. If the method was invoked by the Configuration
Manager, the Manager invokes the Configure method for each of the child device name
written to standard output.

9. Finally, ensure that all object classes are closed and terminate the ODM. Exit with an
exit code of O (zero) if there are no errors.

Handling Device Vital Product Data (VPD)
Devices that provide vital product data (VPD) should be identified in the Predefined Device
(PdDv) object class by setting the VPD Flag descriptor to TRUE in each of the device's
PdDv objects. The Configure method must obtain the VPD from the device and store it into
the Customized VPD (CuVPD) object class. The appropriate hardware documentation for
the device should be consulted to determine how to retrieve the device's VPD. In many
cases, VPD can be obtained for a device from the device driver with the sysconfig
subroutine.

Once the VPD is obtained from the device, the Configure method should query the CuVPD
object class to see if the device already has hardware VPD stored there. If there is, the
method should compare the VPD obtained from the device with that from the CuVPD object
class. If the VPD is the same in both cases, no further processing is needed. If they are
different, update the VPD in the CuVPD object class for the device. If there is no VPD in the
CuVPD object class for the device, add the device's own VPD into it.

Comparing the device's VPD with that in the CuVPD object class first helps make
modifications to the CuVPD object class less frequent. This results from the fact that the
VPD from a device typically does not change. Reducing the number of database writes
increases performance and minimizes the possibility of data loss.

Understanding Configure Method Errors
For many of the errors detected by the Configure method, the method can simply exit with
the appropriate exit code. In other cases, the Configure method may need to undo some
operations it has performed. For instance, after loading the device's device driver and
defining the device to the device driver by passing it the Device Dependent Structure (DDS),
the Configure method may subsequently encounter an error while downloading microcode. If
this happens, the method should terminate the device from the device driver with the
sysconfig subroutine and unload the driver with the loadext subroutine.

Configuration Subsystem 4-67

Writing a Configure Method

The Configure method does not need to delete the special files or unassign the major and
minor numbers if the major and minor numbers were successfully allocated and the special
file created before the error was encountered.

This is because the AIX configuration scheme allows both major and minor numbers and
special files to be maintained for a device even though the device is unconfigured. If the
device is configured again, the Configure method should recognize that the major and minor
numbers are already allocated and that the special files already exist. See Understanding
Major and Minor Numbers for a Special File for more information.

By the time the Configure method checks for child devices, it has already successfully
configured the device that it was called to configure. Errors that occur while checking for
child devices are indicated with the E_FINDCHILD exit code. The mkdev command detects
whether the Configure method completed successfully. It can still display a message
indicating that an error occurred while looking for child devices.

Related Information
The mkdev command.

The /dev/busO special file.

Understanding Configure Method Errors, Writing an Unconfigure Method, Writing a Define
Method.

Customized Devices (CuDv) object class, Predefined Devices (PdDv) object class,
Customized Attributes (CuAt) object class, Predefined Attribute (PdAt) object class,
Customized Vital Product Data (CuVPD) object class.

The loadext subroutine, genmajor subroutine, getminor subroutine, genminor subroutine,
sysconfig subroutine, odm_initialize subroutine, odm_lock subroutine, mknod
subroutine, reldevno subroutine, relmajor subroutine.

Device-Dependent Structure (DDS) Overview.

Handling Device Vital Product Data (VPD).

Writing a Device Method.

Special File Overview in Files Reference.

Object Data Manager (ODM) Overview in General Programming Concepts.

Understanding Device States, Understanding Major and Minor Numbers For A Special File,
Understanding Device Dependencies and Child Devices, Loading A Device Driver
Configuration Manager Overview, Understanding System Boot Processing, Device Driver
Kernel Extension Overview in Kernel Extensions and Device Support Programming
Concepts.

The General Information section of RISC System/6000 Hardware Technical Reference
provides more details on the VPD.

4-68 Kernel Reference ·

/

Writing a Define Method

Writing a Define Method

Syntax

Flags

def dev-c class -s subclass -t type [-p parent-w connection] [-1 name]

-c class Specifies the class of the device being defined. Class, subclass, and type
are required to identify the Predefined Device object in the Predefined
Device (PdDv) object class for which a customized device instance is to
be created.

-s subclass Specifies the subclass of the device being defined. Class, subclass, and
type are required to identify the Predefined Device object in the PdDv
object class for which a customized device instance is to be created.

-t type Specifies the type of the device being defined. Class, subclass, and type
are required to identify the predefined device object in the PdDv object
class for which a customized device instance is to be created.

-p parent Specifies the logical name of the parent device. This logical name is
required for devices that connect to a parent device. This flag does not
apply to devices that do not have parents; for example, most
pseudo-devices.

-w connection Specifies where the device connects to the parent. This flag applies only
to devices that connect to a parent device.

-1 name This flag is passed in by the mkdev command if the user invoking the
command is defining a new device and wants to select the name for the
device. The Define method assigns this name as the logical name of the
device in the Customized Devices (CuDv) object, if the name is not
already in use. If this option is not specified, the Define method
generates a name for the device. Not all devices support or need to
support this flag.

Description
The Define method is responsible for creating a customized device instance of a device in
the Customized database. It does this by adding an object for the device into the
Customized Devices (CuDv) object class. The Define method is invoked either by the
mkdev configuration command, by a node configuration program, or by the Configure
method of a device that is detecting and defining child devices.

By convention, the first three characters of the name of the Define method should be def.
The remainder of the name can be any characters that identify the device or group of
devices that use the method, subject to AIX file name restrictions.

The Define method uses information supplied as input, as well as information in the
Predefined database, for filling in the CuDv object. If the method is written to support a
single device, it can ignore the class, subclass, and type options. In contrast, if the method
supports multiple devices, it may need to use these options to obtain the PdDv device object
for the type of device being customized.

Configuration Subsystem 4-69

Writing a Define Method

Guidelines for Writing a Define Method ~
Note: This list of tasks is meant to serve as a guideline for writing a Define method. In

writing a method for a specific device, you may be able to leave out some of the
tasks. For instance, if your device does not have a parent, there is no need to
include all of the parent and connection validation tasks. You may also find that your
device has special needs that are not listed in these tasks.

Your Define method must:

1. Validate input parameters.

Generally, a Configure method that invokes a Define method to define a child device.is
coded to pass the options expected by the child device's Define method. However, the
mkdev command always passes the class, subclass, and type options, while only
passing the other options based on user input to the mkdev command. Thus, the Define
method may need to ensure that all of the options it requires have been supplied to it.
For example, if the Define method expects parent and connection options for the device
being defined, it should ensure that the options are indeed supplied. Also, a Define \
method that does not support the -1 name specification option may want to exit with an
error if the option is supplied.

2. Initialize the Object Data Manager (QOM).

Initialize the Object Data Manager (ODM) using the odm_initialize subroutine and lock
the configuration database using the odm_lock subroutine. The following code fragment
illustrates this process:

#include <cf .h>

if (odm_initialize() < 0)
exit(E_ODMINIT); /* initialization failed */

if (odm_lock("/etc/objrepos/config_lock",0) == -1) {
odm_terminate();
exit(E_ODMLOCK); /*database lock failed*/

}

3. Retrieve the predefined PdDv object for the type of device being defined.

This is done by obtaining the object from the PdDv object class whose Class, Subclass,
and Type descriptors match the class, subclass, and type options supplied to the Define
method. If no match is found, the Define method should exit with an error. Information
will be taken from the PdDv device object in order to create the CuDv device object.

4. Ensure that the parent device exists.

If the device being defined connects to a parent device and the name of the parent has
been supplied, the Define method must ensure that the specified device actually exists.
It does this by retrieving the CuDv object whose Device Name descriptor matches the
name of the parent device supplied using the -p flag. If no match is found, the Define
method should exit with an error.

4-70 Kernel Reference

(
'II

/
I
\~

Writing a Define Method

5. Validate that the device being defined can be connected to the specified parent device.

If the device has a parent and that parent device exists in the CuDv object class, you
must next validate that the device being defined can be connected to the specified parent
device. To do this, retrieve the predefined connection object from the Predefined
Connection (PdCn) object class whose UniqueType, Connection Key, and Connection
Location descriptors match the Link To Predefined Devices Object Class descriptor of the
parent's CuDv object obtained in the previous step and the subclass and connection
options input into the Define method, respectively. If no match is found, an invalid
connection has been specified. This may be because the specified parent is not an
intermediate device, does not accept the type of device being defined (as described by
subclass), or does not have the connection location identified by the connection option.

6. Assign a logical name to the device.

Each newly assigned logical name must be unique to the system. If a name has been
supplied using the -1 flag, you must make sure it is unique before assigning it to the
device. This is done by checking the CuDv object class for any object whose Device
Name descriptor matches the desired name. If a match is found, the name is already
used and the Define method must exit with an error.

If the Define method is to generate a name, it can do so by obtaining the prefix name
from the Prefix Name descriptor of the device's PdDv device object and invoking the
genseq subroutine to obtain a unique sequence number for this prefix. By appending
the sequence number to the prefix name, a unique name results. The genseq routine
looks in the CuDv object class to ensure that it assigns a sequence number that has not
been used with the specified prefix to form a device name.

In some cases, a Define method may need to ensure that only one device of a particular
type has been defined. For example, there can only be one PTY device customized in
the CuDv object class. The PTY Define method does this by querying the CuDv object
class to see if a device by the name ptyO exists. If it does, the PTY device has already
been defined. Otherwise, the Define method proceeds to define the PTY device using
the name ptyo.

7. Determine the device's location code.

If the device being defined is a physical device, it has a location code. Understanding
Location Codes has more information about location codes.

8. Create the new Cu Dv object.

Set the CuDv descriptors as follows:

device name Use the name as determined above.

device status flag Set to the Defined state.

change status flag Set to the same value as that found in the Change Status Flag
descriptor in the device's PdDv object.

device driver instance Typically set to the same value as the Device Driver Name
descriptor in the device's PdDv object. It may be used later
by the Configure method.

device location code Set to a null string if the device does not have a location code.
Otherwise, set it to the value computed.

Configuration Subsystem 4-71

Writing a Define Method

parent device logical name
Set to a null string if the device does not have a parent. ·
Otherwise set it to the parent name as specified by the parent
option.

location where connected on parent device
Set to a null string if the device does not have a parent.
Otherwise, set it to the value specified by the connection
option.

link to predefined devices object class
Set to the value obtained from the Unique Type descriptor of
the device's PdDv object.

9. Write the name of the device to standard output.

A blank should be appended to the device name to serve as a separator in case other
methods write device names to standard output. Either the mkdev command or the
Configure method that invoked the Define method will intercept standard output to obtain
the device name assigned to the device.

10. Ensure all object classes are closed and terminate the ODM.

Exit with an exit code of O (zero) if there were no errors.

Related Information
The mkdev command.

Writing an Undefine Method, Writing a Configure Method, Loading A Device Driver.

Customized Devices (CuDv) object class, Predefined Devices (PdDv) object class,
Predefined Connection (PdCn) object class.

The genseq subroutine, odm_initialize subroutine, odm_lock subroutine.

Understanding Device States, Understanding Device Classes, Subclasses, and Types,
Understanding Major and Minor Numbers for a Special File, Understanding Device
Dependencies and Child Devices, Understanding Pseudo-Device Drivers, Configuration
Manager Overview, Understanding System Boot Processing, Device Driver Kernel Extension
Overview, Writing a Device Method Overview in Kernel Extensions and Device Support
Programming Concepts.

Devices Overview for System Management, Object Data Manager (ODM) Overview,
Understanding Location Codes in General Concepts and Procedures

4-72 Kernel Reference

I
(

\~

Writing an Unconfigure Method

Writing an Unconfigure Method

Syntax
ucfgdev-1 name

Flags
-1 name Identifies the logical name of the device to be unconfigured.

Description
The Unconfigure method is responsible for unconfiguring an available device. This means
taking a device that is available for use by the system and making it unusable. All the
customized information about the device is to be retained in the database so that the device
can be configured again exactly as it was before.

The actual operations required to make a device no longer available for use depend on what
the Configure Method did to make the device available in the first place. For instance, if the
device has a device driver, the Configure method will have Loading a Device Driver into the
kernel and described the device to the driver through a Device Dependent Structure (DDS) ..
The Unconfigure method thus needs to tell the driver to delete the device instance and then
request an unload of the driver.

If the device is an intermediate device, the Unconfigure method must check the states of the
child devices. If any child is in the Available state, the Unconfigure method will fail and leave
the device configured. To ensure proper system operation, all children must be
unconfigured before the parent can be unconfigured.

Although the Unconfigure method must check child devices, it does not need to check for
device dependencies recorded in the Customized Dependency (CuDep) object class. See
Understanding Device Dependencies and Child Devices.

The Unconfigure method must also fail if the device is currently open. In this case, the
device driver must return a value for the errno variable of EBUSY to the Unconfigure
method when the method requests the driver to delete the device. The device driver is the
only component at that instant that knows the device is open. As in the case of configured
children, the Unconfigure method will fail and leave the device configured.

When requesting the device driver to terminate the device, errno values other than EBUSY
can be returned. The driver should return ENODEV if it does not know about the device.
Under the best circumstances, however, this case should not occur. If ENODEV is returned,
the Unconfigure method should go ahead and unconfigure the device with respect to the
database so that the database and device driver are in agreement. If the device driver
chooses to return any other errno value, it must still delete any stored characteristics for the
specified device instance. The Unconfigure method should also indicate that the device is
unconfigured by setting the state to Defined.

The Unconfigure method does not generally release the major number and minor number
assignments for a device, nor does it delete the device's special files in the /dev directory.
Understanding Major and Minor Numbers has more information on device methods, major
numbers, minor numbers, and special files.

By convention, the first four characters of the name of the Unconfigure method should be
ucfg. The remainder of the name can be any characters, subject to AIX file-name
restrictions, that identify the device or group of devices that use the method.

Configuration Subsystem 4-73

Writing an Unconfigure Method

Guidelines for Writing an Unconfigure Method Ci
Note: This list of tasks is meant to serve as a guideline for writing an Unconfigure method. ~

In writing a method for a specific device, you may be able to leave out some of the
tasks. For instance, if your device is not an intermediate device or does not have a
device driver, your method can be written accordingly. You may also find that your
device has special needs that are not listed in these tasks.

Your Unconfigure method must:

1. Validate the input parameters. The -1 flag must be supplied to identify the device that is
to be unconfigured.

2. Initialize the Object Data Manager (ODM) using the odm_initialize subroutine and lock
the Configuration database using the odm_lock subroutine. See Writing a Define
Method for an example.

3. Retrieve the Customized Device (CuDv) object for the device to be unconfigured. This is
done by getting the CuDv object whose Device Name descriptor matches the name
supplied with the -1 flag. If no object is found with the specified name, exit with an error.

4. Check the device's current state. If the Device Status descriptor indicates that the device
is in the Defined state, then it is already unconfigured. You should exit as for a
successful completion.

5. Check for child devices in the Available state. This can be done by querying the CuDv
object class for objects whose Parent Device Logical Name descriptor matches this
device's name and whose Device Status descriptor is not defined. If a match is found,
exit with an error.

6. Retrieve the predefined Predefined Device (PdDv) object for the device to be configured
by getting the PdDv object whose UniqueType descriptor matches the Link to Predefined
Devices Object Class descriptor of the device's CuDv object. This object will be used to
get the device driver name.

7. Determine whether the device has a device driver. The Unconfigure method obtains the
name of the device driver from the Device Driver Name descriptor of the device's PdDv
object. If this descriptor is a null string, the device does not have a device driver. In this
case, skip to the task of updating the device's state.

I

\

8. If the device has a device driver, the Unconfigure method will need to perform the
following tasks: (

a. Determine the device's major and minor numbers using the genmajor and getminor
subroutines. These are used to compute the device's devno, using the makedev
macro defined in the sysmacros.h header file, in preparation for the next task. See
Understanding Device Major and Minor Numbers for a Special File for more details.

b. Use the sysconfig subroutine to tell the device driver to terminate the device. If a
value of EBUSY for the errno variable is returned, exit with an error.

c. Use the loadext routine to unload the device driver from the kernel. The loadext
routine will not actually unload the driver if there is another device still configured for
the driver. See Loading a Device Driver for more details.

4-7 4 Kernel Reference

~

Writing an Unconfigure Method

9. The device is now unconfigured. The Unconfigure method should update the Device
Status descriptor of the device's CuDv object to defined.

10. Ensure that all object classes are closed and terminate the ODM. If there are no errors,
exit with an exit code of O (zero}.

Related Information
The mkdev command.

Writing a Configure Method, Writing a Device Method.

Customized Devices (CuDv} object class, Predefined Devices (PdDv} object class.

The loadext subroutine, genmajor subroutine, getminor subroutine, sysconfig
subroutine, odm_initialize subroutine, odm_lock subroutine.

The Device Dependent Structure (DDS} Overview.

Special File Overview in Files Reference.

Object Data Manager (ODM} Overview in General Programming Concepts.

Understanding Device States, Understanding Major and Minor Numbers for a Special File,
Understanding Device Dependencies and Child Devices, Loading a Device Driver in Kernel
Extensions and Device Support Programming Concepts

Configuration Subsystem 4-75

Writing an Undefine Method

Writing an Undefine Method

Syntax
udef dev-1 name

Flags
-1 name Identifies the logical name of the device to be undefined.

Description
The Undefine method is responsible for deleting a Defined device from the Customized
database. Once a device is deleted, it cannot be configured until it is once again defined by
the Define method.

The Undefine method is also responsible for releasing the major and minor number
assignments assignments for the device instance and deleting the device's special files from
the /dev directory. If minor-number assignments are registered with the genminor
subroutine, the Undefine method can release the major and minor number assignments and
delete the special files by simply calling the reldevno subroutine.

By convention, the first four characters of the name of the Undefine method are to be udef.
The remainder of the name can be any characters, subject to AIX file-name restrictions, that
identify the device or group of devices that use the method.

Guidelines foe Writing an Undefine Method
Note: This list of tasks is meant to serve as a guideline for writing an Undefine method.

You may find that your device has special needs that are not listed in these tasks.

Your Undefine method must:

1. Validate the input parameters. The -1 flag must be supplied to identify the device that is
to be undefined.

2. Initialize the Object Data Manager (ODM) using the odm_initialize subroutine and lock
the configuration database using the odm_lock subroutine. See Writing a Device Method
for an example.

3. Retrieve the Customized Device (CuDv) object for the device to be unconfigured. This is
done by getting the CuDv object whose Device Name descriptor matches the name
supplied with the -1 flag. If no object is found with the specified name, exit with an error.

4. Check the device's current state. If the Device Status descriptor indicates that the device
is not in the Defined state, then it is not ready to be undefined. If this is the case, exit
with an error.

5. Check for any child devices. This check is accomplished by querying the CuDv object
class for any objects whose Parent Device Logical Name descriptor matches this
device's name. If the device has any children at all, regardless of the states they are in,
the Undefine method must fail. All children must be undefined before the parent can be
undefined.

4-76 Kernel Reference

(

\
I

/

Writing an Undefine Method

6. Check to see if this device is listed as a dependency of another device. This is done by
querying the Customized Dependency (CuDep) object class for objects whose
Dependency descriptor matches this device's logical name. If a match is found, exit with
an error. A device may not be undefined if it has been listed as a dependency by another
device. Understanding Device Dependencies and Child Devices discusses
dependencies.

7. If no errors have been encountered, the method can begin deleting customized
information. First, delete the special files from the /dev directory. Next, delete all minor
number assignments. If the last minor number has been deleted for a particular major
number, release the major number as well, using the relmajor subroutine. The Undefine
method should never delete objects from the Customized Device Driver (CuDvDr) object
class directly, but should always use the routines provided. If the minor-number
assignments are registered with the genminor subroutine, all of the above can be
accomplished by the reldevno subroutine.

8. Delete all attributes for the device from the Customized Attribute (CuAt) object class.
Simply delete all CuAt objects whose Device Name descriptor matches this device's
logical name. It is not an error if the ODM routines used to delete the attributes indicate
that no objects were deleted. This simply indicates that the device has no attributes that
had been changed from the default values.

9. Delete the Customized Device (CuDv) object for the device.

10. Make sure all object classes are closed and terminate the ODM. Exit with an exit code of
0 (zero) if there are no errors.

Related Information
Writing a Define Method.

Customized Device (CuDv) object class, Customized Attributes (CuAt) object class,
Customized Dependency (CuDep) object class, Customized Device Driver (CuDvDr) object
class.

The genminor subroutine, reldevno subroutine, relmajor subroutine, odm_initialize
subroutine, odm_lock subroutine.

Configuration Subsystem 4-77

Optional Start and Stop Methods

Writing Optional Start and Stop Methods

Syntax

Flags

sttdev-1 name
stpdev-1 name

-1 name Identifies the logical name of the device to be started or stopped.

Description
The Start and Stop methods are optional methods. They allow a device to support the
additional device state of Stopped. The Start method takes the device from the Stopped
state to the Available state. The Stop method takes the device from the Available state to
the Stopped state. Most devices do not have Start and Stop methods.

The Stopped state provides a state in which the device is configured in the system but
unusable by applications. In this state, the device's driver is loaded and the device is defined
to the driver. This might be implemented by having the Stop method issue a command telling
the device driver not to accept any normal 110 requests. If an application subsequently
issues a normal 1/0 request to the device, it will fail. The Start method can then issue a
command to the driver telling it to start accepting 1/0 requests once again.

If you write Start and Stop methods for your device, your other methods must be written to
account for the Stopped state. For instance, if one of your methods checks for a device
state of Available, it might now need to check for both Available and Stopped states.

Additionally, write your Configure method so that it takes the device from the Defined state to
the Stopped state. However, you can have the Configure method invoke the Start method,
thus taking the device to the Available state. The Unconfigure method should be able to
take the device to the Defined state from either the Available or Stopped states.

By convention, the first three characters of the name of the Start method should be stt. The
first three characters of the name of the Stop method should be stp. The remainder of the
names can be any characters, subject to AIX file-name restrictions, that identify the device
or group of devices that use the methods.

Start and Stop methods, when they are used, are usually highly device-specific.

Related Information
Writing an Unconfigure Method, Writing a Configure Method.

4-78 Kernel Reference

(~

I~

/

\

/

~

Chapter 5. Communications Subsystem

Communications Subsystem 5-1

ddclose

ddclose Communications PDH Entry Point

Purpose

Syntax

Frees up system resources used by the specified communications device until they are
needed again.

#include <Sys/device.h>

int ddclose (devno, chan)
dev _t devno;
int chan;

Parameters
devno Major and minor device numbers.

ch an Channel number assigned by the device handler's ddmpx entry point.

Description
The ddclose entry point frees up system resources used by the specified devic~ until they
are needed again. Data retained in the receive queue, transmit queue, or status queue is
purged. All buffers associated with this channel are freed. The ddclose entry point should
be called once for each successfully issued ddopen entry point.

Before issuing a ddclose entry point, a CIO_HALT operation should be issued for each
previously successful CIO_START operation on this channel.

Execution Environment
A ddclose entry point can be called from the process environment only.

Return Values
In general, communication device handlers use the common return codes defined for an
entry point. However, device handlers for specific communication devices may return
device-specific codes. The common return code for the ddclose entry point is the following:

ENXIO Indicates an attempt to close an unconfigured device.

Related Information
The ddmpx entry point, ddopen entry point.

The CIO_HALT operation, CIO_START operation.

5-2 Kernel Reference

/
\

\
\,

ddioctl (CIO_GET_STAT)

ddioctl (GIO_GET_STAT) Communications PDH Entry Point

Purpose

Syntax

Returns the next status block in the status queue to a user-mode process.

#include <sys/device.h>
#include <sys/comio.h>

int ddioctl {devno, op, parmptr, devflag, chan, ex~
dev_t devno;
int op;
struct status_block *parmptr;
ulong devflag;
int chan, ext;

Parameters
devno Specifies the major and minor device numbers.

Indicates CIO_GET _STAT. op

parmptr

devflag

ch an

ext

Description

Points to a status_block structure.

Set to the DKERNEL flag. This flag must be clear, indicating a call by a
user-mode process.

Specifies the channel number assigned by the device handler's ddmpx
entry point.

Device-dependent.

Note: This operation should not be called by kernel-mode processes.

The CIO_GET_STAT operation returns the next status block in the status queue to a
user-mode process.

Execution Environment
A CIO_GET_STAT operation can be called from the process environment only.

Return Values
In general, communication device handlers use the common codes defined for an operation.
However, device handlers for specific communication devices may return device-specific
codes. The common return codes for the CIO_GET_STAT operation are the following:

ENXIO

EFAULT

EINVAL

EACCES

EBUSY

ENO DEV

Indicates an attempt to use an unconfigured device.

Indicates that an invalid address was specified.

Indicates an invalid parameter.

Indicates an invalid call from a kernel process.

Indicates that the maximum number of opens was exceeded.

Indicates that the device does not exist.

Communications Subsystem 5-3

ddioctl {CIO_GET_STAT)

Related Information
The ddioctl entry point, ddmpx entry point.

Status Blocks for Communications Device Handlers.

(

(

/
I

\._

5-4 Kernel Reference

\
/

Status Blocks

Status Blocks for Communications Device Handlers
Status blocks are used to communicate status and exception information.

User-mode processes receive a status block whenever they request a CIO_GET _STAT
operation. A user-mode process can wait for the next available status block by issuing a
ddselect entry point with the specified POLLPRI event.

A kernel-mode process receives a status block through the stat_fn procedure. This
procedure is specified when the device is opened with the ddopen entry point.

Status blocks contain a code field and possible options. The code field indicates the type of
status block code (for example, CIO_START_DONE). A status block's options depend on
the block code. The C structure of a status block is defined in the <sys/comio.h> file.

The following are the six common status codes:

• CIO_START_DONE

• CIO_HALT_DONE

• CIO_TX_DONE

• CIO_NULL_BLK

• CIO_LOST_STATUS

• CIO_ASYNC_STATUS.

Additional device-dependent status block codes may be defined.

CIO START DONE Status Block
- -This block is provided by the device handler when the CIO_START operation completes:

option[O] The CIO_OK or CIO_HARD_FAIL status/exception code from the common
or device-dependent list.

option[1] The low-order two bytes are filled in with the netid field. This field is passed
when the CIO_START operation is invoked.

option(2]

option[3]

Device-dependent.

Device-dependent.

CIO HALT DONE Status Block
- - This block is provided by the device handler when the CIO_HALT operation completes:

option[O] The CIO_OK status/exception code from the common or device-dependent
list.

option[1]

option[2]

option[3]

The low-order two bytes are filled in with the netid field. This field is passed
when the CIO_START operation is invoked.

Device-dependent.

Device-dependent.

Communications Subsystem 5-5

Status Blocks

CIC TX DONE Status Block 0
- - The following block is provided when the physical device handler (PDH) is finished with a ~

transmit request for which acknowledgment was requested:

option[O] The CIO_OK or CIC_ TIMEOUT status/exception code from the common or
device-dependent list.

option[1]

option[2]

option[3]

The write_id field specified in the write_extension structure passed in the
ext parameter to the ddwrite entry point.

For a kernel-mode process, indicates the mbuf pointer for the transmitted
frame.

Device-dependent.

CIC NULL BLK Status Block
- - This block is returned whenever a status block is requested but there are none available:

option[O] Not used

option[1]

option[2]

option[3]

Not used

Not used

Not used.

CIC LOST STATUS Status Block
- - This block is returned once aftgr one or more status blocks is lost due to status queue

overflow. The CIO_LOST_STATUS block provides the following:

option[O] Not used

option[1]

option[2]

option[3]

Not used

Not used

Not used.

CIC ASYNC STATUS Status Block
- This status block is used to return status and exception codes that occur unexpectedly:

option[O]

option[1]

option[2]

option[3]

Related Information

The CIO_HARD_FAIL or CIO_LOST_DATA status/exception code from the
common or device-dependent list.

Device-dependent

Device-dependent

Device-dependent.

The ddwrite entry point, ddselect entry point.

The CIO_HALT operation, CIO_GET_STAT operation, CIO_START operation.

List of Common Status/Exception Codes.

5-6 Kernel Reference

I
I

\

(

ddioctl {CIO_HALT)

ddioctl (CIO_HALT) Communications PDH Entry Point

Purpose

Syntax

Removes the caller's network ID and undoes whatever was effected by the corresponding
CIO_START operation.

#include <sys/device.h>
#include <sys/comio.h>

int ddioctl (devno, op, parmptr, devflag, chan, ext)
dev _t devno;
int op;
struct session_blk *parmptr,
ulong devflag;
int chan, ext;

Parameters
devno Specifies the major and minor device numbers.

Equals CIO_HALT. op

parmptr

devflag

ch an

ext

Description

Points to a session_blk structure. This structure is defined in the
<Sys/comio.h> header file.

Set by kernel-mode processes to the DKERNEL flag. This flag is cleared by
calling user-mode processes.

Specifies the channel number assigned by the device handler's ddmpx
routine.

Device-dependent.

The CIO_HALT operation must be supported by each physical device handler in the
communication 1/0 subsystem. This entry point should be issued once for each successfully

\ issued CIO_START operation. This entry point removes the caller's network ID and undoes
/ whatever was effected by the corresponding CIO_START operation.

The CIO_HALT call returns immediately to the caller, before the operation completes. If the
return indicates no error, the PDH builds a CIO_HALT_DONE status block upon completion.
For kernel-mode processes, the status block is passed to the associated status function
(specified at open time). For user-mode processes, the block is placed in the associated
status/exception queue.

The session blk Parameter Block
For the CIO_HALT operation, the ext parameter may be a pointer to a session_blk
structure. This structure is defined in the <sys/comio.h> header file and the contains
following fields:

status Indicates the status of the port. This field may contain additional information
about the completion of the CIO_HALT operation. Besides the status codes
listed here, device-dependent codes can be returned:

CIO_OK Indicates that the operation was successful.

Communications Subsystem 5-7

ddioctl (CIO_HALT)

CIO_INV_CMD

CIO_NETID_INV

Indicates that an invalid command was issued.

Indicates that the network ID was invalid.

The status field is used for specifying immediately detectable erros. If the
status is CIO_OK, the CIO_HALT_DONE status block should be processed
to detemine whether the halt completed without errors.

netid Contains the network ID to halt.

Execution Environment
A CIO_HALT operation can be called from the process environment only.

Return Values
In general, communication device handlers use the common return codes defined for an
operation. However, device handlers for specific communication devices may return
device-specific codes. The common return codes for the CIO_HAL T operation are the
following:

ENXIO

EFAULT

EINVAL

EBUSY

ENODEV

Related Information

Indicates an attempt to use an unconfigured device.

Indicates that an invalid address was specified.

Indicates an invalid parameter.

Indicates that the maximum number of opens was exceeded.

Indicates that the device does not exist.

The ddioctl entry point.

The CIO_START operation, CIO_GET _STAT operation.

5-8 Kernel Reference

/
\

'

(

ddioctl (CIO_START)

ddioctl (CIO_START) Communications PDH 'Entry Point

Purpose
Syntax

#include <sys/device.h>
#include <sys/comio.h>

int ddioctl (devno, op, parmptr, devflag, chan, ext)
dev_t devno;
int op;
struct session_blk * parmptr;
ulong devflag;
int chan, ext;

Parameters
devno Specifies the major and minor device numbers.

op

parmptr

devflag

ch an

ext

Description

Set to CIO_START.

Points to session_blk structure.

Set to the DKERNEL flag by calling kernel-mode processes. This flag is
cleared by calling user-mode processes.

Specifies the channel number assigned by the device handler's ddmpx
entry point.

Device-dependent.

The CIO_START communications PDH entry point must be supported by each physical
device handler in the communication 1/0 subsystem. Its use varies from adapter to adapter.
This entry point opens a communication session on a channel that has been opened by a
ddopen entry point. Once a channel is opened, multiple CIO_START operations can be
issued. For each successful start, a corresponding CIO_HALT operation must be issued
later.

The CIO_START entry point requires only the netid input parameter. This parameter is
registered for the session. At least one network ID must be registered for this session before
the PDH successfully accepts a call to the ddwrite or ddread entry point on this session. If
this start is the first issued for this port or adapter, the appropriate hardware initialization is
performed. Time consuming initialization activities, such as call connection, are also
performed.

This call returns immediately to the caller before the asynchronous command completes. If
the return indicates no error, the PDH builds a CIO_START_DONE status block upon
completion. For kernel-mode processes, the status block is passed to the associated status
function (specified at open time). For user-mode processes, the status block is placed in the
associated status/exception queue.

Communications Subsystem 5-9

ddioctl (CIO_START)

The session_blk Parameter Block
For the CIO_START operation, the ext parameter may be a pointer to a session_blk
structure. This structure is defined in the <sys/comio.h> file and contains the following
fields:

status Indicates the status of the port. This field may contain additional information
about the completion of the CIO_START operation. Besides the status
codes listed here, device-dependent codes can be returned:

CIO_OK

CIO_INV_CMD

CIO_NETID_INV

CIO_NETID_DUP

CIO_NETID_FULL

Indicates that the operation was successful.

Indicates that an invalid command was issued.

Indicates that the network ID was invalid.

Indicates that the network ID was a duplicate of an
existing ID already in use on the network.

Indicates that the network table is full.

netid Contains the network ID to register with the start.

Execution Environment
A CIO_START operation can be called from the process environment only.

Return Values
In general, communication device handlers use the common return codes defined for an
entry point. However, device handlers for specific communication devices may return
device-specific codes. The common return codes for the CIO_START operation are the
following:

ENXIO

EFAULT

EINVAL

ENOSPC

Indicates an attempt to use an unconfigured device.

Indicates that an invalid address was specified.

Indicates an invalid parameter.

Indicates that the network ID table is full.

EADDRINUSE Indicates a duplicate network ID.

EBUSV Indicates that the maximum number of opens was exceeded.

ENODEV Indicates that the device does not exist.

Related Information
The ddioctl entry point, ddwrite entry point, ddread entry point.

The CIO_HALT operation, CIO_GET _STAT operation.

5-1 0 Kernel Reference

(
\

\
/

ddioctl (CIO~QUERV)

ddioctl (CIO_QUERY) Communications PDH Entry Point

Purpose

Syntax

Returns various statistics from the device.

#include <sys/device.h>
#include <sys/comio.h>

int ddioctl (devno, op, parmptr, devflag, chan, ex~
dev _t devno;
int op;
struct query _parms * parmptr;
ulong devflag;
int chan, ext;

Parameters
devno Major and minor device numbers.

Set to CIO_QUERY. op

parmptr

devflag

ch an

ext

Description

Points to a query _parms structure. This structure is defined in the
<Sys/comio.h> header file.

Set to the DKERNEL flag by calling kernel-mode processes. This flag is
cleared by calling user-mode processes.

Specifies channel number assigned by the device handler's ddmpx entry
point.

Device-dependent.

The CIO_QUERY operation returns various statistics from the device. Counters are zeroed
by the physical device handler when the device is configured. The data returned consists of
two contiguous portions. The first portion contains counters to be collected and maintained
by all device handlers in the communication 1/0 subsystem. The second portion consists of
device-dependent counters and parameters.

The query_parms Parameter Block
For the CIO_QUERY operation, the paramptrparameter points to a query_parms structure.
This structure is located in the <Sys/comio.h> header file and contains the following fields:

status

bufptr

buflen

clearall

Contains additional information about the completion of the status block.
Besides the status codes listed here, device-dependent codes may be
returned:

CIO_OK Indicates that the operation was successful.

CIO_INV_CMD Indicates that an invalid command was issued.

Points to the buffer where the statistic counter are to be copied.

Indicates the length of the buffer pointed to by the bufptr field.

When set to CIO_QUERY_CLEAR, the statistics counters are set to zero
upon return.

Communications Subsystem 5-11

ddioctl {CIO_QUERY)

Execution Environment
A CIO_QUERY operation can be called from the process environment only.

Return Values
In general, communication device-handlers use the common return codes defined for an
entry point. However, device handlers for specific communication devices may return
device-specific codes. The common return codes for the CIO_QUERY operation are the
following:

ENXIO

EFAULT

EINVAL

EIO

ENOMEM

EBUSV

ENODEV

Related Information

Indicates an attempt to use unconfigured device.

Indicates that an invalid address was specified.

Indicates an invalid parameter.

Indicates that an error has occurred.

Indicates that the operation was unable to allocate the required memory.

Indicates that the maximum number of opens was exceeded.

Indicates that the device does not exist.

The ddioctl entry point, ddmpx entry point.

5-12 Kernel Reference

I

~

ddopen (Kernel Mode)

ddopen (Kernel Mode) Communications PDH Entry Point

Purpose

Syntax

Performs data structure allocation and initialization for a communications Physical Device
Handler (PDH).

#include <sys/device.h>
#include <sys/comio.h>

int ddopen (devno, devflag, chan, extptt,
dev_t devno;
ulong devflag;
int chan;
struct kopen_ext *extptr,

Parameters for Kernel-Mode Processes
devno Specifies the major and minor device numbers.

devflag Specifies the flag word with the following definitions:

DKERNEL This flag must be set for a calling a kernel-mode process.

DNDELAV When set, the PDH performs nonblocking writes for this
channel. Otherwise, blocking writes are performed.

chan Specifies the channel number assigned by the device handler's ddmpx
entry point.

extptr Points to the kopen_ext structure.

Description
The ddopen entry point performs data structure allocation and initialization. Hardware
initialization and other time consuming activities, such as call initialization, are not
performed. This call is synchronous, which means it does not return until the ddopen entry
point is complete.

The kopen_ext Parameter Block
For a kernel-mode process, the extptr parameter points to a kopen_ext structure. This'
structure contains the following fields:

status The status field may contain additional information about the completion of
an open. Besides the status code listed here, device-dependent codes can
be returned.

CIO_OK

CIO_NOMBUF

CIO_BAD_RANGE

CIO_HARD_FAIL

Indicates that the operation was successful.

Indicates that the operation was unable to allocate
mbuf structures.

Indicates an invalid address or parameter was
specified.

A hardware failure has been detected.

Communications Subsystem 5-13

ddopen (Kernel Mode)

rx_fn Specifies the address of a kernel procedure. The PDH calls this procedure
whenever there is a receive frame to be processed. The rx_fn procedure
must have the following syntax:

#include <sys/comio.h>

void rx_fn {open_id, rd_ext_p, mbufptt}
ulong open_id;
struct read_extension *rd_ext_p;
struct mbuf * mbufptr;

open_id

rd_ext_p

mbufptr

Identifies the instance of open. It is passed to the PDH with
the ddopen entry point.

Points to the read extension as defined in the
<sys/comio.h> header file.

Points to an mbuf chain containing received data.

The kernel procedure calling the ddopen entry point is responsible for
pinning the rx_fn kernel procedure before making the open call. It is the
responsibility of code scheduled by the rx_fn procedure to free the mbuf
chain.

tx_fn Specifies the address of a kernel procedure. The PDH calls this procedure
when the following sequence of events occurs:

stat_fn

5-14 Kernel Reference

1. The DNDELAY flag is set (determined by its setting in the last
uiop->uio_fmode field).

2. The most recent ddwrite entry point for this channel failed with a return
code of EAGAIN.

3. Transmit queue for this channel now has room for a write.

The tx_fn procedure must have the following syntax:

#include <sys/comio.h>

void tx_fn (open_id)
ulong open_id;

open_id Identifier of instance of open. It is passed to the PDH with
the ddopen call.

The kernel procedure calling the ddopen entry point is responsible for
pinning the tx_fn kernel procedure before making the call.

Specifies the address of a kernel procedure to be called by the PDH
whenever a status block becomes available. This procedure must have the
following syntax:

#include <sys/comio.h>

void stat_fn (open_id, sblk_ptr);
ulong open_id;
struct status_block * sblk_ptr

(
\j

\

open_id

sblk_ptr

ddopen (Kernel Mode)

Identifier of instance of open. It is passed to the PDH with
the ddopen entry point.

Points to a status block defined in the sys/comio.h file.

The kernel procedure calling the ddopen entry point is responsible for
pinning the stat_fn kernel procedure before making the open call.

All three procedures are made synchronously from the off-level portion of
the PDH at high priority from the PDH. Therefore, the called kernel
procedure must return quickly. Parameter blocks are passed by reference
and are valid only for the call's duration. After return from this call, the
parameter block should not be accessed.

Execution Environment
A ddopen (kernel mode) entry point can be called from the process environment only.

Return Values
In general, communication device handlers use the common codes defined for an entry
point. However, device handlers for specific communication devices may return
device-specific codes. The common return codes for the ddopen entry point are the
following:

EINVAL

EIO

ENO DEV

EBUSV

ENOMEN

ENXIO

Indicates an invalid parameter.

Indicates an error has occurred. The status field contains the relevant
exception code.

Indicates that there is no such device.

Indicates that the maximum number of opens was exceeded or that the
device was opened in exclusive-use mode.

Indicates that the PDH was unable to allocate the space that it needed.

Indicates that an attempt was made to open the PDH before it was
configured.

ENOTREADY Indicates that the PDH is in the process of shutting down the adapter.

Related Information
The ddopen entry point for user-mode processes, ddwrite entry point, ddclose entry point,
ddmpx entry point.

Use of the mbuf Structure in the Communications PDH, Status Blocks for the
Communication Device Handlers.

Communications Subsystem 5-15

ddopen (User Mode)

ddopen (User Mode) Communications PDH Entry Point

Purpose

Syntax

Performs data structure allocation and initialization for a communications PDH.

#include <sys/device.h>
#include <sys/comio.h>

intddopen(devno,devflag,chan,ex~
dev_t devno;
ulong devflag;
int chan;
int ext;

Parameters for User-Mode Processes
devno

devflag

Specifies the major and minor device numbers.

Specifies the flag word with the following definitions:

DKERNEL

ON DELAY

This flag must be clear, indicating call by a user-mode
process.

If this flag is set, the physical device handler (PDH)
performs nonblocking reads and writes for this channel.
Otherwise, blocking reads and writes are performed for this
channel.

chan Specifies the channel number assigned by the device handler's ddmpx
entry point.

ext Device-dependent.

(
I

Description (
The ddopen entry point performs data structure allocation and initialization. Hardware ..
initialization and other time consuming activities, such as call initialization, are not
performed. This call is synchronous, which means it does not return until the open operation
is complete.

Execution Environment
A ddopen entry point can be called from the process environment only.

5-16 Kernel Reference

ddopen (User Mode)

Return Values
In general, communication device handlers use the common return codes defined for an
entry point. However, device handlers for specific communication devices may return
device-specific codes. The common return codes for the ddopen entry point are the
following:

EINVAL

ENODEV

EBUSY

ENOMEN

Indicates an invalid parameter.

Indicates that there is no such device.

Indicates that the maximum number of opens was exceeded.

Indicates that the PDH was unable to allocate needed space.

ENOTREADY Indicates that the PDH is in the process of shutting down the adapter.

ENXIO

Related Information

Indicates that an attempt was made to open the PDH before it was
configured.

The ddopen entry point for kernel-mode processes, ddclose entry point.

Communications Subsystem 5-17

ddread

ddread Communications PDH Entry Point

Purpose

Syntax

Returns a data message to a user-mode process.

#include <sys/device.h>
#include <Sys/comio.h>

int ddread (devno, uiop, chan, extpttJ
dev_t devno;
struct uio * uiop;
int chan;
read_extension *extptr,

Parameters
devno Specifies the major and minor device numbers.

uiop

ch an

extptr

Description

Points to a uio structure. For a calling user-mode process, the uio structure
specifies the location and length of the caller's data area in which to transfer
information.

Specifies the channel number assigned by the device handler's ddmpx
entry point.

Can be NULL or else point to the read_extension structure. This structure
is defined in the <Sys/comio.h> header file.

Note: The entry point should not to be called by a kernel-mode process.

The ddread entry point returns a data message to a user-mode process. This entry point
may or may not block, depending on the setting of the DNDELAV flag. If a nonblocking read
is issued and no data is available, the ddread entry point returns immediately with O (zero)
bytes.

For this entry point, the extptr parameter may point to a user-supplied read_ extension
structure. This structure contains the following fields:

status

netid

sessid

5-18 Kernel Reference

The status value may contain additional information about the completion of
the ddread entry point. Besides the status codes listed here,
device-dependent codes can be returned:

CIO_OK

CIO_BUF _OVFLW

Indicates that the operation was successful.

Indicates that the frame was too large to fit in the
receive buffer. The PDH truncates the frame and
places the result in the receive buffer.

Specifies the network ID associated with the returned frame. If a
CIO_BUF _OVFLW was received, this field may be empty.

Specifies the session ID associated with the returned frame. If a
CiO_BUF _OVFLW was received, this field may be empty.

(
I
\j

ddread

Execution Environment
A ddread entry point can be called from the process environment only.

Return Values
In general, communication device handlers use the common codes defined for an entry
point. However, device handlers for specific communication devices may return
device-specific codes. The common return codes for the ddread entry point are the
following:

ENXIO

EINVAL

EIO

EA CC ES

EMSGSIZE

EINTR

EFAULT

EBIDEV

Related Information

Indicates an attempt to use an unconfigured device.

Indicates an invalid parameter.

Indicates that an error has occurred.

Indicates an invalid call from a kernel process.

Indicates that the frame was too large to fit into the receive buffer and that
no extptr parameter was supplied to provide an alternate means of reporting
this error with a status of CIO_BUF _OVFLW.

Indicates that a Locking mode sleep was interrupted.

Indicates that an invalid address was supplied.

Indicates that the device specified does not exist.

The ddmpx entry point, ddwrite entry point.

The CIO_START operation.

List of Common Status/Exception Codes.

Physical Device Handler Model Overview.

Communications Subsystem 5-19

ddselect

ddselect Communications PDH Entry Point

Purpose

Syntax

Checks to see if a specified event or events has occurred on the device.

#include <sys/device.h>
#include <sys/comio.h>

int ddselect (devno, events, reventp, chan)
dev_t devno;
ushort events;
us ho rt * reventp;
int chan;

Parameters
devno Specifies the major and minor device numbers.

events

reventp

Specifies the conditions to be checked. The conditions are denoted by the
bitwise OR of one or more of the following:

POLLIN Check if receive data is available.

POLLOUT Check if transmit available.

POLLPRI Check if status is available.

POLLSYNC Check if asychronous notification is available.

Points to the result of condition checks. A bitwise OR of the following
conditions is returned:

POLLIN

POLLO UT

POLLPRI

Receive data is available.

Transmit available.

Status is available.

chan Specifies the channel number assigned by the device handler's ddmpx
entry point.

Description
Note: This entry point should not be called by a kernel-mode process.

The ddselect entry point checks and returns a status of 1 (one) or more conditions for a
user-mode process. It works the same way The common ddselect entry point does.

Execution Environment
A ddselect entry point can be called from the process environment only.

5-20 Kernel Reference

{

\

(

i
I

ddselect

Return Values
In general, communication device handlers use the common return codes defined for an
entry point. However, device handlers for specific communication devices may return
device-specific codes. The common return codes for the ddselect entry point are the
following:

ENXIO

EINVAL

EA CC ES

EBUSV

ENO DEV

Related Information

Indicates an attempt to use an unconfigured device.

Indicates that an invalid argument was specified.

Indicates an invalid call from a kernel process.

Indicates that the maximum number of opens was exceeded.

Indicates that the device does not exist.

The ddmpx entry point.

Communications Subsystem 5-21

ddwrite

ddwrite Communications PDH Entry Point

Purpose

Syntax

Queues a message for transmission or blocks until the message can be queued.

#include <Sys/device.h>
#include <Sys/comio.h>

int ddwrite (devno, uiop, chan, extptl)
dev_t devno;
struct uio * uiop;
int chan;
struct write_extension *extptr;

Parameters
devno Specifies the major and minor device numbers.

uiop

ch an

extptr

Description

Points to a uio structure specifying the location and length of the caller's
data.

Specifies the channel number assigned by the device handler's ddmpx
entry point.

Points to a write_extension structure. If the extptr parameter is NULL, then
default values are assumed.

The ddwrite entry point either queues a message for transmission or blocks until the
message can be queued, depending upon the setting of the DNDELAV flag.

/
I
\

The ddwrite routine is responsible for determining whether the data is in user or system
space by looking at the uiop->uio_segflg field. If the data is in system space, then the
uiop->uio_iov->iov_base field contains an mbuf pointer. The mbuf chain contains the (
data for transmission. The uiop->uio_resid field has a value of 4. If the data is in user
space, the data is located in the same manner as for the ddwrite entry point.

The write_extension Parameter Block
For this entry point, the extptr parameter can point to a write_extension structure. This
structure is defined in the <Sys/comio.h> header file and contains the following fields:

status

5-22 Kernel Reference

Indicates the status of the port. This field may contain additional information
about the completion of the ddwrite entry point. Besides the status codes
listed here, device dependent codes can be returned:

CIO_OK

CIO_NOMBUF

Indicates that the operation was successful.

Indicates that the operation was unable to allocate
mbuf structures.

If.
I

flag

ddwrite

Contains a bitwise OR of one or more of the following:

CIO_NOFREE_MBUF
Requests that the PDH not free the mbuf structure after
transmission is complete. The default is bit clear (free the
buffer). For a user-mode process, the PDH always frees the
mbuf structure.

CIO_ACK_ TX_DONE
Requests that, when done with this operation, the PDH
acknowledges completion by building a CIO_ TX_DONE
status block. In addition, requests the PDH either call the
kernel status function or (for a user-mode process) place
the status block in the status/exception queue. The default
is bit clear (do not acknowledge transmit completion).

writid Contains the write ID to be returned in the CIO_ TX_DONE status block.
This field is ignored if the user did not request transmit acknowledgment by
setting CIO_ACK_ TX_DONE in the flag field.

netid May contain the network ID.

Execution Environment
A ddwrite entry point can be called from the process environment only.

Return Values
In general, communication device handlers use the common return codes defined for an
entry point. However, device handlers for specific communication devices may return
device-specific codes. The common return codes for the ddwrite entry point are the
following:

ENXIO

EINVAL

EA GAIN

EFAULT

EINTR

ENOMEM

Indicates an attempt to use an unconfigured device.

Indicates an invalid parameter.

Indicates that the transmit queue is full and the DNDELAY flag is set. The
command was not accepted.

Indicates that an invalid address was specified.

Indicates that a Blocking mode sleep was interrupted.

Indicates that the operation was unable to allocate the needed mbuf
space.

ENOCONNECT Indicates that a connection was not established.

EBUSY Indicates that the maximum number of opens was exceeded.

ENODEV Indicates that the device does not exist.

Related Information
The ddmpx entry point.

The CIO_START operation, CIO_GET _STAT operation.

Communications Subsystem 5-23

entclose

entclose Ethernet Device Handler Entry Point

Purpose

Syntax

Resets the Ethernet device to a known state and returns system resources to the system.

#include <sys/device.h>

int entclose (devno, chan, ext)
dev_t devno;
int chan, ext;

Parameters
devno Identifies the major and minor device numbers.

ch an

ext

Description

Specifies the channel number assigned by the entmpx entry point.

Ignored by the Ethernet device handler.

The entclose entry point closes the device. It is called when a user-mode caller issues a
close subroutine. Before issuing the entclose entry point, the caller should have issued a
CIO_HALT operation for each successfully issued CIO_START operation during the
particular instance of the open.

Note: For each entopen entry point issued, there must be a corresponding entclose entry
point.

If the caller has specified a multicast address, the caller needs to issue the appropriate
entioctl operation to remove all multicast addresses before issuing the entclose entry point.

Execution Environment
An entclose entry point can be called from the process environment only.

Return Values
ENXIO

EBUSY

ENODEV

Indicates that the device is not configured.

Indicates that the maximum number of opens was exceeded.

Indicates that the specified device does not exist.

Implementation Specifics
The entclose entry point functions with a Ethernet High-Performance LAN adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The entopen entry point, entmpx entry point.

The CIO_START operation.

The close subroutine.

5-24 Kernel Reference

\

(

\

(

I\\:
i/

entconfig

entconfig Ethernet Device Handler Entry Point

Purpose

Syntax

Provides functions for initializing, terminating, and querying the vital product data (VPD) of
the Ethernet device handler.

#include <sys/device.h>
#include <sys/uio.h>

Int entconfig (devno, cmd, uiop)
dev _t devno;
int cmd;
struct uio * uiop;

Parameters
devno Specifies the major and minor device numbers.

cmd Specifies which function this routine should performed. There are three
possible functions:

CFG_INIT Initializes device handler and internal data areas.

CFG_ TERM Terminates the device handler.

CFG_QVPD Queries VPD.

uiop Points to a uio structure. The uio structure is defined in the <sys/uio.h>
file.

Description
The entconfig entry point provides functions for initializing, terminating, and querying the
VPD of the Ethernet device handler. The following are three possible entconfig operations:

• CFG_INIT

For the CFG_INIT operation, the Ethernet device handler registers its entry points by
placing them into the device switch table for the major device number specified by the
devno parameter. The uio structure contains the iov_base pointer, which points to the
Ethernet device dependent structure (DDS). The caller provides the uio structure. The
structure is copied into an internal save area by the init function.

• CFG....:.TERM

For the CFG_ TERM operation, if there are no outstanding opens, the following occurs:

- The Ethernet device handler marks itself terminated and prevents subsequent opens.

- All dynamically allocated areas are freed.

- All Ethernet device handler entry points are removed from the device switch table.

• CFG_QVPD

The CFG_QVPD operation returns the Ethernet VPD to the caller. The VPD is placed in
the area specified by the caller in the uio structure.

Communications Subsystem 5-25

entconfig

Execution Environment
An entconfig entry point can be called from the process environment only.

Return Values
EINVAL

EBUSY

EEXIST

ENO DEV

EU NATCH

EFAULT

EINVAL

EA CC ES

ENO ENT

ENXIO

EEXIST

EFAULT

ENOMEM

Indicates an invalid address range or opcode (common to all three
operations).

Indicates that the device was already open in Diagnostic Mode and so the
open request was denied (common to the CFG_ TERM and CFG_INIT
operations).

Indicates that the DDS structure already exists (CFG_ TERM operation).

Indicates that no such device exists (common to all three operations.).

Indicates that the protocol driver was not attached (common to the
CFG_ TERM operation).

Indicates that an invalid address was specified (common to the CFG_QVPD
and CFG_INIT operations).

Indicates an invalid range or opcode (common to all three operations).

Indicates that permission was denied because the device was already open,
or because there were outstanding opens that were unable to terminate
(common to the CFG_ TERM and CFG_QVPD operations).

Indicates that there is no DDS to delete (common to the CFG_TERM and
CFG_QVPD operations).

Indicates that no such device exists or that the maximum number of
adapters was exceeded (common to all three operations).

Indicates that the DDS structure already exists (common to the CFG_ TERM
and CFG_INIT operations).

Indicates that an invalid address was specified (common to the CFG_ TERM
and CFG_INIT operations).

Indicates insufficient memory (common to the CFG_INIT operation).

Implementation Specifics
The entconfig entry point functions with a Ethernet High-Performance LAN adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The uio structure.

Device-Dependent Structure in Kernel Extensions and Device Support Programming
Concepts.

5-26 Kernel Reference

(

\

(
·~

/

\

entioctl

entioctl Ethernet Device Handler Entry Point

Purpose

Syntax

Provides various functions for controlling the Ethernet device.

#include <sys/device.h>
#include <sys/devinfo.h>
#include <sys/ioctl.h>
#include <sys/comio.h>
#include <sys/entuser.h>

int entioctl (devno, cmd, arg, devflag, chan, ext)
dev_t devno;
int cmd, arg;
ulong devflag;
int chan, ext;

Parameters
devno Specifies the major and minor device numbers.

cmd Specifies which operation is to be performed. The possible entioctl
operation codes can be found in the <sys/ioctl.h> and sys/comio.h files.

arg Specifies the address of the entioctl parameter block.

devflag This parameter is ignored by the Ethernet device handler.

ch an Specifies the channel number assigned by the entmpx routine.

ext This parameter is not used by the Ethernet device handler.

Description
The entioctl Ethernet device handler entry point provides various functions for controlling
the Ethernet device. There are eight common entioctl operations plus four additional
entioctl operations available for diagnostic purposes.

These are the eight valid entioctl operations:

CIO_START

CIO_HALT

CIO_QUERY

CIO_GET_STAT

ENT_SET_MULTI

IOCINFO

CCC_GET_VPD

ENT_SET_MULTI

Starts a session and registers a network ID.

Halts a session and removes the registered network ID.

Returns the current RAS counter values.

Returns the current adapter and device handler status

Sets or resets a multicast address.

Returns 1/0 character information.

Returns vital product data (VPD) about the adapter.

Sets the multicast address for the Ethernet device.

Communications Subsystem 5-27

entioctl

These are the four valid entioctl operations for diagnostic purposes:

CCC_TRCTBL

CIO_POS_ACC

CIO_REG_ACC

CIO_MEM_ACC

Returns the address of the internal device driver trace table.

Reads or writes a byte from or to a selected adapter POS
register

Reads or writes a byte from or to a selected adapter 1/0 register.

Reads or writes data from or to selected adapter RAM
addresses.

The following are OMA Facilities Operations:

ENT_LOCK_DMA

ENT_UNLOCK_DMA

Sets up (locks) a user buffer to OMA from or to the adapter.

Clears (unlocks) a user buffer from OMA control.

Execution Environment
An entioctl entry point can be called from the process environment only.

Implementation Specifics
The entioctl entry point functions with an Ethernet High-Performance LAN adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The entmpx entry point.

5-28 Kernel Reference

(

entioctl

~1 CCC_GET _ VPD entioctl Operation (Query Vital Product Data)
Purpose

Description

Returns vital product data (VPD) about the Ethernet adapter.

The CCC_GET _ VPD operation returns vital product data (VPD) about the Ethernet adapter.
For this operation, the arg parameter points to the vital_product_data structure. This
structure is defined in the <sys/ciouser.h> file and has the following fields:

status

length

vpd[n]

Indicates the status of the VPD characters returned in the array of
characters. Valid values for this status word are found in the
<sys/ciouser.h> header file:

VPD_NOT_READ

VPD_NOT_AVAIL

VPD_INVALID

VPD_VALID

VPD data has not been obtained from the adapter.

VPD data is not available for this adapter.

VPD data that was obtained is invalid.

VPD data was obtained and is valid.

Specifies the number of bytes that are valid in the VPD character array. This
value can be O (zero), depending on the status returned.

An array of characters that contain the adapter's VPD. The number of valid
characters is determined by the length value.

Execution Environment
A CCC_GET_VPD operation can be called from the process environment only.

Return Values
EFAULT

ENXIO

Indicates an invalid address.

Indicates that no such device exists.

Implementation Specifics
The CCC_GET _ VPD operation functions with a Ethernet High-Performance LAN adapter
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The entioctl entry point.

The Ethernet Vital Product Data Structure.

Communications Subsystem 5-29

entioctl

CIO_GET_STAT entioctl Operation (G~t Status)
Purpose

Description

Returns the current Ethernet adapter and device handler status.

Note: Only user-mode callers can use the CIO_GET _STAT operation.

The CIO_GET_STAT operation returns the current Ethernet adapter and device handler
status. The device handler fills in the parameter block with the appropriate information upon
return. For this operations, the arg parameter points to a status block structure. This
structure is defined in the <Sys/comio.h> header file.

There are two Ethernet-specific status blocks:

• CIO_START_DONE

• CIO_HALT_DONE.

The Ethernet device handler also returns the following general communications status
blocks:

• CIO_LOST_STATUS

• CIO_NULL_BLK

• CIO_TX_DONE

• CIO_ASYNC_STATUS.

Status Blocks for the Ethernet Device Handler
Status blocks are used to communicate status and exception information to user-mode
processes.

User-mode processes receive a status block whenever they request a CIO_GET_STAT
operation. A user-mode process can wait for the next available status block by issuing a
entselect entry point with the specified POLLPRI event.

Status blocks contain a code field and possible options. The code field indicates the type of
status block code (for example, CIO_START _DONE). The following are the possible
Ethernet status blocks:

There are two Ethernet specific status blocks:

• CIO_START_DONE

• CIO_HALT_DONE.

The Ethernet device handler also returns the following general communications status
blocks:

• CIO_LOST_STATUS

• CIO_NULL_BLK

• CIO_TX_DONE

• CIO_ASYNC_STATUS.

5-30 Kernel Reference

(

\
;

Iii

entioctl

CIO_START_DONE Status Block

On a successfully completed Start Device entioctl operation, the status block is filled in as
follows:

option[O]

option[1]

option[2]

CIO_OK.

The high-order 2 bytes are filled in with the high-order 2 bytes of the
network address. The low-order 2 bytes are filled in with the middle two
bytes of the network address.

The low-order 2 bytes are filled in with the low-order 2 bytes of the network
address.

CIO_HALT_DONE Status Block

On a successfully completed Halt Device entioctl operation, the status block is filled in as
follows:

option[O]

option[1]

option[2]

Execution Environment

CIO_OK

Not used.

Not used.

A CIO_GET _STAT operation can be called from the process environment only.

Return Values
EA CC ES

EBUSY

ENO DEV

ENXIO

Indicates that permission was denied.

Indicates that the open request was denied because the device was already
open in Diagnostic mode or because the adapter was busy.

Indicates that no such device exists.

Indicates that an attempt was made to use an unconfigured device.

Implementation Specifics
The CIO_GET _STAT operation functions with a Ethernet High-Performance LAN adapter
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The entioctl entry point.

Status Blocks for Communications Device Handlers.

Communications Subsystem 5-31

entioctl

CIO_HALT entioctl Operation (Halt Device)
Purpose

Description

Ends a session with the Ethernet device handler.

The_ CIO_HALT operation ends a session with the Ethernet device handler. The caller
indicates the network ID to be halted. This CIO_HALT operation corresponds to the
CIO_START operation that was successfully issued with the specified network ID.

Data for the specified network ID is no longer received. Data already received for the
specified network ID, before the Halt Device operation, is still passed up to a user-mode
caller. The entselect and entread entry points pass this data. Data is passed to a
kernel-mode caller by the rx_fn routine specified at open time.

When a CIO_HALT operation has ended the last open session on a channel, the caller
should issue the entclose operation.

Note: If the caller has specified a multicast address, the caller needs to issue the
appropriate entioctl entry point to remove all the multicast addresses before issuing
aCIO_HALT.

For CIO_HALT operation, the arg parameter points to a session_blk structure. This
structure is defined in the <Sys/comio.h> header file and contains the following fields:

status There are two possible returned status values:

• CIO_OK

• CIO_NETID_INV.

netid Specifies the network ID. When IEEE 802.3 Ethernet is being used, the
network ID is placed in the least significant byte of the netid field.

Execution Environment
A CIO_HALT operation can be called from the process environment only.

Return Values
EINVAL

EBUSY

EN OD EV

ENXIO

Indicates that the specified network ID is not in the table.

Indicates that the open request was denied because the device was already
open in Diagnostic mode or because the adapter was busy.

Indicates that no such device exists.

Indicates that an attempt was made to use an unconfigured device.

Implementation Specifics
The CIO_HALT operation functions with a Ethernet High-Performance LAN adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The entread entry point, entselect entry point, entioctl entry point.

The CIO_START operation.

List of common status/exception codes.

5-32 Kernel Reference

I
I
\

\
I

entioctl

CIO_QUERY entioctl Operation {Query Statistics)
Purpose

Description

Reads the counter values accumulated by the Ethernet device handler.

The CIO_QUERY operation is used by the caller to read the counter values accumulated by
the device handler. The counters are initialized to O (zero) by the each CIO_START
operation issued.

For the CIO_QUERY operation, the arg parameter points to a query_parms structure. This
structure is defined in the <sys/comio.h> header file and contains the following fields:

status Specifies the current status condition. This fields accepts two possible

buffptr

bufflen

status values:

• CIO_OK

• COP _BUF _OVFLW.

Specifies the address of a buffer where the returned statistics are to be
placed.

Specifies the length of the buffer.

clearall When set to a value of CIO_QUERY _CLEAR, the counters are cleared
upon completion of call. This value is defined in the <Sys/comio.h> file.

The CIO_QUERY operation specifies the device-specific information placed in the supplied
buffer. The counter placed in the supplied buffer by this operation is the ent_query_stats_t
structure, which is defined in the <sys/entuser.h> file.

Execution Environment
A CIO_QUERY operation can be called from the process environment only.

Return Values
ENOMEM

EIO

EBUSY

ENODEV

ENXIO

Indicates insufficient memory.

Indicates that the caller's buffer is too small.

Indicates that the open request was denied because the device was already
open in Diagnostic mode or because the adapter was busy.

Indicates that no such device exists.

Indicates that an attempt was made to use an unconfigured device.

Implementation Specifics
The CIO_QUERY operation functions with a Ethernet High-Performance LAN adapter that
has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The entopen entry point, entioctl entry point.

The CIO_START operation.

Communications Subsystem 5-33

entioctl

CIO_START entioctl Operation {Start Device)
Purpose

Description

Establishes a session with the Ethernet device handler.

The CIO_START operation establishes a session with the Ethernet device handler. The
caller notifies the device handler of the network ID that it will be using. The caller can issue
multiple CIO_START operations. For each successful start issued, there should be a
corresponding CIO_HALT operation issued.

If the CIO_START operation is the first issued, the device handler initializes and opens the
Ethernet adapter. When the first CIO_START operation successfully completes, the adapter
is ready to transmit and receive data. The Ethernet adapter can receive the following packet
types:

• Packets that match the Ethernet adapter's burned-in address (or the address specified in
the device dependent structure (DDS))

• Broadcast packets

• Multicast packets

• Packets that match the network ID specified in the netid field.

The Ethernet device handler allows a maximum of 32 network IDs. The network ID must
correspond to the type field in a standard Ethernet packet or the destination service access
point (DSAP) address in an IEEE 802.3 packet.

I
For the CIO_START operation, the arg parameter points to a session_blk structure. This ~
structure is defined in the <sys/comio.h> header file and contains the following fields:

status There are four possible returned status values:

• CIO_OK

• CIO_NETID_FULL

• CIO_NETID_DUP

• CIO_HARD_FAIL.

netid Specifies the network ID the caller uses on the network. When IEEE 802.3
Ethernet is being used, the network ID is placed in the least significant byte
of the netid field.

length

Note: The Ethernet device handler does not allow the caller to specify itself
as the wild card network ID.

This field is used to specify the number of valid bytes in the netid field for
mixed Ethernet. Valid values are 1 or 2.

After the CIO_START operation has successfully completed, the caller can issue any valid
Ethernet command.

Note: The Ethernet device handler does not support promiscuous addressing.

Execution Environment
A CIO_START operation can be called from the process environment only.

5-34 Kernel Reference

Return Values
ENETUNREACH

EBUSY

ENO DEV

ENXIO

ENOS PC

EADDRINUSE

Implementation Specifics

entioctl

Indicates that the operation was unable to reach the network.

Indicates that the open request was denied because the device was
already open in Diagnostic mode or because the adapter was busy.

Indicates that no such device exists.

Indicates that there was an attempt to use an unconfigured device.

Indicates that the netid table is full.

Indicates a duplicate network ID.

The CIO_START operation functions with a Ethernet High-Performance LAN adapter that
has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The entioctl entry point.

The CIO_HALT operation.

List of Common Status/Exception Codes.

Communications Subsystem 5-35

entioctl

ENT_SET_MULTI entioctl Operation (Set Multicast Address)
Purpose

Description

Sets the multicast address for the Ethernet device.

The ENT _SET _MULTI operation sets the multicast address for the Ethernet device. For this
operation, the arg parameter points to the ent_set_multi_t structure. This structure is
defined in the <Sys/entuser.h> header file and contains the following fields:

opcode

multi_addr(6)

Specifies whether to add or delete a multicast address. When this field is
ENT _ADD, the multicast address is added to the multicast entry table.
When this field is ENT _DEL, the multicast address is removed from the
multicast entry table. Valid Ethernet types are defined in the
<Sys/entuser.h> header file.

Identifies the multicast address array where multi_addr(O) is the most
significant byte and multi_addr(5) is the least significant byte.

Note: The Ethernet device handler allows a maximum of 20 multicast
addresses.

Execution Environment
An ENT_SET_MULTI operation can be called from the process environment only.

Return Values
EFAULT

EINVAL

ENOS PC

ENOTREADY

EA CC ES

EAFNOSUPPORT

ENXIO

Implementation Specifics

Indicates that an invalid address was specified.

Indicates an invalid operation code.

Indicates that no space was left on the device. (The multicast table
is full.)

Indicates that the device was not ready. (The first CIO_START
operatin was not issued and not completed.)

Indicates that permission was denied. (The device was open in
Diagnostic mode.)

Indicates that the address family was not supported by protocol.
(The multicast bit in the address was not set.)

Indicates that no such device exists.

The ENT_SET_MULTI operation functions with a Ethernet High-Performance LAN adapter
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The entioctl entry point.

The CIO_START operation.

5-36 Kernel Reference

(
\

\

I

entioctl

IOCINFO entioctl Operation (Describe Device)
Purpose

Description

Returns a structure that describes the Ethernet device.

The IOCINFO operation returns a structure that describes the Ethernet device. For this
operation, the arg parameter points to the ethernet substructure, which is defined as part of
the devinfo structure. This devinfo structure is located in the <sys/devinfo.h> file and
contains the following fields:

devtype Identifies the device type. The Ethernet type is DD_NET_DH. This label is
defined in the <sys/devinfo.h> header file.

devsubtype Identifies the device subtype. The Ethernet subtype is DD_EN. This label
can be found in the <sys/devinfo.h> header file.

broad_wrap Indicates the adapter's ability to receive its own packets. A value of 1 (one)
indicates that the adapter can receive its own packets. A value of 0 (zero)
indicates that the adapter cannot receive its own packets. For this adapter, a
value of 0 (zero) is returned.

rdto Specifies the receive data transfer offset. This value indicates an offset (in
bytes) into the data area of the receive page-sized mbuf structure. The
device handler places received data in this buffer.

haddr Identifies the 6-byte unique Ethernet adapter address. This address is the
burned-in address that is readable from the adapter's vital product data
(VPD). The most significant byte of the address is placed in the haddr(O)
field. The least significant byte is placed in the address specified by the
haddr{S) field.

net_addr Identifies the 6-byte unique Ethernet adapter address that is currently being
used by the Ethernet adapter card. This address is either the burned-in
address (readable from the VPD) or the alternate address that can be used
to configure the adapter. The most significant byte of the address is placed
in the address specified by the net_addr(O) field. The least significant byte
is placed in the address specified by net_addr(S) field.

The parameter block is filled in with the appropriate values upon return.

Execution Environment
An IOCINFO operation can be called from the process environment only.

Return Values
EFAULT

EINVAL

ENXIO

Indicates that an invalid address was specified.

Indicates an invalid operation code.

Indicates that no such device exists.

Implementation Specifics
The IOCINFO operation functions with a Ethernet High-Performance LAN adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The entioctl entry point.

Communications Subsystem 5-37

entmpx

entmpx Ethernet Device Handler Entry Point

Purpose

Syntax

Provides allocation and deallocation of a channel for an Ethernet device handler.

#include <sys/device.h>

int entmpx (devno, chanp, channame)
dev_t devno;
int *chanp;
char * channame;

Parameters
devno Specifies the major and minor device numbers.

chanp

channame

Description

Contains the channel ID passed as a reference parameter. If the channame
parameter is NULL, this parameter is the ID of the channel to be
deallocated. Otherwise, the chanp parameter is set to the ID of the
allocated channel.

Points to the remaining path name describing the channel to be allocated.
This field points to one of the following values:

NULL The channel is to be deallocated.

A pointer to NULL string
Indicates the channel ID generated by the entmpx routine
and allows a normal open sequence of the Ethernet device.

A pointer to D The channel ID generated by the entmpx routine. This ID
allows the Ethernet device to be opened in Diagnostic
mode.

The entmpx entry point provides allocation and deallocation of a channel for an Ethernet
device handler. It is not called directly by a user of the Ethernet device handler. The kernel
calls the entmpx entry point in response to an open or close request.

Note: If the Ethernet device has been successfully opened, any subsequent Diagnostic
mode open requests fails. If the device has been successfully opened in Diagnostic
mode, all subsequent open requests fail.

Execution Environment
An entmpx entry point can be called from the process environment only.

Return Values
EBUSY

ENOMSG

ENODEV

ENXIO

5-38 Kernel Reference

Indicates that the maximum number of opens was exceeded.

No message of desired type.

Indicates that the specified device does not exist.

Indicates that the device is not configured.

\

(

'~

(
'Ill

entmpx

Implementation Specifics
The entmpx entry point functions with a Ethernet High-Performance LAN adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The entopen entry point.

Communications Subsystem 5-39

entopen

entopen Ethernet Device Handler Entry Point

Purpose

Syntax

Initializes the Ethernet device handler and allocates the required system resources.

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/entuser.h>

int entopen (devno, devflag, chan, ext)
dev_t devno;
ulong devflag;
int chan, ext;

Parameters
devno Specifies the major and minor device numbers for both kernel- and

user-mode entry pointers.

devflag

ch an

ext

Description

Specifies the DKERNEL flag, which must be set for a kernel-mode entry
pointer. This flag cannot be set for user-mode entry pointers.

Specifies the channel number assigned by the entmpx routine for both
kernel- and user-mode entry pointers.

Points to a kopen_ext structure. This structure is defined in the
<Sys/comio.h> header file. This parameter is valid only for kernel-mode
users; it is NULL for user-mode users.

The entopen entry point prepares the Ethernet device for transmitting and receiving data. It
is called when a user-mode entry pointer issues an open, openx, or creat subroutine. After
the entopen entry point has successfully completed, the entry pointer must issue a
CIO_START operation before using the Ethernet device handler. The device handler is then
opened for reading and writing data.

Execution Environment
An entopen entry point can be called from the process environment only.

Return Values
EINVAL

ENOMEM

ENOTREADY

ENXIO

5-40 Kernel Reference

Indicates an invalid range, opcode, or the device is not in Diagnostic mode.

Indicates insufficient memory.

Indicates that the device was not ready. The first CIO_START operation
was not issued and hence not completed.

Indicates that no such device exists. (The maximum number of adapters
was exceeded.)

\

'

(

/
\

entopen

Implementation Specifics
The entopen entry point functions with an Ethernet High-Performance LAN adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The entmpx entry point, entclose entry point.

The CIO_START operation.

Thecreat subroutine, open subroutine, openx subroutine.

Communications Subsystem 5-41

entread

entread Ethernet Device Handler Entry Point

Purpose

Syntax

Provides the means of receiving data from the Ethernet device handler.

#include <sys/device.h>
#include <sys/uio.h>

int entread (devno, uiop, chan, ext)
dev_t devno;
struct uio *uiop;
int chan, ext;

Parameters
devno Specifies the major and minor device numbers.

uiop

ch an

ext

Description

Points to a uio structure. This structure is defined in the <sys/uio.h>
header file.

Specifies the channel number assigned by the entmpx routine.

Can specify the address of the entread parameter block. If the ext
parameter is NULL, then no parameter block is specified.

Note: The entread entry point should only be called by user-mode callers.

The entread entry point provides the means of receiving data from the Ethernet device
handler. When a user-mode caller issues a read, readx, readv, or readvx subroutine, the
kernel calls the entread entry point.

When the entread entry point is called, the fil.e system fills in the uio structure fields with the
appropriate values. In addition, the device handler copies the data into the buffer specified
by the caller.

For the entread entry point, the ext parameter may point to the read_ extension structure.
This structure is defined in the <sys/comio.h> header file and contains the following field:

status Contains a status code. This field may be one of the following values:

• CIO_OK

• CIO_BUF _OVRFLW

• CIO_NOT_STARTED.

Execution Environment
An entread entry point can be called from the process environment only.

5-42 Kernel Reference

\

(

(

~

Return Values
EA CC ES

EFAULT

EINTR

EIO

EMSGSIZE

EBUSY

ENO DEV

ENOCONNECT

ENXIO

entread

Indicates that permission was denied because the device was already
open. Diagnostic mode open request denied.

Indicates that an invalid address was specified.

Indicates that interrupted system call.

Indicates an 1/0 error.

Indicates that the data returned was too large for the buffer.

Indicates that the maximum number of opens was exceeded.

Indicates that the specified device does not exist.

Indicates that no connection was established.

Indicates that an attempt was made to use an unconfigured device.

Implementation Specifics
The entread entry point functions with a Ethernet High-Performance LAN adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The entmpx entry point.

List of Common Status/Exception Codes.

Communications Subsystem 5-43

entselect

entselect Ethernet Device Handler Entry Point

Purpose

Syntax

Determines if a specified event has occurred on the Ethernet device.

#include <sys/device.h>
#include <sys/comio.h>

int entselect (devno, events, reventp, chan)
dev_t devno;
ushort events;
us ho rt * reventp;
int chan;

Parameters
devno

events

reventp

ch an

Description

Specifies the major and minor device numbers.

Identifies the events that are to be checked.

Returned events pointer passed by reference. This pointer is used by the
entselect entry point to indicate which of the selected events are true when
the call occurs.

Specifies the channel number assigned by the entmpx entry point.

Note: Only user-mode callers should use the entselect entry point.

The entselect entry point determines if a specified event has occurred on the Ethernet
device. This entry point must be called with the select or poll subroutine.

When the Ethernet device handler is in a state in which the specified event can never be
satisfied (for example, an adapter failure), then the entselect entry point sets the returned
event flags to a 1 (one). This prevents the select or poll subroutine from waiting indefinitely.

Execution Environment
An entselect entry point can be called from the process environment only.

Return Values
EA CC ES

ENXIO

EBUSY

ENO DEV

5-44 Kernel Reference

Indicates that permission was denied because the device had not been
initialized. Indicates that the Diagnostic mode open request was denied.
Indicates that permission was denied because the call is from a
kernel-mode process.

Indicates that there was no such device. (Maximum number of adapters was
exceeded.)

Indicates that the open request was denied because the device was already
open in Diagnostic mode or because the adapter was busy.

Indicates that no such device exists.

)

entselect

Implementation Specifics
The entselect entry point functions with a Ethernet High-Performance LAN adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The entmpx entry point.

The select subroutine, poll subroutine.

Communications Subsystem 5-45

entwrite

entwrite Ethernet Device Handler Entry Point

Purpose

Syntax

Provides the means for transmitting data from the Ethernet device.

#include <Sys/device.h>
#include <sys/uio.h>
#include <sys/comio.h>
#include <sys/entuser.h>

int entwrite (devno, uiop, chan, ex~
dev_t devno;
struct uio * uiop;
int chan, ext;

Parameters
devno Specifies the major and minor device numbers.

uiop

ch an

ext

Description

Points to a uio structure that provides variables to control the data transfer
operation. This uio structure is defined in the <sys/uio.h> file.

Specifies the channel number assigned by the entmpx entry point.

Specifies the address of the entwrite parameter block. If the ext parameter
is NULL, then no parameter block is specified.

The entwrite entry point provides the means for transmitting data for the Ethernet device.
The kernel calls it when a user-mode caller issues a write, writex, writev, or writevx
subroutine.

For a user-mode caller, the file system fills in the uio structure variables with the appropriate

I
\

values. A kernel-mode caller must fill in the uio structure in the same manner as the general (
ddwrite entry point. ~

The write_extension Parameter Block
For the entwrite entry point, the ext parameter is a pointer to a write_extension structure.
This structure is defined in the <sys/comio.h> header file and contains the following fields:

status

write_id

5-46 Kernel Reference

Identifies the status of the write operation. This field is in the
write_extension structure and accepts the following values:

• CIO_OK

• CIO_ TX_FULL.

For a user-mode caller, the write_id field is returned to the caller by the
CIO_GET _STAT operation if the ACK_ TX_DONE option is selected. For a
kernel-mode caller, the write_id field is returned to the caller by the stat_fn
function that was provided at open time.

\

Execution Environment
An entwrite entry point can be called from the process environment only.

Return Values
EA GAIN

EFAULT

EINTR

Indicates that the transmit queue is full.

Indicates that an invalid address was specified.

Indicates an interrupted system call.

Indicates an invalid range or opcode.

Indicates that no connection was established.

Indicates insufficient memory.

entwrite

EINVAL

ENOCONNECT

ENOMEM

EBUSV Indicates that the maximum number of opens was exceeded.

ENO DEV

ENXIO

Indicates that the specified device does not exist.

Indicates that an attempt was made to use an unconfigured device.

Implementation Specifics
The entwrite entry point functions with a Ethernet High-Performance LAN adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The entread entry point, entmpx entry point.

The uio structure.

The write, writex, writev, or writevx subroutine.

Communications Subsystem 5-47

mpclose

mpclose Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Syntax

Resets the Multiprotocol (MPQP) device to a known state and returns system resources
back to the system on the last close for that adapter.

int mpclose (devno, chan, ext)
dev _t devno;
int chan, ext;

Parameters
devno Specifies the major and minor device numbers.

ch an

ext

Description

Specifies the channel number assigned by the mpmpx entry point.

Ignored by the MPQP device handler.

The mpclose entry point routine resets the ,MPQP device to a known state and returns
system resources to the system on the last close for that adapter. The port no longer
accepts read, write, or ioctl operation requests. The mpclose entry point is called in user
mode by issuing a close system call. The mpclose entry point is invoked in response to a
fp_close kernel service.

On an mpclose entry point, the MPQP device handler does the following:

• Frees all internal data areas for the corresponding mpopen entry point

• Purges receive data queued for this mpopen entry point.

On the last mpclose entry point for a particular adapter, the MPQP device handler also does
the following:

• Frees its interrupt level to the system

• Frees the OMA channel

• Disables adapter interrupts

• Sets all internal data elements to their default settings.

The mpclose entry point closes the device. For each mpopen entry point issued, there
must be a corresponding mpclose entry point.

Before issuing the mpclose entry point, the caller should issue a CIO_HALT operation for
each CIO_START operation issued during that particular instance of open. If a close request
is received without a preceding CIO_HALT operation, the functions of the halt are
performed. This should only occur during abnormal termination of the port.

Execution Environment
The mpclose entry point can be called from the process environment only.

5-48 Kernel Reference

(
I
\

(
\~

Return Values
ECHRNG Indicates that the channel number is too large.

mpclose

ENXIO Indicates that the port intialization failed. This code could also indicate that
the registration of the interrupt failed.

ECHRNG Indicates that the channel number is out of range (too high).

Implementation Specifics
The mpclose entry point functions with a 4-Port Multiprotocol Interface Adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The mpioctl entry point, mpopen entry point.

The fp_close kernel service.

The CIO_HALT operation, CIO_START operation.

The close system call.

Communications Subsystem 5-49

mpconfig

mpconfig Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Syntax

Provides functions for initializing and terminating the Multiprotocol (MPQP) device handler
and adapter.

#include <Sys/uio.h>

int mpconfig (devno, cmd, uiop)
dev _t devno;
int cmd;
struct uio *uiop;

Parameters
devno Specifies the major and minor device numbers.

cmd

uiop

Description

Specifies the function to be performed by this routine. There are two
possible functions:

CFG_INIT Initializes device handler and internal data areas.

CFG_ TERM Terminates the device handler.

Points to a uio structure. The uio structure is defined in the <sys/uio.h>
header file.

The mpconfig entry point provides functions for initializing and terminating the MPQP
device handler and adapter. It is invoked through the /sys/config device driver at device
configuration time. This entry point supports the following operations:

• CFG_INIT

• CFG_TERM.

Execution Environment
The mpconfig entry point can be called from the process environment only.

Implementation Specifics
The mpconfig entry point functions with a 4-Port Multiprotocol Interface Adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The ddconfig (CFG_INIT) routine, ddconfig (CFG_ TERM) routine.

5-50 Kernel Reference

(

" I
/

mp ioctl

mpioctl Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Syntax

Provides various functions for controlling the Multiprotocol (MPQP) device.

#include <sys/devinfo.h>
#include <Sys/ioctl.h>
#include <sys/comio.h>
#include <sys/mpqp.h>

int mpioctl (devno, cmd, extptr, devflag, chan, ex~
dev_t devno;
int cmd, extptr,
ulong devflag
int chan, ext;

Parameters
devno Specifies the major and minor device numbers.

Identifies the operation to be performed.

Specifies an address of the parameter block.

cmd

extptr

devflag

ch an

ext

Description

This allows mpioctl calls to inherit properties that were specified at open
time. The MPQP device handler inspects the DNDELAY flag for ioctl calls.
Kernel-mode data link control (DLC), also sets the DKERNAL flag must be
set.

Specifies the channel number assigned by the mpmpx entry point.

Not used by MPQP device handler.

The mpioctl MPQP device handler entry point provides various functions for controlling the
MPQP device. There are 7 valid mpioctl operations:

mpioctl MPQP Operations
CIO_START

CIO_HALT

CIO_QUERY

CIO_GET_STATUS

MP _START_AR

MP_STOP_AR

MP _CHG_PARMS

Initiates a session with the MPQP device handler.

Ends a session with the MPQP device handler.

Reads the counter values accumulated by the MPQP device
handler.

Gets the status of the current MPQP adapter and device handler.

Puts the MPQP port into Autoresponse mode.

Permits the MPQP port to exit Autoresponse mode.

Permits the DLC to change certain profile parameters after the
MPQP device has been started.

The possible mpioctl operation codes can be found in the <sys/ioctl.h>, <Sys/comio.h>,
and <sys/mpqp.h> header files.

Communications Subsystem 5-51

mp ioctl

Execution Environment
The mpioctl entry point can be called from the process environment only.

Return Values
ENXIO

ENOMEM

Indicates the adapter number is out of range.

Indicates the no mbufs or mbuf clusters are available.

Implementation Specifics
The mpioctl entry point functions with a 4-Port Multiprotocol Interface Adapter that has been
correctly configured for use on a qualified network. Consult the adapter specifications for
more information on configuring the adapter and network qualifications.

Related Information
The mpmpx entry point.

5-52 Kernel Reference

(

mp ioctl

CIO_GET_STAT mpioctl Operation (Get Status)
Purpose

Description

Gets the status of the current Multiprotocol (MPQP) adapter and device handler.

Note: Only user-mode processes can use the CIO_GET _STAT operation.

The CIO_GET _STAT operation gets the status of the current MPQP adapter and device
handler. For the MPQP device handler, both solicited and unsolicited status can be returned.

Solicited status is status information that is returned as a completion status to a particular
operation. The CIO_START, CIO_HALT, and mpwrite operations all have solicited status
returned. However, for many asynchronous events that are common to wide-area networks,
these are considered unsolicited status. The asynchronous events are divided into three
classes:

• Hard failures
• Soft failures
• Informational (or status-related) messages.

For the CIO_GET_STAT operation, the extptrparameter points to a status_block structure.
This structure is filled with the appropriate information by the device handler upon return.
The status_block structure is defined in the <sys/comio.h> header file and returns one of
seven possible status conditions:

• CIO_START_DONE
• CIO_HALT_DONE
• CIO_TX_DONE
• CIO_ASYNC_STATUS
• MP _RDY _FOR_MAN_DIAL
• MP _ERR_ THRESHLD_EXC.

Status Blocks for the Multiprotocol Device Handler
Status blocks are used to communicate status and exception information to user-mode
processes.

User-mode processes receive a status block whenever they request a CIO_GET_STAT
operation. A user-mode process can wait for the next available status block by issuing a
mpselect entry point with the specified POLLPRI event.

Status blocks contain a code field and possible options. The code field indicates the type of
status block code (for example, CIO_START _DONE). The following are the seven possible
MPQP status blocks:

CIO_START_DONE Status Block

On a successfully completed CIO_START operation, the status block is filled in as follows:

code

option[O]

option[1]

option[2]

option[3]

CIO_START_DONE.

CIO_OK.

Specifies the network ID.

Not used.

Not used.

Communications Subsystem 5-53

mp ioctl

On an unsuccessful Start Device (CIO_START) mpioctl operation, the status block is filled
in as follows:

code

option[O]

option[1]

option[2]

option[3]

CIO_START _DONE.

Can be one of the following:

MP _ADAP _NOT _FUNC Adapter not functional.
MP_ TX_FAILSAFE_ TIMEOUT Transmit command did not complete.
MP _DSR_ON_TIMEOUT DSR failed to come on.
MP _DSR_ALRDY _ON DSR already on for a switched line.
MP _X21_RETRIES_EXC X.21 retries exceeded - call not

completed.
MP _X21_ TIMEOUT X.21 timer expired.
MP _X21_CLEAR Unexpected clear received from the DCE.

If the option[O] field is set to MP _X21_TIMEOUT, the option[1] field
contains the specific X.21 timer that expired.

Not used.

Not used.

CIO_HALT_DONE Status Block

The CIO_HALT ends a session with the MPQP device handler. On a successfully completed
Halt Device operation, the status block is filled in as follows:

code

option[O]

option[1]

option[2]

CIO~HALT_DONE.

CIO_OK.

MP _FORCED_HALT or MP _NORMAL_HALT.

MP _NETWORK_FAILURE or MP _HW_FAILURE.

A forced halt is a halt that completes successfully as far as the data link control is
concerned, but which is terminated forcefully because of either an adapter error or a network
error. This is significant for X.21 or other switched networks where customers may be
charged if the call does not disconnect properly.

CIO_TX_DONE Status Block

On completion of a Multiprotocol Transmit, the status block is filled in as follows:

code

option[O]

option[1]

option[2]

option[3]

CIO_ TX_DONE.

Can be one of the following:

CIO_OK.
MP _TX_UNDERRUN.
MP _X21_CLEAR.
MP_ TX_FAILSAFE_ TIMEOUT The transmit command did not complete.
MP_ TX_ABORT Transmit aborted due to CIO_HALT

operation.

Identifies the write_id field supplied by the caller in the write command if
TX_ACK was selected.

Points to the buffer with transmit data.

Not used.

5-54 Kernel Reference

(
\~

mp ioctl

CIO_ASYNC_STATUS Status Block

Asynchronous status notifies the data link control of asynchronous events such as network
and adapter failures.

code CIO_ASYNC_STATUS.

option[O] Can be one of the following:

• MP _X21_CLEAR
• MP _RCV _TIMEOUT
• MP_DSR_DROPPED
• MP _RELOAD_CMPL
• MP _RESET_CMPL.

Note: The MP _RELOAD_C and MPLMP _RESET _CMPL values are for

option[1]

option[2]

option[3]

diagnostic use only.

Not used.

Not used.

Not used.

MP _RDY _FOR_MAN_DIAL Status Block

The manual dial switched line is ready for dialing. The start operation is pending the call
completion.

code

option[O]

option[1]

option[2]

option[3]

MP _RDY _FOR_MAN_DIAL

CIO_OK

Not used

Not used

Not used.

MP _END_OF _AUTO_RESP Status Block

The MP _STOP _AR mpioctl operation has completed. The adapter is in Normal Receive
mode. All receive data is routed to the data link control.

code

option[O]

option[1]

option[2]

option[3]

MP_END_OF_AUTO_RESP

CIO_OK

Not used

Not used

Not used.

Communications Subsystem 5-55

mp ioctl

MP_ THRESH_EXC Status Block

A threshold for one of the counters defined in the start profile has reached its threshold.

code

option[O]

option[1]

option[2]

option[3]

MP_ THRESH_EXC.

Indicates the threshold that expired.

The following values are returned to indicate the threshold that was
exceeded:

• MP_TOTAL_TX_ERR
• MP_TOTAL_RX_ERR
• MP _TX_PERCENT
• MP _RX_PERCENT.

Not used.

Not used.

Not used.

Execution Environment
The CIO_GET_STAT operation can be called from the process environment only.

Return Values
ENXIO Indicates the adapter number is out of range.

ENOMEM Indicates that no mbufs or mbuf clusters are available.

(

\

Implementation Specifics ~
The CIO_GET_STAT operation functions with a 4-Port Multiprotocol Interface Adapter that
has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The mpwrite entry point, mpioctl entry point.

The CIO_START operation, CIO_HALT operation, MP _STOP _AR operation.

(

5-56 Kernel Reference

mp ioctl

CIO_HALT mpioctl Operation (Halt Device MPQP)
Purpose

Description

Ends a session with the Multiprotocol (MPQP} device handler. The CIO_HALT operation
terminates the connection to the MPQP link.

The CIO_HALT operation terminates a session with the MPQP device handler. The caller
specifies which network ID to halt. The CIO_HALT operation removes the network ID from
the network ID table and disconnects the physical link. A CIO_HALT operation must be
issued for each CIO_START operation that completed successfully.

Data received for the specified network ID before the CIO_HALT operation is called can be
retrieved by the caller by the mpselect and mpread entry points.

If the CIO_HALT operation terminates abnormally, the status is returned either
asynchronously or as part of the CIO_HALT_DONE. Whatever the case, the
CIO_GET _STAT is used to get information about the error. When a halt is terminated
abnormally (for example, due to network failure}, the following occurs:

• The link is terminated.

• The drivers and receivers are disabled for the indicated port.

• The port can no longer transmit or receive data.

There is no recovery procedure required by the caller other than logging the error.

Errors are reported on halt operations because in some switched networks, the user could
continue to be charged for connect time if the network does not recognize the halt. This error
status permits a network application to be notified about an abnormal link disconnection and
then take corrective action, if necessary.

Parameter Block

For the MPQP CIO_HALT operation the extptrparameter points to a session_blk structure.
This structure is defined in the <sys/comio.h> file and contains the following fields:

status Specifies the status of the port. This field is set for immediately detectable
errors. Possible values for the status filed are:

• CIO_OK

• CIO_NETID_INV.

If the calling process does not wish to sleep while the halt is in progress, the
DNDELAY option can be used. In either case, the status of the halt is
retrieved using the CIO_GET_STATUS operation and a CIO_HALT_DONE
status block is returned. The CIO_HALT_DONE status block should be
used as an indication of completion.

netid Contains the network ID the caller wishes to halt. The network ID is placed
in the least significant byte of the netid field.

Execution Environment
The CIO_HALT operation can be called from the process environment only.

Communications Subsystem 5-57

mp ioctl

Return Values
The CIO_HALT operation returns common communications return values. In addition, the
following MPQP specific errors may be returned:

EBUSY

ENXIO

ENOMEM

Indicates that the device is not started or is not in a data transfer state.

Indicates that the adapter number is out of range.

Indicates that there are no mbufs or mbuf clusters available.

Implementation Specifics
The CIO_HALT operation functions with a 4-Port Multiprotocol Interface Adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The mpselect entry point, mpread entry point.

The CIO_START operation, CIO_GET _STATUS operation.

MPQP Status Blocks.

5-58 Kernel Reference

c

'\
I

mp ioctl

CIO_QUERY mpioctl Operation (Query Statistics)
Purpose

Description

Provides the means to read counter values accumulated by the Multiprotocol (MPQP) device
handler.

The CIO_QUERY operation is used by the caller to read the counter values accumulated by
the MPQP device handler. The counters are initialized to 0 (zero) by the first mpopen
operation.

The device-specific information placed in the supplied buffer by the CIO_QUERY operation
is:

• DDS header section

• DDS hardware section

• DDS device characteristics

• DDS RAS log section.

The mp_query Parameter Block

For this operation, the extptr parameter points to an mp_query structure. This structure is
defined in the <sys/mpqp.h> header file and has the following fields:

qp

buffptr

bufflen

mpqp

Points to the query_parms common parameter block. The query_parms
structure can be found in the <sys/comio.h> header file.

Specifies the address of a buffer where the returned statistics are to be
placed. This field is in the query_parms structure.

Specifies the length of the buffer. It should be at least 45 words long
(unsigned long).This field is in the query_parms structure.

Points to the mp_query_parms structure, which contains the
device-specific counters.

clear_counters When this field equals CIO_CLEAR_CNT, the RAS log counters are
cleared upon completion of call.

Statistics ~ogged for MPQP Ports

The following statistics are logged for each MPQP port.

• Bytes transmitted

• Bytes received

• Frames transmitted

• Frames received

• Receive errors

• Transmission errors

• DMA buffer not large enough or not allocated

• Autoresponse transmission failsafe time out

Communications Subsystem 5-59

mpioctl

• Autoresponse received time out

• CTS time out

• CTS dropped during transmit

• DSR time out

• DSR dropped

• DSR on before DTR on a switched line

• X.21 call-progress signal (CPS)

• X.21 unrecognized CPS

• X.21 invalid CPS

• DCE clear during call establishment

• DCE clear during data phase

• X.21 T1 to TS time outs

• X.21 invalid DCE provided information (DPI).

Execution Environment
The CIO_QUERY operation can be called from the process environment only.

Return Values
ENXIO

EFAULT

EINVAL

EIO

ENOMEM

Indicates an attempt to use unconfigured device.

Indicates that an invalid address was specified.

Indicates an invalid parameter.

Indicates that an error has occurred.

Indicates that the operation was unable to allocate the required memory.

Implementation Specifics
The CIO_QUERY operation functions with a 4-Port Multiprotocol Interface Adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The mpioctl entry point, mpopen entry point.

5-60 Kernel Reference

(
l
\

/
I

~

(
\'Ill

mp ioctl

CIO_START mpioctl Operation (Start Device)
Purpose

Description

Starts a session with the Multiprotocol (MPQP) device handler.

The CIO_START operation registers a network ID in the network ID table and establishes
the physical connection with the MPQP device. Once this start operation completes
successfully, the port is ready to transmit and receive data.

Note: The CIO_START operation defines the protocol- and configuration-specific attributes
of the selected port. All bits that are not defined must be set to O (zero).

For the MPQP CIO_START operation, the extptr parameter points to a t_start_dev
structure. This structure contains pointers to the session_blk structure.

The session_blk structure contains the netid and status fields. The t_start_dev
device-dependent information for an MPQP device follows the session block. All of these
structures can be found in the mpqp.h file.

t start dev Fields
- - The t_start_dev structure contains the following fields:

phys_link Indicates the physical link protocol. The following values are the six
supported values.

dial_proto

Physical Link
PL_232D
PL_422A
PL_V35
PL_X21

Type
EIA-2320
EIA-422A
V.35
X.21

PL_SMART_MODEM Hayes autodial protocol
PL_ V25 V.25bis autodial protocol.

Only one type of physical link is valid at a time. Smartmodem and V25bis
are both EIA232-D autodial protocols. They imply EIA232-D.

If the phys_link field is PL_SMART _MODEM or PL_ V25, the dial_proto
and dial_flags fields are applicable. Otherwise, these fields are ignored. If
no dial protocol or flags are supplied when PL_SMART _MODEM or PL_ V25
is selected, defaults are used. The defaults for the dial phase for a
PL_SMART _MODEM link is an asynchronous protocol at 2400 baud with
even parity, 7 bits per character, and 1 stop bit. A PL_ V25 link has the same
defaults.

Identifies the autodial protocol. This is a protocol used for communicating
with the modem when sending information such as dial sequence or register
settings.

Note: The dial_proto field is ignored if the physical link is not an autodial
protocol.

Most modems use an asynchronous protocol during the connect phase of
call establishment. If no value is set, the default mode is asynchronous.

Communications Subsystem 5-61

mp ioctl

data_proto Identifies the possible data protocol selections during the data transfer
phase. The data_flags field has different meanings depending on what
protocol is selected. The data_proto field accepts the following values:

DATA_PRO_BSC
DATA_PRO_SDLC_FDX

Receivers enabled during transmit.
DATA_PRO_SDLC_HDX

Receivers disabled during transmit.

modem_flags Establishes modem characteristics. This field accepts the following values:

poll_addr

MF_LEASED
MF _SWITCHED
MF_CALL
MF_LISTEN
MF_AUTO

MF_MANUAL

MF _CDSTL_OFF

MF _CDSTL_ON

MF_DRS_ON
MF_DRS_OFF

Indicates a leased telephone circuit.
Indicates a switched telephone circuit.
Indicates an outgoing call (switched only).
Indicates an incoming call (switched only).
Indicates that the call is to be answered or dialed
automatically.
Indicates that the operator answers or dials the call
manually.
Indicates that the distribution tape reel (OTA)
should be enabled without waiting for ring indicate
(RI) (connect data set to line).
Enable DTR after RI occurs. If the DSR goes active
prior to RI, OTA is enabled and RI is ignored.
Enable DRS (date rate selected).
Disable DRS (full speed). This is the default.

Identifies the address-compare value for a Binary Synchronous
Communication (BSC) polling frame or an SDLC frame. If using BSC, a
value for the selection address must also be provided or address compare
is not enabled. If a frame is received that does not match the poll address
(or select address for BSC), the frame is not passed to the system.

select_addr For BSC only, must specify a valid select address.

modem_int_mask

baud_ rate

Reserved. This value must be O (zero).

Specifies the baud rate for transmit and receive clock. This field is used for
DTE clocking only (that is, when the modem does not supply the clock).
Acceptable baud rates range from 150 baud to a maximum speed of 38400
baud. If this field contains a value that does not match one of the following
choices, the next lowest baud rate is used:

• 38400
• 19200
• 9600
• 4800
• 2400
• 2000
• 1200
• 1050
• 600
• 300.

5-62 Kernel Reference

(

(

rev _timeout

mpioctl

A value of 0 (zero) indicates that the port is to be externally clocked (that is,
use modem clocking). The on-board baud rate generator is limited to a
speed of 38400. All higher baud rates up to the maximum of 64000 bits
must be accomplished with modem clocking. For RS232, the adapter uses
BMC clocking and drives a clock signal on the DTE Clock. Most modems
provide their own clocking.

If the physical link is set to SMART _MODEM or V.25 bis, the baud rate is
the speed of the dial sequence and modem clocking is used for data
transfer.

Indicates the period of time, expressed in 100-msec units (.1 sec), used for
setting the receive timer. The MPQP device driver starts the receive timer
whenever the CIO_START operation completes and a final transmit occurs.

If a receive occurs that is not a receive final frame, the timer is restarted.
The timer is stopped when the receive final occurs. If the timer expires
before a receive occurs, an error is reported to the logical link control
protocol (LLC). After the CIO_START operation completes, the receive
time-out value can be changed by the MP _CHANGE_PARAMS operation. A
value of O (zero) indicates that a receive timer should not be activated.

Final frames in SDLC are all frames with the poll or final bit set. In BSC, all
frames are final frames except ITB frames.

rcv_data_offset
Indicates the offset into the data area of a receive buffer where the MPQP
device driver is to begin placing the receive data. This allows the LLC
process to force word alignment if required. A minimum value of 6 is used.

dial_data_length
Specifies the length of the dial data. Dial data for Hayes-style dial data can
be up to 256 bytes.

Flag Fields for autodial Protocols
Flag fields in the t_start_dev structure take different values depending on the type of
autodial protocol selected.

Data Flags for the BSC Autodial Protocol

If BSC is selected in the data_proto field, either ASCII or EBCDIC character sets can be
used. Control characters are stripped automatically on reception. DLEs are automatically
inserted and deleted in transparent mode. The values for the control characters are
determined by the value of the BA bit. If BSC Address Check mode is selected, values for
both poll and select addresses must be supplied. Odd parity is used if ASCII is selected.

The default values are the following:

• EBCDIC

• Do not restart the receive timer

• Do not check addresses

• ATS controlled.

Communications Subsystem 5-63

mp ioctl

The data flag fields for the BSC autodial protocol are the following:

DATA_FLG_RST _ TMR Reset receive timer.

DATA_FLG_ADDR_CHK Address compare select. This causes frames to be filtered
by the hardware based on address. Only frames with
matching addresses are sent to the system.

DATA_FLG_BSC_ASC ASCII BSC select.

DATA_FLG_C_CARR_ON Continuous Carrier (ATS always on).

DATA_FLG_C_CARR_OFF ATS disabled between transmits (default).

Dial Flags for ASC Protocols

If ASC and the parity enable bit is set, the value for parity select is honored. A value of 0
(zero) equals even parity. A value of 1 (one) equals odd parity. If parity enable is set to 0, no
parity type is enforced. The following are the acceptable ASC dial flags:

DIAL_FLG_PAR_EN

DIAL_FLG_PAR_ODD

DIAL_FLG_STOP _O

DIAL_FLG_STOP _ 1

DIAL_FLG_STOP _ 15

DIAL_FLG_STOP 2

DIAL_FLG_ CHAR_5

DIAL_FLG_CHAR_6

DIAL_FLG_CHAR_7

DIAL_FLG_CHAR_S

DIAL_FLG_C_CARR_ON

DIAL_FLG_ C _CARR_ OFF

DIAL_FLG_ TX_NO _ CTS

DIAL_FLG_ TX_ CTS

Enable parity.

Odd parity.

O Stop bits.

1 Stop bit.

1 .5 Stop bits.

2 Stop bits.

5 bits per character.

6 bits per character

7 bits per character.

8 bits per character.

Continuous carrier (ATS always on).

ATS disabled between transmits (default).

Transmit without waiting for CTS.

Wait for CTS to transmit (default).

5-64 Kernel Reference

I
I

\

I

\

(

\

mp ioctl

Data Flags for the SDLC Protocol

For the SDLC protocol, the flag for NRZ or NRZI must match the data-encoding method that
is used by the remote DTE. If SDLC Address Check mode is selected, the poll address byte
must also be specified. The receive timer is started whenever a final block is transmitted. If
RT is set to 1, the receive timer is restarted after expiration. If RT is set to 0, the receive
timer is not restarted after expiration. The receive timer value is specified by the 16-bit
rcv_timeout field. The following are the acceptable SDLC data flags:

DATA_FLG_NRZI

DATA_FLG_ADDR_CHK

DATA_FLG_RST_TMR

DIAL_FLG_C_CARR_ON

DIAL_FLG_C_CARR_OFF

t auto data Fields

NAZI select (default is NRZ).

Address compare select.

Restart receive timer.

Continuous carrier (RTS always on).

RTS disabled between transmits (default).

- - The t_auto_data structure contains the following fields that specify aspects of the X.21 Call
Progress Signal Retry and Logging Data format:

len Length of autodial to be sent to the modem.

sig[] Signals to be sent to the modem data in the form of an array of characters.

connect_timer Time-out value. This value is specified in 0.1 second adapter should wait for
call to complete before reporting a connection failure to the DLC. The
default is 30 seconds if no value is set.

v25b_tx_timer Time-out value. This value is specified in 0.1 second of delay after driving
DTR and before sending dial data in V.25bis modem protocol. If no value is
set, a default value of 0.1 second is used.

t x21 data Fields
- - The t_x21_data structure contains the following fields that specify aspects of the X.21 Call

Progress Signal Retry and Logging Data format:

selection signal length
Contains the length in bytes of the data in the selection signals portion of
the buffer. Values from 0 to 256 are valid.

selection signals
The selection signals are allocated 256 bytes each. Items are stored in the
International Alphabet 5 (IA5) format.

retry_cnt Indicates how many attempts at outgoing call establishment must fail before
the adapter software returns an error to the driver for the CIO_START
operation. Values between O and 255 are allowed. This is a 1-byte field.

retry_delay Contains the number of 100-msec (0.1 sec) intervals to wait between
successive call retries. This is a 2-byte field.

cps_group There are nine characters-per-second (CPS) groups. Each CPS group can
generate a driver interrupt after a configurable number of errors are
detected. Optionally, this interrupt can cause an X.21 network transaction to
notify network error-logging monitors of excessive error rates. The netlog
bit definitions determine which signals in each group are considered
countable.

Communications Subsystem 5-65

mp ioctl

Retry and Netlog Groups
Specify the retry and netlog fields for a CPS-particular group. The bits
definitions are as follows:

• In the retry field, a 1-bit (ON) indicates that retries are enabled for this
signal.

• In logging fields, a set bit indicates that errors of this type should be
counted in the cumulative group error statistics. Eventually, these
statistics can generate interrupts to the driver.

Call-progress signals are divided into groups of 10, for example, CPS "43 is
group 4, signal 3. To indicate retries for CPS 43, the value for signal 3
should be ORed into the retry unsigned short for group 4. Possible values
for retry groups are the following:

• CG_SIG_O
• CG_SIG_1
• CG_SIG_2
• CG_SIG_3
• CG_SIG_4
• CG_SIG_S
• CG_SIG_6
• CG_SIG_7
• CG_SIG_B
• CG_SIG_9.

t err threshold Fields
- - The t_err_threshold structure describes the format for defining thresholds for transmit and

receive errors. Counters track the total number of transmit and receive errors. Individual
counters track certain types of errors. Thresholds can be set for individual errors, total
errors, or a percentage of transmit and receive errors from all frames received.

When a counter reaches its threshold value, a status block is returned by the driver. The
status block indicates the type of error counter that reached its threshold. If multiple
thresholds are reached at the same time, the first expired threshold in the list is reported as
having expired and its counter is reset to O (zero). The user can issue a CIO_QUERY
operation call to retrieve the values of all counters.

If no thresholding is desired, the threshold should be set to O (zero). A value of O indicates
that LLC should not be notified of an error at any time. To indicate that the LLC should be
notified of every occurrence of an error, the threshold should be set to 1 (one).

The t_err_threshold structure contains the following fields:

tx_err_thresh Specifies the threshold for all transmit errors. Transmit errors include
transmit underrun, clear to send (CTS) dropped, CTS time out, and
transmit failsafe time out.

rx_err_thresh Specifies the threshold for all receive errors. Receive errors include
overrun errors, break/abort errors, framing/CRC/FCS errors, parity errors,
bad frame synchronization, and receive-OMA-buffer-not-allocated errors.

tx_err_percent Specifies the percentage of transmit errors that must occur before a
status block is sent to the LLC.

rx_err_percent Specifies the percentage of receive errors that must occur before a status
block is sent to the LLC.

5-66 Kernel Reference

\

(

/

mp ioctl

Execution Environment
The CIO_START operation can be called from the process environment only.

Return Values
ENXIO

ENOMEM

EBUSY

EIO

EFAULT

EINVAL

Indicates that the adapter number is out of range.

Indicates that the no mbufs or mbuf clusters are available.

Indicates that the port state is not opened for a CIO_START operation.

Indicates that the device handler could not queue command to the adapter.

Indicates that the cross-memory copy service failed.

Indicates that the physical link parameter is invalid for the port.

Implementation Specifics
The CIO_START operation functions with a 4-Port Multiprotocol Interface Adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The mpioctl entry point.

The CIO_QUERY operation, MP _CHANGE_PARAMS operation.

Communications Subsystem 5-67

mp ioctl

MP _CHG_PARMS mpioctl Operation {Change Parameters)
Purpose

Description

Permits the data link control (DLC) to change certain profile parameters after the
Multiprotocol (MPQP) device has been started.

The MP _CHG_PARMS operation permits the data link control (DLC) to change certain
profile parameters after the MPQP device has been started. The cmd parameter in the
mpioctl entry point is set to MP _CHG_PARMS. This operation can interfere with
communications that are in progress. Data transmission should not be active when this
operation is issued.

For this operation, the extptr parameter points to a chng_params structure. This structure
has following four fields, which can be changed:

chg_ mask

rcv_timer

poll_addr

sel_addr

Specifies the mask that indicates which fields are to be changed. The
possible choices are: CP _RCV _ TMR, CP _POLL_ADDR, and
CP _SEL_ADDR. More than one field can be changed with one
MP _CHG_PARAMS operation.

Identifies the time out value used after transmission of final frames when
waiting for receive data in .1 second units.

Specifies the poll address. Possible values are SDLC or BSC poll
addresses.

Specifies the select address. BSC is the only possible protocol that supports
select addresses.

Related Information
The mpioctl entry point.

5-68 Kernel Reference

/
I

'

mp ioctl

MP _START_AR and MP _STOP _AR mpioctl Operations {Autoresponse)
Purpose

Description

Permits the Multiprotocol (MPQP) port to exit or enter Autoresponse mode.

The MP _START _AR and MP _STOP _AR operations permit the MPQP port to enter and exit
Autoresponse mode. When the cmd parameter is set to MP _STOP _AR, the device exits
from Autoresponse mode. All received data is sent up to the host. The data link control
(DLC) receives an end-of-autoresponse status in the status_block structure of the
CIO_GET _STAT operation.

When the cmdparameter is set to MP _START_AR, the port is put into Autoresponse mode.
The DLC supplies the address and control bytes for receive compare and transmit in the
t_auto_resp structure pointed to by the extptr parameter. This structure contains the
following fields:

rcv_timer

tx_rx_addr

tx_cntl

rx_cntl

Identifies the time in100-msecs units that the adapter waits after a frame
has been transmitted before reporting an error.

The 1-byte address that is used for compare on the receive frames and as
the address byte on transmitted frames.

Specifies the control byte that is used for transmitted frames.

Identifies the value of control byte on receive frames used for receive
compare.

Autoresponse mode is applicable for SDLC protocol only. Autoresponse is used to reduce
the amount of system overhead during nonproductive link communications. While DTEs are
exchange control information to maintain the link, the adapter can respond to polls from the
host without generating any system interrupts.

When in Autoresponse mode, the MPQP adapter compares the receive address and control
bytes with the values supplied by the DLC. If a match is found, it generates a response
frame with the address and control bytes given in the MP _START_AR operation. When a
response frame is transmitted, a timer is started with the value given in the rcv_timer field. If
the adapter does not receive a frame before the timer expires, an error is detected and
Autoresponse mode is exited.

The following five conditions cause the MPQP adapter to exit Autoresponse mode.

• A receive time out occurs.

• A transmit time out occurs.

• A poll/final frame is received that does· not compare with the control data given in the
autoresponse operation.

• A fatal link error occurs. Fatal errors include data rate select (DSR) dropped and X.21
cleared received.

• A stop autoresponse command is received from the die.

If one of these errors occurs, the adapter exits Autoresponse mode and stays in receive
mode. Polls received after these errors occur are passed to the DLC.

Execution Environment
The autoresponse operations can be called from the process environment only.

Communications Subsystem 5-69

mp ioctl

Implementation Specifics
The mpopen entry point functions with a 4-Port Multiprotocol Interface Adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Return Values
ENXIO Indicates the adapter number is out of range.

EN OM EM Indicates the no mbufs or mbuf clusters are available.

Implementation Specifics
The auto-response operations function with a 4-Port Multiprotocol Interface Adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The CIO_GET _STAT operation.

5-70 Kernel Reference

\

mpmpx

mpmpx Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Syntax

Provides allocation and deallocation of a channel for the Mulitiprotocol (MPQP) device
handler.

int mpmpx (devno, chanp, channame)
dev_t devno;
int *chanp;
char * channame;
int openflag;

Parameters
devno Specifies the major and minor device numbers.

chanp

channame

\ Description

Identifies the channel ID passed as a reference parameter. If the channame
parameter is NULL, this is the ID of the channel to be deallocated.
Otherwise, this parameter is set to the ID of the allocated channel.

Points to the remaining path name describing the channel to be allocated.
There are four possible values:

Equal to NULL Deallocates the channel.

Pointer to a NULL string

D

Pointer to W

Allows a normal open sequence of the device on the
channel ID generated by the mpmpx entry point.

Allows the device to be opened in Diagnostic mode on
the channel ID generated by the mpmpx entry point.

Allows the MPQP device to be opened in Diagnostic
mode with the adapter in Wrap mode on the channel ID
generated by the mpmpx entry point.

The mpmpx entry point provides allocation and deallocation of a channel. This entry point is
supported in the same manner as the common ddmpx entry point.

Return Values
EINVAL

ENXIO

EBUSV

Related Information

Indicates an invalid parameter.

Indicates that the device was already open and that the Diagnostic mode
open request was denied.

Indicates that the device was already open in Diagnostic mode and that the
open request was denied.

The ddmpx common entry point.

The mpopen entry point.

Communications Subsystem 5-71

mpopen

mpopen Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Syntax

Prepares the Multiprotocol (MPQP) device for transmitting and receiving data.

#include <Sys/comio.h>
#include <sys/mpqp.h>

int mpopen (devno, devflag, chan, ext)
dev_t devno;
ulong devflag;
int chan;
STRUCT kopen_ext *ext;

Parameters
devno Specifies the major and minor device numbers.

devflag Specifies the flag word. For kernel-mode processes, the devflag parameter
must be set to the DKERNEL, flag which specifies that a kernel routine is
making the mpopen call. In addition, the following flags can be set:

DWRITE

DREAD

DNDELAY

DELAY

Open for reading and writing.

Open for a trace.

Open without waiting for the operation to complete. If this
flag is set, write requests return immediately and read
requests return with O (zero) length data if no read data is
available. The calling process does not sleep. The default is
DELAY or blocking mode.

This is the default. Wait for the operation to complete before
opening.

Note: For user-mode processes, the DKERNEL flag must be clear.

chan Specifies the channel number assigned by the mpmpx entry point.

ext Points to the kopen_ext parameter block for kernel-mode processes.

Description

Specifies the address to the mpopen parameter block for user-mode
processes.

The mpopen entry point prepares the MPQP device for transmitting and receiving data. This
entry point is invoked in response to a fp_open kernel service call. The file system in user
mode also calls the mpopen entry point when an open subroutine is issued. The device
should be opened for reading and writing data.

Each port on the MPQP adapter must be opened by its own mpopen call. Only one open
call is allowed for each port. If more than one open call is issued, an error is returned on
subsequent mpopen calls.

5-72 Kernel Reference

/
\,

mpopen

The MPQP device handler only supports one kernel-mode process to open each port on the
MPQP adapter. It supports the mpx routines and structures compatible with the
communications 1/0 subsystem, but it is not a true multiplexed device.

The kernel process must provide a kopen_ext parameter block. This parameter block is
found in <sys/comio.h> file.

For a user-mode process, the ext parameter points to the mpopen structure. This is defined
in the <sys/comio.h> file. For calls that do not specify a parameter block, the default values
are used.

If adapter features such as the read extended status field for binary synchronous
communication (BSC) message types as well as other types of information about read data
are desired, the ext parameter must be supplied. This also requires a readx or readx
subroutine. If a system call is used, user data is returned, although status information is not
returned. For this reason it is recommended that readx subroutines be used.

Note: A CIO_START operation must be issued before the adapter is ready to transmit and
receive data. Write commands are not accepted if a CIO_START operation has not
been completed successfully.

Execution Environment
The mpopen entry point can be called from the process environment only.

Return Value
ENXIO

ECHRNG

ENOMEM

EBUSV

Indicates that the port intialization failed. This code could also indicate that
the registration of the interrupt failed.

Indicates that the channel number is out of range (too high).

Indicates that there were no mbuf clusters available.

Indicates that the port is in the incorrect state to receive an open. The port
may be already opened or not yet configured.

Implementation Specifics
The mpopen entry point functions with a 4-Port Multiprotocol Interface Adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The mpclose entry point, mpmpx entry point.

The readx or readx subroutine.

The fp_open kernel service.

The CIO_START operation.

Communications Subsystem 5-73

mp read

mpread Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Syntax

Provides the means for receiving data from the Multiprotocol {MPQP) device.

#include <sys/uio.h>

int mpread(devno, uiop, chan, ext)
dev_t devno;
struct uio * uiop;
int ch an, ext;

Parameters
devno Specifies the major and minor device numbers.

uiop Pointer to an uio structure that provides variables to control the data
transfer operation. The uio structure is defined in the <sys/uio.h> header
file.

chan Specifies the channel number assigned by the mpmpx routine.

ext Specifies the address of the read_ extension structure. If the ext parameter
is NULL, then no parameter block is specified.

Description
Note: Only user-mode processes should use the mpread entry point.

The mpread entry point provides the means for receiving data from the MPQP device.
When a user-mode process user issues a read or readx subroutine, the kernel calls the
mpread e~try point.

The DNDELAY flag, set either at open time or later by an mpioctl operation, controls
whether mpread calls put the caller to sleep pending completion of the call. If a program
issues an mpread entry point with the DNDELAY flag clear {the default), program execution
is suspended until the call completes. If the DNDELAY flag is set, the call always returns
immediately. The user must then issue a poll and CIO_GET_STAT operation to be notified
when read data is available.

When user application programs invoke the mpread operation through the read or readx
subroutine, the returned length value specifies the number of bytes read. The status field in
the read_extension parameter block should be checked to determine if any errors occurred
on the read. One frame is read into each buffer. Therefore, the number of bytes read
depends on the size of the frame received.

For a nonkernel process, the device handler copies the data into the buffer specified by the
caller. The size of the buffer is limited by the size of the internal buffers on the adapter. If the
size of the user buffer exceeds the size of the adapter buffer, the maximum number of bytes
on a mpread entry point is the size of the internal buffer. For MPQP adapter, the maximum
frame size is defined in the mpqp.h file.

Data is not always returned on a read operation when an error occurs. In most cases, the
error causes an error log to occur. If no data is returned, the buffer pointer is NULL. On
errors such as buffer overflow, a kernel-mode process receives the error status and the data.

5-7 4 Kernel Reference

I

\

(
I

""

mp read

There are also some cases where network data is returned (usually during a CIO_START
operation). Network data is distinguished from normal receive data by the status field in the
read_extension structure. A nonzero status in this field indicates an error or information
about the data.

Note: The MPQP device handler uses fixed length buffers for transmitting and receiving
data. The RX_BUF _LEN field in the <sys/mpqp.h> header file defines the maximum
buffer size.

The read_extension Parameter Block
For the mpread entry points, the ext parameter may point to a read_ extension structure.
This structure is found in the <sys/comio.h> header file and contains the following field:

status Specifies the status of the port. There are six possible values for the
returned status parameter. These status values accompany a data buffer:

CIO_OK
MP _BUF _OVERFLOW Indicates receive buffer overflow. For

MP_X21_CPS
MP_X21_DPI

MP _BUF _OVERFLOW, the data that was received
before the buffer overflowed is returned with the
overflow status.
Holds an X.21 call progress signal.
Holds X.21 DCE-provided information (network
data).

MP _MODEM_DATA Contains modem data (for example, an autodial
sent by the modem)

MP _AR_DATA_RCVD Contains data received while in Autoresponse
mode.

Execution Environment
The mpread entry point can be called from the process environment only.

Return Values
The mpread entry point returns the number of bytes read. In addition, this entry point may
return one of the following:

ECHRNG

ENXIO

EINTR

EINVAL

Indicates the channel number was out of range.

Indicates that the port is not in the proper state for a read.

Indicates that the sleep was interrupted by a signal.

Indicates the read was called by a kernel process.

Implementation Specifics
The mpread entry point functions with a 4-Port Multiprotocol Interface Adapter that has been
correctly configured for use on a qualified network. Consult the adapter specifications for
more information on configuring the adapter and network qualifications.

Related Information
The mpmpx entry point, mpwrite entry point.

The read or readx subroutine.

The CIO_START operation, MP _START _AR operation.

The uio structure.

Communications Subsystem 5-75

mpselect

mpselect Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Syntax

Provides the means for determining if specified events have occurred on the Multiprotocol
(MPQP) device.

#include <sys/devices.h>
#include <sys/comio.h>

int mpselect (devno, events, reventp, chan)
dev _t devno;
ushort events;
ushort * reventp;
int chan;

Parameters
devno

events

reventp

ch an

Description

Specifies the major and minor device numbers.

Identifies the events that are to be checked.

Returned events pointer. This parameter is passed by reference and is used
by the mpselect entry point to indicate which of the selected events are true
at the time of the call.

Specifies the channel number assigned by the mpmpx entry point.

Note: Only user-mode processes can use the mpselect entry point.

The mpselect entry point provides the means for determining if specified events have
occurred on the MPQP device. This entry point is supported the same as the common
ddselect communications entry point.

Execution Environment
The mpselect entry point can be called from the process environment only.

Return Values
ENXIO

EINVAL

ECHNG

Indicates an attempt to use an unconfigured device.

Indicates that the select was called from a kernel process.

Indicates the channel number is too large.

Implementation Specifics
The mpselect entry point functions with a 4-Port Multiprotocol Interface Adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The mpmpx entry point.

The ddselect communications entry point.

The select system call, poll system call.

5-76 Kernel Reference

/
\,

mpwrite

mpwrite Multiprotocol (MPQP) Device Handler Entry Point

Purpose

Syntax

Provides the means for transmitting data to the Multiprotocol (MPQP) device.

#include <sys/uio.h>
#include <Sys/comio.h>
#include <sys/mpqp.h>

int mpwrite (devno, uiop, chan, ext)
dev_t devno;
struct uio * uiop;
int chan, ext;

Parameters
devno Specifies the major and minor device numbers.

uiop

ch an

ext

Description

Points to a uio structure that provides variables to control the data transfer
operation. The uio structure is defined in the <sys/uio.h> header file.

Specifies the channel number assigned by the mpmpx entry point.

Can specify the address of the mp_write_extension parameter block. If the
ext parameter is NULL, then no parameter block is specified.

The mpwrite entry point provides the means for transmitting data to the MPQP device. The
kernel calls it when a user-mode process issues a write or writex subroutine. The mpwrite
entry point can also be called in response to a fpwrite kernel service.

The mpwrite Parameter Block
For the mpwrite operation, the ext parameter points to the mp_write_extension structure.
This structure is defined in the <sys/comio.h> file. The mp_write_extension structure
contains the following fields:

status

write_id

Identifies the status of the port. There are five possible values for the
returned status field:

CIO_OK

CIO_TX_FULL

CIO_HARD_FAIL

CIO_INV_BFER

Indicates that the operation was successful.

Unable to queue any more transmit requests.

Hardware failure.

Invalid buffer (length equals 0, invalid address).

CIO_NOT_STARTED Device not yet started.

Contains a user-supplied correlator. The write_id field is returned to the
caller by the CIO_GET _STAT operation if the CIO_ACK_ TX_DONE flag is
selected in the asynchronous status block.

For a kernel user, This field is returned to the caller with the stat_fn function
that was provided at open time.

Communications Subsystem 5-77

mpwrite

In addition to the common parameters, the mp_write_extension structure contains a field
for selecting Transparent mode for binary synchronous communication (BSC). Any nonzero
value for this field causes Transparent mode to be selected. Selecting Transparent mode
causes the adapter to insert DLEs before all appropriate control characters. Text sent in
Transparent mode is unaltered. Transparent mode is normally used for sending binary files.

Note: If an mp_write_extension structure is not supplied, Transparent mode can be
implemented by the kernel-mode process by imbedding the appropriate OLE
sequences in the data buffer.

Execution Environment
The mpwrite entry point can be called from the process environment only.

Return Values
EA GAIN

ECHRNG

EINVAL

ENOMEM

ENXIO

Indicates that the number of DMAs has reached the maximum allowed or
that the device handler cannot get memory for internal control structures.

Note: The MPQP device handler does not currently support the tx_fn
function. If a value of EAGAIN is returned by an mpwrite entry
point, the application is responsible for retrying the write.

Indicates that the channel number is too high.

Indicates one of the following:

• The port is not set up properly.

• The MPQP device handler could not set up structures for the write.

• The port is invalid.

Indicates that no mbuf structure or clusters are available or the total data
length is more than a page.

Indicates one of the following:

• The port has not been successfully started.

• An invalid adapter number was passed.

• The specified channel number is illegal.

Implementation Specifics
The mpwrite entry point functions with a 4-Port Multiprotocol Interface Adapter that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The mpread entry point, mpopen entry point.

The CIO_GET _STAT operation.

The uio structure.

The write or writex subroutine.

1 5-78 Kernel Reference

(

~
)

tokclose Token-Ring Device Handler Entry Point

Purpose

tokclose

Resets the Token-Ring device handler to a known state and frees system resources.

Syntax
#include <Sys/device.h>
#include <sys/comio.h>
#include <sys/tokuser.h>

int tokclose (devno, chan)
dev_t devno;
int chan;

Parameters
devno Specifies the major and minor device numbers.

ch an Identifies the channel number assigned by the tokmpx entry point.

Description
The tokclose entry point is called when a user-mode caller issues a close subroutine. The
tokclose entry point can also be invoked in response to a fp_close kernel service.

Execution Environment
The tokclose entry point can be called from the process environment only.

Return Value
ENXIO Indicates that an invalid minor number was specified.

Implementation Specifics
The tokclose entry point functions with an Token-Ring High-Performance Network Adapter
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The ddclose communications entry point.

The tokopen entry point, tokmpx entry point.

The fp_close kernel service.

The close subroutine.

Communications Subsystem 5-79

tokconfig

tokconfig Token-Ring Device Handler Entry Point

Purpose

Syntax

Provides functions for initializing, terminating, and querying the vital product data (VPD) of
the Token-Ring device handler.

#include <sys/device.h>
#include <sys/uio.h>
#include <sys/comio.h>
#include <sys/tokuser.h>

int tokconfig (devno, cmd, uiop)
dev _t devno;
int cmd;
struct uio * uiop;

Parameters
devno Specifies the major and minor device numbers.

cmd Identifies the function to be performed by the tokconfig routine.

uiop Points to a uio structure that describes the relevant data area for reading or
writing.

Description
The tokconfig entry point provides functions for initializing, terminating, and querying the
vital product data (VPD) of the Token-Ring device handler. The tokconfig routine is invoked
at device configuration time. The tokconfig entry point provides the following three
operations:

• CFG_INIT

The CFG_INIT operation initializes the Token-Ring device handler. The Token-Ring
device handler registers the entry points in the device switch table.

The Token-Ring define device structure (DDS) address and length is described in the uio
structure. The DDS is copied into an internal save area by the device handler.

• CFG_TERM

The CFG_ TERM operation terminates the Token-Ring device handler. If there are no
outstanding opens, the Token-Ring device handler marks itself terminated and prevents
subsequent opens. All dynamically allocated areas are freed. All Token-Ring device
handler entry points are removed from the device switch table.

• CFG_QVPD

The CFG_QVPD operation returns the Token-Ring VPD to the caller. The VPD is placed
in the area specified by the caller in the uio structure.

Execution Environment
The tokconfig entry point can be called from the process environment only.

5-80 Kernel Reference

(

(

I
I

'""

tokconfig

Return Values
Depending on the operation selected, the tokconfig entry point returns the following values:

Return Values for the CFG_INIT Operation
ENOMEM Indicates that the routine was unable to allocate space for the DDS.

EEXIST

EINVAL

ENXIO

EFAULT

Indicates that the device was already initialized.

Indicates the the DDS provided is invalid.

Indicates that the initialization of the Token-Ring device failed.

Indicates that an invalid address was specified.

Return Values for the CFG_ TERM Operation
EBUSY Indicates that there are outstanding opens, unable to terminate.

ENOENT

EACCESS

EEXIST

Indicates that there was no device to terminate.

Indicates that the device was not configured.

Unable to remove the device from the device switch table.

Return Values for the CFG_QVPD Operation
ENOENT Indicates that there was no device to query the VPD.

EFAULT Indicates that an invalid address was specified.

EACCESS Indicates that the Token-Ring device handler is not initialized.

Implementation Specifics
The tokconfig entry point functions with a Token-Ring High-Performance Network Adapter
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The uio structure.

POWERstation and POWERserver Hardware Technical Reference - Options and Devices.

Communications Subsystem 5-81

tokioctl

tokioctl Token-Ring Device Handler Entry Point

Purpose

Syntax

Provides various functions for controlling the Token-Ring device handler.

#include <sys/device.h>
#include <sys/devinfo.h>
#include <sys/ioctl.h>
#include <Sys/comio.h>
#include <sys/tokuser.h>

int tokioctl (devno, cmd, arg, devflag, chan, exn
dev_t devno;
int cmd, arg;
ulong devflag;
int chan, ext;

Parameters
devno Specifies the major and minor device numbers.

cmd

arg

devflag

ch an

ext

Description

Specifies the operation to be performed. The possible tokioctl operation
codes can be found in the <sys/ioctl.h>, <sys/comio.h>, and
<Sys/tokuser.h> header files.

Specifies the address of the tokioctl parameter block.

Indicates the conditions under which the device was opened.

Specifies the channel number assigned by the tokmpx entry point.

This parameter is not' used by the Token-Ring device handler.

The tokioctl entry point provides various functions for controlling the Token-Ring device
handler. There are nine possible tokioctl operations:

IOCINFO 1/0 Character Information.

CIO_START Starts the device.

CIO_HALT Halts the device.

CIO_QUERY Queries device statistics.

CIO_GET_STAT Gets device status.

TOK_GRP _ADDR Sets the group address.

TOK_FUNC_ADDR Sets functional addresses.

TOK_QVPD Queries vital product data (VPD).

TOK_RING_INFO Queries Token-Ring Information.

5-82 Kernel Reference

I

\

(
\"'

~

I).\

tokioctl

Execution Environment
The tokioctl entry point can be called from the process environment only.

Implementation Specifics
The tokioctl entry point functions with a Token-Ring High-Performance Network Adapter
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The tokmpx entry point.

POWERstation and POWERserver Hardware Technical Reference - Options and Devices.

Communications Subsystem 5-83

tokioctl

CIO_GET_STAT tokioctl Operation (Get Status)
Purpose

Description

Gets the current status of theToken-Ring adapter and device handler.

Note: Only user-mode callers can use the CIO_GET_STAT operation.

The CIO_GET _STAT operation returns the current status of the Token-Ring adapter and
device handler. For this operation, the arg parameter points to the status_block structure.
This structure is defined in the <Sys/comio.h> file and takes the following status codes:

• CIO_LOST_DATA
• CIO_NULL_BLK
• CIO_START_DONE
• CIO_HALT_DONE
• CIO_TX_DONE
• CIO_ASYNC_STATUS.

Status Blocks for the Token-Ring Device Handler
Status blocks are used to communicate status and exception information to user-mode
processes.

User-mode processes receive a status block whenever they request a CIO_GET_STAT
operation. A user-mode process can wait for the next available status block by issuing a
tokselect entry point with the specified POLLPRI event.

\

Status blocks contain a code field and possible options. The code field indicates the type of (
status block code (for example, CIO_START _DONE). ,

The following status blocks are returned by the Token-Ring device handler:

CIO_START_DONE Status Block

On a successfully completed CIO_START operation, the status block is filled in as follows:

code

option[O]

option[1]

option[2]

option[3]

CIO_START_DONE.

CIO_OK.

The low-order 2 bytes are filled in with the netid field passed with the
CIO_START operation. If a medium access control (MAC) frame session
was requested, this field is set to TOK_MAC_FRAME_NETID.

The high-order 2 bytes are filled in with the high-order 2 bytes of the
network address. The low-order 2 bytes are filled in with the middle 2 bytes
of the network address.

The high-order 2 bytes are filled in with the low-order 2 bytes of the network
address.

If the CIO_START operation is unsuccessful, the status block is filled in as follows:

code CIO_START_DONE.

5-84 Kernel Reference

/

\"

~

I

optlon[O]

option[1]

option[2]

option[3]

tokioctl

Can be one of the following:

• CIC_ TIMEOUT
• TOK_ADAP _CONFIG
• TOK_ADAP _INIT _PARMS_FAIL
• TOK_ADAP _INIT _FAIL
• TOK_ADAP _INIT_TIMEOUT
• TOK_LOBE_MEDIA_TST_FAIL
• TOK_PHYS_INSERT
• TOK_ADDR_ VERIFY _FAIL
• TOK_RING_POLL
• TOK_REQ_PARMS.

The low-order 2 bytes are filled in with the netid field passed with the
CIO_START operation. If a MAC frame session was requested, this field is
set to TOK_MAC_FRAME_NETID.

Adapter Return Code. For each of the device-specific codes returned in
option[O], an adapter return code is placed in the low-order 2 bytes of this
field. Possible values for the option[2] field are the adapter reset,
initialization, and open completion codes.

Not used.

CIO_HALT_DONE Status Block

On a successfully completed CIO_HALT operation, the status block is filled in as follows:

code

option[O]

option[1]

option[2]

option[3]

CIO_HALT_DONE.

CIO_OK.

The low-order 2 bytes are filled in with the netid field passed with the
CIO_HALT operation. If a MAC frame session was requested, this field is
set to TOK_MAC_FRAME_NETID.

Not used.

Not used.

CIO _ TX_DONE Status Block

When a tokwrite entry point completes for which transmit acknowledgment has been
requested, the following status block is built and returned to the caller.

code CIO_TX_DONE.

option[O]

option[1)

option[2)

option[3]

CIO_OK or TOK_ TX_ERROR.

Contains the write_id field specified in the write_extension structure
passed to the tokwrite operation.

For a kernel-mode process, contains the mbuf pointer that was passed in
the tokwrite operation.

The high-order 2 bytes contain the adapter's transmit command complete
code that the adapter returns. The low-order 2 bytes contain the adapter's
transmit CSTAT completion code that is returned when a packet is
transmitted by the adapter.

Communications Subsystem 5-85

tokioctl

CIO_ASYNC_STATUS Status Block

The Token-Ring device handler can return the following types of asynchronous status:

• CIO_HARD_FAIL:

- TOK_ADAP _CHECK

- TOK_PIO_FAIL

- TOK_RCVRY_THRESH

• CIO_NET _RCVRY _ENTER

• CIO_NET _RCVRY _EXIT

• TOK_RING_STATUS

When a CIO_HARD_FAIL status block is returned, the Token-Ring adapter is no longer
functional. The user should begin shutting down the Token-Ring device handler.

Hard Failure Status Block Values

Unrecoverable Adapter Check

When an unrecoverable adapter check has occurred, this status block is returned:

code CIO_ASYNC_STATUS.

option[O]

option[1]

option[2]

option[3]

CIO_HARD_FAIL.

TOK_ADAP _CHECK.

The adapter return code is in the high-order 2 bytes. The adapter returns
three parameters when an adapter check occurs. Parameter 0 (zero) is
returned in the low-order 2 bytes.

The high-order 2 bytes contain parameter 1 (one). The low-order 2 bytes
contain parameter 2.

Unrecoverable PIO Error

When an unrecoverable PIO error has occurred, this status block is returned:

code CIO_ASYNC_STATUS

option[O]

option[1]

option[2]

option[3]

CIO_HARD_FAIL

TOK_PIO_FAIL

Not used

Not used.

Exceeded Network Recovery Entry Threshold

When the Token-Ring device handler has exceeded the Network Recovery mode entry
threshold, this status block is returned:

code

option[O]

option[1]

CIO_ASYNC_STATUS

CIO_HARD_FAIL

TOK_RCVRY _THRESH

5-86 Kernel Reference

/
I
\iJ

option[2]

option[3]

Not used

Not used.

tokioctl

Entered Network Recovery Mode Status Block

When the Token-Ring device handler has entered Network Recovery mode, this status block
is returned:

code

option[O]

option[1]

option[2]

option[3]

CIO_ASYNC_STATUS.

CIO_NET _RCVRY _ENTER.

Specifies the reason for entering Network Recovery mode. Can be one of
these seven options:

• TOK_RING_STATUS
• TOK_LOBE_WIRE_FAULT
• TOK_AUTO_REMOVE
• TOK_ADAP_CHECK
• TOK_CMD_FAIL
• TOK_REMOVE_RECEIVED
• TOK_MC_ERROR.

Specifies the adapter return code. For an adapter check, the adapter return
code is in the high-order 2 bytes. The adapter returns three parameters
when an adapter check occurs. The adapter check parameter 0 (zero) is
returned in the low-order 2 bytes.

For an adapter check, the high-order 2 bytes contain parameter 1 (one).
The low-order 2 bytes contain parameter 2.

Exited Network Recovery Mode Status Block

When the Token-Ring device handler has exited Network Recovery mode, the status block
is filled in as follows:

code CIO_ASYNC_STATUS

option[O]

option[1]

option[2]

option[3]

CIO_NET _RCVRY _EXIT

Not used

Not used

Not used.

Ring Beaconing Status Block Values

When the Token-Ring adapter detects a beaconing condition on the ring, it notifies the
device handler. The device handler returns the following status block:

code CIO_ASYNC_STATUS.

option[O]

option[1]

option[2]

option[3]

TOK_RING_STATUS.

TOK_RING_BEACONING.

Specifies the adapter return code. The low-order 2 bytes contains the ring
status.

Not used.

Communications Subsystem 5-87

tokioctl

Ring Recovered Status Block Values

When the Token-Ring detects that the beaconing condition has ceased, it notifies the device
handler. The device handler returns the following status block:

code

option(O]

option[1]

option[2]

option(3]

CIO_ASYNC_STATUS

TOK_RING_STATUS

TOK_RING_RECOVERED

Not used

Not used.

Execution Environment
The CIO_GET_STAT operation can be called from the process environment only.

Return Values
EACCESS

EINVAL

EFAULT

Indicates an illegal call from a kernel-mode user.

Indicates that an invalid parameter was specified.

Indicates that an invalid address was supplied.

Implementation Specifics
The CIO_GET _STAT operation functions with a Token-Ring High-Performance Network
Adapter that has been correctly configured for use on a qualified network. Consult the
adapter specifications for more information on configuring the adapter and network
qualifications.

Related Information
The CIO_START operation, CIO_HALT operation.

The tokioctl entry point, tokwrite entry point.

Network Recovery Mode for the Token-Ring Device Handler.

5-88 Kernel Reference

(

\

I
I
~

\
)

tokioctl

CIO_HALT tokioctl Operation (Halt Device)
Purpose

Description

Ends a session with the Token-Ring device handler.

The CIO_HALT operation ends a session with the Token-Ring device handler. The caller
indicates the network ID that is to be halted. This CIO_HALT operation corresponds to the
CIO_START operation that was successfully issued with the specified network ID. A
CIO_HALT operation should be issued for each CIO_START operation that was successfully
issued.

Data for the specified network ID is no longer received. Data that was received for the
specified network ID before the halt is still passed up to a user mode caller by the tokselect
and tokread entry points. Data is passed back to a kernel mode caller by the rx_fn routine
specified at open time.

For the CIO_HALT operation, the arg parameter points to the session_blk structure. This
structure is defined in the <sys/comio.h> file and contains the following fields:

status Returns one of the following status values:

• CIO_OK

• CIO_NETID_INV.

netid Specifies the network ID. The network ID is placed in the least significant
byte of the netid field. When terminating the MAC Frame session, the netid
field should be set to TOK_MAC_FRAME_NETID.

Execution Environment
The CIO_HALT operation can be called from the process environment only.

Return Values
EINVAL

EFAULT

ENOMSG

Indicates an invalid parameter.

Indicates that an invalid address was specified.

Indicates that an error occurred.

Implementation Specifics
The CIO_HALT operation functions with a Token-Ring High-Performance Network Adapter
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The CIO_START operation, the CIO_GET_STAT operation.

The tokselect entry point, tokread entry point, tokioctl entry point.

Communications Subsystem 5-89

tokioctl

CIO_QUERY tokioctl Operation {Query Statistics)
Purpose

Description

Allows the caller to read the counter values accumulated by the Token-Ring device handler.

The CIO_QUERY operation is used by the caller to read the counter values accumulated by
the Token-Ring device handler. The first call to the tokopen entry point initializes the
counters to O (zero).

For the CIO_QUERY operation, the arg parameter points to the query_parms structure.
This structure is defined in the <sys/comio.h> header file and contains the following fields:

status

buffptr

bufflen

clearall

Indicates the status of the port. This field may be CIO_OK or
CIO_INV_CMD.

Specifies the address of a buffer where the returned statistics are to be
placed.

Specifies the length of the buffer.

When this value equals CIO_QUERY _CLEAR, the counters are cleared
upon completion of call. The CIO_QUERY_CLEAR label can be found in
the <sys/comio.h> header file.

The counters placed in the supplied buffer by the CIO_QUERY operation are the counters
declared in the tok_query_stats_t structure defined in the <Sys/tokuser.h> header file.

Execution Environment
The CIO_QUERY operation can be called from the process environment only.

Return Values
EFAULT

EINVAL

Indicates than an invalid address was specified.

Indicates an invalid parameter.

\

Implementation Specifics (
The CIO_QUERY operation functions with a Token-Ring High-Performance Network Adapter 1~

that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The tokioctl entry point, tokopen entry point.

POWERstation and POWERserver Hardware Technical Reference - Options and Devices.

5-90 Kernel Reference

tokioctl

CIO_START (Start Device tokioctl Operation)
Purpose

Description

Initiates a session with the Token-Ring device.

The CIO_START operation initiates a session with the Token-Ring device handler. If the start
is the first on the port, the device handler initializes and opens the Token-Ring adapter. For
each successful CIO_START call issued, there should be a corresponding CIO_HALT
operation issued.

After the CIO_START operation has successfully completed, the adapter is ready to transmit
and receive data. The caller is free to issue any valid Token-Ring operation. Once started,
the adapter receives packets that match the Token-Ring adapter's (hardware) address (or
the address specified in the DDS) and broadcast. No group or functional address is
specified when the adapter is brought up.

The caller notifies the device handler of the network ID that it wishes to use. The network ID
corresponds to the destination service access point (DSAP) in the Token-Ring packet. The
caller can issue multiple CIO_START operations. For each adapter the Token-Ring device
handler can handle from 0 (zero) to the number of network IDs specified by the
TOK_MAX_NETIDS label. This label is defined in the <sys/tokuser.h> header file.

The session_blk Parameter Block

For the CIO_START operation, the arg parameter points to the session_blk structure. This
structure is defined in the <sys/comio.h> header file and contains the following fields:

status Indicates the status of the CIO_START. Possible returned status values
are:

CIO_OK

CIO_NETID_FULL

CIO_NETID_DUP.

netid Specifies the network ID the caller will use on the network. The Network ID
is placed in the least significant byte of the netid field. To request a MAC
frame session, the netid field should be set to the
TOK_MAC_FRAME_NETID label. This value has a unique identifier in the
most significant byte of the netid field. There can be only one MAC frame
session per adapter.

Note: The AIX Token-Ring device handler does not allow the caller to
specify itself as the wild card network ID.

Execution Environment
The CIO_START operation can be called from the process environment only.

Communications Subsystem 5-91

tokioctl

Return Values
EINVAL Indicates an invalid parameter.

ENETDOWN Indicates an unrecoverable hardware error.

ENOMSG Indicates an error.

ENOSPC Indicates the network ID table is full.

EADDRINUSE Indicates the network ID is in use.

Implementation Specifics
The CIO_START operation functions with a Token-Ring High-Performance Network Adapter
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The tokioctl entry point.

The CIO_HALT operation, CIO_GET_STAT operation.

5-92 Kernel Reference

(

\

(
\

I
I

'""

tokioctl

1
'1 IOCINFO tokioctl Operation (Describe Device)

Purpose

)

Description

Returns a structure that describes the Token-Ring device.

The IOCINFO operation returns a structure that describes the Token-Ring device. For this
operation, the arg parameter points to the devinfo structure. This structure is defined in the
<sys/devinfo.h> file and contains the following fields:

devtype Identifies the device type. The Token-Ring device type is DD_NET_DH. This
value is defined in the <sys/devinfo.h> file.

devsubtype Identifies the device subtype. The Token-Ring device subtype is DD_ TR.
This value is defined in the <sys/devinfo.h> file.

speed Specifies the capabilities of the Token-Ring device. This is equal to
TOK_ 4M when the Token-Ring device is configured with a data rate of 4
Mbps. The capabilities are TOK_ 16M when the Token-Ring device is
configured with a data rate of 16 Mbps. The TOK_ 4M and TOK_ 16M labels
are defined in the <Sys/tokuser.h> file.

broad_ wrap Specifies whether the wrapping of broadcast packets is supported by the
device.

rdto Specifies the configured receive data transfer offset (RDTO) value.

haddr Specifies the 6-byte hardware address of the Token-Ring adapter card.

net_addr Specifies the 6-byte Network address currently used by the Token-Ring
device handler.

The parameter block is filled in with the appropriate values upon return.

Execution Environment
The IOCINFO operation can be called from the process environment only.

Return Values
EFAULT

EINVAL

ENXIO

Indicates that an invalid address was specified.

Indicates an invalid parameter.

Indicates that an invalid minor number was specified.

Implementation Specifics
The IOCINFO operation functions with a Token-Ring High-Performance Network Adapter
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The tokioctl entry point.

Communications Subsystem 5-93

tokioctl

TOK_FUNC_ADDR tokioctl Operation (Set Functional Address)
Purpose

Description

Specifies a functional address to be used on the Token-Ring device.

The TOK_FUNC_ADDR operation allows the caller to specify a functional address to be
used on the Token-Ring network. A successful CIO_START operation must be issued before
a TOK_FUNC_ADDR operation can be issued. The parameter block for the functional
address is the tok_func_addr_t structure defined in the <sys/tokuser.h> header file.

The tok_func_addr_t structure has four fields:

status

netld

opcode

func_addr

Returns the one of the following status conditions:

• CIO_OK
• CIO_NOT_STARTED
• CIO_NETID_INV
• CIO_TIMEOUT
• CIO_INV_CMD.

Specifies the network ID associated with this functional address. The
network ID must have previously been successfully started by the
CIO_START operation. There can only be one functional address specified
per network ID.

When set to TOK_ADD, the functional address is added to the possible
functional addresses the Token-Ring adapter accepts packets for. When set
to TOK_DEL, the functional address is removed from the possible functional
addresses to accept packets for. The TOK_ADD and TOK_DEL are defined
in the <sys/tokuser.h> header file.

Specifies the functional address. The most significant bit and the two least
significant bits cannot be set. They are ignored by the Token-Ring adapter.

Note: On the Token-Ring network, a group address is a 6-byte address.
The most significant 2 bytes are automatically compared to a
OxCOOO by the Token-Ring adapter.

Execution Environment
The TOK_GRP _ADDA operation can be called from the process environment only.

Return Values
ENOMSG Indicates that an error occurred.
EFAULT Indicates that an invalid address was specified.
ENETDOWN Indicates an unrecoverable hardware error.
EINVAL Indicates an invalid parameter.
ENOCONNECTlndicates that the device has not been started.

Implementation Specifics
The TOK_GRP _ADDA operation functions with a Token-Ring High-Performance Network
Adapter that has been correctly configured for use on a qualified network. Consult the
adapter specifications for more information on configuring the adapter and network
qualifications.

Related Information
The tokloctl entry point.

The CIO_START operation.

Token-Ring Status Blocks.

POWERstation and PO'vVERserver Hardware Technicai Re;erence - Options and Devices.

5-94 Kernel Reference

/tf,,,I
[I-'·

~

I

(
\

(
~

/

tokioctl

TOK_GRP _ADDR tokioctl Operation (Set Group Address)
Purpose

Description

Sets the active group address for the Token-Ring adapter.

The TOK_GRP _ADDA operation sets the active group address for the Token-Ring adapter.
Only one group address can be specified at a time for a Token-Ring adapter. For this
operation, the arg parameter points to the tok_group_addr_t structure. This structure is
defined in the <sys/tokuser.h> header file and contains the following fields:

status Returns on of the following possible status values:

• CIO_OK

• CIO_NOT_STARTED

• CIO_TIMEOUT

• CIO_INV_CMD

• TOK_NO_GROUP.

opcode When set to TOK_ADD, the group address specified is added to the
possible address, the Token-Ring device accepts packets for. When set to
TOK_DEL, the group address is removed from the possible receive packet
addresses. The TOK_ADD and TOK_DEL values are defined in the
<sys/tokuser.h> header file.

group_addr Specifies the group address. The Token-Ring adapter ignores the most
significant bit of this field.

Note: On the Token-Ring network a group address is a 6-byte address.
The most significant 2 bytes are automatically compared to a
OxCOOO by the Token-Ring adapter.

Execution Environment
The TOK_GRP _ADDA operation can be called from the process environment only.

Return Values
ENOMSG Indicates than an error occurred.

EFAULT Indicates that an invalid address was specified.

ENETDOWN Indicates an unrecoverable hardware error.

EINVAL Indicates an invalid parameter.

ENOCONNECTlndicates that the device has not been started.

Implementation Specifics
The TOK_GRP _ADDA operation functions with a Token-Ring High-Performance Network
Adapter that has been correctly configured for use on a qualified network. Consult the
adapter specifications for more information on configuring the adapter and network
qualifications.

Related Information
The tokioctl entry point.

Token-Ring Status Blocks, Token-Ring Operation Results.

Communications Subsystem 5-95

tokioctl

TOK_QVPD tokioctl Operation (Query Vital Product Data)
Purpose

Description

Returns the vital product data (VPD) for the Token-Ring adapter.

The TOK_QVPD operation returns VPD about the Token-Ring device. For this operation, the
arg parameter points to the tok_vpd_t block for the query vital product data (VPD). This
structure is defined in the <sys/tokuser.h> header file and contains the following fields:

status Returns one of the following status conditions:

• TOK_VPD_VALID

• TOK_VPD_NOT_READ

• TOK_ VPD_INVALID.

l_vpd Specifies the length of the vpd parameter.

vpd[TOK_ VPD _LENGTH]
Contains the VPD upon return.

Execution Environment
The TOK_QVPD operation can be called from the process environment only.

Return Values
EINVAL

EFAULT

ENXIO

Indicates an invalid parameter.

Indicates that an invalid address was specified.

Indicates that an invalid minor number was specified.

Implementation Specifics
The TOK_QVPD operation functions with a Token-Ring High-Performance Network Adapter
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The tokioctl entry point.

5-96 Kernel Reference

/

tokioctl

TOK_RING_INFO tokioctl Operation (Query Token-Ring)
Purpose

Description

Reads information about the Token-Ring device.

The TOK_RING_INFO operation is used by the caller to read information about the
Token-Ring device. For this operation, the arg parameter points to the tok_q_ring_info_t
structure. This structure is defined in the <sys/tokuser.h> header file and contains the
following fields:

status

p_info

l_buf

Indicates the status condition that occurred. Possible status values are:

• CIO_OK

• CIO_NOT_STARTED

• TOK_NO_RING_INFO.

Points to the buffer where the tok_ring_info_t structure is to be copied.
The tok_ring_info_t structure is defined in the <sys/tokuser.h> file.

Specifies the length of the buffer for the returned Ring Information structure.

Execution Environment
The TOK_RING_INFO operation can be called from the process environment only.

Return Values
EINVAL Indicates an invalid parameter.

EFAULT Indicates that an invalid address was specified.

ENOMSG Indicates that an error occurred.

ENOCONNECT Indicates that the device has not been started.

Implementation Specifics
The TOK_RING_INFO operation functions with a Token-Ring High-Performance Network
Adapter that has been correctly configured for use on a qualified network. Consult the
adapter specifications for more information on configuring the adapter and network
qualifications.

Related Information
The tokioctl entry point.

Token-Ring Operation Results, List of Common Status/Exception Codes, Token Ring Status
Block Values.

POWERstation and POWERserver Hardware Technical Reference - Options and Devices.

Communications Subsystem 5-97

tokmpx

tokmpx Token-Ring Device Handler Entry Point

Purpose

Syntax

Provides allocation and deallocation of a channel for the Token-Ring device handler.

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/tokuser.h>

int tokmpx (devno, chanp, channame)
dev _t devno;
int *chanp;
char * channame;

Parameters
devno Specifies the major and minor device numbers.

chanp

channame

Description

Specifies the channel ID passed as a reference parameter. If the channame
parameter is NULL, this is the ID of the channel to be deallocated.
Otherwise, this parameter is set to the ID of the allocated channel.

Points to the remaining path name describing the channel to be allocated.
The channame parameter accepts the following values:

Equal to NULL

Pointer to a NULL string

Pointer to D

Pointer to W

Deallocates the channel.

Allows a normal open sequence of the
Token-Ring device on the channel ID
generated by the tokmpx entry point.

Allows the Token-Ring device to be
opened in Diagnostic mode on the
channel ID generated by the tokmpx
entry point.

Allows the Token-Ring device to be
opened in Diagnostic mode with the
adapter in Wrap mode on the channel ID
generated by the tokmpx entry point.

The tokmpx entry point is not called directly by a user of the Token-Ring device handler.
The kernel calls the tokmpx entry point in response to an open or close request.

If the Token-Ring device has been successfully opened, any Diagnostic mode open requests
fail. If the device has been successfully opened in Diagnostic mode, all subsequent open
requests fail.

Execution Environment
The tokmpx entry point can be called from the process environment only.

5-98 Kernel Reference

\

(

~. Return Values
EA CC ES

EBUSV

ENO MSG

ENXIO

ENOS PC

tokmpx

Indicates that the device was already open and that the Diagnostic mode
open request was denied.

Indicates that the device was already open in Diagnostic mode and that the
open request was denied.

Indicates that an error occurred.

Indicates an invalid minor number was specified.

Indicates that the maximum number of opens has been exceeded.

Implementation Specifics
The tokmpx entry point functions with an Token-Ring High-Performance Network Adapter
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The ddopen entry point, ddmpx entry point, ddclose entry point, tokclose entry point,
tokopen entry point.

Data Transmission for the Token-Ring Device Handler, Data Reception for the Token-Ring
Device Handler.

Communications Subsystem 5-99

tokopen

tokopen Token-Ring Device Handler Entry Point

Purpose
Initializes the Token-Ring device handler and allocates the required system resources.

Include Files
#include <Sys/device.h>
#include <sys/comio.h>
#include <Sys/tokuser.h>

Kernel-mode Syntax
inttokopen(devno,devflag,chan,arg)
dev _t devno;
ulong devflag;
int chan;
struct kopen_ext * arg;

User-mode Syntax
int tokopen (devno, devflag, chan, arg)
dev _t devno;
ulong devflag;
int chan;
int arg;

Parameters
devno

devflag

Specifies the major and minor device numbers.

Specifies the flag word with the following definitions:

DKERNEL

ON DELAY

This flag is set to indicate a kernel-mode processes. For
user-mode processes, this flag must be clear.

If this flag is set, the device handler performs nonblocking
reads and writes for this channel. Otherwise, blocking
reads and writes are performed for this channel.

chan Specifies the channel number assigned by the tokmpx entry point.

arg For kernel-mode processes, points to a kopen_ext structure. For
user-mode processes, this field is not used.

Description
The tokopen entry point is called when a user-mode caller issues an open, openx, or creat
subroutine. The tokopen routine can also be invoked in response to a fp_opendev kernel
service. The device is opened for reading and writing of data.

Note: After the tokopen operation has successfully completed, the caller must issue a
CIO_START operation before any data can be transmitted or received from the
Token-Ring device handler.

Execution Environment
The tokopen entry point can be called from the process environment only.

5-100 Kernel Reference

I

~

Return Values
ENXIO Indicates that an invalid minor number was specified.

Indicates that an invalid parameter was specified.

tokopen

EINVAL

ENOMEM Indicates that the device handler was unable to allocate the required
memory.

Implementation Specifics
The tokopen entry point functions with a Token-Ring High-Performance Network Adapter
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The ddopen communications entry point.

The CIO_START operation.

The open, openx, or creat subroutine.

Data Transmission for the Token-Ring Device Handler, Data Reception for the Token-Ring
Device Handler.

Communications Subsystem 5-101

tokread

tokread Token-Ring Device Handler Entry Point

Purpose

Syntax

Provides the means for receiving data from the Token-Ring device handler.

#include <sys/device.h>
#include <sys/uio.h>
#include <sys/comio.h>
#include <sys/tokuser.h>

int tokread (devno, uiop, chan, arg)
dev _t devno;
struct uio * uiop;
int chan;
read_ extension * arg;

Parameters
devno Specifies the major and minor device numbers.

uiop

ch an

arg

Description

Points to a uio structure. For a calling user-mode process, the uio structure
specifies the location and length of the caller's data area in which to transfer
information. The kernel fills in the uio structure for the user.

Specifies the channel number assigned by the tokmpx entry point.

Can be NULL or else point to the read_extension structure. This structure
is defined in the <sys/comio.h> header file

Note: Only user-mode callers should use the tokread entry point.

The tokread entry point provides the means for receiving data from the Token-Ring device
handler. When a user-mode caller issues a read, readx, readv, or readvx subroutine, the
kernel calls the tokread entry point.

For this operation, the arg parameter may point to the read_extension structure. This
structure is defined in the <sys/comio.h> header file and contains the following fields:

status

netid

sessid

Contains additional inforamtion about the completion of the tokread entry
point. Possible values for this field are:

• CIO_OK

• CIO_BUF _OVFLW.

Not used.

Not used.

Execution Environment
The tokread entry point can be called from the process environment only.

5-102 Kernel Reference

/
I
~

(
\ii

tokread

~ Return Values
EACCESS Indicates an illegal call from a kernel-mode user.

ENXIO Indicates that an invalid minor number was specified.

EINTR Indicates that a system call was interrupted.

EMSGSIZE Indicates that the data was too large to fit into the receive buffer and that
no arg parameter was supplied to provide an alternate means of reporting
this error with a status of CIO_BUF _OVFLW.

EFAULT Indicates that an invalid address was supplied.

ENOCONNECT Indicates that the device has not been started.

Implementation Specifics
The tokread entry point functions with a Token-Ring High-Performance Network Adapter
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The tokwrite entry point, tokmpx entry point.

The read, readx, readv, or readvx subroutine.

List of Common Communications Status/Exception Codes.

Communications Subsystem 5-103

tokselect

tokselect Token-Ring Device Handler Entry Point

Purpose

Syntax

Determines if a specified event has occurred on the Token-Ring device.

#include <sys/device.h>
#include <sys/comio.h>
#include <sys/tokuser.h>

Int tokselect (devno, events, reventp, chan)
dev_t devno;
ushort events;
ushort * reventp;
int chan;

Parameters
devno Specifies the major and minor device numbers.

events

reventp

Specifies the conditions to be checked are denoted by the bitwise OR of
one or more of the following:

POLLIN

POLLOUT

Check if receive data is available.

Check if transmit available.

POLLPRI Check if status is available.

POLLSYNC Check if asychronous notification is available.

Points to the result of condition checks. A bitwise OR of the following
conditions is returned:

POLLIN

POLLOUT

POLLPRI

Receive data is available.

Transmit available.

Status Is available.

chan Specifies the channel number assigned by the tokmpx entry point.

Description
Note: Only user-mode callers should call this entry point.

The tokselect entry point is called when the select or poll subroutine is used to determine if
a specified event has occurred on the Token-Ring device.

When the Token-Ring device handler is in a state in which the event can never be satisfied
(for example, an adapter failure), then the tokselect entry point sets the returned events
flags to 1 (one) for the event that cannot be satisfied. This prevents the select or poll
subroutines from waiting indefinitely.

Execution Environment
The tokselect entry point can only be called from the process environment.

5-104 Kernel Reference

Return Values
ENXIO

EA CC ES

Indicates that an invalid minor number was specified.

Indicates an invalid call from a kernel process.

Implementation Specifics

tokselect

The tokselect entry point functions with a Token-Ring High-Performance Network Adapter
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The select subroutine, poll subroutine.

Select/Poll Logic for Write, Read, and Exception-Handling Routines.

Communications Subsystem 5-105

tokwrite

tokwrite Token-Ring Device Handler Entry Point

Purpose

Syntax

Provides the means for transmitting and receiving data to and from the Token-Ring device
handler.

#include <sys/device.h>
#include <sys/uio.h>
#include <sys/comio.h>
#include <sys/tokuser.h>

int tokwrite (devno, uiop, chan, arg)
dev_t devno;
struct uio *uiop;
int chan;
struct write_extension * arg;

Parameters
devno Specifies the major and minor device numbers.

uiop

ch an

arg

Description

Points to a uio structure specifying the location and length of the caller's
data.

Specifies the channel number assigned by the tokmpx entry point.

Points to a write_extension structure. If the arg parameter is NULL, then
default values are assumed.

The tokwrite entry point provides the means for transmitting data to the Token-Ring device
handler. The kernel calls it when a user-mode caller issues a write, writex, writev, or
writevx subroutine.

For a user-mode process, the kernel fills in the uio structure with the appropriate values. A

I
l~

kernel-mode process must fill in the uio structure as described by the ddwrite (
communications entry point. ~

For the tokwrite entry point, the arg parameter may point to a write_extension structure.
This structure is defined in the <sys/comio.h> header file and contains the following fields:

status

flag

5-106 Kernel Reference

Indicates the status condition that occurred. Possible values for the returned
status field are:

• CIO_OK
• CIO_TX_FULL
• CIO_NOT_STARTED
• CIO_NET_RCVRY_MODE.

May consist of a bitwise OR of the following:

CIO_NOFREE_MBUF
Requests that the PDH not free the mbuf structure after
transmission is complete. The default is bit clear (free the
buffer). For a user-mode process, the PDH always frees the
mbuf structure.

\
I

write_id

tokwrite

CIO_ACK_ TX_DONE
Requests that, when done with this operation, the PDH
acknowledges completion by building a CIO_ TX_DONE
status block. In addition, requests the PDH either call the
kernel status function or (for a user-mode process) place
the status block in the status/exception queue. The default
is bit clear (do not acknowledge transmit completion).

For a user-mode caller, the write_id field is returned to the caller by the
CIO_GET _STAT operation (if the CIO_ACK_ TX_DONE option is selected).
For a kernel-mode caller, the write_id field is returned to the caller by the
stat_fn function that was provided at open time.

Execution Environment
The tokwrite entry point can be called from the process environment only.

Return Values
ENXIO

ENETDOWN

ENETUNREACH

ENOCONNECT

EA GAIN

EINVAL

ENOMEM

EINTR

EFAULT

Implementation Specifics

Indicates that an invalid minor number was specified.

Indicates that the network is down. The device is unable to
process the write.

The device is in Network Recovery mode and is unable to
process the entry point.

Indicates that the device has not been started.

Indicates that the transmit queue is full.

Indicates that an invalid parameter was specified.

Indicates that the device handler was unable to allocate the
required memory.

Indicates that a system call was interrupted.

Indicates that an invalid address was supplied.

The tokwrite entry point functions with a Token-Ring High-Performance Network Adapter
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The tokmpx entry point, tokopen entry point.

The CIO_START operation.

The uio structure.

The write, writex, writev, or writevx subroutine.

Network Recovery Mode for the Token-Ring Device Handler.

Communications Subsystem 5-107

x25sclose

x25sclose X.25 Device Handler Entry Point

Purpose

Syntax

Closes an X.25 device handler channel.

int x25sclose (devno, chan, ext)
dev_t devno;
int chan, ext;

Parameters
devno Specifies the major and minor device numbers.

ch an

ext

Description

Identifies the channel number assigned by the x25smpx entry point.

Not used by the x25sclose entry point.

The x25sclose entry point closes an X.25 device handler channel. For each channel opened
by the x25sopen entry point, there must be a corresponding x25sclose entry point. When
the X.25 device handler receives an x25sclose entry point, the device handler frees all
internal data areas associated with the corresponding x25sopen entry point. In addition, any
receive data for the indicated channel is purged.

Note: The x25sclose entry point does not free the channel itself. The channel is freed by
the x25smpx entry point, which the kernel calls immediately after the x25sclose
entry point.

If the channel being closed is the only open channel for the minor device, the X.25 device
handler does the following as well:

• Frees the interrupt level.

• Resets all static data to its initial state.

(

Before issuing the x25sclose entry point, the caller should issue a call to the CIO_HALT G
operation for each successful CIO_START operation. If the user does not call the CIO_HALT
operation (for example, the call was invoked by the kernel after a user process ended
abnormally), the X.25 device handler performs the CIO_HALT operation on all open
sessions on the channel before continuing with the x25sclose function. The close purges all
data waiting on the channel. No special clear data can be sent and any clear confirm data is
lost.

Note: If the user does not call a CIO_HALT, it is possible data could be lost on the
channel's open sessions.

Execution Environment
An x25sclose entry point can be called from the process environment only.

5-108 Kernel Reference

~
)

f

x25sclose

Return Values
A return code of-1 indicates an unsuccessful operation. The kernel sets the errno global
variable to one of the following values:

EINTR

ENXIO

Indicates that the close call was interrupted.

Indicates that the channel was not valid.

Implementation Specifics
The x25sclose entry point functions with an IBM X.25 Interface Co-Processor/2 that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The x25smpx entry point, x25sopen entry point.

The CIO_START operation, CIO_HALT operation.

Communications Subsystem 5-109

x25sioctl

x25sioctl X.25 Device Handler Entry Point

Purpose

Syntax

Provides various functions for controlling the X.25 device.

int x25sioctl (devno, cmd, arg, devflag, chan, ext)
dev_t devno;
int cmd, arg;
ulong devflag;
int ch an, ext;

Parameters
devno Specifies the major and minor device numbers.

cmd

arg

devflag

ch an

ext

Description

Specifies which of the available x25sioctl operations is to be performed.

Identifies the address of the x25sioctl parameter block. The meaning of this
field depends on the value of the cmd parameter.

Indicates how the device was opened and whether the caller is a user- or
kernel-mode process. This parameter accepts the following flags:

DKERNEL

DREAD

DWRITE

DAPPEND

A kernel-mode process called the entry point. This flag is
clear if a user-mode process called the entry point.

Open for reading. This is the default for the X.25 handler
regardless of whether this flag is set.

Open for writing. This is the default for the X.25 handler
regardless of whether this flag is set.

Open for appending. The X.25 handler ignores this flag.

DNDELAY If this flag is set, the X.25 device handler performs
nonblocking reads and writes. Otherwise, blocking reads
and writes are performed.

Identifies the channel number assigned by the x25smpx entry point.

The extended system call parameter. The meaning of this field depends on
the value of the cmd parameter.

The x25sioctl X.25 device handler entry point provides various functions for controlling the
X.25 device. The following are valid operations for the X.25 device:

IOCINFO Returns a structure that describes the device.

CIO_START

CIO_HALT

CIO_QUERY

CIO_GET_STAT

5-110 Kernel Reference

Starts a session and registers a network ID.

Halts a session.

Returns the current RAS counter values.

Return the next status block.

(1 ,.,
·~

(

/
I
"'4

x25sioctl

In addition to the above standard operations, the x25sioctl operation supports the following
X.25 specific commands:

X25_REJECT

X25_QUERY_SESSION

X25_ADD_ROUTER_ID

X25_DELETE_ROUTER_ID

X25_QUERY _ROUTER_ID

X25_LINK_CONNECT

X25_LINK_DISCONNECT

X25_LINK_STATUS

X25_LOCAL_BUSY

X25_COUNTER_GET.

X25_COUNTER_WAIT

X25_COUNTER_READ

X25_COUNTER_REMOVE

X25_DIAG_IO _WRITE

X25_DIAG_IO_READ

X25_DIAG_MEM_WRITE

X25_DIAG_MEM_READ

X25_DIAG_ TASK

; Execution Environment

Rejects a call.

Queries a session.

Adds a router ID.

Deletes a router ID.

Queries router ID.

Connects a link.

Disconnects a link.

Queries the status of a link.

Enables or disables receiving of data packets on a port.

Gets a counter for asynchronous notification.

Waits for the contents of counters to change.

Reads the value of a counter.

Removes a counter from the system.

Writes to an 1/0 register on the adapter.

Reads from an 1/0 register on the adapter.

Writes to memory on the adapter from a user's buffer.

Reads memory from the adapter into a user's buffer.

Downloads the diagnostics task onto the card.

The x25sioctl entry point can be called from the process environment only.

Implementation Specifics
The x25sioctl entry point functions with an IBM X.25 Interface Co-Processor/2 that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The x25smpx entry point.

Communications Subsystem 5-111

x25sioctl

CIO_DNLD x25sioctl {Download Task) Operation
Purpose

Description

Downloads tasks to the kernel.

Note: The CIO_DNLD operation can be called only by a user-mode process. The
DKERNEL flag must be clear to run this operation.

The CIO_DNLD operation downloads tasks to the kernel. This routine is used to pass
microcode between the configuration program and the device driver. Each call to this
routine completely replaces any previous version of microcode stored in the device driver.

Notes:

1. The Download Task operation does not download the microcode to the card. It
transfers the microcode into kernel memory so that the microcode is available
when needed.

2. If the microcode for RCM, X.25, or diagnostics is not available, the code pointer
should be set to NULL and the code length set to 0 (zero).

For the CIO_DNLD operation, the arg parameter points to a x25_task structure. This
structure contains the following fields:

x25_code

rcm_code

diagnositic_code

x251ength

rcm_length

diagnostic_ length

Points to X.25 code.

Points to real-time microcode (RCM) code.

Points to diagnostic code.

Specifies the length of the X.25 code.

Specifies the length of the RCM code.

Specifies the length of the diagnostic code.

Execution Environment
The CIO_DNLD operation can be called from the process environment only.

Return Value
A return code of-1 indicates an unsuccessful operation. The kernel sets the errno global
variable to the following value:

EFAULT Indicates that an invalid address was specified.

Implementation Specifics
The CIO_DNLD operation functions with an IBM X.25 Interface Co-Processor/2 that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The x25sioctl entry point.

The X.25 ioctl Operations.

5-112 Kernel Reference

(
~

x25sioctl

CIO_GET_STAT x25sioctl Operation (Get Status)
Purpose

Restrictions

Description

Returns the next status block.

Note: Only a user-mode process can call the CIO_GET_STAT operation.

The CIO_GET_STAT operation reads the next status block available on the channel. This
operation does not block. To call the CIO_GET_STAT operation, the DKERNEL flag must
be clear, indicating a user-mode process. If a new status block is available for a kernel-mode
process, the stat_fn kernel procedure defined by the x25sopen entry point is called.

For the CIO_GET_STAT operation, the arg parameter returns a pointer to a status_block
structure as defined in the <Sys/comio.h> header file.

Status Blocks for the X.25 Device Handler
Status blocks are provided to user- and kernel-mode processes differently. Kernel-mode
processes receive a status block when they are called using the stat_fn kernel procedure.
This procedure is indicated when a channel is opened by the x25sopen entry point.

User-mode processes receive a status block whenever they issue a CIO_GET_STAT
operation. In addition, a user-mode process can wait for the next available status block by
issuing an x25sselect entry point with the DPOLLPRI event specified.

Status blocks can be solicited to indicate a completion of a previous command (such as a
CIO_START operation). Status blocks can also be unsolicited to indicate some
asynchronous event.

Status blocks contain a code field and possible options. The code field indicates the type of
status block code (for example, CIO_START_DONE). The following is a list of the five types
of status blocks:

CIO_START_DONE Status Block

This block is provided by the X.25 device handler when the CIO_START operation is
complete:

option[O]

option[1]

option[2]

option[3]

Specifies the status or exception code. This option is set to.CIO_OK if the
start is successful. Otherwise, it is set to one of the status returns defined by
the CIO_START operation.

Specifies the session ID and the network ID. The 2 high-order bytes contain
the session ID and the 2 low-order bytes contain the network ID.

Valid only for a session of type SESSION_SVC_OUT. For a user-mode
process, this option contains a pointer to the first byte of the process's data
buffer.

For kernel-mode process, this option contains the mbuf structure passed
with the CIO_START operation. The mbuf structure describes a buffer that
represents either a Call Connected or a Clear Indication received in
response to a Call Request.

This option is NULL for other session types.

Not used.

Communications Subsystem 5-113

x25sioctl

CIO_HALT_DONE Status Block

This block is provided by the X.25 device handler when the CIO_HALT operation is
complete:

option[O]

option[1]

option[2]

option[3]

Specifies the status or exception code. This option is set to CIO_OK if the
start is successful. Otherwise, it is set to one of the status returns defined by
the CIO_HALT operation.

Specifies the session ID and the network ID. The 2 high-order bytes contain
the session ID, and the 2 low-order bytes contain the network ID.

Valid only if the CIO_HALT was used to issue a Clear Request. For a
user-mode process, this option contains a pointer to the first byte of the
process's data buffer.

For kernel-mode process, this option contains the mbuf structure passed
with the CIO_HALT operation. The buffer described by the mbuf structure
represents a Clear Confirm received in response to the Clear Request. If
there was a clear collision, the buffer represents a Clear Indication that
should be treated as an acknowledgment of the Clear Request as no Clear
Confirm will be subsequently received.

This option is NULL for other CIO_HALT operation types.

Not used.

CIO_TX_DONE Status Block

This block is provided by the X.25 device handler when a transmit request for which an
acknowledgment was requested is complete:

option[O]

option[1]

option[2]

option[3]

Specifies the status or exception code. This option is set to CIO_OK if the
start is successful. Otherwise, it is set to one of the status returns defined by
the x25swrite entry point.

Specifies the write ID in the write_extension structure. This structure is
passed by the x25swrite entry point.

Points to the first byte of a user-mode process data buffer or to the mbuf
structure for a kernel-mode process. The mbuf structure is passed with the
x25swrite entry point.

Specifies the session ID in the 2 high-order bytes and the network ID in the
2 low-order bytes.

CIO_NULL_BLK Status Block

This status block is returned whenever a status block is requested but none are available:

option[O]

option[1]

option[2]

option[3]

Not used

Not used

Not used

Not used.

5-114 Kernel Reference

(

\

/

~
)

x25sioctl

X25_REJECT_DONE Status Block

This status block indicates that the CIO_REJECT operation is complete:

option[O] Specifies the status or exception code. This option is set to CIO_OK if the
start is successful. Otherwise, it is set to one of the status returns defined by
the CIO_REJECT operation.

option[1]

option[2]

option[3]

Execution Environment

Specifies the session ID in the 2 high-order bytes and the network ID in the
2 low-order bytes.

Identifies the call ID of the incoming call that is being rejected.

Not used.

The CIO_GET_STAT operation can be called from the process environment only.

Return Value
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno global variable to the following value:

EFAULT Indicates that an invalid address was specified.

Implementation Specifics
The CIO_GET_STAT operation functions with an IBM X.25 Interface Co-Processor/2 that
has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The x25sselect entry point, x25swrite entry point, x25sopen entry point.

The CIO_START operation, CIO_HALT operation, X25_REJECT operation.

List of Common Status/Exception Codes.

The X.25 mbuf Structure.

Communications Subsystem 5-115

x25sioctl

CIO_HALT x25sioctl Operation (Halt Session)
Purpose

Description

Ends a session with the X.25 device handler.

The CIO_HALT operation ends a session with the X.25 device handler. A session identified
by a particular session_id field can be terminated in any of the following five ways:

• With Clear Request on an SVC

• With Clear Confirm on an SVC

• With request for deallocation of a PVC

• With request to stop listening for incoming calls

• By turning off the monitoring facilities on the card.

If the CIO_HALT operation is the last for this port, appropriate termination (such as
automatic disconnection, if configured) is done.

The CIO_HALT operation returns immediately to the caller before the halt completes. If the
return does not indicate an error, the X.25 device handler builds a CIO_HALT_DONE status
block on completion of the operation. For kernel mode processes the status block is passed
to the associated status function, specified by the x25sopen entry point. For user-mode
processes, the block is placed in the associated status and exception queue.

Parameter Block

The parameter block for the CIO_HALT operation is the x25_halt_data structure. This
structure contains the following fields:

sb

session_id

Indicates that the session_blk structure defined in the <sys/comio.h> file.
The status field in this structure has meaning when returned only if the
return code is EIO.

Identifies the ID of the session to be halted.

If the CIO_HALT operation is issued to send a Clear Request packet on a session of type
SESSION_SVC_OUTor SESSION_SVC_IN, then the CIO_HALT operation ext parameter is
used. If used, the ext parameter points to a buffer containing the data required for the clear
request packet This data is in the form described in the mbuf structure.

For a kernel-mode process, the data passed in the ext parameter is an mbuf pointer. Only
the calling process can free the mbuf data returned in the CIO_HALT_DONE status block.
The mbuf data returned by this status block is not the same as the data passed down.

For a user-mode process, the data passed in the ext parameter is a pointer to a buffer of the
same format in user space. If the pointer is NULL, then the clear request is sent with default
cause-and-diagnostic codes (0,0), but with no facilities or user data. When the
CIO_HALT _DONE status block is received, the buffer is filled with the contents of the clear
confirm packet.

Execution Environment
The CIO_HALT operation can be called from the process environment only.

5-116 Kernel Reference

' 1#1.

~

(
\

x25sioctl

Return Values
A return code of-1 indicates an unsuccessful operation. The kernel sets the errno global
variable to one of the following values:

EFAULT

EINVAL

EIO

Indicates that an invalid address was specified.

Indicates invalid values in the ext parameter buffer.

Indicates that an error has occurred. The status field in the status_block
structure indicates one of the following five common exception codes

• CIO_HARD_FAIL

• CIO_NOMBUF

• CIO_TIMEOUT

• CIO_LOST_DATA

• CIO_NOT_STARTED.

In addition, the following three X.25-specific codes may be returned;

X25_PROTOCOL

X25_NO_LINK

X25_BAD_PKT_TYPE

Indicates that a protocol error occurred.

Indicates that the link is not connected.

Indicates that the packet type passed in the
ext parameter is not valid. For session types
SESSION_SVC_OUT or SESSION_SVC_IN,
the packet type should be either
PKT _CLEAR_REQ or
PKT _CLEAR_CONFIRM.

Implementation Specifics
The CIO_HALT operation functions with an IBM X.25 Interface Co-Processor/2 that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The x25sioctl entry point, x25sopen entry point.

The CIO_START operation.

The mbuf structure.

Sessions with the X.25 Device Handler, X.25 Status Blocks.

Communications Subsystem 5-117

x25sioctl

CIO_QUERY x25sioctl Operation (Query Device)
Purpose

Description

Returns device statistics and device-dependent information.

Note: The counters and profile information can only be cleared by a system user.

The CIO_QUERY operation returns the ras_log field of the define device structure (DDS).

The query_params Parameter Block

For the CIO_QUERY operation the arg parameter returns a pointer to the query_params
structure. The query_params structure contains the following fields:

status

bufptr

buflen

clearall

If the return code is EIO, this field contains the returned value.

Points to an x25_query_data structure. This structure contains the
following fields:

cc

ds

Contains a cio_stats structure as defined in the
<sys/comio.h> file.

Contains an x25_stats structure identifying X.25-specific
statistics. This structure is found in the <Sys/x25user.h>
file.

Specifies the length of the buffer.

Clears the statistics when set to CIO_QUERY _CLEAR. Any other setting
leaves the statistics unchanged.

x25_stats Structure

(
I
\

(

The x25_stats structure identifies X.25-specific statics. Information in this structure includes
the transmit_profile field. This field provides a profile of the transmission packet sizes in
use on a port and can be used for configuration of adapter buffers. The transmit_profile
field contains a count of the number of packets sent since the device was last configured. (
The size of these packets must be in the range specified. ~

Index Size

0 Packet size not known

1 Reserved

2 Reserved

3 Reserved

4 Oto 15

5 16 to 31

6 32 to 63

7 64 to 127

5-118 Kernel Reference

/

8

9

10

11

12

>12

Execution Environment

128 to 255

256 to 511

512 to 1023

1024 to 2047

2048 to 4095

Reserved.

x25sioctl

The CIO_QUERY operation can be called from the process environment only.

Return Values
A return code of-1 indicates an unsuccessful operation and the kernel sets the errno
global variable to one of the following values:

EFAULT

EIO

EMSGSIZE

ENOBUFS

ENXIO

Indicates that an invalid address was specified.

Indicates that an error has occurred. The arg->status field contains one of
the following common exception codes:

• CIO_BAD_MICROCODE

• CIO_HARD_FAIL

• CIO_NOT_STARTED

• CIC_ TIMEOUT

• CIO_LOST_DATA.

Indicates that the statistical data was greater then the length of the buffer
specified by the buflen field. The data in the buffer is truncated.

Indicates that no buffers are available.

Indicates that the device had not been completely configured.

Implementation Specifics
The CIO_QUERY operation functions with an IBM X.25 Interface Co-Processor/2 that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The x25sioctl entry point.

X.25 ioctl Operations.

Communications Subsystem 5-119

x25sioctl

CIO_START x25sioctl Operation (Start Session)
Purpose

Description

Starts an X.25 device handler session.

The CIO_START operation starts an X.25 session. Only one X.25 session is associated with
a CIO_START operation. An X.25 session can be initiated by any of the following:

• A call request on a switched virtual circuit (SVC).

• A call accepted on an SVC in response to an incoming call received on some other
(listening) session.

• A request for allocation of a permanent virtual circuit (PVC).

• A request to listen for incoming calls satisfying a named specification in the routing table.

If the CIO_START operation is the first one issued for a port, the operation also does the
appropriate initialization (for example, downloading the microcode).

The CIO_START operation returns immediately to the caller, before the command
completes. If the operation completes successfully, the X.25 device handler builds a
CIO_START_DONE status block on completion. For kernel-mode processes, the status
block is passed to the associated status function specified at x25sopen time. For user-mode
processes, the block is placed in the associated status/exception queue.

If the immediate return indicates an error, there is no need to halt the operation. However, if
the status block indicates an error, the calling process must issue a halt. An X.25 CIO_HALT (
operation can be called before a CIO_START _DONE status block is received. In this case, it ~

is undefined whether the session generates a CIO_START_DONE status block.

Note: Read or write operations should not be performed until the CIO_START _DONE
status block is received.

Parameter Block

For the CIO_START operation, the arg parameter points to an x25_start_data structure as
defined in the <sys/comio.h> file. This structure contains the following seven fields:

sb Defines a session_blk structure as described in <Sys/comio.h> file. This
structure contains the following fields:

netid Identifies the network ID. This field can be set by the caller
to a correlator that is returned with any data received on this
session.

status Identifies return values. This field is meaningful only if the
return code is EIO.

session_name Specifies an ASCII name supplied by the caller for RAS purposes. This field
is null-terminated if less than 16 characters.

session_id Is a unique ID for this session returned by the X.25 device handler. The
caller must use this ID to identify the session on all subsequent calls.

5-120 Kernel Reference

x25sioctl

session_type Specifies the type of session required.

The X.25 device handler permits a process to start a session of type
SESSION_SVC_IN only if its UID is the same as that of the process that
owns the session of type SESSION_SVC_LISTEN that received the
incoming call.

If the session type is SESSION_SVC_OUT or SESSION_SVC_IN, then the
CIO_START operation ext parameter is used. If used, the ext parameter
points to the data required for the Call Request and Call Accepted packets
issued by an out or in session. This data is in the form described in the
mbuf structure (found in the <sys/x25user.h> header file). For a
kernel-mode process the data is a mbuf pointer. For user-mode, the data is
a pointer to a buffer in user space of the same format.

For a SESSION_SVC_OUT session, the option[2] field of the status block
points to the packet that completed the CIO_START operation. This is either
a PKT _CALL_CONNECTED or PKT _CLEAR_INDICATION packet.

session_protocol

counter_id

Specifies the protocol for this session. This field is set by the caller and is
valid only for a SESSION_SVC_OUT or SESSION_SVC_IN session. The
protocol for SESSION_PVC is set in the configuration.

The session_protocol field accepts the following six values:

PROTOCOL_ELLC
Reserved.

PROTOCOL_QLLC_ 1980
Selects SNA 1980 cause-and-diagnostic codes instead of
CCITT.

PROTOCOL_ QLLC_ 1984
Selects SNA 1984 cause-and-diagnostic codes instead of
CCITT.

PROTOCOL_ TCPIP
No specific action.

PROTOCOL_ YBTS
Yellow Book Transport Service

For this protocol, the X.25 device handler does not handle
X.25 packet sequences on behalf of the user. Instead,
incoming packets with the M bit set are passed to the user
without waiting for the sequence to complete.

PROTOCOL_IS08208
No specific action. This value is used whenever no other
specific protocol is wanted.

Specifies the counter to increment for any incoming data on this session.
This field is set by the calling process. This field set to -1 indicates that
counters are not used on this session.

Note: Counter functions are available only to user-mode processes.

Communications Subsystem 5-121

x25sioctl

session_ type_ data
Contains additional data set by the caller. The data returned in this field
depends on the value of the session_type field. The following are the three
possible data types:

listen_name Identifies the nickname of an entry (or collection of entries)
in the router table. This must be set by the caller with the
CIO_START operation when the session_type field is set
to SESSION_SVC_LISTEN.

call_id Contains the incoming call ID supplied to a listening session
by the device handler with an incoming call from remote
data terminal equipment (DTE). This value must be set by
the caller with the CIO_START operation when the
session_type field is SESSION_SVC_IN.

logical_ channel
Specifies the logical channel number of the PVC to be
acquired. This field mustbe set by the caller with the
CIO_START operation when the session_type field is set
to SESSION_PVC.

Note: When the session type is SESSION_SVC_OUT, no additional data is
required.

Execution Environment
The CIO_START operation can be called from the process environment only.

Return Values
A return code of-1 indicates an unsuccessful operation. The kernel sets the errno global
variable to one of the following values:

EFAULT

EIO

5-122 Kernel Reference

Indicates that an invalid address was specified.

Indicates that an error has occurred. The error is returned in the sb.status
field of the CIOSTART parameter block and takes any one of the following
four common exception codes:

• CIO_BAD_MICROCODE

• CIO_HARD_FAIL

• CIO_NOMBUF

• CIO_TIMEOUT.

In addition, the sb.status field may take any of the following twelve
X.25-specific codes;

X25_NO_LINK Could not connect to the link.

X25_NOT_PVCThe channel is not defined as a PVC.

X25_PVC_USED
The PVC is in use by another application.

X25_TOO_MANY_VCS
Too many virtual ciicuits have been opened.

(

\
I

)

EINVAL

EINTR

ENOBUFS

EBUSY

ENXIO

x25sioctl

X25_PROTOCOL
A protocol error occurred. For example, a
SESSION_SVC_IN session was cleared by the remote data
terminal equipment (DTE) before it could be accepted. The
clear packet can be read using the x25sread operation
before issuing the halt.

X25_AUTH_LISTEN
The UID in the router table entry that corresponds to the
listen_name field does not match the calling UID.

X25_1NV _CTR The counter specified in the x25_start_data field does not
exist.

X25_NAME_USED
The listen_name field specified on an
SESSION_SVC_LISTEN session is in use by another
application.

X25_NO_NAME
The listen_name field specified on an
SESSION_SVC_LISTEN session is not in the router table.

X25_CLEAR The session has been cleared.

X25_BAD_CALL_ID
The call_id field specified on a SESSION_SVC_IN session
is invalid.

X25_BAD _PKT_ TYPE
The packet type passed by the ext parameter is not valid.

Indicates that any of the following three errors may have occurred:

• The session_type field is not valid. This field must be set to
PKT_CALL_REQ for a SESSION_SVC_OUT session or to
PKT _CALL_ACCEPT for a SESSION_SVC_IN session.

• The session_protocol field is not valid.

• The chan parameter was not opened in the correct mode. For a
SESSION_MONITOR session, the channel must be opened in M mode.
For sessions of type SESSION_SVC_IN, SESSION_SVC_OUT,
SESSION_SVC_LISTEN, the channel must be opened without a mode.

Indicates that a signal was received during the call.

Indicates that there are no spare buffers in the pool.

Indicates that the number of starts for this device was exceeded. This
occurs with a monitor device that can only support one start.

Indicates that the device was not completely configured. Initial configuration
must be completed before any starts can be issued.

Communications Subsystem 5-123

x25sioctl

Implementation Specifics ~
The CIO_START operation functions with an IBM X.25 Interface Co-Processor/2 that has ~
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The x25sopen entry point, x25sread entry point, x25sioctl entry point.

The CIO_HALT operation.

X.25 ioctl Operations, X.25 Status Blocks.

I

\

5-124 Kernel Reference

x25sioctl

IOCINFO x25sioctl Operation (Identify Device)
Purpose

Description

Returns 1/0 character information for a X.25 device.

The IOCINFO operation returns 1/0 character information for an X.25 device. The parameter
block for this operation is defined in the <sys/definfo.h> header file by the devinfo
structure. This structure contains the following fields:

devtype Identifies the type of device. This is set to the DD_X25 value (defined as the
ASCII character x).

flags Undefined for X.25 devices.

devsubtype Undefined for X.25 devices.

In addition to the previous members, the devinfo.h file also contains an x25 structure (found
in the <Sys/x25user.h> header file). This structure defines the X.25 device and contains the
following eight members:

support_level Identifies a support level of 1980 or 1984.

nua Contains a null-terminated ASCII string that represents the network-user
address.

subscription_facilities_supported

network_id

Contains device-dependent information.

Specifies the identification code for the network. The range and default
value for this code is defined by the device configuration.

max_tx_packet_size
Specifies the maximum size of a transmitted data packet. This packet is
encoded in the manner of the ISO 8208 definition.

max_rx_packet_size
Specifies the maximum size of a received data packet. This packet is
encoded in the manner of the ISO 8208 definition.

default_svc_tx_packet_size
Specifies the default transmit packet size for an switched virtual circuit
(SVC). This packet is encoded in the manner of the ISO 8208 definition.

default_svc_rx_packet_size
Specifies the default received packet size for an SVC. This packet is
encoded in the manner of the ISO 8208 definition.

Permanent Virtual Circut (PVC) Packets

PVC packet sizes are configured on a per-PVC basis. To determine the packet size on a
PVC you can use either of the following operations:

• The CIO_START operation followed by a X25_QUERY _SESSION operation.

• The CIO_QUERY operation.

Communications Subsystem 5-125

x25sioctl

Execution Environment
The IOCINFO operation can be called from the process environment only.

Return Value
A return code of-1 indicates an unsuccessful operation. The kernel sets the errno global
variable to the following value:

EFAULT Indicates that an invalid address.

Implementation Specifics
The IOCINFO operation functions with an IBM X.25 Interface Co-Processor/2 that has been
correctly configured for use on a qualified network. Consult the adapter specifications for
more information on configuring the adapter and network qualifications.

Related Information
The CIO_START operation, X25_QUERY _SESSION operation, CIO_QUERY operation.

Data Transmission for the X.25 Device Handler, Data Reception for the X.25 Device
Handler.

5-126 Kernel Reference

(

~

!'
(~

x25sioctl

X25_ADD_ROUTER_ID x25sioctl Operation {Add Router ID)
Purpose

Description

Registers a new routing name and routing specification.

Note: Only a process that has opened the router special file can call the X.25
X25_ADD_ROUTER_ID operation.

The X25_ADD_ROUTER_ID operation registers a new route name and routing specification
in the Router Table. For this operation, the arg parameter points to a x25_router_add
structure. This structure contains the following fields:

router_id Specifies the unique identifier for the entry. A priority of 1 is high, while 3
indicates a low priority.

listen_name Specifies the nickname identifier for the entry. The nickname need not be
unique.

priority

action

uid

Identifies the integer priority to attach to the routing request.

Specifies the action to be taken if the name is not being listened to. This
field takes the following values:

0

1

Forwards the incoming call so that it can match other
listening specifications.

Rejects the incoming call with cause O (zero), diagnostic O
(zero).

Identifies the user ID allowed to receive these incoming calls. This field can
be the user ID number. A value of-1 indicates that any user ID can receive
the calls. Any attempt by a user with insufficient authority to listen on a
name is rejected with the EACCES return value.

call_user_data Contains the call user data to match with an incoming call. The last
character can be an * (asterisk). The format of this data is a string of
hexadecimal characters and an optional * (asterisk), for example, c3 *. The
call user data is null terminated if it is less than the maximum length.

Additionally, the x25_router_add structure contains the following address fields:

• called_subaddress[20]

• calling_address[20]

• extended_calling_address[41]

• extended_called_address[41].

These addresses are set to match with an incoming call. The last character of an address
can be an* (asterisk). The addresses are null-terminated if less than the maximum length.

Execution Environment
The X25_ADD_ROUTER_ID operation can be called from the process environment only.

Communications Subsystem 5-127

x25sioctl

Return Values
A return code of-1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno global variable to one of the following values:

EFAULT

EACESS

EINVAL

ENOMEM

Indicates that an invalid address was specified.

Indicates that the ioctl was issued on an channel that was not opened in
Router mode.

Indicates one of the following occurred:

• The specified router ID already exists. (Router IDs must be unique.)

• The action field passed was neither O (zero) or 1 (one).

Indicates that the operation ran out of memory.

Implementation Specifics .1

The X25_ADD_ROUTER_ID operation functions with an IBM X.25 Interface Co-Processor/2
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The x25sioctl entry point.

X.25 ioctl Operations.

(

(
I'll!

5-128 Kernel Reference

x25sioctl

X25_COUNTER_GET x25sioctl Operation (Get Counter)
Purpose

Description

Gets a counter for asynchronous notification.

Note: Only user-mode processes can use counter operations.

The X25_COUNTER_GET operation uses the arg parameter to return a counter ID. The ID
can be used to wait and test for incoming X.25 data.

Execution Environment
The X25_COUNTER_GET operation can be called from the process environment only.

Return Values
A return code of-1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno global variable to one of the following values:

EFAULT

ENOS PC

Indicates that an invalid address was specified.

Indicates that there are no counters available to allocate.

Implementation Specifics
The X25_COUNTER_GET operation functions with an IBM X.25 Interface Co-Processor/2
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The x25sioctl entry point.

The X25_COUNTER_WAIT operation, X25_COUNTER_READ operation,
X25_COUNTER_REMOVE operation.

Using Counters to Correlate Messages.

Communications Subsystem 5-129

x25sioctl

X25_COUNTER_READ x25sioctl Operation {Read Counter)
Purpose

Description

Reads the value of a counter.

Note: Only user-mode processes can use counter operations.

The X25_COUNTER_READ operation reads the value of a counter. For this operation, the
arg parameter points to the x25_counter_info structure. This structure contains the
following fields:

counter_id

counter_value

Identifies a counter to read.

Holds the current value of the counter on return of the Read Counter
operation.

Execution Environment
The X25_COUNTER_READ operation can be called from the process environment only.

Return Values
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno global variable to one of the following values:

EFAULT

EINVAL

Indicates that an invalid address was specified.

Indicates that the counter ID does not exist.

Implementation Specifics
The X25_COUNTER_READ operation functions with an IBM X.25 Interface Co-Processor/2
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The X25_COUNTER_GET operation, X25_COUNTER_WAIT operation,
X25_COUNTER_REMOVE operation.

The x25sioctl entry point.

X.25 ioctl Operations.

5-130 Kernel Reference

/

x25sioctl

X25_COUNTER_REMOVE x25sioctl Operation (Remove Counter)
Purpose

Description

Removes a counter from the system.

Note: Only user-mode processes can use counter operations.

The X25_COUNTER_REMOVE operation removes the specified counter from the system.
For this operation, the arg parameter indicates what ID is to be removed. An error code is
returned if there is outstanding data to be read associated with this counter.

Execution Environment
The X25_COUNTER_REMOVE operation can be called from the process environment only.

Return Values
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno global variable to one of the following values:

EBUSV

EA CC ES

EINVAL

Indicates that one of the following errors occurred:

• There are some packets still waiting to read.

• The counter is being waited on by another process.

Indicates that the application did not get the counter. The counter is not
deleted.

Indicates that the counter ID specified does not exist.

Implementation Specifics
The X25_COUNTER_REMOVE operation functions with an IBM X.25 Interface
Co-Processor/2 that has been correctly configured for use on a qualified network. Consult
the adapter specifications for more information on configuring the adapter and network
qualifications.

Related Information
The X25_COUNTER_GET operation, X25_COUNTER_WAIT operation,
X25_COUNTER_READ operation.

The x25sioctl entry point.

X.25 ioctl Operations.

Communications Subsystem 5-131

x25sioctl

X25_COUNTER_WAIT x25sioctl Operation (Wait Counter)
Purpose

Description

Waits for the contents of counters to change.

Note: Only user-mode processes can use counter operations.

The X25_COUNTER_WAIT operation waits for the contents of a counter to change. The
process that called this operation is suspended until the value of one of its counters exceeds
the value specified by the counter_value field.

For the X25_COUNTER_WAIT operation, the arg parameter points to the x25_counter_list
structure. This structure contains the following fields:

counter_num Identifies the number of elements in the counter array.

counter_array Specifies an array of the following:

flags

counter_id

counter_value

Indicates if the counter information was
successfully matched. If successful, the top bit
of the flags field is set on return of the Wait
Counter operation.

Identifies the counter to wait on.

Specifies the value the counter must exceed in
order for the counters to match successfully.

Execution Environment
The X25_COUNTER_WAIT operation can be called from the process environment only.

Return Values
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno global variable to one of the following values:

EFAULT Indicates that an invalid address was specified.

EN OM EM

EIDRM

EINVAL

Indicates that the operation ran out of memory.

Indicates that the counter has been removed.

Indicates that one or more of the counters in the list does not exist.

Implementation Specifics
The X25_COUNTER_WAIT operation functions with an IBM X.25 Interface Co-Processor/2
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The x25sioctl entry point.

X.25 ioctl Operations.

The X25_COUNTER_GET operation, X25_COUNTER_READ operation,
X25_COUNTER_REMOVE operation.

5-132 Kernel Reference

(

\

(

~I
/

x25sioctl

X25_DELETE_ROUTER_ID x25sioctl Operation (Delete Router ID)
Purpose

Description

Removes a routing name.

Note: Only a process that has opened the router special file can call the X.25
X25_DELETE_ROUTER_ID operation.

The X25_DELETE_ROUTER_ID operation removes a routing name from the Router Table.
For this operation, the arg parameter points to the x25_router_del structure. This structure
contains the following fields:

router_id

override

Specifies the unique ID for the entry.

Indicates how listening is handled. If set to O (zero), the routing entry is not
deleted if any process is listening for it. If set to a nonzero value,
outstanding listens are canceled. No notification is given to the listening
applications if the outstanding listens are canceled.

Execution Environment
The X25_DELETE_ROUTER_ID operation can be called from the process environment only.

Return Values
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno global variable to one the following values:

EFAULT

EACESS

EBUSY

EINVAL

Indicates that an invalid address was specified.

Indicates that the ioctl operation was issued on an channel that was not
opened in Router mode.

Indicates that the router ID was being listened to and the override option
was not set.

Indicates that the router ID cannot be deleted because it does not exist.

Implementation Specifics
The X25_DELETE_ROUTER_ID operation functions with an IBM X.25 Interface
Co-Processor/2 that has been correctly configured for use on a qualified network. Consult
the adapter specifications for more information on configuring the adapter and network
qualifications.

Related Information
The x25sioctl entry point.

X.25 ioctl Operations.

Communications Subsystem 5-133

x25sioctl

X25_DIAG_IO_READ x25sioctl Operation (Read Register)
Purpose

Description

Reads from an 110 register on the IBM X.25 Interface Co-Processor/2.

Note: Only a process that has opened the device for diagnostics can issue this call.

The X25_DIAG_IO_READ operation is used to read from an 1/0 register on the IBM X.25
Interface Co-Processor/2. Both direct and indirect registers can be read, the card's pointer
register is adjusted by this operation.

For this operation, the arg parameter returns a pointer to an x25_diag_io structure. The
value this operation reads is placed in the value field of the x25_diag_io structure.

Execution Environment
The X25_DIAG_IO_READ operation can be called from the process environment only.

Return Values
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno global variable to one of the following values:

ENXIO

EA CC ES

The operation attempted to read a card that was not configured.

The device was not opened in diagnostic mode.

Implementation Specifics
The X25_DIAG_IO_READ operation functions with an IBM X.25 Interface Co-Processor/2
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The x25sioctl entry point.

The X25_DIAG_IO_WRITE operation, X25_DIAG_MEM_WRITE operation,
X25_DIAG_MEM_READ operation, X25_DIAG_ TASK operation.

X.25 ioctl Operations.

5-134 Kernel Reference

(

\
)

x25sioctl

X25_DIAG_IO_WRITE x25sioctl Operation (Write to Register)
Purpose

Description

Writes to an 1/0 register on the IBM X.25 Interface Co-Processor/2.

Note: Only a process that has opened the device for diagnostics can call this process.

The X25_DIAG_IO_WRITE operation writes to an 1/0 register on the IBM X.25 Interface
Co-Processor/2. Both direct and indirect registers can be written to as the card's pointer
register is adjusted by this operation.

Execution Environment
The X25_DIAG_IO_WRITE operation can be called from the process environment only.

Return Values
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno variable to one of the following values:

ENXIO

EACCESS

The operation attempted to read a card that was not configured.

The channel was not opened in diagnoistic mode.

Implementation Specifics
The X25_DIAG_IO_WRITE operation functions with an IBM X.25 Interface Co-Processor/2
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The x25sioctl entry point.

The X25_DIAG_IO_READ operation, X25_DIAG_MEM_WRITE operation,
X25_DIAG_MEM_READ operation, X25_DIAG_ TASK operation.

X.25 ioctl Operations.

Communications Subsystem 5-135

x25sioctl

X25_DIAG_MEM_READ x25sioctl Operation {Read Memory)
Purpose

Description

Reads memory from the IBM X.25 Interface Co-Processor/2 into a user's buffer.

Note: Only a process that has opened the device for diagnostics can call this process.

The X25_DIAG_MEM_READ operation reads memory from the IBM X.25 Interface
Co-Processor/2 into a user's buffer. For this operation, the arg parameter points to a
x25_diag_mem structure. This structure provides the following:

• Page and offset of card memory to start from

• Number of bytes to read

• Pointer to a buffer into which the data is read.

The read operation can cover more than one page of the card's memory.

Execution Environment
The X25_DIAG_MEM_READ operation can be called from the process environment only.

Return Values
A return code of-1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno variable to one of the following values:

ENXIO

EACCESS

The operation attempted to read a card that was not configured.

The channel was not opened in diagnostic mode.

Implementation Specifics
The X25_DIAG_MEM_READ operation functions with an IBM X.25 Interface Co-Processor/2
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The X25_DIAG_IO_WRITE operation, X25_DIAG_IO_READ operation,
X25_DIAG_MEM_WRITE operation, X25_DIAG_TASK operation.

The x25sioctl entry point.

X.25 ioctl Operations.

5-136 Kernel Reference

(

\

x25sioctl

X25_DIAG_MEM_WRITE x25sioctl Operation (Write Memory)
Purpose

Description

Writes memory to the IBM X.25 Interface Co-Processor/2 from a user's buffer.

Note: Only a process that has opened the device for diagnostics can issue this call.

The X25_DIAG_MEM_WRITE operation writes memory to the IBM X.25 Interface
Co-Processor/2 from a user's buffer. For this operation, the arg parameter points to a
x25_diag_mem structure. This parameter provides the following:

• Page and offset of card memory to start from

• Number of bytes to write

• Pointer to the user's buffer containg the data to write.

The write can cover more than one page of the card's memory.

Execution Environment
The X25_DIAG_MEM_WRITE operation can be called from the process environment only.

Return Values
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno variable to one of the following values:

ENXIO

EACCESS

The operation attempted to read a card that was not configured.

The channel was not opened in diagnostic mode.

Implementation Specifics
The X25_DIAG_MEM_WRITE operation functions with an IBM X.25 Interface
Co-Processor/2 that has been correctly configured for use on a qualified network. Consult
the adapter specifications for more information on configuring the adapter and network
qualifications.

Related Information
The X25_DIAG_IO_WRITE operation, X25_DIAG_IO_READ operation,
X25_DIAG_MEM_READ operation, X25_DIAG_ TASK operation.

The x25sioctl entry point.

X.25 ioctl Operations.

Communications Subsystem 5-137

x25sioctl

X25_DIAG_RESET x25sioctl Operation (Reset Adapter)
Purpose

Resets the IBM X.25 Interface Co-Processor/2.

Description
Note: Only a process that has opened the device for diagnostics can call this process.

The X25_DIAG_RESET operation completely resets the IBM X.25 Interface Co-Processor/2.

Execution Environment
The X25_DIAG_RESET operation can be called from the process environment only.

Return Values
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno variable to one of the following values:

ENXIO

EINVAL

The operation attempted to read a card that was not configured.

The channel was not opened in diagnoistic mode.

Implementation Specifics
The X25_DIAG_RESET operation functions with an IBM X.25 Interface Co-Processor/2 that
has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The X25_DIAG_IO_WRITE operation, X25_DIAG_IO_READ operation,
X25_DIAG_MEM_WRITE operation, X25_DIAG_MEM_READ operation, X25_DIAG_ TASK
operation.

The x25sioctl entry point.

X.25 ioctl Operations.

5-138 Kernel Reference

!
I
\

(

(

x25sioctl

~

r
1 X25_DIAG_TASK x25sioctl Operation (Download Diagnostics)

\
/

Purpose

Description

Provides the means to download the diagnostics task onto the card.

The X25_DIAG_ TASK operation provides the means to download the diagnostics task onto
IBM X.25 Interface Co-Processor/2. The task microcode must have been previously
downloaded to the device handler using the CIO_DNLD operation.

For the X25_DIAG_ TASK operation, the arg parameter points to a x25_diag_addr structure
that is used to return the load page and offset.

Execution Environment
The X25_DIAG_ TASK operation can be called from the process environment only.

Return Values
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno variable to one of the following values:

ENXIO

ENACCES

EINVAL

The operation attempted to read a card that was not configured.

The channel was not opened in diagnostic mode. You must have
appropriate authority open a channel in diagnostic mode.

The microcode was not available to download.

Implementation Specifics
The X25_DIAG_ TASK operation functions with an IBM X.25 Interface Co-Processor/2 that
has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The x25sioctl entry point.

The X25_DIAG_IO_WRITE operation, X25_DIAG_IO_READ operation,
X25_DIAG_MEM_WRITE operation, X25_DIAG_MEM_READ operation.

X.25 ioctl Operations.

Communications Subsystem ~ 139

x25sioctl

X25_LINK_CONNECT x25sioctl Operation (Connect Link)
Purpose

Description

Connects the link to the data circuit-terminating equipment (DCE).

Note: Only a process that has opened the router special file can issue the
X25_LINK_CONNECT operation.

The X25_LINK_CONNECT operation connects the X.25 link to the network. The connection
is made using the automatic calling unit (ACU), if required. If the link is already connected,
no action is taken.

For the X25_LINK_CONNECT operation, the arg parameter points to the
x25_connect_data structure. This structure contains only a status field. This field has
meaning only when the return code is EIO.

Execution Environment
The X25_LINK_CONNECT operation can be called from the process environment only.

Return Values
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno global variable to one of the following values:

EIO

EA CC ES

ENOBUFS

Indicates that an 1/0 error occurred. The status field in the
x25_connect_data structure contains one of the following values:

• CIO_BAD_MICROCODE

• CIO_HARD_FAIL

• CIO_TIMEOUT.

Indicates that the calling application does not have NET _CONFIG authority.

Indicates that no buffers are available.

Implementation Specifics
The X25_LINK_CONNECT operation functions with an IBM X.25 Interface Co-Processor/2
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The x25sioctl entry point.

The X25_LINK_DISCONNECT operation, X25_LINK_STATUS operation.

X.25 ioctl Operations.

5-140 Kernel Reference

x25sioctl

X25_LINK_DISCONNECT x25sioctl Operation (Disconnect Link)
Purpose

Description

Disconnects the link to the DCE.

Note: This command is restricted to user programs that have NET _CONFIG permission.

The X25_LINK_DISCONNECT operation disconnects the X.25 link from the network. If the
link is already disconnected, no action is taken. If there are virtual calls in progress on the
link, disconnection takes place only if the override parameter is nonzero.

The X25_LINK_DISCONNECT operation returns synchronously. The X25_LINK_STATUS
operation is used to determine if the disconnect operation is complete.

For the X25_LINK_DISCONNECT operation, the arg parameter points to an
x25_disconnect_data structure. This structure contains the following fields:

status

override

Holds values supplied by the ioctl operation if there is an EIO error.

Specifies how disconnection occurs. If this parameter is 0 (zero), the
disconnection takes place only if there are no virtual calls in progress.
Otherwise, the disconnection is forced. This disconnects the link layer only,
not the physical layer.

Execution Environment
The X25_LINK_DISCONNECT operation can be called from the process environment only.

Return Values
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno global variable to one of the following values:

EBUSY

EIO

EA CC ES

ENOBUFS

Indicates that there are active circuits on the link.

Unable to disconnect due to an 1/0 error. The status field in the
x25_disconnect_data structure contains one of the following common
exception codes:

• CIO_TIMEOUT

• CIO_HARD_FAIL.

Indicates that the calling application does not have NET _CONFIG authority.

Indicates that no buffers are available.

Implementation Specifics
The X25_LINK_DISCONNECT operation functions with an IBM X.25 Interface
Co-Processor/2 that has been correctly configured for use on a qualified network. Consult
the adapter specifications for more information on configuring the adapter and network
qualifications.

Related Information
The x25sioctl entry point.

The X25_LINK_STATUS operation, X25_LINK_CONNECT operation.

X.25 ioctl Operations.

Communications Subsystem 5-141

x25sioctl

X25_LINK_STATUS x25sioctl Operation {Link Status)
Purpose

Description

Returns the status of the link.

The X25_LINK_STATUS operation returns the status of a link. This operation returns the last
known status of the link to the calling program.

For the X25_LINK_STATUS operation, the arg parameter points to a buffer. The buffer is
filled on return of this operation with a x25_1ink_status structure. This structure contains the
following five fields:

status

packet

frame

physical

no_of_vcs_in_use

Filled in by an X.25 device handler with a return value when the
return code is EIO.

Identifies the status of the packet layer. This field has the following
possible values:

0 Link disconnected

1 Connecting link

2 Link connected.

Specifies the status of the frame layer. This field has the same
values as the packet field.

Specifies the status of the physical layer. This field has the same
values as the packet field.

Identifies the number of virtual circuits currently in use on the link.

Execution Environment
The X25_LINK_STATUS operation can be called from the process environment only.

Return Values
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno global variable to one of the following values:

ENOBUFS Indicates that no buffers are available.

EFAULT

EIO

Indicates that an invalid address was specified.

Indicates that an error occurred. The status field of the x25_1ink_status
structure contains one of the following common exception codes:

• CIO_HARD_FAIL
• CIO_BAD_MICROCODE.

Implementation Specifics
The X25_LINK_STATUS operation functions with an IBM X.25 Interface Co-Processor/2 that
has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The x25sioctl entry point.

The X25_LINK_DISCONNECT operation, X25_LINK_CONNECT operation.

5-142 Kernel Reference

I

\

x25sioctl

~ X25_LOCAL_BUSY x25sioctl Operation (Local Busy)
Purpose

/

Description

Enables or disables receiving of data packets on a port.

Note: Only the user who called the CIO_START operation can call the X25_LOCAL_BUSY
operation.

The X25_LOCAL_BUSY operation enables or disables the receiving of data and interrupt
packets on a given session. This operation can be used to slow down large blocks of
received data or reduce the number of buffers required. However, clear-and-reset packets
are still passed on.

The effects of disabling received packets do not take place immediately after calling the
Local Busy operation. Data packets that have arrived before the call, or packets currently
being read off the card, are passed on.

The X25_LOCAL_BUSY operation does not affect the outcome of the x25read or x25select
entry points. These operations continue to wait for received packets. To query the status of
local busy on a session, use the X25_QUERY_SESSION operation.

Parameter Block

For the X25_LOCAL_BUSY operation, the arg parameter points to a buffer that contains the
x25_1ocal_busy structure. This structure contains the following fields:

busy_mode Specifies the handling of data packets on the session. This field accepts
one of the following values:

O Enables the receiving of data on this session.

1 Disables the receiving of data on this session.

session_id Identifies the session this operation applies to.

Execution Environment
The X25_LOCAL_BUSY operation can be called from the process environment only.

Return Values
A return code of-1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno global variable to one of the following values:

EINVAL Indicates that the session ID specified was not valid or the busy_mode field
was illegal.

EFAULT

EA CC ES

Indicates that an invalid address was specified.

Indicates that the call must be made by the user who issued the
CIO_START operation.

Implementation Specifics
The X25_LOCAL_BUSY operation functions with an IBM X.25 Interface Co-Processor/2 that
has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications.

Related Information
The x25sioctl entry point.

The X25_QUERY _SESSION operation, CIO_START operation.

X.25 ioctl Operations.

Communications Subsystem 5-143

x25sioctl

X25_QUERY_ROUTER_ID x25sioctl Operation (Query Router ID)
Purpose

Description

Queries an entry in the routing table.

Note: This operation is restricted to user programs that have NET _CONFIG permission.

The X25_QUERY _ROUTER_ID operation queries an entry in the routing table. For this
operation, the arg parameter points to the x25_router_query structure. This structure
contains the following fields:

router_id

pid

Specifies what entry to query.

Set on return of the query to the process ID of the listening process. A
value of 0 (zero) indicates that no process is listening.

Execution Environment
The X25_QUER_ROUTER_ID operation can be called from the process environment only.

Return Values
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno global variable to one of the following values:

EFAULT

EINVAL

Indicates that the address specified was not valid.

Indicates that the router ID specified is not in the router table.

Implementation Specifics
The X25_QUER_ROUTER_ID operation functions with an IBM X.25 Interface
Co-Processor/2 that has been correctly configured for use on a qualified network. Consult
the adapter specifications for more information on configuring the adapter and network
qualifications.

Related Information
The x25sioctl entry point.

X.25 ioctl Operations.

5-144 Kernel Reference

I
\

(

x25sioctl

X25_QUERY_SESSION x25sioctl Operation (Query Session)
Purpose

Description

Queries the status of an open X.25 session.

Note: This call only succeeds on switched virtual circuits (SVCs) and permanent virtual
circuits (PVCs).

The X25_QUERY _SESSION supplies the information for a session in the user's data area.
The packet size, window size, and throughput class values are not available until the session
is completely established. To query the static configuration, use the CIO_QUERY operation.

The x25_query_session_data Parameter Block

For the X25_QUERY _SESSION operation the arg parameter points to the
x25_query_session_data structure. Within this structure, the session to be queried is
identified either by a nonzero session ID or a nonzero logical channel number. If both the
session_id and logical_channel fields are nonzero, the session_id field is used.

The fields in the x25_query_session_data structure are set on return. All the X.25 facilities
specified by the structure's field are encoded as in the ISO 8208 definition. The
x25_query_session_data structure contains the following fields:

netid Identifies the user-defined correlator set by the CIO_START
operation.

session_name Identifies the user-defined name set by the CIO_START operation.

session_id , Identifies the device handler's correlator returned from the
CIO_START operation.

local_busy Contains a value of 1 (one) if the session is in Local Busy mode, or
a O (zero), if not.

session_protocol Specifies the higher level protocol specified by the user for this
session in the CIO_START operation.

logical_channel Identifies the X.25 logical channel number used by the session.

tx_tclass Specifies the transmit throughput-class facility in use on the
session. If the call has not been established, this is 0.

rx_tclass Specifies the receive throughput-class facility in use on the session.
If the call has not been established, this is 0.

tx_packet_size Identifies the outbound packet size in use on the session. If the call
has not been established, this field is set to 0.

rx_packet_size Identifies the inbound packet size in use on the session. If the call
has not been established, this field is set to 0.

tx_window_size Identifies the outbound window size in use on the session. If the call
has not been established, this is set to 0.

rx_window_size Identifies the inbound window size in use on the session. If the call
has not been established, this is set to 0.

Communications Subsystem 5-145

x25sioctl

Execution Environment
The X25_QUERY _SESSION operation can be called from the process environment only.

Return Values
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno global variable to one of the following values:

EFAULT

EINVAL

Indicates that an invalid address was specified.

Indicates that the session ID was not valid or the logical_channel field was
not valid.

Implementation Specifics
The X25_QUERY _SESSION operation functions with an IBM X.25 Interface Co-Processor/2
that has been correctly configured for use on a qualified network. Consult the adapter
specifications for more information on configuring the adapter and network qualifications. (

\

Related Information
The x25sioctl entry point.

The CIO_START operation.

(

/

(~

5-146 Kernel Reference

/

x25sioctl

X25_REJECT x25sioctl Operation (Reject Call)
Purpose

Description

Provides the means to reject an incoming X.25 call.

Note: A call can be rejected only by the process that called the CIO_START operation.

The X25_REJECT operation is used to reject an X.25 incoming call that was forwarded to a
session of type SESSION_SVC_LISTEN. This operation causes a Clear Request to be
issued in response to the incoming call.

The X25_REJECT operation returns immediately to the caller, before the command
completes. If the immediate return indicates no error, the X.25 device handler builds a status
block of type X25_REJECT _DONE on receipt of a Clear Confirm or Clear Indication. For
kernel mode processes, the status block is passed to the associated status function. The
status function is specified when the X.25 channel is opened. For user-mode processes, the
block is placed in the associated status and exception queue.

The x25_reject_data Parameter Block

For the Reject Call operation, the arg parameter points to a x25_reject_data structure. The
sh.status field of this structure is meaningful on return only if the return code is EIO.

For the X25_REJECT operation, the ext parameter optionally points to a buffer containing
the data required for a Clear Request packet. This data is in the form described in the mbuf
structure. For a kernel-mode process, this parameter points to the mbuf structure. For a
user-mode process, it points to a buffer of the same format in user space. If the pointer is
NULL, the Clear Request is sent with default cause-and-diagnostic codes, and no facilities
or user data.

Execution Environment
The X25_REJECT operation can be called from the process environment only.

Return Values
A return code of -1 indicates an unsuccessful operation. If -1 is returned, the kernel sets
the errno global variable to one of the following values:

EFAULT

EIO

Indicates that an address was specified that is not valid.

Indicates that an error has occurred. The arg->status field in the
x25_reject_data structure contains one of four common exception codes:

• CIO_HARD_FAIL

• CIO_NOMBUF

• CIC_ TIMEOUT

• CIO_NOT_STARTED.

In addition, the arg->status field may return one of three X.25-specific
codes:

X25_BAD_CALL_ID

X25_PROTOCOL

X25_CLEAR

The call_id field specified is not valid.

Indicates that a protocol error occurred.

Indicates that the session has been cleared.

Communications Subsystem 5-147

x25sioctl

EINVAL

EA CC ES

Indicates one of the following occurred:

• A reject was issued on a session that was not started in
SESSION_SVC_LISTEN mode.

• The ext parameter points to a buffer that does not have a packet type of
PKT _CLEAR_REQ.

Indicates that the reject must be performed by the same process that called
the X.25 CIO_START operation.

Implementation Specifics
The X25_REJECT operation functions with an IBM X.25 Interface Co-Processor/2 that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The x25sioctl entry point.

The CIO_START operation.

The mbuf structure, X.25 ioctl Operations, Common X.25 Device Handler Structures in
Kernel Extensions and Device Support Programming Concepts

5-148 Kernel Reference

I

i
\

(

\

(
\"41

x25smpx

x25smpx X.25 Device Handler Entry Point

Purpose

Syntax

Provides the means to allocate and deallocate a channel into X.25 device handler.

int x25xmpx (devno, chan, channame)
dev_t devno;
int *chan;
char * channame;

Parameters
devno Specifies the major and minor device numbers.

ch an

channame

Description

Specifies the channel ID. If the channame parameter is NULL, the chan
parameter identifies the channel to be deallocated. Otherwise, the x25smpx
entry point returns the ID of the allocated channel to the chan parameter.

Points to the remaining path name that describes the channel. This
parameter accepts the following five values:

• The parameter is equal to NULL. This value indicates that the channel is
to be deallocated.

• The parameter points to a NULL string. This value causes the x25smpx
entry point to return an ID that allows a normal open sequence.

• The parameter points to D (Diagnostic mode). This value causes the
x25smpx entry point to return an ID that allows the device handler to be
opened in Diagnostic mode.

• The parameter points to M (Monitor mode). This value causes the
x25smpx entry point to return an ID that allows the device handler to be
opened in Monitor mode.

• The parameter points to R (Router mode). This value causes the
x25smpx entry point to return an ID that allows the device handler to be
opened in Router mode.

Note: This entry point is called by the kernel. It cannot be called directly by a user- or
kernel-mode process.

The x25smpx entry point provides the means for allocating and deallocating a channel into
the X.25 device handler. This entry point is called by the kernel in response to an open
subroutine (before calling the x25sopen entry point) or in response to a close subroutine.
(after calling the x25sclose entry point).

Execution Environment
An x25smpx entry point can be called from the process environment only.

Communications Subsystem 5-149

x25smpx

Return Values
A return code of-1 indicates an unsuccessful operation. The kernel sets the errno global
variable to one of the following values:

EINVAL

EPERM

EBUSY

Indicates that a parameter was specified that was not valid.

Indicates that an open in the specified mode is denied.

Indicates that the device is already open in Diagnostic, Monitor, or Router
mode.

Implementation Specifics
The x25smpx entry point functions with an IBM X.25 Interface Co-Processor/2 that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The x25sclose entry point, x25sopen entry point.

The open subroutine, close subroutine.

X.25 Device Handler Modes in Kernel Extensions and Device Support Programming
Concepts.

5-150 Kernel Reference

I
I

\

(

\
I

)

x25sopen

x25sopen X.25 Device Handler Entry Point

Purpose

Syntax

Initializes a channel into the X.25 device handler.

intx25sopen(devno,devf/ag,chan, ex~
dev_t devno;
ulong devflag;
int chan;
struct kopen_ext *ext;

Parameters
devno Specifies the major and minor device numbers.

devflag

ch an

ext

Description

Indicates how the device was opened and whether the caller is a user or
kernel-mode process. This parameter accepts the following flags:

DKERNEL

DREAD

DWRITE

DAPPEND

ON DELAY

A kernel-mode process called the entry point. This flag is
clear if a user-mode process called the entry point.

Open for reading. This is the default for the X.25 handler
regardless of whether this flag is set.

Open for writing. This is the default for the X.25 handler
regardless of whether this flag is set.

Open for appending. The X.25 handler ignores this flag.

If this flag is set, the X.25 device handler performs
nonblocking reads and writes. Otherwise, blocking reads
and writes are performed.

Identifies the channel number assigned by the x25smpx routine.

Specifies the extended system call parameter. This parameter is required
for kernel-mode processes and ignored for user mode processes.

The x25sopen entry point performs data-structure allocation and initialization.
Time-consuming tasks, such as port initialization and connection establishment, are deferred
until the first CIO_START operation is issued. This call is synchronous and does not return
until the x25open entry point is complete.

Note: If this is the first open request to the X.25 device handler, the interrupt level and
interrupt handler entry point are registered.

Parameter Block
For the x25sopen entry point, the ext parameter can be a pointer to the kopen_ext
structure defined in the <sys/comio.h> header file. This structure contains the following five
fields:

Communications Subsystem 5-151

x25sopen

status

open_id

rx_fn

tx_fn

5-152 Kernel Reference

Identifies the status of the open process. This value is meaningful only if the
code EIO is returned.

Specifies the channel correlator for kernel mode processes. This value is
passed to kernel functions to identify on which channel an event occurred.

Specifies the address of a kernel procedure. This procedure is called by the
X.25 device handler whenever received data is to be processed. This kernel
procedure must be defined as follows:

void rx_fn (open_id, read_ext, mbufptlJ
ulong open_id;
struct x25_read_ext *read_ext;
struct mbuf * mbufptr;

The parameters in this kernel procedure are defined as follows:

open_ id

read_ ext

mbufptr

Specifies the ID of this instance of the x25sopen entry
point The device handler sets this parameter to the ID
originally passed to the X.25 device handler with the
x25sopen entry point.

Contains the status of the x25sopen entry point. Currently,
this parameter accepts a value of CIO_OK or
CIO_BUF _OVFLW.

Points to received data. This data is in the form described
by the mbuf structure.

The kernel-mode process making the call to the x25sopen entry point is
responsible for pinning the rx_fn kernel procedure before making the call.
When the X.25 device handler calls the kernel procedure, the X.25 device
handler pins the mbuf structure. It is the responsibility of the rx_fn kernel
procedure to free the pinned mbuf structure.

Identifies the address of a kernel procedure. The X.25 device handler calls
this procedure when both the following conditions are true:

• The most recent x25swrite entry point for this channel failed with a return
cod~ of EAGAIN, indicating the write request was not performed.

• The x25sopen entry point, or the most recent x25sioctl operation for this
channel, indicates Nonblocking mode (DNDELAY) is set.

The tx_fn kernel process should be defined as follows:

void tx_fn (open_id)
ulong open_id;

The parameter in this kernel process is defined as follows:

open_id Identifies the ID of the x25sopen entry point. The device
handler sets this value to the ID passed with the x25sopen
entry point.

The kernel-mode process making the call to the x25sopen
entry point is responsible for pinning the tx_fn kernel
procedure before making the call.

;Q
l.'I'

~

(

stat_fn

x25sopen

The address of a kernel procedure to be called by the X.25 device handler
whenever a status block becomes available. The kernel procedure should
have the following structure:

void staLfn (open_id, sblk_ptf}
ulong open_id;
struct status_block *sblk_ptr,

The kernel procedure parameters have the following values:

open_id

sblk_ptr

Identifies the ID of the open entry point. The device handler
sets this value to the ID passed .with the x25sopen entry
point.

Points to a status block.

The kernel-mode process that calls the x25sopen entry point is responsible
for pinning the stat_fn kernel procedure before making the open call.

The rx_fn procedure, tx_fn procedure, and stat_fn kernel procedure are all made
synchronously at high priority. It is therefore imperative that the called kernel procedure
return quickly. Until the return, the kernel procedure cannot call any other device entry point.

Note: Entry points are associated with a channel initialized by the x25sopen entry point.
Sessions are initialized by the CIO_START operation. A single channel supports
numerous sessions.

Execution Environment
An x25sopen entry point can be called from the process environment only.

Return Values
A return code of-1 indicates an unsuccessful operation. The kernel sets the errno global
variable to one of the following values:

EINVAL Indicates that a kernel user passed a function that is not valid.

EIO

EINTR

ENODEV

EBUSY

ENOMEM

ENXIO

Indicates that an error has occurred. The sb.status field contains the
CIO_HARD_FAIL return value indicating a hardware failure was detected.

Indicates that the open subroutine was interrupted.

Indicates that the device requested does not exist.

Indicates that the maximum number of opens was exceeded. This error is
received if an attempt is made to open the channel in Diagnostic mode while
there are other open channels on the minor device number. In addition, this
error is received if an attempt is made to open a channel where one is
already open and running in Monitor or Router mode.

Indicates that the X.25 device handler was unable to allocate space
required for the open.

Indicates that one of the following occurred:

• An attempt was made to open the X.25 device handler before it was
configured.

• The interrupt could not be registered.

Communications Subsystem 5-153

x25sopen

Implementation Specifics
The x25sopen entry point functions with an IBM X.25 Interface Co-Processor/2 that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The CIO_START operation.

The open subroutine.

The x25swrite entry point, x25smpx entry point, x25sioctl entry point.

List of Common Status/Exception Codes, X.25 Device Handler Modes, The X.25 mbufs
Structure in Kernel Extensions and Device Support Programming Concepts.

5-154 Kernel Reference

/;;
l.'I
"l

I

\

\

/

x25sread

x25sread X.25 Device Handler Entry Point

Purpose

Syntax

Provides the means to receive data from the X.25 adapter.

int x25sread (devno, uiop, chan, ext)
dev _t devno;
struct uio * uiop;
Int chan;
struct x25_read_ext *ext;

Parameters
devno Specifies the major and minor device numbers.

Points to a uio structure. uiop

ch an

ext

Description

Identifies the channel number assigned by the x25smpx routine.

Points to the x25_read_ext structure. This structure is found in the
<sys/x25user.h> header file and it contains a call_id field and a re.status
field. The call_id field is only valid on sessions of type
SESSION_SVC_LISTEN. The re.status field is meaningful only if the return
value is EIO.

Note: This entry point can only be called by user mode processes. Data received for a
kernel-mode process is passed to the rx_fn kernel procedure specified by the
x25sopen entry point.

The x25sread entry point provides the means to receive incoming data on the session
specified by session_id field. If the session_id field is O (zero) and the device was opened
in normal mode, data for any session started by this channel is returned, and the
session_id field is filled in accordingly. The X.25 device handler copies the data to the user
buffer and decrements the uiop->resid field by the number of bytes moved.

X.25 data is made up of an m-bit sequence. This sequence is consolidated before it is made
available for read operations. The exception is sessions of type X25_SESSION_ YBTS. For
these sessions, each packet is available as a separate data block.

Notes:

1. The order of incoming data is preserved for each session, but is not guaranteed
across sessions.

2. The x25_packet_data common data structure describes the buffering of incoming
X.25 packet sequences. This structure is found in the <sys/x25user.h> header
file.

The x25sread entry point can be a blocking or nonblocking read. The type of read is
determined by flags specified by the x25sopen entry point when the channel is opened. If
the read is blocking, and no data is available, the x25sread entry point blocks until data is
received. If the read is nonblocking and no data is available, the entry point returns an error
code.

Communications Subsystem 5-155

x25sread

If the current session was initialized for listening, the only data that can be read on the a
session is an incoming call. The user process should respond by issuing a X25_REJECT ~
operation on the current session or by starting a new session with a Start Session
CIO_START operation, to accept the call.

When a PKT_CLEAR_IND packet is received, the user must respond with a CIO_HALT
operation. As a result, no further x25swrite entry points are accepted. If the session is a
SESSION_MONITOR type, then the data buffer contains monitor control sequences.

Parameter Block
For the x25sread entry point, the arg parameter returns a pointer to the uio structure. This
structure specifies the location and length of the caller's data area to transfer information to.
The uio structure is defined in the <Sys/uio.h> header file.

The data is in the form described in the mbuf structure. The value for the packet_type field
for SESSION_SVC_LISTEN sessions is PKT_INCOMING_CALL. For other sessions, the
possible packet types are the following:

• PKT_DATA

• PKT_INT

• PKT _INT _CONFIRM

• PKT_RESET_IND

• PKT _RESET _CONFIRM

• PKT _D_BIT _ACK

• PKT_CLEAR_IND (except for sessions of type SESSION_PVC).

Execution Environment
The x25sread entry point can be called from the process environment only.

Return Values
EFAULT

EINVAL

EIO

EMSGSIZE

EA GAIN

5-156 Kernel Reference

Indicates a buffer area that is not valid.

Indicates a parameter that is not valid.

Indicates that an error has occurred. The ext->status field in the
x25_read_ext structure contains one of the following values:

• CIO_NOT_STARTED

• CIO_HARD_FAIL

• CIO_LOST_DATA.

Indicates that the buffer was not large enough to receive the packet data.
The receiver data is preserved within the device driver until a read is issued
with a large enough buffer.

Indicates that there were no packets to be read and the device was opened
with the DNDELAV flag set.

I
\

(

x25sread

Implementation Specifics
The x25sread entry point functions with an IBM X.25 Interface Co-Processor/2 that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The x25swrite entry point, x25sopen entry point, x25smpx entry point.

The CIO_START operation, CIO_HALT operation, X25_REJECT operation.

The mbuf structure.

Sessions with the X.25 Device Handler, Data Transmission for the X.25 Device Handler,
Data Reception for the X.25 Device Handler in Kernel Extensions and Device Support
Programming Concepts.

Communications Subsystem 5-157

x25sselect

x25sselect X.25 Device Handler Entry Point

Purpose

Syntax

Determines if a specified event occurred on a device.

int x25sselect (devno, events, reventp, chan)
dev_t devno;
ushort events;
ushort * reventp;
int chan;

Parameters
devno Specifies the major and minor device numbers.

events

reventp

ch an

Description

Identifies what events to check. The events parameter is indicated by a
bitwise OR using the following flags:

DPOLLIN

DPOLLOUT

DPOLLPRI

DPOLLSYNC

Check if the receive data is available.

Check if transmission is possible. For the X.25 device
handler, this event is always true.

Check if status is available.

The request is synchronous. The x25sselect entry point
should not perform a selnotify kernel service if the
events occur later.

Returns the events pointer. The x25sselect entry point uses this parameter
to indicate which of the selected events are true at the time of the call. The
reventp parameter is indicated by a bitwise OR of the DPOLLIN,
DPOLLOUT, or DPOLLPRI flag, as appropriate.

Identifies the channel number assigned by the x25smpx entry point.

Note: This entry point should only be called by user mode processes using the select or
poll subroutine.

The x25sselect entry point determines if a specified event occurred on a device. If one or
more events specified by the events parameter are true, this entry point updates the reventp
parameter by setting the corresponding bits.

If none of the events are true, the reventp parameter is set to 0 (zero) and the entry point
checks the DPOLLSYNC flag. If this flag is set, the request is synchronous and the entry
point simply returns. If this flag is false, the x25sselect entry point records which events
were requested. When one or more of the events subsequently becomes true, the
x25sselect entry point calls the selnotify kernel subroutine to notify the user process.

5-158 Kernel Reference

I

(~

/

x25sselect

When the X.25 device handler is in a state that prevents any of the events from being
satisfied (such as an adapter failure), then the x25sselect entry point sets the reventp
parameter to 1 (one) for the appropriate event. This prevents the select or poll subroutine
from waiting indefinitely.

Note: Unless the session protocol is PROTOCOL_ YBTS, an X.25 packet sequence cannot
satisfy a x25sselect entry point until the final packet of the sequence is received or
the sequence is otherwise terminated (for example, by the arrival of a clear
indication).

Execution Environment
An x25sselect entry point can be called from the process environment only.

Return Value
A return code of-1 indicates an unsuccessful operation. The kernel sets the errno global
variable to the following value:

EINVAL Indicates that an invalid argument was specified or that the x25sselect
entry point was called by a kernel mode user.

Implementation Specifics
The x25sselect entry point functions with an IBM X.25 Interface Co-Processor/2 that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The select subroutine, poll subroutine.

The selnotify kernel service.

Data Transmission for the X.25 Device Handler, Data Reception for the X.25 Device Handler
in Kernel Extensions and Device Support Programming Concepts.

Communications Subsystem 5-159

x25swrite

x25swrite X.25 Device Handler Entry Point

Purpose

Syntax

Provides the means to send data to the X.25 adapter.

int x25swrite (devno, uiop, chan, ext)
dev_t devno;
struct uio *uiop;
int chan;
struct x25_write_ext *ext;

Parameters
devno Specifies the major and minor device numbers.

Points to a uio structure. uiop

chan Identifies the channel number assigned by the x25smpx routine.

ext Points to the struct x25_write_ext structure. This structure is found in the
<sys/x25user.h> header file.

Description
Note: Call-establishment or termination packets cannot be sent using this entry point.

The x25swrite entry point provides the means to send a X.25 data packet to the adapter.

uio Structure
For the x25swrite entry point, the uiop parameter is a pointer to a uio structure. This
structure is described in the <Sys/uio.h> file. The uio structure specifies the location and
length of the caller's data.

This routine checks the uiop->segflag field to determine whether the data is in user space
or kernel space. If the data is in kernel space, then the uiop->uio_ iov->uio_base field
points to an mbuf structure chain containing the data for transmission. If the data is in user
space, then the uiop->uio_iov field points to an array of iovec structures.

The data is in the form described by the mbuf structure. For a kernel-mode process, the
mbufs structure containing the data should be pinned before making this call.

For session types of SESSION_SVC_OUT, SESSION_SVC_IN, or SESSION_PVC, the
possible values for the packet_type field are the following:

• PKT_DATA
• PKT_INT
• PKT_INT_CONFIRM
• PKT _RESET _REQ
• PKT_RESET_CONFIRM
• PKT _D _BIT _ACK.

Note: For a SESSION_MONITOR session, the packet_type field must have a value of
PKT _MONITOR.

If the value of the packet_type field is PKT _DATA and the data buffer is larger than the
packet size, the data is transmitted as an X.25 packet sequence.

5-160 Kernel Reference

(

\

/
I
~

x25swrite

If a previous incoming data packet has been received with the D bit set, the incomming
packet must be acknowledged with a PKT_D_BIT_ACK packet type before any further
packets can be accepted by the device handler for this session.

The x25 write ext Parameter Block
- For the x25swrite entry point, the ext parameter points to the x25_write_ext parameter

block. The x25_write_ext structure contains a write_extension (we) structure and a
session_id field.

The we.flag field consists of the bitwise OR of one or more of the following values:

CIO_NOFREE_MBUF
Setting this bit causes the X.25 device handler to retain the mbuf structure
after transmission is complete. If a kernel-mode process sets this bit, it must
also do the following:

1. Determine when the X.25 device handler is finished with the mbuf
structure.

2. Free the mbuf structure.

For a user-mode process, the device handler always frees the mbuf
structure.

CIO _ACK_ TX_DONE
Setting this bit causes the X.25 device handler to acknowledge completion
by building a CIO_TX_DONE status block for the caller when the write is
complete.

The we.status field is meaningful only if the return value is EIO.

Execution Environment
The x25swrite entry point can be called from the process environment only.

Return Values
EINVAL

EIO

Indicates one of the following:

• A parameter was used that is not valid.

• A write was made on a listen session.

Indicates that an error has occurred. The ext->status field contains one of
the following common exception codes:

• CIO_NOT_STARTED
• CIO_HARD_FAIL
• CIO_NOMBUF
• CIO_TIMEOUT.

Otherwise, the field contains one of the following X.25 specific codes:

X25_NO_ACK

X25_NO_ACK_REQ

X25_PROTOCOL

A data packet with the D bit set requires
acknowledgment. Data packets cannot be
sent until the acknowledgment is completed.

A PKT_D_BIT_ACK was sent and no packets
required a D bit acknowledgment.

A protocol error occurred.

Communications Subsystem 5-161

x25swrite

EA GAIN

X25_RESET

X25_CLEAR

X25_NO_LINK

The session is in reset state; the data packet
could not be sent.

The session has been cleared.

The X.25 link is not established.

X25_BAD_PKT_TYPE The packet_type field passed in the uiop
parameter block is invalid for the session type.

Indicates that the transmit queue is full and the DNDELAY flag is set. The
command was not accepted.

Implementation Specifics
The x25swrite entry point functions with an IBM X.25 Interface Co-Processor/2 that has
been correctly configured for use on a qualified network. Consult the adapter specifications
for more information on configuring the adapter and network qualifications.

Related Information
The x25sread entry point.

Common X.25 Device Handler Structures, Sessions with the X.25 Device Handler in Kernel
Extensions and Device Support Programming Concepts.

5-162 Kernel Reference

(
\

(

Chapter 6. High Function Terminal (HFT) Subsystem

HFT Subsystem 6-1

HFCHGLOC

HFCHGLOC ioctl Operation (Change Locator)

Purpose
Changes the attributes of the mouse or tablet locator.

Description

File

The Change Locator (HFCHGLOC) ioctl operation allows you to change the following
aspects of the mouse or tablet:

• Mouse sample rate

• Mouse resolution

• Mouse thresholds

• Mouse scaling factor

• Tablet sample rate

• Tablet resolution

• Tablet dead zones

• Tablet conversion

• Tablet origin.

The HFCHGLOC ioctl operation is invoked by:

int ioctl(fildes, HFCHGLOC, &arg)
int fildes;
struct hfchgloc arg;

struct hfchgloc {
ulong hf_cmd;
ushort loc_valuel;
ushort loc_value2;
} ;

The hf_cmd field tells which attribute to set, and the hf_value1 and hf_value2 fields give (
the value of this attribute. The hfchgloc structure is defined in the sys/hft.h header file.

Use of the fields in the hfchgloc structure is described in Change Locator (HFCHGLOC) in
hft.h File Structures for Special ioctl Operations.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Change Locator (HFCHGLOC) in hft.h File Structures for Special ioctl Operations in Files
Reference.

Understanding Keyboard, Tablet, Sound, and Mouse Devices, HFT ioctl Operations, HFT
Device Driver (HFTDD) User Interface Overview in Kernel Extensions and Device Support
Programming Concepts.

6-2 Kernel Reference

~
1/

HFCMON ioctl Operation (Exit Monitor Mode)

Purpose
Causes the display system to exit Monitor mode (MOM).

Description

HFCMON

The Exit Monitor Mode (HFCMON) ioctl operation releases Monitor mode. There are no
structures required to exit Monitor mode.

The Exit Monitor Mode (HFCMON) ioctl operation is invoked as follows:

int ioctl(fildes, HFCMON, 0)
int fildes;

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Enter and Exit Monitor Mode (HFSMON) and (HFCMON) in hft.h File Structures for Special
ioctl Operations in Files Reference.

Enter Monitor Mode (HFSMON) ioctl Operation.

HFT Device Driver (HFTDD) User Interface Overview, Understanding Monitor Mode, How to
Exit Monitor Mode, HFT ioctl Operations in Kernel Extensions and Device Support
Programming Concepts.

HFT Subsystem 6-3

HFDSOUND

HFDSOUND ioctl Operation (Disable Sound Signal)

Purpose
Informs a virtual terminal of the intent to discontinue the use of sound signals.

Description
The Disable Sound Signal (HFDSOUND) ioctl operation informs the virtual terminal of the
intent to discontinue the use of sound signals. Sound-response signals are not sent.

This operation merely disables the routing of sound-response signals. It does not affect the
ability to use the sound speaker itself.

The Disable Sound Signal HFDSOUND ioctl operation is invoked as follows:

int ioctl (fildes, HFDSOUND, 0)
int fildes;

No structures are required to disable sound signals.

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Enable and Disable Sound Signals (HFESOUND and HFDSOUND) in hft.h File Structures
for Special ioctl Operations in Files Reference.

Enable Sound Signal ioctl Operation.

HFT Device Driver (HFTDD) User Interface Overview, HFT ioctl Operations in Kernel
Extensions and Device Support Programming Concepts.

6-4 Kernel Reference

(

HFESOUND

HFESOUND ioctl Operation (Enable Sound Signal)

Purpose
Enables the routing of the sound-response signal.

Description

File

The Enable Sound Signal (HFESOUND) ioctl operation informs the virtual terminal of the
intent to use sound signals.

The application is notified that the sound is complete if:

• A sound request later occurs (because the user sends a Send Sound write operation)

• The hfsound structure has the HFSIGSOUND flag set in the hf_mode field.

This action enables the routing of the sound response signals. It does not affect the ability
to use the sound speaker itself, but merely determines whether the user is notified by signal
that the sound has occurred.

The Enable Sound Signal ioctl operation is invoked as follows:

int ioctl(fildes, HFESOUND, &arg)
int fildes;
struct hfsmon arg;

struct hf smon
{

int hf_momflags;
} ;

The caller can use the hfsmon structure to indicate whether one or all members of the
current process group are to receive a sound response signal. The hfsmon structure is
defined in the sys/hft.h header file. For more information on using this structure, see Enable
and Disable Sound Signal (HFESOUND and HFDSOUND) in hft.h File Structures for
Special ioctl Operations.

The HFESOUND operation is valid in both KSR and MOM modes.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Enable and Disable Sound Signals (HFESOUND and HFDSOUND) in hft.h File Structures
for Special ioctl Operations in Files Reference.

Disable Sound Signal ioctl Operation.

HFT Device Driver (HFTDD) User Interface Overview, HFT ioctl Operations in Kernel
Extensions and Device Support Programming Concepts.

HFT Subsystem 6-5

HFESWKBD

HFESWKBD ioctl Operation (Enable Software Keyboard)

Purpose
Enables the software keyboard map to be used by a virtual terminal.

Description

File

The Enable Software Keyboard (HFESWKBD) ioctl operation allows you to change the
software keyboard map currently used by a virtual terminal to another keyboard map. This
keyboard map must currently be in the system (after being added by the HFADDSWKBD
option of the HRFCONF ioctl operation). Use the HFQUERY ioctl operation to determine
the available keyboard maps.

The HFESWKBD ioctl operation is invoked as follows:

int ioctl(fildes, HFESWKBD, &kbdid)
int fildes;
long *kbdid;

The kbdid field indicates the software keyboard to be enabled and can be determined from
the hf_kbdid field returned in the HFQUERY ioctl operation.

The software keyboard is represented by the vtmdkey structure as defined in the hft.h
header file. This structure is described in

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Enable Software Keyboard (HFESWKBD) in hft.h File Structures for Special ioctl
Operations in Files Reference.

Query Software Keyboards Query ioctl Operation.

The Reconfigure (HRFCONF) ioctl Operation.

HFT Device Driver (HFTDD) User Interface Overview, HFT ioctl Operations in Kernel
Extensions and Device Support Programming Concepts.

6-6 Kernel Reference

\

(

HFQERROR

HFQERROR ioctl Operation (Query 1/0 Error)

Purpose
Returns a detailed device error code for operations that have failed due to a High Function
Terminal (HFT) subsystem failure.

Description

Error Codes

The Query 1/0 Error (HFQERROR) ioctl operation returns a detailed device error code. If
an 1/0 operation or other operation to the HFT fails because of an HFT subsystem error, the
system call returns a nonzero value and sets the errno global variable to EIO.

The calling program can get a more detailed device error code by using the ioctl operation
to issue an HFQERROR operation.

The HFQERROR ioctl operation is invoked as follows:

int ioctl(fildes, HFQERROR, &arg)
int fildes:
long arg:

The arg value from the HFQERROR ioctl operation is either O (indicating that the last 1/0
operation was successful) or the detailed error code.

The possible terminal error codes are:

500 = LPFK/dial device driver failed.

501 = HFT device driver failed.

502 = Keyboard device driver failed.

503 = Mouse device driver failed.

504 = Sound device driver failed.

505 = Screen manager failed.

506 = Tablet device driver failed.

507 - Display driver initialization failed.

508 = Display driver activate failed.

509 = Display driver define-cursor failed.

510 = Display driver terminate failed.

512 = Virtual device driver failed.

520 = Display driver deactivate failed.

521 = Display driver failed while moving lines.

522 = Display driver failed while clearing a box on screen.

HFT Subsystem 6-7

HFQERROR

523 = Display driver failed while copying part of a line.

525 = Display driver failed while moving cursor position.

526 = Display driver failed while reading a line segment.

528 = Display driver failed while writing a string of characters.

529 = Display driver failed while scrolling text on the display.

530 = Display driver failed while setting mode.

531 = Display driver failed while changing color mappings.

997 = Utility defined in the HFT subsystem failed.

998=

1000 =

1001 =

1002 =

1003 =

1004 =

1005 =

1006 =

1402 =

1403 =

1404 =

1405 =

1406 =

1407 =

1408 =

1409 =

1413 =

1477 =

1483 =

1485 =

1489 =

1521 =

6-8 Kernel Reference

Kernel function used by the HFT failed.

Invalid virtual terminal ID was given.

Invalid HFT was given.

Maximum number of virtual terminals are already open.

Invalid address was given.

Failure in sending MOM signal.

Failure in sending SAK sequence.

Failure in sending SIGKILL signal.

Failure of malloc operation for the. required function.

Device rejected request.

Virtual terminal cannot be deactivated.

Invalid request made for this virtual terminal.

Invalid device ID was given.

Invalid object was given.

Device not configured.

No virtual terminals open.

Bad screen manager process creation.

Screen manager command virtual terminal already exists.

One or more of the involved virtual terminals are trusted.

Screen manager request has invalid virtual terminal ID.

Request for an invalid screen manager operation.

Invalid length given in VTD.

(
I
\

(

HFQERROR

1522 = Invalid major type given in VTD.

1523 = Invalid minor type given in VTD.

1529 = Device not available.

1530 = Presentation space size zero.

1531 = Invalid final character on SGR.

1533 = Bad font IDs.

1534 = Bad font size.

1535 = No font available.

1539 = Device not enabled.

1541 = Data not aligned.

1542 = No cursor exists.

1544 = Invalid mode.

1545 = Terminal not active.

1551 = Invalid parameter.

1552 = Invalid control sequence.

1700 = Input to the virtual terminal has been destroyed.

1701 = Invalid function encountered.

1703 = Cross memory move failure.

1704 = MOM buffer overflow.

/ 1705 = Virtual terminal received a bad queue element.

1800 = Query to the virtual terminal was incomplete.

1801 = Response buffer overflow.

1802 = Invalid parameter given in the query.

1961 = Invalid selector given in the change-structure request.

1962 = Bad echo length.

1963 = Undefined function ID.

1964 = Predefined key position that cannot be remapped.

1965 = Invalid key flags given in change structure request.

1966 = Invalid key position given in change structure request.

1967 = Bad KSR buffer length.

HFT Subsystem 6-9

HFQERROR

File

1968 =

1970 =

Bad keyboard length.

Invalid keyboard state given in change structure request.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Query 1/0 Error (HFQERROR) in hft.h File Structures for Query ioctl Operations in Files
Reference.

HFT Device Driver (HFTDD) User Interface Overview, HFT ioctl Operations in Kernel
Extensions and Device Support Programming Concepts.

6-1 0 Kernel Reference

I
(

\

(

HFQUERY ioctl Operation (Query)

Purpose

HFQUERY

Returns information about a virtual terminal or the overall state of the HFT subsystem.

Description
The Query (HFQUERY) ioctl operation supports several types of queries about the current
virtual terminal.

The HFQUERY ioctl operation is invoked as follows:

int ioctl(fildes, HFQUERY, &arg)
int fildes;
struct arg;

Structures for each query command are defined in the hft.h header file. Their use is
described in hft.h File Structures for Query ioctl Operations.

Query Command Options
The following queries can be made using the Query HFQUERY ioctl operation:

• Query Physical Display IDs

• Query Physical Device

• Query Mouse

• Query Tablet

• Query LPFKs

• Query Dials

• Query Presentation Space

• Query Software Keyboards

• Query HFT Device

• Query Keyboard Status

• Query Retract Device ID.

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Query 1/0 Error (HFQERROR) in hft.h File Structures for Query ioctl Operations in Files
Reference.

HFT Device Driver (HFTDD) User Interface Overview, HFT ioctl OperationsKerne/
Extensions and Device Support Programming Concepts.

HFT Subsystem 6-11

HFQUERY

HFQUERY ioctl Option: Query Dials
Description

File

The Query Dials HFQUERY operation returns device information about the dials. This
information consists of the number of dials on the device and the granularity of each dial.

The Query Dials HFQUERY ioctl operation is invoked as follows:

int ioctl(fildes, HFQUERY, &arg)
int fildes;
struct hfqdial_lpfk arg;

struct hfqdial_lpfk {

} ;

struct hfqgraphdev *hf_cmd;
long hf_cmdlen;
struct hfdial_lpfk *hf_resp;
long hf_resplen;

The fields in the hfqdial_lpfk, hfqgraphdev, and hfdial_lpfk structures are defined in the
sys/hft.h header file. Their use is described in Query Dials Command in hft.h File
Structures for Query ioctl Operations.

/usr/include/sys/hft.h

Related Information

I
I
\

Query Dials Command in hft.h File Structures for Query ioctl Operations in Files Reference. (

HFT ioctl Operations in Kernel Extensions and Device Support Programming Concepts.

(
\~

6-12 Kernel Reference

HFQUERY

HFQUERY ioctl Option: Query HFT Device
Description

File

The Query HFT Device HFQUERY operation returns information about the physical display
attributes and keyboard being used by a specified virtual terminal.

The Query HFT Device HFQUERY ioctl operation is invoked by the following:

int ioctl(fildes, HFQUERY, &arg)
int fildes;
struct hfqhft arg;

struct hfqhf t {

} ;

struct hfqhftc *hf_cmd;
long hf_cmdlen;
struct hfqhftr *hf_resp;
long hf_resplen;

The fields in the hfqhft, hfqhftc, and hfqhftr structures are defined in the /sys/hft.h header
file. Their use is described in Query HFT Device Command in hft.h File Structures for Query
ioctl Operations.

/usr/include/sys/hft.h

Related Information
Query HFT Device Command in hft.h File Structures for Query ioctl Operations in Files
Reference.

HFT ioctl Operations in Kernel Extensions and Device Support Programming Concepts.

HFT Subsystem 6-13

HFQUERY

HFQUERY ioctl Option: Query Keyboard Status
Description

File

The Query Keyboard Status HFQUERY operation returns status information about the state
of a Japanese (106-key) keyboard.

The Query Keyboard Status HFQUERY ioctl operation is invoked by the following:

int ioctl{fildes, HFQUERY, &arg)
int tildes;
struct hfqkbs arg;

struct hf qkbs {

} ;

struct hfqkbsc *hf_cmd;
long hf_cmdlen;
struct hfqkbsr *hf_resp;
long hf_resplen;

The fields in the hfqkbs, hfqkbsc, and hfqkbsr structures are defined in the /sys/hft.h
header file. Their use is described in Query Keyboard Status Command in hft.h File
Structures for Query ioctl Operations.

/usr/include/sys/hft.h

Related Information
Query Keyboard Status Command in hft.h File Structures for Query ioctl Operations in Files (
Reference.

HFT ioctl Operations in Kernel Extensions and Device Support Programming Concepts.

(

6-14 Kernel Reference

HFQUERY

HFQUERY ioctl Option: Query Lighted Programmable Function Keys
Description

File

The Query Lighted Programmable Function Keys HFQUERY operation returns device
information about the LPFKs. This information consists of the number of LPFKs on the
device, and whether each LPFK is enabled or not.

The Query LPFK ioctl operation is invoked as follows:

int ioctl(fildes, HFQUERY, &arg)
int fildes;
struct hfqdial_lpf k arg;

struct hfqdial_lpfk {

} ;

struct hfqgraphdev *hf_cmd;
long hf_cmdlen;
struct hfdial_lpfk *hf_resp;
long hf _resplen;

The fields in the hfqdial_lpfk, hfqgraphdev, and hfdial_lpfk These structures are defined
in the sys/hft.h header file. Their use is described in Query Lighted Programmable Function
Keys (LPFKs) Command in hft.h File Structures for Query ioctl Operations.

/usr/include/sys/hft.h

Related Information
Query Lighted Programmable Function (LPFKs) Key Command in hft.h File Structures for
Query ioctl Operations in Files Reference.

HFT ioctl Operations in Kernel Extensions and Device Support Programming Concepts.

HFT Subsystem 6-15

HFQUERV

HFQUERY ioctl Options: Query Mouse and Query Tablet
Description

File

The Query Mouse and Query Tablet HFQUERY operations return extensive information
about the mouse or tablet device attributes for a virtual terminal. These attributes include
resolution and sample rates.

The Query Mouse and Query Tablet HFQUERY ioctl operations are invoked as follows:

int ioctl(fildes, HFQUERY, &arg)
int fildes;
struct hfqloc arg;

struct hfqloc {

} ;

struct hfqgraphdev *hf _cmd;
long hf_cmdlen;
struct hfqlocr *hf_resp;
long hf_resplen;

The fields in the hfqloc, hfqgraphdev and hfqlocr structures are defined in the sys/hft.h
header file. Their use is described in Query Mouse Command in hft.h File Structures for
Query ioctl Operations.

/usr/incl ude/sys/hft. h

Related Information
Query Mouse Command in hft.h File Structures for Query ioctl Operations in Files
Reference.

HFT ioctl Operations in Kernel Extensions and Device Support Programming Concepts.

6-16 Kernel Reference

\
/

~,
I

,I

HFQUERV

HFQUERV ioctl Option: Query Physical Device
Description

File

The Query Physical Display HFQUERY operation returns information about displays and
locator devices. It fills the response buffer with information about the following:

• Mouse and tablet

• Physical display device

• Physical display font information

• Physical display color information.

The Query Physical Display HFQUERY ioctl operation is invoked as follows:

int ioctl(fildes, HFQUERY, &arg)
int fildes;
struct hfqphdev arg;

struct hfqphdev {

} ;

struct hfqphdevc *hf_cmd;
long hf _cmdlen;
struct hfqphdevr *hf_resp;
long hf_resplen;

The fields in the hfqphdev, hfqphdevc, and hfqphdevr structures are described in more
detail in the sys/hft.h header file. Their use is described in Query Physical Device
Command in hft.h File Structures for Query ioctl Operations.

/usr/include/sys/hft.h

Related Information
Query Physical Device Command in hft.h File Structures for Query ioctl Operations in Files
Reference.

H FT ioctl Operations in Kernel Extensions and Device Support Programming Concepts.

HFT Subsystem 6-17

HFQUERY

HFQUERY ioctl Option: Query Physical Display IDs
Description

The Query Physical Display IDs HFQUERY operation responds with information about the
display devices: the ID of each device and whether it is present and functional on the
system.

The Query Physical Display IDs HFQUERY ioctl operation is invoked as follows:

int ioctl(fildes, HFQUERY, &arg)
int tildes;
struct hfqdevid arg;

struct hf qdevid {

} ;

struct hfqdevidc *hf_cmd;
long hf_cmdlen;
struct hfqdevidr *hf_resp;
long hf_resplen;

The fields in the hfqdevid, hfqdevidc, and hfqdevidr structures are defined in the
sys/hft.h header file. Their use is described in Query Physical Display IDs Command in
hft.h File Structures for Query ioctl Operations.

Related Information
Query Physical Display IDs Command in hft.h File Structures for Query ioctl Operations in
Files Reference.

6-18 Kernel Reference

I

\

HFQUERV

HFQUERV ioctl Option: Query Presentation Space
Description

File

The Query Presentation Space HFQUERY operation returns an ASCII data stream image of
the current display screen. All or part of the screen can be queried. Attribute and character
set information on the queried block are returned. The HFQUERY operation is valid only in
KSR mode and is useful only with HFT-supported fonts.

The Query Presentation Space HFQUERY ioctl operation is invoked as follows:

int ioctl(fildes, HFQUERY, &arg)
int fildes;
struct hfqpres arg;

struct hfqpres {

} ;

struct hfqpresc *hf_cmd;
long hf_cmdlen;
struct hfqpresr *hf_resp;
long hf_resplen;

The fields in the hfqpres, hfqpresc, and hfqpresr structures are defined in the sys/hft.h
header file. Their use is described in Query Presentation Space Command in hft.h File
Structures for Query ioctl Operations.

/usr/include/sys/hft.h

Related Information
Query Presentation Space Command in hft.h File Structures for Query ioctl Operations in
Files Reference.

Understanding Keyboard Send-Receive (KSR} Mode, HFT ioctl Operations in Kernel
Extensions and Device Support Programming Concepts.

HFT Subsystem 6-19

HFQUERY

HFQUERY ioctl Option: Query Retract Device ID
Description

File

The Query Retract Device ID HFQUERY operation returns the virtual terminal ID and the
physical display device ID of the virtual terminal being retracted.

Structure

The Query Retract Device ID ioctl operation is invoked by:

int ioctl (fildes, HFQUERY, &arg)
int fildes;
struct hfqretract arg;
struct hf qretract {

} ;

struct hfqretractc *hf_cmd;
long hf_cmdlen;
struct hfqretractr *hf_resp;
long hf_resplen;

The hfqretract structure is defined in the sys/hft.h header file. Use of the fields in these
structures is described in Query Retract Device ID Command in hft.h File Structures for
Query ioctl Operations.

/usr/include/sys/hft.h

Related Information
Query Retract Device ID Command in hft.h File Structures for Query ioctl Operations in
Files Reference.

HFT ioctl Operations in Kernel Extensions and Device Support Programming Concepts.

6-20 Kernel Reference

HFQUERY

) HFQUERY ioctl Option: Query Software Keyboard
Description

File

The Query Software Keyboard HFQUERY operation returns status information about the
software keyboard maps loaded in the High Function Terminal (HFT).

The Query Software Keyboard ioctl operation is invoked as follows:

int ioctl(fildes, HFQUERY, &arg)
int tildes;
struct hfqswkb arg;

struct hf qswkb {

} ;

struct hfqswkbc *hf_cmd;
long hf _cmdlen;
struct hfqswkbr *hf_resp;
long hf_resplen;

The fields in the hfqswkb, hfqswkbc, and hfqswkbr structures are defined in the sys/hft.h
header file. Their use is described in Query Software Keyboards Command in hft.h File
Structures for Query ioctl Operations.

/usr/include/sys/hft.h

Related Information
Query Software Keyboards Command in hft.h File Structures for Query ioctl Operations in
Files Reference.

HFT ioctl Operations in Kernel Extensions and Device Support Programming Concepts.

HFT Subsystem 6-21

HFSJKBD

HFSJKBD ioctl Operation (Set Japanese Keyboard)

Purpose
Updates the software keyboard being used by a virtual terminal, specifically the 106-key
keyboard.

Description
The Set Japanese Keyboard (HFSJKBD) ioctl operation is designed to work only with the
106-key Japanese keyboard and Japanese licensed program software.

The HFSJKBD ioctl operation is invoked as follows:

int ioctl(fildes, HFSJKBD, &arg)
int fildes;
struct hfbuf arg;
struct hfbuf
{

} ;

struct hfkeyrnap *hf_bufp;
int hf_buflen;

The structures used in the HFSJKBD ioctl operation are the same as those used with the
Set Keyboard Map (HFSKBD) ioctl operation. The hf_bufp field points to an hfkeymap
structure, and the hf_buflen field contains the length of the hfkeymap structure. The

I

\

hfkeymap structure is defined in the sys/hft.h header file. Use of the fields in this structure /
is described in Set Keyboard Map (HFSKBD) in hft.h File Structures for Special ioctl \
Operations.

Interpretation of Japanese Keyboard Shift States
The HFSJKBD operation differs from the HFSKBD operation in its interpretation of the shift
states. The Japanese keyboard has these 6 shift states:

• Roma-ji base

• Roma-ji shift

• Control

• Alternate

• Kana base

• Kana shift.

For base and shift, the distinction between Roma-ji and Kana script systems is determined
by the Alt Gr bit in the hf _kstate field of the hfkey structure. This bit can be combined with
the base or shift bit to indicate one of four states. When this bit is 0, Roma-ji is assumed.
When this bit is 1, Kana is assumed.

Note: The Japanese keyboard does not have an Alt Gr state.

6-22 Kernel Reference

c

File

HFSJKBD

The hfkeymap structure contains an hf _kstate field subdivided into groups of bits. One of
these groups, the HFSHFMASK bits, specifies shift states that apply to the key being
mapped. Six literals have been defined for the HFSHFMASK bits:

HFSHFCTRL

HFSHFALT

HFROMBASE

HFROMSHFT

HFKANBASE

HFKANSHFT

Specifies the Ctrl state.

Specifies the Alt state.

Specifies the base Roma-ji state.

Specifies the shift Roma-ji state.

Specifies the base Kana state.

Specifies the shift Kana state.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Set Keyboard Map (HFSKBD) ioctl Operation.

Set Keyboard Map (HFSKBD) in hft.h File Structures for Special ioctl Operations in Files
Reference.

HFT Device Driver (HFTDD) User Interface Overview in Kernel Extensions and Device
Support Programming Concepts.

HFT Subsystem 6-23

HFSKBD

HFSKBD ioctl Operation (Set Keyboard Map)

Purpose
Updates the software keyboard map being used by a virtual terminal.

Description
The Set Keyboard Map (HFSKBD) ioctl operation allows the remapping of most keys on the
keyboard. Remapping changes the character or control sequence each key generates when
pressed.

The HFSKBD ioctl operation is invoked as follows:

int ioctl(fildes, HFSKBD, &arg)
int fildes;
struct hfbuf arg;
struct hfbuf
{

};

struct hfkeymap *hf_bufp;
int hf_buflen;

The hf _bufp field points to an hfkeymap structure, and the hf_buflen field contains the
length of the hfkeymap structure. The hfkeymap structure is defined in the sys/hft.h
header file. Use of the fields in this structure is described in Set Keyboard Map (HFSKBD) in
hft.h File Structures for Special ioctl Operations.

Mapping Alt Keys

File

On the U.S. 101-key keyboard, the left Alt key produces the Alt shift state, and the right Alt
key produces the Alt Gr shift state. The default keyboard mapping for the Alt and Alt Gr
states is identical for all keys.

If the Japanese 106-key keyboard is attached, then the Alt Gr shift state cannot be used.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Set Japanese Keyboard (HFSJKBD) ioctl Operation.

HFT Device Driver (HFTDD) User Interface Overview, Understanding Monitor Mode, How to
Enter Monitor Mode, HFT ioctl Operations in Kernel Extensions and Device Support
Programming Concepts.

6-24 Kernel Reference

(

\
/

HFSMON

HFSMON ioctl Operation (Enter Monitor Mode)

Purpose
Causes the virtual terminal to enter Monitor mode.

Description

File

The Enter Monitor Mode (HFSMON) ioctl operation allows the display system to enter
Monitor mode. Monitor mode provides a program with direct control of the physical display
screen.

This HFSMON ioctl operation is invoked as follows:

int ioctl(fildes, HFSMON, &arg)
int tildes;
struct hf smon arg;

struct hf smon
{

int hf_momflags;
} ;

The caller of the Enter Monitor Mode HFSMON operation can use the hfsmon structure to
specify whether one or all members of the current process group are to receive Monitor
mode signals. The hfsmon structure is defined in the sys/hft.h header file. For more
information on using this structure, see Enter and Exit Monitor Mode (HFSMON) and
(HFCMON) in hft.h File Structures for Special ioctl Operations.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Enter and Exit Monitor Mode (HFSMON) and (HFCMON) in hft.h File Structures for Special
ioctl Operations in Files Reference.

Exit Monitor Mode (HFCMON) ioctl Operation.

HFT Device Driver (HFTDD) User Interface Overview, Understanding Monitor Mode, How to
Enter Monitor Mode, HFT ioctl Operations in Kernel Extensions and Device Support
Programming Concepts.

HFT Subsystem 6-25

HFTCSMGR

HFTCSMGR ioctl Operation (Control Screen Manager)

Purpose
Requests the screen manager to manipulate the status of virtual terminals.

Description
The Request Screen Manager (HFTCSMGR) ioctl operation requests the screen manager
to manipulate the status of virtual terminals. Virtual terminals are linked together in a group
called the screen manager ring. This ring allows the user to call successive virtual terminals
to the display screen.

The terminal at the head of the ring, called the active terminal, is the virtual terminal visible
on the screen. The last terminal on the ring is called the tail. When a new terminal is
opened, that terminal becomes the head of the ring. The file descriptor can be associated
with any of the virtual terminals in the HFT. '\

File

The HFTCSMGR ioctl operation is invoked by the following:

int ioctl(fildes, HFTCSMGR, &arg)
int tildes;
struct hftsmgrcmd arg;

struct hf tsmgrcmd {
int hf_cmd;
int hf_vtid;
int hf_vsid;

} ;

The hfsmgrcmd structure contains an hf_cmd field that you must set to the required
operation. Screen manager commands are discussed in Screen Manager Operations. The
hfsmgrcmd structure itself is defined in the sys/hft.h header file. Query Screen Manager
(HFTQSMGR) in hft.h File Structures for Query ioctl Operations gives information on using
this structure.

/usr/i ncl ude/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Query Screen Manager (HFTQSMGR) in hft.h File Structures for Query ioctl Operations in
Files Reference.

Understanding the Screen Manager Ring, HFT ioctl Operations in Kernel Extensions and
Device Support Programming Concepts.

6-26 Kernel Reference

(

HFTGETID

HFTGETID ioctl Operation {Get Virtual Terminal ID)

Purpose
Returns the channel number of the current virtual terminal.

Description

File

The Get Virtual Terminal ID (HFTGETID) ioctl operation returns identification information for
the HFT virtual terminal specified by the file descriptor to this ioctl operation.

The HFTGETID ioctl operation is invoked as follows:

int ioctl(fildes, HFTGETID, &arg)
int fildes;
struct hftgetid arg;

struct hf tgetid {
dev_t hf_dev;
ulong hf_pgrp;
ulong hf_chan;

} ;

The fields in the hftgetid structure are defined in the sys/hft.h header file. Their use is
described in Get Virtual Terminal ID (HFTGETID) in hft.h File Structures for Query ioctl
Operations.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Get Virtual Terminal ID (HFTGETID) in hft.h File Structures for Query ioctl Operations in
Files Reference.

HFT Device Driver (HFTDD) User Interface Overview, HFT ioctl Operations in Kernel
Extensions and Device Support Programming Concepts.

HFT Subsystem 6-27

HFTQDEV

HFTQDEV ioctl Operation (Query Device)

Purpose
Obtains information about input and output devices used by the HFT subsystem.

Description

File

The Query Device (HFTQDEV) ioctl operation obtains detailed device information about the
device types associated with the HFT subsystem.

The HFTQDEV ioctl operation is invoked as follows:

int ioctl(fildes, HFTQDEV, &arg)
int fildes;
struct hftqdresp arg;

The HFTQDEV operation stores information in the hftqdresp structure, which is described
in detail in the sys/hft.h header file. The fields in the hftqdresp structure are described in
hft.h File Structures for Query ioctl Operations.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Query Device (HFTQDEV) in hft.h File Structures for Query ioctl Operations in Files
Reference.

HFT Device Driver (HFTDD) User Interface Overview, HFT ioctl Operations in Kernel
Extensions and Device Support Programming Concepts.

6-28 Kernel Reference

(

\

(

HFTQSMGR

HFTQSMGR ioctl Operation (Query Screen Manager)

Purpose
Queries the screen manager ring for each virtual terminal.

Description

File

The Query Screen Manager (HFTQSMGR) ioctl operation queries the screen manager ring
for each virtual terminal, returning the virtual terminal ID and state of each. The file
descriptor can be associated with any virtual terminal in the High Function Terminal (HFT).

The Query Screen manager ioctl operation is invoked as follows:

int ioctl(fildes, HFTQSMGR, &arg)
int fildes;
struct hfbuf arg;

struct hfbuf
{

} ;

struct hftqstat *hf_bufp;
long hf_buflen;

The hf _bufp field points to an hfqstat structure, into which the ioctl operation loads the
requested information. This information includes the number of virtual terminals and the
attributes of each of these terminals. The hfbuf and hfqstat structures are defined in the
sys/hft.h header file. Query Screen Manager (HFTQSMGR) in hft.h File Structures for
Query ioctl Operations gives information on using this structure.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

~ Related Information /
Query Screen Manager (HFTQSMGR) in hft.h File Structures for Query ioctl Operations in
Files Reference.

Understanding the Screen Manager Ring, HFT Device Driver (HFTDD) User Interface
Overview, HFT ioctl Operations in Kernel Extensions and Device Support Programming
Concepts.

HFT Subsystem 6-29

HFTSBREAK

HFTSBREAK ioctl Operation (Set Break Map)

Purpose
Changes an individual virtual terminal's break map.

Description
The Set Break Map (HFTSBREAK) ioctl operation changes an individual virtual terminal's
break map. This facility is operational in Monitor Mode (MOM) only.

The default is to break on nothing. If a break bit is set (that is, set to On or to a value of 1),
keyboard input data is reported through the read operation, instead of being put on the ring
buffer. The SIGMSG signal is sent to the application to indicate that input data is available.

If the break bit is reset, however (to Off or to a value of O), then the input data is placed in
the MOM input buffer ring. (This assumes that the ring was previously defined.) The !

application can then retrieve the input from this MOM buffer. If no buffer was defined, then all \.
keystrokes are returned through the read. (That is, the break map is not used.) The break
map is used only when the terminal is in untranslated keystroke mode.

The Set Break Map ioctl Structure

File

The HFTSBREAK operation is invoked with the following:

int ioctl(fildes, HFTSBREAK, &arg)
int fildes;
struct hfbuf arg;

struct hfbuf
{

} ;

struct break_map *hf_bufp;
long hf_buflen;

struct break_map
{

ulong vtmbrk[l6];
} ;

The hfbuf and break_map structures are defined in the sys/hft.h header file. Use of the
fields in these structures is described in Set Echo (HFTSECHO) and Break Maps
(HFTSBREAK) in hft.h File Structures for Special ioctl Operations.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Set Echo (HFTSECHO) and Break Maps (HFTSBREAK) in hft.h File Structures for Special
ioctl Operations in Files Reference.

HFT Device Driver (HFTDD) User Interface Overview, Understanding Monitor Mode, Echo
and Break Map Structure, HFT ioctl Operations in Kernel Extensions and Device Support
Programming Concepts.

6-30 Kernel Reference

HFTSECHO ioctl Operation (Set Echo Map)

Purpose
Changes an individual virtual terminal's echo map.

Description .

HFTSECHO

The Set Echo Map (HFSECHO) ioctl operation changes an individual virtual terminal's echo
map. In most instances, echoing is done by the line discipline selected by the user.
However, the echo map is provided to permit echoing by the High Function Terminal
Subsystem (H FTSS) of specific characters.

Echoing Keyboard Input in HFT
The echo map of a virtual terminal is operational only in KSR (Keyboard Send-Receive)
mode. The defaults for KSR mode are:

• The echo map is set to echo all characters and control sequences.

• Send-Receive Mode (SRM) is set so that the HFT subsystem does no echoing.

The application must turn off the bits that the HFT subsystem should not echo. These bits
usually include the escape character and the characters defined for interrupt, quit, and
erase. The characters defined for kill, End of File (EOF), End of Line (EOL), pacing, and
other characters can also be included. For the HFT to perform any echoing itself, SRM must
be reset.

Invoking the Set Echo Operation
The HFTSECHO ioctl operation is invoked as follows:

int ioctl(fildes, HFTSECHO, &arg)
int fildes;
struct hfbuf arg;

struct hfbuf
{

} ;

struct echo_map *hf_bufp;
long hf_buflen;

struct echo_map
{

ulong vtmecho[l6]; /* 512-bit echo mask */

} ;

The hfbuf and echo_map structures are defined in the sys/hft.h header file. The use of the
fields in these structures is described in Set Echo (HFTSECHO) and Break Maps
(HFTSBREAK) in hft.h File Structures for Special ioctl Operations.

The structure of the data in the echo map is described in Echo and Break Map Structure.

The Reconfigure (HRFCONF) ioctl operation can also be used to change the system default
echo map.

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

HFT Subsystem 6-31

HFTSECHO

Related Information
The Reconfigure (HFRCONF) ioctl Operation.

Set Echo (HFTSECHO) and Break Maps (HFTSBREAK) in hft.h File Structures for Special
ioctl Operations in Files Reference.

HFT Device Driver (HFTDD) User Interface Overview, HFT ioctl Operations, Understanding
Echo Maps, Understanding Keyboard Send-Receive (KSR) Mode in Kernel Extensions and
Device Support Programming Concepts.

6-32 Kernel Reference

Input Device Report

Input Device Report read Operation

Purpose
Reports input data from the mouse, tablet, LPFKs, or valuator dials.

Description
The Input Device Report read operation reports input data from the mouse, tablet, lighted
programmable function keys (LPFKs), or valuator dials.

The Input Device Report read operation is invoked by:

int read(fildes, buffer, size of (buffer))
int tildes;
struct hflocator buffer;

struct hf locator
{

} ;

char hf_esc;
char hf_lbr;
char hf_why;
char hf_deltax[2];
char hf_deltay[2];
char hf_seconds[3];
char hf_sixtyths;
char hf_buttons;
char hf_stype;

The hflocator structure is used to return input from the mouse, tablet, LPFKs, and valuator
dial.

The hflocator structure is defined in the sys/hft.h header file. Its use is described in Input
Device Report in hft.h File Structures for read Operations.

Implementation Specifics
" This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Input Device Report in hft.h File Structures for read Operations in Files Reference.

Reading Input with the read Operation Kernel Extensions and Device Support Programming
Concepts.

HFT Subsystem 6-33

Untranslated Key Control

Untranslated Key Control read Operation

Purpose
Returns untranslated character data entered from the keyboard of an HFT device.

Description

File

The read operation can be used to request untranslated character data input from the
keyboard. Requesting untranslated input requires that the HFXLATKBD bit in the
hfprotocol.hf_select field be turned off. The Set Protocol Modes write Operation gives
more information on setting this field.

The Untranslated Key Control read operation is invoked by:

int read(fildes, buffer, size of (buffer))
int fildes;
struct hfunxlate buffer;

struct hfunxlate
{

} ;

char hf_esc;
char hf_lbr;
char hf_ww;
char hf_keypos;
char hf_scancode;
char hf_status(2];
char hf_seconds[3];
char hf_sixtyths;

The hfunxlate structure is defined in the sys/hft.h header file. For information on using the
hfunxlate structure, see Untranslated Keyboard Input in hft.h File Structures for read
Operations.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Untranslated Keyboard Input in hft.h File Structures for read Operations in Files Reference.

Set Protocol Modes write Operation.

Reading Input with the read Operation in Kernel Extensions and Device Support
Programming Concepts.

6-34 Kernel Reference

(

Cancel Sound

Cancel Sound write Operation

Purpose
Removes sound requests from the speaker device buffer.

Description

File

The Cancel Sound write operation removes sound requests from the speaker device buffer.
This write operation cancels all requests belonging to the process making the call. Only
sound requests whose HFEXECALWAYS flag is set (when the hfsound control was initially
sent with the Send Sound write Operation) are left in the speaker device.

An inactive terminal ignores the Cancel Sound write operation. Note that if a sound is
currently being played, it cannot be terminated.

The Cancel Sound write operation is invoked by:

int write(fildes, buffer, buflen);
int fildes;
struct hfcansnd *buffer;
int buflen;

struct hfcansnd
{

char hf_intro[HFINTROSZ];
} ;

The fields in the hfcansnd structure are defined in the sys/hft.h header file. Their use is
described in Cancel Sound in hft.h File Structures for General write Operations.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Cancel Sound in hft.h File Structures for General write Operations in Files Reference.

Sound Device (Speaker) Interface.

Send Sound write Operation.

Understanding HFT Output write Operations, Sound Device (Speaker) Interface in Kernel
Extensions and Device Support Programming Concepts.

HFT Subsystem 6-35

Change Font Palette

Change Font Palette write Operation

Purpose
Redefining a virtual terminal's font palette.

Description
You can redefine a virtual terminal's font palette with the Change Font Palette write
operation in the following manner:

int write(fildes, buffer, buflen);
int tildes;
struct hffont *buffer;
int buflen;

struct hf font {
char hf intro [HFINROSZ]
char hf_sublen;
char hf_subtype;
char hf _primary [2 1 ;
char hf altl [2 1 ;
char hf alt2 [2 1 ;
char hf alt3 [2] ;
char hf alt4 [2 1 ;
char hf alts [2] ;
char hf alt6 [2] ;
char hf alt? [2] ;

}

The fields in the hffont structure are defined in the sys/hft.h file. Their use is described in
Change Fonts in hft.h File Structures for KSR write Operations.

If the font palette is changed, the data currently in the presentation space is lost. The cursor
also reverts to the double underscore and is placed at the home position (first column, first
row).

When the Change Font request is accepted, the presentation space size is adjusted. It is
adjusted to the number of rows and columns that fit on the physical display screen for the
new font size. All fonts in the font palette must be the same size.

When first opened, the virtual terminal chooses as the primary font the default font for the
current display. All alternate font entries are also initialized to the default font. The default
presentation space size for a new virtual terminal is 80 columns by 25 rows.

Note: The hffont structure contains, among other fields, several variables for storing
alternate font attributes. The entire structure must be completed with valid font IDs to
prevent failure of the Change Font Palette write operation. However, it is acceptable
to repeat entries such as the primary font.

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Change Fonts in hft.h File Structures for KSR write Operations in Files Reference.

Understanding HFT Output write Operations in Kernel Extensions and Device Support
Programming Concepts.

6-36 Kernel Reference

\

/
I
\it

Change Physical Display

Change Physical Display write Operation

Purpose
Changes the physical display used by a virtual terminal.

Description

File

The Change Physical Display write operation changes the physical display to which the
virtual terminal is logically attached. The user has the option of requesting a change to the
default display or specifying a particular display. Physical display identifiers can be found by
calling the Query Physical Device ioctl Operation.

The Change Physical Display write operation can be invoked by:

int write(fildes, buffer, buflen);
int tildes;
struct hfchgdsp *buffer;
int buflen;

struct hf chgdsp
{

} ;

char hf_intro[HFINTROSZ];
char hf_sublen;
char hf_subtype;
char hf_mode[2];
char hf_rsvdl[B];
char hf_devid[4];
char hf_rsvd2[10];

The fields in the hfchgdsp structure are defined in the sys/hft.h header file. Their use is
described in Change Physical Display in hft.h File Structures for General write Operations.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) ~untime.

Related Information
The Query Physical Device ioctl Operation.

Change Physical Display in hft.h File Structures for General write Operations in Files
Reference.

Understanding HFT Output write Operations in Kernel Extensions and Device Support
Programming Concepts.

HFT Subsystem 6-37

Redefine Cursor Representation

Redefine Cursor Representation write Operation

Purpose
Redefining a virtual terminal's cursor representation.

Description
You can use the Redefine Cursor Representation write operation to redefine a virtual
terminal's cursor representation. The cursor can have six different representations:

• Single underscore

• Double underscore

• Lower-half illuminated character cell

• Double mid-character line

• Fully illuminated character cell

• No cursor.

The Redefine Cursor Representation write operation is invoked by:

int write(fildes, buffer, buflen);
int fildes;
struct hfcursor *buffer;
int buflen;

The hfcursor structure is used for this request:

struct hfcursor
{

} ;

char hf_intro[HFINTROSZ];
char hf_sublen;
char hf_subtype;
char hf_rsvd;
char hf_shape;

The fields in the hfcursor structure are defined in the sys/hft.h header file. Their use is
described in Redefine Cursor Representation in hft.h File Structures for KSR write
Operations.

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Redefine Cursor Representation in hft.h File Structures for KSR write Operations in Files
Reference.

Understanding HFT Output write Operations in Kernel Extensions and Device Support
Programming Concepts.

6-38 Kernel Reference

Screen Release

Screen Release write Operation

Description

File

The Screen Release write operation informs the operating system that the state of the
display hardware can be changed. When a virtual terminal in Monitor mode is to be
deactivated, its controlling process or group of processes receives a SIGRETRACT signal.
This gives the program a chance to save the state of the display hardware, such as registers
and refresh memory. After this is done, the program should use this operation to write to
the terminal a screen release control.

Note that if the HFT does not receive the Screen Release request within 30 seconds of
sending the SIGRETRACT signal, all processes in that virtual terminal group are sent a
SIGKILL signal.

The Screen Release write operation can be invoked by:

int write(fildes, buffer, buflen);
int fildes;
struct hfrnornscrel *buffer;
int buflen;

struct hfrnornscrel
{

char hf_intro[HFINTROSZ];
} ;

The hfmomscrel structure is defined in the sys/hft.h header file. Further information about
the Screen Release write operation can be found in Screen Release in hft.h File Structures
for MOM write Operations.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Screen Release in hft.h File Structures for MOM write Operations in Files Reference.

Understanding Monitor (MOM) Mode in Kernel Extensions and Device Support
Programming Concepts.

HFT Subsystem 6-39

Screen Request

Screen Request write Operation

Description

File

The Screen Request write operation permits a user program to perform direct operations on
display hardware. A user program must first request permission to do so from the operating
system, whether the user has already entered MOM mode. A SIGGRANT signal is sent to
the application when the screen is granted.

The Screen Request write operation can be invoked by:

int write(fildes, buffer, buflen);
int fildes;
struct hfmomscreq *buffer;
int buflen;

struct hfmomscreq
{

} ;

char hf_intro(HFINTROSZ];
char hf_sublen;
char hf_subtype;
char hf_ringlen(2];
char hf_ringoffset[4];

When requesting a screen, the user also has the option of requesting the use of a ring
buffer. A ring buffer is a circular buffer into which device input can be placed, if the user so
desires. This allows the application to avoid making read calls for input.

If this capability is desired, the hf_ri~glen field should specify the size of the input ring
buffer, as defined by the hfmomring structure. In this case, the program can access input
placed directly in the buffer by the keyboard, mouse, tablet, LPFKs, or dials. The read
operation is not needed for this access. Reading Input Data from a Ring Buffer provides
guidance on extracting data from this buffer.

The hfmomscreq and hfmomring structures are defined in the sys/hft.h header file. Their
use is described in Screen Request in hft.h File Structures for MOM write Operations.

If the user does not need to use a ring buffer, then the hf_len field of the hf _intro
substructure should be set to the size of the introducer alone. In this case, input can be read
with the standard read operation.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Screen Request in hft.h File Structures for MOM write Operations in Files Reference.

Understanding Monitor Mode (MOM), Understanding HFT Output write Operations,
Requesting Screen Control in Kernel Extensions and Device Support Programming
Concepts.

6-40 Kernel Reference

(

Send Sound write Operation

Purpose
Sends output to the speaker.

Description
The Send Sound write operation sends output to the speaker.

The Send Sound write operation is invoked by:

int write(fildes, buffer, buflen);
int fildes;
struct hf sound *buffer;
int buflen;

struct hf sound
{

} ;

char hf_intro[HFINTROSZ];
char hf_sublen;
char hf_subtype;
char hf_rnode;
char hf_rsvd;
char hf_dur[2];
char hf_freq[2];

Send Sound

The mode byte in the hfsound structure determines two aspects of the speaker sound:

• The sound command is executed whether the virtual terminal is active or not.

• The application is notified after the sound command executes.

Values for the duration of the sound and the frequency range are not checked. However, the
valid frequency range is from 23 to 12000 hertz. There is no specified range for sound
duration.

The fields in the hfsound structure are defined in the sys/hft.h header file. Their use is
described in Write Sound in hft.h File Structures for General write Operations.

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Write Sound in hft.h File Structures for General write Operations in Files Reference.

Cancel Sound write Operation.

Understanding the HFT Output write Operations, Sound Device (Speaker) Interface in
Kernel Extensions and Device Support Programming Concepts.

HFT Subsystem 6-41

Set Dial Granularities

Set Dial Granularities write Operation

Purpose
Modifies the dial granularities.

Description

File

The Set Dial Granularities write operation allows the user program to set the dial
granularities of any dial to a value from 2 to 8, inclusive.

The Set Dial Granularities write operation is invoked by:

int write(fildes, buffer, buflen);
int tildes;
struct hfdial_lpfk *buffer;
int buflen;

The fields in the hfdial_lpfk structure are defined in the sys/hft.h header file. Their use is
described in Set LPFKs and Set Dial Granularities in hft.h File Structures for General write
Operations.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Set LPFKs and Set Dial Granularities in hft.h File Structures for General write Operations in
Files Reference.

Dials Interface, Understanding HFT Output write Operations in Kernel Extensions and
Device Support Programming Concepts.

6-42 Kernel Reference

Set Keyboard LEDs

Set Keyboard LEDs write Operation

Purpose
Modifies the keyboard LEDs.

Description

File

The Set Keyboard LEDs write operation allows the user to set the Num Lock, Caps Lock,
and Scroll Lock LEDs on or off.

The Set Keyboard LEDs write operation is invoked by:

int write(fildes, buffer, buflen);
int tildes;
struct hfkled *buffer;
int buflen;

The Set Keyboard LEDs write operation uses the hfkled structure. It contains the following
fields:

struct hfkled
{

} ;

char hf_intro[HFINTROSZ];
char hf_sublen;
char hf_subtype;
char hf_ledselect;
char hf_ledvalue;

The fields in the hfkled structure are defined in the sys/hft.h header file. Their use is
described in Set Keyboard LEDs in hft.h File Structures for General write Operations.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Set Keyboard LEDs in hft.h File Structures for General write Operations in Files Reference.

Understanding HFT Output write Operations, Keyboard Hardware Reference in Kernel
Extensions and Device Support Programming Concepts.

HFT Subsystem 6-43

Set KSR Color Palette

Set KSR Color Palette write Operation

Purpose
Specifies which colors to associate with a specified virtual terminal.

Description
The Set KSR Color Palette write operation specifies the color palette to be associated with a
specified virtual terminal. The palette data in the color palette is specific to display adapters.

You can use the Set KSR Color Palette write operation to define a new color palette:

int write(fildes, buffer, buflen);
int tildes;
struct hfcolorpal *buffer;
int buflen;

struct hf colorpal
{

} ;

char hf_intro[HFINTROSZ];
char hf_sublen;
char hf_subtype;
char hf_nurncolor[2];
char hf_palet[4][16];

The fields in the hfcolorpal structure are defined in the sys/hft.h header file. Their use is
described in Set KSR Color Map in hft.h File Structures for KSR write Operations.

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Set KSR Color Map in hft.h File Structures for KSR write Operations in Files Reference.

Understanding HFT Output write OperationsKernel Extensions and Device Support
Programming Concepts.

6-44 Kernel Reference

c

Set LPFKs

Set LPFKs write Operation

Purpose
Turns lights on the LPFKs on or off.

Description

File

The Set LPFKs write operation enables or disables the lighted programmable function keys.

The Set LPFKs write operation is invoked with:

int write(fildes, buffer, buflen);
int fildes;
struct hfdial_lpfk *buffer;
int buflen;

The fields in the hfdial_lpfk structure are defined in the sys/hft.h header file. Their use is
described in Set LPFKs and Set Dial Granularities in hft.h File Structures for General write
Operations.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Set LPFKs and Set Dial Granularities in hft.h File Structures for General write Operations in
Files Reference.

Understanding HFT Output write Operations, Lighted Programmable Function Keys (LPFKs)
Interface in Kernel Extensions and Device Support Programming Concepts.

HFT Subsystem 6-45

Set Protocol Modes

Set Protocol Modes write Operation

Purpose
Modifies the protocol modes of a virtual terminal.

Description

File

Virtual terminal protocol modes determine how the virtual terminal interprets, translates, and
returns data. The Set Protocol Modes write operation allows you to set these protocol
modes by using the write Operation.

The Set Protocol Modes write operation is invoked by:

int write (fildes, buffer, buflen);
int fildes;
struct hfprotcol *buffer;
int buflen;

The hfprotocol structure gives the protocol definitions:

struct hfprotocol
{

} ;

char hf_intro[HFINTROSZ];
char hf_sublen;
char hf_subtype;
char hf_select[2];
char hf_value[2];

When issuing the Set Protocol Modes write operation, specify in the hf_intro.hf_typehi and
hf _intro.hf _typelo fields one of the following two types:

• HFKSRPROH,HFKSRPROL

• HFMOMPROH, HFMOMPROL.

The selected type depends on whether you are sending the Set Protocol Modes write
operation from within Keyboard Send-Receive (KSR) mode or Monitor (MOM) mode. Only
certain protocol modes are valid in each of these modes. An attempt to set an invalid
protocol mode results in rejection of the entire request.

The hfprotocol structure is defined in the sys/hft.h header file. For information on using the
hfprotocol structure, see Set Protocol Modes in hft.h File Structures for General write
Operations. Understanding Protocol Modes provides a list of possible protocol modes and
how the corresponding bits in the hfprotocol structure should be set.

/usr/include/sys/hft.h

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Set Protocol Modes in hft.h File Structures for General write Operations in Files Reference.

Understanding HFT Output write Operations, Understanding Protocol Modes in Kernel
Extensions and Device Support Programming Concepts.

6-46 Kernel Reference

I

\

(

Accented Characters

Accented Characters

Description
Here are the valid sets of characters for each of the diacritics that the High Function
Terminal (HFT) subsystem uses to validate the two-key nonspacing character sequence.

List of Diacritics Supported by the HFT Subsystem
There are seven diacritic characters for which sets of characters are provided:

• Acute
• Grave
• Circumflex
• Umlaut
• Tilde
• Overcircle
• Cedilla.

Valid Sets of Characters (Categorized by Diacritics)
Acute

Function
Acute Accent
Apostrophe (Acute)
e Acute Small
e Acute Capital
a Acute Small
i Acute Small
o Acute Small
u Acute Small
a Acute Capital
i Acute Capital
y Acute Small
y Acute Capital
o Acute Capital
u Acute Capital

Grave

Function
Grave Accent
a Grave Small
e Grave Small
i Grave Small
o Grave Small
u Grave Small
a Grave Capital
e Grave Capital
i Grave Capital
o Grave Capital
u Grave Capital

Code Value
Oxef
Ox27
Ox82
Ox90
OxaO
Oxa1
Oxa2
Oxa3
Oxb5
Oxd6
Oxec
Oxed
OxeO
Oxe9

Code Value
Ox60
Ox85
Ox Ba
Ox8d
Ox95
Ox97
Oxb7
Oxd4
Ox de
Oxe3
Oxeb

HFT Subsystem 6-47

Accented Characters

Circumflex ~
l;i

Function Code Value
...

A Circumflex Accent Ox Se
a Circumflex Small Ox83
e Circumflex Small Ox88
i Circumflex Small Ox Sc
o Circumflex Small Ox93
u Circumflex Small Ox96
a Circumflex Capital Oxb6
e Circumflex Capital Oxd2
i Circumflex Capital Oxd7
o Circumflex Capital Oxe2
u Circumflex Capital Ox ea

Umlaut

Function Code Value
Umlaut Accent Oxf9
u Umlaut Capital Ox9a
u Umlaut Small Ox81
a Umlaut Small Ox84
e Umlaut Small Ox89
i Umlaut Small Ox Sb
a Umlaut Capital Ox Se
0 Umlaut Capital Ox99
u Umlaut Capital Ox99
e Umlaut Capital Oxd3
i Umlaut Capital Oxd8

Tilde

Function Code Value
Tilde Accent Ox7e
n Tilde Small Oxa4
n Tilde Capital Oxa5
a Tilde Small Oxc6
a Tilde Capital Oxc7 (

~ o Tilde Small Oxe4
o Tilde Capital Oxes

Overcircle

Function Code Value
Overcircle Accent Ox7d
a Overcircle Small Ox86
a Overcircle Capital Ox Sf

Cedilla

Function Code Value
Cedilla Accent Oxf7
c Cedilla Capital Ox SO
c Cedilla Small Ox87

6-48 Kernel Reference

Accented Characters

Related Information
Nonspacing Characters Overview, Keyboard Introduction in Kernel Extensions and Device
Support Programming Concepts.

HFT Subsystem 6-49

Echo and Break Map Structure

Echo and Break Map Structure

Description
The echo_map and break_map structures consist of 16 consecutive words of storage
aligned on a word boundary. The bits are numbered as follows:

Word Number

Word 0
Word 1
Word 2
Word 3
Word 4
Word 5
Word 6
Word 7
Word 8
Word 9
Word 10
Word 11
Word 12
Word 13
Word 14
Word 15

Bits Contained by That Word

Bits 0 - 31
Bits 32- 63
Bits 64- 95
Bits 96-127
Bits 128 - 159
Bits 160 - 191
Bits 192 - 223
Bits 224 - 255
Bits 256 - 287
Bits 288 - 319
Bits 320 - 351
Bits 352 - 383
Bits 384-415
Bits 416-447
Bits 448 - 4 79
Bits 480 - 511.

All 512 bits of each map have meaning.

Bits 32 (Ox20) through 255 (OxFF) are tested to see if the corresponding code point should
be processed. For example, the code point Ox20 (32 decimal) is tested against the bit (33)
in the map.

Mapped Multibyte Controls
Bit positions 256 (Ox100) through 512 (Ox200) are mapped as follows:

Bit Position

256 (Ox100)
257 (Ox101)
258 (Ox102)
259 (Ox103)
260 (Ox104)
261 (Ox105)
262 (Ox106)
263 (Ox107)
264 (Ox108)
265 (Ox109)
266 (Ox10A)
267 (Ox10B)
268 (Ox10C)
269 (Ox10D)
270 (Ox10E)
271 (Ox10F)
272 (Ox110)
273 (Ox111)
274 (Ox112)
275 (Ox113)
276 (Ox114)

6-50 Kernel Reference

Mnemonic

CBT
CHA
CHT
CTC
CNL
CPL
CPR
CUB
CUD
CUF
CUP
cuu
CVT
DCH
DL
DSR
DMI
EMI
EA
ED
EF

Function

Cursor back tab
Cursor horizontal absolute
Cursor horizontal tab
Cursor tab stop control
Cursor next line
Cursor preceding line
Cursor position report
Cursor backward
Cursor down
Cursor forward
Cursor position
Cursor up
Cursor vertical tab
Delete character
Delete line
Device status report
Disable manual input
Enable manual input
Erase area
Erase display
Eras field. -

(

Echo and Break Map Structure

Bit Position Mnemonic Function

277 (Ox115) EL Erase line
278 (Ox116) ECH Erase character
279 (Ox117) GSM
280 (Ox118) HTS Horizontal tab stop
281 (Ox119) HVP Horizontal and vertical position
282 (Ox11A) ICH Insert character
283 (Ox11 B) IL Insert line
284 (Ox11 C) IND Index
285 (Ox11 D) NEL Next line
286 (Ox11 E) PFK PF key report
287 (Ox11 F) INV Invalid
288 (Ox120) INV Invalid
289 (Ox121) RI Reverse index
290 (Ox122) INV Invalid
291 (Ox123) RIS Reset to initial state
292 (Ox124) RM Reset mode
293 (Ox125) SD Scroll down
294 (Ox126) SL Scroll left
295 (Ox127) SR Scroll right
296 (Ox128) SU Scroll up
297 (Ox129) SGR Set graphic rendition
298 (Ox12A) SGO Set GO character set
299 (Ox128) SG1 Set G1 character set
300 (Ox12C) SM Set mode
301 (Ox12D) TBC Tabulation clear
302 (Ox12E) VTS Vertical tab stop
303 (Ox12F) SCP Save cursor position
304 (Ox130) RCP Restore cursor position
305 (Ox131) KSI Keyboard status information
306 (Ox132) INV Invalid or unsupported
511 (Ox1 FF) INV Invalid or unsupported.

Unmapped Data Stream Multibyte Controls
The following data stream multibyte controls are not mapped:

VTA Virtual terminal addressability

VTD Virtual terminal data

VTL Virtual terminal device input

VTR Virtual terminal raw keyboard input.

Related Information
Set Echo Map (HFTSECHO) ioctl Operation.

HFT ioctl Operations, Understanding Echo Maps in Kernel Extensions and Device Support
Programming Concepts.

HFT Subsystem 6-51

Requesting Screen Control and
Specifying an Input Ring Buffer

Requesting Screen Control and Specifying an Input Ring
Buffer

Description
Although the virtual terminal is in Monitor mode, the program can perform direct operations
on the display hardware only when granted permission by the operating system. The
program first writes a screen request control using this call:

int write(fildes, buffer);
int fildes;
struct hfmomscreq *buffer;

A SIGGRANT signal is sent to the application when the screen is granted. If you do not
want to specify or use a ring buffer, then set the hf_len field of the hf_intro structure to the
size of the introducer only. In this case, read input with the standard read operation.

The hfmomscreq Structure and Fields
The screen control request uses the hfmomscreq structure:

struct hfmomscreq
{

char hf intro [HFINTROSZ];
char hf_sublen;
char hf_subtype;
char hf_ringlen(2];
char hf_ringoffset[4];

} ;

The hfmomscreq structure contains the following fields:

Field

hf _intro.hf_len

hf _intor.hf_typehi

hf _intro.hf_typelo

hf_sublen

hf_subtype

hf _ringlen[2]

hf_ringoffset[4]

Value

Indicates the length of the request to the input ring buffer.

HFMOMREQH

HFMOMREQL

2

0

Indicates the length of the ring in bytes.

Indicates the offset to the input buffer ring from the beginning of the
hf_ringlen field.

If the hf _ringlen field specifies the size of the hfmomring structure, the program can
access input (placed by the keyboard, mouse, tablet, LPFKs, and dials) directly into the
buffer without issuing read calls.

The input ring buffer structure (also called the hfmomring structure) can be at any location
in memory aligned on a word boundary. The hf _ringoffset field represents the difference
between the ring buffer address and the address of the hf _ringlen field. It must be a positive
value. Usually, the hfmomring ring buffer structure is defined so that it immediately follows
the himomscreq structure in memory. Note that the compiler can implicitly insert one or

6-52 Kernel Reference

(

\

(
\

\
I

I

Requesting Screen Control and
Specifying an Input Ring Buffer

more filler bytes between the two structures to align them at a memory address boundary.
The value of the hf_ringoffset field must reflect such filler bytes.

The hfmomring Structure and Fields
Here is the hfmomring structure:

struct hfrnornring
{

} ;

char hf_rsvd[2];
char hf_intreq;
char hf_ovf low;
unsigned hf_source;
unsigned hf _sink
int hf_unused[S];
char hf_rdata[HFRDATA];

The hfmomring structure contains the following fields:

Field

hf_intreq

hf_ovflow

hf_source

hf_sink

Related Information

Value

Interrupt request can be set to OxFF by the application.This causes the HFT
subsystem to send a signal each time an input event occurs. Data entry into
the input ring generates a SIGMSG signal. If this flag is set to the O default
setting, then a signal is sent to the application only when the buffer goes
from being empty to nonempty. The virtual terminal automatically resets this
byte to O each time the virtual terminal stores input data into the ring buffer.

Determines whether the input buffer ring can accommodate more input
information. A value of OxFF indicates an overflow. A value of OxOO indicates
normal operation.

Indicates the offset into the ring where the HFT puts data received. This
offset starts from the beginning of the ring, so the minimum value for the
virtual terminal offset is 32 bytes. After initializing this field at definition time,
application programs must not alt~r this field. If a program attempts to alter
it once it is initialized, continuation of software function cannot be assured.

The offset into the hfmomring structure from which the application reads
data. This offset also starts from the beginning of the input ring, so the
minimum value for this offset is 32 bytes. The application must modify this
field whenever input data is removed from the ring.

Screen Request write Operation.

Requesting Screen Release.

Understanding Monitor Mode (MOM) in Kernel Extensions and Device Support
Programming Concepts.

HFT Subsystem 6-53

Requesting Screen Release

Requesting Screen Release

Description
If a virtual terminal in Monitor mode is active, pressing the Next Window key causes a
SIGRETRACT signal to be sent to the process or group of processes controlling that active
virtual terminal. Before activating the next virtual terminal, the operating system allows the
program to save the state of the display hardware, such as registers and refresh memory.
The program should next send a Screen Release Control write operation to the terminal to
inform the operating system that the state of the display hardware can be changed.

int write(fildes, buffer, size of (buffer));
int tildes;
struct hfmornscrel *buffer;

The screen release control is given by the hfmomscrel structure:

struct hfmornscrel
{

char hf intro [HFINTROSZ];
} ;

Field

hf_intro.hf_len

hf _intro.hf_typehi

hf _intro.hf _typelo

Value

Specifies the structure's length, including the ring buffer, minus 3.

HFMOMRELH

HFMOMRELL

After the display is released, the next virtual terminal is activated. If this is not done within 30
seconds of the receipt of the SIGRETRACT signal, all processes in that terminal group
receive a SIGKILL signal. This safeguard prevents disabled programs from disrupting the
next window function.

(
I
~

The program can issue a pause call if there is no work to do while the display is not
available. When the Monitor mode virtual terminal is activated again with the Next Window
key, the program receives a SIGGRANT signal. In other words, the program can resume ~
direct output to the display. Do not assume that the display hardware state is the same as
when the program released it.

Related Information
Screen Release write Operation.

Requesting Screen Control.

Understanding Monitor Mode (MOM) in Kernel Extensions and Device Support
Programming Concepts.

6-54 Kernel Reference

\
)

Clearing and Setting Tab Controls

Valid Multibyte Control Codes for Clearing and Setting Tab
Controls

Description
There are four valid multibyte control codes for clearing and setting tab controls.

List of Valid Multibyte Control Codes
Mnemonic Function

CTC Cursor Tab Stop Control

HTS Horizontal Tab Stop

TBC Tabulation Clear

VTS Vertical Tab Stop.

Description of Valid Multibyte Control Codes
CTC ESC [PS W Cursor Tab Stop Control

0 Sets a horizontal tab at the cursor.

1 Sets a vertical tab at the cursor.

2 Clears a horizontal tab at the cursor.

3 Clears a vertical tab at the cursor.

4 Clears all horizontal tabs on the line.

5 Clears all horizontal tabs.

6 Clears all vertical tabs.

Sets or clears one or more tabulation stops according to the specified parameter. Tab stops
on the first or last column cannot be cleared. When horizontal tab stops are set or cleared,
the number of lines affected is all (if Tabulation Stop Mode is set) or one (if TSM is reset).
This control does not change the position of characters already in the presentation space.

HTS ESC H Horizontal Tab Stop

Sets a horizontal tab stop at the current horizontal position. If Tabulation Stop Mode is set,
then the tab stop applies only to this line. If TSM is reset, then the tab stop applies to all PS
lines. This control does not change the positioning of characters already in the presentation
space.

TBC

0

1

2

3

4

ESC [PSg Tabulation Clear

Horizontal tab at the cursor column

Vertical tab at line indicated by the cursor

Horizontal tabs on the line

Horizontal tabs in the presentation space

Vertical tabs in the presentation space.

Clears tabulation stops specified by the parameters. Horizontal tab changes affect only the
line indicated by the cursor if Tabulation Stop Mode is set. Horizontal tab changes affect all
lines if TSM is reset. Any parameters not listed above are ignored. This control does not
change the positioning of characters already in the presentation space.

HFT Subsystem 6-55

Clearing and Setting Tab Controls

VTS ESC I Vertical Tab Stop

Sets a vertical tab stop at the line indicated by the cursor. This control does.not change the
positioning of characters already in the presentation space.

Related Information
Multibyte Controls in Data Stream Data Overview in Kernel Extensions and Device Support
Programming Concepts.

6-56 Kernel Reference

I

~

Controlling Cursor Movement

Valid Multibyte Control Codes for Controlling Cursor
Movement

Description
There are 18 valid multibyte control codes for controlling cursor movement.

List of Valid Multibyte Control Codes
Mnemonic Function

CBT Cursor Back Tab

CHA Cursor Horizontal Absolute

CHT Cursor Horizontal Tab

CNL Cursor Next Line

CPL Cursor Preceding Line

CPR Cursor Position Report

CUB Cursor Backward

CUD Cursor Down

CUF Cursor Forward

CUP Cursor Position

cuu Cursor Up

CVT Cursor Vertical Tab

HVP Horizontal and Vertical Position

IND Index

NEL Next Line

RCP Restore Cursor Position

RI Reverse Index

SCP Save Cursor Position.

Description of Valid Multibyte Control Codes
CBT ESC [PN Z Cursor Back Tab

Moves the cursor back the number of horizontal tab stops specified by the PN variable. Tab
stops are always set at the first and last columns of each line. If the cursor is already in the
first column of a line and HFWRAP mode is set, the cursor moves to the last column. If
AUTONL mode is also set, the cursor moves to the last column of the previous line. In this
case, if the cursor is already on the first row of the presentation space, it moves to the last
row.

CHA ESC [PNG Cursor Horizontal Absolute

Moves the cursor to the column specified by the PN variable, unless the column exceeds the
PS width. If the column exceeds the PS width, the cursor moves to the PS column farthest
to the rig ht.

HFT Subsystem 6-57

Controlling Cursor Movement

CHT ESC [PNI Cursor Horizontal Tab

Moves the cursor position forward to the tab stop specified by the PN variable. If the cursor
is already in the last column of a line and HFWRAP mode is set, then the cursor returns to
the first column of the line. If AUTONL mode is also set, then the cursor moves to the first
column of the next line. In this case, if the cursor is already on the last line of the PS, then
the cursor moves to the first column of the first line. The HT (horizontal tab) single-byte
control does not cause wrapping to occur.

CNL ESC [PNE Cursor Next Line

Moves the cursor down the number of lines specified by the PN variable, and over to the first
position of that line. If the cursor is already on the bottom PS line and HFWRAP mode is not
set, it is positioned at the beginning of that line. If HFWRAP mode is set, the cursor wraps
from the bottom line to the top PS line.

CPL ESC [PN F Cursor Preceding Line

Moves the cursor back the number of lines specified by the PNvariable, and over to the first
position of that line. If the cursor is already on the top PS line and HFWRAP mode is not
set, the cursor is positioned at the beginning of that line. If HFWRAP mode is set, the cursor
wraps from the top line to the bottom line of the PS.

CPR ESC [PN; PNR Cursor Position Report

Reports the current cursor position. The first numeric parameter is the line number. The
second parameter is the column. Line and column values are sent to the application as
information. However, if the information is received by the virtual terminal, it is treated as a
CUP control.

CUB ESC [PND Cursor Backward

Moves the cursor backward on the line the specified number of columns. If this cursor
movement exceeds the left PS boundary and HFWRAP mode is not set, the cursor stops at
the leftmost PS position. If HFWRAP mode is set, the cursor wraps from the leftmost column
to the rightmost column of the preceding PS line. In HFWRAP mode the cursor also wraps
from the home to the rightmost bottom position of the PS.

CUD ESC [PNB Cursor Down

Moves the cursor down the number of lines specified by the PN variable. If this cursor
movement exceeds the bottom PS boundary and HFWRAP mode is not set, the cursor
stops on the last PS line. If HFWRAP mode is set, the cursor wraps from the bottom line to
the top line of the PS.

CUF ESC [PNC Cursor Forward

Moves the cursor forward on the line the specified number of columns. If this cursor
movement exceeds the right PS boundary and HFWRAP mode is not set, the cursor stops
at the rightmost PS position. If HFWRAP mode is set, the cursor wraps from the rightmost
column to the leftmost column of the following line in the PS. In HFWRAP mode, the cursor
also wraps from rightmost bottom position to the home position of the PS.

CUP ESC [PN; PNH Cursor Position

Moves the cursor to the line specified by the first parameter and to the column specified by
the second parameter. If this movement crosses a PS boundary, the cursor stops at the PS
boundary.

6-58 Kernel Reference

(

\

Controlling Cursor Movement

cuu ESC [PNA Cursor Up

Moves the cursor up the specified number of lines. If this cursor movement exceeds the top
PS boundary and HFWRAP mode is not set, the cursor stops on the first PS line. If
HFWRAP mode is set, the cursor wraps from the top line to the bottom line in the PS.

CVT ESC [PNY Cursor Vertical Tab

Moves the cursor down the specified number of vertical tab stops. Tab stops are assumed at
the top and bottom PS lines. If there are not enough vertical tab stops in the PS and if
HFWRAP mode is not set, the cursor stops on the last line in the PS. If HFWRAP mode is
set, the cursor wraps from the bottom line to the top line of the PS.

HVP ESC [PN; PNf Horizontal and Vertical Position

Moves the cursor to the line specified by the first parameter and to the column specified by
the second parameter. If this movement would cross a PS boundary, the cursor stops at the
current PS boundary.

IND ESC D Index

Moves cursor down one line. If the cursor is already on the bottom line of the PS, then the
top line is lost, the other lines move up one line, and a blank line becomes the new bottom
line.

NEL ESC E Next Line

Moves the cursor to the first position of the following line. If the cursor is already on the
bottom line of the PS, then the top line is lost, the other lines move up one, and a blank line
becomes the new bottom line.

RI ESC L Reverse Index

Moves the cursor up one line, unless the cursor is already on the top PS line. In that case, if
HFWRAP mode is not set, then the cursor does not move. If HFWRAP mode is set, the
cursor moves to the bottom line of the PS. The cursor's column position does not change.

RCP ESC [u Restore Cursor Position

Moves the cursor to the position saved by the last SCP control. If no SCP has been
received, then the cursor position is set to the first character of the first line. This is a private
control that conforms to the ANSI standards for private controls. This control has no terminal
function when received from the keyboard.

SCP ESC[s Save Cursor Position

Saves the current cursor position. Any previously saved cursor position is lost. The cursor
can be restored to this new position with an RCP control. This is a private control that
conforms to the ANSI standards for private controls. This control has no terminal function
when received from the keyboard.

Related Information
Multibyte Controls in Data Stream Data Overview in Kernel Extensions and Device Support
Programming Concepts.

HFT Subsystem 6-59

Erasing Areas, Displays, Lines, and Fields

Valid Multibyte Control Codes for Erasing Areas, Displays,
Lines, and Fields

Description
There are four valid multibyte control codes for erasing areas, displays, lines, and fields.

List of Valid Multibyte Control Codes
Mnemonic Function

EA

ED

EF

EL

Erases to end of the area, or from start of area, or all of area.

Erase to end of display, or from start of the display, or all of the display.

Erase to end of the field, or from start of the field, or all of the field.

Erase to end of the line, or from start of the line, or all of the line.

Description of Valid Multibyte Control Codes
EA ESC [O 0 Erase to End of Area

ESC [1 0

ESC [2 0

Erase from Start of Area

Erase All of Area.

Erases a specified area. Erased characters are replaced with empty spaces. Erase to End
of Area erases the area from the position indicated by the cursor through the end of the
area. Erase from Start of Area erases from the start of the area until the position indicated
by the cursor. Erase All of Area erases the entire area in which the cursor lies.

This control is treated like an EL control sequence.

ED ESC [0 J

ESC [1 J

ESC [2 J

Erase to End of Display

Erase from Start of Display

Erase All of Display.

Erases certain characters within the presentation space. Erased characters are replaced
with empty spaces. Erase to End of Display erases the character indicated by the cursor and
all following characters in the PS. Erase from Start of Display erases the first character of
first line and the following characters up to and including the character indicated by the
cursor. Erase All of Display erases all the characters on the PS.

EF ESC [0 N

ESC [1 N

ESC [2 N

Erase to End of Field

Erase from Start of Field

Erase All of Field.

Erases certain characters between horizontal tab stops. Erased characters are replaced with
empty spaces. Erase to End of Field erases the character indicated by the cursor and all
following characters before the next tab stop. Erase from Start of Field erases the character
at the tab stop preceding the cursor and the following characters up to and including the
character indicated by the cursor. Erase All of Field erases the character at the tab stop
preceding the cursor and the following characters up to and including the character at the
tab stop following the cursor. Tab stops are assumed at the first and last columns of the PS
when executing this control.

6-60 Kernel Reference

EL ESC [0 K

ESC [1 K

ESC [2 K

Erasing Areas, Displays, Lines, and Fields

Erase to End of Line

Erase from Start of Line

Erase All of Line.

Erases certain characters within a line. Erased characters are replaced with empty spaces.
Erase to End of Line erases the character indicated by the cursor and all following
characters on the line. Erase from Start of Line erases the first character of first line and the
following characters up to and including the character indicated by the cursor. Erase All of
Line erases all the characters on the line.

Related Information
Multibyte Controls in Data Stream Data Overview in Kernel Extensions and Device Support
Programming Concepts.

HFT Subsystem 6-61

Inserting and Deleting Lines and Characters

Valid Multibyte Control Codes for Inserting and Deleting Lines
and Characters

Description
There are five valid multibyte control codes for inserting and deleting lines and characters.

List of Valid Multibyte Control Codes
Mnemonic Function

OCH Delete Character

OL Delete Line

ECH Erase Character

ICH Insert Character

IL Insert Line.

Description of Valid Multibyte Control Codes
OCH ESC [PN P Delete Character

Deletes the cursor character and the following characters specified by the PN variable minus
1 on the line indicated by the cursor. The characters following the deleted characters on the
line overlay the deleted character positions. The line is cleared from the end of the line to
the edge of the presentation space. If the number of characters to be deleted exceeds the
number of columns from the cursor to the right boundary of the PS, then all the characters
from the cursor to the PS boundary are replaced with empty spaces and a DSR control
sequence identifying an error is returned to the application.

OL ESC [PNM Delete Line

Deletes the specified line and the lines that follow it (as specified by the PN variable minus
1) in the PS. The lines following the deleted lines are scrolled up the number of lines
indicated by the PNvariable and the number of blanks lines (specified by the PNvariable)
are placed at the bottom of the PS. If the area extending from the line indicated by the cursor
to the bottom of the PS contains fewer lines than specified by the PN variable, the line
indicated by the cursor and all the following PS lines are replaced with empty lines.

ECH ESC [PNX Erase Character

Erases the character indicated by the cursor and the characters that follow it (as specified by
the PN variable minus 1) on that line. Erased characters are replaced with empty spaces. If
the area between the cursor and PS right boundary contains fewer characters than specified
by the PN variable, then the character indicated by the cursor and all the following
characters on the line are replaced by empty spaces.

ICH ESC [PN@ Insert Character

Inserts the number of empty spaces specified by the PN variable before the character
indicated by the cursor. The string of characters starting with the character indicated by the
cursor and ending with last character of the line are shifted to the right the number of
columns indicated by the PN variable. Characters shifted past the right boundary of the PS
are lost. The cursor does not move.

6-62 Kernel Reference

(
·~

(

\-.

\
I

/

Inserting and Deleting Lines and Characters

IL ESC [PNL Insert Line

Inserts the number of empty lines specified by the PN variable before the line indicated by
the cursor. The line indicated by the cursor is scrolled down. The cursor position on the
screen is not affected.

Related Information
Multibyte Controls in Data Stream Data Overview in Kernel Extensions and Device Support
Programming Concepts.

HFT Subsystem 6-63

Performing Miscellaneous Tasks

Valid Multibyte Control Codes for Performing Miscellaneous
Tasks

Description
There are 15 valid multibyte control codes for performing miscellaneous tasks.

List of Valid Multibyte Control Codes
Mnemonic Function
DSR Device Status Report Request
DMI Disable Manual Input
EMI Enable Manual Input
KSI Keyboard Status Information
PFK PF Key Report
RIS Reset to Initial State
RM Reset Mode
SGR Set Graphic Rendition
SGOA Set GO Character Set
SG1A Set G1 Character Set
SM Set Mode
VTA Virtual Terminal Addressability
VTD Virtual Terminal Data
VTL Virtual Terminal Device Input
VTR Virtual Terminal Raw Keyboard Input.

Description of Valid Multibyte Control Codes
DSR ESC [PN n Device Status Report Request

6
13

Request Cursor Position Report
Error Report.

A request cursor position report (CPR) sends a cursor position report from the virtual
terminal to the application. An error report is sent from the virtual terminal to the application
when the virtual terminal receives an invalid control sequence. Error reports are private
reports that conform to the ANSI standard for private parameters.

DMI ESC" {Left Quote) Disable Manual Input

This control, when received in an output data stream, causes keyboard input to this terminal
to be ignored. This control is ignored when received from the keyboard.

EMI ESC b Enable Manual Input

This control, when received in an output data stream, restarts keyboard input recognition
and buffering if previously disabled with a DMI multibyte control. This control is ignored when
received from the keyboard.

KSI ESC [PS p Keyboard Status Information

The virtual terminal generates this control whenever HFHOSTS and HFXLATKBD are set
and the status of the keyboard changes. Each selective parameter is the character-coded
decimal value of a keyboard status byte. For example, if the keyboard has two status bytes,
the control sequence is ESC [xxx;yyy p, where xxx is the value of the high-order byte and
yyy is the value of the low-order byte. This is a private control that conforms to the ANSI

\

(

standards for private control sequences. The virtual terminal display handler ignores this ri
sequence whether it is received from the application or echoed. ~

6-64 Kernel Reference

Performing Miscellaneous Tasks

PFK ESC [PNq PF Key Report

The control sequence is sent by the virtual terminal to the application when a program
function key (PFK) code is received from the keyboard. The parameter PN is a PF key
number from 1 to 255. This is a private control that conforms to the ANSI standards for
private control sequences. This sequence is ignored by the virtual terminal display handler
whether received from the application or echoed.

RIS ESC c Reset to Initial State

Resets the virtual terminal to the state of a newly opened virtual terminal: erases all PS data,
places the cursor at the home position, resets graphic rendition to normal, resets
subscripting and superscripting, and sets tab stops, modes, keyboard map, character maps,
and echo maps to their default values.

RM ESC [PS I Reset Mode

20 LNM Line Feed New Line Mode

4 IRM Insert Replace Mode

12 SRM Send Receive Mode

18 TSM Tabulation Stop Mode

?21 CNM Carriage Return New Line Mode

?7 AUTONL Wrap to following line when end of current line is reached.

Resets the modes specified in the parameter string. Multiple parameters must be separated
by semicolons. The modes that can be reset are listed above with the appropriate
parameter code. All other mode parameters are ignored.

If LNM is reset, the line feed moves the cursor position down one line.

If IRM is reset, a graphic character sent to the display is also placed at the cursor, but all
symbols at and to the right of the cursor on the same line are shifted right one column
position. Characters shifted from the last column on the line are discarded.

If SAM is reset and the echo map has been set correctly, then translated keyboard input is
echoed by the virtual terminal.

If CNM is reset, the carriage return moves the cursor position to the first character of the line
indicated by the cursor.

If AUTONL is reset, the cursor stays on the last column of the current line.

If TSM is reset, horizontal tabulation changes affect only the line indicated by the cursor.

HFT Subsystem 6-65

Performing Miscellaneous Tasks

SGR

0
1
4
5
7
8
10
11
12
13
14
15
16
17
30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47
90
91
92
93
94
95
96
97
100
101
102
103
104
105
106
107

ESC [PS m Set Graphic Rendition

Normal (none of attributes 1 to 9)
Bold or Bright
Underscore
Slow Blink
Negative (reverse image)
Canceled On (invisible: set to background color)
Primary Font
First Alternate Font
Second Alternate Font
Third Alternate Font
Fourth Alternate Font
Fifth Alternate Font
Sixth Alternate Font
Seventh Alternate Font
Color palette entry O foreground
Color palette entry 1 foreground
Color palette entry 2 foreground
Color palette entry 3 foreground
Color palette entry 4 foreground
Color palette entry 5 foreground
Color palette entry 6 foreground
Color palette entry 7 foreground
Color palette entry O background
Color palette entry 1 background
Color palette entry 2 background
Color palette entry 3 background
Color palette entry 4 background
Color palette entry 5 background
Color palette entry 6 background
Color palette entry 7 background
Color palette entry 8 foreground
Color palette entry 9 foreground
Color palette entry 1 O foreground
Color palette entry 11 foreground
Color palette entry 12 foreground
Color palette entry 13 foreground
Color palette entry 14 foreground
Color palette entry 15 foreground
Color palette entry 8 background
Color palette entry 9 background
Color palette entry 1 O background
Color palette entry 11 background
Color palette entry 12 background
Color palette entry 13 background
Color palette entry 14 background
Color palette entry 15 background.

Causes the next characters received in the data stream or from the keyboard to have the
attributes specified by the parameter string. Any parameter not listed above is ignored.
Multiple parameters are processed in the order listed.

These parameters remain in effect for all following characters until they are reset. To reset
one of these attributes, specify NORMAL and then reinstate the desired parameters.

6-66 Kernel Reference

(

\

Performing Miscellaneous Tasks

The capabilities of the physical display used by the virtual terminal determine whether the
characters actually have the requested attributes.

The attributes corresponding to parameters 1 through 9 are cumulative. For example,
specifying UNDERSCORE and then specifying BLINK causes following characters to blink
and be underscored.

Parameters 10 through 17 select a font from the font palette. For example, selecting 15 as a
parameter changes the font being used by the display to the fifth alternate font in the font
palette.

Parameters 30 through 37 and 90 through 97 select a foreground color from the color
palette. Parameters 40 through 47 and 100 through 107 select a background color from the
color palette.

SGOA ESC (f Set GO Character Set

SGOB ESC, f Set GO Character Set (Alternate form)

< Display Symbols 32-255

Designates the set of characters to use as the GO set when the GO set is invoked by SI.

SG1A ESC) f Set G1 Character Set

SG1 B ESC - f Set G1 Character Set (Alternate)

< Display Symbols 32-255

Designates the set of characters to use as the G1 set when the G1 set is invoked by SO.

SM ESC [PS h Set Mode

20

4

12

18

?21

?7

LNM

IRM

SRM

TSM

CNM

AUTO NL

Line Feed - New Line Mode (default= set)

Insert Replace Mode (default= reset)

Send Receive Mode (default= set)

Tabulation Stop Mode (default= reset)

Carriage Return - New Line Mode (default= reset)

Wrap to next line when end of line reached (default= set).

Sets the modes specified in the parameter string. Multiple parameters must be separated by
semicolons. The modes that can be set are listed with the appropriate parameter code. All
other mode parameters are ignored.

If LNM is set, the line feed moves the cursor position to the first position of the next line.

If IRM is set, a graphic character sent to the display is placed at the cursor, replacing the
symbol already there.

If SRM is set, translated keyboard input is never echoed by the virtual terminal, but is
immediately sent to the application.

If CNM is set, the carriage return causes the cursor to move to the first position of the next
line.

If AUTONL is set, the cursor moves to the first column position of the following line.

If TSM is set, then horizontal tabulation changes affect all lines.

HFT Subsystem 6-67

Performing Miscellaneous Tasks

VTA ESC [r Virtual Terminal Addressability

This private control sequence precedes a binary header and associated data that provide
status information on the IBM 5081 Display Adapter.

VTD ESC [x Virtual Terminal Data

This private control sequence precedes a binary header and associated data. The block of
data can be in formats other than character-coded data, such as binary format.

VTL ESC [y Virtual Terminal Device Input

This private control sequence precedes binary format input data from a mouse, tablet, LPFK,
or valuator device.

VTR ESC [w Virtual Terminal Raw Keyboard Input

This private control sequence precedes untranslated keyboard input data, which is in a
binary format.

Related Information
Multibyte Controls in Data Stream Data Overview in Kernel Extensions and Device Support
Programming Concepts.

6-68 Kernel Reference

(

Valid Multibyte Control Codes for Scrolling

Description
There are four valid multibyte control codes for scrolling.

List of Valid Multibyte Control Codes
Mnemonic Function

SD

SL

SR

SU

Scroll Down

Scroll Left

Scroll Right

Scroll Up.

Description of Valid Multibyte Control Codes
SD ESC [PN T Scroll Down

Scrolling

Moves all the PS lines down the number of lines indicated by the PN variable. The bottom
lines indicated by the PN variable are lost, and the empty lines indicated by the PN variable
are put at the top of the presentation space. Physical cursor position does not change with
the scroll.

SL ESC [PNSP@ Scroll Left

Moves to the left all the PS characters the number of column positions indicated by the PN
variable. The characters in the leftmost PS columns specified by the PNvariable are lost,
and empty spaces are put in the rightmost columns of all lines specified by the PN variable.
Physical cursor position does not change with the scroll.

SR ESC [PNSP A Scroll Right

Moves all the PS characters the number of column positions to the right indicated by the PN
variable. The characters in the rightmost PS columns indicated by the PN variable are lost,
and empty spaces are put in the leftmost columns specified by the PN variable. Physical
cursor position does not change with the scroll.

SU ESC [PNS Scroll Up

Moves all the PS lines up the number of lines indicated by the PN variable. The number of
top lines indicated by the PN variable are lost, and the number of empty lines indicated by
the PN variable are put at the bottom of the presentation space. The physical cursor position
does not change with the scroll.

Implementation Specifics
This routine is part of AIX Base Operating System (BOS) Runtime.

Related Information
Multibyte Controls in Data Stream Data Overview in Kernel Extensions and Device Support
Programming Concepts.

HFT Subsystem 6-69

Scrolling

6-70 Kernel Reference

(1
II
~

(
I
\

Chapter 7. Logical Volume Subsystem

Logical Volume Subsystem 7-1

Logical Volume Subsystem

Physical Volumes and the Logical Volume Device Driver
In a discussion of how the logical volume device driver (LVDD) interacts with physical
volumes the following topics are relevant:

• Direct access storage devices (DASDs)

• Physical volumes

- Implementation limitations

- Reserved Sectors

• The logical volume device driver structure

• Interface to physical disk device drivers

• Logical volumes and bad blocks.

Direct Access Storage Devices (DASDs)
Direct access storage devices (DASDs) are fixed or removable storage devices. Typically,
these devices are (hard) disks. A fixed-storage device is any storage device defined by the
person who administers your system during system configuration to be an integral part of the
system DASDs. The AIX Base Operating System detects an error if a fixed-storage device is
not available at some time during normal operation.

A removable storage device is any storage device defined by the person who administers
your system during system configuration to be an optional part of the system DASO. The (
removable storage device can be removed from the system at any time during normal
operation. As long as the device is logically unmounted first, the AIX operating system will
not detect an error.

The following types of devices are not considered DASDs and are not supported by the
logical volume manager (LVM):

• Diskettes

• CD-ROM (compact disk read-only memory)

• WORM (write-once read-mostly).

DASDs Device Block Level Introduction
The DASO device block (or sectot) level is the level at which a processing unit may request
low-level operations on a device block address basis. Typical low-level operations for DASO
araread-sector,write-sector,read-track,write-track,andformat-track.

A DASO stores data in a way that allows for its rapid retrieval from random addresses as a
stream of one or more blocks. Many DASDs perform best when the blocks to be retrieved
are close (in physical address) to each other.

7-2 Kernel Reference

Logical Volume Subsystem

DASDs consist of a set of flat, circular, rotating platters. Each platter has one or two sides
on which data is stored. Platters are read by a set of nonrotating, but positionable, read or
read/write heads that move together as a unit. The following are terms used when
discussing DASO device block operations:

sector

track

A contiguous, fixed-size block of data on a DASO. To maintain compatibility
with the traditional UNIX(TM) model of DASO, every sector of every AIX
DASO is defined to be exactly 512 bytes.

A track is a contiguous set of sectors on a single DASO. A track
corresponds to the surface area of a single platter swept out by a single
head while the head remains stationary.

An AIX DASO contains at least 17 sectors per track. Otherwise, the number
of sectors per track is not defined architecturally and is device-dependent.
A typical AIX DASO track can contain 17, 35, or 75 sectors.

An AIX DASO might contain 1024 tracks. The number of tracks per DASO is
not defined architecturally and is device-dependent.

head A head is a positionable entity that can read and write data from a given
track located on one side of a platter. Usually a DASO has a small set of
heads that move from track to track as a unit.

cylinder

Physical Volumes

There must be at least 4 heads on a DASO. Otherwise, the number is not
defined architecturally and is device-dependent. A typical DASO might have
8 heads.

The path swept out on the entire set of platters that can be read or written
by the set of heads (when stationary). This path is called a cylinder. If a
DASO has n number of vertically aligned heads, a cylinder is composed of n
number of vertically aligned tracks.

A physical volume is a DASO structured for physical level requests. The physical level is the
level at which a processing unit can request device-independent operations on a physical
block address basis. A physical volume is composed of the following:

• A device-dependent reserved area

• A variable number of physical blocks that serve as DASO descriptors

• An integral number of partitions, each containing a fixed number of physical blocks.

When performing 1/0 at a physical level, no bad-block relocation is supported. Bad blocks
are not hidden at this level as they are at the logical level. Typical operations at the physical
level are read-physical-block and write-physical-block.

The following are terms used when discussing DASO volumes:

block

partition

A contiguous, 512-byte region of a physical volume that corresponds in size
to a DASO sector.

A set of blocks (with sequential cylinder, head, and sector numbers)
contained within a single physical volume.

Logical Volume Subsystem 7-3

Logical Volume Subsystem

The number of blocks in a partition as well as the number of partitions in a given physical
volume are both fixed when the physical volume is installed in a volume group. Every
physical volume in a volume group has exactly the same partition size. There is no
restriction on the types of DASO devices (for example, SCSI, ESDI, or IPI) that may be
placed in a given volume group.

Note: A given physical volume must be assigned to a volume group before that physical
volume may be used by the AIX Base Operating System.

Physical Volume Implementation Limitations
When composing a physical volume from a DASO, the following implementation restrictions
apply to DASO characteristics:

• 1 to 32 physical volumes per volume group.

• 1 to 1016 physical partitions per physical volume.

• The partition size is restricted to 2** n bytes, for 20 <= n <= 28.

• The physical block size is restricted to 512 bytes.

Physical Volume Layout
A physical volume consists of a logically contiguous string of physical sectors. Sectors are
numbered 0 through LPSN, where LPSN is the last physical sector number on the physical
volume. The total number of physical sectors on a physical volume is LPSN + 1. The actual
physical location and physical order of the sectors is transparent to the sector numbering
scheme.

Note: Sector numbering applies to user-accessible data sectors only. Spare sectors and
customer engineer (CE) sectors are not included. (CE sectors are reserved for use
by diagnostic test routines or microcode.)

Reserved Sectors on a Physical Volume

(
\

A physical volume reserves the first 128 sectors to store various types of DASO
configuration and operation information. The <sys/hd_psn.h> file describes the information
stored on the reserved sectors. In this file, the locations of the items in the reserved area
are expressed as physical sector numbers and the lengths of those items are in number of
sectors. (

The 128-sector reserved area of a physical volume includes a boot record, the bad-block
directory, and the LVM record. The boot record consists of one sector containing
information that allows the read-only system (ROS) to boot the system. A description of the
boot record can be found in the <sys/bootrecord.h> file.

The boot record also contains the pv _id field. This field is a 64-bit number uniquely
identifying a physical volume. This identifier is assigned by the manufacturer of the physical
volume. However, if a physical volume is part of a volume group, the pv _id field may be
assigned by the LVM.

The bad-block directory records the blocks on the physical volume that have been
diagnosed as unusable. The structure of the bad-block directory and its entries can be found
in the <Sys/bbdir.h> file.

The LVM record consists of one sector and contains information used by the LVM when the
physical volume is a member of the volume group. The LVM record is described in the
<lvmrec.h> file.

7-4 Kernel Reference

\
I

Logical Volume Subsystem

Sectors Reserved for the Logical Volume Manager (LVM)
If a physical volume is part of a volume group, the physical volume is used by the LVM and
contains two additional reserved areas. One contains the volume group descriptor
area/volume group status area and follows the first 128 reserved sectors. The other is an
area at the end of the physical volume reserved as a relocation pool for bad blocks that must
be software-relocated. Both of these areas are described by the LVM record. The space
between these last two reserved areas is divided into equal-sized partitions.

The volume group descriptor area (VGDA) is divided into the following:

• The volume group header

This header contains general information about the volume group and a time stamp used
to verify the consistency of the VG DA.

• A list of logical volume entries

The logical volume entries describe the states and policies of logical volumes. This list
defines the maximum number of logical volumes allowed in the volume group. The
maximum is specified when a volume group is created.

• A list of physical volume entries

The size of the physical volume list is variable because the number of entries in the
partition map can vary for each physical volume. For example, a 200M byte physical
volume with a partition size of 1 M byte has 200 partition map entries.

• A name list

This list contains the special file names of each logical volume in the volume group.

• A volume group trailer

This trailer contains an ending time stamp for the volume group descriptor area.

When a volume group is varied online, at least two readable copies of the volume group
descriptor area are necessary in order to perform recovery operations. (The vary-on
operation, performed by using the varyonvg command, makes a volume group available
to the system.)

A volume group with only one physical volume must contain two copies of the physical
volume group descriptor area. For any volume group containing more than one physical
volume, there are at least three on-disk copies of the volume group descriptor area. The
default placement of these areas on the physical volume is as follows:

• For the first physical volume installed in a volume group, two copies of the volume group
descriptor area are placed on the physical volume.

• For the second volume installed in a volume group, one copy of the volume group
descriptor area is placed on the physical volume.

• For the third physical volume installed in a volume group, one copy of the volume group
descriptor area is placed on the physical volume. The second copy is removed from the
first volume.

• For additional physical volumes installed in a volume group, one copy of the volume
group descriptor area is placed on the physical volume.

When a vary-on operation is performed, a majority of all volumes containing a volume
group descriptor area must be able to come online before the vary-on operation is
considered successful. A majority ensures that at least one copy of the volume group
descriptor areas used to perform recovery was also one of the volume group descriptor
areas used during the previous vary-off operation. If this is not the case, the consistency
of the volume group descriptor area cannot be insured.

Logical Volume Subsystem 7-5

Logical Volume Subsystem

The Logical Volume Device Driver
The Logical Volume Device Driver (LVDD) is a pseudo-device driver that operates on logical
volumes through the /dev/lvn special file. Like the physical disk device driver, this pseudo
device driver provides character and block entry points with compatible arguments. Each
volume group has an entry in the kernel device switch table. Each entry contains entry
points for the device driver and a pointer to the volume group data structure. The logical
volumes of a volume group are distinguished by their minor numbers.

Character 1/0 requests are performed by issuing a read or write on a /dev/rlvn character
special file for a logical volume. The read or write is processed by the file system SVC
handle~, which calls the LVDD ddread or ddwrite entry point. The ddread or ddwrite entry
point transforms the character request into a block request. This is done by building a buffer
for the request and calling the LVDD ddstrategy entry point.

Block 1/0 requests are performed by issuing a read or write on a block special file /dev/lvn
for a logical volume. These requests go through the SVC handler to the bread or bwrite
block 1/0 kernel services. These services build buffers for the request and call the LVDD
ddstrategy entry point. The LVDD ddstrategy entry point then translates the logical
address to a physical address (handling mirroring and bad-block relocation) and calls the
appropriate physical disk device driver.

On completion of the 1/0, the physical disk device driver calls the iodone kernel service on
the device interrupt level. This service then calls the LVDD 1/0 completion-handling routine.
Once this is completed, the LVDD calls the iodone service again to notify the requester that
the 1/0 is completed.

The LVDD is logically split into top and bottom halves. The top half contains the ddopen,
ddclose, ddread, ddwrite, ddioctl, and ddconfig entry points. The bottom half contains
the ddstrategy entry point, which contains block read and write code. This is done to
isolate the code that must run fully pinned and has no access to user process context. The
bottom half of the device driver runs on interrupt levels and is not permitted to page fault.
The top half runs in the context of a process address space and can page fault.

Data Structures

(
~

The interface to the ddstrategy entry point is one or more logical buf structures in a list. (
The logical buf structure is defined in the <sys/buf.h> file and contains all needed
information about an 1/0 request, including a pointer to the data buffer. The ddstrategy
entry point associates one or more (if mirrored) physical buf structures (or pbufs) with each
logical buf structure and passes them to the appropriate physical device driver.

The physical buf structure (pbuf) is defined in the <Sys/dasd.h> file. It is a standard buf
structure with some additional fields. These fields are used by the LVDD to track the status
of the physical requests that correspond to each logical 1/0 request. A pool of pinned pbuf
structures is allocated and managed by the LVDD.

There is one device switch entry for each volume group defined on the system. Each
volume group entry contains a pointer to the volume group data structure describing it.

7-6 Kernel Reference

Logical Volume Subsystem

Top Half of Logical Volume Device Driver
The top half of the LVDD contains the code that runs in the context of a process address
space and can page fault. It contains the following entry points:

ddopen

ddclose

ddconfig

ddread

ddwrite

ddioctl

Called by the file system when a logical volume is mounted, to open the
logical volume specified.

Called by the file system when a logical volume is unmounted, to close the
logical volume specified.

Initializes data structures for the logical volume device driver.

Called by the read subroutine to translate character 1/0 requests to block
1/0 requests. This entry point verifies that the request is on a 512-byte
boundary and is a multiple of 512 bytes in length.

When a character request spans partitions or logical tracks (32 - 4K pages),
the LVDD ddread routine breaks it into multiple requests. The routine then
builds a buffer for each request, and passes it to the LVDD ddstrategy
entry point, which handles logical block 1/0 requests.

If the ext parameter is set (called by readx subroutine), the ddread entry
point passes this parameter to the LVDD ddstrategy routine in the
b_options field of the buffer header.

Called by the write subroutine to translate character 1/0 requests to block
1/0 requests. The LVDD ddwrite routine performs the same processing for
a write request as the LVDD ddread routine does for read requests.

Supports the IOCINFO and XLATE operations, which return LVM
configuration information.

Bottom Half of Logical Volume Device Driver
The bottom half of the device driver supports the ddstrategy entry point. This entry point
processes all logical block requests and performs the following functions;

• Validates 1/0 requests.

• Checks requests for conflicts (such as overlapping block ranges) with requests currently
in progress.

• Translates logical addresses to physical addresses.

• Handles mirroring and bad-block relocation.

The bottom half of the LVDD runs on interrupt levels and, as a result, is not permitted to
page fault. The bottom half of the LVDD is divided into three layers as follows:

• Strategy

• Scheduler

• Physical.

Each logical 1/0 request passes down through the bottom three layers before reaching the
physical disk device driver. Once the 1/0 is complete, the request returns back up through
the layers to handle the 1/0 completion processing at each layer. Finally, control returns to
the original requester.

Logical Volume Subsystem 7-7

Logical Volume Subsystem

Strategy Layer
The strategy layer deals only with logical requests. The ddstrategy entry point is called with
one or more logical buf structures. A list of buf structures for requests that are not blocked
are passed to the second layer, the scheduler.

Scheduler Layer
The scheduler layer schedules physical requests for logical operations and handles mirroring
and the mirror write consistency cache. For each logical request the scheduler layer
schedules one or more physical requests. This involves translating logical addresses to
physical addresses, handling mirroring, and calling the LVDD physical layer with a list of

· physical requests.

When a physical 1/0 operation is complete for one phase or mirror of a logical request, the
scheduler initiates the next phase (if there is one). If no more 110 operations are required for
the request, the scheduler calls the strategy termination routine. This routine notifies the
originator that the request has been completed.

The scheduler also handles the mirror write consistency cache for the volume group. If a
logical volume is using mirror write consistency (MWC), then requests for this logical volume
are held within the scheduling layer until the MWC cache blocks can be updated on the
target physical volumes.

Physical Layer
The physical layer of the LVDD handles startup and termination of the physical request. The
physical layer calls a physical disk device driver's ddstrategy entry point with a list of buf
structures linked together. In turn, the physical layer is called by the iodone kernel service
when each physical request is completed.

This layer also performs bad-block relocation and detection/correction of bad blocks, when
necessary. These details are thus hidden from the other two layers.

Interface to Physical Disk Device Drivers
Physical disk device drivers should adhere to the following criteria if they are to be accessed
by the logical volume device driver:

• Disk block size must be 512 bytes.

• The physical disk device driver needs to accept a list of requests defined by buf
structures which are linked together by the av_forw field in each buf structure.

• For unrecoverable media errors, physical disk device drivers need to set the following:

- The B_ERROR flag on (defined in the <sys/buf.h> file) in the b_flags field.

- The b_error field to E_MEDIA (defined in the <sys/errno.h> file).

- The b_resid field to contain the number of bytes in the request that were not read or
written successfully. The b_resid field is used to determine the block in error.

Note: For write requests, the LVDD attempts to hardware-relocate the bad block. If
this fails, then the block is software-relocated. For read requests, the
information is recorded and the block is relocated on the next write request to
that block.

7-8 Kernel Reference

(

\

(

/

Logical Volume Subsystem

• For a successful request that generated an excessive number of retries, the device driver
can return good data. To indicate this situation it should set the following:

- The b_error field should be set to ESOFT (defined in the <sys/errno.h> file).

- The b_flags field should have the B_ERROR flag set on.

- The b_resid field should be set to a count indicating the first block in the request that
had excessive retries. This block is then relocated.

• The physical disk device driver needs to accept a request of one block with HWRELOC
(defined in <sys/lvdd.h>) set on in the b_options field. This indicates that the device
driver is to do a hardware relocation on this request. If the device driver does not support
hardware relocation the following should be set:

- The b_error field should be set to EIO (defined in the <sys/errno.h> file).

- The b_flags field should have the B_ERROR flag set on.

- The b_resid field should be set.

• The physical disk device driver should support the system dump interface as defined.

• The physical disk device driver must support write verification on an 1/0 request.
Requests for write verification are made by setting the b_options field to WRITEV. This
value is defined in the <sys/lvdd.h> file.

Logical Volume Subsystem 7-9

Logical Volume Subsystem

Logical Volumes and Bad Blocks
The physical layer of the LVDD initiates all bad-block processing and isolates all of the
decision making from the physical disk device driver. This is done so that the physical disk
device driver does not need to know anything about mirroring. Mirroring is the duplication of
a physical partition that contains data.

Relocating Bad Blocks
The physical layer of the logical volume device driver (LVDD) checks each physical request
to see if there are any known software-relocated bad blocks in the request. The LVDD
determines if a request contains known software-relocated bad blocks by hashing the
physical address. Then, a hash chain of the LVDD defects directory is searched to see if
any bad-block entries are in the address range of the request.

If bad blocks exist in a physical request, the request is split into three separate pieces. The
first piece contains any blocks up to the bad block. The second contains the relocated block
(the relocated address is specified in the bad-block entry) of the defects directory. The third
piece contains any blocks after the bad block to the end of the request. These separate
pieces are processed sequentially.

Once the 1/0 for the first of the separated pieces has completed, the iodone kernel service
calls the LVDD physical layer's termination routine (specified in the b_done field of the buf
structure). The termination routine initiates 1/0 for the second piece of the original request
(containing the relocated block), and then for the remaining (third) piece. Once the entire
physical operation is completed, the appropriate scheduler's policy routine (in the second
layer of the LVDD) is called to start the next phase of the logical operation.

Detecting and Correcting Bad Blocks
If a logical volume is mirrored, a newly detected bad block is fixed by relocating the block,
reading the mirror, and writing the contents of the good mirror to the relocated block. With
mirroring, the user need not even know when bad blocks are found. However, the physical
disk device driver does in fact log permanent 1/0 errors so the user can determine the rate of
media surface errors.

When a bad block is detected during 1/0, the physical disk device driver sets the error fields
in the buf structure to indicate that there was a media surface error. The physical layer of
the LVDD then initiates any bad-block processing that must be done.

If the operation was a non-mirrored read, the block is not relocated because the data in the
relocated block is not initialized until a write is performed to the block. To support this
delayed relocation, an entry for the bad block is put into the LVDD defects directory and into
the bad-block directory on disk. These entries contain no relocated block address and the
status for the block is set to indicate that relocation is desired.

On each 1/0 request the physical layer checks whether there are any bad blocks in the
request. If the request is a write and it contains a block that is in a relocation-desired
state, the request is sent to the physical disk device driver with safe hardware relocation
requested. If the request is a read, an 110 error is returned to the original requestor.

If the operation was for a mirrored read, a request to read one of the other mirrors is
initiated. If the second read is successful, then the read is turned into a write request and
the physical disk device driver is called with safe hardware relocation specified to fix the bad
mirror.

7-1 0 Kernel Reference

Logical Volume Subsystem

If the hardware relocation fails or the device does not support safe hardware relocation, the
physical layer of the LVDD attempts software relocation. At the end of each volume is a
reserved area used by the LVDD as a pool of relocation blocks. When a bad block is
detected and the disk device driver is unable to relocate the block, the LVDD picks the next
unused block in the relocation pool and writes to this new location. A new entry is added to
the LVDD defects directory in memory (and to the bad-block directory on disk) that maps the
bad-block address to the new relocation block address. Any subsequent 1/0 requests to the
bad-block address are routed to the relocation address.

Related Information
The bread kernel service, bwrite kernel service, iodone kernel service.

The lvdd special file.

The buf structure.

The write subroutine, readx subroutine.

Bad Block Relocation Policy, Understanding Volume Groups, The Vary-On and Vary-Off
Process in General Programming Concepts.

Device Driver Classes, Device Driver Roles, Device Driver Structure, Logical Volume
Storage Overview, Major and Minor Numbers, Understanding Block 1/0 Device Drivers, and
Understanding Character 1/0 Device Driver in Kernel Extensions and Device Support
Programming Concepts.

Logical Volume Subsystem 7-11

Logical Volume Subsystem

(

7-12 Kernel Reference

Chapter 8. Printer Subsystem

\

Printer Subsystem 8-1

Understanding Embedded References in Printer Attribute
Strings

Description
The attribute string retrieved by the piocmdout, piogetstr, and piogetvals subroutines can
contain embedded references to other attribute strings or integers. The attribute string can
also contain embedded logic that dynamically determines the content of the constructed
string. This allows the constructed string to reflect the state of the formatter environment
when one of these subroutines is called.

Embedded references and logic are defined with escape sequences that are placed at
appropriate locations in the attribute string. The first character of each escape sequence is
always the % (percent) character. This character indicates the beginning of an escape
sequence. The second character (and sometimes subsequent characters) define the
operation to be performed. The remainder of the characters (if any) in the escape sequence \
are operands to be used in performing the specified operation.

The escape sequences that can be specified in an attribute string are based on the terminfo
parameterized string escape sequences for terminals. These escape sequences have been
modified and extended for printers.

The attribute names that can be referenced by attribute strings are:

• The names of all attribute variables (which can be integer or string variables) defined to
the piogetvals subroutine. When references are made to these variables, the
piogetvals-defined versions are the values used.

• All other attributes names in the data base. These attributes are considered string
constants.

Any attribute value (integer variable, string variable, or string constant) can be referenced by
any attribute string. Consequently, it is important that the formatter ensure that the values
for all the integer variables and string variables defined to the piogetvals subroutine are
kept current.

The formatter must not assume that the particular attribute string whose name it specifies to
the piogetstr or piocmdout subroutine does not reference certain variables. The attribute
string is retrieved from the data base that is external to the formatter. The values in the data
base represented by the string can be changed to reference additional variables without the
formatter's knowledge.

Related Information
The piocmdout printer addition subroutine, piogetstr printer addition subroutine,
piogetvals printer addition subroutine.

Printer Addition Management Subsystem: Programming Overview in Kernel Extensions and
Device Support Programming Concepts.

8-2 Kernel Reference

(

~I

initialize

initialize Subroutine

Purpose
Performs printer initialization.

Library
None (provided by the formatter).

Syntax
#include <piostruct.h>

int initialize ()

Description
The initialize subroutine is invoked by the formatter driver after the setup subroutine
returns.

If the -j flag passed from the command line has a nonzero value (true), the initialize
subroutine uses the piocmdout subroutine to send a command string to the printer. This
action initializes the printer to the proper state for printing the file. Any variables referenced
by the command string should be the attribute values from the database, overridden by
values from the command line.

If the -j flag has a nonzero value (true), any necessary fonts should .be downloaded.

Return Values
0 Indicates a successful operation.

If the initialize subroutine detects an error, it uses the piomsgout subroutine to invoke an
error message. It then invokes the pioexit subroutine with a value of PIOEXITBAD. Note
that if either the piocmdout or piogetstr subroutine detects an error, it automatically issues
its own error messages and terminates the print job.

Related Information
The piocmdout subroutine.

Subroutines for Writing a Printer Formatter in Kernel Extensions and Device Support
Programming Concepts.

Printer Subsystem 8-3

lineout

lineout Subroutine

Purpose

Library

Syntax

Parameter

Formats a print line.

None (provided by the print formatter}.

#include <piostruct.h>

int lineout (filepttJ
FILE *fileptr,

fileptr Specifies a file structure for the input data stream.

Description
The lineout subroutine is invoked by the formatter driver only if the setup subroutine returns
a non-NULL pointer. This subroutine is invoked for each line of the document being
formatted. The lineout subroutine reads the input data stream from the fileptr parameter. It
then formats and outputs the print line until it recognizes a situation that causes vertical
movement on the page.

The lineout subroutine should process all characters to be printed and all printer commands
related to horizontal movement on the page.

The lineout subroutine should not output any printer commands that cause vertical
movement on the page. Instead, it should update the vpos (new vertical position} variable
pointed to by the shars_ vars structure that it shares with the formatter driver to indicate the
new vertical position on the page. It should also refresh the shar_vars variables for vertical
increment and vertical decrement (reverse line feed} commands.

When the lineout subroutine returns, the formatter driver sends the necessary commands to (
the printer to advance to the new vertical position on the page. This position is specified by
the vpos variable. The formatter driver automatically handles top and bottom margins, new
pages, initial pages to be skipped, and progress reports to the qdaemon daemon.

The following conditions can cause vertical movements:

• Linefeed control character or variable line feed control sequence

• Vertical-tab control character

• Formfeed control character

• Reverse linefeed control character

• A line too long for the printer that wraps to the next line.

Other conditions unique to a specific printer also cause vertical movement.

8-4 Kernel Reference

lineout

Return Values
Upon successful completion, the lineout subroutine returns the number of bytes processed
from the input data stream. It excludes the end-of-file character and any control characters
or escape sequences that result only in vertical movement on the page (for example, line
feed or vertical tab).

If a value of O is returned and the value in the vpos variable pointed to by the shars_ vars
structure has not changed, or there are no more data bytes in the input data stream, the
formatter driver assumes that printing is complete.

If the lineout subroutine detects an error, it uses the piomsgout subroutine to issue an error
message. It then invokes the pioexit subroutine with a value of PIOEXITBAD. Note that if
either the piocmdout or piogetstr subroutine detects an error, it automatically issues its
own error messages and terminates the print job.

Related Information
The setup subroutine.

Subroutines for Writing a Printer Formatter in Kernel Extensions and Device Support
Programming Concepts.

Printer Subsystem 8-5

passthru

passthru Subroutine

Purpose

Library

Syntax

Passes through the input data stream without modification or formats the input data stream
without assistance from the formatter driver.

None (provided by the print formatter).

#include <piostruct.h>

int passthru ()

Description
The passthru subroutine is invoked by the formatter driver only if the setup subroutine
returned a NULL pointer. If this is the case, the passthru subroutine is invoked (instead of
the lineout subroutine) for one of these two reasons:

• The input data stream is to be passed through without modification.

• Formatting is done without the help of the formatter driver to handle vertical spacing.

Even if the data is being passed through from input to output without modification, a
formatter program is used to initialize the printer before printing the file and to restore it to a
known state afterward. However, gathering accounting information for an unknown data
stream being passed through is difficult, if not impossible.

The passthru subroutine can also be used to format the input data stream if no help from
the formatter driver for vertical spacing is needed. For example, if the only formatting to be
done is to add a carrier-return control character to each linefeed control character, the
passthru subroutine provides this simple task. The passthru subroutine can also count line
feeds and form feeds to keep track of the page count. These counts can then be reported to
the log_pages status subroutine, which is provided by the spooler.

Return Values
0 Indicates a successful operation.

If the passthru subroutine detects an error, it uses the piomsgout subroutine to issue an
error message. It then invokes the pioexit subroutine with a value of PIOEXITBAD. Note
that if the passthru subroutine calls the piocmdout subroutine or the piogetstr subroutine
and either of these detects an error, then the subroutine that detects the error automatically
issues its own error message and terminates the print job.

Related Information
The lineout subroutine, setup subroutine.

Subroutines for Writing a Printer Formatter in Kernel Extensions and Device Support
Programming Concepts.

8-6 Kernel Reference

/

\

(

piocmdout

piocmdout Subroutine

Purpose

Library

Syntax

Outputs an attribute string for a printer formatter.

None (linked with the pioformat formatter driver).

#include <piostruct.h>

piocmdout (attrname, fileptr, passthru, NULL)
char • attrname;
FILE *fileptr;
int passthru;

Parameters
attrname Points to a two-character attribute name for a string. The attribute name

must be defined in the database and can optionally have been defined to
the piogetvals subroutine as a variable string. The attribute should not be
one that has been defined to the piogetvals subroutine as an integer.

fileptr

passthru

Description

Specifies a file pointer for the input data stream. If the piocmdout routine is
called from the lineout formatter routine, the fileptr value should be the
fileptr passed to the lineout routine as a parameter. Otherwise, the fileptr
value should be stdin. If the passthru parameter is 0 (zero), the fileptr
parameter is ignored.

Specifies the number of bytes to be passed to standard output unmodified
from the input data stream specified by the fileptr parameter. This occurs
when the %x escape sequence is found in the attribute string or in a string
included by the attribute string. If no %x escape sequence is found, the
specified number of bytes is read from the input data stream and discarded.
If no bytes are to be passed through, the passthru parameter should be 0.

The piocmdout subroutine retrieves the specified attribute string from the Printer Attribute
database and outputs the string to standard output. In the course of retrieval, this subroutine
also resolves any logic and any embedded references to other attribute strings or integers.

The fileptr and passthru parameters are used to pass data that the formatter does not need
to scan (for example, graphics data) from the input data stream to standard output.

Return Values
Upon successful completion, the piocmdout subroutine returns the length of the
constructed string.

If the piocmdout subroutine detects an error, it issues an error message and terminates the
print job.

Related Information
The piogetvals subroutine.

Embedded References in Printer Attribute Strings, Subroutines for Printer Formatters in
Kernel Extensions and Device Support Programming Concepts.

Printer Subsystem 8-7

pioexit

pioexit Subroutine

Purpose

Library

Syntax

Parameter

Exits from a printer formatter.

None (linked with the pioformat formatter drive~).

#include <piostruct.h>

void pioexit (exitcode)
int exitcode;

exitcode Specifies whether the formatting operation completed successfully. A value
of PIOEXITGOOD indicates that the formatting completed normally. A value
of PIOEXITBAD indicates that an error was detected.

Description
The pioexit subroutine should be used by printer formatters to exit when either formatting is
complete or an error has been detected. This subroutine is supplied by the formatter driver.

The pioexit subroutine has no return values.

Related Information
Subroutines for Printer Formatters in Kernel Extensions and Device Support Programming
Concepts.

8-8 Kernel Reference

I
\

\
I

piogetopt

piogetopt Subroutine

Purpose

Library

Syntax

Overlays default flag values from the database colon file with override values from the
command line.

None (linked with the pioformat formatter driver).

#include <piostruct.h>

int piogetopt (argc, argv, optstring, NULL)
int argc;
char *argv [], *optstring;

Parameters
argc Same as the argc parameter received by the formatter's setup routine when

it was called by the formatter driver.

argv

optstring

Description

Same as the argv parameter received by the formatter's setup routine when
it was called by the formatter driver.

Specifies a string of flag letters for flags that the formatter expects from the
command line. By convention, each flag specified on the command line and
passed to a formatter by the formatter driver must have an argument. This
means that each flag letter in the optstring string must be followed by a :
(colon) to indicate that the flag has an argument.

The piogetopt subroutine should be used by a printer formatter's setup routine to perform
these three tasks:

• Parse the command line flags.

• Convert the flag arguments, as needed, to the data types specified in the array of
attrparms structures previously passed to the piogetvals subroutine.

• Overlay the default flag arguments with values from the data base.

The piogetopt subroutine is supplied by the formatter driver.

The database attribute names for flags with integer arguments must have previously been
defined to the formatter driver with the piogetvals subroutine. Based on the information that
was provided to the piogetvals subroutine, the piogetopt subroutine takes these three
actions:

• Recognizes each flag argument that needs to be converted to an integer value.

• Converts the argument string to an integer value using the conversion method specified to
the piogetvals subroutine.

• Regardless of the data type (integer variable, string variable, or string constant) overlays
the default value from the database.

Printer Subsystem 8-9

piogetopt

Return Values
0 Indicates successful completion.

If the piogetopt subroutine detects an error, it issues an error message and terminates the
print job.

Related Information
The piogetvals subroutine, setup subroutine.

Subroutines for Printer Formatters in Kernel Extensions and Device Support Programming
Concepts.

8-1 0 Kernel Reference

~.

/

piogetstr

piogetstr Subroutine

Purpose

Library

Syntax

Retrieves an attribute string for a printer formatter.

None (linked with the pioformat formatter driver).

#include <piostruct.h>

piogetstr (attrname, bfrptr, bufsiz, NULL)
char * attrname, * bufptr,
int bufsiz;

Parameters
attrname Points to a two-character attribute name for a string. The attribute name

must be defined in the database. It may optionally have been defined to the
piogetvals subroutine as a variable string. The attribute should not be one
that has been defined to the piogetvals subroutine as an integer.

bufptr Points to where the constructed attribute string is to be stored.

bufsize Specifies the amount of memory that is available for storage of the string.

Description
The piogetstr subroutine retrieves the specified attribute string from the Printer Attribute
database and returns the string to the caller. In the course of retrieval, this subroutine also
resolves any logic and any embedded references to other attribute strings or integers.

Return Values
Upon successful completion, the piogetstr subroutine returns the length of the constructed
string. The null character placed at the end of a constructed string by the piogetstr
subroutine is not included in the length.

If the piogetstr subroutine detects an error, it issues an error message and terminates the
print job.

Related Information
The piogetvals subroutine.

Embedded References in Printer Attribute Strings, Subroutines for Printer Formatters in
Kernel Extensions and Device Support Programming Concepts.

Printer Subsystem 8-11

piogetvals

piogetvals Subroutine

Purpose

Library

Syntax

Parameter

Initializes a copy of Printer Attribute database variables for a printer formatter.

None (linked with the pioformat formatter driver).

#include <piostruct.h>

int piogetvals (attrtable, NULL)
struct attrparms attrtable [] ;

attrtable Points to a table of variables and their characteristics. The table is an array
of attrparms structures, as defined in the piostruct.h header file.

The second parameter is reserved for future use. It should be a NULL pointer.

Description
The piogetvals subroutine provides a way for a printer formatter's setup routine to define a
list of printer attribute variables (and their characteristics) to the formatter driver. This
routine, which is supplied by the formatter driver, allocates storage for the requested
variables and uses the Printer Attribute database colon file to arrive at initial values.

The variables defined by the piogetvals subroutine are copies of variables in the database,
and are used to hold current values of those (database) variables. After the piogetvals
subroutine returns pointers to each of the variables, the characteristics and memory location
of each variable is known to both the formatter and the formatter driver. Subsequent
changes to printer attribute values (made by the formatter while formatting an input data
stream) are made to the newly defined variables, not to the database values. As a result of
this scheme, the formatter driver always has access to the current value of each variable,
but does not itself ever modify them.

The caller requests variables by filling in entries (an attribute name, its data type, and other
characteristics) in the table pointed to by the attrtable parameter. For each entry, the
piogetvals subroutine retrieves the requested attribute string in the Printer Attribute data
base and converts it, if necessary, into an actual value. The piogetvals subroutine then
allocates memory for each of the variables, places the initial values there, and stores
information about the variable (its name, data type, and memory location) in storage
accessible to the piogetopt, piocmdout, and piogetstr subroutines.

Printer Attribute Variables
A Printer Attribute database is a colon file containing printer attribute values, which can be
overridden at the time a print job is requested. These attributes can be constants or may be
expressions with unresolved references to other attributes in them. These references are
resolved before a database attribute is used to fill in the value of a requested variable.

Database attribute values, which are stored in the database as ASCII strings, have possible
data types of string constant (the default), integer variable, or string variable. The requested
variables should be either integers or strings. String variables are used primarily for strings
that the formatter may need to modify during its processing. NULL characters have no
special significance and aie peimlssible within variabie strings.

8-12 Kernel Reference

(

(

(

\
i

/

piogetvals

Data types for the requested variables are specified in the array of the attrparms structures
pointed to by the attrtable parameter and are not specified at all in the Printer Attribute
database. This means that for database values used exclusively by the formatter, only the
formatter knows the actual data type of each value. Thus the formatter uses the piogetvals
routine in part to inform the formatter driver of the actual data type for database values that
are not the default data type.

Converting a Database Attribute String to an Actual Value
Converting a database attribute string to an actual value involves two aspects. First the
piogetvals routine resolves any logic and any embedded references to other attribute
strings, which yields a resolved string variable. Secondly, the data type of the requested
variable must be checked. If this data type specifies a character string, then the resolved
string is the final value, and it is stored in the memory allocated for it.

However, if the specified data type is integer variable, then the resolved string is converted
to an integer. In this case, the attrtable entry for the attribute string is checked to determine
how this conversion is to be performed. Either use the atoi subroutine for this purpose, or
provide a pointer to a lookup table. After being converted to an integer, the value is stored in
the memory allocated for it.

Using the piogetvals subroutine to convert database strings to integers as specified by the
attrtable entries provides a table-driven procedure for the conversions. It also informs the
formatter driver which values are integers and how strings that represent the integers can be
converted into integer values. The piogetopt, · piocmdout, and plogetstr subroutines
assume that the formatter has used the piogetvals subroutine to provide this information
about the variables to the formatter driver.

When a formatter subsequently calls either the piocmdout subroutine or the piogetstr
subroutine to access a string from the database, a global list of variables defined by the
piogetvals subroutine is checked by the subroutine to see if the desired string has been
defined. If so, then the value of the variable is taken from the memory location specified in
the global list. If not, then the Printer Attribute database is consulted for the correct attribute
string. Either the piocmdout or piogetstr subroutine scans the string to resolve any logic
and any references to other strings or integers. Thus the characteristics and memory
locations of the variables, as remembered by the piogetvals subroutine, are used to obtain
the current values of the variables.

Return Values
0 Indicates a successful operation.

If the piogetvals subroutine detects an error, it issues an error message and terminates the
print job.

Related Information
The piocmdout printer addition subroutine, piogetopt printer addition subroutine, piogetstr
printer addition subroutine, setup printer addition subroutine.

Embedded References in Printer Attribute Strings, Subroutines for Prin,ter Formatters in
Kernel Extensions and Device Support Programming Concepts.

Printer Subsystem 8-13

piomsgout

piomsgout Subroutine

Purpose

Library

Syntax

Parameter

Sends a message from a printer formatter.

None (linked with the pioformat formatter driver}.

void piomsgout (msgstt)
char * msgstr;

msgstr Points to the string of message text to be sent.

Description
The piomsgout subroutine should be used by printer formatters to send a message to the
print job submitter, usually when an error is detected. This subroutine is supplied by the
formatter driver.

If the formatter is running under the spooler, the message is displayed on the submitter's
terminal if the submitter is logged on. Otherwise, the message is mailed to the submitter. If
the formatter is not running under the spooler, the message is sent as standard error output.

The piomsgout subroutine has no return values.

Related Information
Subroutines for Printer Formatters in Kernel Extensions and Device Support Programming
Concepts.

8-14 Kernel Reference

restore

restore Subroutine

Purpose
Restores the printer to its default state.

Library
None (provided by the print formatter)

Syntax
#include <piostruct.h>

int restore ()

Description
The restore subroutine is invoked by the formatter driver after either the lineout subroutine
or the passthru subroutine has reported that printing has completed.

If the -J flag passed from the command line has a nonzero value (true), the initialize
subroutine should use the piocmdout subroutine to send a command string to the printer to
restore the printer to its default state. This default state is defined by the attribute values in
the database. Any variables referenced by the command string should be values from the
database that have not been overridden by values from the command line. This can be
accomplished by placing a %0 escape sequence at the beginning of the command string.

Return Values
0 Indicates a successful operation.

If the restore subroutine detects an error, it uses the piomsgout subroutine to issue an
error message. The restore subroutine then invokes the pioexit subroutine with a value of
PIOEXITBAD. If either the piocmdout or piogetstr subroutine detects an error, then the
subroutine that detects the error issues an error message and terminates the print job.

Related Information
The lineout subroutine, passthru subroutine.

Subroutines for Writing a Printer Formatter in Kernel Extensions and Device Support
Programming Concepts.

Printer Subsystem 8-15

setup

setup Subroutine

Purpose

Library

Syntax

Performs setup processing for the print formatter.

None (provided by the print formatter).

#include <piostruct.h>

struct shar_vars *setup {argc, argv, passthru)
unsigned argc;
char * argv[] ;
int passthru;

Description
The setup subroutine performs these three tasks:

• Invokes the piogetvals subroutine to initialize the database variables that the formatter
uses.

• Processes the command line flags using the piogetopt subroutine.

• Validates the input parameters from the database and the command line.

The setup subroutine should not send commands or data to the printer since the formatter
driver performs additional error checking when the setup subroutine returns.

Parameters
argc Specifies the number of formatting arguments from the command line

(including the command name).

argv

passthru

Return Values

Points to a list of pointers to the formatting arguments.

Indicates whether the input data stream should be formatted (the passthru
parameter is 0), or passed through without modification (the value of the
passthru parameter equals1). The value for this parameter is the argument
value for the -# flag specified to the pioformat formatter driver. If the -#
flag is not specified, the passthru parameter value is O.

Upon successful completion, the setup subroutine returns one of these two pointers:

• A pointer to a shar_vars structure that contains pointers to initialized vertical spacing
variables. These variables are shared with the formatter driver, which provides vertical
page movement.

• A NULL pointer, which indicates that the formatter handles its own vertical page
movement or that the input data stream is to be passed through without modification.
Vertical page movement includes top and bottom margins, new pages, initial pages to be
skipped, and progress reports to the qdaemon daemon.

8-16 Kernel Reference

(

setup

Returning a pointer to a shar_vars structure causes the formatter driver to invoke the
formatter's lineout function for each line to be printed. Returning a NULL pointer causes the
formatter driver to invoke the formatter's passthru function once instead.

If the setup subroutine detects an error, it uses the piomsgout subroutine to issue an error
message. The setup subroutine then invokes the pioexit subroutine with a value of
PIOEXITBAD. Note that if the piogetvals, piogetopt, piocmdout, or piogetstr subroutine
detects an error, it automatically issues its own error message and terminates the print job.

Related Information
The piogetvals subroutine.

Subroutines for Writing a Printer Formatter in Kernel Extensions and Device Support
Programming Concepts.

Printer Subsystem 8-17

setup

8-18 Kernel Reference

Chapter 9. SCSI Subsystem

SCSI Subsystem 9-1

cdrom

CD-ROM SCSI Device Driver

Purpose

Syntax

Supports the CD-ROM (compact-disk read-only memory) device driver.

#include <Sys/devinfo.h>
#include <Sys/cdrom.h>
#include <sys/scsi.h>

Description
The /dev/cdn and /dev/rcdn special files provide block and character (raw) access to disks
in the CD-ROM drives. Compact disks are read-only media that can store large amounts of
data. Block access to compact disks is through the special files /dev/cdO, Character
access is provided through the special files /dev/rcdO,

The r prefix on a special file name means that the drive is accessed as a raw device rather
than a block device. Performing raw 1/0 with a compact disk requires that all data transfers
be in multiples of the compact disk logical block length. Also, all lseek subroutines made to
the raw CD-ROM device driver must result in a file pointer value that is a multiple of the
specified logical block size.

Note: For the compact disk type supported, the logical block length is 512 bytes.
Configuration information for the CD-ROM device is defined in the <sys/cdrom.h>
file in the cdrom_dds_df structure.

Device-Dependent Subroutines
Most CD-ROM operations are implemented using the open, read, and close subroutines.
However, for some purposes, use of the openx subroutine is required.

The open and close Subroutines
The openx subroutine is intended primarily for use by the diagnostic commands and utilities.
Appropriate authority is required for execution. Attempting to execute this subroutine without
the proper authority returns a value of -1 and the errno global variable is set to EPERM.

The openx subroutine allows the device driver to enter Diagnostic mode and disables
command retry logic. This allows for execution of ioctl operations that perform special
functions associated with diagnostic processing. Other openx capabilities (such as forced
opens and retained reservations) are also available.

The ext parameter passed to the openx subroutine selects the operation to be used for the
target device. The acceptable values for the ext parameter are defined the <sys/scsi.h> file.
This parameter accepts any combination of the following three flag values logically ORd
together:

• SC_DIAGNOSTIC

Places the selected device in Diagnostic mode. This mode is singularly entrant. When a
device is in Diagnostic mode, SCSI operations are performed during open or close
operations, and error logging is disabled. In Diagnostic mode, only the close and ioctl
operations are accepted. All other device-supported subroutines return a value of -1, with
the errno global variable set to EACCES.

A device can be opened in Diagnostic mode only if the target device is not currently
opened. If an attempt is made to open a device in Diagnostic mode and the target device
is already open, a value of -1 is returned and the errno global variable is set to EACCES.

9-2 Kernel Reference

(

\

cdrom

• SC_FORCED_OPEN

Forces a Bus Device Reset regardless of whether another initiator has the device
reserved. The SCSI Bus Device Reset is sent to the device before the open sequence
begins. Otherwise, the open executes normally.

• SC_RETAIN_RESERVATION

Retains the reservation of the device after a close operation by not issuing the release.
This flag prevents other initiators from using the device unless they break the host
machine's reservation.

Unlike other SCSI device drivers, the CD-ROM driver assumes that users do not need
exclusive access to the device since its access mode is read-only. As a result, the
reserve_lock field is initialized to FALSE for the default database. This field is contained
in the cdrom_dds_df structure. The cdrom_dds_df structure is defined in the
<sys/cdrom.h> file. No initiator can lock others out from accessing the CD-ROM.

Note: The SC_RETAIN_RESERVATION flag does not ordinarily have effect. However,
the user can alter the configuration database to make this flag effective using the
smit command.

SCSI Options to the openx subroutine gives more specific information on these operations.

The ioctl Subroutine
The following operations are available for use with the CD-ROM device driver.

IOCINFO

CDIOCMD

CDIORDSE

Returns a devinfo structure as defined in the <sys/devinfo.h> file.

Allows SCSI commands to be issued directly to the attached CD-ROM
device. For this operation, the device must be opened in Diagnostic mode.
The CDIOCMD operation parameter is the address of a sc_iocmd
structure. This structure is defined in the <Sys/scsi.h> file.

If this command is attempted on a device not in Diagnostic mode, a value of
-1 is returned and the errno global variable is set to EACCES. Refer to the
Small Computer System Interface (SCSI) specification for the applicable
device for issuing the proper parameters.

Provides the means for issuing a read command and obtaining the target
device sense data on an error. Diagnostic mode is not required when using
this command. If this operation returns a -1 and the status_ validity field
has the SC_ VALID_SENSE flag set, then valid sense data has been
returned. Otherwise, target-sense data is omitted. Refer to the Small
Computer System Interface (SCSI) specification for the applicable device for
the format of the particular request-sense information.

The CDIORDSE operation parameter is the address of a sc_rdwrt
structure. This structure is defined in the <Sys/scsi.h> file.

SCSI Subsystem 9-3

cdrom

~
Error Conditions ~

In addition to those errors listed, ioctl, open, and read subroutines against this device fail in
the following circumstances:

EACCES

EA CC ES

EBUSY

EINVAL

EINVAL

EINVAL

EINVAL

Indicates that an attempt was made to open a device already in Diagnostic
mode.

Indicates that a subroutine other than ioctl or close was attempted while in
Diagnostic mode.

Indicates that the target device is reserved by another initiator.

Indicates that the device has been opened with a mode other than read-only
mode.

Indicates that the read passed an nbyte parameter that is not a multiple of
the block size.

Indicates that a sense data buffer length greater than 255 is invalid for a
CDIOCMD operation.

Indicates that a data buffer length greater than that specified in the
sc_maxrequest field is invalid for a CDIOCMD operation.

EMFILE Indicates an attempt to open a SCSI adapter that already has the maximum
permissible number of opened devices

ENOTREADY Indicates that there is no compact disk in the drive.

EPERM Indicates that the subroutine attempted requires appropriate authority.

ESTALE Indicates that the CD-ROM disk has been ejected (without first being closed
by the user) and then either re-inserted or replaced with a second disk.

ETIMEDOUT Indicates that a command has exceeded the given timer value.

Reliability and Serviceability Information
Errors returned from CD-ROM devices are categorized by the list described below:

GOOD COMPLETION Indicates that the command completed successfully.

RECOVERED ERROR

NOT READY

MEDIUM ERROR

HARDWARE ERROR

ILLEGAL REQUEST

UNIT ATTENTION

ABORTED COMMAND

ADAPTER ERRORS

Indicates that the command was successful after some
recovery applied.

Indicates that the logical unit is offline.

Indicates that the command terminated with a
non-recoverable error condition.

Indicates that the non-recoverable hardware failure during
command execution or during a self test.

Indicates illegal command or command parameter.

Indicates that the CD-ROM changed or device has been
reset or powered on.

Indicates that the CD-ROM device aborted the command.

Indicates that the SCSI adapter indicated a CD-ROM drive
error.

Medium, hardware, aborted command, and adapter errors from the above are logged every
time they occur. If recovery at the device driver level is successful, the error is logged as
temporary. Otherwise, it is logged as permanent. If recovery at the hardware level is
successful, the error is not be reported to the driver and is therefore logged.

9-4 Kernel Reference

cdrom

Regardless of which error is encountered, the following fields in the error record have the
same value:

Class

Report

Log

Alert

Inst_ Causes

Inst_ Actions

Detail_ Data

Equal to H, indicating a hardware error.

Equal to TRUE, indicating this error should be included when an error
report is generated.

Equal to TRUE, indicating an error log entry should be created when
this error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

None.

None.

Equal to 168, 11 to indicate HEX.

The Detail_Data field contains the sc_error_log_df structure defined in the <sys/scsi.h>
file.

Error Record Fields for Permanent CD-ROM Medium Errors
Field values in the error record specific to permanent CD-ROM medium errors are:

Comment

Err_ Type

Err_Desc

Prob_ Causes

User_Causes

User_Actions

Fail_ Causes

Fail_Actions

Equal to CD-ROM permanent media error.

Equal to PERM, indicating a permanent failure.

Equal to E801, indicating a optical disk operation error.

Equal to 5004, indicating the optical disk.

Equal to 5100, indicating the media is defective.

Equal to 1601, indicating the removable media should be replaced and
retried.

Equal to E800 or 6312, which are both optical disk drive errors.

Equal to 0000 to perform problem determination procedures.

The 128-byte request-sense data field is filled in with the complete request-sense data and
padded with zeros to fill out the field. Refer to the Small Computer System Interface (SCSI)
specification for the applicable device for the format of the particular request-sense
information.

SCSI Subsystem 9-5

cdrom

Error Record Fields for Recoverable CD-ROM Medium Errors
Field values in the error record specific to recoverable CD-ROM medium errors are:

Comment

Err_ Type

Err_Desc

Prob_ Causes

User_Causes

User_Actions

Fail_ Causes

Fail_ Actions

Equal to CD-ROM temporary media error.

Equal to TEMP, indicating a temporary failure.

Equal to E801, indicating a optical disk operation error.

Equal to 5004, indicating the optical disk.

Equal to 5100, indicating the media is defective.

Equal to 1601 or 0000, indicating the removable media should be
replaced and retried and problem determination procedures should be
performed, respectively.

Equal to E800 or 6312, which are both optical disk drive errors.

Equal to 1601 and 0000, indicating the removable media should be
replaced and retried, and problem determination procedures should be
performed, respectively.

The 128-byte request-sense data field is filled in with the complete request-sense data and
padded with zeros to fill out the field. Refer to the Small Computer System Interface (SCSI)
specification for the applicable device for the format of the particular request-sense
information.

Error Record Fields for Permanent CD-ROM Hardware and Hard-Aborted Command
Errors

Field values in the error record specific to permanent CD-ROM hardware errors and
hard-aborted command errors are:

Comment

Err_ Type

Err_Desc

Prob_Causes

User_ Causes

User_Actions

Fail_ Causes

Fail_ Actions

Equal to a CD-ROM permanent error.

Equal to PERM, indicating a permanent failure.

Equal to E801, indicating a optical disk drive error.

Equal to 6312, indicating the optical disk drive.

None.

None.

Equal to 6312 indicating the optical disk drive.

Equal to 0000 to perform problem determination procedures.

The 128-byte request-sense data field is filled in with the complete request-sense data and
padded with zeros to fill out the field. Refer to the Small Computer System Interface (SCSI)
specification for the applicable device for the format of the particular request-sense
information.

9~ Kernel Reference

(

cdrom

Error Record Fields for Recoverable CD-ROM Hardware and Hard-Aborted
Command Errors

Field values in the error record specific to recoverable CD-ROM hardware errors and
hard-aborted command errors are:

Comment

Err_ Type

Err_Desc

Prob_Causes

User_ Causes

User_Actions

Fail_ Causes

Fail_Actions

Equal to a CD-ROM temporary error.

Equal to TEMP, indicating a temporary failure.

Equal to E801, indicating a optical disk operation error.

Equal to 6312, indicating the optical disk drive.

None.

None.

Equal to 6312 indicating the optical disk drive.

Equal to 0000 to perform problem determination procedures.

The 128-byte request-sense data field will be filled in with the complete request-sense data
and padded with zeros to fill out the field. Refer to the Small Computer System Interface
(SCSI) specification for the applicable device for the format of the particular request-sense
information.

Error Record Fields for Permanent Errors Returned from the SCSI Adapter
Field values in the error record specific to permanent errors returned from the SCSI adapter
are:

Comment

Err_ Type

Err_Desc

Prob_ Causes

User_ Causes

User_ Actions

Fail_ Causes

Fail_ Actions

Equal to an adapter-detected permanent CD-ROM error.

Equal to PERM, indicating a permanent failure.

Equal to E801, indicating a optical disk operation error.

Equal to 6312 and 3451, indicating the optical disk drive or the device
cable, respectively.

None.

None.

Equal to 6312 indicating the optical disk drive.

Equal to 0000 to perform problem determination procedures.

The 128-byte request-sense data field is filled in with zeros for this error since there is no
request-sense data available.

SCSI Subsystem 9-7

cdrom

Error Record Fields for Recovered Errors Returned from the SCSI Adapter
Field values in the error record specific to recovered errors returned from the SCSI adapter
are:

Comment

Err_ Type

Err_Desc

Prob_ Causes

User_Causes

User_Actions

Fail_ Causes

Fail_Actions

Equal to an adapter-detected temporary CD-ROM error.

Equal to TEMP, indicating a temporary failure.

Equal to E801, indicating a optical disk operation error.

Equal to 6312 and 3451, indicating the optical disk drive or the device
cable, respectively.

None.

None.

Equal to 6312 indicating the optical disk drive.

Equal to 0000 to perform problem determination procedures.

The 128-byte request-sense data field will be filled in with zeros for this error since there is
no request-sense data available.

Error Record Fields for Errors Recovered at the Device Level
Field values in the error record specific to errors recovered at the device level are:

Comment

Err_ Type

Err_Desc

Prob_Causes

User_Causes

User_Actions

Fail_ Causes

Equal to a CD-ROM device-recovered error.

Equal to TEMP, indicating a temporary failure.

Equal to 1611, indicating an impending storage subsystem failure.

Equal to 6312 or 5004, indicating the optical disk drive or the optical
disk drive.

Equal to 5100, indicating the media is defective.

Equal to 1601 and 0000, indicating the removable media should be
replaced and the operation retried and problem determination should
be performed, respectively.

Equal to E800 and 6312, indicating the optical disk or the optical disk
drive, respectively.

Fail_Actions Equal to 1601 and 0000, indicating the removable media should be
replaced and the operation retried or problem determination
procedures should be performed, respectively.

The 128 byte request-sense data field is filled in with the complete request-sense data and
padded with zeros to fill out the field.

9-8 Kernel Reference

(

cdrom

Error Record Fields for Unknown Errors

Files

Field values in the error record specific to unkno~n errors, and conditions that should never
occur are:

Comment

Err_ Type

Err_Desc

Prob_ Causes

User_Causes

User_Actions

Fail_ Causes

Fail_ Actions

Equal to CD-ROM unknown error.

Equal to UNKN error.

Equal to FEOO, indicating the error is undetermined.

Equal to 5004, 6312., and 3300, indicating the optical disk, the optical
disk drive, and the adapter, respectively.

None.

None.

Equal to FFFF unknown.

Equal to 2000, indicating review detail data.

The 128-byte request-sense data field is filled in with zeros for this error since there is no
request-sense data available. Refer to the Small Computer System Interface (SCSI)
specification for the applicable device for the format of the particular request-sense
information.

/dev/cdO, /dev/cd1, ...

/dev/rcdO, /dev/rcd1,

Related Information
The smit command.

The cdrom.h special file.

The open subroutine, close subroutine, read subroutine, write subroutine, ioctl subroutine.

The SCSI Adapter Device Driver, The SCSI Device Driver-SCSI Adapter Device Driver
Interface.

Special File Overview in Files Reference.

Device Driver Concepts Overview, SCSI Subsystem Programming Introduction in Kernel
Extensions and Device Support Programming Concepts.

Understanding Block 1/0 Device Drivers, Understanding 1/0 Access through Special Files,
Understanding Major and Minor Numbers, Understanding Pseudo-Devices, Understanding
the Device Switch Table in Kernel Extensions and Device Support Programming Concepts

SCSI Subsystem 9-9

rmt

rmt SCSI Device Driver

Purpose

Syntax

Supports the sequential access bulk storage medium device driver.

#include <Sys/devinfo.h>
#include <Sys/scsi.h>
#include <sys/tapedd.h>

Description
The /dev/rmtO, ... , /dev/rmt255 special files provide access to magnetic tapes. Magnetic
tapes are used primarily for backup, file archives, and other offline storage.

Note: Configuration information for the device is contained in the tape_device_df
structure, as defined in the <tapedd.h> header file.

Device-Dependent Subroutines
Most tape operations are implemented using the open, read, write, and close subroutines.
However, the openx subroutine must be used if the device is to be opened in Diagnostic
mode.

The open and close Subroutines
The openx subroutine is intended for use by the diagnostic commands and utilities.
Appropriate authority is required for execution. Attempting to execute this subroutine without
the proper authority returns a value of-1 and the errno global variable is set to EPERM.

The openx subroutine allows the device driver to enter Diagnostic mode and disables
command retry logic. This allows for execution of ioctl operations that perform special
functions associated with diagnostic processing. Other openx capabilities {such as forced
opens and retained reservations) are also available.

The ext parameter passed to the openx subroutine selects the operation to be used for the
target device. The ext parameter is defined in the <sys/scsi.h> file. This parameter can
contain any combination of the following flag values logically ORd together:

• SC_DIAGNOSTIC

Places the selected device in Diagnostic mode. This mode is singularly entrant. When a
device is in Diagnostic mode, SCSI operations are performed during open or close
operations, and error logging is disabled. In Diagnostic mode, only the close and ioctl
operations are accepted. All other device-supported subroutines return a -1, with the
errno global variable set to EACCES.

A device can be opened in Diagnostic mode only if the target device is not currently
opened. If an attempt is made to open a device in Diagnostic mode and the target device
is already open, a value of -1 is returned and the errno global variable is set to
EACCES.

9-1 0 Kernel Reference

rmt

• SC_FORCED_OPEN

Forces a bus device reset (BDR) regardless of whether another initiator has the device
reserved. The SCSI bus device reset is sent to the device before the open sequence
begins, otherwise, the open executes normally.

• SC_RETAIN_RESERVATION

Retains the reservation of the device after a close operation by not issuing the release.
This flag prevents other initiators from using the device unless they break the host
machine's reservation.

SCSI options to the openx subroutine gives more specific information on the open
operations.

The ioctl Subroutine
The STIOCMD ioctl operation provides the means for sending SCSI commands directly to a
tape device. This allows an application to issue specific SCSI commands that are not
directly supported by the tape device driver.

To use the STIOCMD operation, the device must be opened in Diagnostic mode. If this
command is attempted while the device is not in Diagnostic mode, a value of -1 is returned
and the errno global variable is set to EACCES. The STIOCMD operation passes the
address of a sc_iocmd structure. This structure is defined in the <Sys/scsi.h> file.

Refer to the Small Computer System Interface (SCSI) specification for the applicable device
for issuing the proper parameters.

Error Conditions
In addition to those errors listed, ioctl, open, read, and write subroutines against this
device fail in the following circumstances:

EA GAIN

EA CC ES

EBUSV

EINVAL

EINVAL

EINVAL

EINVAL

EIO

EMEDIA

Indicates that an attempt was made to open a device that was already open.

Indicates that a diagnostic command was issued to a device not in
Diagnostic mode.

Indicates that the target device is reserved by another initiator.

Indicates that a value of O_APPEND is supplied as the mode in which to
open.

Indicates that the nbyte parameter supplied by a read or write operation is
not a multiple of the block size.

Indicates that a parameter to an ioctl operation is invalid.

Indicates that the requested ioctl operation is not supported on the current
device.

Indicates that the device could not space forward or reverse the number of
records specified by the st_count field before encountering an EOM (end of
media) or a file mark.

Indicates that the tape device has encountered an unrecoverable media
error.

SCSI Subsystem 9-11

rmt

EM FILE

ENXIO

Indicates that an open operation was attempted for a SCSI adapter that
already has the maximum permissible number of open devices.

Indicates that there was an attempt to write to a tape that is at EOM.

ENOTREADY Indicates that there is no tape in the drive or the drive is not ready.

EPERM Indicates that this subroutine requires appropriate authority.

ETIMEDOUT Indicates a command has timed out.

EWRPROTECTlndicates an open operation requesting read/write mode was attempted on
a read-only tape.

EWRPROTECTlndicates that an ioctl operation that affects the media was attempted on a
read-only tape.

Reliability and Serviceability Information
Errors returned from tape devices are categorized by the list described below:

GOOD COMPLETION

RECOVERED ERROR

NOT READY

MEDIUM ERROR

HARDWARE ERROR

ILLEGAL REQUEST

UNIT ATTENTION

DATA PROTECT

BLANK CHECK

ABORTED COMMAND

Indicates that the command completed successfully.

Indicates that the command was successful after some
recovery applied.

Indicates that the logical unit is offline.

Indicates that the command terminated with a unrecovered
media error condition. This may be caused by a tape flaw
or a dirty head.

Indicates that an unrecoverable hardware failure occurred
during command execution or during a self test.

Indicates that an illegal command or command parameter.

Indicates the device has been reset or powered on.

Indicates that a write was attempted on a write-protected
tape.

Indicates that a read command encountered a blank tape.

Indicates the device aborted the command.

Medium, hardware, and aborted command errors from the above list are to be logged every
time they occur. The ABORTED COMMAND error may be recoverable, but the error is
logged if recovery fails. For the RECOVERED ERROR and recovered ABORTED
COMMAND error types, thresholds are maintained and, when exceeded, an error is logged.
These thresholds are then cleared.

Note: There are device-related adapter errors that are also logged every time they occur.

9-12 Kernel Reference

rmt

Error Record Values for Tape Device Media Errors
The fields defined in the error record template for tape device media errors are:

Comment

Class

Report

Log

Alert

Err_ Type

Err_Desc

Prob_Causes

User_Causes

User _Actions

Inst_ Causes

Inst_ Actions

Fail_ Causes

Fail_Actions

Equal to tape media error.

Equal to H, indicating a hardware error.

Equal to TRUE, indicating this error should be included when an error
report is generated.

Equal to TRUE, indicating an error log entry should be created when
this error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Equal to PERM, indicating a permanent failure.

Equal to 1332, indicating a tape operation failure.

Equal to 5003, indicating tape media.

Equal to 5100 and 7401, indicating a cause originating with the tape
and defective media, respectively.

Equal to 1601 and 0000, indicating the removable media should be
replaced and the operation retried and that problem determination
procedures should be performed, respectively.

None.

None.

Equal to 5003, indicating tape media.

Equal to 1601 and 0000, indicating that the removable media should
be replaced and the operation retried and that problem determination
procedures should be performed, respectively.

The detail_data field contains the command type, device and adapter status, and the
request sense information from the particular device in error. The detail_data field is
contained in the err_rec structure. This structure is defined in the <sys/errids.h> file. The
sc_error_log_df structure, which describes information contained in the detail_data field, is
defined in the <sys/scsi.h> file.

Refer to the Small Computer System Interface (SCSI) specification for the applicable device
for the format of the particular request sense information.

SCSI Subsystem 9-13

rmt

Error Record Values for Tape or Hardware Aborted Command Errors
The fields in the err_hdr structure, as defined in the <Sys/erec.h> header file for hardware
errors and aborted command errors, are:

Comment

Class

Report

Log

Alert

Err_ Type

Err_Desc

Prob_Causes

User_Causes

User_Actions

Inst_ Causes

lnst_Actions

Fail_ Causes

Fail_ Actions

Equal to a tape hardware or aborted command error.

Equal to H, indicating a hardware error.

Equal to TRUE, indicating this error should be included when an error
report is generated.

Equal to TRUE, indicating an error log entry should be created when
this error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Equal to PERM, indicating a permanent failure.

Equal to 1331, indicating a tape drive failure.

Equal to 6314, indicating a tape drive error.

None.

Equal to 0000, indicating that problem determination procedures
should be performed.

None.

None.

Equal to 5003 and 6314, indicating the failure cause is the tape and
the tape drive, respectively.

Equal to 0000 indicating that problem determination procedures should
be performed.

The detail_data field contains the command type, device and adapter status, and the
request sense information from the particular device in error. The detail_data field is
contained in the err_rec structure. This structure is defined in the <Sys/errids.h> file. The
sc_error_log_df structure, which describes information contained in the detail_data field, is
defined in the <Sys/scsi.h> file.

Refer to the Small Computer System Interface (SCSI) specification for the applicable device
for the format of the particular request-sense information.

9-14 Kernel Reference

rmt

~ Error Record Values for Tape-Recovered Error Threshold Exceeded
The fields defined in the err_hdr structure, as defined in the <sys/erec.h> file for recovered
errors that have exceeded the threshold counter, are:

Comment

Class

Report

Log

Alert

Err_ Type

Err_Desc

Prob_Causes

User_Causes

User_Actions

Inst_ Causes

Inst_ Actions

Fail_ Causes

Fail_ Actions

Equal to tape recovered error threshold exceeded.

Equal to H, indicating a hardware error.

Equal to TRUE, indicating this error should be included when an error
report is generated.

Equal to TRUE, indicating an error log entry should be created when
this error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Equal to PERM, indicating a permanent failure.

Equal to 1331, indicating a tape drive failure.

Equal to 5003 and 6314, indicating the probable cause is the tape and
tape drive, respectively.

Equal to 5100 and 7401, indicating that the media is defective and the
read/write head is dirty, respectively.

Equal to 1601 and 0000, indicating that removable media should be
replaced and the operation retried and that problem determination
procedures should be performed, respectively.

None.

None.

Equal to 5003 and 6314, indicating the cause is the tape and tape
drive, respectively.

Equal to 0000 indicating that problem determination procedures should
be performed.

The detail_data field contains the command type, device and adapter status, and the
request-sense information from the particular device in error. The field is contained in the
err_rec structure. The err_rec structure is defined in the <Sys/errids.h> field. The
detail_data field also specifies the error type of the threshold exceeded. The
sc_error_log_df structure, which describes information contained in the detail_data field, is
defined in the <sys/scsi.h> field.

Refer to the Small Computer System Interface (SCSI) specification for the applicable device
for the format of the particular request-sense information.

SCSI Subsystem 9-15

rmt

Error Record Values for Tape SCSI Adapter-Detected Errors
The fields in the err_hdr structure as defined in the <sys/erec.h> file for adapter-detected
errors are:

Comment

Class

Report

Log

Alert

Err_ Type

Err_Desc

Prob_Causes

User_ Causes

User_Actions

Inst_ Causes

lnst_Actions

Fail_ Causes

Fail_Actions

Equal to a tape SCSI adapter detected error.

Equal to H, indicating a hardware error.

Equal to TRUE, indicating this error should be included when an error
report is generated.

Equal to TRUE, indicating an error log entry should be created when
this error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Equal to PERM, indicating a permanent failure.

Equal to 1331, indicating a tape drive failure.

Equal to 3300 and 6314, indicating an adapter and tape drive failure,
respectively.

None.

Equal to 0000, indicating that problem determination procedures
should be performed.

None.

None.

Equal to 3300 and 6314, indicating an adapter and tape drive failure,
respectively.

Equal to 0000 indicating that problem determination procedures should
be performed.

The detail_data field contains the command type and adapter status. This field is contained
the err_rec structure which is defined by the <sys/errids.h> file. Request sense information
is not available with this type of error. The sc_error_log_df structure describes information
contained in the detail_data field and is defined in the <sys/scsi.h> file.

Refer to the Small Computer System Interface (SCSI) specification for the applicable device
for the format of the particular request-sense information.

9-16 Kernel Reference

(
\;

(

\

rmt

~ Error Record Values for Unknown Errors

Files

Errors that should not occur are grouped in the unknown errors class. Data-protect errors fall
into this class. These errors are detected by the tape device driver and should never be
seen at the tape drive.

The err_hdr structure for unknown errors describes the following fields:

Comment

Class

Report

Log

Alert

Err_ Type

Err_Desc

Prob_Causes

User_Causes

User_Actions

Inst_ Causes

Inst_ Actions

Fail_ Causes

Fail_ Actions

Equal to tape unknown error.

Equal to all error classes.

Equal to TRUE, indicating this error should be included when an error
report is generated.

Equal to TRUE, indicating an error log entry should be created when
this error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Equal to UNKN, indicating the error type is unknown.

Equal to OxFEOO, indicating the error description is unknown.

None.

None.

None.

None.

None.

Equal to OxFFFF, indicating the failure cause is unknown.

Equal to 0000 indicating that problem determination procedures should
be performed.

The detail_data field contains the command type and adapter status, and the request sense
information from the particular device in error. The detail_data field is contained in the
err_rec structure. This field is contained in the <sys/errids.h> field. The sc_error_log_df
structure describes information contained in the detail_data field and is defined in the
<Sys/scsi.h> file.

Refer to the Small Computer System Interface (SCSI) specification for the applicable device
for the format of the particular request-sense information.

/dev/rmtO, /dev/rmt0.1, /dev/rmt0.2, ... , /dev/rmt0.7

/dev/rmt1, /dev/rmt1 .1, /dev/rmt1 .2, ... , /dev/rmt1 .7 ... , /dev/rmt255, /dev/rmt255.1,
/dev/rmt255.2, ... , /dev/rmt255.7

SCSI Subsystem 9-17

rmt

Related Information
The rhdisk special file, rmt special file.

The open subroutine, close subroutine, read subroutine, write subroutine, ioctl subroutine.

The SCSI Adapter Device Driver, The SCSI Device Driver-SCSI Adapter Device Driver
Interface.

Special File Overview in Files Reference.

Device Driver Concepts Overview, SCSI Subsystem: Programming Introduction in Kernel
Extensions and Device Support Programming Concepts.

Understanding Block 110 Device Drivers, Understanding 1/0 Access through Special Files,
Understanding Pseudo-Devices in Kernel Extensions and Device Support Programming
Concepts.

9-18 Kernel Reference

scdisk

scdisk SCSI Device Driver

Purpose

Syntax

Supports the SCSI physical volume (fixed-disk) device driver.

#include <sys/devinfo.h>
#include <sys/scsi.h>
#include <sys/scdisk.h>

Description
Warning: Potential for data corruption or system crashes: Data corruption, loss of data,
or loss of system integrity will occur if devices supporting paging, logical volumes, or
mounted file systems are accessed using block special files. Block special files are provided
for logical volumes and disk devices on AIX, and are solely for system use in managing file
systems, paging devices and logical volumes. They should not be used for other purposes.
Additional information concerning the use of special files may be obtained in Understanding
1/0 Access through Special Files.

The <sys/scdisk.h> special file provides raw 1/0 access and control functions to the
physical disk device drivers on the RISC System/6000 machine platforms. The /dev/hdisk
block special files are provided only for system use in managing file systems, paging devices
and logical volumes. Raw 1/0 access is provided through the /dev/rhdiskO, /dev/rhdisk1,
... ,character special files.

Due to performance considerations, direct access to physical disks through block special
files should be avoided. In addition, direct access should be avoided to prevent data
consistency problems that occur between data in the block 1/0 buffer cache and data in
system pages.

Note: Configuration information for the hard-file is defined in the <sys/scdisk.h> file by the
disk_ddi structure.

The prefix r on a special file name indicates that the drive is accessed as a raw device rather
than a block device. Performing raw 1/0 with a fixed disk requires that all data transfers be
in multiples of the disk block size. Also, all lseek subroutines that are made to the raw-disk
device driver must result in a file pointer value that is a multiple of the disk block size.

Device-Dependent Subroutines
Typical fixed-disk operations are implemented using the open, read, write, and close
subroutines.

SCSI Subsystem 9-19

scdisk

The open and close Subroutines
The openx subroutine is intended primarily for use by the diagnostic commands and utilities.
Appropriate authority is required for execution. Attempting to execute this subroutine without
the proper authority results in a return value of -1, with the errno global variable set to
EPERM.

The ext parameter passed to the openx subroutine selects the operation to be used for the
target device. The <sys/scsi.h> file defines possible values for the ext parameter. The
parameter can contain any combination of the following flag values logically ORed together:

• SC_DIAGNOSTIC

Places the selected device in Diagnostic mode. This mode is singularly entrant. When a
device is in Diagnostic mode, SCSI operations are performed during open or close
operations, and error logging is disabled. In Diagnostic mode, only the close and ioctl
operations are accepted. All other device-supported subroutines return a value of -1,
with the errno global variable set to EACCES.

A device can be opened in Diagnostic mode only if the target device is not currently
opened. If an attempt is made to open a device in Diagnostic mode and the target device
is already open, a value of -1 is returned and the errno global variable is set to
EA CC ES.

• SC_FORCED_OPEN

Forces a bus device reset (BDR) regardless of whether another initiator has the device
reserved. The SCSI bus device reset is sent to the device before the open sequence
begins, otherwise, the open operation executes normally.

• SC_RETAIN_RESERVATION

Retains the reservation of the device after a close operation by not issuing the release.
This flag prevents other initiators from using the device unless they break the host
machine's reservation.

SCSI options to the openx subroutine gives more specific information on the open
operations.

The readx and writex Subroutines
The readx and writex subroutines provide additional parameters affecting the raw data
transfer. These subroutines pass the ext parameter which specifies request options. The
options are constructed by logically OR-ing zero or more of the following values:

WRIT EV

HWRELOC

UNSAFER EL

The ioctl Subroutine

Indicates a request for write verification.

Indicates a request for hardware relocation (safe relocation only).

Indicates a request for unsafe hardware relocation.

The IOCINFO operation is the only operation defined for all device drivers that use the ioctl
subroutine. The remaining operations are all specific to the physical volume device.

Note: Diagnostic mode is required only for the DKIOCMD operation.

9-20 Kernel Reference

scdisk

The following ioctl operations are available for physical volume devices:

• IOCINFO

Returns the devinfo structure defined in the <Sys/devinfo.h> file.

• DKIORDSE

Provides a means for issuing a read command to the disk and obtaining the target device
sense data on error. If the DKIORDSE operation returns a value of-1 and the
status_validity field has sc_valid_sense set, then valid sense data is returned.
Otherwise, target sense data is omitted.

The DKIORDSE operation is provided for diagnostic use. It allows for the limited use of
the target device while operating in an active system environment. The arg parameter to
the DKIORDSE operation contains the address of a sc_rdwrt structure. This structure is
defined in the <sys/scsi.h> file.

The devinfo structure defines the maximum transfer size for a read. If an attempt is
made to transfer more than the maximum, a value of-1 is returned and the errno global
variable set to EINVAL. Refer to the Small Computer System Interface (SCSI)
Specification for the applicable device for the particular request sense information.

• DKIOWRSE

Provides a means for issuing a write command to the disk and obtaining the target device
sense data on error. If the DKIOWRSE operation returns a value of-1 and the
status_validity field has sc_valid_sense set, then valid sense data is returned.
Otherwise, target-sense data is omitted.

The DKIOWRSE operation is provided for diagnostic purposes to allow for limited use of
the target device while operating in an active system environment. The arg parameter to
the DKIOWRSE operation contains the address of a sc_rdwrt structure. This structure is
defined in the <sys/scsi.h> file.

The devinfo structure defines the maximum transfer size for a write. If an attempt is
made to transfer more than the maximum, a value of-1 is returned and the errno global
variable set to EINVAL. Refer to the Small Computer System Interface (SCSI)
Specification for the applicable device for the particular request-sense information.

• DKIOCMD

When the device has been successfully opened in the Diagnostic mode, this operation
provides the means for issuing any SCSI command to the specified device. If the
DKIOCMD is issued when the device is not in Diagnostic mode, a value of-1 is returned
and the errno global variable set EACCES. The device driver performs no error recovery
or logging on failures of this ioctl operation.

The SCSI status byte and the adapter status bytes are returned via the arg parameter,
which contains the address of a sc_iocmd structure (defined in the <sys/scsi.h> file). If
the DKIOCMD operation returns a value of -1 and the errno global variable is set to a,
nonzero value, the requested operation has failed. In this case, the caller should evaluate
the returned status bytes to determine why the operation failed and what recovery actions
should be taken.

The devinfo structure defines the maximum transfer size for the command. If an attempt
is made to transfer more than the maximum, a value of-1 is returned and the errno
global variable set to EINVAL. Refer to the Small Computer System Interface (SCSI)
Specification for the applicable device for the particular request-sense information.

SCSI Subsystem 9-21

scdisk

Error Conditions
In addition to those errors listed, ioctl, open, read, and write subroutines against this
device fail in the following circumstances:

EACCES Indicates that an attempt was made to open a device currently opened in
Diagnostic mode.

EACCES Indicates that an attempt was made to open a diagnostic session on a device
already opened.

EACCES Indicates that the user attempted a subroutine other than an ioctl or close
subroutine while in Diagnostic mode.

EACCES Indicates that a DKIOCMD operation was attempted on a device not in
Diagnostic mode.

EBUSY Indicates that the target device is reserved by another initiator.

EINVAL Indicates that the read or write subroutine supplied an nbyte parameter that is
not an even multiple of the block size.

EINVAL Indicates that a sense data buffer length of greater than 255 is invalid for a
DKIOWRSE or DKIORDSE operation.

EINVAL Indicates that the data buffer length exceeded the maximum defined in the
devinfo structure for a DKIORSE, DKIOWRSE, or DKIOCMD ioctl operation.

EINVAL Indicates that an unsupported ioctl operation was attempted.

EMEDIA Indicates that the target device has indicated an unrecovered media error.

ENXIO Indicates that the ioctl subroutine supplied an invalid parameter.

ENXIO Indicates that a read or write command was attempted beyond the end of the
disk.

EIO Indicates that the target device cannot be located or is not responding.

EIO Indicates that the target device has indicated an unrecovered hardware error.

EMFILE Indicates that an open was attempted for an adapter which already has the
maximum permissible number of opened devices.

EPERM Indicates that the attempted subroutine requires appropriate authority.

Reliability and Serviceability Information
Errors returned from SCSI disk devices are categorized as follows:

GOOD COMPLETION Indicates that the command completed successfully.

RECOVERED ERROR

NOT READY

MEDIUM ERROR

HARDWARE ERROR

ILLEGAL REQUEST

UNIT ATTENTION

ABORTED COMMAND

ADAPTER ERRORS

9-22 Kernel Reference

Indicates that the command was successful after some recovery
applied.

Indicates that the logical unit is offline.

Indicates that the command terminated with a unrecovered media
error condition.

Indicates that an unrecoverable hardware failure occurred during
command execution or during a self test.

Indicates that an illegal command or command parameter.

Indicates the device has been reset or powered on.

Indicates the device aborted the command.

Indicates the adapter returned an error.

scdisk

Error Record Values for Physical Volume Medium Errors
The fields defined in the error record for physical volume medium errors are:

Comment

Class

Report

Log

Alert

Err_ Type

Err_Desc

Prob_Caus~s

User_Causes

User_Actions

Inst_ Causes

lnst_Actions

Fail_ Causes

Fail_ Actions

Detail_ Data

Equal to physical volume media error.

Equal to H, indicating a hardware error.

Equal to TRUE, indicating this error should be included when an error
report is generated.

Equal to TRUE, indicating an error log entry should be created when
this error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Equal to PERM, indicating a permanent failure.

Equal to 1312, indicating a disk operation failure.

Equal to 5001, indicating DASO media.

None.

None.

None.

None.

Equal to 5001, indicating DASO media.

Equal to 0000 to perform problem determination procedures.

Equal to 156, 11 to indicate HEX.

The detail_data field in the err_rec structure contains the sc_error_log_df structure. The
err_rec structure is defined in the <sys/errid.h> file. The sc_error_log_df structure is
defined in the <sys/scsi.h> file.

The sc_error_log_df structure contains the following fields:

req_sense_data

reserved2

reserved3

Contains the request-sense information from the particular device that
had the error.

Contains the segment count, or number of megabytes read from the
device at the time the error occurred.

Contains the number of bytes read since the segment count was last
incremented.

Refer to the Small Computer System Interface (SCSI) specification for the applicable device
for the format of the particular request sense information.

SCSI Subsystem 9-23

scdisk

Error Record Values for Physical Volume Hardware Errors
The fields defined in the error record for physical volume hardware errors, and hard aborted
command errors are:

Comment

Class

Report

Log

Alert

Err_ Type

Err_Desc

Prob_Causes

User_Causes

User_Actions

Inst_ Causes

Inst_ Actions

Fail_ Causes

Fail_Actions

Detail_ Data

Equal to physical volume hardware error.

Equal to H, indicating a hardware error.

Equal to TRUE, indicating this error should be included when an error
report is generated.

Equal to TRUE, indicating an error log entry should be created when
this error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Equal to PERM, indicating a permanent failure.

Equal to 1311, indicating a disk drive failure.

Equal to 6310, indicating a DASD drive.

None.

None.

None.

None.

Equal to 6310 and 6330, indicating disk drive and disk drive
electronics, respectively.

Equal to 0000 to perform problem determination procedures.

Equal to 156, 11 to indicate HEX.

(

The detail_data field in the err_rec structure contains the sc_error_log_df structure. The (
err_rec structure is defined in the <sys/errid.h> file. The sc_error_log_df structure is
defined in the <sys/scsi.h> file.

The sc_error_log_df structure contains the following fields:

req_sense_data

reserved2

reserved3

Contains the request-sense information from the particular device that
had the error.

Contains the segment count, or number of megabytes read from the
device at the time the error occurred.

Contains the number of bytes read since the segment count was last
incremented.

Refer to the Small Computer System Interface (SCSI) specification for the applicable device
for the format of the particular request-sense information.

9-24 Kernel Reference

scdisk

Error Record Values for Adapter-Detected Physical Volume Hardware Failure
The fields defined in the error record for adapter-detected errors are:

Comment

Class

Report

Log

Alert

Err_ Type

Err_Desc

Prob_Causes

User_Causes

User_Actions

Inst_ Causes

Inst_ Actions

Fail_ Causes

Fail_ Actions

Detail_ Data

Equal to adapter-detected physical volume hardware failure.

Equal to H, indicating a hardware error.

Equal to TRUE, indicating this error should be included when an error
report is generated.

Equal to TRUE, indicating an error log entry should be created when
this error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Equal to PERM, indicating a permanent failure.

Equal to 1311, indicating a disk drive failure.

Equal to 631 O and 3452, indicating a DASO drive, device cable cause,
respectively.

None.

None.

None.

None.

Equal to 6310, 6330, and 3452, indicating disk drive, disk drive
electronics, and storage device cable as probable errors, respectively.

Equal to 0000 to perform problem determination procedures.

Equal to 156, 11 to indicate HEX.

The detail_data field in the err_rec structure contains the sc_error_log_df structure. The
err_rec structure is defined in the <Sys/errid.h> file. The sc_error_log_df structure is
defined in the <sys/scsi.h> file.

The sc_error_log_df structure contains the following fields:

reserved2

reserved3

Contains the segment count, or number of megabytes read from the
device at the time the error occurred.

Contains the number of bytes read since the segment count was last
incremented.

Refer to the Small Computer System Interface (SCSI) specification for the applicable device
for the format of the particular request-sense information.

SCSI Subsystem 9-25

scdisk

Error Record Values for Physical Volume Recovered Errors
The fields defined in the error record for recovered errors are:

Comment

Class

Report

Log

Alert

Err_ Type

Err_Desc

Prob_Causes

User_Causes

User_Actions

Inst_ Causes

Inst_ Actions

Fail_ Causes

F ail_Actions

Detail_ Data

Equal to physical volume recovered error.

Equal to H, indicating a hardware error.

Equal to TRUE, indicating this error should be included when an error
report is generated.

Equal to TRUE, indicating an error log entry should be created when
this error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Equal to TEMP, indicating a temporary failure.

Equal to 1611, indicating an impending storage subsystem failure.

Equal to 5001 and 6310, indicating a DASO media and DASO drive,
respectively.

None.

None.

None.

None.

Equal to 5001 and 6310, indicating DASO media and DASO device
causes, respectively.

Equal to 0000 to perform problem determination procedures.

Equal to 156, 11 to indicate HEX.

The detail_data field in the err_rec structure contains the sc_error_log_df structure. The
err_rec structure is defined in the <sys/errid.h> file. The sc_error_log_df structure is
defined in the <sys/scsi.h> file .

. The sc_error_log_df structure contains the following fields:

req_sense_data

reserved2

reserved3

Contains the request sense information from the particular device that
had the error, if it is valid.

Contains the segment count, or number of megabytes read from the
device at the time the error occurred.

Contains the number of bytes read since the segment count was last
incremented.

Refer to the Small Computer System Interface (SCSI) specification for the applicable device
for the format of the particular request-sense information.

9-26 Kernel Reference

scdisk

\1 Error Record Values for Physical Volume Unknown Errors
IY The fields defined in the error record for unknown errors are:

Comment

Class

Report

Log

Alert

Err_ Type

Err_Desc

Prob_Causes

User_ Causes

User_Actions

Inst_ Causes

lnst_Actions

Fail_ Causes

Fail_Actions

Detail_ Data

Equal to physical volume hardware error.

Equal to H, indicating a hardware error.

Equal to TRUE, indicating this error should be included when an error
report is generated.

Equal to TRUE, indicating an error log entry should be created when
this error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Equal to UNKN, indicating the type of error is unknown.

Equal to FEOO, indicating an undetermined error.

Equal to 6310, 5001, and 3300, indicating the DASO drive, DASO
media, and the adapter, respectively.

None.

None.

None.

None.

Equal to FFFF, indicating the failure causes is unknown.

Equal to 2000, indicating the detail data should be reviewed.

Equal to 156, 11 to indicate HEX.

The detail_data field in the err_rec structure contains the sc_error_log_df structure. The
err_rec structure is defined in the <Sys/errid.h> file. The sc_error_log_df structure is
defined in the <sys/scsi.h> file.

The sc_error_log_df structure contains the following fields:

req_sense_data

reserved2

reserved3

Contains the request sense information from the particular device that
had the error, if it is valid.

Contains the segment count, or number of megabytes read from the
device at the time the error occurred.

Contains the number of bytes read since the segment count was last
incremented.

Refer to the Small Computer System Interface (SCSI) specification for the applicable device
for the format of the particular request-sense information.

SCSI Subsystem 9-27

scdisk

Files
/dev /rhdiskO ,/dev /rhd isk1 , ,/dev /rhd is kn

Related Information
The rhdisk special file.

The SCSI Adapter Device Driver, The SCSI Device Driver-SCSI Adapter Device Driver
Interface.

Special File Overview in Files Reference.

Device Driver Concepts Overview, SCSI Subsystem Programming Introduction in Kernel
Extensions and Device Support Programming Concepts.

Understanding Block 1/0 Device Drivers, Understanding 1/0 Access through Special Files,
Understanding Pseudo-Devices in Kernel Extensions and Device Support Programming
Concepts

9-28 Kernel Reference

(

(

SCSI Adapter Device Driver

SCSI Adapter Device Driver

Purpose

Syntax

Supports the SCSI adapter.

#include <sys/scsi.h>
#include <sys/devinfo.h>

Description
The /dev/scsin special file provides an interface to allow SCSI device drivers to access
SCSI devices. It manages the adapter resources so that multiple SCSI device drivers can
access devices on the same SCSI adapter simultaneously. SCSI adapters are accessed
through the special files /dev/scsiO, /dev/scsi1,

Note: Configuration data for the adapter is defined in the device dependent structure
(DDS). This structure is found in the <sys/scsi.h> file.

Device-Dependent Subroutines
The SCSI adapter device driver supports only the open, close, and ioctl subroutines. The
read and write subroutines are not supported.

The open and close Subroutines
The openx subroutine provides an adapter diagnostic capability. The openx subroutine
provides an ext parameter. This parameter selects the adapter mode and accepts the
SC-DIAGNOSTIC value. This value is defined in the <sys/scsi.h~ file and it places the
device in Diagnostic mode.

In Diagnostic mode, only the close subroutine and ioctl operations are accepted. All other
valid subroutines to the adapter return a value of -1 and the errno global variable is set to
EACCES. In Diagnostic mode, the SCSI adapter device driver can accept the following
requests:

• Run adapter diagnostics

• Run adapter wrap tests

• Download adapter microcode.

The openx subroutine requires appropriate authority to execute. Attempting to execute this
subroutine without the proper authority returns a value of -1 and the errno global variable
set to EPERM. Attempting to open a device already opened for normal operation or when
another openx subroutine is in progress returns a value of-1 and the errno global variable
set to EACCES.

Any kernel process can open the SCSI adapter device driver in Normal mode. For Normal
mode, the ext parameter is set to O (zero). However, a non-kernel process must have at
least appropriate authority to open the SCSI adapter device driver in Normal mode.
Attempting to execute a normal open subroutine without the proper authority returns value
of-1 and the errno global variable is set to EPERM.

SCSI Subsystem 9-29

SCSI Adapter Device Driver

ioctl Subroutine
Along with the IOCINFO operation, the SCSI device driver defines specific operations for
devices in Non-diagnostic and Diagnostic mode.

The IOCINFO operation is defined for all device drivers that use the ioctl subroutine and is
defined as follows:

• Returns a devinfo structure. This structure is defined in the <sys/devinfo.h> file. The
device-type in this structure is DD_BUS, and the sub-type is DS_SCSI. The flags field is
not used and is set to O (zero). Diagnostic mode is not required for this operation.

• The devinfo structure includes unique data such as the card SCSI ID, and the maximum
data transfer size allowed (in bytes). A calling SCSI device driver uses this information to
learn the maximum transfer size allowed for a device it controls on the SCSI adapter. In
this way, the SCSI device driver can control devices across various SCSI adapters, with
each device possibly having a different maximum transfer size.

SCSI ioctl Operations for Adapters in Non-Diagnostic mode

The Non-diagnostic operations are SCSI adapter device driver functions, rather than general
device driver facilities. SCSI adapter device driver ioctl operations require that the adapter
device driver is not in Diagnostic mode. If these operations are attempted while the adapter
is in Diagnostic mode, a -1 is returned and the errno global variable is set to EACCES.

The following SCSI operations are for adapters in Non-diagnostic mode:

SCIOSTART Opens a logical path to a SCSI device.

SCIOSTOP Closes the logical path to a SCSI

SCIOINQU Provides the means to issue an inquire command to a SCSI device.

SCIOSTUNIT Provides the means to issue a SCSI Start Unit command to a selected SCSI
adapter.

SCIOTUR Allows a Test Unit Read command to the selected SCSI adapter.

SCIORESET Allows the caller to force a SCSI device to release all current reservations,
clear all current commands, and return to an initial state.

SCIOHALT Aborts the current command (if there is one), clears the queue of any
pending commands, and places the device queue in a halted state.

SCSI ioctl Operations for Adapters in Diagnostic Mode

The following operations for the ioctl subroutine are allowed only when the adapter has
been successfully opened in Diagnostic mode. If these commands are attempted for an
adapter not in Diagnostic mode, a value of -1 is returned and the errno global variable is set
to EACCES.

SCIODIAG Provides the means to issue adapter diagnostic commands

SCIOTRAM Provides the means to issue various adapter commands to test the card
DMA interface and buffer RAM.

SCIODNLD Provides the means to download microcode to the adapter.

To allow these operations to be run on multiple SCSI adapter card interfaces, a special
return value is defined. A return value of-1 with an errno value of ENXIO indicates that the
requested ioctl is not applicable to the current adapter card. This return value should not be
considered an error for commands which require Diagnostic mode for execution.

9-30 Kernel Reference

I

~

SCSI Adapter Device Driver

Summary of SCSI Error Conditions
Possible adapter device driver specific errno values are:

EA CC ES

EACCES

EFAULT

EFAULT

EINVAL

EINVAL

EINVAL

EIO

EIO

EIO

EIO

EM FILE

ENO DEV

ENXIO

EPERM

ETIMEDOUT

Indicates that an openx subroutine was attempted while the adapter had
one or more devices in use.

Indicates that a subroutine other than the ioctl or close subroutine was
attempted while the adapter was in Diagnostic mode.

Indicates that the adapter is indicating a diagnostic error in response to the
SCIODIAG command. The SCIODIAG resume option must be issued to
continue processing.

Indicates that a severe 1/0 error has occurre<;i during an SCIODNLD
command. Discontinue operations to this card.

Indicates that an invalid parameter. Data transfer length exceeds the
adapter device driver's maximum transfer size.

Indicates that an invalid SCIOSTART parameters. This SCSI ID and LUN is
already in use.

Indicates that an invalid SCIOSTART parameter. Device SCSI ID is the
same as adapter SCSI ID.

Indicates that a delete operation has failed. The adapter is still open.

Indicates that an invalid open command. The adapter initialization must be
executed before an open command is called.

Indicates that an invalid command. A SCIOSTART operation must be
executed prior to this command, or an invalid SCSI ID and LUN combination
must be passed in.

Indicates that the command has failed due to an error detected on the
adapter or the SCSI bus.

Indicates that an SCIOSTART operation was attempted for an adapter that
already has the maximum number of devices in use.

Indicates that the target device cannot be selected or is not responding.

Indicates that for diagnostic ioctl operations the requested command is not
applicable to this adapter.

Indicates that the caller did not have the required authority.

Indicates that a SCSI command or adapter command has exceeded the
time-out value.

Reliability and Serviceability Information
Errors detected by the adapter device driver may be one of the following:

• Permanent adapter or system hardware errors

• Temporary adapter or system hardware errors

• Permanent unknown adapter microcode errors

• Temporary unknown adapter microcode errors

• Permanent unknown adapter device driver errors

• Temporary unknown adapter device driver errors

SCSI Subsystem 9-31

SCSI Adapter Device Driver

• Permanent unknown system errors

• Temporary unknown system errors

Permanent errors are either unretriable errors, or errors not recovered before a prescribed
number of retries has been exhausted. Temporary errors are either non-retriable but
non-catastrophic, or retriable and successfully recovered before a prescribed number of
retries has been exhausted.

Error Record Values for Permanent Hardware Errors
The error record template for permanent hardware errors detected by the SCSI adapter
device driver is described below. Refer to the re structure for the actual definition of the
detail data. The re structure is defined in the <sys/sesi.h> file.

SCSl_ERR1:

Comment

Class

Report

Log

Alert

Err_ Type

Equal to permanent SCSI adapter hardware error.

Equal to H, indicating a hardware error.

Equal to TRUE, indicating this error should be included when an error report
is generated.

Equal to TRUE, indicating an error log entry should be created when this
error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Equal to PERM, indicating a permanent failure.

Err_Desc Equal to Ox1010, indicating an adapter error.

Prob_Causes Equal to one of the following:

Ox3300 Adapter hardware

Ox3400 Cable

Ox3461

Ox6000

Cable terminator

Device.

Fail_Causes Equal to one of the following:

Ox3300

Ox3400

Ox6000

Adapter

Cable loose or defective

Device.

Fail_Actions Equal to one of the following:

OxOOO Perform problem determination procedures.

Ox0301 Check the cable and its connections.

Detail_Data1 Equal to 108, 11, and HEX.

9-32 Kernel Reference

(

\

(

SCSI Adapter Device Driver

\ Error Record Values for Temporary Hardware Errors
The error record template for temporary hardware errors detected by the SCSI adapter
device driver follows:

SCSl_ERR2:

Comment

Class

Report

Log

Alert

Err_ Type

Equal to temporary SCSI adapter hardware error.

Equal to H, indicating a hardware error.

Equal to TRUE, indicating this error should be included when an error report
is generated.

Equal to TRUE, indicating an error log entry should be created when this
error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Equal to TEMP, indicating a temporary failure.

Err_Desc Equal to Ox1010, indicating an adapter error.

Prob_Causes Equal to one of the following:

Ox3300 Adapter hardware

Ox3400 Cable

Ox3461

Ox6000

Cable terminator

Device.

Fail_Causes Equal to one of the following:

Ox3300 Adapter

Ox3400

Ox6000

Cable loose or defective

Device.

Fail_Actions Equal to one of the following:

OxOOO Perform problem determination procedures.

Ox0301 Check the cable and its connections.

Detail_Data1 Equal to 108, 11, and HEX.

Error Record Values for Permanent Unknown Adapter Microcode Errors
The error record template for permanent unknown SCSI adapter microcode errors detected
by the SCSI adapter device driver follows:

SCSl_ERR3:

Comment

Class

Report

Log

Equal to permanent SCSI adapter hardware error.

Equal to H, indicating a hardware error.

Equal to TRUE, indicating this error should be included when an error report
is generated.

Equal to TRUE, indicating an error log entry should be created when this
error occurs.

Alert Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

SCSI Subsystem 9-33

SCSI Adapter Device Driver

Err_ Type Equal to PERM, indicating a permanent failure.

Err_Desc Equal to Ox1010, indicating an adapter error.

Prob_ Causes Equal to Ox331 O adapter microcode.

Fail_Causes Equal to Ox3300 the adapter.

Fail_Actions Equal to one of the following:

OxOOO Perform problem determination procedures.

Ox3301 If the problem persists then (Ox3000) contact the
appropriate service representatives.

Detail_Data1 Equal to 108, 11, and HEX.

Error Record Values for Temporary Unknown Adapter Microcode Errors
The error record template for temporary unknown SCSI adapter microcode errors detected
by the SCSI adapter device driver follows:

SCSl_ERR4:

Comment

Class

Report

Log

Alert

Err_ Type

Equal to temporary unknown SCSI adapter sfw error.

Equal to H.

Equal to TRUE, indicating this error should be included when an error report
is generated.

Equal to TRUE, indicating an error log entry should be created when this
error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Equal to TEMP, indicating a temporary failure.

Err_Desc Equal to Ox6100, indicating a microcode program error.

Prob_Causes Equal to 3331, indicating adapter microcode.

Fail_Causes Equal to 3330, indicating the adapter.

Fail_Actions Equal to the following:

OxOOO Perform problem determination procedures.

Ox3301 If the problem persists then (Ox3000) contact the
appropriate service representatives.

Detail_Data1 Equal to 108, 11, and HEX.

9-34 Kernel Reference

SCSI Adapter Device Driver

Error Record Values for Permanent Unknown Adapter Device Driver Errors
The error record template for permanent unknown SCSI adapter device driver errors
detected by the SCSI adapter device driver follows:

SCSl_ERR5:

Comment

Class

Report

Log

Alert

Err_ Type

Equal to permanent unknown driver error.

Equal to S.

Equal to TRUE, indicating this error should be included when an error report
is generated.

Equal to TRUE, indicating an error log entry should be created when this
error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Equal to PERM, indicating a permanent failure.

Err_Desc Equal to Ox2100, indicating a software program error.

Prob_ Causes Equal to OX1000, indicating a software program.

Fail_ Causes Equal to OX1000, indicating a software program.

Fail_Actions Equal to Ox3301. If the problem persists then (Ox3000) contact the
appropriate service representatives.

Detail_Data1 Equal to 108, 11 and HEX.

Error Record Values for Temporary Unknown Adapter Device Driver Errors
The error record template for temporary unknown SCSI adapter device driver errors
detected by the SCSI adapter device driver follows:

SCSl_ERR6

Comment

Class

Report

Log

Equal to temporary unknown driver error.

Equal to S.

Equal to TRUE, indicating this error should be included when an error report
is generated.

Equal to TRUE, indicating an error log entry should be created when this
error occurs.

Alert Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Err_ Type Equal to TEMP, indicating a temporary failure.

Err_Desc Equal to Ox2100, indicating a software program error.

Prob_ Causes Equal to OX1000, indicating a software program.

Fail_ Causes Equal to OX1000, indicating a software program.

Fail_Actions Equal to Ox3301. If the problem persists, (Ox3000) contact the appropriate
service representatives.

Detail_Data1 Equal to 108, 11, and HEX.

SCSI Subsystem 9-35

SCSI Adapter Device Driver

Error Record Values for Permanent Unknown System Errors
The error record template for permanent unknown system errors detected by the SCSI
adapter device driver follows:

SCSl_ERR7:

Comment

Class

Report

Log

Equal to permanent unknown system error.

Equal to H.

Equal to TRUE, indicating this error should be included when an error report
is generated.

Equal to TRUE, indicating an error log entry should be created when this
error occurs.

Alert Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Err_ Type Equal to UNKN, indicating an unknown error.

Err_Desc Equal to OxFEOO, indicating an undetermined error.

Prob_ Causes Equal to OX1000, indicating a software program.

Fail_ Causes Equal to OX1000, indicating a software program.

Fail_Actions Equal to OxOOO and Ox3301, indicating perform problem determination
procedures and if the problem persists then (Ox3000) contact the
appropriate service representatives.

Detail_Data1 Equal to 108, 11, and HEX.

Error Record Values for Temporary Unknown System Errors
The error record template for temporary unknown system errors detected by the SCSI
adapter device driver follows:

SCSl_ERR8:

Comment

Class

Report

Log

Alert

Err_ Type

Equal to temporary unknown system error.

Equal to H.

Equal to TRUE, indicating this error should be included when an error report
is generated.

Equal to TRUE, indicating an error log entry should be created when this
error occurs.

Equal to FALSE, indicating this error should not be forwarded to the
Network Alert Manager.

Equal to UNKN, indicating an unknown error.

Err_Desc Equal to OxFEOO, indicating an undetermined error.

Prob_ Causes Equal to OX1000, indicating a software program.

Fail_ Causes Equal to OX1000, indicating a software program.

Fail_Actions Equal to OxOOO and Ox3301, indicating perform problem determination
procedures and if the problem persists then (Ox3000) contact the
appropriate service representatives.

Detail_Data1 Equal to 108, 11, and HEX.

9-36 Kernel Reference

(

~

(

\

SCSI Adapter Device Driver

) Managing Dumps
The SCSI adapter device driver is a target for the system dump facility. The DUMPINIT and
DUMPSTART options to the dddump entry point support multiple or redundant calls.

The DUMPQUERY option returns a minimum transfer size of 0 bytes and a maximum
transfer size equal to the maximum transfer size supported by the SCSI adapter device
driver.

To be processed, calls to the SCSI adapter device driver DUMPWRITE option should use
the arg parameter as a pointer to the sc_buf structure. Using this interface, a SCSI write
command may be executed on a previously started (opened) target device. The uiop
parameter is ignored by the SCSI adapter device driver. Spanned, or consolidated,
commands are not supported using DUMPWRITE.

Note: The various sc_buf status fields, including the b_error field, are not set at
completion of the DUMPWRITE. Error logging is, of necessity, not supported during
the dump.

Return Values

Files

Successful completion of the dddump entry point is indicated by a O (zero). If unsuccessful,
the entry point returns one of the following:

EINVAL Indicates that the adapter device driver was passed an invalid request, such
as attempting a DUMPSTART option before successfully executing a
DUMPINIT option.

EIO Indicates that the adapter device driver was unable to complete the
command due to a lack of required resources or due to an 1/0 error.

ETIMEDOUT Indicates that the adapter did not respond with status before the passed
command time-out value expired.

/dev/scsiO, /dev/scsi1, ...

Related Information
The SCSI cdrom device driver, SCSI rmt device driver, SCSI scdisk device driver.

The scsi special file.

The SCSI Device Driver-SCSI Adapter Device Driver Interface.

Special File Overview in Files Reference.

SCSI Subsystem Programming Introduction, Understanding 1/0 Access through Special
Files in Kernel Extensions and Device Support Programming Concepts.

The following references are available for details about system power requirements:

• Hardware Technical Reference- 7012 POWERstation and POWERserver.

• Hardware Technical Reference - 7013 and 7016 POWERstation and POWERserver.

• Hardware Technical Reference - 7015 POWERserver.

SCSI Subsystem 9-37

SCSI Adapter Device Driver

SCIODIAG ioctl Operation
Purpose

Description

Provides the means to issue adapter diagnostic commands.

The SCIODIAG operation allows the caller to issue various adapter diagnostic commands to
the selected SCSI adapter. These diagnostic command options are:

• Run the card Internal Diagnostics test

• Run the card SCSI Wrap test

• Run the card Read/Write Register test

• Run the card POS Register test

• Run the card SCSI Bus Reset test.

An additional option allows the caller to resume the card Internal Diagnostics test from the
point of a failure, which is indicated by the return value. The arg parameter for the
SCIODIAG operation is the address of a sc_card_diag structure. This structure is defined
in the <sys/scsi.h> file.

The actual adapter error status information from each error reported by the card diagnostics
is passed as returned parameters to the caller. Refer to the sc_card_diag structure defined
in the <sys/scsi.h> header file for the format of the returned data.

When the card diagnostics have completed (with previous errors), a value of ENOMSG is
returned. At this point, no further SCIODIAG resume commands are required, as the card
internal diagnostics test has completed.

Adapter error status is always returned when a SCIODIAG operations results in an errno
value of EFAULT. Because this error information is returned on each EFAULT, the final
ENOMSG value returned for the card Internal Diagnostics test includes no error status
information. Also, because this is a diagnostic command, these errors are not logged in the
system error log.

Note: The SCSI adapter device driver performs no internal retries or other error-recovery
procedures during execution of this operation. Error logging is also inhibited when
running this command.

9-38 Kernel Reference

I

\

(

SCSI Adapter Device Driver

Return Values

Files

When completed successfully this operation returns a value of O (zero). Otherwise, a value
of -1 is returned and the errno global variable is set to one of the following:

ENXIO Indicates that the operation or sub-option selected is not supported on this
adapter. This should not be treated as an error. The caller must check for
this return value first (before checking for other errno values) to avoid
mistaking this for a failing command.

EFAULT Indicates that the card internal diagnostics have detected an error and
paused. To continue, the caller must issue another SCIODIAG operation
with the resume option. In response to the resume option, the card
continues the diagnostics until either the end is reached or another error is
detected. The caller must continue to issue SCIODIAG operations until the
EFAUL T error no longer returns.

EIO Indicates that the SCSI adapter device driver detected an error while
attempting to run the SCIODIAG operation. In this case, the returned
adapter status information must be analyzed to discover the cause of the
error. Because this is a diagnostic command, this error is not logged in the
system error log.

ETIMEDOUT Indicates that the adapter did not respond with status before the passed
command time-out value expired. The SCIODIAG operation is a diagnostic
command and its errors are not logged in the system error log.

/dev/scsiO, /dev/scsi1, ...

Related Information
The SCSI cdrom device driver, SCSI scdisk device driver, SCSI rmt device driver.

The SCSI Adapter Device Driver.

Special File Overview in Files Reference.

The SCSI Device Driver-SCSI Adapter Device Driver Interface, SCSI Subsystem
Programming Introduction, Understanding 1/0 Access Through Special Files in Kernel
Extensions and Device Support Programming Concepts.

SCSI Subsystem 9-39

SCSI Adapter Device Driver

SCIODNLD ioctl Operation
Purpose

Description

Provides the means to download microcode to the adapter.

The SCIODNLD operation provides for downloading microcode to the selected adapter. This
operation can be used by system management routines to prepare the adapter for operation.
The adapter must be opened in Diagnostic mode to ensure that no devices are in use when
the SCIODNLD operation is executed.

There are two options for executing the SCIODNLD operation. The caller can either
download microcode to the adapter or query the version of the currently downloaded
microcode.

If the download microcode option is selected, a pointer to a download buffer and its length
must be supplied in the caller's memory space. The maximum length of this microcode is
adapter-dependent. If the adapter requires transfer of complete blocks, then the microcode /
to be sent must be padded to the next largest block boundary. The block size, if any, is \
adapter-dependent. Refer to the reference manual for the particular SCSI adapter to find the
adapter-specific requirements of the microcode buffer to be downloaded.

The SCSI adapter device driver validates the parameter values for such things as maximum
length and block boundaries as required. The arg parameter for the SCIODNLD operation is
the address of a sc_download structure. This structure is defined in the <sys/scsi.h> file.

If the query version option is selected, the pointer and length fields in the passed parameter
block are ignored. On successful completion of the SCIODNLD operation, the microcode
version is contained in the version_number field. (

The SCSI adapter device driver performs normal error recovery procedures during execution
of the SCIODNLD operation.

Return Values
When completed sucessfully this operation returns a value of O (zero). Otherwise, a value
of -1 is returned and the errno global variable is set to one of the following:

ENXIO Indicates that the operation or sub-option selected is not supported on this
adapter and should not be treated as an error. Note that the caller must
check for this return value first (before checking for other errno values) to
avoid mistaking this for a failing command.

EINVAL

EIO

9-40 Kernel Reference

Indicates that the adapter device driver was unable to execute the
command due to invalid input parameters. Check microcode length and
block boundary for errors.

Indicates that the adapter device driver was unable to complete the
command due to an unrecoverable 1/0 error or microcode CRC error. If the
card has on-board microcode, it may be able to continue running, and
further commands may still be possible on this adapter. The adapter error
status information is logged in the system error log.

(

~

Files

SCSI Adapter Device Driver

EFAULT Indicates that a severe 1/0 error has occurred, preventing completion of the
download. In this case, further operations are not possible on the card, and
the caller should discontinue commands to the card. The adapter error
status information is logged in the system error log.

ETIMEDOUT Indicates that the adapter did not respond with status before the passed
command time-out value expired. Since the download operation may not
have completed, further operations on the card may not be possible. The
caller should discontinue sending commands to the card. This error is also
logged in the system error log.

/dev/scsiO, /dev/scsi1, ...

Related Information
The SCSI cdrom device driver, SCSI rmt device driver, SCSI scdisk device driver.

The SCSI Adapter Device Driver.

Special File Overview in Files Reference.

The SCSI Device Driver-SCSI Adapter Device Driver Interface, SCSI Subsystem
Programming Introduction, Understanding 1/0 Access through Special Files in Kernel
Extensions and Device Support Programming Concepts.

SCSI Subsystem 9-41

SCSI Adapter Device Driver

SCIOHALT ioctl Operation
Purpose

Description

Aborts the current command (if there is one), clears the queue of any pending commands,
and places the device queue in a halted state. ·

The SCIOHALT operation allows the caller to abort the current command (if there is one) to
a selected device, clear the queue of any pending commands, and place the device queue in
a halted state. The command causes the attached SCSI adapter to execute a SCSI abort
message to the selected target device. This command can be used by an upper-level SCSI
device driver to abort a running operation, instead of waiting for the operation to complete or
time out.

Once the SCIOHALT operation is sent, the calling device driver must set the SC_RESUME
flag. This bit is located in the flags field of the next sc_buf structure to be processed by the
SCSI adapter device driver. Any sc_buf structure sent without the SC_RESUME flag after /
the device queue is in the halted state is rejected. \

The arg parameter to the SCIOHALT operation allows the caller to specify the SCSI identifier
of the device to be reset. The least significant byte in the arg parameter is the LUN ID of the
LUN on the SCSI controller to be halted. The next least significant byte is the SCSI ID. The
remaining two bytes are reserved and must be set to zero.

The SCSI adapter device driver performs normal error recovery procedures during execution
of this command. For example, if the abort message causes the SCSI bus to hang, a SCSI
bus reset is initiated to clear the condition.

/
Return Values ~

Files

When completed sucessfully this operation returns a value of 0 (zero). Otherwise, a value
of -1 is returned and the errno global variable is set to one of the following:

EINVAL Indicates that an SCIOSTART command was not issued prior to this
command.

EIO Indicates that an unrecoverable 1/0 error has occurred. In case of an
unrecovered error, the adapter error status information is logged in the
system error log.

ENODEV Indicates that the target SCSI ID could not be selected or is not responding. (
This condition is not necessarily an error and is not logged.

ETIMEDOUT Indicates that the adapter did not respond with status before the internal
command time-out value expired. This error is logged in the system error
log.

/dev/scsiO, /dev/scsi1, ...

Related Information
The SCSI cdrom device driver, SCSI rmt device driver, SCSI scdisk device driver.

The SCSI Adapter Device Driver.

Special File Overview in Files Reference.

The SCSI Device Driver-SCSI Adapter Device Driver Interface, SCSI Subsystem
Programming Introduction, Understanding 1/0 Access through Special Files in Kernel
Extensions and Device Support Programming Concepts.

9-42 Kernel Reference

SCSI Adapter Device Driver

SCIOINQU ioctl Operation
Purpose

Description

Provides the means to issue an inquiry command to a SCSI device.

The SCIOINQU operation allows the caller to issue a SCSI device inquiry command to a
selected adapter. This command can be used by system management routines to aid in
configuration of SCSI devices.

The arg parameter for the SCIOINQU operation is the address of a sc_inquiry structure.
This structure is defined in the <sys/scsi.h> file. The sc_inquiry parameter block allows the
caller to select the SCSI and LUN IDs to be queried.

The SC_ASVNC flag byte of the parameter block must not be set on the initial call to this
operation. This flag is only set if a bus fault occurs and the caller intends to attempt more
than one retry.

If successful, the returned inquiry data can be found at the address specified by the caller in
the sc_inquiry structure. Successful completion occurs if a device responds at the
requested SCSI ID, but the returned inquiry data must be examined to see if the requested
LUN exists. Refer to the Small Computer System Interface (SCSI) specification for the
applicable device for the format of the returned data.

Note: The SCSI adapter device driver performs normal error-recovery procedures during
execution of this command.

Return Values
When completed sucessfully this operation returns a value of O (zero). Otherwise, a value of
-1 is returned and the errno global variable is set to one of the following:

EINVAL Indicates that a SCIOSTART command was not issued prior to this
command.

EIO Indicates that an unrecoverable 1/0 error has occurred. If EIO is returned,
the caller should retry the SCIOINQU operation since the first command
may have cleared an error condition with the device. In case of an
unrecovered error, the adapter error status information is logged in the
system error log.

ENOCONNECT Indicates that a bus fault has occurred. The caller should respond by
retrying with the SC_ASVNC flag set in the flag byte of the passed
parameters. If more than one retry is attempted, only the last retry should be
made with the SC_ASVNC flag set. Since, in general, the SCSI adapter
device driver cannot determine which device caused the SCSI bus fault, this
error is not logged.

ENODEV Indicates that no SCSI controller responded to the requested SCSI ID. This
return value implies that no LUNs exist on the requested SCSI ID.
Therefore, when the ENODEV return value is encountered, the caller can
skip this SCSI ID (and all LUNs on it) and go on to the next SCSI ID. This
condition is not necessarily an error and is not logged.

ETIMEDOUT Indicates that the adapter did not respond with a status before the internal
command time-out value expired. On receiving the ETIMEDOUT return
value, the caller should retry this command at least once, since the first
command may have cleared an error condition with the device. This error is
logged in the system error log.

SCSI Subsystem 9-43

SCSI Adapter Device Driver

Files
/dev/scsiO, /dev/scsi1, ...

Related Information
The SCSI cdrom device driver, SCSI rmt device driver, SCSI scdisk device driver.

The SCSI Adapter Device Driver.

Special File Overview in Files Reference.

The SCSI Device Driver-SCSI Adapter Device Driver Interface, SCSI Subsystem
Programming Introduction, Understanding 1/0 Access Through Special Files in Kernel
Extensions and Device Support Programming Concepts.

9-44 Kernel Reference

(

\

SCSI Adapter Device Driver

~ SCIORESET ioctl Operation
Purpose

Description

Allows the caller to force a SCSI device to release all current reservations, clear all current
commands, and return to an initial state.

The SCIORESET operation allows the caller to force a SCSI device to release all current
reservations, clear all current commands, and return to an initial state. This command can
be used by system management routines to force a SCSI controller to release a competing
SCSI initiator's reservation in a multi-initiator environment.

The command actually executes a SCSI bus device reset (BDR) message to the selected
SCSI controller on the selected adapter. The BDR message is directed at a SCSI ID.
Therefore, all LUNs associated with that SCSI ID are affected by the execution of the BDR.

To take over a device effectively, a SCSI Reserve command should be issued after the
SCUIRESET operation through the appropriate SCSI device driver. Typically, the SCSI
device driver open logic issues a SCSI Reserve command. This prevents another initiator
from claiming the device.

There is a finite amount of time between the release of all reservations (a SCIORESET
operation) and the time the device is again reserved (a SCSI Reserve command from the
host). During this interval, another SCSI initiator can reserve the device instead. If this
occurs, the SCSI Reserve command from this host fails and the device remains reserved by
a competing initiator. The intelligence needed to prevent or recover from this event is
assumed to be beyond that of the SCSI adapter device driver and SCSI device driver
components.

The arg parameter to the SCIORESET operation allows the caller to specify the SCSI
identifier of the device to be reset. The least-significant byte in the arg parameter is the LUN
ID of an LUN on the SCSI controller. The device indicated by the LUN ID should have been
successfully started by a call to the SCIOSTART operation. The next-least-significant byte is
the SCSI ID. The remaining two bytes are reserved and must be set to 0 (zero).

Examples of the Use of the SCIORESET Operation

The following example demonstrates actual use of this command. A SCSI ID of 1 is
assumed, and a LUN of O exists on this SCSI controller.

open SCSI adapter device driver
SCIOSTART SCSI ID=l, LUN=O
SCIORESET SCSI ID=l, LUN=O (to free any reservations)
SCIOSTOP SCSI ID=l, LUN=O
close SCSI adapter device driver
open SCSI device driver (normal open) for SCSI ID=l, LUN=O

Use device as normal

Another example makes use of the SC_FORCED_OPEN flag of the SCSI device driver:

open SCSI device driver (with SC_FORCED_OPEN flag) for SCSI ID=l,
LUN=O

Use device as normal.

The previous examples assume that the SCSI device driver open call executes a SCSI
Reserve command on the selected device.

SCSI Subsystem 9-45

SCSI Adapter Device Driver

The SCSI adapter device driver performs normal error recovery procedures during execution
of this command. For example, if the BDR message causes the SCSI bus to hang, a SCSI
bus reset will be initiated to clear the condition.

Return Values
When completed sucessfully this operation returns a value of O (zero). Otherwise, a value
of -1 is returned and the errno global variable is set to one of the following:

EINVAL Indicates that a SCIOSTART command was not issued prior to this
command.

EIO Indicates that an unrecoverable 1/0 error has occurred. In case of an
unrecovered error, the adapter error status information is logged in the
system error log.

ENODEV Indicates that the target SCSI ID could not be selected or is not responding.
This condition is not necessarily an error and is not logged.

ETIMEDOUT Indicates that the adapter did not respond with status before the internal (
command time-out value expired. This error is logged in the system error
log.

Files
/dev/scsiO, /dev/scsi1, ...

Related Information
The SCSI cdrom device driver, SCSI rmt device driver, SCSI scdisk device driver.

The SCSI Adapter Device Driver.

Special File Overview in Files Reference.

The SCSI Device Driver-SCSI Adapter Device Driver Interface, SCSI Subsystem
Programming Introduction, Understanding 1/0 Access Through Special Files in Kernel
Extensions and Device Support Programming Concepts.

9-46 Kernel Reference

(

SCSI Adapter Device Driver

~ SCIOSTART ioctl Operation
Purpose

Description

Opens a logical path to a SCSI device.

The SCIOSTART operation opens a logical path to a SCSI device. This operation causes the
adapter device driver to allocate and initialize the data areas needed to manage commands
to a particular SCSI target.

The SCIOSTART operation must be issued prior to any of the other non-Diagnostic mode
operations, such as SCIOINQU and SCIORESET. However, the SCIOSTART operation is
not required prior to calling the IOCINFO operation. Finally, when the caller is finished
issuing commands to the SCSI target, the SCIOSTOP operation must be issued to release
allocated data areas and close the path to the device.

The arg parameter to SCIOSTART allows the caller to specify the SCSI and LUN identifier of
the device to be started. The least significant byte in the arg parameter is the LUN, and the
next least-significant byte is the SCSI ID. The remaining two bytes are reserved and must be
set to O (zero).

Return Values

Files

If completed successfully this operation returns a O (zero). Otherwise, a value of -1 is
returned and the errno global variable set to one of the following values:

EIO

EINVAL

Indicates that sufficient system resources were lacking for completing the
command.

Indicates either that the SCSI ID and LUN combination was invalid (the
combination may already be in use) or that the passed SCSI ID is the same
as that of the adapter.

If the SCIOSTART failed, the caller must not attempt other operations to this SCSI ID and
LUN combination, since it is either already in use, or was never successfully started.

/dev/scsiO, /dev/scsi1, ...

Related Information
The SCSI cdrom device driver, SCSI rmt device driver, SCSI scdisk device driver.

The SCSI Adapter Device Driver.

Special File Overview in Files Reference.

The SCSI Device Driver-SCSI Adapter Device Driver Interface, SCSI Subsystem
Programming Introduction, Understanding 1/0 Access Through Special Files in Kernel
Extensions and Device Support Programming Concepts.

SCSI Subsystem 9-47

SCSI Adapter Device Driver

SCIOSTOP ioctl Operation
Purpose

Description

Closes the logical path to a SCSI

The SCIOSTOP operation closes the logical path to a SCSI device. The SCIOSTOP causes
the adapter device driver to deallocate data areas allocated in response to an SCIOSTART
operation. This command must be issued when the caller wishes to cease communications
to a particular SCSI target. The SCIOSTOP operation should only be issued for a device
successfully opened by a previous call to an SCIOSTART operation.

The SCIOSTOP operation passes the arg parameter. This parameter allows the caller to
specify the SCSI and LUN IDs of the device to be stopped. The least significant byte in the
arg parameter is the LUN, and the next least significant byte is the SCSI ID. The remaining
two bytes are reserved and must be set to zero.

Return Value

Files

When this operation completes successfully a value of O (zero) is returned. Otherwise, a
value of -1 is returned and the errno global variable is set to EIO. This code indicates that
the device was not in the open state. An SCIOSTART operation should be issued prior to
calling the SCIOSTOP operation.

/dev/scsiO, /dev/scsi1, ...

Related Information
The SCSI cdrom device driver, SCSI rmt device driver, SCSI scdisk device driver.

The SCSI Adapter Device Driver.

Special File Overview in Files Reference.

The SCSI Device Driver-SCSI Adapter Device Driver Interface, SCSI Subsystem
Programming Introduction, Understanding 1/0 Access Through Special Files in Kernel
Extensions and Device Support Programming Concepts.

9-48 Kernel Reference

I
I,

\

(

SCSI Adapter Device Driver

} SCIOSTUNIT ioctl Operation
Purpose

Description

Provides the means to issue a SCSI Start Unit command to a selected SCSI adapter.

The SCIOSTUNIT operation allows the caller to issue a SCSI Start Unit command to a
selected SCSI adapter. This command can be used by system management routines to aid
in configuration of SCSI devices. For the SCIOSTUNIT operation, the arg parameter
operation is the address of a sc_startunit structure. This structure is defined in the
<sys/scsi.h> file.

The sc_startunit structure allows the caller to specify the SCSI and LUN IDs of the device
on the SCSI adapter that is to be started. The SC_ASYNC flag (in the flag byte of the
passed parameter block) must not be set on the initial attempt of this command.

The start_flag field in the parameter block allows the caller to indicate the start option to the
SCIOSTUNIT operation. When start_flag is set to TRUE, the logical unit is to be made
ready for use. When FALSE, the logical unit is to be stopped.

Warning: When the immed_flag field is set to TRUE, the SCSI adapter device driver allows
simultaneous SCIOSTUNIT operations to any or all attached devices. It is important that
when executing simultaneous SCSI Start Unit commands, the caller should allow a delay of
at least 10 seconds between succeeding SCSI operations. The delay ensures that adequate
power is available to devices sharing a common power supply. Failure to delay in this
manner can cause damage to the system unit or to attached devices. Please consult the
individual device technical specifications manuals for individual devices and the IBM RISC
System/6000 Technical Reference for detailed power requirements.

The immed_flag field allows the caller to indicate the immediate option to the SCIOSTUNIT
operation. When the immed_flag field is set to TRUE, status is to be returned as soon as
the command is received by the device. When the field is set to FALSE, the status is to be
returned after the operation is completed. The caller should set the immed_flag field to
TRUE to allow overlapping SCIOSTUNIT operations to multiple devices on the SCSI bus. In
this case, the SCIOTUR operation can be used to determine when the SCIOSTUNIT has
actually completed.

Note: The SCSI adapter device driver performs normal error recovery procedures during
execution of the SCIOSTUNIT operation.

Return Values
When completed successfully, the SCIOSTUNIT operation returns 0 (zero). Otherwise, a
value of-1 is returned and the errno global variable is set to one of the following:

EINVAL Indicates that an SCIOSTART command was not issued prior to this
command.

EIO Indicates that an unrecoverable 1/0 error has occurred. If EIO is received,
the caller should retry this command at least once, as the first command
may have cleared an error condition with the device. In case of an
unrecovered error, the adapter error status information is logged in the
system error log.

SCSI Subsystem 9-49

SCSI Adapter Device Driver

Files

ENOCONNECT Indicates that a bus fault has occurred. The caller should respond by
retrying with the SC_ASYNC flag set in the flag byte of the passed
parameters. If more than one retry is attempted, only the last retry should
be made with the SC_ASYNC flag set. Since, in general, the SCSI
adapter device driver cannot determine which device caused the SCSI
bus fault, this error is not logged.

ENODEV Indicates that no SCSI controller responded to the requested SCSI ID.
This condition is not necessarily an error and is not logged.

ETIMEDOUT Indicates that the adapter did not respond with status before the internal
command time-out value expired. If ETIMEDOUT is received, the caller
should retry this command at least once, as the first command may have
cleared an error condition with the device. This error is logged in the
system error log.

/dev/scsiO, /dev/scsi1, ...

Related Information
The SCSI cdrom device driver, SCSI rmt device driver, SCSI scdisk device driver.

The SCSI Adapter Device Driver.

Special File Overview in Files Reference.

The SCSI Device Driver-SCSI Adapter Device Driver Interface, SCSI Subsystem
Programming Introduction, Understanding 1/0 Access Through Special Files in Kernel
Extensions and Device Support Programming Concepts.

9-50 Kernel Reference

/

(

SCSI Adapter Device Driver

~ SCIOTRAM ioctl Operation
Purpose

Description

Provides the means to issue various adapter commands to test the card OMA interface and
buffer RAM.

The SCIOTRAM operation allows the caller to issue various adapter commands to test the
card OMA interface and buffer RAM. The arg parameter block to the SCIOTRAM operation
is the sc_ram_test structure. This structure is defined in the <sys/scsi.h> file and contains
the following;

• A pointer to a read or write test pattern buffer

• The length of the buffer

• An option field indicating whether a read or write operation is requested.

Note: The SCSI adapter device driver is not responsible for comparing read data with
previously written data. After successful completion of write or read operations, the
caller is responsible for performing a comparison test to determine the final success
or failure of this test.

The SCSI adapter device driver performs no internal retries or other error recovery
procedures during execution of this operation. Error logging is inhibited when running this
command.

Return Values

Files

When completed sucessfully this operation returns a value of 0 (zero). Otherwise, a value
of-1 is returned and the errno global variable is set to one of the following:

ENXIO Indicates that the operation or sub-option selected is not supported on this
adapter. This should not be treated as an error. The caller must check for
this return value first (before other errno values) to avoid mistaking this for
a failing command.

EIO Indicates that the adapter device driver has detected an error. The specific
adapter status is returned in the sc_ram_test parameter block. The
SCIOTRAM operation is a diagnostic command and, as a result, this error is
not logged in the system error log.

ETIMEDOUT Indicates the adapter did not respond with status before the passed
command time-out value expired. The SCIOTRAM operation is a diagnostic
command and, as a result, this error is not logged in the system error log.

/dev/scsiO, /dev/scsi1, ...

Related Information
The SCSI cdrom device driver, SCSI scdisk device driver, SCSI rmt device driver.

The SCSI Adapter Device Driver.

Special File Overview in Files Reference.

The SCSI Device Driver-SCSI Adapter Device Driver Interface, SCSI Subsystem
Programming Introduction, Understanding 1/0 Access through Special Files in Kernel
Extensions and Device Support Programming Concepts.

SCSI Subsystem 9-51

SCSI Adapter Device Driver

SCIOTUR ioctl Operation
Purpose

Description

Allows a Test Unit Read command to the selected SCSI adapter.

The SCIOTUR operation allows the caller to issue a SCSI Test Unit Read command to a
selected SCSI adapter. This command can be used by system management routines to aid
in configuration of SCSI devices. The arg parameter for the SCIOTUR operation is the
address of a sc_ready structure. This structure is defined in the <sys/scsi.h> header file.

The sc_ready structure allows the caller to specify the SCSI and LUN ID of the device on
the SCSI adapter that is to receive the SCIOTUR operation. The SC_ASYNC flag (in the flag
byte of the arg parameter block) must not be set on the initial attempt of this command. The
sc_ready structure provides two output fields, the status_validity and scsi_status field.
Using these two fields, the SCIOTUR operation returns status is to the caller.

When an errno value of EIO is received, the caller should evaluate the returned status in the
status_validity and scsi_status fields. The status_validity field is set to the value
SC_SCSl_ERROR to indicate that the scsi_status field has a valid SCSI Bus status in it.
The <sys/scsi.h> header file contains typical values for the scsi_status field.

Following an SCIOSTUNIT operation, a calling program can use the SCSI bus status to tell
if the device is ready or not. If an errno value of EIO is returned, and the status_validity
field is set to O (zero), then an unrecovered error occurred. If, on retry, the same result is
obtained, the device should be skipped. If the status_ validity field is set to
SC_SCSl_ERROR, and the scsi_status field indicates a Check Condition status, then
another SCIOTUR command should be sent after a reasonable delay (for example, several
seconds).

After one or more attempts, the SCIOTUR operation should return a successful completion,
indicating that the device was successfully started. If, after a reasonable number of seconds,
the SCIOTUR operation still returns a scsi_status field set to a Check Condition status, the
device should be skipped.

Note: The SCSI adapter device driver performs normal error recovery procedures during
execution of this command.

Return Values
When completed sucessfully this operation returns a value of O (zero). For the SCIOTUR
operation, this means the target device has been successfully started and is ready for data
access. If unsuccessful, this operation returns a value of -1 and the errno global variable is
set to one of the following:

EINVAL

EIO

9-52 Kernel Reference

Indicates that an SCIOSTART operation was not issued prior to this
command.

Indicates that the adapter device driver was unable to complete the
command due to an unrecoverable 1/0 error. If EIO is received, the caller
should retry this command at least once, as the first command may have
cleared an error condition with the device. In case of an unrecovered
error, the adapter error status information is logged in the system error
log.

I

\

(

\

Files

SCSI Adapter Device Driver

ENOCONNECT Indicates that a bus fault has occurred. The caller should retry with the
SC_ASVNC flag set in the flag byte of the passed parameters. If more
than one retry is attempted, only the last retry should be made with the
SC_ASVNC flag set. Since, in general, the SCSI adapter device driver
cannot determine what device caused the SCSI bus fault, this error is not
logged.

ENODEV

ETIMEDOUT

Indicates that no SCSI controller responded to the requested SCSI ID.
This condition is not necessarily an error and is not logged.

Indicates that the adapter did not respond with a status before the
internal command time-out value expired. If this return value is received,
the caller should retry this command at least once, as the first command
may have cleared an error condition with the device. This error is logged
in the system error log.

/dev/scsiO, /dev/scsi1, ...

Related Information
The SCSI cdrom device driver, SCSI rmt device driver, SCSI scdisk device driver.

The SCSI Adapter Device Driver.

Special File Overview in Files Reference.

The SCSI Device Driver-SCSI Adapter Device Driver Interface, SCSI Subsystem
Programming Introduction, Understanding 1/0 Access through Special Files in Kernel
Extensions and Device Support Programming Concepts.

SCSI Subsystem 9-53

SCSI Adapter Device Driver

(

9-54 Kernel Reference

Index

A
ackque kernel service, 1-2
add_domain_af kernel service, 1-6
add_input_type kernel service, 1-8
add_netisr kernel service, 1-1 O
add_netopt macro kernel service, 1-11
as_att kernel service, 1-12
as_det kernel service, 1-14
attach-device queue management routine, kernel

service, 1-16
attchq kernel service, 1-17
attribute information, devices

create new class, 4-26
delete class, 4-26
query class, 4-20
update, 4-26

attributes, predefined attribute class, 4-47
attributes, verifying range, 4-15
attrval command, 4-15
audit_svcbcopy kernel service, 1-20
audit_svcfinis kernel service, 1-21
audit_svcstart kernel service, 1-22

B
bawrite kernel service, 1-24
bdwrite kernel service, 1-25
bflush kernel service, 1-26
binval kernel service, 1-27
blkflush kernel service, 1-28
block, 7-3
boot devices list, altering, 4-7
boot image, reading information from, 4-13
bootlist command, 4-7
bread kernel service, 1-29
breada kernel service, 1-30
break map structure, 6-50
break map, set, 6-30
brelse kernel service, 1-32
buf structure, 2-6
bwrite kernel service, 1-33

c
cancel sound write operation, 6-35
canclq kernel service, 1-35
cfg device method, 4-64
CFG_INIT command parameter, 2-19
CFG_QVPD command parameter, 2-20
CFG_ TERM command parameter, 2-21
cfgnadd kernel service, 1-36
cfgncb kernel service, cfgncb configuration

notification control block, 1-37
cfgndel kernel service, 1-39

change font palette write operation, 6-36
change physical display write operation, 6-37
character device driver

character lists, 2-8
clist structure, 2-8

chg device method, 4-61
clrbuf kernel service, 1-42
clrjmpx kernel service, 1-43
Communications Device Handlers

entry points
ddclose, 5-2
ddopen, kernel mode, 5-13
ddopen, user mode, 5-16
ddread, 5-18
ddselect, 5-20
ddwrite, 5-22

ioctl operations
CIO_GET_STAT, 5-3
CIO_HALT, 5-7
CIO_QUERY, 5-11
CIO_START, 5-9

status blocks, common, 5-5
configuration rules object class, 4-31

See also configuring devices
configuring devices

commands
attrval, 4-15
bootlist, 4-7
genmajor, 4-16
genminor, 4-17
genseq,4-19
getminor, 4-22
nvload, 4-11
putattr, 4-26
reldevno, 4-27
relmajor, 4-28
relseq, 4-29
restbase, 4-13
savebase,4-14

device attributes, S attributes, 4-4 7
device methods ·· ·

adapter cards, methods for, 4-60
configure method, errors, 4-67
types of

cfg, configure, 4-64
chg,change,4-61
def, define, 4-69
ucfg, unconfigure, 4-73

writing
start, optional method, 4-78
stop, optional method, 4-78
und, undefined, 4-76

Index X-1

device methods interface, device methods,
returning errors, 4-58

getattr subroutine, 4-20
object classes

list of, 4-30
predefined

attributes, 4-4 7
devices, 4-56

types of
configuration rules, 4-31
customized attribute, 4-33
customized device driver, 4-40
customized devices, 4-36
customized devices object class, 4-35
customized VPD, 4-42, 4-43
predefined connection, 4-50
predefined device, 4-51

control codes, multibyte
deleting, 6-62
erasing, 6-60
inserting, characters and lines, 6-62
miscellaneous tasks, 6-64
scrolling, 6-69

copyin kernel service, 1-44
copyinstr kernel service, 1-45
copyout kernel service, 1-46
creatd kernel service, 1-4 7
creatp kernel service, 1-49
creatq kernel service, 1-50
curtime kernel service, 1-52
customized attribute object class, 4-33

See also configuring devices
customized dependency object class. See

configuring devices
customized device driver object class, 4-40

See also configuring devices
customized devices object class, 4-35, 4-36

See also configuring devices
customized devices, saving information about, 4-14
customized VPD object class, 4-42

See also configuring devices
cylinder, 7-3

D
d_clear kernel service, 1-54
d_complete kernel service, 1-55
d_init kernel service, 1-57
d_mask kernel service, 1-59
d_master kernel service, 1-60
d_move kernel service, 1-63
d_slave kernel service, 1-65
d_unmask kernel service, 1-67
ddclose entry point, 2-15
ddconfig entry point, 2-17
dddump entry point, 2-22

command parameters, 2-24
ddhftready,6-20,6-47,6-55,6-57,6-60,6-62,

6-64,6-69

X-2 Kernel Reference

ddioctl entry point, 2-26
ddmpx entry point, 2-28
ddopen entry point, 2-30
ddread entry point, 2-32
ddrevoke entry point, 2-35
ddselect entry point, 2-37
ddstrategy entry point, 2-40
ddwrite entry point, 2-42
define device method, 4-69
del_domain_af kernel service, 1-69
del_input_type kernel service, 1-70
del_netisr kernel service, 1-71
del_netopt macro kernel service, 1-72
delay kernel service, 1-73
deque kernel service, 1-74
/dev/nvram special file, 4-2
detchq kernel service, 1-78
devdump kernel service, 1-80
device configuration. See configuring devices
device dependent structure (DDS), 2-10
device drivers

buf structure, 2-6
device dependent structure, 2-10
entry points

ddclose, 2-15
ddconfig, 2-1 7

CFG_INIT command parameter, 2-19
CFG_QVPD command parameter,

2-20
CFG_ TERM command parameter,

2-21
dddump, 2-22

command parameters, 2-24
ddioctl, 2-26
ddmpx, 2-28
ddopen,2-30
ddread, 2-32
ddrevoke, 2-35
ddselect, 2-37
ddstrategy, 2-40
ddwrite, 2-42
functions of, 2-3
overview, 2-3
prequisite information, 2-2
requirements for, 2-3
standard parameters, 2-5

machine device driver
/dev/busO, 4-5

close subroutine, 4-5
error conditions, 4-6
ioctl subroutine, 4-6
open subroutine, 4-5
read subroutine, 4-5
write subroutine, 4-5

close subroutine, 4-2
error conditions, 4-5
intialization, 4-2
ioctl subroutine, 4-3

(

(

\

/dev/nvram, 4-2
open subroutine, 4-2
read subroutine, 4-3
termination, 4-2
write subroutine, 4-3

memory buffer, 2-12
read logic for reads and writes, 2-34, 2-44
select logic for reads and writes, 2-34, 2-44
uio structure, 2-12

device methods
adapter cards, methods for, 4-60
returning errors, 4-58
types of

cfg, configure, 4-64
chg,change,4-61
def, define, 4-69
ucfg, unconfigure, 4-73

writing, und, undefined, 4-76
devices, predefined object class, 4-56
devstrat kernel service, 1-82
devswadd kernel service, 1-84
devswdel kernel service, 1-86
devswqry kernel service, 1-88
dial granularities, setting, 6-42
direct access storage device (DASO)

See also
cylinder, 7-3
device block addressing, 7-2
head, 7-3
sector, 7-3
track, 7-3

dmp_add kernel service, 1-90
dmp_del kernel service, 1-92
dstryd kernel service, 1-93
dstryq kernel service, 1-94
DTOM kernel service, 1-95

E
e_post kernel service, 1-96
e_sleep kernel service, 1-97
e_sleepl kernel service, 1-99
e wait kernel service, 1-101
e=:wakeup kernel service, 1-103
echo map structure, 6-50
enque kernel service, 1-104
errsave kernel service, 1-106
Ethernet device handler

entry points
entclose, 5-24
entconfig, 5-25
entioctl, 5-27
entmpx, 5-38
entopen, 5-40
entread, 5-42
entselect, 5-44
entwrite, 5-46

ioctl operations
CCC GET VPD, 5-29
CIO_GET _STAT, get status, 5-30
CIO HALT, halt device, 5-32
CIO=QUERY, query statistics, 5-33
CIO START, start device, 5-34
EN"(,.SET_MULTI, set multicast address,
5-36

IOCINFO, describe device, 5-37
status blocks, 5-30

F

CIO HALT DONE, 5-31
CIO=START _DONE, 5-31

find_input_type kernel service, 1-109
fixed storage. See direct access storage device

(DASO)
fp_access kernel service, 1-111
fp_close kernel service, 1-112
fp_fstat kernel service, 1-113
fp_getdevno kernel services, 1-114
fp _getf kernel service, 1-115
fp_hold kernel service, 1-116
fp_ioctl kernel service, 1-117
fp_lseek kernel service, 1-118
fp_open kernel service, 1-119
fp_opendev kernel service, 1-121
fp_poll kernel service, 1-124
fp_read kernel service, 1-126
fp_readv kernel service, 1-128
fp_rwuio kernel service, 1-130
fp_select kernel service, 1-131
fp_select kernel service notify routine, 1-241
fp_write kernel service, 1-135
fp_writev kernel service, 1-137
fubyte kernel service, 1-139
fuword kernel service, 1-140

G
genmajor command, 4-16
genminor command, 4-17
genseq command, 4-19
getadsp kernel service, 1-141
getattr subroutine, 4-20
getblk kernel service, 1-142
getc kernel service, 1-143
getcb kernel service, 1-144
getcbp kernel service, 1-145
getcf kernel service, 1-146
getcx kernel service, 1-147
geteblk kernel service, 1-148
geterror kernel service, 1-149
getexcept kernel service, 1-150
getminor command, 4-22
getpid kernel service, 1-151

Index X-3

getuerror kernel service, 1-152
gfsadd kernel service, 1-153
gfsdel kernel service, 1-155

H
head, device, 7-3
HFCHGLOC operation, 6-2
HFCMON operation, 6-3
HFDSOUND operation, 6-4
HFESOUND operation, 6-5
HFESWKBD operation, 6-6
HFQERROR operation, 6-7
HFQUERY operation, 6-11
HFSJKBD operation, 6-22
HFSKBD operation, 6-24
HFSMON operation, 6-25
HFT

accented characters, 6-4 7
break map structure, 6-50
break map, set, 6-30
control codes, multibyte

deleting, characters and lines, 6-62
erasing, 6-60
inserting, characters and lines, 6-62
miscellaneous taskst, 6-64
scrolling, 6-69

echo map structure, 6-50
echo map, changing, 6-31
error, query 1/0 error, 6-7
input ring buffer, specifying, 6-52
ioctl operation, HFQUERY, 6-18

query mouse and tablet, 6-16
query physical device, 6-17
query dials, 6-12
query HFT device, 6-13
query keyboard status, 6-14
query LPFKs, 6-15
query presentation space, 6-19
query retract device ID, 6-20
query software keyboard, 6-21

ioctl subroutine, operations
HFCHGLOC, 6-2
HFCMON, 6-3
HFDSOUND, 6-4
HFESOUND, 6-5
HFESWKED, 6-6
HFQERROR, 6-7
HFQUERY, 6-11
HFSJKBD, 6-22
HFSKBD, 6-24
HFSMON, 6-25
HFTCSMGR, 6-26
HFTGETID, 6-27
HFTQDEV, 6-28
HFTQSMGR, 6-29
HFTSBREAK, 6-30
HFTSECHO, 6-31

keyboard map, set, 6-24

X-4 Kernel Reference

locator, change attributes, 6-2
Monitor mode, entering, 6-25
Monitor mode, exit, 6-3
query device, 6-28
read operations

input device report, 6-33
untranslated key control, 6-34

screen control, requesting, 6-52
screen manager ring, query, 6-29
screen manger, control, 6-26
screen release, requesting, 6-54
software keyboard, enable, 6-6
software keyboard, update, 6-22
sound singal, disable, 6-4
sound-response signal, enabling routine of, 6-5
state, virtual terminal, 6-11
write operations

cancelsound,6-35
change font palette, 6-36
change physical display, 6-37
keyboard LEDs, setting, 6-43
protocol modes, setting, 6-46
redefine cursor representation, 6-38
screen release, 6-39
screen request, 6-40
send sound, 6-41
set dial granularities, 6-42
set KSR color palette, 6-44
set LPFK, 6-45

HFTCSMGR operation, 6-26
HFTGETID operation, 6-27
HFTQDEV operation, 6-28
HFTQSMGR operation, 6-29
HFTSECHO operation, 6-31
high function terminal. See HFT
HVTSBREAK operation, 6-30

I
i_clear kernel service, 1-156
i_disable kernel service, 1-157
i_enable kernel service, 1-159
i_init kernel service, 1-160
i_mask kernel service, 1-162
i_reset kernel service, 1-163
i_sched kernel service, 1-164
i_unmask kernel service, 1-166
if-nostat kernel service, 1-170
if_attach kernel service, 1-167
if_detach kernel service, 1-168
if_down kernel service, 1-169
ifa_ifwithaddr kernel service, 1-171
ifa_ifwithdstaddr kernel service, 1-172
ifa_ifwithnet kernel service, 1-173
ifunit kernel service, 1-174
init_heap kernel service, 1-175
initp kernel service, 1-176
Input Device Report read operation, 6-33
intialize subroutine, 8-3

(
\

(

io_att kernel service, 1-178
io_det kernel service, 1-179
ioctl subroutine, operations

HFCHGLOC, 6-2
HFCMON, 6-3
HFDSOUND, 6-4
HFESOUND, 6-5
HFESWKBD, 6-6
HFQERROR, 6-7
HFQUERY, 6-11
HFSJKBD, 6-22
HFSKBD, 6-24
HFSMON, 6-25
HFTCSMGR, 6-26
HFTGETID, 6-27
H FTQDEV, 6-28
HFTQSMGR, 6-29
HFTSBREAK, 6-30
HFTSECHO, 6-31

iodone kernel service, 1-180
iostadd kernel service, 1-182
iostdel kernel service, 1-185
iowait kernel service, 1-186

K
kernel buffers, 2-6
kernel extensions

loading, 4-24
unloading, 4-24

kernel service
bawrite, 1-24
bdwrite, 1-25
blkflush, 1-28
cfgnadd, 1-36
cfgndel, 1-39
clrjmpx, 1-43
copyout, 1-46
d_clear, 1-54
d_master, 1-60
d_slave, 1-65
d_unmask, 1-67
devdump, 1-80
devstrat, 1-82
devswadd, 1-84
devswdel, 1-86
devswqry, 1-88
dmp_add, 1-90
dmp_del, 1-92
DTOM Macro for mbuf, 1-95
e_sleep, 1-97
e_sleepl, 1-99
e_wakeup, 1-103
errsave, 1-106
fp_close, 1-112
fp_fstat, 1-113
fp_getf, 1-115
fp_hold, 1-116
fp_ioctl, 1-117

fp_lseek, 1-118
fp_open, 1-119
fp_poll, 1-124
fp_read, 1-126
fp_readv, 1-128
fp_rwuio, 1-130
fp_write, 1-135
geteblk, 1-148
geterror, 1-149
i_clear, 1-156
i_enable, 1-159
i_reset, 1-163
i_sched, 1-164
i_unmask, 1-166
if_down, 1-169
iostadd, 1-182
iostdel, 1-185
kmsgctl, 1-195
kmsgget, 1-197
kmsgrcv, 1-199
kmsgsnd, 1-202
longjmpx, 1-207
lookupvp, 1-208
looutput, 1-21 O
m_clget, 1-:213
m_clgetx, 1-214
m_freem, 1-221
M_HASCL macro for mbuf, 1-225
m_pullup, 1-226
mbreq, 1-228
MTOCL macro for mbuf, 1-231
net_xmit, 1-240
pgsignal, 1-248
pincode, 1-253
prochadd, 1-260
prochdel, 1-262
rtalloc, 1-284
setjmpx, 1-293
setpinit, 1-294
sig_chk, ~ -296
timeout, 1-305
trcgenk, 1-309
trcgenkt, 1-31 O
uexblock, 1-315
uexclear, 1-316
uiomove, 1-318
unlock!, 1-320
uphysio, 1-327
uwritec, 1-335
vec_init, 1-338
vfsrele, 1-340
vm_makep, 1-346
vm_mount, 1-34 7
vm_write, 1-358
vn free, 1-365
w_C:lear, 1-368
w_start, 1-370
xmalloc, 1-377

Index X-5

xmattach, 1-379
xmdetach, 1-381
xmemdma, 1-382
xmemout, 1-386

kernel services
ackque, 1-2
add_domain_af, 1-6
add_input_type, 1-8
add_netisr, 1-1 O
add_netopt macro, 1-11
as_att, 1-12
as_det, 1-14
attach-device queue management routine,

1-16
attchq, 1-17
audit_svcbcopy, 1-20
audit_svcfinis, 1-21
audit_svcstart, 1-22
bflush, 1-26
binval, 1-27
bread, 1-29
breada, 1-30
brelse, 1-32
bwrite, 1-33
canclq, 1-35
clrbuf, 1-42
copyin, 1-44
copyinstr, 1-45
creatd, 1-47
creatp, 1-49
creatq, 1-50
curtime, 1-52
d_complete, 1-55
d_init, 1-57
d_mask, 1-59
d_move, 1-63
del_domain_af, 1-69
del_input_type, 1-70
del_netisr, 1-71
del_netopt macro, 1-72
delay, 1-73
deque, 1-74
detchq, 1-78
dstryd, 1-93
dstryq, 1-94
e _post, 1-96
e_wait, 1-101
enque, 1-104
find_input_type, 1-109
fp_access, 1-111
fp_getdevno, 1-114
fp_opendev, 1-121
fp_select, 1-131
fp_select notify routine, 1-241
fp_writev, 1-137
fubyte, 1-139
fuword, 1-140
getadsp, 1-141
getblk, 1-142

X-6 Kernel Reference

getc, 1-143
getcb, 1-144
getcbp, 1-145
getcf, 1-146
getcx, 1-147
getexcept, 1-150
getpid, 1-151
getuerror, 1-152
gfsadd, 1-153
gfsdel, 1-155
i_disable, 1-157
i_init, 1-160
i_mask, 1-162
if_attach, 1-167
if_detach, 1-168
if _nostat, 1-170
ifa_ifwithaddr, 1-171
ifa_ifwithdstaddr, 1-172
ifa_ifwithnet, 1-173
ifunit, 1-174
init_heap, 1-175
initp, 1-176
io_att, 1-178
io_det, 1-179
iodone, 1-180
iowait, 1-186
kgethostname, 1-187
kmod_entrypt, 1-188
kmod_load, 1-189
kmod_unload, 1-193
lockl, 1-204
loifp, 1-206
m_adj, 1-211
m_cat, 1-212
m_collapse, 1-216
m_copy, 1-217
m_copydata, 1-218
mbreq structure for mbuf, 1-228
net_.:.attach, 1-233
net_detach, 1-234
net_error, 1-235
net_sleep, 1-236
net_start, 1-237
net_start_done, 1-238
net_wakeup, 1-239
panic, 1-243
peekq, 1-244
pfctlinput, 1-246
pffindproto, 1-247
pidsig, 1-249
pin, 1-250
pincf, 1-252
pinu, 1-254
pio_assist, 1-256
process state-change notification routine,

1-259
purblk, 1-263
putc, 1-264
putcb, 1-265

putcbp, 1-266
putcf, 1-267
putcfl, 1-268
putcx, 1-269
qryds, 1-270
queryd, 1-272
queryi, 1-273
queryp, 1-274
raw_input, 1-275
raw_usrreq, 1-276
readq, 1-278
rqc, 1-279
rqd, 1-281
rqgetw, 1-282
rqputw, 1-283
rtfree, 1-285
rtinit, 1-286
rtredirect, 1-287
rtrequest, 1-288
schednetisr, 1-290
selnotify, 1-291
setuerror, 1-295
sleep, 1-298
subyte, 1-300
suser, 1-301
suword, 1-302
talloc, 1-303
tfree, 1-304
tstart, 1-311
tstop, 1-313
uexadd, 1-314
uexdel, 1-317
unpin, 1-322
unpincode, 1-323
unpinu, 1-324
untimeout, 1-326
uphysio, mincnt routine, 1-230
ureadc, 1-331
user-mode exception handler for uexadd,

1-333
vec_clear, 1-337
vm_att, 1-342
vm_cflush, 1-343
vm_det, 1-344
vm_handle, 1-345
vm_protectp, 1-350
vm_qmodify, 1-352
vm_release, 1-353
vm_releasep, 1-355
vm_umount, 1-357
vm_writep, 1-360
vms_create, 1-361
vms_delete, 1-363
vms_iowait, 1-364
vn_get, 1-366

w_init, 1-369
w_stop, 1-371
waitcfree, 1-372
waitq, 1-373
wakeup, 1-375
watchdog timer function, 1-376
xmemin, 1-384
xmfree, 1-388
xmfree compatibility interface: free, 1-388

kernel subroutine, timeoutcf, 1-307
keyboard LEDs, setting, 6-43
keyboard map, set, 6-24
kgethostname kernel service, 1-187
kmod_entrypt kernel service, 1-188
kmod unload kernel service, 1-193
kmode load kernel service, 1-189
kmsgctlkernel service, 1-195
kmsgget kernel service, 1-197
kmsgsnd kernel service, 1-202
kmsrcv kernel service, 1-199

L
lineout subroutine, 8-4
loadext subroutine, 4-24
loading a device driver, 4-11
locator, change attributes, 6-2
lockl kernel service, 1-204
logical volume device driver

direct access storage devices (DASDs), 7-2
physical volume layout

implementation limitations, 7-4
logical volume manager, sectors for, 7-5

physical volume layout, introduction, 7-2
logical volume device driver (LVDD)

bad blocks, 7-1 O
detecting and correcting, 7-1 O
relocating, 7-1 O

ddstrategy entry point, 7-7
/dev/lvn special file, 7-6
division of, 7-6
entry points, 7-7
interface to physical device drivers, 7-8
logical block requests, 7-7
physical layers, 7-8
scheduler layer, 7-8
strategy layer, 7-8

logical volume manager, reserved sectors, 7-5
logical volume subsystem, physical volume layout

DASO structure for, 7-3
reserved sectors, 7-4

loifp kernel service, 1-206
longjmpx kernel service, 1-207
lookupvp kernel service, 1-208
looutput kernel service, 1-21 O

Index X-7

M
m_adj kernel service, 1-211
m_cat kernel service, 1-212
m_clget kernel service, 1-213
m_clgetx kernel service, 1-214
m_collapse kernel service, 1-216
m_copy kernel service, 1-217
m_copydata kernel service, 1-218
m_freem kernel service, 1-221
M_HASCL kernel service, 1-225
m_pullup kernel service, 1-226
machine device driver. See device drivers
major number, generating, 4-16
major number, release, 4-27, 4-28
mbreq kernel service, 1-228
memory buffer, device driver, 2-12
minor number, generating, 4-17
minor number, get, 4-22
minor number, release, 4-27
Monitor mode, entering, 6-25
Monitor mode, exit, 6-3
MTOCL kernel service, 1-231
Multiprotocol device handler

N

entry points
mpclose, 5-48
mpconfig, 5-50
mpioctl, 5-51
mpmpx, 5-71
mpopen, 5-72
mpread, 5-74
mpselect, 5-76
mpwrite, 5-77

ioctl operations
CIO_GET_STAT, 5-53
CIO_HALT, halt device, 5-57
CIO_QUERY, query statistics, 5-59
CIO_START, start device, 5-61
MP _CHG_PARMS, change parameters,
5-68

status blocks, 5-53

net_attach kernel service, 1-233
net_detach kernel service, 1-234
net_error kernel service, 1-235
net_sleep kernel service, 1-236
net_start kernel service, 1-237
net_start_done kernel service, 1-238
net_wakeup kernel service, 1-239
net_xmit kernel service, 1-240
nvload command, 4-11

0
object class. See configuring devices

X-8 Kernel Reference

p
panic kernel service, 1-243
partition, 7-3
passthru subroutine, 8-6
peekq kernel service, 1-244
pfctlinput kernel service, 1-246
pffindproto kernel service, 1-247
pgsignal kernel service, 1-248
physical device drivers, interface with logical device

driver, 7-8
physical volumes, 7-3

See also logical volume subsystem
block, partition, 7-3
implementation limitations. See logical volume

subsystem
sector layout on. See logical volume subsystem

pidsig kernel service, 1-249
pin kernel service, 1-250
pincf kernel service, 1-252
pincode kernel service, 1-253
pinu kernel service, 1-254
pio_assist kernel service, 1-256
piocmdout subroutine, 8-7
pioexit subroutine, 8-8
piogetopt subroutine, 8-9
piogetstr subroutine, 8-11
piogetvals subroutines, 8-12
piomsgout subroutine, 8-14
predefined attribute object class, 4-43

See also configuring devices
predefined connection object class, 4-50

See also configuring devices
predefined devices object class, 4-51

See also configuring devices
print formatter

embedded references, 8-2
subroutines

initialize, 8-3
passthru, 8-4, 8-6
piocmdout, 8-7
pioexit, 8-8
piogetopt, 8-9
piogetstr, 8-11
piogetvals, 8-12
piomsgout, 8-14
restore, 8-15
setup, 8-16

printer attribute strings, 8-2
prochadd kernel service, 1-260
prochdel kernel service, 1-262
protocol modes, setting, 6-46
purblk kernel service, 1-263
putattr command, 4-26
putc kernel s~rvice, 1-264

(

putcb kernel service, 1-265
putcbp kernel service, 1-266
putcf kernel service, 1-267
putcfl kernel service, 1-268
putcx kernel service, 1-269

Q
qryds kernel service, 1-270
query device information, 6-28
query dials, 6-12
query HFT device, 6-13
query 1/0 error, 6-7
query keyboard status, 6-14
query lighted programmable function keys (LPKFs)

6-15 '
query physical device, 6-16, 6-17
query physical device, 6-18
query presentation space, 6-19
query retract device ID, 6-20
query software keyboard, 6-21
queryd kernel service, 1-272
queryi kernel service, 1-273
queryp kernel service, 1-274

R
raw_input kernel service, 1-275
raw_usrreq kernel service, 1-276
rdq kernel service, 1-281
read operations, untranslated key control, 6-34
readq kernel service, 1-278
redefine cursor representation write operation, 6-38
reldevno command, 4-27
relmajor number, 4-28
relseq command, 4-29
removable storage. See direct access storage device

(DASO)
reserved sectors, physical volume, 7-4
restbase command, 4-13
restore subroutine, 8-15
rqc kernel service, 1-279
rqgetw kernel service, 1-282
rqputw kernel service, 1-283
rtalloc kernel service, 1-284
rtfree kernel service, 1-285
rtinit kernel service, 1-286
rtredirect kernel service, 1-287
rtrequest kernel service, 1-288

s
savebase command, 4-14
schednetisr kernel service, 1-290
screen manager ring, query, 6-29
screen manager, control, 6-26
screen release write operation, 6-39
screen request write operation, 6-40

SCSI Subsystem
adapter device driver, 9-29

ioctl operations, 9-29
list of, 9-30
SCIODIAG, 9-38
SCIOHALT, 9-42
SCIOINQU, 9-43
SCIORESET, 9-45
SCIOSTART, 9-47
SCIOSTOP, 9-48
SCIOSTUNIT, 9-49
SCIOTRAM, 9-51
SCIOTUR, 9-52

CD-ROM device driver, 9-2
device driver, SCSI

device-dependent subroutines, 9-19
special file, 9-19

magnetic tape access, 9-1 O
rmt device driver, 9-1 O

sector, 7-3
selnotify kernel service, 1-291
send sound write operation, 6-41
set KSR color pallete write operation, 6-44
set LPFKs write operation, 6-45
setjmpx kernel service, 1-293
setpinit kernel service, 1-294
setuerror kernel service, 1-295
setup subroutine, 8-16
sig_chk kernel service, 1-296
sleep kernel service, 1-298
software keyboard, enable, 6-6
software keyboard, update, 6-22
sound signal, disable, 6-4
sound-response signal, enabling routing of, 6-5
status blocks, communications, 5-5
stp device method, 4-78
stt device method, 4-78
subyte kernel service, 1-300
suser kernel service, 1-301
suword kernel service, 1-302

T
talloc kernel service, 1-303
tfree kernel service, 1-304
timeout kernel service, 1-305
timeoutcf kernel subroutine, 1-307
timer function, watchdog, 1-376
Token Ring device handler, ioctl operations,

TOK_GRP _ADDA, set group address, 5-95
Token-Ring device handler

entry points
tokclose, 5-79
tokconfig, 5-80
tokioctl, 5-82
tokmpx, 5-98

Index X-9

tokopen, 5-100
tokwrite, 5-106

hardware.failure blocks, 5-86
adapter check, unrecoverable, 5-86
exceeded network threshold, 5-86
PIO error, 5-86

ioctl operation
TOK_QVPD, query vital product data, 5-96
TOK_RING_INFO, 5-97

ioctl operations, 5-91
CIO_GET _STAT, get status, 5-84
CIO_HALT, halt device, 5-89
CIO_START, start device, 5-91
IOCINFO, describe device, 5-93
TOK_FUNC_ADDR, set functional

address, 5-94
status blocks, 5-84

CIO_ASYNC_STATUS, 5-86
CIO_HALT_DONE, 5-85
CIO_START_DONE, 5-84
CIO_TX_DONE, 5-85
entered network recovery mode, 5-87
exited network recovery mode, 5-87
ring beaconing, 5-87
ring reserved, 5-88

track, 7-3
trcgenk kernel service, 1-309
trcgenkt kernel service, 1-31 O
tstart kernel service, 1-311
tstop kernel service, 1-313

u
ucfg device method, 4-73
uexadd kernel service, 1-314
uexblock kernel service, 1-315
uexclear kernel service, 1-316
uexdel kernel service, 1-317
uio structure, 2-12
uiomove kernel service, 1-318
und device method, 4-76
unique sequence, generating, 4-19
unique sequence, release, 4-29
unlockl kernel service, 1-320
unpin kernel service, 1-322
unpincode kernel service, 1-323
unpinu kernel service, 1-324
untimeout kernel service, 1-326
untranslated key control read operation, 6-34
uphysio kernel service, 1-327

mincnt routine, 1-230
ureadc kernel service, 1-331
user-mode exception handler for uexadd kernel

service, 1-333
uwritec kernel service, 1-335

X-10 Kernel Reference

v
vec_clear kernel service, 1-337
vec_init kernel service, 1-338
vfsrele kernel service, 1-340
Virtual File System (VFS)

VFS operations
vfs_cntl, 3-2
vfs_init, 3-3
vfs_mount, 3-4
vfs_root, 3-6
vfs_statfs, 3-7
vfs_sync, 3-9
vfs_umount, 3-1 O
vfs_vget, 3-12

vnode operations
vn_access,3-14
vn_close, 3-16
vn_create, 3-17
vn_fclear, 3-19
vn_fid,3-20
vn_fsync, 3-21
vn_ftrunc, 3-22
vn_getacl, 3-23
vn_getattr, 3-24
vn_hold, 3-25
vn_ioctl, 3-26
vn_link, 3-27
vn_lockctl, 3-28
vn_lookup, 3-30
vn_map, 3-32
vn_mkdir, 3-34
vn_open,3-36
vn_rdwr, 3-37
vn_readdir, 3-39
vn_readlink, 3-40
vn_remove, 3-42
vn_rename, 3-43
vn_revoke, 3-45
vn_rmdir, 3-46
vn_select, 3-47
vn_strategy, 3-51
vn_unmap, 3-53

virtual terminal
echo map, changing, 6-31
state, query, 6-11

virtual terminal ID, getting, 6-27
vital product data (VPD), handling, 4-67
vm_att kernel service, 1-342
vm_cflush kernel service, 1-343
vm_det kernel service, 1-344
vm_handle kernel service, 1-345
vm_makep kernel service, 1-346
vm_mount kernel service, 1-34 7

/
I
\

(

(

1
I

~

I
I

vm_protectp kernel service, 1-350
vm_qmodify kernel service, 1-352
vm_release kernel service, 1-353
vm_releasep kernel service, 1-355
vm_umount kernel service, 1-357
vm_write kernel service, 1-358
vm_writep kernel service, 1-360
vms_create kernel service, 1-361
vms_delete kernel service, 1-363
vms_iowait kernel service, 1-364
vn_free kernel service, 1-365
vn_get kernel service, 1-366

w
w_clear kernel service, 1-368
w_init kernel service, 1-369
w_start kernel service, 1-370
w_stop kernel service, 1-371
waitcfree kernel service, 1-372
waitq kernel service, 1-373
wakeup kernel service, 1-375
watchdog timer function, 1-376
write operations

x

cancelsound,6-35
change font palette, 6-36
change physical display, 6-37
keyboard LEDs, setting, 6-43
redefine cursor representation, 6-38
screen release, 6-39
screen request, 6-40
send sound, 6-41
set KSR color palette, 6-44
set LPFK, 6-45
set protocol modes, 6-46

X.25 device handler
CIO_START, start session, 5-120
entry points, 5-160

x25sclose, 5-1 08
x25smpx, 5-149
x25sopen,5-151
x25sread, 5-155
x25sselect, 5-158

ioctl operations
CIO_DNLD, download task, 5-112
CIO_GET_STAT, get statistics, 5-113

CIO_HALT, halt session, 5-116
CIO_QUERY, query device, 5-118
IOCINFO, identify device, 5-125
X25_ADD_ROUTER_ID, 5-127
X25_COUNTER_GET, 5-129
X25_COUNTER_READ, 5-130
X25_COUNTER_REMOVE, 5-131
X25_COUNTER_WAIT, 5-132
X25_DELETE_ROUTER_ID, 5-133
X25_DIAG_IO_READ, 5-134
X25_DIAG_IO_WRITE, 5-135
X25_DIAG_MEM_READ, 5-136
X25_DIAG_MEM_WRITE, 5-137
X25_DIAG_RESET, 5-138
X25_DIAG_ TASK, 5-139
X25_LINK_CONNECT, 5-140
X25_LINK_DISCONNECT, 5-141
X25_LINK_STATUS, 5-142
X25_LOCAL_BUSY, 5-143
X25_QUERY _ROUTER_ID, 5-144
X25_QUERY _SESSION, query session,

5-145
X25_REJECT, reject call, 5-147

rx_fn kernel procedure, 5-152
sessions

CIO_HALT, halt session, 5-116
CIO_START, start session, 5-120

stat_fn kernel procedure, 5-153
status blocks, 5-113

CIO_HALT_DONE, 5-114
CIO_NULL_BLK, 5-114
CIO_START~DONE, 5-113
CIO_TX_DONE, 5-114
X25_REJECT_DONE, 5-115

tx_fn kernel procedure, 5-152
x25sioctl, 5-11 O

xmalloc kernel service, 1-377
xmalloc compatibility interface: malloc and

palloc, 1-377
xmattach kernel service, 1-379
xmdetach kernel service, 1-381
xmemdma kernel service, 1-382
xmemin kernel service, 1-384
xmemout kernel service, 1-386
xmfree compatibility interface: free, 1-388
xmfree kernel service, 1-388

Index X-11

X-12 Kernel Reference

/

I

~

(

~

Reader's Comment Form

AIX Calls and Subroutines Reference for IBM RISC System/6000
SC23-2198-00

Please use this form only to identify publication errors or to request changes in
publications. Your comments assist us in improving our publications. Direct any requests for
additional publications, technical questions about IBM systems, changes in IBM programming
support, and so on, to your IBM representative or to your IBM-approved remarketer. You may
use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply
in any way it believes appropriate without incurring any obligation to you.

D If your comment does not need a reply (for example, pointing out a typing error}, check this
box and do not include your name and address below. If your comment is applicable, we
will include it in the next revision of the manual.

D If you would like a reply, check this box. Be sure to print your name and address below.

Page Comments

Please contact your IBM representative or your IBM-approved
remarketer to request additional publications.

Please print

Date-----

Your Name--------------------------
Company Name-----------------------------------

Mailing Address ------------------------------

Area Code

No postage necessary if mailed in the U.S.A

I
I
I
I
I

)1
JI

I
I
I

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 997
11400 Burnet Rd.
Austin, Texas 78758-3493

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

-1---------------------------~----------------------------
I PIO:I PIO:I
I
I
I
I
~

)~

~
I

/

c
.2
c(
"C

;f
0
5
(.)

-~--
ade1 pue PIO:I a1de1s lON oa asea1d ade1 pue p10:1

)

--------- -- --- ---- - ---- - -------- ----- ·-
:co: IBM Corp. 1990

International Business Machines
Corporation
11 400 Burnet Road
Austin, Texas 78758-3493

Printed in the
United States of America
All Rights Reserved

SC23-2198-00

'""' \ 5[23-2198- 00

~

